UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

355

90

FACULTAD DE INGENIERIA

PROGRAMA PARA LA RESOLUCION DE MARCOS CON BARRAS DE SECCION VARIABLE

TESIS

Que Para Obtener el Título de

INGENIERO CIVIL

Presenta

HECTOR GONZALEZ PEREZ

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Indice.

PROGRAMA PARA LÀ RESOLUCION DE MARCOS CON BARRAS DE SECCION VARIABLE

Capitulo

1.-- Introducción ------_____ 2.- Teoría ----- 3 a) Teoremas estructurales básicos ----- 3 b) El método directo de las rigideces ----- 14 3.- Diagrama de Flujo --------- 48 4.- Listado ----------- 66 5.- Ejemplos --------- 73 a) Ejemplo # 1 ----- 73 b) Ejemplo # 2 ----- 104 c) Ejemplo # 3 ----- 122 ----- 140 6.- Conclusion Bibliografía -----144

Pagina

Introducción.

En la actualidad es relativamente fácil disponer de una com putadora, por lo cual es conveniente utilizar sus servicios en los calculos de ingeniería, esto permite que ellos puedan realizarse en menor tiempo que el que se utilizaría para efectuar los manualmente, además, si el programa en la computadora es orrecto y esta se encuentra funcionando adecuadamente, pueden evitarse los errores que generalmente se cometen al efectuar manualmente calculos largos, con esto puede garantizarse que los resultados que arroja la computadora dependen exclusivamen te de los datos de entrada del programa.

No obstante de que el costo del tiempo de computadora es -elevado, la eficiencia de la misma hace que en la mayoría de -los casos se justifique su utilización en calculos largos y/o repetidos.

Es obvio que la eficiencia obtenida depende del programa y de los algoritmos en que este se basa para efectuar los cálculos así como de la forma en que este se adapte a la máquina en que se utiliza y del lenguaje que se utilize para desarrollarlo.

El programa presentado en este trabajo se realizó en lengua je BASIC utilizandose para su ejecución una microcomputadora.

El objetivo de este programa es el de cálcular: los desplazamientos de los nudos en las direcciones de los distintos gra dos de libertad (angulares y lineales), las deformaciones an<u>eu</u> lares en los extremos de las barras y las fuerzas internas (mo mentos flexionantes) en los mismos, todo ello para marcos planos con barras de sección variable, según las especificaciones

(1)

del manual de constantes de marcos (Handbook of Frame Constants) editado por PCA (Portland Cement Association).

Cabe mencionar que el programa presentado admite la existen cia de barras inclinadas en los marcos.

Teoría.

TEOREMAS ESTRUCTURALES BASICOS

Se asume que el lector esta familiarizado con los teoremas estructurales básicos, sin embargo, por complementar este trabajo, estos prerequisitos serán brevemente presentados.

1.- Ley de Hooke.

La relación entre carga y desplazamiento fue investigada -por el físico experimental inglés Robert Hooke (1635-1703). -El encontró que estando en el rango elástico de un material la carga era proporcional al desplazamiento.

De aqui se establece que el esfuerzo \P es proporcional a la deformación unitaria $\mathcal E$ a lo cual se denomina comportamiento - de Hooke.

La razón entre el esfuerzo y la deformación unitaria, en el rango elástico, la cual es una constante del material que se denota como el Módulo de Elasticidad (E) o módulo de Young por el filósofo ingles Thomas Young (1773-1829).

 $E = \sqrt{\epsilon}$

(4)

Donde:

Módulo de elasticidad (E)= tan \ll =pendiente de la recta Por consigniente se establece que \neg =EE

2.- Teorema de superposición.

Considérese la configuración estructural mostrada en la figura sujeta a un sistema de cargas $\{P_k\}$. Si los desplazamientos resultantes de todos los puntos son directamente proporcionales al sistema de cargas aplicadas, entonces los mismos desplazamientos resultantes se obtendrían aplicando cada carga por separado en cualquier secuencia y sumando los efectos individuales para cada punto. Esto es lo propuesto por el teorema de superposición.

Por ejemplo el desplazamiento resultante en el punto i, Δ_i , igualará a la suma de los desplazamientos en el punto i debidos a cada una de las cargas aplicadas que componen el sistema.

$$\Delta_{i} = d_{i1} + d_{i2} + d_{i3} + \dots + d_{in}$$
$$\Delta_{i} = f_{i1}P_{1} + f_{i2}P_{2} + f_{i3}P_{3} + \dots + f_{in}P_{n}$$
$$d_{ik} = f_{ik}P_{k}$$

Donde:

∆_i = Desplazamiento total en el punto i d_{ik} = Desplazamiento parcial en el punto i debido a la carga aplicada en el punto k. f_{ik} = Desplazamiento en el punto i debido a una carga unitaria aplicada en el punto k, mientras que las cargas en los otros puntos no existen. P_v = Fuerza aplicada en el punto k.

Por tanto los desplazamientos correspondientes al sistema 4 de cargas aplicado será en forma matricial.

		F ₁₁	f ₁₂ f ₁₃ f _{ln}	
∆ ₂		f ₂₁	$f_{22} f_{23} \dots f_{2n}$	P2
Δ3		f ₃₁	f ₃₂ f ₃₃ f _{3n}	Pz
	=	•	•	•
n de la companya de la Companya de la companya de la compa Reference de la companya de la company Reference de la companya de la comp Reference de la companya de la compa		•	• •	•
_ ^ n _		ful	$f_{n2} f_{n3} \cdots f_{nn}$	P _n

o en forma condensada $\{\Delta_k\} = [F_k] \{P_k\}$ Donde: $[F_k]$ es llamada la matriz e flexibilidades o la matriz de coeficientes de influencia estructural correspondien te al sistema de cargas aplicado $\{P_k\}$. Los desplazamientos resultantes $\{\Delta_k\}$ son medidos a lo largo de la linea de acción de la carga que actúa en ese punto. Estos desplazamientos se utilizan cuando se cálcula el trabajo hecho por las cargas aplicadas $\{P_k\}$.

Por conveniencia se considerará una sola carga discréta aplicada en cada nudo, y en general habrá más de una carga diecreta en un nudo cada una teniendo diferente linea de acción. Como previamente se mencionó, los desplazamientos resultantes $\{\Delta_k\}$ son desplazamientos correspondientes, ésto es, para cada carga discreta aplicada P_i existe un desplazamiento correspon diente, por lo cual al analizarse el desplazamiento en un punto deberá observarse cual desplazamiento correspondiente se e<u>e</u> tá considerando.

3.- Trabajo realizado por un sistema de cargas.

Se supone el comportamiento elástico lineal de la estructura, es decir que el comportamiento de Hooke existe.

Suponiendo que una única carga discreta se aplica a una estructura que esta soportada de tal forma de evitar el movimien to de la misma, si la carga se aplica gradualmente desde cerc hasta su valor final, el trabajo hecho por la carga P_i , la cual tiene un desplazamiento correspondiente Δ_i , es dado por - $1/2 P_i \Delta_i$.

Cuando un sistema de cargas se aplica el trabajo realizado está dado por: $1/2 P_1 A_1 + 1/2 P_2 A_2 + \dots + 1/2 P_n A_n$

El trabajo efectuado por un sistema de cargas $\{P_k\}$ cuyos desplazamientos correspondientes son $\{\Delta_k\}$, es dado en forma ma tricial condensada por: $1/2\{F_k\}\{\Delta_k\}$

4.- Teorema recíproco de Maxwell

Considerese la configuración estructural mostrada en la figura, el sistema de cargas aplicado consta de dos cargas discretas, P₁, P₂, las cuales se aplicarán gradualmente.

Dos secuencias de aplicar las cargas deben considerarse.

1 Aplicando P₁ primero y P₂ después
2 Aplicando P₂ primero y P₁ después
Secuencia l aplicando P₁ primero produce los desplazamientos
correspondientes d₁₁ en el punto l y d₂₁ en el punto 2.
Si se aplica anora P₂ ocurrirán desplazamientos adicionales
en los puntos l y 2 éstos se denotan por d₁₂ y d₂₂ respectivamente.

Los subindices dados a los desplazamientos deben interpretarse como sigue:

El primer subíndice indica el punto en el cual el desplazamiento correspondiente se está determinando, el segundo subíndice indica el punto en el cual actúa la carga que provoca el desplazamiento correspondiente.

Debe notarse que P_1 permanece constante durante el desplaza miento d₁₂, el trabajo realizado por está secuencia de carga está dado por: 1/2 $P_1d_{11} + P_1d_{12} + 1/2 - P_2d_{22}$

Esto gráficamente expresa que el área total sombreada es el trabajo realizado.

(8)

Secuencia 2 si ahora P_2 es aplicada primero, los desplazamientos correspondientes en los puntos 1 y 2 son d₁₂ y d₂₂ reg pectivamente, aplicando P_1 posteriormente provoca los desplaza mientos adicionales d₁₁ en el punto 1 y d₂₁ en el punto 2. Para esta secuencia de carga P_2 permanece constante durante el desplazamiento d₂₁.

El trabajo realizado por esta secuencia de carga esta dado por: 1/2 P₁d₁₁ + P₂d₂₁ + 1/2 P₂d₂₂

Lo cual se muestra también graficamente

Cuando existe comportamiento de Hooke el trabajo efectuado es independiente de la secuencia de carga; por lo cual el trabajo realizado en cada caso será el mismo, por tanto:

 $1/2P_{1}d_{11}+P_{1}d_{12}+1/2P_{2}d_{22}=1/2P_{1}d_{11}+P_{2}d_{21}+1/2P_{2}d_{22}$ de aquí: $P_{1}d_{12}=P_{2}d_{21}$ si $P_{1}=P_{2}$ $d_{12}=d_{21}$ si $P_{1}=P_{2}=1$ entonces $f_{12}=f_{21}$

El teorema recíproco de Maxwell puede enunciarse como sigue; El desplazamiento en el nudo i debido a una carga unitaria aplicada en el punto j es numéricamente igual al desplazamiento en el punto j debido a una carga unitaria aplicada en el punto i.

En ambos casos el desplazamiento es un desplazamiento correspondiente, ésto es, el desplazamiento en el punto i se mide a lo largo de la línea de acción de P_i y el desplazamiento en el punto j se mide a lo largo de la línea de acción de P_i .

La matriz de flexibilidades de una estructura es normalmente considerada como una matriz cuadrada, cuando esto sucede la matriz es también símetrica y por el teorema de Maxwell, los coeficientes cruzados de la matriz de flexibilidades son iguales, es decir: $f_{ij}=f_{ji}$

5.- Cargas y desplazamientos generalizados.

Hasta este punto solo cargas discretas y sue desplazamientos correspondientes se han considerado en los sistemas de -carga y desplazamiento, phora podremos presentar una generali-

(10)

zación adicional.

a) El sistema de cargas discretas $\{P_k\}$ puede consistir de fuer-zas y/o momentos.

b) El sistema de desplazamientos correspondientes $\{\Delta_k\}$ puede - consistir de desplazamientos lineales y/o desplazamientos angu lares o giros.

c) Cuando se adopte el concepto de sistemas generalizados, debe recordarse que los coeficientes de la matriz de flexibilida des deben ser dimensionalmente correctos.

d) Los teoremas estructurales permanecen válidos para los sistemas generalizados.

Consideremos el cantiliver mostrado, los desplazamientos co rrespondientes generalizados estan dados por:

en	el	punto	l	Δ_1
en	el	punto	2	Δ_{2}

 $\Delta_{1^{=d}11^{+d}12^{=f}11^{P}1^{+f}12^{P}2}$ $\Delta_{2^{=d}21^{+d}22^{=f}21^{P}1^{+f}22^{P}2}$

Las dimensiones de las distintas cantidades se muestran en la tabla; con el objeto de ilustrar mejor utilizaremos unida-des, digamos toneladas, metros, radianes, para las cargas y desplazamientos, y las dimensiones seran fuerza y longitud.

	Cantidad	Dimensión	Unidades
	- P ₁	F	Ton
	P ₂	FL	Ton m
	4 1	L	m
<u>}</u> ₽ ₂	Δ2		rad
	f ₁₁	L/F	m/ton
1	f ₁₂	L/FL=1/F	m/ton m=1/ton
	f ₂₁	l/F	rad/ton
	f ₂₂	1/FL	rad/ton m

Por el teorema recíproco de Maxwell f₁₂=f₂₁ estos coeficientes son iguales numericamente pero dimensionalmente son distintos, como puede observarse en la tabla.

6.- Energía total.

Cuando un sistema de cargas es aplicado a una estructura -elástica, los elementos estructurales se deforman y la energía se almacena en los mismos, a esta energía se le conoce como -energía de deformación, cada elemento en la estructura aimacena un porcentaje de la energía total. Cuando las cargas son removidas la energía de cetormación se utiliza para reestablecer la configuración original de la estructura.

La energía de deformación se presenta de diferentes formas, dependiendo de la carga y puede ser: energía de flexión, energía de cortante y energía axial.

Cuando los apoyos ceden, energía adicional es almacenada, ésto se conoce como el potencial de las reacciones.

También hay potencial debido a la deficiencia de las uniones de los elementos estructurales, es decir cuando existe juego en los nudos de una estructura.

7.- Grados de libertad.

Una estructura elástica continua tiene un número infinito de desplazamientos definidos que se pueden identificar,obser-var o calcular, pero el perfil deformado de una estructura se puede describir por medio de un número limitado de estos des-plazamientos. Al número de desplazamientos que se eligen para definir el perfil deformado se le llama el número de grados de libertad de la estructura.

En general, se puede pensar que una estructura es una red de miembros y nudos. Los nudos se introducen en donde los -miembros se cortan o terminan, y donde se colocan los apoyos.

Por conveniencia se pueden añadir más nudos; por ejemplo, en el lugar en que el miembro cambia de sección transversal o donde se requiera conocer los valores de los desplazamientos. Por lo común se supone que los miembros son rectos y prismáticos entre los nudos, pero ésto no es un requisito. Las com-ponentes de los desplazamientos nodales se llaman grados de li bertad. Es suficiente conocer los desplazamientos nodales pa ra definir completamente el perfil deformado de la estructura, porque los miembros siguen una curva elástica definida entre los nudos basada en los desplazamientos de sus extremos, en la carga, y en las propiedades geométricas. For comodidad, es común que se tomen las componentes del desplazamiento en cada una de las tres direcciones de los ejes de coordenadas mutua-mente ortogonales como los tres grados de libertad nodales. En una estructura tridimensional pueden existir seis grados de libertad por cada nudo y, en una estructura de dos dimensiones tres grados de libertad por cada nudo. Algunos de éstos pueden restringirse por medio de las condiciones de apoyo o de su posiciones acerca del comportamiento dejando el resto como la cantidad de grados de libertad de la estructura.

(13)

EL METODO DIRECTO DE LAS RIGIDECES

Entre los logros de mayor alcance en la ingeniería estructural esta la capacidad de analizar automáticamente casi todo tipo de estructura con un elevado grado de precisión y a un -costo razonable. La aparición de la computadora digital ha hecho posible este perfeccionamiento. Al aparecer la computadora se crearon de inmediato métodos de análisis adecuados para el cálculo en computadora; el más usado de ellos es el m<u>é</u> todo directo de las rigideces, inventado en la década de 1950.

Al principio de dicha década Samuel Levy sugirío algunas de las ventajas de un método de desplazamientos usando coeficientes de influencia para el análisis de las estructuras de los aviones. Al mismo tiempo, varias otras personas estaban elaborando una variedad de métodos para el análisis con base en métodos matriciales, con objeto de aprovechar la computadora digital. Este confuso conjunto de métodos se consolidó algo Hacia 1954 Turner, Clough, Martin y Topp presen con el tiempo. taron el primer tratamiento del método directo de las rigide-Demostraron que la matriz de rigideces, un ordenamiento ces. de los coeficientes de influencia de rigidez que se usan para determinar los desplazamientos, se puede plantear como la superposición de las rigideces de los elementos o miembros.

La dualidad de los métodos de las fuerzas y de los desplaza mientos fue demostrada por Argyris y Kesley en 1960 en su tratamiento de los teoremas de energía. Desde entonces, se ha obtenido una gran unidad de los diversos procedimientos, y se ha visto un rápido aumento en el tamaño de los problemas que se tratan, según aumentan el tamaño y las potencialidades de -

(14)

las computadoras.

En la actualidad el ingeniero en estructuras debe estar familiarizado con el método de análisis de las rigideces porque constituye una poderosa herramienta de análisis. Al mismo tiempo deberá estudiar el uso correcto de esta forma automática de análisis. El resultado de un análisis es sólo tan bueno como los datos de que se parte, el criterio y la habilidad ingenieriles, que nunca se podrán automatizar, se deben aplicar a las suposiciones de carga, comportamiento del material, condiciones de apoyo, que son necesarios antes de hacer un aná lisis. Lo mismo se aplica a la interpretación y el uso de --los resultados de tales análisis.

Las ideas básicas del método de las rigideces se pueden demostrar considerando el análisis de la viga en voladizo que se ilustra en la figura. Se desea determinar el desplazamiento en el extremo l (d_1) bajo la acción de la carga (f_1). Primero se escribe una relación fuerza-desplazamiento, imponiendo un desplazamiento unitario correspondiente a d_1 luego se deter mina la fuerza necesaria para producir este desplazamiento uni tario en el extremo de una viga prismática en voladizo, que es $3EI/L^3$. Esta fuerza se define como coeficiente de influencia de rigidez para la viga, k_l, ya que representa la resistencia de la viga a un desplazamiento unitario.

Ahora considerése el equilibrio del nudo 1 en el diagrama de cuerpo libre que sigue:

f

La fuerza hacia abajo en el nudo, causada por la resistencia a la flexión de l**a** viga, es k_ld₁, y la fuerza hacia arriba es la carga aplicada f₁. El equilibrio da:

$$k_{1}d_{1}=f_{1}$$

(3EI/L³) $d_{1}=f_{1}$
 $d_{1}=f_{1}L^{3}/3EI$

Se ha usado un coeficiente de influencia de rigidez k_1 , que expresa la influencia de un desplazamiento unitario, para determinar el desplazamiento para la carga f_1 . El método de las rigideces es simplemente una extensión lógica de esta idea a las estructuras con muchos grados de libertad.

Considérese la trabe de tres claros siguiente:

Existe un grado de libertad de rotación en cada uno de los cuatro nudos. Se aplica una carga en cada nudo. El perfil deformado que se muestra en la figura se puede considerar como la superposición de cuatro casos separados con sólo un desplazamiento en cada uno de ellos. Estos casos separados se ind<u>i</u> can en las figuras a,b,c,d, por ejemplo en la figura a se mue<u>s</u> tra el perfil deformado de la estructura con Θ_1 impuesta y todos los démas grados de libertad sujetos contra la rotación. -Las fuerzas que son necesarias en los extremos de los miembros para lograr cada uno de estos modos de desplazamiento (produ-cir la rotación , y evitar la rotación en los nudos sujetos) se indican en la figura, pero no se les da nombre. Por ejemplo en el nudo 1 el momento k₁₁ es el que actúa en el nudo 1, provocandole una rotación unitaria, con los nudos 2 al 4 fijos contra la rotación. k₁₂ es el momento que actúa en el nudo l causado por la rotación unitaria del nudo 2 que a su vez es causada por el momento k₂₂, con los nudos 1,3 y 4 sujetos contra la rotación. Los términos en representan las rotaciones Por tanto $k_{11} \Theta_1$ es el momento real en reales de los nudos. el extremo, en el nudo 1 de la figura a. Los momentos del nu dokkij O i se anotan en la figura como los totales para ambos miembros que se unen en un nudo, donde k_{i,j} representa una rig<u>i</u> dez de nudo. Estos totales son iguales al momento que apli-can los miembros al nudo. Nótese que los momentos en sentido contrario al movimiento de las manecillas del reloj en los extremos de los miembros, que son positivos, producen momentos en el sentido del movimiento de las manecillas del reloj en los nudos, que también se definen como positivos. La superposi-ción de los cuatro casos que se muestran en la figura represen ta los momentos reales internos que obran en los nudos. El momento total interno en cualquier nudo debe ser igual al mo-mento externo aplicado. Si se definen los momentos externos como positivos cuando tienen sentido contrario al del movimien to de las manecillas del reloj, se puede expresar el equili--brio del nudo como:

 $\begin{array}{c} \mathbf{k_{11}} \Theta_{1} + \mathbf{k_{12}} \Theta_{2} + \mathbf{k_{13}} \Theta_{3} + \mathbf{k_{14}} \Theta_{4} & = \mathbf{M_{1}} \\ \mathbf{k_{21}} \Theta_{1} + \mathbf{k_{22}} \Theta_{2} + \mathbf{k_{23}} \Theta_{3} + \mathbf{k_{24}} \Theta_{4} & = \mathbf{M_{2}} \end{array}$

(18)

donde algunos de los términos k_{ij} son cero, tales como k_{13} , k_{14} , k_{24} y sus opuestos k_{31} , k_{41} y k_{42} .

La definición de los términos k_{ij} permite calcularlos en -forma muy sencilla y repetida. En la siguiente figura se ilustra una relación básica fuerza-desplazamiento. Cuando el extremo lejano de un miembro prismático sometido a flexión está fijo, el momento y la rotación en el extremo cercano, están relacionados por: $m = 4EI\Theta/L$

Si se aplica una rotación unitaria, la rigidez a la flexión es por tanto, $k_{ii} = m/\Theta = 4EI/L$ En este caso el momento en el extremo fijo es la mitad del momento aplicado en el extremo que gira(recordando el factor de transporte en la distribución de momentos). Así: $k_{ii} = 2EI/L$

Cuando se aplica una rotación unitaria a un nudo al que ll<u>e</u> ga más de un miembro, la rigidez en el nudo es la suma de las rigideces con que contribuyen cada uno de los miembros que ll<u>e</u> gan a él, porque cada miembro sufre una rotación dada.

En nuestra viga continua, los coeficientes de influencia de rigidez k se calculan fácilmente:

$$k_{11} = 4(EI/L)_{12}$$

$$k_{12} = k_{21} = 2(EI/L)_{12}$$

$$k_{22} = 4(EI/L)_{12} + 4(EI/L)_{23}$$

$$k_{23} = k_{32} = 2(EI/L)_{23}$$

$$k_{33} = 4(EI/L)_{23} + 4(EI/L)_{34}$$

$$k_{34} = k_{43} = 2(EI/L)_{34}$$

$$k_{44} = 4(EI/L)_{34}$$

 $k_{13} = k_{14} = k_{24} = k_{31} = k_{41} = k_{42} = 0$

Nótese que en todos los casos $k_{ij} = k_{ji}$. Esto ocurre siempre con los coeficientes de influencia de rigidez y como resul tado del teorema recíproco de Maxwell. El detalle principal de estos cálculos es que, aunque muy numerosos, son básicamente los mismos y se adaptan bien para usarlos en la computadora. Cada término se basa en el mismo caso sencillo de un miembro sometido a flexióm, fijo en un extremo y dándosele una rotación unitaria al otro.

Los coeficientes de influencia de rigidez ahora se pueden sustituir en las ecuaciones de equilibrio y dando los valores numéricos apropiados para los términos $(EI/L)_{ij}$ es posible ll<u>e</u> gar a una solución numérica de los ángulos Θ o giros.

El método de las rigideces se resume como sigue:

Primero, cada uno de los grados de libertad de la estructura recibe un número para fines de notación. Los desplazamien tos correspondientes a cada uno de los grados de libertad sen las incógnitas que se van a determinar. El segundo paso consiste en calcular los coeficientes de influencia de rigidez. Con este objeto, se sujetan todos los nudos de la estructura, y luego se ejecuta una serie de análisis, uno por cada grado de libertad, por turno, dando un desplazamiento unitario. Cuando al grado de libertad j se da un desplazamiento unitario se determinan las fuerzas correspondientes a cada uno de los grados de libertad i, llamádo k_{ij}, luego se formulan las ecuaciones de equilibrio que siempre son de la forma:

> $k_{11}d_1 + k_{12}d_2 + \cdots + k_{1n}d_n = f_1$ $k_{21}d_1 + k_{22}d_2 + \cdots + k_{2n}d_n = f_2$

> $k_{n1}d_1 + k_{n2}d_2 + \dots + k_{nn}d_n = f_n$

donde los términos d_1 a d_n representan los n desplazamientos desconocidos, y los términos f_1 a f_n son las cargas nodales.

En las cargas nodales aplicadas se usa la misma convención de signos, así como en las fuerzas en los extremos de los miem bros y los momentos: las fuerzas son positivas si están dir<u>i</u> gidas hacia arriba o a la derecha, y los momentos son positivos si tienen la dirección del movimiento de las manecillas del r<u>e</u> loj.

Hasta ahora, el estudio del método de las rigideces se ha referido al caso en que las corgas sólo se aplican a los nudos lo que permite escribir las ecuaciones de equilibrio en una - forma muy sencilla. Sin embargo, en la mayor parte de los -problemas reales intervienen cargas aplicadas lateralmente a los miembros entre los nudos. Un ejemplo común es el caso de la carga uniformemente distribuida sobre una viga. Para efec tuar la conversión a cargas nodales se usa el principio de la superposición.

Debe notarse que con este método por lo regular se utilizan más ecuaciones que con el método de las fuerzas y por tanto,r<u>e</u> quiere más trabajo de cálculo. Al mismo tiempo habrá que observar que intervienen más calculos repetidos que en el método de las fuerzas. Aunque el método directo de rigideces no es un método popular para trabajar a mano, por lo laborioso de r<u>e</u> solver el sistema de ecuaciones, es el que más se usa en los análisis que se hacen por computadora para las estructuras.

Ahora organizaremos el método de manera que se adecúe al -cálculo con computadoras. El resultado constituye un recurso valioso para resolver estructuras reticulares de cualquier tipo, teniendo la facultad de poder ampliarse sencillemente para las formas más generales de estructura.

El método se plantea en términos de matrices. El método de las matrices se adapta muy bien para formular los cálculos en que es necesario usar ecuaciones simultáneas, y es la ma--nera natural de efectuar estos cálculos en una computadora.

Aquí no se examinan los métodos empleados para resolver las ecuaciones que se obtienen. La inversión se usa como forma simbólica para expresar la solución de ecuaciones, pero no se intenta sugerir que la inversión es el único procedimiento. La solución de ecuaciones es una materia completa en sí, especial

(22)

mente cuando se trata de un sistema grande de ecuaciones como los que se presentan con frecuencia en el análisis estructural.

La ecuación básica de rigideces se desarrolló anteriormente, ésta expresa el equilibrio de cada uno de los nudos en función de los coeficientes de influencia de la rigidez nodal y de los desplazamientos nodales desconocidos.

Esta ecuación en notación matricial es:

En notación matricial abreviada se puede escribir como:

 $[K] \{v\} = \{F\}$

donde a [K] se le llama matriz de rigideces de la estructura
a { D} vector de desplazamientos y a { F} vector de cargas.
En esta ecuación k_{ij} es la fuerza nodal correspondiente al
grado de libertad i causada por la aplicación de un desplazamiento unitario correspondiente al grado de libertad j. d₁,
d₂, ..., d_n son los desplazamientos nodales desconocidos y f₁, f₂, ..., f_n son las cargas nodales aplicadas, correspondientes al grado de libertad 1, 2, ..., n. La formación de

la matriz [K] es un paso importante del proceso de análisis. Debido a que en el análisis de la rigidez los grados de libertad se localizan en las uniones o nudos, a la fuerza k_{i i} se

(24)

le llamará rigidez nodal. Nuestro objetivo es idear una man<u>e</u> ra eficiente, automática, para generar los términos k_{ij}.

Todos los términos de una columna dada de la matriz de rigi deces son fuerzas nodales producidas por un solo desplazamien to nodal unitario aplicado. Considérese parte de una estructura reticular plana, según se muestra en la figura e, los gra dos de libertad están numerados en la figura (del 1 al 12). Si se desea cálcular los elementos de la primera columna de la matriz de rigideces de la estructura , se desplaza la estructu ra como se indica en la figura f (un desplazamiento unitario correspondiente al grado de libertad l, manteniendo el valor de todos los demás desplazamientos en cero).

2

3

2

8

11

1

6

(e)

Los elementos K₁₁, K₂₁, K₃₁ son las fuerzas correspondientes a los grados de libertad 1, 2 y 3 respectivamente, causados por un desplazamiento unitario correspondiente al grado de El resto de la estructura no aparece en la figulibertad 1. ra, porque solamente se desplaza el grado de libertad l y las **ú**nicas fuerzas y pares que hay que calcular son las asociadas a los miembros afectados por estos desplazamientos. Tales fuerzas se indican en la figura f en sus direcciones positivas Como ya se dijo antes, constituyen la primera codefinidas. lumna de la matriz de rigideces de la estructura. Al obser+ varlas se demuestra que pueden calcularse directamente sin dificultad; ésto se hace descomponiendo un término K dado en sus componentes según cada uno de los miembros que concurren a la Por ejemplo, \mathbf{K}_{11} es la suma de los términos \mathbf{k}_{11} para junta. cada uno de los tres miembros, como se muestra en la figura g A la k minúscula se le llama coeficiente de influencia por rigidez del miembro. El problema se ha reducido al cálculo de las rigideces correspondientes del miembro.

Se examinára el cálculo de K_{11} . El miembro l se alarga -una distancia igual a la unidad; por tanto, k_{11} para el miembro l es la fuerza necesaria para producir una elongación unitaria en el miembro l. Para un miembro prismático de longitud L área A y módulo de elasticidad E, k_{11} =EA/L. El miembro 2 se traslada lateralmente en uno de sus extremos una distancia unitaria, con las rotaciones de los extremos impedidas. Se comprueba fácilmente (por el método de las áreas de los mo mentos, del trabajo virtual o cualquier otro método para el cálculo de desplazamientos) que para el miembro 2, k_{11} =12EI/L³, donde E, I y L se refieren al módulo de elasticidad, momento de inercia con relación al eje de flexión y longitud del miembro 2. Aquí se supone que la flexión es con relación a uno -El miembro 3 sufre una forma más de los ejes principales. complicada de desplazamiento. Se evita la rotación pero la traslación en la dirección x de la estructura da por resultado tanto un acortamiento como una traslación lateral en el miem--Es necesario prestar atención cuidadosa a la bro inclinado. forma geométrica y a los componentes de las fuerzas y despla-zamientos para calcular k₁₁ directamente para el miembro 3. En vez de efectuar el cálculo aquí, más adelante se estudiará una manera efectiva de manejar los miembros inclinados.

En resumen cada término de la matriz de rigideces se puede calcular directamente examinando los extremos del miembro en cada nudo y sumando las rigideces con que contribuye cada miem bro.

En el cálculo de las rigideces nodales, las rigideces del miembro se deben calcular primero en función de las direccio-nes de las coordenadas establecidas para la estructura. La rigidez nodal K_{ij} se encuentra entonces como la suma de las ri gideces correspondientes del miembro k_{ij} . Surgen dificulta-des cuando la orientación del miembro difiere de las direcciones de las coordenadas de la estructura. Se atacará el pro-blema determinando primero las rigideces del miembro en un aie tema local de coordenadas conveniente para el miembro, y des-pués se transformarán las mismas al sistema global de la es--tructura.

Hasta ahora conocemos lo esencial para comprender el fun----

cionamiento del método, pero en virtud de que existen diversas formas de aplicarlo nos limitaremos aquí a explicar aquélla -que se empleó dentro del programa para la computadora con el objeto de obtener un mejor entendimiento de la misma. Para principiar consideremos las siguientes suposiciones.

-Despreciaremos la deformación axial de las barras, es decir supondremos que no existe.

-Nos interesará unicamente conocer los momentos internos finales en los extremos de las barras, en virtud que las fuerzas axiales y cortantes en dichas barras pueden calcularse fácil-mente una vez conocidos estos.

-Trabajaremos sólo apoyos completos en los que 4,dx,dy son O. Consideremos el siguiente diagrama de una barra en que la dirección de la misma se define por un nudo origen (A) y un nu do destino (B).

 φ_A y φ_B son los desplazamientos angulares o giros de los nu dos A y B respectivamente de acuerdo con la siguiente conven--

L es la longitud original de la barra.

 Δ es el desplazamiento lineal relativo, perpendicular al eje original de la barra entre el nudo A y el nudo B siguiendo la siguiente convención de signos:

De la figura observamos que:

$$\Theta_{\Lambda} = - (\Psi_{\Lambda} + \Delta/L)$$

$$\Theta_{\rm B} = + (\Psi_{\rm B} + 4/\mathbf{I})$$

 $\cos \alpha = (X_B - X_A)/L$ Send = $(Y_B - Y_A)/L$

$$DA = \frac{X_B - X_A}{T_a} dya - \frac{Y_B - Y_A}{T_a} dxa$$

$$DB = \frac{Y_B - Y_A}{T_a} dxb - \frac{X_B - X_A}{T_a} dyb$$

De aquí
$$\Delta = \frac{Y_B - Y_A}{L}$$
 (dxb-dxa) - $\frac{X_B - X_A}{L}$ (dyb-dya)

Por tanto:

$$\Theta_{A} = -\Psi_{A} + \frac{Y_{B} - Y_{A}}{L^{2}} dxa - \frac{Y_{B} - Y_{A}}{L^{2}} dxb - \frac{X_{B} - X_{A}}{L^{2}} dya + \frac{X_{B} - X_{A}}{L^{2}} dyb \quad \text{Ec.1}$$

$$\Theta_{B} = \Psi_{B} - \frac{Y_{B} - Y_{A}}{L^{2}} dxa + \frac{Y_{B} - Y_{A}}{L^{2}} dxb + \frac{X_{B} - X_{A}}{L^{2}} dya - \frac{X_{B} - X_{A}}{L^{2}} dyb \quad \text{Ec.2}$$

donde:

- dya = desplazamiento lineal en la dirección y del nudo origen de la barra.
- dxb = desplazamiento lineal en la dirección x del nudo destino de la barra.
- dyb = desplazamiento lineal en la dirección y del nudo destino de la barra.

 X_A = abscisa del nudo origen de la barra Y_A = ordenada del nudo origen de la barra X_B = abscisa del nudo destino de la barra Y_B = ordenada del nudo destino de la barra L = longitud de la barra Θ_A = deformación angular del extremo A de la barra Θ_B = deformación angular del extremo B de la barra.

Consideremos la siguiente estructura constituida por dos nu dos y tres barras dirigidas en la forma mostrada.

X

Observese que en esta estructura existen tres grados de libertad, dos desplazamientos angulares o giros y un desplaza--miento lineal. A pesar de que la estructura sólo tiene dos nu dos hemos denominado como nudos 3 y 4 a los apoyos ésto únicamente para poder identificarlos.

Sabemos que los apoyos no permiten ningun desplazamiento por ser empotramientos, por tanto son apoyos completos.

Para la barra l'el nudo origen es el nudo 3 "apoyo" por tan to $\Psi_A = dxa = dya = 0$, $X_A = X_3$ y $Y_A = Y_3$, el nudo destino es el nudo l, por tanto $\Psi_B = \Psi_1$, $dxb = d_1$ ya que este desplazamiento coincide con el grado de libertad lineal l, dyb = 0 ya que la barra l no sufre deformaciones axiales, $X_B = X_1$ y $Y_B = Y_1$.

Para la barra 2 el nudo origen es el nudo l por tanto $\Psi_A = \Psi_1$, dxa=d₁, dya=0, X_A=X₁ y Y_A=Y₁, el nudo destino es el nudo 2, por tanto $\Psi_B = \Psi_2$, dxb=d₁, dyb=0 ya que la barra 3 no sufre deformaciones axiales, X_B=X₂ y Y_B=Y₂. Nótese que dxa=dxb para esta barra, ésto porque la misma no sufre deformaciones axiales.

Para la barra 3 el nudo origen es el nudo 2, por tanto $\mathcal{Y}_{A} = \mathcal{Y}_{2}$, dxa=d₁, dya=O siendo este el mismo desplazamiento que tiene el apoyo denominado nudo 4 en la dirección y, $X_{A} = X_{2}$ y $Y_{A} = Y_{2}$ el nudo destino es el nudo 4 "apoyo", por tanto $\mathcal{Y}_{B} = dxb = dyb = 0$, $X_{B} = X_{4}$ y $Y_{B} = Y_{4}$.

Si sustituimos estos valores en las ecuaciones 1 y 2 obtendremos:

$$\begin{split} \Theta_{A1} &= -\frac{Y_{1} - Y_{2}}{L_{1}^{2}} d_{1} \\ \Theta_{B1} &= -\psi_{1} + \frac{Y_{1} - Y_{3}}{L_{2}^{2}} d_{1} \\ \Theta_{A2} &= -\psi_{1} + \frac{Y_{2} - Y_{1}}{L_{2}^{2}} d_{1} - \frac{Y_{2} - Y_{1}}{L_{2}^{2}} d_{1} = -\psi_{1} \\ \Theta_{A2} &= -\psi_{1} + \frac{Y_{2} - Y_{1}}{L_{2}^{2}} d_{1} + \frac{Y_{2} - Y_{1}}{L_{2}^{2}} d_{1} = -\psi_{1} \end{split}$$

GL = número de nudos + número de grados de libertad lineal

(35)

La matriz de continuidad es una matriz de transformación que nos permite como veremos posteriormente obtener a partir de la matriz de rigideces de las barras, referida a las coordenadas locales de cada miembro, la matriz de rigideces de la estruct<u>u</u> ra referida a las coordenadas globales de la misma.

La forma de esta matriz varía dependiendo de cuales son los nudos origen y destino de cada barra, así como de la correspon dencia de los desplazamientos de los mismos con los grados de libertad de la estructura.

No debemos olvidar que el procedimiento para obtener la matriz de continuidad se basa totalmente en las ecuaciones 1 y 2

Cada barra tiene dos renglones en la matriz de continuidad, los cuales se forman con los coeficientes de \mathcal{I}_A , \mathcal{I}_B , dxa, dya, dxb, y dyb, que en la matriz aparecerán como coeficientes de los desplazamientos en los grados de libertad correspondientes.

Así entonces proporcionando como datos al programa el número de nudos y las coordenadas de los mismos en el sistema global, el número de grados de libertad lineal y la correspondencia de éstos con los desplazamientos en las direcciones X y Y de cada nudo, utilizando el grado de libertad lineal O (cero) para indicar un desplazamiento que no existe, el número de ap<u>o</u> yos y sus coordenadas respectivas en el sistema global, a éstos se les numerará como nudos consecutivos aún cuando no lo son, esto con el unico propósito de poder referirnos a los miemos sin confusión, el número de barras así como el nudo en que se origina y el nudo en que termina cada una de ellas haciendo uso de la numeración asignada a nudos y apoyos, cabe mencionar que el número de nudos que se introduce como dato al programa es el número de los mismos sin incluir los apoyos. Una vez que elprograma cuenta con estos datos es capaz de calcular las long<u>i</u> tudes de las barras mediante:

$$\mathbf{L} = \sqrt{((\mathbf{X}_{B} - \mathbf{X}_{A})^{2} + (\mathbf{X}_{B} - \mathbf{X}_{A})^{2}}$$

para posteriormente integrar en base a las ecuaciones 1 y 2 la matriz de Continuidad.

Considerese la barra siguiente que es la parte fundamental de una estructura.

Si aplicamos una deformación angular unitaria en el extremo A de la barra manteniendo suj<u>e</u> to el extremo B, se generan los momentos k_{AA} y k_{BA} en los nudos A y B respectivamente.

Si aplicamos ahora una deforma ción angular unitaria en el ex tremo B de la barra manteniendo sujeto el extremo A, se generan entonces los momentos k_{BB} y k_{AB} en los nudos B y A respectivamente. Sabemos que el momento generado por la deformación angular del extremo de una barra y la misma deformación son proporcionales, también sabemos que al deformar angularmente el extremo de una barra cuando se mantiene fijo el otro extremo, se generan momentos en ambos extremos de la barra, entonces, si hacien do uso del teorema de superposición, sobreponemos los efectos causados por la deformación angular θ_A en el extremo A de la barra con los efectos causados por la deformación angular θ_B en el extremo B de la barra, resulta que:

$$M_{A} = k_{AA} \Theta_{A} - k_{AB} \Theta_{B}$$
$$M_{B} = -k_{BA} \Theta_{A} + k_{BB} \Theta_{B}$$

Donde:

M_A y M_B son los momentos totales en los extremos A y B de la barra respectivamente.

k_{AA} y k_{BB} son las rigideces angulares de los extremos A y B de la barra respectivamente.

 $k_{AB} = C_B k_{BB} = k_{BA} = C_A k_{AA}$ siendo $C_B y C_A$ unos coeficien tes denominados factores de transporte.

En forma general para una estructura con n barras.

$$M_{A1} = k_{AA1} \Theta_{A1} - k_{AB1} \Theta_{31}$$

$$M_{B1} = -k_{BA1} \Theta_{A1} + k_{BB1} \Theta_{B1}$$

$$M_{A2} = k_{AA2} \Theta_{A2} - k_{AB2} \Theta_{B2}$$

$$M_{B2} = -k_{BA2} \Theta_{A2} + k_{BB2} \Theta_{B2}$$

$$M_{An} = k_{AAn} \Theta_{An} - k_{ABn} \Theta_{Bn}$$

 $M_{Bn} = -k_{BAn} \Theta_{An} + k_{BBn} \Theta_{Bn}$

En forma matricial:

Y en forma matricial condensada

$${P} = [k] {e}$$

Ec. 4

Donde:

{P} es el vector de momentos internos

k es la matriz de rigideces de las barras

Siendo el orden de estas matrices

{P} 2NB x 1 [k] 2NB x 2NB

Cabe mencionar que las rigideces k_{AA}, k_{AB}, k_{BA}, y k_{BB} son siempre positivas, para la forma de proceder empleada en el programa.

Sustituyendo la ecuación 3 en la ecuación 4 se obtiene

$${P} = [k] [A] {a}$$
 Ec. 5

(38)

Observese que los momentos internos en los extremos de las barras (M_A y M_B) siguen la misma convención de signos que se - emplea para las deformaciones angulares (Θ_A y Θ_B).

De la estructura mostrada anteriormente.

X777

F,

Si denominamos \mathcal{H}_1 y \mathcal{H}_2 a los momentos externos aplicados en los nudos l y 2 respectivamente y \mathbf{F}_1 a la fuerza externa aplicada en la dirección del grado de libertad l. Recordando los momentos internos que actúan en cada barra y obteniendo algu-nos cortantes; $M_{\Lambda 2}$

 $\mathbf{L}_{\mathbf{z}}$

Por equilibrio de la estructura llegamos a:

$$\mathcal{H}_{1} = M_{B1} - M_{A2}$$
$$\mathcal{H}_{2} = M_{B2} - M_{A3}$$
$$F_{1} = (-M_{A1} + M_{B1})/L_{1} + (-M_{A3} + M_{B3})/L_{3}$$

Que en forma matricial es:

Y en forma matricial condensada

$${F} = [B] {P}$$

Donde:

Por tanto

{ F} es el Vector de Fuerzas externas
[B] es la transpuesta de la matriz A para cualquier
estructura.

 $\left\{F\right\} = \left[A^{T}\right] \left\{P\right\} \qquad \text{Ec. 6}$

Nótese que los momentos externos \mathcal{A} en los nudos siguen la convención de signos utilizada para los desplazamientos angula res \mathcal{A} y las fuerzas externas F siguen la convención de signos empleada para los desplazamientos lineales d.

Si sustituimos la ecuación 5 en la ecuación 6 se obtiene:

$$\left\{ F \right\} = \left[A^{T} \right] \left[k \right] \left[A \right] \left\{ \partial \right\}$$
 Ec. 7

Si formamos la matriz de rigideces de las barras para la -estructura que hemos manejado tendremos;

Si efectuamos con las matrices obtenidas el producto A^T k A obtendremos la siguiente matriz.

Para realizar el producto se sustituyó en la matriz de continuidad Y_1-Y_3 por L_1 y Y_4-Y_2 por $-L_3$ antes de obtener su transpuesta, la validez de esta sustitución radica en que las barras l y 3 son verticales y la diferencia de ordenadas de los nudos origen y destino, en valor absoluto es la longitud de las mismas.

Nótese que esta matriz es simétrica al igual que la matriz de rigideces de las barras ya que para cada barra $k_{AB} = k_{BA}$ según el teorema de Maxwell. Sabemos que la matriz de rigideces se integra con la suma de las rigideces con que contribuye cada miembro para cada grado de libertad de la estructura.

Para encontrar las rigideces con cuyas sumas integraremos la matriz de rigideces de la estructura aplicaremos desplaza-mientos unitarios, angulares o lineales en cada grado de libe<u>r</u> tad, angular o lineal respectivamente.

Para la estructura con que hemos trabajado:

Y, F٦ min जांता

De las figuras anteriores podemos establecer:

$$\mathcal{H}_{1} = (k_{BB1} + k_{AA2}) \mathcal{H}_{1} + k_{AB} \mathcal{H}_{2} + \frac{k_{BB1} + k_{BA1}}{L_{1}} d_{1}$$

$$\mathcal{H}_{2} = k_{BA2} \mathcal{H}_{1} + (k_{BB2} + k_{AA3}) \mathcal{H}_{2} + \frac{k_{AA3} + k_{AB3}}{L_{3}} d_{1}$$

$$\mathbf{F}_{1} = \frac{k_{BB1} + k_{AB1}}{L_{1}} \mathcal{H}_{1} + \frac{k_{AA3} + k_{BA3}}{L_{3}} \mathcal{H}_{2} + \frac{\left[k_{AA1} + k_{BA1} + k_{AB1} + k_{AB1} + k_{BB1}\right]}{L_{2}} + \frac{k_{AA3} + k_{BA3} + k_{AB3} + k_{BB3}}{L_{3}^{2}} d_{1}$$

$$\frac{k_{AA3} + k_{BA3} + k_{AB3} + k_{AB3} + k_{BB3}}{L_{3}^{2}} d_{1}$$

Si les coeficientes de estas ecuaciones los colocamos en forma de matriz, obtendremos la misma matriz que obtuvimos efectuando el producto $[A^T][k][A]$ la cual es la matriz de rigideces de la estructura, lo anterior se cumple para cualquier estructura.

De aquí:

 $[K] = [A^T][k][A]$ Ec. 8

Si sustituimos la ecuación 8 en la ecuación 7 se obtiene:

 ${F} = [K]{d}$ Ec.9

Volviendo al funcionamiento del programa, una vez que el -mismo ha construido la matriz de continuidad, efectúa la tran<u>s</u> posición de esta. Si proporcionamos ahora los coeficientes de rigidez R_{AA} , R_{AB} , R_{BA} , R_{BB} , el módulo de elasticidad del m<u>a</u> terial de las barras E (constante para todas las barras) y el momento de inercia I, de cada barra, el programa calculará las rigideces k_{AA} , k_{AB} , k_{BA} , k_{BB} para cada barra mediante las si-guientes ecuaciones:

k_{AA}=R_{AA} EI/L k_{AB}=R_{AB} EI/L k_{BA}=R_{BA} EI/L k_{BB}=R_{BB} EI/L para integrar posteriormente la matriz de rigideces de las barras, la cual premultiplicada por la transpuesta de la matriz de continuidad y postmultiplicada por la matriz de continuidad da por resultado la matriz de rigideces de la estructura.

 $\begin{bmatrix} \mathbf{K} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix}$

Si ahora proporcionamos al programa las fuerzas externas que actuan sobre cada-grado de libertad, éste formará el vector de fuerzas externas con lo cual se tiene el sistema de ecuaciones

 ${F} = [K] {d}$

Donde el vector de desplazamientos constituye el vector de incógnitas. Si resolvemos este sistema obtenemos los valores de los desplazamientos o mejor dicho el vector solución.

Existen diversas formas de resolver el sistema de ecuaciones,pero el programa emplea el método directo de Gauss Jordan que consiste en efectuar transformaciones elementales a la matriz ampliada formada por la matriz de rigideces de la estructura y el vector columna de fuerzas externas, hasta transfor--mar la matriz de rigideces en una matriz identidad, a la vez de que el vector de fuerzas externas se transforma en el vec--tor solución.

Por este método el sistema:

-{F}=[K]{d}

se transforma en:

 $\{v\} = [I]_{a}$

Donde: {V}es el vector solución

[I]es la matriz identidad o matriz unitaria

 $\{v\} = \{a\}$

Y por las propiedades de la matriz unitaria; se llega a;

El vector de desplazamientos obtenido es premultiplicado -por la matriz de continuidad en el programa con el propósito de obtener el vector de deformaciones angulares.

 $\{e\} = [A] \{d\}$

(46)

Posteriormente en el programa se premultiplica el vector de deformaciones angulares por la matriz de rigideces de las ba-rras con lo cual se obtiene el vector de fuerzas internas o vector de momentos internos.

${P} = [k] {e}$

Para verificar los resultados obtenidos, el programa verificará el equilibrio de la estructura, es decir premultiplicando el vector de momentos internos por la matriz de continuidad transpuesta, se obtendrá un vector de fuerzas externas tal que equilibre las fuerzas internas en la estructura obtenidas, si el vector de fuerzas externas obtenido es igual al vector de fuerzas externas que se introdujo como dato al principio del programa, se comprueba la veracidad de los resultados.

ſ_┲ _■ [_A^T] {_₽}

Así entonces hemos descrito brevemente el funcionamiento del programa, si se desea observar detalladamente este proceso podemos remitirnos al diagrama de flujo del programa o incluso hasta el mismo listado,donde la forma de ejecución del programa aparece paso a paso.

(50)

(52)

I,F(I)

(57)

(60)

(61)

En este diagrama de flujo se omiten las instrucciones co--rrespondientes a la impresión de mensajes y aquellas que deber minan la forma en que se imprimen los resultados.

Las variables principales, es decir aquellas cuyo valor es necesario proporcionar al programa como dato son:

IM Variable que contola la impresión de las matrices de:

Continuidad

Continuidad Transpuesta

Rigideces de las barras

Rigideces de la estructura

Solución al sistema de ecuaciones

Cuando esta variable vale O se imprimen todas ellas además de los datos de entrada y los vectores de:

Desplazamientos

Deformaciones angulares

Fuerzas internas

Fuerzas externas finales

Si esta variable adopta un valor distinto de O se omite

únicamente la impresión de las matrices mencionadas.

- NN Número de nudos de la estructura sin incluir apoyos.
- <u>GL</u> Número de grados de libertad lineal que tiene la estructura.
- NA Número de apoyos de la estructura.
- NB Número de barras con que cuenta la estructura.
- E Módulo de elasticidad del material empleado.
- F(I) Fuerza o Momento externo que actus en el nudo I

- <u>DX(I)</u> Grado de libertad lineal que corresponde con el desplaza miento en X del nudo I, en caso de que este desplazamien to este restringido, es decir que no exista ningún grado de libertad lineal correspondiendo con él,deberá darse -O como valor de esta variable.
- <u>DY(I)</u> Grado de libertad lineal que corresponde con el desplaza miento en Y del nudo I, en caso de que este desplazamien to este restringido, es decir que no exista ningun grado de libertad lineal correspondiendo con él,deberá darse -O como valor de esta variable.

X(I) Coordenada X del nudo I.

- Y(I) Coordenada Y del nudo I.
- <u>C</u> Nudo origen de la barra en cuestión.
- D Nude destino de la barra en cuestión.
- <u>KA(I)</u> Coeficiente de rigidez R_{AA} de la barra I.
- <u>KB(I)</u> Coeficiente de rigidez R_{BB} de la barra I.
- <u>KC(I)</u> Coeficiente de rigidez R_{AB} o R_{BA} de la barra I.
- <u>I(I)</u> Momento de inercia de la barra I.
- <u>PB</u> Variable que indica cual de las barras cuyos datos hayan sido proporcionados al programa, tiene las mismas propie dades que la barra en cuestión, si no existe ninguna se dará el valor O a esta variable.

Esta variable permite cuando su valor es distinto de O _ que el programa haga KA(I)=KA(PB),KB(I)=KB(PB),KC(I)= KC(PB),I(I)=I(PB), con lo cual se evita proporcionar el mismo juego de datos varias veces, si el valor de esta variable es O, el programa pregunta los valores de K.(I) KB(I),KC(I), e I(I).

- <u>A(I,N)</u> Elemento del renglon I, columna N de la matriz de Continuidad.
- <u>B(I,N)</u> Elemento del renglon I, columna N de la matriz de Continuidad Transpuesta.
- <u>KM(I,N)</u> Elemento del renglon I, columna N de la matriz de Ri-gideces de las Barras.
- $\underline{K(I,N)}$ Elemento del renglon I, columna N de la matriz de Ri-gideces de la Estructura.

Debe notarse que el elemento del renglon I del vector de Fuerzas Externas inicial F(I), después de resolver el sistema de ecuaciones se convierte en el elemento del renglon I del vec-tor de Desplazamientos teniendo en este la misma denominación F(I), al igual que el elemento K(I,N) de la matriz de Rigide-ces de la estructura se transforma en el elemento correspon--diente de la matriz Identidad conservando la denominación ----K(I,N), así entonces después de resolver el sistema de ecuacio nes.

- <u>F(I)</u> Elemento del renglon I del vector de Desplazamientos.
 <u>K(I,N)</u> Elemento del renglon I, columna N de la matriz Identidad o unitaria.
- KR(I,1)
 Elemento del renglon I del vector de Deformaciones Angulares.

KR(I,2) Elemento del renglon I del vector de Fuerzas Internas.

Al verificar los resultados por comprobación del equilibrio

F(I) Elemento del renglon I del vector de Fuerzas Externas

final.

Todas las demás variables empleadas son variables transitorias o de conteo, es decir variables secundarias.

\$

<u>Listado</u>.

```
10 CLEAR 1000

10 CLEAR 1000

10 INPUT "IMPRIMIR OPERACIONES (SI=0.NO<>0)"; IM

30 INPUT "IMPRO DE NUDOS SIN INCLUIR APOYOS";NN

40 INPUT "NUMERO DE GRADOS DE LIBERTAD LINEAL";GL

50 INPUT "NUMERO DE APOYOS";NA

60 INPUT "NUMERO DE BARRAS";NE

70 INPUT "NUMERO DE ELASTICIDAD DEL MATERIAL DE LAS BARRAS";E

50 NENNANA
 EO N=NN+NA
100 KF=27NB
110 DIM X(N), Y(N), DX( N), DY( N), F(J), KA(NB), KB(NB), KC(NB)
120 DIM A(KP, J), B(J, KP), KM(KP, KP), L(NB), C(J, KP), K(J, J), I(NB)
130 DIM KR(KP,2)
 140 LPRINT TAB(40) "GRADO DE LIBERTAD LINEAL QUE"
150 LPRINT TAB(40) "GRADO DE LIBERTAD LINEAL QUE"
150 LPRINT TAB(40) "CORRESPONDE CON EL DESPLAZAMIENTO"
160 LPRINT TAP(40) "DEL NUBO EN LA DIRECCION"
170 LPRINT "NUDO"; TAB(17) "COORDENADAS"; TAB(42) " X
                                                                                                                     Y*
  180 FOR 1-1 TO N
190 PRINT "NUDO";1
                                                                                                                         100 IF INN THEN 250
  210 INPUT "MOMENTO EXTERNOR"(F(I)
  220 INPUT "EL DESPLAZAMIENTO EN X CORRESPONDE AL GRADO DE LIBERTAD LINEAL" (DX(1)
230 INPUT "EL DESPLAZAMIENTO EN Y CORRESPONDE AL GRADO DE LIBERTAD LINEAL" (DY(1)
  240 6010 280
   250 PRINT "APTYO"
  260 DX(I)=0
  200 DX(1)=0
270 DY(1)=0
280 INPUT "COCRDENADA X="TX(I)
290 INPUT "COCRDENADA Y="TX(I)
300 LFRINT USING " ### X= +###.###
310 IF I>NN THEN 340
320 LFRINT USING " (###).
                                                                             Y= +###.####"#J,X(1),Y(1);
                                                                                 (###)";DX(I);DY(I)
   330 GOTO 350
   340 LERINT *
                             APOYO*
   350 NEXT I
   350 FOR 1=1 TO OL
   370 MM=1+NN
   300 PRINT "FLERZA EN DIRECCION DEL GRADO DE LIBERTAD LINEAL (":I:")"
   390 INPUT F (MM)
   400 NEXT I
   410 H=4+NN+01.
   420 IF H460 THEN 450
                                                                               430 LPRINT CH98(11)
   440 H=3
   450 LERINI
450 LERINI "PARRA
470 LERINI "
                                      NUDO NUDO MOMENTO"
ORIGEN DESTINO INERCIA".
   480 FOR 1-1 TO KP
490 FOR N-1 TO J
   100 A(I N)=0
```

Page

(66)

```
510 NEXT N

520 NEXT J

530 FOR J=1 TO YF

540 FOR N=1 TO YF

550 KM(I,N)=0

140 NEXT N

570 NEXT N

570 NEXT I

580 FOR J=1 TO NE

590 PRINT "BARRA"; J

590 PRINT "BARRA"; J

500 INPUT "NUDO OFIGEN"; D

610 INPUT "NUDO DESTINC"; D
 SOO INPUT "NUDO ORIGEN":0
610 INPUT "NUDO DESTINO":0
610 INPUT "NUDO DESTINO";D

620 IF 1 = 1 THEN 900

630 IF I > 2 THEN 900

640 PRINT "SI LAS PPOFIETADES DEOMETRICAS"

650 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "LODETICIENTES DE RICIDEZ (RAA, RAB, RBA, RBB, RBA, RBB) Y MOMENTO DE INERCIA (1)]

640 PRINT "HAVAN SIDD PROPERCIUNADOS, UNICAMENTE ESPECIFIQUE EL NUMERO"

650 PRINT "HAVAN SIDD PROPERCIUNADOS DATOS"

650 PRINT "PROPIEDADES BAPRA"; 1; "PROFIEDADES BARRA"

700 INPUL PR
  700 INPUT PB
  710 IF PB=0 THEN SOO 720 IF PB>=I THEN 780
  730 KA(1)=KA(PB)
  740 KB(I)=KB(PB)
                                                                                                                                                                     750 KC(I)=KC(PB)
  750 KU(1)=1(PB)
  770 GOTO 850
                                                                                                                                                                              780 FRINT "LOS DATOS DE ESA BARRA NO HAN SIDO DADOS"
                                                                                                                                                             790 BOTO 690 -
  790 BOTO 690
800 INPUT "CDEFICIENTE DE RIGIDEZ RAA";KA(I)
810 INPUT "COEFICIENTE DE RIGIDEZ RBE";FB(I)
820 INPUT "COEFICIENTE DE RIGIDEZ RAB,RBA";KC(I)

      B30 KC(1)=-KC(1)

      S40 INPUT "HOMENTO DE INERCIA (1)";1(1)

      S50 LPRINT USING "### ### ###

      B40 L(1):S0R((Y(D)-Y(D))*2+(X(D)-X(D))*2)

                                                                                                               ****.***.***.*****************
  870 C1=(Y(D)-Y(O))/L(1)*2
  880 C2=(X(D)-X(D))/L(1)*2
  890 J=1+2
  900 KP=J-1
910 IF O>NN THEN 930
   97/0 A(KP,D)=-1
   930 IF DONN THEN 250
  940 A(J, D)=+1
950 IF DX(0)=0 THEN 990
   960 XO=DX(0)+NN
                                                                                                   970 A(KP, XO)=A(KP, XO)+C1
  980 A(J, X0)=A(J, X0)-C1
990 IF DY(0)=0 THEN 1030
  990 IF DY(D)=0 THEN 1030
1000 Y0=DY(D)+NN
1010 A(KP,YD)=A(I/P YD)-C2
1020 A(J,YD)=A(J,YD)+C2
1030 IF DX(D)=0 THEN 1070
   1040 XD=DX (D1+NN
   1050 A(KP, XD) -A(HP, XD) -C1
    1060 A(J.XD)=A(J.XD)+C1
    1070 IF DY(D)=0 THEN 1110
   1080 YD=DY(D)+NN
1090 A(KP,YD)=A(KF,YD)+C2
1100 A(J,YD)=A(KF,YD)=C2
```

```
and a second second
                                                (68)
     1110 E1=E#1(1)
1120 KM(KP,KP)=KAII)#E1/L(1)
1130 KM(U,J)=KB(1)#E1/L(1)
1140 KM(KP,J)=KC(1)#E1/L(1)
                                           1150 KM(J.KP)=KD(I +E1/L(10)
       1160 NEXT I
        1170 H=H+3+NE
        1180 IF H460 THEN 1210
        1190 LPRINT CHR#(11)
        1200 H=3+NB
        1210 LPRINT
       1210 LPRINI

1220 LPRINI "EARRA LONGITUD COEFICIENTES DE RIGIDEZ"

1230 LPRINT " RAA RAB, REA REE"

1240 FOR I=1 TO NE

1250 LPRINT USING ' NHW NHM.NHH +H.HHM.HHM"; J;L(1);KA(1);

1260 KC=-hC(1)
        1260 KC= +.C(I)
                                  +#. ###. ### +#. ###. ###": KC; PB(I)
        1270 LPRINT USING *
        1280 NEXT 1
        1290 H=H+8+NN+GL
        1300 IF H(60 THEN 1330
1310 LPRINT CHR$(11)
                                          1320 H=8+NN+0L
        1230 LPRINT
        1340 LPRINT USING "MODULO DE ELASTICIDAD DEL MATERIAL (E)= ###, ###, ###. ###.
       1410 LPRINT
1420 LPRINT " GRADO"
1430 LPRINT " DE
1440 LPRINT " LIBERIAD
1450 LPRINT " LINEAL"
1460 FOR I=1 10 GL
        1410 LPRINT
                                         FUERZA"
EXTERNA"
        1470 J=I+NN
1480 LPRINT USING * ###
                                            NHN, HHN. HHNTIIF(J)
        1490 NEXT I
                                             1500 KP=NN+CL
        1510 J=2*NB
1520 IF IM=0 THEN 1540
        1530 6010 1710
        1340 LPRINT CHR#(11)
1350 LPRINT "MATRIZ DE CONTINUIDAD"
        1560 LPRINT
        1570 FOR 1=1 TO KP STEP 2
        1570 FUR 1-1 TO J

1590 FOR N=1 TO J

1600 LPRINT USING "A(WWR , WWR)= +WWR, WWR.WWRWR":N; I; A(N, I);

1610 IF 1=KP THEN 1640

1620 LPRINT USING " A(WWR , WHR)= +WWR, WWR, WWWWWT:N; LF; A(N, LP)

1620 FOR N=50
        1630 BOTD 1650
1640 LFRINT CHR#(10)
        1650 NEXT N
        1650 LPRINT
        1670 LPRINT
        1580 NEXT I
        1590 LPRINT CHRI(11)
        1700 LPEINT "MATRIT DE CONTINUIDAD TRANSPUESTA"
```

1710 FOR I=1 TO J 1720 FOR N=1 TO KP 1730 F'N, IJ=A(I,N) 1740 NEXT N 1750 NEXT 1 1760 NEXT 1 750 MEXT 1 7760 1= 1M=0 THEN 1780 1770 GTU 2060 1780 1951NT 1790 FOR 1=1 TO J STEP 2 1900 1P=1+1 1810 FP=1+1 1810 FOR N=1 TO KP 1820 LPRINT USING "AT(NHN , NHN)= +844, NHN, NHNNN"; N; I; B(N, I); 1830 IF 1=J THEN 1860 1840 LPRINT USING "AT(NHN , NHN)= +888, NHNN NHNN"; N; LP; B(N, LP) AT (### , ###)= +###, ###. #####"; N; LP; B(N, LP) 1950 6010 1870 1860 LERINT CHR\$ (10) 1870 NEXT N 1580 LPRINT 1890 LPRINT 1900 NEXT I 1910 LPRINT CHR#(11) 1920 IPRINT ."MATRIZ DE RIGIDECES DE LAS BARRAS"... 1930 LPRINT 1940 FOR 1=1 TO J STEP 2 1950 LP=1+1 1960 FOR N=1 TO J k (### , ###) = +###, ###. ######";N;LP;KM(N,LP). 2000 0010 2020 POID LPRINT CHR\$(10) 2020 NEXT N 2030 LPRINT 2040 LPRINT 2050 NEXT 1 2060 FOR 1=1 TO KP 2070 FOR N=1 TO J 2080 C(1,N)=0 2090 FOR LP=1 TO J 2100 C(1,N)=C(1,N)+B(1,LP)*FM(LP,N) 2110 NEXT LP 2120 NEXT N 2130 NEXT 1 2140 FOR I=1 TO KP 2150 FOR N=1 TO KP 2160 K(1,N)=0 2170 FOR LP=1 TO J 2180 K(1,N)=K(1,N)+C(1,LP)*A(LP,N) 7190 NEXT LP 2200 NEXT N 2210 NEXT 1 2210 NEXT 1 2220 IF IM#0 THEN 2240 2230 GOTO 2390 2240 LPRINT CHRO(11) 2150 LPRINT "MATRIZ DE RIGIDECES DE LA ESTRUCTURA" 2260 LPRINT 270 FOR INT TO KP STEP 2 2230 LP=1+1 2290 FOR NET TO KP 2300 LPFINT USING "K(#N# , #N#): +###,###1######?;NET:K(N,1):
```
2310 IF 1=KP THEN 2340

7320 LPRINT USING * K(NNN, NNN)= *****, NR, LP; K(N, LP)

2330 GOTO 2350 '

2740 LPRINT CHR$(10)

2350 NEXT N

2360 LPRINT

2370 LPRINT
    2370 LPRINT
2370 LPRINT
2380 NEXT I
2390 LPRINT CHR#(11)
7400 FOR I=1 TO KP
2410 IF K(1,1)=0 THE: 2440
2420 GOTO 2630
2440 FOR LP=1 TO KP
2450 IF HOP
     1440 FOR LF=1 TO KF
2450 IF HULF, 11=0 THEN 2060
7450 IF HULF, 11=0 THEN 2560
     2470 FOR N=1 TO KP
     2480 CO-H(LP, N)
     2490 K(LP,N)=K(1,N)
     2500 K(1,N)=C0
     2510 NEXT N
     2020 CO=F(LP)
     2530 F(LP)=F(1)
                                          2540 F(I)=CO
     2550 0010 2420
     2560 NEXT LP
     2570 IFICENN THEN 2610
     2580 LP=I-NN
     2560 LP=I-NN
2390 LPRINT "EL DESPLAZAMIENTO EN EL GLL(";LP;") ES INDEFINIDO"
2600 GOTO 3690
2610 LPRINT "EL GIRO EN EL NUDO (";I;") ES INDEFINIDO"
2620 GOTO 3690
                                            2630 FOR 1=1 TO KP
      2640 IF K(1, 1)=0 THEN 2660
      2650 0010 2710
      2660 IF F(1)=0 THEN 2690
      2670 LPRINT "EL SISTEMA DE ECUACIONES ES INCOMPATIBLE"
      2630 0010 3690
      2690 LPRINT "FL SISTEMA DE ECUACIONES ES COMPATIBLE INDETERMINADO"
      2700 6010 3690
      2710 F(I)=F(I)/K(I,I)
      2720 CD=K(1,1)
      2730 FOR N=1 TO KP
      2740 K(1, N)=K(1, N)/C0
      2750 NEXT N
      2760 FOR LP-1 TO KP
      2770 IF LP=1 THEN 2830
2780 F(LP)=F(LP)-K(LP,I)#F(1)
      2790 CD=K(LP,1)
2800 FOR N=1 TO KP
      2510 K(LF,N)=K(LF,N)-CONK(I,N)
      2820 NEXT N
      25:30 NEXT LP
      2840 NEXT 1
      2850 LPRINT "EL SISTEMA DE ECUACIONES ES COMPATIBLE DETERMINADO"
2860 IF IM-0 THEN 2880
2870 GOTO 3040
       2370 6010 3040
      2890 LERINT "MATRIZ SOLUCION"
      2700 LPRINT
```

2910 FOR I=1 13 KP STEP 2 (71) 2920 LP=I+1 2930 FOR N=1 13 KP 2940 LPETHI USENC THE AME 2930 FOR N=1 13 KP 7940 LPRINT UEING "KS(NMN , NHN)= +NNN,NNH,NNH":N:I:K(N,I); 2950 IF 1=KP T=EN 2980 7960 LFRINT UEING " KS(NNN , NNN)= +NNN,NNH,NNH":N:LF:K(N,LF) 2970 GDTO 2990 7980 LPRINT U=5(10) 2990 NEXT N 2990 NEXT N 3000 LPRINT 3010 LPRINT 2020 NEXT I 2020 LPRINT CIFTE(11) 2040 LPRINT (CFTE(11)) 2050 LPRINT "(STFLAZAMIENTOS" 2050 FOR 1=1 T1 KP 2070 IF IINN THEN BIOD 3080 LPRINT USTYS "PHI(###)= +###,###,####"TITE(1) 3020 NEXT 1 r_{1} , r_{2} , r_{3} , r_{4} , r_{4 3090 6010 3120 3100 LP=1-NN 3100 LP=1-NN 3110 LPRINT USING " d(###)= +###, ###:###":LP;F(1) 3120 NEXT I 3130 FOF: I=1 TE J 3140 KR(1,1)=0 3150 FOR LF=1 TD KP 3160 KR(1,1)=tF(1,1)+A(1,LP)*F(LP) 3170 NEXT LP 3170 NEXT LP 0.470 H=3+KP+J 3200 IF H<60 THEN 3230 0210 LPRINI (1##(11) 3220 H=2+J 3220 H=2+J 3230 LPRINT 3240 LPRINT "LEFORMACIONES" 3250 FOR I=1 TO J STEP 2 3260 LP=1+1 3270 M=LP/2 3280 LPRINT USING "THETA A (N##)= +###.###.###.###";M;KR(I,1) 3290 LPRINT USING "THETA B (N##)= +###.###.###.###";M;KR(LF,1) 5200 NEXT I 3310 FOR 1-1 TP J 3320 KR(1.2)=0 3330 FOR LP=1 TO J 3340 KR(1,2)=KF(1,2)+KM(1,LP)+KR(LP,1) 3350 NEXT LP 3360 NEXT I 3360 NEXT 1 3370 H=H+2+J 3380 IF H<60 THEN 3410 3390 LPRINT CHF\$(11) 3390 LPRINT CHP\$(11) 3400 H=2+J 3410 LPRINT 3420 LPRINT "FLERZAS INTERNAS" 3430 FOR 1=1 TO J STEP 2 3440 LP=1+1 3450 M=LP/2 3450 LPRINT USING " mA (444)= +444,444,444,444,174 (1,2) 3470 LPRINT USING " mB (444)= +444,444,444,444,174 (1,2) 3470 LPRINT USING * 3480 NEXT I 3490 FOR 1=1 TO NP 2470 F(1)=0

3510 FOR LP=1 TO J 3520 F(1)=F(1)+B(1,LP)*KR(LP,2) 3530 NEXT LP 3530 NEXT I 3550 H=H+3+KP 2560 1F H.GO THEN 3780 3570 LPRINI CHEN(1) 2090 LPRINI COMMENT 2000 LPRINI COMMENT 2000 LPRINI COMMENT (72) 2000 LPRINT 1500 LPRINT "COME DEACION EUULIPRIO" 3600 LPRINT "FUERCAS EXTERNAS" 3610 FOR 1=1 TO KP 3620 LF INNN THEN 3650 3630 LPRINT USING " M(484)* 4444;4 3640 GOTO 3670 3650 LP=1-NN 3660 LPEINN USING " F(484)* 4444;4 M(#\$#)= +###.###.####";I:F(1) BOLD LPRINT USING " 3670 NEXT 1 3680 LPRINT CHR\$(11) 3690 END

and a second a second second

F(1)

Numeremos las barras y los nudos, la numeración debe hacerse con números consecutivos, para los nudos no apoyos desde l hasta m, para los nudos apoyos desde m+l hasta m+n, siendo m el número de nudos no apoyos y n el número de nudos apoyos, y para las barras desde l hasta ñ siendo ñ el número de barras, demos también una orientación a las barras, con lo cual se definirán el nudo origen y el nudo destino de cada una de ellas.

Las barras l y 3 tienen sección constante de 0.2 m de ancho y 0.2 m de persite.

La barra 2 tiene sección constante de 0.2 m de ancho y 0.43 m de peralte.

De acuerdo con el manual de constantes de marcos (PCA), el momento de inercia de las barras es el que corresponde a la -sección transversal que tenga el menor peralte en la barra, sa biendo que el ancho de cada barra es constante en toda su longitud según el mencionado manual, puede decirse que dicha sec ción es la que tiene el menor momento de inercia. Además --puede observarse que cualquier sección transversal de las ba-rras contempladas por este manual es una sección rectangular cuyo momento de inercia es:

I=bh³/12

donde:

b es la base de dicho rectangulo o el ancho de la ba--

rra.

<u>h</u> es la altura del rectangilo o el persite de la barra. <u>I es el momento de inercia con respecto a un eje para-</u> lelo a la base del rectangulo que pasa por el cen---

troide de la sección.

En nuestro ejemplo para las barras 1 y 3.

$$I = (0.2 \text{ m})^4 / 12 = 0.000133 \text{ m}^4$$

para la barra 2.

$$I = 0.2 (0.43)^3 / 12 = 0.00133 m^4$$

Como puede observarse la barra 2 tiene 10 veces la inercia de las barras 1 y 3.

En la construcción de este marco se empleará concreto de -f'c= 200 kg/cm², con lo cual tendremos un módulo de elasticidad del material:

 $E = 10,000 / f'c = 10,000 / 200 = 141,421 kg/cm^2$

Que en unidades compatibles con las empleadas anteriormente es:

 $E = 1,414,210.00 \text{ ton/m}^2$

Distingamos ahora los tres grados de libertad lineal de la estructura y su correspondencia con los desplazamientos en las direcciones X y Y de los nudos. Nótese que solo atendemos a los grados de libertad lineal ya que el programa no es capaz de distinguirlos y los datos referentes a ello tendremos que proporcionarselos, no así para los grados de libertad angular que sí son distinguidos por el programa.

De las figuras anteriores podemos establecer la correspon-dencia entre los grados de libertad lineal y los desplazamientos en X y Y de los nudos no apoyos.

Y

2

3

Grado de libertad lineal que corresponde Nudo con el desplazamiento del nudo en la dirección:

Х

1

1

2

Recordemos que si el desplazamiento de un nudo en alguna de las dos direcciones establecidas (X y Y) no existe por estar restringido esté por las condiciones de apoyo considerando la hipótesis de que no existen deformaciones axiales en las ba--rras, utilizaremos el grado de libertad ficticio O para expresar que ningún grado de libertad lineal corresponde con este desplazamiento.

Para los apoyos no es necesario ésto ya que el programa con sidera automáticamente que éstos no tienen ningún desplazamien to al efectuar los calculos.

Obtengamos ahora las coordenadas de todos los nudos inclu-yendo los apoyos, para lo cual fijaremos el origen de nuestro sistema de Coordenadas en el nudo 3 que corresponde a uno de los apoyos.

Coloquemos ahora en forma tabular el nudo origen y el nudo destino de cada barra de acuerdo con la dirección adoptada para cada una de ellas. Para ello es que se han dado numeros a los apoyos, para identificarlos también.

		1.5		8.3		vêć.				1		12		527	25		9				1.1	37		1.17		12			2.3			887	89 T	ф. —		111	1.1	37	12.00	100	- 24	1	승규는	1 22		-0-	44
	Р.,	w Î	-	1.1	1	3.6	. me	59	87.	1	10	60		2.	÷.			5	69	87	çн.	223	- 20	2		24	e Ci	-	æ.,	÷.,		4 Q	-	2	26		82.2	higs		Чņ	973		19	3	≥ 22	205	4
		14	н	(A	17	•	r	я	L È.	÷.		3	51	<u>8</u> (1	N	11	10	٦.	n	يني ا	÷ (٦.	r	'n	1	2	ρ	r	1		영상	25	A	I F	16	11	n	с; ¹	a	e	2 ز	-11		1.1	n	n	12
	15	З. I			2.5				39	\$93		1011	2.5	1.	•				~	38	8.		· · ·	<u>_</u>	- 6	2	٠.	•		62	(a)	\mathcal{L}					0.3	365	1.1		20	્યું ન		. A		٣.	
4	10	<u>àc</u>				20	120	23	14	2	ν,	(2)	<u> 163</u>	22		÷.,			140	æ	23		1				22	97	1.s	99		2°e	÷.,	1.5	19. E.	1.10	9E	13.6	1	10	-11-	C.C.		13	0.1		48
1					10 L		1		έv.	9	27	196	577	99		1			Ċ7	١.,	\overline{T}	~	100		97		-				50.4	111	-	音楽		ineres .		4.5	÷	-	1.0	<u></u>		<u>400</u>	100	<u> </u>	-
à.	6	100	27	÷.,	2	12	23	2		32	M÷	80	62	ώð:	<u>.</u>	16	10	66	άĽ4	r.		1	Ъċ,	èđ,	MG	250			12	÷.	367		10		20	1.5	83	100				250	14 M.				1
÷		뚶	÷,	th	1) an le		6.5	24	-	àŭ.	÷., 1	499) 1992	15	÷	1.22	eer.				5		1	28	3	1		62.		11		2	- 6		11	94		51		4	é.	699			26	66
9			ų.,	÷.,	ф,•		94		77		1	40			92	1		9	38	2	ં ન	1		255	3.				876	22	78	30	25	100				1	***	100	30	20	ň. F		100		庐
÷.	193	ġ.,		1			20	ж£	1.5		ľω,	04	lin.	622	1		1		658	- 54		10.	14	1			5.3	÷.,		89		92	2.1				1	č.,	đŕ	25	5		1	10	86		З.,
	8 j.;	5.	ė,		5	50 647	- 3	15	έģ.	24	g la	30	93	22	45	5.	्र	20	70	10	24		173	2.5	51	11	2.5	17	1	-	79) 194	12	90)	98	1		448	1	2.5		195	÷.,	ನಗಳ		90),		
÷	÷.	87.	24	14			377	1	18				187			80	12	19	199		95	10	1		84. C	3.0		έt	12	$\frac{1}{2}$	291.	1.17	100	64 S			1		-	200	he È	92	200			- 4	19
3			ः,		М,	2		-8		32		ΞĘ	- 63	é i	÷.	8.9		1	23		1.5	1	40	÷.,	С.			- 2	25	13	÷.	şε.		48	3.	22		°.,	-)	22	092 1		313	4.55	<u>v</u> 2:	- 9
- 4		1.3		-15	् 🐔	-	2.5	13	24	Ν.,		2.2	- 24	-60	1.	2.	6.6	Зģ	<u></u>	t	<u></u> .	۰.	<u></u>	11	1.1		÷.,	<u>21</u> d	49	1.5	÷	6.2.	22	1	- 14	<u>.</u>				10	38	10.0	0.00	20	95	97.	32
					- 22	23	ge:	38.	¢8	1	9	20	0		÷.		τ.	10		te:	4		26	94			3	<u>.</u>				97	39	1	10	12	전문			90 î	10	27	115	5. Q	Ť	-77	99
	10		24	22	÷.,	÷		- 2		¥.)		je pi	23	зÈ,	14	S.	25	20			ŝ		3		Χ.,		Č.	1		12		de la		\$K.	ेः	98e	20	СC.	20			14.1	26				
			ā.		12	225	r_{i}					97	191	24		1			÷9.		÷.,	24		1	9-1) 		÷4.	1	2.5	32	Yes:	,34	÷.		16	14.	3.1	1.00		法语			6¥.,	iei (j			65
				1	÷.,	Z.	4 Q	έć,	ά.	87	17		e^{it}	200	20	28		dH		20	1	Э.	ιŤ		25				292	20		S.,				677 I	20		1		22.			-1921 1941		3.5	27
	÷.,				12	1	di s	ð.		-18	- 2		- 65	223	97.		āά	λĝe,			1	-	si.			gà,		22	95	10						승규		10		10	1.55	101	1	¢ψ			9
-		1	сį.,		87		Q4-	١.,			2.		19	2,1	666		1		à.				10				12.	÷.	317	÷.	200	- E.			947			÷.	27	5.5		<u>) (</u>		:27.)			ŝ.,
ġ,	erað	÷.	21	- 44	ie:	1.44		<u>.</u>	2.5	64	4.25	Y.	1	- 11	22			1	2.3	20	94	1			. 1	32				-94	<u>07</u> -	ŝţŝ	÷.,		191		50	파다	1	98	49		2 N.	-4-2	έQ,	÷	
			Sec. 1		1.121	× C	180.0			- 10 A.					32.1			1.12		1.5.0	10.0	1. Y.S.		32.00		200.0			65 J. F	1.000		States and	10 Color 10	1.1	11122					2002	1.1		100.00	~ 2 3			

Calculemos también las fuerzas externas aplicadas en los \underline{u} dos, las cuales pueden ser; moméntos, fuerzas paralelas a la d<u>i</u> rección X y fuerzas paralelas a la dirección Y.

(78)

Para la barra 2 que es la única que se encuentra cargada.

(79)

Sabemos que el momento de empotramiento para una barra de sección constante es $wL^2/12$.

Para nuestro marco:

 $wI^2/12 = 2 \text{ ton/m} (4 \text{ m})^2/12 = 2.667 \text{ ton m}$

y por equilibrio de fuerzas encontramos el velor de las re--acciones.

De aquí establecemos que la siguiente barra es equivalente

Ahora determinemos las fuerzas externas que actuan en la -dirección de cada uno de los grados de libertad (angulares y lineales), siguiendo la convención de signos establecida con anterioridad.

Existen en esta estructura 2 grados de libertad angular, el giro en el nudo l y el giro en el nudo 2, y las fuerzas que -actuan en dirección de estos grados de libertad son el momento en el nudo l y el momento en el nudo 2 respectivamente.

> Momento externo en el nudo 1 = -2.667 ton m Momento externo en el nudo 2 = +2.667 ton m

Como ya vimos anteriormente, existen 3 grados de libertad lineal en esta estructura y al igual que para los desplazamien tos, las fuerzas aplicadas sobre el nudo en las direcciones X y Y corresponden con la dirección de alguno de los prados de libertad lineal del nudo. Si no existiera ningún grado de li bertad lineal correspondiendo con alguna de estas fuerzas, entonces dicha fuerza no sería necesaria para efectuar los calcu los ya que solo nos interesan los efectos de la flexión.

Si existieran dos fuerzas aplicadas sobre distintos nudos pero sobre el mismo grado de libertad lineal habría que suma<u>r</u> las algebraicamente para obtener la fuerza total que actua sobre dicho grado de libertad.

Para nuestro marco:

Fuerza externa sobre el grado de libertad lineal 1 = +8 ton Fuerza externa sobre el grado de libertad lineal 2 = -4 ton Fuerza externa sobre el grado de libertad lineal 3 = +4 ton

Sabemos que para una barra empotrada la rigidez angular de sus extremos es 4EI/L siendo el factor de transporte 1/2, 1c cual se cumple exclusivamente para barras de sección constante como las del marco en estudio, por tanto tendremos las rigideces siguientes:

k_{AA}=4EI/L k_{BA}=2EI/L k_{BB}=4EI/L k_{AB}=2EI/L

Como EI/l es constante para cada barra se emplean únicamente los coeficientes de rigidez:

$$R_{AA} = 4$$
 $R_{BA} = 2$ $R_{BB} = 4$ $R_{AB} = 2$

Para este ejemplo no es necesario utilizar las tablas ya -que los valores de las rigideces angulares,factores de trans-porte, y momentos de empotramiento para barras de sección con<u>e</u> tante son bien conocidos, no así para barras de sección variable,por lo cual mostraremos el uso de las tablac del manual. Al final de estos ejemplos se muestran algunas de las tablas del manual en cuya parte superior se encuentra un croquis donde se especifican las dimensiones de las barras en forma generalizada mediante algunas variables, si nosotros encontramos los valores de dichas variables para un caso particular de oarra entonces podremos entrar a las tablas y obtener los valo-res correspondientes de los Coeficientes de rigidez R_{AA} , R_{BB} , los Factores de Transporte C_{AB} , C_{BA} con los cuales se pueden obtener los Coeficientes de rigidez R_{AB} y R_{BA} mediante:

$$R_{BA} = C_{AB} R_{AA} \qquad R_{AB} = C_{BA} R_{BB}$$

También se obtienen los Coeficientes del Momento de Empo--tramiento para carga uniformemente distribuida o para carga -concentrada. Para obtener el momento de empotramiento para el caso de carga uniformemente distribuida se multiplican los coeficientes m_A y m_B por wl².

$$M_A = m_A wL^2$$

 $M_B = m_B wL^2$

Para el caso de carga concentrada los coeficientes n_A y n_B se multiplican por Pl.

$$M_{A} = n_{A} PL$$

 $M_{B} = n_{B} PL$

Obtengamos estos valores para nuestro marco.

Como sólo tenemos barras de sección constante en él, para todas ellas:

$$W_{A} = r_{A} \cdot h_{c} = 0$$
, $W_{B} = r_{B} \cdot h_{c} = 0$, $a_{A} \cdot L = 0$, $a_{B} \cdot L = 0$

Como es obvio que la longitud de las barras (L) y el peralte mínimo de las mismas (h_c) son distintos de O, podemos con-cluir que:

$$a_A = 0$$
 $a_B = 0$ $r_A = 0$ $r_B = 0$

Con estos valores entramos a las tablas y nos dirigimos a la tabla 52a que es la correspondiente a ellos.

En esta tabla encontramos que para todas nuestras barras:

 $C_{AB}=0.5$ $C_{BA}=0.5$ $R_{AA}=4$ $R_{BB}=4$ $m_{A}=0.0833$ $m_{B}=0.0833$ De aquí: $R_{BA}=C_{AB}R_{AA}=0.5(4)=2$ $R_{AB}=C_{BA}R_{BB}=0.5(4)=2$

Y para la barra 2 que es la única que se encuentra cargada:

$$M_{A} = m_{A} w L^{2} = 0.0833(2 \text{ ton/m})(4 \text{ m})^{2} = 2.666 \text{ ton m}$$

 $M_{B} = m_{B} w L^{2} = 0.0833(2 \text{ ton/m})(4 \text{ m})^{2} = 2.666 \text{ ton m}$

Con estos valores de los momentos de empotramiento que son aproximadamente los mismos que habiamos calculado anteriormente se pueden calcular las fuerzas externas aplicadas en los nu dos y con ello las fuerzas que actuan en dirección de cada uno de los grados de libertad de la estructura como se había hecho anteriormente.

Como puede verse se obtiénen los mismos valores que se obtuvieron antes y con ello se ha ilustrado el uso adecuado de las tablas.

Ahora contamos ya con todos los datos necesarios y procede-

remos a correr el programa.

Ilustraremos en este ejemplo la forma en que el programa va solicitando los datos y la forma en que debemos de proporcio-nar éstos, para lo cual emplearemos una P para distinguir lo que el programa pregunta por pantalla y una R para distinguir lo que debemos responder nosotros.

(84)

Corre el programa.

```
P Imprimir operaciones (si=0,no≠0) ?
```

R O

P Número de nudos sin incluir apoyos ?

R 2

```
P Número de grados de libertad lineal ?
```

R 3

```
P Número de apoyos ?
```

R 2

```
P Número de barras ?
```

R 3

P Módulo de elasticidad del material de las barras ?

R 1,414,210.0

- P Nudo 1
- P Momento externo ?
- R -2.667

P El desplazamiento en X corresponde al grado de libertad lineal ?

R 1

P El desplazamiento en Y corresponde al grado de libertad lineal ?

R 2

	(c_{2})
P	Coordenada X ?
R	3.0
P	Coordenada Y ?
R	1.732
P	Nudo 2
P	Momento externo ?
R	2.667
F	El desplazamiento en X corresponde al grado de libertad lineal
R	1
P	El desplazamiento en Y corresponde al grado de libertad lineal
R	3
P	Coordenada X ?
R	7.0
P	Coordenada Y ?
R	1.732
P	Nudo 3
Р	Apoyo
P	Coordenada X ?
R	0.0
P	Coordenada Y ?
R	0.0
P	Nudo 4
F	Αρογο
Р	Coordenada X ?
R	10.0
P	Coordenada Y ?
D	

1 -	Fuerza en dirección del grado de libertad lineal 1 ?
R	8.0
P	Fuerza en dirección del grado de libertad Filear -
R	-4.0
P	Fuerza en dirección del grado de libertad linear > .
R	4.0
Р	Barra 1
2	Nudo origen ?
R	3
P	Nudo destino-?
R	1
\mathbf{P}	Coeficiente de rigidez R _{AA} ?
R	4.0
P	Coeficiente de rigidez R _{BB} ?
R	4.0
P	Cceficiente de rigidez R _{AB} , R _{BA} ?
R	2.0
I	> Momento de inercia ?
F	0.000133
•	p Barra 2
	p Nudo origen ?
	R l
	P Nudo destino ?
	R 2
	P Si las propiedades geometricas
	P Coeficientes de rigidez (RAA, RAB, RBA, RBB) y momente
	P De alguna barra son iguales a las de otra barra ca, c
	P Hayan sido proporcionados, unicamente especifique el manente
	P De esta,en caso contrario pulse O

```
Propiedades barra 2 = Propiedades barra ?
Ρ
R
    0
    Coeficiente de rigidez R_{AA}?
\mathbf{F}
R
    4.0
    Coeficiente de rigidez R<sub>BB</sub> ?
Ρ
R
    4.0
    Coeficiente de rigidez RAB, RBA ?
Ρ
R
    2.0
P
    Momento de inercia ?
R
     0.00133
P
     Barra 3
     Nudo origen ?
P
R
     2
P
     Nudo destino ?
     4
R
     Propiedades barra 3 = Propiedades barra ?
P
R
     1
```

Aquí termina el abastecimiento de datos al programa y sólo resta esperar a que los resultados aparezoan en la impresora. A continuación se muestran los resultados obtenidos para -este ejemplo, no debe olvidarse que todos los datos de entrada deben estar en unidades compatibles para que los resultados -sean correctos y tengan unidades compatibles con los datos.

(88) GRADO DE LIBERTAD LINEAL QUE CORRESPONDE CON EL DESPLAZAMIENTO DEL NUDO EN LA DIRECCION Y 2 3) x NLDO COORDENADAS +1.732 ŧ 28**1** X = +3.000 Y≖ ¢ 1) Ŷ₽ 24.23 χ= +7.000 ŧ 1) ¢ +0.000 Y= Y= +0,000 APOYO X = 4-POYO 4 X= +10.000 +0.000 NUDO OR I GEN BARRA MUMENTO NUDO DESTINO INERCIA 1 2 3 0.00013 3 1 0.00133 12 0.00013 4 COEFICIENTES DE RIGIDEZ BARRA LONGITUD RAB, RBA +2.000 +2.000 RAA RBB 1 +4.000 +4.000 1 3.464 76 +4.000 12 -्रि द 3.464 +4.000 +2.000 +4.000 2 NODULO DE ELASTICIDAD DEL MATERIAL (E)= 1,414,210.000 NAECO MOMENTO EXTERNO • -2.667 2 1335 А, GRADO DE LIBERTAD FUERZA EXTERNA LINEAL 8.000 -4.000 4.000 1 2 3 .

8

n di tanja pasa

	antrin'ny stra	Shi pana minjada	وبالمراجعة والمتحفظ والمتحفظ والمتعاط والمتعاط	승규야 이렇게 했어.	يوريد بالمتعامي بالمجير بالتعاد		a an
					(=0)		
		E CONTINUI	nan.		(07)		
761	K17 D						
			+0.00000	A! 1	, 2)=	+0.00000	그 아는 가슴에 잘 다니는 것을 수 있다. 것을 다 같아요.
- 	97 1 - 97 - 7	· · · · · · · · · · · · · · · · · · ·	+1.00000	A 2	, 2)=	+0,0000	
2 . .	÷ •	나는 그 아파스	-1.00000	A1 3	, 2)=	+0,00000	이 이 집에 가지 않는 것 같은 것이 없다. 이 것
A.		1.2	+0.00000	A . A	, 2)=	+1.00000	그는 것은 것은 것은 것은 관련을 얻는 것이 없다.
	4	1	+0.00000	A 5	, 2)=	-1,00000	
- * *	, , , , , , , , , , , , , , , , , , ,	112	+0.00000	AL 6	2)=	+0.00000	
	6,	1 7 =	+0.000000				
			-0 14434	A(1	4)=	+0,25000	· · · · · · · · · · · · · · · · · · ·
		31	+0 14434	A(2	4)=	-0.25000	
	2.	31	+0.00000	A 3	4)=	-0.25000	
4 (3	≡≀ي ⊃\-	+0.00000	A' 4	4)=	+0,25000	
≜ (- <u>4</u> •	 	-0 10030	A* 5	4)=	+0.00000	그는 것 같은 것 같은 것 같은 것 같이 있는 것 같이 없다.
K(5,	(d)=	+0 14434	ALG	4)=	+0.00000	
AC.	6.	3)=	+0.14404				
		a she she					
		- <u>-</u>	+0.00000		이 이 아파 같이 같이 같이 같이 아파		
	1.1		+0,00000				
	2.	·····································	+0.000000				an benar se al fina care a la completazione i a presentato di la completazione i se al fano de la completazione La completazione i al completazione i al completazione di completazione di completazione di completazione di com
A.	्उ,	2)#	-0.25000				그는 것이 많은 영양은 선생은 지지 않는다.
- •	4,	;=;=;	-0.25000				소 명소, 이는 것이다. 가는 것은 것이 같은 것이 같은 것이 같은 것이다. 이는 것이 있는 것이다. 같은 것은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 같이 있는 것이 같이
	5.)#	-0.20000	an ing Seria			(1) A set of the se

-0.25000

a a chuir ann an tha an Tha ann an t

MATR	II DE	CONTINUI	DAD TRANSPLIEST	۲A	(90))		
AT	ι.	1)=	+0.00000	AT (an a	2)=	+1.00000	
ATC	2 .		+0.00000	AT	2 .	2)=	+0,00000	
ATC	з,	1)=	-0.14434	ATC	3.	2)=	+0.14434	영말 아이 입장은 것 같은
AT (4,	1)=	+0.25000	AT (۷.,	21=	-0.25000	
AT (5,	1)=	+0.00000	ATL	5.,	2)=	+0.00000	
ATC	•	3)=	-1.00000	AT (•	4)=	+0.00000	
ATC	2 .	3)=	+0.00000	ATC	2	4)=	+1.00000	
ATC	Э.	3)=	+0.00000	AT	з.	4)=	+0.00000	
ATC	4,	3)=	-0.25000	ATC	۷.,	4)=	+0.25000	
ATC	5.	3,=	+0.25000	AT	5	41=	-0.25000	
ATI	3 1	5)≈	+0.00000	ATC	1	- ۲۵	.+0.00000	
ATC	2.	5)=	-1.00000	ATC	2.	6)=	+0,00000	
ATC	з.	5)=	-0.14434	AT	з,	6)=	+0.14434	
ATC	4 ,	5)=	+0.00000	AT	4	6)=	+0.00000	
ATL	5.,	5)=	-0.25000	AT (5,	6) -	+0.25000	
		n en stander an en stander. De stander de stander an en					n Na de seus de la companya de la companya	
			김 사람이 아파 영화	~ 문화 문화			ng Alexandra (alexandra) a series de la deservación de la deservación de la deservación de la deservación de la Estado en la deservación de la deservac	
		이 같은 것을 가락했다.				친구는 것을 물고 있다.		

			na la tarta Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-A	10	5 5 5		
	_		~ • •	, ,	71)		
MATRIZ DI	E RIGID	ECES DE LAS BAR	- AD			월 2019년 1월 2 1월 2019년 1월 2	
k(1 ,	1)=	+217,18900	kt	1,	2)=	-103.59500	
k(2 ,	1)=	-108.59500	14	2	21=	+217,18900	
k(3 ,	1)=	+0,00000	K (3 .	2)=	+0.00000	м.,
k(4,	1)=	+0.00000	- F.C	4	2)=	+0.00000	
k(5,	1,1=	+0.00000	k (5,,,	2)=	+0.0000	
K(6 .	1)=	+0.00000	ĸ	6,	2)=	+0.00000	
							공국감독
	na se saas 1979 - 201						
k(1,	3)=	+0.00000	RC	1	4)=	+0.00000	
k(2,	3)=	+0.00000	- RC		4)=	-0.00000	
k(3,	3)=	+1,830.90000	- K(3040	4)=	-940,45000	
k(4,	3)=	-940.45000	- K.C	4,	4)=	+1,880.40000	
k(5,	(3)=	+0.00000	R L	2.	41=	+0,00000	
K(6 -	3)=	+0.00000	, KU	0.1	4/=	40.00000	
			· .	an a tala			e da de
1.1		+0.00000	¥ (1	6)=	+0.00000	
bi	5)=	+0.00000	. Re	2	6)=	+0.00000	
	5)=	+0.00000	n in C		6)=	+0.0000	
νr Δ	5)=	+0.00000	- 11	4	<i>(</i>)=	+0.00000	
	5)=	+217 18900		5	6)=	-108. 59500	Charles I.
		-100 50500			<u>ه (۸</u>	+217.18900	ander gebied beier. Die bestehen die seit

المراد مستعلقا فيستعملكم والمتعادية

للأبير والمستميلة وبليت والمستقدر للقرائيت فسنراص فسياسه والمسافية

к(к(к(1, 2,	1)=	+2.079.09000	1.00					
к(к(2 ,				1.	2)=	+940.45000		
ĸ		1/=	+540.45000	1 K.C	2,	2)=	+2,093.09000	- 김 말 요즘 가 한 눈의 물건물	
	State of Street	1)=	+47.02210	- F C	з.	(2)=	-47.02210		
KI	4	1)=	+623.64000	11	4,	2)=	+705.33700	- 문화 전화 가격	
KC	5	1)=	-705.33700	- E.C	5.	5)=	-623,89000		
KI K(K(K(K(1, 2, 3, 4, 5,	3)= 3)= 3)=	+47.02210 +47.02210 +27.14780 -23.51140 -23.51140	К К К К	1 . 2 . 3 . 5 .	4)= 4)= 4)= 4)=	+623,89000 +705,33700 -23,51140 +393,39300 -352,66900		

							(93)			
n a b Ersense Frank	EL S	ISTEM	A DE ECUAC	IONES ES C	OMPATIB	LED	TERMINADO			
	MATR	IT SC	LUCION				1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	an a		
	KS	Ξ.	1)=	+1.000	HS(1.	2)=	+0.000		
	KSC	Ζ.	1)=	+0.000	KSI	2.	2)=	+1.000		
	KSC	З,	1)=	+0.000	KSC	з,	()[2)=()[8]	+0.000		
	KS(÷.,	17=	+0.000	NS(4,	2)= 7_	+0.000		
	100	- •		+0.000	1,51	- J.,		+0.000	- 1993년 1945년 178 1997년 - 1997년 19 1997년 1997년 199	
										성장 승규는 것은
	KS(2,	3)=	+0.000	KS(1.	4)=	+0.000		1799년 1997년 - 영화가 1998년 1997년 - 영화가 1999년 - 1997년
	KS(2,	3)=	+0.000	+:5(21	4)= 4)=	+0.000	1 이는 사람이 가지가 있다. 1 이는 것이 가지 않는 것이 가지? 1 이는 것이 가지 않는 것이 있다.	
	KSI	5	3)=	+0.000	1.50	4	4)=	+1.000		
	KSC	Ξ.	3)=	+0.000	1.5.6	5,	4)=	+0.000		
	roi	•	5)	+0.000				지 않는 것 같은 것 같은 것		
	KSI	21	5)=	+0.000					그는 말 아내는 것을 가 없다.	영상 관계가
	KSC	3.	5)=	+0.000				승규는 것을 가려야 한다.		
	KSC	- 4 🖕	5)=	+0.000						
	KBL	54	5) 🖛 👘	+1.000		· · · · · · · · · · ·				
	• • •									
										(1997년) - 1997년) 2월 1997년 - 1997년 - 1997년 2월 1997년 - 19
									2.2.11 (2.2.2.2.)	성가 가려 있는 것이 하는 것이 있는 것이 없는 한

المربع مربع المربعة المربعة ا

	onennen handenne om et er en en et der er en er	, and the first frequencies of the spin second		adiri yana da yang panjar ka karang karan	
	성상 성격 가 그 것 같아요. 한 것 같아.	성이 말을 가 있는 것을 가 없다.	사람은 사람이 가지 않는 것을 했다.	enalisa di kan lanna di pang kan lan. Childre dan Jawa Titu dan di kanala	
	na per esperante de la contra de la contra de persona de la contra de la contra de la contra de la contra de l Notas de la contra d			사람이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다.	
	그는 아이는 것은 것을 가 봐야 한다.	승규는 것 같은 것 같			
그는 그는 그는 것은 것이 가지 않는 것이 없다.		친구는 그는 것이 같은 것이 같은 것이 없다.		물질 영화가 잘 못 못 한다.	
		1			(deg plagade
	그는 그는 것을 모양을 한 것을 못했다.	(94)			
행동물 동안을 가지 않는 것이 없다.	지 않는 것은 것은 것을 가지 않는 것을 수 있다.			유명 승규는 것 같아요.	방송을 감독하는 것이다.
DECOL ATAMICHITOD	그는 걸 만큼 잘 다 있는 것을 같은 것을 했다.			그는 것이 같은 것은 것이 같다.	
DESPLAMILENIUS	승규는 영상 방법을 위한 것을 받았다.	이 나는 것이 아이가 같아요.			
PHIC : D = -0.36	00	전 같은 것 같은 것 같아요.	제가 가지 않는 것 않는 것	집에는 것은 다섯 명이 있	
-0.3	5 <u>0</u>	그는 것은 관계를 물통했다.			. Billio Casta Serie Conseri Castal de Casta Serie
d(:)= +2.8	17				
d(<u>2</u>)= +0,7	구경 이 나라의 것이 많이 많이 봐. 것.	tan 10 kata kata kata da kata da kata Pertuka kata kata da kata kata kata kata kata			
d(2)# -0.7;	36	요즘 이 것 수 있을 것 같	사망 관계 관계 관계 관계 관계	은 전철에는 모두 집 감정된	
DEFORMACIONES			북한 옷을 가 없는 것이 같아.	영화 이 가장 승규는 것	
THETA A (1)=	-0.225		김 승규는 것 같은 것을 것 같은 것을 것 같이 없다.		
THETA B (1)=	-0.140	[1] A. S. Markov, and M. Markana, and A. Markov, and A. Markawa.	영화 방송 방송 방송 방송 방송	생승 말문에 젖고 넣었다.	승규가 걸었다. 그
THETA 4 (2)=	+0.001		방법 문화 감정 감정 감정		
THETA 2 (2)=	+0.005				
THETA 4 (3)=	+0,138		이는 것은 것을 가지 않는 것이다.	이 집에 가슴 이 집을 가 없을까?	
THETA B (C)=	+0.223		승규는 것은 사람이 없는 것	승규는 승규는 것을 가지?	동안 아이지 않는 것
FUERZAS INTERNAS			일 같은 것을 가 물건을 얻을 수 없다.		
mA (1)= -3	33.716		a na si na na manalani ju dan		
mB (1)= -	-6.002		고 같은 것이 같았는 것	친구는 것 같은 것 같아요.	
mA(2)≖ -	-3.335				말 가 있는 것이 같아.
mB (2)= +	+8.378	المراجع المراجع المحادثة المراجع	an ta da ang ang ang ang ang ang ang ang ang an		
mA (3)= +	+5.711	그는 것 같은 것을 가지?			
mB # 3)= +3	33, 425				

COMPRESACION EQUILIBRIO COMPROSACION EQU FUERZAS EXTERNAS M(1)= M(2)= F(1)= F(2)= F(3)= -2.667 +2.667

-4.000 +4.000

Sabemos que la barra 2 tiene 10 veces la inercia de las ba-

rras 1 y 3.

Si hacemos $i=0.00133 \text{ m}^4$

Entonces;

Nomento de inercia de la barra 1 = 1.0 i Momento de inercia de la barra 2 = 10.0 i

Momento de inercia de la barra 3 = 1.0 i

Ei hacemos e= 1,414,210.0 ton/m²

Entonces;

E = 1.0 e

Ahora para todas las barras i y e son constantes y podemos extraerlas del calculo con el programa lo que evitara que dicho programa trabaje con cantidades demasiado grandes. Unicamente habrá que multiplicar por (ei) los coeficientes de las ma-trices de rigideces de las barras y de rigideces de la estructura para obtener los coeficientes reales que corresponden a nuestra estructura y habrá que dividir entre (ei) los coefi--cientes de los vectores de desplazamientos y de deformaciones angulares con lo cual se obtienen igualmente los coeficientes reales que corresponden a nuestra estructura.

Este procedimiento es muy útil cuando se desconocen los --valores precisos de i y e que provocarán desplazamientos y deformaciones angulares admisibles, conocida la proporcion de -las rigideces en las barras se puede efectuar un cálculo para posteriormente mediante iteraciones se llegue a determinar los valores razonables de i y e que satisfagan nuestras solicita--ciones.

(95)

Corramos nuevamente el programa para nuestro mismo ejemplo, cambiando únicamente los valores de los momentos de inercia y módulo de elaticidad, por los siguientes.

> Momento de inercia de la barra 1 = 1 Momento de inercia de la barra 2 = 10 Momento de inercia de la barra 3 = 1 Módulo de elasticidad del material = 1

Para comprobar podremos multiplicar por (ei) las matrices de rigideces de las barras y de rigideces de la estructura obtenidas en esta corrida del programa y compararlas con las obtenidas en la corrida anterior, igualmente podremos dividir -entre (ei) los vectores de desplazamientos y de deformaciones angulares obtenidos aquí y compararlos con los obtenidos anteriormente.

 $ei = (1,414,210.0 \text{ ton/m}^2)(0.00133 \text{ m}^4) = 1,880.90 \text{ tors m}^2$

(97) GRADO DE LIBERTAD LINEAL DUE CORRESPONDE CON EL DESPLAZAMIENTO DEL NUDO EN LA LITRECCIÓN X NUDO COORDENADAS +1.732 +1.732 1 25 X= +3.000 Yz ł 15 1 2 +7.000 ¥≞ 31 χ= t, (12 З X= +0.000 Y≖ +0.000 AP0Y0 4 X= +10.000 Y= +0.000 APUYO LASRA NUDO NUDO MOMENTO ORIGEN. DESTINO INERCIA 1 з 12 1.00000 2 1 10.00000 3 2 4 1.00000 BARRA LONGITUD COEFICIENTES DE RIGIDEZ RAA RAB, RBA RBB +2.000 1 3.464 +4.000 +4.000 2 4.000 +4.000 +4.000 3 3.464 +4.000 +2,000 +4.000 MODULO DE ELASTICIDAD DEL MATERIAL (E)= 1.000 `.w., NUDO MOMENTO ÷ EXTERNO -2.667 2.667 . 1 2 1 GRADO FUERZA DE LIBERTAD EXTERNA LINEAL 8.000 123 4.000

1.4. 1

	and the second		96 ;		
MATRIZ DE CONTIN	IUI DAD				
$\begin{array}{cccc} A(&1,&1)=\\ A(&2,&1)=\\ A(&3,&1)=\\ A(&3,&1)=\\ A(&5,&1)=\\ A(&5,&1)=\\ A(&6,&1)=\\ \end{array}$	+0.00000 +1.00000 -1.00000 +0.00000 +0.00000 +0.00000	A(1 , A(2 , A(2 , A(2 , A(5 ,	2)= 2)= 2)= 2)= 2)= 2)=	+0.00000 +0.00000 +0.00000 +1.00000 -1.00000 +0.00000	
$\begin{array}{cccc} A(&1&,&3) = \\ A(&2&,&3) = \\ A(&3&,&3) = \\ A(&3&,&3) = \\ A(&4&,&3) = \\ A(&5&,&3) = \\ A(&6&,&3) = \end{array}$	-0.14434 +0.14434 +0.00000 +0.00000 -0.14434 +0.14434	A(1 ; A(2 ; A(3 ; A(4 ; A(5 ; A(6 ;	4)= 4)= 4)= 4)= 4)= , 4)=	+0.25000 -0.25000 +0.25000 +0.25000 +0.00000 +0.00000	
A(1, 5)= A(2, 5)= A(3, 5)= A(4, 5)= A(5, 5)=	+0.00000 +0.00000 +0.25000 -0.25000 +0.25000				

AC AC AC 5)= 5)= 5)= 456 -0.25000

		a ta secola a com			<u>de la case as</u>			<u></u>
				alle de la parte		فكبره بمنصط للبنية	الجدار فليرعلهم والمتحاصيل والمرتبة المتعلقات والفراص المسترا يتقصص أرارا الم	and the second
					(00)			
$g_{0} = 1 (g_{1}^{2}) (g_{1}^{2})$	910252		성상 이번 영상에서 가지?				<u>en en e</u>	
MATR	IZ DE	CONTINUI	DAD TRANSPUES	(A) (2007)				
		영상 문화 영양 문화					41 00000	
AT	1.	11	+0,00000			21-	+0 00000	
ATC	Ξ,	115	+0.00030	AT (51	- 	10 14434	
ATC	ۍ ک		-0.14434		2. A	5.2	-0.05000	
AT (4.	1)=	+1,27	AT (2 - C		+0.00000	
AIL	э,	1 ↓ =	-v. <u>00</u> . 20			22. 승규는 그는		
		بالمحالية التقالية بتبنيه		a gha Bhe				
	an an taon 19 An taona 19	~ . _	-1.00**0	ATC		4)=	+0.00000	
AT /	5	3)=	+0.00000	ATL	2	4)=	+1.00000	
ATI	51		+0.00000	ATC	3	4)=	+0.00000	
	Δ.	31=	-0.25000	ATC	4	4)=	+0,25000	
		2 Y =	+0.25010	A.1.C	-	4)=	-0.25000	
						이 바람이 있는 것이 같이 없다.	영상 방법에 가지 않는 것이 있는 것을 받았다.	
							철말에 가지 않는 것이 아니는 것이 같아. 같은 것이 같아.	
AT	1	51=	+0.00000	ATC	1.	6)=	+0.00000	
ATI		5)=	-1.00000	ATC	2.	6) =	+0.00000	
ATC	3	5)=	-0.14434	ATC	з,	6)=	+0.14434	관계관
ATI	4	5)=	+0.00000	ATC	4 .	6)=	+0.00000	
			ふうとう ふちょうき ちちちち ぷら		A	いっかん マード いってんしょう		こうえんがく

						(100)		
ATI	215	DE	RIGIDECES	DE LAS BARR	45				
	1		11-	+1.15471		1	2)=	-0.57735	
	<u></u>		11=	-0.57735	11		2)≖	+1.15471	
13	-		1)=	+0.000%	- KC	3	2)=	+0.00002	지 이 방법 관련을 받는 것이라.
1	4		1)=	+0.0007	140	4	2)=	+0.00000	
i	-		≦ <mark>1) =</mark>	+0.000.0	10	5	⊇າ ⊨	+0,00000	지 온 호텔은 영광가 집들 것을 통
1	6		1) =	+0.00000	5 K.C.		2)=	+00000	
		2 A A						2013년 전 전 전 전 전 전 전	이번 그 바랍 것 같은 그 분장한 것 같아.
				e e transforma a seg					요즘은 영향을 관계를 관계할 것을 것이
1	1		3)=	+0.00000	- kC	124	4)=	+0,0000	
2	2		3)=	+0.00050	i kiti	2 .	4)=	+0.00000	그는 것이 아는 것 같은 것을 가지 않았다.
1	៊ីត	21	3)=	+10,00010	1.0		4) #	-5,00000	이 이 이 것 같은 것 같은 것 같아?
1	Δ		3)=	~5.00010	10	4.	41=	+10,00000	그는 것은 것은 것을 물통하는 것을 물통
7	5		3)=	+0.00000	. i C	5	4)=	+0,00000	
2	<u>ک</u>		3)=	+0.00000	1.0	ε.	4)=	+0.00000	이 이 것 이 가지 않고 가슴값
	्राः		- T.						이 집에 있는 것이 말랐는
102						1.11			
Ċ	1		5)=	+0.00000	k C	1 .	(6)=	+0.00000	
i.	2	124.5	5)=	+0.00000	k	2 ,	6)=	+0,00000	
è	3		5)=	+0.00000	k C	3.,	(<u>)</u>	+0,00000	والمحافظ والمراجع والمحاد المتحاد
Ċ	4		5)=	+0.00000	kĆ	4,	ć)≠	+0.00000	
C	5		5)=	+1.15471	k C	5,	e)=	-0.57735	
Ċ	. 6		5)=	-0.57735	k (6,	€)=	+1,15471	and a start of the second s Second second
						산물관	이 걸 감구 같이 있다.		
1 C		್ಷ-ಕ್ರಿತಿಕೆ ಸಂಪರ್ಧ	aan ah						
1.44					가지에	(1997) M			
							이 다 아파 아파 아파	The state state of the state of	그는 그는 그는 것을 물을 물질을 받을까.
			1			(natus)			

			a da ang ang ang ang ang ang ang ang ang an			
			(1	.01)		
WATDIT DE	BIGINEC	ES DE LA ESTRU	CTURA			
K(1 , K(2 , F(3 , K(4 , K(5 ,	1)= 1)= 1)= 1)= 1)= 1)=	+11.15470 +5.00000 +7.25000 +3.31699 -3.75000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2)= 2)= 2)= 2)= 2)=	+5.00000 +11.15470 +0.25000 +3.75000 -3.31699	
Kt 1 ; Kt 2 ; Kt 3 ; Kt 4 ; Kt 5 ;	3)= 3)= 3)= 3)=	+6.25000 +5.25000 +6.14433 -6.12500 +6.12500	F(1, F(2, F' 3, F(4, F(5)	4)= 4)= 4)= 4)= 4)=	+3,31692 +3,75000 -0,12500 +2,09151 -1,87500	
K(1 ; K(2 ; K(3 ; K(4 ;	5)= 5)= 5)= 5)=	-3.75000 -3.31698 +0.12500 -1.87500				

	na an prùtaith maipear 1911 - Anna Anna An			(102)		
SISTEM	A DE ECUA	CIONES ES CO	MPATIE	LE DE	TERMINADO)	
1817 50							
1112 50	LUCION						
1 . 2 .	11=	+1.000	1:51	1.,	2)=	+0.000	
(2 ,	1)=	+0,000	KSC	2,	2)=	+1.000	그는 그 같은 옷을 가지? 그는
(3. 3	1)=	+0.000	KS(з.,	2)=	+0.000	
4 4	1)=	+0.000	KSC	4,	2)=	+0.000	
u 5,	1)=	+0.000	KS(5,	2)=	+0.000	
					방송 관계 전 등 전기	+0.000	
SC 1.,	3)=	+0.000	KSC	<u></u>	4,7=	+0.000	
SC 2,	3)=	+0.000	KSI	<u> </u>	4/=	+0.000	
SC 3	3)=	+1.000	KSC.	و ت	4/=	+1.000	
st . 4)# 	+0.000	T.S.C.	2		+0.000	
sc 5°,	3)=	+0.000	1.21		- - 1 67 1		물건물 사망 관광 방법 관련을 가장하는 것이다.
				물건물			
		+0.000	ing la sais la tarta				والمراجع والمعالية المواد ويتبعد والمتح المحاج المتعاد الأمرار
	5)_	+0.000					
	5) = 0.0	+0.000				요즘 이 가슴다. 것 것을 만했다.	
5 4	5)=	+0.000					
31 5	5)=	+1.000					
	도 요구 주 가지로 관심할			STREET	a la substantia de la composición de la		그는 것은 것은 모두 가지 않는 것을 것을 가지 않는 것을 했다.

a a chaire shu chuir ann an taraige an taraig

(103)

1

DESPL	AZAMIEN	ITOS	
PHT	1)=	-65.793	
PH1 (2)=	-ć.7.784	
e (1)=	+529.908	
ં તેવે	2)=	+136.350	
	3)=	-138.367	

DEFORM	1AC	10	INES	· · · · · · · · · · · · · · · · · · ·
THETA	A	C	1)=	-42.397
THETA	в	C	1)=	-26.395
THETA	Ā	t	2)=	+0.114
THETA	R	i	2)=	+0.895
THETA	Δ.	ì	 ;;1⊭	+25.892
TUETA	R.	i	- 	+41.892
THEIR	L .			

FUERZAS	INTERNAS	
mA (1)=	-33.716
mB (1)=	-6.002
mA (2)=	-3.335
mB (2)= ·	+8.378
mA (3)=	+5.711
	3)=	+33.424
n so v	0,7	

.....

COMPROBACION EQUILIBRIO FUERZAS EXTERNAS -2.667 M(1)=

MC	2)=	+2.667
FL	1)=	+8,000
FC	2)=	-4.000
FC	3)=	+4.000

De las figuras anteriores tenenco:

	Coordenac	nadas	
Nudo	(X)	(Y)	
1	0.0 m	2.0 m	
2	1.6 m	3.2 m	
z	3.2 m	2.0 m	
	· → • · · ·		
나는 가장에서 있는 것은 것이라. 가장에 있는 것이다. 같은 것은 것은 것이 같은 것이 같은 것이 같이 없는 것이 같이 없다.		an an the second se Second second	
5	5.2 B	-3 - 13 m	

En la siguiente pagina se encuentra un croquis en el que se indican las dimensiones de las secciones transversales de las barras.

De la figura anterior se concluye que las barras l y 4 tienen sección constante y las barras 2 y 3 sección variable con un cartel triangular de 0.4 hc de peralte, b de ancho a lo lar go de toda la longitud de las barras y con la parte más peraltada en el extremo B de las mismas.

De aquí que:

Para las barras 1 y 4

 $\mathbf{r}_{A}=0$ $\mathbf{r}_{B}=0$ $\mathbf{a}_{A}=0$ $\mathbf{a}_{B}=0$

Para estos valores de la tabla 52a se obtiene; $R_{AA}=4$ $R_{BB}=4$ $C_{AB}=0.5$ $C_{BA}=0.5$

Con lo cual se cálcula: R_{AB}=2 R_{BA}=2

Para las barras 2 y 3

 $r_A=0$ $r_B=0.4$ $a_A=0$ $a_B=1$

Para estos valores de la tabla 52 se obtiene; $R_{AA}=5.17$ $R_{BB}=8.57$ $C_{AB}=0.642$ $C_{BA}=0.388$

Con lo cual se cálcula: $R_{AB}=3.322$ $R_{BA}=3.322$

Los valores de R_{AB} y R_{BA} calculados son un poco distintos por la falta de más cifras decimales en las tablas, pero sabe-mos por el teorema de Maxwell que ambos coeficientes deben ser iguales, por lo cúal se toma el promedio de los dos valores obtenidos como el valor correcto para los mismos. Para la barra 2, la única cargada de este marco se obtiene de la misma tabla:

m_A=0.0675 m_B=0.1011

Con estos valores se calculan los momentos de empotramiento;

M_A=1.35 M_B=2.022

Como suponemos que ho y b tienen unidades compatibles con las demás cantidades, estos momentos obtenidos **están** en ton m.

Si descomponemos estas fuerzas en fuerzas con trayectorias prtogonales e intercambiamos reacciones por acciones encontraremos la siguiente barra equivalente de fuerzas externas apli-

(108)

A.

Si colocamos esta barra en nuesto marco tendremos:

Lo cual nos permite obtener las fuerzas que actuan en la -dirección de cada uno de los 7 grados de libertad que tiene es te marco (3 angulares y 4 lineales) que son:

> Momento externo en el nudo 1 = -1.35 ton m Momento externo en el nudo 2 = 2.022 ton m Momento externo en el nudo 3 = 0.0 ton m Fuerza sobre el grado de libertad lineal 1 = 2.798 ton Fuerza sobre el grado de libertad lineal 2 = 3.202 ton Fuerza sobre el grado de libertad lineal 3 = -4.269 ton Fuerza sobre el grado de libertad lineal 4 = 0.0 ton

Como para nuestro marco todas las barras tienen peralte minimo constante e igual a ho y ancho constante e igual a b el momento de inercia es constante e igual a i.

I=b(hc)²/12=i

Siendo el módulo de elesticidad del material iguel a e. E=e Daremos entonces como momento de inercia de todas las barras I=l y módulo de elasticidad E=l.

Con los datos que tenemos corramos el programa y recordemos que habrá que multiplicar por (ei) las matrices de rigideces de las barras y rigideces de la estructura para obtener las -respectivas matrices correctas. También habrá que dividir entre (ei) los vectores de desplazamientos y deformaciones angulares para obtener los respectivos vectores correctos.

No olvidemos que e es el valor de el módulo de elasticidad del material adoptado para construir el marco una vez que se hayan efectuado los calculos, siendo i el momento de inercia correspondiente a una sección rectangular con las dimensiones ho y b elegidas despúes de efectuar los calculos con la computadora, obviamente todas estas cantidades en unidades compatibles con las empleadas anteriormente.

A continuación se muestran los resultados obtenidos por la computadora con el programa presentado en este trabajo.

(110)

a na milana si ka	안 다 있는 것 같은 것 같은 것 같은 것 같은 것	영양 이 가 가 가 가 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다		GRA	DE L	BERTAD	LINEAL-QU	E
				COR	RESPOND	CON EL	DESPLAZA	MIENTO
				DEL	NUDO EI	N LA DIR	ECCION	
NITO	, c	COPPEN	DAS		X	Y	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	가 있는 것이 있는 것이 있는 것이 있다. 전문에 있는 것이 있는 것이 같은 것이 없는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것
1	X= +0.000) Y=	+2.000		1)	(()	
2	X= +1.600) ¥≖	+3.200	()	2)			
3	X= +3.200	0 Y ≠	+2.000	(4)		U 1	
4	X= +0.000	0 Y≖	+0.000	APUYU			이 같은 물건물	
57 5 7 - 1	X= +3.200	(, Y=	+0,000	APOYO				
DADDA		unn	MOMEN	OTO				
DANNA	ORIGEN DE	97.190 97.190	INER	16				
1	4	1		1.00000				
2	1	2		00000				
з	3	2		1.00000				
4	5 S	3		1.00000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	승규는 것이 있다.	
					T DE 7			
	I ONG TTUD	2		NTES DE RU			and the second se	
BARRA	LONGITUD	RA	COEFICIE	RAB, RBA	REAL	B		
BARRA	LONGITUD	RA +4	COEFICIE A .000	RAB, RBA +2.000	(71 L) = 2 (71	3B 1,000		
BARRA 1 2	LONGITUD 2.000 2.000	RA +4 +5	COEFICIE A .000 .170	NTES DE RI RAB,RBA +2.000 +2.322	(?! / +8	B , 000 3, 570		
EARRA 1 2 3	LONGITUD 2.000 2.000 2.000	RA +4 +5 +5	COEFICIE A .000 .170 .170	NTES DE RI RAB, RBA +2.000 +2.322 +3.322	۲۲. ۲۳. +۲	3B 1,000 2,570 3,570		
BARRA 1 2 3 4	LONGITUD 2.000 2.000 2.000 2.000 2.000	RA +4 +5 +5 +5	COEFICIE A .000 .170 .170 .000	NTES DE RI RAB.RBA +2.000 +2.322 +3.322 +2.000	31 	88 1.000 3.570 3.570 1.000		
EARRA	LONGITUD 2.000 2.000 2.000 2.000	RA +4 +5 +5 +5 +4	COEFICIE A .000 .170 .170 .000	NTES DE RI RAB, RBA +2.000 +2.322 +3.322 +2.000 AL (E)=	42 	88 .000 2.570 3.570 1.000		
BARRA 1 2 3 4 MODULO	LONGITUD 2.000 2.000 2.000 2.000 2.000 DE ELASTIC	RA +4 +5 +5 +5 +4	CDEFICIE A .000 .170 .170 .000 .L MATERI	NTES DE RI RAB,RBA +2.000 +2.322 +3.322 +2.000 AL (E)=	** ++ ++ ++	38 . 000 2. 570 2. 570 3. 000 1. 000		
EARRA 1 2 3 4 MODUL(NUDO	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC	RA +4 +5 +5 +4 110AD DE 1ENTO	CDEFICIE A .000 .170 .170 .000 L MATERI	NTES DE RIN RAB.RBA +2.000 +2.322 +3.322 +2.000 AL (E)=	*1 +1 +1	38 .000 2.370 2.570 1.000		
BARRA 1 2 3 4 MODULO NUDO	LONGITUD 2.000 2.000 2.000 2.000 0 DE ELASTIC MOM	RA +4 +5 +5 +5 +4 110AD DE 1ENTO TERNO	COEFICIE A .000 .170 .170 .170 .200	NTES DE RII RAB.RBA +2.000 +7.322 +3.322 +2.000 AL (E)=	38 	8B . 000 3. 570 2. 570 1. 000 1. 000		
EARRA 1 2 3 4 MODULO NUDO 1	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOP EXT	RA +4 +5 +5 +4 11DAD DE 1ENTO 1ERNO -1.350	COEFICIE A .000 .170 .170 .000 	NTES DE RII RAB.RBA +2.000 +7.322 +3.322 +2.000 AL (E)=	(1 	88 , 000 3, 570 2, 570 3, 000 1, 000		
BARRA 1 2 3 4 MODULI NUDO 1 2	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOP EX1	RA +4 +5 +5 +4 10AD DE 1ENTO 1ERNO -1.350 2.022	CUEFICIE A .000 .170 .170 .000	NTES DE RII RAB.RBA +2.000 +7.322 +3.322 +2.000 AL (E)=	37 	88 , 000 , 370 , 570 , 570 1,000		
BARRA 1 2 3 4 MODULO NUDO 1 2 3	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOP EX1	RA +4 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5	COEFICIE A .000 .170 .170 .000	NTES DE RII RAB.RBA +2.000 +2.322 +3.322 +2.000 AL (E)=		88 , 000 , 570 , 570 , 000		
BARRA 1 2 3 4 MODULO NUDO 1 2 3	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOP EXT	RA +4 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5	COEFICIE A .000 .170 .170 .000 C MATERI	NTES DE RII RAB.RBA +2.000 +7.322 +3.322 +2.000 AL (E)=	11	38 . 000 2. 570 3. 000 1. 000		
BARRA 1 2 3 4 MODULI NUDO 1 2 3 3 GRAD DE	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOMENTIC	RA +4 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5	COEFICIE A .000 .170 .170 .000	NTES DE RII RAB.RBA +2.000 +7.322 +3.322 +2.000 AL (E)=	11	38 . 0000 3. 570 3. 000 1. 000		
BARRA 1 2 3 4 MODULI NUDO 1 2 3 3 3 5 RAD DE 1 BER	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOP EXT 0 1 TAD	RA +4 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5	COEFICIE A .000 .170 .170 .000	NTES DE RII RAB.RBA +2.000 +7.322 +3.322 +2.000 AL (E)=	17 1111 	88 		
LIPER	LONGITUD 2.000 2.000 2.000 2.000 DE ELASTIC MOP EXT 0 TAD E	RA +4 +5 +5 +4 CIDAD DE 1ENTO 1ERNO -1.350 2.022 0.300 FUERIA XTERNA	COEFICIE A .000 .170 .170 .000	NTES DE RII RAB.RBA +2.000 +2.322 +3.322 +2.000 AL (E)=		88 , 000 3, 570 3, 000 1, 000		
LIBER LINE LINE	LONGITUD 2.000 2.000 2.000 D DE ELASTIC MOP EXT 0 TAD E AL	RA +4 +5 +5 +4 10AD DE 1ENTO TERNO -1.350 2.022 0.900 FUERIA XTEFNA 2.798	COEFICIE A .000 .170 .170 .000	NTES DE RII RAB.RBA +2.000 +2.322 +3.322 +2.000 AL (E)=	31 	88 , 000 2, 570 3, 000 1, 000		

ì.,

ма					(112)	
- in	ILTIC L	CUTIIN	UILAD				an a
Αζ.	1.	1)=	+0 00000	<u>^</u>			
) A (2.	1)=	- 00000	Δ.			+0,00000
AΥ		11=	-1 000000				• 1.00000
A	4	1)#	+0 00000			이 가슴 한 것이 있다. 이 가슴 바람이 있는 것이 가슴	+0.00000
Α(11=	+1 00000		21		
A	6.	1)=	• 00000				-0,00000
A (7.	1)=	+/		~ 읔 카 '	승규는 흔들을	*1.00000
AL	8.	1)=	+0.00000			2 / F	-0.00000
							+', 00000
Α(1	3)=	+: 00000				
A	2	3)=	+1 00000			그는 것은 것을 수 있다.	Sec 6 50000
AC	3	3)=	+1 00000	- H C.	<u>ୁ କ</u> ୍ରାମ୍	4. 5	-0.5000(
AL	4	3)=	-0.00000			4)=	
AC	5	3)=	-1 00000		걸고	4, 5	-0.30000
AC	6	(i) =	+0.00000		200	41=	+0,00000
AC	7.	3)=	+0.00000		- -	4/4	+0.00000
A(8.	3)=	+1.00000		6	4/-	+0.00000
					• ,	4/-	+0.00000
A (1.	5)≕	+0.00000	AC	•	<u> </u>	+0.00000
- A (2,	5)=	+0.00000	AC	ົ້ວ່	ີ ຂ ້າ =	+0.00000
Α(з,	5)=	-0.30000	AC	3	61=	+0.00000
Α(4,	5)=	+0.30000	At	Δ.	4) =	
Α(5,	5)= S	-0.30000	AC	. .	<u> </u>	-0.40000
A (6,	5)=	+0.30000	AC	~ × ·	61=	+0.40000
Α(7.	5)=	+0.00000	AI		<u> </u>	+0,40000
Α(8,	5)=	+9.00000	AC	е,	6)=	+0.00000
A (1	7)=	+0.00000	1997 - 1997 -			이번 옷에 집에 있는 것
Α(2.	7)=	+0.00000				
Α (з.	7)=	+0.00000		通貨物		
Α(4,	7)=	+0.00000		문방법		
Α (5,	7)=	+0.30000				그 같은 말을 알았어?
A (6,	7) =	-0.30000	소설 송물			
Α (7 ;	7)=	-0.50000		592.974		
A(8.	7)=	A BOOKICI				

197.9

a line A line

			(113)							
	MATR	17 Œ	CONTINU	IDAD TRANSPUEST	A					
	ATI		1)=	+0.00000	AT (?\ #	+1 00000		
	AT (2.	1 1 =	+0.00000	ATI			+0.00000		
	ATI	:: ::::::::::::::::::::::::::::::::::	1)=	+0:000000	AT		· · · ·	+0.00000		
	ATI	4 ,	(1) 1 1	-0.50000	ATC	4	21=	+0.50000		
	AT	5,	-1 ') =	+0.00000	ATC	ε.	2)=	+0.00000		
	AT	6 .	1)=	+0.00000	ATC	ε.	2)=	+0.00000		
	AT (7,	1)=	+0.00000	AT	7	2)=	+0.00000		
	ΔΤΙ			-1.00000	ATI		4 - -	-0.00000		
	ATI	.		+0 00000	ATI	- - -	7 (7	+1.00000		
15.6	.			+0.00000	61 L	5.	4) =	+0.00000		
22	ATC	4	~) =	+0.70000	2-1	Ā	4)=	-0.30000		
dite. A	ATI	5		-0.30000	ATI		4)=	+0 20000		
	AT (6	3)=	+0.40000	ATI	4	4)=	-0.40000		
	AT (7.	3)=	+0.00000	ATL	7.	4)=	+0.00000		
					· · · · · · · · · · · · · · · · · · ·					
	ATC	1.	5)=	+0.00000	ATC	1,	6)=	+0.00000		
	AT(2,	5)=	+0.00000	AT	. 2. , .	6)=	+1.00000		
	AT (з,	5)=	-1.00000	ATC	з.	6)=	+0.00000		
1	ATL	4,	5)=	+0.00000	ATC	4,	6)=	+0.00000		
	AT (5,	5)=	-0.30000	AT (5,	6)=	+0,30000		
: 2일 문	AT	6.	5)=	-0.40000	ATC	6 .	6)=	+0.40000		
	AT (7,	5)=	+0.30000	ATC	7.	6)=	-0.30000		
	ΔΤ/		71-	+0.00000	AT/			10.00000		
	AT (<u>, , , ,</u>	7.7	+0.00000	AT(<u>_</u>	0/= 0)=	+0.00000		
e ditt		੍ਰਿ '	71=	+0.00000		5	0) 0)-	+1.00000		
	ATI	Δ'	71=	+0.00000	AT /	<u>,</u>	0/-	+0.00000		
	ATI	- 1	- <u>-</u>	+0.00000		. 2 Ma		+0.00000		
	ÅT (7)=	+0.00000	AT (8) =	+0.00000		
len/	ATI	7	71=	-0.50000	ATI	َنَّخَ الْ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40.50000		
いっぱ				0.00000	1999 - 19 97 - 1995	- C. C. C. B.		+0.20000		

+0.50000

	an a			d serve soul) de la C	114)	
n in	MATRIZ	DE RIGIDE	CES DE LAS BARR	AS			
	K (1	. 1)=	+2.00000	+1	1.	2)=	-1.00000
	K 2	, 1)=	-1.00000	(111)	2.	2)=	+2,00000
	k (3	, 11=	+0.00000	ાં માર્	з.	21=	+0.00000
	₩ (4	, 1)=	+0.00000	1	4,	2)=	+0,00000
2	K (5	. 1)=	+0.0000C		5	(2)=	+0.00000
	k(ć	. 1)=	10.0000	1	6.	2)=	+0,00000
	KC 7	, 1)=	+0.00000	*'	7	2)=	+0,00000
	FC 8	, 1)=	+0,00000		ε,	2)=	+0.00000
						∧ \ ~	+0.00000
	K (1	, 31=	+			A 1 =	00000-0+0-0000
2		· 31-	+0,00000		े द े ।	4)=	-1.6+100
						4)=	+4.29500
100	K 1 4	· · · · · · · · · · · · · · · · · · ·	1.86100		. 2 · .	4)=	+0.00000
	N N N	. 3)= 3\-	+0,00000		<u>,</u>	4)=	+0.00000
<u>н н</u>	K) Ş	· · · · · · ·	+0.00000	ve	~ '	4)=	+0.00000
	KL B	, 3)=	+0.00000		ε.	4)=	+0.00000
		NG GANA ANA ANA Managanan Ana Ang Managanan	and fan af de <u>e</u> ar				+0.00000
	k (- 1	;, 5)≈	+0.00000	K C	1.		+0.00000
	k(2	5) *	+0.00000	inin k C	<u>ः २</u> ः -		+0.00000
	k/ 3	, 5)=	+0.00000	14	3.	674	+0.00000
	k (- 4	5)=	+0.00000	¥ *	4,	6)=	+0.00000
	. k (5	, 5)=	+2.58500	1.0	- ÷		-1.88100
	_ K(6	, 5)=	-1.66100	k (6.	6)=	+4,2000
	k (7	i, 5).≖	+0.00000	k (.7.	= (3	+0.00000
	K(8	5)=	+0.00000	- k (8,	6) a	+0.0000
	6 1	7)=	+0.00000	1.1	1.	8)=	+0.00000
걸린	ີ່ເວັ	7)=	+0.00000	1.	2,	8)=	+0.00000
10	9922 - S	7)=	+0.00000	\$1.1	3.	(8)	+0,00000
	Γ _i A	71=	+0.00000	. ;;;	· A ,	8)=	+0,00000
	- 2 (- 5	i. 7)≂	+0.00000	1	5,	8)=	:
	.	7)=	+0.00000	· · · • •	ć.	8)=	+0.00000
÷	r (7	7)=	+2.00000	an an an Afrika	7.	\$)=	-1,00000
						the second second	+0:00000

	MATR	IZ DE	FIGIDECES	DE LA ESTRU		•	(115)	a an	المربعة والتركيم والمربعة. والتركيم المراجعة والمسيح
	ĸı	1.	*4=	AA FORMA						요한 가슴을 받았다. 같은 가슴을 걸었다.
	F. 1		·) =		n c	1		5)=	+1.60100	
a 7	K.(74.00100	K C	ୁଅ		2)=	+6.57000	
	×.e		224 - 22 - 20 - 20	+0,00000) K.C.	୍ୟ		21=	+1.65100	
	1.1	e.		+9.220	~ 1.6	4	•		+1,75 34	
	k (2		+1,2/330	- K.C.	: 5	. C	2)=	+3.53746	
		.		_=1,c9540	- K (-	6		이야 바람 두 독일이 가지	+0.00000	방송하는 동안을 했다.
			(요즘 바람이 있는 것이다. (1997년 - 1997년 - 1997년 (1997년 - 1997년	+0,00000	E C	7	•	2)=	-1.76280	
	ĸĊ					iliana. Ng Ng		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	- 1 e			+0.00000	K (1	•	41=	+0.22620	
	N N	1 81 (1	한 바람이 많이 많이 많이 많이 많이 많이 많이 했다.	+1,54100	- K.C.	_2		4)=	-1.78380	
	14	Δ.		+4.50	re.			4)=	+0.00000	
	영상 영상 문			+0.0000	KC	4		4)=	+2.41706	
				+1.27380	(1,1,1)	5		4)=	-0.91795	
		° ,		+1.49840	K (ć		4)±	+1 27304	
				+0.22620	ĸ	7		4)=	+0.00000	
	ĸı									
백일 소신	i r	.		+1.2/380	K (1	6)=	-1.69840	
196,86	K (· · · · · · · · · · · · · · · · · · ·	+3.56760	KC	2	10	6)=	-0.00000	
	e e	<u>م</u>	≤/= ≤_	+1.27380		3	•	6)=	+1.69240	
T	R 1		1999년 전 1997년 1997년 1916년 - 1919년	-0.91728	K(</td <td>4</td> <td>,</td> <td>£.)=</td> <td>+1.00304</td> <td></td>	4	,	£.)=	+1.00304	
	- r -			+1.53456	KC	5		()=	-9,00000	
		7		+0.00000	KC.	6	11	61=	+3. 26.144	
				-0.91728	KC	7	•	6)=	-1.22304	
	κ.	1	7)=	+0.00000			1213 1213 1145			er an a' gan Tèrgan an banan
	K(:	2 ,	7)=	-1 76260				신상 옷을 가지?		
	∽ κ c •	3		+0.70200	1. A. 1. A.			물고 말 많은 것이?	양 동안 감독 이 가지 않는 것 같아요.	영양한중지의
	KC .		승규는 이번 National States	TV+2402000	. 19 A.					
	-r(•	- dog 240		-0.00000				방법 같은 감독이		
	KC /		· · · · · · · · · · · · · · · · · · ·	-V•Y1/28				2013년 2013년	말 아이는 것은 것은 것은 것을 같아요.	
都議論				-1-22304						
1			비행 중요 소리가 있는다.	+2.41728			걸쳤			

•

	non upper a substance une of the	n ann an chruid a' chuirteachan a' chuireachan an chruideachan ann an tha	adama malar sejaman	e na aanaan na sada sha sada sa sa sa sa	normanian and and an end of the second se
	a en degen generation a la composición de la composición de la composición de la composición de la composición La composición de la c	المرجل بمحرج أأتجا بالمتحاد	ang ang kabupatén kabupa	الجافيا فيستقبذ التيه	
	anang si sa kina sa sa sa sa. Garagi	an a	a contra qui tria compañ Contra contra	er her de sels gunst ungebuur staks. Er son och för som er stakstade	
		and the state of the second			
				فالرادية والانتقاد المستريك أنقبح	
i de la de la			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	요즘 같은 것이 없는 것을 것을 것	
			(11	6)	a na an an an an an ann an an an an an a
م بالمين رياني . م	landar (a tapan manang sa mang s	alah sebelah s	ويعقدون والمتراد والمتراد والمرازة القرار	والمراجع والرجر والمراجع متروك والمحمد والمع	and the second secon
	EL SISTEMA	DE ECUACIONES ES CO	FATIBLE DETE	RMINADO	
				이 이 사람이 있는 것을 받는 것을 가 없다.	
	MATRIZ SOL	UCION		이 이 가 지수요?	
			VEL 1		^
	KSI 1.	1) = +0.000		2)= +1.00	ő
	NOL 2 ,		121 2	2)= +0.00	õ
		1)= +0.000	VSI A	2)= +0.00	10
		1)= +0.000	KS(5	2)= +0.00	0
	KSI A	1)= +0.000	KS(6 .	2)= +0.00	õ
	KS(7)	1) = +0.000	KS(7 .	2)= +0.00)0
		-			
	KS(1.	3)= +0.000	KS(1,	4)= +0.00	00
	KS(2 .	3)= +0.000	KS(2.	4)= +0.00) 0
	KS(3.	3)= +1.000	KSC 3,	4)= +0,00	00
	KSI 4 ,	3)= +0.000	KS(4 ,	4)= +1.00) 0
	KS(5	3)= +0.000	KS(5 .	4)= +0,00	00
	KS(6'.	3)= +0.000	KS(6,	4)= +0.00	20
	KS(7 ,	3)= +0.000	KS(7,	4)= +0.00	DO
				43- 40 0	
	KSU 1.	5)= +0.000	KOL A	4)= +0.0	~~
	KSC 2 ,	5)= +0,000	VCI 2	<pre>4)= +0.0</pre>	00
	KSL 3 .	5)= +0.000	VSI A	<pre></pre>	õõ
		51- +1 000	VS(5 -	6)= +0.0	00
	Vel 4	5)= +0.000	KSI A	6)= +1.0	00 1
an an an tha tha		5)= +0.000	KS(7 .	6)= +0.0	00
	KUC 7 F	3/-			
	and the second second				
	KS(1 -	7)= +0.000			
	KSC 2	7)= +0.000			
	KSC 3	7)= +0.000		이 것 같은 것 같은 것 같은 것	
	KSL 4 .	7)= +0,000		e for i se i segue a trade e di di 19 de este della dell'Edella della della	
	KSC 5,	7)= +0.000			
	KS(6 ,	7)= +0.000			
	KS(7 .	7)= +1.000	네는 한 것 같은 물건을 받았다.		

이 같은 것을 알 수요?

이 가지 않는 것을 다 같다.	en folgan i	1999 A.	entre		na na standa se a
	e e la la la la				
- 한 것 글을 통하였					가슴을 위한다.
		1.52		and the second	
a shakaraala	and the Tourist	39 É. I.			
1					ni
a da Basarda	2011년 1월		이 이 같아?		
يتبدآ الوسي تدريق الأراب	مرد بر مرد المدينة. مرد بر مرد مدينة	, and the	da <u>n i</u> n da <u>in</u>		
	necol .	A7A	MIENTO	.	이 너희 한 동안이
	DUT	1.0		2	
	PHIC	13	2	-20.48	33
	FHIC	2)	12	-18.57	77
이 소재하다.	PHIC	31	m .	-11 5	
	et l	11	<u></u>		
e a coltra je ove			~	41 41	33 ್ಷ ಜ್ಞಾನ್ಯ
		-20	2	+78.09	4
	- d(3)	20	-10.80	37
i de Diller de de	d(41	12	+11 55	20
	DEEDEN	105	10 MEG		
day data set.	THE CITY	THE	ICHES .		
	THETA	A	(1)=	-	12.241
	THETA	P	(1)=		-8.241
	THETA	A	(2)=		+1. 140
	THETA	в	ਂ ਹੈ।ਵ		
	THETA	ñ.	1 2.2		+1.841
	THEFTA	2			-4.117
	THEIA	R	(ເງ)ະ		-2.940
	THETA	A	(4)=		-5.760
	THETA	B	(4)m		-5.760
1. A.					
	FUERZ	AC.	INTERN	A.C.	
an e service e			1.5.	~ 2	· · · · · · · · · · · · · · · · · · ·
	mA		112	-16	. 241
	mB	(1)=	4	1.241
	mA	()	⊋)≖	-2	. 891
	mB	(2)=	+7	781
	mA	(2) m	- 5	7/0
March 199		;	21-		

a isan shaar

(117)

4) n COMPROBACION EQUILIBRIO FUERZAS EXTERNAS

760

4)=

mΑ

mB (

(

MC	1) ==	-1.350
MC	2)=	+2.022
MC	3)=	+0.000
FL	1)=	+2.798
FC	2) ≖	+3.202
FC	3)=	-4.269
FC	4)	-0.000

Propongamos ahora un concreto de f'c=250 kg/cm² para cons--

Entonces tendremos un módulo de elasticidad propuesto

$$\frac{1/2}{cm} = 10,000 \frac{kg}{cm} / 250 kg/cm^2 = 158,114 kg/cm^2$$

e = 1,581,140 ton/m²

Si proponemos una sección con dimensiones hc=0.5 m y b=0.3 m tendremos un momento de inercia propuesto

$$i = 0.3 \text{ m} (0.5 \text{ m})^3/12 = 0.00313 \text{ m}^4$$

Por tanto

 $ei = (1,581,140 \text{ ton/m}^2)(0.00313 \text{ m}^4) = 4941.06 \text{ ton m}^2$

Si multiplicamos por ei las matrices de rigideces de las b<u>a</u> rras y rigideces de la estructura, y dividimos entre ei los -vectores de desplazamientos y deformaciones angulares que se obtuvieron del cálculo anterior encontraremos las matrices y vectores correctos correspondientes a los valores del módulo de elasticidad propuesto y del momento de inercia adoptado.

Estas matrices y vectores son los que aparecen a continua-ción, notese que la matriz de continuidad y su transpuesta así como el vector de fuerzas internas no dependen de los ---valores propuestos y por tanto no tianen que corregirse.

(118)

119) (119) TATRIZ DE RIDIDECES DE LAS BARRAS *1 +9,897.94000 1 1)= 1.6 1 . 2)= -4,948,97000 1. +9,897,94000 +0.00000 +0.00000 + 0 3; 1)= k (2, 2)# 1)= 2)= ្នែះខ្មែរ +0.00000 \$- t + (+0.00000 1.1 4 , 5 . 4, 2)=: 2)=: 1)= +0.00000 + (1)= +0.00000 21 5, +0.00000 , · · **,** 6 . 7 , +0.00000 +0.60000 1)= 1.1 ć , 7 , 2)= 1 C 1)= +0.00000 : (2)= +0.00000 1:0 8. 8, 2)= +0.00000 4.1. 1)= +0.00000 41 1, +0.00000 i i e 3)= 4)= +0.00000 кC 1, +0.00000 +0,00000 4)= 1.1 2, 3)= 10 2, +12,793.10000 -8,220.24000 -8,220.24000 +21,206,30000 з, 3)= 1.1 з, 41E 11 4 3)= k l 4, 4)= ±€. , 5 +0.00000 3)= 5, +0.00000 £ C , k((4) =+0.00000 ŧ٤ 67 3)= k(6, 4)= +0.00000 ... +0.00000 3)= +0.00000 7 FC. ٠, k(1 4)= 8 в, +0.00000 +0.00000 k (3)= 4)= ¥ (5)= 1,2,3, £C. +0.00000 k(12.3 6)= +0.00000 1 C 5)= +0,00000 ĸĊ 6)= +0.00000 5)= +0.00000 6)= +0.00000 a: C 21 ÷ **4**., 4 5)= +0.00000 ¢)≖ +0.00000 k (кC , 5, +12,793.10000 FR C 5 5)= ĸ 6)= -8,220.24000 .* 67 -9,220,24000 6)= +21,206.30000 t (5)= ĸĊ 6 , ş 5)= +0.00000 7 +0.00000 10 кC 6)= • • 8 +0.00000 k (5)= +0.00000 k€ 8 6)× ٠, . 14 7)= +0.00000 1 , +0.00000 1 кt 8)= 1 2.3 7)= 7)= 7)= 7)= +0.00000 23 +0.00000 *:C k (8)= , € € +0.00000 8)= +0.00000 k (1 ٠ 4,5,6,7,8, 4 +0.00000 k (45 €)≖ +0.00000 ; K C +0.00000 k (e)= +0.00000 1. 7)= +0.00000 k (67 8)= +0.00000 .

¥ (....

÷.

7)=

7)=

+9,897.94000

-4,948.97000

(119)

-4,948.97000 +9,897.94000

8)=

8)=

кC

ł: C 8

(120)

Sure al

t.

	MATE	71 Z	DE	RIGI	DECES DE LA ESTRU	JCTURA	in the second		ار رسیمر دیگر ک	an ta sa sangaran da sing sa sangaran sa sangaran sa sangaran sa sangaran sa sangaran sa sangaran sa sangaran Sa sangaran sa
	ĸ	1		1)=	+22,691,00000	KC	1	•	2)=	+3,220.24900
	ĸ	2		1)=	+8,220,24000	ĸ	2		2)=	+42,412,70000
	K	3		1.)=	+0.00000	KC	3	•	2)=	+8,220.24000
	<u>қ</u> (4		1)=	+1,119.46000	К(4	•	2)=	-8,827.97000
	KC	5		1)=	+6,303.99000	ĸc	.5		2)=	417,655.90000
	K	6		1)=	-8,405.33000	ĸ	6		2)=	+0.00000
	κι	7	•	1)=	+0,00000	ĸĊ	7	•	2)=	-8,827.97000
	KC	. 1 -		3)≖	+0.00000	ĸ	1	۰.	4)=	+1,119.46000
	K	2	,	3)=	+8,220,24000	¥ (2		4)=	-8,827.97000
	KC	3	1	3)=	+22,691.00000	КÇ	3	•	4)=	+0.0000
	ST KC.	4	÷.	3)=	+0.00000	юC	4		4)=	+11,983.00000
	κ.	5		3)=	+6,303.99000	KC	5		4) *	-4,539.59000
- 12 12 19 19 19	K()	6		3)=	+8,405.33000	KC	<u>ه</u> .	,	4)=	+6,052.79000
l de la deficie de la deservation de la Anticipação de la deficiencia de la defi	K	7	•	3)=	+1,119.46000	KC.	7	•	4)=	+0.00000
			4 + ¹			•				Sec. 1
승규는 물감 문제	KC	1		5)=	+6,303,99000	ĸ	1	,	6)≍	-8,405,33000
	KC	2		5) ×.	+17,655.90000	к(2	•	- ć)≖	+0.00000
	- K(3		· 5)=	+6.303.99000	KC.	з		6) =	+8,405.33000
	KC	4	1. juli	5)=	-4,539.59000	K (4	,	. 6)=	+6,052.78000
에 관계하는 것은 것이다. 같은 것은 것이 같은 것이 같이 같이 같이 있는 것이 있는 것이 있는 것이 있는 것이 같이 같이 같이 같이 같이 같이 같이 같이 같이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 없는 것이 같이 없는 것이 같이 없는 것이 같이 없는 것이 없는 것이 없는 것이 있	KC	5		5)=	+9,079.18000	ĸc	-5		6)≖	-0.00024
	KC	6		5)=	-0.00024	ĸ	ć.	,	6)=	+16,140.80000
	K	7		5)≖	-4,539.59000	KC	7	+ .	6)=	-6,052.78000
		3 A							an an taon an taonach	ومیں میں میں ایک ایک اور میں ایک میں ایک ایک ایک اور
	κı			7)=	+0.00000					
	. E K(2	, .	7)≖	-8,827.97000	$(-1) = (-1)^{-1} (-1)^{-$				
	KC	3		7)=	+1,119.46000					등 도 전 옷을 물을 통했다.
	- K(. 4	· • •	7)=	+0.00000		- 2.04 - A			
	K.(-	5	•	(7) =	-4,529.59000		а., <u>а</u>	e Po	가장 전화	
	K (6	(i • i),	7)=	-6,052.79000					
	К.С	7	S. 📢	(7)≍	+11,963.00000					

DESPLOZAMIENTO DESPLAZAMIENIC: PHI(1)= -7.003 FHI(2)= -7.004 PHI(2)= -7.004 PHI(3)= -7.004 C(1)+ +7.005 ¢١ 2)= d (<u>्</u>विः= - .092 dC -0.002 4)=. 97 6 d (DEFORMACIONES THETA A 13= THETA E (13= -0.002 -0.002 -0.000 -0.000 1)= 2)= 3)= 3)= 3)= 4)= 4)= THETA A (P. THETA B THETA A -0,001

. .

-0.001

-0.001 -0.001

4.49

1. sec

THETA B (THETA A (THETA B (

144

(121)

(122)

(123)

Numerando nudos no apoyos y apoyos, direccionando y numeran

(124)

do las barras se tiene:

De las figuras anteriores podemos obtener:

Nudo	Coorder (X)	19 8 85 (Y)	Nudo	Coorder (X)	adas (Y)
1	0.0 m	4.0 m	15	4.0 m	6.0 m
2	2.0 m	4.0 m	6	0.0 m	ា.្ ក
X	4.0 m	4.0 m	7	2.0 m	2.0 m
4	0.0 m	6.0 m	.	4.0 m	0.0 m

(125)

(126)

La estructura tiene los siguientes dos grados de libertad

lineal:

1 1 7777 1

π

TTT

्यम

	ay arrest deba ser in the server is a	e construction of the second state of the second state of the	a na manana
De la figura anterior se	e puede est	ablecer:	na se esta sendi
	<i>7</i> 4		
	Grado de	e libertad line	;81
	que corr	responde con el	
		miento del nud	10
	Seulta or	rección:	
Nudo	1997 (X)	(Y) 🔅	
	1	0	
	.	Ο	
3	1	0	
4	>	0	
- 이상 가지 이상 등 것은 것은 것을 하는 것은 것을 하는 것을 가지 않는 것을 가지 않는다. 		Ň	
	4	\mathbf{O}	
그는 것 같은 것 같	요즘은 동안의 공연은 손 등 등 등에 다.	: 2012 - 2012 - 2012 - 2017 - 2018	

Obtengamos ahora los momentos de empotramiento, los cortantes, el momento de inercia y los coeficientes de rigidez para cada una de las distintas barras que componen el marco. Para lo cual habrá que considerar las dimensiones de las barras, que en su mayoría son de sección variable. Las figuras que ilustran la forma y dimensiones de las barras se presentarán junto con sus valores respectivos de las cantidades mencionadas.

--- Para la barra 8

 $W_{\Lambda} = W_{B} = 0.3 \text{ m} = r_{\Lambda} \text{hc} = r_{B} \text{hc}$ $r_{\Lambda} = r_{B} = 0.3 \text{ m/hc} = 0.3 \text{ m/0.5 m} = 0.6$

 $a_A L = a_B L = 2 m$ $a_A = a_B = 2 m/L = 2 m/4 m = 0.5$

De la tabla 36 que es la correspondiente a estos valores

(127)

(128)

 $R_{AA} = 10.72 - R_{BB} = 10.72 - C_{AB} = 0.633 - C_{BA} = 0.633$

De aquí calculamos

$$R_{AB} = C_{BA}R_{BB} = 0.633(10.72) = 6.786$$

 $R_{BA} = C_{AB}R_{AA} = 0.633(10.72) = 6.786$

De la misma tabla para carga uniformemente distribuida

$$m_{A} = 0.0969$$
 $m_{B} = 0.0969$

De aquí calculamos

$$M_{A}=m_{A}w1^{2}=0.0969(2 \text{ ton/m})(4 \text{ m})^{2}=3.101 \text{ ton m}$$

 $M_{B}=m_{B}w1^{2}=0.0969(2 \text{ ton/m})(4 \text{ m})^{2}=3.101 \text{ ton m}$

Por suma de momentos podemos encontrar las demás reacciones

Si sustituimos reacciones por acciones obtenemos la berra equivalente en cuanto a las fuerzas externas aplicadas

El momento de inercia de esta barra es

$$I=bh^3/12=(0.3 m)(0.5 m)^3/12=0.0013 m^3$$

(129)

a₃=2 m/L=2 m/2 m=1.0 a_A=0 m/L=0 m/2 m=0.0

De la tabla 52 que es la correspondiente a estos valores

$$R_{AA} = 5.17$$
 $R_{BB} = 8.57$ $C_{AB} = 0.642$ $C_{BA} = 0.388$

De aquí calculamos

$$R_{AB} = C_{BA}R_{BB} = 0.388(8.57) = 3.322$$

 $R_{BA} = C_{AB}R_{AA} = 0.642(5.17) = 3.322$

De la misma tabla para carga uniformemente distribuida

$$m_A = 0.0675$$
 $m_B = 0.1011$

De aquí calculamos

$$\frac{M_{A} = m_{A} w l^{2} = 0.0675(1 \text{ ton/m})(2 \text{ m})^{2} = 0.270 \text{ ton m}}{M_{B} = m_{B} w l^{2} = 0.1011(1 \text{ ton/m})(2 \text{ m})^{2} = 0.404 \text{ ton m}}$$

Por suma de momentos podemos encontrar las demás reacciones

El momento de inercia es

 $I=bh^3/12=(0.3 \text{ m})(0.5 \text{ m})^3/12=0.00313 \text{ m}^4$

0.3 m 0.5 m -- Para las barras 1 y 3 0.5 m $W_A = 0.0 m = r_A hc$ 0.3 m T $r_A=0.0 \text{ m/hc}=0.0 \text{ m/0.5 m}=0.0$ З $W_{B}=0.3 \text{ m}=r_{B}\text{hc}$ 0.8 m r_B=0.3 m/hc=0.3 m/0.5 m=0.6 a L=O m $a_{A}=0 m/L=0 m/4 m=0.0$ a_BL=0.8 m 3.2 m a_R=0.8 m/L=0.8 m/4 m=0.2 De la tabla 52 que es la que corresponde a estos valores A

 $R_{AA} = 4.35$ $R_{BB} = 5.81$ $C_{AB} = 0.642$ $C_{BA} = 0.481$

De aquí calculamos

 $R_{AB} = C_{BA}R_{BB} = 0.481(5.81) = 2.794$ $R_{BA} = C_{AB}R_{AA} = 0.642(4.35) = 2.794$

(132)

De la misma tabla para una carga concentrada

pL=2 m p=2 m/L=2 m/4 m=0.5

Para este valor

$$m_A = 0.1049$$
 $m_B = 0.1701$

De aquí calculamos

 $M_A = m_A PL = 0.1049(10 \text{ ton})(4 \text{ m}) = 4.196 \text{ ton m}$ $M_B = m_B PL = 0.1701(10 \text{ ton})(4 \text{ m}) = 6.604 \text{ ton M}$

Por suma de momentos podemos encontrar las demás reacciones

For tanto

 $R_{AB}=2$ $R_{BA}=2$

Si superponemos los efectos de la carya de cada una de las barras

De la figura anterior se pueden obtener las fuerzas que --actuan en dirección de cada uno de los grados de libertad (lineales y angulares) que son:

> Fuerza sobre el grado de libertad lineal 1=0 ton Fuerza sobre el grado de libertad lineal 2=0 ton Momento externo en el nudo 1=6.534 ton m Momento externo en el nudo 2=0.000 ton m Momento externo en el nudo 3=-6.534 ton m Momento externo en el nudo 4=-2.697 ton m

El marco se hará de concreto de f'c=200 con módulo de elasticidad E=1,414,210 ton/m².

Hemos visto que este marco tiene 5 nudos no apoyos,3 apoyos 8 barras y 2 grados de libertad lineal.

Nos interesa conocer unicamente los desplazamientos, deform<u>a</u> ciones angulares y momentos internos por lo que evitaremos que el programa imprima las **mat**rices involucradas en el cálculo i<u>n</u> troduciendo un valor distinto de cero cuando el programa pre--gunte si se imprimiran las operaciones.

Tenemos todos los datos necesarios para ejecutar el programa.

Proporcionando los datos obtenidos se corrió el programa y se obtuvieron los siguientes resultados.

(136) GRADO DE LIBERIAD LINEAL QUE CORRESPONDE CON EL DESPLAZAMIENTO DEL NULC EN LA LIRECCION CODEDENADAS Y. NUDC _____ +2, 100 +-2, 00 +-2,00 1. . ¥۴ 44,000 . . 1 1) 1) 2) 2) 2 χ= +4.000 1 è ¥ ¢ 1 0 ۲.-+4.000 4 •'\$ **y** = - 1 Q. Y = 4 4 X = X = X = +4.000 +./.00 +1./00 +1.000 +4.000 5 +6.000 1 0.1 γ= ŧ +0,000 AFICIYO Yπ ç. 7 42.000 Ye VE OVC 8 Xu ¥= AFRIC 1.200 1121-5 MOMENTO PARE A OF 1GEN DESTINO INDRELA 0:005:3 1 1 ¢. 7 9 30 6. 201:0 0.00313 8 4 4 0.00315 1 5 3 5 0.00213 1 3 0.00020 22 6.7 0.00020 8 4 5 0.00313 lendizija do BAREA LONGITUS COEFICIENTES DE RIGIDEZ -7.810 +7.810 +4.000 RAA RAD. REA 48. RBA +2. 794 +2. 000 -2. 794 +3. 322 +3. 322 +4. 729 -4. 729 4.00: +4.350 12 2.000 +4.000 +5,610 +3,570 +8,570 4.00 1.00 2.01 з 44.350 +5.170 4 +5.170 5 +12.280 -12.280 -19.729 +4.990 é 2.00 +4.950 1.,786 ٤ 4.0 +10.720 MODULO DE ELATTICICAN DEL MATERIAL (E'F 1,414,210.00% NUDO ROMENTO EXTEND 1 23 4 5 GRADO FUERZA DE LIBERTAD EXTERNA LINEAL n com 1 O. GRAGE 2

an an Ar Geologia

			- 영화가 말했다. 방법을 가 없다.	
			1 MICH 6 7 3 11 1 21	THEFTERMENATIO
EL 515	TEMA DE ECUAL	, 11 k li 45 (2 (2 K k k k k k k k k k k k k k k k k k k	ada Making Kang Karaba	1 12 - 1 - E 1 11 1 A 1 A 7 A 4 M
		^^ 문서는 비행되는 것이 같은	요즘 아무렇게 집에 빠졌다.	영화 영상 영화 영화 영화
المساجع وفرقة العقادات ويدارك والدراب	البؤيلا الجبر وبالعاد خابات بتصاريرك الاحطاف ط		en Stale Kantolas (* 1	
DESPLA	ZAMIENTOS	그는 이번 전체에서	옷은 사람은 감독에서 가슴 같아.	승규는 것이 같은 것이 없는 것이 없는 것이 없다.
	4 . m			방법 이 집 문서의 영국 영국
1,	114 10			물건 가지 말 같이 많다. 것이
FH1(2000 - 14 Qu		는 것이 중심 이것은 것을 것	방법은 문제를 관계할 수 있는
			승규가 집에 관심하는 것이 없는 것이 없다.	이 가지 않는 것 같은 것 같
	그 말 가봐. 그는 것 한 것 것			
E	4 \ 2 \ - C			동물은 같은 것 같은 것 같은 것을 것 같아.
	그는 아이는 것 같은 것을 가지?		나는 말 것 같아요. 그 말 많이야 한	그 말 같은 것 같은
이 같은 것을 위해 좋는 것을 많이야.	5.1 M		영업은 방법에서 관련한 것이다.	
	11. + 1		이 물질 것 같아. 여기가 많	이 같은 것은 것은 것을 많이 많다.
e esta esta Marco			영상 방송 아파가 관계 방송이었	
·····································	二つ キロ	이 이 아이는 것이 같아.	이 집 물건이 가지 않는 것이다.	

	÷							
NEEDEN	ine in	115 2						
	1010 A.U						10.00	
1. ME A	A. 19						14.57	
THETA	1) -	-	+0.				
THETA	A 1.			$-= C_{12} + (2) S_{12}$				하는 물을
THETA	E			3 +0. 000				
THETA	A	3171						
THETA	E f	3) a					40I C	1.504.0
THETA	AL	4)=		-0.000	ana ang pangang Kabupatèn			
THETA	ΒU	\$;)u.		-0.0°			2. 11 33	
THETA	AL	5) a		+0.000				공연품 전
THETA	B ((5) =		+0.490				
 THETA	AC	#(÷)		-0.00Q	, ng kangang s			
THETA	B (డ)≖		୍ +0, ୧୦୬	e meth			
THETA	A (्रें) स्व		-0.00				
THETA	19 e	7) e		-0,000				
THETA	A (S)#		+0.000		사람물		
THETA	B (8)=		+∩. 499				

n an thu n Thuến thuộc chiến t	511ER765	INTERNAS	an a
	ma (1)=	1
	mE (1)=	42.746
) Aai	21=	
	mP (<u>E</u> ta	ા અંગ્રહેલ્લાં જે
	nA ((3) # (.	
	mE ((S)=	-2.744
	mA (4)=	÷÷,ζ475
	in 🗄 🕻	4)=	;,;;; ;;0,7,;
	- ≷mA . (5 5 m	+3-, 04.7
	mB (-型)マニー	+t,e:7
	s th + 1.	e)=	- C. 26 🦣
	m[(2.72	요. 이 귀 :
	th/, C	73=	• • • • • • • • • • •
	mE (7)#	-1.742
	S Am State	(e) =	alah 🔸 🕻 🖓 🖉 🖓 🖓
	mÉ (- S)=	+1.0 2

COMPROBACION EQUILIPRIG FUERZAS EXTERNAS M(1)= M(2)= M(3)= +6 533 +0.400 -1.53

+11	a e	·		
121 -	4 .1 —	na la 🍾	2.	
"	1)=	-	υ. Ο	ir et s
E I	2) •	+	•	t c

(138) Straight Haunches --- Constant Width

			 	pL			p		*******					····							···									
	raho	W,		0,1		1		110 1						J[w.	s ∫ta	h.									t da g					
			A											56																
F	hant		Carro	- (-) E F	5	H		Un	f. Li	oad				Cen	eent	ratud	Load	F.t	M	Coul.	X	PL					launch	Load	at Joh'	
	Aunch		Far	tors	Fi	actor	5	F Grad	. F. N 1. – K	Λ. πL*					<u>л 3</u>									 n n		F.E.	M.	F	E.N	
30	1	*		C	18.	TR		1 8 5 .	- 17		117	1		<u>ro</u> .	Ta			η-	159					Τ,	m n	Coef. X	WAL	^z Coef. ×		Γ <u>μ</u> Γι Π.ο.
	. 4 00.003.003.005.00		·	5	I AI	<u></u>	00		. L. vari	<u>e</u> alda	<u> </u>		<u></u>			<u>ีย</u> 51	A		<u> </u>		2	0	<u>A</u>				variab	10	1.	
	10	4 1	0 390	1 230	22 23	7	05	0 165	710	0555	0 095	410	0017	0 244	1.0	0186	0 304	6 .0	0628	0 173	i u	1199	0 019	0 0	0836	0 0357	0 0022	0 00	01 0	0016
01	0	6 5 0	0 403 0 420 0 433 0 441	1 226 1 219 1 215 1 215	22 85 23 66 24 39 24 83	5 7 5 8 5 8 5 9	51 15 69 04	0 162 0 158 0 155 0 155	9310 97-0 91[0 27 ₁ 0	0584 0525 0556 0677	0 095 0 095 0 095 0 094	30	0019 0020 0022 0022	0 247 0 244 0 244 0 243	18 0 18 0 15 0 16 0	0197) 0215 0226 0234	0 300 0 294 0 289 0 286	13-0 11'0 14'0 13 0	0565 0720 0760 0788	0.1661 0.1554 0.1468 0.1414		1265 1358 1432 1480	0 015 0 010 0 007 0 005	4 0 7 U 1 0 0 0	0867 0907 0938 0955	0 0355 0 0353 0 0351 0 0350	0 0023 0 0025 0 0026 0 0027		010 010 000 000	0016 0016 0016 0016
0 2	0 0 1 1 2	40050	0 424 0 450 0 488 0 519 0 539	1 194 1 179 1 157 1 141 1 130	23 57 24 85 26 88 28.73 30 02	9 9 1 11 1 13	37 49 34 05 31	0 161 0 153 0 446 0 138 0 138	14 0 55 0 54 0 15 0 15 0	0606 0650 0745 0820 0872	0 095 0 094 0 094 6 094 0 094	200	6020 6023 9026 0039 0033	0 24) 0 243 0 23) 0 23) 0 23) 0 23)	9 15 13 10 13 10 15 10 18 10	6213 ¹ 6228 ¹ 0279 ¹ 0316 0342	0 295 0 287 0 273 0 250 0 250	700 1200 1200 1200	0716 0796 0926 1044 1128	0 1600 0 1460 0 1240 0 1060 0 0931		1325 ¹ 1454 1657 1836 1961	0 018 0 014 0 009 0 006 0 006	7 ¹ 0 8 0 6 0 0 0 0 0	0836 0869 0913 0945 0964	0.0353 0.0350 0.0345 0.0341 0.0337	0 0025 0 0022 0 0032 0 0037 0 0040	000000000000000000000000000000000000000	13 C 10 0 07 0 05 0 03 0	0056 0058 0060 0062 0064
6 3	0	4605	0 449 0 488 0 548 0 601	1 147 1 117 1 076 1 043	24 37 25 18 29 43 32 75	9 11 14 18	54 43 99 88	0 15: 0 15: 0 14: 0 12:	04 0 21 0 21 0 21 0 35 0	0625 0894 0314 0533	0 095 0 094 0 094 0 093	00. 60 00 40	0022 0026 0031 0039	0 244 0 240 0 234 0 234	17 0 2) 0 12 0 14 0	0232 0270 0339 0412	0 290 0 279 0 258 0 238	10 10 17 17 10	0769 0886 1095 1317	0 1561 0 1392 0 1110 0 0858	0000	1362 1520 1790 2053	0 019 0 015 0 010 0 010	300000	0825 0854 0898 0930	0.0352 0.0347 0.0339 0.0331	0 0027 0 0031 0 0039 0 0048	000000000000000000000000000000000000000	42 0 36 0 26 0	0110 0115 6124 0132
0.4	0	40050	0 638 0 462 0 510 9 591 0 670	1 022 1 039 1 053 0 989 0 939	24 84 26 98 31 05 35 71	10 113 113 118 125	44 06 56	0 15 0 15 0 15 0 13 0 12	990 940 2710 7610	0524 0697 0831 0978	0 092 0 094 0 094 0 093 0 093	9 0 9 0 5 0 7 0 8 0	0023 0028 0037 0048	0 222 0 243 0 230 0 231 0 231	37 6 14 0 14 0 18 0	0242 0242 0288 0380 04911	0 222 0 286 0 274 0 250 6 222	12 0 18 0 19 0 19 0	0789 0927 1196 1511	0 154) 0 154) 0 137) 0 1099 0 084)	200000	1336 1484 1743 2005	0 029 0 016 0 011 0 008	000000000000000000000000000000000000000	0951 0810 0837 0877 0911	0.0325 0.0350 0.0345 0.0345 0.0325	0 0028 0 0033 0 0044 0 0057	0 00 00 00 00 00 00 00 00 00 00 00 00 0	96 0 84 0 65 0 48 0	0167 0178 0195 0211
0.5	0	40050	0 462 0 513 0 605 0 705 0 789	0 903 1 056 0 997 0 910 -0 8.38 -0 789	25 34 27 69 32 23 37 58 42 61	32 1 11 1 14 3 21 3 31 42	05 23 45 54 61	0 15* 0 142 0 134 0 134 0 12*	5610 5510 5510 1310 1310	0617 0686 0817 0967 1100	0 094 0 094 0 093 0 093 0 092 0 091	90 30 40 40	0023 0023 0028 0039 0053 0067	0 242 0 237 0 237 0 238 0 218	25 0 77 0 16 0 30 0 31 0	0245 0295 0398 0533 0667	U 283 0 268 0 268 0 242 0 242 0 242	19 0 19 0 21 0 21 0 21 0	0790 0929 1208 1551 1875	0 151 0 134 0 1076 0 0836 0 066	10.	1306 1438 1666 1899 2083	0 020 0 015 0 015 0 012 0 008 0 008	30 20 20 80 70	0303 0801 0825 0661 0302 0914	0 0348 0 0344 0 0333 0 0321 0 0310	0.0029 0.0029 0.0034 0.004 <i>€</i> 0.0051 0.0075	0 01 0 01 0 01 0 00 0 00	730 230 230 250	0222 0237 0263 0289 0310
		a	A = 0				a	•	vari	iablo	'			TAI	OLE	52			h	r ₁ =	= O					"n == '	variat	le		
01	0	46050	0 556 0 573 0 596 0 613 0 624	0 495 0 495 0 493 0 492 0 491	4 14 4 19 4 25 4 30 4 33	44555	64 85 14 36 60	0 678 0 076 0 074 0 072 0 071	0 0 3 0 1 0 4 0	0946 0981 1029 1066 1088	0 080 0 080 0 079 0 079 0 079	4 0 2 0 9 0 7 0 5 0	0103 0108 0114 0114 0118 0121	0 142 0 141 0 139 0 137 0 136	6 0 2 0 3 0 8 0 9 0	0724 0754 0795 0826 0846	0 116 0 113 0 110 0 107 0 105	4 0	1432 1490 1508 1629 1667	0.0534 0.0505 0.0464 0.0434 0.0434	10. 0. 0. 0. 0.	1672 1735 1822 1827 1928	0 005 0 004 0 002 0 002 0 001	20 20 80 80 30	0889 0311 0940 0960 0972	0000 0 0000 0 0000 0 0000 0	0 0000 0 0000 0 0000 0 0000 0 0000	0 00 6 69 0 0 0 0 0 0 0 0		0016 0016 0016 0016 0016
0 2	0 0 1 1 2	4 6 0 5 0	0 606 0 642 0 694 0 736 0 764	0 486 0 481 0 475 0 470 0 467	4 26 4 35 4 49 4 61 4 68	55677	31 81 57 22 66	0 074 0 07 0 067 0 067 0 061	70730	1025 1093 1192 1274 1327	0 079 0 079 0 078 0 078 0 078 0 078	80 40 80 30	0116 0125 0140 0152 0152	0 139 0 136 0 132 0 132 0 128 0 126	10 30 10 70 40	0805 0871 0968 1049 1104	0 110 0 104 0 097 0 090 0 086	200 90 100 50 50	1581 1701 1881 2030 2129	0 0470 0 0423 0 0346 0 0285 0 0285		1809 1929 2105 2247 2339	0 005 0 003 0 002 0 001 0 000	00 80 30 40 9,0	0893 0917 0948 0969 0980	0 0000 0 0000 0 0000 0 0000 0 0000	0 0000 0 0000 0 0000 0 0000 0 0000	0 00 00 00 00 00 00 00 00 00 00 00 00 0	23 0 23 0 22 0 21 0 21 0 21 0	0059 0061 0063 0064 0065
03	1 0 1 1 1 2	46050	0 648 0 704 0 791 0 856 0 918	0 470 9 461 0 449 0 439 0 433	4 34 4 48 4 71 4 91 5 06	5 6 9 10	98 84 29 68 72	0 07 0 069 0 05, 0 057 0 057	30 0 90 0 30 0 77 0 12 0	1069 1162 1311 1442 1534	0 079 0 078 0 077 0 077 0 076	50 90 90 90 40	0127 01413 0166 0190 0210	0 136 0 132 0 126 0 120 0 120	19 0 17 0 12 0 13 0 11 0	0870 0970 1134] 1286 1357;	0 106 0 099 0.067 0 077 0 070	14 0 19 0 14 19 14 19 14 19 14 19	1684 1862 2150 2412 2599	0 0453 0 0387 0 0289 0 0208 0 0208	3070	1865 2017 2252 2452 2585	0 005 0 003 0 002 0 001 0 001	10 90 40 50 00	0887 0911 0943 0965 0977	0 0000 0 0000 0 0000 0 0000 0 0000	0 0000 0 0000 0 0000 0 0000 0 0000	0 00 0 00 0 00 0 00 0 00	12 0 09 0 06 0 04 0 03 0	0123 0128 0135 0140 0143
0 4	0	4 6 0 5 0	0 679 0 754 0 879 0 996 1 082	0 453 0 438 0 418 0 403 0 392	4 39 4 57 4 87 5 18 5 42	6 7 10 12 14	59 86 24 82 94	0.07 0 037 0 060 0 054 0 049	2 0 8 0 7 0 1 0 14 0	1084 1192 1376 1554 1688	0 079 0 078 0 077 0 075 0 075	30 50 20 80 80	0133 0153 0190 0228 0258	0 135 0 130 0 121 0 113 0 107	50 50 950 90 940 940	0911 1041 1273 1513 1702	0 104 0 095 0 021 0 067 0 067	4 0 8 0 5 0 9 0	1734 1950 2327 2704 2993	0 0449 0 035 0 028 0 0199 0 0144	10 30. 30 40.	1949 2001 2241 2453 2597	0 005 0 004 0 002 0 001 0 001	30 20 80 80 20	0877 0900 0931 0954 0968	0 0000 0 0000 0 0000 0 0000 0 0000	0.0000 0.0000 0.0000 0.0000 0.0000	0 00 00 00 00 00 00 00 00	27 0 23 0 16 0 11.0 29,0	0199 0200 0224 0237 0244
0 5	011	40050	0 697 0 788 0 948 1 114 1 245	0 434 0 413 0 385 0 363 0 349	4 43 4 62 4 99 5 3.0 5 73	1 7 8 12 12 16 20	12 81 28 52 42	0 071 0 067 0 059 0 059 0 051 0 040	18 ¹ 0 12.0 17.0 17.0 17.0 17.0 17.0	1079 1191 1300 1599 1770	0 079 0 078 0 076 0 074 0 073	10 30 70 90 50	0137 0161 0208 0263 0311	0 131 0 120 0 119 0 108 0 108	16 0 11 0 12 0 17 0 17 0	0930 1979 1364 1688 1969	0 103 0 004 0 078 0 063 0 051	12 0 11 0 18 0 19 0 19 0	1733 1958 2371 2812 3174	0 0448 0 0384 0 0288 9 0203 0 0153	30 40 30 30 30	1812 1950 2175 2382 2529	0 005 0 004 0 003 0 002 0 001	509000 40000 4000	08.69 0850 0919 0943 0958	0 0000 0 0000 0 0000 0 0000 0 0000	000000 00000 00000 00000 00000 00000	00000 00000 00000000000000000000000000	51 0 44 0 33 0 24 0 17 0	0280 0795 6321 6344 0365
0 75	0 0 1 2	40050	$\begin{array}{c} 0 & 691 \\ 0 & 788 \\ 0 & 982 \\ 1 & 225 \\ 1 & 461 \end{array}$	0 303 0 359 0 311 0 272 0 247	4 56 4 80 5 25 5 70 6 24	5 8 5 10 5 16 5 25 5 36	02 55 60 92 95	0 05' 0 05' 0 05' 0 04! 0 04!	20 120 120 110 110	1041 1134 1302 1490 1659	0 078 0 077 0 075 0 073 0 071	50 40 50 30 30	0139 0165 0222 0238 0380	0 120 0 122 0 110 0 098 0 088	17 0 17 0 18 0 18 0 18 0 18 0 18 0	0915 1058 1343 1694 2037	0 (097 0 087 0 071 0 058 0 048	20 10 70 10 10 10 10 10	1648 1924 2137 2471 2756	0 0430 0 0363 0 6283 0 9213 0 916	0 0 0 2 0 2 0 7 0	1737 1837 2032 2160 2281	0 005 9 004 0 003 0 002 0 002	40502020	0856 0871 0894 0915 0928	0 0000 0 0000 0 0000 0 0000 0 0000	0 0000 0 0000 0 0000 0 0000 0 0000	0 01 0 01 0 01 0 00 0 00	43 0 26 0 01:0 81:0 66 0	0462 0491 0540 0589 0629
1 00	0112	4 6 0 5 0	0 642 0 709 0 834 0 981 1 119	0 388 0 350 0 294 0 247 0 214	5 17 5 74 6 86 8 23 9 57	8 11 19 32 50	57 63 46 69 13	0 06 0 05 0 05 0 05 0 04 0 04	50 180 190 190 120	1011 1086 1216 1352 1466	0 076 0 074 0 070 0 066 0 062	60 40 60 40 70	0139 0168 0224 0296 0370	0 124 0 115 0 105 0 081 0 075	13 0 15 0 15 0 10 0 52 0	0885 1001 1221 1475 1682	0 035 0 085 0 655 0 055 0 040	53 0 50:0 51:0 55:0 50:0	1583 1717 1951 2184 2371	0 043 0 037 0 028 0 022 0 017	4 0 5 0 9 0 1 0 6 0	1689 1766 1893 2010 2097	0 005 0 004 0 003 0 002 0 002	50 80 50 60	0850 0858 0877 0893 0905	0 0000 0 0000 0 0000 0 0000 0 0000	0 0000 0 0000 0 0000 0 0000 0 0000 0 0000	0 02 0 02 0 01 0 01 0 01	56 0 30 0 90 0 56 0 31 0	0586 0621 0680 0738 0786
		a	(== 0			(111	0		····				TAB	LE	52a					r	(<u></u>	0			r _B :	- 0			
0.0	0 0	o Į	0,500	0,500	4 00) 4	.00	0 08.	13 0	.0833	10.081	0 <u> </u> 0.	0050	0.147	010	0630	0.125	olo	.1250	0.0630	0.	1470	0.009	0 0	.0810	3.000 0	0.0000	00.0	000	,0000,

TABLAS DE COEFICIENTES

.

ł

(139) Straight Haunches — Constant Width

		<u> </u>	քԼ		-↓ [₽]						1			No	stø:									
ŗ	ahc W					<u>nc</u>		~	$\begin{array}{c c} An & carry-over facto \\ \hline \\ $								ors and ai	and fixed and moment ad all stiffness factors are						
		A#				L	ы				B													
Rig	ht	C				Uni	I. Load				Conce	ntrated	Load F.E		Cost. >	(PL			Haunch Load		Load al	id at		
Hau	inch	Fac	tors	Fac	tors	F. Coof	$E,M,\ \mathbf{x}$ wL	, -	0 1		 0	a	μ 0.5		0	7	0	9	F.E.	м.	F.E	м.		
a,	r,	CAB	CBA	RAA	RR	m	me	m		ma.	mal	m _A	mAI	m e.	m A I	me	m d.	m _A ,	m A	m _A .	m	M B		
	0	IA = (.5	1_02	<u> </u>	B = 1	ariab	 lo			TABL	E 36			$r_A =$	0.6		L	r ₈ =	variab	18			
	0.4	0.461 0.475	0 780	9 28 9 43	5 49	0.111	3 O 07 9 O 08	76 0 0	0884 0	0052 0 0054 0) 1901) 1886	0 0450 0 0 0471 0) 184110) 1803.0	1100 1152	0 0926 ¹ 0 0878'	0 1496 0 1562	0 0096 0 0076	0 0870	0 0290	0 0052 0 0054	0 0000 0 0000	0 0016		
0,1	1.0 1.5 2.0	0.495	0.774	9.65 9.81 9.91	6.17 6 48 6 68	0.105	5 0 08 1 0 08 5 0 09	54 0 (39 0 (11 0 ()879/0)877 0)876 0	0058-0 0061-0 0062-0) 1864)) 1847,) 1836)	0 0501)0 0 052510 0 054010) 1751 ()) 1711 ()) 1686 ()	1223, 1279 1314	0 0812 0 0761 0 0729;	0.1653 0.1723 0.1767;	0 0052 0 0034 0 0024	.0 0929 0 0953 0 0966	0 0285 0 0284 0 0283	0 0058 0 0060 0 0062	0 0000 0 0000 0 0000	0 0016 0 0016 0 0017		
	04	0 502	0.760	9.64	8.37	0.106	9 0 08	44 0 0	0880 0	0059	0.1865	0.0506	0 1758 0	1228	0 0837	0 1633	0 0092	0 0873	0 0286	0 0058	0 0006	0 0058		
02	1 0 1.5	0.576	0 740	10 43	8 13	0,096	1 0 10 8 0 10	02 0 0 B1 0 0	870 0 865 0	0073 0) 1785) 1744	0 062610 0 068810) 1572:0) 1478 ₋ 0	1504 1647	0 0621.0	0 1948 0 2106	0 0045	0 0937	0 0276	0 0072	0 0004	0 0062		
	0.4	0.635	0.724	9.88	7 20	0,104	4 0.11 9 0.08	34 U.U 77 O.U	0877 0	0085) 1842	0.0547) 1710 0	1745	0 0802	0.2211	0.0018	0 0866	0 0269	0.0083	0 0001	0.0065		
0.3	0.6 1.0 1.5	0.580 0.653 0.716	0,715	10.33 11.09 11.80	8 34 10 46 12 54	0 099 0 0 090 0 0 090	3 0.09 5 0.11 7 0.12	62 0 (01 0 (29 0 ()872/0)863:0)85410	0072.0 0087;0 0087;0) 1797) 1723) 1653	0 06190 0 07430 0 08600) 1609(0) 1444 0) 1290:0	1471 1740- 2000.	0 0696 0 0532 0 03910	0 1841' 0 2094 0 2320,	0 0075 0 0049 0 0031	0 0892 0 0931 0 0953	0 0278	0 0071 0 0085 0 0099	0 0019 0 0012 0 0008	0 0123 0 0131 0 0137		
	2.0	0.759	0.661	12.33	14 15	5 0.077	2 0.13	21 0.0	0848 C	0113) 1601 0 1830	0 0951 0	0.1178 0	2191	0 0298	0 2476	0 0021	0 0969	0 0257	0.0109	0 0005	0 0141		
0.4	0.6	0.615	0.674	10 57	9.64	0 097	9 0 09	7800	0869 C	0078	0 1776	0 0663.0) 1569 0) 1367 0	1540	0 0688	0 1815	0 0079	0 0878	0 0275	0 0076	0 0041	0 0198		
	2.0	0.885	0 589	13.42	20.17	0.071	3 0.14	450.0	0835 C	0123	0.1503	0 1171	0,1009,0	2556	0.0281	0.2474	0 0036	0 0957	0 0245	0 0134	0 0016	0.0238		
0.5	0.6	0.633	0.633	10.11	8.5 10.73 15.45	0.103	1 0 08 9 0 09 5 0.11	750 (690 (400 (0874 C 0867 C 0853 C	0059 0059 0059 0059 0059 0059 0059 0059	D. 1820 D. 1761 D. 1655	0.0580/0 0.0680/0 0.0880/0	0.1538:0 0.1324 0	1538	0 0785(0 0680 0 0523'	0.1623 0.1761 0.1991	0 0100 0 0081 0 0057	0 0845	0 0280	0 0067 0 0078 0 0100	0 0090 0 0078 0 0060	0 0258		
	1.5	0.889 0.997	0.540	13.11 14.23	21 61 27 69	0.076	5 0 13 6 0 14	26 0 0 85 0 .0	0838 C 0825 C	0138	0.1538; 0.1438	0.11200 0.1341)0	0.1106,0 0.0929,0	2326 2689	0 0387	0 2212 0 2377	0 0039 0 0028	0 0926	0 0248	0 0127	0 0044	0 0325		
	0	4 = ().1		a	<u>n = \</u>	ariab	le			TABL	E 37			r.4 ==	1.0		·	rn =	variat	le			
0.1	0.4	0.548	0.591	5 37	4 98	0.095	9.0.08 1.0.08 5.0.09	47 0 0 80 0 0	938 0 937 0 936 0	0032 0) 1780	0 0538 0 0 0562 0 0 0594 0) 1472 0) 1442 0) 1400 0	1271	0 0679	0 1596 0 1660 0 1749	0 0067	0.0881	0 0016	0 0000	0 0000	0 0015		
	1.5 2.0	0.605 0.615	0.586 0.585	5 62 5 67	5 80 5 97	0.090	6 0 09 4 0 09	50 0 . 0 32 0 . 0)935 0)934 0	0037 0) 1735) 1726	0.0620 0.0636	0 1368 0 0 1348 0	1458 1494	0 0557	0.1816 D.1858	0 0024 0 0017	0 0957	0 0016	0 0000	0 0000 0 0000	0 0016 0.0017		
	0.4	0.597	0 579	5 56	5 74 6.3	0.093	4 0 09	18 0.0 82 0 0	0936 0 0934 0	0036) 1748) 1721	0 0602 0) 1403 0) 1342 0	1409 1524	0 0610	0 1735 0 1858	0 0064 0 0049	0.0885	0 0016 0 0016	0 0000 0	0 0004 0 0003	0 0059		
0.2	1.5	0.726	0.560	6.14 6.28	7.96	0.081	0 0.11 4 0.12	7600 540.(96000	N310 N290 N280	0045(0)0049(0)00049(0)00049(0)00049(0)00049(0)0000000000) 1646) 1624	0 073210 0 079910 0.084410	0 1253:0 0 1178:0 0 1129:0	1842 1940	0 0373	0.2184 0.2279	0.0031 0.0018 0.0012	0 0944 0 0966 0 0978	0 0016 0 0016 0 0016	0 0000 0 0000 0 0000	0 0002 0 0001 0 0001	0 0063 0 0064 0 0065		
	D.4 0.6	0.638	0.561	5 69	6 48	0 001	6 0 09 2 0 10	55 0 (42 0 0	2934 C	0039	0 1727 0 1687	0 0651	0 1361 0 0 1277 0	1502	0.0582	0 1785	0 0066	0 0878	0 0016	0 0000	0 0015	0 0121		
03	10	0 779	0.535	6.31 6.67 6.93	9 18	0 080	$3011 \\ 3013 \\ 1013$	81 0 0 07 0 0	0928 0 0924 0 0921 0	0054(0)0054(0)0062(0)0062(0)	0 1622 0 1564 0 1521	0 0864 0 0991 0	0.1143 0 0.1020 0 0.0933 0	1951 2209 2400	0 0378	0 2175	0 0033	0 0937	0 0016	0 0000	0 0008	0 0133		
	0.4	0.668	0.540	5.78	7.1	5 0 0 0	0 0 09	650	0933 C	0042	0.1714	0 0682	0 1340 0	1545	0 0580	0 1766	0 0069	0 0867	0 0016	0 0000	0 0035	0 0194		
04	1.0	0.864	0.500	6.60	11.4 14.5	0 078	0 0 12	33 0 0 01 0 0	0925 C	0062	0 1581 0 1496	0 0974	0 1075 0 0 0911 0	2113 2487	0 0375	0 2165	0 0038	0 0923	0 0016	0 0000	0 0029	0 0220		
	0.4	0.686	0.519	5 83	7 7:	0 000	4 0.09	30 0 1 57 0.0	3914 U 3933 O	0043	D. 1428 D. 1706	0.0695	0.07860 0.13260	.1541	0.0198	0.2542 0.1727	0 0017	0 0964 0 0858	0 0016	0 0000	0 0011	0.0242		
0.5	06 1,0 1.5	0.774 0.931 1.092	0.495	6.17 6 80 7.52	9 6 13 70 18 8	0 085	4:0,10 1:0,12 9:0,14	56 0.0 35 0.0 27 0.0	0929 0 0922 0 0915 0	005200000000000000000000000000000000000	0 1653 0 1556] 0 1450]	0 08120 0 10410 0 13100	0 1223 0 0 1045'0 0 0864:0	1751 2143 2576	0 0501 0 0334 0 0282	0 1864) 0 2090 0 2304	0 0058 0 0041 0 0028	0 0879 0 0910 0 0935	0 0016 0 0016 0 0016	0.0000	0 0058 0 0044 0 0033	0 0285 0 0311 0 0335		
	2.0	1.219	0 420	8.15	23.60	5 10 062	5 0.15	870	0907	0.0107	0.1358	0.1554	0 0720 ₁ 0	2941	0 0215	0 2458	0 0020	0 0951	0 0016	0 0001	0 0025	0.0353		
	0.4	0 528	0 689	6.92	5 3	10 1 12	6 0 07	740	946 C	0028	2066	0.0405	1776.0	1130	$r_{A} = 0.0833$	1.0	0 0083	0 0874	$r_B =$	0 0002	18	0.0016		
0.1	0.6 1.0 1.5	0.544 0.566 0.582	0.687	7.03	5 5	0 1 10	5 0 08 6 0 08 5 0 08	06 0 0 50 0 0 33 0 0)945 0)944 0)943 0	0029 0031 0032 0	0 2054 1 2037 1 2024	0 0423 0 0 0450 0	0.1743.0	1181	0 0790	0 1590 0 1660	0 0056	0 0899 0 0931	0 0063	0 0002	0 0000	0 0016		
	2.0	0.593	0.681	7.39	6 4:	0.104	10.09	0500	0 42 0	0033	2016	0 0483 0). 1639 0 1701-0	1343	0 0060	0 1792	0 0021	0 0967	0 0063	0 0002	0 0000	0 0017		
0.2	06	0.603	0.667	7 44	6 80	0 104	9 0 09	0100	2942 C	0034 0	2011	0 0497 0	5 1635 ⁰ 5 1533 ⁰	1367	0 0673	0 1787	0 0052	0 0304	0 0063	0 0002 0 0002 0 0003	0 0005 0 0004 0 0003	0 0058		
	20	0.724	0.652	8.12	9 32	0.094	70 11	1900	337 C	0043 0	0.1940 0.1918	0 0653	5 1449 0 5 1393 0	1675	0 0468	0 2127 0 2230	0 0023 0 0015	0 0963 0 0976	0.0062	0 0004 0 0004	0 0002 0 0001	0 0064 0 0065		
0.3	04	0 614 0 666 0 748	0.653 0.640 0.622	7 41 7 77 8 37	6 90 8 00 10 00	0 100	8 0.08 9 0.09 2 0.10	7300 5400 8900	3942 (C)940 (C)935 (C	00340 00380 00470	J 2018) J 1980; J 1919:	U 049310 U 055810 O 066810	D 1656(0 D 1564_0 D 1411_0	1344: 1503 1771	0 07224 0 06274 0 04804	0 1711 0 1868 0 2118	0 0081 0 0065 0 0042	0 0870 0 0895 0 0931	0 0062 0 0062 0 0062	0 0003 0 0003 0 0004	0 0019 0 0015 0 0011	0 0119 0 0125 0 0132		
	20	0 818 0 866	0.609	8 95 9 38	12 03 13 5	0 087	3:0.12	1110 (990 (0931 0 0927 (00561) 1860) 1818	0 0774(0 0854)	0 1271 0 0 1170 0	2028 2218	0 0353) 0 0268 1	0 2341 0 2494	0 0026 0 0017	0 0956 0 0971	0 0061 0 0061	0 0005 0 0005	0 0007 0 0005	0 0138 0 0142		
0.4	0.4	0.641	0.629	7 54 7 99 8 82	9 34	0 106	110.08 8:0.09 9:0.11	79 0 (71 0 (31 0 (0941)C 09381C 09381C	0036 (0042 (0054 (3 2006 3 1950 3 1970	0 0517(0 0601(0 07567	3 1634:0 3 1526 0 3 1319 0	1.181	0 0719 0 0624 0 0476	0 1689 0 1841 0 2003	0.0086	0 0858	0.0062	0.0003	0 0044	0 0190		
	1.5	0 936 1.015	0 559	9 71 10 43	16 2 19 4	0 08.	3 0 12 9 0 14	93 0 20 0	0025-0 0020-0	0068	1 1794 0 1726	0 0925-0 0 1066 ₁ 0	5 1149 0 5 1149 0	2291	0 0346 0 0257	0 2324 0 2489	0 0035	0 0942	0.0061	0 0005 0 0005 0 0006	0 0014	0 0219 0 0229 0 0239		
0.6	04	0 657	0 604	7 62	8 20 10 4	0 100	7 0 08	700	2241	0037	5 1998 5 1948 5 1948	0 0527 0	0 1618 0 0 1504 0	1375	0 0717	n 1649 0 1785	0 0089 0 0073	0 0849	0 0062	0 0003 9 0004	0 0082 0 0072	0 0261		
Ľ	15	1 038	0 508	10 28 11 34	21 0 26 B	0 08	9 0 13 5 0 14	64 0 0	9913 (9913 (0079 (0096;) 1750 1657	0 1037.0	0 1007,0 0 10926.0	2366 2732	0 0364 0 0279	0 2230	0 0052 0 0036 0 0026	0 0001 0 0028 0 0945	0 0061 0 0060 0 0060	0 0005 0 0006 0 0007	0 0056 0 0042 0 0032	0 0302 0 0327 0 0345		

Después de leer este trabajo detenidamente puede comprender se la utilidad del programa para computadora que en él se presenta para el análisis de marcos planos con barras de sección variable.

Este programa se realizó con el objetivo principal de demos trar el funcionamiento del método directo de las rígideces, y por tal motivo es susceptible de modificaciones que podrían --adaptarlo a algún uso particular haciendolo más eficiente.

El tiempo que emplea la computadora en efectuar un análisis determinado con este método es bastante aceptable en compara-ción con el mismo análisis efectuado con otro método en la mi<u>s</u> ma computadora.

Es obvio que la computadora misma en que se corra este programa o uno similar determina la velocidad y el costo de los cálculos. En una computadora de bolsillo un análisis como el que realizamos en alguno de los ejemplos sería muy lento y --aunque la hora máquina de este tipo de computadoras es barata la utilización de ellas sería poco atractiva, En comparación tenemos la macrocomputadora que es muy rápida pero como el cos to de la hora máquina de la misma es cara también hace poco -atractiva su utilización, Un término medio entre tiempo y cos to es la microcomputadora que para este tipo de calculos es la más atractiva.

Nunca debe olvidarse que la precisión o la veracidad de los resultados que se obtienen con este programa dependen princi--palmente de la veracidad y precisión de los datos iniciales --que hay que proporcionar al mismo. Existen diversas formas de manejar el método directo de las rigideces, cada una de las cuales tiene sus ventajas particul<u>a</u> res, la forma de manejar el método que se empleo en ette trabajo es una de las más sencillas y por está razón se eligió <u>pa</u> ra ilustrar el funcionamiento del método, sacrificando con --ello la eficiencia en que otras formas de manejar el método --tienen ventaja, no obstante, como deseamos calcular no solo --los desplazamientos de la estructura, sino también los momen--tos internos en los extremos de las barras, la forma de apli--car el método adoptada es adecuada.

Generalmente cuando los calculos se realizán manualmente es conveniente trabajar el módulo de elasticidad y uno de los dis tintos momentos de inercia como constantes con lo cual se evita el manejo de cantidades demasiado grandes, pero al trabajar con la computadora ésto no proporciona una ventaja considera--ble y por ello se prefirió no hacerlo en el programa con lo --cual se obtienen directamente las matrices correspondientes a la estructura que se analiza, lo que permite obtener los vec--tores de soluciones sin necesidad de hacer correcciones.

De los ejemplos presentados puede observarse que los momentos internos en los extremos de las barras depende de la pro-porción que guardan entre sí los momentos de inercia de las ba rras dentro de la estructura sin importar el valor específico de éstos, por ejemplo si analizaramos los tres rarcos siguientes bajo el mismo sistema de cargas aplicadas, teniendo los -tres desde luego las mismas dimensiones generales o propieda-des geométricas de la estructura, obtendríamos los mismos mo--
(142)

Es claro desde luego que en cada uno de ellos los desplazamientos aunque proporcionales serían distintos.

En la utilización de las tablas del manual de Portland Ce-ment Association para la obtención de los coeficientes de ri-gidez R_{AA}, R_{BB} , factores de transporte C_{AB}, C_{BA} , y coeficientes del momento de empotramiento m_A, m_B , es válida la internolación lineal si para los valores de los parametros a_A, a_B, r_A, r_B o **p** Para terminar podemos decir que el programa que se presentó es algo versatil y puede utilizarse en alguncs calculos que no se trataron en este trabajo por ser casos poco frecuentes en realidad,siempre y cuando los datos que se proporcionan o las condiciones que se utilizan se adapten adecuadamente para cumplir con los fundamentos del programa. Bibliografia.

Structural Matrix Analysis for the Engineer. John S. Robinson

(144)

Theory of Matrix Structural Analysis.

J.S. Przemieniecki

Estructuras Estáticamente Indeterminadas.

White, Gergely, Sexmith

Computer Methods of Structural Analysis.

Beaufait, Rowan, Hoadley, Hackett

Análisis de Estructuras Indeterminadas.

J. Sterling Kinney

Handbook of Frame Constants.

Potrland Cement Association