'UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

"UN MODELO DE DESARROLLO INDUSTRIAL REGIONAL.
ESTUDIO DEL CASO DE AGUASCALIENTES"

TESIS QUE PARA OBTENER EL TITULO DE ACTUARIO PRESENTA:

FERNANDO ARTEAGA ALFARO

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PRESENTACION

INTRODUCCION

CAPITULO I MODELOS

- 1.- MODELACION Y REALIDAD
- 2.- TIPOS DE MODELOS
- 3.- UNA METODOLOGIA PARA LA CONSTRUCCION DE MODELOS.
- 4.- MODELACION Y SIMULACION

CAPITULO II MODELOS URBANO- REGIONALES

- 1.- UTILIDAD DE LOS MODELOS URBANO REGIONALES
- 2.- CARACTERISTICAS GENERALES DE LOS MODELOS URBANO REGIONALES.

CAPITULO III MODELOS DE DESARROLLO INDUSTRIAL

- 1.- CONSIDERACIONES GENERALES DEL DESARROLLO INDUSTRIAL REGIONAL
- 2.- MODELO DE DESARROLLO INDUSTRIAL REGIONAL
 . (DESIR)

ANEXO 1A DESIR : LISTA DE VARIABLES

ANEXO 1B DESIR : LISTA DE ECUACIONES

ANEXO 2 DESIR : CALCULO DE PARAMETROS

ANEXO 3 CUESTIONARIO PARA APLICAR AL MODELOS DESIR

BIBLIOGRAFIA

PRESENTACION

En este trabajo se estudian tópicos asociados con los mode los de simulación como son: las características generales de los modelos, la metodología para su construcción, los tipos de modelos y la utilidad que reportan, también se tipos de modelos y la utilidad que reportan, también se describe DESIR (Desarrollo Industrial Regional), como un ejercicio de modelacion de la competitividad de un parque industrial en un centro de población, y su aplicación a la ciudad de Aguascalientes.

Fué desarrollando siguiendo el marco de referencia que sobre estrategias de desarrollo para parques industriales ha formulado recientemente a la Secretaría de Asentamientos -Humanos y Obras Públicas.

Este documento, asimismo, constituye una aportación al cam po de la elaboración de Modelos de Desarrollo Industrial, que ayuden a la toma de decisiones acertadas por parte de los responsables, a fín de coadyuvar al ordenamiento del -Desarrollo Industrial del país.

Finalmente, agradezco la ayuda recibida por parte de la Dirección General de Mejoramiento Urbano (S.A.H.O.P.), la
Dirección General de Fomento Industrial del Estado de Aguas
calientes y a la Unidad de Programación y Organizacion --(S.A.R.H.), que me permitieron la realizacion de este traba
jo.

INTRODUCCION

El presente trabajo pretende motivar el uso de los modelos como apoyo en la definición y evaluación de políticas regionales y urbanas. Co-múnmente se piensa que los modelos de simulación son herramientas muy sofisticadas que resultan costosas y de escasa ayuda práctica; sin -embargo, a lo largo del desarrollo del trabajo se demuestra lo contrario.

El documento consta de 3 capítulos, que en conjunto tratan los tópicos relevantes relacionados con los modelos y la simulación. En el prime ro se expone el tema de los modelos y sus características generales; a través de cuatro apartados : El primero desarrolla el tópico modelación y realidad, en donde se estudia cuales son las ventajas ó desventajas inherentes al uso de los modelos y que tan aproximados están los resultados obtenidos de los mismos con respecto a la realidad. En el segundo se muestran los diferentes tipos de modelos existentes, clasificandolos de acuerdo a la ortodoxía aceptada por los más importantes autores. El tercero efine una metodología para la construcción de modelos, que en la práctica ha demostrado ser apropiada; por último en el cuarto, se relaciona a la modelación con la simulación, esto es, se trata la necesidad de implementar los modelos en la computadora, se esboza brevemente la utilidad de los lenguajes de simulación y se dan las características generales del compilador DYNAMO, con el cual se simula el modelo objeto de este estudio.

El segundo Capítulo, explica en forma más detallada los modelos dentro del contexto Urbano Regional a través de dos rubros : El primero inti

tulado utilidad de los modelos Urbano - Regionales consigna las bondades que aportan los modelos dentro del marco de la planeación Urbano - 'Regional, remarcando la Importancia de configurar modelos integrados; en el segundo se explican las características generales de - los modelos Urbano - Regionales.

Finalmente el tercer capítulo contiene la concepción de un modelo de desarrollo industrial: primeramente se exponen las consideraciones generales que se tomaron en cuenta como marco de referencia para el desarrollo de un modelo de desarrollo Industrial - Regional; y para concluir se presenta el modelo, los objetivos que persigue, las ecua aciones principales que intervienen en el mismo y la aplicación que se hizo de ésta para el estado de Aguascalientes, incluyendo un some ro estudio del mismo Estado y los resultados obtenidos en forma tabu lar y gráfica.

Adicionalmente se incluyen 3 anexos conteniendo el primero la lista de variables y ecuaciones que intervienen en el modelo, el segundo los parametros del modelo así como el cáculo de los valores de los mismos y un tercero que presenta el cuestionario que se utilizó en la recolección de los datos para estimar los parámetros en el Estado de Aguascalientes.

CAPITULO I

M O D E L O S

1. MODELACION Y REALIDAD

La modelación tiene por finalidad la de representar la realidad, en un esquema que explique su comportamiento, permitiendo al usuario utilizar la información resultante en la evaluación de la realidad bajo estudio, el pronóstico de lo que sucederá en el futuro y la adecuada toma de decisiones entre otras cosas.

La vinculación de la modelación con la realidad es a través de la elaboración de módelos que contesten preguntas acerca de la naturaleza de la realidad bajo estudio, sus relaciones funcionales y sus interrelaciones con el medio que la rodea.

Acorde con el objetivo básico de la modelación, las caracteristicas fundamentales que debe reunir un "buen" modelo son:
un alto grado de fidelidad y relevancia(1)

La fidelidad se refiere a la capacidad del modelo de representar lo mas apegado posible a la realidad la situación --bajo estudio; deberá tomar en cuenta el mayor número de ca-racteristícas y particularidades de la situación de tal mane
ra que refleje hasta donde sea posible su funcionamiento.

(1) Kennedy M.J. (1975) "Relevance or realism in the case or urban Dynamics". Rice University.

La relevancia pretende que el modelo tome en cuenta los aspectos importantes de la situación a modelar, sin menos cabo de que resulte demasiado complejo y difícil de manejar.

La relevancia busca que el modelo incluya únicamente los -factores básicos, y trata de omitir los detalles que sola-mente harían mas complejo el modelo; pero por otra parte el
criterio de fidelidad trata de que el modelista obtenga un
"retrato" lo mas apegado posible de la realidad a modelar,
es decir que se incluya en el modelo todas las variables que de alguna forma tomen parte en ella.

Aparentemente ambos criterios son contradictorios, pero el tomador de decisiones o sea la persona responsable de dicernir sobre todo lo concerniente a limites del modelo, recursos disponibles, políticas sobre el desarrollo del mismo, etc., deberá indicarle al modelista que grado de exactitud requerira el modelo y en base a ello se podra hacer congruentes ambos criterios.

La modelación constituye un elemento básico en la planea--ción, contar con la concepción de un modelo que permita ---

comprender un sistema cualquiera es fundamental para evaluar alternativas de acción de instrumentar cursos de acción, dicen algunos autores convencidos de su utilidad, pero existen otros que no le dan válidez alguna, argumentando que no es una actitud realista ante el -problema o que las situaciones en la realidad distan mucho de ser -las representadas por los modelos, conduciendo a los tomadores de de
cisiones o a los usuarios por caminos erroneos. Entre estos últimos
se encuentran Dando y Sharp (2), que establecen la existencia de un
mito con respecto a la modelación de los problemas reales y su imple
mentación, otros autores como Stainton (3), argumentan que la modela
ción es una herramienta efectiva pero se necesita saber usarla, du
da que la implementación de un modelo sea exitosa, no porque desconfie de la factibilidad de la modelación, sino de la capacidad y pers
picacia propia del modelista.

Por último Wodley y Ferrie (4), apuntan la efectividad de la modelación en la comprensión, evaluación e instrumentación de soluciones de los problemas reales, que actualmente existe una alta probabili-dad de éxito cuando se utilizan técnicas propias de la investigación de operaciones (programación matemática, Pert, Teoría de decisiones, etc.)

⁽²⁾ Dando, M.R.; Sharp, R.G. "Operational Research in the U.S. in -- 1977; The rouse and consequences of a myth", J.Ope.Res.Soc.29.

⁽³⁾ Stainton, R.S. (1978) "Modelling and Reality", J.Ope.Res.Soc. 30

⁽⁴⁾ Wodley, W.C. and Ferrie, A.E.J. (1978) "Porcentual differences and effects of managerial participation on project implementation" J. Ope. Res. Soc. 29.

Por ser instrumentos bastante estudiados, aunque mo es requisito --- que se utilicen estas técnicas en la implantación de modelos, es decir deja en plena libertad al modelista para elegir el enfoque que - él juzgue más apropiado, no obstante si la situación se presta para ello recomiendan el uso de las técnicas más conocidas.

En nuestro caso las situaciones que interesan modelar son la Urbano-Industriales, aquellas referentes al ordenamiento y control de los - conglomerados humanos, al asentamiento de las industrias y_a la planificación de su desarrollo, buscando armonizar los niveles de bienestar deseados para la población por una parte e incentivar el crecimiento de la planta industrial por la otra.

En el contexto Urbano-Industrial, la implementación realizada de los modelos creados, especialmente aquellos para fines de pronóstico no ha sido muy exitosa, muy pocos modelos han tenido el éxito deseado, y los comentarios existentes obre las aplicaciones básicas, por lo mismo son escasos (5).

La escasez de aplicaciones prácticas se debe a muchos factores : - algunos autores argumentan que los problemas financieros y de organización en la implantación de los modelos son muy serios, otros - -

(5) Batty Michael (1971) "An Experimental Model of Urban Dinamics". Conference on Urban Growth Models. opinan que las personas responsables del desarrollo no son lo suficiente expertas, y por último, algunos argumentan que la tendencia en la construcción de modelos es inapropiada para la realidad a modelar (6). Pocas veces se admite que la estructura de un sistema no puede ser modelada con éxito debido al comportamiento que tiene el sistema.

Es probable que las modelaciones futuras sobre problemas urbanos deben enfocarse hacia la creación de sistemas integrados que juntos -conformen un sistema general. Charley y Kennedy (7) comentan que el comportamiento de un sistema urbano es casi totalmente desconocido y extremadamente dificil de observar, pudiendo existir algunas extra tegias de investigación que no han sido descubiertas y que se podrán utilizar en el futuro.

Todavía existen muchos problemas para determinar como es un sistema - urbano, sin embargo, se están desarrollando nuevas técnicas que permitan mejorar las condiciones existentes para la estructuración de modelos de Sistemas Urbanos.

- (6) Kennedy M.J. (1975) " op. Cit."
- (7) Charley R.J. and Kennedy M.J. (1971) "Phisical Geography: A Systems Approach". Pretice Hall Internacional, London.

Finalmente cabe señalar que no existe un completo divorcio entre modelación y realidad, es decir entre la capacidad del
modelo de explicar el comportamiento del fenómeno y los resul
tados que la verificación de la realidad arroje, tampoco puede decirse que la modelación sea por sí misma la solución mágica de los problemas inherentes a la comprensión del mundo en que vivimos, ya que depende en gran medida de como se haga
uso de ella y de la situación a modelar. Así la utilización
de técnicas apropiadas, el establecimiento de supuestos no contradictorios o equivocados yla naturaleza intrinseca del problema, son factores decisivos en el éxito de la implemen-tación de un modelo.

Actualmente se stan realizando investigaciones con el fin de hacer de la modelación una herramienta cada vez más útil en - la planeación, en el pronóstico de lo que sucederá en el costo, mediano y largo plazo y se amplien los campos donde sea posible su aplicación, pero queda bajo la responsabilidad delos encargados del diseño y desarrollo del modelo, la electión del instrumento adecuado para lograr la solución de los complejos problemas que trae consigo la planeación y serán --

ellos y su sensibilidad para evaluar la situación que ten-gan por delante, lo que a fin de cuentas decidirá el grado
de éxito que se logre.

2. TIPOS DE MODELOS

La palabra "modelo se define como la imagen o representación generalmente incompleta y simplificada, de un sistema, pro--ceso, organismo, fenómeno, artefacto, sociedad, estructura de cualquier clase, material o abstracto (8).

La palabra "Sistema" se usa para definir una serie de elementos que trabajan agrupadamente para el objetivo central del
todo. El concepto de los sistemas gira alrrededor de (9).

- 1) Un grupo de componentes con ciertas características o atributos, vinculados por determinadas relaciones entre si y en el sistema completo.
- 2) Un context general o medio ambiente, donde el sistema se encuentra contenido, que actua sobre el funcionamien to del sistema, pero que no puede ser influido a su vez por el propio sistema.
- 3) La existencia de un objetivo que representa la razón de ser del sistema.
- (8) Varsausky, Calcagno (1970) "America Latina: Modelos Matemáticos". Editorial Universitaria, Chile.
- (9) Churchman, C.West (1968) "The Systems Approach", Dell -- Publishing Co., Inc. Dag Hammarskjold Plaza, New York, N.Y., U.S.A.

- 4) Una medida de actuación que constituye la escala que permite evaluar los resultados.
- 5) La presencia de un tomador de decisiones que es en \acute{u} l tima instancia quien define y determina al sistema en su conjunto.

Los modelos pueden usarse para intentar la "reconstrucción" de conceptos, haciendo que imiten algunas de sus caracterís ticas relevantes y las de los sistemas típicos en que apare cen con sus problemas más visibles. En etapas sucesivas - se van agregando nuevas características que se perciben que faltan, enriqueciendo el modelo que se plantea en un prin-cipio.

Los modelos se pueden clasificar de varias maneras.

De acuerdo a las condiciones que afectan al modelo en el tiempo, se dividen en estáticos si son constantes y dinámicos sí varian en el tiempo. De acuerdo al conocimiento de las condiciones que afectan al modelo, se clasifican en determinísticos si las condiciones son "conocidas" y en Estocásticos si las condiciones son inciertas pero se "conoce" su distribución probabilística.

Se clasifican en modelos contínuos si se conoce el estado del sistema en cualquier instante o condición y en modelos discretos si sólo se conoce el estado del sistema en instantes o condiciones aisladas. Con respecto a la representación del modelo se clasifica en modelo Icónico cuando se trata de una representación a es cala, analógico cuando es una representación en otro medio y sim-

Para disipar ciertas confusiones, es importante distinguir dos nivelles de modelos: Conceptual o mental y formal o explícito (11).

bólica cuando se trata de una representación en base a ideas (ope-

raciones lógicas o matemáticas) (10).

- (10) Mihram, Arthur (1972) "The Modeling Process", IEE Transactions on Systems, Man, and Cybernetics. Vol. 2.
- (11) Carvajal, Raúl (1976) "Panorama de la Investigación" de operaciones", No. 2, Vol. 3 CIMAS U.N.A.M.

Entre los modelos explícitos pueden considerarse los modelos verbales, físicos, matemáticos, predictivos, explorativos y - de planeación, ubicando entre estos últimos a la experimenta ción numérica (12). A continuación describimos estos tipos de modelos.

(12) La experimentación numérica se consideró aquí como sinón<u>i</u> mo de simulación.

2.1 MODELO MENTAL.

El modelo mental se define como todo lo que se sabe y --piensa acerca del sistema a partir del momento en que se
le individualiza. Esta formada por una descripción del sistema, los componentes y características que hemos iden
tificado en él y una explicación o teoría de su funcionamiento (relaciones causales , entre sus componentes que nos permiten conocer mejor su comportamiento y controlarlo en alguna forma). Este modelo mental que se tiene, se
corrige por ensayo y error, por experiencia propia o por
el enriquecimiento que se tiene al tratarlo con otras per
sonas que conocen sobre el tema.

Los conceptos que se usan en la descripción no son precisos, sino difusos y cambiantes. No están todos presentes en la mente a la vez, lo cual explica que puedan cambiar de significado en partes distintas del mismo modelo.

Estas incoherencias dificultan el comportamiento racional y estimulan la aparición de asociaciones variadas, nuevos

conceptos y un comportamiento intuitivo cuando no simplemente irracional.

2.2 MODELOS EXPLICITOS

Son representaciones de los modelos mentales que los hacen comunicables, simples y mejor definidos. La relación entre un modelo mental y su modelo explícito gira alrededor del concepto "fidelidad", con respecto a la realidad. Por una parte, el modelo explícito difícilmente podrá ser ser totalmente fiel al modelo mental, puesto que éste incluye todos los factores imaginables con distintos pasos y el hacer esto explícito requiere un tiempo enorme durante el cual el modelo mental puede haber sufrido muchos cambios. Los modelos explícitos toman las características típicas de los modelos mentales, simplificándolos con la idea de hacerlos manejables y congruentes.

Entre los modelos explícitos, podemos distinguir:

2.2.1. MODELUS VERBALES

Son descripciones de modelos mentales en lenguaje ordinario que permiten la representación explícita del modelo.

2.2.2 MODELOS FISICOS

Son representaciones de modelos mentales a través de objetos o sistemas materiales, ya sean artificiales o naturales.

2.2.3 MODELOS MATEMATICOS

Son los que para explicar los modelos mentales usan como lenguaje a la matemática. Los modélos matemáticos, tienen capacidad de manejar sistemas complejos en forma confiable; dentro de sus características relevantes, están el ser criticables, fácilmente comunicables, poseer un gran alcance deductivo y permitir en particular, estudiar sucesivamente cada una de sus partes sin separarlos del contexto global, ni perder la interacción con el resto del sistema.

2.2.4 MODELOS PREDICTIVOS:

Estos modelos son diseñados para ayudar en el pronóstico de estados futuros del sismtema modelado. Las situaciones a modelar deben necesariamente estar relacionadas con el tiempo para que tenga sentido la construcción de este tipo de modelos. Podemos distinguir dos clases: los de remostico y los condicionales.

La proyección de los modelos de pronóstico, se refiere a la continuación de la tendencia que ha sido establecida en el modelo descriptivo.
En los modelos condicionales, el mecanismo de causa y efecto gobierna
las variables que son especificadas, esto es, el modelo debe permitir
responder en la forma; si ocurre, -entonces y debe suceder, sin ser ex
plícitos- en la validez de las variables que intervienen.

2.2.5 MODELOS EXPLORATIVOS:

De acuerdo a Etchenique, la principal intención del modelo explorativo esladela especulación de otras realidades que son lógicamente posibles por sistematización, variando los parámetros básicos en el modelo descriptivo, es posible -- explorar localizaciones alternas de la actividad y conocer las formas que podrían tener la realidad, este tipo de modelos nos ayuda a discriminar y evaluar diversas alternativas bajo estudio. (13)

2.2.6 MODELOS DE DECISION O PLANEACION:

En un contexto general, esta clase de modelos se expresa - como:

V = F (Xi, Yi)

Dande:

V= Valor de la decisión que es realizada.

(13) Etchenique, M. (1960) "Models: ADiscusion" Landuse and built form studies, London.

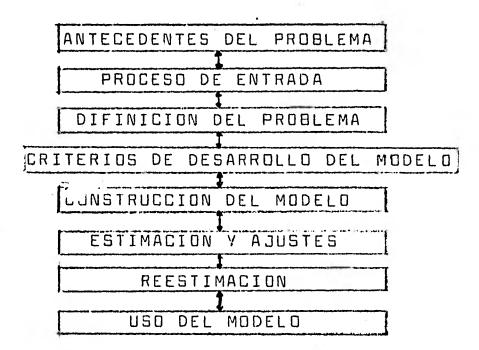
- Xi Las variables que son sujetas a control por el tomador de decisiones.
- Yi Los factores variables o constantes, que afectan la ejecución pero que no están sujetos al control por el tomador de decisiones dentro de la extensión del problema.
- F Las relaciones fundamentales entre las variables independientes y las constantes Xi y Yi de la Variable V.

La existencia de un tomador de decisiones es esencial pues es él quien concibe los objetivos y metas, determina la extensión del sistema a modelar y en función de lo anterior y con el concurso de alguna medida de actuación que sirve como marco de referencia evalúa el valor (V) de la alternativa considerada.

Los principales pasos que cubre un modelo de planeación son: (14).

- Especificación de acciones y/o políticas alternativas.
- Predicción de las consecuencias de escoger cada alternativa.
- Evaluación de las consecuencias en función de las metas del proceso de planeación.
- Selección de las alternativas más apropiadas.

Los modelos de planeación más conocidos son los de programación matemática; como los modelos de programación lineal, de programación entera, de programación dinámica, etc.


En esta clase de modelos, cuando una medida de ejecución es introducida ésta se refiere a la solución óptima, dada bajo ciertas condiciones en el modelo objetivo determinado.

En la práctica, ha resultado muy complejo el elaborar modelos de planeación, esto se ha resuelto elaborando modelos predictivos y explorativos, los cuales se utilizan en forma independiente perc secuencial.

(14) Acroff, L.R. Sasiene, M.W. (1968) "Fundamental of Operations Research" Wiley and Sons. New York.

3. METODOLOGIA PARA LA CONSTRUCCION DE MODELOS. (15)

A continuación se presenta una metodología cuya estructura no es necesariamente rígida (el orden de las diferentes — etapas es suceptible de alterarse y el flujo existente en ellas se establece en ambos sentidos sentidos: ascendentes y descendentes) y permite la elaboración de modelos susceptibles de implementarse (15).

(15) Olen L. Urban (1974) "Building Models for Decision Markers" Interfaces 4.

3.1. ANTECEDENTES DEL PROBLEMA.

La construcción de modelos debe estar supeditada a los -objetivos que se persiguen aún cuando existan modelos parecidos que cumplan con una investigación particular y -por tanto con otros objetivos que no son susceptibles de
ser adecuados Algunos investigadores encuentran por ejem
plo, que todos los problemas pueden ajustarse a un modelo
particular estructural como Monte Carlo (16) a modelos de
simulación, pero esto no siempre es posible.

A continuación se detalla una serie de aspectos que se recomiendan tomar en cuenta para la recolección de antece-dentes del problema:

- Los problemas son dirigidos a modelos de decisión.
- * Las soluciones son encontradas por aplicaciones técnicas de los modelos (simulación, programación matemática, heurística, etc.).
- (16) El método de Monte Carlo, es una forma especial de simulación numérica que tiene también su metodolo-gía y lenguaje propio.

* La interpretación de datos a través de modelos esta-dísticos son usados para estimar parámetros o modelos
de decisión, para esto se tiene una amplia variedad de técnicas de Investigación de Operaciones y Estadís
tica (17), y una gran variedad de alternativas para la construcción de modelos que puedan resolver los -problemas efectivamente.

Es deseable tener antecedentes sobre técnicas e investiga ciones, pero hay que tener cuidado cuando se quiere tomar éstos como antecedentes primarios para la construcción de modelos.

El ensayo con la construcción de modelos puede ser una herramienta efectiva para la elaboración de modelos alternativos que permitan mejorar la solución encontrada.

La experiencia entonces, puede dirigirse a la construcción del modelo, actualizar sus antecedentes y una diversidad de investigaciones que pudieran mejorar el trabajo y tener un mejor enfoque para la clase de áreas del problema en - donde pueda ser utilizada.

(17) Entre las técnicas de Investigación de Operaciones, considérese la programación lineal y la teoría de decisiones y entre las técnicas estadísticas el aná lisis de variaciones, las técnicas de regresión y las series de tiempo.

3.2. PROCESO DE ENTRADA.

El proceso de entrada al lugar en donde se va a usar el modelo es muy importante. Es recomendable que la "entrada" sea en el lugar principal de toma de decisión, esto es, donde está el control de mando y si el modelo va a -ser usado por diversos usuarios, es mejor trabajar con -ellos tan pronto como sea posible, necesitándose un buen
primer contacto y un programa de sensibilización que in-cluya discusiones de términos y aplicaciones del modelo,
y se especifiquen el manejo que tendrá el modelo.

Si el programa de sensibilización es adecuado, los usua-rios tomarán i terés en la construcción del modelo, siendo ellos mismos los primeros interesados en aceptar la -nueva inovación que es el modelo, el cual originará el me
joramiento en la toma de decisiones.

3.3 DEFINICION DEL PROBLEMA

Dados los recursos y la posibilidad de construir el modelo, el esfuerzo se concentrará en encontrar cual es el problema. En los antecedentes deben haberse identificado las principales variables que intervienen en el problema y al formarse el equipo de trabajo, estos defini
rán cual es el problema.

Un camino para definir cual es el problema y entender las necesidades del usuario es realizar estudios para determinar:

- La existencia de modelos.
- Las características del proceso de decisión (quien toma la decisión, cuándo con que fundamentos).
- El flujo existente y el uso de la información.
- Los fines y el estado de la institución, empresa u organismo patrocinador.

- La información y estructura formal de la Institución (incluyendo el control de mando, relaciones de auto-ridad y amistad).
- Las necesidades de los usuarios.
- Los problemas básicos por resolver.

Esta información puede ser obtenida por medio de cuestionarios para los responsables, aunque hay que tener cuidado, ya que muchas veces el problema que percibe el respon
sable es diferente del problema real, lo que se manifiesta
en la confusión al presentar el problema, originando la elaboración de quevas encuestas para aclarar los puntos confusos.

3.4 CRITERIOS DE DESARROLLO DEL MODELO.

Encontrado el problema y con un claro entendimiento de las actividades proyectadas, la formulación del modelo especificado, debe primero presentarse como un modelo descriptivo o normativo. La importancia de los factores, fenómenos variables y sus interacciones pueden ser enlistados y ordenados por rangos en orden de importancia, lo que permitirá la elaboración de un modelo sencillo que explique el sistema considerado, particularmente el comportamiento del -- usuario que pudiera ser explícitamente considerado. Finalmente el criterio que permita incluír modificaciones en el desarrollo hasta llegar al final del modelo, estos criterios son importantes para el uso de modelos alternativos.

Los criterios que norman las directrices para el desarrollo del modelo, aunque se formulan en conjunto con las usadas por los tomadores de decisiones, se sugiere para el mejor manejo del modelo que cuente con las siguientes caracterís ticas:

- 1) Comprensible.
- 2) Completo.
- 3) Que evolucione.
- · 4) Fácil de controlar.
 - 5) Fácil de entenderse.
 - 6) Ajustable (con sus parámetros).

3.5. CONSTRUCCION DEL MODELO.

La construcción del modelo posee las características de un arte(18). El modelo diseñado puede expresarse por medio de muchas formas alternativas y tratar de interpretar y estructurar un problema confuso. En algunas ocasiones la
gente puede desarrollar modelos "hermosos" que represen-tan estructuras perceptivas de problemas estructurados -previamente y que son sin embargo embarazosos e inconve-nientes.

Varios autores han considerado el problema de modelación, Morris (18) ha propuesto que la modelación es un proceso interactivo de enriquecimiento de los procesos de elaboración que parten de una analogía o de asociaciones con una buena estructura lógica desarrollada. Los pasos para la modelación que él sugiere son:

- 1. Descomposición del sistema en modelos simples.
- (18) Morris W. T. (1969) "On the art of modeling" Managment science 13.

- 2. Establecer claros objetivos para el modelo (fines).
- 3. Búsqueda de analogías.
- 4. Consideraciones numéricas específicas intrínsecas del problema.
- 5. Establecimiento de símbolos.
- 6. Poner por escrito lo obvio.

Ackoff y Sasiene (19) identifican cinco aspectos para la construcción del modelo y que están caracterizados por su uso.

- 1. Examinación directa de sistemas de operación.
- 2. Analogías.
- 3. Análisis de datos.
- (19) Rusell L Ackoff and Maurien W. Sasiene (1968) "Funda mental of Operations Research", Wiley and Sons.

- 4. Experimentación.
- 5. Realidad Artificial.

Rivett (20) propone un diagrama de flujo para modelos, -identificando casos, estudios y objetivos del sistema. El
modelo es entonces revisado basándose en resultados de pruebas predictivas y la aceptabilidad del resultado obje
tivo, tales factores son útiles, pero quizás la naturaleza compleja de la modelación hace que sean insuficientes
La modelación es un patrón del proceso de reconocimiento
y de la habilidad para estructurar un problema, ya que un
modelo es difícil de estandarizar (21), por la cantidad de parámetros a estimar que intervienen.

- (20) Rivett Patrick (1972) "Principles of model building" Wiley and sons.
- (21) La estandarización se refiere a la formulación de las variables endógenas con coeficientes unitarios en términos de las variables exógenas.

Los datos para construcción del modelo pueden ser sub-jetivos, el análisis de datos basados en la experimenta ción con base de datos, es común. Desafortunadamente no contiene todos los datos requeridos; el modelo es usado para estimar algunos datos, para selecionarlos y analizarlos. Esta base de datos incrementa la exactitud en el cálculo de los datos, ya que estos mismos datos son utilizados para volver a estimar los parámetros ya calculados.

Muchos procedimientos estadísticos existen para analizar los datos históricos y est mar los modelos de los parámetros, la mayoría de los datos históricos no son muy claros, generalmente las variaciones en las variantes son pequeñas y afectan a los eventos inobservables.

El mejor método para coleccionar datos es la experimenta ción, pero este método es caro y algunas veces no produce los resultados significativos deseados. En la mayoría de las situaciones la experimentación no es significativa

por existir una varianza grande en la estimación de los - parámetros, por tanto las estimaciones subjetivas deben - ser usadas también. En ocasiones es mejor usar los jui--- cios subjetivos que sacrificar lo completo del modelo ne cesario para su implantación en la institución; si un parámetro importante no es conocido y el usuario no está sa tisfecho con la estimación subjetiva se requiere que los datos sean relevantes para que a través del modelo se pue da ayudar al usuario en la toma de decisiones.

Las estimaciones subjetivas deben ser combinadas con las estimaciones empíricas por ajuste de las variables dependientes del modelo. Esto es realizado por ajuste al va-lor de los parámetros hasta que los valores observados -- sean cubiertos.

Dada la evidencia que la adecuación al modelo de los da-tos pasados pueden ser utilizados, su uso inicial es gene
ralmente en pequeña escala, pero puede repercutir en el nivel de decisión real por interacción, esto permite que
las decisiones y pronósticos tengan una base para la comparación y uso contínuo del modelo.

3.7. REESTIMACION.

En el proceso de comparación, los pronósticos de los eventos futuros son cotejados con los resultados actuales y - la diferencia debe ser reconciliada, muchas son debido a:

- 1. Errores en los modelos de pronóstico de entrada.
- 2. Estimación de parámetros inapropiados.
- 3. Modelación de estructuras incorrectas.
- 4. Cambios en el medio ambiente real
- 5. Variables aleatorias (errores aleatorios debidos a la diferencia entre lo calculado y los requerimientos actuales).

Primero se puede ver si los pronósticos de entrada son -erróneos al comparar predicciones y valores actuales de entrada. La nueva corrida del modelo con los parámetros
actualizados y el ajuste subjetivo asegura la adecuación
de los parámetros del modelo. En muchas situaciones se encuentra que la estructura inicial no fué completa o las
variables están cambiadas.

La reconciliación es un refinamiento del modelo para los nuevos datos y es un actualizador de las suposiciones que pudiera permitir un mejoramiento de las predicciones condicionales. Este uso adaptivo del modelo puede ser contínuo, dá confianza al usuario y establece la validez del modelo.

3.8. USO DEL MODELO;

Cuando el modelo es usado, la comparación incrementa la confianza del tomador de decisiones en el modelo y gene-ralmente permite su uso y evolución. El progreso es casi
contínuo no solamente con cambios en el modelo, sino que
nuevos modelos necesitan ser identificados, esto permite
tener un banco de modelos, que es un conjunto de modelos
comparativos diseñados para encontrar decisiones especiales y respuestas a necesidades administrativas.

Las primeras corridas o resultados deberán estar disponibles a corto plazo para iniciar la depuración de errores, incluir extensiones que aumentan la utilidad del modelo, o iniciar (o recontinuar) investigaciones que depuren datos o hipótesis y explorar correlaciones e interpretaciones de las variables calculadas, etc. Así se cumplirá — con las necesidades de los usuarios respecto a la representación adecuada del problema, para apoyar la credibilidad, aceptación y uso del modelo.

4. LA MODELACION Y LA SIMULACION

Después de que el modelo ha sido construído, éste necesita pasar de una forma pasiva a una forma activa que puede entonces ser usada para simular el comportamiento del sistema cuando está sujeto a:

- Datos de entrada realistas que el sistema operacional
 tendrá o encontrará en la práctica.
- Disturbancia real que origina que el comportamiento del sistema varíe con respecto a su comportamiento -- inicial.

En términos populares, todos los modelos computacionales son referidos como modelos de simulación. La simulación sin embargo, tiene un significado más preciso en este con texto que implica generalmente una distinción que es he-- cha entre los métodos analíticos y de simulación.

Los métodos analíticos incluyen el uso de análisis matem<u>á</u> ticos para llegar a ecuaciones explícitas que representan el comportamiento del sistema, mientras los métodos de -- simulación que son usados derivan el comportamiento del -

sistema cuando el sistema es muy complejo para ser usada la modelación en la investigación analítica directa.

La simulación es casi exclusivamente usada como modelo en el comportamiento de sistemas y esto implica que la dimen sión del tiempo es básica para tal procedimiento. Gene ralmente muchos autores definen a la simulación como el método de modelación dinámico, Nutt (22) define a la simulación como una técnica numérica para conducir experimentos con ciertos tipos de modelos matemáticos que describan el comportamiento de un sistema complejo en una computadora digital sobre extensos períodos de tiempo. En este caso, se asocia la simulación con la computación también como un computación del sistema en el tiempo.

La simulación puede considerarse como un modelo operacional del sistema que puede ser capáz de reproducir el comportamiento actual del sistema real con un grado acepta-ble de exactitud. Si la simulación es exacta, los datos
generados de la simulación pudieran estar de acuerdo con

(22) Nutt, P.C. (1979) "Influence of decision styles on uso of decision models". Technological Forecasting and social Change, 14. los datos del sistema operacional, es decir, desde el punto de vista del diseño del sistema, se puede tratar la simulación como si fuera el sistema actual y efectuar cambios a los parámetros en la simulación para optimizar el sistema.

Los datos de entrada en la simulación pueden ser:

- 1. Deterministicos.
- Estadísticos.

y corresponde a la simulación decidir si es determinística o estadística. Un ejemplo de una simulación determinística es por initica es por initica el de una planta química que funciona de manera tal que los datos de entrada son valores promedios del proceso y son usados para calcular los correspondientes valores por medio de salida. Un ejemplo de una simulación estadística es dada por un modelo que describe el tiempo de arribo de barcos a un puerto en forma aleatoria para optimizar las facilidades de llegada de éstos.

En la simulación estadística es posible coleccionar suficientes datos relacionados directamente con la fluctua--ción de las variables de un sistema de operación. Sin em
bargo, frecuentemente ocurre que la insufficiencia de da-tos hace imposible simular el comportamiento del sistema
en un período suficientemente largo de tiempo. En estos
casos, un análisis estadístico será necesario para analizar los datos y así el modelo probabilístico pueda ser -descrito por los datos. Teniendo un modelo probabilístico, las posibilidades de generación de datos hipotéticos
son ilimitados y la simulación puede abarcar un período suficientemente largo de tiempo.

En años reciente, los lenguajes de simulación se han desarrollado muy rápidamente, superando este desarrollo al de los diseños de sistemas de simulación.

La simulación debe ser hecha tan simple como sea posible, así la optimización del modelo puede ser aplicable con un mínimo de retraso.

La formulación del problema y sus objetivos tiene una importancia relevante, ya que la computación es costosa, la decisión de elegir la simulación como herramienta de análisis dependerá de su evaluación y confrontación con méto dos alternativos (programación lineal, programación dinámica, teoría de decisiones, etc.). Esta decisión en ningún momento del estudio debe considerarse con carácter — irrevocable.

4.1 LOS MODELOS ESTATICOS Y LA NECESIDAD DE SIMULAR.

Como ejemplo de modelos estáticos tenemos los que se han --propuesto en U.S.A. e Inglaterra en las últimas décadas, que -pueden ser descritos por una clase de métodos analíticos que los economistas llaman de estática comparativa, tales mode-los tienden a representar una estructura estática de siste-mas industriales al menos una parte del tiempo, lo que limita la posibilidad de valuar los cambios en la estructura en el tiempo que origina el comportamiemto del sistema. cambios tecnológicos, la aprobación de medidas por parte del qobierno tendientes a estimular o deprimir el nivel opera-cional, los cambios que experimentan los mercados tanto de materias prima como de bienes de capital y consumo, etc., son ejemplos de alteraciones que puede sufrir el sistema a través del tiempo que implicarán al considerar alternativas de acción enteramente nuevas o no contempladas en un principio. Finalmente estos cambios obligarían a replantear el -sistema en terminos de las nuevas condiciones o bien aceptar que el modelo implementado arroje resultados poco realistas.

La posición de aceptar que la estructura se mantiene sin -cambios y que las tendencias siguen un curso indúce a:

- 1. Obtener pronósticos sobre la base de "si todo sigue -igual, entonces ocurrirá ..."
- Los resultados del modelo tendrían una validez limitada
 o bien se tendría que estar rediseñando el modelo toda
 vez que ocurrieran cambios estructurales relevantes a
 través del tiempo.

El anterior razonamiento conduciría en la práctica a optar por la elaboración de un modelo dinámico que --obliga a sar la simulación (23)

(23) Charley R.J. and Kennedey M.J. (Op. Cit.).

4 .2. LOS MODELOS Y LAS ECUACIONES DIFERENCIALES.

La mayoría de los modelos matemáticos desarrollados ori—ginalmente en la Física y la Ingeniería, han sido expresados en términos de ecuaciones diferenciales. (24)

La representación de un sistema en términos de integrales da una más evidente e inmediata equivalencia entre el modelo y el sistema real. Este enfoque de integración es posible cuando uno nota que todos los procesos de la naturaleza son procesos de integración. En los procesos naturales la diferenciación no toma lugar; la verdadera diferenciación pudiera parecer que depende en alguna forma de la velocidad de sistema con que se mueve el sistema (25) cosa que no es posible; todos los mecanismos naturales que miden la velocidad del sistema, actualmente operan por un proceso de integración que de alguna forma miden que diferencia entre la posición pasada y la presente.

- (24) Forrester, J.W. (1976) "Principles of Systems", Cambridge, Massachusetts.
- (25) De la forma instantánea en que cambia el sistema de una posición pasada a una presente.

El analizador diferencial aclara el proceso de integra--ción. El analizador diferencial se entiende como un meca
nismo eléctrico para generar el comportamiento de acuerdo
con un conjunto de ecuaciones diferenciales. El analizador diferencial está construído en base a integradores, es por esto que se pueden usar las ecuaciones diferenciales pero después ser relacionadas con integrales.

Excepto por la reorientación impuesta en aquellos modelos cuya experiencia ha sido enteramente con ecuaciones diferenciales, la forma simple de entendimiento de los sistemas dinámicos, debe ser visto como modelos dependientes de integrales, evitando completamente el concepto artificial de integración.

4.3 EL COMPILADOR DYNAMO. (26)

El compilador DYNAMO es un programa de computadora que --acepta las ecuaciones diferenciales para un modelo de un sistema dinámico (retroalimentado) y produce la simulación
requerida por medio de tablas numéricas y gráficas.(27)

El DYNAMO (por DYNAmic MOdels) ha sido diseñado para desa--rrollar modelos dinámicos referidos a sistemas retroalimentados. El compilador DYNAMO es ampliamente utilizado y ha
sido adaptado a diferentes tipos de computadoras.

El compilador DYNAMO requiere la escritura del modelo en -forma de nivel, tasas de crecimiento y ecuaciones asociadas, usando el tiempo en la forma que el modelista considere adecuado, las ecuaciones pueden aparecer en cualquier se
cuencia. El compilador DYNAMO ejecuta:

- (26) El DYNAMO fué diseñado por el grupo de Dinámica Industrial de Sloan School of Management, Massachusetts ---Institute of Technology.
- (27) Forrester J.W. (1976) "Principles of Systems", Cambridge Massachusetts.

- El chequeo de las ecuaciones, marcando los errores lógicos. Muchos errores pueden ser fácilmente localizados por no satisfacer el concepto lógico del modelo.
- Reorganiza el modelo de acuerdo con el concepto estruc

 tural de un sistema dinámico, agrupando las ecuaciones

 que se refieren a los niveles y las tasas de crecimiento

 y arreglando la secuencia requerida de las ecuaciones

 auxiliares que dependen de alguna otra.
- Programa al modelo, esto es, las ecuaciones con su notación algebraica son convertidas en instrucciones det<u>a</u>
 lladas en lenguaje de compilación para la computadora.
- Se efectúa la computación paso por paso, basada en las instrucciones de control que dan un intervalo de solución y longitud de la corrida, y produce los resultados que reporta la simulación del sistema representado por el modelo.
- Prepara e imprime las salidas en forma gráfica y tabular.

Tiene la facilidad de volver a correr el modelc al cam--biar el valor de los parámetros, añadiendo solamente los
parámetros que van a cambiar.

DYNAMO es una herramienta para el manejo de modelos de -- sistemas dinámicos, aunque no es la única herramienta.

En este trabajo se utilizó el lenguaje DYNAMO, debido a - que como se vió anteriormente, se necesitaba simular un - sistema dinámico formulado en base a ecuaciones diferen-- ciales en forma contínua a través del tiempo para obtener resultados en forma gráfica y tabular.

CAPBIULO II
MODELOS URBANO REGIONALES

1. UTILIDAD DE LOS MODELOS
URBANO-REGIONALES.

La investigación del fenómeno Urbano-Industrial y la planeación adecuada del uso del suelo urbano y regional, se ha basado, en los últimos años, en la utilización de modelos matemáticos, debido a que constituyen una solución — viable en el manejo de la dinámica y complejidad de la ordenación territorial (incluye a los sistemas Urbano-Industriales).

El deserrollo acelerado de la cibernética, la computación y la teoría general de los sistemas, ha hecho factible el uso racional de los recursos y el desarrollo equilibrado - dentro del contexto Urbano-Industrial.

La modelación es actualmente una disciplina, de valor in-discutible dentro del proceso de planeación, por su utilidad como instrumento de reconocimiento, de ordenación teórica de exploración y pronóstico.

Las limitaciones que se imponga a su uso, se determinarán como resultado de una concienzuda investigación interdisiplinaria, donde se establezca lo que se quiere hacer (objetivos, metas y medidas de actuación). Y la posibilidad que el uso de los modelos ayuden al logro de esos objetivos.

Las limitaciones presupuestarias o técnicas y la factibilidad de modelar una situación en particular dependerán,
de las consideraciones que el tomador de decisiones tenga
que hacer al respecto.

Con la modelación matemática se intenta aplicar el enfoque científico al estudio de los fenómenos Urbano-Regionales, este enfoque intenta realizar observaciones cuantitativas de los aspectos económicos y espaciales relevantes (desa rrollo de la población y de la fuerza de trabajo, demanda de territorio urbano y de servicios, cuantificación de las inversiones, etc.), para una vez hecho el analisis e interpretación de ellas, proceder a la formulación de hipótesis de solución en forma de programas de acción a corto, media no y largo plazo. Estas hipótesis se prueban frente a la realidad y se ajustan, sin perder de vista la totalidad o conjunto de problemas del sistema en el que se trabaja.

El conjunto de acciones locales podra configurar los li—mites de válidez de los postulados que fundamenta**rá**n los modelos operativos que podrán ajustarse a su vez o modificarse radicalmente si es necesario, en las posteriores ——fases de la acción.

En el desarrollo de los modelos urbanos o regionales, lo - importante es el enfoque sistémico, el procedimiento ordenado, la racionalización del método, que permitiera el proceso interactivo de diseño -desarrollo- evaluación - diseño, piedra angular en la depuración del modelo, que a final de cuentas podrá llegar a ser el instrumento confiable que se necesita como apoyo para llevar a cabo los planes integrales de desarrollo.

Existen en el país gran cantidad de sistemas urbanos, --cada uno de ellos con características propias, que re---quieren de gran cantidad de información.

Dicha información es posible generar a través de sistemas de computo individualizados, pero que independientemente de su naturaleza deberán ser diseñados de forma tal que - sean compatibles a fin de integrar sistemas globales de - información que alimenten homogéneamente a todos los sistemas urbanos caracterízados, que a su vez constituyan un sistema sectorial total.

La idea de estructurar los sistemas bajo el mismo enfoque metodológico es con el fin de que estos sean compatibles y permitan la estructuración de sistemas más grandes que - a aquellos que se encuentren dentro del mismo sector, esto permite definir objetivos globales y evaluar el funciona-miento de cada sistema en base al aporte que cada uno de - ellos hagan a los objetivos globales y se instrumenten -- medidas de actuación homogeneas que eviten la dispersión de esfuerzos y la pérdida de recursos.

Peter W. House y J. Mc. Leod (28) en el estudio de los - modelos matemáticos proponen su desarrollo y aplicación - como parte integral del proceso de formulación de políticas urbanas y regionales, entendiéndose estas como "las - acciones determinadas por funcionarios oficiales que de-- ben ser realizadas (a plazo variable) como respuesta a los problemas del desarrollo de regiones y ciudades".

Los modelos matemáticos para formulación de políticas no intentan substituír sino complementar las políticas que - se formulan de acuerdo con la experiencia de expertos locales que incluyen la particularidad necesaria y los da-tos de localización específica que los modelos no pueden incluir; pero estos aportan el "marco de referencia" para ubicar (evaluar) la acción local a realizar en cuanto a - escala (respecto a la demanda), oportunidad (respecto al ritmo de desarrollo posible) y trascendencia (en cuanto a las prioridades postuladas para la comunidad).

Para poder realizar o cumplir más específicamente estas posibilidades, será necesario que los modelos incluyan -las siguientes características:

(28) House W. Peter y Leod Mc. J. (1977) "Large state models for policy evaluation" Wiley and Sons.

- Datos cuantificables de aspectos no directamente cuantificables, como la "calidad de la vida urbana".
- Pronóstico plausible sobre lo impredescible (el futuro de cada ciudad).
- Propuestas concretas, generalizadas por su importancia, para el desarrollo del sistema modelado (reconociendo sus posibles desviaciones y limitaciones).
- Claridad y facilidad en la interpretación y documenta-ción de los modelos para que no se usen o intenten apl<u>i</u>
 carse más allá de sus límites.

Toda teoría o modelo de las ciencias sociales que intente conceptualizar la ordenación de los sistemas urbanos o regionales, se enfrentará a estas dificultades.

En cada caso conviene, adoptar los siguientes criterios - que normen el proceso de conceptualización.

- Definir límites del modelo, identificando o definiendo las preguntas a contestar.

- Definir las variables principales implicadas en cada pregunta, cuyos cambios en el tiempo intentarán post<u>u</u> lar o conocer, como indicadores del "estado" probable del sistema en una fecha determinada.
- Definir las interacciones entre variables mediante -ecuaciones que las relacionen y que postulen ciclos de retroalimentación en las secuencias de cálculo de
 los submodelos.
- Definir la forma en que la información para apoyar políticas debe ser presentada a fin de que esta sea facilmente comprendida por los funcionarios o técnicos que podrían utilizar los modelos como instrumentos de trabajo.

En la implementación de modelos pueden postularse cuatro - aspectos importantes, que deberán tomarse en cuenta en el proceso de diseño.

 La selección e identificación del problema a investigar.

- 2. Proceso de construcción del modela.
- 3. Las características de las recomendaciones respecto al problema investigado.
- 4. Actividades para la actualización y extensión del -modelo.

El uso de modelos se dá dentro del marco de planeación regional y en proyectos especificos, que deberán guardar con gruencia entre si respecto a los modelos que representan - sistemas más agregados.

Los modelos so conciben generalmente de una forma simplista, pero al paso del tiempo, el grupo de investigación -- critica el marco de referencia usado en cuanto a su extensión y consistencia, y las observaciones resultantes retroalimentan el diseño e indican las fallas o deficiencias en cobertura del mismo, que deberán subsanarse toda vez que - se cuente con la experiencia necesaria para ello.

El uso de los modelos tanto por la institución que impulsa su desarrollo e implementación, como por otros usuarios
induce a concebir los modelos como instrumentos interinstitucionales, a fin de evitar que los usuarios tengan li-mitaciones para su utilización, pero esto agrega un ingrediente de complejidad en la realización de las cuatro acti
vidades básicas antes indicadas, hasta lograr la compatibi
lidad institucional que la planeación regional y urbana -requiere; de estas experiencias podrían derivarse normas para la futura elaboración de modelos apoyados por las ins
tituciones federales o descentralizadas que trabajen en -esta área.

Todo esfuerzo de modelación incluye una explicación de -las hipótesis (postulados, supuestos, correlaciones entre
variables) para poder interpretar adecuadamente los resultados, la definición de sus objetivos, de la lógica y la capacidad del modelo, permitirá decidir sobre su aplicabilidad a problemas específicos (a una región o conjunto de
regiones, a una ciudad o grupo de ciudades). La informa-ción de entrada será ordenada claramente para facilitar -el uso del modelo independientemente de quienes lo desa--rrollan. Estas características se consideran indispensa--bles para obtener provecho efectivo de la modelación.

2. CARACTERISTICAS GENERALES

DE LOS MODELOS URBANO
REGIONALES.

Con el objeto de tipificar las diferentes clases de modelos y ubicar cada uno de ellos dentro de su propio contex
to, A.G. Wilson (29) enumera nueve preguntas cuyas respues
tas permitirán comprender, en cada caso, los objetivos y
el tipo de cada modelo.

- a) ¿Cuál es el propósito del modelo?

 (Con qué objetivos se elabora)
- b) ¿Cuáles son las variables cuantificadas que incluye?
 (Que aspectos correlaciona)
- c) ¿Cuáles de sus variables se suponen bajo control para su plane ión?

 (Endógenos)
- d) ¿Qué tan agregados son los datos y resultados?
- e) ¿Cómo se trata al tiempo en el modelo?

 (Horizonte e intervalos de tiempo)
- (29) Wilson A.G. (1974), "Urban and Regional Models in Geography and Planning", John-Wiley and Sons.

(f) ¿Qué teorías se están tratando de representar en el modelo?
(Hipótesis Teórica).

- (g) ¿Qué técnicas de cálculo se utilizan en la consturcción del modelo?
- (h) ¿Qué datos significativos están disponibles?
- (i) ¿Cómo se ajusta y prueba el modelo?

A continuación contestaremos estas preguntas, desde el -punto de vista de los modelos Urbano-Industrial.

2.1 PROPOSITOS Y OBJETIVOS DE LOS MODELOS.

Entre los propósitos generalmente está el de representar el comportamiento futuro de un sistema urbano o de un conjunto de sistemas de una región o del país en tres aspectos básicos: su desarrollo demográfico, económico y espacial con los objetivos de plantear programas de ordena---ción que orienten proyectos de generación, crecimiento o regeneración del territorio urbano estudiado, o bien, de plantear las correlaciones con otros sectores económicos, definiendo órdenes de magnitud en los aspectos analizados, en función de tendencias observadas y de hipótesis de restricción o estímulo.

Los modelos cumplen con cinco funciones (30):

- La función psicológica que permite visualizar y comprender un fenómeno complejo como lo es el del desarrollo de un sistema urbano.
- La función adquisitiva de información dentro de un enfoque numérico cualitativo.
- (30) Etchenique, M. (1975) "Modelos Matemáticos de la -Estructura Espacial Urbana; aplicaciones en America Latina", SIAP.

- La función lógica al intentar explicar cómo ocurre o podría ocurrir un fenómeno o una conducta determ<u>i</u> nada.
- La función normativa al tratar de regular uno o varios fenómenos de la vida urbana.
- La función cognoscitiva al proponer una interpretación "sistémica" de la realidad y postular hipótesis
 que integren esa visión del conjunto de los proble-mas estudiados.

Por medio de estas funciones, los modelos pueden ser realizados para describir un estado actual de un sistema, pa ra predecir los estados futuros bajo ciertas hipótesis; - para explorar los efectos en esos estados de ciertas acciones concretas, y para planear las actividades que conduzcan (a los sistemas que se intenta diseñar o controlar) a estados de equilibrio dinámico (estados de transición) orientados a un estado final estático, si esto es posible y deseable, lo que en el sistema nacional de ciudades implicaría un plan nacional de desarrollo urbano-industrial manejado a nivel federal, estatal y municipal para lograr

que cada ciudad y su región constituyan sistemas viables, humana y económicamente.

Michel Batty (31) postuló que los modelos pueden considerar entre sus propósitos: estudiar parcialmente un subsistema urbano (el transporte, la vivienda, los servicios públicos infraestructurales, el equipamiento urbano o localización de parques industriales), o bien, intentar estudiar en general las características, demandas e inversiones de los subsistemas indicados en un horizonte de planeación dividido en etapas de acción, que pueden intentar "optimizar" las características de cada subsistema o simplemente definir estas en cada etapa, en función de ---los déficits revados y de las demandas postuladas.

Si utiliza un sólo conjunto de criterios para hacerlo podrán definirse como estáticos, pero si se introducen variaciones en el horizonte de planeación en densidades y dosificaciones, por ejemplo, entonces podrían considerarse como estudios dinámicos que consideran los cambios de la estructura urbana en el tiempo.

(31) Batty Michel (1976) "Urban Modelling" Cambridge.

Al considerar el sistema de Parques Industriales en su -conjunto, se define un enfoque "macro" con un nivel de agregación adecuado en la información de entrada y de salida, pero al estudiarse cada ciudad (o Parque Industrial) podrán desagregarse los datos de cada subsistema en un en foque "micro", cada enfoque define entonces una macro-teo ría del desarrollo urbano nacional y una micro-teoría de la consideración urbana de cada ciudad. En el manejo de las variables de demanda de suelo por ejemplo, podrán --usarse funciones lineales (con incrementos constantes en el tiempo) o no lineales (exponenciales) que postulen variaciones no constantes. Las ecuaciones que definen las relaciones entre las variables cuantificadas pueden ser resueltas secuencialmente o bien, si se demandan conver-gencias de valores para optimizar, podrán resolverse simul táneamente. Las soluciones en el segundo caso podrán considerarse analíticos y en el primer caso se podrán considerar para cada interacción o ciclo de cálculo como una -"simulación" de la conducta probable del sistema, en la 🗕 cual se consideren los efectos de variables exógenas (políticas o económicas), y de variables endógenas (criterios

de solución o de diseño) que se consideren en función de los propósitos de los modelos, que finalmente, pueden in cluir salidas gráficas o salidas numéricas y cuyos datos son interpretados en un proceso posterior.

2.2 VARIABLES DE LOS MODELOS.

Una variable de un modelo urbano corresponde a un aspecto o componente específico de un subsistema urbano para el cual se define un valor inicial observado o postulado, -una regla de variación en el tiempo (aumento o disminu--ción) y un valor ("meta") que puede ser una restricción del territorio disponible o del diseño de la conducta del sistema, las variables se refieren así al subsistema huma no o sociocultural (que comprende componentes como la población y la educación) al subsistema económico-urbano --(que comprende la oferta y la demanda, los costos y la -distribución de viviendas, servicios, equipamiento, terre nos industria? o bien, la composición del empleo urba-no) o el subsistema espacial que incluye los usos del su<u>e</u> lo para habitación, comercio, industria, recreación, vialidad, etc. En el conjunto del modelo, en su enfoque general, en su interpretación y uso para la planeación y la programación concreta queda expresada o implícita una filosofía respecto al tipo de país o al concepto de vida ur bana que se desea desarrollar o estimular.

Las variables se expresan en unidades concretas como familias a servir, viviendas a construir, escuelas o mercados
con capacidad definida o bien, en litros de agua por se-gundo a abastecer o tratar, en kilowats-hora para consumo doméstico o industrial, en metros cuadrados (o hectá-rea) de terrenos a habilitar o vender, etc. Las variables
relacionados con inversiones pueden expresarse en pesos constantes referidos a un año base o en pesos corrientes
en función de hipótesis respecto a procesos inflaciona--rios observados, podrán asociarse variables al número de
viajes posibles entre zonas de habitación, comercio o industria, y al número de vehículos en los que esos viajes
podrían realizarse, etc.

Las variables en los modelos matemáticos expresan aspec-tos concretos que han sido identificados y definidos por
la práctica en la acción urbana o los valores aceptables
para las variables, son aceptables en función de características cualitativas de la vida urbana y que no pueden medirse directamente y cuya apreciación está sujeta a experiencias personales en la vida urbana, para la teoría -

del desarrollo urbano al desarrollar los modelos tiene -que aceptar generalizaciones de un rango de validez deter
minado por experiencias previas y en que cada nueva experiencia consolida o corrige, por ello los modelos son ins
trumentos de desarrollo teórico.

2.3. VARIABLES BAJO CONTROL (ENDOGENAS).

Las ecuaciones que relacionan variables con parámetros -constituyen en su conjunto la Teoría del modelo; cada --ecuación es la expresión de una norma de diseño o de una hipótesis de uso o de calidad del espacio urbano y cada norma o hipótesis sintetiza una experiencia social observada a la cual se intenta estimular, mantener o corregir; a cada norma o hipótesis van asociados costos unitarios e inversiones por etapa; los conjuntos de hipótesis repre-sentan los programas que los modelos incorporan; estos -programas y sus componentes pueden ajustarse como varia-bles endógenas (conociendo que se sacrifican y que se obtienen en cada ajuste) los ajustes en magnitud, costo y tiempo son definidos por las variables exógenas; los re-cursos disponibles, viabilidad política o aceptación so-cial del proyecto, etc., por ello la interacción política v técnica define la utilidad práctica de los modelos, en tanto que la profundidad de la interacción entre la reali dad y la teoría define su validez como instrumento de conocimiento.

2.4. AGREGACION DE DATOS Y RESULTADOS.

A mayor alcance de los modelos mayor agregación o más generalidad; a menor alcance, más desagregación y particularidad, es necesaria y posible en los modelos.

Los modelos de sistemas nacionales han de ser agregados para poder observar con claridad las tendencias generales y postular con precisión las políticas de largo alcance o a largo plazo, y las órdenes de magnitud de las interac-ciones con la planeación de otros sectores económicos cola producción agropecuaria de alimentos mo por ejemplo: para los habitantes urbanos; la demanda nacional de recur sos para el desarrollo urbano, las espectativas respecto a los medios de transpurte y al consumo de energéticos; la demanda de agua como uso urbano e industrial, etc. Los modelos de ciudades permiten definir las característi cas, en áreas específicas, de la interacción corporativa, esto es, permiten desagregar programas concretos de construcción de viviendas, de escuelas de nivel primario y me dio, de mercados, de plantas tratadoras de aguas de desecho, etc., cada uno de estos aspectos pueden estar bajo -

la responsabilidad de agencias o instituciones federales que podrán, a través de los modelos integrados conocer y anticipar la programación de recursos en el tiempo, para evitar omisiones o para definir sus prioridades particulares compatibles con las del sistema urbano planeado. - Ambos tipos de modelos son necesarios, los agregados a nivel nacional o regional y los desagregados a nivel de cada ciudad y de cada proyecto específico que resultan - los más detallados.

La unica exigencia a cumplir entre los modelos a diferentes niveles de desagregación es la congruencia, es decir que los objetivos y metas fijadas para un sistema no se contrapongan a los establecidos para otro sistema de ma--yor nivel de agregación que lo contenga.

2.5. TRATAMIENTO DEL TIEMPO DE LOS MODELOS.

Forrester (32) J.W., propone un período de 250 años para analizar los procesos de desarrollo económico de los sistemas urbanos, que crecen explosiva o exponencialmente al principio (100 años aproximadamente) al límite de sus recursos de tierra, aqua, generación de empleos, se detiene y retrocede hasta alcanzar un estado de equilibrio esta-ble (en 150 a 250 años) demográfica, económica y espacial mente, el período parece arbitrario y no es útil para la planeación urbana por la casi nula confiabilidad de pro-yecciones de tan largo plazo. Michel Batty (33), en su estudio sobre Prading (Inglaterra), realiza una aplica--ción (de 1951 a 1966) retroactiva, para comprobar que las hipótesis formuladas podrían reproducir un pasado inmedia Los modelos reportados por Etchenique (34), para Buenos Aires y Santiago, consideran 30 años para el primero (1970-2000) y 19 para el segundo (1952-1970), las proyecciones para Caracas (1970-2000) consideran 30 años, estos horizontes de planeación o estudio se consideran útiles en la práctica.

⁽³²⁾ Forrester J.W. (1969) "Urban Dynamics", Wright allen Press Mass.

⁽³³⁾ Batty Michel (1971) "An experimental model of urban Dynamics" Conference on Urban Growth Models.

⁽³⁴⁾ Echenique J.M. (1975) "Modelos Matemáticos en la Estructura Espacial Urbana" STAR. Buenos Aires.

Los modelos "macro" del sistema nacional de ciudades se - han construido a partir del censo de 1970 hasta el año -- 2000; los modelos para parques industriales consideran un periodo de 24 años (1977-2000) o sea 4 períodos sexenales; los modelos financieron se han construido en función de - los períodos de amortización de créditos (10, 12, 15 años) y de las etapas de inversión (1-10 años). Los valores para cada dato se han obtenido anualmente, definiendo la cifra correspondiente a cada año y al valor acumulado en el mismo año; los valores por año permiten definir programas anuales de acción urbana con inversiones por aspectos económicos en dinero corriente; los datos acumulados permi-ten definir los procesos de cubrimiento de déficit y de satisfacción de nuevas demandas.

2.6. TEORIAS QUE SE REPRESENTAN EN LOS MODELOS.

Para el campo del desarrollo teórico de la planeación urbana, no existen procedimientosparadigmáticos para reali- zar los trabajos de planeación (análisis y diagnóstico -del conjunto de sistemas o de subsistemas) ni los de dise ño (procedimientos para la solución de problemas específi cos y de implementación de la solución), esto es, no exis ten procesos de trabajo aceptados universalmente por los practicantes en el área, no existen normas profesionales como hipótesis comprobadas cuyo conjunto constituya una teoría general del desarrollo urbano que integre los as-pectos psicológicos, sociales, económicos, financieros, espaciales o físicos que generalmente son estudiados por disciplinas diferentes con métodos distintos, sin un tron Los modelos desarrollados en México intentan contribuir a los planteamientos iniciales de hipótesis de mográficas, económicas y espacio-funcionales; a la defini ción de normas para su aplicación e interpretación y al ordenamiento de la información estadística necesaria.

En los aspectos demográficos se utilizam proyecciones, — representados por funciones exponenciales, considerando — un crecimiento natural y la migración del campo a la ciudad, postulando factores de corrección que representan — los efectos de los programas de control de la natalidad, de los efectos de la vida urbana en la reducción del núme ro de miembros por familia y de los programas de genera— ción de empleos agroindustriales que reduzcan la migra—— ción; los factores propuestos podrían ser calibrados en — función de los resultados de estudios especiales realizados en cada sistema regional y en cada sistema urbano en particular.

En los aspectos de ocupación se postulam variaciones en — la composición porcentual de la fuerza de trabajo por sectores para representar las tendencias observadas de des—censo en las ocupaciones primarias (agropecuarias y mineras) y de ascenso en las secundarias (imdustriales) y terciarias (comercio y servicios), estas variaciones también habrán de ser apoyadas en estudios específicos a nivel regional y urbano, siendo actualizados amualmente.

Se contemplan también variaciones salariales y de crédi-tos para viviendas, de los costos de construcción de edificios y de urbanización habitacional e industrial, en -función de los procesos de deterioro o pérdida del poder
adquisitivo de la moneda, estas variaciones se apoyan en estudios actualizables anualmente por región y ciudad.

Para la determinación de demandas de agua, electricidad y gas, o de escuelas, mercados y espacios recreativos se in corporan a los modelos un conjunto de "normas" empírica-mente apoyadas; estos criterios sobre lo que se apoyan - las normas habrán de fundamentarse en estudios analíticos del problema educativo a nivel nacional y a nivel local, en este aspec. la simplificación que el modelo supone -- puede ser compensada con investigaciones de campo que per mitan formular recomendaciones específicas y concretas en cada ciudad.

El análisis de los modelos matemáticos puede conducir a - la formulación cuantitativa y cualitativa de programas de acción, pero la localización espacial de cada actividad,

o bien, la indicación del sitio en que se ubique cada zona o edificio, puede ser excluida del modelo ya que será necesario considerar factores como la tenencia del suelo (su situación legal), la posible presión política o especulativa sobre los gobiernos municipales, la invasión de predios existentes al aplicar cada etapa del plan, etc., lo aleatorio de estas situaciones implica su exclusión en primera instancia, del proceso de modelación que intenta definir las regularidades a mantener en servicios y accio nes a través del particular proceso político de cada ciudad; este proceso puede exigir los ajustes a los modelos, pero en cada corrida volverán a plantearse las condicio-nes de estabilidad de la vida urbana de acuerdo a los niveles de calicad que se han supuesto en el modelo y es es ta hipótesis teórica de un desarrollo urbano equilibrado en cada etapa anual la que se intenta alcanzar para cada ciudad estudiada.

2.7. TECNICAS DE CALCULO UTILIZADAS.

Básicamente los modelos constituyen ensayos numéricos cuyos párrafos son vectores correspondientes a cada varia-ble y cuyos capítulos son las matrices como conjuntos de
vectores afines. Los modelos orientados al análisis em-plean ecuaciones diferenciales que se resuelven secuen--cialmente para aplicar las variaciones de los parámetros
en cada año y utilizan las cifras del año anterior para calcular el siguiente, los modelos orientados a la simula
ción y a la búsqueda de valores óptimos requiere de la -programación matemática, la que exige técnicas matemáti--cas más complicadas, de acuerdo con el problema que se -plantea para remissar.

2.8 DATOS SIGNIFICATIVOS DISPONIBLES.

Las investigaciones estadísticas para obtener los datos del modelo podrán incluirse en el proceso de cálculo, pero resulta más económico apoyarse en datos censales existentes elaborados con criterios aceptados, o bien, en hipótesis numéricas que postulen tendencias o correcciones
a las observaciones, estas hipótesis resumirán criterios
empíricos en los que exista consenso de los expertos que
intervienen en el modelo tanto en los valores iniciales,
como en la tasa de cambio para calcular los valores finales; esta información es "sintética" en tanto que no se toma de la realidad sino de la teoría y sintetiza o resume los postulados que habrán de calibrarse con la realidad en las primeras etapas de la aplicación del modelo me
diante muestras o censos en las poblaciones observadas.

2.9. CALIBRACION Y PRUEBA DEL MODELO.

Existe un aspecto externo y un interno en cada una de estas actividades, desde lo externo se utiliza la "retrodición", esto es, la reproducción, dentro de variaciones -- aceptables, de un pasado inmediato, aplicando al modelo - cifras para cada variable semejante o igual a las que se han registrado para el período conocido.

Para obtener estos resultados se parte de los datos del año inicial; se ajustan, mediante corridas sucesivas, los
parámetros que controlan el proceso, hasta obtener los re
sultados semejantes a los datos del último año corrido, este período podrá variar de 30 a 50 años, según la infor
mación disponible. El ajuste de los parámetros se denomi
na "calibración" y la obtención de resultados semejantes
a datos conocidos se denominará "prueba", desde el punto
de vista interno; el modelo se calibra, se ajustan paráme
tros. Respecto a las hipótesis postuladas para el futuro,
en forma de valores propuestos como "metas" para cada variable; al comprobar que los procesos de computo producen

valores semejantes o iguales a los supuestos para el futuro configurado, en cada etapa y en la fase final, se puede decir que el modelo se ha probado internamente. Cada etapa futura será definida una vez transcurrido, con valores observados o medidas en la realidad, que permitirán - calibrar parámetros de las variables con máxima variación y así incorporar "la experiencia" al pronóstico, aumentan do su validez y su probabilidad para interpretar o controlar la realidad. Este proceso es "interactivo": cada --- ajuste los aproxima más a la verdad; a lo útil y a lo --- real; a lo útil como instrumento de conocimiento y a lo -- real como instrumento de planeación y control.

CAPITULO III

MODELO DE DESARROLLO

INDUSTRIAL REGIONAL

1. CONSIDERACIONES GENERALES DEL DESARROLLO INDUSTRIAL REGIONAL

Las consideraciones generales que se tomarán en cuenta para elaborar el Modelo de Desarrollo Industrial Regional - son las siguientes: (35)

1.1 LA SITUACION ACTUAL DEL MERCADO.

La situación actual del mercado regional de terrenos para uso idustrial, depende del proceso de desarrollo de la actividad industrial y de las características de la localización de los establecimientos industriales en la región de ubicación.

Por lo tanto, redeberá explicar la problemática relacionada con estos factores. Los temas relevantes a investigar son:

- Los principales mercados de la industria regional.
- Los orígenes de la inversión industrial y las causas de su localización.
- (35) Manual de Estudios y Proyectos para Desarrollos Industriales, Dirección General de Mejoramiento Urbano, México, 1981.

- Los factores locacionales relevantes para el desarrollo industrial.
- Las modalidades regionales del uso del suelo para actividades industriales.

A continuación se describen cada uno de ellos.

. 1.1.1 PRINCIPALES MERCADOS DE LA INDUSTRIA REGIONAL.

Por principales mercados de la industria regional se en-tienden tanto los de productos terminados como los de materias primas.

Las teorías clásicas sobre localización industrial otor-gan un valor preponderante a los costos de transporte por
lo que, de acuerdo a ellas, la ubicación de industrias -dentro de una región puede ser explicada a partir del conocimiento de la localización de sus principales mercados.

Es conveniente aclarar que si bien se estima innecesario este conocimiento, no se considera suficiente para -----

explicar un proceso regional de desarrollo industrial. En el proceso de decisión de la localización industrial, entran en juego otros factores que obedecen a causas aje nas a una racionalidad económica los cuales es necesario identificar para lograr una mejor comprensión del proceso estudiado.

Para obtener la información relacionada con los mercados de la industria regional, se utilizará la información recabada en las entrevistas a las empresas industriales --- existentes en la región de ubicación.

1.1.2 ORIGENES DE LA INVERSION INDUSTRIAL Y CAUSAS DE SU LOCALIZACION:

Complementando el análisis anterior, se investigarán también las causas que decidieron la localización de las empresas industriales en la región, así como también los lugares de origen de tales inversiones. De esta forma se tendrá un panorama completo de las "razones" que han motivado e influido en el desarrollo industrial de la zona.

Paralelamente a esto, será posible identificar a los --factores que, en el transcurso del tiempo, han permitido
la "retención" o atracción de las inversiones industriales en la región de ubicación.

Asimismo, conociendo los lugares de origen de dichas inversiones, se determina la región de transferencia indus trial la cual está comprendida por aquellas zonas de las cuales ha provenido parte de la inversión industrial.

A su vez, la región de transferencia industrial junto -con la de ubicación determinan la región en la cual tendrá un impacto directo la instalación de un parque indus
trial. De est. forma se podrán prever las "funciones" que cumplirá cada parque industrial en términos de facilitar la reinversión local en proyectos industriales, -apoyo a nuevas alternativas de ubicación para las nuevas
industrias por establecerse en las grandes concentraciones, ordenamiento urbano, etc.

1.1.3 FACTORES LOCACIONALES PELEVANTES PARA EL DESARROLLO INDUSTRIAL:

No basta conocer las bases sobre las que se ha apoyado - el crecimiento industrial, sino también es de gran interés determinar los factores de localización de indus--- trias que, de acuerdo a los entrevistados, son actualmen te los más relevantes para que siga presentándose este - proceso en la región.

Tales factores pueden ser tanto favorables como críticos y están asociados a aspectos locacionales como:

- Físicos: Disponibilidad de agua, de terrenos, de gas, înserción en la red regional y/o nacional de transporte, etc.
- Económicos: Mercados de expansión, competencia de otras regiones, condiciones de abastec<u>i</u>
 miento de materias primas, financiamie<u>n</u>
 to regional, etc.

Sociales o Políticos: Situación sindical, características de la mano de obra, desconfianza a coinvertir con capitales extraregionales, deficientes trámites oficiales (aduanas, --permisos, etc.), situación política, actitud de la población local hacia la industria y las pautas de vida que ésta - induce, oferta de educación, servicios de salud, recreación, etc.

Algunos de estos factores pueden ser diferentes para cada grupo industrial, en tanto que otros son comunes a $t\underline{o}$ da actividad regional industrial.

La información obtenida en esta etapa, permitirá reali-zar más adelante, una mejor prospectiva del desarrollo futuro de la actividad industrial en la región.

1.1.4 CARACTERISTICAS REGIONALES DE LOS ASENTAMIENTOS INDUSTRIALES:

Finalmente, el último punto a investigar es el correspondiente a las características regionales internas de la instalación de establecimientos industriales, es decir, el patrón físico de la localización industrial.

A través de las mismas visitas a empresas industriales - de la zona será posible conocer, entre otros, los siguien tes parámetros:

- Giro de la empresa (grupo industrial al que pertenece de acuerdo al Catálogo Mexicano de Actividades --Económicas: Sector Industrial).
- Año de inicio de operaciones.
- Superficies totales, ocupadas y de reserva para am-pliaciones.
- Número de empleados.

- Producción promedio en los últimos 2 años.
- Posibles ampliaciones y principales características,
 etc.

Esta información, clasificada por grupos industriales, permitirá complementar el presente diagnóstico, además de ser la base de estimaciones futuras como se verá en incisos posteriores.

1..2. PROSPECTIVA DE LA DEMANDA REGIONAL DE TERRENOS PARA USO INDUSTRIAL.

La demanda de terrenos para uso industrial está definida tanto por la creación de nuevas unidades fabriles como por la reubicación de las ya existentes dentro de la región de impacto, los puntos que se deben considerar son:

- La demanda generada por reubicación de industrias.
- La demanda generada por creación de nuevas industrias.
- La demanda de terrenos de apoyo a la actividad indus trial.
- La demanda regional total.

1.2.1 Demanda generada por reubicación de industrias:

Es sabido que gran parte de la actividad industrial crece por la ampliación de las empresas ya existentes. Ante esta situación los establecimientos industriales requieren de nuevos áreas para expandir sus operaciones.

En algunas ocasiones los sitios en que originalmente se instalaron tales industrias carecen de alternativas de - expansión física debido a la ocupación total de suelos - cercanos a su ubicación. Asimismo, la desordenada e ina decuada integración urbana de las áreas industriales impide que la actividad fabril pueda ser realizada e incrementada en forma económica y eficiente. En áreas industriales sumamente concentradas, llegan a existir restriciones e impedimentos legales para ampliar tal tipo de - establecimientos.

De esta forma, se genera una demanda de terrenos por par te de estas empresas debido a la necesidad de reubicar sus instalacion a (total o parcialmente) en lugares adecuados para el desarrollo de sus actividades.

Tales empresas industriales pueden estar instaladas en la propia región de ubicación del parque o en la región de transferencia industrial. De acuerdo a la experiencia obtenida en las ciudades industriales que existen en el país, el capital de la gran mayoría de las empresas instaladas, es de oriquen local (proviene total o parcialmente de la propia región de ubicación). Por lo tanto, es posible estimar que la demanda de terrenos por reubicación de industrias estará generada principalmente por las localizadas dentro de la misma región de ubicación.

La identificación de las industrias por relocalizarse se efectúa a través de la investigación directa a realizarse se en la región de ubicación. De esta forma se determinará el número de industrias que tengan el interés de reubicarse (total o parcialmente) así como también las razones y los factores que condicionarían su decisión final y lamagnitud de superficie requerida para la posible nueva ubicación.

Una vez que se cuenta con esta información, se tendrá un primer conjunto de industrias de la región con interés - de reubicarse. Este conjunto deberá ser evaluado con el

fín de eliminar a aquellas empresas cuyo proyecto de relocalización se presente como poco probable.

De lo anterior resulta que un cierto porcentaje de las empresas industriales muestreadas, tratarán en el futuro
de reubicarse. Este mismo pocentaje se aplicará al to-tal de la población de establecimientos industriales de
la región de ubicación para así obtenerse el número to-tal estimado de empresas a reubicarse.

De esta manera se cuantificará la demanda de terrenos para todas las posibles relocalizaciones de la población - industrial de la región de ubicación, a partir de la superficie promedio requerida por las empresas muestreadas que, después de la evaluación realizada, se consideraron como posibles a reubicarse. Esta demanda deberá ser programada de acuerdo al año en que se estima que se efectuará la relocalización.

Es conveniente hacer la siguiente observación: en ocasion nes los industriales pueden sobrevalorar la superficie — que consideran adecuada para su reubicación, creando un

posible sobre dimensionamiento del parque industrial.

Para corregir esta situación se debe determinar un parámetro máximo de superficie requerida por cada empresa a reubicarse. Dicho parámetro es posible estimarlo en base al tamaño de superficie sobre la que esté instalada la - empresa en el momento de la investigación. Por ejemplo, es poco probable que un establecimiento requiera para su reubicación más de tres veces de la superficie que ahora ocupa.

Es conveniente llevar a cabo algunas entrevistas con industrias instaladas en la región de transferencia con objeto de conocer algunas de sus principales características, además de las opiniones de sus directivos con respecto a la posibilidad de valorizarse en la región de que estas entrevistas deberán ser dirigidas a los grupos industriales que históricamente han transferido un mayor número de empresas a la región de qubicación.

Finalmente, el resultado obtenido en esta subetapa será una estimación de la superficie demandada por las -----

empresas instaladas dentro de la región de ubicación y - que se relocalizarían durante los primeros 5 años de operación del parque proyectado. Asimismo, esta estimación debe definir los grupos y subgrupos industriales a que - pertenecen dichas empresas.

1.2.2 Demanda generada por creación de nuevas empresas:

Esta fracción de la demanda incluye a toda la generada - por las industrias que se estima se instalarán por prime ra vez, en la región de ubicación. Por lo tanto, dentro de este punto estarán consideradas también aquellas em-presas que, ubicadas en la región de transferencia, es posible que se localicen (o amplíen sus actividades) den tro de la región de ubicación.

La demanda de terrenos industriales originada por estas nuevas industrias, se calcula también por medio de la investigación directa que se realizará en la región. A -- través de los resultados de la muestra, se estimará el - número de industrias establecidas anualmente en los últimos años. Este número no incluirá ampliaciones o sucursales de industrias previamente instaladas en la región

de ubicación a menos que el establccimiento original haya desaparecido.

De esta forma, se construirá una serie histórica que representará el número de nuevas industrias establecidas en los últimos años dentro de la región de ubicación, -clasificándolas de acuerdo a los grupos o subgrupos industriales a que corresponden.

Así, considerando que se mantendrá la misma estructura - de grupos y subgrupos industriales correspondiente a la serie histórica anterior, será posible estimar, en prime ra instancia, la estructura industrial más probable de - la demanda de terrenos aquí calculada. Esta primera estimación será revisada posteriormente, ya sobre la demanda futura total de terrenos para uso industrial.

1.2.3 Demanda de Terrenos de apoyo industrial:

Las economías de aglomeración que pueden estructurarse - en un parque industrial serán más atractivas en la medida que se instalen dentro de él, establecimientos de apo yo a la actividad industrial (talleres, escuelas de capa citación, gasolineras, transportes, almacenes, etc.).

Por lo tanto, deberá considerarse una demanda de terre-nos adicional, generada no por establecimientos indus--triales, sino por unidades de apoyo a la industria.

La experiencia registrada en las ciudades industriales existentes en el país, hace suponer que dicha demanda de
terrenos no industriales, representará aproximadamente el 13.0% del total de terrenos de uso industrial (tanto
por reubicación como por nueva creación) estimados para
la primera etapa. En ellos se instalarán los primeros apoyos que se crean en un parque industrial: gasolinería,
escuelas, almacenes, etc.

Para etapas posteriores, se podrá modificar el factor — mencionado de acuerdo a la experiencia acumulada tanto — en el parque industrial correspondiente como en la realización de nuevas etapas de ampliación en los diversos de sarrollos industriales del país.

1.2.4 Demanda regional total de terrenos industriales:

Finalmente entonces, la demanda regional total de terrenos industriales, estará formada por la suma de las de-mandas generadas por reubicación de actividades indus--triales, nueva creación de éstas y actividad de apoyo a
la industria.

Se considera que la reubicación de industrias instaladas en la región de ubicación, generará una demanda de terre nos que se presentará principalmente a corto y mediano - plazo (primeros 5 años de operación del parque), disminu yendo su importancia a mediano y largo plazo.

La demanda regional total aquí calculada, deberá ser objeto de una nueva evaluación a partir de una estimación de la situación futura de los principales factores de -- los cuales depende el proceso de industrialización de la región de ubicación. Dicha estimación provendrá de los resultados obtenidos en el inciso correspondiente a la - situación actual del mercado (factores locacionales ----

relevantes para el desarrollo industrial). En caso de - que la situación de tales factores se vislumbre optimis- ta, se recomienda una actitud conservadora, no incremen- tando la estimación anterior del volúmen de la demanda - regional total de terrenos industriales.

1.3 OFERTA REGIONAL DE TERRENOS PARA USO INDUSTRIAL.

El mercado regional de terrenos para uso industrial no - depende exclusivamente de la demanda esperada, sino también de las características que presenta la oferta de di cho tipo de terrenos.

Por esta razón es necesario incluir dentro de la presente fase de estudio, un análisis de las características de los terrenos que hay y habrán de satisfacer la demanda regional generada por las instalaciones industriales.

Por medio de este análisis será posible conocer si tal oferta ha contado con las condiciones adecuadas para apo
yar el desarrollo industrial de la región. Asimismo, se
podrá prever si en el futuro será necesario apoyar, complementar o crear una oferta adecuada de terrenos industriales en el marco de acciones del Programa de Desarrollo Urbano Industrial -PDUI-

Para realizar el análisis señalado, el estudio de la --oferta regional de terrenos industriales debe considerar
los siguientes temas:

- La tendencia del patrón de localización industrial.
- Las características de la oferta histórica.
- La localización y las características de la oferta actual y futura.

1.3.1 TENDENCIAS DEL PATRON DE LOCALIZACION INDUSTRIAL.

A través de las entrevistas a realizar en la región, se localizarán las áreas en donde se han instalado las in-dustrias. Asimismo, se analizarán las causas de tales - ubicaciones, tomando en cuenta en particular:

- La existencia de una oferta formal (zona o fracciona miento industrial).
- La tenencia de la tierra con mayores posibilidades de enajenación (propiedad privada, terrenos municipales, etc.)

- Los terrenos más adecuados parauso industrial por tente, etc.

Estas tendencias de localización deberán retomarse en la fase de selección del predio, ya que son determinantes - de los factores de microlocalización (tanto objetivos como subjetivos) los cuales pueden influir en la "acepta-ción" regional de un parque industrial y por lo tanto en su éxito.

Más aún, se deberán identificar las posibles áreas en -las cuales hubieran preferido instalarse los industria-les entrevistados, las causas de dicha preferencia y las
razones por las que no se ubicaron en ellas.

Por otra parte, se investigará también la existencia de disposiciones gubernamentales relacionadas con los asentamientos industriales tales como: plan municipal de desarrollo urbano, reglamentos municipales y estatales de instalación de industrias, etc. De esta forma se podrá evaluar si la tendencia de los asentamientos industriales cumplen con los planes existentes de ordenamiento urbano.

Finalmente, en caso de no existir alguna reglamentación del crecimiento urbano, por medio de las entrevistas extra-industriales se identificarán las áreas en donde se podría ubicar una oferta de terrenos la cual fuera favorable tanto para la población como para las empresas industriales.

De esta forma se generarán las primeras alternativas para la localización de un parque industrial dentro de la región de ubicación.

1.3.2 CARACTERISTICAS DE LA OFERTA HISTORICA:

Aprovechando in fuente de información del análisis de la demanda (entrevista en la región), se determinarán las - características de la oferta de terrenos con la que contaron, en el momento de su instalación, las industrias - entrevistadas. Estas características incluyen los si--- guientes puntos:

- Las condiciones de disponibilidad de insumos (ener-gía eléctrica, agua, gas, etc.).

- Las condiciones del manejo de afluentes y desechos.
- Las condiciones de disponibilidad de vías de comunicación (carreteras, ferrocarril, servicios portua--rios, etc.).
- Los precios del terreno,
- Otras condiciones.

Cada una de estas características deberán ser califica-das por los industriales entrevistados para localizar -aquellas que han representado mayores problemas en la re
gión.

Esta información hará posible evaluar tanto el desarro-llo de la oferta regional de terrenos industriales como
su influencia en la "retención" o atracción de inversiones para proyectos industriales.

En efecto, una oferta regional inadecuada de terrenos para uso industrial es probable que haya limitado el ----

desarrollo esperado de esta actividad, sobre todo en lo que respecta a la mediana y pequeña industria. Por el - contrario, una oferta adecuada puede haber permitido una dinámica industrial acorde a las condiciones favorables propias de la región.

Tomando en consideración este aspecto, se pueden realizar, con mayor eficiencia, ajustes a la prospección del
desarrollo futuro de la industria regional, suponiendo
la probable existencia de una suficiente oferta adecuada
de terrenos para uso fabril a través de un parque industrial.

Finalmente, el conveniente resaltar que, en caso de que en la región existan antecedentes de una oferta formal - de terrenos industriales (zonas o fraccionamientos indus triales), se debe estudiar con profundidad las condiciones en que se dió dicha oferta, los resultados obtenidos y las causas de su éxito o fracaso.

Este último punto será de gran utilidad para que, en la planeación de una nueva oferta regional de terrenos ----

industriales, se tomen en cuenta la mayor parte de los - factores que condicionan el éxito de la operación.

1.3.3 LOCALIZACION Y CARACTERISTICAS DE LA DFERTA ACTUAL Y FUTURA A CORTO PLAZO.

Para la planeación en los marcos del PDUI, es de gran im portancia conocer las condiciones en que se presentará - la oferta de terrenos industriales. Se puede considerar que en las localidades en donde existe una oferta adecua da de terrenos para uso industrial, la intervención del PDUI serán principalmente de apoyo y complemento, en tan to que en las que se carezca de dicha oferta, será de su ministro y regulación.

Se considerará como oferta futura solo a la que ya exista en el momento de la investigación o por lo menos sea inminente su presencia en el corto plazo.

La localización de la oferta regional tual y futura de terrenos industriales puede hacerse a avés de las en-trevistas a industriales y complementarse con visitas a

personas u organismos relacionados con la venta de bie-nes raíces.

Una vez localizada la oferta actual, se visitarán las -áreas en donde se ubican con el fín de verificar su volú
men, condiciones y características. De esta forma se -evaluará dicha oferta considerando sus condiciones generales, su infraestructura y servicios, y su precio.

Para complementar la evaluación con respecto a su ubicación, se utilizarán los planes municipales de desarrollo urbano (en caso de que existan), las opiniones de diversas autoridades (municipales, estatales y federales), -- las preferencías detectadas en las empresas industriales y el patrón histórico de localización industrial. Las - áreas en donde se ubica la oferta regional actual y futura, deberán coincidir con las zonas más adecuadas para - el crecimiento urbano-industrial.

Como resultado de esta evaluación, se definirá la oferta actual y futura que se considerará adecuada para ------

satisfacer la demanda regional de terrenos para uso in-dustrial; y, finalmente, se presentará la cantidad total de superficie que corresponde a dicha oferta regional actual.

1.4. INTERVENCION PARA REGULAR EL MERCADO REGIONAL DE TERRENOS PARAUSO INDUSTRIAL.

Al estimar el comportamiento futuro de la demanda y de - la oferta regional de terrenos para uso industrial, pue- de proponerse el tipo de acción, con la que debe interve nir la Dirección General de Obras de Mejoramiento Urbano para regular el mercado de terrenos industriales en la - región de ubicación del proyecto. Esta acción puede ser alguna de las siguientes alternativas: la construcción - de un parque industrial, el apoyo (técnico y/o económico) a gobierno estatales o municipales, la promoción de am-- pliaciones o mejoras a zonas industriales existentes, -- etc.

La acción propuesta puede identificarse a través del aná lisis de la demanda de terrenos para uso industrial (y - apoyo industrial) que no será satisfecha adecuadamente - dentro de la región de ubicación. El objetivo de la intervención de gobierno, será entonces asegurar una oferta suficiente de terrenos adecuados que apoye y fomente la industrialización.

Para el análisis, se considerarán los siguientes tópicos:

- La demanda de terrenos industriales no satisfecha.
- Las acciones para regular el mercado de terrenos industriales.

A continuación se tratan con mayor detalle cada uno de - los puntos anteriores.

1.4.1 DEMANDA DE TERRENOS INDUSTRIALES NO SATISFECHA.

La demanda de terrenos industriales no satisfecha en los próximos 5 años está dada por la diferencia entre la de-manda regional total menos la oferta adecuada estimada.

En caso de que no exista oferta adecuada en la región, toda la demanda regional total corresponderá a la no satisfecha.

Si la oferta adecuada existe pero su cantidad no es suficiente para satisfacer la demanda regional total, entonces aparecerá una demanda no satisfecha a partir del año

en que dicha oferta se agote. De esta manera se conocerá el año en que deberá presentarse en la región una nue va oferta adecuada.

1.4.2 ACCIONES PARA REGULAR EL MERCADO DE TERRENOS INDUSTRIALES

Las acciones que se pueden considerar para regular el -mercado de terrenos industriales en la región de ubica-ción, dependen de los resultados de las estimaciones de
la demanda no satisfecha.

Se puede relacionar la situación de dicha demanda no satisfecha con las siguientes acciones de regulación. SITUACION:

ACCION A CONSIDERAR:

- Una demanda no satisfecha nula porque la futura demanda regio nal total de terrenos indus--triales es muy reducida.
- Una demanda no satisfecha nula porque existe suficiente oferta regional adecuada.
- La presencia de una demanda no satisfecha porque existe insuficiente oferta regional ade-cuada.
- La presencia de una demanda no satisfecha porque no existe -oferta regional adecuada.

La comunicación de resultados a gobierno estatal o municipal y asesoría técnica a la acción de cidida por éstos últimos.

La reprogramación en el marco - del PDUI para intervenir en la región de ubicación en el largo plazo.

Programar el suficiente aumento de oferta adecuada a través de: nuevo parque industrial o apoyo para la ampliación del ya existente.

El suministro a la región de -una oferta adecuada por medio -de la construcción de un parque
industrial.

Las acciones recomendadas también deberán tomar en cuenta a los sectores interesados en la oferta regional de terrenos industriales (gobierno estatal, municipal, sector privado, etc.) ya que podrían participar en la ----

construcción y administración de dicha oferta. De esta forma disminuirían los requerimientos de inversión por - parte de SAHOP y además la acción emprendida en la re--- gión de ubicación sería mejor aceptada por la comunidad local.

2. MODELO DE DESARROLLO INDUSTRIAL REGIONAL (DESIR).

Congruente con los criterios y lineamientos generales antes expuestos acerca de la factibilidad de implementar módulos de simulación, como instrumento que facilite la ordenación de las políticas y cursos de acción en el contexto Urbano Industrial que incidan en un mejor aprovechamiento de los recursos y coadyuven en el logro de su desarrollo equilibrado, se presenta a continuación, el estudio de un caso práctico, aplicado en la Ciudad de Aguascalientes.

La idea de modelar los aspectos relevantes de la problemática Urbano-Industrial de la Ciudad de Aguascalientes, a fin de conocer el comportamiento de las relaciones existentes entre el parque industrial y el conglomerado humano, estimuló el desarrollo del presente modelo.

En el proceso de aplicación, se realizó primeramente la evaluación de metodologías alternas, resultando ser el modelo DESIR (Desarrollo Industrial Regional), un modelo que se ha implementado con éxito en situaciones análogas y demostrando un alto grado de operatividad en la práctica (36)

Una vez decidido el tipo de modelo, se recopiló la información requerida, apoyándose en las Dependencias que guardaban datos estadísticos y se complementó con entrevistas directas en la zona (ver cuestionario anexo 3)

(36) Vázquez G.F. "DESTR: A model for competitiveness of Industrial States for Regional Development" Instituto de Ingeniería, México.

COMO MARCO DE REFERENCIA, PARA EL ESTABLECIMIENTO DE LAS RELA CIONES ENTRE LAS VARIABLES RELEVANTES Y PARA LA DEFINICION DE LAS MISMAS, SE UTILIZO EL: "MANUAL DE ESTUDIOS Y PROYECTOS PARA DESARROLLOS INDUSTRIALES" Y CONSIDERACIONES GENERALES QUE EXPERTOS DE LA DIRCCION GENERAL DE MEJORAMIENTO URBANO TUVIERON A BIEN PROPORCIONARNOS.

LA GENERACION DE MODELOS, COMO ANTERIORMENTE SE APUNTO, CONSTITUYE UN PROCESO INTERACTIVO DE DEPURACION CONTINUO QUE, LLE
VA AL MEDIANO PLAZO A CONTAR CON UN MODELO QUE INCLUYA LAS CA
RACTERISTICAS DE RELEVANCIA Y FIDELIDAD DESEADAS, POR TANTO EN EL PRESENTE ESTUDIO DEL CASO AGUASCALIENTES NO PRETENDE -SER MAS QUE UN INTENTO DE MODELAR UNA SITUACION PRACTICA, DON
DE LO REALMENTE IMPORTANTE VIENE A SER LA IMPLANTACION DE UNA
MODELO DE RECIENTE CREACION (DESIR), LA INTRODUCION DE UNA
METODOLOGIA QUE HA DEMOSTRADO SER EXITOSA EN EL DESARROLLO DE
MODELOS URBANO-INDUSTRIALES Y LA VERIFICACION EN LA PRACTICA
DE LA UTILIDAD DE LA SIMULACION COMO RESPUESTA CONCEPTUAL A
LOS PROBLEMAS DE LA INDOLE OBJETO DEL PRESENTE TRABAJO.

2.1. OBJETIVOS DEL MODELO DE DESARROLLO INDUSTRIAL DESIR

LOS OBJETIVOS GENERALES DEL MODELO SON:

- PLANTEAR EL DESARROLLO DE CADA PARQUE INDUSTRIAL COMO CENTRO DE TRABAJO, DE ALOJAMIENTO Y DE RECREACION, QUE CONTRIBUYA AL MEJORAMIENTO DE LAS CONDICIONES DE VIDA URBANA Y RURAL EN SU ZONA DE INFLUENCIA.
- PLANTEAR EL DESARROLLO DEL PARQUE INDUSTRIAL EN FORMA
 COMPATIBLE CON SUS RECURSOS ACUIFEROS, CON SU CAPACI

 DAD DE PRODUCCION AGROPECUARIA, CON LA POSIBILIDAD DE
 DISPONER DE ENERGIA (ELECTRICA, PETROLEO, GAS, COMBUS
 TIBLE) Y DE VIAS TERRESTRES DE COMUNICACION (CARRETERAS Y FERROCARRILES).

EN FUNCION DE LOS OBJETIVOS ANTERIORES, SERIA POSIBLE ESTA-BLECER:

- UNA POLITICA ECOLOGICA QUE PRESERVE LA CALIDAD DEL AM BIENTE DE LAS URBES Y EN SUS ZONAS DE INFLUENCIA ME-- DIANTE LA ADQUISICION DE RESERVAS URBANAS Y ECOLOGI-- CAS A LARGO PLAZO.
- UNA-POLITICA DE USO DEL SUELO POR URBANIZAR, EN LO -- QUE CONCIERNE AL REGIMEN DE PROPIEDAD Y DESTINO (LO --

QUE CONDICIONE SU INFRAESTRUCTURA).

- UN DESARROLLO REGIONAL EQUILIBRADO Y CONGRUENTE CON LAS ASPIRACIONES DEL SECTOR OFICIAL, PRIVADO Y LOS HABITAN-TES DE LA ZONA.

LA INDUSTRIA QUE ES UNA DE LAS RAMAS PRINCIPALES QUE SE HA ES TADO FOMENTANDO PRA EVITAR SER DEPENDIENTES DE LA IMPORTACION DE MANUFACTURAS, QUE CONDICIONARIAN UN INTERCAMBIO DESIGUAL - CON RESPECTO A LOS PAISES DESARROLLADOS, SE HA CARACTERIZADO EN LOS ULTIMOS AÑOS POR UNA INTENSA PLANEACION EN TODOS LOS ASPECTOS (MINERAL, ELECTRICA, PETROQUIMICA, NUCLEAR, ETC.) PARA APOYAR A ESTA PLANEACION SE HA DISEÑADO UN MODELO QUE EVITA LA CREACION DE PARQUES INDUSTRIALES INCOSTEABLES Y QUE COA YUVEN AL DESARROLLO DE LOS CENTROS DE POBLACION EN BENEFICIO DE TODOS.

A continuación se estudian los aspectos relevantes relacionados al Estado de Aguascalientes, que sirvió como -- punto de partida para el uso de modelo D.E.S.I.R. y cuyos aspectos teóricos se detallan más adelante.

2.2, CONSIDERACIONES GENERALES DEL ESTADO (37),

En la región centro-norte de la República Mexicana y rodeada por Jalisco y Zacatecas, se localiza el Estado de Aguascalientes; por su extensión (5 589 Km.²), en la quinta Entidad más pequeña del país (sólo es más grande que el Distrito Federal, Tlaxcala, Morelos y Colima).

Su estrechez territorial sumada a los accidentes orográficos que se presentan en las dos terceras partes de su superficie, influyen directamente en las actividades económicas, la agricultura, por ejemplo, encara muy graves limitaciones para ampliar sus áreas de cultivo. Existe además otro problema: Grandes extensiones de su suelo se han vuelto estériles a causa de la erosión. De todas maneras, la agricultura de la que depende una parte considerable de la población, desempeña un papel de mucha trascendencia. Su aportación a la economía estatal, en lo que se refiere a la generación de ingresos es importante, nacionalmente contribuye con el 45% de la producción de guayaba (primer productor en el país) y con el 30% de la vid (segundo productor).

⁽³⁷⁾ Investigación del Sistema "Bancos de Comercio México" "Aguascalientes" (1975).

La ganadería alcanza algo de relieve en el aspecto comercial. Aguascalientes es considerada en la actualidad como un importante centro de conservación y distribución de
ganado. Al Estado acuden ganaderos de todo el país con
la finalidad de adquirir o vender sus animales. Esto propició que se haya creado la imagen, un poco falsa, por cierto, de que Aguascalientes es fuertemente ganadero.

Ello no excluye el hecho de que a escala estatal, la actividad pecuaria tenga cierta significación. La engorda y la explotación lechera, son dos actividades importantes, no obstante su desenvolvimiento si bien ha sido dinámico, no ha seguido el ritmo deseable. Problemas como la falta de delimitación del área de la pequeña propiedad ganadera, no le han permitido crecer con la rapidez con que podrían haberlo hecho.

La minería, que ocupa una posición modesta dentro de la economía estatal, está cobrando un nuevo impulso. La declinación observada por la actividad en el pasado,

empieza a superarse, es posible hablar de un resurgimien to minero a corto plazo. El cobre y el plomo, son los - recursos minerales más significativos, aunque también -- existen algunos yacimientos de zinc, plata y fluorita.

La planta industrial aunque limitada, muestra cierto grado de diversificación. En los últimos años, nuevas ramas industriales han venido a enriquecer el panorama manufacturero de la entidad. Con todo, continuó sobresamiendo la industria vitivinícola, seguida de la textil y de la de confección de prendas de vestir.

El aparato comercial de la entidad es de bastante importancia. El valor por él generado, ocupa un lugar rele-vante dentro de la economía estatal, la actividad comercial siempre ha contado con factores propicios para su desarrollo. Actualmente sigue constituyendo un refugio para una gran parte de las personas desplazadas de otros sectores, por falta de oportunidades de empleo.

2.2.1. MARCO DEMOGRAFICO

Ladinámica demográfica del Estado tuvo en la penúltima década un comportamiento satisfactorio, creció la población del Estado al mismo ritmo que la del país. Según el IX Censo General de Población, a principios de 1970, Aguascalientes contaba con 330 mil habitantes (0.7% de la población nacional). Esta cifra, comparada con la de 1960 (243.363 personas). indica que en el decenio en cuestión, los recursos humanos de la Entidad crecieron a una tasa media anual del 3.4% (3.4/ en el país).

La población se encuentra concentrada en el municipio de Aguascalientes (66.4%) principalmente en la Ciudad Capital, que en 1970 aloja a 181,277 personas, es decir, más del 50% de los habitantes del Estado (38) El resto se encuentra distribuída en los otros ocho de los nueve Municipios que integran la Entidad. Es interesante subrayar que Calvillo con el 7% (24,170), ocupa el segundo lugar por lo que se refiere a número de habitantes.

(38) La población actual se estimó en 321,000 habitantes (Fuente: Dirección de Fomento Industrail, Aguascalien-tes, Ags.).

Otro aspecto revelador de la población es el que se refiere a la familia de acuerdo con los datos censales de
1970, el promedio de miembros de familia era de 5.7 en
Aguascalientes, superior al nacional (5.2 miembros por familia). Y es que el 60% de las familias en la Entidad
se componen de 5 o más miembros. Considerando el tamaño
de la familia en los distintos municipios, se observa -que en las de Calvillo y Pabellón de Arteaga, el prome-dio familiar sube hasta 6 miembros.

2.2.2. INFRAESTRUCTURA.

La preocupación mostrada por los gobernantes para dotar a la Entidad de una buena infraestructura, ha permitido que Aguascalientes se encuentre, en este sentido, en una situación que en términos generales puede calificarse de altamente satisfactoria.

La pequeñez del Estado, además de la cuantía de los recursos invertidos en obras de capital básico por las distintas administraciones, la ha llevado a contar en la actualidad con una eficiente dotación caminera, con una ered ferroviaria aceptable y con altos índices de electrificación.

Los caminos carreteros cubren satisfactoriamente las necesidades de comunicación del Estado. La longitud de la red vial actual (1974) es de 1914 Kms., de ellos 468 ---- (29%) son pavimentadas, 876 (54.3%) revestidas y 270 ---- (16.7%) son de terracería. En 1964 existían 515 Kms. de carreteras, 266 Kms. estaban pavimentados, 233 revesti--- das y 14 eran de terracería. La expansión total por tan to, fué de 213.4%. En materia de ferrocarriles, ------

Aguascalientes dispone de 228 Kms. de vías férreas 0.60 Km. por vía por cada mil habitantes (superior al prome-- dio nacional que es de 0.50), al Estado llega y lo cruza de Sur a Norte la línea férrea que va de México a Ciudad Juárez.

Por otro lado, de la Estación Chicalote parte hacia el noroeste, un ramal que da comunicación con San Luis Poto
sí, en donde entronca con el Ferrocarril México-Laredo y
continúa hasta Tampico.

En el campo de las comunicaciones telefónicas, Aguasca-lientes contaba en 1971, con 397.78 Km. de líneas desa-rrolladas de teléfonos para conectar las distintas localidades con la red nacional.

Por lo que respecta a telégrafos, la Entidad contaba en 1971, con 429 Kms. de líneas telegráficas desarrolladas, 5 oficinas telegráficas y 20 telefónicas. Había además, 37 oficinas de correos (4 administraciones, 3 sucursales y 30 agencias). Dispone también de un sistema de Telex con capacidad para 40 abonados (se ampliará a 50), de -- una estación de microondas y de 5 radiodifusoras (capta 3 canales de televisión).

2.2.3. MARCO INSTITUCIONAL.

El ambiente o marco institucional que rodea al desarro-llo de las actividades productivas en el Estado de Agua<u>s</u>
caliente, puede calificarse en términos generales de favorable, quien visite la Entidad o dé un repaso a su un<u>i</u>
verso estadístico podrá sin duda, captar en su recorrido
los avances logrados por la iniciativa de los habitantes
del Estado, dentro de un medio institucional propicio.

Se dá un tratamiento prioritario al desarrollo del sec-tor industrial entre las medidas adoptadas pueden citarse:

- a) La creación de organismos promotores.
- b) El establecimiento de incentivos fiscales.
- b) La capacitación de la mano de obra.
- d) La dotación de infraestructura.

2.2.4. MARCO ECONOMICO.

2.2.4.1. Agricultura:

Si bien es cierto que en el ámbito nacional la agricultura de Aguascalientes no es significativa, dentro de la economía de la Entidad tiene una gran importancia porque constituye la fuente de ingresos de más de la tercera esparte de la población económicamente activa y porque participa con más del 10% del producto interno bruto estatal.

Efectivamente, en la producción agrícola del país, la de Aguascalientes tiene una participación muy modesta. En 1973 por ejemplo, la agricultura del Estado con un valor estimado de 500 millones de pesos, aportó apenas algo -- más del 1% del producto agrícola del país, que llegó en ese año a 45 mil millones de pesos, a precios corrientes.

No obstante lo anterior, en algunos productos como la -vid (segundo productor nacional) la guayaba (primer ----

productor) y el durazno (tercer productor) y chile seco (tercer productor), la producción del Estado alcanza relieve nacional.

2.2.4.2. Ganadería:

Aguascalientes está considerado como uno de los más im—
portantes centros de comercialización de ganado en el —
país, y esto no es de hoy, por cierto. Su ubicación geo
gráfica en la parte central del país, y el contar con la
región en que se asentaban los embarcaderos ferroviarios
(antes el ganado sólo se movía a pié o en ferrocarril),
le permitieron convertirse en la plaza adecuada para la
celebración de operaciones de compra y venta de ganado.

El número de animales que llega a la entidad para esos fines, es de mucha consideración. Según estimaciones de
la Unión Ganadera Regional, anualmente se introducen al
Estado más de 200 mil cabezas de ganado vacuno para ser
movilizados por los comerciantes en ganado hacia diferen
tes puntos y mercados del país.

2.2.4.3. Silvicultura:

La explotación silvícola en Aguascalientes es propiamente irrelevante. Aparte de que no se trata obviamente de un Estado forestal, el escaso aprovechamiento maderero que alguna vez hubo (328 mil pesos en 1966) ha venido — disminuyendo, primero a causa de algunos fenómenos como la erosión, el sobrepastoreo y la apertura de nuevas tieras al cultivo, después por la veda que se decretó en — 1960.

2.2.4.4. Mineria:

La minería es una actividad de escasa significación para la economía del Estado. Las explotaciones que se realizan son pocas y el volúmen de los productos que se obtienen es limitado. Cobre, plata, plomo, zinc y fluorita son los minerales que actualmente se explotan, también -- hay algo de estaño y fosforita, pero sólo se extraen a - nivel de gambusinaje.

2.2.4.5. Industria:

El desarrollo de la industria de Aguascalientes, ha sido desequilibrado y poco dinámico "aquí la industria no ha evolucionado como elemento motor de la economía" -se nos comentó- Aquí la industria surgió "casi por casualidad" -señaló otro productor- No todos comparten esas opinio--nes, hay quienes afirman lo contrario.

De cualquier manera, el activo industrial de la Entidad, no necesitó alto grado de diversificación, si bien la ma yoría de las plantas corresponde a las llamadas indus--- trias tradicionales, cuya producción se limita a la elaboración de bienes de consumo inmediato.

Pueden mencionarse, por ejemplo, la industria elaboradora de bebidas, la alimentación, la textil y la de confección de prendas de vestir. En conjunto, estas ramas industriales absorbían en 1970, según cifras censales, el 72.9% de la inversióm industrial estatal.

Una de las características principales, en buen número - de casos, es la proliferación de talleres artesanales, - especialmente de tipo familiar (rama textil y de peque-- ñas plantas maquiladoras, el caso de la industria vitivinico la), con tecnología muy elemental y escasa organización productiva.

2.2.4.6. Turismo:

La actividad turística en Aguascalientes, tiene escaso - relieve por muchas razones puede considerársele como una actividad poco desarrollada por definición que presenta su infraestructura turística y la débil afluencia de visitantes (ocupa el lugar 29 a nivel nacional), son cla-ros ejemplos de su desarrollo incipiente.

Aparte de ser pocos los atractivos que el Estado puede - ofrecer al hombre que viaja a través del país por moti-- vos de recreo no han sido debidamente explotados desde - el punto de vista turístico, de hecho el único atractivo que por sí solo motiva la concurrencia a la entidad de -

una corriente regular de turismo es la tradicional Feria de San Marcos. El resto de las personas que visitan --- Aguascalientes, son generalmente hombres de negocios o - viajeros en tránsito hacia otros puntos de la República.

2.2.4.7. Comercio y Servicios:

La actividad comercial ocupa un lugar significativo en - la economía de Aguascalientes, cálculos de la división - de programación regional de Estado estiman que esta actividad participa con algo más del 30% de producto bruto - estatal.

La ubicación geográfica y la bien extendida red camionera que dispuso la Entidad desde fechas muy tempranas, -- convirtieron al Estado en un importante Centro Comercial a nivel regional. Numerosas poblaciones de los Estados vecinos de Zacatecas, Jalisco y San Luis Potosí, realizan sus transacciones mercantiles en la Ciudad de Aguascalientes en virtud de que les queda más cerca que otras ciudades de su propio Estado.

2.2.5. NIVEL DE VIDA.

2.2.5.1. Estructura Ocupacional:

La población económicamente activa (PEA) de la entidad pasó de 76,834 personas en 1960 (31.6% de la población total del Estado), a 86,961 en 1970 (25.7% del total), lo que implica que creció solamente 12.8% en esos años,
mientras que la población total lo hizo en un 38.9%; por
sectores estas eran la distribución y cifras de la PEA en 1970 (las cifras entre paréntesis corresponden a 1960)

- a) Agropecuario: 32,095 personas que significaron el 36.91% del total de la PEA.

 (37,774, representando el 49.22% de la PEA, pueden observarse un -decrecimiento del 15.4% en el periodo 1960-1970).
- b) Industria: 18,513 personas, 21.299% del to-tal (17,048, 22.11%, creció en un

8.7% en ese período, aunque su --participación en la PEA decreció)

c) Servicios:

27,745 personas; 31.9% del total de la PEA (14,043; 18.28%, creció muy aceleradamente a 97.15% en el lapso 1960-1970, aunque puede pen sarse que una parte del crecimien to reportado corresponde a personas subempleadas, que se refugiaron en este sector).

2.2.5.2. Distribución del Ingreso:

Del total de la PEA en la Entidad, declararon ingresos - 77,533 personas de un total de 86,961 (89.2%) en 1970, - el 51% de los que declararon ingresos, recibió una cantidad menor que el salario mínimo medio vigente en el Esta do, en esa fecha (teniendo un coeficiente menor once Entidades)

Del 51% antes mencionado, el 15% recibieron menos de -\$ 200.00 mensuales y el restante 36% entre \$ 200.00 y \$ 499.00 al mes.

2.2.5.3. Educación :

El nivel de vida de las personas no dependen exclusiva-mente del ingreso económico, cierto que es un factor muy
importante, pero en el bienestar van incluidos otros fac
tores tales como el acceso a la educación, los servicios
médicos, las condiciones de la vivienda y otros.

Muchos pasos se han dado para mejorar el nivel de vida - de la Entidad. En materia educativa, las cantidades erogadas en el ramo de la educación por las autoridades han sido crecientes; en 1950 este concepto significaba tan - sólo \$ 120,591.00, mientras que en 1970 alcanzó poco - más de 6 millones de pesos. Sin embargo, la participa - ción del gasto educativo en los egresos del Estado ha disminuído: de significar el 19.6% en 1950, bajo al 13.4% en 1970.

2.2.5.4. Salud:

La asistencia social es otro aspecto que no ha sido descuidado. De 1965 a 1970, el número de Unidades Médicas en servicio pasó de 4 a 39. El I.M.S.S. continuó desa--rollando en este campo la actividad más relevante.

Para septiembre de 1974, la población amparada por el -1.M.S.S., era de 89,041 personas permanentes y de 10,000
eventuales, correspondientes a 29,930 asegurados y sus familiares.

2.2.5.5. Alimentación y Vestido:

La información censal de 1960 y de 1970, no promete evaluar los avances logrados en cuanto al consumo de alimentos básicos entre la población, sin embargo, se mencionan las cifras para aportar una idea aproximada de lo -- que ocurre en este campo.

En 1960, las personas que no comían cotidianamente pan - de trigo, representaban el 42.3% de la población mayor - de un año; y los que no compraban uno o más de los si--- guientes alimentos: carne, pescado, leche y huevo, excluyendo a los menores de un año, conformaban el 36.5% de - la población, lo que significaba que el 60.1% restante - consumían estos alimentos con frecuencia.

2.2.5.6. Vivienda:

Las condiciones de la vivienda en Aguascalientes deben llevar a la reflexión. Las cifras de la década pasada,
indican que el promedio de habitantes por vivienda de -1960 a 1970, aumentó de 5.8 a 6.4, ello se debe a que el
crecimiento de la población en el período considerado -fué sensiblemente superior al mostrado por las viviendas,
38.9% contra 25.1% respectivamente.

Lo anterior nos habla de la incapacidad de parte del sector público y privado para satisfacer la creciente necesidad de viviendas en el Estado.

2.3. CARACTERISTICAS GENERALES DEL MODELO

DESIR (Desarrollo Industrial Regional) es un modelo de simulación de la competitividad de un parque industrial frente a las demandas de los empresarios. Analiza los elementos de la oferta de terrenos industriales dentro y fuera del parque industrial y los requerimientos más frecuentes en los proyectos de inversión industrial.

Particularmente, DESIR considera los aspectos políticos involucrados en el proceso de decisión, así como los "ideales" de la comunidad donde se implanta el proyecto.

2.3.1. DESCRIPCION Y MODELO

DESIR está constituído por cuatro subestructuras: Tres modelan la situación del mercado (demanda de terrenos industriales y oferta, dentro y fuera del parque indus rial) y la cuarta, el proceso de decisión.

2.3.1.1. Subestructura Demanda de Terrenos Industriales: (Fig. No. 1)

La demanda de terrenos industriales es generada por la implementación de proyectos industriales y la ampliación de las industrias existentes.

La implementación de Proyectos Industriales (IPI) es una etapa posterior de la elaboración de Nuevos Proyectos Industriales (ENPI); no todos los proyectos que se elaborar nan son susceptibles de implementarse, existe una cierta fracción denominada Porcentaje de Factibilidad de Implementación del Proyecto (PFDP) que discrimina la cantidad de proyectos que son factibles.

Existe otro factor, Disponibilidad de Capital (DDC) que es el principal "promotor" de la implementación de pro-yectos. Se expresa en forma porcentual por medio del -Factor de Implementación de Proyectos de acuerdo a la -Disponibilidad del Capital (FIADC).

Para expresar la demanda de terrenos, en metros cuadrados, se recurre a un factor de conversión (FCPEMC) basado en la relación existente en los últimos diez años entre los proyectos industriales y el área
ocupada en la región bajo estudio.

Así: IPI.KL = (ENPI.K) (FCPEMC) (PFDP) (FIADC.K)

Para el caso de ampliación de las industrias existentes (AIEI), se considera que éstas dependen de la cantidad de Industrias en Operación dentro del Parque Industrial (IOPI) y las existentes fuera del parque (IOFPI); del total de éstas, sólo una fracción es la que realmente necesita ampliarse, de ahí el Factor de Conversión para Ampliación de Industrias (FCAI).

Causas adicional 3 para la ampliación son: el Crecimiento del Mercado Local de Productos (CMLP), el Crecimiento del Mercado Extra Local de Productos (CMELP) y las características de los recursos inexplotados o Poco Explotados (RIPE), los cuales se agrupan en el Factor de Crecimiento del Mercado y Recursos Inexplotados o Poco Explotados (FCCMYR).

AIE1.KL = (IDFPI.K + IDPI.K) (FCAI) (FCCMYR.K)

La demanda de Terrenos Industriales (DTI1), es complementada por la demanda satisfecha de terrenos industriales (DSTI), que depende de la Cantidad de Tierras Ocupadas - del Parque Industrial (CTOPI) y de la Cantidad de Tierras Ocupadas Fuera del Parque Industrial (CTOFPI); así:

DTI.K = DTI1.J + (DT) (IPI1.JK + AIE.1, JK- DSTI.JK)

NOTA: En la Fig. No. 1 aparecen en conexión con otras subestructuras a nivel de la oferta local (NOL),
Nivel de la Demanda Local (NDL), la Demanda Insatisfech de Bienes de Consumo Duradero y no Duradero (DIBC), las Estrategias de Desarrollo Industrial Regional (EDIR), los Aspectos Asociados a la Mano de Obra (AAMO), el Nivel de Salarios ---(FNS), la Productividad (FPRO) y las Uniones y -Sindicatos (FUYS).

2.3.1.2. Subestructura Oferta de Terrenos: Industriales Fuera del Parque Industrial. (Fig. No. 2).

La oferta de terrenos fuera del Parque Industrial, es -prácticamente inagotable, ya que en cualquier parte de la región se puede establecer industrias para fines prác ticos, sin embargo, se considera región de ubicación el Municipio donde se localiza el parque industrial y bajo ciertos criterios parte de los municipios adyacentes. Los factores que determinan la decisión final de estable cer fuera del parque industrial (DEFPI) son: la demanda de terrenos industriales (DTI1) asociada a la decisión de establecerse fuera del parque industrial (DDEFPI), co rregida por otros factores como las condiciones físicas de la región (CFR), las restricciones locales impuestas por el Estado (RLPE), el capital privado de que se dispo ne para establecerse en la zona industrial (CPDDZI) y la especulación realizada con los terrenos fuera del parque industrial (ERTFPI).

Asi: DEFPI.KL=(ERTFPI.K) (DTI1.K) (CFR) (RLPE) (CPDDZI.K) (DDEFPI.K)

Por lo tanto, la cantidad de industrias que prefieren es tablecerse fuera del parque industrial (CDEFPI) es:

CDFPI.K = CDEFPI.J + (DT)(DEFPI.JK)

Para el proceso de implementación de industrias fuera -del parque industrial se contemplan tres etapas: la programación de la construcción (ICPFPI).

Industrias en construcción programada fuera del parque - industrial, la construcción de las naves industriales y la instalación de equipos (IECFPI, industrias en cons-trucción fuera del parque industrial) y la operación propiamente dicha (IODPI, industrias en operación fuera del parque industrial).

La cantidad de tierra ocupada fuera del parque industrial (CTOFPI) está vinculada a la cantidad de tierra ocupada por usos industriales fuera del parque industrial (CTOFP) y un factor: la especulación realizada con terrenos fuera del parque industrial (ERTFPI).

CTOFPI.KL = (CTOFP.K) (ERTFPI.K)

Se considera también que industrias que por necesidades de relocalización (NRI) o por problemas financieros (ICPF) desocupan una cierta cantidad de terrenos fuera del parque industrial (CTDFPI):

CTDFPI.KL = (ICPF) (IOFPI.K) (1-NRI)

La oferta de terrenos fuera del parque industrial puede expresarse como:

OTFPI.K = OTFPI.J + (DT) (CTDFPI.JK - CTOFPI.JK)

NOTA: Se incluyen otros elementos complementarios:

Problemas de Crédito y Liquidez (PCYL), Factibilidad

del Proyecto (FDP), Plan Financiero del Proyecto (PFP).

2.3.1.3. Subestructura Oferta de Terrenos en el Parque Industrial (Fig. No.3).

La estructura de la oferta de terrenos industriales dentro del parque industrial (DTII) es similar a la oferta de terrenos fuera del parque industrial. La decisión de establecerse en el

parque industrial (DEPI) está asociada a la demanda de terrenos industriales (DTI1). Como no todo los terrenos
demandados serán "satisfechos" por el parque industrial
se considera una variable auxiliar, la decisión de establecerse dentro del parque industrial (DEDPI) y otros -factores que permiten ajustar la oferta: Factores personales (FP), facilidades de obtener incentivos (FOI).

Asi: DEPI.K = (DII1.K) (FP) (FOI)

La cantidad de industrias que desean establecerse en el parque industrial (CIDEPI) depende directamente de la de cisión de establecerse en el parque (DEPI), según:

CIDEPI.K = CIDEPI.J + (DT) (DEPI.K)

La cantidad de tierras ocupadas en el parque industrial (CTOPI) es la suma de los reservados a la industria con construcción programada (ICPDPI) y los ocupados por las industrias en construcción (IECPI) y por las industrias en operación dentro del parque industrial (IDPI).

La ofeta de terrenos dentro del parque indsutrial (OTDP13) está definida por la cantidad de lotes no vendidos, la cantidad de tierras desocupadas dentro del parque industrial (CTDPI) y la cantidad de tierras ocupadas dentro del parque industrial (CTOPI), por las industriales en construcción programadas que no cumplieron con el contrato (INCEC), y por las industrias en operación dentro del parque industrial con necesidades de relocalización (NRI).

Entonces: OTDP13.K = OTDP13.J + (DT) (CTDP1.JK - CTOP1.JK)

NOTA: Adicionalmente, se consideran porcentajes de factiblidad de implementación de proyectos (PFDP), Problemas de crédito y la liquidez (PCYL) y plan financiero del proyecto (PFP).

2,3.1.4. Subestructura Decisión (Fig.No.4).

El núcleo del modelo es el proceso de simulación de la decisión de establecerse en el parque industrial y fuera de él. Los factores indentificados son cinco, cada uno integrado por una serie de elementos:

Precio: (FTFPI/FPTDI)

El precio del terreno fuera del parque industrial (PTFPI), está definido por la oferta de terrenos fuera del parque industrial (OTFPI), la ubicación del terreno con respecto al centro de consumo fuera del parque industrial (URC), la ubicación del terreno con relación al centro de población (ULP), el clima (FCL) y la plusvalía (FPLU).

El precio del terreno dentro del parque industrial (PTDPI), está definido de una manera similar a los terrenos fuera del parque industrial ajustado por las estrategias de desarrollo industrial regional (EDIR). Ventajas locacionales para comercialización:

Se considera la ventaja para el proceso de comercialización de productos fuera (VPCPFP) y dentro del parque --- (VPCPDP), definida por la disponibilidad de los servi--- cios y transporte existentes fuera (DSTFPI) y dentro del parque (DSTDPI) economías de aglomeración fuera (EAFPI) y dentro del parque industrial (EADPI) y la ubicación -- del terreno con respecto al centro de consumo tanto fuera del parque industrial (URC) como dentro del parque -- (URCP).

Ventajas locacionales por incentivos del desarrollo y por equipamiento urbano: (DIFPI/DIDPI)

Se consideran las estrategias de desarrollo industrial - regional (EDIR), capital privado del que se dispone para establecerse en la zona industrial (CPDDZI), los servi-cios para la salud (FM/FMP), las facilidades culturales (FC/FCP) y recreativas (FR/FRP).

Ventajas locacionales por infraestructura:

Se consideran la disponibilidad de los servicios y trans porte (DSTFPI/DSTDPI), analizado en particular el abaste cimiento de agua (AA/AAP), la disponibilidad de energía eléctrica (EE/EEP), de teléfonos (TEL/TELP), de drenaje (SD/SDP), de combustible (AC/ACP) y de servicios de trans porte (ST/STP).

Economías de aglomeración y patrón físico de localización.

Se consideran los códigos de construcción (CC) y la planificación y zonificación (PZ) vigente en la región, y las industrias en operación fuera (IOFPI) y dentro del parque industrial (IOPI).

De esta forma, puede definirse:

El factor de decisión para establecerse en el parque industrial (FEDPI)

FEDPI.K= (FPTDI.K) (VPCPDP.K) (DIDPI.K) (DSTDPI) (EADPI.K)

El factor de decisión para establecerse fuera del parque industrial (FEFPI).

FEFPI.K=(FTFPI.K) (VPCFP.K)(DSTFPI)(EAFPI.K) (DIFPI.K)

Entonces, la decisión de establecerse fuera (DEFPI) y dentro (DDEDPI) del parque industrial queda definida por:

DDEDPI.K = FEDPI.K / (FEFPI.K + FEDPI.K)

DEFPI.K = FEFPI.K / (FEFPI.K + FEDPI.K)

Para una visión global del modelo, se recomienda ver el anexo No.1, en donce aparece la lista completa de variables y ecuaciones que intervienen en el mismo.

COMPORTAMIENTO DEL MODELO,

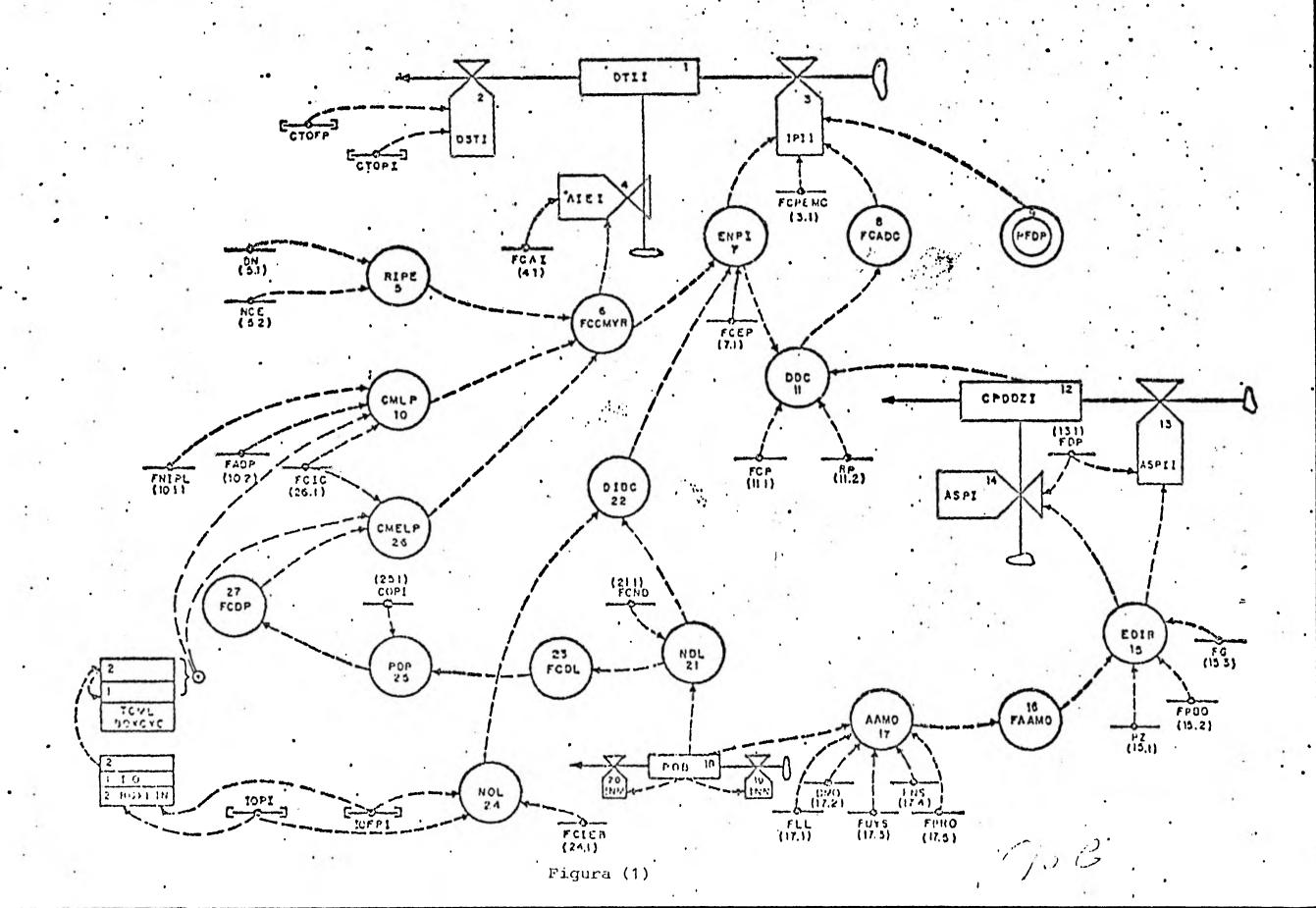
2,4,

Para analizar el comportamiento del modelo DESTR, fué aplicado a la Ciudad de Aguascalientes, en la provincia mexicana, donde el Gobierno Federal, impulsa un parque industrial que ha alcanzado singular éxito (40).

Las Figs. Núms. 5 a 10, presentan los resultados obtenidos para el proceso de simulación con un horizonte de 20 años. Fué adoptado como año de inicio 1975 para permitir un mejor análisis de las proyecciones obtenidas.

Los aspectos más relevantes son los siguientes:

- (ENPI=E) ha sido simulada a partir de la inauguración del parque industrial (Fig. No.5).
- experimenta un aumento considerable al inaugurar se el parque industrial al cabo de siete años, período en que se considera totalmente vendido el parque, esa tendencia disminuye (Fig.Núm.5).


- c) La demanda de terrenos industriales (DTI1=D) tiene un comportamiento similar a la implementación de Proyectos Industriales (IPI1=I), lo que revela que la ampliación de industrias existentes (AIE1=A), no es muy significativa para la determinación de la demanda de terrenos industriales (Fig.No.5).
- d) La disponibilidad de capital (DDC=D) dpende en gran medida del apoyo del sector público (ASPIl=A) compues-to por las Instituciones de Crédito oficiales y de manera complementaria por el apoyo del sector privado ASPI=B) integrado por Instituciones Bancarias.(Fig.Núm. 6).
- e) Las facilidades de crédito que se otorgan para el impulso de la pequeña y mediana industria, se consolidan a medida que la estructura industrial se desarrolla: puede apreciarse en la relación de apoyo financiero (RAF=R) existente entre el financiamiento (ASPII=A) (ASPI=B) y la disponibilidad de capital (DDC=D).Fig.Núm. 6.
- (40) Los datos obtenidos para "cargar" el modelo provienen de una investigación directa que se realizó en la Cd. de Aguascalientes. (Ver Anexo No.3)

- f) La demanda insatisfecha de bienes de consumo duradero y no duradero (DIBC=I) depende del nivel de la oferta (NOL=O) y el nivel de la demanda local (NDL=D), ésta en crecimiento, aquélla, restringida coyunturalmente (Fig. Núm.7).
- g) Tanto el nivel de la oferta (NOL=0) como el nivel de la demanda (NDL=D) depende del crecimiento del mercado lo-cal de productos (CMLP=L) y del crecimiento del mercado extralocal de productos (CMELP=E) que experimentan un aumento sostenido. (Fig.Núm.7).
- h) El precio del terreno dentro del parque industrial

 (PTDPIEP) en los primeros cinco años de operación aumenta menos que el correspondiente afuera del parque industrial (PTFI I=T) (Fig.No.8).
- i) Después del quinto año de operación del parque, cuando la oferta de terrenos se ha reducido al 30% del valor inicial, el crecimiento del precio del terreno supera al del precio fuera del mismo. (Fig. Núm.8).

- j) El número de industrias que se establecen dentro del parque industrial (DEDPI=D) es superior al de las industrias que se establecen fuera (DDEFPI=E) debido a (Fig. Nos. 9 y 10):
 - Las ventajas comparativas que ofrece el parque industrial para el progreso de comercializa--- ción de productos (VPCPOP=V) por su ubicación.
 - Las economías de aglomeración dentro del par-que industrial (EADPI=E) por las industrias es
 tablecidas en él.
 - El precio del terreno (PTDPI=P).

Para el cálculo de los parámetros que intervinieron en - el modelo ver el Anexo No. 2.

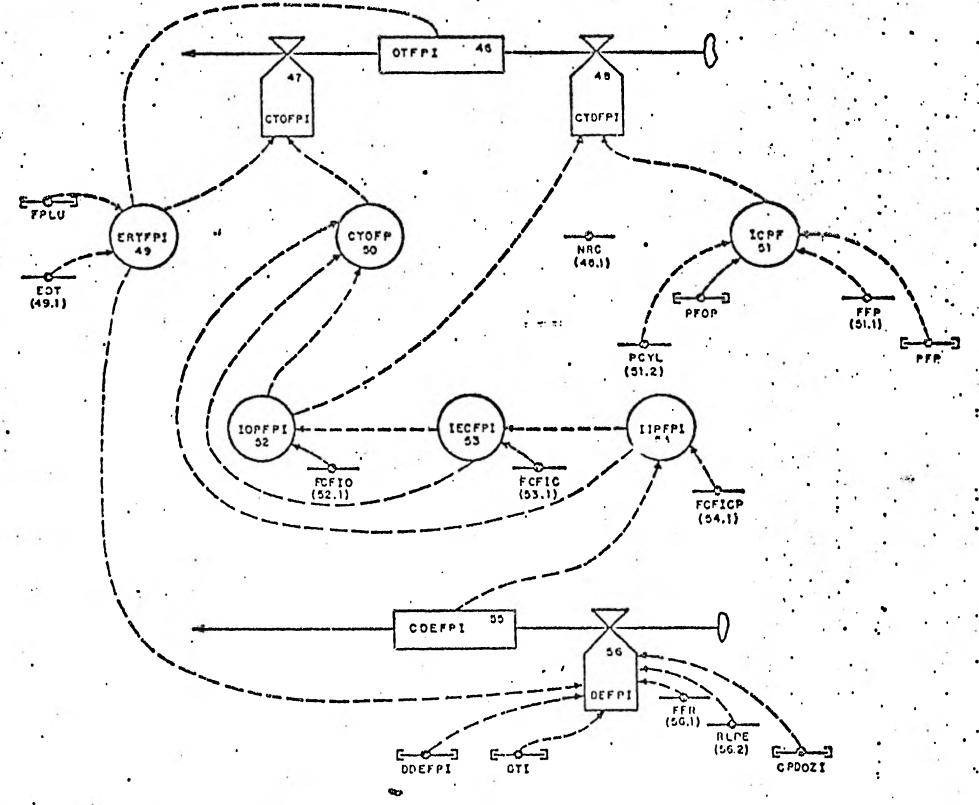
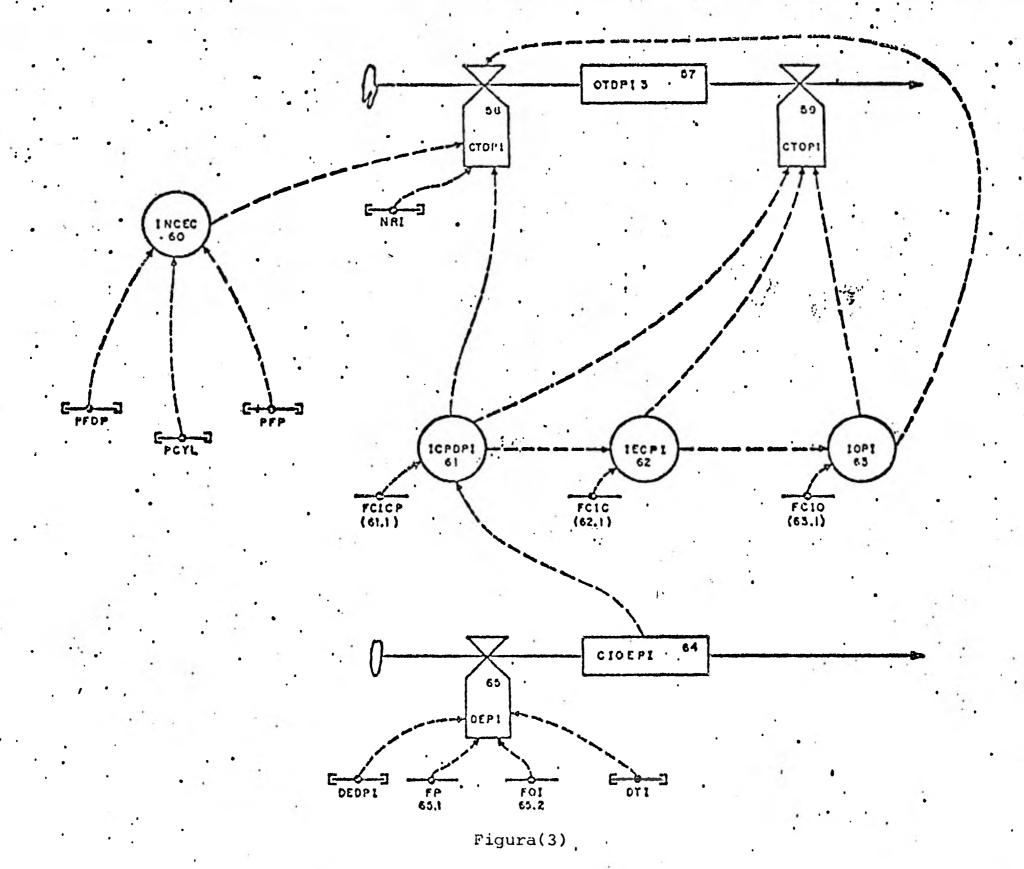



Figura (2)

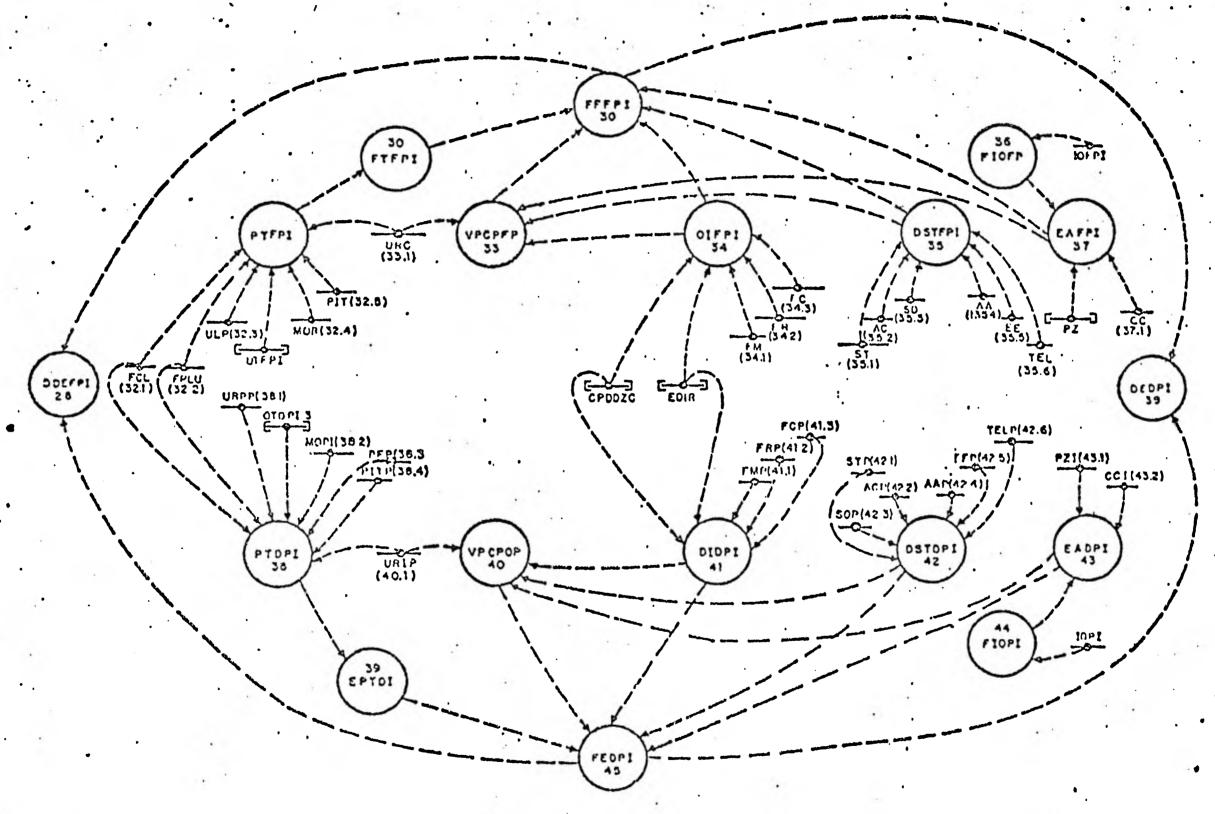


Figura (4)

• •		•				•	• .	•	•. 1•						•	
TINE	DTIL	1011	ALE 1	ENPI						• •	• •	•	•	, · •	•	
1.+0:	[+07	1+66	[+00	[+ 1:0		. • .		en en e		• • •	*				430 (
0.05.	30,50	" _ " . " . " . " . " . " . " . " . " .	7.73	e, e, r, r		0 00 43		ga da d	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•• •		143 (~ ~
0,570	้ เก. วิก	77.7	11,00		w en e	• •						• •	- v	~ ~	40 (
P 40 64 EU AN	71.02	57,70		ED 84 VF 86					4 GH 69,			• •		en eu	•• •	
1.00)		100 M 47 60	17.35	-41.PE	***		v						• •		•	-
1 - 5 2	263.54	47.0t:	1" ." o	10.3c	49 m. m		·		4 40 40	• • •		6 8		639 6 43	60	
2.000	_77	77.60	1.5.50	57.67	m •• •	94 (6)			, • • • •		- m =		60 P 4	, m au		
2.50%	114.07	4. 5. W	21.50	_00.02_										- ~	- ,	
3.000	132.04	101.70	25.67	76.01					* 85 C							, m to
3.500	151.01	120.74	30.67	2.3.50	** ** **					·			•	\$ 62	t > 0	
4.000	171.57	-154.24	36.79	27.24	eo (4) g				·.			, . . .			-	
4.524	191.51	147,26	47,75	106,12									· _	,	the c	
5.027	207.75	156.51	57.77	112,71					. 45 69							
5.500	254.05	100,00	67.73	115.60			1.15								•	
0.624	201.20.	1817.55	76.64	[27.5E]												-
6.50.	304.50	711,72	້າກຸ້າກັ	ารโ.กิก									-,			
7.00%	325,20	รีอรี.รีก	102.25	157.70	~			* * *	• • •						450	
7.500	334.30	223.74	110.55	โรก กับ	~ ~ .								• •	• •	•	
. 8,0ni	353.71	737.71	117.17	107.58						• • •	- • •	•			•	
8.5ru	305,52	207.55	120.07	187.01	~ ~ .			1				• • •	-	~ ~	•	
9.00:	410.55	295.65	122.01	210.72					• 63 🕶	• • •			• •		•	~ -
9.500	152,77	727,77	125,00	233,71	• •				• •; •	• •		• • •	-	• •		• •
10.00:	กอดีก	301.66	127.79	257 05						'			e) ~	es es	-	
10.50	526.75	307	127.75	201.70		· - #,	u			• • •					-	-
11.054	~ × × ×	717.77	gs 94 Mp CAT			• • •	, -	- * *					٠	9 W		. ··
11.700		ำลักเกิร	_ ~					- ~	-		· · .•		• •	* •	a s (~ ~
12.00;	501.81		137.07	240,45			·	e to "e	- Tes -				-			
12,51	567.75		1/10 - 7/1	301.37				e		~ •				*	-	
13.000	577.11	737.52	# # # # ! # Y F ()		•									.	-	
13,500	500.50	77 to to to		303.30		. .				:	» •		~ · •	e. 41	-	
14.000			147.07	005.33 200								. ~ •		~ -	•	. .
	580.17			201.73		:			~ - -) دی مار						
14.500	603.20		157.34					'		* .** ·				40 64		
- 15.00.	** ** ** **	402.21								• •	m •• •		- -	· •• ••	-	
_ 15.5tr_	637,15		1"".47		- ·				· '		-	,			••	
- 10.ci.		485.72								• • •					•••	-
16.707		207.17							. "· .		A		- ~		• .	
17.000	P- 45 t- 80	597.10							* eo fr							_
17.520			171,6p	261,57				~ ~ .	,				. .			
_ 18.020	700.00	533,00	175.00	302.26			·							_ • _		
18.52"	72:.00	546.55	177.64	277,45						•						- **
14.00	741.57	220.51	102.20	344,42										— m		
14.565	7511.71	572.72	100.00	373.75								,		TW 6.0	•	- ~
20.07;	775.50	האר. זני	164.24	402.00						·			_ ==			-

	118. (00)	, ·				•		•			•••				 .		
	TTHE C	PDDZI	DDC.	asp11	ASP1	RAF		•			•••	• •					
•	E+00	E+00	[.+00	[+07	1.+00	[+ O O		• •			· • •		• •	a. 04	• 0	gth. (en' e1
•	0.000	136,00	110.77	7.627	20.200	0.34721	40 40 KM	~ *	• • •	(v en (• •		* =	••	PM 43
• .	0,500		111.73	7.211	20,432			• •	* * •	(• •	es	1
•	PT 40 PT 44		113.72		24.409					po es 1	"			-, -	~	-	pp &4
•	e	gr 40 mm PM	w # m =													-	m, ca
	00 00 gr 60	m = " = ==	€ 40 No 107	10.171					(A)	. .	1		-		• •	••	
			98 Pr 97 FF	10.323				- -		m 40 (•	
	.5°200	146,00	110.70	10.500	31.704	0.35809				e e (-		. .	437 (
	3.000	148,12	120,11	10.003	32.426	o.35098								•			
	3,500	150,29	121.05	11.025	33.075	0.36191											
•	4.000	152,47	157.64	11.275	33.773	0.36388										9	Me 42
•	4.500	157.71	125.47	11.477	34.430	ก.วันรกิจ		~ -		(- 4	• •	60 6 0	-	
•	5.000	157.04	127.33	11.712	35.136	0.36704		tim the	• • •							-	-
•	** * **			11.950				,	• • •		• . • . •		* -	-		•	• •
-		per pa us 4m		12.204									• •	- +		-	00 \$1
-		95 m m M		15.460	37.371		• • •	tm		- ·- ·		·				-	
16				• • • •				en , ee	• •		•	<u> </u>		- "	- 4	-	 -
•				12.724	~ ~ ~ ~	_ ~						. w. a				-	
	-			12.777							u						• ~
				13.277						و جينا مو		, <u></u>				-	. .
	* - " -	174.50			10.027							1 Ep t u				87	
	A. 05:	177.21	143.40	13.863	41.500	0.30593			44.1		9						
	3.200	179.99	145.24	14.170	02.510	0.31119											
_	10.000	182.82	144.22	in and	113.459	0.39090				•							
	10.500	105,72	. 150, [8]	14.212	44.137	6.37777					* * *		• •		- ,:		• •
	11.000	100.63	รีรูลี ถืน	15.170	05.300	0.37078		- 1			• • •	•	• •				
•	11.505	171.71	155.74	15.496	46.487	0.37876		, •• ••			*		• •	- +	* .	•	
••	12,077	197.81	157.75	15.054	47.562	240140		p	- = .	-	-	• •• •			w n	-	- •
E#	# w m w		160.50		48.671			-	**	* , * ·	•			- `~		•	
~	13,005			10,005		,					~ - ·				P H	-	- , •
i.o	64 94 Ar ma		165,75			40 to the ten		• •		-		· •• •				-	-
-	Er 44 pr NF				50,499 ===================================									- ~		-	
-	14:020		167.11														
-	14.500		171.75		[3.475]												.
••	15.000	510.00	174.32	17.265	50.7PR	0.41900				en 80							
_	15,500	518,65	מק. ללו	18,712	6.137	18550.0						- 4					
_	10.007	\$25.39	180.31	19.177	57.532	0.725/12											
_	16.700	226,22	183.72	14.626	50.075	9.42069											•••
_	17.095	230,16	106.71	35.156	60.467	0.43204		, (% (%)	**		• • •		.,5 ***	-	•• ••	• •-	
•	17,500	230.19	180.71.	20.671	62.912	0.43545	** ** en					PO BES BY		~ ~		•	•
•	10,000	237,32	195.73	21.204	63.612	1.13173				-			• •	60 CO	to 0.		٠.
to.	111.500		10%,67	21,756			~ ~ ~	• • •	** **		t - w t				•• ••	· -	••••
~	14.000		200 gm 6.0 gm	22.372			• • •	• •	-	- , - ,				• •	49 6 4	• ••	•
•	84 84 84 84	- #	503.853		(0.761		• • •	to the	e+ ex :						6 00 6 4	•	
•	Mr 19 20 90	gas de 188 des	Mm bm 99 21	23,534	B** p* p* bb		f= es es	· •• ••	430 640	gra tu			90 Am	po to	89 Es	, 4.	~ .
E 10	84 BY 84 W	60 84 53 40	674 B14 61 41	40 to 40 to	to by be de-	CP 10 317		\$40 BU	No cur	L 14	Ca eu e	n en 6		p	-		p+ f
						• •						7					

				•	v	_			• • • •	······································	• • • • • •	• •			• • •		. •
	TIME.	NOF	- nor	CHELL	CHLP	piec.	• • •	. ,,,	u en e-					- 1		No. CR	
	E+00	E+00	[+07	1+00	£+00	[;+0 <u>0</u>						* **		• •	شوہ جو		
•	0.000	590,46	305.20	0.5150	6.0520	05.74	-	, pa de m			- 4	ra •		- •	D) 60.		
•	0.550	300,20	303.14	0.5760	1.0024	72.73				42 89 8n				- (- 50
	1.000	300,07	401.73	ว รเกร	1.0234	76.26											
	1.500	310.01	200.60	0,6023	1.00.7	0A. AC							_ :				_
•	2.000	317.36	717,73	0.6173	1,0050	100.58											
	2,500	325.30	ได้ถูดีเรีย	0.0305	1.0716	101.25								<u> </u>			
•	2.000	334,45	725.32	0,0505	1.1230	100.68.					-	-					
•	3.500	345.60	חתח, יח	0.0n35	1.1507	9A.70				49 60 50	0			<u>.</u>		-	
	4.000	358.32	457.75	7.7123	1.2074	75.13		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		en en te							, ==
	4.500	372,75	707.70	ביים מב"י	1.2515	89.05	** **			• • •	-						
-	5.000	309.50	777.33	0.7825	1.3072	03.30				a, • •							
-	5,500	u06.05	787.00	0.0201	1.3077	83.30		• • •	- • •					- 1			, 🖦
-	6.000	417.61	401,00	0.7676	1.4370	43.30					• •	. .		•	~		
•	6.500	727.60	502.123	0.0232	1.5171	83.30) en 69 (• • •	-			-	:	•	
•	7.000	737.79	517.76	. 7nn7	1,6123	83.30	•			m				•		-	•
•	7.500	448,05	527,02	1.0674	1.7365	03.30			~ ~ ~;			-				-	•
	8.000	455,71	533.70	1.1516	1.7072	83,30	•			• 6 •	• •						
	(.5c?	156,76	547.79	1.1716	1.8950	87.53	** ** 0										, -
_	4.663	457.21	556,01	1.1030	1.9253	911.81											
_	9.5.0	กรก.กา	507.77	រ. និរក្ស	โ.กรกล	107.46								_			
	10.000	450.61	577.10	1.2441	150020	120.55		170								-	
_	10.500	157,75	501.00	1.7771	ร.กรลอ	132.14	•	150				_,_					
_	11.000	164.35	6/3.57	1.3077	2.0736	13P.91								_		~	
_	.11,500	476.63	615.69	1.7337	2.1167	137.66											- -
_	12.000	187,02	620.34	1.3657	2 1000	140.06											
_	12.500	500.01	641.72	1.3905	8,56,18	141.31											
_	13.000	712.31	454,53	1.4317	2.2474	142.22	_							. •	Ī	-	
-	13,500	521,11	700.02	1.7056	2.2945	143.17										-	
	10,000	536,06	661.78	1,5001	2.3401	144.81											
_	14.500	547,59	6วก,กร	1.5353	2.3665	148.23							141				
_	15.000	550,47	717.10	1.5716	2,1330	151.68											-
_	15.500	507.61	מר, זה	1.6070	2. แนวก	155.17								•	45	- 1	
_	10.000	581,01	737,71	1.6475	2,5วกิร	150.70											
	10.500	592,60	75/1,05	1.4771	2.5077	162.27										53	-
	17.000	33,000	770.00	1.7277	2,6350	105.89.	• • • •				. . .		69 4	-		64	
_	17.500	616.04	704.34	7,7000	2.61172	100.54		n # •			• •		•			a	60 E0
_	18.000	027,33	705,50	1,5131	2.7457	173.24			-, -	-				. •		•	w ~
	18.50n	602,12	717.11	1.0576	2.777/	176.77	• •• •• •		an en e-	N3 60 6				p (6)	O+ 64		
•	19.090	055,70	<u> </u>	1.0035	2.11554	100,79				w # 6			-	_ *	-	4	-
••	19.500	600,57	773.50	1,0007	2.0137	100.03	. er 64			m • •			- 1	- *	E> 00	••	
•••	20,000	002.25	770.70	1.0076	2,9733	100,53	, , , 		- Po		- 64 (*			- *	EP 1W	(a	***
				40 h4 (##	P1 Em (/			(m 44 (m)	477 640 479	DA CO W	p	. 40 60		~ ~	en és	b#	Cia (m)

	المراق المراق المراقع المراقع المسترونين معالا المراقع الم
. TIME OTFPI OTOP13	PTFPI PTDPI :
E+00 E+03 F+00	[+nn [+nn [+nn [+nn [+nn [+nn [+nn [+nn
0.000 174.30 1990.9	694.7 357.3
0,500 170,30 1000,0	773.3 300.1
1.000 174.30 10/.4	785.6 400.8
1.500 170.30 1002.0	
2.000 170.29 1012.4	. 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2.500 170.29 978.4	
3.00g 174.27 737.7	862.1 462.7
ه معه مود دی می سد می این این این می می می این این می می دو این	l to any one that the first the seas the size of the first to the firs
- Bar ga ugu da da sa ta ta da da uv da un da da da da	بها بها بها بها ويها بها ويها بها دياً بها ويا ويها بها بعه ويها بعه بعاد بها بها بها بها بها بها بها بها بها
4.000 170.20 833.6	925.1 .509.6
4,500 174,28 768,7	
5.000 174.27 604.7	1905.5 574.5
5.500 174.27 611.7	1051.2 01/1.7
6.000 174.26 - 520.6	
6.506 178.26 412.1	1164.7 715.3
· · 7.000 174,25 202.2	1237.8 7R3.9
7.509 174.23 134.5	1335.3 872.4
8.000 174.20 0.1	1933.7 967.5
8.500 174.17 0.0	1455.2 941.9
9.000 174.14 0.0	1478.5 997.6
9,500 174,11 C.O	1505,7 1014.7
10,000 170,07 0.0	1531,4 1033,1
10.500 174.03 0.0	
11,000 173,99 0.0	
11.500 173.75 0.0	1620.5 1096.9
12.000 173.91 0.0	1669.3. 1119.5
	1004,4 1142,4
12.505 173.86 0.0	
13.001 173.A2 0.0	1725.9 1109.5
13,500 173,77 0.0	
14.000 173.73 0.0	1799.1 1212.6
14.500 173.60 0.0	1835.0 1236.0
15.000 173.63 0.0	1771.7 1201.1
15.500 173.58 0.0	1909.2 1286.3
16.000 173.53 0.0	1947.7 1312.0
19.500 173.48 0.0	1987.1 1338.4
17.000 173.43 6.0	7027,4 1365,3
17,500 173,38 0.2	206n.7 1302.9
10.000 173.32 0.0	2110.0 1421.2
10.500 173.27 0.0	2154.1 1450.0
19,0ep 173,21 0.0	2176.3 1979.6
19,500 173,15 0.0	2213.6 1507.8
20,000 173,09 6.0	. 2284 6 1544 6
000 000 000 gar das des des des des des des des des des	. In the san tab to the two

* *8*(>0)		•						٠.	
TIME DEDPI	PTOPI VPCPDP	DIDPI EADPI				-			
E+0C - [.+00	[+00. [+00	[+00 [+00	•	-	-	10	-	**	-
0.000 0.61666	357.3 0.75676	142,62 0.52196		-	-	•		**	-60
ga. ga. ga			-		•	•	-	••	16.9
0.200 0.05550	320.1 0.75119	145.34 0.52292		CB		-	-	-	150
1.000 0.62007	106.1 0.75437	148.14 0.52715	-	-	_	_	_		784
1.505 0.63409	417.2 0.75015	151,02 9.53658							
5.000 0.07270	479.7 0.76266	153,07 0.54001	_	-	-	 .	-	•	470
2,500 0,05214	7/14.7 0.7/290	157_01 0.55508	-	-	-	•	-	••	161
3.000 0.66206	7/2.7 0.77/131	160.13 0.56026	~	~		-	•	-	4.
	404 1 0 70174	163,33 0.58283	-	840	-	•	•	-	**
3,500 0,675!1			•		-	-	•	•	40
2,000 0.60003	500.000,70012	166,63 0.59984	_	~	-	_	-	-	-
4.500.0.70424	537.0 0.20005	170.02 0.61752	-	_	_	-	-	<u>.</u>	•
5.000 0.7200B	57.4.5 0.71179	173,51 0.04196	_		_		_		
5.500 0.73069	614.7 0.87474	177.10 0.06715	_		_	_		_	MESN
6.000 0.75695	050-0 C.83005	180,79 0.69480	-	-	-	-	-	-	
6,500 0,77713	715.3 0.05563	189,60 0.72771	-	-	-	-	-	•	
	~ ~ ~ ~ ~ ~ ~		•	•	-	-	-	-	•
1.000 0.00000	-703.9 0.07577	180.51 0.76710	-	-	_	-	-	•	-
. 7.500 0.00000	072.4 0.89778	195,54 0.81036	g,	•	_	_		_	CB
0.000 0.00000.	967.5 0.97111	196,69 0.85610			•		_	-•	-
8,500 0,00000	701.0 0.37111	201,77 0.85610	~	_	•	•	*	•••	-
9,000 0.00000	777.0 6.721:1	205.38 0.85610		~	-	-	•		
9,500 B,0000	1014.7 0.93111	209,73 0.85610	•	-	-	-	•	-	**
			-	•	-	-	-	•	-
10.000 0.00000	1033.1 1.32111	214.41 0.35610	-		•	-	┏.	-	-
10.500 0.00000	1053.0 1.77111	217.10 0.115010	_	_	-		_	-	_
11.000 0.00000	1070.5 0.72111	350.13 0.05010	_		_	_	_	_	_
11.5ch 0.50000	1000.0 0.33111	227,57 0.85610				•	•		_
12.000 0.00000	1117.5 0.57111	239.07 0.05010	-	••		-	-	90	
12.500 0.00000.	1102.4 0.77111	240.35 0.85610	**		-	-	•	-	•
			-	-	-	•	•	~	-
13.000 0.00000	1165.5 0.97111	246.01 0.85610	_	_	•		***		_
13,5ch 0.00000	1116.0 0.07111	251.75 0.85010	_	_	_	_	•		_
14.000 0.00000	1212.0 0.72111	257.08 0.05610	_		_		_		
14.500 0.00000	1236.6 0.97111	264.11 0.85610	_	_	_	_		-	Ξ.
15.000 0.00000	1261.1 0.97111	270,56 2,85610	-	-	-	- .	-	٠.	•
15.50n 0.00000	17175.0 2.01151	277.72 0.85610	*	••	•	-	•	-	423
19,000 0.00000	1312.0 0.97111	204.11 0.85610	•	-	-	•	40	-	••
			-	•	•	•	•	•	•
16,500 0.00000	1337,4 0,07111	291.23 0.85610	-	•	••	-		•	-
· 11.000 0.0000	1365.3 0.92111	530.00 0.020	(20	-	_	-	•	•••	*
17.500 0.00000	1322.0 0.72111	300.23 0.05610		_	_	,-	_	_	
18.020 0.00000	1471.2 0.97111	314,13 0,05610	<u>.</u>		_		_	_	
18,500 0.00000	1450.0 0.07111	322.31 0.85610	-	-	***	-	-	•	**
19.000 0.00000	1470_0 0.02111	330,70 0.05610	-	**	te	•	•	•	e.
14.500 0.00000	1509.11 0. 77111	337.76 7.85610	-	**	••	-	•	~	8.
			-	4 (2)	67	•	-		•
50,000 0.cunna	1540.0.0.97111	347,66 0.84610	_		50	• 640	47%	-	•

		•				•					• • •	** ** **	•	•		. •	
•	TIME	DDEFPI	PTFPI	VPCPFP	DIFPI	ENFPI											
-	£+cc	£+60	[+c^	[+00	[+10	ב+סר			4 40 47	.			• •	•	- 13	** -	•
•					400 100 1000 M			-	* 44 .				-	• • •	- 4	** **	ب .
-	_0.0 <u>.</u> 0.	0.3052		0.62002	378.27	0.50771											
_	0.500	0.3777	. 773.3	0.65066	181.68	20.57735						•					
·	1.020	0.3719	775.0	2.65067	105,18	a. 20776			0						•	• •	, «
	1.500	0.3651	1,00.7	0,0,0,0,0	100 77	0.20001						-,	• •		•	₩ 43) q ı
-	90 PP W				~						• •				-		
	5.000	0.3571		_0.45.54		0.27827										** •	
-	5.500	0.3479	_030.0	0.65077	196.76	0.28814										.	
-	3.000	0.3371	862.1	0.65001	200.16	224425											_
_	3,500	0.3247	_ ัยบุง_ัว	ี^. เกอกัง	2011.17	0.28830				(• •		
44	4.000	.0.3111	723.1	<u>ีดูเปรียก</u> เ	208 20	0.28880				- , - ·	:		-, -		-	• •	.
**	4.500	0.2757		ี จู ได้ 876		0.28850			* * *	;				-	• -		
-	-											- ,					
-	5.000	0.2790	1002.5	ื้อ • ค. นิง บิร	514.23	0.58061			- ~ -	. .							
_	5.500	0.2613	1051.2	_0,65900	\$21.30	0.28073			<u>.</u> •								
	6,000	0.2430	1103.2	_ีว วา	252,00	ก. 28กกก								•		• •	, •
-	6.500	0.2229	1164.7	ัก เรียกิจรัก [*]	239.75	J. 28196	en 44 es es	•	** ** **	-	•		• •	• • •	'	·~ .	. •
-	7.000	1.0000		5.05727		0.500119			• • •	• •			-		- 49	- 4	
67)																•	
•		1.0000		_0.62371		0.28772								.			
•	8.000	1.0000	1433.7	_0.65333	245.27	0.20037								•	•		
_	8.500	1.0000	1455.2	0.66031	251.22	0.29106					1					- "	
	4.000	1.0000	1478.5	7.66076	256.73	0.27180			- 43,00,				· •	-,			r E
-	9,500	1.0000	1503 0	0.66112		0.27262					* ** *		•	• . •	r) ee .		
-		1.0000		0.66156						- -						-	
-	10.000					0.50243					:						
_	10.500	1.0000	1561.1	J.0650V	274.30	1.27144		<u> </u>									
_	11.000	1.0000	1573.1	_0.66262	230.53	0.23249									•		
-	11.500	1.0000	1526.5	0.66317	5114.06	0.27653				-, -			-		•		•
•	12.000	1.0000	1660.3	0.6574	203 50	0.20760	7	es "## •					-	- ••	⇒" ra	- 4	.
-		1.0000		0.06431					- 4					• . • •	-		
te	12.500		te to 10			. 0 • 5 <u>5</u> 11 6 9 .	en des des de		w en en	en en (-				
٠ 🕳	13.000	1.0000	1728.3	_ r . 6 h / B ? _	307.51	0.20079											
-	13,500	1.0000	1763.1	5.665	317.01	0.30171	•	•	•				•	•	_		
_	19.000	1.0000	1709.1	0,06607	322.35	0.30203				-	• • •					- "	· •
to	14.500	1.0000	1075.0	0.06067	337.14	0.30317	- 4				• • . «		* •	• • • •	- **	~ •	• •
•	15.000	1.0000		0.64728	~ ~ ~ ~ ~	0.30434				-					-	~ -	• -
-				- i							- ** •			• •		-	
٠ 🕳	15.500	1.0000		0.6771		0.30554			۰ 🕳	~ • •	•				, ,	Cob es	ક 🗨
_	10.000	1.0000	1947.7	_0.67872	355.13	0.30676											۰,۰
•	10.500	1.0000	1907.1	1.06721	364.04	0.30002	_										•
74	17.000	1.0000	2021.4	้ก, 60.9กก	373.70	0.30730			- # 4					• ••	- 10	- *	. •
~	17.500	1.0000	2046.7	7,67057		0.31061				45 9 7 6					* **)		• •
•	14,000	1.0000		0.07170		0.31195	··		n			• 9 c7 C 7	· • •	• ••		• 4	
•	90 pr pr				·			-	'-	-				9 9 0 0	.	(A) (A)	, -
•	10,550	1.0000		0,67200	·	0.31333	- * * *		16 en es	* ** **					> ••		ν α
-	14.000	1.0000		C.67273	113.48	0.3[473		-	Per 1870 1880							* *	
	19.500	1.0000	9.502.6	0,673/17	124.45	0.31017											
	20,000	1.0000	์ กิรกิจ แ	0,67426	นิวรี ก็อ	0.31764	 	~~ W. *	- 17 64	-	*	- 40 40	_ •	-, == (- 00	GP 44	۰ ه
**	60 to U			100 pr 100 tax 000	64 64 49 G			**		•• v, c		• • •	*	• •	P 140	65 M	. 6
			•														

CONCLUSIONES Y RECOMENDACIONES.

Después de haber aplicado el Modelo de Desarrollo Industrial Regional (DESIR), al Estado de Aguascalientes, podemos concluir de manera general que:

- Los modelos urbano-regionales son una herramienta . eficaz en la toma de decisiones.
- Los modelos urbano-regionales pueden ser utilizados
 para la definición de políticas regionales y urbanas.
- Los modelos urbano-regionales evalúan en forma convincente las políticas regionales y urbanas.
- Los modelos urbano-regionales en forma aislada tienen un contribución escasa al Desarrollo Industrial
 Nacional.

Con fundamento en este modelo se recomienda:

- La elaboración de modelos para definir y evaluar políticas económicas y sociales.
- El uso de modelos integrados, como una forma efectiva para coordinar las políticas económicas, culturales y sociales.
- El uso contínuo, la ampliación y extensión de los modelos existentes.
- La implementación de los modelos existentes en computado a, para tener un uso rápido y oportuno de
 los mismos.

A N E X D No. 1 (A)

DESIR: LISTA DE VARIABLES.

I SUBESTRUCTURA: Demanda de terrenos Industriales

	DTI 1	Demanda de terrenos industriales
	DSTI	Demanda satisfecha de terrenos industriales
	IPI 1	Implementación de terrenos industriales
	FCPEMC	Factor de conversión en metros cuadrados
	AIE 1	Ampliación de las industrias existentes
	FCAI	Factor de conversión para la ampliación de industrias
	RIPE	Recursos Inexplotados o poco explotados
	DN	Dotación natural
	NCE	Nivel y calidad de la explotación
	FCMYR	Factor de crecimiento del mercado y de recursos inexplotados o poco explotados
	ENPI	Elaboración de nuevos proyectos industriales
	FCEP	Factor de conversión de elaboración de proyectos
	FIADC .	Factor de Implementación de proyectos de acuerdo a la disponibilidad de capital
٠	PFDP	Porcentaje de factibilidad de implementación del proyecto
	CMLP	Crecimiento del mercado local de productos
	FNIPL	Factor del nivel de ingresos de la población local
	FADP	Factor de actitud de la población
	DDC	Disponibilidad de capital
	FCP	Factor de conversión de proyectos
	RP	Rentabilidad del proyecto
	CPDDZI	Capital privado de que se dispone para establecerse dentro de la zona industrial
	ASPI 1	Apoyo del sector privado
	FDP	Facilidad de obtener préstamos
	ASPI	Apoyo del sector público
	EDIR .	Estrategias de desarrollo industrial regional
	PZ	Planificación yozonificación
	FPB0	Fider. PIDER, BANOBRAS, y otras instituciones
	FG	Factor geopolitico
	FAAMO	Factor de aspectos asociados a la mano de obra .
	CMAA	Aspectos asociados a la mano de obra
	FLL.	Factor de legislación laboral
	DMO	Disponibilidad de mano de obra

Factor de Uniones y Sindicatos

Factor de nivel de Salarios

FUYS

FNS

FPRO Factor de productividad

POb Población

TNN Tasa normal de natalidad
TNM Tasa normal de mortalidad
NDL Nivel de la demanda local

FCND Factor de conversión de nivel de demanda

DIBC Demanda insatisfecha de bienes de consumo duradero y

no duradero

FCDL Factor de conversión de la demanda local

NOL. Nivel de la oferta local

FCIEB Factor de conversión de la industria en cantidad

de bienes.

PDP Precio del producto

CPP ... Costo del precio del producto

CMELP Crecimiento del mercado extralocal de productos
FCIC Factor de conversión industrial del crecimiento

FCDP Factor de competitibilidad del producto

II SUBESTRUCTURA OFERTA DE TERRENOS INDUSTRIALES Y FUERA DEL PARQUE

OTFPI	Oferta de terrenos fuera del parque industrial
CTOFPI	Cantidad de tierras ocupadas fuera del parque industrial
CTDFPI	Cantidad de terrenos desocupados fuera del parque industrial
NRI	Necesidades de relocalización
ERTFPI .	Especulación realizada con los terrenos fuera del parque industrial
EDT	Especulación de terrenos
стогр	Cantidad de tierra ocupada para usos industriales fuera del parque industrial
FCPF	Problemas financieros .
FFP	Factores de fuera del parque industrial
PCYL	Problemas de crédito y liquidez
IOFPI	Industrias en Operación fuera del parque industrial
FCF10	Factor de conversión de fuera de las industrias en operación
IECFPI	Industrias en construcción fuera del parque industrial
FCFIC	Factor de conversión de fuera de las industrias en construcción
ICPFPI	Industrias en construcción programada fuera del parque industrial
FCFICP	Factor de construcción de fuera de las industrias en construcción programada
CDEFPI	Cantidad de industrias que prefieren establecerse fuera del parque industrial
DEFPI	Decisión final de establecerse fuera del parque indus- trial
CFR	Condiciones físicas de la región
RLPE	Restricciones legales impuestas por el estado

III SUBESTRUCTURA OFERTA DE TERRENOS DENTRO DEL PARQUE INDUSTRIAL

OTDP13	Oferta de terrenos dentro del parque industrial
CTDPI	Cantidad de tierras desocupadas dentro del parque industrial
CTOPI	Cantidad de tierras ocupadas del parque industrial
INCEC	Industrias que no cumplieron con el contrato
ICPDPI	Industrias en construcción programada
FCICP	Factor de conversión de las industrias en construc- ción programada
IECPI	Industrias en construcción
FCIC	Factor de conversión de las industrias en construcción
IOPI	Industria en operación dentro del parque industrial
FCI0	Factor de conversión de las industrias en operación
CIDEPI	Cantidad de industrias que desean establecerse en el parque industrial
DEDPI	Decisión final de establecerse en el parque industrial
FP	Factores i rsonales
FOI	Facilidades de obtener incentivos

MDPI

PFP

DDEFPI	Decisión de establecerse fuera del parque industrial
DEDPI	Decisión de establecerse dentro del parque industrial
FEFPI	Factor para establecerse fuera del parque industrial
FTFPI	Factor del precio del terreno fuera del parque indus- trial
PTFPI	Precio del terreno fuera del parque industrial
FCL	C1 ima
FPLU	Factor de plusvalia
URPP	Ubicación del terreno con respecto al centro de pobla- ción
MDR	Magnitud de la región
PIT	Precio inicial del terreno
VPCPFP	Ventaja para el proceso de comercialización de productos fuera del parque industrial
URC	Ubicación del terreno con respecto al centro de consumo fuera del parque industrial
DIFPI	Disponibilidad de infraestructura fuera del parque in- dustrial
FM	Facilidades médicas
FR	Facilidades recreativas
FC	Facilidades culturales
DSTFPI	Di ponibilidad de los servicios y transportes existentes uera del parque
ST	Servicios de transporte
AC	Combustible
SD	Drenaje
AA	Abastecimiento de agua
EE	Energía eléctrica
TEL	Teléfonos
FIOFP	Factor de industrias en operación fuera del parque
EAFPI	Economías de aglomeración fuera del parque industrial
CC	Código de Construcción
PTDPI	Precio del terreno dentro del parque industrial
URCP	Ubicación relativa al centro de población del parque

Magnitud del parque industrial

Plan financiero del proyecto

PITP Precio inicial del terreno

FPTDI Factor del precio del terreno dentro del parque

industrial

VPCPDP Ventaja del proceso de comercialización de produc-

tos dentro del parque

URCP Ubicación del terreno con respecto al centro de

consumo dentro del parque industrial

DIDPI Disponibilidad de infraestructura dentro del parque

industrial

FMP Facilidades médicas del parque

FRP Facilidades recreativas del parque

FCP Facilidades culturales del parque

DSTDPI Disponibilidad de los servicios y transportes exis-

tentes dentro del parque industrial

STP Servicios y transportes para el parque

ACP Combustible en el parque

SDP Drenaje en el parque

AAP Agua en el parque

EEP Energía eléctrica en el parque

TELP Teléfonos en el parque

EADPI Economías de Aglomeración dentro del parque industrial

PE1 Planificación y zonificación del parque industrial

CCI Código de construcción del parque industrial

FIOP Factor de las industrias en operación del parque indus-

trial

FEDPI Factor para establecerse dentro del parque industrial

A N E X D No. 1 (B)

DESIR: LISTA DE ECUACIONES.

```
DTIL.K
             CLIP (30.5, DTI.K, 10, DTI.K)
DII.K
             IPI.K + AIE.K
IPI 1.K
             CLIP (25.56, T PI.K, 8, IPC, K)
              (ENPI.K) (FIADC.K) (FCPEMC) (PFDP)
IPI . K
              1.65
FCPEMC
             0.92
PFDP
              TABLE (FIADCT, DDC.K, 100, 280, 36)
FIADO.K
              .91.92/.94/96/.98/1
FIADOT*
DDC. K
              (CPDDZI.K) (RP) CENPII.K/(CENPI 1.K) (FCP)))
ENPI 1.K
              SWITCH (UNOS, ENPI.K, UD)
UD
CPDDZI.K
              (PDDZI.J + CDI) (ASPI.JK + ASP.JK)
              136
CPDDZI
                         . .
RP
              0.90
FCP
              1.11
              0.90
FDP ·
RAF.K
              (ASPI 1.K + ASPI.K) / DDC.K
              (CPDDZI) (.06) (FDP) (EDIR.K)
ASPI 1.K
              (CPDDZI (.18) (FDP) (EDIR.K)
ASPI.K
ASPI.KL
              (CPDOZI) (.006) (FDP) (EDIR.K)
ASP.KL
              (CPDDZI) (.018) (FDP) (EDCR.K)
EDIR.K
              (FG + FPBO + PZ + PZI + FAAMO.K) / (FG + FPBO + PZ)
              .80
FG
FPBO
              1.10
PZ
              0.60
FAAMO.K
              TABLE (FAAMOT, AAMO.K, 0,450,90)
              0/0.5/1.0/1.5/2.0/2.5
FAAMOT *
AAMO .K
            · (POB.K) (DMO) (FLL+ FUYS + FPRO + FNS) /4
DMO
              0.42
FLL
              1.00
FUYS
              1.00
FPRO
              1.10
FNS
              1.05
AIE1.K
              CLIP (4.93, AIE. K, 2, AIE.K)
              IOFPI.K + IOPI.K) (FCMYR.K) (FCA1)
ALE.K
FCAL
              0.0874
FCMYR.K
              TABLE (FCMYRT, (CMLP.K + (MELP.K + RIPE), 1.4, 2.5, 22)
```

```
0/2/.4/.6/.8/1
FCMYRT*
              ( DIBCI.K) (FCMYR.K) (FCEP)
ENPI.K
FCEP
              2.1326
DIBC.K
              (LIP (83.30, DIBCL.K,83,30,DIBCL.K)
DIBCI.K
             NDL.K-NOL.K
FCNOL.K
             TABLE (FCNOLT, (IOPI, K + IOFPI.K), 1000,2000,100)
FCNOLT*
              1/.95/9/.85/.8/.75/.76/.77/.77/.77/.77/
NOL.K
              (IOPI.K+10 FPI.K) (FCIEB) (FCNOL.K)
FCIEB
             0.408
NDL.K
              (POB.K) (FCND)
FCND
              1.2
RIPE
              (DN + NCE)/2
DN
             0.015
NCE
             0.010
TCML
             BOXCYC (2,50)
TCML*
              1322/661/
CMELP.K
              (TCML*2.K/TCMLI.K) (FCIC) (FCDP.K)
TCMLI.K
              SWITCH (UNOS, TCML*1.K, TCML*1.K)
UNOS
              1
FCIC
              1.01
10
             BOXLIN (2.52)
10*
             %
10* 1.K
              10 PI.K + 10FPI.K
TCML*2.K
              10*1.K
CMLP.K
              (FADP + FNIPL + FCIC) (TCML*2.K/TCML1.K)
FADP
              0.5
              0.3
FNIPL
FCDP.K
              TABLE (CDPT, PDP.K, 8, 12, 0.8)
CDPT*
              0/1.1/1.15/1.20/1.24/1.28
PDP.K
              (CDPI) (I + FCDL.K)
CDPI
FCDL.K
              TABLE (FCDLT, NDL.K, 350, 1190, 168)
FCDLT*
              0/.10/.20/.30/.40/.50
DDEFPI.K
              (LIP (DDEFPI.K, 1,2244, (TOPI.K)
DEDPI.K
              CLTP (DEDPI1. K,02244, (TOPI.K)
DDEFPI.K
              FEFPI.K/TFE.K
```

TFE.K

FEFPI.K + FEDPI.K

```
DEDPII.K
               FEDPI.K/TFE.K
FTFPI.K
               TABLE (FTFPIT, PTFPI, K, 500, 2500, 400)
FTFPIT*
               060/0. 55/0.50/0.45/0.40/0.35
FEFPI.K
               (DIFPI.K) (FTFPI.K)(VPCPFP.K)(DSIFPI)(EAFPI.K)
PTEPI.K
               (PIT.K)(CULP + URC + FPLU)/3 + (2-(OTFPI.K)(0.66)/MOR))
PIT.K
               (CMLP.K)(552)
ULP
               0.04
URC
               0.05
FPLU
               .04
MDR
               176250
VPCPFCP.K
               (1+VRC)(CDSTFPI+EAFPI.K)/2)
               (CFC + FR+FM)/3)(CPDDZI.K)(EDIR.K)
DIFPI.K
FC
               1.00
FR
               1.00
FM:
               1.00
DSTFPI
               (AA+EE+TEL+SD+A(+ST)/6
AA
               1.00
EE
               1.00
TEL
               0.85
SD
               1.00
AC
               .95
ST
               1.00
FIOFP.K
               TABLE (FIOFPI, IOFPI. KO, 8000, 1600)
FIOFPT*
               .5/.6/.7/.8/.9/1
EAFPI.K '
               (FIOFD.K) (PZ) (CC)
CC
               90
FPTDI.K
               TABLE (PIDPIT, PIDPI.K 220,1450,246)
PIDPIT*
                .50/.60/.70/.80/.90/1
FEDPI.K
               (FPTDI.K)(VPCPDP.K)(DIDPI.K)(DSTDPI) EADPI.K)
PTDI.K
               (PITP.K)(CPFP + URLP + URC + FPLU)/4 + (2-OTDPR.KMDPI))
OTDP12.K
               MIN(2640,0TDP 13.K)
PFP
                .04
PITP.K
               (CMLP.K) (254)
URLP
                .03
MDPI
               2244
URLP
               0.02
VPCPDP.K
               (I+URCP)(CDSTDPI+EADPI.K)/2)
DIDPI.K
                (CFCPI + FRP + FMP)/3) (CPDDZI,K)(EDIR.K)
```

```
FCPI
             .90
FRP
             08.
FMP
             .70
DSTDPI
             (AAP+EED+TELP+SDP+ACP+STP)/16.
AAP
             1.00
EEP
             1.00
TELP
             0.70
SDP
             1.00
ACP
              1.00
STP
             1.00
             TABLE (FIOPIT, IOPI.K, 0.1000, 200)
FIOPI.K
FIOPIT*
             0.40/0.52/0.64/0.76/0.88/1
EADPI.K
              (FIOPI.K) (PZI) (CCI)
PZ1
              1.00
CCI
              1.00
              (CIP CO, OTDP15.K, 0, OTDP15.K)
OTDPB.K.
OTDP15.K
            . OTDP14.K-340
OTDP14.K
              (LIP CO, OTD PI1.K, 175, OTDPI1)
             OTDP11.J+(DT) (CTDPI.JK-DEPI.JK)
OTDDI1.K
OTDP11
              1430
              (10PI.K) (NRI)+(ICPDPC.K) (INCE)
CTDPI.KL
              (PFDP) (PCYL) (PFP)
INCE
PCYL
              000
CTOPI.K
              ICPDPI.K + ECPI.K + IOPC.K
IOPI.K
              (FCIO) (IECPI.K)
FCIO
              0.822
              (FCICO) (ICPDPI.K)
IECPI,K
FCICO
              0.681
              (FCICP) (CIDEPI.K)
ICPDPI.K
FCICP
              0.901
CIDEPI.K
              CIDEPI.J + CDT) ( DEPI.JK)
CIDEPI
              403
              (LIP (0.DEDP11, K, 0, OTD P13.K)
DEDP15.K
DEPI.KL
              (DTI.K) (DEDP15.15) (FP) (FOI)
FP
              01.10
FOI
              1.00
              OTFPI.J+(DI)(CTDFPI.JK-DEFPI.JK)
OTFPI.K
OTFP1
              174300
```

```
CTDFPI.KL
             (JCPF) (IOFPI.K)
             (CTOFP.K) (ERTFPI.K) (1-NRI)
CTOFPI.KL
NRI
             .001
             (PFP) (PCYL) (PFDP) (FFP)
ICPF
FFP
             0.90
             TABLE CERTFPT, ERTFPI.K, 172600, 174300, 340)
ERTFPI.K
             1.05/1.06/1.07/1.08/1.09/1.1
ERTFPT*
ERTFPI.K
             (OTFPI.K) (EDT) (1-FPLU)
EDT
             0.977
CTOFPI.K
             CTOFP.K + 5000
CTOFP.K
             IOFPI.K + IECFPI.K+ICPFPI.K
IOFP11.K
             5000 + 10 FPI.K
IOFPI.K
             (IECFPI.K (FCF10)
FCF10
             0.90
             (ICPFPI.K) (FCFIC)
IECFPI.K
FCFIC
             0.90
ICPFPI.K
             (IDEFPI.K) (FCFICP)
FCFICP
             0.90
CDEFPI.K
             CDEFDI.J+CDI) (DEFPI.JK)
CDEFPI
             728
             (ERTFPI.K) (DTI.K) (CFR) (RIPE) (CPDZI) (DDEFPI.K)
DEFPI.KL
CFR
             1.00
RLPE
             01.00
CPDZI
             0.15
POB.K
             POB.J + CDT) (TN.JK-TM.JK)
POB.
             321
TN.KL
             (POB.K) (1+TNN)
TNN
             0.0493
             (POB.K) (I.TNM)
TM.KL
TNM
             0.0081
```

A N E X O No. 2

DESIR: CALCULO DE PARAMETROS.

El cálculo de los diferentes coeficientes que aparecen en el módulo con una breve explicación, se presentan a continuación:

PFDP:

El porcentaje de factibilidad del proyecto se calculó en base a las empresas que perduran (que no han dejado de operar) y del total de empresas que se establecieron en un mismo período de tiempo de la siguiente manera:

En este caso se consideró que de 907 socios existentes en el Directorio de CANACINTRA, para el Estado de Aguascalientes, 73 habían desaparecido por incosteabilidad (quiebras, escasez de insumos, falta de mano
de obra calificada, etc.). así:

$$PFDP = \frac{834}{907} = 0.92$$

FCPEMC:

Para el Factor de Conversión de las Industrias Implementadas (cuya medida se da en Km.² construidos, por no existir un adecuado conocimiento de las industrias) se dividió el área industrial de la ciudad de Aguascalientes (que es de 1496.55 Km²) entre los 907 establecimientos industriales - registrados por CANACINTRA, dándonos un promedio de 1.65 - Km² por empresa.

FCPEMC = 1,496.55/907 = 1.65

RP:

La Rentabilidad de los Proyectos se obtuvo en base a los proyectos previamente elaborados y que se implementaron -(29), del total de proyectos de inversión elaborados (36),
de la siguiente forma:

RP = 29/36 = 0.90

FCP:

El Factor de Conversión de los Proyectos con respecto al -capital se calcula en base a la inversión realizada por --las empresas existentes (108 millones invirtieron) de la -siguiente forma:

FCP = 108/97 = 1.11

FDP:

La Facilidad para obtener préstamos se evaluó de acuerdo - con el otorgamiento de créditos autorizados, del total de créditos solí itados (de 18 solicitantes de crédito a ---- NAFINSA, a 16 les resolvieron favorablemente):

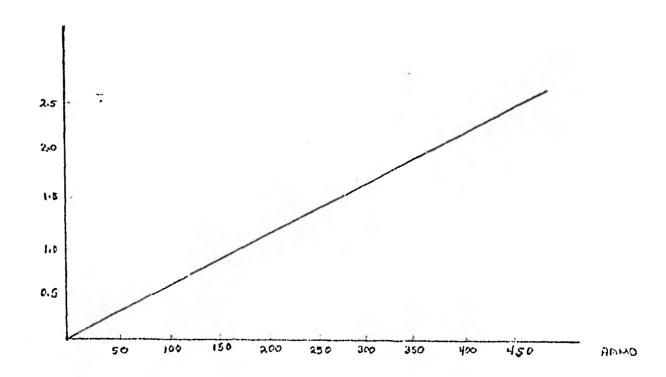
FDP = 16/18 = 0.90

FG:

El Factor Geopolítico, dificil de medir se consideró como subjetivo y se le dió un valor del 80%, lo que nos indica

el grado de preferencia que tiene el industrial para invertir en el Estado de Aguascalientes, en donde en efecto, se tiene un clima propicio para invertir, con grandes expectativas de desarrollo.

FPBO:


La ayuda que proporcionan las Instituciones de Crédito por medio de la asesoría brindada para el desarrollo de nuevos proyectos industriales en la Entidad, se consideró como sobresaliente y se le otorgó el valor de 1.10 (medida subjetiva).

PZ:

La planificación y zonificación es una medida que se calcula de la evaluación de los ugares donde se asienta la industria, se cuantificó de una manera subjetiva en un 60%, debido a que el parque industrial (que es la única zona planificada) se encuentra en la zona residencial, cuando debería estar en la zona popular.

FAAMO:

Los aspectos asociados con la mano de obra, se calcularon de acuerdo con la población económicamente activa, la cual fué de 77 093 personas en 1960, 86 961 en 1970 y se estima para 1980 en 100 000, la forma como este factor ayuda a la implementación de nuevas industrias se explica por medio - de la gráfica No. 1 que a continuación se presenta:

D M 0:

Con respecto a la disponibilidad de mano de obra, se estimó el valor por medio de la población mayor de 12 años (a<u>l</u>
rededor de 176 000 habitantes) dividido entre la población
total (aproximadamente 420 mil habitantes) y el resultado
fué de 0.42% habitantes en edad de laborar.

FLL:

La legislación laboral, no ejerce ningún efecto en el esta blecimiento de industrias, (no es restrictiva), por lo que se consideró de 1 (que es un valor indiferente que no altera a la cantidad por la que se multiplique).

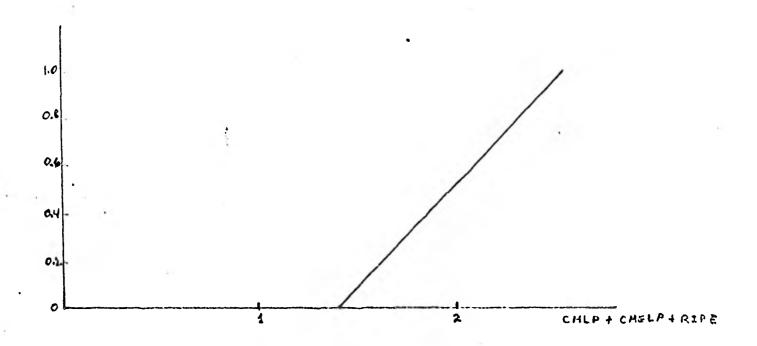
FUYS:

Las Uniones y Sindicatos, no influyen en ninguna forma en la motivación para el establecimiento de industrias (en la Entidad), lo que también se le asignó un valor de 1.

FPRO:

El factor de productividad se estimó en base a la influencia conjunta de los salarios (que son relativamente bajos) y la capacidad de producción de las personas con un índice de productividad resultante de 1.05.

FCAI:


La ampliación de industrias se calculó a partir de las 907 empresas establecidas en la Entidad, de las cuales se habían ampliado 79, por tanto:

FCAI = 79/907 = 8.7%

CMLP - CMELP - RIPE:

El crecimiento del mercado local de productos, el crecimiento del mercado externo y los recursos existentes en la

Entidad de Aguascaliertes, son factores que influyen en la instalación de nuevas industrias y su efecto colateral conjunto se aprecia en la Gráfica No. 2:

FCEP:

Con respecto a la conversión en el número de proyectos implementados (201) del total de proyectos elaborados para el Estado (628) el resultado obtenido fué:

FCEP = 201/678 = 0.32

FCIEB:

La conversión en bienes realizada a través de la industria se estimó en base al cociente del valor de la producción - total bruta de 370 millones de pesos, entre las 907 industrias existentes:

FCIEB = 370/907 = 0.408

FCND:

La conversión del nivel de demanda externa, fué calculado en base a los 370 millones de pesos (producción total bruta de la indificia); de los cuales alrededor de 74 millo--nes fueron exportados, por tanto:

FCND = 1 + 74/370 = 1.2

DN - NCE:

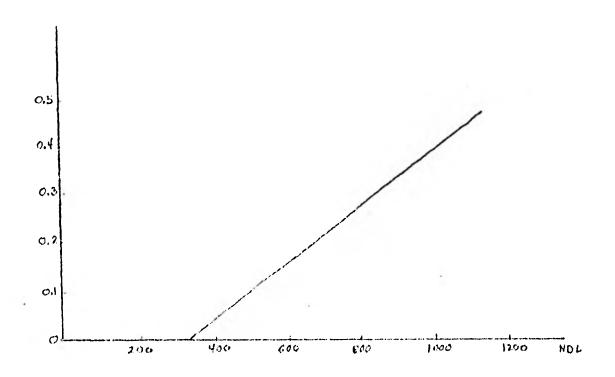
La dotación natural de minerales es difícil de cuantificar,
Aguascalientes es una región que en la antiguedad fué fuer
temente explotada, pero en la actualidad es muy pobre en -

recursos minerales, por lo que se calculó en 1.5% el porcentaje de riqueza mineral considerándolo con respecto al total nacional. El nivel y calidad de la explotación es otro factor subjetivo a considerar y se estimó en base a los recursos minerales existentes y a las técnicas inadecuadas que se usan en la explotación, obteniéndose un resultado de sólo el 10%.

FCIC:

El factor de conversión del crecimiento industrial, se calcula en base al crecimiento promedio anual de los últimos 10 años, resultando ser del 10% y por tanto, el FCIC=1.01.

FADP:


El factor de actitud de la población hacia la creación de nuevas industrias, se obtiene en este caso en forma subjetiva y debido al aspecto tradicionalista que persiste en la actualidad, se considera del 50% y en consecuencia, FADP = 0.50.

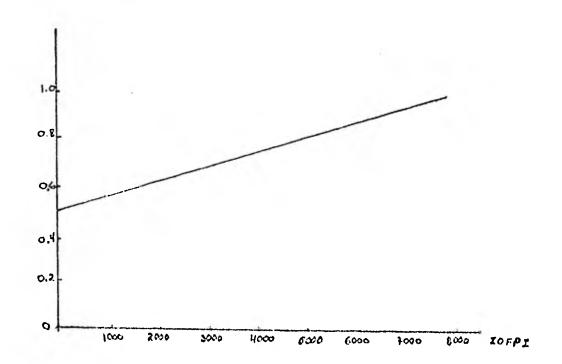
FINPL:

El factor del nivel de ingresos de la población local, se determinó de acuerdo al índice del salario mínimo del Esta do de 328, expresado en miles, por tanto, FINPL = 0.328

FCDL:

El factor de conversión del nivel de demanda, se calculó - en base a los artículos que más consume la familia, y de las 70,000 familias existentes, se consumen un mínimo de - 350 artículos, pudiendo llegar a 1190 mil en el corto plazo. El efecto estimado se presenta en la Gráfica No. 3:

FC - FR - FM:

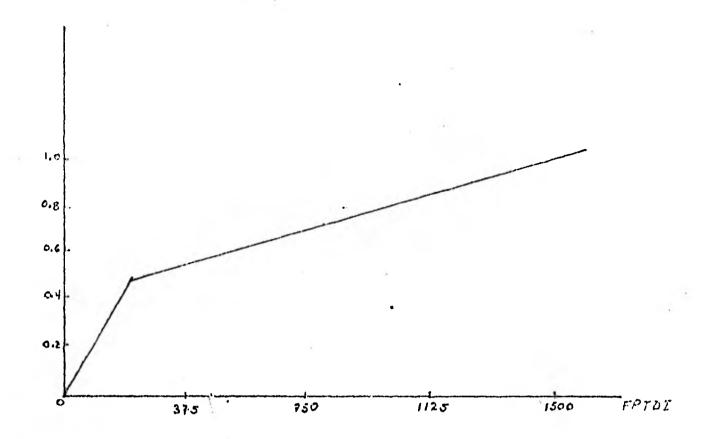

En la disponibilidad de infraestructura fuera del parque - industrial intervienen diversos factores, a los cuales se da una calificación que se compara con la dada dentro del parque industrial, para este caso las facilidades cultura-les (FC), facilidades recreativas (FR) y facilidades médicas (FM), recibieron una calificación de 1, tanto para el parque industrial como para el centro de población.

AA - EE - TEL - SD - AC - ST:

Para la disponibilidad de los servicios y transportes existentes dentro y fuera del parque industrial, el procedi--miento seguido fué el de otorgar a cada uno de los servi-cios una calificación de acuerdo al grado de eficiencia que
tenga. Los servicios y transportes considerados fueron: el abastecimiento de agua (AA= 1.00), la energía eléctrica
(EE= 1.00), el teléfono (TEL= 0.85), el servicio de drenaje (SD= 1.00), el combustible (AC= 0.95) y el servicio de
transporte (ST= 1.00)

FIOP:

Para el factor de industrias en operación fuera del parque industrial, se procedió a estimarlo de acuerdo a la magnitud de la región para las industrias en operación; en la Gráfica No. 4 se muestra su comportamiento:


C C :

Con respecto al Código de construcción, el valor subjetivo tomado fué del 90% para el centro de población, al conside rar las exigencias contenidas dentro del código para las - construcciones industriales.

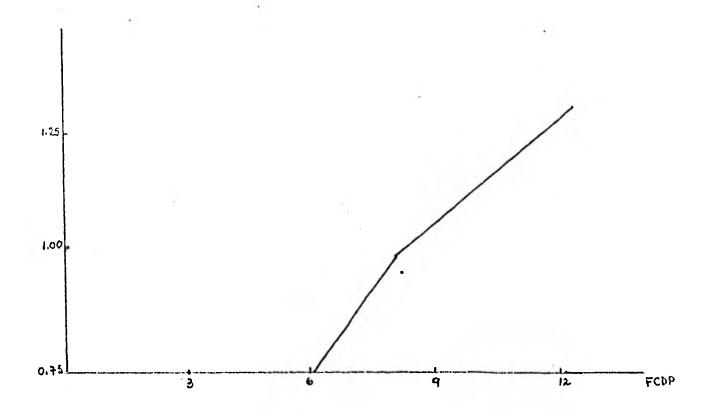
Después de haber obtenido los valores de los parámetros -existentes en el centro de población, corresponde calcular
los parámetros dentro del parque industrial.

FPTDI:

En lo referente al factor del precio del terreno dentro -del parque industrial, los valores serán crecientes, en -comparación con el mismo factor dado para fuera del parque
industrial (centro de población) cuyos valores serán tam-bién crecientes pero mucho más que los del parque indus--trial. La estimación de los valores se puede ver en la -Gráfica No. 5.

FCP - FRP - FMP:

Para la disponibilidad de infraestructura dentro del parque industrial, el valor dado para las facilidades cultura les fué de 0.90 (FC=1.0; para el centro de población), por no tener las facilidades existentes en el centro de población. Para las facilidades recreativas, se le otorgó una calificación de 0.80 (FR= 1.0) por existir pocos lugares de esparcimiento dentro del parque y por último las facilidades médicas tuvieron una calificación de 0.70 (FM=1.00),


ya que el centro de población brinda bastante más servicios de este tipo.

AAP - EEP - TELP- SOP - ACP - STP:

Para el abastecimiento de agua, la energía eléctrica, el servicio de drenaje y los ser vicios de transporte, la calificación dada fué la misma, solamente el teléfono reci-bió calificación más baja dentro del parque, 0.70 (0.80 -fuera del parque) por ser aún más problemática, mientras el combustible tenía una calificación de 1 dentro del parque (0.95 fuera del parque), por las facilidades dadas por
el gobierno, a las personas que se establecieron dentro -del parque.

FCDP:

Otro factor importante es la competitividad del producto, el cual a través del tiempo aunque va aumentando, sus in-crementos son cada vez menores, el comportamiento del factor se puede observar en la Gráfica No. 6.

FP:

Los factores personales que influyen en la decisión de establecerse en el parque industrial, se calcularon en forma subjetiva con valor de 1.10. F 0 I:

Las facilidades para obtener incentivos por ser las mismas en el centro de población y en el parque industrial, se -- consideran iguales a la unidad.

OTFPI

La oferta de terrenos fuera del parque industrial se consideró como la magnitud tenida por el centro de población -- que es prácticamente todo el municipio y que comprende --- 174,300 Has.

NRI:

De los 907 establecimientos industriales solamente 9 se am pliaron, entendiéndose por esto que compraron terrenos vecinos, el factor se cuantifica como:

NRI = 9/907 = .01

FFP - EDT - CFR:

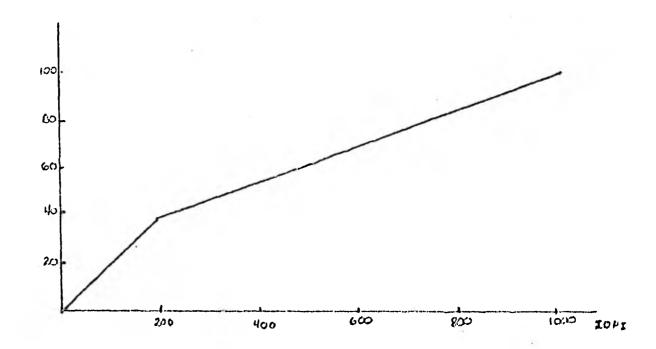
Existen además otros dos factores subjetivos que se refieren a los factores que influyen para invertir fuera del -parque y que en esta ocasión se les dió un valor de 0.90.
que es una calificación menor a la unidad, porque el go--bierno está desalentando las inversiones en el centro de población y fomentándolas en el parque industrial. Con -respecto a la especulación de terrenos, ésta es casi inexis
tente y se consideró de 0.977; las condiciones físicas de
la región, y las restricciones legales no influyen en el establecimiento de la industria en el centro de población
por lo cual se les dá un valor de 1.

POB - TN - TM:

La población considerada fué de 321,000 habitantes con una tasa de natalidad (TN) de 4.93% y una tasa de mortalidad - (TM) de 0.8%

ULP - URC - MDPI - FCL - FPLU:

Con respecto a los factores que influyen sobre el precio del terreno dentro del parque industrial, tenemos el plan financiero del proyecto, que influye en un 5%, la ubicación relativa del centro de población del parque de 0.03 (ULP=0.4) teniendo mayor calificación dentro del centro de población; como era de esperarse, la ubicación del terreno con respecto al centro de consumo fué de 0.05 (URC=0.05) que es el mismo tanto para el centro de población como para la ciudad industrial, porque tanto al parque industrial, como en la ciudad, las personas acuden a surtirse.


La magnitud del parque industrial (MDPI) se calculó en 2 244 Has., por último, factores como el clima(FCL) y la plusvalía (FPLU) tuvieron el mismo valor dentro y fuera del parque industrial.

PZ1 - CC1:

Por ser más fácil obtenerlo en el parque industrial y constituir uno de los atractivos del parque, la planificación y zonificación recibieron calificación de 1 (PZ1=1.00, CCI = 1.00).

FIOPI:

Con respecto al factor de las industrias en operación en - el parque industrial se procedió a darle un efecto casi -- parecido al dado al factor del centro de población, y se - tomó en consideración que en un principio se prefería el - centro de población al parque industrial por lo que su valor en ese lapso es menor, ver Gráfica No. 7.

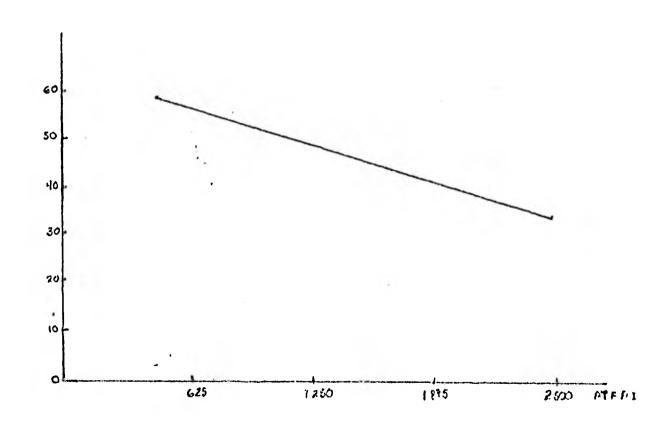
0 T D P I 3:

La oferta de terrenos industriales en la actualidad se fijó en 1,430 h y por tanto:

OTDPI3 = 1,430

1...

P. C Y L:

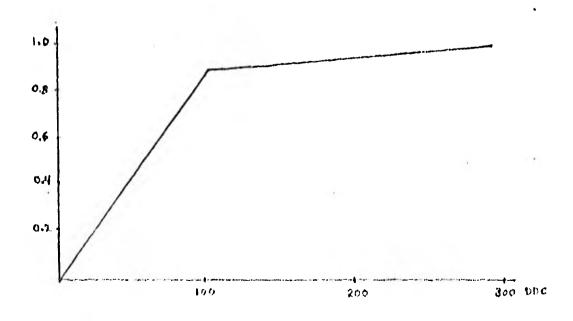

Los problemas de crédito y liquidez por no existir se consideran nulos (PCYL = 0)

FCPP:

El costo del precio del producto se calculó con respecto a los requerimientos básicos que cada familia tiene como son: televisión, plancha, lavadora, licuadora, estufa, a los -- cuales se les calcula un precio promedio de \$ 18,000.00 -- (estimado en la Entidad).

FTFPI:

El factor del precio fuera del parque industrial se grafica en sentido inverso al acostumbrado, ya que se toma en cuenta que entre más vale el producto, menos ayuda a ser competitivo. El precio se calcula que fluctúa para un artículo eléctrico simple (lavadora, plancha, termostato) en
tre 500 y 5,000 pesos; ver Gráfica No. 8



URCP - URPP- FPLU - FCL:

Otra serie de factores subjetivos que se toman en cuenta - y que en este caso afectan muy poco, son los que se refieren a la ubicación del terreno con respecto al centro de - consumo (URCP = 0.05) ubicación del terreno con respecto - al centro de población (URPP = 0.03), al factor plusvalía (FPLU = 0.4) y al clima (FCL = 0) que por los valores ob-servados se considera que tenía muy poca influencia.

FIADE:

Debido a que se requería un cierto factor de implementación de proyectos a acuerdo a la cantidad de capital invertido y por existir medianas y pequeñas industrias cuyo capital está entre 100,000 y 3,000,000 pesos, explicándose este -- comportamiento en la Gráfica No. 9:

ANEXO No. 3

CUESTIONARIO PARA APLICAR AL MODELO DESIR.

ADVERTENCIA:

El cuestionario adjunto fué utilizado para el análisis del comportamiento del modelo en un caso real. Sin embargo, puede reformularse para adaptar lo más a la situación de un parque industrial específico sujeto a estudio. Asímismo, puede generarse una familia de encuestas con igual propósito para diferentes perfiles de entrevistados. La encuesta no necesariamente debe ser cerrada; puede usarse el cuestionario como un guión para la entrevista.

	DNARIO PARA APLICAR "DESIR DE COMPETITIVIDAD FARA PARQUES INDUSTRIALES
PARQUE	INDUSTRIAL:
FECHA:	ENTREVISTADO:
	ENTREVISTADOR:
	•
	DEMANDA DE TERRENOS INDUSTRIALES
1.1	Cantidad demandada de terrenos industriales (Ha)
1.2	Cantidad demandada de terrenos industriales para la - implementación de proyectos industriales (Ha)
1.3	Cantidad demandada de terrenos industriales por am pliación de ind strias existentes (Ha)
1.4	Capital privado disponible para el desarrollo del se <u>c</u> tor industrial (Miles \$)
1.5	Qué tipo de facilidades de crédito brinda el
1.5.1	Sector Público:
1.5.2	Sector Privado:
1.6	¿Cuáles son los requisitos para obtener préstamos?

1

.

1.7	¿Qué tipo de facilidades ha dado el gobierno para el - desarrollo de nuevas industrias?		
· 1.8	De qué manera influyen los siguientes factores en las Estrategias de Desarrollo Industrial en la localidad:		
1.8.1	Factor Geopolítico:		
1.8.2	Factor Público (SAHOP, SEPAFIN, FIDEIN, BANDBRAS):		
1.8.3	Planificación y Zonificación del Estado o Federación:		
1.9	En la actualidad qué cantidad de población económica mente activa existe? ; qué porcentaje co rresponde a la población desempleada?		
1.10	Existe algún programa para ocupar esa población?		
1.11	En que forma influyen los siguientes factores en la <u>ge</u> neración de nuevas industrias:		
1.11.	1 La productividad de las industrias?		
1.11.	2 El nivel de salarios?		
	· · · · · · · · · · · · · · · · · · ·		
1.12.	3 Las Uniones y los Sindicatos?		
1.12.	4 La disponibilidad de mano de obra?		

•

	1.13		on las modalidades tria (pequeña y/o	locales en la creación de mediana)?
	1.14	¿Cuál es	el período de tier	npo (medio) que se emplea p <u>a</u> proyecto induatrial?
	1.15		on los principales de nuevas industr	s factores que motivan la ias?
	1.16	¿Cuáles s men en la	_	ustriales que más se consu
·				
	1.17	Cantidad	de bienes produci Industrias	dos por la industria local: Cantidad de Bienes
				producidos:
	1.18	Cantidad	de bienes consumi	dos por la población local:
		-	Industrias	Cantidad de bienes consumidos:
	1.18	Can ti dad		

Factores que influyen para existentes:	la amoliación de industri
**************************************	za ampisaciona de inducti.
Forma en que reacciona la p de nuevos productos industr	
Recursos existentes que han	sido poco explotados:
Precio de los principales b	ienes industriales:
Costo de fabricación del pr	oducto:
Algunos otros factores que La ampliación de industrias es:	•
DECISION DE ESTABLECERSE FU INDUSTRIAL:	ERA O DENTRO DEL PARQUE
¿Cuáles son los principales en el precio de terrenos pa	

2.2.1	La localización con respecto al centro de consumo.
2.2.2	La localización relativa en el centro de población.
2.2.3	El clima:
2.2.4	La oferta de terrenos:
2.3	¿Cuáles son las principales ventajas para el proceso - de comercialización de productos en el/desde el centro de población?
	y cuáles las principales desventajas:
2.4	De qué manera influyen las Estrategias de Desarrollo - Industrial Regionales en el establecimiento de nuevas industr: 3 para el centro de población:
2.5	En qué forma influyen los siguientes factores para es-
	tablecer las industrias en el centro de población:
	Las economías de aglomeración
	Los códigos de construcción
2.5.3	La planeación y zonificación
2.6	En el parque industrial de que factores depende el pre cio del terreno:

.

2.7	En el parque industrial de qué manera influyen en el precio del terreno los siguientes factores:		
2.7.1	La ubicación con respecto al centro de población.		
2.7.2	la demanda de terrenos		
2.7.3	La oferta de terrenos.		
2.7.4	Las estrategias de Desarrollo Industrial Regional.		
2.8	¿Cuáles son las principales ventajas para el proceso - de comercialización de productos que ofrece el parque industrial:		
•			
4.0	y cuáles son las desventajas		
2.9	En qué forma influyen los siguientes factores para el establecimiento de industrias en el parque industrial.		
2.9.1	Las economías de aglomeración.		
2.9.2	Los códigos de construcción.		
2.9.3	La planificación y zonificación.		
3.	OFERTA DE TERRENOS INDUSTRIALES EN EL CENTRO DE POBLACIO		
3.1	Cantidad de industrias que se establecieron en la ciu- dad en los últimos 10 años:		
	1970 1975		
	1971 1976		
	1972		
	1973 1978		
	1974		
	1980		

3.2	De que manera influyen los siguientes factores para el establecimiento de industrias en el centro de población.
3.2.1	Las condiciones físicas de la región
3.2.2	Las restricciones legales impuestas por el estado.
3.2.3	Las cámaras y/o asociaciones de industriales y de co mercio.
3.3	Cantidad de industrias en construcción
	1970 1976
	1971 1977
	1972 1978
	1973 1979
	1974 1980
	1975
3.4	Número de industrias que han quebrado en los últimos - 10 años:
	1970 1976
	1971
	1972
	1973 1979
	1974
	1975
3.5	Causa del cierre de industrias
3.6	De qué manera influyen los siguientes factores en el - cierre de industrias/ la liberación de terrenos.
3.6.1	El plan financiero del proyecto
3.6.2	La factibilidad técnica, económica y financiera del proyecto.

3.6.3.	Necesidades de re	colización industria	11.
3.6.4.	Problemas con el	crédito y la liquida	?Z•
3.7	Existe escasez reciudad.	elativa de terrenos i	ndustriales en la
(4)	Cuáles son las ca	usas?	
3.8	En qué forma infl escasez de terrer	luyen los siguientes nos.	factores en la
3.8.1	La "Ley de la ofe	erta y la demanda".	
3.8.2.	La especulación d	de terrenos.	
4.	DFERTA DE TERRENE	OS DENTRO DEL PARQUE	INDUSTRIAL.
4.1 Cantidad de industrias que desean establec parque industrial.		tablecerse en el	
4.2	Cantidad de indus	strias, en los último	os 10 años en:
	Operación	Construcción	Construcción Programada
1970			
1971			
1972			
1973			The Address is the send in the Indian Address and Address and Address in a subsection in
1974	Brooksparent Brooks reported the restricts operation but have that you work, playing a	Box Date (for Birth Droponsalt-vision unsignalizated principles dendropass-contributions-up - contribution Designal	Dreader too most up an insulanta too on any policy as give, most a consular policy.
1975		8.4	

.

*	Operación	Construcción	Construcción Programada
			- X -
1976			
1977	grandersydd Phagareg eg h. Redd ffaur alleg a reddinffur, gal glydd addina rafarantur an		
1978	Exemple differentiates - Authors fronting destruction and accompanies		
1979		-	
1980			
4.3	¿Cuáles son las en el parque i	principales factore ndustrial?	es para establecerse
4.4		principales causas Indonan el parque inc	
4.5		lustrias que abandona recolización indust:	
4.6	Cantidad de inc cumplir contrat	dustrias que abandona co	an el parque sin
	Street and the street		
4.7	•	influyen los siguien esas en el parque ind	
4.7.1	La factibilidad proyecto.	d técnica, económica	y financiera del
4.7.2	Los problemas d	con el crédito y la	liquidez.
	Expendition of conditional and active of distributed the final against only one of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are active of the conditions and active of the conditions are a	uma, definenda quide en 11 monte e plan i altributur variar dannidore et aculturalità este e page e vida e subscience	er (films after petrion throat an addition de la métricologic petronic provincia per a ligit restrains personn

90	4.7.3	El plan financiero del proyecto.

- -

.

BIBLIOGRAFIA.

- ACKOFF, L.R. Sasiene, M.W. (1968) "Fundamental of Operations Research" Wiley and Sons. New York.
- ALONSO, W. (1964) "Location and Land Use". Harvard University Press.
- ARTLE, R.(1965) "Studies in the Structure of the Stokholm Economy", University of Columbia Press.
- ASHBY, W.R. (1956) "Cybernetics", Chapman and Hall.
- BATTY, M.(1971), Design and construction of a subregional land use Model", Socio-Economic Planning Sciences 5.97-124.
- BATTY, M. (1971) "An Experimental model of Urban Dynamics" Conference of Urban Growth Models.
- CHAPIN, F.S. (1965) "A model for simulating residential development" Journal of the American Institute of Planners 31.
- CHARLEY, R.J. and Kennedy (1971) "Phisical Geography: A Systems Approach", Prentice-Hall International London.
- DANDO, M.R., Sharp R.G. (1977) "The rouse and consequence of a Myth" J.Op. Res. Soc. 29.
- etchenique, E.Crowther O. Lindsay, W. (1969) "A Spatial Model of Urban Store and activity" Regional Studies 32.

- ETCHENIQUE, M. (1960) "Models: A discussion", Land use and Built form studies London.
- ETCHENIQUE, M. (1975) "Modelos Matemáticos de la Estructura Espacial Urbana: Aplicaciones en América Latina" SCAP.
- FORRESTER, J. (1961) "Industrial Dynamics" MIT Press, Mass.
- FORRESTER, J. (1975) "Collected papers", Wright Allen Press, Mass.
- FORRESTER, J. (1969) "Urban Dynamics", Wright Allen Press, Mass.
- FORRESTER, J (1976) "Principles of Systems", Wright Allen Press, Mass.
- GOODMAN, M. (1974) "Study Notes in Systems Dynamics" Wright Allen Press, Mass.
- HARRIS, B.(1965) "Urban development models: New tools for planners"

 Journal of the American Institute of Planners 31.
- HOUSE, W.P., Leod M. (1977) "Large scale models for policy Evaluation" Wiley and Sons, New York.
- ISARD, W. (1956) "Location and space-Economy" M.I.T. Press.
- KLIR J. & VALACH, M. (1969) "Cybernetyc modelling" Iliffe.
- LARA, R.F. "Un sistema de modelos para la prospectiva en México" Fundación Barros Sierra, Méx.
- LOWRY, I.S. (1964) "A model of metropolis" Rand Corporation.
- LOWRY, I.S. (1965) "A short Course in model design" Journal of the American Institute of Planners 31.

- LOWRY, I.S. (1965) "A short course in model design" Journal of the American Institute of Planners 31.
- MEYERSON, M.; Bonfield, E.C. (1955) "Politics, Planning and the Public Interest" Free Press.
- MORRIS W.T. (1969) "On the Art of Modelling" Management Science, 13.
- NUTT, P.C. (1979) "Influence of decision styles on use of decision models", Technological Forecasting and social change, 14.
- OLSSON, G. (1969) "Trends in Spatial model building:an Overview"

 Geographical Analysis I.
- PAELINK, J. (1969) "Some dynamic urban growth models" Congress, Regional Science Association, Copenhagen.
- REIF, B. (1973) "Models: General Fromework" Universidad Central de Venezuela.
- RIVETT, P. (1972) "Principles of model building", Wiley and Sons, New York.
- ROGERS, A. (1965) "Stochastic Analysis of the spatial clustering of retail stablishments" J. of American Soc.Sta.Asoc. 60.
- SACHS, W. (1977) "Diseñando un futuro para el futuro" Fundación Barros Sierra, Mex.
- SEIDMAN, D.R. (1969) "The Construction of an urban growth Model"
 Plan Report Number 1, Commission Philadelphia.
- STAINTON, R.S. (1978) "Modelling and Reality", J.Ope. Res. Soc.30

- URBAN, O.L. (1974) "Building Models for Decision Markers"
 Interfaces 4.
- VARSAUSKY, C. (1971) "America Latina: Modelos Matemáticos"Edit.
 Universitaria, Santiago Chile.
- VAZQUEZ, G.F. (1980) "DESIR: A model for competitive ness of Industrial States for Regional Development" Inst. Ing.Mex.
- VAZQUEZ, G.F., Antun, C.J.P. "Determinación de la prefactibilidad de establecer un parque industrial en 35 localidades seleccionadas" Inst.Ing. Mex.
- VAZQUEZ, G.F. Antun, C.J. (1981) "Manual de Estudios y Proyectos para Desarrollos Industriales" Inst. Ing. Mex.
- WEDLEY, W.C. Ferrie, A.E.J. (1978) "Porcentual differences and effects of managerial participation on project implementation", J.Op Res. Soc. 29.
- WILSON, A.G. (1974) "Urban and Regional Models in Geography and Planning" Wiley Sons, New York.
- WILSON, A.G. (1967) "A statistical theory of spacial distribution models", Transportation Research I.
- WILSON, A.G. (1967) "The status of the theory in urban an regional modelling", Mimco, Maun-85
- ZAPATA, F. (1975) "Enclaves y Sistemas de Relaciones Industriales en America Latina" Cuadernos de Estudios Sociológicos, El Colegio de México.