UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

PROGRAMA PARA LA RESOLUCION DE MARCOS CON BARRAS

DE SECCION VARIABLE

TESIS

Que Para Obtener el Título de

INGENIERO CIVIL

Presenta

HECTOR GONZALEZ PEREZ

México, D.F. Enero 1983.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Indice.

PROGRAMA PARA LA RESOLUCION DE MARCOS CON BARRAS DE SECCION VARIABLE

Capitulo	Pagina
1 Introducción	.===2
2 Teoría	3
a) Teoremas estructurales básicos	3
b) El método directo de las rigideces	14
3 Diagrama de Flujo	48
4 Listado	66
5 Ejemplos	73
a) Ejemplo # 1	73
b) Ejemplo # 2	104
c) Ejemplo # 3	122
6 Conclusion	140
Bibliografía	144

Introducción.

En la actualidad es relativamente fácil disponer de una computadora, por lo cual es conveniente utilizar sus servicios en los calculos de ingeniería, esto permite que ellos puedan realizarse en menor tiempo que el que se utilizaría para efectuar los manualmente, además, si el programa en la computadora es orrecto y esta se encuentra funcionando adecuadamente, pueden evitarse los errores que generalmente se cometen al efectuar manualmente calculos largos, con esto puede garantizarse que los resultados que arroja la computadora dependen exclusivamente de los datos de entrada del programa.

No obstante de que el costo del tiempo de computadora es -elevado, la eficiencia de la misma hace que en la mayoría de -los casos se justifique su utilización en calculos largos y/o
repetidos.

Es obvio que la eficiencia obtenida depende del programa y de los algoritmos en que este se basa para efectuar los cálculos así como de la forma en que este se adapte a la máquina en que se utiliza y del lenguaje que se utilize para desarrollarlo.

El programa presentado en este trabajo se realizó en lengua je BASIC utilizandose para su ejecución una microcomputadora.

El objetivo de este programa es el de cálcular: los desplazamientos de los nudos en las direcciones de los distintos grados de libertad (angulares y lineales), las deformaciones angulares en los extremos de las barras y las fuerzas internas (mo mentos flexionantes) en los mismos, todo ello para marcos planos con barras de sección variable, según las especificaciones

del manual de constantes de marcos (Handbook of Frame Constants) editado por PCA (Portland Cement Association).

Cabe mencionar que el programa presentado admite la existencia de barras inclinadas en los marcos.

Teoría.

TEOREMAS ESTRUCTURALES BASICOS

Se asume que el lector esta familiarizado con los teoremas estructurales básicos, sin embargo, por complementar este trabajo, estos prerequisitos serán brevemente presentados.

1.- Ley de Hooke.

La relación entre carga y desplazamiento fue investigada -por el físico experimental inglés Robert Hooke (1635-1703). El encontró que estando en el rango elástico de un material la
carga era proporcional al desplazamiento.

De aquí se establece que el esfuerzo T es proporcional a la deformación unitaria E a lo cual se denomina comportamiento - de Hooke.

La razón entre el esfuerzo y la deformación unitaria, en el rango elástico, la cual es una constante del material que se - denota como el Módulo de Elasticidad (E) o módulo de Young por el filósofo ingles Thomas Young (1773-1829).

Donde:

Módulo de elasticidad (E)= tan ≼ =pendiente de la recta

Por consiguiente se establece que ▼ =E€

2.- Teorema de superposición.

Considérese la configuración estructural mostrada en la figura sujeta a un sistema de cargas $\{P_k\}$. Si los desplazamientos resultantes de todos los puntos son directamente proporcionales al sistema de cargas aplicadas, entonces los mismos desplazamientos resultantes se obtendrían aplicando cada carga por separado en cualquier secuencia y sumando los efectos individuales para cada punto. Esto es lo propuesto por el teorema de superposición.

Por ejemplo el desplazamiento resultante en el punto i, Δ_i , igualará a la suma de los desplazamientos en el punto i debidos a cada una de las cargas aplicadas que componen el sistema.

$$\Delta_{i} = d_{i1} + d_{i2} + d_{i3} + \dots + d_{in}$$

$$\Delta_{i} = f_{i1}P_{1} + f_{i2}P_{2} + f_{i3}P_{3} + \dots + f_{in}P_{n}$$

Donde:

 Δ_i = Desplazamiento total en el punto i

dik = Desplazamiento parcial en el punto i debido a la carga
aplicada en el punto k.
fik = Desplazamiento en el punto i debido a una carga unitaria
aplicada en el punto k, mientras que las cargas en los otros puntos no existen.

P_r= Fuerza aplicada en el punto k.

Por tanto los desplazamientos correspondientes al sistema de cargas aplicado será en forma matricial.

$$\begin{bmatrix} \Delta_1 \\ \Delta_2 \\ \Delta_3 \\ \vdots \\ \Delta_m \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{11} & \mathbf{f}_{12} & \mathbf{f}_{13} & \dots & \mathbf{f}_{1n} \\ \mathbf{f}_{21} & \mathbf{f}_{22} & \mathbf{f}_{23} & \dots & \mathbf{f}_{2n} \\ \mathbf{f}_{31} & \mathbf{f}_{32} & \mathbf{f}_{33} & \dots & \mathbf{f}_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{f}_{n1} & \mathbf{f}_{n2} & \mathbf{f}_{n3} & \dots & \mathbf{f}_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \\ \vdots \\ \mathbf{P}_n \end{bmatrix}$$

o en forma condensada
$$\left\{\Delta_{k}\right\} = \left[F_{k}\right] \left\{F_{k}\right\}$$

Donde: $\int F_{\mathbf{k}}$ \int es llamada la matriz \cdot e flexibilidades o la matriz de coeficientes de influencia estructural correspondien te al sistema de cargas aplicado $\left\{P_{k}\right\}$.

Los desplazamientos resultantes $\{\Delta_k\}$ son medidos a lo largo de la linea de acción de la carga que actúa en ese punto. Estos desplazamientos se utilizan cuando se cálcula el trabajo hecho por las cargas aplicadas $\{P_k\}$.

Por conveniencia se considerará una sola carga discreta aplicada en cada nudo, y en general habrá más de una carga discreta en un nudo cada una teniendo diferente linea de acción. Como previamente se mencionó, los desplazamientos resultantes $\left\{\Delta_k\right\}$ son desplazamientos correspondientes, ésto es, para cada carga discreta aplicada P_i existe un desplazamiento correspondiente, por lo cual al analizarse el desplazamiento en un punto deberá observarse cual desplazamiento correspondiente se está considerando.

3.- Trabajo realizado por un sistema de cargas.

Se supone el comportamiento elástico lineal de la estructura, es decir que el comportamiento de Hooke existe.

Suponiendo que una única carga discreta se aplica a una estructura que esta soportada de tal forma de evitar el movimien to de la misma, si la carga se aplica gradualmente desde cerc hasta su valor final, el trabajo hecho por la carga P_i , la cual tiene un desplazamiento correspondiente Δ_i , es dado por 1/2 P_i Δ_i .

Cuando un sistema de cargas se aplica el trabajo realizado está dado por: $1/2 P_1 A_1 + 1/2 P_2 A_2 + \dots + 1/2 P_n A_n$

El trabajo efectuado por un sistema de cargas $\{P_k\}$ cuyos - desplazamientos correspondientes son $\{\Delta_k\}$, es dado en forma matricial condensada por: $1/2\{P_k\}\{\Delta_k\}$

4.- Teorema reciproco de Maxwell

Considerese la configuración estructural mostrada en la figura, el sistema de cargas aplicado consta de dos cargas discretas, P₁, P₂, las cuales se aplicarán gradualmente.

Dos secuencias de aplicar las cargas deben considerarse.

- 1 Aplicando P, primero y Po después
- 2 Aplicando Po primero y Po después

Secuencia l'aplicando P_1 primero produce los desplazamientos correspondientes δ_{11} en el punto 1 y δ_{21} en el punto 2.

Si se aplica ahora P₂ ocurrirán desplazamientos adicionales en los puntos 1 y 2 éstos se denotan por d₁₂ y d₂₂ respectivemente

Los subindices dados a los desplazamientos deben interpretarse como sigue:

El primer subíndice indica el punto en el cual el desplazamiento correspondiente se está determinando, el segundo subíndice indica el punto en el cual actúa la carga que provoca el desplazamiento correspondiente.

Debe notarse que P_1 permanece constante durante el desplaza miento d_{12} , el trabajo realizado por está secuencia de carga está dado por: $1/2 P_1 d_{11} + P_1 d_{12} + 1/2 P_2 d_{22}$

Esto gráficamente expresa que el área total sombreada es el trabajo realizado.

Secuencia 2 si ahora P_2 es aplicada primero, los desplazamientos correspondientes en los puntos 1 y 2 son d_{12} y d_{22} respectivamente, aplicando P_1 posteriormente provoca los desplazamientos adicionales d_{11} en el punto 1 y d_{21} en el punto 2. Para esta secuencia de carga P_2 permanece constante durante el desplazamiento d_{21} .

El trabajo realizado por esta secuencia de carga esta dado por: 1/2_P₁d₁₁ + P₂d₂₁ + 1/2_P₂d₂₂_____

Lo cual se muestra también graficamente

Cuando existe comportamiento de Hooke el trabajo efectuado es independiente de la secuencia de carga; por lo cual el
trabajo realizado en cada caso será el mismo, por tanto:

$$1/2P_1d_{11}+P_1d_{12}+1/2P_2d_{22}=1/2P_1d_{11}+P_2d_{21}+1/2P_2d_{22}$$

El teorema recíproco de Maxwell puede enunciarse como sigue; El desplazamiento en el nudo i debido a una carga unitaria aplicada en el punto j es numéricamente igual al desplazamiento en el punto j debido a una carga unitaria aplicada en el punto i.

En ambos casos el desplazamiento es un desplazamiento correspondiente, ésto es, el desplazamiento en el punto i se mide a lo largo de la línea de acción de $P_{\bf j}$ y el desplazamiento en el punto j se mide a lo largo de la línea de acción de $P_{\bf j}$.

La matriz de flexibilidades de una estructura es normalmente considerada como una matriz cuadrada, cuando esto sucede la matriz es también símetrica y por el teorema de Maxwell, los coeficientes cruzados de la matriz de flexibilidades son iguales, es decir: $f_{i,j}=f_{,i,i}$

5.- Cargas y desplazamientos generalizados.

Hasta este punto solo cargas discretas y sus desplazamientos correspondientes se han considerado en los sistemas de -carga y desplazamiento, ahora podremos presentar una generalización adicional.

- a) El sistema de cargas discretas $\{P_k\}$ puede consistir de fuer--zas y/o momentos.
- b) El sistema de desplazamientos correspondientes $\{\Delta_k\}$ puede consistir de desplazamientos lineales y/o desplazamientos angu lares o giros.
- c) Cuando se adopte el concepto de sistemas generalizados, debe recordarse que los coeficientes de la matriz de flexibilida des deben ser dimensionalmente correctos.
- d) Los teoremas estructurales permanecen válidos para los sistemas generalizados.

Consideremos el cantiliver mostrado, los desplazamientos correspondientes generalizados estan dados por:

$$\Delta_{1} = d_{11} + d_{12} = f_{11}P_{1} + f_{12}P_{2}$$

$$\Delta_{2}^{=d}_{21}^{+d}_{22}^{=f}_{21}^{P}_{1}^{+f}_{22}^{P}_{2}$$

Las dimensiones de las distintas cantidades se muestran en la tabla; con el objeto de ilustrar mejor utilizaremos unida--des, digamos toneladas, metros, radianes, para las cargas y desplazamientos, y las dimensiones seran fuerza y longitud.

	Cantidad	Dimensión	Unidades
	$\mathtt{P_1}$	F	Ton
	P ₂	FL	Ton m
	Δ ₁	Ľ	m
)P ₂	∆ 2	(1) - 1 (1) - 1 (1) - 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (rad
1 2	f ₁₁	L/F	m/ton
7 -	f ₁₂	L/FL=1/F	m/ton m=1/ton
	f ₂₁	1/F	rad/ton
	f ₂₂	1/FL	rad/ton m

Por el teorema recíproco de Maxwell f₁₂=f₂₁ estos coeficientes son iguales numericamente pero dimensionalmente son distintos, como puede observarse en la tabla.

6.- Energia total.

Cuando un sistema de cargas es aplicado a una estructura — elástica, los elementos estructurales se deforman y la energía se almacena en los mismos, a esta energía se le conoce como — energía de deformación, cada elemento en la estructura almacena un porcentaje de la energía total. Cuando las cargas son removidas la energía de deformación se utiliza para reestable— cer la configuración original de la estructura.

La energía de deformación se presenta de diferentes rormas, dependiendo de la carga y puede ser: energía de flexión, energía de cortante y energía axial.

Cuando los apoyos ceden, energía adicional es almacenada, ésto se conoce como el potencial de las reacciones.

También hay potencial debido a la deficiencia de las uniones de los elementos estructurales, es decir cuando existe juego - en los nudos de una estructura.

7.- Grados de libertad.

Una estructura elástica continua tiene un número infinito - de desplazamientos definidos que se pueden identificar, obser-- var o calcular, pero el perfil deformado de una estructura se puede describir por medio de un número limitado de estos des-- plazamientos. Al número de desplazamientos que se eligen para definir el perfil deformado se le llama el número de grados

de libertad de la estructura.

En general, se puede pensar que una estructura es una red - de miembros y nudos. Los nudos se introducen en donde los -- miembros se cortan o terminan, y donde se colocan los apoyos.

Por conveniencia se pueden añadir más nudos; por ejemplo, en el lugar en que el miembro cambia de sección transversal o donde se requiera conocer los valores de los desplazamientos. Por lo común se supone que los miembros son rectos y prismáticos entre los nudos, pero ésto no es un requisito. Las com-ponentes de los desplazamientos nodales se llaman grados de li Es suficiente conocer los desplazamientos nodales pa ra definir completamente el perfil deformado de la estructura, porque los miembros siguen una curva elástica definida entre los nudos basada en los desplazamientos de sus extremos, en la carga, y en las propiedades geométricas. For comodidad, es común que se tomen las componentes del desplazamiento en cada una de las tres direcciones de los ejes de coordenadas mutua-mente ortogonales como los tres grados de libertad nodales. En una estructura tridimensional pueden existir seis grados de libertad por cada nudo y, en una estructura de dos dimensiones tres grados de libertad por cada nudo. Algunos de éstos pueden restringirse por medio de las condiciones de apoyo o de su posiciones acerca del comportamiento dejando el resto como la cantidad de grados de libertad de la estructura.

EL METODO DIRECTO DE LAS RIGIDECES

Entre los logros de mayor alcance en la ingeniería estructural esta la capacidad de analizar automáticamente casi todo tipo de estructura con un elevado grado de precisión y a un --costo razonable. La aparición de la computadora digital ha --hecho posible este perfeccionamiento. Al aparecer la computadora se crearon de inmediato métodos de análisis adecuados para el cálculo en computadora; el más usado de ellos es el método directo de las rigideces, inventado en la década de 1950.

Al principio de dicha década Samuel Levy sugirío algunas de las ventajas de un método de desplazamientos usando coeficientes de influencia para el análisis de las estructuras de los aviones. Al mismo tiempo, varias otras personas estaban elaborando una variedad de métodos para el análisis con base en métodos matriciales, con objeto de aprovechar la computadora digital. Este confuso conjunto de métodos se consolidó algo con el tiempo. Hacia 1954 Turner, Clough, Martin y Topp presentaron el primer tratamiento del método directo de las rigideces. Demostraron que la matriz de rigideces, un ordenamiento de los coeficientes de influencia de rigidez que se usan para determinar los desplazamientos, se puede plantear como la superposición de las rigideces de los elementos o miembros.

La dualidad de los métodos de las fuerzas y de los desplaza mientos fue demostrada por Argyris y Kesley en 1960 en su tratamiento de los teoremas de energía. Desde entonces, se ha obtenido una gran unidad de los diversos procedimientos, y se ha visto un rápido aumento en el tamaño de los problemas que estratan, según aumentan el tamaño y las potencialidades de -

las computadoras.

En la actualidad el ingeniero en estructuras debe estar familiarizado con el método de análisis de las rigideces porque constituye una poderosa herramienta de análisis. Al mismo — tiempo deberá estudiar el uso correcto de esta forma automática de análisis. El resultado de un análisis es sólo tan bueno como los datos de que se parte, el criterio y la habilidad ingenieriles, que nunca se podrán automatizar, se deben aplicar a las suposiciones de carga, comportamiento del material, condiciones de apoyo, que son necesarios antes de hacer un análisis. Lo mismo se aplica a la interpretación y el uso de — los resultados de tales análisis.

Las ideas básicas del método de las rigideces se pueden demostrar considerando el análisis de la viga en voladizo que se
ilustra en la figura. Se desea determinar el desplazamiento en el extremo 1 (d₁) bajo la acción de la carga (f₁). Primero se escribe una relación fuerza-desplazamiento, imponiendo un desplazamiento unitario correspondiente a d₁ luego se deter
mina la fuerza necesaria para producir este desplazamiento uni
tario en el extremo de una viga prismática en voladizo, que es
3EI/L³. Esta fuerza se define como coeficiente de influencia

de rigidez para la viga, k_1 , ya que representa la resistencia de la viga a un desplazamiento unitario.

Ahora considerése el equilibrio del nudo l'en el diagrama - de cuerpo libre que sigue:

La fuerza hacia abajo en el nudo, causada por la resistencia a la flexión de la viga, es k_1d_1 , y la fuerza hacia arriba es la carga aplicada f_1 . El equilibrio da:

$$k_1 d_1 = f_1$$
(3EI/L³) $d_1 = f_1$
 $d_1 = f_1 L^3/3EI$

Se ha usado un coeficiente de influencia de rigidez k_1 , que expresa la influencia de un desplazamiento unitario, para determinar el desplazamiento para la carga f_1 . El método de las rigideces es simplemente una extensión lógica de esta idea a las estructuras con muchos grados de libertad.

Considérese la trabe de tres claros siguiente:

Existe un grado de libertad de rotación en cada uno de los cuatro nudos. Se aplica una carga en cada nudo. El perfil deformado que se muestra en la figura se puede considerar como la superposición de cuatro casos separados con sólo un desplazamiento en cada uno de ellos. Estos casos separados se indican en las figuras a,b,c,d, por ejemplo en la figura a se mues tra el perfil deformado de la estructura con θ_1 impuesta y todos los démas grados de libertad sujetos contra la rotación. - Las fuerzas que son necesarias en los extremos de los miembros

para lograr cada uno de estos modos de desplazamiento (produ-cir la rotación , y evitar la rotación en los nudos sujetos) se indican en la figura, pero no se les da nombre. Por ejemplo en el nudo 1 el momento k, es el que actúa en el nudo 1, provocandole una rotación unitaria, con los nudos 2 al 4 fijos contra la rotación. k12 es el momento que actúa en el nudo l causado por la rotación unitaria del nudo 2 que a su vez es causada por el momento k22, con los nudos 1,3 y 4 sujetos contra la rotación. Los términos en representan las rotaciones Por tanto $k_{11} \Theta_1$ es el momento real en reales de los nudos. el extremo, en el nudo l de la figura a. Los momentos del nu dokkij Oj se anotan en la figura como los totales para ambos miembros que se unen en un nudo, donde kij representa una rigi dez de nudo. Estos totales son iguales al momento que apli-can los miembros al nudo. Nótese que los momentos en sentido contrario al movimiento de las manecillas del reloj en los extremos de los miembros, que son positivos, producen momentos en el sentido del movimiento de las manecillas del reloj en los nudos, que también se definen como positivos. La superposi-ción de los cuatro casos que se muestran en la figura represen ta los momentos reales internos que obran en los nudos. El momento total interno en cualquier nudo debe ser igual al mo-mento externo aplicado. Si se definen los momentos externos como positivos cuando tienen sentido contrario al del movimien to de las manecillas del reloj, se puede expresar el equili --brio del nudo como:

$$k_{11}\Theta_{1} + k_{12}\Theta_{2} + k_{13}\Theta_{3} + k_{14}\Theta_{4} = M_{1}$$
 $k_{21}\Theta_{1} + k_{22}\Theta_{2} + k_{23}\Theta_{3} + k_{24}\Theta_{4} = M_{2}$

$$k_{31}\Theta_{1} + k_{32}\Theta_{2} + k_{33}\Theta_{3} + k_{34}\Theta_{4} = M_{3}$$

$$k_{41}\Theta_{1} + k_{42}\Theta_{2} + k_{43}\Theta_{3} + k_{44}\Theta_{4} = M_{4}$$

donde algunos de los términos k_{ij} son cero, tales como k_{13} , - k_{14} , k_{24} y sus opuestos k_{31} , k_{41} y k_{42} .

La definición de los términos k_{ij} permite calcularlos en -forma muy sencilla y repetida. En la siguiente figura se ilustra una relación básica fuerza-desplazamiento. Cuando el
extremo lejano de un miembro prismático sometido a flexión -está fijo, el momento y la rotación en el extremo cercano, están relacionados por: $m = 4EI\Theta/L$

Si se aplica una rotación unitaria, la rigidez a la flexión es por tanto, $k_{ii} = m/\Theta = 4EI/L$

En este caso el momento en el extremo fijo es la mitad del momento aplicado en el extremo que gira(recordando el factor de transporte en la distribución de momentos). Así: k_{ji} = 2EI/L

Cuando se aplica una rotación unitaria a un nudo al que lle ga más de un miembro, la rigidez en el nudo es la suma de las rigideces con que contribuyen cada uno de los miembros que lle

gan a él, porque cada miembro sufre una rotación dada.

En nuestra viga continua, los coeficientes de influencia de rigidez k se calculan fácilmente:

$$k_{11} = 4(EI/L)_{12}$$
 $k_{12} = k_{21} = 2(EI/L)_{12}$
 $k_{22} = 4(EI/L)_{12} + 4(EI/L)_{23}$
 $k_{23} = k_{32} = 2(EI/L)_{23}$
 $k_{33} = 4(EI/L)_{23} + 4(EI/L)_{34}$
 $k_{34} = k_{43} = 2(EI/L)_{34}$
 $k_{44} = 4(EI/L)_{34}$

$$k_{13} = k_{14} = k_{24} = k_{31} = k_{41} = k_{42} = 0$$

Nôtese que en todos los casos $k_{ij} = k_{ji}$. Esto ocurre siempre con los coeficientes de influencia de rigidez y como resultado del teorema recíproco de Maxwell. El detalle principal de estos cálculos es que, aunque muy numerosos, son básicamente los mismos y se adaptan bien para usarlos en la computadora. Cada término se basa en el mismo caso sencillo de un miembro sometido a flexión, fijo en un extremo y dándosele una rotación unitaria al otro.

Los coeficientes de influencia de rigidez ahora se pueden sustituir en las ecuaciones de equilibrio y dando los valores numéricos apropiados para los términos $(EI/L)_{ij}$ es posible lle gar a una solución numérica de los ángulos Θ o giros.

El método de las rigideces se resume como sigue:

Primero, cada uno de los grados de libertad de la estructura recibe un número para fines de notación. Los desplazamien tos correspondientes a cada uno de los grados de libertad sen las incógnitas que se van a determinar. El segundo paso consiste en calcular los coeficientes de influencia de rigidez. Con este objeto, se sujetan todos los nudos de la estructura, y luego se ejecuta una serie de análisis, uno por cada grado de libertad, por turno, dando un desplazamiento unitario. Cuando al grado de libertad j se da un desplazamiento unitario se determinan las fuerzas correspondientes a cada uno de los grados de libertad i, llamado kij, luego se formulan las ecuaciones de equilibrio que siempre son de la forma:

$$k_{11}d_1 + k_{12}d_2 + \cdots + k_{1n}d_n = f_1$$
 $k_{21}d_1 + k_{22}d_2 + \cdots + k_{2n}d_n = f_2$
 \vdots
 $k_{n1}d_1 + k_{n2}d_2 + \cdots + k_{nn}d_n = f_n$

donde los términos d_1 a d_n representan los n desplazamientos desconocidos, y los términos f_1 a f_n son las cargas nodales.

En las cargas nodales aplicadas se usa la misma convención de signos, así como en las fuerzas en los extremos de los miem bros y los momentos: las fuerzas son positivas si están dirigidas hacia arriba o a la derecha, y los momentos son positivos si tienen la dirección del movimiento de las manecillas del reloj.

Hasta ahora, el estudio del método de las rigideces se ha - referido al caso en que las cargas sólo se aplican a los nudos lo que permite escribir las ecuaciones de equilibrio en una -

forma muy sencilla. Sin embargo, en la mayor parte de los -problemas reales intervienen cargas aplicadas lateralmente a -los miembros entre los nudos. Un ejemplo común es el caso de
la carga uniformemente distribuida sobre una viga. Para efec
tuar la conversión a cargas nodales se usa el principio de la
superposición.

Debe notarse que con este método por lo regular se utilizan más ecuaciones que con el método de las fuerzas y por tanto, re quiere más trabajo de cálculo. Al mismo tiempo habrá que observar que intervienen más calculos repetidos que en el método de las fuerzas. Aunque el método directo de rigideces no es un método popular para trabajar a mano, por lo laborioso de re solver el sistema de ecuaciones, es el que más se usa en los análisis que se hacen por computadora para las estructuras.

Ahora organizaremos el método de manera que se adecúe al -cálculo con computadoras. El resultado constituye un recurso
valioso para resolver estructuras reticulares de cualquier tipo, teniendo la facultad de poder ampliarse sencillamente para
las formas más generales de estructura.

El método se plantea en términos de matrices. El método - de las matrices se adapta muy bien para formular los cálculos en que es necesario usar ecuaciones simultáneas, y es la ma--- nera natural de efectuar estos cálculos en una computadora.

Aquí no se examinan los métodos empleados para resolver las ecuaciones que se obtienen. La inversión se usa como forma - simbólica para expresar la solución de ecuaciones, pero no se intenta sugerir que la inversión es el único procedimiento. La solución de ecuaciones es una materia completa en sí, especial

mente cuando se trata de un sistema grande de ecuaciones como los que se presentan con frecuencia en el análisis estructural.

La ecuación básica de rigideces se desarrolló anteriormente, ésta expresa el equilibrio de cada uno de los nudos en función de los coeficientes de influencia de la rigidez nodal y de los desplazamientos nodales desconocidos.

Esta ecuación en notación matricial es:

En notación matricial abreviada se puede escribir como:

donde a [K] se le llama matriz de rigideces de la estructura a $\{D\}$ vector de desplazamientos y a $\{F\}$ vector de cargas.

En esta ecuación k_{ij} es la fuerza nodal correspondiente al grado de libertad i causada por la aplicación de un desplazamiento unitario correspondiente al grado de libertad j. d_1 , d_2 , ..., d_n son los desplazamientos nodales desconocidos y f_1, f_2, \ldots, f_n son las cargas nodales aplicadas, correspondientes al grado de libertad 1, 2, ..., n. La formación de

la matriz [K] es un paso importante del proceso de análisis. Debido a que en el análisis de la rigidez los grados de libertad se localizan en las uniones o nudos, a la fuerza k_{ij} se le llamará rigidez nodal. Nuestro objetivo es idear una manera eficiente, automática, para generar los términos k_{ij} .

Todos los términos de una columna dada de la matriz de rigideces son fuerzas nodales producidas por un solo desplazamiento nodal unitario aplicado. Considérese parte de una estructura reticular plana, según se muestra en la figura e, los grados de libertad están numerados en la figura (del 1 al 12). Si se desea cálcular los elementos de la primera columna de la matriz de rigideces de la estructura, se desplaza la estructura como se indica en la figura f (un desplazamiento unitario correspondiente al grado de libertad 1, manteniendo el valor de todos los demás desplazamientos en cero).

Los elementos K11, K21, K31 son las fuerzas correspondientes a los grados de libertad 1, 2 y 3 respectivamente, causados por un desplazamiento unitario correspondiente al grado de El resto de la estructura no aparece en la figura, porque solamente se desplaza el grado de libertad l y las **ú**nicas fuerzas y pares que hay que calcular son las asociadas a los miembros afectados por estos desplazamientos. fuerzas se indican en la figura f en sus direcciones positivas Como ya se dijo antes, constituyen la primera codefinidas. lumna de la matriz de rigideces de la estructura. varlas se demuestra que pueden calcularse directamente sin dificultad; ésto se hace descomponiendo un término K dado en sus componentes según cada uno de los miembros que concurren a la Por ejemplo, \mathbf{K}_{11} es la suma de los términos \mathbf{k}_{11} para cada uno de los tres miembros, como se muestra en la figura g A la k minúscula se le llama coeficiente de influencia por rigidez del miembro. El problema se ha reducido al cálculo de las rigideces correspondientes del miembro.

Se examinára el cálculo de K₁₁. El miembro 1 se alarga -una distancia igual a la unidad; por tanto, k₁₁ para el miembro 1 es la fuerza necesaria para producir una elongación unitaria en el miembro 1. Para un miembro prismático de longitud L área A y módulo de elasticidad E, k₁₁=EA/L. El miembro
2 se traslada lateralmente en uno de sus extremos una distancia unitaria, con las rotaciones de los extremos impedidas.
Se comprueba fácilmente (por el método de las áreas de los mo
mentos, del trabajo virtual o cualquier otro método para el cálculo de desplazamientos) que para el miembro 2,k₁₁=12EI/L³,

donde E, I y L se refieren al módulo de elasticidad, momento - de inercia con relación al eje de flexión y longitud del miembro 2. Aquí se supone que la flexión es con relación a uno - de los ejes principales. El miembro 3 sufre una forma más - complicada de desplazamiento. Se evita la rotación pero la - traslación en la dirección x de la estructura da por resultado tanto un acortamiento como una traslación lateral en el miem-- bro inclinado. Es necesario prestar atención cuidadosa a la forma geométrica y a los componentes de las fuerzas y despla-- zamientos para calcular k₁₁ directamente para el miembro 3. En vez de efectuar el cálculo aquí, más adelante se estudiará una manera efectiva de manejar los miembros inclinados.

En resumen cada término de la matriz de rigideces se puede calcular directamente examinando los extremos del miembro en - cada nudo y sumando las rigideces con que contribuye cada miembro.

En el cálculo de las rigideces nodales, las rigideces del miembro se deben calcular primero en función de las direccio-nes de las coordenadas establecidas para la estructura. La rigidez nodal K_{ij} se encuentra entonces como la suma de las rigideces correspondientes del miembro k_{ij}. Surgen dificulta-des cuando la orientación del miembro difiere de las direcciones de las coordenadas de la estructura. Se atacará el pro-blema determinando primero las rigideces del miembro en un aiz
tema local de coordenadas conveniente para el miembro, y des-pués se transformarán las mismas al sistema global de la es--tructura.

Hasta ahora conocemos lo esencial para comprender el fun---

cionamiento del método, pero en virtud de que existen diversas formas de aplicarlo nos limitaremos aquí a explicar aquélla -- que se empleó dentro del programa para la computadora con el - objeto de obtener un mejor entendimiento de la misma.

Para principiar consideremos las siguientes suposiciones.

-Despreciaremos la deformación axial de las barras, es decir supondremos que no existe.

-Nos interesará unicamente conocer los momentos internos finales en los extremos de las barras, en virtud que las fuerzas
axiales y cortantes en dichas barras pueden calcularse fácil-mente una vez conocidos estos.

-Trabajaremos sólo apoyos completos en los que 4, dx, dy son O. Consideremos el siguiente diagrama de una barra en que la - dirección de la misma se défine por un nudo origen (A) y un nu do destino (B).

 ϕ_A y ϕ_B son los desplazamientos angulares o giros de los nu dos A y B respectivamente de acuerdo con la siguiente conven--

ción de signos:

L es la longitud original de la barra.

 Δ es el desplazamiento lineal relativo, perpendicular al - eje original de la barra entre el nudo A y el nudo B siguiendo la siguiente convención de signos:

 $heta_{A}$ y $heta_{B}$ son las deformaciones angulares en los extremos A y B de la barra obedeciendo a la convención de signos siguien-

De la figura observamos que:

$$\Theta_{\Lambda} = - (\psi_{\Lambda} + \Delta/\mathbf{L})$$

$$\Theta_{\rm B} = + (\Psi_{\rm B} + \Delta/I)$$

$$\cos \alpha = (X_B - X_A)/L$$
 Send = $(Y_B - Y_A)/L$

$$Sen < = (Y_B - Y_A)/L$$

$$DA = \frac{X_B - X_A}{L} dya - \frac{Y_B - Y_A}{L} dxa$$

$$DB = \frac{Y_B - Y_A}{L} dxb - \frac{X_B - X_A}{L} dyb$$

De aquí
$$\Delta = \frac{Y_B - Y_A}{L}$$
 (dxb-dxa) - $\frac{X_B - X_A}{L}$ (dyb-dya)

Por tanto:

$$\Theta_{A} = -\psi_{A} + \frac{Y_{B} - Y_{A}}{L^{2}} dxa - \frac{Y_{B} - Y_{A}}{L^{2}} dxb - \frac{X_{B} - X_{A}}{L^{2}} dya + \frac{X_{B} - X_{A}}{L^{2}} dyb$$
 Ec.1

$$\Theta_{B} = \Psi_{B} - \frac{Y_{B} - Y_{A}}{L^{2}} dxa + \frac{Y_{B} - Y_{A}}{L^{2}} dxb + \frac{X_{B} - X_{A}}{L^{2}} dya - \frac{X_{B} - X_{A}}{L^{2}} dyb$$
 Ec. 2

donde:

 $\psi_{\mathbf{A}}$ = desplazamiento angular del nudo origen de la barra

 ψ_{R} = desplazamiento angular del nudo destino de la barra

dxa = desplazamiento lineal en la dirección x del nudo origen de la barra.

dya = desplazamiento lineal en la dirección y del nudo origen de la barra.

dxb = desplazamiento lineal en la dirección x del nudo destino de la barra.

dyb = desplazamiento lineal en la dirección y del nudo destino de la barra.

X_A = abscisa del nudo origen de la barra

Y = ordenada del nudo origen de la barra

X_B = abscisa del nudo destino de la barra

Y_R = ordenada del nudo destino de la barra

L = longitud de la barra

 θ_{A} = deformación angular del extremo A de la barra

 $\theta_{\rm R}$ = deformación angular del extremo B de la barra.

Consideremos la siguiente estructura constituida por dos nu dos y tres barras dirigidas en la forma mostrada.

Observese que en esta estructura existen tres grados de libertad, dos desplazamientos angulares o giros y un desplaza--miento lineal. À pesar de que la estructura sólo tiene dos nu
dos hemos denominado como nudos 3 y 4 a los apoyos ésto únicamente para poder identificarlos.

Sabemos que los apoyos no permiten ningun desplazamiento - por ser empotramientos, por tanto son apoyos completos.

Para la barra l'el nudo origen es el nudo 3 "apoyo" por tanto Ψ_A =dxa=dya=0, $X_A=X_3$ y $Y_A=Y_3$, el nudo destino es el nudo 1, por tanto $\Psi_B=\Psi_1$, dxb=d₁ ya que este desplazamiento coincide con el grado de libertad lineal 1, dyb=0 ya que la barra 1 no sufre deformaciones axiales, $X_B=X_1$ y $Y_B=Y_1$.

Para la barra 2 el nudo origen es el nudo 1 por tanto $\Psi_A = \Psi_1$, dxa=d₁, dya=0, $X_A = X_1$ y $Y_A = Y_1$, el nudo destino es el nudo 2, por tanto $\Psi_B = \Psi_2$, dxb=d₁, dyb=0 ya que la barra 3 no sufre deformaciones axiales, $X_B = X_2$ y $Y_B = Y_2$. Nótese que dxa=dxb para esta barra, ésto porque la misma no sufre deformaciones — axiales.

Para la barra 3 el nudo origen es el nudo 2, por tanto \mathcal{G}_{A} : \mathcal{G}_{2} , dxa=d₁, dya=O siendo este el mismo desplazamiento que tiene el apoyo denominado nudo 4 en la dirección y, $X_{A}=X_{2}$ y $Y_{A}=Y_{2}$ el nudo destino es el nudo 4 "apoyo", por tanto $\mathcal{G}_{B}=dxb=dyb=O$, $X_{B}=X_{4}$ y $Y_{B}=Y_{4}$.

Si sustituimos estos valores en las ecuaciones 1 y 2 obtendremos:

$$\Theta_{A1} = -\frac{Y_1 - Y_2}{I_2^2} d_1$$

$$\Theta_{B1} = -\psi_1 + \frac{Y_1 - Y_3}{I_2^2} d_1$$

$$\Theta_{A2} = -\psi_1 + \frac{Y_2 - Y_1}{I_2^2} d_1 - \frac{Y_2 - Y_1}{I_2^2} d_1 = -\psi_1$$

$$\Theta_{B2} = -\psi_2 - \frac{Y_2 - Y_1}{I_2^2} d_1 + \frac{Y_2 - Y_1}{I_2^2} d_1 = -\psi_2$$

$$\theta_{A3} = - 2 + \frac{Y_4 - Y_2}{L_3^2} d_1$$

$$\theta_{B3} = -\frac{Y_4 - Y_2}{L_3^2} d_1$$

Esto en forma matricial queda:

$\theta_{\mathtt{Al}}$		0	- \frac{Y_1 - Y_3}{V_1^2}	
⊖ _{Bl}	l l	O	Y ₁ -Y ₃ L ²	- Ψ ₁
Θ 1 2.	-1	O 1953	0	
Θ _{B2}		1	Ō	ψ_2
Θ _{A3}	, O	-1	Y ₄ -Y ₂ L ₃ ²	
⊖ B3	0	0	<u>Y4-Y2</u> <u>I</u> 2	

Y en forma matricial abreviada es:

$$\{e\} = [A]\{d\}$$
 Ec. 3

Donde: {e} = Vector de deformaciones angulares.

[A] = Matriz de Continuidad

{d} = Vector de desplazamientos.

Siendo el orden de estas matrices.

$$\begin{cases}
e \\
A
\end{cases}$$
2NB x 1
$$\begin{cases}
d \\
d
\end{cases}$$
GL x 1

NB = número de barras con que cuenta la estructura.

GL = número de grados de libertad que tiene la estructura. GL = número de nudos + número de grados de libertad lineal

La matriz de continuidad es una matriz de transformación que nos permite como veremos posteriormente obtener a partir de la matriz de rigideces de las barras, referida a las coordenadas locales de cada miembro, la matriz de rigideces de la estructura referida a las coordenadas globales de la misma.

La forma de esta matriz varía dependiendo de cuales son los nudos origen y destino de cada barra, así como de la correspondencia de los desplazamientos de los mismos con los grados de libertad de la estructura.

No debemos olvidar que el procedimiento para obtener la matriz de continuidad se basa totalmente en las ecuaciones 1 y 2

Cada barra tiene dos renglones en la matriz de continuidad, los cuales se forman con los coeficientes de Y_A , Y_B , dxa, dya, dxb, y dyb, que en la matriz aparecerán como coeficientes de los desplazamientos en los grados de libertad correspondientes.

Así entonces proporcionando como datos al programa el número de nudos y las coordenadas de los mismos en el sistema global, el número de grados de libertad lineal y la correspondencia de éstos con los desplazamientos en las direcciones X y Y de cada nudo, utilizando el grado de libertad lineal O (cero) para indicar un desplazamiento que no existe, el número de apoyos y sus coordenadas respectivas en el sistema global, a éstos se les numerará como nudos consecutivos aún cuando no lo son, esto con el unico propósito de poder referirnos a los mismos — sin confusión, el número de barras así como el nudo en que se

origina y el nudo en que termina cada una de ellas haciendo uso de la numeración asignada a nudos y apoyos, cabe mencionar que el número de nudos que se introduce como dato al programa es el número de los mismos sin incluir los apoyos. Una vez que el programa cuenta con estos datos es capaz de calcular las longitudes de las barras mediante:

$$L = \sqrt{(Y_B - Y_A)^2 + (X_B - X_A)^2}$$

para posteriormente integrar en base a las ecuaciones 1 y 2 la matriz de Continuidad.

Considerese la barra siguiente que es la parte fundamental de una estructura.

Si aplicamos una deformación - angular unitaria en el extremo A de la barra manteniendo suje to el extremo B, se generan - los momentos kaA y kBA en los nudos A y B respectivamente.

Si aplicamos ahora una deforma ción angular unitaria en el extremo B de la barra manteniendo sujeto el extremo A, se peneran entonces los momentos - kBB y kAB en los nudos B y A - respectivamente.

Sabemos que el momento generado por la deformación angular del extremo de una barra y la misma deformación son proporcionales, también sabemos que al deformar angularmente el extremo de una barra cuando se mantiene fijo el otro extremo, se generan momentos en ambos extremos de la barra, entonces, si hacien do uso del teorema de superposición, sobreponemos los efectos causados por la deformación angular θ_A en el extremo A de la barra con los efectos causados por la deformación angular θ_B en el extremo B de la barra, resulta que:

$$M_{A} = k_{AA} \Theta_{A} - k_{AB} \Theta_{B}$$

$$M_{B} = -k_{BA} \Theta_{A} + k_{BB} \Theta_{B}$$

Donde:

 \mbox{M}_{A} , \mbox{M}_{B} son los momentos totales en los extremos A , y B de la barra respectivamente.

 $k_{
m AA}$ y $k_{
m BB}$ son las rigideces angulares de los extremos A y B de la barra respectivamente.

 $k_{AB} = C_B k_{BB} = k_{BA} = C_A k_{AA}$ siendo $C_B y C_A$ unos coeficientes de transporte.

En forma general para una estructura con n barras.

$$M_{A1} = k_{AA1} \Theta_{A1} - k_{AB1} \Theta_{B1}$$

$$M_{B1} = -k_{BA1} \Theta_{A1} + k_{BB1} \Theta_{B1}$$

$$M_{A2} = k_{AA2} \Theta_{A2} - k_{AB2} \Theta_{B2}$$

$$M_{B2} = -k_{BA2} \Theta_{A2} + k_{BB2} \Theta_{B2}$$

$$M_{An} = k_{AAn} \Theta_{An} - k_{ABn} \Theta_{Bn}$$

$$M_{Bn} = -k_{BAn} \Theta_{An} + k_{BBn} \Theta_{Bn}$$

En forma matricial:

MAI		- kaal	-k _{AB1}	0		0.	(*)	$ heta_{ ext{Al}}$
M _{B1}		-k _{BAl}	k _{BB1}	0	0	0	0	€81
MA2		0	O	k _{AA2}	-k _{AB2}	0	0	6 12
M _{B2}	=	0	0	-k _{BA2}	k _{BB2}	0 =	0	⊝ 32
		•	•					
MAn		Ō	ò	ċ	ò	k AAn	-k _{ABn}	Θ_{Ar}
MBn		0	0	0	0	-k _{BAn}	k _{BBn}	e Br

Y en forma matricial condensada

$${P} = [k] {e}$$
 Ec. 4

Donde:

{P} es el vector de momentos internos
[k] es la matriz de rigideces de las barras

Siendo el orden de estas matrices

$$\{b\}$$
 SNB x SNB

Cabe mencionar que las rigideces k_{AA} , k_{AB} , k_{BA} , y k_{BB} son siempre positivas, para la forma de proceder empleada en el programa.

Sustituyendo la ecuación 3 en la ecuación 4 se obtiene.

$${P} = [k][A]{b}$$
 Ec. 5

Observese que los momentos internos en los extremos de las barras (M_A y M_B) siguen la misma convención de signos que se emplea para las deformaciones angulares (Θ_A y Θ_B).

De la estructura mostrada anteriormente.

Si denominamos \mathcal{H}_1 y \mathcal{H}_2 a los momentos externos aplicados en los nudos 1 y 2 respectivamente y \mathbf{F}_1 a la fuerza externa aplicada en la dirección del grado de libertad 1. Recordando los momentos internos que actúan en cada barra y obteniendo algunos cortantes; \mathbf{M}_{A2}

Por equilibrio de la estructura llegamos a:

$$\mathcal{H}_{1} = M_{B1} - M_{A2}$$

$$\mathcal{H}_{2} = M_{B2} - M_{A3}$$

$$F_{1} = (-M_{A1} + M_{B1})/I_{1} + (-M_{A3} + M_{B3})/I_{3}$$

Que en forma matricial es:

$$\begin{bmatrix} M_1 \\ M_2 \\ F_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ -\frac{Y_1 - Y_3}{1^2} & \frac{Y_1 - Y_3}{1^2} & 0 & 0 & \frac{Y_4 - Y_2}{1^2} & \frac{Y_4 - Y_2}{1^2} \\ -\frac{Y_1 - Y_3}{1^2} & \frac{Y_1 - Y_3}{1^2} & 0 & 0 & \frac{Y_4 - Y_2}{1^2} & \frac{Y_4 - Y_2}{1^2} \\ M_{A3} \\ M_{B3} \end{bmatrix}$$

Y en forma matricial condensada

$${F} = [B] \{P\}$$

Donde:

{ F} es el Vector de Fuerzas externas
[B] es la transpuesta de la matriz A para cualquier
estructura.

Por tanto

$$\left\{ \mathbf{F} \right\} = \left[\mathbf{A}^{\mathrm{T}} \right] \left\{ \mathbf{P} \right\}$$

Ec. 6

Notese que los momentos externos den los nudos siguen la -convención de signos utilizada para los desplazamientos angula res desplazamientos externas F siguen la convención de signos empleada para los desplazamientos lineales d.

Si sustituimos la ecuación 5 en la ecuación 6 se obtiene:

$$\left\{F\right\} = \left[A^{T}\right]\left[k\right]\left[A\right]\left\{d\right\} \qquad \text{Ec. 7}$$

Si formamos la matriz de rigideces de las barras para la -- estructura que hemos manejado tendremos;

Si efectuamos con las matrices obtenidas el producto ${ t A}^{f T}$ k ${ t A}$ obtendremos la siguiente matriz.

Para realizar el-producto se sustituyó en la matriz de continuidad Y₁-Y₃ por L₁ y Y₄-Y₂ por -L₃ antes de obtener su transpuesta, la validez de esta sustitución radica en que las barras 1 y 3 son verticales y la diferencia de ordenadas de los nudos origen y destino, en valor absoluto es la longitud de las mismas.

Nótese que esta matriz es simétrica al igual que la matriz de rigideces de las barras ya que para cada barra $k_{AB}=k_{BA}$ según el teorema de Maxwell.

Sabemos que la matriz de rigideces se integra con la suma de las rigideces con que contribuye cada miembro para cada grado de libertad de la estructura.

Para encontrar las rigideces con cuyas sumas integraremos - la matriz de rigideces de la estructura aplicaremos desplaza-- mientos unitarios, angulares o lineales en cada grado de liber tad, angular o lineal respectivamente.

Para la estructura con que hemos trabajado:

De las figuras anteriores podemos establecer:

$$\mathcal{H}_{1} = (k_{BB1} + k_{AA2}) \mathcal{Y}_{1} + k_{AB} \mathcal{Y}_{2} + \frac{k_{BB1} + k_{BA1}}{L_{1}} d_{1}$$

$$\mathcal{H}_{2} = k_{BA2} \mathcal{Y}_{1} + (k_{BB2} + k_{AA3}) \mathcal{Y}_{2} + \frac{k_{AA3} + k_{AB3}}{L_{3}} d_{1}$$

$$F_{1} = \frac{k_{BB1} + k_{AB1}}{L_{1}} \mathcal{Y}_{1} + \frac{k_{AA3} + k_{BA3}}{L_{3}} \mathcal{Y}_{2} + \frac{k_{AA1} + k_{BA1} + k_{AB1} + k_{BB1}}{L_{1}^{2}} + \frac{k_{AA3} + k_{BA3} + k_{AB3} + k_{A$$

Si les coeficientes de estas ecuaciones los colocamos en forma de matriz, obtendremos la misma matriz que obtuvimos efectuando el producto $\begin{bmatrix} A^T \end{bmatrix} \begin{bmatrix} k \end{bmatrix} \begin{bmatrix} A \end{bmatrix}$ la cual es la matriz de rigideces de la estructura, lo anterior se cumple para cualquier estructura.

De aquí:

$$[K] = [A^T][k][A]$$
 Ec. 8

Si sustituimos la ecuación 8 en la ecuación 7 se obtiene:

$${F} = [K]{d}$$
 Ec. 9

Volviendo al funcionamiento del programa, una vez que el -mismo ha construido la matriz de continuidad, efectúa la trang
posición de esta. Si proporcionamos ahora los coeficientes -de rigidez R_{AA}, R_{AB}, R_{BA}, R_{BB}, el módulo de elasticidad del ma
terial de las barras E (constante para todas las barras) y el
momento de inercia I, de cada barra, el programa calculará las
rigideces k_{AA}, k_{AB}, k_{BA}, k_{BB} para cada barra mediante las si-guientes ecuaciones:

k_{AA}=R_{AA} EI/L k_{AB}=R_{AB} EI/L k_{BA}=R_{BA} EI/L k_{BB}=R_{BB} EI/L para integrar posteriormente la matriz de rigideces de las barras, la cual premultiplicada por la transpuesta de la matriz de continuidad y postmultiplicada por la matriz de continuidad da por resultado la matriz de rigideces de la estructura.

$$\left[\begin{array}{c} \mathbf{K} \end{array} \right] = \left[\mathbf{A}^{\mathbf{T}} \right] \left[\mathbf{k} \right] \left[\mathbf{A} \right]$$

Si ahora proporcionamos al programa las fuerzas externas que actuan sobre cada grado de libertad, éste formará el vector de fuerzas externas con lo cual se tiene el sistema de ecuaciones

$${F} = [K] {d}$$

Donde el vector de desplazamientos constituye el vector de incógnitas. Si resolvemos este sistema obtenemos los valores de los desplazamientos o mejor dicho el vector solución.

Existen diversas formas de resolver el sistema de ecuaciones, pero el programa emplea el método directo de Gauss Jordan que consiste en efectuar transformaciones elementales a la matriz ampliada formada por la matriz de rigideces de la estructura y el vector columna de fuerzas externas, hasta transformar la matriz de rigideces en una matriz identidad, a la vez de que el vector de fuerzas externas se transforma en el vector solución.

Por este método el sistema:

$${F} = [K]{a}$$

se transforma en:

$$\{v\} = [I]\{a\}$$

Donde: $\{V\}$ es el vector solución

[I]es la matriz identidad o matriz unitaria

Y por las propiedades de la matriz unitaria; se llega a;

El vector de desplazamientos obtenido es premultiplicado -por la matriz de continuidad en el programa con el propósito -de obtener el vector de deformaciones angulares.

$${e} = [A]{d}$$

Posteriormente en el programa se premultiplica el vector de deformaciones angulares por la matriz de rigideces de las ba-rras con lo cual se obtiene el vector de fuerzas internas o vector de momentos internos.

$$\{P\} = [k] \{e\}$$

Para verificar los resultados obtenidos, el programa verificará el equilibrio de la estructura, es decir premultiplicando el vector de momentos internos por la matriz de continuidad - transpuesta, se obtendrá un vector de fuerzas externas tal que equilibre las fuerzas internas en la estructura obtenidas, si el vector de fuerzas externas obtenido es igual al vector de - fuerzas externas que se introdujo como dato al principio del - programa, se comprueba la veracidad de los resultados.

$$\left\{ \mathbf{F} \right\} = \left[\mathbf{A}^{\mathbf{T}} \right] \left\{ \mathbf{P} \right\}$$

Así entonces hemos descrito brevemente el funcionamiento - del programa, si se desea observar detalladamente este proceso podemos remitirnos al diagrama de flujo del programa o incluso hasta el mismo listado, donde la forma de ejecución del programa aparece paso a paso.

Diagrama de flujo.

En este diagrama de flujo se omiten las instrucciones co--rrespondientes a la impresión de mensajes y aquellas que deter
minan la forma en que se imprimen los resultados.

Las variables principales, es decir aquellas cuyo valor es necesario proporcionar al programa como dato son:

IM Variable que contola la impresión de las matrices de:

Continuidad

Continuidad Transpuesta

Rigideces de las barras

Rigideces de la estructura

Solución al sistema de ecuaciones

Cuando esta variable vale O se imprimen todas ellas además de los datos de entrada y los vectores de:

Desplazamientos

Deformaciones angulares

Fuerzas internas

Fuerzas externas finales

Si esta variable adopta un valor distinto de 0 se omite únicamente la impresión de las matrices mencionadas.

- NN Número de nudos de la estructura sin incluir apoyos.
- GL Número de grados de libertad lineal que tiene la estructura.
- NA Número de apoyos de la estructura.
- NB Número de barras con que cuenta la estructura.
- E Módulo de elasticidad del material empleado.
- $\underline{F(I)}$ Fuerza o Momento externo que actua en el nudo I

- <u>DX(I)</u> Grado de libertad lineal que corresponde con el desplaza miento en X del nudo I, en caso de que este desplazamien to este restringido, es decir que no exista ningun grado de libertad lineal correspondiendo con él, deberá darse O como valor de esta variable.
- <u>DY(I)</u> Grado de libertad lineal que corresponde con el desplaza miento en Y del nudo I, en caso de que este desplazamien to este restringido, es decir que no exista ningun grado de libertad lineal correspondiendo con él, deberá darse -O como valor de esta variable.
- X(I) Coordenada X del nudo I.
- Y(I) Coordenada Y del nudo I.
- C Nudo origen de la barra en cuestión.
- D Nude destino de la barra en cuestión.
- $\underline{\text{KA}(I)}$ Coeficiente de rigidez $R_{\Lambda\Lambda}$ de la barra I.
- KB(I) Coeficiente de rigidez R RB de la barra I.
- KC(I) Coeficiente de rigidez RAB o RBA de la barra I.
- $\overline{I(I)}$ Momento de inercia de la barra I.
- PB Variable que indica cual de las barras cuyos datos hayan sido proporcionados al programa, tiene las mismas propied dades que la barra en cuestión, si no existe ninguna se dará el valor O a esta variable.

Esta variable permite cuando su valor es distinto de O _ que el programa haga KA(I)=KA(PB),KB(I)=KB(PB),KC(I)=KC(PB),I(I)=I(PB), con lo cual se evita proporcionar el mismo juego de datos varias veces, si el valor de esta - variable es O, el programa pregunta los valores de K.(!) KB(I),KC(I), e I(I).

- A(I,N) Elemento del renglon I, columna N de la matriz de Continuidad.
- $\underline{B(I,N)}$ Elemento del renglon I, columna N de la matriz de Continuidad Transpuesta.
- <u>KM(I,N)</u> Elemento del renglon I, columna N de la matriz de Ri-gideces de las Barras.
- K(I,N) Elemento del renglon I, columna N de la matriz de Ri-gideces de la Estructura.

Debe notarse que el elemento del renglon I del vector de Fuerzas Externas inicial F(I), después de resolver el sistema de ecuaciones se convierte en el elemento del renglon I del vector de Desplazamientos teniendo en este la misma denominación F(I), al igual que el elemento K(I,N) de la matriz de Rigideces de la estructura se transforma en el elemento correspon--- diente de la matriz Identidad conservando la denominación ---- K(I,N), así entonces después de resolver el sistema de ecuaciones.

- $\underline{F(I)}$ Elemento del renglon I del vector de Desplazamientos.
- K(I,N) Elemento del renglon I, columna N de la matriz Identidad o unitaria.
- KR(I,1) Elemento del renglon I del vector de Deformaciones Angulares.
- KR(I,2) Elemento del renglon I del vector de Fuerzas Internas.

									 								7	" .		1000										
~~ /	-	- 1	 					~	 					-	-								•	 _				 		at 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			 	^ =	• • •	~ *	~	~ ~	 -	~ ~	~	_	•	- 1	_	_			-		-	•	-1 -	 	-	 -	 T-1	 	 	

Todas las demás variables empleadas son variables transitorias o de conteo, es decir variables secundarias.

Listado.

```
10 CLEAR 1000
10 INPUT "IMPRIMIR OPERACIONES (SI=0,NO<>0)"; IM
30 INPUT "IMPRED DE NUDOS SIN INCLUIR APOYOS"; NN
40 INPUT "NUMERO DE GRADOS DE LIBERTAD LINEAL"; GL
50 INPUT "NUMERO DE APOYOS"; NA
60 INPUT "NUMERO DE BARRAS"; NB
70 INPUT "MODULO DE ELASTICIDAD DEL MATERIAL DE LAS BARRAS"; E
 AM+NN=N 03
110 DIM X(N), Y(N), DX( N), DY( N), F(J), KA(NB), KB(NB), KC(NB)
120 DIM A(KP, J), B(J, KP), KM(KP, KP), L(NB), C(J, KP), K(J, J), I(NB)
130 DIM KR(KP, 2)
140 LEPTO TIME
 140 LPRINT TAB(40) "GRADO DE LIBERTAD LINEAL QUE"
150 LPRINT TAB(40) "CORRESPONDE CON EL DESPLAZAMIENTO"
160 LPRINT TAP(40) "DEL NUDO EN LA DIRECCION"
170 LPRINT "NUDO"; TAB(17) "COORDENADAS"; TAB(42) " X
  180 FOR I=1 TO N
190 PRINT "NUDO":I
  1'00 IF INN THEN 250
  210 INPUT "MOMENTO EXTERNO" (F(I)
  220 INPUT "EL DESPLAZAMIENTO EN X CORRESPONDE AL GRADO DE LIBERTAD LINEAL": DX(1) 230 INPUT "EL DESPLAZAMIENTO EN Y CORRESPONDE AL GRADO DE LIBERTAD LINEAL": DY(1)
  240 BOTO 280
   250 PRINT "APTYO"
  260 BX(I)=0
  270 DY(I)=0
270 DY(I)=0
280 INPUT "COCEDENADA X=";X(I)
290 INPUT "COCEDENADA Y=";Y(I)
300 LERINT USING " ### X= +###.###
310 IF INN THEN 340
320 LERINT USING " (###)
   330 GOTO 350
   340 I PRINT "
                              APOYO"
   350 NEXT I
   350 FOR I=1 TC GL
   370 MM=I+NN
   280 PRINT "FLERZA EN DIRECCION DEL GRADO DE LIBERTAD LINEAL (":1:")"
   390 INPUT F (HM)
   400 NEXT I
   410 H=4+NN+DL
   420 IF H460 THEN 450
   430 LPRINT CH9 (11)
   440 H=3
   450 LPRINT
450 LPRINT "PARRA
470 LPRINT "
                                       NUDO NUDO MOMENTO"
ORIGEN DESTINO INERCIA".
   480 FOR IST TO KP
490 FOR NOT TO J
   1:00 A(I.N)=0
```

```
$10 NEXT N

$20 NEXT I

$20 NEXT I

$30 FOR I=1 TO FF

$40 FOR N=1 TO KF

$50 KM(I,N)=0

$60 NEXT N

$70 NEXT N

$80 FOR I=1 TO NE

$90 PRINT "BARRA";

$60 INPUT "NUDO ORIGEN";

$610 INPUT "NUDO DESTINO";

$610 INPUT "NUDO DESTINO";
 600 INPUT "NUDO ORIGEN":0
610 INPUT "NUOD DESTINO";D
620 IF 1 = 1 THEN 900
630 IF 1 > 2 THEN 900
640 PRINT "SI LAS PROFIETADES GEOMETRICAS"
650 PRINT "LOSE ICIENTES DE RICIDEZ (RAA,RAB,RBA,RBB) Y MOMENTO DE INERCIA (1)]"
650 PRINT "DE ALGUNA DARFA TON IGUALES A LAS DE OTRA BARRA CUYOS DATOS"
670 PRINT "HAVAN SIDO PROPORCIONIADOS, UNICAMENTE ESPECIFIQUE EL NUMERO"
680 PRINT "DE ESTA, EN CASO CONTRARIO PULSE O"
690 PRINT "PROPIEDADES BAPRA";1;"*PROPIEDADES BARRA"
700 INPUL PR
 700 INPUT PB
 710 IF PB=0 THEN 800
720 IF PB>=1 THEN 780
 730 KA(1)=KA(PB)
 740 KB(I)=KB(PB)
 750 KC(1)=KC(PB)
 750 KU(1)=1(PB)
 770 GOTO 850
 780 PRINT "LOS DATOS DE ESA BARRA NO HAN SIDO DADOS"
  790 BOTO 690 -
 790 BOTO 690

800 INPUT "CDEFICIENTE DE RIGIDEZ RAA";KA(I)

810 INPUT "COEFICIENTE DE RIGIDEZ RBE";KB(I)

820 INPUT "COEFICIENTE DE RIGIDEZ RAB,RBA";KC(I)
 830 KC(1)=-KC(1)

840 INPUT "MOMENTO DE INERCIA (1)";1(1)

850 LPRINT USING " ### ### ###

860 L(1)::SQR((Y(D)-Y(O))*2+(X(D)-X(O))*2)
                                                                                     ###.###,###.####";I;O;D;1(1)
  870 C1=(Y(D)-Y(Q))/L(1)*2
  980 C2=(X(D)-X(D))/L(1)*2
  890 J=1*2
  900 KP=J-1
910 IF O>NN THEN 930
  97/0 ACKP.D)#-1
  930 IF DONN THEN 950
  940 A(J, D)=+1
950 IF DX(O)=0 THEN 990
  960 XO=DX(0)+NN
  970 A(KP, XO)#A(KP, XO) +C1
  980 A(J, X0)*A(J, X0)-C1
990 IF DY(O)=0 THEN 1030
  790 IF DY(D)=0 THEN 1030
1000 Y0=DY(D)+NN
1010 A(KP, Y0)=A(I/P Y0)-C2
1020 A(J, Y0)=A(J, Y0)+C2
1030 IF DX(D)=0 THEN 1070
  1040 XD=DX (D+NN
  1050 ACKP, XD1: ACCP, XD1-C1
   1060 A(J, XD)=A(J, XD)+C1
   1070 IF DY(D)=0 THEN 1110
```

1080 YD=DY(D)+NN 1090 A(HP,YD)=A(HF,YD)+C2 1100 A(U,YD)=A(U,YD)+C2

```
1110 EI=EMI(I)
1120 KM(KP,KP)=KA(I)#EI/L(I)
1130 KM(J,J)=KB(I)#EI/L(I)
1140 KM(KP,J)=KC(I)#EI/L(I)
1140 KM(KP,J)=KC(I)#EI/L(I)
                  1150 KM(J.KP)=KC(I +EI/L(I/)
                  1160 NEXT 1
                  1170 H=H+3+NE
                  1180 1F H460 THEN 1210
                  1190 LPRINT CHR$(11)
                  1200 H=3+NB
                  1210 LPRINT
                  1260 KC= +LC(I)
                                                                              +#, ###. ### +#, ###, ###";KC;FE(I)
                  1270 LPRINT USING *
                  1280 NEXT I
                  1290 H=H+8+NN+GL
                  1300 IF H<60 THEN 1330
1310 LPRINT CHR$(11)
                                                                                                 1320 H=8+NN+OL
                  1330 LPRINT
                  1340 LPRINT USING "MODULO DE ELASTICIDAD DEL MATERIAL (E) = ###, ###, ###, ###.
                 | 1340 LPRINT USING *MODULO DE ELASTICIDAD DEL MATERIAL (E) = WARE, WARE
                 1410 LPRINT
1420 LPRINT " GRADO"
1430 LPRINT " DE
1440 LPRINT "LIBERTAD
1450 LPRINT "LINEAL"
1460 FOR I=1 10 GL
                  1410 LPRINT
                                                                                               FUERZA"
EXTERNA"
                  1470 U=1+NN
1480 LPRINT USING * ###
                                                                                                       MWW, WWW. WWW ! I ; F (J)
                  1490 NEXT I
                  1500 KP=NN+GL
                  1510 J#2*NB
1520 IF IM#0 THEN 1540
                  1530 GOTO 1710
                  1540 LPRINT CHR#(11)
1550 LPRINT "MATRIZ DE CONTINUIDAD"
                  1560 LPRINT
                  1570 FOR 1=1 TO KP STEP 2
                  1630 BOTO 1650
1640 LPRINT CHR#(10)
                  1650 NEXT N
                   1660 LPRINT
                  1670 LPRINT
                  1580 NEXT I
                  1590 LPRINT CHR$(11)
                  1700 LPRINT "MATRIZ DE CONTINUIDAD TRANSPUESTA"
```

```
1710 FOR I=1 TO U
1720 FOR N=1 TO KP
1730 F'N, I) = A(I, N)
1740 NEXT N
1750 MEXT N
1750 NEXT 1
1750 1= 1M=0 THEN 1780
1770 GTU 2060
1780 1981NT
1790 FOR 1=1 TO J STEP 2
1900 1P=1+1
1810 FOR N=1 TO KP
1810 FOR N=1 TO KP
1820 LPRINT USING "AT(HHH , HHH) = +HHH, ###, ######"; N; I; B(N, I);
1830 IF I=J THEN 1860
1940 LPRINT USING " AT(### , #HH) = +###, #### #####"; N; LP; B(N, LP)
                                   AT (### , ###) = (###, ###. #####"; N; LP; B(N, LP)
1950 6010 1970
1860 LERINT CHR$ (10)
1870 NEXT N
1880 LPRINT
1890 LPRINT
1900 NEXT 1
1910 LPRINT CHR#(11)
1920 IPRINT, "MATRIZ DE RIGIDECES DE LAS BARRAS"...
1930 LPRINT
1940 FOR 1=1 TO J STEP 2
1950 LP=1+1
1960 FOR N=1 TO J
1970 LFRINT USING "k(物物的 , 物物) = +物物的 , 物物的物格 "FN; I; KM(N, I) F
1980 IF I=J THEN 2010
1990 LPRINT USING " k(物物的 , 物物的 = +物物的物格 "FN; I; KM(N, I) P) ...
                                    k(### , ###) = +###, ###, #####";N;LP;KM(N,LP).
2000 0010 2020
POID LPRINT CHR$(10)
2020 NEXT N
2030 LPRINT
2040 LPRINT
2050 NEXT I
2060 FOR I=1 TO KP
2070 FOR N=1 TO J
2080 C(1,N)=0
2090 FOR LP#1 TO J
2100 C(1,N)=C(1,N)+B(1,LP)*FM(LP,N)
2110 NEXT LP
2120 NEXT N
2130 NEXT 1
2140 FOR 1=1 TO KP
2150 FOR N=1 TO KP
2160 K(I,N)=0
2170 FDR LP=1 TO J
2180 K(1,N)=K(1,N)+C(1,LP)*A(LP,N)
2190 NEXT LP
2200 NEXT N
2010 NEXT 1
```

2240 LPRINT CHR0(11) 7050 LPRINT "MATRIZ DE RIGIDECES DE LA ESTRUCTURA"

2220 IF IMHO THEN 2240 2230 GOTO 2390

PO70 FOR I=1 TO KP STEP 2

2260 LPRINT

2230 LF-=1+1

```
LPRINT
2370 LPRINT
2370 LPRINT
1380 NEXT I
2390 LPRINT CHR$(11)
7400 FOR I=1 TO KP
2410 IF K(I,I)=0 THEN 2440
2420 NEXT I
2430 GOTO 2630
1440 FOR LP=1 TO KP
    2450 IF EULE, 120 THEN 2560
     2470 FOR N=1 TO KP
     2480 CO-HILLP, N)
     2490 K(LP,N)=K(1,N)
     2500 K(I,N)≤C0
     2510 NEXT N
     25/20 CO=F(LP)
     2530 F(LP)=F(I)
     2540 F(I)=CO
     2550 0010 2420
     2560 NEXT LP
     2570 IFICHNN THEN 2610
     2580 LP=I-NN
     2590 LP=I-NN
2590 LPRINT "EL DESPLAZAMIENTO EN EL GLL(";LP;") ES INDEFINIDO"
2600 GOTO 3690
2610 LPRINT "EL GIRO EN EL NUDO (";I;") ES INDEFINIDO"
2620 GOTO 3690
     2630 FOR I=1 TO KP
     2640 IF K(1,1)=0 THEN 2660
     2650 GOTO 2710
     2660 IF F(1)=0 THEN 2690
     2670 LPRINT "EL SISTEMA DE ECUACIONES ES INCOMPATIBLE"
     2680 0010 3690
     2690 LPRINT "FL SISTEMA DE ECUACIONES ES COMPATIBLE INDETERMINADO"
     2700 6010 3690
      2710 F(I)=F(I)/K(I,I)
      2720 CD=K(I,I)
      2730 FOR N#1 TO KP
      2740 K(1, N)=K(1, N)/CO
      2750 NEXT N
      2760 FOR LP-1 TO KP
     2770 IF LP=1 THEN 2830
2780 F(LP)=F(LP)-K(LP,I)#F(I)
      2790 CD=K(LP.1)
2800 FOR N=1 TO KP
      7510 K(LF,N)=K(LF,N)-COMK(I,N)
      2820 NEXT N
      25:30 NEXT LP
      2840 NEXT 1
      2850 LPRINT "EL SISTEMA DE ECUACIONES ES COMPATIBLE DETERMINADO" 2860 IF IM=0 THEN 2880 2870 GOTO 3040
      2070 0010 3040
      2890 LPRINT "MATRIZ SCLUCION"
      2700 LPRINT
```

```
2990 NEXT N
 3000 LPRINT
 3010 LPRINT
3020 NEXT I
3030 LPRINT CIC**(11)
3040 LPRINT "ISTPLAZAMIENTOS"
3050 FOR I=1 TI KP
3070 IF I:NN THEN 3100
3080 LPRINT USTMS "PHI(報報)= +#報報,問報報意報報"[I]E(I]
 3020 NEXT 1
                        3090 GOTO 3120
 3100 LP=I-NN
 3100 LP=I-NN
3110 LPRINT USING " d(###)= +###, ###; ###;"LP;F(I)
3120 NEXT I
3130 FOF; I=1 TO J
3140 KR(I,1)=0
3150 FOR LP=1 TO KP
3160 KR(I,1)=DE(I,1)+A(I,LP)*F(LP)
3170 NEXT LP
3180 NEXT LP
                  0.470 H=3+KP+J

3200 IF H*60 THEN 3230

2210 LPRINI CHF$(11)

3220 H=2+J
 3220 H=2+J
 3230 LPRINT
3240 LPRINT
3240 LPRINT "DEFORMACIONES"
3250 FOR I=1 TO J STEP 2
3260 LP=1+1
5270 M=LP/2
3280 LPRINT USING "THETA A (###)= +###,###;###%;##;KR(I,1)
3290 LPRINT USING "THETA B (###)= +###,###;###;##;KR(LF,1)
5200 NEXT I
 3310 FOR 1-1 TP J
3320 KR(1,2)=0
  3330 FOR LP=1 TO J
  3340 KR(1,2)=KP-1,2)+KM(1,LP)+KR(LP,1)
                    3350 NEXT LP
  3360 NEXT I
 3360 NEXT 1
3370 H=H+2+J
3380 IF H<60 THEN 3410
3390 LPRINT CHE**(11)
 3390 LPRINT CHP$(11)
  3400 H=2+J
  3410 LPRINT
  3420 LPRINT "FLERZAS INTERNAS"
  3430 FOR 1=1 TO J STEP 2
  3440 LP=1+1
  3450 M=LP/2
  2450 LPRINT USING " mA (488)= +488,888,888":M;KR(I,2)
2470 LPRINT USING " mB (488)= +888,888,888";M;KR(LP,2)
  3470 LPRINT USING *
  3480 NEXT I
3490 FOR I=1 TO NP
  2500 F(I)=0
```

```
3510 FOR LP=1 10 J
3520 F(I)*F(I)+B(I,LP)*KR(LP,2)
3530 NEXT LP
3530 NEXT I
3550 H=H+3+KP
3550 H=H+3+KP
3550 H=H+3+KP
3550 H=H+3+KP
3550 H=H+3+KP
3550 LPRINI CHE+1(I)
3550 LPRINI COME-SEACION EUUILIBRIO"
3600 LPRINI "FUERIAS EXTERNAS"
3610 FOR 1=1 TO KP
3620 IF INN THEN 3650
3630 LPRINI USING " M(MMM)= +MMM, MMM, MMM*; I*F(I)
3640 GOTO 3670
3650 LP=I-NN
3650 LPFINI USING " F(MMM)= +MMM, MMM, MMM*; LP:F(I)
3670 NEXT I
3680 LPFINI CHE*(II)
```

3690 END

Ejemplos.

1.- Consideremos el marco siguiente, sujeto a las cargas mostra das.

Numeremos las barras y los nudos, la numeración debe hacerse con números consecutivos, para los nudos no apoyos desde l
hasta m, para los nudos apoyos desde m+l hasta m+n, siendo m el número de nudos no apoyos y n el número de nudos apoyos, y
para las barras desde l hasta ñ siendo ñ el número de barras,
demos también una orientación a las barras, con lo cual se definirán el nudo origen y el nudo destino de cada una de ellas.

Las barras 1 y 3 tienen sección constante de 0.2 m de ancho y 0.2 m de peralte.

La barra 2 tiene sección constante de 0.2 m de ancho y 0.43 m de peralte.

De acuerdo con el manual de constantes de marcos (PCA), el momento de inercia de las barras es el que corresponde à la -- sección transversal que tenga el menor peralte en la barra, sa biendo que el ancho de cada barra es constante en toda su longitud según el mencionado manual, puede decirse que dicha sección es la que tiene el menor momento de inercia. Además -- puede observarse que cualquier sección transversal de las barras contempladas por este manual es una sección rectangular - cuyo momento de inercia es:

$$I=bh^3/12$$

donde:

b es la base de dicho rectangulo o el ancho de la ba-rra.

h es la altura del rectangilo o el peralte de la varra.

I es el momento de inercia con respecto a un eje para-

lelo a la base del rectangulo que pasa por el cen--troide de la sección.

En nuestro ejemplo para las barras 1 y 3.

$$I = (0.2 \text{ m})^4/12 = 0.000133 \text{ m}^4$$

para la barra 2.

$$I = 0.2 (0.43)^3/12 = 0.00133 m^4$$

Como puede observarse la barra 2 tiene 10 veces la inercia de las barras 1 y 3.

En la construcción de este marco se empleará concreto de -f'c= 200 kg/cm², con lo cual tendremos un módulo de elasticidad del material:

$$E = 10,000 / f \cdot c = 10,000 / 200 = 141,421 kg/cm2$$

Que en unidades compatibles con las empleadas anteriormente es:

$$E = 1,414,210.00 \text{ ton/m}^2$$

Distingamos ahora los tres grados de libertad lineal de la estructura y su correspondencia con los desplazamientos en las direcciones X y Y de los nudos. Nótese que solo atendemos a los grados de libertad lineal ya que el programa no es capaz - de distinguirlos y los datos referentes a ello tendremos que proporcionarselos, no así para los grados de libertad angular que si son distinguidos por el programa.

Desplazamientos en las direcciones X y Y de los nudos.

Grado de libertad lineal 1.

Grado de libertad lineal 2.

Grado de libertad lineal 3.

De las figuras anteriores podemos establecer la correspon-dencia entre los grados de libertad lineal y los desplazamientos en X y Y de los nudos no apoyos.

Grado de libertad
lineal que corresponde
Nudo con el desplazamiento
del nudo en la dirección:

				X			Y
						:	5.7 (4)
1	•	e in the state of	Silenia.	1	ori Volta alterna		- 2
_	and the first of the second	Sante et la			445		
4	•			1	100		

Recordemos que si el desplazamiento de un nudo en alguna de las dos direcciones establecidas (X y Y) no existe por estar restringido esté por las condiciones de apoyo considerando la hipótesis de que no existen deformaciones axiales en las ba--- rras, utilizaremos el grado de libertad ficticio O para expresar que ningún grado de libertad lineal corresponde con este desplazamiento.

Para los apoyos no es necesario ésto ya que el programa con sidera automáticamente que éstos no tienen ningún desplazamien to al efectuar los calculos.

Obtengamos ahora las coordenadas de todos los nudos inclu-yendo los apoyos, para lo cual fijaremos el origen de nuestro
sistema de Coordenadas en el nudo 3 que corresponde a uno de los apoyos.

La altura del marco es:

							a serious		eller bereit		of more and	and the		44	2.66	Sec. 25	W 12					5 5 6 7 7		A 100		7. 1. 1.		100	
		. 22 -						7		.0075		Separate Sep	appropriate sing	700	to charge and	·				1	· Agriculture		divisit before			tell was		and the	
				11.0	100		200	ara,			21.	-			~	ידו	n 4	ລກ	ac	19	C ∴		and an						
7		1.000	0.00	48. 3		4.0				F-17		Maria V.		•	•	البلد ال	v		CAL		F		13.55			120		100	1/6/
٠.				W						100		500	1.00	(中、)北	18.0	17707-1899	200		9" EM	A STATE OF					** ** ****				40.00
		T		42		man, je co	1.1		and the contract	of a grant year		. A. L		CONTRACT.	2	-	1.5	Sept 2.1	<i>^</i> -					_	Sec. 2577			1. 1911	
	- 33	Ιu	10	റ	金鱼	450		4645				Al	7		15.5	4 24	10.		O_{1}		\boldsymbol{e}	77.2	1 ()	~	474				12.7.12
		"	\cdot	\sim					177	A 150	37, 17	***	~~	· •			100	100	. • .		~ .		• • •	•	2200	1.4	1.37.5		
	1	100		2			100	11.00	100	1			100		< 1°	100		100				•			100			-7.5	
20			100			100	7, 9		100			200		. V .		men			2,5122,132	£	· V		NA.C	Sec. 3. 25 c			1.000		
	4.5		19. 1		14.7	100			10.46		15, 100			X	1						1	7			1.00	7.79	0.345		74, 10
100	1 1 2	1.00	V 2	50 a.	160		1900								•		17, 60		1.00		57 F		15 J		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	10.00			111
100		(7 m.	- 7	25, 23	100	-79/04	40.0	Following.		1750.6	errinovi,		26.00	a service i		44.1	3 2 5 5 -			. N.C	A	21. 20c	J. Astron	· * .	100			5 (4) 50	
		¥	2	- 1					4		200	100	13.00		7 - 3			4.15.0	Schon.	PM 0.00		cont.	100	10 mm	1000	4.00	W		
	4.71					70. ž		14.19		9.75				7	200	grand a	5 100		1370 4 4	11211		25.50%	450	Acres 140	14700	13.46.5			100
200			12.72	40.0				25.66				200	<u>~</u> 4 40			10 to 10 to				4.50						37.55		- 10 30	
11		٦	200	200	·	10000	112.5	11.00	200	7773			7101,5	_			Trees.	7	11.00	* . T :	145		$c \sim$					ف دائد دا	
			100	13,5%		Salar	2.5					malicina a f	7	m	#40 c			10.4	120-20-3		-	/	"	. 0			37.77		
100				+ 4	5/2			11111	44.5	9			2500			1000	7		grand to										
10		10.0	7.15		47.5				100	4,137			14.7	77.5	7.00	and tales		and the contract of	*******		23 m	4.440	2	in in	4/14/16		Maria .		540.00
				2000		400		100				44 13	41.00		500	100			A	1.4	動作品		er, egg		111 T	200			
100		Sec.			100				糖色炉					1 / 10	and it	200				1040		1000		Auren .	700 . 70			1970,00	
	200	1,51	No.		. (4)			10,000							26		100	10.00	9.00			1000							
	100	_		*		15:45		100	100		". A C.	2° . •	-		200	13341		100		7		7	とい			4.2,		100	
	m3 / 1	2	6.5		44.	9.70	0.00		10 Car		英 化氯烷		7	m	1.00			100		100	_	/-	7 <i>~</i>	n	n	er i i i i i	3000 B	27.33	
		-				3.33		4.1	24,577	100		tratifica i			to his	Carry II	100	. 125	10000	_			<i>,</i>	10.00		10.00		an to	1.70
14.5				200		451	200			1.500	807 A	W. 1877	1.00						12.77			500						1,000	
				100	100		9.00					100	1.2		100	32.10			China	S 14 3							100		
	- 1		100		- 13			11.4	100	grot.	400 00		5799	713 6G	4.00	11111		100				():	100		77.75	5 / 4 L S	1 7	May 1 11 6	
		100			i	100	1.00	0.16								40.00		5 1 5 TO			1000	1000							
	- 27 -	3	1/0		1	4.63		4.5		100	Section 6	17.7	^	m						\sim		~ ^	~~	I	100	11000		50 PK	3000
	3 7	2/		0.00		V. 75			11111	4.749		5.75	110	m	C 275	17.35				. ()	12.7	- 14	и	1,257	n :		W 10.11		100
0.0		·		400	100				100		100		نان ا	ш.			Adde.			-	. • •	v,	ノレ			100	2. 190		11.00
A	20.0		200	100				******	975			49.5	7.7	4.0	- 1	G. 110	30 5 5	100		100	eventi.		Self-Fill		. 4.	2000	100		14.
1.8	0.00	2000		100			1	7.5	7.7	100	100	4.5	ويستان	Jane .			1000		Sec. 1844	Contract Contract		53 D.					100 T	12.33	
4.1			10 h					200		200			200		20	4.00	1				100				. 3. 41 -	31.12.6			
	100	150	200	195	100						A 150.15	4.00	10 mg 2			117-1				More to		0.850					Sec. 1985		
	35.5				- 6				400				•	100	1000	6:000	A 981	10.00	SE 1384	_		~ ~	· ^			9.600	100	20.00	
ut.		- 4	Literation		4	322	100	44.50		7-11-b-		1(1	777	100	2550	100		100	- ()		· 1/	161	I	n		100	g Torga	
			г .	7	11.	100.0				- 5		- L \		111		- 15	7.5			-		\smile	$\mathcal{I} \cup$						200

Coloquemos ahora en forma tabular el nudo origen y el nudo destino de cada barra de acuerdo con la dirección adoptada para cada una de ellas. Para ello es que se han dado numeros - a los apoyos, para identificarlos también.

											N																																
																											- 1																
					_	2						1.0					9. 11.	10.75	5000	10.00				250						140		200		** /	Sec. 25. 3			1,745	2 17 1	4 72		146 (0)	
* a *		14.0			-							200			100		46. 5	11.00						44,776			S 10		20.00	10 31	16-	0.00											
			4			1. 7.	100		de el				5 to 1	14 6 7	5.54	100		100	2 14 17		3.1	11500			11.0								13.		 1 1 1 1				. 77.	10 40 8			
	196		 0.14	1				12.		200	3		100		article.					11		2000	 . 27%		Y	 	1.50		200			1. 10. 14		100 5		A	O	200	2007 1	800	9 Te	10, 10, 1	
12.75		S	 	181 1911	11.00			- 62 - 12	+		12. 11	all and be			100	200	100			100		7.7	 7 17 17	V 1		 1, 1, 11, 1	1.44	-7.5			200		100			100		1.10			600		

Calculemos también las fuerzas externas aplicadas en los $n\underline{u}$ dos, las cuales pueden ser; momentos, fuerzas paralelas a la dirección X y fuerzas paralelas a la dirección Y.

Para la barra 2 que es la unica que se encuentra cargada.

Sabemos que el momento de empotramiento para una barra de sección constante es $wI^2/12$.

Para nuestro marco:

 $wL^2/12 = 2 ton/m (4 m)^2/12 = 2.667 ton m$ y por equilibrio de fuerzas encontramos el valor de las re---acciones.

De aquí establecemos que la siguiente barra es equivalente en cuanto a las fuerzas externas aplicadas, con nuestra barra real.

4 ton 4 ton 2.667 ton m 2.667 ton m

La cual en la estructura queda:

Simplificando:

Ahora determinemos las fuerzas externas que actuan en la -dirección de cada uno de los grados de libertad (angulares y -lineales), siguiendo la convención de signos establecida con -anterioridad.

Existen en esta estructura 2 grados de libertad angular, el giro en el nudo 1 y el giro en el nudo 2, y las fuerzas que -- actuan en dirección de estos grados de libertad son el momento en el nudo 1 y el momento en el nudo 2 respectivamente.

Momento externo en el nudo 1 = -2.667 ton m Momento externo en el nudo 2 = +2.667 ton m

Como ya vimos anteriormente, existen 3 grados de libertad lineal en esta estructura y al igual que para los desplazamien
tos, las fuerzas aplicadas sobre el nudo en las direcciones X
y Y corresponden con la dirección de alguno de los grados de libertad lineal del nudo. Si no existiera ningún grado de li
bertad lineal correspondiendo con alguna de estas fuerzas, entonces, dicha fuerza no sería necesaria para efectuar los calcu

los ya que sólo nos interesan los efectos de la flexión.

Si existieran dos fuerzas aplicadas sobre distintos nudos - pero sobre el mismo grado de libertad lineal habría que sumar las algebraicamente para obtener la fuerza total que actúa sobre dicho grado de libertad.

Para nuestro marco:

Fuerza externa sobre el grado de libertad lineal 1 = +8 ton Fuerza externa sobre el grado de libertad lineal 2 = -4 ton Fuerza externa sobre el grado de libertad lineal 3 = +4 ton

Sabemos que para una barra empotrada la rigidez angular de sus extremos es 4EI/L siendo el factor de transporte 1/2, lo -cual se cumple exclusivamente para barras de sección constante como las del marco en estudio, por tanto tendremos las rigideces siguientes:

$$k_{AA}$$
=4EI/L k_{BA} =2EI/L k_{BB} =4EI/L k_{AB} =2EI/L

Como EI/l es constante para cada barra se emplean únicamente los coeficientes de rigidez:

$$R_{AA}=4$$
 $R_{BA}=2$ $R_{BB}=4$ $R_{AB}=2$

Para este ejemplo no es necesario utilizar las tablas ya -que los valores de las rigideces angulares, factores de trans-porte, y momentos de empotramiento para barras de sección cons
tante son bien conocidos, no así para barras de sección variable, por lo cual mostraremos el uso de las tablac del manual.

Al final de estos ejemplos se muestran algunas de las tablas del manual en cuya parte superior se encuentra un croquis donde se especifican las dimensiones de las barras en forma generalizada mediante algunas variables, si nosotros encontramos - los valores de dichas variables para un caso particular de para entonces podremos entrar a las tablas y obtener los valores correspondientes de los Coeficientes de rigidez R_{AA}, R_{BB}, los Factores de Transporte C_{AB}, C_{BA} con los cuales se pueden - obtener los Coeficientes de rigidez R_{AB} y R_{BA} mediante:

$$R_{BA} = C_{AB} R_{AA}$$
 $R_{AB} = C_{BA} R_{BB}$

También se obtienen los Coeficientes del Momento de Empo--tramiento para carga uniformemente distribuida o para carga -concentrada. Para obtener el momento de empotramiento para el caso de carga uniformemente distribuida se multiplican los
coeficientes m_A y m_B por wl².

$$M_A = m_A wL^2$$

 $M_B = m_B wL^2$

Para el caso de carga concentrada los coeficientes n_{A} y n_{B} se multiplican por Pl.

$$M_A = n_A$$
 PL
 $M_B = n_B$ PL

Obtengamos estos valores para nuestro marco.

Como sólo tenemos barras de sección constante en él, para - todas ellas:

$$W_A = r_A \cdot h_c = 0$$
, $W_B = r_B \cdot h_c = 0$, $a_A \cdot L = 0$, $a_B \cdot L = 0$

Como es obvio que la longitud de las barras (L) y el peralte mínimo de las mismas (h_c) son distintos de O, podemos con--cluir que:

$$a_A=0$$
 $a_B=0$ $r_A=0$ $r_B=0$

Con estos valores entramos a las tablas y nos dirigimos a - la tabla 52a que es la correspondiente a ellos.

En esta tabla encontramos que para todas nuestras barras:

$$C_{AB} = 0.5$$
 $C_{BA} = 0.5$ $R_{AA} = 4$ $R_{BB} = 4$ $m_A = 0.0833$ $m_B = 0.0833$

De aquí:
$$R_{BA} = C_{AB}R_{AA} = 0.5(4) = 2$$
 $R_{AB} = C_{BA}R_{BB} = 0.5(4) = 2$

Y para la barra 2 que es la única que se encuentra cargada:

$$M_A = m_A w L^2 = 0.0833(2 \text{ ton/m})(4 \text{ m})^2 = 2.666 \text{ ton m}$$

 $M_B = m_B w L^2 = 0.0833(2 \text{ ton/m})(4 \text{ m})^2 = 2.666 \text{ ton m}$

Con estos valores de los momentos de empotramiento que son aproximadamente los mismos que habiamos calculado anteriormente se pueden calcular las fuerzas externas aplicadas en los nu dos y con ello las fuerzas que actuan en dirección de cada uno de los grados de libertad de la estructura como se había hecho anteriormente.

Como puede verse se obtiénen los mismos valores que se obtuvieron antes y con elle se ha ilustrado el uso adecuado de las tablas.

Ahora contamos ya con todos los datos necesarios y procede-

remos a correr el programa.

Ilustraremos en este ejemplo la forma en que el programa va solicitando los datos y la forma en que debemos de proporcio-nar éstos, para lo cual emplearemos una P para distinguir lo que el programa pregunta por pantalla y una R para distinguir lo que debemos responder nosotros.

Corre el programa.

- P Imprimir operaciones (si=0,no≠0)?
- R 0
- P Número de nudos sin incluir apoyos ?
- R 2
- P Número de grados de libertad lineal ?
- R 3
- P Número de apoyos ?
- R 2
- P Número de barras ?
- R 3
- P Módulo de elasticidad del material de las barras ?
- R 1,414,210.0
- P Nudo 1
- P Momento externo ?
- R -2.667
- P El desplazamiento en X corresponde al grado de libertad lineal ?
- R 1
- P El desplazamiento en Y corresponde al grado de libertad lineal ?
- R

P.	Coordenada X ?
R	3. 0
P	Coordenada Y ?
R	1.772
P	Nudo 2
P	Momento externo ?
R	2.667
F	El desplazamiento en X corresponde al grado de libertad lineal
R	
P	El desplazamiento en Y corresponde al grado de libertad lineal
R	3
Р	Coordenada X ?
R	7.0
P	Coordenada Y ?
R	1.732
P	Nudo 3
P	Apoyo
P	Coordenada X ?
R	0.0
P	Coordenada Y ?
R	0.0
P	Nudo 4
P	Apoyo
P	Coordenada X ?
R	10.0
P	Coordenada Y ?

0.0

R

```
Fuerza en dirección del grado de libertad lineal 1 ?
    Fuerza en dirección del grado de libertad lineal 2 ?
R
P
     -4.0
     Fuerza en dirección del grado de libertad lineal 3 ?
R
P
     4.0
R
     Barra 1
 \mathbf{r}
     Nudo origen ?
 2
 R
      Nudo destino?
 P
 R
      Coeficiente de rigidez R<sub>AA</sub> ?
  P
      4.0
  R
      Coeficiente de rigidez RBB ?
  \mathbf{F}^{\epsilon}
       4.0
  R
       Coeficiente de rigidez RAB, RBA?
       2.0
   R
       Momento de inercia?
       0.000133
   R
        Barra 2
   P
    P Nudo origen ?
    R
        Nudo destino ?
    P
         2
    R
         Si las propiedades geometricas
         Coeficientes de rigidez (R_{AA}, R_{AB}, R_{BA}, R_{BB}) y momento de inercia (I)
     P
         De alguna barra son iguales a las de otra barra cuyos datos
     Ρ
         Hayan sido proporcionados, únicamente especifique el número
     P
     P
          De esta, en caso contrario pulse O
     P
```

```
Propiedades barra 2 = Propiedades barra ?
P
R
    Coeficiente de rigidez RAA?
\mathbf{F}
R
    4.0
    Coeficiente de rigidez RBR ?
P
R
    4.0
    Coeficiente de rigidez RAR, RRA ?
P
R
    2.0
P
    Momento de inercia ?
R
    0.00133
P
    Barra 3
    Nudo origen ?
P
R
    2
P
    Nudo destino ?
    4
R
     Propiedades barra 3 = Propiedades barra ?
R
     1
```

Aquí termina el abastecimiento de datos al programa y sólo resta esperar a que los resultados aparezcan en la impresora.

A continuación se muestran los resultados obtenidos para -este ejemplo, no debe olvidarse que todos los datos de entrada
deben estar en unidades compatibles para que los resultados -sean correctos y tengan unidades compatibles con los datos.

(88) GRADO DE LIBERTAD LINEAL QUE CORRESPONDE CON EL DESPLAZAMIENTO DEL NUDO EN LA DIRECCION

127.77	25.00	Section 1	Acres 6	44	200												1.0										
							Service in	44-4-		Acres 1	40.00																
					100											100											
	100	-1-1	San terr	i	100			- 1		4. 11.11			1.00					100									
					7.50		200	V = 1.7								110							CONTROL OF STREET	the same many			
		200			Section 2	11111	10.0						17.00	100			100										- 15 C - 15 C
			4 1	4,000		200			The Court				. 77				2 15 V			118 1							
				Sec. 23.		1.00	10. 5		100						2								77.5				
										S + 1		100	1.4					1,000	11.0	at make	200 4 4						
					1000	2000	CO.		0.717		100				0 - 1												
						11.5			-0.0						40.4	200											
					100				2000			100	01-1-1		2. 2								_				
					ma 4, 1,	1.50	10				1000	1.00					1 2				•	20) :::				
100			10 B		11.7	7296		1000							1000	17.0					ι	00	1				
		1711		Start in			1345-1		1.0			6177									•		T				
			4.05%	1.3124		100						P 500	1.0								_	-					
	-1.	7.62				14 65 5	1		4 5 8	0.717	7.7		100	100	2000	2 in .						3 N A	an i	E LII	H- H 1	AII	1 17
			4 1967			171117		and the same	25.00			A4 6		9.0	4			5.55									
	. /	11/1/2		100	Sec. 30	were.		2.2.3	7 to 1.5				Same .								•	\sim	0000	ONDE	-cos		חו
		5.5 76.1	化净存储		ACRES.		1000	101		100		100												CINDE	C (')		
21.4					V. 100	Salla .		1.0	inch is		1500	4 1 1										-					
- 40	10.00		- 3.0						e - d - e	100			. 1, 17	2000							ı	12-1	NU II	O EN	ΙΔ.	TO I I	55 L.L
	5 "	14 % 19		1000	1.0			3.77		1.45	77. 77		*****								-						
			of the	୯೭୭	^		1111		5.11		-	200	mm		T A	_		. " 1 "					~				u
		- 4		~~~	u.			20411	1,000			_II_II	LUL	NI.	10.75	-							A .				7
	12.39	No. 11							- 2	1												-					_
		1147.0		1 4 2	1		(= :	100	+ "	. 0	1111		Y۶		. +	1	732	•					١,			•	· •
					•		100					10.00	, -					-				•				•	_
				1500	•						~~				1 11 6												~ `
		100 17, 111	19 12 1	1111		5 / 10	(= ∶		+ /	. 0			Υ.≖		. +	1.	732	•				į.	1,				51
			100	3.00	-		2																				
		-0.34.		100	1.3	27.79.1	(= :		41	. 0	ጎስ ነ		V =		-	n .	O Ora		- 4.0	C-()Y	'n						
			1.1	200		27.00			7 4		···		, -				· · · · ·				•						
	. 2			A							~~					•	*				. ~						
	100	100	40.0	20/1	-		4 10		: 1 (. 0	UC.		7 5		- +	v.,	(iO)	,		ぞい							
	1.7		100		e		1 40	A			- •							-			_						
			200	33.7	200	S :: : : : :																					

ORIGEN DESTINO INERCIA	
CHICEN DESILING INCICA	
1 0.000	113
2 0.001	33
3 2 4 0.000	113

BARRA LONGITUD	COEFI	CIENTES DE RIGIDA	. Z
	FIAA	RAB, RBA	RBB
1 3.464	+4.000	+2.000	+4.000
4.000	+4.000	+2.000	+4.000
3.464	+4.000	+2.000	+4.000
		사람들 사람들 밤새	

MODULO DE ELASTICIDAD DEL MATERIAL (E)= 1,414,210.000

2	MOMENTO EXTERNO -2.667 2.667
GRADO DE LIBERTAD LINEAL	FUERZA EXTERNA
1 2 3	8.000 -4.000 4.000

(8	9)

1,000				ilya Tegya	(8	9)				
MATRIZ D	E CONTINU	I DAD	经产品的		#14					
		+0.00000	A	1		2)=	+0.00000			
AC 1 .	1)=	+1.00000	7.	2		2)=	+0.0000			
A(2 ·	1)=	-1.00000	A	3	. P.	2)=	+0.00000			
AL 3 .	1)=	+0.00000	1.	4) = 1/2°	2)=	+1.0000		뭐하네겠다	
A(4 .	1)=	+0.00000	A	್ಕ		2)=	-1,0000			
A(5 .	1)=	+0.00000	At	- 1.		2)=	+0.0000	0		
A(6 ,	1)=	40.00000			177.79				100	
		-0.14434	A(1		4)=	+0,2500			
A(1 ,	3)= 3)=	+0.14434	Ar	- 2		4)=	-0.2500			
A(2 .	3/= 3)=	+0.00000	60	3		4)=	-0.2500			
	3)=	+0.00000	A'	4	1.16	4)=	+0.2500			
A(4)	3)=	-0.14434	65	- 5		4)=	+0.0000			
A(5 ,	3)=	+0.14434	A	ć		4)=	+0.0000	0		
AC 6,	3,-									rowing was a Arm
La contraction										
	" ອງ≖່	+0,00000				일하다 보다				er word and the
	5)=	+000000								
	5)≖	+0.25000	100		- 17					
A 4	ີ 5)=⊹	-0.25000								
40 5	5) ≄ ీ	-0.25000								
A(6.	5)=	+0,25000		Septime:	3.46					

	A A CARLOR AND					
	The second of	(1) 318), than You had Name (4)	Contact State			
MATOIT DE	COMT 4 NH 11	DAD TRANSPLIES	r_ ('	90)		
DAINIA DE	CONTINUI	DAD INMUSEUES				
AT(E.	1)=	+0.00000	AT(:	, 2)=	+1.00000	
AT(2 .	1)=	+0.00000	ATC 2	, 2)=	+0,00000	
AT(3 ,	1)=	-0.14434	AT (3.		+0.14434	
AT(4 .	1)=	+0.25000	AT (4	. 21=	-0.25000	
AT(5,	1)=	+0.00000	AT(5	, 2)=	+0.00000	
ATI 1 .	3)=	-1.00000	AT(1	. 4)=	+0.00000	
AT(2 ,	3)=	+0.00000	AT(2	4)=	+1.00000	
AT(3,	3) =	+0.00000	AT(3		+0.00000	
ATC 4 .	3)= 3)=	-0.25000	ATC 4	. 4)= . 4)=	+0.25000	
ATC 5	* * *	+0.25000	AT(5	. A)=	-0.25000	
ATC 1	5)≂	+0.00000	ATC 1	, ሬን=	. +0,00000	
ATC 2.	5)=	-1.00000	ATC 2	. 6)=	+0,00000	
ATC ,3 .	5)=	-0.14434		. 6)=	+0.14434	
ATL 4,	5)≈ 5)≈	+0.00000	AT (4	, 6)= . 6)=	+0.00000 +0.25000	
ATC 5		-0.25000	711	• • • • • • • • • • • • • • • • • • • •	+0.25000	
and the second of		The Art County of the County o				
a alaman kalaba						
						Carried State Control of the Control
	region d'Adel de Ale L'Aren e region d'Esper					
أراح بيبية اليسانية المائدات						
	era Alder Verlein.					
	4.4 4.4 10.1 12.1 (4.1)	医脓性 医多维氏性医结节 医二氏原体 机压缩器	5는 음식, 생각이 비리하면 하면	Personal and the second section of the section of the second section of the secti	2002年,在中国发展发展,这时间是国际企工的设计。在14个	数据的 斯特斯特尔斯巴尔克克斯氏

	A de Alberta		فيلوث ب		(9	1)		
MATRIZ D	E RIGID	ECES DE LAS BARF	RAS					
		Salah Bilance						
k(1 ,	1)=	+217,18900	k (1	P ()	2)= 21=	-103,59500 +217,18900	
k(2 .	1)=	+108.59500 +0.00000	F()	3	7 * 1, 4		+6.00000	
k(3 ,	1)=	+0.00000	- J. (4	•	2)=	+0.00000	
k(4 ,	1) =	+6,00000	ict	- 5	***	2)=	+6.06000	
k(6.	1)=	+0.00000	ķί	6	· .	2)=	+0.00000	
•	•/-		** *	_				
	a Gray i							
k(1 -	3)=	+0.00000	k (1		4)=	+0.00000	
k(2.	3)=	+0.00000	k (2	,	4)=	-0.00000	
k(3 .	3)=	+1,880,90000	k(3	•	41=	-940,45000	
k(4 .	3)=	-940.45000	F: (4	, .	41=	+1,880,90000	
k(5,	3)=	+0.00000	k(, 5		4)=	*•••oooo	
k(6 .	3)=	+0.00000	, kC	0		4)=	+0.00000	
C312			100					
						6)=	+0.00000	
kt 1,	5)= 5)=	+0.00000	k(k(2		6)=	+0.00000	
k(3 ,	5)=	+0.00000	k(. 3		_ €) =	+0.00000	
k(4 ,	5)=	+0.00000	kl	4		<i>(-</i>)=	+0.00000	
kt 5.	5)=	+217.18900	· P.C	5		= (ئ	-108, 59500	The second secon
k(6.	5)=	-108,59500	kt	6	1,000	6)=	+217.18900	
State and the second	A. Calledon V. Lie			4, 5			politica (filipa)	en li en eregionijskige i

+393.39300

5)=

EL SIETEMA DE ECUACIONES ES COMPATIBLE DETERMINADO

MATR	II SOL	UCION .		سُ* • ساسم			Access of the second
KS	· = ,	1)=	+1.000	KS (1.	2)*	+0.000
KS	2.	1)=	+0.000	KS	2 .	2)=	+1.000
KS	3 ,	1)=	+0.000	KS(з.	2)=	+0.000
KS	4,	1)=	+0.000	KSI	4 .	2)=	+0.000
KSC	Ξ,	1)=	+0.000	KSC	5 ,	2)=	+0.000
	11 11	****			79		
KS(1,	3)=	+0.000	KSC	1 ,	4)=	+0.000
KS(2 ,	3)≥	+0.000	+:S.C	2 .	4)=	+0.000
KS	3 .	3)=	+1,000	ES C	з.	4)=	+0.000
KS	Ξ.	3)≖	+0.000	115-0	4	4)=	+1.000
KS	₹,	3)=	+0.000	11.5.0	5 ,	4)=	+0.000
er at a fa er a de la							
KBC	1.	5)=	+0.000				
KS	2 .	5)= *	+0.000		1.5		
KS	з.	5)=	+0.000		50000		
KS	4 .	5)=	+0.000				
KBL	5 ,	5)≃	+1.000		and and		field to be being

ration between the first of leading and the state of the first of the state of the		radomining pagtar to the committee and the gradient of the section of the state of the section of the section of	
	하시작하다 시크리라는 때	[일 보호] [[[[[[[[[[[[[[[[[[[150
생활병을 살려왔다면 하는 병원이 하다.		(%)	
DESPLAZAMIENTOS			
PHI(1)=	-0.366	그래면 가는 이번 하는 것은 사람들이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.	ŅÚ.
PHI(2)=	-0.350		A.S
d(:)=	+2.617		F9.
d (2)=	+0.725	. 2018년 - 1일 - 1일	40
d(?)=	-0.736	는 사람들이 하는 사람이 있다는 사람들은 사람들이 하는 것들은 사람들이 되었다면 하는 것을	A-M
		교통 등 이 사람들이 있다는 이번에 대한 사람들이 하고 있었다. 그 중에 가는 함께 다른 시간을 하는 것으로 하는데 하는데 없다.	334
DEFORMACIONES		시민 시간 등 전 시간 하다면 하면 하다.	
THETA A (1)=	-0.225	나는 그는 그는 이 사람들이 보고 있다면 하고 있다. 그는 사람들은 사람들은 모양을 하셨다면 살아 다른 경우이다.	
THETA B (1)=	-0.140	그는 사람들이 가장 하면 하면 하는 것이 없는 것이 없다.	
	+0.001		
	+0.005	그는 그는 그리고 있는 살이 있다. 그리고 있다. 그리고 있는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
	+0.138	그 그는 그 이 그 사람들이 있다면 그 중에 다른 사람들이 되었다. 그 사람들이 얼마를 가득하고 하는데 되었다.	
	+0.223		
THETA B (3)=	40.223	그는 그는 그는 그는 일을 받아도 하는 아니라는 것은 사람들이 되었다. 그는 그는 그는 그는 그는 그를 받아 있다. 그는 그는 그는 그는 그를 받아 있다. 그는 그를 받아 있다. 그는 그를 받아 있다.	
FUERZAS INTERNA		나는 그는 그는 그는 그리는 사람들은 경우를 가장하는 것들은 사람들은 사람들은 사람들이 모르는 것이다.	
	-33 .716		
mA € 12=	-6.002	그는 사람들은 사람들이 얼마나 가장 하는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들이 되었다.	
mB (1)=	-3.335	그는 사람들이 아내는 그를 잃었다. 그는 것 같아 하는 것은 것이 없는 것 같은 사람들은 사람들이 없었다.	
mA (2)≖	-3.335 +8.37 8	그는 그는 그는 그 그 사람들은 그들의 사람들은 얼마나 없는 동살로 가게 되는 것이다.	
mB (2)=	+8.378		- 2
mA (3)=			i.,
mB (3)=	+33.425		\$\$ jul
			0.0
COMPROBACION EC			7.5
FUERZAS EXTERNA			20
M(1)=	-2.667		
M(2)=	+2.667		20
F(1)=	+8.000		da a
F(2)=	-4.000		
F(_3)=	+4.000	[2] - [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	
		하는 이 이 가게 가는 사람들은 사람들이 되는 것은 사람들이 가는 사람들이 있는데 그렇게 되었다.	
	لوائدي والمرازيق العبارة الأ		
		보통 등 많아왔다. 이 회문은 일본 등로 등로 가지 않는 사람들은 바람들은 화를 보고 하는 것이다.	
		그림 살로 발문 부족들이는 경면한 물로 보고 있다. 김 사람들은 경우를 불러 가장을 열을 받고 시작하는 이 이다.	
	아이들 나는 아이들이 가는 살다.		
	그렇게 하시는데 되었다.	그들이 본화되었다. 그들은 가장 전쟁이 얼마나면 보는 사람들은 살 살아 들어 되었다. 그는 그는	
		otana dilikustikinin telepata kata bata di atau di kata da kata kata kata kata di talah kata kata di kata kata	

Sabemos que la barra 2 tiene 10 veces la inercia de las barras 1 y 3.

Si hacemos i=0.00133 m⁴
Entonces;

Momento de inercia de la barra l = 1.0 i

Momento de inercia de la barra 2 = 10.0 i

Momento de inercia de la barra 3 = 1.0 i

Si hacemos e=1,414,210.0 ton/m². Entonces;

E = 1.0 e

Ahora para todas las barras i y e son constantes y podemos extraerlas del calculo con el programa lo que evitara que dicho programa trabaje con cantidades demasiado grandes. Unicamente habrá que multiplicar por (ei) los coeficientes de las matrices de rigideces de las barras y de rigideces de la estructura para obtener los coeficientes reules que corresponden a nuestra estructura y habrá que dividir entre (ei) los coeficientes angulares con lo cual se obtienen igualmente los coeficientes reales que corresponden a nuestra estructura.

Este procedimiento es muy útil cuando se desconocen los --valores precisos de i y e que provocarán desplazamientos y deformaciones angulares admisibles, conocida la proporcion de -las rigideces en las barras se puede efectuar no cálculo para
posteriormente mediante iteraciones se llegue a determinar los
valores razonables de i y e que satisfaçan nuestras solicita--ciones.

Corramos nuevamente el programa para nuestro mismo ejemplo, cambiando únicamente los valores de los momentos de inercia y módulo de elaticidad, por los siguientes.

Momento de inercia de la barra 1 = 1

Momento de inercia de la barra 2 = 10

Momento de inercia de la barra 3 = 1

Módulo de elasticidad del material = 1

Para comprobar podremos multiplicar por (ei) las matrices de rigideces de las barras y de rigideces de la estructura obtenidas en esta corrida del programa y compararlas con las obtenidas en la corrida anterior, igualmente podremos dividir -entre (ei) los vectores de desplazamientos y de deformaciones
angulares obtenidos aquí y compararlos con los obtenidos anteriormente.

ei = $(1,414,210.0 \text{ ton/m}^2)(0.00133 \text{ m}^4)$ = 1,880.90 ton m²

(97)

(97) GRADO DE LIBERTAD LINEAL DUE CORRESPONDE CON EL DESPLAZAMIENTO

		C. 2/1511			ruruli trili
		111.1	INCOURN L	A DIRECTIO	Ж.
NUDO 1001	RDENADAS .			. Y	
1 X= +3.00≎	Y= +1.732	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1)	- (**2)	
2 X= +7.000	Y= +1.732	. (1.)	(3)	
3 X= +0.000	Y= +0.000	APOYO			
4 X= +10.000	Y= +0.000	AFUYO			
발표를 통하는 것이 되는 것이 하시다.					
BASKA NUDO NUDO	MOMEN	то			
ORIGEN DESTI	NO INERC	IA			
1 3 1		1.00000			
2 1 2		a, appopa			
하면 (13 m - 14) 2 · · · · · · 4		1.00000			
			化二氯甲基基化异苯基		
BARRA LONGITUD	COFFICIEN	TES DE RIGI	DEZ	4 (1) (4) (4) (4)	
대불발되는 그래 하다 그림을 받는다.		RAB, RBA	RBB		

201001		THUS OF THE TRUBBLE	
청물물은 화학 - 그는 그 그는 이 사람이	RAA	RAB, RBA	RBB
1 3.464	+4.000	+2.000	+4.000
2 4.000	+4.000	+2.000	+4.000
3 3.464	+4.000	+2,000	+4.000
And All Control of the Control of th			A CONTRACTOR OF THE

MODULO DE ELASTICIDAD DEL MATERIAL (E)=

4.000

* , ***	
NUDO	MOMENTO
	EXTERNO
. 1	-2.667
2	2.667
GRADO	
DE	FUERZA
LIBERTAD	EXTERNA
LINEAL	
1	8,000
2	-4.000

MATRIZ DE	CONTINUI	DAD				
A(1., A(2., A(3., A(4., A(5., A(6.,	1)= 1)= 1)= 1)= 1)=	+0.00000 +1.00000 -1.00000 +0.00000 +0.00000	A(A(A(A(A(A(1 , 2 , 4 , 5 ,	5) a 5) a 5) a 5) a 5) a 5) a	+0.00000 +0.00000 +0.00000 +1.00000 -1.00000 +0.00000
A(1 , A(2 , A(3 , A(4 , A(5 , A(6 ,	3)= 3)= 3)= 3)= 3)= 3)=	-0.14434 +0.14434 +0.00000 +0.00000 -0.14434 +0.14434	A(A(A(A(A(A(1 . 2 . 3 . 4 . 5 .	4)= 4)= 4)= 4)= 4)= 4)=	+0.25000 -0.25000 -0.25000 +0.25000 +0.00000 +0.00000
A(1 . A(2 . A(3 . A(5 . A(6 .	5)= 5)= 5)= 5)= 5)= 5)=	+0.00000 +0.00000 +0.25000 -0.25000 -0.25000 +0.25000				

				4 . S				
androphica	بالمواج الم					بأره أحذ براني وأحطره ويعتر		
Tradition.								
						et syselfiedd y cyllafi. Y ollan y chef 24,70 o		
Hilland		hi win d		New York				
4437					(99)		
MATR	IZ DE	CONTINUI	DAD TRANSFUEST	A				
						(Appendiction of the Control of the		
AT	1 .	11=	+0.00020	-ATC	1 -,	2) =	+1.00000	
ATC	2,	11=	+0.00000	ATC	-	2)=	-0.0000 0	
AT (з,	1)=	-0.14434) TA	з,	2)≠	+0.14434	
AT (4 .	1)=	+0.2500	A1/	Α,	2)=	-0.25000	
AT(5,	1)=	+0.00000	ATU	5,	2)=	+0.00000	
			경우 - 기업으로 전 기업으로 시작하다. 교육 전 (1985년 - 1984년 - 1985년 - 대한민국 (1985년 - 1985년 -					
AT (1	3)=	-1.00**0	AT (1	4)=	+0.00000	
AT(1 , 2 ,	3)= 3)=	-1.00000 +0.00000	AT (1 . 2 .	4)= 4)=	+0.00000 +1.00000	
AT(AT(AT(1 . 2 , 3 ,	3)= 3)= 3)=	-1.00 0 +0.0000 +0.0000	AT C AT C AT C	1 . 2 . 3 .	4)= 4)= 4)=	+0.00000	
AT(AT(AT(AT(1 , 2 , 3 , 4 ,	3)= 3)= 3)=	-1.00010 +0.00010 +0.00010 -0.25050	ATC ATC ATC ATC	1 . 2 . 3 . 4 .	4)= 4)= 4)= 4)=	+0.00000 +1.00000 +0.00000	
AT(AT(AT(1 . 2 , 3 ,	3)= 3)= 3)=	-1.00 0 +0.0000 +0.0000	AT C AT C AT C	1 . 2 . 3 .	4)= 4)= 4)=	+0.00000 +1.00000 +0.00000 +0.25000	
AT(AT(AT(AT(AT(1 . 2 . 4 . 5 .	3)= 3)= 3)=	-1.00010 +0.00010 +0.00010 -0.25050	ATC ATC ATC ATC	1 . 2 . 3 . 4 .	4)= 4)= 4)= 4)=	+0.00000 +1.00000 +0.00000 +0.25000	
AT(AT(AT(AT(AT(1	3)= 3)= 3)= 3)= 3)=	-1.00010 +0.00000 +0.00000 -0.25000 +0.25000	AT(AT(AT(AT((1 . 2 . 3 . 4 .	4)= 4)= 4)= 4)= 4)=	+0.00000 +1.00000 +0.00000 +0.25000 -0.25000	
AT(AT(AT(AT(AT(1 . 2 . 4 . 5 .	3)= 3)= 3)= 3)= 3)= 3'= 5)= 5)=	-1.00(10) +0.00000 +0.00000 -0.25000 +0.25000	ATC ATC ATC ATC ATC	1	4)= 4)= 4)= 4)= 4)= 6)=	+0.00000 +1.00000 +0.00000 +0.25000 -0.25000	

	-			
r	1	ഹ	١	

			tan Para Ago				
k(1 ,		+1.15471	F; (2)≖ 2)≠	-0.57725 +1.15471	
k(2 .		+0.57735 +0.00050	k (21=	+6.00002	
		+0.00000 +0.00000		4	2)=	+0.00000	
k(5 .	医骶骨髓膜膜畸形 有关系统治的 化氯化化物 化化物	+0.00000	1.0	. 5	21=	+0.00000	
k(6 .	ij=	+0.00000	ં દેવ		21=	+0000	
		algebra e la elemente				- 1985년 - 시간하이 이 보고 10년 이상 - 영화 2000	
k(1 .	3)=	+0.00000	· kt	1	4)=	- +0,00000	
	3)≖	+0.00000	k (:	2 ,	4)≖	+0.00000	
K(3	3)=	+10.00010). (3	4)#	-5,00000	
1. (4	, 3)=	~5.00000	1.0	4 ,	41=	+10,00000	
k:(5	, 3)=	+0.00000	1. (5 ,	4)=	+6,00000	
k(6	, 3)=	+0.00000	1. (٠,	4)≌	+0.000 0 0	
		+0.00000	1.7		6)=	+0.00000	
.k(1 -	, 5)= . 5)=	+0.00000	k(2 .	6)=	+0.00000	
k(2 k(3	, 5)=	+0.00000	k (3.	6)=	+0.00000	
k(4	5)=	+0.00000	k (4	ć)=	+0.00000	
k(5	, 5)=	+1.15471	k C	5 .	≃(خ	-0.57735	
ki 6	. 5)=	-0.57735	. k(6,	<i>€</i> >≖	+1.15471	
			1.424			ng nga tanggan dinanggan panggan pangg Panggan panggan pangga	
	1 14 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Section and Control of the Con-		
					Control of the Control	The Africa sales are all the contract of the	n da papa na Galaman (basa)

(101) MATRIZ DE RIGIDECES DE LA ESTRUCTURA +5.00000 2 , 3 , 2)= 2)= 1 , 2 , +11.15470 +11.15470 +5.00000 +1,25000 1.4. 1)= +0.25000 21= 4 y t 1)= +3.75000 2) = 2) = +3,31699 -3.31698 1)= -3.75000 1)= +3.31698 1 . +6.25000 F (+3.75000 -0.12500 +2.09151 3)= Kt 4)= ₩.25000 2. F.C.) 3,) 4,) 5, 2 , 3 , +6.14433 -6.12500 +6.12500 4)= 3)= 3)= KC -1,87500 ķὶ 4. 3)= -3.75000 κι 1 . 5)= -2.31698 K(2 , K(3 , K(4 , 5) = 5) = +0.12500 -:.87500 5)≖ +2.09151

(102) EL SISTEMA DE ECUACIONES ES COMPATIBLE DETERMINADO

HATR!	īZ	SOL	UCION								
									2)=		+0.000
1:51	٠. ፲	•	11=	1.000	+1.000		1:51		21=		+1.000
	. 2		1)=	1일 시작	+0.000		KSC	≥ .			+0.000
KSC	3:	• .	1)=	e de mai	+0.000		KS (з.,	2)=	G standard	
Ke (4		1)=		+0.000	400041	KSC	4,	2)=	ve. Siliniar	+0.000
K50	5		11=		+0.000		KS(5,	2)=		+0.000
								3313		tertifi-	
			~		+0 000		KS (4)=		+0.000
KSC	1		3)=		+0.000	17 7 7 7			4)=		+0.000
KSC	2	•	3)=		.+0.000		KS(2 1			
KSI	3		3)=		+1.000		įKS (.	ુ ૩ ,	4)=		+0.000
KSI	. 4		3)=		_+0.0Q0	L. State	1,5(Δ,	4)=		+1.000
KSC	5		3)=		+0.000)	KS C	5,	4)=		+0.000
		200	50 DV4				机压锅	Mariy.			
KS	٠.		5)=		+0.000		Note 1 ft fi				
	1	· 🕶 .									
KSC	2	•	5)=		+0.000						
KS	. 3	•	5)=		+0.000		M DATE				
KSC	4		5)=		+0.000			JE 35-95			
KSC	- 5		5)≃		+1.000) ·					
			Attack of the contract	and the second second	and representative and the	and Arthur.	Section 1 days	and the second section of	rajus Aurosalo del elle	nd an additional of	a this making a first same and

```
DESPLAZAMIENTOS
                  -68.793
-67.784
PHI( 1)=
PHI( 2)=
d( 1)=
                    +529.908
        2)=
                    +136.350
   dt
                    -138.367
   d(
 DEFORMACIONES
                            -42.397
-26.395
THETA A ( 1)=
THETA B ( 1)=
THETA B ( 2)=
THETA B ( 2)=
THETA A ( 2)=
                              +0.114
                             +0.895
 THETA B ( 3)=
                             +41.892
 FLIERZAS INTERNAS
                           -33.716
-6.002
             1)=
     mA (
              3)=
5)=
5)=
                            -3.335
      mA (
                            +8.378
      mB
         ţ
                            +5.711
      mA (
                           +33.424
      mB (
              3)=
  COMPROBACION EQUILIBRIO
  FUERZAS EXTERNAS
                            -2.667
        M( 1)=
M( 2)=
                            +2.667
             1)=
2)=
3)=
                            +8,000
        FL
                            -4.000
```

+4.000

F(

2.- Consideremos el siguiente marco, sometido a las cargas --mostradas.

Numerando barras, nudos apoyos y no apoyos, y dando direc---ción a las barras.

De las figuras anteriores tenemos:

	Coorden	adas		i k
Nudo	(X)	(Y)		
1-	0.0 m	2.0 m	2,49	
2	1.6 m	3.2 m		
3	3.2 m	2.0 m		
4	0.) n),O m		
5	3.2 m	3.0 m		

	[77] [12] 보고 있는 데 보고 있는 다른 사람들이 없는 것	Property of the ball places in	
Barra Nudo	origen	Nudo desti	no
			All the Suit of the Commence of the
		.	
2	1	.2	
-	-		
	taring to be seen the second of the second		
3	3	2	
4	5	3	
보다들은 어느 그는 사람이 되었다면 이 사람들은 사람들은 사람들이 되었다.	이 생물하는 사이트로 가장하는 시간을 마양을 살아냈다면 됐다.	NA PARAMETER TEACHER TO THE RESIDENCE OF THE SECOND TO THE SECOND	

La estructura presenta cuatro grados de libertad lineal que se indican a continuación. \$3

Grado de libertad lineal que

Nudo corresponde con el desplazamiento

del nudo en la dirección:

											(2	(۱								١,	J						
	l											Ĺ							7)							
	•									77 ·			1916 #30							7							
											۲	2						Ŋ.									
44	Z											1		7.27 1207		, I	75.00		,	١.					St.	1 -	100

En la siguiente pagina se encuentra un croquis en el que se indican las dimensiones de las secciones transversales de las barras.

De la figura anterior se concluye que las barras 1 y 4 tienen sección constante y las barras 2 y 3 sección variable con un cartel triangular de 0.4 hc de peralte, b de ancho a lo lar go de toda la longitud de las barras y con la parte más peraltada en el extremo B de las mismas.

De aqui que:

Para las barras 1 y 4

$$\mathbf{r}_{\mathbf{A}} = 0$$
 $\mathbf{r}_{\mathbf{B}} = 0$ $\mathbf{a}_{\mathbf{A}} = 0$ $\mathbf{a}_{\mathbf{B}} = 0$

Para estos valores de la tabla 52a se obtiene; $R_{AA}=4 \qquad R_{BB}=4 \qquad C_{AB}=0.5 \qquad C_{BA}=0.5$

Con lo cual se cálcula: R_{AB}=2 R_{BA}=2

Para las barras 2 y 3

 $r_{\Lambda}=0$ $r_{B}=0.4$ $a_{\Lambda}=0$ $a_{B}=1$

Para estos valores de la tabla 52 se obtiene; $R_{\Lambda\Lambda}=5.17 \quad R_{BB}=8.57 \quad C_{AB}=0.642 \quad C_{BA}=0.388$

Con lo cual se cálcula: $R_{AB}=3.322$ $R_{BA}=3.322$

Los valores de R_{AB} y R_{BA} calculados son un poco distintos - por la falta de más cifras decimales en las tablas, pero sabe-- mos por el teorema de Maxwell que ambos coeficientes deben ser iguales, por lo cúal se toma el promedio de los dos valores obtenidos como el valor correcto para los mismos.

Para la barra 2, la única cargada de este marco se obtiene de la misma tabla:

$$m_{\Lambda} = 0.0675$$
 $m_{B} = 0.1011$

Con estos valores se calculan los momentos de empotramiento;

$$M_A = 1.35$$
 $M_B = 2.022$

Como suponemos que ho y b tienen unidades compatibles con - las demás cantidades, estos momentos obtenidos están en ton m.

Por suma de momentos encontramos los valores de las fuerzas:

Si descomponemos estas fuerzas en fuerzas con trayectorias protogonales e intercambiamos reacciones por acciones encontraremos la siguiente barra equivalente de fuerzas externas aplicadas.

4.269

Si colocamos esta barra en nuesto marco tendremos:

Lo cual nos permite obtener las fuerzas que actuan en la -dirección de cada uno de los 7 grados de libertad que tiene es
te marco (3 angulares y 4 lineales) que son:

Momento externo en el nudo 1 = -1.35 ton m

Momento externo en el nudo 2 = 2.022 ton m

Momento externo en el nudo 3 = 0.0 ton m

Fuerza sobre el grado de libertad lineal 1 = 2.798 ton

Fuerza sobre el grado de libertad lineal 2 = 3.202 ton

Fuerza sobre el grado de libertad lineal 3 = -4.269 ton

Fuerza sobre el grado de libertad lineal 4 = 0.0 ton

Como para nuestro marco todas las barras tienen peralte minimo constante e igual a ho y ancho constante e igual a h el momento de inercia es constante e igual a i.

$$I=b(hc)^{3}/12=i$$

Siendo el módulo de elesticidad del material igual a e. E=e Daremos entonces como momento de inercia de todas las barras I=l y módulo de elasticidad E=l.

Con los datos que tenemos corramos el programa y recordemos que habrá que multiplicar por (ei) las matrices de rigideces - de las barras y rigideces de la estructura para obtener las -- respectivas matrices correctas. También habrá que dividir entre (ei) los vectores de desplazamientos y deformaciones angulares para obtener los respectivos vectores correctos.

No olvidemos que e es el valor de el módulo de elasticidad del material adoptado para construir el marco una vez que se - hayan efectuado los calculos, siendo i el momento de inercia - correspondiente a una sección rectangular con las dimensiones he y b elegidas despúes de efectuar los calculos con la computadora, obviamente todas estas cantidades en unidades compatibles con las empleadas anteriormente.

A continuación se muestran los resultados obtenidos por la computadora con el programa presentado en este trabajo.

```
(111)
                                                GRADO DE LIBERTAD LINEAL QUE
                                                CORRESPONDE CON EL DESPLAZAMIENTO
                                                DEL NUDO EN LA DIRECCION
              COGSDENADAS
NUDO
                               +2.000
+3.200
+2.000
                                                     1)
2)
4)
                                                                      Q 1
               +0.000
                                                                      3.)
(i)
               +1.600
               +3.200
                         Υ=
                                +0.000
                                           APOYO
         X=
               +0.000
                         ۷≖
                               +0.000
                                           AFOY0
                         · +=
               +3.200
                                  MOMENTO
                    NUDO
BARRA
          NUDO
                                  INERCIA
         ORIGEN
                   DESTINO
                                        1.00000
              4
                       1
                                         1.00000
                                         1.00000
    3
                        2
                                        1.00000
    4
              5
                             COEFICIENTES DE RIGIDEZ
 BARRA
         LONGITUD
                                                          RBB
-4.000
+8.570
+8.570
                           RAA
+4.000
+5.170
+5.170
                                        RAB, RBA
                                           +2.000
             2.000
                                           +3.322
             2.000
2.000
2.000
                                           +3,322
    3
                                                           +4.000
                           +4.000
                                           .+2.000
                                                              1.000
 MODULO DE ELASTICIDAD DEL MATERIAL (E)=
                   MOMENTO
 DOUN
                   EXTERNO
                      -1.350
2.022
0.900
     2
   GRADO
                     FUERZA
 DE
LIBERTAD
                    EXTERNA
  LINEAL
                        2.798
     1
                      3.202
-4.269
```

0.000

A(1 , 3) = -0.0000 A(1 , 2) = -0.0000 A(1 , 2) = -0.0000 A(2 , 1) = -0.0000 A(2 , 2) = -0.0000 A(3 , 2) = -0.0000 A(4 , 2) = -0.0000 A(5 , 2) = -0.0000 A(5 , 2) = -0.0000 A(5 , 2) = -0.0000 A(6 , 2) = -0.0000 A(7 , 2) = -0.0000 A(8 , 2) = -0.00000 A(8 , 2) = -0.000000 A(8 , 2) = -0.00000 A(8 , 2) = -0.000000 A(8 ,	1 . 13=				112)		
AC 2 . 1) = -1.00000 AC 2 . 2) = -0.00000 AC 2 . 0) = -0.00000 AC 3 . 1) = -1.00000 AC 3 . 2) = -0.00000 AC 3 . 1) = -0.00000 AC 3 . 2) = -0.00000 AC 4 . 1) = -0.00000 AC 5 . 1) = -0.00000 AC 5 . 2) = -0.00000 AC 5 . 1) = -0.00000 AC 5 . 2) = -0.00000 AC 6 . 1) = -0.00000 AC 6 . 2) = -0.00000 AC 7 . 1) = -0.00000 AC 7 . 2) = -0.00000 AC 8 . 2)	2 . 1) = -1.00000 A(2 . 2) = -0.00000 3 . 1) 5 -1.00000 A(3 . 2) = -0.00000 4 . 1) = -7.00000 A(4 . 2) = -9.00000 5 . 1) = -9.00000 A(5 . 2) = -9.00000 6 . 1) = -9.00000 A(5 . 2) = -9.00000 8 . 1) = -9.00000 A(7 . 2) = -9.00000 9 . 1) = -9.00000 A(9 . 2) = -9.00000 1 . 3) = -1.00000 A(9 . 2) = -9.00000 2 . 3) = -1.00000 A(3 . 4) = -9.30000 4 . 3) = -9.00000 A(3 . 4) = -9.30000 5 . 3) = -1.00000 A(4 . 4) = -9.30000 6 . 3) = -1.00000 A(4 . 4) = -9.30000 6 . 3) = -1.00000 A(5 . 4) = -9.00000 6 . 3) = +0.00000 A(6 . 4) = -9.00000 6 . 3) = +0.00000 A(8 . 4) = -9.00000 8 . 3) = +1.00000 A(8 . 4) = -9.00000 6 . 3) = +0.00000 A(8 . 4) = -9.00000 6 . 3) = +0.00000 A(8 . 4) = -9.00000 7 . 3) = +0.00000 A(8 . 4) = -9.00000 8 . 3) = -1.00000 A(8 . 4) = -9.00000 1 . 5) = -0.30000 A(8 . 4) = -9.00000 5 . 5) = -0.30000 A(8 . 4) = -9.00000 6 . 5) = -0.30000 A(8 . 6) = -9.40000 6 . 5) = -0.30000 A(8 . 6) = -9.40000 6 . 5) = +0.30000 A(8 . 6) = -9.40000 8 . 5) = +0.30000 A(8 . 6) = -9.40000 1 . 7) = -9.00000 A(8 . 6) = -9.40000 2 . 7) = +0.00000 A(8 . 6) = +0.00000 7 . 5) = +0.00000 A(8 . 6) = -9.40000 7 . 5) = +0.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = +0.00000 7 . 7) = -9.00000 A(8 . 6) = -9.40000 7 . 7) = -9.00000 A(8 . 6) = -9.40000 7 . 7) = -9.00000 A(8 . 6) = -9.40000 7 . 7) = -9.00000 A(8 . 6) = -9.400000 7 . 7) = -9.00000 A(8 . 6) = -9.40000 7 . 7) = -9.00000 A(8 . 6) = -9.40000 7 . 7) = -9.00000 A(8 . 6) = -9.40000 7 . 7) = -9.00000 A(8 . 7) = -9.40000 7 . 7) = -9.00000 A(8 . 7) = -9.40000	MAIRIZ DE C	'ONT INUIDAD				
AC 2	2 : 11 =			۸(۱.		÷0.00000	
A(4 , 1) = -0,00000 A(4 , 2) = -0,00000 A(5 , 1) = -0,00000 A(6 , 2) = -1,0000 A(7 , 2) = -1,0000 A(8 , 2) = -1,00000 A(8 , 2) = -1	4 : 175	40 L. A. M. W. E. V. MARGARON T.		AC 2 .	ົວາ≎່∴		
A(5 , 1) = +0.00000	7	Law and the second of the seco	i programa programa i provincia de la Stratica de Salvadores de la comoción de la comoción de la comoción de l	AL S.	21= 3		
A(6 , 1) = -0.00000	6	the contract of the same of the contract of			21*		
A(7 , 1) =	7				2)=	-0,00000	
A(1	8 , 1)=						
A(1 , 3) = +1.00000	1					•0.00000	
A(2 , 3) =	2		√°.00000	A(5 ,	2)=	The order	
A(2 , 3) =	2	A(1 2	1=			불빛이 하이 중에 그를 보고 있었	150 Marin
A(3 , 3) = -0.00000 A(3 , 4) = -0.300000 A(4 , 3) = -0.00000 A(4 , 4) = -0.300000 A(5 , 3) = -1.00000 A(5 , 4) = +0.00000 A(6 , 3) = +0.00000 A(6 , 4) = +0.00000 A(7 , 3) = +0.00000 A(6 , 4) = +0.00000 A(7 , 3) = +0.00000 A(7 , 4) = +0.00000 A(8 , 3) = +1.00000 A(8 , 4) = +0.00000 A(8 , 3) = +1.00000 A(8 , 4) = +0.00000 A(3 , 5) = +0.00000 A(2 , 6) = +0.00000 A(3 , 5) = -0.30000 A(3 , 6) = +0.00000 A(4 , 5) = +0.30000 A(4 , 6) = -0.40000 A(5 , 5) = +0.30000 A(6 , 6) = +0.40000 A(6 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.30000 A(6 , 6) = +0.40000 A(8 , 5) = +0.00000 A(8 , 6) = +0.00000 A(7 , 5) = +0.00000 A(8 , 6) = +0.00000 A(7 , 5) = +0.00000 A(8 , 6) = +0.00000 A(7 , 5) = +0.00000 A(8 , 6) = +0.00000 A(7 , 5) = +0.00000 A(7 , 7) = +0.00000	3				The state of the s		
A(4 , 3) = +0.00000	4 : 3) =						
A(5 , 3)= -1.00000 A(5 , 4)= +0.00000 A(6 , 3)= +0.00000 A(6 , 4)= +0.00000 A(7 , 3)= +0.00000 A(7 , 4)= +0.00000 A(8 , 3)= +1.00000 A(8 , 4)= +0.00000 A(8 , 3)= +1.00000 A(8 , 4)= +0.00000 A(1 , 5)= +0.00000 A(2 , 6)= +0.00000 A(2 , 5)= +0.00000 A(3 , 6)= +0.00000 A(3 , 5)= -0.30000 A(3 , 6)= +0.40000 A(5 , 5)= +0.30000 A(6 , 6)= -0.40000 A(5 , 5)= +0.30000 A(6 , 6)= +0.40000 A(7 , 5)= +0.30000 A(7 , 6)= +0.40000 A(7 , 5)= +0.30000 A(8 , 6)= +0.40000 A(7 , 5)= +0.00000 A(7 , 6)= +0.00000 A(7 , 5)= +0.00000 A(8 , 6)= +0.00000 A(3 , 7)= +0.00000 A(8 , 6)= +0.00000 A(3 , 7)= +0.00000 A(4 , 7)= -0.00000 A(5 , 7)= -0.00000 A(7 , 7)= -0.00000 A(7 , 7)= -0.00000 A(7 , 7)= -0.00000	5 , 2) = -1.00000 A(5 , 41 = +0.00000 6 , 3) = +0.00000 A(6 , 4) = +0.00000 7 , 3) = +0.00000 A(7 , 4) = +0.00000 8 , 3) = +1.00000 A(8 , 4) = +0.00000 1 , 5) = +0.00000 A(8 , 4) = +0.00000 2 , 5) = +0.00000 A(2 , 6) = +0.00000 3 , 5) = +0.30000 A(3 , 6) = +0.40000 4 , 5) = +0.30000 A(5 , 6) = -0.40000 6 , 5) = +0.30000 A(6 , 6) = -0.40000 6 , 5) = +0.30000 A(7 , 6) = +0.40000 7 , 5) = +0.00000 A(7 , 6) = +0.40000 8 , 5) = +0.00000 A(7 , 6) = +0.40000 1 , 7) = +0.00000 A(7 , 6) = +0.00000 3 , 7) = +0.00000 A(8 , 6) = +0.00000 6 , 7) = +0.00000 1 , 7) = +0.00000 2 , 7) = +0.00000 4 , 7) = +0.00000 6 , 7) = -0.00000 7 , 7) = +0.00000 7 , 7) = -0.00000		100000				
A(6 , 3) = +0.00000 A(6 , 4) = +0.00000 A(7 , 3) = +0.00000 A(7 , 4) = +0.00000 A(8 , 3) = +1.00000 A(8 , 4) = +0.00000 A(1 , 5) = +0.00000 A(2 , 6) = +0.00000 A(2 , 5) = +0.00000 A(3 , 6) = +0.00000 A(3 , 5) = -0.30000 A(3 , 6) = +0.40000 A(4 , 5) = +0.30000 A(4 , 6) = -0.40000 A(5 , 5) = -0.30000 A(5 , 6) = -0.40000 A(6 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.30000 A(7 , 6) = +0.40000 A(7 , 5) = +0.00000 A(8 , 6) = +0.00000 A(7 , 5) = +0.00000 A(8 , 6) = +0.00000 A(3 , 7) = +0.00000 A(4 , 7) = -0.00000 A(5 , 7) = +0.00000 A(6 , 7) = -0.00000 A(7 , 7) = -0.00000 A(7 , 7) = -0.00000 A(7 , 7) = -0.00000	6 · 3) = +0.00000 A(6 , 4) = +0.00000 7 · 3) = +0.00000 A(7 , 4) = +0.00000 8 · 3) = +1.00000 A(8 , 4) = +0.00000 1 · 5) = +0.00000 A(8 , 4) = +0.00000 2 · 5) = +0.00000 A(2 , 6) = +0.00000 3 · 5) = -0.30000 A(3 , 6) = +0.40000 4 · 5) = +0.30000 A(4 , 6) = -9.40000 5 · 5) = +0.30000 A(5 , 6) = -0.40000 6 · 5) = +0.30000 A(6 , 6) = +0.40000 7 · 5) = +0.30000 A(7 , 6) = +0.40000 8 · 5) = +0.00000 A(7 , 6) = +0.00000 1 · 7) = +0.00000 A(8 , 6) = +0.00000 3 · 7) = +0.00000 A(8 , 6) = +0.00000 4 · 7) = +0.00000 5 · 7) = +0.00000 6 · 7) = -0.30000 A(8 , 6) = +0.00000 7 · 5) = +0.00000 7 · 7) = -0.00000						
A(7 , 3) = +0.00000 A(7 , 4) = +0.00000 A(8 , 3) = +1.00000 A(8 , 4) = +0.00000 A(1 , 5) = +0.00000 A(1 , 6) = +0.00000 A(2 , 5) = +0.00000 A(2 , 6) = +0.00000 A(3 , 5) = -0.30000 A(3 , 6) = +0.40000 A(4 , 5) = +0.30000 A(5 , 6) = -0.40000 A(5 , 5) = -0.30000 A(6 , 6) = -0.40000 A(6 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.30000 A(6 , 6) = +0.40000 A(8 , 5) = +0.00000 A(8 , 6) = +0.00000 A(1 , 7) = +0.00000 A(2 , 7) = +0.00000 A(3 , 7) = +0.00000 A(4 , 7) = -0.00000 A(5 , 7) = -0.30000 A(6 , 7) = -0.30000 A(7 , 7) = -0.30000	7						
A(8 , 3) = +1.00000 A(8 , 4) = +0.00000 A(1 , 5) = +0.00000 A(1 , 6) = +0.00000 A(2 , 5) = +0.00000 A(2 , 6) = +0.00000 A(3 , 5) = -0.30000 A(3 , 6) = +0.40000 A(4 , 5) = +0.30000 A(4 , 6) = -0.40000 A(5 , 5) = +0.30000 A(5 , 6) = -0.40000 A(6 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.00000 A(7 , 6) = +0.00000 A(8 , 5) = +0.00000 A(7 , 6) = +0.00000 A(1 , 7) = +0.00000 A(1 , 7) = +0.00000 A(4 , 7) = +0.00000 A(5 , 7) = +0.00000 A(5 , 7) = +0.00000 A(7 , 7) = -0.30000 A(7 , 7) = -0.30000 A(7 , 7) = -0.30000	8	A(7, 3					
A(1 , 5) = +0.00000 A(1 , 6) = -0.00000 A(2 , 5) = +0.00000 A(2 , 6) = +0.00000 A(3 , 5) = -0.30000 A(3 , 6) = +0.40000 A(4 , 5) = +0.30000 A(4 , 6) = -6.40000 A(5 , 5) = -0.30000 A(5 , 6) = -0.40000 A(6 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.30000 A(6 , 6) = +0.40000 A(8 , 5) = +0.00000 A(7 , 6) = +0.00000 A(8 , 5) = +0.00000 A(8 , 6) = +0.00000 A(3 , 7) = +0.00000 A(3 , 7) = +0.00000 A(4 , 7) = -0.00000 A(5 , 7) = +0.00000 A(6 , 7) = -0.30000 A(7 , 7) = -0.30000 A(7 , 7) = -0.30000 A(7 , 7) = -0.30000	1 , 5) = +0.00000 A(1 , 6) = -0.00000 2 , 5) = +0.00000 A(2 , 6) = +0.00000 3 , 5) = -0.30000 A(3 , 6) = +0.40000 4 , 5) = +0.30000 A(4 , 6) = -6.40000 5 , 5) = -0.30000 A(5 , 6) = -0.40000 6 , 5) = +0.30000 A(6 , 6) = +0.40000 7 , 5) = +0.30000 A(6 , 6) = +0.40000 8 , 5) = +0.00000 A(7 , 6) = +0.00000 8 , 5) = +0.00000 A(8 , 6) = +0.00000 1 , 7) = +0.00000 2 , 7) = +0.00000 3 , 7) = +0.00000 5 , 7) = +0.00000 6 , 7) = -6.300000 6 , 7) = -6.300000 7 , 7) = -6.300000	A(8 , 3					
A(2 , 5)=	2 · 5) = +0.00000 A(2 · 6) = +0.00000 3 · 5) = -0.30000 A(3 · 6) = +0.40000 4 · 5) = +0.30000 A(4 · 6) = -0.40000 5 · 5) = -0.30000 A(5 · 6) = -0.40000 6 · 5) = +0.30000 A(6 · 6) = +0.40000 7 · 5) = +0.00000 A(7 · 6) = +0.00000 8 · 5) = +0.00000 A(8 · 6) = +0.00000 1 · 7) = +0.00000 A(8 · 6) = +0.00000 2 · 7) = +0.00000 3 · 7) = +0.00000 4 · 7) = +0.00000 5 · 7) = +0.00000 6 · 7) = -6.300000 7 · 7) = -6.300000 7 · 7) = -6.500000	A/ 1 =					
A(3 , 5)= -0.30000 A(3 , 6)= +0.40000 A(4 , 5)= +0.30000 A(4 , 6)= -0.40000 A(5 , 5)= +0.30000 A(5 , 6)= -0.40000 A(6 , 5)= +0.30000 A(6 , 6)= +0.40000 A(7 , 5)= +0.30000 A(7 , 6)= +0.40000 A(8 , 5)= +0.00000 A(7 , 6)= +0.00000 A(8 , 5)= +0.00000 A(1 , 7)= +0.00000 A(2 , 7)= +0.00000 A(3 , 7)= +0.00000 A(4 , 7)= +0.00000 A(5 , 7)= -0.30000 A(6 , 7)= -0.30000 A(7 , 7)= -0.30000	3		***************************************			-0.00000	
A(4 , 5) = +0.30000 A(4 , 6) = -0.40000 A(5 , 5) = +0.30000 A(5 , 6) = -0.40000 A(6 , 5) = +0.30000 A(6 , 6) = +0.40000 A(7 , 5) = +0.00000 A(7 , 6) = +0.00000 A(8 , 5) = +0.00000 A(8 , 6) = +0.00000 A(8 , 5) = +0.00000 A(1 , 7) = -0.00000 A(2 , 7) = +0.00000 A(3 , 7) = +0.00000 A(4 , 7) = -0.00000 A(5 , 7) = +0.30000 A(6 , 7) = -0.30000 A(7 , 7) = -0.50000	4	A(2	-010000			+0.00000	
A(5 , 5)= -0.30000 A(5 , 6)= -0.40000 A(6 , 5)= +0.30000 A(6 , 6)= +0.40000 A(7 , 5)= +0.00000 A(7 , 6)= +0.00000 A(8 , 5)= +0.00000 A(8 , 6)= +0.00000 A(1 , 7)= +0.00000 A(2 , 7)= +0.00000 A(3 , 7)= +0.00000 A(4 , 7)= +0.00000 A(6 , 7)= -0.30000 A(7 , 7)= -0.30000 A(7 , 7)= -0.50000	5 , 5) = -0.30000 A(5 , 6) = -0.40000 6 , 5) = +0.30000 A(6 , 6) = +0.40000 7 , 5) = +0.00000 A(7 , 6) = +0.00000 8 , 5) = +0.00000 A(8 , 6) = +0.00000 1 , 7) = +0.00000 2 , 7) = +0.00000 3 , 7) = +0.00000 4 , 7) = +0.00000 5 , 7) = +0.30000 6 , 7) = -6.30000 7 , 7) = -0.50000	Al A ' S	*******	A(3.,			
A(6 , 5)= +0.30000 A(6 , 6)= +0.40000 A(7 , 5)= +0.00000 A(7 , 6)= +0.00000 A(8 , 5)= +0.00000 A(8 , 6)= +0.00000 A(1 , 7)= +0.00000 A(2 , 7)= +0.00000 A(3 , 7)= +0.00000 A(4 , 7)= +0.00000 A(5 , 7)= +0.30000 A(6 , 7)= -0.30000 A(7 , 7)= -0.50000	6 , 5)= +0.30000 A(6 , 6)= +0.40000 7 , 5)= +0.00000 A(7 , 6)= +0.00000 8 , 5)= +0.00000 A(8 , 6)= +0.00000 1 , 7)= +0.00000 2 , 7)= +0.00000 3 , 7)= +0.00000 4 , 7)= +0.00000 5 , 7)= +6.30000 6 , 7)= -6.30000 7 , 7)= -6.50000		7100000				
A(7, 5)= +0.00000 A(7, 6)= +0.00000 A(8, 5)= +0.00000 A(8, 6)= +0.00000 A(1, 7)= -0.00000 A(2, 7)= +0.00000 A(3, 7)= +0.00000 A(4, 7)= -0.00000 A(5, 7)= +0.00000 A(6, 7)= -0.00000 A(7, 7)= -0.00000 A(7, 7)= -0.00000	7 , 5) = +0.00000 A(7 , 6) = +0.00000 8 , 5) = +0.00000 A(8 , 6) = +0.00000 1 , 7) = +0.00000 2 , 7) = +0.00000 3 , 7) = +0.00000 4 , 7) = +0.00000 5 , 7) = +0.00000 6 , 7) = -0.00000 7 , 7) = -0.50000		***************************************				
A(8 , 5) = +0.00000 A(8 , 6) = +0.00000 A(1 , 7) = -0.00000 A(2 , 7) = +0.00000 A(3 , 7) = +0.00000 A(4 , 7) = +0.00000 A(5 , 7) = +0.00000 A(6 , 7) = -0.30000 A(7 , 7) = -0.50000	8. 7) = +0.00000 A(8, 6) = +0.00000 1. 7) = +0.00000 2. 7) = +0.00000 3. 7) = +0.00000 4. 7) = +0.00000 5. 7) = +0.30000 6. 7) = -6.30000 7. 7) = -0.50000		0.0000	<u> </u>			
A(1 . 7) =00000 A(2 . 7) = +0.00000 A(3 . 7) = +0.00000 A(4 . 7) = +0.00000 A(5 . 7) = +0.00000 A(6 . 7) = -0.30000 A(7 . 7) = -0.50000	1 , 7)= -1.00000 2 , 7)= +0.00000 3 , 7)= +0.00000 4 , 7)= +0.00000 5 , 7)= +0.00000 6 , 7)= -6.30000 7 , 7)= -6.50000						
A(2 , 7) = +0.00000 A(3 , 7) = +0.00000 A(4 , 7) = +0.00000 A(5 , 7) = +0.30000 A(6 , 7) = -0.30000 A(7 , 7) = -0.50000	2; 7) = +0.00000 3; 7) = +0.00000 4; 7) = +0.00000 5; 7) = +0.30000 6; 7) = -6.30000 7; 7) = -0.50000				6/=	+0,00000	
A(3 , 7) = +0.00000 A(4 , 7) = +0.00000 A(5 , 7) = +0.00000 A(6 , 7) = -0.30000 A(7 , 7) = -0.50000	3; 7) = +0.00000 4; 7) = +0.00000 5; 7) = +0.00000 6; 7) = -0.30000 7; 7) = -0.50000	(4) 人名英格兰 "不知为事的"。		er Die ee Grin Gebruik			
A(4 , 7) = +6.00000 A(5 , 7) = +6.30000 A(6 , 7) = -6.30000 A(7 , 7) = -6.50000	4; 7) = +0.00000 5; 7) = +0.00000 6; 7) = -0.00000 7; 7) = -0.50000		0.00000				
A(5', 7)= +0.30000 A(6', 7)= -0.30000 A(7', 7)= -0.50000	5, 7)= +0.30000 6, 7)= -0.30000 7, 7)= -0.50000						Warriera
A(6': 7)= -0.30000 A(7'; 7)= -0.50000	6 , 7) = -6.30000 7 , 7) = -6.50000		3. COCOO				
A(7 , 7)= -0.50000	7 , 7)= -0.50000		120 000 000				
그 마을 사는 그는 아내는 이 집에 가는 그 이 그는 그 이 도시에 되었다. 그는 그 이 그는 그 이 그는 그 이 그는 그 그는 그 그는 그 그는	마는 그리스 사람이 집에 가는 그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리는 그리는 이번 사람들이 있다면 사람들이 가는 사람들이 사용되었다면 함께 다른 사람들이 되었다. 그리는	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.					
A' 5. /J= +1.50000	6. /J= -1.5000						
		A' 8 , /	. ±0.50000				

MATRIZ DE	E CONTINU	IDAD TRANSPUES	ſΑ			
AT(1,	1)=	+0.00000	AT (2)=	+1.00000
AT(2 ,	1 1=	+0 00000	ATI	2.	21=	+0.00000
AT(?)	1)=	+0.349000	ATC		2)=	+0.00000
AT(4 ,	1)=	მ.ნიბიი	AT (4 .	21=	+0.50000
AT(5 ,	1)=	+0.00000	AT C	5 ,	2)=	+0.00000
ATI 6.	1 ?=	+0.66000	AT (ε.	2)=	+0.00000
AT(7 ,	1)=	+0.00000	ATI	7,	5)=	+0.00000
ATC 1	3)=	-1.00000	AT (4)=	+0.00000
AT(2 .	3v=	+0.00000	ATI	2	4)=	+1.00000
AT(3 .	3)=	+0.0000	AT	3	4)=	+0.00000
ATL 4 .	3)=	+0.20000	A -	4 ,	4) =	-0.30000
ATU 5 ,	31=	-0.30000	AT(•	4)=	+0.30000
AT(6 ,	3)=	+0.40000	ATI	€.	41=	-0.40000
AT(7 ,	3)=	+0.00000) TA	7.	4)=	+0.00000
AT(1 .	5)=	+0.00000	ATL	1.	6)=	+0.00000
AT(2	5)=	+0.00000	AT (Ž,	6)=	+1.00000
AT(3 .	5)=	-1.00000	AT (з.	გ)=	+0.00000
ATL 4 ,	5)=	+0.00000	ATC	4,	6)=	+0.00000
AT(5 ,	5)=	-0.30000	AT(5.	6) =	+0.30000
AT(6 .	5)=	-0.40000	ATC	6.	6)=	+0.40000
AT(7,	5)≖	+0.30000	ATC	7.	6)=	-0.30000
AT(1.	7)=	+0.00000	AT (1.	8)=	+0.00000
AT(2 ,	the property of the control of the c	+0.00000	ATC	2 .	8)=	+0.00000
AT(3,		+0.00000	AT	Э,	8)=	+1.00000
AT(4 ,		+0.00000	AT	4	8)=	+0.00000
AT(5 ,	7)=	+0.00000	AT(5.	8)=	+0.00000
AT(6,	7)=	+0.00000	AT(έ.	8)=	+0.00000
ATC 7.	7)=	-0.50000	ATC	7	3)≖	+0.50000

	•	•			
ſ	. 1	1	4	3	

95.74.35								
MATR	12	DE	RIGIDECES	DE LAS BARR	(AS			
k C	1,	325	1)=	+2,00000	. +(1.	2)=	-1.00000
k (2,		1)=	-1.00000	11.	2,	2)=	+2,00000
k (3	11.4	11=	→ 0. Up 000	- 	З,	21=	+0.00000
* (4 ,		1)=	40.00000	3 '	4,	21=	+0,00000
K C	5 ,		1)=	LECTION CONTRACTOR		5.,	, 2)=	+6.00000
k (ć,		1)=	4 O. GOOGH		6	2)=	+0.00000
k C	7,		1)=	+0.00000		7	. 2)=	+0.00000
1.0	8,		1)=	+0.00000) :	8	, 2)=	+0.00000
						ini.		
k(1 .		3)=	+0.00000	1.1	1.5		+0.00000
1. (2		3)=		r oyti¢	2	, 41=	+oooo
k (3		31=	+2.58500		3	. 4)=	-1.66100
k (4		(3)=	-1.60100		4	, 4)=	+4.29500
. k (5		3)=		1.1	5	, 4)=	+0.00000
ki	6		3)=	+0.00000	1.	É		+0.00000
k(7		3)≖	+0.00000	k (7	4)=	+0.00000
k (8		. 3)=	+0.00000	k (8	4)=	+0.00000
	Kabi		Ara San					
		id.	And developing	Algorithms of the second			sama na hasa a a a	. 0. 00000
k(1	Ç 150	5)≈	+0.00000	k (1	• (6)≠	+0.00000
- k (2		5)-	+0.00000	Hara R Co			+0.00000
k f	3		5)=	+0.00000	1.6	3	6)=	+0.00000
kt	4		5)=	+0.00000	V *	4	6)=	+0.00000
¥ (5		5)=	+2.58500	1 C	- 5	6)=	-1.66100
k(6		5)=	-1.56100	k (6	, 6)≖	+4.28500
k (7		5)=	+0.00000	k (7	, (6)=	+0.00000
k(8	dia.	5)=	+0.00000	- E.C.	8	6)=	+0.00000
	357	MIN'	A Tepul Salta is					
	25,5							
k (1		7)=	.+0.00000	1.1	1	. 81=	+0.00000
* (2		7)=	+0.00000	F 15		., 8)=	+6.60000
k (3		7)=	+0.00000	5-1	3	, 8)≖	+0.00000
k(4		7)=	-+0.00000	y 1 1	4	e)=	+0,00000
K.(5		7)=	+0.00000	· · ·		. 8)=	+0.00000
kl	€.		7)=	+0.00000	} (. 8)=	+0.00000
k (. 7		7)=	+2.00000				-1.00000
k (8		7)=	-1.00000		8	ু : ৪)=	+2.00000

Me	TRIZE	DE FIGIDECES	DE LA ESTO	liczi in	(115)		
			OC Ch. Cain	UC TORA				
K		:) =	+4.58500	F. (1 ,	2)=	+1.50106	
		1)2	+1.66100	K (· 2 .	2)=	*8.57000	2007年1月16日
K.(+0,00000	1.1	3 :	2≀=	+1.69100	
K.(+0.20020	1.6	4		+1.78-90	
			+1.2/330	P. (5 .	2)≃	+3,59786	
i ki			-1.69540	* (6,	$\mathbf{E}_{i} = \mathbf{e}_{i}$	+0.00000	
	7.70	:) =	+04,000000	E.C.	7.	2)=	-1.76 280	
r. (2) a			4.5		항 화물이 하는 사람이 나는 하지 않는	
1.1			+0.00000	K (41=	+0.22620	
. Ki		: <u>.</u>	+1,56100	F. (2.,	4) =	-1.78380	
K(7).	*#.2 *0.00000	1.6	70.	4)=	+0.00000	
1.1		2)=	+1.27390	r c	4.	4)=	+2.41726	
		in the second of the second of	+1.69840	F.1	5,	4)=	-0.91728	
/ (3)=	+0.22620	K(ć,	4)#	+1.22304	
				6.4	7,	41=	+0.00000	
- 2 K C	1 . 2 ,	(3) 5) 6 (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	+1.27380	K.C.	1 ,	6)=	-1.69840	Action which
κι		and the second s	+3.56760	K C	2 .	c)=	-0.00000	
- ki		5) = 5) =	+1.27380	1. K(З,	6)=	+1.69840	
ે દેવે	5 ,	- 5)= - 5)=	-0.91728		4 ,	£)=	+1,22304	
κί	ĕ.,	5)=	+1.83456	K(5,	6)=	-0.00000	
κι	7 ,	5)=	+0.00000	K (٤.	6 1=	+3.26144	
			-0.91728	Kt	7,	6)=	-1.22304	
κt								
ķί	1, 2,	7)= 7)=	+0.00000		ABUTTAN TWO			
- kc	3 ,	1.5	-1.78380					
ે દે (4 !	3, =	+0.22620	di Hilipa				
	5		+9.00000					
ik (6	()	-0.91728					
ા હેં	7 .	Garage Control of the	-1.22304					
			+2.41728					
	West Cons							

EL SISTEMA DE ECUACIONES ES COMPATIBLE DETERMINADO

MATRI	Z SOL	UCION				
					~	+0.000
KSC	1 .	1)=	+1.000	KS(1	2)=	+1.000
KSI	2,	1)=	+0.000	FISC 2	, 2)=	
KS	з,	1)=	+0.000	KSC 3		+0,000
KSC	4,	1)=	+0.000	KSIC 4		+0.000
KSI	5.	1)=	+0.000	KS(5		+0,000
KSI	6,	1)=	+0.000	KS(6		+0,000
KSU	7,	1)=	+0.000	KS(7	, 2) =	+0.000
		31=	+0.000	KS(1	. 4)=	+0.000
KS	1,	_				+0.000
KSU	2,	3)=	+0.000			+0.000
KSL	з,	3)=	+1.000	KS (3		+1.000
KSL	4 ,	3)=	+0.000	KS(4		
KSL	5,	3)=	+0.000	KS(5		+0.000
KS	6.	3) -	+0.000	KS(6		+0.000
KSU	7	3)=	+0.000	KS(7	', 4)≈	+0.000
1.5						
KSI	1.	5)=	+0.000	KS(1	6)=	+0.000
KSC	2 .	5)=	+0.000	KS(2	2, 6)=	+0,000
KSI	3:	5)= 🔄	+0.000	KS(3	3 , 6)=	+0.000
KS	4 .	5)=	+0.000	KS(4		+0.000
KS	5.	5)=	+1.000	KS(5	5 . 6)=	+0.000
KS	6.	5)=	+0.000		6)=	+1,000
KS	7,	5)=	+0.000		7 , 6)=	+0.000
W.C. #		7)≠	+0.000			
KSC	1 .		+0.000			
KS(5'	7)= 7)=				
KSC	з,	7)=	+0.000			
KSC	4.	7)=	+0.000 +0.000			
KSC	5,	7)=		1		
KS	<u> </u>	7)=	+0.000			
KSC	7	7)=	+1.000			生物的 化生物 医电影性

```
(117)
DESPLAZAMIENTOS
PHI( 1)= -20.483
PHI( 2)= -18.577
PHI( 3)= -11.520
 . d(
       1)=
                 +24.483
+78.094
  di
       2)=
  d (
       3)=
                 -10.837
  d (
       41=
                 +11.520
DEFORMACIONES
THETA B ( 1)=
                       -12.241
                        -E.241
            21=
21=
THETA A (
                        +0.584
THETA B /
THETA A
             7. 1 m
                        -4.117
                        -2.940
-5.760
THETA B (
            31=
THETA A (
            4)=
            4) m
                        -5.760
FUERZAS INTERNAS
   mA ( 1)≈
                     -16.241
   mB (
          1)=
                     -4.241
          3)≈
3)≈
5)≈
   mA
      1
                      -2.891
   mB
      Ċ
                      +7.781
   mΑ
      (
                      -5.760
   mB
                     -5.759
-5.760
          3)=
   mΑ
      è
          4)=
   mΒ
      Ċ
          4) m
                     -5.760
COMPROBACION EQUILIBRIO
FUERZAS EXTERNAS
    MC
         1)=
                    -1.350
    M(
         2)=
                    +2.022
    M(
         3)=
                    +0.000
    F(
         1)=
    F(
         2)=
                    +3.202
    F(
                    -4.269
    F
                    -0.000
```

Propongamos ahora un concreto de f'c=250 kg/cm² para cons--truir este marco.

Entonces tendremos un módulo de elasticidad propuesto

$$e = 10,000 \frac{kg}{cm} / 250 \text{ kg/cm}^2 = 158,114 \text{ kg/cm}^2$$

$$e = 1,581,140 \text{ ton/m}^2$$

Si proponemos una sección con dimensiones hc=0.5 m y b=0.3 m tendremos un momento de inercia propuesto

$$i = 0.3 \text{ m} (0.5 \text{ m})^3/12 = 0.00313 \text{ m}^4$$

Por tanto

$$ei = (1,581,140 \text{ ton/m}^2)(0.00313 \text{ m}^4) = 4941.06 \text{ ton m}^2$$

Si multiplicamos por ei las matrices de rigideces de las barras y rigideces de la estructura, y dividimos entre ei los -vectores de desplazamientos y deformaciones angulares que se obtuvieron del cálculo anterior encontraremos las matrices y vectores correctos correspondientes a los valores del módulo de elasticidad propuesto y del momento de inercia adoptado.

Estas matrices y vectores son los que aparecen a continua-ción, notese que la matriz de continuidad y su transpuesta
así como el vector de fuerzas internas no dependen de los ---valores propuestos y por tanto no tianen que corregirse.

TATRIZ DE RIGIDECES DE LAS BARRAS

	(IZ DE RI) 1	-4,948,97000 +0,00000 +0,00000 +0,00000 +0,00000 +0,00000	RRAS	1234567	2)= 2)= 2)= 2)= 2)=	-4,948,97000 +9,897,94000 +0,00000 +0,00000 +0,00000		
# C	2 , 1); 3 , 1); 4 , 1); 5 , 1); 6 , 1); 7 , 1); 8 , 1);	-4,948,97000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000	\$2 C \$2 C \$2 C \$2 C \$2 C \$2 C	23456	5)= 5)= 5)= 5)=	+9,897,94000 +0.00000 +0.00000		
# C	2 , 1); 3 , 1); 4 , 1); 5 , 1); 6 , 1); 7 , 1); 8 , 1);	-4,948,97000 +0.00000 +0.00000 +0.00000 +0.00000 +0.00000	\$2 C \$2 C \$2 C \$2 C \$2 C \$2 C	23456	5)= 5)= 5)= 5)=	+9,897,94000 +0.00000 +0.00000		
+ C	3 , 1); 4 , 1); 5 , 1); 6 , 1); 7 , 1); 8 , 1)	+0.00000 +0.00000 +0.00000 +0.00000 +0.00000	k-t 18 6 18 6 18 6 18 7	3 , 4 , 5 ,	5)= 5)= 5)=	+0.00000 +0.00000		
+ C	5 , 1); 6 , 1); 7 , 1); 8 , 1)	+0,00000 +0,00000 +0,00000 +0,00000	\$2.6 \$2.6 \$2.6 \$2.6	4 , 5 ,	2)= 2)=	+0.00000		
10 () () () () () () () () () (5 , 1); 6 , 1); 7 , 1); 8 , 1)	+0.00000 +0.00000 +0.00000	続す 続す と(ć,	2)=			攀近 风布和
# C # C # C # C # C # C # C # C # C # C	7 , 1) 8 , 1)	+0.00000 +0.00000	1. (23-			P-01450 355
k t 4 c 4 c 6 c 6 c 8 c 8 c 8 c	8 . 1)			7.	2)=	+0.60000		
		+0.00000	10 C		2)=	+0.00000		
ic ic ic ic ic ic ic	1 , 3)			8 ,	2)≖	+0.00000		
ic ic ic ic ic ic ic	1 , 3)							
ic ic ic ic ic ic ic		+0.00000	kt	1.	4)=	+0.00000		事系统
) () () () () () () () () () (2 . 3)		k (2,	4)=	+0.00000		PRES
• € • € • £ € • £ €	3 . 3)		30 0	э́.	4)=	-8,220,24000		
# (4 . 3)		k (4 .	4)=	+21,206,30000		Wald T
	5 . 3)		k (5 .	4)=	+0.00000		
	6 , 3)		k(δ.	4)=	+0.00000		
kt Lugarja na svetje je Historija na je kt ej	7 3)		k(ž:		+0.00000		
	8 , 3)		k (в.	4)=	+0.00000		
				- •				
and the first of the second section of the section of the second section of the section of t		+0.00000	k(,1,		+0.00000		
		≠ 6,00000	k (2.	6)=	+0.00000		
) (3, 5)		k (з,	6)≖	+0.00000	그 그 이 이 아름다면	
*(4 , 5)		k(4.,		+0.00000	그 그 그 그는 사용됐	
■ (5, 5)		k(5,		-8,220.24000		
	6, 5)		, k(6.	6)=	+21,206,30000		
*(7 , 5)		k(7,		+0.00000		
k (8 , 5)	+0.00000	k (8,	6)×	+0.00000		
₽ (1, 7)	± +0.00000	k C	1 ,	S)=	+0.00000		
*(2 . 7)	+0.00000	k (2 ,		+6.00000		
*(3 , 7)	= +0.00000	k(з,	(\$)=	+0.00000		Albert
A (4 , 7)		ik (4 .	€)=	+0.00000		
# (5 , 7)		k (5,	€)=	+0.00000		
*<	6 . 7)	+0.00000	k (6.	8)≈	+0.00000		
) ()	7 , 7)		k (7.	€)=	-4,949.97000		
* (8, 7	= -4,948.97000	· 1: C	ε,	(s) =	+9,897.94000		经制制

```
MATRIZ DE RIGIDECES DE LA ESTRUCTURA
                +22,691.00000
```

```
+8,220,24000
+42,412,70000
+8,220,24000
-8,827,97000
417,655,90000
                                                    2)= 2)=
    1 ,
2 ,
3 ,
                                             1 ,
                                            2 .
            1)=
                    +8,220,24000
                                        ĸ
            1)=
                        +0.00000
                                        KC
KU
            1)=
                    +1,119,46000
                                        ĸc
                                             4
    5 ,
            1)=
                    +6,303.99000
                                        KC
                                             5 .
K(
                                                               +0.00000
K
     6
            1)=
                    -8,405.33000
                                        ΚC
                                             67
                                                    2)=
                                                            -8,827,97000
            1)=
                        +0.00000
                                                    2)=
                                                            +1,119.46000
-8,827.97000
            3)=
                        +0.00000
                                        ΚÇ
                                             1
                                                    4)=
     1 ,
     23
            3)=
                    +8,220,24000
                                        ۲ (
                                                    4)=
                                                                +0,00000
            3)=
                   +22,691,00000
                                        ĸc
                                               .
                                                    41=
KC
                                                           +11,963.00000
                                             4
                                                    4)=
             3)=
                         +0.00000
                                        E.C
                                                            -4,539.59000
                                        ĸc
                    +6,303.99000
                                                     4) *
KC
             3)=
                                                            +6,052.79000
                                        K
                    +8,405.33000
                                             გ
7
                                                     4)=
             3)=
ĸC
     ó
                                                                +0.00000
                                                     4)=
             3)=
                    +1.119.46000
                                        K(
                                                     6)=
                                                            -8.405.33000
                                        κt
             5)=
                    +6,303.99000
                                             1
K
                                                               +0.00000
                                                     6) m
                                        Κť
K
             5) =.
                   +17,655.90000
                                                            +8,405.33000
     3
             5)=
                    +6,303.99000
                                         ĸŧ
                                             3
                                                     *(ک
             5)=
                    -4,539.59000
                                         ĸŒ
                                             4
                                                     6)=
                                               ,
                                                                -0.00024
             5)=
                     +9,079.18000
                                         ĸc
                                             5
                                                     6)=
             5)=
                         -0.00024
                                         K
                                             6.
7
                                                     6)=
                                                           +16,140.80000
     67
                                                            -6,052.78000
                     -4,539.59000
                                                     6)=
```

1. 7)= +0.00000 K 3 7)= -8,827.97000 KC 7)= +1,119,46000 KC K(4 K(5 7)= +0.00000 7)= -4,539.59000 67 -6,052.79000 7)= +11.963.00000

```
DESPLAZAMIENTO:
PHI( 1)= -7.003
FHI( 2)= -7.004
FHI( 3)= -7.002
FHI( 1)= +7.005
 ţ١
         2)=
                        +:.015
   ₫(
       -31=
   фC
          4)=
  di
DEFORMACIONES
THETA A 10=
THETA B : 10=
                              -0.000
-0.000
-0.000
                 1)=
2)=
3)=
3)=
3)=
4)=
+,-
 THETA A
 THETA B
                                                   THETA A
                              -0,00
 THETA B (
THETA A (
THETA B
                                -0.001
                                -0.001
                                -0.001
```

3.- Analizemos el marco que a continuación se presenta bajo el efecto de las cargas mostradas.

Numerando nudos no apoyos y apoyos, direccionando y numerando las barras se tiene:

De las figuras anteriores podemos obtener:

Nudo	Coorder (X)	រគ ព័ ងន (<u>Y</u>)	Nudo	Coordet	nadas (Y)
1	O.O m	4.0 m	-5	4. 0 m	6.0 m
2	2.0 m	4.0 m	6	0.0 m	⊙.⊙ π
3.	4,0 m	41 . O m	7	2.0 m	2.0 m
4	0.0 m	6.0 m		4.0 m	0.0 m

	$\frac{1}{1 + \frac{1}{1 + \frac$		
	to action we are interested to be		
	A TOTAL CONTRACTOR		
		Sant Time	

	Nudo			Nudo
Origen	Destino		Origen	Destino
1	1	5	3	5
2	2	6	2	.
	4			
3	3		2	2
		-6		
4	4	8	4	2

La estructura tiene los siguientes dos grados de libertadlineal:

De la figura anterior se puede establecer:

医动脉切除 医海绵管				
			libertad	
			responde co	
			amiento del	. nudo
			rección:	
Nuc	do	(X)	(Y)	
	Lare		\mathbf{Q}_{i}	
2	현대의 등 기계 여기는 등 없		O	
			0	
		ζ	0	
·		4	\sim 1. The second $O(2)$	

Obtengamos ahora los momentos de empotramiento, los cortantes, el momento de inercia y los coeficientes de rigidez para cada una de las distintas barras que componen el marco. Para lo - cual habrá que considerar las dimensiones de las barras, que en su mayoría son de sección variable. Las figuras que ilustran la forma y dimensiones de las barras se presentarán junto con sus valores respectivos de las cantidades mencionadas.

--- Para la barra 8

$$W_{\Lambda} = W_{B} = 0.3 \text{ m} = r_{\Lambda} \text{hc} = r_{B} \text{hc}$$
 $r_{\Lambda} = r_{B} = 0.3 \text{ m/hc} = 0.3 \text{ m/0.5 m} = 0.6$
 $a_{\Lambda} = a_{B} = 2 \text{ m/L} = 2 \text{ m/4 m} = 0.5$

De la tabla 36 que es la correspondiente a estos valores

$$R_{AA} = 10.72 - R_{BB} = 10.72 - C_{AB} = 0.633 - C_{BA} = 0.633$$

De aquí calculamos

$$R_{AB} = C_{BA}R_{BB} = 0.633(10.72) = 6.786$$

 $R_{BA} = C_{AB}R_{AA} = 0.633(10.72) = 6.786$

De la misma tabla para carga uniformemente distribuida

$$m_{A} = 0.0969$$
 $m_{B} = 0.0969$

De aquí calculamos

$$M_A = m_A w 1^2 = 0.0969(2 \text{ ton/m})(4 \text{ m})^2 = 3.101 \text{ ton m}$$

 $M_B = m_B w 1^2 = 0.0969(2 \text{ ton/m})(4 \text{ m})^2 = 3.101 \text{ ton m}$

Por suma de momentos podemos encontrar las demás reacciones

Si sustituimos reacciones por acciones obtenemos la bagra equivalente en cuanto a las fuerzas externas aplicadas

El momento de inercia de esta barra es

$$I=bh^3/12=(0.3 m)(0.5 m)^3/12=0.0013 m^4$$

--- Para las barras 6 y 7

$$W_{R}=0.2 \text{ m=r}_{R}hc$$

$$W_{R}=0.2 \text{ m=r}_{R}\text{hc}$$
 $r_{R}=0.2 \text{ m/hc}=0.2 \text{ m/0.2 m=1.0}$

$$W_{\Lambda} = 0.0 \text{ m} = r_{\Lambda} \text{hc}$$

$$W_{A} = 0.0 \text{ m} = r_{A} \text{ hc}$$
 $r_{A} = 0.0 \text{ m/hc} = 0.0 \text{ m/0.2 m} = 0.0$

$$a_{p}L=1 m$$
 $a_{p}=1 m/L=1 m/2 m=0.5$

$$a_A L=0 m$$
 $a_A=0 m/L=0 m/2 m=0.0$

De la tabla 52 que es la correspondiente a estos valores

$$R_{AA}=4.99$$

$$R_{DD} = 12.28$$

$$R_{AA}=4.99$$
 $R_{BB}=12.28$ $C_{AB}=0.948$ $C_{BA}=0.385$

De aqui calculamos

$$R_{AB} = C_{BA}R_{BB} = 0.385(12.28) = 4.729$$

$$R_{BA} = C_{AB}R_{AA} = 0.948(4.99) = 4.729$$

El momento de inercia es

$$I=bh^3/12=(0.3 \text{ m})(0.2 \text{ m})^3/12=0.0002 \text{ m}^4$$

---Para las barras 4 y 5

$$a_3=2 \text{ m/L}=2 \text{ m/2 m=1.0}$$

 $a_A=0 \text{ m/L}=0 \text{ m/2 m=0.0}$

De la tabla 52 que es la correspondiente a estos valores

$$R_{AA} = 5.17$$
 $R_{BB} = 8.57$ $C_{AB} = 0.642$ $C_{BA} = 0.388$

De aquí calculamos

$$R_{AB} = C_{BA}R_{BB} = 0.388(8.57) = 3.322$$

 $R_{BA} = C_{AB}R_{AA} = 0.642(5.17) = 3.322$

De la misma tabla para carga uniformemente distribuida

$$m_A = 0.0675$$
 $m_B = 0.1011$

De aquí calculamos

$$M_A = m_A w l^2 = 0.0675(1 \text{ ton/m})(2 \text{ m})^2 = 0.270 \text{ ton m}$$

 $M_B = m_B w l^2 = 0.1011(1 \text{ ton/m})(2 \text{ m})^2 = 0.404 \text{ ton m}$

Por suma de momentos podemos encontrar las demás reacciones

Si sustituimos reacciones por acciones obtenemos la barra equivalente en cuanto a las fuerzas externas aplicadas

El momento de inercia es

$$I=bh^3/12=(0.3 \text{ m})(0.5 \text{ m})^3/12=0.00313 \text{ m}^4$$

 $R_{AA}=4.35$ $R_{BB}=5.81$ $C_{AB}=0.642$ $C_{BA}=0.481$

De aquí calculamos

$$R_{AB} = C_{BA}R_{BB} = 0.481(5.81) = 2.794$$

 $R_{BA} = C_{AB}R_{AA} = 0.642(4.35) = 2.794$

De la misma tabla para una carga concentrada

bL=2 m b=2 m/L=2 m/4 m=0.5

Para este valor

 $m_{A} = 0.1049$ $m_{B} = 0.1701$

De aquí calculamos

 $M_A = m_A PL = 0.1049(10 ton)(4 m) = 4.196 ton m$ $M_B = m_B PL = 0.1701(10 ton)(4 m) = 6.604 ton M$

Por suma de momentos podemos encontrar las demás reacciones

Si susti**t**uimos reacciones por acciones obtenemos la barra equivalente en cuanto a las fuerzas externas aplicadas

El momento de inercia es

$$I=bh^3/12=(0.3 \text{ m})(0.5 \text{ m})^3/12=0.00313 \text{ m}^4$$

---Para la barra 2

Por tener sección constante sabemos

$$R_{AA}=4$$
 $R_{BB}=4$ $C_{AB}=0.5$ $C_{BA}=0.5$

Por tanto

$$R_{AB}=2$$
 $R_{BA}=2$

Si superponemos los efectos de la carga de cada una de las barras en la estructura tenemos

De la figura anterior se pueden obtener las fuerzas que --actuan en dirección de cada uno de los grados de libertad (lineales y angulares) que son:

Fuerza sobre el grado de libertad lineal 1=0 ton Fuerza sobre el grado de libertad lineal 2=0 ton Momento externo en el nudo 1=6.534 ton m Momento externo en el nudo 2=0.000 ton m Momento externo en el nudo 3=-6.534 ton m Momento externo en el nudo 4=-2.697 ton m Momento externo en el nudo 5=2.697 ton m

El marco se hará de concreto de f'c=200 con módulo de elasticidad E=1.414.210 ton/m².

Hemos visto que este marco tiene 5 nudos no apoyos,3 apoyos 8 barras y 2 grados de libertad lineal.

Nos interesa conocer unicamente les desplazamientos, deforma ciones angulares y momentos internos por lo que evitaremos que el programa imprima las matrices involucradas en el cálculo in troduciendo un valor distinto de cero cuando el programa prequente si se imprimiran las operaciones.

Tenemos todos los datos necesarios para ejecutar el progra-

Proporcionando los datos obtenidos se corrió el programa y se obtuvieron los siguientes resultados.

(136)

ORADO DE LIBERTAD LINEAL QUE CORRESPONDE CON EL DESPLAZAMIENTO

				LEL	MULC	FILLA	LIRECCION	
NUDC		COURDEN/	NDAS		<i>X</i>		Y	
	¥= -		44,000		1			
	X= +2	ino ve	+4.000		11)			
300	3 - +-	. On the	+4.000	•	: 1			
4	y = +(2500 N €			, 2 X as .			vitiliain
5	X = 4 £	1000 Y#		1	2)		1 (O)	Parkitakan
ے خ	χ= +	.7.3C Y≈	+0.000 AFCY	ာ	11444			
7	X= +:	, 100 Ye	TARVEL NEWS					
	ୁ አ⊍ +4	.000 Y≃ .	a. 000 AFIM	ů,				1400
					15 35	Carrie		
PARFIA	1.700	#UTO _	MOMENTO	200				
	OFIGEN	DESTING	INCROIA	1,300				
			0.000					
2	7		0.001:			historial (c		
	٠	3	0.0031					
4	1 . 1	보다 보다 불로입다.	0.0031					
5	3	5	0.0021					
	2		0.0000				la de Rodola Allania. Politica de Cara	
		<u> </u>	0.0000			of a plant		
	4		0.0031				and the second of the second o	

BARRA LUMOITUD	COEFICIE	NTES DE RIGIDEZ	
	RAA	RAB. RBA	t.i.
1 4.0:	+4.350	+2.764	+5.810
2.0(+4.000	+2.000	+4.000
3 4.0C	44.350	~2.794	+5,610
4	+5.170	+3.500	+3.570 ·
3.01	₹5.170	+5.322	+8,570
2.01	+4.990		+12,75 (c)
	+4. CTI)		- 12.250.
맛이게 줘요하다 가다 수 있는데 그리고 뭐요.	+10.720	1.,786	-19.72s

MODULO DE ELAFTICIDAD DEL MATERIAL (E)F

N											<u>_</u>		
											0		
											. 1		
											5		
											٥		

	SRA	E'C	4			10,000	
S	ת	E		Ar.		FRZ	
		RTA			XTE	FIN	۸
	LIN	E AL					
13	-		3.). (r	

EL SISTEMA DE ECUACIONES ES GIMPATICIOS DETERMINADO.

```
DESPLAZAMIENTOS

==:( 1) = +0.0 0

==:( 2) +0.0
PH1( 2)=
                     ÷0,0
−0,000
                  +0.10
 F1:30 514
5( 1)=
5( 1)=
 DEFORMACTORES ...
                        +0.000
+6.000
+0.000
+0.00
+0.100
 THETA A 1 1 1 THETA B ( 1) =
               ) m
 THETA A !
               ع د خ
 THETA E !
               317
 THETA A
 THETA E
               3) a
                            -0.000
 THETA A
               4)=
                            -0.000
-0.000
 THETA B
               Δ)u.
               5)#
5)#
 THETA A C
                            +0.490
 THETA B (
                            -0.000
               £)#
 THETA A C
               &)=
∵)π
7)=
                            +0.000
  THETA B (
                            -0.000
 THETA A
                            -0.000
  THETA E
                           +0.000
+0.000
  THETA A (
                ⊕) **
               8)=
  THETA B (
  FUERZAS INTERNAS
                         -1.32
      mA (
             1)=
                          +1.745
      mB (
             110
                          -0.0
+0.0
+1.320
-2.746
+3.047
             2) =
2) =
      164
      mD (
              (1) m
      nA C
             3)=
4)=
      mE
      mΑ
                         / -: .eo~
      int: (
             41:
                          +3,047
     mA ( 5) m
mb ( 5) v
                          +:.e:~
    , ins
              e) =
    mf (
              217
     mE (
              7 ) =
                          -4.742
                          +1.0
      min (
              (€) =
              3 ) F
   COMPROBACION EQUILIERIO.
   FUERZAS EXTERNAS
                         +6.53:
           115
       11:5
                         +0.000
-1.50:
-1.50:
-2.50:
        M 1
             Ē) =
        MI
             A - -
        +11
        111
             v, 1 - .
                          -0.000
        F:
             1)=
                          +4.
```


					·	····						,			<u></u>		·			~				
pt pt Note:																								
_						hc		T-42.			All carry-over factors and fixed end moment													
_	ranc Wal Gal									W _b r _b h _c coefficients are negative.									igative and all stiffness factors are					
		Ан									# D							-						
Right							f. Loa				Conce	ntrated	Load F.	E.M	Coef. >	$\angle PL$			Haunch Load at					
Hau			-over tors	,	ness tors	F.	.M.3.	1				Þ					· · · · · · · · · · · · · · · · · · ·			oft		ght		
-						Coet	'. × w	L	0.1		. 0	3	0.	5	0.	7	0	. 9		$\stackrel{M}{\scriptscriptstyle{ ilde{N}}}_{A}L^{1}$	F.E. Coef. X	.M. (W _B L)		
a ,	r,	CAB	CBA	RAA	RBE	mA	m	9	mA	m _B .	m A	m _{g.}	mA	m B	m A	w B	m A	mg.	MA	m _B .	m _A	m e		
	$a_A = 0.5$ $a_B = \text{variable}$										TABL	E 36			r _A =	0.6			r _B =	variab	le	······································		
0.1	0 4 0.6 1.0 1.5	0.461 0.475 0.495 0.510 0.519	0.778 0.774 0.772	9 28 9 43 9 65 9 81 9 91	5 77 6.17 6 48	0.10	19 0 0 15 0 0 11 0 0	809 (854 (889 (0 0882 0 0 0879 0 0 0877 0	0054 0.0058 0.0061	0 1886 0 1864 0 1847	0 0471 0 0501 0 0525	0 17113	0.1152 (0.1223,(0.1279 (0 0878' 0 0812 0 0761'	0.1562 0.1653 0.1723	0 0076 0 0052 0 0034	0 0396 0 0929 0 0953	0 0288 0 0285 0 0284	0 0054 0 0058 0 0060	0 0000 0 0000 0 0000	0 0016 0 0016 0 0016 0 0016 0 0017		
0 2	0 4 0 6 1 0 1.5	0 502 0.532 0.576 0.612	0.760 0.752 0.740 0.731	9.64 9.96 10.43 10.84	6.37 7.05 8.13 9.08	0.106	59 O O 26 O O 31 O 1	844 907 002 081	0 0880 0 0 0876 0 0 0870 0	0059 0064 0073 0080	0.1865 0.1833 0.1785 0.1744	0 0506 0 0553 0 0626 0 0688	0 1758 0 1684 0 1682 0 1572 0 1478	0 1228 0 1337 0 1504 0 1647) 0837; 0 0837; 0 0750 0 0621; 0 0516;	0 1633 0 1759 0 1948 0 2106	0 0092 0 0071 0 0045 0 0027	0 0873 0 0901 0 0937 0 0937	0 0286 0 0282 0 0276 0 0272	0 0058 0 0063 0 0072 0 0079	0 0006 0 0005 0 0004 0 0002	0 0058 0 0060 0 0062 0 0064		
		0.635 0.534 0.580	0.724	11,11	9.74	0.08	74 O .1	134	0.0862	0085	0.1716	0.0731	0.1414	0.1745 0.1310	0.0447	0.2211	0.0018	0.0975	0.0269	0.0083	0 0001	0.0065		
0.3	1.0 1.5 2.0	0.653 0.716 0.759	0.674	12.33	14 15	0.07	72 0.1	321	0.0848	0102	0 1653	0.0860	0.1290	0 2191	0 0298	0 2320	0 0031	0 0969	0 0251	0 0099	0 0008	0 0123 0 0131 0 0137 0 0141		
0.4	0.4 0.6 1.0 1.5 2.0	0.555 0.615 0.717 0.813 0.885	0 674 0 637 0 608	11.55 12.59	9.64 13.00 16.84	0 09 0 08 0 078	79 0 0 79 0 1 34 0 1	978 144 313	0 0869 0 0857 0 0845	0 0078 0 0099 0 0123	0 .1776 0 .1680 0 .1582	0 0663 0 0833 0 1017	0 1569 0 1367 0 1165	0 1540 0 1888 0.2257;	0 0688 0 0523 0 0379	0 1815 0 2069 0 2305	0 0079 0 0054 0 0036	0 0878 0 0913 0 0940	0 0275 0 0265 0 0254	0 0076 0 0095 0 0116	0 0041 0 0030 0 0021	0 0188 0 0198 0 0214 0 0228 0 0238		
0.5	0.4 0.6 1.0 1.5 2.0	0 563 0 633 0 757 0 889 0 997	0 581 0 540	11 84	15 45	0 086	55 0.1 55 0 1	326	0 0853 0 0 08 3 8 0	0.0107	0.1655 0.1538	0.0880	0.1324 0.1106	0 1903; 0 2326	0 0523 0 0387	0 1991 0 2212	0 0057 0 0039	0 0899	0 0262	0 0100	0 0060	0 0258 0 0274 0 0300 0 0325		
!		1 _A == 0		17.23	·	B = 1				.0108		E 37	0 0929	2009;			J . 0028	<u> </u>			<u>'</u> -	0 0344		
	0.4	0.548	0.591	5 37						0032			0 1472	0.1271	<i>r</i> _{.4} = 0 0679		0 0067			variat		0 0016		
0.1	0.6 1.0 1.5 2.0	0.565 0.588 0.605 0.615	0 588 0 586	5.44 5.54 5.62 5.67	5 54	0.090	5:00 6:00	925 0 960 0	0.0936	0.0036	0.1749 0.1735	0 0594 0 0620	0.1400 0.1368	0 1400 0 1458	0.0594, 0.0557	0 1749 0 1816	0 0036 0 0024	0 0936 0 0957	0 0016	0 0000	0 0000	0 0016 0 0016 0 0016 0 0017		
0.2	0.4 0.6 1.0 1.5 2.0	0.597 0.633 0.685 0.726 0.752	0 579 0 573 0 566 0 560 0 557	5 56 5 71 5 95 6 14 6 28	1 6 31	In nac	വ വ'ല	ハリンド	n no 34'r	1 0040	n 1791	0.0654	n 13421	0 1524	0.545	A 1858	A AAAA	ID 0011	In Mis	0.000	0.000	0 0059 0 0061 0 0063 0 0064 0 0065		
0 3	0.4 0.6 1 0 1.5 2.0	0.638 0.694 0.779 0.853 0.903	0.561 0.550 0.535 0.524 0.516	5 69 5.92 6.31 6.67 6.93	7 47 9 18 10 85	0 08	/2 0 1)3 0 1)3 0 1	042 (181 (307 (0.0932[0 0.0928]0 0.0924]0	0 0045 0 0054 0 0062	0 1687 0 1622 0 1564	0 0731 0 0864 0 0991	0.1020	0 16711 0 1951 0 2209	0 0501 0 0378 0 0275	0.1938 0.2175 0.2380	0 0051 0 0033 0 0020	10 0903 10 0937 10 0960	0 0016 0 0016 0 0016	0 0000	0 0011 0 0008 0 0005	0 0121 0 0127 0 0133 0 0139 0 0142		
0 4	0.4 0.6 1.0 1.5 2.0	0.668 0.742 0.864 0.979 1.063	0.540 0.523 0.500 0.481 0.469	6.60 7.15	8.61 11.41 14.53	0 086 0 078 0 076	50 0 1 30 0 1 34 0 1	063 (233 (401 (0 0930 0 0 0925 0 0 0919 0	0.0049 0.0062 0.0075	0.1666 0.1581 0.1496	0 0785 0 0974 0 1174	0 1242 0 1075 0 0911	0 1749 0 2113 0 2487	0 0499 0 0375 0 0269	0 1918 0 2165 0 2387	0 0056 0 0037 0 0024	0 0890 0 0923 2 0948	0 0016 0 0016 0 0016	0 0000	0 0029 0 0022 0 0015	0 0194 0 0206 0 0220 0 0233 0 0242		
0.5	0.4 0.6 1.0	0.686 0.774 0.931	0.519 0.495 0.462 0.437	5 83 6.17 6 80 7 52	7 72 9 65 13 70	0 090 0 085 0 077	04 0.0 54 0.1 71 0.1	957 056 235 427	0.0933 0.0929 0.0922	0 0043 0 0052 0 0068	0 1706 0 1653 0 1556 0 1450	0 0695 0 0812 0 1041	0.1326 0.1223 0.1045	0.1541 0.1751 0.2143	0 0579 0 0501 0 0334	0 1727 0 1864 0 2090	0 0071 0 0058 0 0041	 0 0858 0 0879 0 0910	0 0016 0 0016 0 0016	0 0000 0 0000 0 0000	0 0066 0 0058 0 0044	0 0270 0 0285 0 0311		
		1 _A = 0		1 0.13		18 = 1			0307			E 38	0 0120	0 2:141	141 0 0215 0 2458 0 0020 0 0951					$r_B = \text{variable}$				
0.1	0.4 0.6 1.0 1.5 2.0	0 528 0 544 0 566 0 582 0 593	0 689 0 687 0 685 0 683 0 681	6.92 7.03 7.19 7.31 7.39	5 31 5 57 5 95 6 24	0 112 0 110 0 102 0 103	26 0 0 05 0 0 26 0 0	774 (806 (850 (883 (0.0944	0031	0 2066 0 2054 0 2037 0 2024	0 0405 0 0423 0 0450 0 0470	0.1697 0.1661) .1253()) .1308()	0 0833 0 0790 0 0732 0 0688	0 1525 0 1590 0 1660 0 1749	0 0045 0 0029	0 0874 0 0899 0 0931 0 0954	0.0063 0.0063 0.0063	0 0002 0 0002 0 0002	0 0000 0 0000 0 0000	0 0016 0 0016 0 0016 0 0016 0 0017		
0.2	04 06 05 12 2	0 575 0.609 0 659 0 698 0 724	0 674 0 667 0 659 0 652 0 647	7 20 7 44 7 81 8 12 8 34	6 15 6 80 7 81 8 70	0.108 0.104 0.099	37 0 0 19 0 0 13 0 0	840 (901 (993 (0 0944 0 0 0942 0 0 0939 0 0 0937 0	0031 0034 0039 0043	0 2037 0 2011 0 1973 0 1940	0 0455 0 0497 0 0561 0 0616	0 1701; 0 1635; 0 1533; 0 1449;	12599 1367 15339 1675	0 0752 0 0673 0 0561 0 0468	0 1661 0 1787 0 1973 0 2127	0 0079 0 0062 0 0039 0 0023	0 0877 0 0904 0 0939 0 0963	0 0063 0 0063 0 0062	0 0002 0 0002 0 0003	0 0005 0 0004 0 0003	0 0058 0 0060 0 0062 0 0064 0 0065		
0.3	0.4 0.6 1.0 1.5 2.0	0 614 0 666 0 748 0 818 0 866	0.653 0.640 0.622 0.609 0.600	7 41 7 77 8 37 8 95	6 96 8 09 10 06 12 03	0 100 0 101 0 094 0 08	8 0 0 19 0 0 12 0 1 73 0 1	873 954 089 211	0 0942 0 0940 0 0935 0 0931	0 0034 0 0038 0 0047 0 0056	0 2018 0 1980 0 1919 0 1860	0 0493 0 0558 0 0668 0 0774	0 1656 0 1564 0 1411) 0 1344: 0 1503 (0 1771; 0 2008)	0 0722 0 0627 0 0480 0 0353	0 1711 0 1868 0 2118 0 2341	0 0081 0 0065 0 0042 0 0026	0 0870 0 0895 0 0931 0 0956	0 0062 0 0062 0 0063	0 0003 0 0003 0 0003 0 0004	0 0019 0 0015 0 0011	0 0119 0 0125 0 0132		
0.4	0.4	0.641 0.711 0.827 0.936 1.015	0 629 0 609 0 581 0 559 0 545	7 54 7 99 8 82 9 71	7 69 9 34 12 56 16 24	0 100 0 100 0 09 0 08	31 0 C 08:0 0 19:0 1	879 971 131 293	0 0941 0 0938 0 0932 0 0925	9 0036 9 0047 9 0054 9 0068	0 2006 0 1960 0 1879, 0 1794	0 0517 0 0601 0 0756 0 0925	0 1634 0 1526 0 1338 0 1149 0 1002	0 1.81: 0 1573 (0 1923 (0 2291:	0 0719 0 0624 0 0476 0 0346	0 1689 0 1841 0 2092 0 2324	0 0086 0 0070 0 0048 0 0042	 0-0858 0-0881 0-0916 0-0942	0 0062 0 0062 0 0062 0 0063	0 0003 0 0003 0 0004 0 0005	0 0044 0 0036 0 0027 0 0019	0 0190 0 0200 0 0215 0 0229		
0 5	0 4 0 6 1 0	0 657 0.740 0 537 1 038	0 604 0 576 0 538	7 62 8 13 9 12	8 28 10 43 15 04 21 01	0 105 0 100 0 09 0 08	57:0 0 52:0 0 10:0 1	870 2961 127 304	0 0941 0 0937 0 0930 0 0930 0 0921	0 0037, 0 0045 0 0060 0 0079	0 1998 0 1948 0 1855 0 1750	0 0527 0 0621 0 0809 0 1037	0 1618 (0 1504 (0 1305 (0 1097 (0 0926)	0 1375 0 1572 0 1944 0 2366	0 0717 0 0626 0 0486 0 0364	0 1649 0 1785 0 2012 0 2230	0 0089 0 0073 0 0052 0 0036	0 0849 0 0870 0 0901 0 0028	0 0062 0 0062 0 0061 0 0060	0 0003 0 0004 0 0005 0 0006	0 0082' 0 0072 0 0056 0 0042	0 0261 0 0276 0 0302 0 0327		

Conclusión.

Después de leer este trabajo detenidamente puede comprender se la utilidad del programa para computadora que en él se presenta para el análisis de marcos planos con barras de sección variable.

Este programa se realizó con el objetivo principal de demos trar el funcionamiento del método directo de las rígideces, y por tal motivo es susceptible de modificaciones que podrían --- adaptarlo a algún uso particular haciendolo más eficiente.

El tiempo que emplea la computadora en efectuar un análisis determinado con este método es bastante aceptable en compara--ción con el mismo análisis efectuado con otro método en la misma computadora.

Es obvio que la computadora misma en que se corra este programa o uno similar determina la velocidad y el costo de los - cálculos. En una computadora de bolsillo un análisis como el que realizamos en alguno de los ejemplos sería muy lento y --- aunque la hora máquina de este tipo de computadoras es barata la utilización de ellas sería poco atractiva. En comparación tenemos la macrocomputadora que es muy rápida pero como el costo de la hora máquina de la misma es cara también hace poco -- atractiva su utilización. Un término medio entre tiempo y costo es la microcomputadora que para este tipo de calculos es la más atractiva.

Nunca debe olvidarse que la precisión o la veracidad de los resultados que se obtienen con este programa dependen princi--palmente de la veracidad y precisión de los datos iniciales --que hay que proporcionar al mismo.

Existen diversas formas de manejar el método directo de las rigideces, cada una de las cuales tiene sus ventajas particula res, la forma de manejar el método que se empleo en este trabajo es una de las más sencillas y por está razón se eligió para ilustrar el funcionamiento del método, sacrificando con --- ello la eficiencia en que otras formas de manejar el método -- tienen ventaja, no obstante, como deseamos calcular no solo -- los desplazamientos de la estructura, sino también los momen-- tos internos en los extremos de las barrar, la forma de apli-- car el método adoptada es adecuada.

Generalmente cuando los calculos se realizán manualmente es conveniente trabajar el módulo de elasticidad y uno de los distintos momentos de inercia como constantes con lo cual se evita el manejo de cantidades demasiado grandes, pero al trabajar con la computadora ésto no proporciona una ventaja considera-ble y por ello se prefirió no hacerlo en el programa con lo -cual se obtienen directamente las matrices correspondientes a la estructura que se analiza, lo que permite obtener los vec-tores de soluciones sin necesidad de hacer correcciones.

De los ejemplos presentados puede observarse que los momentos internos en los extremos de las barras depende de la proporción que guardan entre sí los momentos de inercia de las barras dentro de la estructura sin importar el valor específico de éstos, por ejemplo si analizaramos los tres marcos signientes bajo el mismo sistema de cargas aplicadas, teniendo los entres desde luego las mismas dimensiones generales o propieda—des geométricas de la estructura, obtendríamos los mismos mo—

mentos internos ya que en todos estos marcos $I_2=2I_1$ y $I_3=3I_1$

Es claro desde luego que en cada uno de ellos los desplazamientos aunque proporcionales serían distintos.

En la utilización de las tablas del manual de Portland Ce-ment Association para la obtención de los coeficientes de ri-gidez R_{AA} , R_{BB} , factores de transporte C_{AB} , C_{BA} , y coeficientes
del momento de empotramiento m_A , m_B , es válida la internolación
lineal si para los valores de los parametros a_A , a_B , r_A , r_B o b

no se encuentran tabuladas dichas cantidades.

Para terminar podemos decir que el programa que se presentó es algo versatil y puede utilizarse en algunca calculos que no se trataron en este trabajo por ser casos poco frecuentes en - realidad, siempre y cuando los datos que se proporcionan o las condiciones que se utilizan se adapten adecuadamente para cumplir con los fundamentos del programa.

Bibliografía.

Structural Matrix Analysis for the Engineer.
John S. Robinson

Theory of Matrix Structural Analysis.

J.S. Przemieniecki

Estructuras Estáticamente Indeterminadas. White, Gergely, Sexmith

Computer Methods of Structural Analysis.

Beaufait, Rowan, Hoadley, Hackett

Análisis de Estructuras Indeterminadas.

J. Sterling Kinney

Handbook of Frame Constants.
Potrland Cement Association