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señaladas, aśı como acreditadas mediante los recursos editoriales convencionales.



Abstract

In this work, an evaluation of the use of nowcast models with satellite and radar data was conducted

for the region of central Mexico. The main objective was to characterize the precipitation that

occurs in the region using the Queretaro weather radar data and the GOES-16 satellite data, and

to use this analysis to evaluate the nowcast models provided by the pySTEPS python library.

Before using the Geostationary Operational Environment Satellite-16 (GOES-16) satellite data, a

preliminary quality control evaluation of the satellites cloud mask was performed using ceilometer

and rain gauge data from the UNAM’s RUOA network. The results showed the cloud mask had a

probability of detection (PoD) of up to 95% and a minimum probability of false detection (PoFD)

of 20%. Moreover, the mask had a 99% accuracy in detecting clouds when rainfall was present.

Afterwards, the characterization of the rainfall that occurs in the region was carried out with the

following satellite products: the ABI Cloud-top height (ACH), the ABI Cloud-top phase (ACTP)

and the spectral channels 13 and 15 used to calculate the Split-Window Difference (SWD). The

results showed that the SWD served as a good indicator of rainfall, with the average SWD decreasing

from 2.5 K to 1.99 K in the 60 minutes prior to rainfall detection. The cloud-top height and the

cloud-top phase indicated possible growth in clouds, however, it was difficult to distinguish deep

convective clouds and high altitude cirrus clouds. From this analysis, a SWD threshold value of

2.5 K as a marker for possible convective development was established. Finally, for the nowcast

assessment, three nowcast models were used from pySTEPS: Extrapolation, S-PROG and STEPS.

The former two models proved the most accurate and yielded similar average results; STEPS had

significantly less accurate results. The models performed accurately with the SWD data as input,

having an average PoD reaching above 70% and a false alarm rate (FAR) of approximately 40%

or less for the fifteen minute prediction. The nowcasts were less accurate with radar rain rate,

with the PoD being below 70% and FAR reaching 40%, and the predicted intensity resulted in an

average mean absolute error (MAE) above the rain rate average. However, the forecasts improved

as precipitation events developed, and were best with lower lead times. Overall, it was determined

that the SWD can be used as an indicator of future rainfall, and the nowcast models provided

by pySTEPS can be used with GOES-16 satellite and radar data available without issues for the

region of central Mexico, providing useful 15-minute forecast. Finally, the methodologies developed

in this study have the potential to be operationally implemented in the future.



En este trabajo se realizó una evaluación del uso de modelos nowcast con datos satelitales y de

radar para la región del centro de México. El objetivo principal fue caracterizar la precipitación que

ocurre en la región utilizando los datos del radar meteorológico de Querétaro y los datos del satélite

GOES-16, y utilizar este análisis para evaluar los modelos nowcast proporcionados por la biblioteca

de Python pySTEPS. Antes de utilizar los datos del satélite GOES-16, se realizó una evaluación

preliminar de control de calidad de la máscara de nubes del satélite utilizando datos de ceilómetros

y pluviómetros de la red RUOA de la UNAM. Los resultados mostraron que la máscara de nube

teńıa una probabilidad de detección (PoD) de hasta el 95% y una probabilidad de detección falsa

(PoFD) mı́nima de 20%. Además, la máscara teńıa una precisión del 99% a la hora de detectar

nubes cuando llov́ıa. Posteriormente se realizó la caracterización de las precipitaciones que se

presentan en la región con los siguientes productos satelitales: la altura de tope de nube, la fase de

tope de nube y los canales espectrales 13 y 15 utilizados para calcular el Split-Window Difference

(SWD). Los resultados mostraron que la SWD sirvió como un buen indicador de la precipitación,

con una disminución promedio de la SWD de 2.5 K a 1.99 K en los 60 minutos previos a la

detección de lluvia. La altura del tope de las nubes y la fase del tope de las nubes indicaron un

posible crecimiento de las nubes; sin embargo, fue dif́ıcil distinguir las nubes convectivas profundas

y los cirros de gran altitud. A partir de este análisis, se estableció un valor umbral de SWD

de 2.5 K como marcador de un posible desarrollo convectivo. Finalmente, para la evaluación del

nowcast, se utilizaron tres modelos de nowcast de pySTEPS: Extrapolación, S-PROG y STEPS. Los

dos primeros modelos demostraron ser los más precisos y arrojaron resultados promedio similares;

STEPS tuvo resultados significativamente menos precisos. Los modelos funcionaron con precisión

con los datos SWD como entrada, con un PoD promedio superior al 70% y una tasa de alarmas

falsas (FAR) de aproximadamente el 40% o menos para la predicción de quince minutos. Los

pronósticos de nowcast fueron menos precisos con la intensidad de lluvia del radar, con un PoD

por debajo del 70% y FAR alcanzando el 40%, y la intensidad prevista resultó en un error absoluto

medio (MAE) promedio por encima del promedio de la intensidad de lluvia. Sin embargo, los

pronósticos mejoraron a medida que se desarrollaron los eventos de precipitación y fueron mejores

con pronósticos más cortos. En general, se determinó que el SWD se puede usar como indicador de

lluvias futuras, y los modelos de nowcast proporcionados por pySTEPS se pueden usar con datos

de radar y satélite GOES-16 disponibles sin problemas para la región del centro de México, lo que

proporciona predicciones de 15-minutos útiles. Finalmente, las metodoloǵıas desarrolladas en este

estudio tienen el potencial de implementarse operativamente en el futuro.
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Chapter 1

Introduction

The ability to locally forecast convective storms is very important, especially in flood

prone regions and cities, such as the central region of Mexico. These short-term forecasts,

which last 6 hours or less, are called nowcasts and there are several methodologies for de-

veloping these forecast using remote sensing methods (Sun et al., 2014). These include:

data extrapolation, statistical analysis, and the use of numerical weather prediction models,

among others (Browning and Collier, 1989; Sun et al., 2014). During the twentieth century,

the most popular methodology for nowcasting convective storms and other phenomena with

a short lifetime was extrapolation from radar and satellite images (Browning and Collier,

1989). Although these methods had their flaws and limitations, they have improved with

the development of data analysis techniques, including the advancement of the sensors on

board satellites that have better temporal and spatial resolution and the widespread use of

the dual-polarization radars.

One region in particular that is ideal for the use and implementation of nowcast models

is central Mexico. This region experiences a high frequency of convective storms during the

rainy season that runs from late May to early October (Jauregui and Romales, 1996). It also

contains several urban areas, such as the city of Santiago de Queretaro and Mexico City,

that can benefit from short-term rain predictions to mitigate flooding damage. The region

is covered by three radars (the Queretaro radar, the Cerro Catedral radar, and the Mexico

City radar) and by NASA and NOAA’s Geostationary Operational Environment Satellites

R series (GOES-R). However, nowcast have not been thoroughly explored or used in central

Mexico. Thus, this study explored the use of radar and satellite data to assess the viability

of using nowcast models in the region of central Mexico.

The investigation of this work is divided in three main sections, with each section building
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upon the results of the previous sections. The first part involved evaluating the accuracy

of the GOES-R cloud mask over Mexico using ceilometers. The second part of the study

was the characterization of the precipitation in central Mexico with GOES-R and radar

data. And lastly, the third and main part of the study was the evaluation of the nowcast

models provided by pySTEPS over central Mexico using satellite and radar data. This

thesis is divided in the following way: Chapter 2 includes background on the past research,

methodologies, data and tools used in this study. Chapters 3, 4 and 5 present the three main

investigations and results of this study. Finally, Chapter 6 is a summary and the conclusions

of the work.

1.1 Motivations: Why is this work important?

Although nowcasts have been thoroughly studies and are currently in operational used

in various parts of the world, they are a tool that have not been explored, either in a

research or operational capacity, for the region of Mexico. The short term forecast that a

nowcast can provide as the potential benefit of an early alarm for strong precipitation for the

country’s large metropolitan areas and other regions where flash flooding can occur, such as

the Metropolitan Area of the Valley of Mexico where Mexico City is. The motivation of this

study is to start the investigation into a possible operational implementation of nowcast in

the region, by evaluating the performance the pySTEPS library with meteorological radar

data available in the region of central Mexico. Additionally, a big obstacle that Mexico

has is its lack of a full weather radar coverage, with only 70% of the country covered by

a weather radar. Therefore, a further goal was to see if other types of meteorological data

sets, specifically the GOES-16 data, can be used in the nowcast models as well, since the

GOES-R satellites have good coverage of Mexico.

1.2 Objective

The first objective of this study is to characterize the rainfall that occurs in the central

region of Mexico using weather radar data and weather satellite data. The second objective

is to evaluate the use of nowcast models using the radar and satellite data available in central

Mexico.
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1.3 Hypothesis

The hypothesis of this study is that the data available in the region of Central Mexico,

which include polarimetric Doppler radar data and GOES-16 satellite data, is reliable and

useful in characterizing the precipitation that occurs in the region. Furthermore, these data

sets are adequate for the use in nowcast models in the region.
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Chapter 2

Background Research

This chapter presents a summary of the background research of the data, methods and tools

used in this study.

2.1 Geostationary Operational Environmental-R Satel-

lite Series

One of the main sources of data for this study was NASA and NOAA’s Geostationary

Operational Environmental R series or GOES-R, that were first launched November 2016.

The GOES-R series is set to be made up of four satellites, all equipped with a variety of

instruments pointed towards the earth and the sun. The four satellites composing the series

are: the GOES-16 or GOES-EAST (launched November 2016), GOES-17 or GOES-WEST

(launched March 2018), GOES-18 (launched March 2022, not yet fully operational) and

GOES-T set to launch in 2024 (Benz et al., 2019). The instruments onboard each satellite

are:

→ Extreme Ultraviolet and X-ray Irradiance Sensors is used to understand

and monitor the solar irradiance in the upper atmosphere.

→ Solar Ultraviolet Imager is a telescope that can observe the sun in the extreme

ultraviolet wavelength range.

→ Space Environment In-Situ Suite are sensors that monitor charge particle fluxes

in the magnetosphere.
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→ Geostationary Lightning Mapper is a near-infrared optical transient detector

that can detect the presence of lightning.

→ Advance Baseline Imager (ABI) is imaging radiometer and is the primary

instrument of the GOES-R series.

Figure 2.1: Diagram of a satellite from the GOES-R series and each of its main instruments (source:
Benz et al., 2019).

2.1.1 Advance Baseline Imager

The main imaging instrument of the GOES-R series is the Advance Baseline Imager

(ABI) instrument. This is an imaging radiometer that can take measurements in 16 differ-

ent spectral bands: two in the visible range of the electromagnetic spectrum, four in the

near-infrared and ten in the infrared. This wide range of spectral bands provides scientist

with measurements needed to observer several phenomena occurring on Earth’s atmosphere,

including severe weather events and forest fires (Schmit et al., 2017; Benz et al., 2019). Fur-

thermore, researchers can also use the band measurements to obtain several other derived

products.

The ABI can provide measurements in three different coverage areas, in both North

and South America: Mesoscale, Continental/Pacific US and Full Disk. Mesoscale has the
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smallest coverage, a 1000 km by 1000 km section, that is mainly used for monitoring regional

conditions, and can be positioned anywhere within the Full disk coverage area. Mesoscale has

a spatial resolution of 0.5 km by 0.5 km1 and gives an image every 60 seconds. Continental

(GOES-16)/Pacific (GOES-17) US coverage area is a 3000 km (N-S) by 5000 km (E-W)

rectangle that covers part of Canada, the entire continental United States, and a large

part of México. PACUS also covers the Hawaii Islands. These two coverage modes have a

resolution of 2 km by 2 km and temporal resolution of 5 minutes. Finally, Full disk covers

nearly the entire American continent (North and South America), has a spatial resolution

of 2 km by 2 km, and provides an image every 10 minutes (Schmit et al., 2017; Benz et al.,

2019).

The data provided by ABI is divided into three levels, the first is the raw data to be

processed. The second is the reflectance or reflectivity measurements from any of the 16

ABI bands, which are called Level 1 products. These products have the spatial and temporal

resolution of the coverage areas mentioned previously. The third type of products are the

Level 2 products. These are obtained applying algorithms to the Level 1 data and other

auxiliary data sets to obtain various physical quantities such as a cloud mask, stability

indexes and cloud top temperature/phase. The spatial resolution of the Level 2 products

depend on the coverage area available and the algorithm used to obtain the product (Schmit

et al., 2017; Benz et al., 2019).

In this study, the Level 1 and Level 2 data from the ABI instrument of the GOES-16

satellite (Continental US) was used.

2.1.2 Split-Window difference

Although the GOES-R satellites provide several Level 2 products that can be helpful to

obtain a description of the atmospheric conditions at a given time, one useful variable not

directly available is the Split-Window Difference or SWD. The SWD has been useful in the

measurement of water vapor and other variables using satellite data for many decades, and

new generation of GOES has the capability of obtaining the SWD as well as obtaining better

measurements of water vapor in the atmosphere (Lindsey et al., 2014, 2018; Grasso et al.,

2020).

The SWD is the difference in the reflectance or brightness temperature measured at the

10.33 µm wavelength (called the “clean-window”) and at the 12.3 µm wavelength (called the

“dirty-window”). The difference in these two spectral channels is useful in describing the

1the resolution can vary depending on the band, some have a minimum resolution of 1 km by 1 km.
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amount low-level water vapor in the atmosphere because the water vapor absorbs a large

amount of energy in the “dirty-window” and very little energy in the “clean-window”, in

other words the difference in energy measured between the two is related to the amount

of water vapor in the atmosphere. The SWD is largest when there is little low-level water

vapor in the atmosphere and the difference in the reflectance between the dirty window and

clean window is highest. The SWD falls in value with increasing water vapor, when the

absorption of energy by water vapor in the dirty window decreases the difference in the

reflectance between the dirty and clean windows (Chesters and Uccellini, 1983).

Although there are other variables to consider that can affect the accuracy of the low-

level water vapor measurements obtained through the SWD (e.g. Chesters and Uccellini,

1983; Schroedter-Homscheidt et al., 2008), this study uses the simple form of the variable

(equation 2.1). This choice was made because this region lacks other instruments available,

such as ground-base weather stations, that cover the whole area of study and can provide the

necessary variables to correct the SWD measurements (such as surface temperature). For

this reason, one of the secondary objectives of this study is to only use satellite and radar

data in order to make any future implementations more accessible.

SWD = TB,Dirty − TB,Clean (2.1)

2.2 Radar and Quantitative Precipitation Estimate

One of the many variables that can be obtained using weather radar data is the precipita-

tion rate and accumulation. These values are important pieces of information when studying

the climate and weather patterns of a region, specially if it is prone to severe weather and

flooding. However, there are several obstacles that have to be resolved in order for the pre-

cipitation estimations to be as accurate as possible. This work will focus on describing the

procedures taken and the problems encountered with the available solutions for obtaining

the best rainfall rates and accumulations using weather radar data.

2.2.1 Reflectivity and rainfall rate relation

A weather radar’s main variable of information is the measured reflectivity, or Z. The

reflectivity is the amount of transmitted power returned by the target. Its relationship with

the rainfall rate (R) has been studied extensively for the past several decades. There are

several derivations of the relationship between R and Z, and one of the earliest and simplest
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form of this relation is given in equation 2.2 (Marshall et al., 1947; Hannesen, 2001).

Z = aRb (2.2)

With a and b being constants that depend on several factors such as drop size distribution

(Marshall and Palmer, 1948).

There are several issues and obstacles needed to solve in order to obtain an accurate

estimation of rainfall rates, mainly relating to the accuracy and errors associated with the Z

measurements. Although there are several derivations of the Z−R relationship, this relation

depends on the drop-size distribution as well as the drop speed because of the reflectivity’s

sensitivity to these parameters (Magaldi, 2013) for all cases. As a result, this dependency can

create errors in the estimated rainfall rate if the wrong precipitation type is considered. There

are other issues that can caused error in the rainfall rate estimates obtained though the Z−R
relation which need to be considered beforehand, such as selecting the Z value which will

give a more accurate precipitation estimate (i.e. choosing between mean reflectivity factor

and the Z-distribution of the pulse volume if it is possible to obtain when inhomogeneous

beam filling occurs), or choosing the correct interpolation methodology when switching from

a polar to a Cartesian grid (Hannesen, 2001).

In addition to the errors from the Z −R relationship, there are other factors that could

affect the estimated rainfall rates obtained from the reflectivity. These include radar cali-

bration, propagation effects, clutter and other non-meteorological echoes, and attenuation

of the radar beam (Magaldi, 2013). Mitigation or elimination of the latter two issues are

discussed in detail in the next sections. Regarding radar calibration issues, there are several

methodologies that have improved radar calibration procedures to limit the possible errors

that calibration issues can cause (Meischner, 2005). With respect to the propagation effects,

these include anomalous propagation caused by varying vertical temperature and humidity

atmospheric profiles, and can cause errors by creating clutter. This is because any variation

of the vertical profiles of the atmosphere from their standard values causes changes in the

refraction index of the atmosphere, which leads to the bending of the radar beam towards

the ground, creating the clutter echoes (Magaldi, 2013). Studies have explored this issue

and found several algorithms which remove echoes affected by anomalous propagation (e.g.

Fornasiero et al., 2005; Dixon, 2007; Magaldi, 2013) and further exploration of removal of

clutter echoes is discussed in the next section.
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2.2.2 Radar data clutter removal

Because the rainfall estimates derived from radar data depend on the reflectivity given

by the data, it is important to process and correctly filter this data in order to obtain the

most accurate precipitation rates. An important part of this process is the removal of all

echoes that are not associated with meteorological phenomenas. The non-meteorological

echoes that are caused by the interaction of the radar beam with fixed targets are called

clutter and are caused by two main factors: the blocking of the beam by the fixed targets

or by anomalous propagation of the radar beam as discussed previously (Magaldi, 2013).

Clutter in radar echoes can be classified into three categories: land clutter, sea clutter and

airborne clutter. Land clutter are echoes from topographical and geological features, as well

as buildings and other man made structures. Sea clutter is mostly generated by ships and

the sea surface, and airborne clutter results from airplanes and living targets such as insects

or birds (Magaldi, 2013).

An important aspect of the clearing of clutter from meteorological radar echoes is making

sure that no hydrometeor and precipitation signals and echoes are not removed in the process.

In general, there are six overall categories of clutter removal algorithms as described by Joss

and Lee (1995), Meischner et al. (1997), and Magaldi (2013):

1. Mapping: This methodology involves the creation of clutter maps obtained with

clear day echoes and subsequently used to eliminate the clutter in echoes

to be evaluated.

2. Doppler: The analysis of Doppler velocities to remove any possible clutter with

zero radial velocity.

3. Statistical: The removal of clutter signals that give non-coherent signal statistics.

4. Interpolation: The use of surrounding information to fill any gaps left by the

removal of the clutter.

5. Polarization: The use of polarimetric radars to detect polarization signatures to

filter clutter from any meteorological data.

6. Multi-source: The removal of clutter by using information from other sources.

While all these methodologies have their drawbacks and limitations, it has been observed

that the best results are obtained with a combination of these algorithms (Meischner et al.,

1997).
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One particular technique for removing clutter that is often used is the one developed

by Gabella and Notarpietro (2005). They created an algorithm which takes advantage of

the fact that non-stationary echoes and anomalous propagation echoes have large spatial

variability (larger than weather echoes). They developed a filter that analyzes the spatial

correlation of the pixels to determine whether or not they are clutter by using threshold

minimum values, as well as a ‘compactness test’. Their results showed good clutter removal

and improved meteorological echoes when this algorithm was applied after the application of

another clutter removal technique. Thus, they concluded that this particular method should

be used after the application of other techniques to obtain better and more optimal results

in clutter removal.

2.2.3 Radar data attenuation correction

Another obstacle that is confronted when trying obtaining precipitation estimates from

radars is attenuation. Radar beam attenuation is the loss of energy of the radar beam due to

the absorption or scattering of the electromagnetic waves of the beam as it interacts with the

atmosphere between the radar and the target. The attenuation of the radar beam can cause

problems in the estimation and analysis of precipitation values derived from radar data.

One of the main causes of attenuation is heavy rainfall and hail. This type of attenua-

tion can be negligible for S-band radars, but can produce severe loss in beam intensity for

short wave radars (C-band and X-band). There have been several methods developed to try

to mitigate the errors that can arise from the attenuation of the radar beam. The first to

attempt to correct the attenuation in radar precipitation calculations was by Hitschfeld and

Bordan (1954), where they calculated imperially the attenuation and the Path-Integrated

Attenuation using the radar reflectivity in order to improve rainfall rates. However, they

found that this particular approach created significant errors in the calculation of the rain

rates if the calibration errors were not kept at an absolute minimum. Another way of ad-

dressing errors due to attenuation was the use of other sources of information in conjunction

with radar reflectivity. One example of this is the use of the “surface reference technique” by

Delrieu et al. (1997). Their study tested the use of the mountain return to correct the effects

of attenuation in the region of the city of Marseille, France. They compared the mountain

return reflectivity during dry and wet conditions to estimate the attenuation due to rain.

Their results showed promise in mitigating and correcting attenuation errors. Other studies

have used microwave links to recover the reflectivity lost during strong rainfall events and

improve rainfall estimates (Rahimi et al., 2006; Cummings et al., 2009; Bianchi et al., 2013;
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Troemel et al., 2014). For example, the study done by Troemel et al. (2014), where they used

commercial microwave radio links with a C-band polarimetric radar in southern Germany.

With the development of polarimetric radars, new methodologies for eliminating attenu-

ation errors in rainfall estimates were developed (Testud et al., 2000; Vulpiani et al., 2008).

Such as in Vulpiani et al. (2008), who used variables given by the polarimetric radars to

improve rainfall rates. More specifically, they calculated the PIA with the differential phase

using the relationship between the specific differential phase with the specific attenuation.

Since these variables depend on temperature and raindrop size distributions, their algorithm

also involved Bayasian classification scheme to determine the best rain regime and improve

the rainfall rain results.

Recently, one technique that has been often used to eliminate attenuation errors due to

rainfall was developed by Kraemer and Verworn (2008). Their method used Hitschfeld and

Bordan (1954)’s empirical relationship between the reflectivity and attenuation (A = cZd

with A being the attenuation and Z the reflectivity) and created an algorithm that obtained

the best parameters (d and c) which give stable correction results. Although Kraemer and

Verworn (2008) used attenuation references measurements from microwave links to find the

most optimal pair of parameters that varied with each scan, they established an algorithm

using an iterative search procedure to correct the attenuation without the need of any refer-

ence measurements. This involved maintaining the parameter d constant and the parameter

c varied until finding the right value that give stable results (instability was defined by

Kraemer (2008) as any corrected reflectivity values surpassing 59 dB). This algorithm was

tested by Jacobi and Heistermann (2016) alongside the technique developed by Harrison

et al. (2000) and a modified version of Kraemer and Verworn (2008)’s methodology, where

they introduced a PIA threshold maximum limit as another instability criteria. Their results

showed that Kraemer and Verworn (2008)’s technique allowed for a reduction in the error of

the rainfall estimations over a wide range of rainfall situations (moderate to high rainfall).

And these results improved when adding the PIA threshold instability criteria.

2.2.4 Polarimetric radar variables

In recent decades, the increased use of dual-polarization Doppler radars have further im-

proved the rain rate estimates obtained with radar data. This is because the double-axis

polarization of these radars can give different measurements that improve certain calcula-

tions. For example, the differential reflectivity, ZDR, which is the difference between the

measured reflectivity in the horizontal polarization plane and the vertical polarization plane,
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can have different values for large, oblate drops than for smaller drops. This difference

in ZDR between raindrop size can help distinguish between different types of precipitation

that have the same rainfall rate (Hannesen, 2001). Another useful variable is the differen-

tial propagation phase, KDP , or the difference in propagation phase between the horizontal

and vertical polarization planes, because it is immune to attenuation problems (Wang and

Chandrasekar, 2010).

Several studies have investigated the use of polarimetric radar variables to improve the

rainfall rates and accumulated values obtained. As previously discussed, Vulpiani et al.

(2008) used polarimetric radar measurements to improve attenuation corrections. Moreover,

in their study, Saltikoff and Nevvonen (2011) found that dual-polarization radars have a

better capability to distinguish between different types of hydrometeors and precipitation,

enabling them to detect the difference between precipitation and non-precipitation echoes.

Several studies have also observed that variables given by dual-polarization radars can be

used to improve rain rates. Wang and Chandrasekar (2010) used KDP because of its lack

of need of the attenuation correction and an absolute calibration of the radars in used, and

the rainfall rate estimates obtained from KDP are less sensitive to the drop size distribution

that is considered in the calculations. However, although they did observe promising results

using this variable, there were still some issues that caused inaccuracies in the results, such

as sensitivities and biases in light rain. Other studies have also explored which variable is

best for rainfall rate estimation. Matrosov et al. (2013) explored rainfall rates using both the

horizontal reflectivity (ZH
2) and KDP using a X-band dual-polarization radar over Boulder,

Colorado during convective rainfall with hail. They found that KDP had agreed with surface

precipitation data and ZH overestimated precipitation values mainly due to the fact that it

cannot distinguish between rain and hail echoes (KDP is immune to the presence of hail).

Furthermore, Thurai et al. (2017) calculated the rainfall rate using KDP , ZH , ZDR, and the

specific attenuation (AH) using an X-band dual-polarization radar. They also found that

KDP gave the best results when compared with a rain gauge and disdrometer data. Finally,

Simpson and Fox (2018) used KDP , ZH , ZDR and a combination of ZH and ZDR and of ZH

and KDP to calculate rainfall rate with an X-band dual polarization radar over Missouri,

USA. Their results show that the combination of ZH and ZDR gave the best results when

compared to ground precipitation data.

Considering these studies, the development of dual-polarization radar networks have im-

proved the rainfall rates. However, there are problems that need to be address and taken care

2reflectivity measured in the horizontal polarization plane
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of in order to obtain the best and most accurate results (Thurai et al., 2017). These problems

can include biases due to radar characteristics (e.g. beam intensity, pulse rate), attenuation

of radar signal and sensitivities to variables such as drop-size distribution and precipitation

type (e.g. light rain, hail) (Saltikoff and Nevvonen, 2011; Wang and Chandrasekar, 2010;

Thurai et al., 2017).

2.3 Nowcast models with satellite and radar data

Nowcasts have been in used in many regions for several decades. Before discussing the

work done in this field, it is important to understand the basic workings of a nowcast system.

In Figure 2.2, a basic flow diagram illustrates how a nowcast works. First, the initial satellite

and radar data is assessed and the required information is extracted from each set. This

can be satellite data that analyses convective development and Quantitative Precipitation

Estimates from radar. Next, the two data sets are merged into a common grid (spatial and

temporal) in order to obtain consistent results. Lastly, the final algorithm or extrapolation

method is applied to obtain the short term forecast. As mentioned before, this is a very

basic description of how a nowcast is obtained. The complexity of the nowcast creation

depends on the type of satellite/radar data used, how it is used or evaluated, as well as the

extrapolation method or algorithm used to obtain the nowcast.

Figure 2.2: Simple flow diagram of how a basic nowcast system works.

For many decades, nowcasts have mainly been developed using analysis and extrapolation
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of radar images and data. Nowcasting models that mainly utilize radar data have been

extensively studied and implemented—e.g., Seed (2003); Hering et al. (2004); Bowler et al.

(2006); Ruzanski et al. (2011); Mandapaka et al. (2012); James et al. (2018); Foresti et al.

(2019); Pulkkinen et al. (2020). One example in particular is the Python pySTEPS library

that offers several nowcast models designed specifically for radar data (Pulkkinen et al.,

2019; pySTEPS, 2021). These pySTEPS nowcast models have been used in many studies

around the world to evaluate their forecasting skill and to compare them with other types of

nowcast models, using radar rain rate and reflectivity data (Pulkkinen et al., 2020; Cuomo

and Chandrasekar, 2021; Niu et al., 2021; Saadi et al., 2021; van der Kooij et al., 2021; Han

et al., 2022; Cambier van Nooten et al., 2023; Ritvanen et al., 2023) and other types of data

sources such as microwave links (Imhoff et al., 2020), and blended NWP data (Imhoff et al.,

2023). However, the use of radar data techniques has had its limitations, especially because it

is necessary for rain to occur in order to obtain any data for nowcasting development, which

can shorten the time of forecast. Regardless, these types of nowcast have been improved

by the development of better radar products, such as dual-polarization measurements, and

incorporation of satellite data.

Continuing with the work done in nowcast development, recently, studies have explored

convective initiation using satellite data to incorporate into nowcasts. Zinner et al. (2008)

developed a tracking and nowcasting algorithm called Cumulonim Bus TRacking And Mon-

itoring, that uses Meteosat-8 SEVIRI 3 data. This algorithm uses threshold values from the

SEVIRI infrared channels to detect any cumulus clouds, assigning different levels depending

on how developed the convection is when it was detected. Afterwards, it tracks and predicts

(through extrapolation) where the systems will be heading. Siewert et al. (2010) analyzed

the incorporation of satellite data along with radar echoes to predict convective initiation. In

addition to the threshold values of 35 dBz in radar echoes, they used data from the Meteosat

second generation (MSG-2) to explore convective initiation. They used a cloud masking tech-

nique to detect clouds and a ‘box-averaging’ method to follow cloud development with the

satellite data. Their results indicated that the integration of the MSG analysis showed skill

in detecting region of convective initiation and false alarms were reduced. Moreover, they

were able to apply their analysis in a region with scarce radar data, although further research

to validate or reinforce their conclusions was needed. Mecikalski et al. (2010a,b) also used

MSG-2 data to explore cumulus cloud development through the exploration of infrared and

visible fields. They used the satellite data to obtain sets of critical values/intervals of the

3Spinning Enhanced Visible and Infrared Imager
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brightness temperature at various spectral bands to obtain and describe various cloud prop-

erties (such as cloud depth, cloud-top glaciation and updraft velocity). With these values

and fields, they explored the possible implementation of a ‘threshold-based scoring’ algo-

rithm (using principal component analysis with current atmospheric observations to find the

best field that can describe future cloud growth) to possibly predict cumulus growth.

Continuing, Sieglaff et al. (2011) used GOES-12 satellite data to explore convective ini-

tiation prior to the radar precipitation echoes. They applied cloud-type and cloud-mask

algorithms to asses cloud conditions over their area of study. With this data, they developed

an algorithm that uses a ‘box-averaging’ approach to capture the period from the first sig-

nal of cloud vertical growth through time of cloud-top glaciation/storm maturation. With

this, they were able to categorize satellite pixels according to their probability of convective

initiation/development. They found that this algorithm works best in region where severe

weather was expected (they observed higher probability of detection and lower false alarm

rates in these regions). Additionally, they were able to extend the nowcast lead-time to

approximately an hour, but causing a higher rate of false alarms. Other studies have used

satellite-derived precipitation data as inputs in different types of nowcast models (Rivolta

et al., 2006; Hill et al., 2020; Kumar et al., 2020; Ehsani et al., 2022). For example, Hill et al.

(2020) used the convective rainfall rate and the rapidly developing thunderstorm convective

warning products provided by the European Organization for the Exploitation of Meteoro-

logical Satellites Nowcasting Satellite Applications Facility in tropical Africa. The authors

of the study found the satellite products to provide skillful nowcast of the precipitation of

the area for lead times of up to 90 minutes. Finally, as previously mentioned, Lindsey et al.

(2018) showed an example of observation of low-level water vapor maximums before the

development of convection using the ‘split-window’ technique with GOES-R. As the authors

pointed out in their conclusions, these observed maximums can be used as indicators of

possible convection which can possibly be implemented in nowcast.

In conclusion, the incorporation of satellite data in the development of nowcast is impor-

tant, especially in areas where radar data is scarce or non-existent, but count with satellite

coverage. The studies described in the previous paragraphs show the potential improvements

in nowcasting when incorporating satellite data along with radar data or using satellite data

alone. Their analysis demonstrated several new methodologies that can possibly improve

convective initiation prediction (Mecikalski et al., 2010a,b; Siewert et al., 2010; Sieglaff et al.,

2011; Lindsey et al., 2018), lower false alarm rates (Siewert et al., 2010; Sieglaff et al., 2011),

and increase the lead-time of nowcast (Sieglaff et al., 2011; Hill et al., 2020). However, their
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methodologies and algorithms need further testing in order to fully understand their poten-

tial and limitations and assess how they can be implemented in an operational manner and

in real-time.

2.4 A forecast tool based on remote sensing data: pyS-

TEPS

Through out the decades, several nowcasting models using various methodologies have

been developed and tested worldwide, from extrapolation of data to the use of machine

learning algorithms to obtain possible forecast with any given initial variables. One particular

source of nowcast models is called pySTEPS (Pulkkinen et al., 2019; pySTEPS, 2021), which

is a publicly available and community maintained python library and uses the extrapolation

technique of Lagrangian persistence to develop precipitation nowcasts.

Th Lagrangian persistence model used by pySTEPS, based on the work of Zawadzki et al.

(1994), extrapolates the radar echoes through time along a derived stationary motion field

maintaining the intensity constant (Pulkkinen et al., 2019). Additionally, pySTEPS also

includes more sophisticated nowcasts, with added elements of spatial decomposition and

probabilistic factors to account for uncertainties and errors in the precipitation and motion

fields (Pulkkinen et al., 2019).

The motion fields obtained with pySTEPS can be calculated using five different methods

(pySTEPS, 2021):

1. Constant is a method that estimates the motion field by maximizing the corre-

lation between two consecutive images (pySTEPS, 2021).

2. Lucas-Kanade is a method based on the work of Lucas and Kanade (1981) and

Bouguet (2001).

3. Variational Echo Tracking is a global variation echo-tracking method devel-

oped by Laroche and Zawadzki (1995) and used in Germann and Zawadzki (2002).

4. Proesman is the anisotropic diffusion approach described in Proesmans et al.

(1994).

5. DARTS is the a spectral approach method used in the DARTS nowcasting model

(Ruzanski et al., 2011).
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In relation to the nowcast models, pySTEPS has eight built-in options (pySTEPS,

2021), included among these are:

Extrapolation is a simple extrapolation of the precipitation field through the esti-

mated motion fields calculated using the input data.

Spatial-Prognosis (S-PROG) is a method developed by Seed (2003). In sum-

mary, the authors describe this nowcast as advection-based spectral decomposi-

tion model that takes advantage of the scale-dependence of the properties of rain

fields integrating an autoregressive model within each cascade field.

Short-Term Ensemble Prediction (STEPS) is the nowcast model described by

Bowler et al. (2006). The STEPS nowcast uses the S-PROG method with an

added element of uncertainty in the calculation of the precipitation fields in the

form of stochastic perturbations in the precipitation and motion fields.

Autoregressive Nowcasting Vertically Integrated Liquid is the nowcast devel-

oped by Pulkkinen et al. (2020). This model uses the decomposition techniques

of S-PROG with the vertically integrated liquid calculated from radar reflectivity

fields instead of precipitation fields.

In addition to the nowcast models, pySTEPS also includes several functions that can help

visualize and validate the nowcast results (pySTEPS, 2021).

As mentioned in Section 2.3, nowcast models from the pySTEPS library have been eval-

uated and compared to other models in many studies around the world (Pulkkinen et al.,

2019; Cuomo and Chandrasekar, 2021; Niu et al., 2021; Saadi et al., 2021; van der Kooij

et al., 2021; Han et al., 2022; Cambier van Nooten et al., 2023; Ritvanen et al., 2023; Imhoff

et al., 2020, 2023). For example, in a study describing and assessing the pySTEPS library,

Pulkkinen et al. (2019) concludes that the models are reliable but the reliability decreases

for increasing rainfall intensity thresholds and lead time. Moreover, the method used to

calculate the motion fields does not greatly affect the quality of the nowcast. Finally, the

model can provide a skillful nowcast of up to 1 hour, although it depends on the intensity

and spatial scales.

2.4.1 DATing Module

The pySTEPS Python library includes two tracking features. The first one utilizes the

Lucas-Kanade or LK tracking function of the OpenCV module for tracking storm clusters
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in each image (Pulkkinen et al., 2019). The second one is the Thunderstorm Detection

and Tracking (DATing) module that follows the Thunderstorms Radar Tracking algorithm

(Hering et al., 2004; Pulkkinen et al., 2019) used by MeteoSwiss with modifications. The

DATing module algorithm involves detecting clusters by analyzing the data matrix of an

image. Then, using the pySTEPS Lucas-Kanade advection function, it generates the mo-

tion fields with that image and the previous image, and conducts an extrapolation through

advection to obtain a prediction of the next image. Afterwards, it compares this prediction

with the observed next image, determines if any of the clusters detected appear in both

images with a correlation analysis, and labels the clusters for tracking (pySTEPS, 2021).
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Chapter 3

Investigation Part I: Evaluation of the

GOES-16 clear sky mask using

ceilometers

Satellite products follow a hierarchical scheme based on the correct identification of

clouds, therefore an evaluation of the cloud mask is fundamental to establish quality control

over satellite products. This is especially important for NASA and NOAA’s GOES-R satel-

lite series. Because of its relatively recent launch and start of operation, there has not been

an extensive amount of research done to assess its products. Many studies (Ackerman et al.,

2008; Joro et al., 2010; Letu et al., 2014; Salek and Szabo-Takacs, 2019) have used secondary

ground-based data sets, for example, ceilometer data, to evaluate satellite cloud products

such as the cloud mask. And although the GOES-16 Clear Sky Mask has been evaluated

by Jimenez (2020) by comparing it with the cloud mask provided by the CALIPSO1 and

SEVIRI2 retrievals in the continental US, Jimenez (2020) only used satellite data and did

not include ground-based data and excluded the region of Mexico.

The validation of the GOES-R products over Mexico is important and necessary because

large areas of the country do not contain many or any instruments that monitor weather

conditions. The GOES-16 satellite has complete coverage of Mexico, giving an opportu-

nity to improve atmospheric observations over the country. Therefore, verifying that this

instrument and the algorithms used to process its data give an accurate representation of

the atmospheric conditions of the area is an important step for advancing atmospheric and

1Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
2Spinning Enhanced Visible and Infrared Imager
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climate research and weather monitoring in the region. In this work, the GOES-16 Clear

Sky Mask product developed by Heidinger and Straka (2013) was validated over the region

of central and northern Mexico, using three group-based Vaisala CL31 ceilometers from the

UNAM’s Atmospheric Observational Network (RUOA) (RUOA; Peralta et al., 2016): the

UNAM, JQRO, and ERNO ceilometers. In addition, one important part of this evaluation

was to assess the processing of the ceilometer data itself. The ceilometer data was processed

using two different algorithms: the algorithm provided by the manufacturer Vaisala (Vai,

2015), and an algorithm developed by Kuma et al. (2021) named ALCF. Because two differ-

ent algorithms were used, it was important to see if the results given by each were consistent

with one another.

3.1 GOES-16 Clear Sky Mask data

The main satellite product used was the ABI cloud mask (ACM) due to its use in many

other algorithms to obtain other products (such as cloud height and cloud top temperature).

This is a GOES-R level 2 product labeled “Clear sky mask”, referred to as ”cloud mask”

in this work, available from April 2017 to the present. In brief, this product is obtained

by applying an algorithm that analyzes each pixel (and the pixels around it) in various

spectral ABI bands to evaluate if it has the right physical characteristics that describe cloudy

conditions (Heidinger and Straka, 2013). Although the algorithm categorizes each pixel into

four categories (clear, probably clear, probably cloudy and cloudy), the cloud mask gives a

binary final results: 0 for clear and 1 for cloudy. The cloud mask product has a 2km by

2km horizontal resolution and the algorithm has an accuracy of 87% (Heidinger and Straka,

2013).

3.2 Ceilometer data

The main source for the ceilometer data was the Atmospheric Observational Network of

the UNAM (or RUOA for its initials in Spanish; Peralta et al., 2016). The ROUA ceilometer

network consist of the three stations shown in Figure 3.1: ERNO (northernmost station),

JQRO (second northernmost station) and UNAM (southernmost station). This network uses

the Vaisala CL31 Ceilometer, which has been previously used to evaluate satellite products

(Joro et al., 2010; Salek and Szabo-Takacs, 2019) and measures three cloud layers simultane-

ously with a pulsed diode laser LIDAR. The instrument has a measurement range of 0.0 to
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7.6 km, a reporting cycle of 2 to 120 seconds (programable feature; 2 seconds for the ROUA

network) and a reporting resolution of 5 meters (Vai, 2020).

Figure 3.1: Map of the GOES-16 Continental US (CONUS) coverage with the three ceilometer RUOA
stations (red stars).

The ceilometer data was processed by two different algorithms. The first algorithm,

provided by Vaisala, reads the backscattering data measured by the instrument, filters noise

and determines whether they represent cloud, no-cloud or other possible alternatives such

as fog or aerosol content. Its output is divided into several sets of variables that include

backscattering data, cloud base height in three levels, and ‘detection status’ (whether or

not the ceilometer detects significant backscattering) every 15 seconds (Vai, 2015). For this

study, the main information used was the ‘detection status’ and the data is referred to as

“Vaisala Data”.

The second algorithm used was the Automatic LIDAR and Ceilometer Framework (ALCF)

developed by Kuma et al. (2021) of the University of Canterbury (New Zealand) and the

National Institute of Water and Atmospheric Research (NIWA). This algorithm reads the

backscattering data measured by the instrument, filters any possible noise within the signal

and uses a backscattering threshold values to determine if the data is a cloud or not. If it

is greater than the threshold value, it is considered a cloud. The ALCF algorithm provides

backscatter data, cloud base height, and cloud mask data, among other variables (ALC,
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2020). Because these ceilometers give measurements every 2 seconds, there was a lot of noise

in the data that needed to be removed in order to obtain good results with ALCF. For this

algorithm, the noise was removed by processing, averaging, and obtaining values every 5

minutes. This data is referred to as “ALCF” ceilometer data.

3.3 Rain gauge data

To further support and solidify the results, it is helpful to used another type of data set

and compare the results. Furthermore, it is also necessary to assess the ceilometer data to

have assurance the measurements of these instruments are accurate and can give an accurate

assessment of the cloud mask. This evaluation was done using rain gauge data from the same

meteorological stations where the ceilometers used in this study are found. This data set

comes from a Texas Electronics tipping-bucket rain gauge (TR-525M). This particular rain

gauge has a resolution of 0.1 mm and an uncertainty of 1% with a 50 mm per hour accuracy.

They can report measurements per hour or minute (TE-, 2020), in the case of this study, a

1 minute resolution was used.

3.4 Methodology: differences in resolutions

The main objective of this chapter was to compare the GOES-16’s cloud mask with the

results from the ceilometer. However, there are two main obstacles to sort before performing

the comparison. The first is the difference in spatial resolution and the second is the difference

in temporal resolution.

3.4.1 Spatial resolution

The biggest issue that can add uncertainty and error to the final results is the difference

in spatial resolution. The ceilometer gives information in one single point in space (the

location of the ceilometer). On the other hand, the satellite provides its data in a grid, with

one data point covering a 2 km by 2 km area (called a pixel). The best way to compare

these two data sets is by comparing the ceilometer data with the cloud mask data of the

pixel that covers the ceilometer.

For the GOES-16 satellite ABI products, the coordinates of each data point in the data

matrix provided correspond to the center of the pixel, therefore, the pixel that covers each
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ceilometer station is the pixel whose center is closest to the each ceilometer station (referred

to as “closest pixel” from this point forward). This was done by converting the (x,y) co-

ordinates given by the satellite to geographic (latitude-longitude) coordinates. The Python

pyproj library was used to convert the coordinates and define the satellite projection with

the basic satellite characteristics (altitude, sub-satellite point, inclination, eccentricity). A

nearest-neighbor approach was applied to find the closest pixel to each station. First, an area

around the station was searched for any satellite pixels within it. This area was initially 0◦

in diameter with the station in the center (meaning only considering the latitude/longitude

of the station) and was increased by 0.02◦ (≈ 2 km.) in diameter until one satellite pixel

center was found. This pixel would be considered the closest pixel to the ceilometer station.

The closest pixel value obtained will change depending on the GOES-16 scan strategy or the

GOES-16 product used. For the cloud mask grid, the results obtained from this method can

be observed in Figure 3.2. Given the methodology used, all stations are within 2 km away

from the closest pixel.

In addition to comparing the data of the ceilometer with the cloud mask data of the

closest pixel, the ceilometer data was also compared to the average cloud mask of the data

of the 3 by 3 pixel or (or 6 km by 6 km) grid with the closest pixel in the center, to further try

to decrease the error due to lack of consistent spacial resolution between the two data set. By

using this larger pixel area, it was assured that the whole spatial coverage of the ceilometer

is covered by the satellite data. It should be noted that this methodology of comparing

the ceilometer data with the 3 by 3 pixel grid and the closest pixel cannot eliminate the

possibility of cases where small clouds that can only be detected by one instrument, but it

will decrease the uncertainty from the lack of complete spatial resolution synchronization.
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Figure 3.2: Satellite grid with pixel center (dashed lines with black dots) and the location of the
ceilometer station (red star) and the nearest pixel (blue ×).

3.4.2 Temporal resolution

The difference in temporal resolution was the second issue that added uncertainty to the

overall results. The ceilometer’s two processing algorithms result in a temporal resolution of

15 seconds for the Vaisala data and 5 minutes for the ALCF data set. GOES-16 Continental
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US coverage has a resolution of 5 minutes. The main concerns were if there was any offset

between the intervals, especially the larger time intervals, and which data value was to be

used for the comparison (meaning whether to use the value at a given time or an average

value over a period of time).

To try to reduce the possible uncertainties and errors that can arise from the difference

in temporal resolutions, a data resampling technique (using the Python Pandas Library)

was used to resample the data at 5, 10 and 15 minutes intervals. In other words, the mean

or maximum value of every 5 min/10 min/15 min interval was calculated using the data

that falls within the given interval, starting from 0 hours, 0 minutes, 0 seconds of day 1.

The interval of 5 minutes was picked because this corresponds to the resolution of both data

sets (considering the ALCF algorithm) and the bigger time intervals were used to assess the

cloud persistence. To put it differently, since the data is not synchronized temporally, the

case where a cloud could be present at the time of the satellite measurement but not at the

time of ceilometer measurement cannot be ruled out, and thus this adds to the uncertainty of

the results. To reduce this error, a larger interval is analyzed; if a cloud is present throughout

this interval, both instruments will have measurements of it. However, like previously said,

this did not completely eliminate the error due to lack of temporal synchronization because it

cannot take into consideration small clouds that pass fast through the area of the cloud-mask

measurement.

3.5 Methodology: contingency table analysis

The evaluation of the cloud mask was based on the work of Joro et al. (2010), who used a

contingency table analysis to asses the two different cloud masks3 with ceilometer data over

Finland.

3the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorolog-
ical Products Extraction Facility cloud mask and the Nowcasting Satellite Application Facility (SAFNWC)
cloud masks provided by Météo-France
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Figure 3.3: Example of contingency table used in this study to compare ceilometer data with the
GOES-16 satellite cloud-mask (ACM) data. Green squares mark positive results and red squares mark

negative results.

The first step was obtaining the contingency tables (Figure 3.3). For this evaluation, this

table included the number of times both the satellite and ceilometer indicated the presence

of a cloud (Hit), the number of times the satellite indicated cloud presence but the ceilometer

did not (False Alarm), the number of times the satellite and the ceilometer did not detect the

presence of a cloud (Correct Negative), and the number of times the satellite did not detect a

cloud but the ceilometer did (Miss). From these contingency tables, the following statistical

measurements were obtained: bias, false alarm ratio, false alarm rate, and the hit rate. These

measurements were picked because they have been used by previous evaluation/validation

studies (Jolliffe and Stephenson, 2003; Barnes et al., 2009; Joro et al., 2010). The bias is

the ratio of cloud frequency to the observed cloud frequency, indicating whether the satellite

overestimates (above 1) or underestimates (below 1) cloud values (Wilks, 2006), and is

calculated by

BIAS =
hits+ false alarms

hits+misses
(3.1)

The FAR is the fraction of forecast hits that were false (false alarms) (Wilks, 2006) and is

given by

FAR =
false alarms

hits+ false alarms
(3.2)

The PoFD is the probability of false detection (Wilks 2006)

PoFD =
false alarms

false alarms+ correct negatives
(3.3)

And the PoD is described as the amount of correct forecast compared to the total amount
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of forecast events (Wilks, 2006) and is calculated with

PoD =
hits

hits+misses
(3.4)

Finally, two simple skills tests were used as well: the Kuipers Skill Score (KSS) or True

Skill Statistic, which measures the ability to separate a Cloud result from a No Cloud result

(Woodcock, 1976):

KSS = PoD − PoFD (3.5)

and the Heidke Skill Score (HSS) that measures the increase improvement of the forecast

over the standard forecast (obtaining a correct result by chance; Wilks, 2006) and is given

by

HSS = 2× hits× c.n.− f.a.×misses
(hits+misses)× (misses+ c.n.) + (hits+ f.a.)× (f.a.+ c.n.)

(3.6)

with c.n. being correct negatives and f.a. being false alarms

3.5.1 Comparison sets

The contingency table analysis was made with four different comparison sets:

Set 1: comparison between the data of a 3×3 pixel satellite grid surrounding

each ceilometer station and the ALCF ceilometer data.

Set 2: comparison between the 3×3 pixel satellite grid data with the Vaisala

ceilometer data.

Set 3: comparison between the data from the pixel whose center is closest to

the ceilometer station and the ALCF data.

Set 4: comparison between the closest pixel data with the Vaisala ceilometer

data.

In addition, the comparisons were also done for each resampling interval discussed in

Section 3.4.2, giving a total of 12 contingency table analysis. Finally, each of the 12 com-

parisons was also done by time-of-day. These times were determined using the solar angle

and are:

Day: solar altitude angle higher than 10o.
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Twilight: solar altitude angle between 0o and 10o, including both values.

Night: negative solar altitude angle.

The period of analisis was from January 1st, 2019 to December 31st, 2019.

3.6 Results

3.6.1 Automatic LIDAR and Ceilometer Framework data cloud-

base height correction

Because two different ceilometer data processing algorithms were used in this study, the

Automatic LIDAR and Ceilometer Framework (ALCF) algorithm and the Vaisala algorithm,

it was important to analyze the differences in the resulting cloud-detection data they both

gave as output. Figure 3.4 shows the percentage of occurrence of the cloud-base heights

for the three ceilometer stations for the ALCF data, Vaisala data, and ALCF data without

cloud-base heights below 200 m. For the Vaisala data, the cloud-base heights (of the three

given) used in this analysis was the lowest cloud-base heights. The results of the ALCF

and the Vaisala data show a discrepancy in the processing method since the corresponding

graphs for each method did not match, and in particularly, there was an increased number

of low-level clouds for ALCF data, especially clouds with base heights below 200 m. This

discrepancy can be illustrated even more if the cloud-base height below 200 m of the ALCF

data were filtered out. The distribution of the cloud-base heights is more consistent between

both algorithms, signaling a problem with the measurements of ALCF data below this height.

This large amount of low level cloud-base heights is considered an error because cloud-base

heights tend to be 1 km minimum in the region.
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Figure 3.4: Percentage of occurrence of the cloud-base height (CBH) for each station from January 1st
to December 31st, 2019, for the ALCF data (blue), the Vaisala data (orange) and the ALCF data

without cases with cloud-base heights below 200 m (green). Left graph is for ERNO, middle graph is for
UNAM and right graph is for JQRO.

The second analysis performed was the creation of contingency tables comparing both

sets of ceilometer data, similarly to the table in Figure 3.3. To consider possible problems in

distinguishing low-level clouds, the analysis was done comparing the complete sets of Vaisala

and ALCF data, as well as only comparing the cases where the ALCF cloud-base heights

was 200 m or above with the corresponding Vaisala data. The results can be observed in

Table 3.1. For JQRO and UNAM, there were more positive results (correct negatives and

hits) than negative results (false alarms and misses) by almost 60%. These positive results

also increased when limiting the cloud-base height minimum to 200 m. This increase was

slight for JQRO (between 0% and 2%) and more significant for UNAM (between 6% to 10%).

For ERNO, the negative cases outnumbered the positive cases by 11% when considering all

cases (approximately 45% positive results and 56% negative results). However, the number

of positive cases increased to more than 80% when the minimum cloud-base height of 200

m was applied, indicating that the issues in distinguishing low-level clouds with the ALCF

method affects this station more than the other two stations.
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Resamp.
All ≥ 200 m

Pos Neg Pos Neg

ERNO

5 min 0.442 0.558 0.884 0.116

10 min 0.445 0.555 0.849 0.151

15 min 0.447 0.553 0.821 0.179

UNAM

5 min 0.816 0.184 0.897 0.103

10 min 0.808 0.192 0.880 0.120

15 min 0.801 0.199 0.867 0.133

JQRO

5 min 0.811 0.189 0.835 0.165

10 min 0.769 0.231 0.790 0.210

15 min 0.741 0.259 0.760 0.240

Table 3.1: Normalized number of positive and negative results of the contingency tables comparing the
ALCF data and Vaisala data for each category indicated per station. “≥ 200 m” indicates the results for

the cases with cloud base height of 200 m or above. “Resamp” indicates the resampling interval.

Expanding on these results, the scatter plots and Pearson R correlation coefficients be-

tween the lowest cloud-base heights of the Vaisala and ALCF data were obtained for the

exact same date-time. Figure 3.5 shows the results of the scatter plots of each station, where

although there appears to be a linear pattern in the data, a large amount of small cloud-base

heights in the ALCF data can be clearly seen (near the y-axis). This is further evidence that

the problems distinguishing low level clouds only affects the ALCF ceilometer because a large

amount of ALCF cases with low cloud-base heights correspond to Vaisala results of higher

clouds. The correlation results of these plots and the correlation comparing the cloud-base

heights of both data sets with the minimum limit of 200 m are found in Table 3.2. The

results indicate that the Pearson’s R correlation increased when the low cloud-base heights

were eliminated and the relationship was close to linear, as expected since both methods

processed the same base ceilometer raw data. To guarantee the problem was with ALCF

and not Vaisala data, the same analysis was carried out but eliminating Vaisala data below

200 m. However, there was very little change for all stations when this was done, indicating

these cases do not have a significant impact on the overall results.
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ERNO UNAM JQRO

All 0.343 0.619 0.641

200 m 0.894 0.809 0.840

Table 3.2: Pearson R correlation values between Vaisala lowest cloud-base heights data and ALCF
cloud-base heights data for all three ceilometer stations. “All” indicates comparing all values of the same
date-time, “200 m” only compares cases with cloud-base heights of 200 m or more of the same data-time.

Figure 3.5: Scatter plot of ALCF cloud-base heights data and Vaisala lowest cloud-base heights data for
the three ceilometer stations. Left graph is for UNAM, middle graph is for ERNO and right graph is for

JQRO.

The previous results show a clear discrepancy between both algorithms for cloud-base

heights below 200 m for the ALCF. The results point to a clear flaw in the ALCF algorithm

that is not present in the Vaisala algorithm, which is resulting in low cloud-base heights that

are not physically possible in the region. When reviewing the documentation and scripts

available for the algorithms, the likely cause for this issue is the effect of atmospheric aerosols

in the boundary layer on the backscattering signal read by the instrument, especially since

the RUOA ceilometers are primarily used to observe the boundary layer. The Vaisala algo-

rithm has the ability to provide information regarding the boundary layer (Morris, 2012),

which gives an indication that overall, the algorithm is able to distinguish between clouds and

aerosol content backscatter signals. On the other hand, ALCF’s analysis of the backscatter-

ing data to detect clouds (the removal of noise and the use of a threshold value to determine

what signals are clouds and no clouds) cannot distinguish between the backscattering signals

resulting from high aerosol concentration and the signal resulting from clouds. Although the
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ALCF algorithm’s backscattering threshold value that determines what is cloud and no-

cloud can be modified by the user, the predetermined value was used in this study. Further

analysis can be done to obtain the best backscattering threshold value for each ceilometer

used, however it was determined that the use of the data processed by the Vaisala algorithm,

and the fact that both data sets gave consistent results when removing all cases with cloud-

base heights below 200 m for the ALCF data, was sufficient to obtain acceptable results for

this study. Thus, the Vaisala processed data and the ALCF processed data with cloud-base

heights of 200 m and above were used in the GOES-16 cloud mask validation, but with more

weight given to the Vaisala processed data results.

3.6.2 Contingency table results between the satellite cloud mask

and ceilometer data

The results of the contingency tables of all comparison sets4 for the different resampling

intervals are shown on Figures 3.6, 3.7 and 3.8. The graphs show the relative number of

positive results (hits and correct negatives) and negative results (false alarms and misses).

The results show that the amount of negative results are all below 40% for all three stations.

For UNAM, between 17% to 23% are negative results; for JQRO, it ranges from 20% to

37% and for ERNO, the negative results make up around 27% to 35% of all. In terms of

the statistics, PoD had the highest value for all stations and comparison sets. This value

ranged from 0.6 to 0.95, with the highest values obtained for UNAM comparison set 2 (

0.95) and the lowest for JQRO comparison set 3 (0.63). For PoFD, it did not exceed 0.5,

with the lowest being for UNAM comparison set 3 (0.27) and the highest being for JQRO

comparison set 1 (0.48). FAR did exceed 0.5 for some comparison/resampling cases, falling

between 0.3 and 0.55. However, it is not higher than PoD in any case. The skill scores show

a moderate skill for the cloud mask. The station with the best skill score was UNAM, with

scores between 0.5 and 0.65. For JQRO and ERNO, the comparison sets that used ALCF

data had low skills scores 0.3, and for the other comparison sets that used Vaisala data, the

skills scores were around 0.5. Additionally, both KSS and HSS were consistent with each

other. Finally, the last variable (not shown) is bias. The bias was above 1 for all except

comparison set 3 of UNAM (which was close to 1). The station with the highest biases was

ERNO and UNAM had the lowest. In all stations, comparison set 3 had the lowest bias,

4Set 1 compares data from the 3×3 pixel satellite grid data and the ALCF data, Set 2 compares data
between the 3×3 pixel satellite grid with the Vaisala data, Set 3 compares the closest-pixel satellite data
with the ALCF data and Set 4 compares the closest-pixel satellite data with the Vaisala data
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while comparison set 2 had the highest. Furthermore, the bias decreased with increasing

resampling interval, with the biggest differences occurring for ERNO (a difference of around

0.3), and the lowest being for UNAM (around 0.1).

Figure 3.6: Contingency table results for ERNO. The set of bar graphs on the left show the positive
(sum of hits and correct negatives) and negative (sum of misses and false alarms) normalized results for
all comparison sets and resampling intervals. The set of graphs on the right shows the statistics results
for all comparison sets and resampling intervals per station. The comparison sets are as follow: Set 1

compares data from the 3×3 pixel satellite grid data and the ALCF data, Set 2 compares data between
the 3×3 pixel satellite grid with the Vaisala data, Set 3 compares the closest-pixel satellite data with the

ALCF data and Set 4 compares the closest-pixel satellite data with the Vaisala data.
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Figure 3.7: Contingency table results for JQRO (same as Figure 3.6).

Figure 3.8: Contingency table results for UNAM (same as Figure 3.6).
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Overall, the best results were obtained using Vaisala processed data due to the fact

that this ceilometer data set is the most consistent (see previous section). The station

with the best results was UNAM. In terms of the spatial variation of the GOES satellite

data (3x3 grid surrounding the station and individual closest pixel to the station), the

UNAM station obtained the best results using the individual pixel (comparison set 4 had

the overall best results), however, JQRO and ERNO obtained better results with the 3x3

pixels. The variation between the different resampling intervals is not consistent in terms of

positive/negative results, variable, comparison set and station to determine with certainty

which interval is best. The biggest difference is observed for the variable bias, was discussed

earlier, and FAR (5 min interval is bigger by 0.1 than the result for the 15 min interval) and

it is smaller for PoD. When only considering skill scores, the comparison sets using Vaisala

data have better scores for the 15 min resampling interval and the comparison sets using

ALCF data have better scores for the 5 minute resampling interval, although the difference

is less than 0.04. When observing positive and negative results, the highest positive results

percentage was for 15 min interval when using Vaisala data. However, for JQRO and ERNO,

the differences are very small. When using ALCF data, 5 min resampling interval had slightly

better results for JQRO and ERNO, and almost no variation between all intervals for UNAM

station.

Figures 3.9, 3.10, and 3.11 show the results for different time of the day intervals for

all stations. The figures show that the best overall results were for the cases at “night”,

which had the highest PoD, skill scores, and a bias nearest to 1 for ERNO, UNAM, and

the Vaisala comparison sets of JQRO, followed by “day” and then “twilight”. Additionally,

the behavior of the results for all comparison set were consistent with each other. The fact

that “night” had some of the best results is somewhat unexpected since at nighttime, the

cloud mask algorithm loses the visible band range, and in preliminary accuracy estimates

of the algorithm (performed before the launch of the satellite using a proxy-cloud mask

obtained using CALIPSO5 and SEVIRI6 data in place of GOES-16 data), the PoD was

slightly less for nighttime and “False clear detection” (miss) was the highest, although “false

cloud detection” (false alarm) was lower at nighttime than daytime (Heidinger and Straka,

2013). The difference in the results can be explained by the fact that the analysis done by

Heidinger and Straka (2013) compares the proxy GOES-16 cloud mask obtained with the

GOES-16 algorithm with the CALIPSO satellite cloud mask. While these are two different

5Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
6Spinning Enhanced Visible and Infrared Imager
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satellites, they give similar data set. On the other hand, this study is comparing the data from

two different instruments, with very different spatial resolutions, and different limitations

and advantages. While the GOES-16 satellite is more limited at night due to the loss of

the visible spectrum, the ceilometers are less likely to be affected by atmospheric aerosols

and precipitation at night in the region of study. Considering this, the improvement of the

results at night could be due to the improved atmospheric conditions at night that can cause

less flawed data with the ceilometer (especially for the ALCF data). Lastly, an important

point to consider in the analysis of these results is the number of cases for each time-of-day,

with “night” having the greatest number of cases and twilight having the least.

Figure 3.9: Results of the statistics from the contingency table results for all comparison sets and
resampling intervals divided by time-of-day for ERNO station. All = all day, day = daytime cases, twt

= twilight cases and ngt = nighttime cases.
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Figure 3.10: Same as 3.9 for JQRO station.
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Figure 3.11: Same as 3.9 for UNAM station.

When observing the statistical results per month of Figure 3.12 there are no clear pat-

terns. First, the data for ERNO is not very reliable since there is a large amount of missing

data for the initial months. This is due to the fact that this station has the most data

removed when applying the 200 m filter to the cloud-base height of the ALCF data. When

observing the Vaisala comparison sets, there is no clear pattern because of sudden changes in

several variables in the months of May, June and October. On the other hand, UNAM had

more complete and consistent results throughout the year. FAR, bias, and both skill scores

(although to a lesser extent) are high at the beginning of the year, then start to decrease from

April to September, with a subsequent increase the rest of the year. The opposite occurs

for PoD and PoFD. This patter is most likely due to the rainy season in Mexico for UNAM

and JQRO, which runs from late May to early October. During this period of the year,
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more convective clouds occur, creating more cases and more robust statistics. It should be

noted that both January and December had several days missing (for the ceilometer), which

explains the inconsistent and, in some cases, lower accuracy of the cloud mask during these

months in comparison to the rest of the year. JQRO had similar results, with the exception

of February and March, which had low bias, PoD and skill scores for the ALCF data.
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On Figures 3.13, 3.14 and 3.15, the percentage of hits and misses with respect to the

cloud-base height is presented for each station at a 5 min resampling interval. The graphs are

divided into time-of-day as well as for all day. In general, the pattern observed is similar to

the cloud-base height distribution observed in Figure 3.4. The results show that for UNAM,

low-level cloud-base heights had the highest hit percentage (all hit percentage results are

below 7%) and decreased around 3,000 m and reaching its minimum around 4,000 m. There

was also a small dip around 1,500 m. Below 2,000 m, the night cases had the highest hit

percentages and day cases had the lowest. Between 2,000 m and 4,000 m, the night cases

have the lowest, and the day and twilight cases have similar numbers above night cases. For

the misses at UNAM, the behavior was similar, although it is skewed by the high percentage

values of the twilight cases. It was observed that, in general, for all stations, twilight cases

have a more chaotic behavior in all graphs because it has the lowest number of cases (less

than 10% of the total). Nevertheless, it can be observed that the misses percentage is

highest for low cloud-base heights, especially for twilight cases, followed by night cases and

then day cases. Additionally, for the Vaisala comparison sets, the misses increase during

the day for high cloud-base heights (>6,000 m). For JQRO, the behavior of both hits and

misses percentages were similar to those of UNAM, however, day cases had the highest hit

percentages for low-level cloud-base heights and the decrease started around 4,000 m. The

misses percentages were lower for low cloud-base heights than in the UNAM station, there

was also a peak between 4,000 m and 5,000 m for the Vaisala comparison sets and a dip

between 1,000 m and 2,000 m for the twilight and night cases for the ALCF comparison sets.

For ERNO, the behavior of the misses percentages had a similar general behavior (high for

low cloud-base heights), however, the data is much more noisy. For the hits percentages, the

behavior differs for the mid-cloud-base heights values (between 2,000 m to 4,500 m), where

the percentages decrease and then increase when surpassing the 4,500 m to values similar to

those of the low cloud-base heights.

41



(a) Hits (b) Misses

Figure 3.13: Percentage of (a) hits and (b) misses per 250 m interval of cloud-base heights at a 5-minute
resampling interval divided into time-of-day as well as all day for ERNO.

(a) Hits (b) Misses

Figure 3.14: Same as 3.13 for JQRO station.
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(a) Hits (b) Misses

Figure 3.15: Same as 3.13 for UNAM station.

3.6.3 Using rainfall data to evaluate ceilometer data

The assessment of the ceilometer data with the rain gauge data was done using the same

contingency table study. This involved all of the Vaisala and ALCF data sets, as well as

the ALCF dataset with a minimum limit of the cloud-base height of 200 m. The rainfall

data is given every minute while the ALCF data is given every 5 minutes and the Vaisala

data every 15 seconds. For this reason, resampling intervals of 1-minute and 5-minutes were

used. For the Vaisala data, the 1 minute resampling interval was only used with two different

definitions of a cloud reading and no-cloud reading. The first definition of cloud measurement

within each resampling interval is that the average of the the whole interval has to be above

0.0 (meaning at least one reading within the interval is cloud) and the second definition is

that the average of the interval has to be above 0.5, which indicates that at least 50% of the

readings had to be cloud within the interval.

For this contingency table analysis, although correct negatives and false alarms were

calculated, they do not give any information on the accuracy of the ceilometers. False

alarms indicate that the ceilometer detected a cloud but there was no rain measured at the

same interval, something that can occur. And correct negatives indicate that there was no

rain and no cloud detected. This is a positive result, however, it does not give information

43



on whether or not the ceilometer can correctly detect a cloud or correctly detect no-cloud

(clear sky) on days without rain. Thus, only cases where there was a rain measurement (hits

and misses) can be used to asses the ceilometers with the rain gauge data.

On Table 3.3, the percentage of misses and hits (only considering rainfall cases) are

presented for all comparison data sets. It is clear that for Vaisala, the ceilometer only missed

less than 3% of the time, and the best results (only slightly) occurred when considering a

cloud measurement being a measurement of the whole sampling interval being greater than

0. For the ALCF data, the results improved by 2% from those obtained using Vaisala data

for UNAM and ERNO, but for JQRO, the hit percentage decreases by 20%. A possible

reason for this large amount of change in JQRO is the amount of cases used to calculate

these percentages. For the Vaisala data, there were 4,221 cases for UNAM, 1,221 for JQRO

and 2,430 for ERNO, which is a good sample population for this study. For the ALCF

data, UNAM had 1,997 cases for the 5 minute resampling, ERNO had 1,060 and JQRO

only had 672 cases. And for the 1 minute resampling, these cases decreased by around half

for all stations. These numbers indicate that Vaisala had almost twice as many cases to

work with, mainly due to the different temporal resolution of both data set, which give more

accurate statistics than ALCF. For JQRO, the amount of cases used with the ALCF data

was far fewer than all other comparison sets, which can affect the overall results and can

explain the large variation between the Vaisala results and ALCF results. Using resampled

and the limited ALCF data lead to the elimination of around 92% of all possible rainfall

cases available for JQRO, consequently producing less accurate statistical measurements.

Nonetheless, the results do indicate that the ceilometers can detect the presence of clouds

when rainfall occurs with high accuracy, an important results since ceilometers have been

known to fail during rainfall.
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Vaisala ALCF

>0.0 >0.5 5 min 1 min

UNAM
Hit% 99.1 98.2 99.2 99.4

Miss% 0.9 1.8 0.8 0.6

JQRO
Hit% 99.8 99.5 79.2 78.5

Miss% 0.2 0.5 20.8 21.5

ERNO
Hit% 97.9 97.0 99.3 99.2

Miss% 2.1 3.0 0.7 0.8

Table 3.3: Results of the hits and miss percentages (only considering cases where rain was measured) of
the contingency tables between rainfall data and ceilometer data. For the Vaisala data, “>0.0” indicates

that a cloud hit was defined as a measurement bigger than 0.0 and “>0.5” indicates that the cloud
measurement had to be a measurement bigger than 0.5. For the ALCF data, “5 min” indicates a 5

minute resampling and “1 min” indicates a 1 minute resampling.

3.6.4 Using rainfall data to evaluate the satellite cloud mask

Like the ceilometer data, a contingency table analysis was done with the cloud mask using

the rain gauge data. Because these two data sets also had different temporal resolutions (5

minutes for the cloud mask and 1 minute for the rainfall data), two resampling intervals

of 1 minute and 5 minutes were used. For the spatial resolution, the pixel whose center is

closest to the meteorological station was used for the comparison. Additionally, two different

minimum average rainfall within the 5 minute interval were set, above 0.0 mm (1 reading

within the interval indicated rain) and above 0.06 mm (more than half the readings within

the 5 minute interval were of rain).

The overall results of this analysis can be observed in Table 3.4. Like the analysis between

the ceilometer and the rainfall data, only the hits and misses (cases where rainfall occurred)

can give an insight into the accuracy of the cloud mask. These results clearly show the cloud

mask is very precise, with an accuracy of more than 99%. It should be noted that, like in the

analysis between the ceilometer data and rain gauge data, the number of cases analyzed is as

large as the number of total cases analyzed in this study, with some stations only reporting

less than 500 cases of rain. Regardless, it is enough to conclude that the cloud mask can

accurately detect clouds when rainfall is occurring. Additionally, for the 15 total misses, the

measured precipitation was below 0.2 mm, which can suggest that its accuracy decreases
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only slightly with light rainfall.

1 min
5 min

>0.00 >0.06

UNAM
Hit% 99.7 99.8 100.0

Miss% 0.3 0.2 0.0

JQRO
Hit% 100.0 99.8 100.0

Miss% 0.0 0.2 0.0

ERNO
Hit% 99.4 99.6 100.0

Miss% 0.6 0.4 0.0

Table 3.4: Same as Table 3.3 for the contingency results between the cloud mask and the rainfall data.
These were done with two resampling intervals (“1 min” for 1 minute resampling and “5 min” for the 5

minute resampling). For the 5 minute resampling data, “>0.00” means that the rainfall within the
interval had to average above 0.0 mm for the whole interval to be considered a rainfall measurement and
“>0.06” means the average had to be above 0.06 mm for the whole interval to be considered a rainfall

measurement.

3.7 Conclusions

From the results presented in the previous two sections, it is clear that the cloud mask has

a good accuracy. For all comparison sets and resampling intervals, the number of positive

results were above 60%, the values of PoD were above 0.6, with the highest values reaching

0.95, the PoFD values were below 0.5, and the FAR values were below 0.55. The skill score

KSS, which calculates the difference between PoD and PoFD, was above 0.2 for all, indicating

that, in general, PoD is higher than PoFD by at least 0.2.

The best results were obtained for the UNAM station, which had a PoD higher than

0.8 and a PoFD below 0.3, with its comparison set 2 having the highest overall PoD of

0.95. The results using Vaisala processed data were better than those obtained using ALCF

data. This variation between the two ceilometer data sets can be partly explained by the

low cloud-base heights issues with the ALCF data. The results obtained comparing the 3 by

3 satellite pixel grid around the ceilometer station with the ceilometer data were better for

PoD than the ones calculated for the pixel whose center was closest to the station; however,

the skill scores indicate that the individual pixel did better. The nighttime results were
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better than those at any other time-of-day and the whole day, although it should be noted

that the number of cases for each time-of-day varied, with nighttime having more cases, and

the ceilometers are less affected at night by atmospheric aerosols and precipitation. In terms

of resampling intervals, there were cases where the 5 min interval gave better results than the

larger intervals and cases were the opposite occurred, as well as inconsistent patterns with

each variable, which makes it hard to determine which interval was best. For example, for the

most part PoFD was higher for the 15 min interval, however, there were cases where PoFD

had no change between intervals or was slightly higher for the 5 min interval. Regardless, for

the majority of the cases, the difference in the results between the three sampling intervals

varied from 0.0 to 0.05, with the exception of the FAR, which tended to vary by almost 0.1.

Finally, throughout the year, the best results were obtained in the summer months, between

May and October, coinciding with the rainy season of Mexico.

In summary, when only considering Vaisala data that had more consistency and reliability,

the cloud mask had an accuracy between 69% - 85%, a probability of detection of 0.81 - 0.95, a

probability of false detection of 0.37 - 0.40, and a skill score of around 0.39 - 0.62.These overall

results are consistent with the results obtained with different instruments, in particular, by

Jimenez (2020), who used CALIPSO retrievals to assess the Clear Sky mask of the GOES-16

satellite and found accuracy levels of 86% overall. With these results and the >99% precision

in detecting clouds when precipitation is occurring, it can be concluded that the GOES-16

cloud mask has a good overall cloud detection accuracy.
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Chapter 4

Investigation Part II:

Characterization of rainfall using

GOES-16 satellite products

One of the main objectives of this study was to characterize the precipitation that

occurs in the Central Mexico region using GOES-16 satellite data, and now that one of the

fundamental Level 2 products of the GOES-16 satellite has been validated for Mexico, it can

be safely assumed that the rest of the Level 2 products that use the cloud mask as a base are

representative of the atmospheric conditions in Mexico. The precipitation characterization

analysis involved evaluating the rain events with the reflectance values given by the GOES-

16 satellite, in order to see if there are any patterns in the satellite data that occur before

the development of rainfall. This characterization was done using Queretaro weather radar

data for the precipitation data.

4.1 GOES-16 satellite data

The GOES-16 satellite has various Level 1 and Level 2 products. However, several Level

2 products were not available during rainfall events for the period of analysis. For exam-

ple, because the dominating precipitation regime in the region during the rainy season is

a convective precipitation regime, one potentially helpful product available is the “Derived

Stability Indexes”. These include indexes such as the Convective Available Potential Energy

that give an insight into the stability of the atmosphere and can be used as indicators of

the possibility of convective development. However, as mentioned before, these were not
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available before or during rainfall events. Figure 4.1 shows an example of the GOES-16

Convective Available Potential Energy values with a weather radar echo during a rainfall

event, clearly showing the disappearance of the satellite values over areas of precipitation

measurements.

Figure 4.1: Example image of GOES-16 “Convective Available Potential Energy (CAPE)” values
(gray-color scale) with Queretaro radar rain rate (jet-color scale) for the event occurring July 1st, 2018

at 23:21Z.

For this reason, most of the Level 2 products were not useful for this rainfall analysis.

Only two Level 2 products were found to give information regardless of the presence of rainfall

during the period of analysis: “cloud-top height” and “cloud-top phase”. The GOES-16

cloud-top height product or ACH is a level 2 product that measures the cloud top height of

each pixel marked as cloud. It is derived using the ABI Cloud Height algorithm with three

of the 16 spectral channels (14, 15 and 16 with wavelength of 11.2 µm, 12.3 µm, 13.3 µm

respectively) and uses the satellite’s cloud mask as a base (Heidinger, 2012). The product

has a 10 km by 10 km grid in the Continental US GOES-16 mode and can provide data

during the day and night.

The GOES-16 ACTP determines the cloud-top phase of a cloud pixel. The product

algorithm uses the cloud mask and the ABI channels 9, 10, 14, 15 to determine if a pixel

is cloud or not and determines which of the four cloud phases best describes the pixel

(Pavolonis, 2010). The result the product gives is a number between 0 to 5; 0 being clear

sky and 1 through 4 for the cloud phase categories, which are: warm liquid water phase (1),

supercooled liquid water phase (2), mixed phase (ice and liquid water) (3), and ice phase

(4). The results marked with 5 are of unknown cloud phase. This product has the same
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spatial resolution (2 km by 2 km) and grid as the Continental US GOES-16 mode and is

also available day and night.

The other products used in this analysis were the Level 1 ABI channel 13 (10.3 µm

wavelength) and channel 15 products (12.3 µm wavelength). These two channels are the

‘dirty’ and ‘clean’ windows (respectively) used to calculate the SWD with equation 2.1 (Sec-

tion 2.1.2) to indirectly measure low-level water vapor in the atmosphere (CIMSS, 2018a,b;

Schmit et al., 2017).

4.2 Queretaro Radar

The Queretaro meteorological radar, operated by the Queretaro State Water Commission

(CEA, 2022), is a Doppler, “C” band radar with pulse compression (O’Hora and Bech,

2005), located at 20.7802◦ Lat, −100.5504◦ Lon, approximately 27 km northeast of the city

of Santiago de Queretaro, Queretaro, Mexico. It has a range of 239.75 km and a beam width

of 1◦. The data from this radar was cleaned using the Gabella methodology (Gabella and

Notarpietro, 2005) and processed with the “Wradlib” Python library (Heistermann et al.,

2013). The rain rate was calculated using the Z-R relation described in equation 2.2 with

the parameters a = 220, and b = 1.6. After performing a visual quality control of the radar

data, a total of 5 days were removed due to faults, from July 2nd, 17:42Z to July 5th, 17:42Z,

July 16th, 2:57Z to July 17th, 14:07Z, and August 16th starting at 2:02Z.

Figure 4.2: Picture of the Queretaro weather radar run by the CEA (source: CEA, 2022).
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4.3 Methodology

The first step to obtaining a characterization of the precipitation in the region was to

obtain a single common grid to work with both data sets. This radar-satellite common grid

was also an essential component in later parts of the study that involved the use of nowcast

models.

It was determined that the radar data was to be interpolated into the GOES-16 satellite

grid because the satellite grid has the largest resolution of the both types of data sets and it is

a uniform, rectangular grid (for the area in question). The radar data was interpolated using

the griddata function with the nearest-neighbor interpolation method of the scipy library of

Python. A visualization of the final radar-satellite common grid over the Queretaro radar

coverage area can be observed in Figure 4.3 for the 2 km by 2 km GOES-16 Continental US

grid and in Figure 4.4 for the 10 km by 10 km GOES-16 ACH grid. The radius of the grid is

the radar radius/range plus the resolution of each grid (10 km or 2 km), guaranteeing that

all of the radar range was completely covered with the grid.

Figure 4.3: GOES-16 satellite 2 km by 2 km grid used as radar-satellite common grid over the Queretaro
radar coverage area. Grid is marked by the pixel centers. Basemap sources: Esri, USGS, NOAA (ESRI,

2020).
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Figure 4.4: GOES-16 satellite 10 km by 10 km grid used as radar-satellite common grid over the
Queretaro radar coverage area. Grid is marked by the pixel centers. Basemap sources: Esri, USGS,

NOAA (ESRI, 2020).

The characterization analysis involved comparing the radar rain rate values interpolated

into the radar-satellite common grid with the values of the cloud-top height, SWD and the

cloud-top phase, for each individual pixel in the grid. Furthermore, it included observing how

the values of each of the satellite products used changed in the time prior to the measurements

of the radar rain rate, as well as comparing the values of the satellite products when there is

rainfall with the values when there is no rainfall. Finally, the period of analysis was 47 days,

from July 1st 2018 to August 16th, 2018, which falls within the rainy season of the region

(which runs from late May to early October).

4.4 Results

4.4.1 Precipitation characterization using the satellite cloud-top

height

Figure 4.5 shows an example of the ABI Cloud-base height (ACH in the figures) and

the radar rain rate over the Queretaro radar coverage area, in their respective grids. From

these and other cases not shown, it can be observed that the deeper clouds coincide with the

occurrence of a high rain rate. Continuing, in order to obtain a more general comparison

between the cloud-top height and the radar rain rate, a scatter plot was obtained depicting
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the values of each pixel (denoted a case) in the radar-satellite common grid for the whole

period of study, and it can be found in Figure 4.6. The plot does not show a clear pattern

between both variables, although a large cluster of data points was found between the cloud-

top height of 10 km and 17.5 km, consistent with altitudes of cumulus and cumulonimbus

clouds. Additionally, the majority of points with high rain rates occur within this interval

of cloud-top height. The average value for the cloud-top height for all cases was 11.29 km.

Figure 4.5: Example images of the cloud-top height values (top) and the Queretaro radar rain rate
(bottom) for the event occurring July 1st, 2018 at 01:01Z (left) and July 1st, 2018 at 01:06Z (right).
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Figure 4.6: Scatter plot of the values of rain rate and cloud-top height (ACH) that occur in each pixel in
the radar-satellite common grid over the study area during the entire period of analysis.

These results did not give a complete insight into the possible relationship between these

two variables. Thus, to expand this analysis, Figure 4.7 shows the average cloud-top height

for each of the offset times for all cases and for cases with rain rates that fell within cer-

tain intervals. Meaning, the values of the rain rate were compared with the values of the

cloud-top height of a given amount of minutes (offset time) prior to the rain rate values.

The offset times were from 5 to 90 minutes in intervals of 5 minutes and from 120 to 240

minutes in intervals of 30 minutes. This graph uses negative offset times to indicate the time

prior to precipitation. Considering Figure 4.7, it can be observe that the average cloud-top

height increased with increasing rain rate values. Additionally, the average cloud-top height

decreased with increasing offset time for all intervals. In other words, the cloud-top height

on average increased in the time prior to the development of rainfall. The biggest increases

occurred for the highest rain rate values, with cases with rain rate of 200 mm/hr or higher

rising 2.6 km from the average value observed 90 minutes prior to rainfall. On average, the

average cloud-top height increased 2.5 km from the value observed 240-minute before rainfall

occurs and 0.5 km from the average observed 90-minute prior to the development of rain.

In addition, Figure 4.8 shows the change in the average cloud-top height per 5 minutes for

each offset interval. For rain rates above 5 mm/hr, the sharpest increases occurred between

the offset times of 85-minute and 45-minute, indicating that these are the times when, on

average, the cloud-top height grows the most prior to the development of this type of rainfall.

Moreover, for the highest cloud-top height, the values in Figures 4.7 and 4.8 were noisier
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than for smaller rain rates. This is due to the fact that the statistical arithmetic average (or

mean) is not robust or resistant and is affected by the sample size used. For this analysis, the

amount of cases decreased significantly with higher rain rates, with the distribution of cases

per rain rate interval in percentage presented in Figure 4.9 and the total cases analyzed being

593429. From these percentages, rain rates higher than 100 mm/hr have less than 0.11% of

the cases, or approximately 700 cases, and all other intervals have more than 2,200 cases.

Moreover, the average was further affected by the fact that the high rain rates of 200 mm/hr

or more had a larger distribution of rain rate (≥ 200 mm/hr) because they were divided

into larger intervals, whereas lower rain rates were distributed into intervals less than 100

mm/hr in length. This fact and the smaller sample size caused a higher likelihood of outliers

occurring in these intervals (something that is observed in the scatterplots of Figure ??),

affecting the averages obtained.
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Figure 4.9: Distribution of the percentage of cloud-top height cases that fall in each rain rate interval
indicated.

Finally, Figure 4.10 is the distribution of cloud-top height for pixels with rain rate (a)

and for pixels without rain rate (b). Figure 4.10a shows that for the vast majority of rain

rate pixels, the cloud-top height fell between 10 km and 13.5 km, with the highest percentage

being 2.9% occurring at 11.4 km. On the other hand, for non-rain rate pixels Figure 4.10b,

the peak cloud-top height fell between 10.5 km to 13 km with a maximum of 1.9% at 11.9

km, and a second clear peak of cases occurring around 1.5 km - 3.5 km with a maxima of

1.45% at 2.2 km. The average for non-rain rate pixels was 7.66 km. This points to the fact

that for around half the non-rain rate pixels, cloud-top height is lower than for rain-rate

pixels. One final note on the comparison between the cloud-top height and non-rain rate

pixels, the methodology used does not take into consideration the fact that some non-rain

rate pixels can be part of a bigger system where there is only rainfall in certain parts and not

in the whole system itself. Additionally, the cloud-top height does not give any information

on the depth of the cloud, which causes difficulty in distinguishing hight-altitude shallow

clouds, and deep convective clouds. Considering this can explain, in part, the large amount

of non-rain rate pixel cases with high cloud-top height.

Overall, the results suggest that for around one third of the time, cloud-top height tends

to be around 8 km - 9 km lower when there is no precipitation present. Furthermore, the

average cloud-top height tends to grow by 0.5 km at 90 minutes prior to the occurrence of

rain, with the fastest growth occurring between 85 to 45 minutes prior to the development of
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rainfall for rain rates of 10 mm/hr or higher, suggesting a growth in the depth of the clouds

prior to the development of rainfall, consistent with the behavior of the growth of cumulus

clouds prior to convective precipitation. However, the characterization of precipitation using

only the cloud-top height product is very limited due to the fact some factors cannot be

determined with this variable alone (such as type of cloud).

(a) (b)

Figure 4.10: Distribution of cloud-top height cases (a) with radar rain rate and (b) without radar rain
rate.

4.4.2 Precipitation characterization using the satellite split-window

difference

When comparing the pixel-by-pixel results of the radar rain rate and the GOES-16 Split-

Window Difference (SWD), Figure 4.11 shows a relationship between both variables, with

the majority of rain rate cases having a positive SWD, with extreme rain rates (of 100 mm/hr

or above) showed an SWD between 0 K to 5 K, with an average of 1.99 K.
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Figure 4.11: Example images of the SWD values (top) and the Queretaro radar rain rate (bottom) for
the event occurring July 1st, 2018 at 00:01Z (left) and July 1st, 2018 at 00:06Z (right).

Figure 4.12: Scatter plot of the values of rain rate and SWD that occur in each pixel in the
radar-satellite common grid over the study area during the period of analysis.
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Continuing, an analysis was conducted with different offset times (comparing radar data

with satellite data that occurred at the defined offset time prior) to obtain information

regarding how the SWD behaves during convective development. Figure 4.13 shows the

average SWD at different offset times for different intervals of rain rate. For all cases, the

average SWD increased with offset time, or in other words, the average SWD decreased when

getting closer in time to the rainfall measurement. The average change between the 0-minute

and 240-minute offset times was 1.89 K; and between the 0-minute and 90-minute offset times

was 0.81 K. This change increased with increasing rain rate values, with the highest change

observed for the rain rate interval of > 200 mm/hr, equal to 3.13 K for the 0-minute to 240-

minute offset times, and 2.53 K for the 0-minute to 90-minute offset times. Furthermore,

this graph also shows that the average SWD decreased with increasing rain rate for offset

times of 20-minute or less, and the opposite was true for offset times of 25-minute or higher.

This decrease in SWD preceding rain events was also observed by Grasso et al. (2020), where

a storm case study analyzed the SWD derived from the GOES-16 data, revealing that the

SWD dropped below 3 degrees Celsius just before and during the onset of rainfall. Figure

4.14 shows the change in average SWD per 5-minutes for all offset times. In general, the

change was negative, indicating that the SWD decreased before the development of rainfall.

The biggest decrease occurred for high intensity precipitation between the 5-minute offset

time and the 90-minute offset time. The values also formed a valley between the 75-minute

and 25-minute offset times, with the maximum change occurring between the 50-minute and

45-minute offset times. The average change that occurred during this valley was of 0.6 K

per 5-minutes for all cases. Lastly, the percentage of cases in each interval of rain rate used

for Figure 4.13 is similar to those of Figure 4.7 with a variation of less than 1% for the total

cases of 1,4900,868. All intervals had more than 2100 cases for the analysis.
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Finally, Figure 4.15 shows the distributions of the SWD for pixels with rain rate (a) and

pixels without rain rate (b). Figure 4.15a supports the observations made with Figure 4.18

that most cases had an SWD between 0 K - 5 K. The interval with the highest percentage

of cases, 13.5%, was that of 1.23 K - 1.44 K. For non-rain rate cases, Figure 4.15b shows the

majority of cases fell between 0 - 10K, with an increase in the number of cases between 5

K - 10 K, in comparison to rain rate cases. The higher percentage of cases, 4.1%, occurred

for the SWD between 1.86 K - 2.07 K. The average for non-rain cases was 3.62 K. The

main differences observed between the no rain rate cases distribution and the rain rate cases

distribution are the number of cases above and below 2.5 K. For non-rate rate cases, 37.2%

of cases were below 2.5 K and for rain rate cases there were 82.2%, indicating that SWD

below 2.5 K tended to occur along with precipitation.

(a) (b)

Figure 4.15: Distribution of SWD cases (a) with radar rain rate and (b) without radar rain rate.

Considering all the results in this section, the relationship between rain rate and SWD is

an inverse one. The SWD tends to decrease with the presence of rain rate and intensity of

rain rate. On average, the SWD tends to decrease the most between 75 minutes to 25 minutes

prior to the onset of rain, with a drop of 0.6 K for all intensities of rain rate. This change

in SWD prior to the measurement of rainfall is consistent with observations made regarding

the convective precipitation regime. Adams et al. (2013) observed an increase in the vertical

water vapor of the atmosphere in the hours prior to the occurrence of convective precipitation.
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For this case, the increase of low-level water vapor marked by the decrease of SWD can

be indicative of the increase in vertical water vapor associated with the development of

convective precipitation.

4.4.3 Precipitation characterization using the satellite cloud-top

phase

Figure 4.16 shows the ABI Cloud-top phase (ACTP) and the radar rain rate. From the

images, it can be observed that the cloud-top phase that occurs with rain rate is phase 4 or

ice phase. Because the results are a set of discrete data, a scatter plot would not be helpful

when trying to obtain a general relationship between the two variables like the previous

analysis with cloud-top height and SWD. Thus, a distribution was obtained (Figure 4.17a)

of the cloud-top phase results for all rain rate pixels or cases (in the radar-satellite common

grid). The Figure shows that 92.3% of cases were the ice phase (phase 4), 4.2% were of

mixed phase (phase 3), 1.85% were supercooled water (phase 2) and 1.4% were warm water

(phase 1). Only around 0.2% were clear sky pixels (phase 0) and there were less than 0.01%

of unknown (phase 5). Figure 4.17b shows the same distribution of cloud-top phase but for

cases with no rain rate. The differences between Figure 4.17a and 4.17b were clear, with

only 42.3% of the cases being ice phase and almost 29.5% being clear sky pixels for Figure

4.17b. A sharp increase in the percentage of warm water phase cases was also observed,

growing to 22.4% in Figure 4.17b.
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Figure 4.16: Example images of the cloud-top phase values (top) and the Queretaro radar rain rate
(bottom) for the event occurring July 1st, 2018 at 00:01Z (left) and July 1st, 2018 at 00:06Z (right).
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(a) (b)

Figure 4.17: Distributions of the cloud-top phase (ACTP) results for (a) cases with rain rate and (b)
cases with no rain rate.

Similar to the previous two satellite products, an analysis was performed with different

offset times. Figure 4.18 displays the plot of the percentage of the distributions for each

cloud-top phase result for the various offset times analyzed. This graph shows that the

percentage of ice phase results decreased with offset time. In other words, the amount of ice

phase cases increased prior to the onset of rainfall. The increase was of around 32.0% from

240-minute to 0-minute offset time, and of 11.0% from 90-minute to 0-minute offset time.

The other cloud-top phase result that had a significant change was the warm water phase.

The graph shows that this particular phase decreased prior to the onset of rainfall by 24.2%

in 240-minutes and by 9.0% in 90 minutes. Clear sky cases were higher with high offset time,

but they were 6.2% or less of the total, and they decreased to less than 1.0% with 75-minute

offset time or less. These results could suggest the possible growth of clouds prior to the

onset of precipitation. The increase of ice phase cases and decrease of warm water phase

cases can mean the deepening of clouds to heights where the temperature is low enough for

water vapor condense and turn to ice. Additionally, the slight increase in the percentage of

mixed phase cases up until 25 minutes prior to the development of rain and then decreasing,

suggesting that there were cases that could have turned from warm to mixed phase to ice

phase in the 240 minutes prior to the development of rain.
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Figure 4.19 shows the change of the percentages of each cloud-top phase result per 5

minutes for the all offset times. This graph shows that the clear sky phase decreased until

reaching 30-minute offset time, then the change from this point forward to smaller offset

times was almost 0. For the warm water phase, it decreased throughout the the majority

of the period of time, with the largest decrease occurring between 90-minute and 50-minute

offset time. For offset times of 15-minute and less, the warm water phase increased. The

supercooled water phase decreased throughout the whole period. However, the change was

small especially for offset times higher than 120-minute. The mixed phase’s change was also

very small for offset times of 150-minute or higher. For offset times between 120-minute

and 25-minute, the mixed phase increased with a peak occurring at 45-minute offset time.

For offset times smaller than 25-minute, the mixed phase cases started to decrease. Finally,

the percentage of ice phase results increased throughout the whole interval, with the largest

increase occurring between 90-minute and 70-minute offset time. Similar to Figure 4.18, the

changes showed in this graph, especially the decrease in warm water phase cases, the increase

and decrease of mixed phase and the increase of ice phase, also indicate that within the 240

minutes prior to the development of rainfall, clouds tended to grow to heights were water

freezes, transitioning from warm cloud phase to mixed phase to ice phase. Additionally,

the magnitud of the changes observed in Figure 4.18 also varied with rain rate intensity

(not shown). The magnitud of the change in the percentages of each phase increased with

increasing rain rate intensity, but the general pattern observed was the same as Figure 4.18

for all intensities.

Table 4.1 shows the percentages of the various cloud-top phase phase results from the

distributions similar to Figure 4.17a but for different intervals of rain rates. The overall

pattern in each distribution was the same, with over 91% of the cases being in the ice phase.

The interval with the highest percentage of the ice phase, 95% was the rain rates of 200

mm/hr or higher, and dropped with decreasing rain rate to around 91.4% until reaching the

interval 1 mm/hr to 5 mm/hr, where the percentage increased to 93.0%. However, the cases

decreased to 91.9% for lower rain rates. All other cloud-top phase results have the opposite

behavior, where they increased with decreasing rain rate. The second highest cloud-top

phase results was the mixed phase, with cases falling between 2.0% - 5.0% and the interval

with the highest clear sky cases was for the lowest rain rate interval at 0.2%.
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rain rate

(mm/hr)
Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

0 - 1 0.221% 1.468% 2.057% 4.396% 91.855% 0.003%

1 - 5 0.162% 1.352% 1.699% 3.858% 92.926% 0.003%

5 - 10 0.164% 1.910% 1.817% 4.735% 91.371% 0.003%

10 - 50 0.128% 2.089% 1.749% 4.979% 91.053% 0.002%

50 -100 0.058% 1.847% 1.390% 4.259% 92.441% 0.005%

100 - 200 0.075% 1.888% 1.155% 3.254% 93.622% 0.007%

>200 0.045% 1.920% 0.848% 2.232% 94.955% 0.000%

Table 4.1: Percentage of cases of each cloud-top phase phase for the rain rate intervals indicated.

In summary, the overall results show that before the onset of rainfall, there was a change

in phase for a large quantity of cases, around 29% from warm water phase to ice phase.

These changes, along with the changes seen in the supercooled phase and mixed phase cases,

indicate the possible growth of clouds to heights with temperatures low enough for water

vapor to freeze, which can be representative of cumulus clouds growing and deepening prior

to the occurrence of precipitation. Notwithstanding, like with cloud-top height, these results

cannot distinguish between high-altitude cirrus clouds and deep convective clouds.

4.4.4 General Diurnal Cycle

Considering the previous results, it was clear the most helpful satellite variable of those

analyzed with the radar rain rate was the Split-Window Difference (SWD), thus a general

idea of the diurnal cycle was obtained using the SWD and the radar rain rate. This was

done by calculating the average of both variables over the entire common grid (called “area

average”) for each image available in the analysis time frame and observing how it varied

throughout the day. Moreover, the radar rain rate average (RR) was calculated by replacing

NaN values with 0 to have a consistent methodology and results with the SWD area averages

(SWD) values. This change did not affect the overall patterns of RR, only decreased the

magnitude of the values.

Figure 4.20 shows the running mean for all days available for the SWD and the RR, as

well as the hourly average of both. The mean values show that rainfall typically commenced
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after 11 hr local time, with a maximum around 17 hr local time. On the other hand, the SWD

tended to increase at around 6 hr local time and its maximum occurs at 12 hr local time. The

behavior of RR is consistent with the observed diurnal cycle of the convective precipitation

in various regions during the rainy season (Jauregui and Romales, 1996; Magana et al., 2003;

Ochoa et al., 2015). The graphs also highlight the inverse relationship between SWD and

the presence of precipitation, with a noticeable decrease in SWD coinciding with an increase

in RR. Additionally, the rise in SWD observed around 6 hr local time corresponds to the

sunrise, indicating a decrease in low-level water vapor levels with the presence of sunlight.

It is important to emphasized that both SWD and RR were averages over the entire region,

considering all areas where there is no rain rate as 0.0 mm/hr. Consequently, the observed

maximum and minimum SWD values exceeded those reported in Section 4.4.2.

Figure 4.20: The 30-minute running mean of the area average of the radar rain rate (RR) and SWD
(SWD) per day for all available days with the hourly average (black line).
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4.5 Conclusion

In conclusion, an analysis of three out of the four variables used to characterize the radar

rain rate in central Mexico revealed noteworthy relationships, summarized in Table 4.2.

In regards to the cloud-top height and cloud-top phase (cloud-top height and cloud-

top phase respectively), the changes observed in these two satellite products give a small

insight into the type of precipitation that occurs in this region by indicating cloud growth.

During the rainy season, which includes the period of analysis for this study, convective

precipitation is the most common type of precipitation in the region. The changes in the

average cloud-top height prior to the measurement suggest that, on average, clouds tend to

grow prior to rainfall, characteristic of convective precipitation. The variations in the average

percentage of the various cloud phases given by the cloud-top phase prior to precipitation also

suggest a growth of clouds, from shallow “warm-water” cumulus clouds to deep “ice-phase”

cumulonimbus clouds. However, the cloud-top height and cloud-top phase were unable to

discern between high-altitude clouds and the cumulonimbus clouds. Consequently, these

variables proved less effective for identifying potential convective activity areas.

Conversely, while the Split-Window Difference (SWD) displayed a weak relationship with

radar rain rate, it exhibited a substantial alteration preceding rainfall, dipping to approxi-

mately 2 K when rainfall was present and falling below 2.5 K 60 minutes before rain rate

measurements, indicating that an increase in low-level water vapor occurs before the devel-

opment of rainfall, characteristic of convective precipitation (Adams et al., 2013). These

findings established 2.5 K as a threshold value signaling potential convective development,

a metric utilized in evaluating the nowcast model.

Variable Avg. w/rain rate Avg. w/o rain rate

ACH 11.29 km 7.66 km

SWD 1.99 K 3.62 K

ACTP N/A N/A

Table 4.2: Summary of results of the characterization of the precipitation using radar rain rate and the
GOES-16 satellite products.
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Chapter 5

Investigation Part III: Evaluation of

the pySTEPS nowcast models with

GOES-16 and Queretaro radar data

The primary aim of this study was to assess the applicability of nowcast systems in

the central Mexico region and determine the feasibility of implementing such forecasting

methodologies leveraging the available data in the area. The key source of nowcast models

for this investigation was the pySTEPS Python library. As outlined in Chapter 2.4, pySTEPS

encompasses various nowcast models and a range of tools to validate these forecasts. This

chapter entails the methodology description and the outcomes derived from evaluating the

pySTEPS nowcasts using data from GOES-16 satellite and the Queretaro radar.

5.1 Why the Split-Window Difference?

Chapter 4 showed that the satellite products used in the characterization of precipitation

had a weak relationship with precipitation, especially because some products were not able

to distinguish between different types of clouds, such as deep convective clouds and high

altitude cirrus clouds. Although this weak relationship was also observed with the split-

window difference or SWD for, a change in the SWD was observed between 90 and 60

minutes prior to precipitation occurring, indicative of the increase in low-level water vapor

that occurs before the development of convective precipitation. In other words, the decrease

of the SWD below 2.5 K indicates the likelihood of rainfall within 60 minutes for the region.

Figure 5.1 shows the SWD field limited to values between 0 and 2.5 K and radar rain rate
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of one of the events analyzed, 8:07 Z, 09/08/2018. This Figure highlights how the SWD

values can indicate potential areas of convective development one hour before and after

the rain event started, and in some cases 2 hours prior. However, this example also shows

that not all SWD areas below 2.5 K developed into precipitation, suggesting that while

the SWD can overestimate potential precipitation areas. Regardless, it remains a valuable

tool for identifying potential convective development ahead of rainfall. These observations

are consistent with findings from previous studies utilizing satellite data, including GOES-

16 data (Lindsey et al., 2014, 2018; Grasso et al., 2020). The SWD data can be used as

input in nowcast models to predict potential precipitation areas before the initial radar

measurements of rainfall. Once the precipitation event commences, radar data becomes

more reliable for predicting rain intensity, while the SWD can aid in indicating the possible

direction of precipitation alongside radar data, though not its intensity due to the lack of a

clear relationship between rain intensity and SWD. Ultimately, the combined use of SWD

with nowcast models facilitates short-term predictions of potential precipitation areas before

the first radar measurements, followed by the use of radar observations to forecast storm

behavior.
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Figure 5.1: Rain rate echoes from the Queretaro radar (top images) and SWD field below 2.5 K from the
GOES-16 satellite (bottom images) for the event starting at 18:07Z, 09/08/2018. Left images are for one
hour before start of event, middle images are of start of event and right images are of 1 hour after start

of event.

5.2 Data preparation

Two main data sets were used in this part of the study: Queretaro radar rain rate and the

SWD calculated with the GOES-16 satellite data. However, pySTEPS is mainly designed

to work with radar data. For this reason, before actually inputing any satellite data into

the nowcast models of pySTEPS, it was necessary to prepare the data sets in order for

pySTEPS to work correctly and efficiently with the data at hand. Furthermore, it was also

important to verify that pySTEPS also worked properly with the Queretaro radar rain rate

data. Before inputting the SWD values to be used by the nowcast models or advection

functions in pySTEPS, the SWD field provided by the satellite had to be modified. It was

observed that the algorithms developed by pySTEPS work best when the input data matrix
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is made up of NaN or missing values with clusters or groups of data points (like the data

matrix provided by most radars). However, the satellite provides a data value in every single

pixel of the grid. Thus, the SWD field had to be masked to those areas where development

of rainfall is possible. The 2.5 K threshold SWD value obtained in Section 4.4.2 was used

to filter the SWD field, by eliminating all values of SWD above 2.5 K and below 0 K (since

there were very few cases with negative SWD values). Additionally, the values had to be

multiplied by 100 to amplify the changes that occurred in the field. With the filtered SWD

field, the nowcast models and the Lucas-Kanade flow field function were used and results

were obtained without issue. From this point forward, any reference to “all SWD field” or

“all of the SWD field” or “the SWD field” refers to this filtered SWD field, unless otherwise

specified.

As for the radar data, the same processing methodology described in Section 4.2 was

also done to obtain the rain rate for this part of the study. The radar rain rate data used

in pySTEPS was the data interpolated into the radar-satellite common grid (see Section 4.3

and Figure 4.3) due to the fact that pySTEPS works with rectangular grids, such as the

radar-satellite common grid, and cannot work properly with polar grids, such as the original

radar data.

5.3 Events

Another obstacle to tackle before evaluating the nowcast models was determining the

events used in the evaluation. The period of analysis was the same as Chapter 4, from July

1st 2018, to August 16th, 2018. This allowed the events to be obtained using the 30-minute

running mean of the area average of the radar rain rate, presented in Figure 4.20 in Chapter

4. The start of each event was defined as the occurrence of a local minimum in the data after

10 hr local time and before 20 hr local time, a period where the graph shows the majority

of the events tended to start. To obtain the events efficiently and computationally fast,

the second derivative test1 was used to locate the local minimum. After locating he local

minimum, the start of the event was considered the time when the average precipitation

reaches a minimum of 0.002 mm/hr after the local minimum. This was done to eliminate

any possibility that the local minimum was caused by noise in the radar data and to mark

the start of the event when moderate rain is starting to be detected and not when small

1the second derivative test tells where a function has a local minimum: where the first derivative is 0
(inflection point) and the second derivative is greater than 0.
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isolated light rain events start. This methodology resulted in a total of 36 events, 23 for

July and 13 for August. This methodology can be considered efficient because, assuming an

event per day like Figure 4.20 suggests, the process picked 36 or 43 possible events, resulting

in an 83% efficiency.

Figure 5.2: The 30-minute running mean of the area average of the radar rain rate (RR) of the events
considered for the nowcast evaluation with the start of each event.

5.4 Methodology

For the SWD nowcast assessment, the nowcasts used were those provided by the pySTEPS

library of Python (see Section 2.4). The pySTEPS library includes several types of nowcasts,

however, only three were used for this study: Extrapolation, S-PROG, and STEPS. Extrap-

olation is the simplest nowcast method available in pySTEPS, which is an extrapolation

method through advection. In other words, it simply moves the given data through a spec-

ified motion field without modifying its magnitude or intensity. The Spectral-Prognosis or

S-PROG nowcast, described by Seed (2003), is an extrapolation through advection nowcast

method with an element of spectral decomposition in the spatial field. Finally, Short-Term

Ensemble Prediction or STEPS is a nowcast system that not only includes the spatial scale

spectral decomposition, but it also adds stochastic elements in the intensity and motion

fields to quantify some uncertainty and randomness in the evolution of rainfall. These three

nowcast methods were chosen partly because they do not use too much computational power.

Additionally, because the nowcasts were going to be used with a satellite variable and not

radar data, it was important to know how they would modify the intensity of the input
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variable. Extrapolation and S-PROG were chosen because they do not modify the intensity

of the data, only the position and the spatial scales (in the case of S-PROG), while STEPS

was chosen to assess how small modifications that were done when adding the uncertainty

element in the model would affect the output when using other variables not associated with

the radar.

Although all motion fields calculation functions available through pySTEPS were tested,

the Lucas-Kanade method was used to obtain the motion fields for all nowcast methods

because it used an adequate amount of computational power and produced a good repre-

sentation of the motion field. The evaluation of these methods used the discrete verification

statistics provided in the pySTEPS library, which include the Probability of Detection (PoD;

Equation 3.4 in Section 3.5), False Alarm rate (FAR; Equation 3.2 in Section 3.5), false alarm

ratio equivalent to PoFD (FA) (Equation 3.3 in Section 3.5), accuracy or fraction of correct

results (ACC), bias (Equation 3.1 in Section 3.5), and the HSS (Equation 3.6 in Section

3.5). The Extrapolation and S-PROG models give one prediction per lead time, and STEPS

gives an ensemble of predictions per lead time, each with different stochastic elements, with

their size determined by the user. For this study, the STEPS model results were made up

of an ensemble of 24 members, and the evaluation of the model was done with the average

forecast of the ensemble in each lead time.

In addition to using pySTEPS’s nowcast models, the DATing module described in Section

2.4.1 was also used to obtain SWD clusters that could lead to possible convective develop-

ment. The DATing module was used in this study to try to eliminate individual pixels or

groups of a few pixels of SWD data by picking out the clusters, assuming that these most

likely lead to strong multi-cell convective storms. The following DATing tracking parameters

were observed to yield the best results for the SWD data and were consequently used for

this study: (units × K × 100)

• minimum threshold value = 100,

• maximum threshold value = 250,

• minimum difference between two maximums for object distinction = 60,

• minimum cluster size = 10 (pixels),

• minimum of maximum values = 240,

• minimum distance between clusters = 5 (pixels).

Finally, the evaluation was done for a period of time of 1 hour and 35 minutes before the

start of a precipitation event and 4 hours and 55 minutes after the start of a precipitation

event. This time frame was used in the DATing module to obtain the SWD clusters for each
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event. Every single image or data matrix available in this 6 hour and 35 minute period around

the start of the event, for all precipitation events the occurred during the 48-day analysis,

was used as input for the nowcasts. In addition, the nowcasts used a bigger common grid

than the one used in Chapter 4 in order to evaluate how coverage area affected the results.

This area can be observed in Figure 5.3.

Figure 5.3: GOES-16 satellite 2 km by 2 km grid used as radar-satellite common grid for the nowcast
models evaluation over the Queretaro radar coverage area. Grid is marked by the pixel centers.

Basemap sources: Esri, USGS, NOAA (ESRI, 2020).

5.5 Results

The results of the evaluation statistics of the nowcast models are presented as a compar-

ison between those obtained using all the SWD fields and those obtained using the SWD

clusters. To maintain consistency, the same comparison was done for the radar rain rate

data, comparing the results of all the rain rate fields and the results of the rain rates inside

the SWD clusters. Finally, the evaluating statistics were obtained comparing the 15-minute

forecast results with the actual observation unless otherwise specified.

5.5.1 Evaluation of nowcast models using the SWD data

Starting with the evaluation of the nowcast models using the SWD field data, Figures 5.4

and 5.5 show the results of the evaluating statistics obtained for all three nowcast models, in
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each 5 minute interval within the period of analysis of every event, using all the SWD field

(Figure 5.4) and using only the SWD clusters (Figure 5.5). General observations were that

for Extrapolation and S-PROG, all statistics were generally higher than for STEPS. And a

large majority of events have consistent behavior throughout the period of analysis, especially

when using the SWD clusters. Additionally, the general patterns observed differ between

using all the SWD field and using the SWD clusters: all the SWD field tended to have little

variability throughout the period of analysis, with some events increasing in accuracy, while

using the SWD clusters had low accuracy at the beginning but quickly improved after 20

minutes.

Figure 5.4: Graph of the statistics (clockwise starting from the top left graph: PoD, FAR, ACC, HSS,
BIAS and FA) obtained in the evaluation of each nowcast model with respect to the time before or after

the defined start of all events, using all the SWD field as input.
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Figure 5.5: Graph of the statistics (clockwise starting from the top left graph: PoD, FAR, ACC, HSS,
BIAS and FA) obtained in the evaluation of each nowcast model with respect to the time before or after

the defined start of all events, using SWD clusters as input.

Figure 5.6 shows the scatter plots of the results of all statistics used to evaluate the

models for all cases and all three nowcast models, comparing the results between using the

entire filtered SWD field (labeled as ‘Using all SWD field’ on the graphs) and using only the

detected clusters (marked ‘SWD clusters’). The scatter plots show that in general, using

SWD clusters gives better overall results for the majority of cases. The PoD, FAR, and

FA results show that the Extrapolation and S-PROG models are accurate and give similar

results, with approximately 93% of cases with PoD of 70% or higher, 71% of the cases had a

FAR below 0.3, and 68% of the cases had a HSS at or above 70%. While the STEPS model

results were less accurate, with 85% of the PoD cases were below 0.7 and 99% of the FAR

cases were below 0.3.
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Figure 5.6: Scatter plot of the statistics (clockwise starting from the top left graph: PoD, FAR, FA, HSS
BIAS and ACC) obtained in evaluating each nowcast model when using All SWD field vs. SWD clusters

as inputs for the whole period of analysis.

Figures 5.7 and 5.7 present the averages of all the statistics results for each 5-minutes

interval within the time frame the events were analyzed, and the difference between the

average results obtained using the SWD field and SWD clusters. The graphs illustrate both

the average SWD clusters results and the average all the SWD results improved with time.

These graphs show that on average, using SWD cluster fields gave better results than using

all the SWD field for all but the first 10 minutes of the period analyzed, and Extrapolation

and S-PROG results were similar and better than STEPS. It should be noted that the ACC

and FA are greatly affected by the large quantities of NaN values which are considered

correct or true negatives. On average, the SWD data used in this analysis had 85% of NaN

values (minimum of 40%) in an image and the radar data had 98% (minimum 85%). The

evaluation of the nowcast considered correctly forecasting NaN values as correct or true

negatives, which leads to the skewness of any statistics that heavily depend on the correct

negatives to be close to 0 or 1. For this reason, the results for PoD and FAR were given more

weight and consideration. Although several nowcast models that used satellite data (Rivolta

et al., 2006; Zinner et al., 2008; Mecikalski et al., 2010a,b; Sieglaff et al., 2011; Lebedev et al.,
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2019; Ribeiro et al., 2019; Hill et al., 2020; Kumar et al., 2020; Ehsani et al., 2022), there

have been no prior studies employing SWD satellite data as inputs in the pySTEPS nowcast

models. While some studies have utilized the optical flow fields available in pySTEPS with

satellite data (Burton et al., 2022) and not the nowcast models themselves, certain studies

have evaluated S-PROG and Extrapolation pySTEPS nowcast models with radar data, using

some of the same dichotomous statistics. Pulkkinen et al. (2020), Cuomo and Chandrasekar

(2021), and Niu et al. (2021) conducted evaluations of the two models in the USA (former

two) and China, respectively, with radar data for precipitation events. Their PoD and FAR

results closely resemble those obtained with the SWD data, with values between 0.6 and

0.75 for average PoD and values between 0.2 and 0.4 for average FAR for lead times near 15

minutes. However, because Pulkkinen et al. (2020), Cuomo and Chandrasekar (2021), and

Niu et al. (2021) involved radar data rather than satellite data, caution should be exercised

when comparing these results with those obtained using the SWD.

Figure 5.7: Left Column: graphs of the average (per nowcast model) of the statistics (from top row to
bottom row) PoD, FAR, and FA obtained in the evaluation of each nowcast model with respect to the

time before or after the defined start, using both all the SWD field and the SWD clusters as input.
Right column: Difference of the results of the left column between using all the SWD and using the

SWD clusters (“All SWD field” minus “SWD Clusters”) for each interval of time indicated.
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Figure 5.8: Same as 5.7 but for the statistics ACC, BIAS and HSS.

Although a general idea of the best nowcast models and the best type of SWD data input

was observed in Figures 5.6, 5.7 and 5.8, the results do not point to a possible explanation.

Therefore, visual images of a few of the events were obtained to understand these results.

Figures 5.9, 5.10, and 5.11 display an example of the 15-minutes forecast for an event that

started at 14/07/2018 20:32Z. The images show that the STEPS nowcast increased the num-

ber of false alarms in the borders of all SWD data clusters (big and small), thus explaining

its low overall results in Figures 5.7 and 5.8. The Extrapolation and S-PROG provided

similar results. When observing the images of the SWD clusters (not shown), the same ob-

servations regarding STEPS were made. Additionally, because the SWD clusters obtained

from the DATing module did not include the smaller SWD areas, the errors that arose from

not predicting the movement of these small SWD clusters were not considered. These errors,

although small, were large in quantity, and therefore, help explain why using the entire SWD

field resulted in overall less accurate forecasts. It should be noted that the DATing algorithm

does not fully detect all large clusters, and this can cause missed areas of precipitation (the

missed clusters were not taken into consideration when evaluating the forecasts).

82



Figure 5.9: Images of the observed SWD field and the 5-min forecast SWD field obtained using the three
nowcast models indicated (top images) and the comparison between the observed data and the forecast

data (bottom images) for the input image occurring at 14/07/2018 20:32Z.

Figure 5.10: Same as Figure 5.9 for the 10-min forecast.
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Figure 5.11: Same as Figure 5.9 for the 15-min forecast.

5.5.2 Evaluation of nowcast models using Queretaro radar data

The same evaluation of the nowcast models presented in the previous section was also

done using the Queretaro rain rate fields as input (called all rain rate field). Figures 5.12

show all the statistics results per 5 minute interval in the period of analysis for all events, for

the results obtained using all rain rate field and and Figure 5.13 for the results acquired from

the rain rate inside the SWD clusters. These graphs revealed a lack of consistency in the

behavior within the hour after the start of the event, as well as low forecast skill. However,

the forecast skill improves as the events evolve. In addition, the Extrapolation and S-PROG

models give better results than STEPS.
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Figure 5.12: Graph of the statistics (clockwise starting from the top left graph: PoD, FAR, ACC, HSS,
BIAS and FA) obtained in the evaluation of each nowcast model with respect to the time before or after

the defined start of all events, using “All Rain Rate (RR) field” as input.
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Figure 5.13: Graph of the statistics (clockwise starting from the top left graph: PoD, FAR, ACC, HSS,
BIAS and FA) obtained in the evaluation of each nowcast model with respect to the time before or after

the defined start of all events, using “Rain Rate (RR) in SWD clusters” as input.

Figure 5.14 shows the scatter plot results for all cases using the two models comparing

radar rain rate data (called rain rate field) and (only using) the rain rate that fell within the

SWD clusters detected (referred as rain rate in clusters). The results for the PoD and HSS

suggest that using the rain rate was not as accurate as using the SWD. For Extrapolation

and S-PROG, the PoD, 93% of the cases fell below 0.7 and 58% fell between 0.7 and 0.5.

For FAR, 87% of the cases were below 0.3. For STEPS, all cases of PoD were less than 0.7

and 97% of FAR results were below 0.3. For many cases, the difference between using “rain

rate in clusters” and “All rain rate field” was small, since most values fell around the 45o

angle line passing though the origin, also known as the identity line.
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Figure 5.14: Scatter plot of the statistics (clockwise starting from the top left graph: PoD, FAR, FA,
HSS BIAS and ACC) obtained in evaluating each nowcast model when using “All Rain Rate field” vs.

“Rain rate in SWD clusters” as inputs for the period of analysis.

Figures 5.15 and 5.16 show the average of the statistical results for the 15-minute forecast

for each 5-minute interval after the defined start of the events. These graphs show that, on

average, using all the rain rate field resulted in similar forecast as using the rain rate in

clusters. Additionally, for Extrapolation, S-PROG and STEPS using all the rain rate field,

the PoD tended to increase on average by almost 0.4 in the 295 minutes after the start of

the event, and FAR decreased by 0.2 in the same period of time. STEPS for the rain rate in

the SWD clusters saw an higher increase of approximately 0.6 in 295 minutes. The results

for the rain rate field are not as accurate as those obtained by previous works. Pulkkinen

et al. (2020) evaluated the models for 10 events in the Texas, USA region and obtained

PoD values of 0.6 and 0.75 for Extrapolation and S-PROG respectively, and FAR values

between 0.3 and 0.4 for both models. Cuomo and Chandrasekar (2021) used 80 events from

Texas and Colorado, USA, and radar reflectivity with S-PROG and Extrapolation, which

resulted in average PoD of approximately 0.75 and average FAR of 0.2 for the 15-minute

lead time. Lastly, Niu et al. (2021) used the Extrapolation and S-PROG models with radar
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reflectivity data from China for over 100 events. They found that for short lead times (12

and 24 minutes), the POD reached 0.75 and the FAR was below 0.2. However, the PoD

values were closer to those observed by Pulkkinen et al. (2020), Cuomo and Chandrasekar

(2021), and Niu et al. (2021) as the events developed.

Figure 5.15: Left Column: graphs of the average (per nowcast model) of the statistics (from top row to
bottom row) PoD, FAR, and FA obtained in the evaluation of each nowcast model with respect to the

time before or after the defined start, using both all the rain rate field and the rain rate in SWD clusters
as input. Right column: Difference of the results of the left column between using all the rain rate and

using the rain rate in SWD clusters (“All rain rate (RR)” minus “RR in SWD Clusters” for each
interval of time indicated.

88



Figure 5.16: Same as 5.7 but for the statistics ACC, BIAS and HSS.

An image analysis was also carried out for the forecast using the same examples as those

used with the SWD data. The example can be observed in Figures 5.17, 5.18 and 5.19

for the input image occurring at 14/07/2018 20:32Z, These showed similar observations as

those made with the SWD data: a large amount of false alarms for the STEPS model,

and similar results between the Extrapolation and S-PROG models. Additionally, a simple

visual analysis of the images point to the fact that all the models tended to overestimate the

intensity of rain rate.
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Figure 5.17: Images of the observed rain rate field and the 5-min forecast rain rate field obtained using
the three nowcast models indicated (top images) and the comparison between the observed data and the

forecast data (bottom images) for the input image occurring at 14/07/2018 20:32Z.

Figure 5.18: Same as 5.17 for the 10-min forecast.
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Figure 5.19: Same as 5.17 for the 15-min forecast.

In general, as mentioned before, these results were not as accurate as those obtained

using SWD data, in part because there was a greater amount of SWD data and the SWD

clusters were larger, increasing the likelihood of hits. However, FAR results were curious

because they were slightly better for the rain rate results than for using the SWD field. The

reason for this inconsistency is due to how the nowcast process SWD and rain rate data.

Figures 5.9 - 5.11 and 5.17 - 5.19 can give an idea of this process. Both nowcast models

tend to create the false alarms and misses around the edges of the variable clusters in an

image. But the models tend to create a larger quantity of false alarms for SWD than for rain

rate, most likely due to the fact that the models are not made for forecasting this particular

variable. The variation in the number of false alarms created by the models with each type

of data lead to a variation in the statistics that depend on the false alarms, such as FAR.

For this reason, the average FAR for the SWD was around 0.1 higher than for the radar rain

rate.
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5.5.3 Evaluation of nowcast models limiting the Queretaro radar

data

The processing methods used to clean the radar data were not one hundred percent

precise and, therefore, a significant quantity of noise in the data set was still used in this

study. One way to limit or clean some of this noise was by using SWD data. This was partly

done in the previous section when presenting the results using the rain rate that falls inside

SWD clusters, however, further analysis were done. The nowcast model was also evaluated

with radar data by limiting the radar data using the entire SWD data field. The limitations

used were the following: 1) only using the rain rate values that fell within the SWD field; 2)

using the rain rate field with the SWD motion field; and 3) using the rain rate values that

fell within the SWD field with the SWD motion field.

Figure 5.20 and 5.21 show the differences in average PoD and FAR, respectively, obtained

when using the entire rain rate field (denoted in this section as “All rain rate”), the rain

rate values inside the SWD clusters (denoted in this section as ”rain rate clusters”), and

the additional three limitations previously described for the 15-minute forecast obtained in

every 5-minute interval of the period of study. For these graphs, positive values indicate

that using “All rain rate” yielded the highest results for the variable in question. In general,

there was little difference in the modified rain rate fields and“All rain rate”. For PoD, using

All rain rate resulted in higher PoD less than 0.1 for all cases except the comparison with

”rain rate clusters” in the first hour of the event. For FAR, the difference was higher than

PoD, at 0.1 or below, but the results favored using “All rain rate”, with the exception of

comparing All rain rate the ”rain rate clusters”, the FAR was higher for “All rain rate”.
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Figure 5.20: Graph of the differences in average POD for the 15-min forecast using the image of each
5-minute interval after the defined start of the event for rain rate data. The difference is between using
all the rain rate field (All RR) and the rain rate inside the SWD clusters (top left), the rain rate inside

the SWD field (top right), the rain rate using the SWD motion field (bottom left), and the rain rate
inside the SWD field with the SWD motion field (bottom right).

Figure 5.21: Same as 5.20 but for the average FAR.
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5.5.4 Evaluation of nowcast models with variation in coverage area

The previous results showed that the nowcasts gave less accurate results when radar data

was used as input. This might be because the radar has some limitations in the coverage

area. In other words, the radar can only potentially “see” within the radar coverage area,

and there are factors that cause the radar to not be able to acquire data from all its coverage

area. In order to see if this limitation had any effect on the overall results, the nowcast

models were evaluated by applying two limits to the area. The first limit was to limit the

data to the radar coverage area (denoted “all radar area”; Figure 4.3 in Chapter 4); and the

second limit was to draw a 180 km radius circle around the radar (where the radar has the

best coverage), denoted as “180 km radar area”.

(a) (b)

Figure 5.22: Graph of the differences in (a) average PoD and (b) average FAR for the 15-min forecast
using the image of each 5-minute interval after the defined start of the event for rain rate data. The

difference is between using all the SWD field and the SWD in the radar area (top), and between all the
SWD field and the SWD in the 180 km radar area (bottom).

Figure 5.22 shows the differences in the average PoD and the average FAR between using

the entire SWD field and using only the SWD in all radar area (top graph of both images);

and using only the SWD in the 180 km radar area (bottom graph in both figures). For the

comparison between all the SWD field and the SWD within the radar area, the results were

less than 0.025 better than with all the SWD field, and the highest change was between

95- and 75-minutes prior the start of the event. The exception is for STEPS’s PoD result,
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where the PoD in the radar area is higher after the start of the event, reaching around 0.5

difference by the end of the period of analysis. On the other hand, when comparing with the

SWD in 180 km radar area, the statistics were lower by almost 0.0.5 before the start of the

event, but the difference decreased by the end of the time of analysis. The rate of change in

STEPS PoD results was higher than the other nowcast starting 60 minutes after the start of

the event, with the PoD in the 180 km radar area being higher after 120 minutes from the

start of the event.

For radar rain rate, Figure 5.23 shows the differences in the average PoD and FAR

between using the entire rain rate field, using the rain rate in all radar area, and the rain

rate in the 180 km radar area. As expected, there was no difference between the entire rain

rate field and the rain rate in all radar area because this limit had already been established

for the radar data. However, it is important to note that this signifies that the models are

not predicting any rain outside the area of coverage. As for the 180 km radar area, the results

for both PoD and FAR were better when using all the radar field in the first 60 minutes

after the start of the event analysis period, but the improvement decreased to less than 0.05

for the rest of the period, when the events were theoretically more developed and there was

more area with rainfall. This indicates that with more real data, the results improve.

(a) (b)

Figure 5.23: Graph of the differences in (a) average PoD and (b) average FAR for the 15-min forecast
using the image of each 5-minute interval after the defined start of the event for rain rate data. The

difference is between using all the RR field and the RR in the radar area (top), and between all the RR
field and the RR in the 180 km radar area (bottom).
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Finally, Figure 5.24 shows similar graphs where the differences between the average PoD

and average FAR can be observed between using the rain rate field and the entire SWD

field, the SWD in all radar area and the SWD in the 180 km radar area. For all comparison,

the rain rate field had smaller POD and FAR values. The POD tended to be more than 0.2

higher for the SWD fields, with the difference being smallest for STEPS, and the FAR was

at most 0.1 higher for the SWD fields, with the smallest difference resulting with STEPS.

The variation in the difference between the rain rate field results and the each of the SWD

fields compared was very small, reaching a maximum of 0.05 at the beginning of the event

and decreasing to almost 0 by the end.

These results suggest that the lack of even coverage between the SWD and radar data

has an effect on the overall results, and that the differences decreased as the events evolved

and grew. Meaning, the size of the events could play a significant role in the overall results

of the evaluation of the nowcast models. On the other hand, it can also be observed that the

effect of the size of coverage area of the input on the overall results is not enough to explain

why the radar results are less accurate than the SWD results.
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(a) (b)

Figure 5.24: Same as Figure 5.22 but showing the difference between using all the RR field and all the
SWD field, between the RR field and the SWD in the radar area, and between the RR field and the

SWD in the 180 km radar area. (a) is for average PoD and (b) is for average FAR.

5.5.5 Relationship between NaN pixels in input image and and

statistics results

In the previous section, the results showed that the nowcast model skill decreased with

decreasing coverage, it was better when using SWD data, and increased with the size or

development of the events. One of the main reasons proposed for this was the fact that the

radar rain rate data contained far fewer data values within each image than the SWD data,

causing outliers to have a significant effect on the results. This particular hypothesis was

analyzed in this section using a fraction of the number of pixels with real data (non-NaN)

for each of the variables for all cases to see if there was any correlation with the results.

Figure 5.25 displays a scatter plot showcasing the log10 of the fraction of pixels in each

image that contain real data (pixel fraction) and the PoD for each of the two nowcast models
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divided into SWD and radar rain rate categories. It also illustrates their linear correlation.

All datasets exhibit a visually linear and positive correlation with the log10 of the pixel

fraction. For SWD data, the concentration of data points was higher in the PoD values

above 0.5, yet some outliers were notably distant from the main data cluster. In radar data,

the values remained below 0.8, with a more scattered distribution around the correlation

line. Unlike SWD data, radar data did not display many outliers far from the primary data

cluster.

Figure 5.26 illustrates a similar pattern but for FAR. In this case, there appears to

be a negative linear correlation with the log10 of pixel fraction. SWD data is closer to the

correlation line with a few outliers, whereas radar data is more widely dispersed, especially for

pixel fraction values below 0.003 (approximately 186 pixels). The observed linear correlation

in the graphs is supported by the Pearson’s R (R), Spearman’s Rank (ρ) and Kendall tau (τ)

values outlined in Table 5.1. The table showcases R, ρ, and τ values, denoting the correlation

between each statistic studied (except bias) and the log10 of the pixel fraction, or specifically

the pixel fraction (only for ACC and FA). All statistics exhibit a high correlation with the

pixel fraction, except for the HSS for SWD, which shows a moderate correlation, and FAR

for STEPS’s rain rate results, which presents a moderately weak correlation.

Figure 5.25: Scatter plot of the log10(pixel fraction) and the PoD for SWD (top graphs) and rain rate
(RR; bottom graphs) results for (a) Extrapolation, (b) S-PROG, and (c) STEPS (pixel fraction is the

fraction of the non-Nan pixels).
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Figure 5.26: Same as 5.25 for FAR.
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Statistics Model
Pearson’s R Spearman’s Rank Kendall Tau

SWD RR SWD RR SWD RR

POD*

Extrapolation 0.77 0.91 0.83 0.88 0.64 0.70

S-PROG 0.78 0.91 0.84 0.87 0.65 0.70

STEPS 0.70 0.77 0.67 0.84 0.49 0.65

FAR*

Extrapolation -0.79 -0.84 -0.83 -0.73 -0.65 -0.56

S-PROG -0.79 -0.84 -0.84 -0.73 -0.65 -0.55

STEPS -0.44 -0.60 -0.60 -0.23 -0.44 -0.17

FA

Extrapolation 0.89 0.93 0.96 0.97 0.83 0.86

S-PROG 0.88 0.92 0.95 0.97 0.82 0.85

STEPS 0.79 0.70 0.92 0.90 0.77 0.72

ACC

Extrapolation -0.80 -0.96 -0.94 -0.98 -0.81 -0.88

S-PROG -0.81 -0.95 -0.94 -0.98 -0.81 -0.87

STEPS -0.92 -0.97 -0.98 -0.98 -0.88 -0.89

HSS*

Extrapolation 0.55 0.91 0.60 0.87 0.44 0.70

S-PROG 0.60 0.91 0.67 0.87 0.50 0.68

STEPS 0.54 0.81 0.47 0.84 0.34 0.64

Table 5.1: Results of the correlation coefficients between the fraction of total pixels with real data and
the statistics results for all nowcast models. Asterisk (∗) marks the use of the log10(pixel fraction) for

the correlation analysis (pixel fraction is the fraction of the non-Nan pixels).

The results of Figures 5.25 and 5.26 and Table 5.1 demonstrated the existence of a

relationship between the nowcast evaluation statics and the amount of real data (non-NaN)

pixels in an image, with the nowcast having better results overall with a higher number of

real data pixels in the input image. Notwithstanding, some points from the results need to be

addressed. The first is that the ACC and the FA exhibited a direct relationship with the pixel

fraction itself, not the log10 of the pixel fraction. This is because, as mentioned previously,

the ACC and FA heavily depend on the correct negatives, which include the generally large

amount of correctly predicted NaN values. Thus, the variables heavily depend on the NaN

values in the images, which is basically one minus the pixel fraction.

The second point to address is the discrepancy in the relationship between the variables
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and the pixel fraction when using the SWD and using the radar data. The difference can

be observed in the variation of coefficient values of Table 5.1 for each type of data, and

more clearly in Figure 5.26. The inconsistency arises from the tendency of the nowcasts

to generate more false alarms for SWD than for radar data because they are not design to

predict the SWD. This causes a difference in the behavior of the statistics that depend on

the false alarms when using SWD data and radar rain rate data.

5.5.6 Deeper evaluation of nowcast models with radar data

In general, the results obtained using radar rain rate data were less favorable than those

obtained using SWD data. While it was shown in Section 5.5.5 that the amount of real data

points in the image used as input influences the results, there are other factors that could

potentially have an effect on the nowcast skill results. One of these factors is the radar’s

ability to see or accurately measure the entire region covered by the radar range.

An initial assessment was to observe how the nowcast skill varied with radar range. This

was done by dividing the radar coverage area into rings, 10 km in width, and obtaining

the evaluation statistics for each ring. Figure 5.27a shows the average PoD and FAR per

outer ring radius. For PoD, the average value was around 0.2 near the radar, and increased

gradually until reaching 40 km, when the PoD decreased to slightly less than the initial value

and continued with a gradual increase up to 0.5 at 120 km. This value was more or less

constant up to 220 km, then there was slight decrease to 0.4 in PoD for the outer-most radii.

FAR the opposite behavior, starting near 0.4 - 0.45 and maintaining these values until 50

km, where a peak occurred and followed by gradual decrease to around 0.2 - 0.3 at 120km,

remaining constant up to 220 km, and ending with a slight increase. Additionally, there was

larger difference between SPROG and extrapolation nowcast of around 0.05 for all radii up

to 170 km. Figure 5.28 show the average PoD and FAR for rain rate per ring per time after

the start of the events, for each nowcast model. These graphs also show that the PoD was

low for rings closest to the radar and increased as the distance away from the radar increases,

and the opposite occurs for FAR. Additionally, the general average behavior is observed for

all distances: the PoD tended to increase with time and the FAR decreased with time. In

general, STEPS results were similar but approximately 0.2 lower.
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The graphs indicate consistent performance of the nowcast models between 100 km and

220 km, encompassing the 180 km radius where the radar has optimal visibility without

obstructions, as detailed in Section 5.5.4. However, the accuracy of the nowcast diminishes

both closer to and farther away from the radar. The reduced accuracy near the radar might

be attributed to fewer pixels within these ranges, resulting in lower skill values, as previously

observed. Conversely, the farthest radii encompassed the largest number of pixels, but radars

typically experience reduced accuracy at greater ranges, leading to fewer pixels capturing

actual rain rate measurements and subsequently lowering forecast skill.

5.5.7 Evaluation of 30-minute and 60-minute forecast

The nowcast evaluations of the previous sections use the 15-min forecast because it is

considered the shortest lead time that could be used in an operational manner. However

it would be more ideal to use a larger lead time, particularly for the SWD. The reason for

this is that it was observed that the SWD decreased below 2.5 K 60 minutes prior to the

development of rainfall, leading to conclusion that the SWD has potential as a marker for

future precipitation. For this reason, an analysis was also done for 30- and 60-min forecast

by comparing their results with those of the 15-min forecast.

Figure 5.29 illustrates the average SWD PoD and FAR for the analysis period, considering

the 15-, 30-, and 60-minute forecasts for each nowcast model. The graphs distinctly display

that the 15-minute forecast exhibited greater accuracy compared to the 30- and 60-minute

forecasts. In the case of Extrapolation and S-PROG, the PoD differences between the 15-

and 30-minute forecasts were 0.15 at the beginning of the evaluation period, decreasing to

0.1 by the end. When comparing the 15-minute and 60-minute forecasts, the PoD was over

0.3 higher for the longest lead time, diminishing to just above 0.2 by the evaluation period’s

conclusion. In terms of FAR, it was lower for the 15-minute forecast by 0.1 or less compared

to the 30-minute forecast and by 0.2 or less for the 60-minute forecast, with the differences

decreasing over time.

In the case of STEPS, the differences in PoD between the 15-minute forecast and the

other two lead times increased over time, particularly for the 60-minute forecast, rising from

0.25 to 0.4 throughout the entire analysis period. While the STEPS FAR did not vary

considerably between the 15- and 30-minute forecasts, it exhibited more erratic behavior at

the beginning of the analysis period for the 60-minute forecast.
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Figure 5.29: Average PoD and FAR for the SWD per nowcast model for the 15-, 30- and 60-min
forecast. Top graphs are for Extrapolation, middle graphs for S-PROG and bottom graphs for STEPS.

Figure 5.30 shows the rain rate average PoD and FAR for the three lead times analyzed

during the period of evaluation. The changes were slightly lower to those observed for the

SWD, varying by 0.05 or less, and the change was more constant thought the whole time

period. The only exception was for the STEPS results, where the difference in PoD decreased

over time, and the FAR results for the 60-min forecast were very unstable for the majority

of the period of analysis. The general decrease in skill of the models with respect to the lead

time was also observed by Pulkkinen et al. (2020), Cuomo and Chandrasekar (2021), and

Niu et al. (2021) for the S-PROG and the Extrapolation models.
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Figure 5.30: Same as Figure 5.29 but for rain rate.

5.5.8 Evaluation of the intensity of rain rate forecast by the now-

cast models

The previous sections presented the nowcast evaluations using dichotomous verification

statistics, which were used because the intensities of the satellite products are not expected

to be correctly predicted by the nowcast models developed for radar data. Nevertheless, to

complete the evaluation of the nowcast models for the rain rate, a brief analysis on how the

nowcast models predict the intensity of the rain rate provided by the Queretaro weather

radar was conducted. This section only evaluated the Extrapolation and S-PROG models

since they were the most skilled models according to the dichotomous statistics results.

Figure 5.31 shows the average mean error (ME), the MAE and the root mean standard

error (RMSE) for each model, all obtained through the pySTEPS functions, for the 15-min

forecast obtained every five minutes for the 295 minutes after the start of the events. The

ME indicates that the models tended to underestimate (on average) the rain rate for the

first 165 minutes. The MAE showed that the mean magnitude of the errors was generally

below 4.5 mm/hr for Extrapolation and decreased to around 3 mm/hr at the end of the
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period of analysis, indicating that the errors in intensity tended to decrease as the events

grew and evolved. A similar behavior was observed for S-PROG, but the errors were around

0.5 mm/hr higher. Finally, the RMSE for Extrapolation started around 8 mm/hr, and

increased to approximately 11 mm/hr at 160 minutes after the start of the events, followed

by a decrease to around 9 mm/hr by the end of the analysis. A similar pattern was observed

for S-PROG with an increase of 0.5 mm/hr. The results in comparison with the work of

Pulkkinen et al. (2020) are far better. Pulkkinen et al. (2020) analyzed 10 events in Texas and

obtained an MAE of between 11 mm/hr and 12 mm/hr on average. Additionally, Cuomo and

Chandrasekar (2021) tested both S-PROG and Extrapolation among other models and found

that the MAE was higher for S-PROG than Extrapolation as well, although Cuomo and

Chandrasekar (2021) results were obtained comparing radar reflectivity and were presented

as an average for various minimum reflectivity thresholds.
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Figure 5.31: Average ME (top), MAE (center) and RMSE (bottom) for each 15-min forecast, obtained
using the images in every 5-minute interval as input image, for the Extrapolation and S-PROG nowcast
in the 295 minutes after the start of the events. The red line indicates the average rain rate observed in

that interval.

Figure 5.32 shows the difference in the average of the mean rain rate for the Extrapo-

lation, S-PROG and the observed rain rates. It is clear from these images that the models

underestimated rain rate, between 2.0 mm/hr and 1.2 mm/hr for Extrapolation, and between

1.4 mm/hr and 0.6 mm/hr for S-PROG.
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Figure 5.32: Average mean rain rate for the output image of the 15-min forecast, obtained using the
images in every 5-minute interval as input image, for the Extrapolation and S-PROG nowcast in the 295

minutes after the start of the events; and the average mean rain rate observed in the interval.

Finally, similar to the dichotomous results, the forecast was less accurate in predicting

rain rate intensity for the 60- and 30-min forecast. Figure 5.33, shows the average ME, MAE

and RMAE for the 15-, 30- and 60-min forecast per model. The ME generally increased with

lead time for both models. On the other hand, the MAE oscillated more with higher lead

times in the first 80 minutes after the start of the event, with the 60-min forecast at times

being lower than the 15-min forecast. Afterwards, the 30-min forecast had generally higher

MAE than the other forecast for both models, and the 60-min forecast had MAE similar or

higher than the 15-min forecast. S-PROG had generally higher MAE than Extrapolation for

all three lead times. RMSE for Extrapolation was similar between the 15-min and 30-min

forecast, but the 60-min forecast had lower RMSE in the first 120 minutes. For S-PROG,

the RMSE was also lower for the 60-min forecast in the first 70 minutes, however, the 15-min

forecast had the lowest RMSE afterwards. The results showed that the 60-min forecast on

average can best predict the intensity of the precipitation at the beginning of the events, and

as the events grew and evolved, the 15-min forecast became the most accurate. However,

the errors obtained for all lead times are still close to or higher than the observed average
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rain rate. In general, the observed increase in the statistics with lead time was also observed

by Pulkkinen et al. (2020); Cuomo and Chandrasekar (2021).

Figure 5.33: Average ME (top), MAE (center) and RMSE (bottom) for the 15-, 30-, and 60-min
forecasts, obtained using the images in every 5-minute interval as input image, for the Extrapolation and
S-PROG nowcast in the 295 minutes after the start of the events. The red line indicates the average rain

rate observed in that interval.

5.6 Discussion

The results of the evaluation of nowcast models suggest that the best models to use

with the GOES-16 SWD data are the Extrapolation and S-PROG models, while STEPS

resulted in a large number of false alarms, and lower probability of detection (PoD) values.

The most likely explanation is the addition of the stochastic element to both the advection

field and the input variable fields added by the model. Additionally, the results showed

that STEPS overestimated the development of precipitation around the actual precipitation

clusters, decreasing the overall accuracy of the predictions. However, why this occurs is

not clear. This could be due to the fact that the prediction evaluated from STEPS was

the average of all ensemble members, but further analysis with individual members must be
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performed in order to test this hypothesis, as well as to analyze how well the models predict

the intensity of the rainfall.

In general, the 15-minute forecast resulted in good accuracy, with the accuracy on average

being above 60% within the 90 minutes before and two hours after the start of a precipitation

event. Additionally, the DATing module from pySTEPS can also be used to detect and track

large clusters of the SWD data, albeit with some missed medium-size clusters. And because

of how it was developed and how it functions, the results of the 15-minute forecast from

the nowcast models when using the detected and tracked SWD clusters were far better than

when using the entire SWD field available. As mentioned in the results, the pySTEPS

library was used with satellite data with a primary purpose of implementing the optical flow

algorithms (Burton et al., 2022). But the SWD data PoD and false alarm rate (FAR) results

are consistent with previous studies (Pulkkinen et al., 2020; Cuomo and Chandrasekar, 2021;

Niu et al., 2021), that used radar data for the evaluations of the Extrapolation and S-PROG

models. However, a direct comparison cannot be made, given the different characteristics

between SWD and rain rate.

As previously mentioned, the 15-minute forecast is considered the shortest lead time

that could have some future operational use, and the results obtained with this forecast were

considered good. However, because of the observation made in Section 4.4.2 of a decrease

of SWD, representative of an increase in low-level water vapor, being a possible marker of

future convective precipitation occurring within one hour, it is more ideal to use larger lead

times. Considering this result, a 30-minute or a 60-minute forecast would be even more useful

when using the SWD. For this reason, the evaluation analysis was also performed using the

30-minute forecast and the 60-minute forecast. The general patterns observed with the 15-

minute forecast were also present with the 30- and 60-minute forecast. This includes the

differences in the accuracy between using all the SWD field below 2.5 K and only using the

detected and tracked SWD clusters, the similar results between the Extrapolation and S-

PROG models, and the STEPS model having the least accurate results for both rain rate and

SWD. However, the 30-minute forecast was on average 15% less accurate than the 15-minute

forecast and the 60-minute forecast was around 30% less accurate, as expected since larger

lead times have less accurate forecast. Although these forecasts were less accurate than

the 15-minute forecast, they can still be useful. Applying the methodologies established

in this study, the nowcasts have the potential to predict the areas of possible convective

precipitation one hour prior to the event with an accuracy of around 40% and 30 minutes

prior with an accuracy near 50%. Nevertheless, further research is necessary to enhance and
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refine the forecasts.

In addition, although it was observed that the SWD fell below 2.5 K around 60 to 90

minutes before the rainfall event, not all areas of SWD that fell below 2.5 K developed into

precipitation. Meaning, not all areas of high low-level water vapor developed into convective

precipitation. These observations indicate that the SWD is not enough to precisely detect

an area of future rain development. This study only used the SWD because it lacked any

other tools and sources of data that could provide information on the atmospheric condition

of the entire region of study. As mentioned in the Introduction, Mexico lacks a nationwide

rain gauge system and a comprehensive meteorological station network, with the existing

ones being very scatter throughout the country to provide the necessary spatial resolution

for these nowcast systems to function efficiently. Moreover, various other satellite products

were used in the characterization of the precipitation of the region in Chapter 4, and many

of the products were not available for the region during the time of analysis or were missing

data in areas of precipitation. The ones that were available did not have a clear relationship

with rain rate or the development of rainfall like the SWD did. Regardless, once the data

sets for the other GOES-16 products become available for the region, future research can use

these satellite products to further examine the precipitation that occurs in the region with

the radar data, as well as determine more precise locations for future precipitation along

with the SWD.

Continuing with SWD, the evaluation statistics used were purposely chosen as dichoto-

mous evaluators, only analyzing whether the forecast correctly predicted the presence of the

SWD and disregarding the intensity of the forecast SWD. This was done because the models

were designed to predict radar derived rain rate and reflectivity, rather than satellite prod-

ucts. As highlighted in Section 4.4.2, the SWD decreases before the measurement of rain.

Because of this, if the models are predicting a general dissipation of rainfall by decreasing

the rain rate, they can cause an apparent increase in the convection development when used

with SWD values. It is for this reason, all other nowcasts available in the pySTEPS library

were not used for this work. The Extrapolation and S-PROG models yielded satisfactory

results due to the absence of factors in their algorithms that directly modify the intensity

of the input variable, such as a dissipation factor. Additionally, S-PROG and Extrapolation

yielded similar results, indicating that the spectral decomposition of the spatial scale used

in S-PROG does not improve or modify the position forecast when using SWD, although a

modification in the intensity was observed in the SWD forecast. On the other hand, STEPS,

which modifies the intensity of the input variable, resulted in less accurate forecast, both in
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position and intensity.

Regarding the radar rain rate data, for the convective precipitation that occurs during the

rainy season, the Extrapolation and S-PROG models demonstrated satisfactory performance,

showing minimal disparity between using the entire rain rate field and solely considering the

data within the SWD detected and tracked clusters. However, the STEPS model resulted

in far less accurate forecast. These results were consistent with Cuomo and Chandrasekar

(2021), but they observed a smaller difference between the three models. In addition, there

was a significant increase in the nowcast skill as the events developed. In general, the forecast

obtained using the radar rain rate data was also less accurate than the forecast from SWD

data, with the PoD being between 0.2 and 0.4 smaller for rain rate data. Conversely, the

FAR was around 0.1 smaller for rain rate data. The slightly better results obtained for FAR

were mainly due to the nowcast models tendency to create more false alarms around the

SWD data than the rain rate data, effecting statistics that depend false alarms, including

FAR. Comparing the findings of this study with the earlier works of Pulkkinen et al. (2020),

Cuomo and Chandrasekar (2021) and Niu et al. (2021), the PoD and FAR values did not

significantly deviate for developed events. Although the PoD values were significantly worse

than those observed in both studies at the beginning of the events, as the events developed,

the PoD improved, coming within approximately 0.1 of the values observed in the other

studies. Additionally, it is also important to note that the studies did not use the same

threshold rain rate value that indicate rain and non-rain conditions.

Regardless, it is clear that the models were less skilled in predicting rain rate than the

SWD. This discrepancy can be partly attributed to the higher presence of real or non-NaN

SWD data per data matrix compared to the rain rate data. As demonstrated in Section

5.5.5, a positive correlation exists between the quantity of pixels with real data and most

of the statistics used. This correlation arises due to the increased impact of any outliers on

the results in the instance of a reduced number of actual data points within an input image.

Throughout the majority of event analyzed, the SWD data greatly outnumbered the rain

rate data, contributing to the superior statistical results observed for the SWD. This was

mainly because the areas where there was a high quantity of low-level water vapor (SWD

below 2.5 K) were larger in comparison to the size of the convective systems that occurred

in the region, which were often less than 50 km in size. In addition, the observation that

the forecasts’s skill improved with time can be attributed to the fact that the size of the

precipitation events grew with time, increasing the non-NaN pixels in the input image. It

was calculated that an image with at least 420 pixels (out of 58,880 total pixels) with rain
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rate values above the set noise threshold of 0.5 mm/hr was necessary to obtain a skilled

forecast. Another reason the radar rain rate results were not as good as the SWD results

is the radar’s lack of consistent accuracy throughout the radar coverage area, whether this

is due to blockages from mountains or radio antennas or attenuation. For the Queretaro

weather radar, most of the echo blockage occurs beyond 180 km radius. The effects of this

were seen with the statistics with respect to the distance away from the radar were obtained,

and the PoD and FAR showed the nowcast models’ skill changed with the distance. In

particular, the statistics were lower for distances close to the radar and at the edge of the

radar coverage area. While the area between had consistent results on average for all three

models evaluated.

Finally, in regard to the evaluation of how the nowcast predict the intensity of the rain

rate, the results were not very favorable. This part of the analysis was performed only for the

Extrapolation and S-PROG models since the STEPS forecasts were the least skilled with the

dichotomous statistics. The mean absolute error (MAE) showed the average error was less

than 5.5 mm/hr, the root mean square error (RMSE) was above 8 mm/hr and the Extrap-

olation nowcast had smaller average values than S-PROG. However, the MAE and RMSE

values were higher than the average observed mean rain rate (excluding 0.0 mm/hr measure-

ments), although MAE were similar to those of observed by Cuomo and Chandrasekar (2021)

and far better than the results of Pulkkinen et al. (2020), whose MAE was twice as high.

Additionally, the errors decreased as the events developed and grew. Comparing the average

mean rain rate of the models and the averaged observed measurements, the results showed

the models underestimated the rain rate. These results were not expected or ideal, especially

because it was assumed that the spectral decomposition of spatial scales and autoregression

of the S-PROG would result in better intensity results than the simple Extrapolation through

advection model, as observed in Seed (2003). However, when considering all other results,

the values obtained were more consistent with other previous studies (Pulkkinen et al., 2020;

Cuomo and Chandrasekar, 2021; Niu et al., 2021) for developed events, or approximate 120

minutes after the start of the events. Nonetheless, because the average mean rain rate was

underestimated in a consistent manner for both models point to a possible path for resolution

to the issue. Thus, it is crucial to continue studying these nowcast models for this region, to

assess why these models are not performing well in forecasting the intensity of precipitation

and how they could be improved.
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Chapter 6

Summary and conclusions

Due to the large amount of results obtained in this work, Figure 6.1 presents a flowchart

of all the important results obtained in this study.

Figure 6.1: Flowchart of the key results obtained in the three main investigations of this study.

The implementation of operational nowcast systems has brought great benefit in precipitation-

prone regions around the world. However, the advantages that these short-term forecast

provide have not been enjoyed by Mexico due to the lack of investigation of such systems.

It is for this reason that this study explored the use of nowcasts by evaluating the precipi-
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tation that occurs in the region of central Mexico, using satellite and radar data, as well as

assessing the skill of various nowcast models for the region. The investigation mainly used

the GOES-16 satellite data, specifically the Level 1 ABI channel 13 and 15 data, the Level

2 Clear-Sky mask (ACM), cloud-top height (ACH) and cloud-top phase (ACTP) data, and

the Queretaro weather radar rain rate data.

The first step taken was a quality control evaluation of the GOES-16 cloud mask, a

product that uses Level 1 products and is the base of several Level 2 products. The evaluation

used the RUOA network’s ground ceilometers and pluviometers to evaluate the cloud mask

with various methodologies to decrease or measure the uncertainties associated with the

differences in spatial and temporal resolution between the satellite data and the ground-base

instruments’ data. The results showed when considering the most consistent and reliable

ceilometer data, the cloud mask has an accuracy between 69%-85%, a probability of detection

of 0.81 - 0.95, a probability of false detection of 0.37 - 0.40 and a skill score of around 0.39

- 0.62, and additionally, the cloud mask had a > 99% precision in detecting clouds when

precipitation is occurring This leads to the conclusion that the cloud mask has good overall

accuracy in cloud detection. These results allowed the use of the GOES-16 satellite products

without having any questions or doubts regarding their reliability.

The next step was to obtain the characterization of the precipitation that occurs in

the study region using the GOES-16 satellite products, with the Queretaro radar data.

The GOES-16 products were the cloud-top height, cloud-top phase and the Split-Window

Difference (SWD) calculated from the ABI channel 13 and 15. The results found that

the SWD or split-window difference, on average, had a value of 1.99 K during rainfall.

Furthermore, it was observed that, on average, the SWD tended to fall from around 3.8 K to

2.28 K in the 240 minutes prior to the measurement of rainfall and from 2.5 K to 2.28 K in the

60 minutes prior to the measurement of rainfall. This change in SWD showed how the low-

level water vapor tended to increase prior to the development of convective precipitation.

These results lead to the establishment of the threshold value of 2.5 K minimum, that

indicates a possible development of rainfall within the next 60 minutes. For the cloud-top

height or cloud height, the average with the presence of radar rain rate was 11.29 km and

without radar rain rate was 7.66 km. In addition, this variable tended to increase around

0.5 km in the 90 minutes prior to the occurrence of rain. The cloud-top phase or cloud-top

phase results showed a change in phase from warm water phase to ice phase for around

29% of the area, with the occurrence of rain rate. And, they also showed the growth and

deepening of clouds to heights with temperatures low enough for water vapor to freeze, prior
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to the measurement of rainfall. Although the cloud-top height and cloud-top phase observed

behaviors associated with the development of convective precipitation that occurs in the

region of study, they could not distinguish between high-altitude cirrus clouds and deep

convective clouds by themselves, making them less ideal for further use in the evaluation of

the nowcast models.

The third and final part of the study was the evaluation of nowcast models in the region.

Using the 2.5 K threshold established, masked SWD fields were used in three nowcast models

provided by pySTEPS (Extrapolation, S-PROG, and STEPS) to evaluate how this variable

performed when used with nowcast models developed to be used with radar data, using the

entire SWD field and only using the large clusters detected when using the pySTEPS DATing

module. The results showed that the S-PROG and extrapolation models, both of which did

not directly modify the intensity of the input data, performed better than the STEPS, the

model evaluated that did modified input data. The performance also improved on average

as the start of the rainfall event got closer and as the event developed. Additionally, the

DATing module algorithm did miss several clusters, which made the overall results of the

evaluation with the SWD clusters less reliable than when using all SWD data available.

When evaluating the same models but using radar data, the results showed less accu-

rate forecast than those obtained with SWD data, however the skilled improved with the

development and growth of the precipitation events. This was partly caused by the fact that

the radar did not have consistent accuracy over all its coverage area, and the SWD fields

had more real data (non-NaN values) throughout the field. A decrease in the amount of

real data available led to more pronounced effects of the errors and outliers on the statistics

used. Furthermore, the models’ ability to accurately predict the intensity of rain rate was

not high, with the models underestimating average rainfall and Extrapolation model having

more skill in predicting intensity than the S-PROG model.

Finally, in the evaluation of the same models with both data sets but expanding the

forecast time to 30 minutes and 60 minutes, the results were consistent with those obtained

for the 15-minute forecasts, but they were less accurate. For the 30-minute forecast, the

accuracy was around 20% lower and the 60-minute forecast accuracy was approximately

40% lower.

In conclusion, the extrapolation and S-PROG models give a skilled 15-minute, 30-minute,

and 60-minute prediction with both radar and satellite data for the region of central Mexico

during the rainy season. Additionally, it was observed that the SWD can be used to detect

areas of possible future convective precipitation. However, the SWD alone was not enough
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to have high precision in the prediction of rainfall, and the addition of other measurements,

such as wind or surface measurements, is necessary to improve the detection of areas of

possible rainfall. Lastly, the methodologies used in this work can be used as a foundation

to explore the use of other GOES-16 satellite products in the nowcast models and functions

provided by the pySTEPS library. Further research to this study includes the improvements

of the predictions by the nowcast models, especially for the satellite products, as well as

the exploration of using other satellite products, once they become available, in the nowcast

models. Nevertheless, the operational implementation of these models can still be achieved

with the help of the methodologies used in this study, if the satellite and radar data is

measured and processed in less than 10 minutes.
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