UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA

SINTESIS DE COMPUESTOS INORGANICOS A BASE DE Li ₂ O - ZrO ₂ - P₂ O ₅

25 2 ej

EXAMENES PROFESIONALES FAC. DE QUIMICA

TESIS

QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO P R E S E N T A MARIA DE LOURDES CHAVEZ GARCIA

1985

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CAPITULO I

CAPITULO II

RESUMEN

INTRODUCCION

- A. OBJETIVOS
- **B. ANTECEDENTES**
 - 1. Oxidos
 - 2. Sistemas binarios
 - 3. Compuestos ternarios
 - 4. diagramas de fases

PARTE EXPERIMENTAL

RESULTADOS Y DISCUSIONES i) Sistema $\text{Li}_2\text{O}-2\text{rO}_2-\text{P}_2\text{O}_5$ ii) $\text{Li}2\text{r}_2 \text{ P}_3\text{O}_{12}$ (Fase P) iii) $\text{Li}_2\text{ZrP}_2\text{O}_8$ (Fase Q) iv) Unión $\text{Li}2\text{rP}_2\text{O}_8$ -Li $2\text{r}_2\text{P}_3\text{O}_{12}$

CONCLUSIONES

BIBLIOGRAFIA

TABLA VI Li₂O-ZrO₂-P₂O₅ VII LiZr₂P₃O₁₂ VIII Li₂ZrP₂O₈ IX Li_{6-4x}Zr_{3+x}P₆O₂₄

CAPITULO III

CAPITULO IV

CAPITULO

APENDICE

CAPITULO I

RESUMEN

La síntesis de nuevos compuestos dentro del sistema $\text{Li}_2\text{O-ZrO}_2-\text{P}_2\text{O}_5$, tiene gran interés, en virtud del au ge que se ha dado en los últimos años por diseñar estructuras tridimensionales de materiales cerámicos. Debido a su naturaleza cristalina existe un movimiento de iones dentro de ellos que les confiere propiedades muy importantes haciendo que sus usos y aplicaciones sean muy amplias y variadas.

Se conoce el sistema análogo a éste, que contiene Na₂O en lugar de Li₂O, existe la formación de varios compuestos y una serie de soluciones sólidas que presen tan propiedades conductoras.

Se sintetizaron los compuestos $\text{Li}_2\text{ZrP}_2\text{O}_8\text{y}$ $\text{Li}\text{Zr}_2\text{P}_3\text{O}_{12}$ y una serie de composiciones entre esta unión. Se prepararon a partir de los óxidos correspondientes y de los compuestos binarios ZrP_2O_7 , $\text{Li}_3\text{PO}_4\text{y}$ Li_2ZrO_3 . Se emplearon diferentes métodos de reacción variando la velocidad de calentamiento y el tipo de enfriamiento en un intervalo de temperaturas desde 900°C hasta 1450°C.

Se caracterizaron las fases $\text{Li}\text{Zr}_2^P 3^O_{12}$, a la cual se le llama fase P, la fase $\text{Li}_2\text{ZrP}_2O_8$ llamada fase Q y otras fases de alta temperatura de Q las cuales se denominan como fases: T,T* y C, y dos fases más de Q de alta temperatura que no pudieron ser caracterizadas: Q' y Q".

1

Se encontraron una serie de soluciones sólidas de fórmu la química $\text{Li}_{6-4x}\text{Zr}_{3+x}\text{P}_6\text{O}_{24}$, 0 < x < 0.75 en la fase P y la fase Q. Se obtuvo el diagrama de equilibrio de fases de $\text{Li}_2\text{O} - \text{ZrO}_2 - \text{P}_2\text{O}_5$ y el de la unión P-Q.

Se reportan los patrones de difracción de polvos de las nuevas fases estudiadas y su comportamiento térmico.

CAPITULO II

INTRODUCCION

A. OBJETIVOS

Dentro de la química del estado sólido, la síntesis de nuevos compuestos es esencial debido a que una de las propiedades que presentan para el desarrollo tecnológico y de la investigación es, que la alta movilidad de sus iones produce una conducción de éstos de tal manera que los materiales se pueden utilizar en la construcción de baterías para los automóviles eléctricos, capacitores, celdas de combustión de alta tempera tura, diversos dispositivos electrónicos, etcétera.

El interés de este trabajo ha sido el de sintetizar compuestos dentro del sistema $\text{Li}_2\text{O}-\text{ZrO}_2-\text{P}_2\text{O}_5$, ya que se sabe que el sistema análogo, utilizando Na_2O , presenta buenas propiedades eléctricas.

Si se considera que el litio es un ión más pequeño, se postula que el movimiento de ese ión será mayor dentro de la red cristalina $(2r_2P_3O_{12})^-$, propuesta para el Na $2r_2P_3O_{12}$ y la cual se conservará para el sistema con litio, tan solo existiendo un decrecimiento en el volumen de la celda unitaria (1,2). Por lo que en particular se pretende desarrollar los siguientes puntos:

 Sintetizar nuevos compuestos dentro del sistema Li₂O-ZrO₂-P₂O₅, determinando las condiciones óptimas de equilibrio dentro del diagrama de fases ternario.

3 :

- ii) Obtener soluciones sólidas y determinar el tipo de mecanismo, la composición y el intervalo de su formación.
- iii) Observar el comportamiento térmico de las fa ses y de las soluciones sólidas que se formen,
 así como las reacciones que ocurren por efec tos de temperatura.
 - iv) Observar el efecto de añadir un fundente, Li_2O y un compuesto vítreo como el P_2O_5 a un material refractario, que en este caso es el ZrO_2 .

Estos compuestos constituyen una parte de los sistemas electroquímicos del estado sólido, debido a que el movimiento de los iones dentro de las redes tridimensionales es tal, que produce el paso de la corriente eléctrica con una magnitud comparable a los valores obtenidos con los electrolitos líquidos como se puede observar en la Tabla I.

TABLA

Conductividad)	$(ohm^{-1}cm^{-1})$	Electrolitos
10 ⁻²	1	NaCl a q., H ₂ SO ₄ , etc. en sol ución acuosa.
10 ⁻⁶	1	Materiales cerámicos
10 ⁻¹⁰	1020	Aislantes, NaCl puro

Estos sistemas pueden almacenar energía eléctrica y son utilizados para:

- La construcción de baterías para automóviles eléctricos.
- Almacenaje de energía solar.
- Celdas de combustión de altas temperaturas.
- Celdas y generadores temoeléctricos.
- Diversos dispositivos electrónicos.
- Purificación de materiales, etcétera.

Este tipo de material se empezó a estudiar debido al transporte rápido de iones de Na⁺ que existe en la β -alúmina, obteniéndose un valor de la conductividad de 0.25 ohm⁻¹ cm⁻¹ a 300°C (2).

Inicialmente en la fabricación de estos compuestos se tuvieron varios problemas debido a la volatilidad del Na₂O y el carácter refractario del Al₂O₃ que entorpecía la fabricación de las membranas cerámicas. En estos materiales el ión Na⁺ se mueve sólo en dos dimensiones y la expansión térmica anisotrópica reduce la vida de las membranas confinando al Na⁺ a capas separadas y disminuyendo de esta manera la fracción volumen de la membrana que transporta los iones de Na⁺(1,2).

Esto trajo como consecuencia el diseñar nuevos materiales sólidos que tengan un transporte rápido de iones en tres dimensiones y que mejoren las propiedades de los sistemas anteriores; como se observa al comparar las propiedades estructurales y de formación de la alúmina y el NASICON (Sodium superionic conductor). Este último tiene una estructura tridimensional Na₃ZrPSi₃O₁₂ que se forma al añadir el SiO₂ al sistema ternario $Na_2O-2rO_2-P_2O_5$. Tabla II.

TABLA II

ESTRUCTURAS TRIDIMENSIONALES

3

NASICON Na₃ZrPSi₃O₁₂ ^β-Alúmina

2

1500

Movimiento de iones (dimensionales)

Densidad de sitios de iones móviles Na⁺ X 10²¹ cm⁻³ 11.13 5.57

Expansión térmica				
anisotrópica		muy pequeña		grande
	• · · · · · · · · · · · · · · · · · · ·		1	and the second second

6

T sinterizado (°C) 1200

B. ANTECEDENTES.

A continuación se presentará una descripción de las características y propiedades de los óxidos utilizados, así como de los compuestos binarios y ternarios reportados en la literatura.

1.- OXIDOS.

i) 2r0,

Presenta 3 formas polimórficas: la tetragonal, la cúbica y la monoclínica, esta última es la forma normal y más estable. Su punto de fusión es de 2700°C. Actualmente se utiliza como sustituyente del SiO₂, ya que se requieren refractarios con buena resistencia a la corr<u>o</u> sión.

ii) P205

Presenta 3 forma polimórficas: la hexagonal, la ortorrómbica y la tetragonal, siendo la primera la más conocida y la más estable. Su punto de fusión es de 580 \pm 5°C, pero empieza a sublimar a 300°C. Debido a su temperatura de sublimación tan baja es conveniente verificar si hay pérdida del pentóxido cuando se somete a temperaturas de calcinación. Este material es higroscópico por lo que se tiene que guardar en un desecador. Es un formador de vidrior, aún en pequeñas cantidades (50 mg), al enfriarlo bruscamente a temperatura ambiente, por lo que se utiliza en la formación de vidrios cerámicos con pro-

7 -

piedades comparables a las cerámicas convencionales, c<u>o</u> mo son el aumento de refractariedad y la disminución del coeficiente de expansión.

iii) Li₂0

Se utiliza como fundente ya que disminuye la temp<u>e</u> ratura de fusión de los óxidos refractarios en más de 1000°C aproximadamente.

2.- SISTEMAS BINARIOS

i).- Li₂O-ZrO₂

Dentro de este sistema se conocen 9 fases (3): Li_8ZrO_6 , Li_4ZrO_4 (las formas $\alpha \ y \ \beta$), $Li_6Zr_2O_7$, Li_2ZrO_3 (2 polimorfos) y 3 fases metaestables denominadas J, Q y Y. Estos compuestos se preparan por reacción en estado sólido a partir de Li_2CO_3 (6: LiOH, $LiNO_3$) y ZrO_2 (reactivos analíticos), calentando inicialmente a 650°C para descarbonatar y posteriormente se llevan hasta una temperatura entre 800°C y 1000°C, hasta obtener una reacción completa.

ii).- ZrO₂-P₂O₅

En 1954 Harrison y Co. (5) reportan la existencia de dos compuestos de fosfato de zirconio: el que llaman "normal" $2rP_2O_7$ (ZP) con una inversión reversible a 300°C y que se disocia en un compuesto zirconilo $(ZrO)_2P_2O_7$ (Z_2P) a 1550°C, con pérdida simultanea de P_2O_5 como vapor. La forma de ZP a temperatura ambiente es cúbica con un índice de refracción de 1.657 \pm 0.003. El compuesto zirconilo es estable a temperaturas altas, alrededor de 1600°C, y está caracterizado por un coeficiente de expansión térmica bajo. Investigan 3 composiciones con d<u>i</u> ferentes relaciones de ZrO_2 : P_2O_5 , la 1:2, 3:1, 3:2, y mencionan que el resultado es mezcla de las 2 fases ZP y Z_2P . Las muestras se preparan a partir de oxicloruro de zirconio y ácido ortofosfórico, las geles obtenidas se secan a 110°C y se calcinan a 1000°C durante 10h en

crisoles de platino.

En 1964 Sclar y Co. (6) identificaron la fase cúbica ZP obtenida por Harrison y Co. a partir del compuesto ZrP_2O_7 . $2H_2O$. El material se somerió a pruebas de presión de 25 kbars y 1000 kbars, a temperaturas de 750 °C y 1000 °C obteniendo un compuesto polimorfo de alta presión de ZP.

Chaunac (4) en 1971 informó que a partir de la mezcla de ácido ortofosfórico (85%) y zirconio hidratado previamente disuelto en agua, a la temperatura de 240°C se forma un sólido que posteriormente enfría hasta obt<u>e</u> ner la precipitación total. Prepara el compuesto ZrP_2O_7 y reporta 3 variantes de dicho compuesto. La variante I que prepara Hauntefeulle y Margotte (18) a 200-250°C, con un valor en la celda a =8.245Å, la variante II con la característica de que su malla es el triple de la anterior. a = 24.735Å y que obtiene a partir de la variante I (a temperatura entre 300-900°C) y la variante III que obtiene a partir de I y II arriba de 300°C y que difiere de estas en que existe un desorden en las posiciones atómicas debido a un desorden en la agitación térmica.

Lavrov y Co. (17) reportan el compuesto $2r(PO_3)_4$, con dos modificaciones cristalinas, $2r(PO_3)_4$ I que es metaestable y la modificación estable $2r(PO_3)_4$ II y observan la transformación de $2rP_2O_7$ a $2r(PO_3)_4$ entre 430-500°C.

Alamo y Co. (22) hacen una revisión completa de las

fases cristalinas en el sistema $2rO_2 - P_2O_5$, las reacciones las llevan a cabo por dos métodos: formación de soluciones de geles y posteriormente calcinan y por mezcla de los sólidos $2rO_2$ y $NH_4H_2PO_4$.

Por reacción en el estado sólido obtienen solamente $2rP_2O_7$ y la forma de $2r_2P_2O_9$ de alta temperatura que llaman ϕ . En cambio por el método de geles obtienen a bajas temperaturas la forma $\alpha - 2r_2P_2O_9$ y $2r_3(PO_4)_4$, este filtimo que fue también reportado por Hasegawa Co. (21).

iii) Li₂0-P₂0₅

El diagrama de fases de éste sistema se observa en la figura 1(19). Se conocen 3 compuestos: LiPO_3 , $\text{Li}_4P_2O_7$ y Li₃PO₄ estos dos áltimos tienen polimorfos con tempera turas de transición de 645°C y 1167°C respectivamente. Se puede observar que los puntos de fusión para el LiPO₃ (LP) y de Li₄P₂O₇(L₂P) son bajos 656°C y 920°C respectivamente, en cambio para el Li₃PO₄ (L₃P) aumenta hasta 1206°C.

Existen otros reportes sobre este sistema (12,20)en los cuales solo difieren en los valores de las temperaturas de transformación y las temperaturas de fusión para L₂P y L₃P.

- 11 -

3.- COMPUESTOS TERNARIOS.

Se han hecho varios estudios sobre la preparación de los fosfatos de zirconio con metales alcalinos y alcalino-térreos. Estás investigaciones se han basado solamente en el estudio del efecto y de los mecanismos de intercambio iónico, los cuales se realizan en solución acuosa a partir de zirconio amorfo de la forma α de $2r(HPO_4)_2$. $2H_2O$ (e-ZP) (17) que se hace reaccionar con los hidróxidos de los diferentes metales.

Torraca y Co. (8) reportan tres compuestos de litio que obtienen a partir de la forma cristalina d-ZP Dos de ellos son compuestos hidratados. Li₂Zr(PO₄)₂.4H₂O (f<u>a</u> se F) y Li₂Zr(PO₄).H₂O (fase H) y el tercero es una forma anhidra, a 300°C, cuya composición corresponde a Li₂Zr(PO₄)₂(fase I), con una relación Li₂O:ZrO₂:P₂O₅ (1:1:1). Posteriormente Clearfield y Troup (17) obtienen el mismo compuesto 1:1:1, reportado por Torraca a partir de la dehidratación de una de las formas hidratadas, de la fase F, además obtienen otra fase Li Zr₂(PO₄)₃ de com posición (1:4:3 de Li₃O:ZrO₂:P₂O₅) llamada la fase J, por medio de un tratamiento térmico de 800°C a partir de dos compuestos que contienen diferente cantidad de agua de hidratación, las fases F y H.

Dyer y Co. (9) realizan un estudio por análisis térmico diferencial de la fase hidratada $\text{Li}_2\text{ZrP}_2O_8.2.1$ H₂O. El termograma presentó dos cambios endotérmicos a 320°C y 350°C que los relacionan con las correspondientes fases anhidras I, J obtenidas por Clearfield y - Troup. En este trabajo reportan el patrón de difracción de rayos-x del compuesto $\text{Li}_2\text{Zr}(\text{PO}_4)_2$. Sobre la fase J (LiZr_2P_3O_{12}) que Clearfield y Troup obtuvieron, Sljuick (10) lo obtiene por primera vez en 1967 realizando una síntesis en estado sólido, utilizando B₂O₃ como fundente y lavándolo posteriormente con una solución 1:1 de HC1.

Hong (1,2) realiza un intercambio iónico a partir del compuesto equivalente con sodio, $NaZr_2P_3O_{12}$, mide solamente los parámetros de la celda.

Taylor y Co. (7) preparando nuevos conductores iónicos realizaron una reacción en estado sólido a partir de los óxidos correspondientes y reportaron dos fases polimórficas de $\text{LiZr}_2P_3O_{12}$. La forma romboédrica distorsionada (de baja temperatura), la cual sufre una transformación a 1300°C y pasa a la forma no distorsionada. Sin embargo, solamente reporta el patrón de difrac ción de la forma de alta temperatura, mencionando que la otra fase es muy parecida.

4. DIAGRAMAS DE FASES

Los diagramas de fase son una representación cl<u>a</u> ra y concisa del equilibrio de compuestos, siendo un in<u>s</u> trumento indispensable para caracterizar sistemas cerám<u>i</u> cos. En ellos se encuentra la composición de cada una de las fases presente, el número de fases y la cantidad de cada una de ellas en el equilibrio.

Se utilizan para determinar los cambios de composición por efectos de temperatura y como afectan esos cambios a los procesos de cristalización.

El concepto de equilibrio es muy importante para el estudio de sistemas en el estado sólido. Un sistema se encuentra en el equilibrio si mantiene un equilibrio té<u>r</u> mico, mecánico y químico. La condición para poder alcanzar este equilibrio es que la energía libre sea la mínima, G=O.

Para saber si experimentalmente un sistema se encuentra en el equilibrio, existen varios métodos para d<u>e</u> terminarlo, los cuales pueden dividirse en 2 clases gen<u>e</u> rales: los métodos estáticos y los métodos dinámicos.

El método dinámico estudia el cambio de propiedades de un sistema cuando las fases aparecen y desaparecen con la temperatura, siendo el más común el análisis térmico diferencial (ATD).

En el método estático se desea analizar los procesos de cristalización a temperaturas mayores del solidus

- 15 -

que ocurren a diferentes composiciones variando la tempe ratura. Para ello una muestra se somete a cierta tempera tura y se enfría bruscamente en mercurio (a una velocidad de 500°/seg), de esta manera, se podrán observar a temperatura ambiente las reacciones que ocurren a altas temperaturas.

Para poder entender y estudiar los diagramas de fases es necesario conocer la regla de las fases de Gibbs, que está dada por la siguiente ecuación:

$\mathbf{P} + \mathbf{F} = \mathbf{C} + \mathbf{2}$

P-es el número de fases presentes en el equilibrio
F-es el número de grados de libertad independientes
c-es el mínimo número de constituyentes necesarios para describir completamente las fases presentes en un sistema dado.

La presión de las fases sólidas y de las fases 1fquidas en sistemas en estado sólido, es insignificante en comparación con la presión atmosférica. Esto es, la presión de vapor es tan pequeña, que no es necesario con siderarla como una variable posible, siempre y cuando se estudien sistemas a presión atmosférica. Estos sitemas se conocen como Sistemas Condensados por lo tanto se ut<u>i</u> liza la Regla de las fases Condensadas: P + F = C + 1

En un sistema ternario hay 3 componentes y por la regla de las fases condensadas se necesitan 3 variables independientes, temperatura y la composición de 2 componentes, para definir completamente el sistema. La temperatura se representa por un eje vertical perpendicular

16 -

al plano del triangulo.

Experimentalmente un diagrama de fases se construye de la siguiente forma:

Si se considera el triángulo formado por los compuestos A, B, C y dos fases binarias BC y AC.

Se procede a encontrar las líneas de unión y los triángulos de compatibilidad que existen en el equilibrio entre las diferentes fases y compuestos del siste-ma. En el diagrama la unión AC-BC existe en el equilibrio ya que no hay otra alternativa en esa parte del sistema. Para el resto del diagrama se puede escoger la formación de la línea B-AC Ó BC-A para saber que tipo de unión existe se preparan varias muestras con diferentes compuestos sobre dichas líneas. Si se obtiene como resultado una mezcla de los componentes BC-A, quiere decir que estos compuestos BC y A son compatibles y que la unión existe, y por lo tanto la unión B-AC no se forma.

Otra manera de comprobar los triángulos de compatibilidad, es hacer reaccionar composiciones dentro de los mismos para obtener en el equilibrio la mezcla de los 3 componentes que se encuentran en los vértices del triángulo, por ejemplo: Si tenemos una composición X (como se observa en la figura anterior), la cual se puede formar a partir de diferentes mezclas tales como:

A + BC + AC, AC + BC + B \circ A + B + C y se hacen reaccionar a diferentes temperaturas y dan como resultado que se forma la mezcla de las fases A + AC + BC esto nos indica que estos compuestos son compatibles en el equilibrio y que dicho triángulo es el que se forma.

Este procedimiento se sigue para encontrar las demás líneas de unión y triángulos de compatibilidad dentro del diagrama.

Puede haber además la posibilidad de que existan nuevas fases y/o compuestos dentro del sistema ternario lo cual complica el estudio del diagrama, debido a que el número de posibilidades en la formación de los triángulos aumenta a medida que aumenta el número de fases.

- 18 -

CAPITULO III

PARTE EXPERIMENTAL

Se prepararon diferentes composiciones en cantidades de 10 a 15 g, se pesó estequiométricamente: Li_2CO_3 , $\text{ZrO}_2\text{y NH}_4\text{H}_2\text{PO}_4$ en una balanza analítica ([±] 0.0005 g. de precisión), se mezclaron los reactivos en un mortero de ágata con acetona hasta su evaporación (Ω 15 minutos), con el objeto de formar una mezcla homogénea entre los componentes, reduciendo el tamaño de partícula y aumentando el área de contacto para facilitar de esta manera la reacción. Se hicieron reaccionar las mezclas en crisoles de platino, en muflas eléctircas a diferentes tem peraturas.

Debido a los reactivos fue necesario descomponer el NH₄H₂PO₄ para formar P₂O₅ con desprendimiento de NH₃ (empezando a calentar desde temperatura ambiente hasta 225-300°C aproximadamente), en esta parte la mezcla se encuentra en forma líquida y debido a los vapores de gas de NH₃ que se desprenden se forman burbujas dentro del crisol por lo que produce un derramamiento, por lo tanto, es necesario calentar lentamente y vigilar constantemente. Posteriormente se elevó la temperatura hasta 750°C-800°C para eliminar el CO₂ del Li₂CO₃ y finalmente se aumentó a 900°C.

Los óxidos que se utilizaron tienen propiedades muy diferentes, ya que el ZrO_2 es un material refractario y el P₂O₅ es un formador de vidrio a bajas tempera-

- 19 -

turas; la reacción de estos óxidos, aún con el Li₂O que es un fundente, es difícil de llevar a cabo, por lo tan to se probaron dos métodos de reacción en lo que sólo se variaba la velocidad de calentamiento. En el primero se efectuó el desprendimiento del HN₃ y CO₂ con tiempos len tos, aproximadamente de 1 a 2 días para cada uno, y posteriormente se dejó reaccionar a 900-1000°C hasta 1 ó más días para obtener el equilibrio. En el segundo método se hizo el desprendimiento en tiempos cortos de 4 a 6 horas para elimianr el NH₃ y de 2 a 4 horas para eliminar el CO₂, completando la reacción a 900°C en 12 horas.

Las reacciones que se llevaron a cabo son las siguientes:

2 NH4H2PO4	225	- 300°C	$P_2O_5 + 2$	NH3	+ 3 H ₂ 0
					•
Li ₂ CO3	750	- 800°C	$Li_{2}0 + CC$) ₂	

Este tipo de calentamiento se efectuó en muflas, tipo Thermolyne (modelo 1500 de Sybron Co.) con una precisión de $\frac{+}{30}$ 30°C.

Una vez obtenidos los compuestos con la composición deseada, se hicieron reaccionar las mezclas a diferentes temperaturas, empezando desde 1000 hasta 1450°C con variaciones aproximadamente de 50 - 100°C, si en alguna muestra se observaba un cambio se regresaba a la temperatura original (900°C) para observar si existía reversibilidad, ésto se realizó a diferentes tiempos y con diferentes tipos de enfriamiento.

20 -

Los tiempos cortos eran en general de 5-15 minutos de reacción y los tiempos largos desde 12 horas hasta varios días de reaccion.

Uno de los métodos comunes utilizados para el enfriamiento, es realizarlo en forma brusca, para obtener a temperatura ambiente las fases que existen a temperaturas altas. De esta forma, no se permite cristalizar otras fases diferentes a las que existen a altas temperaturas. Esto se realizó metiendo el crisol de platino en una mezcla de agua líquida /sólida cuidando de que ésta no entre dentro del crisol.

El otro método fue un enfriamiento lento, se dejaba enfriar el crisol afuera de la mufla a temperatura ambiente, este método se utilizó para observar si había alguna diferencia respecto al anterior.

Estas reacciones se llevaron a cabo en una mufla Lindberg (modelo 1500), con una precisión de \pm 5°C.

Las muestras se analizaron después de cada tratamiento térmico, por difracción de rayos-X por el método de polvos, utilizando la cámara de foco fino Hagg-Guinier (Philips) con radiación de Cu K_m. Para medir el espaciamiento, <u>"d"</u>, entre los planos se utilizó KCl y SiO₂ como patrón interno estándar y las películas se analizaron en un microdensitómetro utilizando un equipo diseñado y construído por Brian Cooksley en Aberdeen.

Las muestras también se analizaron con el microsco-

21

pio petrográfico para buscar la presencia de vidrio (Olympus Tokyo POM 200585), éstas se muelen para obtener un tamaño de grano de 5-50, y se colocan en un por taobjetos con benceno para que el fnice de refracción sea similar al de los cristales y evitar así la dispersión de la luz. En este tipo de microscopios se puede observar la fase vítrea y las fases cristalinas; éstos. **filtimos** son anisotrópicos, o sea propagan la luz en todas direcciones, dividiendo la luz monocromática en dos rayos polarizados que siguen diferentes velocidades, es tos cristales son birrefrigentes y en ciertas direcciones de propagación no ocurre la dobre refracción (ejes opticos). Cuando una muestra de este tipo se observa en el microscopio, la luz que llega al polarizador se divide en dos rayos diferentes, uno es eliminado por el analizador y el otro llega al ojo del observador y por tanto se pueden observar las fases cristalinas. A diferencia de los vidrios que se comportan como los critales. cúbicos, o sea son isotrópicos con respecto a la propagación de la luz, la luz transmitida por el polarizador es eliminada por el analizador y en este caso no se observa la fase vítrea.

Se hicieron estudios para comprobar la fusión. Se formaron pastillas deny 9 mm de diámetro y con un espesor deny 1 mm, en aquellas muestras que así lo requirieron. Se colocaron en un ladrillo refractario, hasta una temperatura de 1450°C, que es la temperatura más alta que alcanza la mufla, y no se observó fusión en ninguna de ellas, solamente sinterización.

También se utilizó el método de Análisis Térmico - 22 - Diferencial, en donde se registra la absorción o el des prendimiento de energía que sufre una sustancia con res pecto a la temperatura, con el objeto de determinar los cambios de fases y sus temperaturas. Aún cuando no se de la información del tipo de reacción que se lleva a cabo, se utiliza el método de difracción de rayos-X para la identificación de las fases presentes junto con el microscopio polarográfico.

23

CAPITULO IV

RESULTADOS Y DISCUSIONES

i) Sistema Li₂O-ZrO₂-P₂O₅

El diagrama preliminar que proponemos para el sistema $\text{Li}_2\text{O}-\text{ZrO}_2-\text{P}_2\text{O}_5$ se muestra en la figura 2. Es bastan te complejo por lo que no pudo determinarse completamente, se observa la formación de 13 triángulos de compatibilidad y la extensión de dos regiones de soluciones sólidas a partir de la línea $\text{Li}_2\text{ZrP}_2\text{O}_8-\text{Li}\text{Zr}_2\text{P}_1\text{O}_{12}$ hacia ZrO_2 y probablemente hacia ZP marcadas en la figura 2 por una serie de líneas dentro de estos triángulos.

La dificultad en la determinación del diagrama está en hacer reaccionar compuestos bastante refractarios como es en el caso de: ZrO_2 , ZP, LZ_4P_3 , (cuyos puntos de fusión son 2700°C para el primero y 1500°C para los segundos) con compuestos como P_2O_5 , LP y L_2P que funden a temperaturas muy bajas (650°C, 656°C y 920°C respectivamente).

Otro problema que se presentó durante el estudio de este diagrama, fue el de alcanzar el estado de equil<u>i</u> brio, ya que el P_2O_5 y Li₂O son materiales sumamente volátiles y al dejarlos reaccionar durante varios días se presentaba una pérdida de éstos, dando como consecuencia un cambio en la composición.

Por otro lado si se trabajaba a temperaturas bajas a partir de las fases binarias cuyos puntos de fusión

- 24

son bajos era difícil, obtener el equilibrio al hacerlos reaccionar con compuestos muy refractarios como (ZP, Z_2P , ZrO₂), Como consecuencia, fue difícil observar el equilibrio entre los compuestos: LZP-LZ₄P₃-ZP y LZP-ZP-L₂P δ LZP-LZ₄P₃-LP y LZ₄P₃-LP-ZP sin embargo, debido a los resultados obtenidos en las composiciones 13, 28 y 46 que muestran en la tabla No. VI a bajas temperaturas, proponemos que los triángulos que se forman en el equilibrio son LZP-LZ₄P₃-ZP y LZP-ZP-L₂P que están representados en la figura 2 con líneas discontinuas.

ii) LiZr₂P₃O₁₂ (fase P)

Se observó la formación de un compuesto nuevo con una relación de óxidos $\text{Li}_20: 4^2\text{rO}_2: 3P_2O_5$, se preparó por reacción en estado sólido utilizando varios métodos y d<u>i</u> ferentes materias primas (como se mencionó en el capítulo anterior).

La fase P se forma a una temperatura aproximada de 1000°C, se observa que termodinámicamente es una fase estable a temperaturas mayores de 1450°C.

Se midió el patrón de difracción de rayos-X de la fase P y difiere del reportado en la literatura (17), Tabla III Taylor compara su compuesto con el análogo de sodio, $NaZr_2P_3O_{12}$, nota además que para la fase de temperatura alta la aproximación en los valores de las distancias interplanares (11), tanto las calculadas como las ob servadas no son buenas, por lo tanto se puede observar lo incierto sobre este patrón de difracción de rayos-x y la asignación de dicha simetría.

- 26

TABLA III

PATRON DE DIFRACCION DE RAYOS-X DE POLVOS DE LIZr2P3012

F. A.S. E	p #	$LiZr_2(PO_A)_3$	(FASE C)**
d(Å)	1/1	d(Å)	1/1
6.3770 4.5638 4.3868 3.8202 3.7910 3.1831 2.8759 2.8586 2.6570 2.5571 2.5136 2.2754 2.1928 2.1773 2.1420 2.1107 2.0315 1.9957	60 100 80 70 70 60 60 60 60 60 60 60 60 60 60 60 60 60 50 15 15 15 15 15 15 15 15 10 15 16 17 18 10 15	6.31 4.507 4.421 3.800 3.155 2.8717 2.8436 2.5688 2.5523 2.2518 2.1590 2.1185 2.1038 2.0864 2.0067 1.9844 1.9254 1.9195 1.9000	1 60 100 90 80 85 40 75 70 65 12 10 10 12 10 40 12 10 50
1.9740 1.9586 1.9381 1.9081 1.8914 1.8804 1.8557 1.7858 1.7760 1.6986 1.6787 1.6665 1.6551 1.6465	10 10 10 15 20 10 5 30 15 10 5 20 20 20 10	1.8867 1.7657 1.7515 1.7139 1.6801 1.6753 1.6712	1S 40 2 25 50 60
1.5910 1.5834 1.5559 1.5506 1.5317 1.4923 1.4766 1.4576 1.4182 1.3335 Resulta	5 10 10 10 10 5 10 10 5 dos obtenidos en es	te trabajo, esta	ndar interno KC1

iii) Li₂ZrP₂O₈ (Fase Q)

Este compuesto tiene una relación de óxidos de Li_20 : $\text{ZrO}_2: \text{P}_2\text{O}_5$, es termodinámicamente estable. También se prepara usando una variedad de materias primas y diferentes caminos de reacción. En todos los casos se comprobaron los pesos, observándose que no había pérdida de éste en forma significativa debida a la volatilización de cualquiera de los óxidos.

El producto es una fase simple como se puede ver del patrón de difracción de rayos-x, Tabla IV, y descono cemos cual sea su celda unitaria.

El patrón de difracción de rayos-x de la fase Q no corresponde con los reportados en la literatura (8,9), d<u>e</u> bido a que el método utilizado en la formación de estos compuestos (ya sea, por deshidratación o intercambio ión<u>i</u> co), es muy diferente al empleado en este trabajo por lo que existe la duda sobre la composición de los compuestos reportados.

En este proyecto se utilizaron diferentes caminos de reacción en el estado sólido llegando a los mismos resultados, como se presenta a continuación.

a) $2NH_4H_2PO_4 + Li_2CO_3 + ZrO_2$, se calentó la mezcla a 200-800°C para la eliminación de los gases, reaccionando finalmente a 900°C (1-2 días).

b) $2NH_4H_2PO_4 + Li_2ZrO_3$, con elevación lenta de temp<u>e</u> ratura de 200 a 800°C y finalmente se llegó a 800-900°C

- 28 -

(1-2 dfas).

c) $\text{Li}_2\text{ZrP}_3\text{O}_{12}$ + Li_3PO_4 , esta mezcla fue directamente calentada a 900°C (1-2 dfas).

Se comprobó que no hubiera pérdida de peso en cada reacción, debido a esto podemos asegurar que la composición para la fase Q es $\text{Li}_2\text{ZrP}_2O_8$

Q sufre varias transformaciones a temperatura alta dependiendo de las condiciones de reacción, las cuales no pudieron ser caracterizadas por la presencia de una fusión parcial. Estos cambios se presentan a T 1125°C y son reversibles a 900°C durante Q12 horas.

Cuando se utilizaban tiempos cortos de reacción arr<u>i</u> ba de 1125°C se obtenfa una fase muy similar a P, y si la reacción se llevaba a cabo con tiempos de reacción largos ((y 2 hr) se obtiene una fase que llamamos T; posteriormen te si se aumenta unos cuantos grados la temperatura, se obtiene la fast T* y finalmente se forma la fase C arriba de 1250°C, que corresponde al patrón de difracción de rayos-X que reporta Taylor y Co. (7). Estas pruebas se hicieron enfriando lentamente en aire y rápidamente a 4°C (en agua + hielo), obteniéndose los mismos resultados.

En la figura 3 se pueden observar las diferencias en las posiciones e intensidades de las líneas de los patrones de difracción de rayos-x, que corresponden a los dif<u>e</u> rentes valores de las distancias interplanares y la dificultad que se presenta en la identificación de las diferentes fase. En la Tabla V, se muestran los patrones de difracción de rayos-x.

- 29

Hasta aquí solo se ha hablado acerca de las fases que pudieron ser caracterizadas por métodos de difracción de rayos-x.

Sin embargo se observa por análisis térmico diferencial (ATD) 3 cambios endotérmicos: a 850°C, 1050°C y 1200-1270°C. Este último es una banda ancha y extensa no-reversible, en cambio los dos primeros son reversibles y probablemente corresponden a otras dos fases: Q' y Q" respectivamente, que no se pueden observar debido a que su velocidad de formación es muy alta si se toma en cuenta que el ATD tiene una velocidad de calentamien to de 10° por minuto y la velocidad de formación reversible hacia la fase Q es también muy rápida, por lo que ni aún con enfriamiento brusco en mercurio se pueden obtener Q' y Q", ya que siempre se observa el patrón de d<u>i</u> fracción de rayos-x de la fase estable Q. El análisis térmico diferencial se muestra en la Fig. 4 y las reacciones que se llevan a cabo se presentan a continuación:

TABLA IV

E Q*		α -Li ₂ Zr(PO ₄)**			
)	1/1 ₁	d (Å)	² I/I ₁	d (Å)	1/I ₁
043	10	8.50	100	8.05	20
62	10	4.35	60 60	7.05	80
40	100	4.04	60	4.34	20
95	30 20	3.60	70	4.02	20
06	40	3.19	70	5.85 3.63	80
38	25			3.27	20
)4)3	10 10			3.14	20
8	25			2.95	60
5	25			4.1.3	40
)// X	15				
8	10				
2	30				
0	5				
8	10 10				
	40				
	15				
	10				
e en	1Ŏ				
	5 · · · · · · · · · · · · · · · · · · ·				
Na je se	5 20				
;	20				na di seconda di second Seconda di seconda di se
	20				
n de la composition de La composition de la c	20				•
	5				
	10				
) 공기 등 전 - 기계 등 전	10				
	5		م میں ایک کو کی جرائی ایک میں ا میں کا در ایک میں میں میں کا در ایک میں ایک		
	1Ō				
	25				
	40 10				
	Š				
	5		지 않는 것이 있는 것이 같은 것이 같다. 같은 것이 같은 것이 같은 것이 같이 같이 있는 것이 같이		
	5 10				
$\mathbb{P}_{1} \to \mathbb{P}_{1}$		(angla (-33) -			

Better and the Betrack many sector and the secto			an an tha an		A set of the
•					
191 1	0			•	
809 1	Ō				
723 11 (47 1)	D				•
566	5		1		
130 1	Ō	·		ing state in the second	
94 1()				
78 10).				
18				Anaplan in a start of the second s	-
66 1(95 1(
33 10					
		и. -			
esultados ob	tenidos en e	ste traba	ajo. estanda	ard interno	KC1
ver, et al	(9)				
)TTACA (8)					
511 aca (0)					
				galari - Galago Miri Karing Pelaku	
				Anna -	• Anna an
		- 34 -	루는 일상에서 가지 있다. 같이 있는 것이 같이 있는 것이 같이 있는 것이 있 같이 있는 것이 같이 있는 것이 없이 있는 것이 없이		
and the second			ション・ション・ション・ション		

TABLAV

PATRONES DE DIFRACCION DE RAYOS-X DE POLVOS DE LAS FASES T y T*

ASE	T	•	• •	FASE	T*
(Å)	1/1		-	d(Å)	1/1
7514	75			6 7570	7 5
5514	. /3	and a star of	ang ini	0.3370	33
2228	90			4.5014	45
4948	80			4.5009	100
4 504	90			4.4508	50
8021	90		a da ang ang ang ang ang ang ang ang ang an	3.8081	50
1557	100			3.1509	90
8730	50			3.1378	80
8499	60			2.8793	10
8347	50			2.8354	40
5672	60			2.6226	10
0036	20			2.6001	10
9582	15			2.5705	20
9394	20			2.2456	5
9179	20			2.1246	10
8984	20			1.9876	15
8907	20			1.9161	5
7743	20			1.9000	15
7586	15			1 8915	10
6961	20			1 7634	20
6960	20			1 7574	10
000U	1.0			1 7002	
5918	10			1 6070	
5/45	10			1.00/9	15
555/	10			1.0//3	23
5483	15			1.5/00	5
5405	20			1.5335	15
5335	20			1.5259	10
5247	15			1.4838	10
4922	15			1.4604	. 5
4853	10		a tana ang	1.4503	5
4773	10	an a		1.4160	5
4625	10			1.3978	5
4563	10			1.3876	5
4505	5			1.3812	10
4181	10			1.3720	10
4014	10				
2272	10				
2201	10				
2751	E IV	$(1,1) \in [0,1]$			
3631					
31/8	2				
2002	5				4.410 2.410 2.410
2777	5				
2088	5				
2033	5				

.

5 -

iv) Union LiZrP₂O₈-LiZr₂P₃O₁₂

En esta unión se prepararon varias composiciones por dos rutas: a) por reacción de los compuestos originales $NH_4H_2PO_4$, ZrO_2 y Li_2CO_3 y b) por reacción directa de los compuestos ternarios LZP y LZ_4P_3 . Los resultados de ambos caminos son esencialmente idénticos (Tabla IX), obteniéndose una serie de soluciones sólidas.

A temperaturas menores de 1125° C el patrón de difrac ción de rayos-x de las soluciones sólidas es muy parecida al de la fase Q, sin embargo, se observan cambios muy pequeños pero detectables en la posición de algunas de las líneas que corresponden a espaciamientos interplanares a valores de <u>d</u> bajos, este fenómeno ocurre sobre un interv<u>a</u> lo extenso de composiciones.

Dado que tanto $\text{LiZr}_2(\text{PO}_4)_3$ y Li_2Zr (PO₄) son ortofosfatos, parece ser que el mecanismo de reemplazamiento en la formación de la solución sólida es: 4 Li $+ - - > 2r^{4+}$, (sustitución de 4 iones de Li⁺ por uno de Zr⁴⁺).

De esta forma la composición de la solución sólida se puede escribir como:

$Li_{6-4x}^{2r}_{3+x}P_{6}O_{24}, 0 < x < 0.75$

Esto se corrobora debido a que la distancia típica para Li-O con Li en posición octaédrica, es 2.12 Å, que parecida a las distancias que corresponden al Zr-O de 2.12 Å (14). Además existen otros sistemas similares don de el mecanismo de reemplazamiento de la solución sólida es: 4 $\text{Li}^+ \longrightarrow \text{Ti}^{4+}$ (15,16).

A temperaturas > 1125°C, ocurre un desarrollo muy parecido al de la fase Q, en cuanto a las transformaciones a las diferentes fases T, T* y C. siendo éstas estables a temperatura ambiente, y reversibles, formando de nuevo Q_{gg} a 900°C (por 12 hr).

Podemos considerar que las reacciones que ocurren son como las que se presentan en la página 32

Un diagrama tentativo de la unión entre las fases P-Q se muestra en la fig. 5.

El estudio de estabilidad térmica hecho por análisis térmico diferencial de las soluciones sólidas mostró un desarrollo muy parecido al del compuesto Q.

 $Q_{55} = L_{i_{6}-4x} Z_{r_{3+x}} P_6 O_{24}$, $0 < X \le 0.75$

1.5. DIAGRAMA PRELIMINAR BINARIO DE FASES

- 39

CAPITULO V

CONCLUSIONES

Se estudió el diagrama de equilibrio de fases del sistema $\text{Li}_2\text{O-ZrO}_2\text{-P}_2\text{O}_5$ y se determinaron 13 triángulos de compatibilidad.

Se sintetizaron dos compuestos nuevos:

- LiZr₂P₃O₁₂ (fase P), que es una fase termodinámicamente estable a temperaturas mayores de 1450°C.
- Li₂ZrP₂O₈ (fase Ω) que presenta varias transformaciones polimórficas a altas temperaturas
 (1125°C), siendo las siguientes:
- T, T* y C que fueron observadas por difracción de rayos-x.
- Q' y Q" que se observaron solamente por análisis térmico diferencial d 850°C y 1044°C, respectivamente.

Se encontró que en la unión P-Q se forman una serie de soluciones sólidas cuya composición es $\text{Li}_{6-4x}\text{Zr}_{3+x}\text{P}_{6}^{O}\text{24}$ que se extiende dentro del sistema ternario hacia ZrO_2 y probablemente hacia ZrP_2O_7 .

BIBLIOGRAFIA

- 1.- H. Y-P. Hong, Mat. Res. Bull., 11 173 (1976
- 2.- J.B. Goodenough, H. Y-P. Hong and J.A. Kafalas Mat. Res. Bull.,<u>11</u> 203 (1976)
- 3.- J.L. Enrfquez, P. Quintana and A.R. West, Translation of the British Ceramic Society, Vol. 81, p. 17 No. 1, 1982.
- 4.- Michel Chaunac, Bulletin de la sociéte Chimique de France 1971, No. 2. P. 424.
- 5.- D.E. Harrison, H.A. Mckinstry and F.A. Hummel, Journal of the American Ceramic Society Vol. 37 No 6 p. 273.
- 6.- C.B. Sclar, L.C. Carrison and C.M. Shartz, Natura November 7, p. 573 (1974).
- 7.- B.E. Taylor, A.D. English and T. Berzins, Mat. Res. Bull, 12, pp. 171-182 (1977).
- 8.- E. Torracca, J. Inorg. Nucl. Chem. Vol. 31, 1187 (1969).
- 9.- A. Dyer, D. Leigh and Ocon, J. Inorg. Nucl. Chem. Vol. 33, 3141 (1971).
- 10.- M. Sljukic, B. Matkovic, B. Prodic and S. Scavnicar, Croat. Chim. Acta. Zagreb. <u>39</u>, 145 (1967).
- 11.- Joint Committe for Powder X-Ray Diffraction standards Swarthmore, U.S.A. Card No. <u>30</u>-777.
- 12.- M.M. Markowitz, R.F. Harris and W.N. Hawlwy, J. Inorg. Nucl. Chem., 22, 293 (1961).
- 13.- L.S. Dent Glasser Crystallography and its applications Edit . Van Nostrand Reinhold (1977) p. 26.

- 11 -

- 14.- R.D. Shannon and C.T. Prewitt, Acta Cryst. <u>B25</u> 925 (1969); B26 1046 (1970).
- 15.- G. Izquierdo and A.R. West, Mat. Res. Bull., <u>15</u> 1955 (1980).
- 16.- A.R. West, J.Mat. Sci. Lett., 16 2023 (1981)
- 17.- A.V. Lavrov, L.S. Guzeeva, P.M. Fedorov and I.V. Tanananev, Inorg. Mat. <u>10</u>, 729 (1974)
- 18.- P. Hautefeuille et J. Margottet. C.R., 1883, <u>96</u>, 1052
- 19.- R.K. Osterheld, J. Inorg Nucl. Chem., <u>30</u> (12) 3174 (1968).
- 20.- T.Y. Tien and F.A. Hummel, J. Amer. Ceram. Soc., <u>44</u> (5) 206 (1961).
- 21.- Hasegawa and Tomita, Bull. Chem. Soc. Japan <u>43</u> p <u>3011</u> (1964).
- 22.- J. Alamo and R. Roy Communications of the American Ceramic Society C-80 May (1984).

- 12 -

TABLA VI

RESULTADOS OBTENIDOS DE LAS DIFERENTES COMPOSICIONES DENTRO DEL SISTEMA Li₂0-P₂0₅-Zr0₂.

Número	Composición Li ₂ 0:2r0 ₂ :P ₂ 0 ₅	Temperatura (°C)	Tiempo (Hr.)	Resultados
2	3:47:23	1000	12	Q+L ₃ P+Z
		1100	12	$Q+Z+L_zP$ (trz)
		*1150	7	$C+Q+Z(trz)+L_3P(trz)$
		*1250	4	C+Q+Z+L _z P
		1350	2	C+Z+L(trz)
		1450	4	C+Z+L(trz)
		900	12	C+Z+L ₃ P
3	1:4:5	475	12	ZP+LP
		560	12	ZP+LP
		560	120	ZP+LP(trz)
•		600.	12	ZP+LP(trz)
- 4	1:15:9	*1000	15	P+Q+ZP+Z(trz)
		1200	12	P+ZP+Z ₂ P
		1350	12	P+Z2 ^{P+ZP}
6	5:4:1	1000	0.25	LZ+Z+L _a P
		1200	12	LZ+Z+L ₃ P

GHELO	Composición Li ₂ 0:ZrO ₂ :P ₂ O ₅	Temperatura(°C)	Tiempo(Hr.) Resultados
7	5:2:3	*800 *800 *850 *980 **1100 1150	12 72 12 6 4	Q+L ₂ P+L ₃ P(trz) Q+L ₃ P+L ₂ P(trz) Q+Z+L ₃ P Q+L ₃ P+Z LZP+L ₃ P+Z
13	0.35:0.30:0.35	500 600	0.33 24 192	Q+L ₃ p Q+L ₂ P+ZP(trz) Q+L ₂ P+ZP(trz)
4	0.31:0.37:0.31	1000 1200 1350 ^S 1450	16 2 0.167 0.167	Q+Z T+Z T+Z T+Z
0.	11:0.50:0.39	1000	12	P+Z P
0.:	10:0.52:0.37	1350 1450	72 1	P+Z2P P+Z2P
0.7	1:0.04:0.24	900 1050 1200	12 12 0.75	L ₃ P+Z L ₃ P+Z L ₃ P+Z
		1450	0.083	L ₃ P+Z

Número	Composición Li ₂ 0:ZrO ₂ :P ₂ O ₅	Temperatura(°C)	Tiempo(Hr.)	Resultados
20	0.72:0.06:0.22	900	12	L ₃ P+Z
		*1050	12	L ₃ P+LZ+Z(trz)
	•			andra Ar Charles Ar Angeland and Ar Angeland
21	0.74:0.05:0.21	900	12	L ₃ P+L ₂ Z
24	2:1:1	900	6	Q+Z+L ₃ P
		950	24	Q+Z+L ₃ P
		+1000	6	Q+Z+L 3 ^P
25	4:3:2	980	12	Q+L ₃ P+Z
		1000	48	Q+L ₃ P+Z
		*1150	24	Q+L ₃ P+Z+L(trz)
26	6:1:3	730	480	$L_2^{P+L_3^P(trz)+Q}$
		800	24	$L_2^{P+L_3^P(trz)+Q}$
		850	12	Q+L ₃ P+L ₂ P(trz)
		980	6	Q+L ₃ P+L ₂ P(trz)
			•	
27	5:1:4	550	192	LP+Z P+L ₂ P(trz)
		a*600	24	LP+L2P(trz)+Z+L(trz)
28	3:3:4	700	48	Q+ZP+L ₂ P
		- 45, -		

化合合物 计分子 建甲基甲酮 法国际管理研究

úmero	Composición Li ₂ 0:ZrO ₂ :P ₂	Temperatura(°C) ⁰ 5	Tiempo(Hr)	Resultados 🕯
31	1:2:2	*500	360	ZP+LP
	*	s*700	12	ZP+Q
	•	*700	120	Q+L2P
32	3:5:2	900	12	Q+Z+L3P
att Santa Maria		1000	5	Q+Z+L ₃ P
		^{\$} 1150	5	Q+Z+L ₃ P
		\$+1200	6	Q+Z+L ₃ P
		^{\$+} 1300	5	C+Z+L ₃ P(trz)
		^{\$} 1450	0.167	C+Z+L ₃ P(trz)
33	2:2:1	900	12	Q+Z+L ₃ P
1		1000	5	Q+Z+L ₃ P
		s ₁₁₀₀	6	L ₃ P+Q+Z
		s ₁₁₅₀	5	L ₃ P+Q+Z
		s+1200	6	Z+L ₃ P(trz)+Q(trz)
		+1300	5	Z+L ₃ P(trz)+Q(trz)
35	15:60:25	900	12	Q _{ss} +Z
		980	12	Q _{ss} +Z
		1150	• 6	Q _{ss} +Z
		*1250	5	Q(trz)+C+Z

のからないないが、「ないないないから、いいとうためは、いいいというないない、「ないい」といういいなんないないかいというというできたのであったが、

lúmero	Composición Li ₂ 0:Zr0 ₂ :P ₂ 0 ₅	Temperatura(°C)	Tiempo(Hr)	Resultados
35		1350	12	т [*] +Z
		1450	4	T+Z
		900	12	T*+Z
		1450	0.167	C+Z
36	1.14.5	*1250	5	D+7+70+7 D
		1350	12	P+Z ₂ P+Z
		1450	96	P+Z2P+Z
37	24:43:33	930	6	0. + Z
		.980	12	rss - Q _{ss} +Z
		1050	12	Q _{ss} +Z(trz)
		1100	12	Q _{ss} +Z(trz)
		1150	5	Q _{ss} +Z(trz)
		s1250	4	T+Q _{ss} (trz)
		⁵ 1350	2	T
		1450	4	C+Z
40	30:33:37	*600	12	LP+ZP+Z
	•	*750	12	ZP+Z
		*600	360	LP+ZP+Z
		\$*750	12	Q+ZP

Número	Composición Li ₂ 0:ZrO ₂ :P ₂ O ₅	Temperatura(°C)	Tiempo(Hr)	Resultados
43	3:1:2	^{\$} 750	12	Q+L_p
		\$750	92	2 Q+L ₂ P
		800	12	2 Q+L ₂ P
	•	730	312	Q+L ₂ P
44	1:7:2	950	12	0 +7
		1000	12	*ss ~ 0_+z
		1 150	0.5	Q _{aa} +Z
		1200	0.167	Q _{SS} +Z
45	2:4:3	950	48	Q _{ss} +Z(trz)
		1000	6	Q _{ee} +Z(trz)
		1100	6	$Q_{ee} + Z(trz)$
		1150	3	$Q_{ss} + Z(trz)$
		*1200	0.167	Q _{ss} (trz)+z
		1350	0.167	T*+Z
		1450	0.167	T*+Z
		1200	12	T*+Z
		900	12	Q _{ee} +Z
		1450	0.167	* T +Z

.

Número	Composición Li ₂ 0:ZrO ₂ :P ₂ O ₅	Temperatura(°C)	Tiempo(Hr)	Resultados
		· · · · · · · · · · · · · · · · · · ·		
46	2:1:2	475	12	L ₂ P+ZP
		560	12	L ₂ P+ZP
		560	120	ZP+L2P

 $P_{ss} = Li_{6-4x}Zr_{3+x}P_{6}O_{24} , x=0; Q = Li_{2}ZrP_{2}O_{8} ; P = Li_{2}Zr_{4}P_{6}O_{24}; L_{3}P = Li_{3}PO_{4}$ $L_{2}P = Li_{4}P_{2}O_{7}; LP=LiPO_{3}; LZ = Li_{2}ZrO_{3}; L_{2}Z=Li_{4}ZrO_{4}; Z=ZrO_{2}; ZP= ZrP_{2}O_{7}$ $Z_{2}P = Zr_{2}P_{2}O_{9}; T, T^{*} y C \text{ son fases de alta temperatura de T}$ *-No se alcanzó el equilibrio
s-Muestra sinterizada
+-Muestra enfriada en mercurio
a-Muestra enfriada en agua líquida/sólida.

49 -

TABLA VII

L120.4Z=02.3P205

IUESTRA	TEMPERATURA (°C)	TIEMPO (HR)	RESULTADOS
4	110	4	
1:4:3	300	12	
Zr02: P205	775	18	
2 2 3	900	3	
	1 000	0.25	7 + 7P
	1 200	12	р — — — — — — — — — — — — — — — — — — —
a ta			
5	290	6	
:4:3	400	6	
	750	12	
	950		
	1 350	12	ß
	1 000	12	Ð
7	100		
1-4-2	100	10	
1.7.J	170	12.	
	5/0	0	
	500	10	0, 70
1997 - 1997 -	000	18	Q + 2P
	900	12	Q + ZP
	1 OCC	12	[12] P. B. Barris, M. Barris
	1 000	2	P
	1 000	5	P
	900	36	Provide a set P Constant of the set of th

L120.4Z-02.3P205

R 4

MUESTRA	TEMPERATURA (°C)	TIEMPO (HR)	RESULTADOS
8	900	12	T,
Z + 3ZP	900	24	T#
	900	72	T * 1
	900	24	D T T
0	000	10	.
	500	42	
ZP+L3P+Z	900	24	Τ
			ter station and station
			영상은 이 가지 않는 것을 가능하게 같은 것이 가 많은 것이 가지 않는 것이다.
이는 문화를 위한다. 이는 것 같아요. 이는 것			
		승규가 안 가 많은 것도 것을 것 같아. 아파가 다 나라고 있는	n British an

	Li2ZrP208	TABLA VIII	
UESTRA	TEMPERATURA(°C)	TIEMPO(Hr)	RESULTADOS
10	1010	12	0
1:1:1	175	12	r D
20:Zr02P205	250	12	4
	390	60	0
	460	24	4
	580	24	Q 0
	700	24	Ŷ
	\$*1100	0.17	
	s+1150	0.17	
	s+1200	0.17	
	s.+1350	0 17	
	^{\$+} 1450	0.17	
		V.1/	
1997 - 19	100		
	320	10	Q
	550	12	Q
	720	0	Q
	730	12	Q
	950	34	Q
	1000	6	Q
	1100	6	P
	1150	3	Ρ
	1200	0.17	Ρ
	1350	0.17	ρ.
	1450	0.17	
	900	12	9
		12 -	

MUESTRA	TEMPERATURA(°C)	TIEMPO(Hr)	RESULTADOS
15	170	12	-
n an an Arrange an Arrange An Arrange an Arrange Arrange an Arrange an A	500	6	-
	700	12	-
	+900	36	Q
	+1100	0.17	Q
	+1150	0.17	Q
	+1250	0.17	Т
	+1350	0.17	T
	+1450	0,17	Ρ
	800	12	Q
	1200	12	DAT
	D1 200	12	
	D1 200	12	C+7(+rz)
	2200	70 24	G+Z(GZ)
	ουυ	47	C+2 (C1 2)
	170	10 .	
10	170	۲ ۲	
	350	10	
	700	16	
	800	48	
	1100	0.17	P
	1250	0.17	рана Р аналана (1996) 1996 - Салана Салана (1996) 1997 - Салана (1996)
	*1350	0.17	P
	*1450	0.17	P.

			and and a second se
MUESTRA	TEMPERATURA(°C)	TIEMPO(Hr)	RESULTADOS
16	+1200	12	P
	c1200	12	т
•	b 800	24	P+Q
17	900	36	Q
LZ4P3+L3P	^{\$+} 1100	0.17	Q
	^{\$+} 1150	0.17	0
	^{\$+} 1250	0.17	P+T
	^{\$+} 1350	0.17	P+T
	s+1450	0.17	P+T
	800	12	0
	^{\$+} 1200	12	T
	sb+1200	12	C
	sb+1200	24	C
10			
	300	2	
	800	10	Q
	1200	0.17	Ρ
	800	2	P+Q
	800	12	Q
20	210	16	
	500	8	
	800	28	9

- 54 -

JESTRA	TEMPERATURA(°C)	TIEMPO(Hr)	RESULTADOS
20	1200	0.17	T *
	800	2	τ.
	800	12	9
22	250	4	
	800	8	
	900 81000	4	Q
	a1100	1	Q Q
	^a 1150	1	T+Q
	900 900	1 48	Q Q
23	100	3	
	225	12	
	500	• 12	••••••••••••••••••••••••••••••••••••••
	800	12	
	930	24	0
	€#1000 a#1100	12	Q Q
	a# 1150	2	0+T
	900	48	Q

- 55 -

IUESTRA	TEMPERATURA(°C)	TIEMPO(Hr)	RESULTADOS
23	^{a#} 1200	0.33	T [*] +Q(trz)+L(trz)
	900	12	Q
	a#1250	0.25	C+L(trz)
	# 900		Q
	#1250	0.25	C+L(trz)
	# 900	12	Q
	a#1350	0.08	C+L(trz)
	e # 900	12	Q
	a#1450	0.08	T [*] +L(trz)
	# 900	12	Q
	a#1400	0.08	T [#] +Q(trz)+L(trz)
	# 900	12	Q
24	# 900	12	C+L ₃ P(trz)
L ₃ P+LZ+3ZP	# 900	36	T [*] +L ₃ P(trz)
	#1000	12	C+L ₃ P
	#1100	12	C+L ₃ P

Q= Li₂ZrP₂O₈; P=Li₂Zr₄P₆O₂₄; L₃P= Li₃PO₄; L=liquido; Z=ZrO₂ T,T^{*} y C son fases de alta temperatura de Q *-No se alcansó el equilibrio S Muestra sinterizada +-Muestra enfriada en mercurio a-Muestra enfriada en agua b Pérdida de peso C-Muestra tomada de la original. LI6-4xZR3+xP6024

UESTRA	TEMPERATURA (°C)	TIEMPO (HR)	RESULTADOS
= 0.25	225	4	
	500	6	
37:0.34	800	4	
$r0_{2}:P_{2}0_{5})$	900	16	Q
L 2 J	1 000	1	Q
	1 100	1	Q
	1 150	1	T + P
	900	. 12	Q
	950	48	Q
	1 050	48	0
	1 130	6	Q + L
	1 130	12	T* + L/+++
	900	12	Q (U72)
	1 170	4	$T + L_{f+n-1}$
	5	19 19 19 19 19 19 19 19 19 19 19 19 19 1	((72)
	300	10	Q.
	1 1/0	16	(trz)
	900	12	Q
• 0.50	225	4	
	500	6	
1:0.35	800	4	
	900	16	0
	1 100		P
	900	12	0
	1 150		P
	950	48	0
	1.050	48	
•			

57

UESTRA	TEMPERATU	IRA (°C)	TIEMPO (HR) RESULTADOS
= 0.5	1 130) ••••	6	T + P
	900)	12	Q
	sl 130) <u> </u>	12	P
	900) – practice stati	12	Q
4	1 170		4 1	T + P
	900		12	Q
	1 170	 A second sec second second sec	12	Т*
	900	n an trainn Tha an trainn an trainn	12	Q
X = 0.75	225		4 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	500		6	
	800		4	
.45:0.36	900		16	Q + P
	1 000		1. 1	Q + P
	1 100	l -	1	Р
	900		12	P + Q
	1 150		1	Р
	950		48	Q
	1 050) • • • • • • •	48	P + Q
	1 130		6 %	Ρ
	1 130	n an thu	12	P P
	900) i station de la composition de la comp	12	Q
	. 1 170		5	P
	900		12	Q
	1 170	he da ser	12	and the Property of
	000		1	

X = 0.35 900 48 Q g^1 100 1 Q g^1 100 1 Q g^1 150 3 T + Q(t) g^1 130 7 Q g^1 130 12 Q + T 1 130 7 Q 1 170 4 C 900 12 Q 1 170 12 C + L(t) 900 12 Q 1 170 12 C + L(t) 900 12 Q 1 170 12 C + L(t) 900 12 Q 1 130 1 Q 2P+0.6LZ_4P_3 s ¹ 150 3 1 130 6 Q + T 1 130 6 Q + T 900 12 Q 1 130 6 Q + T 900<	MUESTRA	TEMP	ERATURA (°C)	TIEMPO	(HR)	RES	JLTADOS
$X = 0.6$ $IZP+0.35LZ_4P_3$ $\begin{cases} s1 100 \\ s1 150 \\ s1 130 \\ s1 12 \\ q + T \\ s1 0 \\ s1 130 \\ s1 12 \\ q + T \\ s1 130 \\ s1 12 \\ q + T \\ s000 \\ 12 \\ q \\ q \\ $	X = 0.35	9	00	48		*	Q
$X = 0.6$ $P+0.6LZ_4P_3$ $\begin{cases} s^1 100 \\ s^1 150 \\ 950 \\ s^1 150 \\ 950 \\ s^1 130 \\ s^1 130 \\ 12 \\ 900 \\ 12 \\ 900 \\ 12 \\ 0 \\ 1170 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 1 \\ 0 \\ 12 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		s ¹⁰	00	1			Q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		s ^{1 1}	00	· 1			Q
X = 0.6 $y = 0.6$ $y =$.ZP+0.35LZ4P3	s ^{1 1}	50	and the second			Q
$X = 0.6$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		s ^{1 1}	50	3			T + Q(tr
$X = 0.6$ $\begin{cases} $		9	50	48			Q
$X = 0.6$ $P+0.6LZ_4P_3$ $\begin{cases} s^{1} 130 & 7 & 0 \\ s^{1} 130 & 7 & T^{*} \\ 900 & 12 & 0 \\ 1 170 & 4 & C \\ 900 & 12 & 0 \\ 11 & 0 \\ 1 $		s ¹ 0	50	48		يرية (1992) 1945 - موريدي	Q
X = 0.6 $1 130$ 12 $1 170$ 900 12 0 $1 170$ 900 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 12 12 12 12 12 12 12		s ^{1 1}	30	7			Q
$X = 0.6$ $P+0.6LZ_4P_3$ $1 130$ $1 170$ 900 $1 170$ 900 12 4 0 12 0 12 0 12 0 48 0 1 0 0 12 0 0 12 0 0 12 0 0 12 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 12 0 0 12 0 0 1 0 0 12 0 0 1 0 0 1 0 0 12 0 0 0 12 0 0 0 12 0 0 0 12 0 0 0 0 0 0 0 0 0 0		s ¹ 1	30	12			Q + T
$X = 0.6$ $P+0.6LZ_4P_3$ $I = 0.6$ $I = 000$ $I = 12$ $I = 0$		11	30	. 7			T*
X = 0.6 $Y = 0.6$ $Y =$		9(00	12			0
X = 0.6 Q $1 170$ 900 12 Q $C + L(tr)$ Q 12 Q Q 12 Q Q 12 Q Q 1 2 Q 1 2 2 2 2 2 2 2 2 2 2		11	70	4			C
X = 0.6 $Y = 0.6$ $Y = 0.6$ $1 100$ $1 100$ $1 100$ $1 100$ $1 00$ 1		91	00	12			Q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	70	12		e di setta di se Setta e la	C + L(tr
X = 0.6 900 1 100 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0		9(00	12			Q
$X = 0.6$ 900 1 100 1 150 2P+0.6LZ_4P_3 S^1 150 3 1 050 48 0 0 T* + 0(1 48 0 0 1 130 6 0 + T* 0 0 + T* 0 0 0 1 130 12 0 4 0 0 + T 0 0 0 1 2 0 0 + T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
$X = 0.6$ 900 1 100 1 150 2P+0.6LZ_4P_3 S^1 150 S^1 150 S^1 150 48 Q T* + Q(1) 48 Q T* + Q(1) 48 Q 1 1050 48 Q 1 130 6 Q + T* Q + T 900 S^1 170 4						a the second	
X = 0.6 900 1 100 1 1 0 0 1 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X = 0.6	9(00	48			Q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11(00	1			Q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1	50	1			Q
950 48 Q 1 050 48 Q 1 130 6 Q + T* 1 130 12 Q + T 900 12 Q s1 170 4 Q + T	2P+0.6LZ4P3	s ^{1 1}	50	3			T* + Q(ti
1 050 48 Q 1 130 6 Q + T* 1 130 12 Q + T 900 12 Q s1 170 4		9	50	48		· ·	Q
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 0	50	48		•	Q
1 130 900 s ¹ 170 12 4 Q + T Q Q + T		11	30	6			Q + T*
900 s ¹ 170 4 Q + T		1 1	30	12			Q + T
s ¹ 170		90	00	12		•	Q
		s ^{1 1}	70°	.4		Frank Start	Q + T
귀엽 지역 같은 것 않는 것 같은 것 이야 한 것이 같은 것 같은 것 같은 것 같은 것 같다.							
가슴은 상태에는 병원 입문에 가지 않는 것이 가지 않는 것을 많은 것을 들었다. 그 것은 것에서 한 것은 것을 가지 않는 것이 가지 않는 것이 같이 있는 것이 같이 나는 것이 같이 나는 것이다.							
같이 가지 않는 것 같은 것 같							

STRA	TEMPERATURA (°C)	TIEMPO(HR)	RESULTADOS
0.6	900	12	Q
	s ¹ 170	12	$C + L_{(trz)}$
	900	2	0
0.9			
LZ4P3	900	48	$Q + P_{(trz)}$
	1 000		$Q + P_{(+n_2)}$
	1 100		0 + P, \
	1 150		` (trz) 0 + D
	1 130		۲ ^۲ ^۲ (tz)
	1 250		T + P(tz)
	950	48	$Q + T_{(tz)}$
	1 050	48	$Q + T_{(+7)}$
	1 130	6	0 + T*
	1 130	12	Q + T*
	1 130	7	T* + Q
	900	24	Q + P
	1 170	4	7
	900	. 12	Q + P
	1 1/0	12	D + 0
	700	14	, т т ч

- 60 -

MUESTRA	TEMPERATURA(°C)	TIEMPO(HR)	RESULTADOS
x=0.4	950	12	0
	1000	12	- A
0,25:0.40:0.35	1100	12	Q -
.i ₂ 0:Zr0 ₂ :P ₂ 0 ₅)	1150	12	¢ C
	900	12	0
	*1200	12	Y T⊥D
	900	12	• • • •
	1350	12	т*
	900	72	Q
x=0.8	900	92	₽∔∩
	1000	48	P
.17:0.46:0.36	950	12	ò
	950	72	P+0
	1150	12	P
	950	72	0
	1200	12	P+T
	900	12	0
	1350	12	P
	900	24	P+T
	1450	12	Р
	900	72	Q
12	s ¹¹⁵⁰	72	P+Q(trz
	s ¹²⁰⁰	12	P+Q
5:48:37	s ¹³⁵⁰	0.187	T+P(trz
	s ¹⁴⁵⁰	0.187	T+P(trz)
anta da serie de la composición de la c Característica de la composición de la c	900	12	T+P(trz)
	1350	0.187	T+P(trz)
	1000	72	P+Q

. .

. و دو رو دو

MUESTRA	TEMPERATURA(°C)	TIEMPO(HR)	RESULTADOS
38	980	12	Q
	*1100	12	P+Q+T(trz)
5:8:7	*1150	5	T+P+Q(trz)
	1250	4	T+P
	1350	2	T+P(trz)
	1450	4	T+Z
	^b 900	12	Q
	^{c+} 1350	0.186	T+P
	c1000	72	Q
42	900	12	Q
	1000	12	Q
20:44:36	1100	12	Q
	1150	5	T+Q
	1250	4	T+P(trz)
	1350	2	T(trz)+M+P(trz)
	1450	4	C+Z
	ь ₉₀₀	12	C+Z

Q = $Li_{6-4x}Zr_{3+x}P_{6}O_{24}$, x=0; P= $Li_2Zr_4P_6O_{24}$; T,T^{*}y C fases de alta temperatura

de Q ; Z=ZrO₂ ; L=líquido

- *-No se alcanzó el equilibrio
- +-Muestra enfriada en mercurio
- a Muestra enfriada en agua líquida-sólida
- **b**-Pérdida de peso
- c-Muestra tomada de la original
- s- Muestra sinterizada