FACULTAD DE INGENIERIA

18

"GEOTECNIA EN EL PROYECTO HIDROELECTRICO EL CARACOL, GRO."

T E S I S

Que para obtener el Título de

INGENIERO CIVIL

Pre s e n t a

SERVANDO ARANA GARCIA

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

	CONTENIDO	
	홍류(발표) 전 1일 시간 1일 시간 전 1일 전 1	Pág.
	INTRODUCCION	1
I.	ASPECTOS GENERALES DEL PROYECTO.	3
	1. Objetivo de Construcción de la Planta.	3
	2. Localización Geográfica e Hidrografía.	8
	3. Topografía.	1.1
	4. Hidrolología.	13
	5. Descripción general del proyecto.	·, 18
II.	GEOLOGIA Y SISMICIDAD.	26
	l. Geología regional.	26
	2. Geología del sitio.	29
	3. Exploraciones realizadas.	33
	4. Sismicidad.	35
	5. Geofísica.	38
III.	PERMEABILIDAD.	49
	l. Permeabilidad en el Vaso.	49
	2. Permesbilidad en el EJe de la Boquilla.	50
IV.	MATERIALES DE CONSTRUCCION.	52
	l. Bancos de Arcilla.	52
	2. Bancos de Grava-Arena.	81
	3. Bancos de Enrocamiento.	83
٧.	SELECCION DEL SITIO PARA EL EJE DE LA CORTINA.	87
in Make Salah Salah	1. Alternativas.	89
	2. Factores que definieron el sitio de la Cortina.	98
VI.	MECANICA DE ROCAS.	122
	1. Pruebas de Laboratorio.	122
	2. Pruebas de Campo.	129
/II.	CONCLUSIONES Y RECOMENDACIONES.	178
	BIBLIOGRAFIA.	182

INDICE DE FIGURAS .

Fig. No.	Pág.	Fig.	Pāg.
1	6	31:	110
2	9	32.	
3	10	33.	
4.	12	34	126
5	15	35 .	107
6:	19	36	128
7	20	37	130
8	21	38	132
9	22	39	. 133
10	્રે\ 25	40	. 134
11	27	41	. 135
12	⊹⊮" 28	42	. 136
13	31	43	. 137
14	32	44	. 140
15	36	45	. 141
16	37	46	. 142
17	42	47	. 143
18	44	48	. 150
.19	45	49	
20	47	50	. 154
21	51	51	
22	53	52	46.42.54.21 196.2
23	⊹⊹82	53	的复数形式 经收益
24	88	54	. 162
25	91	55	165
26		. 56	ALE SHOULD NOT BE SHOULD BE
27		57.	
28		58 📜	是特殊的。""说到
29	104	. 59	. 170
30	104	60	医有动物学型 计形态设置
		61	. 172

Desde la antiguedad el hombre comenzó a utilizar los materia les de la corteza terrestre para realizar obras o estructuras que le propor cionaron mejores satisfactores a sus necesidades, así, se construyeron antiguos templos subterráneos como el Templo de Guaghard en Armenia, a.c., bordos y pequeñas presas para aprovechamiento construídas por los chinos quienes compactaban la tierra con varillas de carrizo, etc.

En la actualidad se ha intensificado el estudio de los materiales de la corteza terrestre, creándose así las llamadas Ciencias de la - Tierra. Esto surgió como una necesidad fundamental para quienes hacen posible la realización de grandes obras de infraestructura y en donde quedan in volucradas intrínsecamente las condiciones del sitio en donde van a quedar alojadas las obras en mención.

Anteriormente estos estudios sólo competían a los geólogos e ingenieros de minas. Ahora, con la realización de grandes obras civiles y el desarrollo de la ingeniería civil en los últimos decenios, ha obligado a los ingenieros a estudiar con mayor interés el comportamiento de los materiales que utilizará en las estructuras por construír.

Así como el geólogo de formación académica, eminentemente na turalista estudia y describe la estructura de los materiales cualitativamente, el ingeniero, cuya formación académica es fundamentalmente físico-matemática le interesa el aspecto cuantitativo de éstos. Es por ésto que la comunicación técnica entre geólgos e ingenieros civiles es el arma más valiosa para la concentración y evaluación de los aspectos más relevantes de los problemas a solucionar en la creación de grandes obras de beneficio colectivo. De esta manera es que la geología aplicada a problemas de ingeniería civil se transforma gradualmente en una nueva rama del saber humano "La Geotecnia"

En el Proyecto Hidroeléctrico "El Caracol", Gro., la aplica-

ción de esta arma técnica tuvo una importancia relevante ya que los resultados de los estudios de índole geotécnico permitieron seleccionar adecuadamente el sitio y el esquema de aprovechamiento de obras de la futura planta hidroeléctrica.

El presente trabajo trata de los aspectos geotécnicos concernientes a la etapa preliminar de los diferentes estudios que se efectuaron, así como también los que definieron la selección del sitio más adecuado para el esquema del aprovechamiento hidroeléctrico. En la actualidad se están realizando estudios geotécnicos que se desarrollan en plena etapa de construcción cuyos resultados pueden hacer cambiar, si el caso lo amerita, la disposición y el diseño de alguna estructura. Restan también por desarrollarse los estudios que se deben seguir realizando durante la operación de la planta con la finalidad de observar el comportamiento futuro de ésta y poder estar en condiciones de preever posibles problemas en el futuro.

El P.H. "El Caracol", Gro., se empezó a construír con la excavación de los túneles de desvío en Septiembre de 1978, esperándose terminar a principios de 1985. Actualmente se está en proceso de construcción, atacándose simultáneamente la cortina, el vertedor y la casa de máquinas.

. ASPECTOS GENERALES DEL PROYECTO.

1. Objetivo de Construcción de la Planta.

En el desarrollo de nuestro país la Comisión Federal de Elec tricidad ha sido un factor fundamental en el grado de tecnología alcanzada. A principios de su creación en 1937, su misión primordial fue la construcción de plantas hidroeléctricas. Durante el primer período de su desarrollo se realizaron importantes obras de ingeniería como: Valle de Bravo, Ixtapantongo, Mazatepec, Cupatitzio, Santa Rosa, El Novillo y otras que culminaron con los grandes proyectos hidroeléctricos como Infiernillo y Malpaso. En esta época se cimentaron las bases para un estudio exhaustivo del potencial hidroeléctrico nacional.

Después vino la época en el mundo entero en que la abundan-cia y el bajo precio del petróleo y sus derivados hacían antieconómico otro tipo de plantas generadoras en las cuales no se utilizara este energético primario, por lo que se dió una gran prioridad al desarrollo de plantas ter moeléctricas que utilizaban combustóleo y gas natural. Esta solución que requería de menores inversiones iniciales entró dramáticamente en lo que se llamó la crisis de la energía mundial cuando con la cuadruplicación de los precios internacionales del petróleo aumentaron considerablemente los costos de operación en aquellos países que se vieron obligados a importar el petróleo al precio del mercado internacional. Esto puso en evidencia que las reservas mundiales de hidrocarburos eran limitadas creándose la necesidad por desarrollar otras fuentes de energía. Hoy en día que el mundo vive una gran crisis energética y grandes problemas de contaminación, se le ha dado una gran importancia a los recursos hidroenergéticos que aunque esca-sos en muchos países son recursos renovables en nuestro planeta, factor que no se aplica al petróleo, carbón y combustibles nucleares.

Actualmente la energía generada en plantas hidroeléctricas - es más barata que la energía generada en una planta térmica convencional -- que use combustóleo a precio internacional a pesar de que la planta hidro-- eléctrica requiere una inversión inicial mayor.

En México el potencial hidroeléctrico que falta por explotar es del orden de cuatro veces mayor que la capacidad de generación hidroeléctrica que se tiene actualmente en servicio.

Para ilustrar io anterior se presenta la tabla siguiente:

POTENCIAL HIDROELECTRICO NACIONAL A DICIEMBRE DE 1976.

PLANTAS HIDROELECTRICAS	POTENCIA	ENERGIA	ANUAL
	MW %	GWH	8
Operación	4,529 18	17,000	21
Construcción	4,090 16	8,541	10
Estudio	16,631 66	37,605	69
TOTAL	25,250 100	83,146	100

(Informe del Sector Eléctrico 1970-1976, C.F.E.)

Así, en nuestro país en que no se había explotado el poten--cial hidroeléctrico total, se volvió a cobrar nueva vida e interés por la -construcción de plantas hidroeléctricas, las que por una parte resultan de nueva cuenta económicamente competitivas y además, serán por sus características base fundamental del desarrollo de nuestro país.

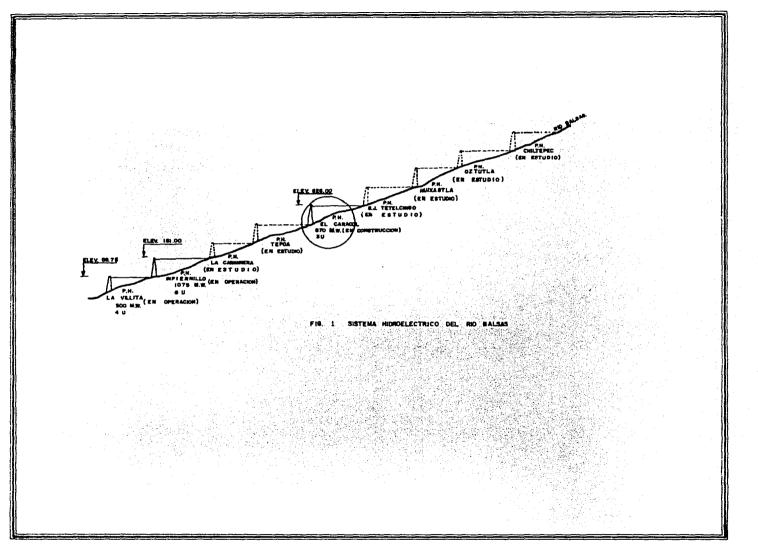
Por lo anterior, la Comisión Federal de Electricidiad ante -las exigencias del progreso industrial del país aunado al incremento de la -demanda de energía electrica, efectúa e intensifica el estudio y construc -ción de proyectos hidroeléctricos en las cuencas hidrográficas de mayor po-tencial hidroeléctrico, todo esto destinado a aumentar la capacidad instalada y la generación de energía en el país.

La cuenca hidrográfica del Río Balsas se ha venido estudiando desde el año de 1951 para ubicar los posibles aprovechamientos hidroeléctri-

cos puesto que, no cuenta con amplios valles de riego y su aprovechamiento más racional es para la generación eléctrica.

Los aprovechamientos en la parte alta del río Balsas son: Chiltepec, Oztutla y Huixastla que se encuentran en proceso de estudio. En la parte baja ya se encuentran construídos los aprovechamientos Infiernillo y Villita y en su curso medio los estudios realizados ofrecen grandes posibilidades de uso energético en los sitios denominados; San Juan Tetelcingo, El Caracol y Tepoa. La boquilla en materia de este estudio llamada "El Caracol" es importante en la planeación integral del Sistema Hidroeléctrico del Río Balsas ya que su construcción está intimamente ligada con la boquilla de San Juan Tetelcingo aguas arriba y la de Tepoa aguas abajo con las que, escalonadamente aprovechadas, se busca lograr la regularización del escurrimiento y la óptima generación de energía eléctrica. San Juan Tetelcingo se ubica a 4 kms. aguas arriba del Puente Mezcala y "El Caracol", a --77 kms. de San Juan Tetelcingo ó a 73 kms. del Puente Mezcala. (Fig. 1).

ALTERNATIVAS


Los estudios y planeación del Plan Hidroeléctrico "El Cara-col" fueron hechos para dos tipos de proyectos. En los primeros estudios ó Alternativas A, suponiendo construído el P.H. San Juan Tetelcingo y contando con su regularización; en los segundos, ó Alternativas B sin tomar en -cuenta la construcción previa del P.H. San Juan Tetelcingo, es decir:

Alternativas "A", construído San Juan Tetelcingo.

- 1. Capacidad instalada 450 Mw. 3 unidades de 150 MW en c/una.
- 2. Capacidad instalada 570 MW. 3 unidades de 190 Mw en c/una.
- 3. Capacidad instalada 950 MW. 5 unidades de 190 Mw en c/una.

Alternativas "B", sin construir San Juan Tetelcingo.

- 1. Capacidad instalada 450 MW. 3 unidades de 150 MW cada una.
- 2. Capacidad instalada 570 MW. 3 unidades de 190 MW cada una.

En la comparación de costos que se hizo de las alternativas, se recomendó la Alternativa "A" con una capacidad instalada de 950 MW ó la Alternativa "B" con una capacidad de 570 MW. Circunstancias de tipo socio económico como son tiempo, costo, el reacomodo de poblados que se inundarán con la construcción del P.H. San Juan Tetelcingo, etc, obligaron a elegir - la Alternativa "B" es decir, construír primero el P.H. "El Caracol" con una capacidad de 570 MW. y asegurar en un futuro próximo la construcción de San Juan Tetelcingo.

Los estudios de generación-capacidad realizados, involucranque se tome como N.A.M.O. para esta alternativa, el nivel de desfogue de-San Juan Tetelcingo que es la elevación 515.00 M.S.N.M. y además para la capacidad instalada elegida se tienen las siguientes características.

(1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	
Elevación de la Corona	526.00 m.s.n.m.
N.A.M.E.	521.00 m.s.n.m.
N.A.M.O.	515.00 m.s.n.m.
N.A. Mín.	495.00 m.s.n.m.
N. Desfogue	415.00 m.s.n.m.
H. Máxima	100.00 m.
H. Minima	8C.00 m.
H. Diseño	95.00 m.
Aportación media anual	$6,304 \times 10^6 \text{ m}^3$
Capacidad al N.A.M.E.	1,775 x 10 ⁶ m
Capacidad al N.A.M.O.	$1,520 \times 10^6 \text{ m}^3$
Capacidad al N.A. Mín.	825 × 10 ⁶ m ³
Capacidad ûtil	700 x 10 m
Factor de Planta	0 • 27
Con lo que es posible obtener	los siguientes resultados:
Potencia Instalada	570 MW
Potencia garantizada	458 MW.
Horas diarias garantizadas de	pico 4 hrs/5 días a la semana
Generación en el pico	486 GWH/Año

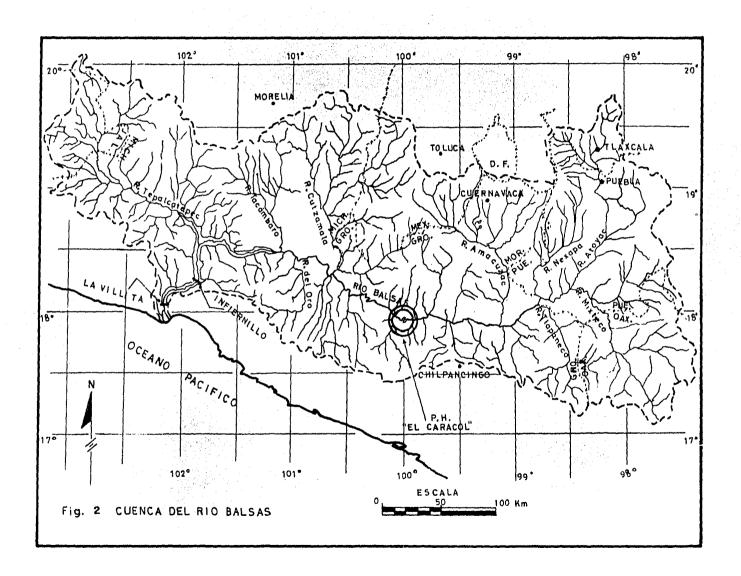
885 GWH/Año

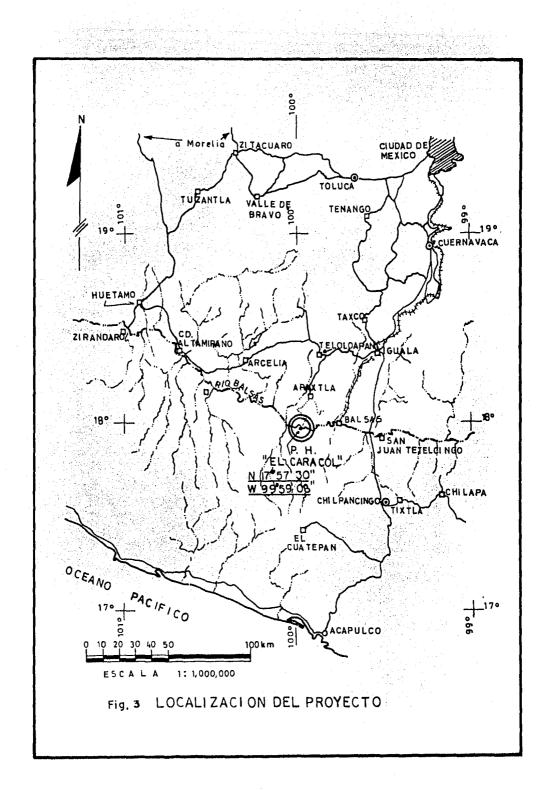
1,371 GWH/Año

Generación fuera de pico

Generación Total

2. Localización Geográfica e Hidrografía.


La Cuenca hidrográfica del Río Balsas se localiza entre los meridianos 97°30' y 103°15' de longitud Oeste y entre los paralelos 17°00' y 20°05' de latitud Norte. Cubre una área de drenaje de 108 mil kilómetroscuadrados que representan aproximadamente 6% del área de la República Mexicana, se encuentra limitada por la cordillera Neo-Volcánica, la Sierra Madre Oriental y la Sierra Madre del Sur. Políticamente abarca áreas considerables de los estados de Oaxaca, Puebla, México, Morelos, Michoacán, Guerrero, Jalisco, Tlaxcala y una pequeña área del Distrito Federal.

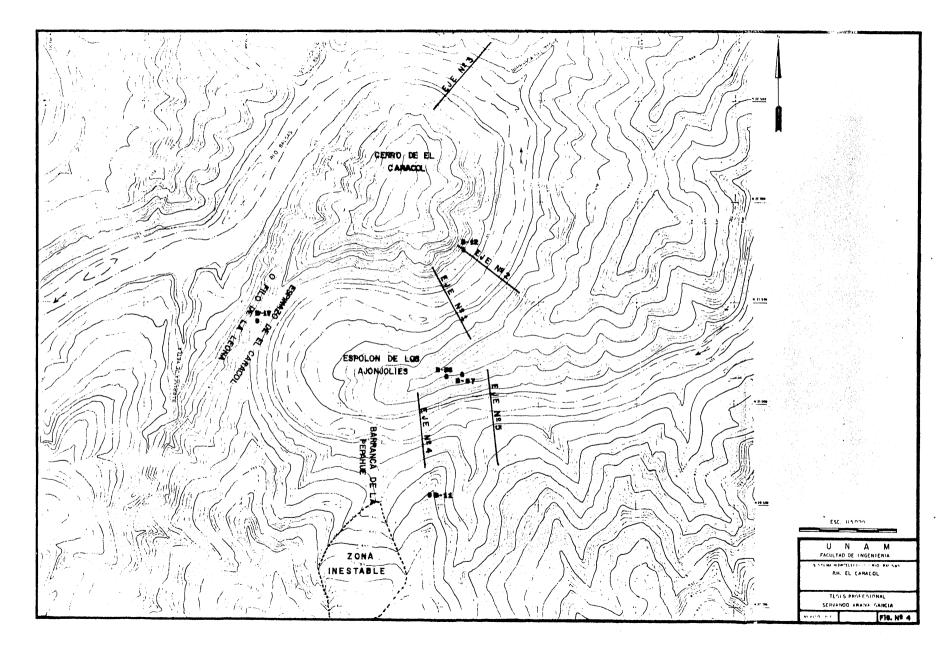

Esta cuenca se origina en los arroyos procedentes de la Sierra Nevada y de la Malinche que forman el río Atoyac junto con los arroyos que bajan de la Sierra Madre del Sur que originan el río Mixteco; la unión de estos grandes afluentes con los ríos Tlapaneco, Mexapa y Amacuzac dan lugar al río Balsas que atraviesa con rumbo Este-Oeste al estado de Guerrero, recibiendo las aguas de su afluentes hasta la confluencia con el río Tepal catepec donde cambia bruscamente su curso hacia el Sur para desembocar al-Océano Pacífico.

El Sitio de aprovechamiento hidroeléctrico de "El Caracol" selocaliza en un doble meandro del río Balsas a 73 kilómetros aguas abajo -del cruce con la carretera México-Acapulco (Puente Mezcala). Las coordena das geográficas de la boquilla son 17°57'30" de latitud Norte y 99°59'08"de longitud Oeste (Fig.2).

VIAS DE COMUNICACION.

El acceso a la zona de estudio, se efectúa de la Cd. de México a Iguala, Guerrero; de Iguala hacia Teloloapan se continúa por carretera - pavimentada y en el kilómetro 61 + 300 se encuentra la desviación hacia un camino de terracería el cual está en proceso de pavimentación con un ancho que varía de 8 a 12 metros; el pueblo más próximo es Acatempan, después Ox totitlán y por último Apaxtla, y de aquí al sitio de aprovechamiento hay - una distancia aproximada de 35 kilómetros por un camino también en proceso de pavimentación (Fig. 3).

Aproximadamente el tiempo de recorrido de la Ciudad de México a Iguala es de 3 horas, de Iguala a Apaxtla de 2 horas y de Apaxtla al sitio de la obra de una hora.


La vía de acceso fluvial es posible durante la temporada de lluvias y es navegable el río en lancha de motor con poco calado. Por vía aérea el acceso es posible por medio de helicóptero para lo cual se cuenta con un helipuerto en el sitio de la obra.

3. Topografía.

El Río Balsas en la zona en que se ubica "El Caracol" fluye en dirección Este-Oeste presentando la particularidad de que en su curso -forma un doble meandro muy cerrado y casi simétrico, topográficamente dejan entre sí espolones montañosos relativamente estrechos cuya existencia se -aprovecharía para que a través de ellos se hagan las obras necesarias parala construcción de la planta hidroeléctrica. En esta singular morfología es posible ubicar las estructuras que integran el aprovechamiento en dife-rentes disposiciones alternativas cuyas ventajas y desventajas han sido y son objeto hasta la fecha de cuidadosos análisis con la finalidad de lograr
un aprovechamiento óptimo.

Actualmente existe levantamiento topográfico del Río Balsascon planos a escala 1:5000, con curvas de nivel cada 10m., incluyendo la totalidad del vaso del proyecto y levantamiento topográfico de detalle en la
zona de la boquilla a escala 1:1000 con curvas de nivel a cada metro.
(Fig. 4).

Fue necesario tener datos topográficos de detalle para poder diseñar las estructuras principales del proyecto (Cortina, Vertedor, Casa de Máquinas), así como también caminos de acceso, obras auxiliares, etc. Se - hace notar lo indispensable que es tener la topografía confiable y siempre en proceso de actualización según el avance del proyecto en general y paracada obra en particular, ésto, en beneficio de la economía en las inversiones.

4. Hidrología.

APORTACIONES.

En Agosto de 1975 se instaló la estación hidrométrica en el sitio del proyecto, por consiguiente para deducir los escurrimientos se utilizó la información de las estaciones de San Juan Tetelcingo, con datos de 1951 a la fecha y de Santo Tomás con datos de 1954 a la fecha, localizadas ambas sobre el Río Balsas, la primera aguas arriba y la segunda aguas abajo
del P.H. "El Caracol".

Los escurrimientos se dedujeron para el período 1951-1974 de la manera siguiente:

Se determinaron las áreas tributarias totales para las dos estaciones y para el sitio en estudio resultando los siguientes valores:

SITIO	AREA TRIBUTARIA
San Juan Tetelcingo	2 42,707 Km
El Caracol	48,837 Km ²
Santo Tomás	52,020 Km ²

Se obtuvo una constante K relacionando las tres áreas anteriores, la que sirvió para determinar los volúmenes en "El Caracol", en la forma siguiente:

$$v_c = Kv_1 + (1 - K) v_2$$

Siendo:

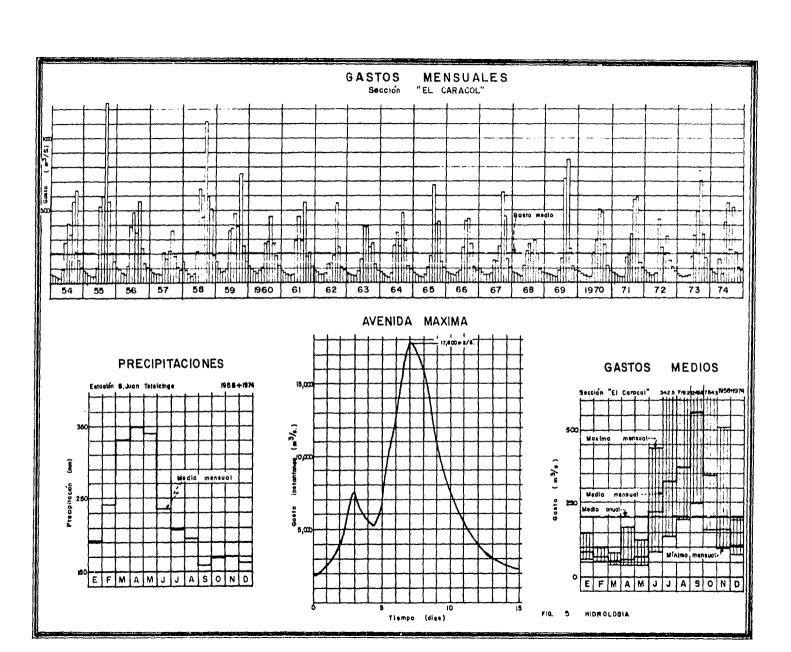
K = Area Caracol - Area San Juan Tetelcingo Area Santo Tomás - Area San Juan Tetelcingo

$$K = \frac{48,837 - 42,707}{52,020 - 42,707} = 0.6582$$

Vc = Volúmen escurrido en el Caracol. V, = Volúmen escurrido en Santo Tomás.

. I V₂ = Volúmen escurrido en San Juan Tetelcingo. Por lo anterior se dedujo un escurrimiento medio anual de 6,346 millones de M³, que corresponde a un gasto medio de 200 M³/seg. produciendo las avenidas en los meses de junio a noviembre y los estiajes en - los meses de diciembre a mayo. Los gastos medios mensuales extremos llegan a los 1,250 M³/seg., como máximo y de 40 M³/seg., como mínimo correspondientes a un período de 21 años como se muestra en la Fig. 5.

Se compararon los volúmenes registrados en la estación hidrométrica "El Caracol" con los obtenidos según el método anterior resultandodiferencia del 5% que se consideran aceptables.


AVENIDA DE DESVIO.

Utilizando los gastos máximos anuales de las estaciones de - San Juan Tetelcingo y Santo Tomás las relaciones de áreas y la constante K, mencionada anteriormente, se dedujeron los gastos máximos anuales para " El Caracol " (período 1951-1974) y con éstos se construyó una curva de frecuencia de gastos que permite conocer los picos para períodos de retorno.

A continuación se muestran algunos de estos valores.

ъР.,			克萨洛瓦 结			李莉特的 化流泡		C. C. 3
Pe	eriodo	de F	Retorno	en A	ños		Gastos	en M ³ /seg.
750			日本。1777年					
4			۹.	Saver and a	1643.3	Same and the same	2	,707
					ALMARON I			
140			10			经经营 经表		,586
Sig.			TO 12	100				, ,000
					5.5			200
			20			医多角管性	4	,029
11.0			25				4	,172
			有各种规则					
		ない合門	50			선택을 보다	4	,615
			75.7 K. U.					
	经 有数据	1	.00	Tale to care				,058
							, i e	, , , , ,

La forma de la avenida de desvío que se adoptó para cual -- quier período de retorno fue la presentada en la estación hidrométrica Santo Tomás en septiembre de 1967. En este caso, en que la cortina proyectada es de materiales graduados el tiempo que durará la construcción, las gran-- des áreas expuestas de la cimentación y la excavación de la estructura, la

seguridad de los trabajadores y de los habitantes aguas abajo, etc., fue -ron factores que se tomaron en cuenta en caso de que se rebasara la ataguía
y se produjeran serios daños o la pérdida de la obra parcialmente terminada,
es por ésto que la importancia de eliminar el riesgo de inundación es relativamente grande. Además se hizo un análisis comparativo de el costo de aumentar las obras de protección para manejar las avenidas contra el costo
de los daños resultantes si estas avenidas ocurrieran sin aumentar las --obras de protección. De lo anterior, para el análisis de la obra de desvío
se tomó la avenida de 4,615 M³/seg. para un período de 50 años, al cual se
consideró adecuado para la construcción de este tipo de cortina.

AVENIDA MAXIMA PROBABLE.

Para determinarla se llevó a cabo un estudio hidrológico utilizando toda la información disponible en la cuenca del Río Balsas con el assesoramiento del Consultor H.P. Grout y el Instituto de Ingeniería de la UNAM.

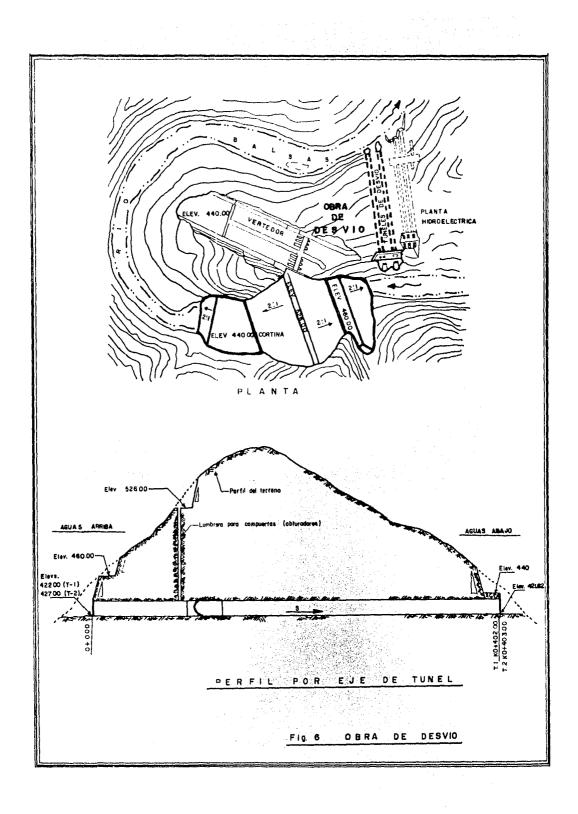
Este estudio, consiste en la parte hidrológica en obtener el Hidrograma Unitario en el sitio de "El Caracol" para lo cual se utilizó -- principalmente la tormenta ocurrida en la cuenca del Río Balsas en septiembre de 1967.

En la parte metereológica se evaluó la precipitación máximaprobable, transponiendo un ciclón del Pacífico y otro ciclón del Golfo de -México y se consideró que el del Pacífico se presentó tres días antes que el del Golfo.

Se alimentó el Hidrograma Unitario con estas precipitaciones y se obtuvo así la avenida máxima probable con una frecuencia decamilenaria que resultó tener un pico de 17,800 $\text{M}^3/\text{seg.}$ y un volúmen de 9.012 x 10 6 M^3 y una duración de 17 días. (Fig. 5).

DATOS H-I'DROLOGI	
DATOS HIDROLOGI	CUS
Area de la cuenca hasta el sitio de	
las obras	48,837 Km ²
Area de la cuenca entre San Juan Te	
telcingo y El Caracol.	6,130 Km ²
Area máxima de embalse	46.8 Km ²
Estaciones Hidrométricas Base: Sto.	
Tomás y San Juan Tetelcingo. Perío- do analizado	1051 1074
	1951 - 1974
Período Registrado.	1951 - 1974
Período Deducido en Caracol.	1951 - 1974
Volúmen medio anual escurrido:	6,384 × 10 M
Gasto medio escurrido.	200 M ³ /seg.
Evaporación media anual.	2,600 mm.
Precipitación media anual.	1,100 mm.
Avenida Máxima de Desvío.	Frecuencia 50 años
Pico de la Avenida de Desvío.	4,615 M ³ /seg.
Avenida Máxima Probable.	10,000 años
Pico de la Avenida Máxima Probable.	17,800 M ³ /seg.
Duración de la Avenida Máxima Probable.	17 días
Volúmen de la Avenida Máxima Probable.	9,012 x 10 M ³
Avenida Máxima Registrada.	3,881 M ³ /seg.

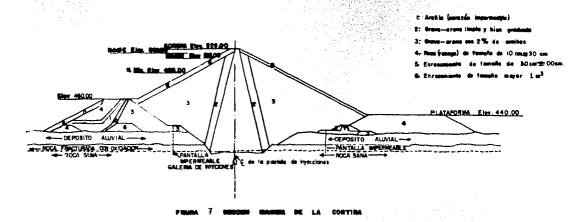
5. Descripción General del Proyecto.


OBRA DE DESVIO.

Consta de dos túneles paralelos y rectos separados entre sí 40 M., que partiendo de la márgen derecha cruzan el meandro o espolón para descargar hacia aguas abajo del vertedor, teniendo una longitud aproximada el túnel No. 1 de 402 M. y el No. 2 de 403 M., (Fig. 6).

La sección de los túneles es del tipo portal, compuesta por la zona superior semicircular de 13 M. de diámetro y la inferior rectangular de 6.5 M. de altura por 13M. de ancho.

Las cotas de las entradas de ambos túneles difieren en 5 M. no así la de sus salidas que se encuentran a la misma elevación, ésto permite facilitar la excavación de los mismos, así como el manejo del río durante la construcción de las obras.


Las ataguías de desvío tanto las de aguas arriba como las - de aguas abajo formarán parte integrante de la cortina, la corona de la -- ataguía de aguas arriba tiene la elevación de 460.00 y la de aguas abajo - la elevación de 440.00, los talúdes de ambas son 2.1 (Fig. 6).

CORTINA

La alta sismicidad de la zona y la disponibilidad relativamente cercana de los bancos de arcilla y roca, la posibilidad de la utili
zación de los aluviones de depósito del río y parte del producto de las excavaciones de las obras anexas, fueron factores decisivos para elegir una cortina del tipo flexible de materiales graduados y eje recto. Sus características principales son las siguientes: (Fig. 7).

O SOO 400 SOOM

Altura máxima	134 m.
Elevación de la Corona	526 m.
Longitud de la Corona	345,00 m.
Ancho de la Corona	12.00 m.
Bordo Libre	5.00 m.
Talúdes	2.1 en ambos lados
Volumen total	6,825.00 m ³

· · · 正语的执政 2003

VERTEDOR.

Por las condiciones naturales de espacio disponible, así como para tener mayor flexibilidad y confiabilidad en la operación y mantenimiento de la obra de excedencias, se localizó en la margen derecha adyacente a la cortina, constituído por dos canales a cielo abierto terminando en salto de esquí. La dirección de la descarga se orientó de acuerdo con los resultados del modelo físico para reducir al mínimo los riesgos de derrumbes o inestabilidad de talúdes que pudieran reducir la confiabilidad de la operación del proyecto, debido a la erosión de laderas y de la socava ción del cauce. (Fig. 8).

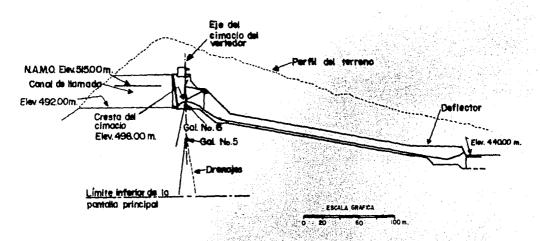
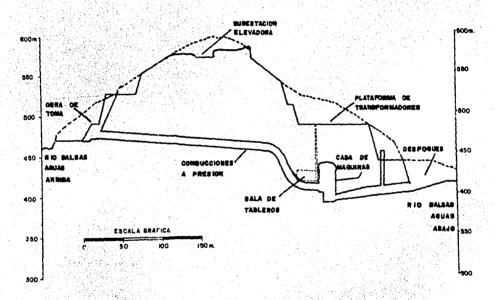



FIGURA 8 PERFIL LONGITUONIAL A LO L'ARGO DEL EJE DEL VERTEDOR

Tipo	Canal a cielo abierto
Número de Canales	2
Sección variable (ancho)	112.60 m.
Avenida de diseño	17 800 m ³ /s.
Volúmen de la Avenida	9,000 x 10 ⁶ M ³
Duración	17 días
Capacidad total de descarga	17,000 m ³ /s.
Capacidad máxima de descarga/canal	8,500 M ³ /s.
Elevación de la cresta	498.00 m
Longitud total de la cresta	77.60 m.
Estructura terminal: Deflector(ang	,.) 30°

PLANTA HIDROELECTRICA.

Consta de tres unidades generadoras de 190 MW alojados en caverna, con separación entre ejes de 21.50 m. cada unidad cuenta con su propia obra de toma, conducción a presión y desfogue aguas abajode la caverna (Fig. 9).

PTOURA S COST E LONGITUDINAL DE LA PLANTA NIORGELECTRICA DEL RH. EL CARACOL

OBRA DE TOMA

Tipo: Estructura de rejillas y compuertas en rampa. (Dimensiones)

5.89 x 7.50 m.

Sección

Variable

Gasto máximo considerado/toma

243.40 M³/s.

CONDUCCION A PRESION

Número de conductos	
Sección	ar
Diámetro 7.50/5.67 r	n.
Longitud 296.93 r	n.
Sobrepresión máxima 38.61 t	n.

CASA DE MAQUINAS

Tipo				Subterránea
Altura tota	l desde el desp	olante		49.285 m.
Elevación d	e la clave		438	.785 m.s.n.m.
Elevación de (cárcamo de	el desplante bombeo)		389	.500 m.s.n.m.
Ancho				20.00 m.
Longitud				112.00 m.

TUBINAS

Tipo		Francis - Eje vertical
Número		3
Velocidad nominal		128.57 RPM
Carga de diseño		91.20 M.
Gasto de diseño		237.90 m³/s.
Tiempo de cierre del d	istribuidor	9 seg.
Sobrevelocidad		51.50%
Factor de planta		0:27

GENERADORES

Capacidad Nominal	211,000 KVA
Frecuencia	60 CPS
Factor de potencia	0.95
Tensión nominal	15 KV
Número de polos	56
Velocidad de desfogue	233 RPM

TRANSFORMADORES DE POTENCIA

Tipo de unidad	Trifásico
Tipo de enfriamiento	FOW
Capacidad nominal	225 MVA
Tension primaria	15 KV
Tensión secundaria	230 KV

DESFOGUES

Tipo	hua Kandah di Majurah Bibi				Túnel
Sección				C.	ircular
Diámetro					9.00 m.
Longitud				1	03.60 m.

POTENCIA Y GENERACION

Capacidad instalada	570 M	W
하늘 무슨이가 됐다. 이 사이를 하는 것은 것 같다.	[경우] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	
Capacidad media anual	[4] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	H

A continuación se presenta en la Fig. 10 una planta general de las obras del Proyecto Hidroeléctrico "El Caracol" Gro.

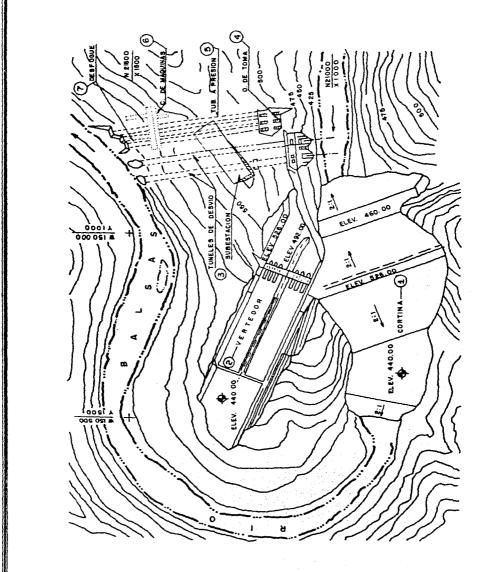


FIG 10 ARREGLO DE LAS ESTRUCTUMAS DEL P.H. CARACOL

II. GEOLOGIA Y SISMICIDAD.

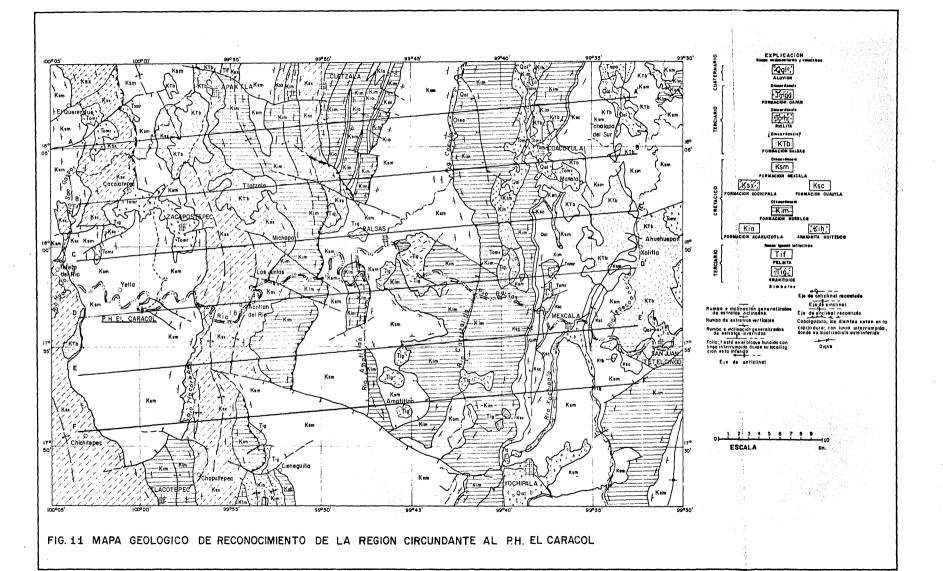
1. Geología regional.

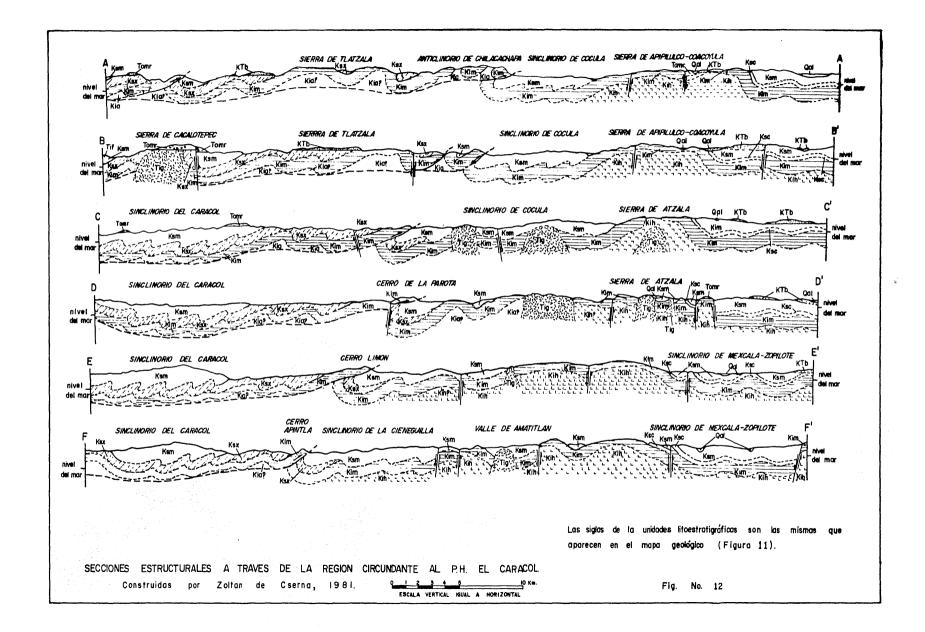
La zona de reconocimiento queda dentro de la región pertene ciente a la denominada Sub-provincia de la Cuencia del Río Balsas. La zona de "El Caracol" se caracteriza por la existencia de filos montañosos relativamente angostos de laderas muy empinadas, que presentan contrastes — muy marcados en las elevaciones de sus filos y picachos. Los picos del cerro de "Cacalotepec" 10 Kms. al Norte de "El Caracol", alcanzan alturas — aproximadamente 2,000 m.s.n.m. mientras que el Río Balsas en "El Caracol"— tiene una elevación de 400 m.s.n.m.

El área circundante está constituída por rocas sedimenta -rias de orígen marino, volcánicas e intrusivas. Las formaciones mapeadas*
en orden decreciente de antiguedad se enumeran enseguida y se indican en el mapa geológico regional de la Fig. 11, y en la Fig. 12 se muestra una -sección estructural a través del sitio en estudio.

Lutitas del Cretácico Inferior (Kil).

Incluye algo de areniscas y caliza más antiguas, éstas - afloran al Norte de Tlatzala y al Este de Apaxtla formando el bloque del - alto de una falla, al este de Tlacotepec formando una anticlinal y al Este de Cuetzala formando anticlinares recostados que buzan al S-SW.


Calizas del Cretácico Inferior (Kic).


Cubren la mitad del poblado de Apaxtla, afloran al Sur de las Juntas y al Sureste de Huautla.

Formación Morelos (Calizas) del Cretácico Inferior (Kim).

Afloran al Este de Apaxtla formando el bloque del bajo de una falla y al Sureste de Cuetzala formando un sinclinal.

^{*} Ingenieros: (1) De Cserna, Zoltán (2) Palacios Nieto Miguel (3) Pantoja Alor J. 1981. Relaciones de facies de las rocas Cretácicas en el Noreste de Gro., y en las áreas colindantes de México y Michoacán.

Formación Xochipala (Kis).

Comprende, rocas, calizas, lutitas, conglomerados y bre-chas del Cenomaniano Turaniano, con localidad tipo en las cercanías del poblado de Xochipala, afloran en Acatlán del Río al Oeste de Tlacotepec, en Pasuapa y en Xochiltepec.

Formación Mezcala (Kms).

Secuencia rítmica de lutitas y areniscas de edad Turonense-Campaniense descansa concordantemente sobre la formación Xochipala al Poniente de Apaxtla y cubre el área donde se encuentra el P.H. "El Caracol".

> Rocas Intrusivas (graníticas) Terciarias (Ti). Se localizan al Noroeste de Tlacotepec y Huautla.

Por último se tienen <u>rocas Sedimentarias y Volcánicas (Tu)</u> Terciarias.

El vaso del P.H. "El Caracol" alcanzará un desarrollo de - 59 Kms. hacia aguas arriba del río Balsas, llegando a 5 Kms. hacia aguas -- arriba del "Puente Mezcala", cubriendo en mayor porcentaje a las rocas de la formación Mezcala, cuyo espesor en el sitio de la cortina se estima en 800m.

2. Geología del Sitio.

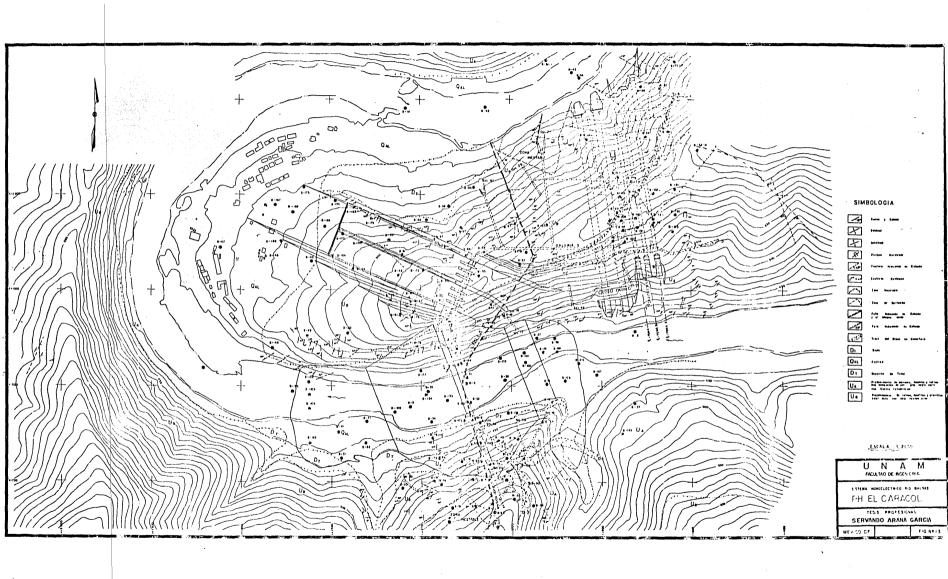
LITOLOGIA.

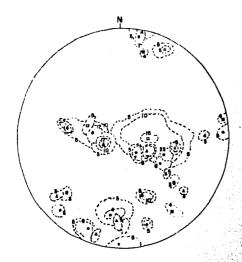
En el área de "El Caracol" predominan rocas de tipo "flish" de la formación Mezcala de edad del Cretácico Superior, caracterizada litológicamente por presentar estratos de areniscas, lutitas, tobas de composición andesítica y diques que varían en composición de dacítico-andecítico a graboide (Dr. Ortega G. Fernando, 1977), que al intrusionar la alternancia de rocas sedimentarias crean zonas de estabilidad crítica, o bien, por su composición química y mineralógica puesto que en algunas zonas presentan intemperismo "acelerado", pueden constituir conductos por donde pudiera fluir el --

agua, ocasionando el fenómeno de tubificación.

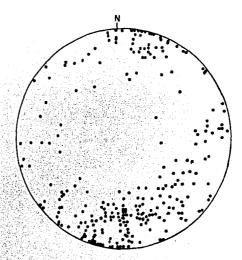
Para fines geotécnicos o de construcción, la formación Mezcala en el sitio se ha dividido en las unidades litológicas Unidad A y Unidad B.

La UA se caracteriza por presentar una alterancia de arenis—cas y lutitas en porcentaje de 70 y 30% respectivamente; las areniscas al—canzan hasta 8 m. de espesor, mientras que las lutitas tienen una estratificación delgada. La UB, localizada topográficamente arriba de la UA, se caracteriza por presentar una alternancia de lutitas y areniscas en porcentaje de 65 y 35% respectivamente; los estratos de arenisca de espesor de 2 m. son esporádicos. En esta unidad las lutitas por estar expuestas superficailmente presentan una coloración ocre debida al intemperismo y son fácilmente alteradas. La alteración disminuye al aumentar la profundiad y con ello también aumenta su confinamiento y resistencia.

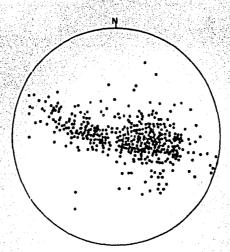

El límite que separa entre sí a las dos unidades es la Falla-F-4 con rumbo N10°E y echado 64NW, localizando a la unidad UA hacia el ex-tremo Este a partir del sitio de la cortina y la UB, hacia el extremo Oeste del espolón de la margen derecha y en toda el área del puerto entre el cerro de "El Caracol" y el Filo de la Leona. (Fig. 13).


ESTRUCTURA.

Las rocas de la formación Mezcala se encuentran sumamente ple gadas adoptando estratos formas lenticulares o acumamientos.


La secuencia de las rocas terrígeneas en el sitio definen una estructura tipo homoclinario con una orientación general N 15°-20°E con -- echados de 45° a 50° al NW. En la Fig. 14 se muestra la dirección preferencial de 547 planos de estratificación, la de 278 fracturas y las tendencias centrales de las fracturas y la estratificación.

La formación Mezcala en el sitio, presenta efectos de tecto--



Proyectión estereográfica de 647 planos de estratificación en el P.H. El Caracol

Proyección estereográfica de 278 fractures en el RH. El Caracel

Proyección esteresgrática de las tendencias centrales de las fracturas y de la estratificación en el P.H. El Carseel

nismo regional que ha formado-fallas y zonas inestables con evidencias de - deslizamientos. Los pliegues en ambas unidades presentan ejes de simetría- orientados al N-NE. El tipo de plegamiento de las márgenes del sitio indica la competencia de las secuencias de areniscas y lutitas, sometidas a -- grandes esfuerzos compresionales y asociados con movimientos orogénicos provenientes del Poniente. Se consideró también que el estado elastoplástico de estas rocas originó los sistemas de fracturas E-W, NE-SW y NW-SE y final mente la liberación de esfuerzos y la actividad plutónica produjeron movimientos tensionales que se manifestaron en desplazamientos con orientaciones N-S. Por lo anterior en el área existen cuatro sistemas de fracturas que pueden estar asociadas con diques intrusivos de tipo félsico o básico. Los sistemas son en orden de importancia.

Sistema			Or	ientación
gamma				E-W
beta				NE-SW
alfa			30000000000000000000000000000000000000	NW-SE
delta	시민 마양이를			N-S

Algunas fracturas se encuentran rellenas de calcita, arci-lla y ocasionalmente cuarzo. Se han encontrado pequeñas fallas con desplazamientos horizontales (0.2 a 1.5 m.) rellenos de milonita o brecha de fa-lla, algunas veces presentan alteración incipiente en forma de arcillas, (Pa
lacios-Nieto 1978; Cuéllar-Borja 1978).

2. Exploraciones Realizadas.

Los primeros estudios y exploraciones en el sitio "El Caracol" se llevaron a cabo en el año de 1960 por medio de 26 sondeos de exploración, dos socavones sobre la margen izquierda y un pequeño túnel en el -puerto entre el Cerro del Caracol y el Filo de la Leona. Dichos estudios lamentablemente se interrumpieron, volviéndose a reanudar éstos a mediadosde 1973, en esta campaña se escogieron cinco sitios como posibles boquillas
de la cortina, ésto, en una longitud de 5 Km. dentro de un doble meandro ce

rrado y simétrico. (Fig. 4).

En el sitio No. 1 se exploró en el año de 1960 por medio de 26 sondeos con un total de 2,189 m. de barrenación, dos pequeños socavones—
y un túnel pequeño de 140 m. de longitud.

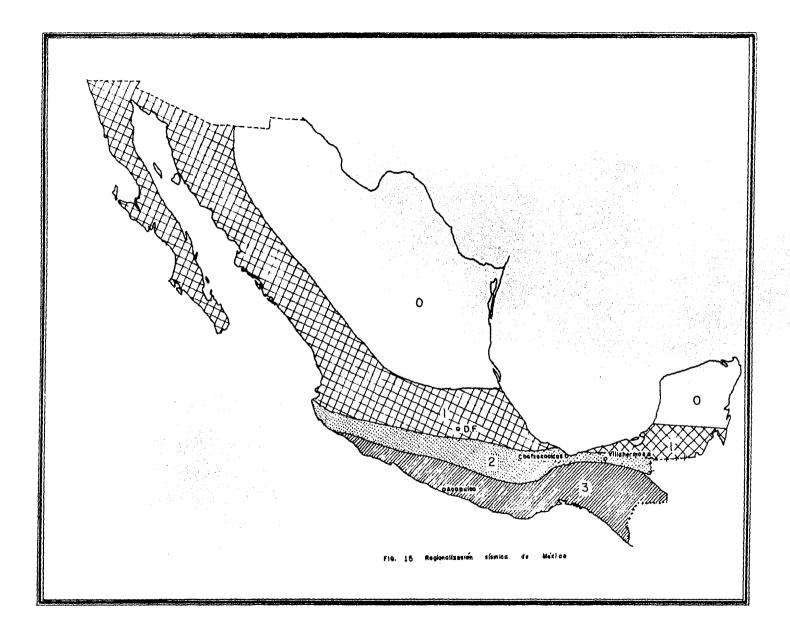
Posteriormente en 1973 se estudió el Sitio No. 2 localizado 230 m. aguas abajo del anterior, en este sitio se ejecutaron 35 sondeos y - (2,654 m.) 14 socavones (931 m.).

Para tener un punto de vista comparativo se escogió el Si-tio No. 3 a 1.5 Km. río abajo del Sitio No. 2, en este lugar se ejecutó un
socavón de 50 m. en cada ladera encontrándose roca de mala calidad, ésto -origió que se desechara este sitio.

El Sitio No. 4 que se ubica a 2,600 m. aguas arriba del Sitio No. 2 se exploró con un total de 137 barrenos (12,926 m.), 47 socavones (3,430 m.) y 15 cruceros (176 m.).

El Sitio No. 5 que se localiza 500 m. aguas arriba del Si-tio No. 4 se escogió como marco de comparación del anteriormente mencionado.
Se realizó un sondeo encontrándose roca de mala calidad lo que ocasionó que
se desechara dicha alternativa.

Cabe mencionar que las exploraciones realizadas para cada - sitio abarcan a las estructuras del arreglo seleccionado (cortina, vertedor, casa de máquinas, etc.). El total de la perforación de sondeos exploratorios, la mayoría con recuperación de núcleos es de 22,000 m. y la excava - ción de socavones y cruceros de 4,200 m., (además, se hace notar que aunque el proyecto está actualmente en construcción, las obras exploratorias se si guen realizando para tener un conocimiento más actual de la estructura geológica en donde se vaya a desplantar alguna obra civil con su consecuente - seguridad para la misma).


En la Fig. 13 se muestra la localización de las exploraciones realizadas en los sitios antes mencionados.

4. Sismicidad.

La Zona del Caracol es marginal a la falla de Acapulco, con siderada como una fuente importante de sismos en México. Aún sí, los sis mos relacionados con esta falla son profundos, la zona debe ser considerada como de fuerte sismicidad según la Carta de Regionalización Sísmica para fines de diseño (Dr. Luis Esteva M. Instituto de Ingeniería, UNAM), que se — muestra en la Fig. 15.

De acuerdo con los datos del Servicio Sismológico Nacionaldel Instituto de Geofísica de la UNAM, la región circundante al P.H. "El Ca
racol", fué sujeta a 43 temblores entre 1908 y 1974, de éstos, 37 tuvieronprofundidades de foco mayores de 40 Km. los focos de los restantes variaron
en profundidad entre 20 y 33 Km. y éstos ocurrieron entre abril de 1962 y oc
tubre de 1969. La magnitud de los temblores de las profundidades menores varía de 3.8 a 4.3. Los temblores cuyos epicentros se localizan dentro dela región abarcada por el mapa geológico (Fig. 16) son netamente profundosy no tienen relación alguna con las estructuras geológicas, tanto estos -temblores como los otros de foco profundos, se consideran relacionados conprocesos tectono-magmáticos del manto.

La sismología del área circundante ha sido estudiada por Esteva y Bazán (1978) quienes llegaron a la conclusión de que, en el diseño de la presa, era necesario considerar el período de recurrencia y los valores de la velocidad máxima del terreno. Determinaron así un criterio de optimización que tenía en cuenta el costo de incrementar el nivel de seguridad, así como las consecuencias de las deficiencias de construcción de la cortina y la incertidumbre en los parámetros de diseño.

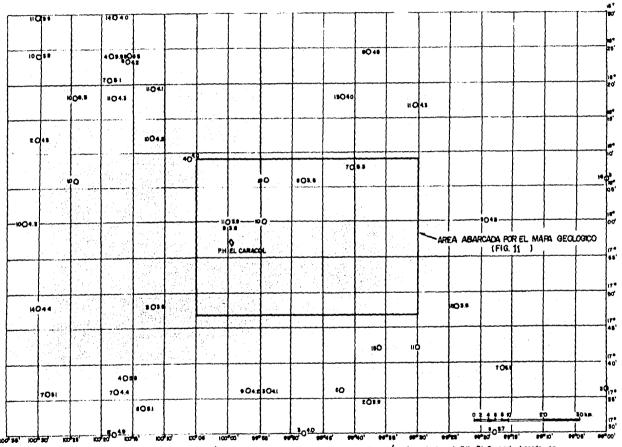


FIGURA 16 Mapa que muestro la localización de los epicentros de los temblores en la región circundente al RH. El Ceredal, basede en datos del Berriclo Sismológico Nacional del instituto de Geofísica de la UNAM. El número e la laquierda de cada epicentro corresponde a la protundidad del foce en decenas de Kilómetros; el número a la derecho señala la magnitud calculada con andes Prougnedo la magnitud no está señalade se indise falta de datos

Para los propósitos del diseño de la presa se pusieron los siguientes valores de aceleración: (T=Período de Frecuencia).

5. Geofísica.

dientes básicamente a la apreciación cualitativa y cuantitativa de la masa de roca. Con ésto básicamente se busca determinar:

Calidad de la roca.

Zonas de fracturamiento importantes o fallas. Localización de fracturas y diques asociados a ellas.

Se utilizaron los siguientes métodos:

- a) Geoelactrico de resistividad.
- b) Potencial natural.
- c) Manetométrico.
- d) Sísmico de refracción.

a) Método geoeléctrico de resistividad.

Este método se utilizó para determinar el espesor de material deslizado que corresponde al derrumbe ubicado en la margen izquierda-aguas abajo del Sitic No. 4 conocido como la Barranca de la "Pepahue", así como su contacto sobre la roca firme. El máximo espesor de materiales del derrumbe que se determinó con este método fué de 60 m. (García-Durán 1975).

b) Método del potencial natural.

Este se utilizó en la margen izquierda del Sitio No. 4 con el objeto de conocer el comportamiento de los cuerpos igneos y de las frac

turas. Se midió la reacción de potenciales electroquímicos y de filtra-ción y se distinguieron tres tipos de estructuras: dos fracturas abiertas
con rellenos arcillosos, cinco fracturas cerradas y dos posibles diques o
mineralizaciones sulfurosas diseminadas (Benhunea - León, 1978).

c) Método magnetométrico.

Su aplicación fue reciente, se hizo con el fin de determinar en forma más clara los diques que existen dentro de la margen iz -- quierda del Sitio No. 4.

d) Método Sísmico de refracción.

Este método es el que más se ha utilizado en el sitio,—inclusive desde los primeros estudios realizados. Su finalidad ha sido—la de determinar la calidad geotécnica y la de decompresión de las laderas de apoyo de la cortina así como también para determinar las características generales de la zona del cauce del río.

Con la finalidad de definir con mayor detalle la calidad de la estructura geológica y las condiciones geotécnicas de las zonas afectadas directa o indirectamente por las obras, se continuaron los estudios y se delimitaron seis zonas en sentido descendente con distintas características.

ZONA 2 Depósitos aluviales, $V = 1 \cdot a \cdot 1.5 \text{ Km/seg.}$ Espesor hasta de 15 m. $E = 125,000 \text{ Kg/cm}^2$

ZONA'3 Maciso rocoso decomprimido y alterado.

V = 2 a 2.6 Km/seg.

Espesor de 6 a 25 m. en margen derecha.

" de 10 a 15 m. en márgen izquierda.

" de 15 a 25 m. en el cauce del río.

 $E = 200,000 \text{ Kg/cm}^2$

ZONA 4 Macizo rocoso decomprimido generalmente por fracturas.

V = 3 a 3.6 Km/seg.

Espesor de 20 a 40 m. en ambas márgenes.

" de 14 a 20 m. en el cauce del río.

 $E = 200,000 \text{ Kg/cm}^2$

ZONA 5 Macizo rocoso sano.

V = 4 a 4.5 Km/seg.

Espesor de 40 a 60 m. de profundidad.

 $E = 300,000 \text{ Kg/cm}^2$

ZONA 6 Macizo rocoso comprimido.

V = mayor de 4.5 Km/seq.

Espesor de 60 m. de profundidad hacia abajo.

 $E = 300,000 \text{ Kg/cm}^2$

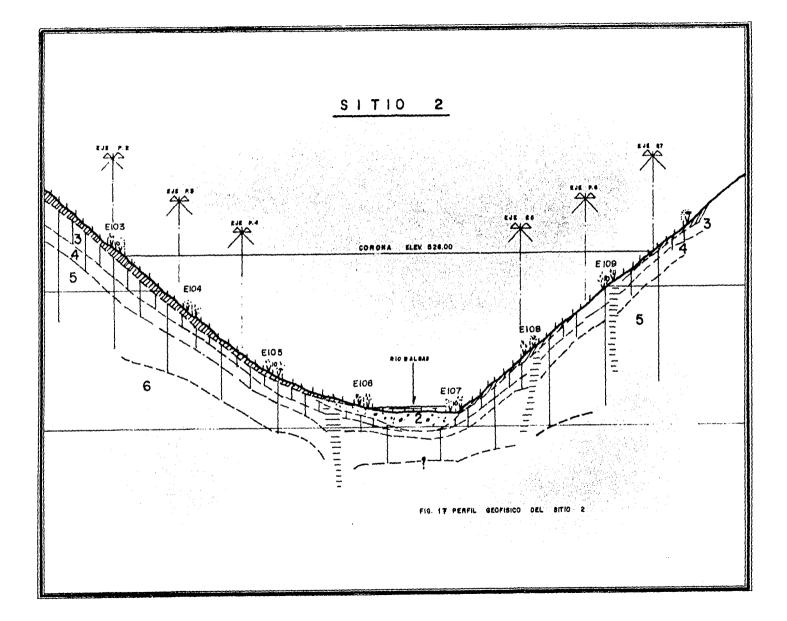
A continuación se presentan los rangos de valores típicos de propagación de ondas longitudinales en algunos materiales (Manual de Obras Civiles de la C.F.E., B.1.4).

MATERIAL	VELOCIDA V(m/s)	1 - D
Suelo	170 - 500)
Aluvión	800 - 1,500)
Lutita	1,800 - 3,800)
Pizarra	2,290 - 4,700)
Arenisca	2,400 - 4,000)
Rocas Igneas del Basamento.	5,500 - 6,600)

Para el Sitio No. 2 (Fig. 17), del conjunto de estudios realizados y de su correlación con la información geológica disponible, se han deducido las características anotadas en el cuadro siguiente (GEOFIMEX 1976):

ZONA	H (m)	(Km/s)	ע	E (Kg/cm ²)	D (Kg/cm ²)
De comprimida v alterada.	1C a 15	2.3	0.27	100,000	45,000
(ZONA 3)					
Macizo sano más o menos					
comprimido. (ZONA 4)	15 a 25	3.2	0.22	200,000	90,000
Macizo profun- do y en gene					
ral comprimido. (ZONAS 5 y 6).	40 a 60	4.2	0.25	320,000	170,000
Maciso profun- do, sano compri	desde				
mido. (ZONA 6).	40 a 60	4.5	0.25	370,000	200,000

Donde:


H = profundidad

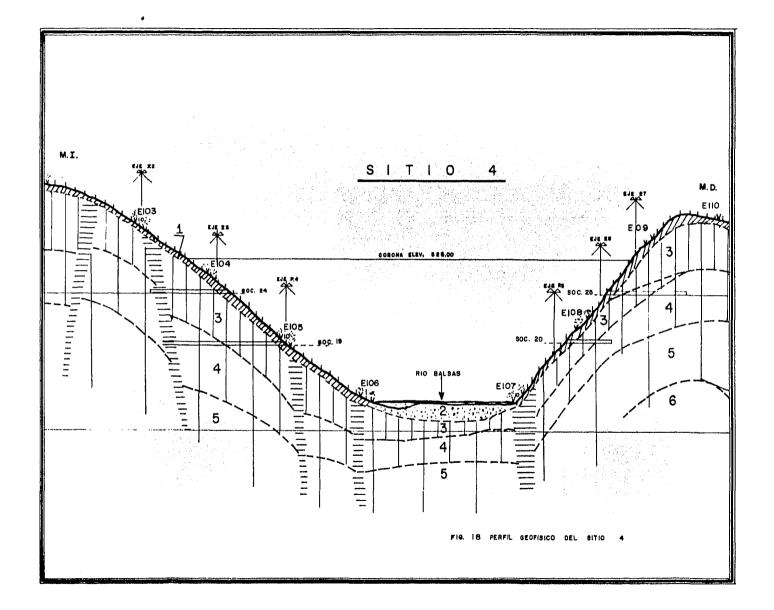
V = celeridad de onda longitudinal (valor medio)

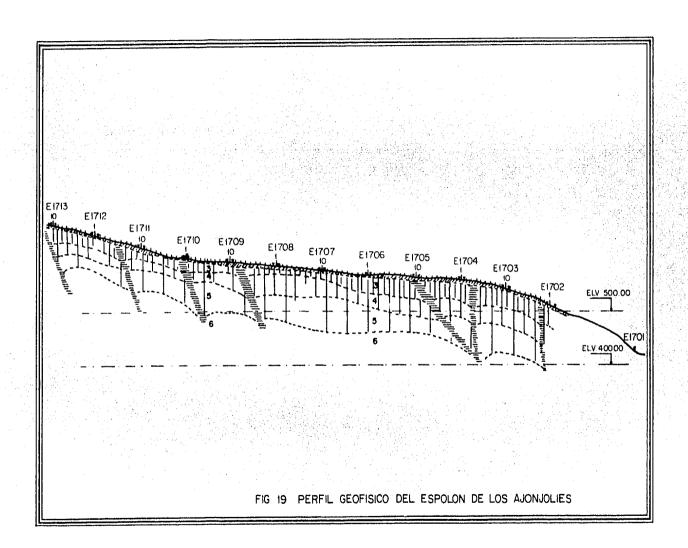
4) = valor medio del coeficiente de Poisson.

E = módulo de elasticidad previsible para cargas estáticas.

D = coeficiente de deformación previsible.

De lo anterior se puede concluír que las condiciones presentadas en el sitio son favorables para el tipo de obra prevista.

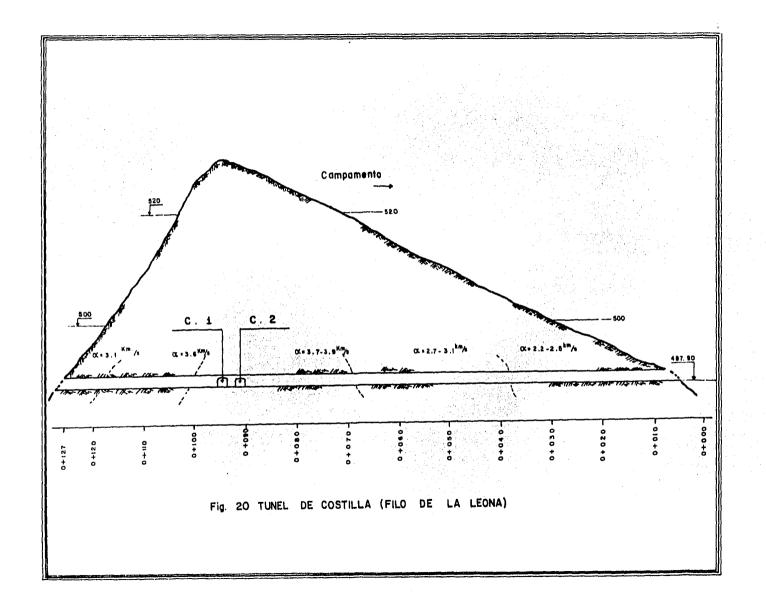

Para el Sitio No. 4 (Fig. 18), las características elásticas - deducidas de igual manera que en el Sitio No. 2 se muestran en la tabla siquiente:


ZONA	H (m)	(Km/seg)	ل	E (Kg/cm ²)	D (Kg/cm ²)
Zona descompri mida y altera- da. (ZONA 3).	10 a 40	2.5	0.27	125,000	60,000
Zona afectada por la des compresión de fracturas. (ZONA 4).	50 a 80	3.2	0.22	200,000	90,000
Macizo profundo y sano. (ZONA 5 y 6).	desde 50 a 80	4.1	0.25	300,000	160,000

Además, los recubrimientos de ladera (Zona 1) y acarreos del -fondo del valle (Zona 2) presentan características muy semejantes a las delSitio No. 2.

Por lo anterior, la estructura y calidad geotécnica del macizorocoso de este sitio, es ligeramente menos favorable que el del Sitio No. 2
pero ambos sitios investigados son perfectamente aptos para los tipos de presa considerados.

En el espolón de los "Ajonjolíes) (Fig 4 y 19) ubicado en la -margen derecha, el macizo rocoso profundo en general se presenta sano y más
o menos comprimido, con celeridades sísmicas de 4.0 Km/seg. En superficie -afectado por los fenómenos de la decompresión y alteración (Zona 3) que seextiende hasta profundidades variables de 20 a 50 m. presenta celeridad rela
tivamente bajas comprendidas entre 2.0 y 2.6 Km/seg., y menos presentes en -la Zona 4 que presenta hasta profundidades de 30 a 80 m. y presenta celerida


des del orden de 3.2 a 3.5 Km/seg.

Para evaluar las condiciones geotécnicas generales del macizo rocoso del espolón a partir de los datos anteriores se han deducido los - módulos de elasticidad (E) y los coeficientes de deformación, que se indican en la tabla siguiente:

ZONA	E (Kg/cm ²)	D (Kg/cm ²)
Zona superficial meteorizada y docomprimida. (ZONA 3).	100,000 a 120,000	40,000 a 160,000
Maciso rocoso - afectado por la descomposición. (ZONA 4)	200,000 a 250,000	90,000 a 130,000
Macizo rocoso profundo inalte- rado. (ZONAS 5 y 6).	mayor de 300,000	mayor de 150,000

En conjunto la estructura y calidad geotécnica del macizo roco so del espolón no parece presentar problemas importantes para las obras — que se han considerado en el proyecto. Cabe mencionar que los fenómenos — de decompresión y alteración se presentan más frecuentemente en la partefinal del espolón (centro del meandro de aguas arriba (Fig. 4), en la cual se registran los mayores espesores de las Zonas 3 y 4.

Para la costilla denominada "Filo de la Leona," las características del macizo rocoso se determinaron por medio de el levantamiento de un perfil hecho en el interior de un túnel previamente excavado. Este túnel tiene una cobertura máxima de roca de aproximadamente 40 m. (Figs. 4 y 20) ubicándose a la elevación 490 m. Los resultados obtenidos indican que el túnel se encuentra ubicado enteramente en terreno más o menos afectadopor los fenómenos de decompresión y por la meteorización (Zona 3) que se-

presenta con mayor intensidad en la parte Norte. De este lado del túnel -(Norte) se registraron celeridades de 2.2 a 2.5 Km/seg. en los primeros 28m.
y de 2.7 a 3.1 Km/seg. hasta los 55 m. a partir de la boca de la entrada.
Del lado Sur la incidencia de la decompresión y la alteración es más limita
da y se acusa en los primeros 10 m., en donde se registran celeridades de 3.1 Km/seg.

En la parte central del túnel, entre los 55 y 107 m. a partir de la entrada Norte, el macizo rocoso se presenta poco afectado por la decompresión general, las velocidades medias que se obtienen en esta zona alcanzan de 3.9 Km/seg. presentando valores extremos de 3.5 y 4.2 Km/seg. El módulo de elasticidad determinado es de: 100,000 Kg/cm² para la zona Norte, 150,000 Kg/cm² para la zona Sur y de 200,000 Kg/cm² para la parte central, en promedio.

De acuerdo a lo anteriormente expuesto se concluyó que el macizo rocoso sano en la zona del proyecto tiene las siguientes características:

> Velocidad de onda sísmica Módulo de elasticidad. Módulo de deformabilidad

4,200 m/seg. 300,000 kg/cm² 160,000 kg/cm²

III. PERMEABILIDAD.

Para la determinación de este parámetro, los estudios realiza-dos fueron hechos principalmente por el método de las pruebas tipo Lugeón,en donde una unidad Lugeón equivale a l Litro/metro/minuto a una presión de
10 Kg/cm².

El criterio recomendado para la evaluación de este parámetro es el siguiente: (Marsal, Reséndiz, Presas de Tierra y Enrocamiento, 1975).

P 1 U.L. Impermeable

1 U.L. P 5 U.L. A criterio del encargado.

P 5 U.L. Filtraciones importantes.

Estas recomendaciones son con el fin de especificar el trata -- miento a seguir:

1. Permeabilidad en el Vaso.

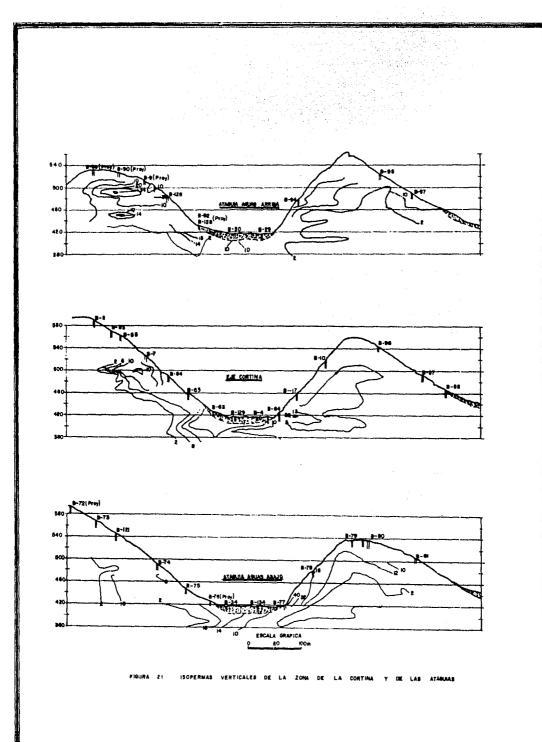
El mayor porcentaje del área del vaso que formará la presa y - que será cubierto por las aguas del embalse, quedará sobre rocas de la formación Mexcala (lutitas y areniscas) que son impermeables.

Por estudios Geohidrológicos en el área donde aflora la forma-ción Mexcala, se ha observado que no es posible otener agua por medio de pozos, únicamente se puede lograr cuando se atraviesa dicha formación y se -llega a las rocas calizas.

Por el espesor (800 m.), que se estima de esta formación en el sitio del P.H. "El Caracol" y de los levantamientos geológicos regionales,-como de la investigación de manantiales, tanto aguas arriba como aguas abajo de la boquilla, y de las pruebas de permeabilidad llevadas a cabo, se --concluye que el vaso es impermeable a excepción de una zona cerca de la estación del ferrocarril de Balsas (22 Km. de la parte final del vaso), donde

de existen algunos cuerpos de roca ígnea y rocas calizas. Los manantialesexistentes aguas abajo de la boquilla son insignificantes, el de San Marcos que es el más importante sólo aporta gastos pequeños del orden 150 Lts/seg. durante la época de lluvias, el resto del año son lloraderos, que en la mayoría de los casos se secan.

El Río Balsas ocupa la parte baja de la Cuenca, no existiendo - otras cuencas bajas y cercanas, por lo que las filtraciones que pueden existir serán de tipo secundario restringido al fracturamiento de las rocas.


2. Permeabilidad en el Eje de la Boquilla. (Sitio No. 4).

En la mayoría de los barrenos se efectuaron pruebas, en algunos tramos no fue posible efectuarlos, debido a lo deleznable de la roca. Se - calcularon las pruebas llevadas a cabo formándose planos de isopermas a cada 10 m. de elevación y posteriormente se tomaron secciones verticales para analizar su comportamiento de acuerdo a la estructura geológica. (Fig. 21).

En la margen izquierda la permeabilidad que presenta la roca es de tipo secundario por fracturamiento, ésto explica el por qué no reporta - una distribución "homogénea" de permeabilidad, pues está condicionada a lacantidad, distribución, estado físico de las discontinuidades y especialmente a la presencia de los diques Dl y D2, que alcanzan valores de hasta 34 y 36 U.L a la elevación 500 m y permeabilidades de 2 U.L. a la elevación de - 300 y 400 m.

Sobre la margen derecha la permeabilidad parece estár más condicionada tanto por el fracturamiento como por la estratificación. La permeabilidad promedio de la masa de roca es de 5 U.L. y la de la roca que se encuentra más próxima a la superficie varía de 18 a 2 U.L.

Por lo anterior la permeabilidad está relacionada con el sentido de la estructura geológica y se acentúa en zonas donde existe la presencia de diques ó en donde la estratificación presenta fracturamiento intenso y se correlaciona con el bajo porcentaje de recuperación en los terrenos (40%).

IV. MATERIALES DE CONSTRUCCION.

La alta sismicidad de la zona y la disponibilidad relativa-mente cercana de los bancos de arcilla y de enrocamiento, así como de los -bancos de grava-arena del río y del material producto de las excavaciones -de las obras anexas fueron factores decisivos para elegir la construcción -de la cortina tipo flexible, de materiales graduados (Fig. 22), cuyo volú--men total aproximado incluyendo las ataguías de aguas arriba y aguas abajoes de: 6'261,880 m³, correspondiendo de arcilla; 927,000 m³, de grava arena;
l'000,000 m³ y de enrocamiento 3'350,000 m³ aproximadamente.

1. Bancos de Arcilla.

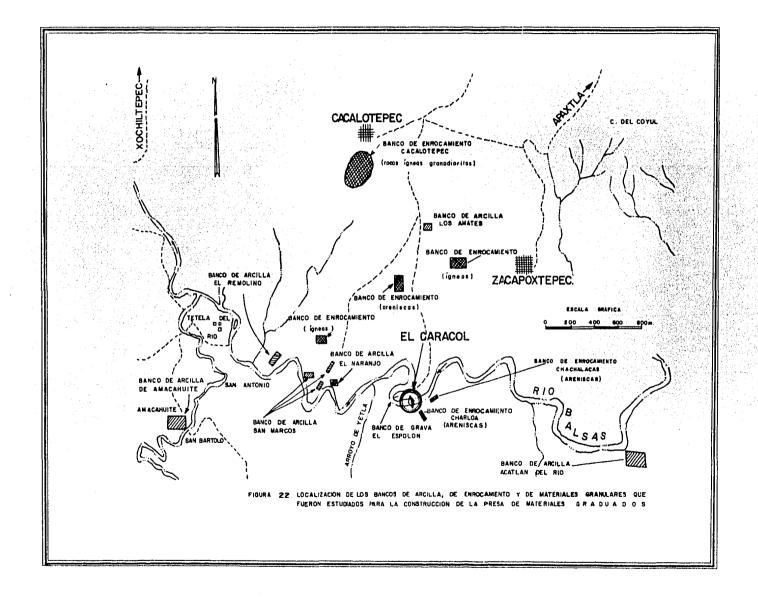
Este tipo de material se utilizará para la construcción delcorazón impermeable de la cortina cuyo volúmen total es de 926,127 m³. Se analizaron posibles bancos que se enumeran a continuación:

Acatlán del Río.

Amacahuite.

Los Amates.

San Marcos.


El Remolino.

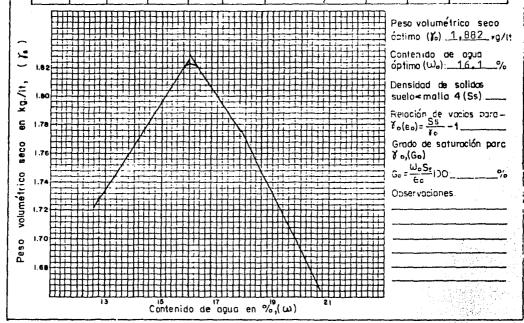
El Naranjo.

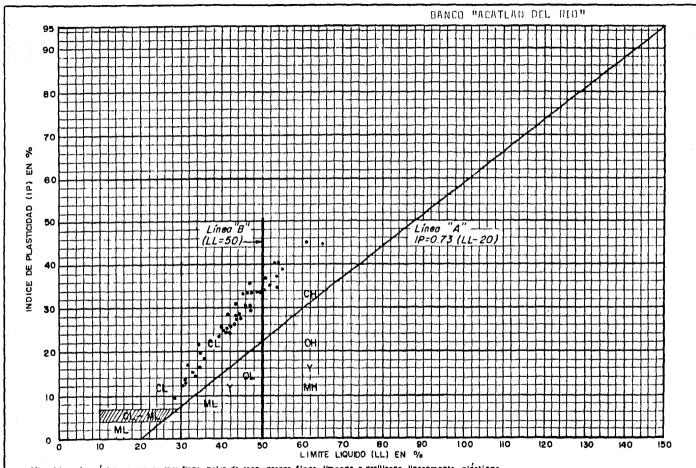
Banco Acatlán del Río.

Se localiza a 10 Km. aguas arriba del Sitio No. 4 sobre la -margen izquierda; este banco se ha estudiado por medio de 49 pozos a cielo abierto a diferentes profundiades ubicando un volumen de 2'000,000 m³. El
volúmen de este banco es suficiente para satisfacer las necesidades requeridas para el corazón impermeable, pero tiene el inconveniente de localizarse
hacia aguas arriba, no existiendo actualmente camino de acceso hacia la zona.

En seguida se muestran los resultados de las pruebas de laboratorio presentando también el análisis de una prueba:

					PR	O PIE	DA	DES	INDICE
PROY	ECTO_F	.H. E1	CARACOI	, GRO.			BANCO	ACATI	LAN DEL RIO.
PCA	Profu	ndidad	ω_{nat}	LL %	LP %	IP %	ద్శ్లీత్తా.	a⁴n Km/m³	CLASIFICACION .
1	O	1.9		51.9	17.1	34.8	16.2	1883	arcilla café.
2	0	3.9		65.2	20.8	44.4			arcilla café con gravillas.
3	0	6.5		44.1	15.6	28.5			arcilla café con arena y gravillas.
4	0.5	4.5		43.3	17.3	26.0	17.5	1796	arcilla limosa café.
5	0	5.5		39.2	15.3	23.9			er is it that
6	0	4.5		40.7	15.5	25.2			91 K H H H
7	0	2.5		31.3	18.7	12.6)) 12 t1 10 t(0)
8	0	4.0		41.7	17.6	24.1			arcilla café con gravillas.
9	0	4.5		45.9	16.3	29.6	16.1	1822	arcilla café con arena y gravillas.
10	0	4.5		50.4	16.3	34.1			arcilla café rojizo con gr <u>a</u> villas.
11	0	5.0		55.L	16.3	38.8			arcilla café con gravillas.
12	0.2	7.3		44.0	16.1	27.9			arcilla café claro con gra- villas.
.13	0	6.2		47.2	16.6	30.2			11 12 to 14 to 16 th
14			SIN		MUE	STR	A		
15	C	4.0		45.5	12.3	33.3	16.6	1814	arcilla limosa café.
16	С	6.8		54.0	13.6	40.4			arcilla café amarillento.
17	С	7.6		35.6	17.4	18.2			arcilla café.
18	С	6.0		46.2	15.8	30.4			60 10 17
19	0	5.3	l 	53.3	13.1	40.2			(I PI H H
20	0.2	6.6		30.7	17.6	13.1			arcilla café rojizo.
21	0.2	7.4		42.0	16.3	25.7			arcilla café con gravillas
22	0.2	7.2		42.4	15.0	27.4			arcilla café.
23	0.2	6.4		29.9	17.6	12.3			gravillas y arcilla areno- sa.
24	0.2	7.0		50.8	14.0	36.8			gravillas y arcilla poco arenosa.
25	0.2	5.7		46.3	12.7	33.6			ŋ u n 9
26	0.1	7.0		28.3	18.8	9.5			arcilla limosa café.
27	0	6.3		49.6	15.8	33.8			arcilla café con gravillas
28	0.2	6.0		31.4	14.5	16.9			arcilla café.
29	0.2	6.2		31.7	17.4	14.4		<u></u>	arcilla café rojizo.


- 1


									INDICE
PROY	ECTO_	P.H. EL	CARACO	L, GRO.			BANCO	ACATI	AN DEL RIO.
PCA	Profu	n did od	ω _{nat.}	L L %	L P	IP %	Wop.	Km/m ³	CLASIFICACION
30	0.2	3.7		40.7	16.4	24.3			arcilla café con gravilla
31	0.2	6.0		41.4	12.9	28.5	15.0	1888	arcilla café con arena y gravas.
32	0.4	5.6		43.6	12.6	31.0			arcilla café.
33	0.5	4.1		43.6	16.2	27.4			arcilla café claron con gravillas.
34	0.3	5.3		47.0	11.1	35.9			arcilla café con gravilla
35	0.2	5.5		33.0	18.0	15.0			arcilla café rojizo.
36			SIN		MUE	STR	. A		
37	0.2	3.0		34.4	14.6	19.8			arcilla cafê.
38	0.2	3.0		34.4	18.5	15.9			arcilla limosa café con gravillas.
39	0	4.0		34.1	12.4	21.7			arcilla limosa café.
40	0.2	5.1		49.6	15.8	33.8			arcilla café rojiza con gravillas.
41			SIN		MUE	STR	A		
.42	0.2	5.2		60.9	16.0	44.9			arcilla café con gravilla
43	0	2.8		53.3	15.7	37.6			
44	0.4	3.0		47.4	13.7	33.7	15.3	1830	arcilla limosa café.
45			SIN		MUE	STR	А		
46			SIN		MUE	STR	А		
47	0.2	3.0		52.3	16.7	35.2			arcilla café.
48	0	4.0		39.4	15.8	23.6	15.2	1844	arcilla café con gravilla
49	0	2.8		39.9	14.4	25.5			9 9 11 11 11 11 11
•									
							99.49		
			577		i jeka				
						A Sign			
			2,000	Million Control					
			 					3.5	
	<u> </u>	L	<u> </u>			1		<u> </u>	
								54.	

Sele Cele	cc [A]	CATLAUS	огино _ 9 Loca	Muestra zación X:	0.0-4	,50 _m, Y:	Fecho m (de <u>M/</u> Colculó _	
Les:	PSULA No	PESO DE LA	ICAPSULA I+ SUELO ATHUMEDO	CAPSULA	1	PESO SECO	Contenido de agua	NUMERO D E	OPERADO
	CV	gr gr	gr	j gr	gr	gr	%	1GOLPES	
	9	1 53.3 78	E2.422	73.287	9,135	19,909	45.9	25	
%	10	64.027	£9.262	E1.320	7.942	17.293	45.9	25	
۲۲,%		<u> </u>	<u> </u>]	i i		
		<u> </u>				!			
LP,%						<u> </u>			
5)	69.582	i :	1	1,720	16.4	1	
W. CONTENIDO DE AGUALEN								ω = LL = LP = LL =	= 45.9 16.3 29.6 Límite Liqu Límite Plás Indice de plasticidad
	4	5 6	7 8 9 NUM		20 DE G O	30 LPES	40 (50	

PRUEBA DE	COMPACTACION	PRO	CTOR	
Proyectc P.H. CARACOL Hanco c estructuro. <u>ACATLAN</u> Pozo <u>PCA-9</u> Localización - Profund dad <u>0-450 in</u> Tipo de mues	Operad Calculá	or		
Diametro molde 10.57 cm (1) Volumen moide 1.009 lt. (2) Tara molde 3.268 kg.	Peso del martillo: 2.505 Diámetro del martillo: 31.0 No de golpes/capa 33	cm	Energia	de compactación (

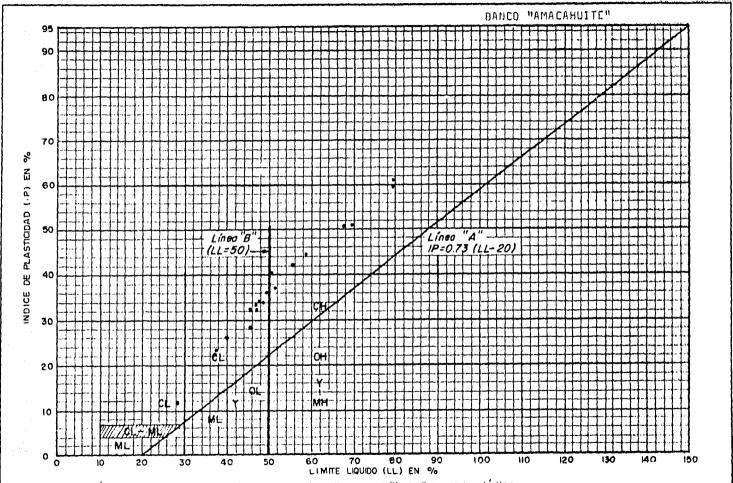
		CONT	ENIDO	DE A	GUA			DATOS	MOLD	Ε
Copsulo No	capsula	Peso suelo húmedo + capsula	seco i copsula	açua	5800	Contenido de agua	húmedo + molde	humedo	5000	volumetrico seco
	(3)	(4)	(6)	(6) (4)-(5)	(7) (5)-(3)	(8) (8) (7)	(•)	(10)	(11) (0) (1+(8)/100	(12)
	gr	gr	gr	gr	gr	%	kg	kg	ko	kg/lt.
49	99.44	242.04	224,87	17.17	125.43	13.7	5.281	2,013	1,770	1.754
107	 10 <u>6,38</u>	287,24	263,48	23 . 76	157 . 10	15.1	5.357	2.089	1.815	1.799
111	96.73	243.87	222. 79	21 <u>.0</u> 8	126 <u>.</u> 06	16.7	5.39B	2.130	1.825	1.808
176,	04.12	265.54	241.08	24.46	136.96	17.9	5.375	1.107	1.787	1.771
205	106.78	281 . 15	251 . 87	29 <u>.</u> 28	145.09	20,2	5,313	2.045	1.701	1.686
								;		

ML.- Limos inorgánicos y arenas muy finas, poivo de roca, arenas finas ilmosas o arcillosas ligeramente plásticas
CL.- Arcillos inorgánicos de plasticidad bajo o medio, arcillos arenosas o limosas OL.- Limos orgánicos y arcillos ilmosas orgánicas de bajo plasticidad

MH.-Limos inorgánicos, timos "elásticos," suelos micáceos o dialomáceos, arenosos finos o limosos. CH.-Arcitias inorgánicas de alta plasticidad

OH.-Arcillos orgánicas de mediana o alta plasticidad

CARTA DE PLASTICIDAD DE SUELOS FINOS


Banco de Amacahuite.

Se ubica a 13 km. aguas abajo del Sitio No.4, en la margen izquierda del Arroyo de las Truchas. Este banco ha sido - estudiado por medio de 18 pozos a cielo abierto los cuales han -- arrojado un volúmen aproximado de 360,000 m³ de arcilla. A continuación se muestran los resultados de los análisis de laboratorio así como también el análisis de una prueba.

PROY	ECTO_	P.II. E	L CARAC	OL, GRO			BANCO	CAHUITE.	
PCA	Pro (u	ù qiqá q	w _{nat}	L L %	L P	IP %	ယ္ကဲ့ op .	r n Km/m³	CLASIFICACION
1	0	3.0	16.1	45.6	13.0	32.6	13.7	1908	arcilla arenosa café r
2	o ·	3.0	18.2	50.4	14.4	36.0	ī		te 11 tt 11 11 11
3	0	2.5	18.1	58.7	14.2	44.5	16.2	1792	arcilla café rojizo.
4	0	2.5	14.4	46.3	13.0	33.8	14.3	1882	11 11 11 11 11
5	0	2.0	22.0	67.5	16.0	51.6	19.3	1728	arcilla café rojizo co poca arena fina.
6	0.2	2.5	27.2	79.3	19.6	59.7			arcilla café.
7	0	6.0	17.3	45.7	17.3	28.4			arcilla arenosa café n
8	0	5.0	16.7	50.7	16.8	33.9			arcilla café rojizo.
9	0	1.5	9.7	28.2	15.6	11.6	12.1	1946	arcilla arenosa cafér
10	2.0	8.0	25.5	37.5	14.6	23.0			arcilla limosa café ro
11	1.5	5.0	21.3	48.9	14.9	34.0	18.2	1775	69 10 69 10 E9 10 E5
12	0	2.0	14.9	40.	14.0	26.0			arcilla arenosa café i zo con gravillas.
.13	0	2.0	24.5	55.9	13.7	42.2	19.4	1690	arcilla café.
14	0	2.0	20.4	69.8	19.0	50.8			te 11 50 17
15	1.0	1.5	33.1	79.7	18.3	61.4			arcilla café.
16	0	1.5	23.7	51.6	14.7	36.9			arcilla café rojizo.
17	0	1.5	25.3	48.6	15.3	33.9			arcilla limosa café.
18	0	2.0	23.8	47.0	14.6	32.4			arcilla limosa café ro
100									
1.11									
							X		
			14 A 19 A		法系统	76 No. 1			
	140	1 174 TC					233		
									100 Page 100
							V.		
3/					1.2.2				
	 	 	 		175.00 A				Total Control (1997) (1

Processor P.H. EL CARA_OL Fecho Ge SEPT 19			·				CONSIS			
PESO CAPSULA CAPSULA AGUA PESO Contenido DE OPERADO SECO DE LA HSUELO HSUELO AGUA SECO DE LA HSUELO HSUELO AGUA SECO DE LA HSUELO HSUELO AGUA SECO DE CAPSULA HUMEDO SECO DE CAPSULA HU	Bor	ECAMA	CAHJITE	ndec 4	Nuestra	0.0-2.	50 m	nn C	olculć _	
SECO ω DE OPERADO SECO SECO ω DE OPERADO	Col	a NE . Sripe ó	n ARCILL	A EAFE I	zación: X± ROJIZA 2	5% RET.	m, Y* # 40	m		
115 62,037 87,990 79,886 8,104 17,849 45,4 35 120 58,848 87,830 78,554 9,276 19,706 47,1 24 121 67,132 91,285 83,417 7,868 16,285 48,3 18 122 58,694 82,762 74,951 7,911 16,157 49,0 14 23 156 66,418 68,303 63,089 0,214 1,671 12,8 157 65,514 68,132 67,825 0,307 2,311 13,3 LIMITE LIQUIDO 80 140 140 140 140 140 140 140 140 140 14		PSUL No	DE LA	H SUELO	+ SUE LO		;		NUMERO D E	
12G 58.848 87.830 7H.554 9.276 19.706 47.1 24 121 67.132 91.285 83.417 7.868 16.285 48.3 18 122 58.694 82.762 74.951 7.911 16.157 49.0 14 157 49.0 14 157 45.514 68.132 67.825 0.307 2.311 13.3 13.3 14 157 45.514 68.132 67.825 0.307 2.311 13.3 15 15 15 15 15 15 15 1		ζ	gr	gr	gr	gr	gr	%	igolpes	
121 67,132 91,285 83,417 7,868 16,285 48,3 18 122 58,694 82,762 74,251 7,911 16,157 49,0 14 157 65,514 68,303 68,089 0,214 1,671 12,8 157 65,514 68,132 67,825 0,307 2,311 13,3		115	62.037	87.990	79.886	8.104	17.849	45.4	35	
156 66.418 68.303 68.089 0.214 1.671 12.8 157 65.514 68.132 67.825 0.307 2.311 13.3 LIMITE LIQUIDO No. 150 150 150 150 150 150 150 150 150 150			·	1		1	ī	47-1	24	
156 66,418 68,303 68,089 0.214 1.671 12.8 157 65,514 68,132 67,825 0.307 2.311 13.3	%		i	1		1	1		18	
157 65.514 68.132 67.825 0.307 2.311 13.3] =	122	58,694	82.762	74.951	7.911	16.157	49.0	14	
15°										
15° 65.514 68.132 67.825 0.307 2.311 13.3										
15° 65.514 68.132 67.825 0.307 2.311 13.3	L.P,%	156	66,418	68.303	63.089	0.214	1.671	12.8		
Prueba No W =			<u> </u>	L	<u> </u>	0.307	2.311	13.3	<u></u>	
	H	2 1 40 D	5 6	7 8 9		20	30	40	() = LP = LP = LP =	13.0 33.8 Límite Liqu Límite Plás

		٠					· · · · · · · · · · · · · · · · · · ·							
		Pf	RUEB	A D	Ε	COMPA	CTACIO	N	PROC	TOR				
P!	oyecto _	Р.	H. CARA	COL				_Fecha:	de	SEPT,	198 <u>74</u>			
	nco o													
							EGRAL							
S K	ímetro r	noide		c			nartilia				apas			
(1) Volumen moide 1.009 It. Diametro del martillocm Energía de compacto (2) Taro moide 3.268 kg Altura de caídacm kg-cm														
No de gripes/capa											N y 011.70			
••	CONTENIDO DE AGUA DA										DS MOLDE			
	Capsula No.	Tora	Peso suelo húmedo		Fes		Contenido de	Peso susto		Peso suelo	Peso voiumetrico			
		(3)	+ copsulo (4)		(4)	1	(e)	+ molde	(10)	(11)	99C0 (12)			
					(4)- (5) (5)-(3)	{6} (7) 100		(9)-(E)	(IO) (+(B)/100	(10			
		gr	gr	gr	gr	gr	%	kg	kg	kg	kg/It.			
	10	4.58	219.78	206.03	13.	75111-45	12.3	5.25	9R3	1.766	1.750			
	167	06.48	233.48	218.17	15.	3 111.69	13.7	5.389	2-121	1 865	1 848			
. 1	179	99.97	219.78	204 - 18	15.	50104.21	14.15	5.428	2.160	1 - 876	1.861			
				í		65105.19			2.108		1.789			
				}										
	219	104.80	243.69	221 <u>.98</u>	21.	7.11.17.18	18.5	5.333	0.065	1.742	1-726			
į				l										
				 							trico seco			
	1.88			I					1 1 1 4	mo (‰) tenido la	1.882 kg/k			
-	1.86								in opt	imo (m°; "	14.3 %			
=	1.84				X					sidad de lo-≼malla	solidos 4 (Ss)			
XQ./18					++				Reic	ción de	vacios para -			
ŝ	1.82					N. Hiii					-1			
	1.80								 	(G ₀)	uración para			
5	1.78				† †				≡ 6.∍	ω _s ιοο	%			
										ervacion e				
	1.76								钳二					
	1.74													
	1.72								田二					
	曲								田-					
	ш		13	Contenid	o de	agua en '	%'(π) (1111)	1111111	TITT					

ML.- Limos inorgánicas y arenas muy finas, polvo de roca, arenas finas fimosas o arcitiosas figeramente plásticas CL - Arcillas inorgánicas de plasticidad bajo o medio, arcillas arenosas o limosas. OL-Limos orgánicos y arcillas timosas orgánicos de bajo plasticidad MH.- Limos inorgánicos, limos "elásticos," sue los micáceos o dialomáceos, arenosos finos o limosos. CH.- Arcillas inorgánicas de alta plasticidad CARTA DE PLASTICIDAD DE SUELOS FINOS

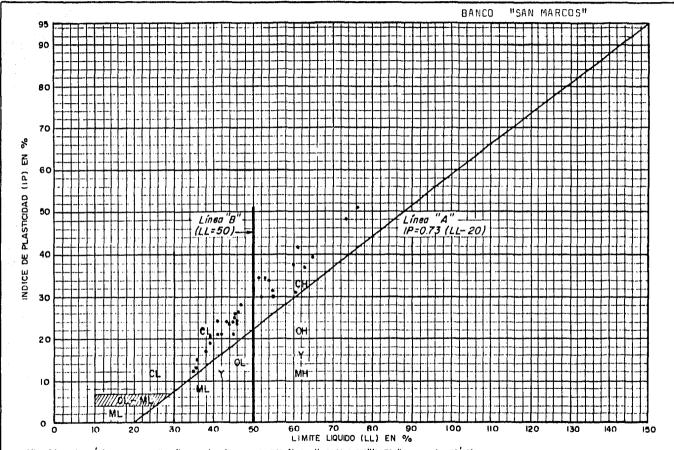
OH.-Arcillas orgánicas de mediana o alta plasticidad

Banco Los Amates.

De las exploraciones superficiales llevadas a cabo - en las inmediaciones del poblado de Los Amates, se localiza en la parte alta de la sierra un banco de arcilla aproximadamente a 5 Km. al NE de la boquilla en la margen derecha cerca del camino de acce so proyectado entre las poblaciones de Zacapostepec y Caracol. No se indicó ni se hicieron exploraciones directas para determinar - sus propiedades físicas, por ser esta zona de difícil acceso y de pronunciadas pendientes del 15% aproximadamente.

Bancos San Marcos.

Se localiza aproximadamente a 8 Km. aguas abajo de - la boquilla de la presa sobre la márgen derecha del Río Balsas. - Tiene una superficie total aproximada de 370,000 m², distribuída - en cuatro partes. Para su estudio se excavaron 48 pozos a cielo - abierto con profundidades medias variables entre 1.5 y 2.5 m. con valores máximos de 6.5 m. y mínimos de 0.3 m.


Estimando conservadoramente una superficie aprovecha ble de 200,000 m² y un espesor medio de 2.0 m., el volúmen disponible en este banco será del orden de 400,000 m³. Se muestran enseguida los resultados de los análisis de laboratorio y un ejemplo de la determinación de los límites de consistencia y peso volumértico.

RESUMEN DE PROPIEDADES INDICE									
PROY	ECTO_	F. 11.	EL CARA	COL, GR	ю.		BANCO	SAN	MARCOS.
PCA	Pro fu	¹ b qiq dq	what.	LL %	L P %	IP %	(ပွဲ့ _{op} .	ľm Km/m³	CLASIFICACION ·
1	O	1.2	SIN		мив	STR	1 :		arcilla arenosa café.
LOS	POZOS	2 y 3	NO SE	LES PU	DO TOM	R MUES	ra por	ABUNDA	R GRAVAS. (TAPADOS).
4	0	2.0		41.0	19.9	21.1			arcilla café con abundan tes gravas.
5	1.0	€.5		46.2	19.8	26.4	17.5	1802	arcilla poco arenosa a ca- fé amarillenta.
6	0	0.4	SIN		MUE	STR	A		arcilla arenosa café.
6	0.40	5.50		42.3	21.1	21.2	14.9	1870	arcilla arenosa café.
7	0.20	2.0		44.8	23.6	21.2	14.6	1846	arcilla café amarillento.
8	0	1.9		55.6	23.9	31.7	16.8	1760	arcilla café.
9	0.4	3.5		46.0	22.4	23.6	16.4	1818	arcilla café amarillento.
10	0	2.8		38.7	19.8	18.9	11.7	1985	arcilla café.
11	0	2.7	1.5	46.3	22.2	24.1	15.6	1826	arcilla café rojizo.
12	0	2.3	1.4	46.1	20.5	25.6	14.3	1892	arcilla café rojizo.
73	o	1.0		34.8	22.5	12.3	16.7	1794	arcilla arenosa café.
14	0	2.5	SIN		MUE	STR	A		arcilla café rojiza.
15	0	1.0	3.7	60.6	29.8	30.8			arcilla negra c/poca arena
16	0	1.7	4.5	64.6	25.0	39.6	15.6	1666	arcilla negra c/poca arena
17	0	0.6	4.9	63.4	26.8	36.6			arcilla negra con arena
18	0	2.0	2.6	41.5	19.2	22.3	16.0	1816	arcilla café amarillento con gravillas.
19	0	1.7	2.7	54.0	19.9	34.1	17.4	1788	u nuu n
20	0	0.5	SIN		MUE	STR	A	1	limo arenoso café.
21	0	1.2	1.4	44.6	22.7	21.9	16.0	1833	arcilla café rojizo con gravas.
22	0	2.0	3.4	47.1	18.8	28.3	15.2	1824	arcilla café amarillento
23	0	0.5	SIN		MUE	STR	A		limo arenoso poco cementa-
24	0	1.5	7.7	61.0	19.2	41.8			arcilla café rojizo con po cas gravas.
25	0	2.2	7.6	73.8	25.7	48.1	17.8	1716	u nuu nuu nu
26	0	2.8	T	43.9	20.4	23.5	14.5	1852	arcilla café amarillento.
27	0	1.3	SIN		MUE	STR	Α		arcilla café con gravas.
28	0	1,8	1.5	38.6	17.1	21.5	14.2	1880	arcilla café con gravas.
29	0	2.0	3.5	53.6	18.8	34.8	16.4	1804	arcilla café amarillento con gravas.

			ω %nat	OL, GRO					MARCOS.			
PCA		Profundidad		LL %	L P %	IP %	(y,op.	Km/m ³	CLASIFICACION arcilla café con abunda			
30	0	0.5	1.9	60.0	22.3	37.7			tes gravas.			
31	D	1.6	3.6	52.0	21.8	30.2	15.6	1809	con gravas.			
32	0	1.5	4.2	51.4	16.7	34.7			11 11 15 16 16			
33	e	2.5	3.2	43.8	19.8	24.0	14.5	1894	a batas (
34	0	1.5	SIN		MUE	STR	٨		gravas y boleos c/arcil			
35	0.2	2.0	5.2	35.5	22.4	13.1	17.7	1768	arcilla café con gravas			
36	0	2.0	3.5	38.1	20.9	17.2	17.3	1784	arcilla café obscura.			
37	0	1.3					15.4	1808	limo arenoso café amari- llento.			
38	0	2.5	1.4	36.2	21.0	16.1	13.7	1912	arcilla rojiza con grav			
39	0	0.30	SIN		MUE	STR	A		arcilla café con abunda tes gravas, fondo tepet			
40	0	0.3	SIN		MUE	STR	А		33 II 66 33 II 65			
41	0	1.4	6.4	54.8	24.7	30.1			arcilla café obscura.			
:42	0	0.6	SIN		иче	STR	A		arcilla café obscura co gravas y boleos fondo t			
43	0	0.5	SIN		MUE	STR	А		33 H H H H H			
44	0	0.5	SIN		MUE	STR	Α		17 10 55 17 18 19			
45	0	0.5	SIN		MUE	STR			17 19 61 17 17 11			
46	0	0.5	SIN		MUE	STR	A		tepetate.			
47	0	0.5	SIN			STR			arcilla café rojiza c/g vas y boleos fondo tepe			
48	0.	1.7	8.7	76.4	25.4	51.0	17.4	1566	arcilla café.			
						K. pri						
				1 7 4	3.8	想数		7				
······································				(M. S.			Rich					
	<u> </u>						1.					

		•			,					
		The segment of the party of the	LIMITE	ES D	E C	ONSIS	STENC	CIA	u o Tari u - An u obe eren describente en en de de	
Fre	neste Se SAI	P.H. L	L LARALO	JL , 655.	0-2.	50 m		17 de	7 sei 01MUC	<u>.</u>
Ca.	c. Nc.		Locali	zación X:		_ m,):	m F	revisć	_ Ссра №	-
	A P SULA No	DE LA	CAPSULA + SUELO HUMEDO	I+ SUELO SECO	AGUA	SECO	Contenido de agua W	NUMERO DE GOLPES	OPERADOR	
	2			<u>g</u> r		i gr 	1 %			-
	50 51	1	35.97 135.45	I		17.24	1	28		1
	52	1	33.00	26.08	¦	16.11	1	19		1
,,'\l	53		35.50	17.39		17.02	1	10		
-						1	!			
		<u> </u>				! :	<u>.</u>			1
LP,%	70	10.05	15.50	14,60	0.90	4.55	19.8			
	71	9.95	15.31 LIQU	14.42	0.89	4-47	19.9			Ţ
	٠							3		
•	E 18 70		$\equiv \chi$					<u> </u>		
	# 47 E							Pru	ebo Nc	
=	9 46						+			
	~ "=				7			ω=	%	
L	45							LL:	:_43 <u>.</u> 8 %	
	2 44=							LP=	%	
	- 13E							I _o =	24.0 %	
	u ,,=						7			
2	≥ [] 							: LL= :	Límite Liquido	
Ċ	⊒ دَ							LP=	Límite Plástico	
3	, EEE							1	Indice de plasticidad	
	. 4	5 6	7 8 9 NUM		20 DE GO	30 LPES	40 (50		
	·									

· ·		PF	RUEB	Δ D	Ε	COMPA	CTACIO	N	PROC	TCR	
Bo Po	nee o ze <u>3</u>	østruct 3	urc	ALL MAR	COS.			_Operado _Colouió	o:		19276.
(1) Volumer	n morae	0.994 3.258	1	g Al	śmietro d turo be o	artilo e: martillo coiac es/capa		cm	Energia	opas oe compostación kg-cm/tr- ³
	DE SELIGED			keto + cópsula (6)	F: 50 cguo (6)		Contenido de ogua (8) (8) (7) (00 %	numeat + mc de	• i	955	
	45					82.02				1.862	•
	47		102.50	!	1	81.12	and the same of th	1	Ī	1.882	
	48	10,01	103.30	90.38	12.92	80.37	16.1	398	2.127	1.832	1,842
Peso volumétrico seco en kg./it, (/s)	1870 1870 1860 1860				14 15	is a special control of the control	17, 18		Composition of the composition o	Emo (for 1 ntenido o timo (₩e) . nsidod de elo <ma =="" colón="" de="" ieo="" td="" to="" €e<=""><td>4 (Ss) vacios parc – -1 suroción parc</td></ma>	4 (Ss) vacios parc – -1 suroción parc

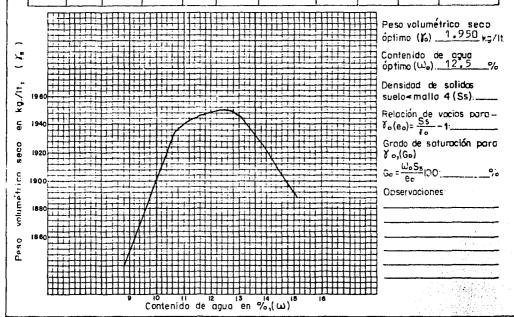
ML.- Limos inorgánicos y arenas muy finas, polvo de roca, arenas finas ilmosas o arcillosas ligeramente plásticos.

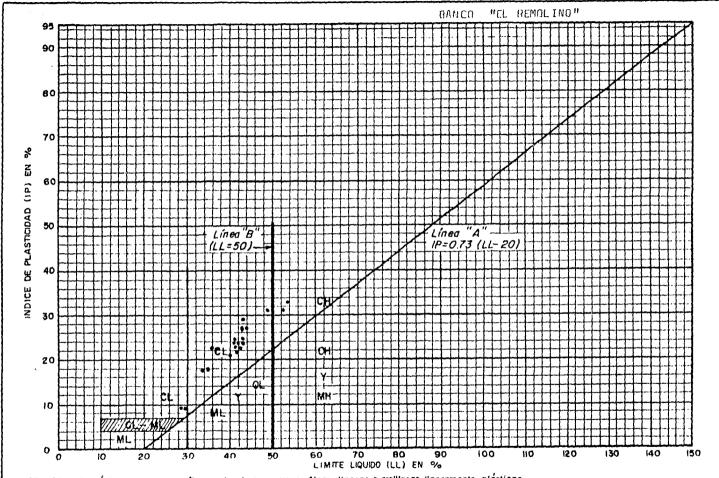
CL - Arcillos inorgánicos de plasticidad baja o medio, arcillos arenasas o limosas OL-Limos orgánicos y arcillos timosas orgánicas de baja plasticidad

MH.- Limos inorgánicos, ilmos "elásticos," suelos micáceos o dialomáceos, arenasos finos o limosas CH.- Arcillas inorgánicas de aña plasticidad

CARTA DE PLASTICIDAD DE SUELOS FINOS

Banco El Remolino.


Localizado en la márgen derecha del Río Balsas, a - una distancia aproximada de 10 Km. aguas abajo de la boquilla y de la presa y a continuación del Banco San Marcos. Tiene una superficie aproximada de 215,000 m² y para su estudio se excavaron 27 po-zos a cielo abierto, de profundidades variables entre 0.4 y 6.5 m. Considerando una superficie aprovechable de 200,000 m² y un espesor medio de 2.5 m. el volúmen disponible será del orden de 500,000 m². Se muestran los resultados de los análisis de laboratorio y un --- ejemplo de cálculo de las propiedades del material.


		RESI	JMEN	DE	PR	O PIE	DA	DES	INDICE
PROY	ECTO_	Р.Н.	EL CARAC	OL, GRO			BANCO	EL F	EMOLINO.
PCA	Prof _{(H}	^l ∂ didad	What:	LL %	LP %	IP %	(y) op.	1 m Km/m³	CLASIFICACION
1	0	6.5		28.6	19.1	9.7	12.0	1972	arcilla café con gravas.
2	0	0.4	SIN		MUE	STR	λ		arena fina cementada.
3	0	3.0		42.0	18.3	23.7	13.5	1910	arcilla café.
4	0	1.2	2.5	43.2	18.6	24.6			arcilla café con poca are na y gravillas.
5	0	2.0		41.4	17.2	24.2	14.6	1878	arcilla café rojizo.
6	0	4.0		49.2	18.2	31.0	13.2	1925	e en 11 H
7	0	4.5		41.6	19.6	22.0	12.4	1978	a 11 H H H H
8	0	1.0		44.2	17.3	26.9			
9	0	0.8	1.9	41.4	17.6	23.8			n 11 H H H
10	0	2.0	1.6	40.0	19.2	20.8			arcilla café amarillento con gravas.
11	0	2.3		53.4	20.4	33.0	16.2	1795	arcilla café rojizo.
12	0	2.0		41.5	17.8	23.7	13.5	1902	arcilla café amarillento.
:13	0	1.0	2.0	42.4	19.1	23.3			
14	0	2.3		33.2	15.5	17.7	12.0	1982	arcilla café rojizo.
15	. 0	3.0	2.7	40.7	16.7	24.0			arcilla café amarillenta.
16	0	2.0		34.6	16.8	17.8	12.0	1990	II H H U U W
17	0	0.5	SE SUSI	ENDE PO	R HABE	BOLEO	5 .		arcilla arenosa café con abundantes gravas.
18	0	2.0	1.1	29.2	20.0	9.2	11.6	1975	arcilla café rojizo con abundantes gravas.
19	0	0.5	SIN		MUE	STR	А		limo poco arcilloso café.
20	0	0.5	SIN		мив	STR	A		arcilla café rojiza con abundantes gravas.
21	0	0.4	SE SUS	ENDE PO	R LA D	REZA D	E LA AF	CILLA.	arcilla café rojizo con gravas y gravillas.
22	0	1.5		43.2	14.3	28.9	12.2	1958	arcilla café rojizo.
23	0	0.5	SIN		MUE	STR	A		arcilla café rojizo con gravas.
24	0	2.5	3.0	36.3	14.1	22.2	12.5	1950	11 20 10 10 50 10 10 10
25	0	0.8	4.8	43.6	17.2	26.4			arcilla café rojizo con gravillas.
26			SIN		MUE	STR	Α		gravas lageadas empacadas con arcilla.
27		1.0	5.0	52.4	20.6	31.8		 	arcilla café.
			-	 			1	ļ	
	<u> </u>	1	1	<u> </u>		1	1.	<u></u>	<u> </u>

Ho Co	o Nc	MOL INO So	Locali	_ Muestra zación X:	0 - 2.5	0 <u> </u>	r C	aiculé <u></u> Pavisé,	_ Copo Nc
		PESO DE LA ICAFSULA	CAPSULA + SUELO HUMEDO	+ SUE LO	AGUA	PESO SECO	Contenido de agua W	DE	OPERADOR
	CA	gr	gr	gr	gr	gr	%	GOLPES	
	46	9,48	35.12	23.52	6,ćD	19.04	34.70_	34	
	47	9.69	37,29	27.91	7.33	20.22	1	24	
%.	49	10.01	33.55	27.12	6.43	<u>1</u> 7 <u>.</u> 11_	37.6_	18	
۲۲,%	49	10.07	32.89	26.31	6.58	16.24	40.5	10	
								!	
•									
LP,%	68	10.53	15.03	14.59	0.52	3.97	13.3		
_	69	10.63	15.20	14.0	J.60	3.97	15.0		
1 1 2	AGUA, EN %								ebo No

PUEBA DE	COMPACTACION	PRO	CTOR
Fragers P.H. EL CARACOL, GRO Finas o estructuro EL REMOLTA Fras 24 Localización Fratunanac Q = 2.50m ipo de mues	Operad Calcuid	ior	
District mole	Diómetro del martlllo:	cm	Energia de compactación

Corsulo No.	Torc cápsulo (3) gr	Peso suelo húmedo + cápsula (4)	secc +	(6) (4)-(5)	Fesc sudio 5900 (7) (5)-(3)	(8) (8) (7) (7)	Peso see húmedo + moide (9)		Feso suelo seco (II) (IO) I+(8)/IOO kg	Pesc volumetrico seco (12) (11) (1)
وم	10.40	102.00	94.27	7.73	83.87	9.2	5. 27 <u>6</u>	2.018	1.848	1.858
81	9.94	102.50	93.50	9.00	83.56	10-8	5.394	2-136	1.928	1.938
82	10.32	103.10	92.61	0.49	82.29	12.7	5.443	2,185	1,939	1.949
£3	10.37	103.80	92.39	1.41	82.02	13.9	5.439	2.181	1.915	_1.925_

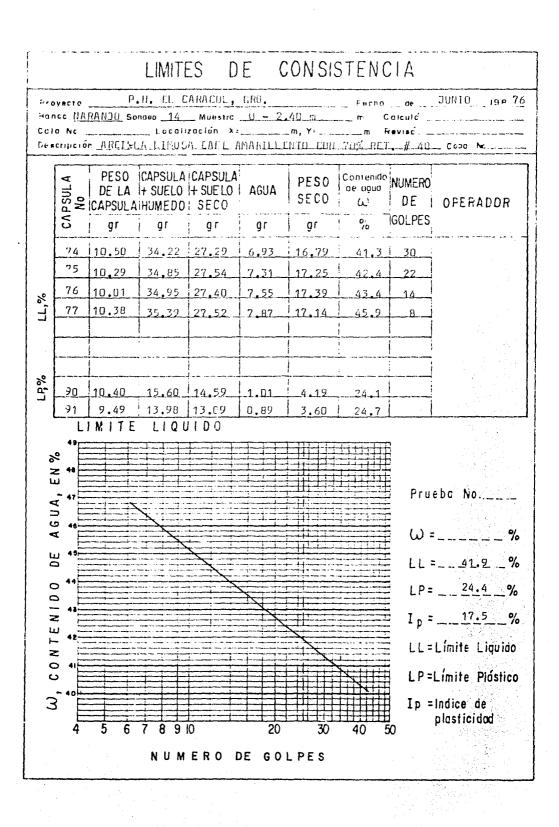
ML - Limos inorgánicos y arenas muy finas, polvo de roca, arenas finas limosas o arcillosas ligeramente plásticas

CL - Arcillas inorgánicos de plasticidad bajo o medio, arcillas arenosas o limosas OL-Limos orgánicos y arcillas limosas orgánicos de bajo plasticidad

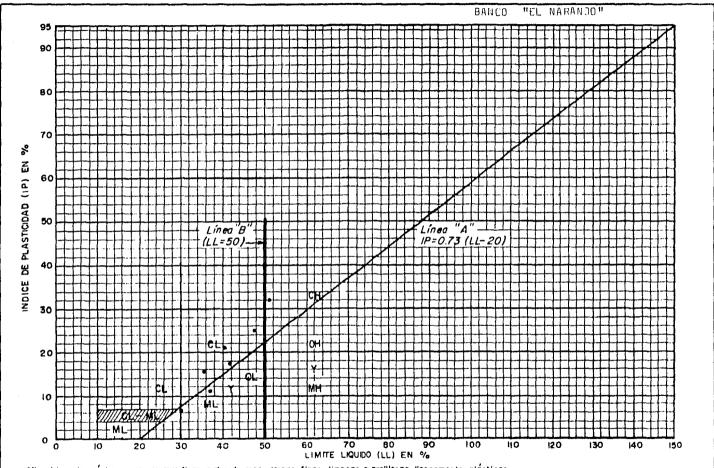
MH.- Limos inorgánicos, limos "elásticos," sue los micáceos o diatomáceos, arenasos finos o limosos. CH.- Arcillas inorgánicos de alta plasticidad

OH. - Arcillas orgánicas de mediana o alta plasticidad

CARTA DE PLASTICIDAD DE SUELOS FINOS


Banco El Naranjo.

También localizado en la márgen derecha del Río Balsas, aproximadamente a 6 Km. aguas abajo de la boquilla No.4. Tiene una superficie aproximada de 82,000 m² y para su estudio se excavaron 14 pozos a cielo abierto de profundidades variables entre-9.4 y 2.8 m.


y un espesor promedio de 1.5 m. el volúmen disponible será de -100,000 m aproximadamente. Se presentan acontinuación los resultados de los análisis de laboratorio y un ejemplo de la determinación de las propiedades del material.

									INDICE
PROY	ECTO_	F .11 .	EL CARAC	-011, GRO	n.) •		BANCC)EL	MARANJO.
PCA	Prof	^W diqáq	what	LL %	LP %	IP %	(i) op	κω/m³	CLASIFICACION
1	0	0.4	SIN		1	s T R	XX		arcilla arenosa café do tepetate.
2	0	0.5	SIN		MUE	S T R	Λ		boleos con arcilla.
3	0	0.4	SIN		MUE	STR	Λ		boleos con arcilla.
4	0.9	2.5	2.9	30.3	24.2	6.1	20.4	1654	limo arcilloso café.
5	0	3.0	2.2	35.7	20.2	15.5	19.0	1735	arcilla café amarill
6	0	2.8	1.8	40.3	19.2	21.1	14.6	1884	11 17 17 15
7	0	1.9	SIN		MUE	STR	А	,	arena limosa y arcil abundantes gravas f/
8	0	1.8	3.8	36.7	25.8	10.9			limo arcilloso café llento.
9	0	2.0	SIN		MUE	STR	A		limo arenoso (tepeta
10	0	2.2	2.8	51.0	19.0	32.0	15.9	1806	arcilla café amarill c/manchas blancas.
11	0	2.5	2.2	47.6	22.8	24.8	15.0	1830	17 17 18 18 17
. 12	O	1.5	SIN		MUE	STR	A		gravas con poca arci
13	0	2.3	4.9				16.7	1794	arcilla café.
14	0	2.4	1.9	41.9	24.4	17.5	21.7	1660	arcilla café amarill con gravas.
	1		11794						
						jártví	ye i i		
			四百万万 5万万万里						
			Light Sills	和特先					
								,	
	ļ	ļ	 						
									· · · · · · · · · · · · · · · · · · ·

•

		·										
i i !			PUEB	A D	E	СОМРА	CTACIO	N	PROC	TOR		
n.	V 6 211	Р.Н.	EL CAI	RACOL,	GRO.			Fecha	de	JUN	10 198 76	·
دة إ	neb e	estruct	urs	EL MAS	ALLIA			.Operado	r			
; ∸: i ~	za	4	L	audizac	ór	7 21 77 17	GRAL	Calculé:				
	1100000	S <u>U</u>		i;po de r								
Dic	metro r	noide	0,00	0	m Pe	so del n	nartillo				opos	
			3.29				dei martillo . caído				de compactaci ka-cm/c	
٠	,	10106			- 1		es/copa		4		NY CITIZE	
\ 												
				ENIDO		γ				MOLD		-
	Cdpsub	Toro capsula	húmedo	seco +	agua	5000	Contentac de	númeda	Peso suelo númedo	29C0	volum étrico	
		(3)	+ cápsula (4)	capsula (8)	(6)	(7)	(8)	+ moide (*)	(10)	(11)	59CO (12)	
					(4)-(5)	(5)~(3)	(6) 100		(9)-(2)	(io) 1+(8)/iop	(11)	Ì
		gr	gr	gr	gr	or .	%	kç	kg	kg	kg/II	
	79	10.39	102.30	88.05	14.25	77.66	18.3	5.107	1,849	1.563	1.573	
	80	10.40	102.60	87. 25	15.35	76.85	20.0	5.198	1.940	1.617	1.627	
	81	9.94	102.40	86.50	16.40	76.56	21.4	5.260	2.002	1.649	1.659	
	82	10.32	103.30	86.28	17.02	75.96	22.4	5.26	2,004	1.637	1.647	
	83											İ
							-					
Peso volumétrico seco en kg./it, (1/4)	1680 1860 1640 1620								Con con sue Reic You Good	mo (Y _o) _ tenido d imo (W _o) sidod de lo≺mallo ación de e _o)= Ss	solidos 4 (Ss)	
	Ш			zo Contenia	111111 21 22 10 de	1 23 agua en	 		###			

ML - Limos inorgánicos y arenas muy finas, polvo de roca, arenas finas limosos o arcillosas ligeramente plásticas

CL - Arcillas inorgánicas de plasticidad baja o medio, arcillas arenasas o limosas. OL-Limos orgánicos y orcillas limosas orgánicas de baja plasticidad

MH.-Limos inorgánicos, timos "etásticos," suetos micáceos o diatomáceos, arenosos finos o limosos. CH.-Arcillas inorgánicas de alta plasticidad

OH. - Arcillas orgánicas de mediana o alta plasticidad

CARTA DE PLASTICIDAD DE SUELOS FINOS

Cabe mencionar que en todos los bancos se inspeccionó cada - uno de los pozos excavados, clasificando a los materiales encontrados y obteniendo muestras integrales en cada uno para efectuar las pruebas de laboratorio correspondientes.

Los estudios hechos indican que en cuanto a la calidad de ar cilla, el Banco de Acatlán del Río es mejor, pero tiene el inconveniente - de que se localiza aguas arriba. El Banco Amacahuite se encuentra muy - alejado y además en la márgen izquierda y sería necesario para su acceso - la construcción de un camino con bastante desarrollo por lo abrupto del terreno. Los Bancos de San Marcos, El Remolino y El Naranjo por encontrarse aguas abajo y cercanos entre sí, ofrecen mejores perspectivas de explotación siendo su volúmen suficiente para ser empleados para la construcción del corazón impermeable de la cortina.

En El Banco San Marcos, el material es una arcilla limosa, - en ocasiones con arena y grava cuya porción fina (material para la malla - No. 40), varía entre 30 y 80%, corresponde a materiales CL y CH según SUCS.

En la carta de plasticidad se aprecia una marcada dispersión en los valores de plasticidad en los materiales CH (46% ≤ LL≤55%, 30% ≤ IP ≤ 51%) en tanto en los materiales CL, se agrupan en forma más homogénea; (25% ≤ LL ≤ 46%, 19% ≤ 1p ≤ 26%). En las pruebas de compactación Proctor, se - obtuvieron pesos volumétricos máximos del orden de 1,800 Kg/m³ en promedio con valores aislados máximos de 1985 Kg/m³ y mínimo de 1570 Kg/m³, los contenidos de agua óptimos, variaron entre 14 y 18% con valores mínimos aislados de 11%.

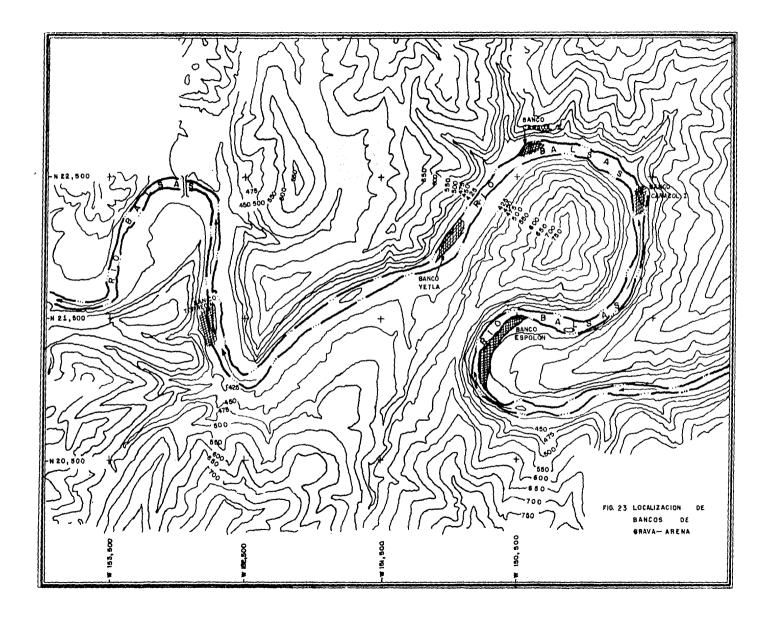
El material del banco El Remolino, es muy semejante al de --San Marcos es decir, arcilla limosa café amarillenta o café rojizo, en oca siones con gravas o boleos. En este caso la porción fina varía entre 20 y 60% correspondiente a un material CL según el SUCS, con valores de plasticidad variable entre: $(25\% \angle LL \angle 53\%, 14\% \angle LP \angle 21\%$ y $9\% \angle 1P \angle 33\%$). Los pesos volumétricos máximos variaron entre 1755 y 1990 Kg/m² con promedio --

de 1900 Kg/m, los contenidos de agua óptimos variaron entre 14 y 18%.

El material del banco El Naranjo, es semejante a los dos anteriores con porcentaje de finos variables entre 30 y 70% correspondientes --también a un material CL, clasificación SUCS.

Δ	continuación	QA.	dan	100	datos	generales	ah	actoc	hancos

BANCO	DISTANCIA DE ACARREO A LA CORTINA KM.	CLASIFICACION	VOLUMEN EN BANCO M	VOLUMEN APROVECHA- BLE EN BANCO M ³
El Naranjo	6.0	CL arcilla arenosa color amarillento.	124,000	97,000
El Remolino San Marcos	10.0 8.0		646,000 461,000	494,000 376,000


2. Bancos de Grava-Arena.

Los sitios que se pueden aprovechar como bancos de arena y - grava se localizan a lo largo de los playones del Río Balsas, que aparecen - desde Acatlán hasta Tetela del Río y más particularmente a lo largo de los - meandros del río, cercanos al sitio de proyecto hacia aguas abajo de éste. Estos sitios son: (Fig. 23).

Banco El Espolón.
Banco El Caracol 1.
Banco El Caracol 2.

Banco Yetla.

Banco Torreón.

De éstos, únicamente se ha estudiado el banco del Espolón. Se proyecta utilizar este material en la construcción de la cortina, el estudio se llevó a cabo por medio de pozos a cielo abierto hasta una profundidad de 3 m. porque no se pudo profundizar más a causa del nivel freático, además se hicieron sondeos con recuperación integral en el cauce, los resultados tanto granulométricos como petrológicos han resultado satisfactorios. El volúmen que se puede extraer aproximadamente de este banco es de; 1'037,000 m³. Se espera que los demás bancos sean semejantes.

Los bancos Caracol l y Caracol 2 se localizan aguas abajo de la salida de los túneles de desvío, su exploración deberá hacerse por medio de pozos a cielo abierto hasta una profundidad limitada por el nivel freático, los resultados de la granulometría debe ser semejante a la estudiada para el banco El Espolón. El banco Yetla se ubica en la barranca del mismonombre y el banco Torreón a 6.5 km. de distancia del Sitio No. 4, en estos también deberán realizarse los mismos trabajos que se indican para los anterioes, estos con el fín de conocer el volúmen y la calidad del material por explotar para su utilización en la construcción de la cortina y para la fabricación de conoceto.

3. Bancos de Enrocamiento.

Como resultado de los primeros reconocimientos geológicos su perficiales encaminados a la búsqueda de materiales para la construcción - de la cortina, se localizaron tres bancos susceptibles de emplearse como material de enrocamiento de los talúdes exteriores de la cortina, estos bancos son: (Fig. 22).

Banco de Cacalotepec.

Banco de San Marcos

Banco de Charloa

Banco de Cacalotepec.

Este posiblemente sea el mejor de todos los bancos estudiados superficialmente lo constituyen rocas ígneas intrusivas de tipo grano-diorítico. Este banco se ubica a 3 Km. al Sur del poblado de Cacalotepec, y a 4.5 Km. de la desviación del camino Apaxtla-Caracol a Cacalotepec.

Este afloramiento tiene una distancia de 16 km. de la desvia ción al proyecto, por lo que en total son 20.5 km. distancia de este banco-al sitio de la cortina. Este banco tiene una extensión de + 2 km² de roca-de excelente calidad. Presenta sistemas de fracturas con orientación Norte 50°W y NE - SW y espaciamientos entre fracturas de 2m., lo que permite la -extracción de bloques de una tonelada de peso o más.

El volúmen aproximado estimado es de: 1'000,000 M³.

Banco de San Marcos Alto.

Este banco se ubica a 19 Km. hacia aguas abajo del Sitio No. 4, el volumen de este banco satisface la demanda para el material de enroca miento necesario, su extensión es de + 3 Km². Está compuesto por rocas ígneas extrusivas de tipo ácido (riolitas) con un espesor de 60 m. constituído por 3 coladas superpuestas. El sistema de fracturas no es muy abundante, lográndose apreciar una familia con dirección E-W y con separaciones ma yores a 5 m. por lo que parece ser atractivo para explotarse en fragmentos mayores de 1 m³.

Banco de Charloa.

Se localiza a - 600 m. arriba de la confluencia de la barran ca de Charloa con el Río Balsas en la márgen izquierda. Está formado por - estratos de arenisca con espesores variables de 0.5 a 3 m. teniendo un espesor total de 20 m. Los sistemas de fracturas más sobresalientes son el; -- E-W, N33°W y N20°E y la estratificación tiene un rumbo promedio N 35°E y - echado de 45°al NW.

Por su cercanía al Sitio No. 4 y por sus características fí-

sicas y mecánicas, para la construcción de las ataquías se utilizó material de este banco, pero se dejó de explotar por problemas de estabilidad, principalmente por la dirección de la estratificación que tiene salida franca hacia la barranca. Por este motivo se optó por explotar la ladera de la barranca de Las Chachalacas, ubicada también en la márgen izquierda a 1 Km. - de distancia de la cortina.

Banco Las Chachalacas.

Está formado básicamente por el mismo material del banco Charloa siendo su volúmen capaz de satisfacer la demanda de material necesario para el enrocamiento (3.35 millones de m³). Con el fin de tener un conocimiento más amplios sobre esta banco se realizaron 4 barrenos con recuperación de núcleos, encontrándose que el porcentaje de recuperación promedio fue de 95% y el R.Q.D. promedio, de 90%. Litológicamente este banco estáformado por estratos deareniscas de 5 m. de espesor con pequeñas intercalaciones de pizaras de 0.20 m. de espesor, con lo que es posible obtener bloques de roca de 1 m³ o más.

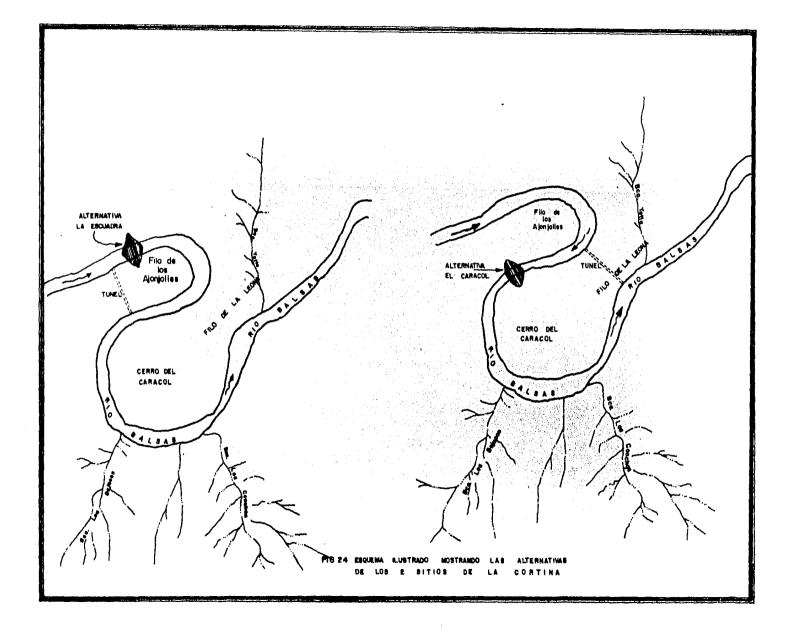
Posteriormente, con el fin de complementar los estudios - sobre la calidad de la roca, se efectuaron ensayos a compresión simple a -- los núcleos de rocas de los barrenos mencionados. Se situaron las probetas a una presión de $10~{\rm Kg/cm}^2$ y se obtuvieron los siguientes resultados.

Altas resistencias del orden de 1750 Kg/cm² cuando la falla del especímen se presentó como un cuerpo sano y homogéneo y cuando lafalla se presentó por un plano de debilidad saturado, la resistencia mínima fue del orden de 200 Kg/cm². Cabe señalar que en la muestra, por lo gene-ral siempre falló por un plano de debilidad saturado.

La tabla siguiente muestra los siguientes resultados de resistencia obtenidos: (Arana, Herrera, 1982).

Barreno Número	Prof. (m)	Número de Muestras	Media X (Kg/cm ²)	Desv. Estándar (Kg / cm ²)	Coef. Variación. %
	XXXXXX				1.5
194	130	63	894.75	320.60	35,83
195	160	85	880.18	293.22	33.31
196	83	43	802.68	463,17	57.70
197	170	. 85	615.84	262.63	42.64

Se observó concordancia entre calidad de roca marcada en las secciones geológicas y las resistencias a compresión obtenidas, por lo anterior la explotación de roca de la cantera Las Chachalacas es adecuadapara la construcción de la cortina.


V. SELECCION DEL SITIO PARA EL EJE DE LA CORTINA.

El Río Balsas en este lugar tiene la particularidad de que su curso ha venido erosionando un doble meandro muy cerrado y casi simétrico que deja entre sí espolones montañosos relativamente estrechos (Filo dela Leona, Filo de los Ajonjolies, Figs. 4 y 24). Viendo con atención la toprografía se puede apreciar como el tramo del río está formado por dos arcos opuestos y consecutivos en forma de "C". No tomando en cuenta las diferencias geométricas y morfológicas en detalle, se puede mirar que en la zona del río traza dos veces la misma figura, existen entonces dos zonas a corta distancia una de otra en las que se puede pensar en el mismo esquemade obras y contar con condiciones muy similares. Estas zonas se conocen como "La Escuadra" aguas arriba y "El Caracol" aguas abajo, quedando las dos dentro de una zona de aproximadamente 2Km².

En la alternativa de "El Caracol", localizada en el meandro de aguas abajo el apoyo izquierdo de la cortina se encuentra sobre la falda del cerro de "El Caracol" y el derecho en el espolón de los Ajonjolíes, la-obra de desvío se proyectó sobre la márgen izquierda atravesando el estrechamiento montañoso llamado Filo de la Leona. Su parte más estrecha es de-350m. y su altura de 150m. a partir del nivel del río, además une al cerro-de El Caracol con el contrafuerte montañoso del cerro de La Leona.

En la alternativa de La Escuadra, la cortina se localiza -- aproximadamente frente al contrafuerte del Filo de la Leona; la obra de des vío se proyectó aguas arriba de la cortina en el angosto espolón o filo mon tañoso denominados "Los Ajonjolíes", éste tiene un ancho aproximado de 420m. y una altura de 150m. sobre el nivel del rió en su parte más estrecha localizada entre el meandro de aguas arriba.

Las dos alternativas presentaban características topográficas semejantes, por lo que se consideró en un principio que la elección de alguna de ellas dependería básicamente de las condiciones geológicas más fa vorables.

Fué natural que al principio los estudios se hayan enfocado sobre el meandro de aguas abajo (El Caracol) y sobre el espolón que lo forma, por ser éste el más bajo y delgado. Los estudios llevados más allá de la morfología hasta cubrir los aspectos de seguridad de la futura planta hidroeléctrica son los que permiten establecer las diferencias en cuanto al aprovechamiento de alguno de los dos meandros.

1. Alternativas.

MEANDRO DE AGUAS ABAJO.

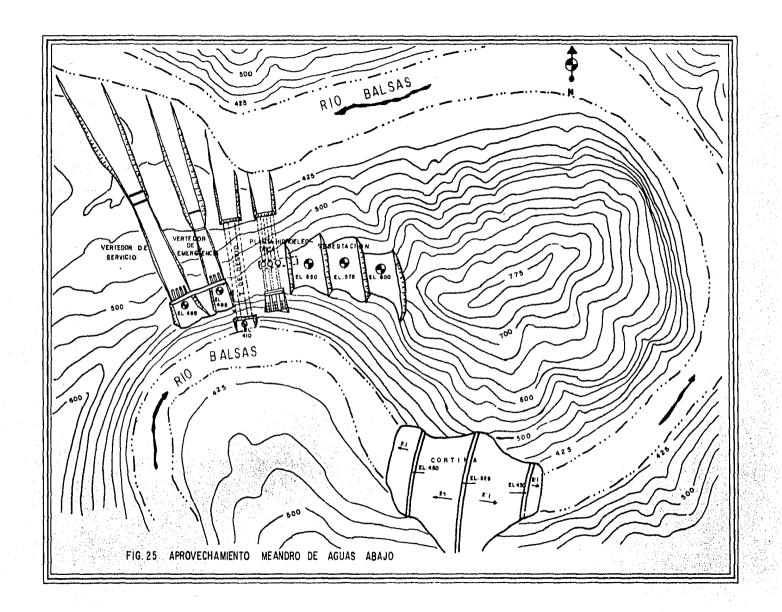
En la Alternativa de el meandro de aguas abajo se localizanlos Sitios 1, 2 y 3 respectivamente. Como quedó expuesto en el tema "Explo raciones realizadas" del Capítulo II (Fig. 13), el sitio con el que se inició la exploración fué el designado como el No. 1, se hicieron los socavo-nes 1 y 2,y 26 barrenos de exploración, encontrándose que la zona estaba ca racterizada por la secuencia de areniscas y lutitas con pequeñas fracturasy baja permeabilidad en este sitio, lamentablemente estos estudios fueron interrumpidos dejando inconclusa la elección de este sitio como posible boquilla de la presa. El Sitio No. 3 localizado aproximadamente en el centro del meandro se eligió por la interesante simetría topográfica existente entre la margen izquierda y la margen derecha, fué explorado por medio de los socavones 6 y 7 encontrándose fracturas importantes a aproximadamente 15.0m. de profundiad en ambas laderas, además, la inspección visual del apoyo iz-quierdo reveló signos de grietas de relajación de esfuerzos en esa zona, és to hizo que se desechara este sitio por la incompetencia de la roca existen te en la zona.

Los estudios y exploraciones se concentraron y enfocaron hacia el Sitio No. 2, básicamente sobre el posible eje se realizaron los soca vones 4, 8, 21 y 39 y los barrenos 6, 7, 8, 12, 15, 18 y 25. Litológicamente se encuentra en una secuencia de lutitas y areniscas interestratificadas de la Formación Mezcala. Los estratos de arenisca varían de espesor de centímetros hasta 7 m., los echados en la margen izquierda tiene de 25° a 30°

al NE y en la margen derecha van de 20° a 50° al SE. Las exploraciones realizadas en la margen izquierda (socavones 4 y 21; barrenos 6, 7 y 21) y en la margen derecha (socavones 8 y 39, barrenos 8, 15, 18 y 25), indican que las condiciones geológicas son bastante aceptables ya que los sondeos reportan un 90% de recuperación en promedio en apoyo izquierdo y 95% en el derecho.

El R.Q.D. dió un promedio bajo por tener las lutitas una 1a minación intensa que impidió recuperar núcleos mayores de 10 cm.

Las pruebas tipo Lugeón llevadas a cabo en los barrenos B-12 y B-18 reportan baja permeabilidad. Los socavones No. 4 en el apoyo izquier do y No. 8 en el derecho, muestran roca de buena calidad, sana y resistente con algunas fracturas cerradas sin importancia y con poca o nula alteración. El macizo rocoso en su conjunto tiene buena calidad y baja permeabilidad.


En esta alternativa la configuración de esquema de obras -(obra de desvío, vertedores, casa de máquinas) de la planta hidroeléctrica, se habían proyectado en el espinazo (Filo de la Leona) que une al cerro de "El Caracol" con el cerro de "La Leona" en la margen izquierda aguas arriba del eje propuesto. Además de haber elegido el sitio para la boquilla de la cortina, también se tenía que elegir el esquema de configuración de obras -de la futura planta hidroelectrica, a continuación se enumeran algunos de estos esquemas de aprovechamiento y en la Fig. 25 se ilustra uno de ellos.

Aprovechamiento 1.

- Cortina de materiales graduados.
- Casa de máquinas subterránea entre el espinazo y el cerro de El Caracol.
- Dos vertedores en canal abierto en el espinazo.

Aprovechamiento 2.

- Cortina y vertedores igual que en Aprovecha miento 1.
- Casa de máquinas subterránea dentro del cerro El Caracol.

Aprovechamiento 3.

- Cortina de concreto.
- Casa de máquinas exterior.
- Obra de excedencias localizada en el sitio de la cortina, constituída por 4 túneles vertedo res trabajando como canal, dos en cada margen.

Aprovechamiento 4.

- Cortina y obra de excedencias igual que en el Aprovechamiento 3.
- Casa de máquinas como la Alternativa 2.

Aprovechamiento 5.

- Cortina y casa de máquinas como la alternativa 2.
- Obra de excedencias localizada en el sitio de la cortina construída por un canal a cielo abierto en la margen derecha y dos túneles -- vertedores trabajando como canal en la margen izquierda.

Aprovechamiento 6.

- Cortina como en el Aprovechamiento 1.
- Casa de máquinas como en el Aprovechamiento 3.
- Obra de excedencias como en el Aprovechamiento 5.

El Sitic 2 como se mencionó en líneas anteriores se clasificó en macizo rocoso de buena calidad y baja permeabilidad, factible técnicamente como boquilla de la cortina. Para esta alternativa existen algunas características sobresalientes que requieren de un estudio adicional para poder de finir con seguridad el posible eje de la cortina en este sitio. Estas características son pásicamente:

a) La esbeltez del espinazo de El Caracol (Filo de la Leona) 6 filo que parte el meandro de aguas abajo.

b) Zona inestable formada por material de un derrumbe que se ubica sobre la margen izquierda a 2,600 m. aguas -- arriba del Sitio No. 2 (Fig. 4).

Localizar la cortina en este sitio o meandro de aguas abajo, llevaría las aguas del embalse contra todo el talúd de aguas arriba del espinazo de El Caracol (Filo de la Leona) y además sumergiría el pie del derrumbe pudiendo ocasionar un deslizamiento en el futuro. Estos aspectos se analizan con más detalle en las páginas subsecuentes. Como resultado de estas observaciones se pensó en la alternativa de el meandro de aguas arribacomo posible eje de la cortina.

MEANDRO DE AGUAS ARRIBA.

Como resultado de lo anteriormente expuesto se localizaron - los Sitios 4 y 5. El Sitio 5 localizado a 500 m. aguas arriba del Sitio 4, se localizó únicamente para tener un marco de comparación. Se hizo un sondeo en la márgen izquierda encontrándose roca de mala calidad proveniente - de un probable deslizamiento, lo cual ocasionó que dicho sitio se eliminara concentrándose los estudios y exploraciones hacia el Sitio 4. Este sitio - se ubica en una serie de rocas sedimentarias formadas por la alternancia de areniscas y lutitas, así como también de intrusiones ígneas dentro de la - formación configurando diques. Los estratos de estas rocas presentan espe sores variables, las areniscas desde centímetros hasta 7 m. y las lutitas - como máximo aproximado 30 cm. El plegamiento de los estratos, hacen muy - erática la continuidad de las capas ya que estas se engruesan se adelgazan, ó se acuñan.

Sobre la márgen derecha se localizan los socavones 17, 18, -20, 25 y 48 barrenos, estas exploraciones reportaron que la recuperación es del 80% y el R.Q.D. varía de 70 a 85% en la Unidad A (UA) y en la Unidad B (UB) varía de 30 a 55%. Los socavones reportaron roca de buena calidad indicando que las condiciones geológicas que se presentan son adecuadas comoapoyo de la cortina.

Para la márgen izquierda las exploraciones realizadas consisten en los socavones 15, 16, 19, 24, 43, 45, 46, y 47, y en 28 barrenos. Los resultados de la recuperación de núcleos fue del 70% en promedio, el R.Q.D. varía de 40 a 60% para la UB, para la UA de 60 a 80%. Existen también zonas donde el R.Q.D. está influenciado por diques o fallas dando valores entre 20 y 35%.

La márger, izquierda tiene la particularidad de que presenta varios elementos estructurales desfavorables como son los plegamientos, di-ques, fallas fracturas y cambios litológicos. Los resultados de las explo raciones reportan roca bastante fracturada con horizontes arcillosos que son el producto de alteración por oxidación de las lutitas. Los socavones 15, 16 y 19 tienen fracturas abiertas y rellenas de arcilla presentando el fenómeno de oxidación. Además los diques en ocasiones se encuentran cortando la formación y en otras van paralelas a ella, éstas presentan en algunas zonasalteración por oxidación produciendo zonas en estado de degradación. De las exploraciones realizadas, puede decirse que la márgen izquierda tiene proble mas estructurales como son; mala calidad de la roca, permeabilidad por fracturas y contactos de la formación con los diques, lo que ha ocasionado la al teración de la masa rocosa y los diques. Por estas razones es conveniente definir las exploraciones adicionales tendientes a conocer la masa de roca hasta una mayor profundidad para poder evaluar el grado de alteración del ma cizo rocoso y estar en condiciones de diseñar el método de tratamiento más adecuado a esta situación.

Las pruebas de permeabilidad realizadas en este sitio se mencionan en el Capítulo III.

Para esta alternativa el esquema de aprovechamiento (obra de desvío, vertedor.casa de máquinas) de la futura planta hidroeléctrica se había proyectado básicamente en el espolón de Los Ajojolíes en la márgen derecha aguas arriba del eje mencionado.

Complementando la elección del eje para la boquilla de la cor

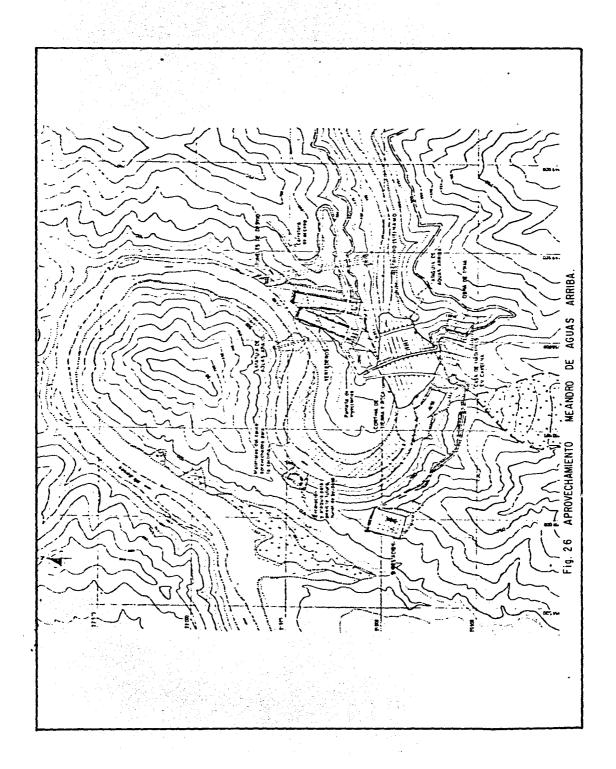
tina, había que seleccionar el arreglo más adecuado de obras de la planta - hidroeléctrica. Enseguida se mencionan algunos de estos esquemas de aprove chamiento como ejemplo y en la Fig. 26 se ilustra uno de ellos.

Aprovechamiento 1.

- Cortina de materiales graduados.
- Casa de máquinas subterránea en la margen derecha.
- Obra de excedencias constituída por dos túneles vertedores trabajando como canal y un canal a cielo abierto.

Aprovechamiento 2.

- Cortina de concreto.
- Casa de máquinas como en el Aprovechamiento 1.
- Obra de excedencias constituída por cuatro túneles vertedores trabajando como canal, dos en cada margen.


Aprovechamiento 3.

- Cortina como en el Aprovechamiento 1.
- Casa de máquinas como en el Aprovechamiento 1.
- Vertedor en canal a cielo abierto localizado en la margen derecha.

Aprovechamiento 4.

- Cortina de concreto.
- Casa de máquinas igual que en el Aprovechamiento 1.
- Tres fúneles vertedores trabajando como canal, localizados en la margen izquierda.

Cabe mencionar que el total de arreglos de aprovechamiento in volucró el análisis de 24 alternativas, para elegir la más económica, funcio nal y con menores problemas de operación y mantenimiento. Los estudios de - las alternativas incluyeron:

a) 5 Ejes de Cortina:

- Sitios 1, 2 y 3 en el meandro de aguas abajo.
- Sitios 4 y 5 en el meandro de aguas arriba.

b) 6 Tipos de Cortina:

- Cortina de materiales graduados.
- Cortina de gravedad maciza.
- Cortina de gravedad aligerada.
- Cortina de arco-batea.
- Cortina de arco con vertedores en los estribos.
 - Cortina de arco con una estructura independiente en delantal del lado de aguas abajo para acompañar las aguas hasta el cauce.

c) 2 Esquemas de Obra de Desvío:

- Dos túneles de aproximadamente 200 m. atravesan do el "Filo de la Leona", para los aprovecha -mientos del meandro de aguas abajo.
- Dos túneles de aproximadamente 400 m. atravesan do el "Filo de los Ajonjolíes" para los aprovechamientos de aguas arriba.

d) 2 Tipos de Conducción y Casa de Máquinas.

- Una casa de máquinas en caverna.
- Una casa de máquinas en pozo.

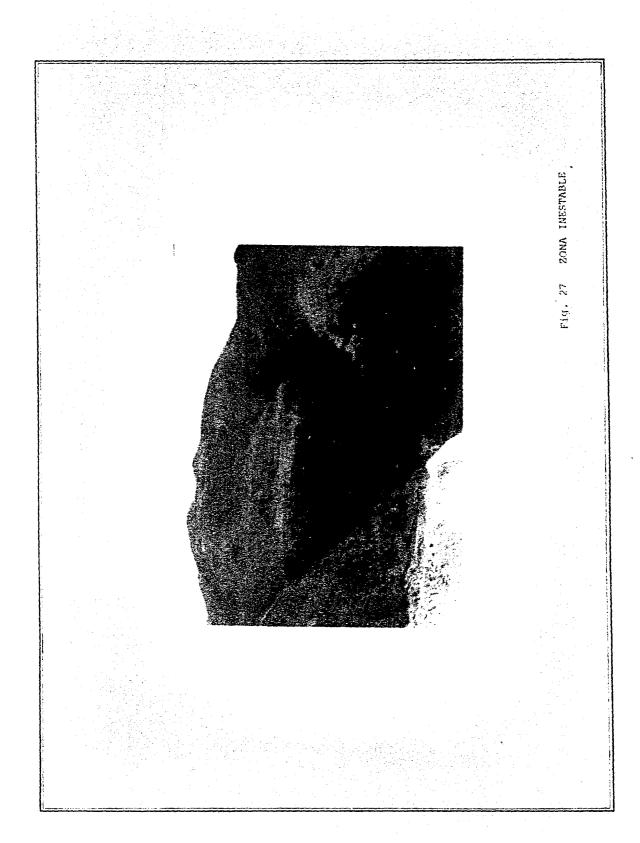
e) 4 Tipos de Vertedor:

- Vertedor en túnel con descarga al pie de la cortina, aguas abajo.
- Vertedor en túnel atravesando el filo montañoso ("Filo de la Leona" ó "Filo de los Ajonjolíes"), con descarga alejada de la cortina.
- Vertedor en canal a cielo abierto con descarga al pie de la cortina aguas abajo.
- Vertedor en canal a cielo abierto atravesando el filo montañoso ("Filo de la Leona" o "Fijo de los Ajojolíes") con descarga alejada de la cortina.

Como comentario final a la selección, se menciona que de los afloramientos observados y estudiados en el campo y de los barrenos y socavones realizados, se ha constatado que la estructura geológica que adopta - la Formación Mezcala en el Sitio 4, es semejante al Sitio 2 estudiado, no - así su grado de alteración ya que la roca en el márgen izquierdo presenta - condiciones más desfavorables (diques, fallas,fracturas), por lo que las futuras exploraciones geológicas deberán enfocarse preferentemente hacia la márgen izquierda.

Las condiciones que definieron la elección del eje de la cortina más adecuado se analizan en el siguiente punto.

2. Factores que definieron el sitio de la Cortina.


Como se hizo mención, existen dos rasgos sobresalientes quellaman la atención y requieren de un análisis objetivo para la elección del sitio de la cortina, estos factores son:

- a) La zona inestable producto de material de derrumbe ubicado sobre la márgen izquierda y
- b) La esbeltez de el espinazo de El Caracol (Filo de la Leona).

Aprovechar el meandro de aguas abajo (Sitio 2) llevaría las aguas del embalse contra todo el talúd de aguas arriba de dicho espinazo y además sumergiría el pie de la masa de la zona inestable, a continuación - se analizan estos dos aspectos.

a) ZONA INESTABLE.

A 2,400 m. del Sitio 2 aguas arriba, sobre la márgen izquierda y en la barranca de la "Pepahue" se localizó morfológicamente unazona inestable en forma de delta invertida (Figs. 4 y 27), producto de material de un antiguo derrumbe. Cubre una área de 400 m. de ancho y 500 m. de longitud aproximadamente y entre las elevaciones 500 y 800 m.

Se realizaron dos barrenos verticales de 100 m. de longitud en el centro sin que se llegara a la roca in situ reportando solamente material de talúd. Con base en ésto se pudo inferir que hay una masa de unos 4.000,000 M que se ha deslizado en tiempos remotos y que permanece como potencialmente inestable.

También con el fin de definir las condiciones estructurales del área se realizaron los socavones 13 y 14 reportando únicamente material de talúd, además el pie de dicho derrumbe alcanza la elevación 500 m. y como el embalse al N.A.M.E. alcanza la elevación 521. m., la saturación de los materiales al pie del talúd provocaría la pérdida del ángulo de reposo de losmateriales, ésto representa un serio peligro para la presa en su conjunto. No es fácil establecer cuáles fueron las posibles causas de este derrumbe, así como establecer el factor de seguridad y conocer su futuro comportamiento. De cualquier manera se considera prudente y seguro evitar llevar las aguas del futuro almacenamiento contra el pie del derrumbe para no perturbar el equilibrio actual, las consecuencias de posibles movimientos futuros se rían mucho más serias si ål pie del derrumbe existiera un vaso de almacenamiento en el cual, un deslizamiento de material puede producir un oleaje que rebase la altura de la cortina y haga peligrar la obra en su conjunto y a los poblados cercanos ubicados aguas abajo.

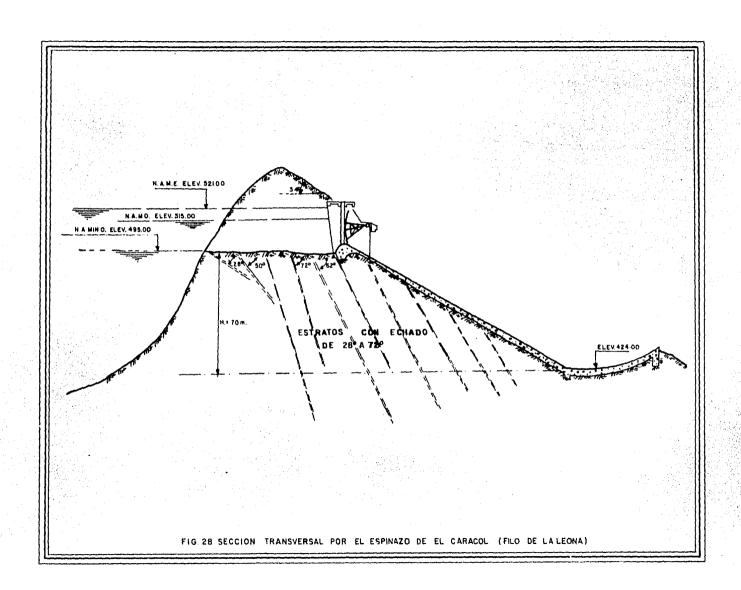
b) ESPINAZO DE EL CARACOL (Filo de la Leona).

Este espinazo se presente como un delgado filo de roca de -unos escasos 150 m. de alto y sección transversal asimétrica. El talúd quecae hacia aguas arriba tiene una pendiente de aproximadamente 55° mientras -que el talúd hacia aguas abajo tiene una pendiente del orden de 35°. En total el ancho de la base de este espolón es de unos 250 m.

La estructura geológica del cerro se encuentra formada por capas delgadas, en su mayoría lutitas y en menor porcentaje areniscas con rumbo NE15° y un echado que varía de 28 a 72° al NW, es decir, el buzamiento es hacia aguas abajo con respecto a un posible futuro almacenamiento, dicha inclinación y la composición mineralógica de las lutitas crean posibles superfira-

cies de debilidad, además el fenómeno de infiltración produce sub-presiones que reducen el peso de la masa rocosa del espinazo y al mismo tiempo podría lubricar algunas juntas lutíticas más plásticas que pueden ocasionar en condiciones normales (y más aún durante la presencia de un sismo), un posible deslizamiento. También es de considerarse el fuerte espesor de detritos que cubren el talúd Oeste del espinazo, esta situación reduce aún más de lo que indica la morfología la propia sección resistente y como las obras civiles se deberán concentrar en este espinazo por condiciones hidráulicas, las excavaciones proyectadas traerán consigo un debilitamiento mayor del espinazo. (Fig. 28).

Las condiciones anteriores ocasionaron que se realizara un - análisis a fondo para poder evaluar el grado de seguridad inherente del espinazo (Bernal Montemayor C.).


ANALISIS.

Con objeto de aclarar las condiciones de estabilidad, se con sideraron varios mecanismos de falla como son; el deslizamiento como cuerpo rígido a lo largo de un plano horizontal y la falla a lo largo de una super ficie compuesta, se analizaron los siguientes casos:

- b.1 Deslizamiento sobre un plano horizontal, (Fig. 29).
 - b.1.1) Sin considerar sub-presión en la base.
 - b.1.2) Considerando sub-presión en la base.
- b.2 Deslizamiento sobre una superficie compuesta, que incluye un plano de estratificación y un arco circular, (Fig. 30).
 - b.2.1) Sin considerar empuje hidrostático.
 - b.2.2) Considerando empuje hidrostático.

Las fuerzas actuantes que se consideran son:

- 1) Peso propio.
- 2) Empuje hidrostático.
- e) Fuerza sísmica.

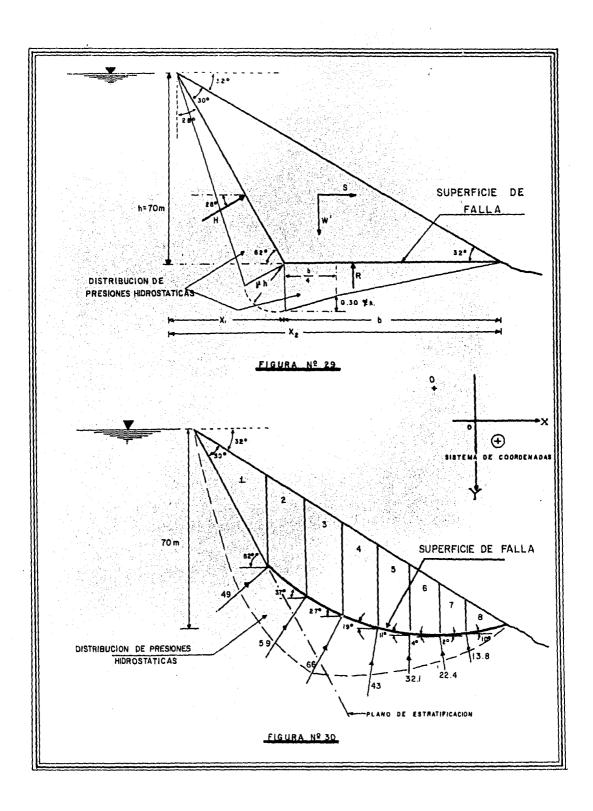
La fuerza tangencial resistente considerada es la aportada por la fricción interna del material y se ha adoptado como ángulo de fricción interna el definido por N. Barton.

$$\emptyset = n \log_{10} \frac{fc}{fn} + 30^{\circ}$$

n = constante que depende del estado de las superficies y nivel de esfuerzos.

fc = resistencia de la roca a compresión simple mediante ensaye de laboratorio.

Cálculc del ángulo de fricción probable: (Ø prob.).


La superficie de deslizamiento no existe como un plano definido en el sitio. Se puede inferir que se tendrá una superficie irregular o dentada; limitada por un sistema de fracturas que tienen un echado variable entre 5 y 32° y por los planos de estratificación. En estas condiciones es aplicable la expresión de N. Barton.

S1:

$$n = 20$$

 $fc = 250 \text{ Kg/cm}^2$
 $fn = 7 \text{ Kg/cm}^2$
 $\emptyset = 20 \text{ Log}_{10} \frac{250}{7} + 30^\circ$
 $\emptyset \text{ prob.} = 61^\circ$

Caso b.1.1) Deslizamiento del bloque sin sub-presión (Fig. 29)

De las características geométricas del espinazo y considerando una faja de ancho unitario, se obtiene:

Datos:

Peso volumétrico = $m = 2.3 \text{ T/M}^3$

Altura = h = 70m.

Coef. sismico = c = 0.15

de la figura:

Tang.
$$62^{\circ} = \frac{70}{x_1}$$
; $x_1 = 37.22$ m.

Tang.
$$32^{\circ} = \frac{70}{X_2}$$
; $X_2 = 112.02$ m.

$$b = X_2 - X_1 = 112.02 - 37.22 = 74.80 m$$

Peso total:
$$W = \frac{b \times h}{2}$$
 m

$$W = \frac{74.80 \times 70 \times 2.3}{2} = 6021.4 \text{ Ton.}$$

Fuerza sísmica:

$$S = c \times W = Q15 \times 6021.4 = 903.2 \text{ Ton}.$$

Empuje hidrostático:

Eh =
$$\frac{1}{2}$$
 = $\frac{1 \times 70 \times 79.3}{2}$ = 2775.5 Ton.

Proyectando las fuerzas sobre el eje "X":

$$\xi F_{\chi} = S + Eh \cos . 28^{\circ} = 903.2 + 2775.5 [0.883] = 3353 Ton.$$

Por lo tanto la Fuerza actuante = Fa = 3353 Ton.

Proyectando las fuerzas sobre el eje "Y":

$$\mathbf{z}$$
F = W - Eh sen. 28° = 6021.4 - 2775.5 [0.469] = 4718.4 Ton.

Por lo tanto la Fuerza normal = N = 4718.4 Ton.

Considerando el material como puramente friccionante, se tiene que:

Fuerza resistente: $Fr = N tang. \emptyset$

siendo: Ø = ángulo de fricción interna del material

y definiendo el factor de seguridad como:

$$F.S. = \frac{Fr}{Fa} = \frac{N \text{ tang } \emptyset}{Fa}$$

Para el estado de equilibrio debe tenerse F.S. = 1, por lo que substituyendo este valor y despejando Tang. Ø se obtiene:

Tang.
$$\beta = \frac{Fa}{N} = \frac{3353.4}{4718.4} = 0.7107$$

Por lo tanto $\emptyset = 35.4^{\circ}$ que es el ángulo de fricción necesario para el equilibrio.

Y como F.S. = $\frac{\text{Tang } \emptyset \text{ prob.}}{\text{Tang. } \emptyset \text{ nec.}} = \frac{1.804}{0.7107} = 2.54 \text{ el espinazo es estable.}$

Caso b.1.2) Deslizamiento del bloque con sub presión en la base (Fig.29).

De la variación que se muestra, se puede calcular la resultante de sub-presión:

$$R = \frac{1/h + 0.7 \frac{1}{2}h}{2} \frac{b}{4} + \frac{0.70 \frac{1}{2}h}{2} \frac{(3b)}{4}$$

R = 1112.65 + 1374.45 = 2478.10 Ton.

Proyectando sobre el eje "Y"se tiene:

 $\mathcal{E}F = W - Eh \text{ sen } 28^{\circ} - R = 4718.4 - 2487.10 = 2231.3 Ton.$

o sea: N = 2231.3 Ton.

Tang.
$$\emptyset = \frac{Fa}{N} = \frac{3353.4}{2231.3} = 1.50$$

Por lo tanto \emptyset = 56.3° que es el ángulo de fricción requerido para el equilibrio.

Y como F.S. =
$$\frac{\text{Tang } \emptyset \text{ prob.}}{\text{Tang } \emptyset \text{ nec}} = \frac{1.804}{1.50} = 1.2$$

El resultado anterior nos indica que el espinazo es estable en este caso más crítico.

Caso b.2.1) Deslizamiento a lo largo de una superficie compuesta sin empuje hidrostático (Fig. 30).

Como se aprecia en la Fig. el plano de fallase consideró siguiendo uno de los planos de estratificación, desde la superficie hasta el punto en que es intersectado por un círculo que -tiene centro en "O" y radio de 92 m., elegido -arbitrariamente.

A continuación se dividió la masa rocosa así -- aislada en 8 dovelas y se calculó para cada una de ellas la fuerza tangencial actuante, la fuerza normal, el ángulo de fricción necesario para el equilibrio (F.S. = 1) y el ángulo de fricción probable utilizando la expresión de N. Barton. Los resultados por dovela sin considerar el -- empuje hidrostático se muestran enseguida en -- donde:

W = Peso de la dovela (ton).

= Angulo de inclinación de la superficie de falla en cada dovela.

S = Fuerza sísmica (ton).

Ft, = Fuerza tangencial debida al peso de la masa (ton).

Ft, = Fuerza tangencial debida a la fuerza sísmica (ton).

Ft = Fuerza tangencial total (Ft, + Ft,) (ton).

Fn, = Fuerza normal debida al peso de la masa (ton).

Fn₂ = Fuerza normal debida a la fuerza sísmica (ton).

 $F_n = fuerza normal total (F_{n_1} + F_{n_2})$ (ton).

 \emptyset^{\bullet} nec.= Angulo de fricción interna del material necesario para F.S. = 1.

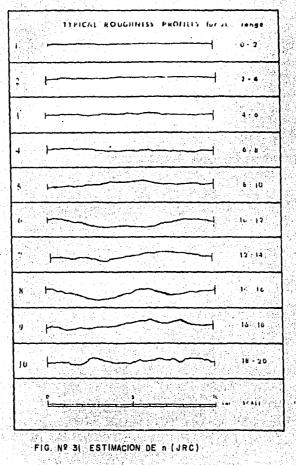
Dovela No.	W	ۍ.	S=W(0.15)	Ft₁=WSen≪	Ft ₂ =Scos &	Ft	Fn ₁ =Wcos ≪	Fn ₂ =Ssen ↔	Fn	ø°nec.	ø°prob.
1	966	.62	144.9	852.9	68	920.9	453,5	-127.9	325.6	70	41.24
2	1030	37	154.5	619.8	123.4	743.2	622.6	- 92.9	729.7	46	62.58
3	986	27	147.9	447.6	131.7	579.3	878.5	- 67.1	811.4	35	61.37
4	897	19	134.5	292.0	127.1	419.1	848.1	- 43.7	804.4	28	61.67
5	658	11	98.7	125.5	96.8	222.3	645.9	- 18.8	627.1	20	62.58
6	531	4	79.6	37.0	79.4	116,4	529.7	- 5.5	524.2	12	64.31
7	320	-2	48.0	-11,1	47.9	36.8	319.8	- 1.6	321.4	0.5	67.22
8	200	-10	30.0	-34.7	29.5	- 5.2	196.9	5.2	202.1		73.24
TOTAL						3082.8					

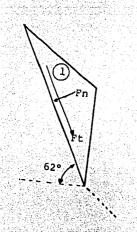
El ángulo Ø se calculó como:

F.S. = 1 =
$$\frac{Fr}{Fa}$$
 = $\frac{Fn \text{ tang. } \emptyset}{Ft}$
Por lo tanto \emptyset = tang⁻¹ $\frac{Ft}{Fn}$

El ángulo Ø prob. se calculó por medio de la expresión de

N. Barton:


$$\emptyset$$
 prob. = $n \log_{10} \frac{fc}{fn} + 30$


En la fig. 31 se muestra la variación del coeficiente "n" de acuer do a las condiciones físicas de las superficies de contacto en análisis.

En la tabla que sigue se muestra el resumen del cálculo del ángulo mencionado (fc = 250 Kg/m²; fv = esfuerzo vertical y fn = esfuerzo normal):

Dovela No.	fv (Kg/cm²)	fn=fv cos (Kg/cm²)	n	Ø prob.
1	3.00	1.41	5	. 41.24
2	7.36	5.87	20	62.58
3	.7.58	6.75	20	61.37
4	6.90	6.52	20	61.67
5	5.98	5.87	20	62.58
6	4.82	4.81	20	64.31
7	3.45	3,44	20	67.22
8	1.75	1.72	20	73.24

Del análisis anterior se observa que en la dovela 1 el plano de deslizamiento coincide con el plano de la estratificación (por lo que n=5) resultando inestable como se indica a continuación:

K .

Fn = 325.6 ton.

Ft = 921 ton.

ángulo necesario:

$$\emptyset = \text{tang.}^{-1} \frac{921.10}{325.6} = 70.53$$
°

ángulo probable:

Ø prob. =
$$5 \text{ Log} \frac{250}{1.41} + 30^{\circ}$$

por lo tanto existe inestabilidad.

Analizándolo de otra forma:

Fuerza resistente:

Fr = N tang Ø prob.

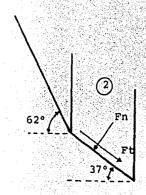
= 325.6 tang 41.24°

= 285.44 ton.

Fuerza actuante:

Fa = Ft

Ft = 921 ton.


Fuerza de desequilibrio:

Fd = Fr - Fa

= 285.44 - 921.0

= -635.56 Ton.

Este resultado nos indica que la inestabilidad y magnitud de la fuerza quehay que contrarrestar para que la dovela tenga un F.S. = 1. Esta fuerza se tendrá que transportar a la dovela 2.

Para la dovela 2 el análisis es el siguien te:

Fuerzas debidas al desequilibrio de la dovela 1:

Ft₁₋₂ = 635.6 cos 25°

= 576.0 ton.

 $Fn_{1-2} = 635.6 \text{ sen } 25^{\circ}$

= 268.61 Ton.

Fuerzas totales:

 $Ft_2 = 743.2 + 576, -$

= 1319.25 ton.

 $Fn_2 = 72917 + 268.61$

= 998.31 ton.

Calculando la fuerza resistente con el

Ø prob. definido por Barton:

Ø prob = 62.58°

Fr = Fn, Tang Ø prob

= 998.31 (1.93)

= 1926.74 Ton.

Fa = 1319.25 Ton.

Por lo tanto:

Fr - Fa= 1926.74 - 1319.25

= 607.49 Ton.

No existe desequilibrio y la dovela 2 es estable.

Se puede inferir que a partir de la dovela 2 toda la sección es estable ya que el ángulo de inclinación de la superficie de deslizamiento decrece has ta cero.

Considerando todo el conjunto, el factor de seguridad se obtiene por medio de:

$$F,S. = \frac{Fr}{Fa} = \frac{Fn \text{ tang } \emptyset \text{ prob.}}{Ft}$$

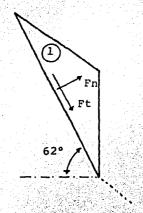
Dovela No.	Fn (Ton)	ذ prob.	Fn Tang. ذ prob. (Ton)
1	325.6	41.24	285.44
2	629,1	62.58	1406.53
3	5 €11.4	61.37	1486.36
4	E04.4	61.67	1492.06
5	627.1	62.58	1208.76
6	524.2	64.31	1089.69
7	322.4	67.22	767.71
8	202.1	73.24	671.08
TOTAL			8407.64

Por lo tanto Fr = 8407.64 ton; Fa = 3032.8 ton.
y F.S. =
$$\frac{8407.64}{3032.80}$$

F.S. = 2.77

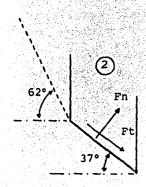
De lo anterior el espinazo es estable en las condiciones aquí marcadas.

Caso b.2.2) Deslizamiento a lo largo de una superficie compues ta con la acción de presión hidrostática. (Fig.30)


Al aplicar el empuje hidrostático con la distribución de presiones indicada en la figura se obtie--

Dovela No.	Fn (ton)	Ft (ton)	Fn (hidros.) (ton)	Fn total (ton)	ذ probable
1	326	921	- 1348	- 1022	0
2	729	743	- 896	- 166	O
3	811	579	- 937	- 125	0
4	804	419	- ,736	68	0
5	627	222	- 431	196	62.58
6	524	116	- 299	225	64.31
7	322	37:	- 172	150	67.22
8	202	-5	- 103	99	731.24

De lo anterior, hay tendencia a la flotación en las dovelas 1, 2, 3 y 4 por lo que transmiten sucesivamente la fuerza tangencial actuante hasta la -dovela No. 5, cabe mencionar que se ha considerado que la frontera entre las dovelas no es una superficie que exista físicamente y por ello, se pueden --transmitir las fuerzas de una dovela a otra.


A continuación se hace el análisis para cada dovela.

DOVETANO. 1

Ft,= 921 Ton.

DOVELA BO. 2

Proyección de las dos fuerzas anteriores hacia la Fn de la Dovela 2.

 $Fn_2 = (Fn_1 sen 65^\circ + Ft_1 sen 25^\circ) - 166$

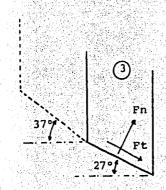
= (-1022 sen 65° + 921 sen25°) - 166

= -926 + 398 - 166

= -703 Ton. "FLOTACION"

Ahora hacia la Ft de la Dovela 2.

 $Ft_2 = (Fn_1 \cos 65^\circ + Ft_1 \cos 25^\circ) + 743$


 $= (1022 \cos 65^{\circ} + 921 \cos 25^{\circ}) +743$

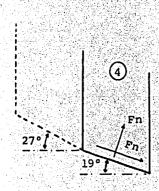
= 432 + 835 + 743

= 2010 Ton.

 $Fn_2 = -703 \text{ Ton.}$ $Ft_2 = 2010 \text{ Ton.}$

DOVELA MO. 3

Proyectando las fuerzas Fn₂ y Ft₂ hacia la Fn de la Dovela 3, será:


$$Fn_3 = (Fn_2 \text{ sen } 80^\circ + Ft_2 \text{ sen } 10^\circ) - 125$$

= (-703 sen 80° + 2010 sen 10°) - 125
= -692 + 349 - 125
= -468 Ton. "FLOTACION"

Ahora hacia la Ft de la Dovela 3:

Fn₂ = - 468 Ton.

Ft = 2680 Ton.

DOWELLA DO. 4

Proyectando hacia la Fn de la Dovela 4:

$$Fr_4 = (Fn_3 \cos 8^\circ + Ft_3 \cos 82^\circ) + 68$$

= -468 cos 8° - 2680 cos 82° + 68
= -463 + 373 + 68
= - 22 Ton. "FLOTACION"

Ahora hacia la Ft de la Dovela 4:

 $Fn_4 = -22 \text{ Ton.}$ $Ft_4 = 3316 \text{ Ton.}$

DOVELANO.5

Proyectando hacia la Fn de la Dovela 5: Fr₅ = (Fn₄ cos 8° + Ft₄ cos 82°) + 196 = - 22 cos 8° + 3316 cos 82° + 196 = -21 + 461 + 196 = 636 Ton.

Ahora para la Ft de la Dovela 5:

Ft₅ = (Fn₄ cos 82° + Ft₄ cos 8°) + 222

= 22 cos 82° + 3316 con 8° + 222

= 3 + 3283 + 222

= 3508 Ton.

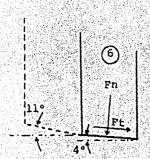
Fn = 363 Ton. Ft = 3508 Ton.

Para esta condición se elimina la flotación y se procede al cálculo de la fuerza tangencial que pasa a la Dovela 6.

Como la fuerza resistente:

Fr = Fn Tang. 0° prob.

= 636 Tang. (62.58)°


= 1226 Ton.

La fuerza que pasa a la Dovela 6 será:

 $F't_{5} = 3508 - 1226$

 $F't_5 = 2282$ Ton.

ID O W E IL A NO. 6

Ahora proyectando la F't₅ hacia la Fn₆ y Ft₆ respectivamente:

$$Fn_6 = Ft'_5 \text{ sen } 7^\circ + 225$$

= 2282 sen $7^\circ + 225$

 $Fn_6 = 503$ Ton. $Ft_6 = 2380$ Ton.

Calculando la fuerza tangencial que pasa a la Dovela 7:

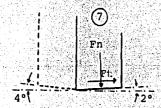
Como la fuerza resistente:

Fr = Fn tang. Ø" prob

= 593 tang. (64.31)°

Fr = 1046 Ton.

y la fuerza que pasa a la Dovela 7 será:


= 1334 Ton.

Ft'₆ = 1334 Ton.

DOVELANO. 7

Proyectando la F't₆ hacia la Fn₇ y Ft₇, respectivamente:

 $Fn_7 = F't_6 \text{ sen } 6^\circ + 150$ = 1334 sen $6^\circ + 150$ = 140 + 150 = 290 Ton.

Fn₇ = 290 Ton. Fn₇ = 1363 Ton.

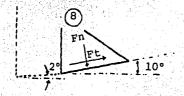
Calculando la fuerza tangencial que pasa a la Dovela 8:

Como la fuerza resistente:

 $Fr = Fn tang \emptyset$ ° prob.

= 290 tang (67.22)°

Fr'= 690 Ton.


Y la fuerza que actúa sobre la Dovela 8 será:

F't₇ = 1363 - 690

 $F't_7 = 673$ Ton.

Proyectando F't, hacia Fn, y Ft, respecti vamente:

$$Fn_8 = F't_7 \text{ sen } 8^\circ + 99$$

= 673 sen $8^\circ + 99$
= 94 + 99
= 193 Ton.

$$Ft_{8} = F't_{7} \cos 8^{\circ} - 5$$

$$= 673 \cos 8^{\circ} - 5$$

$$= 666 - 5$$

$$= 661 \text{ Ton.}$$

Ton. Ft₈ = 661 Ton.

Por último, calculando la fuerza resistente:

Fr = 641 Ton.

Y como la fuerza actuante:

Fa = Ft

Ft = 661 Ton.

Y el factor de seguridad se define como:

F.S. =
$$\frac{Fr}{Fa}$$

= $\frac{641}{661}$,
= 0.97

Estado de Equilibrio Crítico Por lo tanto F.S. = 1

De lo anteriormente expuesto, hay tendencia a la flotación en las Dovelas 1, 2, 3 y 4 por lo que transmiten sucesivamente la fuerza tangencial actuante hasta la Dovela No. 5. Las Dovelas 5, 6, 7 y 8 tienen un esfuerzo normal ba jo por lo que aplicando la expresión de N. Barton se obtienen valores de 0º probable, cercanos a 70°.

De la aplicación de estos valores de 0° prob. se calculó elfactor de seguridad, resultando éste aproximadamente igual a la unidad, es decir, en "equilibrio crítico".

RESUMIENDO:

- El espinazo es estable con F.S. = 2.54 y F.S. = 2.77 paralos dos mecanismos de falla considerados, tomando en cuenta la acción de un sismo con aceleración de 0.15 g y sinempuje hidrostático.
- Bajo la acción simult=anea de un sismo y una distribuciónde presión hidrostática como la supuesta en las figuras 27
 y 28, el factor de seguridad es cercano a la unidad (F.S.=1)
 para los dos mecanismos de falla considerados.
- De acuerdo a los análisis de estabilidad realizados, se concluyó que la ladera estudiada se encuentra en estabilidad crítica y representa un peligro tatente su utilización como parte de la futura planta hidroeléctrica.

Por los factores analizados en este capítulo, el espinazo de El Caracol (Filo de la Leona), aunque topográficamente atractivo, se considera mecánicamente débil e hidráulicamente perjudicado por la dirección de los sistemas de juntas principales. En cuanto a la zona inestable, el factor de seguridad es difícil de apreciar y la posibilidad de que su movimien to sea reanudado, sobre todo si al pie de éste existe un almacenamiento, no se puede descartar.

Es entonces prudente desechar el meandro de aguas abajo (Sitio No. 2) y considerar como área para un aprovechamiento hidroeléctrico el meandro de aguas arriba, es decir, el Sitio No. 4.

VI. MECANICA DE ROCAS.

El estudio y determinación de los parámetros geomecánicos es indispensable para evaluar el comportamiento del macizo rocoso, cuando éste se somete a la acción de esfuerzos o excitaciones vibratorias. Es por ésto que estos índices resultan de suma utilidad tanto para el diseño de obrasen roca, como para el refuerzo o tratamiento de la masa rocosa. De acuerdo con lo anterior se realizaron ensayes de laboratorio en muestras de roca in tacta y ensayes de campo en muestras de roca "in situ", a continuación se describen estos ensayes.

1. Pruebas de Laboratorio.

Para la realización de éstas, se seleccionaron barrenos loca lizados en las dos márgenes que serán apoyo de la cortina (Figs. 4 y 13). En el apoyo izquierdo se seleccionaron los sondeos 56 y 57 y en el apoyo de recho los sondeos 11, 12 y 17. (Castilla, Camacho y Cuéllar Borja).

Se efectuaron las siguientes determinaciones: peso volumétrico, índice de alteración, relación de vacíos, porosidad, resistencia a la compresión simple, resistencia a la tensión indirecta (brasileña) resistencia en corte seimple, corte doble y punzocortante, resistencia a la flexión, módulo de elasticidad, resistencia al corto en compresión triaxial.

La tabla siguiente resume los resultados promedio y el coeficiente de variación en cada caso. El peso volumétrico seco promedio es de 2.5 ton/m³. en donde:

- i = indice de alteración
- n = porosidad
- e = relación de vacios
- Rc = resistencia en compresión simple (Kg/cm²)

 coef. de variación: areniscas 55%, lutitas 56%

Rt = resistencia a la tensión (Kg/cm²)

coef. de variación: areniscas 43%, lutitas 37%.

Rf = resistencia a la flexión (Kg/cm²)

coef. de variación: areniscas 43%, lutitas 36%.

S₁ = resistencia al corte simple (Kg/cm²)

coef. de variación: areniscas 48%, lutitas 21%.

s₂ = resistencia al corte doble Kg/cm²)
coef. de variación: areniscas 34%.

S = resistencia al punzo cortante (Kg/cm²)

coef. de variación: areniscas 36%, lutitas 13%.

E = módulo de elasticidad (Kg/cm²) coef. de variación, areniscas 49%, lutitas 27%.

PROMEDIOS DE PROPIEDADES, INDICE Y MECANICAS.

MUESTRA	i%	n%	Cŧ	Rc	Rt	Rf	s ₁	s ₂	s _p	E
Arenisca	1.3	5.4	0.05	608	62	129	91	78	164	331,374
Arenisca*	-	- -		358	55	137	-	115	117	261,560
Lutita	-			444	62	130	83	132	151	350,560
Lutita*	-	-		352	61	94	1	75	126	479,590

* Saturada

Además el ángulo de fricción interna para las areniscas determina do en el ensaye triaxial no consolidado, no drenado (rápido) en muestras secas y saturadas tuvo un valor medio de 82º para presiones de confinamiento de 5Kg/cm² y para presiones de 15Kg/cm² el ángulo de fricción fue de 55º -- con una cohesión aparente de 80 Kg/cm². Para las lutitas los valores correspondientes fueron de 80° y 65° con 45Kg/cm² de cohesión aparente respectivamente.

En las figuras anexas de la 32 a la 36, se muestra para cada ba-rreno los perfiles de las propiedades determinadas en laboratorio.

	يد اند	-					-	+	1 7	1			-	ni	-	-11	^	-014	FCA	NICC	1	+	i	_			+	+-		1	1	
; T		Ц					1	-	1		-			PE	-101	- 11	-61	UM	EUA	NICE	1		- (- 1	1		1	o1, a	•	-	 	1
.		. .	:					-	<u>.</u>		4 la 				-				_		ļ_	Ba	rren	o N	0.'_	11_	Col	a bro	ocal:_	\$88	· 	
F	IG.	32			.,				:			1				-						Lo	caliz	taci	ón:	Har	en.	Legu	ierda	ļ	· 	
1-						- 1		-							į-	-		;	.]		1	Fe	cha.	11	- 71			For	mó_			
Media: ~+:	174-43 400											ildad							1	istenc	- 1	Heat	etenci		Módu	lo d	_	Resist	tencia	1	lulo d	
: 3 i	0 E 1	1 C M	 I P C	 10 N	H •	up e	racid	n	1	10 F	068. 46	•		909		Peso	o e e	nétrico. O	1	ompre e/em²	ī		lensiói illeña)	- 1	rup Tensión	lura baja flen	kón)		iorte le D a A	1	t10100	
Ē						. %	6		(P	Q D)	%			%		_F4	(ten	/m ^{.3})	+ 00	ea turada	.		[/cm²] : 0	1) /cm²) : a	- 1	R f (k g		+ + + 0	ce turade	
n)						0 40	60	80	1	0 40	60	\$ 0		Ł	1	18	2.0 1	16 3.0		00 4	00	+ • q!	0,000	00	+ sot	0 4 8	00	100	200	100 2	00 800 4	100
	SATTA	car	6		.l	1.		1	Ĺ					 							Ħ			1			Ì		1			
Te	niso	a 81	ano	rın		-	1	3							•		_{					.,.*		•		1			9			
						1		5	E	7	י נ נ							\		8#1			\sim					-			50	۸.
	earr		is	oon	1	-		ŗ	T					1				1					/	\top		+	1		1			
	loit				<u> </u>	_[=	14	<u>.</u> 1				<i>f</i>	!	-		 		 		-7	4	-		+	+		L 			
	enia	oa b	rec	hoid				7	-		1		{	/: 	-	 	/	<u> </u>		_<			1	-		-	-	- 6	_			. 1
10		!			1				1		П					T	1			51			1	_			À					1
										:	- 				1			_	*	1					į							1
1.								i	T	<u>.</u>	ŧ.,			1	· -					. \		j.	,				$/\parallel$					l
AT.	enis	08.0	afé	de	1			ī	F	7	- 			1						<u></u>	7			1		7						-
RE	10	1 140	<u></u>						+		!			+		+	-1		-	1	1			-		\dashv		:		-	1	
_								7	+	_				+		+-	•	<u>.</u>		-	-					- -					-+	
dre.	nigo	a by	eoh	olde					\Box			-		-		Γ.	7	-	7					7		1		9-6-			1	
	enie			de]_			L			_ _			_/	, 	L.	_		`	7				-		1			P 			
									J	ļ							- \			\	1					1						
Pi	FATT	a gr	18			_[1		Π	1			7								\prod		eg			1					1	
fr	aotu	rade			1								/								7			1		1		- -				
Are	n iso	a 00	nр	isar	.			J	-		تا									980			130	7			4	:: ::	 1		-	
-	7.0								7			_				2.75	6 (d) (4 A)	144	-			7	-}		9 Jul 11				(436.) 18. julija		\mathcal{A}	
Pie	atte	oaf	6						-	<u>]</u>				6 (%)							4		-1		!			4	307		_/	
70	·	*************		~					Ľ									700 1000								i A					<u>L</u>	
Are	niso	Δ]		,]	η	7								1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										1:				
- 1	arra	oon	OB	loit		Γ	لــــ		İ	ال									177					1				1				
					1			_	٦				4.4	location.				3 T		Wat 147				1			Ш			$\perp L$		
Are	miso	a gr	is	gran	d] -			7								723 1781		<u></u>	1	<u>-</u> -			ļ	<u> </u>	143 E	+-		>•
fin	20				<u> </u>	·		لم					 	-			177-16	-			·		/".				- -	\	800		1	\
Pim	erre	gri	.6		_		L		5	 		_	-								1		ota	4			\perp	$ _ $				7
Are	niso	a Ki	iao	on .	+			٦,	1			3						ļ		1997	1-		. \ 	7		ten.	+		>		725. 756	-/
pin	8778	y l	uti	ta				Į			ً			•						559		+				2(7	4	••	4		727	
90	Tarasa sa salam	****	-		ļ.,			-[1		-					 					#			1			-					
-	***********	*****			 											-		********	-		+	***********		+			-					

Borreno No. 12 Coto brocal 555.20 Localizadón Margo derendo Fecho VII - 75 Forno Localizadón Margo derendo Fecho VII - 75 Forno Localizadón Margo derendo Teneral de la feta de la												
PERFIL GLOMECANICO Borreno No. 12 Coto broad: 55.20 Localización Márgas desenha Localización Márgas desenha Localización Márgas desenha Facha VIL 75 Formó 10 00 00 00 00 00 00 00 00 00 00 00 00 0												
PERFIL GLOMECANICO Borreno No. 12 Coto broad: 755.20 Localización Márgas desenha Localización Márgas desenha Localización Márgas desenha Fisher Secretario Secret						1 1	1:					15 12
Borreno No. 12 Cold broads \$55.20 Localización : Afergas descenha Localización : Afergas descenha Fache VII - 15 Formó Localización : Afergas descenha Localizac	 	1	1-1-1-	4	PE	RFIL	GEOM	ECANICO	Obra P.	EL CARACOI		
Localización: Mérgas deseoba Fecha VXI - 75 Formó Fecha VXI - 75	indianal :	1		1.		-					1	
Fech YIL - 15 Formo				+		-						1
Section Sect	Pte (2)	4 1 .		7 7 .		-ll			Localizad	lón: Márgen d	erecha	ļi
Section Company Comp			-1-1-		- :	1 1			Fecha_VI	I - 75	_ Formó	
Pissare Pissare Pissare Pissare Avenison onfé			- 1					Realstencia	Resistancia	Modulo de		Módulo de
No. 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50 to 10 to 50		M ődűpork ajdr			1	P**		1			eimple □ doble △	E(kg/em.E) 10 B
Timerra Pimerra Pimerra Pimerra Pimerra Areniana Areniana brachoide affé remiana brachoide affé Areniana con pizarra Areniana con pizarra Areniana brachoide affé remiana on pizarra Areniana brachoide affé remiana confé Traina areniana confé Traina areniana confé Areniana confé Traina areniana confé Areniana confé Traina are			i i				411 06 /m ⁸ .)		RI(kg/off ²)	Rf(kg/cm ²)	punzocortame O	
Piserra Senisca con piserra Piserra Arenisca con piserra Arenisca confé fracti tada y Porcos Arenisca brechoide pris Arenisca confé grato fino tranisca brechoide pris Arenisca confé Piserra Arenisca confé Tranisca brechoide pris Arenisca confé Piserra Arenisca confé Tranisca confé Trani	1	20 40 60	20 40	eo eo	1	B 13	80 ES MO	l.				100 200 800 40
Piserra Senigos con piserra Piserra Arenisos con piserra Arenisos confé fracti Arenisos brechoide pris Arenisos confé Arenisos confé Arenisos confé Piserra Arenisos confé Arenisos confé Arenisos confé Piserra Arenisos confé	0		-									
Pisarra Arenisoa On pisarra Arenisoa On pisarra Arenisoa On pisarra Arenisoa On pisarra Arenisoa On pisarra Arenisoa Deschoide pisa Arenisoa breohoide pisa Arenisoa oafé Tisarra Arenisoa oafé Arenisoa oafé Tisarra Arenisoa oafé Tisarra Arenisoa oafé Tisarra Arenisoa oafé Tisarra T	Arenisca con pisarre						·					
Pisarra Aranisoa Aranisoa on pisarra Aranisoa onfé fractu tada y poyona Aranisoa brachotia pris Aranisoa brachotia pris Aranisoa onfé grano fino tanisoa onfé grano fino tanisoa onfé grano fino tanisoa brachotia pris Aranisoa onfé Aranisoa onfé Aranisoa onfé Tibarra Aranisoa onfé Tibarra Aranisoa onfé Tibarra Aranisoa onfé Tibarra Tib					i			k			يستشد فالمستوي	
Pitarra Presisoa Presisoa Presisoa Arenisoa caré fractu rada y porosa Arenisoa brechoide paré Arenisoa on pizarra Arenisoa onfé Tranisoa onfé Tran	Piserra			ļ.				1	<u> </u>			
Pisarra Arenisoa don pisarra Arenisoa onfé fractul tale y proposa Arenisoa onfé fractul tale y proposa Arenisoa onfé fractul tale y proposa Arenisoa onfé grano fino renisoa breoboide enfé Arenisoa on pisarra Arenisoa on pisarra Arenisoa on pisarra Arenisoa onfé Ilagar Arenisoa onfé Ilagar Arenisoa gris grano gris fracturada Arenisoa gris grano gris grano gris fracturada Arenisoa gris grano gr	renisca con pisarr							1	•			
Arenisca con pisarra Arenisca con pisarra Arenisca confé fracti rada y procesa Arenisca brechoide paré Arenisca brechoide gris Arenisca confé y gris fractirada Arenisca confé y gris recturada Arenisc			- - -	1.137				292				
Pisarra Arenisos on pisarra Arenisos café franti sala y pross Penisos café grano fino Penisos brecheide afé Arenisos on pisarra Arenisos confó grano Arenisos confó gris Arenisos confó gris Arenisos cafó y gris fracturada Arenisos cafó y gris fracturada Arenisos gris grano Gruso Conglomerado arenoso Gris Pisarra argilita Pisarra argilita Ilianilia Vennisos grano selio Don pisarra-lisolita Uson- Senisos grano selio Conglomerado arenoso Gris Pisarra argilita Uson- Senisos grano selio Conglomerado arenoso Gris Conglomerado arenoso Gris Pisarra argilita Uson- Senisos grano selio Conglomerado arenoso Gris Conglomerado arenoso Gris Conglomerado arenoso Gris Conglomerado arenoso Conglomerado arenoso			-		X						45.147 	
Arenison onti fractu ada y porces Arenison onti fractu ada y porces Arenison onti gram fino Trenison brechoide pafé Trenison brechoide pafé Arenison onti gram Arenison onti Arenison onti Arenison onti Arenison onti Arenison gris gram Gruss Arenison gris gram Gruss Arenison gris gram Institution Ins	7) : 1							7		e e e e e e e e e e e e e e e e e e e	valgest, ata	
Arenisos café fracti rada y porces tranisos café grano fino tranisos brechoide pafé renisos brechoide gris Arenisos con pizarra Arenisos café y gris fracturada Arenisos gris grano Gonglomerado arenoso gris Pizarra argilita Ilmollia Arenisos grano medio con pizarra-licolitia Conglomerado arenoso	Pisarra	; .		1								
Arenisos café fracti, fada y porces Arenisos café grano fino Irenisos brechoide gris Arenisos con pizarra Arenisos café y gris fracturada Arenisos gris grano Gonglomerado arenceo griss Pizarra argilita Ilmollia Arenisos grano medio con pizarra-licolitia Conglomerado arenceo	Arenisca con pizarre											· t
Arenisoa café fractu rada y porosa renisoa breoboide pafé tranisoa breoboide pafé tranisoa breoboide pafé tranisoa con pizarra Arenisoa con pizarra Arenisoa café y ris fracturada Arenisoa gris grano grusso Conglomerado arenoso gris Pizarra argilita Conglomerado arenoso Conglomerado arenoso Silvatira Sil	2			2.00				7				
ata y pososa Arenisoa brechoide pafé Arenisoa brechoide pafé Arenisoa confé grano Arenisoa confé Arenisoa grano Grueso Conglomerado arenoso gris Pizarra argilita Pizarra argilita Tibilita Arenisoa grano medio con pizarra-limolita Conglomerado arenoso	Arenisos		!					/_				6404
renisca Café grano fino renisca brechoide pafé kranisca brechoide pris Arenisca con pizarra kranisca con pizarra kranisca con pizarra kranisca con pizarra Arenisca con pizarra India		1	le lega		5-							1
renisca brechoide gris Arenisca confé gris Arenisca confé y gris fracturada Arenisca gris graco grusso Conglomerado arenceo gris Pizarra argilita Ilmolita Arenisca grano medio con pizarra-limolitia Conglomerado arenceo	rada y porosa			Tayi.			yOku1+ p Hada + Mariya +		\ 			
Arenisca cará y gris fracturada Arenisca gris grano grueso Conglomerado arenoso on pisarra Arenisca gris grano gris Gris fracturada Pisarra argilita Institutada Pisarra argilita Conglomerado arenoso Conglomerado arenoso Solution Figure 1 Figure	Arenisca café grano	fino	-					- 	· >			*
Arenisoa on pizarea Arenisoa oafé Arenisoa café y gris fracturada Arenisoa gris graro grueso Conglomerado arenoso gris Pizara argilita Testina argilita argilita Testina argilita	Arenisca brechoide	afé				40 a 5		$\left - \right = \left \frac{1}{2} \right - \left \frac{1}{2} \right $	-			S
Arenisos café y gris fracturada Arenisos gris graro grueso Conglomerado arenoso gris Pizarra argilita Inditia Arenisos grano medio con pizarra-limolita Conglomerado arenoso	Arenisca brechoide	ris		15.5			<i>/</i> 1.1	7	\sim	1.00		
Arenisca café y gris frecturada Arenisca gris grano grueso Conglomerado arenoso gris Pizarra argilita Arenisca gris grano gris Conglomerado arenoso gris Conglomerado arenoso Stock Sto	Arenisoa oon pizar	:8		1-								
Arenisca café y cris fracturada Arenisca gris grano grueso Conglomerado arenoso gris Pizarra argilita Pizarra argilita Arenisca grano medio bon pizarra-limolita Conglomerado arenoso	Arenisca café							1				
Arenisca café y gris fracturada Arenisca gris grano grueso Conglomerado arenoso gris Pizarra argilita Arenisca grano medio bon pizarra-limolita Conglomerado arenoso				-		$+ \parallel \cdot \parallel$	<u>isteltais</u> Historyv		$\rightarrow \rightarrow$			
Arenisos gris grano grueso Conglomerado arenoso gris Pizarra argilita Arenisos grano medio bon pizarra-limolita Conglomerado arenoso												/
Arenisos gris grano grueso Conglomerado arenoso gris Pizarra argilita Pizarra argilita Rigoria Arenisos grano medio bon pizarra-limolita Conglomerado arenoso	Arenisca café y gris fracturada							1				(
Arenisca gris grano grueso Conglomerado arenoso gris Pizarra argilita Pizarra argilita Arenisca grano medio bon pizarra-limolita Conglomerado arenoso				100				724	>-		1 4 4 4 7	1
Arenisos gris grano grueso Conglomerado arenoso gris Pizarra argilita Pizarra argilita Arenisos grano medio bon pizarra-limolita Conglomerado arenoso	70						King Table					\
Conglomerado arenoso gris Pizarra argilita Pizarra argilita Pizarra argilita Read Sead Sead Sead Sead Sead Sead Sead S		,						760	>			
Donglomerado arenoso gris Pizarra argilita Pizarra argilita Pizarra argilita Dimolita Arenisos grano medio bon pizarra-limolita Conglomerado arenoso	"			7				570		1.35		
Pizarra argilita Pizarra argilita Pizarra argilita Ilimolita Arenisoa grano medio bon pizarra-limolita Conglomerado arenoso	Conglomerado arenos)	1 A 7 S y A			. (3) (4) (3) 5 (4) (4) (4)			·-/			-
Arenisos grano medio bon pizarre-limolita Conglomerado arenoso								7191			انتات	
Arenisos grano medio bon pizarra-limolita Conglomerado arenoso	Table or Strain		-						1		/ = ************************************	
Arenizos grano medio on pizarra-limolita Conglomerado arenoso	limolita						·	660				
Conglomerado arengao	Arenisos grano medic	0						1384				520 +
Conglomerado arendeo	Presta vament							1778 +	₩			
/V		80		est seems of a	elen same sametreen							

			PERF	FIL GEOM	ECANICO	Obra: P.	. EL CARACO	L, CIRO.	
					. :	Barreno	No.: 17 Co	ta brocal:4	72.80
FIG. 34			; -				ión: Kárgen		
		. h		: :		Fecha_X	• • • • • • • • • • • • • • • • • • • •	_ Formó _	
DESCRIPCION	Recuperación % . 20 40 60 80	Indice de calidad de la roca (ICR) % (RQD) %	Indice de alteración % 1 2	Peso volumétries se ce Jéditen /m³) 15 20 28 30	Resistencia en compresión Rc(kg/em²) e seco + saturado 200 400	Resistencia en tensión (Brasileña) Rt(kg/cm²) e seca + saturada 50 100	Modulo de ruptura (Tensión bajo flexión bajo flexión bajo flexión) Rf (kg/cm²) o ecc d + saturado 100 200	Resistencia en corfe simple □ doble △ punzocortante ○ Rt(kg/cm²) 100 200	Módulo de elasticidad E(kg/em ^E) 10 ³ e seca + saturada (00 200 300 400
)		1					·		
			100	-					
			. Te 1 2 24						
0			- 1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	57.57, 6, 7, 7, 7, 8	Palawa Maranga Ka				
				Contract	1				
Arenisos con esquis	tos				77				670
Arenisca gris verdo	88.				-)			Alemania Marina	
oon fractures					4	<u> </u>			ganden name
Pisama café asari-			district Constitution	i ginar jarin j	1			1 69 1 1 1 1	****
llanta (estr. vert.)	<u> </u>			-				
		1 '		1	1				

ireni	soa esquistosa					t _a			
Pisar									
-	sca esquistosa								
-	ra, limolita y							 	
	son esquistoss		!			3	\		
	calsciones de ra negra y lim	olita							
Areni grano	sca esquistósa fino fractura	đe da			28 J	2007			
lita	ra negra y lin	2							
Areni	soa grano grue	8 0							-/
Fisar vetas	ra y limolită de cuarzo	oon						 	/
			18 (14 to 15 to 16	grand MANAGE.		808.1 1343.1		Septiment of the second	
	soa grano grue nosa			And the second			\-		
CONTRACTOR OF THE PERSON NAMED IN	rra y limolita		(2)			666 +	+		
	son fracturada					184 + -	4		
Pine con v	rra y limolita etas de ouarso	Marie with region to a second				=			
Areni	soa grano muy	grueso				657+ 657+ 849+			

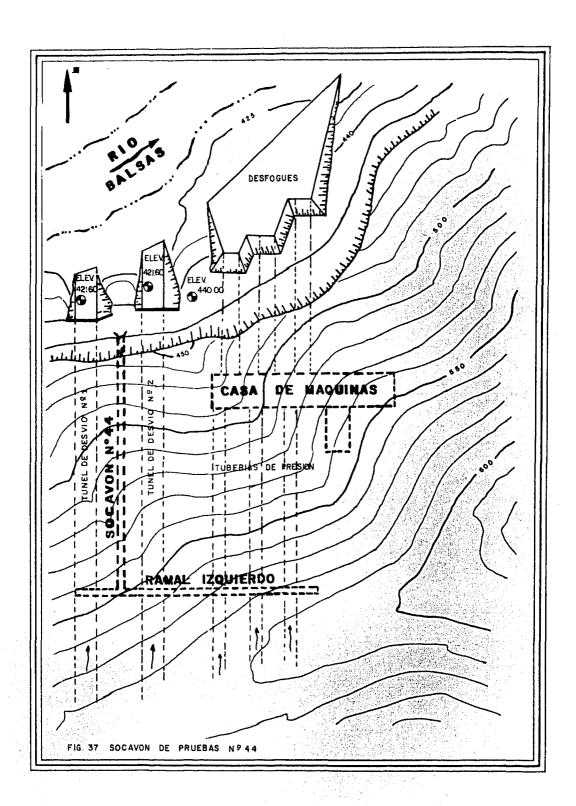
			 "	IL GRUM		UPIU	K.C.	535 AT
						Barreno I	io.: ⁵⁶ Cota brogal:	282-47
"tG. 35						Localizad	ión: Márgen derechs	
						1 1	- 77 Formó	
		Indice de cuildad	1		Resistancia	Resistancia	Mádulo de Resistencia	Módulo d
	Reguperación	de la Laca	Indige .#*	Peso salumálrias	en compressión	3	ruptura en corta	etasticida
DESCRIPCION	%	(ICR) % (RGD) %	alteración	Tditon /m3)	Ra(20/sm ²)	(Brasileda) Ri(kg/cm²)	(Tensión bajo fincien) dobie A punzocartante O	E(kg/em ²)10
			1		+ seturato	+ seturada 50 100	0 100 a Rf(kg/cm²)	+ saturada
- Charles and a second	20 40 60 80	20 40 80 80	1 1	15 20 18 80	290 400	90 100	100 200 100 200	100 200 800 4
Tisarra con areniso								
hafé fracturada		尸		1 - 1	1-1	· /		
1 A STATE OF BUILDING AND A STATE OF ST				1 : 1		//		
imarra con calcita		=-	1 1	 	 	/		
learra con arollia	oaté L		~				7 . !	
kranisos grano Tino					054			
Pisarra con horison	88				4			<u> </u>
ou calcits			\\					
Pisarpa osfé aroill		الم	12.4	L	}	1	-\	
			•2					
10			-	1		-)		-

Pisarra arenosa			1-/-		* (: :)
PIRATTE ATO: ITAO.								
FIRETE APG. IFAG.	4	-						l <i> </i>
Pisarra y arenisca						in the first		
grano fino interestratificados			/					1 / 1
•					\downarrow		A	
					\			l\ -
					\mathbb{N}			
0					98a - 1997			
Aranisos gris de		,				}		
grano fino					1 4-4	_/_		
Pisarra gris frac.		r	1			/ /		
The state of the s		5	HANGERS		1	1	personal and the second	\$3.5°
- 000 0000		- L-,	,	- };;;	;	/		
Arenisca brechoide	ا	ا ل			111		/	
Pissers con limeli	•	<u> </u>	· ************************************	344		SA STATE OF		
transac entr		7					- - (
Arenisos gris	G	G	,	- 4 [.44	\- <u>-</u>			
Pisarra gris frac.		7			\ \			
Aranisoa y pisarra interestratificada								
Arenimos gris		- →			* \	-4-1-1	A	-
Pisanna ente con						. \\.		
PANISON Y ILHOITES		1						45
	4				320		er all from the first transfer of	Ş I
					680	\		i
Pissava con hori- mentes de calcita	ſ	لے						
		L -		1 1	1207		The second secon	
	<u>.</u>				95E +			990
2 personal de la company de la								

-		+++		+++	+-		PER	T 114	04	·UMI	-0/1	1100		Obro P.				+
			1:4		- -		-	<u></u>							1		ota brocal:	524.70
FI		1			<u></u>					<u></u> '	ļ	ļ -		Localiza	ción:	Margen	derecha	
														Fecha_I			Formó	
				i	de calidad	1		. \top	-		1	ste tencia	, ,	Mesistencia	Módu	ulo de	Resistenced	Mádulo de
	D-E & G R I P C I O		uperación	de la re	. 1	India:	ae <u>de</u> . acién	Pes	e a e e		1	omprestói (g/em²)	- 1	en tensián (Brasileña)	1	ptura bajo flenkón)	en corte simple [] doble Δ	elasticidad E(kg/cm ²)10 ³
	D.E. & G.N.I.P.G.I.O.		%	(RQD)				-	#4(1en /				A	At(kg/om ²)	Rf(kg	g/cm ²)	punsocartama O	e e e c a + saturada
r)		20	40 60 80	20 4/	40 60 60	,	1 2		15 20 2	.8 30	1	1010 da 100 400	ه ا	60 100	+ + + 01	00 200	Rf(kg/cm ²) 100 200	
0		-	-	4				7				626-	-	-	_			
-				丰	7		1	+	7		1		1		+	<u></u> :	<u> </u>	
		_		归一		1-1	1	+	->	/ -l		7-	-					
				<u> </u>		4	لبنا	'	1 \$		<u> </u>	\geq	<u> </u>	1)	14	•		<u></u>
	zarra café		(1 -		1 {		_ ·	· · · · · · · · · · · · · · · · · · ·	t J	-	855 ÷	4		بر ا	> .		1.
Ire	soturada		L	1	7		1	1		1		. ,	1		1			
			+	1	f		+	士		=			士	1	17	!! \!		
10			FE	FE			7	7	\Box				Ŧ	= -		7	1 3 3 3 3 3	
Aren	nisca café]!		1	1			1		1		1	/_'	<u> L</u>	<u> </u>
orgu	ohoide	\dashv				'	\			i - 1	1.	·	- :			ブ. '		
80			1 1	4	7			1		(-,		-	4	<u> </u>	++			
	serra café acturada	_		+-		1	1	+	1	1		Sid ~	1	/-	+-+			/
mln (2.712)		=	1	<u> </u>	41-		<u> </u>	4			التنا	132 1408	-		14	() () () () () () () () () ()	1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/_
40 Pie	SATTA GTIS		النسبا	上	##		Z	士		+	<u> </u>	HOA	1		++			Kal
			}	1	1	1	7	1	- 1				T^{\prime}			77/7/		
de	tercalaciones arenisca y		<u> </u> E-	17	_			+		 			+		1-2-1	1	The second secon	
	sarra con tas de calcita	a		+		1	 	+	1 - 1	+	 	PR	+	+	100 cm	l'al		
	Links and the comment	_	<u></u>	4	لــــاد	<u> </u>		_				848+-	_		_ /	<u>/ </u>	<u> </u>	
					<u>.</u>					1	<u> </u>	r 1	1		1/	(1275) . G. (1475)		
••	· i · i · · · · · · · · · · · · · · · ·			1=	1			#		口	\Box	Z			$\perp \zeta$		T	
1.21	2 #19F1(13.4-)			4				+		}-	 :	663				7	.,,	
	and the second		<u> </u>	1 -F						7	ļ	849	1			$\Delta \omega$		1
70			r	LГ	<u> </u>					\coprod			\perp			1	A 256p-	
	4-241111		.1		ا ي		Īų.			$\overline{\mathbb{L}}$	<u> </u>	040 ····	7	7	Rø	7	[10.5 E
	sarra fractura n arenisca gri		-	100	用制	1		17					17			7/::1	J	
_	. tracket be f			1 _	f l			45	<u> </u>		I		11			./		Pos
	sarra fractura enisca gris	de		F	27.300					[]		7	1			<u> </u>		
			_ _	<u> </u>	الكم		2			الدا			1)					l .
1	serra con calc	ita	ſ	Ú J	上り	ľ.			(1974) 1975		ka i				I /,			
90			7.5				40.5						1				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	enisca brechci n pisarra	.de		ų-				10	1000			665	+	·	-	7 1	a 4	
	1 / 1			j. E		i dag	<u> Par</u>		البني		·					\ 1		
00		 	<u>_</u>	J		1	<u> </u>				<u> </u>	920.	1		 	1	A Principle of	
			لے "	:	ا ج				, T		1			1	1	11		
Pie	sarra con poca enisca interca	1		المسالر	1	1								a de maio a panga-			r	1
110-03	So the interce	,		上		<u> </u>		+		\vdash			+					-
			ነ	4		 		4		1	·	10801-1					L	1
				1 _		1				1	i _	1087	7	101/*	1 4, 4		1	1
120						-		1	/							287		1

Cabe mencionar, que el número de determinaciones para algunos casos es reducido para efectuar análisis estadísticos, las altas dispersiones manifestadas por los coeficientes de variación son índices de la heterogeneidad del depósito lítico, la resistencia en compresión simple promedio sufre disminución al saturar la roca, de 42% para las areniscas y de 21% para las lutitas, el módulo de alasticidad en estado seco es similar en ambas rocas (350,000 Kg/cm²) y en estado saturado se observan discrepancias fuertes.

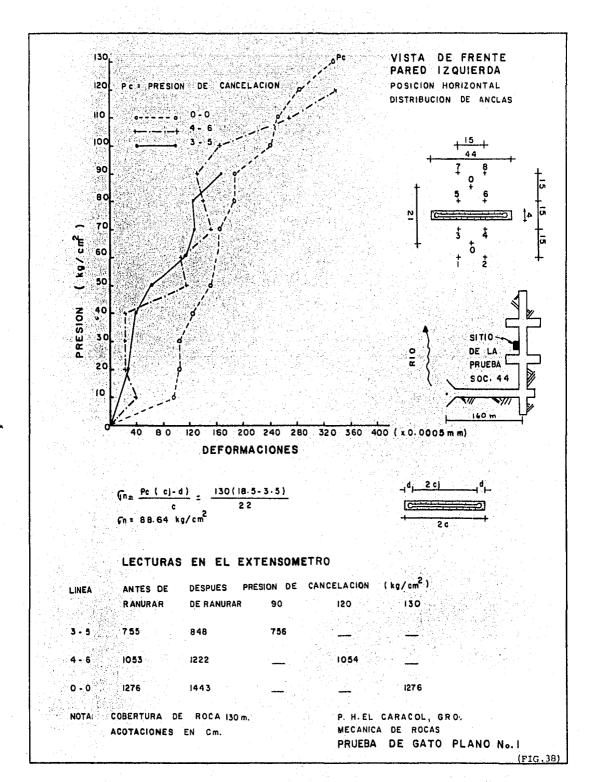
2. Pruebas de Campo.

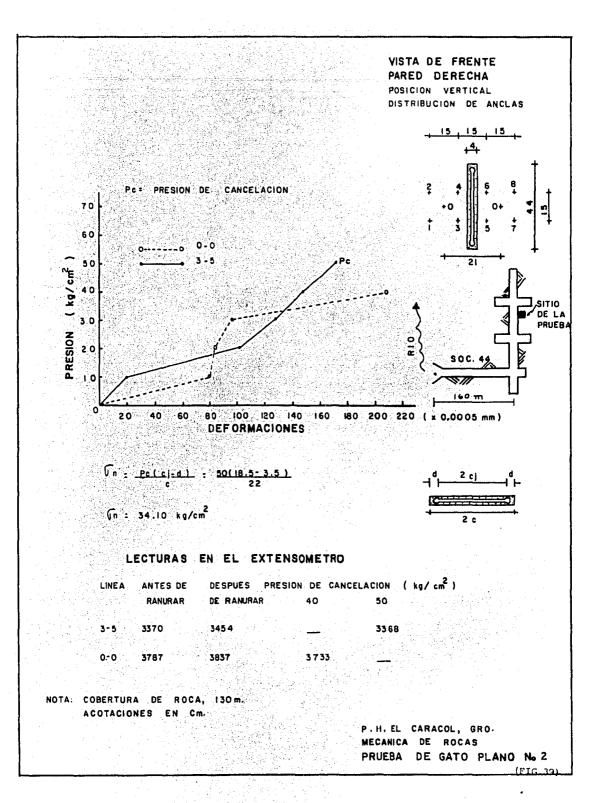

Determinación del estado de esfuerzo interno de la Margen Derecha:

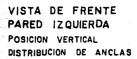
Con la finalidad de conocer el estado de esfuerzo interno del macizo rocoso de la Márgen Derecha, zona donde quedarán alojadas las estructuras subterráneas más importantes (Casa de Máquinas), se ejecutaron una serie de pruebas de liberación de esfuerzos tipo Gato Plano y Roseta de Deformaciones.

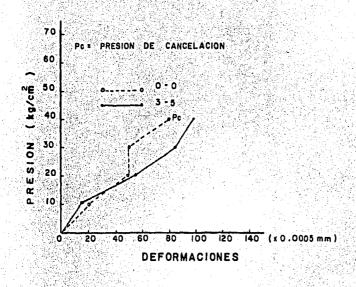
Pruebas de Gato Plano.

Estas pruebas se realizaron en el ramal izquierdo del socavón No. 44 como se indica en la Figura 37. El número total de pruebas fué de 6 en las siguientes posiciones; 2 horizontales, 2 verticales y 2 -- perpendiculares a la estratificación.

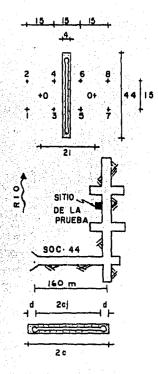

La prueba consiste en inducir artificialmente un -cambio en el estado de esfuerzos modificado de la roca por efecto de la ex
cavación de la galería de ensaye. Esto se logra rompiendo la continuidad
del macizo rocoso, mediante la barrenación de una ranura que provoca defor
maciones internas a la roca, midiéndose estas deformaciones entre varios puntos de referencia fijos (anclas) a la superficie de la roca y alineados
en dirección perpendicular a la ranura. Posteriormente se inserta en la ranura un gato plano de sección cuadrada ahogado en mortero, al cual se --




aplica una presión hidráulica hasta que la presión aplicada a la roca le produce deformaciones de una magnitud tal, que los puntos de referencia han alcanzado su posición inicial, a esta presión se le denomina "presión de cance lación" y se interpreta como el valor del esfuerzo interno del macizo rocoso en dirección perpendicular al plano de la ranura en la vecindad inmediata ala excavación.


Las Figuras 38 a la 43, muestran las gráficas de los ensayes, y los valores de los esfuerzos obtenidos se presentan en la tabla siguiente:

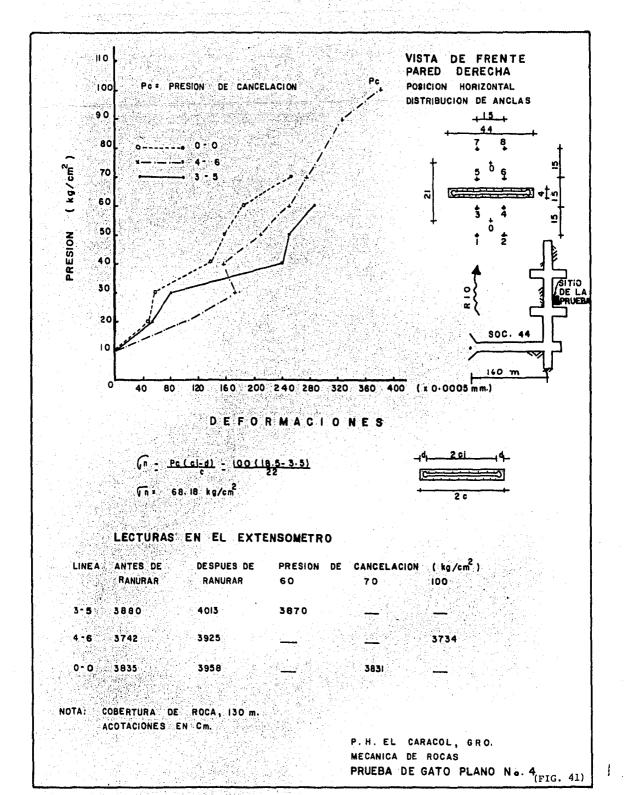
Prueba No.	Esfuerzo Normal (Kg/cm²)	Dirección del Esfuerzo	Posición del Gato Plano
1	88.6	Vertical	
2	34.1	Horizontal	
3	27.3	Horizontal	·
4	68:2	Vertical	
5	31.0°	Inclinado 30°	Estratificación
6	47.7	Inclinado 55°	
			1

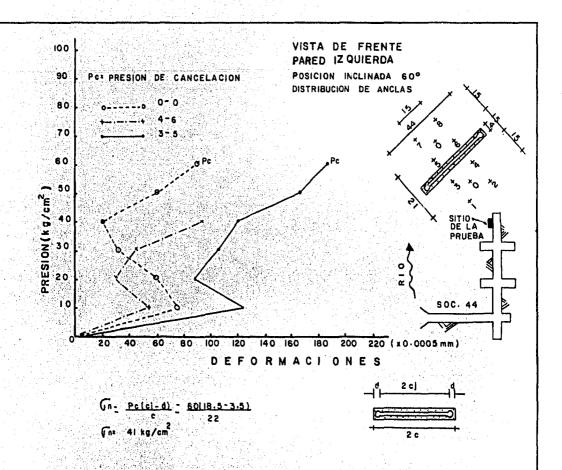


(n : Po (c)-d) : 40(18.5-3.5)

(n = 27.27 kg/cm²

LECTURAS EN EL EXTENSOMETRO

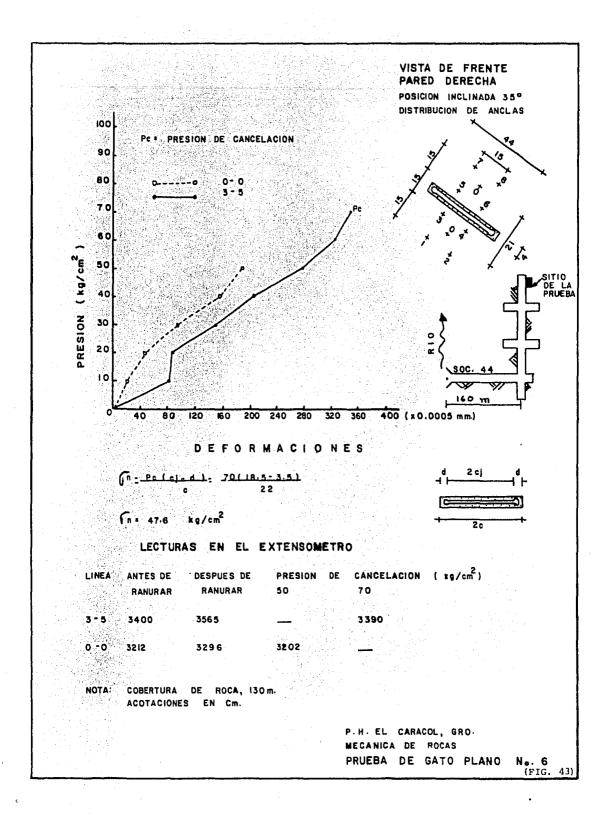

LINEA ANTES DE DESPUES DE PRESION DE CANCELACION (kg / cm²)
RANURAR RANURAR 40
3-5 3547 3493 3542
0-0 3580 3545 3585


NOTA: COBERTURA DE ROCA, 130 m.

ACOTACIONES EN Cm.

P. H. EL CARACOL, GRO.
MECANICA DE ROCAS

PRUEBA DE GATO PLANO No. 3 (FIG. 40)



LECTURAS EN EL EXTENSOMETRO

-				Ω,	32	7.		<u>,</u> ;				117	16	7.5	14		11			1	100	ं	W.)	`	94	15	,			1	- 1				ú.	, i	٠.	٠.
	L	IN	EA		A	ITE	:5	D	Ε	V.	D	E	SP	UΕ	9	DE	16	1		Ä.,	P	RΕ	31	ON	0	E	C	A١	ICE	L	٩C	10	N į	1	kς	1/4	em'	٠)
٠.		Sp.	, iii		R						Ţ.,) A	6	ě.							_					¹		O	1 E .		10	. "	60		11
		- 1			ុក	AN	UK	AN							١,	П.	30		e je		1	<i>:</i> ()	3	·		- 11			10	- 5	v		.1		, 31	3U	75	
	•					, n			S.							٠.,	4		d.	्रं							Č.,		2.54									4
	_			1.0				24	ŀν.		r.	ŭ.			100					À.,	, s.	200	j.				, is	\$	٠,	140		.46	. 10		٠.			
j.	3	•)		32	90			, S.,		Ϋ́,	3	3 8	10	6	1.4	22.		٧.	4	. 1	40		- '		, 10	ч.		17	•			Ú,			3 2	87	ď.
٠.	٠,	14,			T,				4	1	4								12		. 1	10		٠.	٠,		33					in.		377	18		- 1-	41
		٠٠.	10			<u>.</u>		8					<u>ان</u> ا		÷,	9 4 5 .			Ġ.			ાં.'	<u>.</u>		_		(v	- 17	W.1								,i.i.	ιώ
	. 4	•	5	125	2	12	1		. 7	-	្លា	Z	44	12			. 4	1.0	Ų.	şi.	31	١.,;	2,	12	0	Ţ.,	્ૈં.	- 2	10	`; -	-							
			11									Ç.		Ó.	()	٠.	. '					1	10		٠.			a) i					13				J.	45
3	٠_								. 4		. 7							ġ.	٠	٠.,	43	S	4	ji.	Š.,	d.	÷.	 1		. 16				- 1	4.			
	C	r : 1	U	4	2 5	12 (5	119	43	10	٠.	2	14	2	ç.	٠.	1		5.	- 1	10		_	_ ;	-	100		113	14		9	2		٠, j.				200

NOTA: COBERTURA DE ROCA, 130 m. ACOTACIONES EN Cm.

P.H. EL CARACOL, GRO-MECANICA DE ROCAS PRUEBA DE GATO PLANO No.5 (FIG.42)

Los esfuerzos normales determinados en las pruebas menciona--das, corresponden al estado de esfuerzos modificados por la excavación de la galería.

A partir del desplazamiento total obtenido en cada ensaye (W_j) y utilizando la ecuación (ref.29) siguiente, que da los desplazamientos quese presentan sobre las caras de una ranura infinitamente delgada, considerada como un orificio elíptico en un plano de dos dimensiones, se calculó el módulo de elasticidad E de la roca para cada sitio, tomando como valor de la Relación de Poisson de U=0.2 y 0.3.

$$\begin{split} \mathbf{E} &= \frac{1}{W_{j}} \left[\mathbf{F}_{1} \left(\mathbf{Sc} - 2 \, \mu \, \mathbf{S} \, \mathbf{Y}_{0} \, \left(1 \, - \, \frac{Q}{S} \, \right) \, \right) \right] \\ \text{donde:} \\ \mathbf{F}_{1} &= \left[\left(1 - \, \mu \right) \, \left(\left(1 \, + \, \frac{Y_{2}^{2}}{c} \, \right)^{\frac{1}{2}} - \, \frac{Y}{c} \, \right) \, + \, \left(1 \, + \, \mu \right) \, \left(1 \, + \, \frac{Y_{2}^{2}}{c} \, \right)^{-\frac{1}{2}} \, \right] \end{split}$$

donde:

S = esfuerzo normal al plano de la ranura.

y = distancia de la pija al eje mayor de la ranura.

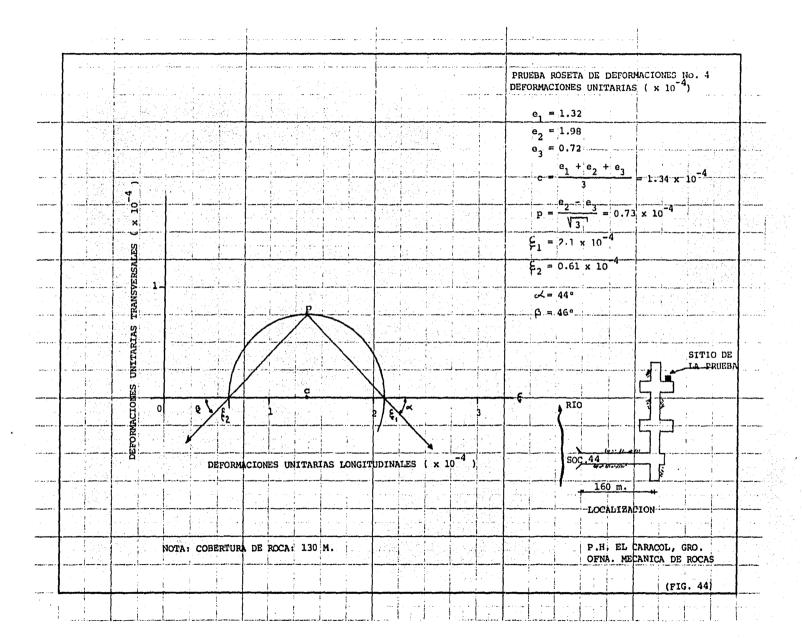
2c= longitud de la ranura.

2y = ancho de la ranura.

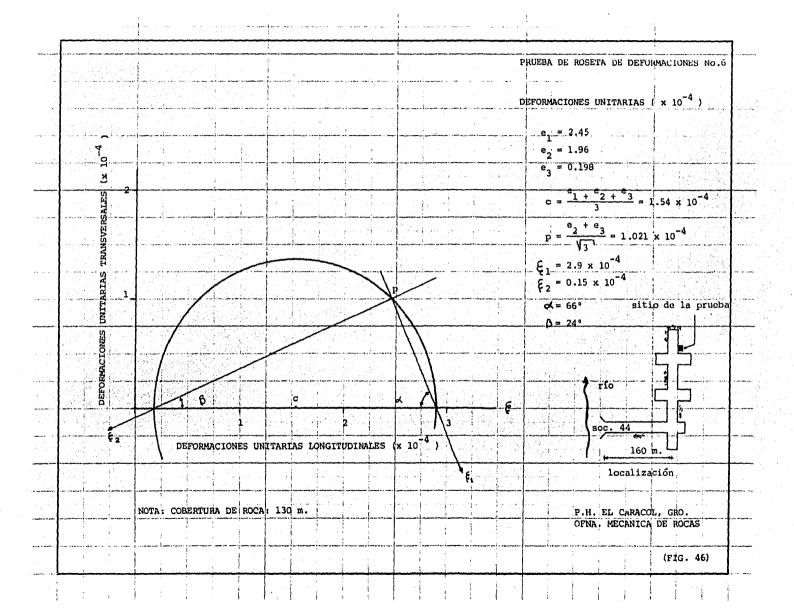
Q = esfuerzo perpendicular a S en la ranura.

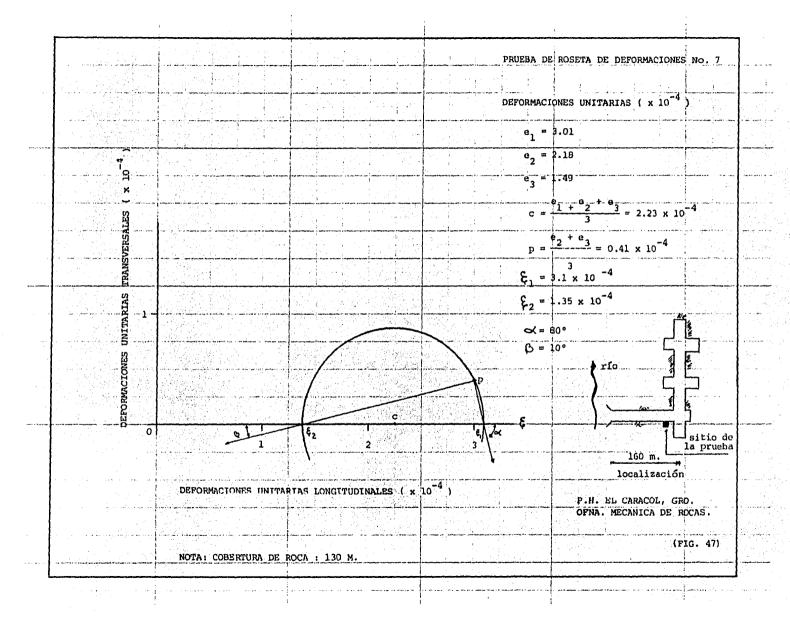
En la tabla siguiente se indica el resumen de los módulos de elasticidad obtenidos:

	Prueba No.	Desplazamiento	total		Elasticidad
		Wj (cm)		み = 0.2	い = 0.3
	1	0.0160		176	176
: .	2	0.0084		161	168
	3	0.0054		205	215
	4	0.0183		137	136
	5	0.0090		176	180
	6	0.0084		100	101


Estos cálculos han sido hechos tomando los desplazamientos registrados en las pijas con 15 cm. de separación entre sí, excepto en la prue ba 6 en donde es de 21 cm.

Pruebas de Roseta de Deformaciones.


Se colocan en la superficie de la roca de la pared de - una galería, tres medidores de desplazamientos con direcciones que forman án gulos de 60° entre sí. Posteriormente se recorta concéntricamente la zona - de la roseta con un barril muestreador con el fin de producir un alivio de - los esfuerzos actuantes en la zona instrumentada, midiendo las deformaciones producidas.


Las Figuras 44 a la 47 muestran los resultados de los ensayes que corresponden a las pruebas No. 4 a la 7. Los resultados de las pruebas 1, 2, 3 y 8 no se presentan debido a que reflejan errores en el sistema de medición y/o ejecución de la prueba. A partir de las deformaciones longitudinales obtenidas en los ensayes, se calcularon los valores de las deformaciones principales ε_1 y ε_2 , de los esfuerzos principales σ_1 y σ_2 y lasdirecciones principales de deformación, los resultados se presentan a continuación:

Prueba No.	Deformación Unitaria (ξ) Principal (x10 ⁻⁴ cm)	Esfuerzo Principal	Dirección del Esfuerzo
4	€. = 2.07	Çı = 39.6	44°
	€₂ = 0.61	C,= 21.6	46°
5	$\xi_1 = 3.50$ $\xi_2 = 0.45$		88 ° 0 2 °
6	ε _i = 2.90	G = 51.8	66°
	ε _i = 0.15	G = 17.9	24°
7	ξ ₁ = 3.10	ν = 61.6	80°
	ξ ₂ = 1.35	ν = 40.1	10°

El valor de los esfuerzos principales \mathbb{Q}_1 y \mathbb{Q}_2 se calcularon - utilizando las expresiones para un estado de deformación plana.

$$\sqrt{\int_{1}^{2} = \frac{E}{1 - \lambda J^{2}} (E_{1} + \mu E_{2})}$$

$$\sqrt{\int_{2}^{2} = \frac{E}{1 - \lambda J^{2}} (E_{2} + \mu E_{1})}$$

donde:

E = 160,000 Kg/cm² - - - - Módulo de Young obtenido de las pruebas de Gato Plano.

Los esfuerzos principales arriba indicados corresponden al estado de esfuerzos modificados por la excavación de la galería.

· Análisis de los resultados.

Como el esfuerzo interno vertical en un punto situado ba jo la superficie del terreno es:

H = distancia del punto a la superficie del terreno.

Tv = esfuerzo vertical.

 $\sqrt{v} = 2.5 (130)$

 $= 325 \text{ t/m}^2$

 $\sqrt{N}=32.5 \text{ Kg/cm}^2$

Y el esfuerzo interno horizontal siguiendo las leyes de la teoría de la elasticidad sería igual a:

$$\int_{h} h = \frac{1}{1 - \lambda} \int_{v} v$$
si:
$$\int_{v} h = 0.25$$

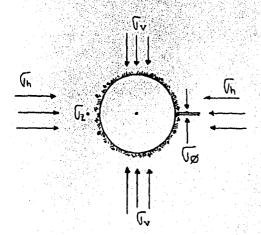
$$\int_{h} h = \frac{0.25}{1 - 0.25} (32.5)$$

$$\int_{h} h = \frac{11 \text{ Kg/cm}^2}{1 + \frac{11}{2} \text{ Kg/cm}^2}$$

Partiendo de estos valores se pueden determinar los esfuerzos modificados que se generan alrededor de una galería circular, suponiendo la siguiente hipótesis; existe un macizo rocoso elástico, homogéneo e isótropo (Ref. 25).

$$\int_{\mathcal{S}} = \int_{\mathcal{V}} v + \int_{\mathcal{V}} h + 2 \left(\int_{\mathcal{V}} v - \int_{\mathcal{V}} h \right) \cos 2 \mathcal{G}$$

$$\int_{\mathcal{Z}} = \mu \left(\int_{\mathcal{V}} v + \int_{\mathcal{V}} h + 2 \left(\int_{\mathcal{V}} v - \int_{\mathcal{V}} h \right) \cos 2 \mathcal{G} \right)$$

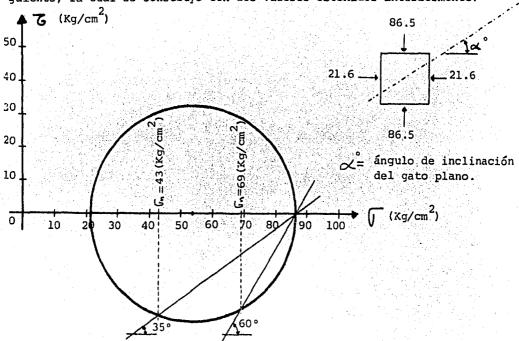

donde:

J_d = esfuerzo circunferencial.

 $\sqrt[]{z}$ = esfuerzo longitudinal (en dirección del eje de la excavación).

9 = ángulo polar.

Entonces los esfuerzos $\int_{\mathcal{G}}$ y $\int_{\mathbf{Z}}$ así determinados serían los -- que se esperarían medir con los ensayes de campo en la pared de la galería.



Y haciendo una comparación de los es fuerzos obtenidos en teoría con lasmedidas en campo, tenemos:

Esfuerzo Circunferencial		Esfuerzo Longitudinal	
Teórico	Medido	Teórico	Medido
86.5	88.6	21.6	34.1
	68.2		27.3

De la comparación anterior, se nota que los esfuerzos medidos en campo corresponden prácticamente a los debidos al peso propio de la masade roca suprayaciente (teóricas).

Los esfuerzos que se determinaron en las pruebas de Gato Plano en posición inclinada de 35° y 60° (perpendicular a la estratificación), también indican el mismo fenómeno como se muestra en la gráfica de Mohr siquiente, la cual se construyó con los valores obtenidos anteriormente:

Resumiendo:

PRUEBA PERPENDICULAR A LA ESTRATIFICACION					
Inclinación	Esfuerzo Teórico (Kg/cm ²)	Esfuerzo Medido (Kg/cm ²)			
30°	43	41			
60° 1	69	47.7			

De lo anterior, se infiere que los esfuerzos internos verticales y horizontales que se deducen de los esfuerzos medidos en el campo, son de la misma magnitud que los teóricos debido al peso propio de la masa rocosa.

Las pruebas que se efectuaron perpendicularmente a la estratificación arrojaron valores relacionados al mismo fenómeno y lo mismo se -puede apreciar en las pruebas de roseta de deformación en cuanto a la dirección de los esfuerzos.

De lo expuesto se concluye que no existen esfuerzos tectónicos o residuales en el interior de la masa de la roca, y el valor promedio del Modulo de Elasticidad (E), obtenido a partir de las Pruebas de Gato Plano es de $160,000 \text{ Kg/cm}^2$.

Determinación del Módulo de Deformabilidad.

Con la finalidad de conocer el Módulo de Deformabilidad dentro del macizo rocosc de la márgen derecha, lugar que como se había mencionado antes, se ubicar las obras subterráneas más importantes (Casa de Máquinas) se han realizado una serie de pruebas de campo por el Método de Placa Rígida. El sitio donde se han efectuado las pruebas ha sido también el cocavón 44, el cual se ubica arriba en medio y a lo largo de los Túneles de-Desvío. El número total de pruebas fué de 4 pares, 2 en posición horizontal y 2 en posición vertical y a diferentes profundidades dentro de la excavación.

Se aplicó presión a la roca alternadamente en varios ciclosde carga y descarga por medio de un gato hidráulico y una placa de acero --- (circular rígida de 43 cm. de \emptyset) apoyada directamente contra la roca debidamente preparada para ésto. A ambos lados de la placa se colocaron los instrumentos de medición los cuales registran los desplazamientos ocurridos en la zona cargada entre cada ciclo de carga y descarga. Las presiones de contacto aplicadas variaron de 60 Kg/cm² a 110 Kg/cm², sólo una prueba se efectuó dejando la carga máxima (110 Kg/cm²) durante 90 horas con el objeto de conocer el comportamiento del macizo de roca con el tiempo (fluencia).

A partir de los registros y gráficas obtenidas de cada prueba se procedió a determinar el valor promedio del Mödulo de Deformabilidad de la siguiente manera:

En cada ciclo de carga se determinó el Módulo de Elasticidad utilizando la presión de contacto máxima (P) aplicada y el valor del desplazamiento ocurrido (W_{α}) .

Se utilizó la expresión de Boussinesq para obtener el desplazamiento normal de una superficie de un semi espacio elástico bajo la acción de una carga puntual normal.

$$E = \frac{Pa (1-JJ^2)}{W_z} sen^{-1} (\frac{a}{r})$$

donde:

E = modulo de deformabilidad (Kg/cm²).

P = presión aplicada máxima (Kg/ cm²).

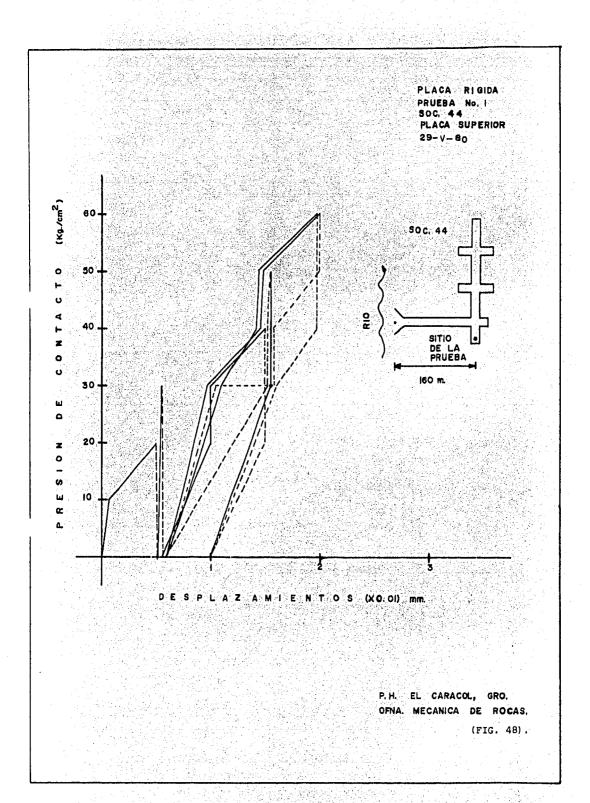
a = radio de la placa (cm).

r = distancia del punto de medición al centro de la placa (cm).

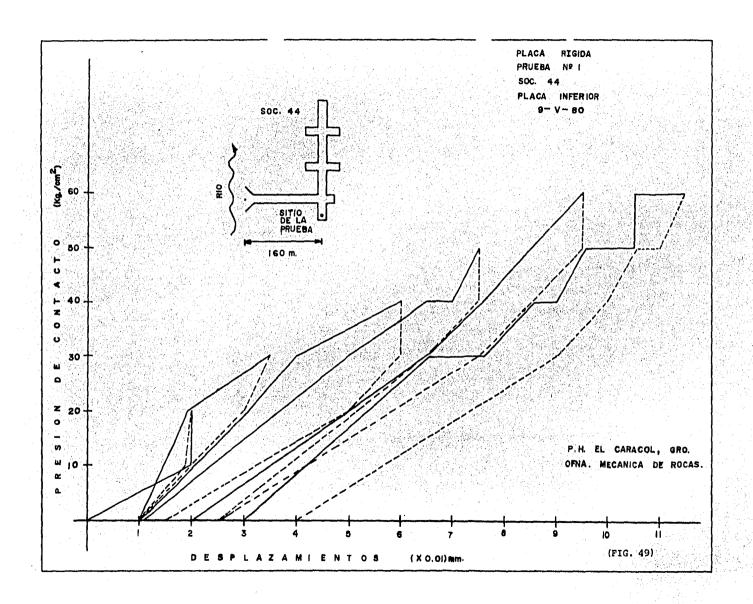
ມ = relación de Poisson (0.3).

W = desplazamiento ocurrido.

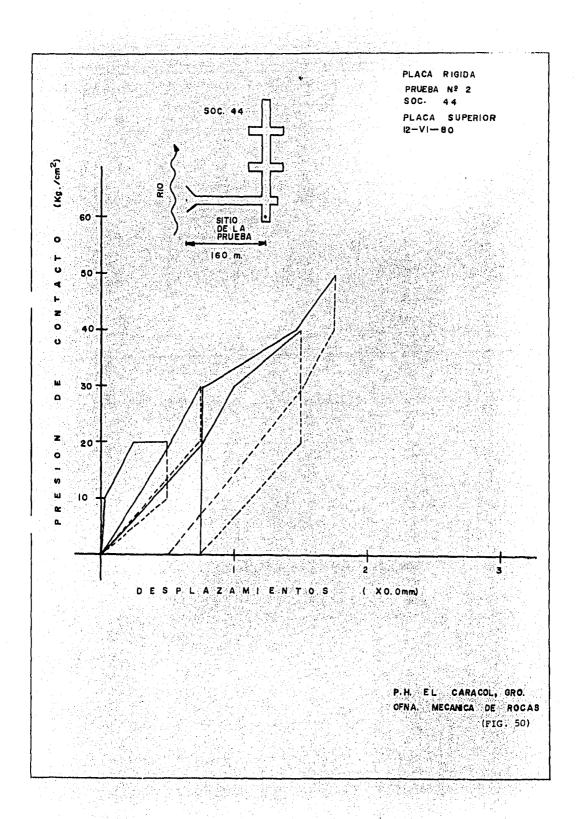
Y con los valores del Módulo de Deformabilidad obtenidos para cada ciclo se determinó el valor promedio (E_{\odot}) en toda la prueba.

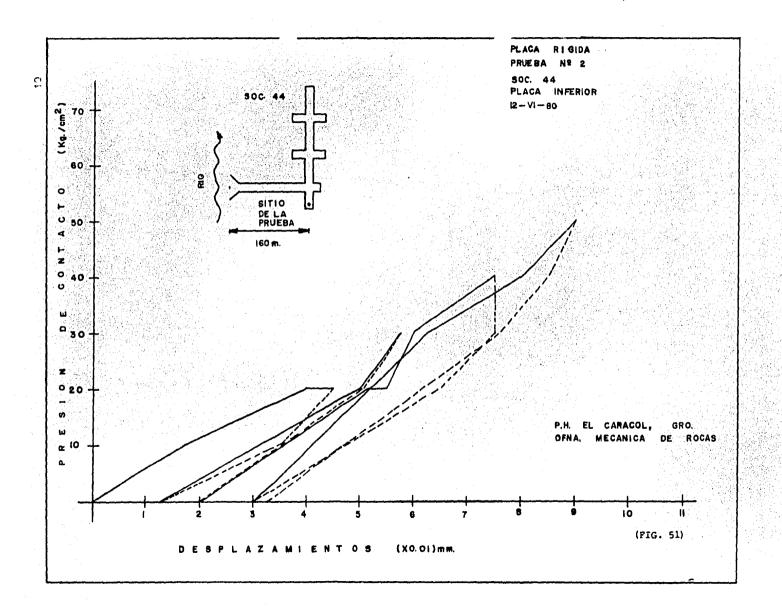

Enseguida las figuras 48 à la 53, presentan los valores obtenidos para cada prueba, el valor promedio $E_{\mbox{\scriptsize O}}$ y la gráfica correspondiente.

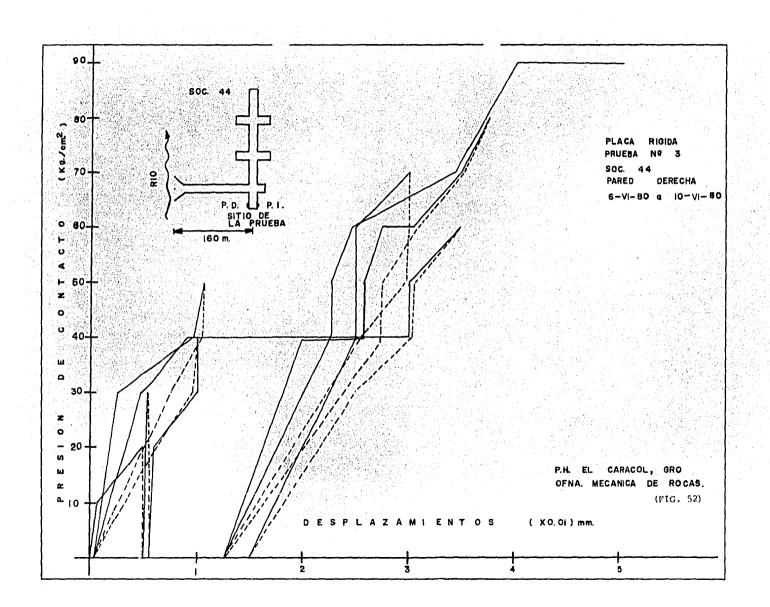
La tabla siguiente muestra los valores promedio E para cada prueba.

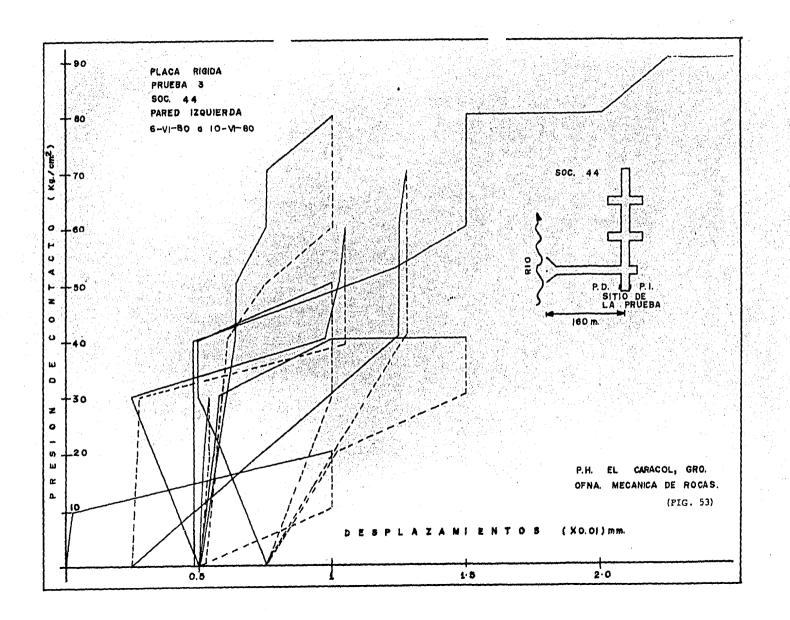

Prueba No.	Posición	n MODULO DE DEFORMABILIDAD (Kg/cm ²)			
		Placa Superior	Placa Inferior	Pared Derecha	Pared Izquierda
1	Vertical	420,000	112,000		
2	Vertical Horizontal	451,000	86,000	308,000	 471,000
4	Vertical		174,000		

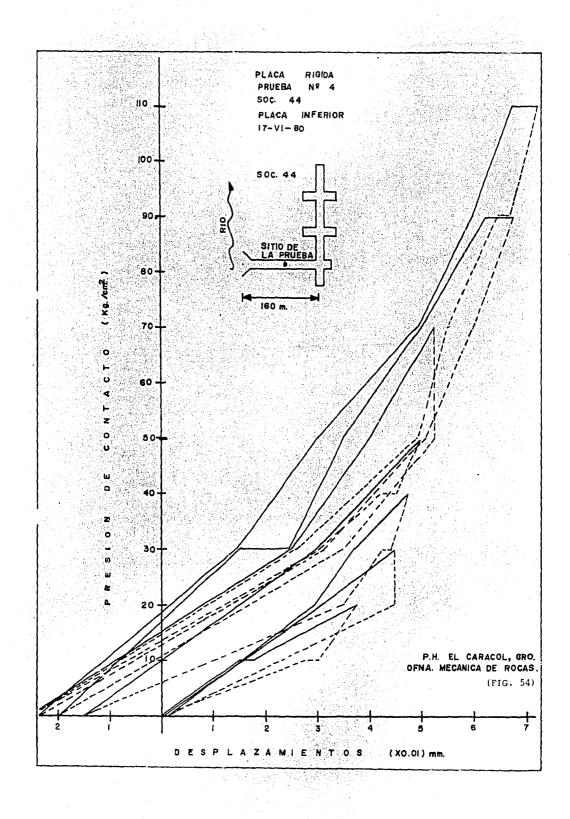
De los resultados anteriores se puede ver que los módulos obtenidos en las placas superiores arrojaron valores más altos que en las inferiores, ésto se pudo haber debido a que en la zona inferior el macizo está más relajado por efecto de las voladuras propias de la excavación. Se considera como valor más representativo el obtenido en las placas superiores.


Además los valores obtenidos en la prueba horizontal se asemejan más a los de las placas superiores, por lo que se considera que estos va
lores (placa superior y prueba horizontal) son más representativos como Módu
lo de Deformabilidad (400,000 Kg/cm²) del macizo rocoso.


Presión		
(Kg/cm ²)	Wz (mm)	M 6 d u 1 o (Kg/cm ²)
30	0.010	477,000
40	0.015	424,000
50	0.020	397,000
60	0.025	381,000
60	0.030	318,000


Presión (Kg/cm ²)	Wz (mm)	M 6 d u l o (Kg/cm ²)
30	0.035	136,000
40	0.060	106,000
50	0.075	106,000
60	0.095	100,000
60	0.115	83,000


Pa	red Superior	
Presión (Kg/cm²)	Wz (mm)	M 6 d u 1 ₂ 0 (Kg / cm)
30	0.010	477 000
	0.010	477,000
40	0.015	424,000
50	0.0175	454,000


PRU	EBA No.	2
医多性性结合 化氯化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	red Inferior	
是《····································	ta design to be the term of the contract of th	M 6 d u 1 o (Kg / cm²)
Pa Presi _o ón	red Inferior	M 6 d u l ₂ 0
Paresi ₂ 6 n ('Kg'/cm')	red Inferior Wz (mm)	M 6 d u 1 ₂ 0 (Kg / cm ²)
Pa Presion (Kg/cm)	wz (mm) 0.957	M 6 d u 1 ₂ 0 (Kg / cm)

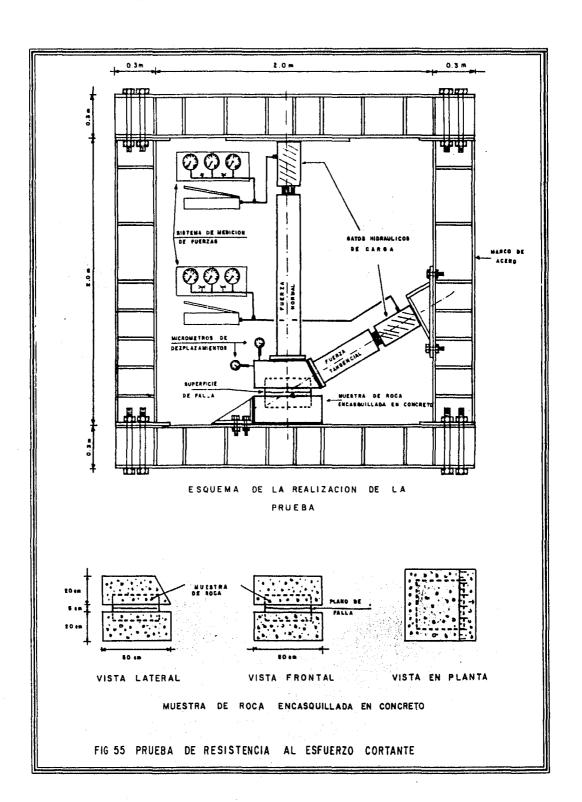
Presizón (Kg/cm)	Wz (mm)	M 6 d u 1 ₂ 0 (Kg / cm ²)
30	0.010	477,000
40	0.020	318,000
50	0.020	397,000
60	0.035	272,000
70	0.040	278,000
80	0.060	212,000
90	0,070	204,000
90	0,085	168,000

Presizon (Kg/cm)	Wz	M 6 d u 1 ₂ 0
(Kg / Cili)	(mm)	(Kg / cm ²)
30	0.010	477,000
40	0.015	424,000
50	0.015	530,000
60	0.020	477,000
70	0.025	445,000
90	0.030	477,000
90	No se movió	

Presión	Wz	M od u l o		
(Kg/cm ²)	(mm)	(Kg / cm ²)		
	0.0450			
30	0.0450	106,000		
40	0.0475	134,000		
50	00500	159,000		
70	0.575	193,000		
90	0.0675	212,000		
110	0.0730	239,000		

Resistencia al esfuerzo cortante.

La resistencial a corte es una propiedad tanto de la roca intacta como de las juntas o planos de debilidad de los macizos rocosos y esfundamental su evaluación en el análisis de la estabilidad de talúdes.


Se consideró conveniente realizar estos ensayes de corte en muestras provenientes del sitio donde quedará alojado el vertedor (Unidad B, UB), pues es en este lugar en donde se tendrán los talúdes, considerablemen te más altos. Este parámetro servirá para estar en condiciones de poder evaluar el grado de seguridad con que se cuenta en esta estructura bajo condiciones de funcionamiento y en su caso si es necesario poder evaluar el sistema de soporte necesario para la seguridad de esta obra.

Estas pruebas en total 5, se realizaron en probetas prismáticas con una área aproximada de 1600 cm² (40 x 40 cm) y una altura de 20 cm. Cabe mencionar que aunque estos ensayes no se hicieron "in situ" (como normalmente se hacen) se consideran como tales, por sus dimensiones y su selección directa del sitio estudiado.

Las probetas se labraron (para darle la forma prismática) y se encasquillaron en 2 bloques de concfeto, uno superior y otro inferior, de jando libre la zona por donde se ensayaría la muestra (Fig. 55).

La pruebas se efectúan aplicando al especímen una carga normal constante y una carga tangencial que se incrementa desde cero hasta un valor máximo (fractura del especímen). Para producir dicha fuerza de corte, se le da una inclinación y una dirección tal, que la fuerza de corte (tangen cial) y la normal concurren al centro de la superficie ensayada para evitarmomentos de giro sobre esta superficie. Los esfuerzos normales aplicados variaron entre 5 y 11.7 Kg/cm².

La superficie de falla está constituída básicamente por el -contacto de capas de lutitas alteradas.

En todos los ensayes se realizó una consolidación previa por medio de la aplicación del esfuerzo normal, el cual, se aplicó mediante incrementos de carga de 0.5 Kg/cm². midiendo los desplazamientos producidos y pasando al incremento de carga sigui-nte hasta que los desplazamientos se es tabilizaban. En todos los casos el tiempo total de consolidación fué de -- aproximadamente 20 horas.

El esfuerzo tangencial de corte se aplicó mediante el control de carga aplicando incrementos de 0.25 kg/cm². y realizando cada incremento una vez que los desplazamientos y la carga correspondiente se estabilizaban, esto se hizo hasta el momento en que se presentó la resistencia máxima y posteriormente la falla del especímen. Después de ésto, el esfuerzo tangencial se aplicó mediante el control de desplazamientos con una velocidad constante de 0.05 mm/minuto. El tiempo total de corte en la mayoría de los casos fué de aproximadamente 10 horas.

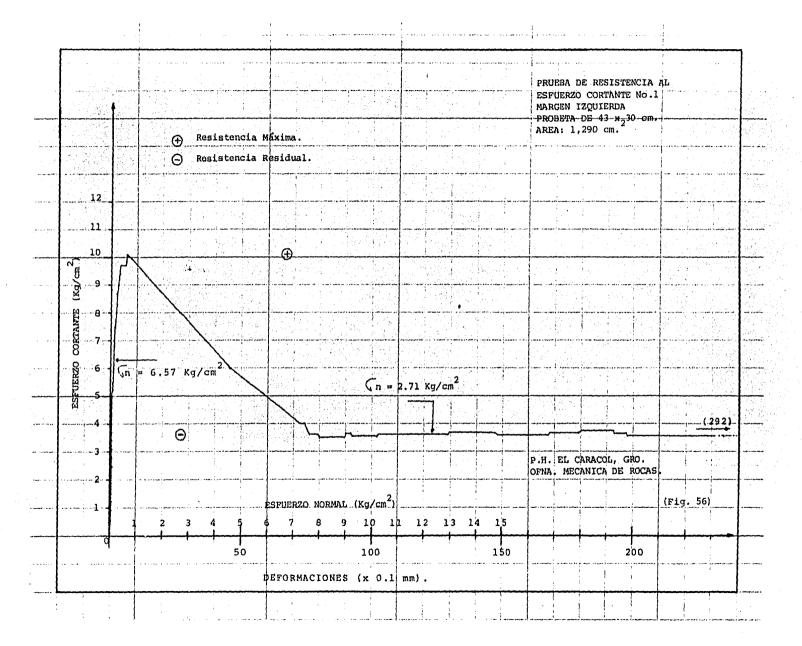
Los resultados de estas pruebas se presentan en las gráficasde esfuerzo tangencial -desplazamiento y esfuerzo tangencial- esfuerzo nor--mal de las Figuras 56 a la 60.

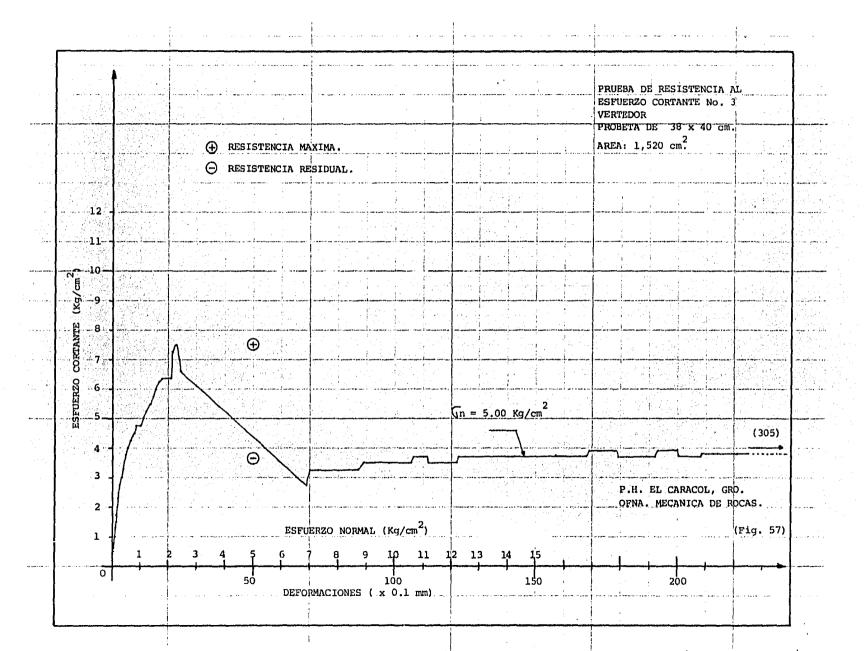
En la gráfica esfuerzo cortante -esfuerzo normal de la Fig.61 se muestra el resumen de estas pruebas.

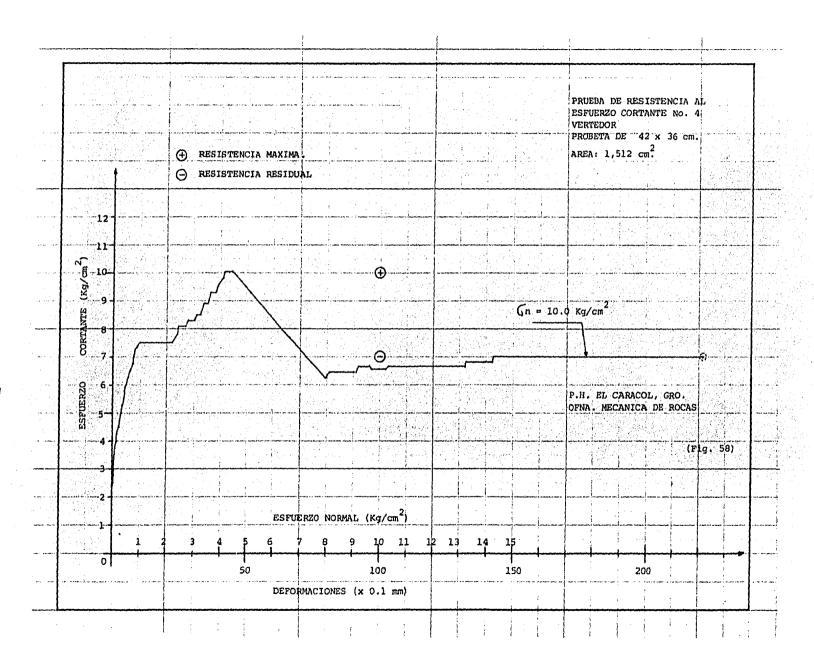
Además, como la resistencia al esfuerzo cortante se define como:

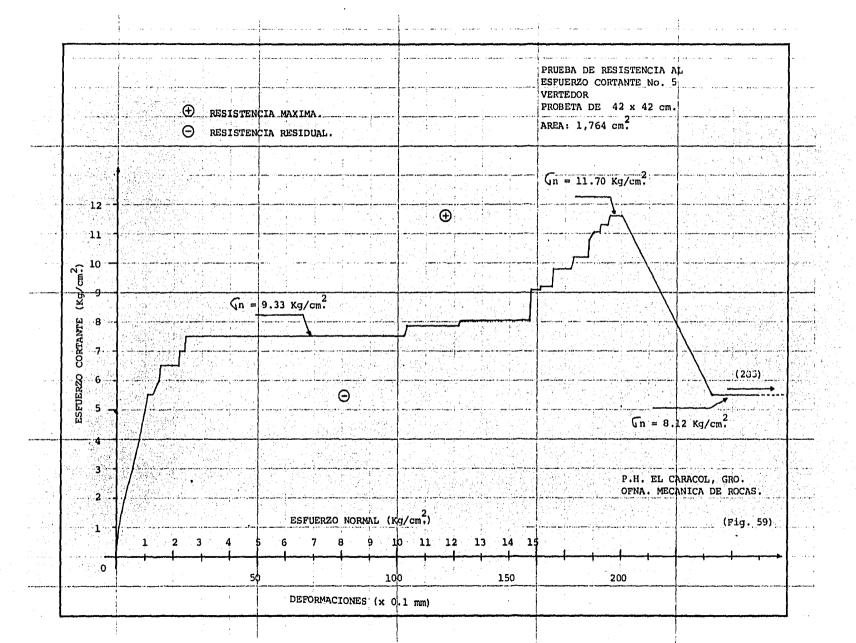
 $\mathcal{Z} = c + \mathcal{J} tang \emptyset$

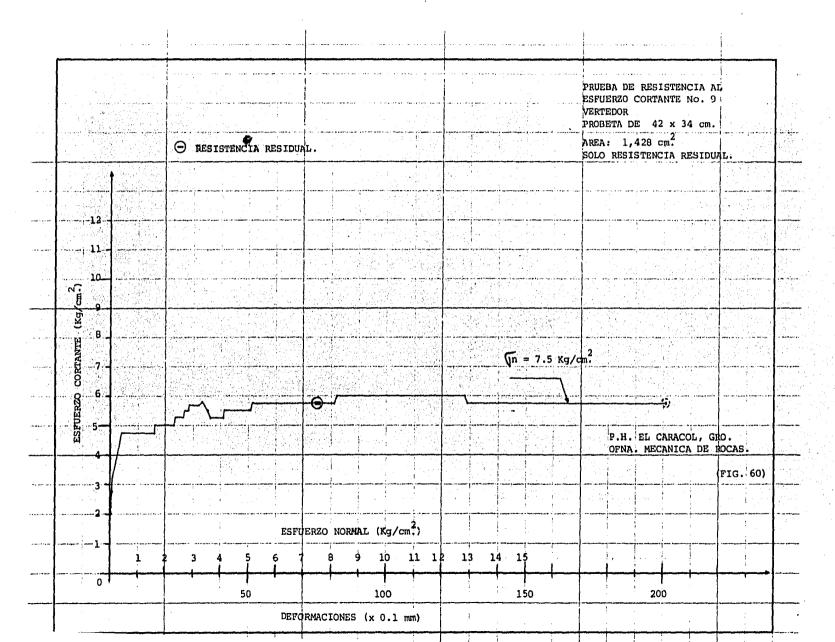
en donde:

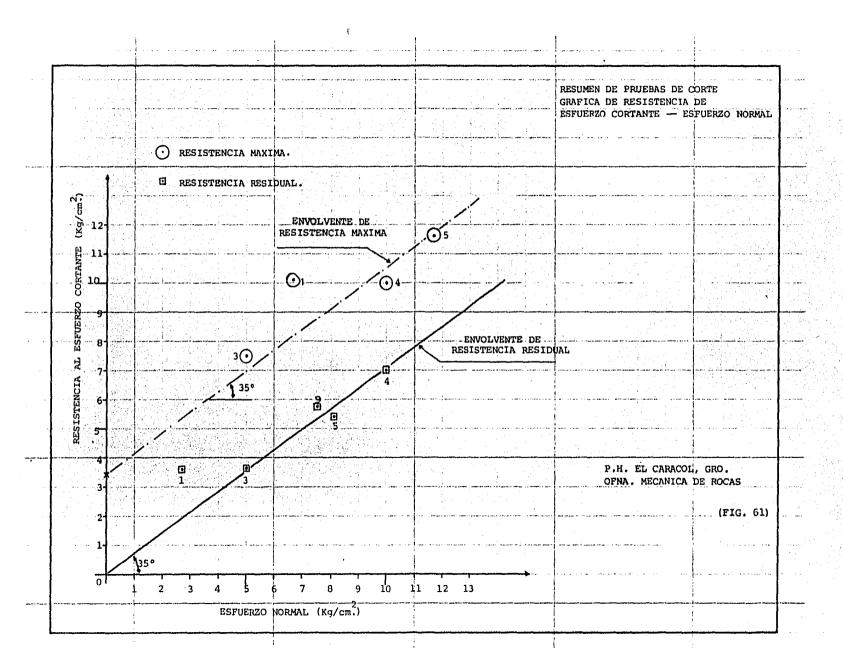

Z = resistencia al esfuerzo cortante.


c = cohesión


V = esfuerzo normal.


Ø = ángulo de fricción interna.


Y como se puede apreciar en la gráfica de la Fig. 61, la resistencia máxima corresponde a la resistencia de la roca al cortante y la -



resistencia residual representa las fuerzas de fricción dentro del especímen permitiendo determinar el ángulo de fricción interna.

Entonces, para calcular el valor del ángulo de fricción interna (Ø) definido por los valores de esfuerzo cortante (z) y esfuerzo normal (Ç) obtenidos en las pruebas (residuales, c = 0), aplicamos el método de Mínimos Cuadrados para ajustar un conjunto de valores a una línea recta que pasa por el orígen.

entonces:

3 = 7 tang Ø

y ordenando:

() Kg/cm ²	る Kg/cm2
2.71	3.60
5.00	3.65
10.00	7.00
8.10 7.5	5.40 5.75
	2.71 5.00 10.00 8.10

Y como la ecuación de la línea recta es:

Y = a + mX

en donde:

Y = variable dependiente (3)

X = variable independiente (0)

a = ordenada al origen (c)

m = pendiente de la recta (Tang Ø)

Y como para este caso la cohesión es igual a cero $(c = a_0 = 0)$ nos queda:

Y = mX

que es la ecuación de una línea recta que pasa por el orígen de coordenadas. Ahora, aplicando el método de Mínimos Cuadrados, que nos define las siguientes ecuaciones para determinar las incógnitas a y m.

Y despejando se obtiene:

$$\mathbf{a}_{0} = \frac{(\mathbf{x}\mathbf{y})(\mathbf{x}\mathbf{x}^{2}) - (\mathbf{x}\mathbf{x})(\mathbf{x}\mathbf{x}\mathbf{y})}{\mathbf{n}(\mathbf{x}\mathbf{x}^{2}) - (\mathbf{x}\mathbf{x})^{2}}$$

$$\mathbf{m} = \frac{\mathbf{n}(\mathbf{x}\mathbf{x}\mathbf{y}) - (\mathbf{x}\mathbf{x})(\mathbf{x}\mathbf{y})}{\mathbf{n}(\mathbf{x}\mathbf{x}^{2}) - (\mathbf{x}\mathbf{x})^{2}}$$

(N = No. de puntos)

Tabulando:

Prueba No.	X,	Y	XX	x ²	y 2
*0 3 4 5 9	0. 5.0 10.0 8.10 7.50	0 3.65 7.0 5.40 5.75	0 18.25 70.0 43.74 43.12	0 25.0 100.00 65.61 56.25	0 13.32 49.00 29.16 33.06
Σ=	30.6	21.8	175.11	246.86	124.54

^{*} punto de coordenadas (0,0), por pasar por el origen.

La prueta No. 1 se eliminó del análisis por la dispersión de sus valores.

Calculando:

$$a_0 = \frac{(21.8)(246.86) - (30.6)(175.11)}{5(246.86) - (30.6)^2}$$

$$a_0 = 0.07$$

a = 0 - - - - - como se esperaba, pasa por el orígen de coordenadas.

ahora:

$$m = \frac{5(175.11) - 30.6)(21.8)}{5(246.86) - (30.6)^2}$$

$$= 0.70$$

y como:

$$m = tang. \emptyset$$

 $\emptyset = tang. (m)$

por lo tanto:

$$\emptyset = \tan^{-1} (0.7)$$
 $\overline{\emptyset} = 35^{\circ}$ angulo de fricción interna.

Ahora, para calcular el valor de la cohesión, es necesario-utilizar las resistencias máximas alcanzadas en las pruebas:

es decir:

como:

$$\emptyset = 35^{\circ}; \text{ tang } \emptyset = 0.70$$

por lo que:

y ordenando:

Prueba No.	(Kg/cm ²)	了 2 (Kg/cm ²)	
3 4 5	6.7 5.0 10.0 11.7	10.1 7.5 10.0 11.6	

Y como la ecuación de la recta es:

$$Y = a_0 + mX$$

y como:

$$m = 0.70$$

entonces:

$$Y = a_0 + 0.070X$$

Aplicando ahora el Método de Mínimos Cuadrados. Tabulando:

Σ=	26.7	29.1	273.22	261.89	290.81
5	11.7	11.6	135.72	136.89	134.56
4	10	10	100	100	100
3	5	7.5	37.5	25	56.25
No.					
Prueba	Y	Y	XY	x ²	

La prueba No. 1 se eliminó por la dispersión de sus valores y la No. 3 porque solamente se probó la resistencia residual por estar despegadas las superficies de contacto a ensayar.

Así, las ecuaciones normales para la recta de Mínimos Cuadrados:

$$\mathbf{\hat{z}} \mathbf{Y} = \mathbf{a}_0^{N} + \mathbf{m} \mathbf{\hat{z}} \mathbf{X} \dots \dots \mathbf{\hat{z}}$$

$$\mathbf{\hat{z}} \mathbf{X} \mathbf{Y} = \mathbf{a}_0^{N} \mathbf{X} + \mathbf{m} \mathbf{\hat{z}} \mathbf{X}^2 \dots \dots \mathbf{\hat{z}}$$

como:

De la ecuación l:

$$XY = a_0N + mx$$

sustituyendo valores:

29.1=
$$a_0^3$$
 + 0.070(26.7)
 $a_0 = \frac{29.1 - 18.69}{3}$

De la ecuación 2:

$$\mathbf{x}\mathbf{x}\mathbf{y} = \mathbf{a}_0 \quad \mathbf{x} + \mathbf{m}\mathbf{x}^2$$

sustituyendo valores:

$$273.22 = a_0 26.7 + 0.7 (261.89)$$

$$a_0 = \frac{273.22 - 183.32}{26.7}$$

a₀ = 3.37

Y promediando:

$$a_0 = 3.4$$

y como:

el valor de la cohesión será:

$$c = 3.42 \text{ Kg/cm}^2$$

De acuerdo con los cálculos hechos a las pruebas realizadas, los valores promedio de la cohesión y del ángulo de fricción interna del macizo rocoso en la zona donde quedará ubicada la estructura del vertedor son:

VII. CONCLUSIONES Y RECOMENDACIONES.

En el desarrollo de este trabajo se han presentado algunos de - los estudios geotécnicos preliminares cuyos resultados permitieron determinar- la mejor ubicación (de los sitios estudiados), del eje de la cortina con su correspondiente aprovechamiento. Además, los resultados de las diversas pruebas- de laboratorio realizadas a los materiales que se utilizarán para la construcción de las estructuras que componen el proyecto, así como los de los ensayes - efectuados en campo ("in situ") para tener un mayor conocimiento del comportamiento y las propiedades geomecánicas del terreno, en donde quedarán albergadas las obras.

- Los resultados de los estudios geológicos realizados hasta la fecha, dan un conocimiento objetivo del terreno e indican que, en su conjunto,-la roca es de buena calidad a excpeción, de la capa superior. Las zonas más --desfavorables son aquéllas en las que se presentan fallas, fracturas y sobre to do la intrusión de cuerpos ígenos (diques) dentro de la formación sedimentaria. Sería conveniente estudiar las trayectorias que siguen estos accidentes geológicos para determinar si pueden ocasionar problemas a las obras por construír, y, en su caso, tomar las medidas correctivas que se requieran, sobre todo en la Falla F-4 y los cuerpos ígneos.
- De los métodos aplicados en los estudios de Geofísica, el más utilizado fué el de Refracción Sísmica, el cual tuvo una gran importancia ya -- que se aplicó a toda la zona del proyecto (siendo relativamente conómica en -- comparación con otros métodos) para determinar propiedades (intrínsecas), que indicaron la calidad del macizo rocoso, así como su variación con la profundi-- dad, delimitándose varias zonas. Los resultados obtenidos se correlacionaron con los datos de barrenos y socavones de exploración, complementando y corroborando la información geológica, además, el valor del Módulo de Elasticidad de--

terminado (300 t/cm²), fué del orden de magnitud al obtenido por el Método Estático de Placa Rígida; (400 t/cm²), indicando que el macizo rocoso es de calidad aceptable para que en él se construyan las obras de la planta hidroeléctrica.

Los otros métodos se aplicaron a problemas específicos como son: la presencia de diques dentro de la márgen izquierda del Sitio No. 4. La interpretación de sus resultados servirá como guía para las exploraciones adicionales directas que se realizan con el fin de conocer en forma clara las trayectorias que siguen estos cuerpos.

- Los estudios efectuados para determinar la permeabilidad en - el vaso, indicaron que por el tipo de formación existente (lutitas y areniscas), se considera impermeable. En cuanto a la zona del proyecto rige la permeabilidad de tipo secundario, debida principalemnte, al fracturamiento y a la presencia de cuerpos ígneos (diques).

Sería conveniente, realizar un estudio geológico acerca de estos accidentes y realizar purebas de permeabilidad en estos sitios para poder evaluar el grado de alteración y estar así, en condiciones de diseñar el método
de tratamiento más adecuado, sobre todo, en la margen izquierda del Sitio No. 4
en donde afloran tanto la Falla F-4 como cuerpos igneos intrusivos.

- En cuanto a los materiales de construcción de la cortina, los bancos de arcilla más factibles para su explotación son; San Marcos, El Naranjo y El Remolino. Se sugiere realizar un reconocimiento topográfico a detalle para determinar con exactitud volúmenes y propiedades índice.

Para la grava-arena, los bancos satisfacen con holgura el volúmen requerido, por lo que convendría cubicarlos y determinar su granulometría - para elegir cuáles serían los más convenientes tomando en cuenta la distancia - al sitio de aprovechamiento.

El banco de enrocamiento Las Chachalacas, reúne las condiciones adecuadas para explotar el material necesario para la construcción de la cortina, pero tomando en cuenta los factores geológicos del lugar, se sugiere el di-

seño de un plan de ataque (explotación) y de la elaboración de las especifica-ciones de los materiales clasificados que se requieren, cuidando de que se realicen voladuras de prueba que en su caso, permitan tomar las medidas correctivas que se requieran.

- Los factores principales que definieron la elección del eje - de la cortina fueron: la "zona inestable" en peligro latente de deslizar y el-peligro que representa la utilización como albergue de las estructuras de la planta de el Espinazo de El Caracol ("Filo de la Leona"), por su insuficiencia geomecánica, en caso de que sobre ellos actuaran las aguas del embalse creado al ser ubicado el eje de la cortina en el meandro de aguas abajo. Estas cau-sas hicieron que se desistiera de la utilización de éste, como posible alber-gue de la cortina.

Por lo anterior, es más recomendable utilizar el meandro de -aguas arriba o sea el Sitio No. 4 como eje de la cortina, en el cual deberán re
forzarse más los estudios geotécnicos, a partir de los cuales se puede definircon mayor precisión su estructura geológica, ya que la ladera izquierda se encuentra alterada por presentar varios accidentes geológicos tales como; fallas,
fracturas y cuerpos ígneos intrusivos. Estos mismos estudios permitirán disenar los tratamientos adecuados (anclajes, inyecciones, drenajes, etc.), tendien
tes a lograr mayor estabilidad y seguridad en la estructura. Por otro lado, -también se estará en posibilidades de valuar el volúmen a retirar de la capa su
perficial de roca alterada y posteriormente, determinar los cortes definitivostanto de la cimentación, como de los taludes en donce se construirá la cortina.

- La realización de pruebas de mecánica de rocas en campo ayudó a conocer las propiedades mecánicas "in situ" del macizo rocoso, como son principalmente; los esfuerzos, deformaciones y resistencias. Los valores de los resultados obtenidos fueron de suma utilidad en los análisis efectuados que permitieron definir los criterios de construcción de las obras subterráneas y superficiales con la seguridad requerida.

- De los resultados de las pruebas de Gato Piano y Roseta de Deformaciones para la determinación del estado y dirección de esfuerzos internos, se concluye que no existen esfuerzos tectónicos o residuales en el interior del macizo rocoso. En cuanto a las pruebas estáticas de Placa Rígida efectuadas -- dentro del macizo rocoso sano, el Módulo de Elasticidad promedio obtenido fue- de 400 t/cm², resultando similar a los obtenidos por el Método Dinámico (Refracción Sísmica), y en laboratorio que fueron de 300 t/cm² y de 350 5/cm² respectivamente. De suma importancia fueron los resultados obtenidos en las pruebas de Resistencia al Esfuerzo Cortante (c = 3.4 Kg/cm² y Ø =35°) ya que en base a -- ellos se estuvo en condiciones de analizar en forma más objetiva la estabilidad de bloques de roca en posible estado de falla. Además, estos valores pueden -- servir de parámetro en el criterio que el calculista aplicará de acuerdo a las ondiciones físicas de las superficies de contacto de la falla.
- Sería conveniente realizar un programa de instrumentación tanto en excavaciones subterráneas como superficiales (y sobre todo en los accidentes geológicos que afecten alguna estructura), que puede ser a base de inclinómetros, extensómetros, riezómetros, etc., que nos indiquen el comportamiento y los movimientos que se produzcan en el macizo rocoso (antes, durante y después de la construcción), para poder estar en condiciones de aplicar los medios correctivos, si el caso lo amerita, y dar seguridad a las estructuras construídas o en proceso de construcción.
- Los levantamientos geológicos siempre en proceso de actualización, es una actividad de importancia vital durante el desarrollo de construcción de una bora y la colaboración y comunicación entre Ingenieros Geólogos y Civiles será el arma fundamental en la solución de problemas de tipo geotécnico que se presenten en la obra.

BIBLIOGRAFIA

- Arana García, S. y Herrera Castañeda S.,
 "Resistencia a la compresión simple de núcleos provenientes de los
 barrenos 194, 195, 196 y 197 del banco de enrocamiento Las Chacha lacas",
 México, D.F., C.F.E. 1981. Informe Inédito.
- Barton, Nicholas,
 "Review of a new sheer-strength, critzrion for rock joints".
 Engeneering Geology, V. 7, Norwegian Geotechnical Institute,
 Publ. 105, Oslo. 1974.
- Benhumea, León M.,
 "Estudio Geofísico del potencial natural en la margen izquierdaeje de contina",
 P.H. El Caracol, Gro., México D.F., C.F.E. 1978. Informe Inédito.
- Bernal Montemayor, C.,
 "Análisis de estabilidad de la laderz ubicada aguas arriba del-eje No. 2 del P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1975. Informe Inédito.
- Campos Piña, J.M.,
 "Bancos de préstamo de materiales arcillosos para la construcción de la cortina del P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1977. Informe Inédito.
- Castilla Camacho, J. y Cuéllar Borja, R.,
 "Propiedades geomecánicas de núcleos de roca provenientes de losbarrenos 11, 12, 17, 56 y 57, P.H. El Caracol, Gro.,",
 México, D.F., C.F.E. 1978, Informe Inédito.
- 7. Comisión Federal de Electricidad, "Estudio Integral de la Cuenca del Río Balsas, Gro.", México, D.F., C.F.E. 1964. Informe Inédito.
- 8. Comisión Federal de Electricidad,
 "Sistema Hidroeléctrico del Río Balsas, Proyecto El Caracol Gro."
 México, D.F., C.F.E. 1974. Informe Inédito.
- Comisión Federal de Electricidad, "Sistema Hidroeléctrico del Río Balsas, proyecto El Caracol Gro." México, D.F., C.F.E. 1976. Informe Inédito.
- 11. Comisión Federal de Electricidad,
 "Informe del sector eléctrico 1970-1976",
 México, D.F., C.F.E. 1976. Informe Inédito.

- 12. Comisión Federal de Electricidad,
 "Manual de diseño de obras civiles, B.1.4, Obtención de datos geo
 lógicos",
 México, D.F., C.F.E. 1979.
- 13. Comisión Federal de Electricidad,

 "Manual de diseño de obras civiles, B.3.4, Pruebas de campo y laboratorio (Mecánica de Rocas)",

 México, D.F., C.F.E. 1979.
- 14. Comisión Federal d≥ Electricidad,

 "Resultados de las pruebas de campo para determinar el estado dees fuerzos internos del macizo rocoso de la márgen derecha, P.H. El Caracol, Gro., Residencia de Mecánica de Rocas".

 México, D.F., C.F.E. 1980. Informe Inédito.
- 15. Cserna Zoltán de,
 "Geología regional alrededor del sitio para el P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1977. Informe Inédito.
- 16. Cserna Zoltán de, Palacios Nieto, M. y Pantoja Alor, J.,
 "Relaciones de facies de las rocas cretácicas en el noreste de -Guerrero y sus áreas colindantes de México y Michoacán",
 México, D.F., Instituto de Geología, Rev. UNAM, 1978.
- 17. Cuéllar Borja, R.,

 "Estudio acerca de los mecanismos de fracturamiento en la roca y
 sus efectos sobre las estructuras de la planta",

 México, D.F., C.F.E. 1978. Informe Inédito.
- 18. De la O. Carreño, A., "Influencia de los factores geológicos en la elección del tipo de una contina de concreto", México, D.F., Secretaría de Recursos Hidráulicos, Rev. No. 4 V.II 1973.
- 19. De la Parra Dávalos, R., "Estado de avance de los estudios realizados para el P.H. El Caracol, Gro.", México, D.F., C.F.E. 1977. Informe Inédito.
- 20. De la Parra Dávalos, R,

 "El P.H. El Caracol sobre el Río Balsas, Gro. Características Sobresalientes",

 México, D.F., C.F.E. 1978. Informe Inédito.
- 21. Electroconsult,
 "Sistema hidroeléctrico del Río Balsas, P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1975. Informe Inédito.
- 22. Esteva, Luis,
 "Regionalización sísmica de México para fines de Ingeniería",
 México, D.F., Instituto de Ingeniería, UNAM, 1970. Informe Inédito.

- 23. Esteva, Luis y Bazán, E.M., "Riesgo sísmico en el Caracol, Gro." México, D.F., Instituto de Ingeniería, UNAM. 1978. Informe Inédito.
- 24. García Durán, S.,

 "Estudio geoeléctrico de resistividad en la zona del P.H. El Caracol, Gro.",

 México, D.F., C.F.E. 1975. Informe Inédito.
- 25. Gasiev, E.G., "Aspectos fundamentales de la mecánica de rocas", México, D.F., Facultad de Ingeniería, UNAM. Informe Inédito.
- 26. Geofimex,
 "Estudio Geotécnico del P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1976. Informe Inédito.
- 27. Goodman R.E.,
 "Methods of geological engineering in discontinious rocks",
 New York, West. Publ. 1976.
- 28. Herrera Castañeda, S.R.,

 "Resultados de las pruebas de deformabilidad con placa rígida enle macizo rocoso de la márgen derecha, P.H. El Caracol, Gro.",

 México, D.F., C.F.E. 1980. Informe Inédito.
- 29. Heuze, Francois,
 "Mechanical properties and in situ behavior of the chino limestone"
 Riverside, Calif, 1967.
- 30. Juárez Badillo,E. y Rico Rodríguez, A.,
 "Mecánica de Suelos"
 México, D.F., Ed. Limusa, S.A. 1975 Tomo I.
- Krynine P., Dimitri y Judd W.,
 "Principios de geología y geotecnia pura ingnieros",
 Barcelona, España, Ed. Omega, S.A. 1972.
- 32. Lesser Jonnes H. y Torres Izabal L,

 "Reconocimiento geológico de las boquillas del P.H. El Caracol, sobre el Río Balsas, Gro.",

 México, D.F., C.F.E. 1959. Informe Inédito.
- Leet y Judson, "Fundamentos de geología física", México, D.F., Ed. Limusa, S.A. 1979.
- Marsal J.R. y Reséndiz Núñez D.
 "Presas de Tierra y enrocamiento",
 México, D.F., Ed. Limusa, S.A. 1975.
- 35. Murray R., Spiegel "Estadística" México, D.F., Ed. Mc Graw-Hill de México, S.A. de C.V. 1974.

- 36. Palacios Nieto, M.,
 "Informe geológico del P.H. El Caracol Gro."
 México, D.F., C.F.E. 1960. Informe Inédito.
- 37. Palacios Nieto, M.,
 "Informe geológico del P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1963, Informe Inédito.
- 38. Palacios Nieto, M.,

 "Resumer de los trabajos geológicos en la boquilla de El Caracol, Ríc Balsas, Gro.",

 México, D.F., C.F.E. 1973. Informe Inédito.
- 39. Palacios Nieto, M. y García Calvario, M.A.,
 "Geología superficial del vaso El Caracol, Gro.",
 México, D.F., C.F.E. 1974. Informe Inédito.
- 40. Palacios Nieto, M. y García Calvario, M.A.,
 "Resumer geológico parcial del P.H. El Caracol, Gro.",
 México, D.F., C.F.E. 1975. Informe Inédito.
- 41. Palacios Nieto, M.,
 "Condiciones geológicas del Sitio No. 4, boquilla el Caracol
 Río Balsas, Gro.",
 México, D.F., C.F.E. 1975. Informe Inédito.
- 42. Palacios Nieto, M.,
 "Informe geológico de las exploraciones llevadas en el P.H. El
 Caracol, Río Balsas, Gro.",
 México, D.F., C.F.E. 1977. Informe Inédito.
- 43. Palacios Nieto, M.,
 "Algunos problemas geotécnicos del P.H. El Caracol, Río Balsas,
 Gro.",
 México, D.F., C.F.E. 1978. Informe Inédito.
- 44. Ramírez Aranda R.,
 "Pruebas de campo de mecánica de rocas en la Planta Hidroelectrica La Angostura, Chiapas",
 México, D.F., Tesis Profesional, UNAM. 1978.
- 45. Razo Montiel A.,

 "Reconocimiento geológico para bancos de arcilla, grava, arena,
 y enrocamiento para el P.H. El Caracol, Gro.",

 México, D.F., C.F.E. 1976. Informe Inédito.
- 46. Stagg K.G. y Zienkiewics, O.C., "Mecánica de Rocas en la Ingeniería práctica", Madrid, España Ed. Blume 1968. Trad.
- 47. U.S. Department of the interior, Bureau of reclamation.
 "Diseño de presas pequeñas",
 México, D.F., Ed. Continental, S.A.
- 48. Valladares Laguna, R.,
 "Geología y Geotecnia del P.H. El Caracol, Río Balsas, Gro.",
 México, D.F., C.F.E. III Reunión Nacional de Geología y Geotermia. 1980.