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«;Te das cuenta, Benjamin? El tipo puede cambiar de todo: de cara, de casa, de familia, de novia, de
religion, de dios... pero hay una cosa que no puede cambiar, Benjamin. No puede cambiar de pasion.»
Pablo Sandoval, El Secreto de Sus Ojos.
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Introduccion

En este trabajo se desarrollara un método para obtener una infinidad de orbitas periddicas
en un sistema lagrangiano de la forma

Le(t,x,y) = 5 (Ac(t, 2)y, y) + (Be(t,2),y) + Ue(t, x), (1)

N[ —

donde z,y € R4, t € R/27Z es el tiempo y € > 0 es un parametro pequeiio. Ademas, se requerira
que el sistema Ly no dependa del tiempo. Podemos encontrar ejemplos clasicos de sistemas
lagrangianos de la forma en la fisica. En mecéanica, la matriz A, esta relacionada con la masa
de las particulas que conforman el sistema y U, es la energia potencial. En electrodinamica, el
vector B, es el potencial magnético y U, es el potencial eléctrico.

El método esté inspirado por el trabajo que realizamos en |7]. En este trabajo se estudié un
problema restringido de (n 4 1)-cuerpos con un potencial homogéneo en el plano. Se obtuvieron
soluciones periddicas en donde la particula con masa infinitesimal esta lejos de los n cuerpos
primarios. A estas soluciones se les llama en la literatura soluciones tipo cometa. Las érbitas
tipo cometa se obtienen haciendo una sucesion de cambios de escala para transformar la ecuaciéon
de movimiento del satélite en un sistema lagrangiano de la forma . Luego, se usaron las
técnicas estudiadas en [2}|3,/14,/17] para obtener soluciones de L. que bifurcan de un conjunto
de soluciones periddicas del sistema Ly. Sin embargo, de esta forma se obtiene un nimero finito
(pero arbitrariamente grande) de orbitas periodicas. Esto se debe a que el tamano de las ramas
de bifurcacion puede depender del cambio de escala escogido. Con el método desarrollado en
esta tesis este no seré el caso. Diremos que una bifurcacion es uniforme cuando obtengamos
informacion acerca del tamano de las ramas de bifurcacion. Utilizando esta informacion de forma
adecuada, se podréa obtener una infinidad de 6rbitas periodicas.

La idea de una bifurcacion uniforme ha sido desarrollada previamente en [23|. En este tra-
bajo, el autor usa un enfoque hamiltoniano y algunas otras herramientas sofisticadas para obtener
un namero infinito de soluciones periédicas en un problema de Kepler perturbado y en el prob-
lema restringido de (n + 1)-cuerpos gravitacional. Para la bifurcacion uniforme en un sistema
lagrangiano de la forma se utilizaran técnicas més elementales, como una version cuantitativa
del Teorema de la Funciéon Implicita.

Para obtener soluciones periddicas del sistema lagrangiano L., se utilizara un enfoque varia-
cional. Es decir, se buscaran puntos criticos del funcional de accién asociado con L., dado por

A (x) :/OWLS(t,x(t),a:’(t)) dt, (2)

1X
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definido en un espacio de Hilbert de funciones periddicas adecuado. El conjunto de soluciones
periodicas del sistema Ly corresponde a una variedad de puntos criticos de Ay. Esta variedad
debe de ser compacta y cumplir una condiciéon de no-degeneracion adecuada. Se aplicaré la teoria
de Variedades Criticas No-Degeneradas desarrollada en la Seccion 2 de [5] y en el Capitulo 10
de [1§].

La Teoria de Variedades Criticas No-Degeneradas permite averiguar cuantos puntos criticos de
Ay persisten cuando ¢ es pequeno. El Teorema 10.8 de |18| garantiza la existencia de un niumero
g* > 0 tal que el funcional de accion A, tiene cierto nimero de puntos criticos si 0 < ¢ < €*. El
ntmero de puntos criticos esta relacionado con una propiedad topolédgica de la variedad llamada la
categoria de Lusternik-Schnirelmann. Sin embargo, este teorema no da informacion cuantitativa
del parametro €*, la cual es necesaria para realizar una bifurcacion uniforme. Por lo tanto, es
necesario hacer una adaptacion de este resultado para tener control en el parametro .

Para ilustrar de qué manera se puede obtener un ntmero infinito de 6rbitas periddicas uti-
lizando la bifurcacion uniforme, se aplicaré este método al problema restringido de (n+1)-cuerpos
en el plano y en el espacio con un potencial homogéneo no-newtoniano (como se hizo en [7]). Mas
precisamente, supondremos que el satélite se mueve bajo una influencia no-newtoniana de n cuer-
pos primarios. Los primarios se moveran en una orbita 2m-peridédica arbitraria. La ecuacion a
analizar es

Cj:_zm q_qj(t) (3)

J a+1"
=1 ||q_QJ(t)|| "

Aqui, ¢ € R? es la posicion del satélite, ¢;(t) € R? representa la posicion del j-ésimo cuerpo
primario de masa m;, || - || es la norma euclidiana de R? y d = 2,3. Se supondra ademas que
a > 1. Noétese que av = 2 corresponde al caso gravitacional y este sera omitido. En [2}3,[7,/14]
se pueden encontrar resultados relacionados con el caso gravitacional. Al igual que en [7], se
buscaran soluciones tipo cometa.

Después de hacer el cambio de escala y de escribir el funcional de acciéon, la variedad de
puntos criticos de Ag en este problema es el conjunto de érbitas circulares del problema de fuerza
central con un periodo minimo fijo. Se probara que en el caso plano, esta variedad tiene dos
componentes conexas, cada una de ellas difeomorfa a SO(2). En el caso espacial, solo es una
componente conexa, la cual es difeomorfa a SO(3). La categoria de Lusternik-Schnirelmann de
estas variedades garantiza el nimero minimo de bifurcaciones que se pueden obtener de cada
componente conexa. Notese que la categoria de Lusternik-Schnirelmann de SO(2) y SO(3) es,
respectivamente, 2 y 4.

La variedad de ¢rbitas periddicas circulares satisface la condiciéon de no-degeneraciéon solo
cuando « # 2. Esto es porque, en el caso gravitacional, la componente conexa que contiene a
las 6rbitas circulares con un periodo minimo fijo también contiene a las orbitas elipticas. Esto
implica que en este caso la topologia de la variedad de puntos criticos de Ay es distinta a la de los
otros casos. En particular, en este caso la variedad no es compacta a menos que se regularicen
las soluciones con colisiones. Esta regularizacion es tratada en [20]. Otra manera de trabajar el
caso gravitacional es imponiendo condiciones de simetria en el movimiento de los primarios para
excluir a las orbitas elipticas. Esto se hace en [3,/7,/14].

Utilizando la bifurcaciéon uniforme se mejoraron los resultados que obtuvimos en |7] para el
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caso plano. Primero, se obtuvieron cuatro ramas de bifurcaciéon en lugar de dos. Esto es porque
ahora se consideraron las dos componentes conexas de la variedad de puntos criticos. Ademés,
se incluy6 la condicion de no-resonancia pv/3 — a & Z \ {0} que, a pesar de ser necesaria, no fue
impuesta explicitamente en [7]. Por dltimo, con el analisis de la uniformidad en la bifurcacion,
se logré obtener un nimero infinito de soluciones periédicas de .

Cabe resaltar que en el problema de fuerza central se tienen otros conjuntos de soluciones
periodicas no circulares. Por ejemplo, en [9] los autores usan un enfoque hamiltoniano y el
Teorema de Poincaré-Birkhoff para obtener o6rbitas periddicas que bifurcan de una variedad de
orbitas no circulares difeomorfa a un toro de dimension dos. Ademas, el lector puede encontrar
maés soluciones periddicas no circulares del problema de fuerza central en la seccion 2.8 de [6].

La estructura de esta tesis es la siguiente. En el Capitulo 1 se expone un resumen de los
resultados que obtuvimos en [7] como motivacion. Se ilustra el cambio de escala utilizado para
transformar la ecuacion en una familia de sistemas lagrangianos de la forma y se exponen los
puntos principales de la prueba. En el Capitulo 2 se estudian las propiedades de una variedad
critica no-degenerada (o regular) de un funcional de accion. Se demuestra que, bajo hipotesis
adecuadas en la funcion lagrangiana, el funcional de acciéon asociado tiene la regularidad ade-
cuada. También se adapta el Teorema 10.8 de 18] a una version cuantitativa aplicable a sistemas
lagrangianos de la forma . En el Capitulo 3 se demuestra un resultado de bifurcacién uniforme
de soluciones periodicas en sistemas lagrangianos llamados admisibles. Por tdltimo, en el Capi-
tulo 4 se ilustra el método de bifurcaciéon uniforme en el problema restringido no-newtoniano de
(n 4 1)-cuerpos como se hizo en [§].
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Introduction

In this work, we will develop a method to obtain infinitely many periodic orbits of a Lagrangian
system of the form

Lult,,9) = 5 (Ault, 2y, ) + (Bl ), ) + Ut ), ()

where x,y € RY, t € R/277Z is the time and € > 0 is a small parameter. We also require that L
does not depend on time. We can find classic examples of Lagrangian systems of the form in
physics. In mechanics, the matrix A, is related to the mass of the particles of the system and U,
is the potential energy. In electrodynamics, the vector B. is the magnetic potential and U, is the
electrical potential.

This method is inspired by our work in [7]. Here, we studied a restricted planar (n + 1)-body
problem with a non-Newtonian homogeneous potential. We obtained periodic solutions where
the particle with infinitesimal mass is far from the primaries. These orbits are called comet
solutions. The comet solutions are obtained by making a sequence of time rescaling to transform
the equation of motion for the satellite in a Lagrangian system of the form . Then, we use
the techniques studied in [2,3,14,/17] to obtain solutions for the system L. by bifurcating from
a set of periodic solutions of the system Ly. However, with this method, we obtain a finite (but
arbitrarily large) number of periodic solutions. This is because the size of each of the branches
could depend on the chosen rescaling. With the method developed here, this will not be the
case. We will say that a bifurcation is uniform when we obtain information about the size of
the bifurcation branches. Using this information appropriately, we can obtain infinitely many
periodic solutions of the Lagrangian system.

The idea of uniform bifurcation has been employed previously in [23|. In this work, the
author uses a Hamiltonian approach and some sophisticated tools to obtain an infinite number
of periodic solutions in the perturbed Kepler problem and the gravitational restricted (n + 1)-
body problem. To perform a uniform bifurcation in Lagrangian systems of the form , we will
use more elementary techniques, such as a quantitative version of the implicit function theorem,
sufficient for our purposes.

As in |7], we will use a variational approach to obtain periodic solutions of the Lagrangian
system L.. That is, we are searching for critical points of the action functional associated with
L., namely

Ac(z) = / " Lot a(t), 2 (1)) dt, (5)

defined over a suitable Hilbert space of periodic paths. The set of periodic solutions of the system
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associated with Ly corresponds to a manifold of critical points of Ay. This manifold must be
a compact set and nondegenerate in an appropriate sense. Then, we will apply the theory of
Nondegenerate Critical Manifolds developed in Section 2 of 5] and Chapter 10 of [1§].

The Nondegenerate Critical Manifolds theory allows us to find out how many critical points
of Ay persist when ¢ is small. Theorem 10.8 of [18] guarantees the existence of a number €* > 0
such that the action functional A, has a certain number of critical points when 0 < & < £*. As
we will see later, the number of critical points is related to a topological property of the manifold
of critical points, called the Lusternik-Schnirelmann category. However, this theorem does not
give quantitative information about £*, needed to perform a uniform bifurcation. Therefore, it is
necessary to adapt Theorem 10.8 of |18 to have control over £*.

To illustrate how we can apply the uniform bifurcation to obtain an infinite number of periodic
solutions, we will apply this method to the planar and spatial restricted non-Newtonian (n + 1)-
body problem (see [8]). More precisely, we will assume that the satellite moves under the non-
Newtonian influence of n primary bodies. The primaries move in an arbitrary 27-periodic path.
The equation to analyze is

q:_zm q_Qj<t) (6)

j .
=1 Hq_Qj(t)”a—H

Here, ¢ € R? is the position of the satellite, ¢;(t) € R? represents the position of the j-th primary
body with mass m;, || - || is the Euclidean norm of R? and d = 2,3. We will also assume that
a > 1. Notice that a = 2 corresponds to the gravitational case and we will omit it. The reader
can find results for the gravitational case in [2,13,[7,/14]. As in [8], we are looking for periodic
solutions in which the amplitude is very large.

After rescaling in time and writing the action functional, the manifold of critical points of Ay
of this problem is the set of circular solutions of the central force problem with a fixed minimal
period. We will probe that this manifold has two connected components in the planar case. Each
one is diffeomorphic to SO(2). In the spatial case, the manifold has one connected component and
it is diffeomorphic to SO(3). The Lusternik-Schnirelmann category of these manifolds guarantees
the minimal number of bifurcations that we can obtain from each connected component. Notice
that the Lusternik-Schnirelmann category of SO(2) and SO(3) are 2 and 4, respectively.

The manifold of circular periodic orbits with a fixed minimal period satisfies the nondegenerate
condition only when o # 2. This is because in the gravitational case, the connected component
of circular solutions with a fixed minimal period also contains the elliptic orbits. This implies
that the topology of the manifold of critical points of Ay is different from the other cases. In
particular, the manifold is not compact unless collisions are regularized. This regularization is
treated in [20]. Another way to study the gravitational case is by imposing symmetry conditions
in the primaries to exclude elliptic orbits, as in [3}|7}/14].

Using the uniform bifurcation we can improve the results we obtained in [7] for the planar
case. First, we obtain four bifurcation branches instead of the two obtained in [7]. This is because
we use both connected components of the manifold of critical points. Secondly, we impose the
non-resonance condition py/3 —a ¢ Z \ {0} that, although necessary, was not explicitly stated
in [7]. Finally, with the analysis of the uniformity in the bifurcation, we can obtain an infinite
number of periodic solutions of @



XV

In the central force problem, we have other manifolds of non-circular periodic solutions. For
example, in 9] the authors use a Hamiltonian approach and the Poincaré-Birkhoff theorem to
obtain periodic solutions bifurcating from a manifold of non-circular solutions diffeomorphic to
a two-dimensional torus. Also, the reader can find more non-circular periodic solutions to the
central force problem in Section 2.8 of [6].

The structure of this thesis is as follows. In Chapter 1, we review the results we obtained in [7],
as motivation. We illustrate the time rescaling to transform the restricted (n + 1)-body problem
as a family of Lagrangian systems and we recall the main ideas of the proof of the existence
result. In Chapter 2 we recall the properties of the Nondegenerate (or Regular) Critical Manifold
of an action functional. Under the appropriate hypothesis on the Lagrangian function, we prove
that the associated action functional has the appropriate regularity conditions only when the
Lagrangian function is of the form (). We also make a “quantitative adaptation” of Theorem
10.8 of [1§] for action functionals as (5]). In Chapter 3 we prove our main result, a result about
the uniform bifurcation of periodic orbits in Lagrangian systems called admissible. Finally, in
Chapter 4 we illustrate the uniform bifurcation applying the main result of Chapter 3 to obtain
an infinite number of periodic solutions of (6] as in [3].
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1 Motivation: Comet-type solutions in a restricted
problem

In this chapter, we will recall the result of the existence of comet solutions in the planar
restricted (n + 1)-body problem with non-Newtonian general homogeneous potential that we
obtained in [7]. We set the problem and establish our main result in this work (Theorem 2 of |7]),
adding a necessary non-resonance condition. In the second part, we remark on some ideas of |7]
to obtain results about the existence of periodic solutions in a more general setting.

1.1 The Comet Problem

Let ¢;(t) € R? be the position of n bodies with masses m;, for j = 1,...,n. These bodies will
be called primary bodies. We assume that v(t) = (q1(¢),...,qn(t)) is a periodic solution of the
n-body problem interacting under a general homogeneous potential. After rescaling space and
time, we can assume that v is 27-periodic, the total mass is 1 and the center of mass is at the
origin.

Let ¢(t) € R? be the position of a satellite with infinitesimal mass at the time ¢ that is attracted
by the primary bodies. With infinitesimal mass, we mean that the motion of the primaries is not
affected by the satellite. Using Newton’s Second Law (see, for example, Section 3D of Chapter 1
of [6]), the equation of motion for the satellite becomes

q:_zm q_Qj(t) (11>

J >
=1 Hq_Qj(t)”a—H

where a € [1,00] and || - || is the Euclidean norm. Eq. will be called the Time-dependent
Restricted (n + 1)-Body Problem. Notice that the Newtonian force between two spherical planets
corresponds to a = 2. However, as we will see later, we will omit the case @ = 2. Nonetheless,
there are several examples of homogeneous non-Newtonian forces in applications. For example,
classical interactions of molecular interactions are modeled with o = 6 (see [12]). Also, we can
study perturbations of the Newtonian force by taking a = 2 + ¢, with a small € > 0.

Our purpose is to find periodic solutions of (1.1)) in which the satellite is far away from the
primaries. These solutions will be called comet solutions. We expect solutions of this type because
when the satellite is far away, the primaries act as a single body.

To obtain solutions of this type, we need to reinterpret Eq. (1.1 as a perturbative problem.

1
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Let p, g and € be positive parameters. We assume that p and q are co-prime integers. In the
following, matrix J € R?*? denotes the symplectic matrix

J = ([1) _01> : (1.2)

This implies that e’? represents the rotation matrix with angle § € R/277Z. Let us consider the
time-dependent change of variables

g(t) = e7te’s 'z (t/q), (1.3)

where the parameters p, q and ¢ are related by

(S)Q = ot (1.4)

If we also define a rescaled time variable 7 = t/q we can write the equation (1.1)) as

1 2 = x —ex;(T)
—8T+J) rT=—Y m, J , 1.5
(p 2 2 (15)

Jj=1

where the non-homogeneous terms z; are given by

z;(1) = ¢ 7P7q;(ar). (1.6)

The equation (|1.5)) will be called the comet equation in a rotating frame. We will treat ¢ as a
continuous parameter, although the relation (|1.4]) restricts the values that e can take.

In this case, the parameters p and q are linked with the number of revolutions around the
origin of the solutions. The integer q is the number of times the primaries finish their orbits
before the comet closes its orbit. In contrast, the integer p is the number of turns the comet
makes around the origin before completes its orbit.

We look for comet solutions in which the amplitude is very large. That is, we need to take
¢ — 0. Under the assumption (|1.4]), we achieve this by finding 27-periodic solutions of Eq. (|1.5))
fixing p and letting q — oo.

Theorem 1. Let p € Z*, a > 1 and assume that pv/3 — a € Z and Z?zl m; = 1. Then, there
s an integer qo that only depends on p such that for each integer q > qo, the Time-dependent
Restricted (n + 1)-Body Problem (1.1)) has at least two 2wq-periodic and different sub-harmonic
solutions of the form

Cola 1
a(t) = (p/q) D [emﬁpt/cﬂ (O) i Rp,q@)} =12,

where Rpq 15 a 2mq-periodic function and

p 4/(a+1)
[Rpa@l < cp (5) . te0,2nq.

There are some differences between Theorem [I|and Theorem 2 of [7]. In Theorem [1] we impose
the non-resonance condition py/3 — « & Z\ {0} that, although necessary, was not explicitly stated

in |7]. Also, here we remark that qo only depends on p. This fact will play an important role in
the scheme of the proof of Theorem 1 of |7] that was not explicitly specified.
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1.2 Structure of the proof

It is well known that we can find periodic solutions of the Euler-Lagrange equations as critical
points of an action functional associated with the Lagrangian function. This functional is defined
over a suitable Hilbert space H. In this case, the Hilbert space H will be the Sobolev space of
27-periodic paths on R? with one (weak) derivative in L?. The action functional associated with
Eq. (L.5), denoted by A, can be written as

A(z;p,q,¢) = Ao(z;p) + P(;p,q,¢). (1.7)

where P is a small and periodic perturbation with P = O(e). The unperturbed part Ay is related
to an autonomous differential equation. The critical points of A are zeros of its gradient map
VA. Therefore, we can transform the problem of obtaining periodic solutions of Eq. into a
problem of obtaining zeros of a map defined on a Hilbert space.

We can notice that the functional A is reduced to Ay when ¢ = 0. Moreover, the zeros of
VA are the periodic solutions of the central force problem in rotating coordinates, namely,

1 2 T
(52+7) ==~ ()

By direct computation, we can verify that every point of the set

St = {e” ((1)) 0 € ]R/27rZ}

are equilibrium points (constant solutions) of Eq. (1.8)). These points correspond to circular
solutions of the central force problem when we return to the inertial frame.

We want to know if any of these solutions persist when € # 0. Thus, we can apply continuation
methods based on the Implicit Function Theorem. In particular, we need to get estimates on
the Hessian map (second derivative) D?A around the points in S'. We can prove that DA is
degenerate (has a non-trivial kernel) on any point of S*. Unfortunately, this implies that we
cannot apply the Implicit Function Theorem directly.

To avoid this problem, we make a Lyapunov-Schmidt reduction. That is, we write the func-
tional A in an appropriate system of coordinates. In this case, we chose the coordinates 6, r and
7. The coordinates # and r are related to the polar coordinates of the average of the function
x. On the other hand, n is the non-average part of x. Then, we can prove that D(QT’U)AO is non-
degenerate for any (#;¢). Then, we can apply the Implicit Function Theorem and a compactness
argument to obtain a number £* > 0 and two functions r = r(6;¢) and n = 7(f, ) such that

VA, 7(0;¢),n(0;¢);€) =0,

for any (6;¢) € (R/2nZ) x [0,¢*[. Then, we can define the reduced functional V(6;¢) =
A(0,7(0;¢),n(0;¢); ). Now, the functional ¥ is defined over a finite-dimensional space.

By the compactness of S!, the functional (-, ) has at least two critical points for each
e € 10,e*[ (its maximum and its minimum). With these two critical points, we can obtain two
critical points of A. Therefore, we are obtaining two periodic solutions of Eq. for each
e € ]0,e*[. In Figure |1.1| we illustrate this situation.
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Critical Set

Figure 1.1: Hypothetical situation of the action functional A.. The func-
tional A has a circle of critical points (left side). If € # 0, the circle of
critical points disappears but two points remain (right side).

1.3 Some comments

The general structure of the problem is the following: We have an (autonomous) action
functional Ay, which has a (compact) set of critical points S* with an appropriate non-degenerate
condition. Then, we perturb the functional Ay by adding a small periodic functional P. The
question is if some critical points of S! persists as critical points of A = Ay + P. Normally, this
kind of problem can be treated with the Non-degenerate Critical Manifolds theory (see Chapter
10 of [18]). We can obtain critical points of A by applying the following result. Form now on, the
number cat(I") denotes the Lusternik-Schnirelmann category of the manifold I'. This number is
related to the number of critical points that have a C'-class map defined over a compact manifold.

Theorem 2 (Mawhin-Willem, Theorem 10.8 of ) If T" is a non-degenerate critical manifold
of Ay, then there exists €* such that, for all 0 < |e| < &*, the functional A. has at least cat(I")
critical points near I'.

This theorem is applied in [2}3][7,[14,[17] to obtain a finite (but arbitrarily large) number
of periodic solutions in certain Lagrangian systems. However, since we need to take care of
uniformity in the parameters, we cannot apply this theory directly. Applying this theorem, we
do not know if £* depends only on p. The fact that €* depends only on p is not explicitly stated.
This fact is needed to guarantee that condition can be satisfied. Thanks to the uniform
dependence of £* on p, we can improve the result in |7| by taking an infinite number of q for any
p. With this, we can obtain an infinite number of solutions of Eq. .

Therefore, our main objective is to obtain a version of Theorem [2] where the dependence of * is
explicitly established. As we will see later, the main tool to obtain it will be a quantitative version
of the Implicit Function Theorem. However, this theorem requires more regularity conditions of
the action functional.

The regularity of an action functional A of the form
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depends on the associated Lagrangian function L = L(7,z,y). As we can see in |1, we will get
the necessary regularity of A if and only if the Lagrangian function is of the form

Lr,2,9) = 5(A(r.2)y.9) + (B(r ), ) +U(r, ).

where the functions A, B and U are sufficiently regular and they are appropriately bounded. The
Lagrangian function associated with Eq. ((1.5)) has this structure.

Although this condition restricts the Lagrangian systems, there are many systems that have
this structure. Therefore, by obtaining a “quantitative” version of Theorem [2| we can obtain an
infinite number of periodic solutions in Lagrangian systems with this structure. We will call this
method “Uniform Bifurcation”.

In the following chapters, we will obtain a “quantitative” version of Theorem [2, we study
carefully the conditions over the Lagrangian functions that we are considering and we will apply
this result to a more general problem: we will obtain an infinite number of comet-type periodic
solution in the spatial restricted (n+1)-body problem with non-Newtonian homogeneous potential
18]
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2 Regular Critical Manifolds

In this chapter, we will obtain a quantitative version of Theorem[2] First, we set an appropriate
functional framework. Let H = H'(R/27Z,R?) be the Sobolev space of 2r-periodic paths on R?
with one weak derivative in L*(R/27Z, R?) and inner product

(. 4) = / "), y(n) + (& (), ()] dr. 2.1)

Here, the product (,-) is the Euclidean inner product of R? and 2’ denotes the (weak) derivative
of z € H. Using the classical norm in L?(R/27Z, R?), we can write Eq. (2.1) as follows

[l = llzlZ2 + ll2']1Z--

Let us recall that a real, vector or matrix function f : A x B — RN, f = f(a,b), is in the
class CP1(A x B) if f(-,b) € CP(A) for any b € B, f(a,-) € CYB) for any a € A and the maps

(a,b) — 0%8Y f(a,b),

are continuous for |a] < p and |3] < ¢. From now on, R%¢ denotes the set of matrices of
dimension d x d. Also, we set D = (R/277Z) x R? x R

As we mention at the end of the previous chapter, we are focusing only on action functionals
associated with Lagrangian functions L : D x [0,e9[ — R with the following structure

1
Le(r,2,y) = 5 (Ae(7, 2)y, y) + (Be(7,2), y) + Ue(7, 2). (2.2)
The functions Ay : [(R/27Z) x RY] x [0,e0[ = R™?, B, : [(R/27Z) x R?] x [0,&0[ = R? and
Uy : [(R/21Z) x RY] x [0, o[ — R must be in the class C*?([(R/27Z) x R?] x [0, £o[). Moreover,
we assume that Ay, By, and Uy do not depend on 7 and Ay, By,Uy € C*R?). Also, we assume
that A.(7,z) is symmetric for every (7,2;¢) € [(R/27Z) x R?] x [0, o[ and there is a number
o > 0 such that
(Ac(m,2)y,y) > ollyl*; (2.3)
for every (1,z,y;¢) € D x [0, &0

Under the previous conditions, we can see that the Lagrangian function must be in the
class C3%(D x [0,&0[). Although the Nondegenerate Critical Manifold theory can be applied in
a more general setting, we are focusing only on action functionals associated with this type of
Lagrangian function.
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Definition 1. Given a Lagrangian function of the form (2.2)), its associated action functional
A H x[0,60[ = R is given by

A(z) = /0 " Lu(ra(r), (7)) dr (2.4)

2.1 Regularity of the Action Functional

We are going to prove that the action functional has the desired regularity. In the following
proposition, the set £,, = L(H x --- x H,R) denotes the space of bounded multilinear forms with
norm

|M]|z, = sup |M[vl, . ,vnH.

llvill r <1
i=1,...,n

We can do this because the regularity of A does not depend on the perturbative parameter ¢.

Proposition 1. Let L = L.(7,z,y) be a Lagrangian function of the form (2.2)). Let us suppose
that there is a constant C' > 0 such that

1AG (T, Mese@axpen < C,
HB(-)(Ta ')HCM(Rdx[O,EOD <, (2.5)
U (T, ) | es2@axio,zon < C

for every T € R/2n7Z. Then, the action functional associated with L is three times continuously
differentiable for every e € [0, eq].

Proof. Since the regularity of the action functional only depends on the variables (7,z,y), we
will omit the dependence on ¢ in this proof. The second-order derivatives of L, 9% L, éﬁyL, and
8§yL will be interpreted as maps from D to R¥*¢. The third derivatives of the Lagrangian L in
the direction of z € R? will be matrices denoted by
3 3 3 3
Opan L(T, 1, 9) 2], Oy LT, 2w, 9) 2], O3y LTy 2, y)2], Oy, LT, 2, y)[2].

By the regularity of the functions A, B, and U, the Lagrangian function L given in (2.2 satisfies
the hypothesis of Proposition 3.1 of [1]. Also, it is a polynomial of degree 2 in its variable y.
Therefore, the action functional A is in the class C?(H). The second variation of A is given by

02 A(u)[v1, va] = /0 W[<9§yL(ﬂU(T)7U'(T))U'1(T)avé(7)> + (02, L7, u(r), o' (1))} (1), va(7))
+ <8§yL(T, u(T),u' (1))vi(7), vé(7‘)> + <a§$L(T, w(T), ' (7))vi(7), 1)2(7')>] dr.

We only need to prove that 624 : H — L, is continuously differentiable. First, we will prove
that 64 has a directional derivative 6> A(u) € L3 for every u € H. That is, we will prove that
the limit

lim 0% A(u + svs)[vy, va], (2.6)

s—0
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exists for every u € H. From (2.1)) we have

ing5%Au-+ sva) o, ) = limg [ [ (08, L(ru(r) + sa(r). (7) + st ), ()

u(T) + svs(7),u' (1) + svg(7)) vy (T), U2(7)>

N~
—
\]
~—
~—

( (7)
+ <8§yL(T, u(T) + svz(7),u' (1) + svs(7))v1 (1), v
( u(T) + svs(7), W/ (7) + svs(7))ur(7), va(7)) | dr.
We know that L is in the class C3(D). This implies that
7 02, L(7,u(T) + sv3(7),u (1) + svi(1))

is a continuous map. This also applies to the other second derivatives. With this, we can apply
the Lebesgue Convergence Theorem (Theorem 16, Chap. 4 of [22]) to interchange the limit and
the integral. Then, the limit exists and 024 has, for every u € H, a directional derivative
53 A(u) € L3 given by

B A(w)[on, 02, v5] = / (0 Llea(os (1), va()) + (9 Ll (P )en (), ()
< Yy Llvz(7)]v} (7)7U2(7)> < oy L (T)}Ul(T)a’Ufz(T» (2.7)
+ (38, Llo <T>v<f>,v2<f>>+< 8 L) o (), ()
or (7). wi(r)

<xyy ( ]UlT’UT>]

In the previous formula, the third derivatives of L are evaluated at (7, u(7),u'(7)). Notice that

we do not have the term 8§’ny because L is a polynomial of degree 2 in its third variable. The

last step is to prove that the map
BA:H — Ls, u— 6 Au),

is continuous. Let {u,} C H be a sequence such that v, — u in H. Given vy, v9,v3 € H such
that [|v;||g <1 (i = 1,2,3), we want to prove that the difference

|8° A, [v1, v2, v3] — 6° A(u) 1, v, v3] | (2.8)

tends to zero uniformly in v; when n — oco. Note that Eq. (2.8]) is formed by a sum of seven
terms (see Eq. (2.7)). From now on, 92 L(7) will denote 92, L(,u(7),v/ (7)) and 92 L, (1) will

denote 92 L(T,u,(7),u,(7)). This notation will also be used in the other derivatives.

Txrxr ’r o

First, we will analyze the term

[ @) = e st (), ()]

Taking the corresponding derivatives, we obtain

< TITT 7_ z y U3]'U171}2> =3 <D3 33)[?}171}27”3]?/ay> + <D,§'B(7-7 w)[”la”Z)”S]ay>
D§U( T, )[0171)27”3]'
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Since the functions A(,-), B(7,-) and U(7,-) are bounded in C3(R?) for every 7, their third
derivatives D, A(,-), D,B(7,-) and D,U(T,-) are uniformly bounded. Therefore, {92, L,} con-
verges uniformly to 92 L. That is,

rxrxr

3 Llpe — 0. (2.9)

H xmc .Z‘I$
n—o0

By Proposition 1.3 of [18], there is a constant k£ > 0 such that ||v||L~ < k||v||g. Using this fact,
we have that

2m
/ |<(a§xw ai’acw )[1}3]0171}2>| < H ar:zx aizxLHLooHleLmH’U2HL°°”U3HL°°
0
< k10200 L — O Ll poe v | vz | 203 11

Taking the supremum in both sides of the above equation and using (2.9)), we have

sup / (@ L2 (7) — 82, L(r))[ea(n)n (7). (7)) dr —— 0.

floil| 2 <1 o
i—1,2.3

Now, we are going to analyze the terms that involve 8§xyL The first one is

2m
/O (05 L () = 03y L(7)) [w5()]01(7), v2(7)) | dr.
Taking the corresponding derivatives, we obtain
(02, L(7,z,y)[vs]vr, v2) = (DIA(T, 2)[v1, voly, v3) + (D3 B(7, ) [v1, v2), v3) .

From (2.5), the second derivatives D2A(7,-), D2B(r,-) and D2U(r,-) are uniformly bounded.
Therefore, {03,, Ly} converges uniformly to 93, L. That is,

Iy

Ll —0. (2.10)

H :ny xxy

Using the Holder inequality and the relation between the norms in H and L*(R/27Z), we have
that

2w
/O ‘<(a§zy agxy )[US]U17U2>| < H :c:r;y aa%xyLHLooHleL‘X’Hv2HL2HUéHL2

< kll03aaln — Fag Ll e 1 2Lz | vs |

Taking the supremum in both sides of the above equation and using (2.10)), we have

||f.}1p<1/07r!<<amyLi<> Oy L(T))os(M]en(7), va(7))| dr ——=0.

The other terms involving 6gmyL are analyzed in the same way. This is because in any of these

terms, only one of the functions vy, v, and vs has a derivative.
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Finally, let us analyze one of the terms that involves the derivative 3§’ny The term to analyze
is

2
| K@ Lalr) = 0, L5l (). (7))
Taking the derivatives in (2.2)), we have that

< IC NN T) 03]01,U2> = (D, A(T, x)[vs]vy, v9) .

Here, we will use that D, A(7, -) is bounded in C*(R?). We have that {92, L, } converges uniformly
to 8 L. That is

zyy
3 Lllpe — 0. (2.11)

Using the same calculations as before, we can verify that

2w
/ |<(8§yy agyy )[U3]U17U2>| < || myy agny”Loo||U£||L2HU2||L°°||U§||L2
0
< K102y, Lo — 0oy Ll e lorl|arl|v2 el os| .

Using ([2.11)), we have

” S|T1P<1 /0 (@ LA () = 8, L ()0l (), va(m)) | dr — 0,

The other terms involving 8§xyL are analyzed in the same way. This is because only two of the

functions v, v} and v} appear in any of these terms.
Notice that this method fails if v{, v}, and v} appear in one of the terms. This is not the case
because 93, L = 0. This is the reason why the Lagrangian L = L(7,z,y) must be a polynomial

yyy
of degree 2 in its variable y.

In summary, we have that

16°A(u,) — 8*A(u)|lc, = sup |53A(Un)[U17U2>U3] — 0% A(u) [U17U2703H — 0,

floill <1 nreo

and the result follows. O

2.2 Gradient and Hessian maps

In this section, we will introduce the Gradient and Hessian maps of the functional A. In
Chapter 10 of [18|, the authors use that the Hessian map is a compact perturbation of the
identity map. Since we are considering Lagrangian functions of the form , this fact is not
true anymore. However, in some cases, the Hessian map has a useful form. For the sake of
simplicity, we will omit the dependence on ¢ for the rest of the chapter.
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Definition 2. We define the gradient map of a functional A as the function VA : H — H that
associates any x € H with the unique vector VA(x) € H that satisfies

(VA(z),v) g = 0A(z)v, (2.12)

for any v € H. We also define the Hessian map D*A(x) : H — H wusing the second variation
62 A(x) as follows: given u € H, D*A(x)u € H is the unique vector that satisfies

<D2A(a:)u,v>H = 0% A(x)[u, v], (2.13)

for anyv € H.

Since A is in the class C*(H), the map D?A(x) is a symmetric operator with respect to the
inner product given in . As we said before, in our case the Hessian map is not a perturbation
of the identity map. Let us recall that K € L£L(H, H) is a compact linear operator if K (i) has a
compact closure in H for every bounded subset & C H. Also, we say that « € H? if z,2' € H.

Proposition 2. If x € H?, then there exist an isomorphism ® : H — H and a compact operator
K : H — H such that the Hessian map D?A(x) can be written as

D?A(z) = ® + K. (2.14)

Proof. From now on, 2((7) will denote A(7, z(7)). Notice that since we are assuming that x € H?,
the function 2(7) is on the class C2?(R/27Z, R%*4). Also, we will use the notation of the proof of
Proposition [1f for 8gyL(T). Let us consider the linear map u + p, where

p(7) = fi(r)u(r) + fo(7)u'(7)
and the functions f; and f, are given by

fi(r) = =A(r) + A"(7) = (83, L(7))" + 05, L(r) + 9, L(r),
fo(r) = A (7) = 95, L(7).

Using that * € H? and the bounds given in (2.5)), we can prove that the operator F : H — L?
given by Fu = p is a bounded linear operator. On the other hand, we can define the linear
operator K : L? — H such that z = Kp is the unique 2m-periodic solution of

—2" + 2z =p(7).

The operator K maps bounded sets of L? in bounded sets of H? and H? has a compact embedding
in H. This implies that K is a compact linear operator.

Let us define the linear operators ®, K : H — H given by ®u = u and K = K o F. We claim
that the map @ is an isomorphism. In fact, since the matrix A satisfies (2.5 and (2.3]), we have
that ®u € H and the inverse map is given by ® 'v = A~1v. On the other hand, K is compact
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since it is the composition of a bounded linear operator and a compact operator. Finally, using
(2.13),letting w = Ku and taking an arbitrary v € H, we have that

(D* A(x)u,v) g = 6> A(x)[u,v] = /0 ’ (', v") + (92, Lu,v') + (02, Lu', v) + (92, Lu, v)]

- /0 W [(QAu, v) + ((RAu), ) + (w, v) + (W', 0")]
= <Qlu, U>H + <w, U>H7

Since this is true for every v € H, we can deduce that D2 A(z) = ®+ K and the result follows. [

2.3 Perturbation of a Regular Critical Manifold

In this section, we will introduce the concept of Regular Critical Manifolds as in Chapter 10
of |18] (in [18], the authors use the name Nondegenerate Critical Manifolds). Let us recall that
a critical point of A is a function v € H that satisfies

VA(v) =0.

We can notice that under the same hypothesis of Proposition [T} if ¥ € H is a critical point of the
action functional A, then v € H? (that is, v, € H, see the proof of Proposition 3.1 of [1]).

We are considering a C*-submanifolds of a Hilbert space as in Definition 10.1 of [18]. In-
tuitively, a submanifold of a Hilbert space H is a subset that is locally diffeomorphic to a sub-
space of H. Finally, let us recall that a zero-index Fredholm operator is an operator with a
finite-dimensional kernel, its range is closed and the co-dimension of its range coincides with the
dimension of its kernel.

Definition 3. We say that a C*-submanifold T C H is a reqular critical manifold of A if

(i) all points of T' are critical points of A,
(ii) the nullity of D*A(~) for each v € T is equal to the dimension of T,

(iii) D*A(v) is a zero-index Fredholm operator for each vy € T.

Point (ii) of the previous definition is related to the non-degenerate condition of the critical
set S* discussed in Chapter 1. In fact, the set S will be a Regular Critical Manifold of the
action functional Ay. In a more general setting, we have a family of action functionals A, as in
Definition [I] such that 4, has a Regular Critical Manifold I" and we want to know if some of the
critical points of I' remain when € # 0. Also, we want some information about the dependence
on the parameter ¢.
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2.3.1 An application of Lusternik-Schnirelmann category

As we will see later, the number of critical points of the action functional is related to a
topological property of these manifolds, called the Lusternik-Schnirelmann category. In this
subsection, we will recall the definition of [21| where we can find a complete study of the Lusternik-
Schnirelmann category and its main properties. Let us recall that a subset A of a topological

space X is contractible in X if there exists a homotopy h; : A — X where hq is the inclusion of
Aon X and hy(A) = {p}, for some p € X.

Definition 4. The Lusternik-Schnirelmann category of A in X, denoted by cat(A; X), is the least
integer n such that A can be covered by n closed subsets of X each of which is contractible in X.
We define cat(X) = cat(X; X).

The main property that we need is the following lemma. It is an adaptation of Theorem 7.2
of [21] for C' mappings defined over C*-manifolds.

Lemma 1. Let I’ be a compact C*-manifold and let ¢ : T' — R be a C'-class function. Then, ¢
has at least cat(T") critical points.

We are ready to present the main theorem of this chapter. The following theorem is a
“quantitative” version of Theorem [2] applied only to a certain class of action functionals.

Theorem 3. Let A = A.(z) be a family of action functionals as in Definition [l and let T be a
Regular Critical C3-Manifold of Ay. Then there exist a constant 0 < 1 < ¢ and a neighborhood
G of T (that only depend on the bounds given in (2.5), g, I' and o) such that for any 0 < & < &,
the action functional A, has, at least, cat(T") critical points x; € G.

The quantitative part comes in the control of the size of the parameter €;. As we will see later,
the proof of Theorem [3|is based on a quantitative version of the Implicit Function Theorem. In
the following lemma, we denote by Bg(z,r) the open ball in the Banach space E with center at
x € F and radius r > 0.

Lemma 2. Let E, F and G be Banach spaces, let U C E X F be an open set and let F : U — G,
F = F(z,y) be a function of class C* such that F(zo,y0) = 0 and the map 6,F (xo,yo) is
invertible, for some (xo,y0) € U. Assume that there exist a uniform bound C' > 0 such that
10:F| < C, |02y F|| < C, |6, Fll < C, and ||6,F (z0,y0) || < C. Then, there are constants
R,r > 0 that only depend on C such that Bg(zo, R) X Bp(yo,r) C U and there is a function
¢ : Bg(xg, R) — Br(yo,r) in the class C* that satisfies o(xo) = yo and ¢ is the unique solution
of the equation
F(x,p(x)) =0, € Bgp(zo,R).

The proof of Lemma [2 is an adaptation of the ideas presented in Lemma 4.2 of [19] and we
omit it.

Remark 1. In Lemma@ we need a bound for the inverse of 0,F only at (xq,yo). As we will see
in the proofs of theorems[3 and[f, we also need a uniform bound for the inverse of the derivative
0, F in a neighborhood of (xg,vyo). We shall obtain uniform bounds for 6,F using the bounds for
OuyF and 0,,F. That is, we can find constants R < R and ¥ < r such that

||5y}—(377y)_1|| < C/2> (957?/) € BE(IO,R) X BF(yo,f)-
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Hereafter, we denote by T,I" the tangent space of the C*-submanifold I' at v (see Definition
10.1 of [18]). Also, we denote by N,I' the orthogonal complement to the tangent space T.,I" with
respect to the inner product , called the normal space. Let P, and (), be the orthogonal
projections onto N,I" and T,I", respectively. These projections define two functions B, Q : I' —
L(H, H) given by

B(y) =P Q) =0
using the same ideas as in Proposition 10.1 of |18|, we can prove that the functions 8 and £ are
in the class C*~1(T"). Their differentials will be denoted by

T.T' 50 —25 Plv € L(H, H),
T,0 50— Qv e L(H, H).

Proof of Theorem[3. Let F :T'— H be a function defined on I' = I x H x [0, go[ given by
fs(’% y) - PVV-As(’Y + y) + ny‘ (215)

By hypothesis, I' is a regular critical C’3—manifolq of the action functional A,. Since the projec-
tions are twice differentiable, F is in the class C?(T"). Also, by definition we have that Fo(7,0) = 0
for every v € I'. The derivative 6,F : I' — L(H, H) at (7,0;0) € I is given by

5y]:0(’77 O) - PW/ © DQAO(/Y) + Qv'

We want to prove that the map v — 6,Fo(7,0)v defines an isomorphism on H. First, we will see
that 0,F0(7,0) is injective. Let v € ker d,F(7y,0). This implies that

D> Ap(v)v € ker P,,
ve NI

Since D?Ay(7) is a zero-index Fredholm operator, we can apply Corollary 2.18 of |11] to obtain
R(D?Ag(7)) = [ker (DQAo(v))]L. Therefore, we have that

D> Ag(y)v € R(D*Ao(7)) = [ker (D*Ap(1))]" = (T,1) " = ker Q.

Since ker P, Nker Q. = {0}, we have that v € ker (D*A4y(y)) = T,I". But v € N,I', so v = 0 and
8y Fo(7,0) is an injective map.

To prove that 6,Fy(7,0) is a surjective map, let w € H be an arbitrary vector. Then, there
exist two vectors w; € N,I" and wy € T, such that w = wy 4+ ws. Since N,I' = R(D?Ay(7)),
there is a vector v; € N,T' such that D?Ag(y)vy = wy. Letting v = vy + wo, we have that
dyFo(7,0)v = w. Thus, §,Fy(7,0) is surjective, and hence, an isomorphism on H.

From now on, Inv(H) C L(H, H) denotes the set of invertible bounded linear maps. Let us
recall that the map v € ' — D?Ay(y) € L(H, H) is continuous since Ay is in the class C?*(T).
Therefore, v € I' — §,F,(7,0) € Inv(H) is continuous by the continuity of the projections and
the continuity of the composition of continuous maps. The map Z : Inv(H) — Inv(H) given by
Z(L) = L™! is also a continuous map. Therefore, the composition

v eT = [8,F0(7,0)] " € nv(H),
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is a continuous map defined over a compact set I'. This implies that there is a constant C; > 0
that only depends on I', Ay, By, and Uy such that

H [T, 0)}1HL(H,H) sC, yel

Now, we need to find uniform bounds of the derivatives

0.F T —H, 6F:T—L(HH), 62F:T— L(HH)

. . (2.16)
02, F T — L(H,L(H,H)), 0 F:T — L(H L(H, H)).

In the following, the term D*A.(z)[w] € L(H, H) denotes the variation of D?A.(z) in the direc-
tion of w € H. The derivatives in (2.16)) becomes

0:F=(v,y) = Py (V(0:A:)(y +))
0y Fe(v,y) = PL(VA(y +y)) + Pyo D*A(y +y) + Qy,
02, F(7,y) = Py o D*(0-A) (7 +y) (2.17)
05, F-(v. y)lw] = PL(D*Ac(y + y)w) + P, o D*A-(y +y)[w] + Qw,
Oy Fe (v, y)[w] = Py o DIA(y +y)[w].
The previous derivatives are related with the derivatives of L and hence, with the derivatives of

A, B and U. Thus, they are uniformly bounded by a constant Cy > 0 that only depends on the
bound C given in (2.5)), €¢, [', and o.

Applying Lemma 2] for each vy € I, there exist three positive numbers R, 7, and £, that
only depend on Cy, Cy and there exists a function Y., : By (70, Ryy) X [0, €4, = Bu(0,r,,) in the
class C*(Bg (70, Ry,) % [0,2,,[) satistying Y, (70,0) = 0 and Y, is the unique solution of

P"/VA?:(’Y + Y’YO(V? 5)) + Q"/Y’Yo (fy’ 5) = 07 (f)/a 5) € BH(VO) R’yo) X [07 670['

Using the uniqueness of Y, for each 7y € I' and the compactness of I', we can construct a
neighborhood G of I' and a function Y : I x [0,e,[— H, where £; is a positive constant, v +
Y (v;¢e) € G for every (v;e) € T x [0,e;1][ and Y is the unique function in the class C*(T" x [0,¢&])
that satisfies Y (;0) = 0, and

PVA(+Y(1:0) + QY (1:6) =0, (132) €T x [0,,] (2.18)

Both G and &; only depend on the bounds given in (2.5)), &9 and T".
We can define the function B : T x [0,e;[ — R in the class C'(T" x [0, &[) given by

B.(v) = Ac(v + Y (7;9)).

According to Lemma 10.13 of [18], if VB.(v) = 0, then VA.(y + Y (7y;¢)) = 0. So, we only need
to find critical points of B..

Since B. is a function in the class C'(T") and T is a compact C*-submanifold, by Lemma , the
function B. has at least n = cat(T") critical points, denoted by x; € T, x; = xi(7;¢), (I =1,...,n).
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Using the equivalence between critical points of A, and B., the action functional A, has cat(I")
critical points x; € G of the form

x(rie) =xu(me) +Y(xise)(1), 1=1,....n, (2.19)

and the proof is complete. ]

In the previous proof, we are performing a Lyapunov—-Schmidt Reduction. That is, we reduce
the problem of finding critical points of A, on H (which is an infinite-dimensional problem) to
finding critical points of B. on I' (which is a finite-dimensional problem). In |7], the authors
perform a Lyapunov-Schmidt reduction in the action functional of the Comet Problem. Theorem
will be a tool to obtain an infinite number of periodic solutions in differential equations with
an appropriate structure. In the next chapter, we will study this structure.
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3 Uniform Bifurcation in Lagrangian systems

As it is well known, critical points of action functionals defined over an appropriate space of
periodic paths correspond to periodic solutions of the associated Euler-Lagrange equations. In
this chapter, we will illustrate how we can apply this idea and Theorem [3| to obtain periodic
solutions of perturbed Lagrangian systems by bifurcating from a compact set. This bifurcation
is uniform in the sense that we have control over the size of the bifurcation branches. Since
Theorem [3] can be applied only to certain class of action functionals, it is necessary to refine the
hypothesis over the Lagrangian functions.

3.1 Admissible families of Lagrangian systems

Previously, we assumed that the Lagrangian function is of the form and it was defined on
D = (R/27Z) x R? x R%. Generally, this will not be the case. For example, in |7] the Lagrangian
function was defined so that the collisions are avoided. Motivated by this fact, we will consider
more general domains. From now on, let €y > 0 be a positive number and let U C R? be an open
set. Also, we define Dy = (R/21Z) x U x R

Definition 5. We say that a function L : Dy x [0,e0[— R is an admissible family of Lagrangian
functions if

(i) We can write L in the form given by Eq. (2.2) and the functions A = A.(7,x), B = B.(T,x)
and U = U.(1,z) are in the class of class C**([(R/27Z) x U] x [0,&0]); Ac(7,2) satisfies
[2.3) for some o > 0; Ay, By, and Uy do not depend on 7 and Ay, Bo,Uy € C*(U).

(i) The Lagrangian function Lg is autonomous and

0L,
E(T,%y) T 0.

for every (1,z,y) € Dy.
Using Point (i7) of the previous definition, we can write an admissible family of Lagrangian
functions as
Le(r,2,y) = Lo(z,y) + Re(7, 2,y),
where .
Lo(x,y) = 5 (Ao(T, 2)y, y) + (Bo(2), ) + Uo(x)-

19
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and 0.R.(t,x) = 0 when ¢ = 0. Therefore, the Lagrangian function L. can be interpreted as
follows: an autonomous part Ly plus a small and periodic perturbation R, = O(&?).

Notice that we need more regularity of the Lagrangian function concerning the variables
(1,x,y) than the variable . This is because the regularity of the action functional does not
depend on . We are considering the variable € as a parameter.

Definition 6. We say that a function x. € C*(R/27Z,R?) is a solution of the Lagrangian system
associated with L. if it is a 2w-periodic solution of

2 [0y Le (7, 2=(7), 2(7))] = OxLe (7, 2(7), (7)),

dr ¢ e
z:(0) = z.(2m), zL(0) = zL(27).

£

(3.1)

Eq.(3.1)) is called the Fuler-Lagrange equation associated with the Lagrangian function L..

We want to prove the existence of solutions of Eq. (3.1) which emerge uniformly from a
compact set of solutions of the autonomous Lagrangian system associated with Ly. This set of
periodic solutions is denoted by T.

We consider only certain sets of periodic solutions of the autonomous Lagrangian system
associated with Ly. These sets must satisfy a suitable non-degeneracy condition related to the
variational equation. By direct computation, we can prove that the variational equation of
when ¢ = 0 around any solution v € I' becomes

Lo (V(7), 7 (1)) " + [0z, Lo (4(7), 7' (1)) [ (7)] + Oy Lo (4(7), ' (7)) [ (7)]]
+ [0y Lo ((7), 7/ (7)) [V (7)] + 02y Lo (7(7), 7' (7)) v (7)] = Oz Lo (v,7) ] w = 0.
Notice that condition implies that det [8§yL0(7(7’), v (7))] > 0 for every T € R/2rZ. Then,

we can write Eq. (3.2]) in its normal form. This allows us to apply Floquet’s theory for the
linearized system.

(3.2)

Definition 7. We say that T' C C*(R/2rZ,U) is a regular manifold of periodic solutions for
the autonomous Lagrangian system associated with Ly = Lo(x,y) if it satisfies the following
properties:

(i) Every function v € T satisfies

% [0y Lo(¥(7), 7 (7))] = 0uLo(v(7),7' (7).

(ii) The family T is invariant under time translations; that is,
vyel = Tyverl,
where Tpy(T) = (T + h).
(iii) The set of initial conditions at t = 0, denoted by
Mr = {(7(0),7'(0)) eU xR*: v €T}, (3.3)

15 a compact submanifold inside the phase space.
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(iv) The dimension of the set of 2mw-periodic solutions of the linear equation (3.2)) is the dimen-
sion of Mt as a manifold.

The solutions of an admissible Lagrangian system correspond to critical points of the associ-
ated action functional A. : H — R given in (2.4) (see Definition [I)). However, we need that L.
to be defined on (R/277Z) x R? x R? in order to the functional A, is well-defined. Since we are
studying families of the form given in (2.2)), it will be enough to modify the functions A, B, and
Uu.

Lemma 3. Let L = L.(7,z,y) be a Lagrangian function such as in defined on Dy and let
A C U be a compact set. Then, for any neighborhood V' of A with compact closure such that
V C U, there are functions A : (R/27Z) x R? x [0, 0] — R™?, B : (R/27Z) x R? x [0, g[ — R
and U : (R/21Z) x R x [0,0[ — R in the class C32(((R/27Z) x R?) x [0, e0[) such that A = A,
B = B andUd =U when (1,z;¢) € (R/21Z) x V x [0,0; Ao, By, and Uy do not depend on T and

they are in the class C*(R?); and A.(7,x) is a symmetric matriz that satisfies (2.3)). Moreover,
there are constants K > 0 (that only depends on ey, U, and V') and & > 0 (that only depends on

o given in (2.3)) such that
1A (7, ez e@ixpen < K (AT o2 wxpoeon + 1] 5
1By (7, Mlesz@ixioeon < KBy (T )lcr2wxoe): (3.4)
U (T, M es2@axio,on < KINUGT, )l es2wxo.e0)
for any T € R/27Z, and
(Ac(r, )y, y) = 6llyl1*; (7.w,y58) € (R/27Z) x R x R x [0, &

Proof. Let V be an open neighborhood of A with compact closure such that V C U. It is well
known that there is a function ¢ : R? — R in the class C*°(R%) with compact support such that

(z) = 1 if z€V
PATT=N0 if g U
The existence of the function ¢ is related to the existence of a partition of the unity subordinate
to the cover {W, R\ W}, where W is any open set that satisfies V. C W C U (see Section 2.2
of [16] for details). Note that ¢ does not depend on €. We can extend the function A to zero

outside of (R/27Z) x U x [0, go[ and define the matrix function A : (R/277Z) x R? x [0, go[ — R¥*?
given by

A:(1, 1) = p(z)Ac(T,2) + (1 — p(2))1.
With this, it is clear that A = A when (1,z2;¢) € (R/27Z) x V x [0, o[, Ag does not depends on
7 and Ay € C*(R?). Since A.(7,z) is symmetric and positive definite and A.(7,z) is a convex
combination of A.(7,x) and I, A is symmetric and there is a & > 0 such that

(A(r,2)y,y) 2 6llyl®,  (rozy:e) € (R/27Z) x RY x R x [0, &[-
On the other hand, we can define the function B : (R/27Z) x R? x [0, 0] — R? given by

Bu(r) = { PO D
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and define U : (R/27Z) x R% x [0,£0[ — R using U in the same way. By construction, B = B
and U = U when (r,7;¢) € (R/27Z) x V x R? x [0, &0], By and Uy do not depend on 7 and
By, Uy € C*(RY).

The functions A, B and U are constant when z ¢ U. Then, the derivatives of A, B, and U
are bounded by the derivatives of A, B, U, and ¢. Moreover, ¢ has a compact support. Then, it
is bounded in C3(R?) by a constant that only depends on U, V, and the choice of . Therefore,
there is a constant K > 0 (related with ||¢[|cs(re)) such that the estimates in are valid. [

Assumption is only needed to extend the matrix function A. Then, it can be replaced
by the more general condition: the function A admits a smooth and symmetric extension A :
(R/277Z) x R x [0,e0] — R™4 A = A.(r,z), such that A = A when z € U and there is a
constant ¢ such that

‘detflg(T, x)) >0 >0,

for any (7,7;¢) € (R/27Z) x R? x [0, &].

The compact set A will be related to the set of periodic solutions I'. Moreover, if ., € C? is
a solution of the system associated with the modified Lagrangian function

Fulr,2,9) = 3{Au(r,2)y.y) + (Bulr,2),9) + Ul ),

and z.(1) € V for every 7 € R/2xZ, then x. will be a solution of the original Lagrangian system
associated with L..

3.2 Functional Framework

We already know that the solutions of the Euler-Lagrange equations associated with L. cor-
respond to the critical points of the action functional A, given in . In fact, if v € H is a
critical point of A., we have that v € H?. Moreover, by direct computation, we can prove that
the derivative of 4/, denoted by ~”, satisfies

Ac(r, (1) + 03, L(7,7(7), 7/ (1) () + 07, L(7,7(7),7/ (7)) = 0: L(7,%(7),7'(7)),  (3.5)

for almost every 7 € R/27Z. This implies that v € C?(R/27Z,R?), and hence it is a classical
solution of Eq. (3.1)) (see, for example, Proposition 3.1 of [1]).

There is a connection between the concept of a regular critical manifold of the unperturbed
action functional Ay (as in Definition [3) and a regular manifold of periodic solutions for the
Lagrangian system associated with Ly (as in Definition .

Lemma 4. IfT' is a reqular manifold of periodic solutions for the autonomous Lagrangian system
associated with Ly, then T is a reqular critical C3-manifold of the action functional Ay.

Proof. First, we need to prove that I' is a compact C3-submanifold of the Hilbert space H,
according to Definition 10.1 of [18]. The main tool will be the Theorem 10.1 of [18]. Since A,

satisfies (2.3)), we can write Eq. (3.5)) as
2 = F(x,2). (3.6)
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The function F' is related to the derivatives of Agy, By and U,. Since Ao, BO,MO € C*(R?) we have
that F' € C3(R?x R?). Let Mr be the set of initial conditions given in . Given (zg,v9) € Mr,
we denote x(7;xg,yo) as the 2m-periodic solution of Eq. . ) with 1n1t1al conditions z(0) = xg
and 2/(0) = vp. By the differentiable dependence of solutions on the initial condition, the map

R x Mp = R*xR% (7520,v0) = (2(7; 20, %0), 2 (T3 T0, Y0))
is in the class C3. As a consequence, the map ¢ : My — C*(R/27Z, R?) given by
¢(wo,v0) = x( + 520, v0)

is in the class C3.

We define the map f : My — H by composing the function ¢ with the inclusion C*(R/277Z, R?)

H. Clearly, f € C®. Thus, we need to verify points (a), (b), and (c) of Theorem 10.1 of [18]. To
prove Point (a), we need to verify that I" is a compact manifold. This is true because Mr is a com-
pact set by hypothesis and they are homeomorphic. To prove Point (b), we must verify that f is
an injective map. This is valid by the uniqueness of the initial value problem in Eq. . Finally,
for Point (c) we need to verify that ¢ f(4, ) is an injective map for every (xo,v9) € Mp. By chain
rule, it is enough to verify that d¢ (., ., is injective, for every (zo,vo) € Mp. Let (xo,v0) € Mr
and (u1,us) € T(gew)(Mr). By direct computation, we can prove that u = (0¢) ) (U1, u2) is
the 2m-periodic solution of the variational equation with initial conditions u(0) = w; and
u'(0) = uy. The uniqueness of the initial value problem for Eq. implies that (6¢) () is an
injective map (notice that we can write Eq. in its normal form due the assumption (2.3))).
Therefore, ' = f(Mr) is a compact C®-submanifold of H.

Now, we need to prove Points (i)-(zi7) of Definition [3| Point (i) is true since every function
v € I' is a 2w-periodic solution of the Lagrangian system associated with L.

For the second point, let v € T and u € ker D Ay(7y). Then
(D> Ao(7)u, U>H =0, forallveH.
Using ([2.13)), the function v must satisfy

A(ry(n) " =[ = 8, Lo (4(1), 7' (7)) 7' (1) — a;j’nyo( (7)Y (7))7"(7)
+ 05, Lo (v(7),7'(7)) = 9, Lo (v (7)) Ju
+ [ = 0ay Lo (4(7),7' (7)) 7 (7) = 5§xyLo (v (7). 7'(7) 7" (7)
+ 05, Lo (4(7),7 (1)) Ju.
Thus, the function u satisfies the variational equation . This implies that ker D?Ay(v) = T, T.

Since T is a regular set of periodic solutions, dim ker D®Ay(y) = dim 7,I" = dim T, and Point (i)
follows.

For the third point, we need to prove that D?4,(7) is a Fredholm operator of index 0, that is,
R(D?*Ay(7)) is closed and codimR(D*Ay(7)) = dimT. Let us recall that v is a critical point of
Ay. This implies that v € H*(R/27Z, R?). Then, we can use Lemmal[2]to write D2 Ay(7) = &+ K,
where ® is an isomorphism and K is compact. We have

R(D*Ay(7)) =R(I+K® ") o®) =R(I+Ko™").
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Since K is a compact operator, K® ! is also a compact operator. Thus, we can apply the
Fredholm alternative (Theorem 6.6 of [11]) to the operator I + K®~!. In particular, this implies
that R(D?Ao(7)) is closed. Also, D®Ay(7) is symmetric. Then, D®Ay(7) is self-adjoint. Applying
Corollary 2.18 of [11] we have

1

R(D*Ao(7)) = [ker (D*Ao(7))] (3.8)

The previous equation implies that codimR(D?Ay(y)) = dimT' < oo and the proof is complete.
[

We now present the main result of the thesis. This theorem is the basis of the uniform
bifurcation method due to the quantitative information about the size of the bifurcation branches.

Theorem 4. Let gg > 0, let U C R? be an open set and let L : Dy x [0, 0] — R be an admissible
family of Lagrangian functions. We suppose that the matrixz function A satisfies assumption ([2.3)
and there is a constant C' > 0 such that

HA(.)(T, -)||C3,2(U><[0,£0D S Oa
| By (T, ) les2@wxjo,on < C, (3.9)
HZ/{(.)(T, -)”Cs,z(Ux[O,EOD < Cv

for every T € R/277Z. Let T' C C*(R/27Z,U) be a regular manifold of periodic solutions for L.
Then, there are constants €1 € ]0,e0[ and ¢ > 0 that only depend on ey, U, T, C' and o such that
for every e € [0,e1[, we have, at least, n = cat(I") different periodic orbits z;(-;¢) (1 =1,...,n)
of the Lagrangian system associated to L. and

disty (z;,T) < ce?, (3.10)

where disty(x, D) denotes the distance (induced by the || - ||g-norm) between a function x € H
and a closed set D C H.

Proof. Since I' is a regular set of periodic solutions of Ly, the set M defined in (3.3 is a compact
subset of U x R%. Let A be the projection of I" on U. In this way, the set A is a compact subset
of U. Using Lemma [3| with L and A, we can assume that L is defined on D x [0, g9[. Moreover,
using (B.4), we can also assume that the bounds are valid in C*%(R? x [0, &]).

According to Proposition , the action functional A. given in is on the class C3(H).
Also, by Lemma the action functional A, is a Regular Critical C*-Manifold of Ay. Applying
Lemma , there exists €] < g that only depends on the bounds given in , U, ey, I' and
o such that, if € € |0,&][, there are n = cat(I") critical point z; € H, (I = 1,...,n) of A.. In
addition, ] € H (see Eq. (3.5)) and z; are a solution of the Lagrangian system associated with
L.. These critical points are of the form given in . Let us recall that the function Y satisfies

Eq. (2.18).
On the other hand, let us recall that the map Z : Inv(H) — Inv(H) given by Z(L) = L™*

is continuous. We know that the compact set K = {d,Fo(7,0) : v € I'} satisfies K C Inv(H)
(see the proof of Lemma |3]). By the continuous dependence of the spectrum of an operator with
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respect to parameters, we can find a bounded closed neighborhood K C Inv(H) of K that only
depends on g, U, I', C' and ¢ such that Z(K) C Inv(H). Moreover, since Z maps bounded closed
sets into bounded sets, there is a constant Cy that only depends on K such that || L™ 2.y < Co
for every L € K. Since F is in the class C2, the map £ — 3y F=(7,Y (;¢€)) is continuous for every
v € T. Therefore, there is a constant ¢, < &} such that §,F.(v, Y (vy;¢)) € K if (y;¢) € T x [0, ]
and

H [52’}—5(%Y(%g))}_ng(H,H) < Oy, (7;6) € T x [0,

Using implicit derivation in (2.18)), the first derivative .Y becomes

0.Y (vie) = — [0,F. (7, Y ()] 6. F. (1, Y (v:2)),  (1;6) €T x [0, 24,

The term 0.F.(v,y) is uniformly bounded (see [@2.17)). The term [6,F.(v, )] " is uniformly
bounded, by Remark . Thus, the first derivative 9.Y (v;¢) is uniformly bounded. Also, using
the second equation of (2.17)) we have

0.Fo(7.0) = P, (V(2-A)(7)

. 3.11
) (3.11)
We can compute V(0..A.) of (2.12), obtaining

w@A = [ (2 (G o) +

(5 (Siceron) )]

Using Point (i7) of Definition |5, we have

(V(0-A)(7)

for every v € H. Therefore, §.Fy(y,0) = 0 and
9:Y(v;0)=0, ~yel.

Proceeding in a similar way, we can prove that the second derivative is given by

QLY (vie) = — [6,F- (1, Y (7:9))] {5525—F€ (7. Y (7;8)) 4+ 262, F- (7, Y (v;€)) 0-Y (v €)+

oy Fe (1. Y (7:€)) [0:Y (73 €), 0:Y (7€) } (v;e) €D x [0,e1].
The term 62.F.(7,y) is given by

02 F-(7.y) = Py (V(O2A) (v +v))

and it is uniformly bounded by the bounds given in (3.4)) and o (the dependence on ¢ is because
we use (2.3)) to write the differential equation that satisfies V(9?A.)(y + y) in its normal form).
The other terms in the previous equation are also uniformly bounded (see (2.17)) and Remark .
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Therefore, the second derivative 92Y is uniformly bounded. Using the Taylor expansion for Y,

there is a constant ¢ that only depends on ¢y, U, I and o such that
IY(io)lln < ce?, () €T x [0,e1]
Finally, the distance between the solutions z; and I" satisfies
distg (2, 1) < ||lzi(-58) — xa(6) |l = [|Y (238) ||g < €2, l=1,...,n

and the proof is complete. O



4 Example: The restricted (n + 1)-body problem
with non-Newtonian homogeneous potential

In this chapter, we will illustrate how we can apply Theorem [4] in a particular Lagrangian
system. This system will be the planar restricted (n+ 1)-body problem considered in |7]. We can
extend this problem in two ways. First, by obtaining an infinite number of periodic solutions.
Secondly, we will consider the spatial case, that is, the primary bodies and the satellite move in
R3.

For each j = 1,...,n, let ¢;(t) € R? (d = 2,3) be the position of the n primary bodies with
masses m;. We assume that vy(t) = (q1(¢),...,¢,(t)) is an arbitrary 27-periodic function of class
C? (see Figure . We assume that the center of mass is at the origin,

> mig;(t) =0, (4.1)

and
j=1

This is a difference between the results obtained in [7], where 7 is assumed as a solution of
the n-body problem with a non-Newtonian homogeneous potential. In this chapter, we will not
impose that hypothesis. In the particular case where « is a 2m-periodic solution, condition
is achieved as a consequence of the conservation of linear momentum. For this reason, this case
is interesting for applications in celestial mechanics.

The position for a satellite with infinitesimal mass ¢(¢) € R? which is influenced by the motion
of the primaries under a non-Newtonian homogeneous potential satisfies the equation

q:_zm q_Qj(t) (42>

J >
=1 Hq_Qj(t)”a—H

where a € [1,00[. We want to obtain an infinite number of periodic solutions of Eq. (4.2)) where
the satellite is far away from the primaries. The period of the solutions will be related to the
amplitude.

27
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satellite

Figure 4.1: Scheme for the restricted (n+ 1)-body problem with non-Newtonian ho-
mogeneous potential. The primaries (gray bodies) move in an arbitrary C3-periodic
path in the space. The satellite (black body) moves far away from the primaries.

4.1 Defining the perturbed Lagrangian system

To apply Theorem , the first step is to write Eq. (4.2)) as a perturbative problem. We can
achieve this by performing the following sequence of time rescaling. For each ¢ € Z™, let us
consider the time-dependent change of variables

q(t) =c""x (t/q), (4.3)
where € > 0 is a parameter. We assume that q and ¢ are related by
1 (0%
o L (4.4)

We will treat ¢ as a continuous parameter, although the relation (4.4]) restricts the values that e
can take. If we define a rescaled time variable 7 = t/q we can transform Eq. (4.2) in any of the
following family of differential equations (parameterized by ¢):

n

x":—Zm IL‘—EI’J‘(T;Q) (45>

Ml = ey (r )l

j=1

where the non-autonomous terms are given by

x](Taq) ZQj(qT)a j = 1,...,TL, (46)

and ' denotes the derivative with respect to the variable 7. This family is indexed by q € Z™.
Since the functions ¢; are 2m-periodic, the functions x; are 27/q-periodic. We will prove that Eq.
admits 2m-periodic solutions if € is small enough independently of q. In this way, for large q
it is possible to adjust ¢ in (4.4)). For this reason, we must be careful about the uniformity with
respect to the parameter q.

Lemma 5. If (1) is a 2w-periodic solution of (4.5)) and the relation (4.4)) is satisfied, then q(t)
given by (4.3) is a 2qm-periodic solution of (4.2)).

Proof. Let x be a 2m-periodic solution of Eq. (4.5). We only need to prove that the function

q(t) = g*/*Va(t/q) (4.7)
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is a solution of (4.2)) for any q € Z* and q(t + 2q7) = ¢(t). Taking the second derivative in (4.7)
and using (4.6)), we have that

q(t) o q2/(oz+1)I,/(t/q) . _q_ga/(a+1) zn:m Z‘(t/q) —q -2/ a+1)$j(t/q' CI)
— _ ; ]
2 = la(t/a) = q ezt /q;) |

_ el gy, 4 o) ~ i)

- a+1
S e fq() — ]
q—2/(a+l) n q t) o q] t)

_q2ed et )

(
g (8)| "

@ () -

B q(t) — q;(t)
X g (1))

j=1 Hqt

On the other hand, by direct computation and using that z(7 4+ 27) = z(7) for every 7, we have
that
q(t +2qm) = g~/ (t/q + 2m) = @ ¥ a(t/q) = (1),

and the second requirement is satisfied. O

Now we need to prove that Eq. (4.5)) has a Lagrangian structure. In the following proposition,
we shall prove this by giving the Lagrangian function explicitly.

Proposition 3. The equation (4.5)) is the Euler-Lagrange equation associated with the family of
Lagrangian function (parameterized by )

1 n
Le(r,2,30) = 5 lyll* + D _mjda(ll — ez5(ms a)])), (4.8)
j=1

where,
L\ i a1

¢a(/\):{a_—110g>\ if a=1"

Proof. Let us recall that the Euler-Lagrange equation associated with a Lagrangian function is
given in (3.1)). Taking the corresponding derivatives of (4.8)) and taking € C?, we obtain that

(4.9)

OyLe(m 2,y) =y = 5 [5 Le(r, x(7), 2'(7))] = 2" (7);

0.Lu(r.x(r Zmy</5 (Ja(r) = <o, a) ) Tr o~

_—Z .’L’(T —EZL'](Tq)
2" ) — et

The last equality is valid because ¢/, (A\) = —A~ for every o > 1 (see (4.9))). Substituting into

(3.1]), we obtain (4.5)) and the proof is complete. O
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Finally, we will set an appropriate domain for the family (4.8)) to have an admissible family
of Lagrangian systems. Given any p € Z*, we can consider the annulus in R?

U, = {x c R? - pf2/(a+1) —p <]z < p72/(oc+1) —i—p} ’ (4.10)

for p > 0 small enough. As we will see later, this domain is related to the set of periodic solutions
for the unperturbed part.

Lemma 6. There exist numbers eg > 0 and p > 0 such that the family given in Eq. (4.8) and
defined on Dy, x [0,¢eo[ is an admissible family of Lagrangian functions. Moreover, g9 and p do
not depend on q.

Proof. Using (.6), we have that ||z;(7;q)|| < ||¢j||« for all 7 € R/27Z. Since ¢; € C3(R/27Z,R?)
for each j, there is a constant ¢; > 0 (that does not depend on q) such that ||g;||o < ¢; for all
j=1,...,n. Let g > 0 be a number that satisfies egc; < p~2/“*D and let p > 0 be any number
in )0, p~2/(e*1) — gycy[. Thus, if we take (7,z;¢) € (R/27Z) x U, x [0, [ we have

lv = ez;(r, Q)| = llall = ellgjlloo > P~V — p—ccr > 0. (4.11)

Therefore, the Lagrangian function L = L.(7,z,y) given in Eq. (4.8) is well-defined on Dy, x
[O 50[.

The next step is to prove Points (i) and (ii) of Definition [5 If we set

n (4.12)
Uu(r,2) = > mjdullla = zay(ria) ),

in Eq. (2.2), we obtain the Lagrangian function . Also, it is clear that A, B, and U are in
the class C*?([(R/27Z) x U,] x [0,0[) and satlsfy the other conditions. Thus Point (i) follows.

The function L becomes the autonomous Lagrangian function Ly given in (4.13)) when ¢ = 0.
To prove Point (7i), we only need to verify that 0.L.(7,2;q9) = 0 when ¢ = 0. By direct

computation,
/ n
— ——"‘”gﬁm <x, E mjxj(T;q)>.

On the other hand, using Eq. (4.1),

Zm]x] 7:q) ijqj(qT) =0,

and Point (ii) follows. O
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4.2 Finding the regular set of periodic solutions

Now, we will analyze the unperturbed part of the Lagrangian function. The autonomous part
Ly is the Lagrangian function becomes

Lo, ) = 3 Iyl + du(l), (113)

We can see that the autonomous part Ly is a polynomial of degree 2 in its variable y. By direct
computation, we can prove that the Euler-Lagrange equation associated with (4.13]) is the central

force problem
x
. (4.14)
]+

If @ € [1,00[, Eq. (4.14) has a set of 2m-periodic solutions formed by circular solutions. If o > 3
these circular solutions are the unique periodic solutions with minimal period 27 /p of Eq. (4.14)
(see Section 2.b of |4]). The set of 2m-periodic solutions is topologically different when d = 2 or
d=3.

If d = 2, by direct computation we can prove that

~ ch) — n—2/(at1) cos(pT)
f)/i(T7 p) p (:l: Sin(p’]—) .

are circular solutions of Eq. (4.14)) with minimal period 27 /p. Each solution represents a possible
direction of rotation of the satellite. Since Eq. (4.14)) is invariant under rotations, we have that

[y, = {7+ Ry+(r;p) : R €SO(2)} C C*(R/27Z,U,).

is a set of circular solutions of with minimal period 27 /p. Moreover, we can see that the
set 'y, is a manifold with two connected components diffeomorphic to SO(2). On the other hand,
the function
cos(pT)
sin(pT)

0

3(7:p) = p~2/ (@)

is also a circular solution with minimal period 27 /p of Eq. (4.14). In this case, Eq. (4.14)) is also

invariant under rotations. Therefore, the set
I3, = {7 — Ry(r;p) : R € SO(3)} C C*(R/27Z,U,).

is a set of circular solutions of (4.14]) with minimal period 27 /p. Moreover, we can see that the
set I's , is a manifold diffeomorphic to SO(3). The following lemma shows that the sets given
above are regular according to Definition

Lemma 7. For any p € Z*, the set Ty, is a reqular manifold of periodic solutions for the
autonomous Lagrangian system associated with the Lagrangian function Ly given in Eq. (4.13]).
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Proof. We need to prove Points (i)-(iv) of Definition [} Point (i) is true by definition. Point
(17) is true since Ly is autonomous. We only need to prove Point (7i7) and Point (iv). By direct
computation, we can prove that the amplitude A, and the norm of velocity B, of every solution

in 'y, are

AP _ p—2/(a+1) Bp _ p(a—l)/(a—i-l)'

Y

For d = 2, let Fip and I'; | be the sets of solutions of Eq. (4.14) with positive and negative

2,p
orientation, respectively. Then, I'y, = I' ;p UT;,. In this case, the set of initial conditions at

7 =0 for I';, is given by
Mp; ={(z,y) € R xR*: (z,2) = A, (y,y) = By, (z,y) =0, det(z]y) > 0}.

We can construct an explicit diffeomorphism between SO(2) and My , namely
P

cosf) —sind cos —sin 6
(Siﬂ@ cosQ)l_}(x’y)’ x:Ap(siné’)’ yZBP(Cos€>'

Analogously, we can construct a diffeomorphism between M- and SO(2), and Point (i) is
P

followed in this case.
For d = 3, the set of initial conditions at 7 = 0 is given by
Mr,, ={(z,y) e R* x R*: (z,2) = A7, (z,y) =0, (y,y) = By}
After rescaling, we can identify the set My,  with the unit tangent bundle of S?, namely,
1S* ={(z,y) eR*xR*: (z,2) =1, (2,9) =0, (y,9) =1}.

Moreover, it is possible to construct an explicit diffeomorphism between 7752 and SO(3) (see
Figure 4.2/ and Section 1.4 of [13]). Therefore, there exists a diffeomorphism between Mr, , and
SO(3) and Point (ii7) is followed in this case.

Finally, to prove Point (iv), we need to compute the dimension of the set of 2w-periodic
solutions of Eq. (3.2). By direct computation and using that ||v(7)|| = A, and 37, m; = 1, we
can prove that the variational equation (3.2]) around any v € I'y, becomes

u' +p° [I— A% (a+ 1)y (r)y(r)" ] u =0, u € R (4.15)

Eq. (4.15) is a linear equation with periodic coefficients. So, the existence of 27r-periodic solutions
of Eq. (4.15) is related to its Floquet exponents. We consider the case d = 2 and d = 3 separately.

e d = 2. Using the diffeomorphism between each connected component of I'; , and SO(2)
described in Lemma m, given any ~y € F;'fp, we can find R € SO(2) such that

y(r) = AR (:EZlSI(I?;—lQ |

Now, we can make the change of variables u = e¥/P7v. Since e¥/P” and R commute,

eTPTy(1) = A Rey, e = (é) .
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Figure 4.2: Diffeomorphism between SO(3) and T1.52. Unit vectors 2, 0
and Ty X ¥y are the column vectors of an element of SO(3)

Then,

e:FJPT’}/(T)’}/(T)Te:thT = AFQ)R (é 8) RT.

So, the equation for v becomes a system with constant coefficients, namely

V" F2pJv — p*(a+ 1)R <(1) 8) R™» = 0.

The new change w = RTv leads to
w” F 2pJuw’ — p*(a +1) (é 8) w=0. (4.16)

Since the changes of variables used are 2m-periodic, Floquet exponents of Eq. (4.15]) (when

d = 2) and Eq. (4.16) are the same. Since Eq. (4.16]) is constant coefficients, we can
compute these exponents directly, obtaining

)\1,2 = 07 )\3,4 = :tp\/ a— 3.

If oo > 3 the solutions associated with A3 4 are not periodic and the eigenvalue A = 0 has a
geometric multiplicity equal to 1. If 1 < a < 3 and pv/3 — a € Z, the solutions associated
with A3 4 do not have the appropriate period. If o = 3, the eigenvalue A = 0 has algebraic
multiplicity 4, but its geometric multiplicity is 1. Therefore, if pv/3 —a ¢ Z \ {0}, the
dimension of the set of 27-periodic functions is exactly 1.

d = 3. Using the diffeomorphism between I'; , and SO(3) described in Lemma , given any
v € I's , we can find R € SO(3) such that

cos(pT)
(1) = ApR | sin(p7)
0
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Making the change of variables u = Rz, and letting z = (21, 22, 23)7, Eq. (4.15) can be

decomposed in two parts, namely
2 5 cos?(pT) sin(p7) cos(pT) z1
I — 1 . . =0
(zé’) TP [ (a+1) (sm(pT) cos(pT) sin?(pr) 2 ’ (4.17)
24 4+ pz3 = 0.

We have two linearly independent 27-periodic solutions of Eq. (4.17)), namely

0 0
(1) = 0 . 29(r) =
cos(pT) sin(pr)

The first equation of (4.17) has the same form as in the case d = 2 with R = I. Thus, we
can compute Floquet exponents of the previous equation in the same way as in the case
d = 2, obtaining

A =0 (double), X =+pva—3.

If a« > 3, the solutions associated with A\ = +pva — 3 are not periodic. Moreover, the
eigenvalue A = 0 has a geometric multiplicity equal to 1. If 1 < a < 3 and pv/3—a ¢ Z
the solutions associated with A = £ipy/3 — a do not have the appropriate period. Finally,
if @« = 3, A = 0 becomes an eigenvalue with algebraic multiplicity equal to 4, but its
geometric multiplicity is still 1. In any case, we only have one 27-periodic solution of
with z3 = 0. This solution is linearly independent to 2! and 2. So, if pv/3 —a € Z\ {0}
the dimension of the set of 27-periodic solutions of when d = 3 is exactly 3.

In both cases, the dimensions of the set of 27-periodic solutions of Eq. (4.15]) are the dimensions
of M, as a manifold when d = 2 and Mr, , as a manifold when d = 3. Therefore, Point (iv) is
followed. ]

We finish this section by recalling the definition of the Lusternik-Schnirelmann category. This
number is the minimal number of bifurcation branches that we obtain by applying Theorem [4]

Lemma 8. cat(T'y,) = 2 and cat(T'sp) = 4.

Proof. In Lemma , we prove that Ffp is diffeomorphic to SO(2) and I's, is diffeomorphic to
SO(3). Then, it is enough to compute cat(SO(d)) for d = 2, 3.

There is a diffeomorphism between SO(2) and S*. Tt is possible to cover S* with two open
and contractible sets. Thus, cat(S') < 2. Since S* is not contractible, cat(SO(2)) = cat(S') = 2.
On the other hand, in Corollary 4.2 of [15], the authors prove that cat(M) = 4 if M is a closed
3-manifold and its fundamental group is not free. According to Section 10 of Chapter III of [10],
the fundamental group of SO(3) is Zy, which is not free. Thus, cat(I's,) = 4. O
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4.3 Comet solutions

The following theorem is the application of Theorem [ to the admissible family of Lagrangian
functions defined in Section [4.11

Theorem 5. Let p € ZT, a € [1,00[, d = 2,3 and assume that p\/3 — «a & Z\ {0}. Then, there
1s an integer dqo that only depends on p such that for each integer q > qo co-prime with p, the
restricted (n + 1)-body problem ({4.2)) has at least four different 2mq-periodic solution of the form

Qi(t) = gy (t/aip) + Rpg(t), 1=1,2,3,4,

where vy, € I'qp, Rpq are 2wq-periodic functions and there is a constant c, that only depends on
p such that
IRpa(]l < coq™ @, teR.

Proof. Let « > 1, d = 2,3 and p € Z" such that py/3—a &€ Z \ {0}. By Lemma the set
Iy, is a regular manifold for the autonomous Lagrangian system associated with the Lagrangian
function Ly given in . Now let g9 > 0, ¢; > 0, p > 0, and U, C R? be as in the proof of
Lemma@ Both eg, ¢1, p, and U, only depend on p. By Lemma |§|, the Lagrangian function (2.2])
(with A, B, and U given in (4.12)) is an admissible family of Lagrangian functions with respect
to the manifold I'y,. Also, the matrix function A satisfies assumption (2.3) with o = 1.

We only need to verify . Since A and B are constant functions, the constants C; = 1 and
Cy = 0 are bounds for A(.)(7,-) and B(7,-) in C**(U, x [0, &9[), respectively, for any 7 € R/277Z.
Also, by direct computation, we can prove that there are positive constants 6; and d, that only
depend on p such that

0<d <llx—ecz;(r;9)|| <o, (1,256) € (R/27Z) x U, x [0, 0], (4.18)

(see Eq. (4.11)). Since U and its derivatives only depend on powers of products of [z — ex;(7; q)]
and z;(7;q), it is possible to find a constant C5 > 0 that only depends on §; and d, (and therefore
on p) such that

140y (7 )los2w,ioeon < Cs, T € R/27Z.

Letting C' = max{1, C3} we verify (2.5). By construction, the constant C' only depends on p.
Moreover, using Lemma 8 cat(I's ) = 4.

Therefore, applying Theorem {4 in the case d = 3 and using Lemma [§, there are constants
€1 € [0,e0[ and ¢, > 0 that only depend on p (because €y, U,, I's 5, and C depend only on p) such
that, for any € € ]0,e;[ we have at least four different periodic orbit x; (I = 1,2,3,4) of (4.5)
that satisfies (3.10). In particular, since I's , is a compact set on H, there is a function 4; € I's p,
A = A(7; p, €) such that

dists (21, T) = [lz2(:5p,€) = 25 p,0) || < Epe”.
Letting y; = x; — 7, we have that

l’l(T; P, 5) = /S/l(T; P, 5) + yl(T; P, 5)7
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where
(-5 p, )l < Gpe®. (4.19)

Since ¢, does not depends on q, there is an integer qy € Z* such that 1/q*(@+1) < ¢, if q < qo.
Therefore, by Lemma |5 for ¢ = 1/q*(®+1) the non-Newtonian restricted (n + 1)-body problem
has at least four different comet solutions of the form

Qit) = (1/q2/(a+1))—1xl (t/q' D, 1/q2/(a+1))
= ¥/ [ (t/asp, 1/q? D) + i (t/aip, 1/ H)] (4.20)
- q2/(a+1)7lq (t/a;p) + Rpalt),

where v, (t;p) = ¥ (t; p,1/q?* (O‘“)) and the remainder R, 4 is a 27q periodic function given by

Roa(t) = a? @y, (t/q;p, 1/g¥/ D).

Using the estimate given in Eq. (4.19)) and the embedding || - || oo (r/2rz) < K| || & (see Proposition
1.3 of |18]) we have

[Roa®l] < 6@ s 102 ) | qaonzy < coq 2/

where ¢, = k¢, only depends on p.

In the case d = 2, the set of 2m-periodic solutions has two connected components. So, we can
apply the previous argument in each component. Since cat (in,p) = cat(SO(2)) = 2, we obtain
two solutions for each component. That is, we already have four periodic orbits. O]

Since qq only depends on p, there exist an infinite number of integers q > qg co-prime with
p. Since we have four different orbits for each q, Theorem [5| implies the existence of an infinite
number of periodic orbits of Eq. (4.2). This is an improvement of the result in [7] where the
authors obtain a finite (but arbitrarily large) number of periodic orbits.

Notice that 4;(¢/q, p) has a minimal period 27q/p. In particular, it is a sub-harmonic function
of order q with respect to the period 27. This means that it is of period 2mwq but it is not of period
2nr for any integer r, 1 < r < gq. Given a function with this property, there is a neighborhood in
the C? topology such that every 2wg-periodic function in this neighborhood is also a sub-harmonic
function of order q with respect to the period 27 and this neighborhood does not depends on q.
Applying R~ to Q;, we have

1Ql( ) = q a+1)71q(t/q p)+ R™ 1qu( ),

and since the matrix R represents a rigid rotation, the term R™'R,, has a small amplitude.
Therefore, we can ensure that the solution (); is a sub-harmonic solution of order q with respect
to the period 27 for q large enough.

The parameters p and q are linked with the number of revolutions around the origin of the
solutions. Since the solutions (); do not pass through the origin, we can write them in polar

coordinates,
i) = 1ol (egty)).
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where the function 6; is called argument function and has the same regularity as @);. Using the
argument function, we can define the number of revolutions of the solution (); in a period as the
integer number N; given by

01 (27rq) — 9[ (0)
2m '

The number N; only depends on the homotopy class of the loop Q; in R?\ {0}. By a direct
computation, we can prove that the number of revolutions in a 27g-period for q*/(*+1)~,(t/q, p)
is p. We can construct a continuous homotopy H; : R/2wqZ x [0, 1] — R? given by

Hy(t,A) = (1= N)g? Dy, (t/a,p) + AQi(t) = ¢V [y, (t/a,p) + ARpq(t)] -

N, =

Since the amplitude of the periodic remainder R, 4 is small, this homotopy does not pass through
the origin. By the continuity of the number of revolutions, /N; must remain constant along the
homotopy in each connected component. Thus, the number of revolutions of the solutions @) is
also p. Therefore, we are finding solutions where the number of revolutions of the comet in a
period 2mq is a fixed number p meanwhile the primaries close their orbits q times.

By direct computations, we can also obtain an estimate of the kinetic energy of the remainder
Rp.q- That is,

where ¢, is a constant that only depend on p. Here, L? = L*(R/2mqZ, R?) denotes the space of

square-integrable periodic paths in R? with norm ||f]|;2 = ( 027Tq |f(t)]? dt)V/2.

1 2

2mq

a+5

Roq < Gpq T,

L2
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