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Resumen

Esta tesis doctoral investiga la dinámica y los efectos de las islas magnéticas en un plasma
compresible, contribuyendo al objetivo más amplio de lograr la fusión nuclear controlada.
El estudio extendió el modelo Island Equilibrium and Transport (IslET) para incorporar
la compresibilidad de los iones, asumiendo una temperatura electrónica constante. Este
modelo extendido describe islas magnéticas completamente relajadas, saturadas y en es-
tado estacionario, que surgen de la evolución de la inestabilidad de modos de desgarre
(tearing modes), provocadas ya sea por una inestabilidad o por una perturbación resonante
impuesta externamente. El modelo supone que el plasma se encuentra en el régimen semi-
colisional e introduce una nueva ecuación para el transporte del momento paralelo.

El modelo extendido se aplicó para evaluar la fuerza de arrastre ejercida sobre islas
magnéticas delgadas por la emisión de ondas acústicas de deriva (drift-acoustic waves),
proporcionando nuevas perspectivas sobre las fuerzas que actúan sobre las islas magnéti-
cas y su comportamiento en plasmas compresibles.

El proyecto se dividió inicialmente en dos partes principales: primero, la extensión del
código híbrido 1D PROMETHEUS++ para simular procesos de reconexión magnética; y
segundo, el análisis de los efectos de la curvatura del campo magnético en un disposi-
tivo toroidal sobre una isla magnética radialmente asimétrica, en colaboración con el Dr.
François Waelbroeck de la Universidad de Texas en Austin. Sin embargo, se encontró que
el efecto combinado de la curvatura y la asimetría de la isla era insignificante, lo que mo-
tivó un cambio de enfoque hacia el estudio de los efectos de la compresibilidad del plasma
y la velocidad paralela. Los detalles de estos trabajos se presentan en los apéndices.

La investigación en confinamiento magnético sigue siendo un desafío central en el de-
sarrollo de la fusión nuclear, con la reconexión magnética desempeñando un papel funda-
mental. Los hallazgos de esta tesis avanzan en la comprensión teórica de las islas magnéti-
cas, ofreciendo perspectivas que pueden contribuir a superar los obstáculos en el camino
hacia la fusión nuclear controlada.
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Abstract

This doctoral thesis investigates the dynamics and effects of magnetic islands in a com-
pressible plasma, contributing to the broader goal of achieving controlled nuclear fusion.
The study extended the Island Equilibrium and Transport (IslET) model to incorporate
ion compressibility while assuming a constant electron temperature. This extended model
describes fully relaxed, saturated, steady-state magnetic islands that result from the evo-
lution of a tearing mode instability or an externally imposed resonant perturbation. The
model assumes that the plasma lies in the semi-collisional regime and introduces a novel
equation for the transport of parallel momentum.

The extended model was applied to evaluate the drag exerted on thin magnetic islands
by the emission of drift-acoustic waves, providing new insights into the forces acting on
magnetic islands and their behavior in compressible plasmas.

The project was initially divided into two main parts: first, extending the 1D hybrid
code PROMETHEUS++ to simulate magnetic reconnection; and second, analyzing the
effects of magnetic field curvature in a toroidal device on a radially asymmetric magnetic
island, in collaboration with Dr. François Waelbroeck from the University of Texas at
Austin. It was found, however, that the combined effect of curvature and island asymmetry
was negligible, motivating the shift towards studying the impact of plasma compressibility
and parallel velocity effects. The details of this efforts are presented in the appendices.

Magnetic confinement remains a central challenge in fusion research, with magnetic
reconnection playing a critical role. The findings of this thesis advance the theoretical un-
derstanding of magnetic islands, offering insights that can aid in overcoming key obstacles
on the path to controlled nuclear fusion.
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Chapter 1

Introduction

1.1 Introduction to Plasma Physics and Fusion Energy

One of the primary challenges we face is the provision of electrical power. Currently,
several alternatives to fossil fuels exist, including renewable and nuclear energy sources.
However, renewable sources depend on climatic conditions and can impact the ecosystems
where they are installed. On the other hand, nuclear energy includes fission and fusion.
Both reactions release substantial amounts of energy, but fusion has the advantage of be-
ing considered a clean and virtually inexhaustible energy source. It does not emit carbon
dioxide, its fuel is very abundant (the energy from one liter of seawater is equivalent to
the energy from 300 liters of oil), and its radioactive byproducts can be recycled or reused
within 100 years—a significantly shorter time-frame compared to the thousands of years
of waste produced by fission processes.

Nuclear fusion occurs when two light atoms combine to form a heavier one. This pro-
cess only naturally takes place within stars, where high temperatures cause the nuclei of
light atoms to overcome electrical repulsion and fuse. Achieving a commercially viable
nuclear fusion plant has been a goal pursued for several decades.

To achieve this, plasma physics is employed. Plasma is ionized gas that constitute
a large portion of the universe. These gases are so hot that electrons are detached from
atomic nuclei, creating a collection of ions and electrons capable of conducting electric
currents and thus susceptible to respond to electromagnetic fields.

Due to this electrical nature of plasma, electromagnetic fields can be used to confine
the charged particles within a specific region of space, a mechanism known as magnetic
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2 CHAPTER 1. INTRODUCTION

confinement. A magnetic field can be represented by a set of lines filling the space, with
the density of these lines representing the field strength. They can be imagined as strings
with longitudinal tension and transverse pressure; if they are bent sharply, the curvature
force simulates the magnetic tension force, and if they are accumulated in a certain region,
the pressure generates a transverse force that simulates the magnetic pressure force [1].
The commonly used geometry for magnetic confinement is that of a torus.

Within the plasma, magnetic field lines form nested magnetic surfaces shaped like a
toroid. Toroidal currents induced by external coils heat the plasma while simultaneously
confining it. The combination of a toroidal magnetic field with a poloidal one results in
a helical magnetic field, as shown in Fig. 1.1. Along the toroid, magnetic field lines
complete a number of toroidal and poloidal turns before returning to the starting point or a
nearby one. The ratio between these numbers is called the safety factor q, representing 2π

times the inverse of the rotational transform (the angle in poloidal direction that the field
line advances after one toroidal turn), and determines the magnetohydrodynamic stability
of the plasma. When the field lines close upon themselves, the safety factor is a rational
number, indicating that the surface is rational.

Figure 1.1: A-1 Toroidal magnetic field coils. B-2 Poloidal magnetic field caused by the current. B-3
Toroidal plasma current. C-4 Plasma current. C-5 Resulting helical magnetic field. C-6 Toroidal magnetic
field. C-7 Poloidal magnetic field. Wikimedia Commons

The primary fusion devices using magnetic confinement are tokamaks and stellarators,
as shown in Fig. 1.2. The magnetic field is helical in both devices; however, unlike the
stellarator, the tokamak has axial symmetry, meaning symmetry around the toroidal axis.
In the tokamak, this geometry is achieved with a toroidal current in the plasma, which
also requires the device to operate in a pulsed manner. Conversely, in the stellarator, the
helicity is produced by the external coils, and it operates continuously. Currently, the most
ambitious tokamak project under construction is ITER (International Thermonuclear Ex-
perimental Reactor), which is of particular interest to this work. In both configurations,
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Figure 1.2: Structure of the tokamak and the stellarator. EUROfusion, Max-Planck Institut für Plasma-
physik.

the magnetic field lines lie on toroidal surfaces nested one within another, called magnetic
flux surfaces. These maintain the plasma confined.

In an equilibrium plasma, infinitesimal perturbative forces may grow or be damped
depending on the plasma’s stability. If the growth rate is positive, the perturbation desta-
bilizes the plasma. This can lead to chaotic changes in density, pressure, and flow velocity
profiles, known as plasma turbulence, and consequently, fluctuations in fields. Instabili-
ties can be classified into different types, such as kinetic or hydrodynamic, and can also
be characterized through the modes that form the solutions to linear evolution equations.
These instabilities can cause a rearrangement of field lines, known as magnetic recon-
nection. This process plays a crucial role in fusion plasmas, both in forming equilibrium
configurations and in global particle self-organization processes through which the plasma
relaxes to a state of minimum energy.

Particle and energy transport also occurs, which can be of different types. For example,
transport directed outward in the device from one magnetic surface to another is called
radial transport and is important because it determines the time plasma energy can remain
confined. Experimental observations in toroidal devices suggest that turbulent transport
decreases globally due to the presence of poloidal flows with different velocities, known
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as sheared flows. Regions where transport is reduced are called transport barriers.

Figure 1.3: Magnetic field lines reconnecting to form magnetic islands.

On a rational surface, magnetic field lines can break and reconnect to form closed
magnetic flux tubes, isolated from the rest of the plasma by a separatrix, as shown in Fig.
1.3. Magnetic surfaces in turn are also broken forming isolated tubes known as magnetic
islands. Magnetic islands connect particles in the inside of the plasma to a more external
region. This causes loss of confinement and is one of the primary reasons for studying
their behavior.

Given the ideas presented, it is important to study the magnetic reconnection process,
particularly the dynamics of magnetic islands and their influence on the plasma.
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1.2 Thesis outline
This thesis presents the work carried out during the doctoral project, focusing primarily on
the effects of plasma compressibility on magnetic islands. The main body of the thesis is
structured as follows. Chapter 2 sets the theoretical framework for studying plasmas and
the formation and characterization of magnetic islands.

Chapter 3 presents the dynamical system whose steady-state solutions are described
by the IslET model. Chapter 4 describes the derivation of the compressible IslET model,
solving the lowest-order limit to determine equilibrium solutions in terms of profile func-
tions and obtaining transport equations governing the profiles.

In Chapter 5, we solve the IslET model analytically, focusing on the thin (unmagne-
tized) island limit. The chapter provides equilibrium and transport solutions by matching
the inner and outer regions of the magnetic island.

Chapter 6 presents numerical results computed using the IslET Mathematica code,
which are compared with the analytical results. This chapter introduces and analyzes slip
curves, which describe the relationship between the force acting on the magnetic island
and its velocity. It examines how variations in plasma compressibility influence bifurca-
tions and the stability of the island’s velocity, providing new perspectives on the dynamics
of magnetic islands under different conditions.

Finally, Chapter 7 discusses the results and outlines the future work needed to com-
plete the analytic description of island evolution in an inhomogeneous plasma.

Initially, the project also aimed to modify a hybrid code, PROMETHEUS++, to sim-
ulate magnetic reconnection and analyze the effects of magnetic field curvature and the
radial asymmetry of magnetic islands in a toroidal device. However, due to time con-
straints, the code modification was not completed, and the advances achieved in this area
are presented in Appendix A. Similarly, preliminary results on the effects of curvature and
island asymmetry were found to be small and are provided in Appendix B.
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Chapter 2

Theoretical background

2.1 Plasma description
Plasmas and magnetic fields are ubiquitous throughout the Universe, found in planets,
stars, and interstellar gas. On Earth, one of the most ambitious projects in energy science
and technology is controlled nuclear fusion through magnetic confinement of hot plasmas.
Despite the differing characteristics of these plasmas, similar processes, such as magnetic
reconnection, occur across them. Understanding how energy is stored and released in these
plasmas is crucial for controlling them in laboratory settings.

Three fundamental parameters characterize these types of plasma:

i Particle density, n, measured in particles per cubic meter (m−3).

ii Temperature, T , of each particle species, usually expressed in units of energy, elec-
tronvolts (eV), through the relation between temperature and energy with Boltz-
mann’s constant E = kBT , where 1 eV equals 11,605 K.

iii Magnetic field, B, measured in teslas (T).

From these three parameters, other relevant quantities in plasma physics are derived.
Table 2.1 lists these quantities.

The fundamental quantity to measure the effect of the magnetic field on plasma is
the magnetization parameter, which is determined by the ratio between the cyclotron fre-
quency, ωc =

qB
m , and the collision frequency, ν . A plasma is considered magnetized if

ωc ≫ ν , meaning that the particle motion is primarily governed by the magnetic field, and
particles remain closely tied to the magnetic field lines.

7
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The inverse effect is called β , defined as the ratio of kinetic pressure, p = nkBT , to the
magnetic energy density, B2/(2µ):

β =
2µ0 p

B2 =
4.0267×10−25

B2 nT. (2.1)

Two primary approaches used to describe a plasma are kinetic and fluid models (Fig.
2.1). The kinetic approach describes the plasma through particle interactions with elec-
tromagnetic fields or by solving kinetic equations such as the Vlasov or Fokker-Planck
equations. The fluid approach treats the plasma as a continuous medium described by
fluid equations for each particle species (electrons, ions, and neutrals) [2]. A common
initial approximation is magnetohydrodynamics (MHD), which assumes the plasma as a
single magnetized fluid.

Figure 2.1: Plasma descriptions. Birdsall, Langdon, 1985, Plasma Physics via Computer Simulation [2]

The justification for using fluid models is based on the frequent collisions between
particles; however, kinetic effects associated with magnetic reconnection, such as accel-
eration or heating of charged particles, effects of the pressure tensor, P⃗e, or instabilities
due to spatial inhomogeneity (microinstabilities), cannot be described by these models.
Effects of the pressure tensor can be studied with both models but not through MHD; the
calculation of the tensor elements can only be obtained from kinetic theory. In fluid mod-
els, P⃗e often degenerates into a scalar pressure, and since ∇ · P⃗e = ∇Pe has no curl, it does
not affect the evolution of the magnetic field in the electron frame of reference. On the
other hand, the inertia of electrons breaks the freezing condition [1], described further in
Sections 2.3 and 2.3.2.

In the direction perpendicular to the magnetic field, MHD models effectively describe
the dynamics at scales larger than the ion inertial length or its gyro radius (Larmor radius).
At scales comparable to these lengths, two-fluid models become necessary. Below ion



2.1. PLASMA DESCRIPTION 9

Table 2.1: Table of relevant quantities in plasma physics extracted from [cite Bellan]. Values are in SI
units, temperature in eV, A and Z represent the atomic mass number and the charge of ions, respectively.
The subscript l represents either electrons or any ion species.

Quantity Symbol, formula, and value

Debye Length 1
λ 2

D
= ∑l

1
λ 2

l
,

with λl =

√
ε0kBT
n0l q2

l
= 7.4×103

√
Tl
n0l

m

Electron Larmor Radius rLe =

√
kBTe/me
|ωce| = 2.4×10−6

√
Te

B m

Ion Larmor Radius rLi =

√
kBTi/mi
|ωci| = 1.0×10−4

√
ATi

B
√

Z
m

Electron Skin Depth δe =
c

ωpe
= 5.3×106

√
ne

m

Ion Skin Depth di =
c

ωpi
= 2.3×108

√
A

Zne
m

Electron Plasma Frequency ωpe = 2π fpe =
√

nee2

ε0me
= 9 ·2π

√
ne Hz

Ion Plasma Frequency ωpi = 2π fpi =

√
niq2

i
ε0mi

= 0.21 ·2π

√
Zne
A Hz

Electron Cyclotron Frequency ωce = 2π fce =
|e|B
me

= 2.8×1010 ·2πB Hz

Ion Cyclotron Frequency ωci = 2π fci =
Z|e|B

mi
= 1.55×107 2πZB

A Hz

Upper Hybrid Frequency fuh =
√

f 2
pe + f 2

ce

Lower Hybrid Frequency flh =
√

f 2
ci + f 2

pi/(1+ f 2
pe/ f 2

ce)

Electron Thermal Velocity vTe =
√

2kBTe
me

= 5.9×105√Te m s−1

Ion Thermal Velocity vTi =
√

2kBTi
mi

= 1.4×104
√

Ti
A m s−1

Electron Diamagnetic Drift Velocity
vd,e =

kBT
eB

∣∣1
n∇n

∣∣= Te
B

∣∣1
n∇n

∣∣ m s−1

Ion Diamagnetic Drift Velocity
vd,i =

kBTi
qiB

∣∣1
n∇n

∣∣= Ti
ZB

∣∣1
n∇n

∣∣ m s−1

Alfvén Velocity
vA = B√

µ0nimi
= B√

µ0neAmp/Z

= 2.2×1016B
√

Z
neA m s−1

Electron Collision Rate νee = τ−1
e = 4×10−12 n10

T 3/2
eV

s−1
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scales, the kinetic effects of ions become significant, but electrons can still be modeled
with fluid approximations [1].

2.2 Kinetic models
The dynamics of particles of species l in the presence of electromagnetic fields, E and B,
are given by the Lorentz force:

dxl

dt
= vl, (2.2)

ml
dvl

dt
= eZl(E+vl ×B), (2.3)

where ml , xl , and vl represent the mass, position, and velocity of each particle of
species l. While the evolution of the electromagnetic fields is governed by Maxwell’s
equations in SI units:

∇ ·E =
ρ

ε0
, (2.4)

∇ ·B = 0, (2.5)

∇×E =−∂B
∂ t

, (2.6)

∇×B = µ0

(
J+ ε0

∂E
∂ t

)
, (2.7)

where ρ is the charge density and J is the electric current density, ε0 is the vacuum
permittivity, and µ0 is the vacuum permeability. One type of kinetic model is the particle-
in-cell (PIC) method, where the evolution of a large number of particles (each representing
many particles within a cell) is followed according to equations 2.2 and 2.3. Summing over
all particles yields ρ and J, which determine the evolution of the electromagnetic fields.

In a kinetic description, however, the dynamics are expressed in terms of distribution
functions fl(x,v, t) for each plasma species l. These functions represent the density of
particles in phase space, which combines both position x and velocity v. Integrating the
function over all velocities recovers the particle density in physical space:

nl(x, t) =
ˆ

fl(x,v, t)d3v. (2.8)
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Similarly, the charge and current densities are expressed as:

ρ = ∑l ql
´

fl(x,v, t)d3v, (2.9)
J = ∑l ql

´
v fl(x,v, t)d3v. (2.10)

These integrals link the microscopic kinetic description with the macroscopic fields
governed by Maxwell’s equations [2.4–2.7]. This process ensures that the model remains
consistent and forms a closed system: the equations of motion describe individual parti-
cles, while the distribution functions provide a statistical description of the entire plasma.

The evolution of fl is governed by kinetic equations that describe the continuity in
phase space. For small-angle Coulomb collisions, the relevant equation is the Fokker-
Planck equation [3]:

∂ fl

∂ t
+v ·∇x fl +

ql

ml
(E+v×B) ·∇v fl =Cl( f ), (2.11)

where the gradients in position and velocity space are ∇x = x ∂

∂x + y ∂

∂y + z ∂

∂ z and

∇v = vx
∂

∂vx
+ vy

∂

∂vy
+ vz

∂

∂vz
, respectively. Cl is known as the collision operator, which

is the Fokker-Planck operator for Coulomb collisions. In the case where collisions can be
neglected and Cl = 0, the kinetic equation simplifies to the Vlasov equation [4]:

∂ fl

∂ t
+v ·∇x fl +

ql

ml
(E+v×B) ·∇v fl = 0, (2.12)

which involves six degrees of freedom in phase space: three for position and three for
velocity, in addition to time.

2.3 Fluid Models
Magnetic reconnection was first described through magnetohydrodynamic theory, treating
the plasma as a fluid, based on the assumption that electrons and ions move together as
a single fluid, even in the presence of internal currents. This theory is called ideal MHD
theory when the plasma resistivity is negligible, making it a perfect conductor; otherwise,
it is referred to as resistive MHD theory.

Under the assumption of the plasma as a perfect conductor, the magnetic field is frozen
into the fluid and moves with it, meaning the perpendicular movement of the field lines is
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restricted to the perpendicular movement of the plasma [5]. This is known as the frozen-in
flux principle [6], or Alfvén’s freezing theorem [7].

However, MHD formulation ceases to be valid at scales close to the ion skin depth
di = c/ωpi, also called the ion inertial length. This length represents the fundamental scale
at which electrons and ions decouple, and the magnetic field is frozen into the electron fluid
rather than the entire plasma; in high β plasmas, the decoupling scale is the ion gyroradius.
This can be seen through the equation of motion of a particle of species l,

dvl

dt
+ωcl ×vl =

ql

ml
E, (2.13)

where ωcl represents the cyclotron frequency, defined in Table 2.1, for each species. Re-
placing d/dt with a characteristic frequency ω , we have two cases: if ω ≪ ωcl , the second
term on the left of the equation dominates, so the motion of the particle is given by the
E×B drift, v = cE×B/B2; in this case, the particles are frozen to the field lines regardless
of the particle species, and the MHD approximation is valid. In the other case, if ω > ωcl ,
the inertial term dominates, and the particles detach from the field lines. Estimating the
length scale at which ions satisfy ω = ωci = kvA, we get k−1 = di [8].

Due to the force balance between the magnetic field and the plasma kinetic pressure
B2/8π ∼ nTi, the ion inertial length is comparable to the ion gyroradius c/ωi ∼ di, with
only electrons remaining magnetized. Two-fluid effects, such as the Hall effect, appear
when there are large orbits of magnetized ions and electrons [1].

In the MHD formulation, the difference between the velocities of electrons and ions
is assumed to be much smaller than the Alfvén velocity (which represents the speed of a
magnetic disturbance moving with the fluid) or the ion velocity [9]. While in the two-fluid
formulation, electrons and ions are treated as separate fluids with distinct velocity distri-
butions, assumed to be Maxwellian, and the dynamics of reconnection can be described
by the generalized Ohm’s law [9], which is represented by the momentum equation for the
electron fluid, in SI units,

E+v×B− 1
σ

J =
1

ene
J×B− 1

ene
∇ · P̃e −

me

ne2

[
∂J
∂ t

+∇ · (Jv+vJ)
]
. (2.14)

The derivation of this equation can be reviewed in [10]. The first term on the right side
of the equation corresponds to the contribution of the Hall effect due to charge separation;
the second term corresponds to the electron pressure; the third term arises from electron
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inertia as it is proportional to their mass. If the terms on the right side are small enough
to be negligible, the equation reduces to the simple form of Ohm’s law. Usually, the right
side terms and the last term on the left side of the generalized Ohm’s law are responsible
for decoupling particles from the magnetic field under different conditions [4].

As the collision frequency decreases, the conductivity σ grows to infinity. The Ohm’s
law then reduces to E+v×B = 0, which is the case for ideal MHD plasmas and imposes
the frozen-in condition [10].

The following subsections describe both the two-fluid and magnetohydrodynamic mod-
els.

2.3.1 Two-Fluid Model

The fluid model has an advantage over the kinetic model, particularly in numerical simu-
lations, as it involves fewer dimensions (three spatial dimensions) compared to the Vlasov
equation (six phase space dimensions). The fluid equations are derived from the moments
in velocity space of the kinetic equation, eq. 2.11; the k-th moment in velocity space is

Mk(x, t) =
ˆ

vv · · ·v fl(x,v, t)d3v, (2.15)

with k times v, the velocity of the particles. The first moments, k = 0,1,2,3, have the
following physical interpretations:

Particle number density nl(x, t) =
ˆ

fl(x,v, t)d3v, (2.16)

Particle flux density nlVl(x, t) =
ˆ

v fl(x,v, t)d3v, (2.17)

Stress tensor P⃗l(x, t) =
ˆ

mlvv fl(x,v, t)d3v, (2.18)

Energy flux density Ql(x, t) =
ˆ

1
2

mlv2v fl(x,v, t)d3v. (2.19)

In eq. 2.17, Vl is the flow velocity. When the last two moments, eq. 2.18 and eq.
2.19, are measured in the rest frame, they become the pressure tensor, p⃗, and the heat flux
density, q, respectively, and defining the relative velocity as vrel = v−Vl we can write
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them as

p⃗l(x, t) = ml

ˆ
vrelvrel fl(x,v, t)d3v, (2.20)

ql(x, t) =
1
2

ml

ˆ
v2

relvrel fl(x,v, t)d3v. (2.21)

The fluid equations consist of the continuity equation, the momentum conservation
equation, and the energy conservation equation [11]:

Dnl

Dt
+nl∇ ·Vl = 0, (2.22)

mlnl
DVl

Dt
+∇ · p⃗l −qlnl(E+Vl ×B) = 0, (2.23)

3
2

Dpl

Dt
+

3
2

pl∇ ·Vl + p⃗l : ∇Vl +∇ql = 0, (2.24)

with the convective derivative, which measures the variation in the reference frame of each
species, defined as

D
Dt

≡ ∂

∂ t
+Vl ·∇, (2.25)

and, with α and β referring to the components in Cartesian coordinates and following
Einstein’s convention,

p⃗ : ∇Vl ≡ (pl)αβ

∂ (Vl)β

∂xα

. (2.26)

The functions involved in these equations can be constant or variable in position, de-
pending on the model required for a given case study. These models are often identified
by the number of scalar field variables, called fields; for example, in the case where only
one component of the velocity and fields E and B is relevant, and both p⃗ and q can be ex-
pressed in terms of density and temperature, with a constant temperature, it can be called
the Four-Field Model (n, v, E, B).

2.3.2 Magnetohydrodynamics
Developed in the 1950s [12], ideal magnetohydrodynamics (MHD) describes the dynamics
of plasmas as a highly conducting fluid, where the electric field parallel to the magnetic
field lines, E∥, is zero. In this model, the generalized Ohm’s law (Eq. 2.14) reduces to
E+ v×B = 0; this implies that the magnetic field lines always move with the plasma
without breaking or separating. Any plasma assigned to a magnetic field line remains on
that line as it moves, without being able to move to another line [4]. This is the basic
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principle of the frozen-in flux process associated with ideal MHD.

If the field lines come close enough, the associated field gradients become locally
strong at the meeting point of these lines, leading to the formation of a current and density
sheet where E∥ is non-zero, E∥ = E ·B/B ̸= 0, and induces nonlinear MHD behavior [1].

MHD theory is used to describe phenomena that have spatial scales large enough,
larger than the Debye length (the distance over which significant charge separation can
occur), so that the plasma can be considered neutral, referring to this condition as quasi-
neutrality. For the plasma to be quasi-neutral means that the electric charge density,
σe = −ene, is equal in magnitude to the ion charge density, σi = ∑

N
j=1 eZ jn j with the

sum over all ion species, in any region where MHD is valid.

A fluid without sources is governed by the continuity equation and the motion equation

∂n
∂ t

+∇ · (nv) = 0, (2.27)

n
Dv
Dt

=−∇p+ fB, (2.28)

where pressure is a scalar and fB is the force density acting in a unit volume of fluid. The
fluid equations, together with Maxwell’s equations (Eqs. 2.4 to 2.7), are coupled through
the forces acting on the fluid

fB = J×B (2.29)

and Ohm’s law
J = σ(E+v×B) = σE′, (2.30)

where v is the flow velocity, σ is the electrical conductivity, σ = ω2
peτe/4π , and E′ =

E+v×B is the electric field experienced by an electron from the reference frame moving
at the fluid velocity.

To complete the description, an equation of state is needed, which, for a plasma as an
incompressible fluid, is usually:

d
dt
(pρ

−γ
m ) = 0, (2.31)

where ρm = ∑l ρml = ∑l mlnl is the mass density. The evolution of a magnetic field B is
determined by Faraday’s law, Eq. 2.6 in SI units,

∂B
∂ t

=−∇×E, (2.32)
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where E is the electric field. If E, analogous to E′, can be written as

E =−vB ×B+∇φ , (2.33)

then the velocity
vB = (E−∇φ)×B/B2, (2.34)

represents the speed of magnetic field lines and describes their evolution with a fixed topol-
ogy [9].

Since it is a highly conducting fluid, the Darwin limit can be taken, that is, displace-
ment currents ∂E/∂ t −→ 0 can be neglected compared to conduction currents within the
fluid. From Eqs. 2.30 and 2.32, along with Ampère’s law (Eq. 2.7), we obtain the magnetic
induction equation

∂B
∂ t

= ∇× (v×B)+
η

µ0
∇

2B, (2.35)

with η representing the resistivity or magnetic diffusivity η ≡ c2/4πσ [4]. The first term
on the right-hand side of the equation describes the convection of the magnetic field by the
plasma flow; if this term dominates the equation, then the magnetic flux is frozen into the
plasma, and the topology of the magnetic field does not change. The second term repre-
sents the resistive diffusion of the field through the plasma; if this is the dominant term in
the equation, then the freezing condition is weak, and the topology of the magnetic field
can change.

The ratio between the two terms in the magnetic induction equation is measured by the
magnetic Reynolds number or Lundquist number

S =
vAL
η

≃ |∇× (v×B)|
|(η)∇2B|

, (2.36)

where L is the characteristic length scale of the plasma. If S is much greater than one, the
convection term dominates, while if S is much less than one, the diffusion term dominates.
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2.4 Magnetic Reconnection
Magnetic reconnection is a fundamental process in magnetized plasma physics. During
this process, magnetic energy is converted into kinetic energy through the acceleration or
heating of charged particles. It involves a reorganization of the magnetic field lines and
currents in the plasma, leading to a new equilibrium configuration with lower magnetic
energy. It occurs on timescales faster than the global magnetic diffusion time, resulting in
the loss of magnetic confinement.

One way to distinguish magnetic diffusion from magnetic reconnection is through the
characteristic timescales. In the absence of resistivity, the motion of the field lines is
characterized by the Alfvén timescale

τA =
d
vA

, (2.37)

where d is on the order of the system size and vA is the Alfvén speed parallel to the
magnetic field. When resistivity is present, the characteristic timescale is the resistive
diffusion time

τR = µ0σd2 = µ0η
−1d2. (2.38)

We can express the Lundquist number in terms of these times,

S =
τR

τA
= µ0σvAd = µ0η

−1vAd. (2.39)

In a resistive plasma, its characteristic timescale, τr, is between the temporal scales defined
above, Eqs. 2.37 and 2.38: τA ≪ τr ≪ τR [10]. Resistivity often dampens perturbations,
but there are processes where it is destabilizing; one of the main resistive instabilities is
the tearing modes [13].

Magnetic reconnection is a multiscale process, as the rearrangement of magnetic field
lines and plasma currents occurs on microscopic scales; however, the characteristics of
the magnetic field and energy storage are determined on global scales. For this reason,
different approaches, fluid and kinetic, are used to analyze the reconnection process and
understand how these global and local scales interact and couple [9].

2.4.1 Slab Model
A useful tool for analyzing magnetic reconnection in toroidal configurations is the so-
called slab model [14]. This model involves cutting a plasma cylinder at a certain angle
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and opening it up, resulting in a shape resembling a slab or block, as shown in Fig. 2.2,
in the coordinates r, θ , and z. The position of the resonant surface is given by rs. In the
coordinate system x, y, z, the slab can be extended infinitely in the y direction, and the
resonant surface will be at x = 0 [14].

Figure 2.2: Slab model. A) The cylinder is cut at a certain angle to obtain a region of the plasma. B)
The slab abcd is obtained in the coordinate system r, θ , z. C) The slab can be extended infinitely in the y
direction. Wakatani, M. Stellarator and Heliotron Devices [14]

2.4.2 Tearing Modes
Furth, Killen, and Rosenbluth demonstrated in 1963 [15] that the magnetic field can be-
come unstable to small perturbations, known as tearing modes, which reconnect the field
lines. Later, in 1980, Adler, Kulsrud, and White [16] found that unstable current gradients
(the gradient is considered stable or unstable depending on the sign of the slope, with a
positive slope implying instability) within the tearing region provide energy to this insta-
bility, Fig. 2.3; which also reduces the magnetic energy, converting it into ion flow energy
and electron thermal energy [8].

The tearing instability is the main cause of the formation of so-called magnetic islands,
and the growth of the modes plays an important role in plasma stability [13]. This growth
occurs due to the ability of the magnetic energy to find a path to a lower energy state. This
resistive instability occurs when the wave vector k is perpendicular to B, i.e., k ·B = 0,
since k⊥ = 0 creates a singularity in the inductive equation [13].

The analysis of the tearing mode instability requires the plasma to be divided into two
regions: an internal region, which is the region around the rational surface (the surface
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where k ·B = 0) and where resistivity is included, making ideal MHD theory invalid in
this region; and an external region, which is the rest of the plasma and is assumed to have
no resistivity. Solutions are calculated for each region, first, in the external region ignor-
ing the singularity caused by k⊥ = 0; then, the internal region is analyzed considering the
singularity; finally, the solutions are matched [17].

Figure 2.3: Curve 1: The curve is concave downward at the origin, the slope of the current associated
with the perturbation is negative and therefore stable. Curve 2: The curve is concave upward, the current
associated with the perturbation has a positive slope and is therefore unstable for By. ∆ is the internal region.
[17]

Magnetic field directions can rotate as they move perpendicular to the field, for ex-
ample, By(x) and Bz(x) can rotate as they move in the x direction; this behavior is called
shear, and the field is said to be sheared.

To analyze tearing modes, the simplest case is considered: the interface between two
plasmas at equilibrium, in the presence of a background magnetic field By(x), which have
magnetic fields with different orientations, Fig. 2.4, varying with position x and parallel
to the y axis. The orientation of the magnetic field is −y for x < 0 while for x > 0 it is
positive +y; this creates a current at the interface, located at x = 0, in the z direction. The
equilibrium magnetic field is

B0 = B0y(x)ey, (2.40)

with B0y(−x) = −B0y(x) [4]. The inclusion of resistivity allows the negative B0y field to
diffuse into the positive field region, causing the “annihilation” of both near the interface.
In reality, tearing modes cause wave-like perturbations on both sides of x = 0, leading to a
wave-like break in the magnetic field topology in that region, called the resistive layer [13].
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Figure 2.4: Magnetic field lines with shear. Fitzpatrick, R. Plasma Physics: An Introduction [4].

The perturbed quantities, to first order, can be assumed to be of the form

A(x,y,z, t) = A(x)exp(iky+ γt), (2.41)

where γ is the growth rate of the instability. For the case we are considering, kz = 0, the
wave vector k is perpendicular to B, i.e., k ·B = 0, at the resonant surface, x = 0. In Figure
2.5, we can see a representation of the perturbed and unperturbed magnetic field lines.

The resistive MHD equations, but with equation 2.35 instead of 2.30, for the perturba-
tion take the form

∂B1

∂ t
= ∇× (v1 ×B0)+η∇

2B1, (2.42)

mn0
∂v1

∂ t
=−∇p1 +(∇×B1)×B0 +(∇×B0)×B1, (2.43)

∇ ·B1 = 0, (2.44)
∇ ·v1 = 0, (2.45)

where the subscript 0 denotes unperturbed quantities, while the subscript 1 denotes per-
turbed quantities.
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Figure 2.5: Magnetic field lines in the xy plane. The solid lines are perturbed B lines while the dashed
lines are unperturbed lines. Schmidt, G. Physics of High Temperature Plasmas. [17]

The resistive layer must be thinner than the skin depth δd = (η/µ0γ)1/2 and, since η

is small, considering cases when the skin depth is small compared to the slab width a, we
obtain the ordering ∆ ≪ δd ≪ a, with ∆ equal to the thickness of the resistive layer.

To handle the divergence, we divide the region |y| < a into an external region, y0 <
|y|< a, and an internal region |y|< y0, Figure 2.3. The ideal solution can be characterized
by the factor ∆′

∆
′ =

1
Bx

[
∂Bx

∂x

]
x=0

=
1
Bx

(
∂Bx

∂x

∣∣∣∣
x=0+

− ∂Bx

∂x

∣∣∣∣
x=0−

)
, (2.46)

where the notation [ ]x=0 denotes the discontinuous jump of the derivative across x = 0;
∆′ determines the stability of the tearing modes and is related to the width of the resistive
layer as

∆
′ =

∆

δ 2
d
. (2.47)

The growth rate is delimited by [17]

η

µ0a2 ≪ γ ≪ kvA. (2.48)
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The final expressions for the thickness of the resistive layer and the growth rate are

∆

δd
=

(
γL

kvAδd

)1/2

, (2.49)

γ = (∆′)4/5
(

η

µ0

)3/5(kvA

L

)2/5

. (2.50)

which turns out to be faster than the resistive time.

2.5 Magnetic Islands
Magnetic islands form at rational surfaces, q = m/n, due to the reconnection of magnetic
field lines, primarily driven by tearing mode instabilities. As these modes evolve, the is-
lands expand over a characteristic time τAS3/5, and the current profile flattens until the
current profiles stabilize and the tearing modes reach saturation [8].

These islands are closed magnetic flux surfaces, bounded by a separatrix that isolates
them. They enable heat and particles to flow rapidly along the field lines from an inner
region to a more external region of the plasma, leading to confinement loss. In a stellara-
tor, islands can form even in the absence of plasma due to the asymmetry of the magnetic
field; these are known as natural islands or simply vacuum islands. Unlike plasma-present
islands, which can rotate with or within the plasma, vacuum islands remain static.

To analyze these islands, we use the slab model and treat them as perturbations in
the magnetic field. We assume that the flux function Ψ of the magnetic perturbation is
nearly constant across the internal region; this assumption is known as the constant Ψ

approximation and is related to the magnetic field by B = ∇Ψ× êz. The simplest case
to consider is the case of an island in a cylindrical tokamak, where B0 = (0,B0

θ
(r),B0)

with B0
θ

being the poloidal magnetic field produced by a uniform plasma current, and a
resonant perturbation, q = rB0/(RB0

θ
) = m/n at r = rs. When a perturbation B1 is applied,

the magnetic field near rs in cylindrical coordinates is given by

B∗(r,θ ,z) = B0(r)+B1(r,θ ,z)−
r
rs

B0
θ (rs)eθ −B0ez, (2.51)

which was zero at r = rs before including B1. From this, we define a new coordinate
system x,y,z with x = r− rs as the radial distance to the rational surface, y as the poloidal
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position, and z as the toroidal direction, which is also the direction of the magnetic field
(Fig. 2.2). Thus, we can expand the magnetic field in the y direction as

B0∗
y (x) =

dB0∗
y

dx

∣∣∣∣∣
x=0

x+ . . . , (2.52)

and the resonant perturbation is

B1
x = bsin

(
ky− n

R
z
)
. (2.53)

We can define the argument of the sine function as kζ , where ζ = m(θ − ιϕ) and
ϕ = z/R is the toroidal angle. The flux function, including the perturbation, is

Ψ = Ψ0 +
1
2

dB0∗
y

dx

∣∣∣∣∣
x=0

x2 + . . .+
b
k

coskζ , (2.54)

where Ψ0 is constant and dB0∗
y /dx

∣∣
x=0 < 0 . The surfaces described by Ψ constant have

saddle points at x = 0 and kζ = ±π; on these surfaces, Ψ = Ψ0 − b/k. The separatrix is
described by

Ψ = Ψ0 +
1
2

dB0∗
y

dx

∣∣∣∣∣
x=0

(w)2 + . . .+
b
k
, (2.55)

with x =±w and kζ = 0, where w is the average width of the magnetic island defined by
the closed lines within the separatrix. Figure 2.6 shows the shape of the magnetic island
in the slab model with the X and O points of the separatrix plotted by Ψ. If describing
a field in a torus, the flux function of the perturbation A, defined by the component of
the perturbed field B⃗1 = ∇A×∇êz, and the rotational transform, ι ≡ n/m, can be used to
express the flux function that describes the magnetic surface where the island is located,
whether in vacuum or with plasma,

Ψ =
B0

θ

ι

(
1
2

ι
′x2 − A0

ψ ′ cosζ

)
. (2.56)

The X points correspond to cosζ =−1 and x = 0, while for the O point it is cosζ = 1
and x = 0; the island is denoted as an azimuthal flux ψ = −Az = A0 cosϕ . From the flux
function (2.55), and noting that for kζ = π , Ψ−Ψ0 =−b

k , the half width of the island is
obtained [14] by

w = 2

(
b/k

∣∣∣∣∣dB0∗
y

dx

∣∣∣∣∣
)1/2

. (2.57)
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Figure 2.6: Magnetic island resulting from the slab model. Wakatani, M. Stellarator and Heliotron Devices
[14]

To obtain the width in a toroidal geometry in terms of A, we use b → A with A = A(ζ ) =
A0 cosζ and Av = Av

0 cos(ζ +∆φ) for the potential with plasma and in vacuum, respec-
tively. ∆φ is the phase of the vacuum island relative to the phase of the island with plasma.
Thus, the expressions for the magnetic island width with plasma and in vacuum are

w = 2

√
| A0

ι ′ψ ′ | and wv = 2

√
|

Av
0

ι ′ψ ′ |, (2.58)

where ψ ′ ≡ dψ

dρ
= B0/|∇(ζ )|, and ι ′ = ι/Ls; Ls is the magnetic shear length Ls = Rq/s, R

is the major radius, and s = (r/q)dq/dr is the magnetic shear [18]. We can thus rewrite w
as

w =

√
4LsA0

ι0B0Lα

. (2.59)

The island widths are related through their phase difference [19][20]

w = wv
√

kν cos(∆φ). (2.60)

If there are multiple resonant surfaces at different radial positions q(ri
s) = mi/ni, re-

gions of stochastic magnetic field can be generated due to the overlapping of adjacent
magnetic islands, which can lead to radial transport. The condition for the destruction of
the surface is given by

1
2
(
wi +wi+1)> ∣∣ri

s − ri+1
s
∣∣ . (2.61)

It is useful to use the expression for the flux surface normalized with x = X/w as a
dimensionless quantity,

χ
2 =

A−ψ

2A
= x2 + sin2 ζ

2
. (2.62)
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The evolution of the magnetic island width is given by the Rutherford equation [21]

dw
dt

= Dη(∆
′
0 +∆

′
BC), (2.63)

where Dη is the magnetic particle diffusion coefficient. The stability parameter of the
tearing modes determines the evolution of the width; in general, ∆′ may have contribu-
tions from external sources manifested through the boundary conditions ∆′

BC, with ∆′ =
∆′

0+∆′
BC, where ∆′

0 represents the free energy available in the absence of external sources.

The boundary conditions within the island lead to the following relationship between
the island rotation frequency, ω , and the diamagnetic frequencies of electrons and ions,
ω∗l = kTl/(qlBLn) [22]

ω = f ω∗e +(1− f )ω∗i, (2.64)

where f is the flattening factor within the island of the plasma profiles; for wide islands,
profile flattening occurs and f = 0, while for narrow islands, gradients occur and f = 1.

Magnetic islands are created by tearing modes through magnetic reconnection in the
vicinity of field lines that close upon themselves.[23, 24] Due to their detrimental effect
on confinement, they are of concern in a broad range of magnetic plasma confinement de-
vices but particularly in tokamaks and stellarators. In confinement devices with auxiliary
heating, islands are primarily observed as the result of either Neoclassical Tearing Modes
(NTM) or error fields. Avoidance, control and suppression methods have been developed,
in particular using Electron Cyclotron Current Drive (ECCD). Due to the significant power
required for suppression as well as concerns that control systems could be overwhelmed
by multiple tearing modes, there is persistent interest in improving the understanding and
prediction of magnetic island evolution.

In the nonlinear regime, the evolution of the magnetic island associated with a tearing
mode is governed by a pair of generalized Rutherford equations describing the rates of
change of its width W and propagation velocity V .[21, 25, 24] The Rutherford equations
represent the asymptotic matching of the real and imaginary parts of the impedances [26]
between quasi-static Alfvén waves in an inner region of width large compared to W and
the two outer regions on either side of that layer. Therefore, equations 2.63 and 2.64 take
the form

dW
dt

= 1.2η [∆′+D(W,V )]; (2.65)

dV
dt

= F(W,V ), (2.66)
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where η is the plasma resistivity in the tearing layer, ∆′ and D(W,V ) parameterize the
drive for the tearing mode coming from respectively the external and internal sources
of free energy (such as the current and pressure gradients), and F(W,V ) represents the
azimuthal force acting on the magnetic island.[27] It is generally the case that the island
velocity relaxes rapidly to a steady-sate value, the “free”or “natural” propagation velocity
Vf determined by

F(W,V ) = 0.

Substituting the root V = Vf (W ) of this equation in Eq. (2.65) leads to a single equation
for the evolution of the island width that is the goal of most island calculations.

Fitzpatrick and Waelbroeck[28, 29] solved the problem of determining the pair of
functions Vf (W ) and D(W,V ) in a two-fluid plasma by separating the problem into two
regimes based on the relative magnitude of the parallel phase velocity ω∗e/k∥, where
ω∗e = kY csρs/Ln is the electron diamagnetic frequency and k∥ and kY are the wave num-
ber components in the parallel and Y directions respectively. Here, cs =

√
Te/mi is the

ion sound speed, ρs = cs/ωci is the ion-sound Larmor radius, ωci is the ion cyclotron fre-
quency and Ln = n/|∇n| is the density scale-length. The two regimes where the problem
was solved are:

1. The hypersonic regime ω∗e/k∥ ≫ cs corresponding to thin islands, for which the
width of the island is narrow compared to the wavelength of the drift-acoustic wave
that it excites;

2. The subsonic regime, corresponding to wide islands, for which the island is wide
compared to the radial wavelength of the drift-acoustic wave it excites.

The solutions provided in these papers resulted from the numerical integration of a re-
duced system of nonlinear ordinary differential equations. The papers described scaling
of the solutions with the principal parameters of interest. The asymptotic reduction of the
problem to ordinary differential equations, however, required the adoption of simplifying
assumptions:

1. In the hypersonic regime, the island propagation frequency was assumed to be close
to the electron diamagnetic frequency;

2. In the subsonic regime, ad hoc profiles were adopted to connect the solutions inside
and outside the separatrix.

Whereas these assumptions and their consequences are in agreement with presently avail-
able numerical solutions of the complete initial-value problem, it is desirable to expand
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their applicability by seeking solutions free of these assumptions. This is of interest, for
example in the presence of gradients in the electron temperature when the natural fre-
quency of the island may differ from the diamagnetic frequency. The present work is a
first step in this direction based on the use of an alternative reduced model for island evo-
lution, the IslET model[30, 31, 32], that is based entirely on an asymptotic reduction of
the “four field” equations describing the evolution of the island.

The transport analysis embodied in the IslET model [30, 31, 32] calculates the two
functions D(W,V ) and F(W,V ) for steady state islands, that is for islands such that W and
V are constant in time, including electron temperature gradient effects. Equivalently, it
calculates the external drive parameter ∆′ that would cause the tearing mode to saturate
when the island width reaches W and the propagation speed V if the island is not subjected
to external forces. The model has contributed to the understanding of island evolution by
clarifying the effects of island “magnetization” (describing the magnitude of the island
width compared to the ion-sound Larmor radius ρs) and density flattening, accounting for
the changes in the island propagation velocity from the unmagnetized to the magnetized
regime as well as the role of coupling to the drift wave [31] and the effect of the electron
temperature gradient on the island stability.[32]

A limitation of previous versions of the IslET model, that inhibits comparison to
Refs. [28, 29], is its neglect of the ion parallel velocity. This results in an incompressible
description of the ion fluid and suppression of the ion-acoustic or sound wave. In the lin-
ear regime, coupling to the sound wave is known to have a stabilizing effect on the tearing
mode. [33, 34, 35] In the nonlinear regime, likewise, numerical solutions of the com-
pressible equations [36, 37, 38] as well as analytic solutions in limiting cases [37, 39, 40]
show that the sound wave can have important effects on island evolution. In particular,
it is known to be responsible for the flattening of the density inside the island and the
accompanying reduction in the island propagation velocity when its width W is such that
k∥cs ≫ ω∗e [36, 38] (i.e. W ≪ ρs). The reduction of the relative velocity between the is-
land and the surrounding ions has also a stabilizing effect through the polarization current.
[37, 38, 39] Furthermore, the analysis of island evolution in the large island limit shows
that compressibility is necessary in order to account for the effect of curvature.

Compressible models for the island evolution have been presented and solved numer-
ically [37, 38] and semi-analytically [37, 40] by Fitzpatrick and collaborators. Addition-
ally, previous studies have addressed the interaction of sheared flows with magnetic is-
lands, particularly the deformations caused by viscosity of the magnetic flux contours
under sheared flow conditions [41, 42]. Specifically, Ren et al. showed in Ref. [41] that a
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deformation of the ψ contours occurs due to the viscous sheared flow, and calculated its
effect on the evolution of the magnetic islands. Smolyakov et al. studied in Ref. [42] the
effect that the deformations of the ψ contours have on the island stability. However, the
present work is not focused on these effects. In the present thesis, we follow the work in
Ref. [32] by extending the IslET model to include ion compressibility in order to enable a
higher-fidelity description of island evolution that can shed light on unresolved questions,
such as the cause of the bifurcation in the island dynamics observed in Ref. [43] and mod-
eled in Ref. [28]. In order to focus in the ion compressibility effects, we don’t consider
electron temperature gradients. Therefore, we are extending the IslET model by including
compressible effects for constant electron temperature.



Chapter 3

Formulation

In this chapter, we present the set of four-field equations used to describe the dynamics
of magnetic islands in a plasma. The coordinate system (x,y,z) used in these equations
corresponds to a local Cartesian frame. However, in toroidal devices such as tokamaks, it
is common to use cylindrical coordinates (R,φ ,Z) to describe the system, where R is the
radial distance from the axis of symmetry, φ is the azimuthal angle, and Z is the vertical
coordinate along the axis.

In our setup, the Cartesian coordinates can be interpreted locally as follows: x corre-
sponds to the radial direction (R), y to the poloidal direction (along φ ), and z to the toroidal
direction (along the symmetry axis, Z). This correspondence provides a useful framework
for analyzing the equations in both local Cartesian coordinates and the global cylindrical
geometry of the device.

3.1 The drift model

As in Ref. [28], we start from a two-fluid, cold-ion model, with no electron temperature
gradients, consisting respectively of the electron continuity and the ion vorticity equations,
Ohm’s law, and the parallel ion momentum conservation equation:

Dtn+ ε
2
c ∇∥v−∇∥ j = D∇

2
⊥n, (3.1)

DtU −∇∥ j = µ⊥∇
2
⊥U, (3.2)

∂tψ +∇∥(n−ϕ) =C j, (3.3)

Dtv+∇∥n = µ∥∇
2v, (3.4)

29
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where εc = Ln/Ls and Ls is the magnetic shear length. The parameter εc serves to quantify
the influence of compressibility within the system: neglecting εc leads to the suppression
of compressible effects, whereas considering εc allows for the identification and tracking
of such effects within the system. We have adopted the normalization scheme in which
time is normalized to ω−1

∗e , the transverse and azimuthal distances are scaled to ρs (x =
X/ρs) and k−1

Y (y= kYY ). Since we are using a cold-ion model, there is no ion diamagnetic
frequency. The electrostatic potential is adjusted to ensure that the adiabatic response
corresponds to n = ϕ , where n represents the perturbed electron number density. The
vorticity is represented by U = ∇2

⊥ϕ . Additionally, the azimuthal flux ψ is normalized to
B0ρ2

s /Ls, B0 a constant magnetic field, and j denotes the perturbed current,

β̂ j = ∇
2
ψ −1 (3.5)

where the plasma beta, β = 2µ0nTe/B2
0, is normalized as β̂ = β/2ε2

c . The convective
derivative along the E×B flow is represented by the operator Dt = ∂t + vE ·∇, where
∂t = ∂/∂ t, vE ·∇ = (ẑ×∇ϕ) ·∇, and the derivative in the direction of the magnetic field
∇∥ = (ẑ×∇ψ) ·∇. The terms on the right-hand sides of the equations represent transport
phenomena measured by homogeneous transport constants. These include the (ambipolar)
particle diffusion coefficient D, the parallel and perpendicular viscosities µ∥ and µ⊥, and
the normalized resistivity C = 0.51(νe/ω∗e)(me/mi)/ε2

c .

3.2 Boundary conditions
The following tearing parity constraints are implemented, ψ(x,y) = ψ(−x,y), v(x,y) =
v(−x,y), ϕ(x,y) =−ϕ(−x,y), n(x,y) =−n(−x,y), j(x,y) = j(−x,y). The boundary con-
ditions far from the island are the following. For the density, we require that n ∼ x at large
x since it is an odd function. Away from the island, the magnetic flux must match the linear
solution

ψ ∼ x2

2
+

(
1+

∆′ρs

2
|x|
)

ψ̃ cosy. (3.6)

where ψ̃ is the Fourier amplitude of the resonant harmonic of the flux perturbation, and it
is related to the island half-width w = 2ψ̃1/2.

For the electrostatic potential, in the general case an island chain will experience an
electromagnetic force from its interaction with external structures, be it the wall, error
fields or deliberately applied perturbations. This force is mediated by the Alfvén wave



3.3. TRANSPORT ORDERING 31

and in steady-state, it must be balanced by a force representing the flow of momentum
(turbulent or collisional) into the island region. We choose boundary conditions such that
the external forces acting on the island vanish. This is expressed by requiring that the
momentum flux vanishes away from the island: for x → ∞, µU(x,y) = µv′y(x,y) = 0,
implying vy(∞,y) is a constant value v∞ called the asymptotic slip-velocity and v′y(∞,y)≡
v′∞ the asymptotic slip-velocity gradient [28]. The latter condition is only satisfied, when
the island is propagating at its natural velocity, vfree, so that ϕ ∼ −vfreex in the island
frame of reference. As in previous implementations of the IslET model, we find it more
informative to allow the island to be subjected to an external torque and to identify the
free-propagation conditions a posteriori. We thus use the following boundary conditions:

∂ϕ/∂x = vy(xedge,y) = vedge(y)
and ∂U/∂x = v′′y (xedge,y) = v′′edge(y) = 0. (3.7)

The first condition is the non-slip boundary condition, it imposes the velocity at the wall,
at xedge as an integration limit, moving at velocity vedge(y) with respect to the island. The
second condition indicates the absence of a momentum source at the edge of our solution
domain, as might appear in the presence of a volumetric momentum source.

Solving the problem gives us the force as a function of vedge, Fy(vedge) = µ limx→∞U .
It is noteworthy that the calculation of this force holds significance independently, as real-
world islands consistently encounter drag forces arising from their interaction with the
resistive wall of the confinement device, error fields, and internal electromagnetic pertur-
bations.

In the island frame of reference, the natural propagation velocity of the plasma is given
by the root of the force-balance condition Fy(vroot) = 0. Conversely, in the frame where
the background plasma is at rest, the natural propagation velocity of the island is obtained
by the opposite of the root of the force-balance equation, vfree =−vroot.

3.3 Transport ordering
The ordering scheme we adopted assumes that the transport coefficients are small: C ∼
µ∥∼ µ⊥∼D∼ κ⊥∼ δ ≪ 1 and expand all quantities in a power series in δ . This approach
follows the work in Ref. [32], where similar transport coefficients are treated as small to
facilitate analytical solutions. For the density, for instance,

n = n0 +δ n1 +δ
2 n2 +O(δ 3).
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The quantities of O(1) describe the equilibrium and are denoted as zeroth-order, while
those of O(δ ) are denoted as first-order, or transport order. The field equations can be
solved by substituting such expansion and solving order by order in δ .

Under the adopted ordering the solutions depend on three ratios of transport parame-
ters C/µ⊥, the Schmidt number Sc = µ⊥/D and C/D. This transport ordering facilitates
the reduction of the system (3.1)-(3.4) to a set of equilibrium (Sec. 4.2) and transport
(Sec. 4.3) equations in the steady-state limit ∂/∂ t = 0.

3.4 Mathematical preliminaries
The first-order field equations take the form of differential equations along the magnetic
field (magnetic differential equations) or stream lines (convective differential equations).

We first consider magnetic differential equations:

∇∥ f = (ẑ×∇ψ) ·∇ f = g, (3.8)

The solution of this equation is

f (ξ (ψ,y),y) =
ˆ y

0
dŷ

g(ξ (ψ, ŷ), ŷ)
|∇ψ|

(3.9)

where ξ (ψ,y) is the chordwise (x) position of the flux surface ψ . Its use in Eq. (3.9) en-
sures that the integration is carried out on the surface ψ . For the solution of Eq. (3.9) to be
single-valued ( f (x,y) = f (x,y+2π)), the function g must satisfy the solubility condition

⟨g⟩ψ = 0, (3.10)

where

⟨g⟩ψ =

{ ´ 1
−1

dy
|∇ψ| g(ξ (ψ,y),y), ψ > ψs;´ yt

−yt

dy
2|∇ψ| [g(ξ (ψ,y),y)+g(−ξ (ψ,y),y)], ψ < ψs;

(3.11)

Here ψs is the value of the flux on the separatrix, ±yt(ψ) are the turning points for flux
surfaces inside the separatrix. We will denote the fluctuating component of a given field,
for example ϕ , by

ϕ̃ = ϕ −⟨ϕ⟩ψ/⟨1⟩ψ . (3.12)
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We next present the analogous formalism for convective differential equations:

vE ·∇ f = (ẑ×∇ϕ) ·∇ f = g, (3.13)

solvability requires that the function g satisfy

⟨g⟩ϕ = 0, (3.14)

where in the absence of convection cells,

⟨g⟩ϕ =

˛
dy

g
|∇ϕ|

(3.15)

When solving magnetic differential equations, the following identities are useful. For
any scalar functions f , g, h and vector field A, Gauss’ divergence theorem implies that

⟨∇ ·A⟩ f =
d

d f
⟨A ·∇ f ⟩ f (3.16)

taking A = gẑ×∇h, the above identity takes the form

⟨(ẑ×∇h) ·∇g⟩ f =
d

d f
⟨g(ẑ×∇h) ·∇ f ⟩ f (3.17)

In terms of Poisson brackets, [h,g] = ẑ · (∇h×∇g), this takes the form

⟨[h,g]⟩ f =
d

d f
⟨g[h, f ]⟩ f . (3.18)

Taking f = ψ and h = ϕ , the above identity takes the form

⟨vE ·∇g⟩ψ =
d

dψ
⟨gvE ·∇ψ⟩ψ =

d
dψ

⟨ϕ∇∥g⟩ψ . (3.19)

Taking f = ϕ and h = ψ , by contrast, the above identity takes the form

⟨∇∥g⟩ϕ =
d

dϕ
⟨g∇∥ϕ⟩ϕ =

d
dϕ

⟨ψvE ·∇g⟩ϕ . (3.20)

This completes the toolkit of identities needed to distill the transport equations.
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Chapter 4

Derivation of the compressible IslET
Transport Model

4.1 Introduction

The transport ordering described in Section 3.3 enables a partial solution of the govern-
ing equations (3.1)-(3.4) in the steady-state scenario, where all time derivatives vanish in
the reference frame in which the island is stationary. The small parameter δ ensures a
consistent ordering of the transport coefficients, grouping terms like C ∼ µ∥ ∼ µ⊥ ∼ D ∼
κ⊥ ∼ δ ≪ 1 under a unified framework. This ordering aligns with the weak-collisionality
regime discussed in Ref. [32], allowing a systematic expansion that simplifies the deriva-
tion of both equilibrium and transport solutions.

While the geometric assumption a/R0 ≪ 1 is common in tokamak models to separate
radial and poloidal scales, our four-field model does not explicitly rely on this approxima-
tion. Instead, it uses the transport ordering described above, where all relevant coefficients
are assumed to be of the same small order. This approach reduces the equations to a set of
two equilibrium equations and four 1D transport equations that describe the profiles. The
IslET (Island Equilibrium and Transport) model is formulated based on these equations.

This model was previously developed in references [30, 32], incorporating electron
temperature gradients but under the assumption of incompressibility (v = 0). Here, we
extend the derivation to incorporate parallel ion compressibility, characterized by ∇∥v ∼
vE ·∇n. However, for the sake of focusing on compressible effects, we omit consideration
of electron temperature gradients.

35
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We can divide the system of equations into two sets, one for electron particle and
momentum conservation, Eqs.(3.1) and (3.3); and one set for ions, particle conservation
is obtained by subtracting (3.1) from (3.2) while momentum conservation is given by
subtracting Eq. (3.3) from (3.4):

Dt(n−U)+ ε
2
c ∇∥v = D∇

2
⊥n−µ⊥∇

2
⊥U, (4.1)

Dt(v−ψ) = µ∥∇
2v−C j, (4.2)

Applying the transport ordering and expansions in δ , we solve the system order by or-
der. After some mathematical preliminaries in section 3.4, sec. 4.2 presents the solution
of the lowest order equations (O(δ 0)) representing the equilibrium, including the Grad-
Shafranov, quasi-neutrality and other equations describing the fields in terms of profile
functions. Sections 4.3 and 4.4 present the solubility conditions for the first-order (O(δ ))
equations that describe the transport fluxes. These solubility conditions provide ordinary
differential equations that determine the profile functions. We find it convenient to use a
coordinate system such that the island is at rest, so that the time derivatives may be set to
zero.

4.2 Lowest order: Equilibrium
To lowest-order (O(δ 0)), we neglect all the transport terms and set the time derivatives to
zero so that the equations of motion describe an equilibrium state to this order .

4.2.1 Electron equilibrium:
We first consider the electron moments:

vE0 ·∇n0 +∇∥0(ε
2
c v0 − j0) = 0, (4.3)

∇∥0(n0 −ϕ0) = 0, (4.4)

where ∇∥0 = (ẑ×∇ψ0) ·∇ is the gradient along the unperturbed magnetic field.
Integration of Ohm’s law, Eq. (4.4), yields

n0 = ϕ0 +H(ψ0), (4.5)

where H(ψ0) is an integration constant that depends on the field line used in the integra-
tion, which is here labeled with ψ0. Note that H(ψ0) represents the stream function for
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the isothermal electron flow.

We complete the solution of the electron equilibrium equations by substituting the
density found in Eq. (4.5) into the electron continuity Eq. (4.3). Integration along the field
lines yields the current,

j0 = I(ψ0)−H ′(ψ0)ϕ0 + ε
2
c v0, (4.6)

The function I(ψ0), which is an integration "constant" representing the induction current,
completes the set of electron profile functions. The remaining two terms in the Grad-
Shafranov equation correspond respectively to the polarization and ion conduction cur-
rents.

4.2.2 Ion equilibrium:
We next consider the lowest-order approximation to the ion moment equations, Eqs.(4.1)-
(4.2):

vE0 ·∇(n0 −U0)+ ε
2
c ∇∥v0 = 0, (4.7)

vE0 ·∇(v0 −ψ0) = 0, (4.8)

Integrating the ion momentum equation (4.8) along the stream lines gives

v0 = ψ0 +G(ϕ0). (4.9)

The integration constant G(ϕ0) depends on the stream line used in the integration, here
labeled by ϕ0. G represents the canonical ion momentum in the ẑ direction. It is a La-
grangian invariant in the absence of dissipation.

We next consider the ion continuity equation (4.7). Substituting the solution for the
parallel velocity, Eq. (4.9), and integrating this equation along stream lines yields

U0 = n0 +L(ϕ0)− ε
2
c ψ0G′(ϕ0), (4.10)

where L(ϕ0) is yet another integration “constant”. It can be interpreted as a generalized
potential vorticity. Substituting the solution for the density n0, there follows

U0 −K(ϕ0) = H(ψ0)− ε
2
c ψ0G′(ϕ0), (4.11)

where K(ϕ0) = ϕ0+L(ϕ0). The term proportional to εc indicates that the vorticity is being
affected by compressibility.
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4.2.3 Summary of equilibrium results:
For convenience, we summarize the solution of the resulting equilibrium equations below:

n0 = ϕ0 +H(ψ0), (4.12)
v0 = ψ0 +G(ϕ0), (4.13)

∇
2
ϕ0 = K(ϕ0)+H(ψ0)− ε

2
c ψ0G′(ϕ0), (4.14)

∇
2
ψ0 −1 = β̂

[
I(ψ0)−H ′(ψ0)ϕ0 + ε

2
c G(ϕ0)

]
, (4.15)

where we have used the definition U0 = ∇2ϕ0, made the replacement I(ψ0) → I(ψ0)+
ε2

c ψ0 and expressed j0 in terms of ψ0 using its definition, Eq. (3.5), obtaining the Grad-
Shafranov equation (4.15). The vorticity equation, which expresses quasi-neutrality, takes
a form similar to that for the Grad-Shafranov equation for the flux ψ0. Thus, the equilib-
rium equations include a pair of elliptic equations for ϕ0 and ψ0.

Together, the four profile functions representing the isothermal electron stream-function
H(ψ), the potential vorticity K(ϕ), the canonical azimuthal momentum G(ϕ), and the in-
ductive current I(ψ) completely specify the variation of the four fields n, ϕ , ψ , and v
across the island.

4.3 First-order: Electron transport
In this section we derive transport equations for the profiles by expressing the solubility
conditions for the first-order corrections. Since fluid equations for the low-order moments
involve higher moments, we start with the highest-order moment equations and work our
way down to the lowest-order moment, the continuity equation, for each particle species,
starting with electrons.

Placing the lowest-order term in the left-hand side, the equations for the electrons are

vE ·∇n+∇∥(ε
2
c v− j) = D∇

2
⊥n0, (4.16)

∇∥(n−ϕ) =C j0, (4.17)

4.3.1 Electron momentum transport:
Assuming that C =C(x) = E0/ j0(x), the solubility condition for Ohm’s law, to first-order
in the transport coefficients, yields

E0⟨1⟩ψ = I(ψ)⟨C⟩ψ −H ′(ψ0)⟨Cϕ0⟩ψ + ε
2
c ⟨CG(ϕ0)⟩ψ (4.18)
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where we used Eq. (4.6) to eliminate j0. It follows that

I(ψ) =
1

⟨C⟩ψ

[
E0⟨1⟩ψ +H ′(ψ0)⟨Cϕ0⟩ψ − ε

2
c ⟨CG(ϕ0)⟩ψ

]
(4.19)

4.3.2 Electron particle transport
We may view the electron continuity Eq. (4.16) as a magnetic differential equation for the
electron parallel velocity j− ε2

c v. The solubility equation then follows by integrating this
equation along a field line and using Eq. (3.19) to evaluate the field-line average of the
convective derivative,

D⟨∇2n⟩ψ =
d

dψ
⟨ϕ∇∥n⟩ψ .

Applying Eq. (3.16) to the Laplacian term and integrating,

D(⟨∇ψ ·∇n⟩ψ −1) = ⟨ϕ∇∥n⟩ψ = ⟨ϕ̃∇∥n⟩ψ .

where the normalized boundary conditions at infinity ∇⊥n= 1, ∇∥n= 0 were used. Notice
that ∇ψ ·∇n = ∂ ψn is the contravariant component of the density gradient across the ψ

surfaces. Using Ohm’s law and the identity ⟨ϕ∇∥ϕ⟩ψ = 1
2⟨∇∥ϕ2⟩ψ = 0 to evaluate the last

term results in
D(⟨∂ ψn0⟩ψ −1) = ⟨ϕ̃C j0⟩ψ .

Substituting n0 and j0 by their equilibrium values,

D(⟨∂ ψ
ϕ0⟩ψ + ⟨∂ ψ

ψ⟩ψH ′(ψ0)−1)

= ⟨ C(−H ′(ψ0)ϕ̃
2 + ε

2
c ϕ̃G̃(ϕ0))⟩ψ , (4.20)

and solving for H ′(ψ), we find

dH(ψ)

dψ
=

1−⟨∂ ψϕ⟩ψ + ε2
c

C
D Γ

⟨∂ ψψ⟩ψ + C
D ϒ

. (4.21)

where

Γ = ⟨G(ϕ)ϕ⟩ψ −
⟨ϕ⟩ψ⟨G(ϕ)⟩ψ

⟨1⟩ψ

= ⟨G̃(ϕ)ϕ̃⟩ψ , (4.22)

and

ϒ = ⟨ϕ2⟩ψ −
⟨ϕ⟩2

ψ

⟨1⟩ψ

= ⟨ϕ̃2⟩ψ . (4.23)

The electron particle transport has terms due to ion compressibility. Taking εc → 0 corre-
sponds to the incompressible case in Ref. [32] with no electron temperature gradients.
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4.4 First-order: Ion transport
For ions, the transport equations are

vE ·∇(n−U)+ ε
2
c ∇∥v = D∇

2
⊥n0 −µ⊥∇

2
⊥U0, (4.24)

vE ·∇(v−ψ) = µ∥∇
2v0 −C j0. (4.25)

We next derive transport equations from the solubility conditions for the first order ion
equations using the profiles obtained above for the electron equations.

4.4.1 Ion momentum transport
The parallel ion momentum Eq. (4.25) is a differential equation along the stream line, its
solubility condition is

µ∥⟨∇2v0⟩ϕ =C⟨ j0⟩ϕ .

Substituting the equilibrium solution (4.13) and (4.6) and applying Gauss’ law leads to

µ∥
d

dϕ
(G′(ϕ0)⟨∂ ϕ

ϕ⟩ϕ + ⟨∂ ϕ
ψ⟩ϕ)

= ⟨C(ε2
c G̃(ϕ0)− ϕ̃H ′(ψ0))⟩ϕ . (4.26)

Here ∂ ϕ f = ∇ f ·∇ϕ is the contravariant ϕ-component of the gradient of f . Notice that

d
dϕ

⟨∂ ϕ
ψ⟩ϕ = ⟨∇2

ψ⟩ϕ . (4.27)

Using Eq. 3.5 we obtain

d
dϕ

(
⟨∂ ϕ

ϕ⟩ϕ

dG(ϕ0)

dϕ

)
+ ⟨1⟩ϕ

=

(
C
µ∥

− β̂

)(
ε

2
c ⟨G̃(ϕ0)⟩ϕ + ⟨ϕ̃H ′(ψ0)⟩ϕ

)
, (4.28)

then, the parallel momentum transport equation is

d2G(ϕ)

dϕ2 =

(
C
µ∥

− β̂

)
ε2

c ⟨G̃(ϕ)⟩ϕ −⟨H ′(ψ)ϕ̃⟩ϕ

⟨∂ ϕϕ⟩ϕ

−
⟨1⟩ϕ + ⟨U⟩ϕG′(ϕ)

⟨∂ ϕϕ⟩ϕ

. (4.29)
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4.4.2 Ion particle transport
Integrating Eq. (4.24) over a full period along the stream lines and integrating the result
produces the following solvability condition

D(⟨∂ ϕn⟩ϕ −1)−µ⊥⟨∂ ϕU0⟩ϕ = ε
2
c ⟨ψvE ·∇v⟩ϕ ,

where we have used the asymptotic boundary conditions n ∼ x and U ∼ constant as
x → ∞.

Using the ion momentum equation (4.25) to evaluate the right-hand side, and noticing
that ⟨ψvE ·∇ψ⟩ϕ = 0, leads to

D(⟨∂ ϕn⟩ϕ −1)−µ⊥⟨∂ ϕU0⟩ϕ =−ε
2
c ⟨ψ(C j0 −µ∥∇

2v0)⟩ϕ .

This is a transport equation in which all the terms have a transport coefficient as a
factor. Replacing the lowest-order terms by their values, there follows

D(⟨∂ ϕ
ϕ⟩ϕ +H ′(ψ0)⟨∂ ϕ

ψ⟩ϕ −1)
− µ⊥(K′(ϕ0)⟨∂ ϕ

ϕ⟩ϕ + ⟨∂ ϕH(ψ0)⟩ϕ)

= −µ⊥ε
2
c ⟨∂ φ

(
ψG′(ϕ0)

)
⟩ϕ − ε

2
c ⟨ψ(C j0 −µ∥∇

2v0)⟩ϕ . (4.30)

Equation (4.30) expresses the conservation of ions: the first term on the left-hand side
is the ambipolar radial ion flux caused by the drift associated with the electron-ion friction
forces, and the second term represents the non-ambipolar radial flux resulting from the
drift associated with the viscous forces. The sum of these terms equals the particle flux in
the reference state given in the right-hand side.

Replacing the current and velocity,

−D
(
⟨∂ ϕ

ϕ⟩ϕ + ⟨∂ ϕH(ψ0)⟩ϕ −1
)
+µ⊥⟨∂ ϕ

ϕ⟩ϕK′(ϕ0)

= −µ⊥⟨∂ ϕH(ψ0)⟩ϕ + ε
2
c
[
µ⊥⟨∂ ϕ(ψG′(ϕ0))⟩ϕ

− µ∥
(
⟨ψ∇

2
ψ⟩ϕ + ⟨ψG′(ϕ0)U⟩ϕ + ⟨ψG′′(ϕ0)∂

ϕ
ϕ⟩ϕ

)
+ C

(
⟨ε2

c ψG̃(ϕ0)⟩ϕ −⟨ψH ′(ψ0)ϕ̃⟩ϕ

)]
. (4.31)

Lastly, solving for K′(ϕ), it follows that
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dK(ϕ)

dϕ
=

1
Sc

(
1− 1

⟨∂ ϕϕ⟩ϕ

)
+

(
1
Sc

−1
)
⟨∂ ϕH(ψ)⟩ϕ

⟨∂ ϕϕ⟩ϕ

+ ε
2
c

Θ

⟨∂ ϕϕ⟩ϕ

, (4.32)

where Sc = µ⊥/D is the Schmidt number and the Θ function is defined as

Θ =

(
1−

µ∥
µ⊥

)
⟨ψ∂

ϕ
ϕ⟩ϕG′′(ϕ)−

µ∥
µ⊥

⟨ψ⟩ϕ

+

(
⟨∂ ϕ

ψ⟩ϕ −
µ∥
µ⊥

⟨ψU⟩ϕ

)
G′(ϕ)

+

(
C
µ⊥

−
µ∥β̂

µ⊥

)(
ε

2
c ⟨ψG̃(ϕ)ϕ⟩ϕ −⟨ψH ′(ψ)ϕ̃⟩ϕ

)
. (4.33)

We have used

⟨∇2G⟩ϕ =
d

dϕ
⟨∂ ϕG⟩ϕ =

d
dϕ

⟨∇G ·∇ϕ⟩ϕ =
d

dϕ
⟨G′

∂
ϕ

ϕ⟩ϕ .

We can rewrite the Θ function by eliminating G′′(ϕ) with Eq. (4.29),

Θ =−
[

µ∥
µ⊥

⟨ψ⟩ϕ +

(
1−

µ∥
µ⊥

)
⟨ψ∂ ϕϕ⟩ϕ⟨1⟩ϕ

⟨∂ ϕϕ⟩ϕ

]
+

[
⟨∂ ϕ

ψ⟩ϕ −
µ∥
µ⊥

⟨ψU⟩ϕ −
(

1−
µ∥
µ⊥

)
⟨ψ∂ ϕϕ⟩ϕ⟨U⟩ϕ

⟨∂ ϕϕ⟩ϕ

]
G′(ϕ)

+

(
C
µ∥

− β̂

)[(
1−

µ∥
µ⊥

)
⟨ψ∂ ϕϕ⟩ϕ

⟨∂ ϕϕ⟩ϕ

(
ε

2
c ⟨G̃(ϕ)⟩ϕ −⟨H ′(ψ)ϕ̃⟩ϕ

)
+

µ∥
µ⊥

⟨ψ(ε2
c G̃(ϕ)−H ′(ψ)ϕ̃)⟩ϕ

]
. (4.34)

This completes the derivation of the equation governing the transport of ion parallel
momentum
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4.5 Boundary Conditions

Equations (4.19), (4.21), (4.29) and (4.32), complemented by the boundary conditions
(3.6)-(3.7), constitute the complete nonlinear IslET model that determines the size and ve-
locity of magnetic islands. In view of the reduced nature of the IslET model compared to
the complete dynamical model, however, it is necessary to revisit the question of boundary
conditions.

The parity we have assumed determines the boundary conditions for the two profile
functions, K(0) = 0 and H(ψ) = 0 for ψ < ψs. It also specifies one boundary condition
for the equilibrium equation (4.14), namely ϕ(0,y) = 0 for all y. Due to the second-
order nature of the equilibrium equation, however, it is necessary to supply an additional
boundary condition for ϕ . Building upon Subsec. 3.2, the change in the vorticity across
the island region is proportional to the total force Fy acting on the island:

lim
x→∞

(⟨U(x,y)⟩−⟨U(−x,y)⟩) = v′y(∞)− v′y(−∞) =U∞ =Fy/µ. (4.35)

which must vanish when there is not an opposing electromagnetic force. However, im-
posing U(±∞,y) = 0 for all y over-determines the solution. On the other hand, adding a
small correction to the asymptotic solution of the equilibrium equation ϕ0, ϕ = ϕ0+ϕhom,
where ϕhom is a solution of the homogeneous equation

∂
2
x ϕ −K′(ϕ0)ϕ = 0,

results in a boundary layer of width ρs (∼ (K′)−1/2) at the edge. To solve this problem it is
sufficient to give only the average ⟨U(∞,y)⟩= 0, and the condition (3.7). Physically, this
corresponds to a no-slip boundary condition with a wall moving at speed v∞. In general,
the solutions represent states where the flow is being forced around the island, or alterna-
tively where the island is being dragged through the plasma. Such states are physically
relevant in the cases where the island is experiencing drag due to the resistivity of the wall
or when the island is caused by an error field and thus prevented from flowing with the
plasma.[27]. In the present work, however, we restrict attention to the case of free prop-
agation and determine the natural phase velocity vfree by varying the edge velocity v∞ so
as to satisfy the condition ⟨U(∞,y)⟩ = 0. We next describe the analytic solution of the
compressible IslET Eqs. (4.21)-(4.32).
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4.6 Overview of Solution
Here, we regroup the transport equations of the IslET model before discussing possible
solution methods.

4.6.1 Governing equations

The electrostatic potential ϕ is determined by the quasi-neutrality condition

∇
2
ϕ0 = K(ϕ0)+H(ψ0)− ε

2
c ψ0G′(ϕ0), (4.36)

while the magnetic flux ψ is determined by the Grad Shafranov equation,

∇
2
ψ0−1 = β̂

[
I(ψ0)−H ′(ψ0)ϕ0 + ε

2
c G(ϕ0)

]
. (4.37)

The three profile functions appearing in these two equations, H(ψ), K(ϕ) and G(ϕ), are
determined by the following three transport equations:

dH(ψ)

dψ
=

1−⟨∂ ψϕ⟩ψ + ε2
c

C
D Γ

⟨∂ ψψ⟩ψ + C
D ϒ

. (4.38)

for the stream function H(ψ), where Γ = ⟨G̃(ϕ)ϕ̃⟩ψ , and ϒ = ⟨ϕ̃2⟩ψ ,

d2G(ϕ)

dϕ2 =

(
C
µ∥

− β̂

)
ε2

c ⟨G̃(ϕ)⟩ϕ −⟨H ′(ψ)ϕ̃⟩ϕ

⟨∂ ϕϕ⟩ϕ

−
⟨1⟩ϕ + ⟨U⟩ϕG′(ϕ)

⟨∂ ϕϕ⟩ϕ

. (4.39)

for the parallel velocity profile G(ϕ) and

dK(ϕ)

dϕ
=

1
Sc

(
1− 1

⟨∂ ϕϕ⟩ϕ

)
+

(
1
Sc

−1
)
⟨∂ ϕH(ψ)⟩ϕ

⟨∂ ϕϕ⟩ϕ

+ ε
2
c

Θ

⟨∂ ϕϕ⟩ϕ

, (4.40)

for the vorticity profile across the island K(ϕ), where the Θ function, defined in Eq. 4.33,
appears due to compressible effects.
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4.6.2 The role of the compressibility parameter εc

The parameter εc = Ln/Ls plays a crucial role in determining how compressibility affects
the equilibrium and dynamics of the plasma. Here, Ln is the density gradient length, which
characterizes the spatial variation of plasma density, and Ls is the magnetic shear length,
which measures the scale over which the magnetic field lines change direction due to shear.

Physically, εc quantifies the competition between the density gradient, which promotes
compressible instabilities, and the magnetic shear, which tends to stabilize them [44]. In
the context of MHD equilibrium, including εc implies that the system is not strictly in-
compressible: density fluctuations can influence the equilibrium configuration and affect
the formation and stability of magnetic islands.

This parameter is particularly important in the IslET model, as it captures the effects
of compressibility on plasma transport and equilibrium. A larger εc indicates stronger
compressibility effects, which modify the plasma profiles and the dynamics of magnetic
islands under perturbations.

4.6.3 Constant-ψ regime

Up to this point, our analysis has refrained from making any assumptions about the flux
function ψ(x,y). To further simplify the equilibrium and transport equations we may use
the constant-ψ̃ approximation, where ψ̃ is the amplitude of the flux perturbation. As we
can see from ∇2ψ = 1+O(β̂ ), the constant-ψ approximation is justified whenever β̂ ≪ 1.
With the above approximations, the solution is determined by two equilibrium parameters:
the island half-width w= 2ψ̃1/2 and ∆̂′ = ∆′ρs/β̂ , as well as by the three ratios of transport
coefficients that control the profiles near the island.

For small β̂ , the radial variation of the amplitude of the flux perturbation may be ne-
glected in the island region and the magnetic flux may be approximated by the “constant-
ψ̃” approximation for the flux ψ:

ψ =
x2

2
− ψ̃ cos(y)

where ψ̃ = w2

4 . Equivalently

ψ =
1
2
[x2 +w2 sin2(y/2)]. (4.41)
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This latter version is more convenient for calculating averages along flux surfaces. Here
w=W/ρs = 2ψ̃1/2 is the normalized half-wwidth of the island. The normalized half-width
w is determined implicitly by the boundary condition

∆̂
′ =

16
w2

ˆ
∞

0
dψ ⟨ j cosy⟩ψ , (4.42)

where ∆̂′ = ∆′ρs/β̂ is the normalized measure of the drive for the tearing mode. The
above equation is simply the statement of Eq. (2.65) in steady-state, dW/dt = 0 and the
right hand side is the negative of the D(W,V ) function. The tearing mode drive ∆′ is deter-
mined by the solution of the ideal MHD equations outside the island region, so that ∆̂′ is
an input parameter in the IslET model. Aside from the ratios of the transport coefficients,
∆̂′ is the only free parameter in the constant-ψ approximation.

The constant-ψ approximation allows us to omit Eq. (4.37) from the IslET model and
to solve the system of equations (4.38)-(4.40) only. We describe the analytic solution of
these equations in the following chapter.



Chapter 5

Analytic solution for thin islands

We have developed an analytical solution of the compressible equilibrium and transport
model for unmagnetized islands. This solution neglects electron temperature gradients
and considers two distinct regions: the inner region, where x ∼ w ≪ 1, corresponding to
the magnetic island itself, and the outer region, where w ≪ x ∼ 1. We also obtain the
slip curves for the velocity of the island in the inner region obtained from matching to the
lowest order solution in the outer region.

5.1 Thin-island regime: Outer region solution
For the region outside the magnetic island separatrix, w ≪ 1, x ∼ 1 and the flux function,
Eq. (4.41), can be approximated as

ψ =
1
2
(x2 +w2 sin2(y/2))∼ x2

2
. (5.1)

To solve each equilibrium equation, we need the profiles of the potential vorticity K(ϕ),
electron stream function H(ψ) and the canonical azimuthal momentum G(ϕ). From the
equilibrium equation, eq. (4.14), we expand H and K in terms of w2

∂
2
x ϕ = K(Φ0)+H(x2/2)− ε

2
c

x2

2
G′(Φ0)

+ K′(Φ0)Φ1w2 sin2(y/2)+
1
2

H ′(x2/2)w2 sin2(y/2)

− ε2
c
2
(
x2G′′(Φ0)Φ1w2 sin2(y/2)−G′(Φ0)w2 sin2(y/2)

)
+ O(w4), (5.2)

47
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where the consistent expansion

ϕ(x,y) = Φ0(x)+w2
Φ1(x)sin2(y/2)+O(w4), (5.3)

was used. This gives the zeroth and first-order equations

Φ
′′
0(x) = K(Φ0)+H(x2/2)− ε

2
c

x2

2
G′(Φ0), (5.4)

Φ
′′
1(x) = K′(Φ0)Φ1 +

1
2

H ′(x2/2)− ε
2
c

x2

2
G′′(Φ0)Φ1

− ε2
c
2

G′(Φ0). (5.5)

with the boundary condition ϕ ′(x)∼ v∞ + v′∞|x|+O(1/x). This confirms that ∂yϕ(x,y) = 0
to lowest order, as assumed in eq. (5.3).

Therefore, in the outer region we have two equilibrium equations: Eq. (5.4) for the
lowest order to find Φ0(x), and Eq. (5.5) for the first-order to obtain Φ1(x). To solve each
equilibrium equation, we need K(ϕ),H(ψ),G(ϕ) profiles. Following our zeroth-order
convention, we denote K0,H0,G0 as the zeroth-order solutions.
Starting with H ′, in the outer region both Γ and ϒ tend to zero so eq. (4.21) reduces to

dH0

dψ
=

1−⟨∂ ψϕ⟩ψ

⟨x2⟩ψ

. (5.6)

Integrating over the flux surface, the H(ψ) profile to lowest order is

H0 = x−Φ0(x)+δH∞ (5.7)

or expressed in terms of ψ ,

H0(ψ) =
√

2ψ −Φ0(
√

2ψ)+δH∞. (5.8)

where δH∞ is an integration constant.
Next, the ion momentum transport equation in this region reduces to

d
dϕ

(
dΦ0

dx
dG0

dϕ

)
=

1
dΦ0/dx

. (5.9)

It follows that,

G0 =−x2

2
+δG′

∞outx+δG∞out, (5.10)
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or expressed in terms of ϕ

G0(ϕ) =−
(Φ−1

0 (ϕ))2

2
+δG′

∞outΦ
−1
0 (ϕ)+δG∞out. (5.11)

δG∞out and δG′
∞out are integration constants.

Lastly, the ion particle transport equation in the outer region

dK0

dϕ
=

(
D
µ
−1
)

xH ′
0(ψ)

Φ′
0

+
D
µ

(
1− 1

Φ′
0

)
+ ε

2
c

1
Φ′

0
Θ, (5.12)

Θ = −3
2

x2

Φ′
0
+

x3Φ′′
0

2(Φ′
0)

2 +δG′
∞out

(
x

Φ′
0
−

x2Φ′′
0

2(Φ′
0)

2

)
. (5.13)

Integrating over the stream lines, we obtain the K profile to lowest order for the outer
region,

K0(ϕ) =
1
Sc
(ϕ − x)+(

1
Sc

−1)H0(ψ)− ε2
c
2

x3

Φ′
0
+δK∞. (5.14)

δK∞ is an integration constant.

The constants δH∞, δG∞out, δG′
∞out and δK∞ are integration constants determined by

matching with the inner region solutions (Sec. 5.3 ). Moreover, once we establish the rela-
tion between δG∞out and δG∞in in terms of δG∞, they can be determined by the asymptotic
behavior of the parallel velocity: δG∞ = v∞.

Now that we have K(ϕ),H(ψ),G(ϕ) profiles, we can solve the equilibrium equations.
As a result of term cancellations, only two constants persist,

U∞ = ∂
2
x Φ0(x) = δK∞ +

δH∞

Sc
, (5.15)

Terms involving δG′
∞ = v′∞ cancelled out. For the lowest order, we have recovered the

incompressible model result for the asymptotic vorticity U∞ from Ref. [32] for constant
electron temperature, as well as the solution for the electric potential Φ0

Φ0 = (U∞|x|/2+ v0)x. (5.16)

Hence, the vorticity to lowest order in the outer region is constant and dependent on δK∞

and δH∞, similar to the incompressible case with no electron temperature gradients. How-
ever, δH∞ differs in the compressible case as shown in the next section.
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For the next-order solution, the first-order equilibrium equation includes terms coming
from compressible effects,

Φ
′′
1(x) = K′

0(ϕ)Φ1(x)+
1
2

H ′
0(ψ)− ε

2
c

x2

2
G′′

0(ϕ)Φ1(x)

− ε
2
c

1
2

G′
0(ϕ) (5.17)

If we consider the case U∞ = 0, then Φ′
0 = v0 and the above equation goes as[

1− 1
v0

− ε
2
c

x2

v2
0

]−1

Φ
′′
1(x)−Φ1(x) =− v0

2x
(5.18)

In the incompressible limit εc = 0, we recover the isothermal limit of the result found
for the outer region in Ref. [32]. The appearence of the ε2

c term in the above equation
shows that compressible effects appear in the electric potential to first order.

5.2 Thin-island regime: Inner region solution
In the inner region, corresponding to the island region we have x ∼ w ≪ 1, and ∇2 ∼
w−2 ≫ 1, so our equilibrium equation, 4.14, reduces to

∇
2
ϕ = 0, (5.19)

then the solution for the electric potential is

ϕ = v0x+O(w2) (5.20)

here, v0 corresponds to the electric drift velocity in the island frame. Next, we obtain the
rest of the profile functions in the inner region.

To lowest order, the ion particle transport is

dK
dϕ

=
1
Sc

(1− 1
v0
)+(

1
Sc

−1)
x
v0

dH
dψ

− ε
2
c

3
2

x2

v2
0
, (5.21)

and integrating over ϕ

K(ϕ)∼ 1
Sc

(1− 1
v0
)ϕ +(

1
Sc

−1)H
[

1
2
(

ϕ

v0
)2
]
− ε

2
c

x3

2v0
. (5.22)
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From the matching with the result for K(ϕ) in the outer region, (Sec. 5.3 ), we obtain
δK∞ = 0.

The expression for G(ϕ) in the inner region

d2G
dϕ2 =− 1

v2
0
, (5.23)

G(ϕ) =−x2

2
+δG′

∞inv0x+δG∞in, (5.24)

Here, δG′∞in and δG∞in are integration constants determined by matching with the outer
region solutions (Sec. 5.3). By using previous results of the K(ϕ),H(ψ),G(ϕ) profiles in
this inner region, we solve the equilibrium equation, obtaining the asymptotic form of the
vorticity, U = ∇2ϕ ,

U ∼ 1
Sc

[(v0 −1)x+H
(

x2

2

)
] =

1
Sc

δH∞. (5.25)

In the inner region, the vorticity function is determined by the difference between (1−v0)x
and the asymptotic shift of the electron stream profile, that is δH∞, but the dependence with
ion related functions K and H has cancelled.

5.3 Solution matching
Matching the outer and inner region results, gives the values of the integration constants,

δK∞ = 0

δG′
∞ = δG′

∞out = δG′
∞inv0 = v′∞,

δG∞ = δG∞out = δG∞in = v∞.

To obtain δH∞, the inner and outer region solutions are coupled through δH∞, which
matches the large x limit in the inner region with the small x limit in the outer region
where it represents the asymptotic shift from the limit value (1− v0)x.

The electron particle transport equation, (4.21), not only has a term proportional to
(1− v0)w but it also contains a term dependent on the ion compressibility. For x ≫ w, we
have the general asymptotic expression of H

H(ψ)∼ H(x2/2)∼ (1− v0)x+δH∞(v0) (5.26)
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with

δH∞(v0) = (v0 −1)w+

ˆ
∞

w2/2
dψ(

dH
dψ

− 1− v0√
2ψ

). (5.27)

The constant δH∞ varies depending on the value of the electric drift velocity, v0, in the
island frame of reference.To obtain the resulting shift, we use dH/dψ at large x, and
define ψ = w2

2 χ , that is

dH(χ)

dχ
=

(1− v0)+ ε2
c

C
D

(w
2

)2 v0JR(χ)

2
√

χΓ̂c/w
(5.28)

where,

Γ̂c(χ,v0) = 2E(1/χ)/π + C
Dv2

0ϒ̂, (5.29)

ϒ̂(χ) = 2E(1/χ)/π − π

2
1

K(1/χ) , (5.30)

JR(χ) = 1−2χ[1−E(1/χ)/K(1/χ)] (5.31)

E and K are the complete elliptic integrals of the second and first kind, respectively.

So the asymptotic shift in H(χ) is

δH∞(v0) = w
[
(1− v0)ha(v0)+ ε

2
c

C
D

v0

(w
2

)2
hc(v0)

]
(5.32)

ha(v0) = −1+
ˆ

∞

1

dχ

2
√

χ

(
1
Γ̂c

−1
)

(5.33)

hc(v0) =

ˆ
∞

1

dχ

2
√

χ

JR

Γ̂c
(5.34)

The first term is an integral proportional to (1−v0)w, and the second term, of order v0 w3,
is an integral proportional to the ion compressibility parameter. These integrals are evalu-
ated numerically.

Alternatively, the integrals in Eqs. (5.33) and (5.34) can be approximated by an ana-
lytical asymptotic expression; first note that at large χ

E(1/χ)∼ π/2, ϒ̂ ∼ 1
32χ2 . (5.35)
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So, the dominant contribution is from χ ∼ v0 ≫ 1 and the integrals can be evaluated using
the large χ expansions

Γ̂c ∼ 1+
1
p
, JR(ψ)∼ 1

8χ
, (5.36)

where variables Ψ2
v0
= C

Dv2
0, p = 32χ2/Ψ2

v0
have been introduced. Then,

ha ∼ ha∞Ψ
1/2
v0 , (5.37)

hc ∼ hc∞Ψ
−1/2
v0 , (5.38)

with

ha∞ = − 1
21/4

ˆ
∞

0

d p
8p3/4(p+1)

=−0.467, (5.39)

hc∞ =
1

23/4

ˆ
∞

0

d p
8p1/4(p+1)

= 0.33. (5.40)

On the other hand, for small Ψv0 the lowest-order Taylor expansions give ha(Ψv0) ∼
ha(0) =−0.69 and hc(Ψv0)∼ hc(0) = 0.198.

The interpolated asymptotic approximations to the integrals giving the best fits are,

ha =
[
h4

a∞Ψ
2
v0
+h4

a(0)
]1/4

, (5.41)

hc = hc∞

[
(hc∞/hc(0))3 +Ψ

3/2
v0

]−1/3
. (5.42)

These provide convenient good approximations over the entire range of Ψv0 to the integrals
(5.33) and (5.34).
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5.4 Summary of results for the profiles
The final expression of the profiles are:

The magnetic flux ∇2ψ ,

∇
2
ψ0−1 = β̂

[
I(ψ0)−H ′(ψ0)ϕ0 + ε

2
c G(ϕ0)

]
. (5.43)

The canonical azimuthal momentum G(ϕ),

G(ϕ) =−x2(ϕ)

2
+ v′∞x(ϕ)+ v∞. (5.44)

where x(ϕ) = Φ
−1
0 (ϕ). The potential vorticity K(ϕ),

K(ϕ) =
1
Sc

(1− 1
v0
)ϕ +(

1
Sc

−1)H[
1
2
(

ϕ

v0
)2]− ε

2
c

x3

2v0
. (5.45)

The electron stream function H(ψ),

H(x) = (1− v0)x+(1− 1
2Sc

|x|x)δH∞(v0), (5.46)

with the asymptotic shift, δH∞(v0)

δH∞(v0) = w
[
(1− v0)ha(v0)+ ε

2
c

C
D

v0

(w
2

)2
hc(v0)

]
. (5.47)

The asymptotic vorticity, that represents the jump in the slip velocity gradient v′∞

U∞ =
1
Sc

δH∞. (5.48)



Chapter 6

Slip curves

In this chapter, we build upon the analytic solutions obtained in Chapter 5. Specifically, we
explore the relationship between the force acting on the magnetic island and its velocity
through slip curves. These curves provide a steady-state framework to describe the propa-
gation of the island, offering insights into the role of plasma compressibility, characterized
by the parameter εc, in influencing bifurcations and the stability of the island velocity.

6.1 Formulation of Slip Curves
The slip curves illustrate how variations in εc affect the interaction between external forces
and the response of the plasma, impacting the formation of stable and unstable branches.
Figures ?? and ?? demonstrate key behaviors, such as the emergence of bifurcations and
transitions between stability regimes under different compressibility conditions.

This analysis extends the IslET model by incorporating ion compressibility effects,
building on the analytic framework discussed previously. The results provide a compre-
hensive picture of the relationship between force and velocity, along with its implications
for the stability of magnetic islands under various plasma conditions.

The focus of this thesis is on the force exerted on the island as it is dragged through
the plasma. To the lowest order, this force is

Fy = µ∂
2
x Φ0 = µ

δH∞

Sc

= Dw
[
(1− v0)ha(v0)+ ε

2
c

C
D

v0

(w
2

)2
hc(v0)

]
, (6.1)
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Fy only depends on the constant δH∞, as shown in the previous chapter. Since the G(ϕ)
profile is related to parallel momentum of the ions, it is physically not surprising that G(ϕ)
does not appear in the perpendicular momentum balance. However, the contribution of the
potential vorticity K(ϕ) which comes from the ions is not present either because of the
matching to the outer region, which to lowest order does not depend on transport.

Notice that the first term on the force is proportional to the particle diffusion coefficient
D, whilst the second term is proportional to the normalized resistivity C which is also a
measure of collisionality [45]. The role of the particle diffusivity can be understood by
noting that since the electrons are frozen into the island, island propagation must match
the diamagnetic frequency unless the density is flattened. Particle diffusivity opposes the
flattening so that the change in island velocity varies inversely with D.

6.2 Numerical Results and Analysis

We computed the numerical results presented in this chapter using the IslET Mathematica
code, originally developed by Dr. François Waelbroeck. For this work, we extended the
code to account for the effects of plasma compressibility, following the framework intro-
duced in the previous chapters.

When the force exerted on the island changes, it modifies its velocity. Plotting the
velocity as a function of the force gives the slip curves. Varying the compressibility pa-
rameter ε2

c produces different slip curves.

Figure 6.1 shows the slip curves giving the island velocity v0 as function of the force
Fy/µ , comparing the exact results obtained from the numerical evaluation of the integrals
ha and hc, (solid lines) with the approximations of equations 5.41, 5.42 (dotted lines).
Each color corresponds to a different value of ε2

c .

Bifurcations appear at low magnitudes of |Fy/µ| for large enough εc. The convergence
point, where all lines converge, corresponds to Fy/µ when v0 = 0, indicating the absence of
electric drift velocity. Figure 6.1 illustrates the transition from single to multiple equilibria
as ε2

c increases, highlighting the emergence of bifurcations and stability changes.

Moreover, the ratio between the normal resistivity C and the particle diffusion coeffi-
cient D can be changed; when D ≫C the velocity increases much faster than when C = D
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Figure 6.1: Slip curves for ε2
c = 0,3,6,9,12. Left, C/D = 1, right C/D = 3.

and bifurcations appear for smaller values of ε2
c ; when C/D = 1 (left side of Figure 6.1),

bifurcation appears for ε2
c near 7, but when C/D = 3 (right side), it appears for ε2

c = 3.

In summary, the critical value of ε2
c decreases as the ratio C/D increases, indicating

that stronger collisional effects (higher C) facilitate bifurcations at lower compressibility
values.

Equilibrium solutions exist when Fy = 0, corresponding to the crossing point on the
velocity axis (y-axis) in Figure 6.1. This is not, however, the natural velocity of the island,
as it would be the case if the complete solution to first order had been used. It is just the
free rotation that the island would have if there was not a back reaction from the outer
region due to the absorption of the on-acoustic wave by the plasma.

For C/D = 1, there is one equilibrium solution for every ε2
c < 7; however, when ε2

c = 7
there are two equilibrium solutions, and a third one appears for every ε2

c > 7. This behav-
ior is also present in the right side, C/D = 3, but for ε2

c = 3 instead of 7.

The free rotation velocity, v f ree, of the magnetic island can be expressed as a function
of the ion compressibility parameter ε2

c by imposing the constraint Fy = 0 in equation (6.1).
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Plotting the free rotation velocity v f ree as a function of the compressibility factor is
equivalent to making the bifurcation diagram of the slip curves [43]. In Figure 6.2 these
equilibrium points are plotted for C/D = 1, 2 and 3. For each C/D scenario, there are
three solution branches; one in the electron diamagnetic direction, v f ree > 0, and two in
the ion diamagnetic direction, v f ree < 0.

Figure 6.2: Island velocity at which the radiative drag vanishes, shown as function of the
compressibility parameter computed with the lowest-order stream function ϕ .

The electron branch corresponds to a branch of sources, indicating unstable points
where solutions tend to diverge away from. A source refers to an unstable equilibrium,
where small perturbations grow and move the system away from the equilibrium point.
A sink represents a stable equilibrium, where small perturbations decay, and the system
returns to equilibrium. Additionally, in the ion direction a saddle-node bifurcation oc-
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curs when ε2
c exceeds a threshold value corresponding to the node point of the respective

C/D case. Consequently, the node splits into an upper and a lower branch. The upper
branch represents sinks, meaning that stable equilibrium solutions can be reached when
ε2

c is greater than the threshold value for small values of the velocity in the ion direction.
However, the velocity decreases and tends towards zero as ε2

c increases.

On the other hand, the lower branch constitutes a branch of sources, signifying unsta-
ble solutions. With increasing ε2

c , the velocity grows in the negative direction and tends
towards infinity in the ion direction.

These results were obtained through δH∞ resulting from the matching of the inner re-
gion solution with the lowest-order approximation of ϕ in the outer region. This means
that the drift acoustic waves radiated by the island do not play any direct role in the inner
region, there is no momentum redistribution by the acoustic waves in the inner region for
thin islands at lowest-order; they indirectly play a role through the boundary conditions.

As a result, the behavior observed in Figures 6.1 and 6.2 is not the expected one ac-
cording to previous numerical computations [28, 38], where it was found that the island
velocity decreases when ε2

c is increased.

Therefore, it is necessary to go to the next order in the solution for the outer region.

This highlights the importance of considering higher-order effects to fully capture the
interaction between the radiative drag and compressibility.
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Chapter 7

Conclusions

We have extended the Island Equilibrium and Transport model in Ref. [32] to describe a
compressible plasma but restricting to constant temperature, focusing on describing the
forces exerted by the plasma on the magnetic island, particularly the region around the
magnetic island.

Previous works studied this model by considering small values of the ion compressibil-
ity parameter [28], found only numerical solutions [38], or adopted physically motivated
assumptions for profile functions H and G [39]. Here we developed an analytical solution
for arbitrary ε2

c and v0, by calculating the profiles through solving the transport equations
in the thin-island limit.

Under our framework, the inner region solution found for x ∼ w has to be matched
to the outer region solution (x ≫ w) in order to get the complete solution. This is ac-
complished by an expansion in the island width w and here the matching was done to the
lowest order outer region solution. Although matching to higher order is needed for a full
solution, the force computed to this order provides the torque exerted by the inner region
which is transmitted to the outer region by radiation of drift-acoustic waves, which is what
we were interested in. We found that this drag force Fy depends on two integrals; one
proportional to the particle diffusion coefficient D and 1− v0, and the second one pro-
portional to the velocity v0 and the normalized resistivity C = 0.51(νe/ω∗e)(me/mi)/ε2

c
times the ion compressibility parameter, i.e. the second term in the force is proportional
to 0.51v0(νe/ω∗e)(me/mi). When the measure of the collisionality, C, [46] is larger than
the particle diffusion D, the second term in Fy dominates and the velocity becomes more
susceptible to the applied force, the velocity increases faster. At constant applied force,
the velocity of the island increases when the ion compressibility increases either in the
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electron direction v∞ > 0 or in the ion direction v∞ < 0, and when ε2
c exceeds a threshold

value a saddle-node bifurcation appears.

We studied the slip curves bifurcation diagram, vfree, of the magnetic island as a func-
tion of the ion compressibility parameter and obtained that there are three equilibrium
solution branches; an unstable branch in the electron direction, two branches coming from
a bifurcation in the ion direction. The bifurcation node corresponds to the threshold value
for ε2

c . Thus we have three cases, when ε2
c is less than the threshold value, the velocity

increases in the electron direction; when ε2
c exceeds the threshold value, the upper branch

in the ion direction is stable and the velocity approaches to zero as ε2
c increases, and the

lower branch that is an unstable solutions branch which tends to infinity in the ion direc-
tion as ε2

c increases.

In future work, we will solve the electric potential in the exterior region including mo-
mentum change. This will complete the description of thin island evolution. Note that the
equation for the electrostatic potential in the exterior region is linear and was already stud-
ied in the context of the investigation of mode penetration [47]; it has also been obtained
with a semi-analytical, iterative approach in [28].

In the present work we have removed the necessity for an iterative approach by solving
the non-linear problem in the inner region analytically.

Results and discussion showed in this thesis work have been published in [48].



Appendices

To analyze the process of magnetic reconnection in nuclear fusion plasmas, the doctoral
work was initially divided into two main parts:

• PROMETHEUS++, a 1D hybrid code. The goal was to extend the 1D hybrid code
PROMETHEUS++ to simulate magnetic reconnection and include ion dynamics.
The effect of electron inertia was incorporated in one dimension, as this term con-
tributes to breaking the frozen-in condition in the reconnection region.

• The second part was conducted in collaboration with Dr. François Waelbroeck from
the Institute of Fusion Studies at the University of Texas at Austin. It involved pri-
marily theoretical analysis of the effects of magnetic field curvature in a toroidal
device on a radially asymmetric magnetic island. We found that the effect of cur-
vature combined with island asymmetry was negligible and identified the need to
include parallel velocity effects. Consequently, the focus of the doctoral project
shifted to studying the effects of plasma compressibility on magnetic islands.

The next to appendices describe the original two parts of the project.
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Appendix A

PROMETHEUS++

A.1 Introduction

Computational simulations are a crucial tool for predicting and studying physical phe-
nomena. Through simulations, we can approximate what happens in an experiment and
use that information to make predictions or verify hypotheses. They also allow us to design
devices or check the feasibility of an experiment before conducting it in real life.

Similar to the description of a plasma, the simulation codes are based on kinetic models
and fluid models, as shown in Fig. 2.1. However, these are not the only types of codes;
hybrid models combine aspects of both kinetic and fluid descriptions.

Modeling kinetic effects can be complex. The most practical method involves numeri-
cal simulations using the Particle-In-Cell (PIC) technique, where macroparticles, discrete
chunks of phase space, represent many plasma particles. Due to scale differences between
electron oscillation time and reconnection time, as well as the scale difference between
Debye length and system size, several approximations are necessary to ensure realistic
simulation times. PIC simulations capture electron dynamics and can potentially simulate
damping of certain modes by electrons.

The mass ratio between electrons and ions adds another layer of complexity. The
spatial and temporal dimensions of the simulation domain are constrained by fast electron
gyration over a small spatial scale. This challenge can be addressed in two possible ways:
treating electrons as a fluid or simulating massive electrons. The former is known as a
hybrid model, where kinetic information is obtained from ions while electrons are treated
as a neutralizing massless fluid. These models can use PIC simulations to capture kinetic
dynamics at small scales near the reconnection region [1].

In this work, a hybrid model is employed, which treats ions kinetically while initially
considering electrons as a mass-less fluid, subsequently incorporating the electron inertia
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term. Such models are used to study phenomena where ion dynamics significantly affect
the overall plasma dynamics. Timescales are approximately equal to the ion gyro-period
and spatial scales comparable to the ion gyro-radius. These scales allow us to study plasma
evolution over longer timescales, such as in tearing modes, and larger spatial scales than
the scales in electron kinetic theory.

Ion dynamics are described through the evolution of the ion distribution function
f (x,v, t), by following particle trajectories solving the Lorentz force equation (Eq. 2.2)
and (Eq. 2.3) for ions. For this kinetic aspect, the Particle-In-Cell (PIC) method is em-
ployed, which tracks the trajectories of charged macro-particles in phase space with elec-
tromagnetic fields computed on a fixed grid.

Electrons are modeled as an ideal isotropic and isothermal gas, following the equation
of state Pe = nTe , where n denotes the total density given by

n ≡ ne =
N

∑
j=1

Z jn j, (A.1)

assuming quasi-neutrality of the plasma. The sum includes N ion species in the plasma.
The temperature is assumed constant due to the high thermal conductivity of high-temperature
electrons along magnetic field lines [8]. Electromagnetic fields are related through the gen-
eralized Ohm’s law, Eq. 2.14, and the magnetic field evolves according to Faraday’s law,
Eq. 2.6.

A.1.1 PROMETHEUS++

The code used in this project is called PROMETHEUS++, was developed by Dr. Leopoldo
Carbajal [49], with the aim of studying wave-particle interactions [50] using a one-dimensional
hybrid model. Electromagnetic fields are simulated in 1D, meaning that the space variation
is just along one dimension. Ion velocities are tracked in the 3D velocity space. This code
combines kinetic plasma description for ions with ideal magnetohydrodynamic (MHD)
theory for electrons, following the trajectories described by macroparticles and resolving
all ion dynamics. The plasmas this model can simulate range from fusion plasmas with
β ∼ 10−4 to astrophysical plasmas with β ∼ 1.

PROMETHEUS++ employs high-performance computing (HPC) paradigms, allowing
it to evolve velocity distributions of different ion species by tracking trajectories of a su-
perparticle ensemble in phase space, while treating electrons as a neutralizing fluid and
solving the electromagnetic fields on a fixed grid in physical space.

The code is written in C++, which allows for a modular structure; it consists of modules
that communicate through the main function of the code, exchanging standardized data
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structures. It uses parallel programming models, dividing the one-dimensional computa-
tional domain into subdomains that communicate via the Message Passing Interface (MPI)
OpenMPI. Each subdomain employs shared memory parallel programming, OpenMP.

PROMETHEUS++ employs the generalized Ohm’s law, Eq. 2.14, to describe electro-
magnetic fields, excluding terms for inertia and resistivity, i.e.,

E =
1

µ0en
(∇x ×B)×B−Vi ×B− 1

en
∇x · P̃e, (A.2)

with density given by Eq. A.1, and the bulk flow velocity of electrons expressed through
the average bulk velocity of ions, Vi , defined as

Vi =
∑ j = 1N(Z jn jvj)

∑ j = 1N(Z jn j)
, (A.3)

also assuming quasi-neutrality, σe +σi = 0,

∇ ·J = 0, (A.4)

and with the total current density defined in terms of the bulk velocities of ions and elec-
trons,

J = en(Vi −ve). (A.5)

All quantities are normalized to the ion inertial length di , ion plasma frequency ωpi, speed
of light c , average ion mass m̄i, average ion charge q̄i, electron particle density ne , Eq.
A.1, Boltzmann constant kB , and combinations thereof.

A.2 Required Methodologies - PROMETHEUS++
To study magnetic reconnection in fusion plasmas using PROMETHEUS++, the code
needs to operate in at least two dimensions and incorporate electron resistivity and inertia
terms into the generalized Ohm’s law, Eq. 2.14. The relevant equations, including the
Lorentz force equations 2.2 and 2.3, Maxwell’s equations 2.4 to 2.7, and the generalized
Ohm’s law 2.14, need to be discretized in 2D. Specifically, the electron inertia term will
be introduced. The steps required for this part are as follows:

• Introducing the electron inertia term into the 1D hybrid model of PROMETHEUS++.
This modification requires using a generalized magnetic field B̂ and applying the
Thompson method to retrieve the “real” magnetic field B.
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• Analyzing the effect of the inertia term and comparing results with those obtained
without it in 1D.

• Modifying the PROMETHEUS++ code to compute and advance particle positions,
velocities, and electromagnetic fields in two dimensions. This involves discretizing
the relevant equations in two dimensions and selecting an appropriate grid, among
other considerations, along with implementing the inertia term.

• Simulating magnetic reconnection with velocity gradients.

Accordingly, the generalized Ohm’s law, A.2, now including the inertia term is

E =
1

µ0en
(∇x ×B)×B−Vi ×B− 1

en
∇x · P̃e −

me

ne2
dJ
dt

. (A.6)

Following the model proposed by Kuznetsova et al. [51], we can replace the inertial
term with a term involving only spatial derivatives by applying the ∇× operator to both
sides of the above equation. This yields the following equations in terms of the generalized
fields B̂ and Ê:

∂ B̂
∂ t

=−1
c

∇× Ê, (A.7)

where the new fields relate to the real fields through

B̂ = B−δ
2
e ∇

2B, (A.8)

and

Ê =−1
c

ve ×B− 1
en

∇ · P̃e −
me

e
(ve ·∇)ve. (A.9)

It is assumed that in the electron’s reference frame, ions are nearly stationary, meaning
variations in ion particle density and current density are negligible on electron spatial
scales [51].

We express Eq. A.9 in terms of ion velocity and magnetic field using Eq. A.5 and
Ampère’s law without displacement currents

Ê =
1

µ0en
(∇x ×B)×B−Vi ×B− 1

en
∇x · P̃e

− me

e
(Vi ·∇)Vi +

me

e2µ0n
(Vi ·∇)∇×B

− me

e2µ0n
[(∇×B) ·∇]Vi −

me

e3µ0n
[(∇×B) ·∇]∇×B. (A.10)
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These new terms arising from electron inertia are added to PROMETHEUS++. However,
we now need to invert Eq. A.8 to retrieve the field B. Since this involves solving a
tridiagonal matrix, we utilize the Thomas algorithm [52]. This algorithm is derived from
the recursive application of Gauss-Jordan elimination. For a tridiagonal matrix system of
equations,

aixi−1 +bixi + cixi+1 = di, (A.11)

where a1 = 0 and cn = 0, in matrix form it is represented as
b1 c1 0
a2 b2 c2

a3 b3
. . .

. . . . . . cn1

0 an bn




x1
x2
x3
...

xn

=


d1
d2
d3
...

dn

 . (A.12)

Using the coefficients

c′i =

{ ci
bi

i = 1
ci

bi−c′i−1ai
i = 2,3, . . . ,n−1,

(A.13)

d′
i =


di
bi

i = 1
di−d′

i−1ai
bi−c′i−1ai

i = 2,3, . . . ,n,
(A.14)

the obtained solutions are

xn = d′
n (A.15)

xi = d′
i − c′ixi+1 ; i = n−1,n−2, . . . ,1. (A.16)

Discretization

We discretize the corresponding equations using the finite difference method. This can be
done in backward (left), forward (right), or centered schemes for each order of derivative.
Below are the expressions for the schemes used.

First-order right-sided finite difference scheme:

∂u
∂x

∣∣∣∣xi =
ui+1−ui

∆x
− ∆x

2
∂ 2u
∂x2

∣∣∣∣
xi

+ · · · . (A.17)
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Second-order centered finite difference scheme:

∂u
∂x

∣∣∣∣xi =
ui+1−ui−1

2∆x
− ∆x2

6
∂ 3u
∂x3

∣∣∣∣
xi

+ · · · . (A.18)

Second-order centered finite difference scheme for the second derivative:

∂ 2u
∂x2

∣∣∣∣xi =
ui+1−2ui +ui−1

∆x2 − ∆x2

12
∂ 4u
∂x4

∣∣∣∣
xi

+ · · · . (A.19)

A.3 Results
The doctoral project began with the hybrid model using PROMETHEUS++. According
to the objectives, work initially focused on one dimension (1D); the equation A.10 was
discretized, and the results were implemented into the code. Additionally, the Thomas
inversion was added to obtain the magnetic field B.

Previous studies of space and fusion plasmas using the hybrid model PROMETHEUS++
have been documented in [49]. To verify the functionality of the modified code, the same
two specific cases considered in [49] were evaluated:

• A space plasma: The code was applied to the Van Allen belt plasma, characterized
by the following values:

n = 109 m−3, B0 = 10−6 T, Te = 102 eV = Ti.

• A fusion plasma: The code was applied to the plasma expected in ITER, character-
ized by the following values:

n = 1×1019 m−3, B0 = 5.3 T, Te = 8.8 KeV, Ti = 8.0 KeV.

The simulations considered a plasma in a uniform magnetic field, which exhibited
electromagnetic oscillations. In this scenario, waves propagated transverse to the B0 field,
resulting in magnetosonic and cyclotron waves [13]. Magnetosonic waves describe oscilla-
tions between plasma kinetic energy (inertia) and magnetic compression energy (magnetic
pressure) [5].

For both plasma types, dispersion relations in Fourier space were obtained, and con-
servation laws for kinetic, magnetic, electric, and total energies were analyzed. Initially,
the simulations without considering the effect of electron inertia were reproduced from
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[49], followed by simulations that included this effect. It is important to note that fusion
plasmas in the hybrid model are approximations, so the results obtained are also approxi-
mate.

The results for each case are presented as follows:

The dispersion relations, i.e. frequency as function of wavenumber, are shown in fig-
ures A.1 and A.3, along with the lower hybrid frequency represented by the horizontal
dashed line, and the phase velocity equal to the Alfvén velocity, vp = vA, represented by
the diagonal dashed line. The monitoring of energy conservation is shown in figures A.2
and A.4. ∆EK denotes the change in kinetic energy, ∆EB denotes the change in magnetic
energy with its components By, Bz, ∆EE denotes the change in electric energy with its
components Ex, Ey, Ez. Here, K represents kinetic energy, E represents electric energy, B
represents magnetic energy, and ∆ET denotes the relative change in total energy. In each
figure, part A shows the results without electron inertia, while part B shows the results
including the inertial term.

The objective of these simulations is to analyze the effect of adding the electron inertia
term in 1D.

A.3.1 Van Allen belt plasma

The dispersion relations obtained for the Van Allen belt plasma, shown in figure A.1, are as
expected for the simulated plasma [13], displaying the magnetosonic wave (low frequency
branch) and cyclotron modes (high frequency branch), both without inertia (A) and with
the inertial term included (B). If we take a point in A and another at the same position
in B, the absolute difference between them is very small. For example, in figure A.1, at
point [X ,Y ] = [11.25,8.35], the RGB color scale shows a difference of 0.0627. This small
difference is also expected for waves in space plasmas, as electron inertia does not play a
significant role in these waves. However, it is expected to play an important role in mag-
netic reconnection

The energy monitoring results for the Van Allen plasma, shown in figure A.2, indicate
a slight decrease in kinetic energy, by 2.4% at point X = 0.3168, for example, as well as
in magnetic and electric energy, by 7.3% and 9.6%, respectively, when electron inertia is
considered. The relative change in total energy, ∆ET , is not influenced by electron inertia,
showing a reduction of 0.057%.
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A.3.2 ITER plasma
For the ITER plasma case, the dispersion relations, shown in figure A.3, also align with ex-
pectations under simulated conditions [13], displaying magnetosonic waves and cyclotron
modes for both cases: without inertia (A) and with the inclusion of the inertial term (B).
Similar to the analysis of the Van Allen plasma case, if we select a point at the same posi-
tion [X ,Y ] in both plots, we can calculate the absolute difference. In figure A.3, we chose
the point [20.44,14.11], resulting in a difference of 0.1255 in RGB scale, which is double
the difference observed for the Van Allen case.

Figure A.5-A illustrates the absolute differences point-by-point between figures A.3-
A and A.3-B. It shows that the differences are of approximately the same magnitude, as
expected for a fusion plasma where the inertial term is significant.

In the energy monitoring for the ITER plasma, shown in figure A.4, significant dif-
ferences are also evident: there is a reduction in kinetic energy by 27.28%, magnetic and
electric energies decrease by 16.8% and 17.1%, respectively, while total energy changes
by 23.3%. Figure A.5-B displays kinetic and electromagnetic energies before (dashed
lines) and after (solid lines) including the electron inertial term. These results indicate that
the inertial term causes a slower acceleration; with inertia included, electrons require more
energy to reach the same velocity as without the inertial term.

A.4 Discussion
With the results obtained so far, the effect of the inertial term is incorporated in 1D but
it cannot be applied to magnetic reconnection yet since that process has to be described
in 2D. However, these advancements confirm the functionality of the hybrid model for
fusion a plasma with the inclusion of the electron inertial term. The next step should
involve replicating the analysis in this section but in two dimensions. And finally the code
has to be applied to a magnetic geometry where magnetic reconnection can occur.
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A

B

Figure A.1: Fourier decomposition in frequency and wave number of the y-component of the electric
field E for simulations of a Van Allen belt plasma. Panel (A) shows the dispersion relation without electron
inertia, while panel (B) includes electron inertia.
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Figure A.2: Energy monitoring for the Van Allen belt: ∆EK is the change in kinetic energy; ∆EB is
the change in magnetic energy and its components By, Bz; ∆EE is the change in electric energy and its
components Ex, Ey, Ez; ∆E shows the kinetic K, magnetic B, and electric E energies; ∆ET shows the relative
change in total energy. A) Monitoring without electron inertia. B) Monitoring with electron inertia.
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A

B

Figure A.3: Fourier decomposition in frequency and wave number of the y component of the electric field
E for ITER fusion plasma simulations. In (A), the dispersion relation without electron inertia is shown,
while in (B), inertia is included.
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A

B

Figure A.4: Energy monitoring for an ITER plasma; ∆EK is the change in kinetic energy; ∆EB is the change
in magnetic energy and its components By, Bz; ∆EE is the change in electric energy and its components Ex,
Ey, Ez; ∆E shows kinetic K, magnetic B, and electric E energies; ∆ET shows the relative change in total
energy. A) Monitoring without electron inertia. B) Monitoring with electron inertia.
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A

B

Figure A.5: A) Difference in dispersion relations in Fourier space for the ITER case between considering
the electron inertia term and not. B) Evolution of energies without including the effect of electron inertia
is represented by dashed lines, while solid lines represent the evolution of energies including the effect of
electron inertia.
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Appendix B

Asymmetric Islands

Magnetic islands are often considered symmetric in the radial direction; however, this is
not the case in experiments. Therefore, an analysis of the dynamics of radially asymmetric
magnetic islands is needed. Here, we show the obtained results of the analysis of asym-
metric islands, taking into account the device curvature to understand its influence on the
degree of asymmetry of the magnetic island. It was found that this effect is negligible;
however, the inclusion of parallel velocity terms was required.

Often, analyses of magnetic islands assume that the island is symmetric about the O-
point, as shown in Figure 2.6. However, in practical scenarios, an island may exhibit radial
asymmetry [53]. The instability of tearing modes can be influenced by this asymmetry
through variations in the bootstrap current density [3], which is non-inductive, or through
changes in the inductive current density; both of which depend on the plasma temperature
profile. The former is known to have destabilizing effects on tearing modes, and the effects
of island asymmetry are canceled out. Conversely, the latter case is less straightforward,
as perturbations in the inductive current density do not influence the stability of tearing
modes [54].

The effect of an asymmetric island on plasma profiles has been studied both numeri-
cally and analytically [55], [56], [54], [57].

Numerically, A. Bañón Navarro et al. [57] simulated the effect of an asymmetric
magnetic island using the GENE code. However, their study concentrated more on the
impact of non-constant transport coefficients than on the effects of asymmetry itself. They
proposed a flow function to describe the asymmetric island given by

Ψ = 8
X2

W 2 +

(
2AX
W

+1
)

cos(ζ ), (B.1)

where the parameter A measures the degree of asymmetry of the island; when A ̸= 0, the
radial symmetry of the island Ψ(X) = Ψ(−X) is broken, and when A = 0, the case of a
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symmetric island is recovered. Figure B.1 shows the island described by Equation B.1.
They concluded that the island asymmetry affects the radial profiles of the electrostatic
potential and sheared flows, with this effect depending on whether the island is wide or
narrow, determined by a threshold island width of Wc = 33ρi, where ρi denotes the ion
Larmor radius defined in Table 2.1.

Figure B.1: Radially asymmetric magnetic island described by the flow function in A. Bañón Navarro et
al. 2017 [57], with values (a) A = 0, (b) A =−0.3, and (c) A =−0.6.

Results obtained by A. Bañón Navarro et al. [57] showed that plasma profiles are
affected by the degree of asymmetry of the magnetic island as shown in Figure B.2.

On the other hand, there are several theoretical studies that examine island asymmetry,
although the extent to which asymmetry affects the system or whether it has no effect at
all remains an open question. Fitzpatrick provides a detailed study of island asymmetry
in [54], also noting the existing disagreement about its impact on tearing modes. In [56],
a new term related to island asymmetry is found in the Rutherford evolution equation for
island width. This term, which depends on the degree of asymmetry, is destabilizing but
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Figure B.2: Profiles of the electric potential (a), the helical component of the E ×B flow
(vξ ) (b) and the helical flow radial shear (ωE = dvξ/dr) (c) around the rational surface
position rs showing the resulting asymmetry when A ̸= 0. The shaded region represents
the island width.

only in the narrow island limit; it does not appear in the wide island limit. Conversely, [55]
report the presence of this destabilizing term in the wide island limit but not in the narrow
island limit. This result is particularly relevant for high-density disruption limit theories in
tokamaks [58].

In both cases, Fitzpatrick identifies inconsistencies in the calculations. In [56], it is
assumed for the narrow island limit that the resistivity near the island is η = η(r), which is
valid only for a symmetric island, not for an asymmetric one. While in [55] the constraint
of force balance in the island region is not maintained.

To clarify this disagreement, Fitzpatrick analyzes the asymmetry using the magnetic
flux function

Ψ(X ,ζ ) =
1
2

X2 + cos(ζ −δ
2 sinζ )−

√
2δX cosζ +δ

2 cos2
ζ +O(∆′w), (B.2)

where δ represents the degree of asymmetry. Figure B.3 shows a symmetric island when
δ = 0, which becomes asymmetric when δ ̸= 0 (Figure B.4), and reaches complete asym-
metry when δ = 1. This flux function, unlike the function proposed in [57], is consistent
with the Rutherford model [21], as expanding in δ cos(2ζ ) cancels out the terms of lower
order and the problem is dominated by a single Fourier harmonic, even when δ approaches
unity. This flux function also allows for the following transformation
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Figure B.3: A radially symmetric magnetic island described by the flow function proposed by Fitzpatrick,
R. 2016 [54], when δ = 0. Thick lines represent the separatrix. The full width of the island is 4.

Y = X −
√

2δ cosζ , (B.3)

ξ = ζ −δ
2 sinζ , (B.4)

such that the flow function transforms into that of a symmetric island

Ψ(Y,ξ ) =
1
2

Y 2 + cosξ . (B.5)

In this model, the island is either wide or narrow depending on a critical width Wc ∝

(κ⊥/κ∥)
1/4, where κ⊥ and κ∥ are the perpendicular and parallel thermal conductivities of

the plasma, [59]. It is important to note that this critical width differs from that in [57].
The study by R. Fitzpatrick [54] concludes that island asymmetry has a modest desta-

bilizing effect in the narrow island limit due to an increase in the perturbed bootstrap cur-
rent, while in the wide island limit, asymmetry has no effect. Therefore, further research
is needed on this topic.
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(a) (b)

Figure B.4: A radially asymmetric magnetic island described by the flow function pro-
posed by Fitzpatrick, R. 2016 [54]. Thick lines represent the separatrix. Symmetry
disappears when δ ̸= 0,andtheislandexhibitsgreaterasymmetryasδ increases : (a)δ = 0.5and(b)δ =
1.T he f ullwidtho f theislandis4inallcases.

B.1 Curvature Term

Previous studies, such as [60], have shown that the curvature of the magnetic field influ-
ences tearing instability, modifying the width of the magnetic island through the Ruther-
ford equation; in low-β tokamaks, curvature can have a stabilizing effect for wide islands.
The curvature exerts a kind of centrifugal force that can stabilize or destabilize depending
on the direction of the average curvature.

The curvature parameter is given by [61]:

γc =
2L2

s
LcLn

, (B.6)

where Ls, Ln, and Lc =
(Te0+Ti)

mig
are, respectively, the magnetic shear length, the density

gradient scale length, and the effective curvature radius experienced by particles (repre-
sented by an equivalent gravitational acceleration g) as they move along the field lines
[61]. When γc > 0, there is an unfavorable average curvature, which is usually found at
the edge of the torus [60].
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Since one of the overarching objectives, beyond this work, is to develop a comprehen-
sive theory that can predict the stability of tearing modes for devices such as ITER, it is
important to include the average magnetic curvature in the study of island asymmetry.

B.2 Curvature and asymmetry model
To obtain the combined effect of curvature with island asymmetry, we will first follow the
procedure established in [61], which includes the curvature term for the five-field model; in
this work, we will use the three-field model. Once the equations are developed, averaging
over the flux surface is necessary. Here, the effect of asymmetric islands comes into play,
as the averaging operator differs according to the model in [54]. The steps to follow are:

• Include the curvature term in the equations of the three-field model.

• Integrate the resulting equations for the curvature effect on the asymmetric island
flux function.

• Analyze results and compare them with previous findings in this area.

The five-field model presented in [61] for the island region in the rest frame consists of
the generalized Ohm’s law, the fluid continuity equation, the parallel ion vorticity equation,
the parallel ion momentum equation, and the electron heat flux, represented respectively
by the following equilibrium equations:

0 = [φ −n− α̂T,ψ]+ρ
4CJ, (B.7)

0 = [φ ,n]+ [V +ρ
2J,ψ]−ρ

2
α

2(1+ τ)−1
γc[x,φ −n]+ρ

2Dnxx, (B.8)
0 = [φ ,φxx]+ [J,ψ]+α

2
γc[x,n]

− τ

2
{[φxx,n]+ [nxx,φ ]+ [φ ,n]xx}+ρ

2
µ(φ + τn)xxxx, (B.9)

0 = [φ ,V ]+α
2[n+T/(1+ τ),ψ]+ρ

2
χVxx, (B.10)

0 = ρ
−2

κ∥[[T,ψ],ψ]+ (3/2)[φ ,T ]+ [V + α̂ρ
2J,ψ]+ρ

2
κ⊥Txx, (B.11)

where the brackets represent

[A,B]≡ AxBθ −Aθ Bx , Ax,θ ≡ ∂x,θ A, (B.12)

recalling that θ = ky and x = r − rs is the radial coordinate. All lengths are normalized
to w, which is a quarter of the width of the island in the x direction, and velocities are
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normalized to the diamagnetic electron velocity V∗ = Te0/(eBzLn). The value of α̂ = 1.71
and

ψxx =−1+ β̃ρ
2J, (B.13)

where β̃ = β/ε2
n represents the normalized beta, εn = Ln/Ls is the shear parameter. In

equations B.7 to B.11, ψ = AzLs/(Bzw2), J = (1−µ0 jzLs/Bz)/(β̂ρ2), φ =−Φ/(BzwV∗),
n = −(Ln/w)/(ne − ne0)/ne0, T = −(Ln/w)(Te −Te0)/Te0, V = (Ln/Ls)Vzi/V∗, C = β̂η ,
η = (η∥/µ0)/(kV∗ρ2

s ), κ∥ = (kρs)
2(κ∥e/ne0)/(kV∗L2

s ), µ = (µ⊥i/ne0mi)/(kV∗ρ2
s ), κ⊥ =

(κ⊥e/ne0)/(kV∗ρ2
s ), D = βη +κ⊥, and χ = 4µ . Furthermore, from these quantities, Az

is the z component of the magnetic vector potential, jz is the z component of the electric
current density, Φ is the electric scalar potential, Vzi is the z component of the ion fluid
velocity, η∥ is the plasma resistivity parallel to the magnetic field, µ⊥i is the perpendicular
ion viscosity, κ∥e and κ⊥e are the parallel and perpendicular electron heat conductivities;
ρ = ρs/w is the normalized gyro radius, where ρs =

√
Te0/mi/(eBz/mi), α =

√
1+ τεn/ρ

is the sound parameter that measures how effective ion acoustic waves are in flattening
plasma density across the island (if α ≫ 1, they are effective; if α ≪ 1, they are not), and
τ = Ti/Te0 is the ratio of ion to electron temperature.

From equation B.12, we have for any function f in 2D, the following identities:

[φ , f ] = v ·∇ f , [ψ, f ] = B ·∇ f . (B.14)

For this study, the model reduces to a three-field model, assuming T = 0 and V = 0, i.e.,
Te = Te0 and Vzi = 0. This simplification yields equilibrium equations with the curvature
term γc included. The next step will be to integrate them over the flux surface.

The averaging operator over the flux surface is defined as the annihilator of [A,ψ] for
any A(X ,ζ ), that is,

⟨[A,ψ]⟩ ≡ 0. (B.15)

This operator has the following expression for the case of a symmetric island [61]:

⟨ f (ψ,θ)⟩=
˛

f (ψ,θ)

|x|
dθ

2π
, (B.16)

outside the magnetic separatrix, and within the separatrix:

⟨ f (ψ,θ)⟩=
ˆ

θ0

−θ0

f (s,ψ,θ)+ f (−s,ψ,θ)

2|x|
dθ

2π
, (B.17)

where s = sgn(x) and x(s,ψ,θ) = 0. However, for an asymmetric island, this operator
changes to [54]:

⟨A⟩=
ˆ 2π−ξ0

ξ0

σ(ξ )A+(Ψ,ξ )√
2(Ψ− cosξ )

dξ

2π
, (B.18)
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inside the separatrix, −1 ≤ Ψ ≤ 1, and

⟨A⟩=
ˆ 2π

0

σ(ξ )A(s,Ψ,ξ )√
2(Ψ− cosξ )

dξ

2π
, (B.19)

outside the separatrix, Ψ > 1, with ξ defined by equation B.4, ξ0 = cos−1(Ψ), and Ψ the
flux function for an asymmetric island, equation B.2, where

A±(Y,ζ ) =
1
2
[A(Y,ζ )±A(−Y,ζ )] (B.20)

and

σ(ξ ) =
dζ

dξ
= 1+2 ∑

n=1,∞
Jn(nδ

2)cos(nξ ), (B.21)

where Jn(x) are the Bessel functions of the first kind.

B.3 Wide island limit ρs ≪ w

To proceed further, we consider the limit ρs ≪ w and use the transport ordering scheme,
[18], with a constant-Ψ approximation, as in Rutherford, and average the equations along
flux surfaces. For this we follow [61] which includes the effect of curvature and we incor-
porate the asymmetry of the island. The final result obtained is the transport equation for
the profile function M(ψ)≡ dφ/dψ that determines the flow profile

0 =
d

dΨ

[〈
x4

δ

〉 d(M+ τL)
dΨ

+
τ

2
D
µ

(
ML′(L−M)

M(L−M)+α2

)〈
x̃2

δ
x̃2

δ

〉]
− D

µ

(
ML′ [M′+ τ(L′+M′)]/2

M(L−M)+α2

)〈
x̃2

δ
x̃2

δ

〉
+ γc

D
µ

(
α2ML′

M(L−M)+α2

)〈
x̃x̃2

δ

〉
, (B.22)

where xδ = x−
√

2δ cosζ (eq. B.3), ′ ≡ d/dΨ and x̃ = x− ⟨x⟩/⟨1⟩. This equation is
essentially the same as the one obtained in [61], with the main difference being the re-
placement of x by xδ , due to the asymmetry. As a result, the modification caused by the
asymmetry is quite small, and the overall effect is barely noticeable.

After deriving this equation, efforts were made to implement it into the IslET code.
However, it became evident that in order to achieve accurate modeling, the transport of
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parallel momentum had to be incorporated into the system. This finding led to a shift in
focus, as the effect of asymmetry on the island was determined to be negligible. Therefore,
the inclusion of a parallel momentum transport equation became essential for advancing
the analysis.

B.3.1 Separatrix behavior and compressibility

The behavior of flows and profiles within the island is influenced by the compressibil-
ity of the plasma, which varies based on the island’s size. Below is an analysis of how
compressibility affects the structure and flow within the island:

• In the thin island limit, the plasma flows are generally incompressible, meaning that
parallel density gradients within the island are not relaxed. As a result, steep density
gradients persist across the island without significant flattening, and the overall pro-
file remains largely unchanged. However, as studied later in this thesis work, when
ion compressibility is introduced, the behavior of the island can shift. Specifically,
as the compressibility parameter εc exceeds a critical threshold, the plasma flows
become compressible, even in the thin island limit. This leads to parallel ion motion
altering the dynamics of the island. These findings motivated the deeper exploration
of compressibility, which became a central focus of the thesis.

• For wide islands, the transit-time for sound waves is smaller than the diamagnetic
frequency so that the flow becomes compressible. This compressibility allows par-
allel ion motion to flatten the density along magnetic field lines, leading to a flat-
tening of the density profile inside the island. However, this process introduces a
discontinuity in the drift velocity at the separatrix, which can drive flows through
the Reynolds stress.

• In the medium-sized island regime, where the plasma flows remain incompressible,
the discontinuity at the separatrix can be smoothed by drift waves. This smooth-
ing occurs when the island propagates at the electron drift velocity, which serves as
a cutoff for drift-wave propagation. At this critical velocity, the wavenumber ap-
proaches zero, kx → 0, effectively reducing the discontinuity and altering the flow
dynamics near the separatrix.
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B.4 Summary and further work
The study aimed to investigate the resulting effect of non-constant transport coefficients.
However, this approach was not pursued further because, as indicated in [62], the main
effect occurs at the separatrix of the island. It suffices to propose a simple model that
provides a different value of κ inside the separatrix compared to outside, as proposed in
the referenced article. The analysis presented there focuses solely on the perpendicular
electron thermal conductivity coefficient, as the procedure is similar for each transport
coefficient. Thus, examining one suffices to observe the effect of non-linear transport
coefficients.

The decision not to continue with this study is due to the small nature of the effect
itself. While it is possible to analyze varying coefficients outside the separatrix, the effect
would be even smaller and would require considerable computational effort.

However, in the obtained equations, we found that if we take δ = 0, we recover the
symmetric case of [61]. Future work will involve determining if the curvature affects the
value of δ . Additionally, equation B.22 must be solved properly, and a consistent boundary
condition at the separatrix is needed. A possible approach is to use a smoothing function
for the M discontinuity at the separatrix, as discussed in [31].

Furthermore, to complete the analysis of the curvature effect on asymmetric islands,
we found that a parallel momentum transport equation was needed. This realization served
as a key motivation for the thesis work, where a detailed study of compressible effects and
parallel momentum transport is presented.
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