

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

"Reactividad de los derivados de 2,3-diferrocenilciclopropenona con *bis*-nucleófilos"

TESIS

PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA Químico Erick López Miranda

Dra. Elena Klimova Adscrita a la Facultad de Química

Ciudad de México, Enero 2024

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

TEMA DE TESIS

"Reactividad de los derivados de 2,3-diferrocenilciclopropenona con *bis*-nucleófilos"

TESIS

PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. Erick López Miranda

Ciudad de México, 2024

PRESIDENTE:	Dr. Pankaj Sharma
VOCAL:	Dr. Martín Andrés Iglesias Arteaga
VOCAL:	Dr. Julio César Aguilar Cordero
VOCAL:	Dr. Daniel Méndez Iturbide
SECRETARIO:	Dr. Alfonso Ramón García Márquez

El presente trabajo fue realizado en el laboratorio 201 del edificio F de la Facultad de Química de la Universidad Nacional Autónoma de México.

Asesor del tema:

Dra. Elena Klimova

Sustentante:

López Miranda Erick

AGRADECIEMIENTOS

Por el apoyo institucional:

A la Universidad Nacional Autónoma de México

A la Facultad de Química

Al Programa de Maestría y Doctorado en Ciencias Químicas de la UNAM

Financiamiento:

Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (**PAPIIT-UNAM-IN-217421**)

Programa de Apoyo a la Investigación y el Posgrado Facultad de Química, UNAM (**PAIP-**5000-9059)

Por la beca otorgada durante la realización de los estudios de Maestría:

Al Consejo Nacional de Humanidades, Ciencia y Tecnología, CONAHCYT (Registro No. 1176485)

Por sus valiosas aportaciones para la mejora de este trabajo:

A los miembros del H. Jurado

A la M. en C. Nayeli López Balbiaux por sus retribuciones en Resonancia Magnética Nuclear para el presente trabajo.

A los Técnicos de IR, EM, Rayos X de la Unidad de Servicios a la Investigación USAII

Por su apoyo y dirección durante la realización del proyecto de Investigación:

A la Dra. Elena Klimova y a la Dra. Jessica Jazmín Sánchez García.

Abreviatura	Significado
Fc	Ferroceno
Ср	Ciclopentadienilo
Cipso	Carbono ipso
Cespiro	Carbono espiránico
RMN de ¹ H	Resonancia Magnética Nuclear de Hidrógeno 1
RMN de ¹³ C	Resonancia Magnética Nuclear de Carbono 13
S	Señal singulete
d	Señal doblete
t	Señal triplete
m	Señal multiplete
Hz	Hertz
J	Constante de acoplamiento
δ	Desplazamiento químico
ppm	Partes por millón
Μ	Concentración molar (mol/L)
mmol	Milimol
nm	Nanómetros
λ	Longitud de onda en nm
Å	Ángstrom
°C	Grados Celsius
P.f	Punto de fusión
V	Número de onda en cm ⁻¹
E	Diferencia de potencial
E _{1/2}	Potencial de media onda
VC	Voltamperometría cíclica
mV	milivolt

Símbolos y Abreviaturas

Distancia de enlace en grupos orgánicos

Enlaces sencillos *	Longitud de enlace (Å)
H-H	0.74
F-F	1.42
CI-CI	1.98
Br-Br	2.28
I-I	2.67
0-0	1.48
N-N	1.45
C-C	1.54
Enlaces con hidrógeno	*
H-F	0.92
H-CI	1.27
H-Br	1.41
H-I	1.61
H-O	0.96
H-N	1.07
Enlaces con carbono *	
C-H	1.09
C-F	1.38
C-CI	1.78
C-Br	1.90
C-I	2.14
C-I (en CH ₃ I)	2.14
C-0	1.41
C-N	1.47
C-C	1.54
C-C (en C ₂ H ₆)	1.543
C-F (en CF ₄)	1.36
C-Si (en Si(CH ₃) ₄)	1.93
C-S (en C₂H₅SH)	1.81
Enlaces triples *	
C≡C	1.20
C≡C (en C₂H ₆)	1.207
C≡N	1.16
N≡N	1.10

Longitud de enlace (Å)
1.21
1.22
1.21
1.20
1.35
1.28
1.55
1.25

Ferroceno ∮

*Datos tomados de T. L. Cottrell, *The Strengths of Chemical Bonds, Butterworths, Londres*, (1958), Tabla 11.5.1

\oint Datos tomados de R. K. Bohn; A. Haaland; On the molecular structure of ferrocene Fe (C₅H₅)₂, *J. Organometallic Chem.* 5-5 (**1966**) 470-476

Lista de compuestos

Lista de compuestos utilizados (comerciales) Sigma Aldrich

(20a)

(18)

(17)

(16a)

(14)

(13)

(15)

1,3-dioxolanos y 1,3-dioxanos

1,3-oxatiolanos

Índice

Capítulo	ο Ι. Ferroceno " <i>bis</i> (η ⁵ -ciclopentadienil)hierro (II)"	13
1.1 Propiedades físicas y químicas del ferroceno		14
1.2 Reactiv	vidad del ferroceno	15
1.3 Aplicad	ciones del ferroceno	16
1.3.1 Ferro	oceno en catálisis	16
1.3.2 Ferro	oceno en química medicinal	17
1.3.3 Ferro	oceno en agroquímica	18
1.3.4 Ferro	oceno en polímeros	19
1.3.5 Ferro	oceno en modificadores de combustión	20
1.3.6 Ferro	oceno en sensores	21
Capítulo	o II. Ciclopropenonas y cationes ciclopropenílicos	23
2.1.	Síntesis de ciclopropenonas	24
2.1.1	Síntesis de ciclopropenonas a partir de cationes ciclopropenios	24
2.1.2	Síntesis de ciclopropenonas a partir de adición de carbenos	24
2.1.3	Síntesis de ciclopropenonas a partir de α, α' -dihalocetonas	25
2.1.4	Síntesis de ciclopropenonas a partir de ciclobutenonas	25
2.1.5	Síntesis de ciclopropenonas a partir de cetales	26
2.2	Aplicación de las ciclopropenonas	27
2.3	Ciclopropenonas funcionalizadas con ferroceno	30
2.4	Cationes diferrocenilciclopropenios	31
2.4.1	Aplicaciones de las sales de 2,3-diferrocenilciclopropenios	34
Capítulo	o III. <i>bis-</i> nucleófilos (O,O), (S,S) y (O,S)	36
3.1 1,3-dio	xolanos	36
3.1.1 Sínte	esis de los 1,3-dioxolanos	36
3.1.2 1,3-d	lioxalanos funcionalizados con ferroceno	38
3.1.3 Aplic	aciones de 1,3-dioxolanos ferrocenílicos	39
3.2 1,3-dio	xanos	41
3.2.1 Sínte	esis de los 1,3-dioxanos	42
3.2.2 1,3-d	lioxanos ferrocenílicos	43
3.3 1,3-ditiolanos		44
3.3.1 Síntesis de los 1,3-ditiolanos		45
3.3.2 1,3-D	Ditiolanos funcionalizados con ferroceno	46

3.3.3 Síntesis de los 1,3-ditiolanos funcionalizados con ferroceno		
3.4 1,3-ditianos		
3.4.1 Síntesis de los 1,3-ditiolanos	.49	
3.4.2 1,3-ditianos ferrocenilicos	.50	
3.5 1,3-oxatiolanos	.51	
3.5.1 Síntesis de 1,3-dioxatiolanos	.52	
3.5.2 1,3-oxatiolanos ferrocenílicos		
Planteamiento del problema	. 55	
Hipótesis	. 55	
Objetivos	. 56	
Objetivo general	56	
Objetivos particulares	.56	
Capitulo IV. Sección experimental	. 57	
1. Materiales y reactivos	57	
2. Caracterización	57	
3. Síntesis de materias primas	58	
3.1 Síntesis de la 2,3-diferrocenilciclopropenona	58	
3.2 Síntesis de tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclopropenio (3)	59	
3.3 Síntesis de 2,3-diferrocenilciclopropentiona	60	
3.4 Síntesis del yoduro de 2,3-diferrocenil-1-metiltiociclopropenio (5)	61	
4. Interacciones de la 2,3-diferrocenilciclopropenona y los cationes 2,3- diferrocenilciclopropenios con bis-nucleófilos (S,S), (O,O) y (O,S)	62	
4.1 bis-S,S-nucleófilos	62	
4.2 bis-O,O-nucleófilos	67	
4.3 bis-O,S-nucleófilos	70	
Capítulo V. Análisis de resultados	74	
Sección 1. Síntesis de materias primas	74	
Sección 2: <i>bis</i> -S,S-Nucleófilos	76	
Sección 3. <i>bis</i> -O,O-nucleófilos	86	
Sección 4. <i>bis</i> -O,S-nucleófilos	89	
Capítulo VI. Caracterización de los compuestos	. 93	
Conclusiones	120	

RESUMEN

Las ciclopropenonas fueron preparadas por primera vez por Breslow *et al.*, y Volpin hace más de 50 años. Estos compuestos tienen cualidades útiles, en síntesis, principalmente por sus estructuras mesoméricas zwiteriónicas que contienen el fragmento aromático ciclopropenílico, lo que provoca un aumento en la polaridad y estabilidad del ciclo de tres miembros.

Las ciclopropenonas sustituidas con ferroceno tienen la ventaja de mejorar la estabilidad de la carga positiva del ciclo de tres miembros, debido a su naturaleza donadora de electrones. Además, permite introducir dos fragmentos ferrocenílicos a una gran cantidad de compuestos orgánicos.

Por otro lado, la formación de enlaces C-S y C-O en el carbono sp² son fundamentales en síntesis orgánica, lo que permite obtener compuestos clave en la obtención de monómeros, precursores de fármacos y productos naturales. Cuando el ferroceno, los acetales o tioacetales se encuentran presentes en el mismo compuesto, podrían mostrar aplicaciones en diversos campos de la química, debido a sus propiedades redox con posibles aplicaciones en quimiosensores, fármacos y materiales ópticos.

En la literatura existen numerosos métodos para la preparación de acetales y tioacetales empleando catalizadores ácidos de Brönsted o de Lewis, aunque también es posible llevar a cabo reacciones de acoplamiento cruzado entre haluros arílicos/vinílicos con tioles y alcoholes en presencia de complejos metálicos.

En el presente trabajo se estudió la reactividad de la 2,3-diferrocenilciclopropenona y sus derivados 2,3-diferrocenilciclopropenílicos con bis-nucleófilos: (S,S), (O,O) y (O,S) en diferentes condiciones de reacción: cantidades estequiométricas, temperaturas, disolventes y tiempos de reacción.

Como resultado se obtuvo una familia de nuevos heterociclos, que se pueden clasificar como ditiolanos, ditianos, benzoditiolanos, dioxolanos, benzodioxolanos, oxatiolanos, benzoxatiolanos y espirocompuestos de una, dos y cuatro sustituyentes ferrocenílicos, que fueron caracterizados por técnicas espectroscópicas convencionales de RMN de ¹H, ¹³C, FTIR. Además, de que se obtuvieron siete nuevas estructuras de difracción de rayos X, por monocristal.

Abstract

Cyclopropenones were first prepared by Breslow et al, and Volpin more than 50 years ago. These compounds have useful qualities, in synthesis, due to their zwitterionic mesomeric structures that contain the cyclopropenyl aromatic fragment, which causes an increase in the polarity and stability of the three-membered cycle.

Ferrocene-substituted cyclopropenones have the advantage of improving the positive charge stability of the three-membered cycle, due to their electron-donating nature. In addition, it allows the introduction of two ferrocenyl fragments to many organic compounds.

On the other hand, the formation of C-S and C-O bonds in the sp² carbon are fundamental in organic synthesis, which allows obtaining key compounds in the production of monomers, drug precursors and natural products. When ferrocene, acetals or thioacetals are present in the same compound, they could show applications in various fields of chemistry, due to their redox properties with applications in chemosensory, drugs and optical materials.

In the literature there are numerous methods for the preparation of acetals and thioacetals using Brönsted or Lewis acid catalysts, although it is also possible to conduct cross-interaction reactions between aryl/vinyl halides with thiols and alcohols in the presence of metal complexes.

In the present work, the reactivity of 2,3-diferrocenylcyclopropenone and its 2,3diferrocenylcyclopropenyl derivatives with bis-nucleophiles: (S,S), (O,O) and (O,S) under different reaction conditions was studied.: stoichiometric quantities, temperatures, cartridges and reaction times.

As a result, a family of new heterocycles were obtained, which can be classified as dithiolanes, dithianes, benzodithiolanes, dioxolanes, benzodioxolanes, oxathiolanes, benzoxathiolanes and spiro compounds with one, two and four ferrocenyl substituents, which were characterized by conventional spectroscopic techniques: ¹H and ¹³C NMR, FTIR. In addition, seven new X-ray diffraction structures were obtained per single crystal.

Capítulo I. Ferroceno "bis(η⁵-ciclopentadienil)hierro (II)"

El *bis*(η^5 -ciclopentadienil)hierro(II) [Fe(η^5 -C₅H₅)₂] o ferroceno es un compuesto organometálico tipo sándwich formado por un átomo de hierro intercalado entre dos ligantes ciclopentadienilos. Este compuesto fue reportado en 1951 en la revista *Nature* por T. J. Kealy y P. L. Pauson,¹ quienes en realidad intentaron sintetizar fulveno mediante la reacción de acoplamiento C-C entre el reactivo de Grignard del bromuro de ciclopentadienilmagnesio con FeCl₂ en éter (Esquema 1.1a), lo llamaron "diciclopentadienil hierro" [Fe(η 1-C₅H₅)₂]. En un artículo publicado de manera simultánea, Miller, Tebboth y Tremaine informaron en la revista *Journal of Chemical Society* que al pasar ciclopentadieno y N₂ sobre hierro metálico también se obtenía el compuesto anaranjado de composición elemental FeC₁₀H₁₀ (Esquema 1.1b).²

Esquema 1.1. Síntesis de ferroceno por a) Kealy y Pauson y b) Miller, Tebboth y Tremaine

Mediante espectroscopía de infrarrojo (IR), Wilkinson, Whiting y Woodward propusieron la estructura tipo sándwich, cuyo espectro indicó la presencia de un solo tipo de enlace C-H con una frecuencia de 3050 cm⁻¹.³ Fischer confirmó la estructura por estudios de difracción de rayos X de la molécula.⁴ El ferroceno tiene dos conformaciones isoenergéticas: una eclipsada (Simetría D_{5h}), que prevalece a bajas temperaturas inferiores a 242 K y la alternada (Simetría D_{5d}). La barrera de rotación alrededor del eje metal-anillo es muy baja de (4 kJ/mol), por lo tanto, esta rotación es siempre libre y rápida en disolución, (Figura 1.1).⁵

Figura 1.1. Configuración del ferroceno propuesta por Wilkinson y Woodward

¹ T. J. Kealy, P. L. Pauson, *Nature:* **1951**, *168*, 1039–1040.

² S. A. Miller; J. A. Tebboth; J. F. Tremaine. J. Chem. Soc: 1952, 632-6353.

³ R. B. Woodward, M. Rosenblum, M. C. Whiting, J. Am. Chem. Soc. 1952, 74, 3458–3459.

⁴ E. O. Fischer, W. Pfab, Z. Naturforsch. B. 1952, 7, 377–379.

⁵ K. Ogasahara; M. Sorai; H. Suga. Chem. Phys. Lett. 1979, 68, 457-460

1.1 Propiedades físicas y químicas del ferroceno

El ferroceno es de color anaranjado, diamagnético, estable al aire, con punto de fusión de 173 - 174 °C y estabilidad térmica hasta 400 °C.⁶ Las distancias interatómicas entre los enlaces C - C son de 1.41 Å, Fe-Cp 1.65 Å y Fe - C 2.04 Å.⁷ Al ser una molécula simétrica, su espectro de RMN de ¹H muestra una sola señal en δ = 4.2 ppm y en el espectro de RMN de ¹³C en δ = 67.8 ppm en CDCl₃.

A su vez posee propiedades electroquímicas particulares, entre las que se destacan procesos SET (Single Electron Transfer), reversibilidad y la cinética de estos compuestos, dependiendo del electrolito soporte y el disolvente utilizado.⁸ Los procesos SET se destacan por llevarse a cabo como transferencias electroquímicas de un solo electrón. El electrolito soporte y el disolvente son cruciales para establecer los parámetros de cinética y reversibilidad electroquímica.⁹ La convención de estos parámetros fue propuesta por Nicholson & Shain en 1965 y a partir de ellos se estableció al ferroceno como un estándar electroquímico en disolventes no acuosos (Esquema 1.2).¹⁰ Al llevar a cabo la oxidación del ferroceno se obtiene ferricinio, una especie de color azul y paramagnética que puede ser producido por vía fotónica, electroquímica o química (mediante agentes oxidantes).¹¹

Esquema 1.2. a) Reacción de oxidación de ferroceno a ferricinio; b) Voltamperometría cíclica de ferroceno TBAHFP/CH₃CN en un arreglo clásico de tres electrodos ET Electrodo de carbón vítreo, ER Ag/Ag⁺ y EA Alambre de Pt

⁶ A. Bhattacharjee; A. Rooj; D. Roy; M. Roy. J. Exp. Phys. 2014. 2014, 1.

⁷ P. Séller; J. D. Dunitz; Acta Crystall. Sect. B. **1982**, 38, 1741 - 174.

⁸ N. G. Connelly; W. E. Geiger. *Chem. Rev.* **1996**, *96*, 877 - 910.

⁹ P. T. Kissinger; W. R. Heineman. J. Chem Educ. **1983**, 60, 702 - 706.

¹⁰ R. S. Nicholson; I. Shain. Anal. Chem. **1964**, 36, 706 -723

¹¹ H. Nishihara. Adv. Inorg. Chem. **2002**, 53, 41-86

1.2 Reactividad del ferroceno

La versatilidad en la química del ferroceno se debe a la aromaticidad de los anillos de ciclopentadienilo, al ser un sistema rico en electrones, favorece algunas reacciones de sustitución electrofílica aromática, las cuales se llevan a cabo con mayor facilidad en comparación con el benceno, ya que se llevan a una taza de rapidez del orden de 3 x 10⁶. Las reacciones más importantes se describen en el Esquema 1.3.^{12,13}

Esquema 1.3. Síntesis de algunos derivados de ferroceno

¹² Ch. Elsenbroich, A. Salzer, Organometallics: A concise Introduction; VCH:Weinheirn (1989)

¹³ J. E. Hause. Inorgani Chemistry 2th ed. Academic Press (2013) pp: 707 - 746

1.3 Aplicaciones del ferroceno

En la literatura se puede encontrar las aplicaciones de sus derivados de ferroceno en el área de la catálisis^{14,15}, ciencia de materiales¹³, polímeros,¹⁶ química medicinal¹⁷, agroquímicos¹⁸, sensores electroquímicos¹⁹ y modificadores de combustión,²⁰ etc.

1.3.1 Ferroceno en catálisis

El ferroceno ha desempeñado un papel importante en esta área, principalmente en la estructura geométrica de algunos ligantes,²¹ por ejemplo: el 1,1'-*bis*(difenilfosfino)ferroceno (dppf) es un ligante que tiene diferentes propiedades electrónicas y/o estéricas para actuar sobre el entorno del centro metálico catalíticamente activo, (Figura 1.2).²²

Figura 1.2. Propiedades estéricas y quirales del ligante dppf y modos de coordinación en metales

Particularmente el complejo [PdCl₂(dppf)], está presente en una gran cantidad de reacciones de acoplamiento cruzado C-C: Suzuki,²³ Heck²³, Stile,²⁴ (Esquema 1.4) donde es posible obtener una variedad de compuestos con actividad biológica y potenciales productos farmacéuticos y agroquímicos.²⁵

¹⁴ D. Astruc. Eur. J. Inorg. Chem. 2017, 6–29

¹⁵ R. G. Arrayás; J. Adrio; J. C. Carretero. Angew. Chem. Int. Ed. 2006, 45, 7674 – 7715.

¹⁶ R. D. A. Hudson. J. Organomet. Chem. 2001, 637–639, 47–69

¹⁷ M. F. Fouda; M. M. Elzaher; R. A. Abdelsamania; A. E. Labib. Appl. Organomet. Chem. 2007, 21, 613-625

¹⁸ B. Floris. Chem. Biol. Technol. Agric. 2015, 2: 15, 1-14.

¹⁹ H. Beitollahi; M. A. Khalilzadeh; S. Tajik; M. Safaei; K. Zhang; H. W. Jang; M. Shokouhimehr. ACS Omega. 2020, 5, 2049–2059.

²⁰ R. Tong; Y. Zhao; L. Wang; H. Yu; F. Ren; M. Saleem; W. A. Ame. J. Organomet. Chem. 2014, 755, 16-32

²¹ L. Cunningham; A. Benson; P. J. Guiry. Org. Biomol. Chem. 2020, 18, 9329 - 9370

²² S. Dey; R. Pietschnig. Coord. Chem. Rev. 2021, 437, 213850.

²³ G. Hervé; G. Sartori; G. Enderlin; G. Mackenzie; C. Len. RSC Adv. 2014, 4, 18558-18594

²⁴ A. Babu; N. N. Joy; K. Sunil; A. M. Sajith; S. Santra; G. V. Zyryanov. RSC Adv. 2022, 12, 22476-22491

²⁵ T. Hayashi; M. Konishi; Y. Kobori. J. Am. Chem. Soc. **1984**, 106, 158-163

Esquema 1.4. Reacciones de acoplamiento cruzado C-C mediadas con complejos de Pd con dppf^{22,23}

1.3.2 Ferroceno en química medicinal

Las aplicaciones del ferroceno y derivados en esta área de investigación son fundamentales ya pueden ser empleados para el tratamiento de diversas enfermedades, como la malaria, virus de inmunodeficiencia humana (VIH) y cáncer, además de que son compuestos activos frente a infecciones fúngicas y bacterianas.²⁶

El potencial de los derivados de ferroceno como sustancias anticancerígenas se estudió por primera vez a finales de la década de 1970 por Brynes y colaboradores. Los resultados del estudio informaron la actividad antitumoral de compuestos de ferroceno que contienen grupos amina o amida. (Figura 1.3).²⁷

Figura 1.3. Compuestos ferrocenílico que contienen: grupo amina (a), grupo amida (b)

También es posible incorporar ferroceno a estructuras de fármacos ya conocidos para mejorar sus propiedades terapéuticas, por ejemplo; en 1997 Biot *et al.* introdujeron un ferroceno en la

²⁶ C. Ornelas. New J. Chem. 2011, 35, 1973–1985.

²⁷ V. J. Fiorina; R. J. Dubois; S. Brynes. J. Med. Chem. 1978, 21, 4, 393–395.

estructura básica de la cloroquina, llamado ferroquina (FQ). En el 2003 la (FQ) entro a estudios clínicos, los cuales se detuvieron sin razón aparente en el 2011, posteriormente, los estudios clínicos se retomaron, donde en el 2015 llegó a fase clínica II. La FQ en combinación con artefenomel completaron evaluación en fase clínica IIb. Además, la FQ tiene actividades antipaludismo²⁸ y recientemente en *The Lancet Infectious Diseas Held J. et al.* reportó los resultados para la fase clínica II del estudio de una nueva tercera generación del fármaco antimalarial, (FQ: SSR97193).²⁹ Otra de sus aplicaciones es en el tratamiento de cáncer de próstata, páncreas y seno. Puesto que este medicamento ha tenido éxito en los estudios clínicos fase II para el tratamiento de cáncer, por lo que Sanofi a puesto a la venta este medicamento desde el 2018, con un precio aproximado de \$1050⁰⁰/100 MN.³⁰

En 2003 se informó la introducción de ferroceno en estructuras análogas al tamoxifeno, que es uno de los antiestrógenos más utilizados en el cáncer de mama, (Figura 1.4).³¹

Figura 1.4. Compuestos ferrocenílicos con actividad biológica análogos a fármacos.

1.3.3 Ferroceno en agroquímica

El cuidado y protección de cultivos es un tema de gran importancia en la agricultura, de ahí el uso de productos químicos para el control de plagas o como herbicidas.³² Sin embargo, la preocupación de los efectos adversos de los plaguicidas o herbicidas tanto en la salud como en el medio ambiente ha impulsado la investigación en la búsqueda de nuevas sustancias para reemplazar compuestos que ya no se pueden utilizar.³³ En este sentido, los derivados de ferroceno son un foco de atención para la obtención de nuevos compuestos para su aplicación

²⁸ C. Biot; G. Glorian; L. A. Maciejewski; J. S. Brocard. J. Med. Chem. 1997, 40, 3715-3718

²⁹ T. N. Wells; H. Huijsduijnen, R. Infect. Dis. 2015, 15, 1365.

³⁰ Springer Nature Switzerland. (**2018**) Publicado el 02 de octubre del 2021. Recuperado de: <u>https://adis.springer.com/drugs/800019376</u>. Consultado el 05 de febrero del 2023.

³¹ S. op; A. Vessiéres; G. Leclercq; J. Quivy; J. Tang; J. Vaissermann; M. Huché. Chem. Eur. J. 2003, 9, 5223-5236

³² C. Lamberth. Bioorg Med Chem. 2009, 17, 4047-4063

³³ C. Lamberth. *Tetraedron*. **2010**, *66*, 7239–7256

en la agricultura. Por ejemplo, se encontró que los derivados de 1H-1,2,4-triazol con sustituyentes de ferroceno introducidos (Figura 1.5) tienen actividad fungicida y herbicida.³⁴

Figura 1.5. Agroquímicos de 1H-1,2,4-triazol funcionalizados con ferroceno

1.3.4 Ferroceno en polímeros

Históricamente se ha reconocido que el ferroceno tiene un gran potencial en el área de los polímeros y macromoléculas. El primer informe donde se incorpora ferroceno en cadenas poliméricas, mediante la reacción de polimerización de vinilferroceno fue descrito por Arimoto y Heaven en 1955 (Esquema 1.5).³⁵ En 1970 donde se obtuvieron informes contundentes sobre polímeros bien definidos que contienen ferroceno.³⁶ Esta área empezó a expandirse de tal modo que se han desarrollado nuevas técnicas de polimerización, en particularmente, la polimerización de apertura de anillo (ROP).³⁷

Esquema 1.5. Síntesis de polivinilferroceno

Los polímeros que contienen ferroceno pueden tener dos posibles arquitecturas. En la primera **a)**, el ferroceno se enlaza como 1,3- o 1,1'- ferrocenileno en la cadena principal del polímero en forma de un fragmento interno (Figura 1.6a). Mientras que la segunda **b)**, se incluye el ferroceno como un sustituyente externo en la cadena principal del polímero (Figura 1.6b).

³⁴ a) Z. Jin; A. Huo; T. Liu; Y. Hu; J. Liu; J. Fang. *J Organomet Chem.* **2005**, 690, 1226–32; b) J. Fang; Z. Jin; Y. Hu; W. Tao; L. Shao. *Appl Organomet Chem.* **2006**, 20, 813–818.

³⁵ F. S. Arimoto; A. C. Haven Jr, J. Am. Chem. Soc. 1955, 77, 6295.

³⁶ C. E. Carraher, C. U. Pittman. J. E. Sheats, C. E. Carraher, C. E. Pittman (Eds.), Metal-containing Polymeric Systems, Plenum, New York **1985**, pp. 1-42

³⁷ I. Modales. Adv. Organomet. Chem. **1995**, 37, 131-168

Figura 1.6. Tipos de estructuras de polímeros que contienen ferroceno: a) ferroceno en la cadena principal; b) ferroceno como sustituyente en la cadena del polímero

Los polímeros a base de ferroceno, se sintetizan principalmente a partir de monómeros ferrocenílicos que contienen una funcionalidad polimerizante. Los monómeros más significativos que se han utilizado para este fin implican alquenos funcionales como vinilferroceno (VFc), el dimetilferrocenilsilano (FcMS), metacrilato de ferrocenilmetilo (FMMA), ferrocenilcarboxilato de (2-metacriloiloxi)etilo (FcMA), ferrocenilcarboxilato de 2-(acriloiloxi)etilo (AEFc), ferrocenil glicidil éter (VFcGE), Figura 1.7.³⁸

Figura 1.7. Monómeros funcionalizados con ferroceno.

Las aplicaciones de los polímeros de ferroceno se han diversificado y se pueden encontrar en diversos campos tales como medicina, electrocatálisis, celdas de combustible de membrana, sensores, materiales autorreparables, baterías, materiales aeroespaciales, cristales líquidos, celdas fotovoltaicas y óptica no lineal.³⁹

1.3.5 Ferroceno en modificadores de combustión

Algunos derivados del ferroceno funcionalizados con grupos epoxi, se han utilizado en catalizadores de velocidad de combustión antimigratorios (Figura 1.8).⁴⁰ Estos compuestos, proporcionan sitios reactivos que le permiten vincularse químicamente en los propulsores sólidos

³⁸ R. Pietschnig. Chem. Soc. Rev. 2016, 45, 5216-5231

³⁹ E. W. Neuse, J. Inorg. and Organomet. Polym. Mater. 2005, 15, 3-32.

⁴⁰ W. Zhou; L. Wang; H. Yu; R. Tong; Q. Chen; J. Wang; X. Yang; Z-ul Abdin; M. Saleem. *Appl. Organometal. Chem.* **2016**, *20*, 796–805.

de diferentes maneras para evitar la migración de estas moléculas al propulsor, que los contiene cuando están en almacenamiento.⁴¹

Figura 1.8. Catalizador del ferroceno en la combustión de propulsores de cohetes

1.3.6 Ferroceno en sensores

Los sensores electroquímicos son dispositivos que se basan en la transducción de una señal química a una electroquímica, la cual se encuentra directamente relacionado a una concentración establecida, en donde el electrodo de trabajo (también llamado electrodo sensor) es utilizado con un reconocimiento químico específico para el analito de interés. La señal química es transformada en una señal electroquímica en sus diversas variantes: amperométrica, potenciométrica, voltamperometría o impedimétrica.⁴²

Los sensores electroquímicos aprovechan la alta sensibilidad de la electroquímica con la especificidad del reconocimiento químico o bioquímico.⁴³ Los derivados del ferroceno, se han convertido en una excelente herramienta para usar en sensores de oxidación/reducción y biosensores para cationes, aniones y partículas neutras debido a sus propiedades electroquímicas únicas y su facilidad de operación.⁴⁴ La detección de cationes de metales pesados en el medio ambiente, como el mercurio (II), es de gran importancia para conocer el nivel de contaminación en diferentes ecosistemas. Por consiguiente, su impacto en la salud humana y animal debido a su difusión desde fuentes industriales.⁴⁵

El grupo de Qian-Yong Cao, *et al.* desarrollaron un quimiosensor basado en una tiourea ferrocenil-sustituida para la detección selectiva del catión Hg²⁺. La reacción de guanilación promovida por el catión Hg²⁺ resultó en un cambio en el potencial redox, por el contrario, la molécula basada en ferroceno no se vio afectada por la presencia de otros cationes metálicos

⁴³ P. Stepnicka. Ferrocenes: ligands, materials and biomolecules. Wiley, Chichester, UK. 2008, pp: 281-282

⁴¹ J. Wang (2006) Electrochemical Sensors en Analytical Electrochemistry (pp: 201-244). 3th edition Wiley & Sons

⁴² B. J. Privett; J. H. Shin; M. H. Schoelfisch. Anal. Chem. 2010, 82, 4723-4741

⁴⁴ P. D. Beer; E. J. Hayes. Coord. Chem. Rev. **2003**, 240, 167-189

⁴⁵ S. Ekino; M. Susa; T. Nimomaya; K. Imamura; T. Kitamura. J. Neurol. Sci. 2007, 262, 131-144.

como Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, Ag⁺, Mg²⁺, Ca²⁺, Sr²⁺, Pb²⁺, Zn²⁺, Cd²⁺, Co²⁺, Ni²⁺, Cu²⁺, Fe²⁺, Fe³⁺ y Al³⁺ (Esquema 1.6).⁴⁶

Esquema 1.6. Quimiosensor a base de una ferrocenil tiourea para la detección del catión Hg (II)

Los derivados de ferroceno destacan en el campo de los biosensores electroquímicos, en especial para la detección de glucosa. La oxidación de la glucosa por la enzima glucosa oxidasa (GOD), responsable de la formación de gluconato es sensible y específica, lo que la hace ideal para permitir cuantificar la glucosa con sensores electroquímicos, (Esquema 1.7). El resultado de la reacción de oxidación de glucosa puede ser evaluado al determinar la cantidad de O₂ consumido o la cantidad de peróxido formado. Por parte de la oxidación de la forma reducida de la GOD, se puede cuantificar la cantidad de glucosa transformada en gluconato, a partir del uso del par redox ferroceno/ferricinio, mediante ciclos electroquímicos encadenados.⁴⁷

Esquema 1.7. Determinación de glucosa por medio de sensores ferrocenílicos

⁴⁶ Q-Y. Cao; M. H. Lee; J. F. Zhang; W. X. Ren; J. S. Kim. *Tetrahedron Lett.* **2011**, *52*, 2786–2789

⁴⁷ P. J. O'Connell; G.G. Guilbault. Anal. Lett. 2001, 34, 1063-1078.

Capítulo II. Ciclopropenonas y cationes ciclopropenílicos

Las ciclopropenonas son cetonas cíclicas insaturadas, compuestas de un anillo de ciclopropeno y un grupo carbonilo. Son compuestos relativamente estables debido a la deslocalización de los electrones del enlace π sobre los carbonos sp² del carbono, lo cual induce la aromaticidad en el anillo y hace que cumpla con la regla de Hückel (4n + 2, n = 0), (Figura 2.1).⁴⁸ La estabilidad de estos compuestos, también depende de los sustituyentes presentes en el anillo, por ejemplo: cuando los sustituyentes son hidrógenos (R = H),⁴⁹ este compuesto tiende a polimerizarse a temperatura ambiente. No obstante, la 2,3-difenilciclopropenona es un compuesto estable en el ambiente.⁵⁰

Figura 2.1. Estructuras de resonancia para las ciclopropenonas

En términos de reactividad, el carácter psudoaromático de las ciclopropenonas es de naturaleza zwiteriónica, por lo que, se manifiesta en un momento dipolar grande. Como consecuencia, el átomo de oxígeno tiene un comportamiento nucleofílico mayor en comparación con compuestos carbonilos α,β -insaturados. Por otro lado, el anillo de tres miembros se comporta como un centro electrofílico o es reactiva frente a diferentes ataques nucleofílicos.⁵¹ Algo interesante de las ciclopropenonas son las bandas características de infrarrojo, las cuales se presentan en las regiones de 1870-1800 cm⁻¹ en el caso de la vibración del anillo de tres miembros, y de 1600-1660 cm⁻¹, para la vibración de estiramiento (stretching en inglés) del grupo carbonilo.

⁴⁸ K. Matsumoto, A. Okada, T. Girek, Y. Ikemi, J. C. Kim, N. Hayashi, H. Yoshida, A. Kakehi, *Heterocyclic Communications*. **2002**, *8*, 325-328

⁴⁹ L. Qua; Y. Wu; P. Sun; K. Zhang; Z. Liu. Polymer. 2017, 114, 36 - 43

⁵⁰ H. L. Ammon. J. Am. Chem. Soc. 1973, 95, 7093-7101

⁵¹ K. Komatsu, T. Kitagawa. Chem. Rev. 2003, 103, 1371-1428

2.1. Síntesis de ciclopropenonas

Las ciclopropenonas fueron sintetizadas por primera vez en 1959 por Breslow⁵² y Vol'pin.⁵³ Recientemente se ha sintetizado ciclopropenonas que contienen una gran variedad de sustituyentes alquílicos, arílicos, así como también con derivados halogenados y grupos amino. También se han podido sintetizar compuestos análogos donde el átomo de oxígeno se intercambia con átomos a azufre, selenio, nitrógeno y fósforo.⁴⁰

Hay diversos métodos para la síntesis de ciclopropenonas, que pueden resumirse en cinco rutas sintéticas principales. Dos de estas rutas, implican la hidrólisis de 3,3-dihalociclopropenos, mientras que la tercera implica la hidrólisis de los cetales del ciclopropeno correspondiente. El cuarto método consiste en el cierre de anillo a partir de α, α' -dibromo cetonas. Finalmente, el quinto método implica la contracción de anillo de las ciclobutenodionas.⁵⁴

2.1.1 Síntesis de ciclopropenonas a partir de cationes ciclopropenios

En 1970, West realizó las síntesis de las 2,3-diarilciclopropenonas mediante la hidrólisis del ion diarilciclopropenio (Esquema 2.1). Este último, se obtuvo mediante la reacción de alquilación de Friedel-Crafts de derivados de benceno con tetraclorociclopropeno en presencia de cloruro de aluminio (AICl₃). Finalmente, se lleva a cabo la reacción de hidrólisis en medio básico de los 3,3-dihalogenociclopropenos.⁵⁵

Esquema 2.1. Síntesis de la diarilciclopropenona a partir de la alquilación de Friedel-Crafts

2.1.2 Síntesis de ciclopropenonas a partir de adición de carbenos

Este método consiste en llevar a cabo una reacción de ciclo adición [2+1] de un carbeno a un alquino dando como producto el anillo de tres miembros de la ciclopropenona, (Esquema 2.2).⁵⁶

⁵² R. Breslow, R. Haynie, J. Mirra. J. Am. Chem. Soc. 1959, 81, 247

⁵³ Y. O. Vol'pin, Yu. Koreshkov, D. N. Kursanov. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1959, 560; Chem. Abstr. 1959, 53, 21799.

⁵⁴ K. T. Potts, J. S. Baum. Chem. Rev. **1974**, 74, 189–213

⁵⁵ R. West, D. C. Zecher, W. Goyert. J. Am. Chem. Soc. 1970, 92, 149-154.

⁵⁶ E. V. Dehmlow. *Tetrahedron Lett*, **1965**, 27, 2317-2322

Esquema 2.2. Reacción de adición de carbenos a alquinos

2.1.3 Síntesis de ciclopropenonas a partir de α,α'-dihalocetonas

El método de Favorskii consiste en la síntesis de ciclopropenonas a partir de la eliminación de dos equivalentes de HBr de α , α' -dihalocetonas en presencia de trietilamina. La reacción procede a través de un intermedio para dar 2-bromo-2,3-difenilciclopropanona debido a la primera eliminación de HBr. El siguiente paso es la eliminación de otra molécula de HBr y la formación del doble enlace dando la ciclopropenona (Esquema 2.3).⁵⁷

Esquema 2.3. Síntesis de la difenilciclopropenona a partir del método de Favorskii

Esta misma reacción es aplicable a las α, α' -dihalocetonas cíclicas, como la dibromociclooctanona, la cual da rendimientos de 50% del producto bicíclico: la cicloheptanociclopropenona (Esquema 2.4).⁴⁶

Esquema 2.4. Síntesis de la cicloheptanociclopropenona

2.1.4 Síntesis de ciclopropenonas a partir de la descarbonilación de ciclobutenonas.

Este método de preparación de ciclopropenonas consiste en la contracción del anillo de dialcoxio alcoxi(alquil)ciclobutenodionas por descarbonilación fotolítica el cual es el método más eficiente para la preparación de dialcoxi- o alcoxi(alquil)ciclopropenonas (Esquema 2.5)⁵⁸.

⁵⁷ a). A. Favorskii, J. Prakt. Chem. 1895, 51, 533–563. b). A. S. Kende. Org. React. 1960, 11, 261-316.

⁵⁸ E. V. Dehmlow; R. Neuhaus; H. G. Schell. Chem. Berichte. 1988, 121, 569-571.

Esquema 2.5. Síntesis de ciclopropenonas por descarbonilación fotolítica de 1,2-ciclobutendionas

2.1.5 Síntesis de ciclopropenonas a partir de cetales

Se tienen dos estrategias principales de síntesis: la primera se basa en el tratamiento de (2,2dimetoxivinil)benceno con (diclorometil)benceno en presencia de *terc*-butóxido de potasio en donde se forma el cetal correspondiente, que mediante una hidrólisis simple se obtiene la 2,3difenilciclopropenona, (Esquema 2.6).⁵⁹

Esquema 2.6. Síntesis de la 2,3-difenilciclopropenona a partir de (2,2-dimetoxivinil)benceno con (diclorometil)benceno

De igual manera, se aplicó un método alternativo para la síntesis durante la cicloadición de fenilmetoxiacetileno con (diclorometil)benceno en presencia de KO^tBu, (Esquema 2.7).⁶⁰

Esquema 2.7. Síntesis de la 2,3-difenilciclopropenona mediante la cicloadición de fenilmetoxiacetileno con (diclorometil)benceno

Por otro lado, Mosakio *et al.* reportaron un método alternativo en la síntesis de ciclopropenonas a partir de cetales, en el cual es posible obtener ciclopropenonas mixtas y alquílicas con buenos rendimientos. La estrategia es parecida a la de Favorskii y se basa en obtener el cetal de la 2,3dicloroacetona, para hacerlo reaccionar con amiduro de sodio, y de esta forma obtener la sal sódica del ciclo de tres miembros correspondiente. Este proceso se realizó mediante dos vías de síntesis:

1) Obtener el cetal de la ciclopropenona correspondiente y adicionarle grupos aromáticos mediante reacciones de acoplamiento cruzado.

⁵⁹ R. Breslow; T. Eicher; A. Krebs; R. A. Peterson; J. Posner. J. Am. Chem. Soc. **1965**, 87, 1320 - 1325

⁶⁰ R. Breslow; L. J. Altman; A. Krebs; E. Mohacsi; I. Murata; R. A. Peterson; J. Posner. J. Am. Chem. Soc. 1965, 87, 1326 - 1331

2) Adicionarle un halogenuro de alquilo para obtener el cetal de la ciclopropenona y desprotegerla, o seguir adicionando cadenas alquílicas mediante la desprotronación del otro protón con butilitio y adicionar un segundo halogenuro de alquilo, (Esquema 2.8).⁶¹

Esquema 2.8 Síntesis de las ciclopropenonas a partir de cetales derivados de 2,3-diclorocetona

2.2 Aplicación de las ciclopropenonas

Las ciclopropenonas se encuentran en una gran cantidad de productos naturales como la 2-(hidroximetil)-2-ciclopropenona (penitracina), que se extrae del hongo *Penicillium aculeatum*, y cuyo compuesto tiene actividad biológica como agente antibiótico.⁶² El ácido alutacenoico A y el ácido alutacenoico B son moléculas naturales que contienen ciclopropenonas, y también son extraídas de hongos como el *Eupenicillium alutaceum*.⁶³ También se encuentran otros compuestos derivados de fuentes vegetales como el 2-((8*S*, 8*aR*)-8,8-*a*-dimetil-1,2,3,4,6,7,8,8-*a*octahidronaftalen-2-lil)-2-ciclopropenona (DOHNC) y 2-((2*R*, 4*aR*, 8*aS*)-4-*a*-metil-8metilidendecahidronaftalen-2-il)-2-ciclopropenona (MMDHNC), (Figura 2.2).⁶⁴

Figura 2.2. Productos naturales que contienen ciclopropenonas en sus moléculas

⁶¹ M. Isaka; S. Ejiri; E. Nakamura. *Tetrahedron*. 1992, 48, 2045-2057

⁶² T. Akuda; N. Shimma; T. Furumai. J. Antibiot. **1984**, 37, 723 - 727

⁶³ H. Kogen; T. Kiho; K. Tago; S. Miyamoto; T. Fujioka; N. Otsuka; K. Suzuki_Konogai; T. Ogita. J. Am. Chem. Soc. 2000, 122, 1842 – 1843.

⁶⁴ F. Bohlmann; J. Jakupovic; L. Muller; A. Schuster. Angew. Chem. Int. Ed. 1981, 20, 292-293.

En general las ciclopropenonas tienen muchas aplicaciones en el ámbito sintético, debido a su naturaleza anfifílica.⁶⁵ La activación de las ciclopropenonas se puede mediar de dos formas: 1) mediante la adición de complejos de metales de transición como Ni, Pd, Pt, Ag, Rh y Ru, los cuales darán lugar a una serie pasos intermediarios, en las que se encuentra la adición oxidante, la inserción migratoria y la nucleometalación;⁶⁶ 2) por medio de la organocatálisis mediante la activación del carbono C(2) con la trifenilfosfina para dar lugar a cetenas,⁶⁷ o por grupos activantes del carbonilo para dar lugar a los cationes ciclopropenílicos,⁶⁸ por ejemplo: las sales de Meerwien, algunos cloruros de acilo, u otros ácidos de Lewis (Esquema 2.9).

Esquema 2.9. Modos de activación de la ciclopropenona mediante: a) catálisis homogénea de complejos de metales de transición; b) por organocatálisis de fosforo o ácidos de Lewis

Gracias a estos modos de activación, se puede hablar de distintos tipos de reacciones, como las de acoplamiento cruzado C-C, C-N, reacciones de anelación [3 + n], reacciones de sustitución nucleofílica y reacciones de activación de C-H para dar una serie de heterociclos orgánicos.⁶⁹ Por ejemplo, se han desarrollado varios métodos de síntesis para obtener compuestos cíclicos más grandes como cetonas cíclicas, lactonas, lactamas, α , β -insaturadas, que son moléculas que se pueden encontrar en una variedad de productos farmacéuticos o productos naturales, así como la formación de pirrolonas, acrilatos, compuestos espiránicos, (Esquema 2.10).⁷⁰

⁶⁵ K. T. Potts; J. S. Baum. Chem Rev. 1974, 74, 189 - 213

⁶⁶ U. Lou; C. Shan; S. Liu; T. Zhang; L. Zhu; K. Zhong; R. Bai; Y. Lan. ACS. Catal. 2019, 12, 10876 - 10886

⁶⁷ L. Yang; X. He; J. Jiao; Y. Tang; J. Li; Y. Li; R. Gao; Y. Wu; S. Xu. J. Org. Chem. **2023**, 88, 8722 - 8737

⁶⁸ D. J. M Lyons; R. D. Crocker; M. Blumel; T. V. Ngyten. Angew. Chem. Int. Ed. 2017, 56, 1466-1484

⁶⁹ B. P. Raiguru; S. Nayak; D. R. Mishra; T. Das; S. Mohapatra; N. P. Mishra. Asian J. Org. Chem. 2020, 9, 1088–1132.

⁷⁰ A. A. Aly; A. A. Hassan; S. M. Mostafa; A. H. Mohamed; E. M. Osman; A. A. Nayl. RSC Adv. 2022, 12, 18615-18645

Esquema 2.10. Reacciones catalíticas de expansión de anillo de ciclopropenonas

Otro enfoque sintético de las ciclopropenonas es su aplicación como agentes activantes para la deshidratación de sustratos que tienen grupos hidroxilos como alcoholes,⁷¹ ácidos carboxílicos,⁷² y oximas.⁷³ Esto involucra la formación del catión ciclopropenio como intermediario para su posterior sustitución nucleofílica. Por ejemplo: Kelly *et al.* informan sobre el uso de las ciclopropenonas para las reacciones de ciclodeshidratación de dioles para la formación de éteres cíclicos (Esquema 2.11).⁷⁴

Esquema 2.11. Reacciones de ciclodeshidratación de dioles para la síntesis de éteres cíclicos mediante activación de ciclopropenonas

⁷¹ B. D. Kelly, T. H. Lambert. J. Am. Chem. Soc. 2009, 131, 13930-13931

⁷² D. J. Hardee, L. Kovalchuke, T. H Lambert. J. Am. Chem. Soc. 2010, 132, 5002-5003

⁷³ C. M. Vanos, T. H. Lambert. Chem. Sci. 2010, 1, 705-708

⁷⁴ B. D. Kelly, T. H. Lambert. Org. Lett. 2010, 13, 740-743

2.3 Ciclopropenonas funcionalizadas con ferroceno

La primera síntesis de derivados de metalocenilciclopropenilo sustituidos fue realizada en 1975 por Agranat *et al* donde se sintetizó la de 2,3-diferrocenilciclopropenona mediante la interacción de la sal de triclorociclopropenio ($C_3Cl_3^+$, $AlCl_4^-$) en diclorometano con ferroceno en 5 horas a (-70 a -80°C) y durante 30 min a 20°C. Como resultado, se encontró que el complejo rojo obtenido en la mezcla de reacción se descompone rápidamente con la adición de acetona acuosa a -60°C. El producto se purificó en cromatografía de sílica gel, con 7% de rendimiento (Esquema 2.12).⁷⁵

Esquema 2.12. Síntesis de la 2,3-diferrocenilciclopropenona por Agranat

En el 2003 Klimova *et al.* lograron obtener la 2,3–diferrocenilciclopropenona a partir de la reacción de alquilación de Friedel-Crafts de ferroceno con tetraclorociclopropeno y cloruro de aluminio en diclorometano a temperatura ambiente dando un rendimiento del 92%. La 2,3-diferrocenilciclopropenona es un sólido rojo estable a temperatura ambiente. Su estructura fue descrita mediante espectroscopía de RMN de ¹H y de ¹³C y los parámetros geométricos, fueron obtenidos por difracción de rayos X de monocristal (Figura 2.3).⁷⁶ El efecto de los fragmentos ferrocenílicos en el carácter aromático de las ciclopropenonas le otorgan propiedades químicas únicas, tales como efectuar reacciones regio y estereoselectivas, así como precursores para la síntesis de compuestos funcionalizados con ferroceno.

⁷⁵ I. Agranat, E. Aharon-Shalom, *J. Am. Chem. Soc.* **1975**, *97*, 3829-3830, b) S. W. Tobey; West. *J. Am. Chem. Soc.* **1964**, *86*, 4215-4216

⁷⁶ E. I. Klimova, T. Klimova, L. Ruiz Ramirez, A. Ciaquantini, M. Corsini, P. Zanello, S. Hernandez-Ortega, M. Martínez García, *Eur. J. Org. Chem.* **2003**, *3*, 4265-4272

Figura 2.3. Estructura de Rayos X de la 2,3-diferrocenilciclopropenona (CCDC 211050)

2.4 Cationes diferrocenilciclopropenios

El catión ciclopropenio es un anillo formado por tres átomos de carbono, un doble enlace y una carga positiva deslocalizada. Es el miembro más pequeño de los sistemas aromáticos de Hückel con 2π electrones, n = 0 (Figura 2.4).⁷⁷ Todos los carbonos del sistema cíclicos son de hibridación sp² y los orbitales p están disponibles para su deslocalización, por lo que le proporciona una estabilidad termodinámica, cuyo valor de entalpia de descomposición es de 74 Kcal/mol.

Figura 2.4. Estructuras de resonancia del catión ciclopropenio

Existen algunos compuestos a base de cationes ciclopropenílicos en estados neutrales no aromáticos, y cargados aromáticos a través de una asociación reversible con su respectivo contra anión. Para ello, es posible asignar una constante de equilibrio que relaciones estas dos estructuras la cual se denota como K_{R+} . Entre más grande sea la magnitud de esta constante de equilibrio, es más estable el catión (Esquema 2.13).⁷⁸

Esquema 2.13. Equilibrio entre la estructura del ciclopropeno y el catión ciclopropenio

⁷⁷ Bhupinder Mehta & ManjuMetha, Organic Chemistry, Ed. Eastern Economy. (2000) 270-273

⁷⁸ B. D. Kelly; T. H. Lambert. J. Am. Chem. Soc. 2009, 131, 13930-13931

En 1957, Breslow informó sobre la síntesis del primer catión ciclopropenio llamado 1,2,3trifenilciclopropenilo.⁷⁹ Entre otros ejemplos importantes, está el de Yoshida, donde informa sobre un catión ciclopropenio estable gracias a la funcionalización con grupos amino, puesto que el nitrógeno aporta pares de electrones al anillo mediante la conjugación de la molécula.⁸⁰ Más tarde, en 1980, Stang informó un catión ciclopropenio (éter dicatión), el cual solo era posible caracterizarlo en disolución, (Figura 2.5).⁸¹

En 1967⁸² y 1975⁵⁹ se describieron las primeras síntesis de las sales de cationes ciclopropenios con sustituyentes metalocénicos tales cómo tetracloroaluminatos de ferrocenildifenil y triferrocenilciclopropenios. Las reacciones de estos cationes con los C-nucleófilos dan lugar a la formación de ferrocenilciclopropenos tetra sustituidos (Esquema 2.14).

Esquema 2.14. Reacciones de los cationes diferrocenilciclopropenios.

Se ha demostrado que la diferrocenilciclopropenona se convierte en las correspondientes sales hidroxiciclopropenilicas cuando se trata con cantidades equimolares de ácidos como el HBF₄ o HBPh₄. También se obtienen sales de cationes 1-alcoxi-2,3-diferrocenil, 1-alcoxi-2,3-diferrocenil, 2,3-diferrocenil, 2,3-diferrocenil, 2,3-diferrocenilciclopropenios, que se forman rápidamente en las reacciones de 2,3-

⁷⁹ R. Breslow. J. Am. Chem. Soc. 1957, 79, 5318

⁸⁰ Z. Yoshida; Y. Tawara. J. Am. Chem. Soc. **1971**, 93, 2573-2574

⁸¹ P. J. Stang; G. Mass; T. Fisk. J. Am. Chem. Soc. 1980, 102, 6361-6362

⁸² M. Casi, A. Eisenstadt, J. Am. Chem. Soc. **1967**, 89, 5468-5469.

diferrocenilciclopropenona con sales de Meerwein: tetrafluoroborato de trietiloxonio, trifenilmetilo y ferrocenilfenilmetilo en éter. (Esquema 2.15).⁸³

R = H, Et, C(Ph)₃, CH(Ph)(Fc)

Esquema 2.15. Síntesis de cationes diferrocenilciclopropenios

El catión 2,3-diferrocenil-1-etoxiciclopropenio reacciona con aminas secundarias (dietilamina, morfolina, piperazina, piperidina, etc.), y se obtienen los tetrafluoroboratos de 1- dialquilamino-2,3-diferrocenilciclopropenios (Esquema 2.16).⁸⁴

Esquema 2.16. Síntesis de los tetrafluoroboratos de 1-dialquilamino-2,3-diferrocenilciclopropenios

Estas sales de los 1-dialquilamino-2,3-diferrocenilciclopropenios son compuestos cristalinos de color rojo violeta. Tiene estabilidad debido a la deslocalización de la carga positiva del anillo de ciclopropenilo, que incluye el par de electrones del átomo de nitrógeno (Esquema 2.17).

Esquema 2.17. Estructuras de resonancia de las sales de tetrafluoroborato de 1-dialquilamino-2,3diferrocenilcilopropenilo

Los grupos amino pueden ser reemplazados por S-nucleófilos empleando Na₂S y NaHS, obteniendo la 2,3-diferrocenilciclopropentiona. Cuando se le agrega yoduro de metilo a este compuesto se forma la sal de yoduro de 2,3-diferrocenil-1-metiltiociclopropenio. La 2,3-

⁸³ E. I. Klimova, T. Klimova Berestneva, S. Hernández Ortega, D. Méndez Iturbide, A. García Marquez, M. Martínez García, J. Organomet. Chem., 2005, 690, 3332-3339.

⁸⁴ E. Klimova, T. Klimova, S. Betanzos Lara, A. García Marquez, S. Hernández Ortega, M. Martínez García, *J. Organomet. Chem.*, **2006**, *691*, 1-8.

diferrocenil-ciclopropentiona también se forma con buen rendimiento a partir de 2,3diferrocenilciclopropenona en reacción con reactivo de Lawesson (Esquema 2.18).⁸⁵

Esquema 2.18. Síntesis de yoduro de 2,3-diferrocenil-1-metiltiociclopropenio

2.4.1 Aplicaciones de las sales de 2,3-diferrocenilciclopropenio en la síntesis de heterociclos ferrocenílicos

Las sales de diferrocenilciclopropenilo, se empezaron a usar para la síntesis de heterociclos ferrocenílicos a partir del año 2005 en el departamento de Química Orgánica en Facultad de Química UNAM. Con estos nuevos métodos, fueron sintetizados los siguientes carbo y heterociclos diferrocenílicos presentados. (Esquema 2.19). En la literatura, se ha reportado la síntesis de diferrocenil carbo y heterociclos, a partir de la 2,3-diferrocenilciclopropenona con diferentes reactivos nucleofílicos en diferentes condiciones de reacción. Fueron obtenidos productos estables, entre los que se encuentran derivados de diferrocenilnaftaleno,⁸⁶ ciclopentadiona,⁸⁷ oxazinas,⁸⁸ triazinas,⁸⁹ piridazinas,⁹⁰ difenilarenos,⁹¹ pirimidinas,⁹² imidazoles,⁹³ benzimidazoles,⁹⁴ azepinas⁹⁵ y tiacepinas.⁹⁶

⁸⁵ a) T. Klimova Berestneva, E. I. Klimova, J. M. Méndez Stivalet, S. Hernández-Ortega, M. Martínez García, *Eur. J. Org. Chem.*, **2005**, 4406-4413. b) K. Clausen, M. Thorsen, S.-O Lawesson, *Tetrahedron*, **1981**, *37*, 3635.

⁸⁶ E. Klimova, T. Klimova, A. Cinquantini, M. Corsini, P. Zanello, R. Toscano. O. S. Hernández, M. G. Martínez. *Org. Biomol Chem.* **2003**, *1*, 4458

⁸⁷ E. Klimova, M. G. Martínez, T. Klimova, C. T. Álvarez, R. Toscano, L. Backinoswsky. Eur. J. Org. Chem. 2006, 4755.

⁸⁸ T. Klimova, E. Klimova, M. Flores, L. Backinoswsky. Synthesis. 2006, 21,3706

⁸⁹ T. Klimova, E. Klimova, M. Flores, M. G. Martínez. *Molecules*. **2009**, *14*, 3161.

⁹⁰ E. Klimova, E. Vázquez, M. Flores, T. Klimova, M. G. Martínez. Eur. J. Org. Chem. 2009, 4, 4332

⁹¹ E. Klimova, T. Klimova, L. Backinoswsky, M. Flores, L. Ortiz-Frade, M. G. Martínez. J. Mendeleev Comm. 2010, 20, 312.

⁹² E. Klimova, E. Vázquez, M. Flores, L. Ortiz-Frade, G. Hernández, V. Sótelo, M. G. Martínez. J. Heterocyclic Chem. 2012, 49, 115.

⁹³ E. Klimova, M. Flores, S. Cortez, J. García, L. Ortiz-Frade, M. Stivalet. J. Organometallic Chem. 2013, 743, 24.

⁹⁴ G. Sánchez García, L. Ortiz-Frade, E. Martínez, J. C. García, M. Flores, A. Ramírez, E. I. Klimova. *Ope. J. Synthesis Theory and Applications.* **2014**, 44

⁹⁵ G. Sanchez, Y. M. Toledano, M. Flores, E. Martínez-Klimova, R. Galinda, L. Hernandez, L. Ortiz-Frade, J. C. Garcia, E. I. Klimova. *J. Bioinorg. Chem.* **2017**, *160*, 141.

⁹⁶ E. I. Klimova, M. A. Gallardo, G. Sanchez, M. Flore, M. Stivalet. J. Heterocyclic Chem. 2016, 53, 1990.

Esquema 2.19. Reactividad de los cationes 2,3-diferrocenilciclopropenios

Capítulo III. bis-nucleófilos (O,O), (S,S) y (O,S)

3.1 Dioxolanos

El 1,3-dioxolano (también conocido como acetal o cetal), es un heterociclo saturado de cinco miembros, conformado por dos átomos de oxígeno en posiciones 1,3 del sistema cíclico.⁹⁷ Los derivados de 1,3-dioxolano, son utilizados principalmente como grupos protectores de grupo carbonilo y presentan importantes aplicaciones en productos químicos intermedios y finales en las industrias como la de fragancias, polímeros y farmacéutica.⁹⁸ Dependiendo de la estructura y de los sustituyentes, estos compuestos pueden ser farmacológicamente activas como antagonistas antivirales, anti fúngicos, anti-VIH y receptores adrenérgicos, (Figura 3.1). Hablando de su estabilidad química, los 1,3-dioxolanos son inertes frente a todo tipo de nucleófilos y bases.⁹⁹

Figura 3.1. Estructura de los 1,3-dioxolanos

3.1.1 Síntesis de los 1,3-dioxolanos

Los 1,3-dioxolanos, se pueden preparar fácilmente a partir de reacciones de ciclocondensación de aldehídos y cetonas con 1,2-dioles, en presencia de un catalizador que puede ser ácido o base de Lewis o de Brönsted. Se utiliza ácido *p*-toluensulfónico como catalizador en tolueno a reflujo, (Esquema 3.1).¹⁰⁰

Esquema 3.1. Síntesis de 1,3-dioxolanos catalizada por ácido p-toluensulfónico

⁹⁷ T. W. Greene, P. G. M. Wuts. *Protective Groups in Organic Synthesis*. 2 ed. John Wiley & Sons; NY, EE.UU. **1991.** Pp: 129-133.

⁹⁸ A. L. Gemal, J. L. Luche. J. Org. Chem. **1979**, 44, 4187–4189.

⁹⁹ H. B. Küçük, A. Yusufoğlu, E. Mataracı, S. Döşler. Molecules. 2011, 16, 6806-6815

¹⁰⁰ J. Boivin, F. Carpentier, R. Jrad. Synthesis. **2006**, 10, 1664–1672

La mayoría de las hidroxiacetofenonas se convierten eficazmente en las correspondientes 1,3dioxolanos, trabajando en condiciones suaves de reacción, en presencia de 1,2-etanodiol, ortoformiato de triisopropilo y una cantidad catalítica de ácidos de Lewis como el trifluorometanosulfonato de cerio (III), (Esquema 24).¹⁰¹

Esquema 3.2. Síntesis de 1,3-dioxolanos a partir de hidroxiacetofenonas en presencia de trifluorometanosulfonato de cerio (III) como catalizador.

Otro método de síntesis de 1,3-dioxolanos, consiste en la reacción de compuestos carbonílicos y 1,2-etanodiol, en presencia de ortoformiato de trialquilos y una cantidad catalítica de tribromuro de tetrabutilamonio en etanol absoluto. Este método puede llevarse a cabo en condiciones suaves de reacción, es quimioselectivo, y permite la acetalización de un aldehído en presencia de una cetona, (Esquema 3.3).¹⁰²

Esquema 3.3. Síntesis de 1,3-dioxolanos usando tribromuro de tetrabutil amonio como catalizador

Otra síntesis eficaz para la acetalización de grupo carbonilo, ocurre mediante reacciones fotoquímicas, empleando radiación visible de baja energía. Este método, se ha empleado para proteger una amplia gama de aldehídos aromáticos y alifáticos en condiciones neutrales. Utilizando una cantidad catalítica de Eosina Y como fotocatalizador, se obtienen buenos rendimientos (Esquema 3.4).¹⁰³

Esquema 3.4 Síntesis fotoquímica de 1,3-dioxolanos

¹⁰¹ F. Ono, H. Takenaka, T. Fujikawa, M. Mori, T. Sato. Synthesis. 2009, 1318-1322.

¹⁰² R. Gopinath, Sk. J. Haque, B. K. Patel, J. Org Chem. 2002, 67, 5842-5845.

¹⁰³ H. Yi, L. Niu, S. Wang, T. Liu, AK Singh, A. Lei, Org. Lett. 2017, 19, 122-125

3.1.2 1,3-dioxalanos funcionalizados con ferroceno

Los compuestos de ferroceno funcionalizados con anillos de 1,3-dioxolanos han sido estudiados por la sinergia de sus funcionalidades, que tienen diversas aplicaciones en áreas síntesis: como en catálisis o para la síntesis de fármacos contra cáncer. La síntesis de los ferrocenil-1,3dioxolanos, se obtiene principalmente a partir de ferrocenilcarbaldehído, acetil ferroceno y algunas chalconas en condiciones de reacción similares a las ya descritas para la obtención de acetales aromáticos o alifáticos.¹⁰⁴

a) Catálisis ácida de Brönsted

El tratamiento de ferrocenilcarbaldehído o acetilferroceno y glicoles en presencia de ácido *p*-toluensulfónico, da como producto los correspondientes 1,3-dioxolanos ferrocenílicos con rendimientos moderados (60%-77%), (Esquema 3.5).¹⁰⁵

Esquema 3.5. Síntesis del cetales ferrocenílicos en presencia de ácido p-toluensulfónico

Cuando las reacciones se llevan a cabo con ferrocenilcarbaldehído es posible observar la reacción procede de manera estereoselectiva para: $R^1 = Me$, y $R^2 = H$. En el caso del acetilferroceno se forma una mezcla 6:5 de isómeros (*E*) y (*Z*). Los isómeros *dl* y (*E*) se forman en proporciones 6:1 a partir de dioles simétricos, dónde $R^1 = R^2 = Me$, (Esquema 3.6).¹⁰⁶

Esquema 3.6. Síntesis de 1,3-dioxolanos ferrocenílicos a partir de catálisis ácida.

¹⁰⁴ M.-G. A. Shvekhgeimer. *Russian Chem. Revs.* **1996**, *65*, 41-79.

¹⁰⁵ a) Ya. M. Paushkin, A. M. Shevchik. Vestsi. Akad. Navuk BSSR, Ser. Khim. 1973, 95. b) W. Zhang; F. Xie; H. Yoshinaga; T. Kida; Y. Nakatsuji; I. Ikeda. Tetrahedron. 2006, 62, 9038-9042

¹⁰⁶ A. Ratajczak, B. Czech. *Rocz. Chem.* **1973**, *51*, 1735.

b) Catálisis ácida de Lewis

La introducción del fragmento de dioxolano en el sistema ferrocenílico, también es posible mediante un tratamiento con epiclorohidrina en presencia de cloruro de estaño (IV). Los rendimientos máximos de los productos se han obtenido en relación del derivado de ferroceno: epiclorhidrina = (1:2) - (1:4), (Esquema 3.7).¹⁰⁷

Esquema 3.7. Síntesis de diferrocenil-1,3-dioxolanos a partir de epiclorhidrina y cloruro de estaño (IV) como catalizador.

3.1.3 Aplicaciones de 1,3-dioxolanos ferrocenílicos

a) Síntesis de moléculas con actividad biológica

Los acetales ferrocenílicos con carbonos quirales han llamado la atención por su actividad biológica.¹⁰⁸ Castillo-Ramírez *et al.,* Sintetizaron dos acetales quirales con ferroceno a partir de 1,1-difenil-1,2-propanodiol, (Esquema 3.8). Las actividades biológicas de los productos se evaluaron con líneas celulares de adenocarcinoma de mama: T47D, MCF7, ZR-75-1, MD-MB-468 y MD-MB-231. Los acetales ferrocenílicos, mostraron una actividad anticancerígena moderada *in vitro* para las líneas celulares T47D y MCF7.¹⁰⁹

Esquema 3.8. Síntesis de acetales ferrocenílicos quirales con actividad biológica

¹⁰⁷ Ya. N. Paushkin, A. M. Shevchik, L. P. Romanovskaya. Dokl. Akad. Nauk. SSSR. 1974, 214, 114.

¹⁰⁸ O. Riant, O. Samuel, H. B. Kagan. J. Am. Chem. Soc. **1993**, 115, 5835.

¹⁰⁹ J. Castillo-Ramirez, I. Echevarría, J. Santiago, M. Pérez-Torres, M. Rivera-Claudio. Synthesis. 2013, 45, 1853–1856

b) Aplicaciones como ligantes en reacciones catalíticas

Las reacciones de acoplamiento cruzado, pueden ser mediadas por catalizadores de complejos de paladio o níquel, cuyo objetivo es construir enlaces C-C para formar derivados de bifenilo, compuestos aromáticos de vinilo, poliolefinas, etc.¹¹⁰ Los ligantes basados compuestos ferrocenílicos, han llamado la atención por su rica coordinación.¹¹¹ Shihui *et al.* reportaron la síntesis de ligantes P/O ferrocenílicos a base de 1,3-dioxolanos y fosfinas, estos ligantes que en conjunto con Pd₂(dba)₃ promueven la reacción de acoplamiento cruzado de Suzuki para una variedad de ácidos arilborónicos y cloruros de arilo, que son útiles para la obtención de bifenilos, con buenos rendimientos, (Esquema 3.9).¹¹²

Esquema 3.9. Aplicación de los 1,3-dioxolanos ferrocenílicos en la reacción de acoplamiento cruzado de Suzuki.

c) Materiales que presentan propiedades ópticas no lineales

Los materiales ópticos moleculares no lineales (NLO), han sido reconocidos durante muchos años debido a sus aplicaciones en tecnologías fotónicas emergentes.¹¹³ Los compuestos organometálicos, han llamado la atención porque los complejos metálicos son capaces de tener fuertes efectos de aceptores/donadores de electrones dependiendo de la naturaleza del metal, sus estados de oxidación y su esfera de coordinación. En este sentido, son necesarios dos requisitos previos para que el material tenga las propiedades NLO: 1) que los cromóforos constituyentes deben poseer una hiperpolaridad molecular (β) tan grande como sea posible; 2) deben estar dispuestos de forma no centrocimétrica.¹¹⁴ Los compuestos de ferroceno han sido estudiados como materiales NLO. Chiffre *et al.*, reportaron dos compuestos ferrocenílicos funcionalizados con anillos de 1,3-dioxolanos que sirven como materiales NLO altamente

¹¹⁰ K. C. Nicolaou, P. G. Bulger, D. Sarla. Angew. Chem. Int. Ed. 2005, 44, 4442 – 4489

¹¹¹ R. C. J. Atkinson, V. C. Gibson, N. J. Long. Chem. Soc. Rev. 2004, 33, 313.

¹¹² T. Shihui, Z. Weng, T. S. Andy Hor. Organometallics. 2006, 25, 1199-1205

¹¹³ T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, A. J. Persoons. J. Mater. Chem. 1997, 7, 2175-2189

¹¹⁴ J. A. Mata, E. Peris, I. Asselberghs, R. Van Boxel, A. Persoons. New J. Chem. 2001, 25, 299-304

eficientes, que funcionan como bloques de construcción supramoleculares para la ingeniería de cristales, (Figura 3.2).¹¹⁵

Figura 3.2. Aplicación de los compuestos de 2-[1'-(2-fenilvinilferrocenil)]-1,3-dioxolanos en materiales moleculares no lineales.

3.2 1,3-dioxanos

Los 1,3-dioxanos son cetales cíclicos de seis miembros que se pueden encontrar en productos naturales, como la (2R, 4R)-2-metil-4-[2-*Z*-pentenil]-1,3-dioxano, (2R, 4R)-2-metil-4-pentil-1,3-dioxano ((*R*,*R*)-MPD) que están presentes en la sidra.¹¹⁶ Tienen una amplia gama de aplicación en la creación de nuevos fármacos por su actividad biológica,¹¹⁷ además de que son reactivos valiosos para síntesis orgánica y fungen como grupos protectores de grupo carbonilo, debido a que son más estables que sus análogos los 1,3-dioxolanos, (Figura 3.3).¹¹⁸

Figura 3.3. Estructura de los 1,3-dioxanos y aplicaciones como grupos protectores y fármacos.

Acorde a estudios de difracción de rayos X de 2-(*p*-clorofenil)-1,3-dioxano, se puede inferir que estos compuestos adoptan una conformación de silla.¹¹⁹ Los grupos alquílicos y arílicos en el carbono C(2) prefieren una posición ecuatorial, esto se debe a que el plegamiento de vértice O-C-O, es más fuerte gracias a las interacciones de los sustituyentes en las posiciones axiales del anillo. Sin embargo, las posiciones axiales de ven favorecidas cuando los grupos en el carbono

¹¹⁵ J. Chiffre, F. Averseng, G. G. A. Balavoine, J.-C. Darán, G. Iftime, P. G. Lacroix, E. Manoury, K. Nakatani. *Eur. J. Inorg. Chem.* **2001**, 2221-2226.

¹¹⁶ D. Kavvadias; T. Beuerle; M. Wein; B. Boss; T. König; W. Schwab. J. Agric. Food. Chem. 1999, 47, 5178-5183

¹¹⁷ M. Kuhn; C. K-Juslen; J. Renz; A. V. Wsrtburg. Switzerland. CH525880 A 1972-07-31

¹¹⁸ Warriner S. L. Science of Synthesis. Category 4: Compounds with two carbon heteroatom bonds Product Class 8. Vol: 29; 2007. Pp: 487-495

¹¹⁹ A. J. Kok; C. Romers. *Recueil des Travaux Chimiques des Pays-Bas.* **1970**, 89, 312-320

C(2) son electronegativos, como consecuencia del efecto anomérico. Por otra parte, cuando hay grupos electroatractores en el carbono C(5), como el F, OH, SOR, SO₂R,R₃S⁺,R₄N⁺, estos adoptan posiciones axiales, debido a las interacciones electrostáticas con los átomos de oxígeno, (Figura 3.4).¹²⁰

Figura 3.4. Conformación de los 1,3-dioxanos

3.2.1 Síntesis de los 1,3-dioxanos

Los 1,3-dioxanos se pueden preparar fácilmente a partir de reacciones de ciclocondensación de compuestos carbonílicos con 1,3-propanodiol en presencia de un ácido de Brönsted o Lewis. Un procedimiento estándar, es el uso de ácido *p*-toluensulfónico como catalizador, en presencia de benceno o tolueno anhidro a reflujo, permitiendo la eliminación de agua (subproducto de la reacción) utilizando un aparato de Dean-Stark, puesto a que la reacción de acetalización es reversible, (Esquema 3.10).¹²¹

Esquema 3.10. Síntesis de 1,3-dioxanos catalizada por p-TSOH

¹²⁰ T. Eicher; S. Hauptmann. *The chemistry of Heterocycles: structures, reactions, synthesis and applications* 2th ed, **2003**. Wiley-VCH. Pp: 383-386

¹²¹ A. H. Cumming; S. L. Brown; X. Tao; C. Cuyamendous; J. J. Field; J. H. Miller; J. E. Harvey; P. H. T-Spittle. Org. Biomol. Chem. **2016**, *14*, 5117-5127

Otra manera de obtener estos compuestos es utilizando aldehídos y cetonas con 1,3-propanodiol con una cantidad catalítica de tribromuro de tetrabutil amonio en presencia de ortoformiato de trietilo a temperatura ambiente. Este es un método suave y quimioselectivo a la acetalización del aldehído en presencia de la cetona, (Esquema 3.11).¹²²

Esquema 3.11. Síntesis de 1,3-dioxanos catalizado por n-Bu₄NBr₃

Otro procedimiento para acetalizar grupos carbonilos con 1,3-propanodiol es con cloruro de zirconio como catalizador en presencia de ortoformiato de trietilo y diclorometano como disolvente, (Esquema 3.12).¹²³

Esquema 3.12. Síntesis de 1,3-dioxanos catalizado por ZnCl4

También es posible obtener los cetales cíclicos mediante reacciones de intercambio de cetales lineales. Para ello, se agrega los compuestos carbonílicos en presencia de ortoformiato de etilo, 1,3-propanodiol y una cantidad catalítica de NBS, obteniendo buenos rendimientos de reacción, (Esquema 3.13).¹²⁴

Esquema 3.13. Síntesis de 1,3-dioxanos intercambio de cetales

3.2.2 1,3-dioxanos ferrocenílicos

Los compuestos de ferroceno que contienen anillos de 1,3-dioxamos, han sido estudiados en la rama sintética para la obtención de compuestos con quiralidad planar.¹²⁵ Esto permite obtener una gran variedad de derivados ferrocenílicos que son utilizados como ligantes en reacciones

¹²² R. Gopinath; S. J. Haque; B. K. Patel. J. Org. Chem. 2002, 67, 5842-5845

¹²³ H. Firouzabadi; N. Iranpoor; B. Karimi. Synlentt, 1999, 321 - 323

¹²⁴ B. Karimi; G. R. Ebrahimian; H. Seradj. Org. Lett. **1999**, *1*, 1737 - 1739

¹²⁵ M. Omedes; P. G.-Sal; J. Andriés; A. Moyano. Tetrahedron. 2008, 64, 3953 - 3959

catalíticas de Suzuki con enantioselectividad.¹²⁶ El método general para obtener los 1,3-dioxanos ferrocenílicos, es a partir de ferrocenilcarbaldehído en presencia de ácido *p*-toluensulfónico en benceno de 12 a 24 horas, obteniendo compuestos con buenos rendimientos, (Esquema 3.14).¹²⁷

Esquema 3.14. Síntesis de 2-diferrocenil-1,3-dioxano

En 1997 O. Riant, *et al.*, publicaron la primera síntesis de un auxiliar quiral a base de un compuesto ferrocenílico funcionalizado con un anillo de 1,3-dioxano ((2S, 4S)-4-(hidroximetil)-2-ferrocenil-1,3-dioxano) con la finalidad de obtener un grupo ortodirector para llevar a cabo la reacción de metalación dirigida con *t*-BuLi, gracias al efecto quelato de los oxígenos del anillo sobre el litio.¹²⁸ Esto permite adicionar una gran cantidad de grupos electrofílicos por diversos métodos sintéticos, (Esquema 3.15).¹²⁹

Esquema 3.15. Síntesis asimétrica mediada por 1,3-dioxanos ferrocenílicos

3.3 1,3-ditiolanos

Los 1,3-ditiolanos (también conocidos como tioacetales o tioacetales) son compuestos heterocíclicos de 5 miembros que contienen dos átomos de azufre en su estructura (Figura 3.5).¹³⁰ Son productos intermediarios ampliamente utilizados en química orgánica. Su principal aplicación radica como grupos protectores de carbonilos debido a su estabilidad tanto en condiciones ácidas como en condiciones básicas. Dependiendo de la naturaleza de los sustituyentes, y de las condiciones de reacción, los 1,3-ditiolanos pueden ser inertes frente a ciertos nucleófilos, reactivos organometálicos, hidruros y agentes oxidantes suaves.¹³¹

¹²⁶ D. Schaarschmidt; M. Grumbt; A. Hildebrandt; H. Lang. Eur. J. Org. Chem. 2014, 6676-6685

¹²⁷ V. Mamane; Y. Fuerte. J. Org. Chem. 2005, 70, 8220-8223

¹²⁸ O. Riant; O. Samuel; H. B. Kagan. J. Am. Chem. Soc. **1993**, *115*, 5835-5836

¹²⁹ O. Riant; O. Samuel; T. Flessner; S. Taudien; H. B. Kagan. J. OR. Chem. 1997, 62, 6733-6745

¹³⁰ T. W. Green, P. G. M Wuts, Protective Groups in Organic Synthesis. Wiley-Interscience, Nueva York, 1999, 329-344, 724-727.

¹³¹ G. Guanti, L. Banfi, S. Brusco, R. Riva. *Tetrahedron Lett.*, **1993**, *34*, 8549.

Otras aplicaciones, radican en la síntesis de fármacos y de productos naturales¹³², también son segmentos sintéticos importantes que sirven para formar enlaces C-C, (Figura 3.5).¹³³

Grupos protectores Sintones moleculares R¹ = H, Alquil, Fenil, Ferrocenil. R² = H, Alquil, Fenil

Figura 3.5. Aplicaciones de los 1,3-ditiolanos en la síntesis de productos naturales, grupos protectores, síntesis de fármacos y como segmentos sintéticos.

3.3.1 Síntesis de los 1,3-ditiolanos.

La mayoría de los procedimientos sintéticos para formar 1,3-ditiolanos parten de reacciones condensación entre ditioles y compuestos con grupos carbonilos en presencia de ácidos de Brönsted¹³⁴ (HCl, ácido *p*-toluensulfónico o ácido trifluoroacético) o de Lewis (Dodecilsulfato de cobre, AlCl₃).¹³⁵ También se han reportado diversas síntesis de tioacetales a partir de cetonas o aldehídos con ditioles en presencia de diversos catalizadores como yodo molecular¹³⁶, ácido perclórico retenido sobre sílica gel (HClO₄-SiO₂)¹³⁷ y el ácido tricloroisocianúrico.¹³⁸ También se pueden emplear alquinos que en presencia de ditioles y bases fuertes, es posible formar los respectivos acetales¹³⁹ (Esquema 3.16).

¹³⁶ H. Firouzabadi, N. Iranpoor, H. Hazarkhani, J. Org. Chem. 2001, 66, 7527-7529

¹³² A. B. Smith, C. M. Admas. Acc. Chem. Res. **2004**, *37*, 365–377

¹³³ J. Lai, L. Tian, Xing. Huo, Y. Zhang, X. Xie, S. Tang. J. Org. Chem. **2015**, 80, 11, 5894–5899

¹³⁴ T. W. Greene, P. G. M. Wuts. *Protective Groups in Organic Synthesis*, 2 ed. Wiley: N. York, **1991**, 178–207.

¹³⁵ S.-S. Weng, S.-C. Chang, T.-H. Chang, J.-P. Chyn, S.-W. Lee, C.-A. Lin, F. K. Chen, Sinthesis, 2010, 1493-1499.

¹³⁷ S. Rudrawar, R. C. Besra, A. K. Chakraborti, *Synthesis*. **2006**, 2767-2771.

¹³⁸ H. Firouzabadi, N. Iranpoor, H. Hazarkhani. Synlett. 2001, 1641-1643

¹³⁹ J. Gaunt, H. F. Sneddon, P. R. Hewitt, P. Orsini, D. F. Hook, S. V. Ley, Org. Biomol. Chem. 2003, 1, 15-16.

Esquema 3.16. Métodos de síntesis para los 1,3-ditiolanos

3.3.2 1,3-Ditiolanos funcionalizados con ferroceno

La síntesis de los 1,3-ditiolanos ferrocenílicos, solo ha sido reportada con derivados como acetil ferroceno, ferrocenilcarbaldehído, ferrocenilcarbaldehido⁸⁶ y para algunas chalconas como él (2-formil-1-clorovinil)ferroceno.

3.3.3 Síntesis de los 1,3-ditiolanos funcionalizados con ferroceno

a) Catálisis ácida de Brönsted

Los 1,3-ditiolanos se han sintetizado por tioacetalización de acilferroceno con ditioles, en presencia de catalizadores ácidos con rendimientos del 51%-81%. Para preparar los *bis*-tioacetales a partir de 1,1'-diacilferrocenos, requieren condiciones más severas, por ejemplo, se ha reportado el uso de HCI gas como catalizador ácido. Los rendimientos de estos *bis*-tioacetales son de 29%-31%, (Esquema 3.17).¹⁴⁰

¹⁴⁰ A. Ratajezak, B.Czech. Rocz. Chem. 1977, 51, 1735

Esquema 3.17. Síntesis 1,3-ditiolanos funcionalizados con ferroceno mediante catálisis ácida

b) Catálisis con ácido tricloroisocianúrico

En el 2004, Firouzabadi *et al.*, reportaron que el ácido tricloroisocianúrico se puede utilizar como catalizador en la síntesis de ferrocenil-1,3-ditiolanos con rendimientos moderados (Esquema 3.18).¹⁴¹

Esquema 3.18. Síntesis 1,3-Ditiolanos funcionalizados con Ferroceno catalizado con el ácido tricloroisocianúrico

c) Catálisis con yodo molecular

El yodo molecular, también es un buen catalizador para formar tioacetales funcionalizados con ferroceno. Srivastava *et al.,* reportaron la síntesis *bis*-tioacetales a partir de (2-formil-1-clorovinil)ferroceno con buenos rendimientos, (Esquema 3.19).¹⁴²

Esquema 3.19. Síntesis 1,3-ditiolanos y 1,3-ditianos funcionalizados con ferroceno catalizado con yodo molecular

¹⁴¹ H. Firouzabadi, N. Iranpoor, H. Hazarkhami. J. Org. Chem. 2004, 2, 1641

¹⁴² A. K. Srivastava; Y. Upadhyay; M. Ali; S. K. Sahoo; R. K. Joshi. J. Organomet. Chem. 2020, 920, 121318

d) A partir de compuestos organofosforados

Los anillos de 1,3-ditiolanos, pueden agregarse a fragmentos ferrocenílicos de manera indirecta mediante la reacción de Wittig, (Esquema 3.20a). También es posible la adición de los fragmentos de los 1,3-ditiolanos, a partir del método de Horner-Emmons, (Esquema 3.20b).¹⁴³

Esquema 3.20. Síntesis de 1,3-ditiolanos a partir de: a) mediante la reacción de Wittig, b) mediante el método de Homer-Emmons

3.4 1,3-ditianos

Los 1,3-ditianos son anillos de 6 miembros que contienen dos átomos de azufre en las posiciones 1 y 3.¹⁴⁴ Su principal aplicación, es como grupo protector de grupo carbonilos debido a su estabilidad tanto en condiciones ácidas como en condiciones básicas. Son intermediarios reactivos ampliamente utilizados en química orgánica, ya que fungen como equivalentes aniónicos de grupos carbonilos. A esta inversión en la reactividad se le conoce como "umpolung", término que Corey y Seebach popularizaron en 1965.¹⁴⁵ Esto consiste en sintetizar el 1,3-ditiolano a partir de un aldehído, el cual se desprotona con *n*-BuLi en THF a bajas temperaturas en presencia de HMPA o TMEDA. Los derivados litiados de los 1,3-ditianos son estables debido al efecto de los átomos de azufre sobre los carbaniones adyacentes mediante la retrodonación de los orbitales d del azufre, (Figura 3.6).¹⁴⁶

¹⁴³ A. J. Moore, P. J. Skabara, M. R. Bryc, A. S. Batsanov, J. A. K. Howard, S. T. Daley, T. K. D. Stephen. J. Chem. Soc. Chem. Commun. 1993, 417.

¹⁴⁴ T. W. Green, P. G. M Wuts, *Protective Groups in Organic Synthesis*. Wiley-Interscience, Nueva York, **1999**, *329-344*, 724-727. ¹⁴⁵ E. Corey; D. Seebach. *Angew. Chem. Int. Ed. Engl.* **1965**, *4*, 1077 - 1078

¹⁴⁶ M. Yus; C. Nájera; F. Foubelo. *Tetrahedron.* **2003**, *59*, 6147 - 6212

Figura 3.6. Estructura de los 1,3-ditianos y sus aplicaciones

Los carbaniones resultantes, pueden reaccionar con una variedad de centros electrofílicos y participar en las reacciones S_N2 , condensación aldólica, carboxilación, apertura de anillos (como epóxidos), acoplamientos cruzados, etc.¹⁴⁷

Esquema 3.21. Estrategia de síntesis basada en 1,3-ditianos con grupos electrofílicos

3.4.1 Síntesis de los 1,3-ditiolanos.

Los 1,3-ditianos se preparan a partir de reacciones de condensación entre 1,3-propanoditiol y compuestos carbonílicos en presencia de ácidos de Brönsted, como puede ser el ácido *p*-toluensulfónico¹⁴⁸, HCI_{gas} y HBF₄ (Esquema 3.22).¹⁴⁹

¹⁴⁷ A. B. Smith, C. M. Admas. Acc. Chem. Res. 2004, 37, 365–377

¹⁴⁸ A. D. García; M. C. Leech; A. Petti; C. Denis; I. C. A. Goodall; A. P. Dobbs. K. Lam. Org. Lett. 2020, 22, 4000-4005

¹⁴⁹ L. F. Tietze; B. Weigand; C. Wulff. Synthesis. 2000, 69-71

Esquema 3.22. Reacción de acetalización de cetonas y aldehídos con 1,3-propanoditiol en presencia de ácidos de Brönsted

Los 1,3-ditianos se preparan a partir de reacciones de condensación entre 1,3-propanoditiol y compuestos carbonílicos en presencia de ácidos de Lewis, en este caso el reactivo más utilizado es trifluoruro de boro en éter, (Esquema 3.23).¹⁵⁰

Esquema 3.23. Acetalización de aldehídos con 1,3-propanoditiol en presencia de ácidos de Lewis

Los 1,3-ditianos se pueden obtener mediante la catálisis con yodo, las ventajas de este tipo de reacciones es que se pueden llevar a cabo en condiciones suaves de reacción, en disolventes CH₂Cl₂ o CHCl₃, benceno o n-hexano con buenos rendimientos (Esquema 3.24).¹⁵¹

Esquema 3.24. Acetalización de aldehídos y cetonas en presencia de yodo

La ditioacetalización de aldehídos con 2-cloro-1,3-ditiano en presencia de cloruro de hierro (III) (FeCl₃) se pueden obtener los 1,3-ditianos, (Esquema 3.25).¹⁵²

Esquema 3.25. Ditioacetalización de aldehídos con 2-cloro-1,3-ditiano en presencia de FeCl3

3.4.2 1,3-ditianos ferrocenílicos

Los ditianos ferrocenílicos reportados, se obtienen a partir de la condensación de acetilferroceno y 1,3-propanoditiol para obtener el 2-ferrocenil-1,3-ditiano. Los métodos reportados involucran catalizadores como ácido clorhídrico gaseoso, yodo y trifluoroeterato de boro¹⁵³ (Esquema 3.26).

¹⁵⁰ H-J. Zhang; D. L. Priebbenow; C. Bolm. *Chem. Soc. Rev.* **2013**, *42*, 8540-8571

¹⁵¹ H. Firouzabadi; N. Iranpoor; H. Hazarkhani. J. Org. Chem. **2001**, 66, 7527-7529

¹⁵² J. Lai; W. Du; L. Tian; C. Zhou; X. She; S. Tang. Org. Lett. 2014, 16, 4396-4399

¹⁵³ M. J. Reuter; R. Damrauer. J. Organomet. Chem. **1974**, 82, 201-208

Esquema 3.26. Preparación del 2-ferrocenil-1,3-ditiano

También se han reportado ditianos mediante la condensación del (2-formil-1-cloroformil)ferroceno y 1,3-propanoditiol mediante la catálisis con yodo (Esquema 3.27).⁴⁶

Esquema 3.27. Acetalización de (2-formyl-1-cloroformil)-ferroceno con yodo

3.5 1,3-oxatiolanos

Los 1,3-oxatiolanos son anillos de 5 miembros que contienen un átomo de azufre y uno de oxígeno (Figura 3.7). La importancia de estos compuestos radica en la formación de grupos protectores de aldehídos y cetonas,¹⁵⁴ son equivalentes de acilcarbanión para reacciones donde se forman enlaces C-C.¹⁵⁵ Además, son valiosos auxiliares quirales para síntesis enantioselectiva de α-hidroxialdehídos.¹⁵⁶ Dado que la mayoría de los 1,3-dioxatiolanos tiene carbonos asimétricos, es posible obtener una serie de compuestos con actividad biológica, por ejemplo: la lamivudina¹⁵⁷ y su análogo fluorado emtricitabina¹⁵⁸ son excelentes compuestos para tratar infecciones víricas causados por el VIH-1. Otro ejemplo es el 2-hidroximetil-5-[*N*-2-(carboxamidotetrazolil)]-1,3-oxatiolano usado como un inhibidor de la replicación del VIH-1.¹⁵⁹

¹⁵⁴ Y.-C. Liu; D. M. Reddy; X.-A. Chen; Y.-C. Shied; C.-F. Lee. Eur. J. Org. Chem. 2020, 2542-2552

¹⁵⁵ J. E. Lynch; E. L. Eliel. J. Am. Chem. Soc. **1984**, 106, 2943-2948

¹⁵⁶ K. Utimoto; A. Nakamura; S. Matsubara. J. Am. Chem. Soc. 1990, 112, 8189-8190

¹⁵⁷ a) Jeong, L.S.; Schinazi, R.F.; Beach, J.W.; Kim, H.O.; Nampalli, S.; Shanmuganathan, K.; Alves, A.J.; McMillan, A.; Chu, C.K.; Mathis; R. *J. Med. Chem.* **1993**, *36*, 181-185.

¹⁵⁸ J. E. Gallant; E. Dejesus; J. R. Arribas; A. L. Pozniak; B. Gazzard; R. E. Campo; B. Lu; D. McColl; S. Chuck; J. Enejosa; J. J. Toole; A. K. Cheng. *N. Engl. J. Med.* **2006**, *354*, 251-260

¹⁵⁹ Philippe, F.; Michel, C.; Anne, S.; Jean, C.; Jean.; Louis, K; Journal Nucleosides and Nucleotides. 1992, 11, 1481-1488

Figura 3.7. Estructura de los 1,3-oxatiolanos y sus aplicaciones como grupos protectores, sintones moleculares y fármacos

3.5.1 Síntesis de 1,3-dioxatiolanos

La síntesis más común para obtener los 1,3-oxatiolanos, es mediante la condensación entre un aldehído o cetona y 2-mercaptoetanol en presencia de un catalizador ácido de Brönsted como HCl_{gas},¹⁶⁰ *p*-TSOH,¹⁶¹ ácido-(+)-canforsulfónico (CSA)¹⁶² (Esquema 3.27).

Esquema 3.27. Síntesis 1,3-dioxolanos mediante catálisis ácida

Otra forma de obtener los 1,3-oxatiolanos a partir la condensación de compuestos con grupo carbonilo y 2-mercaptoetanol en presencia de un ácido de Lewis como BF₃OEt₂,¹⁶³ ZrCl₄¹⁶⁴ o ZnCl₂,¹⁶⁵ (Esquema 3.28).

A.L. = BF₃ OEt₂, ZnCl₂, ZnCl₄

Esquema 3.28. Síntesis de 1,3-dioxolanos en presencia de ácidos de Lewis

¹⁶⁰ J. W. Ralls; R. M. Dodson; B. Reigel. J. Am. Chem. Soc. **1949**, 71, 3320-2235

¹⁶¹ M. Alajarin; B. Bonillo; P. S. Andrada; A. Vidal. J. Org. Chem. 2010, 75, 3737-3750

¹⁶² R. N. Yadav; B. K. Banik. Current Organocatalysis. 2018, 5, 196-200

¹⁶³ G. E. Wilson Jr.; M. G. Huang; W. W. Schloman Jr. J. Org. Chem. **1968**, 33, 2133-2134

¹⁶⁴ V. K. Yadav; A. G. Fallis. *Tetrahedron Lett.* **1988**, 29, 897

¹⁶⁵ J. Romo; G. Rosenkranz; C. Djerassi. J. Am. Chem. Soc. 1951, 73, 4961-4964

La oxatioacetalización también se puede llevar a cabo con otro tipo de catalizadores como el trifluoroacetato de hierro (III) en condiciones suaves de reacción y tiempos relativamente cortos para obtener buenos rendimientos. También es posible llevar a cabo la reacción de transoxatioacetalización de acetales/cetales a 1,3-oxatiolanos (Esquema 3.29).¹⁶⁶

Esquema 3.29. Síntesis de 1,3-dioxolanos en presencia de ácidos de Lewis

Otra forma sintética para obtener 1,3-oxatiolanos, es a través de la reacción entre aldehídos y cetonas aromáticas y alifáticas con 2-mercaptoetanol mediante una catálisis con yodo en agua.¹⁶⁷ Los rendimientos de esta reacción son buenos, mientras que las condiciones de reacción son suaves. Cabe mencionar, que la reacción puede llevarse a cabo en microondas sin la necesidad de un disolvente¹⁶⁸ (Esquema 3.30).

Esquema 3.30. Síntesis de 1,3-oxatiolanos catalizada con I2.

3.5.2 1,3-oxatiolanos ferrocenílicos

Los procedimientos reportados incluyen las reacciones de condensación entre acilferrocenos con 2-mercaptoetanol para obtener los 1,3-oxatiolanos catalizados con ácidos de Brönsted (*p*-TSOH) o ácidos de Lewis (BF₃•OEt₂ y ZnCl₂).¹⁶⁹ El rendimiento de estas reacciones, dependerá de los catalizadores y de la naturaleza de R (Esquema 3.31).¹⁷⁰

Esquema 3.31. Síntesis de 1,3-oxatiolanos ferrocenílicos

¹⁶⁶ H. Adibi; H. Jafari. J. Fluor. Chem. **2007**, 128, 679-682

¹⁶⁷ B. P. Bandgar; S. V. Bettigeri. J. Chem. Res. 2004, 389-391

¹⁶⁸ G. Bez; N. Baruah. Chem. Lett. 2006, 35, 542-543

¹⁶⁹ M-G. A. Shvekhgeimer. Russ. Chem. Rev. 1996, 65, 41 - 79

¹⁷⁰ A. Ratajczak. B. Czech. Rocz. Chem. **1977**, 51, 1735

Se ha reportado la síntesis del 1,3-dioxolano mediante la condensación del (2-formil-1cloroformil)-ferroceno y 2-mercaptoetanol usando yodo como catalizador. Los rendimientos son buenos en condiciones suaves de reacción. Además, el compuesto resultante tiene actividad biológica en líneas celulares cancerosas como HCT116 (cáncer de colon), A549 (cáncer de pulmón) y MCG7 (cáncer de mama) (Esquema 3.32).¹⁷¹

Esquema 3.32. Síntesis de β-cetooxotioacetal ferrocenílico

¹⁷¹ A. Ranjan; D. Sharma; A. K. Srivastava; A. Varma; M. S. K. Jayadev; R. K. Joshi. J. Organometallic Chem. 2022, 979, 1-9

Planteamiento del problema

En la literatura se tienen diversas metodologías para realizar la síntesis de heterociclos diferrocenílicos con (*O*, *S*) en su estructura, sin embargo, solo se limitan a la obtención de compuestos con una unidad de ferroceno. Los procedimientos reportados requieren de materias primas que se limita a ferrocencarbaldehído, acetilferroceno, o los derivados litiados, cuyo manejo requiere de una infraestructura especial que no todos los laboratorios pueden proporcionar.

En el presente trabajo de investigación, se desarrollan nuevas metodologías de síntesis de heterociclos del tipo diferrocenil-, -cetales, -tioacetales y -oxatiolanos, donde las reacciones se llevan a cabo a partir de la 2,3-diferrocenilciclopropenona y sus derivados que reaccionan con una familia de *bis*-nucleófilos (*S*,*S*), (*O*,*O*), y (*O*,*S*), con la finalidad de obtener nuevos compuestos con dos unidades de ferroceno. Cabe mencionar que debido a la naturaleza de los anillos de tres miembros se pueden obtener diferentes productos heterocíclicos, productos de apertura y productos de fragmentación.

Hipótesis

Se espera que la 2,3-diferrocenilciclopropenona y los cationes 2,3-diferrocenilciclopropenios reaccionen con *bis*-nucleófilos (S,S), (O,O), y (O,S) mediante ataques nucleofílicos en la posición C(1) o C(2) para formar dos tipos de productos orgánicos: compuestos de apertura o conservación del anillo de tres átomos de carbono y que contenga heteroátomos en su estructura. Estas transformaciones se pueden llevar de manera *inter* o *intra*molecular, produciendo una amplia variedad de heterociclos diferrocenílicos, como productos de apertura y de fragmentación.

Objetivos

Objetivo general

Evaluar las diferentes condiciones de reacción de la 2,3-diferrocenilciclopropenona y sus derivados con los *bis*-nucleófilos (temperatura, tiempo, disolventes y estequiometria)

Objetivos particulares

- Estudiar la reactividad de los diferentes *bis*-nucleófilos (S,S), (O,O), y (O,S), con la 2,3diferrocenilciclopropenona y sus derivados (2,3-diferrocenilciclopropentiona, tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclopropenilio, yoduro de 2,3-diferrocenil-1-metiltiociclopropenilio, cloruro de 2,3-diferrocenil-1-metansulfonatociclopropenilio, cloruro de 2,3-diferrocenil-1-oxitrimetilsilanociclopropenilio) para la síntesis de diferentes heterociclos diferrocenílicos.
- Evaluar, proponer y analizar la posibilidad de usar la 2,3-diferrocenilciclopropenona por procesos "one-pot" y "reacciones domino" para la síntesis de diferrocenilheterociclos.
- Caracterizar los compuestos obtenidos por técnicas espectroscópicas convencionales, como resonancia magnética nuclear RMN de ¹H, de ¹³C y espectroscopia infrarroja, análisis elemental y difracción de rayos X de monocristal.
- Proponer los posibles mecanismos de reacción para la formación de cada uno de los productos.

Capitulo IV. Sección experimental

1. Materiales y reactivos

Los siguientes reactivos fueron obtenidos de Sigma Aldrich: tetraclorociclopropeno (98%), ferroceno (98%), tricloruro de aluminio (99%), hidróxido de sodio (98%), reactivo de Lawesson (97%), morfolina (99%), yoduro de metilo (99%), 1,2-etanoditiol (98%), 1,3-propanoditiol (98%), 1,4-butanoditiol (98%), 1,5-pentanoditiol (96%), 1,2-bencenditiol (98%), 1,2-etanodiol (99.8%), 1,3-propanodiol (98%), 2-metil-1,3-propanodiol (99%), pirocatecol (99%), 2-mercaptoetanol (99%), 2-mercaptofenol (95%), trietilamina (99.5%), yodo sublimado (99.8%), MsCl (99.7%), SiMe₃Cl (96%), ácido trifluoroacético (98%). Los disolventes utilizados fueron benceno, diclorometano, cloroformo, acetonitrilo, acetato de etilo, hexano.

Los productos de las reacciones fueron separados de dos formas: cromatografía en columna de alúmina Al₂O₃ (Actividad III de Brockmann) y cromatografía en placas preparativas de SiO₂ (sílica gel). También se usaron diferentes disolventes o mezclas de disolventes de hexano, éter, acetato de etilo y diclorometano.

2. Caracterización

Los análisis espectroscópicos de resonancia magnética nuclear (RMN) de ¹H y de ¹³C se realizaron en un espectrómetro Inova Varian 9.4T 400 MHz (100.53 MHz para ¹³C) modelo VNMRS. Las señales de RMN de ¹H y ¹³C están referencias con respecto a tetrametilsilano (SiMe₄) (δ = 0.00 ppm). Los análisis de FTIR/FIR se realizaron con el equipo Spectrum 400 de Perkin-Elmer en un rango de 4000 – 400 cm⁻¹.

Los análisis por difracción de Rayos-X de monocristal se realizaron en la Unidad de Servicios de Apoyo a la Investigación y a la Industria (USAII), de la Facultad de Química de la UNAM, por el Dr. Marcos Flores Álamo. Se utilizó un difractómetro Oxford Gemini (Detector Atlas CCD, Cryojet N₂). La resolución estructural de los compuestos se llevó a cabo por métodos directos mediante el programa SHELXS-97¹⁷² ¹⁷³ ¹⁷⁴ y refinado por el método de mínimos cuadrados (Full Matrix Least Squares F₂); las distancias interatómicas se expresan en Angstroms (Å) y los ángulos de enlace en grados (°).

¹⁷² R. C. Clark; J. S. Reid. Acta Cryst. **1995**, A51, 887-897.

¹⁷³ G. M. Sheldrick. Acta Cryst. **2015**, 3-8.

¹⁷⁴ G. M. Sheldrick. SHALXL. Acta. Cryst. 2015, C71, 3-8.

3. Síntesis de materias primas

La metodología para obtener la 2,3-diferrocenilciclopropenona (2) se encuentra descrita en la literatura.¹⁷⁵

3.1 Síntesis de la 2,3-diferrocenilciclopropenona

En un matraz bola de 250 mL se añade ferroceno (20 g, 107 mmol) y tetraclorociclopropeno (10.79 g, 60 mmol); se utiliza diclorometano anhidro como disolvente. La disolución resultante se agita y se le adiciona parcialmente 2.86 g de cloruro de aluminio (AlCl₃, 20 mmol) durante 30 min. Finalmente se agrega 50 mL de una disolución de hidróxido de sodio 0.1 M, y se extrae la fase orgánica, y la fase acuosa se le realizan 3 lavados de 20 mL con diclorometano. Las fases orgánicas se recolectan y se evapora el disolvente a vació. El sólido resultante se purifica por cromatografía en columna de Al₂O₃ (Actividad de Brockmann grado III) empleando mezclas de hexano-diclorometano como eluyentes, obteniéndose la 2,3-diferrocenilciclopropenona (1) (19.3 g, 46 mmol). (Esquema 4.1).

Esquema 4.1. Síntesis de la 2,3-diferrocenilciclopropenona

2,3-Diferrocenilciclopropenona				
		Apariencia:	Cristales Rojos	
(1)	Fe Fe	Peso Molecular:	422 g/mol	
		Rendimiento:	19.3 g (46 mmol, 75%)	
Fórmula empírica: C ₂₃ H ₁₈ Fe ₂ O		Punto de Fusión:	181-183 °C	
RMN de ¹ H (400 MHz, CDCl ₃): δ _H ppm		4.24 (s, 10H, 2 C ₅ H ₅), 4.58 (m, 4 H, C ₅ H ₄), 4.84 (m, 4 H, C ₅ H ₄)		
RMN de ¹³C (100 MHz, CDCI₃): 65.16 ($2C_{ipso}Fc$), 70.0 ($2C_5H_5$), 70.90 ($2C_5H_4$), 144.85 (2C), 1 (C=O).		(2C ₅ H ₄), 144.85 (2C), 152.31		
FTIR / cm⁻¹ 478, 729, 821, 850, 887, 110, 1474, 1614, 1848, 2924, 3093			614, 1848, 2924, 3093	

¹⁷⁵ E. I. Klimova, T. Klimova, L. Ruiz Ramirez, J. M. Mendez Stivalet, S. Hernandez Ortega, M. Martinez Garcia, *Izv. Akad Nauk, Ser. Khim*, **2004**, *No 4*, 1-8. *Russ. Chem. Bull.*, **2004**, *53*, P. 834-841.

3.2 Síntesis de tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclopropenio (3)

En un matraz bola de 100 mL se adiciona la 2,3-diferrocenilciclopropenona (1) (5 g, 11. 84 mmol) en diclorometano seco (20 mL), se agregó 15 mL de una disolución de tetrafluoroborato de trietiloxonio (1M en éter, 15 mmol) con agitación constante. La mezcla reaccionante se agitó por dos horas a temperatura ambiente. Posteriormente se adicionó morfolina (1.05 g, 11. 84 mmol), la reacción se agitó durante 4 horas a temperatura ambiente, se evaporó el diclorometano por medio de vacío y se adicionó etanol frío (50 mL) formándose un precipitado. Se filtró el precipitado obtenido y se lavó con 4 porciones de etanol frío. Posteriormente el sólido se secó a vacío y se obtuvieron 4 g de tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclopropenio (**3**), (Esquema 4.2).

Esquema 4.2. Síntesis del tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclopropenio (3)

	Tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclopropenio				
(3)	O N ⊕ BF₄	Apariencia:	Cristales rojo-violeta		
		Peso Molecular:	579 g/mol		
	-Fe- -	Rendimiento:	4.0 g (11.8 mmol, 58%)		
Fórmula empírica: C ₂₇ H ₂₆ Fe ₂ NOBF ₄		Punto de Fusión:	210-212 °C		
RMN de ¹H (400 MHz, CDCl₃): δ _н ppm		3.91 (m, 4H, 2 CH₂), 3.99 (i (m, 4 H, C₅H₄), 4.91 (m, 4 H	m, 4H, 2CH₂), 4.37 (s, 10H, 2 C₅H₅), 4.87 l, C₅H₄)		
RMN de ¹³ C (100 MHz, CDCl₃): δ _c ppm		51.97, 66.61 (4CH₂), 60.61 (2C _{ipso} Fc), 71.42 (2C₂H₅), 72.23, 75.25 (2C₅H₄), 132.52 (2C), 139.47 (C-N).			
FTIR / cm ⁻¹		751, 827, 900, 1033, 1049, 1 1560, 1910, 2880, 2939, 29	1069, 1146, 1313, 1360, 1388, 1450, 1503, 82, 3032, 3110		

3.3 Síntesis de 2,3-diferrocenilciclopropentiona

En un matraz bola de 100 mL se adiciona 2,3-diferrocenilciclopropenona (**1**) (5 g, 11.84 mmol), reactivo de Lawesson (4.8 g, 11.9 mmol) y 20 mL de benceno y en atmósfera de argón, la disolución resultante se caliento a reflujo durante 8 horas. El producto se purificó por cromatografía en columna de Al_2O_3 (Actividad Brockmann grado III) usando como eluyente mezclas de hexano/éter (1:1) obteniendo la 2,3-diferrocenilciclopropentiona (**4**) (4.7 g, 10.75 mmol). (Esquema 4.3).

Esquema 4.3. Síntesis de 2,3-diferrocenilciclopropentiona (4)

2,3-Diferrocenilciclopropentiona				
S	Apariencia:	Cristales Rojo Obscuro		
(4)	Peso Molecular:	437 g/mol		
Fe -	Rendimiento:	4.7 g (10.7 mmol, 91%)		
Fórmula empírica: C23H18Fe2S	Punto de Fusión:	208 - 210 °C		
RMN de ¹ H (400 MHz, CDCl₃): δ _н ppm	4.28 (s, 10H, 2 C ₅ H ₅), 4.69 (m, 4	H, C ₅ H ₅), 4.98 (m, 4 H, C ₅ H ₄)		
RMN de ¹³ C (100 MHz, CDCl₃): _δ _C ppm	MN de ¹³C (100 MHz, CDCI₃): 63.25 ($2C_{ipso}Fc$), 70.14 ($2C_5H_5$), 71.29, 72.95 ($2C_5H_4$), 152.66 (-C=), 17 (C=S).			
FTIR / cm ⁻¹	480, 823, 898, 999, 1030, 1058, ² 1616, 1645, 1800, 2041, 2968, 3	1105, 1166, 1211, 1311, 1341, 1375, 1485, 098		

3.4 Síntesis del yoduro de 2,3-diferrocenil-1-metiltiociclopropenio (5)

A una disolución de 2,3-diferrocenilciclopropentiona (**4**) (2 g, 4.6 mmol) en benceno (10 mL), se adicionó yoduro de metilo (1 mL). La mezcla resultante se agitó durante 6 horas a temperatura ambiente. Posteriormente el benceno fue decantado y se filtró el precipitado y se secó a vacío. Se obtuvo 1.7 g de yoduro de 2,3-diferrocenil-1-metiltiociclopropenio (**5**). (Esquema 4.4).

Esquema 4.4. Síntesis del yoduro de 2,3-diferrocenil-1-metiltiociclopropenio (5)

	Yoduro de 2,3-diferrocenil-1-metiltiociclopropenio				
	SCH ₃	Apariencia:	Cristales rojo-violeta		
(5)		Peso Molecular:	580 g/mol		
	Fe Fe	Rendimiento:	1.7 g (3.93 mmol, 64 %)		
Fórmula empírica: C ₂₄ H ₂₁ Fe ₂ SI		Punto de Fusión:	249-251 °C		
RMN de ¹H (400 MHz, CDCl₃): δ _H ppm		3.25 (s, 3H, 2 CH ₃), 4.49 (s, 10H, 2 C ₅ H ₅), 5.09 (m, 8H, C ₅ H ₄)			
RMI δ _c p	RMN de ¹³C (100 MHz, CDCI₃): 21. 26 (CH ₃), 58.79 ($2C_{ipso}Fc$), 72.26 ($2C_4H_5$), 74.32, 77.50 ($2C_5H_4$) (-C=), 152.30 (C-S).		.26 (2C ₄ H ₅), 74.32, 77.50 (2C ₅ H ₄), 151.77		
FTIR / cm ⁻¹		480, 823, 898, 999, 1030, 1058, 1105, 1166, 1211, 1311, 1341, 1375, 1485, 1616, 1645, 1800, 2041, 2968, 3098			

4. Interacciones de la 2,3-diferrocenilciclopropenona y los cationes 2,3diferrocenilciclopropenios con bis-nucleófilos (S,S), (O,O) y (O,S)

4.1 *bis*-S,S-nucleófilos

4.1.1 Reacción de la 2,3-diferrocenilciclopropenona (1) con bis-S,S-nucleófilos (8a) y (8b)

Procedimiento general: En un matraz de dos bocas de 50 mL equipado con una trampa de Dean-Stark, y se añade 2,3-diferrocenilciclopropenona **(1)** (1.0 mmol, 0.422 g), y el correspondiente: 1,2-etanoditiol **(8a)** (4.0 mmol, 0.377 g), o 1,3-propanoditiol **(8b)** (4.0 mmol, 0.377 g), ácido *p*-toluensulfónico (0.05 mmol, 0.09 g) y 20 mL benceno seco. La reacción se calienta a temperatura de destilación de benceno durante dos horas, para separar la mezcla azeotrópica. El medio de reacción se enfría a temperatura ambiente y se adiciona carbonato de potasio anhidro en polvo. Posteriormente la mezcla de productos se filtra se secan a vacío para su posterior purificación en cromatografía en columna de Al₂O₃ (Brockmann actividad III) usando una mezcla de disolventes hexano/CH₂Cl₂ 8:2 como eluyente.

Se obtienen los productos (13), (14) y (15), (Esquema 4.5), para el 1,2-etanoditiol (8a).

Se obtienen los productos (17), (18), (Esquema 4.6), para el 1,3-propanoditiol (8b).

Esquema 4.5. Reacción entre la 2,3-diferrocenilciclopropenona (1) y 1,2-etanoditiol 8a

Esquema 4.6. Reacción entre la 2,3-diferrocenilciclopropenona (1) y 1,3-propanoditiol (8b)

4.1.2 Reacción del catión (3) con bis-S,S-nucleófilos (8a), (8b), (8e):

Procedimiento general. A una disolución de catión **(3)** (1mmol, 0.580 g), y el correspondiente ditiol: (1,2-etanoditiol (**8a**) (4 mmol, 0.377 g), o 1,3-propanoditiol (**8b**) (4.0 mmol, 0.433 g), o 1,2-bencenditiol (**8e**) (4.0 mmol, 0.44 g), en 20 mL de benceno anhidro se adiciona trietilamina (1.0 mmol, 0.1 mL). La reacción se calienta reflujo durante 6 horas. Una vez terminada la reacción, los productos se secan a vacío y se purifican en mediante cromatografía en columna de Al_2O_3 (Brockmann actividad III) usando una mezcla de disolventes Hexano/CH₂Cl₂ 8:2 como eluyente.

Se obtienen los productos (13) y (16a), (Esquema 4.7), para el 1,2-etanoditiol

Se obtienen los productos (17) y (20), (Esquema 4.8), para el 1,3-propanoditiol

Se obtienen los compuestos (21) y (22a), (Esquema 4.9) para el 1,2-bencenditiol

Esquema 4.7. Reacción entre el catión (3) con 1,2-etanoditiol (8a)

Esquema 4.8. Reacción entre el catión (3) y 1,3-propanoditiol (8b)

Esquema 4.9. Reacción entre el catión (3) y 1,2-bencenditiol (8b)

1,2-Diferrocenil-4,7-ditiaespiro[2.4]hept-1-eno					
	s	Apariencia:	Cristales rojos		
(13)		Peso Molecular:	498 g/mol		
		Rendimiento:	360 mg (0.6 mmol, 60%)		
Fórmul	a empírica: C ₂₅ H ₂₂ Fe ₂ S ₂	Punto de Fusión:	158-160 °C		
RMN de ¹ H (400 MHz, CDCl₃): _ठ⊦ppm		3.49 (s, 4H, 2CH ₂), 4.21 (s, 10H, 2 C ₅ H ₅) C ₅ H ₄)), 4.41 (m, 4 H, C ₅ H ₄), 4.58 (m, 4 H,		
RMN de δ _c ppm	e ¹³ C (100 MHz, CDCl ₃):	38.84 (2CH ₂), 47.86 (C _{espiro}), 70.06 (20 (2C _{ipso} Fc), 115.0 (C=C)	C ₅ H ₅), 69.08, 70.18 (2C ₂ H ₄), 69.77		
FTIR / o	∵m-1	429.55, 477.41, 672.91, 765.35, 811.56, 829.95, 872.70, 998.89, 1025.54, 1046.15, 1061.48, 1103.95, 1103.95, 1188.45, 1259.93, 1292.12, 1407.93, 1450.69, 1478.09, 1650.88, 1741.99, 1818.31, 2798.78, 2852.88, 2917.70, 2961 35, 3087 71			
		2-Ferrocenil-1,3-ditiolano			
	Fe S	Apariencia:	Cristales anaranjados		
(14)		Peso Molecular:	290 g/mol		
		Rendimiento:	29 mg (0.1 mmol, 10%)		
Fórmula empírica: C ₁₃ H ₁₄ FeS ₂		Punto de Fusión:	82-84 °C		
RMN de ¹H (400 MHz, CDCl₃): δ _H ppm		3.37 (m, 2H, CH ₂), 3.38 (m, 2H, CH ₂), 4. 4.32 (m, 2H, C ₅ H ₄), 5.58 (s, 1H, CH)	17 (m, 2H, C ₅ H ₄), 4.20 (s, 5H, C ₅ H ₅),		
RMN de δcppm	e ¹³ C (100 MHz, CDCl₃):	39.80 (2CH ₂), 53.15 (SCHS), 67.60, 68.46	(C ₅ H ₄), 69.12 (C ₅ H ₅), 88.79 (C _{ipso} Fc)		
FTIR / o	°m⁻¹	410, 482, 604, 684, 737, 764, 810, 828, 855, 925, 952, 996, 1022, 1035, 1102, 1127, 1180, 1227, 1264, 1390, 1414, 1640, 1665, 1689, 1727, 1784, 2851, 2920, 2962, 3084.			
		2-Ferrocenilmetiliden-1,3-ditiolanc			
	s	Apariencia:	Cristales rojos		
(15)	Fe H	Peso Molecular:	302 g/mol		
		Rendimiento:	30 mg (0.1 mmol, 10%)		
Fórmula empírica: C14H14FeS2		Punto de Fusión:	48 - 50 °C		
RMN de ¹H (400 MHz, CDCl₃): δ _H ppm		3.33 (m, 2H, CH ₂), 3.51 (m, 2H, CH ₂), 4.16 (s, 5H, C ₅ H ₅), 4.22 m, 2H, C ₅ H ₄), 4.49 _(m, 2H, C ₅ H ₄), 6.26 (s, 1H, CH=)			
RMN de ¹³ C (100 MHz, CDCl₃): δcppm		39.42, 39.59 (2CH ₂), 67.69, 68.32 (C ₅ H ₄), 69.21 (C ₅ H ₅), 83.93 (C _{ipso} Fc), 113.32 (-CH=), 133.33 (-C=)			
FTIR / cm ⁻¹		480, 499, 551, 683, 810, 997, 1023, 1036, 1102, 1143, 1180, 1237, 1264, 1278, 1390, 1415, 1487, 1560, 1585, 1979, 2042, 2842, 2921, 2963, 3044, 3089.			

(Z)-4-(2-Ferrocenil-1-(2-ferrocenil-1,3-ditiola-2-nil)vinil)morfolina					
	S S H Fe N Fe	Apariencia:	Cristales rojos		
(16)		Peso Molecular:	585 g/mol		
		Rendimiento:	61 mg (0.1 mmol, 10%)		
Fórmula C ₂₉ H ₃₁ Fe	empírica: 2NOS2	Punto de Fusión:	187 - 189 °C		
RMN de δ _н ppm	¹ H (400 MHz, CDCl ₃):	2.74 – 2.76 (t, 4 Hz, 4H, 2NCH ₂), 3.29-3 - 35 (m, 2H, SCH ₂), 3.48 – 3.52 (m, 2H, SCH ₂), 3.55 – 3-56 (t, 4 Hz, 4H, 2OCH ₂), 4.10 – 4.29 (s, 5H, C ₅ H ₅), 4.13, 4.20, 4.34, 4.35 (m, 8H, 2C ₅ H ₄), 6.96 (s, 1H, -CH=)			
RMN de δ _c ppm	¹³ C (100 MHz, CDCl₃):	39.48 (SCH ₂). 51.16 (NCH ₂), 67.15 (OCH; 70.29 (C ₅ H ₄), 69.13, 69.74 (C ₅ H ₅), 81.24 149.13 (-C=)	2), 69.24 (SCS) 67.61, 68.71, 69.93, (C _{ipso}), 95.89 (C _{ipso}), 119.84 (-C=),		
FTIR / cn	1 ⁻¹	463, 482, 521, 614, 687, 738, 814, 871, 957 1283, 1391, 1451, 1556, 1664, 1721, 2297	, 998, 1027, 1116, 1127, 1250, 1263, 2845, 2950, 2962, 3082, 3093		
	2,3	B-Diferrocenil-4,8-ditiaespiro[2.5]oct-1	-eno		
	\bigcap	Apariencia:	Cristales rojos		
(1-)	S S S S S S S S S S S S S S S S S S S	Peso Molecular:	512 g/mol		
(17)		Rendimiento:	200 mg (0.39 mmol, 39%) 250 mg (0.48 mmol, 48%)		
		Punto de Eusión:	158-160 °C		
RMN de ¹ H (400 MHz, CDCl ₃): δ_{HDDM}		2.22 (m, 2H, CH ₂), 3.21 (m, 4H, 2SCH ₂), C ₅ H ₄), 4.57 (m, 4 H, C ₅ H ₄)	4.27 (s, 10H, 2C ₅ H ₅), 4.43 (m, 4H,		
RMN de δ _c ppm	¹³ C (100 MHz, CDCI ₃):	26.06 (CH ₂), 32.79 (2SCH ₂), 60.51 (C _{espiro}), 70.02 (2C ₅ H ₅), 69.44, 70.26 (2C ₂ H ₄), 70.58 (2C _{ipso} Fc), 118.14 (C=C)			
FTIR / cn	n ⁻¹	478, 584, 787, 818, 863, 878, 906, 971, 999, 1025, 1049, 1059, 1104, 1180, 1236, 1268, 1290, 1410, 1431, 1492, 1570, 1628, 1660, 1723, 1833, 2820, 2898, 2927, 3095			
		2-Ferrocenil-1,3-ditiano			
	S →	Apariencia:	Cristales amarillos		
(18)	Fe S	Peso Molecular:	304 g/mol		
		Rendimiento:	27 mg (0.09 mmol, 9%)		
Fórmula empírica: C14H16FeS2		Punto de Fusión:	106 – 108 °C		
RMN de ¹ H (400 MHz, CDCl₃): δ _H ppm		1.84-1.90 (m, 1H, CH ₂), 2.16-2.14 (m. 1H, CH ₂), 2.82-2.84 (m, 2H, SCH ₂), 2.99-3.03 (m, 2H, SCH ₂), 4.20 (m, 2H, C_5H_4), 4.31 (s, 5H, C_5H_5), 4.38 (m, 2H, C_5H_4), 4.91 (s, 1H, SCHS)			
RMN de ¹³ C (100 MHz, CDCl₃): _δ _c ppm		25.81 (CH ₂), 31.97 (2SCH ₂), 47.38 (SCHS), 67.72, 68.36 (C ₅ H ₄), 69.81 (C ₅ H ₅), 87.28 (C _{ipso} Fc)			
FTIR / cm ⁻¹		483, 493, 620, 653, 775, 814, 873, 905, 930, 1002, 1021, 1038, 1106, 1180, 1229, 1274, 1392, 1411, 1430, 1653, 1777, 2891, 2933, 3092.			

(Z)-4-(2-Ferrocenil-1-(2ferrocenil-1,3-ditiola-2-il)vinil)morfolina				
	Apariencia:	Cristales anaranjados		
(20a)	Peso Molecular:	599 g/mol		
	Rendimiento:	30 mg (0.05 mmol, 5%)		
Fórmula empírica: C ₂₉ H ₃₁ Fe ₂ N	OS ₂ Punto de Fusión:	186 – 188 °C		
RMN de ¹ H (400 MHz, CD δ _H ppm	Cl ₃): 2.03 (m, 2H, CH ₂), 2.74-2.76 (m, 4H, 2H, SCH ₂), 3.51-3.53 (m, 4H, OCH ₂), 4.30, 4.46 (m, 8H, 2C ₅ H ₄), 6.93 (s, 1H	NCH ₂), 3.34 (m, 2H, SCH ₂), 3.44 (m, 4.16 – 4.37 (s, 10H, 2C ₅ H ₅), 4.17, 4.25, , -CH=)		
RMN de ¹³ C (100 MHz, CD δ _c ppm	Cl ₃): 25.60 (CH ₂), 31.54 (SCH ₂). 47.34 (SCS 68.36, 68.68, 70.21 (C₅H ₄), 69.97, 70 119.02 (-CH=), 146.65 (-C=)	S), 51.71 (NCH ₂), 67.37 (OCH ₂), 67.64, .30 (C ₅ H ₅), 83.90 (C _{ipso}), 96.35 (C _{ipso}),		
FTIR / cm ⁻¹	481, 525, 590, 634, 644, 728, 813, 9 1153, 1180, 1199, 1259, 1294, 1328, 1604, 1648, 1684, 1724, 2821, 2848, 2	17, 929, 979, 999, 1023, 1044, 1107, 1365, 1383, 1410, 1425, 1441, 1548, 2904, 2958, 3080,		
1	2-Diferrocenil-4,7-ditiaespiro[2.4]hept	-1-eno		
	Apariencia:	Aceite rojo		
(21)	Peso Molecular:	546 g/mol		
Fe Fe	Rendimiento:	56 mg (0.1 mmol, 10%)		
Fórmula empírica: C ₂₉ H ₂₂ Fe ₂ S	Punto de Fusión:	-		
RMN de 'H (400 MHz, CDCl₃) δ⊩ppm	4.21 (s, 10H, 2 C₅H₅), 4.42 (m, 4 H, C₅H₄ 7.09-7.11 (m, 2H, Ar), 7.36-7.38(m, 2H, A), 4.52 (m, 4 H, C₅H₄) r)		
(Z)-4-(2-Ferroc	enil-1-(2-ferrocenilbencen[d][1,3]-ditio	-2-lil)vinil)morfolina		
	Apariencia:	Cristales anaranjados		
(22a)	Peso Molecular:	633 g/mol		
	Rendimiento:	31 mg (0.38 mmol, 38%)		
Fórmula empírica C ₃₃ H ₃₁ Fe ₂ NOS ₂	Punto de Fusión:	189 – 191 °C		
RMN de ¹H (400 MHz, CDCl₃) δ _н ppm	 2.80-2.83 (m, 4H, NCH₂), 3.52-3.54 (m, 4l 2H, C₅H₄), 4.19 (m, 2H, C₅H₄), 4.25 (s, 5l 2H, C₅H₄), 6.73 (s, 1H, =CH-), 7.01-7.04 (.80-2.83 (m, 4H, NCH ₂), 3.52-3.54 (m, 4H, OCH ₂), 3.94 (s, 5H, C_5H_5), 4.18 (m, H, C_5H_4), 4.19 (m, 2H, C_5H_4), 4.25 (s, 5H, C_5H_5), 4.29 (m, 2H, C_5H_4), 4.34 (m, H, C_5H_4), 6.73 (s, 1H, =CH-), 7.01-7.04 (m, 2H, Ar), 7.26-7.29 (m, 2H, Ar)		
RMN de ¹³ C (100 MHz, CDCl₃) δ _c ppm	 38.91 (SCS), 51.02 (NCH₂), 67.52 (OCH (C₅H₅), 69.86 (C₅H₅), 70.53 (C₅H₄), 78.85 CH=), 121.89, 123.25, 125.35 (Ar), 146.85 	3.91 (SCS), 51.02 (NCH ₂), 67.52 (OCH ₂), 69.08 (C ₅ H ₄), 69.13 (C ₅ H ₄), 69.26 (C ₅ H ₅), 69.86 (C ₅ H ₅), 70.53 (C ₅ H ₄), 78.85 (C _{<i>ipso</i>}), 79.88, 93.95 (C _{<i>ipso</i>}), 139.38 (-H=), 121.89, 123.25, 125.35 (Ar), 146.85 (-C=)		
FTIR / cm ⁻¹	428, 449, 483, 499, 541, 597, 656, 675, 73 1104, 1144, 1200, 1247, 1262, 1299, 1331 1726, 1886, 2822, 2863, 2949, 2971, 305	28, 449, 483, 499, 541, 597, 656, 675, 739, 817, 848, 895, 921, 968, 999, 1033, 104, 1144, 1200, 1247, 1262, 1299, 1331, 1370, 1384, 1443, 1564, 1621, 1661, 726, 1886, 2822, 2863, 2949, 2971, 3056, 3083		

4.2 bis-O,O-nucleófilos

4.2.1 Reactividad con la 2,3-diferrocenilciclopropenona (1) con (9a-b)

Procedimiento general. A una disolución de 2,3-diferrocenilciclopropenona (1) (1.0 mmol, 0.422 g), glicol (9a-b) (4.0 mmol, 0.248 g), ácido *p*-toluensulfónico (0.05 mmol, 0.09 g) y 20 mL benceno anhidro. La reacción se agita durante 6 horas a reflujo. Finalmente, la mezcla de productos se seca a vacío y se purifican en cromatografía en columna de AI_2O_3 (Brockmann actividad III) usando una mezcla de disolventes hexano/CH₂Cl₂ 8:2 como eluyente. De esta reacción se obtienen los productos (23), (24) y (25) (Esquema 5.10).

Esquema 5.10. Reacción ente la 2,3-diferrocenilciclopropenona (1) con etilenglicol (9a)

4.2.2 Reacción entre la 2,3-diferrocenilciclopropenona (1) y (9c) o (9d).

Procedimiento general: En un matraz de dos bocas de 50 mL equipado con una trampa de Dean-Stark, y se añade 2,3-diferrocenilciclopropenona (1) (1.0 mmol, 0.422 g), 1,3-propanodiol (9c), 2-metil-1,3-propanodiol (9d) (4.0 mmol), ácido *p*-toluensulfónico (0.05 mmol, 0.09 g) y 20 mL benceno anhidro. La reacción se calienta a temperatura de destilación de benceno para separar la mezcla azeotrópica durante dos horas. Finalmente, el medio de reacción se enfría a temperatura ambiente y se adiciona carbonato de potasio anhidro en polvo. La mezcla de productos se filtra se secan a vacío para su posterior purificación en cromatografía en columna de Al₂O₃ (Brockmann actividad III) usando una mezcla de disolventes hexano/CH₂Cl₂ 8:3 como eluyente. De esta reacción se obtienen los productos (30), (31a), (33) y (34a), (Esquema 5.11).

Esquema 5.11. Reacción ente la 2,3-diferrocenilciclopropenona (1) con propilenglicol (9c) y 2-metilpropilenglicol (9d)

1,2-Diferrocenil-4,7-dioxaespiro[2.4]hept-1-eno				
		Apariencia:	Polvo rojo	
(23)		Peso Molecular:	466 g/mol	
(23)	$\begin{array}{c} Fe \\ \hline Fe$	Rendimiento:	140 mg (0.28 mmol, 28%)	
Fórm	ula empírica: C ₂₅ H ₂₂ Fe ₂ O ₂	Punto de Fusión:	123-125°C	
RMN	de ¹H (400 MHz, CDCl₃): δ _н ppm	3.88 (s, 4 H, 2CH ₂), 4.33 (s, 10H, 2 C ₂ H ₅), 4.45 (m, 4 H, C ₅ H ₄), 4.75 (m, 4 H, C ₅ H ₄)		
RMN δ _c pp	de ¹³ C (100 MHz, CDCl ₃): m	68.13 (2CH ₂), 68.57, 68 (2C _{ipso} Fc), 59.14 (C _{espiro}), 13	.99 (2C ₅ H ₄), 70.15 (2C ₅ H ₅), 86.38 0.30 (-C=)	
FTIR	/ cm ⁻¹	482, 574, 605, 709, 769, 823, 8 1260, 1292, 1309, 1421, 1489, 3105.	71, 959, 99, 1024, 1045, 1062, 1103, 1183, 1659, 1718, 1781, 1825, 2908, 2968, 3095,	
		2-Ferrocenil-1,3-dioxolance		
	0~	Apariencia:	Polvo amarillo	
(24)	Fe 0	Peso Molecular:	258 g/mol	
		Rendimiento:	24 mg (0.36 mmol, 9%)	
Fórm	ula empírica: C ₁₃ H ₁₄ FeO ₂	Punto de Fusión:	78-80 °C	
RMN de ¹ H (400 MHz, CDCl ₃): δ _H ppm		3.95 (m. 2H, OCH ₂), 4.04 (m, 2 C ₅ H ₅), 4.36 (m, 2H, C ₅ H ₄), 5.72	H, OCH ₂), 4.20 (m, 2H, C ₅ H ₄), 4.24 (s, 5H, (s, 1H, OCHO)	
FTIR	/ cm ⁻¹	431, 482, 504, 638, 718, 737, 743, 817, 855, 870, 942, 955, 976, 1023, 1039, 1080, 1105, 1137, 1221, 1243, 1332, 1356, 1383, 1412, 1455, 1478, 1488, 1663, 1679, 1774, 1900, 2853, 2893, 2955, 3079, 3092		
	1,2,6,7-Tetrafer	rocenyl-4-oxaspiro [2.4] hep	ota-1,6-dien-5-one	
	Fe	Apariencia:	Cristales morados	
(25)		Peso Molecular:	844 g/mol	
		Rendimiento:	305 mg (0.36 mmol, 36%)	
Fórmula empírica: C ₂₈ H ₂₄ Fe ₂ O ₂		Punto de Fusión:	186 - 187 °C	
RMN de ¹ H (400 MHz, CDCl₃): δ _H ppm		3.87 (s, 5H, C_5H_5), 4.26 (s, 5H, C_5H_5), 4.33 (s, 10H, $2C_5H_5$), 4.24 (m, 2H, C_5H_4), 4.38 (m, 2H, C_5H_4), 4.40 (m, 2H, C_5H_4), 4.42 (m, 2H, C_5H_4), 4.46 (m, 2H, C_5H_4), 4.50 (m, 2H, C_5H_4), 4.75 (m, 2H, C_5H_4), 4.99 (m, 2H, C_5H_4)		
RMN de 13 C (100 MHz, CDCl ₃): δ_{c} ppm		53.39 (C _{espiro}), δ 78.33, 79.98, 81.85 (C _{ipso} Fc), 69.58, 69.89 (C ₅ H ₅), 70.17 (2C ₅ H ₅), 68.27, 68.91, 69.32, 69.42, 69.45, 69.56, 69.97, 70.25, 70.53, 70.73 (C ₅ H ₄), 113.23 (2C), 124.45, 154.40 (4C) 171.24 (C=O).		
FTIR / cm ⁻¹		484, 727, 809, 947, 999, 1021, 1106, 1126, 1290, 1376, 1410, 1462, 1552, 1648, 1727, 2920, 2850, 3093		

2-Ferrocenil-1,3-dioxano				
0~	Apariencia:	Cristales amarillos		
(30)	Peso Molecular:	272 g/mol		
	Rendimiento:	30 mg (11 mmol, 11%)		
Fórmula empírica: C14H16FeO2	Punto de Fusión:	115 - 117 °C		
RMN de ¹ H (400 MHz, CDCl₃): δ _H ppm	1.36-1.38 (m, 1H, CH ₂), 2.12 (m 4.1 (m, 2H, OCH ₂), 4.17 (m, 2H C ₅ H ₄), 5.30 (s, 1H, OCHO)	1.36-1.38 (m, 1H, CH ₂), 2.12 (m. 1H, CH ₂), 2.89-2.91 (m, 2H, OCH ₂ 3.37), 4.1 (m, 2H, OCH ₂), 4.17 (m, 2H, C_5H_4), 4.22 (s, 5H, C_5H_5), 4.35 (m, 2H, C_5H_4), 5.30 (s, 1H, OCHO)		
FTIR / cm ⁻¹	432, 464, 483, 495, 631, 779, 813, 819, 859, 871, 894, 922, 941, 980, 998, 1045, 1100, 1109, 1140, 1217, 1241, 1291, 1338, 1354, 1383, 1409, 1433, 1456, 1466, 1496, 1639, 1709, 2848, 2874, 2924, 2950, 2972, 3080, 3080, 3096			
	2-Ferrocenil-5-metil-1,3-diox	ano		
^ ~	Apariencia:	Sólido amarillo		
(33)	Peso Molecular:	286 g/mol		
	Rendimiento:	35 mg (0.12 mmol, 12%)		
Fórmula empírica: C15H18FeO2	Punto de Fusión:	116 - 118 °C		
RMN de ¹ H (400 MHz, CDCl₃): δ _H ppm	0.73-0.74 (d, $J = 4$ Hz, 3H, CH ₃), 2.12 (m. 1H, CH), 3.40 – 3.44 (m, $J_1 = 8$ Hz - $J_2 = 8$ Hz, 2H, OCH ₂ 3.37), 4.1 (m, $J = 8$ Hz, 2H, OCH ₂), 4.19 (m, 2H, C ₅ H ₄), 4.24 (s, 5H, C ₅ H ₅), 4.38 (m, 2H, C ₅ H ₄), 5.18 (s, 1H, OCHO)			
FTIR / cm ⁻¹	432, 464, 483, 495, 631, 779, 813, 819, 859, 871, 894, 922, 941, 980, 998, 1045, 1100, 1109, 1140, 1217, 1241, 1291, 1338, 1354, 1383, 1409, 1433, 1456, 1466, 1496, 1639, 1709, 2848, 2874, 2924, 2950, 2972, 3080, 3080, 3096			
3-Hidro	xi-2-metilpropil- <i>(E)-</i> 2,3-diferro	cenilacrilato		
H O	Apariencia:	Aceite rojo		
(34a)	Peso Molecular:	512 g/mol		
	Rendimiento:	93 mg (0.18 mg, 18%)		
Fórmula empírica:	C ₂₇ H ₂₈ Fe ₂ O ₃			
RMN de ¹ H (400 MHz, CDCl₃): δ _H ppm	1.10-1.12 (d, $J = 8$ Hz, 3H, CH ₃), 3.43-3.63 (m. 1H, CH), 3.60 – 3.71 (m, 2H, OCH ₂), 4.08, 4.13 (s, 10H, 2C ₅ H ₅), 4.16, 4.20, 4.27 y 4.30 (m, 2H, C ₅ H ₄), 4.65 (s, 1H, OH), 7.31 (s, 1H, -CH=)			
FTIR / cm ⁻¹	432, 464, 483, 495, 631, 779, 813, 819, 859, 871, 894, 922, 941, 980, 998, 1045, 1100, 1109, 1140, 1217, 1241, 1291, 1338, 1354, 1383, 1409, 1433, 1456, 1466, 1496, 1639, 1709, 2848, 2874, 2924, 2950, 2972, 3080, 3080, 3096			

4.3 bis-O,S-nucleófilos

4.3.1 Reacción entre los cationes de 2,3-diferrocenilciclopropenios (3), (5) con 2mercaptoetanol (10a).

A una disolución para cada uno de los cationes (3) o (5) (1mmol), 2-mercaptoetanol (10a) (4 mmol, 0.323 g) en 20 mL de MeCN, se adiciona trietilamina (1.0 mmol, 0.1 mL). La mezcla reaccionante se mantuvo en agitación y ebullición durante 6 horas, posteriormente la mezcla de productos se secó a vacío y se purificaron por cromatografía en columna de Al_2O_3 (Brockmann actividad III) se eluyeron con una mezcla de hexano/CH₂Cl₂ 7:3. De esta reacción se obtuvieron los compuestos (37), (38a), (39a-b), (Esquema 5.12).

Esquema 5.12. Reacciones entre los cationes 2,3-diferrocenilciclopropenios (3), (5) con 2-mercaptoetanol (10a)

4.3.2 Reacción entre los cationes de 2,3-diferrocenilciclopropenios (3) y (5) con (10b).

A una disolución para cada uno de los cationes (3) o (5) (1mmol), 2-mercaptofenol (10b) (4 mmol, 0.323 g) en 20 mL de MeCN, se adiciona trietilamina (1.0 mmol, 0.1 mL). La mezcla reaccionante se mantuvo en agitación y ebullición durante 6 horas, posteriormente la mezcla de productos se secó a vacío y se purificaron por cromatografía en columna de AI_2O_3 (Brockmann actividad III) y se eluyeron con una mezcla de hexano/CH₂Cl₂ 7:3. De esta reacción se obtuvieron los compuestos (41b), (42b) y (43a), (Esquema 5.13).

Esquema 5.13. Reacciones entre los cationes 2,3-diferrocenilciclopropenios (3), (5) con (10b)

2-Ferrocenil-(<i>R</i> , <i>S</i>)-1,3-oxatiolano					
(37)	Ş, S,		Apariencia:	Solido amarillo	
			Peso Molecular:	274 g/mol	
	Fe		Rendimiento:	28 mg (0.1 mmol, 10%)	
Fórmu	la empírica: C ₁₃ H ₁₄ FeOS		Punto de Fusión:	87 – 89 °C	
RMN de ¹ H (400 MHz, CDCl ₃): δ _H ppm		3.05-3.10 (m, 1H, SCH₂), 3. OCH₂), 4.20 (s, 5H, C₅H₅), 4.2 4.37 (m, 1H, OCH₂), 4.49 (m,	13-3.19 (m, 1H, SCH ₂), 3.91-3.97(m, 1H, 22 (m, 2H, C_5H_4), 4.31 (m, 1H, C_5H_4), 4.30-1H, C_5H_4) 5.95 (s, 1H, OCHS)		
RMN	de ¹³ C (100 MHz, CDCl ₃): δι	cppm	33.86 (SCH ₂), 67.89 (OCHS), 85.19 (C _{ipso} Fc), 85.20 (OCH ₂)	33.86 (SCH ₂), 67.89 (OCHS), 68.85, 68.01, 71.82 (C ₅ H ₄), 69.08 (C ₅ H ₅), 85.19 (C _{ipso} Fc), 85.20 (OCH ₂)	
FTIR /	cm-1		480, 518, 563, 618, 721, 762, 1071, 1104, 1160, 1187, 1202, 1463, 1479, 1645, 1723, 1781	814, 874, 926, 937, 975, 999, 1022, 1038, 1237, 1273, 1321, 1348, 1377, 1400, 1440, , 1889, 2686, 2686, 2866, 294, 2964, 3090	
	(<i>Z</i>)-2-	[1',2'-D	Diferrocenil-2-[morfolino]vi	nil]oxatiolano	
	~ /-•	Ара	ariencia:	Aceite color morado	
(282)		Pes	so Molecular:	568.8 g/mol	
(30d)	Fe Fe	Rer	ndimiento:	216 mg (0.38 mmol, 38%)	
		Fór	mula empírica:	$C_{29}H_{31}O_2Fe_2SN$	
RMN de ¹ H (400 MHz, CDCl ₃): 2.93 (m, 2H, CH ₂), 3.06 (t, 4H, 2CH ₂) δ _H ppm 2H, CH ₂), 4.18 (s, 5H, C ₅ H ₅), 4.20 (s, C ₅ H ₄), 4.69 (t, 2H, C ₅ H ₄), 4.74 (t, 2H, C ₅ H ₄), 4.74 (t, 2H, C ₅ H ₄), 4.69 (t, 2H, C ₅ H ₄), 4.74 (t, 2H, C_5 H ₄), 4.74 (t, 2H, C		H ₂ , J= 4.5 Hz), 3.92 (t, 4H, 2CH ₂), 4.12 (m, s, 5H, C₅H₅), 4.28 (t, 2H, C₅H₄), 4.49 (t, 2H, H, C₅H₄), 7.02 (s, 1H, CH)			
RMN de ¹³ C (100 MHz, CDCl ₃): 30.3 δ _c ppm 68.4 (2C) (2C)		: 30.3 68.8 (2C)	33 (CH ₂), 38.52, 61.94 (4CH ₂), 89, 71.30, 72.00 (2 C ₅ H ₄), 132. _{ipso} Fc)	, 68.14 (CH ₂) 69.41, 70.10 (C ₅ H ₅), 68.47, 15 (CH), 136.76, 197.79 (2C), 79.09, 79.15	
FTIR /	cm-1	480 110 147), 518, 563, 618, 721, 762, 814, 14, 1160, 1187, 1202, 1237, 12 19, 1645, 1723, 1781, 1889, 268	874, 926, 937, 975, 999, 1022, 1038, 1071, 173, 1321, 1348, 1377, 1400, 1440, 1463, 6, 2686, 2866, 294, 2964, 3090	
	(<i>E</i>)-2	-[1',2'-	Diferrocenil-2-(metiltio)vin	il]oxatiolano	
	-	Aparie	encia:	Aceite color rojo	
(39a)		Peso I	Molecular:	529 g/mol	
(000)	Fé Fe -	Rendi	miento:	215 mg (0.41 mmol, 41%)	
	Fór		ıla empírica:	$C_{26}H_{26}Fe_2S_2O$	
RMN de ¹ H (400 MHz, CDCl ₃): 2.505 δ _H ppm 4.47 (r Δ ₁ 0.5H4), 1H, CH		(s, 3H, CH ₃), 3.012 (m, H, CH ₂ n, 1H, CH ₂), 4.182 (s, 5H, C₅H₅ (m, 1H, C₅H₄), 4.228 (m, 1H, (4.429 (m, 1H, C₅H₄), 4.454 (m H)), 3.204 (m, 2H, CH ₂), 3.918 (m, 1H, CH ₂),), 4.215 (s, 5H, C ₅ H ₅), 4.148 (m, 1H, C ₅ H ₄), C ₅ H ₄), 4.279 (m, 1H, C ₅ H ₄), 4.350 (m, 1H, n, 1H, C ₅ H ₄), 4.738 (m, 1H, C ₅ H ₄), 6.917 (s,		
RMN de ¹³ C (100 MHz, CDCl ₃): 30.99(67.82, 130.98 δ _c ppm 130.98		30.99(67.82, 130.95	SCH ₃), 34.58 (SCH ₂), 67.47 (OCH ₂), 69.156, 69.479 (2C ₅ H ₅), 67.543, 67.73, 69.08, 69.27, 69.57, 69.83, 70.84 (2C ₅ H ₄), 82.857, 91.925 (C _{ipso}), 126.16, (2-C=), 133.56 (CH),		
FTIR / υ cm ⁻¹ 454, 4 1312, 2957,		454, 4 1312, 2957, 3	79, 670, 730, 812, 889, 940, 959 1352, 1379, 1392, 1411, 1440, 3091.	9, 999, 1047, 1105, 1157, 1185, 1208, 1264, 1461, 1492, 1531, 1654, 1717, 2850, 2917,	

(E)-2-[1',2'-Diferrocenil-2-(metiltio)vinil]oxatiolano					
	S Fé	Apariencia:	Aceite color rojo		
		Peso Molecular:	529 g/mol		
(39b)	SMe	Rendimiento:	84 mg (0.16 mmol, 16%)		
		Fórmula empírica:	C ₂₆ H ₂₆ Fe ₂ S ₂ O		
RMN de ¹H (400 MHz, CDCl₃): δ _H ppm		1.97 (s, 3H, CH ₃), 3.15 (m, 2H, CH ₂), 3.69 (m, 2H, CH ₂), 4.21 (s, 5H, C_5H_5), 4.27 (s, 5H, C_5H_5), 4.32 (m, 2H, C_5H_4), 4.36 (m, 2H, C_5H_4), 4.62, 4.67, 4.82, 5.15 (t, 4H, C_5H_4), 6.57 (s, 1H, CH).			
RMN de ¹³ C (100 MHz, CDCl₃): δ _c ppm		29.67 (CH ₃), 30.42, 33.87 (2CH ₂), 69.72, 69.80 (2C ₅ H ₅), 67.67, 68.12, 69.14, 69.21, 70.12, 70.66, 70.89, 71.47 (2C ₅ H ₄), 87.70, 89.65 (2C _{ipso} Fc), 129.87 (CH), 133.76, 160.59 (2C)			
FTIR / cm ⁻¹		454, 479, 670, 730, 812, 889, 940, 959, 999, 1047, 1105, 1157, 1185, 1208, 1264, 1312, 1352, 1379, 1392, 1411, 1440, 1461, 1492, 1531, 1654, 1717, 2850, 2917, 2957, 3091.			
(E)-2-[1',2'-Diferrocenil-2-(morfolino)vinil]benzo[d][1,3]oxatiolano					
	S Fé	Apariencia:	Aceite color morado		
(11h)	S Fe	Peso Molecular:	616 g/mol		
(41b)		Peso Molecular: Fórmula empírica:	616 g/mol C ₂₉ H ₃₁ O ₂ Fe ₂ SN		
(41b)		Peso Molecular: Fórmula empírica: Rendimiento	616 g/mol C ₂₉ H ₃₁ O ₂ Fe ₂ SN 198 mg (0.32 mmol, 32%)		
(41b) RMN ∂ δ _H ppn	de ¹ H (400 MHz, CDCl ₃):	Peso Molecular: Fórmula empírica: Rendimiento 2.72 (dt, 2H, CH ₂ , J = 3.3, 5.4 Hz), 2. 2CH ₂ , J = 3.3 Hz), 4.01 (s, 5H, C ₅ H 4.24 (m, 2H, C ₅ H ₄), 4.34 (m, 2H, C ₅ H 6.18 (s, 1H, CH), 6.92 (t, 1H, C ₆ H ₄ , 7.07 (t, 1H, C ₆ H ₄ , J=5.7 Hz), 7.17 (d,	616 g/mol C ₂₉ H ₃₁ O ₂ Fe ₂ SN 198 mg (0.32 mmol, 32%) 98 (dt, 2H, CH ₂ , J=3.3, 5.4 Hz), 3.55 (t, 4H, 5) 4.04 (s, 5H, C ₅ H ₅), 4.19 (m, 2H, C ₅ H ₄), I ₄), 4.39 (m, 1H, C ₅ H ₄), 4.44 (m, 1H, C ₅ H ₄), J= 5.7 Hz), 6.99 (d, 1H, C ₆ H ₄ , J= 5.7 Hz), 1H, C ₆ H ₄ J=5.7 Hz)		
(41b) RMN σ δ _H ppn RMN σ δ _c ppn	de ¹ H (400 MHz, CDCl ₃): n de ¹³ C (100 MHz, CDCl ₃):	Peso Molecular: Fórmula empírica: Rendimiento 2.72 (dt, 2H, CH ₂ , J = 3.3, 5.4 Hz), 2. 2CH ₂ , J = 3.3 Hz), 4.01 (s, 5H, C ₅ H 4.24 (m, 2H, C ₅ H ₄), 4.34 (m, 2H, C ₅ H 6.18 (s, 1H, CH), 6.92 (t, 1H, C ₆ H ₄ , 7.07 (t, 1H, C ₆ H ₄ , J=5.7 Hz), 7.17 (d, 50.77, 67.63 (4CH ₂), 69.09, 69.10 (69.77, 70.07, 70.21 (2C ₅ H ₄), 79.76, 121.33, 121.98, 125.48 (C ₆ H ₄), 103.2	$\begin{array}{r} 616 \text{ g/mol} \\ \hline C_{29}H_{31}O_2Fe_2SN \\ \hline 198 \text{ mg } (0.32 \text{ mmol, } 32\%) \\ \hline 98 (dt, 2H, CH_2, J=3.3, 5.4 \text{ Hz}), 3.55 (t, 4H, 5) 4.04 (s, 5H, C_5H_5), 4.19 (m, 2H, C_5H_4), 4.439 (m, 1H, C_5H_4), 4.44 (m, 1H, C_5H_4), J= 5.7 \text{ Hz}), 6.99 (d, 1H, C_6H_4, J= 5.7 \text{ Hz}), 1H, C_6H_4 J=5.7 \text{ Hz}) \\ \hline 1H, C_6H_4 J=5.7 \text{ Hz}) \\ \hline C_5H_5), 66.82, 67.27, 68.42, 68.88, 68.92, 94.48 (2C_{ipso} \text{ Fc}), 109.97 (CH), 120.70, 21, 126.70, 146.43, 156.13 (4C) \\ \hline \end{array}$		

(E)-2-[1',2'-Diferrocenil-2-(metiltio)vinil]benzo[d][1,3]oxatiolano						
		Apariencia:	Cristales rojo-violeta			
		Peso Molecular:	577 g/mol			
(42b)		Rendimiento:	208 mg (0.36 mmol, 36%)			
	SMe Fe	Punto de Fusión:	120 - 122 °C			
		Fórmula empírica:	C ₃₀ H ₂₆ Fe ₂ OS ₂			
RMN CDCI₃	de ¹ Н (400 MHz,): б _н ррт	2.39 (s, 3H, CH ₃), 4.09 (s, 5H, C ₅ H ₅), 4. (m, 2H, C ₅ H ₄), 4.40 (m, 1H, C ₅ H ₄) 4.43 (1H, C ₅ H ₄), 6.60 (s, 1H, CH=), 6.90 (dd, 6.0 Hz, C ₆ H ₄), 7.06 (dd, 1H, J=1.2, 6.0 H	14 (s, 5H, C ₅ H ₅), 4.198 (m, 2H, C ₅ H ₄), 4.20 (m, 1H, C ₅ H ₄), 4.48 (m, 1H, C ₅ H ₄), 4.69 (m, 1H, J=0.8, 1.2, C ₆ H ₄), 6.92 (dd, 1H, J=0.6, z, C ₆ H ₄), 7.10 (dd, 1H, J=0.9, 5.4 Hz, C ₆ H ₄)			
RMN CDCl₃	de ¹³ C (100 MHz,): δcppm	0.89 (CH ₃), 69.17, 69.51 (C ₅ H ₅), 67.60, 67.69, 68.08, 68.69, 68.98, 69.10, 69.92, 0.02 (C ₅ H ₄), 81.78, 93.96 (C _{ipso}), 110.02, 130.86, 132.73, 155.02 (C), 121.21, 22.02, 125.62, 128.01 (C ₆ H ₄), 110.02 (CH)				
FTIR /	cm ⁻¹	74.65, 561.00, 698.96, 744.96, 754.26, 817.73, 908.20, 972.70, 999.84, 1027.02, 044.27, 1086.98, 1105.78, 1207.70, 1237.15, 1266.8, 1314, 1388, 1447, 1462, 493, 1572, 1641, 1722, 1641, 1722, 1940, 2852, 2956, 2917, 3091.				
	(Z)-4-(2-ferrocer	nil-1-(2-ferrocenilbencen[d][1,3]-o>	(atio-2-lil)vinil)morfolina			
		Apariencia:	Cristales rojos			
	O S H	Peso Molecular:	617 g/mol			
(43a)		Rendimiento:	142 mg (0.23 mmol, 23%)			
		Punto de Fusión:	147 – 149 °C			
		Fórmula empírica:	C ₃₃ H ₃₁ Fe ₂ NO ₂ S			
RMN de ¹ Η (400 MHz, CDCI δ _Η ppm		: 2.69-2.72 (m, 2H, NCH ₂), 2.96-2.99 (m, 2H, NCH ₂), 3.52-3.54 (m, 4H, OCH ₂), 4.00 (s, 5H, C_5H_5), 4.03 (s, 5H, C_5H_5), 4.19 (m, 2H, C_5H_4), 4.26 (m, 2H, C_5H_4), 4.33 (m, 2H, C_5H_4), 4.43 (m, 2H, C_5H_4), 6.17 (s, 1H, =CH-), 6.90-6.93 (m, 1H, Ar), 6.98-7.00 (m, 1H, Ar), 7.04-7.09 (m, 1H, Ar), 7.14-7.17 (m, 1H, Ar)				
RMN de ¹³ C (100 MHz, CDCla δ _c ppm		50.94 (NCH ₂), 67.80 (OCH ₂), 66.99, 67.43, 68.59, 69.04, 69.08, 69.94, 70. 70.23, 70.38 (C ₅ H ₄), 69.26, 69.30 (C ₅ H ₅), 79.94, 94.64 (C _{ipso}), 103.37 (OC 110.14, 120.85, 121.39, 122.15, 125.65, 156.30 (C ₆ H ₄), 126.87 (=CH-), 146 (-C=).				
FTIR /	cm ⁻¹	428, 449, 483, 499, 541, 597, 656, 1033, 1104, 1144, 1200, 1247, 126 1621, 1661, 1726, 1886, 2822, 2863	675, 739, 817, 848, 895, 921, 968, 999, 52, 1299, 1331, 1370, 1384, 1443, 1564, 5, 2949, 2971, 3056, 3083			

Capítulo V. Análisis de resultados

A continuación, se realizará el análisis de resultados de forma detallada en donde se dividirá en diferentes secciones:

Sección 1. Síntesis de materias primas

Sección 2. bis-S,S- nucleófilos

- a) Reacciones de tioacetalización de la 2,3-diferrocenilciclopropenona (1)
- b) Tioacetalización de los cationes 2,3-diferrocenilciclopropenílicos (3) y (5)

Sección 3. bis-O,O-nucleófilos

- a) Reacciones de acetalización de la 2,3-diferrocenilciclopropenona (1)
- b) Acetalización de los cationes 2,3-diferrocenilciclopropenílicos (3) y (5)

Sección 4. bis-O,S-nucleófilos

a) Formación de oxatiolanos de los cationes 2,3-diferrocenilciclopropenílicos (3) y (5)

Sección 1. Síntesis de materias primas

En esta sección se presenta, como parte fundamental del proyecto, la síntesis de las materias primas utilizadas, entre las que se encuentran la 2,3-diferrocenilciclopropenona **(1)**, la 2,3-diferrocenilciclopropentiona **(4)**, los diferentes cationes diferrocenilciclopropenios: tetrafluoroborato de 2,3-diferrocenil-1-morfolinociclo-propenilo **(3)** y el yoduro de 2,3-diferrocenil-1-morfolinociclo-propenilo **(3)** y el yod

Con anterioridad los cationes diferrocenílicos se han utilizado para efectuar reacciones con diferente *bis*-nucleófilos para la síntesis de heterociclos con fragmentos ferrocenílicos que contienen diferentes heteroátomos como el nitrógeno y oxígeno.¹⁷⁶ En el presente trabajo de investigación se demuestra la formación de espirocompuestos, compuestos de apertura del anillo y de fragmentación. Debido a los resultados obtenidos con los cationes ferrocenílicos se decidió efectuar reacciones con la 2,3-diferrocenilciclopropenona **(1)** modificando las condiciones de reacción.

¹⁷⁶ a) J. J. S. Garcia; M. F. Alamo; L. O. Frade; E. I. Klimova. *J. Organomet. Chem.* **2017**, *842*, 21-31 b) E. I. Klimova; M. F. Alamo; S. C. Maya; J. C. G. Ramos; L. O. Frade; J. M. M. Stivalet. *J. Organomet. Chem.* **2013**, *743*, 24-30

La primera etapa de la síntesis se realizó con el ferroceno y el tetraclorociclopropeno usando cloruro de aluminio como catalizador para llevar a cabo una alquilación de Friedel-Crafts de dónde se obtiene la 2,3-diferrocenilciclopropenona (**1**), con la que es posible sintetizar los diferentes cationes 2,3-diferrocenilciclopropenios siguiendo la metodología reportada por el grupo de trabajo de la Dra. Elena Klimova.¹⁷⁷ La metodología de síntesis se encuentra en el (Esquema 5.1), las características físicas y espectroscópicas de RMN de ¹H y de ¹³C de estos compuestos se conocen en la literatura.^{178, 179}

Los nuevos cationes diferrocenilciclopropenilo que se sintetizaron son el **(6)** y el **(7)**, sin embargo, lo que se observó es que estos no son estables en condiciones ambientales, ya que no se lograron aislar para realizar su caracterización completa, para investigar las reacciones de estos cationes con los *bis*-nucleófilos se realizan mediante reacciones del tipo domino.

Esquema 5.1. Síntesis de los cationes 2,3-diferrocenilciclopropenios (2-7)

De acuerdo con trabajos previos realizados en el grupo de trabajo de la Dra. Elena Klimova, la reactividad de la 2,3-diferrocenilciclopropenona y los cationes 2,3-diferrocenilciclopropenios se describe mediante ataques nucleofílicos sobre el carbono C(1) o carbono C(2) del anillo de tres miembros,¹⁸⁰ que da lugar a diferentes a diferentes productos de reacción que pueden ser explicados mediante cuatro vías mecanísticas, (Figura 5.1), donde se observa:

¹⁷⁷ T. K. Berestneva; E. I. Klimova; J. M. M. Stivalet; S. H. Ortega; M. M. Garcìa. *Eur. J. Org. Chem.* **2005**, 4406-4413

¹⁷⁸ E. Klimova; T. K. Berestneva; S. O. Hernández; I. D. Méndez; A. G. Márquez; M. G. Márquez. J. Organomet. Chem. **2005**, 690, 3333-3339.

¹⁷⁹ E. Klimova; J. M. M. Stivalet; T. K. Berestneva; M. F. Alamo; L. V. Backinowsky; L. O. Frade; G. M. Martinez. *Synthetic Comm.* **2010**, *49*, 839-854.

¹⁸⁰ J.J. Sánchez García. (2018) Estudio de la reactividad de las sales de diferrocenilciclopropenilo con *bis*-1,4-heteronucleófilos [Tesis Doctoral UNAM] TESIUNAM: <u>https://tesiunam.dgb.unam.mx/</u>

- Vía 1: dobles ataques nucleofílicos en el carbono C(1)
- Vía 2: dobles ataques nucleofílicos en el carbono C(2)
- Vía 3: fragmentación del anillo de tres miembros
- Vía 4: dimerización de la 2,3-diferrocenilciclopropenona

Figura 5.1. Reactividad de la 2,3-diferrocenilciclopropenona (1) y sus cationes

Sección 2: bis-S,S-Nucleófilos

a) Reacciones de tioacetalización de la 2,3-diferrocenilciclopropenona (1)

Se investigaron las mejores condiciones de reacción con la 2,3-diferrocenilciclopropenona (1) y el 1,2-etanoditiol (8a), donde se evaluó la eficiencia de algunos catalizadores o activantes (Esquema 6.2). Como primera opción se utilizó el yodo (0.1 mmol) como catalizador; se formaron los compuestos (13), (14) y (15) con bajos rendimientos. Se utilizaron agentes activantes como MsCl y TMSCl en cantidades estequiométricas, y se observó una notable disminución en el rendimiento de (13). Finalmente se decidió llevar a cabo las reacciones con ácidos de Brönsted como HCl, H₂SO₄, CF₃COOH, HBF₄ y *p*-TSOH. Con el ácido *p*-toluensulfónico se obtuvo un rendimiento del 60% del compuesto (13) (Tabla 5.1).

Esquema 5.2. Reacción ente la 2,3-diferrocenilciclopropenona (1) con 1,2-etanoditiol (8a)

Na	Catalizador/	Dischvante	Tiempo	Temperatura	Rendimiento		
NO.	Agente activante	Disolvente	(h)	(°°)	(13)	(14)	(15)
1	l ₂ (10% mol)	CH_2CI_2	12.0	25 °C	10	5	5
2	l ₂ (10% mol)	CHCl₃	6.0	50°C	42	20	20
3	<i>p</i> -TSOH (5% mol)	PhH	2.0	90 °C	55	10	10
4	<i>p</i> -TSOH (5% mol)	PhMe	2.0	110 °C	56	10	10
5	CF ₃ COOH (10% mol)	PhMe	4.0	110 °C	20	5	5
6	MsCI (1.0mmol)	CHCl₃	8.0	25 °C	10	10	10
7	MsCI (1.0mmol)	THF	5.0	70°C	30	20	20
8	Me₃SiCl (1.0 mmol)	CHCl₃	8.0	25 °C	10	10	10
9	Me ₃ SiCl (1.0 mmol)	THF	4.0	70 °C	25	20	20

Tabla 5.1 Optimización de la reacción entre la 2,3-diferrocenilciclopropenona (2) y 1,2-etanoditiol (8a)

Condiciones de reacción: 1.0 mmol de (1), 4.0 mmol de (8a). Los rendimientos se determinaron sobre compuestos aislados.

Se observó que estas reacciones carecen de selectividad debido a la formación de los compuestos (14) y (15). Estos resultados pueden explicarse por la presencia de agua como un subproducto de reacción. Cuando se utiliza el yodo como catalizador, el agua no se elimina del medio de reacción, la cual es suficiente para reaccionar la 2,3-diferrocenilciclopropenona (1) y obtener productos de fragmentación. Por tal razón, cuando la reacción es catalizada con ácido *p*-toluensulfónico, el equipo experimental va acoplando con una trampa de Dean-Stark con una menor formación de los productos de fragmentación, favoreciendo al espirocompuesto (13).

Las estructuras de los compuestos **(13)** y **(14)** se establecieron mediante análisis de difracción de rayos X de monocristal, (Figura 5.2 - 5.5). Ambos compuestos se obtuvieron por evaporación de una mezcla de hexano/CH₂Cl₂. En la tabla 6.1 se dan los parámetros cristalográficos, las longitudes de enlace y los ángulos de enlace correspondientes para todos los compuestos obtenidos se pueden consultar en la tabla 6.3.

Figura 5.2. Estructura cristalográfica del 1,2diferrocenil-4,7-ditiaespiro[2.4]hept-1-eno (13)

Figura 5.4. Estructura cristalográfica del 2ferrocenil-1,3-ditiolano (14)

Figura 5.3. Celda unitaria del 1,2-diferrocenil-4,7ditiaespiro[2.4]hept-1-eno (13).

Figura 5.5. Celda unitaria del 2-ferrocenil-1,3-ditiolano (14).

La acetalización de la ciclopropenona consta de la activación del anillo de tres miembros en medio ácido para obtener un catión ciclopropenio **Ib** el cual sufre un ataque nucleofílico de un átomo de azufre del ditiol correspondiente **8a-b**, que mediante una serie de transformaciones intramoleculares se obtiene el catión **II** y agua como subproducto. Finalmente se lleva a cabo un segundo ataque nucleofílico por el segundo átomo de azufre sobre el catión ciclopropenio **III** para obtener los compuestos **(13)**, **(17)** (Esquema 5.3).

Esquema 5.3. Mecanismo propuesto para la formación del compuesto (13)

Los compuestos (14) y (15) se explican debido a la fragmentación del catión (Ib) por la adición de una molécula de agua, que da lugar a la formación de ferrocencarbaldehído (IV), y un derivado de ferrocenil acetilénico (VII), cada uno de los subproductos obtenidos puede tener la formación de diversos productos de reacción:

 El ferrocenilcarbaldehído (XI) sufre un ataque por parte de (8a), formando el intermediario (V), y al perder una molécula de agua es propenso a un segundo ataque nucleofílico del heteroátomo se obtiene el intermediario (VI), que mediante una serie de rearreglos intramoleculares se obtiene el compuesto compuestos (14).

El derivado ferrocenilacetilénico (VII) es atacado por una molécula de agua formando el compuesto olefínico (VIII). La eliminación de agua da lugar a la formación de la cetena (XI), la cual es atacada por (8a), obteniendo el intermediario (X). Mediante una serie de rearreglos intramoleculares se obtienen los intermediarios (XI), (XII) y (XIII), en este último se lleva a cabo una reacción de eliminación y se forma el compuesto (15), (Esquema 5.4).

Esquema 5.4. Mecanismo de reacción para la formación de los compuestos de fragmentación (14) Y (15)

De manera análoga, cuando se estudió la reactividad de la 2,3-diferrocenilciclopropenona (1) con 1,3-propanoditiol (8b) en presencia de *p*-TSOH como catalizador se aisló el compuesto espiránico (17) y el compuesto de fragmentación (18), (Esquema 5.5). El compuesto (19) no fue posible aislarse, debido a que tiende a descomponerse al momento de separarse por purificación por cromatografía en columna. Esto puede deberse a la coordinación foto inducida de un átomo de azufre al centro metálico, que da lugar a cambios de hapticidad $\eta^5 \rightarrow \eta^4$.

Esquema 5.5. Reacción entre la 2,3-diferrocenilciclopropenona (1) y 1,3-propanoditiol (8b)

La estructura del compuesto **(17)** se estableció mediante análisis de difracción de rayos X de un monocristal obtenido por evaporación de una mezcla de hexano/AcOEt 3:2 (Figura 5.6). El análisis de difracción de rayos X muestra la estructura del 1,3-ditiano en conformación de silla. En la tabla 6.1 se dan los parámetros cristalográficos, las longitudes de enlace y los ángulos de enlace correspondientes se pueden consultar en la tabla 6.3.

Figura 5.6. estructura cristalográfica del 2,3diferrocenil-4,8-ditiaespiro[2.5]oct-1-eno (17)

Figura 5.7. celda unitaria de la estructura cristalográfica del 2,3-diferrocenil-4,8ditiaespiro[2.5]oct-1-eno (17)

Cuando se estudian las reacciones del 1,4-butanoditiol **(8c)** y 1,5-pentanoditiol **(8d)**, bajo las mismas condiciones de reacción, no es posible tioacetalizar la 2,3-diferrocenilciclopropenona **(1)**, (Esquema 5.6), debido a la facilidad con la que los ditioles de cadena larga tienden a polimerizarse.

Esquema 5.6 Interacción entre la 2,3-diferrocenilciclopropenona con ditioles de cadena larga

Se utilizó el 1,2-bencenditiol **(8e)**, donde la reacción solo fue selectiva para obtener el compuesto espiránico **(21)** en cantidad de trazas, con ausencia de los compuestos de fragmentación (Esquema 5.7).

Esquema 5.7. Reacción entre la 2,3-diferrocenilciclopropenona con 1,2-bencenditiol 8e

b) Tioacetalización de los cationes (3) y (5)

Se investigaron las mejores condiciones de reacción de los cationes (3) y (5) con el 1,2etanoditiol (8a) evaluando: (disolventes, temperaturas y tiempos de reacción), (Tabla 5.2). Se observó la formación del compuesto espiránico (13) en trazas, al modificar la cantidad estequiométrica de 4 equivalentes de (8a) es posible aumentar el rendimiento del compuesto (13) en un 35% y cuando el disolvente es benceno o tolueno el rendimiento del compuesto (13) se obtiene con un 60%, además de la formación del producto (16) con un rendimiento del 10% y 15% respectivamente. La reactividad del catión (5) con el ditiol (8a), se observa la formación de los productos (13), (14) y (15), (Esquema 5.8).

Esquema 5.8. Reacciones entre los cationes 2,3-diferrocenilciclopropenios (4), (5) con 1,2-etanoditiol (8a)

Entrodo	Catión	Disolvente	Tiempo (h)	Temperatura (°C)	Rendimiento			
Entrada					(13)	(14)	(15)	(16)
1	0	CHCl ₃	12.0	25 °C	35	-	-	-
2		MeCN	6.0	80 °C	55	-	-	10
3		PhH	4.0	80 °C	60	-	-	10
4		PhMe	4.0	110 °C	60	-	-	15
5	SCH3	CHCI₃	4.0	25 °C	20	5	5	-
6	[⊕] ^e ı	MeCN	8.0	80 °C	41	10	10	-
7	Fe Fe	PhH	5.0	80 °C	42	20	20	-
8		PhMe	8.0	110 °C	40	20	20	-

 Tabla 5.2 Optimización de la reacción entre los cationes 2,3-diferrocenilciclopropenios: (3), (5) y 1,2etanoditiol (8a)

Condiciones de reacción: 1.0 mmol de (3) y (5), 3.0 mmol de (8a), tiempo de 4 – 12 y temperatura de reflujo de los disolventes. Los rendimientos se determinaron sobre compuestos aislados.

La estructura del compuesto **(16a)** se estableció mediante análisis de difracción de rayos X de un monocristal obtenido por cristalización de par de disolventes y evaporación de una mezcla de hexano/CHCl₃ 4:1, donde se observa un anillo de cinco miembros de 1,3-ditiolano, además de que la estructura tiene una conformación (*Z*) (Figura 5.8). En la tabla 6.1 se dan los parámetros cristalográficos, las longitudes de enlace y los ángulos de enlace se pueden consultar en la tabla 6.3.

Figura 5.8. Estructura cristalográfica del (Z)-4-(2ferrocenil-1-(2ferrocenil-1,3-ditiola-2nil)vinil)morfolina (16a).

Figura 5.9. Celda unitaria de la estructura cristalográfica del (Z)-4-(2-ferrocenil-1-(2ferrocenil-1,3-ditiola-2-nil)vinil)morfolina (16a).

Se proponen dos mecanismos de reacción para los productos (13) y (16), que también puede extrapolarse a la formación de los compuestos (17), (20a), (21) y (22a):

El primer mecanismo consta de un ataque nucleofílico en el carbono C(1) por un átomo de azufre del ditiol para obtener el intermediario (II), que, mediante una serie de transformaciones forma el catión (III). Finalmente se lleva a cabo un segundo ataque nucleofílico por el segundo átomo de azufre sobre el catión ciclopropenio III para finalmente obtener el compuesto (13), Esquema 5.9.

Esquema 5.9. Mecanismo propuesto para la tioacetalización de los cationes (3) y (5)

En el segundo mecanismo se proponen un ataque nucleofílico del azufre sobre el carbono C(2) del catión ciclopropenio (3), formando el intermediario (IV), que pierde una molécula de HBF₄ obteniendo el intermediario (V). Mediante una serie de arreglos intramoleculares se forma el carbeno (VI). Finalmente, ocurre un rearreglo intramolecular inducido por un segundo ataque del azufre del ditiol, donde se obtienen los compuestos de apertura (16), (Esquema 5.10).

Esquema 6.10. Mecanismo para la acetalización del catión (3) para la formación del compuesto (16)

Se estudió la reactividad del catión (3) con 4 equivalentes de 1,3-propanoditiol (8b) durante 6 horas a reflujo de benceno. Se observó la formación del compuesto espiránico (18), compuestos de apertura del anillo (20a) con bajos rendimientos, (Esquema 5.11).

Esquema 5.11. Reacción del catión (3) con 1,3-propanoditiol (8b)

Cuando se estudian las reacciones del 1,4-butanoditiol **(8c)** y el 1,5-pentanoditiol **(8d)** en reflujo de benceno o tolueno a 12 horas de horas, no fue posible acetalizar el catión **(3)** donde no se obtuvieron ninguno de los productos esperados, debido a que la reacción de polimerización de ditioles de cadena larga es más favorable que la reacción de acetalización del catión **(3)** (Esquema 5.12).

Esquema 5.12. Interacción entre el catión (3) con ditioles de cadena larga

La reacción entre el catión (3) y 1,3-bencenditiol (8e), en reflujo de benceno o acetonitrilo, se encontraron dos productos: el compuesto espiránico (21) y el compuesto de apertura (22a), (Esquema 5.13).

Esquema 5.13 Reacción entre el catión (3) y 1,2-bencenditiol (8e)

La estructura del compuesto **(22a)** se estableció mediante análisis de difracción de rayos X de un monocristal obtenido por cristalización de par de disolventes y evaporación de una mezcla de hexano/CHCl₃ 4:1, donde es posible observar el tioacetal correspondiente del 1,2.bencenditiol, además de que la estructura tiene una conformación *Z* (Figura 5.10).

Figura 5.10. Estructura cristalina de (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2-lil)vinil)morfolina (22)

Sección 3. bis-O,O-nucleófilos

a) Acetalización de la 2,3-diferrocenilciclopropenona (1)

Se investigó la reactividad de la 2,3-diferrocenilciclopropenona (1) con etilenglicol (9a) para obtener el cetal correspondiente de la 2,3-diferrocenilciclopropenona, donde se estudiaron diferentes condiciones de reacción, (Tabla 5.3). La primera reacción se llevó a cabo con yodo elemental en cantidades catalíticas y condiciones suaves de reacción, sin embargo, no fue posible asilar ningún producto estable, en 12 horas continuas. Luego se estudiaron algunos ácidos como HCI_{conc}, CF₃COOH y *p*-TSOH, de los cuales solo se observó el progreso en la reacción con *p*-TSOH en cantidades catalíticas en benceno a reflujo, (Esquema 5.14). Se logró aislar el espirocompuesto (23), el compuesto de fragmentación (24), y se obtuvo el producto de la dimerización de la 2,3-diferrocenilciclopropenona, con el compuesto tetraferrocenil espirolactona (25) con rendimientos del 10 al 35%.

Esquema 5.14. Reacción ente la 2,3-diferrocenilciclopropenona (1) con etilenglicol (9a)

Tabla 5.3. Optimización de la reacción entre la 2,3-diferroceniliciciopropenona (1) y etilen	ngiicoi	: (9a)
--	---------	--------

No.	Catalizador/ Agente activante	Disolvente	Tiempo (h)	Temperatura (°C)	Rendimiento		
					(23)	(24)	(25)
1	l ₂ (10% mol)	CHCl₃	12.0	25°C	-	-	-
2	HCI _{conc} (5% mol)	PhH	8.0	80 °C	-	-	-
3	CF ₃ COOH (5% mol)	PhH	8.0	80 °C	-	-	-
4	<i>p</i> -TSOH (5% mol)	PhH	5.0	80 °C	28	9	35
5	<i>p</i> -TSOH (5% mol)	PhMe	4.0	110 °C	25	11	35
6	MsCI (1.0mmol)	CHCl₃	8.0	25 °C	-	-	10
7	Me ₃ SiCl (1.0 mmol)	THF	8.0	70 °C	-	-	20

Condiciones de reacción: 1.0 mmol de (1), 4.0 mmol de etilenglicol, 5% mol de catalizador ácido, y 1.0 mmol de MsCl, y Me₃SICI. Los rendimientos se determinaron sobre compuestos aislados.

Después de estos experimentos iniciales con etilenglicol, se llevaron a cabo reacciones de la 2,3diferrocenilciclopropenona (1) con 1,3-propilenglicol (9b) y 2-metil-1,3-propilenglicol (9c) usando p-TSOH como catalizador en benceno anhidro, (Esquema 5.15). Se lograron aislar la espirolactona (25), el acrilato diferrocenílico (34), y el compuesto de fragmentación (30) y (33).

Esquema 5.15. Reacción ente la 2,3-diferrocenilciclopropenona (1) con propilenglicol (9b) y 2-metilpropilenglicol (9c)

Con los resultados obtenidos es posible plantear un mecanismo plausible para describir la formación de los productos obtenidos. La acetalización de la ciclopropenona consta de la activación del anillo de tres miembros en medio ácido para obtener un catión ciclopropenio **Ib** el cual sufre un ataque nucleofílico de un átomo de oxígeno del glicol correspondiente **9a-d**, y se obtiene el hemiacetal **(II)**. El mecanismo toma dos vías: a) el hemiacetal **(II)** es atacado por una molécula de HX, mediante la eliminación de H₂O, se obtiene el catión **(IV)**, que es atacado por el segundo átomo de oxígeno del glicol y se obtiene el compuesto espiránico **(23)**; b) el hemiacetal **(II)** forma el carbeno **(V)**, que mediante un rearreglo intramolecular se obtiene el compuesto **(34)**, Esquema 5.16.

Esquema 5.16. Mecanismo de reacción para la formación de los compuestos

El mecanismo de dimerización de la 2,3-diferrocenilciclopropenona (1) comienza con la formación del catión (1b), que reacciona con otra molécula de 2,3-diferrocenilciclopropenona (1), mediante una reacción de ciclo adición [2+2] que forma el intermediario (II) y mediante la eliminación de HX, se obtiene la espirolactona tetraferrocenílica (25), (Esquema 5.17).

Esquema 5.17. formación de la espirolactona (25)

b) Acetalización de los cationes 2,3-diferrocenilciclopropenios (3) y (5)

Teniendo en cuenta los experimentos de tioacetalización de los cationes (3) y (5), se investigó la reactividad con glicoles (9a) con dichos cationes, con diferentes condiciones de reacción, no se logró observar la formación de un producto estable, durante 24 horas, se usó acetonitrilo para aumentar la solubilidad del glicol (Esquema 5.19).

Esquema 5.19. Interacción entre el catión (3) con etilenglicol (9a)

Finalmente se investigó la reactividad del catión **(5)** y etilenglicol **(9a)** en benceno anhidro a reflujo. De esta reacción se observó la formación del compuesto espiránico **(23)** en trazas, así como un compuesto de apertura (Z)-1,2-diferrocenil-3-metiltioprop-2-en-1-ona **(12)** este compuesto se ha reportado con anterioridad en el grupo de trabajo (Esquema 5.20).

Esquema 5.20. Reacción entre el catión (5) con etilenglicol (9a)

Dada la baja reactividad del etilenglicol sobre los cationes (3) y (5) no se efectuaron más experimentos con otros cationes.

Sección 4. bis-O,S-nucleófilos

Se estudia la reactividad del catión (3) con 2-mercaptoetanol (10a) en cantidades estequiométricas en presencia de NEt₃ en benceno o acetonitrilo anhidros, (Esquema 5.21). De esta reacción se buscó el producto del compuesto espiránico (36), sin embargo, solo se logró aislar el compuesto aceitoso (38a) con bajos rendimientos.

Esquema 5.21. Reacción entre el catión (3) con 2-mercaptoetanol (10a)

De manera análoga el 2-mercaptoetanol (10a) se estudia su reactividad con el catión (5) en presencia de NEt₃ en acetonitrilo anhidro como disolvente (Esquema 5.22), se lograron aislar tres compuestos: 2-ferrocenil-2,3-oxatiolano (37), (*Z*)-2-[1',2'-diferrocenil-2-(metiltio)vinil)oxatiolano] (39a), (*E*)-2-(1,2-diferrocenil-2-(metiltio)vinil)oxatiolano (39b); estos dos compuestos se obtienen como una mezcla de los isómeros geométricos con proporción ~ 2:1.

Esquema 5.22. Reacción entre el catión (5) con 2-mercaptoetanol (10a)

Para esta serie de reacciones no fue posible aislar el intermediario de reacción **(36)**, sin embargo, es posible proponer un mecanismo plausible para la formación de los compuestos **(38a)**, **(39a-b)**, también es posible extrapolar este mismo mecanismo para la formación de los compuestos **(40b)** y **(41b)** obtenidos con el 2-mercaptofenol **(10a)**, (Esquema 5.23).

El carbono C(1) del catión es atacado por un átomo de azufre donde se obtiene el intermediario (I), que mediante arreglos intramoleculares se obtiene el catión (II), el cual es atacado por el átomo de oxígeno para formar el compuesto espiránico (III), el cual tiene una apertura del anillo para formar el carbeno (IV). De este último intermediario, el mecanismo puede llevarse a cabo por dos vías:

1) el carbeno **(VA)** es atacado por una molécula de morfolina o de metanotiol (HX) y de aquí se obtiene el intermediario **(VIB)**, para un posterior rearreglo intramolecular formando los compuestos **(38a)** y **(39a)**.

2) el carbeno (VB) tiene una rotación simple donde se forma (VIB), el cual es atacado por grupos nucleofílicos como la morfolina o el metanotiol (HX) y a partir del intermediario (VIIB) se obtienen los compuestos (39a), (40b) y (41b).

Al comprobarse que los cationes (3) y (5) son reactivos frente al 2-mercaptoetanol (10a), de manera que se decidió estudiar la reactividad con el 2-mercaptofenol (10b) en presencia de NEt₃ y acetonitrilo anhidro como disolvente (Esquema 5.24). Con los resultados obtenidos, es posible afirmar que la reacción es favorece como producto mayoritario la formación es isómeros *"E"*, cuando los ataques nucleofílicos se efectúan en C(1), mientras que el producto *"Z"* se favorece

cuando los ataques se efectúan en el carbono C(2). Los productos de apertura del anillo aislados son: (41a)-*E* y (42b)-*E* y el isómero (43a)-*Z*.

Esquema 5.24. Reacción entre el catión (3) y (5) con 2-mercaptofenol (10b)

La estructura del compuesto **(41b)** se estableció mediante análisis de difracción de rayos X de un monocristal obtenido por cristalización de par de disolventes y evaporación de una mezcla de hexano/CHCl₃ 4:1, (Figuras 5.12 & 5.13). En la tabla 6.2 se dan los parámetros cristalográficos, las longitudes de enlace y los ángulos de enlace correspondientes se pueden consultar en la tabla 6.3.

Figura 5.12. Estructura cristalográfica del (E)-2-[1',2'-diferrocenil-2-(metiltio)vinil]benzo[d][1,3]oxatiolano (41b)

Figura 5.13. Celda unitaria del (E)-2-[1',2'-diferrocenil-2-(metiltio)vinil]benzo[d][1,3]oxatiolano (41b)

La estructura del compuesto **(42a)** se estableció mediante análisis de difracción de rayos X de un monocristal obtenido por cristalización de par de disolventes y evaporación de una mezcla de hexano/CHCl₃ 4:1, donde es posible observar el anillo de 6 miembros de la morfolina en la estructura, así como el oxatiolano correspondiente del 2-mercaptofenol (Figura 6.14) y (Figura 6.15). En la tabla 6.2 se dan los parámetros cristalográficos, las longitudes de enlace y los ángulos de enlace correspondientes se pueden consultar en la tabla 6.3.

Figura 6.14. Estructura cristalográfica del (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-oxatio-2-lil)vinil)morfolina (42a)

Figura 6.15. Celda unitaria del (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-oxatio-2lil)vinil)morfolina (42a)

El mecanismo que explica la formación del compuesto (42a) es muy similar al propuesto para la formación del compuesto (22), donde se proponen dobles ataques en C(2) del 2-mercaptofenol (10b), que consta de un ataque nucleofílico del azufre sobre el carbono C(2) del catión (3), el cual forma el intermediario (VIII), que mediante la eliminación de HBF₄ se obtiene el intermediario (IX), donde se tiene una serie de arreglos intramoleculares para formar el carbeno (X). Finalmente, por otro rearreglo intramolecular inducido por segundo ataque del oxígeno se obtiene el compuesto de apertura (42a) (Esquema 5.25).

Esquema 5.25. Mecanismo propuesto para obtener el oxatiolano (42a) a partir del catión (3)

Capítulo VI. Caracterización de los compuestos

a) Caracterización espectroscópica

A continuación, se realiza la caracterización espectroscópica de los compuestos más representativos.

En la (Figura 6.1) se muestra el espectro de RMN de ¹H del 2,3-diferrocenil-4,7ditiaespiro[2.4]hep-1-eno **(13).** Donde se observan las siguientes señales, en un desplazamiento químico de δ = 3.50 ppm se encuentra la señal de los grupos metilenos (S-CH₂), que integra para 4 protones, las señales de los dos ciclopentadienilos no sustituidos (2C₅H₅) se encuentran en δ =4.22 ppm como un singulete, que integra para 10 protones y las señales de los ciclopentadienilos sustituidos (C₅H₄) en δ = 4.42 y 4.59 ppm, que integran para 4 protones cada una.

Figura 6.1 RMN de ¹H (400 MHz, CDCl₃, TMS) de 2,3-diferrocenil-4,7-ditiaespiro[2.4]hep-1-eno (13).

La (Figura 6.2) corresponde al espectro de RMN de ¹³C del 2,3-diferrocenil-4,7ditiaespiro[2.4]hep-1-eno (**13**), donde se muestra la señal correspondiente a los grupos metilenos en un desplazamiento químico de δ = 38.84 ppm, en δ = 47.86 ppm corresponde al carbono espiránico, en δ = 70.06 ppm corresponde a los ciclopentadienilos no sustituidos (2C₅H₅). Las señales en δ = 69.08 y 70.18 ppm corresponden a los ciclopentadienilos sustituidos (2C₅H₄). La señal de los carbonos C_{*ipso*}Fc en δ = 69.77 ppm. En un desplazamiento de δ = 115.0 ppm se encuentra la señal de los carbonos olefínicos (C=C) del ciclopropeno.

Figura 6.2. RMN de ¹³C (100 MHz, CDCI₃, TMS) de 2,3-diferrocenil-4,7-ditiaespiro[2.4]hep-1-eno (13)

En la caracterización por espectroscopia infrarrojo (FTIR) del 2,3-diferrocenil-4,7ditiaespiro[2.4]hep-1-eno (**13**), (Figura 6.3), se observan las bandas características que corresponden a las vibraciones del ferroceno: 477, 811, 998, 1103 y 3087 cm⁻¹. Las bandas correspondientes del enlace C=C del ciclopropeno en 1818 cm⁻¹, y las asociadas al ditiolano, donde es posible observar las bandas asociadas a los fragmentos alquílicos: 2961, 2917, 2909, 2852, 1450, 1430, 1374 cm⁻¹; y las bandas correspondientes a los enlaces C-S que están en 1188 y 672 cm⁻¹.

Figura 6.3. Espectro de FTIR de 2,3-diferrocenil-4,7-ditiaespiro[2.4]hep-1-eno (13).

En la (Figura 6.4) se muestra el espectro de RMN de ¹H del 2-ferrocenil-1,3-ditiolano (**14**). En un desplazamiento químico de δ = 3.27 y 3.38 ppm se encuentran un par de multipletes que integran para un total de cuatro protones que corresponden a los dos grupos SCH₂, en δ = 4.17 y 4.32 ppm son multipletes y corresponden los protones de ciclopentadienilo sustituido (C₅H₄) que integran para un total de cuatro protones. En el desplazamiento químico de δ = 4.20 ppm es una señal en forma de singulete que integra para cinco protones y corresponde a la señal del ciclopentadienilo no sustituido (C₅H₅). La señal que se encuentra en δ = 5.58 ppm es un singulete que integra para un protón y corresponde a un grupo CH.

Figura 6.4. RMN de ¹H (400 MHz, CDCl₃, TMS) de 2-ferrocenil-1,3-ditiolano (14)

La (Figura 6.5) corresponde al espectro de RMN de ¹³C del 2-ferrocenil-1,3-ditiolano (**14**), donde se muestra la señal correspondiente a los dos grupos metilenos en δ = 39.80 ppm y la señal que de δ = 53.15 ppm corresponde al carbono del grupo -CH-. Las dos señales de δ = 67.60 y 68.40 ppm corresponden a los carbonos del anillo ciclopentadienilo sustituido (C₅H₄). La señal en δ = 69.12 ppm corresponde al ciclopentadienilo no sustituido (C₅H₅). La señal del carbono C_{*ipsoFc*} se encuentra en δ = 88.74 ppm.

Figura 6.5. RMN de ¹³C (100 MHz, CDCl₃, TMS) de 2-ferrocenil-1,3-ditiolano (14)

En la caracterización por espectroscopia de infrarrojo (FTIR) del 2-ferrocenil-1,3-ditiolano (**14**) se observan las bandas características que corresponden a las vibraciones del ferroceno: 481, 501, 811, 996, 1023, 1102, 3102 y 3089 cm⁻¹; y las bandas correspondientes al ditiolano, donde los fragmentos alquílicos son: 2963, 2922, 2826 y 1390 cm⁻¹, así como las bandas confirmatorias de enlaces C-S en 1180 y 764 cm⁻¹.

Figura 6.6. Espectro de FTIR del 2-ferrocenil-1,3-ditiolano (14).

En la (Figura 6.7) se muestra el espectro de RMN de ¹H del 2-ferrocenilmetiliden-1,3-ditiolano (**10**). En δ = 3.32 y 3.51 ppm se encuentran un par de multipletes que integran para un total de cuatro protones que corresponden a los metilenos del grupo (SCH₂), en un desplazamiento

químico de δ = 4.22 y 4.49 ppm se presentan las señales en forma de multipletes que corresponden a las señales del ciclopentadienilo sustituido (C₅H₄), que integra para cuatro protones. En δ = 4.16 ppm se presenta una señal de un singulete que integra para cinco protones, esta corresponde al ciclopentadienilo no sustituido (C₅H₅). La señal que se presenta como singulete en δ = 6.26 ppm integra para un protón y corresponde al protón olefínico (=CH) de la molécula.

Figura 6.7. RMN de ¹H (400 MHz, CDCl₃, TMS) de 2-ferrocenilmetiliden-1, 3-ditiolano (15)

La (Figura 6.8) corresponde al espectro de RMN de ¹³C del 2-ferrocenilmetiliden-1,3-ditiolano (**15**), donde se muestra las señales correspondientes a los grupos metilenos en δ = 36.42 y 39.59 ppm. Las dos señales de δ = 67.69 y 68.32 ppm corresponden a los carbonos del ciclopentadienilo sustituido (C₅H₄). La señal de δ = 69.21 ppm corresponde al ciclopentadienilo no sustituido (C₅H₅). La señal del carbono C_{*ipsoFc*} se encuentra en δ = 83.96 ppm. La señal que está en δ = 113.32 ppm corresponde al carbono olefínico =CH-, y la señal de δ = 133.33 ppm corresponde al carbono cuaternario C.

Figura 6.8. RMN de ¹³C (100 MHz, CDCl₃, TMS) de 2-ferrocenilmetiliden-1,3-ditiolano (15)

En la caracterización por espectroscopia infrarrojo (FTIR) del 2-ferrocenilmetiliden-1,3-ditiolano (**15**) (Figura 6.9) se observan las bandas características que corresponden a las vibraciones del ferroceno: 480, 499, 810, 997, 1023, 1102 y 3089 cm⁻¹; las bandas del fragmento olefínico están en 3044 y 1585 cm⁻¹. Es posible observar las bandas correspondientes del ditiolano, con las bandas correspondientes a los grupos alquílicos: 2963, 2921, 2842, 1487, 1390 y la banda confirmatoria de metilenos en 738 cm⁻¹, así como las bandas correspondientes a los enlaces C-S en 1180 y 765 cm⁻¹.

Figura 6.9. Espectro de FTIR del 2-ferrocenilmetiliden-1,3-ditiolano (15).

En la (Figura 6.10) se muestra el espectro de RMN de ¹H del *(Z)*-4-(2-ferrocenil-1-(2-ferrocenil-1,3-ditiola-2-nil)vinil)morfolina (**16a**). En el desplazamiento químico de δ = 2.74-2.76 ppm se encuentra la señal que integra para 4 protones y corresponde a los protones del fragmento (*N*-CH₂). Dos señales como par de multipletes que se encuentran en los desplazamientos de δ = 3.298–3.352 y 3.843–3.530 ppm que integran para 2 protones cada señal, estas corresponden a los protones del ditiolano (SCH₂). En un intervalo de δ = 3.55–3.57 ppm corresponden a los protones OCH₂ del fragmento de la morfolina. Los fragmentos ferrocenílicos se encuentran en δ = 4.10 y 4.29 ppm correspondientes a las señales de los anillos ciclopentadienilos no sustituidos (2C₅H₅) y los multipletes de los ciclopentadienilos sustituidos (2C₅H₄) en δ = 4.13, 4.20, 4.34 y 4.35 ppm. La señal del singulete que se encuentra en δ = 6.95 corresponde al protón olefínico de la molécula (=CH).

Figura 6.10. RMN de ¹H (400 MHz, CDCl₃, TMS) de (Z)-4-(2-ferrocenil-1-(2-ferrocenil-1,3-ditiola-2il)vinil)morfolina (16a).

En la (Figura 6.11) se muestra el espectro de RMN de ¹³C del (*Z*)-4-(2-ferrocenil-1-(2-ferrocenil-1,3-ditiola-2-il)vinil)morfolina (**16a**). En δ = 39.48 ppm se encuentra la señal de los carbonos correspondientes al ditiolano (SCH₂). Las señales correspondientes al fragmento de la morfolina se encuentran en δ = 51.16 ppm de NCH₂ y δ = 67.15 ppm de OCH₂. Las señales de los fragmentos ferrocenílicos se encuentran en δ = 67.61, 67.71, 69.93 y 70.29 ppm y corresponden a los ciclopentadienilos sustituidos (2C₅H₄) y en δ = 69.13 y 69.74 ppm corresponde a los ciclopentadienilos no sustituidos (2C₅H₅); así como las señales de δ = 81.24 y 95.49 ppm

correspondientes a los carbonos *ipso* ferrocenílicos. Se presentan las señales de los carbonos olefínicos δ = 119.84 ppm (=CH) y δ = 149.13 ppm (-C=).

Figura 6.11. RMN de ¹³C (100 MHz, CDCI₃, TMS) de (Z)-4-(2-ferrocenil-1-(2ferrocenil-1,3-ditiola-2il)vinil)morfolina (16a).

En la (Figura 6.12) se muestra el espectro de FTIR del (*Z*)-4-(2-ferrocenil-1-(2ferrocenil-1,3ditiola-2-nil)vinil)morfolina **(16a)**. Las bandas de los fragmentos ferrocenílicos se encuentran en 3093, 1107, 998, 814, 482 y 463. Para el fragmento de la morfolina, se asignan las bandas en 1127 cm⁻¹ al enlace C-N y 1116 cm⁻¹ enlace C-O. La banda relacionada con el ditiolano en 775 cm⁻¹. Y las bandas del enlace C=C en 1556 cm⁻¹.

Figura 6.12. Espectro de FTIR de (Z)-4-(2-ferrocenil-1-(2ferrocenil-1,3-ditiola-2-nil)vinil)morfolina (16a).

En la (Figura 6.13) se muestra el espectro de RMN de ¹H del 2,3-diferrocenil-4,8ditiaespiro[2.5]oct-1-eno **(17).** En el desplazamiento químico de δ = 2.22 ppm se encuentra una señal en forma de multiplete que integra para 2 protones y corresponde a los protones CH₂, en los desplazamientos químicos de δ = 3.20 – 3.23 corresponden a los grupos SCH₂ estas integran para 4 protones debido a que la molécula es simétrica. La señal de δ =4.27 ppm, corresponde a los ciclopentadienilos no sustituidos (2C₅H₅) en forma de un singulete que integra para 10 protones, y las señales de los multipletes de los ciclopentadienilos sustituidos (2C₅H₄) se encuentran en δ = 4.43 y 4.58 ppm que integran para 4 protones cada señal.

Figura 6.13. RMN de ¹H (400 MHz, CDCl₃, TMS) de 2,3-diferrocenil-4,8-ditiaespiro[2.5]oct-1-eno (17)

La (Figura 6.14) corresponde al espectro de RMN de ¹³C del 2,3-diferrocenil-4,8ditiaespiro[2.5]oct-1-eno (**17**), donde se muestran las señales correspondientes a los metilenos en δ = 26.06 ppm y δ = 32.79 ppm, la señal de δ = 60.51 ppm corresponde al carbono espiránico. La señal en δ = 70.06 ppm corresponde a los ciclopentadienilos no sustituidos (2C₅H₅), y las dos señales de δ = 69.44 y 70.26 ppm corresponden a los ciclopentadienilos sustituidos (2C₅H₄). La señal de los carbonos C_{*ipso*}Fc se encuentra en δ = 70.58, y en δ = 115.0 ppm está la señal de los carbonos olefínicos (C=C) del ciclopropeno.

Figura 6.14. RMN de ¹³C (100 MHz, CDCl₃, TMS) del 2,3-diferrocenil-4,8-ditiaespiro[2.5]oct-1-eno (17)

La caracterización por espectroscopia infrarrojo (FTIR) del 2,3-diferrocenil-4,8-ditiaespiro[2.5]oct-1-eno (**17**), se observan las bandas características del ferroceno (478, 818, 999, 1104 y 3087 cm⁻¹), en 1833 cm⁻¹ se observa la banda relacionada con la tención C=C del ciclopropeno, así como las relacionadas al anillo del 1,3-ditiano que están en 906 y 878 cm⁻¹ y las bandas de los metilenos están en 2941, 2927, 2898, 2856, 2820, 1431 y 1410 cm⁻¹, así como las banda del enlace C-S en 1236 cm⁻¹, (Figura 6.15).

Figura 6.15. Espectro de FTIR del 2,3-diferrocenil-4,8-ditiaespiro[2.5]oct-1-eno (17)

En la (Figura 6.16) se muestra el espectro de RMN de ¹H del (*Z*)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2-lil)vinil)morfolina (**22a**). Las señales correspondientes al grupo morfolino se encuentran en un desplazamiento químico de δ = 2.74-2.74 ppm, en forma de un

triplete que integra para 4 protones estos corresponden al fragmento (NCH₂). En el intervalo de $\delta = 3.55 - 3.57$ ppm se observa un triplete que corresponden a los protones del (OCH₂). Los fragmentos ferrocenílicos se encuentran en $\delta = 3.94$ y 4.25 ppm correspondientes a las señales de los anillos ciclopentadienilos no sustituidos (C₅H₅) y los multipletes que se encuentran en $\delta = 4.17$, 4.19, 4.29 y 4.34 ppm son para los ciclopentadienilos sustituidos (C₅H₄). La señal en $\delta = 6.73$ ppm es un singulete que corresponde al protón olefínico y las dos señales que se presentan en $\delta = 7.023 - 7.045$ ppm y $\delta = 7.256 - 7.283$ ppm están en forma de un doble de doble: J₁ = 3.2 Hz y J₂ = 3.2 Hz cuyas señales integran para dos protones cada una corresponden al anillo aromático.

Figura 6.17. RMN de ¹H (400 MHz, CDCl₃, TMS) de (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2lil)vinil)morfolina (22a)

En la (Figura 6.18) se muestra el espectro de RMN de ¹³C del (*Z*)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2-lil)vinil)morfolina (**22a**). Las señales correspondientes al grupo de la morfolina se encuentran en δ = 51.02 ppm de NCH₂ y δ = 67.52 ppm de OCH₂. Las señales en δ = 67.59, 69.08, 69.13 y 70.53 ppm corresponden a los ciclopentadienilos sustituidos (C₅H₄) y en δ = 69.26 y 69.96 ppm corresponden a los ciclopentadienilos no sustituidos (2C₅H₅); las señales de δ =79.88 y 93,95 ppm correspondientes a C_{ipso}. También es posible observar las señales de los protones del ditiolano aromático en δ = 121.89, 125.35 y 138.38 ppm. Finalmente se presentan las señales de los carbonos olefínicos δ = 123.25 ppm (=CH) y δ = 146.85 ppm (-C=).

Figura 6.18. RMN de ¹³C (100 MHz, CDCI₃, TMS) (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2lil)vinil)morfolina (22a)

En la (Figura 6.19) se muestra el espectro de FTIR del (*Z*)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2-lil)vinil)morfolina **(22a).** Las bandas de los fragmentos ferrocenílicos se encuentran en 3086, 1104, 999, 817, 499 y 483 cm⁻¹. Para el fragmento del fragmento morfolino es posible observar las bandas de 1144 cm⁻¹ correspondiente al enlace C-N y 1120 cm⁻¹ correspondiente al enlace C-O. La banda relacionada con el ditiolano es posible establecerla con la banda de 675 cm⁻¹. Las bandas de los grupos aromáticos se encuentran en 3140, 1726, 1661, 1621, 1033 y 735 cm⁻¹. La banda del enlace C-H olefínico en 3056 cm⁻¹ y la banda del enlace C=C en 1556 cm⁻¹.

Figura 6.20. Espectro de FTIR (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-ditiol-2-lil)vinil)morfolina (22)

En la (Figura 6.21) se muestra el espectro de RMN de ¹H del compuesto 2,3-diferrocenil-4,7dioxaespiro[2.4]hept-1-eno (**6**), en donde podemos observar que es una estructura simétrica que contiene las señales correspondientes para los grupos metileno $2CH_2$ en $\delta = 3.88$ ppm, como una señal simple que integra para cuatro protones. Para los fragmentos ferrocenílicos se observa una señal simple en $\delta = 4.33$ ppm que integra para 10H y en $\delta = 4.45$ y 4.57se observan un par de multipletes que integran para 8H y corresponden a los ciclopentadienilos sustituidos ($2C_5H_4$).

Figura 6.21. RMN de ¹H (400 MHz, CDCl₃, TMS) del 2,3-diferrocenil-4,7-dioxaespiro[2.4]hept-1-eno (6)

En la (Figura 6.22) se muestra el espectro de RMN de ¹H del 3-hidroxi-2-metilpropil-*(E)*-2,3diferrocenilacrilato **(34a)**. Las señales correspondientes fragmento alifático se encuentran en un desplazamiento químico de δ = 1.10 - 1.12 ppm, en forma de un doblete que integra para 3 protones del metilo (CH₃). En δ = 3.43-3.63 ppm se presenta un multiplete que integra para un protón que corresponde al CH. La señal del multiplete que se presenta en δ = 3.61-3.71 ppm integra para 2 protones estas corresponden al CH₂OH. Los fragmentos ferrocenílicos se encuentran en δ = 4.08 y 4.12 ppm correspondientes a las señales de los anillos ciclopentadienilos no sustituidos (2C₅H₅) y los multipletes de los ciclopentadienilos sustituidos se encuentran en δ = 4.13, 4.16, 4.27 y 4.30 ppm. El desplazamiento químico de δ = 4.55 es una señal ancha que integra para IH esta corresponde al protón del grupo hidroxilo (OH). En δ = 7.31 ppm se encuentra un singulete que corresponde al protón olefínico (=CH).

En la (Figura 6.23) se muestra el espectro de FTIR del 3-hidroxi-2-metilpropil-*(E)*-2,3diferrocenilacrilato **(34a).** Las bandas de los fragmentos ferrocenílicos se encuentran en 3089, 1106, 1000, 813, 499 y 483 cm⁻¹. En 1723 cm⁻¹ se encuentra la banda confirmatoria de carbonilo, así como la banda de 1178 cm⁻¹ que confirma el enlace C-O. Finalmente en 1658 cm⁻¹ se encuentra la banda relacionada al enlace C=C.

Figura 6.22. Espectro de RMN de ¹H (400 MHz, CDCl³, TMS) del compuesto (34a)

Figura 6.23. Espectro de FTIR del compuesto (34a)

En la (Figura 6.24) se muestra el espectro de RMN de ¹H del 2-ferrocenil-1,3-oxatiolano (**37**). En los desplazamientos químicos de δ = 3.05 – 3.10 ppm y δ = 3.13 - 3.19 ppm se encuentran un par de multipletes que integran para un total de 2 protones, que corresponden al grupo SCH₂, En δ = 3.91 – 3.97 ppm y δ = 3.31 - 3.37 ppm se encuentran un par de multipletes que integran para un total de 2 protones que corresponden al grupo OCH₂. Las señales del fragmento ferrocenílico se encuentra en δ = 4.20 ppm, que es un singulete que integra para cinco protones y corresponde a la señal del ciclopentadienilo no sustituido (C₅H₅), y en δ = 4.22 4.32 y 4.34 ppm son multipletes y corresponden a las señales de los protones de ciclopentadienilo sustituido (C₅H₄). La señal en δ = 5.58 ppm es un singulete que integra para un solo protón y corresponde a un grupo CH.

La (Figura 6.25) corresponde al espectro de RMN de ¹³C del 2-ferrocenil-1,3-oxatiolano (**37**), en un desplazamiento químico de δ = 33.86 y 67.89 ppm se muestran las señales correspondientes a los dos metilenos (CH₂). Las señales de los fragmentos ferrocenílicos se encuentran en δ = 68.85, 68.95, 69.01 y 71.82 ppm que corresponden a los carbonos del anillo del ciclopentadienilo sustituido (C₅H₄), la señal que ésta en δ = 69. ppm corresponde al ciclopentadienilo no sustituido (C₅H₅), además de la señal del carbono C_{ipsoFc} en δ = 85.17 ppm.

Figura 6.24. Espectro de RMN de ¹H del 2-ferrocenil-1,3-oxatiolano (37)

Figura 6.25. Espectro de RMN de ¹³C del 2-ferrocenil-1,3-oxatiolano (37)

En la (Figura 6.26) se muestra el espectro de RMN de ¹H del ((*E*)-2-[1',2'-diferrocenil-2-(metiltio)vinil]oxatiolano **(39a).** En un desplazamiento químico de δ = 2.50 ppm se encuentra un singulete que integra para 3 protones, que corresponde al metilo del fragmento SMe. En δ = 3.00 - 3.01 y δ = 3.20 ppm se encuentran un par de multipletes que integran para un total de 2H, que corresponden al grupo SCH₂, En δ = 3.9 ppm y δ = 4.15 ppm se encuentran un par de multipletes que integran para un total de 2H que corresponden al grupo OCH₂. Las señales del fragmento ferrocenílico corresponden a los picos que se encuentra en δ = 4.18 ppm y δ = 4.21 ppm, que es un par de singuletes que integra para cinco protones (cada uno) y corresponde a la señal de los ciclopentadienilos no sustituidos (2C₅H₅), y en δ = 4.28 4.35, 4.49 y 4.74 ppm son multipletes y corresponden a las señales de los protones de ciclopentadienilo sustituido (C₅H₄). La señal que está en δ = 6.92 ppm es un singulete que integra para un solo protón y corresponde a un grupo CH.

Figura 6.26 RMN de ¹H (400 MHz, CDCI₃, TMS) del compuesto (39a)

En la (Figura 6.27) se muestra el espectro de RMN de ¹H del (*E*)-2-[1',2'-diferrocenil-2-(metiltio)vinil]oxatiolano **(39b).** En un desplazamiento químico de δ = 1.98 ppm se encuentra un singulete que integra para 3 protones, que corresponde al metilo del fragmento SMe. En δ = 3.70 y δ = 3.86 ppm se encuentran un par de multipletes que integran para un total de 2 protones que corresponden al grupo SCH₂. Las señales del fragmento ferrocenílico corresponden a los picos que se encuentra en δ = 4.23 ppm y δ = 4.28 ppm, que es un par de singuletes que integran para cinco protones (cada uno) y corresponde a la señal de los ciclopentadienilos no sustituidos (2C₅H₅), y en δ = 4.40 4.63, 4.69 y 4.83 ppm son multipletes y corresponden a las señales de los protones de ciclopentadienilo sustituido (C₅H₄). La señal que está en δ = 6.58 ppm es un singulete que integra para un solo protón y corresponde a un grupo CH.

Figura 6.27. RMN de 1H (400 MHz, CDCI₃, TMS) del compuesto (39a)

En la (Figura 6.28) se muestra el espectro de RMN de ¹H del (*E*)-2-[1',2'-diferrocenil-2-(morfolino)vinil]benzo[d][1,3]oxatiolano **(41b).** Las señales correspondientes al morfolino se encuentran en δ = 2.72 y δ = 2.98 ppm son un par de multipletes que corresponden a los protones del NCH₂. En δ = 3.55 ppm es un triplete que corresponden a los protones del OCH₂. Los fragmentos ferrocenílicos se encuentran en δ = 4.01 y 4.04 ppm correspondientes a las señales de los anillos ciclopentadienilos no sustituidos (2C₅H₅) y los multipletes de los ciclopentadienilos sustituidos en δ = 4.19, 4.24, 4.34, 4.39 y 4.44 ppm. La señal que está en δ = 6.18 ppm es un singulete que corresponde al protón olefínico y finalmente se tienen cuatro señales en δ = 6.92, 7.00, 7.07 y 7.16 ppm cuyas señales integran para 4 protones corresponden al fragmento aromático.

En la (Figura 6.29) se muestra el espectro de RMN de ¹³C del *((E)*-2-[1',2'-diferrocenil-2-(morfolino)vinil]benzo[d][1,3]oxatiolano **(41b).** Las señales correspondientes de la morfolina se encuentran en los desplazamientos químicos de δ = 50.77 ppm para NCH₂ y δ = 67.52 ppm de OCH₂. Las señales en δ = 68.88, 69.08, 69.13 y 70.53 ppm corresponden a los ciclopentadienilos sustituidos (C₅H₄) y en δ = 69.09 y 69.10 ppm corresponden a los ciclopentadienilos no sustituidos (2C₅H₅); las señales de δ =79.76 y 94.08 ppm correspondientes a las señales del C_{*ipso*}. También es posible observar la señal del carbono S-C-O en δ = 103.21 ppm. Las señales de los carbonos del fragmento aromáticos se encuentran en δ = 109.97, 120.70, 121.23, 121.98, 125.48 y 156.13 ppm. Finalmente se presentan las señales de los carbonos olefínicos δ = 126.70 ppm (=CH) y δ = 146.43 ppm (-C=).

Figura 6.28. RMN de ¹H (400 MHz, CDCI₃, TMS) del compuesto 41b

Figura 6.29. RMN de ¹³C (100 MHz, CDCl₃, TMS) del compuesto (41a)

En la (Figura 6.30) se muestra el espectro de RMN de ¹H del (*E*)-2-[1',2'-diferrocenil-2-(metiltio)vinil]benzo[*d*][1,3]oxatiolano (42b). La señal correspondiente del SMe se encuentra en un desplazamiento químico de δ = 2.38 ppm en forma de sigulete que integra para 3 protones. Los fragmentos ferrocenílicos se encuentran en δ = 4.09 y 4.13 ppm correspondientes a las señales de los anillos ciclopentadienilos no sustituidos (2C₅H₅) y los multipletes de los ciclopentadienilos sustituidos en δ = 4.40, 4.43, 4.48 y 4.68 ppm. La señal en δ = 6.59 ppm es un singulete que corresponde al protón olefínico (=CH) y se tienen cuatro señales en δ = 6.89, 6.91,

7.05 y 7.09 ppm cuyas señales integran para 4 protones que corresponden al fragmento aromático.

En la (Figura 6.31) se muestra el espectro de RMN de ¹³C del (*E*)-2-[1',2'-diferrocenil-2-(metiltio)vinil]benzo[*d*][1,3]oxatiolano **(42b)**. En un desplazamiento químico de δ = 50.77 ppm se encuentra la señal del metileno del fragmento del SMe. Las señales en δ = 67.69, 68.69, 68.98 y 69.10 ppm corresponden a los ciclopentadienilos sustituidos (C₅H₄) y en δ = 69.17 y 69.51 ppm corresponden a los ciclopentadienilos no sustituidos (2C₅H₅); las señales de δ =81.78 y 93.96 ppm correspondientes a C_{ipso}. la señal del carbono S-C-O en δ = 103.40 ppm. Las señales de los carbonos del fragmento aromáticos se encuentran en δ = 110.02, 121.21, 122.02, 125.61, 128.01 y 155.02 ppm. Finalmente se presentan las señales de los carbonos olefínicos en δ = 130.06 ppm (-CH=) y δ = 132.73 ppm (-C=).

Figura 6.30. Figura RMN de ¹H (400 MHz, CDCI₃, TMS) del compuesto (42b)

Figura 6.31. RMN de ¹³C (100 MHz, CDCI₃, TMS) del compuesto (40b)

En la (Figura 6.32) se muestra el espectro de RMN de ¹H del (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-oxatio-2-lil)vinil)morfolina **(43a)**. Las señales correspondientes al fragmento morfolino se encuentran en δ = 2.69-2.72 ppm y δ = 2.96-2.99 ppm que corresponden a los protones del NCH₂. En δ = 3.53 – 3.55 ppm es un triplete que corresponden a los protones del OCH₂. Los fragmentos ferrocenílicos se encuentran en δ = 4.04 y 4.14 ppm correspondientes a las señales de los anillos ciclopentadienilos no sustituidos (2C₅H₅) y los multipletes de los ciclopentadienilos sustituidos en δ = 4.19, 4.23, 4.34, 3.29 y 4.43 ppm. La señal que está en δ = 6.70 ppm es un singulete que corresponde al protón olefínico y se tienen cuatro señales en los desplazamientos de δ =6.91, 7.00, 7.06 y 7.15 que corresponden al fragmento aromático.

En la (Figura 6.33) se muestra el espectro de RMN de ¹³C del (Z)-4-(2-ferrocenil-1-(2-ferrocenilbencen[d][1,3]-oxatio-2-lil)vinil)morfolina **(43a).** Las señales correspondientes de la morfolina se encuentran en δ = 50.94 ppm de NCH₂ y δ = 66.99 ppm de OCH₂. Las señales en δ = 67.80, 68.59, 69.04, 69.44, 70.04, 70.23 y 70.38 ppm corresponden a los ciclopentadienilos sustituidos (C₅H₄) y en δ = 69.26 y 69.30 ppm corresponden a los ciclopentadienilos no sustituidos (2C₅H₅); las señales de δ = 79.94 y 94,55 ppm correspondientes a C_{ipso}. Las señales de los carbonos aromáticos en δ = 110.14, 120.85, 121.39, 122.15, 125.65 y 156.30 ppm. Finalmente se presentan las señales de los carbonos olefínicos δ = 126.87 ppm (=CH) y δ = 146.60 ppm (-C=).

Figura 6.32. RMN de 1H (100 MHz, CDCI₃, TMS) del compuesto (43a)

Figura 6.33. RMN de 13C (100 MHz, CDCI₃, TMS) del compuesto (43a)

b) Cristalografía

	Fe 13	Fe S	S D -F - D -F - D -F - D -F - D -F - D -F - D -F - D -F - D -F - D -F - D - F - D - - D - - D - - - -
Formula empírica	$C_{25}H_{22}Fe_2S_2$	C ₁₃ H ₁₄ FeS ₂	C ₂₆ H ₂₄ Fe ₂ S ₂
Peso Molecular Temperatura Longitud de onda Sistema cristalino Grupo Espacial Unidades de celda Cristalina	498.24 $120(2) K$ $0.71073 Å$ $Crtorrómbico$ $Pna21$ $a = 12.2395(5) Å$ $b = 22.6452(9) Å$ $c = 7.4967(3) Å$ $\alpha = 90^{\circ}.$ $\beta = 90^{\circ}.$ $\gamma = 90^{\circ}.$	290.21 130(2) K 0.71073 Å Monoclínico P21/c a = 14.6438(11) Å b = 8.8837(8) Å c = 9.2309(12) Å $\alpha = 90^{\circ}.$ $\beta = 91.598(8)^{\circ}.$ $\gamma = 90^{\circ}.$	512.27 $130(2) K$ $0.71073 Å$ Ortorrómbico Pna21 $a = 18.3129(11) Å$ $b = 7.4136(9) Å$ $c = 31.900(5) Å$ $\alpha = 90^{\circ}.$ $\beta = 90^{\circ}.$ $\gamma = 90^{\circ}.$
Volumen	2077.83(14) Å ³	1200.4(2) Å ³	4330.9(5) Å ³
Z Densidad Coeficiente de Absorción F (000)	4 1.593 mg/m3 1.607 mm ⁻¹ 1024	4 1.606 Mg/m3 1.570 mm ⁻¹ 600	8 1.571 mg/m3 1.544 mm ⁻¹ 2112
θ Rango (°)	3.599 a 29.421°.	3.607 a 29.556°.	3.530 a 29.548°.
Refracciones recolectadas	19807	5567	19807
Reflexiones independientes	4965 [R(int) = 0.0422]	2839 [R(int) = 0.0667]	4965 [R(int) = 0.0422]
Parámetros refinables	4965 / 1 / 269	2839/0/145	9079 / 1 / 542

Tabla 6.1 Parámetros cristalográficos de los compuestos (13), (14), (17)

		S S H Fe N Fe 22	Fe G G G G G G G G G G G G G G G G G G G	C S H Fe N Fe (43a)
Formula empírica	$C_{29}H_{31}Fe_2NOS_2$	C ₃₃ H ₃₁ Fe ₂ NOS ₂	C ₃₀ H ₂₆ Fe ₂ S ₂ O	C ₃₃ H ₃₁ Fe ₂ SO ₂
Peso Molecular Temperatura	585.37 130(2) K	633.41 130(2) K	578.68 gmol ⁻¹ 130(2) K	617.35 130(2) K
onda	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Sistema cristalino	Ortorrómbico	Monoclínico	Triclínico	Monoclínico
Grupo Espacial	P212121	P21/c	P-1	P21/n
Unidades de celda Cristalina	a = 7.5425(3) Å b = 17.6838(9) Å c = 18.8929(11) Å α = 90°. β = 90°. γ = 90°.	$\begin{array}{l} a = 10.9381(8) \ \ \mathring{A} \\ b = 32.1244(18) \ \ \mathring{A} \\ c = 7.9494(5) \ \ \mathring{A} \\ \alpha = 90^{\circ}. \\ \beta = 104.835(7)^{\circ}. \\ \gamma = 90^{\circ}. \end{array}$	$\begin{array}{l} a=7.6795(6)~\text{\AA}\\ b=8.5130(4)\text{\AA}\\ c=19.7792(14)~\text{\AA}\\ \alpha=88.655(4)^\circ.\\ \beta=87.639(6)^\circ.\\ \gamma=71.950(5)^\circ\end{array}$	$\begin{array}{l} a = 13.7187(10) \ \text{\AA} \\ b = 10.1025(6) \ \text{\AA} \\ c = 19.1899(13) \ \text{\AA} \\ \alpha = 90^{\circ}. \\ \text{\AA} = 101.515(7)^{\circ}. \\ \gamma = 90^{\circ}. \end{array}$
Volumen	2519.8(2) Å ³	2700.2(3) Å ³	1228.32(15)Å ³	2606.1(3) Å ³
Z	4	4	2	4
Densidad	1.543 mg/m ³	1.558 mg/m ³	1.564 Mg/m3	1.573 Mg/m ³
Coeficiente de	1.341 mm ⁻¹	1.258 mm ⁻¹	1.374mm ⁻¹	1.227 mm ⁻¹
F (000)	1216	1216	596	1280
θ Rango (°)	3.457 a 30.069°.	3.670 a 29.503°.	3.411 a 29.547°	3.517 a 29.570°.
Refracciones recolectadas	9130	12763	16637	15041
Reflexiones independientes	5847 [R(int) = 0.0451]	6345 [R(int) = 0.0418]	5923 [R(int) = 0.0485]	6214 [R(int) = 0.0427]
Parámetros refinables	5847 / 0 / 320	6345 / 0 / 352	5923 / 0 / 317	6214 / 0 / 352

Tabla 6.2 Parámetros cristalográficos, (42b) y (43a)

Longitudes de enlace (Å)		Ángulos de Enlace (°)	
	S	S Fe	
C(1)-C(2) C(1)-C3() C(1)-C(6) C(4)-C(5) S(1)-C(4) S(1)-C(3) S(2)-C(3) S(2)-C(5)	1.316(5) 1.477(5) 1.435(5) 1500(19) 1.793(9) 1.822(3) 1.825(3) 1.839(12)	13 C(4)-S(1)-C(3) C(3)-S(2)-C(5) C(2)-C(1)-C(3) C(1)-C(2)-C(3) C(1)-C(3)-C(2) S(1)-C(3)-S(2) C(5)-C(4)-S(1) C(4)-C(5)-S(2)	99.0(3) 93.6(4) 63.8(3) 63.4(3) 52.8(2) 108.9(18) 109.1(9) 107.8(8)
$\begin{array}{c} C(2)-C(3)\\ C(5)-C(7)\\ C(3)-S(1)\\ C(3)-S(2)\\ C(5)-S(1)\\ C(7)-S(2)\\ C(3)-H(3)\\ C(9)-C(18)\\ C(4)-C(18)\\ C(4)-C(18)\\ C(4)-C(9)\\ C(15)-C(28)\\ S(1)-C(18)\\ S(1)-C(3)\\ S(3)-C(18)\\ S(3)-C(5)\\ \end{array}$	1.494(4) 1.508(5) 1.829(3) 1.835(4) 1.812(4) 1.805(4) 1.0000 1.496(8) 1.493(7) 1.305(7) 1.513(10) 1.809(5) 1.822(3) 1.803(6) 1.839(12)	$\begin{array}{c} C(2)-C(3)-S(1)\\ C(2)-C(3)-S(2)\\ S(1)-C(3)-S(2)\\ C(5)-C(7)-S(2)\\ C(5)-S(1)-C(3)\\ C(7)-S(2)-C(3)\\ C(2)-C(3)-H(3)\\ C(18)-S(1)-C(43)\\ C(18)-S(3)-C(28)\\ C(28)-C(15)-C(43)\\ C(15)-C(43)-S(1)\\ S(1)-C(18)-S(3)\\ C(9)-C(18)-C(9)\\ C(4)-C(9)-C(18)\\ C(9)-C(4)-C(18)\\ \end{array}$	$\begin{array}{c} 112.2(2)\\ 112.3(2)\\ 108.44(16)\\ 106.8(2)\\ 98.03(17)\\ 96.75(17)\\ 107.9\\ 100.9(3)\\ 99.9(3)\\ 113.2(6)\\ 113.6(5)\\ 114.8(5)\\ 51.8(3)\\ 64.0(4)\\ 64.2(4)\end{array}$
S(1)-C(11)	1.817(5)	0 16 S(1)-C(11)-S(2)	105.6(3)
S(1)-C(28) S(2)-C(11) S(2)-C(29) C(28)-C(29) N(1)-C(13) N(1)-(26) C(23)-C(26) C(13)-C(22) O(1)-C(23)	1.804(6) 1.858(5) 1.839(12) 1.521(11) 1.461(7) 1.466(7) 1.509(9) 1.511(8) 1.433(8)	C(11)-S(1)-C(28) C(11)-S(2)-C(29) S(1)-C(28)-C(29) S(2)-C(29)-C(28) C(13)-N(1)-C(26) N(1)-C(13)-C(22) N(1)-C(26)-C(23) C(22)-O(1)-C(23) O(1)-C(23)-C(26)	94.9(3) 98.7(3) 106.5(5) 109.3(5) 115.7(4) 109.1(5) 108.3(5) 110.6(4) 111.9(5)

Tabla 6.3. Longitudes y ángulos de enlace de los compuestos

O(1)-C(22) C(1)-C(5) C(1)-C(11) C(1)-N(1) C(5)-H(5) C(5)-C _{Fc} (8)	1.425(7) 1.340(8) 1.541(7) 1.433(7) 0.950 1.468(8)	$\begin{array}{c} O(1)\text{-}C(22)\text{-}C(13)\\ C(1)\text{-}C(5)\text{-}H(5)\\ C(11)\text{-}C(1)\text{-}C(5)\\ C(5)\text{-}C(1)\text{-}N(1)\\ C_{F_{C}}(8)\text{-}C(5)\text{-}C(1) \end{array}$	109.1(5) 113.9 121.3(5) 127.8(5) 132.2(5)	
$\begin{array}{c} S(1)-C(6)\\ S(1)-C(9)\\ S(2)-C(11)\\ S(2)-C(9)\\ C(6)-C(11)\\ C(11)-C(18)\\ C(15)-C(22)\\ C(22)-C(24)\\ C(11)-C(18)\\ C(15)-C(18)\\ N(1)-C(18)\\ C(15)-C(18)\\ N(1)-C(27)\\ N(1)-C(16)\\ C(1)-C(11)\\ C(27)-C(33)\\ O(1)-C(32)\\ O(1)-C(33)\\ C(3)-C(12)\\ C(12)-H(12)\\ C(5)-C(12)\\ N(1)-C(3)\\ C(3)-C(9)\\ \end{array}$	$\begin{array}{c} 1.762(3)\\ 1.851(3)\\ 1.755(3)\\ 1.853(3)\\ 1.402(4)\\ 1.393(4)\\ 1.393(4)\\ 1.392(4)\\ 1.392(4)\\ 1.393(4)\\ 1.387(4)\\ 1.465(3)\\ 1.468(3)\\ 1.541(7)\\ 1.507(4)\\ 1.426(3)\\ 1.427(4)\\ 1.344(4)\\ 0.9500\\ 1.466(4)\\ 1.426(3)\\ 1.528(4)\end{array}$	$\begin{array}{c} S(1)-C(9)-S(2)\\ C(6)-S(1)-C(9)\\ C(11)-S(2)-C(9)\\ C(11)-C(6)-S(1)\\ C(6)-C(11)-S(2)\\ C(18)-C(11)-C(6)\\ C(15)-C(18)-C(11)\\ C(22)-C(15)-C(18)\\ C(15)-C(22)-C(24)\\ C(6)-C(24)-C(22)\\ C(27)-N(1)-C(16)\\ N(1)-C(16)-C(32)\\ N(1)-C(27)-C(33)\\ C(32)-O(1)-C(33)\\ O(1)-C(32)-C(16)\\ O(1)-C(32)-C(16)\\ O(1)-C(33)-C(27)\\ C(12)-C(3)-C(9)\\ N(1)-C(3)-C(9)\\ C(3)-C(12)-C(5)\\ C(3)-C(12)-H(12)\\ \end{array}$	$\begin{array}{c} 105.15(14)\\ 96.43(12)\\ 96.57(13)\\ 115.6(2)\\ 116.3(2)\\ 119.8(3)\\ 119.3(3)\\ 120.7(3)\\ 120.2(3)\\ 119.7(3)\\ 113.5(2)\\ 109.6(2)\\ 109.6(2)\\ 109.2(2)\\ 111.6(2)\\ 110.6(2)\\ 127.1(2)\\ 119.9(2)\\ 113.0(2)\\ 134.3(3)\\ 112.9\end{array}$	
S Fé SMe Fé 42b-E				
$\begin{array}{c} C(6)-C(5)\\ C(8)-C(9)\\ C(7)-S(1)\\ S(1)-C(6)\\ C(6)-C(8)\\ C(8)-C(19)\\ C(19)-O(1)\\ C(19)-S(2)\\ O(1)-C(21)\\ S(2)-C(20)\\ C(21)-C(22)\\ C(22)-C(23)\\ C(22)-C(23)\\ C(23)-C(24)\\ C(24)-C(25)\\ C(25)-C(20)\\ \end{array}$	$\begin{array}{c} 1.486 \ (4) \\ 1.475 \ (4) \\ 1.803 \ (4) \\ 1.774 \ (3) \\ 1.359 \ (4) \\ 1.508 \ (4) \\ 1.508 \ (4) \\ 1.466 \ (4) \\ 1.857 \ (3) \\ 1.377 \ (4) \\ 1.740 \ (3) \\ 1.378 \ (5) \\ 1.374 \ (5) \\ 1.380 \ (5) \\ 1.394 \ (5) \\ 1.403 \ (5) \end{array}$	$\begin{array}{c} C(13)-C(9)-C(8)\\ C(10)-C(9)-C(8)\\ C(1)-C(5)-C(6)\\ C(4)-C(5)-C(6)\\ C(8)-C(6)-S(1)\\ C(5)-C(6)-S(1)\\ C(6)-C(8)-C(19)\\ O(1)-C(19)-C(8)\\ O(1)-C(19)-S(2)\\ C(8)-C(19)-S(2)\\ C(8)-C(19)-S(2)\\ O(1)-C(21)-C(20)\\ C(23)-C(22)-C(21)\\ C(22)-C(23)-C(24)\\ C(24)-C(25)-C(20)\\ \end{array}$	125.7(3) $128.1(3)$ $126.0(3)$ $126.0(2)$ $110.7(2)$ $116.4(3)$ $114.2(2)$ $106.85(19)$ $112.3(2)$ $116.9(3)$ $117.0(4)$ $122.0(4)$ $118.6(4)$	

	(\bigcirc	
	(ovs H	
	4		
	Fe	Fe	
		43a	
C(1)-C(9)	1.517(3)	C(4)-C(1)-C(9)	123.0(2)
C(3)-C(11)	1.347(3)	C(24)-C(1)-C(9)	129.5(2)
c(3)-N(1)	1.431(3)	C(11)-C(3)-N(1)	121.9(2)
C(3)-C(9)	1.536(3)	C(11)-C(3)-C(9)	119.1(2)
C(5)-C(30)	1.388(3)	N(1)-C(3)-C(9)	119.0(2)
C(5)-C(8)	1.392(3)	C(30)-C(5)-C(8)	120.1(2)
C(5)-S(1)	1.757(2)	C(30)-C(5)-S(1)	128.4(2)
C(6)-C(11)	1.462(3)	C(8)-C(5)-S(1)	111.42(18)
C(8)-O(1)	1.371(3)	C(7)-C(6)-C(13)	106.9(2)
C(8)-C(20)	1.383(3)	C(7)-C(6)-C(11)	122.4(2)
C(9)-O(1)	1.457(3)	C(13)-C(6)-C(11)	130.6(2)
C(9)-S(1)	1.872(2)	O(1)-C(8)-C(20)	121.8(2)
C(11)-H(11)	0.9500	O(1)-C(8)-C(5)	116.6(2)
C(16)-N(1)	1.481(3)	C(20)-C(8)-C(5)	121.6(2)
C(16)-C(25)	1.514(4)	O(1)-C(9)-C(1)	106.06(18)
C(16)-H(16A)	0.9900	O(1)-C(9)-C(3)	108.92(19)
C(17)-N(1)	1.471(3)	C(1)-C(9)-C(3)	114.42(19)
C(17)-C(31)	1.513(3)	O(1)-C(9)-S(1)	106.48(15)
C(17)-H(17A)	0.9900	C(1)-C(9)-S(1)	111.64(16)
C(20)-C(22)	1.385(4)	C(3)-C(9)-S(1)	108.96(16)
C(20)-H(20)	0.9500	C(3)-C(11)-C(6)	130.6(2)
C(22)-C(32)	1.386(4)	C(3)-C(11)-H(11)	114.7
C(22)-H(22)	0.9500	C(6)-C(11)-H(11)	114.7
C(25)-O(2)	1.431(3)	N(1)-C(16)-H(16A)	109.6
C(25)-H(25A)	0.9900	C(25)-C(16)-H(16A)	109.6
C(30)-C(32)	1.396(4)	N(1)-C(16)-C(25)	110.3(2)
C(30)-H(30)	0.9500	N(1)-C(16)-H(16B)	109.6
C(31)-O(2)	1.431(3)	C(25)-C(16)-H(16B)	109.6
C(31)-H(31A)	0.9900	H(16A)-C(16)-H(16B)	108.1
C(32)-H(32)	0.9500	N(1)-C(17)-C(31)	110.6(2)

Conclusiones

1.- Se estudio la reactividad de la 2,3-diferrocenilciclopropenona (1) y los cationes 2,3diferrocenilciclopropenios (3-6) con diversos *bis*-nucleófilos (S,S) (8a-e), (O,O) (9a-e), y (O,S) (10a-b) alifáticos y aromáticos con diversas condiciones de reacción. Se caracterizaron nuevos heterociclos con uno y dos fragmentos ferrocenílicos dentro de sus moléculas (espirocompuestos, ditiolanos, ditiano, benzoditiolanos, dioxolanos, benzodioxolanos, oxatiolanos y benzoxatiolanos

2.- Se probaron diversos catalizadores y agentes activantes con la finalidad de llevar a cabo las reacciones de tioacetalización de la 2,3-diferrocenilciclopropenona (1) en diferentes condiciones de reacción. Bajo la catálisis de ácido *p*-toluensulfónico (5% mol) es posible obtener los espirocompuestos (13) y (17) y compuestos de fragmentación (14), (15) y (18).

3.- El catión 2,3-diferrocenil-1-morfolinociclopropenio (3) es reactivo a los ditioles (8a), (8b) y (8e), donde se obtienen los espirocompuestos (13), (17) y (21), con rendimientos moderados y compuestos de apertura (16a), (20a) y (22a) en bajos rendimientos.

4.- Los ditioles (8c) y (8d) no son reactivos con los derivados de la 2,3-diferrocenilciclopropenona
(1) y los cationes (3) y (5) para obtener los tioacetales respectivos, observándose descomposición de los ditioles y su posterior polimerización.

5.- La reactividad de la 2,3-diferrocenilciclopropenona con glicoles, en presencia del ácido *p*toluensulfónico (5% mol) es limitada debido a la baja nucleofilidad del oxígeno, sin embargo, se logró aislar el espirocompuesto **(23)**, los compuestos de fragmentación **(24)**, **(30)** y **(33)**, el acrilato **(34a)** y la dimerización de la ciclopropenona **(25)** que se lleva a cabo por un cicloadición **[2+2]**.

6.- Para todos los productos se realizó una propuesta sobre los posibles mecanismos de formación.

7.- Se obtuvieron las estructuras cristalinas de los compuestos: espirocompuestos (13), (17), ditiolanos, (14), (16), benzoditiolanos (22), benzoxatiolanos (42b) y (43a).

Referencias

- 1. T. J. Kealy, P. L. Pauson, Nature: 1951, 168, 1039–1040.
- 2. S. A. Miller; J. A. Tebboth; J. F. Tremaine. J. Chem. Soc: 1952, 632-6353.
- 3. R. B. Woodward, M. Rosenblum, M. C. Whiting, J. Am. Chem. Soc. 1952, 74, 3458–3459.
- 4. E. O. Fischer, W. Pfab, Z. Naturforsch. B. 1952, 7, 377–379.
- 5. K. Ogasahara; M. Sorai; H. Suga. Chem. Phys. Lett. 1979, 68, 457-460
- 6. A. Bhattacharjee; A. Rooj; D. Roy; M. Roy. J. Exp. Phys. 2014. 2014, 1.
- 7. P. Séller; J. D. Dunitz; Acta Crystall. Sect. B. 1982, 38, 1741 174.
- 8. N. G. Connelly; W. E. Geiger. Chem. Rev. 1996, 96, 877 910.
- 9. P. T. Kissinger; W. R. Heineman. J. Chem Educ. 1983, 60, 702 706.
- 10. R. S. Nicholson; I. Shain. Anal. Chem. 1964, 36, 706 -723
- 11. H. Nishihara. Adv. Inorg. Chem. 2002, 53, 41-86
- 12. Ch. Elsenbroich, A. Salzer, Organometallics: A concise Introduction; VCH:Weinheirn (1989)
- 13. J. E. Hause. Inorganic Chemistry 2th ed. Academic Press (2013) pp: 707 746
- 14. D. Astruc. Eur. J. Inorg. Chem. 2017, 6–29
- 15. R. G. Arrayás; J. Adrio; J. C. Carretero.Angew. Chem. Int. Ed. 2006, 45, 7674 7715.
- 16. R. D. A. Hudson.J. Organomet. Chem. 2001, 637–639, 47–69
- 17. M. F. Fouda; M. M. Elzaher; R. A. Abdelsamania; A. E. Labib. Appl. Organomet. Chem. 2007, 21, 613-625
- 18. B. Floris. Chem. Biol. Technol. Agric. 2015, 2: 15, 1-14.
- 19. H. Beitollahi; M. A. Khalilzadeh; S. Tajik; M. Safaei; K. Zhang; H. W. Jang; M. Shokouhimehr. ACS Omega. 2020, 5, 2049–2059.
- 20. R. Tong; Y. Zhao; L. Wang; H. Yu; F. Ren; M. Saleem; W. A. Ame. J. Organomet. Chem. 2014, 755, 16-32
- 21. L. Cunningham; A. Benson; P. J. Guiry. Org. Biomol.Chem. 2020, 18, 9329 9370
- 22. S. Dey; R. Pietschnig. Coord. Chem. Rev. 2021, 437, 213850.
- 23. G. Hervé; G. Sartori; G. Enderlin; G. Mackenzie; C. Len. RSC Adv. 2014, 4, 18558-18594
- 24. A. Babu; N. N. Joy; K. Sunil; A. M. Sajith; S. Santra; G. V. Zyryanov. RSC Adv. 2022, 12, 22476-22491
- 25. T. Hayashi; M. Konishi; Y. Kobori. J. Am. Chem. Soc. 1984, 106, 158-163
- 26. C. Ornelas. New J. Chem. 2011, 35, 1973–1985.
- 27. V. J. Fiorina; R. J. Dubois; S. Brynes. J. Med. Chem. 1978, 21, 4, 393–395.
- 28. C. Biot; G. Glorian; L. A. Maciejewski; J. S. Brocard. J. Med. Chem. 1997, 40, 3715-3718
- 29. T. N. Wells; H. Huijsduijnen, R. Infect. Dis. 2015, 15, 1365.
- 30. Springer Nature Switzerland. (2018) Publicado el 02 de octubre del 2021. Recuperado de: https://adis.springer.com/drugs/800019376. Consultado el 05 de febrero del 2023.
- 31. S. op; A. Vessiéres; G. Leclercq; J. Quivy; J. Tang; J. Vaissermann; M. Huché. Chem. Eur. J. 2003, 9, 5223-5236
- 32. C. Lamberth. Bioorg Med Chem. 2009, 17, 4047–4063
- 33. C. Lamberth. Tetraedron. 2010, 66, 7239–7256
- 34. a) Z. Jin; A. Huo; T. Liu; Y. Hu; J. Liu; J. Fang. J Organomet Chem. 2005, 690, 1226–32; b) J. Fang; Z. Jin; Y. Hu; W. Tao; L. Shao. Appl Organomet Chem. 2006, 20, 813–818.
- 35. F. S. Arimoto; A. C. Haven Jr, J. Am. Chem. Soc.1955, 77, 6295.

- 36. C. E. Carraher, C. U. Pittman. J. E. Sheats, C. E. Carraher, C. E. Pittman (Eds.), Metalcontaining Polymeric Systems, Plenum, New York 1985, pp. 1-42
- 37. I. Modales. Adv. Organomet. Chem. 1995, 37, 131-168
- 38. R. Pietschnig. Chem. Soc. Rev. 2016, 45, 5216-5231
- 39. E. W. Neuse, J. Inorg. and Organomet. Polym. Mater. 2005, 15, 3-32.
- 40. W. Zhou; L. Wang; H. Yu; R. Tong; Q. Chen; J. Wang; X. Yang; Z-ul Abdin; M. Saleem. Appl. Organometal. Chem. 2016, 20, 796–805.
- 41. J. Wang (2006) Electrochemical Sensors en Analytical Electrochemistry (pp: 201-244). 3th edition Wiley & Sons
- 42. B. J. Privett; J. H. Shin; M. H. Schoelfisch. Anal. Chem. 2010, 82, 4723-4741
- 43. P. Stepnicka. Ferrocenes: ligands, materials and biomolecules. Wiley, Chichester, UK. 2008, pp: 281-282
- 44. P. D. Beer; E. J. Hayes. Coord. Chem. Rev. 2003, 240, 167-189
- 45. S. Ekino; M. Susa; T. Nimomaya; K. Imamura; T. Kitamura. J. Neurol. Sci. 2007, 262, 131-144.
- 46. Q-Y. Cao; M. H. Lee; J. F. Zhang; W. X. Ren; J. S. Kim. Tetrahedron Lett. 2011, 52, 2786–2789
- 47. P. J. O'Connell; G.G. Guilbault. Anal. Lett. 2001, 34, 1063-1078.
- 48. K. Matsumoto, A. Okada, T. Girek, Y. Ikemi, J. C. Kim, N. Hayashi, H. Yoshida, A. Kakehi, Heterocyclic Communications. 2002, 8, 325-328
- 49. L. Qua; Y. Wu; P. Sun; K. Zhang; Z. Liu. Polymer. 2017, 114, 36 43
- 50. H. L. Ammon. J. Am. Chem. Soc. 1973, 95, 7093-7101
- 51. K. Komatsu, T. Kitagawa. Chem. Rev. 2003, 103, 1371-1428
- 52. R. Breslow, R. Haynie, J. Mirra. J. Am. Chem. Soc. 1959, 81, 247
- 53. Y. O. Vol'pin, Yu. Koreshkov, D. N. Kursanov. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1959, 560; Chem.Abstr. 1959, 53, 21799.
- 54. K. T. Potts, J. S. Baum. Chem. Rev. 1974, 74, 189–213
- 55. R. West, D. C. Zecher, W. Goyert. J. Am. Chem. Soc. 1970, 92, 149-154.
- 56. E. V. Dehmlow. Tetrahedron Lett, 1965, 27, 2317-2322
- 57. a). A. Favorskii, J. Prakt. Chem. 1895, 51, 533–563. b). A. S. Kende. Org. React. 1960, 11, 261-316.
- 58. E. V. Dehmlow; R. Neuhaus; H. G. Schell. Chem. Berichte. 1988, 121, 569-571.
- 59. R. Breslow; T. Eicher; A. Krebs; R. A. Peterson; J. Posner. J. Am. Chem. Soc. 1965, 87, 1320 1325
- 60. R. Breslow; L. J. Altman; A. Krebs; E. Mohacsi; I. Murata; R. A. Peterson; J. Posner. J. Am. Chem. Soc. 1965, 87, 1326 1331
- 61. M. Isaka; S. Ejiri; E. Nakamura. Tetrahedron. 1992, 48, 2045-2057
- 62. T. Akuda; N. Shimma; T. Furumai. J. Antibiot. 1984, 37, 723 727
- 63. H. Kogen; T. Kiho; K. Tago; S. Miyamoto; T. Fujioka; N. Otsuka; K. Suzuki_Konogai; T. Ogita. J. Am. Chem. Soc. 2000, 122, 1842 1843.
- 64. F. Bohlmann; J. Jakupovic; L. Muller; A. Schuster. Angew. Chem. Int. Ed. 1981, 20, 292-293.
- 65. K. T. Potts; J. S. Baum. Chem Rev. 1974, 74, 189 213
- U. Lou; C. Shan; S. Liu; T. Zhang; L. Zhu; K. Zhong; R. Bai; Y. Lan. ACS. Catal. 2019, 12, 10876 – 10886

- 67. L. Yang; X. He; J. Jiao; Y. Tang; J. Li; Y. Li; R. Gao; Y. Wu; S. Xu. J. Org. Chem. 2023, 88, 8722 8737
- 68. D. J. M Lyons; R. D. Crocker; M. Blumel; T. V. Ngyten. Angew. Chem. Int. Ed. 2017, 56, 1466-1484
- 69. B. P. Raiguru; S. Nayak; D. R. Mishra; T. Das; S. Mohapatra; N. P. Mishra. Asian J. Org. Chem. 2020, 9, 1088–1132.
- 70. A. A. Aly; A. A. Hassan; S. M. Mostafa; A. H. Mohamed; E. M. Osman; A. A. Nayl. RSC Adv. 2022, 12, 18615-18645
- 71. B. D. Kelly, T. H. Lambert. J. Am. Chem. Soc. 2009, 131, 13930-13931
- 72. D. J. Hardee, L. Kovalchuke, T. H Lambert. J. Am. Chem. Soc. 2010, 132, 5002-5003
- 73. C. M. Vanos, T. H. Lambert. Chem. Sci. 2010, 1, 705-708
- 74. B. D. Kelly, T. H. Lambert. Org. Lett. 2010, 13, 740-743
- 75. I. Agranat, E. Aharon-Shalom, J. Am. Chem. Soc. 1975, 97, 3829-3830, b) S. W. Tobey; West. J. Am. Chem. Soc. 1964, 86, 4215-4216
- 76. E. I. Klimova, T. Klimova, L. Ruiz Ramirez, A. Ciaquantini, M. Corsini, P. Zanello, S. Hernandez-Ortega, M. Martínez García, Eur. J. Org. Chem. 2003, 3, 4265-4272
- Bhupinder Mehta & ManjuMetha, Organic Chemistry, Ed. Eastern Economy. (2000) 270-273
- 78. B. D. Kelly; T. H. Lambert. J. Am. Chem. Soc. 2009, 131, 13930-13931
- 79. R. Breslow. J. Am. Chem. Soc. 1957, 79, 5318
- 80. Z. Yoshida; Y. Tawara. J. Am. Chem. Soc. 1971, 93, 2573-2574
- 81. P. J. Stang; G. Mass; T. Fisk. J. Am. Chem. Soc. 1980, 102, 6361-6362
- 82. M. Casi, A. Eisenstadt, J. Am. Chem. Soc. 1967, 89, 5468-5469.
- 83. E. I. Klimova, T. Klimova Berestneva, S. Hernández Ortega, D. Méndez Iturbide, A. García Marquez, M. Martínez García, J. Organomet. Chem., 2005, 690, 3332-3339.
- 84. E. Klimova, T. Klimova, S. Betanzos Lara, A. García Marquez, S. Hernández Ortega, M. Martínez García, J. Organomet. Chem., 2006, 691, 1-8.
- a) T. Klimova Berestneva, E. I. Klimova, J. M. Méndez Stivalet, S. Hernández-Ortega, M. Martínez García, Eur. J. Org. Chem., 2005, 4406-4413. b) K. Clausen, M. Thorsen, S.-O Lawesson, Tetrahedron, 1981, 37, 3635.
- 86. E. Klimova, T. Klimova, A. Cinquantini, M. Corsini, P. Zanello, R. Toscano. O. S. Hernández, M. G. Martínez. Org. Biomol Chem. 2003, 1, 4458
- 87. E. Klimova, M. G. Martínez, T. Klimova, C. T. Álvarez, R. Toscano, L. Backinoswsky. Eur. J. Org. Chem. 2006, 4755.
- 88. T. Klimova, E. Klimova, M. Flores, L. Backinoswsky. Synthesis. 2006, 21,3706
- 89. T. Klimova, E. Klimova, M. Flores, M. G. Martínez. Molecules. 2009, 14, 3161.
- 90. E. Klimova, E. Vázquez, M. Flores, T. Klimova, M. G. Martínez. Eur. J. Org. Chem. 2009, 4, 4332
- 91. E. Klimova, T. Klimova, L. Backinoswsky, M. Flores, L. Ortiz-Frade, M. G. Martínez. J. Mendeleev Comm. 2010, 20, 312.
- 92. E. Klimova, E. Vázquez, M. Flores, L. Ortiz-Frade, G. Hernández, V. Sótelo, M. G. Martínez. J. Heterocyclic Chem. 2012, 49, 115.
- 93. E. Klimova, M. Flores, S. Cortez, J. García, L. Ortiz-Frade, M. Stivalet. J. Organometallic Chem. 2013, 743, 24.
- 94. G. Sánchez García, L. Ortiz-Frade, E. Martínez, J. C. García, M. Flores, A. Ramírez, E.
 I. Klimova. Ope. J. Synthesis Theory and Applications. 2014, 44

- 95. G. Sanchez, Y. M. Toledano, M. Flores, E. Martínez-Klimova, R. Galinda, L. Hernandez, L. Ortiz-Frade, J. C. Garcia, E. I. Klimova. J. Bioinorg. Chem. 2017, 160, 141.
- 96. E. I. Klimova, M. A. Gallardo, G. Sanchez, M. Flore, M. Stivalet. J. Heterocyclic Chem. 2016, 53, 1990.
- 97. T. W. Greene, P. G. M. Wuts. Protective Groups in Organic Synthesis. 2 ed. John Wiley & Sons; NY, EE.UU. 1991. Pp: 129-133.
- 98. A. L. Gemal, J. L. Luche. J. Org. Chem. 1979, 44, 4187–4189.
- 99. H. B. Küçük, A. Yusufoğlu, E. Mataracı, S. Döşler. Molecules. 2011, 16, 6806-6815
- 100. J. Boivin, F. Carpentier, R. Jrad. Synthesis. 2006, 10, 1664–1672
- 101. F. Ono, H. Takenaka, T. Fujikawa, M. Mori, T. Sato. Synthesis. 2009, 1318-1322.
- 102. R. Gopinath, Sk. J. Haque, B. K. Patel, J. Org Chem. 2002, 67, 5842-5845.
- 103. H. Yi, L. Niu, S. Wang, T. Liu, AK Singh, A. Lei, Org. Lett. 2017, 19, 122-125
- 104. M.-G. A. Shvekhgeimer. Russian Chem. Revs. 1996, 65, 41-79.
- a) Ya. M. Paushkin, A. M. Shevchik. Vestsi. Akad. Navuk BSSR, Ser. Khim. 1973, 95. b)
 W. Zhang; F. Xie; H. Yoshinaga; T. Kida; Y. Nakatsuji; I. Ikeda. Tetrahedron. 2006, 62, 9038-9042
- 106. A. Ratajczak, B. Czech. Rocz. Chem. 1973, 51, 1735.
- 107. Ya. N. Paushkin, A. M. Shevchik, L. P. Romanovskaya. Dokl. Akad. Nauk. SSSR. 1974, 214, 114.
- 108. O. Riant, O. Samuel, H. B. Kagan. J. Am. Chem. Soc. 1993, 115, 5835.
- 109. J. Castillo-Ramirez, I. Echevarría, J. Santiago, M. Pérez-Torres, M. Rivera-Claudio. Synthesis. 2013, 45, 1853–1856
- 110. K. C. Nicolaou, P. G. Bulger, D. Sarla. Angew. Chem. Int. Ed. 2005, 44, 4442 4489
- 111. R. C. J. Atkinson, V. C. Gibson, N. J. Long. Chem. Soc. Rev. 2004, 33, 313.
- 112. T. Shihui, Z. Weng, T. S. Andy Hor. Organometallics. 2006, 25, 1199-1205
- T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, A. J. Persoons. J. Mater. Chem. 1997, 7, 2175-2189
- 114. J. A. Mata, E. Peris, I. Asselberghs, R. Van Boxel, A. Persoons. New J. Chem. 2001, 25, 299-304
- 115. J. Chiffre, F. Averseng, G. G. A. Balavoine, J.-C. Darán, G. Iftime, P. G. Lacroix, E. Manoury, K. Nakatani. Eur. J. Inorg. Chem. 2001, 2221-2226.

- 116. D. Kavvadias; T. Beuerle; M. Wein; B. Boss; T. König; W. Schwab. J. Agric. Food. Chem. 1999, 47, 5178-5183
- 117. M. Kuhn; C. K-Juslen; J. Renz; A. V. Wsrtburg. Switzerland. CH525880 A 1972-07-31
- 118. Warriner S. L. Science of Synthesis. Category 4: Compounds with two carbon heteroatom bonds Product Class 8. Vol: 29; 2007. Pp: 487-495
- 119. A. J. Kok; C. Romers. Recueil des Travaux Chimiques des Pays-Bas. 1970, 89, 312-320
- 120. T. Eicher; S. Hauptmann. The chemistry of Heterocycles: structures, reactions, synthesis and applications 2th ed, 2003. Wiley-VCH. Pp: 383-386
- 121. A. H. Cumming; S. L. Brown; X. Tao; C. Cuyamendous; J. J. Field; J. H. Miller; J. E. Harvey; P. H. T-Spittle. Org. Biomol. Chem. 2016, 14, 5117-5127
- 122. R. Gopinath; S. J. Haque; B. K. Patel. J. Org. Chem. 2002, 67, 5842-5845
- 123. H. Firouzabadi; N. Iranpoor; B. Karimi. Synlentt, 1999, 321 323
- 124. B. Karimi; G. R. Ebrahimian; H. Seradj. Org. Lett. 1999, 1, 1737 1739
- 125. M. Omedes; P. G.-Sal; J. Andriés; A. Moyano. Tetrahedron. 2008, 64, 3953 3959
- 126. D. Schaarschmidt; M. Grumbt; A. Hildebrandt; H. Lang. Eur. J. Org. Chem. 2014, 6676-6685
- 127. V. Mamane; Y. Fuerte. J. Org. Chem. 2005, 70, 8220-8223
- 128. O. Riant; O. Samuel; H. B. Kagan. J. Am. Chem. Soc. 1993, 115, 5835-5836
- 129. O. Riant; O. Samuel; T. Flessner; S. Taudien; H. B. Kagan. J. OR. Chem. 1997, 62, 6733-6745
- 130. T. W. Green, P. G. M Wuts, Protective Groups in Organic Synthesis. Wiley-Interscience, Nueva York, 1999, 329-344, 724-727.
- 131. G. Guanti, L. Banfi, S. Brusco, R. Riva. Tetrahedron Lett., 1993, 34, 8549.
- 132. A. B. Smith, C. M. Admas. Acc. Chem. Res. 2004, 37, 365–377
- J. Lai, L. Tian, Xing. Huo, Y. Zhang, X. Xie, S. Tang. J. Org. Chem. 2015, 80, 11, 5894– 5899
- 134. T. W. Greene, P. G. M. Wuts. Protective Groups in Organic Synthesis, 2 ed. Wiley: N. York, 1991, 178–207.

- 135. S.-S. Weng, S.-C. Chang, T.-H. Chang, J.-P. Chyn, S.-W. Lee, C.-A. Lin, F. K. Chen, Sinthesis, 2010, 1493-1499.
- 136. H. Firouzabadi, N. Iranpoor, H. Hazarkhani, J. Org. Chem. 2001, 66, 7527-7529
- 137. S. Rudrawar, R. C. Besra, A. K. Chakraborti, Synthesis. 2006, 2767-2771.
- 138. H. Firouzabadi, N. Iranpoor, H. Hazarkhani. Synlett. 2001, 1641-1643
- 139. J. Gaunt, H. F. Sneddon, P. R. Hewitt, P. Orsini, D. F. Hook, S. V. Ley, Org. Biomol. Chem. 2003,1, 15-16.
- 140. A. Ratajezak, B.Czech. Rocz. Chem. 1977, 51, 1735
- 141. H. Firouzabadi, N. Iranpoor, H. Hazarkhami. J. Org. Chem. 2004, 2, 1641
- 142. A. K. Srivastava; Y. Upadhyay; M. Ali; S. K. Sahoo; R. K. Joshi. J. Organomet. Chem. 2020, 920, 121318
- 143. A. J. Moore, P. J. Skabara, M. R. Bryc, A. S. Batsanov, J. A. K. Howard, S. T. Daley, T. K. D. Stephen. J. Chem. Soc. Chem. Commun. 1993, 417.
- 144. T. W. Green, P. G. M Wuts, Protective Groups in Organic Synthesis. Wiley-Interscience, Nueva York, 1999, 329-344, 724-727.
- 145. E. Corey; D. Seebach. Angew. Chem. Int. Ed. Engl. 1965, 4, 1077 1078
- 146. M. Yus; C. Nájera; F. Foubelo. Tetrahedron. 2003, 59, 6147 6212
- 147. A. B. Smith, C. M. Admas. Acc. Chem. Res. 2004, 37, 365–377
- 148. A. D. García; M. C. Leech; A. Petti; C. Denis; I. C. A. Goodall; A. P. Dobbs. K. Lam. Org. Lett. 2020, 22, 4000-4005
- 149. L. F. Tietze; B. Weigand; C. Wulff. Synthesis. 2000, 69-71
- 150. H-J. Zhang; D. L. Priebbenow; C. Bolm. Chem. Soc. Rev. 2013, 42, 8540-8571
- 151. H. Firouzabadi; N. Iranpoor; H. Hazarkhani. J. Org. Chem. 2001, 66, 7527-7529
- 152. J. Lai; W. Du; L. Tian; C. Zhou; X. She; S. Tang. Org. Lett. 2014, 16, 4396-4399
- 153. M. J. Reuter; R. Damrauer. J. Organomet. Chem. 1974, 82, 201-208
- 154. Y.-C. Liu; D. M. Reddy; X.-A. Chen; Y.-C. Shied; C.-F. Lee. Eur. J. Org. Chem. 2020, 2542-2552

- 155. J. E. Lynch; E. L. Eliel. J. Am. Chem. Soc. 1984, 106, 2943-2948
- 156. K. Utimoto; A. Nakamura; S. Matsubara. J. Am. Chem. Soc. 1990, 112, 8189-8190
- 157. a) Jeong, L.S.; Schinazi, R.F.; Beach, J.W.; Kim, H.O.; Nampalli, S.; Shanmuganathan, K.; Alves, A.J.; McMillan, A.; Chu, C.K.; Mathis; R. J. Med. Chem. 1993, 36, 181-185.
- J. E. Gallant; E. Dejesus; J. R. Arribas; A. L. Pozniak; B. Gazzard; R. E. Campo; B. Lu;
 D. McColl; S. Chuck; J. Enejosa; J. J. Toole; A. K. Cheng. N. Engl. J. Med. 2006, 354, 251-260
- 159. Philippe, F.; Michel, C.; Anne, S.; Jean, C.; Jean.; Louis, K; Journal Nucleosides and Nucleotides. 1992, 11, 1481-1488
- 160. J. W. Ralls; R. M. Dodson; B. Reigel. J. Am. Chem. Soc. 1949, 71, 3320-2235
- 161. M. Alajarin; B. Bonillo; P. S. Andrada; A. Vidal. J. Org. Chem. 2010, 75, 3737-3750
- 162. R. N. Yadav; B. K. Banik. Current Organocatalysis. 2018, 5, 196-200
- 163. G. E. Wilson Jr.; M. G. Huang; W. W. Schloman Jr. J. Org. Chem. 1968, 33, 2133-2134
- 164. V. K. Yadav; A. G. Fallis. Tetrahedron Lett. 1988, 29, 897
- 165. J. Romo; G. Rosenkranz; C. Djerassi. J. Am. Chem. Soc. 1951, 73, 4961-4964
- 166. H. Adibi; H. Jafari. J. Fluor. Chem. 2007, 128, 679-682
- 167. B. P. Bandgar; S. V. Bettigeri. J. Chem. Res. 2004, 389-391
- 168. G. Bez; N. Baruah. Chem. Lett. 2006, 35, 542-543
- 169. M-G. A. Shvekhgeimer. Russ. Chem. Rev. 1996, 65, 41 79
- 170. A. Ratajczak. B. Czech. Rocz. Chem. 1977, 51, 1735
- 171. A. Ranjan; D. Sharma; A. K. Srivastava; A. Varma; M. S. K. Jayadev; R. K. Joshi. J. Organometallic Chem. 2022, 979, 1-9
- 172. R. C. Clark; J. S. Reid. Acta Cryst. 1995, A51, 887-897.
- 173. G. M. Sheldrick. Acta Cryst. 2015, 3-8.
- 174. G. M. Sheldrick. SHALXL. Acta. Cryst. 2015, C71, 3-8.

 E. I. Klimova, T. Klimova, L. Ruiz Ramirez, J. M. Mendez Stivalet, S. Hernandez Ortega, M. Martinez Garcia, Izv. Akad Nauk, Ser. Khim, 2004, No 4, 1-8. Russ. Chem. Bull., 2004, 53, P. 834-841.

176.

- a) J. J. S. Garcia; M. F. Alamo; L. O. Frade; E. I. Klimova. J. Organomet. Chem. 2017, 842, 21-31 b) E. I. Klimova; M. F. Alamo; S. C. Maya; J. C. G. Ramos; L. O. Frade; J. M. M. Stivalet. J. Organomet. Chem. 2013, 743, 24-30
- 178. T. K. Berestneva; E. I. Klimova; J. M. M. Stivalet; S. H. Ortega; M. M. Garcìa. Eur. J. Org. Chem. 2005, 4406-4413
- 179. E. Klimova; T. K. Berestneva; S. O. Hernández; I. D. Méndez; A. G. Márquez; M. G. Márquez. J. Organomet. Chem. 2005, 690, 3333-3339.
- 180. E. Klimova; J. M. M. Stivalet; T. K. Berestneva; M. F. Alamo; L. V. Backinowsky; L. O. Frade; G. M. Martinez. Synthetic Comm. 2010, 49, 839-854.
- 181. J.J. Sánchez García. (2018) Estudio de la reactividad de las sales de diferrocenilciclopropenilo con bis-1,4-heteronucleófilos [Tesis Doctoral UNAM] TESIUNAM: https://tesiunam.dgb.unam.mx/