

1985.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

Pág.

1

CAPITULO I

INTRODUCCION

1.1 Generalidades

.

1.2	Tipos de presas de tierra y enroca- miento		
	1.2.1 Presas homogéneas	2	
	1.2.2 Presas de enrocamiento con corazón impermeable	4	
	1.2.3 Presas de materiales gra- duados	6	
1.3	Secciones típicas de las presas de tierra y enrocamiento	6	
1.4	Estabilidad de una presa de tierra y enrocamiento	8	
	CAPITULO II RESISTENCIA AL CORTANTE EN SUELOS EMPUJE DE TIERRAS		
2.1	Generalidades	12	
2.2	Resistencia al cortante en suelos.	13	
	2.2.1 Teoría de Mohr	13	
	2.2.2 Teoría de Coulomb	14	
2.3	Pruebas de laboratorio	16	

	2.3.2	Pruebas triaxiales		18
		2.3.2.1	Tipos de pruebas triaxiales	19
•		2.3.2.1.1	Prueba rápida (no consolida- no drenada)	20
		2.3.2.1.2	Prueba rápida consolidada	20
		2.3.2.1.3	Prueba lenta	20
2.4	Represer sultados	ntación gr s de las pr	áfica de los re- uebas triaxiales	20
2.5	Empuje de tierras			22
	2.5.1	Teoría de friccionan	Rankine en suelos tes	22
	2.5.2	Teoría de cohesivos	Rankine en suelos	26
	2.5.3	Teoría de los fricci	Coulomb para sue- onantes	27
	2.5.4	Teoría de los cohesi	Coulomb para sue- vo-friccionantes	30
	2.5.5	Método emp	frico de Terzaghi	32
		CAPITU	ro III	
	F	STABILIDAD	DE TALUDES	

POR METODOS TRADICIONALES

3.1	Generalidades	38
3.2	Método sueco para suelos puramente cohesivos	38
3.3	Método sueco para suelos con cohe- sión y fricción	41

	3.3.1 Análisis con esfuerzos to-	41
	tales	
	3.3.2 Análisis con esfuerzos	44
	erectivos	
3.4	Suelos estratificados	47
3.5	Solución gráfica del método sueco	49

.

CAPITULO IV

EL METODO DE LA CUÑA

4.1	General	alidades 52			52
4.2	Casos de la cuña	aplicaci	ón del método de	:	53
4.3	Método d de dos d	le análisi: cuñas	s para el caso	!	54
4.4	Método d de tres	le análisi cuñas	s para el caso	:	58
	4.4.1	Procedimic para la ol tor de sec	entos gráficos btención del fa <u>c</u> guridad	:	58
		4.4.1.1	Primer procedi- miento	:	58
		4.4.1.2	Segundo proce-	(62
			dimiento		
	4.4.2	Procedimiento analítico p <u>a</u> ra calcular el factor de seguridad		ſ	64
4.5	Ejemplo	de aplica	ción		66

CAPITULO V

ANALISIS, DISCUSION Y CONCLUSIONES

5.1	Análisis	104
5.2	Discusión	105
5.3	Conclusiones	106

BIBLIOGRAFIA

CAPITULO I

INTRODUCCION

1.1 GENERALIDADES

Los principios generales que gobiernan el diseño y construcción de una presa de tierra y enrocamiento, deben ser bien conocidos por los Ingenieros responsables, aunque no sólo el conocimiento de estos es suficiente, ya que en el diseño interviene paralelamente la experiencia.

El actual desarrollo de la Mecánica de Suelos, ha hecho que el Ingeniero cuente con mayores herramientas para diseñar una presa de tierra y enrocamiento, haciéndola más confiable y econômica que las construidas anteriormente.

Además, debe tomarse en cuenta que para el diseño, se recomienda que en presas muy altas, éstas sean divididas en varias secciones, las cuales serán diseñadas individualmente. En presas pequeñas, no existe una razón de peso para subdividir la sección, por lo cual sólo se ibaliza un diseño, aunque en presas muy largas, se pueden presentar distintas condiciones de cimentación a lo largo de la presa, en cuyo caso, será necesario un diseño para cada condición de cime<u>n</u> tación.

1.2 TIPOS DE PRESAS DE TIERRA Y ENROCAMIENTO

En la construcción de una presa de las llamadas de tierra y enrocamiento, se utiliza una amplia gama de materiales naturales, cuya granulometría, varía desde el suelo fino, hasta las rocas.

Dependiendo de la cantidad, de la disponibilidad de materiales, así como de la sección de la presa y del aspecto económico en la extracción de los materiales, las presas pueden clasificarse en tres grupos:

- 1.2.1 Presas homogéneas
- 1.2.2 Presas de enrocamiento con corazón impermeable
- 1.2.3 Presas de materiales graduados

1.2.1 PRESAS HOMOGENEAS

Se acostumbra, internacionalmente, utilizar el tér mino "homogénea", para designar a aquellas presas construidas esencialmente de un sólo tipo de material: tierra, entendiéndose por ella, al suelo fino de permeabilidad muy ba ja, tal como: arcilla, arcilla arenosa o arena fina arcillo sa.

Estas presas generalmente deben estar provistas, en los taludes, de una protección contra el oleaje y de un sistema de drenes.

Aunque estas presas pueden ser de gran altura, existe el inconveniente de que la extracción de un sólo mat<u>e</u> rial en grandes volúmenes, no siempre es económica, ni posible; por este hecho y dado que el procedimiento constructivo se facilita, este tipo se recomienda para presas de pequeño o mediano tamaño.

El uso de drenes es prácticamente indispensable para obtener una sección económica. El material de estos drenes, debe ser permeable y además, debe tener un estricto control de calidad. Los drenes cumplen los siguientes obj<u>e</u> tivos:

- 1: Reducir la presión de poro en la zona donde sean colocados, incrementando la estabilidad al deslizamiento de los taludes.
- Controlar las filtraciones, evitando el acarreo de partículas y en consecuencia, la tubificación.

El diseño del sistema de drenes en estas presas, está gobernado principalmente por la altura de la presa, por el costo y disponibilidad del material permeable y por la per meabilidad del terreno de la cimentación, aunque generalmente se recomienda colocar para presas pequeñas el dren al pie de la presa (Figura 1.1.a) para presas de mediana altura el dren en delantal (Figura 1.1.b) y el dren en "L" para presas de a<u>l</u> tura considerable (Figura 1.1.c).

Fig. 1.1 Tipos comunes de drenes en presas de sección homogénea

1.2.2 PRESAS DE ENROCAMIENTO CON CORAZON IMPERMEABLE

Existen un sinnúmero de condiciones que pueden h<u>a</u> cer que una presa de corazón impermeable, sea la mejor sol<u>u</u> ción para un determinado sitio, a continuación se nombran dos de ellas.

- a) Cuando se cuenta con un banco de material impermeable, del cual sólo se puede extraer un volumen pequeño o casi nulo, aunado a un banco con un volumen suficiente de material permeable.
- b) Puede suceder que se tenga una amplia disponi bilidad, tanto del material impermeable como del permeable, por lo que la decisión de cons truir una presa de corazón impermeable, se ba saría en que:
 - El costo unitario de la colocación del ma terial impermeable, puede ser mayor, que el del material permeable.
 - El volumen de material utilizado en la pre sa, puede ser menor en una de corazón impermeable, que en otro tipo de presa.
 - El clima y el tiempo de construcción en <u>o</u> casiones no permiten la utilización de un corazón impermeable muy ancho.

Este corazón puede estar inclinado, hacia aguas arriba (por facilidad de construcción, al permitir un mejor

tránsito de vehículos) o estar en posición vertical en el centro de la presa.

Una de las ventajas de los corazones inclinados es que los filtros entre el corazón y los enrocamientos, pueden hacerse más delgados, con menor dificultad en su construcción, que los filtros en presas con corazón vertical.

Una desventaja de los corazones inclinados que pue de ser muy importante en algunos sitios, resulta del hecho de que la localización del área de contacto entre la cimenta ción y el corazón depende de la profundidad de la excavación de limpia que se haga en la cimentación.

El corazón puede estar constituido por suelos, tales como la arcilla o puede ser reemplazado por pantallas de concreto o asfalto, ya sea en el centro de la presa o en el paramento mojado de ésta.

El uso de pantallas, puede ser muy conveniente en algunos casos, pero deben diseñarse y construirse adecuadamen te, pues en caso de hundimientos diferenciales, pueden fractu rarse y dejar de cumplir su objetivo, lo que debe evitarse.

El grueso de estos corazones, depende principalmen te de los siguientes factores:

- a) El mínimo espesor que permite el método constructivo.
- b) El tipo de material disponible.
- c) El diseño de los filtros propuestos.
- d) Los antecedentes de proyectos anteriores.

e) Las pérdidas por filtración tolerables.

1.2.3 PRESAS DE MATERIALES GRADUADOS

Los tipos de presas anteriores, son los extremos de una posible zonificación. Entre estos límites, se encuen tran un gran número de presas construidas, con distintas zonas, de distintos materiales, distribuidos gradualmente de los suelos finos impermeables en el corazón, pasando por los filtros y las transiciones más permeables, hasta el enrocamiento permeable, esta distribución en muchos casos es simétrica.

1.3 SECCIONES TIPICAS DE LAS PRESAS DE TIERRA Y ENROCAMIENTO

Dadas las necesidades de estabilidad de las presas de tierra y enrocamiento, la disponibilidad de materiales y el tipo de presa, se establecen ciertas secciones típicas, que aunque varían de una presa a otra, dan una idea acerca de ellas.

En las siguientes figuras, se presentarán algunas secciones típicas de cada uno de los tipos de presas de tie<u>r</u> ra y enrocamiento existentes.

NAME Línea de saturación. Chapa de protección Pedraplén o arava - arena an. Material impermeable

Fig. 1.2 . Presa homogénea con dren al pie

Fig. 1.3 Presa homogénea con dren en la base

Fig. 1.4 Presa homogénea con dren en "L"

Fig. 1.5 Presa de enrocamiento con corazón vertical

Fig. 1.7 Presa de materiales graduados

1.4 ESTABILIDAD DE UNA PRESA DE TIERRA Y ENROCAMIENTO

La estabilidad de una presa es la característica de permanecer en su posición inicial, sin desplazarse ni de<u>r</u> rumbarse por la acción de las cargas que debe resistir.

Se ha visto que una presa de tierra y enrocamiento, será estable cuando el valor medio de los esfuerzos cor tantes, sea menor o igual que la resistencia media disponible. En caso de ser igual, se tendrá un factor de seguridad igual a la unidad; el cual no se recomienda, debido a que el más ligero incremento de los esfuerzos, provocaría la falla por deslizamiento, por lo que es más conveniente que el esfuerzo medio sea menor; es recomendable una diferencia apr<u>ó</u> ximada, de entre el 30% y el 50%, es decir, el factor de s<u>e</u> guridad varía de 1.3 a 1.5.

Este rango de factores es aceptable, en comparación con el de las estructuras de concreto y acero; a cont<u>i</u> nuación se exponen las razones:

- a) El factor de seguridad se incrementa con el paso del tiempo, debido a la consolidación, es decir, es fácil que un factor de 1.3 ll<u>e</u> gue a tener un valor de 2.0.
- b) En casi todos los casos, las fuerzas que tienden a producir el movimiento, son consideradas como máximas, cosa que no siempre sucede.
- c) Los esfuerzos resistentes considerados son los mínimos, presentándose antes de la falla, valores normalmente más altos.
- d) En los métodos de cálculo, se introducen otras hipótesis conservadoras.
- e) La experiencia mundial es que las presas con esos factores de seguridad, se han comportado satisfactoriamente.

La falla no siempre llega al extremo de un despl<u>a</u> zamiento total o parcial de la presa, ya que puede presenta<u>r</u> se sólo una distorsión apreciable de los taludes.

El diseño tiene como finalidad equilibrar dos factores, el que la presa sea segura y a su vez econômica.

El análisis de estabilidad de una presa y su cimen tación puede hacerse por dos métodos.

- a) El cálculo de esfuerzos y deformaciones en to do el terraplén y su cimentación, mediante la solución numérica de las ecuaciones de medios contínuos.
- b) La determinación, por análisis al límite de la relación entre el esfuerzo cortante y la resistencia presentada a lo largo de las superficies que definan un mecanismo potencial de falla.

El primer método se apoya modernamente en la técni ca del elemento finito y hace imprescindible el uso de una computadora, no siempre al alcance del Ingeniero y sus resul tados deben interpretarse a la luz de las ecuaciones de esta do o leyes constitutivas de los materiales, que rigen su com portamiento (esfuerzo-deformación), diferentes para cada material y que requieren amplias y muchas veces costosas y for zadas investigaciones previas para cada caso; por esto, este método tiene poca aplicación.

El otro método es un método de tanteos, donde el Ingeniero escoje varios mecanismos de falla, de acuerdo con su experiencia; estimando la resistencia del suelo a lo lar go de las superficies de deslizamiento propuestas y calculando los esfuerzos cortantes, actuantes en las mismas super ficies. El diseño contra deslizamiento es satisfactorio si su factor de seguridad, en cada condición analizada, es superior a un valor mínimo, considerado como razonable.

En estos mecanismos de falla, es conveniente que se tomen en cuenta ciertas condiciones extremas de estabil<u>i</u> dad, esto se hace con el fin de aumentar la certeza, de que no se presentará la falla.

Las condiciones extremas para análisis, son combinaciones de las siguientes:

- a) Al final de construcción.
- b) A largo plazo.
- c) Durante un vaciado rápido.
- d) Bajo excitación sísmica.
- e) Con el vaso vacío.
- f) Con el vaso lleno hasta el NAMO o hasta el NAME.

CAPITULO II

RESISTENCIA AL CORTANTE EN SUELOS EMPUJE DE TIERRAS

2.1 GENERALIDADES

Para el diseño de taludes o de muros de contención, la característica principal que la Mecánica de Suelos toma en cuenta, en sus estudios de la capacidad de los suelos para adaptarse a las cargas que actúen sobre ellos sin fallar, es la oposición de estos al desplazamiento de sus partículas co mo consecuencia de la acción de los esfuerzos cortantes, es decir, toma en cuenta principalmente la resistencia al esfuer zo cortante. Los esfuerzos de tensión y de compresión, son importantes en otros casos (agrietamiento, asentamientos).

El ingeniero realiza un estudio de la resistencia al esfuerzo cortante en todas las estructuras de suelos; sie<u>n</u> do las presas de tierra y enrocamiento una estructura de suelo que puede ser muy importante, adquiere un lugar relevante el estudio de la resistencia al esfuerzo cortante.

La resistencia de un suelo depende de las características iniciales del suelo, como son la relación de vacíos, el grado de saturación y su estructura, asimismo, depende del modo de aplicación de los esfuerzos exteriores, como son la trayectoria de estos, la velocidad de carga y las condiciones de drenaje; es éste el motivo por el cual se han desarrollado las diferentes teorías de falla del esfuerzo cortante.

En ocasiones, para el diseño de una presa de tierra y enrocamiento, se considera que una zona de ella funciona co mo un muro de retención del tipo gravitacional, sobre el cual actúa un empuje de tierras provocado por el suelo que se encuentra fuera de esta zona.

En el transcurso de este capítulo, se tratarán di<u>s</u>. tintas teorías, tanto del esfuerzo cortante como de empujes, estando conscientes de que no son las únicas, pero si las más

usadas actualmente.

2.2 RESISTENCIA AL CORTANTE EN SUELOS

2.2.1 TEORIA DE MOHR

Esta teoría se basa en la hipótesis de que la fric ción entre las partículas del suelo, es la causa principal de su resistencia al corte, lo que supone que las leyes de la Mecánica elemental, en lo que a fricción se refiere, se cumplen satisfactoriamente; estas leyes, por lo general, sólo se cumplen en suelos granulares.

Sabemos, por lo tanto, que un cuerpo A con una fuerza normal P actuando sobre él, deslizará sobre una super ficie, sólo si actúa una fuerza tangencial F, mayor que una resistencia proporcional a la fuerza F, es decir, $F \ge \#P$, donde # recibe el nombre de coeficiente de fricción (Figura 2.1).

Extrapolando a la Mecánica de Suelos, se diría que los suelos fallan por esfuerzo cortante a lo largo de un pl<u>a</u> no, es decir, dada una masa de suelo y un plano de deslizamiento potencial, la resistencia al esfuerzo cortante máxima en el plano, es proporcional al valor de la presión normal en el plano de falla, por lo tanto,

.*

 $\frac{F}{A} = s = r \text{ max.} = \sigma \tan \emptyset \quad (2.1)$

cuya interpretación final será:

 $s = \sigma \tan \emptyset$ (2.2)

donde \emptyset es el ángulo de fricción interna, el cual MOHR definió como una variable, dependiente tanto del acomodo y forma de las partículas del suelo, como del coeficiente de fricción entre ellas.

Esta ley implica, que la falla se producirá cuando el esfuerzo cortante actuante T alcance un valor:

 $\mathbf{T} \geq \mathbf{s} = \mathbf{\sigma} \, \tan \phi \tag{2.3}$

2.2.2 TEORIA DE COULOMB

La teoría de Coulomb, se apoya en los principios de la Mecánica elemental, teniendo la ley:

 $s = \sigma \tan \phi$ (2.4)

sólo que considera que el ángulo de fricción interna \emptyset es una constante del material.

Esta ley se cumplirá satisfactoriamente en suelos granulares (arenas o gravas), dónde, como un caso particular,

si $\sigma = 0$, s = 0, no así en las arcillas, las cuales aún cua<u>n</u> do $\sigma = 0$, tienen una resistencia inicial al corte. Observa<u>n</u> do esto, Coulomb les asignó a estos materiales otra fuente de resistencia al corte, llamándola, cohesión y consideránd<u>o</u> la una constante del material; también observó que en estos materiales, la resistencia parecía ser independiente de la aplicación de distintos valores de esfuerzo normal, y por ta<u>n</u> to, en estos materiales, parecía existir sólo la cohesión.

A partir de lo anterior, surgió la ley de resiste<u>n</u> cia de estos suelos, siendo ésta:

s = c (2.5)

Las dos leyes anteriores, afectan por separado a suelos o puramente friccionantes o puramente cohesivos, sin embargo, Coulomb observó el hecho de que existen suelos que son una combinación de ambos, por lo que a su vez, hizo una combinación de sus leyes, llegando a que:

$$s = c + \sigma \tan \emptyset$$
 (2.6)

la cual abarca además, los casos particulares de los suelos puramente friccionantes o puramente cohesivos.

Actualmente, la ley de resistencia al cortante más aceptada por la Mecánica de Suelos aplicada, es la llamada Mohr-Coulomb, en la que se considera la expresión matemática de Coulomb (ec. 2.6), tomándose en cuenta la teoría de Mohr, en el sentido de que tanto c como Ø, son variables.

Aunque generalmente se obtienen resultados satisfactorios, tiene la deficiencia de que considera a los esfuerzos actuantes, como la diferencia entre los esfuerzos principales menor y mayor $\sigma_f = f(\sigma_1 - \sigma_3)$, pero sin tomar

en cuenta el esfuerzo principal intermedio, el cual sabemos que interviene en la representación del estado de esfuerzos que actúe en el interior.

Actualmente y después de algunas observaciones por parte de los investigadores, se llegó a la conclusión de que la presión normal, debe sustituirse por la presión efectiva; asimismo, se observó que la cohesión es función del contenido de agua, por lo que la ley queda finalmente:

 $s = f(w) + (\sigma - U_n) \tan \emptyset$ (2.7)

2.3 PRUEBAS DE LABORATORIO

Hasta ahora, se ha hablado tanto de c como de \emptyset , sin saber cómo son obtenidos, por lo que a continuación, se expondrán los tipos de pruebas de laboratorio para la obten ción de datos, que posteriormente nos conducirán a la obten ción de los parámetros buscados.

2.3.1 PRUEBA DIRECTA

El aparato con que se realiza esta prueba, consta de dos marcos, uno fijo y uno móvil, que contienen a la mue<u>s</u> tra de suelo.

Dos piedras porosas, una superior y otra inferior, proporcionan drenaje libre a muestras saturadas, cuando se desee y se sustituyen simplemente por placas de confinamiento, al probar muestras secas.

La parte móvil tiene un aditamento, al cual es p<u>o</u> sible aplicar una fuerza rasante, que provoca la falla del espécimen, a lo largo de un plano, que resulta bien definido.

Sobre la cara superior, se aplican cargas que proporcionan una presión normal σ en el plano de falla, gradua ble a voluntad. Las deformaciones horizontal y vertical, se miden con extensómetros (Figura 2.2).

Fig. 2.2 Aparato de resistencia al esfuerzo cortante directo

Existen tres variedades de esta prueba, a saber:

- a) Sin drenaje.
- b) Con consolidación, sin drenaje, permitiéndose el drenaje sólo en la etapa de aplicación del esfuerzo normal vertical, hasta la disipación total de la presión intersticial; posteriormente, en la aplicación del esfuerzo cortante no se permite drenaje.
- c) Con drenaje, permitiéndose durante toda la prueba la disipación de las presiones neutrales.

Estas pruebas son recomendables en suelos, que pue

dan cumplir de preferencia la ley s = $\sigma \tan \emptyset$.

2.3.2 PRUEBAS TRIAXIALES

Estas pruebas sustituyeron a las de corte directo, ya que no tienen el inconveniente de no gobernar a voluntad el efecto del agua en la resistencia de los suelos y el de provocar una falla progresiva de los especímenes, producida por el desplazamiento del marco móvil, aunque el principal defecto que corrigen estas pruebas, es el del control de agua.

Las pruebas se realizan envolviendo en una membra na impermeable el espécimen cilíndrico de suelo, cuyas bases quedan en contacto con las cabezas sólidas, provistas de pie dras porosas, que sirven de filtros y que se conectan a tubos provistos de válvulas, con las cuales se controla el flu jo de agua, midiéndose la cantidad con una bureta integrada al sistema; todo el conjunto queda encerrado en una cámara que se conecta a un tanque de agua a presión.

La tapa superior de la cámara es atravesada por un vástago, el cual transmite la fuerza P aplicada, este vást<u>a</u> go tiene un diseño especial para evitar fugas y fricción, el sistema consta también de un micrómetro, el cual mide las d<u>e</u> formaciones que sufre el espécimen con las distintas cargas (Figura 2.3).

Fig. 2.3 Esquema de una cámara triaxial

2.3.2.1 TIPOS DE PRUEBAS TRIAXIALES

Es muy importante que la selección del tipo de prue ba represente con la mayor fidelidad, las condiciones a las que estará sometido el suelo en la realidad.

Para una obtención de resultados más cercana a la realidad, deberán someterse a las pruebas entre tres y cinco especímenes, a diferentes presiones confinantes σ_2 , requiriéndose por tanto, distintos esfuerzos principales mayo res σ_1 , para llegar a la falla.

2.3.2.1.1 PRUEBA RAPIDA (NO CONSOLIDADA-NO DRENADA)

En esta prueba, no se permite el drenaje de los fluidos, es decir, no se permite la consolidación de la muestra; esto se hará cerrando las válvulas; se aplica una carga axial P, creciente hasta alcanzar la falla; no se conocen los esfuerzos efectivos.

2.3.2.1.2 PRUEBA RAPIDA-CONSOLIDADA

Se permite la consolidación total de la muestra, bajo la presión hidrostática, es decir, se abren las válvulas, permitiendo el drenaje y disipación de la presión inte<u>r</u> na de los fluidos; una vez que en la muestra se observa una consolidación primaria del 100%, se cierran las válvulas y se incrementa el esfuerzo axial hasta la falla.

2.3.2.1.3 PRUEBA LENTA

Se permite la consolidación total de la muestra, bajo la presión hidrostática, conservándose las válvulas abiertas al incrementar el esfuerzo axial, siendo estos in crementos muy pequeños y con aplicación más lenta para per mitir la disipación total de la presión de poro.

2.4 REPRESENTACION GRAFICA DE LOS RESULTADOS DE LAS PRUEBAS TRIAXIALES

Considerando que el material probado es homogéneo

e isótropo y despreciando las restricciones de las cabeceras de piedra y de la membrana impermeable, el estado de es fuerzos de un elemento del interior del espécimen, puede r<u>e</u> presentarse mediante el círculo de Mohr, para el caso de un estado plano.

Aunque el estado de esfuerzos es tridimensional y aparentemente debería emplearse la solución general de Mohr, con sus tres círculos diferentes, el hecho de que el esfuer zo principal menor y el intermedio σ_3 y σ_2 sean iguales, provoca que los tres círculos degeneren en uno sólo, que equivale al estado plano de esfuerzos, donde el esfuerzo principal mayor es igual a:

 σ_1 = Presión hidrostática + P/A (2.8)

siendo:

P = Carga axial transmitida por .nedio del vástago

A = Area del espécimen

Trazando un círculo de esfuerzos para cada prueba realizada con diferente esfuerzo de confinamiento, se obti<u>e</u> ne una serie de círculos, como los de la Figura (2.4). Tr<u>a</u> zando la envolvente de falla o línea de resistencia, se obtienen los parámetros deseados; esta representación o línea de falla, puede tener muchas formas, dependiendo del tipo de material probado, ya sea cohesivo, intermedio o friccionante, pero además, depende de la relación de vacíos, del grado de saturación y del tipo de prueba (Figura 2.4).

Fig. 2.4 Círculos de Mohr y línea de falla

2.5 EMPUJE DE TIERRAS

A continuación se hablará de las principales teo rías sobre empuje de tierras, como son la Rankine, Coulomb y Terzaghi, sabiendo de antemano que no son las únicas desarrolladas.

2.5.1 TEORIA DE RANKINE EN SUELOS FRICCIONANTES

Considerando un elemento diferencial en el interior de un semiespacio de suelo, a una profundidad Z, cuya altura es dz y al cual no se le permite ningún desplazamiento, la presión actuante sobre él, será $Pv = \gamma z$, donde γ es el peso específico del suelo, correspondiente al estado en que se encuentre (Figura 2.5).

Fig. 2.5 Esfuerzos actuantes sobre un elemento de suelo en reposo

Bajo esta presión vertical actuante, el elemento se presiona lateralmente, originándose un esfuerzo horizo<u>n</u> tal Ph, el cual supondremos que es directamente proporcional a Pv, es decir,

$$Ph = Ko \gamma z \qquad (2.9)$$

donde, Ko es igual al coeficiente de presión de tierra en reposo, cuyo valor se obtiene en el campo o experimentalmen te, variando desde 0.4 hasta 1.0, según el tipo de suelo.

Representando en el plano de Mohr el estado de es fuerzos correspondiente, se obtendrá un círculo, que eviden temente no es necesariamente de falla.

A partir de este estado de esfuerzos, el elemento podrá llevarse a la falla, de dos maneras:

Uno es disminuyendo el esfuerzo horizontal, mant<u>e</u> niendo constante el vertical, siendo por lo tanto, el esfue<u>r</u> zo principal mayor $\sigma_1 = \gamma z$, correspondiente a la presión vertical y el esfuerzo principal menor $\sigma_3 = Ka \gamma z$, que corresponde a la presión horizontal y en donde llamaremos a Ka, coeficiente de presión activa de tierras; representando esta condición, obtendremos el círculo No. 1 de la Figura 2.6.

El otro camino es, llevar el elemento a la falla, aumentando la presión horizontal, de tal manera que ésta se rá el esfuerzo principal mayor, cuyo valor es $\sigma_1 = \text{Kp } \gamma z$, donde Kp es el coeficiente de presión pasiva, teniéndose ade más, que el esfuerzo principal menor $\sigma_3 = \gamma z$; este estado está representado por el círculo No. 2 de la figura ya mencionada.

Fig. 2.6 Estados plásticos en plano de Mohr

Cuando la presión en el elemento alcanza el valor mínimo Ka γ z o el valor máximo Kp γ z, se dice que está en estado de falla incipiente o estado plástico; llamaremos al estado plástico mínimo, estado activo y al máximo, estado pasivo.

En el caso pasivo tendremos que:

$$\frac{Ph}{Pv} = \frac{\sigma}{\sigma} = N_{g}$$

(2.10)

donde:

$$N_{g} = \tan^{2} (45 + \frac{g}{2})$$
, cuyo valor se obtiene
graficamente

resultando además que:

-

$$Kp = N_{g} = \tan^{2} (45 + \frac{g}{2})$$
 (2.11.a)

En el caso activo, tendremos lo siguiente:

$$\frac{Ph}{Pv} = \frac{3}{\sigma} = \frac{1}{Ng}$$
(2.12)

donde:

$$\frac{1}{N_{g}} = \tan^{2} (45 - \frac{g}{2}), \text{ valor obtenido}$$
gráficamente

y finalmente:

$$Ka = \frac{1}{N_{g}} = tan^{2} (45 - \frac{g}{2})$$
 (2.11.b)

Expresiones finales que dan el valor de los coeficientes, pasivo y activo respectivamente.

Integrando las expresiones obtenidas, para una al tura H, se obtendrá el empuje total correspondiente, de don de para el empuje activo, se tiene que:

Ea =
$$\frac{\gamma}{N_{\emptyset}} \int_{0}^{H} z \, dz = \frac{1}{2N_{\emptyset}} \gamma H^{2} = \frac{1}{2} Ka \gamma H^{2}$$
 (2.13)

y para el estado pasivo, tendremos que:

$$Ep = \frac{1}{2} N_{g} \gamma H^{2} = \frac{1}{2} Kp \gamma H^{2}$$
 (2.14)

Considerando que el empuje total actúa a un tercio de la base.

En caso de que la superficie del relleno sea un plano inclinado a un ángulo β se obtendrán las siguientes expresiones:

$$Ea = \frac{1}{2} \gamma H^{2} \left[\cos \beta \frac{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \theta}}{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \theta}} \right] (2.15)$$
$$Ep = \frac{1}{2} \gamma H^{2} \left[\cos \beta \frac{\cos \beta + \sqrt{\cos^{2} \beta - \cos^{2} \theta}}{\cos \beta - \sqrt{\cos^{2} \beta - \cos^{2} \theta}} \right] (2.16)$$

Donde la resultante del empuje total será paralela a la dirección de la superficie del relleno y estará aplicada a un tercio de la base.

2.5.2 TEORIA DE RANKINE EN SUELOS COHESIVOS

Se toman en cuenta las hipótesis de la teoría <u>pa</u> ra suelos friccionantes, por lo que se llega a las siguie<u>n</u> tes expresiones para el empuje activo y el pasivo.

 $Ea = \frac{1}{2} \gamma H^2 - 2 C H$ (2.17.a)

 $Ep = \frac{1}{2} \gamma H^{2} + 2 c H \qquad (2.17.b)$

Aplicable sólo a terrenos con superficie horizo<u>n</u> tal y sólo si los estados plásticos se desarrollan por co<u>m</u> pleto en el relleno.

Esta teoría tiene el inconveniente de apoyarse en un concepto que no es muy confiable, es decir, se apoya en la cohesión, la cual puede variar su valor a través del tiempo, según las condiciones que se presentan; como puede ser una saturación más o menos rápida del material, un flu jo, etc., tendiendo generalmente a una disminución de ésta, quedando los cálculos por arriba de la seguridad real.

2.5.3 TEORIA DE COULOMB PARA SUELOS FRICCIONANTES

Coulomb consideró que el empuje sobre un muro se debe a una cuña de suelo, limitada por el murc, la superficie de falla plana y la superficie del relleno.

Esta cuña tiene, debido a su peso, la tendencia a deslizarse, produciendo por esto, esfuerzos de fricción tanto en la superficie de contacto entre suelo y muro, como en la superficie de falla.

Haciendo la suposición de que las fuerzas de fri<u>c</u> ción resistente se desarrollan por completo, las fuerzas Ea y F, tendrán respectivamente una inclinación ϵ y Ø con re<u>s</u> pecto a sus normales, siendo ϵ el ángulo de fricción inte<u>r</u> na entre suelo y muro y Ø entre suelo y suelo (Figura 2.7).

Fig. 2.7 Mecanismo de empujes de suelos friccionantes

El ángulo • puede tener cualquier valor entre 0 y \emptyset , ya que si adoptamos el valor de cero, el muro correspon derá a un muro liso y si tomamos el valor de \emptyset , la falla se presentará entre suelo y suelo, aunque en la inmediata vecindad del muro; esto será prácticamente igual a que la falla se presente entre suelo y muro. En la práctica, se aconseja que:

$$\frac{\emptyset}{2} \le \mathfrak{l} \le \frac{2}{3} \quad \emptyset \tag{2.18}$$

Hechas las suposiciones anteriores, se traza el polígono dinámico de la cuña, que se cierra al considerar el equilibrio de ésta, obteniéndose así, el valor de Ea y F (Figura 2.8).

Fig. 2.8

Polígono dinámico de la cuña AOB
Como esta cuña se escogió al azar, será neces<u>a</u> rio considerar varias cuñas, hasta que se encuentre el v<u>a</u> lor del empuje máximo, asociado a la cuña "crítica".

Cuando se presente el caso de que el relleno sea de material friccionante, limitado por un muro de respaldo plano y por una superficie plana, horizontal o no, se obti<u>e</u> ne matemáticamente la siguiente ecuación para el cálculo del empuje máximo:

$$Ea = \frac{1}{2} \gamma H^{2} \frac{\cos^{2} (\emptyset - a)}{\cos^{2} a \cos(\epsilon + a) \left[1 + \sqrt{\frac{\sin((\theta - \beta)}{\cos(\epsilon + a)} \cos(\theta - \beta)}\right]^{2}}$$

$$(2.19)$$

donde:

- \emptyset = Angulo de fricción interna del material
- a = Angulo formado entre el respaldo del muro y la vertical
- β = Angulo formado entre la superficie plana del relleno y la horizontal

Cuando se presenta el caso de que el respaldo del muro es vertical, el relleno es horizontal y no hay fricción entre el muro y el relleno, la ecuación 2.19, se reduce a:

$$Ea = \frac{1}{2} \boldsymbol{\gamma} H^{2} \frac{1 - \operatorname{sen} \boldsymbol{\emptyset}}{1 + \operatorname{sen} \boldsymbol{\emptyset}} = \frac{1}{2N_{\boldsymbol{\emptyset}}} \boldsymbol{\gamma} H^{2} = \frac{1}{2} \operatorname{Ka} \boldsymbol{\gamma} H^{2}$$
(2.20)

Se puede observar, que en este caso, la teoría de Coulomb y la de Rankine, coinciden.

Para el caso del empuje pasivo y siguiendo las mismas hipótesis, se obtendrá la fórmula:

29

$$Ep = \frac{1}{2} \gamma H^{2} \frac{\cos^{2} (\emptyset + \epsilon)}{\cos^{2} \epsilon \cos (\epsilon + \epsilon) \left[1 - \sqrt{\frac{\sin (\theta + \beta)}{\cos (\epsilon - \epsilon)} \cos (\theta + \beta)}\right]^{2}}$$

$$(2.21)$$

Debe tenerse en cuenta que para valores de grandes, la determinación del empuje pasivo con esta teoría, puede acarrear errores de hasta un 30%.

Coulomb, después de varias suposiciones, determinó que el punto de aplicación del empuje en muros con respaldo plano y con el relleno limitado por una superficie plana, se encuentra a una altura H/3 a partir de la base. Para los ca sos en que no se cumplan las características mencionadas, Terzaghi propone que se trace por el centro de gravedad de la cuña crítica, una línea paralela a la superficie de falla, cuya intersección con el respaldo del muro, será el punto de aplicación buscado.

2.5.4 TEORIA DE COULOMB PARA SUELOS COHESIVO - FRICCIONANTES

En la práctica, obtendremos una aproximación adecua da si consideramos un plano desde la base del muro hasta la zona de agrietamiento, como una superficie hipotética de falla (Figura 2.9).

Fig. 2.9 Mecanismo de empujes de suelos cohesivos - friccionantes

Suponiendo una cuña de deslizamiento de ancho unitario, las fuerzas que equilibran ésta, son el peso propio W, la reacción N entre la cuña y el suelo, descompuesta en sus componentes F debida a la reacción normal y a la fricción, y C debida a la cohesión; la adherencia C' entre suelo y muro y el empuje activo Ea.

De las fuerzas anteriores, las incógnitas serán F y Ea, aunque sólo en magnitud.

Trazando el polígono y cerrándolo, se obtiene el valor de F y Ea (Figura 2.10); este valor no es el máximo, por lo que será necesario hacer varios tanteos con diferentes superficies de falla hasta encontrar el valor máximo de Ea.

Fig. 2.10 Polígono dinámico de la cuña ABDG

Este procedimiento también puede aplicarse para la obtención del empuje pasivo, aunque es conveniente aclarar que en este caso, la teoría no es muy aproximada, por lo que no se recomienda su uso.

2.5.5 METODO EMPIRICO DE TERZAGHI

Este método se basa en el estudio de la estabilidad de muros reales y proporciona normalmente una estimación co<u>n</u> servadora de los empujes. Tiene el inconveniente de que sólo es aplicable a muros de escasa altura (no mayores de 7.0 m.).

Para la aplicación del método, en primer lugar, se rá necesario que el material del relleno se clasifique dentro de uno de los siguientes cinco grupos:

- I. Suelo granular grueso, sin finos.
- II. Suelo granular grueso, con finos limosos.
- III. Suelo residual, con cantos, bloques de pie dra, gravas, arenas finas y finos arcillosos en cantidad apreciable.

- IV. Arcillas plásticas blandas, limos orgáni cos o arcillas limosas.
 - V. Fragmentos de arcilla dura o medianamente dura, protegidos de modo que el agua proveniente de cualquier fuente no penetre entre los fragmentos.

Se recomienda descartar, siempre y cuando sea pos<u>i</u> ble, los tipos IV y V como materiales de relleno, el tipo V nunca deberá usarse cuando exista riesgo de que el agua pen<u>e</u> tre en los huecos del material, dada su posible expansión y el correspondiente aumento de las presiones sobre el muro.

En caso de que en un muro a proyectar, se descono<u>z</u> ca el tipo de material de relleno, éste deberá proyectarse para las condiciones más desfavorables.

El método se aplica en los siguientes cuatro casos:

- La superficie del relleno es plana, inclinada o no y sin sobrecarga.
- La superficie del relleno, es inclinada, a partir de la corona del muro, hasta un cierto nivel, en que se torna horizontal.
- La superficie del relleno es horizontal y sobre ella actúa una sobrecarga uniformemente repartida.
- La superficie del relleno es horizontal y sobre ella actúa una sobrecarga lineal, paralela a la corona del muro y uniformemente repar tida.

Para el primer caso, se aplican las siguientes fórmulas:

$$Eh = \frac{1}{2} Kh H^{2}$$
(2.22)
$$Ev = \frac{1}{2} Kv H^{2}$$
(2.23)

Fig. 2.11

Gráficas para determinar el empuje de rellenos en el caso 1.

Para el material del tipo V, el valor de H se deb<u>e</u> rá reducir en 1.20 m. El punto de aplicación estará a la a<u>l</u> tura H/3, medida a partir del paño inferior del muro, aunque en el material del tipo V, se aplicará a la altura:

$$d' = \frac{1}{3} (H - 1.20) \qquad (2.24)$$

En el caso 2, las gráficas para obtener los valores de Kh y Kv, se muestran en la figura 2.12. En éstas, se observan las convenciones a que deben ajustarse las alturas, y los puntos y planos de aplicación de los empujes, etc.. Para el material tipo V., el punto de aplicación se obtendrá con la ecuación 2.24.

VALORES DE LA RELACION H1/H

Cuando se presente el caso 3, la presión horizontal sobre el plano vertical en que se supone actuante el empuje, deberá incrementarse uniformemente en:

$$P = C q H \tag{2.25}$$

donde:

q = valor de la sobrecarga uniformemente repartida.

C valor que se obtiene de la tabla (2.1).

VALORES DE C

Tipo de Relleno

С

I		0.27
II	•	0.30
III		0.39
IV		1.00
v		1.00

Tabla 2.1 Valores de C

Si se tiene el caso 4, se considerará que la carga ejerce sobre el plano vertical, en el que se aceptan aplicados los empujes, una carga concentrada que vale:

P = C q' (2.26)

donde:

q' = valor de la carga lineal uniforme. C valor que se obtiene de la tabla (2.1). El punto de aplicación de P, se obtiene con la construcción de los trazos mostrados en la Figura 2.13.

Fig. 2.13 Método para calcular la influencia de una sobrecarga lineal

Si al trazar la línea a 40°, el punto de aplicación de P resulta bajo la base del muro, el efecto de q' puede des preciarse. La carga q' produce además, una presión vertical sobre la losa de cimentación del muro, cuyo efecto podrá calcularse considerando una influencia de 60° a partir de q', uniforme en el tramo ab y de magnitud q'/ab, considerando en los cálculos, sólo la parte de tal presión que afecte a la lo sa de cimentación a'b'.

Lo antes descrito, se cumple para muros con cimentación firme, en caso de que el muro descanse en terreno blan do, su asentamiento puede hacer que la componente vertical de empuje, llegue a invertirse, en este caso, se aconseja que los valores obtenidos se incrementen en un 50%.

Estos muros deberán tener buenas instalaciones de drenaje para evitar la presencia de presiones hidrostáticas, ya que éstas no se consideran en el método.

CAPITULO III

ESTABILIDAD DE TALUDES POR METODOS TRADICIONALES

3.1 GENERALIDADES

Se describen en el presente capítulo, los métodos de cálculo de los que dispone el ingeniero para establecer si un talud es o no estable, ya sea que el talud esté en etapa de proyecto, ya construido o que se trate de un talud natural.

Estos métodos consisten en general, en establecer un mecanismo de falla para el talud, verificando con los criterios de resistencia del material, si hay alguna posibilidad de que se presente el mecanismo de falla establecido.

En estos métodos, se considera que la falla ocurr<u>i</u> rfa por deslizamiento de la masa de suelo, suponiéndola como cuerpo rígido, a lo largo de una superficie de deslizamiento, que en algunos casos se supone plana y en ger ral cilíndrica circular, donde se desarrolla la máxima resistencia; usualmente, se adopta la ley de resistencia de Mohr-Coulomb, haciendo el análisis bidimensional y estableciendo que no exi<u>s</u> te interacción entre las dovelas consideradas.

3.2 METODO SUECO PARA SUELOS PURAMENTE COHESIVOS

En este caso, la resistencia al esfuerzo cortante, es obtenida con los resultados de las pruebas de compresión triaxial sin consolidación y sin drenaje (prueba rápida) ut<u>i</u> lizando esfuerzos totales; en suelos cohesivos, el resultado de la prueba se expresa por la ley:

s = c

(3.1)

donde:

c = cohesión

Esta ley es aplicable en suelos homogéneos finos, secos o saturados.

El procedimiento de cálculo es:

Dado un talud, se considerará, como se observa en la figura, un arco de círculo de radio "R" con centro en "O", el cual por ser arbitrario, podrá pasar por el pie del talud, o por la base del mismo, siendo la masa del talud por deslizar, la limitada por los puntos ABCD.

Fig. 3.1 Método sueco, aplicado al análisis de la estabilidad de un talud en suelo homogéneo y cohesivo puro

Las fuerzas actuantes serán, por lo tanto, el peso (W) del área ABCD por unidad de ancho, más cualquier sobrecarga posible en la corona del talud, despreciando los esfuerzos tangenciales sobre las caras paralelas del prisma o cilindro de falla, inducidos por las masas del suelo vecinas, que deslizan junto con el prisma en cuestión.

Tomando momentos con respecto a "O", de estas fuer zas, tendremos:

$$Mm = Wd \tag{3.2}$$

ŧ.

donde:

Las fuerzas resistentes al deslizamiento serán, los efectos de la cohesión a lo largo de la superficie de falla, que producen un momento con respecto a "O", es decir:

$$Mr = CLR \tag{3.3}$$

donde:

Mr = Momento resistente.
Teniéndose que en el momento de falla incipiente:
Mm = Mr (3.4)

Pero, dado que lo anterior no es conveniente, se adoptará un factor de seguridad FS, donde:

$$FS = \frac{Mr}{Mm} = \frac{CLR}{Wd}$$
(3.5)

Este factor de seguridad, según la experiencia y la práctica usual, debe ser como mínimo de 1.5 para considerar que el talud es estable.

Para localizar la superficie crítica de falla para la que el factor de seguridad obtenido, sea el mínimo, será necesario realizar el cálculo para otras superficies de falla, con distinto radio "R" y distinto centro "O", hasta encontrar razonablemente la que produzca el mínimo factor de seguridad; a esta superficie se le llamará "círculo crítico".

3.3 METODO SUECO PARA SUELOS CON COHESION Y FRICCION

Dentro de este método, se distinguen dos opciones, a saber: el análisis con esfuerzos totales y el análisis con esfuerzos efectivos. En ambos casos se expondrán los lineamientos generales, sin entrar mucho en detalle sobre algunas deducciones o modos de aplicación.

3.3.1 ANALISIS CON ESFUERZOS TOTALES

En general, este análisis se hace cuando el talud está situado por arriba del nivel de aguas freáticas, o cua<u>n</u> do no hay presión de poro.

Se dispone de los parámetros de resistencia obteni dos a partir de una prueba sin consolidación y sin drenaje (triaxial rápida), cumpliéndose la ley de resistencia:

$$s = c + \sigma \tan \emptyset$$
 (3.6)

El método de cálculo que se emplea frecuentemente, es el método de Fellenius o de dovelas, que se expone a con tinuación.

Se supone que el problema es bidimensional y se propone una superficie de falla cilíndrica circular, como se mues

tra en la figura, dividiéndose el área ABCD (masa deslizante) en dovelas; cuyo mayor número implica resultados más confiables.

Fig. 3.2 Método sueco, aplicado al caso de material cohesivo y friccionante. Procedimiento de las dovelas.

Representando en una dovela (Fig. 3.3) las fuerzas actuantes, se plantea la condición de equilibrio, al igual que el equilibrio del conjunto de la masa deslizante.

Fig. 3.3 Representación de las fuerzas actuantes en la dovela iésima.

En el caso de esta dovela, se tendrán las siguientes fuerzas:

> W_i es el peso de la dovela de espesor unitario. N_i y T_i, son las reacciones normal y tangencial a

lo largo de la superficie de deslizamiento L_i.

 E_1 , E_2 , S_1 y S_2 , son las acciones que las dovelas adyacentes ejercen sobre la dovela en estudio.

Estas últimas fuerzas son difíciles de evaluar, por lo que Fellenius hizo la hipótesis de que el efecto de las fuerzas E_1 y E_2 se contraresta, es decir, estas fuerzas son colineales, iguales y contrarias; se considera además, que el momento producido por S_1 y S_2 , que se consideran de igual mag nitud, es despreciable. Lo anterior implica que cada dovela se considere actuando independientemente de las demás y que N; y T; equilibran a W;.

Obtendremos el valor del esfuerzo normal total medio, actuante en la base de la dovela σ , mediante el cocie<u>n</u> te N_i / L_i, que sustituido en la ley de resistencia obtenida con las pruebas de laboratorio, proporciona el valor de la resistencia al esfuerzo cortante media S_i, en el arco L_i.

Ahora, calculando el momento motor con respecto a "O", del peso de las dovelas, tendremos que:

 $Mm = R \Sigma T_{i}$ (3.7)

En caso de sobrecarga, deberá incluirse en el Mm; las fuerzas N_i no producen momentos, dado que su línea de acción pasa por "O".

También calcularemos el momento resistente, que depende directamente de la resistencia al esfuerzo cortante S_i desarrollada a lo largo de la superficie de falla, por lo tanto, tendremos que:

 $Mr = R \Sigma S_{i} L_{i}$ (3.8)

En este caso, teniendo los dos momentos, es conve niente obtener el llamado factor de seguridad, que resultará del siguiente cociente:

$$FS = \frac{Mr}{Mm} = \frac{R \sum T_i}{R \sum S_i L_i} = \frac{T_i}{S_i L_i}$$
(3.9)

Este círculo de falla propuesto, no necesariamente es el círculo crítico, por lo que será necesario proponer otras superficies de falla y repetir el mismo procedimiento; se escogerán superficies de falla que pasen tanto por la base como por el pie del talud, así como otras intermedias. En <u>ge</u> neral, el factor de seguridad del círculo crítico, se recomie<u>n</u> da que no sea menor de 1.5.

3.3.2 ANALISIS CON ESFUERZOS EFECTIVOS

Este análisis, se hace generalmente para el caso de taludes situados parcial o totalmente bajo el nivel de aguas freáticas o sometidos a un flujo a través del suelo.

La prueba triaxial recomendada, según las condiciones reales del talud y el tipo del material, es la consolidada y con drenaje (lenta), la consolidada y sin drenaje (rápida co<u>n</u> solidada) o la no consolidada no-drenada (rápida), con medición de presiones de poro en el plano de falla, en el instante de ésta.

De estas pruebas, se obtendrá la ley de resitencia representada por:

 $S = C + \overline{\sigma} \tan \phi = C + (\sigma - U) \tan \phi$ (3.10)

donde:

U = Presión de poro actuando en la superficie de falla.

El método mencionado en el inciso anterior, es apli cable en este caso, aunque se tendrán algunas consideraciones adicionales sobre las fuerzas que actúan en las dovelas.

A continuación se detallará la manera de obtener cada una de estas fuerzas, basándonos en la dovela iésima (Fig. 3.4.b) de la masa deslizante, mostrada en la figura 3.4.a.

- Fig. 3.4 Método sueco, aplicado al caso de material cohesivo y friccionante, parcial o totalmente bajo el nivel de aguas freáticas
 - a) Peso total (W_i), igual a la suma de las áreas de la dovela de espesor unitario, multiplicadas por el peso específico correspondiente, es decir:

$$W_{i} = \boldsymbol{\Sigma} A_{j} \boldsymbol{\gamma}_{j} \qquad (3.11)$$

b) La fuerza normal N_i, actuando en la base de la dovela:

$$N_{i} = W_{i} \cos \alpha_{i} \qquad (3.12)$$

 c) El valor de la fuerza tangencial, actuando en la base de la dovela:

$$T_{i} = W_{i} \operatorname{sen} \mathbf{a}_{i} \tag{3.13}$$

d) La fuerza de subpresión U_i, igual al valor de la presión de poro u_i, calculada con la red de flujo correspondiente, en el punto de la base de la dovela, donde se descomponen las fuerzas actuantes, multiplicada por la longitud de la base de la dovela:

$$U_i = u_i L_i \tag{3.14}$$

 e) La componente de la resistencia total al cortan te, debida a la cohesión C_i, igual a la cohesión del material en la superficie de falla de la do vela, multiplicada por la longitud de la base de la dovela:

$$C_i = c_i L_i \tag{3.15}$$

Conocidas las fuerzas anteriores y sustituyendo en la ecuación 3.10, se obtendrá la resistencia total al corta<u>n</u> te que puede desarrollarse en la base de la dovela iésima, en el momento de la falla, es decir:

$$S_{i} = C_{i} + (N_{i} - U_{i}) \tan \emptyset \qquad (3.16)$$

A continuación, calcularemos el momento motor con respecto al punto "O" del peso de las dovelas, estando con<u>s</u> cientes de que la componente normal no tiene momento con re<u>s</u> pecto a "O", por pasar su línea de acción por este punto, es decir:

$$Mm = R \Sigma T_{i}$$
(3.17)

Calculando el momento resistente, derivado direct<u>a</u> mente de la resistencia al esfuerzo cortante, tendremos que:

$$Mr = R \Sigma S_{i} \qquad (3.18)$$

Sustituyendo en el factor de seguridad, definido de la manera usual, finalmente tendremos que:

$$FS = \frac{Mr}{Mm} = \frac{R \Sigma S_{i}}{R \Sigma T_{i}} = \frac{\Sigma S_{i}}{\Sigma T_{i}} = \frac{\Sigma C_{i} + (N_{i} - U_{i}) \tan \emptyset_{i}}{W_{i} \operatorname{sen} \bullet_{i}}$$
(3.19)

Este factor, como en el caso anterior, no es el único, sino que deberán calcularse otros factores para otras superficies de falla; estos factores generalmente no deberán ser menores que un valor previamente elegido. En la práctica, las instituciones especializadas, han fijado los valores mín<u>i</u> mos aceptables para el factor de seguridad para cada caso de carga y condición de los materiales.

3.4 SUELOS ESTRATIFICADOS

Este caso se presenta frecuentemente en taludes n<u>a</u> turales en la realidad y puede ser representado por la figura 3.5

Fig. 3.5 Aplicación del método sueco a taludes en suelos estratificados

En este caso, se podrá realizar una superposición de lo antes tratado, considerando la masa del talud, dividida en dovelas, cuya base sólo caiga en un estrato, facilita<u>n</u> do de esta manera, los cálculos.

Deberá además, calcularse el peso total de la dov<u>e</u> la, sumando parcialmente el peso de cada porción de suelo e<u>s</u> tratificado, perteneciente a la dovela.

Posteriormente, deberá tratarse cada dovela, de acuerdo con la ley de resistencia del material que se encue<u>n</u> tre en su base, ya sea puramente cohesivo, puramente fricci<u>o</u> nante o cohesivo y friccionante.

Con estos datos, es posible calcular tanto el momento motor, como el momento resistente y por lo tanto, el factor de seguridad.

Este método no deja de ser por tanteos, hasta enco<u>n</u> trar el círculo crítico, el cual no debe tener un factor de seguridad menor que 1.5, o el recomendado por las instituciones especializadas.

3.5 SOLUCION GRAFICA DEL METODO SUECO

Esta solución consta de los siguientes pasos, ilu<u>s</u> trados en la figura siguiente:

Fig. 3.6 Procedimiento del planímetro

- Elfjase un círculo de falla cualquiera. Este círculo se acercará más al círculo de falla crítico, dependiendo de la experiencia que ten ga el ingeniero.
- 2. A lo largo del probable círculo de falla, elfjase un número arbitrario de puntos, escogiéndose de preferencia, aquellos cuya vertical pa sa por los puntos de cambio de pendiente en el talud o aquellos donde cambia el material o don de se intercepta la línea de saturación; además es conveniente elegir el punto por donde pasa la línea vertical trazada a partir del centro del círculo de falla.

- Partiendo de cada punto elegido, trácese una línea vertical desde el círculo de falla hasta la línea AB.
- 4. A escala, determínese la altura h del material comprendido entre el talud y el círculo de falla y multiplíquese por el peso volumétrico para obtener el valor de γh. Si a lo largo de la línea vertical trazada, se tienen distintos materiales, se tendrá que:

$$\boldsymbol{\gamma} \mathbf{h}_{+} = \boldsymbol{\Sigma} \boldsymbol{\gamma}_{i} \quad \mathbf{h}_{i} \qquad (3.20)$$

donde:

γ_i = peso volumétrico del material iésimo h_i = altura del material iésimo, medida gráficamente

- 5. Utilizando como guía el radio del círculo, llé vese en cada punto, a una escala arbitrariamen te elegida, el valor de γ h correspondiente y descompóngase cada uno de estos vectores en una componente normal y otra tangencial al círculo.
- Unanse los puntos obtenidos. De igual manera y trazando la red de flujo, puede hacerse un diagrama de presiones de poro, calculadas para cada punto, a partir de la línea de saturación.
- Una vez obtenidos los valores de γh cosª y de γh sena (a, ángulo entre la normal y el peso), represéntense gráficamente y a la misma escala, sobre la línea AB, en la proyección del punto correspondiente.

 Mídanse con un planímetro, las áreas bajo cada una de las curvas y se obtendrán así los valores necesarios para calcular el factor de segu ridad.

El tener un número apreciable de dovelas, por cons<u>i</u> derarse éstas de un ancho diferencial, hace que este método de cálculo sea bastante exacto; aunque también debemos decir que un factor muy importante para lograr esta exactitud, es la buena calidad de los dibujos.

CAPITULO IV

EL METODO DE LA CUÑA

4.1 GENERALIDADES

La falla por traslación de una masa de suelo, oc<u>u</u> rre cuando hay un plano definido de debilidad (baja resiste<u>n</u> cia), paralelo o casi paralelo y cercano a la base de un talud. Este fenómeno se presenta con mayor frecuencia en caso de que el talud y el plano de debilidad, presenten una cierta inclinación con respecto a la horizontal.

La localización del plano de debilidad depende principalmente de una cuidadosa investigación, teniéndose una aten ción especial sobre la detección de capas de suelo que son o pueden ser de material cuya resistencia es baja.

En la figura (4.1), se muestra la naturaleza general de este deslizamiento y a la cual se liga principalmente el método de nuestro interés.

Fig. 4.1 Superficie de falla correspondiente a una falla de traslación

El método de la cuña es usado por casi todos los in genieros en las circunstancias en que la superficie de falla se aproxima mejor a una serie de planos y no a una superficie curva, aunque no por esto, deja de ser aplicable a los mismos casos que cubre el método sueco.

4.2 CASOS DE APLICACION DEL METODO DE LA CUNA

Este se usa principalmente en cualquiera de los siguientes casos:

- a) Cuando la cimentación consiste en roca sana que no interviene en la falla y la presa tiene un corazón fino e impermeable, con respaldos de ma terial granular compacto.
- b) Cuando existe en la parte superior de la cimentación un estrato horizontal muy delgado, de ba ja resistencia.
- c) Cuando la falla se puede presentar a lo largo de discontinuidades, tales como juntas o fallas.

En el primer caso, es probable que la falla ocurra en una superficie que pasa a través de la presa, es por esto que en el cálculo del factor de seguridad, se dividirá la masa de<u>s</u> lizante en sólo dos cuñas o bloques.

En los últimos casos, se supone que la falla ocurre como resultado de un movimiento en el estrato débil de la cimentación o en las fallas o juntas. En este tipo de falla se utiliza generalmente el método en que la masa deslizante se d<u>i</u> vide en tres cuñas.

En ambos casos, el análisis se hace considerando que existe interacción entre las cuñas, tomándose en cuenta todas las fuerzas, tanto actuantes como resistentes.

4.3 METODO DE ANALISIS PARA EL CASO DE DOS CUÑAS

La masa de deslizamiento como ya se mencionó, se d<u>i</u> vide en dos cuñas, separadas generalmente por una línea vert<u>i</u> cal AB y cuya superficie total de falla consiste en los planos AC y AD, en los cuales se observará el movimiento de la masa deslizante.

Fig. 4.2 Fuerzas que actúan en la masa deslizante en el caso de dos cuñas

La cuña superior, limitada por la línea vertical AB y por el plano inclinado AC, recibe el nombre de cuña activa o actuante y la cuña inferior, limitada por la línea AB y el plano inclinado o no AD, recibe el nombre de cuña pasiva o r<u>e</u> sistente.

Las fuerzas que intervienen en los cálculos son los pesos $W_1 \ y \ W_2$, las fuerzas de subpresión $U_1 \ y \ U_2$, las fuerzas cortantes $T_1 \ y \ T_2$, las fuerzas normales $N_1 \ y \ N_2$, la presión de agua U_{12} , si existe, actuando normalmente a la línea vertical AB y la fuerza P_{12} , actuando entre las dos cuñas, con una inclinación • con respecto a la horizontal. Se considerará el equilibrio de cada cuña por sep<u>a</u> rado.

Será necesario considerar para la aplicación del método, que la fuerza P₁₂ correspondiente al empuje que eje<u>r</u> ce la cuña l sobre la cuña 2, es incógnita tanto en magnitud como en dirección; aunque esta fuerza pueda calcularse con las teorías clásicas de empujes de tierras.

Ahora bien, dada la dependencia de $T_1 y T_2 con N_1 y N_2$ respectivamente y de estas últimas con P_{12} , tendremos que tanto $T_1 y T_2 como N_1 y N_2$, también serán incógnitas.

Es conveniente mencionar que el factor de seguridad, asociado a la masa deslizante, es una incógnita más.

En la solución del problema, sólo se tienen dos ecua ciones de equilibrio por cada cuña, lo que hará que el problema sea indeterminado, es por esto que se recomienda el uso del siguiente procedimiento para la obtención del factor de segur<u>i</u> dad.

- Se supone un valor del factor de seguridad (se recomienda hacerlo igual a uno en el primer tan teo).
- 2. Se asigna un valor a a, que puede ser, ya sea igual a cero, igual al ángulo de fricción inter na o igual a cualquier valor intermedio; en caso de que se adopte el valor de cero el factor de seguridad obtenido, tendrá un valor subestimado, mientras que si adoptamos el valor del án gulo de fricción interna, el factor de seguridad será sobrestimado, es por esto que generalmente se recomienda que el valor de asea:

$$a = ang \tan \frac{\tan \emptyset}{F.S.}$$
(4.1)

Aunque en algunas ocasiones es recomendable utilizar distintos valores de « para hacer un anál<u>i</u> sis de la influencia de ésta sobre el factor de seguridad.

 Se descomponen las fuerzas tangenciales siguientes en sus dos componentes, es decir:

$$T_1 = C_1 L_1 / FS. + N_1 \tan \emptyset / FS.$$

 $T_2 = C_2 L_2 / FS. + N_2 \tan \emptyset / FS.$

У

y podemos llamar a esas componentes T_3 , T_4 , T_5 y T_6 , que serán iguales respectivamente a:

$$T_3 = C_1 L_1 / FS.$$
 (4.2)

 $T_{A} = N_{1} \tan \emptyset / FS. \qquad (4.3)$

$$T_5 = C_2 L_2 / FS.$$
 (4.4)

$$T_6 = N_2 \tan \emptyset / FS. \qquad (4.5)$$

4. Se dibujará un polígono de fuerzas para cada una de las cuñas. Llevaremos al polígono correspondiente a la cuña l, cada una de las fuerzas con<u>o</u> cidas tanto en dirección como en magnitud y sentido, y que son W_1 , U_1 , U_{12} y T_3 . Hecho esto, quedarán sin llevarse al polígono, los valores de T_4 , N_1 y P_{12} , que son desconocidos en magnitud, pero no en dirección.

- 5. Ahora bien, para mayor facilidad, se obtendrá la resultante de T_4 y N_1 , que llamaremos R_1 y cuya magnitud seguirá siendo desconocida, mientras que su dirección formará el ángulo **a** (por hipótesis) con N_1 .
- 6. A continuación, con sus direcciones, las fuerzas R₁ y P₁₂, serán llevadas al polígono de fuerzas; cerrándolo se obtendrá la magnitud de ambas fue<u>r</u> zas, asociada al factor de seguridad supuesto.
- 7. Una vez obtenidas estas magnitudes, tendremos que en la cuña 2 conocemos la dirección, la magnitud y el sentido de las fuerzas W_2 y P_{12} , quedando como incógnitas, únicamente, las magnitudes de T₆ y N₂. Nuevamente para mayor facilidad, o<u>b</u> tenemos la resultante R₂ de estas dos fuerzas, la cual sólo será desconocida en magnitud, mientras que en dirección por hipótes:s, formará el ángulo **a** con N₂.
- 8. Hecho esto, se trazará el polígono de fuerzas de la cuña 2. Si el polígono cierra, el valor del factor de seguridad supuesto será el correcto, si no sucede esto, el procedimiento total se repetirá, eligiendo un factor de seguridad distinto, hasta que el polígono de la cuña 2 cierre, lo que significará que las cuñas están en equilibrio, en cuyo caso se obtendrá gráficamente la magnitud de R₁ y R₂.

Es conveniente que todo el procedimiento se rep<u>i</u> ta para distintas superficies de falla, hasta e<u>n</u> contrar el valor mínimo del factor de seguridad para la presa.

4.4 METODO DE ANALISIS PARA EL CASO DE TRES CUÑAS

En este caso, la masa potencial deslizante, se div<u>i</u> de en tres cuñas, como se muestra en la Figura 4.3., una cuña superior llamada activa, una cuña central llamada neutra o de<u>s</u> lizante y una cuña inferior llamada pasiva. En la figura, ad<u>e</u> más se muestran las fuerzas que actúan sobre las cuñas, los á<u>n</u> gulos a_1 , a_2 y a_3 , pueden tener un valor cualesquiera.

Fig. 4.3 Cuñas en que se divide la masa deslizante y fuerzas que actúan sobre éstas, en el caso de tres cuñas.

4.4.1 PROCEDIMIENTOS GRAFICOS PARA LA OBTENCION DEL FACTOR DE SEGURIDAD

A continuación se describirán los dos procedimientos que existen.

4.4.1.1 PRIMER PROCEDIMIENTO

1. Se suponen los factores de seguridad de las tres

cuñas, FS_1 , FS_2 y FS_3 (se recomienda que sean iguales entre sí e iguales a uno en el primer tanteo).

 Se asignan valores a a₁, a₂ y a₃, estos pueden ser cualesquiera, sin embargo, se recomienda que:

$$a_1 = ang \tan \frac{\tan \theta_1}{FS_1}$$
 (4.6)

$$\mathbf{a}_2 = \arg \tan \frac{\tan \emptyset_2}{FS_2}$$
 (4.7)

$$\mathbf{a}_3 = \arg \tan \frac{\tan \theta_3}{FS_3}$$
 (4.8)

siendo:

- ø₁ = angulo de fricción interna desarrollado en la superficie AB.
- Ø₂ = ángulo de fricción interna desarrollado en la superficie BC.
- Ø₃ = ángulo de fricción interna desarrollado en la superficie CD.

En caso de que las cuñas estén formadas por varios materiales y estos intercepten la línea de falla, se recomienda utilizar un promedio de los ángulos de fricción interna correspondientes, es decir:

$$\emptyset_{i} = \frac{\Sigma \emptyset_{j} L_{j}}{L_{i}}$$
(4.9)

donde:

- Ø = ángulo de fricción interna promedio de sarrollado en la superficie de falla de la cuña iésima.
- Ø j = ángulo de fricción interna del material jotaésimo que intercepta la superficie de falla de la cuña iésima.
- L_j = longitud de la intercepción del material jotaésimo con la superficie de falla de la cuña iésima.
- L_i = longitud total de la superficie de falla de la cuña iésima.
- 3. Al igual que en el método para dos cuñas, se des componen las fuerzas tangenciales T_1 , T_2 y T_3 en sus respectivas componentes, que llamaremos T_4 , T_5 , T_6 , T_7 , T_8 y T_9 , y que serán iguales respectivamente a:

 $T_4 = C_1 L_1 / FS_1$ (4.10)

 $T_5 = N_1 \tan \emptyset_1 / FS_1 \qquad (4.11)$

 $T_6 = C_2 L_2 / FS_2$ (4.12)

$$T_7 = N_2 \tan \phi_2 / FS_2$$
 (4.13)

 $T_8 = C_3 L_3 / FS_3$ (4.14)

 $T_9 = N_3 \tan \phi_3 / FS_3$ (4.15)

- C1 = cohesión desarrollada en la superficie AB.
- C₂ = cohesión desarrollada en la superficie BC.
- C₃ = cohesión desarrollada en la superficie CD.

Si sucede que las cuñas están formadas por distintos materiales, es recomendable considerar esto en el cálculo de las fuerzas T_4 , T_6 y T_8 , con un promedio de los distintos valores de la cohesión que puedan presentarse.

- 4. Se calcula el valor de las fuerzas W_1 , $T_4 ext{ y } U_1$, de la cuña l, W_2 , $T_6 ext{ y } U_2$, de la cuña 2 ext{ y } W_3, $T_8 ext{ y } U_3$, de la cuña 3.
- 5. Las resultantes R_1 , R_2 y R_3 entre T_5 y N_1 , T_7 y N_2 y T_9 y N_3 respectivamente, serán desconocidas en magnitud, pero por hipótesis su dirección for mará el ángulo a_1 , \bullet_2 y a_3 con sus respectivas normales N_1 , N_2 y N_3 . Las fuerzas P_{12} y P_{23} son igualmente desconocidas en magnitud, pero no en dirección, ya que por hipótesis, formarán con la horizontal, el ángulo a_1 y a_3 respectivamente.
- Considerando todas las fuerzas que actúan en la cuña l y con el uso del polígono de fuerzas (tal como en el caso de 2 cuñas), obtendremos el valor de P₁₂.
- 7. Obtenido el valor de P_{12} y el de todas las fuer-

zas que actúan en la cuña 2, se trazará nuevamente un polígono de fuerzas, lo cual nos llevará a determinar el valor de P₂₃.

8. Llevando el valor de P_{23} al polígono de fuerzas correspondientes a la cuña 3, se checará el equilibrio.

Si éste no se satisface (si el polígono de fuerzas no cierra), se repite todo el procedimiento, suponiendo un nuevo valor del factor de seguridad, hasta que el equilibrio se verifique.

Es recomendable que como se desconoce la superficie de falla exacta, se analicen distintas superficies, para dete<u>r</u> minar el valor del mínimo factor de seguridad.

4.4.1.2 SEGUNDO PROCEDIMIENTO

En este procedimiento, se supondrán los valores de los ángulos \mathbf{e}_1 y \mathbf{e}_2 , recomendándose, dada la poca experiencia obtenida y para que los cálculos proporcionen un factor de seguridad más real, que si la frontera vertical entre la cuña activa y el bloque deslizante, se localiza en el centro del t<u>a</u> lud de la presa o abajo de éste, el valor de \mathbf{e}_1 será igual a cero y si la frontera se encuentra entre el centro del talud y la parte superior de la presa, se supone un ángulo intermedio.

Para el ángulo \mathbf{e}_2 y por las razones ya expuestas, se recomienda que éste tenga el valor del ángulo del talud, si la frontera vertical entre la cuña pasiva y el bloque deslizante se localiza cerca del centro del talud, mientras que si esta frontera se encuentra en el pie del talud o cerca de éste, el ángulo \mathbf{e}_2 recomendado, será igual a cero.

La siguiente suposición que debe hacerse, se refiere al valor de los factores de seguridad asociados a cada cuña,
sugiriéndose que los valores sean iguales para todos y cada uno de los bloques, no descartándose la posibilidad de que cada fac tor de seguridad tenga un valor propio.

Una vez hechas las suposiciones anteriores, se aplica el siguiente procedimiento.

- Calcúlese el valor de P₁₂ y P₂₃ por medio de la teoría de Rankine o Coulomb.
- Se controlan los valores de la cohesión y fricción interna que se desarrollan a lo largo de las superficies de falla de las cuñas, por medio del factor de seguridad, de tal manera que:

$$C_{d} = \frac{C}{FS}$$
(4.16)

$$\tan \emptyset_{d} = \frac{\tan \emptyset}{FS}$$
(4.17)

donde:

- C = cohesión por unidad de superficie.
- C_d = cohesión desarrollada por unidad de superficie.
 - \emptyset = ángulo de fricción interna.
- Ø_d = ángulo de fricción interna desarrollada.
- 3. Se calcula el valor del peso W_2 del bloque deslizante y de la fuerza de cohesión en la base de éste. El valor de la fuerza normal de reacción R_2 , se obtendrá con el diagrama vectorial.

4. Con la magnitud y dirección de las fuerzas P_{12} , P_{23} y W_2 , así como con la dirección de la fuerza normal de reacción R_2 , se dibujará el diagrama vectorial de la cuña 2.

En este polígono de fuerzas, se observará si existe o no equilibrio, teniéndose éste si el polígono de fuerzas cie rra, si no se cumple esta condición, se supondrá un nuevo valor del factor de seguridad y se repetirá el procedimiento tan tas veces como sea necesario para que el polígono cierre.

Para la obtención de los valores de las resultantes $R_1 \ y \ R_3$, se trazarán los polígonos de fuerzas correspondientes a las cuñas activa y pasiva, obteniéndose estos valores gráficamente.

4.4.2 PROCEDIMIENTO ANALITICO PARA CALCULAR EL FACTOR DE SEGURIDAD

- Se supone que la superficie de falla del bloque central es horizontal.
- Se supone que la deformación horizontal ocurrida, es suficiente para que las cuñas activa y pasiva estén en estado de falla incipiente.
- Se presume que las fuerzas totales en los planos verticales (BD y DC), son horizontales.

Obteniéndose el valor de éstas, ya sea con la teoría de Rankine o con la de Coulomb.

 Se define el factor de seguridad, bajo estas con diciones, con referencia a la estabilidad del blo que central, de las dos siguientes maneras: a.l) La fuerza actuante que desequilibra el blo que central es la diferencia entre la fuer za activa ejercida por la cuña actuante y la fuerza pasiva ejercida por la cuña resistente, es decir:

$$P_1 = P_a - P_p$$
 (4.18)

b.1) La fuerza disponible para resistir el movi miento del bloque central es:

 $P_2 = C_{BC} + (W_2 - U_{BC}) \tan \emptyset$ (4.19)

donde:

C_{BC} = fuerza de cohesión a lo largo de la superficie del bloque des lizante.

W₂ = peso del bloque deslizante.

U_{BC} = fuerza de subpresión en el blo que deslizante.

c.1) Obtenemos el factor de seguridad como:

$$FS = \frac{P_2}{P_1}$$
 (4.20)

a.2) La fuerza actuante que desequilibra el blo que central será solamente la fuerza activa ejercida por la cuña actuante, es decir:

$$P_1 = P_a$$
 (4.21)

- b.2) La fuerza disponible para resistir el movi miento del bloque central es en este caso:
 - $P_2 = C_{BC} + (W_2 U_{BC}) \tan \emptyset + P_p \quad (4.22)$
- b.3) El factor de seguridad estará definido tam bién por la ecuación 4.20.

Este procedimiento para la obtención del factor de seguridad, es preferible usarlo cuando:

- El material de la cuña activa y pasiva es bastan te más rígido (tiene menos esfuerzo cortante en la falla) que el material situado a lo largo del plano de debilidad en la cimentación (BC).
- La resistencia al cortante generada en la superficie BC es una fracción apreciable del total de la resistencia que se desarrolla en toda la supe<u>r</u> ficie de falla (ABCD).

A continuación se desarrollará un ejemplo, con tres superficies de falla distintas, aceptando que éstas son escog<u>i</u> das al azar y que no son todas las que pueden analizarse.

4.5 EJEMPLO DE APLICACION

Calcular los factores de seguridad correspondientes a la presa dibujada (plano 4.1), cuyas características se anotan a continuación:

	(to:	n / m ³)	C (ton	(ton / m^2)		
MATERIAL	<u>yh Ó ys</u>	ysat 6 y	R	RC	R	RC
1	1.84	1.84	7	6	0	6
2	1.90	1.19	-	-	38	38
3	2.05	1.29	***	_ -	40	40
4	1.70	1.07	-	-	45	45
5	1.90	1.19	-	-	35	35

Las condiciones en las que se analizará esta presa, son:

- a) Talud aguas abajo. Condición inicial. Vaso vacío. Agua al NAMINO.
- b) Talud aguas abajo. Condición final. Vaso lleno. Agua al NAME.

En ambos casos, se analizarán las masas deslizantes limitadas por las tres superficies de falla mostradas en el pl<u>a</u> no 4.2.

Las masas deslizantes se dividirán en cuñas, tal como se muestra en los planos 4.3, 4.4 y 4.5.

Obtención de los factores de seguridad.

1.a) Dos cuñas. Talud aguas abajo. Condición inicial. Vaso vacío, NAMINO.

El peso de las cuñas de la masa deslizante, se calculará para cuñas de ancho unitario, por lo que:

$$W_n = V_n \gamma_n = A_n \times 1 \times \gamma_n = A_n \gamma_n \qquad (4.23)$$

Para el cálculo del peso de las cuñas, se dividirán éstas en secciones, las cuales tendrán cada una, un mismo peso

volumétrico, por lo que aplicando la ecuación (4.23), se tendrá que:

$$W_{c1} = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 + W_7$$
 (4.24)

donde:

 $W_1 = 44.04 (1.70) = 74.87 \text{ ton}$ $W_2 = 56.00 (2.05) = 114.80 \text{ ton}$ $W_3 = 74.91 (1.90) = 142.33 \text{ ton}$ $W_A = 812.96 (1.84) = 1,495.84$ ton $W_g = 287.34 (1.90) = 545.95 \text{ ton}$ $W_6 = 946.33$ (2.05) = 1,939.98 ton $W_7 = 155.61 (1.70) = 264.53 \text{ ton}$ Sustituyendo en (4.24) $W_{c1} = 74.87 + 114.80 + 142.33 + 1,495.84 +$ 545.95 + 1,939.38 + 264.53 $W_{c1} = 4,578.30$ ton $W_{c2} = W_8 + W_9$ (4.25)

donde:

 $W_8 = 2,094.33$ (2.05) = 4,293.38 ton $W_9 = 1,806.67$ (1.70) = 3,071.34 ton sustituyendo en (4.25)

 $W_{c2} = 4,293.38 + 3,071.34$

 $W_{c2} = 7,364.72$ ton

Las líneas de acción, tanto del peso de la cuña 1, como de la cuña 2, se muestran en el plano 4.3.

Cabe aclarar que en este caso, dadas las condiciones, no se presentan las fuerzas U_{12} , U_1 y U_2 , por lo que se proseguirá con el método.

Una vez calculados los pesos de la cuña l y de la c<u>u</u> ña 2, será necesario que se suponga un factor de seguridad, por lo que como primer tanteo, haremos que FS = 1.00.

Hecho esto y con la ecuación 4.1, obtenemos •, aunque en nuestro caso, consideraremos un valor promedio de \emptyset para o<u>b</u> tener a, por lo tanto:

$$\phi_{\rm p} = \frac{\Sigma \phi_{\rm i} L_{\rm i}}{L_{\rm p}} \tag{4.26}$$

donde:

 \emptyset_{p} = angulo de fricción interna promedio.

Ø_i = ángulo de fricción interna de la superficie iésima.

L_i = longitud de la superficie de falla iésima.

 L_m = longitud total de la superficie de falla.

Sustituyendo datos en la ecuación 4.25, tenemos:

$$\emptyset_{p} = 30.72^{\circ}$$

Llevando el valor de \emptyset_p y el de FS. a la ecuación 4.1, tenemos que:

$$a = ang \tan \frac{\tan 30.72}{1.00}$$

 $a = 30.72^{\circ}$

A continuación, sustituyendo los datos en las ecuaciones 4.2 y 4.4., obtendremos los valores de T_3 y T_5 , es decir:

> $T_3 = 6 (61) / 1.00$ $T_3 = 366 \text{ ton}$ $T_5 = 0 (0)$ $T_5 = 0 \text{ ton}$

Con estas magnitudes y las direcciones obtenidas del plano 4.3, trazaremos el polígono de fuerzas para cada cuña, como se muestra en la figura 4.4.

Puede observarse que el polígono de fuerzas de la cu ña 2, no cerró, por lo que es necesario otro tanteo. A continuación, se hará un resumen de los tanteos necesarios para la obtención del factor de seguridad.

TANTEO	FS. ذp	۵°	<u>т</u> 3	^T 5	Fig.
1	1.00 30.72	30.72	366.00	0.0	4.4
. 2	1.70 30.72	19.27	215.28	0.0	-
3	1.80 30.72	18.27	203.33	0.0	-
4	1.90 30.72	17.36	192.63	0.0	4.5

Obtenemos el valor de R_1 , R_2 y P_{12} de la figura 4.5, siendo:

 $R_1 = 4,350$ ton $R_2 = 8,165$ ton

 $P_{12} = 1,975$ ton

Con un FS = 1.90

2.a) Tres cuñas. Talud aguas abajo. Condición in<u>i</u> cial. Vaso vacío NAMINO.

En este caso, el plano 4.4 representa la masa deslizante que nos interesa.

El cálculo del peso de las cuñas se hará aplicando la ecuación 4.23 y de manera semejante al caso anterior, por lo que:

$$W_{c1} = W_1 + W_2 + W_3 + W_4 + W_5$$
 (4.27)

donde:

 $W_1 = 12.90$ (1.84) = 23.73 ton $W_2 = 99.61$ (1.90) = 189.25 ton

Fig. 4.4 Polígono de fuerzas de la cuña l y 2

Fig. 4.5 Polígono de fuerzas de las cuñas l y 2

$$\begin{split} w_3 &= 1,598.52 \ (2.05) \ + \ 19.46 \ (1.29) \ = \ 3,302.07 \ \text{ton} \\ w_4 &= \ 284.37 \ (1.70) \ = \ 483.43 \ \text{ton} \\ w_5 &= \ 4.33 \ (1.19) \ = \ 5.15 \ \text{ton} \\ &\text{Sustituyendo en la ecuación } \ 4.27. \\ w_{\text{cl}} &= \ 23.73 \ + \ 189.25 \ + \ 3,302.07 \ + \ 483.43 \ + \ 5.15 \\ &w_{\text{cl}} &= \ 4,003.63 \ \text{ton} \\ &w_{\text{c2}} &= \ w_6 \ + \ w_7 \ + \ w_8 \end{split}$$

$$\begin{split} &W_6 = 1,800.90 \ (2.05) \ + \ 21.12 \ (1.29) \ = \ 3,719.26 \ \text{ton} \\ &W_7 = 1,607.83 \ (1.70) \ = \ 2,733.31 \ \text{ton} \\ &W_8 = 1,231.51 \ (1.19) \ = \ 1,465.50 \ \text{ton} \\ &Sustituyendo \ en \ la \ ecuación \ 4.28. \\ &W_{c2} \ = \ 3,719.26 \ + \ 2,733.31 \ + \ 1,465.50 \\ &W_{c2} \ = \ 7,918.07 \ \text{ton} \\ &W_{c3} \ = \ W_9 \ (4.29) \\ &W_{c3} \ = \ W_9 \ = \ 56.89 \ (1.19) \end{split}$$

 $W_{c3} = 67.70$ ton

donde:

Las líneas de acción de los pesos de cada cuña, se muestran en el plano 4.4. Nuevamente las fuerzas U_1 , U_2 y U_3 son nulas.

En este caso, el factor de seguridad se obtendrá por los tres procedimientos anteriormente descritos.

> PRIMER PROCEDIMIENTO PRIMER TANTEO

Suponemos $FS_1 = FS_2 = FS_3 = 1.00$

Aplicando la ecuación 4.9, tenemos que:

 $\emptyset_1 = \frac{0 \ (14.33) \ + \ 38 \ (29.00) \ + \ 40 \ (64.67) \ + \ 35 \ (36.67)}{144.67}$

 $\phi_3 = 35^{\circ}$

Y sustituyendo estos valores en las ecuaciones 4.6, 4.7 y 4.8, obtenemos que:

$$a_1 = ang \tan \frac{\tan 34.37}{1.00}$$
 $a_1 = 34.37^{\circ}$
 $a_2 = ang \tan \frac{\tan 35}{1.00}$ $a_2 = 35^{\circ}$

 $a_3 = ang \tan \frac{\tan 35}{1,00}$ $a_3 = 35^\circ$

A partir de las ecuaciones 4.10, 4.12 y 4.14, obten<u>e</u> mos los valores correspondientes a T_A , T_5 y T_8 .

\$4

 $T_{A} = 6 (14.33) / 1.00$

 $T_4 = 85.98$ ton

 $T_6 = 0 \text{ ton}$

 $T_g = 0 \text{ ton}$

Con estas magnitudes y las direcciones obtenidas del plano 4.4, trazaremos los polígonos de fuerzas correspondientes a las cuñas, según lo indicado en el procedimiento correspondiente.

Como puede observarse en la figura 4.6, el polígono de la cuña tres, no cierra, por lo que habrá que proponer otros factores de seguridad. Para mayor facilidad, se hará un resumen en la siguiente tabla.

TANTEO	FS.	<u>•</u> 1	<u>a</u> 2	<u>a</u> 3	<u> </u>	^т 6	<u>т</u> 8	Fig.
1	1.00	34.37	35	35	85.98	0.0	0.0	4.6
2	2.00	18.88	19.73	19.73	42.99	0.0	0.0	-
3	2.20	17.27	17.65	17.65	39.08	0.0	0.0	4.7

Puede observarse en la figura 4.7, que el polígono de la cuña 3, no cierra, pero es mínimo el error, por lo que podría considerarse que el factor de seguridad es $FS_1 = 2.21$, $FS_2 =$ 2.21 y $FS_3 = 2.21$, con este resultado y de la figura 4.7, obt<u>e</u> nemos que:

76

Fig. 4.6' Polígono de fuerzas de las cuñas 2 y 3

Fig. 4.7' Polígono de fuerzas de las cuñas 2 y 3

$$R_1 = 4,200 \text{ ton}$$

 $R_2 = 9,150 \text{ ton}$

 $R_3 = 80 \text{ ton}$

 $P_{12} = 2,895$ ton

 $P_{23} = 50 \text{ ton}$

SEGUNDO PROCEDIMIENTO PRIMER TANTEO

Suponemos los valores de $a_1 y a_2$ siguiendo las recomendaciones ya mencionadas, por lo tanto, se supondrá un valor de a_1 entre cero y el ángulo del talud, es decir:

 $a_1 = \frac{26.57 + 0}{2}$ $a_1 = 13.28^{\circ}$

mientras que el ángulo a, por recomendación será:

$$a_2 = 0^{\circ}$$

Suponemos los valores de los factores de seguridad, $FS_1 = 1.00$, $FS_2 = 1.00$ y $FS_3 = 1.00$.

Se calcula el valor de P_{12} y P_{23} , con la teoría de Rankine. Para el empuje activo y dadas las características que se tienen, se usará el caso de un muro vertical, con un r<u>e</u> lleno horizontal y actuando sobre éste, una carga uniformemente repartida; se debe estar conciente de que esto no se apega estrictamente a la realidad, pero sí proporciona un resultado bastante aproximado; mientras que para el empuje pasivo se us<u>a</u> rá el caso en que el muro es vertical y la superficie superior del relleno es horizontal, por lo tanto, tendremos que:

$$P_{12} = \frac{\gamma_n h^2 n}{2} Ka + qhKa$$
 (4.30)

donde:

q = sobrecarga uniformemente repartida.

$$P_{23} = \frac{\gamma_n h^2}{2} Kp$$
 (4.31)

donde:

Ka =
$$\tan^2 (45 - \emptyset_{BFd} / 2)$$
 (4.32)
(c = $\tan^2 (45 - \emptyset_{CFd} / 2)$ (4.33)

Para obtener el valor de \emptyset_{BFd} y \emptyset_{CEd} , se aplicará la ecuación 4.17, donde el valor de \emptyset_{BF} y \emptyset_{CE} se obtendrán como un promedio de los valores de \emptyset que se tienen a lo largo de las su perficies BF y CE, por lo tanto:

$$\emptyset_{\rm BF} = \frac{45 \ (9.80) + 40 \ (55.20) + 35 \ (4.40)}{69.40}$$
$$\emptyset_{\rm BF} = 40.39^{\circ}$$
$$\emptyset_{\rm CE} = 35^{\circ}$$

y finalmente:

$$\emptyset_{\text{BFd}}$$
 = ang tan $\frac{\tan 40.39}{1.00}$

 $\emptyset_{BFd} = 40.39^{\circ}$

$$\emptyset_{CEd} = ang \tan \frac{\tan 35}{1.00}$$
 $\emptyset_{CEd} = 35^{\circ}$

Sustituyendo estos resultados en las ecuaciones 4.32 y 4.33, tenemos que:

Ka = \tan^2 (45 - 40.39 / 2) Ka = 0.21 Kp = \tan^2 (45 + 35 / 2) Kp = 3.69

Para el cálculo de "q", se tomará el peso del material que está sobre la superficie horizontal y se dividirá en tre la longitud de esa superficie, es decir:

$$q = \frac{Ws}{Ls} = \frac{1,146.89}{41.33}$$
$$q = 27.75 \text{ ton/m}$$

Por lo que sustituyendo los valores obtenidos, en las ecuaciones 4.30 y 4.31, finalmente tendremos que:

$$P_{12} = \left[\frac{1.70 (9.80)^2}{2} + \frac{2.05 (48.87)^2}{2} + \frac{1.29 (6.33)^2}{2} + \frac{1.90 (4.40)^2}{2}\right] \quad 0.21 + [27.75 (69.40)] \quad 0.21 = 2,573.85 \quad (0.21) + 1,925.85 \quad (0.21) = 4,499.70 \quad (0.21)$$

$$P_{12} = 944.94$$
 ton
 $P_{23} = \frac{1.19 (10.67)^2}{2} (3.69) = 67.74 (3.69)$
 $P_{23} = 249.97$ ton

Se calcula el valor de \emptyset_1 , \emptyset_2 y \emptyset_3 de la misma manera que en el procedimiento anterior, por lo que:

Calculamos los valores del ángulo de fricción desarrollado en las superficies de falla, aplicando la ecuación 4.17, es decir:

$$\emptyset_{d1} = ang tar - \frac{tan 34.37}{1.00}$$
 $\emptyset_{d1} = 34.37^{\circ}$

$$\emptyset_{d2} = ang \tan \frac{\tan 35}{1.00}$$
 $\emptyset_{d2} = 35^{\circ}$

$$\emptyset_{d3} = ang \tan \frac{\tan 35}{1.00}$$
 $\emptyset_{d3} = 35^{\circ}$

Además se calcula $C_d = \frac{C}{FS}$

pero C = 0

 $C_d = 0$

Con los datos obtenidos, se traza el polígono de fuerzas de la cuña 2, que como puede observarse, no cerró, por lo que será necesario hacer más tanteos, cuyo resumen se presenta en la siguiente tabla:

Ø_{BFd} ØCEd P12 FS Ka Кр TANTEO 0.21 1.00 40.39 35.00 3.69 944.94 1 3.00 15.83 13.14 0.57 1.59 2,570.94 2 14.54 0.54 3 2.70 17.49 1.67 2,420.04 ø_{аз} a 1 Ø_{d1} ø_{d2} ^P23 TANTEO Fig. 249.97 34.37 35.00 35.00 1 13.28 4.8 107.60 12.84 13.14 13.14 2 13.28 3 113.15 14.21 14.54 14.54 13.28 4.9

El factor de seguridad obtenido en el tercer tanteo, será el adecuado, es decir, $FS_1 = FS_2 = FS_3 = 2.70$.

Trazando los polígonos de las cuñas l y 3, obtenemos el valor de las demás incognitas, a saber:

 $R_1 = 4,200$ ton $R_2 = 8,800$ ton $R_2 = 150$ ton

PROCEDIMIENTO ANALITICO

Suponemos que a₁ y a₂ son iguales a cero, o sea:

 $a_1 = 0^\circ$ $a_2 = 0^\circ$

Se calcula el valor de los empujes con la teoría de Rankine, como en el procedimiento anterior, por lo que:

> $P_{12} = 944.94$ ton $P_{23} = 249.97$ ton

Fig. 4.8 Polígono de fuerzas de la cuña 2

86

Fig. 4.9 Polígono de fuerzas de la cuña 2

Fig. 4.9' Polígono de fuerzas de las cuñas l y 3

Aplicaremos las dos maneras en que se define el factor de seguridad para este método.

PRIMER CASO

Sustituyendo los resultados obtenidos en la ecuación 4.18, obtenemos que:

 $P_1 = 944.94 - 249.97$ $P_1 = 694.97$ ton

Calculamos la fuerza resistente P_2 aplicando la ecua ción 4.19, por lo tanto, según datos del material, tenemos que:

$$\emptyset_{d} = 35^{\circ}$$

 $C_{BC} = 0$
 $U_{BC} = 0$
 $P_{2} = W_{cg} \tan \emptyset$
 $P_{2} = 7,918.07 \tan 35^{\circ}$
 $P_{2} = 5,544.29 \tan 0$

Sustituyendo los valores obtenidos en la ecuación 4.20, el resultado será:

$$FS = \frac{5,544.29}{694.97}$$

FS = 7.98

Según la ecuación 4.21 tendremos que, sustituyendo los resultados, la fuerza resistente será:

 $P_1 = 944.94$

Ahora, si aplicamos la ecuación 4.22, el resultado será:

 $P_2 = 5,544.29 + 249.97$ $P_2 = 5,794.26$ ton

Obtenemos, en este caso, el factor de seguridad eplicando la ecuación 4.20, es decir:

 $FS = \frac{5,794.26}{944.94}$

FS = 6.13

Resumiendo, los factores de seguridad obtenidos, son en este caso:

```
FS_{I} = 2.21
FS_{II} = 2.70
FS_{III} = 7.98
FS_{IV} = 6.13
```

Podemos observar que con cada uno de los procedimien tos aplicados, obtuvimos un valor del factor de seguridad distinto. Esto se debe principalmente a que en cada uno de ellos, se consideran distintas hipótesis y además, en ellos se eligen con distinto criterio y arbitrariamente, algunos v<u>a</u> lores que intervienen en el cálculo del factor de seguridad.

Debido a esto, no debe hacerse una comparación entre uno y otro factor de seguridad, pues ésta resultaría falsa.

El análisis que es posible hacer y que sí es significativo, es aquel en donde se comparan varios factores de se guridad obtenidos en presas estables, con un mismo procedimien to, en nuestro caso, no se hará este análisis, ya que no se cuenta con otros valores del factor de seguridad.

> 3.a) Tres cuñas. Talud aguas abajo. Condición ini cial. Vaso vacío. NAMINO.

Este caso lo haremos únicamente por el primer proc<u>e</u> dimiento. El plano 4.5, representa la masa deslizante a analizar.

Con la ecuación 4.22, calculamos el peso de las cuñas.

El peso de la cuña l y 3, es el mismo que en el caso anterior, por lo que:

$$W_{c1} = 4,003.63 \text{ ton}$$

 $W_{c3} = 67.70 \text{ ton}$
 $W_{c2} = W_6 + W_7 + W_8$ (4.34)

donde:

su

$$W_6 = 1,800.90 (2.05) + 21.12 (1.29) = 3,719.26$$

 $W_7 = 1,607.83 (1.70) = 2,733.31$
 $W_8 = 21.52 (1.19) + 29.51 (1.19) + 1,860.85 (1.19) = 2,275.14$
stituyendo en la ecuación 4.29:

 $W_{c2} = 3,719.26 + 2,733.31 + 2,275.14$

 $W_{c2} = 8,727.71$ ton

Les lineas de acción de los pesos, se muestran en el plaro 4.5.

Suponemos los factores de seguridad $FS_1 = FS_2 = FS_3 = 1.00$.

Hacemos las mismas suposiciones que en el primer pro cedimiento del caso anterior, por lo que:

A continuación se hará una tabla donde tendremos el resumen de los tanteos efectuados para encontrar el valor del factor de seguridad. En las figuras mencionadas, se tienen

los polígonos de fuerzas de las cuñas.

TANTEO	FS.	ø	ø ₂	ø ₃	a 1	a 2	a 3	T ₄	^т 6	^т 8	Fig.
1	1.00	34.37	35	35	34.37	35.00	35.00	85.98	0.00	0.00	4.10
2	2.25	34.37	35	35	16.91	17.29	17.29	38.21	0.00	0.00	-
3	2.32	34.37	35	35	16.43	16.79	16.79	37.06	0.00	0.00	4.11

Se observa que con $FS_1 = FS_2 = FS_3 = 2.32$, los valores correspondientes a las demás incógnitas son:

 $R_1 = 4,300$ ton $R_2 = 10,025$ ton

 $R_3 = 550 \text{ ton}^{-1}$

 $P_{12} = 3,000 \text{ ton}$

 $P_{23} = 40 \text{ ton}$

1.b) Dos cuñas. Talud aguas abajo. Condición final. Vaso lleno. NAME.

Utilizando la ecuación 4.22, tenemos que:

$$W_{c1} = W_1 + W_2 + W_3 + W_4 + W_5 + W_6 + W_7$$
 (4.35)

donde:

 $W_1 = 34.20 (1.07) + 9.84 (1.70) = 53.32 \text{ ton}$ $W_2 = 56.00 (1.29) = 72.24 \text{ ton}$ $W_3 = 2.92 (1.9) + 71.99 (1.19) = 91.22 \text{ ton}$ $W_4 = 812.96 (1.84) = 1,495.84 \text{ ton}$

Fig. 4.10 Polígono de fuerzas de la cuña l

Fig. 4.10' Polígono de fuerzas de las cuñas 2 y 3

Fig. 4.11' Polígono de fuerzas de las cuñas 2 y 3

 $W_5 = 287.34 (1.90) = 545.95 \text{ ton}$ $W_6 = 946.33 (2.05) = 1,939.98 \text{ ton}$ $W_7 = 155.61 (1.70) = 264.53 \text{ ton}$

Sustituyendo estos valores en la ecuación 4.30, tenemos que:

 $W_{c1} = 53.32 + 72.24 + 91.22 + 1,495.84 + 545.95 + 1,939.98 + 264.53$

 $W_{c1} = 4,463.08$ ton

La cuña 2 no se ve afectada, por lo que:

 $W_{c2} = 7,364.08$ ton

El plano 4.6, representa la masa deslizante de nues tro interés, mostrándose además, las fuerzas que intervienen en el cálculo del factor de seguridad.

El valor de U_1 , se calcula trazando la red de flujo correspondiente y obteniendo un diagrama que represente las presiones de agua en los puntos supuestos. El área de este diagrama, será la subpresión U_1 .

Del diagrama del plano 4.6, se tiene que:

 $A = U_1 = 426.22$ ton

Cuyo ángulo con la horizontal será $\beta = 44.00^{\circ}$

También será necesario calcular el empuje del agua .

Eh, es decir:

,

$$Eh = \frac{\gamma h^2}{2}$$
(4.36)

Sustituyendo en la ecuación anterior, tendremos que:

$$Eh = \frac{1.00 (19.00)^2}{2}$$

Eh = 180.5 ton

Cuyo ángulo con la horizontal será « = 21.80°

da

Como primer tanteo, suponemos que el valor del factor de seguridad es FS = 1.00.

Al igual que en el caso de dos cuñas con el vaso v<u>a</u> cío.

De las ecuaciones 4.2 y 4.4, obtenemos el valor de T $_3$ y T $_5.$

 $T_3 = 7$ (61) / 1.00 $T_3 = 427.00$ ton $T_5 = 0$ (0) $T_5 = 0$ ton A continuación se hace un resumen de los resultados obtenidos con los distintos tanteos.

TANTEO	FS	øå	۵°	T ₃ T ₅ Fig.
1	1.00	30.72	30.72	427.00 0.0 4.12
2	2.00	30.72	16.55	213.50 0.0 -
3	1.80	30.72	18.26	237.22 0.0 4.13

De la figura 4.13, obtenemos el valor de las demás incógnitas, a saber:

 $R_1 = 3,780.00$ ton $R_2 = 8,300.00$ ton $P_{12} = 2,155.00$ ton

Con un factor de seguridad FS = 1.80

A continuación, se hará un resumen de los resultados obtenidos.

CASO		FS	R	R	P ₃	P12	P23
	1.a	1.90	4,350	8,165	-	1,975	
2.a.l y	2.b.1	2.21	4,200	9,150	80	2,895	50.00
2.a.2 y	2.b.2	2.70	4,200	8,800	150	2,420.04	113.15
2.a.3.1 y 2	.ь.з.1	7.98	-	-	-	944.94	249.97
2.a.3.2 y 2	.b.3.2	6.13	-	-		944.94	249.97
3.a y	3.b	2.32	4,300	10,025	550	3,000.00	40.00
	1.b	1.80	3,780	8,300	-	2,155.00	-

En el resumen anterior, podemos observar que en ni<u>n</u> gún caso, el factor de seguridad es menor de 1.8, esto por sí solo, nos diría que la presa analizada sí es estable, pero no debemos olvidar que para garantizar que la presa es estable,

100

Fig. 4.12 Polígono de fuerzas de las cuñas l y 2

Fig. 4.13 Polígono de fuerzas de las cuñas 1 y 2

debemos analizar un número razonable de superficies de falla, hasta encontrar el mínimo factor de seguridad crítico para esa presa. El ejemplo desarrollado, no cumple esta condición, por lo que no es posible decir que los resultados sean representativos.

Aún más, debemos decir que aunque con el método de la cuña obtuviéramos un factor de seguridad crítico mayor de l.5, esto no quiere decir que la presa sea estable, pues este valor de comparación, está establecido por las instituciones especializadas para los métodos tradicionales, mientras que para el método de la cuña, estas instituciones no tienen un valor definido.

Ø

CAPITULO V

ANALISIS, DISCUSION Y CONCLUSIONES

5.1 ANALISIS

Una presa de tierra y enrocamiento, deberá perman<u>e</u> cer siempre en su posición inicial, por lo que el ingeniero analizará la estabilidad de la presa, por distintos métodos.

Se observa en el capítulo tercero, el desarrollo de uno de estos métodos, llamado método sueco y que se apoya principalmente en la verificación, con los criterios de resis tencia del material, de la posible presentación de un mecanis mo de falla previamente establecido.

Dentro de los procedimientos del método sueco, las principales hipótesis, son que la masa deslizante es un cuerpo rígido, bidimensional y éste se desplaza sobre una superficie de falla circular; también supone que no existe interacción en tre las dovelas consideradas (hipótesis congruente con la suposición de cuerpo rígido).

Este método es aplicable a todas las condiciones que se presenten en el talud, como son: la distinta estratigrafía, el flujo de agua, la altura del nivel de aguas freáticas, la forma de la colocación del material, etc.. Se recomienda el uso de este método cuando la experiencia nos indique que la posible falla sea del tipo rotacional.

En el capítulo cuarto, se desarrolló otro método pa ra analizar la estabilidad de la presa, llamado en este caso, método de la cuña, el cual se aplica generalmente a fallas del tipo traslacional, las que se presentan usualmente cuando existe un plano de debilidad paralelo o casi paralelo y cercano a la base del talud.

Para poder decir que las posibilidades de que se

presente en un talud una falla traslacional, son altas, será necesario que se realizen sondeos para comprobar la existencia de un plano de debilidad, además también será importa<u>n</u> te la experiencia con la que cuente el ingeniero.

Cabe mencionar que la falla traslacional, se aproxima principalmente a una serie de planos y no a una superficie curva.

Este método en sus hipótesis, sí considera la inter acción existente entre las cuñas analizadas, por lo que toma en cuenta todas las fuerzas resistentes y actuantes; pero supone la dirección en la que actúa el empuje de tierras y el ángulo que forman las resultantes con las normales. En ocasiones, supone el valor de los empujes de tierra, que al ser calculados con la aplicación de las diferentes teorías, pueden llegar a tener distintos valores.

5.2 DISCUSION

Aunque el método sueco se aplica a fallas rotacion<u>a</u> les y el método de la cuña a fallas traslacionales, es posible que ambos sean aplicados a los mismos casos, ya que generalme<u>n</u> te, pueden presentarse cualquiera de las dos fallas en un talud, considerándose que aunque el ingeniero posea gran experiencia, nunca podrá asegurar que se presente alguna de las dos fallas.

El método sueco es en la actualidad el más general<u>i</u> zado, porque es más fácil de sistematizar.

A través de los años, se ha observado que la mayoría de las fallas son del tipo rotacional, o se acercan a él; es también por esto, que el método sueco es el más usado. El método de la cuña, tiene el inconveniente de que, por no ser muy usado, no cuenta con los antecedentes n<u>e</u> cesarios para darnos una idea correcta de sus bondades, además de que no ha sido objeto de normas o procedimientos esta<u>n</u> darizados.

El hecho de que el valor de a sea escogido arbitr<u>a</u> riamente y dado que el factor de seguridad depende de este v<u>a</u> lor, hace casi imposible que los criterios de los distintos ingenieros coincidan; esto implica que aún teniendo factores de seguridad de presas estables, sea necesario tener un cuid<u>a</u> do especial con los valores de <u>a</u> asociados a los factores, p<u>a</u> ra poder hacer un análisis correcto.

Cuando la masa deslizante se divide en tres cuñas, es posible decir que además de la elección arbitraria del ángulo α , se tiene para cada procedimiento una serie de hipót<u>e</u> sis distinta, la que hace que los resultados obtenidos, no sean comparables entre sí.

5.3 CONCLUSIONES

En el método de la cuña, el ingeniero deberá tener más cuidado en su aplicación, debido a que las hipótesis hechas, si no se apegan a la realidad, pueden inducir a que el factor de seguridad obtenido, no sea representativo, ni se pueda interpretar debidamente.

Para una mejor aplicación de estos métodos, es fun damental que el ingeniero posea cierta experiencia.

Para garantizar convenientemente la estabilidad en taludes o presas, cuya falla pueda ocasionar grandes catástro

fes, o cuya inversión, sea sumamente importante, se justif<u>i</u> cará que la estabilidad sea analizada por ambos métodos.

BIBLIOGRAFIA

Localizada en:

La Biblioteca de la Facultad de Ingeniería

VEGA ROLDAN, OSCAR, PRESAS DE ALMACENAMIENTO Y DE RIVACION, ADUNCES, U.N.A.M., MÉXICO, 1963

HERNANDEZ RUBIO, A, ESTUDIOS SOBRE ESTABILIDAD DE TALUDES EN EL LAGO DE TEXCOCO, Tesis, U.N.A.M., México, 1981

VARGAS BAHENA, GONZALO, DISEÑO DE LA CORTINA DE LA PRESA GUINEO GRO., Tesis, U.N.A.M., México, 1378

CREAGER, W.P., JUSTIN, J.D. AND HINDS, J., ENGINEERIN FOR DAMS, Vol. I, John Wiley and Sons Inc., 1963

WAHLSTROM, E.E., DAMS AND DAMS FOUNDATIONS AND RESERVOIR, Elsiever Scientific Publishing Co., 1974

SHERARD, J.L., EARTH AND EARTH ROCK DAMS, John Wiley and Sons Inc., New York, 1963

MARSAL, R.J. Y RESENDIZ, D., PRESAS DE TIERRA Y ENROCAMIENTO, Limusa. México, 1975 JUAREZ BADILLO, E. Y RICO RODRIGUEZ, A., MECANICA DE SUELOS, Tomos I, II y III, Limusa, México, 1980

La Biblioteca de la División de Estudios de Posgr<u>a</u> do

MARSAL, R.J.. PRESAS PEQUEÑAS, Instituto de Ingeniería, U.N.A.M., México, 1974

RICO R. Y CASTILLO, LA INGENIERIA DE SUELOS EN LAS VIAS TERRESTRES, Limusa, México, 1978

TAMEZ GONZALEZ, E., PRINCIPIOS DEL DISEÑO Y CONS-TRUCCION DE PRESAS DE TIERRA, S.R.H., México, 1963

U.S.B.R., DESING OF SMALL DAMS, U.S. Gov. Print. Off., Washington, 1960

La biblioteca de Estudios Preliminares de la C.F.E.

HUANG YANG, H., STABILITY ANALYSIS OF EARTH SLOPES, Van Nostrand Reinhold, 1983

HOUGH, B.K., BASIC SOILS ENGINEERING, John Wiley and Sons Inc., 1969

CHOWDHURY, R.N., SLOPES ANALYSIS, Elsevier Scientific Publishing Co., 1978