UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

"DETECCION DE NEUTRONES RAPIDOS POR TRAZAS EN POLICARBONATOS"

TES S 1.5 que para obtener el título de F C S n t a 0 S e p CARLOS ALEJANDRO VARGAS

México, D. F.

1982

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. **TESIS CON FALLA DE ORIGEN**

INDICE

INTRODUCCION

Capítulo	1.	Interacción de Partículas Nucleares con la Ma- teria.
partie 1 m	1.1	Interacción de particulas cargadas con la mate
an a		ria.
1. 1 m	a	Probabilidad de colisión con electrones libres
in a star	b.	Pérdida de energía por colisión débil
Yes the start	c .	Transferencia lineal de energía
	d.	Alcance
	1.2	Interacción de Productos de Fisión con Materia
	a.	Distribución de masas
Sec. Line	b.	Mecanismo de fisión nuclear
and the	C.	Penetración de productos de fisión
Capítúlo	II.	Interacción de Neutrones con la Materia y con Polímeros
	2.1	Interacción de neutrones con la materia
NESS P	а.	Fuentes de neutrones
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b.	Sección eficaz y atenuación de neutrones
1.1.19	C.	Mecanismos de interacción de los neutrones con
	4.157-	la materia.
1 14 1 1 1 1	d.	Dispersión elástica e inelástica
	е.	Emisión de partículas cargadas
1	f.	Reacción en fisión
	2.2	Interacción de Neutrones con Polímeros
and the prime of the	a.	Irradiación con neutrones rápidos
14 H. C.	b.	Degradaciones físicas y químicas
156 2 32	11	
Capitulo	III.	Modelos de Formación y Características de las Trazas.
	3.1	Modelos de formación de trazas
1. 1. 1.	in the second	Mogan amon de numbre de deselementeste

a. Mecanismos de punta de desplazamiento
b. Mecanismo de punta térmica y punta explosiva iónica.

- c. Modelo de pérdida de energía secundaria
- d. Modelo de pérdida de energía restringida
- e. Modelo de densidad lineal de eventos.

3.2 Características de las Trazas

- a. Geometría de las trazas
- b. Técnicas de revelado
- c. Métodos de medición y lectura de la traza
- Capítulo IV. Estudio Experimental
 - 4.1 Selección del detector
 - 4.2 Técnica de irradiación
 - 4.3 Ataque químico
 - 4.4 Determinación de las densidades de las trazas v sus dimensiones

Capítulo V. Resultados y Conclusiones

- 5.1 Resultados
- a. Efectos del grabado contínuo e interrumpido
- b. Análisis de Trazas espúreas y de fondo
- c. Evolución del diámetro de la traza
- d. Relación de la densidad de trazas y el flujo
- e. Determinación experimental de la ley del inver so al cuadrado de la distancia.
- f. Determinación de la linealidad y calibración.
 - 5.2 Conclusiones

Bibliografía.

Detección de Neutrones Rápidos por Trazas en Estado Sólido

1.

Introducción

En años recientes, los Detectores por Trazas en Estado Sólido (DTES) han sido empleados ampliamente en diversos cam pos de la ciencia y la tecnología, en particular, en la de-tección de iones y partículas cargadas pesadas.

En éstos detectores las trayectorias descritas por las partículas nucleares a su paso por el material, dan como resultado zonas de intenso daño conocidas como "trazas laten-tes", que bajo un grabado químico apropiado se revelan para su observación a través de microscopio óptico o a simple vig ta. A éstas zonas de daño reveladas, se les denomina "trazas reveladas".

La formación de trazas reveladas requiere que las zonas de daño producidas por la partícula sobrepasen cierto umbral característico del material, lo que conduce a la posibilidad de un registro selectivo de partículas nucleares con solo -cambiar el material detector.

Algunas características ventajosas de los DTES, son: la insensibilidad natural a la radiación electromagnética y a partículas beta, la gran estabilidad en el almacenaje de la información de los eventos, la posibilidad de emplearse en experimentos con baja densidad de partículas v la versatil<u>i</u> dad en cuanto a espesores y materiales entre otras más[1,1]

Al principio el estudio y empleo de los DTES se dirigía a partículas cargadas pesadas. Sin embargo, la posibilidad de registrar neutrones con éstos detectores ha despertado gran interés, ya que da un mejor conocimiento en ésta area, haciendo posible la dosimetría de neutrones. La dosimetría de neutrones es complicada con las alternativas de que se - dispone actualmente, principalmente porque los campos con neu trones generan radiación secundaria gamma al penetrar la mate ria y porque la respuesta de los sistemas a los neutrones no se puede relacionar directamente con la dósis absorbida.

Uno de los primeros métodos sugeridos para detectar neutro nes con DTES emplea recubrimiento de material fisionable, prin cipalmente $^{237}Np y$ ^{232}Th , de modo que los fragmentos de la fi sión inducida por los neutrones son los que se registran en el detector [3,4]

Más recientemente, se sugirió la detección de neutrones a través del registro de los nucleos en retroceio componentes – del mismo DTES y reacciones del tipo (n, α) . Esta técnica el<u>í</u> mina el uso del material fisionable (radiador), el cual crea algunos problemas como: la radiotoxicidad, el uso de material considerado bélico, etc. [s-7]

El presente trabajo está conectado con la aplicación de los DTES en la dosimetría de neutrones rápidos, usando la téc nica de núcleos en retroceso. El propósito de este trabajo es el hacer un estudio experimental para determinar el comportamiento de algunos parámetros que conduzcan a la optimización y caracterización de ésta técnica dosimétrica, por medio del análisis de las trazas producidas por los neutrones rápidos al interaccionar con el DTES, que es un material plástico de nombre comercial Lexan *.

En este estudio se observan las relaciones entre las di-mensiones de las trazas v la dosis de absorción equivalente. También se trata la dependencia de la densidad de trazas con los tiempos de grabado químico.

El trabajo se ha dividido en cinco partes. En la primera se presenta la teoría de la interacción de partículas nuclea res con la materia. Esta parte contiene la teoría de la int<u>e</u> racción de partículas cargadas pesadas y de productos de fisión. La segunda parte incluve la teoría de la interacción de los neutrones con la materia y sistemas poliméricos.

* Fabricado por General Electric Co., Pittsburg, E.U.

En la tercer parte se presentan las teorías mas generaliza das que dan una explicación del fenómeno de formación de trazas, la teoría de la geometría de las trazas, así como los mé todos de grabado y evaluación de las mismas.

3.

La parte cuatro presenta la descripción de los experimentos que se realizaron, la selección del tipo de detector, las condiciones del ataque químico y de evaluación, así como la exposición de los resultados v características del Lexan como DTES para neutrones rápidos.

En el capítulo cinco se presentan los resultados, y final mente se dan las conclusiones y discusión de los resultados.

1

CAPITULO I INTERACCION DE PARTICULAS NUCLEARES CON LA MATERIA.

Para estudiar la detección de las partículas nucleares se requiere entender la interacción de estas con la materia. La radiación nuclear comprende una gran variedad de emisiones aso ciadas con sistemas que experimentan transformaciones nucleares fundamentalmente.

La naturaleza de las interacciones con la materia varía en tre los distintos tipos de radiación nuclear. Tomando algunos tipos de radiación como característicos o prototipos y, basán donos en un criterio de similitud que, principalmente asocie la carga y la masa, es posible establecer propiedades tales como absorción ó energía depositada [*,*]. En la tabla (1-1) se listan varios tipos comunes de radiación nuclear. Esta tabla no pretende abarcar todos los tipos de radiación, sino más bien enumerar las más importantes en nuestro caso.

El presente capítulo, trata básicamente la interacción de partículas cargadas y en particular de partículas cargadas p<u>e</u> sadas. La razón es la siguiente: cuando los neutrones intera<u>c</u> cionan con sólidos, la mayor parte de aquellos pasan, y sólo algunos provocan el desplazamiento de los átomos componentes del sólido. Debido a la ausencia de carga de los neutrones no hay una interacción de tipo coulombiana o ionizante con el medio, no así de los átomos en retroceso inducidos por los -neutrones. Estos átomos en retroceso cuando se mueven a través de un sólido, se vuelven rápidamente iones debido al des-

In the Contest of the	And in case of the local division of the loc	Contraction of the local division of the loc	procession in the second states and the second states in the second stat		a same of the second
Tipo de Partícula	Simbolo	Carga rela- tiva	Masa en reposo u.m.a.	Energía equi valente de masa en repo so. MeV	Vida M <u>e</u> dia. seg.
Protón	р	1	1.007593	938.213	Estable
Deuteron	d	1	2.014187	1,875.50	Estable
Partícula Alfa	α	2	4.002777	3,737.16	Estable
Positrón	β ⁺ , e ⁺	1	0.000549	0.510976	Estable
Electrónes 6 partícu	βī,eī	-1	0.000549	0.510976	Estable
las beta	1. A		· · · · · · · · · · · · · · · · · · ·	đ	
Muon	μ	±1	0.114	105.655	2.212X10 ⁻⁶
Pion	π	±1	0.150	139.59	2.55X10 ⁻⁸
Kaon	к	± 1	0.531	439.9	1.224×10 ⁻⁸
Rayo Gamma	Y	••	0	0	Estable
Rayos X	x	•••		0	Estable
Neutrino	ν	0	Pequeño 6 Cero	0	Estable
Neutron	n	0	1.008982	939.507	1.013X10 ³
Fracmentos de Fisión.		-		- 11	
				- 1	-
Promedio ligeros	••••	20	95		
Promedio pesados	••••	22	139		1944
				133	

Tabla 1.1.- Tipos de Partículas Nucleares y algunas de sus características [5]

pojo de toda o alguna porción de sus electrones orbitales. Es te despojo es resultado de la interacción de los electrones - que rodean al átomo en movimiento y los correspondientes a - átomos en reposo que constituyen el sólido.

La formación de las trazas involucra directamente la interacción tanto de las radiaciones primarias como de las radiaciones secundarias o radiaciones producto, de aquí entonces la necesidad de éste primer capítulo, en el cual se supone que la partícula nuclear cargada pesada es el producto de la int<u>e</u> racción del neutrón con algún átomo del sólido que es empleado como detector.

1.1 Interacción de Partículas Cargadas con la Materia.

Cuando las partículas cargadas pasan a través de la materia, interaccionan con esta, de tres modos principalmente:

- i) Por colisión con átomos o moléculas
- ii) Por colisión con electrones
- iii) Por procesos radiativos
 - iv) Por dispersión nuclear

El modo de interacción queda determinado básicamente, por la energía de la partícula y por la distancia de máximo acer camiento de la partícula al átomo o molécula con que interactúe.

Si la distancia de máximo acercamiento es grande en comparación con las dimensiones atómicas, entonces ocurre la <u>exci</u>tación o la <u>ionización</u> del átomo. A estos encuentros distan-

tes, se les denomina: colisiones débiles.

Por el contrario, si la distancia de máximo acercamiento es del orden de las dimensiones atómicas, se dice que la co-<u>lisión es fuerte</u>. La interacción es entre la partícula en mo vimiento y uno de los electrones atómicos. Como resultado de éste proceso, un electrón del átomo sale expulsado con enerqía considerable, ya que es una colisión frontal. Al resultar el electrón secundario (rayo delta), con una energía superior a la de enlace, es posible tratar el proceso como una colizsión con un electrón libre.

7.

Tratándose de una distancia de acercamiento máximo, menor que las dimensiones atómicas la desviación de la trayectoria seguida por la partícula en el campo eléctrico del núcleo es el efecto más importante. Este proceso resulta en pérdidas de energía <u>radiativa</u> y la radiación emitida cubre todo el es pectro de energía desde cero hasta la energía cinética máxima de la partícula cargada. Cuando se trata de partículas p<u>e</u> sadas, este proceso puede ignorarse. [10]

a. Probabilidad de colisión con electrones libres.

La probabilidad de colisión diferencial ϕ_{col} (T, T') dT' dx, se define como la probabilidad para que una partícula ca<u>r</u> gada de energía cinética T, atravesando un espesor dx tran<u>s</u> fiera una enorgía dT' alrededor de T' a un electrón atómico (que se supone libre).

Para partículas pesadas incidentes de espín un medio -- (protones) con energía cinética T, masa M y tal que T > m_c

la probabilidad de colisión es:

$$\phi_{col}$$
 (T,T') dT' = $\frac{2Cm}{\beta^2} \frac{dT'}{(T')^2} \left| 1 - \beta^2 \frac{T'}{T_{inax}} + \frac{1}{2} \left(\frac{T'}{T+M} \right)^2 \right|$ (1.1.1)

y para partículas pesadas con espín cero (partículas alfa), - es:

$$\phi_{col}^{\circ}$$
 (T,T') dT' = $\frac{2Cm}{\beta^2} \frac{dT'}{(T')^2} |1-\beta^2 \frac{T'}{T'}|$ (1.1.2)

donde $\beta = \frac{v}{c}$, c la velocidad de la luz y v la de la partícula, m la masa de la partícula blanco y C una constante.

Cuando la energía cinética T' < T'max, que es el caso de colisiones distantes y con poca transferencia de energía, las ecuaciones 1.1.1 y 2, se reducen a:

$$\phi_{col}$$
 (T, T') $dT' = \frac{2Cm}{\beta^2} \frac{dT'}{(T')^2}$ (1.1.3)

que se conoce como la fórmula de Rutherford. Esta fórmula da la probabilidad de colisión para todas las partículas v depen de sólo de la energía del electrón secundario. T'. así como de la velocidad de la partícula incidente. Con un tratamiento clásico es posible deducir dicha fórmula.

Consideremos, una partícula cargada (ze), moviéndose por delante de un electrón libre. El momento transferido al elec trón p', se calcula de: $\vec{p}' = \int \vec{F} dt y$ suponiendo que la com ponente x de F no contribuye a la integral:

$$F=F_{1} = \frac{ze^{2}}{r^{2}} \cos \phi = \frac{ze^{2}b/(x^{2}+b^{2})^{3/2}}{r^{2}}$$

con x = vt y b el parámetro de impacto, entonces:

 $|\vec{p}| = \int_{-\infty}^{\infty} \frac{ze^2 b}{(x^2 + b^2)^3/2} \frac{dx}{v} = \frac{2ze^2}{bv}, \text{ y la energía transferida es}$

 $T' = \frac{|\vec{p}'|^2}{2m} = \frac{2z^2e^2}{mb^2v^2}$. Así para una partícula incidente con z=1

 $|2b \cdot db| = 2e^4 / (m\beta^2 (T')^2) dT'$, y la probabilidad de una colisión con parámetro de impacto en db alrededor de b, en un espesor dx estará dada por:

F (b) db dx= 2π bdb $\frac{N_O Z}{A} dx^m \phi_{col} dT' dx$, pero $r_o = e^2/m$ y C= $\frac{N_O}{A} \frac{Z}{R} r_o^2$, N_C es el número de Avogadro, Z y A son los números de carga y masa del material. Tal que se obtiene la fórmula de Rutherford.

En la ecuación (1.1.3), el factor C expresa la proporcionalidad de la probabilidad de colisión a la densidad electrónica, 1/ β^2 expresa la dependencia de la transferencia de ener gía sobre el tiempo de colisión y el factor 1/(T⁺)² expresa el hecho de que las colisiones con parámetros de impacto grandes son menos probables que las de parámetros de impacto pequeños.

b. Pérdida de energía por colisión débil.

Hasta ahora la discusión se ha limitado a probabilidades de colisión de partículas, vía colisiones fuertes. En la de<u>s</u> cripción completa de las colisiones de las partículas cargadas, las colisiones fuertes son relativamente raras y no influyen de manera importante en la pérdida más probable de -

energía. Bohr y Bethe, desarrollaron las teorías de frenado electrónico. Bohr trató básicamente el problema, bajo el co<u>n</u> cepto de parámetro de impacto y el supuesto de que la carga en el átomo es neutro y no hay colisión coulombiana. En base a esto se introduce un factor denominado "tiempo de colisión", $\tau \sim b/v$, tal que cuando $\tau > 1/v$ (con 1/v, el período orbital) no se transmite energía y el electrón permanece ligado, y cuando $\tau < 1/v$ el electrón atómico se comporta como un electrón libre.

La teoría de Bohr para el poder de frenado depende de un parámetro de impacto el cual está perfectamente definido y las limitaciones de ésta teoría estarán dadas por el principio de incertidumbre de Heisenberg, $\Delta x = \Delta p \leq h$, que marca un límite a la precisión de las medidas complementarias de posi ción y momento. Por tanto la teoría clásica es válida si se cumple que: $\frac{2z}{137\beta} > 1$, ya que $\Delta x = (\Delta x) \min \frac{h}{P_v} = hx(2zz)^{-1}$ donde $v = \beta/c \ y \frac{z}{z} = \frac{1}{127}$. Por otro lado Bethe realizó calculos cuán ticos de la pérdida de energía de partículas que interaccionan con electrones atomicos[11, 13] . Considerd un átomo disper sor de número atómico Z, con el hamíltoniano H y estados esta cionarios (B, siendo la energía del estado base electrónico E, sobre el que incidía el proyectil. La pérdida de energía, la obtuvo sumando sobre los estados excitados (n), e integrando sobre los momentos transferidos. Dicho proyectil interacciona con el centro dispersor a través de un potencial que supone pequeño (V) < (H) .

La pérdida promedio de energía por unidad de distancia recorrida, se conoce también como <u>poder promedio de frenado</u> por ionización (y excitación) y está dado por:

$$\frac{dT}{dx \text{ col}} = \frac{dT_S}{dx \text{ col}} + \frac{dT_F}{dx \text{ col}}$$

donde los subíndice F y S, se refieren a colisiones fuertes y débiles respectivamente, y el subíndice col, se refiere a colisiones. La ecuación anterior se puede reescribir como:

$$\begin{array}{cccc}
F & T'max \\
\frac{dT}{dx} = \int T' \phi^S & dT' + \int T' \phi & F \\
col & col & col \\
T'min & F
\end{array}$$

donde: $\phi \stackrel{F}{=} \phi$, $\phi \stackrel{S}{=} sección para colisiones débi$ col col col colles y F= a la energía transferida por encima de la cual lascolisiones se pueden considerar fuertes. Y con la suposición $<math>\stackrel{S}{=} \stackrel{F}{=} \phi_{col} = Fórmula de Rutherford y sabiendo que T'_max'/$ $/T'_min = (2m v^2/I)^2, con I la energía de excitación media, se$ $tiene que: <math>\frac{dT}{dx_{col}} = \frac{4Cm}{\beta^2} ln(\frac{2m\beta^2}{I})$ en unidades c=1. La ecua

ción anterior aunque no es completamente correcta, da el com portamiento general.[13,14].

Bethe obtuvo el poder de frenado para colisión débil;

$$\frac{dT_{S}}{dx}_{col} = \frac{2Cm}{\beta^{2}} \{ \ln \left(\frac{2m\beta^{2} F}{\Gamma^{2}(1-\beta^{2})} \right) - \beta^{2} \}$$
(1.1.4)

y el término de colisión fuerte:

 $\frac{\mathrm{dT}_{\mathrm{F}}}{\mathrm{dx}} = \frac{2\mathrm{Cm}}{\beta^{2}} \int \frac{\mathrm{dT}'}{\mathrm{T}'} \left(1 - \beta^{2} - \frac{\mathrm{T}'}{\mathrm{T}'}\right) = \frac{2\mathrm{Cm}}{\beta^{2}} \left\{ \ln\left(\frac{\mathrm{T}'}{\mathrm{F}}\right) - \beta^{2}\left(1 - \frac{\mathrm{F}}{\mathrm{T}'}\right) \right\}$

para
$$F < T'_{max}; \frac{dT_F}{dx_{col}} = \frac{2Cm}{\beta^2} \{ \ln \left(\frac{T'_{max}}{F} \right) - \beta^2 \}$$
 (1.1.5)

Sumando 1.1.4 y 5, se tiene que:

$$\frac{d\mathbf{T}}{d\mathbf{x}_{col}} = \frac{2Cm}{\beta^2} \left\{ \ln \frac{2m \beta^2 T'_{max}}{\Gamma^2 (1-\beta^2)} - 2\beta^2 \right\} \quad (1.1.6)$$

esta ecuación se aplica a partículas pesadas cargadas (M > m) cuva carga y energía satisfagan la <u>aproximación de Rorn</u> $\frac{2ZZ}{1.37} \leq \beta$

A esta fórmula básica se le pueden hacer algunas modificaciones para que sea correcta en varios efectos atómicos. Un fenómeno importante a altas energías es el <u>efecto de densidad</u>. En el análisis previo, los átomos del medio frenador se consideraron aislados unos de otros, y no se tomaron en cuenta las propiedades dieléctricas del medio. Esta es una aproximación válida nara las colisiones fuertes, mas no así para colisiones débiles. El campo eléctrico de la partícula incidente en un átomo alejado de su trayectoria es disminuído por la <u>polariza</u> <u>ción de los átomos que intervienen y ésta condición causa una</u> disminución en la interacción y disminuye la pérdida de energía.

Otra corrección menor es necesaria hacer, dado que los elec

trones atómicos contribuirán menos al poder de frenado si la velocidad de la partícula incidente es comparable a la veloci dad del electrón en su órbita. Para partículas pesadas de baja energía esta corrección a lo más es de un 10%, a éste término se le denomina <u>corrección de capas</u>.

Con todas estas correcciones, la fórmula de poder de frena do para una partícula más pesada que un electrón es:

$$\frac{d\mathbf{T}}{d\mathbf{x}} = \frac{2Cm}{\beta^2} \left\{ \ln\left(\frac{2m}{\beta^2} \frac{\beta^2}{1} \frac{T'max}{max}\right) - 2\beta^2 - \delta - U \right\} (1.1.7)$$

donde 8 es la corrección por densidad y U es la corrección de capas.

Comparando las teorías clásica v cuántica, la primera es vá lida cuando $2Z/137\beta > 1$ mientras que la segunda apoyada en la aproximación de Born, es válida cuando $2Z/137\beta < 1$.

La descripción de la ec.(1.1.7), es como sigue:

- i) El compoziamiento inicial de la pérdida por ionización, es desde que se inicia, de disminución proporcional a β^2
- ii) El factor conteniendo el término $1/(1-\beta^2)$, causa un incremento lento en la región relativista. El punto en el que la pendiente de dT/dx cambia, se conoce co mo ionización mínima. Ocurre aproximadamente en T_{min}^{γ} 3M
- iii) El incremento tiende a aplanarse en una meseta, cuan do los efectos de densidad se vuelven cada vez más significativos (se incrementan).

Aunque si bien la mayor parte de la pérdida de energía --(>90%) ocurre por procesos electrónicos, no debe estrictamente olvidarse que el poder de frenado total es la contribución del poder de frenado electrónico más la contribución del poder de frenado nuclear. Cuando la partícula incidente llega con una velocidad menor que cierta velocidad de umbral crítica, el poder de frenado nuclear excede al frenado electrónico.

Si es necesario conocer el poder de frenado de compuestos y no de elementos puros, entonces éste se puede calcular en primera aproximación usando la regla aditiva de Bragg.

 $\frac{dT}{dx} = \sum_{i=1}^{\infty} \frac{dT}{dx_{i}} \quad donde \quad i \quad es \ la \ fracción \ de \ peso \ del \quad -$ elemento i-ésimo. Cabe notar que esta regla aditiva no toma en cuenta el cambio de configuración electrónica para ir de un elemento a un compuesto, por lo que involucra algún error en los cálculos, los que no son considerables sino en bajas energías.

c. Transferencia Lineal de Energía (LET) *

Para algunas aplicaciones, la energía depositada por una partícula cargada en una región de dimensiones especificas, alrededor de su trayectoria es de interés. La energía se depo sita en un medio a través de las interacciones de partículas

* La transferencia lineal de energía se abravia LET, por ser las iniciales de las palabras "Linear Energy Transfer", que son de uso común en la literatura. cargadas con los átomos del absorbedor y la pérdida de energía está dada por el poder de frenado apropiado para la partícula que se trate.

A bajas energías el poder de frenado es una función inversa del cuadrado de la velocidad, así que cuando la partícula se modera, la pérdida de energía aumenta; como consecuencia de la gran cantidad de energía que puede depositarse en un elemento de masa pequeño.

La Transferencia Lineal de Energía para partículas cargadas en un medio es el cociente de dE_L por dl, donde dE_L es el pro medio de la energía localmente impartida al medio por una par tícula cargada de energía dada atravesando una distancia dl. El concepto de LET es una descripción de la pérdida de energía desde el punto de vista del absorbedor, esto es, considera so lamente la energía "impartida localmente" al absorbedor. A di ferencia del poder de frenado, en que la pérdida de energía no importa donde es depositada en el absorbedor, para la LET, la pérdida de energía se refiere a un volumen limitado [10]

La fórmula básica de poder de frenado puede usarse siempre que se excluya la energía de escape de la región de interés en forma de colisiones frontales con los electrones (rayos delta). La expresión para la pérdida restringida media por colisión para electrones y positrones (LET_A) es:

$$L^{\pm}(\tau, \Delta) = \frac{2Cm}{\beta^2} \left\{ \ln \left| \frac{2(\tau+2)}{(1/m)^2} \right| + F^{\pm}(\tau, \Delta) - \delta \right\} (1.1.8)$$

donde los superíndices \pm denotan la carga de la partícula que se trate; para electrones ($\Delta = \frac{1}{2} \tau$)

$$F^{-}(\tau, \Delta) = -1 - \beta^{2} + \ln [(\tau - \Delta)\Delta] + [\tau/(\tau - \Delta)] + + [\Delta^{2}/2 + (2\tau + 1) \ln(1 - \Delta/\tau)]/(\tau + 1)^{2} (1.1.9)$$

donde $\tau = (T/mc^2)$, δ es el factor de densidad y Δ es la energía máxima dada a los rayos delta, dividida por mc². Sustituyendo $\Delta = \tau/2$ en la ec. (1.1.8) L⁻ (τ , Δ), se obtiene;

$$\mathbf{L}^{-} (\tau, \tau/2) = \frac{\mathrm{d}\mathbf{T}}{\mathrm{d}\mathbf{x}}$$
(1.1.10)

La cual es llamada LET_{es} & poder de frenado no-restringido. Esta LET_{es} es numéricamente igual al poder de frenado cuando m Δ es escogida igual a T'_{max}.

Para partículas cargadas las colisiones distantes o débiles son las mas probables y resultan en transferencias de energía pequeñas. Las colisiones cercanas o fuertes por su parte pueden transferir gran parte de energía a los electrones secundarios. Si se trata de partículas pesadas la diferencia entre el poder de frenado (LET_{io}) y LET_A es pequeña para energías menores que la energía de la partícula en reposo. Al no existir un conocimiento completo de la pérdida de energía de electrones con energías por debajo de algunos keV, sólo la LET_o puede ca<u>l</u> cularse hasta un grado de precisión significativo. Consecuentemente solo la LET_o tiene significado en las aplicaciones d<u>o</u> simétricas.

Fig.l.1.- Transmisión de un haz de partículas cargadas. I es el número de partículas registradas. R_o es el alcance medio y R_e es el alcance extrapolado.

El alcance de una partícula pesada es tal que:

$$R \propto \frac{A}{\rho Z z^{2}} \int_{0}^{B_{0}} \beta^{2} / \{ \ln [2m\beta^{2}/I(1-\beta^{2})] - 2\beta^{2} \} \frac{M\beta d\beta}{(1-\beta^{2})^{3/2}}$$

$$R \propto \frac{M}{z^{2}} \frac{A}{\rho Z} F (\beta_{0}, I) \qquad (1.1.12)$$

donde β, es la velocidad inicial de la partícula incidente. Por lo tanto para dos partículas distintas a y b, viajando con la misma velocidad en un medio dado, se tiene que:

$$\frac{Ra}{Rb} = \left(\frac{Ma}{Mb}\right) \left(\frac{zb}{za}\right)^2$$
(1.1.13)

y suponiendo que F (β_0 , I) depende sólo débilmente de I, es posible expresar la misma partícula viajando en dos medios dis tintos, l y 2:

$$\frac{R_1}{R_2} = \frac{(Z/A)_2}{(Z/A)_1} \quad (\frac{\rho_2}{\rho_1})$$

6

y con la aproximación adicional Z/A = 1/2, se tiene finalmente que:

$$\frac{R_1}{R_2} = \frac{\rho_2}{\rho_1}$$
(1.1.14)

En las ecuaciones anteriores, M es la masa de la partícula pesada, z es la carga, β es la velocidad con la que esta viajando en un medio con número atómico Z. A es el peso atómico y ρ es la densidad del material absorbedor, con los sub-índices correspondientes.

El alcance de una partícula para la que no se disponen de datos exparimentales, puede estimarse calculando su velocidad inicial, encontrando el alcance de otra partícula de la misma velocidad inicial en el mismo material, y aplicando la ec. --1.1.13, es posible determinar la energía correspondiente a la primera partícula. El conocimiento de relaciones alcance-ener gia y pérdida de energia para partículas pesadas cargadas es un requerimiento esencial en el desarrollo y uso de cualquier detector de partículas nucleares, y especialmente en los detec tores por trazas. De los cálculos de las relaciones alcance- energía, ec. 1.1.1, para iones de Ar y de medidas С O V experimentales empleando DTES plásticos de nitrato de celulosa. se ha logrado establecer una compatibilidad excelente entre los alcances calculados y medidos para todos los iones emplea dos como se muestra en la fig. 1.2 [11].

1.2 Interacción de Productos de Fisión con Materia.

Origen de productos de fisión.

R(um)

Los fragmentos de fisión producidos como resultado de fisión inducida o fisión espontánea de nucleos pesados, son par tículas energéticas cargadas con propiedades, un tanto distin tas de las discutidas hasta este punto, las que se pueden registrar también con los DTES.

E (MeV)

Fie. 1.2.- Comparación entre las relaciones alcance-energía y las trazas medidas para iones de $\begin{array}{c} 12 & 16 & 40 \\ 0 & y & Ar \end{array}$. [11]

Alrededor de cuatro quintos de la energía liberada en el proceso de fisión aparece en la forma de energía cinética de los fragmentos de la misma. El resto aparece en el instante de excisión, como energía de excitación de los fragmentos. Se ha determinado experimentalmente que el grado de excitación del nucleo compuesto tiene muy poco efecto sobre las energías cinéticas de los fragmentos.

Dado que la energía liberada en fisión es tan grande, el nucleo bajo fisión puede considerarse para casí todos los casos prácticos, en reposo en el sistema de laboratorio al ins tante de escisión. Los fragmentos de fisión de masas $M_1 \ Y \ M_2$ deben por tanto alejarse el uno del otro con velocidades -- $V_1 \ Y \ V_2$, en el sistema de laboratorio, tal que el momento lineal se conserve ($M_1 \ V_1 = M_2 \ V_2$).

Las energías cinéticas de los fragmentos estan en la rela ción:

$$\frac{E_1}{E_2} = \frac{M_1 V_1^2}{M_2 V_2^2} = \frac{M_2}{M_1}$$

Las energías cinéticas se ha visto, son inversamente proporcionales a las masas (sólo aproximadamente) [15]. Así de la distribución medida de la energía cinética de los fragmentos puede obtenerse la distribución de masas.

a. Distribución de Masas.

Los fragmentos de físión contienen núcleos de números de masa de aproximadamente 72 a 160. El rendimiento de fisión pa ra un núcleo particular está definido como la probabilidad, -

expresada en términos de un porcentaje de formación de este nucleo, o bien la cadena de la cual este es miembro. Como cada fisión binaria resulta en dos núcleos, la producción total de fisión es 200 %.

La curva de rendimiento se encuentra que tiene dos máximos predominantes. El grupo alrededor del máximo con número de masa menor es denominado de "fragmentos ligeros", mientras que el otro grupo, correspondiente al máximo de masa mayor, se conoce como "fragmentos pesados". En la fig. 1.3, se repr<u>e</u> sentan las curvas de varios nucleidos fisionables. Como se pu<u>e</u> de observar las curvas no son idénticas, pero se encuentran marcadamente cerca una de otra. Es en ese punto, donde hay un gran interés puesto que la fisión simétrica es bastante rara. La probabilidad de fisión simétrica es lo0 veces más probable con neutrones de 14 MeV que con neutrones lentos [15_16].

b. Mecanismo de la Fisión Nuclear.

Inmediatamente después del anuncio de la fisión, se publi có un modelo detallado que explicaba las observaciones inicia les. Este modelo sugería que la fisión nuclear podría entender se sobre las bases del "Modelo de la gota de líquido", del núcleo el cual, había sido propuesto por Bohr. El modelo de la gota de líquido explica porque núcleos pesados pueden fisionarse más rapidamente. La dificultad de su aplicabilidad viene del hecho que mientras el modelo de la gota de líquido predice que el nucleo consiste de dos lóbulos iguales.

elair à

1

75

Fisión Inducida por Neutrones

Fig. 1.3.- Distribuciones de masas de ²³⁵U, ²³⁸U, y --Th, para los productos de fisión respectivos [15].

Se esperaría por tanto obtener dos fragmentos con energías internas casi iguales en los eventos de fisión simétrica raros, sin embargo, la evidencia experimental indica que casi lo opuesto es cierto. Cuando las masas son casi iguales, las energías internas, medidas por el número de neutrones emitidos de los fragmentos son bastante desiguales. Inversamente, cuan do el núcleo se parte en su modo asimétrico más probable, las energías internas son aproximadamente iguales. La explicación más ampliamente aceptada de estos hechos, se basa en una com binación del modelo de la gota de líquido y el modelo de capas. Este modelo explica la fisión de elementos tales como uranio y plutonio en fragmentos desiguales. No entra en conflicto con la fisión simétrica de elementos ligeramente fisio mables como el bismuto. Pero en estos elementos, el modelo de capas aparentemente no funciona del todo, ya que los lóbulos no tienen un número mágico de los neutrones o protones, para cualquier division razonable.

En 1955, se sugirió un modelo unificado para explicar tan to la asimetría angular como otros efectos que habían apareci do. Este modelo establece que la asimetría en la fisión pueda relacionarse a la existencia de estados de paridad negativa.

c. Penetración de Productos de Fisión.

La Tabla (1.2), da algunas de las propiedades de los productos de fisión del U^{235} . Estas propiedades se aplican al - producto de fisión promedio de cada uno de los fragmentos.

Dado que los fragmentos al salir aparte pierden alrededor de 20 electrones, su carga efectiva muy grande resulta en una pérdida de energía especifica mayor que la encontrada con -cualquiera de las otras radiaciones discutidas antes. Como su energía inicial es también muy alta el alcance de un fragmento de fisión es aproximadamente la mitad del de una partícula alfa de 5 MeV. La carga neta de un producto de fisión disminu ye continuamente durante el proceso de moderación. La absorción de producto de fisión, a través de colisiones nucleares es importante, debido al incremento de la carga nuclear en comparación con otras partículas pesadas. Es por esto que al grupo de fragmentos de fisión así como todos los iones como C^+ , N⁺ y A⁺, se incluyen en un grupo de partículas "muy pesa das". Para fragmentos de fisión se sugirió aplicar las mismas fórmulas obtenidas antes para el poder de frenado, agregando la carga iónica, como una primera aproximación. Al apli carse en energías intermedias y altas dió resultados satisfac torios [14].

Con el estado de carga promedio Z* igual al número de -electrones con velocidades orbitales menores que v, y utilizando una estimación de la velocidad de los electrones a partir del modelo de Thomas-Fermi, se encontró que $Z*/Z_1$, es fun ción de $(v/v_0) Z_1^{-2/3}$.

Es posible establecer una expresión semi-empírica, en base a datos experimentales pra relacionar 2* (el estado promedio de carga) y la velocidad, como: $Z^* = Z_1 \{1-s \exp(-\frac{v}{v_o} Z_1^{\gamma})\}, donde s y \gamma son parámetros ajustables, "próximos en valor 1 y 2/3 respectivamente.$

	Fragmentos ligeros	Fragmentos pesados
Número de Masa A	96	139
Carga Nuclear z	38 (Sr)	54 (Xe)
Enorgía Cinética	95 MeV	67 MeV
Velocidad Inicial Vo	1.4 X 10 ⁹ cm/sec	0.93 X 10 ⁹ cm/sec
Carga ionica Inicial		
(et)	20 _e	22 _e
Algance medio en aire R	2.5 cm-aire	1.9 cm-aire

Tabla 1.2.- Propiedades promedio de los productos de fisión de U^{235} por neutrones térmicos.

Las curvas de dT/dx se calculan a partir de la curva del poder de frenado para un protón con la misma velocidad y se aplica la ecuación siguiente:

donde Z*, es la carga efectiva de la partícula.

El poder de frenado expresado en términos de estados de carga, es aplicable tanto para sólidos como para gases; e incluso los estados de carga pueden coincidir tanto para gases como para sólidos. El cálculo de alcance de los productos de fisión es complicado por la disminución de la carga neta de - partículas y por colisiones nucleares [*]. Hasta ahora se han desarrollado teorías semiempíricas para ajustar datos experimentales del poder de frenado para productos de fisión en té<u>r</u> minos de estados de carga.

Los DTES, tanto orgánicos como inorgánicos, han mostrado sentividad en mayor o menor grado a partículas nucleares alta mente ionizantes como partículas alfa de hasta varios MeV de energía, fragmentos de fisión, y neutrones. Las trazas forma das involucran una gran cantidad de fenómenos que se deben -tanto a la radiación incidente como al material detector: son centros estrechos de esfuerzos que se componen básicamente de atomos desplazados. Las interacciones que ocurren en primer lugar son la ionización y la excitación que se alojan en las cercanías de la trayectoria del ión o partícula cargada las cuales implican la existencia de un valor mínimo de la pérdida específica de energía - $\frac{dT}{dx}$ por parte de la partícula para que el daño sea suficientemente severo para dejar traza. El daño creado también puede deberse a los rayos delta creados a lo largo de la trayectoria de la partícula que se alojan en distancias más alejadas del núcleo de la traza que la radiación primaria, dando un exceso al LET. De modo que sumando el LET, debido a la radiación primaría con la contribución de los rayos delta, se obtiene el LET_∞ que es numéricamente igual al poder de frenado, tratados en esta capítulo. Esta transferencia lineal de energía es la que da la rapidez promedio del depósito de energía de una partícula en el DTES.

CAPITULO II INTERACCION DE NEUTRONES CON LA MATERIA Y CON POLIMEROS. 28.

Los neutrones rápidos pueden crear trazas en materiales dieléctricos sin el empleo de radiadores externos. Al princ<u>i</u> pio se supuso que las trazas observadas provenían de partíc<u>u</u> las alfa, resultando de reacciones del C (n, α) y O(n, α). Como se verá en el presente capítulo éste tipo de reacciones s<u>o</u> lo ocurren cuando la energía de los neutrones es de varios -MeV, y las secciones eficaces son relativamente pequeñas. Las trazas se observaron en DTES plásticos irradiados con neutrones por debajo del umbral para (n, α); ésto hizo suponer que dichas trazas eran creadas por átomos en retroceso debido a las colisiones elásticas del neutrón.

Las colisiones elásticas son las interacciones más probables y la energía impartida al átomo va desde cero hasta una energía máxima. La distribución de las energías de retroceso esta relacionada a las desviaciones angulares del neutrón. -Así que los átomos de oxígeno y carbono son los responsables de la formación de trazas por debajo del umbral para (n,α) .-Para energías aún mas altas, los átomos en retroceso predom<u>i</u> nan sobre las posibles partículas alfa producidas, o sea que las secciones eficaces de dispersión elástica son mayores que para las reacciones (n,α) y los retrocesos tienen una mayor pérdida de energía o LET, dando como resultado una rapidez de grabado más alta y por tanto trazas mayores. Existe también la posibilidad de que algunos de los eventos sean inelásticos, sin embargo por las energías que se con sideran, éstas son menos importantes.

El registro de los núcleos de hidrógeno en retroceso no es posible hacerlo en el Lexan; la interacción es perfectamente elástica pero los retrocesos y daños correspondientes a dicha interacción quedan por debajo del umbral para la formación de la traza.

2.1 Interacción de Neutrones con la Materia.

El descubrimiento del neutrón fue anunciado en 1932 por J. Chadwick*. El experimento de Chadwick, indicó claramente que la radiación penetrante hasta entonces desconocida emit<u>i</u> da al bombardear berilio con partículas alfa era capaz de impartir energía cinética superior a l MeV a los átomos de pequ<u>e</u> ña masa en retroceso, tales como carbón y nitrógeno. Haciendo un análisis cinemático de éstas energías en retroceso, demostró que eran mucho mayores que las que podrían impartir fotones con una energía de 50 MeV, como lo habían postulado Curie y Joliot, para ésta misteriosa radiación. Los experimentos -consecutivos de Chadwick y de otros científicos condujeron al establecimiento de la partícula que Chadwick había llamado -"neutrón".

* J. Chadwick, Nature 129, 312 (1932)

El neutrón se conoce ahora como una partícula con los s<u>i</u> guientes atributos:

Es una partícula elemental de carga eléctrica nula y de masa muy cercana a la del protón (en reposo). El momento anqu lar intrínseco, llamado comúnmente -espín- del neutrón tiene magnitud: $\sqrt{S(S+1)} \frac{h}{2\pi}$, donde h es la constante de Planck Y S es el número cuántico de espín igual a 1/2. De acuerdo a la teoría más ampliamente aceptada, el neutrón existe en la natu raleza en un estado dinámico, tiene una vida media de 720 se gundos y aún cuando la relación de la masa del neutrón a la del protón es muy cercana a la unidad, es energéticamente posible la desintegración del neutrón en un protón, un electrón cuya energía cinética máxima es de 0.782 MeV y un neutrino: $n - p + e^{-} + neutrino [14-17]$. La tabla (2.1) muestra las constantes fundamentales relativas al protón y al neutrón. Los neutrones se clasifican según su velocidad. En el dominio no relativista se puede corresponder ésta velocidad v(cm/seg.) con la energía cinética E_c por medio de la fórmula:

	NEUTRON	PROTON
Masa	$1.6748 \times 10^{-24} g$	$1.6724 \times 10^{-24} g$
Carga	0	4.8 $\times 10^{-10}$ u.e.e
Espin	1/2	1/2
Momento Magnético	-1.913 µ _N	2.7896 µ _N

 $E_c = \frac{1}{2} mv^2$

Tabla 2.1.- Propiedades del Neutrón y el Protón [']

Si en lugar de expresar E, en erg, se utiliza el electrón-volt;

 $1 \text{ erg} = 6.242 \times 10^{11} \text{ eV}$ $1 \text{ eV} = 1.602 \times 10^{-12} \text{ erg}.$

entonces se obtiene la ecuación:

v+ 13.8 X 10⁹ $\sqrt{E_c}$; con v en cm/seg. y E_c en MeV.

La distinción de los neutrones dependiendo de su energía cinética se hace de la forma siguiente:

- i.- Neutrones relativistas: la energía mínima para estos neutrones es de 20 MeV. Dan lugar a reacciones nuclea res y predomina la dispersión elástica.
- ii.- Neutrones rápidos: son neutrones cuya energía cinética es superior a algunas decenas de keV. Un ejemplo de este tipo de neutrones, de fisión que tienen una -energía media de 2 MeV.
- iii.- Neutrones intermedios: estos son neutrones con una energía cinética comprendida entre 0.5 eV y algunas de cenas de keV. Son producidos por la dispersión múltiple de neutrones rápidos en el medio dispersor.
- iv.- Neutrones lentos o térmicos: Los neutrones son llamados lentos, cuando estan en equilibrio térmico con la materia que los rodea. Poseen una distribución de velo cidades Maxwelliana. Si se define la función de distri bución por ψ (v), entonces se podrá escribir:

(2.1.1) ψ (v) = $\left(\frac{m}{2\pi \ kt}\right)^{3/2} \exp\left(\frac{-mv^2}{2kT}\right)$, donde T es la temperatura del medio y k es la constante de Boltzmann. El número de neutrones con velocidad comprendida entre v y v + dv es de $4\pi F(v) dv$, con:

$$4\pi F(v) dv = 4\pi \psi (v) v^{2} dv = \left(\frac{m}{2kT}\right)^{3/2} \cdot \exp\left(\frac{-mv^{2}}{2kT}\right) 4\pi v^{2} dv$$

$$y \text{ la velocidad cuadrática media es } \overline{v}^{2}, \text{ dada por:}$$

$$\overline{v}^{2} = \frac{\int_{0}^{\infty} 4\pi F(v) v^{2} dv}{\int_{0}^{\infty} 4\pi F(v) dv} = \frac{3kT}{m} \qquad (2.1.2)$$

de donde la energía cinética media E_c , es por consiguiente:

$$\bar{E}_{c} = 1/2 \text{ m}\bar{v}^{2} = \frac{3}{2} \text{ kT}$$

Así pues es posible hablar indistintamente de la energía cinética media o de la temperatura de los neutrones. La velocidad más probable es de 2200 m/seg, correspondiendo a una -energía de 0.025 eV.

a. Fuentes de Neutrones.

Los neutrones se generan por diversos modos, a nivel de máquinas de producción de neutrones se encuentran reactores nu cleares, aceleradores de partículas (sólo a través de reaccio nes nucleares) y también pueden obtenerse a partir de reaccio nes nucleares, en fuentes radiactivas [18].

Con reacciones (α, n) y (γ, n) en elementos ligeros co mo litio, berilio, se generan neutrones rápidos. Las fuentes (α, n) son las que se emplean más frecuentemente, en esta fa milia se encuentran las de radio-berilio, polonio-berilio, ó fuentes de americio-berilio consistentes de una mezcla de un emisor alfa con uno o más elementos ligeros.

Dependiendo de su composición, las fuentes de neutrones tienen:
- i.- Diferente espectro de energía de los neutrones emitidos.
- ii.- Distinto rendimiento de neutrones
- iii.- Diferente vida media
- iv.- Radiación gamma adicional de diferentes energías e in tensidades dependiendo del emisor alfa empleado.

La tabla (2.2) muestra los datos correspondientes a varias fuentes de neutrones (α, n) . Esta tabla sólo presenta datos que deben tomarse como aproximados puesto que como ya se dijo el rendimiento de neutrones depende de la composición así como del tamaño de las fuentes.

b. Sección Eficaz y Atenuación de Neutrones.

Antes de considerar las interacciones de los neutrones con la materia, es necesario establecer las cantidades que se cono cen como "secciones eficaces", ya que en términos de estas can tidades se describen las interacciones.

Al someter un núcleo dado a un bombardeo de partículas, normalmente ocurren diversas reacciones nucleares A,B,... etc., de forma que se puede plantear la pregunta ¿En cada unidad de volumen de la sustancia bombardeada y en una unidad de tiempo cuantas reacciones de cada clase ocurrirán?.

El número de reacciones buscadas puede expresarse en términos de la denominada sección eficaz del núcleo bombardeado. Para establecerla, suponemos una corriente de partículas de trayectorias paralelas y de la misma velocidad y corriente -

Energía Neutrón Producción Neu FUENTE (MeV) tron. Vida Promedio Máxima (n/seg)Media 210_{PO-Li (a, n)} 0.05×10^{6} 1.32 0.48 138.4 d $239_{\text{Pu-F}}(\alpha,n)$ 0.8 3 24.400 a 210_{PO-F} (a, n) 0.2 X 10⁶ 1.4 2.8 138.4 d 210_{PO-B} (a,n) 0.6×10^{6} 2.5 -3 5-6 138.4 d 210_{PO-Be} (a,n) 2.5×10^{6} 4.2 \$10.87 138.4 d 221 Ra-Be (α, n) 15×10^{6} 3.9 18.08 1622 a 2.5×10^6 RaD, E, F-Be (α, n) 4.5 10.87 19.4 a 239_{Pu-Be} (a, n) 1.5×10^{6} 24,400 a 4.5 10.74 227_{Ac-Be} (α , n) 20×10^{6} 4.6 21.8 a 12.79 $241_{Am-Be}(\alpha, n)$ 1.34×10^{6} 4.4 462 a

Tabla 2.2.- Fuentes de Neutrones por reacción (α, n) . (d= días, a= años). 34.

que bajo estas condiciones se denomina haz. La intensidad del haz I, puede definirse como el número de partículas que por unidad de tiempo atraviesan una unidad de area normal a la d<u>i</u> rección del haz de partículas. Si el haz incide sobre una lámina delgada de área (a) y espesor X conteniendo N átomos por unidad de volumen, la rapidez con la que ocurren las interacciones dentro de la lámina, es proporcional a la intensidad del haz, a la densidad atómica, area y espesor de la lámina, esto se puede expresar por medio de la siguiente ecuación:

Razón de interacción = σ I N a X (2.1.3) donde la constante de proporcionalidad σ , es la que se conoce como sección eficaz. Resolviendo la ecuación anterior para σ se obtiene que:

σ= Razón de Interacción/I N a X (2.1.4) Como N · a · X, es el número total de átomos en la lámina entonces es la razón de interacción por átomo en la lámina --(6 material blanco) por unidad de intensidad del haz incidente.

La probabilidad relativa de que cualquier neutrón en el haz interaccione es:

$$\frac{I N a X \sigma}{I a} = \left(\frac{\sigma}{a}\right) \quad (N a X) \tag{2.1.5}$$

Entonces σ/a representa la probabilidad por núcleo de que un neutrón interaccione en ésta porción del haz. Puesto que el area del blanco esta fija durante el experimento entonces la probabilidad de una interacción está determinada solamente por σ . La sección eficaz σ tiene las dimensiones de - -- longitud al cuadrado y como frecuentemente su valor está comprendido entre 10^{-22} y 10^{-26} cm², se ha adoptado como unidad de secciones eficaces el "barn" que se designa por la letra b y tiene como valor: lb = 10^{-24} cm².

Los neutrones interaccionan con el núcleo a través de algún número de formas, es conveniente describir como ya dijimos estas interacciones en términos de su sección eficaz cara<u>c</u> terística. Así la "<u>dispersión elástica</u>", es descrita por la -<u>sección eficaz</u> de <u>dispersión elástica</u> σ_s ; la "<u>dispersión ine-</u> <u>lástica</u>" por la <u>sección eficaz</u> de <u>dispersión inelástica</u> σ_i ; la reacción (n, γ) ó de <u>captura radiativa</u> por la <u>sección efi-</u> <u>caz de captura</u> σ_{γ} , la <u>fisión</u> por la <u>sección eficaz</u> de fisión σ_f , etc. La suma de las secciones eficaces para todas las posibles interacciones se conoce como la <u>sección eficaz total</u> que es: $\sigma_t = \sigma_s + \sigma_i + \sigma_\gamma + \sigma_f + \dots$ (2.1.6)

La sección eficaz total mide la probabilidad de que una interacción de cualquier tipo ocurra cuando los neutrones inciden sobre la lámina.

36.

Considerando un haz colimado de neutrones llegando perpen dicularmente sobre una superficie de área A como se muestra en la figura anterior, donde:

A - area de la superficie en cm²

x

T

- distancia desde la cara frontal, cm
- I intensidad inicial del haz, n/cm² seg.
 - intensidad de una distancia x de la cara frontal, n/cm² seg.
- σ₊ sección eficaz total, barn
- N densidad de átomos del blanco, núcleos/cm³
- N Adx- número de átomos del blanco en el espesor diferencial, dx
- σ_tNAdx área total efectiva presentada por los nucleos a los neutrones, barn

 σ_t NA dx/A = probabilidad de interacción (fracción del haz que sufre alguna interacción), cm² area efectiva/cm² area total.

Si I(x) es la intensidad de los neutrones que no han int<u>e</u> raccionado después de penetrar una distancia x dentro del blan co. La intensidad del haz al atravezar una distancia adicional dx disminuirá por el número de neutrones que han interaccionado en la lámina de espesor dx. La disminución en la inte<u>n</u> sidad es dada entonces por:

$$d I = -I \sigma_{+} N dx$$
 (2.1.7)

Separando variables e integrando para un espesor x,

$$\int_{I_0}^{I} \frac{dI}{I} = -\sigma_t N \int_0^X dx \qquad (2.1.8)$$

38.

entonces $I = I_0 e^{-\sigma} t = I e^{-\Sigma} t^{-\Sigma} t$ (2.1.8)

Donde $\Sigma_t = \sigma_t \cdot N = 1$ a sección eficaz macroscópica total cm⁻¹. Esta representa el área efectiva del blanco por unidad de volumen del material.

Derivando la ecuación 2.1.8, se obtiene:

$$\frac{dI}{dx} = -I \sum_{t} e^{zt} e^{t}$$
(2.1.9)

de donde se tiene que la absorción disminuye exponencialmente. De manera similar, se puede mostrar que Σ_s es la sección ef<u>i</u> caz macroscópica de dispersión y así sucesivamente para todas las otras secciones eficaces macroscópicas.

La distancia en que un neutrón se mueve entre interacciones es llamada <u>trayectoria</u> <u>libre</u> y la distancia promedio viaja da por neutrón entre interacciones es conocida como la <u>trayec</u>toria media libre.

De la sección anterior se puede ver que la disminución en la intensidad mientras se viaja una distancia dx, se debe al número de neutrones interaccionando removidos del haz.

$$dI = -I_{t} \Sigma_{t} e^{-\Sigma_{t} X} dX$$

Estos neutrones han viajado una distancia x sin interac-ción, la distancia total viajada por todos los neutrones cua<u>n</u> do interaccionan en un medio de material infinito es:

$$\begin{array}{c} x = \infty \\ -\int \\ x = 0 \end{array} \quad xdI = I_{O} \qquad \int \\ 0 \end{array} \quad xe^{\sum_{t} x} dx$$

Lo que representa es la suma para la placa infinita de la distancia viajada por neutrones absorbidos en cada uno de los espesores diferenciales. La trayectoria media libre, es enton ces la distancia total de interacción dividida por la intensi dad del haz original.

$$\lambda = \frac{I_0 \Sigma \int_0^\infty x e^{-\Sigma t^X} dx}{I_0} = \Sigma \int x e^{-\Sigma t^X} dx = \frac{1}{\Sigma}$$
(2.1.10)

Así que el inverso de la sección macróscopica total, es la trayectoria media libre. Este resultado también es empleado considerando el flujo neutrónico cuando los neutrones no son colimados y viajan en direcciones al azar.

Como las secciones eficaces son probabilidades de interacción, las probabilidades individuales pueden sumarse para dar la probabilidad total.

La suma de las secciones de absorción para todas las reac ciones de absorción se conoce como la <u>sección eficaz de absor-</u> <u>ción</u> y se denota así:

$$\sigma_{a} = \sigma_{y} + \sigma_{f} + \sigma_{p} + \sigma_{x} + \dots \qquad (2.1.11)$$

donde $\sigma_{\alpha} \ y \ \sigma_{p}$ son las secciones eficaces para las reaccio-nes (n, α) y (n, p), la fisión por convención es tratada como un proceso de absorción.

La diferencia entre la sección eficaz total y la elástica, se conoce como la sección eficaz no-elástica, y se denota usual mente por σ_{ne} .

$$\sigma_{ne} = \sigma_t - \sigma_s \qquad (2.1.12)$$

39.

Mecanismos de Interacción de los Neutrones

Ci

Los mecanismos fundamentales de interacción de los neutro nes son: <u>la formación del núcleo compuesto, la dispersión por</u> potencial y la interacción directa.

El núcleo bombardeado Z^A al recibir el impacto del neutrón se transforma en otro núcleo distinto, el denominado <u>núcleo</u> --<u>compuesto</u>, el cual se forma con una Z^{A+1} y una energía superior a la correspondiente a su estado normal o fundamental. El exceso de energía sobre su estado fundamental es la energía de excitación E_{ex}.

Cuando se forma el núcleo compuesto, las energías cinéticas del núcleo blanco y del neutrón con respecto al sistema centro de masas C, son transferidas en energía interna del nú cleo compuesto, E_c . El núcleo compuesto se forma a la energía $E_c + B$ por encima del estado base, donde B es la energía de enlace del núcleo Z^{A+1} . El núcleo puede permanecer en este es tado excitado por algún tiempo, y puede decaer por la emisión de uno o un grupo de nucleones solo sí, como resultado de co lisiones al azar dentro del núcleo, el nucleón recibe suficien te energía para escapar del sistema. Si el nucleón emitido, es un neutrón y el núcleo residual Z^A regresa a su estado ba se, el proceso se conoce como <u>dispersión elástica compuesta</u>. Por otro lado, si el neutrón emitido deja el núcleo residual en un estado excitado, el proceso es llamado <u>dispersión ine-</u> lástica compuesta.

40.

El núcleo compuesto también puede decaer por la emisión de uno o más rayos γ , y de este modo el núcleo compuesto altamen te excitado eventualmente alcanza el estado base. La probabili dad de formación del núcleo compuesto es alta si hay un estado excitado en el núcleo z^{A+1} en la vecindad de la energía E_+B. Cuando tal estado existe, la probabilidad de la formación del núcleo compuesto es muy grande y las secciones eficaces para todo tipo de interacciones son energéticamente posibles. Los distintos picos que aparecen en la medida de una sección eficaz se denominan resonancias. Bajo la hipótesis de un estado con núcleo compuesto; la probabilidad que el núcleo decaiga por la emisión elástica de un neutrón es: Γ_n/Γ ; la probabi lidad que este decaiga por emisión inelástica de neutrón es Γ_{H}/Γ y así para las demás formas de decaimiento. Si se denota por σ_{c} (E_c), a la sección eficaz para la formación del núcleo compuesto, entonces en general se tiene que:

$$\sigma_{b} (E_{c}) = \sigma_{c} (E_{c}) (\frac{\Gamma b}{\Gamma})$$
(2.1.13)

donde $\sigma_{\rm C}$ (E_C) es la sección eficaz para la formación del núcleo compuesto por un neutrón incidente de energía E_C y - --($\Gamma_{\rm b}/\Gamma$)_c es la probabilidad que el núcleo compuesto decaiga por la emisión de una partícula del tipo b.

La dependencia energética de $\sigma_{c}(E_{c})$ es en general bastante complicada; pero cerca de una resonancia aislada en una -energía E_{1} es posible expresarla aproximadamente como:

$$\sigma_{c} (E_{c}) = \frac{\text{constante}}{(E_{c} - E_{1})^{2} + \Gamma^{2}/4}$$
 (2.1.14)

En esta ecuación cuando $E_c = E_1 + \Gamma/2$, σ_c es igual a un medio de su valor máximo. Así pues la anchura de la resonancia a la altura $\sigma_c = \frac{1}{2} - \sigma_c$ max es precisamente Γ , y este he cho permite obtener Γ de la curva experimental de la resonancia [15,16]. Así Γ es una medida de la "anchura" de la reso nancia, y es por ésta razón que es llamada así.

La sección para dispersión elástica compuesta es sólo sig nificativa en la vecindad de una resonancia, no así la <u>disper-</u> <u>sión por potencial</u> que es un tipo de dispersión elástica la cual ocurre con neutrones de cualquier energía.

La dispersión por potencial ocurre sin la formación del núcleo compuesto y simplemente se lleva a cabo por la presencia del núcleo, es sólo función de las fuerzas que actúan sobre un neutrón cuando este se nueve en las vecindades del núcleo, y dado que estas dependen sobre las dimensiones y forma del núcleo, es por esto que a veces se le llama <u>dispersión</u> elástica de forma.

Neutrones de energía alta en comparación a los producidos en un reactor pueden interaccionar también con un núcleo por <u>interacción directa</u>. En este mecanismo, el neutrón incidente colisiona directamente con uno de los nucleones en el interior del núcleo. Se encuentran dos tipos de proceso, uno es la de un protón expulsado del núcleo y el neutrón retenido que se llama <u>reacción de interacción directa</u> (n,p) y otro es el de un neutrón que al golpear el nucleón, este emerge en un estado excitado, tal interacción es denominada dispersión inelás-

42.

tica de interacción directa.

Los diversos mecanismos de interacción del neutrón se pue den resumir como se muestra en la siguiente tabla:

> Dispersión elástica resonante o compues ta.

Dispersión elásti ca total (n,n)

Formación de un núcleo compuesto. Reacción Dispersión inelástica(n,n') Captura radiativa (n,y) Transmutación(n,p) (n,g)... Fisión

Reacción (n, 2n)

INTERAC- Dispersión Elástica por Potencial (6 de Forma) CION

TOTAL

Interacción Directa

difference : the story

Dispersión inelástica Di recta.

Reacción de Interacción Directa.

Tabla 2.3.- Interacciones de los neutrones, con la materia [17] d. Dispersión Elástica e Inelástica.

La dispersión elástica entre el neutrón y el púcleo se ---distingue de otros tipos de interacciones por que:

i.- La configuración final e inicial consiste de particu culas idénticas.

$$z^{A} + n - z^{A} + n$$

ii.- La energía cinética total se conserva. En el sistema centro de masas (C) el neutrón dispersado saldrá con una -energía cinética idéntica a su energía cinética inicial. Por su parte en el sistema de laboratorio (L) el neutrón dispersado emergerá con una energía cinética que depende del ángu lo de dispersión. No obstante en cualquiera de estos sistemas la suma de las energías cinéticas del neutrón y el núcleo an tes y después de la colisión son idénticas.

Si se establece la cinemática de esta colisión en unida des de masa del neutrón será uno y la del núcleo es A veces la masa del neutrón.

La energía cinética inicial del neutrón en el sistema L es \overline{E} y en el sistema C la energía total es E. Las energías finales se denotan con letras primadas; así mismo el ángulo de dispersión en el sistema L se denotará por $\overline{\theta}$ y por θ en el sistema C.

Considerando un neutrón de energía cinética \overline{E} incidente sobre un núcleo blanco de masa A que se encuentra en reposo en el laboratorio antes de la colisión.

1

44.

Después de la colisión el neutrón se moverá a un ángulo $\overline{\theta}$ relativo a su dirección inicial. La energía cinética después de la colisión está dada por la ecuación siguiente [15]:

$$\overline{\mathbf{E}}' = \overline{\mathbf{E}} \left\{ \frac{1}{A+1} \cos \overline{\theta} + \left| \frac{A-1}{A+1} + \left(\frac{1}{A+1} \right)^2 \cos^2 \overline{\theta} \right|^{1/2} \right\}^2$$

(2.1.15)

el núcleo tendrá una energía cinética \overline{E}_A , dada por:

$$\mathbf{E}_{\mathbf{A}}^{\prime} = \mathbf{\bar{E}} - \mathbf{\bar{E}}^{\prime} \tag{2.1.16}$$

de la conservación de la energía cinética. El núcleo debe dis persarse en la dirección hacia adelante, su ángulo de dispersión $\overline{\theta}_{\mathbf{a}}$ está dado por:

$$\operatorname{sen} \overline{\theta}_{A} = \sqrt{\frac{E'}{AE'_{A}}} \operatorname{sen} \overline{\theta} \qquad (2.1.17)$$

El ángulo de dispersión del neutrón en el centro de masas 8 está dado implícitamente por:

an
$$\overline{\theta} = \frac{\operatorname{sen} \theta}{(1/A) + \cos \theta}$$
 (2.1.18)

y el ángulo de dispersión del núcleo está dado por:

$$\theta_{A} = \pi - \theta \qquad (2.1.19)$$

sustituyendo $\overline{\theta}$ en 2.1.16 por θ , se obtiene:

t

$$\frac{\bar{E}'}{\bar{E}} = \frac{A^2 + 1 + 2A \cos \theta}{(A+1)^2}$$
(2.1.20)

Si el neutrón es dispersado directamente hacia adelante cos $\bar{\theta} = 1$ y la ecuación 2.1.16 da como resultado que $\bar{E}'=\bar{E}$ es to es el neutrón no sufre pérdida de su energía inicial. Si la masa del núcleo A, es mayor que una masa neutrónica, el neu-trón puede dispersarse a través de un ángulo entre 0 y π . Si éste se dispersa a un ángulo de π entonces ocurre la máxima transferencia de energía al núcleo; la energía final del neutrón es entonces:

$$(\bar{E}')_{\min} = \left(\frac{A-1}{A+1}\right)^2 \bar{E}$$
 (2.1.21)

Cuando la masa del núcleo blanco es identicamente igual a la masa delneutrón entonces el ángulo máximo de dispersión $\bar{\theta}$ es $\pi/2$; que corresponde a una colisión frontal en la que la energía cinética del neutrón es cedida completamente al núcleo blanco.

Para la determinación de las secciones eficaces en la región de baja energía se emplea el formalismo de Breit-Wigner. En ésta región el núcleo se trata como una ésfera impenetrable excepto en las energías de los neutrones que corresponden a niveles virtuales en el núcleo compuesto [15]

Las secciones eficaces elásticas a altas energías se calculan por medio del análisis de ondas parciales. A bajas ene<u>r</u> gías (kR < 1) el corrimiento de la onda-s para esfera impenetrable está dado por -kR. Bajo estas condiciones cerca de una resonancia de energía E en el sistema centro de masas, se ll<u>e</u> ga a establecer σ_{c} como[16]:

$${}^{\sigma}{}_{s}(E_{c}) = \frac{\pi \lambda_{1}^{2} g \Gamma_{n}^{2}}{(E_{c}-E_{1})^{2} + \Gamma^{2}/4} + \frac{4\pi \lambda_{1} g R(E_{c}-E_{1}) \Gamma_{n}}{(E_{c}-E_{1})^{2} + \Gamma^{2}/4} + 4\pi R^{2} \quad (2.1.22)$$

Donde E_c es la energía cinética del neutrón incidente y del núcleo blanco en el sistema C, λ_1 es la longitud de onda reducida de una partícula con masa reducida μ y energía E₁ o sea $\lambda_1 = h/(2\mu E_1)^{1/2}$, h constante de Planck, R es el radio nuclear, g es un factor estadístico que es función de J el espín del núcleo compuesto y de Iel espín del núcleo blanco como sigue:

in the	19 48 15	Martin and T	7-0	
q=	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·
	1	()	T≠O	
1.1.3	2	21+1	170	

Y Γ , Γ_n son la anchura total y del neutrón respectivamen te. Definiendo las cantidades: $\sigma_1 = \frac{4\pi \lambda_1^2 g \Gamma_n}{\Gamma}$ y $x = \frac{2}{\Gamma} (E_c - E_1)^{\parallel}$ la ecuación 2.1.22 conocida como fórmula de Breit-Wigner para onda s en dispersión de resonancia es posible escribirla como sigue:

$$\sigma_{\rm g}({\rm x}) = \frac{\sigma_{\rm 1} \Gamma_{\rm n}}{\Gamma} \frac{1}{1+{\rm x}^2} + \frac{2 \sigma_{\rm 1} R}{\lambda_{\rm 1}} \cdot \frac{{\rm x}}{1+{\rm x}^2} + 4 \pi {\rm R}^2 \quad (2.1.24)$$

Como se vió al principio de ésta sección la dispersión elástica ocurre por dos mecanismos de interacción; la disper sión elástica por potencial y la dispersión elástica compues ta. En la ecuación 2.1.24 se puede identificar el primer tér mino como la contribución debida a la dispersión elástica com puesta, el término central resulta de la interferencia entre las ondas del neutrón emitidas en dispersión elástica compues ta y dispersión por potencial. El último término representa la dispersión por potencial. Las resonancias de dispersión de on

(2.1.23)

das s en baja energía exhiben un mínimo característico a una energía justo por debajo de la energía de resonancia. Este mí nimo resulta de la interferencia entre la dispersión elástica compuesta y la potencial, la Fig.2.1 muestra la asimetría en σ_c alrededor de resonancias aisladas.

Fig. 2.1.- Variación de las secciones elásticas a bajas energías en la vecindad de resonancias aisladas en ondas s.

En altas energías la dispersión elástica compuesta es mucho menos probable que la dispersión elástica de forma y la sección eficaz calculada de dispersión por potencial es posible usarla como una buena estimación de la sección eficaz total.

La dispersión inelástica está definida por dos condicio-nes:

1.- Las configuraciones inicial y final son idénticas -excepto que el núcleo producto está en un estado exci tado.

$$z^{A} + n - (z^{A})^{*} + n^{*}$$

marth Car House and the Marting of a

ii.- La energía cinética total de la configuración final,

es menor que la energía total de la configuración ini cial por una cantidad igual a la energía de excitación del núcleo producto.

El núcleo producto en un evento de dispersión inelástica generalmente emite uno o más rayos gamma para alcanzar su esta do base, o sea:

$$(z^{A})^{*} - z^{A} + \gamma$$

Todo el proceso que involucre la formación del núcleo compuesto excitado y el decaimiento subsecuente por la emisión ga mma se puede expresar como:

$$z^{A} + n - (z^{A+1})^{*} - (z^{A})^{*} + n^{*}$$

Si la energía cinética total es mayor que la energía del primer nivel excitado en el núcleo blanco, éste estado puede excitarse en la colisión ésto es, la dispersión inelástica pue de ocurrir.

La energía cinética del neutrón en el laboratorio \overline{E} y la energía cinética total E en el sistema C estan relacionadas c<u>o</u> mo:

$$E = \frac{A}{A+1} \tilde{E}$$

donde A es la masa del núcleo blanco medido en unidades de la masa del neutrón. Denotando las energías de los estados excita dos en el núcleo blanco por E_1 , E_2 , etc., y los níveles de -energía del núcleo compuesto por E_1^C , E_2^C , . . . etc.

+ Y

La <u>energía de umbral</u> \overline{E}_t para cualquier interacción se define como la menor energía cinética posible del neutrón, a la que ésta interacción ocurre. Así en el laboratorio, la energía de umbral para dispersión inelástica de un neutrón saliendo -del núcleo con su nivel mínimo de energía E_1 estará dada por:-

$$\bar{E}_{t} = \frac{A+1}{A} E_{1}$$
 (2.1.25)

Cuando un neutrón incidente, es absorbido por el núcleo blanco para formar un núcleo compuesto éste quedará en un est<u>a</u> do altamente excitado con energía:

$$E_j^c = S_n^c + E$$
 (2.1.26)

donde S_n^c es la energía de separación de un neutrón del núcleo compuesto.

La sección eficaz de dispersión inelástica se puede expre sar en términos del producto de la sección eficaz de formación y la probabilidad de decaimiento

$$\sigma_{i}(E) = \sigma_{c}(E) \frac{\Gamma_{n}}{\Gamma}$$
(2.1.27)

donde $\sigma_{c}(E)$ es la sección eficaz para la formación del núcleo compuesto por neutrones de energía cinética E y Γ_{n} ,/ Γ es la -probabilidad que el núcleo compuesto decaiga por la emisión de un neutrón a uno de los estados excitados del núcleo producto, el valor de Γ_{n} ,/ Γ depende de la energía de excitación del nú cleo compuesto. Cuando la energía cinética del neutrón inciden te excede a la energía del nivel del segundo estado excitado en el núcleo blanco, el núcleo compuesto puede decaer inelásti cămente en más de un modo. Haciendo corresponder a cada grupo de neutrones que puedan ser emitidos, una anchura parcial -- Γ_n , (E_i) y una sección eficaz para excitación del nivel i-ésimo en el núcleo producto la sección eficaz se puede escribir como:

$$\sigma_{n}, (E, E_{i}) = \sigma_{c} (E) \frac{\Gamma_{n}, (E_{i})}{\Gamma}$$
 (2.1.28)

Así que la sección eficaz total de dispersión inelástica es entonces la suma de estas secciones eficaces parciales.

$$\sigma_{n'}(E) = \Sigma_{E_i} \sigma_{n'}(E, E_i)$$
 (2.1.29)

La energía del nivel energético nuclear mínimo es del orden de 0.5 a 5 MeV en núcleos ligeros (A <25), de 0.1 a 0.2MeV en núcleos medios (25< A < 70) y de 0.05 a 0.1 MeV en los pesados (A >70). Lo que significa que la dispersión inelástica es una interacción a energías relativamente altas [15,16]

Captura Radiativa

La reacción de captura radiativa puede ocurrir en todas las energías de los neutrones, pero esta es más probable a ba jas energías. Consiste en la absorción de un neutrón por un núcleo y la emisión de un rayo gamma, el proceso ocurre en tiempos de aproximadamente 10^{-14} seg para los estados del nú cleo compuesto. La emisión es de uno o más rayos gamma.

$$z^A + n - z^{A+1} + \gamma$$

La reacción de captura procede por la formación y el sub secuente decaimiento de un núcleo compuesto.

 $z^{A} + n - z^{(A+1)} z^{A+1} + \gamma + Q$

Dado que la masa en reposo del rayo gamma es cero, el valor Q está dado por:

 $Q(n, \gamma) = 931 \left[\frac{\text{MeV}}{\text{uma}} \quad M (Z^{A}) + m_n - M(Z^{A+1})\right] \cdot (2.1.30)$ que es la energía necesaria para separar el neutrón de Z^{A+1} , el núcleo compuesto:

$$Q(n, \gamma) = S_n^C$$
 (2.1.31)

Siguiendo a la captura del neutrón, el núcleo compuesto es excitado a un nivel con una energía dada por la suma de la energía de separación del neutrón y la energía disponible en el sistema C.

$$E^* = B_{n}^2 + \bar{E}$$
 (2.1.32)

donde E = [A/(A+1)] \overline{E} , dado que la energía cinética del núcleo en el sistema de laboratorio es ignorable comparada con la -energía cinética E del neutrón en el mismo sistema, lo que es cierto excepto posiblemente donde $\overline{E} < 10$ eV. Pero en este ca so E es completamente ignorable comparada con S_n^c . Luego ento<u>n</u> ces a todas las energías, la energía de excitación del núcleo compuesto es aproximadamente:

 $E^* = S_n^C + \frac{A}{A+1} \bar{E}$ (2.1.33)

El núcleo compuesto decae por la emisión de uno o más rayos gamma hasta alcanzar su estado base. La suma de las energías de los rayos γ es igual a la energía de excitación, o sea:

$$E^* = E_i (E_{\gamma})_i$$
 (2.1.34)

La ecuación anterior no es muy rigurosa puesto que no toma

en cuenta la conservación de momento del núcleo compuesto. Sin embargo al hacer el calculo de $\Delta E/E_{\gamma}$; donde ΔE es la energía cinética de retroceso del núcleo resulta que el valor de ΔE es despreciable en comparación con la energía del rayo gamma.

En el extremo de la escala de bajas energías, bien por deb<u>a</u> jo de la primera resonancia de captura, σ_{γ} la sección eficaz de captura se encuentra que es inversamente proporcional a la velocidad del neutrón. La sección eficaz de captura radiativa supone la forma de la resonancia de Breit-Wigner en la vecindad de resonancias aisladas. A energías más altas las resonancias se traslapan y no se pueden distinguir, además otras reac ciones comienzan a competir con la captura radiativa haciendo que σ_{γ} disminuya rápidamente, la razón es que con el incremento de la energía del neutrón incidente el núcleo compuesto se forma en niveles excitados más altos lo cual provoca el decaimiento por la emisión del neutrón en vez de una emisión por r<u>a</u> yo gamma.

La región de resonancia aisladas comienza aproximadamente en la región de MeV en núcleos ligeros, en la región de keV en núcleos medios y semipesados, y en la región de eV en núcleos muy pesados no-mágicos [17]. La sección eficaz (n, γ) para una resonancia aislada está dada por la fórmula de dispersión de Breit-Wigner:

$$\sigma_{\gamma}(E) = \pi \lambda^{2} \frac{2J+1}{2(2I+1)} \frac{\Gamma_{n}(E) \Gamma_{\gamma}}{(E-E_{0})^{2} + (\Gamma/2)^{2}}$$
(2.1.35)

El desarrollo 1/v de la sección (n, γ) puede derivarse como un caso especial de la fórmula de Breit-Wigner para una resona<u>n</u> cia aislada, bajo la suposición de que la resonancia está loc<u>a</u> lizada en una energía E_o que es mucho mayor que E y F, el den<u>o</u> minador en (2.1.35) es prácticamente constante.

Llamando a la anchura del neutrón como:

 Γ_n (E) = Γ_n (E₀) $\sqrt{E/E_0}$ la expresión de Breit y Wigner se reduce a :

$$\sigma_{\gamma} = \frac{\pi h^2}{2 m E} g(J) \sqrt{\frac{E}{E_o}} \frac{\Gamma_n (E_o) \Gamma_{\gamma}}{E_o^2} \qquad (2.1.36)$$

Todos los términos de la derecha son constantes excepto -- $\sqrt{\frac{E}{E_o}}$. Así en ausencia de resonancias próximas, la sección efi caz de Breit-Wigner va como l/v. Cerca del cero de energía del neutrón la sección de captura es la suma de las contribucio-nes de los extremos de todas las resonancias individuales de -Breit-Wigner.

Cuando la energía del neutrón se incrementa hasta la zona de energía intermedia (lkeV $\leq E \leq 0.5$ MeV), las secciones eficaces disminuyen pero son todavía apreciables.

In esta region
$$\Gamma_n > \Gamma_\gamma \ y \ \Gamma \approx \Gamma_n$$
, tal que:
 $\langle \sigma_\gamma \rangle = 2 \ \pi^2 \ \lambda^2 \ \langle \frac{g(J) \Gamma_\gamma}{D} \rangle$ (2.1.37)

Donde D es el espaciamiento del nivel medio y σ_{γ} es la sec ción promedio de captura para un haz con una extensión energética AE: Dado que Γ_{γ} y g(J), son aproximadamente independientes de la energía y el espaciamiento del nivel D disminuye sólo - suavemente sobre intervalos de energía del orden del 1 MeV o menos, la principal variación de $\langle \sigma_{\gamma} \rangle$ con la energía es λ^2 el que va como 1/E.

e. Emisión de Partículas Cargadas.

El núcleo compuesto formado por la captura de un neutrón puede decaer por medio de la emisión de una partícula cargada. Entre las reacciones posibles más comúnes estan la (n,p) y -- (n, α) ; las reacciones (n,d) son menos comúnes principalmente porque sus valores Q son menos favorables.

La cinemática de las reacciones con emisión de partículas cargadas puede ejemplificarse para la reacción (n, α) como:

A+n \longrightarrow (C^{*}) \longrightarrow B + a +Q El valor Q de la reacción está dado por:

Q= 931 $\frac{MeV}{uma}$ [M(A)+m_n-M(B)-M (⁴He)] (2.1.38)

Si Q es positiva la reacción es exoérgica y puede produci<u>r</u> se por neutrones de cualquier energía. Si Q es negativa la -reacción es endoérgica y la energía umbral esta dada por la ecuación:

$$\bar{E}_{t} = \frac{M(A) + m_{n}}{M(A)} \quad (-Q) \quad (2.1.39)$$

La energía de umbral en el laboratorio será la energía cinética mínima del neutrón a la que probablemente ocurra la -reacción. La energía en el sistema C es simplemente el negati vo del valor Q, o sea:

 $E_{+} = -Q$

La sección eficaz de cualquier reacción del tipo A+a ---- B+b está dada por la fórmula:

$$\sigma_{a,b} = \left(\frac{Eb}{Ea}\right)^{1/2}$$
 H (Ea) (2.1.40

donde Ea y Eb son las energías cinéticas de las partículas incidente y saliente respectivamente, y H (Ea) es una función -que varía suavemente de Ea. Cuando la reacción es exoérgica, -Eb excede a Ea por varios MeV. Luego entonces a bajas energías del neutrón incidente (Ea \approx eV), los cambios en Ea casí no afe<u>c</u> tan a Eb, por lo que la sección eficaz tiene un comportamiento esencialmente como 1/ /Ea. O sea como 1/v_a.

Para núcleos intermedios y pesados, la sección eficaz para reacciones de partículas cargadas es tan pequeña que practicamente no se puede medir. Esto es porque la párticula cargada emitida debe atravesar una barrera coulombiana para escapar del núcleo del mismo modo que cuando una partícula e es emitida de un núcleo radioactivo.

Excepto para núcleos ligeros, esta barrera es tan alta y a su vez el retardo temporal en la emisión de la partícula tan grande que el núcleo compuesto siempre decae por la emisión de un neutrón elástica o inelásticamente antes de que se emita -una partícula cargada.

Reacción de Fisión.

La reacción de fisión tiene características que no se encuen tran en otras reacciones nucleares, una de las más importantes es la gran energía liberada, otro hecho es que la reacción no se completa en dos etapas.

Desde el punto de vista cinemático la reacción de fisión -consiste inicialmente de la absorción de un neutrón por el nú cleo de blanco para formar un núcleo compuesto y la subsecuente escisión del núcleo en dos fragmentos.

$$z^{A} + n - (z^{A+1})^{*} - z_{1}^{A_{1}} + z_{2}^{A_{2}}$$

La conservación de los protones y neutrones en la reacción es expresada por: $Z_1 + Z_2 = Z Y A_1 + A_2 = A+1 Y el valor Q para$ esta reacción está dado por:

$$Q = 931 \frac{MeV}{uma} [M_{T} + m_{n} - M_{1} - M_{2}]$$

donde $M_1 ext{ y } M_2$ son las masas de los dos fragmentos $ext{ y } M_T$ es la masa total. La escisión ocurre de diversos modos, por lo tanto $M_1 ext{ y } M_2$ varían de fisión en fisión. Luego entonces el valor de Q para fisión no tiene un valor bien definido, sino más bien - es un promedio sobre las distribuciones de probabilidad de las masas de los fragmentos.

Las secciones eficaces de fisión para bajas energías - -- $(E \le 1 \text{ keV})$ tienen una complicada estructura de resonancias - por lo que se tratan con la ecuación de Breit-Wigner.

$$\sigma_{\mathbf{f}}(\mathbf{E}) = \pi \lambda^{2} \mathbf{g}(\mathbf{J}) \qquad \frac{\Gamma_{\mathbf{n}} \qquad \Gamma_{\mathbf{\gamma}}}{(\mathbf{E} - \mathbf{E}_{\mathbf{\gamma}})^{2} + (\Gamma/2)^{2}} \qquad (2.1.41)$$

donde Γ_{f} es la anchura para fisión del núcleo compuesto y Γ es la anchura total, que para neutrones de bajas energías es la suma de $\Gamma_{n} + \Gamma_{\gamma} + \Gamma_{f}$. De acuerdo con la ecuación anterior se espera que la sección eficaz de fisión a bajas energías varíe como 1/v y que la forma de la sección sea simétrica alrededor de la resonancia; realmente las secciones de fisión no mues-tran estos comportamientos, la razón puede ser entre otras la existencia de pequeñas resonancias no resueltas que se encue<u>n</u> tren cerca de las resonancias principales.

En la región de l a 20 MeV de energía del neutrón, la sección eficaz de fisión exhibe una variación lisa [17].

Las secciones de los núcleos fisionables en altas energías son simplemente continuaciones de las secciones de la resonan cia dentro de la región de traslapamiento de resonancia. En-tonces las secciones eficaces se pueden expresar como el producto de la sección eficaz para núcleo compuesto $\sigma_{\rm C}$ y la razón $\Gamma_{\rm F}/\Gamma_{\rm T}$ para el decaimiento por fisión:

 σ_{f} (E) = σ_{c} (E) $\frac{\Gamma_{f}$ (E*)}{\Gamma_{r} (E*) (2.1.42)

El fenómeno de fisión y los modelos propuestos para explicarla se discutieron en la sección 1.2.

2.2. Interacción de Neutrones con Polímeros

Los sistemas poliméricos sujetos a radiación nuclear forman una familia de materiales con características particulares. Es tan constituidos por largas cadenas moleculares formadas principalmente por átomos de C, H, O y N [19-22]

Los grados de orientación molecular, la oxidación, resisten cia mecánica, así como sus propiedades térmicas y ópticas, son entre otros los posibles parámetros que influyen en la respues ta del polímero.En ésta sección se establecen algunas propieda des y términos necesarios para tratar de visualizar el proceso de interacción de los neutrones con éste tipo de materiales. Como se vió en la sección anterior, la interacción más relevan te es la elástica. Suponemos válida una relación aditiva para los desplazamientos en el sistema multicomponente; o sea que consideramos independientes a los átomos componentes. Esta --aproximación es válida solo para energías por encima de los keV.

Las transformaciones químicas que ocurren en polímeros cuan do estan sujetos a la acción de radiación γ , electrones y partículas cargadas pesadas son en general ocasionadas por electrones secundarios generados por la radiación primaria.

La energía de la radiación electrónica secundaria está rel<u>a</u> cionada directamente con la energía de la radiación primaria y es función de ésta y de la composición del material irradi<u>a</u> do.

En el caso de neutrones al no poseer carga eléctrica, no son afectados por el campo eléctrico de los electrones atómicos ni por el del núcleo mismo. Consecuentemente el camino por el cual un neutrón transfiere energía al medio es por choques directos con los átomos componentes del sólido los que a su vez forman la traza. La irradiación con neutrones forma un conjunto amplio de partículas secundarias como: radiación Y, protones, partículas alfa y núcleos pesados, los que subsecuentemente producen ionización y excitación de las moléculas del polímero.

59.

Como resultado de colisiones directas de los neutrones con los núcleos atómicos, los primeros son capaces de expulsar áto mos de sus moléculas matrices dejando un radical libre;

$$RA - R^* + A^*$$
 (2.2.1)

donde R* es un radical libre y A* es un átomo libre el cual puede estar en un estado ionizado. Los radicales constituyen las cadenas laterales de la macromolécula lineal; cuando el -átomo tiene una energía cinética alta, éste escapa fácilmente de la zona de recombinación, dando como resultado que la disociación se vuelva permanente. En general se acepta que los radicales libres participan en los cambios químicos que toman l<u>u</u> gar en los altos polímeros bajo la influencia de la radiación.

La cantidad de energía transferida a los fragmentos, está gobernada por el principio de conservación de la energía. De donde se sigue que ésta energía es máxima para un núcleo que tenga masa igual a la de neutrón incidente.

Para sustancias orgánicas como los polímeros, la mayor par te de la energía es transferida a los átomos de hidrógeno.

El grado de sensitividad de altos polímeros hacia la irradia ción es una propiedad específica de los altos polímeros, como son los cambios considerables en sus propiedades físicas y m<u>e</u> cánicas, los que a su vez van acompañados por desordenes en su estructura química. No obstante estos últimos son pequeños comparados con los primeros ya que la baja producción de dive<u>r</u> sos productos inducidos por la radiación en altos polímeros lleva a la conclusión de que generalmente no hay procesos en cadena involucrados. El factor de producción (G) es definido como el número de átomos o moléculas químicamente alteradas por La radiación o formadas a través de la absorción de cada 100 eV de energía [2,19, 20]

La acción de la radiación sobre los polímeros resulta en los procesos fundamentales siguientes:

- Formación de enlaces químicos entre las cadenas poliméricas (Crosslink).
- ii.- Destrucción y degradación de macromoléculas con la formación de productos volátiles y moléculas con cadenas de longitud menor. Este proceso puede conducir a la degradación final del polímero a un líquido viscoso.
- iii.- Cambios en la naturaleza y número de los enlaces dobles iv.- Si está presente el oxígeno, se inician la oxidación y otras reacciones por la irradiación en condiciones favo rables.

Los procesos antes mencionados pueden ocurrir simultáneamen te, sin embargo son sus proporciones relativas las que determi nan el efecto total y los cambios específicos de las propiedades del polímero bajo la influencia de la radiación.

a. Irradiación con Neutrones Rápidos.

Un neutrón rápido imparte momento al núcleo con el que choca, y el núcleo retrocede, llevando su nube electrónica consigo. La energía absorbida de la radiación por material poliméri co tiene la más grande contribución del proceso de colisión elástica. Como resultado de ésta interacción, la energía de la partícula incidente se distribuye en la configuración final.

El valor de la energía cinética del núcleo en retroceso depende de la masa y del ángulo de dispersión del núcleo como si gue:

$$E_{nuc} = \frac{4M}{(M+1)^2} E_n \cos^2 \theta$$
 (2.2.2)

donde M es la masa del núcleo en retroceso, expresado en unida des de masa del neutrón; E_n es la energía cinética del neutrón antes de la colisión, θ es el ángulo entre la dirección del mo vimiento del neutrón antes de la colisión y la dirección del núcleo en retroceso [20,21]

Experimentalmente se ha establecido que la energía media del núcleo en retroceso es:

$$\bar{E}_{nuc} = \frac{2M}{(M+1)^2} E_n = \varepsilon E_n$$
 (2.2.3)

donde ε es la fracción de la energía del neutrón transmitida al núcleo en retroceso en una dispersión elástica. Los valores de ε para los elementos en materiales poliméricos son: H=0.5; C=0.142, N=0.124, O=0.111, F=0.095, Cl= 0.053. De donde se ve que la máxima energía en retroceso se transmite a protones.

La energía transmitida al polímero durante la dispersión elástica de neutrones rápidos se ha determinado de acuerdo a la regla aditiva siguiente [20]:

1 States addition

$$D_{ij} = 1.94.10^{16} = \sum_{i=1}^{\sigma_{ij}} \frac{f_{j}}{(A_{j}+1)^2} \left[\frac{\text{rad}}{\text{neutron} \cdot \text{cm}^2}\right]^{(2.2.4)}$$

donde _{ij} es la sección eficaz de dispersión elástica de los neutrones por el núcleo del elemento j, cm²; f_j es la fracción del elemento j en la mezcla, A_j es el peso atómico del elemen to j; E es la energía del neutrón en MeV. En el caso de polímeros, la fracción de la energía transmitida en dispersión -elástica sobre hidrógeno es de un 85 a 95% de la energía total absorbida. El valor de D_{ij} para un sistema de componente mú<u>l</u> tiples se puede calcular tomando el peso de las fracciones de los elementos que conforman el sistema.

En casos prácticos, la distribución espectral completa se desconoce, y sólo se da el número de neutrones que tienen una energía superior a la de cierto umbral T es dado. La energía absorbida en el elemento i se determina como:

$$D_{i}(T) = \frac{\int_{T}^{E \max} N(E) D_{i}(E) dE}{\int_{T}^{E \max} N(E) dE_{i}}$$
(2.2.5)

La solución de esta ecuación no requiere una aproximación de la función N(E) de gran exactitud.

Aún así es posible establecer una solución de la ecuación 2.2.5 hastante satisfactoria.

Por otra parte el número promedio de desplazamientos por neutrones rápidos puede determinarse por la siguiente ecuación:

$$N = \frac{E}{4 T_{m}} [0.108 - 0.561 \log \frac{E}{E}t] [1 + \frac{E}{E}t]^{-1} (2.2.6)$$

donde E es la energía del neutrón, E_t es la energía requerida para desplazar un átomo y T_m es la energía máxima del primer

Cal Se

encuentro frontal, T_m está dada por la ecuación:

$$T_{m} = \frac{4 \text{ EMn}}{(M+m)^{2}}$$
(2.2.7)

donde m es la masa del neutrón y M la masa del átomo desplazado.

b. Degradaciones Físicas y Químicas

De la manera en la que interaccionan los neutrones con los sistemas de polímeros se puede ver que la degradación, es el proceso más importante.

La escisión de la cadena resulta en la contínua reducción del peso molecular del polímero hasta su completa degradación en un monómero, o sea en un enlace químico de pocas unidades moleculares [19]. El número de escisiones de la cadena principal de macromoléculas es proporcional a la energía absorbida y no depende del peso molecular.

Un incremento en la temperatura conduce a un ligero incremento en la razón de degradación; se piensa que resulta de la reducción en la probabilidad de recombinación de radicales for mados en la irradiación. Si las cadenas laterales se escinden con facilidad no se produce una despolimerización a los monôme ros; luego entonces la constitución química es decisiva para la cuantía y forma de la degradación. La degradación de macromoléculas por reactivos químicos depende de la naturaleza de sus enlaces. Existen dos tipos esenciales de procesos de degra dación; uno gradual en forma de reacciones de degradación esca

1. Superior of the head in the second

lonadas cuyo tratamiento matemático conduce a un sistema de ecuaciones diferenciales lineales y otro en forma de reacciones en cadena con intervención de radicales el cual conduce a un si sistema de ecuaciones no lineales que en general no se puede resolver en forma cerrada.

El cálculo de la distribución de pesos moleculares corres-pondientes, a una sustancia polidispersa de distribución ini-cial dada que asocie a cada enlace una cierta probabilidad de escisión por unidad de tiempo, se puede hacer como sigue:

Considerense N_1, N_2, \ldots, N_k , número de moléculas de pol<u>í</u> meros con grado de polimerización P=1,2,...,k, respectivamente, presentes en un instante dado y sea $V_{i,P}$ la probabilidad de que el enlace i-ésimo de una molécula cuyo grado de polimerización P se escinda en la unidad de tiempo; i puede tomar v<u>a</u> lores de 1,2,..., P-1 puesto que una cadena con grado de polimerización P tiene P-1 enlaces.

Es claro que la probabilidad de a_p de que una molécula con polimerización P se degrade en la unidad de tiempo será igual a:

$$a_{p} = \sum_{i=1}^{p-1} V_{i,p}$$
 (2.2.8)

Luego es cosible escribir el sistema de ecuaciones diferen ciales para estas degradaciones unimoleculares:

66.

$$dt = k + 1, k + k + 1, k' + k + 1 + 1, k + 1 + k + 2, k + 1$$

$$N_3(V_{1,3}+V_{2,3}) + N_2(V_{1,2}+V_{1,2})$$

Haciendo la simplificación:

$$V_{i,p} + V_{p-1,p} = a_{i,p}$$
 (2.2.10)

resulta que;

$$a_p = \frac{1}{2} \qquad \sum_{i=1}^{p-1} a_i, p$$

y volviendo al sistema de ecuaciones 2.2.9, se ve que se convierte en el siguiente sistema:

o bien se puede expresar como:

$$\frac{dN_{P}}{dt} = a_{P} N_{P} - \sum_{j=P+1}^{k} a_{P,j} N_{j} \quad con \ (P=1,2,...k) \quad (2.2.12)$$

Para resolver el sistema de ecuaciones diferenciales 2.2.12 se se ensaya la expresión:

$$N_p = C_p \exp(-at)$$

que llevada a la ec. 2.2.12 conduce a un sistema de ecuaciones de cuyas raices (considerando las condiciones iniciales) pue-den determinarse las constantes C_p . El tratamiento matemático se simplifica mucho si se considera la degradación estadística o sea admitiendo la suposición de que las probabilidaddes de degradación son iguales para todos los enlaces (=a) y si se su pone que la sustancia tenía inicialmente todas las moléculas con el mismo grado de polimerización (P=k).

De la teoría de interacción del neutrón con la materia se observa que la dispersión inelástica como regla general tiende a ser importante para núcleos pesados no así para núcleos ligeros en los que ordinariamente se puede ignorar.

El proceso de captura radiativa puede ocurrir a todas las energías del neutrón, pero es más probable en bajas energías comprendidas entre 0.01 y 10 eV. Este proceso decrece como --1/E o más rápidamente a valores muy pequeños.

Las reacciones con partículas cargadas inducidas por los neutrones en núcleos pesados tienen secciones eficaces tan p<u>e</u> queñas que usualmente no se pueden medir. Para núcleos ligeros la partícula cargada tiene que pasar a través de una barrera coulombiana tan alta y el retardo asociado en la emisión de -

67.

la partícula es can grande que el núcleo compuesto casi siempre decae por la emisión de un neutrón elástica o inelástica-mente producido antes que la emisión de una partícula cargada. Mientras que el proceso de dispersión elástica induce retrocesos de los núcleos dentro del detector siendo los núcleos lig<u>e</u> ros los más favorables ya que tienen secciones de dispersión elástica grandes, y adquieren una mayor fracción de la energía del neutrón como resultado de la colisión. Esta es la interacción que se considera importante para la formación de trazas.

Los sistemas poliméricos poseen solamente núcleos ligeros como componentes. Para energías mayores de los keV los enlaces moleculares se pueden ignorar, consecuentemente los núcleos se consideran independientes.

Un estudio detallado de los procesos que ocurren en el plás tico conduciría a sistemas de ecuaciones como los que se pre-sentaron, los cuales en general no se pueden resolver en forma cerrada,
CAPITULO III MODELOS DE FORMACION Y CARACTERISTICAS DE LAS TRAZAS.

En el campo de la detección de partículas nucleares por tra zas existe una gran cantidad de trabajos que muestran la posibi lidad de registrar aichas trazas en una amplia variedad de materiales dieléctricos. Estos materiales van desde minerales, vidrios naturales o inorgánicos artificiales, hasta polímeros orgánicos [1,2,18].

Puesto que las características físicas y químicas de los --DTES, son muy diferentes, se les ha agrupado en dos grandes c<u>a</u> tegorías: orgánicos e inorgánicos.

En materiales conductores no se logran obtener trazas que permanezcan tiempos suficientemente grandes para su posible ob servación, principalmente porque la movilidad electrónica es tal que permite la recombinación de los átomos con la correspon diente desaparición de la trayectoria dejada por la partícula nuclear.

Los detectores de trazas basan su registro en las estrechas trayectorias de intenso daño (trazas) que generan las partículas nucleares a su paso por la gran mayoría de materiales sóli dos dieléctricos. Bajo consideraciones que discutimos en el -presente capítulo las regiones de daño resultante de la irradiación pueden revelarse (traza revelada) por la acción de un ataque químico preferencia, que aumenta el tamaño de la traza hasta dimensiones ópticas.

Prestary "195 -- I

3.1 Modelos de Formación de Trazas

Siempre que se emplea un detector de trazas para identificar y registrar partículas, es necesario conocer la relación funcional entre los parámetros físicos bajo consideración. Pa ra encontrar dicha relación, los detectores se irradian con diversas partículas de parámetros bien conocidos y las respue<u>s</u> tas experimentales se comparan tentativamente a las cantidades componente de la traza de relevancia en el efecto de interés. Desafortunadamente como se verá en la presente sección, el que exista sólo un eventual acuerdo entre algunos datos experimen tales y las predicciones de los modelos no puede considerarse como una prueba rigurosa de la validez de éstos. Pero sí esta situación da algunas indicaciones en lo fundamental acerca de las propiedades de las partículas cargadas inducidas por los neutrones rápidos que pueden ser importantes para los efectos de la interacción de la radiación con la materia,

En ésta sección se presentan algunos modelos que se estiman de relativa importancia en la formación de trazas en plás ticos. Los mecanismos se pueden clasificar como sigue;

Ionización primaria Modelos por: Ionización secundaria Daño combinado

En general éstos mecanismos se apoyan principalmente en el concepto del LET, analizado anteriormente y el REL.

a. Mecanismo de punta de desplazamiento.

Uno de los primeros modelos que se formuló para la forma--

ción de trazas fue el de colisiones atómicas directas cuyo resultado es la producción de átomos intersticiales o vacancias, ya en forma de una huella de defectos separados cercanos 6 co mo una densa marca de daño o "punta de desplazamiento" en el extremo de la trayectoria donde el camino libre medio para colisión es igual al espaciamiento atómico. Cuando la excitación debida a las partículas incidentes es suficientemente -grande tal que muchos átomos son desplazados de sus sitios en el sólido dentro de una punta y emigran hacia otros lugares del sólido, la perturbación se llama punta de desplazamiento. Este modelo cuenta con una dispersión elástica de la partícula cargada con el núcleo atómico, sin embargo no se cree que sea La causa de la formación de trazas en sólidos por que no se observan trazas también en conductores donde dicha dispersión

predomina.

Daño

(U.A.)

海川

Fig.3.1,- Daño revelable del frenado de núcleos pesados en materiales dieléctricos, debido a ionización y desplazamiento atômicos en bajas energías [1].

La fig. 3.1 muestra esquemáticamente la existencia de un mínimo hipotetizado del daño grabable que a su vez se ha suge rido de datos experimentales. Para el intervalo mostrado, la densidad de daño está por encima del umbral correspondiente al Lexan [1]

b. Mecanismo de punta térmica y punta de explosión iónica.

Cuando se consideran en detalle los efectos de la radiación hay alguna contribución por desplazamientos atómicos en el material no perturbado. Los átomos no son perturbados individual mente sino en grupos lo que hace difícil de abarcar las perturbaciones en una teoría cuantitativa. Si se considera a un átomo moviéndose a través de una red o un átomo que ha sido colisionado lo suficiente para que vibre con una gran amplitud sin que quede fuera de su sitio en la red, tal átomo rápidamen te transfiere energía a sus vecindades quedando excitado anor malmente. Estos átomos ceden energía a sus vecinos y desarro--11an excitaciones localizadas en la red que luego terminan. El reflejo de éste efecto es el de una red que hubiera sido calen tada súbitamente a una alta temperatura en una región restringida. En realidad la región excitada nunca está en equilibrio consigo misma demodo que no está caracterizada como una temperatura propiamente. Las distancias y los tiempos involucra dos son muy pequeños así que las leyes macroscópicas de conducción de calor no son estrictamente válidas. La denomina-ción de puntas térmicas se debe a Seitz [11]. El calentamiento en la punta térmica tiende a expander el material, lo que genera un esfuerzo alrededor de la traza que es atacada durante el grabado más rápidamente que las zonas circunvecinas [23,24].

Un mecanismo alternativo es el de "punta de explosión iónica", el cual muestra ser el más adecuado para la formación de la traza en minerales. En él se sugiere la producción de una región cilíndrica de iones positivos a lo largo de la trayecto ria seguida por la partícula cargada pesada, como resultado so lamente de las ionizaciones y/o excitaciones primarias. Se sucede la expulsión de electrones y una repulsión mútua de los iones positivos primarios que dan desplazamientos atómicos en la red del sólido. La región cilíndrica de imperfecciones es atacada más fácilmente por reactivo químico que el volumen no dañado; éste proceso conduce finalmente a la posible observa--ción óptica [25,26].

Para llegar a ésta condición se suponen dos iones en un material cuya constante dieléctrica ε y espaciamiento atómico m<u>e</u> dio a_o llega a recibir una ionización promedio de n veces la carga e, la fuerza entre éstos es de n² e²/ ε a_o² o una fuerza local por unidad de área o esfuerzo electrostático $\sigma_{\rm e} = n^2 e^2/$ $/ \varepsilon a_{\rm o}^4$. Lo que se tiene esencialmente es la fuerza de enlace i<u>n</u> teratómico en términos de una cantidad macroscopica medible; notando que la resistencia de tensión mecánica teórica $\sigma_{\rm M}$ del material con módulo de Young Y es aproximadamente l/10Y es posible establecer que el esfuerzo electrostático será mayor que la resistencia mecánica sí $n^2e^2/a_{\rm o}^4 > 1/10Y$ o bien si:

 $n^2 > R \equiv Y \epsilon a_0^4 / 10 e^2$ (3.1.2)

donde R es la llamada relación de esfuerzos, la cual se puede

emplear para calcular la sensitividades relativas de materiales formadores de trazas.Lo que indica la ec. 3.1.2 es que en materiales con espacio interatómico pequeño, baja e y de poca resistencia mecánica,las trazas se formarían fácilmente. También se puede establecer que: el daño debe ser contínuo atóm<u>i</u> camente, esto es, debe haber al menos una ionización por cada plano atómico atravesado por la partícula.

mandaquanterinte

Ionización

Desplazamiento Electrostático

Relajación y esfuerzo elástico

Fig.3.2.- Esquematización del modelo de explosión de punta ióniza para formación de trazas en sólidos. a) ionización producida b) creación de vacancias c) configuración final de la traza

La formación de trazas está relacionada con el suministro de electrones cerca de una trayectoria ionizada. Esto es si los electrones pudieran reemplazar a los expulsados por la par tícula cargada antes que los átomos ionizados sean impulsados al material adyacente no habría una traza resultante. Se debe cumplir entonces que:

$$n_n < en_a / \pi a_o \mu_n kT_t$$
 (3.1.3)

donde, n_n = densidad de electrones libres, n_a es el número de ionizaciones por cada plano atómico, $\pi r^2 a_o n_n = n_a$ el radio de la región por vaciarse, D= $\mu_n kT/e$ es la constante de difusión y μ_n es la movilidad electrónica, t ~ 10⁻¹³ seg. Si la movil<u>i</u> dad en los materiales es mayor que 10 cm²/V-seg no aparecen trazas.

De las condiciones anteriores se pueden relacionar con características de las trazas, los puntos siguientes:

- 1.- La probabilidad de ataque químico de la traza estará
 en función de las concentraciones de vacancias e inters
 ticios.
- ii.- Localización de trazas en materiales con movilidad (µ) baja, que implíca tiempos suficientemente largos para permitir que los iones formen intersticios.
- iii.- Las mediciones de los umbrales críticos de pérdida de energía generalmente se incrementan monótonamente, con las relaciones de esfuerzos (tabla 3.1) calculados en el modelo dado.

Con éste modelo se explican satisfactoriamente algunos as-

pectos de formación de trazas y se es consistente con el crit<u>e</u> rio de ionización específica primaria, pero no se ofrece una explicación completamente satisfactoria para la formación de trazas en polímeros orgánicos.

c. Modelo de pérdida de energía secundaria.

Este modelo supone la pérdida de energía por electrones secundarios a una distancia radial específica (r) próxima a la trayectoria descrita por el ión pesado como la cantidad crítica para la formación de trazas. La dósis D de los electrones se cundarios para iones cae rápidamente conforme aumenta el radio r, como se indica en la expresión:

$$D(r) = \frac{a z^{*2}}{R^{2}}, \quad \frac{1}{r} \left(\frac{1}{r} - \frac{1}{R}\right) \quad (3.1,4)$$

donde R es el ancho máximo de la traza. El modelo de R. Katz, hace hincapíe en este daño secundario, postulando que la dens<u>i</u> dad de energía promedio es producida principalmente por rayos delta en una r= 20 Å [27,28].

Una traza se formará si sobre un diámetro suficientemente grande ocurre la fragmentación tal que el reactivo pueda pa-sar a través de la huella de daño en el cuerpo del dieléctrico. En polímeros los fragmentos moleculares resultantes de la int<u>e</u> racción de los rayos delta con el medio vecino son más solubles que las moléculas base. Una gran fracción de la energía depos<u>i</u> tada proviene de los rayos delta cuya energía esta por debajo de 0.1 keV. Los datos experimentales que se han obtenido poste riormente violan las predicciones que establece el modelo. Teniéndose en este modelo dificultades conceptuales como:

- i.- La selección arbitraria de distintos radios críticos
 - para diferentes materiales.

ii.- Ignorar los efectos primarios.

Clase de Detector	Grupo de Detectores de (UR) Similares, Listados en orden de um bral decreciente,	Relación de Esfuer- zos Promedio
Cristales	Hypersteno	A 5
	Olivina	
	Zircon	
	Labradorita	1.4
	Diopside	
	Augita	1.3
	Cuarzo	
	Micas	0,5
Vidrios	Silice	
inorgânicos	Flint Tektita	0.7
	Soda Lime	
	Fosfato	0.5
Plásticos	Grupo de 14 plásticos	0.01

ota: (UR) = Umbral de Registro

Tabla 3.1.- Relación de Umbrales de Registro para Relaciones de Esfuerzos Calculadas.

Fig. 3. 3 Cocientes Lw_0/L_0 como función de la energía de corte w para varias velocidades del ión.⁽³³⁾

Eventos Relevantes eIrrelevantes.

1)

(and the second

a)Modelo de "Ionización Primaria"

b)Modelo de

"REL"

c)Modelo de "Densidad Lineal deEventos".

Fig. 3. 4 Esquema de eventos relevantes(puntos oscuros) e irrelevantes(circulos abiertos) debido a partículas cargadas , pesadas, en tres modelos diferentes.

78.

d. Modelo de pérdida de energía restringida.

Este modelo sugerido entre otros por Benton [19-32], considera la pérdida de energía restringida (REL*), que es la razón de pérdida de energía de las partículas bombardeadas debido a colisiones distantes con electrones del medio como importante. Supone que solamente transferencias de energía por debajo de cierto valor predeterminado w_o, son las responsables de un dano efectivo. En el modelo del REL, la energía de w_o, es el ún<u>i</u> co parámetro libre [19-32].

Si L w_o denota la pérdida de energía restringida, L w, la energía cedida por un ión particular, entonces Lw_o \equiv REL \simeq L_∞ -Lw > w_o, por lo que:

$$\mathbf{Lw}_{0} \stackrel{*}{=} \frac{\mathbf{L}}{\mathbf{w}} -0.1536 \frac{\mathbf{z}}{\mathbf{A}} \cdot \frac{\mathbf{z}^{*2}}{\beta^{2}} \{ \ln \beta^{2} \gamma^{2} + \ln (2mc^{2}/w_{0}) - \beta^{2} (1 + \frac{w_{0}}{W_{max}}) \}$$
(3.1.5)

donde $L_{\infty} \equiv LET = dT/dx$ y las demás variables tienen el sign<u>i</u>ficado definido en la ec. 3.1.1

En la fig. 3.3, se muestran los cocientes de L w_0/L_{∞} como función de la energía de corte w_0 , para distintos iones. Como se observa de la figura, el cociente Lw/L_{∞} puede tomar muchos valores, al disminuir el potencial de ionización alrededor de 0.5, ésto refleja que cerca de la mitad del poder de frenado se convierte en energía cinética de los electrones secundarios.

* De las palabras en inglés Restricted Energy Loss.

Este modelo de energía restringida describe más adecuadamente las intensidades de daño en trazas que los otros modelos trata dos apegándose a los datos experimentales. Sin embargo, este modelo presenta dificultades conceptuales como se esquematiza en la fig. 3.4 ya que todos los eventos de electrones expulsados que transfieren energía por encima del límite w_0 se ignoran completamente, aunque muchos de estos puedan estar localizados muy cerca de la trayectoria del ión, mientras que los eventos por debajo del limite se toman como eficientes. Aunque si bien es cierto que el alcance de electrones con 350 eV es de varios cientos de Angstroms, la energía depositada queda fuera de la región de grabado preferencial y este modelo la inclu; e. Estos dos errores probablemente se compensen parcialmente. Este mode lo considera también la energía que se libera en ionización primaria igual que la liberada en procesos secundarios.

e. Modelo de "densidad lineal de eventos" δ de radio restrin gido.

Paretske sugiere un modelo que resuelve el problema de los eventos considerados como relevantes. Propone el concepto Lr que es la pérdida de energía en un radio restringido, el cual abarca todos los eventos de depósito de energía dentro de la distancia radial (r). Así en principio la cantidad Lr es sup<u>e</u> rior a Lw_o, sin embargo es más complicada de calcular [33].

En buena aproximación Lr se puede representar por:

$$L_{r} = L_{\infty} - a \frac{z^{*2}}{\beta^{2}} \left[\ln \frac{R}{r} - (1 - \frac{R}{r}) \right]$$
 (3.1.6)

donde $\frac{C_1 C_2}{I_2} = a$, $C_1 = 2 \pi n_e e^4/mc^2$

 C_2 = fracción efectiva de electrones en el detector en el esta do menos ligado y R es el ancho máximo de la traza.

Tanto en el modelo de REL como en el de Lr la densidad de eventos relevantes que se supone estrictamente proporcional a la densidad de energía local es una aproximación muy empleada para eventos primarios de partículas rápidas, no así para even tos secundarios por electrones lentos. Faretzke entonces propo ne un modelo de formación de trazas que domina "Densidad Li- neal de Eventos", éste modelo -corregido por translape-conside ra relevantes la densidad de ionización primarias y secunda-rías así como excitaciones a una determinada distancia alrede dor de la trayectoria del ión, para la rapidez de grabado en plásticos. De acuerdo con los resultados de éste modelo casi un 70% del poder de frenado total para partículas con 0.2MeV/ /uma se deposita dentro de un radio de 10 A de la trayectoria del ion mientras que solo el 55% permanece cuando se trata de partículas con 10 MeV/uma. Si se supone importante el radio del núcleo de la traza los electrones secundarios de partícu las con 0,2Mev/ uma contribuirán en un 30% para el daño efectivo por grabado preferencial mientras que los debidos a partículas con 10MeV/uma contribuyen con un 10% y menos aún para iones mas rápidos. Sin embargo el modelo de densidad lineal de eventos no establece de manera clara el radio efectivo de depósito de energía, consecuentemente habra que refinarlo toda

via más.

Los modelos de desplazamiento directos por partículas carga das y el de punta de desplazamiento son modelos no aplicables por que la probabilidad de producción de trazas por desplaza-miento directos es mínima y como observamos en la fig. 3.1, se encuentran por encima del umbral de Lexan para registro por trazas. Por su parte el modelo de ionización primaria ignora el efecto de los rayos delta, así como ionizaciones de órdenes superiores aún cuando logra ajustarse a buena parte de los datos experimentales de que se dispone. El criterio del REL dá predicciones aproximadamente idénticas al de ionización primaria para el registro por trazas de los iones ligeros z <18. -Para iones mas pesados el REL hace todavía buenas predicciones. La contribución que considera importante el mecanismo de energía secundaria es relevante para el registro de trazas en los plásticos solo que ignora los defectos debidos a la excitación y ionización primaria. Por su parte el REL considera que en -los polímeros es razonable esperar que los rayos 6 de baja ener gía contribuyen a la dósis total de la región de traza latente, pero aquellos que sobrepasen el limite wo se ignoran por com-pleto aún cuando se localicen muy cerca de la trayectoria del ion. Resumiendo es posible decir que no se dispone aún de un modelo que explique completamente la formación de trazas. La razón principal a la que se puede atribuir ésta complicación es que las propiedades químicas y físicas de los DTES quedan en categorías distintas.La tabla 3.2, muestra la comparación y criticas de los diversos modelos de formación de trazas.

	Hođelo	Críticas Principales	Conclusionen	
λ	Punta Térmica	i.~ El unbral sa espera aumenta con la temperatura requerida para el cambio de fase	No aplicable	
		11 No hace predicciones adecuadas.		
8	Colfmiones Atômicas	i Predice traxas que son producides a energías inferiores de las observadas	Ho aplicable en gene- ral. relevante a 1 KeV/uma.	
с	Pérdida total de Energía en Ionización	1 Predice trazaz que son producidas a smergías superiores a las observadas	No aplicable	
		ii Incluys la energía depositada lajos de la trasa		
D	Energía depositada por Electrones secundarios en el Nucleo de la traza	i Ignora defectos dabido a excitación y ionisación primaria	Incomplato e Incorreg	
		ii Cuantitativamente incorrecto a bajao energías.	to para minerales	
		ili No predice umbralez relativos, ni la ausencia de trasas en conductores		
E	Pérdida total de Energía en el Núcleo de la Traza	1 Ignora diferencias entre los defectos cualitativamente distintos producidos por la ionización y excitación primaria y los debidos a la pérdida de energía de reyos por reyos d	Fromete para un estu- ielta dio más adelante	
		li Lo mismo que el modelo D, inciso ili.		
٢	Erdida restringida de	i,- Lo miszo que el modelo X, inciso i.	Convenientes pero in <u>e</u> xactas las prediccio- nes analíticas	
	Cuerdia	ii Supone daño importante no-real a grandes distancias en contra de lo observado		
		ili Ignora la dósim interior depositada por rayon delta, no sel el exterior de la región.		
		iv Predice registro donde no es observado cualitativamente como pérdida total de ener- gía pero con errores menores.		
		v Lo mismo que el modelo D, inciso ili.		
G	Ionización Primaria y Excitación	i Ignóra púrdida de energía por rayos delta dentro de la región de la traza.	Satisfactorio para de tectores inorgânicos, se necesitan mejoras para plásticos donde los rayos delta son importantes.	
н	Densidad Lineal de Evente	os i Ignora pérdida de energía por rayos delta dentro de la región de la trasa	Conviene hacer estu- dios aplicando el mo- delo.	

TABLA (3.2) COMPARACION DE HODELOS DE POINSACION DE TRAZAS

Nota: ins predicciones analíticas encuentran problemas a muy bajas energlas en todos los modelos.

.....

La teoría mas adecuada para la formación de trazas en polí meros, suponemos que es la del modelo de pérdida de energía secundaria y del REL, puesto que el primero establece la dósis critica acerca de la trayectoria del ión para la formación de traza con lo cual el REL se ve mejorado y supera la impresición de la zona de daño. De acuerdo con ésta teoría las trazas se forman por ruptura de las cadenas poliméricas en fragmentos mas cortos y en la producción de reacciones. Sólo aquellos -electrones secundarios con energías de algunos cientos de ev pueden depositar cantidades importantes de su energía dentro de la porción de la trayectoria de la partícula ionizante. Si en el modelo de Densidad Lineal de Eventos, se especificase el radio efectivo de depósito de energía daría posiblemente el conocimiento más adecuado de la formación de trazas en plásti-COS.

3.2 Características de las trazas.

En ésta sección se analiza la geometría de la traza grabada y como la geometría afecta cuantitativamente a los parámetros observables. También se analizan tratamientos de grabado y con diciones del revelado de las trazas; y por último se discuten los métodos y técnicas para la medición y lectura de las trazas.

El procedimiento que lleva a la cinética de formación de -trazas grabadas se puede resumir como sigue:

.- Es necesario conocer los parámetros de la partícula -- masa, carga y energía.

- 2.- En el proceso de interacción radiación-materia se encuen tran los parámetros del detector que relacionan las can tidades de daño por radiación a los parámetros de la -partícula nuclear. En este paso estan involucrados los modelos de formación de la traza.
- 3.- Enseguida se encuentran los parámetros de grabado a par tir de los cuales es posible obtener la función de respuesta del detector, obteniéndose así la conexión entre el grabado y el daño en el detector.
- 4.- Finalmente se encuentran los parámetros de la traza gra bada como son longitud, perfil, contorno y ejes. La res puesta del DTES se puede encontrar en niveles macroscopicos y microscópicos durante el transcurso del daño -por la radiación y el proceso de grabado químico.

a. Geometría de las trazas.

La información que se puede obtener a partir del análisis de los diametros de las trazas grabadas data del año 1964. --Fleischer y Price propusieron un modelo simple para el grabado de las trazas de fragmentos de fisión para detectores de vidrio irradiados perpendicularmente [1].

La geometría de la traza grabada está condicionada en éste caso por la acción simultánea de dos procesos de grabado; la <u>disolución química a lo largo de la traza de la partícula a una</u> <u>rapidez denominada</u> V_t , y <u>el ataque general sobre el cuerpo del</u> <u>material no dañado</u> V_g que es la rapidez de grabado normal al interior de la traza. La velocidad de grabado V_g es generalmen te menor que V_t . En la fig. 3.5 se ilustra como éste proceso crea un cono que tiene a la traza original (latente) como su eje. El grado de daño por radiación es máximo en la vecindad inmediata de la trayectoria de la partícula (<40 Å) y la ra pidez de grabado toma su máximo valor V_t . Tanto el grado de - daño como la rapidez de grabado disminuyen conforme la dista<u>n</u> cía de la trayectoría se incrementa.

Las formas de la traza para un detector dado se han determ<u>i</u> nado empfricamente. De la forma de cono pra la traza se tiene la necesidad de hacer dos hipótesis:

i.- V_t sea constante a lo largo de la traza y ii.- V_a sea constante e isotrópica.

13

Por observaciones subsecuentes ha sido posible establecer que V_g/V_t es una constante para pequeñas distancias de graba do y para sólidos no cristalinos [34-36].

Puesto que el avance del extremo de la cavidad grabada mantiene su forma mientras se mueve hacia adelante con una cierta velocidad en la región no dañada, entonces el ángulo hecho por las paredes de la cavidad grabada con la trayectoria de la par tícula dehe ser tal que la proyección de V_t en la dirección de la normal a éstas paredes sea V_g. Como consecuencia, el ángulo ôdel cono de la traza estará dado por:

$$\theta = \arccos \left(V_{\sigma} / V_{+} \right)$$
 (3.2.1)

Se ha encontrado que V_t es posible expresarla como una función creciente y monótona de la pérdida de energía restringida de la partícula. Así cuando el LET varía a lo largo de la huella de daño debida a la partícula, V_t y θ también varían. Cuan do los cocientes de las velocidades de grabado varían la situa ción se complica bastante ya que en vez de tener el cono depen diendo solamente del ángulo crítico de incidencia de la partícula es mas adecuado introducir lo que se conoce como estrato crítico removido h_c en el desarrollo. Una representación que aclare éste nuevo parámetro de la cinética de grabado de la traza se muestra en la fig. 3.6. De ésta figura es claro que el valor real de h_c como una función del ángulo de incidencia y del alcance R_o de la partícula nuclear puede obtenerse me-diante la solución de la ecuación.

$$V(R_{-}X_{-}) \sin \theta - 1 = 0$$
 (3.2.2)

donde $V \equiv V_g/V_t$ y $X_c = h_c/sen \theta$. Y de acuerdo a las relaciones de razón de grabado contra alcance, obtenidas por --Smogyi, se tiene: [37,38]

$$h_{c} = \operatorname{sen} \theta \left[R_{0} - \frac{1}{2} \ln \frac{\operatorname{sen} \theta}{1 - \operatorname{sen} \theta} - \frac{A}{B} \right] \quad (3.2.3)$$

$$y \quad h_{c} = \operatorname{sen} \theta \left[R_{0} - \left(\frac{A \operatorname{sen} \theta}{1 - \operatorname{sen} \theta} \right) - \frac{1}{B} \right] \quad (3.2.4)$$

donde A y B son parámetros de ajuste. En la práctica se encuen tran dos casos: cuando $h_c = 0$ y otro en el que $h_c \neq 0$. En el primer caso la formación de la traza comienza inmediatamente con el grabado, mientras que en el segundo caso comienza solo después que ha transcurrido cierto tiempo de grabado. Para des cribir la cinética del grabado de la traza el origen se establece en el punto $h_c/sen \theta = X_c$ de la trayectoria de la par-tícula.

Cuando la disolución química procede con una velocidad V_t a lo largo de la región central estrecha de una traza y con una velocidad V_g en otras direcciones la forma de la traza se puede considerar comp un "cono normal". La superficie del cono se puede obtener a partir de la rotación de una línea recta da

Daño decreciente con la distancia de la trayectoria de la partícula Velocidad de ataque medio.

Fig. 3.5.- Diagrama de la huella submicroscopica a lo largo de la traza y del proceso de grabado preferencial (Henk y Benton 1971)

Fig. 3.6.- Representación esquemática del incremento de la razón de grabado (VT) comparado con la velocidad de grabado general (Vg) (Somogyi 1979). da, alrededor del eje X de la fig. 3.7.

$$y = x \tan \delta + L \tan \delta \qquad (3.2.5)$$

londe $\tan \delta = \frac{1}{(y^2-1)^{1/2}}$ $y = Uh$

con lo que se llega a establecer la relación

$$z^{2} + y^{2} - \frac{(x-hV)^{2}}{v^{2}-1} = 0$$
 (3.2.6)

que es la ecuación que describe la cinética del desarrollo de la traza en la primera etapa de formación llamada "cónica".

Cuando se ha conseguido remover el estrato $h=R_0/V$, no ocurre más el grabado preferencial a lo largo del eje de la traza y e el extremo de la traza cónica en ésta etapa se vuelve redonde<u>a</u> do. Esta etapa de formación de la traza se llama "fase de tra<u>n</u> sición" y la relación que representa éste desarrollo gradual (que disminuye la porción cónica) es:

$$z^{2} + y^{2} + (x - R_{0})^{2} - (h - \frac{R_{0}}{V})^{2} = 0$$
 (3.2.7)

y por último en la llamada "fase esférica" de la formación de la traza, ésta se vuelve enteramente esférica y la relación que describe dicha fase es la siguiente:

$$x - y \cot an \theta - \frac{h}{sen \theta} = 0 \qquad (3.2.8)$$

Antes de ésta situación la velocidad de grabado preferen-cial predomina sobre V_g pero al llegar a recorrer el grabado la zona de daño dejada por la partícula nuclear V_t comienza a disminuir. Luego entonces en esta etapa se define el recorri do dentro del detector. Si el grabado se continuá se llega a condiciones de invalidez para hacer análisis de los parámetros

11

de interés por que la traza se comienza a deformar.

En principio con cuatro parámetros, a saber el cociente -- V_g/V_t , el ángulo de incidencia θ , el estrato de material h y el alcance R_o de la partícula en conjunto con las ecuaciones de fase de la traza, es posible calcular las variaciones de cualquier parámetro de la traza durante el proceso de grabado químico [38,39].

El perfil de la traza queda determinado por la ec. 3.2.5. La determinación del contorno de la superficie abierta de la traza se hace a partir de la solución de ecuaciones que descri ben la cavidad de la traza. Así para la fase cónica la ec. -es:

$$\frac{z^2}{a^2} + \frac{(Y_0 - hY_0)^2}{b^2} = 1 \qquad (3.2.9)$$

que es la ecuación de una elipse donde a y b tienen el significado convencional, el eje semimayor y el eje semimenor respectivamente Δy_0 es el desplazamiento del punto de intersección del eje de la traza con respecto al centro geométrico de la elipse, como se indíca en la fi. 3.7. Para el contorno de la fase esférica de formación de trazas éste es un círculo dado por:

$$z^{2} + (y_{0}^{-} \delta y_{0})^{2} = (h - \frac{R_{0}}{V})^{2} - (h - R_{0} \operatorname{sen} \theta)^{2} = r^{2}$$

$$\delta y_{0} = \frac{h - R_{0} \operatorname{sen} \theta}{t \operatorname{sen} \theta}$$
(3.2.10)

donde

Con las ecuaciones 3.2.9 y 10, de las partes elípticas y circulares de la superficie abierta de la traza, es posible - Plano de intersección

Superficie de contorno abierta

$$\frac{z^2}{a^2} + \frac{Y_0 - Y_0}{b^2} =$$

 $X=-Yctan \theta=-\frac{h}{sen\theta}=0$

1

Superficie cónica circular

 $z^{2} + y^{2} - \frac{(x-hv)^{2}}{v^{2}-1} = 0$; a=h(Vsen θ -1/Vsen θ +1)^{1/2}

$$b = h(v^{2}-1)^{1/2}/v_{sen \theta} + 1, \quad v_{sen \theta} + 1)$$

Fig. 3.7.- Diagrama esquemático para la descripción de las can tidades de grabado de la traza en la "fase cónica" en un sólido isotrópico a velocidad de grabado cons tante.

. Fig. 3.8.- Evolución de la traza en un sólido isotrópico con una rapidez de grabado constante. Fases típicas[39] 四周, 推

describir la evolución de los ejes mayor y menor de la traza. Desde el punto de vista de evolución de los ejes de la traza es posible notar las etapas de evolución indicadas en la fig. 3.8. Cálculos realizados con trazas grabadas de productos de fisión diferentes tiempos de grabado y con una elección simple de V_t muestran que ésta disminuye linealmente hasta llegar a V_g en el extremo de la traza, lo cual es consistente con la fig. 3.8.

En los altos polímeros las cadenas moleculares algunas veces están preferencialmente orientadas, dando como resultado que se produzcan diferencias en la rapidez de grabado químico entre direcciones que son principalmente a lo largo de la dirección preferida y en la normal al alineamiento molecular. -Para cristales la rapidez general de grabado como una función de la orientación de cristal puede realizarse pero de modo muy complejo. En estos últimos el material es anisotrópico y consecuentemente no es válida la hipótesis de isotropía en V_a.

Las trazas en materiales plásticos principalmente en los que hay una gran velocidad de ataque preferencial, son como agujas o en forma cónica, mientras que en materiales como vidrios inorgánicos dominan las trazas de sección circular u oval en cristales tales como: mica o LiF bajo un grabado prolongado resultan en huecos o depresiones de forma regular como rombos o cuadrados [35-39].

En el Lexan consideramos que el cociente de velocidades – V_g/V_t se puede aproximar a una constante y por el mecanismo de interacción, es de esperarse que la traza no sea atacada –

desde la superficie original del detector.

b. Técnicas de revelado

Las regiones de daño producidas por las partículas nucleares en los DTES permanecen en estado latente en tanto no se -emplee algún procedimiento que revele dichas zonas de daño. La calidad de la información que así se obtenga depende del méto do de revelado que se emplee.

Es posible agrupar los métodos de revelado en tres grandes grupos:

- 1.- Transmisión
 - 2.- Eliminación de material dañado y
 - 3.- Sustitución

En el grupo 1 se encuentra el de observación directa de -trazas a través del microscopio electrónico. El método consi<u>s</u> te en la difracción de un haz de electrones por el DTES para observar las trazas como líneas obscuras que son amplificadas donde los planos del cristal estas suficientemente inclinados para dispersar los electrones fuera de la reflexión de Bragg, Las observaciones con éste método de trazas no atacadas químicamente está implícitamente limitado a detectores de matériales cristalinos [41].

Otros métodos de revelado que se han desarrollado son los comprendidos por el grupo 2; dentro de este grupo se encuentran el método de grabado químico y el electroquímico.

El método de grabado químico data de 1958, año en el que

Young [*0]. descubrió que las trazas producidas por fragmentos de fisión en un cristal de fluoruro de litio se podían grabar por inmersión de cristal en una solución de ácidos fluorhídr<u>i</u> cos y acético. Como se ha mencionado, los materiales empleados como DTES presentan un ataque preferencial en las regiones que son dañadas por la partícula nuclear. Hasta ahora la técnica de ataque químico preferencial es la mas generalmente empleada para revelar y agrandar las trazas hasta un tamaño observable en microscopio óptico y en ocasiones simple vista.

En principio cualquier compuesto químico que corroa con sufuciente rapidez, se puede emplear como revelador, el uso de di diferentes concentraciones aporta diferencias en la velocidad de grabado pero no influye en la sensibilidad del detector. Los reactivos químicos que se emplean más frecuentemente para revelar trazas en plásticos son: NaOH, KMnO₄, H₂SO₄, HF y KOH.

En los DTES las variables que principalmente determinan la velocidad y eficiencia del grabado son: tipo y velocidad de partícula nuclear; composición química, temperatura y concen-tración del revelador. El efecto de la concentración sobre la velocidad del grabado medida por el diametro de las trazas d<u>e</u> pende del reactivo del material detector y del procedimiento de grabado. La temperatura en la que se realiza el grabado, afecta la densidad de trazas, (vea fig. 3.9) la agitación durante el revelado tiene una influencia similar, así como las propiedades químicas de la solución [43,40].

Se ha observado que las regiones de daño latente tratadas térmicamente antes del grabado dan como resultado la reducción

de la densidad de las trazas. Este proceso es al que se denomina "recocido" de trazas. El fenómeno puede ocurrir en experi mentos de reactores nucleares y el caso de muestras geológicas. La inestabilidad de la traza latente depende principalmente de la temperatura, la humedad relativa así como de luz ultraviole ta muy intensa. En el caso de un sólido conteniendo trazas -que son calentadas a una temperatura T y cuyo tiempo de desva necimiento de las trazas es t en cada temperatura da como resultado una ecuación que se ajusta normalmente a la ecuación de Boltzmann de la forma:

$$t = A \exp (-E act/kT)$$
 (3.2.11)

donde k= constante de Boltzmann, A es una constante de ajuste y E act es la energía de activación para que se lleve a cabo el borrado o desvanecimiento de las trazas. Energías de activación bajas se miden en las etapas iniciales del recocido y valores que son monótonamente más altos se encuentran cuando ocurre el removimiento completo de las trazas.

El grabado interrumpido se ha observado que afecta a la de<u>n</u> sidad de trazas de manera que es mayor la densidad de trazas en un proceso de grabado interrumpido que en uno contínuo[44,46]. La velocidad de grabado se incrementa en soluciones con agitamientos, a su vez aumenta la eficiencia y homogeniza la traye<u>c</u> toria de daño. La hipótesis se apoya en los siguientes proce-sos de disolución:

1.- Degradación de cadenas moleculares.

ii.- Solución de nuevas macromoleculas que tienen cadenas más cortas que las originales.

inne ster

283

Fig. 3.9.- Variación de la rapidez de grabado V_t en policarbonato con la temperatura del grabador (Fleischer 1972).

的

iii.- La difusión de las moléculas a través de la solución reveladora.

La variación de los valores de V_g es mucho mayor en los plásticos que en los detectores cristalinos. Y también se demuestra experimentalmente que la rapidez de disminución de - V_g en el caso de los plásticos es extremadamente sensible a altas temperaturas.

El grabado electroquímico es una técnica que se encuentra en el grupo 2. Se basa en la pérdida de energía a lo largo de la traza por la aplicación de una diferencia de potencial y a una frecuencia dada (que puede ser en forma de onda cuadrada o sinusoidal). El detector se coloca como separador en una c<u>á</u> mara que contiene el reactivo químico y a uno y otro lado de ésta cámara se aloja un electrodo, como se esquematiza en la fig. 3.10 Cada ión difundido experimenta una fuerza:

 $F = z_i e E$ (3.2.12)

Fig. 3.10.- Diagrama del dispositivo de grabado electro químico. donde F es la fuerza inducida, z, el número de cargas elementa les, e la unidad de carga eléctrica y E es el campo eléctrico que localiza los iones. Los reactivos químicos que se emplean en ésta técnica suelen ser los mismos que en la de grabado quí mico. La amplificación que se consigue de las trazas es de has ta 50 veces mayor que en el caso anterior. El grabado químico se combina con un proceso de ruptura eléctrica que se inicia cuando la fuerza dieléctrica se sobrepasa. A una traza latente en la superficie de plástico al aplicarsele una diferencia de potencial junto con el grabador, ésta se convierte en una cavidad con estructura de árbol en el cuerpo del material. Esta técnica por sus características ha adquirido gran cantidad de aplicaciones en las investigaciones con los DTES. Debido a que la amplificación de la traza es mayor que en el método de gra bado químico esto pone una limitación en cuanto a las densida des que se puedan registrar, la forma original de la traza se modifica y aumentan los parámetros a analizar. Es por esto que la técnica que adoptamos es la de grabado químico.

Otras técnicas que se han desarrollado son las de sustitución (grupo 3).Consisten en la precipitación de átomos a lo --largo de las trazas de daño, éste procedimiento también se d<u>e</u> nomina de "decoración". Uno de los procesos de decoración más conocidos es el revelado de trazas en Ag Cl que consiste en crear con luz ultravioleta fotoelectrones libres que se pulsan a través del cristal por medio de campos eléctricos aplica dos, convirtiendo así iones de plata en átomos de plata inters ticiales. Estos átomos se difunden rápidamente a través de los

sitios intersticiales hacia las trazas de daño; donde se depo sitan como hilos estrechos de plata. La precipitación de plata y de hierro en vidrio y mica respectivamente son otros de los procedimientos basados en sustitución [42].

La polimerización, o sea el agregado de un monómero diferente al de la muestra empleada como detector, es un procedimiento de revelado por sustitución que se aplica a plásticos. Es posible hacer ésta polimerización porque a lo largo de las trazas se forma una alta concentración de radicales libre extremos de las nuevas cadenas creadas por el paso de la partícula nuclear [2,43].

Este último grupo de técnicas aunque logran revelar trazas en volúmenes grandes, sufren de una variación errática que depende de la composición del detector. Además las dimensiones de las trazas reveladas de éste modo son menores que con el método de grabado químico.

Las condiciones ambientales son también importantes en la determinación de las trazas, así por ejemplo: de la relación entre la temperatura y la traza formada es posible evaluar las trazas originales en sólidos. Los efectos mecánicos de esfuerzo son de consideración como se explicó en el modelo de ioniza ción primaria para formación de trazas, aunque son de menor -importancia que los térmicos. En plásticos la presencia de agen tes activos como O_3 , H_2O_2 , O_2 y aún H_2O como tratamientos pre vios al grabado, se ha observado que incrementan la razón de grabado, mientras que ambientes neutros como el vacío o una atmósfera constituída por N_2 disminuye la V_t . Estos efectos -- químicos ambientales no se han observado en cristales y vi- drios.

También la exposición de los DTES plásticos, a rayos ultr<u>a</u> violeta, fotones de alta energía y con electrones u otras pa<u>r</u> tículas que no forman trazas provocan alteraciones en los detectores de trazas. Así por ejemplo se descubrió que en Lexan, la luz ultravioleta en presencia de oxígeno puede incrementar V_t sin cambiar significativamente V_g . Con irradiación de ele<u>c</u> trones o rayos gamma el daño se dispersa a escala atómica, de modo que no es posible grabar el efecto individual de estos defectos en el grabado preferencial [47-49].

c. Métodos de medición y lectura de las trazas.

La información básica necesaria para la mayoría de los estudios de trazas, principalmente para aplicaciones dosimétricas, requiere la determinación del número de trazas por unidad de área a la densidad de trazas en la superficie del detector ó cualquier cambio en sus características como la densidad ó<u>p</u> tica, que es un parámetro medible que varía conforme cambia la dosis entregada por la radiación al detector.

El método más comúnmente empleado para el conteo de las trazas es a través de microscopio óptico en el que se emplea un ocular con rejilla calibrada, realizando de este modo la evaluación en el campo de observación. Aunque el método permite observaciones de las trazas individualmente resulta poco -práctico cuando la densidad de trazas es alta. Es deseable y aún más, necesario aumentar la facilidad de reconocimiento de las trazas mediante el empleo de técnicas automáticas y de s<u>a</u> lida analógica, ya sea porque se requiera una estadística muy extensa o bien el número de detectores por analizar sea numer<u>o</u> so.

Cuando las densidades de trazas son bajas se sigue alguno de los modos de localización y aumento de la traza señalados en la Tabla (3.3). Estos métodos hacen uso de la transmisión a través de las trazas en el detector. La sustancia transmitida puede ser un colorante o un gas, un grabador que se disuelve en el plástico o portadores de carga que generan una corrien te eléctrica. Existen técnicas de conteo visual especialmente para bajas densidades de las trazas, como la que utiliza pel<u>í</u> culas delgadas de polímeros revestidos en uno de sus lados con aluminio, cuando el revelador penetra el polímero a través de las zonas de daño también perfora el aluminio dejando así las marcas visibles de las trazas.

Los métodos antes señalados emplean más tiempo que el con teo directo, sin embargo pueden resultar útiles para bajas den sidades de trazas. Una gran cantidad de procedimientos, se han desarrollado para la determinación automática de las densidades de trazas. La Tabla (3.4) resume gran parte de los métodos automatizados [2].

El conteo por densitometría óptica se basa en la transmisión de un haz luminoso a través del DTES, registrando las tr<u>a</u> zas por medio de un tubo fotomultiplicador lográndose así la discriminación por altura de pulsos, de manera que se puede Tabla 3.3. - Métodos de localización y agrandamiento de las trazas.

Técnica	Densidad de Trazas donde se usan	Limitaciones o rasgos especiales.	
Aluminio grabado unido al detector; transmite la luz donde el metal se removió	<100 / cm ²	Trazas oblicuas requieren mayor grabado diámetro trazas no-uniforme	
Potencial Aplicado; (a) localiza por chispas (b) aumenta traza	$< 10 / cm^2$ $< 10^4 / cm^2$	El alto voltaje puede aumentar los diáme tros de la traza.	
Potencial aplicado; trazas evaporadas en aluminio recubierto por descargas	< 3000/an ²	Altera las trazas de grabados.	
Invección de NH, por las trazas, coloreando el papel sensible	$\langle 1/cm^2$	Se prodeat e, mar en lojas los localiza- cionos ina variat o de la regue; portida tapar (il e na colta).	
Aumenta de imagen usando proyector de transparencias	10 ⁴ a 5 x 10 ⁶	Contadas individualmente sobre una pan utla de proyección.	

Tecnica	Velocidad de Exploracion cm ² /mln.	Densidad de Traza cm ⁻²	Comentarios
Exploración Optica	0.15		Discriminacion por altura de pulsos. Selección de señal carac terística.
Exploración Optica (con enfoque automático)	0.002	10 ³ a 10 ⁵	Aplicable a policarbonatos
Conteo por chispas en C.D. con escalador	10	0 a 3000	El voltaje genera defectos
Conteo por chispas en C. A.	100 a 200		Evita muchos defectos
Dispersión de luz		10 ⁴ a 10 ⁶	
Transmisión de luz por DTES. plástico opaco		4x10 ⁴ a 3x10 ⁶	Luz UV através de Mylar
Detector de Barrera Superficial + DTES.		$4_{10}^2 a 10^5$	Registra partículas alfa atra- vés de las trazas del DTES.
Conductividad eléctrica através del DTES.		1 a 10 ¹¹	

Tabla 3.4 Métodos Auromáticos de Exploración para conteo de trazas. [1]

4

hacer una selección de señales correspondientes a las trazas.-La densidad óptica depende principalmente de la densidad de trazas, condiciones de grabado y espesor del detector y si se fijan los dos últimos parámetros, la densidad óptica puede r<u>e</u> sultar un indicador de la fluencia de partículas.

El método por chispas para el conteo de trazas en polímeros se basa en el conteo de descargas eléctricas que suceden a través del detector [\$0,51].

En los inicios de este método, un detector se colocaba sobre un electrodo plano y el otro electrodo en forma de punta se desplazaba sobre el datector. Cada vez que el electrodo lo caliza una traza se produce una descarga, dando lugar al obscu recimiento y agrandamiento de la traza permitiendo la observación a simple vista.Este método solo resulta adecuado para de<u>n</u> sidades relativamente bajas y detectores delgados.

Los métodos que se han descrito en ésta sección son los más frecuentemente empleados. Para el présente estudio se eligió el método de conteo a través de microscopio óptico. Las ra zones principales fueron las siguientes:

- a) Es la lectura mas confiable
- b) El método es directo
- c) Se pueden medir los diámetros y discriminar el traslape de las trazas.
- d) Las amplificaciones se pueden seleccionar y los campos visuales se pueden variar.
- e) Es posible analizar trazas individuales y
- f) Por ser un procedimiento experimental no rutinario, con un número relativamente bajo de detectores se considero éste método de conteo como el más adecuado.
CAPITULO IV ESTUDIO EXPERIMENTAL

En éste capítulo se describe el método experimental y los criterios bajo los cuales es posible establecer algunos de los parámetros que caracterizan la interacción de los neutrones -rápidos en Lexan bajo el tipo de detección por trazas. De acue<u>r</u> do con lo expuesto en el capítulo III, las trazas son zonas de daño provocadas por los neutrones que desplazan de sus sitios a nucleos del detector. Las energías que adquieren estas part<u>í</u> culas en desplazamiento van desde 0 hasta una energía máxima T max. Unicamente las partículas que sobrepasan el umbral cara<u>c</u> terístico de registro asociado con el detector formarán la tr<u>a</u> za latente.

Una vez que la traza latente se ha formado, es posible revelarla valiéndose de un reactivo químico que actúa a cierta velocidad V_T de grabado mayor en la zona de daño que en el re<u>s</u> to del material, o sea, por medio de un ataque preferencial. -La traza revelada como se dijo en el capítulo anterior va a d<u>e</u> pender del material detector, del ángulo y tipo de partícula i<u>n</u> cidente así como de las condiciones tanto del revelador como ambientales. Una vez revelada la traza presenta gran estabilidad a cambios de temperatura y de iluminación con la consecue<u>n</u> te posibilidad de tener tiempo más que suficiente para el recuento de las trazas sin deterioro importante en la calidad de la información.

Los modelos de formación y geometría de la traza presenta

dos anteriormente son la base de sustentación en la formación y evaluación de las trazas resultantes que corresponden a los experimentos que a continuación se describen.

4.1 Selección del Detector.

El material seleccionado en este caso como detector de neu trones rápidos es el Lexan; un alto polímero con las siguientes características generales:

El nombre no comercial de este producto es bisfenol-A y su composición $C_{16} H_{14} O_3$. Pertenece al grupo de los poliésteres, los cuales son compuestos macromoleculares con sus grupos éster incorporados como puentes de enlace en las cadenas moleculares.

Los policarbonatos entre los que se encuentra el Lexan, son productos térmicos e hidrófobos, se obtienen a partir de la -policondensación de dioxifenilalcanos con diéster del ácido -carbónico, principalmente dioxidifenilpropano y fosgeno. Los poliésteres de acuerdo a su constitución, se separan en polié<u>s</u> teres lineales y poliésteres reticulares. El Lexan es un pol<u>i</u> carbonato del grupo de los poliésteres lineales, tiene una tem peratura de fusión que sobrepasa los 200 °C. No obstante tener una estructura lineal no presenta tendencia a la cristaliza- ción, por lo que no es posible que se formen agrupaciones fibrilares paralelamente orientadas [12]. Dicha tendencia a no orientarse, se atribuye a un efecto de dispersión de los grupos metilo en el carbón central como se puede ver de la estruc tura que a continuación se muestra.

$$HO - \begin{pmatrix} CH_3 \\ -CH_3 \\ CH_3 \\ CH_3 \\ -CH_3 \end{pmatrix} - O - O + n OCCl_2 \longrightarrow$$

$$O - \begin{pmatrix} -CH_3 \\ -CH_3 \\ -CH_3 \\ -CH_3 \end{pmatrix} - O - CO - + 2nClH$$

$$(4.1.1)$$

Pensando en términos de un DTES ideal, éste debe ser opticamente transparente, claro, amorfo, senible a la radiación, un material termoplástico en el que no se formen enlaces químicos de las cadenas al llegar la radiación y que sea susceptible a la degradación interfacial por la acción de un revelador químico adecuado. El Lexan es opticamente transparente a longitudes de onda superiores a 2750 Å. Para longitudes de onda de -aproximadamente 3000 Å, la transmisión de luz es de un 82%, por lo expuesto antes no tiene un carácter completamente amorfo, es sensible a la radiación ionizante como mínimo de 0.3 MeV a ⁴ He y de aproximadamente 1.2 MeV para neutrones. La degrada-ción bajo la acción de las partículas nucleares, la presencia del revelador y de ciertas condiciones son puntos de estudio todavía.

Es posible resumir que el Lexan cumple bastante bien con las características deseables para un detector de partículas nucleares; a no ser por su alto umbral de detección. Este mate rial es posible obtenerlo en el mercado en láminas con espesores que van desde 3 µm hasta láminas de 3 mm. en una gran can tidad de calibres.

El espesor de los plásticos que se trabajaron es de 200 µm,

de manera que es posible hacer la suposición de colisión simple como se estableció en los modelos de formación de traza. La trayectoria libre de neutrones con energía de & MeV en polietileno es de ll cm. y de 7.7 cm, para neutrones de 10 MeV en el mismo material.[19]

4.2 Técnica de Irradiación.

La irradiación con neutrones al Lexan se realizó con una fuente 241 Am-Be (α ,n). Esta es una fuente de reacción alfaneutrón como se señalo en el capítulo II. Este tipo de fuentes tiene una razón de emisión gamma haja, el emisor alfa y el ma terial de blanco Am y Be respectivamente estan unidos de modo que se tiene una buena estabilidad mecánica del compuesto.

La vida media de esta fuente radioactiva es de 458 años, la energía para la radiación alfa predominante es de 5.48 MeV, la actividad aproximada de 1.27± 0.025×10^7 n/seg, la co-rrección por decaimiento puede considerarse despreciable puesto que se obtiene isotópicamente puro y tiene un producto hijo de vida muy larga (2.2 $\times 10^6$ años). La energía promedio de los neutrones de Am-Be obtenida por medio de un espectrómetro de protones en retroceso es de 4.4 MeV. Este tipo de fuente es de una gran generación reciente.

Los detectores se colocaron en una geometría 2π con la fuente en el centro y a un ángulo de irradiación de 90°. La distribución de los detectores se hizo colocándolos en arcos de circulos concéntricos de radios, 6, 12, 20 y 30 cm. respec tivamente en un plano horizontal, suponiendo que la fuente emite isotrópicamente en todas direcciones.

Se irradiaron las películas de Lexan durante tiempos entre 10 y 170 horas. Las paredes del laboratorio que podrían interferir en el proceso de irradiación se encontraban en promedio de 3.5 mt. de la fuente.

La distribución de los detectores fue tal que no era posible encontrar bajo una misma trayectoria y a diferente radio otra película que obstruyese la trayectoria directa que describiera un neutrón producido en la fuente.

Los detectores no se sometieron a ningún tratamiento de -sensibilización previo a la irradiación. Las dimensiones de cada uno de los detectores fué de 2.5 X 5.0 cms.

Cada uno de los detectores fue marcado, asignándoles posición de irradiación, las características del proceso a seguir,así como la cara en que la radiación incidiría.

4.3 Proceso de Grabado Químico.

El reactivo empleado para revelar las trazas fue KOH al --28% a una temperatura de 58± 1°C.

La degradación del Lexan por hidróxidos, es vía la separa ción del carbonato eslabonado por el ión hidróxido para produ cir un ión carbonato y varios productos orgánicos de graba- do [55,57].

El fenol es una componente que puede aparecer en la solución de grabado, sobre todo cuando se revelan grandes cantida des de plástico, o bien si la solución tiene mucho tiempo de preparada. Para evitar ésta componente se cambio la solución frecuentemente por solución nueva y no grabándose grandes ca<u>n</u> tidades de plástico en una misma solución, ni en el mismo recipiente.

Una vez concluída la inmersión del plástico en la solución de KOH, éste se enjuaga para desactivar la acción del grabador y se seca para su ulterior observación al microscopio. El pro ceso de revelado se repitió con diferentes muestras para tiem pos de inmersión distintos, tal que se pudiera estudiar la re lación correspondiente.

Un conjunto de detectores se grabaron interrumpidamente, mientras otro con la isma historia se grabó continuamente con el objeto de establecer si hay un efecto en lo que respecta a la densidad de trazas.

Se estudió la influencia de las trazas espúreas en el con teo total de trazas. Determinando la dependencia del tiempo de irradiación, con respecto a la densidad de trazas grabadas.

El tiempo de grabado es un parámetro importante que tam-bién se evaluó, con la finalidad de determinar el crecimiento de la traza y el cambio de velocidad V_t en el tiempo. Determ<u>i</u> nados la relación que existe entre el tiempo de exposición y la densidad de trazas; a su vez con el propósito de establecer las respuesta del detector con respecto a la dósis, se contaron las trazas producidas para diferentes dósis equivalentes y así construir la curva de calibración del Lexan.

Por cada lote de detectores se tuvieron, detectores testi go, sin irradiar y bajo las mismas condiciones de grabado, pa ra fines de establecimiento de trazas por radiación, trazas por ruido 6 fondo y trazas por daños mecánicos en el material.

4.4 Determinación de las Densidades de las Trazas y sus Dimensiones.

El método que se empleó para evaluar las trazas fue el de observación a través de un microscopio óptico marca Zeiss con una ampliación total de 400 aumentos. Aunque el recuento por éste método es tedioso comparado, con otros expuestos en el capítulo III, es el método más adecuado para mediciones de ca libración y referencia.

Para el conteo, se dispuso de una retícula graduada calibrada en mm; y platina adaptada para cambiar el campo de vi-sión sin perder la posición exacta que se tenía anteriormente.

El material comprendido en éste capítulo abarca los proce dimientos experimentales que se desarrollaron para el estudio de la detección de neutrones por el método de grabado químico.

En el capítulo siguiente se analizarán los resultados obtenidos, así como los alcances de este tipo de experimentos en relación a las aplicaciones para el desarrollo tecnológico en el campo de la dosimetría. CAPITULO V RESULTADOS Y CONCLUSIONES.

5.1 Resultados.

Para determinar el registro óptimo de neutrones rápidos en Lexan se realizaron una serie de experimentos señalados en el capítulo IV, que permiten establecer las condiciones de los parámetros mas relevantes involucrados.

La técnica de detección por trazas como se ha explicado en el capítulo III, se basa en la posibilidad de hacer visibles las huellas dejadas por los neutrones. El revelado de la traza se realiza en este caso con grabado químico, determinándose el tiempo óptimo, y la evolución del diámetro de las trazas a éste tiempo. Se determinó también la dependencia del proceso de grabado tanto contínuo como interrumpido.

Se hizo la determinación de la sensibilidad del detector y la respuesta a diferentes flujos, y finalmente se obtuvo la respuesta del detector en términos de dosis equivalente.

En el presente capítulo se presentan estos resultados.

a. Efectos del grabado contínuo e interrumpido.

1 1

El proceso de grabado químico, que es, un ataque prefere<u>n</u> te a lo largo de la trayectoría de la partícula en el DTES, se puede efectuar de manera contínua o interrumpida. Durante el grabado se forma una capa de producto del grabado sobre la s<u>u</u> perficie del detector y dicha capa actúa como un "blindaje" e<u>n</u> tre el detector y el grabador, decelerando así el proceso de grabado. Esto es, si la capa de producto del grabado no es removida, la velocidad de revelado de las trazas se ve reducida considerablemente. El efecto adverso de ésta capa se vuelve más importante en detectores de grabado rápido.

La Fig. 5.1 representa la variación de la densidad de tra zas con el tiempo de grabado, para grabado interrumpido (A) y para grabado contínuo (B), la cual indica un incremento lineal en la primera etapa en el número de trazas aunque con una pequeña diferencia en las pendientes. En la segunda etapa ya no hay un incremento considerable en la abundancia de trazas por unidad de area. Sin embargo en el modo interrumpido hay una mayor contribución al número de trazas que en el contínuo. --Después de los 90 minutos se encontró que hay un comportamien to paralelo en los dos casos.

La diferencia de la densidad de trazas entre (A) y (B) se debe fundamentalmente a la eliminación de los residuos de disolución formados que obstruyen el proceso de ataque químico con la consiguiente reducción en el número de trazas.

El grabado químico bajo las condiciones establecidas puede hacerse en modo contínuo sin deterioro de información relevan te, no obstante sería adecuado que durante el proceso de grabado se dispusiera de algún dispositivo mecánico para agitamiento de modo que se eliminacen las capas del grabado o se cambiase la solución.

En virtud de no haber un cambio sustancial en el número total de trazas en la región que se denominó segunda etapa,

es a éstos tiempos de grabado adecuado concluir el proceso de grabado.

b. Análisis de trazas espúreas y de fondo.

En el número total de las trazas producidas es posible en contrar las debidas a radiaciones nucleares de interés así co mo trazas debidas a otras fuentes, entre las que se pueden con tar las de origen cósmico o bien las inducidas por emanaciones del subsuelo y de fuentes radiactivas localizadas en los alre dedores. Las hay también producidas por defectos en el mate--rial, producto del proceso de elaboración, impurezas y las de bidas a esfuerzos mecánicos; de manera que es posible agrupar las fuentes de producción de trazas en la siguiente forma:

i) Fuente de radiación de interés Trazas producidas por: ii) Radiación Ambiental

Impurezas y Esfuerzos Mecánicos Daño en el manejo del material

La componente de trazas espúreas o de fondo es aditiva al número total de trazas, y es necesario evaluarla para poder -discriminarla de la información que se desea analizar, o bien para corregir la geometría y disposición del arreglo experimen tal.

La Fig. 5.2 muestra la relación del número total de trazas (B.G), esto es las trazas producidas por los neutrones mas la contribución de las trazas de fondo; y el número reducido o efectivo de trazas (NBG) en que las trazas del fondo de radia ción se han restado del total. Por consiguiente la separación

entre las dos curvas determina precisamente las componente de trazas espúreas o fondo al conteo total.

De acuerdo con estos resultados se puede establecer que es necesario evaluar la radiación ambiental y los defectos mismos del material pues presenta una contribución menor, pero no despreciable. El tiempo de grabado para las trazas debe tener como mínimo 120 minutos para obtener una respuesta adecuada.

El origen de las trazas de fondo en éste caso, dadas las características del arreglo experimental y el umbral natural de detección del Lexan, posiblemente se deba en su mayor parte a defectos del mismo material.

c. Evolución del diámetro de la traza.

Como se dijo en capítulos anteriores el diámetro de la tra za es un parámetro de gran importancia e interés. El reconoci miento de la información resultante de parámetros que se pueden determinar de manera precisa como son: la longitud, diámetro de la traza, etc., es fundamental y representa grandes posibilidades en la identificación de partículas nucleares. -Los resultados experimentales desde los inicios de la detección por trazas han justificado inequívocamente el valor y -efectividad de la aplicabilidad de la información que se ob-tiene de los diámetros de las trazas durante el proceso de grabado. La determinación de longitudes y diámetros de las trazas pueden considerarse complementos naturales uno del --

otro. El método de determinación del diámetro de la traza es muy empleado, en particular cuando las mediciones de la longi tud de la traza resultan menos confiables, en el caso de partículas que provocan ionización, las pérdidas de energía se acercan a la llamada ionización primaria crítica, determinando el límite de detección. Las medidas del diámetro también pueden proveer de información acerca de la isotropía del material detector o sea cuando es aplicable el modelo de trazas grabada de cono simple con ángulo θ = arco sen V_q/V_t , el cual se desarrolla como resultado simuntáneo del proceso de grabado a lo largo de la trayectoria de la partícula (V_{\downarrow}) y del só lido dañado (V_{σ}) a velocidades constantes; razón que ya no es válida en materiales anisotrópicos en los que hay fases de gra bado para las que V_t y V_g no son constantes, dando lugar a figuras polígonales de las trazas que se deben a orientaciones cristalinas.

aganahaan taala

La Fig. 5.3 muestra el crecimiento del diámetro de la traza con el tiempo de grabado. El aumento del diámetro de la -traza es lineal en el intervalo comprendido entre los 30 y 250 minutos de grabado. Después de este intervalo el cambio de -las dimensiones es menos apreciable para tiempos iguales de grabado.

El Lexan presentó el carácter de un material isotrópico ya que las trazas evolucionaron continuamente, o sea que el cociente $V_{\alpha}^{\prime}/V_{t}$ resultó ser una constante.

La evolución del diámetro en la región que sobrepasa a los 250 minutos de grabado es característica de una situación

en la que la velocidad V_t se aproxima a la velocidad de grab<u>a</u> do general V_g , o sea que es la profundidad hasta donde la pa<u>r</u> tícula desplazada por el neutrón ha provocado un daño importa<u>n</u> te después de la cual la velocidad de grabado V_t deja de ser preferente.

Por haberse colocado los detectores en posición normal a la fuente no es necesario hacer alguna corrección por ángulo de incidencia.

d. Relación de la densidad de trazas y el flujo.

La respuesta de los detectores a diferentes flujos da la posibilidad de saber si tienen limitaciones en cuanto a capaci dad de almacenamiento de la información así como de la vali-déz de las teorías de interacción radiación-materia.

El número de trazas ha de ser proporcional al flujo. Los neutrones provienen de una fuente puntual que emite isotrópicamente, viajan en línea recta y se distribuyen radialmente; las energías de los neutrones van desde o hasta una energía máxima T_m . El proceso de interacción ocurre a todas las energías, pero solamente los neutrones que llegan al detector con energía comprendida en la región rápida dejan traza en el Lexan. Las partículas a que pudieran salir directamente el emisor no tienen energía suficiente para formar trazas en este material además por el arreglo experimental las partículas al fa del ²⁴¹Am tienen un alcance que no excede a los 3 cm. en aire.

La dependencia entre la densidad de trazas con el tiempo de grabado y a diferentes flujos se muestra en la Fig. 5.4. Las curvas estan ordenadas en orden creciente de flujo.

Cada conjunto de detectores presenta el mismo desarrollo, o sea partir de los 60 min. de grabado la densidad de trazas permanece constante en cada caso.

A mayor flujo se tiene mayor cantidad de trazas. El DTES Lexan, tiene una respuesta independiente del flujo al que esté expuesto. De ésta propiedad se pueden comenzar a establecer condiciones dosimétricas del DTES relacionadas con el flujo.

e. Determinación experimental de la ley del inverso al cuadra do de la distancia.

Usualmente conviene expresar un campo de radiación como el número de partículas que atraviesan un área de un metro cua-drado en un segundo. Esto es estrictamente la razón de fluencia pero comúnmente se le conoce como flujo (ϕ). (Cap. II).

Sea una fuente puntual que emite neutrones a razón de P por segundo. El flujo a una distancia r es el número de neu-trones que pasan a través de un área de un metro cuadrado por segundo. Puesto que todos los neutrones son emitidos uniformemente en todas direcciones, el flujo a una distancia r es el número de neutrones emitidos por segundo divididos por el área de la esfera de radio r. Esta área es $4\pi r^2$ y el flujo queda expresado por:

$$\phi = \frac{P}{4\pi r^2} \quad (nm^{-2} s^{-1})$$

De modo que si r se duplica, r^2 se incrementa por cuatro y ϕ se reduce por cuatro veces. Esta es la ley de inverso al cuadrado.

Como la dosis de radiación está directamente relacionada al flujo, se sigue que la razón de dosis también obedece la ley antes establecida.

La Fig. 5.5 muestra la respuesta del Lexan a diferentes flujos o distancias de fuente. Efectivamente el campo de radiación presenta la variación como el inverso del cuadrado de la distancia. Esta respuesta permite comprobar que la hipótesis de fuente puntual y uniformidad en la emisión válida como se habái planteado.

Por otra parte la Fig. 5.6 presenta la relación entre dósis equivalente y distancia, se tiene una curva que correspon de a la ley del inverso del cuadrado de la distancia, de acuer do con lo expuesto anteriormente. Esta curva es de principal importancia para los estudios radiológicos; en particular para la dosimetría personal.

f. Determinación de la linealidad y calibración.

Estableciendose la función de respuesta del detector con el tiempo de irradiación, y la dosis equivalente se puede pro poner a éste como dosímetro.

Los DTES se pueden calibrar para emplearse como dosíme-tros. A los dosímetros usualmente se les divide en dos catego rías (i) aquellos que miden fluencia o partículas/cm² y (ii) los que miden la energía absorbida exrpesada en rads (1 rad =

LEXAN: 28% KOH 58 + 1° C T. GRABADO 150 (min.)

Fig. 5, 5 . - Atomneton de neutrones. Densidad promedio de las trazas vs. distancia

124.

100 erg/g) o expresada en dosis equivalente, <u>rem</u> (<u>Roentgen</u> - equivalent man).

La cantidad que se obtiene cuando la dosis absorbida se mu<u>l</u> tiplica por el factor de calidad (Q) se conoce como dosis equ<u>i</u> valente, cuya unidad original es el rem:

dosis equivalente (rem) = dosis absorbida (rad) x Q

En el sistema de unidades SI la unidad de dosis equivalen te es de Sievert abreviado Sv, el cual está relacionado al <u>Gray</u> como sigue:

dosis equivalente (Sv)= dosis absorbida (Gy) x Q x N Donde N es un factor que involucra a la razón de dosis. En el presente el ICRP (international Comission on Radiological -Protection), ha dado un valor de uno a N. Puesto que el gray (Gy)= 1 J/Kg = 100 rad se sigue que 1 Sv= 100 rem.

El factor de calidad Q depende de la densidad de ionización causada por la radiación. Para los neutrones rápidos este es de 10. Las partículas cargadas pesadas tienen un valor Q de 20, por su parte los rayos X, γ y electrones tiene un factor de calidad de 1.

En la Fig. 5.7 se muestra la respuesta del Lexan con respecto al tiempo de irradiación, bajo las condiciones establec<u>i</u> das resultó lineal. La eficiencia del registro para los neutr<u>o</u> nes de Am-Be que se determinó fue de 0.7 X 10⁵ trazas/neutrón.

La fuente de Am-Be se calibró en el Oak Ridge National Laboratory. El Lexan muestra una respuesta lineal con la dosis equivalente (Fig. 5.8), o sea la densidad de trazas formadas

como resultado de las reacciones es proporcional al flujo de neutrones en un intervalo de 1 a 400 rem. La dosis equivalente se expresa en rem puesto que el Sv no alcanza aún la generalidad.

5.2 Conclusiones.

El sistema de detección por trazas Lexan-grabado químico, se puede emplear para el monitoreo de neutrones rápidos, y si el espectro de neutrones es conocido, en dosimetrías de emergencia y de personal.

El detector de Lexan es mecanicamente resistente, las di mensiones se pueden hacer según las necesidades. La respuesta de éste detector tiene un intervalo dinámico de 1-400 rem el cual se puede ampliar en virtud de no observarse saturación para los flujos empleados.

La respuesta del Lexan es independiente de la radiación gamma y de las partículas beta, por lo que se puede emplear en campos de radiación mixtos. La información (trazas revel<u>a</u> das) bajo condiciones normales de temperatura e iluminación no sufre deterioro con el tiempo. El Lexan tiene un umbral --de detección para neutrones rápidos alrededor de 1.2 MeV.

Bajo las condiciones geométricas y de grabado establecidas la sensibilidad del detector fué de 0.7 X 10⁻⁵ trazas/neutrón.

Las técnicas de detección y conteo que se siguieron en és te trabajo no requieren de equipos o dispositivos especiales, de modo que los estudios de este tipo se pueden desarrollar - con las facilidades de un laboratorio de radiaciones convencio nal. Para monitoreos de rutina o de dosimetría personal, se pueden desarrollar métodos automatizados como los mencionados, que permitan manejar una mayor cantidad de detectores e info<u>r</u> mación.

Este detector representa una alternativa en la detección de neutrones. Los DTES en general se aplican a campos diversos de la ciencia y la tecnología. Se han realizado estudios en física nuclear, física de partículas elementales, geología y geofísica, en investigaciones de radiación cósmica y análisis de materiales extraterrestres.

De las aplicaciones tecnológicas se pueden encontrar entre otras la elaboración de filtros para citología, monitoreo de aerosoles, en la determinación de contaminación radioactiva de aguas, etc.

En particular los DTES plásticos han mostrado una gran posibilidad en la dosimetría de reactores de fisión, en instala ciones de enriquecimiento de uranio, dosimetría biológica y en instalaciones nucleares [\$4,\$8,\$9].

Paradójicamente hasta los años más recientes se ha enfoca do la atención al estudio de los mecanismos de interacción y de formación de la traza por la radiación; y a la sistematiza ción de la investigación de materiales detectores y métodos de grabado. Esta área es de gran interés ya que puede arrojar r<u>e</u> sultados y aplicaciones muy ventajosas en distintos campos de la ciencia.

BIBLIOGRAFIA

1. L. Fleischer, B. Price y L. Walker

2. K. Becker

3. K. Becker

4. P. Prevo et.al.

5. K. Josefowicz

6. N. Tuyn

7. K. Becker

8. R. D. Evans

9. W. Price

10 R. Kase y R. Nelson

11 V. Benton y P. Henke

12 D. Jackson

13 E. Segré

14 E. Fermi

15 A. Foderaro

16 R. Lamarsh

17 J. Salmon

Nuclear Tracks in Solids, Univer sity of California Press, Berkeley (1975).

Solid State Dosimetry CRC Press Cleveland (1973).

Health Physics 12, 769 (1966)

J. Appl. Phys. 35, 2636 (19646)

Nucl.Instr.Meth, 93, 369 (1971)

Trans. Am. Nucl, Soc, 13, 523 (1970)

Health Physics 27, 598 (1974)

The Atomic Nucleus, Mc. Graw Hill N. Y. (1955).

Nuclear Radiation Detection, Mc. Graw Hill N.Y. (1964).

Concepts in Radiation Dosimetry Pergamon Press (1978)

Nucl, Instr. Methods, 67, 87 (1969)

Classical Electrodynamics, N.Y. - (1975) John Wiley & Sons.

Experimental Nuclear Physics, N.Y. Vol. I (1953) John Wiley & Sons.

Nuclear Physics, The University of Chicago Press, reimpresión Midway (1974)

The Elements of Neutron Interaction Theory, The MIT Press, Cambridge (1971)

Introduction to Nuclear Reactor --Theory Addison Wesley Pub. Co., --Mass. (1974)

Theorie des Neutrons Rapides, Presses Universitaires de France, Paris (1961)

- 18 H. Attix y C. Roesch, (Eds.)
- 19 A. Chapiro
- 20 S. Nikitina, V. Zhuravs kaya y S. Kuzminsky
- 21 J. Dienes y H. Vineyard
- 22 P. Martínez de las Marías
- 23 B. Price y M. Walker
- 24 L. Fleischer et.al.
- 25 L. Fleischer et.al.
- 26 L. Fleischer et.al.
- 27 J. Kobetich y R. Katz
- 28 R. Katz y I. Kobetich
- 29 V. Benton

30 V. Bentos y P. Henke 31 V. Benton y D. Nix 32 G. Somogyi et.al

- 33 G. Paretzke
- 34 V. Benton

热雨

35 G. Paretzke y V. Benton
36 P.Henke y V. Benton
37 G. Somogyi y D. Paul
38 G. Somogyi y A. Szalay

Radiation Dosimetry Vol. I, II y III Academic Press N.Y. (1968)

Radiation Chemistry of Polimeric Sistems, Interscience Publishers Inc. N.Y. (1962)

Effect of Ionizing Radiation on High Polymers, Gordon and Breach N.Y. (1963)

Radiation Effects in Solids. Interscience Publishers Inc. N.Y. (1057)

Química y Física de los Altos Polí meros y Materias Plásticas. Ed. --Alhambra, Madrid (1972).

- J. Appl. Phys, 33, 3407 (1962)
- Science 149, 383 (1965)

J. Appl. Phys 36, 3645 (1965)

Phys. Rev. 156, 353 (1967)

Phys, Rev. 170, 391 (1968)

Phys, Rev. 170, 401 (1968)

USNRDL-TR-67-80 Report (1967) U.S. Nav. Rad.Def.Lab. San Francisco Calif. Nucl. Instr. Meth, <u>67</u>, 87 (1969) Nucl. Instr. Meth, <u>67</u>, 343 (1969) Nucl. Instr. Meth, <u>134</u>, 129 (1976) Rad. Effects <u>34</u>, 3 (1977) USNRDL-TR-68-14 Report (1968) U.S.

Nav. Rad.Lab. San Francisco Calif. Nucl. Instr. Meth, <u>108</u>, 73 (1973) Nucl. Instr. Meth, <u>97</u>, 483 (1971) Rad. Effects <u>20</u>, 181 (1973) Nucl. Instr. Meth, 109, 211 (1973) 39 G. Somoqyi Atomki Kozlemények, Vol. 21 No. 2 (1979)40 A. Young, Nature 182, 375 (1958) 41 H. Silk y S. Barnes Phil. Mag. 4, 970 (1959) 42 D. Dimitriev et.al. Rad. Effects. 34, 33 (1977) 43 R. Johnson y K. Becker ORNL-TM 2826 Report (1970) 44 A. Khan Nucl. Instr. Meth, 126, 557 (1975) 45 A. Kahn Nucl. Instr. Meth, 109, 515 (1973) 46 G. Baroni et.al. Nucl. Instr. Meth, 98, 221 (1972) 47 V. Benton y P. Henke Nucl. Instr. Meth, 70, 183 (1969) 48 A. Khan y A. Durrani Nucl. Instr. Meth, 98, 229 (1972) 49 G. Somogyi RAd. Effects 16, 283 (1972) 50 Y. Nishiwaki IAEA-SM-167/22 IAEA Viena (1973) Nucl. Intr. Meth, 124, 557 (1975) 51 K. Becker y A. Razek 52 L. Tommasino y C. Armelli Rad. Effects 20, 253 (1973) ni 53 W. G. Cross y L. Tommasi Health Physics 15, 196 (1968) no 54 V. Griffith et.al. Health Physics 36, 235 (1979) 55 G. Cartwrighty y K. Nucl. Instr. Meth, 153, 457 (1978) Shirk Proceeding 10 th Int. Conf. SSTD, 56 A. Gruhn et.al. Lyon (1979) 57 G. Espinosa PNL-3910 Report (1981) Bettelle Memorial Institute U.S. 58 L. Fleischer Nucl. Instr. Meth, 147, 1 (1977) 59 G. Espinosa Proceeding 10 th Int. Conf. SSTD, Lyon (1979).