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A biological interpretation of flexible artificial neural networks 
Undergraduate thesis by Fernando Ignacio Calderón de León 

 

Abstract 

Throughout this work the reported consistency between specific kinds of artificial 

neural networks (ANN) and biological neural systems (BNS) is examined from various 

perspectives. It is shown that flexible problem-solving abilities in a reference network 

rely on a set of functional features whose nature is consistent with the current 

understanding of the neurophysiological basis of biological cognition and perception. 

Such consistency is then analyzed from the perspective of complex systems, 

especially within the framework of physics and mathematics, concluding that the fact 

that both the ANN and BNS developed similar solutions to deal with parallel tasks is a 

direct consequence of both systems’ inherent search for efficiency. Further, it is 

exposed how certain aspects of the phenomena treated here may also be observed in 

other kinds of naturally occurring complex systems, as a result of the interplay between 

a few physical principles. Finally, a general overview of the relationship between ANNs 

and BNSs is put forward, constituting an integral understanding of the topic as well as 

a brief proposal for future work, ultimately leading to this project’s final conclusions. In 

sum, this work seeks to clarify the existing relationship between certain types of ANNs 

and BNSs in order to advance the understanding of cognition within a mathematical 

perspective. 
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Highlights 

• Flexible problem-solving abilities in both ANN and BNS rely on a common set of 

functional features, suggesting that such properties may be fundamental for 

flexible cognition and perception. 

• The interplay of such functional features generates compositional 

representations of tasks for both ANNs and BNSs, allowing the engagement of 

specialized functions in different patterns for varying computational 

requirements, conferring flexibility and efficiency in solving a variety of 

perceptual tasks. 

• Some of said functional features are excitability, mixed-selectivity, functional 

specialization, and compositionality; these properties are purportedly 

fundamental for efficient cognitive abilities. 

• The search for energetic efficiency generates such comparable functionality 

between artificial and biological neural systems, as it also the reason for their 

resemblance with other kinds of naturally occurring complex systems. 

• Investigators found a reference network that had developed specialized 

functions resembling real-life neurophysiological processes, under the same 

task context. 

• To bridge artificial and biological intelligence, the biological plausibility of the 

models’ structure and functionality must be refined further. 
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Main objectives 

• Synthetize relevant results from several lines of research, especially within the 

field of cognitive and computational neuroscience, into a general overview with 

the purpose of generating an accessible and consistent knowledge basis 

involving the subjects treated here. 

• Clarify various important aspects, such as the nature of the perceptual tasks 

utilized, as well as the functional resemblance between ANNs and BNSs, that 

are not properly elucidated in the research work from which the current 

discussion takes its basis. 

• Conceive original conclusions, as well as reinforce previously existing ones, 

regarding the computational modelling of biological cognition and perception. 

• Implement various research skills, such as analysis, compilation, and 

communication of information, on a relevant subject in contemporary and 

multidisciplinary scientific research. 
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I. Introduction 

In the context of contemporary research in neuroscience, it is undeniable that the 

advancement of knowledge relies on the collective effort of multiple disciplines. In 

recent years, the fusion of two seemingly unrelated fields, computer science and 

neuroscience, has conceived remarkable results that contribute to a better 

understanding of both subjects. Regarding the matter of cognition and perception, a 

broad understanding has been formed, although there are still aspects that are being 

studied further for additional clarification. Thus, with the application of an extensive 

repertoire of computational techniques, valuable insights into the mathematical nature 

of these phenomena have been made possible. 

Computational models known as artificial neural networks (ANNs) have been 

developed to emulate, in as close a manner as possible, specific aspects of some 

physiological functions identified in biological neural systems (BNSs) (Carpenter R. et 

al., 2013). In an effort to computationally simulate basic components of cognition and 

perception, several network models have been inspired by well-known processes 

performed by biological systems, conceiving remarkable results. However, most 

network models have been designed to solve only one or a few inter-related tasks, while 

BNSs are inherently capable of solving a great variety of cognitive tasks. Clearly, this 

striking difference has strong implications on the conclusions that can be drawn from 

studying the relationship between both systems, leading to the design of the networks 

discussed here. 

Pursuant to this general outline, the current discussion is a conceptual analysis of 

various aspects of the existing relationship between ANNs and BNSs. Firstly, a 

synthesis of relevant results obtained from several lines of research in both cognitive 

and computational neuroscience will be put forward, allowing a comparison between 

certain properties of the neurophysiological basis of biological cognition and those of 

a reference computational model. This will attempt to establish a direct relationship 

between the features of both systems, leading to valuable conclusions concerning the 

mathematical modelling of cognitive and perceptive processes.  
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This way, the following discussion perspective will be based on the consideration of 

both ANNs and BNSs as complex systems. Finally, a general overview of the 

mathematical modelling of cognition by means of artificial neural networks will be 

integrated into the overall discussion of the current context within the field of 

neuroscience. 

It is convenient to note that the models treated here have been worked on for a few 

decades now, yet the contributions that are of more interest to this work are quite 

recent. Their fundamental units were first proposed back in the 1940’s as a prototype 

model of biological neurons, popularly known as the Perceptron, while inter-connected 

systems of said units were characterized in the following years (McCulloch W. et al., 

1943) (Rosenblatt F., 1957). Nevertheless, disregarding their promising features, 

research on ANNs at the time was almost halted due to the unavailability of 

computational tools powerful enough to test their related hypothesis, generating in 

recent times a renewed interest in such systems and causing them to be present in 

remarkable applications in scientific research, as well as in private and public 

enterprises. 

I.I. Cognition and perception 

First of all, it is right to define in the broadest terms what is cognition and perception. 

Classically, the latter may be understood as the unconscious integration of sensory 

information in any biological system, consequently generating awareness and 

knowledge about its environment. Cognition, on the other hand, may be defined as the 

phenomenon responsible for consciousness, in which perceptive information is 

assessed in order to conceive conscious, or will-driven, actions. Crucially, this 

phenomenon occurs as a consequence of the complex interplay between diverse 

physiological structures, more specifically, the nervous system. Thus, it may be stated 

that cognition and perception is a pair of intrinsically inter-related processes inherent 

to many biological systems (Romo R. et al., 2013). 

 



10 

 

As an effort to study this natural phenomena, diverse experimental configurations can 

be implemented in the laboratory to analyze various aspects of cognitive and 

perceptive processes. Most times, these procedures will be based on a subject's 

performance of a series of actions based on perceptive information, a process that is 

commonly known as a perceptual task. This definition will prove to be quite useful for 

the present work, as the proposed relationship between ANNs and BNSs departs from 

their performance of multiple perceptual tasks. 

I.II. Artificial neural networks 

Essentially, the computational models treated throughout this work are relatively small 

recurrent neural networks (RNN) consisting of 256 LIF units as basic building blocks. 

Their general structure coincides with the canonical neural network configuration, as 

these characteristics are meant to resemble certain known properties of BNSs (Yang et 

al. 2020).  To address the matter of emulating biological cognitive flexibility, said 

networks were trained over an entire set of tasks meant to be the computational 

analogs of well-studied perceptual tasks performed by animal subjects in laboratory 

studies, facilitating a qualitative comparison between certain aspects of such models 

and their biological analogs.  

Before starting such discussion, it is convenient to keep in mind one of the fundamental 

principles of the mathematical modelling of any natural phenomenon, which states the 

impossibility of capturing in a model absolutely every one of its features, thus making 

such model’s purpose to only focus on certain properties of interest. Evidently, this is 

the case of the current study, as it will mainly focus on a handful of functional features 

of neural systems, disregarding many aspects of their complex nature. This fact has 

strong implications on the following discussion, so it will be further discussed in later 

sections. Now, with these considerations, the main characteristics of the models 

treated here may be exposed.  
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Figure 1. Schematic illustrations depicting the functional resemblance between artificial and biological neural 
systems at a single unit and a systemic perspective. Figures 1.a and 1.c (left column) represent the artificial 
case, while Figures 1.b and 1.d (right column) represent the biological case. a) LIF unit. Here 𝑖𝑖  stands for the i-th 
input the unit receives, 𝑤𝑖 for its corresponding synaptic weigh, and 𝑜𝑗 for the unit’s j-th output. b) Basic 
morphology of a biological neuron. c) General structure of a RNN. d) Illustrative representation of a few regions 
of the primate brain in function of certain cognitive functions they are known to perform. Figures 1.b and 1.d have 
been readapted from Kandel R. et al., 2013. 



12 

 

I.II.I. Single unit properties 

Similarly to the way nervous cells may be understood as the fundamental functional 

units of biological nervous systems, ANNs also rely on the interconnections between 

single units whose characteristics have strong effects on the system's function. 

Regarding the networks treated here, these units are based on a widely used structure 

in machine-learning known as "leaky integrate-and-fire" (LIF), whose features are 

meant to resemble some of the most basic functional properties of biological neurons. 

Starting with their characteristic firing function, LIF units integrate multiple inputs 

coming from previous units and apply a non-linear function to the result to generate an 

"all or nothing" output response that is transmitted to following units; a process that 

emulates a biological neuron's excitability (Equation 1). Further, such interconnections 

may be regarded as well as the cells' synapses, both incoming and outgoing. In the 

model, the scalar value of connections is mediated by the synaptic weight factor, a 

numerical value that enhances or decreases the strength of such interconnections, in 

a similar way to excitatory and inhibitory responses in nervous cells (Equation 2).  

Importantly, this may lead to the functional specialization of units based on their input 

and output selectivity, a feature that has been extensively identified in BNSs and that is 

known as functional selectivity. In the case that a unit does not show preference for a 

given stimuli type, it is said that it shows mixed-selectivity. This functional resemblance 

between artificial and biological neural units is visually presented in Figures 1.a and 1.b, 

as the unit’s input (left) is associated with a neuron’s incoming signaling through its 

axon receptors, its output (right) with the cell’s outgoing signaling through its dendritic 

tree, and its non-linear operation (center) to a neuron’s critical firing function. It is right 

to note that regarding the models treated here, the applied non-linear function is the 

Rectified Linear Unit (ReLU), a two-step operation that is standardly used in this kind of 

network models.  
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This set of facts suggests the reliance of both artificial and biological units on 

criticality, excitability and mixed-selectivity, functional features that appear to be 

fundamental for efficient neural processing (Kay M. et al., 2024). Thus, by fixing large 

arrays of these inter-connected units, it becomes possible to emulate some of the most 

general characteristics of certain neurophysiological processes of BNSs, allowing their 

study through this mathematical approach. 

I.II.II. Systemic properties 

As it has been exposed, inter-connected systems of operational units that functionally 

resemble biological neurons may be applied to emulate in a broad nature certain 

aspects of neurophysiological processes involved in cognition and perception. For 

instance, several remarkable lines of research have successfully developed ANN 

models that simulate diverse functional properties of the auditive, visual and 

sensorimotor pathways (Bi Z. et al., 2020) (Joglekar M. et al., 2018), from which a set of 

relevant features may be identified to facilitate the analysis of the networks treated 

here. 

 

 

Figure 2. Schematic diagram of a generic RNN receiving a continuous input signal, 
as it processes in real time and consequently generates a continuous output signal. 
This functionality highly resembles that of the network models used here, as it has 
been utilized to model broad aspects of diverse neurophysiological functions. Figure 
readapted from Yang et al. 2020. 
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Starting with the direction of information flow within the systems, the networks 

discussed here rely on a bidirectional flow of information in which the operations that 

are directly associated to the network’s inner task representation flow in one direction 

(Figure 1.c), and, as it will be exposed in the following section, information related to 

performance feedback flows in the opposite direction.  

This configuration coincides with the canonical neural network structure (Figure 1.c), in 

which the purpose of the first layer of units is the recognition of stimuli and its 

transmission into further layers, where most information is transformed, as the last 

layer of units is specialized for decision report. Remarkably, this resembles to some 

extent the flow of neural activity in various sensory-cognitive pathways in BNSs, such 

as the auditory, visual and somatosensory hierarchies (Figure 1.d) (Figure 2) (Parra et 

al., 2022) (Campos A., 2022). 

Further, it is also a fact that in order to deal with the tasks at hand in the most efficient 

way possible, neural networks tend to develop specialized functions that are performed 

through populations of selective units, a process that has been extensively observed in 

BNSs and that is commonly known as functional specialization. In addition, it has also 

been found that in both the artificial and biological case, neural systems are able to 

engage in different patterns said specialized functions to flexibly deal with multiple 

tasks involving varying computational requirements, a process that has also been 

proposed to be fundamental for efficient cognition and that is usually referred to as 

compositionality (Dela Fuente V. et al., 2006). 

Again, it is evident that this mathematical modelling of neurophysiological functions 

does not contemplate many aspects of their essential nature, a fact that has strong 

implications on the current discussion. Now, the most relevant characteristics of the 

method by which the networks treated here were trained may be exposed. 
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I.II.III. Training 

To this point, it has been shown that ANN models can be applied to broadly emulate 

certain aspects of cognitive and perceptive functions in biological systems. To achieve 

this, the systems must first be trained on specific tasks. Essentially, they are trained by 

means of stochastic gradient descent (SGD) algorithms, a family of numerical 

techniques widely used in machine-learning. They are fundamentally based on the 

search for ever-increasing task performance, for which the following cycle is 

continuously iterated: First, after the system completes one task trial, its performance 

is translated into a numerical parameter that is compared to the value of a perfect 

performance (Equation 6), generating a discrete gradient (Equation 5), that can be 

diminished by stochastically modifying the synaptic weights between the units 

engaged in such task (Equations 3 and 4), thus generating a stochastic gradient descent 

process that flows in an opposite direction to the network’s task representation. This 

way, by executing the task a high number of times, an increased performance is 

achieved (Murphy K., 2021).   

Considering that the networks treated here were trained on 20 inter-related tasks, and 

in order to avoid a pair of well-known issues in automated learning known as 

catastrophic forgetting and overfitting, a continual learning technique was 

implemented. The first of these issues involves a network effect in which new tasks are 

learned by expense of forgetting previously learned ones, as the second one involves 

the over-specialization of functions, an effect that usually has negative effects on 

overall performance. Thus, the implemented continual learning technique, commonly 

known as FORCE algorithms, essentially consists of randomly interleaving different 

tasks on the network's training schedule, as well preserving through training relevant 

weighting factors, thus conceiving inner processes that bypass these issues (Sussillo 

D. et al., 2009). 
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Equations 1 – 6. This set of discrete equations show some of the most relevant mathematics 
on which the models treated here are based. They may also be found in literature in their 
differential and matrix forms. All the numerical factors shown here may be regarded as real 
numbers. Eq 1. Critical function of an ANN single unit. Here 𝑎𝑢(𝑡) stands for the activity at 
time 𝑡 of unit 𝑢, 𝑦𝑢(𝑡) stands for its pre-critical activity, and 𝑓 stands for the applied non-linear 
function. Eq 2. Pre-critical activity of a single unit at time 𝑡. Here 𝑊𝑖(𝑡)  represents the 𝑖-th 
weighting factor at time 𝑡 of unit 𝑢, 𝑖𝑖 represents its 𝑖-th input, and 𝑏𝑖 a modifiable scalar value. 
Eq 3. Pre-critical activity of a single unit at time 𝑡 + 1. Eq 4. Modified weight factor for the 𝑖-th 
input at time 𝑡 + 1. Here 𝐶𝑢(𝑡, 𝑖) stands for the correction factor at time 𝑡 and 𝑖-th input of unit 
𝑢. Eq 5. Correction factor. Here 𝛿(𝑡) represents the deviation factor, as 𝜀𝑢(𝑡, 𝑖) represents the 
scaling factor for the 𝑖-th input at time 𝑡 for unit 𝑢. Importantly, the latter is calculated by 
means of FORCE algorithms, by which they are also strategically implemented to the network. 
Eq 6. Deviation factor at time 𝑡. Here 𝑃𝐺  stands for the performance goal of the network for any 
given task, while 𝑃𝐹(𝑡) represents the numerical value of the system's final performance on 
said task at time 𝑡. 
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Clearly, these numerical techniques do not meet many important aspects of the 

learning process in BNSs, implying strong consequences on the current study. This fact 

will also be further discussed in following sections. Now, it is possible to expose the 

most general characteristics of the task set on which both ANNs and BNSs were 

trained, emphasizing on their general structure and neurophysiological results. 

I.III. Task set 

In recent years, a better understanding of many aspects of the neurophysiological basis 

of diverse cognitive and perceptive processes has been reached thanks to the 

contributions of multiple lines of research.  Focusing on the auditory, visual, and 

somatosensory systems, an extensive repertoire of experimental and theoretical 

techniques has allowed significant findings regarding their underlying mechanisms to 

be made, both at a single-unit and a system-level perspective. To achieve this, most 

studies rely on specific task families that are performed by animal subjects in highly 

controlled environments, in which diverse physical measurements are made in the 

neural populations of interest. For instance, regarding the structural features of BNSs, 

magnetic resonances, or MRIs, are standardly used to identify in a non-invasive manner 

different anatomical formations of the encephalon, as well as certain aspects of their 

functioning, creating a good parting point for further studies (Figure 4.a). As for 

functionality, there exists another pair of techniques that are utilized to analyze the 

activity of neural populations: EEG, which stands for electroencephalography, is 

another widely used non-invasive method for measuring extracranial electrical activity 

(Figure 4.b), while in-situ electrophysiology analyses the electrical activity of single 

neurons (Figures 4.c and 4.d).  
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Crucially, these techniques differ starkly on their resolution; while MRIs and EEG permit 

the analysis of neural activity at a systemic level, LFP (local field potential) 

measurements allow insights onto single-cell dynamics. It is convenient to note that 

most of the neurophysiological results utilized in this work come from measurements 

made in cortical regions of the primate brain (Figures 3. a - c) (Figures 5. a - h), as 

cognitive and perceptive processes are known to mostly take place in such outer brain 

regions. Inner brain structures and functionality (Figure 5.d), while being essential for 

cognitive function, may be regarded as not directly related to the neurocomputational 

processes discussed here.  

Figure 3. a) Schematic diagram of the four lobes of the primate brain. It is currently understood that many 
neurophysiological processes involved in cognition and perception are widely distributed along different cortical 
and subcortical regions. b) Schematic diagram showing the location of the motor and somatosensory cortices in 
the primate brain. The respective functions of these regions are fundamental for the current study. c) Abbreviated 
nomenclature for some of the brain regions involved in the current discussion. Figures 3.a and 3.b have been 
readapted from Kandel R. et al., 2013. 
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Figure 4. a) Single shot of a magnetic resonance of an adult human brain, on which diverse 
anatomical formations may be observed. b) Single shot of an EEG of an adult human brain 
showing the activation of various cortical regions during a cognitive task involving 
language. It may be observed how the somatosensory cortex is not predominantly 
engaged on such activity. c) Schematic diagram showing the location of an in-situ 
electrophysiological measurement on the primate brain. d) Photograph of an electrode 
measuring the extracellular electrical activity of single neurons located in the primate 
parietal cortex. Figures 4.a and 4.b have been readapted from Kandel R. et al., 2013. 
Figure 4.c has been readapted from Romo R. et at., 2020. Figure 4.d has been readapted 
from Carpenter R. et al., 2013.  
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This way, the resulting evidence of these studies has conceived a consistent, yet still 

incomplete, understanding of the complex functionality of biological neural systems 

(Carpenter R. et al., 2013) (Kandel R. et al., 2013). Consequently, regarding this matter 

within a computational perspective, and with the purpose of studying how biologically-

inspired ANN handle perceptual tasks classically performed by animal subjects, many 

tasks have been translated into a computational framework, thereby generating the 

task set on which the models treated here were trained.  

 

Figure 5. Schematic diagrams depicting various cortical regions of the primate brain 
involved in the current discussion. a) Primary somatosensory cortex. b) Secondary 
somatosensory cortex. c) Ventral premotor cortex. d) Ventral posterior lateral nucleus. 
e) Prefrontal cortex. f) Medial premotor cortex. g) Dorsal premotor cortex. h) Primary 
motor cortex. Figures 5 a – h have been readapted from Romo R. et al. 2020. 
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Importantly, considering that this work is mostly focused on the cognitive and 

perceptive stages of the tasks, not to mention that the models do not contemplate 

movement execution, most findings regarding the tasks’ decision report stage will not 

be exposed. All the results that will be now presented were obtained from studies 

performed on non-human primate subjects, more specifically on Rhesus monkeys 

(macaca mulatta). The task set consists of 20 interrelated tasks concerning mostly the 

auditive, visual and somatosensory systems, which allows the identification of 4 main 

task subsets in function of their general characteristics: The Go, Anti, Decision/making 

(DM) and Categorization families. 

I.III.I. The Go subset 

This first task family, which contains the basic Go task as well as two of its main 

modalities, RT Go and Dly Go, mainly concerns the neural mechanisms underlying 

relatively simple visuomotor tasks (Funahashi S. et al., 1989). In its basic modality, 

subjects must first fix their vision to a visual cue presented in the center of a screen; 

after a short fixation period the cue goes away, and a second visual cue appears 

somewhere in a ring around the center of the screen. Subjects must then perform a 

visual saccade into the direction of the second cue, finalizing the task (Figure 6.a). This 

way, by performing a thorough analysis of the neural activity in numerous brain regions 

known to be causally engaged in the performance of these tasks, it has been found that 

after literal stimuli information is conveyed through early visual processing stages, it is 

gradually transformed into an abstract representation interpretable by higher stages in 

the brain’s cognitive processing hierarchy. Moreover, it has also been shown that highly 

selective PFC populations reliably encode all possible positions of the presented visual 

cues, supporting the idea that such brain region is crucially engaged in abstract 

cognitive processing as well with working memory functions. As for the other two 

modalities, which respectively add reaction time (RT) factors and delay periods (Dly) to 

this basic task structure, evidence further supports the reliance of biological visual 

processing on such neural dynamics. 
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I.III.II. The Anti subset 

This task family greatly resembles the previous subset, as it is composed by the same 

three task modalities, Anti, RT Anti, and Dly Anti, while adding its characteristic factor: 

In every Anti task, subjects must perform their report movement into exactly the 

opposite direction of the second visual cue, thereby generating an additional neural 

process (usually known as vector inversion) measurable by electrophysiological 

techniques (Munoz D.P. et al., 2004) (Figure 6.b). Thus, it has been found that for an 

adequate performance of these tasks, subjects must apply two crucial and 

consecutive stages: The voluntary inhibition of a reflexive eye movement into the 

direction of the visual cue, followed by the vector inversion. As for the first process, it is 

impossible to define a single neural population responsible for it, as it has been shown 

that it is rather performed throughout several inner and outer brain regions, and that it 

is fueled by important dopaminergic action. However, regarding the vector inversion 

process, neural activity associated to it has been traced to frontal brain regions, 

meaning that such function relies on the abstract computations known to be performed 

by PFC populations. 

Figure 6. Schematic representation of the Go and Anti tasks. a) Go task. Subjects perform a 
saccade into the direction of the second visual cue (black dot). b) Anti task. Subjects perform 
the saccade into the opposite direction of the visual cue. Figures 6. a and b have been 
readapted from Munoz D.P. et al., 2004. 
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I.III.III. The DM subset 

The decision-making (DM) task family is the most extensive of the entire task set, as it 

contains various modalities of at least 5 different tasks. Importantly, most of them 

require subjects to decide between two possible options, which is why most DM tasks 

will be represented as a pair.  

Starting with the simplest modality, DM 1 and 2, subjects are presented with a screen 

showing a set of moving dots whose movement is restricted to a single orientation and 

must decide which is the preferential direction of the majority of dots. It has been found 

that given the bimodal nature of the presented stimuli (left vs. right, or up vs. down), as 

information flows through the brain’s visual processing hierarchy, specific stimuli 

features, such as movement direction, are parametrically represented as a bimodal 

code in the activity of populations localized along the visual dorsal stream, a well-

studied neurophysiological structure specialized for spatial recognition (Figure 9.b) 

(Figure 10). Further, it has been found that such encoding happens through the firing 

rates modes of the engaged populations, which is why two well-differentiated 

decisions may be reliably decoded from a subject’s neural activity performing such 

operation. In these tasks decision report is usually done as a visual saccade or by 

activation of a button (Miller E.K. et al., 1996). 

The next pair of tasks, Ctx DM 1 and 2, adds a contextual factor to the structure that has 

just been exposed. In this modality, besides from movement direction, dots also 

present another bimodal parameter: color (green or red). Thus, at the beginning of every 

trial, subjects are instructed on which feature they must report, color or movement 

direction. As a remarkable result, it has been found that several neural populations, 

particularly those of the brain’s dorsal and ventral visual pathways, encode by means 

of their firing rates both task parameters of interest, suggesting the existence of a 

common neural code by which flexible computations regarding different types of 

information may be performed (Siegel M. et al., 2015). 
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The following pair of tasks, multisensory decision-making, MultSen DM and Dly 

MultSen DM, is the only one of its kind in the entire task set as it is the sole one that 

involves two different sensory modalities, visual and auditive. In its basic modality, 

subjects are presented with audiovisual periodic stimuli whose frequency may be 

higher or lower than a control frequency. For adequate task completion, subjects must 

report which is the given case. Importantly, stimuli may be presented as fully visual, 

fully auditive, or combined, since the purpose of the task is to study how multisensory 

integration happens in the brain. It has been found that populations of the subjects’ 

posterior parietal (PPC) and medial temporal (MT) cortices encode, by means of their 

firing rates, relevant information about both task parameters, thus generating a flexible 

task representation that is integrated into an abstract code as neural activity flows to 

frontal brain regions.  

 

Figure 7. Schematic representation of the main structure of three cognitive tasks involved in the current 
discussion. a) Dly DM, also known as the vibrotactile frequency discrimination task (VFT). In this diagram, the 
upper line in which the frequency of the second stimulus is higher than first one, may be regarded as the Dly DM 
1 task. The bottom line may be regarded as Dly DM 2. b) Vibrotactile stimulus detection task. c) Multisensory 
stimulus detection task. Figures 7.a and b have been readapted from Romo R. et al., 2020. Figure 7.c has been 
readapted from Parra S. et al., 2022. 
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It has also been shown that there exists a considerable enhancement in task 

performance if the stimulus is both auditive and visual, suggesting that a multisensory 

perceptive build-up might be performed through such populations. As for its Dly 

modality, a fully abstract representation of task parameters that is maintained through 

the delay period of the task has been identified in PFC populations, further supporting 

its involvement in abstract and executive cognitive functions (Raposo D. et al., 2014). 

The next pair of inter-related tasks, delayed decision-making, Dly DM 1 and 2, may also 

be referred to as the vibrotactile frequency discrimination task (VFT), a well-studied 

paradigm that has also led to remarkable findings. Importantly, it is mostly focused on 

the activity of different populations to those that have been treated so far, mainly 

somatosensory, and frontal brain regions.  

In its basic modality, two sequential periodic pulses, each with a different frequency, 

are applied to the tip of a subject’s finger with a mechanical probe. Between both 

pulses there exists a delay period of variable duration, hence the term, delayed 

decision-making, that forces the subjects to retain some trace of the first pulse’s 

frequency, as they must compare it to the frequency of the second pulse. Depending 

on whether it is higher or lower, subjects then report their decision mechanically, 

usually by activating a lever or pushing a button (Figure 7.a). Among many results, it has 

been found that literal stimuli information is first conveyed through primary and 

secondary somatosensory cortices, gradually transforming into an abstract and 

flexible representation as neural activity flows to various areas of frontal brain regions 

(Figure 9.a). Remarkably, it has been furtherly shown that relevant tasks parameters are 

reliably represented as a bimodal code based on the firing rate modulations of the 

engaged populations (Rossi-Pool R. et al., 2017). 
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The last pair of decision-making tasks, Ctx Dly DM 1 and 2, may also be considered a 

special case of the task set, as this study is not aware of any real-life cognitive tasks 

that match its specifications. Nevertheless, there are indeed various lines of research 

whose findings rely on experimental configurations that highly resemble such 

characteristics, and whose results further support the proposals exposed here. 

(Figures 7.b and 7.c). They will be more appropriately presented in following sections.  

I.III.IV. The Categorization subset 

The last subgroup of the task set contains two main tasks with an extra modality each, 

adding up to 4 tasks in total. They are also mostly focused on the activity of different 

populations to those that have been exposed so far, as they are based on the 

categorization of complex static visual stimuli such as images from everyday objects. 

The first modality, delayed match-to-sample (DMS), presents subjects with a series of 

images, as they must indicate when one of them matches a sample image presented 

at the beginning of every trial. In the case that there is one or more images between 

match and sample, it is the delayed non-match-to-sample task (DNMS) that is being 

performed (Figure 8). Similarly, the delayed match-to-category task (DMC), as well as 

its non-matching modality (DNMC), require subjects to indicate when a sample image 

matches a specific category that has been specified at the beginning of every trial. 

Decision report is usually done mechanically, by means of activating a button or a lever 

(Freedman D.J. et al., 2016) (Gold J.I. et al., 2007). 

Figure 8. Schematic diagram of the structure of the DNMS task. Figure 8 has been 
readapted from Miller et al., 1996. 
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This way, a thorough analysis of the activity of various populations pertaining to the 

visual ventral stream (Figure 10), an important neurophysiological structure specialized 

for the recognition of static visual stimuli, has conceived extensive evidence furtherly 

supporting the existence of a flexible neural code by which task parameters may be 

reliably encoded, as well as the role of PFC populations in higher cognitive functions 

such as decision-making and working memory. 

I.III.V. Some additional tasks 

As mentioned before, remarkable findings regarding these topics have been achieved 

by recent lines of research that rely on experimental configurations that highly 

resemble the tasks treated here, and whose results further support this work’s 

conclusions. They are not included per se in the task set, yet some of their main 

findings, that will be taken from a pair of representative tasks, are undeniably a valuable 

contribution to this discussion. They are both decision-making tasks, and they mainly 

involve the auditory and somatosensory systems.  

The first one is the vibrotactile stimulus detection task (Figure 7.b), in which subjects 

must report on the absence or presence of a vibrotactile mechanical stimulus that is 

applied to the tip of one of their fingers, in a very similar arrangement of the Dly DM 

tasks. It has been found that after literal stimuli information reaches the central 

nervous system, neural activity flows through a hierarchical structure involving both 

primary and secondary somatosensory cortices (Figures 5.a and 5.b), as well as several 

areas of parietal and frontal brain regions (Figures 5.c, 5.e, 5.f, and 5.g), gradually 

transforming from a literal representation of stimuli attributes into an abstract code 

that reliably represents task parameters of interest. Further, it has also been shown that 

such encoding is performed through the modulation of the firing rates of the engaged 

neural populations, generating a gradual perceptive build-up across cortical regions. 
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Figure 9. a) and b) Schematic diagrams depicting the flow of neural activity along various cortical regions 
of the primate brain during a vibrotactile task, and a visuomotor decision-making task, respectively. Their 
corresponding nomenclature is exposed in Figure 3.c. c) Visualization of the relationship between 
predictable choice probability (vertical axis) and the response latency of different cortical regions 
(horizontal axis) during a vibrotactile stimulus detection task. This graphic is directly related to the 
processing hierarchy depicted in Figure 9.a. Figures 9.a and 9.c have been readapted from Romo R. et al. 
2020. Figure 9.b has been readapted from Siegel M. et al., 2015. 



29 

 

This process may be observed in Figure 9.c, in which the predicted behavioral response 

(vertical axis), which can be understood as a numerical factor associated with a neural 

population´s involvement in the abstract encoding of task parameters, as well as its 

commitment to a specific decision, gets higher as activity flows through various stages 

of the processing hierarchy (horizontal axis) (Romo R. et al. 2020).    

Similarly, the other task may be regarded as a multisensory stimulus detection task 

(Figure 7.c), in which subjects must report on the absence or presence of periodical 

stimuli that can be either acoustic or vibrotactile. Importantly, although this task 

resembles to some extent the MultSen DM tasks, it mainly involves the auditory and 

somatosensory systems, while the task that does pertain to the set involves the 

auditory and visual systems. This way, it has been further found that early sensory 

stages of the brain, such as S1 and S2 in the case of the somatosensory system, and 

MT in the case of the auditive system, convey literal stimuli information into associative 

areas, such as various regions of the parietal and frontal cortices (Figures 5. a - h), 

where it is converted into an abstract and reliable representation of stimuli parameters. 

Interestingly, it has also been shown that several neural populations of the engaged 

structures unselectively respond to both sensory modalities, suggesting that a flexible 

neural encoding of task parameters is at play in the performance of these tasks (Vergara 

J. et al., 2016). 
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I.IV. Main takeaways I 

Throughout this section, relevant results from cognitive and computational 

neuroscience from which the current discussion departs have been presented. 

Regarding the biological case, it has been shown that for the most part, sensory-

cognitive processes are performed through hierarchical neurophysiological structures, 

distributed along cortical and subcortical brain regions, that transform literal stimuli 

information, conveyed by early sensory stages of different systems, into an abstract 

code interpretable by higher stages in such processing hierarchy, mostly located in 

frontal brain regions. To do this, the engaged neural populations encode by means of 

modulating their firing rates the task parameters of interest, generating a flexible and 

reliable neural representation that confers highly efficient cognitive abilities.  

Remarkably, this set of facts may be evidence of the reliance of biological cognition and 

perception on a handful of functional features, excitability and mixed-selectivity at a 

single unit level, and functional specialization and compositionality at a systemic 

level. Further, this is exactly the basis for the modelling of this sort of processes by 

means of ANN models, as they too rely on such functional features.  

Figure 10. Schematic diagram showing various cortical regions of the primate brain that 
are engaged in the dorsal and ventral pathways. Figure 10 has been readapted from 
Kandel R. et al., 2013. 
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II. Functional resemblance between ANNs and BNSs 

Within the context that has been presented, stands out a remarkable line of research 

from which the current discussion takes its basis. As one of its main contributions, ANN 

models have been developed to perform the computational analogs of the cognitive 

tasks that have just been exposed, concluding that in order to efficiently perform the 

entire 20-task set, the models developed certain functional features that resemble 

those of their biological analogs (Yang G.R. et al., 2019). Disregarding this notable 

result, a finer explanation of the properties of said relationship has not been reported, 

becoming this work’s main purpose to clarify such assertion. To do this, most of the 

model-related results that will be discussed in this section will be taken from a 

reference network, whose main characteristics will now be exposed.  

II.I. The reference network 

After the model had been successfully trained on the entire task set (Figure 12), various 

analytical and graphical methods were applied to visualize its functionality; some of 

which will be essential to the current discussion. Firstly, the functional selectivity of all 

the system’s units was calculated for every task by means of the normalized task 

variance, a numerical factor ranging from 0 to 1, that corresponds to a unit’s selectivity 

on a given task. Here, 0 would correspond to a completely non-selective unit, while 1 

would correspond to a fully selective one. Thus, by assigning a color value to said factor 

and laying out the selectivity of every unit for every task, it is possible to obtain the raster 

plot shown in Figure 11.a. On this graphic, all 20 components of the task set are shown 

along the vertical axis, while the selectivity of all the network’s units is shown along the 

horizontal axis. Importantly, it is possible to catalog units with similar selectivity profiles 

into differentiated groups that may be regarded as functional clusters, a categorization 

that will be central to this discussion. These clusters are also shown along the 

horizontal axis of the same figure.  
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Further, with the purpose of analyzing how said clusters are causally involved in task 

performance, a network lesioning technique can be applied. By “turning off” a given 

population and running the system over the task set, possible changes in the 

performance of specific tasks may be identified, indicating that such cluster is causally 

involved in their required processing. Thus, by repeating this process for every 

differentiated population in the reference network, it is possible to obtain the raster plot 

shown in Figure 11.b, where the reliance of specific task subsets on certain clusters 

can be observed. 

 

 

 

Figure 11. Emergence of functional selectivity in the reference network. The lighter each unit appears to be for a given 
task, the more selective it is on it. b) Emergence of specialized populations in the reference network. The darker each 
cluster appears to be for each task subset, the more it is causally involved in its performance. Figures 11.a and 11.b 
have been readapted from Yang G.R. et al., 2019. 
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On this graphic, the darker each task appears to be for a given cluster, the more 

dependent it is on it. This way, it can be seen that all Categorization tasks as well as the 

RT modalities of the Go and Anti subsets are associated with Cluster 2, or C2, as all 

components of the Anti tasks are related to Cluster 3. Analogously, it may be observed 

that the following pair of clusters, C5 and C6, are involved in each modality of all DM 

tasks, respectively. Finally, it can be easily noted that C8 is involved in the performance 

of all tasks that include a Dly factor.  

Now, several aspects of this relationship may be exposed, but first, it is right to recall 

that the hereby proposed relationship between ANN and BNS is fundamentally based 

on the functional features that arise from the interplay of their given populations, not 

on their nature per se. It is quite important to keep this principle in mind during the 

following discussion, as it is the search for efficiency the fuel for the emergence of their 

resembling features.  

 

 

 

Figure 12. Reference network’s training process. On this graphic, 1 corresponds to a perfect 
performance of any given task, while 0 corresponds to a fully negative outcome. Every line 
represents a different component of the task set, as the color code is shown on the right side. Figure 
12 has been readapted from Yang G.R. et al., 2019. 
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As it has been exposed, to efficiently perform the entire task set, the reference network 

relies on a set of functional features both at a single unit and a systemic level, 

resembling to some extent those identified in its biological analogs. Further, it is the 

interplay between these features what confers the system highly flexible task-solving 

abilities. Interestingly, as it will be shown here, said features may be catalogued into a 

pair of categories, elemental and emergent, based on their causal origin in the system.  

II.I.I. Unit-level features 

Starting with general single unit characteristics, it may be stated that for both the 

artificial and biological case, excitability may be fundamental for their characteristic 

firing functions, as it has been shown that it is a very efficient process in regards of 

information processing. By conceiving a dual-state threshold activation function, an 

excitable system may adopt one out of two possible states as a consequence of 

information flow into it; thus, if the input complies with certain properties, it may cause 

the system to go into its excited state, while insufficient input will not cause any 

response (Figures 14.a and 14.b).  

In logical terms, this process has proven to be quite useful, as it is true that all 

computable functions may be expressed as a combination of discrete values, such as 

the excited/basal states of neural units (Figure 14.c) (Leonard N.E. et al., 2023). 

Regarding the biological case, this fact may also be the basis for the abstract encoding 

known to be performed by the neural populations discussed here, as it has been shown 

that it relies on their firing rate modulations (Figure 14.d). 
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The next common feature between ANNs and BNSs may identified as functional 

selectivity, since, as it has been previously exposed, both systems count on neural 

populations tuned to respond to specific inputs. For instance, regarding visuomotor 

tasks, there is extensive evidence that supports the existence of highly selective units 

in early stages of the biological visual processing hierarchy (Figure 9.b) (Figure 10), as 

various populations are specialized for recognizing diverse visual features. Similarly, 

regarding vibrotactile tasks, selective units and populations have been identified along 

the sensory hierarchy involved in their performance (Figure 9.a). Further, another 

functional feature that has been proposed to be at play in efficient cognition is mixed-

selectivity, which may be defined as the absence of response preferences in neural 

units, therefore allowing them to unselectively respond to inputs of variable nature. 

Remarkably, this feature may also be identified in both the artificial and biological 

systems treated here, noting that it is in fact fundamental for their functionality.  

 

Figure 13. Activity in time of a single unit for the Go task. Different lines represent different task 
parameters. Here, it may be observed how this particular unit preferably responds to certain 
parameters. b) Normalized task variance of unit 145 for every component of the task set. Here, 
the selectivity of the unit for the DMS task can be easily noted. Figures 13. a and b have been 
readapted from Yang G.R. et al., 2019.   
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Figure 14. a) Single-unit excitable dynamics. On this qualitative graphic, where potential energy (V, vertical 
axis) is a function of time (t, horizontal axis), the energy of two physical systems, an excitable and a non-
excitable one, 𝑆𝑒 and 𝑆𝑛, respectively, are compared. It may be easily observed that for the case of the 
excitable system, a discrete point in time (𝑡𝑒), as well as a reliable binary encoding of information (on/off), may 
be conceived by means of spiking dynamics, contrary to the non-excitable case, where it is evidently much 
harder to define discrete states and points in time. b) Presence of excitability in the fundamental firing function 
of biological neurons, as a consequence of their neurotransmitter-triggered electric depolarization. c) 
Qualitative graphic showing a decision-making process based on criticality. On this figure, a critical event that 
occurs at a time 𝑡𝑐 generates two possible well-differentiated system states. This process is at the basis of the 
neurocomputational systems discussed here. d) Raster plot of an S1 neuron responding to vibrotactile stimuli 
of varying amplitude. It may be observed that although this unit responds in all cases, it evidently shows a 
preference for low-amplitude stimuli. This set of facts suggests the presence of excitability and functional 
selectivity in the fundamental units of ANNs and BNSs. Figure 14.b has been readapted from Kandel R. et al., 
2013. Figure 14.d has been readapted from Diaz-deLeon G. et al., 2022.  
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As for the biological case, neural populations showing mixed-selectivity actually 

conform the majority of cases, as fully selective neurons are quite rare. For instance, 

regarding the cognitive tasks discussed here, most of the examined neurons show non-

selective response profiles (except for the highly selective units of early processing 

stages), suggesting that they flexibly encode information of various stimulus 

parameters. This abstract representation is then conveyed to associative regions of the 

brain, where different neural mechanisms come at play. Interestingly, the nature of this 

process, in which early processing stages consisting mostly of highly selective units 

that conceive an abstract task representation interpretable by higher stages in its 

functional hierarchy, supports the hypothesis that efficient cognitive abilities may rely 

on a common and flexible neural code (Diaz-DeLeon G. et al. 2022) (Parra S. et al. 2022). 

As for the artificial case, and more specifically, that of the reference network, the 

existence of mixed-selectivity may also be identified from both a single-unit and a 

systemic perspective. As for the first one, it is possible to plot the activity in time of any 

random unit, visualizing its activation preferences for distinct task parameters (Figure 

13.a). Analogously, its normalized task variance may be plotted for every component of 

the task set, conceiving its task selectivity profile (Figure 13.b). Regarding the specific 

unit and task that were chosen for said figure, unit 145 and the Go task, it may be noted 

that it definitely presents selectivity for certain task parameters, as well as it is 

preferably engaged in the DMS task, and to a lower degree, on the MultSen DM task. 

This way, by extrapolating this process to the entire network, it is possible to obtain the 

raster plots shown in Figure 11.a and 11.b, where the presence of mixed-selectivity at a 

systemic level may be easily observed. For instance, it can be seen that most units 

pertaining to Cluster 8 are engaged in all DM tasks, as well as some modalities of the 

Go and Anti tasks, which shows a high response variety. On the contrary, it is also easy 

to note the presence of highly selective responses in the system, as units pertaining to 

Cluster 3 are predominantly engaged in only the RT tasks. This set of facts consists 

direct evidence for the reliance of the reference network’s functionality on mixed-

selectivity. 
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II.I.II. System-level features 

Within a systemic perspective, it is also true that the reference model shares some 

functional features with its biological analogs. As it has been previously shown, 

populations of units with similar response profiles conform functional clusters that are 

causally involved in various task subsets, which consists direct evidence for the 

emergence of functional specialization in the system. Thus, this functional feature in 

which whole populations are tuned to process specific aspects of certain tasks, may 

be qualitatively understood as an extension of functional selectivity. 

More specifically, it may be easily observed in Figure 11.b that the system did in fact 

develop at least five well-differentiated functions that subserve specific task subsets: 

C2 is causally involved in the performance of all Categorization and RT tasks, C3 is 

associated with the Anti tasks, C5 and C6 are engaged in each modality of the DM tasks, 

respectively, and C8 is involved in all tasks that include a Dly factor. Moreover, these 

functions may be consecutively engaged to conceive more elaborated processes, as is 

the case for Cluster 8 and all tasks that involve a working memory function, such as the 

Dly DM tasks (Figure 16.b). Once again, this is evidence for the reliance of the network’s 

task representation on a functional feature shared with BNSs, compositionality, in 

which specialized functions can be consecutively applied to perform complex tasks. 

Biologically, this set of features has also been extensively identified to be at play in the 

cognitive processes discussed here.  

Firstly, it is evident that as for auditive, visual, and vibrotactile tasks, there exist various 

specialized populations through which task information is first encoded and then 

relayed to associative areas of the brain. For instance, regarding auditive and 

vibrotactile tasks, such structures have been localized in parietal and temporal cortical 

regions (Figure 5), respectively, while early states of the visual processing hierarchy 

have been identified in occipital brain regions (Figure 10).  
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These populations gradually transform literal physical attributes of the stimuli into an 

abstract code that is conveyed to several areas of frontal and parietal regions, where 

higher cognitive functions, such as working memory and conscious decision-making, 

are known to take place. This set of facts further support that functional specialization 

and compositionality may be fundamental functional features of flexible cognition 

(Kanwisher N. et al. 2010). 

II.I.III. Elemental and emergent features 

To this point, it has been shown that the ANNs and BNSs discussed here share a 

common set of functional features that confers them highly flexible and efficient 

cognitive abilities. Interestingly, at least for the artificial case, these properties can be 

catalogued into a pair of categories depending on their causal origin in the system. 

Starting with elemental features, which can be defined as those present in the system 

even before it is trained on any task, it may be stated that excitability is evidently the 

sole component of the category. Since the networks are essentially blank before they 

start training, all the other functional properties that have been exposed, mixed-

selectivity, functional specialization, and compositionality, emerge as a 

consequence of the system’s development as it increases its performance, which is 

why they may be referred to as emergent features (Figure 15.b). Importantly, regarding 

the biological case, this categorization may not be valid, as most functional features 

are inherent to BNSs even before they are trained. This fact has strong implications on 

the current discussion, and it will be brought up again later. 
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Figure 15. a) Schematic diagram depicting the dorsal and ventral visual streams of the primate brain, which are 
specialized for processing non-static visual stimuli and shape recognition, respectively. Remarkably, these 
functions are also present in the reference network. b) Elemental and emergent functional features of the ANNs 
discussed here. c) Common functions between the reference network and its biological analogs. Here, the 
specialized populations developed by the network are qualitatively associated to various brain regions through 
their shared processes. Figure 15.a has been readapted from Kandel R. et al., 2013.    
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II.I.IV. Common functions 

Furthermore, since both the artificial and biological systems treated here were trained 

on analog tasks, they did not only develop resembling functional features, as their 

functionality also relies on common processes (Figure 15.c). For instance, regarding 

Cluster 2, which is selectively involved in all the Categorization tasks and whose 

function can be traced to visual shape recognition, may be associated to the highly 

selective neural populations involved in the real-life version of the tasks, which have 

been localized along various areas of the occipital and temporal cortices (Figure 10), as 

well as populations distributed through several inner brain regions. As a whole, this 

neurophysiological structure specialized for the recognition of static visual stimuli is 

known as the ventral stream, or rather informally, the brain’s “what” pathway (Figure 

15.a). Similarly, the function of Cluster 3, which is causally involved in the performance 

of all the Anti tasks, may be related to the executive processes carried out by frontal 

brain regions, known to be predominantly engaged in conscious decision-making. 

Further, neural activity directly associated with the vector inversion required for this 

task’s adequate performance has been identified in various regions of the primate 

prefrontal cortex.  

The function of the following pair of specialized populations developed by the reference 

network, Clusters 5 and 6, also coincides with a few interesting neural processes. Given 

the multisensory stimuli they involve (auditive, visual and vibrotactile), the bimodal 

nature of the decision-making (DM) tasks in which they are engaged, and that each 

population is causally applied in the performance of one of their modalities, their main 

function can be traced to the parametric representation of stimuli attributes, as there 

is extensive evidence that this process underlies the biological version of these tasks 

(Figure 16). 
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Essentially, by analyzing the activity of different stages of their associated processing 

hierarchies, it has been found that a gradual encoding of literal stimuli features into an 

abstract representation is fundamental for effective decision-making (Figure 9.c). For 

instance, regarding vibrotactile tasks, such processing has been identified along the 

hierarchical structure depicted in Figure 16.a, which involves several regions of the 

parietal and frontal cortices.  

 

 

Figure 16. Schematic diagrams depicting the interplay of functional specialization and 
compositionality in both ANNs and BNSs. a) Processing hierarchy involved in vibrotactile 
tasks, in which different neural populations abstractly encode relevant task parameters. This 
representation may then be composed with higher cognitive functions, such as working 
memory and decision-making, which are mostly localized in frontal cortices (not shown here). 
b) Compositional functionality in the reference network for the Dly DM tasks. Here, 
information corresponding to the first modality of the task is mostly processed through 
Cluster 5, as information corresponding to the second modality is processed through Cluster 
6. As such task requires the maintenance of a parameter during a delay period, this 
representation is then composed with the function of Cluster 8, working memory, to finally 
conceive the system’s response. This functionality is remarkably similar to the biological case, 
considering the same task context. Figure 16.a has been readapted from Romo R. et al. 2020. 
Figure 16.b has been readapted from Yang G.R. et al., 2019. 
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Remarkably, as for the visual DM tasks, similar parametric representations of stimuli 

parameters, from which a reliable bimodal code needed for decision-making is 

conveyed, have also been identified along the visual dorsal stream or the brain’s 

“where” pathway, a hierarchical structure distributed along occipital and parietal 

cortices and that is specialized for the recognition of non-static visual stimuli (Figure 

10) (Figure 15.a).  

Finally, the function of Cluster 8, which is causally engaged in the performance of all 

tasks that include a Dly factor, may be traced to working memory processes as such 

tasks require the system to maintain some trace of task parameters during a delay 

period. Biologically, this process has been localized almost exclusively in frontal brain 

regions, and, since by that point of the perceptive hierarchy the neural representation 

at play is almost purely abstract, said populations may flexibly process information 

coming from different sensory modalities. Notably, this sort of working-memory 

functions has been identified in the real-life version of many of the tasks discussed 

here, such as Dly Go (visuomotor task), Dly DM (vibrotactile tasks) and MultSen DM 

(multisensory decision-making tasks). 

II.I.V. Main takeaways II 

Throughout this section, resembling functional features between a reference ANN 

model and the BNSs on which it has been inspired were presented. Firstly, it was shown 

that flexible problem-solving abilities in both systems rely on a set on functional 

features both at a single unit and a systemic level; excitability and mixed-selectivity 

for the first one, and functional specialization and compositionality for the latter. 

Remarkably, regarding the biological case, extensive evidence from multiple lines of 

research supports the presence of these features in cognition and perception. Then, it 

was shown how both systems even developed resembling specific processes, given 

they were trained on analog tasks. Now, with these considerations, the next major 

perspective from which the subject will be discussed may be introduced. 
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II.II. Complex systems and neural networks 

Although there exist inconsistencies in the definition of “complexity”, it may be 

unmistakably stated that the subjects treated here qualify as complex systems. 

Therefore, this perspective can yield valuable insights regarding the relationship 

between ANNs and BNSs. To this end, the following discussion will be based on three 

main subjects: a mathematical, a physical, and a biological context. 

II.II.I. A mathematical perspective 

Naturally, one of the most viable ways to study the subject of complexity is by means of 

mathematics. As discussed previously, the models treated in this work are essentially 

interconnected systems of individual units (the basic mathematical definition of a 

network), that are meant to emulate certain known properties of BNSs (Figure 1). This 

approximation allows their analysis through almost purely mathematical terms. Thus, 

given the hierarchical structure of the considered systems, an abstract topological 

space where all possible network configurations reside exists theoretically. This 

permits the testing of hypotheses related to structural and physiological properties 

across a diversity of models, allowing the conception of the following scenarios: 

Considering the fundamental properties of the models treated here, and given an 

appropriate selection of parameters, it is true that any sufficiently large ANN is capable 

of solving out any mathematically well-behaved function by means of the composition 

of specialized processes. Such task representation would fully rely on functionally 

selective units, generating well-differentiated populations performing separate, 

specialized functions (Figure 17, upper left quadrant). Evidently, this functionality 

would entirely rely on functional specialization and compositionality. Hence, if such 

a system was applied to solve diverse tasks, their adequate performance would require 

the existence of many subpopulations of selectively tuned units, i.e., a greater number 

of tasks would exponentially increase the necessary population size of the network, as 

well as its computing resource requirements.  

 



45 

 

In contrast, it is also theoretically plausible for an ANN, with appropriate parameters 

and population size, to be able to solve many different tasks by means of a fully 

distributed representation relying only on non-selective units; a dependence that 

would not generate differentiated subpopulations nor specialized functions (Figure 17, 

lower right quadrant). Clearly, such method is based on mixed-selectivity, and it would 

also considerably increase the system’s total number of units as well as its resource 

needs, rendering it inefficient along with the fully compositional representation that 

was exposed before. In sum, these hypothetical scenarios mean to illustrate how the 

sort of networks treated here may develop two fundamentally different methods to 

achieve flexible task-solving; either a fully specialized and composable representation, 

or an entirely distributed and nonselective one.  

Figure 17. Two fundamentally different methods for multiple task-solving. On the upper 
left quadrant, a fully differentiated and compositional representation, and on the lower 
right one, a fully distributed and non-selective one. On the upper right quadrant, a 
combination of both methods that confers the system a highly flexible and efficient task 
representation may be observed. Figure 17 has been readapted from Yang G.R. et al., 
2019. 
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Crucially, this functionality is fueled by the systems' inherent search for energetic 

efficiency, as they must conceive the best method possible to achieve their purpose 

while administrating available resources. Importantly, generating these exclusive 

representations may only be possible if the systems have access to unlimited 

resources, which is evidently not the case for ANNs and BNSs. Therefore, it follows that 

resource-restrained networks as those treated here must conceive more efficient 

solutions than those that have just been exposed if they are to optimally achieve their 

purpose, making possible for these systems to develop task representations subserved 

by neural dynamics situated halfway between both possibilities (Bassett D.S. et al., 

2017). 

Figure 18. Partial connectome of the central nervous system of a C. elegans specimen. 
Here, each nodule represents a neuron, as different colors correspond to varying types 
of intercellular connections. Clearly, within a network perspective, this rather “simple” 
BNS shows a functional and structural complexity that is still unaccounted for in most 
biologically-inspired ANNs. Figure 18 has been readapted from Kandel R. et al., 2013. 
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Within a computational perspective, valuable insights into this matter may also be 

reached. Firstly, the emergence of system-level features such as functional 

specialization and compositionality are a direct consequence of the tasks’ structure 

since they clearly represent mechanisms of greater efficiency; neural populations 

tuned to specific purposes will generally outperform nonselective populations. 

However, mixed-selectivity, a fundamental unit-level feature, may optimize the 

readout from non-selective populations; the combination of activity from single-units 

can achieve similarly efficient performance. Thus, a mixed application of these features 

may conceive a highly flexible and efficient method for multiple task solving, given 

limited resources (Figure 17, upper right quadrant). Remarkably, out of such 

functionality emerges one of the main resemblances between the artificial and 

biological systems treated here, as they both rely on neural dynamics that coincide with 

these properties. This suggests that ever-increasing energetic efficiency may be at the 

basis of their development and subsequent characteristics (Newman M. et al., 2006). 

II.II.II. A physical perspective 

The search for energetic efficiency is purported to be the primary motive for the 

emergence of similar functional features between different natural complex systems. 

This search also explains the similarity between BNSs and other physical systems. In 

this context, greater efficiency means greater stability. For example, water can be 

thought of as a natural and complex system: While flowing downstream, a river takes 

the path of least resistance. Less resistance can be directly equated to greater 

efficiency. Over time, the path formed by the river becomes more stable as the water 

erodes the environment around it. Interestingly, these dynamics eventually generate 

main pathways, or streams, that facilitate the system’s “purpose” of bringing water to 

its lowest potential, resembling the way specialized neurophysiological functions and 

their underlying structures facilitate the “purpose” of cognitive function.  
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Ideally, this analogy pretends to illustrate how certain functional features of both the 

neural systems treated here, such as functional specialization, compositionality, 

and even mixed-selectivity, are relatable to those of purely physical complex systems, 

flowing rivers, in the way that both dynamical systems adopt, as a direct consequence 

of a few physical principles, their most possibly efficient configuration (Barab’asi A.L. 

et al., 2002). 

II.II.III. A biological perspective 

Shifting perspectives, the inherent search for efficiency of naturally occurring complex 

systems may also be identified within a purely biological context; both ANNs and BNSs 

seek optimal efficiency in structure and function. Regarding the artificial case, this fact 

may be easily observed as the mathematical algorithms used to train the networks are 

essentially efficiency-guided (Equations 1 - 6). However, the search for efficiency is 

more difficult to isolate in biological systems. For survival, all organisms evolve to 

improve the efficiency of an individual’s fitness. In this manner, all organisms have 

developed the most efficient method of survival given the long-term conditions of their 

environment. Fundamentally, this fact may be extrapolated to the ANNs and BNSs 

treated here, in the way that both systems have developed the most efficient method 

to achieve their purpose. This is furtherly supported by yet another well-studied 

biological phenomenon, evolutionary convergence, in which unrelated species come 

up with similar features (which are usually also the most efficient) to make their way 

through resembling ecosystemic pressures (Gould et al., 2002). Applied to the current 

discussion, this assertion is also valid for ANNs and BNSs, as they rely on resembling 

functional features to optimally deal with analogous tasks, suggesting that such 

functionality is the most efficient both systems have been able to come up with. 
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II.II.IV. Main takeaways III 

In sum, throughout this section various aspects of the existing relationship between 

naturally occurring complex systems and neural networks have been discussed. 

Essentially, it has been found that the search for energetic efficiency fuels the 

functional resemblance between ANNs, BNSs, and other complex systems, in the way 

that they all tend to adopt their most stable and efficient configuration by means of the 

interplay between a handful of physical principles. This is, that their resembling 

functionality may also be the most efficient one. 

II.III. Further considerations 

The similarities between the observable features in ANNs and BNSs have been 

described and justified with a variety of perspectives. At this point, it should be 

relatively evident that these parallel processing mechanisms are inherent parts of the 

systems or emerge due to their training process, and, since the purpose of the current 

work is to elucidate and consider the relationship between the two types of systems, 

there is another crucial consideration that must be addressed: the biological 

underpinnings of the ANNs, oftentimes referred to as their biological plausibility. 

Understanding this aspect of the mathematical models treated here will prove to be a 

fruitful avenue for further investigation.  
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II.III.I. Biological plausibility of ANNs 

One detraction of the use of mathematical modeling of natural phenomena is the fact 

that capturing all variables or features of any physical system is essentially impossible. 

Due to this, investigators isolate characteristics of particular interest, a procedure that 

inevitably ignores features that occur outside of the model’s parameters, rendering it a 

manageable, yet incomplete, description of said phenomenon. It is necessary to keep 

this fact in mind for the following discussing of the biological plausibility of the models 

we have observed previously. In the first place, the network’s unit-level operators are 

dynamic systems that model the electrochemical process known as an action 

potential for individual cells; in this manner, a single unit or operator can be thought of 

as a single neuron (Figures 1.a and b). Focusing on the action potential and its resultant 

extracellular signal transmission, a breadth of models exist that emulate the spiking 

dynamics observed experimentally. However, a practical model implementation of 

intricate extracellular and intracellular chemical interactions (Figure 20), a vast variety 

of nervous and non-nervous cells at play in cognition (Figures 19 a - d), as well as a 

representation of their profound interconnected nature has yet eluded investigators. 

Further, at a systemic level, stark differences between ANNs and BNSs may also be 

noted. In the previously described models, 256 interconnected LIFs were separated 

into input, middle, and output layers (Figure 1.c). This is a very simplified network 

compared to an active BNS, which is composed of millions of cells that are 

interconnected to a much higher degree (Figure 18). An effective model for representing 

the various functions of differing cell types and temporal dynamics of modular brain 

areas has not been proposed. A final distinction to discuss is the likely disparity 

between the ANN machine-learning algorithms and the computations performed 

within BNSs, as there are many fundamental processes of biological learning, such as 

attention and reward-based motivation, that have been largely ignored.  
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Figure 19. Examples of diverse factors that are not considered by the network models treated here. 
For instance, it is known that astrocytes and glial cells have important roles in neuronal metabolism, 
synapsis and inter-neuron communication. a) Micrograph of an astrocytic cell engulfing a presynaptic 
and a postsynaptic motor neuron. b) Photograph of glial (brown) and non-glial cells (blue) scattered 
along a layer of the motor cortex of a rat brain. c) Electron micrograph of an astrocyte enveloping a 
blood vessel. d) Photograph showing the connections between one glial cell and several motor 
neurons. Figures 14 a, b, c and d have been readapted from Kandel R. et al., 2013.    
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Figure 20. Schematic diagram depicting several complex chemical interactions, 
both intracellular and extracellular, at play in the synaptic region between a 
presynaptic sensory neuron, a postsynaptic motor neuron, and a glial cell. Most 
of these intricate processes, fundamental for any biological neural system’s 
physiology, are not considered by the models discussed here. Figure 20 has been 
readapted from Kandel R. et al., 2013. 
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II.III.II. Neural circuitry and manifolds 

The set of functional features discussed in ANN models falls under the umbrella of 

neural circuitry, a major perspective for studying the nervous system that refers to how 

diverse functions are associated to different areas in BNSs. Importantly, this approach 

has been conformed over a long history of research, composing a rather classical way 

to study said systems. Nevertheless, modern methods for analyzing said circuitry have 

been thoroughly applied, leading to stellar advances in the field. These mathematical 

techniques are mostly based on topology, the concept of manifolds (Sussillo D. et al., 

2013). One manner to study the activity of both artificial and biological neural systems 

in a comparable framework is by studying the manifolds that emerge from multi-

dimensional state spaces. Frequently, the dimensionality of said manifolds is reduced 

for the simplification of the possible interpretations derived from both kinds of systems; 

a process that facilitates the identification of parallel neural codes (Pujalte S., 2022).  

 

Figure 21. Schematic diagrams of the temporal dynamics underlying a MultSen DM task. On this simple 
example, the sequential engagement in time of different neural populations engaged in the task may be easily 
observed. These dynamics are not considered in the ANN models discussed here. a) Cortical regions known 
to be involved in the encoding of vibrotactile stimuli; areas 1 and 3b of the primary somatosensory cortex. b) 
Quantitative graphic showing how both areas are sequentially engaged in the encoding of vibrotactile stimuli. 
The horizontal axis represents time, starting from the beginning of the task, while the vertical axis represents 
the overall activation probability of such populations. 𝑡𝑚𝑎𝑥  stands for the maximum amount of time between 
both peaks of activity. Figures 21 a and b have been readapted from Parra S. et al., 2022.   
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Crucially, although these methods are not explicitly applied in this work, an integral 

perspective that considers both approaches has conceived the actual understanding 

of the neurophysiological basis of cognition from which most of the results exposed 

here have been taken. Thus, it follows that the conclusions resultant from the current 

discussion are consistent with both the neural circuitry and the manifolds perspectives 

(Langdon et al., 2023). 

II.III.III. Future work 

To further advance the understanding of the relationship between ANNs and BNSs, 

neural models can be refined to address various aspects both at a single-unit and a 

systemic level.  Regarding the first one, a broader set of biophysical variables, such as 

a diverse family of neurotransmitters and their functional properties, as well different 

cell types, could be implemented (Figure 20). This would allow the study of agent-

triggered responses across diverse neural populations within a computational 

perspective, a process that is not considered here. On the other hand, at a systemic 

level, several features could be investigated: increasing network size and applying 

modular functionality to the systems would allow the examination of more biologically 

accurate ANNs (Figure 19) (Figure 21). In addition, recalling the lesioning method by 

with the specialized populations of the reference network were identified, it would be 

interesting to study how the system deals in real-time with impaired functionality; this 

is, with deactivated populations. This would allow further insights into the network's 

flexibility, even serving as a computational model to study neural plasticity. Finally, the 

functional features that have been identified throughout this work could be 

implemented into the network's basic structure, aiming to conceive even more 

biologically plausible ANNs. The basis for this proposal is quite simple, as such 

features emerge in the artificial systems only after they had been thoroughly trained on 

the tasks, while the same properties are inherent to their biological analogs. Ideally, 

implementing these characteristics would help to bridge artificial and biological 

intelligence. These proposals are in no way exhaustive in terms of possible future work. 
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III. Concluding remarks 

In the current work, the relationship between a certain kind of ANNs and BNSs has been 

examined from various perspectives. When training both systems on comparable 

perceptual tasks, the functional features that emerge are unquestionably similar. 

Crucially, this similar functionality for flexibly solving multiple tasks does not emerge 

directly from the interplay between individual units in either type of system; it is rather 

the combination of distinct functional properties in neural populations that plays a 

greater role in producing the necessary features. 

Essentially, this functionality relies on the gradual encoding of perceptual stimuli as 

information is conveyed through specialized functional structures, generating a flexible 

representation that reliably encodes diverse task parameters. This representation may 

then be composed with other functions to conceive more complex processes. 

Remarkably, these system-level phenomena, which may be referred to as functional 

specialization and compositionality, respectively, are valid for both artificial and 

biological neural systems. Moreover, given that both systems were trained on 

resembling tasks, it was also found that the very functions they perform are relatable. 

As for unit-level features, it was also found that efficient functionality for both ANNs 

and BNSs rely on excitability and mixed-selectivity. 

Regarding the artificial case, said functional features may be catalogued into a pair of 

categories, emergent and fundamental, depending on their causal origin in the 

systems. Fundamental features, such as excitability, are those present in the networks 

even before they are trained on tasks, while emergent features, mixed-selectivity, 

functional specialization, and compositionality, are conceived through training. This 

constitutes a major difference to the biological case, as said features are naturally 

inherent to BNSs. 
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Further, it was also shown that the emergence of this flexible functionality is a direct 

consequence of both artificial and biological systems search for energetic efficiency; 

they both seek optimal performance while administrating available resources. This is 

also the reason for the resemblance between neural networks and other kinds of 

naturally-occurring complex systems; they all tend to adopt their most efficient 

functionality based on the interplay between a handful of physical principles. 

Finally, several differences between ANN models and their biological analogs were 

discussed, most of which concern the biological plausibility of the artificial systems. 

This has paved the way for a simple proposal for promising future work on this line of 

research. 
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