UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA

ANALISIS ELASTOSTATICO DE DIENTES DE ENGRANE MEDIANTE COMPUTADORA

TESIS

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA P R E S E N T A N :

VICENTE ALFONSO FERIA KAISER JUAN CARLOS ANTONIO JAUREGUI CORREA

MEXICO, D.F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

	Pag.
PROLOGO	i
1. GEOMETRIA DE LOS ENGRANES	
1.1 Introducción, antecedentes y panorámica del estado de	
la tecnología	1
1.2 Terminología de los dientes de engrane de involuta o	
envolvente	9
1.3 Trazo automático del diente de involuta	17
2. ANALISIS ELASTICO DE ESFUERZO Y DEFORMACION	
2.1 Introducción	20
2.2 Ecuaciones de la elasticidad lineal	21
2.3 Métodos para la solución del problema de esfuerzo	24
3. DETERMINACION DE LOS ESTADOS DE ESFUERZO Y DE DEFORMACION	
EN DIENTES DE ENGRANE MEDIANTE EL METODO DE ELEMENTO FINITO	
3.1 Breve descripción del método	28
3.2 Preprocesadores. Generación de la malla	32
3.3 Posprocesadores. Representación gráfica de esfuerzo	
y de deformación	34
3.4 Ejemplos	36
CONCLUSIONES	92
APENDICE	93
BIBLIOGRAFIA	113

.

PROLOGO

El presente trabajo es una muestra de las técnicas modernas que se utilizan en el diseño, que, en su conjunto, se conocen como CAD (Cálculo Automatizado para el Diseño). Estas técnicas se encuentran en pleno desarrollo a nivel mundial.

El trabajo comprende tres capítulos, correspondiéndole el primero al diseño geométrico del engrane. En la computadora se realizaron los cálculos y dibujos requeridos por el perfil del diente de engrane, operaciones que, generalmente, resultan muy laboriosas para el diseñador. Además, se optó por realizar varias tareas en corto tiempo, ya que se emplearon diferentes datos de engranes destinados a distintos problemas de diseño.

El segundo capítulo es un resumen de la teoría de la elasticidad lineal, así como de los diferentes métodos aplicados al diseño, que se han desarrollado a través de los años con miras a resolver problemas de resistencia de materiales. La inclusión de este tema tiene por objeto plantear la teoría básica que se utiliza en el análisis de dientes de engrane, al mismo tiempo que mostrar métodos alternativos, que se usan en el estudio de estos problemas.

En el tercer capítulo se analiza el estado de esfuerzo y deformación en dientes de engrane, para lo cual se utilizó el método del Elemento Finito. Se describe, brevemente, el método y se incluyen los programas empleados en la solución de este análisis, y algunos ejemplos del mismo.

El trabajo también persigue difundir el CAD entre los diseñadores, empleado como una herramienta auxiliar que disminuye el tiempo que se invierte en cálculos y dibujos, que se realizan manualmente, tiempo que puede destinarse a la parte creativa del diseño, además de que el CAD ofrece al diseñador múltiples posibilidades para el diseño óptimo.

Por último, agradecemos al Dr. Jorge Angeles Alvarez, al Dr. Victor H. Muciño Quintero, al M. I. Angel Rojas Salgado y a las personas que nos brindaron consejo, cooperación y estímulo, a lo largo del desarrollo del trabajo

ź

1. GEOMETRIA DE LOS ENGRANES

1.1 Introducción, antecedentes y panorámica del estado de la tecnología. En la actualidad es imposible concebir la mecánica sin pensar en los engranes, ya que están presentes en casi toda la maquinaria moderna conectados en trenes de engranes, que constituyen así sistemas de transmisión de potencia mecánica.

Un tren de engranes es un acoplamiento que se utiliza para transmitir po tencia mecánica de un eje a otro.

Los engranes cilíndricos rectos son ruedas dentadas que transmiten potencia mecánica entre ejes paralelos. Se llaman así porque su superficie de paso es cilíndrica y sus dientes son superficies regladas, cuyas generatrices son paralelas al eje del cilindro.

De las muchas formas de dientes, solamente se han estandarizado dos: la cicloide y la involuta.

Estas curvas se empezaron a investigar con la llegada del Renacimiento, correspondiéndole a Nicholas Cusa estudiar por primera vez, en 1451, la curva cicloidal, y a Albrecht Durer, poco tiempo después, descubrir la curva epicicloidal [15]. Dentro de las muchas áreas que Leonardo da Vinci estudió sobre la mecánica, se interesó por los perfiles para dientes de engrane. Pero fue hasta el surgimiento de la ciencia moderna, en el siglo XVII, con Galileo, Torricelli y otros de esa época, cuando se estudiaron las propiedades de la familia de las curvas cicloidales.

Debido a la demanda de engranes, principalmente de los fabricantes de relojes, fue necesario la invención de máquinas cortadoras, surgiendo en 1540 la primera cortadora rotatoria de engranes, construida en España por Juan Torriano [15].

El primer engrane con dientes epicicloidales fue fabricado en Francia entre 1644 y 1661, por Gérard Desargues; ahí mismo, Nicholas Bior, a finales del sigle XVII, construyó cortadores rotatorios con curvas cóncavas [15].

La aplicación sistemática y matemática de la epicicloide de un diente de engrane fue realizada por primera vez por Phillipe de la Hire, en 1694 [15], sen-

tando así los principios geométricos del diseño de engranes. Estos principios son:

1. Asegurar presión y movimiento uniformes.

2. Diseñar los dientes de tal forma que deslicen, evitando, en lo posible, la fricción.

3. Garantizar que, si un diente de engrane está formado por una epicicloide exterior, descrita por cualquier círculo generador, el diente del seguidor sea una porción de una epicicloide interior, descrita por el mismo círculo generador.

Además, de la Hire consideró a la involuta como la mejor cicloide exterior, debido a que reconoció que es un caso especial de la epicicloide.

El matemático suizo, Leonhard Euler, en el siglo XVIII [15] planteó dos métodos, uno aproximado y otro exacto, para construir la figura de un diente de engrane, y demostró matemáticamente que la curva ideal de un diente de engrane es la involuta. A este mintífico se le considera el padre de los dientes de involuta [15].

Algunos fabricantes, como el sueco Christopher Polhem, los ingleses Tomás Reid y Henry Hindley y el francés Samuel René seguían fabricando máquinas cortadoras para engranes sin tener en cuenta las aportaciones de Euler (Fig. 1.1.1).

Fig. 1.1.1 Cortadora de engranes de Polhem, 1729.

GEOMETRIA DE LOS ENGRANES

Algunas de las características de la máquina de Hindley eran: la utilización de un micrómetro en el tornillo de profundidad, un cabezal divisor y un plato para fabricar engranes hasta de doce pulgadas. La de René tenía cortadores parecidos a los que actualmente se utilizan en las fresadoras modernas, pero sin una forma definida.

Con estas máquinas se lograron resolver dos de los grandes problemas que tenían los fabricantes de relojes de aquel entonces: el del alineamiento cuidadoso del eje del cortador con el eje del engrane, y el de la forma del cortador, para dar el mejor perfil del diente.

Otro gran problema que se presentaba era la graduación precisa del plato divisor, que en parte fue resuelto por Thompion en 1676, y Bird en 1740. Finalmente, Marie-Joseph Louis, Duque de Chaulnes, en 1768 dio las bases reales para la división precisa del círculo [15].

Con la Revolución Industrial, los fabricantes de engranes se vieron en la necesidad de proveer no únicamente a los fabricantes de relojes, sino a los nuevos constructores de maquinaria, además. Simultáneamente, los diseñadores se enfocaron al estudio de las formas de los engranes que ofrecieran mayor eficiencia, como John Hawkins, quien determinó algunas de las características de los dientes de involuta:

1. En un diente de involuta hay más de un diente en contacto al mismo tiempo, por lo que las deformaciones se distribuyen.

2. Se disminuye el deslizamiento entre dos dientes y hay mayor superficie en contacto.

El primero en diseñar un engrane helicoidal fue James White, en 1812, quien combinó un engrane cónico con el engrane espiral de Robert Hooke. Tiempo después, Robert Willis realizó un diseño aproximado de los engranes helicoidales de Hooke. Willis también mostró que la reacción en dientes de involuta podía ser minimizada ajustando los centros de los engranes, y en 1838 dio a conocer las tablas para trazar dientes de involuta e inventó el primer odontógrafo, enseñando cómo debían hacerse estos graficadores [15].

En esa época, John George Bodmer patentó una máquina cortadora de engranes similar a las fresas actuales (figura 1.1.2).

La primera máquina cortadora de engranes de involuta fue construida por Joseph Whitworth, entre 1834 y 1844. Esta máquina utilizaba un cabezal divisor [15] .

Fig. 1.1.2 Máquina cortadora de engranes.

Con estas aportaciones, al iniciarse el siglo XX se pudieron desarrollar diferentes métodos para la fabricación de engranes, los más conocidos actualmente. Al aparecer la industria automotriz y al difundirse el uso industrial de las turbinas, aumentó la demanda de engranes, por lo que fue necesario estandarizar los parámetros de su fabricación, avance que se logró por la intervención de la ASME (American Society of Mechanical Engineers) y del British Institute of Mechanical Engineering.

Los métodos modernos para la fabricación de engranes básicamente son [3] :

1. Fundición

a)Fundición en arena

- b)Fundición a presión
- c)Fundición por revestimiento

2. Estampados

3. Maquinados

a)Tallados de forma

i)Con fresa módulo en fresadora

- ii)Con brocha de brochadora
- iii)Con buril de forma en cepillo

b)Tallados con herramienta guiada por plantilla

c)Tallados por generación

i)Por generación con fresa madre

ii)Por generación con herramienta piñón

iii)Cortadores alternos que simulan una cremallera

4. Metalurgia de polvos

5. Extrusión

6. Laminado

- 7. Rectificado
- 8. Moldeo de plástico

A partir de los últimos veinte años, el diseño y la fabricación se apoyan en sistemas computacionales conocidos como CAD (Computer-Aided Design) y CAM (Computer-Aided Manufacture).

La importancia que tienen estos sistemas estriba en disminuir el tiempo real, que va de la especificación de la máquina hasta la construcción del prototipo.

El nombre CAD se debe a D. T. Ross que en 1959 publicó por primera vez un artículo referente a esta técnica [10], en el cual se sientan las bases para el desarrollo posterior del CAD.

El CAD consiste en una serie de programas, ordenados jerárquicamente, con los cuales se desarrollan todos los pasos del diseño mecánico.

La tónica del CAD consiste en interconectar todas aquellas partes del proceso del diseño susceptibles de ser automatizadas que determinan la geometría, los requisitos de carga y las características del material, de una pieza en particular.

La estructura del CAD varía de laboratorio a laboratorio y según el objeto de su aplicación; en términos generales, los siguientes:

1. Un programa maestro o supervisor, que une todos los subprogramas requeridos para el diseño de la pieza. Este programa puede estar desarrollado en forma de "menú", al cual se tiene acceso mediante un digitalizador de posición (los diferentes componentes del menú aparecen escritos en la pantalla de la computadora).

 Un programa que ensambla componentes mediante elementos previamente determinados, uniendo las partes con un procedimiento de "menú".

3. Un programa que genera figuras planas, que se pueden formar ensamblan-

do cuerpos geométricos almacenados en la memoria de la computadora, como por ejemplo, la construcción geométrica de un árbol de transmisión de potencia.

 Un programa que, una vez determinada la geometría de una pieza, puede formar planos, gráficas, textos, manuales, etc.

5. Un programa que realiza el análisis cinemático, estático y dinámico de la parte o partes de la máquina que se está diseñando.

6. El sistema cuenta, a su vez, con programas específicos para desarrollar el diseño de elementos, tales como levas y engranes, y para determinar los detalles y los planos de fabricación.

7. Mediante la conexión de programas de elementos finitos se determina el análisis de esfuerzos en las piezas ya diseñadas. De esta forma se puede determinar el material, seleccionándolo de un banco de datos. Los resultados se obtienen también gráficamente.

8. Se utilizan también paquetes de optimación para geometría, trayectorias, etc.

 9. Cuando, finalmente, se ha desarrollado la pieza o partes de la máquina, se producen los planos de fabricación con las especificaciones necesarias [10].

En la figura 1.1.3 se muestra el diagrama de bloques de la estructura general del CAD.

Con un sistema CAM, formado por una serie de programas, se procede, después de tener el diseño final de la pieza, al desarrollo de la ruta de trabajo para fabricar la pieza diseñada. En esta ruta, de acuerdo con los requisitos de la pieza, el sistema determina los pasos a seguir en la fabricación, desde el material bruto, o desde la pieza preformada en un proceso anterior.

Mediante el CAM se obtienen las cintas perforadas para controlar las máquinas-herramienta de control numérico.

En los grandes centros de diseño se cuenta con especialistas en CAD/CAM y con un equipo de programadores.

En un centro pequeño o en un laboratorio de CAD, se puede utilizar una minicomputadora, ajustando los programas a cada caso en particular [4] .

En la figura 1.1.4 se ve el proceso de automatización de la producción industrial.

GEOMETRIA DE LOS ENGRANES

Fig. 1.1.3 Estructura general del CAD

USO DE LA COMPUTADORA PARA EL DISEÑO Y LA PLANEACION DE LA MANUFACTURA

. AUTOMATIZACION DE LA PRODUCCION INDUSTRIAL

USO DE LA COMPUTADORA PARA EL CONTROL DE LA MANUFACTURA -CAD

-USO DE LA COMPUTADORA PARA EL DISEÑO

-USO DE LA COMPUTADORA PARA GENERAR RUTAS DE TRABAJO

FCAM

-USO DE LA COMPUTADORA PARA EL CONTROL DE LA MANUFACTURA

-USO DE LA COMPUTADORA PARA LA PLANEACION DE LA PRODUCCION

Fig. 1.1.4 Automatización de la producción industrial

1.2 <u>Terminología de los dientes de engrane de involuta o envolvente</u>. En este inciso se presentan las bases geométricas y la notación utilizada para el análisis de engranes.

El diente de perfil cicloidal se utiliza actualmente en relojería, mientras que en las demás aplicaciones se emplean los dientes de involuta, por las ventajas que presentan, tales como: 1) su facilidad de fabricación, 2) la distancia entre sus centros puede variar sin que se modifique la relación de transmisión, 3) son intercambiables, y 4) permiten una transmisión eficiente de potencia y movimiento $\begin{bmatrix} 12 \end{bmatrix}$.

Para demostrar que la curva ideal del perfil de un diente de engrane es la involuta, imaginense dos poleas unidas por medio de una banda, como se muestra en la figura 1.2.1.

Fig. 1.2.1 Trazo de la involuta

Cuando se hace girar una de las dos poleas, la otra gira por efecto de la banda. En estas condiciones, T_1T_2 es un segmento de esa banda, uno de cuyos puntos, por ejemplo P, describe la trayectoria T_1T_2 al desplazarse la banda de una polea a la otra. La trayectoria que genera el punto P en un plano fijo a una de las poleas es una involuta, y como P es un punto común a ambas, las trayectorias resultan ser tangentes. La recta NN' es la tangente común a ambas involutas y T_1T_2 es la normal a esa tangente. El punto de intersección de esas dos rectas no cambia su posición, garantizándose así que la relación de velocidades sea constante [2].

Una curva de involuta se genera al desenrollar un cordón de un cilindro fijo. En la figura 1.2.2, el círculo representa el cilindro. Fíjese un lápiz en el extremo del cordón; a medida que se desenrolla, se va trazando una curva de involuta o envolvente.

t

Algunas propiedades importantes de la involuta son [13] :

1. El círculo de centro en O es el círculo base del cual se desenrolla el cordón.

2. El radio de curvatura de una involuta en cualquier punto es igual a la longitud de la tangente de ese punto al círculo base.

3. La longitud de la tangente es igual a la longitud del arco correspondiente; por ejemplo, $T_0T_1 = P_1T_1$, $T_0T_2 = P_2T_2$, etc.

4. El cordón es tangente al círculo base; por ejemplo, $\overline{T_1P_1}$, $\overline{T_2P_2}$ y $\overline{T_3P_3}$ son tangentes al círculo en $\overline{T_1}$, $\overline{T_2}$ y $\overline{T_3}$ respectivamente. Esto quiere decir que la normal de una involuta es tangente al círculo base.

El ángulo formado entre los segmentos $T_{3}O$ y $P_{3}O$ se define como el ángulo de presión.

La figura 1.2.3 muestra una involuta que se generó a partir de un círculo base de radio r_p .

Seleccionando P y P con radios r y r y con ángulos de presión ϕ y ϕ respectivamente, se establecen las relaciones siguientes:

$$\mathbf{r}_{\mathbf{B}} = \mathbf{r}_{1} \cos \phi_{1} \tag{1.2.1}$$

$$r_{B} = r_{2} \cos \phi_{2}$$
 (1.2.2)

$$\cos \phi_{2} = \frac{r_{1}}{r_{2}} \cos \phi_{1}$$
 (1.2.3)

$$r_{\rm B} \theta_1 = r_1 \sin \phi_1 \tag{1.2.4}$$

Dividiendo (1.2.4) entre (1.2.1):

$$\theta_{1} = \tan \phi_{1} \qquad (1.2.5)$$

Además:

$$\phi_1 + \psi_1 = \theta_1$$
 (1.2.6)

y así:

$$\psi = \tan \phi - \phi = \operatorname{inv} \phi \qquad (1.2.7)$$

que define la involuta de ϕ [2]. O bien,

$$\phi = \operatorname{inv}^{-1} \psi \tag{1.2.8}$$

Para calcular los puntos de la involuta en coordenadas polares se utilizan las ecuaciones que se deducen de la figura 1.2.3

$$\overline{OP} \cos \phi = a \qquad (1.2.9)$$

por lo tanto:

$$\vec{OP} = \frac{a}{\cos(in\vec{v},\psi)}$$
(1,2,10)

La figura 1.2.4 muestra un diente completo y a partir de él se puede encontrar el espesor para cualquier (P) conociendo el espesor de otro punto (P) [8].

Fig. 1.2.4 Diente de involuta.

De la figura:

$$T_{0}OT_{4} = T_{0}OT_{2} + \frac{1/2 t_{2}}{r_{2}}$$
$$= inv \phi_{2} + \frac{t_{2}}{2 r_{2}}$$

también :

$$T_{0}OT_{4} = \ T_{0}OT_{1} + \frac{1/2 t_{1}}{r_{2}}$$

$$= inv \phi_{1} + \frac{1}{2 r_{2}}$$

(1.2.11)

(1.2.12)

de donde:

$$t_{2} = 2r_{2} \left[\frac{t_{1}}{2r_{1}} + inv \phi_{1} - inv \phi_{2} \right]$$
(1.2.13)

En base a la figura 1.2.5 se dan los datos técnicos del engrane recto.

а	۳	adendo	b	=	dedendo
с	=	claro	AB	=	ancho de cara
CD	=	espacio entre dientes	DE	=	espesor del diente
CE	=	paso circular	GH	=	paso base
W	=	profundidad de trabajo	RF	=	radio del filete
RE	=	radio exterior	RB	8	radio base
RP	11	radio de paso	RC	=	radio de claro

Fig. 1.2.5 Nomenclatura del engrane.

GEOMETRIA DE LOS ENGRANES

En las tablas I y II, se muestran las proporciones de engranes cilíndricos rectos, en el sistema internacional y en el sistema inglés, respectivamente.

	DIENTE NORMAL	DIENTE CORTO
Módulo	$m = \frac{2r_p}{N}$	$m = \frac{2r_p}{N}$
Diámetro de paso	$d_p = mN = 2r_p$	$d_p = mN = 2r_p$
Diametro exterior	$d_e = m(N + 2) = 2r_e$	$d_e = 0.75m(N + 2)=2r_e$
Diametro base	$d_{b} = d_{p} - 2.314 \text{m} = 2r_{b}$	$d_b = d_p - 2.314m = 2r_b$
Adendo	a = m	a = 0.75m
Dedendo	b = 1.157m	b = m
Claro	c = b - a = 0.157m	c = b-a = 0.25m
Profundidad de trabajo	w = a+b = 2.157m	w = a + b = 1.75m
Espesor del diente	$\mathbf{T} = \frac{\pi}{2} \mathbf{m}$	$T = \frac{\pi}{2} m$
Paso circular	p _c = πm	p _c = ™m
Radio del filete	r _f = 0.227m	r _f = 0.3m

Tabla I: Sistema Internacional

donde: N = número de dientes.

•

Tabla	II:	Sistema	Inglés
-------	-----	---------	--------

	DIENTE NORMAL	DIENTE CORTO
Paso diametral	$P_d = \frac{N}{\frac{d}{F}}$	$p_d = \frac{N}{\frac{d}{p}}$
Diametro de paso	$d_{p} = \frac{N}{P_{d}} = 2r_{p}$	$d_p = \frac{N}{p_d} = 2r_p$
Diametro exterior	$d_e = \frac{N+2}{p_d} = 2r_e$	$d_e = \frac{0.75(N+2)}{p_d} = 2r_e$
Diametro base	$d_{b} = d_{p} - \frac{2.134}{p_{d}} = 2r_{b}$	$d_{b} = d_{p} - \frac{2.134}{p_{d}} = 2r_{b}$
Adendo	$a = \frac{1}{P_d}$	$a = \frac{0.75}{p_d}$
Dedendo	$b = \frac{1.157}{p_d}$	$b = \frac{1}{p_d}$
Claro	$c = b-a = \frac{0.157}{p_d}$	$c = b-a = \frac{0.25}{p_d}$
Profundidad de trabajo	$w = a+b = \frac{2.157}{p_d}$	$w = a+b = \frac{1.75}{p_d}$
Espesor del diente	$T = \frac{\pi}{2p_d}$	$T = \frac{\pi}{2p_d}$
Paso circular	$p_c = \frac{\pi}{p_d}$	$p_c = \frac{\pi}{p_d}$
Radio del filete	$r_{f} = \frac{0.227}{p_{d}}$	$r_{f} = \frac{0.3}{p_{d}}$

donde: N = número de dientes

1.3 <u>Trazo automático de un diente de involuta</u>. Para poder graficar los dientes de un engrane, es necesario conocer la función involuta y de este modo determinar las coordenadas de cada punto del perfil. La función involuta se definió en la ec (1.2.7). De ésta, para un valor dado de ψ , defínase

$$f(\phi) = \tan \phi - \phi - \psi = 0 \tag{1.3.1}$$

Debido a que la ec (1.3.1) es no lineal, se necesita el auxilio de los métodos numéricos para resolverla. Esta ecuación fue resuelta mediante el método de Newton-Raphson. El algoritmo de Newton-Raphson para una sola ecuación algebraica no lineal es:

$$\phi_{\mathbf{k}\neq\mathbf{1}} = \phi_{\mathbf{k}} - \frac{f(\phi_{\mathbf{k}})}{f'(\phi_{\mathbf{k}})}$$
(1.3.2)

Con θ_0 dado se calcula para cada ϕ un valor del radio \overrightarrow{OP} (figura 1.2.3) donde:

$$\overline{OP} = \frac{a}{\cos(inv^{-1}\psi)}$$
(1.3.3)

Con este valor y con ψ tenemos las dos coordenadas polares de cada punto del perfil del diente.

El algoritmo de Newton-Raphson (1.3.2), aplicado a la solución particular de la ecuación (1.3.1) se realizó mediante la subrutina INV, cuyo listado aparece en el Apéndice.

Además, hay que utilizar otras ecuaciones para calcular las coordenadas de todos los puntos del diente, a partir de los siguientes datos:

En el caso del sistema internacional, módulo [mm], número de dientes, y un parametro de decisión para determinar si se trata de diente normal (1.0) o de diente corto (0.75).

En el caso del sistema inglés, paso diametral $\left[pulg^{-1} \right]$, número de dientes, y el parámetro de decisión para el tipo de diente.

Para poder hacer uso de la graficación en pantalla, se requieren las subrutinas:

INIT [(IBUF,n)] Inicia el proceso de la pantalla para utilizar las primeras n palabras de un arreglo entero IBUF como "Buffer". ~ SCAL (x_0, y_1, x_1, y_1) Escala el eje x para que varie desde x hasta x y el eje y desde y hasta y.

SCROL (n,iy, [isw]) Altera los parámetros del RT-11(sistema operativo de la computadora), si el usuario esta en la sección de "Scroll".

APNT (x,y,[1,i,f,t]) Posiciona un punto absoluto en las coordenadas (x_7y) . Se puede cambiar opcionalmente con los parámetros l, i, f y t, donde: l lo hace sensible a la pluma; i varía la intensidad; f produce centelleo y; t define el tipo de línea.

TEXT (list) Escribe textos en la pantalla.

Estas subrutinas son propias de la minicomputadora PDP 11/40, que se encuentra en el Laboratorio de Cálculo Automatizado para el Diseño (CAD) de la DEPFI (figura 1.3.1).

Fig. 1.3.1 Laboratorio de CAD de la DEPFI

Con el programa GENG1 se obtiene el trazo automático de un diente de engrane de tipo recto. El listado se incluye en el Apéndice.

En la figura 1.3.2, se muestra la fotografía del perfil de dos dientes de engrane, dibujados automáticamente en pantalla.

Fig. 1.3.2 Graficación en pantalla del perfil de dientes de engrane.

2.1 <u>Introducción</u>. En el análisis de esfuerzo plano, los componentes σ_z , τ_{xz} ; τ_{yz} del tensor de esfuerzo se anulan, cuando se puede suponer que el espesor es una dimensión poco significativa, y que el resto de los componentes permanecen constantes en todo el espesor. También se pueden anular estos componentes si el espesor del cuerpo es muy grande y las cargas a lo largo de éste son constantes. El tensor de esfuerzo es:

$$\sigma = \begin{bmatrix} \sigma & \tau & \tau \\ x & xy & xz \\ \tau & \sigma & \tau \\ xy & y & yz \\ \tau & xz & yz & \sigma z \end{bmatrix}$$
(2.1.1)

Eliminando los valores que se anulan, se tiene, para esfuerzo plano:

$$\sigma = \begin{bmatrix} \sigma & \tau \\ \mathbf{x} & \mathbf{xy} \\ \tau & \mathbf{y} \\ \mathbf{xy} & \mathbf{y} \end{bmatrix} .$$
 (2.1.2)

Las deformaciones de todos los puntos del cuerpo deformado están en planos perpendiculares al espesor del cuerpo.

Los desplazamientos en x se denotan por u; en y,por v y en z, por w: por lo tanto, los desplazamientos w tienen un valor cero.

El caso en estudio cumple con una de estas condiciones, ya que la carga se aplica uniformemente a lo largo de todo el espesor del diente del engrane. No se desprecia el espesor por tratarse de una dimensión significativa respecto a las demás dimensiones del diente. 2.2 <u>Ecuaciones de la elasticidad lineal</u>. En este inciso se desarrollan las ecuaciones de la elasticidad lineal para problemas de esfuerzo y deformación planos.

Los problemas elásticos se resuelven en forma única aplicando las condiciones de:

1. Equilibrio

2. Ecuación constitutiva

3. Compatibilidad

Si se considera un elemento diferencial, en el que existen los desplazamientos u y v en el plano, las deformaciones se expresan de la siguiente manera:

$$\varepsilon_{x} = \frac{\partial u}{\partial x}$$
$$\varepsilon_{y} = \frac{\partial u}{\partial y}$$
$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial z}$$

Ecuaciones de equilibrio. Para obtener las ecuaciones de equilibrio de un elemento diferencial plano de hace referencia a la figura 2.2.1

Fig. 2.2.1 Elemento diferencial plano.

Aplicando las ecuaciones de equilibrio estático, $\Sigma F_x = 0$ y $\Sigma F_y = 0$, se llega a las expresiones $\begin{bmatrix} 1 & 4 \end{bmatrix}$:

$$\frac{\partial \sigma}{\partial x} + \frac{\partial \tau}{\partial y} xy + F_{x} = 0$$

$$\frac{\partial \sigma}{\partial x} + \frac{\partial \tau}{\partial y} xy + F_{y} = 0$$

$$\frac{\partial \sigma}{\partial x} + \frac{\partial \tau}{\partial y} xy + F_{y} = 0$$
(2.2.2)

que son las ecuaciones de equilibrio para un elemento plano.

Ecuación constitutiva. Para obtener la relación entre el esfuerzo y la deformación, se utiliza la ley de Hooke, expresada como:

$$\underline{\sigma} = E \underbrace{\varepsilon} \tag{2.2.3}$$

donde E es un tensor de 40. rango que transforma linealmente ξ en g, y contiene las propiedades elásticas del material.

Desarrollando la expresión (2.2.3), e introduciendo el módulo de Poisson (v) dado por:

$$\varphi = -\frac{\varepsilon}{\varepsilon_{x}}$$
(2.2.4)

se obtienen las expresiones siguientes [14]:

$$\varepsilon_{\mathbf{x}} = \frac{1}{E} \begin{bmatrix} \sigma_{\mathbf{x}} - \nu \sigma_{\mathbf{y}} \end{bmatrix}$$

$$\varepsilon_{\mathbf{y}} = \frac{1}{E} \begin{bmatrix} \sigma_{\mathbf{x}} - \nu \sigma_{\mathbf{y}} \end{bmatrix}$$

$$\gamma_{\mathbf{xy}} = \frac{2(1+\nu)}{E} \frac{\tau_{\mathbf{xy}}}{\tau_{\mathbf{xy}}}$$
(2.2.5a)

o, en términos de las deformaciones,

$$\sigma_{\mathbf{x}} = \frac{E}{(1+\nu)(1-2\nu)} \left[(1-\nu) \varepsilon_{\mathbf{x}} + \nu \varepsilon_{\mathbf{y}} \right]$$

$$\sigma_{\mathbf{y}} = \frac{E}{(1+\nu)(1-2\nu)} \left[(1-\nu) \varepsilon_{\mathbf{y}} + \nu \varepsilon_{\mathbf{x}} \right] \qquad (2.2.5b)$$

$$\tau_{\mathbf{xy}} = \frac{E}{2(1+\nu)} \gamma_{\mathbf{xy}}$$

Ecuaciones de compatibilidad. Resolviendo (2.2.2) y (2.2.5) se llega a un problema estáticamente indeterminado debido a que se tienen seis incógnitas $(\sigma_x, \sigma_y, \tau_{xy}, \varepsilon_x, \varepsilon_y, \gamma_{xy})$ y únicamente cinco ecuaciones. Debido a esto es necesario introducir una ecuación de compatibilidad [14]

$$\frac{\partial^2 \Upsilon_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2}$$
(2.2.6)

De esta forma se tiene un sistema compatible.

Como se observa, salvo en casos especiales donde la geometría del problema es simple, no se pueden resolver estas ecuacione en forma analítica, por lo que se recurre a otros métodos de solución que se explican en el inciso siguiente. 2.3 <u>Métodos para la solución del problema de esfuerzo plano</u>. En vista de que las ecuaciones de esfuerzo plano no tienen solución analítica, salvo en casos muy especiales, es necesario recurrir a métodos indirectos para su solución. Por un lado, tenemos métodos experimentales y, por otro, métodos numéricos de solución.

Los métodos experimentales se basan en mediciones directas sobre modelos de las piezas o sobre las mismas piezas en proceso de análisis, obteniendose resultados gráficos, visuales o medidas directas de los desplazamientos en la pieza o en el modelo. Estos resultados se traducen en los valores reales de esfuerzo o de deformación.

Dentro de los métodos más conocidos tenemos el de las lacas frágiles, las galgas extensométricas y la fotoelasticidad. [6,9]

El método de las lacas frágiles consiste en recubrir la pieza con una pintura especial que ayuda a visualizar las deformaciones ocurridas al aplicarle una carga. La pieza se deforma por efecto de la carga y la laca, como no tiene propiedades elásticas, se fractura, describiendo lineas de deformación; mediante la calibración adecuada de un patrón se pueden determinar los valores del esfuerzo. Este método es muy útil en análisis que no requieren mucha precisión; su costo es bajo, es fácil de aplicar y no es destructivo, por lo que se puede aplicar directamente a la pieza [6] .

Los resultados que se obtienen corresponden únicamente a esfuerzos superficiales.

El método de las galgas extensométricas se utiliza para medir deformaciones entre dos puntos de una superficie, separados una distancia pequeña.

Las galgas extensométricas se clasifican en cuatro grupos principales: mecánicas , ópticas, eléctricas y acústicas.

El tipo de transductor que se utiliza para interpretar los desplazamientos establece la diferencia básica que existe entre estos grupos: las mécanicas actuán un mecanismo de carátula; las ópticas varían el espectro de un haz de luz; las eléctricas varían una resistencia con el cambio de desplazamiento, y las acústicas varían las amplitudes de vibración de un elemento conforme se deforma (Fig 2.3.1) [6].

Se utilizan las galgas extensométricas para hacer mediciones punto a punto, en la superficie de una pieza y su exactitud depende del tamaño y tipo del aparato que se utiliza.

OPTICA

MECANICA

ELECTRICA

Fig. 2.3.1 Tipos de galgas extensométricas.

El método fotoelástico o de las placas birrefrigentes determina la distribución del esfuerzo en el modelo de la pieza. El modelo se construye con un material birrefrigente accidental, o sea un material que polarice la luz, dependiendo de su deformación. La experiencia ha demostrado que el retardo en el haz de luz (polarización) producido por la birrefrigencia accidental es directamente proporcional a la carga aplicada. Al someter el modelo de una pieza a carga , se producen líneas isocromáticas que pueden ser impresas en papel fotográfico. Las líneas isocromáticas representan isóclinas, es decir, el lugar geométrico de puntos donde los esfuerzos principales tienen direcciones paralelas y magnitud constante [9].

Los materiales más comúnmente usados son: vidrio, con baja sensibilidad óptica y difícil de maquinar; celuloide, que es fácilmente maquinable y con buena sensibilidad óptica; baquelita, es el material que más se aproxima al ideal; gelatina, es muy útil en estudios de distribución de esfuerzos internos debido a su gran sensibilidad óptica.

En la figura 2.3.2 se muestra un diente de engrane analizado por fotoelasticidad.

Fig. 2.3.2 Isóclinas en un diente de engrane (fotoelasticidad).

A diferencia de los métodos experimentales, los métodos numéricos resuelven en forma aproximada las ecuaciones diferenciales. Estos son: Diferencias Finitas y Elemento Finito.

El método de las Diferencias Finitas reemplaza una ecuación diferencial por una expresión aproximada en términos de sus valores en un conjunto finito de ordenadas, como se muestra en la figura 2.3.3.

Fig. 2.3.3 Aproximación de la derivada por diferencias finitas.

Se puede construir una ecuación para cada punto de una malla solamente con los valores en las ordenadas $\{z_i\}_1^n$. Relacionando todos estos puntos se obtiene un conjunto de ecuaciones simultáneas

$$\begin{bmatrix} \kappa \end{bmatrix} \{ z \} = \{ \phi \}$$

La solución de este sistema de ecuaciones se obtiene a partir de las condiciones de frontera en puntos i,j conocidos, utilizando métodos iterativos [1].

El método del Elemento Finito se presenta en el siguiente capítulo, por ser el que se utilizó para determinar el estado de esfuerzo y deformación en un diente de engrane, parte temática del presente trabajo. 3. DETERMINACION DE LOS ESTADOS DE ESFUERZO Y DE DEFORMACION EN DIENTES DE ENGRANE MEDIANTE EL METODO DEL ELEMENTO FINITO

3.1 <u>Descripción breve del método</u>. El método del Elemento Finito (MEF) es un proceso de discretización utilizado para resolver sistemas de ecuaciones diferenciales, ordinarias y parciales.

Este método surge en los años cincuenta por la necesidad de resolver problemas estructurales en ingeniería aereonáutica. Lo presentaron por primera vez Turner, Clough y Topp en 1956 [11] . Esta y otras publicaciones contribuyeron al desarrollo del método en las áreas de mécanica de sólidos e ingeniería estructural.

Una aportación teórica clave para su desarrollo fue hecha por Melosh en 1963 [11], ya que mostró que el MEF era realmente una variación del método de Rayleigh-Ritz.

El campo de aplicación fue ampliado cuando otros investigadores (Szabo y Lee en 1969) y (Zienkiewicz en 1971) mostraron que las ecuaciones relacionadas con estructuras mecánicas, transferencia de calor y mécanica de fluidos pueden resolverse tanto por el método de residuos pesados, como por el método de Galerkin [11].

Este conocimiento es una contribución teórica, ya que permite aplicar el MEF a cualquier ecuación diferencial de cualquier problema físico. [11]

El avance del método se ha completado en los últimos veinte años por el desarrollo de computadoras digítales de mayor rapidez y capacidad.

La relación del MEF con los problemas de minimización permite su empleo en otras áreas de la ingeniería, como son: mécanica de fluidos, transmisión de calor, etc.

El método ha sido aplicado a problemas cuya solución está dada por las ecuaciones de Laplace o de Poisson, ya que éstas están muy relacionadas con minimización de funciones.

Cualquier función continua, como la temperatura, la presión o los desplazamientos, puede der aproximada a un modolo discreto compuesto de una serie de segmentos continuos de funciones, definidas sobre un número finito de subdominios.

DETERMINACION DE LOS ESTADOS DE ESFUERZO Y DE DEFORMACION EN DIENTES DE ENGRANE MEDIANTE EL METODO DEL ELEMENTO; FINITO

Los segmentos de funciones continuas se definen usando los valores de cantidades continuas en un número finito de puntos en su dominio.

La situación más común se presenta cuando se quiere determinar la función continua y su valor en ciertos puntos dentro de una región.

La construcción del modelo discreto es como sigue:

 Se identifica un número finito de puntos en el dominio, denominados puntos nodales o nodos.

2. El valor de la función continua en cada punto se denota como una variable que debe determinarse,

3. El dominio se divide en un número finito de elementos o subdominios. Estos elementos se unen en nodos comunes y, colectivamente, aproximan la forma del dominio.

4. La función continua se aproxima sobre cada elemento por un polinomio que se define usando los valores nodales de la función continua. Se define un polinomio diferente para cada elemento; pero el polinomio de cada elemento se selecciona de tal forma que se mantenga la continuidad a lo largo de los elementos frontera.

El concepto básico del MEF es aplicable a problemas unidimensionales, bidimensionales y tridimensionales. Los elementos en el dominio bidimensional generalmente son triangulares o cuadriláteros. La función del elemento es una función lineal polinomial (generalmente de segundo grado en las dos variables independientes sobre el dominio).

La forma de los elementos varía en cada aplicación particular, pero el elemento plano más simple es el triangular. En éste sólo existe la interconexión en las tres esquinas i,j,k (Fig. 3.1.1).

Fig. 3,1.1 Elemento triangular

DETERMINACION DE LOS ESTADOS DE ESFUERZO Y DE DEFORMACION EN DIENTES DE ENGRANE MEDIANTE EL METODO DEL ELEMENTO FINITO

En cada elemento se relacionan cantidades por nodo en forma simple

$$\{\xi\} = [K]\{\phi\} \tag{3.1.1}$$

Este concepto fue desarrollado para resolver problemas de esfuerzo plano en dos dimensiones, en los que la ecuación (3.1.1) representa la relación entre fuerzas nodales F y desplazamientos δ ,

$$\{F_x, F_y\}_{ijk} = [\kappa] \{\delta_x, \delta_y\}_{ijk}$$
(3.1.2)

donde [K] es la matriz de los coeficientes de rigidez de cada elemento, que se obtiene relacionando el trabajo interno y externo del elemento durante un desplazamiento nodal arbitrario [1].

Se han utilizado otros elementos con objeto de aplicar el método a diferentes casos, de los que ofrecemos algunos ejemplos (Fig. 3.1.2).

(a) Cuadrilátero uniforme

(c) Cúbico uniforme

(b) Cuadrilátero isoparamétrico

(d) Cúbico isoparamétrico

Fig. 3.1.2 Ejemplo de elementos más comunes.

DETERMINACION DE LOS ESTADOS DE ESFUERZO Y DE DEFORMACION EN DIENTES DE ENGRANE MEDIANTE EL METODO DEL ELEMENTO FINITO

La matriz de rigidez [K] es singular; por lo tanto, es necesario incluir las condiciones de frontera para obtener una solución, es decir:

$$\{f_{c}, f_{d}\} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \{\delta_{d}, \delta_{c}\}$$
(3.1.3)

donde los subíndices c y d se refieren a los valores conocido y desconocido, respectivamente.

$$\{\mathbf{f}_{c}\} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} \end{bmatrix} \{\delta_{d} & \delta_{c} \}$$

$$\{\delta_{d}\} = \begin{bmatrix} \mathbf{K}_{11} \end{bmatrix}^{-1} \{\mathbf{f}_{c} - \mathbf{K}_{12} \delta_{c} \}$$

$$(3...1)^{-1} \{\mathbf{f}_{c} - \mathbf{K}_{12} \delta_{c} \}$$

Con la ec. (3.1.4) se determinan los desplazamientos desconocidos y con

$$\{f_{d}\} = [K_{21} K_{22}] \{\delta_{d} \quad \delta_{c}\}$$

$$= [K_{21}] \{\delta_{d}\} + [K_{22}] \{\delta_{c}\}$$

$$(3,1.5)$$

se determinan las fuerzas desconocidas [1].

Algunas ventajas del método son:

 Las propiedades del material en elementos adyacentes no tienen que ser las mismas. Esto permite aplicar el método a cuerpos compuestos de muchos materiales.

2. Se pueden aproximar formas irregulares en los contornos utilizando elementos con lados rectos o, si se desea mayor precisión, elementos con lados curvos. El método, entonces, puede ser aplicado a formas geométricas arbitrarias.

3. El tamaño de los elementos puede ser variable. Esta propiedad permite que la malla de elementos se expanda o se refine de acuerdo con las necesidades.

 Si existen discontinuidades en la superficie de carga, esto no presenta dificultades para el método, ya que se puede manejar condiciones de frontera diversas.

La desventaja principal del método es que el problema, por pequeño que sea, no se puede resolver manualmente, lo que implica el uso de computadoras que dispongan de gran capacidad de memoria para resolver problemas complejos,

DETERMINACION DE LOS ESTADOS DE ESFUERZO Y DE DEFORMACION EN DIENTES DE ENGRANE MEDIANTE EL METODO DEL ELEMENTO FINITO

3.2 <u>Preprocesadores.</u> Generación de la malla. En el análisis de esfuerzo y de deformación se utiliza una sección representativa, esto es, un diente con una fracción del cuerpo del engrane. Se hizo esta selección porque se esperaba que en esa sección se diera la máxima concentración de esfuerzos, debido a que ahí se aplican las cargas.

Esta sección se discretizó en pequeños elementos triangulares utilizando la subrutina EFREG que es una adaptación del programa GRID [11].

La discretización se realizó dividiendo en regiones, definidas cada una por ocho puntos, orientadas de acuerdo a los ejes n, ξ correspondientes a cada región como se muestra en la figura 3.2.1.

Fig. 3.2.1 Región

Es necesario alimentar a la subrutina con los datos de las coordenadas de los nodos (a,b,...,h) de cada región respecto a unos ejes cooordenados x,y . El nodo a corresponde a las coordenadas $\eta = \xi = -1$, el nodo b, a $\eta = -1$, $\xi = 0$ y así sucesivamente los otros nodos, en sentido antihorario.

Debe fijarse cuáles son los nodos comunes a dos o más regiones, o sea, la conectividad.

Con la union de estas regiones se logró subdividir la sección elegida en forma más adecuada, ahorrando espacio en la memoria de la computadora.

Los datos de conectividad para una región se componen se cuatro números, uno para cada lado. El valor de estos números corresponde a cada región conectada a un lado en particular. Los números de cada lado se determinan como se muestra en la figura 3.2.1
Para definir las regiones se declaran los nodos que le corresponden a cada una y se determina la posición relativa de la región en la sección, ordenando los números de cada nodo de tal forma que se respete el sentido antihorario.

A la subrutina se le proporcionan los números de columnas y renglones en que se divide cada región. Con estos datos, la subrutina genera la malla del diente.

Entre cada cuatro nodos generados se forma un cuadrilátero, dividiéndolo en dos triángulos, por medio de la diagonal menor (Fig. 3.2.2).

0

Fig. 3.2,2 División en triángulos.

0

No se recurrió a ningún programa comercial ni de propósito general para la solución del problema motivo de este trabajo. Se utilizaron los programas GRID y STRESS [11].

Los listados de los programas utilizados se incluyen en el Apéndice.

3.3 <u>Posprocesadores.</u> Representación gráfica de esfuerzo y de deformación. Para determinar la distribución del esfuerzo y de la deformación en el diente en estudio, se utilizó la subrutina EFESF, cuyo listado aparece en el Apéndice, que es una adaptación del programa STRESS [11].

Los datos de los elementos se obtuvieron de la subrutina EFREG,

Además, fue necesario proporcionar las propiedades físicas del material, las condiciones de frontera y el nodo o nodos donde se aplican las cargas y su valor.

Estos se introducen de la siguiente manera.

Propiedades del material:

Módulo de elasticidad

Coeficiente de expansión térmica

Relación de Poisson

Temperatura inicial

Espesor del elemento

Datos de carga:

Se debe indicar el nodo en el que se aplica la carga y su sentido, dirección y magnitud. La dirección se indica por medio de los grados de libertad del nodo afectado y el sentido por medio del signo.

Condiciones de frontera:

Se debe explicar el desplazamiento de los nodos frontera en forma similar a los nodos en los que se aplica lo carga.

La subrutina EFREG calcula, a partir de los desplazamientos nodales, la deformación y los esfuerzos en el centroide de cada elemento.

Los esfuerzos que se calculan son:

 $\sigma_x, \sigma_y, \tau_{xy}$ y aplicando la teoría del círculo de Mohr,

 $\sigma_1, \sigma_2, \gamma_m$ áx

Se determino un esfuerzo representativo del estado del elemento, introduciéndose una norma o medida del esfuerzo, de naturaleza cuadrática e invariante, conocida popularmente como "esfuerzo de von Mises".

Esta cantidad está asociada a la energía elástica de distorsión; es decir, cualquier estado de esfuerzo arbitrario puede descomponerse en dos sistemas de esfuerzos: Un sistema, consistente en esfuerzos normales de igual magnitud (esféricos), que produce únicamente cambio volumétrico, y el otro, que causa distorsión.

34

Experimentalmente se ha demostrado que un estado de esfuerzo esférico tiene poca tendencia a causar cedencia en un material dúctil,

Basada en los resultados experimentales, la teoría de la distorsión establece que la cedencia en un material dúctil es independiente de la energía de deformación, dependiendo, únicamente, de la energía de distorsión; la ecuación que resulta de aplicar esta teoría al caso plano es [5] :

$$\sigma_{\varepsilon} = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2}$$
(3,3,1)

Ya que σ_{ε} es un número real (a diferencia de σ , que es un tensor) y, además, positivo definido, su graficación mediante líneas de σ_{ε} constantes (isolíneas) permite visualizar el estado plano de esfuerzo motivo de este trabajo,

3.4 <u>Ejemplos</u>. Una vez probados los programas, se hizo una primera corrida considerando una malla simétrica de elementos finitos y los siguientes datos técnicos del engrane:

Número de dientes = 50 Paso diametral = 10 $pulg^{-1}$ Tipo de diente = normal Angulo de presión = 20°

y para el programa que calcula el esfuerzo se usaron los siguientes datos: Propiedades del material:

Módulo de elasticidad o de Young: 30 x 10⁶ lb/pulg²

Coeficiente de Poisson: 0.30

Coeficiente de expansión térmica: $0.7 \times 10^{-5} 1/^{\circ}F$

Temperatura inicial: 0°F

Espesor: 1.0 pulg.

Dichas propiedades corresponden a un acero AISI 3150, con un límite elástico de 130,000 lb/pulg², apropiado para engranes, pernos, etc. [7].

Se considera una condición de carga concentrada aplicada en el paso diametral con un valor de 2,000 lb.

Se consideran restringidos al movimiento los puntos correspondientes al cuerpo del engrane, siendo éstas las condiciones de frontera del problema.

El listado I muestra los resultados obtenidos para el problema y en las figuras 3.4.1, 3.4.2 y 3.4.3 se ve la discretización del diente, el estado de esfuerzo y la deformación del diente.

Cabe aclarar que las isóclinas (isolíneas de esfuerzo) se graficaron interpolando manualmente y la deformación se amplió 10 veces para poder apreciarla.

Como el problema no es simétrico, se hizo una nueva discretización del diente refinando la malla en la zona donde se espera la concentración de esfuerzos por compresión, es decir, en el filete opuesto al lado donde fue aplicada la carga.

Se obtuvieron los resultados que se presentan en el listado II. En la figura 3.4.4 se presenta la nueva discretización del diente y en las figuras 3.4.5 y 3.4.6, las gráficas del estado de esfuerzo y la deformación en el diente, respectivamente.

36

DAME LOS VALORES DE:NUMERO DE DIENTES(I3), FASO DIAMETRAL,TIFO DE DIENTE (1. 0 0.75) Y EL ANGULO DE PRESION (3F10.5) 50 10. 1. 20.

COORDENADAS GLOBALES

NO. DE'C	OORD. X	COORD, Y		
1	-0.04	0.	61	
2	0.00	0.	61	
3	0.04	0.	61	
4	-0.06	0.	56	
5	0+06	0,	56	
6	-0.08	0.	51	
7	0.00	0.	51	
8	0.08	0.	51	
9	-0.09	0.	46	
10	0.09	0,	46	
11	-0.10	0.	40	
12	0.00	0.	40	
13	0.10	0.	40	
14	-0.11	0.	38	
15	0.11	0.	38	
16	-0.16	0.	37	
17	0.00	0.	20	
18	0.16	0.	37	
19	-0.16	0.	25	
20	0.16	0.	25	
21	-0.16	0.	00	
22	0.00	0.	00	
23	0.16	0.	00	
NATOC DE	CONSCILLION	^ TI		
08108 DC. DECTON		1 7	7	٨
4	CHDO	0 0	~	~
2		2 0	1	Ň
- 		, U	2	~
3		4 V		0
· •		··· · · · · ·	· ·	

REGI	(ON	1												
3	S RENG	ILONES			6 COLUMNAS				•					
או	IMERO	DE NO	DOS D	E FRO	NTERA	6	7	8	5	3	2	1	4	
NUMERO	DEN	101:05	DE LA	REGI	אכ									
1	2	7	٨	5	4									
-	2	5	10	4 4	10									
17	1 0	15	14	17	10									
10	1-1	10	10	17	10									
NEL	NUME	ROS DI	E NODO	כ	X(1)	Y(1)		X(2))	Y	(2)	3	' X(3)	Y(3)
1	7	8	1		-0.0610	0,5631		0.0366	5	0.50	536	-0	.0427	0.6127
2	8	2	1		-0.0366	0.5636		0.0256	5	0.6	130	-0	.0427	0.6127
3	8	9	2		-0.0366	0,5636		0.0122	2	0.5	638	-0	.0256	0.6130
4	9	3	2		-0.0122	0.5638		0.0085	5	0+6:	131	-0	.0256	0.6130
5	9	10	4		-0.0122	0.5638		0.0122	2	0.54	638	0	.0085	0.6131
6	9	4	3		-0.0122	0.5638		0.0085	5	0.6;	131	-0	.0085	0.6131
7	10	11	5		0.0122	0.5638		0.0366	5	0.50	536	0	.0256	0.6130
8	10	5	4		0.0122	0,5638		0.0256	5	0.61	130	· 0	.0085	0.6131
9	11	12	6		0.0366	0.5636		0,0610)	0.50	531	0	.0427	0.6127
10	11	6	5		0+0366	0.5636		0.0427	7	0.63	127	0	.0256	0,6130
11	13	14	7		-0.0785	0.5118	-	0.0471	L	0.5;	126	~0	.0610	0.5631
12	14	8	7		-0.0471	0.5126		0.0368	5	0.50	536	-0	.0610	0.5631
13	14	15	8		-0.0471	0.5126	-	0.0157	7	0.51	130	-0	.0366	0.5636
14	15	9	8		-0.0157	0.5130		0.0122	?	0.50	538	-0	.0366	0.5636
15	15	16	10		-0.0157	0.5130		0.0157	,	0.5:	130	0	.0125	0.5638
16	15	10	9		-0.0157	0.5130		0.0123	,	0,50	538	-0	.0122	0.5638
17	16	17	11		0.0157	0.5130		0.0471		0.51	126	0	.0366	0.5636
18	16	11	10		0.0157	0.5130		0,0366	5	0.54	\$36	0	.0122	0.5638
19	17	18	12		0.0471	0.5126		0.0785	j.	0.5	18	0	.0610	0.5631
20	17	12	11		0.0471	0.5126		0.0010)	0.56	531	0	+0366	0.5636

REGI	ON	2												
3	RENG	LONES			6 COLUMNAS									
טא	MERO	DE·NOD	os ni	E FROM	NTERA	11	12	13	10	8	7	6	9	
NUMERO	DEN	ionos n	E LA	REGIO	DN .									
17	1.0	15	14	17	10									
10	20	21	20	27	74									
25	26	27	28	29	30									
NEI	NUME	ene ne	NOD	,	X(1)	Y(1)		×73	2)	Y	(2)		X(3)	Y(3)
21	19	20	13	5	~0.0889	0.4552		-0.052	34	0.4	556	-0	10785	0.5118
22	20	14	13		-0.0534	0.4556		-0.047	71	0.5	126	-0	.0785	0.5118
23	20	21	14		-0.0534	0.4556		-0.017	78	0.4	558	-0	.0471	0.5126
24	21	15	14		-0.0178	0.4558		-0.015	57	0.5	130	0	.0471	0+5126
25	21	22	16		-0.0178	0.4558		0.017	78	0+4	558	0	.0157	0,5130
26	21	16	15		-0.0178	0.4558		0.015	57	0.5	130	-0	.0157	0.5130
27	22	23	17		0.0178	0,4558		0.053	34	0.4	556	0	.0471	0.5126
28	22	17	16		0.0178	0.4558		0.047	71	0.5	126	0	.0157	0.5130
29	23	24	18		0.0534	0.4556		0.088	39	0+4	552	0	.0785	0.5118
30	23	18	17		0.0534	0.4556		0.078	35	0.5	118	0	.0471	0,5126
31	25	26	19		-0,0987	0.3953		-0.059	72	0.3	953	-0	.0889	0.4552
32	26	20	19		-0.0592	0.3953		-0.052	54	0.4	556	-0	+0889	0.4552
33	26	27	20		-0.0592	0.3953		-0.015	17	0.3	753	-0	+0534	0+4556
34	27	21	20		-0.0197	0.3953		-0.017	18	0.4	558	-0	.0534	0.4556
35	27	28	22		-0.0197	0.3953		0.015		0.3	753	0	•0178	0.4558
36	27	22	21		-0.0197	0+3953		0.01/	,)- <u>-</u> , 	0.4	າວຢ	0	•0178	0.4558
37	28	29	23		0.0197	0.3953		0.05	· _	0+3	1115	0	+05.54	0+4556
38	28	23	22		0.0197	9.3953		0.003	54 1 - 1	0.4	106	0	+0178	0+4558
39	29	30	24		0.0592	2+3753		0.090	; 	0	700.5 1 m m	0	10889 3874	77+473321
40	29	144	23		0+0592	0.3753		0+08:	1.2	0+4:	3.31	0	•0334	\ J ↓ (‡75) 164

>

REGION 3

3	RENG	I ONES			6 COLUMNAS									
NU	MERO	DE NOT	DS DE	FROI	ITERA	16	17	18	15	13	12	11	14	
NUMERO	DE N	onos di	E LA	REGIO	אנ									
25	26	27	28	29	30									
31	32	33	34	35	36									
37	38	39	40	41	42									
NEL.	NUME	ROS DE	NODO		X(1)	Y(1)		XC	?)	١	(2)		X(3)	Y(3)
41	31	32	26		-0.1148	0.3793		0.061	9	0.3	236	(0.0592	0.3953
42	31	26	25		-0.1148	0.3793		-0.05	2	0.3	953	-(.0787	0.3953
43	32	33	27		-0.0689	0.3236		0.023	50	0.5	955	-0	0.0197	0.3953
44	32	27	26		-0.0689	0.3236		-0.015	77	0.3	953	(0.059	0.7953
45	33	34	28		-0.0230	0.2958		0.02	50	0.2	958	Ċ	0.0197	0.3953
46	33	28	27		-0.0230	0.2958		0.019	7	0.3	953	(0.0197	2.3953
47	34	35	28		0.0230	0.2958		0.068	39	0.7	236	2	0197	0.3953
48	35	27	28		0.0689	0.3236		0.059	2	0.2	953	(.0197	0.3953
49	35	36	29		0.0689	0.3236		0.114	18	0.3	793	Ċ	.0592	0.3953
50	36	30	29		0.1148	0.3793		0.098	37	0.3	953	đ	0.0592	0.3953
51	37	38	32		-0.1571	0.3726		-0.694	12	0.2	613	~(0.0687	0.3036
52	37	32	31		-0.1571	0.3726		-0.068	17	0.3	236	~(0.1148	0.3793
53	38	39	33		-0,0942	0.2613		-0.031	4	0.2	056	~(.0230	0.2958
54	38	33	32		-0.3742	0,2613		-0.023	10	0.7	958	-(10689	0.3236
55	39	40	34		-0.0314	0.2056		0.031	.4	0.2	056	1	1.0230	0.2958
56	39	34	33		-0.0314	0.2056		0.023	0	0.2	958	-0	0.0230	0.2953
57	40	41	34		0.0314	0.2056		0.094	2	0.2	613	C	.0230	0.5958
58	41	35	34		0.0942	0.3/13		0.005	19	0.3	236	Ċ	.0230	0.2958
59	41	42	35		0.6942	·		0.157	'1	0.3	726	Ċ	.0689	0.3234
60	42	36	35		0.1521	0,3120		0+214	8	9.3	79.3	0	0639	0.3234

÷	3 RENG	LONES			6 COLUMNAS									
NL	IMERO	DE NOD	OS DE	FROM	ITERA	21	27	23	20	18	17	16	19	
NUMERO) DF N	onos n	e la	REGIO	ĴN									
75		70			47									
.57	28	37	40	41	4.2									
4.3	44	40	40	4/	40									
49	.1Q	51	52	చిన	54									
NEL	NUME	ROS DE	моло		X(1)	Y(1)		xc	2)	٢	((2)		X(3)	7(3)
61	43	44	38		-0.1571	0.2484	-	0.094	12	0+1	1928	-0	.0742	0.2613
62	43	38	37		-0.1571	0.2494		-0.09/	92	0.2	2613	-0	.1571	0.3726
63	44	45	39		-0.0942	0.1928		-0.031	4	0.1	649	-0	.0314	0.2056
64	44	39	38		-0+0942	0.1928		0.031	4	0.2	2056	~-0	.0942	0.2613
65	45	46	40		-0.0314	0.1649		0.031	.4	0.1	649	0	.0314	0.2056
66	45	40	39		-0.0314	0.1649		0.031	4	0.5	2056	0	.0314	0+2056
67	46	47	40		0.0314	0.1649		0.094	2	0.1	928	0	.0314	0.2055
*8	47	41	40		0.0942	0.1928		0.094	12	Ŭ.:	⁷ 613	0	.0314	0.2056
69	47	48	41		0.0942	0,1928		0.157	'1	0.2	2484	0	.0942	0.2613
70	48	42	41		0.1571	0.2484		0.157	1	0.3	1720	0	+0942	0.2613
71	49	50	44		-0.1571	0.0000		0.094	2	0.0	0000	-1)	.0942	0.1928
72	49	44	43		-0.1571	0.0000		0.094	12	0.1	928	~0	.1571	0.2484
73	50	51	45		-0.0942	0.0009		0.031	4	0.0	0000	0	.0314	0.1649
74	50	45	43		-0.0742	0.0000		0.031	4	0.1	612	0	.091	0.1923
75	51	52	44		-0.0314	0.0000		0.031	4	0.0	- nin	0	.0314	0.1000
76	51	Ac.	45		-0.0314	0.0000		0.031	4	6.1	045	-0	. 3314	0.1639
77	52	53	46		9.0314	0.0000		0.094	12	0.0	000	\sim	.0314	0.1349
78	53	47	16		0.0742	0.0000		0.094	1	0.1	978	Ő,	.0314	3.164%
79	53	54	42		0.0942	0.0000		0.15-2	1	0.0	0000	ð	.0942	6.1220
BG	54	18	47		0.1571	0.0000		0.15	.1		145.4	ŋ	. 594.	5.17 8

ЕГ АМЕНЬ ДЛ ДАНДА БА. О ГАСЛИГАВСТИ ЕГ ЕГЕМЕНТО – Г

MODULO DE ELASTICIDAD=30000000.0 MODULO DE POISSON= 0.300 COEF.DE EXF. TERM.= 0.000007 ESPESOR= 1.000 TEMPERATURA INICIAL= 0.0

.

VALORES DE FRONTERA

FUERZAS NODALES

CASO DE CARGA 1 35 -1800.00000 36 -700.00000

VALDRES NODALES PRESCRITOS

73	0.00000
74	0.00000
83	0.00000
84	0.00000
85	0.00000
86	0.00000
95	0.00000
96	0.00000
97	0.00000
98	0.00000
99	0.00000
100	0.00000
101	0,00000
102	0.00000
103	0,00000
104	0.00000
105	0.00000
709	0.00000
107	0+00000
108	0.00000

VALORES	NODALES, CAS	O DE	CARGA 1						
1	~0.00026	2	-0.00005	-3	-0.00026	- 4	-0.00004	5	~0+00026
6	-0.00002	7	-0.00026	8	-0.00001	9	~0+00026	10	-0.00000
11	-0+00026	12	0+00000	13	-0+00023	14	-0.00006	15	-0.00023
16	-0,00004	17	-0.00023	18	-0,00003	19	-0.00023	20	-0.00001
21	-0.00023	22	0.00000	23	-0,00023	24	0.00001	25	-0.00019
26	-0.00008	27	-0.00019	28	-0.00005	29	-0.00019	30	-0.00003
31	-0.00021	32	-0.00001	33	-0,00022	34	-0.00000	35	-0.00025
36	0.00000	37	-0.00011	33	-0.00007	39	-0,00011	40	-0.00005
41	-0.00012	42	-0.00003	43	-0.00012	44	-0.00002	45	-0.00013
46	-0.000000	47	-0.00012	48	0+00004	49	~0.00004	50	-0.00004
51	-0.00004	52	-0.00004	53	-0,00005	54	-0.00003	55	-0,00005
56	-0.00001	57	-0.00004	58	0.00000	59	-0.00004	60	0.00002
61	-0+00002	62	-0.00002	63	-0.00001	64	-0.00003	65	-0.00000
66	-0.00002	67	-0.00000	68	-0.00001	69	-0.00001	70	0.00001
71	-0.00002	72	0+00001	73	0.00000	74	0.00000	75	-0.00000
76	-0.00001	77	0.00000	78	-0+00001	79	0.00000	80	-0.00000
81	-0.00000	82	0.00000	83	0.00000	84	0.00000	85	0.00000
86	0.00000	87	-0.00000	88	-0.00001	87	-0,00000	90	-0.00001
71	0.00000	92	-0.00000	93	0.00000	94	0.00000	95	0.00000
96	0.00000	97	0.00000	99	0.00000	99	0.00000	100	0.00000
101	0.00000	102	0.00000	103	0.00000	104	0.00000	105	0.00000
106	0,00000	107	0.00000	108	0.00000				

ESFUERZOS Y DE

FLEMENTO	1					
EXX	-0.00001	SXX=	-122.01300	S1 =	1296.43591	
EYY:	0.00001	SYY-	282.63312	57-	-1135+81580	SE= 2107+92236
GX Y -	0.00010	TXY-	1199.17773	TMAX	1216,12585	ANGULO 49+79 GRADOS
FLEMENTO	2					
FYXe	0.00002	SXX=	630.10400	S1 <i>≃</i>	681.56421	
EYY	-0.00000	SYY=	162.35756	52-	110.89734	SE≔ 633₊43854
GXY=	0+00001	TXY=	163.45737	TMAX	285.33344	ANGULO 17.48 GRADOS
FLEMENTO	3					
EXX=	-0.00003	SXX-	-932.94775	S1~	-196.38220	
EYY=	0.00000	SYY=	-233.61972	S2=	968.18530	SE- 885.81464
GXY=	0.00001	TXY	160.88586	TMAX =	384.90155	ANGULO 77.65 GRADOS
FLEMENTO	4					
FXX=	0.00002	SXX-	739,11981	Sta	747,26355	
EYY=	0.00000	SYY-	58.30130	S2=	80.15759	SE= 710.58374
GXV=	0.00001	TXY≃	73+25568	TMAX=	333.55298	ANGULO 6.34 GRADOS
FLEMENTO	5					
EXX	-0.00004	SXX=	-1476.69714	91=	-339.38800	
EYY=	-0.00000	SYY-	~451,69580	S2=	-1589.00500	SE= 1449,42480
GXY -	0.00003	TXY=	357.39148	rmax=	624.80847	ANGULO 72.56 GRADOS
FLEMENTO	ó					
EXX-	0.00003	SXX=	815,90765	S1=	841.74219	
EYY⇒	-0.00000	SYY-	98.29855	S?=	72.46405	SEn 807.95111
GXY=	0+00001	ΤΧΥ	138,58752	тмах≔	384+63707	ANGULO 10.56 GRAPOS
FLEMENTO	7					
EXX-	-0.0004	SXX	-2035,75940	S1=	-341.77980	
EYY=	0.00001	5 YY -	-369.90924	5 2 =	-2063.93324	SF- 1716.06738
GXY=	-0.00002	7XY -	-218.48742	тмах	861.10455	ANGULO -82,65 GRADOS
F: EMENTO	÷.					
["XX=	0+00063	GXM	974.03534	S1=	976.05164	
ΓYY-	0.00000	SYY	194.28163	69 -	192.26541	SE: 895,73442
GXY	÷.00000	DXY.	39,76183	Those	391.09310	ANGUL0 -2.91 GRADOS

• .

ESFUERZOS Y DEFORMACIONES DEL FLEMENTO

.

ELEMENTO	9			
EXX=	-0.00005	SXX= -1515.23840	S1= 1129+81458	
EYY-	0.00002	SYY= 182.12128	S2= -2462,93188	SE= 3182,00757
GXY≓	-0.00014	TXY= -1583.25574	TMAX= 1796.37317	ANGULO -59.10 GRADOS
ELEMENTO	10			
EXX=	0.00002	SXX= 833.69159	S1 - 886,43646	
EYY=	0.00000	SYY= 393.38910	52= 340.64426	SE= 774.49896
GXY=	-0.00001	TXY= -161.26282	TMAX= 272.89609	ANGULO -18.11 GRADOS
ELEMENTO	11			
EXX=	-0.00007	SXX= -1831.93823	S1= 467.36377	
EYY=	0.00003	SYY= 453.43195	S2≈ -1845+87012	SE= 2118.57471
GXY≕	0.00002	TXY= 178.97919	TMAX= 1156+61694	ANGULO 85.55 GRADOS
ELEMENTO	12			
FXX=	-0.00000	SXX= -72+62301	S1 = 900.37347	
EYY=	0.00000	SYY= 69.07817	S2= -903,91833	SE= 1562,56360
GXY≖	-0.00008	TXY= -899,35944	TMAX- 902.14587	ANGULO -47,25 GRADOS
ELEMENTO	13			
EXX=	-0.00020	SXX= -6451,36133	S1= -1077.64673	
EYY≕	0.00002 .	5YY= -1384.30713	526758,02197	SE= 6288.83350
GXY=	-0.00011	TXY1283.70728	TMAX = 2840,18750	ANGULO -76.55 GRADOS
FLEMENTO	14			
EXX⇒	-0.00003	SXX= -860.12701	S1 = 424, 24951	
EYY=	0.00001	SYY= -77.59256	S2= -1361.9a912	SE- 1616.40417
GXY=	-0.00007	TXY= -802.94131	TMAX = 893.10931	ANGULO -57,79 GRADOS
FLEMENTO	15			
FXX=	-0.00034	SXX=-10445.80273	51	
FYY:	0.00008	SYY= -793.86011	52==10499.970/0	SEA 10168,19531
GXY=	-0.00006	TXY= -726.58185	TMAX = 4900.13867	ANGULO -85.74 GRADOS
ELEMENTO	16			
E.XX=	-0.00004	SXX1395+93640	S1* 467+35858	
EYY	0.00001	SYY≈ -182+49335	52= -2045,78845	SE= 2315.12231
GXY≎	-0.00010	TXY= -1100+39343	TMAX-= 1256.57349	ANGULO -59.44 GRADOS

ELEMENTO	17			
EXX≈	~0.00056	SXX=-17136.80664	S1≔ ~916+17139	
EYY =	0+00014	5YY = -961.49609	S2=-17182.13086	SE≃ 16742+85547
GXY	0+00007	TXY= 857+43243	TMAX= 8132,97998	ANGULD 86+97 GFADOS
ELEMENTO	18			
EXX=	-0.00006	SXX= -1288.60510	S1= 2097.21313	
EYY=	0+00008	SYY= 2095.94409	52= -1289 . 87427	SE=
GXY=	0.00001	TXY= 65.54675	THAX= 1693.54370	ANGULO 88,89 GRADOS
ELEMENTO	19			
EXX-	-0.00085	SXX=-26191.14258	S1= -1915,77832	
EYY=	0.00019	SYY= -2134,99756	S2=-26410.36328	SE= 25506,49023
GX I =	0.90020	TXY= 2306.86401	TMAX= 12247.29199	ANGULO 84.57 GRAPUS
ELEMENTO	20			
EXX -	-0.00005	SXX= -154,84265	S1= 4865.10840	
EYY	0.00014	SYY= 4079.09644	S2= -940.55425	SE= 5397,39258
GXY≃	0.00017	TXY= 1986.38867	TMAX= 2902.98120	ANGULO 68.41 GRADOS
FLEMENTO	21			
EXX=	-0.00004	SXX= -3050,45752	S1= 1924.63232	
EYY	-0.00019	SYY= -6614.72656	S2=-11589+31738	SE= 12662.31543
GXY=	-0.00056	TXY= -6517,98096	TMAX= 6757.22461	ANGULO -37,35 GRADOS
ELEMENTO	22			
EXX	-0.00005	SXX= -2998+66357	S1= 1138,87769	
EYY∓	-0.00012	SYY= -4540.13672	S2= -8677.67773	SE= 9299.56738
GXY	-0,00042	TXY= -4847.38623	TMAX= 4908,27283	ANGULO -40,48 GRADOS
ELEMENTO	23			
EXX	-0.00011	SXX= -4424.60156	S1% 5144.78174	
EYY	~0,00008	SYY= -3708,14331	S2=-13277-00734	SE= 16464.05000
GXY-	-0.00080	TXY -9204.18555	IMAX- 9211.15430	ANGULO -44+11 GRADOS
ELEMENTO	24			
EXX:	-0.00019	SXX= -6201.27783	S1= 4148.84326	
EYY	0.00002	SYY= -1222.48938	52=-11572.61035	9E= 14112.09277
GXY-	-0.00045	TXY= -7456.13428	TMAX 7860.7.676	ANGULO -54.03 GRAL

FLEMENTO	25			
EXX=	-0.00014	5XX= -3790.59106	S1≈ 10909+46973	
EYY=	0.00008	SYY≈ 1238,28442	S2=-13461.77637	SE= 21144.66406
GXY	-0+00103	TXY=-11923.38086	TMAX= 12185+62305	ANGULO -50.95 GRADOS
ELEMENTO	26			
EXX=	-0.00034	SXX=-10952.82910	51= 3758.01123	
EYY=	0.00003	SYY= -2444.07202	S2=-17154.91211	SE= 19310.15430
GXY=	-0.00083	TXY= -9551.85059	TMAX= 10456.46171	ANGULO -57.00 GRADOS
ELEMENTO	27			
EXX=	-0.00011	5XX= -3117.42603	S1= 12675.54883	
EYY≕	0.00004	SYY= 235,95935	S2=-15557.01562	SE= 24492+52930
GXY-	-0.00121	TXY=-14016.35156	TMAX= 14116+28223	ANGULO -48.41 GRADOS
FLEMENTO	28			
EXX=	-0+00058	SXX=-18197.32617	S1= 3638.54687	
EYY≔	0.00008	SYY≈ -3084+64966	S2=-24920,52344	SE= 26924.82227
GXY=	0.00105	TXY=-12116+38770	TMAX= 14279.53516	ANGULD -60.97 GRADOS
ELEMENTO	29			
FXX-	0.00009	SXX= -960,12500	51 = 7226+68213	
FYY≕	-0.00041	SYY=-12497.31152	52=-20684.11914	SE- 25090+54097
GXY=	-9+90110	TXY	TMAX= 13955.40039	ANGULO -32,77 GFADOS
EFEMENTO	30			
EXX =	-0.00070	5XX=-29473,83594	51= 2019,16797	
EYY 🖙	0.00001	SYY= -8603.10059	S2=-40096.10547	SE= 41142.86719
CXY=	-0.00159	TXY=-18290.08203	TMAX= 21057.63672	ANGULO -59.65 GRAIMS
ELEMENTO	51			
FXX=	-0.00002	SXX= -6733.65723	S1= 1619,92187	
EYY=	0.00063	SYY=-20806.70312	52=-29162+2830D	BE - 30005.05-359
6XY=	-0,00119	TXY=-13687.92480	TMAX= 15391,10254	ANGULO - 31. 19 GRADOS
FLEMENTO	32			
EXX -	-0.00001	5 (X= - 2 - 0,94.27	S14	
FYT	0.00078	5446 - 6014, 7949C	529-13146. WORD	511 C. 1. 181 CA. 370 PTC
	-0.00050	TXY9777.097746	THAX:= 2.375,38304	ANDER OF START BRADES

ELEMENTO	33			
EXX=	-0.00010	SXX= -5463.60693	S1= 3729,60254	
EYY=	-0.00024	SYY= -8697.19727	52=-18090,40820	SE= 20341.89844
GXY=	-0.00094	TXY=-10890+64648	TMAX= 11010.00488	ANGULO -40.78 GRADOS
ELEMENTO	34			
EXX≓	-0.00011	SXX= -4755.09766	51= 3466.03906	
EYY=	-0.00011	SYY= -4772.68555	S2=-13193,82227	SE= 15358.57617
GXY≃	-0.00073	TXY= -8429.92578	TMAX= 8429.93066	ANGULO -44.97 GRADOS
ELEMENTO	35			
EXX=	-0.00001	SXX= -1013.58783	S1= 9488,11328	
EYY=	-0.00006	SYY= -2217.67432	S2=-12719.37500	SE= 19299,99219
GXY=	-0.00096	TXY=-11087.41016	FMAX= 11103.74414	ANGULO -43.45 GRADOS
ELEMENTO	36			
EXX=	-0.00014	SXX= ~5651.30713	S1= 4035.91309	
EYY=	-0.00011	SYY= -4964.07959	52=-14651.29980*	SE= 17031.75195
GXY≍	-0.00081	TXY= -9337.28516	TMAX= 9343.60645	ANGULO -46.05 GRADOS
ELEMENTO	37			
EXX=	0.00008	SXX= 2485.70166	51= 12394.72266	
EYY-	-0.00003	SYY= -211.94824	52=-10120.96875	SE= 19532.27539
GXY-	-0.00097	TXY=-11176.75098	TMAX= 11257.84570	ANGULO -41,56 GRADOS
ELEMENTO	38			
EXX≔	-0.00010	SXX=4013.27856	51 = 5923.15771	
EYY=	-0.00006	SYY= -2972.37012	52=-12908.80664	SE= 16678.78906
GXY=	-0.00081	TXY= -9401.58789	TMAX= 9415.98242	ANGULO -46.58 GRADOS
ELEMENTO	39			
EXX=	0.00001	SXX- 4783+83496	S1= 22580.50195	
EYY=	0.00044	SYY= 14553.04395	S2= -3243.62305	SE= 24364.78711
GXY=	-0.00104	TXY=-11952+48828	TMAX= 12912.06250	ANGULO -56.11 GRADOS
ELEMENTO	40			
EXX=	0,00010	SXX 3724,30200	S1= 6170,20557	
EYY	0.00004	SYY= 2202.33130	52= -045,07227	SE= 6298+31885
GXY=	-0.00027	TXY= -3117+03149	TMAX 3208.63892	ANGULO -38,14 GRADOS

ELEMENTO	41			
EXX=	~0.00035j	SYX=+12493.78613	S1= -2157.94775	
EY.Y=	-0,00010	SYY= -6750.52246	S2=-17086.36133	SE= 16116.11035
CXY=	~0.00060	TXY= -6889.71045	TMAX= 7464.20654	ANGULO -56.31 GRADOS
ELEMENTO	42			
EXX=	-0.00002	SXX= -9765+07422	S1= 22.10352	
EYY≕	-0.00093	SYY=-30903.46875	·S2=-40687.64844	SE= 40693.70312
GXY≓	-0.09151	TXY=-17394+86328	TMAX= 20354.97500	ANGULO -29.36 GRADOS
FLEMENTO	43			
EXX-	-0.00009	SXX= -4101.48877	51= -1685.01123	
F YY=	-0.00011	SYY= -4535.54395	52= -5952+02197	SE= 6281.37207
6×Y=	-0.00023	TXY= -2624.54736	TMAX= 2833,50537	ANGULO -42.64 GRADOS
ELEMENTO	44			. •
EXX	-0.0010	SXX= -4773+46289	Si≕ -3734.75977	
FYY=	-0.00017	SY7= -6396+76611	52= -7435.46973	SE= 643?.32812
GXY=	-0.00014	TXY= -1662+83936	TMAX= 1850,35435	ANGULO -31.99 GRADOS
ELEMENTO	45			
FXX=	0.00002	5XX= 77+39572	51= 1393.71411	
EYY≓	-0.00007	SYY= -2220,35962	\$2= -3536 . 77808	SE= 4402.32861
GXY=	0,00019	TXY= -2181.19995	TMAX= 2465.24669	ANGULO -31,11 GRADOS
ELEMENTO	46			
EXX=	-0+00001	SXX= -1520.29333	SJ= −1207,42871	
EYY-	-0.00012	SYY= ~3908.39066	52= -4219 . 54541	SE= 3767.37365
GXY=	-0+00008	T=Y= -918.96690	™AX= 1503.05835	ANGULO -12.30 GRADOS
FLEMENTO	47			
• X ×	0.00012	5XX 3347, 12670	51= 3688432593	
EYY≈	6.0t 007	Siy - 1165-97800	52= -1592,57458	SE= 4624.46875
GXY=	-0.0011	TXY -1227.99890	TMAX= 2594.45028	ANGULO -14.76 GRADOS
ELEMENTO	13			
F. X≔	0.00008	SXX: 2894.00034	51 2917.70679	
EYY	0.00701	SYYH 1149.07720	SP: 1170+03989	SP= .548.45408
	$(\cdot, \cdot) 0 (\cdot, \cdot)$	不同な いいに 不可能学者	TM3X 876+03340	ANGULO -5+59 CEADOS

ELEMENTO	49			
FXX=	0.00033	SXX= 10571.86328	51= 11973,14648	
EYY-	-0.00004	SYY= 2091.33325	52= 690.04980	SE= 11643.46875
GX Y =	-0.00032	TXY= -3721.18530	TMAX= 5641.54834	ANGULO -20.63 GRADOS
ELEMENTO	50			
EXX⇔	0+00001	SXX= 7813+42822	51 = 32399.84180	
EYY	0.00074	SYY= 24651+69750	S2= 65.27441	SE= 32367.25586
6XY*	~0+00120	1XY=-13802+14746	TMAX= 16167.28320	ANGULU -60.69 GRADUS
ELEMENTO	51			
EXX=	-0.00015	SXX= -5791.28271	51= -183.93652	
EYY=	-0.00007	SYY= -3844.38281	52= -9451.72949	SE= 9361.11719
GXY≕	0+00039	TXY= -4530.49561	TMAX= 4633.89648	ANGULO -51.06 GRADOS
FLEMENTO	52			
FXX=	-0.00032	SXX=-13722.72266	S1= -3992,93652	
EYY-	-0.00031	SYY= 13385.44043	S2=-23125.22852	SE= 21413.40039
GXY=	-0.00083	TXY = -9569.65918	TMAX= 9571.14551	ANGULO -45.50 GRADOS
FLEMENTO	53			
EXX=	0.00003	SXX≓ 96+93146	S1= 149.68176	
EYY=	~0.00009	5YY= -2729.34863	52= -2782.09912	SE= 2859.87939
GXY=	-0.00003	TXY= -389.70462	TMAX= 1465,89038	ANGULO -7.71 GRADOS
ELEMENTO	54			
EXX	0.00007	SXX= -102,40698	S1= -69.60962	
EYY≓	~0.00025	SYY= -7536.71045	52= ~7569.50830	SE= 7534,94482
GXY≃	-0.00004	TXY = -494.87451	TMAX= 3749.94922	ANGULO -3.79 GRADOS
FI EMENTO	55			
FXX	0.00001	SXX= 22.42285	S1= 261.80521	
EYr	-0.00002	SYY= 462.70523	52= -702.08759	SE= 863.29553
GXY=	0.00004	TXY= 416.45526	TMAX= 481.94638	ANGULO 29.89 GRADOS
FIEMENTO	54			
FXY	0.00002	SXX= -294.74976	S1= 777.86121	
F Y Y ~	-0.00011	SYY= -3460.48739	52= -4533.09814	SE= 4967.91406
LXY-	0.00018	TXY= 2132,15820	TMAX= 2655.47974	ANGULO 26.71 GRADOS

FLEMENTO	57			
EVY-	-0.00001	CVV	C1- 701 00057	
	-0.00001	SYY= ~500.01474	57± -1777,97917	SE= 1500.54004
GYY_	0.00009	TYY= 877.97955	TMAY= 877 98997	ANCHLO AA.97 GPADOR
071-	0100000	101- 37777755	11AA- 077+70003	HIGOLD 44487 OKH205
EL EMENTO	58			
EXX=	-0.00005	5XX= -471,21094	51= 3933 . 92603	
EYY=	0.00013	SYY= 3833.33472	S2= -571.80212	SE= 4248,78369
GXY-	0.00006	TXY= 665+67004	TMAX= 2252.86401	ANGULO 81.41 GRADOS
FLEMENTO	59		·	
EXX-	0.00013	SXX= 4603.28027	S1= 5409.95020	
EYY=	0.00002	SYY= 1946.35156	52 = 1139.68164	SE= 4939.71826
GXY=	-0.00014	TXY= -1671,52051	FMAX= 2135.13428	ANGULO -25.76 GRADOS
ELEMENTO	60			
EXX	0.00034	SXX= 13128,85937	S1= 18772,49414	
EYY=	0.00020	SYY= 9905.14941	52= 4261,51560	SE= 17046.04883
GXY=	-0.00061	TXY= -7074.18066	TMAX= 7255.48828	ANGULO ~38.58 GRADOS
ELEMENTO	61			
EXX=	-0,00006	SXX= -3150,75171	S1= -668.77393	
EYY=	-0.00011	SYY= -4108.03662	57= -4590.6144 ¹⁵	SE= 6282.38232
GXY=	-0.00025	TXY= -2921.87310	TMAX= 2980.62036	ANGULO -40.35 GRADOS
FIFMENTO	62			
EXX=	~0.00007	SXX= -2458.31982	51# 1115.59790	
EYY=	0.00000	51/= -737.49603	52= -4311.41406	SE= 4964,13672
GXY=	0.00022	TXY= -2573,48120	TMAX= 2713.50586	ANGULO -54.24 GRADOS
ELEMENTO	63			
EXX=	0.00002	SXX= 11,14130	S1= 41.13617	
EYY=	-0.00006	SYY1787.08191	S2= -1787.08479	SE- 1808.01111
ßXY=	-0+00000	TXY= -2.96439	TMAX= 914.11646	ANGULO -0.09 GRADOS
FIEMENTO	64			
FXY=	0.00003	SYJ= -37.67367	S1: 48.860A0	
EYY	-0.00011	SYY: -3174.00839	52	SF= 3085,09945
GXY-	-0.00005	TXY = -527.98414	TMA. 1.454.724-5	ANGLA 3 -9.30 GRADUR
UA14	4400000	1910 - UZ21707413	ጠጠጠ በ የመጠቀም የመጠቀም የ መስከት የመጠቀም የ የመጠቀም የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	BIOCER 7400 DRMI03

ELEMENTO	65			
EXX=	0.00001	SXX= 169.25801	S1= 450+84595	
EYY≓	-0.00002	SYY424,61807	S2707+20605	SE - 1011.04061
GXY=	0.00004	TXY= 497.38376	TMAX= 579+02600	ANGUL0 29,60 GRADOS
FLEMENTO	66			
EXX≕	0,00001	SXX416.03589	51= 9.59692	
EYY=	-0.00006	SYY= -1924.23437	52= ~2349+86719	©F= 2354+68042
GXY≖	80000.0	TXY 907.24969	TMAX - 1179+73203	ANGULO 25+13 GRADOS
ELEMENTO	67			
EXX-	-0.00001	5XX398.02463	S1= 115+80609	
EYY=	-0.00002	SYY= -594.50256	S2= -1108.33337	SE= 1170.54022
GXY=	0.00005	TXY= 604.13440	TMAX- 012+06970	ANGULO 40.38 GRAMPS
ELEMENTO	68			
EXX	-0,00001	SXX= -42.34204	51= 1374.90942	
FY/=	0.00004	SYY= 1237,21021	92= -130,04120	SF = 1444,32739
GXY=	0.00003	TXY= 352.55035	TMAX= 752.47528	ANGULO 76.03 GRAMOS
ELEMENTO	69			
EXX=	0.00003	SXX= 1511.72107	S1= 2651.95361	
EYY-	0.00004	SYY= 1753.43091	S2= 613.19843	SE = 2404.72388
GXY=	-0,00009	TXY= -1012.18811	TMAX 1019.37762	ANGULO -48.40 GRADOS
FLEMENTO	70			
EXX-	0.00004	SXX = 1338.96899	S1= 1694.72241	
EYY	0.00000	GYT= 401.69073	S2 45+93744	SE = 1672.22693
iGX Y ⊨	-0.00005	TXY: -678.23315	TMAX 824+39246	ANGULO -27.68 GRADOS
FLEMENTO	71			
EXX -	0.00000	SXX349,20828	S1 342+57199	
EYY=	0.0004	SYY -1160.69421	92= <u>1166</u> .23044	SE 1038.13057
GXY≓	0.00001	TXY -67.90565	TMAK- 411-82924	ANGEO -4. '4 GPALED 1
ELEMENTO	72			
FXX	-0.00002	SX#* 995,22222	31- 376,71094	
EYY -	0.00000	3YY178,5883	61 1650.50049	14 A.
GXY-	-0.00011	Exa -1245.71499	TMAN 1035 470571	5.598 G 47. 51 GR3565

ELEMENTO	73 0,00000	SXX=	-319+22154	S1=	-319,22095	CE 045 74977
C11-	-0.00003	311-	-1004107170	TMAV-	**************************************	
GYI≃	-0100000	171=	-0.00/01	0368	072+42072	HNOULD "0100 BRHDOS
ELEMENTO	74					
EXX=	0.00002	SXX=	156,06815	S1 ≓	156.44153	
EYY=	-0,00004	SYY=	-1009.41113	S2 -	-1009.78455	SE= 1094.40820
GXY=	0.00000	TXY=	20.86451	TMAX=	583.11304	ANGULO 1.03 GRADOS
EL EMENTO	75					
EXX-	0.00000	SXX=	-142,14720	S1=	-136,75046	
EYY=	-0.00001	SYY=	-473.82397	S2=	-479.22073	SE= 427.57404
GXY=	0.00000	TXY=	42,65089	TMAX≔	171,23514	ANGULO 7.21 GRADOS
FIFMENTO	76					
FXX=	0.00001	SXX=	5.44125	S1.#	247.31219	
FYY=	-0.00003	SYY=	-966.60687	S2=	-1208.25781	SE= 1349.02454
GXY=	0.00005	TXY=	541,61292	TMAX=	727.78497	ANGULO 24.04 GRADOS
FLEMENTO	77					
EXX	0,00000	SXX=	-142,14719	S1=	-136.75046	
EYY=	-0.00001	SYY=	-473-82391	S?=	-479,22067	SE- 427.57392
GX Y	0.00000	TXY	42+65088	TMAX	171.23511	ANGULO 2+21 ORADOS
FLEMENTO	78					
EXX =	-0,00001	SXX≃	-264.24704	S1=	455+59897	
EYY-=	0.00000	SYY=	33.24515	S2	-686+60089	SE= 995.89453
GXY=	0.00005	TXY =	551.38885	THAX	571.09991	ANGULO 52.55 URADOS
ELEMENTO	79					
EXX=	0.00000	SXX=	3	51	123,71804	
EYY=	0.00000	SYY-	123.64753	52 -	37.02375	SE= 109.98366
GXY=	0.00000	TX7=	2.47135	тнах≖	43+34714	ANGULO 88+37 GRADOS
ELEMENTO	80					
EXX=	-0.00000	SXX=	-21.66246	S1 =	118,90424	
EYY	0.00000	SYY=	-6.49871	5.2	-147+06544	5E- 230.7564C
GXY=	-0.00001	TXY-	~132+76854	тма	132+98460	ANDULUS SV (63. DEGRUDS)

Fig. 3.4.1 Malla simétrica.

Fig. 3.4.2 Isolíneas de esfuerzo (malla simétrica).

Fig. 3.4.3 Deformación (malla simétrica).

DAME LOS VALORES DE:NUMERO DE DIENTES(13), PASO DIAMETRAL, TIPO DE DIENTE (1. 0 0.75) Y EL ANGULO DE PRESION (3F10.5) 50 10. 20. 1.

COORDENADAS GLOBALES

NO. DE'C	OORD. X	C00	RD. Y		
1	-0,04		0.	61	
2	0.00		0.	61	
3	0.04		0.	61	
4	-0.06		0.	56	
5	0.06		0.	56	
6	-0.08		0.	51	
7	0.00		0.	51	
8	0.08		0.	51	
9.	-0.09		0.	46	
10	0.09		0.	46	
11	-0,10		0.	40	
12	0.00		٥.	40	
13	0.10		0.	40	
14	-0.11		0.	39	
15	0.11		0.	38	
16	-0.16		٥.	37	
17	0.00		0.	20	
18	0.16		0+	37	
19	-0.16		0.	25	
20	0.16		0.	25	
21	-0.16		0.	00	
22	0.00		0.	00	
23	0.16		٥.	00	
DATOS DF	CONECTIVIDA	λTI			
REGION	LADO	1	2	3	4
1		2	0	Ō	Ó
<u>.</u> 3		3	0	1	Ó
ς.		4	0	2	Ö
4		0	Û,	3	ō

REGION 1

3 RENGLONES

6 COLUMNAS

NU	IMERO	DE NO	DOS DI	E FROM	TERA	6	7	8	5	з	2	1	4	
NUMERO	DE N	opos 3	DE LA	REGIO	אנ									
1 7 13	2 8 14	3 9 15	4 10 16	5 11 17	6 12 18									
NEL 1 2 3 4 5 6 7 8	NUME 7 8 9 9 9 10 10	ROS DE 8 2 9 3 10 4 11 5	E NODO 1 2 2 4 3 5 4)	X(1) -0.0610 -0.0366 -0.0366 -0.0122 -0.0122 -0.0122 0.0122 0.0122	Y(1) 0.5631 0.5636 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638		X(2) 0.0366 0.0256 0.0122 0.0085 0.0122 0.0085 0.0366 0.0366) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.54 0.61 0.61 0.54 0.61 0.54 0.61	(2) 536 538 538 538 538 536 536 536	-0 -0 -0 -0 -0 0	X(3) .0427 .0427 .0256 .0256 .0085 .0085 .0256 .0085	Y(3) 0.6127 0.6127 0.6130 0.6130 0.6131 0.6131 0.6131
9 10 11 12 13 14 15 16 17 18 19 20	11 13 14 15 15 16 67 17	12 6 14 8 15 9 16 10 17 11 18 12	6 5778 8810 9110 12		0.0366 0.0366 -0.0785 -0.0471 -0.0471 -0.0157 -0.0157 -0.0157 0.0157 0.0157 0.0471	0.5234 0.5136 0.5126 0.5126 0.5130 0.5130 0.5130 0.5130 0.5130 0.5130 0.5126		0.061(0.042) 0.0471 0.036(0.015) 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.036(0.036(0.036(0.036) 0.036(0.036)		0.54 0.51 0.51 0.54 0.51 0.54 0.51 0.54 0.51 0.55 0.55	531 -27 -36 -37 -38 -38 -38 -38 -38 -38 -38 -38 -38 -31	0 -0 -0 -0 -0 -0 -0 -0 0 0	.0427 .0256 .0610 .0610 .0366 .0366 .0127 .0122 .0122 .0122 .0366 .0127 .0410 .0546	0.6127 0.6130 0.5631 0.5636 0.5636 0.5638 0.5638 0.5638 0.5638 0.5638 0.5638 0.5636 0.5636

REGION	2
--------	---

REGION	2													
3	RENG	ONES			6 COLUMNAS									
NU	MERO I	DE NOD	OS DE	FRO	NTERA	11	12	13	10	8	7	6	9	
NUMERO	DE NI	DOS D	ELA	REGI	014									
13 19	14 20	15 21	16 22	17 23	18 24 70									
23	20	</td <td>2B</td> <td>27</td> <td>30 .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2B	27	30 .									
NEL	NUMER	ROS DE	NODO		X(1)	Y(1)		xc	?)	Y	(2)		X(3)	Y(3)
21	19	20	13		-0.0889	0+4552		-0.065	2	0+45	556	-0	.0785	0.5118
22	20	14	13		-0.0692	0.4556		-0.047	71	0.51	26	-0	•0785	0.5118
23	20	21	14		-0.0692	0.4556		-0.041	5	0,45	58	-0	.0471	0.5126
24	21	15	14		-0.0415	0.4558		-0.015	57	0.51	30	-0	.0471	0.5126
25	21	22	15		-0.0415	0.4558		-0.005	59	0.45	58	-0	.0157	0.5130
26	22	16	15		-0.0059	0.4558		0,015	57	0.51	30	-0	.0157	0.5130
27	22	23	16		-0.0059	0+4558		0.037	76	0.45	56	Ó	•0157	0.5130
28	23	17	16		0.0376	0.4556		0.047	1	0.51	.26	0	.0157	0.5130
29	23	24	18		0.0376	0.4556		0,088	19	0.45	52	0	.0785	0.5118
30	23	18	17		0.0376	0.4556		0.078	15	0.51	18	0	.0471	0.5126
31	25	26	19		-0,0987	0.3953		-0.090	8	0.39	253	-0	.0889	0.4552
3.7	26	20	19		-0.0908	0.3953		-0.065	2	0.45	556	-0	.0887	0.4552
33	26	27	20		-0.0908	0.3953		-0,067	'1	0.39	953	-0	.0692	0.4556
34	27	21	20		-0.0671	0.3953		-0.041	.5	0.45	58	·· 0	.0692	0,4556
35	.77	28	21		-0.0671	0.3953		-0.027	' ó	0.35	53	-0	.0415	0.4553
36	28	32	21		-0.0276	0.3953		-0.005	i9	0.45	58	-0	.0415	0.4558
37	28	29	22		-0.0276	0.3953		0.027	' 5	0.39	53	-0	.0059	0.4558
38	29	23	22		0+0276	0.3953		0.037	6	0.45	56	-0	.0059	0.4558
39	29	30	24		0+0276	0.3953		0.098	17	0.39	53	ō	.0889	0.4552
40	29	24	23		0.0276	0.3953		0.088	17	0.45	52	ō	.0376	0.4556
											-	-		

RFG	זטא	3

.

ત	IMERO I	DE NOD	OS DE	. FRO	NTERA	16	17 18	15 13	12	11	14	
NUMERO	TE N	0003 5	e la	REGT	אס							
25 31 37	26 32 38	27 33 39	28 34 40	29 35 41	30 36 42							
NEL	NUME	ROS DF	NOIIC	1	X(1)	Y(1)	X(2)) Y	(2)	-0	X(3)	Y(3)
41	31	-0∠ -0∠	20		-0.1140	0,3/73	-0.1003	3 0.3 3 0.7	200	-0	A007	010700
42	22	27	27		-0 1005	0 7074	-0.070		733		0471	0.3057
4.5	32	-03 77	74		-0.1005	0,3238	-0.047	1 012 1 07	730		00071	V:37J3
A5	27	21	20		-0.0704	0.3050	-0.034	4 0.3	733		0774	0,3753
44	77	74	20		-0.0704	0 2050	-0.027	4 0.7	057	-0	0471	0.3057
40	34	20	70		-0.0744	0.2959	0.037	3 0.3	272		0.0776	0.3053
48	75	22	28		0.0373	0.3236	0.027/	5 0.3	250	-0	0276	0.3953
49	35	35	29		0.0373	0.3236	0.1149	3 0.3	793	č	0276	0.3953
50	36	30	29		0.1148	0.3793	0.098	7 0.3	953	č	0276	0.3953
51	37	38	32		-0.1571	0.3726	-0.1258	3 0.2	613	-0	.1005	0.3236
5?	37	32	31		-0.1571	0.3726	-0.1005	0.3	236	0	.1148	0.3793
53	30	39	33		-0.1258	0.2613	-0.0780	0.2	056	-0	.0704	0.2958
54	38	33	32		0.1258	0.2313	-0.0704	0.2	958	0	.1005	0.3236
55	39	40	34		-0.0798	0.2056	-0.0160	0.2	056	C	.0244	0.2758
56	39	34	33		- 0.0785	0.2050	-0.0244	0.2	958	0	.0704	0.2958
57	40	41	34		-0.0160	0.2056	0.0627	7 0.2	613	- 0	.0244	0.2958
50	41	35	34		0.0627	0.2613	0+0373	3 0.3	236	-0	.0244	0.2958
59	41	42	36		0.0627	0.2613	0.1571	0.3	726	0	.1148	0.3793
60	41	36	35		0.0527	0.2613	0.1148	3 0.3	793	0	.0373	0.3236

.

3 RENGLONES

6 COLUMNAS

3 RENGLONES 6 COLUMNAS RUMERO DE WOLDS DE LA REGION 21 22 23 20 18 17 16 19 ALREN DE WOLDS DE LA REGION 21 22 23 20 18 17 16 19 3.1 23 33 39 40 41 42 43 44 45 46 47 46 47 50 51 52 53 54 74 71 722 723 73 743 44 44 45 46 47 46 74 740 743 <	8E61	04	t												
NUMBERO DE ADDES DE ERONTERA 21 22 23 26 18 17 16 19 2 BERO DE ADDES DE LA REGION 37 63 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 NEL <numeros he="" nobo<="" td=""> X(1) Y(1) X(2) Y(2) X(3) Y(3) 62 43 33 37 -0.1571 0.2484 -0.1258 0.2613 -9.1571 0.3277 63 44 45 39 -0.1258 0.128 0.128 0.2656 -0.128 0.2613 64 44 37 38 -0.1258 0.1649 -0.0788 0.2656 -0.1258 0.2656 66 47 40 -0.0780 0.1649 -0.0160 0.2056 -0.0788 0.2627 0.758 67 46 47 40 -0.0780 0.1649 -0.0267</numeros>	3	RENG	LONES			6 COLUMNAS				,					
CARRO 14 J0005 DE LA REGION 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 NEL NUMEROS DE NOTIO X(1) Y(1) X(2) Y(2) X(3) Y(3) 51 43 44 38 -0.1571 0.2484 -0.1258 0.1928 -0.1258 0.2613 62 43 39 7 -0.1571 0.2484 -0.1258 0.2613 -7.1571 0.3724 63 44 45 39 -0.1758 0.1928 -0.0788 0.2613 -7.1571 0.3724 64 44 37 38 -0.1258 0.1928 -0.0788 0.2656 -0.1258 0.2613 65 46 40 -0.0788 0.1649 -0.0160 0.2056 -0.0788 0.2056 67 46 47 40 -0.0627 0.1928 -0.0160 0.2056 -0.0160 0.2056 67 46 47	NU	MERO	ന് പറ	nas n	F FRO	NTERA	.71	22	23	20	18	17	16	19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- HERO	DF al	oros i	DE LA	REGI	ИО									
434445464748495051525354NEL <numeros de="" nodo<="" th="">X(1)Y(1)X(2)Y(2)X(3)Y(3)41434438$-0.1571$$0.2484$$-0.1258$$0.1928$$-0.1258$$0.2613$62433837$-0.1571$$0.2484$$-0.1258$$0.2613$$-9.1571$$0.377.6$63444539$-0.1258$$0.1928$$0.0788$$0.2613$$-9.1571$$0.377.6$64443738$-0.1258$$0.1928$$-0.0788$$0.2056$$-0.1258$$0.2613$65454640$-0.0788$$0.1649$$-0.0160$$0.1268$$0.2056$66474140$-0.0788$$0.1649$$-0.0160$$0.2056$67464740$-0.0160$$0.1649$$-0.0160$$0.2056$68474140$0.0627$$0.1928$$-0.0160$$0.2056$704843$-0.1571$$0.2464$$0.1571$$0.22484$$0.0627$$0.2613$71495644$-0.1571$$0.0000$$-0.1258$$0.0000$$-0.1258$$0.1647$73505145$-0.1263$$0.0000$$-0.1258$$0.1647$$0.2464$7445$-0.1571$$0.0000$$-0.0788$$0.0000$$-0.1258$$0.1647$75515253<td< th=""><th>3,7</th><th>53</th><th>39</th><th>40</th><th>41</th><th>42</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<></numeros>	3,7	53	39	40	41	42									
495051525354NELNUMEROS IF NOROX(1)Y(1)X(2)Y(2)X(3)Y(3)41434488 -0.1571 0.2484 -0.1258 0.1928 -0.1258 0.2613 42433337 -0.1571 0.2484 -0.1258 0.2613 -9.1571 $0.377.4$ 63444539 -0.1258 0.1928 0.0788 0.1649 -0.0788 $0.205.6$ 64443738 -0.1258 0.1928 -0.0788 $0.205.6$ -0.1258 0.2613 65454640 -0.0789 0.1649 -0.0160 0.1649 -0.0160 $0.205.6$ 664740 -0.0160 0.1649 -0.0160 $0.205.6$ -0.0788 0.2056 67464740 -0.0160 0.1649 -0.0160 $0.205.6$ -0.0788 0.2056 684741 0.0627 0.1928 0.0627 0.1258 -0.0160 0.2056 684741 0.1571 0.2464 0.1571 0.2463 -0.0160 0.2056 704841 0.1571 0.2464 0.1571 0.2463 -0.0160 0.2056 71495644 -0.1571 0.2060 -0.1258 0.1627 0.2463 71495644 -0.1571 0.2060 -0.1258 0.1627 0.2463 7249 <td>43</td> <td>44</td> <td>45</td> <td>46</td> <td>47</td> <td>48</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	43	44	45	46	47	48									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49	50	51	52	53	54									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NFL	NUME	ROS II		D	X(1)	Y(1)		xc	2)	Y	(2)		X(3)	7(3)
62 43 58 37 -0.1571 0.2484 -0.1258 0.2613 -9.1571 0.3724 63 44 45 39 -0.1258 0.1928 0.0788 0.1649 -0.0788 0.2656 64 44 39 38 -0.1258 0.1928 -0.0788 0.2056 -0.1258 0.2613 65 45 46 40 -0.0788 0.1649 -0.0160 0.2056 -0.0788 0.2613 66 47 40 39 -0.0783 0.1649 -0.0160 0.2056 -0.0788 0.2056 67 46 47 40 -0.0160 0.1649 -0.0160 0.2056 -0.0788 0.2056 67 46 47 40 -0.0160 0.1649 -0.0160 0.2056 -0.0788 0.2056 68 47 41 40 0.0627 0.1928 0.0627 0.1283 -0.0160 0.2056 68 47 41 0.1571 0.2484 0.1571 0.2484 6.0627 0.2613 70 48 42 41 0.1571 0.2484 0.1571 0.3226 0.0627 0.2613 71 49 56 44 -0.1571 0.2484 0.1571 0.3226 0.0627 0.2613 71 49 56 44 -0.1571 0.2669 -0.0288 0.1928 0.1928 0.1928 0.1928 0.1928 0.1928 0.1928 $0.$	51	43	44	-38		-0.1571	0.2484		-0.175	58	0.1	928	-0	.1258	0.2613
63 44 45 39 -0.1258 0.1928 0.0788 0.1649 -0.0788 0.1258 0.2054 64 44 37 33 -0.1258 0.1928 -0.0788 0.2056 -0.1258 0.2613 45 45 46 40 -0.0788 0.1449 -0.0160 0.1256 -0.0788 0.2056 86 47 40 59 -0.0783 0.1649 -0.0160 0.2056 -0.0788 0.7956 67 46 47 40 -0.0140 0.1649 0.0627 0.1928 -0.0160 0.2056 68 47 41 40 0.0627 0.1928 0.0627 0.12433 -0.0160 0.7956 68 47 41 0.0627 0.1928 0.0627 0.2484 6.0627 0.1643 79 47 46 41 0.1571 0.2484 0.1571 0.2484 6.0627 0.2613 71 49 56 44 -0.1571 0.2484 0.1571 0.2484 0.0000 -0.1258 0.1928 -0.1258 0.1928 72 49 44 43 -0.1571 0.0060 -0.1258 0.1928 -0.1258 0.1928 0.1978 72 49 54 44 -0.1258 0.0000 -0.2788 0.1000 -0.2788 0.1028 0.1028 72 49 54 44 -0.1258 0.0000 -0.0788 0.1000	62	43	38	37		-0.1571	0.2484		-0.125	58	0.2	613	- •),1571	0.3724
64 44 37 38 -0.1258 0.1928 -0.0788 0.2056 -0.1258 0.2613 65 45 46 40 -0.0788 0.1647 -0.0160 0.1647 -0.0160 0.2056 86 47 40 57 -0.0780 0.1647 -0.0160 0.2056 -0.0788 0.7056 67 46 47 40 -0.0780 0.1647 0.0627 0.1258 -0.0160 0.7056 68 47 41 40 0.0627 0.1928 0.0677 0.2313 -0.0160 0.7056 59 47 48 41 0.0627 0.1928 0.1571 0.2484 5.0627 0.2613 70 48 42° 41 0.1571 0.2464 0.1571 0.3226 6.0627 0.2613 71 49 56 44 -0.1571 0.0060 -0.1258 0.1928 -0.1571 0.2464 73 50 51 44 -0.1571 0.0060 -0.1258 0.1928 -0.1571 0.2464 73 50 51 44 -0.1258 0.0000 -0.02788 0.1000 -0.0288 0.1020 74 95 44 -0.1258 0.0000 -0.02788 0.1000 -0.0288 0.1647 73 50 35 44 -0.1258 0.0000 -0.02788 0.1000 -0.0160 0.1647 75 51 52 46	63	44	45	39		-0.1258	0.1928		0.078	38	0.1	649	-(0.0788	0,2954
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64	44	.39	-38		-0.1258	0+1928	-	-0.078	38	0.2	055	-0	1258	0.2613
86 45 40 59 -0.0783 0.1649 -0.0160 0.2056 -0.0788 0.7056 67 46 47 40 -0.0140 0.1649 0.0627 0.1928 -0.0160 0.7056 68 47 41 40 0.0627 0.1928 0.0627 0.2513 -0.0160 0.2056 197 47 45 11 0.0627 0.1928 0.0677 0.2613 -0.0160 0.2056 70 48 42° 41 0.1571 0.2484 0.1571 0.2484 0.0627 0.2613 70 48 42° 41 0.1571 0.2484 0.1571 0.3726 0.0627 0.2613 71 49 59 44 -0.1571 0.0000 -0.1258 0.1928 -0.0288 0.0627 0.2613 71 49 59 44 -0.1571 0.0000 -0.1258 0.1928 -0.1258 0.1258 0.1928 0.0000 -0.1258 <	65	45	46	40		-0.0788	0.1649		-0.016	50	0.1	649	C	0.0160	0.2458
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	45	40	- 59		-0.0783	0.1649	-	0.016	i0	0.2	055	-0	0788	0.2000.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	46	47	40		-0.0140	0.1649		0.062	27	0.1	928	-C	0.0160	0.2056
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	47	41	40		0.0627	0.1928		0.065	7	0.2	513	-0	0.0160	0.2056
704842410.15710.24640.15710.32260.06270.261371495644 -0.1571 0.0000 -0.1258 0.0000 -0.1258 0.102872496443 -0.1571 0.0060 -0.1258 0.1928 -0.1571 0.246473505145 -0.1531 0.0000 -0.0788 0.0000 -0.9788 0.15710.246473505144 -0.1258 0.0000 -0.0788 0.0000 -0.9788 0.164974503544 -0.1258 0.0000 -0.0788 0.1649 -0.1258 0.1978 75515246 -0.2788 0.0000 -0.0140 0.0000 -0.0140 0.1647 765446 -0.0180 0.0000 -0.0160 0.1449 -0.0160 0.1647 78534746 -0.0180 0.0000 0.0657 0.0000 -0.5788 0.1647 78534746 0.0627 0.0000 0.0657 0.0000 -0.5780 0.1647 78535447 0.0627 0.0000 0.0657 0.0000 -0.5780 0.1647 79535442 0.0627 0.0000 0.0637 0.1602 0.1647 79544343 0.0627 0.0000 0.0637 0.0000 0.0637 0.1647 78535447	. 9	47	48	11		0.0627	0.1928		0,157	'1	0.2	484	C	0.0627	0+0613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	48	4.	41		0.1571	0.2464		0,157	1	0.3	726	G	0.0627	0.2613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-74	49	56	44		-0.1571	0.0000		-0+125	8	0.0	000	→ 0	1258	0.1778
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	49	44	43		-0.1531	0.0000	٠	0.125	18	0.1	928	(2	1571	0.2484
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73	- 59	51	49		-0.1058	0.0000		0.078	18	0.0	000	-0	1.2788	0.1649
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	50	351	44		·0.1258	0.0000		-0,078	8	0.1	649	-0	11718	0.1708
76 51 45 +0.0788 0.6000 -0.0160 0.1849 +0.0783 0.1649 77 53 46 -0.0160 0.0000 0.0677 0.0000 -5.0160 0.1849 78 53 47 46 0.0627 0.0000 0.0627 0.1998 -6.0160 0.1849 78 53 47 46 0.0627 0.0000 0.0627 0.1998 -6.0160 0.1849 79 53 54 42 0.0627 0.0000 0.0527 0.1998 -6.0160 0.1849 79 53 54 42 0.0627 0.0000 0.0527 0.1998 -6.0162 0.1849 70 53 54 42 0.0627 0.0000 0.01571 0.0000 0.0627 0.1849 70 54 43 43 0.1571 0.071 0.2484 0.0527 0.1971	75	51	32	46		· 0 - 0788	0+0000		0.016	0	0.0	000	-0	1.0140	0.1647
77 53 46 -0.0160 0.0900 0.0677 0.0000 -0.0160 0.1844 78 53 47 46 0.0627 0.0000 0.0627 0.1998 -0.0160 0.1844 78 53 54 47 0.0627 0.0600 0.0627 0.1998 -0.0160 0.1844 76 53 54 47 0.0627 0.0600 0.1571 0.0000 0.0627 0.1578 76 54 43 67 0.1771 0.0700 0.1571 0.2484 0.0527 0.1573	76	51	46	45		-0.0288	0.0000		0.016	0	v. 1	649	- ¢ -	•••0783	0.1649
78 53 47 46 0,0627 0,0000 0,0627 0,1998 -0,5160 0,1849 77 53 54 47 0,0627 0,0600 0,1571 0,0000 0,0627 0,1578 76 54 49 67 0,1571 0,0600 0,1571 0,2484 0,0527 0,1575			53	16		-0+0160	0.0000		0.003	7	0.0	000	- 7	- 2160	3.34.49
1월 53 54 47 - 040627 - 040606 - 0418월 - 04069 - 040697 - 0419월 18 54 49 4월 - 041521 - 0406월 - 14 571 - 042484 - 040827 - 0419월	73	53	47	46		0.0527	0.0000		0.062	2	0.1	6.1 <u>9</u>	-6	- 130	0.1549
12 54 42 47 C.1571 C.OCO 1.571 C.2484 C.OS27 C.1911	••	53	54	47		0.0627	0.0000		0,150	1	0.0	060	0	10027	0.1578
	1.6	54	43	4.7		6.1571	0.07 s)		57	1	0.2	484	ن ن	1.3527	0.19

моро с такита вся з соценталение со сталятсяти за П

MOBULO DE ELASTICIDAD=30000000.0 MUDULO DE FOISSON- 0.300 COEF.DE EXP. TERM.= 0.000007 ESPESOR= 1.600 TEMPERATURA INICIAL= 0.0

VALORES DE FRONTERA

FUERZAS NODALES

CASO DE CARGA 1 35 --1800.00000 36 --700.00000

VALURES NODALES PRESCRITOS

73	0,00000
74	0.00000
83	0.00000
34	9.00000
85	0.00000
86	0.00000
95	0.00000
96	2.00000
97	0+00000
93	0.00000
99	0.00000
100	0.00006
101	0.00006
102	0.00000
103	0.00000
101	0.00000
105	0+00000
105	0.00000
107	0,0000
te s	00000

VALORES	NODALES, CASO	D DE	CARGA 1						
1	-0.00026	2	-0.00005	3	-0.00026	4	-0.00004	5	-0.00026
6	-0+00003	7	-0.00026	8	-0,00002	9	-0.00026	10	-0.00001
11	-0.00026	12	0.00000	13	-0.00023	14	-0.00007	15	-0.00023
16	-0.00005	17	-0.00023	18	-0.00003	19	-0.00023	20	-0.00002
21	-0.00023	22	-0.00000	23	-0.00023	24	0.00001	25	-0.00019
26	-0.00008	27	-0,00019	28	-0.00006	29	-0.00019	30	-0.00004
31	-0.00020	32	-0.00002	33	-0,00022	34	-0.00000	35	-0.00025
36	-0.00000	37	-0.00011	38	-0.00008	39	-0.00011	40	-0.00006
41	-0.00011	42	-0.00005	43	-0.00012	44	-0.00003	45	-0.00013
46	-0.00001	47	-0.00012	48	0.00003	49	-0.00004	50	-0.00005
51	-0.00004	52	-0.00005	53	-0.00004	54	-0.00004	55	-0.00004
56	-0.00003	57	-0.00004	58	-0.00001	59	-0.00004	60	0.00001
61	-0.00002	62	-0.00003	63	-0.00001	64	-0.00003	65	-0.00000
66	-0.00002	67	-0.00000	48	-0.00002	69	-0.00001	70	-0.00000
71	-0.00001	72	0.00001	73	0.00000	74	0.00000	75	-0.00000
76	-0.00001	77	-0.00000	78	-0.00001	79	0.00000	80	-0.00001
81	-0.00000	82	0.00000	83	0.00000	84	0.00000	85	0.00000
86	0.00000	87	-0.00000	88	-0,00000	89	-0.00000	90	-0.00001
91	0.00000	92	-0.00001	93	0.00000	94	-0.00000	95	0.00000
76	0.00000	97	0.00000	98	0.00000	99	0.00000	100	0.00000
101	0.00000	102	0.00000	103	0.00000	104	0.00000	105	0.00000
106	0.00000	107	0.00000	108	0.00000				•

ELEMENTO	1					
EXX=	-0.00000	SXX=	19.89647	S1≔	1179,21204	
EYY=	0.00001	SYY=	275,13278	S2=	-884,18280	SE= 1793.03076
GXY=	0.00009	TXY-	1023,77393	TMAX=	1031.69739	ANGULO 48,55 GRADOS
	2					
ELEMENTO	- A AAAAA	evv-	EAD 4/107	C1 -	EDE 15/17	
	-0.00002	3//-	147 50000	51- 51-	070+4000/	
EI (-	~0+00000	511-	143+32090	52-	88.72020	
GX1=	0.00001	121=	157,36485	I MAX =	253+36523	ANGULU 19.20 GRADUS
ELEMENTO	3					
EXX=	-0.00003	SXX=	-852.35065	S1=	-171.21915	
EYY=	0.00000	SYY=	-198.78162	52=	~879.91321	SE= 808+02551
GXY=	0.00001	TXY=	137.01711	TMAX=	354.34702	ANGULO 78.63 GRADOS
FI FMENTO	Δ					
EXX=	0.00002	SYY=	437.77997	S1 =	450.50257	
EVY=	-0.00000	5YY=	105.98407	67:2	97.17041	CE- 400 77700
GYY=	0.00000		87.57404	TMAY	778.71104	
041-	V. UV. 0001	171-	00+00074	1104-	270471100	AROCO 0172 ORACOS
ELEMENTO	5					
EXX≂	-0.00004	SXX=	-1362.20886	S1=	-274.12585	
EYY=	0.00000	SYY=	-408.13882	\$2=	-1496+22180	SE= 1379.73608
GXY=	0.00003	TXY-	381.86014	TMAX-	611.04797	ANGULO 70,66 GRADOS
ELEMENTO	6					
EXX=	0.00002	SXX=	726,96698	S1=	767,14331	
EYY=	-0.00000	SYY=	117,17548	S2=	76,99918	SE= 731+68872
GXY=	0.00001	TXY=	161,59610	THAX=	345+07205	ANGULO 13.96 GRGDOS
FLEMENTO	7					
FYY=	-0.0004	SYY-	-1900.05933	G1=	-700.04155	
EVV-	0.00001	577-	-1700100703	63~ 91-	-1005 11079	CE- 1747 15710
611~ 67¥+	-0.00001	577-	-07.77074	TMAY-	757.57450	ANGULA -04 29 GEADAG
971-	-0+00001	171-	-07+33030	INHX-	/0/10/408	HUGUEU -80103 0KHDUS
ELEMENTO	8					
EXX=	0.00003	SXX=	906.73602	S1 =	906.74017	
EYY::	-0.00000	SYY=	187+50768	5?-	187,50348	SE 829+04669
GXY=	0.00000	TXY=	1.73414	TMAX -	359.61835	ANGULO 0.14 GRATHUS

ESFUERZOS Y DEFORMACIONES DEL ELEMENTO

ELEMENTO	9	GYY007.57743	S1= 1374.88123	
EXX=	0.00007	SYY= 213,23047	S2= -2109.22339	SE= 2999.74758
GYY=	-0.00014	TXY = -1606.78491	TMAX = 1717.05237	ANGULO -55.32 GRADOS
0/11				
ELEMENTO	10			
EXX:=	0.00003	SXX= 836+94202	S1= 872.95636	
EYY=	0,00000	SYY= 265.45691	52= 229+44260	SE= 783.83887
GXY=	-0.00001	TXY= -147.91440	TMAX= 321.75687	ANGULO -13.68 GRADOS
ELEMENTO	11			
EXX=	-0.00004	SXX= -930,92615	S1 = 585+82037	
EYY=	0,00002	SYY= 467.09915	52= -1049.64734	SE= 1435.21765
GXY=	0.00004	TXY= 424+34659	TMAX= 817,73389	ANGULO 74.37 GRADOS
EL EMENTO	12			
FXX=	0.00000	SXX= -27.03299	S1= 669,82013	
EYY=	-0.00001	SYY= -207.08405	S2= -903.93719	SE- 1367.93164
GXY=	-0.00007	TXY = -781.71185	TMAX= 786.87866	ANGULO -41.72 GRANDS
ELEMENTO	13			
EXX≕	-0.00016	SXX= -5161.65967	S1= -754.94067	
EYY=	0.00001	SYY= -1204.66370	S2= -5611.38281	SE= 5274.58936
GXY=	-0.00012	TXY= -1407.76514	TMAX= 2428,22095	ANGULO -72.28 GRADOS
ELEMENTO	14			
FXX=	-0.00003	SXX= -736.87823	S1= 573.79889	
EYY≍	0.00001	SYY= 103.10660	SC= -1207.57056	SE= 1574.92053
GXY=	-0.00007	TXY= -785.44611	TMAX= 890.68469	ANGULO -59.07 GRADOS
ELEMENTO	15			
EXX -	-0.00033	SXX=-10177.15820	S1 -485,59277	
EYY≈	0.00008	SYY= -528.49658	52=-10220+06250	SE= 9986.12500
GXY=	-0.00006	TXY= -644.83160	TMAX= 4867.23486	ANGULD -86.19 GRADOS
ELEMENTO	16			
EXX=	-0.00004	SXX= -1243.02490	51= 534.37537	
FYY	0.00001	SYY= -10.76559	52= -1788.16589	SE= 2106.80933
GZY-	-0.00009	TXY= -984,34436	TMAX- 1131,27063	ANGULO -61.02 GRADDS

•

. . .

ELEMENTO EXX= EYY= GXY=	17 -0.00055 0.00013 0.00014	SXX=-16760.13672 SYY= -1277,64990 TXY= 1592,59778	S1= -1115.52588 S2=-16922.26172 TMAX= 7903.36768	SE= 16392.99023 ANGULO 84.19 GRADOS
ELEMENTO FXX= EYY= GXY=	18 -0.00006 0.00009 0.00003	SXX= -1071.87512 SYY= 2332.22656 TXY= 293.38004	\$1≈ 2357.32617 \$2≈ -1096.97473 TMAX= 1727.15051	SE= 3057,16650 ANGULO 85,11 GRATOS
ELEMENTO EXX= EYY= GXY=	19 -0.00085 0.00020 0.00009	SXX=-26136.41406 SYY= -1901.03320 TXY= 988.75751	S1= -1860.76074 S2=-26176.68750 TMAX= 12157.96289	SE= 25297.68359 ANGULO 87.67 GRADOS
ELEMENTO EXX= EYY= GXY=	20 -0.00003 0.00011 0.00018	SXX= 144.98446 SYY= 3369.58203 TXY= 2035.62952	51= 4354.04980 52= -839.58313 Thax= 2596.81641	SE= 4828.89600 Angulo 64.19 grados
ELEMENTO EXX= EYY= GXY=	21 0.00008 -0.00018 -0.00038	SXX= 779.36890 SYY= -5294.62354 TXY= -4382.64648	51= 3074.43970 52= -7589.69434 TMAX= 5332.06689	SE= 9507.34961 ANGULO -27.64 GRADOS
ELEMENTO EXX= EYY= GXY=	22 -0.00002 -0.00019 -0.00041	SXX= -2649.15112 SYY= -6405.47900 TXY= -4770.97363	S1= 600.03223 S2= -9654.66211 TMAX= 5127.34717	SE= 9968.23242 ANGULO -34.26 GRADOS
ELEMENTO EXX= EYY= GXY=	23 -0.00004 -0.00009 -0.00066	SXX= -2116.51172 SYY= -3286.07446 TXY= -7655.80176	S1= 4976.80957 32=-10379.39648 TMAX= 7678.10303	SE= 13570.43750 ANGULO -42.82 GRADOS
ELEMENTO EXX= EYY= GXY=	24 -0.00015 -0.00008 -0.00043	SXX= ~5891.73535 SYY= ~4273.32031 TXY= ~7224.70068	SI - 2187.34961 S2=-12352.40527 TMAX - 7269.87744	SE= 13578.86035 ANGULO -48.20 GRADOS

ELEMENTO EXX= EYY= GXY=	25 -0.00012 0.00001 -0.00085	SXX= -3965.11182 SYY= -829.47504 TXY= -9825.71191	S1= 7552.71533 S2=−12347.30273 TMAX= 9950.00879	SE= 17399.85742 Angulo -49.53 grados
FLEMENTO	26			
EXX=	-0.00033	SXX=-10789.81641	S1= 3718,79199	
EYY=	0.00002	SYY= -2570.68921	S2=-17079+29883	SE= 19210.57617
GXY=	-0.00083	TXY= -9552.57129	TMAX= 10399.04492	ANGULO -56.64 GRADOS
ELEMENTO	27			
EXX=	-0.00014	SXX= -4097.12744	S1= 10077.75879	
EYY=	0.00006	SYY= 612.70459	52=-13562.18262	SE= 20546.78711
GXY=	-0.00100	TXY=-11583.00781	TMAX= 11819.97070	ANGULO -50.75 GRADOS
ELEMENTO	28			
EXX=	-0.00056	SXX=-17606.09766	S1= 4533,78223	
EYY=	0.00009	SYY= -2559.62378	S2=-24699.50391	SE= 27250.74023
GXY=	-0.00109	TXY=-12531.84473	TMAX= 14616.64258	ANGULO -60.49 GRADOS
ELEMENTO	29			
EXX=	0.00009	SXX= -772.49512	S1= 11173,99219	
EYY=	-0.00036	SYY=-11149.69629	S2=-23076+18359	SE= 30271.57812
GXY=	-0.00142	TXY=-16330.63672	TMAX= 17135.08789	ANGULO -36.19 GRADOS
ELEMENTO	30			
EXX=	-0.00089	SXX=-27801,15039	S1 = 4580.19531	
EYY=	0+00016	SYY= -3675,97363	S2=-36057.32031	SE= 38552.01562
GXY=	-0.00142	TXY=-16350.71582	TMAX= 20318.75781	ANGULO -63.21 GRADOS
ELEMENTO	31			
EXX=	0.00010	SXX= -2886.11719	S1= 5348.25977	
EYY=	-0.00061	SYY=-19176.55078	52=-27410.92773	SE= 30439.50781
GXY=	-0.00123	TXY=-14210.78906	TMAX- 16379.59375	ANGULO -30.09 GRADOS
ELEMENTO	32			
EXX	0.00008	SXX= -3657,50879	S1= -2332,11914	
EYY=	-0.00064	SYY=-20185.65625	52=-21511.04687	SE= 20444.99023
GXY=	-0.00042	TXY= -4864.45361	TMAX= 9589.46387	ANGULO ~15.24 GRADOS

ELEMENTO	33			
EXX=	-0.00016	SXX= -8912.20312	S1# 1440.06152	
EYY≂	-0.00037	SYY=-13677.70312	52=-24029.96875	SE= 24781.40039
GXY=	-0.00103	TXY=-12510,12012	TMAX= 12735.01465	ANGULO -39.61 GPADOS
ELEMENTO	34			
EXX-	-0.00004	SXX= -4727.44043	51 = -429.51904	
EYY=	-0.00035	SYY=-11952.28418	52=-16250,20605	SE 16039.75977
GXY=	-0.00061	TXY= -7037.32471	TMAX= 7910.34326	ANGULO -31.41 GRADOS
ELEMENTO	35			
EXX-	-0.00010	SXX= -5263.33350	S1= 4890.58252	
EYY=	-0.00019	SYY= -7269.37256	S2 -17423.28906	SE= 20314.99023
GXY=	-0,00096	TXY=-11111.75781	TMAX= 11156.93555	ANGULO ~42.42 GRADOS
FLEMENTO	36			
FXX	-0.00012	SXX= -5472.16846	S1= 3019,98242	
FYY=	-0.00014	SYY= ~5852.97021	82=-14345.12109	SE= 16069.37500
GXY=	-0.00075	TXY= -8680.46387	TMAX= 8682.55176	ANGULO -44.37 GRADOS
ELEMENTO	37			
EXX=	-0.00001	SXX= -1269.51074	S1= 8200+52346	
EYY=	-0.00010	SYY= -3369,18604	52=-12839.21973	SF= 18367.97461
GXY -	-0.00091	TXY=-10467.35547	TMAX= 10519.87109	ANGULO -42.14 GRADOS
ELEMENTO	38			
EXX:	-0.00014	SXX= -5298.04297	S1= 6205.06201	
EYY=	-0.00006	SYY -3432+09644	5214935-20215	SE= 18821.18359
GXY=	-0.00091	TXY=-10529.87695	TMAX= 10570.13184	ANGULO -47.53 GFADOS
FLEMENTO	39			
EXX:	0.00008	SXX= 5747.72119	\$1: 20085.33964	
EYY	0.00032	SYY= 11359.47656	S2	SF = 21728.02734
GXY=	-0.00097	TXY=-11185+17285	TMAX= 11531.74023	ANGULO 52.04 GRADOS
ELEMENTO	40			
EXX=	0.00009	SXX= 1279.26304	G14 #017+33008	
EYY=	-0.00013	SYY = -3311.20784	52= -754° • 35449	CF 11774.03809
GXY=	-0.00054	TXY: -6291.71045	TMAX - 6783+34229	ANGULU - 30.594 GEORGE
ELEMENTO	41			
----------	----------	------------------	-------------------	----------------------
EXX=	-0.00050	SXX=-18327.04883	S1 = -2864.74121	
EYY=	-0.00018	SYY=-10997.03223	52=-26459.34180	SE= 25149.63867
GXY=	-0.00097	TXY=-11213.56250	TMAX= 11797.29980	ANGULO -54.05 GRADOS
ELEMENTO	42			
EXX-	0.00010	SXX= -9888+44922	515524.14258	
EYY=	-0.00132	SYY=-42517.70312	S2=-46882.01172	SE= 44378.55859
GXY÷	-0.00110	TXY=-12706,34668	TMAX= 20678.93359	ANGULO -18.96 GRADOS
ELEMENTO	43			
EXX=	-0,00015	SXX= -6923.44678	S1= -3060.93555	
EYY=	-0.00021	SYY= -8278.33398	52=-12140.84570	SE= 10936.50391
GXY=	0+00039	TXY= -4489,12695	TMAX= 4539.95508	ANGULO -40.71 GRADOS
ELEMENTO	44			
EXX=	-0.00016	SXX8187,99951	51	
EYY=	-0.00029	SYY=-11263.50098	52=-12464.82324	SE= 10821.17285
GXY=	-0.00020	TXY= -2266.68140	TMAX= 2739.07324	ANGULO -27.92 GRADOS
ELEMENTO	45			
EXX⇒	-0.00001	5XX= -1834.66064	S1= -52.53784	
EYY=	-0.00017	SYY= -5534.57715	S2= -7316.70020	SE= 7290.57321
GXY=	-0.00027	TXY= -3125.64673	TMAX= 3632.08105	ANGULO -29.69 GRADOS
ELEMENTO	46			
EXX=	-0.00010	5XX= -5519.98047	514971,76074	
EYY=	-0.00022	SYY= -8124.86084	S2= -8673.08105	SE- 7537.92139
GXY≔	-0.00011	TXY= -1314.75916	TMAX= 1850.65991	ANGULO -22.63 GRADOS
ELEMENTO	47			
EXX-	0.00007	SXX= 808.66370	51 1187.67236	
EYY=	-0.00016	5YY= -4606.21143	52= -4985.22021	SF = 5673.07617
GXY=	-0.00013	TXY1481,85804	TMAX 3086+44529	ANGULO -14.35 GRADQ5
ELEMENTO	48			
EXX	-0.00001	SXX1188+64661	51- +415+82263	
EYY	-0.00009	SYY3097.68042	52= -3372.50464	SE= 3682+24463
GXY-	0.00012	TXY - 1440,19092	TMAX- 1728,34094	ANGULO -28,22 GRADOS

ELEMENTO EXX=	49 0+00028	SXX= 8226.86035	S1= 8624.62891	
EYY=	-0.00010	SYY= -597.16382	S2= -994.93237	SE= 9162.69824
GXY≠	-0.00017	TXY= -1915.23865	TMAX= 4809.78076	ANGULO -11.73 GRADOS
ELEMENTO	50			
EXX=	0.00008	SXX= 7774.35498	S1= 27165.08203	
EYY=	0.00053	SYY= 18114.93945	S2= -1275.78613	SE= 27824.91992
GXY=	-0.00115	TXY=-13247.21875	THAX= 14220.43359	ANGULO -55.66 GRADOS
ELEMENTO	51			
EXX=	-0.00018	SXX= -6584.18848	S1= 1258.88574	
EYY=	-0.00005	SYY= -3481,80566	S2=-11324.87988	SE= 12003.93359
GXY=	-0.00053	TXY= -6097.67090	TMAX= 6291.88281	ANGULO -52.14 GRADOS
ELEHENTO	52			
EXX-	-0.00040	SXX=-14921.33203	S1= -1671.54102	
EYY=	-0.00017	SYY= -9468.27637	52=-22718.06836	SE= 21930,12695
GXY≓	-0.00088	TXY=-10163.91309	TMAX= 10523.26367	ANGULO -52.51 GRADOS
ELEMENTO	53			
EXX=	0.00001	SXX= ~856,74451	S1= 75.22974	
EYY=	-0,00012	SYY= -3965.87646	52= -4897.85107	SE= 4935.89600
GXY=	-0.00017	TXY= -1940.67187	TMAX= 2486,54028	ANGULO -25.65 GRADOS
ELEMENTO	54			
EXX=	0.00006	SXX= -226.13989	S1= 383+62964	
EYY=	-0.00023	SYY= -7011.16748	527620,93750	SE= 7819.81299
GXY=	-0.00018	TXY= -2123.46948	TMAX= 4002,28345	ANGULO -16.02 GRADOS
ELEMENTO	55			
EXX=	0.00002	SXX= -286,12170	S1= -259,70349	
EYY=	-0.00009	SYY= -2832,48437	S2= -2858.90283	SE= 2738.30322
GXY=	-0,00002	TXY= -260.70761	TMAX= 1299.59961	ANGULO -5.79 GRADOS
ELEMENTO	56			
EXX	-0.00001	SXX= -1647.18152	S1= -1378,22644	
EYY=	-0.00015	SYY= -4909,64648	82= -5173,60156	SE= 4645.44208
GXY=	0.00008	TXY= 974.57349	TMAX= 1900.18762	ANGULO 15.43 GRADOS

ELEMENTO	57			
EXX=	0.00001	SXX= -519.23444	S1= 60.96875	
EYY=	-0.00008	SYY= -2536.53784	52= -3116.74097	SE= 3147,66821
GXY≠	0.00011	TXY= 1227.63245	TMAX= 1588.85486	ANGULO 25,30 GRADOS
ELEMENTO	58			
EXX=	-0.00003	SXX= -1100.44922	51= -229 . 28772	
EYY-	-0+00000	SYY= -406.76590	52= -1277.92737	SE= 1180.10937
GXY=	0.00003	TXY= 393.20746	TMAX= 524.31982	ANGULO 65.71 GRADOS
ELEMENTO	59			
EXX=	0.00027	SXX= 10599.88965	S1= 14710.53516	
EYY≕	0.00018	SYY= 8566.72070	S2= 4456.07617	SE= 13065.41895
GXY=	-0.00044	TXY= -5025.43896	TMAX= 5127.22949	ANGULO -39.28 GRADOS
ELEMENTO	60			
EXX=	0,00006	SXX= 1937,96021	51= 2297.29370	
EYY=	-0.00000	SYY= 483.67078	S2= 124.33752	SE= 2237.71729
GXY=	0.00007	TXY= 807.27637	TMAX= 1086.47803	ANGULO 23.99 GRADOS
ELEMENTO	ó1			
EXX=	-0+00009	SXX= -3698.35474	S1= 27.65454	
EYY=	-0.00009	SYY= -3783.39746	S2= -7509.40723	SE= 7523.27246
GXY=	-0.00033	TXY= -3768.29102	TMAX= 3768.53076	ANGULO -44.68 GRADOS
ELEMENTO	62			
EXX=	-0.00010	SXX= -3325,48169	S1= 1775.59399	
EYY=	0.00000	SYY= -997.64453	S2= -6098.72070	SE= 7153.73926
GXY=	-0.00033	TXY= -3761.18335	TMAX= 3937,15723	ANGULO -53.60 GRADOS
ELEMENTO	63			
EXX:=	0.00001	SXX= -614.90393	51= 179.40979	
EYY=	-0.00003	SYY= -2670,63135	S2= -3106,12573	SE= 3020.41992
GXY=	-0.00009	TXY= -1041.59143	TMAX= 1463.35791	ANGULO -22.69 GRADOŞ
ELEMENTO	64			
EXX-	0.00002	SXX= -361.84412	S1= 296,79700	
EYY	~0,00009	SYY2782.45557	52= -3441.0969	SE= 3598.68628
GXY=	-0.00012	TXY= -1424+12170	TMAX= 1868,94690	ANGULO -24.82 GRADOS

ELEMENTO	65			
EXX=	0.00002	SXX≔ ~30+81073	S1 = -9.16840	
EYY=	-0.00006	SYY= -1664.26599	S2= -1685.90845	SE= 1681.34302
GXY=	0,00002	TXY= 189.26234	TMAX= 838.37000	ANGULO 6.52 GRADOS
ELEMENTO	66			
EXX=	0.00002	SXX= -200.24719	S1= -151.97913	
EYY⇒	-0.00008	SYY= -2546.23853	S2= -2594.50684	SE= 2521.95410
GXY=	0.00003	TXY= 339.95114	TMAX= 1221.26379	ANGULO 8.08 GRADOS
	67			
FXX=	-0.00001	SXX= -721.42590	S1= -236.02979	
FYY=	-0.00004	SYY= -1871.44946	52= -2356.84570	SE= 2248,14258
GXY=	0.00008	TXY= 890.96948	TMAX= 1060.40796	ANGULO 28.58 GRADOS
ELEMENTO	68			
EXX=	-0.00001	SXX= ~98.4//3/	S1 = 1105.38330	
EYY=	0.00003	SYY= 724.62543	S2= -479.23517	SE= 1407.57849
GXY=	0.00006	TXY= 677.03717	TMAX= 792.30920	ANGULO 60.65 GRADOS
ELEMENTO	69			
EXX=	0.00001	SXX= 678.07990	Si= 1268,81519	
EYY=	0.00003	SYY= 957.59235	S2= 366.85703	SE= 1130.92993
GXY=	-0.00004	TXY= -428.77774	TMAX= 450.97910	ANGULO -54.03 GRADOS
FI EMENTO	70			
FXX=	0.00002	SXX= 561.42664	S1≠ 600,48212	
EYY=	0.00000	SYY= 168,42801	S2= 129.37256	SF= 547.38483
GXY=	-0.00001	TXY= -129.90022	TMAX= 235.55478	ANGULO -16.73 GRADOS
	71			
ELEMENIU	/1 0 00000	EVV 200 00547	Q1	
	-0.00000	0XX404 7100E	51 - 200437170 20- 200 04155	GE- 401 00077
ETT	~0.00002		52- "078+84133 TKAV- 944 97489	$\frac{3E}{2} = \frac{3E}{2} $
GXY=	-0.00000	171= -30+1620/	INHX= 246+25480	HNGULU -4+10 GRADUS
ELEMENTO	72			
EXX=	-0.00002	SXX= -620.01294	S1= 1116.64209	
EYY=	0.00000	SYY= -186.00388	S2= -1922+65894	SE= 2662.78589
GXY=	-0.00013	TXY= -1504.07666	TMAX= 1519,65051	ANGULO -49,10 GRADOS

ELEMENTO EXX= EYY= GXY=	73 0.00000 0.00004 0.00000	SXX= SYY= TXY=	-353.31250 -1177.70837 -15.74647	\$1= \$2= TMAX=	-353.01184 -1178.00703 412.49860	SE= 1047,12537 ANGULO ~1.09 GRADOS
CI CHENTO	74					
ELEMENTU	74 0.00001	CYY	-14.74705	51-	277 10470	
EAA	-0.00001	577-	-177 050/20		-1025 51000	CC- 1054 44050
GXY=	~0.00002	TXY=	-625.99548	TMAX=	699.34766	ANGULO -31.76 GRADOS
	0100000					
ELEMENTO	75					
EXX=	0.00000	SXX=	-300.43689	S1=	-296.46820	
EYY=	-0.00003	SYY=	-1001.45630	S2=	-1005.42499	SE= 894.81635
GXY=	0.00000	TXY=	52.89487	TMAX=	354,47839	ANGULO 4.29 GRADOS
FLEMENTO	74					
EYY	0.00002	SXX =	141.48840	G1 ==	179,25970	
EXX-	-0.00002	SXX-	-1027.24025	67=	-1041 07857	CE= 1141.07547
CYY-	0.00004		144 10017	TXAV-	410 14940	
6×1-	0100001	141-	140+10217	11HV-	010+14007	ANDUCO 8+73 DFADDS
ELEMENTO	77					
EXX=	0.00000	SXX≕	-300,43692	S1=	-296.46826	
EYY=	-0.00003	SYY=	-1001.45636	S2=	-1005.42505	SE= 894.81635
GXY=	0.00000	TXY=	52.89487	TMAX≔	354.47839	ANGULO 4+29 GRADOS
FIEMENTO	78					
FXX=	-0.00001	SXX=	-206.41927	S1=	491.19775	
FYY=	-0.00000	SYY=	-164.67035	52=	-862.28735	SF= 1186.74695
GXY=	0.00006	TXY≕	676.42053	TMAX	676.74255	ANGLU 0 45.88 GRADOS
0	0000000		0/07/12000	,	0/01/ 1200	
ELEMENTO	79					
EXX≔	0.00000	SXX=	-33.87184	S1 =	-27.10112	
EYY≒	-0.00000	SYY≍	-112,90611	S2=	-119.67683	SE= 108.69057
GXY=	0.00000	TXY≔	24.10315	TMAX=	46.28786	ANGULO 15,69 GRADOŞ
EL EMENTO	80					
FXY=	~0.00000	SXX:=	-140.57835	S1=	3,11276	
EYY=	0.00000	SYY	-42.17351	52=	-185.84442	SE= 187.44038
6XY=	0.00001	TXY=	80,66743	TMAX	94.43869	ANGULD 60.69 BRADDS
	A10000T	1/1,1/2	00100140	1111111	/ 7 + 7000/	

Fig. 3.4.4 Malla asimétrica.

Pig. 3.4,5 Isolíneas de esfuerzo (malla asimétrica)

Fig. 3.4.6 Deformación (malla asimétrica)

Para observar el comportamiento del esfuerzo de tensión, se aplica la carga en el mismo lado donde la malla es más fina. En este caso, se vuelve a utilizar la malla asimétrica empleada en el estudio de la concentración de esfuerzos por compresión. En la subrutina EFESF, únicamente se cambian los datos de carga, ya que las condiciones de frontera son las mismas que en los problemas anteriores.

La figura 3.4.7 muestra la gráfica del estado de esfuerzo y la figura 3.4.8 la gráfica del estado de deformación, ampliada, como en los otros casos, diez veces.

Comparando los resultados en los tres casos, observamos una mayor concentración de esfuerzos de compresión en la zona donde la malla fue más cerrada y la concentración de esfuerzos a tensión aumento en magnitud en menor proporción que en el análisis a compresión.

El material propuesto soporta las cargas estáticas tanto a tensión como a compresión y arroja un factor de seguridad de

$$K = \frac{130\ 000}{35\ 168} = 3.7$$

calculado sobre el límite elástico y con el valor máximo de esfuerzo a tensión.

LISTADO III

.

MODULO DE ELASTICIDAD=30000000.0 MODULO DE POISSON= 0.300 COEF.DE EXP. TERM.= 0.000007 ESPESOR= 1.000 TEMPERATURA INICIAL= 0.0

VALORES DE FRONTERA

FUERZAS NODALES

CASO DE CARGA 1 25 1800.00000 26 -700.00000

VALORES NODALES PRESCRITOS

73	0.00000
74	0.00000
83	0.00000
84	0.00000
85	0.00000 .
86	0.00000
95	0.00000
96	0.00000
97	0.00000
98	0.00000
9 9	0.00000
100	0.00000
101	0.00000
102	0.00000
103	0.00000
104	0.00000
105	0.00000
106	0.00000
107	0.00000
108	0.00000

VALORES	NODALES, CASO) DE	CARGA 1						
1	0.00026	2	0.00001	3	0.00026	4	0.00000	5	0.00026
6	-0.00001	7	0.00026	8	-0,00002	9	0.00026	10	-0.00003
11	0.00026	12	-0.00004	13	0,00023	14	0.00002	15	0.00023
16	0.00001	17	0.00023	18	-0.00001	19	0.00023	20	-0.00002
21	0.00023	22	-0,00004	23	0,00023	24	-0.00006	25	0.00024
26	0.00001	27	0.00022	28	0.00000	29	0.00020	30	-0.00001
31	0,00019	32	-0.00003	33	0.00018	34	-0.00005	35	0.00018
36	-0.00007	37	0,00012	38	0.00004	39	0.00012	40	0.00002
41	0.00012	42	~0.00000	43	0.00012	44	-0.00002	45	0.00011
46	-0.00004	47	0.00011	48	-0.00006	49	0+00004	50	0.00002
51	0.00004	52	0.00002	53	0.00004	54	0.00001	55	0.00004
56	-0.00001	57	0.00004	58	-0.00002	59	0.00004	60	-0.00003
61	0.00002	62	0.00001	63	0.00001	64	0.00001	65	0.00000
66	0.00000	67	0.00000	68	-0.00001	69	0.00001	70	-0.00002
71	0.00001	72	0+00002	73	0.00000	74	0.00000	75	0.00000
76	0.00000	77	-0.00000	78	0.00000	79	-0+00000	80	-0.00000
81	0.00000	82	-0,00001	83	0.00000	84	0.00000	85	0.00000
86	0.00000	87	-0.00000	38	0.00000	89	-0.00000	90	0,00000
91	-0.00000	92	-0.00000	93	0.00000	74	-0.00001	95	0.00000
96	0.00000	97	0.00000	78	0.00000	99	0.00000	100	0.00000
101	0.00000	102	0.00000	103	0.00000	104	0.00000	105	0.00000
106	0.00000	107	0.00000	108	0.00000				

•

FLEMENTO	1			
EXX	-0.0000A	SXX= -1717.39648	s1= 539,41205	
EYY-	0.00001	SYY= -98+70612	S2= -2355.51465	SE= 2666.45972
GXY=	0+00010	TXY= 1200.04614	TMAX= 1447.46338	ANGULD 62,00 GRADOS
ELEMENTO	2			
EXX=	0.00002	SXX= 605+25903	5 51= 606.51599	
EYY₽	-0.00000	SYY= 169.32048	B S2= 168+06355	SE= 542.37787
GXY	-0.00000	TXY= -23,44179	P TMAX= 219.22621	ANGULO -3.07 GRADOS
ELEMENTO	3			
EXX	-0.00007	SXX= -2161.08228	S1= -279,41022	
EYY=	0.00001	SYY= -343.72562	52= -2225.39771	SE= 2099+68237
GXY=	-0,00003	TXY= -347.87997	7 TMAX= 972,99371	ANGULO -79.53 GRADOS
ELEMENTO	4			
E×X≈	0.00001	SXX= 429+69785	5 S1= 558+35370	
EYY=	0.00001	SYY= 403.95978	B S2= 275,30399	SE= 483.56400
GXY=	-0.00001	TXY= -140+93852	2 TMAX= 141.52484	ANGULO -42.39 GRADOS
FLEMENTO	5			
EXX	-0.00007	SXX=2286+42358	S1≠ -370+88098	
EYY-	0.00000	SYY= -567+10919	S2= -2482.65186	SE= 2319,55688
GXY=	0.00005	TXY= 613.09320) TMAX= 1055,88538	ANGULO 72.25 GRADOS
ELEMENTO	Ġ			
EXX=	0.00001	SXX= 440.29688	S1= 525.62750	
EYY=	0.00001	SYY= 356.76492	s2= 271.93430	SE= 455.29813
GXY=	0.00001	TXY= 119.68591	TMAX= 126+84660	ANGULO 35.33 GRADOS
FLEMENTO	7			
FXX=	-0.00005	SXX= +1667.26587	01191,53962	
FYY	0.00001	SYY= -256.80025	S2= -1732+52698	SE= 1645,14124
0XY=	-0,00003	TXY= -310.33453	THAX= 770.49365	ANGULO -78.12 GRADOS
FLEMENTO	я			
EXX -	0.00002	5XX= 698,39594	Si= 734,28735	
FYY-	0.00000	517= 166.94571	S2= 131.05435	SE = 673.32269
5¥Y -	-0.00001	142-69786	TMAX= 301+61649	ANGULO -14.12 GRADDS

ESFUERZOS Y DEFORMACIONES DEL ELEMENTO

ELEMENTO EXX=	9 -0.00002	SXX= -454,90573	S1= 901.51532	
EYY=	0.00001	SYY= 299+17416	S2≈ -1057,24695	SE= 1698.12402
GXY=	-0.00008	TXY= -903.89612	TMAX= 979,38110	ANGULO -56.32 GRADOS
ELEMENTO	10		•	
EXX=	0.00001	SXX= 499.38776	S1= 653.28296	
EYY=	0.00001	SYY= 349.41214	S2= 195.51700	SE= 580.75604
GXY=	-0,00002	TXY= -216.25041	TMAX= 228.88297	ANGULO -35,44 GRADOS
ELEMENTO	11			
EXX=	-0.00081	SXX=-25196.13477	S1= -2480.30371	
, EYY=	0.00016	SYY= -2908+42236	S2=-25624.25391	SE= 24478+52930
GXY=	-0.00027	TXY= -3118,50269	TMAX= 11571,97461	ANGULO -82.18 GRADOS
ELEMENTO	12			
EXX≈	-0.00005	SXX= -468.72058	S1= 4426+90674	
EYY=	0.00012	SYY= 3460.31348	S2= -1435.31372	SE= 5292.60156
GXY=	-0,00019	TXY= -2175.33423	TMAX= 2931.11011	ANGULO -66.04 GRADOS
ELEMENTO	13			
EXX=	-0.00056	SXX=-17383.65430	S1= -1400.20313	
EYY=	0.00012	SYY= -1487.91089	52=-17471.36133	SE≈ 16815.04102
GXY=	-0+00010	TXY= -1184.00232	TMAX= 8035.57910	ANGULO -85.76 GRADOS
ELEMENTO	14			
EXX≔	-0,00007	SXX= -1605.24341	S1= 1563.23462	
EYY≕	0.00007	SYY= 1500.92859	S2= -1667.54956	SE= 2798+42725
GXY⇒	-0.00004	TXY= -444.31473	TMAX= 1615.39209	ANGULO -82.02 GRADOS
ELEHENTO	15			
EXX≔	-0.00036	SXX=-11084+04004	Si - 1043.89258	
EYY≕	0.00007	SYY= -1313.67946	S2≔-11348.84668	5E 10862+44824
GXY=	0.00014	TXY= 1630.14575	TMAX = 5149.97705	ANGULO 80.77 GRADOS
ELEMENTO	16			
EXX®	-0.00007	SXX= -1691,14282	S1= 1421.76453	
EYY=	0.00006	SYY# 1417.15991	S2= 1695.74744	SE= 2703+31787
GXY=	-0.00001	TXY= -119,72319	TMAX - 1958,75598	ANGULO -87,80 GRADUS

.

FLEMENTO	17			
F XX =	-0.00019	SXX= -5921.44043	S1= 38.06128	
EYY =	0+00004	SYY= -596.63916	S2= -6556.14111	SE= 6575.25439
GXY=	0.00017	TXY= 1944.86450	TMAX 3297,10107	ANGULO 71.93 GRADOS
FLEMENTO	18			
EXX⇔	~9,00005	SXX= -1123,77234	S1 = 1642.42639	
EXX-	0.00006	SYY= 1464.18982	S2= -1302.00891	SE= 2555.63037
GXY≈	7.0006	TXY= 702.16638	TMAX 1472.21765	ANGULO 75.76 GRADOS
FLEMENTO	19			
EYYe	- - 0.00010	GYY	S110 38349	
EVV	6.00007	CYY777.70401	CO7407 07740	25- 7417 8040A
CVV-	6 00007	TYV- DEA 07751	THAY - 1707 77577	
UA 1 -	0+00007	IXI:= 830107731	IMHX- 1.08+34334	HROULD 73+08 BRHIDS
ELEMENTO	20			
EXX=	-0.00001	5XX= -344.90399	S1 = 1020.88861	
EYY=	0.06001	SYY= 327.86325	52	SE 1783.00903
GXY=	0+00008	TXY= 972.89716	TMAX= 1029.40894	ANGULO 54,54 GRADOS
ELEMENTO	21			
EXX=		SXX= -3800.97656	S1= 2146+22559	
EYY≃	-0.00030	SYY=-10067.88672	S2=-16015.08887	SE= 17188.98828
GXY=	0.00074	TXY= 8522.89844	TMAX= 9080.65723	ANGULO 34.91 GRADOS
FLEMENTO	77			
FXX=	~0.00086	SXX=-29475,14844	S1 717,81145	
FYY	-0.00011	SYY17204.49535	57.=~ A7390 AA077	SE- 49749 87500
GYY	0.00121	TYY= 19754.04055	TMAY= 21558.43084	ANGHLO 54 90 CRATIOS
UX1	0.00171	1/1- 1//04/00000	11HA = 21000+00000	MIGOED SOLEV SKHIGA
ELEMENTO	23			
FXX-	-0.00010	3XX - ~3870+83594	S1 = 10578.82227	
EYY-	0.00004	SYY= 287.73395	52=-13261,72383	SE= 20713.43242
GXY -	0.00103	TXY= 11865.73633	TMAX= 11970.37305	ANGULO 48.79 GRADOS
EL EMENTO	~			
ELEPENIU	201 	CVV 10540 74075	C1- 1770 57417	
C.X.X.	-04000000 A AAAA	5XX	01- 4/07+00013	CE - 00/ED 41000
ETT? CN2	0.00000	011= -0/14+77/07 TVV- 14074 2020E	325737993423391 THAV- 18071 70457	
1922年一	1.100122	エスチョー レタワシキャノタノゼロ	1087 - 108/1+37953	ANOULU DE+93 DEALUR

FLEMENTO	. 25			
EXX=	-0.00012	SXX= -3482.49707	S1= 10518,18750	
EYY=	0.00006	SYY= 775+48840	82=-13225.19531	SE= 20606.87109
GXY=	0.00101	TXY= 11679.23145	TMAX= 11871.69141	ANGULO 50,17 GRADOS
FLEMENTO	26			
EXX=	-0.00036	SXX=-11351.98926	S1= 4056.01367	
EYY=	0.00004	SYY = -2206.91138	52=-17614.91406	SE= 19954.51758
GXY=	0.00085	TXY= 9823.39844	TMAX= 10835.46387	ANGULO 57.48 GRAUDS
FLEMENTO	27			
FXX=	-0.00011	SXX= -3519,93506	S1= 7790.83008	
FYY=	-0.00000	SYY = -1172.74133	52=-12483.50586	SF= 17714,16992
GXY=	0.00087	TXY = 10049.00391	THAX= 10137.16797	ANGULO 48.32 GRADOS
Unit -	000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
EL EMENTO	28			
EXX≍	-0,00019	SXX= -6773,94824	S1= 2465+76855	
EYY=	-0.00007	SYY= -4074.96094	S2=-13314.67773	SE= 14703.45410
GXY=	0.00067	TXY= 7773.96240	TMAX= 7890.22314	ANGULO 49,92 GRADOS
FLEMENTO	29			
EXX=	-0,00007	SXX= -4428.03955	S1= 2401,47168	
EYY-	-0.00032	SYY= -7821.67285	52=-14651+18457	SE= 15987.76660
GXY=	0.00072	TXY= 8355.78125	TMAX= 8526.32812	ANGULO 39.26 GRADOS
FLEMENTO	30			
EXX=	-0.00009	SXX# -3492.04395	S1= 2925.72925	
FYY-	-0.00004	SYY = -2304.33643	S2= -8722,10937	SF= 10495,40918
GXY=	0.00050	TXY= 5793.56299	TMAX= 5823.91943	ANGULO 47.93 GRADOS
FI FMENTO	31			
FXX=	~0.00008	SXX= 1561.05176	S1= 20929.39453	
FYY=	0.00042	SYY = 13141.44727	S2= -6226.89600	SF= 24640, 18945
GXY=	0.00106	TXY= 12281.67969	TMAX 13578.14551	ANGULO 57.62 GRADOS
FIFMENTO	32			
FXXs	-0.00001	SXX# 4075.03198	SI = 14902.5304A	
EYY=	0.00045	SYY= 14859.21191	4031, 20942	SET 1334131250
GXY=	0.00006	TXY= 684.690%	IMAX 5435.410a.	ANGIR C 86.38 SRAUCT

*

ELEMENTO	33			
EXX≓	0.00016	SXX= 6352+44824	S1= 16830,96975	
FYY=	0.00011	SYY= 5174.97803	52= -5303, 54248	SF= 20016.81445
GXY=	0.00096	TXY= 11051.58594	TMOX= 11047.25584	ANGULO AT AR GRADOS
541-	0100010	1 11001100074	1111/- 1100/120000	
ELEMENTO	34			
EXX=	-0.00010	SXX= -2174.33472	S1= 8798.89941	
EYY≕	0.00010	SYY= 2394.33911	S2= -8578.89551	SE= 15050.01465
GXY=	0.00073	TXY= 8383.24219	TMAX= 8688.89746	ANGULO 52.62 GRADOS
FLEMENTO	75			
ELENENIO	0.00000	CVV- 7477 70771	C1- 10300 70700	
	0.00007			
EIT=	-0.00002	511 = 192.87744	52= -7436+30781	5E= 18881.24809
GXY=	0.0004	1X1 = 10/98.6552/	IMAX= 10869.64551	ANGULU 41.72 GRADUS
FLEMENTO	36			
EXX=	-0.00012	SXX= -4394.32422	S1= 6405.24756	
EYY=	-0.00003	SYY= -2263.92847	92=-13063.50098	SE= 17185,95898
GXY=	0.00084	TYY= 9475.91797	TMAY= 9734.37402	ANGULO AS.14 GRADOS
un i	0100004	·///== /0/00 · 1///	11111/- 7764467402	
ELEMENTO	37			
EXX=	-0.00002	SXX= -1488.07227	S1= 8506+15332	
EYY≓	-0.00007	SYY= -2567.97021	S2=-12562+19629	SE= 18358.08789
GXY-	0.00091	TXY= 10520.32812	TMAX= 10534.17480	ANGULO 43.53 GRADOS
ELEMENTO	38			
EXX=	-0.00011	SXX= -4828.27832	51= 3522.98730	
FYY=	-0.00013	SYY= -5479.06934	St=-13830.33496	SE= 15887.53320
GXY=	0.00075	TXY = 8670.55762	THAX= 8676.66113	ANGULO 43.93 GRADOS
0,7,7	0000000		11111 0070100110	
ELEMENTO	39			
EXX a	-0.00008	SXX= -7816.06055	S1= 372,78516	
EYY-	~0.00053	SYY=-18237,12305	S2=-26425.96875	SE= 26614.31836
GXY=	0.00107	TXY= 12344.78320	TMAX= 13399+37695	ANGULO 33.56 GRADOS
FLEMENTO	40			
FX	6.00007	SXX= -3495.41914	51= 3573,93921	
FYY=	-12.0001	SYY= -4664.81680	52= 11734, 37500	SF= 13871.04834
G X Y =	3.000AA	TXY= 7631, 29980	TMAX= 7654.15797	ANGULO 42.31 SEATION
U /()//	· · · · · · · · · · · · · · · · · · ·			

•

ELEMENTO	41 0.00045	SXX= 15657.15039	S1= 19676.37695	
GXY=	0.00008	TXY= 7151.05615	S2= 2933,90137 TMAX= 8371.23730	SE= 18385.83789 ANGULO 29.34 ORADOS
FLEMENTO	42			
EXX=	-0.00008	SXX= 8210.31934	S1= 37710.37500	
EYY=	0.00109	SYY= 35305,71875	52= 5805.66602	SE= 35168,79687
GXY≠	0+00073	TXY= 8422.43457	TMAX= 15952.35352	ANGULD 74.07 GRADOS
ELEMENTO	43			
EXX=	0.00018	SXX= 6318.80078	S1= 7450.87207	
EYY=	0.00005	SYY= 3483,70557	S2= 2351.63477	SE= 6597.26855
GXY=	0.00018	TXY= 2119,22485	TMAX= 2549.61865	ANGULO 28.11 GRADOS
ELEMENTO	44			
EXX⇒	0.00016	SXX= 6982.16797	S1= 7909.76611	
EYY-	0,00017	SYY= 7273,85303	92= 6346,25537	SE= 7255.47803
GXY≈	-0.00007	TXY= -768.03082	TMAX= 781,75537	ANGULO -50,38 GRADOS
ELEMENTO	45			
EXX=	0.00003	SXX= 861.72760	S1= 2568,24268	
EYY=	-0.00001	SYY= -127.26523	S2= -1833,78040	SE= 3829.91040
GXY=	0.00019	TXY= 2144.74365	TMAX= 2201.01147	ANGULO 38,51 GRADOS
ELEMENTO	46			
EXX=	0.00009	SXX= 3459+32739	S1= 3467.98145	
EYY=	0.00006	SYY= 2812,63135	S2= 2803.97754	SE= 3188,26660
GXY=	-0.00001	TXY= -75,30868	TMAX= 332.00201	ANGULO -6.56 GRADOS
ELEMENTO	47			
EXX=	-0.00005	SXX= -1673,36951	S1= 676.53662	
EYY=	-0.00001	SYY= -903+65771	S2= -3253.56396	SE= 3639.30420
GXY=	0.00017	TXY= 1926.99475	TMAX= 1965+05029	ANGULO 50,65 GRADOS
ELEMENTO	48			
EXX=	-0.00002	SXX= -1739.71741	S1= -1184.74365	
EYY=	-0.00010	SYY= -3406+74048	52= -3961.71434	SE= 3522.09912
GXY=	0.00010	TXY= 1110+47290	TMAX= 1388,48535	ANGULO 25.55 GRADUS

ELEMENTO	49	cvv-	-0070 41014	61	-0000 55011	
EAA	-0+0002h	5XX-	-7830+01010	51-	10744 77077	
EIT=	-0.00000	511=	-4004+/1/// AA71 0071A	52 TWAV	-12344+77832 E143 10004	5E = 11468+77852 ANCHED 70 47 COADDO
0.1.~	0.00036	121-	4401+22014	I FIMA-	3102+10700	HNGULU 60145 BKHDUS
ELEMENTO	50					
EXX=	-0.00008	SXX ∞	-9611.62012	51=	510.63086	
EYY==	~0.00071	SYY=-	24222.33984	S2=-	·34344 • 59375	SE= 34602,73437
GXY=	0.00137	TXY=	15822.55957	TMAX=	17427.61133	ANGULO 32.61 GRADOS
ELEMENTO	51					
EXX-	0.00016	SXX=	5376.95752	51=	7255,19531	
EYY=	0.00003	SYY=	2393.81372	S2=	515.57617	SE= 7011.63967
GXY=	0.00026	TXY=	3021.72632	TMAX=	3369+80957	ANGULO 31.86 GRADOS
FLEMENTO	52					
EXX=	0.00042	SXX=	14683.57812	S1≓	18813,18750	
FYY=	0.00008	SYY=	6672.80518	52=	2543,19629	SE= 17679.31641
GXY=	0.00061	TXY=	7080.60889	THAX=	8134.99512	ANGULO 30.25 GRADOS
ELEMENIU	0.0	C 1/1/-	0 07470	64 -	1705 75100	
EXX	-0,00001	522=	-8.23438	51-=	1303+33478	05- 1212 26474
	0.00004	577= 7777-	1285+34351	52=	-28+24383	5E= 1317.70471
GXT=	0+00001	: 1 =	162+13231	IMAX=	666.80042	ANGULU 82.98 GRADUS
ELEMENTO	54					
FXX=	-0.00006	SxX≕	-522.92480	51=	4644.68555	
EYY=	0.00016	SYY=	4631.04639	S2≔	- 536 . 56 396	SE= 4934.89355
GXY≠	0.00002	TXY=	265.48453	TMAX≠	2590.62476	ANGULO 87.06 GRADOS
FLEMENTO	55					
EXX	0.00000	SXX-	~76.92256	S1=	91+99545	
FYY:	-0.00002	57Y-	-700.31409	S2=	-869,23212	SE= 918.69098
GXY =	-0.00003	TXY=	~365.83514	TMAX=	480+61377	ANGULO -24.78 GRADOS
ELEMENTO	55					
EXX -	0.00003	5XX	1595.54602	S1 =	4136.22656	
EYY=	0.00006	SYY-	2318,79785	S2=	-221.88269	SE= 4251.51270
GXY=	-0,00019	TX (=	-2148.83813	TMAX =	2179+05469	ANGULO -49+78 GRADOS

ELEMENTO	57					
EXX=	0.00002	SXX= 462.7	8226 51=	931.73932		
EYY=	-0.00003	SYY= -664.8	9355 S2=	-1133.85059	SE= 179	1.70544
GXY=	-0.00007	TXY= -865.3	0463 TMAX=	1032.79492	ANGULO	-28.46 GRADOS
ELEMENTO	58					
EXX=	0.00006	SXX= 631.9	2847 51=	640.04309		
EYY=	-0.00015	SYY= -4316.7	3096 52=	-4324.84570	SE= 467	7.82373
GXY=	-0,00002	TXY= -200,5	5339 TMAX≠	2482.44434	ANGULO	-2.32 GRADOS
EI EMENTO	50					
ELCI/LITO		CVV 10070 7	1055 01-			
EXX	~0.00025	BAA	20000 31ª 71/1 00-	10050 70457	05- 17/0	7 70043
EYY=	~0.00029	511=-119//.4	3104 32=	-17232+37400	5E= 1/07	3+32812
GXY≕	0+00087	TXY= 7757.7	/19/ [MAX=	1113+19291	ANGULU	43+18 GRADUS
ELEMENTO	60			•		
EXX=	-0.00008	SXX= -3212.6	52 57 51=	-1928.85803		
EYY=	-0.00007	SYY= -3208.4	6167 52=	-4492.25635	SE= 390	3.32373
GXY=	0.00011	TXY= 1281.6	9739 TMAX=	1281.69910	ANGULO	45.05 GRADOS
ELEMENTO	61					
EXX≒	0.00005	SXX= 2094.2	6660 S1=	3847+89282		
EYY=	0.00005	SYY= 2166.4	0234 52=	412.77612	SE≃ 365'	9,00879
GXY≓	0.00015	TXY= 1717.1	7957 TMAX=	1717,55835	ANGULO	45.60 GRADOS
ELEMENTO	62					
FXX=	0.00006	SXX= 1964.0	5298 S1=	3056.34961		
EYY=	0.00000	SYY= 589.2	1594 52=	-503.08057	SE = 333	6.45825
GXY=	0.00014	TXY= 1641.5	9729 TMAX=	1779.71509	ANGULO	33.64 GRADOS
ELEMENIU	63					
EXX=	-0.00001	SXX= -157+2	7141 51	681.08813		
EYY=	0,00002	SYY= 666.4	7668 S2=	-171.88283	SE= 78	1.33997
GXY=	-0.00001	TXY= -110.6	7805 TMAX=	426.48547	ANGULO ·	-82+48 GRADOS
ELEMENTO	64					
EXX=	-0.00002	SXX= -194.1	1807 Si=	1502.69421		
EYY⇔	0.00005	SYY= 1479.89	7343 52=	-216.91882	SF= 162.	2.06860
GXY =	0.00002	TXY= 196.6	7418 TMAX=	859.80652	ANGULO	83.39 GRADUS
	V V V V V V L					

ELEMENTO	65					
EXX#	-0.00000	SXX=	-270.75830	S1=	48.54535	
EYY=	-0,00002	SYY=	-788,97662	S2=	-1108.28040	SE= 1133.33313
GXY=	-0.00004	TXY=	-517,13043	TMAX=	578.41284	ANGULO -31.69 GRATIOS
ELEMENTO	66					
EXX=	0.00000	SXX=	381,61496	S1≂	1600.89758	
EYY=	0.00002	SYY≃	828,14355	52=	-391.13898	SE= 1828,12366
GXY=	-0.00008	TXY≔	-970,67267	тмах=	996.01825	ANGULO -51.48 GRADOS
ELEMENTO	67					
EXX=	0.00002	SXX≕	498.51642	S1=	777.68665	
EYY≔	-0.00002	SYY≓	-558.19373	S2=	-837.36401	SE= 1398+99316
GXY=	-0.00005	TXY≕	-610.68646	TMAX=	807.52533	ANGULO -24.57 GRADOS
ELEMENTO	68					
EXX=	0,00003	SXX=	-94,64465	S1=	-57.62366	
EYY=	-0.00010	SYY≕	-3138.20850	S2=	-3175.22974	SE= 3146.81372
GXY=	-0.00003	TXY=	-337.70807	TMAX≃	1558.80298	ANGULO -6+26 GRADOS
ELEMENTO	69					
EXX=	-0.00004	SXX=	-2240.67017	S1=	-765.70386	
EYY=	-0.00010	SYY=	-3782.01465	S2=	-5256.98145	SE= 4912.03076
GXY=	0.00018	TXΥ≃	2109.25537	TMAX≔	2245.63867	ANGULO 34.96 GRADOS
FLEMENTO	70					
EXX≃	-0.00004	SXX=	-1390.55774	S1=	983.39331	
EYY≕	0.00000	SYY=	-417.16736	S2=	-2791.11841	SE= 3391.48511
GXY=	0,00016	TXY=	1823.42053	тмах≔	1887.25586	ANGULO 52.47 GRADOS
ELEMENTO	71					
EXX=	0.00000	SXX =	47.66948	51=	158.94574	
EYY-	0.00000	SYY=	158.89827	S2 =	47.52201	SE= 141.28796
GXY=	-0.00000	TXY=	-2+29836	ТНАХ =	55,66187	ANGULO -88.82 GRADOS
ELEMENTO	72					
FXX-	-0.000000	SXX -	-40.52696	St-	317.17749	
FYY-	0.00000	51Y=	-12,15809	82	369.86255	SE= 595.57703
6XY≈	0.00603	TXY	343.22705	TMAA	343.52002	ANGULO 46.18 GRADOS

FLEMENTO EXX= EYY= GXY=	73 0.00000 0.00000 -0.00000	SXX≔ SYY≓ TXY=	7,18916 23,96385 -29,28028	S1= S2= TMAX=	46.03439 -14.88137 30.45788	SE= 55.00613 ANGULO -52.99 GRADOS
ELEMENTO EXX= EYY=	74 -0.00001 0.00000	SXX= SYY=	-222+66687	S1= S2=	152.87254 -297.74210	SE= 376.90924
GXY=	-0.00001	TXY=	-167.90981	TMAX=	225.30731	ANGULO -65.91 GRADOS
ELEMENTO EXX= EYY= GXY=	75 0.00000 -0.00002 -0.00000	SXX= SYY= TXY=	-169.72940 -5 65. 76465 -34.27163	51= 52= TMAX=	-166,78554 -568,70856 200,96150	SE≔ 506.35410 ANGULO -4.91 GRADOS
ELEMENTO EXX= EYY= GXY=	76 -0.00000 0.00000 -0.00005	SXX= SYY= TXY=	-30.24526 12.73359 -571.08374	S1= S2= TMAX=	562,73206 -580,24377 571,48792	SE= 989.88489 ANGULO -46.08 GRADOS
ELEMENTO EXX= EYY= GXY=	77 0.00000 -0.00002 -0.00000	SXX= SYY= TXY=	-169,72939 -565,76459 -34,27162	S1= S2= TMAX=	-166,78551 -568,70844 200,96147	SE≔ 506.35397 ANGULO -4.91 GRADOS
ELEMENTG EXX= EYY- GXY=	78 0.00002 -0.00004 -0.00004	SXX= GYY= TXY=	276.11917 -1133.71350 -487.37045	S1= 52= TMAX=	428.19580 -1285.79016 856.99298	SE= 1545.04956 ANGULO -17.33 GRADOS
ELEMENTO EXX= EYY= GXY=	79 0.00000 -0.00004 0.00001	SXX= SYY= TXY=	-401.06021 -1336.86731 78.72437	51- 52= - TMAX=	-394.48376 -1343.44373 474.47998	SE≕ 1196.03162 ANGULO 4.78 GRADOS
ELEMENTO EXX= EYY= GXY=	80 -0.00001 0.00000 0.00008	SXX= SYY= TXY=	-459.14890 -137.74467 955.14435	S1= S2 TMAX=	670,12225 -1267,01587 968,56903	SF= 1203,95093 ANGULO 49,78 GEADOS

Fig. 3.4.7 Isolíneas de esfuerzo.

Fig. 3.4.8 Deformación

CONCLUSIONES

Comparando los resultados del análisis de esfuerzo y de deformación de dientes de engrane, obtenidos en este trabajo utilizando el Método del Elemento Finito, con los resultados del método de fotoelasticidad, se observa que hay similitud entre ellos. Por lo tanto, los resultados son confiables.

Aunque los resultados se aproximan a la realidad, no se pueden aplicar a un engrane físico, porque en su cálculo solamente se consideraron las cargas estáticas, excluyéndose las cargas dinámicas y de desgaste.

La utilización del Método del Elemento Finito en el análisis de esfuerzo y de deformación de dientes de engrane simplificó los procesos de cálculo y de computación, simplificación que lo convierte en un factor ventajoso como componente del CAD.

Se obtuvo, en unos cuantos segundos, la graficación automática de un diente de engrane en pantalla, utilizando un mínimo de datos, velocidad y confiabilídad que no se hubieran obtenido de otra manera.

Este trabajo es un ejemplo de un análisis desarrollado con un sitema CAD creado en los laboratorios de la División de Estudios de Posgrado de la Facultad de Ingeniería de la U.N.A.M., demostrándose que sí existe la capacidad nacional para generar tecnología propia.

El trabajo realizado comprende una parte rínima del estudio de los engranes, razón que lo coloca en el inicio de investigación futura en esta área del diseño mecánico.

	SUBROUTINE INV(PHI, FSI)
С	
C	ESTA SUBRUTINA RESUELVE LA FUNCION F(PHI)=TAN(PHI)-PHI-PSI=0
С	POR EL METODO DE NEWTON-RAPHSON.
<u>c</u>	PHI =ANGULO DE LA INVOLUTA, DATO.
C	PSI =FUNCION INVOLUTA DEL ANGULO PHI.
С С	NUNI = LUNIADUK DE LA LIEKALIUNES.
C C	FRIV -VHLOK ANIERIOR DE FRI+
şr	KONT=0
C	
С	CALCULA LOS PARAMETROS DE LAS ECUACIONES
C	
1	KONT=KONT+1
	PHIV=PHI TANDU=CTN/DUT\/COC/DUT\
	TGPH2=TANPHXTANPH
С	
Ĉ	INICIA ITERACIONES
C	
	PHI=PHI-(TANPH-(PHI+PSI))/TGPH2
	IF(ABS(PH1-PHIV),L1,1,E-05) GU TU 2
	1F(NUNI+ER+DV) 60 10 3
9	90 90 1 RET(IRN
3	TYPE 4
4	FORMAT('NO CONVERGE EN 50 ITERACIONES').
	END

PROGRAMA GENG1 PROGRAMA FARA GENERAR EL PERFIL CEL DIENTE DE UN FROMANC. DATOS QUE SUMINISTRA EL USUARIO: RP =RADIO DE PAGO ND =NUMERO DE DIENTES TD =TIPO DE DIENTE(1.0 DIENTE NORMAL,0.20 DIENTE CONTO) ESC =ESCALA DEL DIBUJO EN LA PANTALLA CCPT =POSICION DE LA COORDENADA IZQUIERDA
ESTE PROGRAMA LLAMA A LA SUBRUTINA INV, PARA CALCULAR L <mark>a curva de involuta requerida para la generacion del</mark> Perf il del diente .
LECTURA DE DATOS
DIMENSION IBUF(5000),PHI(150), X(600), Y(600) TYPE 10 ACCEPT 5,PL TYPE 40 ACCEPT 3,NB TYPE 50 ACCEPT 5,TD TYPE 20 ACCEPT 5,ESC TYPE 15 ACCEPT 5,CCOI
CALCULA LOS PARAMETROS
L=0 I=1 PSI=0.00001 PHLF=1.5 RP=ND/(2.*PD) RB=RP=1.157/PD RE=RP+TD/PD INICIA EL PROCESO DEL CALQULO DE LA INVOLUTA
CALL INIT(IBUF,5000) CCOD=1023.+CCUI CALL SCAL(CCUI,-123.+CCUD,900.) CALL SCRUL(1,10) M=2 PSIN=0.0
UP1 DO 9 K 1+A FSIT=0+00 01 CALL INV(PHIT+FSIT) PHI(I)=PHII OP=RB/COS(PHI(I)) X(J)=OP*COS(PSI) Y(J)=OP*CIN(PSI) IF(PE LT OP)CO TO 2
I IFI IF(OP,L7.EP)(0) TO 4 TF(L.EP.17 (0) TO 4
94

A	PSI1=(PSII+FGI2)/2 PSI=PSI+0.001
	J=J+1 PSI2=PSII PSII=PSII+0.001 GO TO 1
C	CALCULO DE LA TAPA DEL HIENTE
2	PSIV=PST DELTA=2.*(1.57079633/ND+PSI1-PSII) DELTA=DELTA+PSIV
6	X(J)=RE#COS(FSI) Y(J)=RE#SIN(FSI) IF(FSL+GT.DELTA)GO TO 7 J=J+1 FSI=PSI+0 001
С	GO TO 6
C C	CALCULO DEL SEGUNDO PERFIL DE INVOLUTA
7	OP=RB/COS(FHI(I)) X(J)=OF*COS(PSI) Y(J)=OF*SIN(FSI) IF(I.EQ.1)GO TO 8 J=J+1 PSI=FSI+0.001 J=I-1
с	
C C	CALCULO DEL RADIO DE LA PROFUNDIDAD DEL DIENTE
8	X(J)=RB*COS(PSI) Y(J)=RB*SIN(PSI) J=J+1
	IF(PSI.GT.(6.203185/ND+PSIK))GO TO 1: PSI=PSI+0.001 GO TO 8
11 9	PSIK=PSI Continue
C C C	DIBUJO DEL PERFIL DE LOS DIENTES Y LAS RADIOS DE PASO Y BASE
	K=J-1 XA=x(1)*ESC YA=Y(1)*1.13*ESC CALL APNT(XA*YA) DO 14 1-1.1.K A=X(J+1)*ESC B=Y(J+1)*ESC 1.13 CALL APNT(A+S)
14	CONTINUE ALFA-0. RE-FT-17PD
1.~	12-15-23×15-03(古) ビムナ米ESU マード およらて以くらし F パラネト・1-3ネトージ

CALL APNT(U,U) W-RF+COS(ALFA)*ESC Z RP*SIN(ALFA)*1.13*ESC CALL APAT(UyZ) TF(ALFA.GT.(PST+0.1)) GO TO 13 ALFA ALFA+0+01 GO TO 12 13 CALL TEXT('RP') CALL APAT(U,V) CALL TEXT ('RB() ε. 10 FORMAT(' DAME FL VALOR DEL PASO DIAMETRAL ') FORMAT(' DAME LA POSICION DE LA CORDENADA IZQUIERDA ') 15 20 FORMAT(' DAME LA ESCALA DEL DIBUJO') FORMAT(' DAME EL NUMERO DE DIENTES, 13() 40 50 FORMAT(DAME EL TIPO DE ENGRANE: /y/y SI ES DE /+ SI ES DE DIENTE CORTO 0.75') & C DIENTE NORMAL 1.0, ()/ / / 5 FORMAT(F15.6) З FORMAT(13) CALL EXIT END

PROGRAMA EFENG

FROGRAMA QUE DETERMINA LA DISTRIBUCIÓN DE ENFUERZOS EN UN DIENTE DE ENGRANF UTILIZANDO DE METODO DE LOS ELEMENTOS FINITES. EN EL PROGRAMA PRINCIPAL SE CALCULAN LAS COORDENADAS DE LOS NODOS DE LAS REGIUNES. UTTLIZA LA SUBRUTINA TRU PARA DETERMINAR LAS COORDENADAS DE LOS FUNTOS DEL PERFIL DEL BILDIE; EFREG, LARA GENERAR LA MALLA DE ELEMENTOS FINITOS; Y EFEST, QUE DETERMINA LOS ESTADOS DE ESFUERZO Y DEFORMACION. DATES QUE SUMINISTRA EL USUARIS: - SISTEMA DE UNIDADES 10 ND NUMERO DE DIENTES MOD - MOBULO (S. METRICO) = PASO DIAMETRAL (S. INGLES) F'D - TIPO DE DIENTE ΤĤ - ANGULO DE PRESION PHPR DIMENSION XP(25), YP(25), NDN(8), JT(4,4), NL(100) REAL XA(3,80), YA(3,80), NEE(3,80), A(3750), MOD TYPE 400 ACCEPT 500, K PSI=0.00001 PHII=1.5 IF(K.EQ.1)G0 TO 7 **TYPE 300** ACCEPT 100,ND,MOD,TD,PHPR RP=MOD*ND/2+ RB=RP-1.157*MOD RE=RP+TD*MOD RF=0.227*MOD/TD PD=1/MOD GO TO 1 TYPE 200 ACCEPT 100,ND, FD, TD, FHPR RF=ND/(2,*PD) RB=RP-1.157/PD RE=RP+TD/PD RF=0.227/(TD*PD) CALL INV(PHII, PSI) OP=RB/COS(PHII) IF(ABS(OP-RF).LE.0.005) PSI5-PST IF(RE.LT.OP) 60 10 3 PSI=FSI+0.0005 GC 10 1 PSI4-PSI5/2. PS13=(PS1-PS15)/2.+PS15 DELTA 1.570796337ND+PSI5-PS1 ALEAS DELTAREST CALCULA LAS CODRUENALAS DE LOS PUNTOS FRONTERA DE LAS REGIONES $100 4 I = 1 \times 23$ XF(T) CLO

Ľ.

1

7

C

11 C

C

```
弹话: Pérs #RE-6.
YP(3) = PE#COS(DELIA) - 5.*RB/6.
XP(3)-RE#SIN(DELTA)
YP(5) = (RE-RP)/2+*RP-5,*RB/6.
XP(C, CRP+(RE-KF)/2,)*SIN(ALFA-PSIC)
YP(7)=RP-5,*RB/6.
YP(8)-RP*COS(ALFA-PS10)-5.*RB/6.
XP((3) -RP#SIN(ALFA-PSI5)
YP(10)=(RP-RB)/2++R%/6+
XP(10) (R8+(RP-RB)/2.)*STH(ALFA-PSI4)
YP(15)~R$*CCS(48.FA)-5.*RB/6.
XP(14) REASEN(ALFA)
YP(12)=YP(13)
XP(12)=-XP(13)/2.
YE(15)=YE(13)-RE*0.7071
XP(15)=XP(13)+FFF*0,7071
YP(13)=YF(13)-KF
XF(18)=1.5708/PD
YF(1)=YF(3)
XP(1) = -XP(3)
YF(4) = YF(5)
XP(4) = -XP(5)
YF(3)=YP(8)
XP(3) = -XP(8)
YP(9)=YP(10)
XF(7) = -XF(10)
YF(11) = YF(13)
XP(11)=-XP(13)
YF(14) = YF(15)
XP(14) = -XP(15)
YP(16)=YP(18)
XP(16) = -XP(18)
YP(17)=RB/12.
XF(17) = XF(12)
YP(19)=YP(16)#2./3.
YP(20)=YF(19)
XF(20) = XF(18)
XP(19) = -XP(18)
XF(23)=XF(18)
XP(21)=-XP(18)
XP(22)=XF(12)
VECTORES DE CONECTIVIDAD
10 5 I=1,12
        DO 5 J=1+4
JT (I,J)=0
JT(1y1)=2
JT(2, 1)=3
JT(2,3) !
JT ( 3, 1) 4
JT (3,3) *12
1114071 3
LEARA A LA CUERUTTRA EFREG
```

4

000

5

	CALL EFFEC(4,23,JT,XF,YT,NL,NEE,NBW,XA,YA)
6	A(M)=0.0
	NIW=NBU * 7
С	
C	LLAMA A LA SUBLUTINA EFESE
С	
	CALL FFESF(108,NEL,NBW,NTE,NL,XA,YA,A)
100	FORMAT(13,3F10,5)
200	FORMAT(' DAME LOS VALORES DE:NUMERO DE DIENTES(I3), /,/,
	<pre>% ' PASO DIAMETRAL, TIPO DE DIENTE (1, 0 0,75) Y EL',/,</pre>
	& ' ANGULO DE PRESION (UF10.5)/)
300	FORMAT(' DAME LOS VALORES DE:NUMERO DE DIENTES(I3),//,
	& ' MODULO,TIPO DE DIENTE (1, O 0,75) Y EL',/,
	<pre>% ' ANGULO DE PRESION (3F10.5)')</pre>
400	FORMAT(' INDICA EL SISTEMA DE UNIDADES .////
	<pre>% 1 SISTEMA INGLES(,/,/ 2 SISTEMA METRICO()</pre>
500	FORMAT(I1)
	CALL EXIT
	END

	SUBROUTINE EFREG(INRG,INBP,JT,XP,YP,NL,NEL,NEE,NBW,XA,YA)					
C	SUBRUTINA EFREG					
00000000000000000000000000000000000000	SUBRUTINA QUE GENERA LOS ELEMENTOS À PARTIR DE REGIONES CONOCIDAS PARA EL USO DEL METODO DEL ELEMENTO FINITO. INRG =NUMERO DE REGIONES INBP =NUMERO DE PUNTOS EN LA FRONTERA NRG =REGION NUMERO NROWS =NUMERO DE RENGLONES NCOL =NUMERO DE COLUMNAS NDN =NUMERO GLOBAL DE NODOS USADO PARA DEFINIR EL CUADRILATERO					
0	XP=COORDENADA X DE LOS PUNTOS FRONTERA DE LA REGIONYP=COORDENADA Y DE LOS PUNTOS FRONTERA DE LA REGION					
L	<pre>DIMENSION XP(20),YP(20),XRG(9),YRG(9),N(8),NDN(8), & NN(6,6),YC(21,21),XC(21,21),NNRB(20,4,21),JT(4,4), & LB(3),NE(100),XE(100),YE(100),NR(4),ICOMP(4,4),NL(100), & NEE(3,80),XA(3,80),YA(3,80) REAL N DATA ICOMF /-1,1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1/ DATA NB/0/ NEL=0 NBW=0 IJK=0</pre>					
8 0 0 0	ENTRADAS Y SALIDA DE,TARJETA DE CONTROL,COORDENADAS GLOBALES Y CONECTIVIDAD DE DATOS					
36 4 30	<pre>TYPE 36 FORMAT(////,1X,'COORDENADAS GLOBALES',//,1X,'NO. DE' & 'COORD. X COORD. Y') DO 4 T=1,INBP TYPE 30,I.XP(I),YF(I) FORMAT(P*,I3,7X,F7.2,5X,F7.2) TYPE 21</pre>					
21	FORMAT(//,1X,'DATOS DE CONECTIVIDAD',/,1X,'REGION LADO' & 1 2 3 4') DO 5 I=1,INRG					
5 22 C	TYPE 22,1,(JT(1,J),J=1,4) FORMAT(2X,I3,15X,4(I2,3X))					
C C	LEE EL NUMERO DE COLUMNAS Y RENGLONES EN QUE SE DIVIDE LA REGION DO 16 KK=1,TNRO NRG=KK CALL SEDAT(NRG,NRÓWS,NCOL,NDN) TYPE 10,NRG,NROWS,NCOL					
18 101	TYPE 101,(NEU(I),I=1,8) FORMAT(//JX*/ EFGION //TTP*//YGX*IP; RENGLONES /*10%/10; 2 - COLUMNAS(//) FORMAT(T					
	GENTRA LAS COORDINATION IN LOT NOTOLI DE LOS ELEMENTOS					

```
DO 7 I=1.8
II=NDN(I)
                 XRG(I)=XP(II)
7
         YRG(I)=YP(TI)
         XRG(9)=XRG(1)
         YEG(9)=YRG(1)
         TR=NROWS-1
        DETA=2./TR
         TR=NCOL-1
        DSI=2./TR
        DO 12 I=1,NROWS
                 TR=T-1
                 ETA=1.-TR*DETA
                 DD 12 J=1 NCOL
                          TR=J-1
                          SI=-1.+TR*DSI
                          N(1)=-0,25*(1.-SI)*(1.-ETA)*(SI+ETA+1.)
                          N(2)=0.5*(1.-SI**2)*(1.-ETA)
                          N(3)=0.25*(1.+SI)*(1.-ETA)*(SI-ETA-1.)
                         N(4)=0.5*(1.4SI)*(1.-ETA**2)
                         N(5)=0,25*(1,+SI)*(1,+ETA)*(SI+ETA-1,)
                         N(6)=0.5*(1.-SI**2)*(1.+ETA)
                         N(7)=0.25*(1.-SI)*(1.+ETA)*(ETA-SI-1.)
                         N(8)=0.5*(1.-SI)*(1.-ETA**2)
                         XC(I,J)=0.0
                         YC(I,J)=0.0
                         DO 12 K=1,8
                         XC(T,J)=XC(I,J)+XRG(K)*N(K)
        YC(I,J)=YC(I,J)+YRG(K)*N(K)
        GENERA LOS NUMEROS DE LOS NODOS DE LA REGION
        KN1=1
        KS1=1
        KN2=NROWS
        KS2=NCOL
        DO 50 I=1/1
                 NRT OUT (NRG, I)
                 IF(NRT,EQ.O.OR,NRT,GT,NRG) GO TO 50
                 DO 56 J=1,4
56
                 IF (JT (NRT, J), EQ.NRG) NRTS=J
                 K-NCOL
                 IF(I.EQ.2.0R.I. PQ.4) N=NROWS
                 、儿=1
                 JK=ICOMP(INRTS)
                 IF(JK+DR+ D) JL-L
                 DO 34 Jailyk
                         60-10(45,46,42,48),1
45
                         NN(HROWS,J)=NNRP(NF [, RTS, JL)
                         KND -NROWS-1
                         GG TO 44
                         NET LANCOL > MINRES DREADSTONE DE L
```

47 NN(1,J)=NNRB(NRT,NRTS,JL) KN1=2 GO TO 44 48 NN(J,1)=NNRB(NRT,NRTS,JL) KS1=2 44 JL=JL+JK 50 CONTINUE IF(KN1.GT.KN2) GO TO 105 IF(KS1.GT.KS2) GO TO 105
48 GO TO 44 NN(J,1)=NNRE(NRT,NRTS,JL) KS1=2 44 JL=JL+JK 50 CONTINUE IF(KN1.GT.KN2) GO TO 105 IF(KS1.GT.KS2) GO TO 105
48 NN(J,1)=NNRB(NRT,NRTS,JL) KS1=2 44 JL=JL+JK 50 CONTINUE IF(KN1.GT.KN2) GO TO 105 IF(KS1.GT.KS2) GO TO 105
44 JL=JL+JK 50 CONTINUE IF(KN1.GT.KN2) GO TO 105 IF(KC1.GT.KS2) GO TO 105
50 CONTINUE IF(KN1.GT.KN2) GO TO 105 IF(KS1.GT.KS2) GO TO 105
IF(KN1.GT.KN2) GO TO 105 IF(KC1.GT.KS2) GO TO 105
IF(KS1.6T.KS2) 60 TO 105
10 10 1=KN1+KN2 DO 10 1=KS1-KS2
NB=NB+1
IO NN(I+J)=NB
0
C ALMACENA LOS NUMEROS DE LOS NODOS FRONTERA
NNRB(NRG+1+I)=NN(NROWS+I)
42 NNRB(NRG,3,I)=NN(1,I)
DO 43 I=1,NROWS
NNRB(NRG,2,1)=NN(I,NCOL)
4.3 NNKB(NKG,4,1)=NN(1,1)
C SALTDA DE LOS NUMEROS DE LOS NODOS DE LA REGION
C
TYPE 49
49 FORMAT(//,1X,'NUMERO DE NODOS DE LA REGION',/) DO 52 I=1,NROWS
52 TYPE 53, (NN(I,J), J=1, NCOL)
53 FURMAT(1X)20157
DIVIDE EN ELEMENTOS TRIANGULARES
0
105 TYPE 55
55 FORMAT(//3X; NEL //UMEROS DE NUBU(; 9X; (X(1)); 8X; (Y(1)) - ONL(X(2)); ORL(Y(2)); ORL(Y(7)); ORL(Y(7)); ORL(Y(7));
2 (67) 7(2) (67) ((7) (77) 7(3) 767) ((3) /
DU 54 PelyNROWS
200 (34 Jan L + MOOL
a Fi v je brank (v Fi v J) versta krave Sverv na J N
57.1 和中K+1
1993 - 1995 - 1975 - 1976 1997 - 1997 - 1977 - 1976 - 1976 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -
い、1994年の時期によくの名称でしていた。1997年4月1月一日)、1945年4月1月1日、1957年4月日、1957年4月日、1957年5月1日、1957年5月1日日、1957年5月1日日、1957年5月1日、1957年5月1月日、1957年5月1月日、1957年5月1月日、1957年5月1月日、1957年5月1月日、1957年5月1月日、1957年5月1月日、1957年5月1月1月日、1957年5月1月1月日1月1月1月1月1月1月日、1957年5月1月1月1月月1月1月1月1月1月1月1月1月1月1月1月1月1月1月1月

	DIAG2=SQRT{(XC(I+1,J)-XC(I,J-1))**?*(YC(I+1,J)-YC([,J-1))**? NR(1)=NCOL*I+J-I
	NR(?)=NCOLXIHJ
	NR(3) = NCOL*(1-1) + J
	NR(4) = NCOL*(I-1) + J - 1
	NO 15 IJ=1+2
	NEL=NEL+1
	IF((DIAG1/DIAG2).GT.1.02)GD TO 41
	J1=NR(1)
	J2=NR(IJ+1)
	J3=NR(1J+2)
	GO TO 40
41	J1=NR(IJ)
	J2=NR(IJ+1)
	J3=NR(4)
40	LB(1)=IABB(NE(J1)-NE(J2))+1
	LB(2) = IABS(NE(J2) - NE(J3)) + 1
	LB(3)=IABS(NE(J1)-NE(J3))+1
	DO 107 IK=1,3
	IF(LB(IK),LE,NBW) GO TO 107
	NBW=LB(IK)
107	CUNITNO
	IJK=IJK+1
	NL(IJK)=NEL
	$NEE(1 \times I J K) = NE(J I)$
	NEE(2, IJK) = NE(J2)
	NEE (3, TUK 1 TONE (J3)
	XA(1/1JN)=XE(J1)
	XA(2, IJK)=XE(JZ)
	YA(I) IJ() TYE(JI)
	1817 - 1817 - 1827 - 18
	TANDE ZALARIE MEZIANEZ DANARZIANARZIZANZEZ DANARZIZANZEZ DANARZIANAZEZ DANARZIZANZEZ DANARZIZANZEZ DANARZIZANZ
	A THE BOILANELAND AND COLLARD COLLARD COLLARD COLLARD COLLARD AND COLL
	なースにくいろノナチにくいのノーーーー かく ついのの ロング・ステレー マング・ステレー マング・ステレー
301 1 -	FUKMAIVIX941090X90FUC*99 CONTINUE
15	
c	TYPE STANDANE RH
- 1	TORMAT (11. IV. TEL ANCHO DE BANDA ESTATA: COLOLOGIE EN 1.
- 3 L	2 ART FETERNENTATION AT A THE CONTRACT AND A REPORT OF A REPORT
	an para matana ana ana ana ana ana ana ana ana an
	FNR
	has \$ 7 Aur

SUBROUTINE EFDAT(INRG, NROWS, NCOL, NDN)

С C С Ċ

1

2

3

SUBRUTINA QUE PROPORCIONA LOS DATOS DE LAS COLUMNAS Y RENGLONES AL PROGRAMA EFREG.

DIMENSION NUN(8) NROWS=3 NCOL=6 GO TO(1,2,3,4), INRG NEN(1)=6NDN(2) = 7NDN(3)=8NDN(4)=5NDN(5)=3NDN(6)=2NDN(7)=1NDN(8)=4RETURN NDN(1) = 11NDN(2) = 12NDN(3) = 13NDN(4)=10NIN(5)=8NDN(6)=7 NDN(7)=6NDN(8)=9RETURN NEN(1) = 16NDN(2) = 17NDN(3) = 18NDN(4) = 15NDN(5)=13 NDN(6) = 12NDN(7) = 11NDN(8) = 14RETURN NDN(1)=21NDN(2) = 22NDN(3) = 23NDN(4)=20 NDN(5) = 18NDN(6)=17 NIIN(7) = 16NUN(8)=19 RETURN END
·

-	SURROUTINE REESE(NP	NE NBWYNEE YNL Y YGY YGYG)	
	SUBRUTINA RUF CALCULA LOS ESFUERZOS DE ELEMENTOS PLANOS POR MEDIO DEL METODO DEL ELEMENTO FINITO.		
C C	DEFINICION DE LOS E	ARAMETROS DE CONTROL:	
0000000000	NP =NUMERO DE D NE =NUMERO DE D NBW =ANCHO DE D EM =MODULO DE D PR =MODULO DE F ALFA =COEFICIENTE TEMP =TEMPERATURA T =ESPESOR DEL	DESPLAZAMIENTOS GLOBALES TLEMENTOS ANDA ELASTICIDAD POISSON E DE EXPANSION TERMICA A INICIAL . ELEMENTO	
0	<pre>BIMENSION NS(6),ND(3 & STRA(3),STRE(3),ET & _A(3750),NEE(3,80) DATA NCL/1/,ID1/0/,1</pre>	5),ESM(6,6),EF(6),B(3,6),C(6,3),D(3,3), (3),U(6),NL(100), ,XA(3,B0),YA(3,80) ELR/0/	
с с с	LECTURA DE LOS DATOS	DE LAS PROPIEDADES DEL MATERIAL	
200	TYPE 200 FORMAT(1 DAME EL COM	TROL DE TEMP.(13) /// MODULO DE ELASTICIDAD	
	<pre>% ,/,' RELACION DE F % ' TEMPERATURA INIC ACCEPT 100,ITEMP,EM,</pre>	OISSON',/// COEF, DE EXF, TERM,/// TAL'/// ESPESOR (5E10,5)/) PR/ALFA/TEMP/T	
100	FORMAT(13,5F10.5) R=EM/(1.0-PR*PR) U(1,1)=R D(2,2)=D(1,1) D(3,3)=R*(1.0-PR)/2. D(1,2)=PR*R D(2,1)=D(1,2) D(1,3)=0.0 D(3,1)=0.0 D(3,1)=0.0 D(2,3)=0.0 S(3,2)=0.0 SP=NE JGF=JP+NP JGSM=JGF+NP JEND=JGSM+NF*JRW IF(TTEMP.NE.3)50 TO 4 DU 13 I 11,JEND		
13 6 24	A(T)=0.0 TYPE 24, EM,PR,ALFA, FORMAT(//,1%,YMODULO	TVIEMP DE ELASTICIDAD=100.00.1V/1XV145DULD DE FULDS	
7 'X	& 10N=()[0,3×7→1Xy10	DEF.DE FXP. (ERM.) >F9.6./y1Z>'ESPESOR='>F/.	
Ð	& VINTRATINGERATURA DO ZINGITANE NEGANG(NN)	INTO LAW TYPE 1 - Commence	
	NU(1) HOEE (1993)	105	

NR{S}ENEE{S:FR} MISING(19KK) X2#XA(2yKK) X3-XA(3,KL) Y1=YA(1,KK) Y2=YA(2+KK) Y3=YA(3)KK) DT=A(NEL)-TEMP nn 18 ï≈1∍3 31 NS(2x1-1)=ND(1)*2-1 NS(2xT)=ND(T)*2 18 C GENERA LA MATRIZ B Y LA MATRIZ INICIAL DE DEFORMACIONES ET C Gr DO 20 I=1,3 DO 20 J=1+6 20 B(1,J)=0+0 B(1,1)=Y2-Y3 B(1,3)=Y3-Y1 B(1,5) = Y1 - Y2B(2y2) = X3 - X2B(2,4)=X1-X3 B(2,6) = X2 - X1B(3,1)=B(2,2)B(3y2) = B(1y1)B(3,3)=B(2,4) B(3,4)=E(1,3) B(3,5)=B(2,6)B(3,6)=B(1,5) ET(1)=ALFA*DT ET(2) = ET(1)ET(3) = 0.0AR2=X2*Y3+X3*Y1+X1*Y2-X2*Y1-X3*Y2-X1*Y3 IF(IELR.ER.1)60 TO 65 DO 22 1-1-6 DO 22 J=1,3 C(T,J)=0.0 DO 22 K=1,3 22 C(T+J)=C(T+J)+B(K+I)*D(K+J) Ċ, MULTIPLICACION DE MATRICES PARA OBTENER ESM Y EF Ċ. C. ESM = (BT)(D)(B) = (C)(B)1 EF=(BT)(D)(ET)=(C)(ET) Ũ 10 27 1 1.46 SUM1: 0.0 DO 29 K-1.3 SUM1: CUM1+C(TyR) XET(L) 20 30 27 Iriz6 SUM=0.0 fit) 18 Kaly3 CODE SUMPCITYES *B(EyJ) 123 FUIN-LUUD-SUM#THE2+*AR2> -, TEAT >= \$1614TZ2。 913 7 1:1000

	II=NS(I)
	JG=JGFFIT
	A(15)24A(15)11年間(1) 2011年1月1日 - 1
	した。 1. 1
	100-000F1011 TEC (11) 4 70 - 1 70 - 1 2
14	してくいいフェンタエンタエロ 155~1055がみて、15~10~10~17
4 1.2	A (15) 曲本(15) 本原(M(T = 1)
17	CONTANT
2	CONTINUE
•	CALL BDYVAL(A(JGSM+1),A(JGF+1),NP,NRW,NCL)
	CALL DCMPBD(A(JGSM+1),NP,NBW)
	CALL SLVBD(A(JOSM+1))A(JGF+1))A(JP+1),NP,NBW,NCL,ID1)
C	
C	ITERACION PARA CALCULAR LAS RESULTANTES DE LOS ELEMENTOS
C	
	TYPE 80
80	FORMAT(////1X//ESFUERZOS Y DEFORMACIONES DEL ELEMENTO/)
	IEL R=1
86	
	ND くぶり FINILE くどうよびり わかし ション・ション
	A - AV 4 - 1 47 M - AV 2 - 1 47
	X0 = X4(X) X 7 (0)
	X3 = x (3 + T ()
	Y1=YA(1, TJ)
	YC=YA(2)(J)
	Y3=7A(3+1)
	DT≔A(NEL) - TEMP
	60 TO 31
80 B	10.53 F-1+6+0
	你们,你们你有1 些人们的
	Contraction (JP) 4 (18) C E H L ()
	おうした 単位 人名特殊 しょうかん
- 163 - 17	住(半十十)1901 (2013)
- Ku - Mi	άλι άθων δάντη Ησατόρι του οστορί λαλιστάσ
	UPD/07 0 1000 UPD/07 000 UPD/PU1200410 N(1200/070)/110+214
1	
• /	14A 195 T = 1
	STRA(L)=0
	DO BOOK THE
55	5キャレーティーの)や「マエン干取くキュドン米はくNンプ商校会
C,	
С	CALCULO DEL VECTOR DE ESFUERZOS
ť.	STRES(II) (E fixit)
С	
	[11] (13] <u>Let Ly Z</u>
	Spik (K) = 1 (p) Types (p) = 0 (p) (t) (t) (t) (t)
n: 13	, (a) - (a
1000 100	ለመዝባለቤ – የተኛ ግንመን የተለማ ግግግ የመለም በማምር ማምር የግንአዋት ግር ግን የተኛ ትግን
	107

1	UNLEDED OF LOS ESPERENCE PRINCIPALES
	AAR(STRE(1)+STRETT))/2.
	自動がしな代わりました。MFFにも、「SFKL」にアナフィア本大学が今日KEFをあえる本語として、 11)、12日本語
	52 AA AA
	OVM SORT(SUMSERSONSON)
	【例:62】 1917 - ANECTA 1917 - ALECTOPICA (AND ALECTOPICAL AND A
	5(16)3;2.*STRE(3)
	STREE SINF(I) STREE(2)
	AG-ATANO(STRED-STRED)
	THA*((180+/3+1+199265)*AC)//*
23	(**) (** 2) T10(=
94	CONTINUE
<u>ç</u>	የሚለበታለም በላ ምርም አንድ ማንም በተረጉድ የሚያምር የተረግረ ላይ በ
0 (1	THE AUDION THE LOOP RECORD LHOOD
	TYPE 57, NEL
57	FORMAT(/y1Xy/ELEMENTO/y14)
	TYPE 95,STRA(1),STRE(1),S1,STRA(2),STRE(2),S2,SVM,STRA(3)
95	& ////////////////////////////////////
2	
	& #F12.5,5X#/SYY=/#F12.5#5X#/S2=/#F12.5#6X#/SE=/#F12.5#
	3 アナラスメイロスYHETメトキン・ラメラスメ 2 イエメYHETを見ませつ、PLはTXメイエMAYHETまつ、PLはスソルイANGULOTまだり、つまて「CRADOST)
	IJ=TJ+1
	IF(IJ+LE+NE) GU TO 86
	RETURN

END

-	SUBROUTINE BDYVAL(GGM,GF,NP,NBW,NCL)
0 0 0 0 0	ESTA SUBRUTINA GENERA EL VECTOR DE CARGAS Y A PARTIR DE LOS VALORES DE FRONTERA ELIMINA LA SINGULARIDAD DE LA MATRIZ DE RIGIDEZ:
د.) س	DIMENSION GSM(NP+NBW),GF(NP+NCL),IB(6),BV(6)
С С С	LECTURA DE LOS DATOS DE CARGA
201	TYPE 201 FORMAT(/1X,'VALORES DE FRONTERA',//,1X,'FUERZAS NODALES') DO 216 JM=1,NCL ID1=0 INK=0
202 20 3	ACCEPT 203, IB, BV FORMAT(613,2X,6F10,5) ID=0
	IF(IB(L).LE.0) GO TO 205 ID=ID+1 I=IB(L)
204	GF(I,JM)=BV(L)+GF(I,JM) GD_TD_206
205	INK=1 IE(ID_ER_0) CO_TO_214
206	$IF(ID1 \cdot EQ \cdot I) GO TO 222$ $IF(2D1 \cdot EQ \cdot I) FO TO 222$
~ - - - -	11FE 21/300 FORMATING JOACO DE CADOA (-12)
21/ 777	PORTHICLAF CHOO DE CHROH FIZF
<i>622</i>	
20	=
201	
	IF (INK.EU.1) 60 10 216
	IDI = 1
	GO TO 202
216	CONTINUE
C	
C	LECTURA DE LOS VALORES DE FRONTERA
C	
	TYPE 208
508	FURMAT(////ylly)VALOKES RODALES ERESURTIOS /
209	ACCEPT 203.IB.BV
	DO 221 L=1,6 IF(IB(L).LF.0) GO TO 215 TD=TD+1 I=TB(L) BC=BV(L) K=T-1 DO 211 L=2.0NBW
	N-I+J-1
	IFCM.OT.NP2 GO IO DLC
318	GET CM & UN 2010 COM COMPANY AT COMPANY A COMPANY
	L315174 C (M. 2010) - 200 - 20

210	IF(K.LE.0) GO TO 211 DO 219 JM=1.NCL
219	GF(K,JM)=GF(K,JM)-GSM(K,J)*BC
	GSM(KyJ)=0.0
	K≈K−1
211	CONTINUE
212	IF(GSM(I,1).LT.0.05) GSM(I,1)=500000.0
	DO 220 JM=1 NCL
550	GF(I,JM)=GSM(I,1)*BC
221	CONTINUE
	GO TO 214
215	INK=1
	IF(ID.EQ.O) RETURN
214	DO 88 L=1,ID
88	TYPE 207, IB(L), BV(L)
	IF(INK,EQ,1) RETURN
	GO TO 209
	END

\$ 6, 8)

i

225

226

 $\mathbf{n}_{\mathbb{C}}$

THEROUTINE DEMERSIONS OF A PRODUCTION OF THE OPPORTUNE OF T

ESTG LUBRUTING REALITY LA DEDCOMPOSICION LU DE UNA MATRIZ Démocron Pou de Actobo de Eliminacion Gaussiana.

```
DIMENSION GON (NUMBRU)
7221-NP-1
10 223 IslyNF1
        MJ=TFNBU-1
        IF(MJ+GT+NP) MJ=NP
        NJ≔I+1
        MK=NBW
        IF((NF-I+1).LT.NBW)MK=NF-I+1
        ND=0
        DO 225 J=NJ,MJ
                 MK=MK-1
                 ND=ND+1
                 NL=ND+1
                 DO 225 K=1,MK
                         NK=ND+K
        GSM(J,K)=GSM(J,K)-GSM(I,NL)*GSM(I,NK)/GSM(I,1)
CONTINUE
RE. TURN
END
```

<i>•</i>	SUBROUTINE SEVED (GSM, OF, X, NP, NBW, NCL, ID)		
	ESTA SUBRUTINA RESUELVE EL SISTEMA KX=E DESEVES DE HABES (ECU): La descomposicion d'u de la matriz K.		
ι. Γ	DIMENSION GSM(NP+NPW);GF(NP+NCL);X(NP+NCL) NP1=NP-1 DO 265 KK=1+NCL JM=KK		
	DO 250 T=1,NP1 MJ=I+NBW-1 IF(MJ.GT.NF) MJ=NF NJ=I+1 L=1 DO 250 J=NJ,MJ L=L+1		
250 C	GF(J,KK)=BF(J,KK)-GSM(I,L)*GF(I,KK)/GSM(I,1)		
	X(NP,KK)=GF(NF,KK)/GSM(NP,1) DO 252 K=1,NP1 I=NP-K MJ=NBW IF((I+NBW-1).GT.NP) MJ=NP-I+1 SUM=0.0 DO 251 J=2:001 N=I+J-1		
251 252	SUM=SUM+GSM(I,J)*X(N,KK) X(I,KK)=(GEL(I,KK)-SUM)/GSM(I,1)		
0 0 0	IMPRIME LOS RESULTADOS DE LOS DESPLAZAMIENTOS NODALES		
	IF(TD.EQ.1) GO TO 265 TYPE 260,KK		
~so 	TYPE 264, (I,X(I,NK), T=1,NP)		
164	EORMAI(3×y13yF14+5y3×y13yF14+5y3×y13yF14+5y3×y13yF14+5y 3Xy13yF14+5)		
265	CONTINUE RETURN END		

BIBLIOGRAFIA

- 1 Allan T, Component Design and Manufacture Using Computers The Present Position. United Nations Industrial Development Organization, Interregional Expert Group Meeting on Computer Applications and Modern Engineering in Machine Manufacturing Industry. Varsovia, Polonia, sept. 1977.
- 2 Angeles J, Análisis y Síntesis Cinemáticos de Sistemas Mecánicos. LIMUSA. México, 1978.
- 3 Amstead B H, Ostwald P, Begeman M, Procesos de Manufactura. Versión SI. CECSA. México, 1981.
- 4 Bona C, Galleti C, Lucifredi A, Computer-Aided Design. Mechanism and Machine Theory. Vol. 8. Gran Bretaña, 1973.
- 5 Byars E, Snyder R, Engineering Mechanics of Deformable Bodies. Intext Educational Publishers. Nueva York, E.U.A., 1975.
- 6 Dally J, Riley W, Experimental Stress Analysis. McGraw-Hill Kogakusha, LTD. Tokio, Japón,1978.
- 7 Faires V, Design of Machine Elements. The MacMillan Company. Nueva York, E.U.A., 1955.
- 8 Mabie H, Ocvirk F, Mecanismos y Dinámica de Maquinaria. LIMUSA. México, 1978.
- 9 Mark M, Fotoelasticidad. EDIAR, Editores. Buenos Aires, Argentina, 1950.
- 10 Proceedings of the Symposium. Computer-Aided Design in Mechanical Engineering. Politécnico de Milano, 1961.
- 11 Segerlind L, Applied Finite Element Analysis. John Wiley & Sons, Inc. E.U.A., 1976
- 12 Shigley J, Análisis Cinemático de Mecanismos. McGraw-Hill. México, 1980.
- 13 Tao D, Applied Linkage Synthesis. Reading Addison. Wesky, U.S.A., 1964.
- 14 Timoshenko S, Theory of Elasticity. McGraw-Hill Book Co., Inc. Nueva York, E.U.A., 1934.
- 15 Woodbury R, Studies in the History of Machine Tools. The M.I.T. Press. Massachusetts, E.U.A., 1961.