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en mis estudios de Doctorado.

Este trabajo ha sido parcialmente apoyado por PAPIIT-DGAPA (UNAM, México)
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Resumen

En esta tesis realiza un análisis de amplitudes en la f́ısica hadrónica, abarcando

las resonancias bariónicas N∗ y ∆∗, el pentaquark Pc(4312)
+ y el mesón escalar

f0(980). Se utilizan los principios de la teoŕıa de la matriz-S, la unitariedad, la

analiticidad y la simetŕıa de cruce, para mostrar la conexión entre las amplitudes de

dispersión y la dinámica cercana al umbral. Las resonancias N∗ y ∆∗ se investigan

mediante las trayectorias de Regge, que mapean el plano de enerǵıa en el plano de

momento angular complejo. Este método revela propiedades fundamentales de las

resonancias utilizando parametrizaciones y métodos de remuestreo, en espećıfico el

bootstrap para obtener resultados confiables. Los hallazgos proporcionan una mejor

comprensión de las estructuras de las resonancias, con indicios de una dinámica más

allá del modelo de tres quarks (3q) constituyentes. El pentaquark Pc(4312)
+,

descubierto recientemente por la colaboración LHCb en 2019, se analiza utilizando

dinámicas de canales acoplados. Este análisis lo describe como un estado virtual,

determinado a partir de su comportamiento de polos en las hojas de Riemann,

representando un avance en su interpretación estructural. En cuanto a la resonancia

f0(980), este análisis confirma su naturaleza dinámica, indicando que está moldeada

por las interacciones KK̄. Las metodoloǵıas estad́ısticas, especialmente las técnicas

de remuestreo bootstrap, aumentan la robustez y validan los resultados. Este

trabajo combina métodos fenomenológicos con datos experimentales, estableciendo

una base sólida para el análisis multicanal.
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Abstract

This thesis performs an amplitude analysis in hadronic physics, covering the N∗

and ∆∗ baryonic resonances, the hidden-charm pentaquark Pc(4312)
+, and the

scalar meson f0(980). It uses S-matrix theory principles like unitarity, analyticity,

and crossing symmetry to show the connection between scattering amplitudes and

near-threshold dynamics. The N∗ and ∆∗ resonances are investigated using Regge

trajectories, which map the energy plane into complex angular momentum. This

method exposes fundamental properties of the resonances using parameterizations

and bootstrap methods for stable results. The results provide a better

understanding of resonance structures that goes beyond the 3q constituent model.

The recently discovered Pc(4312)
+ by the LHCb collaboration in 2019, is

investigated using coupled-channel dynamics. This analysis renders it as a virtual

state, extracted from its pole behavior on Riemann sheets, furthering its structural

interpretation. For the f0(980) resonance, this analysis argues that its dynamical

nature since it is moulded by the KK̄ interactions. Statistical methodologies,

especially bootstrap resampling techniques, increase robustness and validate results.

This work combines phenomenological methods with empirical experimentation,

laying a base for multi-channel analysis.
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1. Introduction

Science is a way of life. Science is a perspective.

Science is the process that takes us from confusion

to understanding in a manner that’s precise,

predictive and reliable - a transformation, for those

lucky enough to experience it, that is empowering

and emotional.

B. Greene

The current theory of the strong interaction, quantum chromodynamics (QCD) is

a nonabelian quantum field theory whose fundamental fields are the quarks (q) and

the mediator gauge boson is the gluon (g). The local gauge symmetry is SU(3) and

the strong charge is named color [1]. The fact that QCD is nonabelian has deep

implications which can be better understood when compared to the quantum field

theory of the electromagnetic interaction, i.e. quantum electrodynamics (QED) [2].

QED is based on a U(1) local symmetry, which implies that there is only one electric

charge which can be either positive, negative or null. There is only one force mediator,

the photon, whose electric charge is null. The fact that the photon does not carry

electric charge is what makes the theory abelian, and, hence, respect the superposition

principle, which is one of the fundamental properties of Maxwell’s electromagnetic

field equations. In QCD, the SU(3) gauge symmetry implies the existence of three

different color charges known as red, green and blue, as well as their respective anti-

colors. Instead of one mediator as in QED, in QCD we have eight different gluons

that actually carry color charge. This implies that the gluons have self-interactions,–

we have three and four gluon vertices–, and QCD does not satisfy the superposition

principle [3].

In QED it is possible to observe the photons, electrons and positrons (they are part

of the spectrum of the theory), but, in QCD it is not the case due to an emergent

phenomenon known as color confinement. This means that the spectrum is made of

4
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Figure F.1.1: Energy dependence of the strong interaction coupling constant αs as a
function or the energy scale Q. Figure taken from the Review of Particle Physics [8].

color singlets only, in other words, the quark and gluon fields combine in such a way

that the resulting asymptotic states are colorless [4]. The particles that conform the

spectrum of the theory are called hadrons, which are classified into two categories:

mesons if they are bosons; and (anti)baryons if they are fermions.

The typical way to perform calculations in QED (and in general in a quantum field

theory) consists on using perturbative techniques. In order to do this, it is necessary

that the theory can be expanded in a small parameter, usually the coupling constant,

in the energy regime of interest. In QCD this expansion is only possible in the so

called asymptotic freedom region, i.e. at high energies. In the low energy region of

QCD, where the masses of the hadrons lie, the value of the strong coupling constant

(see figure F.1.1) does not allow for perturbative treatment of the interaction.1

One of the most important challenges of physics is to understand the strong

interaction in the nonperturbative regime as well as how quarks and gluons are

confined inside hadrons. One of the ways to obtain insight is to study the hadron

spectrum, i.e. the color singlets of QCD. The strategy is analogous to that used in

1There are other perturbative approaches to QCD, for instance the chiral perturbation
theory [5], effective lagrangian methods [3], and perturbation theory in the large number of
colours (large Nc) [6, 7], but those are beyond the interests of this work.
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the study of the atomic levels of atoms. The difference is that in the case of atomic

physics, the object under study is the discrete part of the spectrum, i.e. the bound

states, but in hadron physics, one focuses on the continuum part, i.e. the scattering

states.

Most of the hadrons have a short half-life (∼ 10−24s) and are called resonances,

studied in particle accelerators. Once the different experimental collaborations collect

data, it is necessary to do an amplitude analysis to determine, or discard, the existence

of a hadronic state and to study the dynamics responsible for its generation.

The S-matrix theory [9], using general properties of the scattering amplitudes

such as relativistic invariance, spectral decomposition, unitarity, and causality,

provides a framework that allows us to extract the QCD states, and analyze the

reaction processes as well as experimental data, avoiding some of the several

underlying problems using the Lagrangian approach in QCD [10].

As mentioned, the hadrons conform the spectrum of QCD and they are colorless.

The simplest way to construct a meson is with a pair quark-antiquark qq, and for

a baryon combining three quarks qqq (or three antiquarks qqq for an antibaryon).

These configurations for mesons and baryons are known as the minimal quark model

and was proposed by Gell-Mann [11], Petermann [12] and Zweig [13].2 In figure F.1.2

the ground states for mesons and baryons with constituent quarks u, d, s and c in the

minimal quark model are shown. The minimal quark model provides a classification

system for hadrons, as well as an excellent description for the ground states of the

spectrum. Quark models are beyond the interest of this work and more information

can be found in the literature, for example [16].

However, QCD does not require that hadrons have to adhere to the minimal quark

model. Hadrons can entertain more complicated structures and baryons or mesons

that go beyond the three quark or quark-antiquark pictures are not precluded by QCD.

Therefore, for baryons, it is possible to have hybrid states with gluonic components

(qqqg, qqqgg, ...), pentaquarks qqqqq, heptaquarks qqqqqqq and so on. For mesons,

the situation is analogous and we can have, for instance, tetraquarks qqqq, etc. For

2Petermann developed the quark model at the same time as Gell-Mann and Zweig,
although he has not been acknowledged in textbooks. Such unfairness in being corrected
thanks to articles like the ones by De Rújula [14] or Glashow [15], which set the record
straight.
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Figure F.1.2: Ground states in the minimal constituent quark model for mesons [(a)
and (b)] and baryons [(c) and (d)] with constituent quarks u, d, s and c. Figure taken
from the Review of Particle Physics [8].

example, one can write the general wave function of a meson as:

|Meson⟩ := a0 |qq⟩+ a1 |qqg⟩+ a2 |qqgg⟩+ a3 |qqqq⟩+ · · · (1.1)

where the coefficients ai determine the probability of measuring a specific component

and
∑
i

|ai|2 = 1.

An exotic QCD state is a resonance that does not fit within the minimal quark

model. There are three kinds of exotic hadrons:

1. States whose quantum numbers cannot be obtained through qq̄ o qqq

combinations. For a meson, a state of this kind would have a0 = 0 in equation

(1.1). The π1(1600) and the Tcc(3875) are examples of this kind.

2. States whose minimal quark content cannot be explained through qq̄ o qqq

combinations. The hidden charm pentaquarks observed by LHCb [17–19] in the

J/ψp spectrum are an example of this kind as their minimal quark content is

ccuud.

3. States whose minimal quark content can be explained through qq̄ o qqq

combinations, but present properties that indicate that the internal dynamics

go beyond such a simple explanation. The X(3872) is the paradigmatic

example.

The search for exotic states of QCD [16] has driven a new golden era for hadron

spectroscopy, mainly thanks to the numerous experiments of subnuclear physics
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Figure F.1.3: Current spectrum of charmonia and charmonia-like states. Figure from
[20] adapted from figure 22 in Ref. [21].

carried out and the many exotic hadrons that have been discovered in the last 20

years. Figure F.1.3 shows the charmonia and charmonia-like spectrum, highlighting

the valence quarks of each state.

Amplitude analysis is the tool that allows us to study the experimental data and

to determine the existence and properties, i.e. mass, width and residue, of a

resonance. In this thesis we use Regge theory and phenomenology and amplitude

analysis techniques for near-threshold resonances to study several cases of interest.

The theory and methodology employed in this thesis is described in chapter 2.

Specifically, the theory is applied to three cases of interest. In chapter 3.1 we study

the low-lying nonstrange baryon spectrum to survey deviations from the expected

patterns from Regge phenomenology in order to identify missing states and

nonordinary states. Chapter 3.2 studies the near-threshold Pc(4312)
+ resonance

discovered by LHCb [19] within the general principles of the S-matrix theory. This

analysis also compares various parametrizations, enabling a comprehensive study of

Pc(4312)
+ in light of other theoretical models. The obtained results allow more

clarity in understanding the structure of the resonance itself and help refine models
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already existing about hadron dynamics near thresholds. Chapter 3.3 applies the

same ideas to the near KK̄ threshold resonance f0(980). Both Pc(4312)
+ and

f0(980) are prime candidates for a molecular resonance generated by the opening of

a new threshold. Finally, chapter 4 provides the conclusions of this thesis.



2. Theoretical framework

For a physicist mathematics is not just a tool by

means of which phenomena can be calculated, it

is the main source of concepts and principles by

means of which new theories can be created.

F. Dyson

In this chapter we present the mathematical and physical tools that will be

employed in this doctoral research without being exhaustive in its presentation,

referring the reader to the corresponding literature. We will emphasize the

underlying physical principles. The presented theory is for spinless particles and

electromagnetic effects are neglected. However, the results are general, as the

extension to particles with spin adds a layer of complexity that can be reduced to

the combination of scalar amplitudes like the ones for spinless particles. More

information on the inclusion of spin can be found in Refs. [9, 22–31].

2.1 Kinematics of particle scattering

A general and systematic treatment of the principles of special relativity and

particle kinematics can be found in many graduate textbooks (see for

example [32, 33]). In this section we review some of the main features that will be

needed latter in this work.

We start with the 1 + 2 → 3 + 4 process, also called 2 → 2 reaction because it

involves two particles in the initial state and another two in the final. The process is

depicted in figure F.2.1. In this reaction, the particles 1 and 2 with four-momenta p1,

p2, respectively, collide and after the collision the particles 3 and 4 with four-momenta

p3 and p4 emerge.

10



2.1. Kinematics of particle scattering 11

Figure F.2.1: (a) General 2 → 2 reaction, pi stands for the four-momentum of the
ith particle. (b) Reaction 1 + 2 → 3 + 4 in the center of mass (CM) system, q12(s)
and q34(s) stand for the momentum before and after the collision, respectively, and θs
is the scattering angle.

The conservation of energy and momentum is expressed as follows:

p1 + p2 = p3 + p4, (2.1)

and the asymptotic states, i.e. free states after the collision must be on shell, meaning

p2i = m2
i for i = 3, 4.

Due to four-momentum conservation (2.1), the momentum vectors pi of the final

particles cannot vary arbitrarily for a fixed initial state. In general, if there are n

particles in the final state, the four-momentum conservation imposes the conditions:

E1 + E2 =

n+2∑
i=3

Ei, (2.2a)

p1 + p2 =

n+2∑
i=3

pi. (2.2b)

We shall call the 3n dimensional space of unconstrained final state momentum

vectors pi the momentum space. The conditions (2.2) define in this space a 3n − 4

dimensional surface which is called the phase space.

For the 2 → 2 process we can define the Mandelstam variables, which are Lorentz
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invariant quantities and are given by [32]:

s = (p1 + p2)
2 = (p3 + p4)

2, (2.3a)

t = (p1 − p3)
2 = (p2 − p4)

2, (2.3b)

u = (p1 − p4)
2 = (p2 − p3)

2. (2.3c)

They satisfy the equality:

s+ t+ u =

4∑
i=1

m2
i , (2.4)

equation (2.4) implies that only two Mandelstam variables are independent for a given

reaction.

Because they are Lorentz invariant scalars, the Mandelstam variables can be

evaluated in an arbitrary coordinate system. The simplest choice is the center of

mass (CM) frame, where p1 = −p2 and p3 = −p4, depicted in panel (b) of

figure F.2.1. In this system the variable s represents the square of the total

center-of-mass energy of particles 1 and 2, or 3 and 4.

The particle four-momenta in the CM system reads: p1 = (E1, q12(s)),

p2 = (E2,−q12(s)), p3 = (E3, q34(s)), p4 = (E4,−q34(s)), and the Mandelstam

variables (2.3) are given by:

s = m2
1 +m2

2 + 2[E1E2 + q212(s)], (2.5a)

t = m2
1 +m2

3 + 2[E1E3 − q12(s)q34(s) cos θs], (2.5b)

u = m2
1 +m2

4 + 2[E1E4 + q12(s)q34(s) cos θs], (2.5c)

where θs is the scattering angle as shown in figure F.2.1. We can solve the previous

equations to obtain the energy:

E1 =
1

2
√
s

[
s+m2

1 −m2
2

]
, E2 =

1

2
√
s

[
s+m2

2 −m2
1

]
, (2.6a)

E3 =
1

2
√
s

[
s+m2

3 −m2
4

]
, E4 =

1

2
√
s

[
s+m2

4 −m2
3

]
, (2.6b)
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and momentum of each particle:

q2ij(s) =
[s− (mi +mj)

2][s− (mi −mj)
2]

4s
=
λ(s,m2

i ,m
2
j)

4s
, (2.7)

where:

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz, (2.8)

is called the Källén or triangular function, since 1/4
√

−λ(x, y, z) represents the area

of a triangle with sides
√
x,

√
y and

√
z [34]. Inserting equations (2.6) and (2.7) into

(2.5) we obtain for the t and u variables:

t =

∑
m2
i − s

2
−

(m2
1 −m2

2)(m
2
3 −m2

4)

2s
+
λ1/2(s,m2

1,m
2
2)λ

1/2(s,m2
3,m

2
4)

2s
cos θs,

(2.9a)

u =

∑
m2
i − s

2
+

(m2
1 −m2

2)(m
2
3 −m2

4)

2s
−
λ1/2(s,m2

1,m
2
2)λ

1/2(s,m2
3,m

2
4)

2s
cos θs.

(2.9b)

The scattering angle θs is given by:

cos θs ≡ zs =
s2 + s(2t− Σ) + (m2

1 −m2
2)(m

2
3 −m2

4)

4s q12(s)q34(s)

=
s2 + s(2t− Σ) + (m2

1 −m2
2)(m

2
3 −m2

4)

λ
1
2 (s,m2

1,m
2
2)λ

1
2 (s,m2

3,m
2
4)

.

(2.10)

Besides the simplicity of the formulae, the three Mandelstam variables are introduced

to make apparent the Lorentz invariance of the scattering amplitudes and exploit the

concept of crossing symmetry. This symmetry is dynamically very important, but in

terms of the kinematics it is almost trivial. We have treated the reaction 1+2 → 3+4

assuming that all energies are positive, but the four momentum conservation is an

analytic relation [32] and one may then write the four-momentum conservation in the
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following alternate forms:

p1 + p2 = p3 + p4, (2.11a)

p1 + (−p3) = (−p2) + p4, (2.11b)

p1 + (−p4) = p3 + (−p2), (2.11c)

p1 = (−p2) + p3 + p4, (2.11d)

where the last equation is physical only if the condition m1 > m2 +m3 +m4 holds.

Algebraically there is no objection to the form of equations (2.11), but a minus

sign in the four momentum implies nonphysical values for the energy. However, from

relativistic quantum mechanics and Quantum Field Theory (QFT) it is possible to give

a meaning to this through crossing symmetry. We can identify the particle with four-

momentum −p as the corresponding antiparticle to the one with four-momentum p [2,

9]. So, crossing symmetry expresses the relation between particles and antiparticles.

Crossing symmetry is actually built-in in the Standard Model and the associated

Feynman rules [2, 35].

The expressions (2.11) may be interpreted as four-momentum conservation

equations for the following reactions:

s−channel : 1 + 2 → 3 + 4, (2.12a)

t−channel : 1 + 3̄ → 2̄ + 4, (2.12b)

u−channel : 1 + 4̄ → 3 + 2̄, (2.12c)

decay − channel : 1 → 3 + 4 + 2̄, (2.12d)

where ᾱ stands for the antiparticle of α and the last expression is physical only if

m1 > m2+m3+m4. The decay channel is usually referred as a 1 → 3 process. These

reactions are shown in the figure F.2.2 and each one represents a different reaction

channel.

The naming scheme for the channels in equations (2.12a), (2.12b) and (2.12c)

refers to the variable which is positive in the given channel. The two remaining

Mandelstam variables are the invariant momentum transfers [9]. The minimal value

that each Mandelstam variable can attain is known as the threshold for this channel;

for instance in the s channel, it is s0 = (m1 + m2)
2. One can show [32] that the
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Figure F.2.2: Various channels for the reaction 1 + 2 → 3 + 4. The decay channel
shown is physical if m1 > m2 +m3 +m4. The notation α stands for the antiparticle
of particle α.

physical region of the reaction 1 + 2 → 3 + 4 including the decay channel (if it is the

case) is given by the Cayley determinant:

G(s, t,m2
4,m

2
1,m

2
2,m

2
3) = −1

2

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 m2
2 s m2

4

1 m2
2 0 m2

1 t

1 s m2
1 0 m2

3

1 m2
4 t m2

3 0

∣∣∣∣∣∣∣∣∣∣∣
≤ 0, (2.13)

which by the symmetry properties of the determinant, we can write this equation as:

G(x, y, z, α, β, γ) = G(y, x, β, γ, α, z), (2.14)

where s and t have been chosen as independent variables. The G function is also

known as the tetrahedron function because it represents the squared volume of a

tetrahedron with pairwise opposite sides
√
x,
√
y;
√
z,
√
α;

√
β,

√
γ), scaled by a factor

of −144.

It is convenient to use triangular coordinates s, t and u rather than the Cartesian

s and t coordinates. The three lines of the coordinate system enter each other at

an angle 60◦, and s, t, u are the distances from the respective axes. Notice that if

the height of the triangle formed by these lines is equal
∑

m2
i then the condition∑

m2
i = s + t + u is automatically satisfied. This graphical presentation is called

the Mandelstam plane, and is presented schematically in fig. F.2.3 for the process

ω + π0 → π+ + π−.

Next we discuss the kinematics of the aforementioned decay channel, considering
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Figure F.2.3: Schematic representation of the physical regions of the ω+π0 → π++π−

reaction in the Mandelstam plane. The central area corresponds to the decay channel,
i.e. the ω → π+ + π− + π0 process, which, in this case, is physical. Figure adapted
from Fig. 4.7.7 from [32].
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Figure F.2.4: (a) Three particle decay process p→ p1+p2+p3 with invariant variables
s1 and s2. (b) Rest frame of the decaying system (where total momentum satisfies
p = 0).

the general 0 → 1 + 2 + 3 reaction1 for spinless particles as shown in figure F.2.4.

We have highlighted that this reaction is related by crossing to the scattering

0 + 1 → 2 + 3, this implies that the number of invariants that describes the reaction

must be the same, say two. As invariant variables, for convenience we choose s, t and

u as in the 2 − 2 scattering processes. Given that in the decay channel, they are all

positive we perform a standard name change, defining [32]:

s12 ≡ s1 = (p1 + p2) = (p− p3)
2, (2.15a)

s23 ≡ s2 = (p2 + p3) = (p− p1)
2, (2.15b)

s31 ≡ s3 = (p3 + p1) = (p− p2)
2, (2.15c)

as invariant variables. They satisfy:

s1 + s2 + s3 = s+m2
1 +m2

2 +m2
3. (2.16)

Furthermore, each sij defines the invariant mass associated with the given ij two-body

decay sub-channel.

To obtain the energies and momenta in the decay channel we expand the expression

1We rename the particles involved from {1, 2, 3, 4} to {0, 1, 2, 3} to match the standard
notation employed in hadron spectroscopy.
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(2.15) in the reference frame p = (
√
s, 0) to obtain:

E1 =
s− s2 +m2

1

2
√
2

, q1 =
λ1/2(s,m2

1, s2)

2
√
s

, (2.17a)

E2 =
s− s3 +m2

2

2
√
2

, q2 =
λ1/2(s,m2

2, s3)

2
√
s

, (2.17b)

E3 =
s− s1 +m2

3

2
√
2

, q3 =
λ1/2(s,m2

3, s1)

2
√
s

, (2.17c)

the procedure applied here involves obtaining E1, by considering the two particle

decay p → p1 + (p2 + p3) where the final state masses are m1 and
√
s2. The angular

relations between momentum vectors follow from the definitions (2.15) by expanding

the squares and using the definitions in equations (2.17). For instance the angle θ12

between p1 and p2 shown in the figure F.2.4 is given by:

cos θ12 =
(s+m2

1 − s2)(s+m2
2 − s3) + 2s(m2

1 +m2
2 − s1)

λ1/2(s,m2
1, s2)λ

1/2(s,m2
2, s3)

. (2.18)

The Dalitz plot represents the physical region of the decay process 0 → 1+2+3 in

the (s1, s2) plane, or to any variables related to s1 and s2 by a linear transformation

with constant Jacobian. This plot is a very useful tool to study the dynamics of three

particle decays, because a non uniformity in the plot provides information about

final-state interactions and the formation of resonances [8, 36].

The boundary of the Dalitz plot is derived from equation (2.13) and the symmetry

properties of the G function (2.14), and is expressed as:

G(s2, s1,m
2
3,m

2
1, s,m

2
2) = G(s1, s2, s,m

2
2,m

2
1,m

2
3) = 0. (2.19)

To provide a direct derivation of equation (2.19) and to determine the phase space

density of the Dalitz plot, we consider the phase space integral [32]:

R(s) =

ˆ 3∏
i=1

d3pi
2Ei

δ3(p− p1 − p2 − p3)δ(
√
s− E1 − E2 − E3). (2.20)

we perform the integration over p2 in the rest frame where the total momentum



2.1. Kinematics of particle scattering 19

satisfies p = 0:

R(s) =

ˆ
d3p1d

3p3
8E1E2E3

δ(
√
s− E1 − E2 − E3) (2.21)

using the fact that:

E2
2 = |p1 + p3|2 +m2 = q21 + q23 + 2q1q3 cos θ13 +m2

2, (2.22)

and writing the differentials using relative orientations:

d3p1 d
3p3 = q21q

2
3 dq1 dΩ1 dq3 dΩ3 = q1E1q3E3 dE1 dΩ1 dE3 d cos θ13 dϕ3 (2.23)

here, the quantity Ω3 = (cos θ13, ϕ3) represents the orientation of p3 with respect to

p1, while the quantity Ω1 represents the orientation of p1 with respect to a chosen

and arbitrary axis. This election can be made since in the decay channel under

consideration there is no preferred direction in space (see the figure F.2.4), Ω1 could be

integrated over the full solid angle, yielding a factor of 4π, and the variable ϕ3 to give

another factor equivalent to 2π. The energy delta function can be applied to perform

the integration over cos θ13 using dE2/d cos θ13 = q1q3/E2 giving the result [32]:

R(s) = 8π2
ˆ

q1q3E1E3 dE1 dE3

8E1E2E3(q1q3/E2)
Θ(1− cos2 θ13)

= π2
ˆ
dE1 dE3Θ(1− cos2 θ13).

(2.24)

where the Heaviside step function Θ, restricts the angle cos θ13 to physical values. The

limits cos θ13 = ±1 corresponds to the boundary of the physical region in the (E1, E3)

plane, i.e., the Dalitz plot. It is worth mentioning that E1 and E2 are linearly related

to s1 and s2 through equation (2.17) with the corresponding Jacobian given by [32]:

∂(E1, E2)

∂(s1, s2)
=

1

4s
. (2.25)

Then, we can write:

R(s) =
π2

4s

ˆ
ds1 ds2Θ(1− cos2 θ13). (2.26)

To see the connection with equation (2.19), we introduce the condition of the
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Figure F.2.5: Schematic representation of the physically allowed region for the decay
channel G(s1, s2, s,m

2
2,m

2
1,m

2
3) = 0 in the (s1, s2) plane, also known as the Dalitz plot.

The alignment of particle’s three-momenta at the boundary (2.28) are also shown.

boundary, cos θ13 = ±1, into equation (2.22), obtaining:

(
√
s− E1 − E3)

2 = q21 +m2
2 + q23 ± 2q1q3 = |q1 ± q3|2 +m2

2

= E2
1 + E2

3 +m2
2 −m2

1 −m2
3 ± 2

√
[(E2

1 −m2
1)(E

2
3 −m2

3)], (2.27)

which implies that, at the boundary, q2 = q1± q3, and by cyclic permutations we also

arrive to similar expressions for the other momenta q3 = q2 ± q1 and q1 = q3 ± q2.

These conditions can be expressed in a concise and symmetric form by recognizing

that at the boundary of the physical region it is satisfied:

λ(q21, q
2
2, q

2
3) = 0, (2.28)

which combined with the geometrical interpretation of the Källén function (2.8)

implies that the vectors q1, q2 and q3 are collinear [32]. Equation (2.27) can be

written as:

4(E2
1 −m2

1)(E
2
3 −m2

3) = [2E1E3 − 2
√
s(E1 + E3) + s+m2

1 −m2
2 +m2

3]
2, (2.29)
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which, combined with equation (2.17) allow us to write:

R(s) =
π2

4s

ˆ
ds1 ds2Θ(−G(s1, s2, s,m2

2,m
2
1,m

2
3)). (2.30)

This integral is nonzero when the argument inside the Heaviside Θ function is equal

to zero, i.e., when equation (2.19) is fulfilled. The physically allowed region of the

decay channel is shown schematically in figure F.2.5, alongside with the condition

(2.28) which relates to the alignment of the three momenta of the involved particles.

From equation (2.26) we can derive the phase space distribution:

d2R

ds1 ds2
=
π2

4s
, (2.31)

is constant within this region at fixed s.

The Dalitz plot is a very useful tool for studying particle decays. When data of

a three-particle decay are plotted as points on the Dalitz plot, the density of these

points is proportional to the matrix element squared. This is why resonances and

structures related to the dynamics of the decay are apparent in this plot at a glance

[34], as long as a sufficiently large number of events is collected.

In the context of this thesis work, the Dalitz plot played an important role in

analyzing the decaying reaction Λ0
b → J/ψpK− in [19], particularly in identifying the

Pc(4312)
+ signal and other Pc-like structures. The construction of the Dalitz plot in

this case involved a detailed and complex experimental data analysis process, which

included the use of experimental filters (cuts) to isolate relevant events and reduce

background noise effectively as we will discuss briefly in section 3.2.

2.2 S -matrix theory

The S matrix is defined as the quantum operator that relates the incoming and

outgoing states in the Fock spaces of a scattering process as depicted in figure F.2.6.

It is defined such that its matrix elements quantify the transition from an initial |i⟩
to a final |f⟩ state [37, 38]:
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Figure F.2.6: General scattering process between two particles in the initial state |i⟩,
and n in the final state |f⟩. Figure adapted from Fig. 1.1 in [38].

S = I + i(2π)4δ(4)

∑
j∈b

kj −
∑
i∈a

pi

T, (2.32)

thus defining the Lorentz invariant T -matrix. I is the identity operator which

represents an absence of interaction, the four-dimensional Dirac delta function δ(4) is

introduced to explicitly take into account the energy-momentum conservation, and

pi and kj are the four momenta of the incoming and outgoing particles, respectively.

In terms of its matrix elements Sba = ⟨b|S |a⟩, we can write (2.32) as:

Sba = δba + i(2π)4δ(4)(pb − pa)Tba, (2.33)

where pa and pb are the four momenta of the incoming and outgoing particles.

A list of fundamental properties that the S matrix must satisfy is [37, 39]:

(a) The superposition principle of quantum mechanics;

(b) The requirements of special relativity;

(c) The conservation of probability;

(d) The short-range character of the forces;

(e) Causality and the existence of macroscopic time;

(f) Specific symmetries associated with the reaction. For instance, parity

conservation in the case of strong interactions.
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They are essentially based on the general physics principles, that any short-range

interaction like the strong interaction must satisfy [40]. We note that these principles

do not fix the dynamics of the processes [41].

Property (a) requires that if |ψa⟩ and |ψb⟩ are physical states then any linear

combination |ψc⟩ = α |ψa⟩ + β |ψb⟩ with α, β ∈ C is also a physical state. (b) is the

Lorentz invariance of the scattering process as well as for the S-matrix. (c) implies

the unitarity of the S matrix, which by using the equations (2.32) and (2.33) provides:

SS† = 1, (2.34a)

Tab − T †
ba = i(2π)4

∑
n

δ(4)(pb − pa)T
†
bnTna. (2.34b)

If the interaction respects time reversal symmetry, as the strong interaction does,

we can write [41]:

2ℑ[Tba] = (2π)4
∑
n

δ(4)(pb − pa)T
†
nbTna, (2.35)

where ℑ[ ] stands for the imaginary part, and the sum is over all states which are

allowed by energy-momentum conservation and all the other relevant quantum

numbers [42]. The function Tab is called the scattering amplitude.

Property (d) means that the elements of the S matrix are evaluated for asymptotic

states, t = ±∞; more precisely, the initial state is defined a long time before scattering

(compared to the interaction time, for the strong interaction typically 10−24 s), and

the final state is defined a long time after the interaction takes place [38]. In this way,

such asymptotic states can be regarded as free-particle quantum states. Consequently,

the S-matrix theory is convenient for the study of the strong interaction [37].

Condition (e) is one of the most important and stringent ones for the S matrix

and for the scattering amplitude, because, it imposes strict mathematical restrictions

to the scattering amplitude, even without a specific knowledge of the interaction

potential [37, 43]. As we will discuss latter, the causality of physical processes is

closely linked to the analyticity of the scattering amplitude [41, 44, 45].

Concerning the point (f), the symmetry principles impose specific constraints on
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the S matrix. For instance, it is important to note that the amplitude exhibits a

simple but very important symmetry: it remains unchanged when the two incoming

particles are interchanged. This indicates that the amplitude is invariant under the

simultaneous exchange of p1 with p2 and all the corresponding quantum numbers of

particle 1 with those of particle 2. This property influences the mathematical structure

of the amplitude and is connected to the concept of crossing symmetry [9].

2.3 Analytical properties of the scattering amplitude

In the previous section we have made use of crossing symmetry to establish some

kinematical properties for the 2 → 2 scattering process, but its implications are

beyond kinematical. Crossing symmetry, causality of the physical processes (i.e. the

cause must precede effects in time), and the analytical structure of the scattering

amplitude are closely intertwined concepts.

In fact there is very good agreement between the phenomenological predictions

based on analytic properties of amplitudes, and the experimental results for the

scattering of strongly interacting particles. Further support comes from the fact that

the kind of analyticity we are going to discuss next is found in several “model”

theories, which although they cannot fully describe the strong interaction

phenomena might still be expected to share many features with the correct theory.

Such “model” theories include scattering from a potential as described by the

Schrödinger equation [46, 47], the perturbation series solution to the quantized field

equations [39] and the so-called axiomatic [37] and L.S.Z. [2, 35] approaches to field

theory.

2.3.1 Partial wave projection

Rotational invariance implies that the total angular momentum is conserved in

every scattering process. As a result, the amplitudes can be represented as a sum of

scalar functions characterized by well-defined angular momentum, commonly referred

to as partial waves. In the discussion that follows, we focus on the single-channel,
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spinless case, where both the initial and final states have zero spin.

One of the major characteristics of resonances is that they have a well-defined

spin, which restricts them to appear in only one partial wave. The above emphasizes

the importance of partial-wave analysis for both the discovery of resonances and

determination of their parameters. It should be remembered that the scattering

amplitude is expressed in terms of two scalar functions. To be more concrete, in the

s-channel representation the amplitude for spinless particles can be written as:

T fi(s, t) = T fi(s, t(s, zs)) =

∞∑
ℓ=0

(2ℓ+ 1) ffiℓ (s)Pℓ(zs), (2.36)

where f and i are the final and initial states, Pℓ are the Legendre polynomials of the

first kind, ffiℓ (s) are the partial wave amplitudes, and zs ≡ cos(θs). The analysis can

be generalized to arbitrary spin particles using Wigner d-functions.

The partial waves can be derived by applying the projection of the amplitude, as

outlined in [41].

ffiℓ (s) =
1

2

ˆ 1

−1

d cos θs Pℓ(zs)T
fi(s, t(s, zs)). (2.37)

From the framework of partial waves ffiℓ (s), an amplitude initially characterized by

two variables (s and t or s and zs) has been reformulated within an orthogonal basis

of Legendre polynomials. Consequently, this transformation yields a resultant set of

functions that depend exclusively on the parameter s.

The same procedure can be applied to other channels of physical interaction. As

an example, in the t-channel, one has the corresponding projection:

gfiℓ (t) =
1

2

ˆ 1

−1

dzt T
fi(t, s(t, zt))Pℓ(zt), (2.38)

For the t-channel case, it is standard practice to extract the angular momentum

barrier as a separate factor gℓ(t) ∝ [q12(t)q34(t)]
ℓ. The region of convergence of these

partial-wave projections is called the Lehmann ellipse [9].

One of the significant advantages of performing the partial wave expansion is

that, for small values of s, only a few partial waves are expected to dominate to the
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amplitude calculation [38]. Another advantage is that each partial wave satisfies its

own unitarity equation:

ℑ[ffiℓ (s)] =
∑
n

ffnℓ (s)ρn(s)f
ni
ℓ (s), (2.39)

where ρn(s) =
q(s)
8π

√
s
is the phase space [41], q(s) is given by (2.7) and n stands for the

open intermediate channels that can appear. The amplitude is evaluated between the

final |f⟩ and initial |i⟩ states. We will define a partial wave projected S-matrix as:

Sfiℓ = 1 + 2iρ(s)ffiℓ (s), (2.40)

which fulfills:

SℓSℓ
† = I. (2.41)

where I is the identity matrix. Since probability must be conserved, any given channel

will have an absolute upper limit of one:

|Sfiℓ (s)|2 = η(s), η(s) ≤ 1 (2.42)

which to the case of elastic scattering (f = i and no other channel opens), reads:

|Siiℓ (s)|
2 = 1. (2.43)

Following equation (2.42) we can always write down a partial wave as [37, 48]:

fl(s) =
ηl exp[2iδl]− 1

2iτ(s)
, (2.44)

which, in the case of elastic scattering, simplifies to:

fl(s) =
exp[2iδl]− 1

2iρ(s)
. (2.45)

The function δℓ(s), commonly known as the phase shift, exhibits analytic

characteristics that enable the partial wave to be expressed at low momenta as:

2√
s
ℜ[fℓ(s)] ∼ q2ℓ(aℓ + bℓq

2 + · · · ), (2.46)
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where the leading term, aℓ, represents the scattering length. The coefficients arising

from this low-energy expansion are fundamental for the understanding of meson-

meson interactions [7, 9].

The general case reads [49]:

ℑ[fℓ(s)] = fℓ(s)Σ(s)fℓ(s)
† (2.47)

where fℓ(s) represents the partial wave amplitude matrix and Σ(s) is the phase space

matrix, which is diagonal and is expressed as:
ρ1 0 . . . 0

0 ρ2 . . . 0
...

...
. . .

...

0 0 . . . ρn

 . (2.48)

For any partial wave, the two channel case can be written as:

Sℓ =

(
ηℓe

2iδℓ,1 i
√

1− η2ℓ e
i(δℓ,1+δℓ,2)

i
√

1− η2ℓ e
i(δℓ,1+δℓ,2) ηℓe

2iδℓ,2

)
. (2.49)

2.3.2 Analyticity

The Mandelstam hypothesis [50, 51] states that the processes in figure F.2.2

described in the s, t and u channels are determined by a single relativistic invariant

amplitude which is an analytical function in the s, t and u variables, except for some

singularities that we will discuss below [52]. This hypothesis is a consequence of the

analyticity of the scattering amplitude and crossing symmetry, that allows to

analytically continue the amplitude from one channel to a ”crossed one”, e.g. from

the s-channel to the t-channel, through the unphysical region (unphysical

kinematics) in the Mandelstam plane.

The scattering amplitude is not analytical everywhere as singularities can appear.

These singularities are classified into two categories, those that come from the choice

of a certain channel or representation, whose are called kinematical singularities
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(encoded in the expressions (2.33), (2.35)), and those whose are independent of this

choice [31, 53–57], whose are referred to as dynamical singularities. The principle of

maximal analyticity asserts that, after removing all kinematical singularities, the

only singularities that remain in the amplitude are poles and cuts [38].

The Mandelstam hypothesis is generally accepted and proved order by order for

Feynman diagrams [9, 58], although, no general proof for arbitrary multi-particle

scattering configurations is known [59, 60]. Nonetheless for the 2 → 2 scattering of

spinless particles the analytical continuation of the s-channel amplitude

⟨b|T |a⟩ = ⟨3; 4|T |1; 2⟩ = T1+2→3+4(s, t, u), (2.50)

to the t and u channels can be done rigorously [61].

In general, for n particle thresholds there are n cuts in the real energy axis, each

one starting at its corresponding threshold, and 2n Riemann sheets; for the rest of

this section let us consider only one cut, i.e. one threshold. These cuts are referred to

as right hand cuts (RHC) as they run from the threshold to +∞. Since the physical

amplitude is the value of the analytical function along the real axis, it is necessary to

specify how to evaluate the amplitude depending on how we approach to the real axis,

i.e. if we approach from above or below the cut. The usual way, based on perturbation

theory and the Feynman convention [34, 37, 41, 62], is to take the amplitude as the

limit from the upper half plane. For instance, in the s channel, if we fix t = t0, this

is equivalent to:

TPhys.−s = lim
ϵ→0+

T (s+ iϵ, t0, u), (2.51)

and in the u channel, by crossing:

TPhys.−u = lim
ϵ→0+

T (s, t0, u+ iϵ) = lim
ϵ→0+

T (s− iϵ, t0, u). (2.52)

With this choice, the first Riemann sheet is called the physical sheet, and the second

sheet is called the unphysical sheet. If more thresholds are added, the first Riemann

sheet is still called the physical one and the rest of sheets are called unphysical.
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Using the Schwarz reflection principle [9, 63],2 we can write:

T (s+ iϵ, t0)− T (s− iϵ, t0) = T (s+ iϵ, t0)− T (s+ iϵ, t0)
∗ = 2iℑ[T (s+ iϵ, t0)]

(2.54)

and

lim
ϵ→0+

[T (s+ iϵ, t0)− T (s− iϵ, t0)] = 2iℑ[T (s, t0)], (2.55)

which is known as the discontinuity across the cut. Similar expressions are found for

the t and u channels. See for instance [9].

The amplitude also has left hand cuts (LHC) which run from a certain real energy

to −∞ along the real energy axis. As happens in the potential scattering [46, 47, 64],

the LHC, in combination with crossing symmetry, is generated by exchange forces.

LHC are difficult to treat and many times are not explicitly included in amplitude

analysis because they lay far away from the region of interest and any impact in the

amplitude can be faithfully modeled through a polynomial background contribution.

More information on the LHC can be found, for example, in Refs. [9, 38, 41, 62, 65]

The remaining singularities that can appear are simple poles. These poles can

appear onto the real axis in the first Riemann sheet below the first threshold and

correspond to the bound states of the system. For example, in proton-neutron

scattering the deuteron appears as a pole in the real axis 2.2 MeV below the

threshold [66]. Complex poles cannot appear on the physical sheet [9]. Using the

Fourier transform one can show that these poles on the first Riemann sheet outside

the real axis represents tachyons that violate physical causality [41]. Complex poles

can appear on unphysical sheets and they correspond to resonances or virtual states.

The latter appear below the first threshold on the real axis of the second Riemann

sheet. An example of virtual state pole that appears in the isospin 1 channel of

nucleon-nucleon scattering. The real part of the pole can be related to the mass of

2This states that if ξ is a finite segment of the real axis and D a domain of the complex
z-plane whose intersection with the real axis is ξ, then any function f(z) which is analytic
in D and with imaginary part equal to ℑ[f(z)] = 0 in ξ satisfies:

f(z∗) = f∗(z), (2.53)

where z, z∗ belongs to D. Such f(z) function is called real analytic function in D.
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the resonance and the imaginary part to the decay width.

2.3.3 Dispersion relations

The analyticity of the scattering amplitude can be exploited through dispersion

relations. A dispersion relation is the terminology used for the Hilbert transform

[44, 67, 68] which is an integral transform and it is based on the Cauchy integral

theorem for complex functions. Dispersion relations establish a connection between

the amplitude at a specific energy and the integrals of the amplitude. They are utilized

as consistency tests for experimental data and as theoretical constraints.

First, we introduce the basic concepts for dispersion relations. Let f(s′) be a

function of complex variable s′ defined along the real axis and with discontinuities

(cuts) in the real axis for s′ > s0 (RHC) and s′ < s̃0 (LHC) with s̃0 < s0. Moreover

suppose that f(s′) has a pole in M2 in the real axis such that s̃0 < M2 < s0, and

f(s′) tends to zero as |s| → ∞. We can define the contour C shown in figure F.2.7(a)

and take r2 → ∞. Then the function f(s) can be reconstructed in the complex plane

using:

f(s) =
g

M2 − s

+
1

2iπ

[ˆ ∞

s0

f(s′ + iϵ)− f(s′ − iϵ)

s′ − s
ds′ +

ˆ s̃0

−∞

f(s′ + iϵ)− f(s′ − iϵ)

s′ − s
ds′
]

=
g

M2 − s
+

1

π

ˆ ∞

s0

ℑ[f(s′)]
s′ − s

ds′ +
1

π

ˆ s̃0

−∞

ℑ[f(s′)]
s′ − s

ds′, (2.56)

where g represents the residue of the pole in M2, the analysis employs the Schwarz

reflection principle and adheres to the +iϵ convention. We note that the orientation

of the integration contour of the pole is opposite to that of the cuts. Equation (2.56)

is know as the dispersion relation for f(s) with zero subtractions [43, 44, 69]. As

proven by a theorem due to Sugawara and Kanazawa [70], the dispersion relation

expressed in (2.56) holds for any function f(s) which is bounded by a finite power

of |s| as |s| → ∞, provided that f(s) vanishes as s tends to infinity along the cut.

Under these conditions, the integral over the arc vanishes, and the integral along the
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(a) (b)

Figure F.2.7: (a) Integration contour for (2.56) where it is considered a left hand cut
from s̃0, a right hand cut from s0 (both in red), and a pole onto the real axis in M2.
(b) Integration contour for (2.58) in the complex s′-plane, the red line represents a
cut for the function.

cut converges.

If these conditions are not met and, for instance, the function f(s) approaches

a constant as |s| tends to infinity, it becomes necessary to subtract the dispersion

relation. This can be achieved by making use of the identity:

1

s′ − s
=

1

s′ − sα
+

s− sα
(s′ − sα)(s′ − s)

, (2.57)

and employ it in the Cauchy integral for the contour shown in F.2.7(b):

f(s) =
1

2iπ

˛
C

f(s′)

s′ − s
ds′. (2.58)

We find:

f(s) =
1

2iπ

˛
c

f(s′)

s′ − sα
ds′ +

s− sα
2iπ

˛
c

f(s′)

(s′ − sα)(s′ − s)
ds′. (2.59)

The first term is the value of the function at the subtraction point sα, and is

referred as the subtraction constant. The subtraction point sα can be chosen

arbitrarily, subject only to sα < a. By making this subtraction, the second term in

(2.59) decays sufficiently rapidly, that the integral over the arc tends to zero. Hence
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the one-subtracted dispersion relation takes the form:

f(s) = f(sα) +
s− sα
π

ˆ ∞

a

ℑ[f(s′)]
(s′ − sα)(s′ − s− iϵ)

, (2.60)

where we have explicitly used the +iϵ physical convention.

In general, when f(s) exhibits asymptotic growth characterized by a power N of

s, the condition below must be satisfied:

lim
|s|→∞

∣∣∣∣f(s)sN

∣∣∣∣→ 0, (2.61)

it is necessary to introduce N + 1 subtractions to construct a converging dispersion

relation. For each of these subtractions, it is possible to select a distinct subtraction

point [37, 43, 44, 71, 72].

In principle, one can calculate dispersion relations with an arbitrary number of

subtractions. However, two subtractions are enough to ensure convergence due to

the Froissart [44, 73, 74] bound, i.e. σtot(s) < c log2 (s) with c an arbitrary constant

and σtot the total cross section. Nevertheless, more subtractions than strictly needed

can be made in order to weigh some regions of the integrand more than others or to

effectively incorporate dynamics not considered explicitly in the model for f(s).

The strongest and formal support for the relation between causality and the

analyticity of the scattering amplitude via the single variable dispersion relations is

on the Titchmarsh theorem [75, Chapter 2, pp. 119-128], for the purposes of this

work it can be stated as [76–78]:

Let f(s) a squared integrable function onto the real axis s which satisfies one of

the following properties [37]

1. Its Fourier transform F (t) = F [f(s)] is causal, say, F (t) = 0 for t < 0.

2. When replacing s by z ≡ x + iy, the function f(z) is analytic in the upper half

plane (y > 0) and goes to f(x) in at least a segment of the real axis when y → 0+.

Moreover, the integral
´∞
−∞ |f(x+ iy)|dx < k, for real k and y > 0, is bounded.

3. The real and imaginary part of F (z) are the Hilbert transform of each other. In
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other words, satisfies dispersion relations.

automatically has the other two properties. Note that when we introduce subtractions

the condition on square integrability is relaxed [34, 42, 79].

It is important to highlight that the number and position of the poles for the

amplitude are not fixed in general, and must be determined with strict attach to

experimental data. This is mainly due to the CDD poles (Castillejo-Dalitz-Dyson

poles) [80] that allows an infinite number of poles in the unphysical Riemann sheets.

In this way, amplitude analysis requires detailed experimental studies to determine

how many poles contribute to the observables.

2.4 Near-threshold amplitudes

The opening of a threshold impacts the shape of the observables as it usually

generates a cusp in the S wave [81, 82]. More elaborated structures can appear in

any partial wave as a consequence of the interplay between the particles in the newly

opened threshold. The simplest example is the nucleon-nucleon scattering, where the

deuteron is formed as a consequence of the nucleon-nucleon interaction.

In the near threshold energy region we can approximate the phase space to the

absolute value of the outgoing four momentum q(s) in the CM system, i.e. ρ(s) ≃
q(s). Hence, for a single channel, unitarity dictates the S wave amplitude to fulfill

ℑ
[

1
T (s)

]
= −q [83]. The effective range expansion for a single channel reads:

1

T (s)
= − 1

a0
+

1

2
re q

2(s)− iq(s) +O
(
q4(s)

Λ4

)
, (2.62)

where Λ is some hard scale of the order of the force range. The parameter a0 is the

scattering length, and re is the effective range. The sign of a0 depends on convention

and is important due to its physical meaning. Namely, if a0 is positive, there is a

pole on the real axis of the first Riemann sheet, which is interpreted as the presence

of a bound state. This situation arises, for example, for the case of the deuteron,

corresponding to nucleon-nucleon scattering with isospin zero (see Figure F.2.8(a)).
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(a) (b)

Figure F.2.8: The amplitude on the real axis for a pole residue re = 0. When a0 > 0, a
bound state is generated, and when a0 < 0, a virtual state is produced. The imaginary
part of the amplitude along the real axis above the cut on the first Riemann sheet is
shown in red with a solid line, while the amplitude along the real axis below the cut
on the second Riemann sheet is shown as a dashed blue line. The vertical orange
line highlights the threshold. The appearance of the bound and virtual states below the
threshold is apparent.

The physical interpretation is that the interaction between nucleons is sufficiently

strong to bind them into a stable system, often referred to as a hadronic molecule.

In contrast, if a0 is negative, the pole moves to the real axis in the second Riemann

sheet, which corresponds to a virtual state. This type of phenomenon occurs for

example in nucleon-nucleon scattering with isospin one and is caused by an attractive

interaction, which, though too weak to create a bound state, is strong enough to

generate a pole and produce a detectable signal. This case is depicted in Figure

F.2.8(b). In the literature, such a state is commonly referred as a virtual molecule.

We note that the sign convention for a0 is not universal and other authors like

Dong, Guo and Zou [84] prefer a + sign in front of the 1/a0 factor in equation (2.62),

flipping the sign interpretation provided in the previous paragraph.

Weinberg’s 1965 paper [85], was pivotal in dispelling the idea of the deuteron as an

elementary particle. Weinberg demonstrated that the deuteron could be understood

as a bound state of two particles (proton and neutron) through its scattering length

and pole behavior. His analysis showed that if the deuteron were elementary, its

properties would differ from those observed experimentally. The pole associated with

the deuteron is on the real axis of the first Riemann Sheet, consistent with a bound
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state and the scattering length is positive, so, by the Weinberg criterion, the deuteron

is a stable bound and composite system. Additionally, there is an associated virtual

state just below the threshold in the neutron proton channel which reinforces the

composite nature or the deuteron. Thus, Weinberg’s work solidified the understanding

of the deuteron as a composite system rather than an elementary particle. In the

context of the Weinberg criterion, the scattering length remains a crucial tool for

distinguishing between bound and virtual states, it is a powerful tool, but it has some

limitations in complex multi-channel systems, with significant relativistic effects as

well as the ones with strong coupling to multiple thresholds.

Before extending the formalism to the coupled-channels case, we examine another

kind of singularity that can appear in the 1 → 3 decay when a new channel opens:

the triangle singularity as shown in figure F.2.9.

The triangle singularity happens in a 0 → 1+ 2+ 3 decay when it is kinematically

possible for the three intermediate particles, X, Y and Z as shown in figure F.2.9, to

go on-shell. When this is kinematically allowed, the LHC moves towards the RHC and

coincide at the threshold, creating a singularity that can show up in the data as a spike

at the X−Y threshold. For the S wave case and scalar particles, it is straightforward

to compute this singularity. The event distribution in energy for particles 1 and 2

reads:

dN

d
√
s
= N0 ρ(s) |T (s)|2, (2.63)

where N is the measured number of events, s ≡ s12, N0 is the normalization, ρ(s) =

λ1/2(s,m2
0,m

2
3) λ

1/2(s,m2
1,m

2
2)/

√
s is the phase space, and T (s) is the scalar triangle

0

1

2

3

X

Y
Z

Figure F.2.9: Example of a triangle singularity diagram.
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amplitude in figure F.2.9 given by [86]:

T (s) =

ˆ 1

0

dx

s(y+ − y−)

[
log

(1− x− y+)

−y+
− log

(1− x− y−)

−y−

]
, (2.64)

where

y± =
1

2s

(
−β ±

√
β2 − 4αs

)
, (2.65a)

α = xm2
Z + (1− x)2 m2

3, (2.65b)

β = m2
1 − (1− x) (s+m2

2)− x m2
0. (2.65c)

If the contribution from the triangle singularity can be neglected, it is possible to

extend the single-channel effective range formalism to coupled-channels. Following

(2.62), the two-channel amplitude in the region close to the higher threshold can be

written [49, 83, 87]:

T−1
ij (s) = µij(s)− iki δij , (2.66)

with i, j = 1, 2 the two channels considered with 2 the higher-energy threshold. As

we did for the single channel case in (2.62) we approximate the two-body phase space

with the momentum, and, hence, ki is the four momentum with respect to the i

threshold. Consequently, the S matrix is:

Sij(s) = δij + 2i
√
ki kj Tij(s). (2.67)

Due to the unitarity condition, the 2 × 2 real symmetric matrix µij(s) represents

the regular part (singularity free) of the inverse amplitude and can be parametrized

as a matrix whose components can be Taylor expanded. At first order, it reads:

µij(s) =Mij − cijs, . (2.68)

At this point there are two choices that are made in the literature. The first one,

based on [83] consists on approximating the momenta as ki ∝
√
s− si where si is the

i threshold [49]. We call this approach the JPAC amplitude after the Joint Physics

Analysis Center collaboration that uses such prescription [88]. With this choice, the

amplitude is treated relativistically and due to the presence of square roots in k1
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and k2, the scattering amplitude has branch cuts that originate at the two threshold

energies, and, consequently, four Riemann sheets appear and causality is respected.

The second option consists on performing a nonrelativistic expansion of the momenta

as is done in Dong, Guo and Zou [84]. In this case only the branch cut due to k2 is

kept and k1 becomes a constant in the region of interest close to the higher threshold.

In this case, only two Riemann sheets are present, and the Schwarz reflection principle

and causality are not respected. We name this choice as DGZ after the initials of the

authors of Ref. [84]. Both approaches assume that other singularities, for example

LHC or resonances not related to the opening of the threshold are far away so the

Mij(s) is singularity free and its Taylor expansion converges. Additionally, JPAC

and DGZ use opposite sign convention for the scattering length. Both JPAC and

DGZ can be mathematically related what allows to compare results obtained using

either approach. In what follows we compare both approaches under the scattering

length approximation, where the cij parameters defined in (2.68) are set to zero. The

amplitude matrix has the form:[
m11m12 → m11m12 m12m12 → m21m22

m21m22 → m12m11 m21m22 → m21m22

]
, (2.69)

where the mij simultaneously stand for the particles involved and their respective

masses. The momenta in equation (2.62) reads:

q =
{ ν2k2 (JPAC),
√
2µ2E (DGZ),

(2.70)

where:

µ2 =
m21m22

m21 +m22
, ν2 =

√
m21m22

m21 +m22
,

E =
√
s− (m21 +m22) , k2 =

√
s− s2 =

√
s− (m21 +m22)

2.

Both q definitions are equal, but we prefer to keep each group’s notation. We start with

the non-relativistic amplitude using near-threshold effective theory for two channels
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[84]. The amplitude reads (omitting irrelevant global constant terms):

T (s) =
1

detDGZ

[
1
a22

+
√
−2µ2E − iϵ 1

a12
1
a12

1
a11

− iq1

]
, (2.71)

where:

detDGZ =

[
1

a11
− iq1

][
1

a22
+
√

−2µ2E − iϵ

]
− 1

a212
, (2.72)

where q1 is constant and is given by:

q1 =
1

2Σ2

√
∆(∆ + 2m11) (∆ + 2m12) (Σ1 + Σ2) +O(E), (2.73)

and

qNR1 =
λ1/2

(
s2,m

2
11,m

2
12

)
2
√
s2

= q1, (2.74)

with Σ1 = m11+m12, Σ2 = m21+m22, ∆ = Σ2−Σ1, and µ2 = m21m22/ (m21 +m22).

The constants a11, a12, and a22 are the scattering lengths. Additionally, in DGZ, an

effective a22,eff is defined so the denominator can be written:

detDGZ =
1

a22,eff
− iq2. (2.75)

So:

1

a22,eff
=

1

a22
− a11

a212
(
1 + a211q

2
1

) [1 + ia11q1] , (2.76)

with

ℜ
[

1

a22,eff

]
=

1

a22
− a11

a212
(
1 + a211q

2
1

) , (2.77)

ℑ
[

1

a22,eff

]
= −

a211q1

a212
(
1 + a211q

2
1

) ≤ 0. (2.78)
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Given that under this approach q1 is a constant, the pole is given by:

1

a22,eff
+
√

−2µ2Ep = 0 ⇒ Ep = − 1

2µ2 a222,eff
, (2.79)

so the mass and width of the resonance are given by:

Mp = Σ2 −ℜ

[
1

2µ2 a222,eff

]
, (2.80)

Γp = ℑ

[
1

µ2 a222,eff

]
. (2.81)

We can compute the pole position in the momentum space directly:

qp = η
i

a22,eff
, (2.82)

with η = +(−) if the pole is on the II(I) Riemann sheet.

For the JPAC approach, the amplitude matrix reads:

T (s) =
1

detJPAC

[
M22 − iν2k2 −M12

−M̃12 M11 − iν1k1

]
, (2.83)

νi =
√
mi1mi2

mi1+mi2
where ki =

√
s− (mi1 +mi2)

2 and

detJPAC = [M11 − iν1k1] [M22 − iν2k2]−M2
12. (2.84)

The scattering lengths can be obtained from the M parameters:

a11 =
1

M11
, a12 =

1

M12
, a22 =

1

M22
,

and the effective a22,eff can be defined as in the DGZ approach [equation. (2.75)]

detJPAC =
1

a22,eff
− iν2k2, (2.85)
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where

1

a22,eff
=M22 −

M2
12

M2
11 + ν21 k

2
1

[M11 + iν1 k1]

=
1

a22
− a11

a212
(
1 + a211ν

2
1 k

2
1

) [1 + ia11ν1 k1] . (2.86)

In this case, the poles are given by the algebraic equation

p0 + p1 q + p2 q
2 + p3 q

3 + q4 = 0, (2.87)

with

p0 = (s1 − s2)M
2
22 − (M2

12 −M11M22)
2, (2.88)

p1 = 2(s1 − s2)M22 + 2M11(M
2
12 −M11M22), (2.89)

p2 =M2
22 −M2

11 + s1 − s2, (2.90)

p3 = 2M22, (2.91)

and s1 = (m11 +m12)
2, s2 = (m21 +m22)

2, and s = s2 − q2.

Under the scattering length approximation, the poles appear either on the real

axis of the first or third Riemann sheets or as conjugate pairs either on the second or

fourth Riemann sheets. The structure of the amplitude prohibits complex poles on

the first Riemann sheet and, hence, causality is never violated regardless of the values

of the M11, M22, or M12 parameters. The sheet where a pole belongs to is identified

by the (η1, η2) pair:

η1 = signℜ
[

M2
12

M22 + q
−M11

]
, (2.92a)

η2 = signℜ [q] , (2.92b)

which correspond to:

I sheet: (+,+), II sheet: (−,+),

III sheet: (−,−), IV sheet: (+,−).
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2.5 Regge theory

Scattering amplitudes are not only analytical functions of the Mandelstam

variables as we discussed in the previous section, Tullio Regge showed [89, 90] (and

later Vladimir Gibov fully developed the theory [41, 91]) that it is possible to

analytically continue the amplitude in the angular momentum variable. Angular

momentum is an either integer or semi-integer physical variable, but as happens

with the energy, its extension to complex values broadens our knowledge and allows

a better description, and even a better prediction of different high-energy physics

phenomena [9, 38, 41].

First of all, note that the scattering amplitude for the process a+ b→ c+d can be

expressed using partial wave expansions, as discussed in the previous section. These

expansions are valid only within the constraints of the Lehmann ellipse [9], which

depends on the value of s in this case. To obtain a more general description that

remains applicable even for large values of the Mandelstam variable s, it becomes

necessary to perform an analytic continuation. At this point, extending the concept

of partial waves to complex values of ℓ becomes crucial. This extension allows the

new partial wave expansion to remain valid throughout the entire s-plane.

The analytical continuation of the function (2.36) to complex values of l → ℓ is

not an easy task. For the case of the Legendre functions the extension is natural

expressing that in terms of the hypergeometric function (see [92]) but for the partial

amplitude we have to use all the physical and most general restrictions to this

purpose. These constraints include unitarity, crossing symmetry, analyticity,

polynomial boundedness, threshold behavior, Regge behavior, causality (via

dispersion relations), and the proper treatment of physical poles and resonances.

Additionally, the amplitude must respect spin and symmetry properties and exhibit

appropriate asymptotic behavior in ℓ to guarantee convergence, as we mention

before in this chapter. Once these constraints are imposed, a model must be

constructed based on the specific reaction or process under study and the energy

range. One can made use of the Sommerfeld–Watson transform [43] to convert the
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(a) (b)

Figure F.2.10: (a) Set of contours that enclose all poles in the real axis of the complex
angular momentum plane for the Sommerfeld–Watson transform. (b) Contour
deformation into the curve C for the integration in (2.93). The value ℓ = −1/2
is enhanced due to the behaviour of the Legendre functions (see [9, 92]). Figures
inspired in Fig. II.8 from [93].

sum in (2.36) into an integral. Neglecting the spin of the particles this is written as:

T (s, t) = − 1

2i

ˆ
C

(2ℓ+ 1)f(ℓ, s)Pℓ(−zs)
sin πℓ

dℓ, (2.93)

where zs ≡ cos θs is defined in (2.10), C is shown in F.2.10(b) and includes all

positive integers and zero, and it is constructed avoiding all singularities from

scattering amplitude T (s, t).

The primary challenge with dispersion relations lies in reformulating all integrals in

terms of the amplitudes in physical regions. For that, crossing symmetry is an essential

tool. While its implementation is very straightforward for fixed-t amplitude dispersion

relations, leading to closed and compact expressions, it becomes considerably more

complex for partial-wave relations, since for each partial wave in a given channel they

may involve the infinite series of partial waves in the crossed channel.

The definition for f(ℓ, s) is not unique for all the values of ℓ, but using the Gribov–

Froissart transform [93] this can be solved with the introduction of two functions,

f+(ℓ, s) for even ℓ, and f−(ℓ, s) for odd ℓ. These functions are called partial amplitudes

of definite signature. In deriving this result one founds another kinematical factor

which behaves as ∼ qℓ near the threshold, and is related with the angular momentum

barriers [22, 38, 41, 49].



2.5. Regge theory 43

(a) (b)

Figure F.2.11: Contour deformation for Sommerfeld–Watson transform (2.93). (a)
Deformation with poles just in the real axis, (b) Deformation for the case with a pole
in the complex ℓ-plane. For contour deformation in the case of complex Regge cuts
can be found in [38]. Figures adapted from Figs. II.10 and II.11 from [93].

Now let us deform the original contour F.2.10(b) into the ones shown in F.2.11

which apart from a semicircle enclosed with a line at ℜ[ℓ] = −1/2 (which is a

restriction that comes from Legendre functions properties [38, 46, 92]) it also

includes the contours around the Regge poles appearing in the complex ℓ plane.3

We will denote the positions of these poles in f±(ℓ, t) as α±(s) while the residues

will be denoted as β±(s). This function α±(s) will be also called Regge trajectory, as

the position of such poles describes a path parameterized by s in the ℓ plane.

The contribution from the semicircle of the contour L2 is zero, due to the convergent

behavior of the f±(ℓ, s) partial waves. While the contributions coming from the

Regge poles can be directly evaluated using their parameters, the result reads using

the first Pl(z) and second kind Ql(z) Legendre function relation [92]: Pα(−z) =

eiπαPα(z)− 2
π sin παQα(z):

T (s, t) = −π [2α(s) + 1] β(s)

{[
1± e−iπα(s)

]
sin πα(s)

Pα(−zs)
∓ 2

π
Qα(−zs)

}
, (2.94)

where [1± e−iπα(s)] is known as the signature factor.

From this point, the analytical continuation in the angular momentum variable

ℓ = l+ Jp, where J is the spin of the particle, allow the construction of an analytical

3Cuts contributions are also possible, see [38, 93] for more details.



2.5. Regge theory 44

function α(s), called Regge trajectory, which relates the poles of the amplitude in

the angular momentum plane (Regge poles that matches the spin Jp of a resonance)

[93, 94]. The contribution to the partial amplitude (near the pole) can be written as

[38]:

f±(ℓ, s) ∼ β(s)

α(s)− ℓ
, (2.95)

where β(s) is also analytic and is known as the residue function, and α(s) has a right

hand cut (RHC) above the elastic threshold. Mathematical form depends on the

processes analysed.

The function presented in equation (2.95) can be directly compared to the Breit-

Wigner amplitude in the vicinity of the pole at sp, under the assumption of elastic

two-body scattering [9]:

fℓ(s) ∝
g2

m2 − s− i g2ρ(s, st)
, (2.96)

where m is a real parameter, commonly referred to as the Breit-Wigner mass. The

parameter g2 governs the decay of the resonance and characterizes the coupling to

open channels, while ρ(s, st) denotes the phase space factor, with st representing the

threshold energy. The calculation of ρ(s, st) which exhibits analyticity along the real

axis for s ≥ st offers a method for looking for the poles of f(ℓ, s). The above poles

are situated in the lower half of the s-plane and are analytically connected into the

physical region at s + iϵ. The form and position of a pole in the complex s-plane is

influenced by two primary factors: the underlying dynamics of quantum

chromodynamics (QCD) and the phase space properties. The phase space

contribution, given by ρ(s, st), manifests unitarity explicitly, while the effects of

QCD dynamics are encoded implicitly in the parameters m and g. At the pole

position sp, equations (2.95) and (2.96) have to be equal, hence [95]:

ℓ− α(sp) =
m2

g2
−
sp
g2

− iρ(sp, st) = 0 . (2.97)

This equation (2.97) is employed to establish a connection between the imaginary

part of the Regge trajectory and the parameters describing resonance decay[95].

To clarify these concepts, refer to figure F.2.12. The partial amplitude, f(ℓ, s),
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viewed as an analytical function of s, represents a resonance when s = sj . This

condition corresponds to the presence of a pole in the complex energy plane (the s-

plane) on the second Riemann sheet. The same pole is present in the complex angular

momentum plane, ℓ-plane, and corresponds to a pole onto the real in the position of

the resonance spin ℓ = Jp, say, this is a pole for the partial amplitude as an analytical

function of s and ℓ, f(ℓ, s). The function f(ℓ, s) is analytical and it can take values

outside the resonance poles, as the position of this point changes to unphysical values

of energy, the corresponding point in the ℓ-plane also changes to unphysical values of

ℓ (complex values). The analytical function generated by the motion in the ℓ-plane

is the Regge trajectory and in the corresponding pole position matches the angular

momentum of the resonances. In this way, from Regge theory perspective, the only

difference between a bound state and a resonance is that the former occurs with s

before threshold and the latter over the threshold, both with the corresponding ℓ

value, so the same trajectory can for instance have a bound state with ℓ = 0 and

a resonance with ℓ = 2, so Regge trajectories have states sharing the same quark

composition but differing in their spin or excitation state [76, 96].

A notable characteristic of the hadron spectrum is the approximate linear

behavior observed in its Regge trajectories. This property was first recognized by

Chew and Frautschi [97], who introduced a plot—now known as the Chew-Frautschi

plot—showing the spin of resonances, Jp, as a function of their squared mass, m2.

The patterns revealed in such plots have proven instrumental in guiding partial wave

analyses. For example, gaps in these trajectories can suggest the existence of

unobserved or missing states. Within the narrow-width approximation, this linear

dependence is directly associated with the structure of a Regge trajectory [95]. The

approximate linearity exhibited by these trajectories stands as one of the strongest

phenomenological indicators of confinement in quantum chromodynamics (QCD) [4].

Consequently, hadronic states that align with these linear trajectories are often

interpreted as being closely related to the predictions of quark models [98, 99].

Regge trajectories are significantly affected by resonance decays, which contribute

to these trajectories by introducing imaginary components [91]. These contributions

are governed by the principles of unitarity and analyticity and are closely linked to

the widths of the resonances [91]. As a result, Regge trajectories serve as mappings

from the complex energy plane, or s-plane, to the complex angular momentum plane,
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Figure F.2.12: Schematic comparison between the poles in the complex energy plane
and in the complex angular momentum plane. (a) For s = sj there is a pole onto
the s-plane for fℓ(sj). (b) This pole has a real angular momentum and it represents
a pole in ℓ = Jp for f(ℓ, s) = f(Jp, sj). (c) The function f(ℓ, s) is analytic and can
take values outside the resonance poles. (d) As the position in the s-plane changes it
also changes in the ℓ-plane; the analytical function generated by this movement in the
ℓ-plane is the Regge trajectory and matches the angular momentum of the resonances.
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also known as the J-plane. In particular, a resonance is defined by its complex energy

sp and spin Jp, Regge trajectory α(s) is a complex valued function which satisfies the

condition α(sp) ≡ (ℜ [J(sp)] ,ℑ [J(sp)]) = (Jp, 0) [95].

Resonances are defined by their pole parameters, which are the prime object of

study for the Regge trajectories. Up to now, Chew-Frautschi plots have been the

almost exclusive tool for extracting information on Regge trajectories, with few

exceptions [100, 101]. However, when the finite widths of resonances are taken into

account, the Chew-Frautschi plot does not give a complete description of the Regge

trajectory. To address this limitation, complementary analysis techniques can be

employed. For example, two-dimensional plots of ℑ[sp] versus ℜ[J ] = Jp [102] can

give more detailed information on the characteristics of the trajectory. In contrast,

surface plots of ℜ[α(s)] as a function of the complex energy s offer a more complete

picture of the Regge trajectory [95]. These methods allow for a more complete

characterization of the trajectory by considering the effects of finite resonance

widths.

As we mentioned before symmetries play an important role in physics and its

inclusion in the models offer a more robust framework to analyze for instance, Regge

trajectories and scattering processes. An additional symmetry for the amplitudes

of definite signature is known as the MacDowell symmetry [103]. As we mention at

low energy Regge trajectories are approximately linear, MacDowell symmetry imposes

that the slope parameter for Regge trajectories with the same isospin (I), but opposite

naturality (η) and signature (τ) are the same, in other words the slope parameter for

the trajectory Iη
(τ)

is the same for I−η
(−τ). The proof of this is beyond the interest of

this work and you can see for instance [9, 38, 104] for a detailed explanation.

2.6 Data fitting and uncertainty analysis

The determination of the existence of each resonance and its physical properties

relies on fitting experimental data accompanied by an uncertainty analysis. There are

several techniques that can be used. Some are based on a frequentist point of view

[105, 106] and others use a Bayesian perspective [107]. In this work we will take the

frequentist approach and will rely on Monte Carlo methods. Monte Carlo methods
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are a class of computational algorithms that utilize random sampling to approximate

solutions to mathematical and physical problems, particularly those involving complex

or high-dimensional systems. Generally, these methods are computationally expensive

and are applied in situations where an exact analytical solution is not feasible to

obtain. Among Monte Carlo methods, the bootstrap technique allows to compute

uncertainties. It is a non-parametric resampling technique that operates directly on

the experimental data with very few assumptions. In this thesis we will use this

technique to perform the uncertainty analysis once the models have been fitted to the

experimental data.

The conventional method for fitting data involves maximizing the likelihood

function:

L({θ}|{y}s) =
N∏
i

Pi(yi|θi), (2.98)

where Pi(yi|θi) represents the probability density function evaluated at a given

parameter θi and yi corresponds to the observed experimental data point. This

function is multiplicative because it is constructed under the assumption that the

observed data points are statistically independent. We will further assume that the

data are also identically distributed, i.e. their uncertainties will follow the same

distribution. The Likelihood function is constructed to measure the plausibility of a

parameter θ given the observed data X. Its goal is to reverse the usual

interpretation of probability, normally we use Pi(yi|θi), the probability of data given

the parameter, but, likelihood flips this perspective fixing the data and treating θ as

the variable.

Likelihood is defined only up to a positive multiplier, which we have been taken

to be one. It is an statistical tool to estimate the probability of certain data under

an assumed model or hypothesis. It is used for parameter estimation and statistical

hypothesis tests so that they can compare different models and choose the

best-fitted model. Properties of likelihood include its dependence on the model

parameters and data, and its use in constructing likelihood functions, which can be

maximized to find the most probable parameters. In the discrete case the likelihood

function (2.98) is the probability of observing our sample. In the continuous case,

L({θ}|{y}s)∆ is approximately the probability of our sample lying in a smart

interval [x, x + ∆] [108]. The absolute value of the likelihood function does depend
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on the sample size n. The larger the dataset, the smaller the likelihood; typically is

due to the product structure involving probabilities or densities less than 1. But, it

is the relative likelihood between different parameter values or models that carries

inferential meaning. If a model estimates a number of parameters, the degrees of

freedom associated with the likelihood are reduced by that very number. For

example, in many model-fitting scenarios the likelihood leads to the χ2 estimator,

and the ratio χ2/dof ∼ 1 is what evaluates the goodness-of-fit of the model [109].

The parameter that maximizes likelihood θ̂ corresponds to the value that makes the

observed data most probable under the model; maximum Likelihood adheres to the

principle of consistency, meaning that as the sample size increases θ̂ converges to the

true parameter value under certain regularity conditions. If a Gaussian distribution

is assumed for binned data, the corresponding probability density function is

expressed as:

Pi(yi|θi) =
1√
2πσi

exp

[
−1

2

(
fi({θ})− yi

σi

)2
]
, (2.99)

where (yi) is the value of the experimental data point for the i-th bin, and σi is its

associated uncertainty. The function fi({θ}) is the theoretical model or objective

function to be fitted. This expression assumes statistical independence among bins,

which is a standard assumption. Maximizing the likelihood function is mathematically

equivalent to minimizing the χ2 function:

χ2({θ}) =
N∑
i

(
fi({θ})− yi

σi

)2

. (2.100)

The choice of a Gaussian distribution is standard in many physical problems and

is adequate if the experimental uncertainties are of statistical origin [21].

The minimization process is usually performed using gradient-based optimization

algorithms, for example, MINUIT [110] or the Levenberg-Marquardt method [111,

112]. One must be aware that the occurrence of multiple local minima can trap the

optimizer into a local minimum, resulting in convergence to an unphysical solution.

One common way to deal with this problem is to attempt a variety of initial parameter

values at the outset of optimization along with detailed analysis, from both statistical

and physical perspectives, of the resulting minima. Another often powerful strategy
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is to initially use some global method such as genetic algorithms [113, 114] and then

follow through to the solution by a gradient-based approach. Understanding the shape

of the likelihood profile and the proximity of any local minima is important to ensure a

robust interpretation of the findings. Another critical aspect is the choice of a suitable

set of starting parameters when using the bootstrap method, as discussed in the next

section.

2.6.1 Uncertainties estimation with bootstrap

Physical studies go beyond proposing a model and fitting it to the experimental

data. They require a comprehensive error analysis to take into account the

experimental uncertainties and a robust methodology to propagate those

uncertainties to the extraction of the physically meaningful quantities , e.g. masses

and widths of the resonances, and to any prediction. A standard approach to

perform this analysis is to use the covariance matrix, obtained from the Hessian of

the likelihood function. A widely used tool in high-energy physics for optimization

tasks is the MIGRAD routine included in the MINUIT package [110]. This

calculation relies on the parabolic approximation of the likelihood function around

the minimum, which always provides symmetric uncertainties for the fitted

parameters. The main benefit with this procedure is that it is computationally

cheap and, most of the time, is reliable enough. Another routine within the

MINUIT package is MINOS, which is designed to sample the likelihood function in

the vicinity of the minimum. It is more expensive computationally but provides

better error estimates, in many cases asymmetric. However, it still presents the

problem on how to propagate the errors obtained for the parameters to other

observables. Especially if correlations among the parameters matter. This problem

can be particularly dire for the case of pole extraction, as the error propagation from

parameters and amplitudes to the pole extraction can be highly nontrivial. To avoid

this limitation, approaches based on Monte Carlo simulations like the bootstrap

[108, 115] or the jackknife, provide a robust, albeit computationally expensive,

alternative. Bootstrap methods yield rigorous results that are free from the

assumptions of likelihood symmetry or linearity in parameter space.
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To establish a systematic understanding of resampling techniques for uncertainty

estimation, it is worth studying the jackknife method before presenting the

bootstrap technique that will be employed. The jackknife was originally designed as

a method to estimate the bias and variance of statistical estimators [116]. The

jackknife method consists on systematically recomputing the estimator while leaving

out one observation at a time, which can give insight into the influence of individual

data points on the properties of the estimator. The jackknife procedure works as

follows. Let Y = {y1, y2, · · · , yn} denote a dataset of n observations and let F (Y )

denote the interested quantity, e.g. mean or variance. The first step consists on

creating n subsets by excluding one observation from the dataset, one at a time.

These resulting subsets Y (i) = {y1, . . . , yi−1, yi+1, . . . , yn} can now be used to

compute the quantity of interest for each leave-one-out sample yielding F(i) for

i = 1, 2, . . . , n. Next, pseudo-values are calculated for each observation so that the

contribution of this observation to the overall statistic may be assessed. The

pseudo-value for the i-th observation is given by:

F ∗
i = nF (X)− (n− 1)F(i), (2.101)

where F (X) is the quantity of interest computed using the full dataset. These pseudo-

values can be used to estimate the bias-corrected and the variance of the statistical

estimator. The jackknife bias estimate is defined as the average difference between

the leave-one-out estimator and the full estimator:

Bias(F ) ≡ 1

n

n∑
i=1

(
F(i) − F (Y )

)
. (2.102)

Similarly, the jackknife variance is estimated via variability in the leave-one-out

estimator:

Var(F ) ≡ n− 1

n

n∑
i=1

(
F(i) − F (i)

)2
, (2.103)

where F (i) is the mean of the leave-one-out estimates. Finally, the jackknife variance

can be used to construct confidence intervals for the quantity of interest. For example,

a confidence interval is given by F (Y )± z1−α/2
√

Var(F ) where z1−α/2 is the critical

value from the standard normal distribution. The jackknife method is systematic and

deterministic, which makes it efficient to compute. The method is especially helpful
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for a small number of sample sizes or if the computational resources are limited.

The bootstrap method, developed by Efron [108] is an extension of the jackknife

technique. The method is based on using random sampling with replacement in

generating a number of resamples from the original dataset, thereby enabling the

development of empirical distributions of the estimator that supports reliable

estimation of bias, variance, and confidence intervals without dependence on

linearity or normality assumptions [117].

There are two main ways to describe the bootstrap method [115]. The first, the

“plug-in” approach, views the bootstrap in terms of a functional operation applied to

the underlying population distribution function q. More specifically, if a functional

F (q) describes some property of the population that is desired, then the corresponding

bootstrap estimate is obtained by substituting the population distribution function q

with the empirical distribution function {qn} to obtain the expression F ({qn}). This
approach points out the empirical distribution as a way of estimating population

characteristics.

The second perspective, which has significantly contributed to the widespread

adoption of the bootstrap envisages a “bootstrap world”. In this hypothetical world,

the analyst possesses complete knowledge of the data-generating process and the

statistical model that replaces all unknown parameters with their observed

estimates. This “bootstrap world” replicates the sampling design of the real world

as closely as possible. Even though real-world data allows only a single observation

from the population, the bootstrap world allows for potentially an infinite number of

bootstrap samples, or resamples, taken from the empirical surrogate population.

Within this simulated framework, quantities of interest are approximated through

computational methods. For instance, to estimate the variance of some complex

parameter, one would generate NB bootstrap samples, recalculate the parameter for

every sample, and use the variance of the recalculated values as an approximation of

the variance of the parameter. As NB goes to infinity, the sample variance converges

to the true variance within the bootstrap world. This limiting variance acts as an

estimator for the actual variance of the parameter observed in the real world. The

bootstrap framework therefore provides a systematic way of estimating the

statistical properties of real-world situations using statistics computed in the

bootstrap world, subject only by Monte Carlo error [109].
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Suppose that we have a data set Y = y1, y2, . . . , yn, which is a collection of random

variables with a joint distribution Pn and we wish to estimate a population parameter

θ. Using this data, an estimator θ̂n (e.g., derived via maximum likelihood or method

of moments) is constructed. One of the fundamental challenges in statistical inference

is determining the accuracy of θ̂n often via measures like mean squared error (MSE)

or confidence intervals. All these procedures are based on the sampling distribution

of θ̂n, which is usually unknown and, in most cases, analytically infeasible. The

bootstrap method solves this problem by approximating the sampling distribution of

θ̂n through resampling, thereby allowing its characteristics to be estimated.

The key idea underlying the bootstrap may be summarized as follows [117].

First, based on the given data Yn = {y1, y2, . . . , yn}, an empirical estimate P̂n of the

unknown joint distribution Pn is obtained. This is often represented as the empirical

measure that assigns equal probability to each observed data point. From this

empirical distribution, further random samples Y∗
n = {y∗1, y∗2, . . . , y∗n} are drawn by

sampling with replacement, thus in effect “bootstrapping the data”. If P̂n is a

“good” approximation to Pn and Y∗
n is obtained from P̂n, then the relation between

data and its underlying true distribution is preserved in the bootstrap world as well.

In order to estimate the distribution of θ̂n, a bootstrap replica θ∗n is created from the

resampled data y∗1, . . . , y
∗
n. Hence, the conditional distribution of θ∗n given the

observed data Yn approximates the sampling distribution of θ̂n. This approximation

becomes the foundation for further inferential procedures.

One of the strengths of the bootstrap lies in its general applicability to functionals

of θ̂n, such as its variance or quantiles for this we employ the corresponding function

to the conditional distribution of θ∗n. More precisely, the bootstrap estimate of the

variance of θ̂n is the conditional variance of θ∗n. On the other hand, the bootstrap

estimate of a quantile, namely the α-quantile, is the corresponding quantile of the

conditional distribution of θ̂∗n. By generating a large number of bootstrap replicates

through repeated resampling, the method provides a numerical approximation to these

and other distributional characteristics, enabling practical inference even in complex,

high-dimensional contexts. While this idea sounds simple, the quality of this bootstrap

depends on the quality of the empirical estimate P̂n and the properties of θ̂n. For

the case of dependent data, more refined analyses use block bootstrap depending on

dependence structure or sieve bootstrap [117].
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Let Y = y1, y2, . . . , yn be a collection of independent and identically distributed

random variables with common distribution function F , and let F̂n be an estimator

of F based on that collection of variables, say:

Fn(y) =
1

n

n∑
i=1

I(Yi ≤ y), (2.104)

where y ∈ R and I(·) is the indicator function (a mathematical function used to

represent a condition or event), note that in this case we are assigning equal weight

to each observed data point, providing a straightforward and practical approximation

of the underlying distribution F . Next let {y∗1, y∗2, . . . , y∗m} random variables with

common distribution F̂n, with m denoting the resample size being m ≤ n. Then,

F̂n = Fn when the y∗i are generated by simple random sampling with replacement

from Y .4 This process treats the empirical distribution F̂n as if it were the true

population distribution.

Suppose the parameter of interest is θ = θ(F ), such as the population mean or

variance, and a statistic Tn = tn(y1, y2, . . . , yn; θ) is used to estimate it based on the

observed data. For instance, the normalized sample mean can be expressed as:

Tn =
√
n
yn − µ

σ
, (2.105)

where:

X =
1

n

n∑
i=1

yi, (2.106)

denotes the sample mean, and the quantities µ = E[yi] and σ2 = Var(yi) are the

population mean and variance, respectively. To estimate the sampling distribution of

Tn, the bootstrap calculates an analogous statistic T ∗
m,n based on the resampled data

y∗
n = {y∗1, . . . , y∗m}. This statistic is defined as:

T ∗
m,n = tm(y

∗
1, y

∗
2, . . . , y

∗
m; θ̂n), (2.107)

where θ̂n is the plug-in estimate of θ, obtained by replacing the unknown

distribution F with its empirical counterpart F̂n. For example the bootstrap version

4In some applications, a smoothed version of F̂n may be preferred to refine the
approximation or address specific requirements.
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of the normalized sample mean takes the form:

T ∗
m,n =

√
m
y∗m − µ̂n
σ̂n

, (2.108)

being X
∗
m the mean of the bootstrap sample, and σ̂n and µ̂n represents the sample

variance and mean of F̂n. When F̂n is the empirical distribution, both µ̂n and σ̂2n
corresponds to the sample mean and variance of the observed data. By repeating

this resampling process and recalculating T ∗
m,n multiple times the bootstrap

approximates the probability distribution P(Tn) by the conditional distribution of

P(T ∗
m,n|y1, y2, . . . , yn).5 In the case of a parameter ξ(P(Tn)) based on some

functional of this distribution, its bootstrap estimator is given by

ξ̂ = ξ(P(T ∗
m,n|y1, y2, . . . , yn)).

It can be shown (see [118]) that the bootstrap approximation for independent

and identically distributed random variables with finite variance is asymptotically

consistent for quantities like the sample mean the convergence and inference based on

the bootstrap approximation is similar or better than the normal approximation for

standard discrete distributions such as the Geometric, Poisson or Binomial.

Model-based bootstrap generalizes the traditional bootstrap method to problems

where data can no longer be assumed to consist of independent and identically

distributed observations, incorporating structured models such as regression and

time series in an effort to adapt the resampling process so that it reflects underlying

dependencies or patterns in the data. This flexibility is essential for modern

statistical applications, where the independent and identically distributed framework

is often an unrealistic assumption.

The bootstrap method is an excellent approach to investigate the properties of

estimators in multiple linear regression when the traditional parametric assumptions

on the distribution of data are not satisfied. In a standard multiple linear regression

model, the response variable Y can be expressed as a linear combination of predictor

variables x—mathematically represented as:

Yi = x′iβ + ϵi i = 1, 2, . . . , n, (2.109)

5The notation P(A|B) is used for the conditional probability of A given B.
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where xi denotes a p-dimensional vector of predictors, β represents the vector of

unknown regression coefficients, and ϵi are random errors. The least squares estimator

(LSE) for the vector of unknown coefficients β minimizes the residual sum of squares:

β̂ = argmin
β

n∑
i=1

(Yi − x′iβ)
2. (2.110)

Under standard assumptions, such as errors ϵi being independent and identically

distributed with zero mean and constant variance, the LSE has well-defined properties,

including unbiasedness and efficiency. However, these assumptions are frequently

violated in practice, necessitating non-parametric methods like the bootstrap [117].

One of the central contributions of the bootstrap lies in its ability to approximate

the sampling distribution of the LSE without relying on strict distributional

assumptions. By generating pseudo-samples from the empirical distribution of

residuals, it provides an empirical basis for inference. In regression models, the

residuals from the fitted model are defined as:

ei = Yi − x′iβ̂, (2.111)

To preserve the zero-mean property of the errors, these residuals are often centered

as follows:

ẽi = ei − e, where e =
1

n

n∑
i=1

ei, (2.112)

The centered residuals are then resampled with replacement to generate bootstrap

pseudo-responses:

Y ∗
i = x′iβ̂ + e∗i , (2.113)

where e∗i are sampled residuals. For each bootstrap sample, a new estimate β̂∗ is

calculated, producing a distribution of bootstrap estimates. Repeating this process a

large number of times ensures convergence to the true sampling distribution of β̂, this

is closely tied to results from the Central Limit Theorem (CLT) [119]. Moreover, the

validity of the bootstrap hinges on the empirical residual distribution approximating

the true error distribution, and the bootstrap achieves second-order accuracy, reducing

bias and better estimating variance compared to first-order methods[117].6

6Amethod is considered first-order accurate if converges to the true value at the same rate
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Another critical focus of the bootstrap is the estimation of covariance and

correlation matrices among parameter estimates, which are essential for

understanding their joint variability and relationships. In section 2.6.2, we detail an

example were we put in practice the bootstrap methodology and evaluate the

covariance and correlation matrices.

When data dependencies, such as temporal or spatial autocorrelation, are

present, the bootstrap must adapt to preserve these structures. The block bootstrap

is a specialized variation designed for such cases. Instead of resampling individual

observations, this method divides the data into contiguous blocks to preserve the

correlation structure within each block. For example, in a time series context, blocks

of consecutive observations are resampled, maintaining the temporal order within

each block. This approach ensures that dependencies in the data are reflected in the

bootstrap replicates, leading to more accurate estimates of sampling distributions

and covariance structures [108, 117].

The bootstrap method is a useful tool in the analysis of experimental data with

known uncertainties, especially combined with likelihood-based methods. In such

cases, the uncertainties associated with the measurements enter the resampling

structure such that the intrinsic variability of the data is faithfully captured in the

analysis. Bootstrap resampling methods are explicitly developed by adding

perturbations to the observed data based on their stated uncertainties, which are

often modeled as stochastic samples from a specific distribution, such as a Gaussian

centered on the measured values with a variance equal to the reported uncertainty.

This approach strengthens likelihood-based methods by providing a robust,

non-parametric means of assessing the variability in parameter estimates in complex

models where analytical solutions may be untenable. Combining bootstrap

resampling with likelihood maximization methods allows one to construct confidence

intervals and estimate uncertainties in a manner that is both computationally

tractable and faithful to the empirical character of the data. This methodological

synthesis makes sure that irreducible noise inherent in experimental measurement

itself is included in the inferential framework and enhances the reliability of the

obtained results [117, 120].

as the sample size increases, in contrast, the second order accuracy accounts for corrections
beyond the leading-order terms, effectively capturing more refined characteristics of the
sampling distribution, such as skewness or higher-order dependencies.
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In cases where the dependent variable represents a limitation or a constant value

and the primary source of variability exists in the independent variables, there is the

possibility of adopting the bootstrap approach through resampling of the independent

variables in place of the dependent variable. This technique requires inverting or

rewriting the model to express the dependent variable as a function of independent

variables so that the property of the constant value nature of the dependent quantity

holds good. By resampling independent variables from their empirical or theoretical

distributions, one is able to propagate variability through the model and subsequently

estimate uncertainties of derived parameters or predictions. The robustness of this

approach is based on the principle that the bootstrap fundamentally relies on the

approximation of the sampling distribution of an estimator, a property that remains

intact under model transformations. By emphasizing the variation in independent

variables, this procedure accommodates the limited range of the dependent variable

while preserving the statistical integrity of the bootstrap method. Resampling the

independent variables ensures proper representation of their empirical distribution

and any possible interdependence or correlation among them—conditions that make

one’s inferences about the dependent variable robust and meaningful when direct

resampling of the latter cannot be performed [121, 122]. In the section 2.6.2 we detail

an example using the bootstrap technique.

2.6.2 Application of the Bootstrap Method: A Practical

Example

To clarify the bootstrap technique, we present a detailed hands-on example

involving a quadratic fit. Specifically, we compare the results from the MIGRAD

and MINOS routines. Consider a model y = 0.5x2 + 0.3x+ 0.1 and generate N = 50

datapoints uniformly in the range x ∈ [−14, 10], and to complement with the

error/uncertainty analysis, For each data point, we assign an uncertainty ∆yi

sampled from a Gaussian distribution (as described before) with zero mean and

σ = 0.9. Then calculate the noise νi = ν̂ × ∆yi where ν̂ is drawn from a Normal

distribution. The final data points are then computed as:

yi = 0.5x2 + 0.3x+ 0.1 + νi, with the associated errors ∆yi.
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Figure F.2.13: Datapoints and best fit found for the quadratic fit example.

Figure F.2.13 depicts the generated datapoints. To fit this data set to our quadratic

model y = θ1+θ2x+θ3x
2, we apply the MINUIT χ2-minimization algorithm. The best

fit found (BFF) has χ2BFF /dof = 55.03/(50− 3) = 1.17 where dof stands for degrees

of freedom and θ1 = 0.1011± 0.0008, θ2 = 0.314± 0.006 and θ3 = 0.501± 0.018. The

errors are computed with the MIGRAD routine, and the MINOS routine gives the

same answers in this example because the likelihood is symmetric by construction.

Now, we repeat the analysis using the bootstrap technique. Although often called

non-parametric since it does not rely on strong assumptions about the distribution

of the underlying data, it can also be used in a parametric context when such

assumptions are justified. The idea of bootstrapping is that inference about a

population from sample data can be modeled by resampling the sample data and

performing inference about a sample, from the resampled data [108]. In doing so, we

first find the best fit by minimizing the χ2. Then we construct new pseudodata sets

{ỹ} by resampling each data point, consistent with the original experimental

measurements. This is shown in Figure F.2.14. The errors on the pseudodata sets

are retained at the same values as those of the original values, {∆y}. Each

pseudodata set is then refit using the original model, yielding a new set of

parameters θ1 along with the associated [χ2BS ], where BS stands for the bootstrap

method. This is done many times until one has adequate statistical significance. We

call each fit to a given pseudodata set a BS fit. The output of this procedure are
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(a) (b)

Figure F.2.14: Pseudodata generated using the bootstrap technique, (a) and (b) are
two samples from the M = 103 used for the example in section 2.6.1. The original
dataset is in light-blue and the pseudodata sample are the black points.

histograms for the distribution of the parameters {θ}, along with the corresponding

χ2BS values. As the uncertainties ∆yi are assumed to be distributed according to a

Gaussian distribution, the χ2BS values are distributed according to a noncentral χ2

distribution [21].

χ2nc(x|k, ν) =
1

2
exp
[
−ν + x

2

](
x

ν

)(k−2)/4

I(k−2)/2(
√
νx), (2.114)

where ν = χ2BFF , k represents the number of degrees of freedom (dof). The figure

F.2.15 illustrates the comparison between equation (2.114) and the {χ2BS}
distribution from the M = 104 BS fits. The peak of the distribution is

approximately at 2χ2BFF . The same figure F.2.15 also shows the {θ1} and {θ2}
histograms, which exhibit Gaussian shapes. These yield parameter estimates

θ1 = 0.1011 ± 0.0008, θ2 = 0.314 ± 0.006 and θ3 = 0.501 ± 0.018, consistent with

results from MIGRAD. The expected parameter values are computed as the mean of

the respective histograms for {θ1}, {θ2} and {θ3}. The uncertainties are derived as

the 16th to 84th quantiles, corresponding to the 1σ (68%) confidence level. Higher

confidence levels can be obtained by calculating appropriate quantiles, provided a

sufficiently large number of bootstrap (BS) fits are performed. The accuracy of such

confidence levels improves with the number of fits, according to a scaling law of

1/
√
M , whereM is the total number of BS fits. For example, with a total of
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M = 103 bootstrap samples, the resulting accuracy is around 3.2%. Nevertheless,

such an accuracy level is not good enough to claim a 2σ confidence interval

(95.5%) [21] in our analysis.

The covariance and correlation matrices can be directly calculated from the

bootstrap (BS) fits as follows:

cov(θi, θj) =

M∑
k=1

([θi]k − ⟨θi⟩)([θj ]k − ⟨θj⟩)
M

, (2.115a)

and

corr(θi, θj) =
cov(θi, θj)√

cov(θi, θi)
√

cov(θj , θj)
. (2.115b)

The covariance and correlation matrices closely resemble those computed using the

MIGRAD algorithm, demonstrating consistency between the bootstrap analysis and

the standard optimization method:

cov(θ1, θ2, θ3)Hessian =

342.0 66.51 −4.71

67.0 33.01 0.29

−5.0 0.29 0.59

× 10−6, corr(θ1, θ2, θ3)Hessian =

 1.00 0.62 −0.33

0.62 1.00 0.06

−0.33 0.06 1.00

 ,
cov(θ1, θ2, θ3)BS =

342.0 66.51 −4.71

67.0 33.01 0.29

−5.0 0.29 0.59

× 10−6, corr(θ1, θ2, θ3)BS =

 1.00 0.62 −0.33

0.62 1.00 0.06

−0.33 0.06 1.00

 .

Hence, we have demonstrated that the bootstrap and the standard Hessian

methods yield compatible results, provided that a sufficient number of BS fits are

performed.

The calculation of any observable g(θ) and the propagation of associated

uncertainties is a straightforward process. For each parameter set [θ]i obtained from

a BS fit, the observable is evaluated as gi = g([θ]i), producing M values of gi. From

the resulting histogram, the expected value ⟨g⟩ and its uncertainties can be

determined, analogous to the method applied for the parameters θ. This procedure

is agnostic to the functional form of g, ensuring that both the uncertainties in the

parameters and their correlations are fully propagated to the observable.

Consequently, despite its computational intensity, the bootstrap method remains a

robust and effective tool for analyzing data and quantifying uncertainties [21].
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Figure F.2.15: (a) Theoretical non-central χ2 distribution compared with the histogram
derived from bootstrap estimates for χ2

BS. (b) Theoretical Gaussian distribution
contrasted with the histogram obtained from bootstrap evaluations for the parameter θ1.
(c) Theoretical Gaussian distribution compared against the histogram generated from
bootstrap approximations for the parameter θ2. (d) Theoretical Gaussian distribution
analyzed in relation to the histogram constructed from bootstrap fits for the parameter
θ3.
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We have illustrated the method on data from a quadratic model with statistically

independent parameters and Gaussian-distributed uncertainties. For a detailed

description of the procedure applied to a linear model, we refer the reader to [21]. In

this case, there was a unique minimum for the BFF, and the histograms of {θ} and

{χ2BS} were Gaussian and non-central χ2 distributed, respectively. The extension of

the method to other distributions is straightforward, both in terms of the likelihood

function and in the process of generating pseudodata sets. When the experimental

data points are correlated, one can construct pseudodata consistent with the

correlation matrix. In addition, systematic uncertainties can be included as

correlated errors. However, a problem arises when systematic and statistical

uncertainties are propagated at the same time because these uncertainties can not

be disentangled in the resulting observables.

In presence of a nearby local minimum for BFF, the Bootstrap sometimes swings

over from global to that particular local minimum. Correspondingly, the distribution

of a parameter may take a structure of two peaks, where all expected values, as well as

their uncertainties or quantities derived thereof, shall be interpreted carefully. While it

is technically possible to compute uncertainties and fit each minimum separately, the

question of which minimum is better and what inferences can be drawn requires careful

consideration. The answer to this depends partly on whether peaks in parameter

histograms are well separated, partly on how correlated model parameters are, and

partly on to what extent fits from different minima exhibit consistently diverging

likelihoods functions. The problem lacks a universal solution; thus, each case must

be examined individually and interpreted within its physical context. Additionally,

bootstrap results provide a means of comparing two models of approximately similar

quality by analyzing the distributions of {χ2BFF} and {χ2BS}. For two models, each

one can be fitted to the same pseudo-data set, and their results compared for each

BS fit. If one is consistently better than the other, then it can be regarded as being

the better model [21].



3. Results

We have no right to assume that any physical laws

exist, or if they have existed up until now, that they

will continue to exist in a similar manner in the

future.

M. Planck

In this chapter we provide an overview of the three major analyses where we explore

different aspects of hadron phenomenology and resonance studies. In all of them we

rely on a combination of theoretical frameworks and statistical techniques.

1. Regge theory and hadronic phenomenology are applied to the low-lying baryon

spectrum; the formalism of complex angular momentum is used to investigate

N∗ and ∆∗ resonances within the framework of basic principles of S-matrix

theory as a very powerful tool for the analysis of scattering amplitudes with the

understanding of the resonance structure. By continuing work on the extension

of this formalism, we have been able to identify useful information about the

behavior of these resonances at high energies. Results from this work have been

published in [95].

2. The near-threshold Pc(4312)
+ resonance discovered by LHCb in 2019 is studied

within general principles of the S-matrix theory. This analysis also compares

various parametrizations, enabling a comprehensive study of Pc(4312)
+ in light

of other theoretical models. The obtained results allow more clarity in

understanding the structure of the resonance itself and help refine models

already existing about hadron dynamics near thresholds.

3. The extension of the method applied in the study of Pc(4312)
+ to the case of the

f0(980) resonance, which also appears near the KK̄ threshold. The proximity of

the f0(980) to that threshold had been a source of great interest in its properties.

64
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The bootstrap technique is employed for all these three cases to pursue a

comprehensive statistical analysis and uncertainty quantification. As a matter of

fact, this is a very useful method that enhances the reliability and robustness of the

results [118, 120, 121].

3.1 Analysis of theN ∗ and ∆∗ spectrum using Regge

phenomenology

In the work [95], we employed Regge phenomenology to analyze the pole structure

of the N∗ and ∆∗ spectra, extending and complementing the investigation formerly

carried out in the strange baryon sector as reported in Ref. [102].

The sector of low-lying non-strange baryons, containing the N∗ and ∆∗

resonances (the excited states of nucleons), is a crucial path toward understanding

the quark model as well as quantum chromodynamics (QCD) in the

non-perturbative regime. Such resonances can be investigated by means of

pion-nucleon scattering and photoproduction experiments, providing essential

information (see F.1.1).

N resonances correspond to energies where a nucleon may absorb the right amount

of energy to move into a higher energy state. Eventually, the resonances will decay into

lower states. Examples include the Roper resonance N(1440) and the N(1520) with

distinct masses, decay widths, and quantum numbers. Because many parameters,

such as mass and width, are extracted experimentally, the hadronic models need to

be fine-tuned to develop an understanding of nucleon structure. These resonances

appear in pion-nucleon and photon-nucleon scattering experiments.

∆ resonances differ from N resonances only in their isospin. Whereas nucleons

have isospin I = 1/2, ∆ resonances have isospin I = 3/2. They therefore come in

four distinct charge states: ∆++, ∆+, ∆0, and ∆−. One of the most important one

of these is the ∆(1232) resonance, which is very relevant for pion-nucleon

interactions. It gains its accessibility with a relatively low mass and a short lifetime

within a wide range of hadronic processes. Extensive studies of the ∆(1232)
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resonance in scattering experiments have imposed critical constraints on theoretical

models that describe baryon interactions. Its role is not solely confined to the

scattering processes but also extends to studies of the spectrum of baryons and the

strong interactions within baryons. The N and ∆ resonances are more important in

the wider context, however, for what they can teach about the non-perturbative

aspects of QCD. The perturbative form of QCD explains only high-energy processes

where the strong force becomes weak; the low-energy behaviors of baryons involve

much stronger coupling between quarks and gluons. N and ∆ resonances are

interactions that have significant implications for the study of models developed to

explain such phenomena as quark confinement and chiral symmetry breaking.

Techniques such as partial wave analysis and coupled-channel models offer

perspectives for the precise extraction of the parameters of these resonances, thus

contributing to refining theoretical approaches in hadronic physics.

Most of the analyses of resonances in this section are based on different datasets,

each with its own peculiarities and requiring sophisticated methods for the precise

extraction of resonance signals. Data from measurements of hadronic scattering

processes often include pion-nucleon (πN) and nucleon-nucleon (NN) interactions,

as well as data describing near-threshold phenomena. Each of the various datasets

requires due care in considering experimental uncertainties and theoretical models

employed to interpret the results.

Extraction of resonance signals from such data sets faces several challenges,

which are physical, mathematical as well as computational. The central difficulty

lies in isolating the true resonance signals from the background noise and other

non-resonant contributions presents itself in the scattering data. This is particularly

important when one is dealing with overlapping resonances or those of broad widths

where the distinct peak structure in the amplitude is not well defined. Scattering

amplitude T (s, t) in those analysis is expanded into partial waves and decomposed

into components of angular momentum. Such decomposition allows the

identification of individual resonances by analyzing the partial wave amplitudes as

functions of energy and momentum transfer.

In [95] we fit complex Regge trajectories to the spectra obtained by several

partial wave analyses of meson scattering and photoproduction data, from all

available analysis we study only the ones that includes uncertainties in their
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extractions as we will apply the bootstrapping technique 2.6.1. In what follows, a

brief description of the models employed to extract the pole parameters is presented.

3.1.1 The Carnegie–Mellon–Berkeley pole extractions

The Carnegie–Mellon–Berkeley (CMB) πN partial wave analysis presented in [123,

124] represents an elaborate investigation of pion-nucleon scattering in the energy

range between 0.42 and 2.0 GeV. It provides the extraction of important resonance

parameters - mass, width, and elasticity - for the resonances under consideration,

namely for the N and ∆ states. Results of this analysis have been extensively used

by the Particle Data Group (PDG) [8], and hence the above-mentioned papers are a

vital reference in hadronic phenomenology studies.

The partial-wave amplitudes are parametrized in the multichannel model within

the CMB analysis. A scattering matrix has to be used to describe a strong coupling

between several inelastic channels; that will give a more accurate description of the

complex interactions occurring in the pion-nucleon scattering. In addition to the

elastic channel, the model includes the quasi-two-body channels π∆, ρN , ηN , ϵN ,

ωN , πN∗ and ρ∆. A non-resonant ππN channel is also included. This multichannel

framework is necessary to take into account the couplings with the intermediate states

in order that all the physical processes relevant to the analysis can be included.

In order to improve the accuracy of the resonance extraction, the standard Breit-

Wigner resonance form is modified by introducing an energy-dependent phase space

factor. This modification permits the model to take into account a properly varying

phase space that becomes available for given energies, in particular in the πN elastic

channel. This factor is included to ensure that the resonances were represented with

higher precision, particularly in regions where phase space effects become prominent,

like near thresholds.

It also includes dispersion relations and analyticity constraints. Dispersion

relations connect the real and imaginary parts of the scattering amplitude and

guarantee that the model satisfies basic principles like causality and crossing

symmetry. These constraints often enable the extraction of resonance parameters
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without ambiguities, which generally appear, in particular when dealing with

overlapping resonances or broad-width states. By imposing these conditions, the

CMB analysis enhances the stability and robustness of the resonance parameters

extracted from the data.

The fitting process in the CMB analysis involves iteratively constructing

partial-wave amplitudes and applying these dispersion relations in such a way that

the amplitude is always consistent both with the high-energy behavior and with the

behavior at low energies calculated by theory. Besides, the fitting procedure treats

experimental uncertainties very cautiously, using sophisticated statistical methods to

avoid bias and to extract resonance signals with high confidence.

3.1.2 The Jülich–Bonn pole extractions

Pole parameters from [125] were obtained using the Jülich–Bonn (JüBo) 2017

coupled-channel model. The JüBo coupled-channel model conducts an exhaustive

analysis of general photoproduction reactions, with a particular focus on the K+Λ

final state. This work extends the basic framework of the original JüBo model to

include photoproduction, allowing for the determination of nucleon and ∆ resonance

parameters in this new regime. In this model, a dynamical coupled-channel (DCC)

approach is applied, fully respecting unitarity and analyticity. This makes it highly

reliable for deducing the resonance spectrum in terms of complex pole positions and

residues.

The dataset used in this study totals more than 40,000 data points for various

reactions, such as pion-induced processes like πN → KΛ, and photon-induced

reactions like γp → K+Λ. This extensive dataset enables the model to fit a wide

energy range, reaching up to 2.3 GeV in the center-of-mass frame, and includes

recent high-quality polarization observables.

The JüBo model is designed using time-ordered perturbation theory (TOPT),

constructing a scattering potential that is iterated within a Lippmann-Schwinger

equation to ensure two-body unitarity. Approximate three-body unitarity is also

considered, with effective treatment of channels like ρN , σN , and π∆. These
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channels are dynamically included by fitting their phase shifts to the experimental

data.

The partial wave decomposition is a method used to express the scattering

amplitude, Tµν(q, p
′, Ecm), in a partial wave basis, bringing together pole and

non-pole terms. The pole terms account for the genuine s-channel resonances, while

the non-pole terms capture the t- and u-channel exchanges. This decomposition

clearly identifies dynamically generated resonances, which are induced by the

unitarization of background processes, even when no explicit s-channel poles are

present.

Further analysis of the complex pole structure of the scattering amplitude on

unphysical Riemann sheets allows the extraction of the resonance spectrum. Poles

closest to the physical axis provide the most reliable resonance information. Several

nucleon and ∆ resonances have been identified in the JüBo approach, including

dynamically generated ones that appear without the need to introduce explicit

s-channel poles manually. In particular, the model identifies a second s-channel pole

in the P13 partial wave and a newly dynamically generated resonance in the D15

wave.

In total, the JüBo framework fits more than 48,000 data points using 761 free

parameters, which include hadronic couplings, bare masses of the s-channel

resonances, and photonic couplings. A parallelized χ2 minimization using the

MINUIT algorithm is employed on a supercomputer to handle the large

computational demand. The analysis also incorporates statistical re-weighting

techniques to estimate uncertainties in the extracted resonance parameters.

Involved polarization observables, such as recoil polarization P and beam-recoil

observables Cx and Cz, have played a significant role in the K+Λ channel in

constraining the resonance spectrum. High-quality data from the CLAS and MAMI

collaborations have been particularly influential in refining the resonance parameters

and photonic couplings.

The JüBo analysis further addresses inconsistencies in various experimental

datasets, particularly regarding differential cross sections for γp → K+Λ, where

discrepancies between measurements from different facilities are noted. Despite

these challenges, the model achieves good agreement with most of the provided
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polarization data, contributing to a better understanding of K+Λ photoproduction.

All these features—unitarity, analyticity, and simultaneous fitting of the hadronic

and photonic final states—make the JüBo framework a powerful tool in studying

baryon resonance spectra and addressing the missing resonance problem.

3.1.3 The Bonn–Gatchina pole extractions

The multichannel partial wave analysis Bonn–Gatchina (BnGa), presented in the

works [126, 127], represents a comprehensive effort towards the extraction of both

nucleon and ∆ resonances in hadronic interactions. In both studies, emphasis is

given on the extraction of resonance parameters from scattering and photoproduction

data by means of complementary methods that supplement each other for a better

conceptual understanding of the resonance spectrum.

In [126] a multi-channel PWA is used that separated the scattering amplitudes

into well-defined contributions from different partial waves. This helps in identifying

resonance like N(1900)3/2+, N(1900)3/2+ and N(1975)3/2+, N(1975)3/2+. The

coupled-channel model allows the to perform a fit for several reactions simultaneously.

This helps resolve overlapping signals and produces a better fit. This approach again

relies heavily on polarization data, since the polarization information is crucial in

establishing the nature of spin and parity of the resonances. Overlapping resonances,

however, combined with the sensitivity of the model to different sets of data, has

created severe difficulties in unambiguously identifying these resonances.

In contrast, the study [127] focuses specifically on the photoproduction of two

neutral pions in proton interactions. For this study, data was taken from the Crystal

Barrel/TAPS experiment performed at the ELSA accelerator. Similar to the first

paper, a coupled-channel model was implemented; however, much focus is put on the

search for ”missing” resonances-those that are predicted by theoretical models but

not yet experimentally confirmed.

The authors point out that these resonances play an important role not only in

the investigation of the pion production mechanism but also in the study of nucleon

interaction behavior by analyzing photoproduction data and using polarization
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observables. The hints which appear indicate that the resonances may be really

critical for a fundamental view of strong interaction dynamics, which would

therefore provide a considerable motivation for an investigation of those elusive

resonances in greater detail.

Whereas both the above studies address different aspects of the analyses, the

inherent complexities in determining nucleon resonances are brought out. While

differing in their methodologies, the two analyses employ rigorous statistical

approaches, including log-likelihood and least squares methods, to ensure that the

parameters extracted are indeed proper and meaningful. However, some of the

persistent problems in identifying overlapping resonances and ambiguities in

parameter assignments remain part of the problem in baryon spectroscopy.

The following datasets we use in our Regge analysis apply the Laurent-Pietarinen

(LP) technique, which is a technique for resonance parameters extraction via

efficient modeling of both resonant and non-resonant parts of the scattering

amplitudes. The LP method is an analytical technique extensively employed in

hadronic spectroscopy to extract resonance parameters, such as pole positions and

residues, directly from experimental data. It grounds itself on the elementary

principles of complex analysis in that it combines in one role-that of a Laurent

series-responsible for encapsulating the resonant or pole contribution within the

Pietarinen series, tailored for nonresonant background effects. This approach yields

a flexible, model-independent framework that avoids the need for an explicit general

theoretical model of the scattering amplitude. Instead, the method focuses attention

on the analytic properties of the amplitude, making it particularly effective for a

wide variety of scattering processes.

In its central formulation, the LP method splits the amplitude in resonant and

non-resonant parts. The resonant contributions are parameterized by a Laurent

series expansion about the complex poles corresponding to physical resonances. For

a resonance at the pole Wi, the amplitude can be expanded as:

TR(W ) =

k∑
i=1

Ri
W −Wi

+ regular terms, (3.1)

In this notation, Ri denotes the residue of the particle associated with the i − th
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resonance, whileWi is its corresponding pole position. In this framework, the resonant

properties, namely mass and width of a resonance, are explicitly defined by means of

the analytic continuation of the amplitude in the complex plane. The Laurent series

represents a proper parametrization of resonant phenomena even in situations when

the resonances may partly overlap or show broad structures since the series effectively

converges around the mentioned singularities.

The methodology follows the Pietarinen series in characterizing the non-resonant

background, which is based on a method of conformal mapping. The series effectively

captures the general effects caused by the presence of branch cuts due to multiple

physical thresholds. The series has the following representation:

TB(W ) =

N∑
n=0

cnX(W )n, (3.2)

where X(W ) is the Pietarinen function, introduced by the branch point xp and cn

denotes coefficients obtained from a fit to experimental data. The Pietarinen function

is given in the following form:

X(W ) =
α−

√
xP −W

α +
√
xP −W

, (3.3)

Here, α is a free parameter and xP denotes the position of the branch point due

to physical cuts, either from the πN or ηN thresholds. Further, more complicated

inelastic contributions can be added by adding branch points at xQ and xR, each series

representing an independent non-resonant background contribution. The flexibility in

the Pietarinen series allows a good description of a wide variety of physical phenomena

with no explicit and necessarily complicated theoretical assumptions for each branch

cut. In fact, the Laurent plus Pietarinen series constitutes the basic formalism of

the LP approach, enabling one to effectively separate the resonant and non-resonant

parts of the scattering amplitude. This procedure proves especially useful in those

cases where the standard methods of PWA face specific technical problems, such

as the case of overlapping resonances, or when the non-resonant structures become

complicated.

In contrast to the PWA, which defines the angular momentum components of the

amplitude, the LP method focuses on the analytic properties of the amplitude. For
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this reason, the approach allows one to obtain precise resonance parameters, even in

situations where the basic theoretical model is uncertain or incomplete, and hence can

provide a high level of model independence. The key advantage of the LP approach

follows from its ability to enhance only selectively the amplitude around the relevant

poles, without any need to characterize the full amplitude over the complete energy

spectrum. That makes the method particularly well-suited for SE (Single Energy)

fits, where the standard techniques face serious problems due to the discreteness in

the database.

It has equal efficiency in ED (Energy Dependent) fittings, as it has been applied

with success to analyze multi-channel data in a rather wide range of scattering

phenomena. The flexibility of the Pietarrien series permits to parametrize

non-resonant background terms in many channels, while the Laurent series maps

precisely the resonant poles. In practice, the parameters of the Laurent and

Pietarinen series are changed to fit the experimental data using optimization

algorithms such as MINUIT. The fit aims at the minimum difference between the

theoretical model and the data observed. This fitting procedure ensures that not

only the resonant part but also the non-resonant part is accurately described.

Thereafter, the LP approach was applied proficiently to the analysis of several

hadronic processes that demand high accuracy within the GWU-SAID and

Karlsruhe-Helsinki frameworks, where it plays a vital role in extracting reliable pole

parameters from pion-nucleon scattering and photoproduction data.

3.1.4 The SAID (SE) pole extractions

Pole parameters obtained in [128] from a fit to the single-energy (SE) SAID–GW

WI08 partial waves of πN elastic scattering [129] using the Laurent+Pietarinen (LP)

approach.

The SE technique used in the SAID analysis provides an approach to the

understanding of pion-nucleon elastic scattering. It allows for the

model-independent framework for partial-wave amplitude studies at specific

energies. Unlike the ED (energy dependent) fits, the SE solutions do not assume an

analytic continuous function over a very large energy interval and hence enable a
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more detailed study of the nature of the scattering amplitude at a specified interval

of energy. This may be an important local point of view for distinguishing

deviations from global solutions of equilibrium distributions and for finding

additional resonances which are difficult to obtain in the global treatment.

The SE method begins with the extraction of partial-wave amplitudes in narrowly

defined energy intervals, assuming that the energy dependence is linear within each

interval. While this procedure lacks the smoothness or analyticity constraints of ED

fits, it gives the SE solutions the latitude to reflect possible structures in the scattering

amplitude that might otherwise be smoothed over in ED analyses. The SE fits are

thus particularly useful for discovering new resonances or finer structure in known

resonances that may not be well-resolved in ED solutions. One of the advantages

of the SE fits is that they are able to extract detailed snapshots of the scattering

process unencumbered by global assumptions concerning the analytic structure of

the amplitude. In [128] additional poles in the S11 and P11 partial waves-resonances

were uncovered by the SE fits not present in the ED fits. Furthermore, the spectral

evolution analysis manifested the formations in both the D13 and F15 partial waves,

which hinted at the complex resonance dynamics not captured by the more uniform

energy-dependent solutions. These additional resonances agree with previous studies

from the CMB and BnGa analyses; thus, they underpin the important role of SE

fitting in refinement toward more accurate determination.

One of the key developments in the present analysis is the application of the

Laurent-Pietarinen (LP) approach to SE fitting. This explicitly incorporates

analyticity into what otherwise are SE solutions with discontinuities. The Laurent

series captures singular behavior near poles, while the Pietarinen series accounts for

the non-resonant background contributions, including branch cuts associated with

physical thresholds. The LP method provides a totally independent and robust way

of extracting the poles from the SE data. An error analysis is provided by varying

the branch points, which ascertains the stability of the extracted resonance

parameters. Application of the LP methodology in the SE approach extended the

list of supplementary resonances by the ones seen in the S11 and P11 partial waves.

These SE solutions, combined with the LP extraction technique, provide an essential

glimpse of the resonance structure associated with pion-nucleon scattering.

However, the SE fits are more susceptible to statistical noise and lack most of the
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physical constraints such as unitarity and dispersion relations that guide the ED fits.

The SE methodology retains a very significant role in the identification of

resonances and the determination of the most complicated features they have.

3.1.5 The SAID (ED) pole extractions

Poles extracted in [128] from the energy-dependent (ED) SAID–GW WI08 partial

waves of πN elastic scattering [129] also using the LP approach.

The Energy-Dependent (ED) method provides a smooth, continuous

representation of the scattering amplitude over a very large energy range. ED fits

are usually made using the K-matrix formalism that ensures the fit function obeys

basic physical constraints like unitarity and analyticity. The K-matrix is related to

the scattering amplitude T (E) by:

T−1(E) = K−1(E)− iρ(E), (3.4)

where ρ(E) includes the phase-space factor which ensures proper behavior near all

physical thresholds, including the pion-nucleon channel. By imposing these

constraints, ED fits produce a far more regular and smooth result across the whole

energy range. ED solutions are, therefore especially suitable to give an overview of

the scattering process and hence, the extracted resonance parameters will follow

physical expectation. The most important advantage of ED fits comes from their

ability to extract the resonance parameters using the analytic continuation of the

scattering amplitude into the complex energy plane. Such methods allow for pole

identification associated with physical resonances and provide, at the same time,

information on the mass, width, and coupling to different channels. In [129], ED fits

checked the stability of the positions of the resonances for various K-matrix

parametrizations. Indeed, the investigations showed that the pole locations of

prominent resonances like N(1440) (Roper resonance) and ∆(1232) were stable,

independent of the form adopted for the parametrization. This makes the ED

approach even more reliable in pole extraction by employing the LP method for the

whole analysis of the resonance structure. The Laurent-Pietarinen method provides

a complementary way to the ED fits in decomposing the T -matrix into its resonant
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and non-resonant parts. The Laurent expansion defines the properties due to poles,

the Pietarinen series contains the non-resonant background, and discontinuities at

physical thresholds are nicely accounted for. Branch point selection in the

Pietarinen series is guided by physical considerations; for example, inelastic

channels. This provides a flexible data-fitting method without the need for

additional model assumptions. ED analysis also applied fixed-t dispersion relations

to improve the fit to experimental data. In any case, these constraints had the effect

of making the resonance parameters extracted in the ED solutions consistent with

the theoretical expectations, hence particularly reliable in high-precision studies of

hadronic interactions. These smooth ED fits nevertheless captured most of the

essential resonance structures, including the well-known nucleon and delta

resonances but also less conspicuous structures in the S11 and F15 partial waves.

While the ED fits represent a globally consistent solution, they are less sensitive to

fine, localized structures that might be revealed by SE fits. For example, additional

resonances uncovered by the SE approach in the P11 and S11 partial waves were not

as prominent in the ED analysis. On the other hand, the added physical constraints

in ED solutions provide a more stable and smooth representation of the scattering

process throughout the full energy spectrum.

3.1.6 The Karlsruhe–Helsinki pole extractions

Pole extracted in [130] from the Karlsruhe–Helsinki (KH80) [131] partial wave

analysis of πN elastic scattering employing the LP approach.

The KH80 analysis is one of the most extensive and pioneering analyses in the realm

of πN scattering. It spans a vast energy range from the threshold of pion-nucleon to

about 2 GeV and uses fixed-t dispersion relations with partial wave analysis to extract

vital resonance parameters from experimental data. The work focused on the study

of elastic and inelastic πN -scattering, invoking from the very beginning a complex

mathematical framework that would guarantee that the deduced amplitudes satisfy

the unitarity and analyticity principles.

KH80 analysis begins with the partial-wave series associated with the scattering

amplitude. The total scattering amplitude T (s, θ) is written as a sum over partial
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waves, each of which an independent partial-wave amplitude Tℓ(s) is associated with

given angular momentum ℓ. This decomposition defines the strength of the

contributions from each angular momentum state and therefore allows for a

straightforward identification of resonances, poles in the complex energy plane. The

analytic continuation of the partial-wave amplitudes determines the poles of

resonance, carrying information on the mass, width, and properties of the coupling,

of the resonance. Amplitudes in KH80 are constrained by fixed-t dispersion relations

which exploit analyticity of the scattering amplitude. These formulae relate real and

imaginary parts of the amplitude via integral transforms, and thereby ensure

explicit enforcement of the fundamental principles of causality and unitarity. The

dispersion relations take the form:

ℜ [T (s, t)] = TBorn(s, t) +
1

π

ˆ ∞

sth

ℑ [T (s′, t)]

s′ − s
ds′, (3.5)

Born term is the lowest-order approximation to the scattering phenomenon, meaning

involvement of the tree-level direct exchange of particles. In pion-nucleon scattering,

for example, this term often comes from the direct exchange of pions or nucleons in the

s-channel, t-channel, or u-channel is responsible for interactions. These contributions

are the ”classical” or lowest-order components of a perturbative series expansion of the

scattering amplitude. One of the major problems with using the Born approximation

is that it does not inherently satisfy the requirement of unitarity: the requirement

that the total probability (cross-section) for all possible outcomes of a scattering

phenomenon.

The parameters of the KH80 analysis estimate the resonance properties for

several nucleon and delta states, notably including the ∆(1232). Its parameters, in

particular mass, width, and coupling, are fundamental input parameters for

pion-nucleon dynamics as we mention before. The precision obtained in determining

the ∆(1232) parameters makes these results an integral part of hadronic physics.

These results enable the developing of new theoretical models, which can also rest

on quark models and lattice QCD calculations. In addition, KH80 identifies several

higher-mass resonances, such as the N(1440) and N(1535), which both improve the

understanding of the nucleon excitation spectrum.

Another important characteristic of KH80 is the inclusion of inelastic channels,
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which become important at higher energy where pion scattering can produce final

states involving ηN , π∆, and ρN . The channels in question convey critical

information on resonance couplings and decay behaviors, hence providing insights

into the structural and dynamic characteristics of the resonances within the

framework of hadronic physics. Inclusion of such inelastic contributions leads to a

more comprehensive view of the resonance spectrum by KH80 and sets

methodological standards that have influenced further research in pion-nucleon

scattering and baryon spectroscopy.

3.1.7 The Karlsruhe–Amsterdam pole extraction

Pole extracted in [130] from the Karlsruhe–Amsterdam 1984 (KA84) [132, 133]

partial wave analysis of πN elastic scattering employing the LP approach.

The KA84 analysis improves the KH80 framework by extending the energy

spectrum and applying more advanced coupled-channel methods together with

advanced mathematical tools, in particular, the LP expansion. This specific

expansion allows KA84 to describe accurately both resonant and non-resonant

features of the scattering amplitudes and thus to improve significantly the treatment

of inelastic channels in pion-nucleon (πN) scattering. The analysis separate the

amplitude into a Laurent series of resonant contributions and a Pietarinen series for

non-resonant backgrounds, thereby getting round the difficulties of handling

overlapping resonances in intractable multi-channel systems.

The incorporation of inelastic scattering channels, such as ηN , π∆, and

multi-pion final states, represents a significant progress in the KA84 framework.

These channels are essential for analyze resonance couplings and decay processes

and are systematically incorporated through coupled-channel fitting methodologies.

This concurrent fitting of both elastic and inelastic datasets is crucial for the precise

characterization of resonances that engage in interactions across multiple channels,

including N(1650) and N(1710), as their coupling to diverse decay pathways offers

profound understanding into baryonic structure and the dynamics of hadronic decay.

KA84 further incorporates fixed-t dispersion relations, adapting them to
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accommodate multi-channel interactions by sharpening phase-space factors and

threshold behaviors peculiar to each channel. The connection between the real and

imaginary parts of the amplitude is retained from channel to channel, thus ensuring

dispersion constraints enforce analyticity and causality. This alteration is crucial for

a realistic depiction of energy-dependent phase-space fluctuations and for the

maintaining of the analytic integrity of the amplitude through inelastic thresholds,

leading to a far more coherent determination of mass, width, and coupling

parameters.

KA84 increases the energy range of the analysis, which improves the resolution of

higher-mass resonances participating in the non-perturbative regime of QCD. This

extension allows for the identification of complex resonances and overlapping

structures, therefore making the characterization of the baryon-resonance spectrum

better. Using this extended data set and new techniques for statistical analysis to

handle parameter uncertainties, KA84 provides extracted parameters with increased

precision and therefore sets reliable benchmarks for further studies.

Several pole extractions have been documented in the literature; however, a

significant number of these studies either omit uncertainty estimations in their pole

determinations or concentrate solely on the N∗ spectrum, neglecting the ∆∗ states

(see [95]). For this reason, our comparisons are restricted to the extractions and

analyses explicitly referenced above. To present a representative overview of the

available studies, we summarize several notable pole extractions without intending

to provide an exhaustive list. These include the SAID parameters reported in [128],

based on the SAID-GW WI08 partial wave analysis [129]; Höhler’s speed plot

analysis of πN → πN amplitudes [134]; the Pittsburgh–Argonne National Lab

(P-ANL) pole extraction [135]; the multichannel parameterization of πN amplitudes

developed by Kent State University (KSU) [136]; the Argonne National Lab–Osaka

(ANL-O) analysis [137]; the Giessen group’s coupled-channel [138]; and the Zagreb

group’s CMB coupled-channel approach to the N∗ spectrum [139].

In Figure F.3.1, we show the Chew–Frautschi plots [97], namely, the real part of

s on the pole position and the real part of the angular momentum J in the pole

position i.e. (ℜ[sp],ℜ[J ] = Jp), for the N∗ and ∆∗ resonances. Correspondingly,

in Fig. F.3.2 are the imaginary part of s on the pole position and the real part of

the angular momentum J also in the pole position (ℑ[sp],ℜ[J ] = Jp) plots of [102].
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Table C.3.1: Summary of pole positions Mp,Γp (in MeV) for Iη = 1
2

+
states. The pole

mass is defined as Mp = ℜ[√sp], and the width is given by Γp = −2ℑ[√sp]. Here,
I represents isospin, η denotes naturality, Jp corresponds to spin, and P indicates
parity. The relationship between naturality and parity is expressed as η = τP , where
τ is the signature. For baryons, η = +1 (natural parity) if P = (−1)Jp−1/2, and
η = −1 (unnatural parity) if P = −(−1)Jp−1/2. Data adapted from [95].

Name N(939) N(1520) N(1680) N(2190) N(2220)

Status **** **** **** **** ****

Iη
(τ)
JPp

1
2

+

(+)
1/2+ 1

2

+

(−)
3/2− 1

2

+

(+)
5/2+ 1

2

+

(−)
7/2− 1

2

+

(+)
9/2+

CMB 939(1), 0 1510(5), 114(10) 1667(5), 110(10) 2100(50), 400(160) 2160(80), 480(100)

JüBo 939(1), 0 1509(5), 98(3) 1666(4), 81(2) 2084(7), 281(6) 2207(89), 659(140)

BnGa 939(1), 0 1507(3), 111(5) 1676(6), 113(4) 2150(25), 325(25) 2150(35), 440(40)

SAID(SE) 939(1), 0 1512(2), 113(6) 1678(4), 113(3) 2132(24), 550(25) 2173(7), 445(21)

SAID(ED) 939(1), 0 1515(2), 109(4) 1674(3), 114(7) 2060(11), 521(16) 2177(4), 464(9)

KH80 939(1), 0 1506(2), 115(3) 1674(3), 129(4) — 2127(27), 380(29)

KA84 939(1), 0 1506(2), 116(4) 1672(3), 132(5) — 2139(6), 390(7)

Table C.3.2: Summary of pole positions Mp,Γp (in MeV) for Iη = 1
2

−
states. The

definitions of Mp and Γp, as well as the notation for isospin, naturality, spin, and
parity, are consistent with Table C.3.1. In this case, Mp denotes the real part of the
pole position, while Γp is derived from the imaginary part and represents the width.
Data adapted from [95].

Name N(1720) N(1675) N(1990) N(2250)

Status **** **** ** ****

Iη
(τ)
JPp

1
2

−
(−)

3/2+ 1
2

−
(+)

5/2− 1
2

−
(−)

7/2+ 1
2

−
(+)

9/2−

CMB 1680(30), 120(40) 1660(10), 140(10) 1900(30), 260(60) 2150(50), 360(100)

JüBo 1689(4), 191(3) 1647(8), 135(9) 2152(12), 225(20) 1910(53), 243(73)

BnGa 1670(25), 430(100) 1655(4), 147(5) 1970(20), 250(20) 2195(45), 470(50)

SAID(SE) 1668(24), 303(58) 1661(1), 147(2.4) 2157(62), 261(104) 2283(10), 304(31)

SAID(ED) 1659(11), 303(19) 1657(3), 139(5) — 2224(5), 417(10)

KH80 1677(5), 184(9) 1654(2), 125(4) 2079(13), 509(23) 2157(17), 412(51)

KA84 1685(5), 178(9) 1656(1), 123(3) 2065(14), 526(9) 2187(7), 396(25)
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Table C.3.3: Summary of pole positions Mp,Γp (in MeV) for Iη = 3
2

+
states. The

definitions of Mp and Γp follow the same conventions as described in Table C.3.1,
where Mp represents the real part of the pole position, and Γp corresponds to the width
derived from its imaginary part. The notation for isospin, naturality, spin, and parity
is consistent with that table. Data adapted from [95].

Name ∆(1700) ∆(1905) ∆(2200) ∆(2300)

Status **** **** *** **

Iη
(τ)
JPp

3
2

+

(−)
3/2− 3

2

+

(+)
5/2+ 3

2

+

(−)
7/2− 3

2

+

(+)
9/2+

CMB 1675(25), 220(40) 1830(40), 280(60) 2100(50), 340(80) 2370(80), 420(160)

JüBo 1667(28), 305(45) 1733(47), 435(264) 2290(132), 388(204) —

BnGa 1685(10), 300(15) 1800(6), 290(15) — —

SAID(SE) 1646(11), 203(17) 1831(7), 329(17) — —

SAID(ED) 1652(10), 248(28) 1814(5), 273(9) — —

KH80 1643(9), 217(18) 1752(5), 346(8) — —

KA84 1616(5), 280(9) 1790(5), 293(12) — —

Table C.3.4: Summary of pole positions Mp,Γp in MeV for Iη = 3
2

−
states. Notation

as in Table C.3.1. Table taken from [95].

Name ∆(1232) ∆(1930) ∆(1950) — ∆(2420)

Status **** *** **** — ****

Iη
(τ)
JPp

3
2

−
(−)

3/2+ 3
2

−
(+)

5/2− 3
2

−
(−)

7/2+ 3
2

−
(+)

9/2− 3
2

−
(−)

11/2+

CMB 1210(1), 100(2) 1890(50), 260(60) 1890(15), 260(40) — 2360(100), 420(100)

JüBo 1215(4), 97(2) 1663(43), 263(76) 1850(37), 259(61) 1783(86), 244(194) —

BnGa 1210.5(1.0), 99(2) — 1888(4), 245(8) — —

SAID(SE) 1211(0), 100(2) 1845(31), 174(40) 1888(3), 234(6) — —

SAID(ED) 1211(2), 98(3) 1969(23), 248(36) 1878(4), 227(6) 1955(24), 911(24) 2320(13), 442(23)

KH80 1211(2), 98(3) 1848(28), 321(24) 1877(3), 223(5) — 2454(15), 462(58)

KA84 1210(2), 100(2) 1844(36), 334(26) 1878(3), 246(7) — 2301(7), 533(17)
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Figure F.3.1: Chew–Frautschi plots ((ℜ[s],ℜ[J ])) depicting the leading N∗ and ∆∗

Regge trajectories from [95]. Solid black (blue) curves represent linear fits (Jp =
a+b×ℜ[sp]) to the displayed positive (negative) signature data points. All trajectories
share the same slope (b), consistent with the MacDowell symmetry constraint [103]. A

fit for the 3
2

+

(+)
states is omitted, as the ∆ : 9/2− pole is deemed unreliable, as detailed

in [95]. To enhance clarity, the poles are slightly offset from their precise ℜ[J ] = Jp
positions. Figure adapted from [95].
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Figure F.3.2: Plots of (ℑ[sp],ℜ[J ] = Jp), as introduced in [102], for the leading N∗

and ∆∗ Regge trajectories presented in [95]. Solid black (blue) curves represent square-
root fits (Jp = c + d ×

√
−ℑ[sp]) to the displayed positive (negative) signature data

points. A fit for the 3
2

+

(+)
states is omitted due to the unreliability of the ∆9/2− pole, as

discussed in [95]. The pole sets are labeled as in Figure F.3.1. To enhance readability,
the poles are slightly offset from their exact ℜ[J ] = Jp values, as in Figure F.3.1.
Additionally, the SAID(ED) ∆ 9/2− pole, part of the unnatural parity trajectory, has
an exceptionally large ℑ[sp] value and is omitted from plot (b). Figure adapted from
[95].
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The two figures give a qualitative display of the resonance spectrum. The spectrum

reveals an approximate linear behavior in (ℜ[sp], Jp) and a square root-like behavior

in (ℑ[sp], Jp), similar patterns were seen previously in the hyperon spectrum [102]. It

is important to note that the fits presented in Figures F.3.1 and F.3.2 for (ℜ[sp], Jp)
and (ℑ[sp], Jp) respectively were performed independently. These fits are exploratory

in nature, as emphasized in the introduction of this work. As emphasized, Regge

trajectories are typically intricate functions that translate the complex energy plane

(s-plane) to the complex angular momentum plane (ℓ-plane). Consequently, these

graphs should be interpreted as initial estimations rather than conclusive evaluations.

In order to carry out a quantitative analysis of Regge trajectories, one has to adopt

a model in which the real and imaginary parts of the pole positions are introduced

simultaneously. This ensures the underlying dynamics is better described and reduces

the potential bias due to the isolated or piecemeal analysis of these quantities. Besides

the fitting of pole data, the analysis can be complemented by studying other relations

present in two-dimensional plots. As an example, the relation found between ℑ(sp)
and ℜ(J) = Jp provides important information about the dependence of the imaginary

part of the pole on spin, as discussed in [102]. In a similar way, one can make use of

surface plots of ℜ(α(s)) over the complex variable s in order to give a more complete

characterization of the Regge trajectory. This approach is implemented in the analysis

presented below.

We base our analysis on the working hypothesis that the square-root-like behavior

observed in figure F.3.2 corresponds to the leading singularity of the Regge trajectories

due to unitarity [140]. This ensues because the dominant two-body decay channels,

which contribute most significantly to the cross section, produce an imaginary part

proportional to the relative momentum q ∼
√
s− st, where s is the two-body squared

invariant mass and st is the threshold. Observe that contributions from multi-body

final states can be effectively included in model parameters [95].

The Regge trajectory can be parameterized in a general form as follows [95, 102,

141, 142]:

α(s) = α0 + α′s+ i γ ϕ(s, st) , (3.6)

where α0, α
′ and γ are real constants, and ϕ(s, st) encapsulates the contributions

related to resonance decay. The slope α′ is frequently linked to the tension of the
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confining string in flux tube models [143–145] and to the range of the strong

interaction in Veneziano models [146]. The figure F.3.2 reveals a square-root-like

behavior suggesting that the term ρ(s, st) is the dominant component of ϕ(s, st).

However, the position of poles in the complex plane depends on two factors: the

phase-space structure and the intrinsic dynamics of QCD. Both aspects jointly

influence the functional form of ϕ(s, st). In this context, ϕ(s, st) explicitly

incorporates the phase-space contribution to the pole positions, ensuring that any

discrepancies in the overall form of the Regge trajectory can be attributed to

additional effects arising from QCD dynamics. However, it is necessary to account

for systematic uncertainties arising from the phase-space factor, particularly when

describing regions far from the threshold. These uncertainties can be systematically

studied by employing different models for ϕ(s, st). In particular we use (see [95]):

i ϕ0(s, st) = 0 , (3.7a)

i ϕI(s, st) = i
√
s− st , (3.7b)

i ϕII(s, st) = iβ(s, st) + 2iτ(s, st), (3.7c)

where:

iβ(s, st) =
s− st
π

ˆ ∞

st

τ(s′, st)

s′ − st

ds′

s′ − s
=
2

π

s− st√
s(st − s)

arctan

√
s

st − s
, (3.8)

is the analytic continuation of the two-body phase space.

We propose that the nature of resonances can be understood through their

relationship to Regge trajectories. Specifically, a resonance that aligns with a linear

trajectory on the Chew–Frautschi plot and exhibits a square-root-like pattern in the

(ℑ [sp] , Jp) plot would be mostly a compact 3q state candidate. In this scenario, the

majority of the state’s width, represented by ϕ(s, st), would primarily comes from

phase-space contributions. To reinforce this hypothesis we propose a more

quantitative way of matching the resonance poles to the models described by

Eq. (3.7). Assuming these states correspond to compact 3q − 3q, their poles should

agree approximately with our prediction from Regge trajectory. Such kind of an

agreement would imply that indeed phase-space effects mainly fix the extent to

which the poles extend into the complex plane, and only smaller contribution comes

from the additional dynamics of QCD. Large deviations of the model would indicate
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the involvement of more complex QCD behavior in the resonance. Such results

would give clear indication that the state cannot be described by the simple picture

of a compact three-quark structure and point to other physical phenomena at work.

The structure of our quantitative analysis is methodically defined as follows.

First, we fit the poles of a given trajectory to theoretical models, ensuring the

inclusion of both linear and square-root-like behavior that allows for an approximate

but sufficiently good description on average. It is important to emphasize that the

Regge trajectory model only contains the phase space contribution, which inherently

renders the framework incomplete. As a consequence, discrepancies between the

theoretical models and the empirical data point to the existence of extra QCD

dynamics that go beyond the present model’s formulation. These discrepancies are

hypothesized to represent novel physics extending beyond the conventional 3q

picture, and give insight into the physical processes that have not been accounted

for in the present trajectory formulation.

To determine the values of the model parameters α0, α
′, γ and st in Eq. (3.6) for a

given pole extraction, we employ the least-squares method. This approach minimizes

the squared distanced d2 between the trajectory α(s), evaluated at the complex pole

position sp and the angular momenta J [95]:

d2 =
∑
poles

{ [ℜ[J ]−ℜ[α(sp)] ]2 + [ℑ[J ]−ℑ[α(sp)] ]2 } . (3.9)

with ℜ[J ] = Jp and ℑ[J ] = ℑ[Jp] = 0 for the resonance poles. The value of the

parameter st must align with its interpretation as an effective threshold in the

resonance region. This serves as a criterion for selecting the physically meaningful

minimum when multiple local minima appear during the fits. We estimate the errors

in the parameters through the bootstrap technique [108, 115, 147]. It is important to

emphasize that this represents a case of a modified bootstrap, as described in section

2.6.1. In this particular scenario, the independent variable carries the uncertainty,

while the dependent variable is fixed due to the physical constraints that define a

specific, definite value of J for each resonance. Specifically, we perform 104 fits to

pseudodata generated based on the uncertainties of the pole positions. The expected

value of each parameter is computed as the mean of the 104 samples and the

uncertainty is given by the standard deviation. This method is described in detail
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in [95, 102, 148] and allows to propagate the uncertainties from the poles to the

parameters accounting for all the correlations. However, systematic errors related to

model dependencies in the amplitude analyses are not explicitly included in the pole

extractions. To gauge these uncertainties, we compare the differences among models

and treat them as indicative of potential systematic effects. See [95] for details.

The evaluation of fitted Regge trajectories in relation to resonances at their pole

positions, denoted as sp, entails rigorous consistency checks as elaborated in [102].

This process involves a comparative analysis of α(s) with the spin values Jp

associated with the poles. Once the fitting parameters are determined, they are

utilized to compute trajectory values at these pole positions. For a resonance

characterized by a pole sp and spin Jp, the anticipated outcomes are

ℜ[α(sp)] = ℜ[J ] = Jp and ℑ[α(sp)] = ℑ[J ] = ℑ[Jp] = 0, with the latter condition

representing a fundamental physical constraint. This procedure provides a direct

comparison between α(s) (both real and imaginary parts) and the poles, offering a

more precise visual appraisal of the fit’s accuracy by juxtaposing the fitted curve

with the pole values of the angular momentum Jp. The condition ℑ [α(sp)] = 0

represents a particularly stringent criterion since is a physical restriction, so,

deviations from this condition can be interpreted as we discuss before. Furthermore,

the consistency check plot serves as the appropriate figure for visually comparing the

outcomes of the fit with the pole positions. However, for trajectories containing only

two poles, these checks provide no meaningful insight due to overfitting, as four

experimental points (two masses and two widths) are matched using four

parameters. Consequently, consistency checks are restricted to trajectories involving

more than two poles. The uncertainties in both the pole positions and the

parameters are propagated through the calculation of α(s), ensuring that the results

accurately reflect the physical differences (see [95]).

In Figures F.3.3(a) and F.3.3(b), we present the consistency checks for the

trajectories Iη
(τ)

= I = 1
2

+

(+)
and Iη

(τ)
= I = 3

2

−
(−)

, respectively. The comprehensive

results for each analyzed Regge trajectory are detailed in [95]. While these findings

substantiate the qualitative conclusions, they also reveal significant physical

phenomena beyond the compact 3q (three-quark) framework, particularly for the

N(1680), N(1720), and certain members of the 3
2

−
(−)

trajectory. The accuracy of the

pole positions for these states is sufficient to make our analysis sensitive to effects
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Figure F.3.3: (a) Consistency checks plots for the Iη(τ) =
1
2

+

(+)
poles, stemming from

extractions from CMB, JüBo, BnGa, and SAID(ED). The left panel shows ℜ[α(sp)],
evaluated at the resonance poles (sp) for models 0 (black), I (red), and II (blue).
Ideally, these should fall on the corresponding angular momentum ℜ[J ] = Jp (vertical
axis) for each resonance. The right panel shows the results for ℑ[α(sp)], which are
expected to fulfill the condition ℑ[J ] = ℑ[Jp] = 0. For this analysis, model 0 is not
shown in the right panel as ℑ[α(sp)] is defined to be 0. The yellow band represents
deviations up to 0.1, while the green band represents deviations between 0.1 and 0.3.
The white band corresponds to deviations ranging from 0.3 to 0.5. (b) Consistency

checks for the Iη(τ) =
3
2

−
(−)

poles, obtained from CMB, SAID(ED), KH80, and KA84

extractions. The notation is the same as in Fig. F.3.3(a). This figure is reproduced
from [95].
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extending beyond the compact 3q picture.

The results presented shows a strong breaking of exchange degeneracy for the

nonstrange sector, while in the strange sector, this degeneracy seems to be

preserved. Such a breaking demonstrates the crucial role played by the exchange

forces in the determination of the low-lying nonstrange baryon spectrum.

Furthermore, we see that the 1
2

−
and 3

2

+
trajectories are badly parameterized,

restricting the information that Regge phenomenology can supply on the inner

structure of the baryons on these trajectories. Nonetheless, Regge phenomenology is

still an indispensable tool, mainly for conducting resonance searches. It provides the

basis to investigate whether the fits of the experimental data could be ameliorated

by adding the resonances in the vicinities of expected positions predicted by

Chew–Frautschi plots and (ℑ[sp], Jp) representations. The presented procedure

outlines possible areas where so-far-unknown resonances might exist and supports

the systematic description of the baryon spectra and dynamics. The outlined

procedure highlights regions where previously undetected resonances may exist,

contributing to a systematic and comprehensive description of the baryon spectra

and their underlying dynamics.

The parameters of the 1
2

+

(+)
(nucleon) and 3

2

−
(−)

(∆) Regge trajectories are

determined with high precision from the pole extractions. For the nucleon

trajectory, we estimate a slope of α′ = 0.99± 0.12 GeV−2, while for the ∆ trajectory,

the slope is α′ = 1.21 ± 0.15 GeV−2. Notably, the slopes of these trajectories are

compatible within their respective uncertainties. This range of α′ values aligns with

those derived from fits to Chew–Frautschi plots, predictions of constituent quark

models, and analyses of high-energy proton-antiproton annihilation data [149].

These consistent results further validate the theoretical framework and its

applicability to describing baryon dynamics and resonance structure.

The origin of Figures F.3.1 and F.3.2 is revealed by a study of the surface plot of

ℜ[α(s)] versus the complex variable s depicted in Figure F.3.4. This three dimensional

plot gives an intuitive understanding of the behavior of the Regge trajectory as the

complex s plane, , illustrating the underlying structure that gives rise to the patterns

observed in the earlier plots. In this plot a resonance is represented as a point in

the space (ℜ[s],ℑ[s],ℜ[J ]). The plots F.3.1 and F.3.2 are then the projections in the

planes (ℜ[s],ℜ[J ]) and (ℑ[s],ℜ[J ]), respectively. Since in the poles ℑ[α(sp)] is zero,
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(a) BnGa (b) JuBo

(c) CMB (d) SAID(ED)

Figure F.3.4: The Regge trajectory is a complex function here we show the ℜ[α(s)]
adjusted to the trajectory 1

2

+

(+)
the pole extractions of BnGa (a), JüBo (b), CMB

(c) and SAID(ED) (d) for the model II. The black points are the position of the
resonance in the space (ℜ[s],ℑ[s],ℜ[J ]). The blue circles are the position of the poles
with uncertainties, and the blue and red points are the projection of the resonances
positions (black points) in the planes (ℜ[s],ℜ[J ]) and (ℑ[s],ℜ[J ]), i.e. the Chew–
Frautschi and the (ℑ[s],ℜ[J ]) plots.

the surface plot of ℑ[α(s)] as a function of complex s is a flat surface that does not

provides any further information.

3.2 Study of the Pc(4312)
+ signal

In section 1, we briefly introduced the minimal quark model, its benefits, and

extensions beyond the qq and qqq (q̄q̄q̄) pictures for mesons and baryons,

respectively. One of the most prominent exotic states that has been discovered
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recently is the Pc(4312)
+, whose valence quark content is uudcc̄, and hence is a

hidden-charm pentaquark. This state, discovered by LHCb [19] in the J/ψ p

subchannel of the Λ0
b → J/ψpK−, sits just 5MeV below the Σ+

c D̄
0 threshold,

making it a prime candidate for a meson-baryon molecular state generated by the

opening of the Σ+
c D̄

0 channel. Molecular hidden-charm pentaquarks were

postulated [150–154] prior to their discovery by LHCb [155] and their spectrum can

be a test of the predictions from heavy-quark spin symmetry [154, 156–158].

There are several interpretations of this signal. The most popular is the Σ+
c − D̄0

molecule interpretation mentioned above, bound [150–154, 159–162] or virtual [88],

but neither the compact [163–166] nor the double triangle [167] interpretations

cannot be ruled out. The single-triangle interpretation was ruled out by the LHCb

collaboration [19] as the intermediate states needed to have for the singularity to

show up with the necessary strength do not exist.

In this section we present the analysis of the Pc(4312)
+ signal using the near-

threshold theory presented in section 2.4. We perform an amplitude analysis of the

signal and extract the pole position and its uncertainties. Additionally, albeit model

dependent, we provide an explanation of the nature of the resonance. Before detailing

the amplitude analysis, we dive into the experimental data that will be used.

3.2.1 LHCb datasets for the J/ψp subchannel

The existence of the Pc(4312)
+ was sustained at a 7.3σ confidence level, employing

three datasets of the J/ψpK− subchannel from the collected Λ0
b → J/ψpK− decay

events at LHCb [19]: the inclusive, the cos θPc
-weighted, and the mKp

> 1.9GeV

datasets. Before analyzing the Pc(4312)
+ signal we provide the details on the three

dataset, as all of them will be studied in our amplitude analysis.

1. The inclusive dataset. The inclusive dataset provides the most complete and

widest view of the J/ψp subchannel; it’s unfiltered, showing the distribution of

the J/ψ p invariant mass. This dataset comprises inputs for all possible

processes in the decaying phase space and includes signal components from the

P+
c resonances, along with various distinct background sources. These consist
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(a)

(b)

(c)

Figure F.3.5: The three datasets for the J/ψp subchannel reported by LHCb in [19].
(a) corresponds to the inclusive dataset, (b) to the cos θPc weighted dataset and (c) to
the mKp > 1.9GeV .
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of reflections from Λ∗ → pK− states, non-Λ0
b backgrounds, and possible broad

resonances that smoothly vary with respect to mJ/ψp. While the coexistence of

these intertwined elements poses some challenges, the whole dataset is an

essential foundation for confirming the existence of the resonance and opens the

way to analyze further with appropriate selection criteria. The inclusive dataset

is remarkable in that it contains more than 246, 000 reconstructed

Λ0
b → J/ψpK− decays, which represents a ninefold increase in size with respect

to the previously published LHCb dataset [155].

These improvement in statistical measures in [19] significantly enhance the

potential to recognize more subtle structures in the J/ψ p invariant mass

spectrum and to distinguish features that were previously not resolvable. The

inclusiveness of the dataset ensures a full representation of the whole decay

dynamics of the Λ0
b , which—on the other hand—requires state-of-the-art

analytical techniques in order to extract the P+
c resonances from the dominant

background contributions. The Pc(4312)
+ resonance is seen in this data sample

as a distinct peak whose width, measured to be 9.8MeV, is consistent with the

experimental resolution in the J/ψ invariant mass region. This peak is overlaid

by a complex background that is affected by Λ∗ → pK− reflections, which

produce a structured but smooth contribution. These reflections are in the

regions of small mKp in the Dalitz plot and are spread broadly over the mJ/ψp

spectrum. The analysis takes advantage of the smooth variation of these

backgrounds as a function of mJ/ψp, contrasting with the distinctive signature

of the Pc(4312)
+. A binned χ2 fit to the mJ/ψp distribution is used to extract

the properties of the Pc(4312)
+, described by a sum of relativistic Breit-Wigner

terms for narrow P+
c (see [19]) resonances and a parameterized smooth

background. The latter includes detector effects, such as resolution and

efficiency, in order to obtain unbiased resonance parameters. In the whole

dataset, the Pc(4312)
+ signal is observed with a statistical significance of 7.3σ,

thereby confirming that the resonance is indeed a real physical entity and not

an artifact because of background fluctuations.

2. The cos θPc
-weighted dataset. The cos θPc

-weighted dataset represents a

more refined and targeted methodology in the study of the Pc(4312)
+

resonance, which improves the signal-to-background ratio by exploiting angular

correlations inherent in the decay dynamics. The core of this methodology is
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the helicity angle θPc
, defined as the angle between the K− meson and the J/ψ

in the rest frame of the candidate P+
c . This angle is highly important for the

study of the spin-parity structure of intermediate resonances and also serves as

a very powerful tool in distinguishing signal from background components.

In decays Λ0
b → J/ψpK−, the dominant background arises from Λ∗ → pK−

reflections, which are confined to certain angular regions, mostly in the

cos θPc
> 0 domain due to their kinematic and dynamical properties. The

converse is true for isotropic decays of narrow Pc states, such as the Pc(4312)
+:

they distribute more uniformly across cos θPc. To take advantage of this

contrast, a weighting function w(cos θPc) is implemented, which is calculated as

being inversely proportional to the background density in the cos θPc

distribution. This weighting enhances Pc signal contributions while suppressing

Λ∗ induced background effects. A key component of this analysis is the

construction of the weighting function w(cos θPc). Obtained directly from data,

it takes as input the observed density of candidates in the cos θPc) distribution

as a proxy for the background, assuming negligible signal. This procedure

suppresses background-dominated regions and enhances those with a larger

signal-to-background ratio, thus optimizing the dataset for the study of the

mJ/ψp invariant mass spectrum.

The cosine weighting of the dataset shows the Pc(4312)
+ resonance in much

clearer detail and with much greater statistical significance, 8.2σ, than that in

the inclusive dataset. The mass and width of Pc(4312)
+ are in good agreement

with those in other datasets, demonstrating the stability of this method used in

[19]. The weighted dataset also reduces the systematic biases induced by

Λ∗-induced background fluctuations, providing cleaner and more precise

measurements of resonance parameters. The cos θPc
-weighted dataset is also

able to provide insight into the interfering amplitudes that much more nuanced.

While the analysis models P+
c contributions primarily as incoherent relativistic

Breit–Wigner terms in [19], this dataset is sensitive to potential interference

effects between resonances or between the signal and background. Such

sensitivity allows for the estimation of systematic uncertainties associated with

interference the analysis of the signals. The cosine weighting of the dataset

significantly amplifies the experimental sensitivity of the narrow P+
c states due

to its emphasis on angular features of the decay. Since this is confirmation not
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only of the existence but also the independence of Pc(4312)
+ from

background-induced artifacts, these results highlight the effectiveness of using

angular information in resonance analysis and justify applying such methods in

the wide study of exotic hadronic states.

3. The mKp > 1.9GeV dataset. This third dataset is a significant refinement in

the analysis of the Pc(4312)
+ resonance with the use of a selection criterion that

suppresses one of the most dominant sources of background: the Λ∗ → pK−

reflections onto the J/ψp subchannel. These reflections, resulting from a variety

of excited Λ∗ states populate predominantly the low K−p invariant mass region

and give a structured but broad contribution to themJ/ψp spectrum. By imposing

a lower bound of 1.9GeV on mKp, the analysis effectively removes more than

80% of these contributions, yielding a much cleaner dataset for studies of P+
c

resonances. This selection criterion exploits the Dalitz plot structure of the Λ0
b →

J/ψpK− decay: the K−p and J/ψp invariant masses are correlated through the

three-body decay kinematics. The Λ∗ → pK− contributions are dominant in

regions of low, particularly below, as evidenced by the dense vertical bands in

the Dalitz plot. Cuts on the region, thus isolate, which exhibit as horizontal

bands associated with, Pc(4312)
+, Pc(4440)

+, and Pc(4457)
+ and resonances.

This separation of the invariant mass features in the J/ψp is clearer for the

mKp > 1.9GeV dataset, where these overlapping Λ∗ reflections are suppressed.

The resulting mJ/ψp spectrum includes a striking enhancement of the narrow

peak of the Pc(4312)
+ relative to a smoother and significantly reduced

background. The latter reduction allows a substantially more precise

measurement of the properties of this resonance, as systematic biases related to

Λ∗-dominated backgrounds are drastically reduced. In this dataset, the

Pc(4312)
+ is observed with a statistical significance of 7.6σ, further confirming

its existence with high confidence. The extracted mass and width of the

resonance are also in good agreement with those obtained from inclusive as well

as cos θPc
-weighted datasets, which reassures the consistency and reliability

among the results from different methods. The threshold choice at mKp > 1.9

is not arbitrary but relies on a detailed analysis of the background composition

and expected signal significance. A decrease in the threshold would add back a

large fraction of the Λ∗-induced background, making it hard to isolate the

signals for P+
c . While a high cut on t is effective for background rejection,
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excessively increasing it loses much statistics for the study of P+
c , probably

resulting in a loss of statistical power for the measurement. A cutoff of 1.9GeV

offers the best compromise for maximum background suppression while

retaining an ample dataset that is statistically significant for the resonance

analysis. Besides background suppression, the criterion of mKp > 1.9GeV

provides an indirect probe of the interplay between the contributions from

Λ∗ → pK− and P+
c → J/ψp. But instead, this dataset allows the study of

possible interference effects between these components in a cleaner way,

shedding light on the dynamics of the decay process, by removing the dominant

Λ∗ region. Although the analysis assumes an incoherent sum of relativistic

Breit–Wigner amplitudes for the P+
c states, the suppression of Λ∗-induced

interference ensures that the parameters extracted for the Pc(4312)
+ suffer the

least from such effects. This makes the mKp > 1.9GeV dataset one that plays a

great role in the study and analysis of the Pc(4312)
+ resonance. This will

supplement the inclusive and cos θPc
-weighted datasets, providing a cleaner

environment in which to study the J/ψp invariant mass features and thereby

offering a key cross-check of the properties of this resonance.

The consistency of the Pc(4312)
+ signal across all datasets reinforces its

interpretation as a genuine physical state.

3.2.2 Near-threshold amplitude analysis

We employ a coupled-channel amplitude formalism involving the J/ψp and Σ+
c D̄

0

channels to conduct a detailed analysis of the J/ψp subchannel spectrum arising from

the Λ0
b → J/ψpK− decay, as measured by the LHCb collaboration. Our investigation

focuses on the energy region between 4250 and 4380MeV, where the presence of the

Pc(4312)
+ signal has been experimentally observed. In this analysis, we assume that

the Pc(4312)
+ signal is characterized by a precise and specific spin quantum number,

which restricts its contribution to a single partial wave, denoted as F (s). To account

for other effects, we also include background contributions, B(s), which arise from

additional partial waves and remote singularities. These background contributions are

modeled incoherently and represented as a linear polynomial of the form B(s) = b0+
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b1s, where b0 and b1 are parameters to be determined. 1 Therefore, the distribution

of events is expressed as [168, 169]:

dN

d
√
s
= ρ(s)

[
|F (s)|2 +B(s)

]
= ρ(s)

[
|P1(s)T11(s)|2 + b0 + b1s

]
, (3.10)

with ρ(s) is the phase space factor of the decay Λ0
b → J/ψ pK−, given by

ρ(s) = mΛb
p q with p = λ1/2(s,m2

Λb
,m2

K)/2mΛb
and q = λ1/2(s,m2

p,m
2
ψ)/2

√
s. P1(s)

accounts for the Λ0
b decay and the J/ψ pK− production. It also takes into account

the effects of other signals projected onto the same partial wave of the Pc(4312)
+

(for example, the Λ∗ contributions from the K−p subchannel). The function P1(s) is

analytic within the examined region and, due to the limited mass range under

consideration, it can be expressed as a first-order polynomial, say, P1(s) = p0 + p1s.

This formulation assumes that the resonance manifests in the S-wave. This is

actually a good approximation even if the signal is on another partial wave. Going

beyond the S wave multiplying the amplitude F (s) qℓ term, which in practice

remains constant because q varies slowly within the considered energy range. The

T11(s) amplitude describes the J/ψ p → J/ψ p subchannel, where the Pc(4312)
+ is

found.

Near the Σ+
c D̄

0 threshold the two coupled-channels T matrix in the scattering

length approximation can be written as it was shown in section 2.4:

T11(s) =
µ22(s)− ik2

[µ11(s)− ik1] [µ22(s)− ik2]− µ212(s)
, (3.11a)

T12(s) =
−µ12(s)

[µ11(s)− ik1] [µ22(s)− ik2]− µ212
, (3.11b)

T22(s) =
µ11(s)− ik1

[µ11(s)− ik1] [µ22(s)− ik2]− µ212(s)
, (3.11c)

Here, ki is defined as
√
s− si, with s1 = (mp +mψ)

2 and s2 = (mD̄0 +mΣ+
c
)2, which

correspond to the threshold values for the respective channels. The functions µ11(s),

1An analytical function can, in a formal sense, be expressed as a Laurent series expansion
around a singularity located at z = z0, as outlined in [63]: F (z) = R

z−z0
+a0+a1z+a2z2+· · · ,

where R denotes the residue of the pole at z = z0, and ci represent the coefficients of the
polynomial terms in the series. At sufficiently large distances from the singularity, the
contributions from the polynomial terms a0+a1z+a2z

2+ · · · become dominant, effectively
diminishing the impact of the singular term R

z−z0
on the overall behavior of the function.
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(a) (b)

Figure F.3.6: Fits to the cos θPc-weighted J/ψp mass distribution measured by
LHCb [19], shown for cases A (left) and B (right). For case A, the amplitude is
modeled using the scattering length approximation, where cij = 0 in Eq. (2.68),
enabling the description of either molecular (bound) states or virtual states. In
contrast, case B employs the effective range approximation, characterized by finite
cii values, which expands the interpretation to include genuine pentaquark states. The
solid curve represents the best-fit result, while the blue band illustrates the one sigma
(1σ) confidence interval derived from a bootstrap analysis. Figures adapted from [169].

µ22(s), and µ12(s) are expressed in Equation (2.68). The term T11(s) corresponds to

the process J/ψp → J/ψp, while T22(s) describes the process Σ+
c D̄

0 → Σ+
c D̄

0; in

contrast, the off-diagonal elements T12(s) and T21(s) describe the transitions

J/ψp → Σ+
c D̄

0 and Σ+
c D̄

0 → J/ψp, respectively. The parameters in the expressions

for µij(s) play an important role in fixing the location of the pole. It should be

stressed that, since the other thresholds and singularities are far away from the

region of interest, their influence can safely be absorbed in the amplitude

parameters. While it is formally justified to include the off-diagonal term

P2(s)T12(s), dropping it does not alter the analytic properties or the poles of the

amplitude. Consequently, this term is neglected to reduce the free parameters

number in the model [168, 169].

We analyze the data under both the scattering length (case A) and the effective

range (case B) approximations. In the latter we take the expression

µij(s) =Mij + cijs with c12 = 0, while in the former we fix all cij = 0, i.e.

µij(s) =Mij . In case A, the amplitude can only have poles on the II and the IV

sheets, but not on the I or the III. In case B, we let the diagonal effective ranges cii

float. The off-diagonal c12 does not add other singularities and is not needed to



3.2. Study of the Pc(4312)
+ signal 99

(a)

(b)

Figure F.3.7: The poles derived from the 104 bootstrap fits are displayed for
scenarios A (top) and B (bottom), with the physical region delineated by a pink band.
For scenario A, the poles reside on the second and fourth Riemann sheets, which are
seamlessly connected above the ΣD threshold. Each bootstrap fit yields a single pole
within this region, with the blue ellipse enclosing 68% of the cluster concentrated above
the threshold. The plots on the right correspond to scenario B, where each bootstrap
fit identifies a pole on the second sheet accompanied by its counterpart on the third
sheet. The higher-mass pole on the second sheet, along with its partner on the third
sheet, lies beyond the fitted energy spectrum, attempting to encapsulate the bump-like
feature observed near 4370 MeV. Conversely, the lower-mass pole on the second sheet
and its counterpart on the third sheet are associated with the Pc signal. The blue
ellipses indicate the regions containing 68% of both clusters. Figure adapted from
Fig. 2 in [168].
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Figure F.3.8: Pole movement for the amplitude described in equations (3.11a), (3.11b)
and (3.11c) with mu12(s) = m12 and a λ parameter in front of each ki such that
0 ≤ λ ≤ 1. The (ai) row describes a compact pentaquark, the (bi) a molecular state
and the (ci) one a virtual state. See the text for the discussion and also figure 2 in
reference [87].

describe data, so we set it to zero. In this case, poles related to the threshold as the

ones just discussed are possible; however, other poles can appear on the I and III

sheet. Any fit which contains poles on the I sheet would be discarded.

We fit the cos θPc
-weighted spectrum dN/d

√
s measured in [19], with

√
s being the

J/ψ p invariant mass, using MINUIT [110].2 For particle masses, we use the PDG

values mΣ+
c
= 2452.9MeV and mD̄0 = 1864.83MeV [8]. Since the width of the Σ+

c is

smaller than the experimental resolution, its effects can be neglected.

To compare the theory to the experiment it is necessary to take into account the

experimental resolution. This is provided by LHCb [19] and reads:

R(E0) = 2.71− 6.56× 10−6(E0 − 4567)2, (3.12)

where E0 =
√
s0 in MeV. Then, to obtain the amplitude at E ≡

√
s, the theory has

2We also analyze the other LHCb datasets reported in [19] which are the full dataset
without the cos θP+

c
-dependent weights in the region and the one which only considers events

with mKp
> 1.9 GeV which effectively removes over 80% of the Λ0 that could interfere with

the Pc signal. This selection criterion is essential for isolating the Pc states from background
noise. The conclusions are the same as for the cos θPc

datatset.



3.2. Study of the Pc(4312)
+ signal 101

Table C.3.5: Comprehensive summary of the fit results corresponding to the two
scenarios examined in this thesis. All numerical values are expressed with the
appropriate implied powers of GeV units. The χ2/dof value represents the best-fit
solution obtained for each case, providing a quantitative measure of the fit quality.
For an in-depth explanation of the methodology and further discussion of the results,
refer to [168].

Case A Case B

χ2/dof 48.1/(66− 7) = 0.82 43.0/(66− 9) = 0.75

best fit bootstrap best fit bootstrap

b0 402.95 446± 73 0.74 6.1± 6.0

b1 −15.00 −17.4± 4.1 7.22 6.93± 0.36

p0 423.16 437± 16 85.06 92.6± 8.8

p1 −23.53 −24.28± 0.81 −5.30 −5.70± 0.47

m11 2.60 2.65± 0.28 151.29 151.35± 0.23

m22 0.22 0.223± 0.078 38.81 39.12± 0.28

m12 0.85 0.86± 0.11 1.03 1.035± 0.062

m23 0 0 0 0

c11 0 0 8.00 8.007± 0.015

c22 0 0 2.06 2.081± 0.016

c12 0 0 0 0

to be convoluted with the experimental resolution as follows:

dN(E)

d
√
s

=
1

A0(E)

ˆ mΛb
−mK

mψ+mp

dN(E0)

dE0
exp

[
−(E − E0)

2

2R2(E)

]
dE0, (3.13)

and the normalization A0 is given by:

A0(E) =

ˆ mΛb
−mK

mψ+mp

exp

[
−(E − E0)

2

2R2(E)

]
dE0. (3.14)

Table C.3.5 summarizes the results of fits to cases A and B, both of which yield

consistent descriptions of the signal. In particular, case A yields a goodness-of-fit of
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χ2/dof ∼ 0.82, and case B χ2/dof ∼ 0.75. In order to quantify the uncertainties in the

parameters and observables, we use the bootstrap procedure outlined in Section 2.6.1.

This involves creating 104 pseudodata sets from the original data set using Gaussian

distributions, resampling, and fitting each of these sets individually. The resultant

statistical fluctuations are denoted by the uncertainty bands shown in Figures F.3.6(a)

and F.3.6(b). For every bootstrap fit, we also derive the pole positions, and these are

displayed in Figures F.3.7(a) and F.3.7(b). Figure F.3.7 shows, as a result of a careful

examination, definite pole configurations in the two scenarios under discussion. In

scenario A, there is a distinct grouping of poles on the second (II) and fourth (IV)

Riemann sheets, above the Σ+
c D̄

0 threshold. They are defined in terms of the usual

definitions of the mass and width: MP = ℜ√sp and ΓP = −2ℑ√sp. The parameters

of the dominant pole cluster for this solution are found to be MP = 4319.7±1.6 MeV

and ΓP = −0.8± 2.4 MeV. Indeed, the sign of the width, ΓP , plays a crucial role in

distinguishing poles on the second sheet, which have a positive width, from those on

the fourth sheet with negative width. By contrast, in scenario B, two distinct clusters

are observed on the second sheet by the poles. The cluster closest to the Σ+
c D̄

0

threshold is identified with the Pc(4312)
+ signal. Fitted parameters for the latter

signal areMP = 4319.8±1.5 MeV and ΓP = 9.2±2.9 MeV. These results highlight the

differences between the two scenarios regarding pole distributions and their respective

physical interpretations.In both cases, the pole clusters are, on average, located closer

to the IV sheet. As discussed in the introduction of this work, poles lying near

the physical region may be interpreted directly as resonances (see also discussion

in Ref. [21, 170]). The above observation is a first indication that the signal likely

originates from a virtual state.

Studying the movement of poles in the complex plane as we vary the parameters

of the scattering amplitude provides valuable insights into the nature of resonances.

This approach allows us to explore the plausibility of different physical scenarios, such

as the emergence of bound states, virtual states, or resonances, depending on how the

poles evolve with respect to changes in parameters like energy or coupling constants,

for instance. However, this analysis is inherently model-dependent, as it relies on the

assumption that one can vary a single parameter while keeping others fixed. Let us put

a parameter λ in front of each ki in (3.11a), (3.11b) and (3.11c), such that 0 ≤ λ ≤ 1,

with the purpose of turning on or off the phase space contribution, and consider the

case µij(s) = mij . If m12 = 0 and λ ̸= 0, we have decoupled the channels and turned
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off the phase space, i.e. any pole would appear in the real axis. Hence, there are two

amplitudes T11(s) and T22(s) that are unconnected. If the Pc(4312)
+ were a compact

pentaquark there would be two poles, one in each amplitude on top of its respective

original cut and at the same mass, as depicted in figure F.3.8.(a1), for a molecule

and a virtual state there is a pole below the Σ+
c D̄

0 threshold as in F.3.8.(b1) and

F.3.8.(c1), but no pole in the J/ψ p channel. If we recouple the channels by turning

on the m12 parameter (m12 ̸= 0), the amplitudes T11(s) and T22(s) are connected,

and the T12(s) [T12(s)] is different form zero. The compact pentaquark interpretation

is depicted in figure F.3.8.(a2). In the molecular interpretation, the pole that was in

the real axis of the I Riemann sheet below the Σ+
c D̄

0 threshold now appears in the

real axis of the II Riemann sheet (as a consequence of coupling the channels, we move

from two unconnected Riemann sheets for each channel to four connected Riemann

Sheets relating both channels) as shown in F.3.8.(b2). For the virtual state case, the

pole was in the real axis of the II Riemann sheet below the Σ+
c D̄

0 threshold, and

once we couple the channels, it appears in the real axis, at the same energy, but in

the IV Riemann Sheet F.3.8.(c2). Once the channels are coupled (m12 ̸= 0), we can

turn on the phase space, and slowly increment the value of λ from zero to one. In

the compact pentaquark picture, the two overlapped poles move to the second and

third sheet, depending on their original channel, as in F.3.8.(a3). For the molecular

interpretation, the pole moves to the II sheet F.3.8.(b3) and, for the virtual one, the

pole makes a transition from the fourth to the second Riemann sheet F.3.8.(c3). See

also figure 2 in reference [87] as well as the animations in the supplemental material

of Ref. [88].

In the current study, the parameters’ values are determined by fitting them to the

empirical data, enabling an exploration of the phenomenon known as ”pole movement”

by systematically switching off the parameters λ and m12. As the parameters are

sequentially turned off, divergent patterns of behavior manifest in the two disjoint

scenarios. In case A, the fraction of poles that move to the real axis from the lower half

of the second (II) Riemann sheet—an event indicative of a molecular interpretation—is

found to be only 0.7%, a statistically insignificant result. This finding offers strong

support for the interpretation of the pole as an unbound virtual state, and thus, the

interaction between the Σ+
c and D̄0 does not have the strength needed to create a

bound molecular state. In scenario B the dynamics of the lighter pole cluster, shown

in Figure F.3.7(b), are very different. As the parameter m12 is reduced to zero this
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(a) (b)

Figure F.3.9: (a) K-matrix fit with a constant background to the cos θPc data set, this
analysis produces a pole in the second Riemann sheet as in the case with cij ̸= 0. (b)
Flatté fit for the same dataset as case (a), this fit does not generates stable poles in
the interest region. Figures taken from [168].

cluster moves onto the fourth (IV) Riemann sheet where it meets the zero of T11(s)

and is finally annihilated. That the pole is removed when decoupling shows that it

is entirely an effect of the coupling of the two channels. Furthermore, its position on

the furthest unphysical sheet provides additional confirmation of its identification as

a virtual state in agreement with the interpretation of the Pc pole in case A.

We also performed other systematic analyses employing both the Flatté and K-

matrix parameterizations in order to explore in more detail the behavior of the system.

If one uses a single K-matrix pole with an off-diagonal constant background, then

one finds a pole on the second (II) Riemann sheet, which lies at the same location

as that found in case A. On the other hand, the Flatté parameterization cannot

reproduce the Pc peak properly and provides unstable poles in the pre-defined region.

In order to verify the robustness of these findings, we have performed cross-checks by

fitting all of the above approaches to the unweighted J/ψp mass spectrum within the

same kinematic range both with and without the cut of mKp > 1.9 GeV criterion.

The results of these fittings are coherent across all examined methodologies, thereby

strengthening the validity of the findings.

In section 2.4 we compared the near-threshold amplitude of Refs. [84] and [88] by

Dong, Guo and Zou (DGZ) and JPAC collaboration, respectively. The main difference

between both amplitudes is the treatment of the breakup momentum of the J/ψp

channel, i.e. k1. In the case of DGZ it is a constant and, hence, the first cut starting
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Figure F.3.10: DGZ vs. JPAC momenta. k2 momenta fully overlap showing that both
are the same definition. The momenta are computed for the Pc(4312)

+ case. The only
difference appears in the real part of the ik1 momentum, which for the DGZ amplitude
is a constant.

from the first threshold has been washed away. In the JPAC amplitude, that is not

the case as the square root is kept. Figure F.3.10 shows the DGZ and JPAC momenta

for the pentaquark case. On Fig. F.3.11 the parameters obtained for the pentaquark

amplitude using the JPAC amplitude are plugged in into the DGZ amplitude and

both ampliudes are compared. The differences are shown to be minimal.

The pole position for the JPAC amplitude is [88]:

MP = 4319.7± 1.6MeV, ΓP = −0.8± 2.4MeV, (3.15)

where the − (+) sign in the width stands for IV(II) Riemann sheet, and for the DGZ

amplitude using Eq. (2.79):

Ep = 4319.45 + i 0.476MeV, (3.16)

MP = 4319.45MeV, ΓP = 0.95MeV, (3.17)

and the pole lays on the upper plane of the II Riemann sheet. Remember that the

threshold sits at Σ2 = 4317.73 MeV. So, we can conclude that both models give

compatible interpretations for the Pc(4312)
+ signal.
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Figure F.3.11: Comparison between the DGZ and JPAC amplitudes for the J/ψp →
J/ψp [T11(s)]channel using the parameters from [168]. Blue: ℜ [T ]; Red: ℑ [T ]; Green:
|T |. The orange vertical line highlights the Σ+

c D̄
0 threshold.

3.3 Study of the f0(980) signal

The study of meson-meson interactions at low energy provides crucial insights on

the nonperturbative regime of QCD. This field of research has particular importance

to understand possible resonance structures that could deviate from the conventional

quark-antiquark picture in the naive quark model. Such interaction will bring a deeper

understanding of the strong force at energy scales where QCD is not perturbative and

will open up ways to investigate exotic hadronic states, arising from the intricate

dynamics of QCD interactions [1].

The scattering of pions and kaons are the simplest two-body reactions involving

mesons, i.e. ππ → ππ, ππ → KK̄ and πK → πK constitute the major sources of

information on the existence and properties of various meson resonances such as the

σ, ρ, κ or f0(980), which are of great interest to understand the light meson spectrum.

The scalar meson f0(980) is particularly interesting given its location very close to

the KK̄ threshold, making it a primary candidate for a KK̄ molecule. Nevertheless,

its nature is still an open question, with the conjectured nature going from a compact

tetraquark state [171–174] to a KK̄ bound state [175, 176]. Following the work for the
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Pc(4312)
+ in 3.2, we perform a coupled-channel amplitude analysis of the ππ → ππ

and ππ → KK̄ S wave. The f0(980) resonance is well suited for study within an S

wave amplitude model, as the absence of spin simplifies the scattering amplitude and

avoids the complications introduced by helicity. This S wave treatment then allows

a near-threshold analysis that is not only analytically manageable but also provides

flexibility in the interpretation of the resonance as a bound state, virtual state, or

molecular state as is possible using the model discussed in [88], by focusing on the

narrow energy region around the KK̄ threshold, where the coupled-channel effects of

the resonance are pronounced, we can give a systematic basis to the understanding

of the f0(980) resonance. This model allows for an interpretation of the resonance

structure based on its pole position in the complex energy plane and accommodates

many hypotheses on the internal structure of the resonance without implying a rigid

classification. In that way, it will be possible to conclude if the f0(980) behaves like

a molecular state, bound state, or virtual state by studying the nature of its pole

parameters.

In this work, we analyze the dispersive analysis of ππ → ππ and ππ → KK̄

channels done in [177] focusing on the near-threshold data for ππ → ππ and ππ →
KK̄ interactions, which allows performing an analysis that is sensitive to the coupled-

channel dynamics of the resonance. We assume that the 4π channel is negligible at

the energies under study. We reduce the problem to a two-channel case in which

ππ → ππ, ππ → KK̄, and KK̄ → KK̄ are part of a coupled-channel amplitude,

given by two phase-shifts (δππ(s), δKK̄(s)) and an inelasticity (η(s)). Both ππ → ππ

and ππ → KK̄ processes have been extensively studied in the literature (see for

instance [177, 178]) predominantly because the experimental information is much

more favorable than for KK̄ → KK̄ scattering.

In a two-channel scenario, these final states are enough to reconstruct the full

amplitude, as the third KK̄ → KK̄ channel is given by unitarity, as shown in

Eq. (2.49). Hence, both ππ → ππ and ππ → KK̄ amplitudes are given by the same

phase-shift below the KK̄ threshold. This is known as the Fermi–Watson

theorem [179], arising as a result of unitarity. In principle, the ideal situation to

describe a resonance around a threshold opening includes experimental information

above and below it. However, even if the phase of ππ → KK̄ is given by data on

ππ → ππ, the modulus cannot be fixed as there is no data below the KK̄ threshold.
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In our case, we will make use of information coming from the “CFD” results of [180]

for ππ → ππ. We will also use the results “CFDC” and “CFDB” from appendix C

of [177], although, for the energies under scrutiny, these solutions and the ones in the

main text of the manuscript are pretty much identical. Specifically, we are interested

in a narrow energy region of 40− 50MeV around the KK̄ threshold. Both ππ → ππ

and ππ → KK̄ dispersion relations are applicable in that window and their dispersive

results are considered robust inputs to our analysis.

It is worth noting that these dispersive results are not coupled to one another,

i.e., no coupled-channel dispersive analysis has been performed. In practice, there is

evidence that there are channels other than KK̄ that can couple to ππ interactions

around the 1 GeV region, most probably the 4π threshold. We consider this

contribution subdominant however and we will neglect it entirely. Moreover, the

ππ → KK̄ dispersive modulus for the amplitude [177, 181, 182] deviates from the

available ππ → KK̄ data around the KK̄ threshold, which will induce some

noticeable tension in the following fits.

The “CFDC” and “CFDB” results come from using different sets of ππ → KK̄

data for the modulus of the scalar partial-wave g00. These data were measured by the

Argonne and Brookhaven experimental collaborations. The former is based on the

results of [183, 184], while the latter uses the data from [185]. These data sets produce

different, incompatible results. Note that, in the past, some analyses [186, 187] have

rescaled the latter results by an overall normalization to make them compatible with

the previous measurements. In previous dispersive works [177, 188] an attempt was

made to study both solutions separately, with the aim to understand if dispersion

relations could select a preferred set. No significant preference was found, and thus

we will use both sets of results in our analysis.

These results come in the form of results from an integral equation, which are

smooth functions of the energy, for which an arbitrary set of bins can be produced.

In practice, the binning for ππ → ππ is given every 2.1 MeV, and for ππ → KK̄ it is

given by 2.3 MeV. Roughly speaking, we take values of these dispersive results every

1 MeV in the energy. We fit these pseudo-data and perform the uncertainties analysis

using bootstrap.In what follows we will refer to dataset B(C) as the one made out of

combining the binned “CFD” and “CFDB”(“CFDC”) results.
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In the standard analysis of the partial wave, an amplitude is postulated and

data/partial waves are fitted with such amplitude. In our case, we are interested in

an energy region close to the KK̄ → KK̄ threshold where the f0(980) appears. For

that purpose, we use a two-channel amplitude under the effective range (ER)

approximation to describe the dispersive S waves for ππ → ππ,KK̄ channels shown

in F.3.6, i.e. equation (2.66), for the sake of clarity, we re-write the equation below:

T−1
ij (s) = µij(s)− iki δij , (3.18)

with i, j = 1, 2. Here ki =
√
s− si with s1 = 4m2

π, s2 = 4m2
K are the thresholds of

the two channels. Consistently with the ER expansion near threshold [49, 83, 87] we

use ki instead of the two-body phase space, and we approximate it by a square root.

As we discuss in section 2.4, the pole position is determined by solving

(M11 − c11s− ik1)(M22 − c22s− ik2)− (M12 − c12s)
2 = 0, (3.19)

which corresponds to the denominator of T . By defining in q = −ik2, (3.19) becomes

a four degree polynomial in s,

(s2 − s1 − q2)
[
M22 + q − c22(s2 − q2)

]2
+
{[
M12 − c12(s2 − q2)

]2
+
[
c11(s2 − q2)−M11

][
M22 + q − c22(s2 − q2)

]}2

= 0, (3.20)

with eight poles solutions. Equation (2.87) presented in section 2.4 is equivalent to

(3.19) but we present here the previous step before re-writing it as a function of the

variable change q.

To identify the Riemann sheet for each pole we have to pay attention to the sign

of:

R2 = −ik2 = −i
√
s− s2, (3.21a)

R1 = −ik1 = −i
√
s− s1. (3.21b)

The poles in s are obtained solving s = (mK +mK)
2 − q2. The poles appears in
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conjugate pairs, each on a sheet identified by (η1, η2) pair:

η1 = Signℜ
[
(M12 − c12s)

2

M22 + q − c22s
+ c11s−M11

]
, (3.22a)

η2 = Sign ℜ [q] , (3.22b)

or by the customary naming scheme presented in 2.4.

As in the case for the Pc(4312)
+ discussed in 3.2, the physical interpretation of

the poles is provided by the Morgan-Pennington criterion [189, 190]. By definition, a

resonance is a pole in the closest unphysical Riemann sheet, however, with the

proliferation of Riemann sheets as new channels open, it is possible for an unique

resonance to have poles in the additional Riemann sheets. In the two-channel case

at hand of a resonance below the second threshold, i.e. KK̄ → KK̄, the expectation

is that the f0(980) is a pole on sheet II. The key question is if it has an additional

pole on sheet III given that such pole is sufficiently close to the KK̄ → KK̄

threshold. The appearance of such pole indicates a quark-model-like composition

making a pure molecular interpretation impossible. Consequently, the lack of a pole

on sheet III is evidence of the molecular nature of the state. The reasoning, based

on the analytical properties of the amplitude, is illustrated in F.3.8 (there the cuts

and states corresponds to the Pc(4312)
+ case, but it is similar for the f0). Three

cases are presented: compact, molecular, and virtual. The uncoupled channels case

depicts the situation where the ππ and KK̄ → KK̄ channels are decoupled. Each

channel would have two Riemann sheets with the unitarity cut starting at the

corresponding threshold. If the f0(980) resonance is a compact quark state it is

present as a pole in each channel (top). Most likely with a small imaginary part. If

it is a KK̄ → KK̄ molecule it has to be a pole below threshold on sheet I of the

KK̄ → KK̄ channel with no pole appearing in the ππ channel (center), and finally

if it is a KK̄ → KK̄ virtual state it should appear as a pole below threshold on

sheet II of the KK̄ → KK̄ channel with, again, no pole appearing in the ππ channel

(bottom). When the channels are coupled the amplitude contains four Riemann

sheets as shown in F.3.12 and any pole in the real axis has to move to an unphysical

sheet as they acquire a width. This is depicted in the coupled channels case. Bear in

mind that the analyticity of the amplitude demands that poles cannot just

“disappear”, they have to move somewhere, although that somewhere could be
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Figure F.3.12: Analytical structure in the k2-plane of the coupled-channel amplitude
in the proximity of the KK̄ → KK̄ threshold. The amplitude can have poles on
sheets II and IV under the scattering length approximation and on both sheets II, III,
and IV under the effective range approximation.

infinity. In the compact case each pole would be located in its closest sheet, i.e. the

one on the ππ channel to sheet II and the one on the KK̄ → KK̄ channel to sheet

III. In the molecular case there is only one pole which can only migrate to sheet II.

In the virtual state case, the coupling of the two channels puts automatically the

pole on sheet IV and either stays on it or migrates to the nearby sheet II. In essence,

one unaccompanied sheet II pole indicates a molecular state, while a pair of poles on

sheets II and III is evidence of a state originating from antiquark-quark forces.

We perform least-square fits to the B and C datasets using both the SL and ER

approaches. Results for the fits are shown in F.3.14. Fit parameters and pole

extractions are given in C.3.6. The first apparent result is that the qualitative

features of the partial wave are reproduced just with the SL approach.

Quantitatively, dataset B is poorly reproduced while dataset C is reasonably well

reproduced with both the SL and ER approaches. The best fit using any approach

provides a single pole on the II RS in the region near the KK̄ → KK̄ threshold,
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Table C.3.6: Summary of best fits and pole locations (sp) in the complex s-plane.

dataset B dataset C

Model Scattering Length Effective Range Scattering Length Effective Range

# params. 3 6 3 6

χ2/dof 11.7 4.5 6.8 1.8

M11 0.17(5) 2.9(1.0) 0.0(1) 4.7(6)

M22 −0.1290(4) −1.5(2) −0.1287(3) −0.8(2)

M12 −0.379(7) 1.4(2) −0.398(8) 0.8(1)

c11 − 3.4(1.1) − 5.2(7)

c22 − −1.4(2) − −0.7(3)

c12 − 1.8(2) − 1.3(2)

Riemann Sheet II II II II
√
sp (MeV) 992(2)− i 22(1) 1000.5(9)− i 3.8(9) 997(2)− i 21(3) 1002(1)− i 3.8(9)

Mp = Re
√
sp (MeV) 992(2) 1000.5(9) 997(2) 1002(1)

Γp = −2 Im
√
sp (MeV) 45(2) 7.6(1.5) 42(5) 7.5(1.8)

hinting to a KK̄ → KK̄ molecular interpretation.

The uncertainties are computed using the bootstrap technique as discussed in

section 2.6.1. In the standard bootstrap approach [21] the error is computed by

resampling each data point according to a Gaussian distribution whose width is that

of the experimental datapoint. The uncertainties are reported in C.3.6 and F.3.13.

In table C.3.6, the inspection of resonance f0(980) displays critical insight into the

behavior of the real and imaginary parts of its pole position. These parameters show

the manifestation of the resonance for various models and datasets in the complex

energy plane, helping to connect theoretical constructs to the precision of the available

data. The real part of the resulting poles is rather stable across models and datasets,

ranging from 992MeV (dataset B, SL) to 1002MeV (dataset C, ER), which implies

stable estimation of the energy of the resonance around the KK̄ → KK̄ threshold.

In contrast, the imaginary part of the resonance differs quite a bit between models.

In SL fits, the imaginary part enters larger decay properties −i22MeV, while ER

fits gives more precise values −i3.8MeV. The difference highlights that ER models

are most sensitive to parameter changes, depending more on higher-order corrections,

which could, in principle, impose too strong constraints on the dynamics disregarding

multi-channel effects, or contributions from 4π or isospin-breaking terms.
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Figure F.3.13: Masses (M = ℜ√sp) and widths Γ = −2ℑ√sp obtained from the
bootstrap analysis for datasets B (blue) and C (orange) using the SL (left) and ER
(right) models. The ellipses represent the 1 and 2σ uncertainties for each pole.

The χ2/dof decreases with increasing parameters, which indicates a trade-off

between fit quality and physical interpretability. In both data sets, ER fits give

much smaller χ2/dof values (4.5 for dataset B and 1.8 for dataset C) compared to

SL fits (11.7 and 6.8, respectively). Although this improvement is associated with a

better statistical fit to the data, decreased flexibility in ER models justifies questions

about their wider applicability. For instance, the strictly limited imaginary part in

ER diverges from results obtained by robust methods like unitarized chiral

perturbation theory, which implies that more channels or corrections may have to be

explicitly included.

Comparisons of datasets further emphasize the significance of data quality in the

determination of poles. Dataset B demonstrates elevated χ2/dof values and

marginally greater fluctuations in pole positions relative to dataset C, suggesting the

possibility of inferior resolution or more extensive systematic uncertainties.

Conversely, dataset C, characterized by stricter pole constraints and diminished

χ2/dof, seems more appropriate for resonance analysis, highlighting the critical

nature of accurate experimental inputs in the examination of near-threshold
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Figure F.3.14: Fits to the experimental data using the model described in Section 2.4.
Panel (a) illustrates the fits to the ππ → ππ data (left) and the CFDB data (right),
with the gray and aquamarine bands representing the experimental ππ → ππ and
CFD pseudodata respectively, the blue bands indicating the fit with the SL model, and
the orange bands corresponding to the ER model. Similarly, panel (b) shows the fits
to the ππ → ππ data (left) and the CFDC data (right), following the same color
identification as in panel (a). The thickness of the bands is proportional to the error
band associated with the pseudodata points. In both cases, the ER model demonstrates
a better fit to the CFD data compared to the SL model.
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dynamics. These results confirm the f0(980) classification as a near-threshold

resonance strongly coupled to the KK̄ → KK̄ channel. The observed

model-dependent variations of the imaginary part of the pole clearly show the

importance of an adequate choice of the framework for amplitude analysis. While

the SL models provide a robust and global characterization of the f0(980), the ER

models show promise for detailed studies, but require careful handling to avoid

overfitting and to remain consistent with established theoretical and empirical

findings. This review also underscores the need to incorporate additional channels

and dynamics, hence offering a crucial guideline for future studies of hadronic

resonances. Building on the analysis, extra channels and corrections will play an

important role in the deeper understanding of f0(980) resonance dynamics. Of

these, the channel 4π is important, as this will contribute to the inelasticity seen

close to the resonance. This would resolve the discrepancies in the imaginary part of

the pole, mainly in the ER models. Moreover, explicit consideration has to be given

to isospin-breaking effects due to the mass difference between K+K− and K0K̄0

thresholds. These thresholds induce subtle but significant variations in the coupling

and position of the resonance poles, which are ignored in the strict isospin symmetry

assumption.

The analysis presented in this thesis, despite its limitations, is far from

redundant; it plays an essential role in teasing apart the theoretical and empirical

intricacies associated with the f0(980) resonance. This work has brought forth, by

making use of near-threshold formalisms such as Scattering Length (SL) and

Effective Range (ER), how crucial effects that gain importance around thresholds

are: the interaction of neglected channels such as 4π and isospin breaking

contributions. The discrepancies in this work, compared with other studies of the

pole extractions, reveal how near-threshold effects, often simplified or ignored, can

play a dominant role in the understanding of the resonances. This analysis acts as a

diagnostic tool that helps to identify the sources of systematic discrepancies,

creating a floor for improving methods that match near-threshold expansions to

coupled-channel models. By doing so, it not only ascertains the practicality of the

models used but also opens up an insight into the intricate dynamics that prove

essential for a full understanding of the f0(980) and similar resonances.



4. Conclusions

To explain all nature is too difficult a task for any

one man or even for any one age. It is much better

to do a little with certainty and leave the rest for

others that come after than to explain all things by

conjecture without making sure of any thing.

I. Newton

The findings in this thesis synthesize the results of three interrelated studies on the

physics of hadrons, bringing into the spotlight the intricate interactions between the

analytic features of scattering amplitudes and dynamics near threshold. These have

generated a wealth of knowledge on the N∗ and ∆∗ baryonic resonances using Regge

theory, the hidden-charm pentaquark Pc(4312)
+, and the scalar meson f0(980). By

integrating advanced modeling methodologies with statistical validation frameworks

that range from simple parametric uncertainty analysis to more advanced bootstrap

analyses, this research significantly extends our theoretical understanding of dynamics

governing such resonances.

Contrary to the conventional applications to slopes and intercepts of trajectories,

the present investigation considers the general analytic continuation of the

scattering amplitudes. By using the basic principles of unitarity, analyticity, and

crossing symmetry, the present study shows that the singularities in the complex

angular momentum plane carry significant physical information concerning N∗ and

∆∗ resonances. These findings go on to make the analytical framework associated

with Regge trajectories more versatile for a better comprehension of the dynamics.

Validation of parameters derived here, by statistical techniques—most dominantly

the bootstrap resampling—assures the stability and robustness of these results

considering statistical fluctuations in data inputs; hence, pushing the

phenomenology of Regge theory even further and increasing the range to higher

energies within hadron-hadron interactions. The study of the Pc(4312)
+ resonance is

116
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particularly important for the characterization of this state, lying near the threshold

of Σ+
c D̄

0. Using a coupled-channel amplitude formalism, this work determines a

pole on the IV Riemann sheet, which conclusively provides the evidence for its

classification as a virtual state rather than a molecular bound state. This study is

based on a thorough analysis of the pole’s behavior as a function of various channel

couplings and parameter values, demonstrating that the attractive forces existing

near threshold, although appreciable, are not strong enough to bind the system

within a molecular structure. Instead, the observed behavior is consistent with the

properties of a virtual state, a conclusion sustained also by the regular poles’

movement across Riemann sheets.

Statistical methods, such as the bootstrap techniques, give a quantitative estimate

of the uncertainty, increasing the credibility of such results. These results explain

the properties of Pc(4312)
+ and show the complex dynamics that are typical for near-

threshold phenomena. The f0(980) scalar meson is studied in the analogous framework

of coupled-channel dynamics near the KK̄ threshold. Analytic continuation of the

scattering amplitude suggests the existence of a pole structure that indicates the

existence of a dynamically generated state, with properties mainly determined by KK̄

interactions. The very same methodological framework widely applied to Pc(4312)
+

and f0(980) underlines the strength and universality of the analytic and statistical

techniques developed in this thesis. By inclusion of dispersion relations and extensive

statistical verification, the present analysis ensures the reliability of the results, which

afford a rational explanation for peculiar properties of the scalar meson deviating from

conventional quark-model predictions.

In addition to the specific case studies, this thesis presents more general

methodological developments relevant to the study of hadronic systems. The general

amplitude analysis framework developed in this work is a versatile tool for the study

of complex multi-channel and multi-threshold dynamics. By emphasizing the

importance of analytic properties and implementing strict statistical validation, this

work bridges the gap between phenomenological models and empirical data, thus

providing a sound foundation for future research efforts.

While this research acknowledges some limitations of experimental uncertainties

and model dependencies, it recognizes that future improvements in experimental data

with higher precision, refined theoretical constraints, and incorporation of results from
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lattice QCD will be beneficial for such analyses. Furthermore, a deeper extension of

the statistical framework to Bayesian methods or other resampling techniques may

still improve the robustness and interpretative power of such analyses. In summary,

this dissertation increases the knowledge of hadronic resonances by incorporating

theoretical precision, new modeling techniques, and statistical reliability.

The tests of N∗, ∆∗, Pc(4312)
+, and f0(980) demonstrate the effectiveness of a

coherent framework in dealing with the intricate interplay of analytic and dynamic

characteristics in the hadronic spectrum. These contributions will serve to shed light

on the properties of certain resonances, while setting a basis for future research,

especially on near-threshold phenomena and their far-reaching implications in

hadronic physics.
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