

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

GALCULO PARA EL USO DE POSTES DE MADERA
MEXICANA EN LINEAS DE DISTRIBUCION

Tesis Profesional

Que para obtener el Título de Ingeniero Mecánico Electricista

presenta:

ELOISA DAVALOS PAZ

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PROLOGO.

El presente trabajo tiene por objeto el analizar las especificaciones marcadas para el uso de postería de madera, dentro de las cuales un determinado número de postes no se le utiliza, debido a que presentan algunas ca racterísticas tanto físicas como mecânicas que pueden ser riesgosas, tanto en su levantamiento como en su durabilidad al tenerse determinadas condiciones de presión de viento, temperatura, etc.

Por lo que se determinará si el uso de estos postes puede ampliarse dentro de determinados rangos.

Antes de dar las bases para el planteamiento del proyecto, daremos una pe-queña introducción sobre el tipo de madera que se usa en postería y con que
características y restricciones debemos de contar.

INTRODUCCION.

- Capitulo 1
- 1.1 Generalidades.
- Capitulo II
- II. 1 Análisis de la producción forestal maderable en México
- Capitulo III
- III. 1 Especificación para portes de madera C.F.E. 35206-01
 - III.1.1 Objetivo y campo de aplicación
 - III.2 Normas que se aplican
 - III.3 Definiciones
 - III.4 Clasificación
 - III.5 Especificaciones para la materia prima
 - III.5.1. Procedencia
 - III.5.2. Aserramiento
 - III.5.3. Descortezamiento
 - III.5.4. Acabado
 - III.5.5. Perforaciones
 - III.5.6. Desbastes
 - III.5.7. Dimensiones
 - III.5.8. Sazonamiento
 - III.6. Tratamiento
 - III.7. Designación
 - III.S. Clasificación de defectos
 - III.8.1. Defectos críticos
 - III.8.2. Defectos mayores y menores.

Capitulo IV

- IV. 1 Resultados de las pruebas físico-mecánicas.
 - IV.2 Prueba de compresión paralela a la fibra
 - IV.3 Prueba de compresión perpendicular a la fibra
 - IV.4 Prueba de flexión

INTRODUCCION.

La madera es un producto orgánico de origen vegetal, de composición y estructura bien definidas. Está formada por un conjunto de células cementadas entre sí; estas células son las prosenquimatosas, cuyas funciones principales son la conducción de soluciones y el sostén máximo del árbol; y las parenquimatosas que sirven para el almacenamiento de sustancias.

Toda la madera proviene de árboles, los cuales invariablemente están cons-tituidos por dos clases de madera, dependiendo de su ubicación en el tronco.
La porción del centro, que es más densa y seca se llama duramen, mientras que la parte que rodea al duramen, que es más húmeda, se llama albura.

Las propiedades más sobresalientes de la madera son: alta resistencia mecánica por unidad de peso, poco peso por unidad de volumen y alto poder de -aislación térmica.

La madera como todo producto natural, es susceptible de ser atacada por agentes biológicos que la destruyen o disminuyen su calidad. Estos agentes se pueden resumir en 3 grupos:

- a) Mohos y hongos cromógenos.
- b) Hongos xilófagos
- c) Insectos y perforadores marinos.

Las condiciones que favorecen el desarrollo de los agentes destructores de la madera serán los siguientes:

- a) Temperatura
- b) Humedad
- c) Oxígeno
- d) Alimento

Los postes son el producto extraído de una troza descortezada, labrada o no con una longitud mínima de 5 mts. y un diámetro en la punta no mayor de --2.20 m.

Pueden ser usados para transmisión eléctrica o telefónica. En nuestro caso analizaremos la primera.

En México, el comercio de madera aserrada y productos forestales en rollo tales como postes, no estaba del todo regido por normas de calidad de tipo
nacional que protegieran al producto y al consumidor; por lo que uno de sus
principales consumidores COMISION FEDERAL DE ELECTRICIDAD, conciente de la
importancia que tiene el contar con materiales de calidad controlada adoptó
las normas para postes de pino ponderosa de la "American Standard Association"; que aunque la especie de pino que más abunda en México, no es la de
pino ponderosa, es más o menos similar a ésta.

La especie de pino a la cual nos referiremos de aquí en adelante es la liamada: Pinus Durangensis, conocida mayormente por Pino Nacional, la cual posee una resistencia a la fibra diferente a la del pino ponderosa.

Las pruebas y estudios que se realizaron para obtener las características - anatómicas y físico-mecánicas de la madera para postes, se hicieron en probetas hechas de pino nacional pertenecientes al Estado de Durango (Pino -- Real Durangueño) de la Meseta de Alamitos y Arroyo de Alamitos, y se compararon los valores obtenidos, con los de probetas de maderas americanas co-mo: Red Wood, Pino Ponderosa Americano y Douglas-Fir. (Más adelante se -- mostrará el cuadro comparativo, el cual solo incluirá los resultados de las pruebas físico-mecánicas.)

Uno de los resultados notables que se obtuvieron fue el de que todas las es pecies tienen una gran proporción de albura, lo que es muy ventajoso para - los procesos de impregnación. La albura de los pinos es muy permeable, y -- por lo tanto, es fácil que las soluciones preservadoras entren al poste sin que se necesite dar tratamientos especiales antes o durante los procesos de impregnación.

Los estudios anatómicos que comprenden las pruebas macroscópicas (edad del árbol, proporción de albura y duramen, etc.); y las pruebas microscópicas - (fibra tangencial, transversal y radial) fueron realizadas en el Laborato-río de Pruebas de la Cía. Maderera del Guadiana.

Los estudios físico-mecánicos fueron los siguientes:

Comprensión y tensión paralela y perpendicular a la fibra (bajo Normas de - la ASTM D143 - 1952, y ASTM D1036 - 1958).

Dichos estudios fueron realizados bajo el patrocinio de C.F.E. en el "Laboratorio de Pruebas y Ensayos de México" perteneciente a dicha institución. En este estudio se utilizarán los resultados obtenidos sobre las caracter(g ticas mecánicas de la madera de Pino Nacional, como base para el diseño de estructuras, así como, para el cálculo de limitaciones mecánicas y eléctricas de las mismas, utilizadas en líneas de distribución.

La fabricación de postes de madera impregnada, es uno de los procesos que más fuentes de trabajo genera, ya que se tiene un costo bajo en la materia prima y una gran cantidad de mano de obra desde el inicio del proceso hasta la terminación del mismo.

Como se sabe, la madera es un recurso renovable que requiere planeación a - largo plazo por la naturaleza de su regeneración que en su caso (postería) requiere alrededor de 20 años el desarrollo del árbol para este fin.

Por experiencia se considera que el poste de madera nacional tendría una --vida útil del orden de 25 años aunque puede variar este lapso de 10 a 30 --años dependiendo (entre otros factores) del mantenimiento a que estén sometidos.

En nuestro caso, el que actualmente se construyan los postes de madera bajo normas americanas implica diseños de construcción y utilización para líneas de distribución fuera de las necesidades alcances y desarrollo económico—del país. Por lo que es necesario revisar, analizar y/o modificar estas.

CAPITULO I

CENERALIDADES.

CAPITULO

I. 1 GENERALIDADES

Las normas para construcción de Redes Eléctricas comprenden:

Lineas

Redes Primarias

Secundarias

Banco de Transformadores

Retenidas

Es común dentro de la electrificación rural, encentrar la subestación de -distribución a una cierta distancia de los consumidores, por lo cual es necesario diseñar lo que se conoce como líneas de distribución; para lo cual
existen 4 tipos de postes, que se utilizan dentro de las estructuras ya nor
malizadas.

Clasificación de Postes para lineas:

Octagonal
Reforzado
Acero
Madera Tratada

Dentro de la clasificación de postes de madera tratada para líneas, se tienen el siguiente tipo de estructuras de soporte:

ESTRUCTURAS TIPO.

- P = Se emplea en líneas de distribución cuando la disposición es en tangente.
- P.P.= Se emplea en líneas cuando se requiere una deflexión de 15°
- A = Se emplea en lineás de distribución cuando la disposición es en tangente, la ventaja de esta y la de tipo P, es que los conductores están en 3 planos diferentes.

- A.M. = Es una estructura de remate.
- A.G.= Es una estructura para deflexiones mayores de 15° pero menores de 60° de remate.
- H.S.= Estructura de suspensión empleada cuando el terreno es accidentado.
- H.A.= Estructura de remate cuando se requiere.

Los postes de madera que se utilizan en la transmisión de energía eléctrica deben cumplir con determinadas especificaciones, tanto para que sirvan para el tendido y diseño de Areas y Redes de Distribución, y Líneas de Subtransmisión.

Para seleccionar el tipo de poste de acuerdo a las necesidades que se tengan se tomarán en cuenta las siguientes recomendaciones, viendo de antemano las características particulares de cada caso se usará poste de madera en:

- Zonas en que predomine este tipo.
- Electrificación rural, costas, zonas de difícil acceso y de contaminación.
- Zonas próximas a plantas impregnadoras.

Ventajas del Poste de Madera:

- Facilidad de manejo y resistencia al mal trato
- Mayor resistencia al impacto
- Menor contidad de herrajes.
- Mayor variedad de alturas y clases
- Mayor resistencia a la contaminación.

Desventajas del poste de madera:

- Poca duración
- Requiere de mantenimiento
- Solo hay dos lugares de entrega.
- En algunas ocasiones se ha requerido de importación
- Su uso requiere de un plan de reforestación de tal forma que no se altere la ecología de los bosques.

CAPITULO I

ANALISIS DE LA PRODUCCION FORESTAL MADERABLE EN MEXICO.

CAPITULO 1

II. 1. ANALISIS DE LA PRODUCCION FORESTAL MADESASUE EN MEXICO.

Las entidades que contribuyen nayormente en la producción forestal nacional son: Chihuahua, Durango, Michoacán, Jalisco y Oaxaca, que en conjunto dan el 75.5% del volumen total de ésta.

De las especies aprovechadas tradicionalmente el pine ha sido la más importante, derivando de esto su gran predominio en las masas arboladas del país, de tal manera que representa el 61.1% del volumen maderable total, siguiendo en importancia el encino con 3.8% y el ovamel con 3.6% y mederas preciosas con el 1.6%.

De acuerdo al tipo de propiedad de las áreas en que se llevan a cabo los --aprovechamientos forestales, destacan los terrenos ejidales y comunales de los que se obtiene el 30.8% del volumen generado y las propiedades particulares que participan con el 34.8%, en promedio.

En las siguientes siete tablas, se ve de una manera sinóptica, la localización, producción y un cuadre comparativo de la superficie forestal en México.

bas tablas son las siguientes:

Tabla No. 1

Producción Forestal Maderable por Entidad Federativa

Tabla No. 2

Los diez Estados de mayor producción Forestal maderable

Tabla No. 3

Producción Forestal Maderable por grupos de productos.

Tabla No 4

Producción Forestal Maderable por grupos de productos y principales Estados.

Tabla No 5

Producción Forestal Maderable por tipo de propiedad en los princiles Estados.

Tabla No 6

Producción Forestal Maderable por especies

Tabla No 7

Cuadro Comparativo de la Superficie Forestal

NOTA: Los datos mostrados son los más recientes con los que se pudo contar para mostrar dicho análisis.

PRODUCCION FORESTAL MADERABLE POR ENTIDAD FEDERATIVA

ENTIDAD.	P						U	
TOTAL				7		2		
CHIHUANUA				Š	•.	3		
DURANGO				9		9		
MICHOACAN			2	1	•	5		
JALISCO			-	0		1		
OAXACA				2	•	3		
MEXICO			-	5	•	7		
CHIAPAS			1	1		6		
PUEBLA			3	3	•	6		
SAN LUIS POTOSI		-	1	4	•	8		
VERACRUZ		-	1	7		0		
OTROS			1	o		4		

TARLA No. 1

LOS DIEZ ESTADOS DE MAYOR PRODUCCION FORESTAL MADERABLE

ENTIDAD		76
TOTAL	•	100.0
СНІНИАНИА		25.0
DURANGO		17.2
MICHOACAN		16.0
JALISCO		9.9
OAXACA		7 . 4
MEXICO		3.9
CHIAPAS		3.4
PUEBLA		2.3
SAN LUIS POTOSI		2.2
VERACRUZ		2.0
OTROS		10.7

TARIA No. 2

PRODUCCION FORESTAL MADERABLE POR GRUPOS DE PRODUCTOS

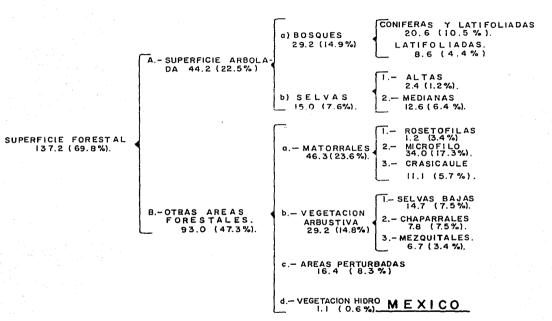
GRUPOS	DE	И	I		E			D	1
PRODUCTO	os			:	"З	r			
TOTAL				7	6	7	7		
MADERA	PARA								
ESCUADRI	IA .			4	9	3	4		
CELULOS	cos			2	1	1	3		
MARERA P									
MADERA I	ARA								
CHAPA TE	RIPLAY				3	o	2		
POSTES,	PILOTES								
					_	_	_		
Y MORILI	LOS				1	3	5		
COMBUST	IBLES				5	9	8		
OTRO	S					9	4		

TABLA No. 3

PRODUCCION FORESTAL MADERABLE POR GRUPOS DE PRODUCTOS Y PRINCIPALES ESTADOS.

	1					G F	UI	0 9	s t) E	PR	0	D U	CTOS	·				
ESTADOS.	T	οт	A L	ESC	UAE	RILLA	CEI	.uro	sicos	CHAP.			POSTI PILO MORII	TES Y	сомві	USTIBLE	0	T R	0 5
TOTAL	7	5 7	7	4	4 3	3 4	2	1 1	3	3	0 2		1	3 6	5 9	9 8		9	4
CHIHUAHUA	1	9 1	8	1	9 3	3 4		7 0	0	1	1 0			5 0		2			5 2
DURANGO	1	3 2	0	1	1 3	3, 1		1 0	7		5 6			5 4		2			
MICHOACAN	1 :	2 3	0		8 2	2 7		3 7	1					2		5 1			9
JALISCO		7 5	6		s	, ₁	79 33 34 5 4873	4 1	2	io ini Zalai≟ talawa	e de la composición dela composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición de la composición dela composición dela composición dela composición dela composición dela composición d		ASLUGI CONTROL	111		8 6			6
OAXACA		5 6	8		2 5) 1 <u> </u>		1 7	8.		5 3			2	The state of	3 2			2
MEXICO		2 9	9		1 :	3 1		1 3	2				-			3.6			
CHIAPAS		2 5	9		2 2	2 1			1		3 4			1 .		2			
PUEBLA		1 7	5			5 5		9	3					2		2 0			5
SAN LUIS POTOSI		1 7	5			2		3	1	-			-		1 :	3 8			1
VERACRUZ		1 5	6		•	5 9					2 5	ា	-			7 2			
OTROS		8 2	4		4 :	3 2		ε	8		5 4			5 4	1 1	8 7			9
	1									1					I				

PRODUCCION FORESTAL MADERABLE POR TIPO DE PROPIEDAD Y PRINCIPALES ESTADOS. MILES DE ${\rm m}^3{\rm r}$


ESTADOS	TOTAL	PARTICULAR	E J I D AL	COMUNAL	NACIONAL	ESTATAL	UNIDADES
TOTAL	7677	2676	2149	673	48	4	2127
CHIHUAHUA	1918	552	778	2 3			565
DURANGO	1320	416	599	7 9			226
MICHOACAN	1230	615	174	31			410
JALISCO	756	207	6.6	-			483
OAXAGA	568	2 2	9	410			127
MEXICO	299	. 48	27	7	18		199
CHIAPAS	259	210	1 1	3.8			
PUEBLA	175	71	17	2			8 5
SAN LUIS POTOSI	172	141	3 1				
VERACRUZ	156	8 2	6.8	2		4	
OTROS	824	312	369	B 1	3.0		3.2
					!	<u> </u>	

PRODUCCION FORESTAL MADERABLE POR ESPECIES

Y PRINCIPALES ESTADOS.

(MILES DE m³r)

							•													_		_			_		_	
	ESTADOS	Ť	0	т	A L		P	1	N C	,	E I	1 (: 1	N	0	U	Y	A	м	Eυ	PH	EC	ıos	AS	U	т	ł(/	. 5
	TOTAL	. 2	6	7	7	6	2	2	7			2	2 9	1		2	? 7	•	;		1	2	2			7	6 1	ì.
-	CITIHUAHUA	1	9	1	8	1	8	9	5					3	,	-					-				l		2 ()
1	DURANGO	1	3	2	o	1	3	0	4				1	. 4		-			-		-						4	2
	MICHOACAN	1	2	3	0	1	0	7	7				- 5	5 1			ç))	1		-						1	ı
İ	JALISCO		7	5	6		5	8	1				9	2	:			s ,	3		-						2 (0
1	OAXACA		5	6	8		4	9	9				2	2 4	١			3	Ĺ				3				4 :	L
	MEXICO		2	9	9		1	7	8				4	; C	,		,	, ,	1									7
	CHIAPAS		2	5	9		2	: 1	o	Ì				2	,	-			-			3	8				,	9
	PUEBLA		1	7	5		1	4	0					3	3			2 :	3				1					3
	SAN LUIS POTOSI		1	7	2		_							2	3	_			-		-					1	6 9	9
1	VERACRUZ		1	5	6			1	. 4					2		-			-				s			1	3 (6
	OTROS		8	2	4		3	: 2	9				5	5 5	.		. :	2 4	1			7	8			3	3 (8
١			_										_															

CUADRO COMPARATIVO DE LA SUPERFICIE FORESTAL

CAPITULO III

ESPECIFICACION PARA POSTES DE MADERA

C F E J6200 - 01

Noviembre 1979

CAPITULO III.

III. 1 Especificación para postes de madere.

III. 1.1. Objetivo y campo de aplicación.

Establecer los requisitos que deben cumplir los pontes de madera de pino nacional impregnado, utilizados para soportar conductores eléctricos, equipo y los accesorios necesarios para la distribución de la energía eléctrica.

III. 2 NORMAS QUE SE APLICAN.

ASTM	D 143-1952	Métodos Normalizados de Pruebas de Peque-
		ños Especímenes de Madera.
ASTM	D 1036-1958	Métodos Normalizados de Pruebas Estáticas
		pera Postes de Madera.
AWPA	A5- 1979	Métodos Normalizados para Análisis de acei
		tes Preservadores.
AWPA	A6- 1974	Método para la Determinación de Preservado
		res de Aceite y Agua en la madera.
AWPA	A7- 1975	Procedimiento Normalizado de Prueba Vía Hú
	**•	meda por Análisis Químico para Madera.
AWPA	A8- 1967	Análisis Cualitativo de Soluciones de Creo
		sota o Alquitrán de Hulla, en Pilotes, Pos
	-	tes o Madera Recién tratados. Método de
		Comprensión.
AWPA	A9- 1970	Método Normalizado para Análisis de Madera
		Tratada y Soluciones para tratamiento por
		Emisión Espectroscópica de Rayos X.
AMDA	A10- 1972	Métodos Normalizados de Análisis por Colo-
VMLV	X10- 1972	rimetría de Soluciones de Tratamientos con
		Sales CCA o Madera Tratada Bajo el mismo -
		Procedimiento.

AWPA	A11- 1974	Método Normalizado de Análicis por Abdor
		ción Atómica y Espectroscopía para Madera
		Tratada y Soluciones para Tratamientos.
AWPA	C4- 1979	Tratamiento Preservador de Postes por el -
		Proceso de Presión.
AWPA	P2- 1968	Norma para Soluciones de Creosota Alqui
		trán de Hulla
AWPA	P5- 1978	Normas para Preservadores de Sales Hidroso
		lubles.
AWPA	P8- 1977	Marmas para Fremeryadores a Base de Aceites

III. 3 DEFINICIONES.

Poste Crudo.- Poste de madera sin impregnar.

Poste Tratado.- Poste de madera impregnado con una solución preservadora Sazonamiento .- Secado de la madera por medios naturales o articiales.

Poste Desbastado.- Pieza de madera nivelada y rebajada, acabada a una medida deseada.

- Duramen.- Porción central de los árboles en pie, sin células de parénqui ma vivas, cuyas substancias de reserva fueron consumidos o ---transformadas en otras (extractivos).
- Albura.- Madera tierna y blanquecina entre la corteza y el corazón de los árboles en pie que contiene células vivas de parénquima y
 materiales de reserva, generalmente de coloración más clara y
 de menor resistencia a los agentes biológicos que el duramen.

Creosota.-Fracción obtenida por destilación de la hulla.

Pentaclorofenol.- Producto químico constituído por un radical de penta y cinco cloros, que consiste de una mezcla de fenoles -- clorados.

Sales Hidrosolubles.- Combinación de elementos: cromo, cobre y arsénico
Celdilla Llena.- Proceso de impregnación conocido como células llenas de
la estructura de la madera.

Celdilla Vacía.- Proceso de impregnación conocido como células vacías de la estructura de la madera.

III. 4. CLASIFICACION.

Por el Tratamiento. - Los postes de madera se clasifican por el trotamiento a que se someten en:

- a) Postes de madera con creosota
- b) Postes de madera con pentaclorofenol
- c) Postes de madera con sales hidrosolubles.

Por la carga de Ruptura. - De acuerdo con su carga de ruptura los postes de madera de pino nacional tendrín la siguiente clasificación:

CLASE	CARGA DE R	UPTURA
	N	(kgf)
3	13194.0	(1344.95)
4	11183.4	(1140.00)
5	10693.0	(1090.01)

Estos valores mostrados en la tabla anterior fueron obtenidos mediante — pruebas que se realizaron en el Laboratorio de C.F.E. y que de acuerdo a la clasificación anterior, estos caen dentro de las clases 3,4,5 que antes se manejaban; por lo que para las mismas tendremos ahora nuevos da—tos arriba antes mencionados.

III. 5 .- ESPECIFICACIONES PARA LA MATERIA PRIMA

III. 5.1 Procedencia.

Los postes deben proceder de árbol vivo especie pino con una resistencia de fibra no menor de 41.7 kPa (425 kfg/cm²).

III. 5.2 A s e r r a m i c n t o.

Deben ser aserrados en la base en un plano perpendicular al eje del poste y en la punta llevar bisel doble con un ángulo de 45° como se puede ver en la figu# 1.

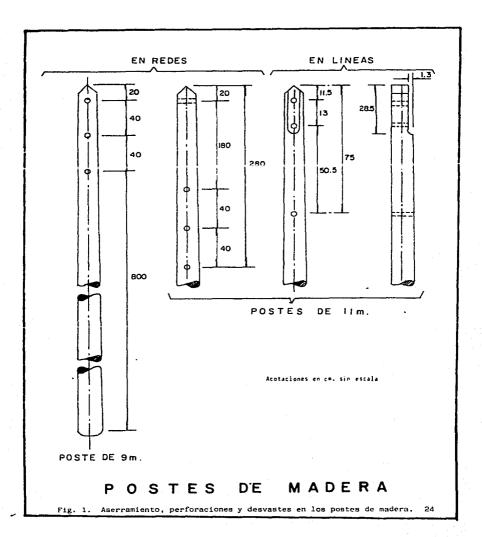
III. 5.3 Descortezamiento.

Las cortezas exterior e interior deben ser totalmente removidas de la superficie del poste, usando tornos o máquinas descortezadoras.

III. 5.4. Acabad o.

Los postes deben tornearse hasta presentar una superficie lisa, eliminando de - esta forma la cutícula y que no sobresalgan nudos mayoras 2 cm.

III. 5.5. Perforaciones.


Todos los postes deben ser perforados antes del tratamiento de impregnación con perforaciones de 17 mm. La fig. # 1 muestra las perforaciones para postes de -- 9 y 11 m.

III. 5.6 Desbastes.

Los postes deben ser desbastados antes del tratamiento de impregnación, la fig. # 1 muestra los desbastes para el caso de postes de 9 y 11 m.

III. 5.7. Dimensiones.

a). Longitud.— La longitud de los postes debe medirse entre los extremos del —
poste y sus valores nominales se indican en la tabla # 1, con —
una tolerancia de [±] 10 cm.

DIMENSIONES DE POSTES.

CLASE	ı	2	2			4		5	5	6		
CARGA DE RUPTU N (kgf)	19600 (2000)		16700 (1700)		00 00)	8 Q I		88	00	6 9 (70		
PERIMETRO MI~ NIMO DE LA CIR= CURFERENCIA EN LA PUNTA	68	6	63		7	5	ſ	4	7	. 4	3	
LONGITUD	PER	IMET	RO DE	LA C	IRCU	NFERI	ENCIA	A 1.8	Om DE	LA BA	SE (cm)	
DEL POSTE (M).	M IN	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
7.00	92	87	91	80	86	76	79	71	75	65	70	
8.00	97	92	96	84	91	80	83	74	82	68	18	
9.00	102	96	101	88	95	83	87	78	82	72	77	
10.00	106	100	105	95	99	87	91	81	86	75	80	
11.00	110	104	109	95	103	90	94	84	89	77	83	
12.00	114	108	113	99	107	93	98	90	92	80	89	
14.00	120	114	119	104	113	99	103	92:	98	85	91	
15.00	117	123	107	116	101	106	94	100	97	87	93	
17.00	129	155	128	115	151	106	1111	95	105	91	98	
18.00	132	125	131	114	124	108	113	ł	1	1	1	
20.00	137	130	136	118	129	112	117	1	}	1	ł	
23.00	143	132	, 38	1	{	1	1	1	}	1	1	

DIMENSIONES DE POSTES.

CLASE	ŀ	2			3		4		5	6		
CARGA DE RUPTU N (kgf)	19600 (2000)	16	700 00)		700 300}		800 00)	8800			00	
PERIMETRO MI- NIMO DE LA CIR- CURFERENCIA EN LA PUNTA	68	6	3	5	7	5	51		7	. 4	3	
LONGITUD	PER	IMET	RO DE	LAC	IRCU	NFER	ENCIA	A 1.8	Om DE	LA BA	SE (cm)	
DEL POSTE (M).	MIN	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
7.00 8.00 9.00 10.00 11.00 14.00 15.00 17.00 18.00 20.00	92 97 102 106 110 114 120 117 129 132 137	87 92 96 100 104 108 114 123 122 125 130	91 96 101 105 109 113 107 128 131 136	80 84 88 95 95 99 104 116 112	86 91 95 99 103 107 113 101 121 124	76 80 83 87 90 93 106 106 108	79 83 87 91 94 98 103 94 111	71 74 78 81 84 90 92 100	75 82 86 89 92 98 97 105	65 68 72 75 77 80 85 87 91	70 81 77 80 83 89 91 93 98	

- b) Perímetro.- El perímetro inferior se medirá al 10% de la longitud del poste + 50 cm (medidas de prueba) y en la punta en el lugar correspondiente a la longitud mínima permitida en el poste. Los períme--tros superiores deben corresponder a los valores indicados en la tabla #1; y los inferiores pueden caer dentro de los límites mínime y máximo marcados en la tabla #1, para ceda clase corres--pondiente.
- c) Volumen.- Los postes de madera deben satisfacer los valores indicados en la tabla # 2 de acuerdo a su longitud y clase.

III. 5.8. Sazonamiento.

La madera debe estar sazonada al aire o por medios artificiales (secado en estu fa, vapor o ambos). El proveedor debe controlar el sazonamiente indicando los que estén en condiciones de ser impregnados.

III. 6 Tratamientos.

- a) Con Creosota. Cuando se use este tratamiento se debe cumplir con las características físicas y químicas indicadas en la tabla # 3, así como lo indicado en la norma AWPA P2.

 Los procesos que deben seguirse son los de celdilla vacía -- (Lowry).
- b) Con Pentaclorofenol. Para tratamiento con Pentaclorofenol se debe cumplir con las características físicas y químicas indicadas en la tabla #4, así como lo indicado en la norma AWPA P8.

Los procesos que deben seguirse son los de celdilla --vacía (Rueping).

c). Con Sales Hidrosolubles. Con este tratamiento deben usarse las A.C.A. (amoniaco, cobre, arsénico) o C.C.A. (cobre, cromo, arsénico) con las características y composición dadas en la norma AWPA P5. Los procesos que deben seguirse para el tratamiento son los de celdilla llena (Bethell) en una auto-clave, controlando rigurosamente las características de la solución impregnante así como los factores de: temperatura vacío, tiempo de proceso. Para este tratamiento la retención mínima de la solución impregnante de be ser de 9.6 kg/m³

VOLUMEN DE POSTES DE MADERA.

VOLU	VOLUMEN EN METROS CUBICOS (m³)														
CLASE	ı	2	3	4	5	6									
CARGA DE LONGITUD RUPTURA N(kfg) DEL POSTE (m)	(2000)	16700 (1700)	12800 (1300)	(1100)	8800	6900 (700)									
7.00 8.00 9.00 10.00 11.00 12.00 14.00 15.00 17.00 18.00 20.00 21.00	0.426 0.496 0.607 0.673 0.894 1.096 1.216 1.433 1.578 1.800 1.945 2.203	0.3 6 3 0.4 4 4 0.5 2 3 0.6 0 7 0.6 9 8 0.7 9 4 0.9 1 2 1.0 9 0 1.2 9 7 1.4 1 8 1.6 4 5 1.7 5 6	0.3 1 0 0.3 7 9 0.4 4 5 0.5 1 9 0.6 7 8 0.6 7 8 0.9 0 8 1.1 1 8 1.2 0 4 1.3 9 9	0.266 0.322 0.377 0.441 0.503 0.572 0.712 0.785 0.940 1.017	0.2 34 0.2 81 0.3 31 0.3 84 0.5 10 0.6 23 0.6 83 0.8 22	0.2 3 0.2 4 0 0.2 9 0 0.3 2 8 0.3 7 5 0.4 3 7 0.5 3 2 0.5 8 5 0.7 0 2									

CARACTERISTICAS DE CREOSOTA.

	VALO	RES
C A R A C T E R I S T I C A S	MAXIMO	MINIMO
GRAVEDAD ESPECIFICA DE 38°C COMPARADA CON AGUA A 15.5°C		1.03
POR CIENTO EN VOLUMEN	3.0	
MATERIA INSOLUBLE EN BENZOI (por ciento en peso).	0.5	
RETENCION EN Kg/cm ³		1.60
RESIDUO COKE (por ciento en peso)	2.0	
DESTILACION (creosota libre de agua) PRODUCTO OBTENIDO HASTALA		
TEMPERATURA: (por ciento en peso).		
210° C	5.0	<u> </u>
235° C	25.0	5.0
270° C		20.0
375° C	85	60
GRAVEDAD ESPECIFICA DE LAS FRACCIONES:		
FRACCION DE 235°C HASTA 315°C COMPARADA CON AGUA A 15.5°C		1.025
FRACCION DE 315°C HASTA 365°C COMPARADA CON AGUA A 15.5°C		1.085

CARACTERISTICAS DEL PENTACLOROFENOL .

CARACTERISTICAS	VALC	RES				
CARACIERISTICAS		MINIMO				
FENOLES CLORADOS (%).		95				
MATERIA INSOLUBLE EN SOLUCION NORMAL DE NaOH en %.	i					
PUNTO DE CONGELACION °C		174				
SOLVENTE PARA EL PENTACLOROFENOL (impregnante Nº I Pemex) SIGUIENTES REQUISITOS:						
GRAVEDAD ESPECIFICA A 60/16° C		0.900				
AGUA Y SEDIMENTO EN %	0.1					
TEMPERATURA DE INFLAMACION °C		80				
RETENCION EN Kg/m ³		160				
VOLUMEN TOTAL DE LAS FRACCIONES QUE DESTILAN ABAJO DE 260°C EN %		50				
VISCIOSIDAD SEGUNDOS UNIVERSAL A 98.9° C	60					
COLOR UNION	3.5					
SOLVENCIA PARA EL PENTACLOROFENOL EN %		10.0				
MEZCLA IMPREGNANTE NºI IMPREGNOL EN %	25.75					
PENTACLOROFENOL EN LA MEZCLA %	5					

CARACTERISTICAS DEL POSTE PINO NACIONAL

250051001011	LONGITUD		CLAVE	/ TRATAMIE	ENTO
DESCRIPCION	LONGITUD	CLASE			
CORTA	m.		CREOSOTA	PENTACLOROFENOL	HIDROSOLUBLES
PM - 7 - 3	7.00	3	J62DGC2240	1esuec3sso	J62DGC4280
PM -8-5	8.00	5	J62ECC2240	J62ECC 3240	J62E C C 4280
PM - 9 - 5	9.00	5	J62GCC 2240	J62GC3240	J62GCC 4280
PM -10 - 5	10.00	5	J62HCC2240	J62HCC3240	J62HCC 4280
PM -10-4	10.00	44	J62HEC2240	J62HEC 3240	J62HEC 3240
PM - 11 - 5	11.00	5	J62 JCC 2 2 4 0	J62JCC3240	J62JCC 4280
PM - 11 - 4	11.00	4	J62JEC 2240	J62 JEC 3240	J62 JEC 4280
PM - 11 - 3	11.00	3	J62 JGC 2240	J62JGC 3240	J62 JGC 4280
PM - 12 - 4	12.00	4	J62 MEC 2240	J62 MEC 3240	J 62 MEC 4280
PM - 12 - 3	12.00	3	J63 MGC 2240	J 62 M G C 3 2 4 0	J 62 MGC 4280
PM -14 - 4	14.00	4	J 62 P E C 2 2 4 0	J62PEC 3240	J62 PEC 4280
PM - 14 - 3	14.00	3	J62PGC2240	J62 PGC 3240	J62PGC 4280
PM - 15 - 4	15.00	4	J62REC2240	J62 REC 3240	J62REC4280
PM - 15 - 3	15.00	3	J62 RGC 2240	J62 RGC 3240	J62RGC 4280
PM - 15 - 2	15.00	2	J62 RHC 2240	J62 RHC 32 40	J62RHC4280
PM - 17 - 4	17.00	4	J62 TFC 2240	J62 TFC 3 2 4 0	J62TFC 4280
PM -17-3	17.00	3	J62 TGC 2240	J62 TGC 3240	J62 TGC 4280
PM - 18 - 3	18.00	3	J62 UGC 2240	J62 UGC 32 40	J62UGC4280
PM - 18 - 2	18.00	2	J62 UHC 2240	J62 UHC 32 40	J62UHC4280
PM - 20 - 2	20.00	2	J62 VHC 2240	J62 VHC 3240	J62 VHC 4280
PM - 21 - 2	21.00	2	J62 WHC 2240	J62 WHC 3240	J62WHC4280
PM - 23 - I	23.00	ı	J625 JC 2240	J625 JC 3240	J625JC4270

III. 7 Designación.

En la tabla # 5 se enlistan los postes que se utilizan en C.F.E con su descripción y clave correspondiente.

III. 8 Clasificación de Defectos.

III. 8.1. Pefectos Críticos.

- 1 Quiebres o grietas transversales a la fibra de la madera
- 2 Orificios huecos o taponados.
- 3 Babes o puntac huecas
- 4 Destrucción por barrenillo marino
- 5 Cuarteaduras o grietas longitudinales en la punta
- 6 Degeneración o desintegración de la madera.
- 7 Clavos o tornillos que no están especificados por el com-prador
- 8 Orificios de pájaros.

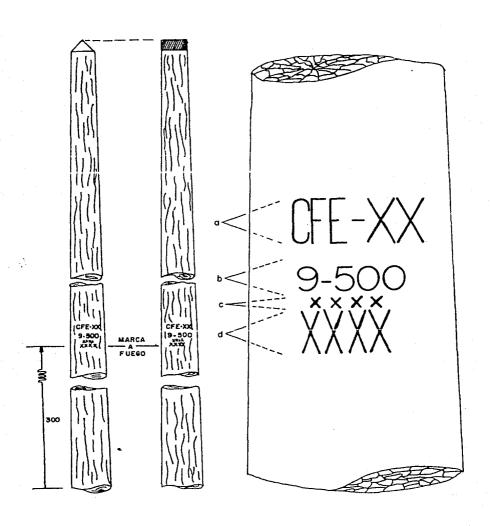
III. 8.2. Defectos mayores y menores.

Vetas en espiral. Una sola veta en espiral (alrededor del eje del poste), -sicmpre y cuando la vuelta completa esté comprendida en un
tramo mayor de 5m.

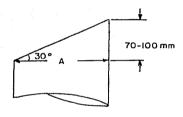
Grietas radiales.- Grietas radiales que procedan de la base del poste, siempre y cuando estas grietas se extiendan en una longitud menor de 60 cm. a lo largo del poste.

Grietas Circulares. - Grietas circulares en la base del poste siempre y cuando estas grietas abarquen un arco menor de 90° asimismo, las que se extiendan en un arco mayor de 90° siempre y cuando estas grietas sean concéntricas al corazón y tengan aproximadamente un didmetro menor que la mitad del diámetro de la base del poste. Grietas circulares en la punta del poste, siempre y cuando estas grietas tengan una anchura menor de 2mm. y de un diametro menor que la mitad del diámetro de la punta.

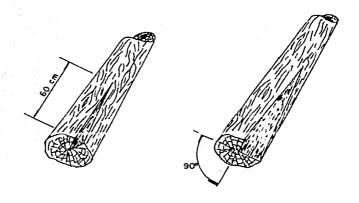
- Destrucción por insectos.- Daños causados por insectos siempre y cuando las -huellas dejadas sean superficiales y tengan una anchara menor
 de 2 mm.
- Cicatrices.- Cicatrices y huellas sanas de trementina cepilladas fuero de la -sección comprendida medio metro arriba y abajo de la línea de
 tierra, entendiéndose como línea de tierra a la referencia que
 sirve para aplicar las especificaciones relativas a cicatrices
 tembeduras, etc.. y que sitúan la región de empotramiento --cuando el poste es montado.
- Venas muertas. Venas muertas cuya anchura mayor abarque un arco menor de 90°.

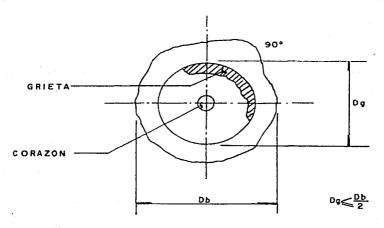

 Se conocen con este nombre a las concavidades laterales que -partiendo de la base se extienden a lo largo del poste en forma de canal, estrechándose progresivamente.
- Madera Comprimida. Siempre y cuando ésta no aparezca en 3 cm. de espesor a lo largo de la superficie del poste. Esta es la madera anormal -- que se forma en las partes inferiores de las ramas o en los -- troncos inclinados y se caracteriza por la presencia de uni--- llos anusles de crecimiento relativamente anchos y excéntricos.
- Base Defectuosa.-Defectos en las bases de los postes cuando la huella sea menor de 10% del área de la base.
- Manchas de savia.-Manchas de savia o decoloramiento de la múdera, siempre y --cuando éstas no hayan producido reblandecimiento o desintegración de la madera.
- Corazón Rojo. Postes con corazón rojo, siempre y cuando éste no haya producido reblandecimiento o desintegración de la madera.
- Centro de Médula Hueca. Centros de médula hueca en la base y en los nudos siem pre y cuando los postes en cuestión vayan a recibir un trata-miento integral.

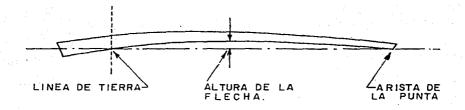
Nudos .- Nudos bajo las siguientes condiciones:


- menores de 8 cm. de diámetro.
- que la suma de los diámetros de los nudos que existan en una sección de medio metro de longitud, sea menor de 25 cm. Para esta última condición no se toman en cuenta aquellos nudos cuyo diámetro sea menor de 1 cm.

Nudos muertos.- Nudos muertos, siempre y cuendo éstos no presenten coruzón po-drido.


Combaduras. - Combaduras siempre y cuando sean menores a los valores dados en la tabla de: Diferencias a líneas de tierra y combaduras; haciendo la medición conforme a las figuras correspondientes. Si las combaduras son en dos planos (doble curvatura) o en dos direcciones en un plano, la línea recta que une el punto medio de la línea de tierra con el punto medio de la punta debe quedar dentro de la superfície del poste (ver figuras).

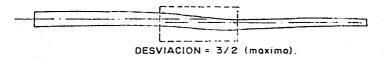

MARCADO


CORTE EN LA PUNTA DE LOS POSTES

GRIETAS RADIALES Y CIRCULARES

LAMINA DE GRIETAS CIRCULARES

COMBADURA EN UN PLANO.


COMBADURA DE DOBLE
CURVATURA

DIFERENCIAS A LINEAS DE TIERRA Y COMBADURAS.

	LONGITUD DEL POSTE en m.	LINEA DE TIERRA en cms.	COMBADURA MAXIMA en cms.
-	7	140	8
-	8	160	9
1	9	170	1.1
1	10	175	12
	1.1	180	14
	12	190	15
1	.14	200	8 1
1	15	210	. 19
	17	230	2 2
	1 8	240	2 3
	2 0	260	2 6
	2 1	270	2 7
L	2 3	300	3 0

LIMITES EN TAMAÑOS DE NUDOS

	T AMANO	S MAXIMOS	PERMITIDOS .		
	א ט	DE CUALQUIER DO ADAS)	DE LOS YORES gadas El		
LONGITUD DEL POSTE	CLASES H6 a 3	CLASES 4 a 10	CLASES H 6 a H I	CLASES 1 a 10	
HASTA 45 PIES					
EN LA MITAD INFERIOR	3	2	8	8	
EN LA MITAD SUPERIOR	5	4			
MAS DE 50 PIES					
EN LA MITAD INFERIOR	4	4	1/3 DE LA	CIRCUNFE-	
	6	6	RENCIA EN CUALQUIER SECCION A LO LARGO DE UN PIE O 14 PUL- GADAS, CUALQUIERA QUE SEA MENOR		

CAPITULO IV

RESULTADOS DE LAS PRUEBAS FISICO-MECANICAS.

CAPITULO IV

IV. 1 RESULTADOS DE LAS PRUEBAS FISICO - MECANICAS.

Los resultados de las pruebas físico-mecánicas que se contemplan en las tablas siguientes fueron obtenidos mediante pruebas que se realizaron en probetas de varios tipos de madera para postes, tanto americana como nacional, bajo normas de la ASTM D-143.

Aunque los resultados fueron bastante satisfactorios para las probetas de madera de pino nacional depende también de la clase, perímetros y alturas de poste que se tengan, para poder diseñar los diferentes tipos de estructuras que se — usan en las líneas de distribución, además de tener las características del conductor que se va a usar, considerando para ambos su diseño en condiciones críticas.

Las probetas de pino nacional que se utilizaron son provenientes del Edo. de $D\underline{u}$ rango del Arroyo de Alamitos y Meseta de Alamitos, dadas por la Cía. Impregnadora El Guadiana, de la cual se muestrearon los perímetros de la base del poste (perímetro que se tiene en el empotramiento) y de la punta, de 10 postes por ca da altura y clase en estudio.

De dichas probetas se obtuvieron los siguientes resultados: Mayor esfuerzo al límite elástico, mayor esfuerzo a la flexión, la mayor resistencia al corte, mayor resistencia de la tensión y mayor resistencia al desgarre. Las probetas de madera americana fueron de los siguientes tipos:

- Red Wodd
- Pino Ponderosa (americano)
- Douglas Fir

1V.2 PRUEBA DE COMPRESION PARALELA A LA FIBRA
DE PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

PROBETA	LADO mm	LADO mm	AREA mm ²	CARGA MAXIMA N	ESFUERZO A LA COMPRENSION M Pn
RED WOOD					
1	50,25	50.10	2517.525	76518	30.394
PINO PONDEROSA					
2	38.35	38.55	1478.392	53955	36 - 496
DOUGLAS - FIR					
3	37.30	36.35	1355.855	59105.25	43.593
PINO REAL O DURANGUEÑO ARROYO DE ALAMITOS					
4	51.50	51.65	2659.975	157941	59.377
MESETA DE ALAMITOS				•	
. 5	49.87	50.25	2505.967	123606	49.325

LAS PROBETAS DE LA MADERA PINO DURANQUEÑO DEL ARROYO DE ALAMITOS SON LAS QUE PRESENTAN UNA MAYOR RESISTENCIA A LA COMPRENSION

IV.3 PRUEBA DE COMPRESION PERPENDICULAR A LA FIBRA DE PROBETAS PARA VARIOS TIPOS DE MADERA PARA POSTES

PROBETAS	LADO	LADO mm	AREA mm2	CARGA A 2.54 mm DE DEFORMACION	ESFUERZO A LA COMPRENSION M Pa.
RED WOOD				.,	
1	50.00	50.8	2540	22808.25	8.980
PINO PONDEROSA					
1	38.30	50.8	1945.64	21074.40	11.294
DOUGLAS - FIR					
1	36.95	50.8	1877.06	23936.40	12.752
PINO REAL O DURANGUERO					
ARROYO ALAMITOS					
1	51.25	50.8	2603.50	22023.45	8.459
MESETA ALAMITOS					
. 1	52.1	50.8	2646.68	20502.9	7.47

LAS PROBETAS DE LA MADERA DOUGLAS - FIR SON LAS QUE PRESENTAN MAYOR RESISTENCIA A LA COMPRENSION PERPENDICULAR A LA FIBRA

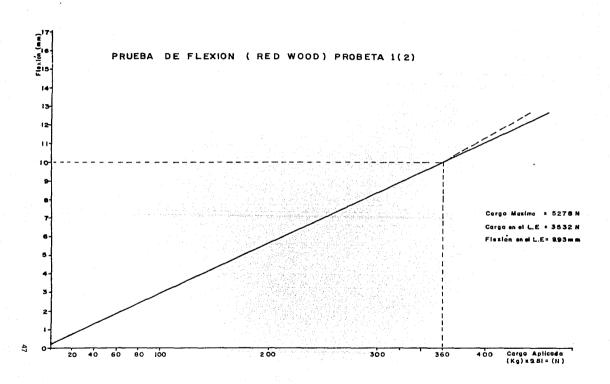
TV.4 PRUEBA DE FLEXION

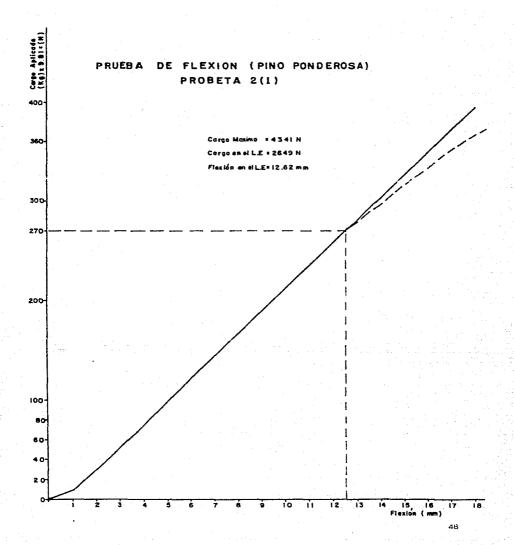
DE PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

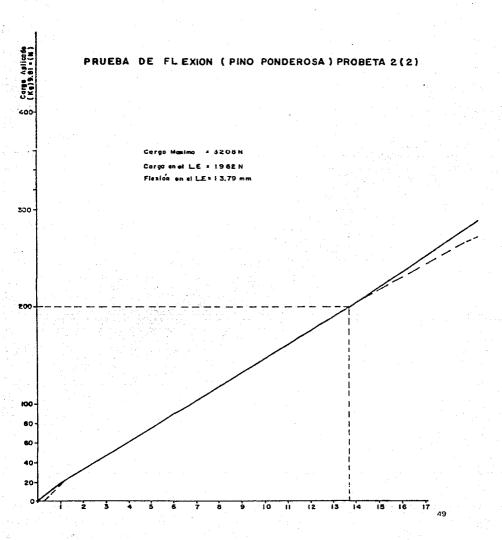
CONDICIONES DE PRUEBA:

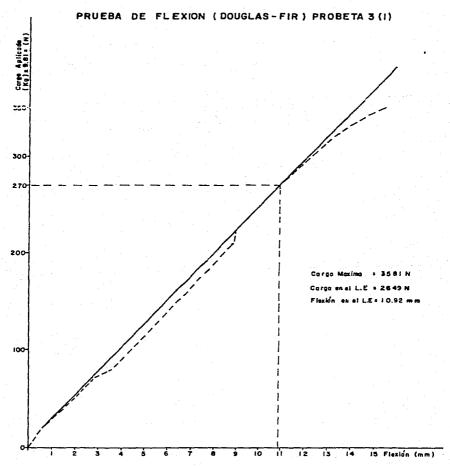
CLARO ENTRE APOYOS

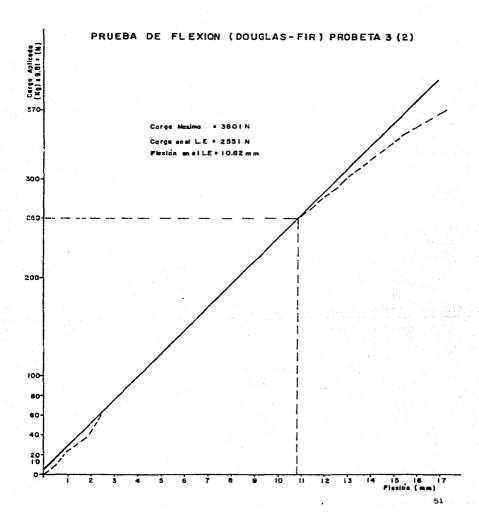
= 700 mm

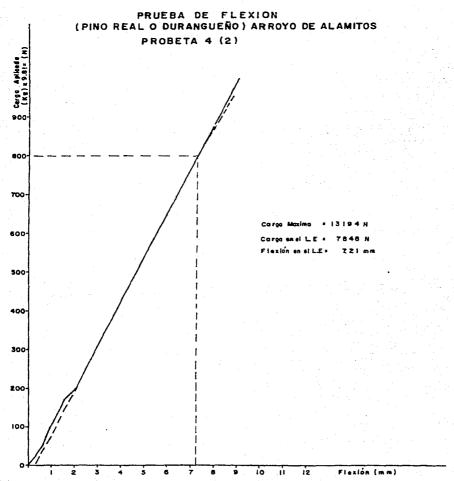

VELOCIDAD DE LA PRUERA

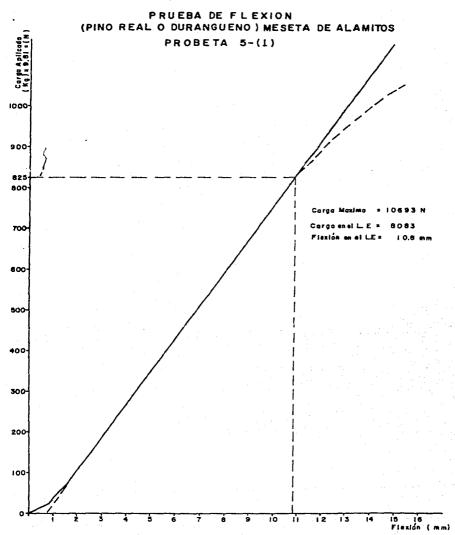

= 1.5 mm/min


TEMPERATURA DE CUARTO = 25


PROBETA	ANCHO mm	ALTURA mm	CARGA EN EL L. E. N	ESFUERZO EN EL L. E. M Pa	FLEXION EN EL L. E.	CARGA MAX IMA N	ESFUERZO A LA FLEXTON M Pa
RED WOOD							
1 (2)	49.8	49.25	3532	30.702	9.93	5278	45.879
PINO PONDEROSA							
2 (1)	38.3	38.55	2649	48,868	12.62	4341	80.081
2 (2)	38.4	37.65	1962	37.847	13.79	3208	61.882
DOUGLAS - FIR							
3 (1)	37.1	38.40	2649	50.843	10,92	3581	68.732
3 (2)	36.8	37.60	2551	51.484	10.82	3801	76.712
PINO REAL O DURANGUEÑO			en e de de Conglessego				
ARROYO DE ALAMITOS							
4 (1)	51.6	51.00	N.D.	N.D.	N.D.	11183.4	87.493
4 (2)	51.1	51.55	7848	60.683	7.21	13194.0	102.020
MESETA DE ALAMITOS							
5 (1)	50.3	51,95	8093	35.770	10.8	10693	47.262


LAS PRUEBAS SE REALIZARON DE ACUFRDO CON LA NORMA ASIM D 143
LAS PROBETAS DE LA MADERA PINO REAL O DURANGUEÑO DEL ARROYO DE ALAMITOS, SON LAS QUE TIENEN EL MAYOR ESFUERZO A
LA FLEXION, ASI COMO EL MAYOR ESFUERZO EN EL LIMITE ELASTICO.





IV. 5 PRUEBA DE CORTE PARALELA A LA FIBRA

IV.5.1 DE PROBETAS DE MADERA RED MOOD PARA POSTES EN CONDICIONES INICIALES

PROBETAS	ANCHO	ALTURA mm	AREA DE CORTE	CARGA MAXIMA N	ESFUERZO AL CORTE M Pa.
1	49.95	44.80	2237,76	13635.90	6.093
. 2	50.25	50.15	2520.04	13586.85	5.391
3	50.00	44.30	2215.00	16677.00	7.529
4	49.65	44.65	2216.87	12949.20	5.841
5	50.50	44.65	2254.82	12507.75	5.547
6	49.90	44.65	2228.03	12802.05	5.746
7	49.50	45.60	2257.20	9810.00	4.346
8 -	50.00	44.90	2245.00	13390.65	5.965
. 9	49.45	44.55	2202.99	15009.30	6.813
10	49.50	44.20	2187.90	11772.00	5.380
11	49.80	44.25	2203.65	5640.75	2.559
12	49.65	44.85	2226.80	12262.50	5.507
VALOR PROMED	IO DE ESFUERZO	AL CORTE, OBT	ENIDO		5.560

PRUEBA DE CORTE PARALELA A LA FIBRA

IV. 5.2. DE PROBETAS DE MADERA PINO PONDEROSA PARA POSTES EN CONDICIONES INICIALES

PROBETAS	ANCHO	ALTURA	AREA DE CORTE	CARGA MAXIMA N	ESFUERZO AL CORTE
1	38.5	42.95	1653.575	11722.95	7.089
2	38.2	43.80	1673.160	6376.5	3.811
- 3	38.4	43.30	1662.720	5199.3	3.127
4	38.3	43.65	1671.795	6768.90	4.049
.5	38.6	44.20	1706.120	5248.35	3.076
6	38.7	43.15	1669.905	4561.65	2.732
7	38.4	43.30	1662.720	5199.30	3.127
8 .	38.15	44.05	1680.507	8534.70	5.079
9	38.75	43.80	1697.250	6376,50	3.757
10	37.80	43.90	1659.420	5297.40	3,192
- 11	38.40	43.45	1668.480	9123,30	5,468
12	38.30	43.65	1671.795	5052.15	3.022
VALOR PROMEE	OTO DE ESFUERZO	AL CORTE, OBT	TENIDO		3.961

PRUEBA DE CORTE PARALELA A LA FIBRA IV. 5.3. DE PROBETAS DE MADERA DOUGLAS-FIR PARA INSTES IN CONDICIONES INICIALES

PROBETAS	ANCHO mm	ALTURA	AREA DE CORTE	CARGA MAXIMA N	ESTUERZO AL CORTE M Pa.
1	36.75	44.90	1650.075	12262.50	7.431
. 2	37.00	45.00	1665.000	12507.75	7,512
3	37.00	44.90	1661.300	6376.50	3.838
4	37.00	44.90	1661.300	9466.63	5.698
5	36.80	44.85	1650.480	5101.20	3.091
6	36.85	45.00	1658.250	9810.00	5.916
7	36.80	45.00	1656.000	4905.00	2,962
8	37.00	45.00	1665.000	8976.15	5.391
. 9	37.00	44.80	1657.600	9810.00	5.918
10	36.60	45,00	1647,000	12262.50	7.415
11	38,00	45.20	1717,600	11036.25	6.425
12	37.00	45.00	1665.000	12654.90	7.600
VALOR PROMED	IO DE ESFIERZO	AL CORTE, OBT	ENIDO		5.769

PRUEBA DE CORTE PARALELA A LA FIBRA

IV. 5.4. DE PROBETAS DE MADERA, PINO DURANGUEÑO ARROYO DE ALAMITOS PARA POSTES EN CONDICIONES INICIALES

				그 그 그는 그를 가고 있다.	
PROBE	TTAS ANCHO	ALTURA men	AREA DE_CORTE	CARGA MAXIMA N	ESFUERZO AL CORTE M Pa.
	51.20	45.00	2304.000	20110.5	8.728
Z	51.25	44.90	2301,125	15941.2	6.927
3	51.10	44.75	2286.725	25751.2	11.261
4	51.50	44.70	2302.050	22366.8	9.716
5	51.55	44.80	2309.440	21091.5	9.133
6	52.25	45.90	2398,275	26830.3	11.187
7	50.00	45.25	2262,500	30411.0	13,441
8	48.85	45.10	2203.135	24525.0	11.132
9	51.70	44.60	2305.820	23838.3	10.338
10	48,65	45.90	2233,035	23053.5	10.324
11	52.00	44.45	2311.400	25996.5	11.247
12	52.25	44.35	2317,287	25260.7	10.901
VALOR	PROMEDIO DE ESFUERZO	AL CORTE, OB	TENIDO		10.361

PRUEBA DE CORTE PARALELA A LA FIBRA

1V.5.5 DE PROBETAS DE MADERA PINO DURANGUEÑO MESETA DE ALAMITOS PARA POSTES EN CONDICIONES INICIALES

PROBETAS	ANCHO mm	ALTURA mm	AREA DE CORTE	CARGA MAXIMA	ESFUERZO AL CORTE M Pa.
. 1	51.35	44.35	2277.372	16186.5	7.107
. 2	51.00	44.80	2284.800	20797.2	9.102
. 3	50.95	44.70	2277.465	16186.5	7.107
4	50.85	44.20	2247,570	17952.3	7.987
5	51.40	45.20	2323.280	23347.8	10.049
6	51.20	44.80	2293.760	24034.5	10.478
7	44.90	44.35	1991.315	23740.2	11.922
8	50.30	44.65	2245.895	16677.0	7,425
9	43.90	45.00	1975,500	23445.9	11.868
10	51.60	44,70	2306.520	22563.0	9.782
11	50.80	44.40	2255.520	19423.8	8.612
12	50.90	44.25	2252.325	16431.7	7.295
VALOR PRON	EDIO DE ESFUERZO	AL CORTE, OBT	ENIDO		9.061

PRUEBA DE TENSION PARALELA A LA FIRRA

IV. 6. DE PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

PROBETA	ANCHO mm	ESPESOR mm	AREA mm2	CARGA MAXIMA N	ESFUERZO ULTIMO N Pa.
RED WOOD					
1	9.35	4.9	45.815	1569.60	34.259
3	9.65	5.5	53.075	1520.55	28.649
. 7	9.40	5.5	51.700	1324.35	25.616
VALOR PROMEDIO					29.508
PINO PONDEROSA					
1	8.35	4.8	40.08	2207.25	55.071
3	9.20	4.2	38.64	2011.05	52.046
10	7.00	5.0	35.00	2011.05	57.458
11	9.00	4.8	43.20	2109.15	48.823
VALOR PROMEDIO					53,349
DOUGLAS - FIR					
1	8.3	4.8	39.84	3237.30	81.257
. 4	7.2	4.1	29.52	1324.35	44.862
5	7.6	4.9	37.20	2158.20	57.954
7	6.45	4.9	31.605	2060.10	65.183
9	8.7	4.7	40.890	2795.85	68.375
VALOR PROMEDIO					63.526

PROBETA	ANCHO mm	ESPESOR mm	AREA mm ²	CARGA MAXIMA N	ESFUERZO ULTIMO M Pa.
PINO REAL O DURANGUEÑO ARROYO DE ALAMITOS					
1	9.8	4.9	48.02	7112.25	148.110
6	8.6	5.2	44.72	5101.20	114.070
10	9.1	5.0	45.50	4905.0	107.802
VALOR PROMEDIO				Algebras (1900) en gla 1917 - Britan Dengelon, de grander (1900) 1918 - Grander (1900) en grander (1900)	123.327
MESETA DE ALAMITOS					
2	9.1	5.25	47.77	3335.4	69.815
3.	7.1	4.95	35.14	4022,1	114.443
10	9.3	5.0	46.50	3531.6	75.948
11	9.6	5.0	48.00	5395,5	112,406
VALOR PROMEDIO					93.153

LAS PROBETAS DE LA MADERA DE PINO DURANGUERO DEL ARROYO DE ALAMITOS SON LAS QUE PRESENTAN UNA MAYOR RESISTENCIA DE LA TENSION.

PRUEBA DE DUREZA

IV. 7. DE PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

(CARGA REQUERIDA PARA PENETRAR UNA BOLA DE DIAMETRO DE 11.3 mm, LA MITAD DE SU DIAMETRO)

MUESTRA	DUREZA EN CARAS N	DUREZA EN EXTREMOS N
REDWOOD	1545	5322
PINO PONDEROSA	4169	4513
DOUGLAS - FIR	2894	3581
PINO REAL O DURANGUEÑO		
ARROYO DE ALAMITOS	2906	2943
MESETA DE ALAMITOS	3237	3826

LAS PRUEBAS SE REALIZARON DE ACUERDO A LA NORMA ASTM D 143

LA MUESTRA DE LA MADERA PINO PONDEROSA ES LA QUE TIENE MAYOR DUREZA EN CARAS

LA MUESTRA DE LA MADERA RED WOOD ES LA QUE TIENE MAYOR DUREZA EN EXTREMOS

IV. 8 PRUEBA DE DESGARRE

A PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

CONDICIONES DE PRUEBA TEMPERATURA = 26°C

VELOCIDAD = 2.25 mm/min

MUESTRA	TIPO DE SUPERFICIE DE DESGAJE	AREA DE DESGARRE ANCHO X LARGO mm X mm	CARGA MAX IMA N	CARGA POR (mm) DE ANCHO N/mm
RED WOOD				
1	R	43.85 X 76.2	539.5	1.25
2	R	50.00 X 76.2	441.4	8.829
3	R	45.9 X 76.2	49.0	1.067
4	R	50.15 X 76.2	490.5	9.781
. S	. R	44.6 X 76.2	343.5	7.702
6 .	R	49.25 X 76.2	588.6	11.951
7	R	50.0 X 76.2	686.7	13.734
8	R	44.45 X 76.2	343.35	7.724
9	R	44.65 X 76.2	343.35	7.690
10	R	44.6 X 76.2	343.35	7.698
11	R	50.05 X 76.2	49.0	0.98
12	R	44.25 X 76.2	637.6	14.409
VALOR PROMEDIO				7.734

PRUEBA DE DESGARRE

A PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

CONDICIONES DE PRHEBA

TEMPERATURA = 26°C

VELOCIDAD = 2.25 mm/min

MUESTRA	TIPO DE SUPERFICIE DE DESGAJE	AREA DE DESGARRE ANCHO X LARGO mm X mm	CARGA NAXIMA N	CARGA POR (mm) DE ANCHO N/mm
PINO REAL O DURANGUEÑO				
(MESETA DE ALAMITOS)				
1	T .	48.3 X 76.2	2109.1	43.667
2	T	51.0 X 76.2	1569.6	30.776
3	T	50.6 X 76.2	1962.0	38,775
4	T	51.0 X 76.2	1471.5	28.843
5	T	51.65 X 76.2	1569.6	30.389
6	T	47.25 X 76.2	931.9	19.723
7	7	50.51 X 76.2	1177.2	23.306
8	7	51.35 X 76.2	1962.0	38.208
9	T	52.0 X 76.2	2158.2	41.504
10	T	51.15 X 76.2	1471.5	28.768
11	T	48.55 X 76.2	1912.9	39.401
. 12	Т	48.3 X 76.2	1962.0	40.621
VALOR PROMEDIO				33.665

LAS PROBETAS DE LAS MADERAS PINO PONDEROSA Y DOUGLAS - FIR NO FUERON PROBADAS POR NO TENER LAS DIMENSIONES REQUERIDAS POR LA NORMA.

DE LAS PROBETAS SOMETIDAS A PRUEBA LAS DE LA MADERA PINO DURANGUEÑO ARROYO DE ALAMITOS SON LAS QUE PRESENTAN UNA MAYOR RESISTENCIA AL DESGASTE.

PRUEBA DE DESGARRE

A PROBETAS DE VARIOS TIPOS DE MADERA PARA POSTES

CONDICIONES DE PRUEBA TEMPERATURA = 26°C

VELOCIDAD = 2.25 mm/min

MUESTRA	TIPO DE SUPERFICIE DE DESCAJE	AREA DE DESGARRE ANCHO X LARGO MEN X MEN	CARGA MAXIMA N	CARGA POR (mm) DE ANCHO N/mm		
PINO REAL O DURANG	UENO					
(ARROYO DE ALAMIT	OS)					
1	T	52.25 X 76.2	2452.5	46.938		
. 2	T	51.25 X 76.2	1324.3	25.840		
3	T	51.80 X 76.2	2354.4	45.452		
4	T	51.60 X 76.2	2011.0	38.973		
S	Ť	51.30 X 76.2	2109.1	41.113		
6		50.85 X 76.2	2746.8	54.018		
7	T	50.60 X 76.2	1471.5	29.081		
. 8	T	51.55 X 76.2	1520.5	29.496		
9	T	51.75 X 76.2	2746.8	53.078		
10	T	51.10 X 76.2	1667.7	32.636		
11	T	50.85 X 76.2	735.7	14.468		
. 12	T	51.60 X 76.2	2844.9	55.134		
VALOR PROMEDIO				38.852		

CAPITULO V

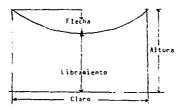
ANALISIS DE LAS LIMITACIONES MECANICAS Y ELECTRICAS
PARA POSTES DE MADERA MEXICANA.

CAPITULO V

V.1 Análisis de las limitaciones mecánicas y eléctricas para postes de madera Mexicana.

Para desarrollar el análisis de las limitaciones mecánicas y eléctricas para postes de madera tratada, mencionaremos brevemente en que consiste cada — uno de los elementos básicos para este análisis.

Dentro de este cálculo se usarán los tipos de conductores (ligeros) más usados en distribución de CU y ACSR, para un sistema de tres fases, tres hilos y una tension de 13.2 kv., por ser la tensión con un porcentaje de normalización mayor.


La estructura más representativa dentro del diseño y tendido de líneas, es la estructura tipo "P" (estructura de paso) ya que representa de un 70 a un 80 % de las estructuras usadas para este fin.

Dentro del programa se utilizan los resultados obtenidos durante las pruebas fisico-mecánicas (realizadas en el Laboratorio de C.F.E en Irapuato, Gto.) como fueron los de resistencia de la fibra y las tensiones de ruptura correspondientes en cada caso, así como los datos de muestreo de diámetros en la punta y al 10 % de la longitud del poste más 50 cm. (norma de prueba). Supondremos (por facilidad) que estas estructuras van a ser puestas en un terreno plano, ligeramen te ondulado, de tipo arcilloso.

El estudio comprende el desarrollo de las fórmulas a utilizar en cada una de — las limitaciones, las cuales están analizadas independientemente. El método de cálculo de las tensiones mecánicas de los conductores, se analiza con las condiciones críticas que para cada caso deban de considerarse, obteniendose las tablas correspondientes para conductores de ACSR y CU.

V. 2 MEMORIA DE CALCULO DE LAS LIMITACIONES DE DISEÑO.

El conductor de una línea, ya sea de distribución o de transmisión, se comporta mecánicamente hablando, como un elemento sometido a tensión y sostenido en sus extremos. Si suponemos que el peso del conductor es uniforme a lo largo de toda su longitud, éste formará una catenaria como se muestra en la figura.

Los perémetros básicos de un tramo de línea de distribución (para nuestro caso), se indican en dicha figura.

En orden de importancia, el primer parámetro por determinar es el "Libramiento". Que se fija generalmente por las normas existentes.

has tres dimensiones restantes: claro, flecha y altura, se determinan por cons<u>i</u> deraciones económicas sobre el material y calibre óptimos del conductor, por —— las condiciones máximas de carga y por las estructuras.

Para determinar las tensiones iniciales y finales de una línea "X" (de distribución) en estudio, se hace uso del método de la ecuación de cambio de estado. — (Método introducido a C.F.E. por los asesores franceses).

La ecuación de este método establece que a partir de ciertas condiciones dadas, es posible obtener el comportamiento de los parámetros de la línea (de distribución) para condiciones diferentes de las anteriores. Dicha ecuación corresponde a una ecuación de tercer grado de la forma:

$$x^3 - px^2 - q = 0$$
.

Su solución puede obtenerse por 2 métodos: por el método de Cardan y por el método iterativo de Newton.

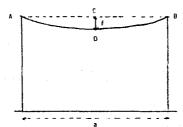
V. 2.1 TENSIONES INICIALES.

El módulo de elasticidad de un cable nuevo (módulo de elasticidad inicial) es diferente del módulo que tendrá cuando haya sido tendido, al esfuerzo correspondiente, a la tensión máxima. Para la construcción, se deberán calcular las tensiones de los conductores con el módulo de elasticidad inicial, a partir de la tensión máxima en el conductor con módulo de elasticidad final.

Las características que se supondrán para el tendido de conductores ACSR (condiciones iniciales) serán las siguientes:

No.		Tensión Conduct Kg.		Temperat °C	ura	Presión de Viento kg/m ²	e Módulo do Elasticidad
1	<u>~</u>	20% T	R	16		o	Final
2	-	25% T	R	0		0	Final
3	=	33% TR	1	٥		o	Inicial
4		45% TR	:	-10	n sentrukuk. Listoria	39	Final.

V. 2.2 TENSIONES FINALES


Las tensiones finales de los conductores se calcularán a partir del módulo de clasticidad final, en función de los claros regla, de la temperatura y presión de viento que se consideren.

A continuación se indicarán las variaciones de temperatura y presión de viento que deberán tomarse en cuenta en la determinación de cada una de las limitaciones necesarias para el diseño de las estructuras tipo.

- 1.- Temperatura máxima al., presión de viento: permite determinar la limitación por libramiento y la plantilla a utilizar en la localización de postes sobre el perfil del recorrido de la línea.
- 2.- Temperatura media sin viento: permite verificar que las tensiones alcanzadas en este caso estén de acuerdo con las tensiones admitidas para limitar las vibraciones.
- 3.- Temperatura minima sin viento: permite verificar el libramiento en ca so de cruce abajo de una linea existente.
- 4.- Temperatura mínima con viento máximo, sin hielo o bien temperatura mínima con hielo y viento reducido: permite obtener la tensión final -- máxima resultante de los conductores, cuyo valor es necesario para de terminar el coeficiente de seguridad mínima en los conductores así como para calcular las deflexiones máximas permisibles en las estructuras tipo.

Las tensiones finales, se calcularán a partir de la ecuación de cambio de Estado.

V.2.3. DEDUCCION DE LA ECUACION DE CAMBIO DE ESTADO

Representación de una catenaria entre dos apoyos

La longitud L de la curva ADB de la figura se deduce de cálculos bastante laboriosos de los cuales sólo se dan los resultados:

$$L = a(1 + \frac{8t^2}{3a^2} - \frac{32t^4}{5a^4} + \dots)$$
 (1)

Tomando los dos primeros términos del segundo miembro de la ecuación (1), tenemos:

$$L = a + \frac{8r^2}{32} \tag{2}$$

La relación entre la longitud L del conductor y el claro a se expresa por:

$$\frac{L}{a} = 1 + \frac{8}{3} \left(\frac{f}{a}\right)^2 \tag{3}$$

Esta relación puede calcularse, como la relación Sa/S simplemente cono--ciendo la flecha y el claro del conductor.

Las relaciones mencionadas bastan para establecer la ecuación de combio - de estado.

En la ecuación de cambio de estado de un conductor tendido entre dos puntos, designarchos < para el coeficiente de dilateción del metal del conductor. Bajo la influencia de un cambio de terperatura $(t_f - t_i)$ de un conductor que tiene una longitud L a la temperatura t_i , resulte a la temperatura t_f una longitud igual, per definición, a $\begin{bmatrix} L + L - (t_f - t_i) \end{bmatrix}$. Pero como el -conductor está fijo en sua dor extremos, su alargamiento medificará simplemente la tensión S la qual formará el valor S'.

Designemos por E el módulo de elasticidad del metal del conductor bajo la in---fluencia simultánea de la variación de tensión (S' - S), y la longitud del --conductor sufrirá una variación igual a:

$$\Delta L = \frac{5}{(s - s)}$$

Resulta entonces que la variación de longitud (L - L') del conductor bajo la influencia simultánea de la variación de temperatura ($t_f - t_i$) y de la tem sión (S' - S), tiene por expresión:

Por otro lado, la variación de longitud $(L^* - L)$ puede expresarse de otra forma partiendo de la ecuación (2) y teniendo en cuenta la siguiente ecuación:

$$S = \frac{Wa^{2}}{8I}$$

$$L = a(1 + \frac{(2w^{2})}{24S^{2}})$$
(2')

de donde:

$$L' - L = \frac{a^3}{24} \left(\frac{w^2}{S^2} - \frac{w^2}{S^2} \right)$$
 (5)

Siendo w' el peso específico ficticio para el 20. estado. Igualando los segundo miembros de las expresiones (4) y (5) se obtiene:

$$L = L \left(t_f - t_1 \right) + L \left(\frac{s' - s}{E} \right) = \frac{a^3}{24} \left(\frac{w'^2}{s'^2} - \frac{v^2}{s^2} \right)$$
 (6)

Si se iguala ahora la longitud L con el claro (a) se puede dividir los ? términos de (6) por (L') o bien por (a); entonces se tiene:

$$\mathbf{d}(t_{f} - t_{1}) + \left(\frac{s' - s}{E}\right) = \frac{a^{2}}{24} \left(\frac{w'^{2} - w^{2}}{s'^{2}} - \frac{w^{2}}{s^{2}}\right)$$
 (7)

que es la ecuación general de cambio de estado.

Se le puede dar una forma más general, designando por (m) un coeficiente definido como la relación del peso ficticio al peso real del conductor en el estado (t_1) y (S) por (m') el mismo coeficiente en el estado (t_1) y (S'); se obtiene entonces:

$$\propto (t_1 - t_f) = \frac{a^2 - w^2}{24} \left(\frac{m^2}{s^2} - \frac{m^2}{s^2} \right) = \frac{s - s^4}{E}$$
 (8)

La ecuación se puede escribir también como:

$$5^{3} + 5^{2} \left(E - \frac{\sqrt{2}n^{2}m^{2}}{245^{2}} + E \propto (t_{f} - t_{i}) - S\right) = \frac{E - \sqrt{2}m^{2}n^{2}}{24}$$

Objen:

$$S^{2}\left(S^{2} + \frac{w^{2}Em^{2}a^{2}}{24S^{2}}\right) = E \propto (t_{f} - t_{i}) - S = \frac{w^{2}Em^{2}a^{2}}{24}$$

Que es la forma conocida y utilizada en los diferentes departamentos de C.F.E.

Haciendo:

$$\frac{w^2}{24} = K \quad y \quad E \propto K'$$

Reduciéndose a :

$$S'^2 \left(S' + \frac{Km^2}{s^2} + K' \left(t_f - t_i \right) - S \right) = Km^2 a^2$$

En donde:

coeficiente de sobre carga

$$m = \sqrt{\frac{w_h^2 + c\hat{v}}{w^2}}$$

$$m' = \sqrt{\frac{w_h^2 + c'\hat{v}}{w^2}}$$

En donde:

En la hipótesis sin viento el coeficiente de sobrecarga es igual a 1.

En los cálculos que se anexan, los datos para el estado inicial, corresponden a una tensión constante en función del claro regla, a la temperatura media sin vien to aunque en la base del cálculo (Estado Inicial) se puede tomar cualquier hipótesis de las indicadas en un principio.

Ejemplo de Cálculo.

Determinación de la tensión final de un conductor de ACSR de una línea de dis—tribución para las condiciones finales de 50°C de temperatura, sin presión de -viento y con módulo de elasticidad final.

Desarrollo:

A .- Características del Conductor.

Tipo de Cable	Raven
Calibre	1/O AWG
Sección	62.459 mm ²
Diámetro	10.109 mm
Peso por Unidad de Long	0.21679 kg/m.
Peso Específico	0.00346 kg/cm
Módulo de Elasticidad Final	8 000 kg/mm ²
Coeficiente de Dilatación Final	$19.2 \times 10^{-6} \times 1/^{\circ}$ C
Carga de Ruptura	1941.408 kg.
Claro Regla	150 m.

B.- Hipótesis de Cálculo

Condiciones Iniciales:

Temperatura	16°C
Tensión de tendido	22 % Tensión de Ruptura
Presión de Viento	Cero
Módulo de Elasticidad	Final
Claro Regla	150 m.
Carga de Hielo	Cero

Condiciones Finales:

Temperatura 50°C

Tensión Valor por conocer

Presión de Viento Cero

Módulo de Elasticidad Final

Claro Regla 150 m.

Corga de Hielo Cero

C .- Cálculo de la Tensión.

La tensión se calculará a partir de la ecuación de cambio de estado. Los coeficientes de sobrecarga así como los valores de K y K' se calculan con las fórmulas correspondientes.

Sustituyendo valores se tiene:

$$K = 0.00399 \, \mathrm{kg}^3 / \, \mathrm{cm}^6 \, \mathrm{mm}^2$$
 Ver tabla del apéndice

$$K^* = 0.1536 \text{ kg/mm}^2$$
 °C (del apéndice)

$$m = \sqrt{\frac{(0.21679)^2 + (0)^2}{(0.21679)^2}} = 1$$

$$m' = \sqrt{\frac{(0.21679)^2 + (0)^2}{(0.21679)^2}} = 1$$

El esfuerzo inicial del conductor es:

F = 22 % carga de ruptura del conductor

$$F = 0.22 \times 1941.408 \text{ kg.} = 427.10976 \text{ kg.}$$

S inicial =
$$\frac{427.10976}{62.459}$$
 = 6.838242 kg/ mm²

Sustituyendo valores en la ec. de cambio de estado se tiene:

$$S^{12}$$
 $\left(S^{1} + \frac{0.00399 \times (150)^{2} \times (1)^{2}}{(6.838242)^{2}} + 0.1536 (34) - 6.838242\right) = 0.00399 \times (150)^{2} \times (1)^{2}$

$$S^{12}$$
 $\left(S^{1} + 1.919846 + 5.2224 - 6.838242\right)$ = 89.775

De donde:

$$S' = 4.37857 \text{ kg/mm}^2$$

Por tanto la tensión final S_r :

$$S_f = S' \times A = 4.37857 \times 62.459$$

= 273.48 kg

V. 2.4 LIMITACIONES MECANICAS.

Utilizando la estructura tipo "P" por ser la más representativa dentro del diseño y tendido de líneas de distribución como se mencionó al principio del capítulo, se expondrá el proceso a seguir para el cálculo de las limitaciones de diseño de las líneas de distribución, haciendo intervenir, tanto la topografía del terreno como las características propias de la línea como son: vol taje de operación, calibre, tipo de conductor y los requisitos que fija el RE glamento de Obras e Instalaciones Eléctricas.

(R. O. I. E.)

Se analizarán las condiciones críticas de trabajo a que están sujetos los ele montos de las eseructuras (poste, cruceta, alfiler y retenida), para la selección correcta de las mismas.

Se incluyen ejemplos ilustrativos en los cuales se analizan las diferentes limitadiones a que está sujeta esta estructura (P), así como los cuadros comparativos de las diferentes condiciones que deben considerarse.

ELEMENTOS DE LA ESTRUCTURA.

LIMITACIONES POR ANALIZAR PARA LA OBTENCION DEL CLARO BASE INTERPOSTAL

1) POSTE

1a.- LIBRAMIENTO

2) CRUCETA

2a.- CARGAS VERTICALES
2b.- CARGAS LONGITUDINALES

ALFILER

3a.- RESISTENCIA MECANICA (Claro Medio Horizontal)

4) RETENIDA

4a.- RESISTENCIA MECANICA

POSTE

V. 2.4.1a LIBRAMIENTO

La distancia por libramiento se mide desde la línea de tierra, hasta el nivel más bajo de los conductores, entre dos estructuras.

Para el cálculo del claro máx, por libramiento es necesario conocer de antemano las dimensiones de la estructura de que se trate, (en nuestro caso la estructura es la tipo P), la flecha máxima final del cenductor a 50°C, sin presión de viento y módulo de elasticidad final, la cual depende fundamentalmente del voltaje de la línea y de la tensión mecánica del conductor. Es decir, de acuerdo con la línea en proyecto, se hace necesario tomar en cuenta los libramientos mínimos a tierra que para cada voltaje tiene establecidos el reglamento de Obras e Instalaciones Eléctricas, misma que se anexa.

Un concepto que se hace necesario definir es el claro regla, el cual establece como el claro prototipo, que asegura las características de tensión más adecuadas a lo largo de una serie de claros no uniformes, comprendidos en un tramo an clado.

La fórmula más usual para el cálculo del mismo es :

$$a = \sqrt{\frac{L_1^3 + L_2^3 + \dots L_n^3}{L_1 + L_2 + \dots L_n}}$$

En donde \mathbf{L}_1 , \mathbf{L}_2 y $\mathbf{L}_{\mathbf{p}}$ son clares comprendides entre des estructuras de anclaje.

En la práctica se ha observado que en líneas de distribución en las que se emplean conductores de Cu y de ACSR se han obtenido los siguientes claros regla promedio:

CONDUCTOR. AWG-MCM.		OS REGLA PROMEDIG L. DE D. (m).	OBSERVACIONES:
ACSR 4		175 175 175	Con Variaciones de <u>+</u> 25 m.
3/0 266.8 336.4	мсм мсм	125 125 125	Con Variaciones de ± 25 m.
Cu 6		100	Sin Variaciones
1/0		100	

Habiendo encontrado la tensión mecánica del conductor a 50°C, sin presión de — viento, módulo de elasticidad final a partir de la ecuación de cambio de estado, (analizada al principio del capítulo), se calculará ahora el claro máximo por - libramiento, a partir de la siguiente expresión.

$$F = \frac{WL^2}{8H} \qquad \qquad L = \sqrt{\frac{8FH}{W} - \dots}$$

Los elementos que intervienen en esta ecuación son:

- F.- Flecha del Conductor
- W.- Peso Unitario del Conductor (Kg/m).
- H.- Tensión horizontal del conductor a 50°C sin presión de viento y módulo de elasticidad final.
- L.- Claro máximo por libramiento (m)

ALTURA MINIMA DE CONDUCTORES SOBRE EL SUELO O VIAS FERREAS

	ALTURA MINIMA EN METROS			Ţ 		
Conductores aplicados a: (más de 0.750 a 15 Kv)	transitadas	Calles, cullejo- nes o caminos en distritos urbanos o rurales.		Vias férreas (1)	caminos en distritos rurales	calles, calle jones en distri tos urbanos
Lineas suministradoras (incluyendo las de alum- brado público, acometi das y alimentadores de Trole) con tensión entre conduc- tores en kilovolts.	4.50	5.75	6,50	8.00	5.00	5.75

⁽¹⁾ En la proximidad a la entrada de puentes o túneles, estas alturas pueden reducirse dentro del área en que no se permita pararse a personas sobre los carros; pero nunca será menor que la altura de la parte superior de la entrada.

V. 2.4.1b RESISTENCIA MECANICA DEL POSTE.

(Claro medio horizontal)

Los claros máximos por resistencia del poste se calculan partiendo de las cargas transversales provocadas por la presión de viento cobre conductores, aisladores y postes, así como también se hará necesario considerar la tensión resultante de conductores cuando se presenten pequeñas deflexiones.

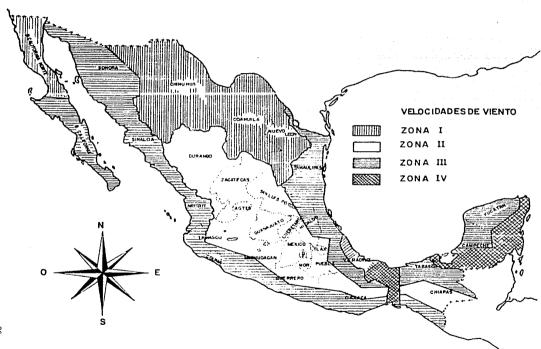
ESTRUCTURA TIPO P.

En este tipo de estructura se analizarán básicamente las cargas transversales debidas a la presión de viento que actúan sobre la misma, así como las tensiones re sultantes debidas a la deflexión y tomando al poste como elemento de falla.

Planteamiento de la ecuación: Con la finalidad de cubrir la aplicación de este $t\underline{i}$ po de estructura, se le consideró una pequeña deflexión.

$$\Sigma Mo = 0 = 4T_f Sen \theta (D) + 2C_{vcf} (D) + 2C_{va} (D) + 2T_n Sen \theta (B) + C_{vc} (B) + C_{vc} (C)$$

= 4 T_fSen 0 (D) + 2 (Pvd_fL) (D) + 2 Cva (D) + 2 Tn Sen 0 (B) + Pvd_pL (B) +


$$\begin{bmatrix} G + H \\ \hline 2 \end{bmatrix} \qquad E P_{V} (A) - I \qquad (C)$$

Despejando de esta expresión el término (L) se tiene:

$$L = \frac{I}{F_{S}} \frac{(C) - 4 T_{f} Sen \theta (D) - 2 Cva (D) - 2 Tn Sen \theta (B) - \frac{G+H}{2} E.P_{v}.A}{2 Pvd_{f} (D) + Pvd_{g} (B)}$$

En done:

- A. B. C.D.E Parámetros derivados de la configuración de la estructura (m)
 - Factor de Seguridad (El factor de seguridad establecido para postes de madera es de 3 y de 2 para concreto)
 - G Base mayor del poste (m)
 - H Base menor del poste (m)
 - I Resistencia mecánica del poste (kg)
 - df Diámetro de los conductores de fase (m)
 - dn Diametro del hilo neutro (m)
 - Pu Presión del viento *
 - Cva Carga de viento sobre los aisladores (Se considera 1 Kg. por norma tanto para los aisladores de alfiler como de suspensión).
 - θ Angulo total de la deflexión (°/)
 - $(T_T T_n)$ Tonsión del conductor de fase y neutro respectivamente. (Kg) (a 10°C, con presión de viento y módulo de elasticidad final.)
 - L Claro máximo interpostal por resistencia mecánica del poste. (m)
 - A fin de considerar las condiciones más reales de presión de vien to para el diseño de los diferentes elementos de cada estructura tipo, se ha dividido a la REPUBLICA MEXICANA en cuatro zonas, en las que se han establecido las condiciones más desfavorables de temperatura, velocidad de viento y cargas de hielo, (ver plano -anexo).

Zona	Temperatura °C •	Velocidad de Viento Km./ Hora	Carga de	Hielo
1	- 10	. 75	De 6 a 8mm.	de espesor
II	 5	60	-	_
III	5	75	-	~
IV	5	90	_	-

* Condiciones críticas de diseño.

En dónde :

Zone I .- Comprende los estados de Chinuanua, Coahuila, Nuevo León y Baja -- California Norte.

Zona II .- Región central delimitada por la Sierra Madre Oriental y Occidental

Zona III .- Región de los dos litorales, incluyendo el Estado de Baja California Sur.

Zona IV .- Región del Itsmo de Tehuantepec y Cozumel.

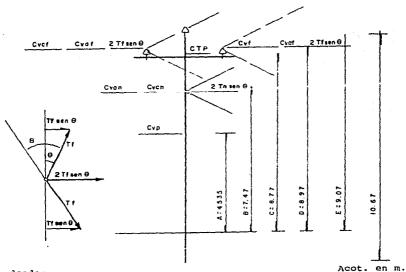
Para alturas mayores de 2,500 m. s.n.m., en las zonas II y III se deberán considerar espesores de hielo similares a los establecidos para la zona I, tempera turas de -5°C y presiones de viento correspondientes a cada zona.

Se deberá investigar el comportamiento de la estructura en condiciones seve-ras (eventuales), considerando velocidades de viento del doble del valor indica
do en la tabla anterior.

La determinación de la presión (Pv) en función de la velocidad de viento se hará a partir de las siguientes expresiones:

 $Pv = 0.0047124 \text{ V}^2$ (para áreas cilíndricas).

 $Pv = 0.0074074 V^2$ (para áreas planas).


En dónde:

V = Velocidad de viento (Km / hora).

 $Pv = Presión debida a la velocidad de viento (<math>Kg/m^2$)

ESTRUCTURA TIPO (P)

MADERA

En donde:

Carga debida a la presión de viento sobre el conductor Cvcf de fase.

Carga debida a la presión de viento sobre el aislador Cvaf de fase.

carga de trabajo del poste. Ctp

Carga debida a la presión de viento sobre el soporte Cvan del hilo neutro.

Carga debida a la presión de viento sobre el hilo neu-Cvcn tro.

Carga de viento sobre el poste. CVD

Tensión mecánica del conductor de fase. T_{f}

Tensión mecánica del hilo neutro Tn Angulo total de la deflexión. Angulo de la semi-deflexión.

Fig. 2.- Fuerzas que intervienen en el cálculo del claro máximo pot Resistencia Mec .- Poste.

ESTRUCTURAS TIPO HA:

En el cálculo del claro máximo por resistencia mecánica del poste, para este tipo de estructura, se analizarán las dos variedades propuestas (C/Cv y 5/Cv), las cuales consideran la aplicación de contravientos y sin contravientos, conaplicación definitiva en cuanto al claro máximo interpostal y al anclaje de conductores ligeros y pesados respectivamente.

La determinación de este claro máximo, se efectúa considerando las cargos transversales provocadas por la presión de viento, en cada uno de sus elementos (Posto, Aisladores y conductores), y en caso de deflexión, deberá considerarse la tensión resultante de los conductores en condiciones críticas de temperatura y presión de viento.

ESTRUCTURA TIPO HA Y HS -S/ CV MADERA.

De la figura No. 3 se deduce lo siguiente:

$$Z_{MO} = 0 = -2$$
 $C_{T_p} = (D) + B^* = (Cva) + Cva_f + Cva_f + Cva_n + Cva_$

- Esta cantidad dependerá del tipo de aislador y de los kV del sistema para los que esté diseñada la estructura.
- **Se considera despreciable la carga de viento sobre el soporte del hilo neutro

En donde :

dn

- A,B,C,D y E Parámetros derivados de la configuración de la estructura (m)

 F_S Factor de Seguridad (F = 3)

 G Base mayor del poste. (m)

 H Base menor del poste. (m)

 I Resistencia mecánica del poste. (kg)

 df Diámetro de los conductores. (m)
 - Pv Presión de Viento. (kg/m²)

Diámetro del hilo neutro. (m)

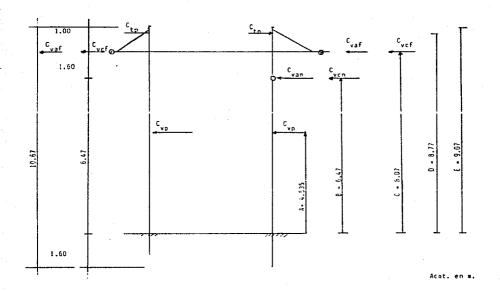
L Claro máximo por resistencia mecánica del poste (m)

Ejemplo:

Cálculo del claro máximo por resistencia mecánica del poste en una estructura Ha S/CV, poste de madera para una tensión de 13.2 kV y conductores de ACSR No 2 para las fases y neutro.

Datos para el cálculo.

Estructura	HA
Postería	Madera Clase IV
	1088 kg.
Conductor	ACSR.
Calibre	No. 2
P _v	39 Kg / m ²
Tensión	13.2 kV
dr }	0.008026 m.


Los términos A,B,C,D y E se obtienen de la figura No. 3

Substituyendo valores en la expresión deducida en la hoja No. 89 se tiene;

L + 775.11 m.

ESTRUCTURA TIPO HA

MADERA.

En donde:

ver	Carga debida a la presión de viento sobre el conductor de fase
Cvaf	Carga debida a presión de viento sobre los aisladores de fase
c _{tp}	Carga de trabajo del poste.
C _{van}	Carga debida a la presión de viento sobre el soporte del hilo neutro
C _{ven}	Carga debida a la presión de viento sobre el hilo neutro
CVD	Carga debida a la presión de viento sobre el poste.

Fig. 3.- Fuerzas que intervienen en el cálculo del claro Máximo por Resistencia Mecánica del Poste.

MADERA.

Para la determinación del claro máximo por resistencia mecáncia del poste, en estructuras HA ó HS, con contravientos, se parte del análisis del comporta --- miento de la estructura bajo carga, a partir de los diagramas de cortantes y momentos flexionantes, los cuales nos determinan los puntos falla y nos delimitan la magnitud de la carga crítica de diseño. Para facilitar dicho análisis, se tomará como base el procedimiento de cálculo establecido en el libro de "Gráficas y Tables - Para el cálculo de líneas de Transmisión y Subesta---ción", recopiladas por los Ingenieros Daniel Barrios - Morales F. y Jacinto - Viqueira L., del cual se anexa las tabulaciones de Momentos Máximos y el Méto do de Cálculo, para la determinación de los parametros de diseño de la estructura.

Una vez determinada la carga crítica de diseño, se calcula el claro máximo en función de las cargas transversales que actúan sobre la estructura, referidas todas a la cruceta.

De la figura No. 5

Se obtiene:

$$0 = 2 C_{vcf} + 8^{*} C_{va} + C_{vn} \frac{C}{D} + C_{van} + \frac{C}{D} - 2 \frac{C_{CD}}{F} + 2 C_{vp} \frac{A}{D}$$

 Esta cantidad dependerá del tipo de aislador y de los kV del sistema, para los que esté diseñada la estructura.

Se desprecia la carga debida a la presión de viento sobre el soporte del -hilo neutro.

$$0 = 2 (Pvd_fL) + 8 Cva + Pvd_nL \frac{C}{D} - 2 \frac{C_{CD}}{F_S} + 2 \left[\frac{G + H}{2} \right] E. P_v \left[\frac{A}{D} \right]$$

De donde :

$$L = \frac{2 \frac{C_{CD}}{FS} - 8 Cvaf - (G + H) E. Pv. \left[\frac{A}{D}\right]}{2 Pvd_{f} + Pvd_{f} \frac{C}{D}}$$

En donde:

A, B, C, D y E Parámetros derivados de la configuración de la estructu

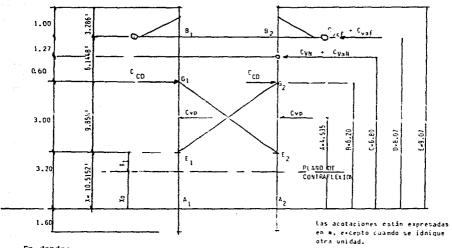
ra (m)

F_S Factor de Seguridad (F = 3)

G Base mayor del poste (m)

H Base menor del poste (m)

 \mathbf{C}_{CD} Carga crítica de diseño (kg)


Curga de viento sobre los aisladores de las fases (kg)

P. Presión de viento (kg/m2)

d_r Diámetro de los conductores de fase (m)

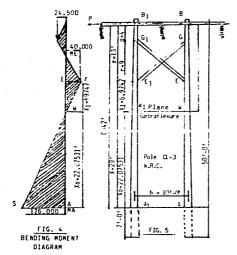
d Diametro del hilo neutro (m)

MADERA.

En donde:

CcD

vcf	de fase.	a	la	presión	de	viento	sobre	el	conductor
Cvaf	Carga debida de fase.	a	la	presión	de	viento	sobre	el	aislador
c _{vn}	Carga debida tro.	а	la	presión	de	viento	sobre	el	hilo neu-


Carga debida a la presión de viento sobre el poste.

Carga crítica de diseño.

Fuerzas que intervienen en el cálculo de Resistencia Mecánica de la estructura.

ESTRUCTURA TIPO H MADERA

DETERMINACION DE LA CARGA DE DISEÑO "LIBRO DE GRAFICAS Y TABLAS" - LO'S Y SUB'S

NOTES

Under Normal Loading investigation of strengths of poles and braces between positions E and G will be unnecessary as shown by BENDING --MOMENT DIAGRAMS.

We have assumed that both poles in the structure are evenly matched and the circumferences at top and ground line are the minimum permitted under A S.A. specifications, therefore the maments delivered to both poles in the same structure are equal.

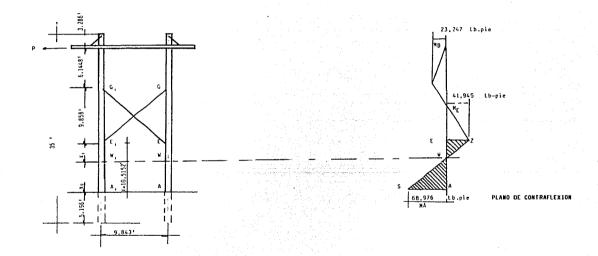
The problems meriting investigation are the strengths of poles at G1 and G; El and E; Al and A.

METHOD OF DETERMINING PLANE OF CONTRAFTEXURE BY MATHEMATICS. The triangles WEZ and WAS are similar - therefore: AW: AE:: AS: (AS + EZ) or Au:X::Ma+(Ma+Mr)

TIPICAL DESIGN PORCESOURE

		∵ €	DATA	
			* Class 3	-W.R.C.
- 1			: i - c	R _B
G	*	Gl	25.4"	74,500
E	-	ΕŢ	29.911	39,900
٨	•	٨ı	44.1"	125,000

CALCULATIONS


To DETERMINE PLANE OF CONTRAFLEXURE

$$F_{2} = \frac{X (M_{A})}{M_{E} + M_{A}} = \frac{29 \times 125,000}{39900 \times 126,000} = 22,02531$$

$$x_1 = x = x_0 = 29-22.02531 = 6.97469$$

 $-\frac{p}{2} \implies \text{for } 6_1 = \frac{\text{Mg}}{x_1} = \frac{39.900}{6.9747} = 5/20.65$

$$\frac{P}{C}$$
 A or A₁- $\frac{MA}{Xo}$ - $\frac{173,000}{22,02531}$ - 5720.69

GE"ERAL FORMULAE

TABLA DE MOMENTOS MAXIMOS PARA MADERA DE PINO NACIONAL.

• Mr = xfc³

• Mr = xfc		
cir (cm)	Diam (cm)	Mr. (kg - п)
40	12.73	976.1024
42	13.36	1,129.96
44	14.00	1.299.19
46	14.64	1,484.53
48	15,278	1,686.70
50	15,915	1,906.45
52	16.55	2,144.50
54	17.188	2,401.57
56	220.11	2,070.42
58	18.46	2,975.77
60	19.098	3,294.34
62	19.735	3,634.88
64	20.37	3,998.11
66	21.008	4,384.77
68	21.645	4,795.60
70	22.28	5,231.30
72	22.918	5,692.63
74	23.55	6,180.31
76	24.19	6,695.08
78	24.828	7,237.67
80	25.46	7,808.82
82	26.10	8,409.24
84	26.738	9,039.68
86	27.37	9,700.87
. 88	28.01	10,393.54
90	28.647	11,118.41
92	29.284	11,876.23
94	29.92	12,667.73
96	30.55	13,493.64
98	31.194	14,354.68
100	31.83	15,251.60
102	32.467	16,185.12
104	33.104	17,155.97
106	33.74	18,164.90
108	34.377	19,212.62
110	35.01	20,299.87
112	35.65	21,427.40
114	36.287	22,595.91
116	36.92	23.806.16
118	37.52	25,058.86
120	38.197	26,354.76

cir (cm)	Diam (cm)	Mr. (kg - m)
122	38.83	27,694.58
124	39.47	29,079.06
126	40.10	30,508.93
129	40.74	31,984.92
130	41.38	33,507.76
132	42.017	35,078.19
134	42.65	36,696.93
136	43.29	38,364,72
138	43.926	40,082.30
140	44.56	41,850.40
142	45.20	43,669.72
144	45.83	45,541.03
146	46.47	47,465.05

* Nota: la constante "X" resulta de:

ec. escuadrilla

$$F = MC/I$$

M = FI/C de donde I para una circunferencia I =
$$\frac{q\vec{1}d^4}{64}$$

C = Perímetro de la circunferencia :

M =
$$\frac{d^4}{d^4}$$
 = $\frac{d^4}{d^2}$ = $\frac{d^3}{32}$ Multiplicando y dividiendo por: π^2 :

$$Mr = \frac{\pi^3}{32 \pi^2} \frac{d^3}{\pi}$$

$$c^3 = \pi^3 d^3$$

$$x = (\frac{1}{32} \pi^2)$$
 (.01) ($Kg - m$)

Resist. de la fibra

V. 2.4.2. CRUCETA

2a .- Cargas Verticales.

Los claros máximos por resistencia mecánica de la cruceta debido a cargas verticales, se determinan considerando a la cruceta como una viga en cantiliver, sometida a un esfuerzo flexionante por el conductor y una carga adicional por norma de 100 kg. considerada ésta, como la correspondiente a el peso del limitoro más sus herramientas.

ESTRUCTURA TIPO (P).

$$M_{max} = (Peso Conductor + 100)$$
 a $(W(L) + 100)$ a (1)

partiendo de la ecuación de la escuadrilla:

$$S_{x} = \frac{M_{max}(C)}{I_{x-x'}} \dots (2)$$

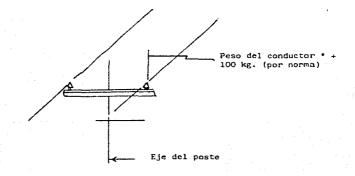
En donde:

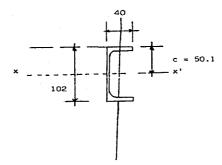
W = Peso unitario del conductor (kg/ m)

C = Distancia de la fibra más fatigada a la fibra neutra. (cm)

Claro máximo, interpostal por resistencia mecánica de la cruceta (m)

 $I_{x = x^{*}} = Momento de inercia respecto a el eje <math>x = x^{*}$ (cm⁴)


a = Distancia del eje del poste al punto de aplicación de la carga (cm).


Substituyendo (1) en (2)

$$S_{x} = \frac{(W (L) + 100) a (C)}{I_{yy}}$$

Despejando de esta expresión el término L.

$$L = \frac{(S_x) - (I_{x - x^1}) - (100) (a) (c)}{(w) (a) (c)}$$

Acot, en mm

* Se considera el claro medio horizontal

Fig. 6.- Fuerzas que intervienen en el cálculo del claro máximo por Resistencia Mecánica de la Cruceta sometida a cargas Verticales.

2b .- Cargas Longitudinales.

Este cálculo tiene como finalidad determinar el campo de acción de las cruce-tas C4T, C4R y la L-2438 en cuanto a su aplicación en estructuras de remate, bajo cargas longitudinales y claros regla prototipo para cada conductor.

Al trabajar la cruceta con cargas longitudinales en estructuras de remate, se considera que se encuentra sometida a un esfuerzo flexionante, debido a la ten e.ón final del conductor, determinada ésta bajo las condiciones críticas. ---- (- 10° C de temperatura, presión de viento y con un claro regla dominante, de acuerdo con el calibre del conductor)

En donde:

 $S_v = Esfuerzo máximo a que esta sometida la cruceta <math>-(kg/cm^2)$

 $T_f = Tensión final del conductor O - 10°C y con presión de viento (kg)$

'a = D'atancia del eje del poste al punto de aplicación de la T_f (cm)

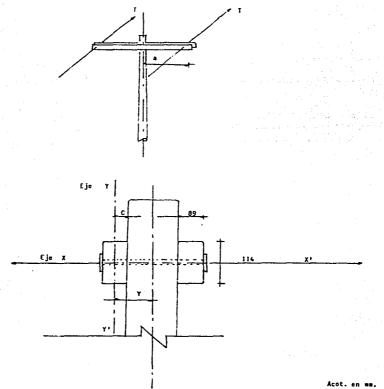
C = Distancia del punto más fatigado a la fibra neutra. (cm)

I_T = Momento de inercia de la sección formada por el poste y --las crucetas = am⁴

$$I_T = 2 (I_{y-y}^+ AY^2) \dots (3)$$

 $I_{y-y'}$ = Momento de inercia de la cruceta respecto al eje (y-y')(cm⁴)

A = Area de la sección (cm²)


Y = Distancia del eje (y-y')de la cruceta al eje del poste (cm)

_{max} = Momento flexionante máximo. (kg-cm)

Sustituyendo 1 y 3 en 2 se obtiene:

$$\Sigma_y = \frac{T_F (n) (C)}{2(I_{y-y}, + A Y^2)}$$
(4)

El valor obtenido de la ecuación 4, deberá compararse con el esfuerzo flexio--nante del material de la cruceta respectiva.

- T tensión del Conductor
- C Distancia de la fibra más fatigada a la fibra neutra.
- a Distancia del eje del poste al punto de aplicación de la T
- Y Distancia del eje(y-y') de la cruceta al eje del poste.

Fig. No. 7 Fuerzas que intervienen en el cálculo de comprobación del esfuerco flexionante del material de la cruceta bajo cargas longitudinales.

2c .- Separación Eléctrica.

Para el cálculo de los claros máximos por separación eléctrica entre conductores, se parte del balanceo que tienen los conductores en el punto más bajo de
la catenaria, formada por el conductor tomando en cuenta que en ese lugar, —
cuando cesa el viento que provoca el balanceo, éste último se torna irregular
provocando acercamientos que pueden disminuir la distancia mínima entre fases,
limitada por el Reglamento de Obras e Instalaciones Eléctricas, se anexa la tabla correspondiente.

De la figura 8 podemos observar que el desplamamiento "X" del conductor a un ángulo Modemos el candidad el conductores una distancia "d". Si conocemos el valor de "S", que es la separación de los conductores en los puntos de soporte de la cruceta, así como la distancia "d" limitada por el reglamento de obras e instalaciones eléctricas, esturemos en condiciones de conocer el valor del claro máximo por el siguiente procedi——miento.

De la figura se deduce:

Sustituyendo 2 en 1

$$S = d + 2f Sen - \frac{oc}{8}$$
 (3)

Ahora sabiendo que :

$$f = \frac{WL^2}{8T}$$

$$S = d + 2 \left(\frac{WL^2}{8T}\right) \quad \text{Sen} \quad \frac{d}{8} \quad ... \quad (5)$$

2c.- Separación Eléctrica.

Para el cálculo de los claros máximos por separación eléctrica entre conductores, se parte del balanceo que tienen los conductores en el punto más bajo de
la catenaria, formada por el conductor tomando en cuenta que en ese lugar, —
cuando cesa el viento que provoca el balanceo, éste último se torna irregular
provocando acercamientos que pueden disminuir la distancia mínima entre fases,
limitada por el Reglamento de Obras e Instalaciones Eléctricas, se anexa la tabla correspondiente.

De la figura O podemos observer que el desplacamiento "X" del conductor a un ángulo <a href="Mailto:decentarios of desplacamiento" "X" del conductores una distancia "d". Si conocemos el valor de "S", que es la separación de los conductores en los puntos de soporte de la cruceta, así como la distancia "d" limitada por el reglamento de obras e instalaciones eléctricas, estaremos en condiciones de conocer el valor del claro máximo por el siguiente procedi——miento.

De la figura se deduce:

Sustituyendo 2 en 1

$$S = d + 2f Sen \frac{cx}{8}$$
 (3)

Ahora sabiendo que :

$$f = \frac{\text{W L}^2}{8 \text{ T}}$$

$$S = d + 2 \left(\frac{\text{W L}^2}{8 \text{ T}} \right) \text{ Sen } \frac{\text{Add}}{8} \dots$$

Despejando L encontramos:

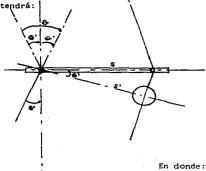
$$L = \sqrt{\frac{4 \text{ T (S-d)}}{\text{W Sen} \frac{\text{ex}}{8}}} \qquad (6)$$

En donde:

- L Claro máximo por separación eléctrica (m).
- T Tensión del conductor a 50°C, sin viento (kg),
- S Separación de los conductores entre puntos de apoyo (m)
- d Distancia mínima entre fases limitada por el ROIE (m).
- W Peso del conductor por unidad de longitud (kg/m).

El valor del ángulo 🗠 se obtiene de la siguiente manera:

$$\frac{C \text{ vc}}{\text{W c}}$$


$$Ang. \text{ tg} \frac{C\text{vc}}{\text{Wc}}$$

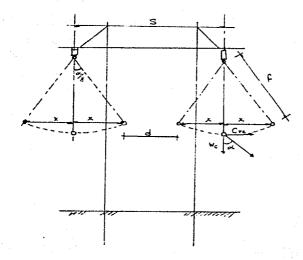
En donde:

Cvc = Carga de viento sobre los con ductores (kg).

Wc = Peso unitario del conductor
 (kg),

Para el cálculo del claro máximo por separación eléctrica con deflexión se ---

$$S' = S \cos \theta' \dots (7)$$


Substituyendo 7 en 6

Siendo θ el ángulo total de la deflexión (°/)

SEPARACION MINIMA EN CUALQUIER DIRECCION ENTRE CONDUCTORES DE UNA LINEA Y SOPORTES, CONDUCTORES VERTICALES O TRANSVERSALES, CABLES DE SUSPENSION Y RETENIDOS EN LA MISMA ESTRUCTURA.

	Superación minima en superficie de superficie crucetas y postes o est otros soportes turas		de los cond	uctores de linea a.c. cables de retenida conductores trans y de suspensión sales y verticale			
LINEAS AEREAS.	horizontales	turas	guarda -	paralelos a la línea	otras Sirecciones	del mismo circuito	de otros circuitos
Suministradoras con tensión entre conduc tores en Kilovolts (13.2)	10.5	15.5	(3)*	36.0	21.0	10.5	21.0

Para determinar la separación minima del hilo de guarda a otros conductores que no sean los del circulto que proteja, se considera que el hilo de guarda tiene la tensión a tierra de dicho circuito.

- S Separación de los conductores entre puntos de apoyo (m)
- f Flecha máxima del conductor (m).
- d Distancia mínima entre faces limitada por el ROIE (m)
- Compa debida a la presión de viento sobre el conductor (kg).
- W_ Peso unitario del conductor (kg).
- $\frac{\sim}{8}$ Angulo para mínima separación entre conductores

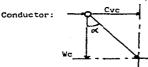
Fig. No. 8 Fuerzas y parámetros que intervienen en el cálculo del Claro Máximo por Separación Eléctrica.

Ejemplo:

Cálculo del claro máximo por separación eléctrica para una estructura tipo HS, con tensión de operación de 13.2 kV y conductores de ACSR No.2.

Datos para el cálculo:

Conductor ACSR No. 2


W = 0.13644 kg/m

d = 0.105 m (Distancia entre fases para 13.2 kV)

S = 5.94 m. (Determinado a partir de la cruceta C4S)

 $T_f=178$ Kg. (Para un claro regla de 150m, una temperatura de 50°C y Pv = 0) La fórmula para calcular el claro interpostal en función de la separación ----eléctrica es:

El ángulo \ll se calcula cuando se tiene una presión de viento de 39 ${\rm Kg/m}^2$.

≖ 66 ° 27'

 \propto /8 = 8° 18' (Angulo de mínima separación entre conductores).

Sustituyendo valores en la ecuación 1 se tiene:

$$L = \sqrt{\frac{(5.94 - 0.105) \times 4 \times 178}{0.13644 \times 0.14445}}$$

T. = 459.14 m

V.2.4.3. ALFILER

3a.- Determinación del claro medio horizontal a partir de la resistencia mecánica del Alfiler.

Los claros máximos por resistencia mecánica del alfiler, se determinan haciendo intervenir las cargas transversales provocadas por la presión de viento sobre los conductores, en un claro medio horizontal, considerado éste en terreno plano, e igualando esta carga con la carga máxima de trabajo de alfiler.

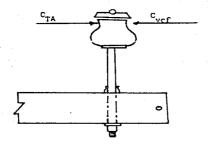
La carga limite del conjunto alfiler - aislador, es proporcionada por el Instititu de Investigaciones de la Industria Eléctrica (IIIE), el cual somete a cargas simuladas en cantiliver, al alfiler.

Carga debida a la presión de viento sobre el conductor de fase $(C_{\text{VC}f})$.

Carga de trabajo del alfiler (
$$C_{TA}$$
) = $\frac{C_{LA}}{F_{S}}$

$$P_{vc}$$
. d_f . $L = CLA \over (F_S)$

En donde:


L Claro medio horizontal (C.M.H.) Máximo, por resistencia mecánica del alfiler

. LA Carga límite del alfiler (kg)

FS Factor de Seguridad (F = 2 para cualquier tipo de alfiler)

Pvc Presión de viento sobre el conductor (kg/m²)

df Diámetro del conductor de fase (m).

En donde:

CTA Carga de trabajo del conjunto alfiler - Aislador

Cucf Carga debida a la presión de viento sobre el conductor de fase.

Fig. No. 9 Fuerzas que intervienen en el cálculo del claro máximo por Resistencia Mecánica del conjunto.

ALFILER - AISLADOR.

Ejemplo:

Cálculo del claro máximo por resistencia mecánica del alfiler, considerando un sistema de 13.2 kV, una estructura Tipo P y conductor de ACSR No.2

Consideraciones para el cálculo.

Tipo de Estructura	P
Voltaje de Operación	15.2 kv .
Conductor	ACSR.
Calibre	2 AWG.
Cargo limite del Alfiler IA	200 kg.
Factor de seguridad para el alfiler	2
Presión de viento.	39 kg/m ²
Diámetro del conductor ACSE No.2.	0.008026 m.

De la ecuación obtenida en la hoja No. 112 .- se tiene:

L = 319.47 m.

3b .- Cálculo de deflexiones máximas del conjunto Aislador - Alfiler

La deflexión máxima que es posible dar en estructuras tipo "P" , tomando como punto de falla el conjunto aislador - alfiler se analiza en la siguien te forma:

Planteando una ecuación de suma de fuerzas de acuerdo a la figura 10.

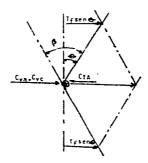


Fig. No. 10

$$C_{va} + C_{vc} + 2 T_{f} Sen \theta = C_{TA}$$

Sen
$$\theta = \frac{C_{TA} - C_{va} - PvdL}{2 T_{f}}$$
 (1)

En donde:

- d = Diámetro del conductor (m)
- L = Claro regla promedio, establecido para cada conductor y condiciones de terreno. (m)
- 20 = Deflexión total (º/)

Consideraciones para el cálculo.

- a) Para conductores ACSR en calibres 4,2 y 1/0 se calculó con claros interpostales de 200 m, en calibres ACSR 3/0 y 266.8 MCM de 150 m, v para conductores normalizados de cobre, de 150 m.
- b) Como condiciones iniciales se consideró una temperatura de 16°C, sin pre--sión de viento, módulo de elasticidad final y sin carga de hielo.
- c) Como condiciones finales se consideró una temperatura de $\sim 10^{\circ}$ C, una presión de viento de 39 kg/m², módulo de elasticidad final y sin carga de hielo. (Condiciones críticas de tensión en el conductor).
- d) El conjunto aislador "13 A" Alfiler "1A" acepta cargas de trabajo de ---acuerdo con pruebas de laboratorio de 100 kg. y el conjunto aislador "22A" Alfiler "2A" de 125 kg.

Ejemplo: Se tiene una estructura tipo P con aislador "22A" y alfiler "2A", se requiere calcular la deflexión máxima para un conductor ACSR 4, calculando de acuerdo a las condiciones establecidas anteriormente.

Sen
$$\theta = \frac{C_{TA} - Cva - PvdL}{2T_f}$$

$$C_{TA} = 125 \text{ (kg)}$$

$$Cva = 1 \text{ (kg)}$$

$$Pv = 39 \text{ (kg/m}^2)$$

$$d = .00636$$
 (m)

L = 200 m (claro regla promedio para esta tipo de conductor).

$$T_f = 372 \text{ (kg)}$$

Sen
$$\theta = 125 - 1 - 39 \times .00636 \times 200 = .09995$$

2 x 372

Deflexión total ≈ 2 x θ ≈ 11.4°

V. 2.4.4. RETENIDAS

La carga que soportan los postes se debe a la acción combinada de las fuerzas horizontales y verticales. Las fuerzas verticales se deben básicamente al peso muerto del equipo instalado en ellos, a la componente vertical de la retenida y además al peso propio de los mismos, las cuales en sí son fácilmente absorbidas, dado que normalmente los postes tienen una considerable resistencia hajo condiciones de compresión. Por lo que respecta a las cargas horizontales, éstas resultan de la carga transversal ocasionada por la presión de viento sobre poste, herrajes y conductores, además de las tensiones resultantes debidas a las deflexiones de la línea, remates, fuerzas longitudinales y verticales desbalancesdas. De aquí para diseñar mecánicamente una retenida, se deberán considerarse únicamente las cargas correspondientes a las fuerzas horizontales.

Como ejemplo ilustrativo, se anexa a continuación los cálculos correspondientes a la estructura tipo normalizada, en donde se analiza al cable de retenida como limitante para determinar su claro máximo interpostal.

ESTRUCTURA TIPO PP

En la determinación del claro máximo, se consideran las cargas transversales que actúan sobre los elementos de la estructura, debidas a la presión de viento, y las tensiones resultantes ocasionadas por la deflexión, tomándose como elemento de falla al cable de retenida.

El planteamiento de la ecuación se hace de acuerdo con las fuerzas que inter-vienen en la estructura tipo de la figura No.

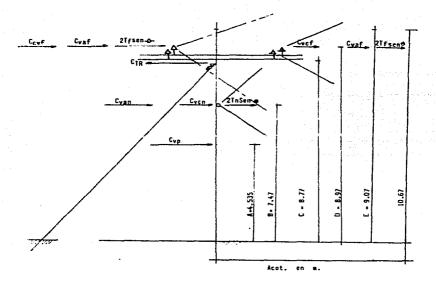
$$\leq$$
 Mo = 0 = 2 T_{rf} (D) = 4 C_{va} D + 2 C_{vc}D - C_{TR}C + T_{rn} .B + C_{vcn}.B + C_{vcn}A

Se consideran para fines de cálculo :

- a) Despreciable la carga de viento, sobre el soporte del hilo neutro
- b) Que el diámetro del hilo neutro es igual al diámetro de la fase.

$$0 = 2 (2 T_{rf} Sen \Theta) D + 4 C_{va}D + 2 (P_{v}d_{f}L.) D - C_{TR} (Cos 45°)$$

(C) + 2
$$T_n$$
 Sen θ (B) + (Pv. d_n L.) B + $\frac{G + E}{2}$ E (Pv) A


$$L = \frac{C_{TR}C \cos 45^{\circ} - 4 T_{f}D \sin 6 - 2 T_{f}D \sin 6 - 4 C_{vB}D - GHI]_{PV} E.A}{2 Pvd_{f}D + Pvd_{g}B}$$

En donde:.

- A.B.C.D y E Parametros derivados de la configuración de la estructura (m)
 - Claro máximo interpostal por resistencia mecánica de la retenida (m)
- Trf y Trn Tensión resultante de los conductores de fase e hilo neutro respectivamente.
- T_f , T_n

 Tensión del conductor de fase y neutro respectivamente a -10°C de temp. con presión de viento y claro regla correspondien te. (kg).
 - FS Factor de seguridad (El factor de seguridad establecido para retenidas es de 1.5)
 - Angulo total de la deflexión (°/)
 - G Base mayor del poste (m)
 - H Base menor del poste (m)
 - d, Diámetro del conductor de fase (m)
 - d Diámetro del hilo neutro (m)
 - C_{va} Carga de viento sobre los aisladores de fase (kg)

ESTRUCTURA TIPO PP MADERA.

En donde:

- Corga debido a la presión de viento sobre el conductor de fase.
- C. Carga debida a la presión de viento sobre el aislador de fase.
- $C_{_{f TD}}$ Carga de trabajo de la Retenida
- C van Carga debida a la presión de viento sobre el soporte del hilo neu-
- $\mathbf{C}_{\mathrm{upp}}$ Carga debida a la presión de viento sobre el hilo neutro.
 - C._ Carga debida a la presión de viento sobre el poste
 - T. Tensión mecánica del conductor de fase.
 - T_ Tensión mecánica del hilo neutro

Fig. No.11 Fuerzas que intervienen en el cálculo del Claro Máximo por Resistencia Mecánica de la Retenida.

Ejemplo:

Cálculo del claro máximo por resistencia mecánica de la retenida en una estructutura Tipo PP para una deflexión de 10° en postería de madera para una tensión de 13.2 kV y conductor de ACSR No. 2

Datos para el cálculo:

Estructura	PP
Postería.	Madera Clase (IV
Carga de ruptura del Cable de Acero de 5/16" Alta resistencia para retenida.	3,630 kg.
Factor de Seguridad del cable para retenida	1.5
Diámetro del poste en el empotramiento (G)	O.32126 m.
Diámetro del poste en el extremo superior (H)	0.1843 m.
Angulo de la deflexión.	10°
Conductor fase y neutro	ACSR No.2
Diámetro del ACSR No.2	O.008026 m.
Tensión final del conductor para fase y neutro, para las	

condiciones de - 10° de ---temp. y con presión de viento de 39 kg/m² y claro regla

de 150 m.

501 kg.

(Cálculo de tensiones Me cánicas en líneas de --Distrib. Página No. 68)

Los parámetros A.B.C.D y E. se obtienen de la Fig. No. 11

Sustituyendo valores en la ecuación correspondiente de la página No. 119 Se obtiene:

L = 1552.05 m.

ANEXOS.

FORMULAS PARA EL CALCULO DE CLAROS POR LIMITACIONES MECANICAS.

- 1) Por resistencia mecánica del poste:
 - 1.1) Para estructuras sin deflexión:
 - 1.1.1) Tipo P.

$$1LP = \frac{\left[\frac{1}{3}\right](F1) - 2(cva)(D1) - G(cva) - \left[\left(\frac{1}{2} + H\right)\right](h1)(Pv)(A3)}{(2)(Pv)(df)(E1) + (Pv)(df)(G)}$$

- * (cva=1)
- 1.1.2) Tipo pp:

$$1LPP = \frac{\begin{bmatrix} 1 \\ 3 \end{bmatrix} (F1) - 4(D1) - 2 (G) - \left[(J + H) \right] (h1) (Pv) (A3)}{4(Pv) (df) (E1) + 2 (Pv) (df) (G)}$$

1.1.3) Tipo HA sin/contra viento

1LHA s/cv =
$$\frac{2(1)}{3}$$
 (F2) - 12 (C2) - (J + H) (h1) (Pv) (A3)

1.1.4) Tipo HA con/contraviento

1LHA c/cv
$$\frac{\left[\frac{2(Ccd)}{3}\right] - 12(C2) - (J + H) (h1)(Pv) (A3/C2)}{3 (Pv) (df) (C2)}$$

1.1.5) Tipo HS sin/contraviento

1LHS
$$6/CV = \frac{2}{3}$$
 (I) (F2) - 6(C2-0.4324)- (J + H) (h1) (PV) (A3)
3(PV) (d_f) (C2 -0.4324)

1.1.6) Tipo HS con/contraviento

- 1.2) Para estructuras con deflexión.
 - 1.2.1) Tipo P.

1LPD = 1LP
$$\left[\frac{4(T_f) \text{ sen } \Theta \text{ (E1 } + 2(T_f) \text{ sen } \Theta \text{ (G)}}{2(Pv) \text{ (d}_f) \text{ (E1) } + (Pv) \text{ (d}_f) \text{ (G)}}\right]$$

1.2.2) Tipo PP

1.2.3.) Tipo HA sin/contraviento

1LHAD s/cv = 1LHA s/cv -
$$\left[\frac{6 \text{ (Tf)}}{3 \text{(Pv)} \text{ (df)} \text{ (C2)}}\right]$$

1.2.4.) Tipo HA con/contraviento

1LHAD c/cv = 1LHA c/cv -
$$\left[\frac{b(T_f) \text{ Ben } 30^{-5} \text{ (C2)}}{3(\text{Pv})(d_f) \text{ (C2)}}\right]$$

Donde:

```
I = Resistencia de la fibra (Kg)
 J = Diámetro del poste en la punta ( m )
 H = Diámetro del poste en la base ( m )
hl = Altura libre ( m )
CcD = Carga crítica de diseño
Cc = Carga crítica por columna ( Kg )
Pv = Presion de viento (Kg/m^2) (39, 47, 55, )
df = Diámetro del conductor a utilizar
Tf = Tensiones finales ( a temp= -10^{\circ}C y Pv ( 39, 47, 55 ) )
CT = Retenida = 3630 Kg.
Cva = Carga debida. a la presión de viento sobre el conductor = 1 Kg.
A3, C1, C2, D1, E1, F1, F2, G = Parametros de los postes
peso del conductor + herrajes = 60 Kg.
CC por columna > Ct retenida + peso conductor + herrajes.
FS= Factor de seguridad = 3 para postes
                         = 1.5 para retenidas
```

ANEXO 2

DATOS NECESARIOS PARA EL CALCULO DE LAS TENSIONES FINALES NECESARIAS DE LOS CONDUCTORES A USAR EN EL PROGRAMA

	ACSR	4	2 / 1	1/0	3/0
к	kg. ³ /cm ⁶	0.00399	0.00399	0.00399	0.00399
к	kg./mm ² °C	0.1536	0.1536	0.1536	0.1536
a	m 7	175 ± 25	175 ± 25	175 ± 25	125 <u>+</u> 25
s	kg.	166.0176	253.1088	388.2816	605.556
m.	unitario	1	1	i	1
m.*	unitario	1		1	1
Tſ		50	50	50	50
ti	•c	16	16	16	16
Cu		4	2	1/0	3/0
K		0.037127	0.035966	0.035966	0.035966
k."		0.190336	0.184388	0.184388	0.184388
а.		100	100	100	100
8		143.7	214.188	336.116	527.264
m ·		1		1	1
m		1		1	1
Tſ		50	50	50	50
ti		16	16	16	16

NOTA S : 20 % de la tensión de ruptura.

A N S X O 3

VALORES PARA LOS POSTES EN ESTUDIO.

		I (KE)	()	ii (m,	ni (m)	COD (Kg)	Cc por (Kg) columna
10	Valor	1,140.00	0.16588	0.3533	15.7	1, 337.386	2 510.26
2*	Valor	1,140.00	0.16366	0.3374	13.9	1. 323.97	2 778.296
3°	Valor	1,090.00	0.1496	0.3024	13.0	1, 026.275	2 103.35
40	Valor	1,090.00	0.1509	0.3055	11.2	1, 150.173	2 945.799
5°	Valor	1,090.00	0.1498	0.2769	10.3	1, 058.285	2 661.8685
6°	Valor	1,344.95	0.1798	0.2896	7.6	1, 800.92	7 158.232

Parametros de los postes en (m):

		А 3	C 1	c s	D 1	E 1	F_1	F. 2
1 °	Valor	7.85	14.95	14.70	15,19	15.19 + 0.5 df	15,40	15,40
2۰	Valor	6.95	13.15	12.90	13.39	13.39 + 0.5 df	13.60	13.60
30	Valor	6.50	12.25	12.00	12.49	12.49 + O. 5 df	12.70	12.70
40	Valor	5.60	10.45	16.29	10.69	10.69 + 0.5 df	10.90	10.90
50	Valor	5.15	9,55	9.30	9.79	9.79 + Q. 5 df	10.00	10.00
6°	Valor	3.8	6.85	6,60	7.09	7.09 + 0.5 df	7.30	7.30

G

10	Valor	15.885	+	0.5	df	
2"	Valor	14.085	+	0.5	df	
3°	Valor	13.185	+	0.5	df	
40	Valor	11.385	+	0.5	df	
50	Valor	10.485	+	0.5	dſ	
60	Valor	7.785	+	0.5	dſ	

ANEXO 4

Estructura	Tensión	Poste	Conductor	Deflexión max.	Postería d Libramiento		Cruce Separación eléctrica		Alfiler Resistencia mecánica
Tipo	(KV)		Cu	permisible	CLA	ROS I	NTERP	OSTALE	S (m)
P	7.6/13.2	10.67m	4	0 -15°	130	214	224	3334	150
		1088 Kg clase IV		0 -10*	124	185	224	2055	150
			1/0	0 - 5°	125	181	244	1293	150
			3/0	0.	124	236	266	812	217
РР	7.6/13.2	10.67m	4	15 -40*	130	1994	218	7199	150
		1088 Kg clase IV	s	10 -25*	124	1513	222	4438	150
			1/0	5 –15°	125	1227	243	2791	150
			3/0	0 10*	124	974	266	1755	150 —
R -2M	7.6/13.2	10.67m	a	0.0	130		220	7199	NO.
		1088 Kg clase IV	2	0.	124	375	219	4438	Existe
			1/0	0°	125	298	239	2791	Limita-
			3/0	0°	.124	236	260	1755	ción.

atructura (Tensión	Poste	Conductor	Deflexión max.	Posteria d Libramiento		Separación	ceta Cargas. verticales	alfiler Resistencia mecánica
tipo	(kv)		Cu	permisible	CLARO	S IN	TERPO	STALES	(m)
rr-2x	7.6/13.2		4 Y	co.	,130	2585	204	7,199	No
		1088 (IV)	2	60°	124	1585	204	4,438	existe
			1/0	60°	125	801	221	2,791	Limita-
			3/0	60°	124	319	241	1,755	ción.
HA-1M	7.6/13.2	10.67	4	60°	117	6554	347	5,212	No
		1088 (IV)	2	60*	112	4354	346	3,213	Existe
			1/0	60°	113	2988	376	2.021	_Limita-
			3/0	60*	112	3848	410	1,270	ción.
HS-2M	7.6/13.2	10.67	4	0.0	110	1183	373	2,630	NO
		1088 (IV)	2	0°	105	826	372	1,621	Existe
			1/0	0,	106	656	405	1,020	Limita-
		1. 3.5	3/0	0.	105	520	441	641	ción.

PROGRAMA.

```
10
                           CLEAR: CLS
  20
                           DEFINE I-N
  30
                           DIM PV(3)
                           DIM NO$(11).DF(11).W(11)
  40
                            Pre #1111 #2111 mtc1 mtc1 ...(5) .cc(5) #2(5) .c:(5) .cz(5) .cz(5)
                            DIM CR(11.5.6), NO (6), CI(11.4), CA(11), CN(11.5. 1)
  20
                            READ CE
  aΩ
                           FOR 1 - 1 10 3
  on
                           READ PV(I)
  100
                           NEXT 1
                           FOR 1 - 1 TO 11
                            READ NOS (1), DF(1), W(1)
  130
  140
                            READ AI(1), AI(1), H(1), H(1), CC(1), A3(1), C1(1), C2(1), D1(1), E1(1), F1(1), F7(1), G(1)
  160
                           PRINT : PRINT: PRINT"CALCULO DE CLAROS PARA PRESION DE VIENTO DE": PV(K):PRINT: PRINT
  175
  180
                          FOR 1-1 10 11
  190
                           CR (1,,,1)+(A1(J)/3*F1(J)-Z*D1(J)-(G(J)+.5*DF(1))-(AJ(J)-H(J))/Z*H!(J)*PV(H)*A3(J))/(Z*PV(H)*DF(1)*(E1(J)+.5*DF(1))*PV(H)*DF(1)*P(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*PV(H)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)*DF(1)
                           CR (1,1,2)-(A1(1)/3-F1(1)-4-01(1)-2(G(1)-5-0F(1))-(A3(1)-H(1))/2-H(1)-PV(M)-A3(1))/4-PV(M)-DF(1)-(E1(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-(G(1)-5-0F(1))-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-PV(M)-DF(1)-2-
 210
                           CR (1.J.3)=(2*AI(J)/3*F2(J)-12*CZ(J)-(AI(J)-H(J))*H1(J)*PV(H)*A3(J))/(3*PV(H)*DF(I)*CZ(J))
220
                          CP (1,3,4)-(2/3-CC(3)-12-C2(3)-(A3(3)-H(3))-H1(3)-PV(H)-A3(3)/C2(3))/(3-PV(H)-PC(1)/C2(3))
                          CH (1, J, G) - (2) 730 | (1) 130 | M) 144 | S) (1 (L) 15 (L) 16 (L) 16 (L) 16 (L) 16 (L) 17 (L) 17 (L) 17 (L) 18 (
  250
 260
 270
                           PRINT: PRINT: PRINT"CLAROS POR RESISTENCIA MECANICA DEL POSTE": PRINT
 215
 780
                           FOR 1 - 1 TO 11
                          FOR K = 1 10 6
 290
  300
                            01 - 0
  310
                           FOR 2 - 1
                                                                                                      OP THEN OP - CR(1,J,K,) : HO(K)-J
                            IF CR(1, J, K)
  130
                           PRINT:PRINT:PRINT"CONDUCTOR"; NOS(1):PRINT
   340
                                                                                                                                                                                                         ESTRUCTURA "
  150
                           PRINT
                                                                                                                                                                                                                           HAS/CV.
                           PRINT"POSTE
  360
  370
                          res J-1 10 5
                           PRINT USING "###
                           FOR K - 1 TO 6
                           PRINT USING " ####.#### " ; CR (1,J.K);
 400
                           NEXT K
 410
420
                           PRINT
                           MixI J
 6.30
```

```
445
      PRINT:PRINT "OPTING":
450
      FOR K-1 TO 6
                                  ": MO(K):
460
      PRINT USING "
470
      NEXT K
480
      PRINT
490
      NEXT I
510
      FOR I-1 TO 11
520
      CT(1.1)-597.169/W(1)
530
      C1(1,2)-C1(1,1)*?
540
      C1(1.3)-164.876/#(1)
550
      CT(1.4)-74.0684/W(1)
560
      BEXT 1
                                  DOD DESTRUCTA MECANICS OF 12 CRUSETA (CARCA VERTICAL)
      PRINT- PRINT- PRINT
565
590
      PRINT: PRINT"
600
      PRINT "CONDUCTOR
603
      FOR [-] TO 11
605
      PRINT USING "/
                                      /": NO$(1):
      FOR J-1 10 4
610
      PRINT USING " ####.####" : CT(1,J):
620
630
      NEXT J
640
      PRINT
650
      NEXT !
710
      FOR 1-1 10 11
      CA (1)-100/PV(H)/OF(1)
720
730
      PRINT: PRINT: PRINT"CLAROS POR RESISTENCIA MECANICA DEL ALFILERM: PRINT
735
                                             CLARO": PRINI
740
      PRINT: PRINT " CONDUCTOR
745
      FOR 1-1 10 11
                                       / ####_####":#0$(1):CA(1)
750
      PRINT USING "/
260
      HEXT I
810
      FOR 1-1 10 11
      FOR Jal 10 5
820
      CM(1.J,1)-CM(1.J,2)-[A1(J)/3=F1(J)-CE-C1(J)*.70710678)/(4=PV(M)*OF(I)*(E1(J)*.5=DF(I))*2=PV(M)*DF(I)*(G(J)*.5=DF(I)))
830
      CM(1,J.2)-CR(1,J.3)-(2*A1(J)/3*F2(J)-4*CE*C2(J)*.70710670)/(3*PV(M)*0F(1)*C2(J))
840
      CH(1,J,3)=CR(1,J,4)-(?*CC(J)/3-4*C(*01(J)*,70710678)/(3*PV(H)*DF(1)*C2(J))
850
860
      NEXT 3
870
      NEXT I
      PRIMI: FRINI: PRINI"CLAROS POR RETENIDA": PRIMI.
875
880
      FOR I-1 TO 11
690
      FOR E-1 TO 3
ann
      00.0
910
      FOR J-1 TO 5
      IF CK(I,J,K)>OP THEN OP-CK(I,J,K) :MO(K)-J
220
930
      PRINT: PRINT: PRINT " CONDUCTOR "; NO$(1)
940
      PRINT:PRINT "
                                                    ESTRUCTURA"
950
```

```
HAs/cv
960
      PRINT " POSTE
970
                 10 5
      PRINT USING
980
      FOR K-1 TO
990
      PRINT USING
1000
      NEXT K
1010
1020
      DOTHE
1030
      NEXT J
      PRINT:PRINT
                   "OPTIMO":
1040
                   3
      FOR K=1 TO
1050
1060
      PRINT USING
      NEXT K
1070
1080
      PRINT
1090
      NEXT I
1100
      NEXT M
10000 END
10010 DATA
            3630
             39.47.55
10020 DATA
            "ACSR 477 HAWK".
                                 0218.9749
10030 DATA
                   2 SPARROW", .008026, .13644
            "ACSR
10040 DATA
            "ACSR 1/0 RAVEN",.010109,.21679
10050 DATA
            "ACSR 3/0 PIGDEON", .01275..34478
10060 DATA
                   266.8 PARTRIDGE",.016306,.54578
10070 DATA
            "ACSR
            "ACSR 336.4 LINNET"..018313..68843
10080 DATA
            "COBRE 250", .01458.1.149
10090 DATA
                    300"..01595.1.379
            "COBRE
10100 DATA
                    2".. 0074168..3050311
10110 DATA
            "COBRE
            "COBRE 1/0"..0093472,.4848924
10120 DATA
            "COBRE 3/0"..0117856..7713173
10130 DATA
            1140,.16588,.3533,15.7,1337.386,7.85,14.95,14.7,15.186,15.186,15.4,15.4,15.8849
10140 DATA
            1140,.16366,.3374,13.9,1323.87,6.95,13.15,12.9,13.386.13.386,13.6,13.6,14.0854
10150 DATA
            1090, .1496, .3024, 13, 1026, 275, 6, 5, 12, 25, 12, 12, 486, 12, 486, 12, 7, 12, 7, 13, 1849
10160 DATA
            1090,.1509,.3055,11.2.1150.173,5.6,10.45,10.2,10.686,10.686,10.9,10.9,11.3849
10170 DATA
           1090..1498..27693.10.3.1058.285,5.15.9.55.9.3.9.786.9.786.10.10.10.4849
10180 DATA
```

```
Peada
        1 (2001)
        SALCULO DE CLARGO MADA PRESIDA DE MIENTO DE
       SLAFOS POR RESISTENCIA MECANICA DEL POSTE
       CONSUSTOR ACER 477 HAVE
                                           ESTRUCTURA
       COSTE
                                22
                                          HASZev
                                                      HAdzev
                                                                 HSs/c/
         •
                 150.7660
                                                                              HSc/ev
                              70.0950
0
                                         331.4603
                                                      20.7054
                                                                 344.0210
                 154.0750
                                                                             302.5572
                              77.0373
                                         329.3200
                                                      23.5613
         --
                                                                 343.2450
                 140.4750
                                                                             374.2510
                              73.7557
                                         313.2670
                                                      17.0195
                                                                 327.5050
                 147.6000
                                                                             192,9860
                              73.2463
0
                                         314.2630
                                                      25,1736
         ٠.
                 145.7710
                                                                330.7570
                                                                            326.7438
                              72.4070
                                        312.7270
                                                      24, 2303
                                                                330.5560
                                                                            257.3750
       OPTIMO
0
       SOUDUSTOR ACCE
O
                                          ESTRUCTURA
      POSTE
                               ---
                                         HAS/cv
                                                     HACKEY
                431.9710
                                                                 History
                                                                           " HSc/cv
                            214.3500
                                        900.3570
                                                     54.2502
                                                                734.4200
                424.3700
                                                                           1039.0900
                            211.2303
                                        674.5:12
                                                     54.2503
                                                                732.3670
                404.1000
                                                                           1021.7700
                            233.4530
                                        653.0070
                                                     51.4413
0
                                                                807.5400
                                                                            795.8000
                +21.3450
                            177.0740
                                        853.5460
                                                     71.1465
                                                                878.3738
                                                                            887.5440
                376. B100
                            174. BOER
                                        049.4210
                                                     71.2464
                                                                897,0538
                                                                           813.1930
      optino
                   1
      SOMBUCTOR ACCR 1/G RAVEN
                                          COTRUCTURA
      DOCT!
                               22
                                        HAS/G.
                                                    MARZEY
                                                                History .
                                                                            History
       :
               342. 7368
                            170.20:0
                                       714.0340
                                                    44.6596
                                                               741.0790
               333.4676
                                                                           824.9830
                            167.7770
                                       710.1700
                                                    51.0255
       3
                                                               740.2470
               320.0070
                                                                           811.4040
                            159.1340
                                       475.5500
                                                    41.2163
                                                               704.2623
               313.4:40
                                                                           631.8222
                           :50.0.62
                                       477.7500
                                                    34.1044
                                                               713,2750
                                                                           704.6630
```

```
: PU::
       SALCULO DE CLAROS PARA PRESION SE VIENTO DE
      S. AEGS POR EEDISTENSIA MEGANICA DEL POSTE
      CONFUSION ACCR. 477 HAWK
                                        COTEUCTURA
      POSTE
                                       HASZEV
                                                              HSs/c/
                                                                          HSc/cv
                                                   HACZEY
               150.7660
                            70.9950
                                       331.4500
                                                   20.7074
                                                             344.0210
                                                                         302.5572
        1
               154-0750
                            77.0573
                                       329.3200
        2
                                                   23.5613
                                                             343.2450
                                                                         374,2510
               140.4752
                            73.7557
                                      313.2470
                                                   17.0195
                                                             327.5050
                                                                         292.7640
               147.4400
                            73.2463
                                      314.2630
                                                   24,1726
                                                             330.7570
                                                                         324.7430
               145-7710
                            72.4070
                                      312.7270
                                                   24,2309
                                                             339.5560
                                                                         277.3750
      OPTIMO
O
      DODA DOTOUGHOD
a
                                        CSTRUCTURA
      COLT
                                       HASTER
                                                              HDs/cv
                                                                       * HSe/ev
                                                   HACKEY
                           214.5550
               431.971D
                                      900.3370
                                                   56.2302
                                                             734.4203
                                                                        1033, 0900
               424.3700
                           211.2000
                                      874.5110
                                                   54.2583
                                                             732,3670
                                                                        1021.7703
               424.1020
                           200.4530
                                      650.0070
                                                   51.6613
                                                             867.5400
                                                                         795.8000
        33
                           177.0740
               -21.3450
                                      853.3460
                                                   71.1465 .
                                                             078.3730
                                                                         887.5448
                                      049.4210
               376.0100
                           174.0000
                                                   71.2464
                                                             897.0530
                                                                         813.1530
      HAVEN BLI RECK GOTOURISE
                                        COTRUCTURA
     ---
                                       HASTEL
                                                  MARZEY
                                                              RESIZES 1
                                                                         1194/44
                                                             741.0790
               342.9300
                           170.22:0
                                      714.6340
                                                   44.6596
                                                                        024.7032
               322.4076
                           167.7770
                                      719.1722
                                                   51.0255
                                                             740.2470
                                                                        811.4050
               323.0075
                           157. 1340
                                      475.5500
                                                   41.0163
                                                             704.2420
                                                                        431.8222
                                                             713.2750
               310.4140
                          120.0.62
                                      677.7500
                                                   54.1044
                                                                        704.6630
```

Peada

9		3:2	د، دعیود	5 1	*5.5000	11212460	- 5 621277 0	
• • •	OPTIMO	1.			5	1	1.	
ാ					-	-		
	COMENCT	on area ave	n rivoren					
_		J						
n				GCTBUST!				
	FOSTE	P		15/2/69	HAdrey	HUSYEV	HGe/ev "	
0	:	271.E000	134.9350	555.7620	35.4007	500.2300	454.0700	
_				363.0010	40.4563	588.7180	343.3330	
	3	234.3500	124.1400	222-6220	32.5223	557.7003	500.9400	
0	•	252.5568	125.2570	537.3638	44.7040	965.5270	550.7010	
_	3	247.7250	123.6570	534.7320	44.0490	545.1075	511.0728	
_	OPTIMO	19 gr. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	5	1	1	
0								
0	CONDUCTO	DR ACER 266	PARTRID	GE				
_ :				CSTRUCTU	JEA			
	POSTS	ۍ د اند	PP.	HASTER	HAdzev	HOs/ev	HSe/ev	
3	1	212.5542	105.4740	443.1440	27.6970	457.7320	511.4530	
	:	207.0040	103.1140	440.2280	31.6336	458.7220	503.0340	
_	3	179.0200	70.6330	410.8160	25.4283	437.0920	371.7020	
•	4	177.4720	97.7500	420.1750	35.0191	442.1770	436.8688	
	5	175.2320	74.5597	418.0750	35.0684	441.9330	400.2430	
5	OPTIMU	. 1		τ	3		1	
	9. 12119	• • • •	•	•	_	-	•	
_						•		
•	CONDUCTO	NEE DEDA DO	.4 LINNET					
				CSTRUCTU			- / _	
-	21000	r	PP	HArzev	HACZCV	. 1131/ev	HSe/ev	
-	100112	107, 2540	93.7201	374.3570	24.6526	407.5240	455.4010	
		106.7740	92.0771	372.0350	28.1667	400.5250	447.7050	
•		177.0023	07.0164	372,9160	22.4415	305.8440	348.7740	
-	.) 4	175.8140	87.2072	374.1240	31.1812	373.7370	340.7740	
	5	173.0250	64.2101	372.2740	31.2251	373.7576	354.3770	
•	٠,			J/ / 7U	~			
	ont the	t	1	1	5	t	1	
•	COHENCTO	OR COBRE 25	a					
2				CSTRUCTU	IDA			
,	POSTE	P	ep.	HASZEY	IIA:/cv	HOs/cv	HSc/cv	
	POSTE	"	L 1*	IMS/CV	11/15/60	nus/EV	Hac/CV	

.:	312.75	عاديا للألحاد	الرجاد والواردة	54.3443	باعود بالمداء	ಬ72.ಆರಳ
OPTIMO	4	i	i	· 5	1	1
CONSUCT	05 - 1255 - 776	nicamen.				
50.12521	01. 24.51. 570	, , , , , , , , , , , , , , , , , , , ,				
			DOTRUCTU	IDA.		
POSTC	. р	PP	MAZZEV	HACZEV	おちょえさせ	Hatray
:	271,5000	134.9350	555.7560	35.4907	500.3300	454.070
2	220.2474	133.1673	563.0558	48.4563	583.7140	443.333
3	254.3526	:20.:202	555.6250	32.5283	557.7573	500.740
• •	22.5555	125.1500	537.3430	44.7000	945.5276	550.761
5	247.7270	:23.6570	934.7020	44.0490	545.1075	511.672
OUTIMO	1	1	i	5	1	1
CONDUCT	OR ACOR 266	C PARTRID	SE			
			CSTRUCTU	174		
COSTS	r	22	HAS/C.	HAdrey	HS3/cv	HSe/ev
1	212.5542	105.3740	443.1660	27.6970	457.7320	511.453
÷	207.0000	103.1140	440.2280	31.4334	458.7223	503.034
ä	198.0200	20.6330	410.8160	25.4283	437.0520	371.702
4	177-4720	97.7500	420.1750	35.0191	442.1770	434.040
5	175.2220	76.0207	418.0750	33.0684	441.9330	400.243
OPTIMO	1	:	1	5	1	1
CONDUCTO	SEE REDA NO	.4 LIMET			•	
			USTRUCTU	ITA		
POSITE	£.	PP	HATZEV	HACTEV	. HS3/cv	HSc/cv
:	100.2340	93.7201	374.5970	24.6526	407.5240	455,401
: :	105.7740	92.4771	372.0350	28.1667	400.5250	447.705
73	177.0023	87.8144	372.9160	22.4415	305.8660	340.774
4	175.8140	87.2072	374.1240	31.1012	373.7370	368.703
2	173.0200	64.2101	372.2740	31.2251	393.3000	356.379
ont the	1	İ	1	3	t	1
COMPUSTO	on coont 25	0				
			CSTRUCTU	RA		
POSTE	f.	FP	HAs/cv	HACZCY	HGs/cv	HSc/cv

and the second s

_	ž	224 1810	710	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.7		17
•	5 ·	231.4510	115.4470	. / 100	35.3	51370	542.5040
	4	202.3723	. 10.3178	440.3760	28.5225	469.4353	430.0720
0		200.0650	107-5540	447.7160	39.1647	474.5470	400.5740
•.•	2	218.3648	100.3030	447.5070	37.2178	494.2500	447.6240
O	optime	1 -	ı	1	2	ı	1
_	CONDUCTO	on coept 30	39			·	
•		•		ESTRUCTU	100		
	POSTE	F	00	HASZCZ	HAczey	:ISs/cv	HSc/cv
0	1	217.3110	107.6520	453.0570	28.2047	470.1500	522.6480
•	ż	214.4340	164.4570	45C.1140	32.3374	447.1450	514.2532
	ร์	203.2770	100.0340	420.1123	25.9959	447.6240	400.4450
9							
٠٠	4	201.0900	100.1300	429.5530	35.0007	452.0670	445.6110
	5	197.5950	92 . 99 39	427.4260	35.8511	451.7970	409.1760
0	OPTINO	1	1	1	5	. 1	1
•	COMPUSTO	or coone a					
•							
_				ESTRUCTU			
0	POSTE	₽	r.P	バムミノビン	HAckey	1153/67	HOc/cv
	1	447.4610	೨೮೨. ಅಥವರ	774.3100	40.0704	1011.1700	1124.4400
	2	461.4020	220.7700	947,7040	49.5471	1000.9500	1105.7333
•	3	437.3220	216.7220	920.7770	25.9247	262.4270	061.1650
	4	434.3133	217. 9330	923.7640	76.7703	772.1840	740.4470
_	5	427.4:60	212.9800	919.1900	77.0986	971.6000	877.7438
•	COTING	1	:	ı	· 5	1	. i.
_							
	COMBUSTO	on Coone 1/	· c				
•				ESTRUCTO	na.		
_	nocre	r	ppi	HAZ/cv	HAcrey	HSazaz	BOdzav
	1	370.6770	164-0770	773.0940	48.2774	002.3428	072.2178
•	à	265.0060	181.6720	748.0740	55.1041	000.5770	077.5250
•	ŝ	346.7430	172.1110	733.4140	44.3572	763.0230	603.3160
	4	314.5750	170.9270	732.7870	61.0701	771.4070	762.0740
0	5		160.9798	729.3500	61.1761	770.9440	690.2160
•	2	348.6978	100.9798	/27.3500	01.1/01	//8.9440	070.2160
_	OPTINO	1	1	1	5	1	1.1
0							

```
Computing Coart 3 a . . .
                                   CSTRUCTURA
     POSITE
                         £.P
                                  Blanday Blandey
                                                     1253 Fig. 1
                                                               MGc/cv
294.:370
                       145.9010
       1
                                 413.1430
                                            30.3044
                                                     434,3400
                                                               707.6220
             270.3100
                       144.0722
                                 407, 1420
                                            43.7667
                                                     434,9400
                                                               495.9740
                       134. 4000
             275.15.3
                                 577.4540
                                            35.1814
                                                     605.7910
                                                               541,7423
             273.2470
                       133.5470
                                 521.3340
                                            40.4508
                                                     611.0060
                                                               304.4173
             272.1773
                       134 - 0010
                                                     611.4383
                                                               553-7570
                                 57B. 43AB
                                            40.5120
     OBTIMO
     CLARGE POR REDISTENCIA MECANICA DE LA GRUCETA (CARGA VERTICAL)
ESTRUCTURA
                                                          113
     COLUMNICACE
                                       PΡ
                                               HA
     ACCR 477 HAWK
                            612.5440 1225.0900
                                                147, 1213
                                                         75.9754
0
                                                         542,0540
     ACOR & SPARROW
                           4376.7700 8753.3300 1209.4100
     ACCC 120 RAVEN
                           2754.4000 5509.1900
                                               760-5330 341-7603
     ACEP BYE PICEEN
                           1732,0300 3444,0000
                                               473,2040
                                                         214.8280
0
     ACCR 266.8 PARTRIDGE
                           1074.1663
                                     2100.3100
                                                302.0710 . 135.7110
                                                        107,5700
     ACGR
          336.4 LINUST
                           047.4340
                                     1739-8700
                                               237. 4742
     coone esc
                           517.7290 1039.4400
                                               143.4750 44.4434
     CORRE
          300
                           433,0450
                                    045.0700
                                               117.5420 53.7117
     CODRE D
                           1957,7300 3915,4402
                                                540.5220
                                                         242.0220 ...
     CORPE 1/8
                          1231,5500 2463,1000
                                               340.0260 152.7520
     COCPE 3/0
                           774.2200 1540.4400
                                               213.7590
                                                        96.0284
     CLARGE FOR RESISTENCIA MECANICA DEL ALFILER
                             CLARO
       CONDUCTOR
     ACCR 472 HAUR
                           117. 5170
```

319,4750

253.6-50

201, 1960

157.2390

140.0150

175.0440

1 AD. 2590

345.7120

274.3160

ACCE

ACCR

ACS7

ACCR

ACER

COTTE

SGERE

COBRE 300

CODRE 2

CODER DISCO

2 SPARROW

1/0 PAVEN

2:50

1/2

SZE PISECON

266.C PARTRIDGE

326.4 LIMBET

CLAROS FOR RETENIDA

COMPOSTOR	7,03/1	r r inerella	
		ESTRUCTURA	
POSTE	Lb.	MASICS	HAC/CY
1	492.074	4044,720	4090.770
. 2	100.734	4040.590	4190.250
3	486.987	4037.150	4195.930
4	483.303	1035.230	4120.780
5	460.496	4031.760	4130.100
CPTIMO	1	1	5
сонвистоя	ACSR 2	SPARROW	

		ESTRUCTURA	
roste	tab	HA3/cv	HAC/cv
1	1337.150	10764.200	11111.300
2	1328.648	18774.788	11137.002
3	1323.250	10745.400	11152.400
4	1313.550	16948.488	11172.800
5	1305.010	10751.000	11219.100
OFTIMO	1	· 1	5

	1	ESTRUCTURA	
POSTE	ቤ ኬ	MAS/CV	!!Ac/cy
1	1041.540	8722.428	0021.770
2	1054.750	8713.510	0942.170
	1050.500	8704.070	0054.420
4	1042.770	3781.768	8885.45 0
5	1036.770	6674.528	8704.540
оптімо	· 1	1	5
,			

CONDUCTOR ACER 3/6 LIGDEON

0			ESTRUCTURA	*	
•	POSTE	מיז	HAS/cv	HAC/CV	

```
841.576
                             6915.603
                                          4774.450
                  036.340
                             ತಿಳದರು. ೭ವರ
                                          7910.630
         3
                  832,812
                             6702.730
                                          7820.343
         4
                  824.475
                             6577.460
                                          7045.730
0
         5
                  821.726
                             3027.56B
                                          7061.660
      OPTIMO
                                 1
                                             5
      COMBUCTOR ACSR
                        D66.0 PARTRIDGE
                           ESTRUSTURA
      POSTE
                    \mathbf{p}_{\mathcal{D}}
                              HASZOW
                                           HACZEY
                  457.704
                             5407.520
                                          5469.110
                  653.072
                             5401.770
                                          5481.750
                  651.135
                             5377.379
                                          5407.252
                  646, 231
                             5374.330
                                          5507.210
                  642.547
                             5378.220
                                          5521.660
0
      OPTIMO
                    1
                                 1
                                             5
       CONDUCTOR ACER
                        236.4 LIMBET
                           ESTRUCTURA
      POSTE
                    PP
                              MASICY
                                           HAC/CV
                  585.836
                             4814.880
                                          4847.720
         1
                  582.149
                             4889.970
                                          4850.780
                  579.702
                             4205.070
                                          4867.750
         4
                             4003.590
                                          4505.430
                  575.417
         5
                  572.083
                             4777.400
                                          4916.520
       OPTIMO
                    1
       CONDUCTOR CORRE
                           ESTRUCTURA
      POSTE
                    re -
                              HAS/CV
                                           HAC/CV
                  735.920
                             670
                                          6116.550
         1
         2
                  731.325
                             4041.490
                                          6130.590
         3
                  720.233
                             6036.340
                                          6137.189
         4
                  722.068
                             4033.468
                                          4161.390
                             4020.320
                                          6175.320
                  710.076
      OPTIMO
                    1
```

COMPUCTOR COBRE 233

O .				
			ESTRU STURA	
_	POSTE	LĹ	HAS/CV	MACZEV
Q	1	472.479	5523.210	5571.180
	2	448.475	5500.540	5101.110
_	3	665.G47	5517.E38	5611.870
•	4	660.737	5515.240	5632.170
	5	656.92B	5519.530	5544.980
0	OPTIMO	1	1	5
				i
Q	CONDUCTO	OR COBRE 2		
			ESTRUCTURA	
0	FORTE	יאון	Hala/av	NAC/CY
_	1	1447.010	11008.508	12024.000
	. 2	1433.020	11875.400	12051.800
0	3	1431.972	11826.300	12048.500
***	4	1421.470	11843.720	12112.100
	. 5	1413.720	11850.500	12139.500
3		1413	1 7 0 7 7 7 4 4 4 7	12137.300
*4.00	CHITGO	1	1	•
	OPILING	.	*	5
8				
u.				
	COMPACTO	OR COURT 1	/G	
34				
1997			ESTRUCTURA	
	POSTE	Pr	HA3/cv	HAC/CV .
_	1	1148.100	7433.300	9540.740
•	2	1140.760	7423.670	7542.810
	3	1134.150	7415.445	7574.555
_	4	1127.820	7411.170	9610.700
-	5	1121.330	9403.130	7632.420
		á	À	_
	OFTIMO	1	1	5
•				
			.=	
_	COMBUCTO	or coere 3	<u>/</u> 0	
			ESTRUCTURA	
_	LOUTE		HAS/ev	HAC/CV.
	1	9:0.491	7481.570	7566.882
	2:	734.317	7473.748	7564. 300
	3	900.97C	7467.500	7594.000
O	4	894.377	7464.030	7622.280
	5	807.025	7457.650	7637.518

```
n
      OPTIMO
0
      CALCULO DE CLAROS PARA PRESION DE VIENTO DE
CLARGE FOR RESISTENCIA MECANICA DEL POSTE
C
0
      COMPUCTOR ACCR
                        477 BAUG
                                          ESTRUCTURA
0
      POSTE
                    ,
                               25
                                         ! IAs/ev
                                                     これとノとい
                                                                 HOSZEV.
                                                                             HSc/cv
                133.0540
                                        279, 1470
        1
                             44.4401
                                                     17.4626
                                                                207.4760
                                                                            321.6550
                131.7720
                             45.4003
                                        274.4599
                                                     17.0764
                                                                200.3413
                                                                            315.7210
0
                124.70%2
                             61.0640
                                        242.7450
                                                     16.0153
                                                                274.6650
                                                                            246.0210
                123.4000
                             61.3561
                                        243,2420
                                                     21.7777
                                                                277.0320
                                                                            272.7298
                122.0162
                             48.5284
                                        261.3040
                                                     21.9487
                                                                276. 2723
                                                                            250,3960
0
      OPTIMO
0
      CONDUCTOR ACCR
                       2 SPARROW
                                          CSTRUCTURA
      POSTE
                    r
                               CP
                                                     HACKEY
                                         MAS/cv
                                                                 HS3/cv
                                                                            HSc/cv
                343.7388
                                        756.2128
        1
                            180.5440
                                                     47.43:3
                                                                786.0146
                                                                            873.4703
        2
                                                     54.0420
                350.1510
                            177.7500
                                        751.1520
                                                                783.1020
                                                                            857.5520
                330.7040
                            160.1270
                                        713.6610
                                                     43.5018
                                                                744.0340
                                                                            440.2350
                335.1570
                            156.7570
                                        715.0550
                                                     57.6953
                                                                752. 9730
                                                                            743,4920
                331.6463
                                        707.9450
                                                                750.4030
                            144.4700
                                                     59.4707
                                                                            488.1208
      OPTIMO
      CONDUCTOR ACSR
                        1/0 RAVEN
0
                                          ESTRUCTURA
      POSTE
                               PP
                                                                             HSc/cv
                                         HAS/cv
                                                     HACKEY
                                                                 HSszcv
        1
                208.7698
                            143.3320
                                        401.9803
                                                     37.4579
                                                                624.6000
                                                                            593.6470
        2
                204.3310
                            141.1120
                                        575.6120
                                                     42.7364
                                                                421.8030
                                                                            400.3500
        3
                247.8473
                            123.4730
                                        566.6800
                                                     34.5301
                                                                592.2130
                                                                            530.5430
Ω
        4
                244.8750
                            132.3850
                                        567.7240
                                                     47.3948
                                                                577.4300
                                                                            570.2720
                243,2010
                            130.5878
                                        543.4740
                                                     47.3753
                                                                595.7790
                                                                            539.7780
```

```
1
       CONDUCTOR ACSR
                        BIG PIGDEON
                                           ESTRUCTURA
      POSTE
                                25
                                          HASTEL
                                                      1132/20
                                                                  HSs/cv
                                                                              けらこノこン
                220, 9340
                             113.4330
                                         477.2070
                                                      29.8376
                                                                 475.2520
                                                                             547-9470
                225.4140
                             111.0730
                                         473,0310
                                                      34.0107
                                                                 473, 2040
                                                                             537.0200
         3
                213,2973
                             185.0148
                                         449.2430
                                                      27, 3039
                                                                 467.6235
                                                                             428.6469
                211.5670
                             101.7510
                                         430, 1270
                                                      37-5776
                                                                 473.4870
                                                                             463,0210
                200.7100
                             103.5050
                                         445.7160
                                                      37.3421
                                                                 472.3710
                                                                             420.1250
      CETIMO
      SCHOUGTOR ACCR
                        266.0 PARTRIDGE
0
                                           ESTRUCTURA
      COSTE
                                CP
                                         HAS/cv
                                                      : Nac/ev
                                                                  HSs/cv
                                                                              HSc/cv
         1
                170.9000
                              80.8417
                                         373.2310
                                                      22.3442
                                                                 307.3798
                                                                             430.0308
                176.2230
                                                                 235.4720
                              87.4641
                                         347.8730
                                                      26.6001
                                                                             422.0770
        :3
                166.7200
                              82.7267
                                                                 347.2252
                                         351.2725
                                                      21.4121
                                                                             320.9130
                                                      29.3327
                145.4000
                              32.8476
                                         351.7640
                                                                 370.7050
                                                                             365.7550
0
                143.1720
                              00.9341
                                         349.4530
                                                      27-3704
                                                                 367.3570
                                                                             334.7430
      CPTING
      DEDA ROTSURIOS
                        336.4 LINNET
                                           CETRUCTURA
      POSTE
                                                      HACKEY
                                362
                                          MATZ
                                                                  HSs/cv
                                                                              HSc/cv
                159.3413
                              79.1002
                                         232.3003
                                                      20. 7B74
                                                                 344.8350
                                                                             302.9019
                156.7070
                              77.0720
                                         329.3370
                                                      23.4047
                                                                 343.2440
                                                                             373.8370
         3
                148.4710
                              73.6547
                                         312.7753
                                                      19.8454
                                                                 324.7640
                                                                             272.0660
                147.2630
                              72.0507
                                         313.3910
                                                      26-1525
                                                                 327.7930
                                                                             325.0470
                                         311.1558
                145.2750
                              72,8549
                                                      26. 1518
                                                                 328, 6770
                                                                             270.0750
      OPTINO
0
      computation count
                                           ESTRUCTURA
      POSTE
                                PD
                                          HASZEY
                                                      HAC/cv
                                                                1135/cv
                                                                              HSc/cv
                200.1000
                              77.3645
                                         417.3818
                                                      26.1100
                                                                 433.1240
                                                                             488.7383
```

	•.	•		مستعد بالمستعد	بعيدات ومواسمي	and the second second second	والمعادية فيستع
	<u>.</u>	197.:2007	07.5240	417.4590	29.7478	431.:278	472.0650
Ċ.	z	154.5128	クミ・ガミクラ	372.0340	23.7467	410.4703	367.0500
	4	104.7778	71.7700	373.6300	32.3611	414,2320	407.2780
	5	102.5050	90.5230	390.8210	32.8475	413.0020	374.3923
Q .							
-	OPTING	٤	1	:	4	1	1
_							
つ							
	CONDUCT	ರಣ ರಂಭಾಗ ಪ	C3				
_							
Ο.				COTRUCTO	J ብለ.		
	POSTE	ŗ	Ьħ	HAS/EV	MACZEN	HS:/cv	HGe/ev
_	1	182.7853	90.0257	301.5310	23.8673	375.7230	437.6250
0	2	180.1465	07.4175	370.1230	27.1733	374.0750	431.5150
	3	179.4000	04.5745	359.1120	21.0723	375.4040	336.2540
	4	147.0700	C3. LG23	357.8200	30.0305	378.6520	374.1238
0	5	166.0170	82.7428	357.2520	30.0262	377.6010	342.2350
_	OPTIMO	1	1	1	4	1	1
0							
							,
_	CONDUCT	on coent 2					
•							
				ESTRUCTU			
_	POSITE	P	2.22	MASZEV	MALLEY	出ちゅうでい	HSe/ev
•	<u>1</u>	353.6~10	195.3770	023.4700	51.3272	851.4428	945.4310
	2	337.5730	172.3550	813.1740	58.4859	047.5120	727.7070
_	3	366.7523	181.9410	772,2800	47.0747	807.3140	723.1230
•	4	363.7710	188.4620	773.0000	64.5785	814.3010	004.5410
	5	350.0578	170.0150	768.2790	64.5719	812.0070	735.9022
_ `						_	_
•	OPTINO	ı	1	1	4	1	1
_							
•	COMPACT	DE CODEC 1	· G				
				ESTRUCTU			• •
۵	POSTE	P	r e	HASZCV	HAc/cv	HS1/cv	HSc/cv
	– . –	312.5:19	:55.5100	451.0410	40.7270	675.6000	755, 1798
	1	312.5113	155.5166	221.0410	40.7473	073.0000	7 70. 1370
•	5	45.5				• • • •	77. 10. 10.
_	4	200.4350	143, 1000	413.7740	51.22.0	554.1700	6.50.4019
	* 5	208.2330	143.1000	607.6130	51.2364	644.3358	503.7878
٥	2	244.7520	1-11.23/6	007.0130	21.4304	V44.0000	20017010
~	OPTIMO	1	1	1	Δ	1	. 1
	-21-12113	•	•	•	₹	•	-
\circ						•	

	2	223.0073		-0.3. 400D	40.0000	J 4 I 4 U Z J U	403.10.0
0	- 5	225.8679	iic.Deca	483.484C	43. 6358	511,0250	443,1420
	4	228-8722	113.5413	484.7400	40.4525	512. +400	504.5100
	3	239.7409	114.4770	486.8848	29.6247	500.0510	455.0470
. •	2	243.8490	121.0310	511.7370	36.8324	533.3480	503.7730
	1	247.4750	122.7350	516.3430	32.3003	535.0210	594.9700
	POSTE	P	• 555	HASTOV	HACZEV	HSszev	140e7ev
Ç	COTRUCTURA						

CLARGO POR REDISTENCIA MECANICA DE LA CRUCETA (CARGA VERTICAL)

CSTRUCTURA COMMUNICATION HA :13 ACCR 477 HAW: 412.5440 1225-0700 169.1210 75.9754 ACCR 2 TOARROW 4376.7700 8753.5800 1203.4100 542.0040 ASSR 170 PAVEN 2754.6020 5507.1700 740.5313 341.4633 4000 370 PIGDEON 1732.0303 3444.0400 470.2063 214.0150 4000 135.7113 266.8 PARTRIDGE 1074,1400 2166.3166 302.0728 ACCS. SEALA LIBRET 057,4350 1734 - 9733 237.4740 107.5700 COURSE 250 519.7270 1037-4423 143,4950 64.4634 835.0700 CODINE ತಜಾತ 433.0450 119.5620 33.7:17 COMME 1257.7300 3715.4400 540.5220 242.8220 CORRE 1/0 340.0240 152.7520 1231.5500 2463.1000 76.0204

1540.4400

213.7593

774.2200

CLARO

CLASOS POR RESISTENCIA MECANICA DEL ALFILER

ACSR	477 HAUK	97.577:
/.csn	2 STARROW	265.0760
VCSS	170 RAMEN	210.4720
ACOR	Z/C PIGDEON	166.0750
ACSR	206.0 PARTRIDGE	130.4639
ACCR	DB6 4 LINNET	116.1633
COBRE	250	145.7300
CORRE	GOE	133.3748
COSES	. ≘	236.6700
COORE	1/0	227.6253
COBRE	3/0	180.5300
*		

0

0

COERE

3/0

COMPUCTOR

0	CONDUCTO:	r Asan 4	77 HAUK	
_	•		CSTRUCTURA	
0	POSTE	 b	ロネンとい	HAe/cv
	1	407.250	3320.350	3374.770
	2	406.555		3402.400
0	3	404.691	3352.780	3407.283
	4	401.413		3419.620
	5	277.147		3427.310
0	-		55-77-71	3427.310
•	OPTIMO	1	:	5
0				
_	сонристог	ACSR D	weanana	
0			ESTRUCTURA	
	POSTE	FF	HAS/cv	HAc/cv
	1	1::2.200	7127.290	9220.770
•	a	1104.630	9114.070	7242.050
	3	1077.510		9254.770
	4	1071.546	9101.510	9288.270
	5	1084.700		7307.140
_	· -			
	OPTIHO.	1	1	5
_	CONDUCTOR	ACSR 1	ZO RAVEN	
•			ESTRUCTURA	
	POSTE	pp	HAS/cv	HAE/cv
0	1	802.947	7246.580	7320.770
•	· 2	877.111	7237.660	7337.490
	3	873.115	7230.249	7347.700
	. 4	044.540	7204.110	7374.300
_ ;	. 5	861.261	7210.670	7370.970
•	OPTINO	i	1.	5
•	сонристоп	ACER 3	VO PIGDEON	
			ESTRUCTURA	
Ο.	POSTE	טט	HA3/cv	UAC/CV
-	10512	700.012	574S.540	5804.300
		100.012	2142.240	_604.300

⊇	675.5.1	3700.47 0	5017.760	
3	272.102	5775.5.570	5025.770	
4	484.744	577.310	5846.870	
5 .	532.772	5723.420	5340.020	
OPTIMO	1	· i	S	
COMPUCTOR	ACOR 26	S.B PARTRID	SE	
		ESTRUCTURA		
roste	단면	HA:/cv	ということ	
:	547.271	4472.545	4538.570	
2	513.646	4487.030	4547.040	
3	541.161	4482.438	4555.300	
4	537.064	4477.070	4571.770	
5	333.779	4475.260	4502.070	
CPTINO	1	1	5	
consuctor	ACSR 33	6.4 LINNET		
		ISTRUCTURA		
POSTE	יזיז	HAs/cv	HACZEY	
1	407.277	4000.200	4041.170	
≘	484.030	3775.200	4050.490	
. 3	401.015	3771.100	4056.070	
4	478.141	7700.700	4070.750	
5	475.232	3784.889	4077.900	
OFTIMO	1	1 .	5	
CONDUCTOR	COBRE 25	50		
	Ε	STRUCTURA		
POSTE	99	HAS/CV	HACZEV	
1	612.114	5024.370	5075.050	
	408.042	5019.210	5087.560	
2	605.265	5012.070	5074.570	
4	400.490	5010.200	5113.010	
5	577.020	5005.050	5124.510	
ONITGO	1	1	5	
OTTIN	*	•		

			_		
					_
•		5	STRUCTURA		
	COSTE	rr	HAs/cv	MAC/cv	
	1	557.512	4592.830	4639.870	
	2	555.780	4587.100	4653.572	
	3	553.247	4500.48C	4656.988	
	. 4	547.040	4579.860	4673.830	
>	5	545.702	4575.140	4684.348	
	COTIMO .	:	1	 5	
	William Prints	*	•	2	
_					
_	CONSUCTO	r cobre 2			
		!	ESTRUCTURA		
	COSTC	rp ·	MASAGA	Hestev	
•	1	1223.563	9074.970	9978.140	
	2	1175.410	2034.845	10001.205	
	3	1190.170	9054.700	10014.900	
	4	1131.230	7817.570	10051.200	
	5	1174.040	9030.750	10373.030	
	OPTINO	1	:	5	
	,		-		
_	CONTRACTO	r copec i	/0		
•	09(15001)	i. dispire	, .		
			ES TRUCTURA		
•	POSTE	PP	HAS/cv	HACKEY	
	1	954.953	7837.178	7917.440	•
_	2	948.622	7827.540	7935.710	
•	a n 4	744.302	7817.510	7746.638	
		737.174	7815.040	7975.400	
_	5	931.407	7807.000	7773.330	
_	ортимо	1	1	5	
_					
•	CONDUCTO	or coore 3	/0		
•			ESTRUCTURA .	114 . 4	
	COSTE	PP	HAS/ev	NAc/cv	
	1.	757.314	6215.67C	6279.350	
━ .	2	752.288	4200.05 0	6273.040	
	: :	748.550	6201.600	4300.500	
_	. 4	743.211	4198.136	4325.320	
•	5	730.678	6191.760	6337.540	

CALCULO DE CLAPCO PARA PRESION DE VIENTO DE 55 CLARCO POR REDISTENCIA MECANICA DEL POSTE

٠.				٠.			
		ESTRUCTURA 1					
	POSTE	77	L) E)	HAszev	MACYEV	1105/67	HSc/cv
	:	114.0000	57.6004	242.0370	15,1403	251.1430	279,4670
	. ≘	113.7703	55.5771	237.3110	17.2267	247.3740	272.7720
	7	107.6740	53.4332	226.7210	13.6657	237.1950	212.7190
	4	104.6077	32.7240	227.0040	10.7062	228.7530	234.1210
	5	165.8145	52.0714	224.5770	10.7466	237,7763	219.6663
	OPTIMO	1	1	1	· 4	1	1

CONDUCTOR ACCR 2 SPARROW

COMDUCTOR ACSR 477 HAWK

POSTE	לו	S.E.	11As/cv	11Ac/cv	1131/cv	HSc/cv
1	315.3%.0	156.5459	457.4193	41.1788	402.1470	756.3713
2	307.77 23	153.7579	450,0070	14.7934	677.3700	740.7170
3	273.4740	145.2050	516.3560	37.7159	644.2650	577.7000
. 4	207.7538	143.0440	615.7770	51.5753	649.0360	641.2450
	205.4370	141.5070	- 411.0775	51.4422	245.0470	505.7970

CONDUCTOR ACER 1/8 RAVER

STECT	יין	C.E.	HASZEV	HAdzes	1195/37	HSezev
1	250.3976	124.2000	521.9330	32.6731	541.5070	600.5190
2	245.9200	100.0650	916.0720	37.1472	537.0170	500.2740
3	232.3400	115.2750	467,3536	29.9444	511.5110	450.7240
4	230.1050	114-1740	489.7050	40.7160	515.3000	509.1730
5	226.5770	112.4010	485.1628	40.8503	512.7400	445.0010

OPTIMO	i	1	5 1	4	1	1
CONDUCT	00 A000 370	Pintgen				
			ESTRUCTU	TRA .		
POSTE	· P	C.b.	HALLEY	MAcZev	1352/47	HS4/c
1	190.4015	76.5261	413.0370	25.7211	429.3000	476.12
2	174.7600	74.7711	407.1740	27.4542	424.4:50	166.42
+>	15	71.007	337.7503	22.7412	402.5500	१८७, एक
•	100.4030	70.5100	380. 2478	32.4442	403.5620	403.71
5	177.6000	87.1845	304.6678	32.3950	406.5540	366.74
0211110	. 1	1	1	4	1	1
CORDUCT	OR ACOR 204	.e PARINIDO	בב טדפטפדט	lma.		
POSTS	P	ក្នុង	DAS/ev	BAczes	1103744	DSeZe
1	155,1790	77.0323	313.5073	20,2463	225.7619	272.29
£.	152,4300	75.4574	317.7420	23.0309	233.4230	354.70
3	144-0110	71.4480	333.3770	16,5642	317,1140	204.37
	142.2440					
4		70.7748	303.5740	25.3942	317.3533	315.57
ŝ	140.4200	70.7748 67.6610	303.5740	25.3848 25.3384	317.0730	
S OPTIMO	140.4300	:	300.7790	25.3304	317.8738	200.33
в ОРТІКО СОИВОСТ	140.4200	1 .4 LINNET	300. 7790 1 ESTRUCTU	25. 3304 4	317.0730	1
S OPTIMO	140.4300 1 OR ACOR 336	27.2618 : .4 LINNET	1 ESTRUCTU	25.3304 4 	317.8738 1 HGs/ev	200.33 1
в ОРТІКО СОИВОСТ	140.4200 1 OR ACSR 336 130.1433	27.2010 : .4 LINNET Pr 40.5035	200-7790 1 ESTRUCTU 11A5764 288-1260	25.3304 4 !RA !RA <td>317.8738 1 HOSZEV 295.9648</td> <td>1 1 HSc/c 331.49</td>	317.8738 1 HOSZEV 295.9648	1 1 HSc/c 331.49
в ортино сомрист постп	140.4300 1 OR ACOR 336	27.2618 : .4 LINNET	1 ESTRUCTU	25.3304 4 	317.8730 1 HG3/ev 29E.9640 276.0020	1 1 HSc/c 331.47
в ортино сомрист постп	140.4200 1 OR ACSR 336 130.1433	27.2010 : .4 LINNET Pr 40.5035	200-7790 1 ESTRUCTU 11A5764 288-1260	25.3304 4 !RA !RA <td>117.8738 1 1 HG3/ev 298.9640 276.0020</td> <td>1 1 HSc/c 331.47 324.73</td>	117.8738 1 1 HG3/ev 298.9640 276.0020	1 1 HSc/c 331.47 324.73
в ортино сомрист постп	140,4200 1 100 ACSR 336 130,1433	27.2010 : .4 LINNET Pr 40.5035	200-7790 1 ESTRUCTU 11A5764 288-1260	25.3304 4 !RA !RA <td>317.8730 1 HG3/ev 29E.9640 276.0020</td> <td>HSc/c 331.49 324.73</td>	317.8730 1 HG3/ev 29E.9640 276.0020	HSc/c 331.49 324.73

) }

CONT 157.0770 77.9152 334.3640 28.3290 355.5260 322-4640 OPTIMO 1 1 1 COMMUNITOR CORRE 328 CSTRUCTURA : 6576 PP HASYEV HACKEY 1103767 HSezev 1 120.6490 70.7525 330.0122 20.720/ 345. 2545 222.6040 2 155.0340 77.3473 327.0030 23.5447 343.0656 372.0440 3 147.2273 73.0437 210-1470 10.9705 324.1920 270.7388 145.05:0 72.3356 310.3720 25.9526 224.5730 322.7230 • 143.5750 71.2179 307.4730 25-6757 324.7870 274.7670 OPTIMO COMPUCTOR CORRE E EST RUCTURA POSTE PP MASZEY Marcy 115s/cv HSc/cv 341.2/20 167.4060 44.5402 018.4970 1 711.4100 738.1773 166.2370 001.0070 3 135.2000 703.3990 50.6337 733.0300 316.7210 157.1353 444. 7020 40.0130 677.:830 425.2356 474.0230 313.7700 155.2240 567.4520 55.6115 702.3470 393.0738 153.2219 651.2700 55.4074 498.0940 633.7030 OPTIMO 1 CONSUCTOR CORRE 1/0 ESTRUCTURA FOSTE F PF MAI/c. HAdzev 1152/67 HSe/ev 505.7270 270.7463 134.4120 564.4950 35.3576 649.4600 245.7773 132,0170 558.1320 10.1749 501.4470 534.2160 221.2723 32.3017 553.2629 3 124.4740 529.2340 496.1130 240.7540 123.5050 527.4150 44.2853 537.2770 550.6720 245.0763 121.5460 524.7030 44.1803 554.5500 502.9833 OPTIMO

CONDUCTOR COERE 3/0

			ESTRUCTU	IF.A		
FOSTS	ŗ.	PP	HAS/cv	HACKEY	1153/64	HSc/cv
1	214.7338	196.5940	447.7030	28.0422	464.5440	515.0070
2	210.7200	104.4740	442.6578	21.8645	461,0000	504.5370
2	197.2823	90.0677	419.7370	25.4845	438.7450	373.4678
4	197.4213	97.9410	420.0410	35.1228	441.79(0	436.7560
	194.3470	96.4026	416.1440	35.0459	437.0220	373.7210
OPTINO	:	. 1	1	4	1	1

CLARGE POR RESISTENCIA MECANICA DE LA CRUCETA (CARGA VERTICAL)

			ESTRUCTURA					
)	COMPLE	TOR	P	rr.	HA	HS		
	ACCP	477 PASS.	612-5440	:225.0700	167,1210	75.9754		
	ACS #	2 SPARROW	4374.7700	8753.5000	1203.4100	542.8648		
•	ACCR	178 PAVET	2754.6023	5509.1900	760.5330	341.6200		
	೧೦೦೨	3/C PIGETON	1730.0300	3111.0000	470.2040	214.0200		
	ACCR	266.8 PARTRIDGE	1074.1603	2180.3100	302.0723	125.7110		
	ACCR	335.4 LINNET	047.4340	1734.8700	207.4740	107.5720		
	CODET	250	517.7070	1037,4600	143.4950	64.4634		
	なのなべ口	305	433.0450	044.3709	117.5520	33.7117		
	50005	:	1757.7338	3715.1623	340.5220	242.0223		
	೧೯ರಾಜ್	: /3	1221.5500	2463.1000	310.0260	132.7520		
	COURE	3/0	774.2200	1548.4400	213.7578	94.028%		

CLARGO FOR PEGISTENSIA NECANICA DEL ALFILER

	CO.	15UCTOR	CLARO
•	ACCR	477 WAR	23424
	4,000	2 SEVERON	226.5370
	AGER	TABLEWAYER	177.0000
	7.003	3/9 PIGULON	149.4033
	1.55.8	LUCIS PARTRIDGE	111.5040
	7.500	235.4 LIMIET	99.2537
	Stymment.	ຄວາ	124.7010
	50055	ະກະນ	113.7730
	COURT	22	213.1440
	COURT	1/0	174.5169

```
Ademonia i ovroban riabi
COBRE B78
```

154.0710

CLAROS FOR RETENIDA

COMPUCTOR	A CC C	. 77	11417/

		I	CETRUCTURA	
	COSTE	PP	MASZEY	HAC/CV
	1	350.570	2875.070	2901.220
	2	348.185	2370.730	2707.700
	3	346.371	2067.490	2711.080
	4	243.670	2065.500	2922.430
_	5	341.463	1841.138	2728.763
	OPTIMO	1.	1	5

WORRAND D REDA NOTSUGNOD.

=	OPTIMO	1	1	5	
•	5	923.111	7774.030	7755.570	
	4	934.110	7783.400	7937.010	
	3,	941.357	7788.400	7707.160	
	2	945.791	7797.950	7878.348	
	1	952.487	7889.108	7000.210	
	POSTE	PP	MASZCY	HAC/CV	
•		5	ESTRUCTURA		

COMDUCTOR ACCR 1/0 RAVEN

•	001125010			
_			ETRUCTURA	
	POSTE	L.b.	HASZEV	HAc/cv
3	1	756.231	4200.04B	6256.460
,	2	751.000	6191.150	627 0. 870
	3	747.333	6183.738	ム279、45 0
>	4	741.562	6177.600	6302.190
	5	734.793	6172.160	८ ३१८.२९७
•	OPTIHO	. 1	1	3

CONDUCTOR ACCR 3/8 PIGDEON

		•••		
	•		ESTRUCTURA	
	POSTE	P.F	HAS/CV	HAC/cv
	1	577.615	4715.000	4740.510
	<u>.</u>	575.369	4900.730	4771.940
	3	592.471	4702.050	4773.740
	-	-		
	4	587.086	4697-570	4776.770
_	5	584.677	1073.688	5007.950
•	A 77 * * * * * *			_
	OPTIMO	1	:	5
	CONDUCTOR	ACGR 2	LG.8 CARTRIDE	E
_				
•			ESTRUCTURA	
	POSTE	PP	HASZEV	MAd/dv
	1	468.790	2043.770	3078.730
₩.	. 2	465.486	3939.240	3037.668
	3	463.001	3833.640	3372.980
	4	457.425	2831.000	3707.000
	5	450.030	3825.478	3915.828
	OPTIMO	1	ı	5
	CONDUCTOR	ACSR 33	36.4 LINNET	
•				
			ESTRUCTURA	
	POSTE	Ьb	HASZEV	HAc/cv
•	1	417,393	3422.510	3453.640
_	Ž.	414.441	3417.573	3461.600
	3	412.484	2413.470	3446.330
	4	402.170	3411.210	3478.890
•	5	406.552	3407.110	3486.670
			G-0/1110	040010.0
•	OPTIMO	1	1	5
•	0. 12110	•	•	-
•	CONDUCTOR	CORPE S	250	
•	CORPOCIOR	COBILE 1	-30	
			CETRUCTURA	
_	noctc	pp.		110 - 4
•	POSTE		HAt/ev	HACKEY
	1	504.304	4270.889	4337.703
	2	520.624	4272.620	4347.878
•	3	518.073	4287.470	4353.640
	4	514.035	4201.610	4367.610
_	5	510.737	4279.450	4379.300
	OPTIMO	1	1	5

CONDUCTOR COBER 300

9		:	ESTRUCTURA		
	POSTE	T.L.	1363749	HAEZEV	
	1.	477.267	3757.560	3765.300	
	2	475.600	3723.710	3774.438	
	3	473.546	3717.210	3777.870	
	<i>t_</i>	447.87:	3714.570	3774.270	
	5	466.030	3711.870	4003.220	
	OPTINO	:	:	5	
40					
175	COMBOUT	or coers s			
,		,	ESTRUCTURA		
	copre	Pr.	HASZEV	MAdZizv	
e de la composición dela composición de la composición dela composición de la compos	1	1936.766	8450.610	8527.470	
- 14	à	1023.700	8433.448	0547.110	
	ŝ		-		
		1010.710	8428.340	0550.000	
A.	4	1010.040	0122.710	0507.810	
	5	1034.370	8412.570	6607.023	
1,5	OPTIMO	1	1	. 5	
	J	•	•	_	
· .	COMPUCTO	on deepne iv	/C		4
		C	STRUCTURA		
12 m	POSTE	יוויו	HAS/cv	HAC/CY	
	· 1	817.772	6705.370	6766.360	
	2	812.238	6675.730	6701.950	
· 😘	3	800.045	6687.710	6791.220	
	1.	eaz. aza	6683.248	4815.82C	
	5	796.872	4675.170	4031.070	
	OFTIMO	1	1	5	
34					
	CONDUCTO	R COOPE 3/	'e	•	
, une				*	• •
•			STRUCTURA		
	POSTE	PP	HAdizev	HAc/cv	
	1	640.701	5310.050	5266.433	
9	, 2	644.131	5310.410	5370.770	
	3	640.777	5304,040	5384.148	
A.					
33					
		474 050			
	4	434.020	5000.500	3405.650	
	5	631.905	5274.130	5417.750	
	OFTIMO	1 .	1	5	
	Ready	*	.		
1.1		DUAL OFF.			
	-	ting now Of			
	mast 1000	CANG DOE OF	•		

CONCLUSIONES.

Los resultados que se obtuvieron al hacer el análisis de las limitaciones que se presentarían en el tendido de líneas de distribución con — postes de madera nacional (aunque para esto se propusieron condiciones — ideales de tendido) nos pueden ayudar en un momento dado a determinar en que casos es recomendable utilizar postería de madera do importación debido al costo que representaría el montar una mayor cantidad de postes de — madera mexicanos ya que por las limitaciones mecánicas de trabajo que presenta, los claros intespostales serían más cortos en algunas estructuras.

Esto se debe analizar para el tendido de la línea en cuestión de que se trate en cada caso y de las diferentes estructuras que se requieran.

El presente trabajo únicamente da una base para la toma de decisiones en cuanto a que tipo de postería conviene montar en una línea determina
da por el costo que se tendría en cuanto a materiales y mano de obra.

BIBLIOGRAFIA.

Empenificación para postos de madera: C.F.E. J6200-01-1979 Specifications and dimensions for wood poles ANSI 05.1 - 1979

Aprovechamiento del ARBOL. Asesoría y Proyectos Integrales , S.A. (Grupo Guadiana)

Método para el Cálculo de limitaciones Mecánicas y Eléctricas de --C.F.E.

Estructuras tipo en Distribución

C.F.E. 1973

Normas de Distribución Construcción

C.F.E.

Cálculo de Flechas y Tensiones

Standard Methods of static test of wood poles ASTM D 1036-58 Normas Técnicas para instalaciones eléctricas - Parte 2º Lineas Aéreas y Subterráneas 1982 - Secretaria de Patrimonio y

Fomento Industrial.