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SUMMARY 

Bioprocess development is a promising solution for converting organic wastes into valuable 

bioproducts to improve human well-being. Anaerobic digestion (AD) is among the most mature 

bioprocesses (TRL 9) and is widely used to treat organic solid waste (OSW), such as the organic 

fraction of municipal solid waste (OFMSW) and food waste (FW). This process has reached 

industrial-scale implementation and is of global interest. Conventional FW digesters, which 

process biodegradable components, such as carbohydrates, proteins, and lipids, efficiently convert 

waste into bioproducts. Under controlled operational conditions, anaerobic microbial interactions 

transform organic matter into biogas with a methane content exceeding 60%, and a biodigestate 

rich in phosphorus and ammoniacal nitrogen. These elements establish FW digesters as crucial 

processes in waste management, agricultural applications, and sustainable energy production. 

The optimization of the AD of FW remains challenging owing to persistent ammonia accumulation 

despite well-established operational conditions. Ammonia accumulation continues to be a critical 

issue, even with clear parameters for biogas production, such as the C/N ratio, S0/X0 ratio, organic 

loading rate, hydraulic retention time, pH, temperature, and alkalinity. Further, the impact of 

ammonia depends on variables such as temperature, pH, and inoculum acclimatization, leading to 

a wide inhibition range (2.51–26.23 g TAN/L). Consequently, it is challenging to accurately 

determine when inhibition occurs.  

Traditional monitoring systems are generally based on physicochemical indicators, which rarely 

allow for deciphering the effects of ammonia on the microbial community—changes that could 

later impact physicochemical variables associated with performance, such as CH₄ production or 

yield. The problem is often detected only after the accumulation of acetate and propionate, 

indicating that ammonia has already negatively affected acetoclastic methanogenesis and the 

syntrophic oxidation of volatile fatty acids (VFAs). At this stage, irreversible changes may occur 

within the microbial community, as ammonia tends to displace sensitive microorganisms, selecting 

for those that are resistant. This underscores that microbial indicators can effectively identify 

ammonia inhibition even before it is observable through physicochemical response variables. 

Microbial management is an innovative approach aimed at modernizing anaerobic digesters by 

analyzing relevant biological information. In essence, it involves the regulation of microbial 
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dynamics through operational adjustments to achieve process stability. This strategy requires the 

use of microbial indicators (MIs) such as diversity indices, taxa, or genes that reflect the state of 

the microbiome. However, a reliable and suitable MI must encompass multiple attributes in order 

to extend its applicability. Below is a list of key attributes, followed by a brief description. 

• Universality: This indicator must respond consistently and reproducibly under similar 

substrate and temperature conditions, making it suitable for application in comparable 

digesters. 

• Significant changes: The ability to distinguish categories or groups of interest related to 

AD performance, such as high or low CH4 yield, through statistically significant 

differences. 

• Keystone: Key ecological components that can trigger disproportionate effects on 

microbial networks. 

• Early warning signals: The capacity to predict future issues such as inhibition or 

disturbances before decrease CH4 production. 

• Key metabolic role: Providing critical insights into the metabolic changes leading to AD 

inhibition. 

Each attribute offers a unique perspective, deepening the evaluation of AD performance. Thus, 

numerous studies have proposed MIs for FW-fed anaerobic digesters, including those capable of 

detecting ammonia inhibition. However, these indicators often lack reproducibility and reliability 

owing to their origin in isolated studies, which limits their real-world application. Therefore, to 

identify reliable MIs, it is crucial to develop a statistical framework that encompasses the widest 

range of attributes and is applied across multiple digesters fed with FW. 

This thesis proposed MIs for monitoring anaerobic processes fed with OSW, such as FW/OFMSW, 

by integrating the research criteria of neutrality, reliability, and response validation to ensure 

effectiveness. Indeed, the study employed a meta-analysis, reconstruction of the statistical 

framework to identify key attributes of the MIs, comparison of potential MIs across multiple 

scenarios such as batch and semi-continuous digester reactors and utilized a multi-omics approach. 

This study was structured into three distinct stages. 
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▪ Stage I. Discovery Phase: A meta-analysis was conducted to identify reliable MIs from 

16S rRNA gene region sequencing data (Chapter 3). 

▪ Stage II. Application Phase 1: A batch digester fed with FW was operated to determine 

suitable MIs for ammonia inhibition detection using metagenomics (Chapters 4 and 5). 

▪ Stage III. Application Phase 2: A short-term monitoring was performed in a semi-

continuous digester system with FW to identify effective MIs for ammonia inhibition 

detection using full-length 16S rRNA gene sequencing (Chapter 6). 

The subsequent sections detail the main results and conclusions of each stage of this doctoral 

thesis. 

Stage I involved the proposal of reliable MIs through a meta-analysis of microbial communities 

based on 16S rRNA sequencing from AD systems. The identified MIs included Aminobacterium, 

Clostridium, HA73, T78, Corynebacterium, Lactobacillus, and Prevotella spp. These indicators 

were sensitive to changes in abundance associated with the methane yield, albeit with some 

differences. Aminobacterium, Clostridium, HA73, and T78 were part of the core microbiome, with 

an 80% likelihood of their presence in OSW digesters. Corynebacterium, Lactobacillus, and 

Prevotella displayed a stronger response, distinguishing between low and high CH4 yields. 

Additionally, these MIs effectively predicted the CH4 yield and were suggested as early warning 

indicators. They were also correlated with inhibitory compounds, such as total ammonia nitrogen 

(TAN), long-chain fatty acids (LCFA), and VFA, highlighting their potential in addressing the key 

challenges of FW digesters. A more specific evaluation of these reliable MIs was conducted to 

assess their impact on AD functionality in relation to specific key challenges.  

In Stage II, suitable MIs were proposed to identify the conventional problem of ammonia inhibition 

in FW digesters. Further, ammonia was identified as the primary inhibitory compound, surpassing 

other inhibitors, such as LCFA and sulfates. By categorizing ammonia inhibitory levels using 

derivative parameters from inhibition models and applying a statistical framework, specific 

microbial indicators such as Anaerolinea, Sphaerochaeta, Syntrophobacter, 

Methanomassiliicoccus, Methanosarcina, fhs, and acs were proposed. These indicators showed 

significant changes, potential early warnings and also described conventional shifts in microbial 

metabolism due to ammonia. The MIs enabled identification of the shift from acetoclastic to 

hydrogenotrophic methanogenesis and increased fermentative activities as the ammonia 
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concentration increased. Given that these MIs are associated with genera and genes frequently 

reported in FW digesters, they offer reproducible responses to elucidate metabolic microbial 

changes in the effects of ammonia in similar processes. Therefore, evaluating these MIs is 

recommended to address this key challenge within a semi-continuous process, as well as to assess 

other factors influencing their response, such as operational duration and variations in FW 

composition. 

In stage III, previously identified reliable and suitable MIs were evaluated by considering the 

challenging factors that could impact their accuracy, such as variations in feedstock composition 

and microbial community acclimation. The MIs were assessed to define ammonia inhibition 

through short-term monitoring (35 days) in an AnSBR system that experienced feedstock batch 

changes, organic loading rate variations, and microbial community changes over time. Despite 

these disturbances, most MIs provide valuable insights into metabolic shifts related to ammonia 

inhibition levels. Anaerolineaceae (relative to T78) and the acs gene detected changes in 

syntrophic relationships under low ammonia inhibition. In comparison, Aminobacterium, 

Clostridium (subgenera sensu stricto 1, 15, 7, and 8), Sphaerochaeta, Syntrophobacter, 

Methanosarcina, and Methanomassiliicoccus, and the fhs gene reflected the vulnerability of 

syntrophic oxidation of acetate and propionate and the dependence on maintaining H2-dependent 

methanogenesis under high inhibition levels. This is considered to be a risk factor for VFA 

accumulation. Therefore, these MI were proposed for future integration into new AI-driven models 

to predict ammonia inhibition and advance biosystem monitoring development.  

Conclusions 

This research aimed to identify MI for monitoring AD processes fed with organic solid waste, 

particularly FW and the OFMSW. The study employed a multi-statistical, multi-omic, and multi-

experimental approach, which validated the reliability of the proposed MIs. These indicators 

demonstrated their potential to provide accurate insights into AD performance, highlighting their 

applicability in detecting system disturbances and optimizing process stability. By integrating 

microbial data, this work contributes to advancing monitoring systems, offering a robust 

framework for improving the efficiency and sustainability of AD operation. 

MIs significantly contribute to optimizing biogas digesters by enabling the early detection of 

microbial changes before observable inhibition effects occur. Conventional monitoring systems 
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primarily rely on physicochemical variables such as pH, volatile fatty acids, ammonia, and biogas 

production to confirm inhibition. However, these parameters often fail to identify inhibition until 

performance metrics, such as CH4 yield, are affected. This limitation highlights the importance of 

integrating MIs into existing monitoring systems. Their inclusion can provide a more precise 

understanding of random and adverse events, enhancing the ability to prevent process instability 

and improve system resilience. By incorporating a small set of biological variables, MIs offer a 

reliable and proactive approach to monitoring and managing biogas digester performance. 

MIs represent an essential tool for developing experiments that consolidate microbial management 

in AD systems. Future research should focus on evaluating recovery strategies based on the 

responses of these indicators to restore system stability. Additionally, identifying new MIs is 

essential to address other critical challenges in FW digesters and related bioprocesses. Further 

studies are necessary to optimize quantification methods for long-term monitoring and integrate 

MIs into existing control system algorithms. These advancements will enhance process efficiency, 

improve resilience to disturbances, and expand the applicability of MIs to a broader range of 

biotechnological systems. 
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RESUMEN 

Los bioprocesos son una solución biológica para el tratamiento y valorización de los residuos 

orgánicos para ser convertidos en bioproductos de valor agregado, contribuyendo a mejorar el 

bienestar humano. Destaca la digestión anaerobia considerando que es uno de los bioprocesos más 

avanzados en cuestión de desarrollo tecnológico (TRL 9). Gracias a ello, actualmente la digestión 

anaerobia es utilizada en la gestión de los residuos sólidos orgánicos como la fracción orgánica de 

los residuos sólidos urbanos, principalmente por el contenido de residuos de alimentos.  

De hecho, es un proceso que ha alcanzado una implementación a escala industrial, y sigue 

mostrando un interés global, debido que puede contribuir en el cambio de paradigma actual del 

uso de combustibles fósiles hacia el empleo de biocombustibles siendo más amigable con el 

ambiente. Particularmente, los digestores de residuos de alimentos son bioprocesos 

convencionales, capaces de procesar componentes biodegradables como carbohidratos, proteínas 

y lípidos, convirtiendo eficientemente residuos orgánicos en bioproductos.  

En la digestión anaerobia son establecidas condiciones operativas controladas que estructuran una 

comunidad microbiana anaerobia, siendo el núcleo del proceso para transformar la materia 

orgánica en un biogás con un contenido de 60% de CH4 y un biodigestato rico en fósforo y 

nitrógeno amoniacal. Tales productos hacen que los digestores de residuos de alimentos sean 

procesos cruciales para establecer las buenas prácticas de manejo de los residuos, aplicaciones 

agrícolas y lograr la producción de energía renovable. 

Aun así, la optimización de la digestión anaerobia sigue siendo todavía un desafío que permita 

consolidarse como tecnología pionera para la valorización de los residuos de alimentos. Uno de 

los principales desafíos es la inhibición por amoníaco, dado que es presentado incluso cuando el 

proceso está operando bajo parámetros operacionales bien conocidos para la producción de biogás, 

como la relación C/N, la relación S0/X0, la tasa de carga orgánica, el tiempo de retención hidráulica, 

el pH, la temperatura y la alcalinidad. La inhibición por amoníaco es causada por el aumento en la 

carga de proteínas dada a la heterogeneidad de los residuos de comida. Una vez las proteínas son 

degradadas es liberado NH3, un compuesto que fácilmente puede permear la biomasa celular e 

inhibe actividades enzimáticas importantes y necesarias para alcanzar altas eficiencias. 
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Una detección temprana de la inhibición por amoníaco y su rápido combatimiento, podría evitar 

el desencadenar otros problemas operativos que suelen ser ocasionados por acumulación de 

amoníaco, como la generación de espuma y la acumulación de ácidos grasos volátiles. Además, la 

influencia de parámetros como la temperatura, pH y la aclimatación del inóculo sobre la 

concentración de amoníaco, amplía el margen de inhibición (2.51–26.23 g nitrógeno amoniacal 

total/L) siendo difícil de detectar. 

Regularmente los sistemas de monitoreo actuales están basados en indicadores fisicoquímicos, por 

lo que difícilmente permiten descifrar los efectos que el amoníaco ejerce sobre la comunidad 

microbiana, cambios que posteriormente podrán afectar a variables fisicoquímicas asociadas al 

desempeño como la producción o rendimiento de CH4. Con frecuencia el problema es detectado 

cuando ha sido acumulado tanto el acetato como el propionato, un reflejo que el amoníaco ya ha 

afectado negativamente la metanogénesis acetoclástica y la oxidación sintrófica de los ácidos 

grasos volátiles. En este punto, parece haber cambios irreversibles en la comunidad microbiana, 

ya que el amoníaco tiende a desplazar a los microorganismos sensibles y selecciona aquellos que 

son resistentes. Esto resalta que los indicadores microbianos podrán efectivamente identificar una 

inhibición por amoníaco, incluso antes que sea observado por las variables de respuestas 

fisicoquímicas. 

La modernización de los bioprocesos requiere un enfoque en la gestión microbiana, una estrategia 

innovadora orientada a regular la dinámica de las comunidades microbianas mediante ajustes 

operativos, como el aumento de la carga orgánica o la bioaumentación. La gestión microbiana 

busca, en primer lugar, alcanzar la estabilidad del proceso anaerobio y, a futuro, regular la 

comunidad microbiana para optimizar la generación de bioproductos de interés. Esta estrategia 

implica el uso de indicadores microbianos, como índices de diversidad, taxones, o genes asociados 

a categorías específicas. En nuestro estudio, estos indicadores permitieron identificar respuestas 

biológicas relacionadas con el rendimiento del proceso, tanto en condiciones de alto o bajo 

desempeño como en escenarios con o sin inhibición por amoníaco. 

Para proponer indicadores microbianos adecuados y confiables, debe contener múltiples atributos 

que permitan extender su aplicabilidad. A continuación, se presenta un listado de cada uno, 

acompañado de una breve descripción: 
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• Universalidad: Otorgar una respuesta consistente y reproducible sobre el desempeño de 

procesos que operan bajo mismas condiciones de materia prima y régimen de temperatura. 

• Cambios significativos: Capacidad para distinguir categorías o grupos de interés 

relacionadas con el desempeño de la digestión anaerobia, como una abundancia diferencial 

y significativa hacia bajos o altos rendimientos de CH4 o hacia distintos niveles inhibitorios 

de amoníaco. 

• Keystone: Considerarse como partes ecológicas claves dado que pueden desencadenar 

diversos efectos desproporcionados en las redes microbianas. 

• Señales de alerta temprana: Proporcionar una respuesta predictiva sobre un evento futuro 

que decrezca el rendimiento de metano.  

• Rol metabólico clave: Ofrecer información clave sobre los cambios metabólicos que 

ocasionan la inhibición durante la digestión anaerobia. 

Cada atributo puede considerarse como un pilar que define el estado del microbioma y facilita una 

evaluación más precisa del desempeño en la digestión anaerobia. Diversos estudios han propuesto 

indicadores microbianos para digestores anaerobios que tratan residuos alimentarios, incluyendo 

algunos para la detección de inhibición por amoníaco. No obstante, al derivarse de estudios 

aislados, estos indicadores carecen de reproducibilidad y confiabilidad, lo que limita su 

aplicabilidad en contextos operativos reales. Por ello, para identificar indicadores microbianos 

confiables y reproducibles fue estructurado y aplicado un marco estadístico que permitiese asociar 

el mayor número posible de atributos de indicadores microbianos a géneros y genes claves. 

También fue considerado abarcar múltiples procesos anaerobios que emplearon diversos inóculos, 

varias materias primas similares y la operación bajo condiciones de temperatura mesofílica, 

proporcionando así mayor confiabilidad en la respuesta que pueden otorgar los indicadores 

microbianos. 

La presente tesis propone un marco estadístico para encontrar indicadores microbianos para el 

monitoreo de procesos anaerobios alimentados con residuos sólidos orgánicos, como residuos de 

alimentos y fracción orgánica de residuos sólidos municipales. La investigación contempló 

criterios de neutralidad, fiabilidad y validación de respuesta para asegurar la efectividad de los 

indicadores. De esta manera, fueron contemplados un metaanálisis, la integración de múltiples 

análisis estadísticos asociadas a los atributos de los indicadores microbianos, la evaluación de 
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indicadores microbianos sugeridos para detectar un desafío clave en escenarios variados como 

digestores en lotes y semicontinuos, y el uso de un enfoque multi-ómico.  

La investigación involucró tres etapas: 

▪ Etapa I. Fase de Descubrimiento: Se realizó un metaanálisis para identificar indicadores 

microbianos confiables a partir de datos de secuenciación de regiones del gen 16S ARNr 

(Capítulo 3). 

▪ Etapa II. Fase de Aplicación 1: Se operó un digestor por lotes alimentado con residuos 

de alimentos para determinar indicadores microbianos adecuados para la detección de 

inhibición por amoníaco usando metagenómica (Capítulos 4 y 5). 

▪ Etapa III. Fase de Aplicación 2: Se llevó a cabo un monitoreo a corto plazo en un sistema 

de digestor semicontinuo con residuos de alimentos para identificar indicadores 

microbianos efectivos para la detección de inhibición por amoníaco usando la 

secuenciación completa del gen 16S ARNr (Capítulo 6). 

En los siguientes párrafos se detallan cada etapa que constituyeron la tesis doctoral. 

Etapa I: Se seleccionaron indicadores microbianos confiables combinando un metaanálisis y el 

marco estadístico, permitiendo la evaluación sistemática de comunidades microbianas de 

digestores alimentados residuos orgánicos caracterizadas de las diferentes regiones del gen 16S 

ARNr.  

Como resultado fueron identificados Aminobacterium, Clostridium, HA73, T78, 

Corynebacterium, Lactobacillus y Prevotella. Cada uno de ellos mostraron sensibilidad respecto 

a cambios en su abundancia de acuerdo con categorías creadas a partir de clases de distribución de 

la variable rendimiento de metano. También mostraron diferencias en los atributos evaluado, lo 

que les otorgó características únicas. En el caso de Aminobacterium, Clostridium, HA73 y T78 

formaron parte del microbioma central, teniendo una probabilidad de al menos un 80% para 

encontrar a esos microorganismos lo que da confiabilidad al momento de su detección. En cambio, 

Corynebacterium, Lactobacillus y Prevotella resaltaron por proporcionar una respuesta más 

pronunciada para diferenciar bajos y altos rendimientos de CH4 aunque difícilmente puedan 

encontrarse en procesos similares. 
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Entre otros atributos, el conjunto de indicadores microbianos predijo eficazmente el rendimiento 

de CH4, sugiriendo características de alertas tempranas. También mostraron correlaciones con 

compuestos inhibitorios, como el amoníaco, ácidos grasos de cadena larga y ácidos grasos 

volátiles, evidenciando que podrían ser útiles para detectar los desafíos clave de la digestión 

anaerobia con residuos de alimentos. Una evaluación más específica de estos indicadores 

microbianos confiables para valorar la funcionalidad de la digestión anaerobia con respecto a un 

desafío clave fue sugerido. 

Etapa II: Se propusieron indicadores microbianos adecuados para identificar un problema 

convencional de inhibición por amoníaco en digestores por lotes empleando residuos de alimentos 

analizando la comunidad microbiana mediante metagenómica. Además, en esta etapa fue 

determinado que el amoníaco es el principal compuesto inhibidor, incluso por encima de 

interacciones con otros inhibidores como ácidos grasos de cadena larga y sulfatos.  

Aplicando un modelo de inhibición fueron definidos niveles inhibitorios de amoniaco que junto al 

marco estadístico fueron sugeridos como indicadores microbianos Anaerolinea, Sphaerochaeta, 

Syntrophobacter, Methanomassiliicoccus, Methanosarcina, fhs y acs. En conjunto, esos 

indicadores mostraron cambios significativos y posibles advertencias tempranas para indicar 

cuando la concentración de amoniaco tiene un efecto inhibitorio.  

Además, permitieron describir los cambios habituales en el metabolismo microbiano causados por 

el amoníaco. Un claro ejemplo fue la reducción del gen acs que participa en la metanogénesis 

acetoclástica, junto a la posible bacteria oxidadora de acetato Sphareochaeta. Ambos coincidieron 

con el decremento en la degradación de acetato a medida que aumentaba la concentración de 

amoníaco. Considerando la perspectiva microscópica, esas respuestas podrían ocurrir antes que 

respuestas macroscópicas como la acumulación de acetato sea observable. Así, integrar 

indicadores microbianos en un sistema de monitoreo convencional mejoraría la sensibilidad para 

detectar a tiempo una inhibición, antes que el proceso colapse causada por la acumulación de 

ácidos grasos volátiles. 

También, los indicadores microbianos al asociarse con géneros y genes claves reportados en el 

metaanálisis y usualmente reportados en digestores de residuos de alimentos, se intuyó que podrían 

proporcionar respuestas reproducibles si son evaluados en procesos similares. No obstante, aún 

quedaba la inquietud por considerar otros factores inusualmente controlables que podrían alterar 
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su respuesta, como la variación en la composición de los residuos de comida y, cambios en la 

comunidad microbiana debido al uso continuo del mismo inóculo inicial. Por tal motivo, los 

indicadores microbianos fueron evaluados en un sistema semicontinuo para responder a tales 

incertidumbres. 

Etapa III: Se realizó una evaluación de los indicadores microbianos previamente identificados en 

la Etapa I y Etapa II, para detectar una inhibición por amoníaco usando como técnica de análisis 

de la comunidad microbiana la secuenciación completa del gen 16S ARNr. Para lograrlo un 

monitoreo a corto plazo (35 días) de indicadores microbianos en un sistema que conjuntó doce 

reactores anaerobios por lotes secuenciales fue realizado. El experimento consistió en evaluar la 

capacidad de los indicadores microbianos para identificar niveles de inhibitorios de amoniaco, 

independiente de factores como cambios en el lote de materia prima, variaciones en la tasa de 

carga orgánica y cambios en la comunidad microbiana debido a la capacidad selectiva del 

amoníaco.  

A pesar de estas perturbaciones, la mayoría de los indicadores microbianos evaluados 

proporcionaron información valiosa sobre cambios metabólicos clave que surgieron en cada nivel 

de inhibición. Anaerolineaceae (en relación con T78) y el gen acs reconocieron el decremento de 

las relaciones sintróficas cuando el nivel inhibitorio de amoníaco fue bajo. Mientras 

Aminobacterium, Clostridium (subgéneros sensu stricto 1, 15, 7 y 8), Sphaerochaeta, 

Syntrophobacter, Methanosarcina, Methanomassiliicoccus y el gen fhs reflejaron la 

vulnerabilidad en la oxidación sintrófica de acetato y propionato, junto con la necesidad de 

mantener una metanogénesis dependiente de H2, lo que indica un riesgo de acumulación de ácidos 

grasos volátiles en niveles inhibitorios altos de amoníaco. 

Claramente los indicadores microbianos ofrecieron respuestas efectivas para describir con mayor 

detalle y precisión el efecto inhibitorio por amoníaco, llegando a una profundidad sobre el 

comportamiento del metabolismo microbiano. Considerando este punto, una pronta integración 

hacia nuevos modelos impulsados por inteligencia artificial es propuesto con un paso para 

continuar con el desarrollo de la gestión microbiana. Esos modelos permitirían predecir una 

inhibición por amoníaco empleando un número reducido de variables de entrada, dando un paso 

hacia el desarrollo de nuevos sistemas de monitoreo basadas en información biológica 
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simplificada. Esta integración reduciría la brecha para lograr la modernización de los sistemas de 

control en los actuales digestores anaerobios. 

Conclusiones  

La presente investigación tuvo como objetivo identificar indicadores microbianos para monitorear 

procesos de digestión anaerobia que son alimentados con residuos sólidos orgánicos, 

particularmente la fracción orgánica de los residuos sólidos urbanos y residuos de alimentos. La 

propuesta contempló un enfoque multi-estadístico, multi-ómico y multi-experimental, que 

respaldaron la fiabilidad de los indicadores microbianos propuestos.  

En general, el uso de indicadores microbianos tiene un gran aporte para alcanzar la optimización 

de los biodigestores, considerando que, con pocas variables biológicas, es posible detectar cambios 

microbianos relevantes antes que se desencadene los efectos de una inhibición observable. Esto es 

importante porque una inhibición usualmente es corroborada midiendo y observando indicadores 

fisicoquímicos como el pH, ácidos grasos volátiles, amoníaco y producción de biogás que son 

incluido en sistemas de monitoreo convencionales. Usando únicamente variables fisicoquímicas, 

difícilmente se pueda detectar una inhibición antes que sea observado en variables de desempeño 

como el rendimiento de CH4, mostrando la clara necesidad de integrar los indicadores microbianos 

a los sistemas de monitoreo actuales para clarificar esos eventos desafortunados y aleatorios. 

Como paso inicial, los indicadores microbianos podrían utilizarse para desarrollar una variedad de 

experimentos que consoliden la gestión microbiana en digestión anaerobia. Futuras 

investigaciones deberían centrarse en evaluar estrategias de recuperación de estabilidad centrado 

en la respuesta de los indicadores. También se propone identificar nuevos indicadores microbianos 

para enfrentar otros desafíos clave en digestores alimentados con residuos de alimentos, así como 

en otros bioprocesos. Además, se requiere una investigación adicional para seleccionar los 

métodos de cuantificación adecuados para el monitoreo a largo plazo e integrar los indicadores en 

algoritmos que son usados actualmente en los sistemas de control. 



 

13 
 

CHAPTER 1. Theoretical Framework 

1.1. Anaerobic digestion process of organic solid waste 

The conversion of approximately 105 billion tons of annual organic solid waste (OSW), 

comprising crop residues, livestock waste, sewage sludge, and food waste (FW), into value-added 

products using renewable technologies holds promise for mitigating climate change (World Biogas 

Association, 2021). Anaerobic digestion (AD) is emerging globally as a viable technology for 

converting OSW into biogas, owing to its maturity (technology readiness level = 9) (World Biogas 

Association, 2021). This technology can leverage the organic fraction of municipal solid waste 

(OFMSW) generated in Mexico given an annual availability of 55.7 million tons (SEMARNAT, 

2020). Among OFMSW, FW is a suitable feedstock for AD because of its high biodegradability, 

resulting in a high methane (CH4) yield potential ranging from 0.3 to 1100 mL CH4/gVSadded 

(SEMARNAT 2020; Xu et al. 2018). This presents an opportunity to utilize up to 33% of OFMSW 

and mitigate the environmental issues associated with landfill disposal (Sánchez-Arias, Riojas-

Rodríguez, 2019; SEMARNAT, 2020). 

AD is characterized by the breakdown of approximately 85% of organic matter through a microbial 

community that encompasses mainly hydrolytic, acidogenic, acetogenic, and methanogenic 

activities (Banks et al., 2018). These microbial interactions can produce biogas with 60-70% CH4 

and 30-40% CO2, and a nitrogen-rich biodigestate (Li et al. 2018; Xu et al. 2018). Most FW 

digesters operate under mesophilic conditions, with organic loading rates (OLR) ranging from 1 

to 4 g/L-d of volatile solids (VS) and hydraulic retention times (HRT) of up to 80 days (Banks et 

al., 2018; Li et al., 2018). These conditions assemble the microbial community, making AD a 

deterministic process (Zhang et al., 2022). The heterogeneous composition of FW (carbohydrates, 

proteins, and lipids) creates a niche that shapes a unique microbiome, where specific 

microorganisms, metabolic pathways, and metabolites interact (Fig. 1.1). However, the complex 

chemical composition of FW can release metabolites that gradually disrupt the native CH₄-

producing microbiome, leading to operational challenges and diminished performance (Theuerl et 

al., 2018; Wei et al., 2020). These issues diminish reliability and hinder the application of this 

process in full-scale systems (Peng et al., 2018; Zhang et al., 2022). Typical challenges in FW 

digesters include over-acidification, ammonia inhibition, foaming, and H2S production (Xu et al., 

2018).
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Figure 1.1. Main microorganisms and metabolic activities during AD of OFMSW and FW. This diagram 

explains how the input of OFMSW/FW into an anaerobic digester can be converted into biogas and digestate 

through various microbial interactions. The red circles with letters indicate the key enzymes or pathways involved in 

the conversion of compounds, and the red arrows indicate microorganisms that might be involved. Modified from 

Wang et al., (2018). 
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1.2. Key challenges during OFMSW and FW digestion  

The effectiveness of FW digesters is constrained by operational challenges, leading to reduced 

biogas production (Peng et al., 2018; Zhang et al., 2022). Unfortunately, these challenges are often 

interconnected, where one issue exacerbates another, complicating process stability (Fig. 1.2). 

During ammonia inhibition, a resistant microbial community typically emerges, primarily 

performing AD via hydrogenotrophic methanogenesis (Banks et al., 2018; Peng et al., 2018; Zhang 

et al., 2022). As acetoclastic methanogenesis declines, acetate degradation requires syntrophic 

relationships (ΔG0 = +175.1 kJ/mol) (Wu et al., 2024). Under these thermodynamic constraints, 

AD is prone to instability, frequently resulting in excessive volatile fatty acid (VFA) accumulation, 

which leads to over-acidification (Alavi-Borazjani et al., 2020). Prolonged operation under such 

stress conditions often causes the accumulation of additional metabolites, including long-chain 

fatty acids (LCFAs), which promote foam generation owing to their surfactant properties (He et 

al., 2017; Xu et al., 2018). In this stressed environment, propionate and butyrate may accumulate, 

and protein degradation can release sulfate compounds that promote hydrogen sulfide (H2S) 

production, negatively affecting biogas quality (Li et al., 2015; Tian et al., 2020). These 

interconnections highlight shifts in microbial metabolic functionality, leading to the assembly of 

unique microbiomes that can address specific challenges. Thus, the emergence of key microbial 

taxa and genes related to these challenges are discussed in the following sections. 

1.2.1. Ammonia inhibition 

The proteins and other nitrogenous compounds present in FW digesters lead to the release of total 

ammonia nitrogen (TAN) in both NH4
+ and NH3 forms, which vary depending on the temperature 

and pH (pKa at 35°C, 8.95) (Banks et al., 2018; Jiang et al., 2019; Jo et al., 2018; Tian et al., 2018). 

The importance of ammonia concentration lies in its dual effect on AD. Low ammonia 

concentrations (50 – 200 mg/L) promote microbial growth and buffer capacity (Agyeman et al. 

2021). Conversely, ammonia concentrations between 1500 and 7000 mg/L are inhibitory 

(Rajagopal et al. 2013). The wide variability in ammonia inhibition levels can be attributed to 

intrinsic microbiome factors, including the presence of ammonia-assimilating enzymes, cell 

morphology, and microbial acclimation (Jiang et al., 2019). Although AD can proceed under 

ammonia-stress conditions, it reduces CH4 production by 30% (Li et al., 2018).  
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Figure 1.2. Key challenges in FW digesters influenced by feedstock composition, microbiome changes, and 

metabolites concentration. Each circle with semi-continuous lines is color-coded to highlight the key challenges and 

the associated changes. Positive trends are indicated by green arrows (increase) and negative trends are indicated by 

red arrows (decrease). The sequence of changes is shown by black arrows, whereas interactions between key 

challenges are represented by sky-blue arrows. Modified from Basak et al., (2021); He et al., (2017); Jiang et al., 

(2019); Tian et al., (2020). 

The ammonia inhibition mechanism involves NH3 diffusion through thin filament acetoclastic 

methanogens (e.g., Methanosaeta/Methanothrix), causing intracellular pH changes and K+ 

leakage, increasing energy needs, and reducing acetate consumption (Jiang et al., 2019; Yu et al., 

2020). The syntrophic acetate-oxidizing bacteria (SAOB, e.g., Syntrophaceticus and Clostridium) 

restore acetate consumption and produce CO2 and H2 via the Wood-Ljungdahl (W-L) and glycine 

cleavage pathways (GCS) (Li et al., 2022; Yan et al., 2020). These bacteria collaborate with 

ammonia-tolerant hydrogenotrophic methanogens (e.g., Methanoculleus), whose presence of 

energy-regulating complexes (e.g., energy-converting hydrogenase, Na+/H+ antiporter, and V/A-

type ATP synthase) can modulate energy under varying thermodynamic conditions and maintain 

low hydrogen pressure (< 0.1 kPa) for favorable VFA oxidation (Hardy et al., 2021; Jiang et al., 
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2019; Yan et al., 2020; Zhao et al., 2021). Although AD can occur under these conditions, the shift 

away from acetoclastic methanogenesis, which typically generates 60–70% of CH4 production, 

leads to poor performance (Li et al., 2018; Wu et al., 2021). 

Under conditions of ammonia stress, hydrogenotrophic methanogenesis alone leads to a 

thermodynamic imbalance if disturbances occur (Jiang et al., 2019). Hydrogenotrophic 

methanogens require at least 0.01 kPa of H2 and 10 µM formate to sustain their metabolism; 

however, these concentrations can inhibit SAOB (Xu et al., 2024). In addition, operating under 

such conditions promotes ammonia accumulation in the medium term (100 – 150 d), deactivating 

succinyl-CoA synthetase and reducing the activity of syntrophic propionate-oxidizing bacteria 

(SPOB, e.g., Pelotomaculum or Syntrophobacter) (Zhang et al., 2022). These microorganisms 

have low functional redundancy and slow growth (0.06 d-1) compared to SAOB (0.3 d-1), 

prolonged adaptation time, and promote propionate accumulation (Wu et al., 2022). Therefore, 

propionate inhibits hydrogenotrophic methanogen activity, causing thermodynamic imbalance, 

over-acidification, and AD failure (Wu et al., 2022; Zhao et al., 2021). This suggests that ammonia 

is the initial disturbance that leads to various microbial changes before potential process instability 

occurs. 

1.2.2. Over-acidification 

When FW is rich in simple sugars and with a low C/N ratio (14-37) breaks down quickly, excessive 

VFAs can result, leading to over-acidification (Chatterjee & Mazumder, 2019; Pavi et al., 2017) , 

which may deplete the buffering capacity (mainly HCO3
-), weakening the ability to maintain 

neutral pH levels (6.5-7.6) and increasing un-ionized VFA (pKa 4.75) (Alavi-Borazjani et al., 

2020; Basak et al., 2021; Labatut & Pronto, 2018). In some microorganisms, over-acidification 

can acidify the cell cytoplasm, which consumes adenosine triphosphate (ATP) and releases H+ to 

maintain the cytoplasmic pH balance (Xu et al., 2024). Concentrations between 1200-14000 mg 

VFA/L usually indicate over-acidification (Gao et al., 2015; Shi et al., 2017). Additionally, factors 

such as single-stage systems, thermophilic operation, high substrate/inoculum (S0/X0) ratios, lack 

of trace elements, ammonia accumulation, and the buildup of long-chain fatty acids (LCFA) also 

contribute to over-acidification in FW digesters (Labatut & Pronto, 2018; Patil et al., 2021; Wang 

et al., 2018; Xu et al., 2018). Nevertheless, this issue often stems from an imbalance between 
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hydrolytic/acidogenic bacteria and syntrophic acetogens/methanogens, which lead to microbiome 

shifts (Basak et al., 2021; Wu et al., 2024).  

Over-acidification initiates with the repression of acetoclastic methanogens (e.g., Methanosaeta), 

resulting in increased acetate concentration and elevated hydrogen pressure, leading to reduced 

CH4 content (Kleyböcker et al., 2012; Li et al., 2017). High hydrogen pressure (> 0.0012 kPa) and 

acetate accumulation inhibit SPOB activity for thermodynamic barriers, promoting propionate 

accumulation and inhibiting syntrophic fatty acid oxidizers (e.g., Syntrophomonas, 

Sedimentibacter, and Syntrophorhabdus) (Amha et al., 2017; Basak et al., 2021; Kleyböcker et al., 

2012; Xu et al., 2024). Over time, the proportion of un-ionized VFAs increased, whereas the pH 

decreased and inhibited hydrogenotrophic methanogens (e.g., Methanosarcina and 

Methanoculleus) (Li et al., 2017). These microbial changes intensify the proliferation of hydrolytic 

bacteria (e.g., Lactobacillus and Clostridium) and acidogens (e.g., Aminobacterium), resulting in 

the excessive production of VFAs (Amha et al., 2017; Basak et al., 2021; Wang et al., 2018). This 

issue intuitively reduces microbial richness and diversity, rendering the microbial community 

sensitive to the instability caused by irreversible acidification (Basak et al., 2021; Wang et al., 

2018). Alterations in specific microorganisms coupled with physicochemical parameters can 

provide insights into this issue. 

Apart from ammonia (explained in Section 1.2.1), LCFA are metabolites that contribute to over-

acidification in FW digesters (Patil et al., 2021). These compounds arise from the breakdown of 

lipids catalyzed by lipase enzymes released by hydrolytic bacteria (e.g. Anaerovibrio) (Basak et 

al., 2021; He et al., 2018). The degradation of LCFA involves flagellated microorganisms capable 

of syntrophic β-oxidation (e.g., Syntrophomonas) along with hydrogenotrophic methanogenesis 

(e.g., Methanosarcina), making their degradation complex (Amha et al., 2017; Basak et al., 2021; 

Kougias et al., 2016). In addition, an increase in lipid content may easily accumulate LCFA to 

inhibitory levels (> 5 gCOD/gVSS), disrupting the successive cleavage of 2-carbon units into 

acetyl-CoA, thus promoting propionate generation (Kougias et al., 2016). Furthermore, LCFA can 

be absorbed or bound to microbial cells, hindering the growth of acetoclastic methanogens (e.g. 

Methanosaeta), leading to increased acetate levels or blocking mass transfer (Kougias et al., 2016; 

Patil et al., 2021). This suggests that LCFAs could be responsible for the over-acidification caused 

by their effect on microorganisms and genes associated with VFA metabolism. 
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Other factors that contribute to over-acidification in FW digesters are those associated with 

operational parameters or those dismissed as metabolites. Single-stage systems undergo rapid 

acidification due to the facile inhibition of methanogens in response to various disturbances (Xu 

et al., 2018). Operating at high temperatures (55 - 60°C) poses challenges that lead to AD 

disruption, such as low microbial diversity, high NH3 levels, and increased metabolic flux owing 

to substrate solubility (Chatterjee & Mazumder, 2019; Lee et al., 2017). An inadequate S0/X0 ratio 

(suggested as 0.5 in FW digesters) can lead to a sudden release of VFAs due to an imbalance 

between methanogenic and acidogenic bacteria (Zhang et al., 2019). Lastly, the absence of trace 

elements such as Fe, Co, Mo, and Ni may diminish coenzyme synthesis essential for 

methanogenesis, impacting tolerant hydrogenotrophic methanogens (e.g., Methanosarcina, 

Methanoculleus). This diminishes methanogenic diversity, elevates hydrogen partial pressure, and 

increases acetate consumption, thereby fostering propionate accumulation (Zhang et al., 2019). 

Therefore, over-acidification does not primarily cause AD failure; rather, it emerges because of 

various converging factors that culminate in this operational issue. 

1.2.3. Foaming 

Foam generation in FW digesters is primarily associated with the reduction of liquid medium 

surface tension by surfactant compounds, either from the feedstock or released during AD. These 

compounds, such as detergents, proteins, glycolipids, glycoproteins, glycolipopeptides, and 

NH4
+/LCFA, might increase the viscosity of the digestate (> 782 mPa·s), enhancing foam stability. 

(Ao et al., 2020; He et al., 2017; Xu et al., 2018). Additionally, filamentous bacteria, variations in 

temperature and agitation speed, fatty acids, and sudden CO2 release due to a decrease in pH (pKa 

HCO3
-
, 6.35) exacerbate foam formation (He et al., 2017; Xu et al., 2018). Consequently, the foam 

may expand the mixed liquor, increase the working volume, obstruct the tank ports, and promote 

spills in the reactor (Kong et al., 2019). 

Some microorganisms benefit from foam conditions and can prolong the foam formation. 

Hydrolytic-acidogenic bacteria (e.g., Anaerovibrio, Aminobacterium, and Lactobacillus) can 

produce metabolites, such as VFA, NH4
+, and LCFA, or biosurfactants, such as proteins, 

glycolipidic, glycoproteins, or glycolipopeptides, which decrease surface tension (He et al., 2017, 

He et al., 2018). Filamentous hydrophobic bacteria (e.g., Actinomyces) promote sludge flotation, 
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which may trap biogas bubbles and prevent the release of biogas (Ganidi et al., 2009; He et al., 

2017). Therefore, specific microorganisms have the potential to generate foam. 

1.2.4. H2S generation 

Sulfur compounds are inevitable in FW digesters because of the sulfate content (3% of S-total), 

sulfide (14% of S total), and proteins (69% of S-total) in the feedstock, along with the high sulfide 

content contributed by anaerobic biomass (2.5% of the cell) (Amani et al., 2010; Tian et al., 2020). 

However, the reducing conditions in AD (-214 to -305 V) make sulfide the primary chemical form 

of sulfur, which is easily converted to hydrogen sulfide (H2S) (Tian et al., 2020). This phenomenon 

could lead to unpleasant odors in the digestate and elevated H2S levels in biogas, potentially 

reaching up to 1500 ppm, thereby corroding biogas lines and storage tanks (Moreno-Andrade et 

al. 2020; Tian et al. 2020). This implies that biogas may require desulfurization techniques (< 500 

ppm of H2S), which are necessary for energy generation via heat and power engines/turbines 

(Moreno-Andrade et al., 2020). Additionally, an inhibitory effect on the microbial community may 

occur, either by sulfides precipitating essential metals or by H2S permeating the cell membrane, 

causing protein denaturation (Amani et al., 2010). 

The conversion of inorganic sulfur compounds (e.g., sulfite, and thiosulfate) to sulfide/H2S may 

involve various microorganisms (Tian et al., 2020). Amino acid-degrading bacteria (e.g., 

Aminobacterium) facilitate the disposition of sulfur compounds in FW digesters (He et al., 2017; 

Tian et al., 2020). In the presence of sulfate, this compound can be utilized by sulfur-reducing 

bacteria (SRB) to produce sulfide (Tian et al., 2020). However, some SRB can utilize H2 and 

acetate as electron donors, thereby competing with methanogenic archaea (Amani et al., 2010). 

Additionally, some SPOB (e.g., Pelotomaculum) may be capable of utilizing sulfate as an electron 

acceptor during propionate degradation to acetate (Qiao et al., 2016). This versatility in the effects 

of sulfur compounds seems intricately tied to the metabolic activity of specific microbial 

populations. Therefore, understanding the functionality of the microbiome is crucial to 

understanding the role of sulfur compounds in AD. 

1.3. Microbial indicators 

Given that FW digester challenges tend to disrupt the process, employing state indicators is 

suggested as these variables can elucidate the status of AD (Wu et al., 2021). These indicators are 
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associated with stability and exhibit sensitive responses to disturbances that disrupt AD (Wu et al., 

2021). An indicator that can predict instability faster than the change in CH4 content is defined as 

an early warning indicator (EWI) (Wu et al., 2021). Currently, a wide range of indicators is linked 

to physicochemical characteristics, such as biogas production, pH, alkalinity, acetate, propionate, 

VFA/Ca, and CH4/CO2, (Wu et al., 2019). However, factors such as operational conditions, mass 

transfer, and self-optimized microbiomes lead to drawbacks in the response of these indicators, 

such as low reproducibility, low accuracy, and a lack of universality (Wu et al., 2019, Wu et al., 

2021). 

The FW digesters operate via deterministic processes; thus, the use of microbial indicators (MIs) 

is accessible (Li et al., 2018; Zhang et al., 2022). Because in a deterministic process the 

microbiome is selected by the operational conditions and serves as a reference for specific AD 

state. Using MIs, biological or ecological responses that reveal microbiome status, allows detecting 

microbiome changes affecting process performance through significant responses earlier than 

physicochemical observations. (Carballa et al. 2015; De Vrieze 2020; Wei et al., 2020). However, 

incorporating physicochemical indicators along with MIs would facilitate the identification of key 

challenges, which would help in implementing adequate countermeasures to prevent collapse (Wei 

et al., 2020; Wijaya et al., 2023). In AD systems, MIs can be categorized into two levels: ecological 

parameters tied to diversity indices, and indicators microbes associated with key taxa, genes, or 

transcripts (De Vrieze, 2020; Li et al., 2018). 

1.3.1. Diversity indices 

Microbial diversity in AD is commonly assessed using alpha and beta diversity indices, enabling 

the comparison of microbiome structures and treatments (Fig. 1.3) (Pasalari et al., 2021; Peng et 

al., 2018). Alpha diversity indices, such as the Chao1, Shannon, Pielou, and Faith indices, can be 

used to estimate the richness, entropy, evenness, and phylogenetic distances within samples (Fig. 

1.3a) (Hill et al., 2003; Pielou, 1966; Shade, 2017). High values of these indices may indicate a 

broad range of microorganisms that provide functional redundancy against disturbances, thereby 

ensuring stability (Calusinska et al., 2018; Li et al., 2018). However, this response may also 

suggest a greater likelihood of implementing biological mechanisms to control microbial growth, 

thereby increasing the susceptibility to deterioration (Calusinska et al., 2018). Conversely, low 

alpha diversity values may imply adaptive and selective capability of the microbial community, 
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resulting in high CH4 yields (Jo et al., 2018). Nonetheless, these responses may also potentially 

displace the key microorganisms involved in AD, such as methanogenic archaea, thereby revealing 

a vulnerable microbial community (Nguyen et al., 2019; Zhang et al., 2019). Such contradictory 

responses may be attributed to the operational conditions, nonlinear responses, sampling 

methodology, and transient microorganisms (Calusinska et al., 2018; Cordier et al., 2020). 

Nonetheless, evaluating diversity within a specific study or related studies within the same 

research framework may yield consistent results (Shade, 2017). 

The dynamics of the microbial community composition between the study groups have been 

assessed using beta diversity measures (Fig. 1.3b). Bray-Curtis, Jaccard, and Unifrac are 

dissimilarity metrics commonly used to evaluate the abundance, presence, and phylogenetic 

distances of microbiomes, respectively (Buttigieg & Ramette, 2014). These indices appear to 

produce more consistent results than alpha diversity indices (De Vrieze et al., 2021). Analyzing 

microbial community dissimilarities at various points in the process may identify key challenges, 

such as ammonia inhibition, over-acidification, and foaming (Fig. 1.3b) (Basak et al., 2021; He et 

al., 2017; Peng et al., 2018). However, it is noteworthy that the response of these indices could be 

influenced by feedstock type (Bovio-Winkler et al. 2021). This highlights the importance of 

accounting for factors that alter the microbial community to ensure consistent MI responses in FW 

digesters. 



CHAPTER 1. Theoretical Framework 

 

23 
 

 

Figure 1.3. Responses of alpha and beta diversity indices in FW digesters. a) Alpha diversity may show conflicting 

responses, potentially defining process performance. Its evaluation in the FW digestion context is intriguing, revealing 

its feasible application as a MI. b) Beta diversity may display notable shifts in the microbial community, which is 

linked to the emergence of significant challenges. This suggests that potential taxa and genes could describe these 

dissimilarities. Based on Basak et al., (2021; Calusinska et al., (2018); He et al., (2017); Jo et al., (2018); Peng et al., 

(2018) observations. 

1.3.2. Key taxa and genes 

Some taxa and genes have been considered potential MIs because they have shown significant 

changes in their abundance under specific conditions that influence the performance of FW 

digesters (Table 1.1). By merely considering the abundance of trends, this part of the microbiome 

can highlight the state of the anaerobic process. For instance, a positive trend in Methanosaeta, 

linked to “good” AD performance, have been used to assess bioaugmentation success in process 

recovery and proper process operation (Basak et al., 2021; Patil et al., 2021; Zhang et al., 2022). 

Furthermore, key challenges may be clarified by a combination of trends through key taxa. A 

positive trend in Ruminococcus, Corynebacterium, and Aminobacterium suggests increased 

production of surfactant compounds, such as VFA and ammonia. These responses coupled with a 

negative trend in Methanosaeta indicate a stressful environment that can potentially lead to foam 

formation (Ganidi et al., 2009; He et al., 2017). This finding is relevant because trends provide a 
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more prudent method for assessing the state of AD than absolute threshold values (Wu et al., 2021). 

Therefore, since trends originate from biological components such as key taxa and genes, they are 

closely linked to identifying specific challenges. Consequently, selecting MIs is essential for 

recognizing operational states based on user requirements. 

Functional redundancy is a drawback of key taxa that can be compensated for by combining them 

with key genes (De Vrieze, 2020). A notable example is the combination of genes associated with 

acetoclastic methanogenesis, along with strict acetoclastic archaea such as 

Methanosaeta/Methanothrix, and the versatile methanogen Methanosarcina. In specific contexts, 

instability due to ammonia stress can be inferred when genes for acetate degradation are 

maintained by resilient Methanosarcina, whereas the sensitivity of Methanosaeta leads to its 

displacement (Zhang et al., 2022). Therefore, selecting sets of key taxa and genes could specify 

metabolic changes of interest in the microbiome, highlighting the ability to provide specificity in 

different environments that perturb AD. 
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Table 1.1. Overview of key taxa and gene responses to different behaviors in FW digesters. 

Key taxa or gene Metabolic contribution in anaerobic digestion Response trend Associative condition Anaerobic 

digestion 

performance 

Taxa 

Ruminococcus Hydrolysis of carbohydrates and acetate production [1] Positive [1] Foaming [1] Poor [1] 

Anaerovibrio Hydrolysis of lipids [13] 
Positive [13] Organic overloading [13] 

 

Poor [13] 

Clostridium 
Hydrolysis of carbohydrates and protein [3,4] and H2 

production [5] 

Positive [3] Ammonia inhibition [3] Poor [3]  

Sphaerochaeta Hydrolysis of carbohydrates and acetate production [6] 
Positive [6,7] Ammonia inhibition [6] 

Food waste addition [7] 

Good [7] 

Poor [6] 

Aminobacterium 
Hydrolysis of protein and 

amino acid degradation [1] 

Positive [1,9] Foaming [1] 

Organic overloading [9] 

Poor [1,9] 

Corynebacterium 
Phospholipids production [1] 

and carbohydrates fermentation [12] 

Positive [1] 

Negative [12] 

Foaming [1] 

Ammonia inhibition [12] 

Poor [1,12] 

Treponema Homoacetogenesis [16] 
Positive [16] Two-stage system [16] 

Food waste addition [7] 

Good [7,16] 

Aminivibrio 
Syntrophic oxidation of acetate [10] and 

aminoacid degradation [11] 

Positive [9] 

Negative [11] 

Low organic loading [9] 

Ammonia inhibition [11] 

Good [9] 

Poor [11] 

Sedimentibacter Syntrophic oxidation of VFA [14] 
Negative [14,15] Organic overloading [14] 

Ammonia inhibition [15] 

Poor [14,15] 

Syntrophomonas Syntrophic oxidation of VFA [14] 

Positive [17,14] 

 

Negative [14] 

Formate addition [17] 

Bioaugmentation [14] 

Organic overloading [14] 

Good [17,14] 

Poor [14] 

Syntrophobacter Syntrophic oxidation of propionate [17] 
Positive [17] 

Negative [11] 

Formate addition [17] 

Ammonia inhibition [11] 

Good [17] 

Poor [11] 

Pelotomaculum Syntrophic oxidation of propionate [11] Negative [11] Ammonia inhibition [11] Poor [11] 

Methanosaeta Acetoclastic methanogenesis [11] 

Positive [14] 

Negative [1,9,11] 

Bioaugmentation [14] 

Foaming [1] 

Ammonia inhibition [11] 

Low organic loading [9] 

Good [14] 

Poor [1,9,11] 

 

Methanoculleus Hydrogenotrophic methanogenesis [14] 
Positive [11,14] Ammonia inhibition [11] 

Bioaugmentation [14] 

Good [14] 

Poor [11] 

Methanomassiliicoccus Methylotrophic methanogenesis [15] Positive [15] Ammonia inhibition [15] Poor [15] 

Methanosarcina Versatile methanogenesis [14] 

Positive [1,11] 

Negative [14] 

Foaming [1] 

Ammonia inhibition recovery 
[11] 

Bioaugmentation [14] 

Poor [1] 

Good [11,14] 

continued 
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Enzymes (genes) 

Protease Hydrolysis of proteins [18] 
Positive [18] Process acclimatization to cow 

manure addition [18] 

Good [18] 

Glycine 

hydroxymethyltransferase 

(glyA) 

Acetate degradation through glycine cleavage pathways [8] 

Positive [8] Ammonia inhibition [8]  Poor [8] 

Acyl-CoA dehydrogenase 

(ACADM) 
Butyrate degradation through β-oxidation [8] 

Negative [8] Process acclimatization to cow 

landfill leachate addition [8] 

Good [8] 

Acetyl-CoA C-

acetyltransferase (acat) 
Butyrate degradation through β-oxidation [8] 

Negative [8] Process acclimatization to 

landfill leachate addition [8] 

Good [8] 

Phosphate 

butyryltransferase (ptb)  
Butyrate degradation through β-oxidation [2] 

Positive [2] Biogas slurry reflux 

application [2] 

Good [2] 

Succinyl-CoA (sucC/D) Propionate degradation [11] 
Negative [11] 

 

Ammonia inhibition [11] Good [11] 

Malate dehydrogenase 

(mdhod) 
Propionate degradation [2] 

Positive [2] 

Negative [2] 

Biogas slurry reflux 

application [2] 

Organic overloading [2] 

Good [2] 

Poor [2] 

Hydrogenase subunit alpha 

(hydA) 
Hydrogen production [9] 

Negative [9] Low organic loading [9] Good [9] 

Acetate kinase (ack) Acetoclastic methanogenesis [11] 

Positive [11] Ammonia inhibition recovery 
[11] 

Biogas slurry reflux 

application [2] 

Good [11,2] 

Phosphate acetyltransferase 

(pta) 
Acetoclastic methanogenesis [11] 

Positive [11] Ammonia inhibition[11] Good [11] 

Acetyl-CoA decarbonylase 

(ACDS) 
Acetoclastic methanogenesis [11] 

Positive [11] Ammonia inhibition [11] Good [11] 

Coenzyme F420 

hydrogenase (frh)  
Hydrogenotrophic methanogenesis [2] 

Positive [2] 

Negative [2] 

Biogas slurry reflux 

application [2] 

Organic overloading [2] 

Good [2] 

Poor [2] 

Methyl coenzyme-M 

reductase (mcrA) 
Methane production [9] 

Positive [9] Low organic loading [9] Good [9] 

References: [1] (He et al., 2017) ; [2] (Li et al., 2024); [3] (Poirier et al., 2020); [4] (Ma et al., 2020); [5] (Mugnai et al., 2021); [6] (Xu et al., 2024); [7] (Zhang et 

al., 2018); [8] (Peng et al., 2022); [9]; (Patil et al., 2021); [10] (Li et al., 2022); [11] (Zhang et al., 2022); [12] (Wang et al., 2020); [13] (He et al., 2018); [14] 

(Basak et al., 2021); [15] (Hardy et al., 2021); [16] (Amha et al., 2019);  [17] (Lv et al., 2020); [18] (Xing et al., 2020) .
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1.4. Attributes of microbial indicators 

Although several diversity indices, taxa, and genes have been suggested as microbial indicators 

(MIs), their reliability often suffers due to the lack of multiple attribute assignments surrounding 

a suitable MI (Fig. 1.4) (Huerta et al., 2024; Li et al., 2018). These attributes include: (1) 

reproducible responses across diverse processes, implying universality; (2) differential responses 

proportional to changes in the microbial community/AD, (3) keystones with significant ecological 

roles within the microbial community; (4) early warning responses; and (5) key microbial 

metabolism in AD (Huerta et al., 2024; Li et al., 2018; Xu et al., 2018). Each attribute can be 

defined through an adequate statistical framework to identify step-by-step features of MIs relevant 

to a specific case study, such as determining suitability for specific key challenges (Li et al., 2018; 

Navarro-Díaz et al., 2020; Poirier et al., 2020). Therefore, a suitable MI is reliable because it might 

maintain reproducible responses (attribute 1) across similar processes (e.g., FW digesters) and 

differentiate multiple microbiome statuses (attribute 2). Additionally, suitable MIs would be 

essential for maintaining microbiome network structure or functionality under specific conditions 

(attribute 3), predicting potential operational issues (attribute 4), and describing microbial 

metabolism (attribute 5). Diversity indices likely satisfy criteria (1), (2), and (4), whereas taxa and 

genes may fulfill all criteria. Further details of each MI attribute are provided in the following 

section. 
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Figure 1.4. Attributes for determining key taxa and genes as suitable MI. Each characteristic encompasses 

multiple approaches that contribute to the establishment of suitable MI for FW digesters. A comprehensive MI 

incorporating all attributes would be a reproducible and relevant indicator for maintaining microbiome structure or 

functionality. Furthermore, it could significantly discern various states of the process, likely owing to its importance 

in AD metabolism. 
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1.4.1. Universality 

An MI with a universal attribute should exhibit consistent responses under specific AD conditions 

(Li et al., 2018). This goal may be achieved by considering systems with similar feedstock types 

and temperatures and recognizing trend responses to significant perturbations that alter the process 

(Calusinska et al., 2018; Rui et al., 2015; Theuerl et al., 2018; Wu et al., 2021). In this context, the 

core microbiome may fulfill this attribute. The core microbiome comprises resilient and co-

occurrence biological components (e.g., taxa or genes) in ecological niches that are potentially 

linked to specific microbiome states or environmental conditions (Berg et al., 2020; Theuerl et al., 

2018). In AD, this portion of the microbiome is crucial for process functionality and contributes 

to hydrolysis, VFA oxidation, and methanogenesis (Ma et al., 2021).  

The core microbiome of AD is defined by the prevalence of microorganisms across a range of 

similar processes, particularly under consistent feedstock and temperature conditions. Rui et al. 

(2015) determined a core microbiome in household biogas digesters, considering a 90% prevalence 

of OTUs across 43 processes at mesophilic temperatures (18 –35°C). Similarly, Calusinska et al. 

(2018) identified two core microbiomes in different mesophilic (33 – 44°C) AD systems: one for 

biowaste (agriculture and municipal solid waste), and another for sewage-activated sludge. In this 

study, the core microbiome was defined by OTUs present in over 80% of 250 samples across 20 

processes. Both studies observed that certain core microbiome members exhibited correlative 

responses to inhibitory compounds. Therefore, defining and evaluating the core microbiome under 

various perturbations affecting FW digesters in the same temperature regime may lead to the 

identification of universal attribute. 

1.4.2. Significant changes 

MI should effectively infer the differences of AD conditions, such as stability, key challenges, or 

recovery states (Wu et al., 2021). For this purpose, significant changes in microbial communities 

are typically determined using non-parametric tests given that microbiome data, such as OTU or 

gene counts, often follow a non-normal distribution (Pan et al., 2021). These tests help identify 

trends associated with AD performance categories, including comparisons between low and high 

performance or non-inhibited and ammonia-inhibited conditions. Significant changes in microbial 

abundance are generally classified into two categories: significant and differentially abundant 

responses. The distinction between these categories largely depends on how the raw data are 
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transformed, the types of data distributions used in the analysis, and bias correction methods (Pan 

et al., 2021). 

Standard tests, such as the Kruskal-Wallis and Wilcoxon rank-sum tests, have been used to 

evaluate alpha diversity, taxa, and microbiome functionality across different groups. For example, 

alpha diversity in sludge, agro-industrial waste, FW, and municipal solid waste digesters have been 

statistically evaluated (De Vrieze et al., 2021). These analyses have also been used to identify taxa 

with significant abundance across different feedstocks (Calusinska et al., 2018). Additionally, they 

have been used to determine which defined functional profiles, based on SEED subsystems and 

KEGG functions, underline the CH4 composition (Rahman et al., 2021). Therefore, these statistical 

analyses provide clear insights into the behavior of key components of the AD microbiome and 

are recommended for evaluating the core microbiome. 

Differential analysis methods (e.g. ALDEx2, DESeq2, edgeR, and LEfSe) encompass the entire 

microbiome and employ probability distribution models or count ratio transformations to enhance 

group comparison (Nearing et al., 2022). These analyses reduce false positives among 

differentially abundant features and provide robust biological interpretation when comparing 

multiple differential abundance methods  (Nearing et al., 2022). Consequently, these biological 

components are characterized by their discriminative capacity to respond to perturbations that 

significantly affect AD. Within this framework, differential gene expressions have been observed 

in response to H2 addition  (Zhu et al., 2020) and key taxa that distinguish feeding regimes have 

been identified  (Svensson et al., 2018). These analyses offer more precise and sensitive insights 

into critical changes in the entire microbial community than standard tests. 

1.4.3. Keystones 

Reconstructing ecological networks from microbiomes can reveal positive (cooperative) and 

negative (antagonistic) interactions, based on their topological properties under specific conditions 

or challenges, thereby defining their ecological roles (Muller et al., 2018). These analyses 

identified keystones, either taxa or genes, which are crucial in the ecological interactions of the 

microbiome and impact ecosystem dynamics (Berg et al., 2020). The removal of keystone 

elements would mean the elimination of microorganisms or genes that can affect microbiome 

assembly, alter richness, and potentially disrupt ecosystem functionality (Berry & Widder, 2014). 

This analysis can be performed using Molecular Ecology Network Analysis (MENA), which 
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employs random matrix theory with standard parameters to calculate network topological features 

(e.g modularity, clustering coefficient, average path length, graph density, and average degree). 

Network modularity allows keystones to be categorized based on within-module connectivity (Zi) 

and among-module connectivity (Pi) scores. Keystones are classified as generalists (highly 

connected with others: Zi > 2.5, Pi > 0.62; or Zi < 2.5, Pi > 0.62) or specialists (less connected 

with others: Zi < 2.5, Pi < 0.62) (Pan et al., 2021). 

Keystone species in AD have been identified as indicators of process regulation (Xu et al., 2018). 

For instance, Tepidimicrobium and Clostridium are the keystones of a microbiome that is subject 

to variations in the C/N ratio. These genera are crucial for maintaining high biogas production at 

low abundances, considering their negative relationship with C/N (Fernandez-Bayo et al., 2020). 

Additionally, keystones defining ecological roles based on temperature regimes have been 

identified, such as Streptococcus and Methanospirillacea in mesophiles and Ruminofilibacter, 

Paludibacter, Fibrobacter, Lachnospira, and Anaerobaculaceae in thermophiles (Guo et al., 

2022). These findings suggest that keystones can serve as indicators of specific conditions, 

although their responses to key challenges remain unclear (Berg et al., 2020). Therefore, 

incorporating the keystone characteristic into an MI is essential to reveal the stability of the 

conditions to be evaluated. 

1.4.4. Early warning signs 

The importance of proposing EWI lies in its ability to predict process instability, thus enabling the 

development of strategies to maintain AD stability (Wu et al., 2021). Given that changes in the 

microbiome precede macroscopic changes, the predictive capacity of MI can be inferred (Li et al., 

2018; Wu et al., 2021). This capability can be attributed to abrupt changes in the microbiome (taxa 

or genes) that anticipate AD before disturbances occur (Cordier et al., 2020; Wu et al., 2021). 

These irregular changes include increased variance, signifying an abrupt response (e.g., z score > 

|1|), along with a correlation indicating the direction (positive or negative slope) from one state to 

another (Faust et al., 2015; Mirza et al., 2020). Predictive models can also provide trends that 

indicate possible perturbations (Faust et al., 2015). In AD, linear regression showed a sudden 

reduction in the mcr gene (methyl-coenzyme M reductase), which serves as an indicator of 

decreased methanogenic activity, offering an early warning of reduced CH4 production (Yu et al., 
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2020). These trends could set a benchmark for warning alerts regarding the conditions that 

significantly disrupt AD. 

Evidence indicates that microorganisms respond days before an operational issue occurs in AD. 

Within a range of 8 to 11 d before over-acidification occurred, Methanomassiliicoccus and 

Syntrophobacter exhibited declining abundance (Goux et al., 2015; He et al., 2018). Anaerolinea 

and Methanosarcina showed negative abundance trends at approximately 2 and 14 d, respectively, 

before CH4 production ceased (He et al., 2018; Tonanzi et al., 2020). The relative fluorescence 

intensity of coenzyme F420 linked to the frh gene decreased approximately 20 d before over-

acidification (Shamurad et al., 2020). The hdr gene exhibited a positive trend approximately 20 d 

before instability (Li et al., 2024). The increase in the acs gene seems to signal at least 23 days 

before ammonia inhibition occurs (Yu et al., 2020). These results support the idea that changes in 

functionality precede variations in taxonomic composition, thereby offering an advantage to MI 

based on genes (Cordier et al., 2020). Additionally, an MI with early warning attributes provides 

crucial timeframes for planning system recovery strategies. 

1.4.5. Key metabolic roles 

Understanding the metabolic pathways involved in different AD states is crucial for advancing 

bioprocess engineering to achieve high-efficiency and productive stability (Xu et al., 2018). A 

suitable MI should represent specific metabolic pathways that are modified and can indicate a state 

change in AD (Huerta et al., 2024; Li et al., 2018). First, this attribute can be suggested through 

correlational (e.g., Spearman’s correlation) and multivariate (e.g., redundancy analysis) analyses 

using monotonic and linear relationships. This approach employs taxonomic and functional 

information, in addition to physicochemical parameters (Liu et al., 2021; Ramette, 2007). These 

results may provide insights into microbial functionality or reveal the factors influencing the 

variability of taxa and genes  (Buttigieg & Ramette, 2014; Carballa et al., 2015). This is clearly 

supported by information from literature. 

In general, correlational and multivariate analyses are essential for identifying key taxa and genes 

that influence AD processes and performance. For instance, redundancy analysis (RDA) indicated 

that propionate and acetate accumulation were precursors to ammonia inhibition, which decreased 

CH4 yield. These conditions created an environment favoring acid-producing, acid-resistant, or 
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ammonia-resistant microbes, such as Proteiniphilum, Ruminococcaceae, and Methanobacterium, 

but negatively affected syntrophic VFA-oxidizing bacteria, such as Sedimentibacter (Peng et al., 

2018). Spearman’s correlation has also been used to identify important metabolic activities in AD, 

such as Methanosarcina, owing to its positive correlation with CH4 concentration (Rahman et al., 

2021). Although RDA indicates which key taxa or genes may be beneficial or detrimental, based 

on physicochemical variables, correlational analyses specify which metabolites are directly linked 

to each taxon. 

On the other hand, functional prediction tools enable deeper insights into genes associated with 

metabolic pathways affected under various conditions. For instance, PICRUSt2 has highlighted 

the relevance of the F-type ATPase functional gene, which is present in some microorganisms and 

helps them persist during ammonia inhibition. This is because encodes a protein complex that 

releases H+ by consuming ATP when NH3 permeates the cell, an action triggered by high ammonia 

concentrations (Yu et al., 2021). Prokka, used for metagenomics, has provided an associative 

insight between genera and genes through metagenome-assembled genomes (MAG), allowing 

functional characterization of key microorganisms in key challenges. For instance, it has been 

confirmed that the bacterium Eubacterium callanderi TJU0021 is a significant SAOB in ammonia-

inhibited processes because it possesses marker genes acsB, acsC, acsD, and fthfs related to the 

W-L pathway  (Xu et al., 2024). These tools enhance our understanding of microbiome 

functionality under various challenges, enabling the identification of critical associations between 

taxa and genes, thereby providing more specific insights into the status of the microbial 

community. 
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1.5. Hypotheses and objectives 

1.5.1. Hypotheses 

• The application of a statistical framework to explore microbial indicator attributes using 

taxonomic and functional information from various food waste digesters will validate the 

discovery of reliable and suitable microbial indicators for monitoring anaerobic processes 

fed with organic solid waste. 

 

1.5.2. General objective 

• To validate the application of a statistical framework for identifying suitable and reliable 

microbial indicators for monitoring anaerobic processes fed with organic solid waste. 

1.5.3. Specific objectives 

• To identify reliable microbial indicators to detect key challenges in anaerobic digestion of 

the organic fraction of municipal solid waste and food waste, specifically related to CH4 

yield, through a meta-analysis. 

• To determine suitable microbial indicators to detect a key challenge (ammonia inhibition) 

in anaerobic digestion processes using food waste. 

• To evaluate the response of reliable and suitable microbial indicators for detecting 

ammonia inhibition by monitoring an anaerobic sequencing batch reactor system under 

perturbations.
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CHAPTER 2. Research design 

The identification of reliable and suitable MIs involved a research design focused on a systematic 

methodology considering research criteria, such as neutrality, reliability, and validity, as outlined 

by Johnson and Waterfield (2004) (Fig. 2.1). This thesis comprises of three stages. First, the 

discovery phase involved a meta-analysis to identify reliable MIs. Subsequently, two application 

phases were conducted to pinpoint key challenges in FW digesters and monitoring indicators in a 

semi-continuous process. This study utilized a multi-omics approach to ensure consistent MI 

responses, regardless of the sequencing technology used. General details of each experimental 

stage are provided below, with specific methodologies detailed in the corresponding chapters. 

 

Figure 2.1. Research design for identifying suitable microbial indicators for FW digesters. The numbering shown 

in the statistical framework indicates the MI attributes analyzed at each stage: (1) universality, (2) significant change, 

(3) keystone, (4) early warning sign, and (5) key metabolic roles. 
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The first stage involved a meta-analysis of samples with taxonomic information related to 16S 

rRNA gene sequences from various anaerobic processes fed with OFMSW/FW (Chapter 3 of this 

thesis). This section focuses on the reliability and neutrality research criteria. The aim was to 

ensure that suitable MIs provided reproducible responses regardless of the process configuration, 

primer region, and sampling techniques within a context encompassing multiple anaerobic 

systems. Samples were initially identified through a literature search on microbial community 

evaluation in similar processes. Samples were chosen based on a selection criterion, and 

physicochemical characteristics (e.g., VFA, ammonia, LCFA, and CH4 yield) were determined. 

The samples were categorized based on the CH4 yield, and the microbial communities were 

analyzed. A statistical framework was then applied considering the attributes of (1) universality, 

(2) significant change, (4) early warning signs, and (5) key metabolic roles. The outcome was the 

identification of suitable MIs capable of indicating the performance of the OSW digesters. 

The second stage involved testing the response of suitable MIs to detect a specific challenge in 

FW digesters. Because of the interactions between inhibitory metabolites released in FW digesters, 

an experimental design with two substages was necessary. In sub-stage I, an experimental assay 

identified the primary compound or interaction with the most significant inhibitory effect on CH4 

yield in an AD batch system fed with FW (Chapter 4 of this thesis). Statistical analyses confirmed 

that ammonia was the inhibitory compound of interest, which is a recurrent challenge in FW 

digesters. Consequently, in sub-stage II, the response of the potential MI reported in the literature 

was evaluated for its capacity to describe ammonia inhibition (Chapter 5 of this thesis). An 

ammonia concentration gradient was designed to cover three levels: non-inhibitory, inhibitory, and 

minimum inhibitory. Metagenomics provided taxonomic and functional information about the 

microbiome at each inhibitory level. A statistical framework was then applied, incorporating the 

attributes of (2) significant change, (3) keystone, (4) early warning signs, and (5) key metabolic 

roles. The results identified a suitable MI for efficiently detecting ammonia inhibition issues in 

FW digesters. 

In the third stage, reliable and suitable MIs were evaluated to detect ammonia inhibition in samples 

from an anaerobic sequencing batch reactor (AnSBR) under perturbations (Chapter 6). The 

experiment was divided into four processes, each distinguished by the concentration of ammonia 

added at the start of the operating cycle. All processes involved an AnSBR system subjected to 
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variations in the feedstock composition. The microbial community was monitored in key cycles 

characterized by the peak CH4 productivity, lowest CH4 production, and process recovery. 

Community structure was assessed by full-length 16S rRNA gene sequencing. To confirm the 

effectiveness of the MIs in detecting ammonia inhibition, only attribute (2) significant change was 

evaluated using center log ratio (CLR) transformation for data standardization. The combination 

of genera and genes revealed metabolic profiles linked to syntrophic activities affected by 

ammonia that were undetectable through physicochemical parameters. These MIs were deemed 

reliable for identifying ammonia inhibition in an FW digester system, regardless of feedstock 

variations.
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CHAPTER 3. Identifying reliable microbial indicators in anaerobic digestion of organic 

solid waste: Insights from a meta-analysis 

 

3.1. Abstract 

The identification of microbial indicators holds great potential for detecting key challenges in 

anaerobic digestion, driving microbial management. However, reliable microbial indicators must 

possess attributes such as universality, significant abundance changes under stress, and the ability 

to predict CH4 yield. A meta-analysis of 178 publicly available 16S rRNA gene sequences from 

12 studies on the digestion of organic solid waste was conducted to evaluate microbial indicators' 

performance. Alpha diversity analysis revealed that a specialized genus-level microbial 

community, with a high number of sOTUs, was essential for achieving high CH4 yield. Key taxa 

such as Aminobacterium, Clostridium, HA73, T78, Corynebacterium, Lactobacillus, and 

Prevotella exhibited the greatest number of microbial indicator attributes, including significant 

changes, predictive capability for CH4 yield, and association with inhibitory compounds. Based 

on these unique characteristics, various detection applications were suggested. Corynebacterium, 

Lactobacillus, and Prevotella were recommended for their robust fold-change attribute, indicating 

a high likelihood of successful categorization. Aminobacterium, Clostridium, HA73, and T78, as 

core microbiome members, were linked to universality, suggesting their easy detection across 

various anaerobic digestion processes. Understanding the strengths and limitations of these 

indicators will support the selection of appropriate detection techniques. These microbial 

indicators could help address key challenges, improve conventional monitoring systems, and be 

implemented in models for the development of new control systems 

Reference to the published work 

Jonathan Cortez-Cervantes, Iván Moreno-Andrade, Ana E. Escalante, Daniel de los  

Cobos-Vasconcelos, Julián Carrillo-Reyes. Identifying reliable microbial indicators in anaerobic 

digestion of organic solid waste: Insights from a meta-analysis Journal of Environmental Chemical 

Engineering, 12 (5), 2024 https://doi.org/10.1016/j.jece.2024.113392
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3.2. Introduction 

AD is an industrial process for valorizing organic solid wastes, like the OFMSW and FW, into 

CH4, producing typically 400-500, or up to 700 L of CH4 per kg of added volatile solids (VSadded), 

a yield which strongly depends on the biodegradability of the feedstock (Mao et al., 2015; Wang 

et al., 2018). Despite the steady growth in AD utilization, several operational challenges persist, 

impacting CH4 production and yield. These challenges include the accumulation of metabolic 

compounds, foaming, among others, which can also induce alterations in the microbiome (Wu et 

al., 2021). To ensure the stability of CH4 production, indicators sensitive to disturbances and linked 

to process stability must be monitored (Wu et al., 2019). If an indicator responds faster to 

disturbances than to changes in CH4 production, it can be used as an EWI of process instability. 

Currently, the indicators used are typically based on physicochemical parameters such as biogas 

content and yield, pH, total and individual VFA, alkalinity ratios, and ammonia (Wu et al., 2021). 

However, physicochemical indicators have limitations in identifying the underlying causes of key 

challenges, offering only a broad process overview and having only a limited number of 

parameters suitable for EWI (Sun et al., 2019; Wu et al., 2021; Wu et al., 2019). Therefore, there 

is a pressing need to discover supplementary indicators that fill those gaps in conjunction with 

physicochemical indicators. 

Microbial communities play a crucial role in the AD process by driving the conversion of organic 

waste into valuable products through complex metabolic interactions. As a result, the concept of 

microbial management has emerged, encompassing the application of techniques to modulate 

microbial communities to enhance the efficiency of AD (Carballa et al., 2015; Li et al. 2018). The 

implementation of microbial management relies on microbial indicators (MI), which are biological 

responses at different biological organization levels that provide valuable insights into the 

conditions of the microbial community involved in the AD process (Carballa et al. 2015; Huerta 

et al., 2024). In this sense, MI might be conceived from two approaches: i) focusing on the whole 

community perspective by diversity indices, or ii) on specific microorganisms by key taxa 

(Carballa et al., 2015; De Vrieze, 2020). 

The alpha and beta diversity metrics can profile patterns in the entire microbial community 

structure depending on process performance (De Vrieze, 2020). For instance, the Shannon 

diversity index and OTU count revealed a reduction in their values as CH4 yield decreased, which 
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was attributed to elevated substrate concentrations (Basak et al., 2021). Beta diversity analysis 

enabled visualization of distinct microbial community clusters corresponding to different state 

phases of AD, mirroring the variations in physicochemical indicators such as total VFA (VFAt), 

ammonia, and CH4 yield (Peng et al., 2018). While diversity indices capture microbial community 

alterations, it is essential to acknowledge their specificity to individual studies, potentially lacking 

equivalent responses across different processes (Li et al., 2018). 

Key taxa have been proposed as an explanation for perturbations in AD. For example, deficiencies 

in ammonia, nutrients, and trace elements can hinder the activity of acetoclastic methanogens, 

leading to the accumulation of acetate and affecting CH4 production (Li et al., 2017). Shifts in the 

archaea community were linked to the inhibitory power of ammonia, observed a transition from 

acetoclastic methanogen Methanosaeta to versatile methanogen Methanosarcina, followed by the 

emergence of hydrogenotrophic methanogen Methanoculleus (Hardy et al., 2021). This transition 

of the methanogenic pathway may result in a decrease in CH4 production by up to 30% (Li et al., 

2018). Understanding the relationship between key taxa dynamics and their responses to 

physicochemical parameters are promising for diagnosing and addressing key challenges in AD 

systems. 

In a scenario with similar feedstocks, such as the OFMSW and FW, and identical temperature 

regimes, it becomes easier to identify common microorganisms forming a representative core 

microbiome (Xu et al. 2018). This will enable the discovery of reproducible microbial 

communities. The core microbiome refers to a ubiquitous and consistent set of microorganisms 

that are commonly found in microbial communities within similar habitats (Berg et al., 2020). 

Detecting the presence of the core microbiome is feasible and has been suggested that its 

abundance and presence is crucial for AD performance and stability (Xu et al., 2018). Therefore, 

evaluating the core microbiomes of different AD systems with common feedstocks and 

temperature is a viable strategy for identifying universal MI. Previous studies highlight MI 

attributes such as universality, differential abundance between categories of interest (fold change), 

binary response (e.g., presence or absence), predicted response as potential early warning signals, 

and have a relevant role in AD (Carballa et al., 2015; Huerta et al., 2024; Li et al., 2018). The 

incorporation of multiple characteristics is indicative of suitable MI (Huerta et al., 2024). Although 

MI has been suggested to have some of these attributes for specific AD processes, proving its 
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viability remains challenging (Li et al., 2018; De Vrieze 2020; Wu et al,. 2021). In this sense, 

integrative studies analyzing several processes with standard operational attributes, such as a meta-

analysis with a proper analytical framework, have been suggested to identify reliable MI, 

minimizing bias related to process specificity (Navarro-Díaz et al., 2020; Poirier et al., 2020).  

This study aimed to find a reliable MI to detect key challenges in AD of OFMSW and FW 

associated with CH4 yield through a meta-analysis. It introduces a statistical framework using 

publicly available 16S rRNA gene sequences for the analysis of diversity indices, core 

microbiome, and the whole microbial community. This approach integrates various MI attributes, 

including significant abundance variations across groups (such as methane yield categories), their 

occurrence within specific AD systems (core microbiomes), their predictive capability for CH4 

yield, and their response in association with AD metabolites. Defining reliable MI is a promising 

strategy for implementing microbial management to control the performance of AD systems. 
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3.3. Material and methods 

3.3.1. Data collection 

This meta-analysis targeted similar feedstocks such as OFMSW and FW to pinpoint reliable MIs, 

considering the impact of feedstock composition on microbial community structure (Li et al., 2018; 

Xu et al., 2018). The 16S rRNA sequences were selected from a comprehensive search in the 

Scopus database employing the following terms within article titles, abstracts, and keywords: 

“OFMSW” OR “food waste” AND “anaerobic digestion” OR “methanogenesis” AND “microbial 

community” OR “16S rRNA” OR “16S” OR “metagenomic”. The following selection criteria 

were applied to the studies included in the meta-analysis: SRA database, demultiplexed paired-

end sequences with publicly available anaerobic digesters producing CH4, and the sample names 

matching between metadata submission and article information. After the selection process, 12 

studies with 178 samples consisting of 1% full-scale, 24% pilot-scale, and 75% lab-scale 

processes, were included (Table 3.1). Information about operative and physiochemical parameters 

from the studies was used to create a metadata set, including types of feedstocks, reactors and 

scales-up, inoculum source, general operational parameters, TAN, free ammonia, LCFA, VFA, 

and CH4 yield.  

3.3.2. 16S rRNA sequencing datasets processing 

The raw reads (.fastq) sequenced from microbial samples in the OSW digester were retrieved using 

run accession through SRA toolkit software. Sequences quality was analyzed using the FastQC 

tool (Wingett & Andrews, 2018) ensuring an efficient and accurate retrieval of the desired 

sequencing data, facilitating subsequent analysis and interpretation. The files and metadata were 

introduced into Qiime2 (v. 2021.4) (Bolyen et al., 2019) as artifacts and analyzed using a modified 

protocol proposed in (Estaki et al., 2020). The samples were sorted by 16S rRNA region groups, 

namely the V3-V4 and V4 regions for the bacteria-archaea set (n = 158) and the V3-V5 region for 

the archaea set (n = 20). This grouping was carried out to minimize bias during sequence 

processing because the Deblur algorithm has limitations regarding the diversity of the amplicon 

sequences (Amir et al., 2017).  

The quality filter method was used to filter the raw sequences using default settings (Phred quality 

score = 4). Deblur was then employed to denoise the filtered sequences using default settings, with 

the trim length varying depending on the group analyzed: 220 bp for the bacteria-archaea set and 
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200 bp for the archaea set. The result of the analysis was the creation of sub-operational taxonomic 

units (sOTUs) that utilize error profiles to achieve a level of single-nucleotide resolution, which 

helps deduce the most likely true sequences present in each sample (Amir et al., 2017). The 

fragment-insertion method was used to enhance the accuracy of phylogenetic diversity analyses, 

which involved aligning the sOTUs against a reference tree using the Silva 128 SEPP reference 

database. This process also helped to remove erroneous sequences from the dataset (Estaki et al., 

2020; Janssen et al., 2018; Quast et al., 2013). Additionally, the classify-sklearn algorithm was 

used to assign annotations to each sOTUs by mapping them against the Silva 138 99% OTUs full-

length sequence (Bokulich et al., 2018). The sOTUs tables obtained were combined, and only five 

samples that did not identify both bacteria and archaea populations were excluded, resulting in 153 

samples. Random subsampling without replacement was conducted using the first quartile 

frequency (11542 sOTUs) to rarefy sequencing depth across all. This approach guaranteed that 

richness estimates remained unaffected by variations in sequencing depth. As a result, 39 samples 

were excluded (n = 114). The analysis was conducted using the "rarefy_even_depth" function from 

the "phyloseq" package (McMurdie & Holmes, 2013). The nature of the meta-analysis introduces 

variability in the 16S rRNA gene, leading to differences in the classification of sOTUs among the 

studies. Therefore, the statistical analyses used to highlight MI attributes were conducted at the 

genus level to help minimize these difference (Martínez-Porchas et al., 2016). 

3.3.3. Categorization of samples according to CH4 yield. 

CH4 yield (measured in mL CH4/gVSadded) is commonly used as a process indicator; thus, it was 

selected as both a categorical and quantitative variable for classifying AD performance (Wu et al., 

2021). This classification, known as the methane yield category, was derived from the classes of 

a beta distribution histogram following the Freedman-Diaconis rule (Han et al., 2012). The 

establishment of frequency and intervals for each class in the distribution histogram was 

determined using the Freedman-Diaconis rule (Eq. 3.1). This rule enables the creation of 

histograms from continuous and unimodal probability distributions and minimizes the difference 

between empirical and theoretical probability distributions (Freedman & Diaconis, 1981). 

 
Class width = 2

IQR

√n
3

 
Eq. 3.1 

where IQR is the interquartile range of the data, and n is the number of observations.  
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Methane yield data were determined to follow a beta distribution using the "descdist" function 

from the "fitdistrplus" package (Delignette-Muller & Dutang, 2015). To define methane yield 

categories, the "nclass.FD" function from the "grDevices" package was applied to establish class 

ranges. These categories were evaluated using the Kruskal-Wallis test (p-value < 0.05) via the 

"kruskal.test" and "p.adjust" functions from the "stats" package. Pairwise comparisons within 

methane yield categories were performed using the Wilcoxon rank sum test with Benjamini-

Hochberg correction (p-value < 0.05), utilizing the "pairwise.wilcox.test" function from the "stats" 

package. Data visualization was conducted through boxplot analysis using the "ggplot2" package 

(Wickham, 2016). 

3.3.4. Diversity analysis 

Diversity analyses were performed and compared using a rarefied count table at sOTU level and 

genus level. Comparing different biological classifications would yield distinct results for each 

level, helping to formulate a more consistent hypothesis (Martínez-Porchas et al., 2016). Alpha 

diversity was grouped from methane yield categories and assessed using multiple indices, 

including Chao1, Pielou's evenness, Shannon, and Hill numbers (q0, q1, and q2). Beta diversity 

was measured using the Bray-Curtis distance. Alpha diversity indices were calculated using the 

“phyloseq” and “hilldiv” packages. The beta diversity index and its corresponding statistical tests 

were calculated using Qiime2 software. 

3.3.5. Selecting the core microbiome 

The sOTU table at the genus level was used to identify the core microbiome. This process involved 

creating a presence-absence matrix, where "1" and “0” values represent the presence or absence 

of genera, respectively. Considering the influence of temperature on microbial community 

structure (Rahman et al., 2021; Xu et al., 2018), the core microbiome was defined as the genera 

present in at least 80% of mesophilic AD process samples. This approach increases the number of 

microorganisms of interest within 84% of the total collected samples. The presence-absence matrix 

was visualized using the "pheatmap" package (Kolde, 2012). 
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Table 3.1. General operational characteristics of OSW digesters selected for the meta-analysis 

Article Run accesion Feedstock 
Reactor 

type 

Tempe- 

rature (°C) 

Feeding 

regime 

Inoculum 

source 

16S rRNA 

gene 

region 

Reference DOI 

F27 

SRR5410170, SRR5410171, 

SRR5410182, SRR5410183, 

SRR5410186, SRR5410187, 

SRR5410188, SRR5410190, 

SRR5410196, SRR5410198, 

SRR5410199, SRR5410200, 

SRR5410205, SRR5410207, 

SRR5410209, SRR5410212 

Food waste 

and fats oil 

grease 

CSTR 55 Batch 

Anaerobic 

digester fed 

wastewater 

V4 
Amha et al., 

2017 

https://doi.org/10.1

016/j.watres.2017.0

6.065 

F2 

SRR13078098, SRR13083404, 

SRR13083415, SRR13083422, 

SRR13083583, SRR13083608, 

SRR13083619 

Food waste 

leachate 
CSTR 37 Batch 

Anaerobic 

digester 
V3-V4 

Basak et al., 

2021 

https://doi.org/10.1

016/j.scitotenv.202

0.144219 

F21 

SRR6488989, SRR6488991, 

SRR6488993, SRR6488995, 

SRR6488997 

Food waste 

recycling 

wastewater 

AnCMBR 36 
Semi 

continuous 

Domestic 

wastewater 
V3-V4 

Cho et al., 

2018 

https://doi.org/10.1

016/j.biortech.2018

.02.015 

F24 

SRR6067591, SRR6067592, 

SRR6067593, SRR6067607, 

SRR6067614, SRR6067616, 

SRR6067618 

Acidogenic 

effluent 

from food 

waste 

fermenter 

CSTR 37 
Semi 

continuous 

Anaerobic 

digester fed 

food waste 

V3-V4 
Gaby et al., 

2017 

https://doi.org/10.1

186/s13068-017-

0989-4  

F25 

SRR4434290, SRR4434482, 

SRR4434487, SRR4434488, 

SRR4434489, SRR4434490, 

SRR4434528, SRR4434576, 

SRR4434577, SRR4434578, 

SRR4436424, SRR4436426, 

SRR4436427, SRR4436428, 

SRR4436429, SRR4436430, 

SRR4436431, SRR4436432, 

SRR4436433, SRR4436434, 

SRR4436435, SRR4436436 

Food waste SBR 37 
Semi 

continuous 

Anaerobic 

digester fed 

household 

waste 

V3-V4 

V3-V5 

He et al., 

2017 

https://doi.org/10.1

038/s41598-017-

14258-3 

F17 

SRR5650604, SRR5650605, 

SRR5650606, SRR5650607, 

SRR5650608, SRR5650609 

Food waste 

and fats oil 

grease 

CSTR 35 
Semi 

continuous 

Anaerobic 

digester fed 

food waste 

V3-V4 
He et al., 

2018 

https://doi.org/10.1

186/s13568-018-

0623-2  

continued 
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https://doi.org/10.1016/j.watres.2017.06.065
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https://doi.org/10.1016/j.scitotenv.2020.144219
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F4 

SRR12007279, SRR12007281, 

SRR12007282, SRR12007283, 

SRR12007284, SRR12007285, 

SRR12007286, SRR12007287, 

SRR12007288, SRR12007289, 

SRR12007290, SRR12007291 

Food waste SBR 55 
Semi 

continuous 

Anaerobic 

digester fed 

food waste 

sewage 

sludge 

V3-V4 
Lim et al., 

2020 

https://doi.org/10.1

016/j.biortech.2020

.123751 

F17 
SRR13976544, SRR13976545, 

SRR13976546 
Food waste Batch 37 Batch 

Anaerobic 

digester 

aerobic-

system 

V3-V4 
Patil et al., 

2021 

https://doi.org/10.1

016/j.biortech.2021

.125123 

F19 

SRR3629052, SRR3629054, 

SRR3629058, SRR3629059, 

SRR3629149, SRR3629150, 

SRR3629151, SRR3629152, 

SRR3629153, SRR3629154, 

SRR3629253, SRR3629255, 

SRR3629264, SRR3629270, 

SRR3629273, SRR3629277, 

SRR3629279, SRR3629280, 

SRR3629300, SRR3629328 

Food waste CSTR 36 
Semi 

continuous 

Anaerobic 

digester fed 

food waste 

V3-V4 

V3-V5 

Peng et al., 

2018 

https://doi.org/10.1

016/j.biortech.2018

.04.076 

F16 

SRR6484246, SRR6484247, 

SRR6484248, SRR6484249, 

SRR6484250, SRR6484251, 

SRR6484252, SRR6484253, 

SRR6484254, SRR6484255, 

SRR6484256, SRR6484257, 

SRR6484258, SRR6484259, 

SRR6484260, SRR6484263, 

SRR6484265, SRR6484266, 

SRR6484267, SRR6484268, 

SRR6484269, SRR6484270, 

SRR6484271, SRR6484272, 

SRR6484273, SRR6484274, 

SRR6484275, SRR6484276, 

SRR6484277, SRR6484278, 

SRR6484279, SRR6484280, 

SRR6484281 

Food waste semi CSTR 37 
Semi 

continuous 

Anaerobic 

digester fed 

food waste 

V3-V4 
Svensson et 

al., 2018 

https://doi.org/10.1

016/j.biortech.2018

.08.096 

continued 
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F20 SRR5341482, SRR5341483 

Food waste 

mixed with 

wastewater 

AnMBR 36 
Semi 

continuous 

Anaerobic 

digester 
V4 

Zamorano 

López et al., 

2018 

https://doi.org/10.1

016/j.jenvman.2018

.04.018 

F5 

SRR8083765, SRR8083766, 

SRR8083767, SRR8083768, 

SRR8083769, SRR8083773, 

SRR8083774, SRR8083775, 

SRR8083776, SRR8083777, 

SRR8083778, SRR8083784, 

SRR8083785, SRR8083786, 

SRR8083787, SRR8083788, 

SRR8083789, SRR8083790, 

SRR8083791, SRR8083792, 

SRR8083794, SRR8083795, 

SRR8083803, SRR8083805, 

SRR8083806, SRR8083809, 

SRR8083811, SRR8083812 

SRR8083813, SRR8083814, 

SRR8083819, SRR8083820, 

SRR8083821, SRR8083822, 

SRR8083823, SRR8083824, 

SRR8083825, SRR8083827 

SRR8083828, SRR9010617, 

SRR9010618, SRR9010619, 

SRR9010620, SRR9010621, 

SRR9010622 

Food waste Not specified 37 Batch 

Anaerobic 

digester fed 

with food 

waste 

V4 
Zhang et al., 

2020 

https://doi.org/10.1

016/j.biortech.2020

.123768 

CSTR: Continuous Stirred Tank Reactor; AnCMBR: anaerobic ceramic membrane bioreactor; SBR: Sequencing batch reactor; AnMBR: Anaerobic membrane bioreactors 

 

https://doi.org/10.1016/j.jenvman.2018.04.018
https://doi.org/10.1016/j.jenvman.2018.04.018
https://doi.org/10.1016/j.jenvman.2018.04.018
https://doi.org/10.1016/j.biortech.2020.123768
https://doi.org/10.1016/j.biortech.2020.123768
https://doi.org/10.1016/j.biortech.2020.123768
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3.3.6. Statistical analysis  

A comprehensive statistical approach was applied to identify reliable MIs by incorporating 

univariate and differential, and correlation analyses alongside a generalized additive model for 

location, scale, and shape (GAMLSS). All statistical analyses were performed using R version 

4.2.1. The statistical approach evaluates the entire microbial community through key diversity 

indices and identifies key taxa based on the presence of the following MI attributes: i) an 

approximation of the characteristic of universality was associated with significant changes in the 

core microbiome (Li et al., 2018; Xu et al., 2018); ii) the robust fold-change attribute was 

associated with relatively significant changes in the abundance of members of the whole microbial 

community (Nearing et al., 2022; Xu et al., 2018); iii) the ability of key alpha diversity and key 

taxa to predict CH4 yield was evaluated (Carballa et al., 2015); and iv) the relevant role of key taxa 

under stress conditions in AD was correlated with metabolites commonly associated with 

inhibition phenomena, including TAN, LCFA, and VFA (Huerta et al., 2024; Li et al., 2018). The 

following sections detail the statistical analysis applied to identify MI attributes. 

3.3.6.1. Key diversity indexes 

The methane yield categories were employed to compare the responses of alpha and beta indices 

through boxplots and principal coordinate analysis (PCoA), respectively. The results were used to 

identify key diversity indices within and among the methane yield categories. Alpha diversity was 

categorized and evaluated based on methane yield categories. The interaction among these 

categories and alpha diversity was evaluated using Kruskal-Wallis and Wilcoxon rank sum tests 

with Benjamini-Hochberg correction as detailed in section 3.3.3. The beta diversity analysis was 

conducted by categorizing data based on methane yield and case study. The relationship between 

groups and beta diversity was visualized using a vega editor (https://vega.github.io/)  and assessed 

using analysis of similarities (ANOSIM) with 999 permutations (p < 0.05). 

3.3.6.2. Universality 

The core microbiome was determined based on its high occurrence properties (≥ 80% occurrence 

of samples from mesophilic anaerobic processes). The Hellinger transformation was applied to 

reduce the possibility of low counts and numerous zero values in the relative abundance of core 

microbiome (Buttigieg & Ramette, 2014). The core microbiome was analyzed using Kruskal-

Wallis test for differences between categories and Wilcoxon rank sum test with Benjamini-

Hochberg correction within categories. 

https://vega.github.io/
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3.3.6.3. Robust fold change 

Differential analyses assessed the abundance of the entire microbial community across methane 

yield categories. Multiple differential analyses, recommended for identifying robust fold changes 

in genera were applied due to the varying data distributions inherent to metanalyses (Nearing et 

al., 2022). These analyses models read count data across a range of distributions and apply diverse 

data transformations and hypothesis tests. Genera considered robust fold change attribute appeared 

in at least two differential analyses (Nearing et al., 2022). Typically, differential analyses identify 

genera with significant fold changes between two relevant study groups (Zhang et al., 2021). 

Considering theoretical CH4 yield (~ 400 mL CH4/gVSadded) and the methane yield categories then 

were defined as two groups: low CH4 yields (methane yield categories C1, C2, and C3, 

encompassing intervals < 400 mL CH4/gVSadded) and high CH4 yields (methane yield categories 

C4, C5, and C6, intervals > 400 mL CH4/gVSadded) (Li et al., 2018).  

Different analytical methods require either rarefied or non-rarefied genus abundance data. The 

non-rarefied genus count table (n = 158) was used in ALDEx2, DESeq2, and edgeR to minimize 

potential false positives. In contrast, the rarefied genus abundance table (n = 114) was applied in 

LEfSe to account for read depth variations (Nearing et al., 2022). ALDEx2 employed a Monte 

Carlo simulation within a Dirichlet distribution to estimate genus counts, followed by a centered 

log-ratio (CLR) transformation. Welch’s t-test, adjusted with Benjamini-Hochberg p-values, tested 

median CLR differences (Fernandes et al., 2013). DESeq2 modeled the variance-mean relationship 

of genus counts using a negative binomial distribution and tested log2 fold changes with the Wald 

test (Love et al., 2014). EdgeR also used negative binomial distribution, applying an empirical 

Bayes procedure to address overdispersion, with Fisher’s exact test to assess log2 fold changes 

(Robinson et al., 2009). LEfSe detected significant genera using the Kruskal-Wallis and Wilcoxon 

rank-sum tests, estimating effect sizes with linear discriminant analysis (Segata et al., 2011). A 

Venn diagram showing overlapping taxa across these differential methods. The ALDEx2, 

DESeq2, edgeR and LEfSe analysis were performed according to the conventional workflow 

described in their documentation of "ALDEx2", "DESeq2", "edgeR" and "lefser" packages 

respectively. The Venn diagram was created using the "ggvenn" package. 
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3.3.6.4. Predictive capability 

The capability of key alpha diversity indices and key taxa with universality or robust fold changes 

attributes to predict the CH4 yield were evaluated applying GAMLSS (Rigby et al., 2005). 

Additionally, to test whether the model performance could be improved, reported physicochemical 

indicators, such as TAN and acetic acid, were added. Two models were considered: the first model 

utilized only potential MI as an explanatory variable (Eq 3.2), whereas the second model used both 

microbial and physicochemical indicators (Eq. 3.3) to predict CH4 yield: 

 E[Mi|MIi]= β0 + fi(MIi)+ ∈i 

 

Eq. 3.2 

 E[Mi|MIi, PIi]= β0 + fi(MIi) + fi(PIi) + ∈i Eq. 3.3 

Where Mi is the response variable given by the CH4 yield (mL CH4/gVSadded), MIi is the value of 

the microbial indicator (rarefied relative abundance or index value), PIi is the value of the 

physicochemical indicator (mg/L), fi is a penalized B-spline function (non-parametric smooth 

function) to fit the estimator coefficients to a nonlinear response variable and ∊i is the residual 

error of the model. In some cases, the first term was removed from the equation because some 

indicators had a better fit to a linear regression.  

The generalized R-squared (R2) values were used to determine the proportion of variance 

explained by each model, while the Akaike Information Criterion (AIC) was employed to evaluate 

the importance of the indicators in predicting the CH4 yield. Models with higher R2 values, 

preferably close to 1, and lower AIC values selected microbial indicators that were the most 

effective in predicting CH4 yield. The Wald test was used as a statistical test to assess whether the 

estimated coefficients for a predictor variable used in the GAMLSS significantly differed from 

zero based on the estimated standard error of the coefficient and assuming a normal distribution. 

GAMLSS and its statistical significance were obtained using the "gamlss" package (Rigby et al., 

2005). 

3.3.6.5. Relevant roles in inhibition  

Correlation analysis was used to determine the potential role of key taxa with metabolites 

associated with inhibition. The results provide insights into how the abundance of key taxa may 

be related to the concentration of these metabolites and their possible metabolic roles. Complete 
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matrices were constructed resulting in a TAN matrix (n = 46), LCFA matrix (n = 26), and VFA 

matrix (n =2 3). Each matrix was assembled to include the largest number of samples that assessed 

these metabolites along with their respective microbial community characterization, with a focus 

on key taxa. Other common metabolites between the studies were incorporated to confirm the 

reproducible responses of the MI.  

Variables in the matrices may not meet statistical assumptions, such as normal distribution, or may 

be incompatible due to differing units (Buttigieg & Ramette, 2014). Hellinger transformation was 

applied to the microbial community (see section 3.3.6.2.), and logarithmic transformation was used 

to reduce skewness and achieve linearity in concentrations of AD by-products and CH4 yield. 

(Buttigieg & Ramette, 2014).The correlation matrix was constructed using Spearman's correlation 

coefficients (Rs) with the "cor" function from the "stats" package. The "cor.mtest" function from 

the "corrplot" package was used to determine the p-values (p-value < 0.05) of correlation matrix 

(Wei & Simko, 2021).  
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3.4. Results and discussion 

3.4.1. Sample selection, processing, and categorization 

From the initially chosen AD manuscripts focused on OFMSW and FW carrying out microbial 

characterization, the number of manuscripts decreased as the selection criteria were applied in 

sequence. The criteria included Scopus systematic search, public database sequences, 

demultiplexed paired-end data from MiSeq sequencing, and CH4-producing process data matching 

with sample names in the data repository. These resulted in a total of 358, 53, 30, and 12 studies 

respectively, after applying each criterion. In total, 178 samples were collected from these 12 

selected studies recovering 11,267,664 raw sequences from the bacteria-archaea set and 1,202,736 

raw sequences from the archaea set. Following a quality filter and denoising algorithm, 3,256,743 

sequences were retained for the bacteria-archaea set and 697,922 for the archaea set. Upon merging 

both sets, an average of 440 ± 250 sOTUs per sample were recovered. Despite the limited number 

of studies analyzed, the repeated responses and similar observations in literature support the 

reliability of the proposed MIs within these processes. The following sections explain and explore 

these findings. 

The CH4 yield data, ranging from 0 to 685 mL CH4/gVSadded, were collected from 98 samples, 

establishing six methane yield categories (C1 to C6) based on the corresponding bin widths 

determined by the Freedman-Diaconis rule. Each category comprised an interval of 114 mL 

CH4/gVSadded and exhibited significant differences in relevant physicochemical parameters (Fig 

3.1). Compared with C2 and C5 - C6, the accumulation of isobutyric acid, acetic acid, TAN, and 

VFAt negatively impacted CH4 yield. Interestingly, these compounds have been identified as 

inhibitory in AD and suggested as physicochemical indicators (He et al., 2017; Wu et al., 2021).  

The proposed categorization elucidated the dynamic performance of anaerobic processes by 

discarding factors like feedstock composition and operational conditions that could distort the 

classificatory method. Therefore, the exploration of significant relationships between the microbial 

community structure and abundance concerning methane yield categories were assessed.  
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Figure 3.1. Distribution of physicochemical parameters across methane yield categories. Boxplots depicted 

median, quartiles, and extreme values, with sample size (n) and Kruskal-Wallis h test-derived p-values (p < 0.05). 

Pairwise comparisons utilized Wilcoxon rank sum tests (p < 0.05). Lowercase letters inside boxplots stand for 

groups with statistically significant differences. 

3.4.2. Microbial community diversity in response to the methane yield categories 

The richness and diversity indices showed significant variations among methane yield categories, 

depending on the sOTU and genus levels, respectively (Fig. 3.2). An increase in sOTU richness 

was observed with higher CH4 yield. Chao1 and q0 indices revealed a significant positive trend 

when comparing C1 and C2 with C6 (Fig. 3.2a). This suggests that a higher number of 

microorganisms were required to maintain a high CH4 yield (Hill et al., 2003; Rahman et al., 2021). 

However, variations in the regions of the 16S rRNA gene utilized for sequencing may result in the 

classification of individual sOTUs, leading to inconsistencies in diversity assessment (Hill et al., 

2003; Martínez-Porchas et al., 2016). Thus, diversity analyses that also take abundance and 

evenness into account may offer other responses at higher taxonomic levels, allowing for the 

integration of these specific sOTUs (Martínez-Porchas et al., 2016). 
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A reduction in genus diversity indicated an increase in CH4 yield. Pielou's evenness, Shannon, and 

q1 indices showed a significant decreasing trend from C1 to C4 (Fig. 3.2b). This negative response 

in diversity may be due to a reduction in the specialization of the microbial community at the genus 

level, which enhanced CH4 yield. (Nguyen et al., 2019). Furthermore, these alpha diversity metrics 

have been previously associated with process performance parameters, including operational 

temperature (Guo et al., 2022), CH4 concentration (Rahman et al., 2021) and feeding frequency 

(Svensson et al., 2018). Although a less diverse community indicated better AD performance, it 

also presents a potential limitation as it becomes more susceptible to instability, a common 

operational issue in processes utilizing these feedstocks (Li et al., 2018; Nguyen et al., 2019). In 

contrast, richness-based metrics were inconsistent in their association with or predicting methane 

yield categories. This implies that the genera count was homogenized across categories, making it 

necessary to introduce abundance metrics to determine a significant diversity assessment (Hill et 

al., 2003). 

 

Figure 3.2. Distribution of significant alpha diversity indices grouped by methane yield categories identified by 

different colors (C1-C6) at both the a) sOTUs and b) genus levels. The boxplots represent the median, quartiles, 

and outliers of the data, with significance determined using the Kruskal-Wallis h test (p < 0.10). Pairwise comparisons 

were performed using Wilcoxon rank sum tests (p <0.10). Lowercase letters inside boxplots stand for groups with 

statistically significant differences. 
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The microbial community structure, whether at the sOTU or genus level, cannot be solely 

explained by the CH4 yield, as demonstrated by beta diversity analysis using the Bray-Curtis 

distance (Fig. 3.3). In both PCoA analyses, the two main coordinates explained 12 - 38% of the 

variance significantly (ANOSIM, p < 0.01), albeit with low R-values (0.12 - 0.17). Beta diversity 

analysis showed that it depended heavily on the specific operational conditions of each system 

(Fig. 3.4). This analysis provides valuable insights into the changes in microbial communities 

associated with AD performance, as demonstrated by studies of individual processes (Basak et al., 

2021; Peng et al., 2018; Svensson et al., 2018). Hence, it is not advisable to employ beta diversity 

indices to compare AD performance based solely on CH4 yield between different processes, even 

when feedstocks are similar. 

 

Figure 3.3. Principal coordinate analysis (PCoA) depicts microbial community dynamics through methane 

yield categories (C1-C6) at both the a) sOTUs and b) genus levels. The ANOSIM test (p < 0.05) and the R value 

based on Bray-Curtis were used to test the dissimilarities between clusters. The percentage of total variation explained 

by each PCoA axis is shown in parentheses. The points in different colors indicate each methane yield category.  

 

Figure 3.4. Principal coordinate analysis (PCoA) depicts microbial community dynamics through a case study 

at both the a) sOTUs and b) genus levels. The ANOSIM test (p < 0.05) and R value based on Bray-Curtis were used 

to test the dissimilarities between clusters. The percentage of the total variation explained by each PCoA axis is shown 

in parenthesis. The points in different colors represent the individual studies examined. 
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3.4.3. The Core Microbiome: Key Players in AD 

The core microbiome obtained comprised of nine genera: Aminobacterium, Clostridium, HA73, 

Methanoculleus, Methanosarcina, Pelotomaculum, Syntrophomonas, T78, and Treponema. 

Although some of these genera have been proposed as MIs in isolated studies (Li et al., 2016; 

Poirier et al., 2016), this study suggests its potential universality given their high frequency and 

significant responses in the performance of the analyzed processes for mesophilic OFMSW and 

FW digesters. For instance, Methanoculleus and Methanosarcina have been proposed as EWIs in 

response to phenol inhibition (Poirier et al., 2016). Additionally, Syntrophomonas and Treponema 

have been suggested as EWIs to detect the excessive accumulation of VFA caused by high OLR 

(Li et al., 2016). Additionally, such core microbiome taxa might play essential roles in AD, 

including hydrolyzing polysaccharides and proteins, fermenting carbohydrates, oxidizing VFA 

through syntrophic interactions (especially acetate, propionate, and butyrate), homoacetogenesis, 

and the production of CH4 through both hydrogenotrophic and acetoclastic pathways (Basak et al., 

2021; Giordani et al., 2021; He et al., 2017; Kim et al., 2019; Ruiz-Sánchez et al., 2018; Sieber et 

al., 2012; Wang et al., 2018; Zamanzadeh et al., 2016). This suggests that the core microbiome is 

related to the maintenance of AD system stability, adaptability, and functionality (Berg et al. 2020; 

Xu et al. 2018). 

Several genera from the core microbiome displayed significant variation among the methane yield 

categories (Fig. 3.5). Aminobacterium, Clostridium, HA73, and T78 were predominantly found in 

C1 (< 114 mL CH4/gVSadded) and displayed a negative response as the AD performance improved. 

In contrast, Methanosarcina showed a higher abundance in C2-C6 (>114 CH4/gVSadded), with no 

significant differences between these categories. These taxa have been suggested to be potential 

MI for detecting operational problems in AD processes (Guo et al., 2022; He et al., 2017; Poirier 

et al., 2016, Poirier et al., 2020; Rahman et al., 2021; Zhang et al., 2020). Still, this study 

corroborates a reproducible significant response based on CH4 yield, highlighting the potential 

universal response of core microbiome members, specifically in mesophilic anaerobic processes 

fed with OFMSW and FW. For example, Aminobacterium has been proposed as an indicator of 

foam formation because of its notable up to 25-fold increase in abundance (He et al., 2017). Two 

Clostridium species, C. sensu stricto 15 and C. butyricum, have been recommended as indicators 

of ammonia inhibition and non-inhibitory conditions, respectively (Poirier et al., 2020). 

Methanosarcina has served as an indicator for detecting ammonia and phenol inhibition, and CH4 
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concentration in anaerobic processes (Poirier et al. 2016, Poirier et al., 2020; Rahman et al. 2021). 

Interestingly, this meta-analysis corroborated the relevance of unclassified genera in potential MI. 

T78, with its high normalized betweenness and interactions with other microorganisms, has been 

proposed as a process indicator for systems supplied with FW and blackwater (Guo et al., 2022). 

Regarding HA73, its abundance notably increased when activated carbon was introduced into AD, 

enhancing system performance (Zhang et al., 2020). In summary, some of these key taxa, 

Methanosarcina and HA73, showed a significant response only to opposite ends of the methane 

yield categories, revealing their potential to indicate extreme operational problems. 

Aminobacterium, Clostridium and T78, led to a gradual significant response as the CH4 yield 

increased, revealing a valuable response to differentiate between two or more methane yield 

categories. 

 

Figure 3.5. The boxplots display the median, quartiles, and extreme values of data, with significance determined 

using the Kruskal-Wallis h test (p < 0.10). Pairwise comparisons were performed using Wilcoxon rank sum tests (p 

< 0.10). Lowercase letters inside boxplots stand for groups with statistically significant differences. 

3.4.4. Association between differentially abundant taxa and methane yield categories 

Six genera displayed robust significant abundance changes between low (< 342 mL CH4/gVSadded) 

and high CH4 yield groups (> 342 mL CH4/gVSadded) (Fig. 3.6), which were found in at least two 

different statistical analyses (Fig. 3.7). Notably, Prevotella, Corynebacterium, and Lactobacillus 

demonstrated a presence/absence response depending on the methane yield category, which is a 

desirable binary feature for MI. The significant fold change in these taxa has been linked to 

negative or positive responses to AD performance associated with inhibitory phenomena (He et 

al., 2017; Khafipour et al., 2020; Mugnai et al., 2021; Poirier et al., 2020; Wang et al., 2020). Key 

taxa with a negative response have been associated with VFA generation and linked to W5 and 

Lactobacillus (He et al., 2017; Mugnai et al., 2021). Meanwhile, key taxa with a positive response 

were related to Sedimentibacter for propionate and Prevotella, Sphaerochaeta, and 
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Corynebacterium for ammonia (Khafipour et al., 2020; Poirier et al., 2020; Ruiz-Sánchez et al., 

2018; Wang et al., 2020). These findings confirm the existence of key and robust taxa that serve 

as direct representatives in the low or high-performing AD processes evaluated in this study. 

 

Figure 3.6. The average absolute abundances of key taxa selected from differential abundances within the entire 

microbial community are depicted. In the chart, the red bars represent the mean abundance observed in the low ch4 

yield group (c1, c2, and c3 methane yield categories), while the green bars represent the mean abundance in the high 

ch4 yield group (c4, c5, and c6 methane yield categories). 

 

 

Figure 3.7. A Venn diagram illustrates the number of genera obtained and shared between differential analysis 

methods (EdgeR, LefSe, DESeq2, and ALDEx2). Genera that predominantly appeared at high CH4 yields 

(categories C4, C5, and C6) are marked with green labels, while those predominant at low CH4 yields (categories C1, 

C2, and C3) are labeled in red.  The key taxa with significant abundance were grouped into different rectangles and 

color-coded according to the differential analysis method used. The yellow rectangle represents EdgeR (n = 62), the 

gray rectangle represents LefSe (n = 4), light red rectangle represents ALDEx2 (n = 3), and blue rectangle represents 

DESeq2 (n = 4). 
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3.4.5. Key alpha indices and key taxa can predict the CH4 yield 

The predictive capability of the potential MIs was confirmed through GAMLSS modelling, 

particularly concerning key diversity indices, key taxa identified from the core microbiome, and 

robust fold change analysis. Corynebacterium, HA73, Lactobacillus, Prevotella, Sphaerochaeta, 

T78, and W5 and key alpha diversity indices (Chao1 and q0 for sOTUs level, and Pielou, q1, and 

Shannon indices for genera level) were significant predictors of CH4 yield (R2: 0.09 – 0.81 and p 

< 0.05). Other taxa, Aminobacterium and Clostridium, exhibited predictive capacity only by 

adding TAN and acetic acid to the model (R2: 0.50 – 0.75 and p < 0.05; supplementary material 

Table S5). Collectively, these potential MIs possess attributes to being considered EWIs, signaling 

potential issues that may affect AD performance. These capabilities were aligned with previous 

research citing Aminobacterium, Corynebacterium, Lactobacillus, and Sphaerochaeta in 

anaerobic systems (He et al., 2017; Li et al., 2016; Poirier et al., 2020), and genes such as hydA 

associated with Clostridium are linked to H2 production (Cabrol et al., 2017). Additionally, the 

Shannon index demonstrated a positive trend during propionate inhibition (Khafipour et al., 2020). 

In contrast, the Pielou evenness index has been dismissed as a warning indicator, as it did not show 

significant trends when a process was perturbed by increases in the OLR (Goux et al., 2015). 

Despite the promising application as possible EWIs suggested by this meta-analysis, such 

indicators need to be validated in continuous AD systems over operation time and different 

inhibition and stable CH4 production scenarios. 

3.4.6. Correlations between key taxa and AD by-products 

The key taxa demonstrated a proportional association, primarily with either low or high CH4 

yields, indicating that a response to varied environments affects AD performance. Given that TAN, 

LCFA, and VFA are the principal AD by-products influencing their performance (Wu et al., 2019), 

a correlation analysis with key taxa was conducted. The results provided insight into the specific 

conditions associated with their responses and suggested their potential metabolic roles that may 

promote such conditions. 

3.4.6.1. Key taxa from the core microbiome 

The behavior of key taxa from the core microbiome was significantly correlated with the AD by-

product concentrations (Fig. 3.8). Aminobacterium displayed a positive correlation with butyric 

acid, propionic acid, acetic acid, and TAN, suggesting a link between protein hydrolysis and amino 
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acid degradation, indicating signs of low performance when organic overloading exists (He et al., 

2017; Jo et al., 2018; Wang et al., 2018). A positive correlation between Clostridium abundance 

and LCFA was observed, attributed to its role in LCFA degradation, which may exemplify 

inhibitory conditions by organic overloading (Basak et al., 2021). The positive correlations 

between HA73 and acetic acid, propionic acid, and TAN are possibly related to its ability to break 

down amino acids (Giordani et al., 2021), evident from its increased abundance with increasing 

NH3 content and the concurrent decrease in CH4 production (Gaby et al., 2017). T78 displayed 

positive correlations with CH4 yield and some LCFA, such as linoleic, myristic, and palmitic acids. 

This genus is presumably a syntrophic bacterium that promotes a high CH4 yield when exposed to 

feedstocks potentially containing a high content of LCFA (Bovio-Winkler et al., 2021; Giordani 

et al., 2021). Positive correlations were observed between Methanosarcina and acetic acid and 

TAN, whereas negative correlations were noted with LCFA. This genus utilizes a mixotrophic 

pathway for CH4 production, demonstrating higher resilience than acetoclastic archaea under 

specific stress conditions, although it may be susceptible to elevated LCFA (Amha et al., 2017; 

Basak et al., 2021; Hardy et al., 2021).  

3.4.6.2 Key taxa from the whole microbial community 

Most of the key taxa within the entire microbial community, such as Lactobacillus, 

Corynebacterium, Sphaerochaeta, and Sedimentibacter, exhibited significant correlations with 

AD by-products (Fig. 3.8). Lactobacillus was negatively correlated with CH4 yield and positively 

associated with acetic acid, propionic acid, TAN, and valeric acid. This trend can be related to 

Lactobacillus carbohydrate fermentation activities, production of lactic and acetic acids, and VFA 

accumulation (Amha et al., 2017; Luo & Wong, 2019). Corynebacterium displayed a positive 

correlation with CH4 yield and TAN and a negative correlation with propionic acid. This 

fermentative bacterium has demonstrated the ability to assimilate NH4
+, ensuring its survival even 

at non-inhibitory concentrations of ammonia, thereby sustaining CH4 production (Tesch et al., 

1998; Wang et al., 2020). Positive and negative correlations with LCFA and acetic acid, 

respectively, were observed in Sphaerochaeta, indicating its capacity for acetate production and 

tolerance to high LCFA concentrations (Zhang et al., 2022) Positive correlations between 

Sedimentibacter and CH4 yield, along with stearic acid, were observed, along with negative 

correlations with propionic acid, acetic acid, and TAN. This genus can perform syntrophic 
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degradation of LCFA and proteins aiding in maintaining AD, and any disturbance in its activity 

may signify propionic acid inhibition (Basak et al., 2021; Khafipour et al., 2020; Peng et al., 2018). 

 

Figure 3.8. The heatmap illustrates the correlations between the key taxa and AD by-products. a) TAN, b) 

LCFA, and c) VFA matrices. Significant correlations based on Spearman's correlation coefficient (Rs) are indicated 

with *, **, and *** to denote p-values <0.05, <0.01, and <0.001, respectively. Purple labels indicate that key taxa 

belong to the core microbiome. Orange labels indicate the key taxa from the entire microbial community. 

3.4.7. Applications of reliable MI: Detecting key challenges 

Statistical analyses have pinpointed reliable MI with distinct attributes specifically linked to 

anaerobic processes using OFMSW and FW feedstocks. These MI exhibit inherent differences due 

to the approach used for microbial community evaluation (Table 3.2). In the case of the core 

microbiome, Aminobacterium, Clostridium, HA73, and T78 displayed traits of universality, 

significant responses to various metabolic byproducts that can disrupt AD and predict CH4 yield. 

These potential MI represented up to 24% in relative abundance, enhancing the likelihood of easy 

detection and offering qualities suitable for future validation to identify early stress conditions with 

the help of physicochemical parameters. Taxa from entire microbial community such as 

Corynebacterium, Lactobacillus, and Prevotella exhibited relevant metabolic roles associated with 

inhibitory compounds, predictive capabilities for CH4 yield, and presence/absence responses 

between low and high CH4 yield samples. These genera may establish effective ranges linked to 

CH4 yield categories, reduce noise, and enhance the probability of effective categorization. 

Moreover, they may provide early warning before stressful conditions challenge AD stability. 
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However, a drawback is their low relative abundance, which reaches up to 1.8%, emphasizing the 

need to select adequately sensitive detection techniques for possible identification. 

Additionally, previous studies have noted potential applications for the MI identified in this 

research, its specific role in indicating process performance or inhibition issues has not been 

evaluated. Given the low abundance of some reliable MIs and their correlation with inhibitory 

metabolic compounds, validation experiments are recommended. Thus, the experiments should 

combine high-throughput technologies and physicochemical instrumentation (Li et., al. 2018; Wu 

et al., 2021). Although, fluorescence in situ hybridization (FISH), real-time polymerase chain 

reaction (qPCR), and biosensors may be utilized for faster detection (e.g., within hours) and cost-

effective molecular methods (Li et al., 2018). These findings would generate sufficient data to 

develop machine learning models based on linear (e.g., logistic regression) and non-linear (e.g., 

random forest) approaches. Such models would enhance accuracy in predicting specific challenges 

(e.g., acidification, foaming, or ammonia inhibition), considering only MIs and physicochemical 

indicators, and selecting appropriate molecular detection methods (Wijaya et al., 2023). This 

approach would facilitate the development of monitoring systems to guide decision-making in 

resolving key challenges and maintaining AD stability.  
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Table 3.2. Overview of the main characteristics of potential MI identified in the meta-analysis 

Microbial 

indicator 
Attributes (1) 

Range of 

relative 

abundance 

Association 

with CH4 

yield 

Contribution in AD (2) Intuitive response (3) 

Alpha diversity      

Chao1 and q0 (a) 
Universal, 

Predictable 
NA Positive NA 

High number of CH4 

producing microorganisms 

(Hill et al., 2003) 

Shannon, q1, 

Pielou (b) 

Universal, 

Predictable 
NA Negative NA 

Specialization of CH4 

producing microbial 

community (Jo et al., 2018) 

Core microbiome      

Aminobacterium 
Universal, 

Predictable 
0 – 12 % Negative 

Hydrolysis of protein and 

amino-acids degradation 

(He et al., 2017; Wang et 

al., 2018). 

Accumulation of acetate, 

butyrate propionate, and 

ammonia (He et al., 2017; 

Jo et al., 2018) 

Clostridium 
Universal, 

Predictable 
0 – 6% Negative 

LCFA degradation (Basak 

et al., 2021) 

Accumulation of LCFA 

(Basak et al., 2021) 

HA73 
Universal, 

Predictable 
0 – 4% Negative 

Amino acids degradation 

(Giordani et al., 2021) 

Accumulation of VFA and 

ammonia (Gaby et al., 

2017; Giordani et al., 2021) 

Methanosarcina Universal 0 – 52% Positive 

Mixotrophic 

methanogenesis (Amha et 

al., 2017) 

High CH4 yield (Basak et 

al., 2021) 

T78 
Universal, 

Predictable 
0 – 24% 

Positive/ 

Negative 

Syntrophic activity (Bovio-

Winkler et al., 2021) 

Degradation of LCFA 

(Zamanzadeh et al., 2016) 

Whole microbial community   

Sedimentibacter 
Robust fold 

change 
0 – 8.8% Positive 

Protein degradation and 

syntrophic LCFA oxidation 

(Basak et al., 2021; Peng et 

al., 2018) 

High CH4 yield (Basak et 

al., 2021) 

Corynebacterium 

Robust fold 

change, Binary, 

Predictable 

0 – 0.3% Positive 
NH4

+ assimilation (Tesch et 

al., 1998) 

High CH4 yield (Wang et 

al., 2020) 

W5 

Robust fold 

change, 

Predictable 

0 – 0.4% Negative Not identified 
Accumulation of VFA 

(Mugnai et al., 2021) 

Lactobacillus 

Robust fold 

change, Binary, 

Predictable 

0 – 0.09% Negative 

Acetate and lactate 

production (Luo & Wong, 

2019) 

Accumulation of VFA 

(Amha et al., 2017) 

Prevotella 

Robust fold 

change, Binary, 

Predictable 

0 – 1.8% Positive 
Hydrolytic activity 

(Khafipour et al., 2020) 

High CH4 yield (Ruiz-

Sánchez et al., 2018) 

Sphaerochaeta 

Robust fold 

change, 

Predictable 

0 – 0.8% Positive 
Acetate production (Zhang 

et al. 2022) 

High CH4 yield (Zhang et 

al., 2018) 

(1) Universal:  Members from core microbiome with significant abundance differences between methane yield categories; Robust 

fold change: Members from entire microbial community selected by at least two differential analyses; Binary: Key taxa with robust 

fold change attribute but associated with presence or absence abundance at low CH4 yield group (C1,C2 and C3 methane yield 

categories) or high CH4 yield group (C4, C5 and C6 methane yield categories);  Predictable: Key alpha diversity and taxa identified 

as capable of predicting CH4 yield through GAMLSS models, utilizing index values, relative abundance, or in combination with 

physicochemical indicators like TAN and acetic acid. (2) The potential metabolism derived from correlation analysis and supported 

by the literature. (3) Intuitive response derived from the statistical framework and supported by the literature. NA: Not applicable. 

(a) sOTU level. (b) Genus level.  
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3.5. Conclusions 

Reliable MIs for AD processes fed with the OFMSW and FW were identified through a meta-

analysis and statistical framework. Despite the limitations of available public database sequences 

and useful data, the reliability of the proposed MIs for these systems was supported by consistent 

statistical responses across various studies and corroborative literature. Within this context, 

Aminobacterium, Clostridium, HA73, T78, Corynebacterium, Lactobacillus, and Prevotella 

emerged as reliable MIs, exhibiting significant responses and predictive capabilities for CH4 yield, 

alongside key metabolic roles linked to inhibitory compounds in these processes. Recognizing the 

potential applicability of these reliable MIs, it is imperative to consider the future implementation 

of MI surveillance during AD operations fed with OFMSW and FW. Monitoring these MIs holds 

promise for optimizing anaerobic systems by potentially predicting stress conditions, thereby 

enhancing overall performance and CH4 production efficiency. Finally, this methodology 

represents an initial step towards proposing a statistical analytical framework to identify MIs in 

other large-scale processes requiring optimization, such as sewage sludge, livestock waste, or 

energy crops.
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CHAPTER 4. Ammonia as a key inhibitory compound in food waste digestion: Challenges 

of heterogeneous feedstock composition 

 

4.1. Abstract 

The heterogeneity of food waste introduces various inhibitory compounds such as sulfates, long-

chain fatty acids, and ammonia, which significantly affect CH4 yield and microbiome 

functionality. In a batch experiment using a 2³ factorial design, ammonia was confirmed to be the 

primary inhibitory compound in anaerobic digestion, exerting a stronger effect than interactions 

with other inhibitory elements. At inhibitory concentrations (7560 mg TAN/L), ammonia caused 

the greatest reduction in CH4 yield and accumulation of volatile fatty acids, surpassing the effects 

of inhibitory levels of long-chain fatty acids (1214 mg oleic acid/L) and the high concentration of 

sulfates (500 mg Na2SO4/L). Ammonia inhibition resulted in the over-acidification of reactor due 

to accumulation of acetate (1850 – 3034 mg CODeq/L), butyrate (304 – 1018 mg CODeq/L), 

propionate (393 – 1074 mg CODeq/L) and ceasing CH4 production. These physicochemical 

responses indicate a metabolic shift from methanogenesis to fermentation, reflecting the strong 

inhibitory effect of ammonia. The study underscores the importance of early detection of ammonia 

inhibition to prevent over-acidification in food waste digesters, which requires further evaluation. 
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4.2. Introduction 

Food waste (FW) is feedstock of industrial anaerobic processes is characterized by significant 

variations in carbohydrate (0–59%), protein (1.4–38.9%), and lipid (0.8–41.5%) content (Xu et al., 

2018). This heterogeneous composition leads to the release of various compounds during the 

anaerobic conversion of FW to methane (CH4), some of which can inhibit microbial activity under 

specific conditions (Li et al., 2018). Although, ammonia is a well-known inhibitor in FW digesters 

(Banks et al., 2018), interactions with other metabolites, such as sulfates and long-chain fatty acids 

(LCFAs), may also significantly impact anaerobic digestion (AD). This is because these 

compounds can impact key microbial groups involved in biogas production. For instance, the 

sulfur compounds are released during protein degradation, potentially producing H2S, which 

requires H2 as an electron donor via sulfate-reducing bacteria (SRB) (Chatterjee & Mazumder, 

2019; Moreno-Andrade et al., 2020). This process can result in competition for H2 between SRB 

and hydrogenotrophic microorganisms, such as methanogens, within the AD system, as 

methanogens rely on H2 for CH4 production (Li et al., 2015). Additionally, LCFAs released during 

fat degradation can bind to cell walls, hindering mass transfer and primarily affecting 

methanogenic archaea (Patil et al., 2021). Therefore, the primary inhibitory compound in AD 

remains unidentified, and interactions between metabolites could exacerbate inhibition. 

This study aimed to evaluate the interactions between inhibitory compounds—ammonia, LCFAs, 

and sulfates—at inhibitory concentration levels on CH4 yield in a batch anaerobic process fed with 

FW. The experiment was designed to determine whether a single inhibitory compound or the 

interaction between these metabolites has the most significant impact on the AD of FW. 
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4.3. Material and Methods 

4.3.1. Inoculum and feedstock  

Granular sludge from a mesophilic anaerobic digester, treating organic waste from the flour 

industry, served as inoculum. It was stored in an open container at room temperature for 15 d to 

reduce organic matter and facilitate degassing. Raw FW was sourced from a central market in 

Querétaro, Mexico. It was ground to a particle size of less than 0.5 mm using a meat grinder and 

then stored in 2-liter bags at -20 °C until needed. Both the inoculum and FW were characterized 

including analyses for VFA, TAN, total carbohydrates, total solids (TS), volatile solids (VS), and 

chemical oxygen demand (COD) (Fig. 4.1). 

4.3.2. Experimental design 

A 23 factorial design encompassing two concentration levels (Table 4.1). A low level (-1) 

represented the compound concentration found in FW, and a high level (1) represented inhibitory 

concentrations reported in the literature. Specifically, ammonia was set at 7560 mg TAN/L, LCFA 

at 1214 mg oleic-acid/L, and the sulfate concentration was set at 500 mg Na2SO4/L (which 

enhances H2S production) according to studies by Ruiz-Sánchez et al., (2018), Chen et al., (2008) 

and Qiao et al., (2016) respectively. To simulate inhibitory effects: (i) 20 g NH4Cl/L was used to 

replicate ammonia inhibition levels, (ii) 18.51 g pork fat/L represented the inhibitory effects of 

LCFA, and (iii) Na2SO4 was used to replicate sulfate conditions, which have been associated with 

changes in the microbial community. 

Table 4.1. Factorial levels to be evaluated in 8 combinations of treatments. 

Conditions Ammonia Greases Sulfates 

Condition 1 (positive control) -1 -1 -1 

Condition 2 1 1 -1 

Condition 3 1 1 1 

Condition 4 1 -1 -1 

Condition 5 1 -1 1 

Condition 6 -1 1 -1 

Condition 7 -1 1 1 

Condition 8 -1 -1 1 

Condition 9 (endogenous control) 0 0 0 
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4.3.3. Batch assays 

The evaluation of interactions between inhibitory compounds was conducted in a batch anaerobic 

process fed with FW. Triplicate batch assays were conducted using an AMPTS II automated 

system (Bioprocess Control, Sweden). The system utilized glass bottles with a volumetric capacity 

of 600 mL, with a working volume of 360 mL, and each bottle was equipped with a stirring device. 

Temperature control was achieved using thermostatic water bath equipment. To create anoxic 

conditions, each bottle was injected with N2 for a duration of 30 seconds. A CO2 trap system was 

employed, consisting of bottles containing 80 mL of 3 M NaOH solution, supplemented with a pH 

indicator solution (thymolphthalein). The system also featured an online biogas volume 

measurement system. Throughout the experiments, the following parameters were maintained at 

constant levels: temperature at 37°C, S0/X0 ratio of 0.5 g VS/g-VS, substrate concentration of 10 

g VS/L, addition of 4 g NaHCO3/L, pH 8, and shaking speed set at 144 rpm with intermittent 

mixing (1 min of mixing per 3 min of incubation)  (Angelidaki et al., 2009; Moreno-Andrade et 

al., 2020; Pavi et al., 2017) 

4.3.4. Stastitical analysis 

To analyze the impact of inhibitory compounds on CH4 yield, a half-normal plot was used, with 

values near zero considered insignificant and greater distances indicating more significant effects. 

This analysis employed Shapiro-Wilk test (p < 0.05) to determine whether the unique or interactive 

effects followed a normal distribution. A main effects plot was constructed to identify significant 

differences between the two levels of inhibitory compounds in relation to the overall average CH4 

yield. Significant differences (p < 0.05) in CH4 yield and VFA across combinations were 

determined using analysis of variance (ANOVA). The semi-normal and main effects plots were 

generated using “DanielPlot” and “MEPlot” respectively from "FrF2" package (Groemping, 

2019). The ANOVA was performed with the “aov” function from the vegan package (Oksanen et 

al., 2020).  
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4.4. Results and discussion 

4.4.1. The effects of ammonia, greases and sulfates on CH4 yield 

The investigated compounds displayed distinct effects on CH4 yield, with ammonia consistently 

reducing it (ANOVA, p < 0.001) (Fig. 4.1). No significant differences were found between the 

different ammonia conditions (C2, C3, C4) (Tukey, p < 0.05). Compared to the control, ammonia 

conditions (C2, C3, C4, C5) led to increased VFA production (Fig. 4.2), especially acetate (1850–

3034 mg CODeq/L), butyrate (304 – 1018 mg CODeq/L), and propionate (393 – 1074 mg CODeq/L). 

These results indicate the functional resilience of fermentative bacteria within the microbial 

consortium, which increased VFA content under ammonia stress (Nakakubo et al., 2008). This 

supports the idea that ammonia triggers over-acidification in FW digesters, causing operational 

disruptions (Peng et al., 2018; Zhang et al., 2022).  

A relevant effect related to ammonia was its combination with sulfates (C5), which significantly 

enhanced CH₄ yield (30 ± 2 mL CH₄/gVSadded) and reduced VFA concentration. Acetate (1850 ± 

362 mg CODeq/L), propionate (393 ± 85 mg CODeq/L), and butyrate (304 ± 70 mg CODeq/L) 

concentrations were significantly decreased compared to the sole addition of ammonia. This 

improvement is likely due to the stimulation of SRB and syntrophic propionate-oxidizing bacteria 

(SPOB), which oxidize propionate and H2 through sulfate reduction, supporting VFA degradation 

(Qiao et al., 2016). Possibly, these activation of oxidation of propionate and H2 also minimized 

the accumulation of acetate and butyrate, contributing to a slight increase in CH₄ yield. However, 

while sulfate addition may offer a recovery method for overcoming ammonia inhibition in FW 

digesters, it may also elevate hydrogen sulfide (H2S) concentrations in biogas, necessitating 

subsequent gas stream purification (Moreno-Andrade et al., 2020). 
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Figure 4.1. The CH4 yields for each condition evaluated. a) The barplots display the average CH4 yield for each 

condition. The analysis revealed significant differences (ANOVA, p-value < 0.001) among the conditions, with only 

the addition of ammonia (C2, C3, C4, C5) showing a negative impact on CH4 yield. The significant differences 

between CH4 yield categories are indicated by lines connecting the corresponding barplots (Tukey test, p-value < 

0.05). The same letters denote conditions where there was not statistical significance (Tukey test, p-value > 0.05). b) 

The graph illustrates the CH4 yield over time. The addition of greases and sulfates resulted in a resumption of CH4 

production after approximately 60 h. 

 

Figure 4.2. The distribution of metabolites in the different conditions evaluated. Significant differences 

(ANOVA, p-value < 0.05) were observed in the distribution of individual volatile fatty acids (VFAs) among the 

conditions. 
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The half-normal plot confirmed that ammonia had a greater effect on CH4 yield, while greases and 

sulfates were classified as less influential compounds (Fig. 4.3). The main effects plot further 

illustrates these findings, showing ammonia with a negative effect (-1), fats with a positive effect 

(1), and sulfates with no significant impact on CH4 yield. Although some studies have reported 

inhibitory effects of high concentrations of greases and sulfates, these compounds may also benefit 

AD under specific conditions (Amha et al., 2017; Qiao et al., 2016). These results align with 

previous observations made by other researchers, remarkabling the importance of ammonia to 

shape on microbiome in FW digesters (Hadj et al., 2009; Peng et al., 2018; Ruiz-Sánchez et al., 

2018; Zhang et al., 2020). 

 

Figure 4.3. Half-normal (a) and main effects (b) plots. In the half-normal plot, factors with scores farthest from 0 

and the greatest absolute effect deviating from the slope were considered important effects based on the Shapiro-Wilk 

test (p > 0.05). The main effects plot displays the global average of the response variable indicated by the blue line. 
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4.5 Conclusions 

The variability in FW composition destabilizes AD due to its effects on metabolites such as 

ammonia, LCFA, and sulfate, which influence the microbial metabolism in AD. This study 

identified ammonia as the primary inhibitor of CH4 yield, surpassing the effects of LCFA and 

sulfate. Ammonia disrupts methanogenesis by shifting microbial metabolism toward VFA 

production, further limiting CH4 generation. Additionally, the addition of sulfates may facilitate 

the rapid recovery of propionate accumulation processes affected by ammonia inhibition; however, 

this approach is most effective when a system for capturing or removing H2S from biogas is in 

place. These findings underscore ammonia as the critical factor inhibiting the methane-producing 

microbial community, highlighting the urgent need for strategies to mitigate and detect its effects 

in FW digesters. 
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CHAPTER 5. Suitable microbial indicators for detecting ammonia inhibition in anaerobic 

digestion of food wastes 

5.1. Abstract 

Ammonia inhibition in the anaerobic digestion of food waste poses significant challenges for 

detection and prevention. This study integrates inhibitory levels, metagenomic analysis, and a 

statistical framework to identify reliable microbial indicators for ammonia inhibition detection. 

Observations confirmed that at non-inhibitory concentrations (< 2702 mg TAN/L), acetoclastic 

methanogenesis transitions to hydrogenotrophic methanogenesis with syntrophic acetate 

oxidation, demonstrating microbial sensitivity to physicochemical changes. At inhibitory 

concentrations (2702 – 5805 mg TAN/L), denitrification decreases while nitrification, 

methylotrophic methanogenesis, and acetogenic activity increase, leading to acetate and 

propionate accumulation. Above minimum inhibitory concentrations (> 5805 mg TAN/L), 

hydrolysis and fermentation intensify, indicating that ammonia contributes to over-acidification in 

food waste digesters. Interestingly, these metabolic changes were linked to suitable microbial 

indicators identified through the statistical framework, including Anaerolinea, Sphaerochaeta, 

Syntrophobacter, Methanomassiliicoccus, Methanosarcina, fhs, and acs. These indicators also 

provided consistent responses for inferring inhibitory levels but also offer early warning signs. 

Their integration into monitoring systems, control algorithms, and countermeasure validation 

represents a significant advancement for the biofuels sector. 
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5.2. Introduction 

During AD of FW and OFMSW, the breakdown of proteins and amino acids releases ammoniacal 

nitrogen (NH4
+ - NH3), affecting the process efficiency (Agyeman et al., 2021; Hadj et al., 2009; 

Wang et al., 2018). Ammonia can have a dual effect on AD: beneficial as a nutrient for microbial 

growth and buffering capacity, but inhibitory at high concentrations (> 3 g/L) (Agyeman et al., 

2021; Jiang et al., 2019). Therefore, identifying variables that indicate ammonia inhibition is 

essential, as it reduces methane (CH4) production by 30% and promotes the accumulation of 

acetate and propionate, disrupting the AD process (Li et al., 2018; Zhang et al., 2022). 

The effect of ammonia on AD can be described using the Hill equation, which provides a profile 

curve describing stimulation, inhibition, and cessation of CH4 production (Agyeman et al., 2021). 

This model defines kinetic parameters such as IC50 (the 50% inhibitory concentration) and n (an 

empirical coefficient controlling the slope of the curve), essential for calculating umbral 

concentrations such as non-inhibitory concentration (NIC) and the minimum inhibitory 

concentration (MIC) (Lambert & Pearson, 2000). Determination of these concentrations is 

valuable for standardizing the effect of ammonia. In this way, applying the method proposed by 

Lambert and Pearson (2000) to AD, NIC represents the concentration at which the inhibiting 

substance begins to show observable effects. In terms of AD, NIC is the threshold concentration 

where CH4 yield starts declining. MIC would indicate the lowest concentration where CH4 

production ceases and the range between NIC and MIC would indicate concentration with an 

inhibitory effect. However, factors such as pH, temperature, microbial acclimatization, among 

others, led to variable ranges of inhibitory thresholds (Jiang et al., 2019; Wu et al., 2021). 

Therefore, other reliable indicators besides ammonia concentration are desirable. 

MIs have emerged as consistent alternative due to MIs reveal significant microbial dynamics 

aligned with ammonia effects (Poirier et al., 2020). In addition, MIs are crucial for implementing 

microbial management strategies aimed at optimizing and updating biological processes within 

reactors (Carballa et al., 2015; Cortez-Cervantes et al., 2024). Interestingly, ammonia inhibition 

causes microbial communities to become more uniform and phylogenetically similar, 

differentiating them from non-inhibited microbial assemblies, an ideal aspect for identifying MI 

(Cardona et al., 2022; Li et al., 2018). In addition, operational temperatures and feedstock types 
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significantly influence microbial communities (Theuerl et al., 2018). Therefore, both factors must 

be considered to achieve consistent responses from the MIs tests for detecting ammonia inhibition. 

Several studies have suggested potential MIs around specific genera or genes that are related to 

ammonia inhibitory levels in widely used systems like mesophilic FW digesters. Non-ammonia 

inhibitory concentrations (< 3 g/L) are characterized by acetoclastic methanogenesis, indicated by 

Methanosaeta and acetyl-CoA decarbonylase/synthase activity (Chen et al., 2016; Ruiz-Sánchez 

et al., 2018; Zhang et al., 2022). Ammonia inhibition (> 3 g/L) promotes the syntrophic acetate 

oxidation (SAO) pathway, associated with Clostridium, Syntrophomonas, and 

formyltetrahydrofolate synthetase activity. Hydrogenotrophic methanogenesis, featuring 

Methanosarcina, Methanomassiliicoccus, and Methanoculleus, also prevails (Ruiz-Sánchez et al., 

2018; Wang et al., 2020; Zhang et al., 2020). Ammonia beyond a certain threshold induces VFA 

accumulation and AD collapse, disrupting syntrophic propionate oxidation involving 

Pelotomaculum, Syntrophobacter, and succinyl-CoA synthase (Zhang et al., 2022). However, 

unclear thresholds for ammonia inhibitory levels hinder reproducibility and reliability of MIs 

across anaerobic processes (Poirier et al., 2020). 

Additionally, suitable MI must meet essential attributes that impact its response reliability, which 

can be addressed through a statistical framework (Cortez-Cervantes et al., 2024; Huerta et al., 

2024). A key attribute of an indicator is its ability to differentiate between non-inhibitory and 

inhibited environments, especially when inhibition occurs due to ammonia (Huerta et al., 2024; 

Zhang et al., 2022). Another important expected attribute is that the MI should be a keystone within 

a microbial network, meaning that variations in its abundance might impact on the stability and 

functionality of the microbiome (Pan et al., 2021; Skovmand et al., 2018). Additionally, MIs 

should provide early warning signals before ammonia inhibition occurs, essential for predictive 

monitoring and timely corrective actions (Wu et al., 2021). A suitable MI should also be associated 

with specific taxa or genes linked to affected metabolic pathways, offering relevant insights into 

taxonomic and functional changes related to AD performance (Yu et al., 2020). Characterizing 

MIs by these attributes could contribute to developing microbial management strategies for 

selecting effective monitoring systems or MI quantification methods (Carballa et al., 2015; Cordier 

et al., 2020).  
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This study proposes an integrative analysis to identify suitable MIs for ammonia inhibition in the 

AD of FW. By combining metagenomic analysis and the Hill model, suitable MIs were identified 

at different inhibitory ammonia levels: NIC, inhibition, and MIC. Identification of Mis also 

responded to attributes like (I) keystone, (II), significant abundance changes, (III) potential early 

warning attributes, and (IV) metabolic roles related to metagenome-assembled genomes (MAGs). 

These findings can be used to recommend improved monitoring systems for AD operations from 

a biological perspective. 
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5.3. Material and methods 

5.3.1. Batch assay for identifying ammonia inhibition levels 

5.3.1.1. Inoculum and substrate  

Granular sludge from a mesophilic anaerobic digester, treating organic waste from the flour 

industry, served as inoculum. It was stored in an open container at room temperature for 15 d to 

reduce organic matter and facilitate degassing (Pavi et al., 2017). Raw FW was sourced from a 

central market in Queretaro city, Mexico. It was ground to a particle size of less than 0.5 mm using 

a meat grinder and then stored in 2-liter bags at -20 °C until needed. Both the inoculum and FW 

were characterized including analyses for VFA, NH4
+, NH3, TAN, total carbohydrates, total solids 

(TS), volatile solids (VS), and chemical oxygen demand (COD) (Table 5.1). 

5.3.1.2. Experimental setup 

Biochemical methane potential experiments were conducted to model the effect of ammonia and 

determine the NIC and MIC. NH4Cl was used as the ammonia source, creating a concentration 

gradient of 0, 188, 377, 755, 1890, 3780, and 7560 mg TAN/L. This gradient was chosen based 

on the highest concentration known to cease CH4 production in a comparable process, considering 

similar pH, temperature regimes, and feedstock (Hadj et al., 2009). Triplicate batch assays were 

conducted using an AMPTS II automated system with online CH4 volume measurement 

(Bioprocess Control, Sweden) following a modified protocol from Holliger et al., (2016). 

Operational conditions included 35 °C, S0/X0 ratio of 0.5 gVS/gVS, FW concentration of 10 

gVS/L, a working volume of 360 mL (total volume of 600 mL), 4 gNaHCO3/L as buffer, pH 

adjustment to 8 with 5 N NaOH and discontinuous mixing at ~150 rpm (60s ON/120s OFF cycles). 

Each experiment was conducted over 10 d, enough time to observe a stationary phase in methane 

production in all evaluated conditions (Moreno-Andrade et al., 2020). At the end of the AD 

process, samples were collected to determine biogas composition, individual VFAs, TAN, total 

carbohydrates, total solids (TS), volatile solids (VS), and the microbial community structure. 

Subsequently, based on the evaluated parameters, various statistical analyses were applied using 

R software version 4.2.1 to interpret the data, as detailed later.  
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Table 5.1. Physicochemical characteristics of food waste and granules 

Parameters Food waste Granules 

TS (g/L) 81.9 0.0803 (a) 

VS (g/L) 67.4 0.0664 (b) 

VS/TS 0.82 1.21 

pH 7.2 6.8 

Total carbohydrates (g/L) 5.2  ND 

COD total (g/L) 84.4 0.114 (c) 

COD soluble (g/L) 53.75  ND 

COD particulate (g/L) 30.65  ND 

NH3 (mg/L) 190  ND 

NH4
+ (mg/L) (d) 1662.86  ND 

Acetate (mg/L) 1698  ND 

Propionate (mg/L) 0  ND 

Butyrate (mg/L) 0  ND 

Valerate (mg/L) 0  ND 

a) gTS/g-granules; b) gVS/g-granules; c) g-COD/g-granules; d) NH4
+ was calculated using the equation NH3 = 

NH4+/(1 + 10 -pH/Ka), used by Zhang et al. (2020). 

TS: Total solids; VS: Volatile solids; COD: Chemical oxygen demand; FW: food waste; ND: Not determined. 

5.3.1.3 Determination ammonia inhibitory levels 

Three inhibitory levels based on the Hill model curve grouped the samples according to effects of 

ammonia on AD. The model used CH4 yield (mL CH4/g VSadded) as the dependent variable and 

ammonia concentration (mg TAN/L) as the explanatory variable using the equation 5.1 (Agyeman 

et al., 2021).  
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S
)

n
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Eq. 5.1 

 

Where µ was the CH4 yield (mL CH4/gVSadded), µm was the maximum CH4 yield (mL 

CH4/gVSadded), µ0 was the minimum CH4 yield (mL CH4/gVSadded), S was the ammonia 

concentration, IC50 was the ammonia concentration when µm/2, and n was an empirical coefficient. 

The reliability of model was validated by comparing the coefficient of determination (R²) observed 

in similar processes. A selection criterion included similar feedstocks (FW/OFMSW), mesophilic 

temperatures (37 °C), and neutral pH (7-8) (Chen et al., 2016; Hadj et al., 2009; Yu et al., 2020; 

Zhang et al., 2020). The “nlsML” function from “minpack.lm” package was utilized to estimate 

the IC50 and n parameters of the Hill model (Elzhov et al., 2016). 
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The IC50 (50% inhibition of CH4 yield) and n (empirical coefficient) parameters obtained from 

Hill model calculated the NIC and the MIC according to equation 5.2 and 5.3 (Lambert & 

Pearson, 2000).  

 
NIC = 10

(log10 IC
50 

- 
1.718

n
)
 

Eq. 5.2 

 
MIC = 10

(log10 IC
50

 + 
1
n

)
  

Eq. 5.3 

Ammonia inhibitory levels were classified as NIC for concentrations < NIC, inhibition for NIC–

MIC, and MIC for concentrations > MIC. Significant differences in CH4 yield and VFA across 

ammonia levels were determined using one-way analysis of variance (ANOVA) and Tukey's test 

(p < 0.05). These analyses were performed with the "aov" and "TukeyHSD" functions from the 

vegan package (Oksanen et al., 2020).  

5.3.2. DNA collection and metagenomic analysis 

Metagenomic analysis was chosen to characterize the microbiome at both the genus and gene 

levels, for each assessed ammonia concentration by duplicate. The selected samples were 0-A, 0-

B, 188-B, 188-C, 377-A, 377-B, 755-A, 755-B, 1890-B, 1890-C, 3780-B, 3780-C, 7560-A, and 

7560-B. The numerical values indicate the concentration of ammonia added (mg TAN/L), and the 

letter corresponds to the selected replicate. A total of fourteen samples were processed for DNA 

extraction using the DNeasy PowerSoil Pro Kit (Qiagen, Germany). The quality of the purified 

DNA was assessed with the 260/280 absorbance ratio using NANODrop 2000c (Thermo 

Scientific, USA). The DNA samples were sequenced using NovaSeq 6000, Illumina (~8 million 

PE 150+150 bp reads) at the National Genomic Sequencing Laboratory Tec-BASE (Tecnológico 

de Monterrey, Mexico).  

Metagenomic data were obtained from selected samples. The raw metagenomic data underwent 

quality assessment with FastQC (v0.11.9). Low-quality reads and ambiguous bases were filtered 

out with Trimmomatic (v0.33) using the parameters: LEADING:3, TRAILING:3, 

SLIDINGWINDOW:4:15, MINLEN:36 (Bolger et al. 2014). High-quality reads were assembled 

into contigs using MEGAHIT (v1.2.9) with settings: --k-list 21,33,55,77,99,111,127 -t 8 (Duan et 

al. 2021; Li et al. 2015). Taxonomic classification of contigs was performed using Kaiju (v1.6.2) 

with the proGenomes database. Classification was assigned at the genus level to enhance precision 

and sensitivity (Menzel et al., 2016). Gene prediction and annotation were conducted using Prokka 
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(v 1.14.6) using parameters: --mincontiglen 500, --kingdom Bacteria, --kingdom Archaea -force 

(Seemann, 2014). To mitigate sequencing depth variations, count tables were rarified by random 

subsampling without replacement, adhering to minimum count thresholds for each dataset 

(229,393 sequence reads for genera and 143,899 protein-coding sequences for genes). The rarefied 

count tables for genera and genes were utilized as input for subsequent diversity and statistical 

analyses aimed at identifying MI attributes. Raw metagenomic sequences were deposited into the 

NCBI sequence read archive (SRA) database under the project number PRJNA1138064. 

5.3.3. Diversity analysis 

The taxonomic and functional diversity across ammonia inhibitory levels was assessed using alpha 

and beta diversity indices. Alpha diversity included Hill numbers (q0, q1, q2) and Pielou’s 

evenness indices at both the genus and gene level. These indices were compared between and 

within inhibitory levels using the Kruskal-Wallis test with Bonferroni correction and Wilcoxon 

rank-sum test with Benjamini-Hochberg correction (both adjusted p < 0.05), respectively. The Hill 

numbers (q0, q1, and q2) were determined using the “hill_div” function from the “hilldiv” package 

with q values of 0, 1, and 2, respectively (Alberdi & Gilbert, 2019). The Pielou index was 

calculated with the “estimate_richness” function from the “phyloseq” package (McMurdie & 

Holmes, 2013). Significance tests were performed using the Kruskal-Wallis test and the Wilcoxon 

rank-sum test with Benjamini-Hochberg correction, utilizing the "kruskal.test" and 

"pairwise.wilcox.test" functions from the "stats" package. 

For beta diversity, nonmetric multidimensional scaling (NMDS) was utilized to assess inhibitory 

levels based on Bray-Curtis and Jaccard metrics. The goodness of the NMDS model was assessed 

by stress value (values < 0.1 indicated a good fit). The analysis of group similarities (ANOSIM) 

was employed to assess dissimilarities between levels, with an R value near 1.0 indicating 

significant dissimilarity. Bray-Curtis and Jaccard metrics were calculated using the "vegdist" 

function. The NMDS solution was obtained via the "metaMDS" function, and the ANOSIM test 

was performed using the "anosim" function. All beta diversity functions were from the "vegan" 

package (Oksanen et al., 2020). 

5.3.4. Statistical framework to identify MIs attributes 

A statistical framework integrated non-parametric rank tests, differential analyses, discriminatory 

analysis, z-scores, multivariate analysis, and MAGs was applied to identify multiple MI attributes 
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from processed reads and abundance data of genera and genes. (I) Keystone species were inferred 

from topological properties of co-occurrence networks within the microbiome belong to NIC level 

(Pan et al., 2021). (II) Significant abundance changes were identified through significance tests 

comparing NIC levels to inhibition or MIC levels (Huerta et al., 2024; Zhang et al., 2022). (III) 

Potential early warning signs were linked to the first significant change in abundance (z-score ≥ 

1) before ammonia concentration reached the inhibitory level (Mirza et al., 2020). (IV) Metabolic 

roles were analyzed through three approaches: correlative analysis inferred metabolic pathways 

and potential role; z-score analysis indicated metabolic functional changes in microbiome; and 

MAGs linked changing metabolic pathways and key genes to key genera, highlighting their 

metabolic relevance.  

5.3.4.1. Keystone 

Keystones within microbiome at the NIC level in the batch assay were identified using Molecular 

Ecology Network Analysis (MENA) (http://ieg4.rccc.ou.edu/mena), accomplishing the sample 

size requirement (n ≥ 8). Network modularity analysis using within-module connectivity (Zi) and 

among-module connectivity (Pi) scores classified genera and genes. Highly connected generalists, 

including module hubs (Zi > 2.5; Pi < 0.62), network hubs (Zi > 2.5; Pi > 0.62), and connectors 

(Zi < 2.5; Pi > 0.62), were identified as keystones. Peripherals (Zi < 2.5; Pi < 0.62) were excluded 

due to their low interaction with other genera or genes (Pan et al., 2021). 

5.3.4.2. Significant abundance changes 

Genera and gene abundances were compared between non-inhibitory concentrations (NIC), 

inhibition, and minimum inhibitory concentrations (MIC) using two significance testing methods. 

Comparisons were conducted between NIC and inhibition, as well as between inhibition and MIC. 

The first method evaluated differential responses by focusing on pre-selected MIs and keystone 

species, both identified for their ecological roles and sensitivity to ammonia effects. Specifically, 

25 key genera and 26 genes were considered potential MIs for ammonia inhibition in mesophilic 

digesters processing FW/OFMSW (Table 5.2). The Kruskal-Wallis test with Bonferroni correction 

(adjusted p-value < 0.05) was applied to rarefied count data to identify significant differences in 

genera and gene abundances. 

The second approach involved multiple differential analysis methods, including LEfSe, DESeq2, 

EdgeR, Limma voom, and metagenomeSeq, to cover all identified genera and genes. This 

http://ieg4.rccc.ou.edu/mena
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minimized inherent variations in taxonomic and functional data distribution, ensuring consistent 

results. The term robust FC was introduced, defined as results consistent in at least two differential 

analyses with a FC ≥ |2| (Nearing et al., 2022). LEfSe was applied to normalized rarefied data 

using the Kruskal-Wallis test (p < 0.05) and linear discriminant analysis (LDA) with a score > 2 

(Segata et al., 2011). DESeq2 analyzed non-rarefied data using negative binomial generalized 

linear models (GLM) and the Wald test with Benjamini-Hochberg correction (adjusted p < 0.05) 

(Love et al., 2014). EdgeR calculated dispersion parameters in a negative binomial GLM and used 

the likelihood ratio test (p < 0.05) for model comparison (Robinson et al., 2009). Limma-voom 

applied precision weights to rarefied log10-transformed data and used an empirical Bayes 

moderated t-test with Benjamini-Hochberg correction (adjusted p < 0.05) (Law et al., 2014). 

MetagenomeSeq used a zero-inflated Gaussian mixture model with an empirical Bayes t-test for 

rarefied log10 data (Paulson et al., 2013).  

The differential analyses were conducted using the “run_lefse,” “run_deseq2,” “run_edger,” 

“run_limma_voom,” and “run_metagenomeseq” functions from the "microbiomeMarker" package 

(Cao et al., 2022). Key genera and genes were identified by overlapping outcomes from at least 

two differential analyses, visualized with a Venn diagram using the “venn” function from the 

“ggvenn” package. 
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Table 5.2. List of MI reported in the literature considered for the study 

Potential microbial 

indicator 

Biological 

relevance in AD 

Association with 

ammonia 

E.C. 

number 

COG 

number 
Reference 

Taxa            

Syntrophomonas (1) 
Syntrophic VFA 

oxidation 
Negative NA NA 

Cortez-

Cervantes et 

al., (2024) 

Treponema (1) Homoacetogenesis Positive NA NA 

Methanosarcina (1) Methanogenesis Negative/Positive(2) NA NA 

Methanoculleus (1) Methanogenesis Positive NA NA 

HA73 (1) N.D. Positive NA NA 

Sedimentibacter 

Syntrophic LCFA 

oxidation 

Protein 

degradation 

Negative NA NA 

Corynebacterium NH4
+ assimilation Positive NA NA 

Lactobacillus 
Carbohydrate 

fermentation 
Positive NA NA 

Methanosaeta/Methanothrix Methanogenesis Negative NA NA 
Chen et al., 

(2016) 

Anaerolinea 
Syntrophic acetate 

oxidation 
Positive NA NA 

Ruiz-Sánchez 

et al., (2018) Methanobrevibacter Methanogenesis Negative/Positive NA NA 

Methanomassiliicoccus Methanogenesis Negative/Positive NA NA 

Pelotomaculum 

Syntrophic 

propionate 

oxidation 

Negative NA NA 

Zhang et al., 

(2022) 

Syntrophobacter 

Syntrophic 

propionate 

oxidation 

Negative NA NA 

Lutispora  
Amino acid 

degradation 
Positive NA NA 

Candidatus 

Syntrophosphaera 

Syntrophic 

propionate 

oxidation 

Negative NA NA 

Anaerosalibacter 
Protein 

degradation 
Positive NA NA 

Poirier et al., 

(2020) 

Sphaerochaeta 
Carbohydrate 

degradation 
Positive NA NA 

Clostridium 
Syntrophic acetate 

oxidation 
Positive NA NA 

Defluviitalea 
Carbohydrate 

degradation 
Positive NA NA 

Tepidimicrobium VFA production Positive NA NA 

Tissierella 
Carbohydrate 

degradation 
Positive NA NA 

Caldicoprobacter 
Carbohydrate 

degradation 
Positive NA NA 

Aminobacterium 

Hydrolysis of 

protein and amino 

acids degradation 

Positive NA NA 
Poirier et al., 

(2016) 

continued 
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Ruminococcus 
Hydrolysis of 

carbohydrates 
Negative NA NA 

 Genes           

acetyl-CoA synthetase (acs) 

Carbohydrates and 

propionate 

metabolism 

Methanogenesis 

Positive EC:6.2.1.1 COG0365 

Yu et al., 

(2020) 

phosphate acetyltransferase 

(pta) 

Acetoclastic 

methanogenesis 
Negative EC 2.3.1.8  

Methyl-coenzyme M 

reductase I subunit alpha 

(mcrA) 

Methanogenesis Negative 

EC:2.8.4.1 

COG4058 

Methyl-coenzyme M 

reductase I subunit beta 

(mcrB) 

Methanogenesis Negative COG4054 

Methyl-coenzyme M 

reductase I subunit gamma 

(mcrG) 

Methanogenesis Negative COG4057 

Methyl-coenzyme M 

reductase II subunit alpha 

(mrtA) 

Methanogenesis Negative COG4058 

Methyl-coenzyme M 

reductase II subunit beta 

(mrtB) 

Methanogenesis Negative COG4054 

Methyl-coenzyme M 

reductase II subunit gamma 

(mrtG) 

Methanogenesis Negative COG4057 

Methyl-coenzyme M 

reductase subunit alpha 

(mcrA) 

Methanogenesis Negative COG4058 

Methyl-coenzyme M 

reductase subunit beta 

(mcrB) 

Methanogenesis Negative COG4054 

Methyl-coenzyme M 

reductase subunit gamma 

(mcrG) 

Methanogenesis Negative COG4057 

Ferredoxin/F(420)H(2)-

dependent CoB-CoM 

heterodisulfide reductase 

subunit A (hdrA) 

Methanogenesis Negative 

EC:1.8.7.3 

COG1148 

Ferredoxin/F(420)H(2)-

dependent CoB-CoM 

heterodisulfide reductase 

subunit B (hdrB) 

Methanogenesis Negative COG2048 

Ferredoxin/F(420)H(2)-

dependent CoB-CoM 

heterodisulfide reductase 

subunit C (hdrC) 

Methanogenesis Negative COG1150 

Ferredoxin:CoB-CoM 

heterodisulfide reductase 

subunit A (hdrA) 

Methanogenesis Negative COG1148 

Ferredoxin:CoB-CoM 

heterodisulfide reductase 

subunit B (hdrB) 

Methanogenesis Negative 

COG2048 

continued 
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Ferredoxin:CoB-CoM 

heterodisulfide reductase 

subunit C (hdrC) 

Methanogenesis Negative COG1150 

acetate kinase (AK) 
Acetate 

metabolism 
Negative/Positive EC. 2.7.2.1 ND 

Zhang et al., 

(2022) 

Acetyl-CoA 

decarbonylase/synthase 

complex subunit alpha 

(cdhA) 

Acetoclastic 

methanogenesis 
Negative/Positive EC 1.2.7.4 COG1152 

Acetyl-CoA 

decarbonylase/synthase 

complex subunit beta 

(acsB) 

Acetoclastic 

methanogenesis 
Negative/Positive EC 2.3.1.169 COG1614 

Acetyl-CoA 

decarbonylase/synthase 

complex subunit delta 

(acsD) 

Acetoclastic 

methanogenesis 
Negative/Positive ND COG2069 

Acetyl-CoA 

decarbonylase/synthase 

complex subunit epsilon 

(acsE) 

Acetoclastic 

methanogenesis 
Negative/Positive ND COG1880 

Acetyl-CoA 

decarbonylase/synthase 

complex subunit gamma 

(acsC) 

Acetoclastic 

methanogenesis 
Negative/Positive EC 2.1.1.245 COG1456 

Succinate--CoA ligase 

[ADP-forming] subunit 

alpha (sucA) 

Propionate 

metabolism 
Negative EC 6.2.1.5 COG0074 

Formate--tetrahydrofolate 

ligase (fthfs) 
Acetate oxidation Negative/Positive EC 6.3.4.3 ND 

Ruiz-Sánchez 

et al., (2018) glycine cleavage system 

complex (Gcs) 
Acetate oxidation Negative/Positive ND ND 

(1) Listed as members from core microbiome (potential universal microbial indicators) of anaerobic process fed with 

OFMSW or FW. (2) Samples show a dual response according to an inhibitory threshold. ND: Not determined. NA: 

Not applicable. 
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The key genera and genes from two significance testing approaches were compared using the area 

under the curve (AUC) to evaluate their standardized ability to discriminate against ammonia 

inhibition levels. A binomial GLM was implemented to adjust the response of key genera and 

genes, predicting ammonia inhibitory levels. Inhibition and MIC levels were encoded as 0, and the 

NIC level as 1. Model performance was assessed through AUC values derived from the receiver 

operating characteristic (ROC) curve. Higher AUC values, approaching 1, indicate a higher 

likelihood of true positive responses and a greater discriminatory capacity of the evaluated 

indicators. The binomial GLM was implemented using the "glm" function within the "stats" 

package, and AUC values were determined through the "prediction" and "performance" functions 

in the "ROCR" package (Sing et al., 2005). 

5.3.4.3. Potential early warnings signs 

The potential early warning attribute was identified by the first absolute change of one unit or more 

in the z-score (z-score ≥ |1|) in the abundance of key genera or genes before reaching the inhibition 

level, excluding control condition values (Mirza et al., 2020). This attribute was analyzed 

exclusively for key genera and genes exhibiting significant abundance changes. 

The z-scores were calculated through equation 5.4: 

 Z-score= 
x-μ

σ
 Eq. 5.4 

where x represents the genus or gene abundance for each ammonia concentration, and μ and 𝜎 

denote the average and standard deviation across all ammonia concentrations, respectively. 

5.3.4.4. Metabolic roles 

The metabolic role of each key genus and gene was revealed using multiple statistical analyses 

and the creation of MAGs. Initially, redundancy analysis (RDA) was employed to identify relevant 

AD byproducts. This analysis explored positive and negative relationships with ammonia 

concentration gradients, utilizing both genus and gene data as response variables. To enhance the 

precision and efficiency of RDA models a data transformation strategy was implemented. 

Hellinger method for rarefied count data and standardized method for AD by-products. Hellinger 

and normalization transformations were obtained by "decostand" function from the "vegan" 

package (Oksanen et al., 2020). The effectiveness of the RDA models was assessed through 

coefficients of determination (R²) values and ANOVA, employing a regression model with 999 
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permutations (p < 0.05). The assessment of RDA was conducted using the "rda" and "anova.cca" 

functions from the "vegan" package (Oksanen et al., 2020). 

To interpret the functional impact of ammonia and highlight altered or enriched metabolic 

pathways, a KEGG pathways/modules analysis was conducted. The analysis targeted 

pathways/modules linked with AD and key genes. Contigs from each sample were annotated using 

the KEGG Automatic Annotation Server (https://www.genome.jp/kegg/kaas/) to generate a 

KEGG orthology (KO) count table. The abundance of KOs for each KEGG pathway/module was 

evaluated across the ammonia concentration gradient using z-scores (see Eq. 5.4). Scores closer to 

-2 indicated a decrease in the annotated gene count, while scores near 2 indicated an increase in 

annotated gene count. Relevant metabolic pathways and modules related to AD and key genes 

were selected, and prefix codes were obtained using the "keggGet" function from the 

"KEGGREST" package. The percentages of biochemical conversion reactions in KEGG pathways 

were visualized in a heatmap using the "ggballoonplot" function from the "ggpubr" package. 

MAGs offered insights into the functionality of key genera by analyzing the relationship between 

these genera and ammonia-altered metabolic pathways. The MAGs were constructed through the 

co-assembly of all samples using the MEGAHIT with previous settings (see 5.3.2). The BBMAP 

tool (v. 38.18) mapped individual reads, calculated read recruitment, and established contig 

coverage. The resulting alignment file underwent sorting and indexing through SAMtools (v. 

1.18). Utilizing the jgi_summarize_bam_contig_depths tool allowed for per-contig coverage 

computation from BAM files. Metagenomic binning was performed on co-assemblies using 

MetaBAT2 (v. 2.12.1) with options: --minCVSum 0, --saveCls, -d, --minCV 0.1, and -m 2000, 

yielding potential genome bins. The binning results were integrated using Das Tool (v 1.1.6) with 

parameters --search_engine blastp and --write_bins, resulting in an optimized and non-redundant 

bin set. Taxonomic classification of the bins was performed using GTDBTK (v 2.3.2) with default 

settings. Protein-coding sequences (CDSs) within the MAGs were predicted using Prodigal 

(v2.6.3) and annotated using KofamScan (v1.3.0) with KOfam profiles as of 2023-04-01. Only 

pathways containing at least 80% of the biochemical conversion reactions in KEGG pathways 

were considered (Hao et al., 2020). 

Pearson correlation analysis was performed to explore relationships between key genera, genes, 

and AD by-products, validating their potential metabolic roles observed in the experiment. The 

https://www.genome.jp/kegg/kaas/
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data for correlation analysis was transformed similarly to the RDA process. Linear relationships 

between potential MIs and AD by-products were assessed using Pearson correlation significance 

test. Correlation coefficients were computed with the "cor" function from the "stats" package. The 

significance of these correlations (p < 0.05) was evaluated using the "corr.mtest" function from 

the "corrplot" package (Wei & Simko, 2021). 

5.3.5. Analytic methods 

The composition of biogas and VFA (AD by-products) were analyzed using gas chromatography 

(GC) equipped with a thermal conductivity detector, and GC equipped with a flame ionization 

detector, respectively, as reported previously (Moreno-Andrade et al., 2020). COD, ammonia, TS 

and VS were determined following Standard Methods (APHA, 2005).   
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5.4. Results and discussion 

5.4.1. Definition of ammonia inhibitory levels  

The validated Hill model (R² > 0.87) accurately defined ammonia inhibitory levels for each 

anaerobic process evaluated. NIC and MIC values, which indicate ammonia effect thresholds, 

varied among studies (Fig. 5.1. and Table 5.3). For this study, the Hill model determined TAN 

concentrations below 2702 mg/L as the NIC level, 2702 – 5805 mg/L as the inhibition level, and 

above 5805 mg/L as the MIC level. Each inhibitory level significantly impacted key AD by-

products (p < 0.05), with acetate and propionate showing notable accumulation increases at 

inhibition and MIC levels (Fig. 5.2). NIC level obtained the highest CH4 yield (308.8 ± 41.4 mL 

CH4/gVSadded), followed by inhibition (247.8 ± 24.7 mL CH4/gVSadded) and MIC levels (0 mL 

CH4/gVSadded). These findings highlight the difficulty of standardizing inhibitory concentrations 

in FW digesters. However, the ammonia inhibitory levels could be standardized based on Lambert 

and Pearson (2000) concept, reflecting a consistent response in AD by-products, as suggested by 

previous research (Hardy et al., 2021; Zhang et al., 2022). 

 

Figure 5.1. The validated Hill Model determined NIC and MIC, defining ammonia inhibitory levels. The 

coefficient of determination (R²) was calculated for each dataset from the selected studies, confirming the high 

goodness of fit in profiling the effect of ammonia in FW/OFMSW anaerobic processes. In this experiment, TAN 

concentrations of 0, 188, 377, 755, and 1890 mg/L were categorized as NIC (green “X”), 3780 mg/L was classified 

as the inhibition level (yellow “X”), and 7580 mg/L was identified as MIC (red “X”). 
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Table 5.3. Kinetic and derivative parameters from Hill model across different studies 

Feedstock 
Feed 

regimen 

Inoculum 

source 

Ammonia 

source 

Temperature 

(ºC) 
pH 

IC50 (mg 

TAN/L) 

NIC (mg 

TAN/L) 

MIC (mg 

TAN/L) 
Reference 

FW 
Semi-

continuous 

Sewage 

sludge 

from AD 

NH4Cl 37 7.2 2937 684 6859 
Chen et 

al., 2016 

OFMSW Batch 

Sewage 

sludge 

from AD 

NH4Cl 37 
7.0(a) – 

8.0(b) 

4103(a), 

2181(b) 

2727(a), 

799(b) 

5204(a), 

3912(b) 

Hadj et al., 

2009 

FW Batch 

Sludge 

from AD 

fed with 

FW 

NH4Cl 37 
7.3 – 

7.4 
6538 1830 13721 

Yu et al., 

2021 

FW Batch 

Sludge 

from AD 

fed with 

FW 

NH4Cl 37 7.5 8367 4654 11773 
Zhang et 

al., 2020 

FW Batch 

Granules 

from AD 

fed with 

organic 

wastes of 

flour 

industry 

NH4Cl 37 8 4381 2702 5805 
In this 

study 

AD = Anaerobic digestion; FW = Food waste; OFMSW = Organic food municipal solid waste; IC50 = half maximal 

inhibitory concentration; NIC = non inhibitory concentration; MIC = minimum inhibitory concentration.  

 

Figure 5.2. The bar plot illustrates the concentration of AD by-products within each determined ammonia 

inhibition level. The bar plot exemplifies how the concentration of specific volatile fatty acids (VFAs) or CH4 yield 

differed significantly (p < 0.05) among the inhibition level, as determined by ANOVA. Pairwise comparisons were 

executed using the Tukey test. Lowercase letters within the bar plots indicate groups with statistically significant 

differences. 
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5.4.2. Variation in microbiome diversity across ammonia inhibitory levels 

The metagenomic analysis identified 2197 genera and 2253 genes. Alpha diversity indices varied 

with ammonia inhibitory levels, depending on taxonomic or functional levels (Fig. 5.3). At the 

genus level, diversity measures such as q1 and Pielou indices significantly increased in the 

inhibition level (p < 0.10), while no significant differences were observed at the MIC level (p > 

0.10) compared to the NIC level (Fig. 5.3a). However, q0 and q2 showed no significant differences 

(p > 0.10). Under inhibitory conditions, a higher abundance of syntrophic acetate-oxidizing 

bacteria (SAOB), rather than their richness, may contribute to a more evenly distributed microbial 

community (Hill et al., 2003; Yu et al., 2020). These aspects indicate an acclimated microbial 

community that modified its structure within the same genera to maintain CH4 production (Ruiz-

Sánchez et al., 2018; Yu et al., 2021). 

 

Figure 5.3. Distribution of key alpha indices through ammonia inhibitory levels based on q1 and Pielou at a) 

genera and b) genes level. Boxplots illustrate median, quartiles, and extreme values, with significance assessed using 

the Kruskal-Wallis test (p < 0.10) and pairwise comparisons using Wilcoxon rank sum tests (p < 0.10). Lowercase 

letters within the boxes indicate groups with statistically significant differences. 
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At functional level q1 and Pielou indices (Fig. 5.3b) showed significantly higher values in the MIC 

level (p < 0.10) compared to the NIC level, while remaining insignificant (p > 0.10) at the 

inhibition level. Additionally, q0 and q2 indices showed no significant differences (p > 0.10).  

Ammonia concentrations above 6000 mg/L may boost hydrolytic and fermentative activities, 

potentially increasing the gene abundance for these microbial activities, resulting in a uniform 

functional structure (Ma et al., 2021; Zhang et al., 2020). This characterizes the establishment of 

a functional microbial community resistant to high ammonia concentrations, although community 

is not related to CH4 production. 

NMDS analysis, employing Bray-Curtis and Jaccard metrics, showed varied responses depending 

on taxonomic or functional levels (Fig. 5.4). Ammonia presence modified the abundance of certain 

genera (Fig. 5.4a), demonstrating its selective power in shaping diverse microbial communities 

(Hardy et al., 2021). Despite a conserved gene composition due to inoculum redundancy (Fig. 

5.4b), the abundance of genes linked to key metabolic pathways varied depending on ammonia 

inhibitory level (Zhang et al., 2022). These findings align with results in the subsequent section, 

underscoring the limitations of ordination methods in detecting global gene composition 

differences. 

 

Figure 5.4. NMDS plots showing sample distributions based on Bray-Curtis and Jaccard dissimilarity indices 

at the (a) genus and (b) gene levels. Clusters are categorized according to defined ammonia inhibitory levels, with 

each cluster representing ammonia concentrations grouped by the analysis, including replicates (A, B). ANOSIM 

results, including p-values, R², and stress values, are provided to assess the statistical significance of clustering among 

inhibitory levels. 
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5.4.3. Significant abundance change using a dual approach  

A set of 27 genera and 20 genes showed significant abundance changes using two different 

significance test approaches (Fig. 5.5). Among the 13 genera and 14 genes with a robust fold 

change (FC ≥ 2) and high area under the curve (AUC ≥ 0.85), a strong ability to discriminate 

ammonia inhibitory levels was observed (Fig 5.7). Meanwhile, the selected MIs group related with 

14 genera and 6 genes which showed traditional significant differences despite having a lower fold 

change (FC < 2), demonstrated adequate discriminatory capacity (AUC ≥ 0.80). Genera and genes 

that consistently differentiate between ammonia inhibition levels and align with findings from 

other studies can be considered as potential suitable MIs (He et al., 2017; Li et al., 2018; Poirier et 

al., 2020; Yu et al., 2020; Zhang et al., 2022). Therefore, this section focuses only on genera and 

genes considered as potential suitable MIs that also achieved a predominant abundance in 

comparative sets, an essential criterion for generalizing the detection method for future 

applications (Li et al., 2018). 

 

Figure 5.5. Venn diagrams illustrate the number of genera and genes shared between differential analyses.  

Each method, marked by a unique color, identified significantly differentially abundant genera and genes (adjusted p 

< 0.05). DESeq2 (red), EdgeR (yellow), LEfSe (lime green), Limma voom (green), and MetagenomeSeq (blue) were 

used. a) NIC vs inhibition level: DESeq2: 27 genera, 1 gene; EdgeR: 38 genera, 2 genes; LEfSe: 14 genera, 0 genes; 

Limma voom: 39 genera, 1 gene and; MetagenomeSeq: 14 genera, 1 gene. b) NIC vs MIC level: DESeq2: 63 genera, 

2 genes; EdgeR: 99 genera, 36 genes; LEfSe: 27 genera, 1 gene; Limma voom: 99 genera, 296 genes; MetagenomeSeq: 

26 genera, 30 genes. 
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5.4.3.1. NIC level vs inhibition level 

At the NIC level, increased abundance of Sphaerochaeta (Fig 5.7a) and the hdrA (Ferredoxin:CoB-

CoM heterodisulfide reductase subunit A, K22480) and mcrB (methyl-coenzyme M reductase II 

subunit beta, K00401) genes (Fig 5.7c) may discriminate inhibited samples when their abundance 

decrease (AUC ≥ 0.90). The key genus has sensibility to ammonia inhibition in other AD systems. 

The fermentative Sphaerochaeta display significant responses up to > 4 g TAN/L, indicating 

ammonia inhibition (He et al., 2017). Meanwhile, variations in the key genes reflect changes in 

microbial metabolism related to the effect of ammonia. The reduction of mcrB and hdrA genes 

may suggest a shift from acetoclastic to hydrogenotrophic methanogenesis, a common metabolic 

event when ammonia concentration reaches inhibitory levels (Yu et al., 2020; Zhang et al., 2022). 

Conversely, in the inhibition level increased the abundance of genera Anaerosalibacter, 

Clostridium Syntrophobacter, and Ruminococcus, demonstrating high power classificatory (AUC 

≥ 0.90) to distinguish from the NIC level (Fig 5.7a). Only Ruminococcus was identified as a 

keystone with significant changes (Fig. 5.6). The increase in these genera may be revealed when 

ammonia reaches inhibitory levels. Particularly, hydrolytic bacteria like Anaerosalibacter and 

Ruminococcus thrive under inhibitory ammonia conditions, promoting growth during inhibited-

AD (He et al., 2017; Poirier et al., 2020). Furthermore, as Ruminococcus was considered a 

keystone, it may be crucial for maintaining microbial interactions when the AD process shifts 

towards fermentation (Chen et al., 2016; Pan et al., 2021). Genera such as Clostridium and 

Syntrophobacter, which include SAOB and syntrophic propionate-oxidizing bacteria (SPOB), 

suggest CH4 production via a hydrogenotrophic pathway. This methanogenic activity 

predominates under inhibitory ammonia levels (Yu et al., 2020; Zhang et al., 2022).  

5.4.3.2. NIC level vs MIC level 

The archaea Methanomassiliicoccus, Methanosarcina, and Methanoculleus (Fig. 5.7b) along the 

acs (acetyl-coenzyme A synthetase, K01895) and mcrB genes (Fig. 5.7d) presented higher 

abundance in NIC level than MIC level and highlighted with high discriminatory capacity (AUC 

≥ 1.00). H2-dependent methanogens and SAOB maintain AD at inhibitory ammonia levels, serving 

as key indicators when ammonia reaches MIC levels. Hydrogenotrophic methanogens such as 

Methanosarcina and Methanoculleus, and methylotrophic Methanomassiliicoccus, can persist at 

TAN concentrations up to 6000 mg/L (Ruiz-Sánchez et al., 2018). However, when the 
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environment shifts to high VFA (~3000 mg/L) and ammonia (~15 g TAN/L) concentrations, 

hydrogenotrophic methanogens become unviable (Goux et al., 2015; Hardy et al., 2021). This shift 

correlates with reduced mcrB and acs gene counts, indicating a disruption in syntrophic 

interactions for acetate/H2 consumption, potentially leading to AD collapse (Hardy et al., 2021; 

Yu et al., 2020; Zhang et al., 2022). 

In MIC level increased Treponema and Ruminococcus genera (Fig. 5.7b), and fhs (formate-

tetrahydrofolate ligase, K01938) genes (Fig. 5.7d) demonstrating high accuracy in distinguishing 

them from the NIC level (AUC ≥ 1.00). The rise of fermentative microorganisms may indicate 

ammonia presence at MIC levels, promoting an environment dominated by VFAs. Treponema, a 

known homoacetogen, has been positively associated with VFA accumulation (Li et al., 2016). 

Also, an increase in the abundance of Ruminococcus has been observed during an over-

acidification issue (~ 30 gVFA/L) in a semi-continuous process (Jo et al., 2018). An increased fhs 

gene count alongside acetate production may indicate homoacetogenic activity. However, this 

metabolic pathway requires careful consideration, as it can produce high acetate concentrations 

(~2000 mg/L) to scavenge H₂ (Li et al., 2016; Moestedt et al., 2020; Wei et al., 2020). 

 

Figure 5.6. The plots show the distribution of genera and genes based on their topological properties within a 

microbial network determined in NIC level. Plot (a) displays the genus level, while plot (b) presents the gene level. 

The horizontal blue lines represent Zi score thresholds, and vertical blue lines denote Pi score thresholds, facilitating 

the identification of network roles. Module hubs are indicated by teal green triangles, and peripherals by black 

triangles. 
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Figure 5.7. The bar plots show genera and genes with significant differences in ammonia inhibitory levels. (a) Key genera and (c) key genes from the NIC vs. inhibition 

comparison, and (b) key genera and (d) key genes from the NIC vs. MIC comparison. Purple circles indicate traditional significant differences (p < 0.10, Wilcoxon rank sum tests). 

Sky blue circles represent robust FC (FC ≥ 2). The dashed gray line separates AUC values for key genera and genes: those with robust FC are above the line, and those with traditional 

significant differences are below. The numbering inside the circles distinguishes the source of genera and genes: 1) Potential suitable MI according to previous reports; 2) Non-

suitable MI identified in the microbiome of current experiment. (*) Indicate keystone attributes.
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5.4.4. Potential early warning attribute 

A set of 10 key genera and 10 key genes with a significant abundance change in response to 

inhibitory levels, also exhibited a potential early warning response, as indicated by the z-score 

analysis (Fig. 5.8). This response was indicated by a sudden variation (z-score ≥ 1) before reaching 

the inhibitory threshold (< 2702 mg TAN/L). Notably, some of these genera and genes have shown 

consistent responses in other AD systems, supporting their utility for predicting operational issues, 

as detailed in the following paragraphs. 

In the case of Sphaerochaeta have been proposed as potential early warning indicators for foam 

detection, an issue that might be triggered by ammonia accumulation (He et al., 2017). Other key 

genera and genes have shown early shifts in their abundances, days before the manifestation of 

ammonia inhibition-related issues. Methanomassiliicoccus and Syntrophobacter abundances 

declined 8 to 11 d before over-acidification (Goux et al., 2015; He et al., 2018). Abrupt changes 

in Anaerolinea and Methanosarcina abundance occurred about 2 d before CH4 production ceases 

(He et al., 2018). The relative fluorescence intensity of coenzyme F420, a cofactor existent in 

methanogens and associated to frh gene, decreased around 20 d before over-acidification 

(Shamurad et al., 2020). The hdr gene showed a positive trend approximately 20 days before 

instability (Li et al., 2024). The upregulation of the acs gene appears to provide an early warning, 

at least 23 d before the onset of ammonia inhibition (Yu et al., 2020). These findings indicate that 

early warning signs are supported by key genera and genes involved in syntrophic and 

methanogenesis activities. Additionally, these signs suggest that changes in the microbiome occur 

before VFA accumulation or a decrease in CH4 yield, covering the gaps left by physicochemical 

indicators in monitoring AD system (Li et al., 2018; Wu et al., 2021). 
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Figure 5.8. Z-score behavior of key genera and genes for each evaluated ammonia concentration alongside the 

predicted CH4 yield according to the Hill model. The model predictions are represented by the gray curve. 

Normalized absolute abundance, depicted by the black line, traces the z-scores for each key genus or gene. The red 

line identifies the initial significant change (z-score > |1|) in absolute abundance before ammonia inhibition occurs, 

suggesting potential early warning signs.  
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5.4.5. Key metabolic role attribute 

Metabolic changes in the microbiome due to ammonia effects were analyzed using two RDA 

analyses with taxonomic and functional data. These analyses confirmed that acetate and propionate 

were positively related to ammonia but negatively related to CH4 yield (Fig. 5.9). The 

accumulation of these VFAs in FW digesters with ammonia buildup is attributed to changes in 

microbial metabolism (Hardy et al., 2021; Zhang et al., 2022). This effect typically initiates with 

disruptions in methanogenic and acetogenic stages, followed by enhancements in acidogenic and 

hydrolytic stages (Chen et al., 2016). KEGG pathways/modules analysis, using z-scores, 

confirmed variations in the metabolism of proteins, carbohydrates, VFAs, ammonia, and methane 

(Fig. 5.10). Additionally, reconstructed MAGs (≥ 50% completeness, ≤ 10% contamination) 

associated these metabolic pathways with MIs (Fig. 5.11). Significant correlations between MI 

abundance and AD by-products further validated the metabolic roles of MIs in the experiment (Fig 

5.12). 

At a NIC level of 377 mg TAN/L, the acetoclastic methanogenesis pathway (M00357) involving 

Methanosarcina (Bin284) and acs gene was favored, suggesting acetate consumption for CH4 

production (Zhang et al., 2022). Increasing TAN concentration to 755 mg/L favored the Wood-

Ljungdahl pathway (W-L, M00377), which involves the fhs gene. This indicates that H2/CO2 

played a dual role: either being consumed to produce acetate by homoacetogenic bacteria or being 

produced for acetate consumption by SAOB  (Ruiz-Sánchez et al., 2018; Zhang et al., 2022). The 

positive correlations between the fhs gene and acetate suggest that this gene could be an indicator 

of the utilization of the W-L pathway for homoacetogenesis. 

At 1890 mg TAN/L, near the NIC threshold (2702 mg TAN/L), the glycine cleavage system (GCS, 

M00621) dominated, emphasizing the role of SAOB in acetate degradation (Ruiz-Sánchez et al., 

2018; Yu et al., 2020). Both identified SAO pathways (W-L and GCS) were associated with 

Anaerolinea (Bin288), Syntrophobacter (Bin91) and Sphaerochaeta (Bin136 and Bin184). These 

shifts in acetate metabolism led to H2-dependent methanogenesis, favoring methylotrophic 

methanogenesis (M00356) linked to Methanomassiliicoccus (Bin10 and Bin92) and 

hydrogenotrophic methanogenesis (M00567) linked to Methanosarcina (Bin284). Negative 

correlations between Methanosarcina, Methanomassiliicoccus, Sphaerochaeta, and acetate, along 

with positive correlations with CH4 yield, indicate their roles in methanogenesis and SAO activity. 
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This contrasts with Anaerolinea potential involvement in acetate production. Therefore, these MIs 

can signal relevant metabolic changes in the microbiome before significant changes in 

physicochemical variables (e.g. ammonia, CH4 yield, and VFA), highlighting their early warning 

attribute. 

At 3780 mg TAN/L, ammonia levels reached the inhibition threshold, leading to a decline in the 

denitrification process (M00529). The disruption of this pathway, involving Anaerolinea 

(Bin185), Leptolinea (Bin185), Varibaculum (Bin244), and Syntrophobacter (Bin91), likely 

increased H₂ partial pressure by reducing nitrate usage, thereby hindering propionate degradation 

(Li et al., 2015). This change, combined with increased nitrification (M00528), suggests that high 

nitrite availability may impact AD microorganisms (Hartop et al., 2017). Although methylotrophic 

methanogenesis, encoded by Methanomassiliicoccus (Bin92 and Bin10) and supported by 

syntrophic pathways like W-L or GCS, maintains AD, the decrease in methanogenesis enzymes 

(map00680) indicates a global decline in the methanogenic population. Negative correlations 

between Methanoculleus,Methanomassiliicoccus and Methanosarcina with ammonia evidenced 

this. Additionally, the increased phosphate acetyltransferase-acetate kinase pathway (M00579), 

encoded by Anaerocolumna (Bin259), Anaerosporobacter (Bin259), and Aminiphilus (Bin186), 

suggests sustained acetate production from acetyl-CoA (Yu et al., 2020). These taxa correlate 

positively with acetate and ammonia, indicating their role as acetogens resistant to stress 

conditions. The MIs may describe crucial disruptions in microbiome functionality due to ammonia, 

indicating the likelihood of propionate and acetate accumulation. 

At a MIC level of 7580 mg TAN/L, increased chitin disaccharide deacetylase activity, involving 

the key gene chbG, and potentially generated by Anaerocolumna (Bin155) and Anaerosporobacter 

(Bin155), indicated a preference for carbohydrate hydrolysis over methanogenesis (Verma & 

Mahadevan, 2012). Additionally, overall carbohydrate metabolism (map00010) increased, linked 

to microorganisms such as Anaerolinea (Bin288, Bin185), Leptolinea (Bin288, Bin185), 

Varibaculum (Bin244, Bin185), Anaerocolumna (Bin155, Bin259), and Anaerosporobacter 

(Bin155, Bin259). These genera and the chbG gene showed positive correlations with VFAs and 

ammonia, suggesting a fermentative role under MIC conditions. Other ammonia-associated 

fermentative activities also increased, including protein metabolism (map04974), amino acid 

metabolism linked to the key gene hcaD (3-phenylpropionate/cinnamic acid dioxygenase 
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ferredoxin--NAD(+) reductase component, K00529), and purine metabolism (map00230) linked 

to the key gene deoD (purine nucleoside phosphorylase, K03784). Both genes showed positive 

correlations with ammonia. These findings support that fermentative activities are favorable under 

ammonia conditions where CH4 production is challenging and VFA production remains unaffected 

(Chen et al., 2016). 

The high concentration of propionate under MIC levels likely arises via the lactate pathway, found 

in Anaerocolumna (Bin25, Bin155, Bin259), Anaerosporobacter (Bin25, Bin155, Bin259), 

Anaerolinea (Bin185), and Aminiphilus (Bin186) (Xu et al., 2024). These microorganisms showed 

positive correlations with propionate and negative correlations with CH4 yield inferred this role. 

Simultaneously, decreased propionate (map00640) and butyrate (map00650) metabolisms linked 

to Syntrophobacter (Bin91) suggest that ammonia reaching MIC deteriorates syntrophic oxidation 

of these VFAs (Zhang et al., 2022). At this ammonia level, the complete deterioration of all three 

methanogenic pathways halted CH4 production. The mcrB gene displayed negative correlations 

with ammonia, indicating a global inhibitory effect of ammonia on methanogenic activity. 

Therefore, these MIC conditions could provide insights into the main hydrolytic, acidogenic, 

syntrophic VFA oxidation, and methanogenesis activities affected by ammonia, indicating a shift 

from a methanogenic to a fermentative process. 
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Figure 5.9. The RDA illustrates the response in absolute abundance of (a) genera and (b) genes in relation to 

AD by-products. The percentage of the total variation explained by each RDA axis is shown in parenthesis (35 – 

41%). The redundancy statistic value (R2) reflects the degree of correlation between the explanatory and response 

variables, ranging from 0.80 – 0.85 indicating a well-fitted model. The p-value from the ANOVA permutation tests, 

used to assess the RDA model, is also provided (p < 0.05). Samples categorized as NIC, inhibition, and MIC are 

represented by colored dots in green, yellow, and red, respectively.
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Figure 5.10.  The heatmap displays z-score of KO counts related to key metabolic pathways in AD and key genes across the ammonia concentrations.  Z-

score > 0 shift towards blue, indicates an increase in KO abundance compared to the mean; Z-score < 0 shift towards pink, indicates a decrease in KO counts 

compared to the mean. “*” denotes metabolic pathways not annotated in the KEGG database. Lactate metabolism was reconstructed based on Mugnai et al. (2021) 

and butanol metabolism was reconstructed according to Grohmann et al. (2018).
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Figure 5.11. The heatmaps show the disrupted metabolic pathways by ammonia and constructed MAG at family level. The size of the circles represents the 

KO coverage percentage for the respective metabolic pathways. Key genes linked to these pathways are highlighted in blue. Green, yellow, and red squares indicate 

the preferred inhibitory level for each key genus within its respective taxonomic family. 



CHAPTER 5. Suitable microbial indicators for detecting ammonia inhibition in anaerobic digestion of food wastes 

105 
 

 

Figure 5.12. The heatmap depicts the correlations between the a) key genera and b) key genes and AD by-products. Significant correlations, determined by 

Pearson correlation coefficient are denoted with *, **, and *** to represent p <0.05, p <0.01, and p <0.001, respectively. 
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5.4.6. Future applications of suitable MIs  

Anaerolinea, Sphaerochaeta, Syntrophobacter, Methanomassiliicoccus, Methanosarcina, fhs, and 

acs were identified as suitable MIs due to their multiple attributes. These MIs could help 

differentiate conditions with a positive ammonia effect (NIC) from those with negative effects of 

low (NIC – MIC) or high (MIC) impact on CH4 yield, as observed with a FC between 1.22 and 

2.15 in their abundance. A sudden variation in MI count with a z-score ≥ |1| could indicate early 

warning signs of ammonia inhibition. This early response is supported by the presence of crucial 

metabolic pathways in the MAG of these MIs, which are disrupted by ammonia content, 

potentially occurring before excessive propionate or acetate accumulation or a decrease in CH4 

yield  (Wu et al., 2021).  

Given that suitable MIs might provide consistent responses in other mesophilic FW digesters, their 

implementation in microbial management seems imminent (Hardy et al., 2021; Ruiz-Sánchez et 

al., 2018; Zhang et al., 2022). These MIs can be validated through experiments focusing on 

microbial-based management using three approaches: detecting key challenges (retrospective 

management), monitoring processes (prospective management), and verifying countermeasure 

feasibility (proactive management) (Carballa et al., 2015). In these cases, MIs can be used to test 

different algorithms typically used in control systems (e.g., model-adaptive control, fuzzy logic, 

or artificial neural networks) to predict the status of AD. This approach would enable the 

development of strategies around physical actions that ensure process stability and maximize 

efficiency, facilitating modernization from a biological perspective (Nguyen et al., 2015). 
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5.5. Conclusion 

Standardizing ammonia inhibition levels in the AD process fed with FW and conducting an 

integrative statistical analysis enabled the identification of potential MIs. Attributes such as 

consistent responses, significant abundance changes, early warning signs, and key metabolic roles 

led to the identification of Anaerolinea, Sphaerochaeta, Syntrophobacter, Methanomassiliicoccus, 

Methanosarcina, fhs, and acs as suitable MIs. These MIs are recommended for further validation 

in similar processes to advance microbial management concepts. This analytical approach can also 

be applied to identify MIs for other inhibitory compounds across various biological systems, thus 

enhancing biological process optimization. 
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CHAPTER 6. Evaluation of microbial indicators for ammonia inhibition detection in 

anaerobic sequencing batch reactors 

6.1. Abstract 

Microbial indicators are valuable biological metrics for detecting inhibitory effects of ammonia. 

However, variations in feedstock and inoculum composition may bias the responses of microbial 

indicators. This study implemented short-term monitoring of four processes differentiated by semi-

continuous ammonia addition (0–3.78 g TAN/L) within an anaerobic sequencing batch reactor 

system. This approach evaluated the response of 14 microbial indicators across three inhibitory 

levels: non-inhibitory (< 2.51 g TAN/L), low-inhibitory (2.51–11.07 g TAN/L), and high 

inhibitory (11.07–26.23 g TAN/L). Based on significant responses to these levels, indicators were 

classified into two groups: stepped response indicators and extreme response indicators. Stepped 

response indicators, such as Anaerolineaceae and the acs gene, exhibited a gradual negative 

response to increasing ammonia levels (non-inhibitory → low-inhibitory → high-inhibitory), 

reflecting a decline in syntrophic relationships within the microbiome. Extreme response 

indicators, including Aminobacterium, Clostridium sensu stricto (subgenera 1, 15, 7, and 8), 

Methanosarcina, Syntrophobacter, Methanomassiliicoccus, and the fhs gene, exhibited significant 

changes only between non-inhibitory and high-inhibitory levels. Such a response indicates a 

vulnerability in the syntrophic oxidation of acetate and propionate, highlighting the need for 

maintaining H2-dependent methanogenesis and the risk of volatile fatty acid accumulation. The 

use of microbial indicators revealed distinct metabolic profiles that differentiated microbiomes 

with similar VFA concentrations and methane production, offering a clear advantage over 

conventional physicochemical indicators. From a strategic perspective, these microbial indicators 

are poised to significantly enhance the management and optimization of food waste digesters by 

providing a more nuanced understanding of microbial metabolism in response to ammonia 

inhibitory levels. 

Reference to the work in preparation 

Jonathan Cortez-Cervantes, Iván Moreno-Andrade, Claudia Etchebehere, Julián Carrillo-Reyes. 

Evaluation of microbial indicators for ammonia inhibition detection in anaerobic sequencing batch 

reactors to be submitted to Bioresource Technology
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6.2. Introduction 

Ammonia inhibition is a common operational challenge in FW digesters (Wang et al., 2018). Even 

under favorable conditions (< 3 g VS/L-d), a sudden increase in protein content in FW can release 

high ammonia concentrations, potentially causing digester failure by acidification (Peng et al., 

2018; Zhang et al., 2022). Industrial FW digesters often incorporate monitoring systems for 

physicochemical indicators like biogas production, pH, temperature, and ammonia levels to ensure 

the stability of AD (Wu et al., 2021). However, monitoring these parameters alone may not reliably 

detect when ammonia negatively impacts the AD inoculum (Jiang et al., 2019). This is because 

ammonia favors the selective enrichment of phylogenetically related microbiomes that perform 

AD under deterministic mechanisms (Cardona et al., 2022). Although this selective enrichment 

suggests possible inoculum acclimation to stress conditions (~3 g TAN/L), medium-term 

observations (150 days) indicated the accumulation of volatile fatty acids (VFAs), which 

ultimately reduces digester performance (Peng et al., 2018; Xu et al., 2018). 

Recent studies have investigated the use of microbial indicators (MIs) to assess AD performance, 

even for detecting key challenges like ammonia inhibition (Cortez-Cervantes et al., 2024; Poirier 

et al., 2020). Commonly, ammonia selects for a microbiome characterized by VFA degradation 

through syntrophic relationships, such as hydrogenotrophic methanogenesis, while displacing 

acetoclastic methanogenesis (Hardy et al., 2021; Zhang et al., 2022). This shift in microbial 

structure tends to persist, as ammonia selects for phylogenetically related microorganisms 

(Cardona et al., 2022). Thus, to identify MIs with universal responses to ammonia inhibition in 

anaerobic processes fed with similar feedstocks is considered feasible (Li et al., 2018). However, 

uncontrollable factors, such as compositional changes in the feedstock and microbial acclimation, 

may alter MI responses, potentially biasing their effectiveness in detecting ammonia effects 

(Theuerl et al., 2018; Yan et al., 2019).  

Previous results have proposed potential MIs to elucidate metabolic changes associated with 

ammonia inhibition levels in FW digesters (see chapter 5). When ammonia exceeds the non-

inhibitory concentration (NIC > 2.70 g TAN/L), an increase in Syntrophobacter and a decrease in 

Sphaerochaeta suggest that the syntrophic requirements for propionate oxidation (SPO) might 

surpass those for syntrophic acetate oxidation (SAO). Additionally, the co-presence of the genes 

acs (acetyl-CoA synthetase gene, K01895) and fhs (formate—tetrahydrofolate ligase, K01938) 
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could indicate whether acetate is being utilized via acetoclastic methanogenesis or the Wood-

Ljungdahl pathway respectively. When ammonia crosses the minimum inhibitory concentration 

(MIC > 5.80 g TAN/L), a reduction in Methanomassiliicoccus and Methanosarcina, along with an 

increase in fermentative bacteria like Anaerolinea, may indicate that the inoculum is unable to 

sustain AD. Other MIs, such as Aminobacterium, Clostridium, HA73, T78, Corynebacterium, 

Lactobacillus, and Prevotella, were reliable for evaluating FW digester performance (Cortez-

Cervantes et al., 2024). These microorganisms were linked with carbohydrate and amino acid 

fermentation and syntrophic activities, which are metabolism frequently affected by inhibitory 

ammonia levels (Cortez-Cervantes et al., 2024; Zhang et al., 2022). Despite proposing potential 

MIs, their evaluation in real-world systems, subject to FW variability and microbiome changes 

over time, has yet to be confirmed. 

This chapter aims to evaluate the response of reliable and suitable MIs to detect ammonia, by 

monitoring an anaerobic sequencing batch reactor (AnSBR) system under perturbations. The 

AnSBR system comprised four processes, differentiated by the semi-continuous addition of 

ammonia concentrations at 0, 0.37, 0.75, and 3.75 g TAN/L at the end of each operating cycle. 

Each process was subjected to disturbances related to compositional variation in FW such as 

changes in feedstock batch and variations in the organic loading rate (OLR). These factors allowed 

obtain a database of diverse ammonia concentrations, obtaining an inhibitory profile characterized 

by three levels: non-inhibitory, low-inhibitory, and high-inhibitory. The ability of the collected 

MIs to distinguish ammonia inhibitory levels was determined using a center log ratio (CLR) 

transformation and non-parametric significance test. Additionally, MI profiles based on z-score 

elucidated a key metabolic behavior of each process. This approach allowed differentiation of 

microbiomes that appeared similar based on physicochemical indicators, such as volumetric 

methane production rate (VMPR) and methane (CH4) yield, highlighting the sensitivity of 

microbial indicators. As a result, microbial indicators demonstrated greater specificity in detecting 

ammonia inhibition. Since these indicators are considered reproducible, they could be easily 

integrated into models for developing new monitoring systems for FW digester systems. 
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6.3. Material and methods 

6.3.1. Feedstocks sources and activated inoculum 

Three sources of FW, labeled FW-1, FW-2, and FW-3, were separately collected in 20 L plastic 

containers from different food markets in Santiago de Queretaro, Mexico. FW was mainly 

composed by fruits and vegetables. Each feedstock batch was homogenized using an electric 

blender. To maintain a consistent physicochemical composition, each FW sample was stored in 

1.75 L self-sealing bags at -20°C until use. The total solids (TS, g TS/g) and volatile solids (VS, g 

VS/g) content for each feedstock batch 0.08 ± 0.001 and 0.05 ± 0.001, 0.12 ± 0.001 and 0.10 ± 

0.001, and 0.09 ± 0.001, for FW-1, FW-2, and FW-3, respectively. 

For inoculum preparation, 20 L of granular sludge was obtained from a mesophilic anaerobic 

process at a flour industry and stored at 4°C. To remove residual organic matter, 2.5 L of granular 

sludge was placed in an open 3 L container at room temperature for 3 d. The sludge was then 

characterized, yielding 0.07 ± 0.001 g VS/g and 0.05 ± 0.001 g VS/g. Inoculum activation was 

conducted in batch-fed AD systems using three 1 L glass reactors with a working volume of 0.85 

L. Each reactor was set to an S0/X0 ratio of 0.15, using FW-1 as feedstock, and granular sludge as 

the initial inoculum, along with acetate and butyrate at 100 mg/L and 50 mg/L, respectively. These 

VFAs were chosen to activate acetoclastic methanogens, hydrogenotrophic methanogens, and 

syntrophic bacteria, crucial for CH4 production. Reactors were mixed at 144 rpm and maintained 

at 35°C for 17 d. through hotplate stirrers. Final inoculum characterization showed 0.04 ± 0.001 g 

TS/g and 0.03 ± 0.001 g VS/g. 

6.3.2. Operation of the AnSBR system 

Different AnSBR systems were operated to evaluate MIs for detecting ammonia inhibition under 

multiple perturbations related to FW composition (Fig. 6.1). The systems were divided into four 

different processes, P0, P0.37, P0.75, and P3.78, corresponding to semi-continuous ammonia 

additions of 0, 0.37, 0.75, and 3.78 g TAN/L, respectively, at the end of each operation cycle. Each 

process was run by triplicate. The selected concentration range was chosen based on previous 

experiments (Chapter 5), where TAN ≤ 0.75 g/L caused metabolic variations without significantly 

affecting CH4 yield being NIC, while TAN ≥ 3.78 g/L exhibited inhibitory effects on AD using 

the same inoculum.  
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Experimental setup consisted in 12 AnSBR glass reactors of 0.6 L of total volume, a working 

volume of 0.36 L, and a head space of 0.24 L. The exchange volume was 50%. The AnSBR 

reactors were operated using an AMPTS II system (Automatic Methane Potential System, 

Bioprocess Control, Sweden) for the measurement of biogas online. The hydraulic retention time 

(HRT) was 10.1 d where each operating cycle included filling (5 min), reaction (5 d), settling (1 

h), and draw (5 min). Filling and drawing between cycles were performed manually. Start-up 

conditions were S0/X0 0.5 g VS/g VS, 10 g VS/L of acclimated inoculum, and feeding with 20 g 

VS/L FW-1. NH4Cl (50 g/L stock solution) was added as an ammonia source, adjusting the 

concentration per process. Each reactor was provided with 4 g NaHCO3/L, NaOH (5 N) to adjust 

the pH 8.2, and distilled water to fill until the working volume. Anaerobic conditions were 

established by purging with N2 injection. The reactors were placed in a 37°C water bath with 

intermittent mixing (144 rpm, 60s ON/120s OFF) and continuous gas production measurement 

(mL/h) for 35 d.  

Each process was exposed to simulated disturbances, accounting for factors that altered substrate 

composition, such as variations in feedstock batches (FW-1, FW-2, and FW-3) and changing OLR 

at 1 and 2 g VS/L-d. The AnSBR system operated in three phases: phase I used FW-1 at 1 g VS/L-

d (cycles 1–2); phase II used FW-2 at 2 g VS/L-d (cycles 3–4); and phase III used FW-3 at 1 g 

VS/L-d (cycles 5–7). Physicochemical characterization, including VFAs, ammonia, biogas 

composition, volumetric methane production rate (VMPR, Eq 6.1) and CH4 yield (Eq 6.2) was 

determined at the end of each cycle. Microbial community characterization was conducted during 

cycles 1, 3, and 6, corresponding to each perturbation phase (P0, P0.75, and P3.78). Samples were 

collected at the point of maximum methane production (3, 12, and 27 days) (Figure 6.1). 

 

 
VMPR = 

Volume of CH4 produced

Reactor volume x Operation time
 

Eq. 6.1 

 

Where VMPR is the volumetric methane production rate (mL CH4/Lreactor-d), volume of CH4 

produce is the total amount of methane generated during the cycle or day (mL CH4), reactor 

volume is the working volume of the reactor (0.18 L) and operation time is the duration of the 

cycle in days (5 d)  
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CH4 yield = (

Volume of CH4 produced

Mass of VS added
) 

Eq. 6.2 

 

Where CH4 yield is the methane yield (mL CH4/gVSadded), volume of CH4 produced is the total 

amount of methane generated during the cycle (mL) and mass of VS added is the amount of volatile 

solids (VS) added to the reactor during the cycle (g). 

 

Figure 6.1. Operation of the AnSBR system divided into four processes based on the semi-continuous addition 

at certain ammonia concentration. Each process involved perturbations from changes in feedstock batches and 

variations in OLR. Samples for physicochemical characterization were collected at the end of each operating cycle. 

Biomass samples for microbial community characterization were collected on days corresponding to the approximate 

maximum methane production rates (days 3, 12, and 27) observed during cycles 1, 3, and 6. 

 

6.3.3. Determination of ammonia inhibitory levels 

The measured NH3 was corrected using a correction factor considered the operating conditions 

(pH 8 at 35 °C) applied to the system, using the Henderson-Hasselbalch equation (Eq. 6.3): 
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pH=pK

a
+log

10

[NH3]

[NH4
+]

 
Eq. 6.3 

 

Where pH represents the operational pH (8.2), and pKa is the negative log of the acid dissociation 

constant (Ka) for NH4
+, determined at 25 °C (Ka = 5.6 x 10-10) and 35°C (Ka = 1.1 x 10-10).  

Subsequently, total ammonia nitrogen (TAN) was calculated by rearranging the equation from 

Yan et al. (2019) (Eq. 6.4): 

 
TAN= FANc (1+ 

10
-pH

Ka

) 
Eq. 6.4 

In this equation, TAN is the total ammonia nitrogen (g/L), FAN is the corrected free ammonia 

(g/L), Ka is the dissociation constant at 35 °C (as defined in Eq. 6.3), and pH is the operational pH. 

Consequently, NH4
+ was determined by rearranging TAN = NH3 + NH4

+. 

Ammonia inhibitory levels were determined based on kinetic parameters linked to an inhibition 

model. The Hill equation (Eq. 6.4) was employed to generate a model curve describing the 

inhibitory profile of ammonia on methane production. The model input data consisted of VMPR 

values relative to ammonia concentration (g TAN/L), using all observed data from the AnSBR 

system. Model validation comprised extracting the residuals and applying the Shapiro-Wilk test to 

confirm the non-normality of the residuals (p > 0.05). The coefficient of determination (R²) was 

used to assess the goodness of fit of the model. 

 
μ= μ

m
+ (μ

0
-μ

m
)

1

(1+ (
IC50

S
)

n

)
 

Eq. 6.4 

 

Where µ was the VMPR (mL CH4/Lr-d), µm was the maximum VMPR (mL CH4/Lr-d), µ0 was the 

minimum VMPR (mL CH4/Lr-d), S was the ammonia concentration (g TAN/L), IC50 was the 

ammonia concentration when µm/2, and n was an empirical coefficient. 

The IC50 and n values from the validated Hill model were used to calculate the non-inhibitory 

concentration (NIC, Eq. 6.5) and the minimum inhibitory concentration (MIC, Eq. 6.6) of 

ammonia (Lambert & Pearson, 2000). These concentrations categorized the AnSBR system 
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samples according to the inhibitory effect of ammonia, identifying three inhibitory levels: non-

inhibitory (< NIC), low inhibitory (NIC – IC50), and high inhibitory (IC50 – MIC). 

 
NIC = 10

(log10 IC
50 

- 
1.718

n
)
 

Eq. 6.5 

 
MIC = 10

(log10 IC
50

 + 
1
n

)
  

Eq. 6.6 

The "nlsML" function from the "minpack.lm" package was used to estimate the IC50 and n 

parameters of the Hill model, as well as the R² determination (Elzhov et al., 2016). The 

"shapiro.test" function from the "stats" package was applied to assess the residual distribution of 

the model. 

6.3.4. DNA extraction and full-length 16S amplicon sequencing analysis 

Taxonomic and functional characterization of the microbial community was performed using full-

length 16S amplicon sequencing of 27 samples, collected during 3 selected cycles and 3 different 

processes, for each triplicated test. A 2 mL volume of mixed liquor and stored at -20°C until 

processing. DNA extraction was conducted using the DNeasy PowerSoil Pro Kit (Qiagen, 

Germany) following the protocol provided by the manufacturer. DNA quality was assessed with a 

260/280 absorbance ratio (> 1.80) using a NANODrop 2000c (Thermo Scientific, USA). The 

universal primer set 27F (AGRGTTYGATYMTGGCTCAG) and 1492R 

(RGYTACCTTGTTACGACTT) was selected for full-length 16S amplicon sequencing to 

characterize bacteria populations, and Arch21F (TCCGGTTGATCCYGCCGG) and A1401R 

(CRGTGWGTRCAAGGRGCA) set of primers for archaea. Library preparation and sequencing 

were performed using the PacBio Sequel platform at the Integrated Microbiome Resource Lab 

(IMR), Dalhousie University (Halifax, Canada). 

The 16S rRNA gene sequences were analyzed separately for archaeal and bacterial communities. 

Taxonomic characterization was performed using raw circular consensus sequencing (CCS) 

PacBio data in demultiplexed fastq format, processed with Qiime2 (v2024.5) following the 

provider's guidelines (https://github.com/LangilleLab/microbiome_helper/wiki/PacBio-CCS-

Amplicon-SOP-v2-(qiime2-2022.2)). This analysis generated ASV count and sequence tables, 

which were subsequently used for functional characterization with PICRUSt2 following the 

https://github.com/LangilleLab/microbiome_helper/wiki/PacBio-CCS-Amplicon-SOP-v2-(qiime2-2022.2)
https://github.com/LangilleLab/microbiome_helper/wiki/PacBio-CCS-Amplicon-SOP-v2-(qiime2-2022.2)
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standard method (https://github.com/picrust/picrust2/wiki/Full-pipeline-script). The outputs of the 

bioinformatics tools included ASV count tables, corresponding taxonomic classifications, and 

predicted genes annotated with KEGG orthology (KO) for each selected sample. 

6.3.5. Diversity analysis  

To assess microbial diversity, absolute abundances of ASVs and KOs for bacteria and archaea 

were combined to evaluate both taxonomic and functional diversity in each sample. For consistent 

comparison across processes, random subsampling without replacement was applied. In this 

analysis, the minimum sequence counts assigned to ASV (7223 inferred sequences) and KO 

(6684099 predicted genes) in the merged data were used as the sampling depth. Rarefaction curves 

confirmed that the selected sampling depth captured the raw richness in the samples. Unique ASVs 

or KOs present in only one sample were removed to filter rarefied data and eliminate artifacts 

(Chong et al., 2020).  

Alpha diversity was determined to evaluate diversity profiles within ammonia inhibitory levels. 

Hill numbers such as q0 (richness), q1 (Shannon index) and q2 (Simpson index), and Pielou 

evenness were determined. Significant differences within and between inhibitory levels were 

identified using Kruskal-Wallis (p < 0.05) and Wilcoxon rank-sum tests with Benjamini-Hochberg 

p-value adjustment (p < 0.10) respectively. The “hill_div” and “estimate_richness” functions from 

the “hilldiv” and “vegan” packages were used to determine Hill numbers, while significance tests 

were performed using the “kruskal.test” and “pairwise.wilcox.test” functions from the R base 

package. Alpha indices were visualized with the “ggplot” function from the “ggplot2” package. 

Beta diversity was assessed to evaluate taxonomic and functional differentiation between ammonia 

inhibitory levels. Rarefied ASV and KO data were transformed using the Hellinger method to 

standardize composition and improve ordination analysis (Legendre & Gallagher, 2001). Bray-

Curtis’s dissimilarity was calculated to evaluate compositional differences between samples. 

Nonmetric Multidimensional Scaling (NMDS) technique was used to generate ordination scores, 

which represent the relative dissimilarity of samples in a reduced-dimensional space. Dissimilarity 

differences between microbial communities across inhibitory levels were assessed with ANOSIM 

(p < 0.05) with 999 permutations. The Hellinger transformation was performed using the 

"decostand" function, the distance matrix was obtained with the "vegdist" function, NMDS 

https://github.com/picrust/picrust2/wiki/Full-pipeline-script
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solutions were derived with the "metaMDS" function, and data visualization was achieved using 

the “ordihull” function, all contained within the "vegan" package.  

6.3.6. Statistical analysis for evaluation of MIs 

The 14 potential MIs identified in Sections 3 and 5, including Aminobacterium, Clostridium 

(subgenera sensu stricto 1, 7, 8, 15), HA73, T78, Corynebacterium, Lactobacillus, Prevotella, 

Syntrophobacter, Sphaerochaeta, Anaerolinea, Methanomassiliicoccus, Methanosarcina, acs, and 

fhs, were evaluated. Archaeal and bacterial data were processed separately. The absolute 

abundances of ASVs were collapsed at the genus level, and KOs were filtered to remove artifacts 

(see Section 6.3.4). This filtered data served as input for statistical analysis. The ability of potential 

MIs to differentiate ammonia inhibitory levels and construct metabolic profiles across each 

operational cycle was assessed. 

To assess the ability to differentiate ammonia inhibitory levels, the data was transformed to CLR 

values, accounting for the compositional nature of microbial abundance data. This transformation 

normalizes the data by taking the log of the relative abundance of each genus/KO and centering it 

by the geometric mean of all genera/KOs within each sample (Hu & Satten, 2023). The CLR values 

of each MI were grouped and compared across and within inhibitory levels using Kruskal-Wallis 

(p < 0.05) and Wilcoxon rank-sum tests with Benjamini-Hochberg p-value adjustment (p < 0.10). 

The CLR transformation was performed using the "decostand" function in the “vegan” package, 

with data visualized through the “ggplot” function from the “ggplot2” package. Significance tests 

were detailed in Section 6.3.4. 

To evaluate the differentiation of microbiomes, MI profiles were constructed based on variations 

in the rarefied abundance in each operating cycles in the selected processes. The rarefied data to 

each set was obtained according to random subsampling without replacement in each data set (see 

section 6.3.4). For each AnSBR process, the average genera or KO counts were calculated across 

replicates, forming a matrix of values. To create the MI profiles, the z-score was calculated using 

equation 6.7 and visualized in a heatmap. 

 Z-score= 
x-μ

σ
 Eq. 6.7 
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where x represents the genus or KO rarefied abundance, and μ the average and 𝜎 denote the 

standard deviation. The z-score transformation was performed using the "sapply" function from 

the R base package, while data visualization through the “pheatmap” function from the 

“pheatmap” package. 

6.3.7. Analytic methods 

The composition of biogas (H2, CH4, and CO2) was determined using gas chromatography (SRI 

Instruments Model 8610 C, Champaign, IL, USA) equipped with a thermal conductivity detector 

and two stainless steel columns (2 m long; 0.79 mm in diameter). The injector, column, and 

detector temperatures were set at 90, 110, and 150 °C, respectively. Nitrogen served as the carrier 

gas at a flow rate of 20 mL/min. Gas volume was reported under standard temperature and pressure 

conditions (0 °C and 1013.25 hPa). Volatile fatty acids (VFA), lactate, caproate and butanol were 

quantified using high-performance liquid chromatography (HPLC, Agilent Technologies model 

1260, CA, USA). The HPLC was equipped with an AMINEX HPX-87 H column and two 

detectors: a diode-array detector and a refractive index detector (Bio-Rad, CA, USA) at a detection 

wavelength of 210 nm. A 5 mM H2SO4 solution was used as the eluent at a flow rate of 0.6 mL/min 

with the column maintained at 50 °C (Villanueva-Galindo et al., 2024). TS, NH3, and VS were 

measured according to standard methods (APHA, 2005). 
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6.4. Results and discussion 

6.4.1. Physicochemical characterization of ammonia inhibitory levels 

The AnSBR system provided an ammonia inhibitory profile on AD, which remained consistent 

despite variations in OLR and feedstock changes (Fig. 6.2). Three inhibitory levels were identified: 

non-inhibitory at < 2.51 g TAN/L, low-inhibitory at 2.51 – 11.07 g TAN/L, and high-inhibitory at 

11.07 – 26.23 g TAN/L (Fig. 6.2a). Each level showed distinct physicochemical responses based 

on inhibitory effect of ammonia. Comparing non-inhibitory to low-inhibitory levels revealed 

significant changes (p < 0.05) with TAN (NH4
+ – NH3) increasing by 226% (Fig. 6.2d), propionate 

increasing by 304% (Fig. 6.2e), and CH4 yield decreasing by 20% (Fig. 6.2c). These results suggest 

that low inhibitory levels of ammonia lead to propionate accumulation and a reduction in CH4 

yield, which are common indicators of deteriorated microbial activity due to ammonia. (Zhang et 

al., 2022).  

Comparing non-inhibitory and high-inhibitory levels, VMPR (Fig. 6.2b) and CH4 yield decreased 

significantly by 68–70% (p < 0.05). Additionally, TAN and VFAs, including acetate, butyrate, and 

propionate, increased by over 710% (p < 0.05). Similar trends were observed between low-

inhibitory and high-inhibitory levels. These results indicate greater differences in physicochemical 

variables as ammonia concentration increased. At high-inhibitory levels, ammonia likely created 

a stressful environment, negatively impacting syntrophic VFA degradation and acetoclastic 

methanogenesis, leading to pronounced variations in metabolic responses (Capson-Tojo et al., 

2020; Zhang et al., 2022). Therefore, NIC, IC50, and MIC thresholds allowed for the assessment 

of ammonia effects irrespective of variations in FW composition, providing valuable categories 

for evaluating MIs. 
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Figure 6.2. Physicochemical characterization of samples from the AnSBR system grouped by ammonia 

inhibitory levels. a) The Hill model was applied using the average VMPR and ammonia concentration data from each 

replicate of processes P0, P0.37, P0.75, and P3.78. The model was evaluated using the Shapiro-Wilk test, which 

revealed the normality of the residuals (p > 0.05). The coefficient of determination (R²) indicated the fit of the model. 

The bar plots display significant differences in b) VMPR considering average data per cycle, c) CH4 yield considering 

average data per cycle, d) final ammonia concentration, and e) VFA concentration among the ammonia inhibitory 

levels. ANOVA (p < 0.05) and Tukey's test (p < 0.05) were used for within-group and between-group comparisons, 

respectively. 
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6.4.2. Physicochemical characterization of operating cycles 

Significant differences (p < 0.05) in physicochemical parameters were observed across AnSBR 

processes during each operating cycle (Fig. 6.3), including CH4 yield (Fig. 6.3a), VMPR (Fig. 

6.3b), TAN (Fig. 6.3c), and VFA concentrations (Fig. 6.3d). However, the processes P0, P0.37, 

and P0.75, which had ammonia added at non-inhibitory levels (< 0.75 g TAN/L), showed 

significant similarities (p > 0.05) in CH4 yield, VMPR, acetate, butyrate, and propionate from cycle 

5 onward. In contrast, process P3.75, with ammonia added at a low-inhibitory level (3.75 g 

TAN/L), remained significantly different (p < 0.05) from P0, P0.37, and P0.75 throughout all 

cycles. These distinctions were aligned with ammonia inhibitory levels, demonstrating consistent 

physicochemical responses over time. This confirms the effectiveness of NIC, IC50, and MIC in 

categorizing ammonia effects in semi-continuous processes. 

In phase I, during cycle 1, ammonia concentrations differed significantly (p < 0.05) between P0, 

P0.37, and P0.75 (0.16 ± 0.01 to 0.71 ± 0.01 g TAN/L) yet remained non-inhibitory levels. Thus, 

no significant differences (p > 0.05) were observed in VMPR (535 ± 63 mL CH4/L-d) and CH4 

yield (525 ± 63 mL CH4/g VSadded). Conversely, in P3.78, ammonia reached low-inhibitory levels 

(2.94 ± 0.83 g TAN/L), significantly reducing (p < 0.05) VMPR (273 ± 15 mL CH4/L-d) and CH4 

yield (247 ± 11 mL CH4/g VSadded). In cycle 2, P0, P0.37, and P0.75 reached low-inhibitory levels 

(3.24 ± 0.14 to 6.38 ± 0.54 g TAN/L), increasing propionate (288 ± 225 mg CODeq/L) and 

decreasing CH4 yield (505 ± 8 to 393 ± 42 mL CH4/g VSadded). In P3.78, ammonia reached high-

inhibitory levels (11.29 ± 0.01 g TAN/L), significantly decreasing VMPR (169 ± 20 mL CH4/L-

d) and increasing acetate (1693 ± 301 mg CODeq/L). These results suggest that the inhibitory levels 

were consistent with the physicochemical responses observed in the reactors. 

In phase II, cycle 3 had a transition to FW-2 batch and an increase in OLR to 2 g VS/L-d. During 

these conditions the processes P0, P0.37, and P0.75 significantly converged in the ammonia 

concentration (4.85 ± 1.65 g TAN/L, p > 0.05) remaining within the low-inhibitory threshold. 

However, the slight overall increase in ammonia reduced CH4 yield (258 ± 36 mL CH4/g VSadded) 

and increased acetate and propionate concentrations (34 ± 59 mg CODeq/L and 718 ± 290 mg 

CODeq/L, respectively). A similar decline was observed in P3.78, where ammonia concentrations 

remained at high-inhibitory levels but increased (18.32 ± 0.85 g TAN/L, p < 0.05). This led to 

reductions in VMPR (127 ± 6 mL CH4/L-d) and CH4 yield (69 ± 3 mL CH4/g VSadded), along with 
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increased acetate (2753 ± 129 mg CODeq/L) and propionate (718 ± 290 mg CODeq/L). In cycle 4, 

trends in VMPR, CH4 yield, acetate, and butyrate partially mirrored those in cycle 3 across all 

processes. This phase assessed the worst-case scenario for maintaining AD in the AnSBR system, 

demonstrating that increased OLR could lead to higher ammonia levels in inhibited processes. 

However, ammonia inhibitory levels proved to be of limited use in demonstrating the effect of 

ammonia on microbial metabolism. 

In phase III, which included cycles 5, 6, and 7, the switch to FW-3 batches and a return to an OLR 

of 1 g VS/L-d improved performance compared to phase II. CH4 yields increased for P0, P0.37, 

and P0.75 (332 ± 8 to 351 ± 1 mL CH4/g VSadded). Acetate (0 ± 1 to 21 ± 18 mg CODeq/L), butyrate 

(3 ± 6 to 24 ± 41 mg CODeq/L), and propionate (15 ± 18 to 269 ± 180 mg CODeq/L) decreased 

significantly (p < 0.05). Despite similar physicochemical responses, ammonia levels varied in 

cycles 6 and 7. P0.75 maintained low-inhibitory levels (3.02 ± 0.41 to 3.63 ± 0.05 g/L TAN), while 

P0 and P0.37 remained non-inhibitory (0.54 ± 0.02 and 2.11 ± 0.01 g/L TAN, respectively). These 

findings suggest that non-inhibitory ammonia concentrations do not significantly impact short-

term performance (35 days), but uncontrolled ammonia could accumulate in biomass over the 

medium term (100-150 days) (Jiang et al., 2019; Peng et al., 2018; Zhang et al., 2022). Meanwhile, 

P3.78 remained at high-inhibitory levels (> 13.47 ± 0.19 g TAN/L), leading to slight increases in 

CH4 yield (103 ± 22 to 161 ± 46 mL CH4/g VSadded) and decreases in acetate (1637 ± 944 to 2880 

± 828 mg CODeq/L), butyrate (887 ± 449 to 1302 ± 641 mg CODeq/L), and propionate (326 ± 99 

to 1276 ± 7 mg CODeq/L). This highlights that multiple metabolic changes occur within inhibitory 

levels, which are not easily observable using physicochemical variables. 
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Figure 6.3. Response variables of the AnSBR system per operating cycle (cycles 1-7) during the semi-continuous 

addition of different ammonia concentrations (0, 0.75, 0.37, and 3.78 g TAN/L), variability of OLR (1 and 2 g 

VS/L-d), and different feedstock sources (FW1, FW2, and FW3). (a) Cumulative CH4 yield and (b) VMPR 

considering average data per day. The red dashed line indicates the sample collection point for microbial community 

analysis. (c) Ammonia and (d) VFA accumulation corresponding to each ammonia concentration and its inhibitory 

level. 
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6.4.3. Microbial diversity across ammonia inhibitory levels 

Significant changes in taxonomic and predicted functional profiles of microbial communities were 

observed across different ammonia inhibitory levels (Fig. 6.4). Among the alpha diversity metrics 

evaluated, only q0 showed significant differences (p < 0.05) between these levels. Interestingly, 

q0 showed contrasting trends depending on whether genera or gene data were used. 

A significant decrease (p < 0.01) in ASV richness was observed when comparing non-inhibitory 

to high-inhibitory levels (Fig. 6.4a), while predicted KO richness significantly increased (p < 0.05) 

(Fig. 6.4b). The lower ASV richness at high-inhibitory levels may result from ammonia creating a 

deterministic environment that assembles phylogenetically similar and resistant microorganisms 

(Cardona et al., 2022). Such harsh conditions suppress the growth of sensitive key microorganisms, 

including acetoclastic methanogens, making the process vulnerable to future instabilities (Hong 

Zhang et al., 2022). Thus, this inhibitory stress may favor the expression of genes for new 

metabolic pathways, allowing resistant microorganisms to maintain their functionality and 

potentially enhance the functional diversity of the AD microbiome. For example, Clostridium 

typically engages in polysaccharide hydrolysis and homoacetogenesis under non-inhibitory 

conditions, but in ammonia-inhibited digesters, they may also contribute to syntrophic acetate 

oxidation (Allison & Martiny, 2009; Amha et al., 2017; Hardy et al., 2021; Zhang et al., 2022; 

Ziganshin et al., 2013). 

Beta diversity analysis using Bray-Curtis’s distance revealed a significant differentiation (p < 0.05) 

in microbial diversity across ammonia inhibitory levels. Microbial communities at high inhibitory 

levels exhibited distinct taxonomic (Fig. 6.4c) and predicted functional profiles (Fig. 6.4d) 

compared to those at low and non-inhibitory levels, which showed greater similarity. These results 

suggest that, regardless of factors such as changes in feedstock batches, variations in feedstock 

composition due to OLR fluctuations, or microbial residence time, ammonia exerts strong selective 

pressure on the microbial community.  
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Figure 6.4. Microbial diversity across ammonia inhibitory levels defined by processes in selected operating 

cycles. Box plots of q0 value and NMDS ordination plots of Hellinger-transformed Bray–Curtis’s dissimilarity 

matrices obtained from ASV (a, c) and predicted KO (b, d) abundances. Significant differences in the alpha diversity 

metric (only q0 value) are shown by p-value (Kruskal-Wallis test), while lowercase letters in the box plots indicate 

inhibitory levels that were similar or different (Wilcoxon rank-sum test with Benjamini-Hochberg p-value adjustment, 

p < 0.10). Significant differences in beta diversity are supported by the p-value (ANOSIM, p < 0.05) and good NMDS 

fit (0.03). The influence of ammonia in clustering microbial communities was confirmed by the R statistic (0.25 – 

0.46). 

 

6.4.4. Response of MIs to ammonia inhibitory levels 

A total of 8 MIs exhibited significant differences (p < 0.10) across varying levels of ammonia 

inhibition (Fig. 6.5). These MIs were classified into two categories based on their response 

patterns: stepped response indicators and extreme response indicators. Stepped response indicators 

showed a gradual increase or decrease in abundance, with significant changes at each incremental 

level of the inhibitory compound (non-inhibitory → low-inhibitory → high-inhibitory). In 

contrast, extreme response indicators exhibited significant changes only between non-inhibitory 

and high-inhibitory levels of ammonia. This sensitivity to ammonia, irrespective of variations in 
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feedstock composition in FW digesters, suggests that these MI could serve as universal indicators, 

a crucial gap in understanding the effect of ammonia during AD. 

Among extreme response indicators, Aminobacterium, Clostridium (including subgenera sensu 

stricto 1, 15, 7, and 8), and Methanosarcina significantly increased in abundance (p < 0.05) under 

high ammonia concentrations. The ammonia at inhibitory levels is reported to enhance protein and 

amino acid hydrolysis, thereby sustaining ammoniacal nitrogen production (Zhang et al., 2022). 

Consistent with this, the rise of ammonia-resistant microorganisms like Aminobacterium suggests 

that amino acid degradation may still occur (Wang et al., 2018). In addition, the ammonia-inhibited 

digesters maintain syntrophic oxidation of VFAs is crucial to prevent over-acidification (Li et al., 

2018; Zhang et al., 2022). Ammonia-induced possibly selective pressure on microbiome assembly 

may lead to an increase in Clostridium sensu stricto, indicating potential VFA degradation 

deficiencies due to a loss of VFA-degrading microbial richness (Cardona et al., 2022; Wang et al., 

2024). Methanosarcina, a resilient archaeon commonly found in ammonia-inhibited FW digesters, 

maintained methanogenesis due to its metabolic flexibility in utilizing acetate, H₂, and methylated 

compounds (Wang et al., 2018). However, when Methanosarcina assumes a dominant role in CH4 

production, it may indicate a replacement of acetoclastic archaea, indicating deficiencies in AD 

(Hardy et al., 2021).  

Other extreme response indicators with contrasting responses included Syntrophobacter, 

Methanomassiliicoccus, and the fhs gene, all showing significant decreases at the high-inhibitory 

level. These results suggest that ammonia severely disrupted syntrophic pathways, particularly 

acetogenesis and H2-dependent methanogenesis. The decline in Syntrophobacter populations and 

fhs gene likely indicates impaired in syntrophic propionate and acetate degradation (via Wood-

Ljungdahl pathway) respectively (Müller et al., 2016; Zhang et al., 2022). A similar reduction in 

Methanomassiliicoccus suggests a decrease in methylotrophic methanogenesis, leading to reduced 

CH4 production (Hardy et al., 2021; Ruiz-Sánchez et al., 2018). Therefore, these extreme response 

indicators imply that ammonia has already caused a severe shift in the microbiome, moving away 

from an authentic microbiome to achieve better performance in AD. 
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Figure 6.5. Significant responses of MIs for identifying different ammonia inhibitory levels. The distribution of CLR values illustrates the behavior of MIs 

across ammonia inhibitory levels using boxplots. Significant differences in the MIs are shown by p-value (Kruskal-Wallis test), while lowercase letters in the plots 

indicate the study groups that were similar or different (Wilcoxon rank-sum test with Benjamini-Hochberg p-value adjustment, p < 0.10). (*) indicates ASVs related 

to unclassified genera, such as T78 belonging to the Anaerolineaceae family.  
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The stepped response indicators were associated with Anaerolineaceae and acs gene (only in 

bacteria), showing a gradual decline (p > 0.10) in relative abundance as ammonia inhibitory levels 

increased. Although the acs gene was not linked to reduced acetoclastic methanogenesis (archaea 

group, p > 0.10), it suggests potential damage to the SAO pathway, particularly the Wood-

Ljungdahl pathway in bacteria (Yu et al., 2020). Lesser-known genera within Anaerolineaceae 

(e.g., T78) play a significant ecological and metabolic role as potential syntrophic bacteria (Bovio-

Winkler et al., 2021; Cortez-Cervantes et al., 2024). This highlights the need for further 

investigation into their role in FW digesters. These MIs showed greater sensitivity to ammonia 

effects and higher abundances, which likely contribute to maintaining a suitable microbiome for 

AD. Therefore, preserving microorganisms associated with these MIs may be beneficial for 

optimizing the AD microbiome. 

6.4.5. MI profiles in the AnSBR processes 

The evaluation of MIs in each AnSBR process provided profiles that offer insights into overall 

biological aspects about the metabolic behavior of microbiome (Fig. 6.6). This is crucial, as relying 

solely on physicochemical indicators may lead to misinterpretations about the status of process. 

For instance, in cycle 6, where VMPR and CH4 yield recovery was observed in P0 and P0.75, a 

decrease in Syntrophobacter and the acs gene suggest deficiencies in SPO and SAO pathways in 

both processes. Additionally, in the same cycle, MIs such as Methanosarcina, Aminobacterium, 

Sphaerochaeta, and Clostridium sensu stricto in P0.75 and P3.75 indicated that ammonia selected 

resistant members. This microbiome likely faces thermodynamic limitations, reduced the 

abundance of key microorganisms, and a shift towards favoring fermentative activities over 

digestive ones (Peng et al., 2018; Yan et al., 2019; Zhang et al., 2022).  

The MI profiles also revealed metabolic shifts, providing insights into the status of microbiome 

under ambiguous conditions. In the same cycle 6, processes P0 and P0.75 showed similar VMPR, 

CH4 yields, and VFA concentrations. Under such responses, microbial community of P0.75 likely 

acclimated better to ammonia stress than P0. Despite similar physicochemical responses, MI 

profiles indicated that P0.75 experienced a loss of key microorganisms such as Anaerolineaceae, 

along with the emergence of potentially non-beneficial Aminobacterium and a stress-adapted 

SAOB like Sphaerochaeta (see Chapter 5). This highlights that MI profiles can differentiate 

microbiome conditions even when physicochemical responses appear similar. 
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Figure 6.6. Profiles of MIs based on standardized abundance in each AnSBR processes across selected 

operating cycles (cycles 1, 3, and 6) and classified by ammonia inhibitory level. The z-score distributions illustrate 

MI behavior across operating cycles in the processes using heatmaps. (*) indicates ASVs associated with unclassified 

genera, such as T78 from the Anaerolineaceae family (**) indicates ASVs linked to unique genera (Desulfovibrio) 

within the Dethiosulfovibrionaceae family, the same family related to HA73. 
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6.5. Conclusion 

MIs effectively identified the impact of ammonia in an AnSBR system fed with food waste, despite 

variations in feedstock composition. MIs were categorized into two groups based on their 

sensitivity to ammonia inhibitory levels: stepped response indicators and extreme response 

indicators. 

Stepped response indicators, such as Anaerolineaceae and the acs gene, showed progressive 

sensitivity to ammonia, affecting syntrophic relationships and acetate degradation at low inhibitory 

levels. Extreme response indicators, including Aminobacterium, Clostridium sensu stricto 

(subspecies 1, 15, 7, and 8), Methanosarcina, Syntrophobacter, Methanomassiliicoccus, and the 

fhs gene, differentiated only between non-inhibitory and high-inhibitory levels. These indicators 

suggested a decline in SPO and SAO activities, a reliance on H2-dependent methanogenesis, and 

the presence of resistant fermentative microorganisms, indicating microbiome vulnerability at high 

inhibitory levels.  

MIs effectively distinguished microbiomes with similar physicochemical responses, such as 

VMPR and CH₄ yield, highlighting the advantages of MIs over traditional physicochemical 

indicators. MIs accurately assessed the impact of ammonia, regardless of feedstock composition 

variations or shifts in the microbial community over time. Developing and implementing 

monitoring techniques that incorporate these valuable indicators is essential to enhance the 

detection of effects of ammonia and facilitate recovery processes, ultimately preventing inhibition. 
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CHAPTER 7. General conclusions and future perspectives 

The current research aimed to identify microbial indicators for monitoring anaerobic processes fed 

with organic solid waste. The statistical framework used successfully defined key attributes that, 

when applied in multi-omics and multi-experimental contexts, validated the reliability of these 

indicators. These MIs effectively addressed challenges related to CH4 yield and ammonia 

inhibition in a reproducible manner. Furthermore, they provided early warnings of inhibitory 

compounds and were linked to key microbial metabolisms. 

Given these attributes, the MIs show significant potential for implementation in monitoring 

systems, integration into mathematical algorithms or models, and evaluation of recovery strategies 

that address critical challenges. These components are essential for designing and developing new 

control systems based on biological information. Such systems will provide the necessary tools to 

maximize efficiency and ensure long-term stability of OSW digesters. 

Perspectives and recommendations.  

Considering the steps for applying the microbial management concept in AD, this thesis serves as 

a foundation for initiating experiments focused on the three areas of microbial-based management 

in AD (Fig. 7.1). Future applications of MIs are recommended to follow a sequential approach: 

first, evaluating their ability to detect key challenges (retrospective management); second, 

developing monitoring processes (prospective management); and finally, verifying the feasibility 

of countermeasures (proactive management) (Carballa et al., 2015; Wei et al., 2020). Following 

this structured process, the implementation of microbial-based management primarily depends on 

financial viability. Overhead costs (e.g., genetic material extraction, molecular protocols, repairs, 

and data analysis personnel) should be carefully considered to ensure the appropriate application 

of MIs (Cordier et al., 2020; Wu et al., 2019). This approach will lead to the proper and profitable 

use of MIs, ensuring stable and efficient processes without economic losses, thus contributing to 

the modernization of AD systems. 
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Figure 7.1. Steps for the progressive implementation of MIs within with microbial management concept. 

Evaluating MI attributes across taxa and genes, irrespective of the omics tool used, appears ideal for achieving 

consistent responses. Future MI applications involve designing experimental assays to understand their response in 

detecting key challenges, monitoring processes, and assessing the feasibility of countermeasures. This figure was 

adapted from the concept by Terzin et al. (2024) and Carballa et al., (2015).  

7.1. Retrospective management: Key challenges detection 

Sampling collections with taxonomic and functional information from key challenges offer a 

practical option for applying a statistical framework to identify suitable MIs (Ou et al., 2021). This 

approach pertains to retrospective management, where the process undergoes evaluation (e.g., 

health or operational issues), performance is elucidated regarding potential causes, and corrective 

measures may be implemented upon issue identification (Carballa et al., 2015). Previously, this 

concept was applied to propose methods for identifying inhibitory ammonia levels. Beyond this 

approach, MIs also hold potential for developing simplified AI-machine learning models through 

experimental assays or meta-analyses. These models could enable highly accurate categorical 

predictions using a small number of microorganisms (Wijaya et al., 2023). Once developed, the 

model will only require a microcomputer and a data analyst to evaluate the microbiome in real 

systems.  
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In a practical application, considering that suitable MIs may provide several weeks of lead time to 

anticipate perturbations, microbiome assessments should align with the recommended sampling 

frequency of at least once every two weeks for external tests (Wu et al., 2021). For this type of 

management, the most informative and cost-effective option for collecting taxonomic information 

is 16S rRNA sequencing ($20 – $50), while metagenomic sequencing offers higher resolution but 

is more expensive ($100 – $300) and not always necessary (Liu et al., 2021). Once taxonomic 

information is obtained, the model can be applied to discern operational issues from favorable 

states. If an issue is detected, the appropriate countermeasure can be selected to restore CH4 

production. 

7.2. Prospective management: Process monitoring 

Monitoring is a continuous and systematic procedure involving the periodic surveillance of 

indicators to verify process status and predict instability events, ensuring long-term operational 

efficiency (Wu et al., 2021). It is linked with prospective management, involving continuous data 

collection to analyze reliable patterns providing insight into the future state of the process (Carballa 

et al., 2015). Previously, the identified MIs were capable of detecting ammonia inhibition through 

short-term monitoring and provided a more detailed description of the AD process compared to 

physicochemical indicators such as CH4 production, ammonia, or VFA concentrations. Upon 

detecting these adverse trends, solutions like bioaugmentation could be implemented to restore 

AD performance. Upon detecting this adverse trend, solutions such as bioaugmentation could be 

proposed to restore AD (Basak et al., 2021). Therefore, designing a real-time monitoring biosystem 

with rapid and effective screening devices enables timely corrective actions to prevent AD 

collapse, offering an alternative to conventional monitoring systems currently in use. 

Currently, there are devices and techniques that may be attractive for monitoring MI. For instance, 

to monitor key taxa and genes, acquiring devices such as the Oxford Nanopore Technologies 

MinION ($1999, https://nanoporetech.com/) or biosensors (e.g. microbial electrolysis cells the 

cost is $40 – 80) could be cost-effective (Innard & Chong, 2022; Wu et al., 2019). Alternatively, 

the low per-sample cost and quick turnaround of PCR techniques (approximately $25) make them 

a prudent option (Johnston-Monje & Lopez Mejia, 2020). For key diversity indexes, fingerprinting 

techniques like terminal restriction length polymorphism (T-RFLP, $100 - $200 per sample) or 

purchasing equipment for denaturing gradient gel electrophoresis (DGGE, $500) could be applied 
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(De Vrieze, 2020; Johnston-Monje & Lopez Mejia, 2020). These technologies can deliver results 

within hours, and when combined with the early warning capabilities of MIs, a minimum sampling 

frequency of once per week may ensure economic feasibility for their applications (Wu et al., 

2021). Based on these responses, promising models could be designed, such as those supported by 

artificial intelligence, to enhance AD state prediction (Wijaya et al., 2023). 

7.3. Proactive management: Countermeasures feasibility 

Understanding the responses of MIs to identify or predict the status of AD could lead to inferring 

a process diagnosis. It is compelling to evaluate precise countermeasures aligned with the indicator 

response (Innard & Chong, 2022). This approach seems suited to proactive management by 

implementing preventive actions to avoid negative process impacts (Carballa et al., 2015). For 

example, if microorganisms with metabolic capacity to produce biosurfactants like Lactobacillus 

were suggested as suitable MIs, they could significantly predict foam formation (He et al., 2017). 

Subsequently, the operator could decide on corrective measures such as applying an anti-foaming 

agent (e.g., rapeseed oil) (Kougias et al., 2015). Another approach would be to validate 

improvement actions to increase CH4 production. For instance, an increase in Methanosarcina 

may validate the effectiveness of trace element supplementation (Zhang et al. 2019). Undoubtedly, 

MIs emerge as an extension in the modernization of anaerobic systems, enhancing the reliability 

of these processes. 

7.4. Integration of microbial management into the design of new control strategies 

The development of MIs with reproducibility and reliability presents a key opportunity to advance 

control systems based on microbial management in FW digesters (Fig. 7.2). Future research should 

focus on designing novel monitoring systems, identifying new MIs to address emerging 

challenges, and integrating control algorithms to enhance system performance. Additionally, 

evaluating the effectiveness of actuators in counteracting specific challenges will be essential for 

optimizing process control. Once implemented, these control systems will enable the optimization 

of microbial metabolism using MI data, offering significant potential for maintaining long-term 

stability in FW digesters. This approach paves the way for further exploration of adaptive control 

strategies that enhance operational resilience and efficiency. 

Based on the results of this research, a relatively simple automated control system for managing 

ammonia inhibition can be developed for FW digesters. The proposed system involves continued 
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monitoring of key physicochemical indicators, such as ammonia concentration, biogas production, 

pH, and temperature, complemented by MIs. Due to the sensitivity and early-warning capabilities 

of MIs, they can be employed either through retrospective management, using conventional and 

cost-effective techniques like qPCR or 16S rRNA sequencing, or through the design of new 

monitoring systems that provide rapid detection using affordable biosensors. The data collected 

would be processed by a controller based on one or more models, which would determine if the 

process is inhibited. The actuator would then execute physical actions to counteract the problem, 

such as reducing the organic load or applying bioaugmentation. After implementing the corrective 

measures, the response of the indicators would be reassessed to confirm the effectiveness of the 

solution. 

The findings of this research highlight key considerations for advancing microbial management 

strategies in AD using the proposed MIs. Key questions include: What is the most reliable and 

cost-effective detection method for MIs? What model is best suited for integrating these indicators 

into control systems? What recovery strategies are most effective for addressing inhibition, and 

how do they align with MI responses? How much time is required to observe MI responses? Can 

AD processes be effectively controlled using only MIs? Addressing these questions through future 

research will be essential to incorporating MIs and improving conventional control systems. 

MIs represent a significant step toward modernizing AD and other bioprocesses that demand 

increased efficiency and long-term stability. Their integration will play a pivotal role in achieving 

the industrial consolidation of these bioprocesses, offering valuable insights for process 

optimization and resilience. 

. 
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Figure 7.2. Future control systems utilizing MIs, integrating the three key areas of microbial management to 

address, for instance, ammonia inhibition in FW digesters. The proposed set of indicators could be used to develop 

new control systems, ensuring long-term stability of AD. This figure was adapted from the concept by Nguyen et al. 

(2015). 
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