UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE ODONTOLOGIA

MATERIALES DE IMPRESION

QUE PARA OBTENER EL TITULO DE CIRUJANO DENTISTA PRESENTA

FLORA SERVIN ACEVES

MEXICO, D. F.

1980

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

INTRODUCCION

GENERALIDADES

I TEMA: YESOS

II TEMA: MODELINAS

III TEMA: HIDROCOLOIDES

1.- REVERSIBLES

2.- IRREVERSIBLES

IV TEMA: ELASTOMEROS

1.- MERCAPTANOS

2.- SILICONAS

V TEMA: ZINQUENOLICOS

CONCLUSIONES

BIBLIOGRAFIA

INDICE

INTRODUCCION

GENERALIDADES

I TEMA: YESOS

II TEMA: MODELINAS

III TEMA: HIDROCOLOIDES

REVERSIBLES

IRREVERSIBLES

IV TEMA: ELASTOMEROS

MERCAPTANOS

SILICONAS

V TEMA: ZINQUENOLICOS

CONCLUSIONES

BIBLICGRAFIA

INTRODUCCION

El principal objetivo de esta tesis, es el de mencio-nar normas para los materiales dentales de impresión.

Fundamentalmente dichas especificaciones, determinan los requisitos que debe cumplir un material en sus propiedades físicas y químicas, para asegurar el éxito de su aplicación, siempre que el odontólogo lo empleé correctamente.

Se considera que la ciencia de los materiales comprende todas aquellas substancias que se emplean en los procedimientos mecánicos, incluídos en la odontología restauradora,—tales como la protesis total, parcial, fija o removible.

Uno de los objetivos de esta tesis, es la de presentar los materiales de impresión al odontólogo principiante para que, luego del estudio de sus propiedades físicas y químicas, pueda hacer en el momento oportuno una selección adecuada.

GENERALIDADES

Los materiales de impresión, usados en prótesis dental, se pueden clasificar de la siguiente manera:

- 1.- Rígidos.- Que al fraguar adquieren una consisten-cia rígida.
- 2.- Termoplásticos o Semirígidos.- Que son rígidos o plásticos a temperaturas ligeramente inferiores o superiores,
 a la de la cavidad bucal respectivamente.
- 3.- <u>Elásticos</u>.- Que lo son en el momento de retirarlos de la boca.

Los materiales rígidos son capaces de reproducir con - exactitud los detalles de los dientes y la mucosa bucal, pero por lo general se fracturan al retirarlos de la boca y hay ne cesidad de ensamblar las partes.

Los materiales termoplásticos no pueden registrar conexactitud los detalles, al retirarlos se deforman con los ángulos muertos de los tejidos duros y blandos.

Los materiales elásticos se pueden retirar de los ángulos muertos de los dientes y de los tejidos sin que experimenten una deformación; por consiguiente son los únicos que se prestan para la toma de impresiones de regiones con contornos irregulares.

Mientras que los materiales rígidos y los termoplásti-

cos se emplean solos o combinados, preferentemente en próte-sis completas, los materiales elásticos, por lo general, se utilizan para impresiones en protesis parcial, en dentadurasinmediatas y en coronas y puentes, donde los ángulos muertosy los detalles superficiales de los tejidos duros y blandos,se deben reproducir con toda exactitud.

Una clasificación de los distintos tipos de impresiónes la siquiente:

MATERIALES DE IMPRESION USADOS EN PROTESIS DENTAL

Rígidos

a) Yeso

Termoplásticos

Compuestos de modelar (modelina)

- a) Ceras
- b) Resinas

<u>Elásticos</u>

- a) Hidrocoloides reversibles (agar-agar)
- b) Hidrocoloides irreversibles (alginato)

 Compuestos a base de hule de Polisulfuro
- c) Elástomeros Mercaptanos o Tiocol

Siliconas

MATERIALES RIGIDOS

A) YESOS

En la obtención de moldes y modelos sobre los que se han de construirse protesis y restauraciones dentales, se utilizan diversos tipos de yesos.

La selección de cualquier producto del gipso está supe ditada al uso que se le destine y a las propiedades físicas - necesarias que debe tener para esa aplicación en particular.- Así por ejemplo el yeso piedra no es apropiado como material-para impresiones, su exotermia de fraguado es inadecuada y -- hasta perjudicial para las mucosas de la boca, además debido-a la gran resistencia del gemidrato-alfa, es imposible reti-rar la impresión de los ángulos muertos de los dientes sin -- causar daños en los mismos.

Por otra parte, como los modelos sobre los cuales se construyen protesis deben ser lo suficientemente resistentes,
de hecho quedan descartados los yesos débiles (hemidrato-beta)
que contienen apreciable cantidad de modificadores. Si el modelo se ha de calentar a elevadas temperaturas, es necesarioagregar el yeso común o piedra un elemento refractario para que disminuya el debilitamiento que por deshidratación experi
menta el producto fraquado.

Aunque todos los yesos de impresión se manipulan - --

aproximadamente de la misma manera, el fraguado y las características de fluidez de cada producto varía.

Los aceleradores están especialmente indicados cuando al mismo tiempo se quiere reducir la expansión y el tiempo - de fraguado.

Para contrarestar la acción aceleradora, se puede incorporar un retardador que al igual que el acelerador tengaacción antiexpansiva.

La expansión mínima posible nunca es inferior al 0.6%. El tiempo de fraguado varía entre 3 y 5 minutos para proporcionar agua, yeso y que se consideran óptimas.

YESO PARIS (Tipo French)

El yeso para impresiones es esencialmente yeso de paris, al que se le han adicionado elementos modificadores los cuales tienen un doble propósito:

- 1.- Regular el tiempo de fraguado.
- 2.- Controlar la expansión del fraquado.

Por lo general, los modificados se agregan al yeso. Tanto desde el punto de vista del paciente como del profesio
nista, es importante poder controlar rigurosamente el tiempo
de fraguado. El odontólogo debe disponer del tiempo necesario para mezclar el yeso y el agua, colocar la mezcla en lacubeta para impresiones, llevar la misma a la boca del pa-

ciente y situarla en posición contra los tejidos bucales. Sin embargo una vez que la mezcla está en posición contra la su-perficie por impresionar, deberá endurecer en un tiempo suficientemente breve como para no incomodar al paciente.

El tiempo de fraguado para una relación a/y dada, está determinado para la cantidad apropiada de acelerador incorporado.

Para evitar los fenómenos de distorsión, la expansióndel fraguado del yeso para impresiones debe ser mínima. Los yesos para impresiones contienen a veces almidón, cuyo objeto es el de hacerlos solubles. En estos casos luego que se ha efectuado el vaciado y el yeso para modelos ha fraguado, el todo se coloca en agua caliente, el almidón se hincha y se disuelve y la impresión se desintegra, con lo que se facilita la remoción del modelo. En los yesos carentes de almidón, laseparación del modelo debe efectuarse haciendo frecuentemente una cuidadosa y tediosa disección de la impresión, cuidando al mismo tiempo de no dañarlo.

para facilitar la remoción de las impresiones cuando hay dientes presentes, el yeso debe ser factible de fracturar
se y de poderse ensamblar posteriormente. De otra manera, nosería posible remover la impresión de los ángulos muertos y de los espacios interdentarios. De esto se deduce que el yeso
para impresiones no debe tener una gran resistencia sino que-

por el contrario, conviene que sea frágil y fácil de fractu-

A algunos yesos para impresiones, para hacerlos más - agradables al paciente, se le suelen agregar colorantes y so poríferos.

El colorante ayuda también al odontólogo y al técnico a distingirlo del yeso piedra cuando el modelo se separa de-la impresión.

El largo uso y popularidad del yeso en odontología se ha debido a ciertas de sus propiedades físicas, su fácil obtención y bajo costo. El yeso para impresión tiene un altogrado de exactitud y experimenta poco cambio dimensional alfraguar. Se conserva en un recipiente bien cerrado, el yesopara impresiones se conserva inalterable y listo para su uso inmediato.

TEMA II

MODELINAS

Las Modelinas son substancias termoplásticas, o sea --que se ablandan por medio del calor y endurecen por medio del
frío. Su principal característica es de que son malos conductores y su reacción es de tipo físico.

La composición de las modelinas utilizadas en la actua lidad constituyen un secreto de fábrica, generalmente se sabe que están hechas a base de estearina y resina kauri. Una de - las probables composiciones de dichas modelinas es la siguien te:

Resina Kauri	30
Resina Copal -	30
Cora Carnaouba	10
Acido Estearico	5
Talco	25
Colorante cantidad apropi	ađa

También se les incorpora resina indecumarona, como material de relleno se usa la tiza francesa o talco.

La variedad de las proporciones de sus componentes, -nos da como resultado las diferentes propiedades físicas de cada una de ellas, las resinas y ceras se ablandan por calentamiento, dándole a la misma fluidez y coheción, la substan--

cia de relleno le proporciona cuerpo y una consistencia de ${\rm tr}\underline{a}$ bajo conveniente.

<u>Clasificación</u>: Las modelinas las podemos clasificar de pendiendo de su temperatura de ablandamiento en:

a) baja fusión

b) alta fusión

Usos: Los usos de la modelina van de acuerdo a su grado de plasticidad, cualidades de manipulación, y por su consistencia.

- 1.- Como material de impresión en desdentados.
- 2.- Como material de impresión con anillo de cobre.
- 3.- Como rectificador de bordes en la construcción dedentaduras.
- 4.- Como sellador en obturación de porcelana (baja).
- Como base de impresión con silicón y hule de polisulfuro.

Como ya se sabe que son materiales termoplásticos, les debemos de dar una consistencia adecuada, ya sea por inmer-sión en agua caliente o bien templándola sobre la llama.

Para obtener un resultado óptimo, debemos hacerlo concuidados especiales, ya que si se mueve o retira antes de que endurezca totalmente sufrirá deformaciones o doblamientos. -Por esto es que no se utiliza en donde existan áreas con dema siada retención, al igual en casos en donde no se requiere --

una impresión exacta, pues la modelina no impresiona, como - otros, los detalles finos de la superficie con tanta facilidad.

Por lo general la temperatura de ablandamiento de las modelinas se encuentra entre los 55°C y los 70°C. Es de suma importancia que la temperatura de ablandamiento se logre entoda la superficie de la masa con uniformidad evitando con esto, el calentamiento de una sola parte de la modelina, almismo tiempo que impide en que se queme o volatice algún com ponente, haciéndola perder su utilidad así como permite quesufra el fenómeno de relajación.

Para evitar estas distorsiones y obtener mejores resultados, lo debemos de hacer de acuerdo a la técnica. Esta con siste en ablandar la modelina hasta el punto justo (por encima a la temperatura de la boca), en un baño de agua caliente a la temperatura adecuada, para amasarse posteriormente conlos dedos y darle la forma adecuada conformándola a la cubeta de impresión. No debemos retirarla de la boca del paciente, hasta tener la seguridad de que está completamente dura, pues de lo contrario se deformará. A éste método se le conoce con el nombre de "amasado húmedo", éste modifica la influencia o corrimiento tanto del compuesto ablandado como de la impresión endurecida, pero también el exceso de amasado trae

como consecuencia el aumento de la afluencia sin material en durecido a la temperatura de la boca, y puede provocar la -- distorsión del material en el momento de removem la impre- sión.

Una vez que ha sido ablandado el matriir jal y mientrases presionado contra los tejidos, es necesario Loque fluya o escurra constantemente hasta lograr el registrato e xacto de -los detalles.

Una vez que se ha obtenido la impresiód. en se deberá -correr inmediatamente, para evitar las deformaziones como -consecuencia de la liberación de tensiones.

TEMA III

HIDROCOLOIDES

Generalidades: Siempre se ha buscado el material de -impresión, el cual se adapte al más mínimo detalle y libre de
todo tipo de retenciones, que posteriormente se pueda apre-ciar en ella, una fidelidad máxima y sin deformaciones aparen
temente apreciables.

El hidrocoloide, se introduce al medio bucal en formade un fluído viscoso colocado en un porta-impresión, el cualdespués de mantenerse por un tiempo determinado, el materialgelifica en el porta-impresión, obteniéndose una impresión nítida y con un mínimo de deformaciones.

Por lo general los hidrocoloides son emulsiones dondeel medio dispersante es el agua, si la gelación se produce abase de enfriamiento, se dice que son de carácter <u>reversible</u>, es decir, el hidrocoloide puede cambiar de sol a gel y vice-versa por medio de la temperatura. En cambio, si el materialcambia de sol a gel pero no cambiar de gel a sol (al menos -por procedimientos simples) se le conoce con el nombre de - irreversibles pues estos, por lo general gelifican por acción química.

Los hidrocoloides se consideran materiales de impre-sión semielásticos, pues no llegan a tener plena elasticidad, ni tampoco son rígidos como la modelina o el yeso.

HIDROCOLOIDES REVERSIBLES

<u>Composición</u>: Los hidrocoloides reversibles están com-puestos principalmente por:

Agar-agar	14.3%
Вбгах	.2%
Sulf. Potasio ————	2.0%
Agua	83.5%

Estos se presentan en forma de pasta dental, que al -llevarlos a la temperatura útil, pueden ser usados como material de impresión.

Es una suspensión semisólida, que al incorporársele calor se ablanda y al enfriarse se endurece por gelificación.

ASPECTOS TECNICOS

- a) Elección de la cubeta y sus características.
- b) Preparación del material.
- c) Impresión propiamente dicha.
- d) Cuidados de la impresión.
- e) Vaciado.
- a) Elección de la cubeta: Para los hidrocoloides reversibles se usa una cubeta especial, que tiene 2 tubitos que rodean el porta impresión y de ahí se le coloca la manguera deagua fría y por el otro la salida del agua, ya que dada la --

fluidez del material y dado que no tiene propiedades adhesi-vas, también debe tener una retención mecánica.

b) <u>Preparación del material</u>: El aparato en el que se prepara se llama "Acondicionador para impresiones con hidroco
loides reversibles", y presenta 3 compartimentos; izquierdo para licuar el material, centro para el almacenamiento y dere
cha-atemperado. Se usa agua caliente como vehículo, a más de70°C se hace licuar por 10° y luego se puede pasar al departa
mento de almacenamiento de 63 a 69°C (145-155°F) puede estarhasta por una hora como máximo.

Al colocarse en el depósito de atemperado, la temperatura ideal es de 46°C (115°F) por 10 min., y en ese momento se puede colocar el material en la cubeta.

El material viene en tubos de polietileno que se recorta y se va introduciendo al acondicionador por medio de una -jeringa mezcladora.

c) Impresión propiamente dicha: Lo llevamos a la bocacon jeringas, impresionando de la profundidad a la superficie las retenciones y ángulos muertos.

La temperatura real al momento de colocarla en la boca del paciente es probable de 40°C y gelifica a una temperatura de 36°C o 35°C, una vez colocada en la boca del paciente se debe esperar por lo menos 2.5 min., haciendo pasar lógicamente agua por los tubos que enfrían la impresión que debe estar

entre 20° y 23°C se comprueba que deje de estar pegajoso y seretira de un sólo tirón en relación de los ejes mayores de las preparaciones, tratándose de cavidades y evitando la inducción de tensiones que causa deformaciones.

- d) <u>Cuidados de la impresión</u>: Al retirarla de la boca se lava con agua jabonosa para eliminar si existen residuos alimenticios, se seca y luego se le baña en una solución de <u>sulfa</u> to de potasio al 2% o Zn. Considerando los fenómenos de inhibición y sinéresis deberemos de correr nuestra impresión inmedia tamente, en caso de que no sea posible se recomienda que se en vuelva la impresión en una toalla mojada con el objeto de mantener la máxima humedad en su medio ambiente, evitando los fenómenos antes mencionados.
 - e) <u>Vaciado</u>: Este deberá ser por todas las razones antes dichas en hemidrato alfa tipo II, construyendo troqueles individuales si se trata de prótesis fija o el vaciado total de impresiones de desdentados.

HIDROCOLOIDES IRREVERSIBLES

Composición: Los hidrocoloides irreversibles están compuestos principalmente por:

alginato de potasio	12%
Tierra de Diatomeas	74%
Sulfato de Ca. (Deshidratado)	12%
Fosfato Trisódico	2%

Los Hidrocoloides irreversibles también llamados alginatos, se presentan en forma de polvo, a manera de talco, que
al combinar con el agua se forma una pasta cremosa.

Aspectos Técnicos: Los alginatos necesitan para formar una estructura aceptable una cantidad de agua, que el fabri-cante nos habrá de dar, ejemplo: alginato marca <u>Jeltrate</u> 1 cu charón por una medida de agua, 2 para 2 y 3 para 3.

Una vez hecho esto, en el paciente prepararemos la zona e impresionar de la siguiente manera: Se tendrá listo un vaso con agua con una solución con astringente, el paciente deberá enjuagarse un instante antes de ser llevado el material
a la boca.

Esta maniobra elimina la tensión superficial de la zona a impresionar, evitando con ello burbujas o deficiencias de la impresión.

La preparación del material se hará en una taza de hule con una espátula flexible de acero inoxidable, una vez medido se batirá por espacio de unos 30 segundos, máximo un minuto, se recomienda luego de colocarle en el portaimpresión alisarla con los dedos húmedos, rompiendo así la tensión superficial del alginato, se lleva a la boca colocándola en una
sóla posición, tratando de que no se mueva de un lado a otro,
procurando que el portaimpresión no toque con las piezas dentarias por impresionar. En esta posición deberá mantenerse --

unos 2.5 min., comprobando que el alginato deja de estar pegajoso y que de una superficie brillante pasa a una superficieseca, se retira de la boca de una sóla intención.

La elección del portaimpresión es importante para obte ner una impresión exacta, este debe de tener perforaciones para que al retirarla de la boca no se desprenda el alginato --- del portaimpresión, también debe tener un tamaño adecuado, --- que permita alojar bastante alginato, porque entre mayor sea-el espacio entre el portaimpresión y la zona de impresionar, -- mayor exactitud se obtendrá.

Una vez fuera la impresión de la boca se lavará esta - con agua jabonosa para eliminar restos alimenticios o de sancre, luego de escurrir la impresión deberá de labarse con <u>Sul</u>
fato de Potasio al 2% por ser el alginato un retardador del tiempo de fraguado de los yesos, entonces colocamos un acelerador del fraguado en la superficie del alginato, para lograr
ese fin.

Lo más práctico es correr luego el modelo en yeso conel objeto de evitar problemas evitando que se presenten fenómenos, como que pierda agua (sinéresis) o por lo contrario -que gane agua (imbibición), esto sucede muy frecuente cuandolos modelos se meten en agua, y es un error muy frecuente. Si
no es posible correr la impresión se puede dejar envuelta enuna toalla mojada con el fin de mantener la máxima humedad en

su medio ambiente de alginato, lo ideal sería colocarlos en -un artefacto llamado hidrometro, es un recipiente con agua en
el fondo y una tapa, que al colocar el portaimpresión con elalginato se cierra y no hay cambios en pérdida o en gananciade agua.

El tiempo ideal para retirar el modelo es de 3 horas,pero si hay necesidad de trabajar urgentemente se puede retirar a la hora, si se desea obtener una copia extra, después de 30 min., se puede correr el segundo modelo, lavando el raddelo.

Se hará mención de las ventajas y desventajas de cadauno de los hidrocoloides, para hacer una mejor elección de --ellos.

Ventajas del reversible

- l.- Exactitud
- 2.- Reproducción de detalles
- 3.- Relativa elasticidad
- 4.- Fácil manipulación
- 5.- Instrumentos comunes
- 6.- Bajo costo

Ventajas del irreversible

- 1.- Mayor exactitud
- Mayor reproducción de detalles.
- 3.- Relativa elasticidad

Desventajas del reversible

- 1.- Manipulación elaborada
- 3.- Alto Costo
- 4.- Tensión Sup. de la boca
- 5.- Uso de Jeringa
- 6.- Refrigeración agua fría

Desventajas del irreversible

- 1 .- Almacenamiento delicado
- 2.- Requiere eliminar tensión
- Dar consistencia idea;
 (manipulación adecuada)

TEMA IV

ELASTOMEROS

A).- Clasificación.- Los elastómeros se clasifican endos grandes grupos, según su fórmula, como lo explicaremos -más adelante.

Los elástomeros, en presencia de ciertos reactores qu \underline{f} micos, reaccionan entre sí provocando una condensación por polimerización.

Como se mencionó anteriormente, en Odontología se usan dos tipos diferentes de elastómeros como material para impresión. La diferencia entre éstos consiste: en que uno de ellos tiene como base un compuesto polisulfurado, mientras que el otro posee una silicona. Por lo tanto, los elastómeros se clasifican en:

- 1).- Mercaptanos
- 2).- Siliconas
- 1).- Mercaptanos.- Dentro de los materiales de impresión encontramos éste tipo de material, que es blando y parecido al caucho, a éste compuesto se le llama "caucho sintético" y también se le conoce con el nombre de Hules de Polisulfuro.

A éste compuesto sólo se le denomina Hule, y es un ver dadero elastómero ya que su elasticidad es completa, ya que los silicones son menos elásticos. La guímica de los hules -- nos da el concepto que su endurecimiento se conoce en la industria como Vulcanización o Cura, y desde su punto de vista
químico, al ser un compuesto polimerizado, su endirecimiento
se llamará polimerización. La base se conoce como polímero sulfurado y el reactor es el peróxido de plomo (PbO₂) y el azufre.

a).- Composición.- La fórmula de los mercaptanos es -- la siguiente:

BASE:

Polímero polisulfurado	79.72%
Oxido de zinc	4.89%
Sulfato de calcio	15.39%
ACELE RADOR:	
Peróxido de plomo	77.65%
Azufre	3.52%

Aceite de castor......

b).- Espatulado.- Tanto la base como el acelerador vienen en tubos metálicos, se colocan sobre una lozeta o block - de papel cantidades iguales tanto de base como de acelerador, se aplanan y se alisan las dos pastas desparramándose sobre - una lozeta, luego se recoge y esparse hasta que la masa ad- quiere un color uniforme y no se observe estrías de color yasea de una pasta o de la otra. Es de gran importancia obtener

una mejor impresión. Se recomienda hacer el espatulado de lamezcla en un tiempo no mayor de un minuto. Podemos colocar en
el momento de la espatulación, una gota de agua, con lo cualse acelerará el tiempo de polimerización o en caso contrario(si lo que se desea es retardarlo) se le añade una gota de -ácido oleíco en el momento de la espatulación. Si no se quiere usar agua o ácido oléico, se podría usar mayor o menor can
tidad de acelerador, pero no es recomendable, pues un cambioen la cantidad de base podría acelerar y ocasionarnos modificaciones en las propiedades mecánicas del mercaptano. Mientras mayor tiempo se mantenga el mercaptano en la boca, mayor
será la exactitud de éste después de retirado.

- c).- <u>Duración del material</u>.- En condiciones ambienta-les normales los mercaptanos no sufren cambios dentro de lostubos donde vienen envasados. Se puede hacer el vaciado de la
 impresión en un tiempo no mayor de una hora, pues en éste lap
 so de tiempo el mercaptano no sufre cambios apreciables.
- ch).- <u>Preparación de la cubeta</u>.- Generalmente los mercaptanos sólo son usados como materiales de corrección, entre más pequeño sea el espacio de la cubeta al patrón por impresionar, obtendremos una impresión más exacta. Para fijar el material a la cubeta, utilizamos un adhesivo, el cual para és te tipo de elastómero es un cemento fabricado a base de caucho butílico; la cubeta deberá mantenerse en posición seis mi

nutos como mínimo y ocho como máximo; para evitar distorsio--nes deberemos de correrla inmediatamente de ser posible.

No es recomendable hacer la corrección o rectificación agregando nuevamente material, cuando encontremos burbujas, - es preferible repetir la impresión.

Ventajas y Desventajas del hule:

- 1.- Elasticidad
- 2.- Exactitud "
- 3.- Fácil manipulación
- 4.- Estabilidad dimensional por 1 o 2 horas máximo

Desventajas:

- 1.- Color desagradable
- 2.- Olor (azufre)
- 3.- Costo elevado
- 4.- Uso de adhesivos, con porta impresión de acrílico
- 5.- Manchado Permanente.

Marcas Comerciales.

Tenemos los materiales de importación, que normalmente encontramos en los depósitos dentales, el de mayor consumo es el NEOPLEX (Regular Type) Rubber Base.

Otro muy usado es el Hule de la Kerr (Usa Heavy Bodied
Base y Regular Catalyst) y se llama Comercialmente Permiastic,

siendo el de mejores cualidades técnicas.

Otro muy usado, es la marca Surflex, (usa Base y Acelerador) es quizá el más barato y por ello su uso.

Todos los materiales de impresión usan 3 densidades:

- 1.- Heavy Bodied (Cuerpo Pesado)
- 2.- Regular Bodied (Cuerpo Regular)
- 3.- Light Bodied (Cuerpo Ligero)
- 2.- <u>SILICONES</u>: Como ya se dijo, las siliconas pertenecen al grupo de elastómeros, pero que, a diferencia de los --mercaptanos, están hechos a base de una silicona.

Es un material viscoso, de color blanco y de un olor semejante a nuez. Está compuesto por una formación básica depoli (dimetil-siloxano) o sea que tiene Carbono, Hidrógeno, Oxígeno y Silice como elementos. El Reactor, es un compuestoorganometálico (<u>Octoalacto de estaño</u>) y un silicato alquílico
con la presencia de polisilicato de etilo.

En el mercado la encontramos envasada en tubos conteniendo la base en uno y en el otro el acelerador; aunque también la silicona la podemos encontrar en cajas o recipientesla base, y en forma de un líquido oleoso y colorado el acelerador.

a).- Espatulado: Se mezcla en forma parecida que el hule de polisulfuro, en una loseta de azulejo, que además pode-- mos enfríar a la temperatura de rocio, con el objeto de alargar el tiempo de polimerización. Previamente se debe de fabri car un porta impresión ya sea de acrílico rosa rápido ó con modelina de pan en un porta impresión metálico, se pone la -cantidad suficiente de base que abarque todas las piezas inte resadas. Se le agregan a la base, l gota de reactor por cadapieza, se bate, y en forma circular se distribuye el material base con el reactor hasta quedar una forma homogénea y de inmediato se carga la jeringa Surflex llevando el material, has ta el fondo de la o de las cavidades por impresionar, luego se va llenando la cavidad, hasta la parte oclusal o incisal según el caso, y el resto del material se coloca en el portaimpresión y luego se coloca en la boca en su posición correspondiente, dejándola por 3 minutos, tiempo necesario para supolimerización.

Se retira y se debe lavar con agua jabonosa, para eliminar restos de sangre y secarse con un chorro de aire. Debecorrerse el modelo en yeso, de inmediato, ya que conforme van pasando las horas, el silicón se va alterando, con cambios di mensionales en mayor proporción que el hule.

Tenemos en su manipulación, como ventaja comparada con el hule, que el silicón no requiere de adhesivo, y por lo tanto es de mayor facilidad de manipulación.

En los elastómeros, entre menor sea la capa de material,

entre el porta impresión y la zona por impresionar, mayor - - exactitud obtendremos.

El Silicón tiene una desventaja, y es que sólo dura un año en forma activa, que después de este tiempo se presenta - decantación y no se puede usar.

Su principal característica es de tener una alta tensión superficial, para lo cual es indispensable quitarla conun astringente, simpre antes de tomar una impresión. Y además
es Hidrofovo, por lo que además hace indispensable eliminar por completo algunas gotitas de agua o de saliva.

Se presenta en forma de una base blanca, de consistencia viscosa, y tiene tres consistencias:

- 1.- Silicón Fluído (Aceite de Silicón)
- 2.- Silicón Regular (se agrega aceite)
- 3.- Silicón Pesado (sólo)

Impresión de Silicón con anillo de cobre. - Se hace enforma similar a la de la modelina, sólo que utilizando en ocasiones base de modelina y luego una capa de silicón. Obtenión dose así un dado individual.

VENTAJAS DE LAS SILICONAS

- 1.- Manipulación sencilla
- 2.- Son fuertes
- 3.- Consistencia adecuada

- 4.- Utiles para manufacturar dados
- 5.- Son limpios
- 6.- Color, olor, sabor, agradables
- 7.- Tiempo de fraquado adecuado
- 8.- Se pueden cobrizar

DESVENTAJAS

- 1.- Tiempo de trabajo corto
- 2.- El octoalato de estaño (reactor) es tóxico
- 3.- La duración del material no es mayor de once meses.

TEMAV

PRODUCTOS ZINQUENOLICOS

- A).- <u>Finalidad</u>: El Oxido de Zinc y el Eugenol al comb<u>i</u>
 narse y formar una pasta cremosa, dan lugar a una mezcla muyusada en Odontología que tiene varias aplicaciones según en que se vaya a emplear.
 - B) .- Usos: En forma de combinación simple se usa como:
 - 1.- Base Germicida de toda cavidad (Curación) oxido de zinc y eugenol.
 - 2.- Medio Cementante Provisional
 - 3.- Material de Cementación en Conductos Radiculares

 En combinación con otros elementos, que dan una consiguencia semejante a las pastas dentales.
 - 4.- Como Material de impresión en desdentados
 - 5.- Como Material para rebasado de dentaduras (impre--sión).
 - 6 .- Como Cemento Quirúrgico.

Mezclando el polvo sobre el eugenol, dejándola en unaconsistencia fluída o blanda, es usada como medio cementanteprovisional o al obturar un conducto radicular.

En consistencia dura se emplea para obturar una cavidad, dejando la clásica duración dental, como base automática de una cavidad que en la próxima cita se puede obturar en forma definitiva.

C).- Composición: Su principal componente de las pastas Zinguenólicas está constituído por una mezcla de óxido - de zinc y eugenol agregándoseles además, otras substancias - que actúan como plastificantes de relleno, dándole además alas mismas propiedades adecuadas.

En el mercado, las pastas zinquenólicas las encontramos envasadas en tubos que contienen: uno la base (que es óxi
do de zinc, aceite mineral y otras substancias que le dan con
sistencia de pasta), y en el otro tubo tenemos eugenol, al -cual se le agregan polvos inertes con el objeto de proporcionarle la consistencia adecuada.

Antiguamente se presentan las pastas zinquenólicas enforma de polvo y líquido, los que, con posterioridad eran mez clados, pero en la actualidad las encontramos en la forma — arriba descrita. Algunos fabricantes le dan una consistencia-fluída; otros mantecosa; hay quienes se la dan pegajosa, e in clusive, algunos que le otorgan una consistencia intermedia.

BASE:

0.1200 00 11	4070
Resina	19%
Cloruro de Magnesio	1%
ACELERADOR:	

Esencia de Clavo (eugenol)...... 56%

Gomoresi	ina	56%
Aceite (de Oliva	16%
Aceite (de Lino	6%
Aceite I	Mineral Liviano	6%

- CH).- Espatulado: Se recomienda el uso de los bloquesde papel. Se colocan determinadas cantidades de los tubos, de
 biéndose mezclar en un tiempo mayor a los treinta o cuarentasegundos como máximo, con lo cual deberá observarse que no -queden vetas del color de cualquiera de los tubos.
- D).- Elección de la cubeta: Generalmente las pastas -- zinquenólicas se usan como rectificadores. Por lo tanto, deberemos contar una cubeta individual lista para la impresión, una vez colocada en la boca, se espera el tiempo necesario para que el material frague y posteriormente, corremos la impresión en yeso.
- E).- Tiempo de Fraguado: Podemos acelerar el tiempo de fraguado, el cual depende de diversos factores, uno de elloses que las pastas del compuesto no se encuentren en relación-correcta: variando de manera proporcional a la cantidad de --las mismas, es decir: si la cantidad de acerador es mayor que la base, la reacción será más rápida; siendo precisamente locontrario en caso que la base sea en más cantidad que el acelerador.

otra forma de acelerar el tiempo de fraguado consisteen colocar una gota de alcohol o agua en el momento de espatu
lar el producto o en caso contrario, colocaremos aceites iner
tes como el de oliva o bien el aceite mineral también conocido con el nombre de petrolatum. El inconveniente de cualquiera de las formas de alterar el tiempo de fraguado de los compuestos zinquenólicos anteriormente descritos, está en que al
teran las propiedades físicas del producto.

- F).- Factores que afectan el tiempo de fraguado: Existen diversos factores que afectan el tiempo de fraguado de -- los compuestos zinquenólicos como son:
- a).- Adición de agua: La podremos emplear cuando el -compuesto fragua muy lentamente, pero si el compuesto zinquenólico contiene en su fórmulañ algún elemento repelente al 1£
 quido mencionado, no obtendremos el objetivo perseguido.
- b).- Cuando fraqua muy rápido: Una de las posibles cau sas podría ser el exceso de humedad existente en el consultorio; entonces, en ese caso deberemos enfriar la espátula y la lozeta.

Una de las ventajas que nos ocasiona el uso de este material, es la fineza y exactitud que obtenemos del mismo.

G).- <u>Vaciado</u>: Una vez obtenida la impresión, habremosde enjuagarla con agua fría, evitando así cualquier resto desaliva, posteriormente se sacará y la vaciaremos en yeso piedra, una vez caviado esperaremos una hora como mínimo, para - que el citado material endurezca completamente; luego habre-- mos de sumergirlo en agua a una temperatura de 140°F durante-cinco a diez minutos, con el propósito que se ablande el compuesto zinquenólico y de esta manera se podrá desprender másfácilmente del yeso.

- H).- <u>Usos</u>: Actualmente en Odontología, las pastas zinquenólicas tienen diversos usos, pero en Prostodoncia Total,particularmente la podemos usar en:
 - a) .- Para el registro de la impresión final
 - b).- Para emplearlas temporalmente como material de rebase.
 - c).- Para estabilizar las bases en el registro de la -mordida.

por otra parte, los compuestos zinquenólicos usados como materiales correctores de la impresión para maxilares desdentados, que endurecen por acción química, nos ofrecen las siguientes ventajas:

- l.- Se adhieren bien a las superficies secas de las bases del compuesto de modelar, resinas y laca.
- 2.- Tienen suficiente resistencia como para reconstruir ciertos límites si la cubeta fuera deficiente en alguna zona.
- 3.- Cristalizan con una dureza semejante a la del co-mento y la impresión resultante puede tomarse dentro y fuera-

de la boca rápidamente, dándonos la oportunidad de ensayar la estabilidad y adaptación de los tejidos.

- 4.- Hay un tiempo de trabajo adecuado que permite sin apuro, el ajuste en la boca de las paredes de la impresión.
- 5.- Son exactos, registran bien los detalles y son bas tante estables dimensionalmente.
- 6.- No requieren medios separadores antes de hacer elvaciado.

CONCLUSIONES

YESO: Los yesos como material de impresión en la actualidad ya no son funcionales para el dentista, por varías razones:

- Sacar una impresión que se tiene que seccionar en la boca del paciente es una incomodidad.
- Al unir el modelo ya no va a ser una impresión conexactitud.

El mejor uso que se le puede dar es el de obtención demodelos, pudiendo seleccionar cualquier producto del gipso con las propiedades físicas necesarias, que debe tener para esa -aplicación en particular.

MODELINAS: El uso de las modelinas en la practica dental se ha restringido a causa de la aparición de nuevos materiales, quedando vigente la modelina de baja fución, más que la de alta, esta se usa casi exclusivamente para la construcción de cubetas individuales.

Sin embargo no por esta causa deja de tener un importante papel en el consultorio.

HIDROCOLOIDES: Entre todos los materiales de impresión, - el hidrocoloide es el que más se usa en el consultorio, principalmente el hidrocoloide irreversible.

Por su fácil manipulación, por su exactitud, por su sabor

agradable, por su costo lo hacen ser indispensable en el consultorio.

ELASTOMEROS: Tanto los mercaptanos como las Siliconas, son materiales de impresión exclusivos para tomar impresiones exactas, como es en la toma de modelos fisiologicos, en puentes fijos, en coronas totales, en rebases etc.

Por su elevado costo se usa exclusivamente con cuchari-llas prefabricadas, utilizando exclusivamente lo necesario sa-biendo de antemano que mientras menos material exista entre lacucharilla y la zona por impresionar, mayor exactitud obtendremos en nuestra impresión.

PRODUCTOS ZINQUENOLICOS: También son materiales de impresión que se usan exclusivamente para tomas de impresión que requieren una mayor exactitud, las pastas zinquenolicas particularmente tienen un uso en prostodoncia total, así como en registro de la impreción final, como material de rebase, para estabilizar las bases en el registro de la mordida etc.

Esto es como material de impresión. Ahora como materialde obturación, su empleo es particularmente en operatoria dental.

BIBLIOGRAFIA

ALCOCER FLORES JOSE LUIS. - Apuntes Inéditos (Materiales penta les para el estudiante). 1977.

FLOYD A PEYTON D. S. C. Y ROBERT G. GRAIF, PH. D.- "Materia--les Dentales Restauradores".- Editorial Mundi, S. A. I. C. y-F.- Impreso en Argentina.- Febrero de 1974.- 2da. Edición.

GOCHICOA SENTIES ELBA ELISA. - "Materiales de Impresión" - - - U.N.A.M. 1966. págs. 13, 14, 21, 23, 26, 29, 33, 35, 44, 47.

GROMAH SHARE JAIME. - "Materiales Dentales y Técnica Utilizada en la Construcción de una Protésis Parcial Fija" U.N.I.T.E.C. 1977. págs. 7, 8, 9, 10, 13, 72, 73, 85, 86, 87, 89.

MAGAÑA HERNANDEZ MARTHA ELENA Y SANTIAGO HION RODELO. - "Trata miento Clínico Quirúrgico y Rehabilitación Oral del Paciente-Edentulo", U.N.A.M. 1977. - pág. 122, 125, 128, 129, 134, 136, 142.

<u>VALLE ARELLANO ADELAIDA.</u>- "Hidrocoloides y su Aplicación Clín<u>i</u> ca". México U.N.A.M. 1966. pág. 18-27 y 28-36.

VILLEGAS MALDA ROBERTO. - "Materiales de Impresión". - la. Edición. Agosto de 1976. - Editorial Diógenes S. A. Artiaga y Salazar 21 Cantadero-Cuajimalpa. - Zona Postal 18, D. F. págs. -

40-54, 56-79, 81-87, 97-125, 126-148, 150-179,

WILLIAM J. O'BRIEN, Ph. D. y GUNNAR RYGE, D.D.S., M.S.- "An-Outine of Dental Materials and their Selection".- W. B. Saunders Company. Philadelphia-London-Toronto.- 1978.

W. SKINER EUGENE y W. PHILLIPS RALPH. - "La Ciencia de los Materiales Dentales". - Editorial Mundi. - Sexta Edición. - Buenos Aires Argentina, S. A. 1970 pág. 82, 83, 92, 93, 94, 101, 125.

