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Abstract

This thesis is centered around reconstruction methods and their application to the study of

the Dark Energy. It starts with an introduction to some important equations and concepts

in its first chapter. In the second chapter the focus shifts to answering the question what is a

reconstruction, its types and everything necessary to perform one. Chapter 3 is centered in a type

of parameterization named Graduated Dark Energy, whose main defining feature consists on a

DE density that can switch sign at a certain redshift. This DE model is then reconstructed and

analyzed. Chapter 4 deals with some model-independent reconstructions for DE and provides

some insights on some behaviours preferred by the datasets used, some of them being similar

as the ones found within the gDE model of Dark Energy. The fifth chapter introduces the

possibility of a weakly interacting Dark Sector (Dark Energy and Dark Matter), then some

model-independent reconstructions are used to analyze this interaction to characterize it. Some

interesting findings are made which also present some familiarity with previous chapters, even

when the underlying approaches to reconstruction used are different. Finally in chapter 6 the

conclusions are presented with some discussion regarding the findings of this work.
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Chapter 1

Introduction

1.1 Some important calculations

When studying cosmology, we always begin with the same fundamental concept: the cosmo-

logical principle. According to this principle, the universe exhibits homogeneity and isotropy

on large scales (approximately 100 Megaparsecs), implying that there is no preferred location

in space. This principle forms the foundation for defining the geometry and dynamics of ce-

lestial objects within the universe. Building upon the notion of a homogeneous and isotropic

universe, we can describe it as a sequence of three-dimensional surfaces arranged in a temporal

order, each possessing a specific curvature. These surfaces maintain homogeneity and isotropy.

The curvature can assume one of three values: zero curvature, positive curvature, or negative

curvature.

• Zero curvature: also known as “flat space”, it corresponds to Euclidean space where the

line element is given by:

dl2 = dx2 = δijdx
idxj , (1.1)

and it is invariant under translations and rotations.

• Positive curvature: also called “spherical geometry”, it represents space as a 3-sphere where

the line element is given by:

dl2 = dx2 + du2, x2 + u2 = a2, (1.2)

with a being the radius of the 3-sphere. This geometry is homogeneous and isotropic under

4-dimensional rotations.
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• Negative curvature: also known as “hyperbolic geometry”, it is represented by a hyperboloid

where the line element is given by:

dl2 = dx2 − du2, x2 − u2 = −a2, (1.3)

with a being an arbitrary constant. Homogeneity and isotropy arise from the symmetry

of the line element under 4-dimensional pseudo-rotations (Lorentz transformations, where

u corresponds to time).

If we rescale x → xa and u → ua in spherical and hyperbolic geometries, we can rewrite

them as:

dl2 = a2(dx2 ± du2), x2 ± u2 = ±1, (1.4)

from which we can see that

udu = ∓x · dx, (1.5)

so

dl2 = a2

(
dx2 ± (x · dx)2

1∓ x2

)
, (1.6)

and by generalizing for flat space, we obtain

dl2 = a2

(
dx2 + k

(x · dx)2

1− kx2

)
, (1.7)

where k = −1, 0, 1. If k = −1, we have hyperbolic geometry, if k = 1, it is spherical geometry,

and for k = 0, it is flat space. Because of this, k is referred to as “curvature”.

Rewriting it in spherical coordinates with dx2 = dr2+r2(dθ2+sin2 θdφ2) and thus x·dx = rdr,

we have:

dl2 = a2

(
(dr)2

1− kr2
+ r2dΩ2

)
, dΩ2 ≡ dθ2 + sin2 θdφ2, (1.8)

and from this result, we obtain the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)

(
(dr)2

1− kr2
+ r2dΩ2

)
, (1.9)
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where a is now a function of time referred to as the “scale factor” and it quantifies the extent to

which the universe expands or contracts. By convention, we set a(t0) = 1, where t0 represents

the current time. This metric reveals how the line element behaves in spacetime. Its importance

lies in the fact that it provides an exact solution to Einstein’s equations of general relativity.

We can now define how particles move in this metric. Since they are considered to be in free

fall, the trajectory they follow is determined by a geodesic. A geodesic is a curve that minimizes

the proper time ∆s/c between two points in spacetime (where ∆s is the line element). The

equation for these curves can be expressed as:

dUµ

ds
+ ΓµαβU

αUβ = 0, (1.10)

Here, Uµ ≡ dXµ

ds represents the four-velocity, and Γµαβ denotes the Christoffel symbols:

Γµαβ ≡
1

2
gµλ(∂αgβλ + ∂βgαλ − ∂λgαβ), ∂α ≡

∂

∂Xα
, (1.11)

In the above expression, gαβ corresponds to the metric, which satisfies gβλgλα = δαβ . By

using the chain rule

dUµ

ds
=
dXα

ds

∂Uµ

∂Xα
= Uα

∂Uµ

∂Xα
, (1.12)

we arrive to

Uα
(
∂Uµ

∂Xα
+ ΓµαβU

β

)
= 0, (1.13)

with the term in parenthesis being the covariant derivative of Uµ, which let us rewrite it as

Uα∇αUµ = 0, (1.14)

using the definition of the 4-momentum Pµ = mUµ, being m the mass, we can further rewrite

it as

Pα
(
∂Pµ

∂Xα
+ ΓµαβP

β

)
= 0. (1.15)

Defining γij ≡ δij + k
xixj

1−k(xkxk)
we can write the metric as

ds2 = dt2 − a2(t)γijdx
idxj . (1.16)
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The Christoffel symbols that are different from zero will be:

Γ0
ij = aȧγij , Γi0j =

ȧ

a
δij , Γijk =

1

2
γil(∂jγkl + ∂kγjl − ∂lγjk). (1.17)

Now we can start working with Einstein equations:

Gµν = 8πGTµν , (1.18)

where Gµν represents the Einstein tensor, which describes the curvature of spacetime, and Tµν

represents the energy-momentum tensor, which describes the matter content of the universe.

Since we are taking the Cosmological Principle as a starting point the energy-momentum

tensor must satisfy the conditions of homogeneity and isotropy. It can be modeled using the

tensor of a perfect fluid, therefore,

Tµν = (ρ+ P )UµUν − Pgµν , (1.19)

T00 = ρ(t), Ti0 = 0, Tij = −P (t)gij(t, x), (1.20)

Tµν = gµλTλν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 , (1.21)

where ρ is the energy density, P is the pressure of the fluid (not to be confused with the four-

momentum Pµ), and gαβ is the metric. However, energy and momentum must be conserved,

so the density must satisfy the continuity equation ρ̇ = −∂iπi (where πi ≡ T i0 = 0), and the

evolution of the momentum density must obey the Euler equation π̇i = ∂iP . Using this two

conservation equations we obtain

∂µT
µ
ν = 0, (1.22)

and using the covariant derivative

∇µTµν = ∂µT
µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ = 0, (1.23)

for the energy density we use ν = 0, which gives us

∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ = 0, (1.24)
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since we suppose isotropy we have T i0 = 0, then

dρ

dt
+ Γµµ0ρ− Γλµ0T

µ
λ = 0, (1.25)

which finally gives us the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (1.26)

Now we need to calculate the Einstein tensor Gµν from the Einstein equation. In general

relativity, we have the following equation:

Gµν = Rµν −
1

2
Rgµν , (1.27)

where Rµν ≡ ∂λΓλµν − ∂νΓλµλ + ΓλλρΓ
ρ
µν − ΓρµλΓλνρ represents the Ricci tensor, and R = gµνRµν

denotes the Ricci scalar. Due to the isotropy of the FLRW metric, Ri0 = R0i must be zero.

Thus, we obtain:

R00 = −3
ä

a
, Rij = −

(
ä

a
+ 2
( ȧ
a

)2
+ 2

k

a2

)
gij , R = −6

(
ä

a
+
( ȧ
a

)2
+

k

a2

)
, (1.28)

and the non-zero components of the Einstein tensor Gµν ≡ gµλGλν .

G0
0 = 3

(( ȧ
a

)2
+

k

a2

)
, Gij =

(
2
ä

a
+
( ȧ
a

)2
+

k

a2

)
δij , (1.29)

using this result and 1.21 in the Einstein Equations 1.18 we obtain the Friedmann Equations

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.30)

ä

a
= −4πG

3
(ρ+ 3P ). (1.31)

These equations govern the expansion of the universe (homogeneous and isotropic). Equation

1.30 is commonly expressed in terms of the Hubble parameter H ≡ ȧ
a , and ρ and P represent the

total density and pressure contributions from all components of the universe (matter, radiation,

etc.). The critical density at the present day (denoted by the subscript 0) is defined as ρcrit =

3H2

8πG , from which the dimensionless density parameters are defined:
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Ωi ≡
ρi
ρcrit

, (1.32)

which for the curvature k takes the form Ωk ≡ −k
(aH)2 . We can then rewrite 1.30 as

H2(a) = H2
0

[
Ωtotal + Ωk,0

(1

a

)2]
, (1.33)

where the subscript 0 means its value today (by convention we have a = 1 at present time).

Now we will delve a little deeper into which elements constitute Ωtotal.

1.1.1 Cosmic Components

We begin with matter. In cosmology, matter refers to any component with a pressure much

smaller than its density, which allows us to approximate P ≈ 0 in equation 1.26. By doing so,

we obtain:

ρ̇

ρ
= −3

ȧ

a
. (1.34)

From here, we find:

ρ ∝ a−3, (1.35)

which is expected since the density of matter is inversely proportional to the volume of the

universe. This density is primarily composed of two types of matter:

• Baryonic matter: Observable (luminous) matter such as nuclei and electrons.

• Dark matter: An unknown type of matter that does not interact with light. We will discuss

it further later.

Let’s now examine the next component in the cosmos: radiation. In cosmology, radiation

refers to a component whose pressure is one-third of its density, i.e., P = 1
3ρ. Thus, equation

1.26 yields:

ρ̇

ρ
= −4

ȧ

a
. (1.36)

Consequently, ρ ∝ a−4. This behavior applies to a gas of relativistic particles (where the

momentum of the particles is much greater than their mass). The density decreases with a4

due to the change in volume (a3) and a phenomenon known as “redshift”. To fully comprehend
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the meaning of the extra a (compared to matter) we need to explain the concept of redshift in

Cosmology. Starting from the Hubble’s law:

v(t) = Hr(t), (1.37)

which states that distant objects (relative to us) recede from us at a velocity proportional to

their distance, where v(t) represents the recession velocity of an object (the rate at which it

moves away from us), H is the Hubble parameter, and r(t) is the object’s position relative to

us. Now, if we consider dv = Hdr, and since H = ȧ
a , we have:

dv =
ȧ

a
dr. (1.38)

However, when considering the light reaching us from the object, we need to account for the

Doppler effect due to the object’s motion. For this effect, we have:

λr − λe
λe

=
dλ

λe
=
dv

c
, (1.39)

where c represents the speed of light in vacuum, λr is the wavelength received by the observer,

and λe is the wavelength emitted by the object. Now, since we are dealing with light, we have

c = dr
dt , and considering all of this, we obtain:

dλ

λe
=
ȧ

a
dt =

da

a
, (1.40)

this implies λ ∝ a. Therefore, we define the redshift z as:

1 + z =
λr
λe

=
a(tr)

a(te)
, (1.41)

using the convention that at the present time t0, we have a(t0) = 1, we obtain:

z =
1

a
− 1. (1.42)

As observed in 1.40, we have λ ∝ a, and since the energy of a wave is inversely proportional to

its wavelength, an increase in wavelength leads to a proportional decrease in energy with respect

to a. This accounts for the 4 in the relation ρ ∝ a−4, 3 corresponds to a spatial expansion and

1 accounts for the redshift. Radiation is primarily composed of:

• Photons: Electromagnetic radiation (light).

• Neutrinos: Particles with extremely small masses but very high kinetic energy.

Lastly, we will delve into the component that forms the central focus of this work: the

enigmatic entity known as Dark Energy.
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1.1.2 The Accelerated expansion and Dark Energy

By Taylor-expanding the scale factor a(t) we obtain

a(t) = a(t0) + ȧ(t0)[t− t0] +
1

2
ä(t0)[t− t0]2 + ..., (1.43)

where t0 is the present epoch. We divide by a(t0) and we can define the deceleration parameter

at epoch t0

q0 =
ä(t0)

a(t0)H2
0

, (1.44)

which can be generalized for a time t as

q(t) =
ä

aH2
. (1.45)

The deceleration parameter provides valuable insights into the expansion of the universe, en-

abling us to discern whether it is undergoing an accelerated expansion (q < 0) or a decelerated

one (q > 0) at a particular point in time. This parameter serves as a crucial diagnostic tool to

understand the dynamics and evolution of the cosmos. If we now use the strong energy condi-

tion, which states that the sum of the energy density (ρ) and three times the pressure (3p) in

all spatial directions must be non-negative (ρ + 3p ≥ 0) for the components of the universe, in

the Friedmann equation 1.31 we obtain ä < 0, which then implies q > 0.

At this point, we might be inclined to conclude that the universe is likely experiencing a

gradually slower expansion over time. However, a groundbreaking discovery in 1998 shattered

this prevailing notion. Observations of type 1a supernovae (SN1a) revealed the startling truth:

the universe is expanding at an accelerated pace [201]. This finding has been reproduced by

several other cosmological probes [100, 99, 24, 2], consistently confirming that our universe

underwent a transition from decelerated expansion to accelerated expansion at a redshift of

approximately z ≈ 0.5.

With this discovery fully cemented a formidable challenge arises: trying to find out the

driving force of the accelerated expansion. To address this problem, scientists developed the

idea of a new type of energy, later named Dark Energy (DE) for its elusive and unknown nature.

But how do we add this new component to our current Cosmological model? Let’s start by

assuming that the DE is a perfect barotropic fluid which has a density ρDE and a pressure pDE

that are related via the equation of state

w =
pDE

ρDE
. (1.46)
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Using the continuity equation 1.26 for DE we obtain

ΩDE(a) = ΩDE,0e
−3

∫ a
1
da′
a′ (1+w), (1.47)

By employing the density parameters, we can reformulate the Friedmann equation. By taking

into account how each component evolves with time, we arrive at the following expression:

H2(a) = H2
0

[
Ωr,0(

a0

a

)4
+ Ωm,0(

a0

a

)3
+ Ωk,0

(a0

a

)2
+ ΩDE,0e

−3
∫ a
1
da′
a′ (1+w)

]
, (1.48)

where Ωm,0 is the contribution due to dust-like matter, Ωr,0 is the contribution of radiation and

Ωk,0 is the contribution due to curvature.

Given the strong energy condition for the other components we know that DE should be

exotic enough so that ρ + 3p < 0 (which implies a negative density or pressure) to have an

accelerated universe. We also know that the density parameters by definition should fulfill∑
i

Ωi = 1. (1.49)

Finally, the effective equation of state of the universe can be expressed as

weff =
pr + pDE

ρm + ρr + ρDE
, (1.50)

and, together with Friedmann equation 1.31 we can see that the last condition for an accelerated

universe is weff < − 1
3 .

So far we have painted an interesting picture: a cosmological model that pretends to explain

how the universe evolves taking into account its main components along with an exotic new

one. But still we do not know what this new energy is or if it even exists as a component of the

universe.

1.2 The Standard Model of Cosmology

In 1917, Albert Einstein introduced the famous cosmological constant Λ into his field equations,

which makes them take the form:

Gµν + Λgµν = 8πGTµν . (1.51)

He did this with the belief that the universe was static. However, in 1929, Edwin Hubble’s

discovery shattered this notion. Hubble found compelling evidence that the universe was, in

fact, expanding, challenging the static universe hypothesis. Although the introduction of the

cosmological constant Λ initially aimed to achieve a static universe, it can be considered as a
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contribution to the energy content of the universe. With a specific value, it emerges as a viable

candidate to explain the observed accelerated expansion. This new component would have a

density ρΛ = Λ/8πG, and for ρΛ to be a constant we require pΛ = −ρΛ, which means that

wΛ = −1. By using this equation of state in 1.47 we arrive at

ΩΛ(z) = ΩΛ = const. (1.52)

which then gives us the Friedmann Equation

H2(a) = H2
0

[
Ωr,0(

a0

a

)4
+ Ωm,0(

a0

a

)3
+ ΩΛ + Ωk,0

(a0

a

)2]
. (1.53)

The combination of the concept of a cosmological constant as a representation for the DE with a

Cold Dark Matter (CDM) gives birth to the ΛCDM model, considered to be the standard model

in cosmology. It earns this status by being the simplest and most parsimonious model, involving

the least number of parameters while encompassing the essential concepts of DE and DM in

their rudimentary forms. Furthermore, the model finds its roots in the fundamental principles

of cosmology, namely The Cosmological Principle and Einstein’s General Relativity, which serve

as the bedrock for contemporary cosmological understanding.

1.2.1 Problems with the standard model

While the ΛCDM model has achieved significant success, it encounters a growing number of

challenges as increasingly precise observational data becomes accessible. An immediate and

fundamental challenge lies in the fact that we have very little knowledge about the true nature

of Dark Energy and Dark Matter. This is particularly worrisome, considering that nearly all

observational evidence suggests that these two components should constitute approximately 95%

of the total energy content of the universe.

Some efforts were made to relate the DE to some sort of vacuum energy, but this does not

agree with the theoretical predictions found by quantum field theory of vacuum [203], which

is 10123 times larger than the one observed in cosmology. Its origin is still a mystery. The

standard model explains some observations very well, but as more cosmological data become

available, several problems begin to arise [57, 105]. One of the most studied is that of the tension

arising from finding the value of the Hubble constant H0 (Figure 1.1) using data from the CMB

from the Planck telescope [75] or from the BOSS collaboration [8] and comparing it with the

value obtained from SN1a or the distance ladder [105]. It is quite a strong tension and as the

observations become more precise it seems that it is only increasing [105, 261].
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This poses a significant issue because all these observations were expected to be consistent

within the framework of the ΛCDM model. However, it’s possible that this isn’t the case,

and these issues may be pointing towards the need for a paradigm shift in our cosmological

model. Along these problems we have other concerning the CDM part of ΛCDM, but many

of these relate to smaller scales [144] such as the “missing satellites problem”, which says that

the standard model predicts more small-scale structures (dwarf galaxies, etc.) in the universe

than are observed. It is also important to mention that this problems may be due to statistical

fluctuations [212] or systematic errors in the data still to be found, although it is interesting

that this tensions have only increased in statistical significance over time instead of decreasing.

These issues serve as powerful motivation for physicists and cosmologists to explore alterna-

tive models and innovative solutions, and the main goal of this thesis is to explore a particular

approach called “Reconstructions”, which will be explored in greater detail in the following chap-

ter.
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Figure 1.1: Tension in the estimation of the parameter H0. It is observed that as the data

becomes more precise the difference between estimations grows. Image from [51]
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Chapter 2

Theoretical Framework

In this chapter, the focus will be on explaining essential concepts that underpin the research done

in this work. The theoretical, numerical, and statistical tools that will be employed throughout

this work will be defined and explored. Understanding these tools is crucial to ensuring the

accuracy and reliability of the findings.

2.1 How to attack the issues?

If one intends to find an approach to the problems of the standard model mentioned in the

previous chapter there are a variety of options, which can broadly be categorized into two:

either considering that the underlying theory is flawed or questioning the accuracy of the data.

If one assumes that the data is wrong there is limited recourse at the individual researcher-level

apart from conducting statistical analyses of the data or patiently awaiting updated and more

accurate data sets released by large collaborations. When considering the theory itself as the

potential issue we have a lot of alternatives.

As explained in the previous chapter the ΛCDM model uses the constant Λ (Lambda) to

denote the dark energy contribution to the total energy in the universe, but given that this

approach presents some issues, there are some alternatives that propose some sort of dynamic

DE (redshift dependency). Some options are the dark energies with Phantom [61], Quintessence

[60] or Quintom scalar fields [122]. As a consequence of these scalar fields the equation of

state (EoS) for DE is different than −1 and can even cross this value (upwards or downwards

depending on the field) in the case of the Quintom scalar field, opposite of the ΛCDM model

in which the EoS is assumed to be a constant. A model known as “Early Dark Energy”, which
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proposes a DE that behaves as a Cosmological Constant at early times, has been studied to

solve this tension and reconciles the H0 values pretty well [192], further proving that our DE

may in fact be of a dynamic nature. Alternatives known as modified gravity [171] are also

proposed, these alternatives attempt to explain DE as a geometric phenomenon or correction to

the Einstein’s equations instead of an unknown component to the energy of the universe. Here

we have from theories known as f(R) (since they propose a function that depends on the Ricci

scalar R) [172] to theories with extra dimensions such as brane world cosmology [133, 56].

The main approach to be used in this thesis will be that of a dynamical DE. By allowing the

DE to be redshift-dependent one can expect to alleviate the tensions in the parameter values

and attempt to solve the problems underlying the DE proposal, but if one is primarily interested

in the behavior of DE and not in its nature there is a very interesting approach. Before we dive

into this approach, it is essential to clarify a fundamental concept that forms the basis for it:

Bayesian Statistics.

2.2 Bayesian Statistics

This section is mainly based on [182].

At its core, the primary distinction between Bayesian and Frequentist statistics lies in their

definition of probability. In the Frequentist perspective, probability is interpreted in the context

of repeated measurements, given by

P =
n

N
, (2.1)

where n represents the number of favorable outcomes and N stands for the total number of

trials. Frequentist statistics defines the probability P as the limit when the number of inde-

pendent trials tends towards infinity. In the realm of Frequentist statistics, probabilities are

inherently tied to the frequencies of events. In contrast, Bayesian statistics broadens the notion

of probability to encompass the level of confidence we have in a statement. Bayesian statistics

connects probabilities with our understanding of an event.

Now we need some important concepts and definitions to fully grasp how Bayesian Statistics

works. Consider a random variable x associated with a specific event, and let P (x) represent

its corresponding probability distribution. In both scenarios, the identical rules of probability

govern the situation:

P (x) ≥ 0, (2.2)
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∫ ∞
−∞

dxP (x) = 1. (2.3)

When having mutually exclusive events:

P (x1 ∪ x2) = P (x1) + P (x2), (2.4)

but, in general

P (x1 ∪ x2) = P (x1) + P (x2)− P (x1 ∩ x2).

These rules can be summarized as follows: The first condition (2.2) ensures positive probabil-

ities for events. The second rule (2.3) normalizes probabilities, indicating certainty in obtaining

one outcome. In the third point (2.4), mutually exclusive events’ probability is the sum of indi-

vidual probabilities. Finally, if one event depends on another, their joint probability P (x1 ∩ x2)

is the product:

P (x1 ∩ x2) = P (x1)P (x2|x1). (2.5)

where P (x2|x1) is the conditional probability of x2 happening if x1 has already happened.

If two events x1 and x2 are mutually exclusive, then

P (x1 ∩ x2) = 0 = P (x2 ∩ x1). (2.6)

These rules of probability distributions must be fulfilled by both Frequentist and Bayesian statis-

tics. Now, we can introduce Bayes’ Theorem, a cornerstone of Bayesian Statistics. Following

Equation (2.5), it’s necessary that P (x1∩x2) = P (x2∩x1) holds without loss of generality. The

following relation then applies:

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (2.7)

This equation is known as the Bayes’ theorem and, as shown, is a direct consequence of the

axioms of probability. It can be defined also in the context of a model with parameters to explain

data in the following way: for a given model (or hypothesis) H, where x1 → D represents data

and x2 → θ represents the parameter vector of that hypothesis, we can reformulate the above

equation as

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
, (2.8)

where P (θ|D,H) is called the posterior probability of the model, L(D|θ,H) ≡ P (D|θ,H) is

called the likelihood, π(θ) ≡ P (θ|H) is called the prior and expresses how much we know a
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priori about our model and Z ≡ P (D|H) is the evidence of the model, usually referred to as

the Bayesian Evidence.

When selecting a prior some options are possible; nonetheless, a frequently used approach

is the uniform (also referred to as flat or agnostic) prior π(θ) ∝ const., which tells us that

every parameter value is equally probable. Regarding the likelihood, by disregarding the prior

given that it is flat, we can relate the posterior to the likelihood: P (θ|D,H) ∝ L(D|θ,H).

Consequently, by maximizing this expression, we can determine the most plausible parameter

set for a given model in light of the available data. The likelihood can be expressed as a multi-

variable likelihood given by

L(D|θ) = L(D|θ0) exp

[
−1

2
(θi − θ0i)Hij(θj − θ0j)

]
, (2.9)

where

Hij = −∂
2 lnL

∂θi∂θj
, (2.10)

is named the Hessian matrix, which controls whether the estimates of θi and θj are correlated.

When considering the Gaussian approximation as presented in Equation (2.9), it becomes evident

that the likelihood reaches its maximum when the quantity

χ2 ≡ (θi − θ0i)Hij(θj − θ0j), (2.11)

is minimized. This quantity, commonly referred to as the chi-square, is directly linked to the

Gaussian likelihood through L = L0e
−χ2/2. Consequently, maximizing the Gaussian likelihood

is essentially equivalent to minimizing the chi-square. It is important to highlight that under

certain circumstances the likelihood may not follow a Gaussian distribution.

When considering the Bayesian Evidence, it becomes evident that it functions as a normal-

ization factor. It represents the average of the likelihood:

P (D|H) =

∫
dNθP (D|θ,H)P (θ|H), (2.12)

where N signifies the dimensionality of the parameter space. In many cases, this quantity is

overlooked due to practical reasons, such as when assessing the parameter space of a singular

model. However, the Bayesian evidence assumes a pivotal role when comparing models, guiding

the identification of the most suitable one to accurately represent the data. This procedure is

commonly referred to as model selection. To simplify calculations, the ratio of two evidences can

be defined:

K ≡ P (D|H0)

P (D|H1)
=

∫
dN0θ0P (D|θ0, H0)P (θ0|H0)∫
dN1θ1P (D|θ1, H1)P (θ1|H1)

=
Z0

Z1
, (2.13)
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lnB0,1 Odds Probability Strength of evidence

< 1.0 <3:1 <0.75 Inconclusive

1.0 ∼3:1 0.750 Weak evidence

2.5 ∼12:1 0.923 Moderate evidence

5.0 ∼150:1 0.993 Strong evidence

Table 2.1: Jeffreys’ scale. Using the convention from [228].

where θi is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1. Or

alternatively, the difference in the log evidence, lnZ0 − lnZ1, is often referred to as the Bayes

factor B0,1:

B0,1 = ln
Z0

Z1
, (2.14)

which provides an idea on how well model 0 may fit the data when compared to model 1. A

useful reference scale that allows us to draw qualitative conclusions effectively is the named

Jeffreys’ scale (refer to Table 2.1).

In typical scenarios, calculating the posterior distribution analytically is often challenging.

In such cases, numerical tools assume a significant role in parameter estimation. Multiple alter-

natives are available to facilitate this process.

One method commonly used is the Markov Chain Monte Carlo (MCMC) [228] which uses

random walkers to sample the parameter space and the likelihood distribution. We also have

the nested sampling algorithm [217] (specifically the dynamic nested sampling), an algorithm

that, much like the MCMC method, is used to make Bayesian parameter inference but with the

advantage that one can get an estimate of the Bayesian evidence of each model.

In this work a python code named SimpleMC will be used (and modified when necessary)

to perform the parameter inference procedure. This code can make MCMC processes for the

posterior sampling. It can also do dynamic nested sampling using dynesty [219], a public, open-

source, Python package. The SimpleMC code used in this work is stored here [1] and all the

data used in this work is already implemented in SimpleMC.
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2.3 Reconstructions

As mentioned before, we have several approaches to shed some light on possible solutions to the

Cosmological Constant as a DE and its problems, and there is one alternative which works as the

main focus of this work. This alternative is to perform reconstructions. Reconstructions serve

the purpose of gaining insights into the dynamics of cosmological parameters when the genuine

underlying function is not directly observable but can be derived from accessible data. For

instance, they help in understanding how parameters (like the equation of state for DE) evolve

concerning cosmic time or redshift. They will be broadly classified in 3 classes: parametric, non-

parametric and model-independent. Depending on the type of reconstruction used one can get

completely different results. In this section, I will provide a general overview of these methods,

setting the stage for more detailed discussions in subsequent sections where we focus on the

specific ones employed in this study.

2.3.1 Parametric Reconstructions

In these, a phenomenological parametric (a function) form is proposed to represent the quantity

to be studied [207]. In parametric reconstructions one can find functions like the first terms of a

Taylor series to combinations of logarithmic and exponential functions [207, 40]. All these have

their respective characteristic parameters and they try to study a certain characteristic, i.e.

exponential growth/decrease, oscillations, quintom-like behavior, etc. One of the best-known

ones is the Chevallier-Polarski-Linder (CPL) [67] parameterization of the DE equation of state

w(z) = w0 + w1
z

1+z , where the free parameters that are to be constrained by data are w0 and

w1. It is also common to study several similar parameterizations in a single study such as in

[251] where 5 distinct functions are studied:

• w(a) = w0e
(a−1)

• w(a) = w0a(1− log a)

• w(a) = w0ae
(1−a)

• w(a) = w0a(1− sin(1− a))

• w(a) = w0a(1− arcsin(1− a))

each one with only one free parameter w0, and all 5 tend to behave like a Phantom DE and

alleviates (to a certain degree) the tension in the H0 parameter. There are others like the Padé
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approximation [244, 40], as it often gives a better approximation than the first terms of a Taylor

series, which is found to be as good as ΛCDM to explain the data observed (according to the

Akaike and Bayesian information criteria [228, 189]) but it has a dependency on the redshift.

These reconstructions are not limited to study only the EoS as it has been seen for example

in [119] where the deceleration parameter was parameterized as

q(z) =
1

2
+
q1z + q2

(1 + z)2
,

with two free parameters q1 and q2. Two other approaches to reconstructing can be found in:

[154] as q(z) = q0 + q1[ ln(N+z)
1+z + k] with free parameters q0, q1, N and k; and in [257] where

the two parameterizations q(z) = a+ bz
1+z and q(z) = 1

2 + az+b
(1+z)2 with parameters a and b. One

could also parameterize the jerk parameter [130, 164] or even directly the DE density, i.e. the

Generalised Emergent Dark Energy (GEDE) [148, 249, 130], the Early Dark Energy (EDE) [191]

and the Energy-Momentum Log-gravity (EMLG) [9].

During the course of this work some new parameterizations will be introduced. They will be

discussed in greater detail in subsequent chapters.

Parametric reconstructions are then usually compared (by using Bayesian statistics) with the

ΛCDM model to look for deviations from it and are useful to know the expected/preferred be-

havior of the DE, even if its underlying nature is still a mystery. Still they have the disadvantage

of assuming a functional form a priori. Adopting this approach can lead to some bias regarding

the function used. The problem of too many possible functions and variations to choose from is

also present. To avoid these problems one can instead perform the other type of approach to a

reconstruction: the non-parametric one.

2.3.2 Non-parametric reconstructions

Non-parametric reconstructions are more focused on the data and aim to be as free from model

assumptions as possible. It doesn’t rely on a specific functional form and seeks to describe the

data without making strong assumptions a priori. They can be seen as the “counterpart” of the

parametric ones.

Non-parametric reconstructions may include the use of Artificial Neural Networks or Gaus-

sian processes (more on this one later), as they have proven to be useful in cosmology as more

data become available [139, 213, 131, 233, 22, 254, 111, 247, 132, 239, 241, 118]. We also have

as a non-parametric approach the Loess+Simex method [157], which combines the regression

LOESS with the simulation-extrapolation technique SIMEX. This hybrid process leverages the

strengths of both LOESS and SIMEX to achieve a more robust and accurate reconstruction of
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cosmological quantities from observational data. Another non-parametric approach consists of

combining Principal Component analysis (also more on this one later) with the Goodness of Fit

(GoF) [256]. With this approach a deviation from the ΛCDM EoS (w = −1) was found around

z > 1.5. In this work two non-parametric approaches will be used: a Gaussian Process (GP)

and Principal Component Analysis (PCA).

Gaussian Process

GPs have been recently became very popular non-parametric reconstructions. For example in

[213] a non-parametric reconstruction was made over H(z), w(z) and q(z) using the Union 2.1

SN1a data [225] and it agrees with the ΛCDM model, but the data used only encompasses a

redshift up to 1, so the errors beyond this point are not constrained. Nevertheless the Gaussian

Process approach has proven useful in cosmology as more data becomes available [233, 22, 254,

111, 247, 132, 239]. But what is a Gaussian Process?

A Gaussian Process (GP) is the generalization of a Gaussian distribution, that is, in every

position x, f(x) is a random variable. It is characterized by a mean function µ(x) and a covari-

ance σ2K(x, x′), where σ2 is the variance and K(x, x′) the kernel representing the correlation of

f between two different positions f(x) and f(x′). For an arbitrary amount of positions x1, .., xn

then we have a multivariate Gaussian distribution

f̄ = [f(x1), .., f(xn)] ∼ N̄(µ̄, σ2K(x̄, x̄′)), (2.15)

where µ̄ = [µ(x1), ..., µ(xn)], and

K(x̄, x̄′) =


K(x1, x1) K(x1, x2) · · · K(x1, xn)

K(x2, x1) K(x2, x2) · · · K(x2, xn)
...

...
. . .

...

K(xn, x1) K(xn, x2) · · · K(xn, xn)

 . (2.16)

The Kernel to be used in this work is the Radial Basis Function (RBF)

K(x, x′) = exp
[
− θ(x− x′)2

]
, (2.17)

where the parameter θ tells us how strong is the correlation. This kernel has the advantage of

minimizing the degeneracies created due to a high number of hyperparameters since it only has

θ, it is isotropic if one chooses x = z being z the cosmological redshift, and it is also infinitely

differentiable.

In this work a Gaussian Process will be used to perform some reconstructions, but it will be

in an unorthodox manner. More on this in chapter 5.
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PCA

After doing a reconstruction we can perform a process known as Principal Component Analysis

(PCA) on the parameters. Let’s say we reconstruct the EoS using some parameters wi. We

start by computing the Fisher matrix of the parameters wi, which is approximately F = C−1,

where C is the covariance matrix of the parameters wi. Then we diagonalize F to find a basis

where the parameters are uncorrelated, so that

F = WTDW (2.18)

where the rows of W are the eigenvectors ei(z) of the basis in which the parameters are uncor-

related and D is a diagonal matrix. If ~p is the vector of the best-fit values of the wi then the

new uncorrelated parameters are ~q = W~p. Being di the diagonal elements of D we accomodate

them such that d1 > d2 > ... > dN , and also their correspondant ei(z) and qi. These di are

related with the errors as 1√
di

= σi. Then we can reconstruct the EoS as

w(z) =

N∑
i=1

qiei(z), (2.19)

with error

σ(w(zn)) =

( N∑
i=1

σ2(qi)e
2
i (zn)

)1/2

, (2.20)

where zn is the redshift in which each parameter wi is located. Now we can choose any number

of principal components (PCs) to reconstruct the function (from 1 PC to the original number

of parameters used in the reconstruction). If we use the same number of PCs as there are

parameters then the reconstruction will look the same, but by removing the PCs with the

smaller di we remove the noisiest aspects of the reconstruction (with biggest error σi, a common

practice is to remove enough PCs to mantain 95% of the information or variance). By doing

this we can draw conclusions about the data used and how well it constrains the parameters.

This method will be used in chapter 4

2.3.3 Model-independent Reconstruction

Let us delve in the third class of reconstruction: the model-independent one. These reconstruc-

tions work as a blend of the parametric and non-parametric ones. They are parametric in the

sense that the reconstruction has parameters to infer with data and, as such, can be used in
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a model-comparison procedure against ΛCDM. And they are similar to non-parametric recon-

structions since they rely on using functions that don’t have a predefined or rigid shape, they

have much more freedom of “structure” than a parametric one.

One type of model-independent approach is proposed in [79] which is named “correlation

function method”. In [261] it was found using this method that with current data (combining

BAO, SN1a, Hubble parameter and Planck telescope data) a dynamical form for w(z) is preferred

over a constant value with a 3.5σ significance level. This method will be explained further in

this work. We also have the nodal reconstruction [230, 231, 128, 31] in which a piecewise linear

(or cubic) is used to represent the function to reconstruct. This approach has been used to

reconstruct the EoS [231], here was found that, although the ΛCDM model is consistent with

the data used then, the reconstruction presented some redshift dependency (like a small “hump”

in z ≈ 1.3) but beyond z ≈ 1.5 the data used was too inaccurate to have a saying in how the

EoS should behave. This method was used in [31] (although here they called it “knot-spline”

reconstruction) with the Planck temperature data and showed that this non-parametric approach

can be used to find specific features by allowing some central “knots” to vary in height and width.

In chapter 4 the main focus is on model-independent reconstructions, particularly the nodal

reconstruction, the bin reconstruction and the correlation function method [79]. Let’s delve a

little more into these approaches to reconstruction.

Nodal reconstruction

This reconstruction consists in using an interpolation, either linear or cubic spline, to fill in the

gaps between a certain number of “nodes”. As an example, if we have a node for the EoS in

a coordinate (zi, wi) and wish to linearly interpolate it with a node in (zi+1, wi+1) we need a

straight line Li as

Li(z) =
wi+1 − wi
zi+1 − zi

(z − zi) + wi, z ∈ [zi, zi+1]. (2.21)

These nodes then are points in space kept at a certain distance from each other and with variable

height wi and, in some cases, variable width zi.

The interpolation could also be made with higher order polynomials, this approach being

called cubic spline, to preserve smoothness between nodes, but this approach presents heavy cor-

relations between nodes and unwanted noise to the reconstruction, it can also present numerical

problems when changing too abruptly the value of the node’s position or if they are too close.
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Also, since there will not be any derivatives it presents no problem to have no smoothness in

the reconstruction. Given this the main focus in this work will be the linear ones.

Bin reconstruction

Another approach utilized in this study is the step function or binning scheme. In this method,

numerous steps or “bins” are employed and connected using hyperbolic tangents. As a function

it looks like this:

w(z) = w1 +

N−1∑
i=1

wi+1 − wi
2

(
1 + tanh

(z − zi
ξ

))
, (2.22)

where N is the number of bins, wi is the bin value, zi is the position where the bin begins in

the z axis and ξ is a smoothness parameter. As illustrated in Figure 2.1, we can observe the

step function with N = 8 and two different values of ξ. Similar to the nodal reconstruction,

these bins can adjust their heights to enhance data fitting. Although this function is presented

with the Equation of State (EoS) w(z), it represents the generalized form of the bin function.

If one intends to use this approach for reconstructing any other function, the only modification

required is adjusting the values that the bins/parameters wi can assume.

The objective of these two methods is to visualize the shape of the reconstructed quan-

tity, allowing us to discern the data’s preferred behavior. As this reconstruction approach is

model-independent, it minimizes bias towards a specific functional form or model. However, it’s

essential to acknowledge the potential for overfitting when using an excessive number of nodes

or bins. To address this, model comparison will be employed, leveraging Bayesian Evidence

to penalize such choices. Another way of diminishing this risk of overfitting is to introduce a

Correlation Function.

Correlation Function method

This method can be applied on top of the nodal and binning approaches in order to obtain a func-

tion that evolves smoothly [78]. The idea behind it is to treat the quantity to be reconstructed

in place as a random field evolving along with a correlation function ξ, for instance

ξ(δz) =
ξ(0)

1 +
(
δz
zc

)2 , (2.23)

with ξ(0) being the normalization factor and zc represents a smoothing distance. The correlation

function (2.23), named CPZ [79], has a characteristic correlation length after which its contri-

bution decreases, hence providing stronger correlations between neighboring bins when they are
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Figure 2.1: Bin graph with 8 nodes, 8 bins and two values of ξ for the bins. It is easy to observe the difference

in smoothness with a bigger ξ for the bins.

located at distances smaller than zc. There exist several alternatives that can reproduce this

behaviour up to a certain degree, like the exponential fall-off ξ(δz) = ξ(0)e−δz/zc or the power

law ξ(δz) = (δz/zc)
−n, but the CPZ has a more transparent dependency in the parameters fi, a

relatively simpler behaviour and it constrains the high frequency modes better [79]. Throughout

this work, I use the following values zc = 0.3 and ξ(0) = 0.1 since they normalize the shorter

wavelength modes of the data [78].

Assuming every amplitude fi are equally distributed with the same width-location ∆ =

zi+1 − zi, then the average of f(z) over each fi is

fi =

∫ zi+∆

zi

f(z)dz. (2.24)

The variation from the fiducial model averaged over the bin is δfi = fi− ffid, where the fiducial

model is the underlying scheme upon which the reconstruction will be dependent on. In this

way the covariance matrix can be obtained by

Cij ≡ 〈δfiδfj〉 =

∫ zi+∆

zi

dz

∫ zj+∆

zj

dz′ξ(|z − z′|), (2.25)

and therefore the associated prior

Pprior ∝ e−
1
2 (f−ffid)TC−1(f−ffid). (2.26)
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Finally, once the prior is given (or equivalently χ2
prior = −2 lnPprior), the total χ2 to minimize

becomes

χ2 = χ2
data + χ2

prior. (2.27)

The fiducial model could be one previously known, for instance in the case of the dark energy

EoS, it could be the cosmological constant with wDE(z)= −1 or ρDE(z)=constant. However,

demanding a behaviour like the cosmological constant may create a bias when performing the

reconstruction. The same would be true for any other fixed fiducial model, so I opted for the

floating prior proposed by [79], where

ffid
i =

∑
|zj−zi|≤zc

f recons
j

Nj
, (2.28)

here zj is the position of the amplitude fj and Nj is the number of amplitudes that fulfill the

condition |zj−zi| ≤ zc. This floating prior makes sure that the parameter values stay continuous

by evaluating the mean value of each parameter with its immediate neighbors.

It is important to mention that the correlation function method applied here is used as an

“agnostic” way of reducing overfitting, agnostic in the sense that the imposed correlations are

mainly obtained via a data-driven approach, not a theory-driven one, e.g. effective field theories

(EFTs) such as Quintessence or Horndeski [73, 196, 103, 188, 197]. This could provide a small

bias against EFTs, particularly Quintessence, as explained in [73]. Also, since this method is

being used as a way to diminish overfitting it could even prevent some interesting features to

appear or even wither existing ones, such as the disappearance of oscillatory features in the EoS,

as seen in [188, 197], when using a theory prior.

2.4 Data

To make a reconstruction (or in general a Bayesian parameter inference procedure) one needs a

set of data that will be used to constrain the free parameters of the model. In this work the data

used is from the Hubble parameter [114], the Joint Light-curve Analysis (JLA) SN1a sample [34],

the Pantheon and Pantheon+ SN1a samples [211], the BOSS and Lyman-α Baryonic Acoustic

Oscillation (BAO) data [33] and the Planck CMB (treated as a BAO) [33].
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2.4.1 Hubble parameter

The Hubble parameter tells us the expansion rate of the universe. It can be expressed as a

function of the redshift z with the Friedmann equations. This parameter can be measured with

old stars known as “cosmic chronometers” and they work as “standard clocks” in cosmology. It

can be obtained by calculating the derivative of the cosmic time with respect to the redshift at

z 6= 0 as

H(z) ≈ −1

1 + z

∆z

∆t
(2.29)

where the rate ∆z/∆t is measured with the difference in age of the cosmic chronometers. In

this work the data used is of these cosmic chronometers [135, 215, 223, 160, 260, 158, 159, 195]

(written as H in the datasets) to constrain the parameters. In Table 2.2 they are reported and

can be found within the repository [151].

The χ2 of the cosmic chronometers is calculated as

χ2
H =

N∑
i=1

(Hi,m −Hi,obs)
2

σ2
i

(2.30)

with Hi,m and Hi,obs being the Hubble parameter in the model and in the data and σ2
i the error

of the ith sample of H.

2.4.2 Type 1a supernovae

There are “standard candles” in cosmology as there are standard clocks. The type 1a supernovae

(SN1a) take this place. The standard candles provide a luminosity distance in function of redshift

as dL(z) = (1 + z)r(z), with r(z) being the comoving distance

r(z) =
1

H0

∫ z

0

H0

H(z)
dz. (2.31)

To achieve this, the distance modulus of a supernova is estimated as

µ(z) = 5 log
DL(z)

Mpc
+ 25. (2.32)

where DL(z) = H0dL(z) is the luminosity distance. The distance modulus of the SN1a is derived

from the empirical relation when observing light curves

µSN = m∗B + αX − βC −MB , (2.33)
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Table 2.2: Cosmic Chronometer Hubble parameter measurements with their errors.

z H ± σH (CCB) H ± σH (CCM) H ± σH (CCH) Ref.

0.07 69± 19.6 ... ... [260]

0.09 ... ... 69± 12 [223]

0.12 68.6± 26.2 ... ... [260]

0.17 ... ... 83± 8 [223]

0.1797 75± 4 ... ... [160]

0.1993 75± ... ... [160]

0.2 72.9± 29.6 ... ... [260]

0.27 ... ... 77± 14 [223]

0.28 88.8± 36.6 ... ... [260]

0.3519 83± 14 88± 16 ... [160]

0.3802 83± 13.5 89.2± 14.1 ... [159]

0.4 ... ... 95± 17 [223]

0.4004 77± 10.2 82.8± 10.6 ... [159]

0.4247 87.1± 11.2 93.7± 11.7 ... [159]

0.4497 92.8± 12.9 99.7± 13.4 ... [159]

0.47 89± 49.6 ... ... [195]

0.4783 80.9± 9 86.6± 8.7 ... [159]

0.48 ... ... 97± 62 [223]

0.5929 104± 13 110± 15 ... [160]

0.6797 92± 8 98± 10 ... [160]

0.7812 105± 12 88± 11 ... [160]

0.8754 125± 17 124± 17 ... [160]

0.88 ... ... 90± 40 [223]

0.9 ... ... 117± 23 [223]

1.037 154± 20 113± 15 ... [160]

1.3 ... ... 168± 17 [223]

1.363 160± 33.6 160± 33.6 ... [158]

1.43 ... ... 177± 18 [223]

1.53 ... ... 140± 14 [223]

1.75 ... ... 202± 40 [223]

1.965 186.5± 50.4 186.5± 50.4 ... [158]

where X is the stretch parameter, C is the color parameter, MB is the absolute magnitude,

m∗B is the B-band apparent magnitude, α and β are nuisance parameters. In the Pantheon

Sample [211] the apparent magnitude mB = m∗B +αX−βC is reported, and we fix the absolute

magnitude MB = −19.35, which is the best fitting value for ΛCDM. So we are left with the

distance modulus

µ(z) = 5 log
DL(z)

Mpc
+ 25 = mB −MB , (2.34)
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from which the luminosity distance can be calculated. In this work both the old version of 1048

samples from the Pantheon SN1a sample [211] and the PantheonPlus data release [210] which

consists of 1701 light curves of 1550 SNeIa are used. When used it will be written as SN in the

datasets and it spans a redshift of 0 < z < 2.26.

The χ2 of the SN sample is calculated as

χ2
SN = (µi,m − µi,obs)C

−1
ij,SN(µj,m − µj,obs), (2.35)

with µi,m and µi,obs being the distance modulus in the model and in the data and Cij,SN the

inverse covariance matrix of the observations. The full covariance matrix associated is comprised

of a statistical and a systematic part, and along with the data, they are provided in the reposi-

tory [136].

2.4.3 Baryon Acoustic Oscillations

The baryion accoustic oscillations (BAOs) are used as “standard rulers” in cosmology. They are

used to measure the angular distance dA = r(z)/(1 + z). The BAO scale is set by the radius of

the sound horizon

rd =

∫ ∞
zd

cs
H(z)

dz, (2.36)

cs being the sound speed of the baryon-photon fluid and zd the drag epoch (when baryons and

photons decouple) [95]. Since the size of rd depends on the cosmological model, the BAO actu-

ally constrains DA(z)/rd (with DA(z) = H0dA(z)), H(z)/rd and the volume average distance

DV (z)/rd = [(1 + z)2D2
A(z)cz/H(z)]1/3 The BAO data used here is the Lyman α DR-14 high-

redshift measurements, MGS, 6dFGS and BAO-Galaxy consensus [20, 88, 32, 45, 44, 26]. To

calculate the χ2

χ2
BAO = (bi,m − bi,obs)C−1

ij,BAO(bj,m − bj,obs) (2.37)

where bi,m and bi,obs are the model and the BAO data values and CBAO is the covariance matrix

of the data.
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2.4.4 Cosmic Microwave Background

The data from Planck satellite for the Cosmological Microwave Background (CMB) is also used,

but the focus is only on the cosmological background, not on perturbations, so the Planck data

will be used as a BAO measurement in z ≈ 1100 [33], the last scattering redshift. This means

that we measure the angular scale of the sound horizon at a large redshift. As explained in [33],

the information of the CMB at a background level can be summarized in the 3 parameters wb

(physical baryion density parameter), wcb (physical matter density parameter) andDA(1100)/rd,

with their respective covariance matrix. To obtain the χ2 we just, analogous to the BAO case,

calculate

χ2
PLK = (pi,m − pi,obs)C−1

ij,PLK(pj,m − pj,obs) (2.38)

where p is the parameter vector and CPLK is the covariance matrix.
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Chapter 3

A model with Negative Energy

Density: Graduated Dark Energy

3.1 Introduction

As explained in first chapter, one of the most intriguing tensions reported so far is the significant

deficiency in the Hubble constant H0 value predicted by the cosmic microwave background

(CMB) Planck data [4, 6] using the base ΛCDM model when compared with the values by

direct model-independent local measurements [199, 200, 198, 109]. Surprisingly, the situation

changes if the DE energy density is not restricted to be strictly positive. It has been reported

that a number of persistent low-redshift tensions, including the H0 tension, may be alleviated by

a dynamical DE whose energy density can assume negative values or vanish at a finite redshift

[90, 34, 205, 161, 190, 64, 242, 97, 36, 35, 234, 255].

The possible need for a DE whose energy density can assume negative values was previously

emphasised by the observation that, when the base ΛCDM model is considered, the Ly-α forest

measurement of the BAO by the BOSS collaboration prefers a smaller value of the dust density

parameter than is preferred by the CMB data [90]. They reported a clear detection of DE

consistent with Λ > 0 for z < 1, but with a preference for a DE assuming negative energy

density values for z > 1.6 and argued that the Ly-α data from z ≈ 2.34 can fit a non-monotonic

evolution of H(z), i.e., of the total energy density ρtot(z) –assuming general relativity (GR)–

which is difficult to achieve in any model with non-negative DE density [34]. In another study

[205], in line with this, it was argued that the Ly-α data can be accommodated by a physically
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motivated modified gravity model that alters H(z) itself, and also that a further tension relevant

to the Ly-α data can be alleviated in models in which Λ is dynamically screened, implying an

effective DE passing below zero and concurrently exhibiting a pole in its equation of state (EoS),

at z ∼ 2.4. DE models –either as a physical source or an effective source arising from a modified

theory of gravity– assumes negative energy density values have not been paid much attention so

far (for reviews on DE and modified theories of gravity [77, 62, 71, 87, 63, 174, 173]). However,

such scenarios are in fact familiar from an effective source (say, DE) defined by the collection of

all modifications to the usual Einstein field equations in scalar-tensor theories, namely, when the

cosmological gravitational coupling strength gets weaker with increasing redshift [47, 208]. A

range of other examples of effective sources crossing below zero also exist, including theories in

which Λ relaxes from a large initial value via an adjustment mechanism [96, 41], in cosmological

models based on Gauss-Bonnet gravity [262], in braneworld models [206, 55], in loop quantum

cosmology [29, 30], in higher-dimensional cosmologies that accommodate dynamical reduction

of the internal space [69, 91, 13, 202], and generalisations of the form of the matter Lagrangian

in a non-linear way [15, 46, 9].

It is possible to seek such scenarios by following a minimalist approach, namely, starting

with the minimal extensions to the standard ΛCDM model. The most natural one to consider is

the addition of positive spatial curvature, e.g., that of the Friedmann-Robertson-Walker (FRW)

spacetime which imitates a negative energy density source with an EoS parameter equal to −1/3.

It is easy to check that, however, to screen Λ at, e.g., z ∼ 2.4 for ΩΛ,0 ∼ 0.7, its density parameter

today is required to be Ωk,0 ∼ −0.06, which is a contradiction to the inflationary paradigm and

is indeed not allowed by the joint results of the Planck release [6] suggesting spatial flatness to

a 1σ accuracy of 0.2%. By staying loyal to the inflationary paradigm and then suppose flat

space, the simplest source that can realise such a behaviour can be obtained by promoting the

null inertial mass density [113, 101] of the vacuum energy (ρinert = 0) to a negative constant,

ρinert = const < 0. The source ρinert = const has recently been of interest to many as it mimics Λ

today while leading the universe to exhibit a future singularity dubbed as the Little Sibling of the

Big Rip for ρinert = const < 0 and a finite future bounce for ρinert = const > 0 [53, 52]. However,

in the light of observational analyses carried out in this work, ρinert = const < 0 provides us with

neither a superior DE model than Λ, nor an improvement regarding the tensions of interest. For

instance, the observational data suggest that its energy density changes sign at a redshift larger

than 65 (i.e., when it is already negligible) and it is indistinguishable from Λ today (z ∼ 0), so

it cannot have consequences on the tensions. The simplest next step may be to consider the

minimum dynamical deviation from the null inertial mass density in the form ρinert ∝ ρλ < 0
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with λ being a real constant. The exponent λ here will provide a more featured evolution of the

energy density passing below zero at high redshifts. Importantly, for arbitrarily large negative

values of λ, it resembles a step function in redshift describing a spontaneously sign switching

cosmological constant at a certain redshift. It can also be viewed as a phenomenological model

described by a smooth function for approximately describing a vacuum energy that switches

sign at a certain redshift and becomes positive just recently in the late universe and triggers the

acceleration. A source having this form (but considering ρinert ∝ ρλ > 0) was first suggested

in [37] (see also [38, 39]) for introducing an intermediate inflationary scenario named graduated

inflation.

Accordingly, this source shall be named graduated dark energy (gDE) as in this chapter

the present-day acceleration of the universe is studied. In fact, more recently, it has also been

considered as a DE (e.g., [170, 222, 221, 107]). However, all these works focus on the future

singularities and the asymptotic dynamics of the universe by retaining the positivity of the

energy density (the cases for the negative energy density are discussed only superficially). In

contrast, here, the focus is on its dynamics around the present time and then utilise its sign-

switching energy-density feature to address the tensions that arise within ΛCDM model when

the data from the late universe are considered.

Such scenarios, in particular, the sign-switching cosmological constant that arises as a limiting

case of the gDE, can be extremely appealing from a string theoretic perspective. Constructing

metastable de Sitter (dS) vacua (provided by Λ > 0) has notoriously been a challenging task

in string theory and, so far, has not have been concretely achieved [153, 214, 82, 246, 83, 81,

66, 84, 86, 70]. This has led many to suggest that string theory might not have any dS vacua

at all [229, 85, 178, 110, 180, 184]. This would have immense implications in cosmology and/or

theoretical physics, as it seems to imply an inconsistency between string theory and the universe

we live in [137, 7, 28, 177, 129, 141, 19, 166, 124, 140, 74]. In contrast, an AdS (anti-de Sitter)

background (provided by Λ < 0) solution naturally arises in string theory or string theory

motivated supergravities with broken/unbroken supersymmetry. Furthermore, the AdS space

provides a very powerful setup to study various strongly coupled quantum field theories via

the AdS/CFT (conformal field theory) correspondence [152, 245]. Contrary to the case of dS,

which can only arise with broken supersymmetry, there does seem to exist a large number of

consistent AdS backgrounds that can be obtained from string theory. It has also recently been

claimed that transition from AdS vacua to dS vacua could be realised in a noncommutative

quantum field theory setup [108]. Consequently, if one could show through gDE, that the

observational data prefers a DE having ρ ∼ ρ0 > 0 (positive cosmological constant) for z ∼ 0
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(just recently) and ρ ∼ −ρ0 < 0 (negative cosmological constant) for z � 0 (most of the

history of the universe), which realises at large negative λ values of gDE, and that the persistent

tensions arising within the standard ΛCDM model disappear/relax, this would have far reaching

implications for our understanding of the fundamental laws of physics. It will be shown that

the observational data provides strong pointers in this direction. This leads to the conjecture

that the cosmological constant has spontaneously switched sign and became positive, namely,

the universe has transitioned from AdS vacua to dS vacua, at z ∼ 2.3 and triggered the observed

late-time acceleration, and looking for such mechanisms in string theory is suggested.

3.2 Graduated dark energy

Inspired by [37], a type of DE model is defined, named as graduated Dark Energy (gDE), which

yields an inertial mass density exhibiting power-law dependence to its energy density as follows;

ρinert = γρ0

(
ρ

ρ0

)λ
, (3.1)

where ρ0 is positive definite (throughout the chapter, subscript 0 attached to any quantity

denotes its value today), the parameters γ and λ are real constants. This can be viewed as

characterising the minimum dynamical deviation from the null inertial mass density from the

conventional vacuum energy. So that equation of state (EoS) parameter is w = p/ρ = −1 +

ρinert/ρ, and reads

w = −1 + γ

(
ρ

ρ0

)λ−1

. (3.2)

We note that γ = 0 corresponds to the conventional vacuum energy with w = −1 (leading to

the ΛCDM model) and λ = 1 corresponds to the perfect fluid with constant EoS parameter

w = −1 + γ = const (leading to the wCDM model). From the continuity equation (1.26), this

leads to dρ+ 3γρ0

(
ρ
ρ0

)λ
da
a = 0, which is solved by

ρ = ρ0 [1 + 3γ(λ− 1) ln a]
1

1−λ , (3.3)

which satisfies

ρinert = γρ0 [1 + 3γ(λ− 1) ln a]
λ

1−λ , (3.4)

w = −1 +
γ

1 + 3γ(λ− 1) ln a
. (3.5)

We note that w = −1 + γ today (when a = 1 or redshift z ≡ −1 + 1
a = 0) and w ≈ −1

for sufficiently large and small a, in particular, w → −1 in the far future (a → ∞) and in
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the very early universe (a → 0). Besides, provided that the parameters γ and λ are chosen

appropriately, gDE can achieve a transition from ρ > 0 to ρ < 0 at a certain redshift. Thus,

gDE can also be viewed as a phenomenological parameterization described by a smooth function

for approximately describing the cosmological constant switches sign at a certain redshift and,

for instance, becomes positive just recently in the late universe.

The gDE (3.3), in fact, exhibits various types of dynamics depending on its free parameters

λ and γ, see [222] for a comprehensive investigation. In this work, the interest is in the case

its energy density passes below zero at high redshifts, which, so far, has not been paid much

attention, yet it is the case fitting the scenarios discussed in the Introduction 3.1 that most

likely address the tensions relevant to H0 and, in particular, to the high-precision Ly-α data

from z ≈ 2.34. For instance, in the case λ = 0 (ρinert = γρ0), (3.3) reduces to ρ = ρ0− 3ρ0γ ln a,

consisting of a constant ρ0 > 0 mimicking Λ > 0 and a dynamically screening term, −3ρ0γ ln a,

in the past for γ < 0, viz., ρ0 − 3ρ0γ ln a = 0 at a = e
1

3γ . Yet, the presence of the exponent 1
1−λ

in (3.3) will allow us to realise such a scenario with additional features.

First, we define ρ/ρ0 = xy along with ρ0 > 0, where x ≡ 1 + 3γ(λ − 1) ln a and y ≡ 1
1−λ .

We note that, unless γ = 0 (conventional vacuum) or λ = 1 (perfect fluid with constant EoS

parameter), x changes sign at

a = a∗ ≡ e−
1
3

1
γ(λ−1) , (3.6)

which is in the past (a∗ < 1, the case of interest) for γ(λ − 1) > 0, and in the future (a∗ > 1)

for γ(λ − 1) < 0. Next, y < 0 for λ > 1 so that ρ → ±∞ as a → a∗ and y > 0 for λ < 1 so

that ρ→ 0 as a→ a∗, where the latter case is the one of interest. Thus, let’s proceed with the

following two conditions:

λ < 1 and γ < 0, (3.7)

the latter of which implies w(a = 1) < −1, i.e., the gDE must be in the phantom region today.

To get around a mathematical obstacle, when investigating gDE computationally, one con-

tinues by writing ρ
ρ0

= xy in an equivalent way as ρ
ρ0

= sgn(x) |x|y for y = m
n with m and n

being odd integers, namely,

ρ = ρ0 sgn[1−Ψ ln a]
∣∣1−Ψ ln a

∣∣ 1
1−λ , (3.8)

for Ψ ≡ −3γ(λ−1) < 0 (i.e., γ < 0), λ < 1 and the exponent 1
1−λ = m

n with both m and n being

odd integers. For practical reasons, it is better to consider m = 1 and so λ = −2N with N =

0, 1, 2, ..., i.e., λ = 0,−2,−4, ... . Here sgn is the signum function that reads sgn(x) = −1, 0, 1
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for x < 0, x = 0 and x > 0, respectively. Of course, in principle, there is an infinite number of

such λ values, not continuous, between the ones listed above, and so one can treat λ in (3.8)

as if it is continuous since one can always find an allowed λ value indistinguishably close to a

forbidden λ value.

Consequently, the gDE-CDMmodel replaces the Λ of the Friedmann equation of the standard

ΛCDM model by the gDE (3.8) taking the form of

H2

H2
0

= Ωr,0a
−4 + Ωm,0a

−3 + ΩDE,0 sgn[1−Ψ ln a]
∣∣1−Ψ ln a

∣∣ 1
1−λ , (3.9)

and one can rewrite

ρDE

ρc,0
= ΩDE,0 sgn[1−Ψ ln a]

∣∣1−Ψ ln a
∣∣ 1

1−λ , (3.10)

where Ψ < 0 and λ = 0,−2,−4, ....

Regarding inertial mass density (3.4); when γ < 0, if 1 − λ is odd then λ is even, and

consequently we have the exponent λ
1−λ = [even]

[odd] in (3.4), which in turn implies that ρinert ≤ 0,

then

ρinert = γρ0 |1 + 3γ(λ− 1) ln a| λ
1−λ , (3.11)

under the conditions derived above. It turns out that ρinert = 0 is the upper bound ρinert,max = 0.

It was claimed above that gDE can also be viewed as a phenomenological model described

by a smooth function that approximately describes the cosmological constant switching sign

at a certain redshift and becoming positive just recently in the late universe. Indeed, under

the conditions one can consider, ρ(a = 1) > 0 and ρ(a � a∗)/ρ(a � a∗) ≈ −1 along with

w(a� a∗) ≈ w(a� a∗) ≈ −1, which imply that the energy density of the gDE at high redshifts

not only passes below zero but also settles in a value almost equal to the negative of its present

time value and remains almost there all the way to the early times before which gDE is irrelevant

to the dynamics of the universe anymore. Note that the EoS parameter is just slightly below

(above) the phantom divide line for a � a∗ (a � a∗) with a∗ < 1, and w → −1 only when

either a → 0 or a → ∞. Therefore, the energy density of gDE grows very slowly in the future

and reaches arbitrarily large values in the very remote future, and also grows in negative values

very slowly (much slower than radiation and dust, both which then eventually dominate gDE

in the finite past) with the increasing redshift for a� a∗, and reaches arbitrarily large negative

values in the beginning of the universe. It is important to note, however, that for arbitrarily

large negative values of λ, the energy density equation (3.10) (or (3.8)) transforms into a step
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Figure 3.1: Ωm,0 = 0.30 is used and, for gDE-CDM, γ = −0.03 along with λ = −10 (green). H(z)/(1 + z) vs. z

for the gDE-CDM (green) and ΛCDM (black). H0 = 70km s−1Mpc−1 (solid) and H0 = 73km s−1Mpc−1

(dashed). H0 = 69.8± 0.8 km s−1Mpc−1 from the TRGB H0 [109], H(z = 0.57) = 97.9± 3.4 km s−1Mpc−1 [27],

and H(z = 2.34) = 222.4± 5.0 km s−1Mpc−1 from the latest BAO data [90]. H0 = 73.52± 1.62km s−1Mpc−1 is

independent measurement from Gaia parallaxes [200].

function;

ρDE

ρc,0
→ ΩDE,0 sgn[1−Ψ ln a] as λ→ −∞ (3.12)

with an EoS parameter w → −1. In this case, the energy density of gDE is non-dynamical except

that it spontaneously changes sign at a = a∗. Thus, for large negative values of λ, gDE model is

a very good approximation for describing a cosmological constant spontaneously switching sign

at z = z∗ in the limit λ→ −∞, ρDE

ρc,0
= ΩDE,0 for z < z∗ and ρDE

ρc,0
= −ΩDE,0 for z > z∗.

The following may be useful as a demonstration of how gDE-CDM model works and gives

a guide to the values of the parameters of the model. Let’s choose a∗ = e−1 (z∗ ∼ 1.7) in

line with [34] (see Fig.11 in [34]). This leads to λ = 1 + 1
3γ , where λ must be a large negative

number as γ ∼ 0 must be used (it is observationally well known that γ = w0 + 1 ∼ 0) along

with γ < 0 (the condition derived above). For example, γ = −0.03 (or w0 = −1.03) predicted

by the Planck release [6] leads to λ ∼ −10. Accordingly, in Fig. 3.1, it is depicted ρ(z)
ρc,0

, w(z)

and H(z)/(1 + z) by considering Ωm,0 = 0.30 along with two different Hubble constant values,

H0 = 70 km s−1Mpc−1 and H0 = 73 km s−1Mpc−1, for both the ΛCDM model and gDE-CDM

model with λ = −10 and γ = −0.03. We note that, in the gDE-CDM model, the steep change
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in H(z)/(1 + z) at z ∼ z∗ = 1.7 allows it to pass through all data points as well as achieve

larger H0 values, whereas in the case of the ΛCDM model, it does not pass through Ly-α data

at z = 2.34 and the increased H0 value worsens this situation. This is signalling that the gDE

would lead to improved fit to the observational data and alleviate the tensions of various degrees

of significance between some existing data sets within the ΛCDM cosmology. As, in the gDE-

CDM model, we have ρ ∼ ρ0 and w . −1 (slightly in phantom region) for z � z∗ (also for

z ∼ 0) and ρ ∼ −ρ0 and w & −1 (slightly in quintessence region with negative energy density)

for z � z∗, from phenomenological point of view such an achievement may be signalling that

indeed the cosmological constant is responsible for the current acceleration of the universe, but

it has changed sign at z∗ ∼ 2 and was negative at the higher redshifts.

3.3 Constraints from the latest cosmological data

This section provides constraints on the gDE-CDM model using the latest (at the time) obser-

vational data with a further discussion of the model and its consequences.

In order to perform the parameter-space exploration we use (as mentioned before) SimpleMC

[1] [34]. The SimpleMC code takes into account a compressed version of recent datasets, for

instance the Planck information (PLK) (where the CMB is treated as a “BAO experiment”

at redshift z = 1100) measured by the angular scale of the sound horizon at that time, the

analysis of Type Ia supernova (SN) data from the Joint Light-curve Analysis compressed into

a piece-wise linear function fit over 30 bins evenly spaced in log z, and high-precision Baryon

Acoustic Oscillation measurements (BAO), from comoving angular diameter distances, Hubble

distance and the volume averaged distance, at different redshifts up to z = 2.36. For a more

detailed description about the datasets used see [34]. A collection of currently available cosmic

chronometer measurements (H) is also included, see [115].

In this analysis, the radiation content is assumed by considering three neutrino species (Neff =

3.046) with minimum allowed mass
∑
mν = 0.06 eV and a radiation density parameter given by

Ωr,0 = 2.469 × 10−5h−2(1 + 0.2271Neff), where h is the present-day value of the dimensionless

reduced Hubble parameter h(z) = H(z)/100 km s−1Mpc−1. The total radiation content today

is kept fixed in the analysis since it is well constrained by the CMB monopole temperature,

TCMB,0 = 2.7255 ± 0.0006 K [106]. Throughout the analysis flat priors are assumed over the

sampling parameters: Ωm,0 = [0.05, 1.0] for the matter density parameter today, Ωb,0h
2 =

[0.02, 0.025] for the physical baryon density parameter and h = [0.4, 1.0] for the reduced Hubble

constant. With regards to the gDE parameters, γ = [−0.2, 0] and λ = [−27, 0] (when λ is free).
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λ Ωm,0 h γ = w0 + 1 Ψ z∗ t0[Gyr] −2∆ lnLmax

ΛCDM 0.302(6) 0.682(5) 0 0 − 13.806(22) 0.0

0 0.297(7) 0.689(7) > −0.08 > −0.25 − 13.796(24) 0.02

−2 0.297(7) 0.688(7) > −0.06 > −0.61 − 13.795(25) 0.02

−4 0.289(6), 0.298(7) 0.700(9), 0.686(7) −0.057(2), > −0.048 −0.86(3), > −0.73 2.31(12),− 13.714(25), 13.791(26) 1.0, 0.02

−6 0.292(6), 0.299(6) 0.699(9), 0.685(7) −0.039(1), > −0.037 −0.86(3), > −0.77 2.31(12),− 13.715(25), 13.792(27) 2.0, 0.01

−10 0.294(6), 0.299(6) 0.696(8), 0.684(7) −0.025(1), > −0.021 −0.86(3), > −0.69 2.32(12),− 13.722(27), 13.797(25) 4.4, 0.02

−14 0.296(6), 0.300(6) 0.695(8), 0.683(7) −0.019(1), > −0.017 −0.86(3), > −0.76 2.33(12),− 13.719(31), 13.794(27) 5.3, 0.01

−20 0.297(6), 0.300(6) 0.696(9), 0.683(7) −0.013(1), > −0.012 −0.86(3), > −0.76 2.32(12),− 13.718(31), 13.795(26) 6.0, 0.02

−17.9(5.8) 0.296(6), 0.299(7) 0.697(9), 0.684(8) −0.017(8), > −0.074 −0.85(4), > −0.69 2.32(19),− 13.719(30), 13.795(24) 6.4, 0.01

Table 3.1: Mean values along with 1σ constraints on the set of parameters used to describe the gDE-CDM

parameters. For one-tailed distributions the upper limit 95% C.L. is given. For two-tailed the 68% C.L. is

shown. The last column, −2 ln(LΛ,max/LgDE,max), is used to compute best-fit differences of gDE-CDM from

ΛCDM (−2 lnLΛ,max = 73.44) based on the improvement in the fit alone.

Table 3.1 summarises the observational constraints on the free parameters Ωm,0, h, λ and

γ, as well as the derived parameters Ψ, z∗ and t0 (age of the universe today), of the gDE-

CDM model using the combined datasets PLK+BAO+SN+H; and for comparison shows those

parameters used on the standard ΛCDMmodel (γ = 0). The columns for each parameter contain

the corresponding mean values and 1σ errors, according to the number of modes presented on

the 1D marginalised posterior distributions. In the last column the −2∆ lnLmax = ∆χ2
min

values representing the improvement in the fit to the data are listed w.r.t. the ΛCDM. At the

outset, one immediately notices that in the analyses the gDE leads to an improvement of up to

∆χ2
min = 6.4 (corresponding to about 2.5σ) when comparing it with the cosmological constant.

In what follows it is discussed in detail how this significant improvement is due to the fact that

the gDE-CDM alleviates some of the tensions the ΛCDM experiences.

In Table 3.1, for λ = 0,−2, there is nothing interesting and no significant improvement to

the fit w.r.t. ΛCDM, viz., ∆χ2
min < 0.02. However, one can observe that something surprising

occurs when λ ≤ −4 (also when λ is free) that the data predict bimodal posterior probability

distributions for the parameters of the gDE-CDM, for which one can observe two sets of con-

straint values in each column of Table 3.1. This may also be seen, for example, from the top left

panel of Fig. 3.2 which displays 1D marginalised posterior distributions for the γ parameters.

Notice that, for λ ≤ −4, as we move towards the larger negative values of γ, the existence of a

second (new) maximum starts appearing significantly far away from γ = 0 (ΛCDM). The first

(old) maximum containing γ = 0 is always there, but, when λ ≤ −6, it consistently shrinks
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Figure 3.2: 1D marginalised posterior distributions for the graduated γ parameter (top left panel),

Ψ ≡ 3γ(1− λ) (right) and the redshift location of the pole (if present) given by Eqn. (3.13). For a better

display some particular cases of λ values are included.

with the larger negative values of λ, during which the new maximum is getting relatively higher

and sharper. This implies that the data significantly favour the new maximum over the old

maximum when λ . −6. Indeed, we read from Table 3.1 that the improvement in the fit w.r.t.

ΛCDM reaches highly significant levels –e.g., ∆χ2
min = 6 when λ = −20 and ∆χ2

min = 6.4 when

λ is free– for the new maximum, while it remains always at insignificant levels –∆χ2
min . 0.02 ir-

respective of the value of λ– for the old maximum. The poor improvement level of ∆χ2
min . 0.02

both in the old maximum (the maximum containing γ = 0 when λ . −4 and λ is free, and the

single maximum when λ . 3) presents no evidence for favouring these over the ΛCDM and the

constraints on the parameters for these cases do not show a considerable deviation from those

of the ΛCDM. Therefore, in what follows all these cases are discarded and proceed to the dis-

cussions with reference to the ΛCDM (γ = 0), basically, by considering only the new maximum
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that appears when λ . −6, e.g., by considering the one on the left of the pair of constraints

given in a column for a parameter of the gDE-CDM in Table 3.1.

The presence of these new maxima has important consequences and may be better explained

through the expression (3.6). This expression indicates if there exists a sign change in the energy

density of the gDE (or a pole in its EoS parameter), it will happen at a redshift

z∗ = e−
1
Ψ − 1. (3.13)

Hence, the quantity Ψ = −3γ(λ − 1) determines the position of the pole and, if it is a real

one, must yield a unique value irrespective of the values λ and γ. That is, for a given λ, the γ

parameter selects its best position such that Ψ remains unchanged, and this can be seen in the

right-hand panel of Fig. 3.2 (see also Table 3.1). One can observe that a peak at Ψ = −0.86

–significantly away from Ψ = 0 (ΛCDM)– emerges when λ = −4 and as λ takes more negative

values (see the cases λ ≤ −6) it becomes significantly higher and sharper, fixed at Ψ = −0.86,

while the old peak containing Ψ = 0 becomes more prolate and lower. This implies highly

significant observational evidence for the sign change of the energy density of the gDE (or pole

in its EoS parameter) at the redshift corresponding to Ψ = −0.86. It is shown, according

to (3.13), in the bottom panel of Fig. 3.2, the 1D marginalised posterior distribution of the

redshift for this event persistently located at z∗ ≈ 2.32 (see Table 3.1). Interestingly, but

not surprisingly this particular position agrees with the location of the Ly-α auto and cross-

correlation BAO (z = 2.34) data and the works [90, 34, 205]. This suggests such a behaviour

of DE for alleviating the tensions besetting this observation. We should note here that the

peaks containing Ψ = 0 (ΛCDM) also predict the sign change of the gDE, but they have been

discarded for the following reasons. Firstly, these cases correspond to the ones discarded above,

since they do not present any statistical evidence for being favoured over ΛCDM (the Ψ → 0

limit leading to z∗ → ∞). Secondly, in the analyses, one can observe that these cases predict

completely different z∗ values for different λ values (if they were real the predictions need to

have been stable at a certain redshift) and all of which are extremely large (even having redshift

values larger than the redshift of the big bang nucleosynthesis epoch) at which dark energy is

irrelevant to the cosmological dynamics.

The bimodal distribution that Ψ exhibits has a strong impact on the posterior distribution of

h, and therefore on the Hubble constant H0, which also exhibits a bimodal behaviour. Fig. 3.3

describes this behaviour; as soon as the λ parameter starts decreasing the bimodal distribution

on the panel {h,Ψ} starts showing up for a particular γ value (display in pink colour). This

bimodal distribution is summarised on the marginalised error bars shown in Fig. 3.4. One can
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Figure 3.3: Top panel: 1D marginalised posterior distributions of Ψ, along with (bottom panel) 2D posterior

distributions of {Ψ, h0} colour coded by the γ parameter.

observe that while the values (green) associated with the old peak containing Ψ ∼ 0 (ΛCDM)

agree with the H0 values measured from the inverse distance ladder (e.g., H0 = 67.4 ± .5 from

Planck 2018 [6]), the ones (red) associated with the new peak stable at Ψ ∼ −0.86 (away from

Ψ = 0) agree with the higher H0 values measured from the distance ladder measurements (e.g.,

H0 = 69.8± 0.8 from a recent calibration of the Tip of the Red Giant Branch (TRGB) applied

to Type Ia supernovae [109]). Therefore, the H0 predicted within the ΛCDM (matching the

results from the old peak) has deficiency w.r.t. the TRGB H0 value, while the ones predicted by

the new peak (appears for λ . −4) perfectly match with it. It certainly favours the new peak

that it predicts a value matching the independent TRGB H0 value. It is also significant that

it uses the distance ladder approach, rather than the inverse distance ladder approach. Also,

the latter BAO calibration of H0 is not completely independent of the Planck measurement, as

both H0 determinations are based on the ΛCDM and its adopted value of the sound horizon

scale. Moreover, the independent TRGB H0 value (so the values from the new peak) agrees with

both Planck [6] and Cepheid [199, 200, 198] H0 values. However, when combined with Cepheid

measurements the tension with the Planck value is relieved only at about ∼ 1σ level and still

remains significant [109].

We notice in Table 3.1 that the values of the parameters Ψ(γ, λ) –or z∗(γ, λ)– and of the other

cosmological parameters Ωm,0, h and t0 are quite stable for λ ≤ −10. One may see from the

last row in Table 3.1 that this observation is confirmed when the model is constrained by letting

also the parameter λ free (with a flat prior λ = [−27, 0]). Left panel of Fig. 3.5 displays the

3D marginalised posterior distribution of the {Ψ,λ} parameter region colour coded with the γ
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Figure 3.4: Means values along with 1σ error bars from the 1D marginalised posterior distributions of

H0[km s−1Mpc−1]. Green error bars are associated with the peak containing Ψ ∼ 0 (ΛCDM), whereas red with

the new peak stable at Ψ ∼ −0.86.

parameter. Here, the bimodality of the constraints on the gDE-CDM shows up as two detached

2D outer contours. The narrow one located at Ψ ∼ −0.86 corresponds to the new maximum,

while the wide one corresponds to the old maximum containing the ΛCDM (top-right corner).

In the right panel of the same figure the 1D posterior distribution of the z∗ associated with

the new maximum is presented, which demonstrates that the redshift at which the gDE energy

density changes sign (its EoS parameter exhibits a pole) is stable at z∗ ∼ 2.32.

It was shown in [205] through the Omh2 diagnostic (introduced to test the Λ hypothesis in a

model-independent way) that the ΛCDM is in tension with the BAO’s statistically independent

measurements of H(z) at redshifts of 0.57 and 2.34. It was shown that this tension is alleviated

in models in which the Λ was dynamically screened in the past and that the energy density of

such evolving DE models passes below zero (exhibits pole in the effective EoS) at z ∼ 2.4. These

are in line with the new maxima of the gDE-CDM, yet in addition the fact that the constant

that plays the role of Λ in gDE is embedded into a parenthesis raised to a power renders the

model more featured. Therefore, gDE in the context of Omh2 diagnostic is also investigated.

The Omh2 diagnostic is defined in [205] as follows:

Omh2(zi; zj) =
h2(zi)− h2(zj)

(1 + zi)3 − (1 + zj)3
, (3.14)

and depends only on H(z). Accordingly, knowing it at two or more redshifts, one can obtain
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Figure 3.5: Graduated Dark energy model with varying the λ parameter. Left panel: 3D marginalised posterior

distributions for the graduated λ and Ψ parameters, coloured coded by the γ parameter. Right panel: 1D

marginalised posterior of the redshift position given by the pole. The vertical line is the mean value z∗ = 2.32.

Omh2 value(s) in a model-independent manner and thence conclude whether or not the DE

is a Λ. For the ΛCDM, omitting radiation (negligible in the late universe), we have h2 =

h2
0

[
Ωm,0(1 + z)3 + 1− Ωm,0

]
leading to a constant

Omh2(zi; zj) = h2
0Ωm,0. (3.15)

For the gDE-CDM, using (3.9), we have

Omh2(zi; zj) = h2Ωm,0

+ h2 (1− Ωm,0)
sgn(xi)|xi|y − sgn(xj)|xj |y

(1 + zi)3 − (1 + zj)3
,

(3.16)

where have neglected radiation and used the zero-curvature constraint, Ωm,0 + ΩDE,0 = 1. The

second line of the Omh2(zi; zj) for the gDE-CDM emerges as a correction to the one for the

ΛCDM. We can calculate the predicted Omh2(zi; zj) with these two equations for any pair

of chosen redshifts using the constraints on the models and then compare the same with the

model-independent estimates obtained by (3.14).

One can calculate, from (3.14), the model independent estimates as Omh2(z1; z2) = 0.164±
0.024, Omh2(z1; z3) = 0.123 ± 0.006 and Omh2(z2; z3) = 0.119 ± 0.007 by using H(z1 = 0) =

69.8 ± 0.8 km s−1Mpc−1 from the TRGB H0 [109], H(z2 = 0.57) = 97.9 ± 3.4 km s−1Mpc−1

based on the clustering of galaxies in the SDSS-III BOSS DR11 [27], and H(z3 = 2.34) =

222.4 ± 5.0 km s−1Mpc−1 based on the BAO in the Ly-α forest of SDSS DR11 data [90]. The

constraint Omh2 = 0.140 ± 0.002 (Omh2 = 0.143 ± 0.001 in Planck 2018 [6]) obtained for the
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λ Omh2(z1; z2) Omh2(z1; z3) Omh2(z2; z3)

ΛCDM 0.140(2) 0.140(2) 0.140(2)

0 0.134(4) 0.139(4) 0.140(4)

-2 0.135(4) 0.140(2) 0.140(2)

-4 0.136(3) 0.129(1), 0.140(2) 0.129(2), 0.140(2)

-6 0.137(2) 0.128(1), 0.140(3) 0.127(2), 0.140(2)

-10 0.137(2), 0.139(2) 0.127(2), 0.140(2) 0.123(2), 0.140(2)

-14 0.138(2), 0.139(2) 0.126(2), 0.140(2) 0.127(2), 0.140(2)

-20 0.139(2), 0.140(2) 0.125(2), 0.140(2) 0.124(2), 0.140(2)

Free 0.136(4), 0.139(2) 0.127(4), 0.140(2) 0.126(2), 0.140(2)

Table 3.2: Mean values along with 1−σ constraints on the set of parameters that describe Om diagnostic.

Figure 3.6: Omh2 diagnostic for the graduated dark energy model with λ = −20 using three redshifts {z1, z2}

(left), {z1, z3} (middle) and {z2, z3} (right). The colour code indicates the value of γ parameter, where the

yellow points mimic the ΛCDM behaviour and the pink ones the new feature introduced by the gDE model.

ΛCDM is in clear tension with the latter two of these estimates. In Table 3.1 is seen that, for

λ ≤ −10 as well as the λ free case, the constraints for all of the three Omh2 exhibit bimodal

characteristic, i.e., there are two valued constraints corresponding to the new (left) and old

(right) maxima. One can notice Omh2(z1; z2) ∼ 0.140 (as in the ΛCDM) almost the same

for both the new and old maxima, yet it agrees with the corresponding model independent

estimate. However, when considering Omh2(z1; z3) and Omh2(z2; z3) it is observed that while

the ones associated with the new maximum yield ∼ 0.125 in agreement with the corresponding

model independent estimates, the ones associated with the old maximum yield ≈ 0.140 in

tension. For a visual demonstration, in Fig. 3.6, the marginalised posterior distributions for the
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parameter γ in the {γ,Omh2(zi; zj), h} subspace for {z1, z2}, {z1, z3} and {z2, z3} are shown,

where the blue contours and 3D scatter color plots described the gDE-CDM model for λ = −20.

The color code indicates the value of γ labelled by the color bar. Black contours display 2D

marginalised posterior distributions for the ΛCDM which agree with the position of the yellow

points corresponding to the old maxima of the gDE-CDM. The contours at about Omh2 ∼ 0.125

correspond to the new maxima of the gDE-CDM describing the case in which the energy density

of the gDE passes below zero z ∼ 2.32.

All these superiorities in goodness of fit to the observational data arising in the case of the

new maxima of the gDE-CDM are obviously consequences of the fact that the energy density

of the gDE passes below zero at z∗ ≈ 2.3 by exhibiting a certain type of dynamics. By using

the fgivenx package [125], in the upper panel of Fig. 3.7 the probability (more pink implies

more probable) distribution of the redshift dependency of the energy density of gDE scaled

to the critical energy density of the present-day universe, viz., ρDE/ρc,0 is shown. One can

observe that gDE, viz., ρDE(z)/ρc,0, does not distinguish from Λ (solid straight black line) at

a value ∼ 0.70 for z . 2, but it reaches a junction at z ∼ 2.3 and for larger redshifts it either

keeps tracking Λ by retaining the value ∼ 0.70 (the one associated with the old maximum and

disfavoured by the data) or rapidly changes route and starts to track a new value ∼ −0.70 like

a mirror image of the former track at ρDE = 0 (the case associated with the new maximum and

favoured by the data). The rapid sign switch of the gDE energy density at z ∼ 2.3 implies a rapid

drop in the total energy density of the universe, and in H(z), at that redshift. This behaviour

of H(z) emerges in association with the new maxima of the gDE-CDM for more negative values

of λ, as can be seen in the lower panel of Fig. 3.7, reconciles it with the lower H(z) value

of the Ly-α data at z = 2.34 with respect to the one predicted by ΛCDM for that redshift.

Furthermore, this reconciliation between the gDE-CDM and Ly-α data, in turn, provides the

gDE-CDM with easiness in achieving large H(z) values for z . 2 and thereby predicts larger

H0, and so gDE-CDM relieves the H0 tension that ΛCDM has been suffering from.

3.4 Spontaneous sign switch in the cosmological constant

In this section, there will be some comments on the implication of the dynamics of gDE that

leads to all these reconciliations with the observational data on the nature of the dark energy.

First, one notes the following features of gDE. From Table 3.1, for larger negative values of λ,

ρDE/ρc,0 = 0.70 and w0 ∼ −1.01 at z = 0, its energy density switches sign rapidly at z∗ ≈ 2.32

(which is quite stable) and settles into a value ρDE/ρc,0 ∼ −0.70 and remains there for z∗ & 2.3.
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Figure 3.7: Top panel: ρgDE/ρc0 versus redshift z for λ = −20 displays the maximum predicted that ρgDE

changes sign at z ∼ 2.3. Bottom: H(z)/(1 + z) function. Include the latest BAO data points [34] (blue bars)

where H0 = 67.3± 1.1, the Planck 2018 [6] H0 = 67.4± 0.5 data (red bar) and the TGRB model independent

[109] H0 = 69.8± 0.8 data (green bar). Black dashed line corresponds to best-fit values of gDE and solid black

line corresponds to ΛCDM. We note that, due to the jump at z ∼ 2.3, the gDE model is not in tension with the

BAO Ly-α data from z = 2.34 in contrast to ΛCDM model and also gDE gives larger H0 values w.r.t. ΛCDM

model and thereby relaxes H0 tension.
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Next, one can observe in the same table that the larger the negative values of λ, the better fit to

the data (the larger ∆χ2
min). This follows the trend that makes ρDE(z) increasingly resemble a

step function centred at z∗ with two branches yielding opposite values about zero (a pattern of

flat positive energy density for z < z∗ and flat negative energy density for z > z∗, both of which

have the same absolute value) and indeed, we know from (3.12), that ρDE transforms into a step

function for arbitrarily large negative values of λ. The largest negative λ value considered in

the analyses is −27, yet it is easy to check mathematically that considering even larger negative

values would not effect the results considerably since, for this value, the function ρDE(z) already

closely resembles a step function. Thus, the results from the new maximum of the gDE for large

negative values of λ can safely be interpreted as the results one would obtain for a cosmological

constant that achieved its present-day positive value by spontaneously switching sign at z∗ ∼ 2.3,

but was negative in the earlier stage of the universe.

Some general constraints that are typically applied to classical matter source, irrespective of

its detailed description, may be utilised for further supporting this interpretation (see [113, 65]).

Let us consider gDE as an actual barotropic fluid, p = p(ρ), along with the best fit values obtained

on its free parameters from the observational analysis. In this case, although it behaves almost

like a cosmological constant (in spite of the fact that it switches sign at z ≈ 2.32) throughout

the history of the universe, strictly speaking, it violates the weak energy condition, namely,

the non-negativity conditions on the energy density, ρ ≥ 0, for z > z∗, and on the inertial

mass density, ρinert ≥ 0, throughout the history of the universe. Moreover, there are periods

during which it violates the condition 0 ≤ c2s ≤ 1 on the speed of sound of a barotropic fluid

given by the adiabatic formula c2s = dp/dρ. The upper limit (causality limit) is a rigorous

one which cannot be violated unless we abandon relativity theory. The lower limit applies to

a stable situation, and otherwise the fluid is classically unstable against small perturbations

of its background energy density -the so called Laplacian (or gradient) instability. It is well

known that phenomenological fluid models of DE are difficult to motivate, and adiabatic fluid

models are typically unstable against perturbations, since c2s is usually negative for w < 0. It

is possible to evade this constraint in non-adiabatic fluid descriptions (e.g., canonical scalar

field for which the effective speed of sound –which governs the growth of inhomogeneities in the

fluid– is equal to unity, cs eff = 1), and in an adiabatic fluid if w decreases sufficiently fast as the

universe expands (e.g., Chaplygin gas). However, with some exceptions, it is unlikely to describe

gDE with a canonical scalar field —especially when we consider the best fit values. Also, gDE

yields c2s = −1 + γλ
(
ρ
ρ0

)λ−1

= −1 + γλ
1+3γ(λ−1) ln a , and c2s(z = 0) = −1 + γλ. Accordingly,

the constrains obtained when λ is free predict c2s(z = 0) = −0.6957 ± 0.1739 for z = 0 and
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c2s � 1 while 0 < ρ � ρ0 (just after gDE assumes positive values at z ≈ 2.32). On the other

hand, whether it is positive or negative, a cosmological constant (viz., the limit λ → −∞, see

(3.12)) is well behaved: ρinert = 0, and c2s = 0 (it has no speed of sound, and thereby does not

support classical fluctuations). Regarding the negativity of its energy density (when z > z∗), a

negative cosmological constant is ubiquitous in the fundamental theoretical physics without any

complication, for instance, it can be taken as just a geometrical component (ρ < 0 will then be

an effective energy density rather than an actual one), and it also is very natural from symmetry

considerations and provides the ground state (AdS background) in various low energy limits of

string theory.

Thus, bringing all these points together, it is tempting to conclude that the cosmological

constant has spontaneously switched sign and become positive at z ≈ 2.32 and triggered the

late-time acceleration. Of course, one could look for realising such a nontrivial behaviour of gDE

as an effective source in a modified gravity model (the general constraints that are typically

applied to classical matter source might then be evaded) and reach different conclusions.
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Chapter 4

Model Independent Reconstructions

of the Dark Energy

4.1 Introduction

As stated in chapter 2, even though parametric forms usually provide a better fit to the data,

they have the limitation of assuming an a priori functional form which may lead to some bias

or misleading model-dependent results, regardless of the nature of DE. To avoid these possible

issues, non-parametric and model-independent techniques are used. They allow us to extract

information directly from the data to detect features within cosmological functions. That is, the

goal of non-parametric and model-independent approaches is to reconstruct (infer) an unknown

quantity without a predefined shape.

The main aim of this chapter is to perform model-independent reconstructions of the dark

energy features and to provide a model comparison through the Bayesian evidence and goodness-

of-fit. The analysis is carried out among the nodal and bin reconstructions, an extension of the

two of them where internal amplitudes are allowed to vary in height as well as in position, the

correlation function method, and then, for comparison, to include some of the parametric pro-

posals. Even though these techniques are applicable to any function describing the dark energy,

the focus is on the EoS and the energy density. After the reconstruction is carried out, some of

the cosmological functions can therefore be derived, i.e. Hubble parameter H(z), deceleration

parameter q(z) and the Om(z) diagnostic. Finally PCA is performed to discern possible impor-

tant features from noise contributions.
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The chapter is organized as follows: in section 4.2 the reconstruction methodology is de-

scribed. Then in section 4.3 a brief review of the underlying theory, datasets and some specifi-

cations about the parameter estimation and model selection are provided. Finally in section 4.4

the main results are presented.

4.2 Reconstruction methodology

The reconstructions to be employed are the previously described Bins and Nodal methods. In

both types of reconstructions the nodes are located in space at certain positions zi and with

variable amplitudes fi.

Along with the usual approaches, a modified version of these reconstructions is used. This

modification considers the internal positions zi to be free parameters, which will allow it to

capture more specific features at certain places [127, 31]. Notice that in this version, the internal

variable positions have to be sorted in a way to avoid possible overlapping in the reconstructions.

This approach gives more degrees of freedom (one for each variable zi) to the reconstruction.

When using the linear interpolation the expected behavior is straightforward, as it only varies

the lines between nodes, however in the binning process it will affect the width of the bins, so it

would be easier to find specific features on the positions rather than on the amplitudes.

Finally, there exists the possibility of either overfitting by using a very complex model with

a large amount of bins (or nodes) or underfitting by not capturing enough features due to the

use of just few bins (or nodes). Both of these possible issues can be managed by performing a

model comparison among reconstructions through the Bayesian Evidence, that is, the impact of

additional parameters and their priors is modulated to find out the most suitable to the data.

This method follows the principle of simplicity and economy of explanation known as Occam’s

Razor [228] which states: “the simplest theory compatible with the available evidence ought to

be preferred”. The Correlation Function method will also be used when a large number of

parameters are present to diminish the possibility of overfitting. Although to see if any possible

bias due to this method may arise there will be an instance where it is not used (as seen in Fig.

4.4).
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Bayesian statistics

In order to perform the parameter estimation we follow the definition of the Bayes Theorem

P (u|D,M) =
L(D|u,M)P (u|M)

E(D|M)
, (4.1)

being u the vector of parameters of the hypothesisM (or model) to assess, D is the experimental

(observational) data, P (u|D,M) the posterior probability distribution, L(D|u,M) the likelihood,

P (u|M) the prior distribution and E(D|M) the Bayesian evidence. Once the Bayesian evidence

is computed for two models M1 and M2, the Bayes factor is defined as

B12 ≡
E(D|M1)

E(D|M2)
. (4.2)

This quotient, together with the Jeffrey’s scale shown in Table 2.1 [228, 98], is a great empirical

tool for performing model selection, that is, it gives an insight of how good a model M1 is when

compared to model M2. In this work, M1 will correspond to ΛCDM and M2 will be any of the

reconstructions in order to make a direct comparison with the standard model. Even so, it is

important to mention that Jeffreys’ scale is empirical in nature and sometimes can rule out the

true model [169]; added to this we have the dependence of the Bayesian evidence on priors and

on model constrains [138]. So, even though it is a great tool for comparison, it should not be

taken as completely decisive when performing model selection.

4.3 Theory and datasets

The important equations and concepts (regarding background cosmology) for this reconstruction

will be now explained and presented. For a homogeneous and isotropic flat universe given

by the Friedmann-Robertson-Walker metric, the Friedmann equation describing the dynamical

evolution, in terms of redshift z, can be written as

H2(z)

H2
0

= Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + ΩΛ. (4.3)

Here, we have the components of the universe written in terms of the dimensionless density

parameters Ωi(z) ≡ ρi(z)/ρc(z), where their contribution at the present time (represented by

subscript 0) are Ωr,0 for the relativistic particles, Ωm,0 describes the matter content (baryons

and dark matter) and ΩΛ is associated to the cosmological constant; ρc is the critical density of

a spatially flat universe.

By letting aside the cosmological constant and allowing a dynamical dark energy component,

the last term in the equation (4.3) is replaced by ΩΛ → ρDE(z)/ρc,0. Furthermore, if the dark
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energy is assumed to be a perfect fluid with a barotropic EoS, then once we compute the EoS

we are able to derive the energy density through

ρDE(z)

ρc,0
= ΩDE,0e

3
∫ z
0

dz′
1+z′ (1+wDE(z

′)). (4.4)

On the other hand, the dark energy density could, in general, come from an effective model

contribution and not necessarily from a physical component. Hence ρDE(z) may have any shape

(including negative values). Therefore, if the shape of ρDE(z)/ρc,0 is obtained from any process,

then we are able to derive its associated equation of state:

wDE(z) = −1 +
1

3

d ln ρDE(z)

d ln(1 + z)
. (4.5)

Finally, if the shape of the energy density is obtained, either directly or through wDE(z), we

are able to compute some derived functions, for instance the Om diagnostic, which provides a

null test for the cosmological constant [204]

Om(z) =
h2(x)− 1

(x)3 − 1
, x = z + 1, h(x) =

H(x)

H0
, (4.6)

and the deceleration parameter

q(z) = −1 +
d lnH

d ln(1 + z)
. (4.7)

In this chapter the reconstruction efforts will be aimed to both the density ρDE(z) and the EoS

wDE(z).

Data sets

In this chapter the full catalogue of 1048 supernovae from the Pantheon SN Ia sample is used,

covering a redshift range of 0 < z < 2 [211] (written as SN in the datasets). The full covariance

matrix associated is comprised of a statistical and a systematic part, and along with the data,

they are provided in the repository [136].

A collection of cosmic chronometers will also be used [135, 215, 223, 160, 260, 158, 159] (written

as H in the datasets) to perform the reconstructions, which can be found within the repository

[151].

Finally also the BAO distance measurements will also be of use in this chapter. The sound

horizon is calibrated by using Big Bang Nucleosynthesis [33]. The BAO datasets used here

contain the SDSS DR12 Galaxy Consensus, BOSS DR14 quasars (and eBOSS), Lyman-α DR14

auto-correlation, SDSS MGS and 6dFGS located at different redshifts up to 2.36. For a more
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Model wDE(z) ρDE(z)/ρc,0

Parameterizations wCDM Sigmoid

wc : [−2.0, 0.0] zcut : [0.0, 3.0]

CPL

w0 : [−2.0, 0.0], wa : [−2.0, 2.0]

Binning/Nodal w(zi) : [−2.5, 1.0] ρ(zi) : [0.0, 1.5] if zi < 1.5

(i = 1 · · · 6, 20) : [−1.5, 1.5] if zi ≥ 1.5

Binning-internal zi w(zi)|i=4 : [−2.5, 1.0] ρ(zi)|i=3 : [0.0, 1.5] if zi < 1.5

: [−1.5, 1.5] if zi ≥ 1.5

z1 : [0.2, 1.4] z1 : [0.2, 1.4]

z2 : [1.6, 2.8] z2 : [1.6, 2.8]

Table 4.1: Additional parameters and their flat prior range.

complete explanation see [20, 88, 32, 45, 44, 26] and references therein.

To compute the χ2 for each data sample, we have

χ2
data = (di,m − di,obs)C

−1
ij,data(dj,m − dj,obs), (4.8)

where dm and dobs are the model predictions and the observables respectively; Cdata is the

covariance matrix associated to each of the datasets. Since observations of each dataset are

independent from each other, the joint χ2 can be calculated as

χ2
total = χ2

H + χ2
SN + χ2

BAO. (4.9)

Models and priors

Since the Bayesian evidence is very susceptible to the number of parameters and their prior

distribution, it is worth to be careful when selecting them. A summary of the additional param-

eters along with their prior ranges is displayed in Table 4.1.

First, to provide a comparison to the reconstructions, some parameterization models will be

constrained. For instance, the wCDM model which corresponds to a constant EoS wDE(z)= wc

and the Chevallier-Polarski-Linder (CPL) EoS [67] in which wDE(z)= w0 + wa
z

1+z , being w0,

wa and wc free parameters to be estimated with data. The flat priors for w0 and wc are the

same [−2.0, 0.0] and the flat prior used for wa is [−2.0, 2.0]. Then, inspired by the idea of a
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density capable of performing a possible transition to ρDE ≤ 0 at high redshifts, similar to the

one introduced by [10], a simple parameterization with the shape of a sigmoid function will be

proposed:

ρDE(z)

ρc,0
= ΩDE,0

(
k0 −

1

1 + e−10(z−zcut)

)
, (4.10)

with zcut the redshift value where the transition may occur and k0 = 1 + 1
1+e10zcut

is a constant

which compensates the necessary amount so that ρDE(z = 0)/ρc,0 = 1 − Ωm,0, to account for

the Friedmann constraint. The parameter zcut has a flat prior within the range [0.0, 3.0]. The

sharp part of this sigmoid function comes from the argument in the exponential, if this number

is larger (smaller) its transition to zero would be sharper (smoother).

Throughout all the reconstructions the data is let to decide the level of complexity of the

two main functions within the range 0 ≤ z ≤ 3, that is, the nodes and bins (free parameters) are

placed over this range, and for z > 3 there will be a constant value adopted, which corresponds

to the last amplitude.

In the first set of reconstructions, the position of the nodes and bins are kept fixed and

uniformly distributed within z = [0, 3]. In both types of reconstructions (bins and nodes) it is

relatively free to choose any number of amplitudes, thus the number of parameters to be used

are from 1 to 6 (and then, without loss of generality, jump to 20) to see the improvement of the

fit to the data and how well the Bayesian evidence responded. Notice that the wCDM model

is equivalent to the EoS reconstruction with one bin. In particular, the possibility of having a

negative energy density is allowed, hence the amplitudes for the nodes and bins for ρDE(z)/ρc,0

were set to move freely on the ordinate with flat priors [0.0, 1.5] if z < 1.5, otherwise the prior is

set to [−1.5, 1.5], since it is beyond z = 1.5 where a switch to negative energy density is generally

presented. For the amplitudes in the EoS we have flat priors of [−2.5, 0.0]. An important point

is that when incorporating the correlation function method with a floating prior (χ2
prior) or CPZ,

it is recommended to choose a large number of bins. In this case, 20 bins were used and obtained

consistent results.

For these previous set reconstructions the positions zi for each parameter remained fixed,

however one may argue that the location of the amplitudes could bias the results. To check

this point, in the second set of reconstructions every amplitude varies as well as the internal

positions are allowed to move freely, spanning over the z-direction (but without overlapping each

other). For the reconstruction of wDE(z) 6 parameters will be considered: 4 varying amplitudes

and 2 internal positions; similarly for ρDE(z)/ρc,0 5 parameters will be used: 3 amplitudes and 2
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internal positions. They will be referred to as 4y2x (3y2x in the case of the density) or simply

internal zi. Whereas the priors for the amplitudes remain the same as in the first set, the priors

for the internal zi positions are [0.2, 1.4] and [1.6, 2.8] respectively.

Regarding the regular cosmological background parameters, we have: the reduced dimen-

sionless Hubble parameter h = H0/100kms−1Mpc−1 with a flat prior of [0.6, 0.8], the baryon

density Ωb,0h
2 with prior [0.021, 0.024] and the matter density parameter Ωm,0 with a prior of

[0.2, 0.4].

To perform the reconstruction analysis a modified version of the SimpleMC code was used [1]

along with dynesty [219], a nested sampling algorithm which allows to compute efficiently the

Bayesian evidence. For the number of live points one can follow the general rule [134] of using

50×ndim live points, where the dimensionality ndim corresponds to the number of parameters,

so the total number of live points depends on the reconstruction and the amount of bins/nodes.

As for the stopping criterion an accuracy of 0.01 is set, which indicates the maximum difference

between samples. Within the SimpleMC code I have also implemented the Principal Component

Analysis and the correlation function method with the floating prior. For the functional posterior

confidence contour plots a python package named fgivenx [125] was used.

4.4 Results

The results will be presented in 4 subsections: regarding the EoS, the energy density, the derived

functions in terms of the results and the PCA analysis to distinguish noise from signal. The

best-fit parameter values, the logarithm of the Bayes’ factor (lnBΛCDM,i) and the goodness of

fit (∆χ2) are presented in Table 4.2; complementary to this table, both quantities are displayed

in Fig. 4.1. The regions of confidence for the parameterizations are shown in Fig. 4.2, whilst

the reconstructions are shown in Figs. 4.3 and 4.4.

Dark Energy Equation of State

The best-fit values (with standard deviations) for the wCDM and the CPL parameterization,

correspond to wc = −0.99 ± 0.06, w0 = −1.01 ± 0.08 and wa = 0.12 ± 0.47 respectively. That

is, the models with one or two parameters, wCDM, CPL and the 2-parameter reconstructions

produce very similar results, which means they are statistically consistent with the cosmological

constant, within the 68% confidence region (see Figure 4.2 and the first column of Figure 4.3).
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Model Parameters h0 Ωm,0 lnBΛCDM,i ∆χ2

ΛCDM - 0.683 (0.008) 0.306 (0.013) 0 0

wCDM 1 0.680 (0.017) 0.305 (0.015) 2.56 (0.14) -0.14

Sigmoid 1 0.688 (0.009) 0.312 (0.013) -0.12 (0.13) -2.56

CPL 2 0.674 (0.021) 0.299 (0.019) 3.54 (0.15) -0.68

wDE(z) Binning

2 0.692 (0.017) 0.316 (0.015) 3.02 (0.16) -0.83

3 0.681 (0.018) 0.307 (0.016) 3.60 (0.15) -2.88

4 0.681 (0.017) 0.303 (0.015) 2.93 (0.16) -5.15

5 0.681 (0.017) 0.305 (0.016) 4.72 (0.16) -3.57

6 0.676 (0.016) 0.299 (0.015) 3.11 (0.17) -8.86

4y2x 6 0.684 (0.017) 0.309 (0.015) 2.86 (0.16) -8.03

20 0.691 (0.015) 0.298 (0.014) 2.33 (0.18) -15.74

+χ2
prior 20 0.688 (0.015) 0.298 (0.015) 5.52 (0.18) -9.97

Linear-Nodal

2 0.681 (0.021) 0.307 (0.019) 3.96 (0.15) -0.12

3 0.677 (0.018) 0.301 (0.018) 3.61 (0.16) -2.98

4 0.682 (0.018) 0.302 (0.017) 3.46 (0.16) -3.74

5 0.683 (0.017) 0.305 (0.016) 5.03 (0.16) -3.19

6 0.681 (0.017) 0.302 (0.016) 4.15 (0.17) -5.06

4y2x 6 0.681 (0.017) 0.302 (0.016) 3.02 (0.16) -6.22

ρDE(z)/ρc,0 Binning

1 0.694 (0.013) 0.318 (0.015) -0.01 (0.13) -0.77

2 0.683 (0.013) 0.309 (0.015) -0.42 (0.13) -3.04

3 0.681 (0.013) 0.307 (0.015) -0.59 (0.14) -4.24

4 0.677 (0.014) 0.304 (0.016) 0.53 (0.14) -3.61

5 0.682 (0.015) 0.309 (0.016) 0.54 (0.14) -5.72

6 0.683 (0.015) 0.311 (0.016) 1.23 (0.15) -8.04

3y2x 5 0.686 (0.012) 0.313 (0.014) -0.49 (0.14) -4.47

20 0.685 (0.014) 0.318 (0.014) 2.36 (0.16) -11.60

+χ2
prior 20 0.685 (0.015) 0.317 (0.014) 5.20 (0.16) -9.96

Linear-Nodal

2 0.683 (0.017) 0.311 (0.015) 0.57 (0.14) -2.72

3 0.685 (0.019) 0.311 (0.017) 1.58 (0.14) -2.47

4 0.686 (0.018) 0.313 (0.016) 1.50 (0.14) -2.73

5 0.691 (0.017) 0.314 (0.016) 1.65 (0.15) -3.71

6 0.685 (0.017) 0.308 (0.015) 1.85 (0.15) -4.13

3y2x 5 0.691 (0.016) 0.315 (0.015) 1.11 (0.14) -3.38

Table 4.2: Mean values, and standard deviations, for the cosmological parameters. For each model, the last two

columns present the Bayes Factor, and the ∆χ2 = χ2
ΛCDM − χ

2
i for fitness comparison. The datasets used are

BAO+H+SN. Here lnEΛCDM = −530.79(0.12).
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Also, these results can be validated when comparing the ∆χ2 presented in Table 4.2.

When computing the Bayes’ factors of all the models (green region of the top panel in Fig.

4.1) one observes, in general, a moderate evidence against the reconstructions regardless of the

number of extra parameters, compared to the standard model. However, in the reconstructions

certain features at high redshift become apparent as more parameters are added, and therefore

an enhancement in the goodness of fit. For instance, when using three amplitudes (second

column of Figure 4.3), a bump-like shape appears at z ≈ 1.5 and after that the general form

presents a possible crossing of the phantom-divide-line (PDL), i.e. for z & 2 the amplitude values

lean toward wDE < −1 outside the 68% confidence region, which represents an improvement of

∆χ2 ∼ −3. If one continues the process of adding amplitudes to the reconstructions, the main

trend preserves a bump but now located at about z ≈ 1.2 and a crossing of the PDL at z ∼ 1.5.

This is not true though when having 5 extra parameters (and there will be a similar problem when

reconstructing the density with 4 extra parameters), although the reason for this is mainly related

to the reconstruction methodology, for a detailed explanation please refer to 4.5. It was also

found that the cosmological constant is slightly outside of the 95% confidence contours at several

places (see last column of Figure 4.3), and according to the Table 4.2 by using the definition

of statistical significance in terms of the standard deviation σ, that is, the signal-to-noise ratio

S/N ≡
√
|∆χ2|, it represents a ∼ 3σ deviation from ΛCDM based on the improvement in the fit

alone. These two features play a key role in identifying the correct dark energy model. If future

surveys confirm their existence, the cosmological constant and single scalar field theories (with

minimal assumptions) might be in serious problems as they cannot reproduce these essential

features, and therefore alternative models should be taken into account. Furthermore, in the

internal-zi reconstructions the internal positions are able to localize the position for the bump

and the PDL, and the results resemble the previous ones, see the last two columns of Figure

4.4. Besides the presence of the bump and crossing of the PDL, we can note that at z = 0 the

68% confidence contour lays down right below the limits of wDE < −1. An important point to

stress out is that the freedom of the internal positions led to a better fit to the data, compared

to the reconstructions with the same number of parameters but fixed positions; displayed as the

x-markers in the top panel of Figure 4.1.

Finally, to corroborate these findings, two reconstructions with 20 parameters are included:

binning and binning with CPZ correlation function, shown in the column 1 and 2 of Figure 4.4.

For these particular reconstructions, the focus is on the binning method as it provides a better

fit to the data. As commented above, the correlation method is incorporated to create a function
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Figure 4.1: In this graph the differences in the ∆χ2 and the Bayes factor between ΛCDM and the

reconstructions for wDE(z) and ρDE/ρc,0 are shown. The green shades show the strength-of-evidence according to

the Jeffrey’s scale and the orange shades show the 1 to 4-σ levels of statistical significance S/N ≡
√
|∆χ2|.

Ideally one wants the upper markers to stay as close as possible to the black line at 0 (preferably to cross it),

which it is an indication of a better Bayes’ factor, and the lower ones to be far away from zero, which indicates

a better fit to the data. The stars indicate the fitness of the reconstruction of the CPL EoS (top) and the

energy density with a sigmoid (bottom), the crosses indicate the internal zi reconstructions and the triangles

the reconstructions with 20 bins plus correlation function. The binning reconstructions are plotted with blue

lines, whereas the nodal with red lines.
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Figure 4.2: These plots show the functional posterior probability: the probability of wDE(z) or ρDE(z)/ρc,0 as

normalised in each slice of constant z, with colour scale in confidence interval values. The 68% (1σ) and 95%

(2σ) confidence intervals are plotted as black lines. From left to right: parameterized equations of state for

wCDM and CPL, phenomenological sigmoid and 1-bin energy density reconstructions. The dashed black line

corresponds to the standard ΛCDM values.

that evolves smoothly, and in general, they both share the same structure: a bump located at

z ≈ 1.2, a crossing of the PDL at z ≈ 1.5 and a slight preference of wDE < −1 at z = 0. Besides

these three features (found already in the internal models), there is also an oscillatory behaviour

throughout the whole structure, which yields to a deviation of about 4σ to the ΛCDM. Even

though this result may be considered as an overfitting due to the large number of parameters

and small ∆χ2, its Bayes factor is as good as the reconstruction with fewer amplitudes. Also,

the authors in [226] obtained a similar shape by using only three parameters in a Fourier basis

and concluded a deviation of about 3σ from the cosmological constant, as done here through a

different mechanism.

Dark Energy Density

Similarly to the previous section, with one extra parameter, through the zcut in the sigmoid

function for ρDE, one gets a better fit to the data by more than 1σ, and its Bayes’ factor results

on a negative value BΛCDM,i = −0.124±0.131, indicating a slight evidence in its favor, although

it is still within the 1σ for the error. The constraints of the zcut parameter corresponds to

2.101 ± 0.413, which provides an insight of a possible vanishing energy density beyond z = 2.

This feature is also noticeable when looking at the 1-bin reconstruction where the cosmological

constant is on the edge of the 68% confidence contour for z > 1.5 (see Fig. 4.2).

By incorporating additional parameters to the reconstruction of ρDE(z)/ρc,0 the fit to the data

becomes better than the standard model, as shown by the negative values of the ∆χ2 on the

bottom panel of Fig 4.1. Even though this behaviour is expected by the increased of complexity,
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Figure 4.3: From top to bottom: reconstructed wDE(z) with bins (and nodes), reconstructed ρDE(z)/ρc,0 with

bins (and nodes). It is easy to observe there is more structure (more apparent features) in the reconstructions

as the number of parameters increases (from left to right).

it is accompanied by a penalization incorporated into the Bayes Factor, shown in the green part

of Fig 4.1. As the number of nodes/bins increases it is expected that the values of BΛCDM,i do

so too, however, an important point to note is the existence of a valley on this factor up to 4

parameters, where the first three have negative values indicating an evidence in favor (but still
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Figure 4.4: From left to right: reconstructions with 20 bins, 20 bins with correlation function, internal zi-bins

and internal zi-nodes. Purple figures correspond to the EoS whereas green to the energy density.
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Figure 4.5: Derived functions for the reconstructed wDE(z) and ρDE(z)/ρc,0 with 20 bins plus correlation

function. The red dotted line in the derived wDE(z) corresponds to the best-fit values.

inconclusive) of the reconstructions, and also reflected on the improvement of the χ2. This may

be happening due to the data having a preference for an energy density with a bump located
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at z ≈ 1.2 and then as the redshift becomes larger ρDE(z) decreases until reaching a zero value,

and even passing through negative values, but still statistically consistent with zero. That is,

by having at least two amplitudes the reconstruction methodology is flexible enough to present

this behavior, as seen in the first three columns of Fig 4.3. As more parameters are added, the

presence of a possible sign change in the energy density is more pronounced. This transition

occurs near z ≈ 2, and in the region around z ≈ 2.5 the deviation from the cosmological constant

peaks. The general behaviour of these reconstructions is reflected by these two main features,

which together provide a deviation up to 2.8σ from the standard model.

In the same manner as the reconstruction for the EoS, one may say that the position of these

two features (the bump at z ∼ 1.2 and the vanishing energy density behaviour for z > 1.5)

could be biased because the particular location for the amplitudes. Even so, it is stated in [12]

that these particular features and their positions are prompted by the Lyman-α BAO data (as

will be further discussed in the PCA subsection). In order to find an optimal place for the

internal positions, they are set free by allowing them to move around the z-axis. Because of this

additional freedom, the internal reconstruction (or 3y2x model) is able to localize these features

and provides a better fit to the data, compared to the reconstruction with three fixed amplitudes.

Moreover, despite having 5 extra parameters, the binning reconstruction has a negative Bayes

factor which favours this model over the rest of the reconstructions (displayed as crosses in the

bottom panel of Fig. 4.1).

Lastly, as was made with the EoS, a 20 bins and 20 bins with the correlation function recon-

structions were incorporated. Both present more substructures like an oscillatory-like behavior

at late times and also have a transition to a null or negative density in z > 2, as seen in Fig 4.4.

Analogous to the guidance offered by the oscillatory demeanor found in the EoS reconstruction,

its apparent wavering nature in z < 1.5 could encourage the study of an oscillatory basis such

as a Fourier series. Looking at the ∆χ2 we notice a deviation from the ΛCDM of about 3.4σ,

and a Bayes factor comparable with the few-parameter reconstructions.

The drop-off behaviour of ρDE(z) and, perhaps, a transition to a negative energy density

has been captured in other works [162, 155, 243, 235, 10, 12, 97], as it seems to alleviate the

tension that arises by estimating the Hubble constant H0 with different datasets. It was also

found in [72] that, when considering flat ΛCDM and binning the data, negative energy densi-

ties (Ωm,0 > 1) are expected for higher redshifts. Hence, it may be pertinent to study models

with a similar demeanor. This behaviour does not necessarily imply a negative physical energy

density per se, but it may be the indication of an effective energy density, i.e. similar to the one

generated by the curvature component [126, 3].

82



In general, and throughout the reconstruction process, there have been found different fea-

tures beyond the cosmological constant, which result in deviations up to 3σ. One final interesting

observation is that the reconstructions when using bins are generally better than with nodes and

also the Bayes factor shows an improvement. Likewise, there is a preference for the reconstruc-

tion with 20 bins over 20 bins plus the correlation function, reflected on the ∆χ2, in fact there

is a strong evidence against using the 20 bins+prior model, according to the Jeffreys’ scale.

Derived functions

Once the general form of both the EoS and the energy density are obtained one proceeds to

obtain their respective derived functions, these being: the Hubble parameter H(z)/(1 + z),

the Om diagnostic and the deceleration parameter q(z). For the reconstructed energy density,

the EoS can be derived and similarly for the reconstructed EoS, the energy density is inferred.

These derived functions correspond to the 20 bin reconstruction, which produced the best fit,

and their posterior probabilities are displayed in Fig. 4.5. In general, the functions coming from

the energy density show an enhanced oscillatory behaviour, compared to the functions derived

from the EoS.

When comparing the reconstructed EoS with the one deduced from ρDE/ρc,0 we notice an im-

portant difference: negative energy density values are allowed, hereby the derived EoS presents

a discontinuity at about z ≈ 2, seen in the best-fit model denoted by the red dotted line in

Fig. 4.5. Such type of discontinuities have been found and studied in other reconstructions

and different models, such as [10, 116, 240]. Regarding the derived energy density: when re-

constructing ρDE/ρc,0 directly its freedom in the parameter space allowed it to reach null values

of the energy density, and even negative ones at high redshifts; but when a barotropic EoS is

imposed, through the conservation equation, the derived energy density remains always positive

with a bump located at z ≈ 1.5 and a smooth drop out at high redshifts.

Considering the H(z)/(1 + z), the best-fit reconstructed function passes through the ob-

servational H(z) values (red error bars in Fig. 4.5), H0 = 69.8 ± 0.8 km s−1Mpc−1 from the

TRGB [109], consensus Galaxy BAO (from zeff = 0.38, 0.51, 0.61) and DR14 Ly-α BAO (from

zeff = 2.34, 2.35) [45, 88, 26], and hence the best-fit is slightly better compared to the ΛCDM

model (black dashed line).

In general, the Om diagnostic shows consistency with several parameterizations and re-

constructions [194, 163]. Nevertheless, in these reconstructions a mixed behaviour between
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quintessence and phantom components has been found, corroborated by the EoS. That is, we

have certain places where Om(z) > Ωm,0 (quintessence) and others with Om(z) < Ωm,0 (phan-

tom).

Finally, the deceleration parameter q(z) for the reconstructed EoS gives a value for the

transition to an accelerated universe around z ∼ 0.6, which is statistically consistent with the

ΛCDM value, and with results previously obtained [154, 42, 163]. On the other hand, when

q(z) is reconstructed through the energy density, the universe can potentially go through several

short periods of acceleration-deceleration (a similar behaviour was seen in [243]), however the

main acceleration transition corresponds to z ∼ 0.45, unlike in ΛCDM, where the acceleration

starts at z ∼ 0.7.

PCA and the Bayes’ Factor

By applying the principal component analysis to remove the noisiest modes (enough to preserve

95% of the variance) of the reconstructions, we see that the biggest changes happened mainly

at z > 2.0. An example of this can be seen in Fig. 4.6, where the reconstruction with 20 bins

for the energy density and the EoS was used. Since the only information here is coming from

the Lyman-α BAO (z ∼ 2.3) it may be reasonable to argue that some tensions amongst models

come from these high-redshift data (as has been also suggested in [6, 104, 80]), or perhaps it

exists the possibility that large systematic errors are present in this dataset. This may be an

indication that the dynamical DE behavior, referring to the crossing of the PDL for the EoS

and the null energy density at early times, is merely due to noisy data, although this will not

be confirmed until a significant amount of information is obtained in this redshift region. This

also has an effect in the Bayesian Evidence. As the parameters beyond z = 1.5 are the least

constrained they contribute little to nothing to the final evidence of the reconstruction and thus

means that one has to be very careful when utilizing the Bayes’ Factor to directly perform model

selection. Added to this is the fact that the Evidence is pretty susceptible to the prior range.

Such problems are common when performing reconstructions, but a possible solution has been

proposed in [138], although it is still a work in progress.

Nevertheless, something that should be borne in mind is that certain characteristics pointing

out to dynamics are still present even when removing the noisiest PCs. These characteristics,

in the energy density, are the oscillatory nature at low redshift and the transition to a null or

negative energy density in z ≈ 1.5; with the EoS the preserved features include the oscillatory

behavior, the bump in z ≈ 1.3, a preference for values below wDE = −1 at z = 0, and the crossing
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Figure 4.6: Applying the principal component technique to the reconstructions of the EoS and the energy

density with 20 bins. By eliminating 5 PCs (which add up to about 5% of the total variance for each

reconstruction) one obtains the orange figures with slightly overestimated errors localized in z > 1.5.

of the phantom divide line in late times.

4.5 Capturing features with the right amount of parameters

Given the mathematical structure of the binning scheme and linear interpolation of the recon-

structions there are some subtleties that are not obvious at first glance. In particular one that

has an effect to this work: a bigger number of parameters does not necessarily means a better

fitness to the data. We can only guarantee it to be true when the bigger number of parameters

is a multiple of the one being compared. For example if we compare a reconstruction with 2

parameters we can only guarantee that the ones with 2n (with n ∈ N) parameters will perform

better at fitting the data (and this is true for any number of parameters, not only 2). This is
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because the bins/nodes are all equally spaced in the redshift range [0, 3]. When using, let’s say 2

and 4 parameters, the reconstruction with 2 having parameter positions of (1.5, 3.0) is a special

case of the one with 4 with parameters positions of (0.75, 1.5, 2.25, 3.0), and the same is true for

any multiple of 2.

This also means that there may be some features that a certain number of bins/nodes will

not be able to capture since they are located in a region not accessible by the larger number of

bins/nodes. As seen in Fig 4.7 where the data (black dots) are being modeled with 2 and 3 bins.

The data clearly show a transition in z = 1.5 and the 3 bins cannot, by design, correctly model

this transition since the positions of the bins interfere. It is also important to note that these

problems also appear with an interpolation reconstruction (linear, cubic and so forth), not only

in the binning scheme. This happens almost exclusively to reconstructions with a low number of

nodes/bins because as more parameters are utilized the resolution of the reconstruction becomes

a lot better.
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Figure 4.7: Visual representation of the possibility of underfitting data with more parameters.

Even if these effects could seem generally unimportant they are quite relevant to this work

since they are both present. When reconstructing either the EoS or the density with 4 and 5

parameters we should expect a better fit to the data with 5 parameters because it has more

degrees of freedom, but the ∆χ2 says otherwise. By separating and analyzing the ∆χ2 in its

components via equation 4.9 we see some differences as expected, but the component responsible

for the bad fitness when utilizing 5 bins is the ∆χ2
H with a difference of 3.36 when compared to

the 4 bin reconstruction (for reference we also have ∆χ2
SN = −1.38 and ∆χ2

BAO = −0.4 in favor

of the 5 bin reconstruction). This indicates that there might be some feature present in the 4

bin reconstruction which favours it specifically with the Hubble parameter data, and it is not

present in the 5 bin one. This feature is also present in the 6 bin reconstruction, as represented
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Figure 4.8: Functional posteriors of the EoS reconstruction, from up to down, with 4, 5 and 6 bins using only

Hubble parameter data.

by its ∆χ2
H = 5.26 (when compared with the 5 bin one).

The absent feature becomes obvious when reconstructing the EoS with 4, 5 and 6 bins with

only Hubble parameter data, which is the data where 5 bins has trouble with. The functional

posterior of these reconstructions can be seen in Fig 4.8. Paying attention to the 1σ region of

4 and 6 bins a bump can be seen followed by a slump in the interval 0.7 < z < 2.0. The 5

bin reconstruction is completely missing this bump and subsequent slump. As explained at the

start of the section, the reason for the inability with 5 bins to reproduce this behaviour comes

from its bins’ positions. The important bin is the one that starts in 1.2 and ends in 1.8, since

the transition from bump to slump happens in z = 1.5 it is impossible for this bin to correctly

capture such trait.
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Chapter 5

Interacting Dark Energy in a Model

Independent way

5.1 Introduction

In order to explain the small scale structure formation, or at least to ameliorate the problems

associated with the CDM model, several alternatives have been introduced. One viable option

is to replace the standard CDM with a Scalar Field dark matter components [216, 123, 147, 156,

227, 168] or by introducing the Self Interacting dark matter [220, 120, 183], or to support the

warm dark matter scenario [186, 167].

On the other hand, there exists a particular type of models where the non-minimal interaction

(hereinafter I’ll use the word interaction to mean non-minimal interaction) between DM and DE

may be able to solve or at least alleviate these issues (along with the DE ones) with relative

ease [145, 146, 92, 193, 25, 59, 89, 250, 253, 187, 93, 94, 117, 150, 43, 176, 175]. Recent analyses

have focused on the resemblance between DM-DE interacting models with modified gravity

theories [238, 142]. As such, a viable alternative is to assume an interaction between these two

components [54, 48]. Even though the interacting models have been extensively analyzed, their

interaction kernel’s form still remains a mystery.

This is why a significant amount of research works have been dedicated to introducing new

models in a phenomenological way (such as the parameterizations). Models with interacting dark

sectors, also named Interacting Dark Energy (IDE), are no strangers to parameterizations, since

the interplay is generally proposed in a particular demeanor motivated by certain characteristics.
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For example, a popular assumption, inspired by several behaviors in particle physics [185], is

to express the interaction kernel, Q, in terms of the energy densities (ρDM and/or ρDE) and

time (through the Hubble parameter H−1(z)). Nevertheless, these are only few assumptions

and, since the nature of the interaction is still obscure, they can come up in several different

functional forms and combinations, see for example [146, 92, 238, 250, 187, 252]. Generally, for

these type of models, it is found that the structure formation remains unaltered and late-time

acceleration is also in accordance with the standard model (see [238, 48] for a comprehensive

review of interacting models and their behavior).

However, as useful as parameterizations may be (not only for IDE but in general) they posses

the already mentioned limitation that a functional form is assumed a priori, which could bias

the results.

To avoid these issues it is useful to perform reconstructions by extracting information directly

from the data, using model-independent techniques or non-parametric ones. The Gaussian

process (GP), specifically for the IDE models, has become a regular choice for a non-parametric

approach [23, 165, 248, 50, 49, 236]. This methodology has found a possibility of an interaction

and given some insights into possible preferred behaviors and characteristics, such as a crossing of

the non-interacting line. In spite of this, the GP approach cannot be used for model comparison

in concordance with the ΛCDM model given its non-parametric nature.

Despite the extensive study of both the interaction models and the model-independent ap-

proaches in cosmology, they have been rarely used in tandem; for example Cai et. al. [58] and

Salvatelli et. al. [209] used redshift bins, and for Solano et. al. [218] the main focus are the

Chebyshev polynomials. They found a possible crossing in the non interaction line, and in [58]

obtained an oscillatory behavior through the interaction, although the data in this work was

limited to cover a narrow range of redshift (around z < 1.8). This finding inspired the study of

possible sign-switching interactions, instead of the classical monotonically decreasing or increas-

ing parameterizations. We have for example: in [149] the parameterization Q(a) = 3b(a)H0ρ0

was first proposed, with b(a) = b0a+ be(1− a) being the sign-switching part; in [224] the model

Q = 3Hσ(ρDE − αρDM) (α being a positive constant of order unity) also presents a switching

interaction; in [258] the named Ghost dark energy is used in tandem with an interaction kernel

Q = 3βHq(ρDE + ρDM) where its sign is able to change since it is a function of the deceleration

parameter q; and in [121] a bunch of variations of Q(a) = 3b(a)H(a)ρi are studied. The general

consensus reached by the majority of these models is that, if a transition was to happen, it

should be around the time when the accelerated expansion of the universe began (z ∼ 0.5).

Therefore, in this chapter I will use some model-independent approaches to reconstruct the in-
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teraction kernel between DE and DM directly from the data. The methods used are the binning

scheme along with the Gaussian Process as an interpolation approach. Moreover, as additional

cases, together with the DM-DE interaction, the cosmological constant will be replaced with a

constant EoS free to vary.

The chapter is organized as follows: in 5.2 a brief review of the underlying theoretical reason

that can lead one to consider the possibility of non-minimal interaction within the dark sector

is provided, followed by 5.3 where the reconstruction methodologies are described. In 5.4 the

datasets and some specifications about the parameter estimation and model selection are made

clear. Finally, in 5.5 the main results are presented.

5.2 Interacting DM-DE Model

Let’s recall the Friedmann and continuity equations, respectively:

3H2 = κ(ρr + ρb + ρDM + ρDE), (5.1)

ρ̇r + 4Hρr + ρ̇b + 3Hρb + ρ̇DM + 3HρDM

+ ρ̇DE + 3HρDE(1 + wDE) = 0,
(5.2)

where H is the Hubble parameter, and a dot denotes derivative with respect to cosmic time. It

is reasonable to assume that the sources such as baryons and radiation, whose physics are well

known within the standard model of particle physics, are individually conserved, i.e., ∇µT r
µν = 0

and ∇µT b
µν = 0 (viz., ρ̇r + 4Hρr = 0 and ρ̇b + 3Hρb = 0). This in turn implies, via continuity

equation 5.2, conservation within the dark sector (DM+DE) itself:

ρ̇DM + 3HρDM + ρ̇DE + 3HρDE(1 + wDE) = 0. (5.3)

At this stage, in the cosmology literature so far, the very strong assumption that DM and DE are

conserved separately—i.e., ρ̇DM + 3HρDCM = 0 and ρ̇DE + 3HρDE(1 +wDE) = 0—is often made

with almost no basis of this assumption. Then, taking advantage of the only remained freedom,

viz., wDE, due to the unknown nature of DE, different models of DE have been put forward to

extend the standard cosmological model since the discovery of the late time acceleration of the

universe. Thus, if we do not follow this two-step path to build a cosmological model, the fact

that the very nature of both DM and DE are still not known and GR itself does not impose

them to be conserved separately, we have, from 5.3, ∇µTDM
µν = Q and ∇µTDE

µν = −Q, namely,

ρ̇DM + 3HρDM = Q, (5.4)

ρ̇DE + 3HρDE(1 + wDE) = −Q, (5.5)
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where we have two undetermined functions; the DE EoS parameter wDE and the interaction

kernel Q, which determines the rate and direction of the possible energy transfer between DE

and DM; namely, Q = 0 implies minimal interaction (gravitational interaction only) between

DM and DE, Q > 0 implies energy transfer from DE to DM, and Q < 0 implies energy transfer

from DM to DE. In particular, in the case Q = 0 (minimal interaction) and wDE = −1 we

have the standard ΛCDM model. In this chapter, there will not be any assumption about

any phenomenological or theoretical models for the nature of interaction between DM and DE

(Q) and the dynamics of the DE (wDE, or a corresponding ρDE), instead these parameters

will be reconstructed, as well as some important kinematic parameters (the Hubble parameter

H(z) and deceleration parameter q(z) ≡ −1 + dH−1/dt), from observational data in a model-

independent manner. The effects of a possible non-minimal interaction between DM and DE

will be reflected on altered kinematics of the universe. This can be observed via the Friedmann

equation (5.2), due to the deviations in the evolution of the energy densities of the DM and DE

from what they would have in the absence of a non-minimal interaction. It is in general very

useful to have an idea on what corresponding minimally interacting (no energy exchange) DE

and DM would lead to the same altered kinematics of the universe. To do so, one can define the

effective EoS parameters for the DM and DE; weff,DM and weff,DE, respectively. These effective

parameters are defined such that, in the absence of non-minimal interaction, they would lead

to the same functional forms ρeff,DM and ρeff,DE as obtained through the model-independent

reconstruction processes by allowing a possible non-minimal interaction. Accordingly, one can

write the following separate continuity equations for the DM and DE in terms of weff,DE and

weff,DM

ρ̇DM + 3H(1 + weff,DM)ρDM = 0, (5.6)

ρ̇DE + 3H(1 + weff,DE)ρDE = 0, (5.7)

and then, comparing these with the continuity equations that involve the interaction kernel, i.e.,

5.4 and 5.5, we reach the following relation between the effective EoS parameters of the DM and

DE and the interaction kernel:

weff,DM =
−Q

3HρDM
, weff,DE = wDE +

Q

3HρDE
. (5.8)

It is also convenient to define a dimensionless interaction kernel parameter as follows;

ΠDM =
−Q

3Hρc,0
= −ΠDE, (5.9)

where ρc,0 = 3H2
0/8πG is the critical energy density of the present-day universe. Now, let’s

see how Q = Q(z) should behave so that some appropriate priors for the reconstruction can
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be chosen. It is widely accepted that, despite its problems, ΛCDM is very good at explain-

ing most observations, so any made efforts should not differ significantly from it, despite the

model-independent nature of the reconstructions used. For a comprehensive understanding of

the impact of this interaction, perturbation analysis should also be included in this analysis.

However, the focus in this chapter, as a proof of the concept, is on the background data and

therefore the full analysis including perturbations will be left for future research. On the other

hand, this does not mean that perturbations have been completely ignored here, as their effects

are already reflected when choosing the prior ranges for ΠDE. In order to preserve the dust-

like behavior of the DM and avoid significantly altering the perturbations, thus not spoiling the

structure formation, one may demand that weff,DM ∼ 0 [179, 48, 238], which implies | Q
3HρDM

| ∼ 0,

then | Q3H | � ρDM. Namely, we cannot have Q
3H ∼ ρDM > 0 otherwise the universe would always

remain in the matter dominated era (viz., in the Einstein-de Sitter universe phase). Also, it is

preferable to prevent Q
3H < 0 and | Q3H | ∼ ρDM otherwise the universe would have never entered

the matter dominated era and the successful explanation of galaxy and large-scale structure for-

mation would be spoiled. With some algebra and using previously explained definitions one can

arrive at |ΠDE| � Ωm
H2

H2
0
. Recent studies [43, 259] found that when using current cosmological

data, the interaction could be so intense as to imply that the EoS of DM can reach values of

weff,DM ∼ 1/3. These results can be of use as a motivation to relax the constrain on ΠDE, so the

dimensionless interaction kernel will be allowed to behave as |ΠDE| ∼ Ωm
H2

H2
0
. These restrictions

will be used as a guide when proposing the priors for the reconstruction of ΠDE(z) in 5.3 and

the curve ΩmH
2/H2

0 will be plotted as a reference.

By using the dimensionless interaction kernel together with the chain rule and ρc,0, we can

express 5.4 and 5.5 as

d(ρDM/ρc,0)

dz
=

3

1 + z

(
ρDM

ρc,0
+ ΠDM

)
, (5.10a)

d(ρDE/ρc,0)

dz
=

3

1 + z

[
(1 + wDE)

ρDE

ρc,0
+ ΠDE

]
, (5.10b)

respectively. These continuity equations are then solved numerically and used to express the

Friedmann equation, i.e., H(z). The continuity equations for radiation and baryonic matter do

not change, so we have, assuming a spatially flat universe:

H2(z)

H2
0

= Ωb,0(1 + z)3 +
ρDM(z)

ρc,0
+
ρDE(z)

ρc,0
, (5.11)

where radiation has been neglected, as it is well negligible in the post-recombination universe.

In [237] it was demonstrated that an equivalence between dynamical DE (through a dynam-

ical EoS parameter) and an interacting DE-DM model (with a constant EoS parameter) exists
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Figure 5.1: Comparison between a Gaussian Process for interpolation and a step function approach. The

influence of the smoothness parameter ξ in the Binning scheme is also shown.

at the background level. To avoid this and to maintain as little bias as possible regarding the

underlying possible functional form of the dimensionless interaction kernel parameter ΠDE(z),

the reconstruction efforts will be aimed mainly towards the interaction kernel but letting the

EoS parameter to be a variable single bin w0. Reconstructing both functions with model inde-

pendent approaches, with a large number of extra parameters at the same time, could cause a

lot of degeneracies with 5.8, but it may be worth to do it in future works.

Finally, for the sake of comparison Solano’s dimensionless interaction function [218] will be

plotted:

IQ(z) =
Q(z)

ρc,0H(z)(1 + z)3
, (5.12)

which is proposed as a way to better visualize the interaction kernel and its defining character-

istics.

5.3 Binned and Gaussian Process interpolations

The reconstruction methods considered in this chapter are the Binning scheme and the GP.

Analogous to the binning approach, the GP will be used as an interpolation between nodes

in order to have a model-independent reconstruction in a similar fashion as the reconstruction
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performed in [112]. This method yields slightly different results than the Binning scheme as

seen in 5.1. The node values are located at zi to describe ΠDE(zi). The zi values remain fixed,

so the free parameters for the interaction kernel would be the amplitudes ΠDE(zi) = Πi. In the

present chapter, and without loss of generality, for the reconstruction of ΠDE five amplitudes

(parameters) will be utilized, evenly located across the interval of 0.0 ≤ z ≤ 3.0. This choice

implies that each amplitude encompasses a redshift interval of 0.6 when using bins. Alternatively,

when utilizing GP the positions of the parameters Πi are located in the following positions

[0.0, 0.75, 1.5, 2.25, 3.0].

5.4 Datasets and Methodology

In this chapter, the data used includes the collection of cosmic chronometers [135, 215, 223,

160, 260, 158, 159] (we will refer to this dataset as H), which can be found within the repos-

itory [151]. Also the data includes the full catalogue of supernovae from the Pantheon+ SN

Ia sample, covering a redshift range of 0 < z . 2.26 [210] (which will be referred to as SN).

Finally the BAO datasets will be employed, containing the SDSS Galaxy Consensus, quasars

and Lyman-α forests [21]. The sound horizon is calibrated by using BBN [76]. This dataset will

be referred to as BAO.

To find the best-fit values for the free parameters of the model, SimpleMC [1, 33] is used

again with the dynesty library [219]. The number of live-points were selected using the general

rule 50 × ndim [134], where ndim is the number of parameters to be sampled. The flat priors

used for the base parameters are: Ωm = [0.1, 0.5] for the matter density parameter, Ωbh
2 =

[0.02, 0.025] for the physical baryon density, h = [0.4, 0.9] for the dimensionless Hubble constant

h = H0/100 km s−1Mpc−1. For comparison the wCDM model wDE(z)= wc, the Chevallier-

Polarski-Linder (CPL) EoS parameter wDE(z)= w0 +wa
z

1+z [68] and the sign-switch interaction

kernel (SSIK) Q = 3σH(ρDE − αρDM) [224] will be included. Their free parameters being wc,

w0 and wa for wCDM and CPL; for SSIK w0 = [−2.0, 0.0], σ = [0.0, 1.0] and α = [0, 4]. The flat

prior for wc, and w0, is the same [−2.0, 0.0] and the flat prior used for wa is [−2.0, 2.0]. For the

reconstruction of ΠDE(z) let’s recall that |ΠDE| ∼ Ωm(z)E2(z) will be used as a loose guide as

mentioned before to choose the priors, which will be defined as ΠDE,i = [−2.0, 2.0] when z < 1.0

and ΠDE,i = [−15.0, 15.0] when z > 1.0 . Regarding the EoS parameter we either fix it to a

cosmological constant w0 = −1 or let it vary as a free parameter w0 = [−2.0, 0.0].

95



5.5 Results

In this section the constraints are presented, at 68% CL, for h and Ωm,0, along with a comparison

of the best-fit of the model −2∆ lnLmax and the Bayes Factor, with respect to ΛCDM, shown

in 5.1 for all the scenarios. Moreover, the posterior probability density functions are shown, at

68% and 95% CL, for some quantities of interest in the interacting scenarios in 5.2, 5.3, 5.4 and

5.5.

Beginning with the well known parameterizations wCDM and CPL, and by using all the

combined datasets, i.e., BAO+H+SN, the following constraints on the parameters were obtained:

wc = −0.99 ± 0.06, w0 = −1.01 ± 0.08 and wa = 0.12 ± 0.47. Their −2∆ lnLmax are almost

similar, among each other, with an improvement of 2.73 for wCDM and 2.81 for CPL with

respect to the ΛCDM case, for one and two additional degrees of freedom, respectively (see

also 5.1). The SSIK parameterization has, instead, three extra parameters with constraints

w0 = −0.91 ± 0.05, α = 0.97 ± 0.79 and σ = 0.061 ± 0.053, and it presents a similar, albeit

slightly better, fit of the data like the former parameterizations, with −2∆ lnLmax = −3.12.

The evidences obtained favor wCDM over CPL and SSIK, with SSIK being the worst overall

of the three parameterizations, which is not surprising as it has three extra parameters. Still

when comparing any of the three scenarios with the standard cosmological model, even if they

improve the fit of the data, the evidence is slightly against them, because models with additional

parameters are more complex and therefore penalized by the Occam’s razor principle.

Then the reconstructions using five nodes interpolated via Gaussian Process for Π(z) were

performed in two ways. One has an EoS parameter w = −1, for which −2∆ lnLmax = −3.89

was obtained, and this represents an improvement of almost 2σ over the standard model. The

other one with a variable EoS parameter w0 = −0.81± 0.16 with −2∆ lnLmax = −4.22, which

is slightly better and suggests small deviations from w = −1. This stands out as the best model

(when looking at the fitness of the data) among the reconstructions. The main feature found in

the functional posterior of ΠDE(z), shown in 5.2 and 5.3 (bottom right panel), is the presence

of an oscillatory-like behavior around ΠDE = 0. This behavior is present at one sigma level

when w = −1 and becomes more pronounced when the DE EoS parameter is free to vary. In

fact it is noticeable the presence of two maxima, one located at z ∼ 0.4 and a more prominent

one at z ∼ 2.3, with deviations slightly outside the 1σ region. Additionally, there is also a local

minimum at z ∼ 1.3. Interestingly, all of them align closely with the positions of the BAO

Galaxies and BAO Ly-α data, represented by the red error bars in the second panel of the

figures. The reconstruction of Π(z) indicates more than one sign change in the flux of energy
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Figure 5.2: Functional posterior probability of the reconstruction by using a Gaussian Process and w = −1.

The probability as normalised in each slice of constant z, with colour scale in confidence interval values (see

color bar at the right). The 68% (1σ) and 95% (2σ) confidence intervals are plotted as black lines. From left to

right in the upper part: the reescalation function IQ(z), the Hubble Parameter, the deceleration parameter and

the effective EoS parameter for DE. In the lower part: the effective EoS parameter for DM, the density for DM

and DE respectively and the dimensionless interaction kernel ΠDE. The dashed black line corresponds to the

standard ΛCDM values and the dotted line in the ΠDE(z) plot corresponds to the ΩmH(z)2/H2
0 curve.

density transfer, that is, when the kernel switches from positive to negative the energy flow

changes direction, i.e., in other words, at the beginning there is a flux of energy in the direction

of DE to DM, followed by a transition and thus the flux of energy reverses from DM to DE.

The physical mechanism which makes this possible is beyond the scope of this work but it is

important to note that similar results have been obtained before in [58] with older versions of

the data sets.

Once the reconstruction of Π(z) has been performed, one is able to extract some derived fea-

tures, shown in 5.2, 5.3. Here there are the plots of the functional posteriors for the quantities:

H(z)/(1+z) (corresponds to expansion speed of the universe, i.e., ȧ with a being the scale factor),

Solano’s dimensionless interaction function IQ(z), the deceleration parameter q(z), the two effec-

tive EoS parameters (weff,DM and weff,DE), and both energy densities (ρDM/ρc,0 and ρDE/ρc,0).

Both figures present a similar structure in the results, but the case where the EoS parameter is

97



free to vary (Fig. 5.3) is a bit more pronounced, hence let’s focus on this case. The general form

of Π(z), including its oscillatory behavior, is transferred to the derived functions. For instance,

and as noted before, the presence of maxima in the interaction kernel may be able to explain the

BAO data. This can be seen in the panel with H(z)/(1 + z), which contributes to alleviate the

BAO tension created between low redshift (galaxies) and high (Ly-α) data, explored in [33, 11].

The fact that the general form of H(z)/(1 + z) changed, causes a displacement of its minimum

value which in turn moves the beginning of the acceleration epoch to lower values of redshift, i.e.

q(z) = 0 at z ∼ 0.5 at 68% CL away from the ΛCDM value. The main differences of the ΛCDM

and the reconstructed IDE are accentuated on the functional posterior of the re-escalation func-

tion IQ(z). Here we notice the existence of regions where the standard model remains outside

the 68% CL (1-σ), which could motivate further studies of an interaction kernel which presents

oscillations. The general tendency of this function also resembles a previously obtained result

in [50] with regards to the predominant negative values at late times. The last reconstructed

derived features are the effective equations of state parameters and the energy densities. The

effective EoS parameter of the DE, at low redshift, resembles a Quintom-like behavior crossing

the phantom-divide-line (PDL), viz., w = −1, multiple times; as studied in [232]. A primary

characteristic of the effective EoS parameter is exhibiting a pole (viz., limz→z±†
wDE(z) = ±∞

with z† being the singular point). As studied in previous works [16, 17, 102, 181] this is necessary

when a transition to a negative energy density is present, and this can also be easily verifiable

by looking at the DE density, ρDE/ρc,0, which allows a transition to negative values at about

z ∼ 2.3. As a consequence of the interacting mechanism, the DM effective EoS parameter also

shows some oscillations, although it is still statistically in agreement with wDM = 0. Because

the effective DM EoS parameter is a function of Q(z) one finds that, if Q(z) 6= 0 then the DM

would be no longer exhibit ρ ∝ a−3, i.e., no longer behave like a fluid with a pressure identical

to zero. This result is similar to the one obtained in [143], where the term used for a DM with

a dynamic EoS parameter was named Generalized dark matter (GDM). On the other hand,

its energy density shows a tendency towards smaller values than ΛCDM (dashed line) at low

redshifts, a possible transition to null or negative values at z ∼ 2.3 and then larger values at

higher redshifts. This is a consequence of the changing direction in the energy transfer.

Next the results of the reconstruction using bins instead of GP are presented. The functional

posteriors can be seen in 5.4 (w = −1) and 5.5 (w = w0). They look quite similar to the general

features of the GP counterparts. When having w = −1 a −2∆ lnLmax = −3.88 is obtained, and

if the DE EoS parameter is allowed to vary one gets w0 = −0.98±0.09 and −2∆ lnLmax = −3.92
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Table 5.1: Mean values, and standard deviations, for the parameters used throughout the reconstructions. For

each model, the last two columns present the Bayes Factor, and the −2∆ lnLmax ≡ −2 ln(Lmax,ΛCDM/Lmax,i)

for fitness comparison. The datasets used are BAO+H+SN. Here −2 lnLmax,ΛCDM = 1429.7,

lnEΛCDM = −721.35(0.14).

Model EoS parameter h Ωm,0 lnBΛCDM,i −2∆ lnLmax

ΛCDM -1 0.683 (0.008) 0.306 (0.013) 0 0

wCDM wc 0.675 (0.022) 0.296 (0.016) 1.51 (0.18) -2.73

CPL w0 + wa(1− a) 0.676 (0.023) 0.298 (0.019) 2.37 (0.19) -2.81

SSIK w0 0.681 (0.025) 0.303 (0.027) 3.82 (0.21) -3.12

ΠDE GP -1 0.684 (0.027) 0.321 (0.032) 8.61 (0.21) -3.89

w0 0.687 (0.027) 0.311 (0.024) 8.01 (0.21) -4.22

ΠDE bins -1 0.684 (0.025) 0.319 (0.027) 5.69 (0.22) -3.88

w0 0.689 (0.027) 0.314 (0.025) 7.51 (0.22) -3.92

Table 5.2: Constraints at 68% CL of the parameters for the model-independent reconstructions. The values for

Π4 are unconstrained for some of the cases, and for Π5 for every case, which is expected given the lack of data

in this redshift.

Model w0 Π1 Π2 Π3 Π4 Π5

ΠDE GP −1 −0.01(0.26) −0.26(0.36) −0.29(1.04) 0.93(5.34) unconstr.

−0.81(0.16) −0.78(0.71) −0.16(0.39) −0.22(1.14) 5.35(5.82) unconstr.

ΠDE bins −1 0.04(0.05) −0.61(0.56) 0.54(3.16) unconstr. unconstr.

−0.98(0.09) 0.02(0.06) −0.43(0.76) 0.18(3.55) unconstr. unconstr.

with respect to the ΛCDM scenario, improving the fit of the data and also performing slightly

similar the reconstruction made with the GP interpolation. The results for this case also present

oscillations around the null value of the interaction kernel ΠDE = 0 which, again, indicates

more than one shift in the direction of energy density transfer. However, by using bins, the

oscillations are noisier and thus more difficult to spot than in the one performed using GP; the

results of the two cases, with fixed or varying EoS parameter, are very similar to each other.

As far as the reconstructed derived features, there is a similar behavior to that found with GP.

The re-escalation function IQ(z), for example presents some oscillatory-like behavior that is less

pronounced than the GP case, but lacks the first peak at redshift z ∼ 0.5. The Hubble parameter

presents a horizontal flat region (darker green). However, due to the larger confidence contours,
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Figure 5.3: Functional posterior probability of the reconstruction by using a Gaussian Process and w = w0.

The probability as normalised in each slice of constant z, with colour scale in confidence interval values. The

68% (1σ) and 95% (2σ) confidence intervals are plotted as black lines. From left to right in the upper part: the

reescalation function IQ(z), the Hubble Parameter, the deceleration parameter and the effective EoS parameter

for DE. In the lower part: the effective EoS parameter for DM, the density for DM and DE respectively and the

dimensionless interaction kernel ΠDE. The dashed black line corresponds to the standard ΛCDM values and the

dotted line in the ΠDE(z) plot corresponds to the ΩmH(z)2/H2
0 curve.

it causes the existence of a region where the deceleration parameter equals zero, z ∼ 0.5 − 1.2.

Finally, the effective DE EoS parameter presents again a pole, but in this case closer to z = 2,

which suggests a transition to a negative DE density, ρDE(z)/ρc,0; and the effective DM EoS

parameter shows deviations zero at more than 1-σ level. These similar behaviors were expected

as both model-independent reconstructions have similar degrees of freedom and the demeanor in

which the nodes/bins are interpolated also have some visual similarities (as seen in 5.1 depending

on the smoothness of the bins).

In Table 5.1 the mean values and standard deviations for the parameter estimation procedure

are presented. Every model-independent reconstruction, regardless of its improvement in the

fit of the data, presents a worse Bayes’ Factor when compared to ΛCDM, because additional

degrees of freedom are penalized by the Occam’s razor principle. In Figure 5.6 the 1D and 2D

marginalized posteriors of the parameters corresponding to Π(z) are plotted and in Table 5.2
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Figure 5.4: Functional posterior probability of the reconstruction by using a Binning scheme and w = −1. The

probability as normalised in each slice of constant z, with colour scale in confidence interval values. The 68%

(1σ) and 95% (2σ) confidence intervals are plotted as black lines. From left to right in the upper part: the

reescalation function IQ(z), the Hubble Parameter, the deceleration parameter and the effective EoS parameter

for DE. In the lower part: the effective EoS parameter for DM, the density for DM and DE respectively and the

dimensionless interaction kernel ΠDE. The dashed black line corresponds to the standard ΛCDM values and the

dotted line in the ΠDE(z) plot corresponds to the ΩmH(z)2/H2
0 curve.

their constraints at 68% CL are reported, where the error is shown in parenthesis. The parameter

Π1, which is located in z = 0 for GP, is clearly better constrained when taking w = −1, although

its constraint is around Π1 = 0, which indicates that, without a variable EoS parameter, it is

pretty much forced to behave as ΛCDM at low redshifts.

When allowing variations on w0, it is easy to note a separation from a ΛCDM-like behavior

of around 1.5σ in Π1 for GP. In contrast, when using bins this parameter is well constrained

with or without a varying w0. This happens because each bin spans a range (∆z = 0.6 in this

case) and, specifically the first bin, is fitting all the available data in 0 < z < 0.6 with a single

step function making it very constrained, unlike its GP counterpart which uses both Π1 and

Π2 (interpolated in 0 < z < 0.75). Another interesting observation is that the restriction in Π1

is reflected in the posterior of w0, allowing it to be higher than −1 and presenting a negative

correlation with Π1 when using GP. The parameter Π3 on the other hand, appears to be more
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Figure 5.5: Functional posterior probability of the reconstruction by using a Binning scheme and w = w0. The

probability as normalised in each slice of constant z, with colour scale in confidence interval values. The 68%

(1σ) and 95% (2σ) confidence intervals are plotted as black lines. From left to right in the upper part: the

reescalation function IQ(z), the Hubble Parameter, the deceleration parameter and the effective EoS parameter

for DE. In the lower part: the effective EoS parameter for DM, the density for DM and DE respectively and the

dimensionless interaction kernel ΠDE. The dashed black line corresponds to the standard ΛCDM values and the

dotted line in the ΠDE(z) plot corresponds to the ΩmH(z)2/H2
0 curve.

constrained with GP than with bins. One can also see from the marginalized 1D posteriors

that the parameter Π4 is loosely constrained when using GP but unconstrained with bins. This

different behavior could be attributed to the slight correlation imposed by the GP method, but

also when w0 is allowed to vary we see it is correlated with Π4, and at the same time Π4 is

correlated with Π1 which is also constrained. Π5 is completely unconstrained in all cases, but

this was expected given the lack of data in this region (z > 2.4).

Despite the significant findings presented above, it should be noted that the standard ΛCDM

model still remains a viable option within the 2σ confidence level, which means that one cannot

definitely exclude it with the data used in this chapter, and it is needed additional and more

precise data sets to be able to say anything solid about this possibility. Let’s continue with a

brief discussion of the differences and similarities between the findings from the two different

reconstruction approaches used. For instance, it can be easily seen that certain characteristics
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Figure 5.6: Triangle plot of every model-independent reconstruction. The parameter w0 is only present in two

of the reconstructions and it is correlated with ΠDE,1 when using a GP to perform the interpolation.
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are more evident in the GP reconstruction than in the binning method. This discrepancy could

be attributed to the inherent correlations existing within GP among nodes, a correlation that is

subtly reflected in the confidence contours shown in Fig. 5.6. These correlations seem to favor

the GP approach, which is evidenced by a better fit of this approach to the data as can be seen

in Table 5.1. To reconcile these discrepancies among the approaches, a straightforward solution

involves increasing the number of parameters, thereby achieving higher resolution. Nonetheless,

this approach introduces the challenge of potential overfitting of specific characteristics and un-

derfitting of others. To counterbalance this trade-off, one may need to incorporate a correlation

function into the the binning method [261, 102], but the consideration of this is beyond the

scope of the present chapter although it might be a promising direction for future investigations.

It seems reasonable to conclude from this discussion that some of the observed features may

be influenced by the chosen reconstruction method, but certain general characteristics persist

regardless of the approach. These enduring traits include the oscillatory behavior at 1σ, the

asymptotic behavior of the effective EoS and the possibility of a transition to a negative DE

density.

This section will be concluded by commenting on one of the most interesting findings of this

chapter, the possibility of the existence of a DE that can take negative density values at high

redshifts (viz., for z & 2), regardless of the approach used. As seen in previous chapters this

possibility may seem physically unexpected and challenging, but it is not a new finding. It has

been studied in the previous literature, especially recently, to address the cosmological tensions

such as the H0 and S8 tensions; see, for instance, Refs. [11, 17, 18, 14, 5] considering models

that suggest such a transition at z ∼ 2 from their observational analysis and references therein

for further reading. The findings here present a noteworthy distinction, as it was achieved a

similar behavior by incorporating an interacting dark sector (dark matter+dark energy) instead

of employing a direct reconstruction of the DE interacting only gravitationally. This observation

holds significance as it indicates that the data sets consistently favor (or at the very least allow

for) a negative DE density for z & 2, irrespective of the method employed. This finding,

combined with the model’s potential to address certain cosmological tensions (as extensively

discussed in [18, 14]), emphasizes the notion that this model emerges as a promising alternative

to the standard ΛCDM model.
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Chapter 6

Conclusions

The main goal of this thesis was to use different reconstruction methods to shed some light on

what the possible nature of the Dark Energy could be, according to late-time background data.

As explained before, reconstructions use observational data to infer or estimate a physical quan-

tity or function, especially when the true underlying function is not directly observed. They are

generally separated in three types: Parametric, Non-parametric and Model-Independent. The

data used in this work is mainly background one and consists of: Cosmic Chronometer mea-

surements of the Hubble Parameter, the JLA supernovae 1A catalogue, Pantheon and Pantheon

Plus supernova compilation, Baryon Acoustic Oscillation data and the CMB as a high-redshift

BAO. On this thesis, the main reconstruction methods used are the ones denominated as model-

independent, although some parametric approaches were also used.

6.1 Graduated DE

The Graduated Dark Energy (gDE) can be viewed as characterising the minimum dynamical

deviation from the null inertial mass density. In this case it yields an energy density that

dynamically assumes negative values in the recent past, in line, for instance, with [34, 205, 90,

161, 190, 64, 242, 97, 234]. It approximately describes the cosmological constant spontaneously

switching sign at a certain redshift to become positive quite recently in the late universe.

The gDE-CDM model, replaced the Λ hypothesis by the gDE, was confronted with the latest

(at that time at least) combined observational data sets of PLK+BAO+SN+H. When λ ≤ −4

(also when λ is free): that the data predicts bimodal posterior probability distributions for the

parameters of the gDE-CDM model new maxima significantly far away from γ = 0 (ΛCDM),
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and old maxima containing γ = 0. The improvement in the goodness of the fit with respect to

the Λ reaches highly significant levels –e.g., ∆χ2
min = 6 when λ = −20 and ∆χ2

min = 6.4 when

λ is free– for the new maxima, while it remains always at insignificant levels –∆χ2
min . 0.02,

irrespective of the value of λ– for the old maxima. It is shown that, in contrast to the old

maxima covering the ΛCDM model, these new maxima of the gDE-CDM model also agree with

the model-independent H0 measurements, high-precision Ly-α data, and model-independent

Omh2 diagnostic estimates.

There are some features endowed by the new maxima of the gDE-CDM model which are

due to the energy density of the gDE rapidly changing sign at the redshift z ≈ 2.3 and this in

turn leads to a rapid drop in the total energy density of the universe, and in H(z), at the same

redshift. It has turned out that this happens for large negative values of λ, which renders the

redshift dependency of the gDE density close to a step function, which to a good approximation

describes a cosmological constant spontaneously switching sign. This can lead to a conjecture

that the cosmological constant has spontaneously switched sign and became positive, namely, the

universe has transitioned from AdS vacua to dS vacua, at z ≈ 2.32 and triggered the late-time

acceleration. This could suggest looking for such mechanisms in string theory constructions.

The fact that constructing metastable dS and/or AdS in string theory occupy a key place in

the string theory investigations, indicates that the future confirmation or falsification of this

conjecture would have far reaching implications for fundamental theoretical physics as well as

for the identity of the dark energy.

6.2 Model-independent EoS and DE density

After characterizing and analyzing gDE the focus of this work shifted to parametric forms and

model-independent reconstructions of two properties of the Dark Energy: the EoS and the energy

density. Regarding the parametric forms, some attention was given to the wCDM and CPL

models, whereas for the energy density a simple form given by a sigmoid function to describe

a transition behaviour was introduced. Then, to allow for more flexibility for the recovered

functions, two types of reconstructions were included: step functions smoothly connected (bins)

and linear interpolations (nodes). Each of the reconstructions may have several amplitudes as

free parameters with fixed locations, as well as variable positions to localize possible features. On

the top of the bin reconstruction a floating prior that averages the set of neighboring amplitudes

to behave as a mean between bins was incorporated.

The wCDM and CPL parameterizations of the EoS showed little to no improvement over
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ΛCDM. However, with just a single parameter, the sigmoid function for the energy density had

a better fitness to data as well as a better Bayes’ factor when compared to ΛCDM. Even though

this parameterization is phenomenological, it could be an indication that these type of models

should be further studied upon.

By adding complexity in the model-independent reconstructions, through extra amplitudes

with fixed positions, the general outcome presented a dynamical behavior beyond the cosmolog-

ical constant. In both reconstructed functions, ρDE(z) and wDE(z), there is a presence of a bump

located at about z ∼ 1.2. This feature along with a crossing to the phantom-divide-line in the

EoS, and a transition to a null energy density (or even negative values) yield to deviations from

a constant energy density of about 3σ. However, for these type of reconstructions the Bayes

factor penalized the incorporation of new parameters.

In order to avoid a possible bias due to the location of the amplitudes, the internal points

were allowed to move freely in the z-space. The autonomy of the internal positions led to localize

the features, previously mentioned, and to an improvement on the fit of about 1σ, in comparison

to the same number of amplitudes with fixed positions. Another point to stress out about the

internal reconstructions, is the enhancement of the Bayes’ factor which could get even negative

values, i.e. for ρDE(z) with bins and the 3y2x method. When considering 20 parameters in the

binned reconstruction we noticed an improvement in the fitness up to about 4σ. Nevertheless,

a key result to bear in mind is that for the case of 20 bins+prior the Bayes’s factor showed a

strong evidence against this type of reconstruction. This is also reflected on a worse ∆χ2, when

compared to a reconstruction with the same number of parameters.

In general, the derived functions inherited the behaviour from the reconstructed ones: an

oscillatory shape. These functions also exhibited consistency with other reconstruction methods.

For instance, a dynamical DE behaviour, a different redshift transition from a decelerating

universe to an accelerating one, a better agreement to the BAO data. From the energy density

reconstruction, the derived EoS presents a discontinuity at redshift around z ∼ 2, which is

necessary if the energy density transitioned to negative values; found in several models and

parameterizations.

By performing a PCA it is seen that, in both types of reconstructions, the amplitudes beyond

z = 1.5 are the least constrained, where the predominant data around these redshift values is the

BAO Lyman-α. This shows that current Lyman-α BAO prefers a nearly null or negative energy

density, or a transition from quintessence to a phantom dark energy. However, more precise data

in this region is necessary to fully discern a dynamical DE, also, considering that the parameters

in this region are unconstrained, it directly affects the estimation of the Bayesian Evidence, so
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any remarks about the Bayes’ Factor should be made carefully. Nevertheless it was found that

some features could indeed be considered as signal, like the general oscillatory behaviour, the

bump located at z ≈ 1.2 and the wDE < −1 at the present redshift.

6.3 Interacting DE with bins and GP

In chapter 5 a model-independent reconstructions of the interaction kernel between DM and DE

by implementing an interpolation with both Gaussian Process and bins was made. The main

results showed that particular features, such as oscillations are present, but they remain still

statistically consistent with the ΛCDM model. Similar to the chapter before it, some derived

functional posteriors were also obtained, which inherit the general characteristics of Π(z) (the

adimensional interaction kernel). These oscillatory features can be more clearly observed through

the reescalation function, and it is worth noting that similar shapes were also found in a model-

independent reconstruction in [58]; (see also [12], suggesting that, in the relativistic cosmological

models that deviate from ΛCDM, dark energies are expected to exhibit such behaviors for the

consistency with CMB data). It is important to notice that the Hubble parameter was slightly

modified in order to alleviate the tension created between low and high redshift BAO data

(reflected in the improvement of fit) which also causes a shift, to later times, for the beginning

of the acceleration epoch. When plotting the functional posterior of the DE effective EoS

parameter, a quintom-like behavior at low redshift is observed, with a preference zone of the

68% confidence contour away from the ΛCDM. Additionally, the presence of a pole at about

z ∼ 2.3 recovering a shape with an asymptote is observed, proposed and studied in other

works [16, 17, 102, 116, 240]. This particular shape is required when having a DE energy density

that presents a transition from positive to negative energy density or vice versa. This transition

is present in the 68% contour of the derived DE energy density. An important implication of

these reconstructions is seen with 5.8. Since the interaction kernel is non-negligible, thus the

effective behavior of DM, at the largest scales, may not be described by a perfect pressure-less

fluid but something around it.

6.4 Concluding remarks

Some concluding remarks can be summarized as follow:

• I) the gDE model presents an interesting alternative to the Cosmological Constant, specif-

ically for its sign-switching density. Some models inspired by it are starting to show some
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promise to solve the problems underlying the standard model;

• II) regarding the model-independent reconstructions: despite the positive outcomes ob-

served in the fit of the data, we cannot ignore the Bayes’ Factors, as the model-independent

methods introduce several new parameters, they are expected to be in disadvantage when

compared to the concordance model, but even so, some of them resulted in a better fit to

the data (up to 4σ) and, in some cases, a better Bayes’ Factor;

• III) if future surveys confirm these results, the cosmological constant and single scalar field

theories (with minimal assumptions) might be in serious problems as they cannot reproduce

the features presented by these reconstructions. This could be a great incentive to study

DE models with some type of dynamical behavior and encourage direct reconstruction of

other functions, such as those that may lead to discontinuities in the EoS;

• IV) the PCA analysis showed a great promise for some of the reconstructed features, such

as the oscillations and a bump at intermediate redshifts, but at the same time it exhibited

the possibility of some of them to be due to noisy data;

• finally V) it deserves a mention that both reconstructions from chapters 4 and 5, even

when the reconstructions are fundamentally distinct (one directly reconstructs the EoS

and density and the other an IDE model), show that a sign-switching energy density (such

as the gDE model) is allowed and sometimes preferred by the datasets used.

As a future prospect, it remains the addition of other datasets that contain information

from linear perturbations, such as the cosmic microwave background and the matter power

spectrum data. It would also be interesting to study some alternative PCA methods that have

a mathematical basis to truly discern important features from noise.
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