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AN INVERSE STOKES FLUID PROBLEM FOR STENOSIS
DETECTION: AN APPLICATION OF DIVERGENCE-FREE

RADIAL BASIS FUNCTIONS

Abstract

This work addresses the inverse geometric problem of identifying obstructions
in viscous fluid flows using sound wave measurements. We develop a Radial Basis
Function (RBF) free divergence hybrid method to simulate and solve the direct
and inverse problems. The proposed approach combines theoretical results and
numerical simulations and is based on the interaction between a fluid-acoustic
wave system. This non-invasive method has the potential to be applied in the
early detection of stenosis in coronary arteries, which is essential for preventing
heart attacks, and so, avoiding the occurrence of death.

This work is organized as follows: Chapters 1 to 4 are based on the article that is
in the process of being published [18]. In Chapter 1, we introduce the formulation
of the fluid-sound wave direct problem. Chapter 2 offers theoretical results on
the identification of obstructions in fluid flows. In Chapter 3, we demonstrate the
viability of the hybrid RBF method through numerical simulations. Finally, in
Chapter 4, we solve the inverse problem of identifying obstructions using sound
wave measurements, showing the real-world applicability of the theory.

In Chapter 5, we prove some results regarding the continuity of the non-stationary
Stokes equation with respect to the domain, using a method similar to that in [62].

Chapters 6 to 8 are dedicated to the hybrid divergence-free radial basis functions
(RBF) method developed in this thesis and published in [17]. In these chapters,
we discuss the formulation, properties, and advantages of the method, as well as
provide a comprehensive understanding of its development and applications.

This study lays the groundwork for future research and applications in the field
of obstruction identification in viscous fluid flows and early detection of stenosis in
coronary arteries. The proposed methodology has the potential to significantly im-
prove current diagnostic techniques and provide a more efficient and non-invasive
approach in clinical practice.
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1 An Introduction to the Stokes Boundary Obstacle Problem 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 The problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 The stokes equation with mixed boundary conditions 15
2.1 Steady Stokes system with mixed boundary condition . . . . . . . . 17
2.2 Unsteady Stokes system with mixed boundary conditions . . . . . . 23
2.3 Theoretical results to the identification problem . . . . . . . . . . . 27
2.4 The H1/2

00 space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Numerical perspective for the direct problem 39
3.1 Direct problem and experimental setup . . . . . . . . . . . . . . . . 39
3.2 Numerical results for the direct problem . . . . . . . . . . . . . . . 41

4 An optimization process for the inverse problem 43
4.1 Inverse problem for the wave equation . . . . . . . . . . . . . . . . 44
4.2 Obstacle inverse problem . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Continuity with respect to the domain 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Preliminary result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Estimates for unsteady Stokes system with mixed boundary
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Continuity of H1(Ω) under Diffeomorphisms . . . . . . . . . 61
5.3 Continuity of the velocity vector field with respect the domain . . . 66
5.4 Pressure weak continuity with respect to the domain . . . . . . . . 72

3



Contents

6 Global divergence free–RBF methods for evolutionary Stokes problems 75
6.1 Collocation method and backward differentiation formula . . . . . . 76

6.1.1 Stability analysis for BDF schemes . . . . . . . . . . . . . . 78
6.1.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . 80

7 LHI divergence free–RBF methods for Stokes problems 83
7.1 A reminder of the scalar LHI method . . . . . . . . . . . . . . . . . 83
7.2 Steady state problems: Div-free RBF, LHI method . . . . . . . . . 87
7.3 Numerical results: stationary problem . . . . . . . . . . . . . . . . . 90
7.4 LHI method and BDF scheme for the non-stacionary Stokes equations 93
7.5 Numerical results: evolutionary problem . . . . . . . . . . . . . . . 94

8 Application to a control problem of the LHI-div free 99
8.1 A Control problem formulation . . . . . . . . . . . . . . . . . . . . 100

8.1.1 Finite element method, FEM, for the control problem . . . . 102

Conclusion: Achievements and Future Perspectives 109

Agradecimientos 111

4



Resumen

En este trabajo, abordamos el problema geométrico inverso de detectar obstruc-
ciones en flujos de fluidos viscosos utilizando mediciones de ondas acústicas. De-
sarrollamos un método h́ıbrido de divergencia libre de funciones de base radial
(RBF) para simular y resolver el problema directo e inverso. El enfoque propuesto
combina resultados teóricos y simulaciones numéricas, y se basa en la interacción
entre un sistema de flujo-onda acústica. Este método no invasivo tiene el poten-
cial de ser aplicado en la detección temprana de estenosis en arterias coronarias,
lo cual es fundamental para prevenir infartos al miocardio y con ello, evitando la
ocurrencia de muertes .

Este trabajo está organizado de la siguiente manera: Los caṕıtulos 1 a 4 se
basan en el art́ıculo que esta envia de publica [18]. En el Caṕıtulo 1, introducimos
la formulación del problema directo de onda fluido-sonido. El Caṕıtulo 2 ofrece
resultados teóricos sobre la identificación de obstrucciones en flujos de fluidos. En
el Caṕıtulo 3, demostramos la viabilidad del método h́ıbrido RBF a través de sim-
ulaciones numéricas. Finalmente, en el Caṕıtulo 4, resolvemos el problema inverso
de identificar obstrucciones utilizando mediciones de ondas sonoras, mostrando la
aplicabilidad real de la teoŕıa.

En el Caṕıtulo 5, demostramos algunos resultados sobre la continuidad de la
ecuación de Stokes no estacionaria con respecto al dominio, utilizando un método
similar al presentado en [62].

Los Caṕıtulos 6 a 8 están dedicados al método h́ıbrido de divergencia libre de
funciones de base radial (RBF) desarrollado en esta tesis y publicado en [17]. En
estos caṕıtulos, discutimos la formulación, propiedades y ventajas del método, aśı
como proporcionamos una comprensión integral de su desarrollo y aplicaciones.

Este estudio sienta las bases para futuras investigaciones y aplicaciones en el
campo de la identificación de obstrucciones en flujos de fluidos viscosos y la de-
tección temprana de enfermedades cardiovasculares. La metodoloǵıa propuesta
tiene el potencial de mejorar significativamente las técnicas actuales de diagnóstico
y proporcionar un enfoque más eficiente y no invasivo en la práctica cĺınica.
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Introducción en español

La enfermedad de las arterias coronarias (EAC), también conocida como enfer-
medad coronaria, es el tipo de enfermedad card́ıaca más prevalente. El infarto de
miocardio (ataque card́ıaco) es una de las principales causas de muerte en muchas
naciones del primer mundo, con un aumento en la incidencia en naciones emer-
gentes. En los Estados Unidos, al menos 360,000 muertes ocurren cada año (ver
Lewandowoski y Cinquegrani, Enfermedad del corazón coronario en [66, Sect.2
Chap.8] y [57] y referencias en ellos).

Esta enfermedad es causada por la formación de placas ateroscleróticas dentro de
las paredes de las arterias coronarias debido a la acumulación lenta de colesterol,
ácidos grasos, calcio y tejido conectivo fibroso, entre otras sustancias (ver [66,
Sect.2 Chap.8] y [31]).

La presencia de estas placas ateroscleróticas causa una obstrucción local (cono-
cida como estenosis) del flujo sangúıneo, que puede tener consecuencias catastróficas,
como el infarto de miocardio. Aunque los śıntomas de la EAC se hacen más evi-
dentes en etapas posteriores, es extremadamente dif́ıcil diagnosticar la enfermedad
antes de la aparición de los śıntomas iniciales, que generalmente es un infarto de
miocardio rápido que a menudo resulta en mortalidad [58].

La estenosis coronaria puede ser detectada mediante cateterización femoral por
fluoroscopia o tomograf́ıa computarizada multidetectora, particularmente para
cuantificar los depósitos de calcio coronario que se correlacionan con lesiones ob-
structivas significativas [66]. Sin embargo, ambas técnicas son invasivas. Por lo
tanto, el desarrollo de una técnica alternativa no invasiva de ”auscultación” para
la detección temprana de estenosis en los vasos coronarios es de gran importancia.

Está bien establecido que la presencia de una obstrucción en la pared de una
arteria coronaria produce una onda acústica (soplo) que se propaga desde la pared
del vaso coronario a través de la cavidad torácica hasta la superficie del tórax,
donde se puede registrar utilizando sensores especializados ([47], [12]). Esto sienta
las bases para un método de ”auscultación” no invasivo para la detección temprana
de la estenosis de las arterias coronarias que es relativamente fácil de usar, asequible
y adecuado para entornos hospitalarios o de consultorios donde el ruido de fondo
es inevitable [47].

Desde una perspectiva fisico matematica, el problema de detección temprana de
estenosis coronaria mediante procedimientos no invasivos conduce a un problema
inverso fluido-estructra con datos externos.

Aunque la modelización y simulación del flujo sangúıneo, problema directo, me-
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diante diferentes técnicas, han sido realizadas por muchos grupos con el fin de
proporcionar conocimientos sobre el comportamiento del flujo para aplicaciones
cĺınicas [56], [57], existe un creciente interés en conectar esfuerzos computacionales
y análisis teórico de manera única. Sin embargo, debido a la complejidad que surge
de tal combinación, se encuentra en una etapa temprana incluso para el problema
directo, es decir, el problema de la buena formulación en el sentido de Hadamard.

En este trabajo, presentamos un problema inverso geométrico 2D relacionado
con la identificación y detección de estenosis en un conducto coronario utilizando
”registros” de ondas acústicas. En nuestro enfoque, el problema de detección se
refiere a la posición, extensión y reducción de la luz coronaria. En otras palabras,
abordamos un problema de obstáculo de frontera inversa a través de ”mediciones
externas” de mediciones de ondas acústicas locales, que se encuentran fuera (a
una distancia adecuada) de la arteria coronaria. En este contexto, los términos
”registro” y ”mediciones externas” son equivalentes. Esta técnica no es simple
debido a su no invasividad y al hecho de que se utiliza a diario en la práctica
cĺınica a través de técnicas de ultrasonido [13, 55] y radiación de ondas acústicas
en materiales biológicos [53]. Además, considerar modelos complejos y acoplados
con datos espećıficos del paciente hace que los esfuerzos teóricos y computacionales
sean exorbitantes.

Simultáneamente, se modela la transmisión y propagación del sonido a través de
los tejidos biológicos circundantes utilizando una ecuación de onda lineal. El do-
minio acústico se discretiza mediante una cuadŕıcula cartesiana, con acoplamiento
con fluido que ocurre en una pared (superior o inferior) con condiciones de desliza-
miento de Navier. Considerando que las condiciones de deslizamiento de Navier
describen el fluido en las paredes arteriales (paredes superior e inferior), el término
de acoplamiento entre el fluido y la onda corresponde al componente normal del
tensor de tensiones de Cauchy. Con esta información, nuestro problema inverso
consiste en detectar el obstáculo O a partir del conocimiento de los datos externos
proporcionados por el estado de onda en una subparte de su borde que no está en
contacto con el fluido durante un intervalo de tiempo determinado (0, T ). En su
forma actual, este problema y su geometŕıa asociada pueden considerarse como un
problema ”de juguete” en 2D; sin embargo, hay algunos aspectos relevantes que
destacar:

a) Condición O ∩ ∂Ω ̸= ∅. En términos generales, esta condición refleja un
problema inverso de obstáculo de frontera para un fluido lineal bidimensional.
Aunque existe una amplia literatura sobre problemas inversos de obstáculos
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que implican la obstrucción dentro del dominio (es decir, O ⊂⊂ ∂Ω) con
diferentes técnicas [23, 7, 11, 21, 22, 3], hasta donde sabemos, no se ha
informado un análisis inicial para el caso en el que O ∩ ∂Ω ̸= ∅.

b) Condiciones de borde y término de transmisión. Siguiendo un marco teórico
reciente para fluidos de Navier-Stokes con condiciones de deslizamiento de
Navier [10, 1], demostramos la existencia y unicidad de una solución débil
para fluidos de Stokes considerando condiciones de borde mixtas; ver (1.2) a
continuación. El término de transmisión sigue las ideas formuladas en [48],
y por lo tanto la información proporcionada por el tensor de tensiones de
Cauchy se encuentra en una condición de borde para una ecuación de onda.

c) Mediciones externas para el problema inverso. Nuestro enfoque aborda el
problema inverso de obstáculo de frontera fluido-estructura (estructura ŕıgida)
a partir de mediciones externas proporcionadas por datos locales de ondas
de sonido. Cabe señalar que se ha realizado un estudio computacional de un
problema directo para un modelo fluido-acústico diferente en [59]. Sin em-
bargo, nuestro modelo tiene una estructura diferente, que se basa en condi-
ciones de deslizamiento de Navier y el acoplamiento de onda acústica con
el fluido a través del tensor de tensiones de Cauchy. En cuanto a las ob-
servaciones externas, el art́ıculo reciente [44] utiliza el método de soluciones
fundamentales con regularización de Tikhonov para resolver la identificación
de obstáculos sumergidos en un fluido estacionario de Oseen (con condiciones
de borde de Dirichlet), y cuyas mediciones externas se basan en la velocidad
del fluido, la fuerza de tracción o el gradiente de presión.
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1 An Introduction to the Stokes
Boundary Obstacle Problem

1.1 Introduction
Coronary artery disease (CAD), also known as coronary heart disease, is the most
prevalent type of heart disease. Myocardial infarction (heart attack) is a lead-
ing cause of death in many first-world nations, with a rising incidence in emerg-
ing nations. In the United States, at least 360,000 deaths occur each year (see
Lewandowoski and Cinquegrani, Coronary Heart Disease in [66, Sect.2 Chap.8]
and [57] and references therein).

This disease is caused by the formation of atherosclerotic plaques within the
coronary artery walls due to the slow accumulation of cholesterol, fatty acids,
calcium, and fibrous connective tissue, among other substances (see [66, Sect.2
Chap.8] and [31]).

The presence of these atherosclerotic plaques causes local obstruction (known
as stenosis) of the blood flow, which may have catastrophic consequences such as
myocardial infarction. Although CAD symptoms become more evident in later
stages, it is extremely difficult to diagnose the disease before the appearance of
initial symptoms, which is typically a sudden myocardial infarction that often
results in mortality [58].

Coronary stenosis can be detected by fluoroscopy femoral catheterization or
multidetector computed tomography scanning, particularly to quantify coronary
calcium deposits that correlate with significant obstructive lesions [66]. However,
both techniques are invasive. Consequently, the development of an alternative non-
invasive ”auscultation” technique for the early detection of stenosis in coronary
vessels is of great importance.

It is well established that the presence of an obstruction on the wall of a coronary
artery generates turbulent flow downstream, which in turn generates an acoustic
wave, commonly known as a murmur. This murmur propagates from the artery’s
wall, traversing the thoracic cavity, and reaches the chest’s surface. Here, it can
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1 An Introduction to the Stokes Boundary Obstacle Problem

be captured by utilizing specialized sensors ([47], [12]). This lays the foundation
for a noninvasive ”auscultation” method for the early detection of coronary artery
stenosis that is relatively simple to use, affordable, and suitable for hospital or
office settings where background noise is unavoidable [47].

From a mathematical perspective, the early detection problem of coronary steno-
sis by non-invasive procedures leads to an inverse fluid-structure problem with
external data.

Although the modeling and simulation of blood flow, direct problem, through
different techniques, have been carried out by many groups in order to provide
knowledge of flow behavior for clinical applications [56], [57], there is a growing
interest in connecting computational efforts and theoretical analysis in a unique
way. However, due to the complexity arising from such a combination, it is in
an early stage even for the direct problem, i.e., the well-posedness problem in the
sense of Hadamard.

In this work, we present a 2D geometrical inverse problem concerning the iden-
tifiability and detection of stenosis in a coronary duct by using ”records” from
acoustic waves. In our setting, the detection problem refers to position, extension,
and coronary lumen reduction. In other words, we address an inverse boundary
obstacle problem through ”external measurements” of local acoustic waves mea-
surements, which are located outside (at a suitable distance) from the coronary
artery. In this context, the terms ”record” and ”external measurements” are equiv-
alent. This technique is not simple due to its non-invasiveness and the fact that
it is used daily in clinical practice through ultrasound techniques [13, 55] and
acoustic wave radiation in biological materials [53]. Moreover, considering com-
plex and coupled models with patient-specific data makes both theoretical and
computational efforts exorbitant.

For these reasons, in this work, we consider a simple rectangular geometry Ω
to model the blood flow as a viscous Stokes fluid in 2D with both Dirichlet and
Navier-slip conditions on the arterial walls. Hereafter, these kinds of boundary
conditions are called mixed boundary conditions. The domain has an obstacle O
representing stenosis, and such that O intersects the fluid domain at only one part
of the boundary, i.e., O ∩ ∂Ω ̸= ∅. The Dirichlet boundary conditions are applied
to the velocity flow at the inlet and exit, while Navier-slip boundary conditions
are used for the top and bottom walls.

Simultaneously, the transmission and propagation of sound through surrounding
biological tissues are modeled using a linear wave equation. The acoustic domain
is discretized using a Cartesian grid, with fluid coupling occurring at a wall (top or

10



1.1 Introduction

bottom) with Navier slip conditions. Considering that the Navier slip conditions
describe the fluid at arterial walls (top and bottom walls), the coupling term
between the fluid and the wave corresponds to the normal component of the Cauchy
stress tensor. With this information, our inverse problem consists of detecting the
obstacle O from the knowledge of external data provided by the wave state on
a subpart of its boundary not in contact with the fluid during a certain time
interval (0, T ). In its current form, this problem and its associated geometry can
be considered as a 2D toy problem; however, there are some relevant aspects to
highlight:

a) Condition O ∩ ∂Ω ̸= ∅. In general terms, this condition reflects an in-
verse boundary obstacle problem for a two-dimensional linear fluid. Al-
though there is extensive literature on inverse obstacle problems involving
obstruction inside the domain (i.e., O ⊂⊂ ∂Ω) with different techniques
[23, 7, 11, 21, 22, 3], to the best of our knowledge, no initial analysis has
been reported for the case where O ∩ ∂Ω ̸= ∅.

b) Boundary conditions and transmission term. Following a recent theoreti-
cal framework for Navier-Stokes fluids with Navier slip boundary conditions
[10, 1], we demonstrate the existence and uniqueness of a weak solution for
Stokes fluids considering mixed boundary conditions; see (1.2) below. The
transmission term follows the ideas formulated in [48], and thus, the infor-
mation provided by the Cauchy stress tensor lies in a boundary condition
for a wave equation.

c) External measurements for the inverse problem. Our approach addresses
the inverse fluid-structure (rigid structure) boundary obstacle problem us-
ing external measurements provided by local sound wave data. It should be
noted that a computational study of a direct problem for a different fluid-
acoustic model was conducted in [59]. However, our model has a different
structure, relying on Navier slip conditions and the coupling of acoustic wave
with the fluid through the Cauchy stress tensor. Regarding external observa-
tions, the recent article [44] uses the method of fundamental solutions with
Tikhonov regularization to solve the identification of submerged obstacles in
a stationary Oseen fluid (with Dirichlet boundary conditions), with external
measurements based on fluid velocity, traction force, or pressure gradient.

11



1 An Introduction to the Stokes Boundary Obstacle Problem

1.2 The problem setting

We define the spatial domain of fluid flow by Ω := (0, L)× (0, D), where L > 0 can
be understood as the length of the blood vessel and D > 0 its diameter. Assume
that ∂Ω is divided into four parts Γinlet,Γupwall,Γdownwall and Γout of a non-vanishing
measure such that Γinlet

⋂Γupwall
⋂Γdownwall

⋂Γout = ∅. Throughout this research work,
we adopt the convention that a boldface character denotes a vector or a tensor.
Furthermore, we consider an obstacle O ⊂ Ω with non-empty interior such that
ΩO := Ω\O only has one connected component, which is split into four parts
Γinlet,ΓO,up

wall ,Γ
O,down
wall , Γout and the boundary ∂O of O satisfies (see Figure 1.1):


∂O ∩ Γinlet = ∅,
∂O ∩ Γout = ∅,
∂O ∩ Γupwall ̸= ∅,

or


∂O ∩ Γinlet = ∅,
∂O ∩ Γout = ∅,
∂O ∩ Γdownwall ̸= ∅.

(1.1)

(a)

(b)

Figure 1.1: Geometric representation of the domain: a) Ω , b) ΩO := Ω\O.

The velocity vector u and the scalar pressure p of the fluid in the presence of the
obstacle O are modeled by the Stokes system with mixed boundary conditions:

12



1.2 The problem setting



ut − div(σ(u, p)) = 0 in ΩO × (0, T ),
div(u) = 0 in ΩO × (0, T ),
u = gin on Γinlet × (0, T ),
u = gout on Γout × (0, T ),
u · n = 0, [σ(u, p)n]tg = 0 on ΓO

wall × (0, T ),
u(·, 0) = u0(·) in ΩO,

(1.2)

Given that n is the unit outward normal vector of ∂ΩO, and gin and gout are de-
fined as nontrivial Dirichlet data. Additionally, σ(u, p) is identified as the Cauchy
stress tensor, that is, σ(u, p) = 2D(u) − Ip = 2µ∇+∇t

2 u − pI. Here, I represents
the identity matrix of size 2×2, while µ > 0 is the kinetic viscosity coefficient. The
subscript tg marks the tangential component of the relevant vector field, defined
as vtg := v − (v · n)n, as given in [54].

Concurrently, the acoustic wave propagation in the arterial wall and nearby
tissue is depicted through a linear wave equation within a bounded domain S :=
(0, L) × (D,H) as follows:

wtt − c2∆w = 0 in S × (0, T ),
w = (σ(u, p)ν) · ν on ([0, L]×{D}) × (0, T ),
∂w
∂t

+ c∂w
∂n

= 0 on (∂S\ ([0, L]×{D})) × (0, T ),
wt(·, 0) = w(·, 0) = 0 in S,

(1.3)

In this context, ν := (0, 1)t, ∂
∂n

stands for the normal partial derivative operator
and c denotes the assigned wave speed. From a mechanical perspective, H > 0 is
interpreted as the gap between the blood vessel and the chest surface, where the
acoustic wave will be detected, as illustrated in Figure 1.2. Meanwhile, the term
(σ(u, p)ν) · ν physically symbolizes the normal stress imposed by the fluid on the
top wall of the domain ΩO. It is worth highlighting that the expression (σ(u, p)ν) ·
ν represents the coupling term in an explicit form, that is, once the solution
to (1.2) has been determined, such a boundary condition of the wave equation
(1.3) is directly obtained. Keep in mind that the second boundary condition
aligns with the Higton absorbing boundary condition of order 1, as per [36, 43].
It is widely recognized that the application of absorbing boundary conditions is
a strategy to minimize the required spatial domain when numerically resolving
partial differential equations that accept traveling waves. The well-posedness of the
initial boundary value problem associated with the absorbing boundary conditions,
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1 An Introduction to the Stokes Boundary Obstacle Problem

coupled to the wave equation, has been debated in multiple studies, for instance,
[63, 14, 45].

Figure 1.2: Geometric representation of the wave w.

As mentioned, there are no papers dealing with the effective reconstruction
of an obstacle in contact with a subset of ∂Ω, and using some type of external
measurement for unsteady Stokes fluids with mixed boundary conditions. The
aim of this work consists in determining an obstacle O ⊂ Ω (time-independent and
satisfying (1.1)) using external measurements from the acoustic wave w (see (1.3))
in the set Sm × (0, T0), where Sm := [k1, k2] × {H} ⊂ ∂S with 0 < k1 < k2 < L,
and T0 < T . Our idea consists in uncoupling the system (1.2)–(1.3) and analysing
the inverse obstacle problem throughout two inverse sub-problems, namely: one
inverse problem for the wave equation related to recovering a boundary datum
from w|Sm×(0,T0) and, another one connecting the recovered boundary datum for
the wave equation with partial information of the Cauchy tensor given by the
Stokes fluid; see Theorem 2.3.4. To consider a wave domain S independent of the
obstruction O, we impose the geometrical condition ∂O⋂Γupwall = ∅, as well as a
priori knowledge of one of the configurations given in (1.1).
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2 The stokes equation with mixed
boundary conditions

In this chapter, we present a detailed proof of the existence and uniqueness of weak
solutions for the two-dimensional Stokes system with mixed boundary conditions.
Specifically, we consider the Stokes system with a combination of Dirichlet and
Navier-slip boundary conditions. While the paper [15] mentioned these mixed
boundary conditions, it did not provide a rigorous proof. Therefore, to ensure
completeness, we rely on recent research works [1, 2, 10] that deal with both
the unsteady and steady Stokes system with Navier boundary conditions. These
types of problems are commonly known as Zaremba’s problems in the literature.
For simplicity, we assume the viscosity to be µ = 1.

We recall that Cn,α refers to a space of functions whose derivatives up to order
’m’ exist and are α-Hölder continuous. Until further notice, we assume that Ω ⊂ R2

is a bounded curvilinear polygone of class C1,1 in the sense of [40, Definition
1.4.5.1]. We assume that there is M ∈ N such that:

Γ = ∂Ω =
2M⋃
j=1

Γj ,

were each Γj is a curve of class Ck,1, Γj+1 follows Γj according to the positive
orientation and we have that Γj ⊂ Γ , Γj

⋂Γj+1 = ∅. We define ΓD,ΓN ⊂ Γ as:

ΓD =
M⋃
j=2

Γ(2j) and ΓN =
M⋃
j=1

Γ(2j−1) .

As mentioned before, we denote by vtg as the tangential component of v, i.e.,
vtg = v − (v ·n)n. Moreover, we consider the following spaces equipped with their

15



2 The stokes equation with mixed boundary conditions

usual respective norms (for instance see [10] ) :

V (Ω) = {u ∈ H1(Ω) : div(u) = 0,u|ΓD
= 0,u · n = 0 on ∂Ω},

H0,ΓD
(Ω) = {u ∈ H1(Ω) : u|ΓD

= 0},
H(div,Ω) = {u ∈ L2(Ω) : div(u) ∈ L2(Ω)},

H0(div,Ω) = {u ∈ L2(Ω) : div(u) ∈ L2(Ω),u · n = 0 on ∂Ω},
E(Ω) = {u ∈ H1(Ω) : ∆u ∈ H0(div,Ω)′},

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω
p dx = 0}

The main novelty compared to [10] is our treatment of the mixed boundary
condition. To handle this rigorously, we make use of the Lions-Magenes space [50,
Chp 11] [40, Section 1.5.2] defined as follows:

H
1/2
00 (Γi) =

{
u ∈ H1/2(Γi) : d(x, ∂Γi)−1/2u ∈ L2(Γi)

}
,

equipped with the norm: ∥u∥2
H

1/2
00 (Γi)

= ∥u∥2
H1/2(Γi) +

∥∥∥d−1/2u
∥∥∥2

L2(Γi)
, where

d(x, ∂Γi) is the geodesic distance from x to ∂Γi. Following this definition we set:

H
1/2
00 (ΓD) =

M∏
j=2

H
1/2
00 (Γ(2j)) and H

1/2
00 (ΓN) =

M∏
j=1

H
1/2
00 (Γ(2j−1))

In other to avoid heavy notation, for this section, we will denote:

⟨·, ·⟩Γi
as the dual pairing between H

1/2
00 (Γi)′ and H

1/2
00 (Γi) ,

⟨·, ·⟩∂Ω as the dual pairing between H−1/2(∂Ω) and H1/2(∂Ω) ,
⟨·, ·⟩Ω as the dual pairing between H0(div,Ω)′ and H0(div,Ω).

To continue with the upcoming sections, we will rely on the following Green
identity, which will be proven in Section 2.4.

Theorem 2.0.1. Let Ω be a bounded open subset of R2 whose boundary is a curvi-
linear polygon of class at least C1. Let γj(u) denote the following trace mapping:

γj(u) : u → u|Γj
.

Furthermore assume that γj(u) ∈ H
1/2
00 (Γj) for all j ∈ {1, .., 2M}. Then we have

the following Green identity:

16



2.1 Steady Stokes system with mixed boundary condition

− ⟨∆u,φ⟩Ω =
∫

Ω
2D(u) : D(φ) dx−

2M∑
j=1

⟨2[D(u)n]tg, γj(φ)⟩Γj
(2.1)

for all u ∈ E(Ω) and φ ∈ {u ∈ H1(Ω)|div(u) = 0}

Remark 2.0.2. In Theorem 2.0.1 the spaces H
1/2
00 are necessary to decompose the

dual pairing ⟨·, ·⟩∂Ω into the sum of the dual pairing. This is due to the lack of
regularity of the tangential component of the Cauchy stress tensor [D(u)n]tg when
u ∈ E(Ω).

2.1 Steady Stokes system with mixed boundary
condition

While our primary focus is to establish the existence and uniqueness of the evo-
lutionary Stokes flow with mixed boundary conditions, it is crucial to begin by
proving the stationary case. Therefore, the objective of this subsection is to demon-
strate the existence and uniqueness of a weak solution for the steady Stokes system
with mixed boundary conditions.



− div(σ(u, p)) = f in Ω,
div(u) = 0 in Ω,
u · n = 0 in ∂Ω,
u = g on ΓD,
[2D(u)n]tg = h on ΓN .

(2.2)

The main result of this section is the following theorem.

Theorem 2.1.1. Let f ∈ H0(div,Ω)′, h ∈ (H1/2
00 (ΓN))′ and g ∈ H

1/2
00 (ΓD) such

that:
g · n = 0 and ⟨h,n⟩ΓN

= 0. (2.3)

Then the problem of finding (u, p) ∈ H1(Ω) ×L2
0(Ω) satisfying (2.2) in the distri-

bution sense has a unique solution. Furthermore, we have the following estimate:

∥u∥H1(Ω) + ∥p∥L2(Ω) ≤ C
(

∥f∥H0(div,Ω)′ + ∥g∥
H

1/2
00 (ΓD) + ∥h∥(H1/2

00 (ΓN ))′

)
. (2.4)
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2 The stokes equation with mixed boundary conditions

Before presenting the proof of Theorem 2.1.1, we need to establish some prelim-
inary results. In particular, we recall the De Rham theorem 2.1.2 [9, Theorem 2.1]
which has significant implications for the Stokes problem. It excels at handling
all distributions, unlike the Stokes problem, which tackles more specific ones. No-
tably, if f belongs to H−1(Ω) and satisfies equation (2.5), Girault and Raviart’s
[35] simplified the theorem’s proof.

Theorem 2.1.2. Let Ω be an open subset of Rd and let f be a distribution in
D′(Ω) that satisfies:

∀φ ∈ Dσ(Ω), ⟨f ,φ⟩D′(Ω)×D(Ω) = 0 . (2.5)

where Dσ(Ω) = {φ ∈ D(Ω)|div(φ) = 0}. Then there exists a distribution p in
D′(Ω) such that:

f = ∇p

The next Proposition establishes an equivalence between two formulations of a
problem involving the Stokes equations.

Proposition 2.1.3. Assume g = 0 in (2.2). Let f ∈ H0(div,Ω)′, h ∈ (H1/2
00 (ΓN))′

such that:

⟨h,n⟩ΓN
= 0. (2.6)

Then, the problem of finding a pair (u, p) ∈ H1(Ω) ×L2(Ω) satisfying (2.2) in the
distribution sense is equivalent to the following:Find u ∈ V (Ω) such that

∀v ∈ V (Ω), 2
∫

Ω D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨h,v⟩ΓN
.

(2.7)

Proof. Let (u, p) ∈ H1(Ω) × L2(Ω) be a solution of (2.2), and let v ∈ V (Ω).
Integrating by part with the help of [10, Lemma 2.4], we obtain:∫

Ω
2D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨2D(u)n,v⟩∂Ω . (2.8)

Given that v|ΓD
= 0, we can conclude from Theorem 2.4.2 that v|ΓN

∈ H
1/2
00 (ΓN).

Therefore, utilizing Theorem 2.0.1, we can proceed with the following decomposi-
tion:
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2.1 Steady Stokes system with mixed boundary condition

∫
∂Ω

2D(u)n · v dS =
∫

ΓD

2D(u)n · v dS +
∫

ΓN

2D(u)n · v dS

=
∫

ΓN

[(2D(u)n) · n] n · v dS +
∫

ΓN

[2D(u)n]tg · v dS

=
∫

ΓN

[2D(u)n]tg · v dS =
∫

ΓN

h · v dS ,

(2.9)

where the integrals are to be understood as a dual pairing. Therefore, from equa-
tions (2.8) and (2.9) we have the following:∫

Ω
2D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨2D(u)n,v⟩ΓN

. (2.10)

Conversely, let u ∈ V (Ω) solution of (2.7), and let φ ∈ Dσ(Ω) = {φ ∈ D(Ω)|div(φ) =
0}, and notice that we have that (see [10]):

2
∫

Ω
D(u) : D(φ) dx =

∫
Ω

∇u : ∇φ dx .

As a consequence, we have:

∀φ ∈ Dσ(Ω), ⟨−∆u − f ,φ⟩D(Ω)′×D(Ω) = 0 .

Therefore by De Rham theorem 2.1.2, there exists a distribution p ∈ D(Ω)′ defined
uniquely up to an additive constant such that:

− ∆u + ∇p = f . (2.11)

Note that since H0(div,Ω)′ is embedded in H−1(Ω) we can say that p ∈ L2(Ω)
(see [9, Proposition 2.10]). Let v ∈ V (Ω), using (2.10) and (2.11) we obtain the
following:

⟨[2D(u)n]tg − h,v⟩ΓN
= 0 (2.12)

Now let α ∈ H
1/2
00 (ΓN) and let α̃ be its extension by zero to ∂Ω, it follows from

Theorem 2.4.3 that α̃ ∈ H1/2(∂Ω). Therefore, there exists φ ∈ H1(Ω) such that:div(φ) = 0 in Ω ,

φ = α̃tg on Γ .

It is clear that φ ∈ V (Ω), therefore, using the compatibility condition (2.6) and
the equation (2.12), we have:
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2 The stokes equation with mixed boundary conditions

⟨[2D(u)n]tg − h,α⟩ΓN
= ⟨[2D(u)n]tg − h,αtg⟩ΓN

= ⟨[2D(u)n]tg − h,φ⟩ΓN

= 0 .

We can conclude that [2D(u)n]tg = h on ΓN .

To prove the existence of a weak solution, we will employ a Korn-type inequality.
This inequality can be derived by utilizing the Poincaré inequality, which holds in
H1

0,ΓD
(Ω), and the Korn inequality. The details of this proof can be found in [5,

Theorem 5.3.4].

Proposition 2.1.4. Let Ω be a Lipschitz bounded domain. Then there exists a
constant C > 0 depending only on Ω such that

∥u∥2
H1(Ω) ≤ C∥D(u)∥2

L2(Ω) ∀u ∈ H0,ΓD
(Ω). (2.13)

Proposition 2.1.5. Suppose that g = 0, and let f ∈ H0(div,Ω)′, h ∈ (H1/2
00 (ΓN))′.

Then the problem of finding (u, p) ∈ H1(Ω) ×L2
0(Ω) that satisfies (2.2) in the dis-

tribution sense has a unique solution. Furthermore, we have the following estimate:

∥u∥H1(Ω) + ∥p∥L2
0(Ω) ≤ C

(
∥f∥H0(div,Ω)′ + ∥h∥(H1/2

00 (ΓN ))′

)
. (2.14)

Proof. Using the proposition 2.1.3, we only have to prove the existence and unique-
ness of the following variational problem:Find u ∈ V (Ω) such that

∀v ∈ V (Ω),
∫

Ω 2D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨h,v⟩ΓN
.

We set:

a(u,v) = 2
∫

Ω
D(u) : D(v) dx ,

L(v) = ⟨f ,v⟩Ω + ⟨h,v⟩ΓN

Notice that the bi-linear form a(. , .) is continuous in V (Ω) since:∣∣∣∣∫
Ω

2D(u) : D(v) dx
∣∣∣∣ =

∣∣∣∣∫
Ω

∇u : ∇v dx
∣∣∣∣ ≤ ∥∇u∥L2(Ω) ∥∇v∥L2(Ω) .
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2.1 Steady Stokes system with mixed boundary condition

Using proposition 2.1.4 and the fact that V (Ω) ⊂ H0,Γ(Ω) we also obtain the
coercivity of the bilinear form a(. , .) on V (Ω). Now since:

⟨f ,v⟩Ω ≤ ∥f∥H0(div,Ω)′∥v∥H0(div,Ω)

≤ ∥f∥H0(div,Ω)′∥v∥H1(Ω)
(2.15)

Using the fact that v|ΓD
= 0 from theorem 2.4.2 we know that the mapping v|ΓN

:
V (Ω) → H

1/2
00 (ΓN) is continuous. Thus there exist a constant C0 > 0 such that:

⟨h,v⟩ΓN
≤ C0∥h∥

H
1/2
00 (ΓN )′∥v∥H1(Ω) , (2.16)

Therefore L : V → R is continuous, and thus by the Lax-Milgram theorem
and the proposition 2.1.3, we can guarantee the existence and uniqueness of
(u, p) ∈ H1(Ω) × L2

0(Ω) satisfying (2.2) in the distribution sense.
To obtain a continuity estimate (2.14) notice that, by Proposition 2.1.4 and in-
equalities (2.15),(2.16) there exists a constant C1 > 0 such that:

∥u∥H1(Ω) ≤ C1

(
∥f∥H0(div,Ω)′ + ∥h∥(H1/2

00 (ΓN ))′

)
. (2.17)

Now, from (2.11) we have:

∥∇p∥H−1(Ω) ≤ ∥f∥H−1(Ω) + ∥∆u∥H−1(Ω)

≤ C1∥f∥H0(div,Ω)′ + C2∥u∥H1(Ω) .

As a result, we can infer from [9, Proposition 2.10] that:

∥p∥L2
0(Ω) ≤ C3

(
∥f∥H0(div,Ω)′ + ∥u∥H1(Ω)

)
. (2.18)

Using (2.17) and (2.18) we obtain the desired estimate.

Now, we are ready to demonstrate the primary outcome of this subsection,
Theorem 2.1.1.

Proof of theorem 2.1.1. Let g̃ be the extension by zero to ∂Ω of g. According to
Theorem 2.4.3, it follows that g̃ ∈ H1/2(∂Ω) and there exists a constant C > 0
such that:

∥g̃∥H1/2(∂Ω) ≤ C∥g∥
H

1/2
00 (ΓD) (2.19)
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2 The stokes equation with mixed boundary conditions

Using the compatibility condition (2.3), let (w,π) ∈ H1(Ω)×L2
0(Ω) be the solution

of: 
− div(σ(w, π)) = 0 in Ω,
div(w) = 0 in Ω,
w = g̃ on ∂Ω.

(2.20)

Therefore, using the classical estimate and inequality (2.19) there is a constant
C0 > 0 such that:

∥w∥H1(Ω) + ∥π∥L2(Ω) ≤ C0∥g∥
H

1/2
00 (ΓD) .

Now notice that w ∈ E(Ω) since π ∈ L2(Ω) therefore [2D(w)n]tg|ΓN
∈ H

1/2
00 (ΓN)′

due to Theorem 2.4.4. Thus we obtain the following inequality:

∥[2D(w)n]tg∥(H1/2
00 (ΓN ))′ ≤ C1∥w∥E(Ω)

≤ C2
(
∥w∥H1(Ω) + ∥π∥L2(Ω)

)
≤ C3∥g∥

H
1/2
00 (ΓD) .

(2.21)

Now since h− [2D(w)n]tg ∈ (H1/2
00 (ΓN))′, using theorem 2.1.5, we denote (ũ, π̃) ∈

H1(Ω) × L2
0(Ω) to be a solution of



− div(σ(ũ, π̃)) = f in Ω,
div(ũ) = 0 in Ω,
ũ · n = 0 in ∂Ω,
ũ = 0 in ΓD,
[2D(ũ)n]tg = h − [2D(w)n]tg in ΓN .

(2.22)

Defining u = ũ + w, π = π̃ + π, we obtain the desired existence and unique-
ness result. Using the estimation (2.14) and the equation (2.21) and the triangle
inequality, we obtain the desired estimates.
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2.2 Unsteady Stokes system with mixed boundary conditions

2.2 Unsteady Stokes system with mixed boundary
conditions

The aim of this section is to establish the existence and uniqueness of a weak
solution for the unsteady Stokes system with mixed boundary conditions:

ut − div(σ(u, p)) = f in Ω × (0, T ),
div(u) = 0 in Ω × (0, T ),
u · n = 0 on ∂Ω × (0, T ),
u = g on ΓD × (0, T ),
[2D(u)n]tg = h on ΓN × (0, T ),
u(0, x) = u0(x) in Ω .

(2.23)

Since we are handling the non-stationary case, we need an additional space:

H = {u ∈ L2(Ω) : div(u) = 0,u · n = 0 on ∂Ω}.

The main result of this section is presented in the following theorem.

Theorem 2.2.1. Let f ∈ L2(0, T ; H0(div,Ω)′), h ∈ L2(0, T ; (H1/2
00 (ΓN))′),

g ∈ L2(0, T ; H
1/2
00 (ΓD)) and u0 ∈ H such that:

g(t) · n = 0 and ⟨h(t),n⟩ΓN
= 0 ∀t ∈ (0, T ) . (2.24)

Then the problem of finding (u, p) ∈ L2(0, T ; V (Ω))∩C([0, T ],H)×L2(0, T ;L2
0(Ω))

that satisfies (2.23) in the distribution sense has a unique solution.

Remark 2.2.2. Notice that if we define V 0(Ω) = {u ∈ H1
0 (Ω) : div(u) = 0}, it is

clear that V 0(Ω) ⊂ V (Ω) ⊂ H and we know by [61] that V 0(Ω) is dense in H

therefore V (Ω) is dense in H .
Before presenting the proof of theorem 2.1.1, some preliminary results are needed.
The following result [19, Theorem 10.9] which prove can be found in [50, Chap 3,
Theorem 4.1] provides a powerful tool to establish the existence and uniqueness
of weak solutions for parabolic problems in a highly general setting.

Theorem 2.2.3 (J.-L. Lions). Let H be a Hilbert space with a scalar product
denoted as ( , ) and a norm denoted as | |. We identify the dual space H⋆ with H.
Let V be another Hilbert space, equipped with the norm ∥ ∥. We assume that V is
a densely and continuously injected subspace of H, i.e.,

V ⊂ H ⊂ V ⋆.
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2 The stokes equation with mixed boundary conditions

Fix a T > 0. For almost every t ∈ [0, T ], we are given a bilinear form a(t;u, v) :
V × V → R that satisfies:

1. For every u, v ∈ V , the function t 7→ a(t;u, v) is measurable.

2. |a(t;u, v)| ≤ M∥u∥∥v∥ for almost every t ∈ [0, T ], for all u, v ∈ V .

3. a(t; v, v) ≥ α∥v∥2 − C|v|2 for almost every t ∈ [0, T ], for all v ∈ V .

Here, α > 0, M , and C are constants. Given f ∈ L2(0, T ;V ⋆) and u0 ∈ H, there
exists a unique function u satisfying

u ∈ L2(0, T ;V ) ∩ C([0, T ];H), du

dt
∈ L2(0, T ;V ⋆)

〈
du

dt
(t), v

〉
+ a(t;u(t), v) = ⟨f(t), v⟩ for a.e t ∈ (0, T ), ∀v ∈ V,

and
u(0) = u0.

The following proposition characterizes the distributional solution of (2.23) in
terms of weak solutions.

Proposition 2.2.4. Suppose that g = 0, and let f ∈ L2 (0, T ; H0(div,Ω)′),
h ∈ L2(0, T ; (H1/2

00 (ΓN))′) and u0 ∈ H such that:

⟨h(t),n⟩ΓN
= 0 ∀t ∈ (0, T ) .

Then the problem of finding u ∈ L2(0, T ; V (Ω))⋂C([0, T ],H) and p ∈ L2(0, T ;L2
0(Ω))

satisfying (2.23) in the distribution sense is equivalent to:

Find u ∈ L2(0, T ; V (Ω)) ∩ C([0, T ],H) such that ∀v ∈ V (Ω),
d
dt

∫
Ω u · v dx+

∫
Ω 2D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨h,v⟩ΓN

in the distributional sense on (0, T ), and
u(0) = u0.

(2.25)

Proof. Let u ∈ L2(0, T ; V (Ω))∩C([0, T ],H) and p ∈ L2(0, T ;L2
0(Ω)) be a solution

of (2.23), and let v ∈ V (Ω), integrating by part as in Proposition 2.1.3 we obtain:

d

dt

∫
Ω

u.v dx+
∫

Ω
2D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨h,v⟩ΓN

. (2.26)
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2.2 Unsteady Stokes system with mixed boundary conditions

Conversely, let u ∈ L2(0, T ; V (Ω)) ∩ C([0, T ],H) be a solution of (2.25). Let
φ ∈ Dσ(Ω) = {φ ∈ D(Ω) : div(φ) = 0}, and notice that we have the following
identity:

∫
Ω

du

dt
(t) · φ dx+

∫
Ω

∇(u(t)) : ∇(φ) dx = ⟨f(t),φ⟩Ω .

As a consequence, we have:

∀φ ∈ Dσ(Ω),
〈
du

dt
(t) − ∆u(t) − f(t),φ

〉
D(Ω)′×D(Ω)

= 0 .

Therefore, thanks to De Rham Theorem [9, Theorem 2.1], there exists a distribu-
tion p(t) ∈ D(Ω)′ defined uniquely up to an additive constant such that:

du

dt
(t) − ∆u(t) + ∇p(t) = f(t) . (2.27)

Note that since L2(0, T ; H0(div,Ω)′) is embedded in L2(0, T ; H−1(Ω))(i.e. H0(div,Ω)′ ↪→
H−1(Ω)), we have p ∈ L2(0, T ;L2

0(Ω)).
Now let v ∈ V (Ω), using equations (2.26),(2.27), and the same argument as in

proposition 2.1.3 we obtain:

⟨[2D(u(t))n]tg − h(t),v⟩ΓN
= 0 .

By assumption u(0) = u0 and u ∈ L2(0, T ; V (Ω)) ∩C([0, T ],H). This completes
the proof of Proposition 2.2.4.

The main objective is to prove the existence of the solution as defined in equation
(2.25). To accomplish this, we will make use of Theorem 2.2.3 and the following
lemma:

Lemma 2.2.5. Suppose that g = 0, and let f ∈ L2(0, T ; H0(div,Ω)′), h ∈
L2(0, T ; (H1/2

00 (ΓN))′), u0 ∈ H such that:

⟨h(t),n⟩ΓN
= 0 ∀t ∈ (0, T ) .

Then the problem of finding (u, p) ∈ L2(0, T ; V (Ω)) ∩ C([0, T ], H) × L2(0, T ; L2
0(Ω))

satisfying (2.23) in the distribution sense has a unique solution.
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2 The stokes equation with mixed boundary conditions

Proof. Thanks to proposition 2.2.4 , we only need to prove the existence and
uniqueness of the following initial variational problem:



Find u ∈ L2(0, T ; V (Ω)) ∩ C([0, T ],H)such that∀v ∈ V (Ω)
d
dt

∫
Ω u · v dx+

∫
Ω 2D(u) : D(v) dx = ⟨f ,v⟩Ω + ⟨h,v⟩ΓN

in the distributional sense on (0, T ), and
u(0) = u0.

We commence our approach by invoking 2.2.3. Notably, we observe that V (Ω) ⊂
H and that V (Ω) is dense in H with continuous injection. In Proposition 2.1.5,
we have already established that the bilinear form a(u, v) = 2

∫
Ω D(u) : D(v) dx

is both continuous and coercive over V (Ω). Moreover, consider the functional
L(t; v) = ⟨f(t),v⟩Ω + ⟨h(t),v⟩ΓN

, which is a continuous linear function belonging
to L2(0, T ; V (Ω)′).

Hence, by employing Theorem 2.2.3 and Proposition 2.2.4, we conclude that
there exists a unique solution (u, p) ∈ L2(0, T ; V (Ω))∩C([0, T ],H)×L2(0, T ;L2

0(Ω))
to equation (2.25). Additionally, we note that du

dt
∈ L2(0, T ; V (Ω)′).

Now we are in a position to prove the main result of this subsection, theorem 2.2.1.

Proof of theorem 2.2.1. Let w ∈ L2(0, T ; V (Ω))⋂C ([0, T ],H)), and π ∈ L2 (0, T ;L2
0(Ω))

be the unique solution, as guaranteed by the compatibility condition of g in equa-
tion (2.24). 

ut − div(σ(w, π)) = 0 in Ω × (0, T ),
div(w) = 0 in Ω × (0, T ),
w = g on ΓD × (0, T ),
w = 0 on ΓN × (0, T ),
u(0, x) = 0 in Ω .

Using an analogous argumentation as in theorem 2.1.1 we have that h−[2D(w)n]tg|ΓN

belong to L2(0, T ; H
1/2
00 (ΓN)′).

From lemma 2.2.5, let ũ ∈ L2(0, T ; V (Ω))⋂C([0, T ],H) and π̃ ∈ L2(0, T ;L2
0(Ω))
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2.3 Theoretical results to the identification problem

be the unique solution to:

ũt − div(σ(ũ, π̃)) = 0 in Ω × (0, T ),
div(ũ) = 0 in Ω × (0, T ),
ũ · n = 0 on ∂Ω × (0, T ),
ũ = 0 on ΓD × (0, T ),
[2D(ũ)n]tg = h − [2D(w)n]tg on ΓN × (0, T ),
ũ(0, x) = u0 in Ω .

Defining u = ũ + w, p = π̃ + π, we obtain the desired existence and uniqueness
result.

Remark 2.2.6. As far as we know the regular solution with mixed boundary con-
ditions, as in (2.23), for general Lipschitz domains is an open problem. However,
some results for the polygonal case and for similar boundary conditions are avail-
able in [20] using potential theory. The generalization of these results to our
particular case is out of the scope of this research work and will be subject to
further investigation.

2.3 Theoretical results to the identification problem
In this section, we prove the identifiability of the obstacle O associated with the
Stokes system with mixed boundary conditions (1.2). To account for the obstacle’s
position in contact with part of the boundary ∂Ω (as described in (1.1)), we first
define the admissible deformation of the domain. Then, we present the proof of our
main result, Theorem 2.3.4. Our proof builds on the arguments presented in [7],
where the authors proved the identification of immersed obstacles from boundary
data for the Navier–Stokes system with Dirichlet boundary conditions. However,
our proof includes novel contributions, such as considering the unique geometrical
configuration where the obstacle intersects the flow boundary, and mixed boundary
conditions instead of Dirichlet boundary conditions.

Definition 2.3.1. Let Ω ⊂ R2 be a simple connected and bounded curvilinear
polygon of class C1,1, ∂Ω = Γinlet∪Γwall∪Γout. A domain ΩO is called an admissible
deformation of Ω if and only if:

i) ΩO ⊂ Ω is simple a connected and bounded curvilinear polygon of class C1,1.

27



2 The stokes equation with mixed boundary conditions

ii) ∂ΩO := Γinlet ∪ ΓO
wall ∪ Γout and Γwall ∩ ΓO

wall are non–empty relatively open
sets of Γwall.

iii) There exist a relative open set W ⊂ Ω satisfying Ω\ΩO ⊂ W , there exists a
diffeomorphism ψ : Ω → Ω such that ψ(Ω) = ΩO and ψ = I in Ω\W (see
Figure 2.1).

Figure 2.1: Diffeomorphism example

Remark 2.3.2. From definition 2.3.1, given an admissible deformation ΩO, an ad-
missible obstruction can be define as O = Ω\ΩO.

The following theorem is due to Fabre and Lebeau in [27]. It is worth noting
that this result is independent of the boundary conditions, thus, it can be applied
specifically to Navier-slip boundary conditions.

Theorem 2.3.3. Let Ω ⊂ RN be a connected open set, N ≥ 2 and T > 0. Let
a ∈ L∞

loc(Ω × (0, T ))N and c ∈ C([0, T ];Lrloc(Ω,RN×N)) be a matrix-value function
with r > N . If (v, p) ∈ L2(0, T;H

1
loc(Ω)) × L2

loc(Ω × (0, T )) is a solution of:{
vt − ∆v + (a.∇)v + cv + ∇p = 0 in Ω × (0, T ),
div(v) = 0 in Ω × (0, T ), (2.28)

with v = 0 in ω0 × (0, T ), where ω0 is and open set of Ω. Then v = 0 in Ω × (0, T )
and p is a constant.

Using the above theorem, we have the following corollary, which is essential for
the next identification theorem. We note that this result can also be found in
[7, Corollary 2.4] and a similar one in [16]. Since no proof is provided in [7], we
present a short proof.
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2.3 Theoretical results to the identification problem

Corollary 2.3.1. Let Ω ⊂ RN be a connected open Lipschitz domain, N ≥ 2 and
T > 0. If (u, p) ∈ L2(0, T ;H1(Ω)N) × L2(Ω × (0, T )) is a solution of:{

ut − div(σ(u, p)) = 0 in Ω × (0, T ),
div(u) = 0 in Ω × (0, T ), (2.29)

satisfying u = σ(u, p)n = 0 on Γ × (0, T ) where Γ ⊂ ∂Ω is relatively open non-
empty subsets, then

u = 0 in Ω × (0, T ) .

Proof. Let x0 ∈ Γ and r > 0 such that B(x0, r) ∩∂Ω ⊂ Γ. Let B = B(x0, r) ∩ Ωc

and Ω̃ = Ω ∪B, we define the extension by 0 of u and p in Ω̃ by:

ũ (resp p̃) =
u (resp p) in Ω × (0, T ),

0 in B × (0, T ).

Our goal now is to prove that (ũ, p̃) is solution of (2.29) in Ω̃, for this let φ ∈ D(Ω̃)
and notice that:

⟨σ(ũ, p̃)n,φ⟩H−1/2(∂B)×H1/2(∂B) = ⟨σ(ũ, p̃)n,φ⟩H−1/2(Γ)×H1/2(Γ) = 0

Therefore using integration by parts, it follows that:

⟨(ũt − div(σ(ũ, p̃)))χB,φ⟩
D′(Ω̃)×D(Ω̃) = 0

In a similar way, we can also deduce that:

⟨(ũt − div(σ(ũ, p̃)))χΩ,φ⟩
D′(Ω̃)×D(Ω̃) = 0.

Therefore, we obtain:

⟨ũt − div(σ(ũ, p̃)),φ⟩
D′(Ω̃)×D(Ω̃) = 0.

Using Theorem 2.3.3 for (ũ, p̃) we obtain the desired result.

Theorem 2.3.4. Let Ω0, Ω1 ⊂ RN be two admissible deformation of Ω according
to the definition 2.3.1 such that Ω0 ∩ Ω1 is a curvilinear polygons of class C1,1

domain with a finite number of disjoint connected components. Let (uj, pj) ∈
L2(0, T ;H1(Ωj)N) × L2(0, T ;L2(Ωj)) be the solution of:

∂uj

∂t
− div(σ(uj, pj)) = 0 in Ωj × (0, T ),

div(uj) = 0 in Ωj × (0, T ),
uj = g on Γinlet ∪ Γout × (0, T ),
uj · n = 0, (σ(uj, p)n)tg = 0 on Γjwall × (0, T ),
u(·, 0) = 0 in Ωj.

j = 0, 1 (2.30)
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2 The stokes equation with mixed boundary conditions

Assume that g ̸= 0 ∈ H
1/2
00 (Γinlet ∪ Γout) and that Γm ⊂ Γ0

wall ∩ Γ1
wall is a non-zero

measure set satisfying Γm ⊂ ∂(Ω0 ∩ Ω1), such that:

(σ(u0, p0)n) · n = (σ(u1, p1)n) · n and u0 · τ = u1 · τ on Γm × (0, T ),

where n is external unit normal and τ is tangent unit vector of Γm. Then Ω0 ≡ Ω1.

Proof of theorem 2.3.4. First within the context of Theorem 2.2.1 by defining
ΓD = Γinlet ∪ Γout and ΓN = Γjwall we can guarantee the existences and unique-
ness of the solutions u0, u1 to the equations (2.30). Setting u = u0 − u1 and
p = p0 − p1, we obtain:

∂u
∂t

− div(σ(u, p)) = 0 in Ω0 ∩ Ω1 × (0, T ),
div(u) = 0 in Ω0 ∩ Ω1 × (0, T ),
u = 0 on ΓD × (0, T ),
u · n = 0, (σ(u, p)n)tg = 0 on Γm × (0, T ),
u(., 0) = 0 on Ω0 ∩ Ω1.

(2.31)

Since σ(u, p)n = 0, u = 0 on Γm × (0, T ) and Γm ⊂ ∂(Ω0 ∩ Ω1), it follows from
corollary 2.3.1 applied to each connected component of Ω0 ∩ Ω1 that :

u0 = u1 in (Ω0 ∩ Ω1) × (0, T ). (2.32)

Now lets assume that Ω0\Ω1 is a non-empty open subset of Ω0. Thus, we have the
following:

∂u0

∂t
− div(σ(u0, p0)n) = 0 in (Ω0\Ω1) × (0, T ) . (2.33)

Given that Ω0 = (Ω0\Ω1) ∪ (Ω0 ∩ Ω1) we have:

d

dt

∫
(Ω0\Ω1)

|u0(x, t)|2dx = d

dt

∫
Ω0

|u0(x, t)|2dx− d

dt

∫
Ω0∩Ω1

|u0(x, t)|2dx. (2.34)

From the assumption that Ω0 ∩ Ω1 is smooth, we can perform the following inte-
gration by parts:

d

dt

∫
Ω0∩Ω1

|u0(x, t)|2dx = −
∫

Ω0∩Ω1
|D(u0)|2dx+

∫
∂(Ω0∩Ω1)

2D(u0)n · u0 dS

+
∫
∂(Ω0∩Ω1)

p0u0 · ndS .
(2.35)
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2.3 Theoretical results to the identification problem

Observing that for any two admissible deformations, we have the following (as
depicted in Figure 2.2):

∂ (Ω0 ∩ Ω1) = ΓD ∪
[
Γ0
wall ∩ ∂(Ω0 ∩ Ω1)

]
∪
[
Γ1
wall ∩ ∂(Ω0 ∩ Ω1)

]
.

And notice that from equation (2.32) we have that:[D(u0)n]tg = [D(u1)n]tg = 0 on [Γ0
wall ∩ ∂(Ω0 ∩ Ω1)] ∪ [Γ1

wall ∩ ∂(Ω0 ∩ Ω1)]
u0 · n = u1 · n = 0

Therefore, from equation (2.35) it follows that:

d

dt

∫
Ω0∩Ω1

|u0(x, t)|2dx = −
∫

Ω0∩Ω1
|D(u0)|2dx +

∫
ΓD

[D(u0)n]tg · g dS . (2.36)

Also by assumption, we know that u0 · n = [D(u0)n]tg = 0 on Γ0
wall, thus we

obtain:
d

dt

∫
Ω0

|u0(x, t)|2dx = −
∫

Ω0
|D(u0)|2dx+

∫
ΓD

[D(u0)n]tg · g dS . (2.37)

It follows from equations (2.34), (2.36), and (2.37) that:

d

dt

∫
(Ω0\Ω1)

|u0(x, t)|2dx = −
∫

(Ω0\Ω1)
|D(u0)|2dx

Therefore
E(t) =

∫
Ω0\Ω1

|u0(x, t)|2dx

is a decreasing non-negative function. However since u0(x, 0) = 0, we have that
u0|Ω0\Ω1

= 0 for all t ∈ (0, T ). It then follows from theorem 2.3.3 that:

u0 = 0 in Ω0 .

Nevertheless, this is impossible since u0 ̸= 0, because g ̸= 0. Therefore Ω0\Ω1 = ∅,
analogously we can deduce that Ω1\Ω0 = ∅ which implies that Ω0 = Ω1.

As mentioned above, our main purpose is to study and solve the full inverse prob-
lem from a numerical point of view. In relation to the direct problem, the smooth
dependence of the Cauchy forces for the Stokes system with mixed boundary con-
ditions might be obtained by proving an extension of [7, theorem 5.1]. However,
its proof requires a thorough analysis of the holomorphic semigroup associated
with the main operator of (1.2), which, as is known, involves mixed boundary
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2 The stokes equation with mixed boundary conditions

Figure 2.2: Example of domain intersection

conditions. Regarding the inverse wave equation problem, it is necessary to obtain
the regularity of the Stokes fluid with mixed boundary conditions, which is an
open problem in itself. To deal with hyperbolic inverse problems, a different set
of tools has to be used, such as the Hilbert uniqueness method, as can be seen in
[49, 67]. Since these topics deserve special attention, we have not attempted to
address them in this research work; further work is in progress.

2.4 The H
1/2
00 space

In this section, we recall some useful results about the H1/2
00 space and also we

prove Theorem 2.0.1. Until further notice, we consider a bounded open Ω ⊂ R2

such that ∂Ω is a curvilinear polygons of class Ck,1 in the sense of [40, Definition
1.4.5.1]. Furthermore, we assume that there is M ∈ N such that:

∂Ω = Γ =
2M⋃
j=1

Γj ,

were each Γj is a curve of class Ck,1, Γj+1 follows Γj according to the positive
orientation and we have that Γj ⊂ ∂Ω, Γj

⋂Γj+1 = ∅. We denote by Sj the vertex
which is the end point of Γ̄j. We also define the following Lion-Maganese space:

H
1/2
00 (Γi) =

{
u ∈ H1/2(Γi) : d(x, ∂Γi)−1/2u ∈ L2(Γi)

}
,

equipped with the norm: ∥u∥2
H

1/2
00 (Γi)

= ∥u∥2
H1/2(Γi)+

∥∥∥d−1/2u
∥∥∥2

L2(Γi)
. For a smooth

function u ∈ D(Ω) we denote γj(u),the corresponding trace mappings (i.e):

γj(u) : u → u|Γj
. (2.38)

An important question is when does the trace of a function in u ∈ H1/2(Ω) belong
to H1/2

00 (Γj). In order to address this, we define σ as the distance along Γ, com-
mencing at Si, and assign xi(σ) to represent the point on Γ that is σ distance away
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from Sj. As such, given that |σ| is adequately small, say |σ| ≤ δj, we find that
xj(σ) belongs to Γi when σ < 0 and xj(σ) is part of Γj+1 when σ > 0. Utilizing
the previously defined notation, we refer back to [40, Theorem 1.5.2.3].

Theorem 2.4.1 (P. Grisvard). Let Ω be a bounded open subset of R2 whose bound-
ary Γ is a curvilinear polygon of class C1. Then the mapping u 7→ {fi}Nj=1,
where fj = γju, is a linear continuous mapping from W 1

p (Ω) onto the subspace∏N
j=1 W

1−1/p
p (Γj) defined by:

(a) No extra condition when 1 < p < 2.

(b) fj (Sj) = fj+1 (Si), 1 ≤ j ≤ N when 2 < p < ∞.

(c)
∫ δ1

0
|fi+1(xj(σ))−fi(xi(−σ))|2

σ
dσ < ∞, 1 ≤ j ≤ N when p = 2.

In the derivation of Theorem 2.4.1, it’s worth noting that condition (c) is limited
by the K ∥u∥W 1

p (Ω), where K is a positive constant. Hence, the following theorems
can be proposed:

Theorem 2.4.2. Let Ω be a bounded open subset of R2 whose boundary is a curvi-
linear polygon of class at least C1. Let u ∈ H1(Ω) such that:

γj−1(u) = γj+1(u) = 0 ,

then the mapping define by :
u → γj(u) ,

is a linear continuous mapping from H1(Ω) → H
1/2
00 (Γj).

Proof. To start, recall that the norm H1/2(Γ) is described as:

∥u∥2
H1/2(Γ) =

∫
Γ
u2dσ +

∫∫
Γ×Γ

|u(x) − u(y)|2

|x− y|2
dσ(x)dσ(y) (2.39)

Here, dσ symbolizes the standard hypersurface measure on Γ. As u ∈ H1(Ω), the
norm of γu in H1/2(Γ) is bounded by ∥u∥H1(Ω). Let’s denote fi = γi(u), thus from
the previously mentioned equation and by dividing the integration domain Γ × Γ
into ⋃l,k Γl × Γk, we obtain:

2M∑
i=1

∫∫
Γi×Γi

|fi(x) − fi(y)|2

|x− y|2
dσ(x)dσ(y)

+ 2
∑
l ̸=k

∫∫
Γl×Γk

|fl(x) − fk(y)|2

|x− y|2
dσ(x)dσ(y) ≤ K∥u∥2

H1(Ω).

(2.40)
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As a result, it can be seen that fj = γju ∈ H1/2(Γ) because:

∫∫
Γj×Γj

|γju(x) − γju(y)|2

|x− y|2
dσ(x)dσ(y) ≤ K∥u∥2

H1(Ω)

Now, since γj−1(u) = γj+1(u) = 0, we obtain:

∫
Γj

∫
Γj+1

|fj(x)|2

|x− y|2
dσ(x)dσ(y) +

∫
Γj−1

∫
Γj

|fj(y)|2

|x− y|2
dσ(x)dσ(y) ≤ K∥u∥2

H1(Ω)

Following [40, Theorem 1.5.2.3], it can be observed that as Γj+1,Γj−1 are C1 curves,
the functions: ∫

Γj+1

dσ(y)
|x− y|2

,
∫

Γj−1

dσ(x)
|x− y|2

are equivalent to d(x,Γj+1)−1, d(y,Γj−1)−1 respectively. Therefore:

∫
Γj

|fj(x)|2

d(x,Γj+1)
dσ(x) +

∫
Γj

|fj(y)|2

d(y,Γj−1)
dσ(y) ≤ K ′∥u∥2

H1(Ω)

Hence, we can conclude:

∥fj∥H1/2
00 (Ω) ≤ K ′′∥u∥H1(Ω)

Theorem 2.4.3. Let Ω be a bounded open subset of R2 whose boundary is a curvi-
linear polygon of class at least C1. Let fj ∈ H

1/2
00 (Γj), and define f̃ as the extension

by zero en Γ (i.e):

f̃(x) =
fj(x) x ∈ Γj

0 x /∈ Γj
,

then f̃ ∈ H1/2(Γ) and there exist a constant C > 0 such that:∥∥∥f̃∥∥∥
H1/2(Γ)

≤ C∥fj∥H1/2
00 (Γj) .

Proof. Given fj exists in H
1/2
00 (Γj), it’s known that fj ∈ L2(Γj). From equation

(2.39) and separating the domain of integration Γ × Γ in ⋃j,k Γj × Γk, we obtain:

∥∥∥f̃∥∥∥2

H1/2(Γ)
= ∥fj∥2

L2(Γj) + 2
∑
k

∫
Γj

∫
Γk

|fj(x) − fk(y)|2

|x− y|2
dσ(x)dσ(y) (2.41)
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Note that the second term of equation (2.41) is bounded by ∥fj∥L2(Ω) when k ̸=
j − 1, j, j + 1 as the distance from Γj to Γk is strictly positive, i.e:∫

Γj

∫
Γk

|fj(x)|2

|x− y|2
dσ(x)dσ(y) =

∫
Γj

|fj(x)|2
[∫

Γk

dσ(y)
|x− y|2

]
dσ(x)

≤ ∥fj∥2
L2(Ω) sup

x∈Γj

[∫
Γk

dσ(y)
|x− y|2

]
≤ K∥fj∥2

L2(Ω)

≤ K∥fj∥2
H

1/2
00 (Γj)

(2.42)

If k = j, the second term is bounded since fj ∈ H
1/2
00 (Γj):∫

Γj

∫
Γk

|fj(x) − fj(y)|2

|x− y|2
dσ(x)dσ(y) ≤∥fj∥2

H
1/2
00 (Γj)

The only case left to consider is when k = j − 1 or k = j + 1. As in [40, Theorem
1.5.2.3], it is important to note that Γj+1,Γj−1 are C1 curves. Therefore, the
functions: ∫

Γj+1

dσ(y)
|x− y|2

,
∫

Γj−1

dσ(x)
|x− y|2

are equivalent to d(x,Γj+1)−1, d(y,Γj−1)−1 respectively therefore:∫
Γj

∫
Γj+1

|fj(x)|2

|x− y|2
dσ(x)dσ(y) +

∫
Γj

∫
Γj−1

|fj(y)|2

|x− y|2
dσ(x)dσ(y)

≤ K ′
[∫

Γj

|fj(x)|2

d(x,Γj+1)
dσ(x) +

∫
Γj

|fj(y)|2

d(y,Γj−1)
dσ(y)

]
≤ K ′′∥fj∥2

H
1/2
00 (Γj)

(2.43)

Therefore, from Equations (2.41), (2.42), and (2.43), we deduce that:∥∥∥f̃∥∥∥
H1/2(Γ)

≤ C∥fj∥H1/2
00 (Γj)

By employing similar reasoning as in [40, Theorem 1.5.3.10] and a proof analo-
gous to [10, Lemma 2.4], we can state the subsequent theorem:

Theorem 2.4.4. Let Ω be a bounded open subset of R2 whose boundary is a curvi-
linear polygon of class at least C1. Let E(Ω) = {u ∈ H1(Ω) : ∆u ∈ H0(div,Ω)′},
then the mapping:

u → 2[D(u)n]tg|Γj
,
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which is defined on D(Ω) has a unique continuous extension as an operator from:

E(Ω) →
(
H

1/2
00 (Γj)

)′

Proof. Consider v belonging to D(Ω) and φ as an element of H1(Ω) satisfying
φ · n = 0 on Γ. Remembering the relation ∆v = 2 div D(v) − ∇(div(v)), we can
then proceed with an integration by parts to yield:

−⟨∆v,φ⟩Ω = 2
∫

Ω
D(v) : ∇φdx−

∫
Γ

2[D(v)n]tg · φtg ds−
∫

Ω
div(v)div(φ)dx.

Hence, for every v in D(Ω) and for each φ within V (Ω), it can be stated that:

− ⟨∆v,φ⟩Ω = 2
∫

Ω
D(v) : D(φ)dx−

∑
i

∫
Γi

2[D(v)n]tg · φtg ds. (2.44)

Consider fj as an arbitrary member of H
1/2
00 (Γj). We proceed by defining:

f̃ =
fj(x) x ∈ Γj

0 x ̸∈ Γj
.

Consequently, by referring to Theorem 2.4.3, we have f̃ ∈ H1/2(Γ). Now, similarly
to [10, Lemma 2.4], we consider φ in H1(Ω) to be the solution of:div(φ) = 0 Ω

φ = f̃ tg Γ
,

satisfying ∥φ∥H1(Ω) ≤ C∥f̃ tg∥H1/2(Γ) ≤ C∥f̃∥H1/2(Γ). Thus, using Theorem 2.4.3,
it can be deduced that:

∥φ∥H1(Ω) ≤ C∥fj∥
H

1/2
00 (Ω) . (2.45)

Now notice that:∣∣∣∣∣
∫

Γj

2[D(v)n]tg · fj ds

∣∣∣∣∣ =
∣∣∣∣∣∑
i

∫
Γi

2[D(v)n]tg · f̃ tg ds

∣∣∣∣∣
=
∣∣∣∣∫

Γ
2[D(v)n]tg · φ ds

∣∣∣∣
=
∣∣∣∣⟨∆v,φ⟩Ω + 2

∫
Ω

D(v) : D(φ)dx
∣∣∣∣

≤ ∥∆v∥(H0(div,Ω))′∥φ∥H0(div,Ω) + 2∥D(v)∥L2(Ω)∥D(φ)∥L2(Ω)
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2.4 The H1/2
00 space

Hence: ∣∣∣⟨2[D(v)n]tg,fj⟩Γj

∣∣∣ ≤
(

∥∆v∥2
[H0(div,Ω)]′ + 2∥D(v)∥2

L2(Ω)

) 1
2

×
(
∥φ∥2

L2(Ω) + 2∥D(φ)∥2
L2(Ω)

) 1
2

Recalling that ∥v∥Ep(Ω) = ∥v∥W 1,p(Ω) + ∥∆v∥[H0(div,Ω)]′ , it follows that from Korn’s
inequality that: ∣∣∣⟨[D(v)n]tg,fj⟩Γj

∣∣∣ ≤ Cp∥v∥Ep(Ω)∥φ∥H1(Ω).

Therefore, employing equation (2.45), we can infer that:

∥[D(v)n]tg∥H1/2
00 (Γj)′ ≤ C∥v∥Ep(Ω).

Hence, the linear mapping Θ : v → [D(v)n]tg|Γj
defined on D(Ω) is continuous for

the norm of E(Ω). Since D(Ω) is dense in E(Ω),Θ can be extended by continuity
to a mapping still called Θ ∈ L

(
E(Ω),H1/2

00 (Γj)
)
.

We are now ready to prove our green identity

Proof of theorem 2.0.1. Notice that for every u ∈ D(Ω) and φ ∈ {u ∈ H1(Ω) :
div(u) = 0} we have the following Green’s identity:

⟨∆u,φ⟩Ω =
∫

Ω
2D(u) : D(φ) dx−

2M∑
j=1

⟨2[D(u)n]tg, γj(φ)⟩Γj
(2.46)

Thus, assuming that γj(u) ∈ ∏2M
j=1 H

1/2
00 (Γj) and using the Korn inequality, we can

see that all terms of (2.46) are continuous in u for the norm of E(Ω). Therefore,
the result follows from the density of D(Ω) in E(Ω).

37





3 Numerical perspective for the
direct problem

3.1 Direct problem and experimental setup
To solve the evolutionary Stokes equations with Navier-slip boundary conditions
relevant to these problems, we chose to utilize radial divergence-free kernels. This
decision was based on the fact that these methods are mesh-free, enabling us to
work with more complex geometries in the future, and possess spectral conver-
gence properties, as well as ease of implementation of boundary conditions such as
Navier-slip. However, a drawback of these methods is that the resulting matrix can
exhibit high condition numbers and the appearance of spurious eigenvalues. To
address this issue, we employed the recently introduced divergence-free hybrid ker-
nels, as described in the works [51] and [17]. These kernels, in their scalar version,
are a linear combination of Gaussian and Polyharmonic splines. The Gaussian
component contributes to exponential convergence, while the polyharmonic part
controls the stability of the scheme. For further details, see [17].

Let Ω ⊂ RN , Li(u, p) = −µ∆ui + ∂p
∂xi

and consider the system:


∂ui

∂t
+ Li(u, p) = fi in Ω × (0, T ),

div(u) = 0 in Ω × (0, T ),
Bi(u, p) = gi on ∂Ω,
u(·, 0) = u0(·) in Ω,

i ∈ {1, ..., N}

where B = (B1, ...,BN) is a given boundary operator. In order to solve the
systems, we first define a matrix-valued kernel in the following form:

Φ =
[

ΦDiv 0
0 ψ

]
: RN → R(N+1)×(N+1),

We then propose a solution using the method of lines in combination with the
general interpolation theorem [65, Proposition 3.11]:
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3 Numerical perspective for the direct problem

(û, p̂)(x, t) =
N∑
i=1

Nb∑
j=1

Bξ
iΦ(x − ξj)α[(i−1)Nb+j](t)

+
N∑
i=1

Nin∑
j=1

Lξ
iΦ(x − ξNin+j)α[NNb+(i−1)Nin+j](t),

(3.1)

The ansatz in equation (3.1) expresses (û, p̂)(x, t) as a linear combination of
vector-valued functions from RN to RN+1 defined by the application of the opera-
tors Bi and Li to each row of the kernel Φ(· − ξi), (i.e, Bξ

iΦ, Lξ
iΦ). Here, ξj are

the center nodes located both inside and on the boundary of the domain Ω, and
the vector α(t) are the time-varying coefficients of the ansatz. The parameters
Nb and Nin represent the total number of boundary and interior center nodes,
respectively.

In 2D, the combined Div-free velocity-pressure kernel, denoted by Φ, is given by
equation (3.2):

Φ(x) =
(

ΦDiv(x) 0
0 e−c2 r + γ2 r

2m+1

)
. (3.2)

where r = ∥x∥, γ2 is a positive real number related to the hybrid kernel for the
pressure, and ΦDiv is the divergence-free hybrid kernel given by:

ΦDiv(x) = {−∆I + ∇∇T}(ψ1(x) + γ1ψ2(x)).

with ψ1(x) = exp(−c1, r
2), ψ2(x) = r2n+1, and γ1 is a positive real number. By

direct computation, we obtain the following expression for ΦDiv(x):

ΦDiv(x) =4c1e
−r2c1

(
−c1x

2
2 + 1

2 c1x1x2

c1x1x2 −c1x
2
1 + 1

2

)

+ γ1r
2n−3(4n2 − 1)

 −r2

(2n−1) − x2
2 x1x2

x1x2
−r2

(2n−1) − x2
1

 .
By substituting the ansatz (3.1) into the Stokes system, we can derive the following
system of ordinary differential equations:

Mϕ
α(t)
dt

+MLϕα(t) = f , (3.3)

MBϕ
α(t) = g ,
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3.2 Numerical results for the direct problem

where Mϕ,MLϕ
∈ R2Nin×(2Nb+2Nin) and MBϕ

∈ R2nb×(2nb+2nin). The solution to
the system of ordinary differential-algebraic equations (odea) in (3.3) provides us
with the time-varying coefficients of the ansatz, α(t). The system is numerically
solved using a technique known as backward differentiation formulas (BDF). Ac-
cording to numerical simulations reported in [17], all of the eigenvalues of the Gram
matrix associated with this system are found in the negative half of the complex
plane. Hence, the use of BDFs ensures the stability of the numerical method.

3.2 Numerical results for the direct problem
To demonstrate the effectiveness of the hybrid divergence-free kernel method, we
present numerical results for the problem (1.2)–(1.3). The computational domain
for the fluid is defined as Ω\O = ([0, 8] × [0, 1])\O, where the obstruction O is
parameterized as follows:

∂O =
x(s) = θ1 + s s ∈ [0, θ2],
y(s) = θ3

2

(
1.0 − cos(2πs

θ2
)
)

s ∈ [0, θ2].
(3.4)

Figure 3.1: Parametric representation of the domain Ω\O

The obstruction parameters used for this simulation are θ1 = 4, θ2 = 1, and θ3 =
0.5, which represent the position, size, and percentage depth of the obstruction,
respectively. The computational domain for the wave is set to S = [0, 8] × [1, 5].

Since the couple problem (1.2)–(1.3) is indeed only in one direction, for simplic-
ity, we decide to solve (1.2) with hybrid RBF and store the normal component
of the stress tensor to later simulate the wave equation using the finite element
method due to its simple geometry domain. We note that in all of our examples,
the finite element method achieved a similar order of precision as the hybrid RBF
technique.

For the numerical simulation (1.2) we use a mesh of 1119 Halton points, a BDF2
scheme to solve the odea system (3.3) with a time step of ∆t = 1

200 in the interval
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3 Numerical perspective for the direct problem

[0, 5], a fixed viscosity constant µ = 0.1. It is important to note that for this
simulation, we define gin(x, t) = gout(x, t) = (cos(2πt+ π) + 1).

For the numerical simulation of the wave equation (1.3) we use the element P1
with a mesh of 5963 points and a fixed propagation speed c = 1.

It should be noted that our choice of the RBF hybrid parameters, c1 = c2 = 0.5,
γ1 = 10−4, and γ2 = 10−4, resulted in a reasonable condition number of 1014

for the associated ODE matrix system (3.3) and a high degree of accuracy, with
a difference of 10−4 for the velocity field and 10−3 for the pressure field when
compared to an analytical solution.

Figures 3.2 and 3.3 are snapshots of the simulations obtained from the velocity
field, the pressure, and the acoustic wave:

-2.3e+01 2.3e+01-15 -10 -5 0 5 10 15

Wave

2.1e-01 6.7e+001 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
velocity norm

(a)

-2.4e+01 2.3e+01-15 -10 -5 0 5 10 15

Wave

2.8e-04 3.4e-010.05 0.1 0.15 0.2 0.25 0.3
velocity norm

(b)

Figure 3.2: Norm of the velocity and the wave at t = 2.5 (a), t = 5 (b)
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Figure 3.3: Norm of the pressure and the wave at t = 2.5 (a), t = 5 (b)
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4 An optimization process for the
inverse problem

As a first step towards understanding the problem, we consider a specific class
of obstacles that allow us to determine the location, depth, and size of the ob-
struction. To do this, we use the measurements of the acoustic wave and fluid
flow.

Let O = O(θ1, θ2, θ3) be the obstruction we want to identify. The measurements
of the sound waves generated by the Cauchy tensor resulting from the Stokes flow
is represented by wm(.) = w (.; O(θ1, θ2, θ

∗
3)), as defined in the systems (1.2) –(1.3).

Our goal is to reconstruct the obstruction O by using measurements of the acoustic
wave w in the observable set Sm = [k1, k2] × H ⊂ ∂S and measurements of the
tangential velocity in Γm, a relative open set of the fluid domain border, as shown
in Figure 4.1.

Figure 4.1: Illustration of measurement domains for the numerical inverse prob-
lems.

The obstruction in our problem is defined by a parameterized boundary, given
by:
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4 An optimization process for the inverse problem

∂O =
x(s) = θ1 + s s ∈ [0, θ2],
y(s) = θ3

2

(
1.0 − cos(2πs

θ2
)
)

s ∈ [0, θ2].

This parameterization allows us to understand the identification problem as one
of recovering the parameters θ1, θ2, θ3 that define the obstruction O. Furthermore,
as the obstruction does not affect the domain S of the wave equation, we can
decompose the inverse problem into two separate inverse problems.

4.1 Inverse problem for the wave equation
Recalling the assumption that the obstruction does not intersect with the upper
wall boundary, represented by Γupwall. From equation (1.3), we can see that the
measurements obtained at the set Sm are dependent on the unknown values of
the boundary term defined on Γupwall × (0, T ). In order to estimate these unknown
boundary values, we propose to minimize the following functional:

J1(f) =
∫
Sm×(0,T )

∥w(·; f) − wm∥2
2 dS dt, (4.1)

where ∥.∥2 is the Euclidean norm and wm are the wave measurements (see Figure
1.2) and w(.; f) ∈ C([0, T ], H1(S)) is the solution to:

wtt − c2∆w = 0 in S × (0, T ),
w = f on ([0, L]×{D}) × (0, T ) = Γupwall × (0, T ),
∂w
∂t

+ c∂w
∂n

= 0 on (∂S\ ([0, L]×{D})) × (0, T ),
wt(x, 0) = 0 in S,

w(x, 0) = 0 in S.

Our goal in minimizing the functional given by equation (4.1) is to obtain an
estimation of the unknown boundary values on Γupwall×(0, T ). This functional quan-
tifies the difference between the solution of the wave equation with the unknown
boundary values (represented by f) and the measured wave values (wm). By mini-
mizing this difference, we can obtain an estimate of the unknown boundary values
and, consequently, reconstruct the Cauchy tensor.

It is important to note that the wave equation has a finite propagation speed,
which means that we can only recover the unknown boundary datum within the
time interval (0, T − tc), where tc represents the travel time of the wave between
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4.2 Obstacle inverse problem

the boundary datum site and the measurement site. In our specific case, given the
simplicity of the geometry, we can characterize the constant tc using the following
formula:

tc =
supx∈Γup

wall
d(x, Sm)
c

, (4.2)

where d(x, Sm) := inf{d ∈ R+ : d = ∥x − y∥2, y ∈ Γupwall} and c is the propagation
speed.
In summary, the first inverse problem corresponds to:

Find f̂ ∈ Fad such that: J1(f̂) = min
f∈Fad

J1(f) , (4.3)

where Fad = {L2 (Γupwall × (0, T )) : f = 0 on (Γupwall × (T − Tc, T ))} is the admissi-
ble space of the boundary data.

4.2 Obstacle inverse problem

Using the solution f̂ of the first inverse problem (4.3), we can now estimate the
unknown parameters of the obstruction O. Recalling that the functional (4.1) is a
quadratic form and therefore convex, it is not unreasonable to assume that f̂ is an
estimation of the normal component of the Cauchy tensor σ(u, p)n · n on Γupwall ×
(0, T ). Additionally, we also have measurements of the tangential component of
the fluid velocity, denoted as vm,τ , in a set Γm × (0, T ) ⊂ Γupwall × (0, T ). Thus, we
aim to minimize the following functional:

J2(θ) =
∫

Γup
wall

×(0,T−tc)

∥∥∥(σ (u(.; θ), p(.; θ)) n) · n − f̂
∥∥∥2

2
dS dt

+
∫

Γm×(0,T )
∥vm,τ − u(.; θ) · τ∥2

2 dS dt ,
(4.4)

where θ ∈ Θ ⊂ R3 is the set of possible parameters that represent an obstruction,
ΩO(θ) = Ω\O(θ) and u(.; ΩO(θ)), p(.; ΩO(θ)) ∈ H1(ΩO(θ)) × L2(ΩO(θ)) are solutions
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4 An optimization process for the inverse problem

to: 

ut − div(σ(u, p)) = 0 in Ω\O(θ) × (0, T ),
div(u) = 0 in Ω\O(θ) × (0, T ),
u = gin on Γinlet × (0, T ),
u = gout on Γout × (0, T ),
u · n = 0, (σ(u, p)n)tg = 0 on ΓO(θ)

wall × (0, T ),
u(., 0) = u0 in Ω\O(θ) .

It is important to note that the use of tangential velocity in functional (4.4)
is necessary due to Theorem 2.3.4. This may seem contradictory to our initial
goal, as the wave equation does not convey information about tangential velocity.
However, as we will show in the following section, reasonable results can still be
obtained without it (see experiment 4 in Table 4.1).

4.3 Numerical results
The optimization task outlined in the preceding section requires solving equations
(1.2)-(1.3). This process is detailed in subsections (3.1)-(3.2). Importantly, for
both the Stokes equation and the acoustic wave propagation equation, the same
numerical time step is employed, specifically ∆t = 1/500. In an effort to reduce
computational cost, we define Ω = [0, 8]× [0, 1], S = [0, 8]× [1, 3], and the terminal
time T = 1. We also set the wave propagation speed as c =

√
30. To further align

the simulated flow with that of blood, we assign the fluid viscosity as µ = 1/500.
In order to investigate the robustness of the optimization procedure we decide

to perform 8 numerical experiments, with different obstructions geometries and
different observable domains of the wave Sm and of the tangential component of
the velocity at the boundary Γm, see tables 4.1-4.3 for a summary.

For the first 6 numerical experiments we generate synthetic data using obstruc-
tions O defined by the parameters (θ1, θ2, θ3) (see equation (3.4) and Figure 3.1)
and for experiments 7-8 we generated the data using a different class of obstruc-
tion, defined by a cubic spline (see figure 4.4). In order to avoid the inverse crime
we add a random error relative to the method order, given by a normal distribution
of variance σ = 10−5 and mean µ = 0.

To compute an approximation of the normal component of the Cauchy tensor
on the upper wall of the fluid domain, we minimize the functional described in
equation (4.1). Since the functional J1 is convex, we employ the gradient method
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as the optimization technique.
The results of reconstructing the boundary data using the gradient descent

method are shown in Figure 4.2. It is worth noting that our reconstruction does
not provide a complete representation of the boundary data. This limitation arises
from the time delay of the wave in reaching the measurement site, as explained
earlier.

(a) (b)

Figure 4.2: a) Original wave boundary datum, b) Reconstructed boundary da-
tum.

To determine the geometry of the obstruction, we utilized a Markov Chain
Monte Carlo (MCMC) method to minimize the functional (4.4). This choice was
motivated by several advantages that MCMC offers over other methods, such as
gradient descent. The functional (4.4) has an unknown nature and may exhibit a
non-convex shape, making it suitable for MCMC methods. Additionally, MCMC
methods excel in exploring limited parameter spaces and can be easily parallelized,
leveraging multiple CPU cores efficiently. Furthermore, MCMC methods provide
an uncertainty range for the estimated parameters, which is valuable in prac-
tical applications. Considering these benefits and the lack of prior studies using
MCMC in this context, we deemed it the most suitable method for our obstruction
reconstruction problem. For all numerical experiments, we initialized the MCMC
algorithm with θ1 = 3, θ2 = 0.6, θ3 = 0.1 as the starting point, as depicted in
Figure 4.3. While gradient descent methods have shown success in articles such as
[8] and [68], we believe that MCMC provides the optimal solution for our specific
problem.

In our MCMC method, we employed the DRAM (Dynamically Adaptive Metropo-
lis) algorithm. This algorithm dynamically adapts the proposal distribution dur-
ing the simulation, allowing for efficient exploration of the parameter space. The
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4 An optimization process for the inverse problem

DRAM method has been demonstrated to converge faster and achieve higher ac-
ceptance rates compared to traditional MCMC methods. This, in turn, leads to
more accurate results and a better estimation of the uncertainty range for the es-
timated parameters. The utilization of the DRAM method in this study enhances
the robustness of the results and provides a more precise depiction of the obstruc-
tion’s geometry. For a deeper understanding of these methods, interested readers
can refer to [34].

The results of the Markov Chain Monte Carlo (MCMC) algorithm are summa-
rized in tables 4.1 to 4.3. The data suggests that the majority of experiments
produce satisfactory outcomes, with the initial parameters remaining within the
mean’s standard deviation. It is noteworthy that including tangential velocity in-
formation reduces the standard deviation of the estimated parameters, as shown
in Experiment 4.

The probability density functions of the parameters θ1, θ2, θ3 for each experiment
are shown in Figures 4.5-4.7. The majority of distributions are Gaussian in shape,
centered around the original parameters, with the exception of θ2 (obstacle size).
When the tangential velocity measurement site is above or on the right side of
the obstacle, the standard deviation for θ1 (obstacle position) and θ3 (obstruction
blockage percentage) decreases, as the obstacle information is transmitted in the
flow direction.

Regarding the obstacle size θ2, most distributions are uniform, but the best
results are obtained when the tangential velocity is available, as demonstrated
in experiments 2,5, and 6. This highlights the importance of tangential velocity
information in determining the correct size of the obstacle.

A comparison of the original and reconstructed domains for each of the eight
numerical experiments is shown in Figure 4.8(a-h). The best results are obtained
with the most complete information about the tangential velocity vector, as seen
in Figure 4.8(b). In all cases, acceptable values for the depth and size of the
obstruction are obtained, which are the most critical parameters in determining
the danger level of a stenosis.

Notice also that figure 4.8(g-h) shows that even if the obstruction is outside the
class of obstruction defined by (θ1, θ2, θ3), we can still obtain some information with
our low-parameter model. The approximation error in this scenario is calculated
using the L2 norm.

It is important to note that the location of the wave measurement domain has
no significant impact on parameter estimation. This is because in each case, the
fluid tensor σ(u, p)n on the upper wall of the fluid domain is recovered, with the
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4.3 Numerical results

only variation being the length of the time interval for the tensor estimation. The
details of this estimation can be found in Subsection 4.1.

Figure 4.3: Initial guess shape for the MCMC method

Figure 4.4: Original domain for experiments 7-8

Table 4.1: Experiment 1-4 parameter summary and numerical result.

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Sm [0, 3] × {3} [0, 8] × {3} [5, 8] × {3} [0, 8] × {3}
Γm [0, 2] × {1} [0, 8] × {1} [6, 8] × {1} ∅

Original Mean S.D Mean S.D Mean S.D Mean S.D
θ1 = 4.0 3.8929 0.4871 3.9652 0.3207 3.8983 0.4698 3.9191 0.4722
θ2 = 1.0 1.0854 0.2653 1.0879 0.2567 1.0667 0.2834 1.0599 0.2731
θ3 = 0.5 0.4788 0.0636 0.4841 0.0593 0.4961 0.0669 0.5009 0.0639

∥θ − θ∗∥2 0.1386 0.0959 0.1217 0.1007
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Table 4.2: Experiment 5-6 parameter summary and numerical result.

Sm = [0, 8] × {3}
Γm = [0, 8] × {1}

Experiment 5 Experiment 6
Original Mean S.D Original Mean S.D
θ1 = 2.5 2.5692 0.2872 θ1 = 5.5 5.3433 0.3564
θ2 = 1.0 1.0955 0.2623 θ2 = 1.0 1.0433 0.2871
θ3 = 0.5 0.4566 0.0667 θ3 = 0.5 0.4353 0.0894

∥θ − θ∗∥2 = 0.1257 ∥θ − θ∗∥2 =0.1749

Table 4.3: Experiment 7-8 parameter summary and numerical result.

Experiment 7 Experiment 8
Sm = [0, 8] × {3} Sm = [0, 8] × {3}
Γm = [0, 8] × {1} Γm = ∅

Parameter Mean S.D Parameter Mean S.D
θ1 2.7139 0.4047 θ1 2.9135 0.6575
θ2 1.3822 0.5430 θ2 1.5646 0.5698
θ3 0.3868 0.0799 θ3 0.3629 0.0886

∥f − f(θ∗)∥L2
= 0.1251 ∥f − f(θ∗)∥L2 = 0.2958
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Probability density function estimate of θ1 (Obstruction position) of
experiments 1-8 (a-h)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Probability density function estimate of θ2 (Obstruction size) of ex-
periments 1-8 (a-h)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Probability density function estimate of θ3 (Obstruction percentage)
of experiments 1-8 (a-h)
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Experiment 1
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Experiment 7
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Experiment 8
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Figure 4.8: Original domain shape vs. reconstructed shape of experiments 1-8
(a-h)
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5 Continuity with respect to the
domain

5.1 Introduction
In this chapter, our focus is on exploring the continuity of solutions to the Stokes
problem subject to domain variations. To this end, we consider a sequence of do-
mains {Ωk}∞

k=1 ⊂ Rd, converging diffeomorphically to a domain Ω ⊂ Rd. Thus we
shall analyze a sequence of solutions (uk, pk) ∈ L2(0, T ; V (Ωk)) ×L2

0(0, T ;L2(Ωk))
corresponding to the Stokes problem given by:

ut − div(σ(u, p)) = fk Ωk × (0, T ),
div(u) = 0 Ωk × (0, T ),
u · n = 0 ΓkN × (0, T ),
[2D(u)n]tg = hk ΓkN × (0, T ),
u = 0 ΓD × (0, T ),
u(0, x) = 0 Ωk.

(5.1)

From this point onward, the notation n will be used to represent the normal unit
vector of the corresponding domain. The term ”converge diffeomorphically” is
defined as follows:

Definition 5.1.1. A sequence of open subsets {Ωk}∞
k=1 in Rd is said to converge

diffeomorphically to a set Ω ⊂ Rd if and only if there exists a sequence of diffeo-
morphisms {ψk}∞

k=1, with ψk, ψ
−1
k ∈ W 1,∞(Rd,Rd), such that ψk(Ω) = Ωk and:

lim
k→∞

∥ψk − Id∥1,∞ = lim
k→∞

∥ψ−1
k − Id∥1,∞ = 0,

where the norm ∥f∥1,∞ is defined by

∥f∥1,∞ = sup
x∈Rd

|f(x)|Rd + sup
x∈Rd

|∇f(x)|Rd×d ,

and Id denotes the identity map.
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For the sake of clarity let us revisit the spaces defined in Chapter 2 :

V (Ω) = {u ∈ H1(Ω) : div(u) = 0,u|ΓD
= 0,u · n = 0 on ∂Ω},

H0,ΓD
(Ω) = {u ∈ H1(Ω) : u|ΓD

= 0},

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω
p dx = 0},

H(Ω) = {u ∈ L2(Ω) : div(u) = 0},

where V (Ω),H0,ΓD
(Ω) are equipped with the H1(Ω) norm, and L2

0(Ω) and H(Ω)
are equipped with the standard L2(Ω) norm.
Remark 5.1.2. We wish to recall that the Poincaré inequality still holds when only
a part of the boundary is equal to zero, (refer to [5, Theorem 5.3.4] for more
details). Thus the semi-norm of H1

0(Ω) is a norm in V (Ω),H0,ΓD
(Ω).

In the context of non-stationary scenarios, we adopt the following notation for
simplicity. Given a Banach space X, we represent Lα(X) = Lα(0, T ;X) as the
space of all Bochner measurable functions u : [0, T ] → X that possess a finite
corresponding norm:

∥u∥Lα(X) =
(∫ T

0
∥u(t)∥αXdt)

)1/α

.

This becomes a Hilbert space if X is a Hilbert space and α = 2. Similarly, we
define Cα(X) = C(0, T ;X) as the space of α−continuous functions u : [0, T ] → X,
equipped with the corresponding supremum norm. It is noteworthy, as given by
Lemma 11.45 in [24], that for a Banach space Y and a continuous linear operator
A : X → Y , the following holds true:

A
∫ T

0
u(t)dt =

∫ T

0
(Au)(t)dt .

For additional simplification in our notation, when given a Banach space X, we
use the following conventions:

• xn → x if {xn} ∈ X converges to x ∈ X in the strong topology, i.e ∥xn −
x∥X → 0,

• xn ⇀ x if xn ∈ X converges to x ∈ X in the weak topology, i.e limn→∞ ⟨y, xn⟩X′,X =
⟨x, y⟩X′,X ∀y ∈ X ′,

• xn ⇀∗ x if xn ∈ X ′ converges to x ∈ X ′ in the weak-start topology, i.e
limn→∞ ⟨xn, y⟩X′,X = ⟨x, y⟩X′,X ∀y ∈ X.
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5.1 Introduction

Now we present the main result of this Chapter which is encapsulated in the
following theorem:

Theorem 5.1.3. Let (uk, pk) ∈ L2(V (Ωk))×L2
0(L2(Ωk)) be a sequence the solution

of the Stokes 5.1 problem and define wk = uk ◦ψk, qk = pk ◦ψk Suppose following
assumption hold:

1. ψk(ΓkN) = ΓN ,

2. fk ∈ L2
(
L2(Ωk)

)
such that fk ◦ ψk → f ∈ L2

(
L2(Ω)

)
,

3. hk ∈ L2
(
L2(ΓkN)

)
such that hk ◦ ψk → h ∈ L2

(
L2(ΓN)

)
.

Then wk converge strongly to uΩ in L2(V (Ω)) solution of:

ut − div(σ(u, p)) = f Ω × (0, T ),
div(u) = 0 Ω × (0, T ),
u · n = 0 ΓN × (0, T ),
[2D(u)n]tg = h ΓN × (0, T ),
u = 0 ΓD × (0, T ),
u(0, x) = 0 Ωk.

We’re also going to establish a convergence of a lesser degree for the pressure,
as discussed in Theorem 5.4.2.
Remark 5.1.4. We emphasize that our primary problem of interest in this work is
the convergence of (uk, pk) ∈ L2(V (Ωk))×L2

0(L2(Ωk)) corresponding to the Stokes
problem given by (5.2):

ut − div(σ(u, p)) = fk Ωk × (0, T ),
div(u) = 0 Ωk × (0, T ),
u · n = 0 ΓkN × (0, T ),
[2D(u)n]tg = 0 ΓkN × (0, T ),
u = g ΓD × (0, T ),
u(0, x) = 0 Ωk.

(5.2)

However, from the proof of Theorem 2.2.1, we understand that this problem can be
divided into two subproblems: one with mixed boundary conditions, i.e., problem
(5.1), and one with non-homogeneous Dirichlet boundary conditions, i.e.:

57



5 Continuity with respect to the domain



ut − div(σ(u, p)) = fk Ωk × (0, T ),
div(u) = 0 Ωk × (0, T ),
u = 0 ΓkN × (0, T ),
u = g ΓD × (0, T ),
u(0, x) = 0 Ωk.

(5.3)

The latter problem has already been studied in [7] using a different methodology.
In this chapter, we will apply the same methodology as developed in [62].

5.2 Preliminary result
In this section, we will introduce some preliminary results that will be useful in
proving the continuity of the Stokes problem with respect to its domain. These
results will provide us with tools to study the behavior of the solution as the
domain changes, and they will form the basis of our analysis.

5.2.1 Estimates for unsteady Stokes system with mixed
boundary conditions

In this subsection, we provide an estimate for problem (5.1). It is important to
note that we consider the case where the dimension, denoted as d, is set to 2. This
choice is made because in the preceding chapter, we have only presented results
specifically for this dimension. Generalizations to higher dimensions will be the
subject of future work and investigation.

The following theorem establishes the Poincaré inequality for the spaces V (Ω)
and H0,ΓD

(Ω), and can be found in [5]. In simple terms, this theorem confirms
that the well-known Poincaré inequality still holds in the Sobolev space where only
a portion of the trace operator is equal to zero.

Theorem 5.2.1. Let Ω be open, bounded and Liptchiz domain. Consider Γ0 a
open subset of ∂Ω and X = {u ∈ H1(Ω)|u = 0 on Γ0 ⊂ ∂Ω} then exist a constant
C > 0 that depends only on Ω such that:

∥u∥H1(Ω) ≤ C∥∇u∥L2(Ω).

We are now ready to prove our estimates.
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Theorem 5.2.2. Let Ω be as defined in Theorem (2.2.1). Consider f ∈ L2
(
L2(Ω)

)
and h ∈ L2

(
L2(ΓN)

)
, where h · n = 0. Then, there exists a unique solution (u, p)

to the following problem:

ut − div(σ(u, p)) = f Ω × (0, T ),
div(u) = 0 Ω × (0, T ),
u · n = 0 ΓN × (0, T ),
[2D(u)n]tg = h ΓN × (0, T ),
u = 0 ΓD × (0, T ),
u(0, x) = 0 Ωk.

where u ∈ L2(V (Ω))⋂C(H(Ω)) and p ∈ L2(L2
0(Ω)). Furthermore we have the

following estimates:∥∥∥∥∥ ddtu
∥∥∥∥∥
L2(V (Ω)′)

+ ∥u∥L2(V (Ω)) + ∥p∥L2(Ω) ≤ C
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
.

where C > 0 is a constant that depends only on Ω.

Proof. The existence of the solution deduce from Theorem (2.2.1), since L2
(
L2(Ω)

)
and L2

(
L2(ΓN)

)
are continuously embedded in L2 (H0(div,Ω)′), L2 (H0(div,Ω)′)

respectively.
In the process of establishing the estimates, we refer to [61, Chap 3 Lemma 1.2],

which asserts that u can be used as a test function, even when u is an element
of L(V (Ω)). This is feasible because the equation (5.1) can be understood as an
operator equation in the form u′ +Au = f , with all terms belonging to L(V (Ω)′).
Moreover, the dual space of L(V (Ω)′) is equal to L(V (Ω))′, thus, we deduce that:

d

dt

∫
Ω

|u(t)|2 dx+ 2
∫

Ω
|∇u(t)|2 dx = 2

∫
Ω

f · udx+ 2
∫

ΓN

h · uds.

Therefore integrating from 0 to ts and since u(0) = 0 we obtain:
∫

Ω
|u(ts)|2 dx+2

∫ ts

0

∫
Ω

|∇u(t)|2 dxdt = 2
∫ ts

0

∫
Ω

f ·udxdt+2
∫ ts

0

∫
ΓN

h·uds. (5.4)

Notice that
∫

Ω |u(x, ts)|2 dx is well define since u ∈ C(H(Ω)), thus setting ts = T

in equation (5.4)we obtain:
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5 Continuity with respect to the domain

∫ T

0

∫
Ω

|∇u(t)|2 dxdt ≤
∣∣∣∣∣
∫ T

0

∫
Ω

f · u dxdt

∣∣∣∣∣ (5.5)

+
∣∣∣∣∣
∫ T

0

∫
ΓN

h · u dsdt

∣∣∣∣∣ .
Using the Poincaré inequality , and using fact that the trace operator is continuous,
there a constant C > 0 such that:

∥u∥L2(V (Ω)) ≤ C
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
. (5.6)

Now to bound d
dt

u in L2(V (Ω)′). Let v ∈ L2(V (Ω)′) and notice that:

∫ T

0

∫
Ω

d

dt
u · vdxdt+

∫ T

0

∫
Ω

∇u · ∇vdxdt =
∫ T

0

∫
Ω

f · vdx+
∫ T

0

∫
ΓN

h · vds.

Using again the Poincaré inequality and the fact that the trace operator is contin-
uous we obtain:∣∣∣∣∣

∫ T

0

∫
Ω

d

dt
u · vdxdt

∣∣∣∣∣ ≤ ∥∇u∥L2(L2(Ω))∥∇v∥L2(L2(Ω)) + ∥f∥L2(L2(Ω))∥v∥L2(L2(Ω))

+ ∥h∥L2(L2(Ω))∥v∥L2(V (Ω))

≤ C ′
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
∥v∥L2(V (Ω))

Hence from inequality (5.6) we have:∥∥∥∥∥ ddtu
∥∥∥∥∥
L2(V (Ω)′)

≤ C ′
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
. (5.7)

Let H−1(Ω) = H1
0(Ω)′, analogously we have that:∥∥∥∥∥ ddtu
∥∥∥∥∥
L2(H−1(Ω))

≤ C ′′
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
.

From the prove of (2.2.1) we know that:

∥∇p∥L2(H−1(Ω)) = ∥ d
dt

u − ∆u − f∥L(H−1(Ω)) (5.8)

≤ ∥ d
dt

u∥L2(V (Ω)′) + ∥u∥L2(H1
0(Ω))

+ ∥f∥L2(L2(Ω)) .
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Thus from equations (5.7),(5.6) and (5.8) we deduce that:

∥∇p∥L2(H−1(Ω)) ≤ C ′′′
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
.

From the prove of (2.2.1) and from [9, Proposition 2.10] we know there is a constant
M > 0 such that:

∥p∥L2(L2(Ω)/R) ≤ M∥∇p∥L2(H−1(Ω)) .

Since p ∈ L2(L2
0(Ω)) and we obtain:

∥p∥L2(L2(Ω)) ≤ C ′′′M
(
∥f∥L2(L2(Ω)) + ∥h∥L2(L2(ΓN ))

)
.

5.2.2 Continuity of H1(Ω) under Diffeomorphisms
In this section, we present several important theorems and propositions that are
crucial for studying the convergence of solutions with respect to diffeomorphisms.
These results provide valuable insights and tools for analyzing the behavior and
properties of solutions under transformations of the underlying domain. First we
draw attention to two cornerstone mathematical concepts, the chain rule and the
change of variables, both renowned for their significant utility in traditional spaces.

Proposition 5.2.3. [6, Lemma 6.21] Let Ω0,Ω1 ⊂ Rd be open,. Suppose ψ : Rd →
Rd is a diffeomorphism in W 1,∞(Rd,Rd) such that ψ(Ω0) = Ω1. Let 1 ≤ p ≤ +∞
then the following holds:

1. u ∈ Hm(Ω1) if and only if u ◦ ψ ∈ Hm(Ω0) for m = 0 or m = 1,

2. (∇u) ◦ ψ = ((∇ψ)−1)t ∇(u ◦ ψ),

3.
∫

Ω1
u dx =

∫
Ω0
f ◦ ψ |det(∇ψ)|dx,

4.
∫

Ω1
u |det(∇ψ−1)| dx =

∫
Ω0
f ◦ ψdx.

Continuing our exploration of the chain rule, we now address a proposition concern-
ing its application in a slightly different context - namely, the change of variables
on the boundary of a domain. This proposition can be found in [6, Lemma 6.23],
but the prove is given in [42, Proposion 5.4.3] .
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5 Continuity with respect to the domain

Proposition 5.2.4. Let Ω0,Ω1 ⊂ Rd be a open, bounded and at least of class C1,1.
Suppose ψ : Rd → Rd is a diffeomorphism in W 1,∞(Rd,Rd)∩C1(Rd,Rd) such that
ψ(Ω0) = Ω1. Let u ∈ L1 (∂Ω1), then u ◦ ψ ∈ L1 (∂Ω0), and we have∫

∂Ω1
u ds =

∫
∂Ω0

u ◦ ψ|det(∇ψ)|
∣∣∣∣((∇ψ)−1

)t
n
∣∣∣∣
RN
ds,

where n is the external normal to ∂Ω0.

We now introduce a theorem about the transformative behavior of the Sobolev
spaces under a diffeomorphism. Specifically, this theorem determines that the
linear operator ψ̃(u) = u ◦ ψ establishes an isomorphism between two associated
Sobolev spaces. Furthermore, when the diffeomorphism approximates the identity,
the associated spaces become nearly identical.

Theorem 5.2.5. Let Ω0,Ω1 ⊂ Rd be open, bounded, and Lipschitz domains. Sup-
pose ψ, ψ−1 : Rd → Rd are diffeomorphism in W 1,∞(Rd,Rd) such that ψ(Ω0) = Ω1.
Then for m = 0 or m = 1 the linear operator ψ̃ : Hm(Ω1) → Hm(Ω0), defined by

ψ̃(u) = u ◦ ψ,

is an isomorphism between Hm(Ω1) and Hm(Ω0). Moreover, there exist constants
L(ψ), U(ψ) > 0 such that for all u ∈ Hm(Ω1), we have

L(ψ)∥u∥Hm(Ω1) ≤ ∥ψ̃(u)∥Hm(Ω0) ≤ U(ψ)∥u∥Hm(Ω1).

Furthermore if ∥ψ − Id∥1,∞ + ∥ψ−1 − Id∥1,∞ → 0 then L(ψ), U(ψ) → 1.

Proof. We first consider the case where m = 0. It can be observed that ψ̃ is a
linear function and its inverse is given by ψ̃−1(w) = w◦ψ−1. Therefore by the open
mapping theorem we only need to see that ψ̃ is continuous. Now, let’s consider
set J(ψ) = |det(∇ψ)| and the following expressions:

∥ψ̃(u)∥2
L2(Ω0) =

∫
Ω0

|u ◦ ψ|2 dx =
∫

Ω1
|u|2 J(ψ−1) dx

≤ ∥J(ψ−1)∥L∞(Ω1)∥u∥2
L2(Ω1), (5.9)

∥u∥2
L2(Ω1) =

∫
Ω1

|u|2 dx =
∫

Ω0
|u ◦ ψ|2 J(ψ) dx

≤ ∥J(ψ)∥L∞(Ω0)∥ψ̃(u)∥2
L2(Ω0). (5.10)
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Thus the constants are defined as U(ψ) = ∥J(ψ−1)∥1/2
L∞(Ω1) and L(ψ) = ∥J(ψ)∥−1/2

L∞(Ω0).
The finiteness of these constants is guaranteed by the determinant being an alge-
braic function. Moreover, the continuity of the determinant function ensures that
if ψ, ψ−1 → Id in the norm of W 1,∞, then L(ψ), U(ψ) → 1.

For the case where m = 1, we need to bound the semi-norm, ∥∇ψ̃(u)∥2
L2(Ω0),

using the chain rule we have ∇(u ◦ ψ) ◦ ψ−1 = (∇ψ)t ∇u. Therefore:

∥∇ψ̃(u)∥2
L2(Ω0) =

∫
Ω0

|∇(u ◦ ψ)|2 dx

=
∫

Ω1

∣∣∣(∇ψ)t ∇u
∣∣∣2 J(ψ−1) dx

≤ ∥J(ψ−1)∥L∞(Ω1)

∫
Ω1

∣∣∣(∇ψ)t ∇u
∣∣∣2 dx

≤ ∥J(ψ−1)∥L∞(Ω1)

∫
Ω1
Sψ(x) |∇u|2 dx . (5.11)

Here, Sψ(x) = sup|u|Rn =1 |∇ψ(x)tu|Rn is the operator norm of ∇ψ(x)t. Since every
norm is equivalent in finite dimensions, there exists a constant γ > 0 such that
Sψ(x) ≤ γ|∇ψ(x)t|Rd×Rd . It follows then that:

sup
x∈Ω1

Sψ(x) ≤ γ∥ψ∥1,∞,

which implies Sψ ∈ L∞(Ω1). From inequality (5.11) we have :

∥∇ψ̃(u)∥2
L2(Ω0) ≤ ∥J(ψ−1)∥L∞(Ω1)∥Sψ(x)∥L∞(Ω1)∥∇u∥2

L2(Ω1) .

An analogous procedure can be used to derive:

∥u∥2
L2(Ω1) ≤ ∥J(ψ)∥L∞(Ω0)∥Sψ−1(x)∥L∞(Ω0)∥∇ψ̃(u)∥2

L2(Ω0) .

Lastly, using the fact that the operator norm is a norm, we have:

|Sψ − 1| = |Sψ − SId
| ≤ |Sψ−Id

| ≤ γ |∇ψ − Id|Rd×d .

Therefore if ψ, ψ−1 → Id we have that Sψ, Sψ−1 → 1.

We now have the following corollary that is immediate from 5.2.5 since the
constants L(ψ), U(ψ) are time independent.

Corollary 5.2.1. Let Ω0,Ω1 ⊂ Rd be open, bounded, and Lipschitz domains.
Suppose ψ, ψ−1 : Rd → Rd are diffeomorphism in W 1,∞(Rd,Rd) such that ψ(Ω0) =
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5 Continuity with respect to the domain

Ω1. Let T > 0 and define Xm
0 = L(Hm(Ω0)), Xm

1 = L(Hm(Ω1)) Then for m = 0
or m = 1 the linear operator ψ̃ : Xm

0 → Xm
1 , defined by

ψ̃(u(t, x)) = u(t, ψ(x)) ,

is an isomorphism between Xm
0 and Xm

1 . Moreover, there exist constants L(ψ), U(ψ) >
0 such that for all u ∈ Hm(Ω1), we have

L(ψ)∥u∥Xm
1

≤ ∥ψ̃(u)∥Xm
0

≤ U(ψ)∥u∥Xm
1
.

Furthermore if ∥ψ − Id∥1,∞ + ∥ψ−1 − Id∥1,∞ → 0 then L(ψ), U(ψ) → 1.

Building upon our prior discussions on diffeomorphisms and their influence on
Sobolev spaces, we introduce a theorem that investigates the impact of a sequence
of open sets converging diffeomorphically on a bounded sequence within these
spaces.

Theorem 5.2.6. Consider a sequence of open sets {Ωk}∞
k=1 ⊆ Rd that converges

diffeomorphically to Ω. Let {uk}∞
k=1 be a bounded sequence in Hm(Ωk) with m = 0

or m = 1, and define wk = uk ◦ ψk. Then, the following hold:

• wk ∈ Hm(Ω),

• wk is a bounded sequence,

• if ∥uk∥Hm(Ωk) converges, then ∥wk∥Hm(Ω) also converges. Specifically, we have

lim
k→∞

∥wk∥Hm(Ω) = lim
k→∞

∥uk∥Hm(Ωk).

Proof. We first invoke Proposition 5.2.5 which guarantees that for every wk =
uk ◦ ψk, it is an element of Hm(Ω). Moreover, there exist sequences of constants,
Lk(ψk) and Uk(ψk), each greater than zero, that satisfy:

Lk∥uk∥Hm(Ωk) ≤ ∥wk∥Hm(Ω) ≤ Uk∥uk∥Hm(Ωk). (5.12)

Given that ∥ψ − Id∥1,∞ + ∥ψ−1 − Id∥1,∞ → 0 and applying Proposition 5.2.5, we
arrive at:

lim
k→∞

Lk = lim
k→∞

Uk = 1 . (5.13)

Since uk is bounded, it can be inferred from (5.12) that ∥wk∥Hm(Ω) is bounded.
If we assume that ∥uk∥Hm(Ωk) convergence, then applying the limit to Equation
(5.12) and utilizing the result from equation (5.13), we have:

lim
k→∞

∥wk∥Hm(Ω) = lim
k→∞

∥uk∥Hm(Ωk) .
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Following the same logic as in our prior theorem, we extend our investigation to
the setting of timed sequences.

Corollary 5.2.2. Consider a sequence of open sets {Ωk}∞
k=1 ⊆ Rd that converges

diffeomorphically to Ω. Let Xn
k = L(Hm(Ωk)) , X = L(Hm(Ω)). Now let {uk}∞

k=1
be a bounded sequence in Xm

k with m = 0 or m = 1, and define wk = uk ◦ ψk.
Then, the following hold:

• wk ∈ Xm
k ,

• wk is a bounded sequence, and

• if ∥uk∥Xm
k

converges, then ∥wk∥Xm also converges. Specifically, we have

lim
k→∞

∥wk∥Xm
k

= lim
k→∞

∥uk∥Xm .

Proposition 5.2.7. Let Ω0,Ω1 ⊂ Rn open, bounded and Lipschitz sets. Let
ψ, ψ−1 ∈ W 1,∞(Rd,Rd)) a diffeomorphims such that ψ(Ω0) = Ω1 and let γΩ ∈
L(H1(Ω), H1/2(∂Ω)) be the trace operator. Then if u ∈ H1(Ω0) we have:

γΩ0(u) ◦ ψ = γΩ1(u ◦ ψ) .

Proof. We will prove this proposition by density of D(Ω0) functions in H1(Ω0).
Let u ∈ D(Ω0), and notice:

γΩ0(u) ◦ ψ = γΩ1(u ◦ ψ)
= (u ◦ ψ) |∂Ω1 (5.14)
= γΩ1(u ◦ ψ),

From equation (5.14), and from the classical trace inequality can deduce:∥∥∥γΩ0(u) ◦ ψ
∥∥∥
H1/2(∂Ω1)

=
∥∥∥γΩ1(u ◦ ψ)

∥∥∥
H1/2(∂Ω1)

≤ ∥u ◦ ψ∥H1(Ω1)

≤ C∥u∥H1(Ω0) .

Hence by density the operator γΩ0 ◦ ψ : H1(Ω0) → H1/2(∂Ω1) is continuous, and:

γΩ0(u) ◦ ψ = γΩ1(u ◦ ψ) ∀u ∈ H1(Ω0) .
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5 Continuity with respect to the domain

Proposition 5.2.8. Let Ω0,Ω1 ⊂ Rn open, bounded and Lipschitz sets. Let
ψ, ψ−1 ∈ W 1,∞(Rd,Rd) a diffeomorphims such that ψ(Ω0) = Ω1. Then u ∈ H1

0 (Ω0)
if and only if u ◦ ψ ∈ H1

0 (Ω1).

Proof. This direct consequence of the proposition 5.2.7, because we have that
0 = γΩ0(u) ◦ ψ = γΩ1(u ◦ ψ).

5.3 Continuity of the velocity vector field with
respect the domain

This section is dedicated to establishing the continuity of the velocity vector field
with respect to its domain. For simplicity of the statements in the following results,
we will assume that D is a bounded domain and {Ωk}∞

k=1 ⊂ Rd is a sequence of
bounded and C1,1 domains contained in D, such that Ωk ⊂ D for all k, and Ωk

converges diffeomorphically to a bounded and C1,1 domain Ω ⊂ D. We will
also consider the family of diffeomorphisms {ψk}∞

k=1 ∈ W 1,∞(Rd,Rd) ∩C1(Rd,Rd)
according to Definition 5.1.1 .

Remark 5.3.1. As we embark on our analysis, it is important to recall a few key
concepts related to bounded sequences in Hilbert spaces. For a bounded sequence
xk in a Hilbert space H, the Banach–Alaoglu theorem assures the existence of a
sub-sequence {xkj

} that weakly converges to an element x∗ ∈ H with finite norm.
Moreover, if x∗ is unique, then the entire sequence xk weakly converges to x∗,
not just the subsequence. This result can be conveniently derived by considering
subsubsequences of xk; the uniqueness of the weak limit ensures xk ⇀ x∗.

Another important fact is that, given xk ⇀ x∗ and yk → y, ⟨xk, yk⟩H,H →
⟨x, y⟩H,H holds. This follows from the Riesz representation theorem and the in-
equality: ∣∣∣⟨xk, yk⟩H,H − ⟨x, y⟩H,H

∣∣∣ ≤
∣∣∣⟨xk, yk − y⟩H,H

∣∣∣+ ∣∣∣⟨xk − x, y⟩H,H
∣∣∣

≤ ∥xk∥H∥yk − y∥H +
∣∣∣⟨xk − x, y⟩H,H

∣∣∣ ,
Since ∥xk∥H is bounded. Taking the limit yields:

lim
k→∞

⟨xk, yk⟩H,H = ⟨x, y⟩H,H
= lim

k→∞
⟨xk, y⟩H,H
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5.3 Continuity of the velocity vector field with respect the domain

We now introduce a theorem that establishes the existence of a convergent se-
quence within the V (Ωk) space that converges to a function in V (Ω) under dif-
femorphism. This result is fundamental to our analysis, providing a key link
between the spaces associated with the deformed and original domains.

Theorem 5.3.2. Let v ∈ V (Ω) then there is sequence zk ∈ V (Ωk) such that
vk = zk ◦ ψk → v in V (Ω).

Proof. Let wk ∈ H1(Ωk) be defined as wk = v ◦ ψ−1
k and let qk ∈ H1(Ωk) be a

solution of: ∆qk = div(wk) Ωk ,
∂qk

∂n
= 0 ∂Ωk .

(5.15)

Assuming Ωk to be a C1,1 domain, we can utilize the classical regularity theorem
(refer to [9, Lemma 4.6 ]), which indicates that qk ∈ H2(Ωk). Additionally, we
have the subsequent estimate:

∥∇qk∥H1(Ωk) ≤ ∥ div(wk)∥L2(Ωk) .

Consequently, by defining zk = ∇qk − wk, we confirm that zk ∈ V (Ωk) because
qk is a solution to equation (5.15). Next, consider the following:

vk − v = zk ◦ ψk − v = (∇qk) ◦ ψk .

As zk ◦ ψk − v ∈ H1(Ω), our only remaining task is to demonstrate that ∥∇qk ◦
ψk∥H1(Ω) → 0. Taking into account that ψkψ−1

k → Id, by applying Theorem 5.2.5,
we infer that there exists a sequence of constants Uk → 1, such that :

∥ (∇qk) ◦ ψk∥H1(Ω) ≤ Uk∥ div(wk)∥L2(Ωk)

= Uk∥Tr(∇ψ−t
k ∇v)∥L2(Ω)

Given that the trace operator, Tr, is linearly continuous from (L2(Ω))d×d to L2(Ω)
and that ∇ψ−t

k ∇v → ∇v in (L2(Ω))d×d, we can apply the limit to both sides to
obtain:

lim
k→∞

∥∇qk ◦ ψk∥H1(Ω) ≤ ∥Tr(∇v)∥L2(Ω) = 0

Building upon the previous theorem, our next corollary extends the continuity
of the velocity vector field from the spatial to the temporal domain. Specifically,
it ensures the existence of a convergent sequence in the L2(V (Ωk)) space under a
diffeomorphism.
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5 Continuity with respect to the domain

Corollary 5.3.1. Let v ∈ L2(V (Ω)) then there is sequence zk ∈ L2(V (Ωk)) such
that vk = zk ◦ ψk → v in L2(V (Ω)).

Proof. According to Theorem 5.3.2 V ψ(Ω) = {z ◦ ψk|z ∈ V (Ωk), k ∈ N} is dense
in V (Ω). Consequently L2(V ψ(Ω)) is also dense L2(V (Ω)).

As we further examine the behavior of solutions to the Stokes variational prob-
lem, our subsequent lemma provides insights on the weak convergence of the so-
lutions under a diffeomorphism.

Lemma 5.3.3. Let {uk} ∈ L2(V (Ωk)) be a sequence the solution of the Stokes
variational (5.1) problem and define wk = uk ◦ ψk. Suppose following assumption
hold:

1. ψk(ΓkN) = ΓN ,

2. fk ∈ L2
(
L2(Ωk)

)
such that fk ◦ ψk → f ∈ L2

(
L2(Ω)

)
,

3. hk ∈ L2
(
L2(ΓkN)

)
such that hk ◦ ψk → h ∈ L2

(
L2(ΓN)

)
.

Then wk converge weakly to uΩ ∈ L2(V (Ω)), and d
dt

wk converge weakly* to d
dt

uΩ ∈
L2(V (Ω)′) ,

Proof. We first note that since both sequences fk and hk are bounded, from the-
orem 5.2.2 this implies that the sequence ∥uk∥L2(V (Ωk)) is bounded. Consequently,
according to Lemma 5.2.6, the sequence wk is bounded in L2(H1

0,ΓD
(Ω)) . There-

fore by the Banach–Alaoglu theorem any subsequence of wk possesses a further
sub-subsequence that weakly converges to some w∗ in L2(H1

0,ΓD
(Ω)). For simplic-

ity, we will denote this converging sub-subsequence also as wk.
Given that v ∈ V (Ω), we can apply Lemma (5.3.2) to obtain zk ∈ V (Ωk) with
the property that vk = zk ◦ ψk converges to v in V (Ω). Consequently, according
to Proposition 2.2.4, we find:
d

dt

∫
Ωk

uk · zk dx = −
∫

Ωk

∇uk : ∇zk dx+
∫

Ωk

fk · zkdx+
∫

Γk
N

hk · vkds . (5.16)

Set f̂k = fk ◦ ψk, and given ϕ ∈ D(0, T ), and using theorem 5.2.3, equation 5.16
is can be rewritten as:

−
∫ T

0

∫
Ω

wk · vkJ(ψk)ϕ′ dx = −
∫ T

0

∫
Ω

∇wk : M t
kMk∇vkJ(ψk)ϕ dxdt

+
∫ T

0

∫
Ω

f̂kvkJ(ψk)ϕ dxdt (5.17)

+
∫ T

0

∫
ΓN

f̂k · vkJ(ψk)
∣∣∣∇ψ−t

k n
∣∣∣
Rd
ϕdsdt ,
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5.3 Continuity of the velocity vector field with respect the domain

In the above equations, n denotes the normal vector in ΓN , and Mk = ∇ψ−t
k ,

J(ψk) = |det(∇ψk)| . Now notice that since ψk → Id in W 1,∞
(
Rd,Rd

)
we have:


vkJ(ψk)ϕ′(t) → ϕ′(t)v in L2(L2(Ω))
M t

kMk∇vkJ(ψk)ϕ(t) → ϕ(t)∇v in L2(L2(Ω))
vkJ(ψk)

∣∣∣∇ψ−t
k n

∣∣∣
Rd
ϕ(t) → ϕ(t)v in L2(L2(ΓN)) .

Hence, we can deduce that:∫ T

0

∫
Ω

w∗ · v ϕ′dxdt =
∫ T

0

∫
Ω

[∇w∗ : ∇v − f · v]ϕ dxdt−
∫ T

0

∫
ΓN

h · vϕ dsdt.

(5.18)

Our next task is to prove that w∗ ∈ L(V (Ω)). For this, let ϕ(t)h(x) ∈ D(0, T ) ·
H1

0(Ω). Let hk = h ◦ ψ−1
k , thereby from Proposition 5.2.8 we know that hk ∈

H1
0(Ωk). Now consider:

0 =
∫ T

0
ϕ
[∫

Ωk

div(uk)hk dx
]
dt

=
∫ T

0
ϕ
[∫

Ω
wk ·Mk∇hJ(ψ)dx

]
dt . (5.19)

Since since ψk → Id in W 1,∞
(
Rd,Rd

)
we know that Mk∇hJ(ψ) → ∇h in L2(Ω).

Taking the limit in 5.19 yields:

0 =
∫ T

0
ϕ
[∫

Ω
w∗∇hdx

]
dt

0 =
∫ T

0
ϕ
∫

Ω
div(w∗)hdxdt ∀ϕh ∈ D(0, T ),

Because D(0, T ) and H1
0(Ω) are dense in L2(0, T ) and L2(Ω) respectively, we can

conclude that w∗ ∈ L(V (Ω)).
Now we shall see that w∗ ∈ C(H(Ω)), from equation (5.18) we have:

d

dt

∫
Ω

w∗.vdxdt = −
∫

Ω
∇w∗ : ∇v dxdt+

∫
Ω

f · vdxdt+
∫ T

0

∫
ΓN

h · vdsdt .

This which implies that d
dt

w∗ ∈ L2(V (Ω)′) is bounded linear operator. Now
noticing we also have that w∗ ∈ L2(V (Ω)) this implies that w∗ ∈ C(H(Ω)) see
for instance [61, Lemma 1.2] or [50, Chapter 1]. Now, from corollary 5.2.1, it can
be observed that uk ∈ C(H(Ωk)), and hence, wk ∈ C([0, T ],H(Ω)), i.e:
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5 Continuity with respect to the domain

∥wk(t1) − wk(t2)∥H(Ω) ≤ Ck∥uk(t1) − uk(t2)∥H(Ωk) .

Additionally, we have ∥wk(0)∥L2(Ω) ≤ Ck∥uk(0)∥ = 0,and therefore, w∗(0) = 0.
Therefore, by unicity of the stokes problem we have:

w∗ = uΩ.

Now from 5.18, for we have that:

lim
k→∞

∫ T

0

∫
Ω

wk · v ϕ′(t)dxdt =
∫ T

0

∫
Ω

[∇uΩ : ∇v − f · v]ϕ(t) dxdt

−
∫ T

0

∫
ΓN

h · vϕ(t)dsdt

=
∫ T

0

∫
Ω

uΩ · v ϕ′(t)dxdt.

This implies that d
dt

wk converge weakly* to d
dt

uΩ ∈ L2(V (Ω)′) .

Theorem 5.3.4. Let {uk} ∈ L2(V (Ωk)) be a sequence the solution of the Stokes
variational 5.1 problem and define wk = uk ◦ ψk. Suppose following assumption
hold:

1. ψk(ΓkN) = ΓN ,

2. fk ∈ L2
(
L2(Ωk)

)
such that fk ◦ ψk → f ∈ L2

(
L2(Ω)

)
,

3. hk ∈ L2
(
L2(ΓkN)

)
such that hk ◦ ψk → h ∈ L2

(
L2(ΓN)

)
.

Then wk strongly to uΩ in L2 (V (Ω)).

Proof. By utilizing Lemma 5.3.3, it is known that wk converges weakly to uΩ and
wk ∈ C(H(Ω)). To avoid heavy notation we define Xk = L2(V (Ωk))∩C(H(Ωk)),
let ts ∈ [0, T ] and consider the following operators Ek : Xk × Xk → R, E :
X × X → R as:

Ek(u,w) =
[∫

Ωk

u(ts) · w(ts)dx+ 2
∫ ts

0

∫
Ωk

∇u(t) · ∇w(t)dx dt
]
,

E(u,w) =
[∫

Ω
u(ts) · w(ts)dx+ 2

∫ ts

0

∫
Ω

∇u(t) · ∇w(t) dx dt
]
.

On the other hand as in Lemma 5.3.3 and equation (5.4) we have:
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5.3 Continuity of the velocity vector field with respect the domain

lim
k→∞

Ek(uk,uk) = lim
k→∞

2
[∫ ts

0

∫
Ωk

fk · ukdx dt+
∫ ts

0

∫
Ωk

h · ukds dt
]

= 2
[∫ ts

0

∫
Ω

f · uΩdx dt+
∫ ts

0

∫
ΓN

h · uΩds dt
]

= ∥uΩ(ts)∥2
L2(Ω) + 2

∫ ts

0
∥∇uΩ(ts)∥2

L2(Ω)dt

= E(uΩ,uΩ) . (5.20)

Now from Theorem 5.2.2, have:

lim
k→∞

Ek(uk,uk) = lim
k→∞

[
∥uk(ts)∥2

L2(Ωk) + 2
∫ ts

0
∥∇uk(ts)∥2

L2(Ωk)dt
]

= lim
k→∞

[
∥wk(ts)∥2

L2(Ω) + 2
∫ ts

0
∥∇uk(ts)∥2

L2(Ω)dt
]

= lim
k→∞

E(wk,wk) . (5.21)

Combining equations (5.20) and(5.21) we have:

lim
k→∞

E(wk,wk) = E(uΩ,uΩ) . (5.22)

We remark that this does not allow us yet to conclude anything, since we do
not know if ∥wk(ts)∥2

L2(Ω) convergence to ∥uΩ(ts)∥2
L2(Ω). Thus we will analyses

E(wk − uΩ,wk − uΩ), in that spirit let notice that we have:∫
Ω

wk(ts)uΩ(ts)dx =
∫ T

0

∫
Ω

d

dt
(uΩ(t) · wk(t)) dxdt

=
∫ T

0

∫
Ω

d

dt
uΩ(t) · wk(t)dxdt+

∫ T

0

∫
Ω

uΩ(t) · d
dt

wk(t)dxdt

But by Lemma 5.3.3 d
dt

wk ⇀
∗ d
dt

uΩ and wk ⇀ w∗, therefore:

lim
k→∞

∫
Ω

wk(ts)uΩ(ts)dx =
∫ ts

0

∫
Ω

d

dt
(uΩ(t) · wk(t)) dxdt

=
∫ ts

0

d

dt
∥uΩ(t)∥L2(Ω)dt

= ∥uΩ(ts)∥L2(Ω) . (5.23)

It can be easily seen that E is a bilinear and symmetric form, therefore equation
(5.22) we have :

lim
k→∞

E(wk − uΩ,wk − uΩ) = lim
k→∞

[E(wk,wk) − 2E(wk,uΩ) + E(uΩ,uΩ)]

= lim
k→∞

2 [E(uΩ,uΩ) − E(wk,uΩ)] . (5.24)
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5 Continuity with respect to the domain

From equation (5.23) and since wk ⇀ w∗ we have:

lim
k→∞

E(wk,uΩ) = lim
k→∞

[∫
Ω

u(ts) · uΩ(ts)dx+ 2
∫ ts

0

∫
Ω

∇u(t) · ∇uΩ(t) dx dt
]

= ∥uΩ(ts)∥2
L2(Ω) + 2

∫ ts

0
∥∇uΩ(ts)∥2

L2(Ω)dt

= E(uΩ,uΩ) . (5.25)

It follows from equations (5.24) and (5.25) that:

lim
k→∞

E(wk − uΩ,wk − uΩ) = 0 .

This implies that for any ts ∈ [0, T ] we have:

lim
k→∞

[
∥wk(ts) − uΩ(ts)∥2

L2(Ω) + 2
∫ ts

0
∥∇wk(t) − ∇uΩ(t)∥2

L2(Ω)dt
]

= 0 (5.26)

Setting ts = T , and by remark 5.1.2 we know that ∥∇uΩ∥L2(L2(Ω)) is an equivalent
norm of ∥uΩ∥L2(V (Ω))therefore:

wk → uΩ in L2(V (Ω))

5.4 Pressure weak continuity with respect to the
domain

In this section, we present the main result that establishes the strong continuity of
the pressure with respect to converging sets under diffeomorphisms. The focus is on
understanding how the pressure field behaves when the underlying set undergoes
convergence through diffeomorphisms. By studying this continuity property, we
gain valuable insights into the behavior and stability of the pressure field in fluid
flow problems under varying geometries.

Remark 5.4.1. Before presenting the continuity result of the pressure, we recall that
the gradient operator is an isomorphism between L2(Ω)/R and H−1(Ω) = H1

0(Ω)′

(refer to [61, Proposition 1.2 (ii)] or [9, Proposition 2.10]). Hence, we have the
following inequality:

inf
c∈R

∥p+ c∥L2(Ω) = ∥p∥L2(Ω)/R ≤ C(Ω)∥∇p∥H−1(Ω) . (5.27)
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5.4 Pressure weak continuity with respect to the domain

In particular, if p ∈ L2
0(Ω), we have ∥p∥L2(Ω) = infc∈R ∥p + c∥L2(Ω). Thus, for

p, q ∈ L2
0(Ω), using inquality (5.27), we obtain:

∥p− q∥L2(Ω) ≤ C(Ω)∥∇p− ∇q∥H−1(Ω) .

Theorem 5.4.2. Let {pk} ∈ L2(L2
0(Ωk)) be a sequence the pressure solution of

the Stokes problem and define wk = uk ◦ ψk, qk = pk ◦ ψk. Suppose following
assumption hold:

1. ψk(ΓkN) = ΓN ,

2. fk ∈ L2
(
L2(Ωk)

)
such that fk ◦ ψk → f ∈ L2

(
L2(Ω)

)
,

3. hk ∈ L2
(
L2(ΓkN)

)
such that hk ◦ ψk → h ∈ L2

(
L2(ΓN)

)
.

Then ∇q̂k ⇀ ∗∇pΩ with in L2(H−1(Ω)) .

Proof. First lets define q̂k = qk − qk, where qk = |Ω|−1 ⟨qk, 1⟩, therefore remark
5.4.1 we only need to prove the convergence of the operators ∇q̂k ⇀∗ ∇pΩ in
L2(H−1(Ω)).

By theorem 5.2.2, we know pk is a bounded sequence in L2(L2
0(Ωk)). Conse-

quently, by 5.2.1, qk is also a bounded sequence in L2(L2
0(Ω)). Therefore by the

banach–alaoglu theorem any subsequence of qk possesses a further sub-subsequence
that weakly converges to some q∗ in L2(L2(Ω)). Given that qk ⇀ q∗ and J(ψk) → 1
in L2(Ω), we can observe the following:∫

Ω
q∗dx = lim

k→∞

∫
Ω
qkJ(ψk)dx

= lim
k→∞

∫
Ωk

pkdx

= 0 .

Now we take ϕ(t)h(x) from D(0, T ) · H1
0(Ω). Then we define hk as h ◦ ψ−1

k .
According to Proposition 5.2.8, it’s clear that hk is in H1

0(Ωk). Now, if we take
Mk to be ∇ψ−t

k , we can notice that:∫ T

0
ϕ
∫

Ωk

pk div(hk) dxdt =
∫ T

0
ϕ
∫

Ω
qkTr(Mk∇h) dxdt .

Given that the trace operator, Tr, is linearly continuous from (L2(Ω))d×d to L2(Ω)
and that Mk∇h → ∇h in (L2(Ω))d×d, we can apply the limit to both sides to
obtain:

lim
k→∞

∫ T

0
ϕ
∫

Ωk

pk div(hk) dxdt =
∫ T

0
ϕ
∫

Ω
q∗ div(h) dxdt . (5.28)
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5 Continuity with respect to the domain

Next, let’s apply integration by parts to equation (5.1):∫ T

0
ϕ
∫

Ωk

pk div(hk) dxdt =
∫ T

0

∫
Ωk

ϕ′wk · h + ϕ∇uk : ∇hkdxdt

−
∫ T

0

∫
Ωk

ϕfk · hk dxdt

=
∫ T

0

∫
Ω
ϕ′wk · h J(ψk) + ϕMk∇uk : Mk∇hkJ(ψk)dxdt

−
∫ T

0

∫
Ω
ϕf̂k · h J(ψk)dxdt .

(5.29)

By utilizing equation (5.28) and taking the limit in (5.29), we can deduce:∫ T

0
ϕ
∫

Ω
q∗ div(h) dxdt = −

∫ T

0

∫
Ω
ϕ′uΩ · h + ϕ∇uΩ : ∇h dx−

∫ T

0
ϕ
∫

Ω
f · h dxdt

=
∫ T

0
ϕ
∫

Ω
pΩ div(h) dxdt .

This leads us to infer that ∇q̂k ⇀ ∗∇pΩ in the space L2(H−1(Ω)).
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6 Global divergence free–RBF
methods for evolutionary Stokes
problems

This chapter presents the development of a Radial Basis Function (RBF) method,
specifically designed for the evolutionary Stokes problem. Drawing from the divergence-
free RBF approximation framework introduced by Wendland [65], our approach
integrates global Inverse Multiquadric (IMQ) RBFs into our spatial discretization
strategy. We apply both Dirichlet and Navier-slip boundary conditions to a non-
convex, particularly a star-shaped, domain. For all numerical exemplifications,
numerical extended precision is utilized.

Additionally, a thorough stability analysis of the relevant Gram matrix is con-
ducted. Our numerical results indicate that all real components of its eigenvalues
are consistently negative. This observation supports the idea that our use of back-
ward differentiation formulas will achieve iterative convergence, exhibiting expo-
nential convergence in space and algebraic convergence in time. This behavior is
substantiated through a suite of numerical examples.

Let Ω ⊂ Rd be a bounded and Lipschitz domain, and we define Q = Ω × (0, T ),
Σ = ∂Ω × (0, T ). Let L(u, p) = (L1(u, p), ...,Ld(u, p)) where Li(u, p) = −µ∆ui +
∂p
∂xi

, and consider the following system:
ut + L(u, p) = f in Q,

div u = 0 in Q,

B(u, p) = g on Σ,
u(·, 0) = u0(·) in Q,

(6.1)

Here B = (B1, ...,Bd) are given boundary operators. Notice that for Dirichlet
boundary conditions, we have Bi(u, p) = ui, while for the Navier-slip boundary
conditions, we have: Bi(u, p) = ui · ni i = 1 . . . d− 1,

Bdu := (σ(u, p)n)tg.
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6 Global divergence free–RBF methods for evolutionary Stokes problems

6.1 Collocation method and backward
differentiation formula

Before delving into the specifics of our methodology, we introduce a pertinent
theorem that will play a crucial role in our discussions. As we proceed, this
theorem will guide us in laying out the specifics of the Radial Basis Function
(RBF) ansatz and the generalized interpolation collocation method, as described
in [64]:

Theorem 6.1.1. Let’s suppose that Φ : Ω ⊆ Rd → Rn×n is a positive definite,
matrix-valued kernel. Further, consider that λ1, . . . , λN ∈ N Φ(Ω)∗ are linearly
independent and f1, . . . , fN ∈ R are given. Here, NΦ(Ω) represents the native
space of the positive definite matrix-valued kernel Φ.
Then, the problem of finding the solution of

min
{
∥s∥NΦ(Ω) : λj(s) = fj, 1 ≤ j ≤ N

}
has a unique solution, which has the representation:

sΛ =
N∑
j=1

αjλ
y
j Φ(· − y).

Here λyΦ(x − y) is a vector-valued function, which is generated by applying λ

with respect to y to every row of Φ. The coefficients αj are determined via the
interpolation conditions λi (sΛ) = fi, 1 ≤ i ≤ N .

Our objective is to create a PDE operator by approximating the temporal deriva-
tive using a finite difference method while employing a divergence-free matrix value
kernel for the spatial operators. To do this, we start by defining the divergence-free
RBF as follows:

Definition 6.1.2. The divergence-free matrix-valued kernel is defined by:

ΦDiv = −∆I + ∇∇Tψ,

where ∆ denotes the Laplace operator, I is the identity matrix, ∇∇T denotes the
Hessian matrix, and ψ represents a positive definite radial basis function.

The following time scheme takes inspiration from some concepts presented by
Stevens et al. [60]. To elucidate this method, we utilize backward finite difference
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6.1 Collocation method and backward differentiation formula

techniques, which are aptly suited for ordinary differential-algebraic equations.
The scheme at any given time step for the system (6.1) is:


un+s
i + (∆t)βsLi(un+s, pn+s) = (∆t)βsfn+s

i +∑s−1
k=0 σku

n+k
i in Ω,

div un+s = 0 in Ω,
Bi(un+s, pn+s) = gn+s

i on ∂Ω,
i ∈ {1, ..., d}.

(6.2)
where βs, σk are known parameters defined by the BDF techniques. Thus, in each
step we solve the following PDE:

Li(un+s, pn+s) = f
n+s
i in Ω,

div un+s = 0 in Ω, i ∈ {1, ..., d}
Bi(un+s, pn+s) = gn+s

i on ∂Ω.
(6.3)

where Li, f
n+s
i are defined by:

Li(un+s, pn+s) = un+s + ∆t βs Li(un+s, pn+s),

fi
n+s = ∆t βs fn+s +

s−1∑
k=0

σku
n+k.

To implement a collocation discretization of this equation system utilizing divergence-
free kernels as in [64], we establish the following matrix-valued kernel:

Φ =
[

ΦDiv 0
0 ψ

]
: Rd → R(d+1)×(d+1), (6.4)

Subsequently, we introduce Nint and Nb node sets, termed as RBF centers,
represented by ξj

int and ξj
b respectively. Here, ξj

b ∈ ∂Ω and ξj
int ∈ Ω. Further,

we define an array of operators from Rd+1 → R as follows:Lij = Li(u, p)|ξj
int i ∈ {1, . . . d}, j ∈ {1, . . . , Nint}

Bij = Bi(u, p)|ξj
b i ∈ {1, . . . d}, j ∈ {1, . . . , Nb}

(6.5)

Hence, utilizing Theorem 6.1.1, we derive the following ansatz:

(̂un+s ,̂ pn+s)(x) =
d∑
i=1

Nint∑
j=1

Lξ

iΦ(x − ξint
j )αn+s

ij

+
d∑
i=1

Nb∑
j=1

Bξ
i Φ(x − ξb

j)βn+s
ij

. (6.6)
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6 Global divergence free–RBF methods for evolutionary Stokes problems

Here, Lξ
iΦ and Bξ

i Φ denote vector-valued functions mapping from Rd to Rd+1,
created by applying the operators Lξ

i and Bξ
i to each row of the kernel Φ. This

ansatz approximates our velocity-pressure solution at each time step as a linear
combination of function values at the RBF centers, using the coefficients α and
β, which are to be determined and correspond to the interior and boundary RBF
centers, respectively.

Incorporating the ansatz (6.6) into the following system:Li(̂un+s ,̂ pn+s)|ξj
int= f

n+s
i (ξj

int) i ∈ {1, . . . d}, j ∈ {1, . . . , Nint},
Bi(̂un+s ,̂ pn+s)|ξj

b= gn+s
i (ξj

b) i ∈ {1, . . . d}, j ∈ {1, . . . , Nb}.

The above system of equations can be represented in matrix form as follows:

H+

(
αn+s

βn+s

)
=
(

f
n+s

gn+s

)
, (6.7)

where the vectors
(
αn+s,βn+s

)
belong to Rd(Nint+Nb), indicating the stacking of

the unknown coefficients corresponding to each time step. H+ is the collocation
matrix, belonging to Rd(Nint+Nb)×d(Nint+Nb), that encodes the discretized system.
Its construction is detailed as follows:

H+ =
[
H11 H12

H21 H22

]
, (6.8)

where H11 ∈ RdNint×dNint , H12 ∈ RdNint×dNb , H21 ∈ RdNb×dNint and H22 ∈ RdNb×dNb .
Specifically, the ij-th block of each submatrix is given by:

H11(i, j) = Lx

i L
ξ

jΦ(ξint − ξint), H12(i, j) = Lx

i B
ξ
jΦ(ξint − ξb),

H21(i, j) = Bx
i L

ξ

jΦ(ξb − ξint), H22(i, j) = BxBξΦ(ξb − ξb).

6.1.1 Stability analysis for BDF schemes
In the subsequent subsection, we will conduct a stability analysis for the scheme
outlined previously. Our methodology employs a matrix-based method mirroring
the process detailed in [25]. The aim is to devise a condition that enables the
approximation of the Gram matrix’s spectral radius. We designate the set of
interior nodes as (ξint

i )Nint
i=1 and the boundary nodes set as (ξb

i )Nb
i=1. Furthermore,

we introduce the standard canonical projection Ii : Rd+1 → R to access the j-th
coordinate of a vector in Rd+1.
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6.1 Collocation method and backward differentiation formula

With this operator, we define the interpolation matrix A ∈ Rd(Nint+Nb)×d(Nint+Nb)

such that:

A

(
αn+s

βn+s

)
=
(
un+s

1 (ξint1 ), . . . , un+s
d (ξintNint

), un+s
1 (ξb1), . . . , un+s

d (ξbNb
)
)T
, (6.9)

In essence, the matrix A functions as a linear operator that transforms the
solution coefficients into the corresponding solution values at the prescribed nodes.
This is formally given by:

A =
[
A11 A12

A21 A22

]
,

where A11 ∈ RdNint×dNint , A12 ∈ RdNint×dNb , A21 ∈ RdNb×dNint and A22 ∈ RdNb×dNb .
Specifically, the ij-th block of each submatrix is given by:

A11(i, j) = Ixi Lξ

jΦ(ξint − ξint), A12(i, j) = Ixi Bξ
jΦ(ξint − ξb),

A21(i, j) = Ixi Lξ

jΦ(ξb − ξint), A22(i, j) = Ixi Bξ
jΦ(ξb − ξb).

Setting A =
(
Aint
Ab

)
, we define H− =

(
Aint

0

)
, thus from equations (6.7) and

(6.2) we obtain:

H+

(
αn+s

βn+s

)
= H−

s−1∑
k=0

σk

(
αn+s

βn+s

)
+
(

f
n+s

gn+s

)
.

Thus, it follows that:

ûn+s = AH−1
+ H−A

−1
s−1∑
k=0

σku
n+s + AH−1

+

(
f
n+s

gn+s

)
.

Denoting by un the exact solution and by ûn the numerical solution, the error
en = un − ûn satisfies the equation:

en+s = K
s−1∑
k=0

σke
n+k + En+s,

where En+s denotes the local error in the scheme as depicted in Equation (6.7)
and K represents AH−1

+ H−A
−1. In addition, given that En+s is small and thus

can be ignored, we can explore the error analysis employing the following identity:

en+s = K
s−1∑
k=0

σke
n+k. (6.10)
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6 Global divergence free–RBF methods for evolutionary Stokes problems

By assuming that K is diagonalizable, i.e., K = D−1ΛD, we can define zn := Den

and therefore (6.10) is equivalent to:

zn+s = Λ
s−1∑
k=0

σkz
n+k.

Given that Λ is a diagonal matrix, it holds for every j = 1, . . . , d(Nb +Nint) that
zn+s
j =

s−1∑
k=0

λjσkz
n+k
j . The solution to this is given by znj =

s−1∑
k=0

Cj
kr
n
k , where Cj

k

are complex constants and rk are the roots of the polynomial associated with the
finite difference method.

Ultimately, as |en| approaches zero if and only if |zn| does so, the stability of the
method is ensured as long as the eigenvalues of K are within the stability region
of:

π(r, λ) = rs −
s−1∑
k=0

λσkr
i. (6.11)

As a consequence of the boundary locus technique [46], some stability regions are
displayed in Figure 6.1.

By employing the boundary locus method, as presented in [46], we can visualize
some stability regions, which are depicted in Fig. 1.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1
RBF BDF-1 Stability Region

(a) One level

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1
RBF BDF-2 Stability Region

(b) Two levels

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1
RBF BDF-3 Stability Region

(c) Three levels

Figure 6.1: Stability regions using backward finite formula.

6.1.2 Numerical experiments
In the following subsection, we examine the precision of the BDF2-based scheme
introduced earlier, taking into account either non-homogeneous Dirichlet or non-
homogeneous Navier-slip boundary conditions on the system as described in (6.1).
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6.1 Collocation method and backward differentiation formula

To generate the divergence-free kernel, consistent with Definition 6.1.2, we employ
the scalar inverse multiquadric (IMQ) function ψ(r) =

√
1 + cr2−1, setting the

shape parameter c = 1.5. Given the ill-conditioned nature of this kernel, we
leverage the high-precision computation capabilities of the ADVANPIX Matlab
package, working with a precision of 50 digits. The entirety of these computations
are executed in the Matlab and FreeFem++ programming environments.

We now focus on a nonconvex, star-shaped domain Ω ⊂ R2 with its bound-
ary defined by the parametrized curve in (6.12) (refer to Figure 6.2). The curve
specification is as follows:

C =
{

(θ, ρ(θ)) ∈ R2 : ρ(θ) = 0.8 + sin(6θ) + sin(3θ), θ ∈ [0, 2π)
}
. (6.12)
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0
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1

y

Figure 6.2: Domain Ω ⊂ R2. The boundary is defined by the parametrization
given in (6.12)

We consider the following exact solution of (6.1) for both types of boundary
conditions (Dirichlet or Navier–slip):

u1(x, y, t) = −y sin
(
(x2 + y2) sin(t2 + 1)

)
,

u2(x, y, t) = x sin
(
(x2 + y2) sin(t2 + 1)

)
,

p(x, y, t) = sin(x− y + t).

We evaluate the L∞-norm error for velocity and pressure, comparing the exact
solution with the numerical approximation for varying time steps, ∆t. The errors
are represented by ϵy = uexact − uapprox for velocity and ∇ϵp = ∇pexact − ∇papprox
for pressure. Results for both Navier-slip and Dirichlet boundary conditions are
compiled in Table 6.1 and Table 6.2, respectively.

As anticipated, it is observed that the error decreases as the number of nodes
increases, consistent with expectations. Additionally, the velocity converges at
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6 Global divergence free–RBF methods for evolutionary Stokes problems

a higher rate compared to the convergence rate of the pressure gradient, which
aligns with the expected behavior. The obtained results demonstrate exceptional
accuracy for both Dirichlet and Navier-slip boundary conditions, irrespective of
the µ value. Furthermore, it is evident that the eigenvalues of the Gram matrix
lie within the stability region of the BDF schemes; otherwise, the solution would
not converge. However, it has been noted from numerical experiments that this
does not hold true for small values of the shape parameter, specifically c ≤ 10−2.

µ = 1
N\∆t 1.00e-02 5.00e-03 1.00e-03 5.00e-04 Max Cond

||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞
117 5.94e-03 6.32e-01 6.47e-03 6.44e-01 7.87e-03 5.52e-01 8.17e-03 4.86e-01 1.55e+21
290 1.34e-03 4.39e-01 1.38e-03 3.90e-01 2.54e-03 5.41e-01 3.38e-03 7.23e-01 1.71e+21
576 2.08e-03 5.31e-01 5.72e-04 1.45e-01 4.62e-05 2.10e-02 4.46e-05 2.06e-02 9.35e+22

µ = 1e− 06
N\∆t 1.00e-02 5.00e-03 1.00e-03 5.00e-04 Max Cond

||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞
117 5.22e-02 2.96e-01 4.15e-02 2.09e-01 1.88e-02 2.16e-01 2.32e-02 3.29e-01 6.22e+28
290 2.06e-03 1.43e-02 1.49e-03 1.36e-02 9.33e-04 6.22e-03 8.68e-04 4.40e-03 8.99e+28
576 2.33e-03 1.76e-02 5.80e-04 5.45e-03 2.88e-05 2.39e-04 9.25e-06 1.54e-04 3.34e+29

Table 6.1: Global Hermite collocation–IMQ error for the Stokes system with
Navier–slip boundary conditions. Here, the shape parameter is c=1.5

µ = 1
N\∆t 1.00e-02 5.00e-03 1.00e-03 5.00e-04 Max Cond

||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞
117 7.04e-03 8.31e-01 6.67e-03 7.66e-01 5.36e-03 5.26e-01 5.16e-03 5.80e-01 3.94e+19
290 9.63e-04 3.57e-01 9.83e-04 3.61e-01 9.71e-04 3.47e-01 9.29e-04 3.25e-01 3.85e+19
576 5.82e-04 1.83e-01 1.65e-04 6.26e-02 4.22e-05 1.76e-02 4.02e-05 1.67e-02 7.48e+20

µ = 1e− 06
N\∆t 1.00e-02 5.00e-03 1.00e-03 5.00e-04 Max Cond

||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞ ||ey||∞ ||e∇p||∞
117 2.40e-02 2.34e-01 2.39e-02 1.95e-01 2.98e-02 4.12e-01 3.52e-02 5.60e-01 8.11e+19
290 1.77e-03 1.01e-02 1.05e-03 8.88e-03 7.99e-04 3.69e-03 7.84e-04 3.30e-03 1.68e+20
576 1.90e-03 1.35e-02 4.77e-04 4.00e-03 2.26e-05 1.92e-04 1.47e-05 1.31e-04 1.65e+21

Table 6.2: Global Hermite collocation–IMQ error for the Stokes system with
Dirichlet boundary conditions. Here, the shape parameter is c=1.5
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7 LHI divergence free–RBF
methods for Stokes problems

In this chapter, we present an alternative method for the evolutionary Stokes sys-
tem, which is a RBF-LHI vectorial technique. This method is a generalization
of the local Hermite interpolation (LHI) scalar method, as described in [60]. Ad-
ditionally, we introduce a vectorial generalization of a recent scalar method that
uses hybrid kernels, which are called the RBF-Hybrid method and are discussed
in [52].

The organization of this section is as follows: In subsection 7.1, we review some
concepts and notation for the scalar LHI method, as described in [39]. Next, in
subsection 7.2, we present the numerical algorithm for the steady Stokes system,
while subsection 7.3 displays numerical examples with different types of boundary
conditions. These examples demonstrate that the RBF-LHI method can handle
up to 23,000 nodes and produce excellent results.

However, the eigenvalues of the matrix for Div-free IMQ kernels can have pos-
itive real eigenvalue components, which makes them unsuitable for evolutionary
problems. To address this issue, we introduce vectorial Div-free hybrid kernels
and formulate the evolutionary Stokes LHI method in subsection 7.4. We describe
an implicit discretization scheme for temporal discretization. Finally, we present
numerical experiments for evolutionary problems in subsection 7.5.

7.1 A reminder of the scalar LHI method
To provide a comprehensive understanding, we’ll take a moment to recap the Local
Hermite Interpolation (LHI) scalar method, as proposed by Stevens et al. [60]. A
similar review is also available in [39]. This scalar method will be the basis for
the generalized vector technique used later in this study to address the Stokes
problem.

In the context of the LHI scalar method, the focus is on approximating the
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7 LHI divergence free–RBF methods for Stokes problems

analytic solution u for a well-posed, steady, linear partial differential problem:{
Lu(x) = f(x) in Ω,
Bu(x) = g(x) on ∂Ω, (7.1)

Here, Ω ⊂ Rd represents the spatial domain, f : Ω → R and g : ∂Ω → R stand
for the prescribed right-hand sides, and L and B denote linear partial differential
operators operating in the domain Ω and on the boundary ∂Ω, respectively. These
operators are locally approximated as follows:

Figure 7.1: Centers and local subdomains for the LHI method

We begin by establishing a set of dispersed nodes Ωn ⊂ Ω. Subsequently, we
specify three subsets of nodes as illustrated in Figure 7.1:

• Ωsc: A subset of Nsc nodes from Ωn, known as solution centers.

• Ωbc: A subset of Nbc nodes from ∂Ω ∩ Ωn, referred to as boundary centers.

• Ωpde: A subset of Npdec nodes from Ω ∩ Ωn, termed PDE centers.

Consider Dk, a disk with a varying radius, centered at the kth node in Ωsc. Let’s
account for the set of N (k) fixed nodes Ωn ∩Dk, also illustrated in Figure 7.1. To
carry out the local discretization, we present the following notation:

Ω(k)
sc = {x(k,sc)

j }N
k
sc

j=1 = Dk ∩ Ωsc, denoting the local solution centers.

∂Ω(k)
bc = {x(k,bc)

j }N
k
bc

j=1 = Dk ∩ ∂Ω, representing the local boundary nodes.

Ω(k)
pdec = {x(k,pdec)

j }
Nk

pdec

j=1 = Dk ∩ Ω, indicating the local PDE nodes.

For each disk Dk, we define a corresponding local subsystem as follows:
Lu(xj) = f(xj) xj ∈ Ω(k)

pdec

Bu(xj) = g(xj) xj ∈ ∂Ω(k)
bc

u(xj) = hj xj ∈ Ω(k)
sc

(7.2)
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where hi are the unknown values, we define the following ansatz using the sym-
metric collocation technique:

û(k)(x) =
∑

ξj∈Ω(k)
sc

βk,scj ϕ(x− ξj) +
∑

ξj∈Ω(k)
bc

βk,bcj Bξϕ(x− ξj)

+
∑

ξj∈Ω(k)
pde

βk,pdej Lξϕ(x− ξj) +
∑

j=nk+1...Cp

βkj p
m
j (x)

(7.3)

In the above expression, k is the index for the local linear system, and pmj corre-
sponds to the components of a multivariate polynomial of degree m in Rd, thus
Cp =

(
d+m
m

)
. This polynomial is an element of the null space of the linear system

given by (7.2) as described in [60].
By substituting the ansatz detailed in (7.3) into (7.2), we obtain a series of local
linear systems, represented by:

A(k)β(k) = d(k), (7.4)

By defining the Gram matrix A(k) and the right-hand vector d(k), the local linear
system in (7.4) can be formulated in vector notation as follows:

A(k) =


Φsc,sc BξΦsc,bc LξΦsc,pde Pj,sc

BxΦsc,sc BxBξΦsc,bc BxLξΦsc,pde BxPj,bc
LxΦsc,sc LxBξΦsc,bc LxLξΦsc,pde LxPj,pde
[Pj,sc]T [BxPj,bc]T [LxPj,pde]T 0

 ∈ R(N(k)+Cp)×(N(k)+Cp),

and d(k) =


h(k,sc)

g(k,bc)

f (k,pde)

0


Here the term JΦA,B correspond to JΦ(ξi−ξj) where ξi ∈ A and ξj ∈ B. Similarly,
JPj,A represents Jpmj (ξi) for ξi ∈ A.

The Gram matrix A(k) is well-known to be invertible, as discussed in [64]. There-
fore, we can solve for β(k) by taking the inverse of A(k) and multiplying it by d(k).
Using (7.4), we can rewrite û(k)(x) as follows:

û(k)(x) = H(k)(x)β(k) = H(k)(x)(A(k))−1d(k) = W (k)(x)d(k), (7.5)

In this formulation, H(k) : Rd → RNk+Cp is expressed as:

H(k)(x) =
[
ϕ(x− ξsc) . . .Bξϕ(x− ξbc) . . .Bξϕ(x− ξpde) . . . pmj (x)

]T
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7 LHI divergence free–RBF methods for Stokes problems

The vector W (k)(x) = H(k)(x)(A(k))−1 represents the weights correlated with
the RBF approximations at the N (k) nodes within the local domain, and this
is typically referred to as the weight vector [64]. When an arbitrary differential
operator J comes into play, we can express it in the following manner:

J û(k)(x) = JH(x)(A(k))−1d(k) = J (W (k))(x)d(k).

By employing the above interpretation, we denote the result of applying the dif-
ferential operator L to W (k)(x) as W (k)

L . Consequently, given the system defined
by equation (7.2), we can construct the subsequent system of equations:

f(x(k)
1 ) = W

(k)
L (x(k)

1 ) d(k), k = 1, . . . , Nsc, (7.6)

Indeed, for each index k in the range from 1 to Nsc, the function f evaluated
at x(k)

1 is equivalent to the inner product of W (k)
L (x(k)

1 ) and the vector d(k). Recall
that, as defined in (7.2), we have uksc = h(k,sc). Hence, in vector notation, equation
(7.6) can be restated as:


W

(k,sc)
J (xk1)

W
(k,bc)
J (xk1)

W
(k,pde)
J (xk1)
W P
J (xk1)


T 

uksc
g(k,bc)

f (k,pde)

0

 = f(xk1) k = 1 . . . Nsc (7.7)

The linear system (7.7) can be succinctly denoted as Susc = b. Here, usc repre-
sents the unknown values at the solution centers Ωsc. The matrix S comprises rows
with zero elements, except for the weights corresponding to each disc Dk. There-
fore, each row contains only N (k)

sc non-zero entries. Given that Nsc is significantly
larger than N (k)

sc , it follows that the matrix S is sparse.
To efficiently construct the matrix S and compute the weights, we can solve the

following equations:

A(k)W
(k)
J

(
x

(k)
1

)
= JH(k)(x(k)

1 ), k = 1, . . . , Nsc. (7.8)

Since the matrix S is sparse, standard solvers and preconditioners can be used
to efficiently solve the linear system Susc = b. Furthermore, it is worth noting
that by using the method of lines and a suitable numerical time integrator, the
LHI method can be used to solve non-stationary linear PDE problems. For a
comprehensive review of the LHI method, interested readers can refer to [60, 28]
and related references..
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7.2 Steady state problems: Div-free RBF, LHI
method

In this subsection, we describe the vectorial LHI algorithm for solving the station-
ary Stokes problem using divergence-free RBFs. The problem involves finding the
solution u : Rd → Rd and p : Rd → R of the following system of equations:


Li(u, p) = fi in Ω,
div(u) = 0 in Ω,
Bi(u, p) = gi on ∂Ω,

i ∈ {1, ..., d}

where Li(u, p) = −µ∆ui + ∂p
∂xi

, fi, gi : R → R are known functions and B =
(B1, ...,Bd) are given boundary operators.

Notice that for Dirichlet boundary conditions, we have Bi(u, p) = ui, while for
the Navier-slip boundary conditions, we have:

Bi(u, p) = ui · ni i = 1 . . . d− 1
Bdu := (σ(u, p)n)tg

where n is the outer normal vector of ∂Ω, and (·)tg denotes the tangential compo-
nent. As discussed in subsection 7.1, for each disk Dk with center xk1, we need to
define a local system:


Ii(u, p)|ξj

(k,sc)= ui
(
ξj

(k,sc)
)

i ∈ {1, . . . d}, j ∈ {1, . . . , Nk
sc},

Bi(u, p)|ξj
(k,bc)= gi

(
ξj

(k,bc)
)

i ∈ {1, . . . d}, j ∈ {1, . . . , Nk
bc},

Li(u, p)|ξj
(k,pde)= fi

(
ξj

(k,pdec)
)

i ∈ {1, . . . d}, j ∈ {1, . . . , Nk
pde}.

(7.9)

Here, Ii : R(d+1) → R is the canonical projection operator that maps a vector to
its jth component.

The exclusion of the div operator from system (7.9) is attributed to the em-
ployment of a matrix-valued kernel, represented by Φ. This kernel comprises
a divergence-free positive definite kernel ΦDiv and a global C∞ positive definite
scalar radial basis function (RBF) ψ. The kernel is expressed as:

Φ =
[
ΦDiv 0

0 ψ

]
: Rd → R(d+1)×(d+1)
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7 LHI divergence free–RBF methods for Stokes problems

with ΦDiv : Rd → Rd × Rd defined as: ΦDiv = −∆I + ∇∇Tψ. In this context, ∆
denotes the Laplace operator, I signifies the identity matrix, and ∇∇T represents
the Hessian matrix. Although the pressure is not incorporated as an unknown
variable in the local system (7.9), we will describe the method to calculate it.

Now, using the generalized interpolation Theorem 6.1.1 as in section 6.1 the
ansatz for the Stokes equation is given by:

(̂u(k) ,̂ p(k))(x) =
d∑
i=1

Nk
sc∑

j=1
Iξ
i Φ(x − ξ

sc(k)
j )αkij

+
d∑
i=1

Nk
bc∑

j=1
Bξ
i Φ(x − ξ

bc(k)
j )βkij

+
d∑
i=1

Nk
pdec∑
j=1

Lξ
iΦ(x − ξ

pdec(k)
j )γkij,

(7.10)

Here, (α, β, γ) denotes a vector in Rd×Nk
tot , where Nk

tot represents the sum of
Nk
sc, Nk

bc, and Nk
pdec. These quantities individually account for the total num-

bers of local solution centers, boundary centers, and PDE centers, respectively.
The terms Iξ

i Φ, Bξ
i Φ, Lξ

iΦ are vector-valued functions from Rd to Rd+1 defined by
the application of the operators Iξ

i , Bξ
i , Lξ

i to each row of the kernel Φ respectively.

Substituting the ansatz (7.10) into the local Stokes system (7.9), we arrive at
the following local system:

Ak


αk

γk

βk

 =


u(k,sc)

g(k,bc)

f (k,pdec)

 , (7.11)

Where the local Gram matrix denoted here as Ak belongs to Rd(Nk
tot)×d(Nk

tot), and
can be described as the following block of matrix:

Ak =


Ak11 Ak12 Ak13
Ak21 Ak22 Ak23
Ak31 Ak32 Ak33

 ,
where Akij ∈ RdNi×dNj , where N = (Nk

sc, N
k
bc, N

k
pdec). Specifically, the ij-th block
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7.2 Steady state problems: Div-free RBF, LHI method

of each submatrix is given by:

A11(i, j) = Ixi I
ξ
jΦ(ξ(k,sc) − ξ(k,sc)), A12(i, j) = Ixi Bξ

jΦ(ξ(k,sc) − ξ(k,bc)),
A21(i, j) = Bx

i I
ξ
jΦ(ξ(k,bc) − ξ(k,sc)), A22(i, j) = Bx

i B
ξ
jΦ(ξ(k,bc) − ξ(k,bc)),

A31(i, j) = Lx
i I

ξ
jΦ(ξ(k,pdec) − ξ(k,sc)), A32(i, j) = Lx

i B
ξ
jΦ(ξ(k,pdec) − ξ(k,bc)),

A13(i, j) = Ixi Lξ
jΦ(ξ(k,sc) − ξ(k,pdec)),

A23(i, j) = Bx
i L

ξ
jΦ(ξ(k,bc) − ξ(k,bc)),

A33(i, j) = Lx
i L

ξ
jΦ(ξ(k,pdec) − ξ(k,pdec)).

This in turn let us compute the weights of the differential operator Lj by solving
the following systems:

A(k)W
(k)
Lj

(
x
sc(k)
1

)
= LjH

(k)(xsc(k)
1 ), k = 1, ...., Nsc, (7.12)

where Hk(x) is given by

H(k)(x) =
(
Iξ

1 Φ(∥x − ξsc(k)∥) . . .Bξ
1Φ(∥x − ξbc(k)∥) . . .Lξ

dΦ(∥x − ξpdec(k)∥)
)T
.

(7.13)
Once the weights are known, we can build the sparse global matrix from the
following equations

W
(k)
Lj

(
x
sc(k)
1

)
d(k) = Fj(xsc(k)

1 ) k = 1, .., Nsc, j = 1, ..., d, (7.14)

where

d(k) =
(
u1(xsc(k)), ..., ud(xsc(k)), g1(xbc(k)), ..., gd(xbc(k)), f1(xpdec(k)), ..., fd(xpdec(k))

)T
.

Defining the unknown values of the vector field as

u(xsc) =
(
u1(xsc1 ), ..., u1(xscNsc

), ..., ud(xscNsc
)
)T

and the known values as g(xbc) ∈ RdNbc , f(xpde) ∈ RdNpde respectively.
The global system induced by (7.14) can be expressed in matrix form as follows:

(
W y
L WB

L WL
L

) 
u(xsc)
g(xbc)
f(xpde)

 = [f(xsc)] , (7.15)

89



7 LHI divergence free–RBF methods for Stokes problems

where Wu
L ∈ RdNsc×dNsc , WB

L ∈ RdNsc×dNbc ,WB
L ∈ RdNsc×dNpde .

Therefore, in order to compute the velocity field, we must solve the following
linear system

W y
Lu(xsc) = f(xsc) −WB

L g(xbc) −WL
L f(xpde). (7.16)

To compute the pressure gradient we need to obtain the weights linked to the
partial derivatives of the pressure component of the local Anzats. In other words,
we need to compute the weight of the operators

LPi(u, p) ≡ ∂ Id+1(u, p)
∂xi

, i = 1, 2. (7.17)

Again, this is performed in solving the following local systems:

A(k)W
(k)
LPi

(
x
sc(k)
1

)
= LPiH

(k)(xsc(k)
1 ), k = 1, ...., Nsc. (7.18)

Once these weights are obtained and assuming that u(xsc) have been computed
via (7.16), we just have to do the following matrix multiplication

WLP


u(xsc)
g(xbc)
f(xpde)

 = [∇p(xsc)] . (7.19)

Remark 7.2.1. It is important to highlight that in order to avoid singularity of the
sparse system, we need that xsc(k)

1 ̸∈ Ωk
pdec ( see [60]).

7.3 Numerical results: stationary problem
Using the LHI Div–free IMQ RBFs technique, we present numerical results con-
cerning to the convergence order for Dirichlet and Navier–slip boundary condition.
Also we verify that the errors, even for small number of support centers and dif-
ferent values of the diffusion parameter µ are excellent.

We consider the non–convex domain whose boundary was defined in (6.12) and
the following exact solution :

u(x) =
(

−πysin(π2 (x2 + y2)), πxsin(π2 (x2 + y2)
)
, p(x) = sin(x− y).

Here, the non–dimensional shape parameter is c = 0.1. Tables 7.1 , 7.2 contains the
approximation orders in the L2 and L∞ norms of the velocity field and pressure.
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7.3 Numerical results: stationary problem

µ = 1
Total nodes Local nodes ||ey||L2 ||ey||∞ ||e∇p||L2 ||e∇p||∞ local cond Sparse cond
1010 15 3.14e-06 4.96e-06 4.45e-04 2.00e-03 4.74e+21 5.05e+07
1010 20 1.49e-06 2.21e-06 3.65e-04 1.15e-03 1.24e+25 4.02e+08
1010 30 3.63e-09 1.12e-08 1.32e-06 8.83e-06 7.37e+30 1.44e+08
1010 40 4.11e-10 1.22e-09 1.66e-07 8.51e-07 1.55e+35 1.04e+09
2177 15 3.83e-06 5.91e-06 4.52e-04 3.26e-03 8.01e+23 5.57e+08
2177 20 5.40e-08 9.89e-08 1.11e-05 4.84e-05 2.96e+27 6.53e+08
2177 30 2.08e-10 9.06e-10 9.14e-08 6.22e-07 1.24e+34 1.14e+09
2177 40 2.97e-12 1.14e-11 1.25e-09 4.14e-09 1.16e+39 2.23e+09
5924 15 2.36e-06 4.99e-06 2.81e-04 1.81e-03 3.24e+26 3.49e+10
5924 20 8.23e-09 1.10e-08 1.85e-06 3.04e-05 4.29e+30 1.45e+10
5924 30 1.08e-12 3.43e-12 7.17e-10 4.19e-09 1.62e+38 1.27e+10
5924 40 5.38e-14 2.52e-13 5.74e-11 3.36e-10 1.16e+44 5.82e+10
15051 15 1.64e-07 3.12e-07 3.06e-05 2.11e-04 9.63e+28 1.76e+11
15051 20 1.83e-09 2.81e-09 7.45e-07 5.29e-06 4.45e+33 4.65e+11
15051 30 3.87e-14 9.73e-14 4.27e-11 5.27e-10 9.63e+41 2.17e+11
15051 40 1.18e-16 6.70e-16 1.41e-13 9.34e-13 3.63e+48 1.64e+11
23461 15 3.31e-07 5.92e-07 3.53e-05 1.67e-04 2.57e+30 1.67e+12
23461 20 3.67e-10 5.58e-10 2.12e-07 2.82e-06 1.02e+35 9.00e+11
23461 30 4.11e-14 6.82e-14 3.15e-11 6.81e-10 5.47e+43 2.01e+12
23461 40 1.45e-17 4.05e-17 1.44e-14 2.33e-13 2.97e+50 1.87e+12

µ = 1e− 03
Total nodes Local nodes ||ey||L2 ||ey||∞ ||e∇p||L2 ||e∇p||∞ local cond Sparse cond
1010 15 4.29e-05 7.65e-05 1.50e-05 1.16e-04 2.89e+19 5.84e+07
1010 20 1.88e-06 3.65e-06 7.90e-07 5.53e-06 1.85e+23 9.80e+07
1010 30 7.07e-08 1.68e-07 2.41e-08 1.06e-07 3.89e+28 2.85e+08
1010 40 1.37e-09 4.56e-09 5.59e-10 3.52e-09 1.18e+33 1.43e+10
2177 15 6.58e-06 1.50e-05 2.39e-06 1.87e-05 3.32e+21 1.82e+09
2177 20 1.19e-06 2.04e-06 2.57e-07 1.29e-06 5.13e+25 1.92e+09
2177 30 1.28e-09 5.39e-09 5.96e-10 6.09e-09 7.92e+31 1.94e+09
2177 40 9.12e-12 3.16e-11 6.13e-12 3.87e-11 5.37e+36 2.31e+09
5924 15 1.62e-04 2.96e-04 1.43e-05 7.55e-05 9.33e+23 3.29e+11
5924 20 1.66e-07 3.51e-07 6.17e-08 5.75e-07 1.17e+29 6.66e+10
5924 30 6.13e-12 1.81e-11 5.59e-12 4.52e-11 5.00e+35 5.76e+09
5924 40 2.16e-13 7.80e-13 1.83e-13 2.03e-12 3.30e+41 5.50e+10
15051 15 7.24e-07 1.19e-06 1.08e-07 1.08e-06 2.94e+26 2.81e+11
15051 20 4.59e-08 6.95e-08 7.24e-09 1.46e-07 1.09e+32 1.89e+12
15051 30 3.23e-13 6.31e-13 4.48e-13 5.31e-12 5.36e+39 8.10e+10
15051 40 8.62e-15 3.07e-14 2.17e-14 1.94e-13 1.45e+46 8.37e+11
23461 15 4.99e-07 8.47e-07 1.11e-07 1.16e-06 2.86e+27 7.96e+11
23461 20 8.39e-10 1.28e-09 3.62e-10 7.71e-09 1.94e+33 1.80e+12
23461 30 6.43e-14 9.86e-14 9.15e-14 1.22e-12 2.70e+41 2.23e+11
23461 40 2.21e-16 9.69e-16 5.04e-16 7.49e-15 1.40e+48 9.00e+11

Table 7.1: Div free IMQ LHI Error table for stationary case with Dirichlet bound-
ary condition and shape parameter c=1.0
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7 LHI divergence free–RBF methods for Stokes problems

µ = 1
Total nodes Local nodes ||ey||L2 ||ey||∞ ||e∇p||L2 ||e∇p||∞ local cond Sparse cond
1010 15 2.02e-05 3.88e-05 1.93e-03 6.68e-03 4.32e+21 4.57e+07
1010 20 3.18e-06 8.24e-06 5.00e-04 2.64e-03 9.56e+24 2.03e+08
1010 30 5.26e-08 2.12e-07 9.79e-06 4.59e-05 6.36e+30 1.50e+09
1010 40 4.19e-10 2.44e-09 1.38e-07 8.23e-07 1.45e+35 2.30e+09
2177 15 4.35e-06 9.47e-06 6.66e-04 2.69e-03 7.60e+23 4.21e+08
2177 20 1.63e-07 5.19e-07 2.02e-05 7.65e-05 2.69e+27 2.56e+09
2177 30 1.67e-09 4.79e-09 3.12e-07 8.17e-07 1.11e+34 5.76e+09
2177 40 4.13e-11 9.94e-11 7.59e-09 3.10e-08 1.31e+39 1.95e+10
5924 15 4.93e-07 9.11e-07 7.28e-05 7.66e-04 2.33e+26 4.79e+09
5924 20 1.55e-07 3.43e-07 2.20e-05 7.93e-05 4.97e+30 2.36e+11
5924 30 8.96e-11 2.20e-10 1.53e-08 1.08e-07 1.71e+38 3.33e+11
5924 40 2.37e-11 7.26e-11 7.61e-09 4.73e-08 1.17e+44 3.60e+13
15051 15 1.14e-07 1.86e-07 1.73e-05 1.26e-04 8.48e+28 2.78e+11
15051 20 2.07e-08 3.39e-08 2.22e-06 2.02e-05 3.86e+33 2.40e+13
15051 30 6.89e-11 2.32e-10 7.58e-09 4.71e-08 1.00e+42 2.62e+14
15051 40 1.98e-13 6.70e-13 2.05e-11 1.15e-10 2.69e+48 4.42e+14
23461 15 4.30e-06 8.38e-06 3.06e-04 3.47e-03 8.51e+29 7.42e+12
23461 20 6.57e-10 1.49e-09 1.57e-07 2.00e-06 7.12e+34 5.83e+12
23461 30 1.20e-10 5.91e-10 3.11e-08 4.24e-07 4.55e+43 2.69e+15
23461 40 6.94e-15 2.92e-14 2.12e-12 1.21e-11 2.73e+50 9.49e+14

µ = 1e− 03
Total nodes Local nodes ||ey||L2 ||ey||∞ ||e∇p||L2 ||e∇p||∞ local cond Sparse cond
1010 15 3.29e-05 6.80e-05 6.31e-06 2.51e-05 5.09e+19 3.27e+08
1010 20 4.36e-06 1.82e-05 5.66e-07 1.98e-06 2.25e+23 7.47e+07
1010 30 6.21e-07 1.72e-06 1.48e-07 7.93e-07 6.28e+28 1.37e+09
1010 40 2.32e-09 6.91e-09 5.46e-10 2.30e-09 1.30e+33 4.40e+09
2177 15 3.66e-05 6.08e-05 4.95e-06 2.34e-05 4.33e+21 1.86e+09
2177 20 7.75e-07 2.24e-06 7.93e-08 4.06e-07 5.67e+25 1.56e+09
2177 30 5.59e-09 1.63e-08 1.25e-09 5.67e-09 7.95e+31 1.05e+10
2177 40 4.17e-10 1.53e-09 7.60e-11 4.10e-10 5.71e+36 1.08e+11
5924 15 1.15e-05 4.14e-05 2.53e-06 3.76e-05 6.94e+23 1.56e+10
5924 20 2.89e-06 6.13e-06 1.99e-07 1.04e-06 1.59e+29 3.70e+11
5924 30 1.56e-10 4.61e-10 3.07e-11 1.60e-10 9.54e+35 1.16e+12
5924 40 2.11e-12 6.49e-12 2.31e-13 1.05e-12 3.57e+41 2.15e+12
15051 15 3.18e-04 4.62e-04 3.10e-05 4.15e-04 2.16e+26 4.50e+13
15051 20 6.38e-08 1.31e-07 8.65e-09 1.03e-07 1.25e+32 1.63e+12
15051 30 1.86e-11 6.80e-11 2.26e-12 1.40e-11 4.32e+39 2.81e+12
15051 40 2.23e-14 5.64e-14 2.93e-15 2.04e-14 1.44e+46 1.46e+13
23461 15 2.13e-05 3.02e-05 1.47e-06 1.19e-05 2.54e+27 3.02e+13
23461 20 1.20e-08 2.20e-08 1.54e-09 3.37e-08 1.79e+33 6.92e+12
23461 30 1.30e-12 3.48e-12 2.09e-13 2.63e-12 2.71e+41 4.62e+12
23461 40 2.25e-15 5.92e-15 4.75e-16 3.00e-15 1.95e+48 1.62e+13

Table 7.2: Div free IMQ LHI Error table for stationary case with Navier–slip
boundary condition and shape parameter c=1.0
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7.4 LHI method and BDF scheme for the non-stacionary Stokes equations

We denote such an errors by eu := uexact − uaprox and e∇p := ∇pexact − ∇paprox.
In all experiments, we have used extended precision via the mpfr++ library in
c++ in order to overcome the ill condition Gram matrix.

From Tables 7.1 and 7.2, it can be appreciated that we obtain spectral order
of convergence as the number of local nodes increases or equivalently if the fill
distance decreases. Also the results are excellent both for µ = 1 and µ = 10−3, and
the error consistently decreases as the number of local nodes increases. The main
point to be noted from this tables is that we can use up to 24, 000 total number of
nodes in the computations. This can not be done with global collocation methods
due to the high value of the condition number of the Gram matrix.

7.4 LHI method and BDF scheme for the
non-stacionary Stokes equations

In this subsection we formulate a RBF–LHI vectorial technique for the evolutionary
Stokes problem


ut + L(u, p) = f in Q,

div u = 0 in Q,

Bu = g on Σ,
u(·, 0) = u0(·) in Q,

(7.20)

where L(u, p) = −µ∆u + ∇p.
Observe that, for every t ∈ (0, T ), (7.20) can be seen as a stationary Stokes

equation 
L(u, p) = f in Ω,
div u = 0 in Ω,
Bu = g on ∂Ω,

(7.21)

where f = f − ut.
This implies that we can use the weight of the stationary system (see equation

(7.12)) to approximate (7.21). Thus, by using (7.14) we have

(
W y
L WB

L WL
L

) 
u(t;xsc)
g(t;xbc)
f(t;xpde)

 = [f(t;xsc)] (7.22)

Now, assuming that xsc = xpde, we get the following ODE system
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7 LHI divergence free–RBF methods for Stokes problems

(I −WL
L ) ut(t;xsc) = −W y

L u(t;xsc) −WB
L g(t;xbc) + (I −WL

L )F (t; xsc), (7.23)

where the boundary condition have been imposed in the LHI weights.
To solve the above system, we use a BDF2 scheme. Thus, in each time step we

shall solve the system
(

I − WL
L + 2∆t

3 W y
L

)
un+2 =

(
I − WL

L

)(2∆t

3 Fn+2 + 4
3un+1 − 1

3un

)
− 2∆t

3 WB
L gn+2.

(7.24)

7.5 Numerical results: evolutionary problem

In this subsection we use the theoretical description of the RBF–LHI method
presented in 7.4, to solve the unsteady Stokes system. We also introduce the
concept of Divergence free hybrid radial basis function, a generalization of the
scalar hybrid RBF (see [52]), which allows us to build a global LHI matrix whose
eigenvalues have negative real parts. We present numerical results for different
benchmark problems. use IMQ kernels since in this case we obtain that always
some of the eigenvalues have positive real components for all the shape parameters.

We stress that, in some cases and according to extensive numerical experimen-
tation, no matter which parameters c, µ or h we select, it is not possible to obtain
eigenvalues with negative real parts for the IMQ kernel, thus the discrete system
is unstable.

On the other hand, for hybrid kernels, the eigenvalues can always be obtained to
be negative depending on the parameters we choose, thus providing the stability
condition for ODE’s solvers. We first define the concept of Div–free hybrid kernel.

Definition 7.5.1. Let r = ∥x∥, ψ1(r) = exp−cr2 and ψ2(r) = r2n+1. The diver-
gence free hybrid kernel ΦDiv : Rd → Rd+1 is defined by

ΦDiv(x) = {−∆I + ∇∇T}(ψ1(x) + γ1ψ2(x)).

where ∆ denotes the Laplace operator, I signifies the identity matrix, and ∇∇T

represents the Hessian matrix.
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By direct computation we obtain

ΦDiv(x) =4c1e
−r2c1

[
−c1x

2
2 + 1

2 c1x1x2

c1x1x2 −c1x
2
1 + 1

2

]

+ γ1r
2n−3(4n2 − 1)

 −r2

(2n−1) − x2
2 x1x2

x1x2
−r2

(2n−1) − x2
1

 .
and the combined velocity–pressure kernel is given by

Φ(x) =
(

ΦDiv(x) 0
0 e−c2 r + γ2 r

2m+1

)
. (7.25)

Here γ2 is corresponding weight relative to the hybrid kernel related to the pressure.
In the following experiments and for stability reasons, we use a weight parameter

γ1, a shape parameter c1 for the velocity and the corresponding values γ2; c2 for
the pressure. Also we shall use the values n = 3 and m = 1 in equation (7.25), ie.
r7 for the ΦDiv vector component and r3 for the scalar component.

We note that the condition numbers of the local and global Gram matrices
are considerable lower than for the non hybrid, IMQ RBF. This is in agreement
with a recently, a new approach to reduce the ill-conditioning problem in RBF
approximations by using a hybrid Gaussian-cubic kernel was proposed [52]. The
basic idea behind such a hybridization is to obtain a kernel which utilizes the
merits of two different kernels while compensating for the limitations of each and
keeping the formulation as a standard RBF method.

The numerical results of tables(7.3)–(7.6) were obtained by using divergence-free
hybrid kernels and considering the following analytical solution to (7.20)

u1(x, y, t) = −π y sin
(
π

2 (tx2 + y2)
)

sin(20πt),

u2(x, y, t) = −π y sin
(
π

2 (tx2 + y2)
)

sin(20πt)t,

p(x, y, t) = sin(x− y + t).

The total number of nodes for tables (7.3)–(7.6) is 1010. To better appreciate
the convergence of the method as the fill distance decrease we scale the domain
by factor α ranging from 1 to 10−5.

As in section 6.1.2, we compare the velocity error in the L2–norm between the
exact and numerical solutions, i.e., ϵy = uexact − uaprox.
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∆t 2.00e-02 1.00e-02 1.00e-03 1.00e-04 1.00e-05
Fill Local Velocity Max local ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2

distance nodes −γ1 cond
5.00e-02 15 2.00e-01 4.20e+11 3.89631e-01 1.37393e-01 2.28270e-02 2.26144e-02 2.26158e-02
5.00e-02 20 1.00e-01 1.62e+12 3.27511e-01 1.14382e-01 1.16019e-02 1.12192e-02 1.12195e-02
5.00e-02 30 1.00e-01 3.00e+12 3.17346e-01 1.10879e-01 1.03071e-02 9.88475e-03 9.88514e-03
5.00e-03 15 1.00e-01 1.12e+17 2.37872e-02 8.84353e-03 2.85082e-04 2.36036e-05 2.18281e-05
5.00e-03 20 1.00e-01 1.96e+17 2.37824e-02 8.84254e-03 2.84566e-04 1.62663e-05 1.35604e-05
5.00e-03 30 1.00e-01 3.98e+17 2.37821e-02 8.84248e-03 2.84493e-04 1.49392e-05 1.19358e-05
5.00e-04 15 1.00e-01 1.15e+22 2.37205e-03 8.81808e-04 2.83446e-05 8.96755e-07 3.59745e-08
5.00e-04 20 1.00e-01 1.99e+22 2.37205e-03 8.81808e-04 2.83446e-05 8.96564e-07 3.08596e-08
5.00e-04 30 1.00e-01 4.08e+22 2.37205e-03 8.81808e-04 2.83446e-05 8.96543e-07 3.02459e-08
5.00e-05 15 1.00e-01 1.15e+27 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83496e-09
5.00e-05 20 1.00e-01 2.01e+27 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83490e-09
5.00e-05 30 1.00e-01 4.28e+27 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83490e-09

Table 7.3: Error table for Stokes-unsteady, Dirichlet boundary condition with
BDF2 LHI-semidiscret method µ = 1, Pressure γ2 = 1e− 06, Velocity c1 = 0.5,
Pressure c2 = 5e− 04

∆t 2.00e-02 1.00e-02 1.00e-03 1.00e-04 1.00e-05
Fill Local Velocity Max local ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2

distance nodes −γ1 cond
5.00e-02 15 1.00e+00 1.20e+09 1.51164e+00 9.95465e-01 8.52428e-01 8.52643e-01 8.52750e-01
5.00e-02 20 1.00e-01 1.63e+10 8.20890e-01 4.66209e-01 3.80483e-01 3.80544e-01 3.80584e-01
5.00e-02 30 1.00e-01 3.26e+10 6.43212e-01 2.95525e-01 2.08385e-01 2.08408e-01 2.08428e-01
5.00e-03 15 1.00e-01 9.62e+14 2.42604e-02 8.98489e-03 7.02252e-04 6.42266e-04 6.42253e-04
5.00e-03 20 1.00e-01 1.67e+15 2.38317e-02 8.85552e-03 3.26210e-04 1.60253e-04 1.60013e-04
5.00e-03 30 1.00e-01 3.22e+15 2.37950e-02 8.84617e-03 3.05968e-04 1.13596e-04 1.13247e-04
5.00e-04 15 1.00e-01 9.51e+19 2.37205e-03 8.81808e-04 2.83447e-05 9.00079e-07 8.52535e-08
5.00e-04 20 1.00e-01 1.51e+20 2.37205e-03 8.81808e-04 2.83446e-05 8.97570e-07 5.25082e-08
5.00e-04 30 1.00e-01 3.41e+20 2.37205e-03 8.81808e-04 2.83446e-05 8.96529e-07 2.98050e-08
5.00e-05 15 1.00e-01 9.68e+24 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83489e-09
5.00e-05 20 1.00e-01 1.54e+25 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83487e-09
5.00e-05 30 1.00e-01 3.48e+25 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83487e-09

Table 7.4: Error table for Stokes-unsteady, Dirichlet boundary condition with
BDF2 LHI-semidiscret method µ = 1e − 03, Pressure γ2 = 1e − 06, Velocity
c1 = 0.5, Pressure c2 = 5e− 04

96



7.5 Numerical results: evolutionary problem

∆t 2.00e-02 1.00e-02 1.00e-03 1.00e-04 1.00e-05
Fill Local Velocity Max local ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2

distance nodes −γ1 cond
5.00e-02 15 2.00e-01 4.20e+11 5.34629e-01 2.03483e-01 8.57445e-02 8.56851e-02 8.56904e-02
5.00e-02 20 1.00e-01 1.62e+12 4.59891e-01 1.65007e-01 3.61239e-02 3.60060e-02 3.60083e-02
5.00e-02 30 1.00e-01 3.00e+12 4.83596e-01 1.75874e-01 4.08739e-02 4.07419e-02 4.07447e-02
5.00e-03 15 1.00e-01 1.12e+17 2.38759e-02 8.86207e-03 2.92628e-04 6.98930e-05 6.93184e-05
5.00e-03 20 1.00e-01 1.96e+17 2.38063e-02 8.84747e-03 2.86525e-04 3.70751e-05 3.59725e-05
5.00e-03 30 1.00e-01 3.98e+17 2.38141e-02 8.84912e-03 2.88693e-04 5.11912e-05 5.04004e-05
5.00e-04 15 1.00e-01 1.15e+22 2.37205e-03 8.81808e-04 2.83447e-05 8.99279e-07 7.63437e-08
5.00e-04 20 1.00e-01 2.10e+22 2.37205e-03 8.81808e-04 2.83446e-05 8.97295e-07 4.75745e-08
5.00e-04 30 1.00e-01 4.08e+22 2.37205e-03 8.81808e-04 2.83446e-05 8.97518e-07 5.16150e-08
5.00e-05 15 1.00e-01 1.15e+27 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83576e-09
5.00e-05 20 1.00e-01 2.01e+27 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83511e-09
5.00e-05 30 1.00e-01 4.28e+27 2.37201e-04 8.81791e-05 2.83440e-06 8.96463e-08 2.83526e-09

Table 7.5: Error table for Stokes-unsteady, Navier–slip boundary condition with
BDF2 LHI–semidiscret method µ = 1, Pressure γ2 = 1e − 06, Velocity c1 =
1.0,Pressure c2 = 5e− 06

∆t 2.00e-02 1.00e-02 1.00e-03 1.00e-04 1.00e-05
Fill Local Velocity Max local ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2 ||ey||L2

distance nodes −γ1 cond
5.00e-02 15 1.00e-01 2.30e+11 1.67563e+00 1.10142e+00 9.45213e-01 9.45553e-01 9.45679e-01
5.00e-02 20 1.00e-01 2.01e+11 1.51242e+00 9.90276e-01 8.43845e-01 8.44026e-01 8.44133e-01
5.00e-02 30 1.00e-01 3.50e+11 1.45439e+00 9.47934e-01 8.06837e-01 8.06999e-01 8.07101e-01
5.00e-03 15 8.00e-01 1.58e+14 2.29486e-01 1.18803e-01 1.10860e-01 1.11219e-01 1.11242e-01
5.00e-03 20 1.00e-01 2.19e+15 3.66377e-02 1.41194e-02 5.86116e-03 5.85250e-03 5.85300e-03
5.00e-03 30 1.00e-01 4.17e+15 5.24203e-02 2.30795e-02 1.97011e-02 1.97778e-02 1.97812e-02
5.00e-04 15 5.12e+01 2.70e+17 2.88384e-03 1.01449e-03 8.02069e-05 7.48608e-05 7.48610e-05
5.00e-04 20 1.00e-01 2.08e+20 2.37255e-03 8.81927e-04 2.84960e-05 3.06396e-06 2.93023e-06
5.00e-04 30 1.00e-01 3.72e+20 2.49592e-03 9.14376e-04 5.79928e-05 5.05434e-05 5.05393e-05
5.00e-05 15 4.10e+02 3.33e+21 2.37209e-04 8.81807e-05 2.83544e-06 1.17900e-07 7.66347e-08
5.00e-05 20 1.00e-01 1.79e+25 2.37201e-04 8.81791e-05 2.83440e-06 8.96478e-08 2.88258e-09
5.00e-05 30 8.00e-01 5.21e+24 2.37201e-04 8.81791e-05 2.83440e-06 8.97063e-08 4.33499e-09

Table 7.6: Error table for Stokes-unsteady, Navier–slip boundary condition with
BDF2 LHI–semidiscret method µ = 1e − 03, Pressure γ2 = 1e − 06, Velocity
c1 = 1.0, Pressure c2 = 5e− 06
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7 LHI divergence free–RBF methods for Stokes problems

From the tables presented in this subsection, we conclude that the local condition
number for hybrid kernels are several orders of magnitude smaller than the values
of tables presented in subsection (7.3), which corresponds to the condition number
for inverse multi quadrics. We stress however, that the error is greater for hybrids
kernels than for IMQ. The values of the shape parameters were obtained by direct
trial and error computation. Of course, up to now, there is no theory that tells us
how to obtain these values. It is important to note that in order to obtain a good
condition number, we only need to decrease the value γ1 and decrease the shape
parameter of the pressure for a fixed γ2. Here, γ1 is the parameter of the convex
combination of the hybrid kernel related to the velocity, and γ2 the parameter
related to the pressure. This means that the algorithm is relatively stable with
respect to the variation of the parameters.
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8 Application to a control problem
of the LHI-div free

In this chapter, we address the numerical solution for the approximate control-
lability problem in the context of a two-dimensional Stokes system, subject to a
limited number of scalar controls. Both Dirichlet and Navier-slip boundary con-
ditions are incorporated in our analysis. Our numerical implementation builds
upon the previously developed Radial Basis Function - Local Hermite Interpola-
tion (RBF-LHI) technique. For validation and comparison, the outcomes derived
from the RBF-LHI approach are benchmarked against results obtained from the
Finite Element Method (FEM) under similar conditions, i.e., considering both
Dirichlet and Navier-slip boundary conditions

Following the methodology outlined in [37], we implement the Conjugate Gradi-
ent Method (CGM) to solve the dual system as defined in equations (8.2) and (8.7).
We adopt a stopping criterion of ϵ = 10−8. Furthermore, the considered domain
Ω is a subset of R2 and is shaped as a star, with its boundary being parametrized
by a specific curve:

C =
{

(θ, ρ(θ)) ∈ R2 | ρ(θ) = 0.8 + sin(6θ) + sin(3θ), θ ∈ [0, 2π)
}
. (8.1)

The set of observations, denoted by ω, is defined as ω = (x, y) ∈ R2 : x2

2.5e−3 + y2

4e−4 < 1.0.
The time period under consideration, T , is set to 1.0. We deploy a uniform mesh
comprising 1010 points, constructed using FreeFem++. The chosen time step size
is ∆t = 5 × 10−3, and the diffusion coefficient is set as µ = 1e − 03. Initial
conditions are defined as follows:

(u0
1, u

0
2) =

(
−102π y cos

(
π

2 (x2 + y2)
)2
, 102π x cos

(
π

2 (x2 + y2)
)2
)
.

In terms of the functional defined in equation (8.5), we establish the regular-
ization parameters as β1 = 1.0e − 03 and β−1

2 = 0 for controls that include both
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8 Application to a control problem of the LHI-div free

non-zero scalar components (v = (v1, v2)). Alternatively, we use β−1
1 = 0 and

β2 = 1.0e−03 when the controls have only one scalar component (either v = (v1, 0)
or v = (0, v2)).

For the numerical experiments, a triangular mesh is employed. This choice is
motivated by two factors. First, it allows a fair comparison between the RBF-
LHI and FEM methods. Second, the CGM requires calculation of integrals over
the domain. While this can be accomplished using scattered nodes, efficiency is
improved by employing a triangulation within the LHI-RBF framework to compute
these integrals with P1-type elements.

8.1 A Control problem formulation
Before proceeding, let’s establish some useful notations. Let Ω denote a connected,
open subset of Rd (d = 2 or d = 3) of class C∞. Define T > 0 and let ω represent
a small, non-empty, open subset of Ω, corresponding to the control domain. Fur-
thermore, we introduce Q := Ω × (0, T ) and Σ := ∂Ω × (0, T ). The vector n(x) is
the outward unit normal vector to Ω at the point x ∈ ∂Ω. Furthermore, we define:

H := {u ∈ L2(Ω)d : ∇ · u = 0 in Ω, u · n = 0 on ∂Ω}

and
V := {u ∈ H1

0 (Ω)d : ∇ · u = 0 in Ω}.

We turn our attention to the continuous approximate control problem for the
Stokes system, applicable to both Dirichlet and Navier-slip boundary conditions,
which is outlined as follows:

Approximate control. Starting with an initial data u0, the goal is to identify
a control function v = v(x, t), acting in the domain ω × (0, T ) with its support,
supp,v, confined within ω×(0, T ). This control function should result in a solution
to the following problem:

ut − µ∆u + ∇p = v1ω in Q,

∇ · u = 0 in Q,

+BC on Σ,
u(·, 0) = u0(·) in Ω,

(8.2)

such that for every ε > 0 we have:

u(·, T ) ≤ ε in Ω, (approximate control to zero) (8.3)
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8.1 A Control problem formulation

In equation (8.2), µ > 0 represents the viscosity coefficient and p is the pressure.
Our attention is primarily directed towards two types of boundary conditions on
Σ, specifically:

u = g︸ ︷︷ ︸
(a) Dirichlet

or u · n = 0, (σ(u, p) · n)tg = g,︸ ︷︷ ︸
(b) Navier–slip

(8.4)

In this context, σ(u, p) := −pId + 2µDu defines the stress tensor, with D rep-
resenting the symmetrized gradient of u. The term tg refers to the tangential
component of the respective vector field, which is given by:

utg = u − (u · n)n.

We now frame the control problem in terms of seeking the optimal or minimum
value of a quadratic convex functional in (L2(Q))2, following the approach delin-
eated in [33]. Specifically, for u0 ∈ H, our goal is to determine the control v that
has one vanishing component (the jth component, where j ∈ 1, 2) such that it
minimizes the functional J as defined by:

J(v) := 1
2

∫∫
ω×(0,T )

|v|2 dx dt+ 1
2β1

∥u(·, T )∥2
L2(Ω) dx+ 1

2β2

∫∫
ω×(0,T )

|vj|2 dx dt, (8.5)

where u represents the solution of the Stokes system as characterized by equation
(8.2). The coefficients β1 and β2 denote arbitrary positive numbers, associated
respectively with the final condition u(·, T ) ≤ ε and the control function v.

The optimal control function, v, can be identified by computing the Fréchet
derivative of J with respect to v. Verification shows that this leads to the following:
expressions:

∂J

∂v
(v) = vi − wi if i ̸= j and ∂J

∂v
(v) = 1

2β2
vj − wj, in ω × (0, T ), (8.6)

where w ∈ V is the solution of the adjoint system of (8.2):

−wt − µ∆w + ∇q = 0 in Q,

∇ · w = 0 in Q,

+BC on Σ,
w(·, T ) = − 1

β1
u(·, T ) in Ω.

(8.7)

In [33], a unique minimal control v, associated with (8.5), is confirmed for every
β1 > 0, β2 > 0. Only Dirichlet boundary conditions are examined in this study.
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8 Application to a control problem of the LHI-div free

For extensive research on the control theory of the Stokes system with internal
controls, see [41].

Computational studies, like the one by Fernandez-Cara et al. [30], focus on nu-
merical two-dimensional analyses of heat, Stokes, and Navier-Stokes equations with
Dirichlet boundary conditions. The methodology applied, outlined in [32], uses the
Fursikov-Imanuvilov formulation and a Lagrangian approximation through mixed
finite elements. An alternative approximation scheme is presented in [29] for a
turbulence model using Dirichlet boundary conditions.

However, no known numerical approximation for the Stokes problem employs
Radial Basis Functions (RBFs) under Navier-slip boundary conditions. Subsequent
sections address this and demonstrate its utility for solving the control problem
for the Stokes system.

Table 8.1 shows the number of iterations to achieve the stopping criteria ϵ = 10−8

in the CGM.

B.C v = (v1, v2) v = (v1, 0) v = (0, v2)
Navier–slip 116 68 99
Dirichlet 78 208 304

Table 8.1: Number of iterations for obtaining the convergence criteria of the CGM
for Hybrid-LHI-RBF.

Table 8.2 and Figures 8.1–8.2 show the L2–norm of the velocity vector field for
the approximate control problems as a function of time. The numerical control
function v has all possible structures, namely, v = 0, v = (v1, v2), v = (v1, 0) and
v = (0, v2).

8.1.1 Finite element method, FEM, for the control problem
Taking as starting point the classical optimal control problem for the Stokes system
[37], we can solve the optimality system given in (8.2) (8.6) and (8.7) in a similar
way. In our case, the time–space discretization of the coupled system (8.2), (8.7),
lies in a mixed finite element formulation in space using P2–type elements for the
velocity and P1–type elements for the pressure, meanwhile finite differences are
used for the time discretization (see [38, 35, 4] for a complete review). It has to
be pointed that in order to solve the unsteady Stokes equation with Navier–slip
boundary condition we used a penalization method given in [26].
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8.1 A Control problem formulation

Boundary Condition = Dirichlet
t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.103E+00 6.103E+00 6.103E+00 6.103E+00
1.0E-01 1.561E+00 1.551E+00 1.551E+00 1.550E+00
2.0E-01 7.845E-01 7.658E-01 7.651E-01 7.656E-01
3.0E-01 4.221E-01 3.988E-01 3.977E-01 3.988E-01
4.0E-01 2.318E-01 2.064E-01 2.058E-01 2.066E-01
5.0E-01 1.283E-01 1.025E-01 1.032E-01 1.028E-01
6.0E-01 7.114E-02 4.664E-02 4.943E-02 4.694E-02
7.0E-01 3.949E-02 1.797E-02 2.319E-02 1.818E-02
8.0E-01 2.193E-02 5.207E-03 1.167E-02 5.203E-03
9.0E-01 1.218E-02 1.192E-03 5.297E-03 1.118E-03
1.0E+00 6.761E-03 8.748E-05 1.093E-03 1.271E-04

Boundary Condition = Navier-Slip
t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.982E+00 6.982E+00 6.982E+00 6.982E+00
1.0E-01 3.495E+00 3.335E+00 3.385E+00 3.262E+00
2.0E-01 2.413E+00 2.112E+00 2.213E+00 2.004E+00
3.0E-01 1.713E+00 1.322E+00 1.473E+00 1.210E+00
4.0E-01 1.226E+00 7.921E-01 9.911E-01 6.993E-01
5.0E-01 8.801E-01 4.454E-01 6.824E-01 3.838E-01
6.0E-01 6.331E-01 2.313E-01 4.845E-01 2.027E-01
7.0E-01 4.559E-01 1.113E-01 3.460E-01 1.078E-01
8.0E-01 3.285E-01 5.040E-02 2.260E-01 5.858E-02
9.0E-01 2.368E-01 1.815E-02 1.146E-01 2.558E-02
1.0E+00 1.708E-01 2.149E-03 5.506E-02 6.359E-03

Table 8.2: Evolution in time of the L2–norm for the solution of the approximate
control problem with few scalar controls.(LHI–RBF with hybrid kernel) µ =
1.0e− 03. For Dirichlet boundary condition γ1 = 1e− 01,γ2 = 1e− 05, and for
Navier–slip γ1 = 1e− 03,γ2 = 1e− 08

Table 8.3 shows the number of iterations to achieve the stopping criteria ϵ = 10−8

in the CGM implemented.
Table 8.4 and Figures 8.3-8.4 display the evolution in time of the L2–norm of the
velocity vector field u = (u1, u2), which represents the solution to the approximate
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8 Application to a control problem of the LHI-div free
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Figure 8.1: L2–norm square solution of the velocity field (as a function of time)
for the approximate control problem with controls v = 0 (black), v = (v1, v2)
(pink), v = (v1, 0) (red) and v = (0, v2) with Dirichlet boundary condition.
LHI–RBF hybrid kernel, with parameters γ1 = 1e − 01,γ2 = 1.0e − 5,c1 =
0.5,c2 = 5.e− 8

0
0.

2
0.

4
0.

6
0.

8 1

Time t

10
-3

10
-2

10
-1

10
0

10
1

||
y
(.

,t
)|

|
2

Figure 8.2: L2–norm square solution of the velocity field (as a function of time)
for the approximate control problem with controls v = 0 (black), v = (v1, v2)
(pink), v = (v1, 0) (red) and v = (0, v2) with Navier–slip boundary condition.
LHI–RBF hybrid kernel, with parameters γ1 = 1e−03,γ2 = 1e−08,c1 = 1.0,c2 =
5.e− 10.

control problem (8.2), and where the control function v has different structure,
namely, v = 0, v = (v1, v2), v = (v1, 0) and v = (0, v2).

As we can see from Tables 8.2–8.4, the RBF–LHI method or FEM are similar,
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8.1 A Control problem formulation
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Figure 8.3: Evolution in time of the L2–norm square for the solution of the
approximate control problem with Dirichlet boundary conditions and v = 0
(black), v = (v1, v2) (pink), v = (v1, 0) (red) and v = (0, v2) (blue). (FEM)
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Figure 8.4: Evolution in time of the L2–norm square for the solution of the
approximate control problem with Dirichlet boundary conditions and v = 0
(black), v = (v1, v2) (pink), v = (v1, 0) (red) and v = (0, v2) (blue). (FEM)
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8 Application to a control problem of the LHI-div free

B.C v = (v1, v2) v = (v1, 0) v = (0, v2)
Navier–slip 73 73 65
Dirichlet 56 54 49

Table 8.3: Number of iterations for obtaining the convergence criteria of the CGM
for FEM.

nevertheless, RBF–LHI method has the advantage of being mesh–less and showing
more accuracy by using divergence free kernels. The number of iterations for the
CGM necessary to converge is higher for the RBF–LHI method, however it should
be noted that for RBF–LHI technique we use P1–type elements to compute the
integral expressions in the CGM, while for FEM we use P2–type elements.
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8.1 A Control problem formulation

Boundary Condition = Dirichlet
t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.103E+00 6.103E+00 6.103E+00 6.103E+00
1.0E-01 1.572E+00 1.561E+00 1.560E+00 1.560E+00
2.0E-01 8.014E-01 7.814E-01 7.788E-01 7.799E-01
3.0E-01 4.351E-01 4.101E-01 4.070E-01 4.085E-01
4.0E-01 2.409E-01 2.135E-01 2.111E-01 2.121E-01
5.0E-01 1.342E-01 1.065E-01 1.059E-01 1.055E-01
6.0E-01 7.498E-02 4.864E-02 5.097E-02 4.798E-02
7.0E-01 4.192E-02 1.879E-02 2.463E-02 1.854E-02
8.0E-01 2.344E-02 5.397E-03 1.326E-02 5.418E-03
9.0E-01 1.311E-02 1.120E-03 6.087E-03 1.256E-03
1.0E+00 7.333E-03 7.110E-05 1.076E-03 1.371E-04

Boundary Condition = Navier-Slip
t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.934E+00 6.934E+00 6.934E+00 6.934E+00
1.0E-01 2.496E+00 2.359E+00 2.403E+00 2.345E+00
2.0E-01 1.660E+00 1.409E+00 1.531E+00 1.388E+00
3.0E-01 1.173E+00 8.462E-01 1.048E+00 8.255E-01
4.0E-01 8.519E-01 4.890E-01 7.634E-01 4.731E-01
5.0E-01 6.277E-01 2.652E-01 5.884E-01 2.563E-01
6.0E-01 4.663E-01 1.335E-01 4.587E-01 1.319E-01
7.0E-01 3.480E-01 6.361E-02 3.254E-01 6.801E-02
8.0E-01 2.604E-01 3.009E-02 1.747E-01 3.719E-02
9.0E-01 1.952E-01 1.188E-02 5.537E-02 1.668E-02
1.0E+00 1.465E-01 1.060E-03 1.904E-02 2.582E-03

Table 8.4: Evolution in time of the L2–norm for the solution of the approximate
control problem with Dirichlet boundary conditions and few scalar controls,
(FEM) µ = 1.0e− 03
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Conclusion: Achievements and
Future Perspectives

In this thesis, we have addressed a simplified geometrical inverse problem related to
the identification of stenosis, an obstruction, in a coronary duct by utilizing mea-
surements of acoustic waves. A key novelty of our work is the introduction of an
exterior approach. The Stokes flow, confined within an interior domain, becomes
turbulent upon encountering the boundary obstruction, resulting in movement of
the elastic boundary of the duct and generation of acoustic waves. The inverse
problem, involving the identification of the location, extent, and height of the ob-
struction (lumen reduction), is formulated and solved by utilizing external wave
measurements taken far enough from the duct, effectively considering them as
measurements in the exterior domain. Notably, previous works in the literature
assume that the obstruction is contained within the domain and that the bound-
ary measurements are not external, meaning they are taken solely on the unique
boundary of the problem.

From a theoretical standpoint, we have addressed and analyzed the problem
both in continuous and numerical settings. The well-posedness of the Stokes flow
with mixed boundary conditions has been proven, which is a notable contribution
as previous works have mainly focused on Dirichlet boundary conditions. Addi-
tionally, we have established unique results for the obstruction when the data is
given by the normal component of the Cauchy stress tensor and the tangential
velocity on a subset of the boundary.

From a numerical perspective, we have successfully solved, with a reasonable
degree of accuracy, the identification of a boundary obstruction immersed in a
Stokes flow using measurements of acoustic waves taken on the external boundary
of the problem. The inverse problem for the fluid obstruction has been addressed
by employing a Monte Carlo Markov Chain (MCMC) method, which involves
solving two direct problems: a direct Stokes problem solved using mesh-free hybrid
radial basis function kernels, and a direct wave system solved using the finite
element method.
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8 Application to a control problem of the LHI-div free

In addition to the aforementioned contributions, this work has also introduced
radial basis function (RBF) methods for approximating the solution of the non-
stacionary Stokes equations. We have presented two types of RBF solvers, global
and local, for the direct Stokes problems, incorporating Dirichlet or Navier-slip
boundary conditions. Stability analysis demonstrates the stability of the method
for backward difference formulas (BDFs) when the shape parameter is properly
selected. Exponential convergence has been numerically demonstrated. Further-
more, by generalizing recently formulated scalar hybrid kernels to a vectorial set-
ting, we have developed divergency-free matrix hybrid radial basis kernels (Div-
Free-Hybrid). These kernels have significantly reduced the condition number of
the local matrices and allowed for the selection of parameters that result in all
negative real components of the eigenvalues, thereby allowing the convergence of
the solution.

In terms of future work, several aspects can be further explored and improved
upon. Firstly, it would be valuable to complete the pressure continuity analysis
about the domain for mixed boundary conditions. This would provide a more
comprehensive understanding of the flow behavior and enhance the accuracy of the
results. Additionally, studying the regularity of the solution with mixed boundary
conditions would contribute to a deeper insight into the mathematical properties
of the problem and potentially lead to refined analytical results.

Furthermore, a focus on enhancing the usability of the RBF codes is essential.
Making the RBF implementation more user-friendly, similar to the accessibility of
software tools like FreeFem++, would greatly benefit researchers and practitioners
in the field. Simplifying the coding process and providing clear documentation
and examples would facilitate the adoption and utilization of RBF methods by a
broader audience.

Addressing these areas of further work will contribute to the advancement and
wider adoption of RBF techniques in the field of fluid dynamics and boundary
obstacle problems, fostering more efficient and accurate analysis and applications
in practical scenarios.
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[62] Louis Breton Tenorio and Jesus López Estrada. Develación del dominio de un
fluido de stokes estacionario. Bolet́ın de la Sociedad Mexicana de Computación
Cient́ıfica y sus Aplicaciones, 2018.

[63] Lloyd N. Trefethen and Laurence Halpern. Well-posedness of one-way wave
equations and absorbing boundary conditions. Math. Comp., 47(176):421–
435, 1986.

[64] Holger Wendland. Scattered data approximation, volume 17. Cambridge uni-
versity press, 2004.

[65] Holger Wendland. Divergence-free kernel methods for approximating the
Stokes problem. SIAM Journal on Numerical Analysis, 47(4):3158–3179,
2009.

[66] Edward J Wing and Fred J Schiffman. Cecil Essentials of Medicine E-Book.
Elsevier Health Sciences, 2021.

[67] Masahiro Yamamoto. Stability, reconstruction formula and regularization for
an inverse source hyperbolic problem by a control method. Inverse problems,
11(2):481, 1995.

[68] Wen-Jing Yan and Yi-Chen Ma. Shape reconstruction of an inverse Stokes
problem. Journal of Computational and Applied Mathematics, 216(2):554–
562, 2008.

119


	Abstract
	Resumen y introducción en español
	An Introduction to the Stokes Boundary Obstacle Problem
	Introduction
	The problem setting

	The stokes equation with mixed boundary conditions
	Steady Stokes system with mixed boundary condition
	Unsteady Stokes system with mixed boundary conditions
	Theoretical results to the identification problem
	The H001/2 space

	Numerical perspective for the direct problem
	Direct problem and experimental setup
	Numerical results for the direct problem

	An optimization process for the inverse problem
	Inverse problem for the wave equation
	Obstacle inverse problem
	Numerical results

	Continuity with respect to the domain
	Introduction
	Preliminary result
	Estimates for unsteady Stokes system with mixed boundary conditions
	Continuity of H1() under Diffeomorphisms

	Continuity of the velocity vector field with respect the domain
	Pressure weak continuity with respect to the domain

	Global divergence free–RBF methods for evolutionary Stokes problems
	Collocation method and backward differentiation formula
	Stability analysis for BDF schemes
	Numerical experiments


	LHI divergence free–RBF methods for Stokes problems
	A reminder of the scalar LHI method
	Steady state problems: Div-free RBF, LHI method
	Numerical results: stationary problem
	LHI method and BDF scheme for the non-stacionary Stokes equations
	Numerical results: evolutionary problem

	Application to a control problem of the LHI-div free
	A Control problem formulation
	Finite element method, FEM, for the control problem


	Conclusion: Achievements and Future Perspectives
	Agradecimientos

