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DR. JESÚS LÓPEZ ESTRADA, FACULTAD DE CIENCIAS, UNAM

CIUDAD DE MEXICO, OCTUBRE 2023



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Dedicado con cariño a mi abuela Alicia, a mi hermana Wendy, a mi tı́a Roxana y a mis
primos Humberto, Bárbara y Yoel.



Agradecimientos

Deseo expresar mi más sincero agradecimiento a todas aquellas personas que han contribuido de
alguna manera al desarrollo de este trabajo.

En primer lugar, deseo extender mi profundo agradecimiento a mi abuela, Alicia, quien ha sido
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Introducción

La presente tesis doctoral se ha estructurado con una introducción en español, seguida por el con-
tenido de los capı́tulos redactado en inglés, considerando cinco artı́culos de investigación publicados
en revistas internacionales con arbitraje. Este enfoque metodológico ha sido autorizado por el direc-
tor de tesis y los miembros del comité tutor, con el propósito de asegurar un rigor académico y
cientı́fico en cada uno de los capı́tulos. La inclusión de estos artı́culos proporciona una base sólida y
actualizada, permitiendo que la tesis se beneficie de las contribuciones más recientes en el campo de
estudio, asegurando ası́ la calidad y relevancia de la investigación realizada.

El cálculo fraccional es una rama de las matemáticas que involucra el uso de operadores difer-
enciales e integrales de órdenes no enteros. Aunque fue introducida en el siglo XVII, su desarrollo
inicial fue lento y sus aplicaciones estaban limitadas. No fue hasta finales del siglo XIX y principios
del siglo XX que el cálculo fraccional ganó atención significativa y experimentó un resurgimiento en
la investigación de sus aplicaciones.

En el siglo XX, el campo del cálculo fraccional experimentó un notable impulso en su desarrollo
debido al creciente interés de diversos investigadores en explorar sus aplicaciones en áreas como la
fı́sica, la ingenierı́a y la biologı́a. Una de las aplicaciones más reconocidas del cálculo fraccional es el
estudio de procesos de difusión anómala, donde los operadores fraccionales describen la difusión de
partı́culas con distribuciones de ley de potencia.

Es importante destacar que el cálculo fraccional también encuentra aplicaciones en el estudio de
la viscoelasticidad y la reologı́a, permitiendo modelar el comportamiento en el tiempo de materiales
que exhiben propiedades tanto elásticas como viscosas. En la teorı́a de control, el cálculo fraccional
se utiliza para diseñar sistemas de control más sofisticados capaces de manejar de manera precisa
sistemas no lineales complejos.

En los últimos años, el campo del cálculo fraccional ha continuado creciendo y expandiéndose,
gracias al interés de investigadores que exploran sus aplicaciones en campos como finanzas, economı́a
e incluso informática. Dado su potencial para modelar fenómenos no lineales complejos, el cálculo
fraccional se ha convertido en una herramienta crucial para investigadores que buscan crear modelos
que permitan una predicción más precisa de los comportamientos naturales.

Por otro lado, el método de Newton-Raphson, también conocido como método de Newton, es un
método numérico iterativo utilizado para encontrar raı́ces de funciones de valor real. Fue concebido
por el cientı́fico inglés Isaac Newton en el siglo XVII, aunque sus hallazgos nunca fueron publica-
dos. Posteriormente, el matemático escocés John Raphson desarrolló de manera independiente este
método.

El método de Newton-Raphson se basa en aproximar linealmente la función cuyas raı́ces se bus-
can. Partiendo de una estimación inicial de la raı́z, el método utiliza la intersección de la tangente
con el eje x en la estimación inicial para generar una aproximación más precisa de la raı́z, la cual
se utiliza como punto de partida en la siguiente iteración. Este proceso se repite hasta alcanzar la
precisión deseada o un número máximo de iteraciones.
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El método de Newton-Raphson es particularmente eficaz para encontrar raı́ces de funciones no
lineales que carecen de soluciones analı́ticas. Converge rápidamente hacia la raı́z de una función, es-
pecialmente si la estimación inicial está cercana a la raı́z buscada. No obstante, requiere la existencia
y evaluación de la primera y segunda derivada de la función, lo que podrı́a ser complejo o imposible
en algunos casos. Además, la convergencia puede no ocurrir si la función posee múltiples raı́ces o si
la estimación inicial está lejos de la raı́z buscada.

A pesar de estas limitaciones, el método de Newton-Raphson sigue siendo un método numérico
popular y ampliamente utilizado en diversos campos de la ciencia y la ingenierı́a. Se aplica para
hallar raı́ces de ecuaciones en disciplinas como la fı́sica, la quı́mica, la ingenierı́a eléctrica y la in-
genierı́a mecánica. También se emplea en problemas de optimización, para determinar mı́nimos o
máximos de funciones, y para resolver sistemas de ecuaciones no lineales.

En otro ámbito, las funciones de base radial constituyen un conjunto de herramientas utilizadas
para aproximaciones y modelado en diversas aplicaciones. Estas funciones, cuya formulación se
atribuye principalmente al matemático inglés Kansa en la ultima década del siglo XX, se distinguen
por depender de la distancia desde un centro determinado, lo que les confiere propiedades de
adaptación local y la capacidad de capturar patrones complejos.

La metodologı́a de funciones de base radial implica la construcción de funciones a partir de una
función de base radial y centros distribuidos en el dominio de interés. En el campo del cálculo
fraccional, las funciones de base radial han demostrado su utilidad al permitir discretizar operadores
fraccionales y resolver ecuaciones diferenciales con derivadas fraccionales.

Cabe destacar que las funciones de base radial han encontrado un terreno fértil en diversas áreas,
como el aprendizaje automático y la interpolación en problemas multidimensionales. La naturaleza
local de estas funciones se traduce en una capacidad para adaptarse a patrones cambiantes en los
datos, lo que las hace idóneas para la aproximación y representación de fenómenos variables en el
espacio y el tiempo

Además de su versatilidad en la modelación de datos y fenómenos, las funciones de base radial
han demostrado ser sumamente útiles en problemas inversos y en la resolución de sistemas de ecua-
ciones no lineales. La capacidad de adaptación local y su habilidad para abordar geometrı́as com-
plejas les permiten enfrentar con éxito una amplia gama de problemas prácticos en campos como la
tomografı́a, la optimización y la reconstrucción de señales.

En la siguiente tesis se presentan algunos métodos numéricos novedosos, los cuales haciendo uso
de operadores del cálculo fraccional y tomando como base el método de Newton-Raphson, permiten
encontrar soluciones en el espacio complejo utilizando condiciones iniciales reales. El origen de
estos métodos es el método de Newton-Raphson fraccional unidimensional. El cual al extender su
definición a múltiples variables se obtiene un método que permite encontrar soluciones de algunos
sistemas algebraicos no lineales. Además fueron desarrollados los códigos para implementar estos
métodos [1].

Cuando uno comienza a estudiar el cálculo fraccional, la primer dificultad con la que uno se en-
cuentra es que al querer resolver algún problema relacionado con unidades fı́sicas, como por ejem-
plo: determinar la velocidad de una partı́cula, la derivada fraccional parecerı́a no tener sentido, esto
debido a que aparecen unidades fı́sicas como metro y segundo elevadas a exponentes no enteros,
caso contrario a lo que ocurre con operadores diferenciales de orden entero. La segunda dificultad,
la cual es un tema recurrente de debate en el estudio del cálculo fraccional, es saber cual es el orden α
“optimo” que se debe emplear cuando se quiere resolver algún problema relacionado con operadores
fraccionales.

Para enfrentar dichas dificultades, lo que se suele hacer en el primer caso es adimensionalizar
cualquier ecuación en la que estén involucrados operadores de orden no entero, mientras que para
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el segundo caso se utilizan diferentes ordenes α en los operadores fracccionales para resolver algún
problema, y posteriormente se escoge el orden α que proporcione la “mejor solución” en base a un
criterio establecido.

En base a las dos dificultades anteriores, surge la idea de buscar aplicaciones que sean de un
carácter adimensional y que la necesidad de utilizar múltiples ordenes α pueda ser aprovechado
en algún sentido. Lo mencionado anteriormente llevo al estudio del método de Newton y a un
problema en particular que este posee relacionado con la búsqueda de raı́ces en el espacio complejo
para polinomios: si uno quiere encontrar una raı́z compleja de un polinomio utilizando el método
de Newton, es necesario proporcionar una condición inicial compleja x0 y si se dan las condiciones
adecuadas esto lleva a una solución también compleja, pero también existe la posibilidad de que
esto lleve a una solución real. Si la raı́z obtenida es real, es necesario cambiar la condición inicial
y esperar que esto lleve a una solución compleja, en caso contrario es necesario volver a cambiar el
valor de la condición inicial.

El proceso descrito anteriormente, es muy parecido a lo ocurre al utilizar diferentes valores α
en los operadores fraccionales hasta encontrar una soluciones que cumpla con alguna condición
deseada. Viendo el método de Newton desde la perspectiva del cálculo fraccional, uno puede con-
siderar que se un orden α fijo, en este caso α = 1, y se varı́an las condiciones iniciales x0 hasta obtener
una solución que satisfaga algún criterio. Entonces invirtiendo el comportamiento de α y x0, es de-
cir, dejar fija la condición inicial y variar el orden α, se obtiene el método de Newton fraccional,
que no es otra cosa que el método de Newton utilizando cualquier definición de derivada fraccional
que se ajuste a la función con la que uno este trabajando. Este cambio, aunque en esencia simple,
permite encontrar raı́ces en el espacio complejo utilizando condiciones iniciales reales, debido a que
los operadores fraccionales en general no mapean polinomios a polinomios. Cabe mencionar que el
método anterior, aunque la familia de funciones con la que se origina son polinomios, se puede ex-
tender a funciones más complicadas e incluso a dimensiones mayores, llevando esto al surgimiento
del método de Newton fraccional multivariable, el cual es útil para encontrar soluciones, reales o
complejas, en algunos sistemas no lineales.

La siguiente tesis está dividida en seis capı́tulos. En el Capı́tulo 1, se presentan temas prelim-
inares esenciales para abordar los resultados que se expondrán en los siguientes capı́tulos. Se intro-
duce una forma simplificada de construir los operadores fraccionales de Riemann-Liouville, como
la integral y derivada fraccional, junto con ejemplos de su aplicación en diferentes funciones. Se in-
troduce también el método de punto fijo y se aborda su orden de convergencia, junto con resultados
relacionados. Finalmente, se presenta una breve introducción sobre las funciones de base radial.

El Capı́tulo 2 presenta una breve introducción al método de Newton-Raphson unidimensional,
útil para encontrar raı́ces de polinomios de grado n, con n ∈N. Sin embargo, este método tiene lim-
itaciones ya que diverge en el caso de polinomios con raı́ces exclusivamente complejas si se toma una
condición inicial real. Se explica un método iterativo creado utilizando el cálculo fraccional, llamado
método de Newton-Raphson fraccional. Este método permite entrar en el espacio de números com-
plejos con una condición inicial real, lo que facilita encontrar raı́ces reales y complejas de un poli-
nomio utilizando condiciones iniciales reales, a diferencia del método clásico de Newton-Raphson.

En el Capı́tulo 3, se brinda una introducción al método de Newton-Raphson multidimensional,
ası́ como una manera de acelerar la velocidad de convergencia del método de Newton-Raphson frac-
cional. Este último parece tener un orden de convergencia al menos lineal para órdenes α de la
derivada fraccional diferentes de uno. Además, se introduce el método de Aitken y se explica cómo
acelera la convergencia de métodos iterativos, y se presentan los resultados obtenidos al implementar
el método de Aitken en el método de Newton-Raphson fraccional.

En el Capı́tulo 4, dada la creciente cantidad de operadores fraccionales y la perspectiva de que
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su número continúe aumentando, se presenta por primera vez un método simple y compacto para
abordar el cálculo fraccional mediante la clasificación de operadores fraccionales utilizando conjun-
tos. Este enfoque, denominado cálculo fraccional de conjuntos, generaliza conceptos del cálculo
convencional, como operadores tensoriales, la serie de Taylor de una función vectorial y el método
del punto fijo en varias variables. Esto lleva a la generación del método conocido como método de
punto fijo fraccional. Además, se demuestra que cada método de punto fijo fraccional que genera una
sucesión convergente tiene la capacidad de generar una familia no numerable de métodos de punto
fijo fraccionales que también generan sucesiones convergentes. Se presenta un método para estimar
numéricamente el orden medio de convergencia en una región Ω, y se muestra cómo construir un
método iterativo fraccional hı́brido para determinar los puntos crı́ticos de una función escalar.

En el Capı́tulo 5, se define una familia no numerable de métodos de punto fijo fraccionales a
través de conjuntos de matrices que generan operadores matriciales fraccionales. También se de-
fine grupos de operadores fraccionales isomorfos al grupo de los números enteros bajo la suma, y
se presenta una manera de clasificar y acelerar el orden de convergencia de la familia de métodos
iterativos propuestos. Esto puede ser útil para seguir expandiendo las aplicaciones de los oper-
adores fraccionales. El método propuesto para acelerar la convergencia se aplica en un método
iterativo fraccional para resolver simultáneamente sistemas algebraicos no lineales que dependen de
parámetros temporales, permitiendo obtener temperaturas y eficiencias de un receptor solar hı́brido.
Finalmente, se presentan dos familias no numerables de métodos de punto fijo fraccionales en los
que se puede implementar el método propuesto para acelerar la convergencia.

En el Capı́tulo 6, se generaliza un modelo diferencial parcial unidimensional mediante oper-
adores diferenciales fraccionales y el principio que otorga invariancia dimensional a la metodologı́a
de funciones de base radial. Esto da como resultado un modelo diferencial parcial multidimensional
que se puede resolver utilizando un esquema numérico de funciones de base radial. Se propone un
esquema de funciones de base radial para resolver numéricamente ecuaciones diferenciales parciales
fraccionales multidimensionales tanto en el espacio como en el tiempo. Utilizando la factorización
QR, se reduce el número de condición de las matrices de interpolación del esquema propuesto. Este
esquema se emplea para resolver numéricamente la ecuación de difusión derivada del modelo de
Black-Scholes, ası́ como generalizaciones de este modelo de difusión con operadores diferenciales
fraccionales y en múltiples dimensiones. La derivada fraccional de Caputo se discretiza con un er-
ror de orden O(dtn−α+1), con (n − 1) < α ≤ n. Los ejemplos de ecuaciones diferenciales parciales
fraccionales presentados incluyen el operador fraccional de Caputo en la parte temporal debido al
fenómeno de memoria y el operador fraccional de Riemann-Liouville en la parte espacial debido
propiedad de no-localidad.
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Chapter 1

Preliminaries

1.1 Fractional Calculus

The fractional calculus is a branch of mathematical analysis whose applications have been increasing
since the end of the XX century and beginnings of the XXI century [2–4]. It originated around 1695
with Leibniz’s notation for derivatives of integer order,

f (n)(x) :=
dn

dxn
f (x), n ∈N,

which led L’Hopital to inquire in a letter to Leibniz about the interpretation of taking n = 1/2 in
a derivative. At that moment, Leibniz could not give a physical or geometrical interpretation to this
question, and he simply answered L’Hopital with the remark, “. . . is an apparent paradox of which,
one day, useful consequences will be drawn” [5]. The name “fractional calculus” originates from
a historical question, as it involves studying derivatives and integrals of fractional order α, where
α ∈R or C.

Presently, the fractional calculus lacks a unified definition of what constitutes a fractional deriva-
tive. One of the essential conditions to consider an expression as a fractional derivative is its ability
to recover conventional calculus results when the order α → n, with n ∈N [6]. There exist several
common definitions of fractional derivatives, such as the Riemann-Liouville (R-L) fractional deriva-
tive and the Caputo fractional derivative [7–9]. The Caputo fractional derivative is particularly
well-studied, as it allows for a physical interpretation of problems with initial conditions. Moreover,
it retains the property of conventional calculus that the derivative of a constant is null, regardless of
the order α of the derivative. However, this property does not hold with the R-L fractional derivative,
making it suitable for solving nonlinear systems [10–12].

Although the Caputo fractional derivative facilitates a physical interpretation of problems with
initial conditions, the R-L fractional derivative induces fractional initial conditions, making it un-
suitable for such interpretations. Nonetheless, the R-L fractional derivative possesses a unique char-
acteristic: it does not cancel the constants for α when α <N. Consequently, it allows for the deter-
mination of a “spectrum” of the behavior of the constants for different orders of the derivative, a feat
unattainable with conventional calculus. It is worth mentioning that depending on the function f ,
the results of the Riemann-Liouville and Caputo fractional derivatives can sometimes be expressed
in terms of Mittag-Leffler functions or hypergeometric functions [13,14]. The continued exploration
of fractional calculus and its various applications holds significant promise for advancing mathe-
matical analysis and understanding complex systems.
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1.1.1 Construction of the Riemann-Liouville Fractional Derivative

We begin with some definitions and standard properties for those readers who have not had previous
contact with fractional calculus. The R-L fractional derivative is constructed in a simplified way,
taking into account that the integral operator is defined for a locally integrable function f , that is,
f ∈ L1

loc(a,∞), then

aIxf (x) :=
∫ x

a
f (t)dt,

applying two times the integral operator

aI
2
x f (x) =

∫ x

a

(∫ x1

a
f (t)dt

)
dx1 =

∫ x

a

(
aIx1

f (x1)
)
dx1,

doing an integration by parts, taking u = aIx1
f (x1) and dv = dx1, as a consequence

aI
2
x f (x) =x1aIx1

f (x1)
∣∣∣∣∣x
a
−
∫ x

a
x1f (x1)dx1

=xaIxf (x)− aIx (xf (x))

=
∫ x

a
(x − t)f (t)dt, (1.1)

repeating the previous process, applying three times the integral operator

aI
3
x f (x) =

∫ x

a

(
aI

2
x1
f (x1)

)
dx1,

doing an integration by parts, taking u = aI
2
x1
f (x1) and dv = dx1, then

aI
3
x f (x) =x1aI

2
x1
f (x1)

∣∣∣∣∣x
a
−
∫ x

a

(
x1aIx1

f (x1)
)
dx1

=xaI
2
x f (x)− aIx (xaIxf (x))

=
∫ x

a
(x − t)aItf (t)dt,

doing again an integration by parts, taking u = aItf (t) and dv = (x − t)dt, as a consequence

aI
3
x f (x) =− 1

2
(x − t)2

aItf (t)
∣∣∣∣∣x
a

+
1
2

∫ x

a
(x − t)2f (t)dt

=
1
2

∫ x

a
(x − t)2f (t)dt. (1.2)

Repeating the previous process, applying n times the integral operator and doing n − 1 integra-
tions by parts, it is possible to obtain the following expression of the n-th iterated integral [7]
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aI
n
x f (x) =

1
(n− 1)!

∫ x

a
(x − t)n−1f (t)dt, (1.3)

to make a generalization of the previous expression, it is enough to take into account the relation-
ship between the Gamma function and the factorial function, Γ (n) = (n − 1)!, and doing n→ α ∈ R,
the expression for the (right) R-L fractional integral is obtained [7]

aI
α
x f (x) =

1
Γ (α)

∫ x

a
(x − t)α−1f (t)dt, (1.4)

taking into account that the differential operator (Dx = d/dx) is the inverse operator to the left of
the integral operator (aIx) , that is,

Dnx (aI
n
x f (x)) =

dn

dxn
(aI

n
x f (x)) = f (x),

we may consider extending the previous result analogously to the fractional calculus using the
expression

aD
α
x f (x) := aI

−α
x f (x),

unfortunately, this would cause convergence problems because the Gamma function is not de-
fined for α ∈Z≤0, to solve this problem, the above expression is rewritten as

aD
α
x f (x) = aI

−α
x f (x) =

dn

dxn
(
aI
n
x

(
aI
−α
x f (x)

))
=
dn

dxn
(aI

n−α
x f (x)) ,

for the above expression to make sense, it is necessary to consider n − α ≥ 0, there are infinite
ways that n may be taken to fulfills the above condition, but the most convenient way is to consider

n = n(α),

considering the above, we can define the (right) R-L fractional derivative as follows

aD
α
x f (x) =

1
Γ (n−α)

dn

dxn

∫ x

a
(x − t)n−α−1f (t)dt, n = dαe, (1.5)

in such a way that the previous expression fulfills that

lim
α→1 a

Dαx f (x) = lim
α→1

dn

dxn
(aI

n−α
x f (x))

=
d
dx

(
aI

0
x f (x)

)
=
d
dx
f (x).
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Finally, it is possible to unify the R-L fractional operators, fractional integral and fractional
derivative, and define the (right) Riemann-Liouville fractional derivative as follows [7, 8]:

aD
α
x f (x) :=

 aI
−α
x f (x), if α < 0

dn

dxn
(aI

n−α
x f (x)) , if α ≥ 0

, (1.6)

where n = dαe.

Examples of the Riemann-Liouville Fractional Derivative

Before continuing, it is necessary to define the Beta function and the incomplete Beta function [14],
which are defined as follows

B(p,q) :=
∫ 1

0
tp−1(1− t)q−1dt, Br(p,q) :=

∫ r

0
tp−1(1− t)q−1dt, (1.7)

where p and q are positive values. Considering the following proposition:

Proposition 1.1.1. Let f be a function, with

f (x) = (x − c)µ, µ > −1, c ∈R,

then for all α ∈R\Z, the Riemann-Liouville fractional derivative of the above function may be written
as

aD
α
x f (x) =


Γ (µ+ 1)

Γ (µ−α + 1)
(x − c)µ−αG−α

(a− c
x − c

,µ+ 1
)
, if α < 0

n∑
k=0

(
n
k

)
Γ (µ+ 1)

Γ (µ+n−α − k + 1)
(x − c)µ+n−α−kG

(n−k)
n−α

(a− c
x − c

,µ+ 1
)
, if α ≥ 0

, (1.8)

where

Gα

(a− c
x − c

,µ+ 1
)

:= 1−
B a−c
x−c

(µ+ 1,α)

B(µ+ 1,α)
. (1.9)

Proof. The Riemann-Liouville fractional derivative of the function f (x), through the equation (1.6),
presents two cases:

i) If α < 0, then :

aD
α
x f (x) =

1
Γ (−α)

∫ x

a
(x − t)−α−1(t − c)µdt,
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taking the change of variable t = c+ (x − c)u in the previous expression

aD
α
x f (x) =

(x − c)µ−α

Γ (−α)

∫ 1

a−c
x−c

(1−u)−α−1uµdu,

the above result may be rewritten in terms of the Beta function and the incomplete Beta func-
tion as follows

aD
α
x f (x) =

(x − c)µ−α

Γ (−α)

(
B(µ+ 1,−α)−B a−c

x−c
(µ+ 1,−α)

)
=B(µ+ 1,−α)

(x − c)µ−α

Γ (−α)

(
1−

B a−c
x−c

(µ+ 1,−α)

B(µ+ 1,−α)

)
,

and considering (1.9), we obtain that

aD
α
x (x − c)µ =

Γ (µ+ 1)
Γ (µ−α + 1)

(x − c)µ−αG−α
(a− c
x − c

,µ+ 1
)
. (1.10)

ii) If α ≥ 0, then:

aD
α
x f (x) =

1
Γ (n−α)

dn

dxn

∫ x

a
(x − t)n−α−1(t − c)µdt,

taking the change of variable t = c+ (x − c)u in the previous expression

aD
α
x f (x) =

1
Γ (n−α)

dn

dxn

(x − c)µ+n−α
∫ 1

a−c
x−c

(1−u)n−α−1uµdu

 ,
the above result may be rewritten in terms of the Beta function and the incomplete Beta func-
tion as follows

aD
α
x f (x) =

1
Γ (n−α)

dn

dxn
[
(x − c)µ+n−α

(
B(µ+ 1,n−α)−B a−c

x−c
(µ+ 1,n−α)

)]
=
B(µ+ 1,n−α)
Γ (n−α)

dn

dxn

[
(x − c)µ+n−α

(
1−

B a−c
x−c

(µ+ 1,n−α)

B(µ+ 1,n−α)

)]
,

and considering (1.9), we obtain that
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aD
α
x f (x) =

Γ (µ+ 1)
Γ (µ+n−α + 1)

dn

dxn

[
(x − c)µ+n−αGn−α

(a− c
x − c

,µ+ 1
)]

=
Γ (µ+ 1)

Γ (µ+n−α + 1)

n∑
k=0

(
n
k

)(
dk

dxk
(x − c)µ+n−α

)
G

(n−k)
n−α

(a− c
x − c

,µ+ 1
)
,

taking into account that in the classical calculus

dk

dxk
(x − c)µ =

µ!
(µ− k)!

(x − c)µ−k =
Γ (µ+ 1)

Γ (µ− k + 1)
(x − c)µ−k ,

therefore

aD
α
x (x − c)µ =

n∑
k=0

(
n
k

)
Γ (µ+ 1)

Γ (µ+n−α − k + 1)
(x − c)µ+n−α−kG

(n−k)
n−α

(a− c
x − c

,µ+ 1
)
. (1.11)

From the previous proposition, we can note that the Riemann-Liouville fractional derivative
presents an explicit dependence of the value n = dαe. However, there exists a particular case in
which this dependence disappears, as shown in the following proposition:

Proposition 1.1.2. Let f be a function, with

f (x) = (x − a)µ, µ > −1, a ∈R,

then for all α ∈R\Z, the Riemann-Liouville fractional derivative of the above function may be written
in general form as

aD
α
x (x − a)µ =

Γ (µ+ 1)
Γ (µ−α + 1)

(x − a)µ−α. (1.12)

Proof. To prove the validity of the proposition for all α ∈ R \Z, it is necessary to note that from the
Proposition 1.1.1, the following limits may be obtained

aD
α
x (x − a)µ = lim

c→a a
Dαx (x − c)µ,

lim
c→a

Gα

(a− c
x − c

,m+ 1
)

= Gα(0,µ+ 1) = 1,

then consider two cases:
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i) If α < 0, from the equation (1.10), we obtain that

aD
α
x (x − a)µ =

Γ (µ+ 1)
Γ (µ−α + 1)

lim
c→a

(
(x − c)µ−αG−α

(a− c
x − c

,µ+ 1
))

=
Γ (µ+ 1)

Γ (µ−α + 1)
(x − a)µ−αG−α (0,µ+ 1)

=
Γ (µ+ 1)

Γ (µ−α + 1)
(x − a)µ−α.

i) If α ≥ 0, from the equation (1.11), we obtain that

aD
α
x (x − a)µ =

n∑
k=0

(
n
k

)
Γ (µ+ 1)

Γ (µ+n−α − k + 1)
lim
c→a

(
(x − c)µ+n−α−kG

(n−k)
n−α

(a− c
x − c

,µ+ 1
))

=
n∑
k=0

(
n
k

)
Γ (µ+ 1)

Γ (µ+n−α − k + 1)
(x − a)µ+n−α−kG

(n−k)
n−α (0,µ+ 1)

=
Γ (µ+ 1)

Γ (µ−α + 1)
(x − a)µ−α.

From the previous proposition, the following corollary is obtained

Corollary 1.1.3. Let f : Ω ⊂ R → R be a function, with f ∈ L1
loc(a,∞). Assuming furthermore that

f ∈ C∞(a,∞), such that f may be written in terms of its Taylor series around the point x = a, that is,

f (x) =
∞∑
k=0

f (k)(a)
k!

(x − a)k ,

then for all α ∈R \Z, the Riemann-Liouville fractional derivative of the aforementioned function, may
be written as follows

aD
α
x f (x) =

∞∑
k=0

f (k)(a)
Γ (k −α + 1)

(x − a)k−α. (1.13)

Finally, applying the operator (1.6) with a = 0 to the function xµ, with µ > −1, from the Proposi-
tion 1.1.2 we obtain the following result

0D
α
x x

µ =
Γ (µ+ 1)

Γ (µ−α + 1)
xµ−α, α ∈R \Z. (1.14)
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1.1.2 Introduction to the Caputo Fractional Derivative

Michele Caputo published a book and introduced a new definition of fractional derivative, and he
created this definition with the objective of modeling anomalous diffusion phenomena. The defini-
tion of Caputo had already been discovered independently by Gerasimov. This fractional derivative
is of the utmost importance since it allows us to give a physical interpretation of the initial value
problems, moreover being used to model fractional time. In some texts, it is known as the fractional
derivative of Gerasimov-Caputo [9].

Let f be a function, such that f is n-times differentiable with f (n) ∈ L1
loc(a,b), then the fractional

derivative of Caputo is defined as [8]

C
a D

α
x f (x) :=aI

n−α
x

(
dn

dxn
f (x)

)
=

1
Γ (n−α)

∫ x

a
(x − t)n−α−1f (n)(t)dt, (1.15)

where n = dαe. It should be mentioned that the Caputo fractional derivative behaves as the inverse
operator to the left of the Riemann-Liouville fractional integral, that is,

C
a D

α
x (aI

α
x f (x)) = f (x).

On the other hand, the relation between the fractional derivatives of Caputo and Riemann-
Liouville is given by the following expression [8]:

C
a D

α
x f (x) = aD

α
x

f (x)−
n−1∑
k=0

f (k)(a)
k!

(x − a)k
 ,

then, if f (k)(a) = 0 ∀k < n, we obtain that

C
a D

α
x f (x) = aD

α
x f (x), (1.16)

considering the previous particular case, it is possible to unify the definitions of Riemann-Liouville
fractional integral and Caputo fractional derivative as follows:

C
a D

α
x f (x) :=


aI
−α
x f (x), if α < 0,

aI
n−α
x

(
dn

dxn
f (x)

)
, if α ≥ 0,

(1.17)

where n = dαe and aI
0
x f

(n)(x) := f (n)(x).

Discretization of the Caputo Fractional Derivative

We begin this subsection by considering a uniform partition of the interval [a, t], that is,

a = t0 < t1 < · · · < tm−1 < tm = t,

with
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tk = t0 + kdt, ∀k ≥ 0,

then, the fractional derivative of Caputo, with (n− 1) < α ≤ n, may be written as

C
a D

α
t f (t) =

1
Γ (n−α)

∫ t

a
(t − x)n−α−1f (n)(x)dx =

1
Γ (n−α)

m−1∑
k=0

∫ tm−k

tm−k−1

(tm − x)n−α−1f (n)(x)dx,

as a consequence

C
a D

α
t f (t) =

1
Γ (n−α)

m−1∑
k=0

[∫ tm−k

tm−k−1

(tm − x)n−α−1dx

][
f (n−1)(tm−k)− f (n−1)(tm−k−1)

tm−k − tm−k−1
+O(tm−k − tm−k−1)

]

=
1

Γ (n−α)

m−1∑
k=0

[
(k + 1)n−α − kn−α

n−α
dtn−α

][
f (n−1)(tm−k)− f (n−1)(tm−k−1)

dt
+O(dt)

]

=
dtn−α−1

Γ (n−α + 1)

m−1∑
k=0

[(k + 1)n−α − kn−α]
[
f (n−1)(tm−k)− f (n−1)(tm−k−1)

]
+O

(
dtn−α+1

)
, (1.18)

considering the notation

cα,k := (k + 1)n−α − kn−α, n = dαe, (1.19)

the equation (1.18) may be rewritten as

C
a D

α
t f (t) =

dtn−α−1

Γ (n−α + 1)

f (n−1)(tm)− cα,m−1f
(n−1)(t0)−

m−1∑
k=1

(
cα,k−1 − cα,k

)
f (n−1)(tm−k)

+O
(
dtn−α+1

)
.

(1.20)

It should be mentioned that the coefficients cα,k of the previous expression are bounded and
decreasing, which is exposed in the following proposition.

Proposition 1.1.4. The sequence
{
cα,k

}∞
k=0, defined by (1.19), is bounded and strictly decreasing for all

(n− 1) < α ≤ n.

Proof. To show that the sequence is bounded, we consider the following limit

lim
k→∞

(k + 1)n−α

kn−α
= lim
k→∞

(
1 +

1
k

)n−α
−→ 1,

as a consequence

lim
k→∞

cα,k = lim
k→∞

[(k + 1)n−α − kn−α] −→ 0.
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On the other hand, to show that the sequence is strictly decreasing, we consider the following
function

f (k) :=
(k + 2)n−α + kn−α

(k + 1)n−α
with f (0) < 2,

then it is possible to prove that

f (1)(k) > 0 ∀k ∈Z≥0 and lim
k→∞

f (k) −→ 2,

therefore ∀k ∈Z≥0, we obtain that

(k + 2)n−α + kn−α

(k + 1)n−α
< 2 =⇒ (k + 2)n−α − (k + 1)n−α < (k + 1)n−α − kn−α,

as a consequence

cα,k+1

cα,k
=

(k + 2)n−α − (k + 1)n−α

(k + 1)n−α − kn−α
< 1. (1.21)

Finally, from the equation (1.20) for the particular case 0 < α ≤ 1, we obtain the following expres-
sion

C
a D

α
t f (t) =

dt−α

Γ (2−α)

f (tm)− cα,m−1f (t0)−
m−1∑
k=1

(
cα,k−1 − cα,k

)
f (tm−k)

+O
(
dt2−α

)
. (1.22)

1.2 Fixed-Point Method

A classic problem in mathematics, which is of common interest in physics and engineering, is finding
the set of zeros of a function f :Ω ⊂R

n→R
n, that is,

{ξ ∈Ω : ‖f (ξ)‖ = 0} , (1.23)

where ‖ · ‖ : Rn→R denotes any vector norm. Although finding the zeros of a function may seem
like a simple problem, in general it involves solving an algebraic equation system as follows


[f ]1 (x) = 0
[f ]2 (x) = 0

...
[f ]n (x) = 0

, (1.24)
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where [f ]k : Rn → R denotes the k-th component of the function f . It should be noted that the
system of equations (1.24) may represent a linear system or a nonlinear system, and in general, it
is necessary to use numerical methods of the iterative type to solve it. Let Φ : Rn→R

n be a function,
it is possible to build a sequence {xi}∞i=0 by defining the following iterative method

xi+1 := Φ(xi), i = 0,1,2, · · · . (1.25)

So, if it is fulfilled that xi → ξ ∈Rn and the function Φ is continuous around ξ, we obtain that

ξ = lim
i→∞

xi+1 = lim
i→∞

Φ(xi) = Φ
(

lim
i→∞

xi

)
= Φ(ξ), (1.26)

the above result is the reason by which the method (1.25) is known as the fixed-point method.
Furthermore, the function Φ is called an iteration function. To understand the nature of the con-
vergence of the iteration function Φ , the following definition is necessary [15]:

Definition 1.2.1. Let Φ : Rn→R
n be an iteration function. The method (1.25) for determining ξ ∈Rn is

called (locally) convergent, if there exists δ > 0 such that for every initial value

x0 ∈ B(ξ;δ) :=
{
y ∈Rn :

∥∥∥y − ξ∥∥∥ < δ} ,
it is fulfills that

lim
i→∞
‖xi − ξ‖ → 0 ⇒ lim

i→∞
xi = ξ. (1.27)

If we have a function f : Ω ⊂ R
n→ R

n, for which we want to determine the set (1.23), in general
it is possible to write an iteration function Φ as follows [16]

Φ(x) = x −A(x)f (x),

where A(x) is a matrix, which is given as follows

A(x) :=
(
[A]jk(x)

)
=


[A]11(x) [A]12(x) · · · [A]1n(x)
[A]21(x) [A]22(x) · · · [A]2n(x)

...
...

. . .
...

[A]n1(x) [A]n2(x) · · · [A]nn(x)

 ,
with [A]jk(x) : Rn → R ∀j,k ≤ n. It is necessary to mention that the matrix A(x) is determined

according to the order of convergence desired.
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1.2.1 Order of Convergence

Before continuing, it is necessary to define the order of convergence of an iteration function Φ [15,
17]:

Definition 1.2.2. Let Φ :Ω ⊂R
n→R

n be an iteration function with a fixed point ξ ∈Ω. So, the method
(1.25) is called (locally) convergent, with an order of convergence of order (at least) p (with p ≥ 1), if
there exist δ > 0 and a non-negative constant C (with C < 1 if p = 1), such that for any initial value
x0 ∈ B(ξ;δ) it is fulfilled that

‖xi+1 − ξ‖ ≤ C ‖xi − ξ‖p , i = 0,1,2, · · · , (1.28)

where C is called convergence factor.

The order of convergence is usually related to the speed at which the sequence generated by (1.25)
converges. For the particular case p = 1 it is said that the method (1.25) has an order of convergence
(at least) linear, and for the case p = 2 it is said that the method (1.25) has an order of convergence
(at least) quadratic. The following theorem, allows characterizing the order of convergence of an
iteration function Φ with its derivatives [10, 15, 16, 18]. Before continuing, we need to consider the
following multi-index notation. Let N0 be the set N∪ {0}, if γ ∈Nn

0, then


γ! :=

n∏
k=1

[γ]k!,
∣∣∣γ ∣∣∣ :=

n∑
k=1

[γ]k , xγ :=
n∏
k=1

[x][γ]k
k

∂γ

∂xγ
:=

∂|γ|

∂[x][γ]1
1 ∂[x][γ]2

2 · · ·∂[x][γ]n
n

. (1.29)

Theorem 1.2.3. Let Φ : Ω ⊂ R
n→ R

n be an iteration function with a fixed point ξ ∈Ω. Assuming that
Φ is p-times differentiable in ξ for some p ∈N, and furthermore


∂γ [Φ]k(ξ)
∂xγ

= 0, ∀k ≥ 1 and ∀
∣∣∣γ ∣∣∣ < p, if p ≥ 2∥∥∥Φ (1)(ξ)

∥∥∥ < 1, if p = 1
, (1.30)

where Φ (1) denotes the Jacobian matrix of the function Φ , then Φ is (locally) convergent of (at least)
order p.

Proof. Let Φ : Rn→R
n be an iteration function, and let {êk}nk=1 be the canonical basis of Rn. Consid-

ering the following index notation (Einstein notation)

Φ(x) =
n∑
k=1

[Φ]k(x)êk := [Φ]k(x)êk = êk[Φ]k(x),

and using the Taylor series expansion of a vector-valued function in multi-index notation, we
obtain two cases:
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i) Case p ≥ 2 :

Φ(xi) =Φ(ξ) +
p∑
|γ|=1

1
γ!
êk
∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ + êk[o]k

max
|γ|=p
{(xi − ξ)γ }


=Φ(ξ) +

p∑
m=1

 ∑
|γ|=m

1
γ!
êk
∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ

+ êk[o]k

max
|γ|=p
{(xi − ξ)γ }

 ,
then

‖Φ(xi)−Φ(ξ)‖ ≤
p∑

m=1

 ∑
|γ|=m

1
γ!

∥∥∥∥∥êk∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ
∥∥∥∥∥
+

∥∥∥∥∥∥êk[o]k

max
|γ|=p
{(xi − ξ)γ }

∥∥∥∥∥∥
≤

p∑
m=1

 ∑
|γ|=m

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥
‖xi − ξ‖m + o (‖xi − ξ‖p) ,

assuming that ξ is a fixed point of Φ and that
∂γ [Φ]k(ξ)
∂xγ

= 0 ∀k ≥ 1 and ∀
∣∣∣γ ∣∣∣ < p is fulfilled, the

previous expression implies that

‖Φ(xi)−Φ(ξ)‖
‖xi − ξ‖p

=
‖xi+1 − ξ‖
‖xi − ξ‖p

≤
∑
|γ|=p

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥+
o (‖xi − ξ‖p)
‖xi − ξ‖p

,

therefore

lim
i→∞

‖xi+1 − ξ‖
‖xi − ξ‖p

≤
∑
|γ|=p

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥ ,
as a consequence, if the sequence {xi}∞i=0 generated by (1.25) converges to ξ, there exists a value
k > 0 such that

‖xi+1 − ξ‖ ≤

∑
|γ|=p

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥
‖xi − ξ‖p , ∀i ≥ k,

then Φ is (locally) convergent of (at least) order p.

13



ii) Case p = 1 :

Φ(xi) =Φ(ξ) +
∑
|γ|=1

1
γ!
êk
∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ + êk[o]k

max
|γ|=1
{(xi − ξ)γ }


=Φ(ξ) +Φ (1)(xi)(xi − ξ) + êk[o]k

max
|γ|=1
{(xi − ξ)γ }

 ,
then

‖Φ(xi)−Φ(ξ)‖ ≤
∥∥∥Φ (1)(ξ)

∥∥∥‖xi − ξ‖+ o (‖xi − ξ‖) ,

assuming that ξ is a fixed point of Φ , the previous expression implies that

‖Φ(xi)−Φ(ξ)‖
‖xi − ξ‖

=
‖xi+1 − ξ‖
‖xi − ξ‖

≤
∥∥∥Φ (1)(ξ)

∥∥∥+
o (‖xi − ξ‖)
‖xi − ξ‖

,

therefore

lim
i→∞

‖xi+1 − ξ‖
‖xi − ξ‖

≤
∥∥∥Φ (1)(ξ)

∥∥∥ ,
as a consequence, if the sequence {xi}∞i=0 generated by (1.25) converges to ξ, there exists a value
k > 0 such that

‖xi+1 − ξ‖ ≤
∥∥∥Φ (1)(ξ)

∥∥∥‖xi − ξ‖ , ∀i ≥ k,
considering m ≥ 1, from the previous inequality we obtain that

‖xi+m − ξ‖ ≤
∥∥∥Φ (1)(ξ)

∥∥∥‖xi+m−1 − ξ‖ ≤
∥∥∥Φ (1)(ξ)

∥∥∥2
‖xi+m−2 − ξ‖ ≤ · · · ≤

∥∥∥Φ (1)(ξ)
∥∥∥m ‖xi − ξ‖ ,

and assuming that
∥∥∥Φ (1)(ξ)

∥∥∥ < 1 is fulfilled

lim
m→∞

‖xi+m − ξ‖ ≤ lim
m→∞

∥∥∥Φ (1)(ξ)
∥∥∥m ‖xi − ξ‖ → 0,

then Φ is (locally) convergent of order (at least) linear.

The following corollary follows from the previous theorem

Corollary 1.2.4. Let Φ : Rn → R
n be an iteration function. If Φ defines a sequence {xi}∞i=0 such that

xi → ξ, and if the following condition is true

lim
x→ξ

∥∥∥Φ (1)(x)
∥∥∥ , 0, (1.31)

then Φ has an order of convergence (at least) linear in B(ξ;δ).
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1.2.2 Some Results Related to the Order of Convergence

From the previous definition the following proposition is obtained:

Proposition 1.2.5. Let Φ : Rn → R
n be an iteration function that defines a sequence {xi}i≥1 such that

xi → ξ ∈Rn. So, if Φ has an order of convergence of order (at least) p in B(ξ;δ), there exists a non-negative
constant K = K(C), such that for all values of the sequence {xi}i≥1 it is fulfilled that

‖xi+1 − xi‖ ≤ K ‖xi − xi−1‖p , i = 0,1,2, · · · , (1.32)

where ‖x−1‖ := 0.

Proof. Considering that Φ defines a sequence {xi}i≥1 and that it has an order of convergence of order
(at least) p, it is possible to obtain the following inequality

‖xi+1 − xi‖ ≤ C
(
‖xi − ξ‖p + (‖xi − ξ‖+ ‖xi − xi−1‖)p

)
,

as a consequence

‖xi+1 − xi‖ ≤ 2C (‖xi − ξ‖+ ‖xi − xi−1‖)p ,

and since xi → ξ, there exists a positive constant c such that

‖xi+1 − xi‖ ≤ 2cC ‖xi − xi−1‖p = K ‖xi − xi−1‖p .

From the previous proposition the following theorem is obtained:

Theorem 1.2.6. Let Φ : Rn → R
n be an iteration function that defines a sequence {xi}i≥1 such that

xi → ξ ∈Rn. So, if Φ has an order of convergence of order (at least) p in B(ξ;δ), there exists a value m ∈N
such that for all subsequence {xi}i≥m ∈ B(ξ;1/2) that fulfills the following condition

‖xi+2 − xi+1‖ ≤ K ‖xi+1 − xi‖p , ∀i ≥m,

there exist δK = δK (C) > 0 and a sequence of values Pi given by the following expression

Pi :=
log(‖xi − xi−1‖)

log(‖xi−1 − xi−2‖)
, (1.33)

such that {Pi}i≥m+2 ∈ B(p;δK ).

Proof. Considering that Φ defines a sequence {xi}i≥1 and that it has an order of convergence of order
(at least) p, from the Proposition 1.2.5 it is possible to obtain the following inequality

log(‖xi+2 − xi+1‖)− p log(‖xi+1 − xi‖) ≤ log(K),
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assuming that there exists a subsequence {xi}i≥m ∈ B(ξ;1/2), then log(‖xi+1 − xi‖) < 0 ∀i ≥ m. So,
if the subsequence {xi}i≥m fulfills the above inequality

log(K)
log(‖xi+1 − xi‖)

≤
log(‖xi+2 − xi+1‖)
log(‖xi+1 − xi‖)

− p,

then considering that x ≤ |x| ∀x ∈R, there exists a positive constant c such that

log(K)
log(‖xi+1 − xi‖)

≤
∣∣∣∣∣ log(‖xi+2 − xi+1‖)

log(‖xi+1 − xi‖)
− p

∣∣∣∣∣ ≤ c ∣∣∣∣∣ log(K)
log(‖xi+1 − xi‖)

∣∣∣∣∣ ,
and since K = K(C), there exists a positive value δK = δK (C) such that the sequence {Pi}i≥m+2 ∈

B(p;δK ).

From the previous theorem the following corollary is obtained:

Corollary 1.2.7. Let Φ : Rn→ R
n be an iteration function that defines a sequence {xi}i≥1 such that xi →

ξ ∈ Rn. So, if Φ has an order of convergence of order (at least) p in B(ξ;1/2), for some m ∈N there exists
a sequence {Pi}i≥m ∈ B(p;δK ) that fulfills the following condition

lim
i→∞

Pi → p,

and therefore, there exists at least one value k ≥m such that

|Pk − p| ≤ ε. (1.34)

The previous corollary allows estimating numerically the order of convergence of an iteration
function Φ that generates at least one convergent sequence {xi}i≥1. On the other hand, the follow-
ing corollary allows characterizing the order of convergence of an iteration function Φ through its
Jacobian matrix Φ (1) [17]:

Corollary 1.2.8. Let Φ : Rn → R
n be an iteration function. If Φ defines a sequence {xi}i≥1 such that

xi → ξ ∈Rn. So, Φ has an order of convergence of order (at least) p in B(ξ;δ), where it is fulfilled that:

p :=


1, if lim

x→ξ

∥∥∥Φ (1)(x)
∥∥∥ , 0

2, if lim
x→ξ

∥∥∥Φ (1)(x)
∥∥∥ = 0

. (1.35)

1.3 Radial Basis Functions

Radial Basis Functions (RBFs) represent a crucial methodology in various fields of mathematics and
computational science. They originated from the need to address problems of multivariate interpo-
lation and partial differential equations (PDEs) in contexts where scattered data points are randomly
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distributed, such as in cartography. The pioneering contribution of Hardy [19] marked the beginning
of a research area that has significantly evolved in the past decades.

The term “Radial Basis Functions” was first coined by Kansa in the 1990s, but its development
traces back to earlier works. In the 1970s, Micchelli, Powell, and other researchers explored the
nonsingularity theorem, laying the foundation for the applicability of RBFs in solving PDEs [20,
21]. These early advancements highlighted the RBFs’ ability to handle scattered nodes and provide
a robust basis for numerical problem solving. However, it was Kansa who proposed considering
analytical derivatives of RBFs, paving the way for the development of numerical schemes in solving
PDEs [22,23]. These methods have proven particularly valuable in higher-dimensional and irregular
domains, opening the door to accurate numerical solutions in challenging scenarios.

The power of RBFs lies in their ability to achieve accurate interpolation and approximation in
cases where traditional grids and structured approaches are not feasible. RBFs offer a unique flexi-
bility in the choice of functions, allowing them to adapt to a variety of problems and applications.
The continuous development and refinement of RBFs promise to continue driving the efficiency and
accuracy of numerical methods across various scientific and engineering fields.

RBFs have found applications in a variety of fields, from physics and engineering to complex
systems modeling. For instance, in computational physics, RBFs are used to solve partial differential
equations that describe natural phenomena, such as fluid flow and wave propagation. In the realm
of engineering, RBFs are valuable tools for the design and analysis of structures, enabling the simu-
lation of complex behaviors with high precision. Furthermore, in data science and machine learning,
RBFs are employed in tasks such as data interpolation, approximation, and pattern detection in mul-
tidimensional datasets.

1.3.1 Examples of Radial Basis Functions

Before continuing, it is necessary to provide the following definition [24]:

Definition 1.3.1. Let Φ : Rd → R be a function. Then, Φ is called radial if there exists a function
φ : R≥0→R such that

Φ(x) = φ(|x|),

where | · | : Rd →R denotes any vector norm (generally the Euclidean norm).

Given a radial function φ(r), where r represents the distance from a reference point, an RBF in
an n-dimensional space can be defined as:

Φ(x) = φ(|x − c0|), (1.36)

where x = (x1,x2, . . . ,xn) is the point in the n-dimensional space, and c0 is the center of the radial
function. These functions are characterized by their radial symmetry property, meaning their value
depends solely on the distance to the center c0.

Within Radial Basis Functions, various types of radial functions have been proposed and used for
different applications. Some of these types include:

1. Polyharmonic Splines: These are radial functions that use the distance to the center raised to
fractional powers. These functions can have a broader local influence and allow for smooth
interpolation. An example of a polyharmonic spline function is:
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φ(r) = rk log(r), (1.37)

where k is the parameter that influences the shape of the function.

2. Multiquadric Functions: These functions use the distance to the center squared and then
added to a constant. They have a broader global reach and are useful for capturing the influence
of distant points. An example of a multiquadric function is:

φ(r) =
√
r2 + c2, c , 0, (1.38)

where c is the shape parameter.

3. Inverse Multiquadric Functions: Similar to multiquadric functions, but in this case, the in-
verse of the distance to the center plus a constant is used. These functions can have an even
more localized influence than polyharmonic splines. An example of an inverse multiquadric
function is:

φ(r) =
1

√
r2 + c2

, c , 0, (1.39)

where c is the shape parameter.

4. Gaussian Functions: Modeled after the Gaussian distribution, these functions have a strong
influence on points near the center and decrease rapidly as they move away. An example of a
Gaussian function is:

φ(r) = e−cr
2
, c > 0, (1.40)

where c is the shape parameter.

It is necessary to mention that matrices resulting from methods involving Radial Basis Functions
often can be dense and suffer from ill-conditioning, which can lead to numerical issues during imple-
mentation. Additionally, some RBFs have a shape parameter that significantly impacts the accuracy
of numerical results. This shape parameter determines how the radial function fades with distance,
which in turn influences the interpolation and approximation process.

To address this challenge and improve the conditioning of interpolation matrices, alternative
algorithms have been developed. An example is the Contour-Padé method, proposed by Fornberg
and Wright [25], which generates better-conditioned interpolants, even as the shape parameter tends
to zero. Another approach is the RBF-QR method, introduced by Fornberg and Piret [26], which
uses QR matrix decomposition to transform function bases that are very similar or nearly linearly
dependent into well-conditioned bases.
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Chapter 2

(One-Dimensional) Fractional
Newton-Raphson Method

Part of the content of this chapter was published in the journal Applied Mathematics and Sciences:
An International Journal (MathSJ) [27].

The Newton-Raphson (N-R) method is useful to find the roots of a polynomial of degree n, with
n ∈N. However, this method is limited since it diverges for the case in which polynomials only have
complex roots if a real initial condition is taken. In the present work, we explain an iterative method
that is created using the fractional calculus, which we will call the Fractional Newton-Raphson (F N-
R) Method, which has the ability to enter the space of complex numbers given a real initial condition,
which allows us to find both the real and complex roots of a polynomial unlike the classical Newton-
Raphson method.

Keywords: Newton-Raphson Method, Fractional Calculus, Fractional Derivative.

2.1 (One-Dimensional) Newton-Raphson Method

Let Φ : Rn → R
n be a function. It is possible to build a sequence {xi}∞i=0 by defining the following

iterative method

xi+1 := Φ(xi), (2.1)

if it fulfills that xi → ξ ∈Rn and if the function Φ is continuous around ξ, we obtain that

ξ = lim
i→∞

xi+1 = lim
i→∞

Φ(xi) = Φ
(

lim
i→∞

xi

)
= Φ(ξ), (2.2)

the above result is the reason by which the method (2.1) is known as the fixed-point method.
Moreover, the function Φ is called an iteration function. To understand the nature of the conver-
gence of the iteration function Φ , the following definition is necessary [15]:

Definition 2.1.1. Let Φ : R → R be an iteration function. The method (2.1) for determining ξ ∈ R is
called (locally) convergent, if there exists δ > 0 such that for every initial value

x0 ∈ B(ξ;δ) :=
{
y ∈R :

∣∣∣y − ξ∣∣∣ < δ} ,
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it holds that

lim
i→∞
|xi − ξ | → 0 ⇒ lim

i→∞
xi = ξ. (2.3)

For the one-dimensional case, the N-R method is one of the most used method to find the roots
ξ of a function f : Ω ⊂ R→ R, that is, {ξ ∈Ω : f (ξ) = 0}, due to its easy implementation and rapid
convergence, the N-R method is expressed in terms of an iteration function Φ : R→ R, as follows
[15]:

xi+1 := Φ(xi) = xi −
(
f (1)(xi)

)−1
f (xi), i = 0,1,2, · · · . (2.4)

The N-R method is based on creating a sequence {xi}∞i=0 by means of the intersection of the tangent
line of the function f (x) at the xi point with the x axis, if the initial condition x0 is close enough to
the root ξ then the sequence {xi}∞i=0 should be convergent to the root ξ [18].

Figure 2.1: Illustration of the Newton-Raphson method.

For the following results in this section, it is necessary to mention that although the absolute
value is used, these are also valid for the case of n dimensions [10, 16, 18, 28], in that case, it is
necessary to substitute the absolute value for some norm, that is, | · | → ‖ · ‖ . Before continuing it is
necessary to consider the following definition [15]:

Definition 2.1.2. Let Φ :Ω ⊂ R→ R be an iteration function with a fixed point ξ ∈Ω. Then the method
(2.1) is called (locally) convergent of (at least) order p (p ≥ 1), if there are exists δ > 0 and C a non-
negative constant, with C < 1 if p = 1, such that for any initial value x0 ∈ B(ξ;δ) it holds that

|xi+1 − ξ | ≤ C |xi − ξ |p , i = 0,1,2, · · · , (2.5)

where C is called convergence factor.
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The order of convergence is usually related to the speed at which the sequence generated by (2.1)
converges. For the particular case p = 1 it is said that the method (2.1) has an order of convergence
(at least) linear, and for the case p = 2 it is said that the method (2.1) has an order of convergence
(at least) quadratic. The following theorem, allows characterizing the order of convergence of an
iteration function Φ with its derivatives [15, 18] :

Theorem 2.1.3. Let Φ : Ω ⊂ R→ R be an iteration function with a fixed point ξ ∈Ω. Assuming that Φ
is p-times differentiable in ξ for some p ∈N, and moreover

∣∣∣Φ (k)(ξ)
∣∣∣ = 0, ∀k < p, if p ≥ 2∣∣∣Φ (1)(ξ)

∣∣∣ < 1, if p = 1
, (2.6)

then Φ is (locally) convergent of (at least) order p.

Proof. Let Φ : R→ R be an iteration function, and using the Taylor series expansion of Φ , we obtain
two cases:

i) Case p ≥ 2 :

Φ(xi) = Φ(ξ) +
p∑
k=1

Φ (k)(ξ)
k!

(xi − ξ)k + o ((xi − ξ)p) ,

then

|Φ(xi)−Φ(ξ)| ≤
p∑
k=1

∣∣∣Φ (k)(ξ)
∣∣∣

k!
|xi − ξ |k + o (|xi − ξ |p) ,

assuming that ξ is a fixed point of Φ and that
∣∣∣Φ (k)(ξ)

∣∣∣ = 0 ∀k < p is fulfilled, the previous
expression implies that

|Φ(xi)−Φ(ξ)|
|xi − ξ |p

=
|xi+1 − ξ |
|xi − ξ |p

≤

∣∣∣Φ (p)(ξ)
∣∣∣

p!
+
o (|xi − ξ |p)
|xi − ξ |p

,

therefore

lim
i→∞

|xi+1 − ξ |
|xi − ξ |p

≤

∣∣∣Φ (p)(ξ)
∣∣∣

p!
,

as a consequence, if the sequence {xi}∞i=0 generated by (2.1) converges to ξ, there exists a value
k > 0 such that

|xi+1 − ξ | ≤

∣∣∣Φ (p)(ξ)
∣∣∣

p!
|xi − ξ |p , ∀i ≥ k,

then Φ is (locally) convergent of (at least) order p.
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ii) Case p = 1 :

Φ(xi) = Φ(ξ) +Φ (1)(ξ)(xi − ξ) + o ((xi − ξ)) ,

then

|Φ(xi)−Φ(ξ)| ≤
∣∣∣Φ (1)(ξ)

∣∣∣ |xi − ξ |+ o (|xi − ξ |) ,

assuming that ξ is a fixed point of Φ , the previous expression implies that

|Φ(xi)−Φ(ξ)|
|xi − ξ |

=
|xi+1 − ξ |
|xi − ξ |

≤
∣∣∣Φ (1)(ξ)

∣∣∣+
o (|xi − ξ |)
|xi − ξ |

,

therefore

lim
i→∞

|xi+1 − ξ |
|xi − ξ |

≤
∣∣∣Φ (1)(ξ)

∣∣∣ ,
as a consequence, if the sequence {xi}∞i=0 generated by (2.1) converges to ξ, there exists a value
k > 0 such that

|xi+1 − ξ | ≤
∣∣∣Φ (1)(ξ)

∣∣∣ |xi − ξ | , ∀i ≥ k,
then considering m ≥ 1

|xi+m − ξ | ≤
∣∣∣Φ (1)(ξ)

∣∣∣ |xi+m−1 − ξ | ≤
∣∣∣Φ (1)(ξ)

∣∣∣2 |xi+m−2 − ξ | ≤ · · · ≤
∣∣∣Φ (1)(ξ)

∣∣∣m |xi − ξ | ,
and assuming that

∣∣∣Φ (1)(ξ)
∣∣∣ < 1 is fulfilled

lim
m→∞

|xi+m − ξ | ≤ lim
m→∞

∣∣∣Φ (1)(ξ)
∣∣∣m |xi − ξ | → 0,

then Φ is (locally) convergent of order (at least) linear.

The N-R method is characterized by having an order of convergence at least quadratic for the
case where f (1)(ξ) , 0, but if to the previous case it is added that f (2)(ξ) = 0, then the N-R method
presents an order of convergence at least cubic. On other hand, for the case where the function f has
a root ξ with a certain algebraic multiplicity m ≥ 2, that is,

f (x) = (x − ξ)mg(x), g(ξ) , 0,

the N-R method presents an order of convergence at least linear [15]. The aforementioned may
be formalized by the following proposition:
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Proposition 2.1.4. Let f : Ω ⊂ R→ R be a function with a zero ξ ∈Ω. Then the iteration function Φ of
the N-R method, given by (2.4), fulfills the following condition:

|xi+1 − ξ | ≤

∣∣∣Φ (p)(ξ)
∣∣∣

p!
|xi − ξ |p , (2.7)

where

p =


1, if f (x) = (x − ξ)mg(x)

2, if f (1)(ξ) , 0, and f (x) , (x − ξ)mg(x)

3, if f (1)(ξ) , 0, f (2)(ξ) = 0, and f (x) , (x − ξ)mg(x)

, (2.8)

with g(ξ) , 0 and m ≥ 2.

Proof. Considering that the form of the function f is not explicitly determined, it is possible to
consider two possibilities:

i) Assuming the function may be written as f (x) = (x − ξ)mg(x) with g(ξ) , 0 and m ≥ 2, then

f (1)(x) = (x − ξ)m−1
[
(x − ξ)g(1)(x) +mg(x)

]
,

as a consequence, the iteration function of N-R method takes the following form

Φ(x) = x − (x − ξ)h(x)g(x),

with

h(x) =
[
(x − ξ)g(1)(x) +mg(x)

]−1
,

then

Φ (1)(x) = 1− h(x)
[
(x − ξ)g(1)(x) + g(x)

]
− (x − ξ)h(1)(x)g(x),

where

h(1)(x) = −
[
(x − ξ)g(1)(x) +mg(x)

]−2 [
(1 +m)g(1)(x) + (x − ξ)g(2)(x)

]
,

therefore

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = |1− h(ξ)g(ξ)| =

∣∣∣∣∣1− 1
m

∣∣∣∣∣ < 1, (2.9)

and from the Theorem 2.1.3, the N-R method has an order of convergence at least linear, that
is, the N-R method fulfills the equation (2.7) with p = 1.
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ii) Assuming that f (x) , (x − ξ)mg(x) with g(ξ) , 0 and m ≥ 2, the first derivative of the iteration
function of N-R method takes the following form

Φ (1)(x) =
(
f (1)(x)

)−2
f (x)f (2)(x),

and if it fulfills that f (1)(ξ) , 0, then

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = 0, (2.10)

and from the Theorem 2.1.3, the N-R method has an order of convergence at least quadratic,
that is, the N-R method fulfills the equation (2.7) with p = 2. On other hand, the second
derivative of the iteration function of N-R method takes the following form

Φ (2)(x) =
(
f (1)(x)

)−1
f (2)(x) + f (x)

[(
f (1)(x)

)−2
f (3)(x)− 2

(
f (1)(x)

)−3 (
f (2)(x)

)2
]
,

and if it fulfills that f (1)(ξ) , 0 and f (2)(ξ) = 0, then

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = lim

x→ξ

∣∣∣Φ (2)(x)
∣∣∣ = 0, (2.11)

and from the Theorem 2.1.3, the N-R method has an order of convergence at least cubic, that
is, the N-R method fulfills the equation (2.7) with p = 3.

The previous proposition, illustrates two important points that are worth mentioning when using
the N-R method to find the zeros of a function f :

i) When it is not evident, unless it is explicitly specified that the function f has no roots of al-
gebraic multiplicity m ≥ 2, technically there exists the possibility that the N-R method has an
order of convergence at least linear, that is, the N-R method may fulfill the equation (2.7) with
p ≥ 1.

ii) Due that the N-R method is a local iterative method, even if it proves that for a root ξ ∈ Ω
the method has an order of convergence at least linear, this does not rule out that for the same
function f it may present a higher order of convergence over the same regionΩ. As an example
of the above, we may consider the following function

f (x) = (x − η)(x − ξ)mg(x), g(η) , g(ξ) , 0,

with η,ξ ∈Ω,
∣∣∣η − ξ∣∣∣ < ε, and m ≥ 2.
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The previous points are important, because when the N-R method is implemented in a function
f , the zeros of the function are assumed to be unknown, and their algebraic multiplicities m ≥ 2,
in case they exist, are also unknown. With the above in mind, the following corollary is obtained,
which is derived from the Theorem 2.1.3:

Corollary 2.1.5. Let Φ : R→R be an iteration function. If Φ defines a sequence {xi}∞i=0 such that xi → ξ,
and if the following condition is fulfilled

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ , 0, (2.12)

then Φ has an order of convergence (at least) linear in B(ξ;δ).

2.2 (One-Dimensional) Fractional Newton-Raphson Method

Let Pn(R) be the space of polynomials of degree less than or equal to n ∈ N with real coefficients.
The N-R method is useful for finding the roots of a function f ∈ Pn(R). However, this method
is limited because it cannot find roots ξ ∈ C \R, if the sequence {xi}∞i=0 generated by (2.4) has an
initial condition x0 ∈ R. To solve this problem and develop a method that has the ability to find
roots, both real and complex, of a polynomial if the initial condition x0 is real, we propose a new
method, which consists of the Newton-Raphson method with the implementation of the fractional
derivatives. Before continuing, it is necessary to define the following notation

f (α)(x) :=
dα

dxα
f (x), (2.13)

where the operator dα/dxα denotes any fractional derivative applied on the variable x, that fulfills
the following condition of continuity respect to the order of the derivative

lim
α→1

f (α)(x) = f (1)(x). (2.14)

Considering a function Φ : (R \Z) ×C→ C. Then, using as a basis the idea of the N-R method
(2.4), and considering any fractional derivative that fulfills the condition (2.14), we can define the
Fractional Newton-Raphson method as follows (for the case in n dimensions consult the reference
[28]):

xi+1 := Φ (α,xi) = xi −
(
f (α)(xi)

)−1
f (xi), i = 0,1,2, · · · . (2.15)

For the above expression to make sense, due to the part of the integral operator that fractional
derivatives usually have, and that the F N-R method can be used in a wide variety of functions [28],
we consider in the expression (2.15) that the fractional derivative is obtained for a real variable x,
and if the result allows it, this variable is subsequently substituted by a complex variable xi , that is,

f (α)(xi) := f (α)(x)
∣∣∣∣∣
x−→xi

, x ∈R, xi ∈C. (2.16)
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It should be mentioned that in general, in the F N-R method
∣∣∣Φ (1)(α,ξ)

∣∣∣ , 0 if f (ξ) = 0, and from
the Corollary 2.1.5, the Proposition 2.1.4 and the condition (2.14), any sequence {xi}∞i=0 generated
by the iterative method (2.15) has an order of convergence at least linear, that is, the F N-R method
may fulfill the equation (2.7) with p ≥ 1, which becomes more evident when considering α ∈ [1 −
ε,1 + ε] \ {1}.

To understand why the F N-R method, if f ∈ Pn(R), has the ability to enter the complex space
using a real initial condition unlike the classical N-R method, it is enough to observe the R-L frac-
tional derivative (1.14), with α = 1/2, of the constant function f0(x) = x0 and the identity function
f1(x) = x1:

0D
1/2
x f0(x) =

Γ (1)
Γ (1/2)

x−1/2, 0D
1/2
x f1(x) =

Γ (2)
Γ (3/2)

x1/2.

Figure 2.2: The R-L fractional derivatives of f0(x) and f1(x), with α ∈ [0,1].
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For polynomials of degree n ≥ 1, in the F N-R method the initial condition x0 must be taken
different to zero, as a consequence of the R-L fractional derivative of order α, with α < Z, of the
constants are proportional to the function x−α. When using the F N-R method, with the R-L fractional
derivative, on a function f ∈ Pn(R), presents among its behaviors, the following particular cases
depending on the initial condition x0:

i) If we take an initial condition x0 > 0, the sequence {xi}∞i=0 may be divided into three parts,
this occurs because it may exists a value M ∈ N for which {xi}M−1

i=0 ⊂ R>0 with {xM} ⊂ R<0, in
consequence {xi}i≥M+1 ⊂C.

ii) On the other hand, if we take an initial condition x0 < 0, the sequence {xi}∞i=0 may be divided
into two parts, {x0} ⊂R<0 and {xi}i≥1 ⊂C.

2.2.1 Advantages of the Fractional Newton-Raphson Method

One of the main advantages of the F N-R method is that the initial condition x0 can be left fixed,
and so vary the order α of the derivative to obtain both real and complex roots of a polynomial. Due
that the order α of the derivative is varied, different values of α can throw the same root but with a
different number of iteration, so to optimize the method, it is possible to implement a filter in which
once we have obtained the roots, only those whose orders of the derivatives have generated a smaller
number of iterations are extracted.

Figure 2.3: Illustration of some lines generated by the fractional Newton-Raphson method for the
same initial condition x0 but with different orders α of the fractional operator implemented [27].
The fractional Newton-Raphson method usually generates lines that are not tangent to the function
f whose zeros are sought, unlike the classical Newton-Raphson method.

Another advantage is a consequence that the method provides complex roots, so once a root is
obtained it is enough to obtain its conjugate complex to obtain another root, in essence, it could be
considered that they extract two roots with the same order of the derivative and the same number of
iterations. The method does not guarantee that all roots of the polynomial are found by leaving an
initial condition fixed and by varying the orders α of the derivative, as in the classical N-R method,
finding the roots will depend on giving an appropriate initial condition.
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a) α = −0.77 b) α = −0.32

c) α = 0.19 d) α = 1.87

Figure 2.4: Illustrations of some trajectories generated by the fractional Newton-Raphson method
for the same initial condition x0 but with different orders α of the fractional operator used [27].

2.2.2 Results of the Fractional Newton-Raphson Method

The following examples are solved using the R-L fractional derivative (1.14). Instructions for imple-
menting the F N-R method, along with information to provide values α ∈ [0.7,1.3] \ {1} are found in
the reference [28]. For rounding reasons, for the examples the following function is defined

Rndm(x) :=

 Re(x), if |Im(x)| ≤ 10−m

x, if |Im(x)| > 10−m
. (2.17)

Combining the function (2.17) with the method (2.15), the following iterative method is defined

xi+1 := Rnd5 (Φ(α,xi)) , i = 0,1,2 · · · . (2.18)
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Example 1. Let f be a function, with

f (x) =− 64.23x14 − 72.74x13 − 61.66x12 + 32.26x11

+ 32.3x10 − 41.37x9 + 20.18x8 + 4.32x7

− 5.67x6 + 17.41x5 − 78.6x4 − 48.27x3

− 19.31x2 + 77.92x − 45.03.

Then the initial condition x0 = 0.68 is chosen to use the iterative method given by (2.18). Consequently,
we obtain the results of the Table 2.1.

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.97399 0.89785306 - 0.29205148i 1.65245E-06 9.65908E-05 17
2 0.97455 0.53497472 - 0.82703363i 6.75426E-07 7.71022E-05 19
3 0.97631 -0.07482893 - 1.0188353i 2.60768E-07 3.30325E-05 17
4 0.98539 -0.6673652 - 1.16572645i 1.06301E-07 3.96105E-05 26
5 0.99275 -0.67766753 - 0.66659064i 1.34536E-07 6.10746E-06 18
6 1.00575 -0.07482895 + 1.01883532i 3.83275E-07 1.21870E-05 22
7 1.00623 -0.6673652 + 1.16572646i 1.66433E-07 5.94548E-05 32
8 1.00635 -0.67766754 + 0.66659064i 1.50333E-07 2.08269E-06 19
9 1.00643 0.53497473 + 0.82703358i 1.70294E-07 9.71477E-06 21

10 1.03515 -1.09479584 - 0.25179059i 1.44222E-07 5.21878E-05 26
11 1.15163 -1.09479581 + 0.25179059i 6.08276E-08 9.98791E-05 25
12 1.15715 0.51558361 - 0.33422342i 1.03121E-06 5.06052E-05 15
13 1.16239 0.51558364 + 0.33422325i 1.37117E-06 6.92931E-05 14
14 1.16731 0.89785308 + 0.29205152i 1.70880E-07 9.00285E-05 18

Table 2.1: Results obtained using the iterative method (2.18).

Example 2. Let f be a function, with

f (x) =− 96.98x15 − 96.82x14 − 3.87x13 + 25.78x12

+ 90.68x11 + 48.05x10 + 50.54x9 − 5.16x8

+ 47.01x7 + 90.23x6 + 87.09x5 + 53.09x4

+ 15.38x3 + 97.98x2 − 61.98x+ 14.69.

Then the initial condition x0 = 0.15 is chosen to use the iterative method given by (2.18). Consequently,
we obtain the results of the Table 2.2.

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.88451 0.7739975 - 0.54762173i 1.17047E-07 5.48998E-05 28
2 0.90499 -0.82526288 + 0.64969528i 1.14018E-07 7.66665E-05 24
3 0.90731 0.03271742 + 1.02608471i 1.14018E-07 4.71095E-05 19
4 0.90863 -0.48361539 + 0.928383i 1.16619E-07 6.49343E-05 28
5 0.90923 0.03271738 - 1.02608473i 1.30384E-07 5.48149E-05 22
6 0.93627 0.28667103 + 0.19437684i 4.73466E-06 3.81068E-05 12
7 0.94059 0.30392964 + 0.77330882i 9.96092E-07 6.75516E-05 16
8 0.94155 0.77399751 + 0.54762167i 1.14018E-07 3.18386E-05 14
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9 0.95179 0.2866711 - 0.19437464i 1.46720E-05 9.07085E-05 9
10 0.95499 -1.16959779 + 0.06354745i 1.01980E-07 1.49833E-05 15
11 0.99283 1.16397068 1.90000E-07 6.26264E-05 6
12 1.04799 -0.48361536 - 0.92838301i 2.15407E-07 7.67702E-05 31
13 1.05463 0.30392985 - 0.77330891i 7.60000E-07 5.64786E-05 18
14 1.06431 -1.16959776 - 0.06354748i 2.00998E-07 6.59751E-05 14
15 1.06455 -0.82526289 - 0.64969531i 4.12311E-08 2.72233E-05 21

Table 2.2: Results obtained using the iterative method (2.18).

Example 3. Let f be a function, with

f (x) =− 57.62x16 − 56.69x15 − 37.39x14 − 19.91x13 + 35.8312

− 72.4711 + 44.41x10 + 43.53x9 + 59.93x8

− 42.9x7 − 54.24x6 + 72.12x5 − 22.92x4

+ 56.39x3 + 15.8x2 + 60.05x+ 55.31.

Then the initial condition x0 = 0.83 is chosen to use the iterative method given by (2.18). Consequently,
we obtain the results of the Table 2.3.

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.81691 0.8812118 - 0.42696217i 1.08167E-07 8.16395E-05 49
2 0.83851 1.03423973 6.00000E-08 7.69988E-05 56
3 0.97383 -1.0013396 6.37436E-05 6.64131E-05 7
4 0.99055 -0.35983764 + 1.18135267i 6.70820E-08 2.53547E-05 21
5 0.99059 -0.70050491 + 0.78577099i 1.70294E-07 9.13799E-06 17
6 0.99219 -0.70050494 - 0.78577099i 1.18229E-06 5.28258E-05 7
7 0.99283 0.36452491 - 0.83287828i 3.63610E-06 4.30167E-05 17
8 0.99347 -0.28661378 - 0.8084062i 1.38226E-05 9.04752E-05 8
9 0.99427 -0.35983765 - 1.18135267i 1.26491E-07 4.09162E-05 16

10 0.99539 -1.3699527 2.30000E-07 7.02720E-05 14
11 1.12775 -0.62435238 1.25000E-06 6.46233E-05 4
12 1.16423 0.58999229 - 0.86699687i 7.07107E-08 7.38972E-05 25
13 1.16595 0.36452487 + 0.83287805i 3.06105E-07 9.42729E-05 15
14 1.16607 0.58999222 + 0.86699689i 5.00000E-08 5.09054E-05 18
15 1.16647 0.88121183 + 0.42696223i 4.12311E-08 5.37070E-05 39
16 1.20923 -0.28661363 + 0.8084063i 1.94165E-07 5.02799E-05 16

Table 2.3: Results obtained using the iterative method (2.18).

Example 4. Let f be a function, with

f (x) =sin(x)− x
50
,

and assuming that

f (α)(x) ≈ 0D
α
x

 50∑
k=0

(−1)k

Γ (2k + 2)
x2k+1 − x

50

 .
30



Then the initial condition x0 = 1.27 is chosen to use the iterative method given by (2.18). Consequently,
we obtain the results of the Table 2.4.

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.94227 3.07995452 8.41000E-06 2.07258E-08 6
2 0.96327 -33.81479691 6.34000E-06 2.09752E-07 12
3 0.96352 -32.11337988 6.26000E-06 2.12854E-07 11
4 0.96378 -27.68747328 6.85000E-06 1.66654E-07 11
5 0.96433 -25.67192859 8.22000E-06 2.42883E-07 10
6 0.96472 -21.54564423 9.87000E-06 1.68227E-07 10
7 0.96531 -19.24464801 9.97000E-06 2.24310E-07 10
8 0.96643 -15.39497861 9.28000E-06 9.12247E-08 9
9 0.97064 -9.23893132 9.97000E-06 3.50056E-08 8

10 0.97829 -6.41177493 8.59000E-06 3.92845E-08 6
11 1.05026 -3.07995462 8.44000E-06 8.10843E-08 2
12 1.08752 0.0000102 6.95000E-06 9.99600E-06 14
13 1.16342 -12.82578588 7.44000E-06 2.91050E-07 8
14 1.23044 38.58047692 8.29000E-06 1.61756E-06 8
15 1.23297 33.81479547 4.70000E-06 8.79795E-07 6
16 1.23412 32.11337776 7.20000E-06 1.36969E-06 9
17 1.23728 27.6874726 5.66000E-06 7.46478E-07 5
18 1.24368 25.67192621 7.27000E-06 1.75186E-06 7
19 1.24500 21.54564384 6.34000E-06 5.27961E-07 5
20 1.24978 19.24464986 9.27000E-06 1.89479E-06 6
21 1.25961 15.394979 9.08000E-06 2.87629E-07 3
22 1.26676 6.41177455 2.66000E-06 3.29978E-07 6
23 1.26837 12.82578672 2.84000E-06 5.04044E-07 5
24 1.29773 9.23893132 1.04000E-06 3.50056E-08 3

Table 2.4: Results obtained using the iterative method (2.18).

2.3 Conclusions

The F N-R method is very efficient to find roots of polynomials since it does not present the diver-
gence problems, like the classical N-R method, for a polynomial with only complex roots when using
real initial conditions. However, the really interesting thing is that this method opens up the possi-
bility of creating new fractional iterative methods in one dimension [29–32] or in multiple dimen-
sions [11,28], as well as opens the possibility of creating new hybrid iterative methods by combining
the F N-R method with existing iterative methods [15, 18]. So in this work it has been given one
more application to fractional calculus and has opened the possibility of extending the capacity of
the iterative methods that allow us to find zeros of functions more general than polynomials [10,28].
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Chapter 3

(Multidimensional) Fractional
Newton-Raphson Method Accelerated with
Aitken’s Method

Part of the content of this chapter was published in the journal Axioms [17].
In the following paper, we present a way to accelerate the speed of convergence of the fractional

Newton-Raphson (F N-R) method, which seems to have an order of convergence at least linearly for
the case in which the order α of the derivative is different from one. A simplified way of constructing
the Riemann-Liouville (R-L) fractional operators, fractional integral and fractional derivative, is pre-
sented along with examples of its application on different functions. Furthermore, an introduction to
the Aitken’s method is made and it is explained why it has the ability to accelerate the convergence
of the iterative methods, to finally present the results that were obtained when implementing the
Aitken’s method in the F N-R method, where it is shown that F N-R with Aitken’s method converges
faster than the simple F N-R.

Keywords: Newton-Raphson Method, Fractional Calculus, Fractional Derivative, Aitken’s Method.

3.1 (Multidimensional) Newton-Raphson Method

We begin this section by considering the following proposition [10, 28]:

Proposition 3.1.1. Let f : Ω ⊂ R
n→ R

n be a function with a value ξ ∈Ω such that ‖f (ξ)‖ = 0, and let
Φ : Rn→R

n be an iteration function as follows

Φ(x) = x −A(x)f (x), (3.1)

with A(x) a matrix. If the following condition it is fulfills

lim
x→ξ

A(x) =
(
f (1)(ξ)

)−1
, (3.2)

where f (1) denotes the Jacobian matrix of the function f , which is defined as follows [33]

f (1)(x) :=
(
[f ](1)

jk (x)
)

=
(
∂k[f ]j(x)

)
, (3.3)
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where

[f ](1)
jk (x) = ∂k[f ]j(x) :=

∂
∂[x]k

[f ]j(x), 1 ≤ j,k ≤ n,

then the iteration function Φ , fulfills a necessary (but not sufficient) condition to be (locally) convergent
of order (at least) quadratic in B(ξ;δ).

Proof. From the Theorem 1.2.3, we have that an iteration function has an order of convergence (at
least) quadratic if it fulfills the following condition

lim
x→ξ

∂[Φ]k(x)
∂[x]j

= 0, ∀j,k ≤ n,

which may be written equivalently as follows

lim
x→ξ

∥∥∥Φ (1)(x)
∥∥∥ = 0. (3.4)

Then, we may assume that we have a function f (x) :Ω ⊂R
n→R

n with a zero ξ ∈Ω, such that all
of its first partial derivatives are defined in ξ, and taking the iteration function Φ given by (3.1), the
k-th component of the iteration function may be written as

[Φ]k(x) = [x]k −
n∑
j=1

[A]kj(x)[f ]j(x),

then

∂l[Φ]k(x) =δlk −
n∑
j=1

(
[A]kj(x)∂l[f ]j(x) +

(
∂l[A]kj(x)

)
[f ]j(x)

)
=δkl −

n∑
j=1

(
[A]kj(x)[f ](1)

jl (x) +
(
∂l[A]kj(x)

)
[f ]j(x)

)
,

where δkl is the Kronecker delta, which is defined as

δkl = δlk =
{

1, si l = k
0, si l , k

.

Assuming that condition (3.4) it is fulfills

∂l[Φ]k(ξ) = δkl −
n∑
j=1

[A]kj(ξ)[f ](1)
jl (ξ) = 0 ⇒

n∑
j=1

[A]kj(ξ)[f ](1)
jl (ξ) = δkl , ∀l,k ≤ n,
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then the above expression may be written in matrix form as follows

A(ξ)f (1)(ξ) = In ⇒ A(ξ) =
(
f (1)(ξ)

)−1
,

where In denotes the identity matrix of n × n. Then any matrix A(x) that fulfills the following
condition

lim
x→ξ

A(x) =
(
f (1)(ξ)

)−1
,

guarantees that exists δ > 0, such that iteration function Φ given by (3.1), fulfills a necessary (but
not sufficient) condition to be (locally) convergent of order (at least) quadratic in B(ξ;δ).

The following fixed-point method may be obtained from the previous proposition

xi+1 := Φ(xi) = xi −
(
f (1)(xi)

)−1
f (xi), i = 0,1,2, · · · , (3.5)

which is known as Newton-Raphson method, also known as Newton’s method [34]. Given the
condition (3.2), it could be wrongly considered that the Newton-Raphson method always has an
order of convergence (at least) quadratic, but as mentioned in the Proposition 3.1.1, the form of the
iteration function (3.5) is not sufficient to guarantee this order of convergence. This occurs because
even if the condition (3.2) it is fulfills, the order of convergence becomes conditioned by the way in
which the function f is constituted, for example for the one variable case, if the function f has a root
ξ, with a certain algebraic multiplicity m ≥ 2, that is,

f (x) = (x − ξ)mg(x), g(ξ) , 0,

the Newton-Raphson method presents an order of convergence at least linear [15], the aforemen-
tioned may be observed in the following proposition:

Proposition 3.1.2. Let f : Ω ⊂ R→ R be a function with a zero ξ ∈Ω. Then the iteration function Φ of
the Newton-Raphson method, given by (3.5), fulfills the following condition:

|xi+1 − ξ | ≤

∣∣∣Φ (p)(ξ)
∣∣∣

p!
|xi − ξ |p , (3.6)

where

p =


1, if f (x) = (x − ξ)mg(x)

2, if f (1)(ξ) , 0, and f (x) , (x − ξ)mg(x)

3, if f (1)(ξ) , 0, f (2)(ξ) = 0, and f (x) , (x − ξ)mg(x)

4, if f (1)(ξ) , 0, f (2)(ξ) = 0, f (3)(ξ) = 0 and f (x) , (x − ξ)mg(x)

, (3.7)

with g(ξ) , 0 and m ≥ 2.
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Proof. Considering that the form of the function f is not explicitly determined, it is possible to
consider two possibilities:

i) Assuming the function may be written as f (x) = (x − ξ)mg(x) with g(ξ) , 0 and m ≥ 2, then

f (1)(x) = (x − ξ)m−1
[
(x − ξ)g(1)(x) +mg(x)

]
,

as a consequence, the iteration function of N-R method takes the following form

Φ(x) = x − (x − ξ)h(x)g(x),

with

h(x) =
[
(x − ξ)g(1)(x) +mg(x)

]−1
,

then

Φ (1)(x) = 1− h(x)
[
(x − ξ)g(1)(x) + g(x)

]
− (x − ξ)h(1)(x)g(x),

where

h(1)(x) = −
[
(x − ξ)g(1)(x) +mg(x)

]−2 [
(1 +m)g(1)(x) + (x − ξ)g(2)(x)

]
,

therefore

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = |1− h(ξ)g(ξ)| =

∣∣∣∣∣1− 1
m

∣∣∣∣∣ < 1, (3.8)

and from the Theorem 1.2.3, the Newton-Raphson method has an order of convergence at least
linear, that is, fulfills the equation (3.6) with p = 1.

ii) Assuming that f (x) , (x − ξ)mg(x) with g(ξ) , 0 and m ≥ 2, the first derivative of the iteration
function of Newton-Raphson method takes the following form

Φ (1)(x) = f (x)
[(
f (1)(x)

)−2
f (2)(x)

]
,

and if it is fulfills that f (1)(ξ) , 0, then
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lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = 0, (3.9)

and from the Theorem 1.2.3, the Newton-Raphson method has an order of convergence at least
quadratic, that is, fulfills the equation (3.6) with p = 2. On other hand, the second derivative of
the iteration function of Newton-Raphson method takes the following form

Φ (2)(x) =
(
f (1)(x)

)−1
f (2)(x) + f (x)

[(
f (1)(x)

)−2
f (3)(x)− 2

(
f (1)(x)

)−3 (
f (2)(x)

)2
]
,

and if it is fulfills that f (1)(ξ) , 0 and f (2)(ξ) = 0, then

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = lim

x→ξ

∣∣∣Φ (2)(x)
∣∣∣ = 0, (3.10)

and from the Theorem 1.2.3, the Newton-Raphson method has an order of convergence at least
cubic, that is, fulfills the equation (3.6) with p = 3. Finally, the third derivative of the iteration
function of the Newton-Raphson method takes the following form

Φ (3)(x) =f (x)
[(
f (1)(x)

)−2
f (4)(x)

]
+ 2

(
f (1)(x)

)−1
f (3)(x)− 3

(
f (1)(x)

)−2 (
f (2)(x)

)2

+ 6f (x)
[(
f (1)(x)

)−4 (
f (2)(x)

)3
−
(
f (1)(x)

)−3
f (2)(x)f (3)(x)

]
,

and if it is fulfills that f (1)(ξ) , 0, f (2)(ξ) = 0 and f (3)(ξ) = 0, then

lim
x→ξ

∣∣∣Φ (1)(x)
∣∣∣ = lim

x→ξ

∣∣∣Φ (2)(x)
∣∣∣ = lim

x→ξ

∣∣∣Φ (3)(x)
∣∣∣ = 0, (3.11)

and from the Theorem 1.2.3, the Newton-Raphson method has an order of convergence at least
tetrahedral, that is, fulfills the equation (3.6) with p = 4.

The previous proposition is important, because when the N-R method is implemented in a func-
tion f , the zeros of the function are assumed to be unknown, and their algebraic multiplicitiesm ≥ 2,
in case they exist, are also unknown. With the above in mind, the following corollary is obtained,
which is derived from Proposition 3.1.1, Proposition 3.1.2 and Corollary 1.2.4

Corollary 3.1.3. Let f : Ω ⊂ R
n → R

n be a function with a zero ξ ∈ Ω. If there exists at least a value
k > 0, and a function gk : Rn→R, such that,

[f ]jk (x) = [(x − ξ)]mk gk(x), gk(ξ) , 0,
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for some value jk, with

1 ≤ jk , k ≤ n and m ≥ 2,

then the Jacobian matrix of the iteration function Φ of the N-R method, given by (3.5), fulfills that all
entries in its k-th column are nonzero at the value ξ, that is,

[Φ](1)
jk (ξ) , 0, ∀j > 0,

as consequence, the N-R method has an order of convergence (at least) linear.

3.2 (Multidimensional) Fractional Newton-Raphson Method

We begin this section by mentioning that although the interest in fractional calculus has mainly
focused on the study and development of techniques to solve differential equation systems of order
non-integer [2–8]. Over the years, iterative methods have also been developed that use the properties
of fractional derivatives to solve algebraic equation systems [10, 27–32, 35]. These methods may
be called fractional iterative methods, recently these methods have been useful in the search for
solutions to algebraic equation systems related to hybrid solar receivers [10, 11]. It should be noted
that depending on the definition of fractional derivative used, fractional iterative methods have the
particularity that they may be used of local form [35] or of global form [28].

Let Pn(R) be the space of polynomials of degree less than or equal to n ∈N with real coefficients.
The N-R method is characterized by the fact that if it generates divergent sequences of complex
numbers, they may lead to the creation of a fractal [36]. On the other hand, the order of the fractional
derivatives seems to be closely related to the fractal dimension [2], based on the above, a method
was developed that makes use of the N-R method and the fractional derivatives. The N-R method
is useful for finding the roots of a function f ∈ Pn(R). However, this method is limited because it
cannot find roots ξ ∈ C \R, if the sequence {xi}∞i=0 generated by (3.5) has an initial condition x0 ∈ R.
To solve this problem and develop a method that has the ability to find roots, both real and complex,
of a polynomial if the initial condition x0 is real, we propose a new method, which consists of the
Newton-Raphson method with the implementation of the fractional derivatives. Before continuing,
it is necessary to define the fractional Jacobian matrix of a function f :Ω ⊂R

n→R
n as follows

f (α)(x) :=
(
[f ](α)

jk (x)
)
, (3.12)

where

[f ](α)
jk = ∂αk [f ]j(x) :=

∂α

∂[x]αk
[f ]j(x), 1 ≤ j,k ≤ n.

with [f ]j : Rn→ R. The operator ∂α/∂[x]αk denotes any fractional derivative, applied only to the
variable [x]k, which fulfills the following condition of continuity respect to the order of the derivative

lim
α→1

∂α

∂[x]αk
[f ]j(x) =

∂
∂[x]k

[f ]j(x), 1 ≤ j,k ≤ n,
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then, the matrix (3.12) fulfills that

lim
α→1

f (α)(x) = f (1)(x), (3.13)

where f (1)(x) denotes the Jacobian matrix of the function f . Considering a function Φ : (R \Z)×
C
n → C

n, then using as a basis the idea of the N-R method (3.5), and considering any fractional
derivative that fulfills the condition (3.13), we can define the Fractional Newton-Raphson Method
as follows [27, 28]:

xi+1 := Φ (α,xi) = xi −
(
f (α)(xi)

)−1
f (xi), i = 0,1,2, · · · . (3.14)

For the above expression to make sense, due to the part of the integral operator that fractional
derivatives usually have, and that the F N-R method can be used in a wide variety of functions [28],
we consider in the expression (3.14) that each fractional derivative is obtained for a real variable [x]k,
and if the result allows it, this variable is subsequently substituted by a complex variable [xi]k, that
is,

f (α)(xi) := f (α)(x)
∣∣∣∣∣
x−→xi

, x ∈Rn, xi ∈Cn. (3.15)

3.2.1 Convergence of the Fractional Newton-Raphson Method

It should be mentioned that in general, in the F N-R method
∥∥∥Φ (1)(α,ξ)

∥∥∥ , 0 if ‖f (ξ)‖ = 0, and from
Corollary 1.2.4, Proposition 3.1.1, Proposition 3.1.2 and the condition (3.13), any sequence {xi}∞i=0
generated by the iterative method (3.14) has an order of convergence at least linear, that is, the F N-R
method, considering the Theorem 1.2.3, may fulfill an equation analogous to the equation (3.6) with
p ≥ 1, which becomes more evident when considering α ∈ [1− ε,1 + ε] \ {1}. The aforementioned, for
the case in one dimension, may be observed in the following proposition:

Proposition 3.2.1. Let f : Ω ⊂ R → R be a function with a zero ξ ∈ Ω. Then any sequence {xi}∞i=0
generated by the iteration function of the F N-R method, such that xi → ξ, fulfills the following condition:

|xi+1 − ξ | ≤

∣∣∣Φ (p)(α,ξ)
∣∣∣

p!
|xi − ξ |p , (3.16)

where

p =
{

1, if α , 1 and f (α)(ξ) , 0

2, if α = 1 and f (1)(ξ) , 0
. (3.17)

Proof. Considering the iteration function of the F N-R method

Φ(α,x) = x −
(
f (α)(x)

)−1
f (x),
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and calculating its first and second derivative

Φ (1)(α,x) = 1−
(
f (α)(x)

)−1
f (1)(x) + f (x)

[(
f (α)(x)

)−2
Dxf

(α)(x)
]
,

Φ (2)(α,x) =f (x)
[(
f (α)(x)

)−2
D2
x f

(α)(x)− 2
(
f (α)(x)

)−3 (
Dxf

(α)(x)
)2

]
+ 2

(
f (α)(x)

)−2
f (1)(x)Dxf

(α)(x)−
(
f (α)(x)

)−1
f (2)(x),

then, assuming that f (α)(ξ) , 0 ∀α ∈ (R \Z)∪ {1}, and taking into account the condition (3.13)
together with the fact that ξ is a zero of f , we obtain that

lim
x→ξ

Φ(α,x) = ξ,

lim
x→ξ

∣∣∣Φ (1)(α,x)
∣∣∣ =


∣∣∣∣1− (f (α)(ξ)

)−1
f (1)(ξ)

∣∣∣∣ , if α , 1

0 , if α = 1
,

lim
x→ξ

∣∣∣Φ (2)(α,x)
∣∣∣ =


∣∣∣∣2(
f (α)(ξ)

)−2
f (1)(ξ)Dxf (α)(ξ)−

(
f (α)(ξ)

)−1
f (2)(ξ)

∣∣∣∣ , if α , 1∣∣∣∣(f (α)(ξ)
)−1

f (2)(ξ)
∣∣∣∣ , if α = 1

,

as a consequence, from the Theorem 1.2.3, the F N-R method has an order of convergence at least
linear, that is, fulfills the equation (3.16) with p ≥ 1.

From the above proposition, together with the Proposition 3.1.1, it may be obtained that al-
most any fractional iterative method that has a similar structure to the fractional Newton-Raphson
method [28–32], has the ability to change from an order of convergence (at least) linear to an order
of convergence (at least) quadratic, as long as the method fulfills the condition (3.13). An alternative
to achieve the change in the order of convergence of some fractional iterative method, analogous to
F N-R method, is to replace the constant value α in the order of the fractional derivatives by some
function that guarantees that the condition (3.13) is fulfilled, that is,

α ∈R \Z −→ α(x) : Cn→ (R \Z)∪ {1} . (3.18)

It is necessary to mention that an example of the aforementioned may be found in the Fractional
Newton Method, which is defined as follows [28]:

xi+1 := Φ(α,xi) = xi −
(
Nαf (xi)

)−1
f (xi), i = 0,1,2, · · · , (3.19)

where Nαf (xi) is given by the following matrix
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Nαf (xi) :=
(
[Nαf ]jk(xi)

)
=

(
∂
αf ([xi ]k ,xi )
k [f ]j(xi)

)
. (3.20)

with δ > 0, and αf ([xi]k ,xi) a function defined as follows

αf ([xi]k ,xi) :=
{
α, if |[xi]k | , 0 and ‖f (xi)‖ ≥ δ
1, if |[xi]k | = 0 or ‖f (xi)‖ < δ

, (3.21)

the difference between the methods (3.14) and (3.19), is that just for the second method may there
exist a value δ > 0, such that if the sequence {xi}∞i=0 generated by (3.19) converges to a zero ξ of f ,
there exists a value k > 0 such that ∀i ≥ k, from Proposition 3.1.1, Proposition 3.2.1 and condition
(3.13), the sequence has an order of convergence (at least) quadratic in B(ξ;δ).

3.3 The Aitken’s Method

Due not all fractional iterative methods fulfill the condition (3.13), since not all methods have a
similar structure to the F N-R method [10, 11, 28] , an alternative such as that of equation (3.18) to
accelerate its order of convergence would not be suitable. However, an alternative that may be used
in general in any fractional iterative method to accelerate its convergence, is to combine the method
with the Aitken’s method [18, 37].

The Aitken’s method or also known as the ∆2− method of Aitken [18], is one of the first and
simplest methods to accelerate the convergence of a given convergent sequence {xi}∞i=0, that is,

lim
i→∞
‖xi − ξ‖ → 0,

this method allows transforming the sequence {xi}∞i= to a sequence
{
x′i
}∞
i=0

, which generally con-
verges faster point ξ that the original sequence, Under certain circumstances, the Aitken’s method
may accelerate the convergence of a method that has an order of convergence (at least) linear to an
order of convergence almost quadratic, then it is generally used to accelerate the iterative methods
used to find the zeros of a function f [15, 16, 18].

To illustrate the Aitken’s method for the case in one dimension, suppose that the sequence {xi}∞i=0
converges to the point ξ as a geometric sequence with factor k such that |k| < 1, that is,

xi+1 − ξ = k (xi − ξ) , i = 0,1,2, · · · , (3.22)

where the value of ξ may be determined using the following system of equations

xi+1 − ξ = k (xi − ξ) , (3.23)
xi+2 − ξ = k (xi+1 − ξ) , (3.24)

subtracting the equation (3.23) from the equation (3.24) we obtain the value of k
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k =
xi+2 − xi+1

xi+1 − xi
,

placing ξ on the left side of the equation (3.23)

ξ =
kxi − xi+1

k − 1
=

(k − 1 + 1)xi − xi+1

k − 1
= xi −

xi+1 − xi
k − 1

,

and substituting the value of k in the previous expression

ξ =xi −
(xi+1 − xi) (xi+1 − xi)

(xi+2 − xi+1)− (xi+1 − xi)
= xi −

(xi+1 − xi)2

xi+2 − 2xi+1 + xi
,

defining the difference operator

∆xi := xi+1 − xi ,

then

∆2xi = ∆xi+1 −∆xi = xi+2 − 2xi+1 + xi ,

therefore, we obtain that the value of ξ is given by the following expression

ξ = xi −
(∆xi)

2

∆2xi
, (3.25)

the Aitken´s method is considered taking into account the equation (3.25). The ∆2− method of
Aitken consists in generating a new sequence

{
x′i
}∞
i=0

, where

x′i = xi −
(xi+1 − xi)2

xi+2 − 2xi+1 + xi
, (3.26)

such that

lim
i→∞

∣∣∣x′i − ξ∣∣∣→ 0.

On the other hand, to note that the sequence
{
x′i
}∞
i=0

converges more quickly to value ξ than the
sequence {xi}∞i=0, consider the following proposition:

Proposition 3.3.1. Let {xi}∞i=0 be a sequence, such that xi → ξ. Then, the sequence
{
x′i
}∞
i=0

generated by the
Aitken’s method, given by (3.26), has a speed of convergence greater than the original sequence.
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Proof. Suppose for the equation (3.22) that the k value fulfills the following conditions

k = k0 + δi , lim
i→∞

δi = 0, |k| < 1,

then from equation (3.22)

xi+1 − xi =(xi+1 − ξ)− (xi − ξ)
=(k − 1)(xi − ξ), (3.27)

analogously

xi+2 − xi+1 =(k − 1)(xi+1 − ξ)
=(k − 1)(xi+1 − xi) + (k + 1)(xi − ξ)

=
[
(k − 1)2 + (k + 1)

]
(xi − ξ),

whereby

xi+2 − 2xi+1 + xi =(k − 1)2(xi − ξ)

=
[
(k0 − 1)2 +µi

]
(xi − ξ), (3.28)

where

lim
i→∞

µi = 0,

finally substituting the equations (3.27) and (3.28) in the equation (3.26), we obtain that

x′i − ξ = (xi − ξ)− [(k0 − 1 + δi)(xi − ξ)]2

[(k0 − 1)2 +µi] (xi − ξ)
,

then

x′i − ξ
xi − ξ

= 1− (k0 − 1 + δi)2

(k0 − 1)2 +µi
,

therefore

lim
i→∞

∣∣∣x′i − ξ∣∣∣
|xi − ξ |

= 0, (3.29)

which shows that in general, the speed of convergence of the sequence
{
x′i
}∞
i=0

is greater than that
of the original sequence.
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From the above proposition it follows that any fractional iterative method, given by the following
expression

xi+1 := Φ(α,xi), i = 0,1,2, · · · , (3.30)

may accelerate its speed of convergence using the Aitken’s method, giving rise to the Fractional
Steffensen’s Method, which is defined as follows

xi+1 := Ψ (α,xi), i = 0,1,2, · · · , (3.31)

where we use the function Ψ (α,x) to denote the implementation of the Aitken’s method to any
fractional iterative method for the case of one variable [18] and for the case of several variables [37].

3.3.1 Results of the Fractional Newton-Raphson Method with the Aitken’s Method

Examples of the implementation of the F N-R method and the Aitken’s method for the multidi-
mensional case may be found in the references [28] and [37], respectively. However, to maintain
an illustrative character, the following examples are solved for the case in one dimension using
the R-L fractional derivative and the Caputo fractional derivative through the equations (1.14) and
(1.16). Instructions for implementing the F N-R method, along with information to provide val-
ues α ∈ [0.7,1.3] \ {1} are found in the reference [28]. For rounding reasons, for the examples the
following function is defined

Rndm(x) :=

 Re(x), if |Im(x)| ≤ 10−m

x, if |Im(x)| > 10−m
. (3.32)

Combining the function (3.32) with the methods (3.14) and (3.31), the following iterative meth-
ods are defined

xi+1 := Rnd5 (Φ(α,xi)) , i = 0,1,2 · · · , (3.33)
xi+1 := Rnd5 (Ψ (α,xi)) , i = 0,1,2 · · · , (3.34)

it should be mentioned that the methods (3.33) and (3.34) may be implemented through recursive
programming in a way analogous to that presented in the reference [1].

Example 5. Let f be a function, with

f (x) =− 85.86x14 + 19.3x13 − 92.34x12 + 3.13x11 + 64.75x10 − 54.17x9 − 17.7x8

− 13.05x7 − 56.82x6 − 56.93x5 − 94.95x4 − 95.09x3 − 84.16x2.

Then the initial condition x0 = 9.86 is chosen to use the iterative methods given by (3.33) and (3.34).
Consequently, we obtain the results of Table 3.1 and Table 3.2.

• F N-R method without Aitken’s method
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α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 1.00161 0.00007156 6.94600E-05 4.31004E-07 46

Table 3.1: Results obtained using the iterative method (3.33).

• F N-R method with Aitken’s method

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.87703 -0.00449671 + 1.2464767i 5.57148E-05 7.01925E-05 8
2 0.87821 -0.06554663 + 0.93609376i 9.93578E-05 1.07146E-05 7
3 0.88376 -0.06554664 - 0.93609378i 4.06133E-05 1.74330E-06 8
4 0.91922 -0.90057347 + 0.22444635i 9.90788E-05 2.07375E-05 5
5 0.92610 -0.56043513 + 0.57983003i 8.24879E-06 1.68512E-06 7
6 0.92643 0.59293293 + 0.81897545i 9.31195E-06 9.18616E-06 6
7 0.92659 1.05051127 + 0.38407315i 6.46220E-07 3.79293E-05 7
8 0.92668 1.05051127 - 0.38407314i 1.92354E-07 8.61954E-06 8
9 1.00161 -0.00000009 9.47400E-05 6.81696E-13 2

10 1.08086 0.59293292 - 0.81897547i 8.09817E-05 2.50406E-05 6
11 1.08184 -0.56043512 - 0.57983002i 2.39767E-05 2.50817E-06 7
12 1.11378 -0.00449673 - 1.24647667i 7.61577E-08 6.43359E-05 9
13 1.17623 -0.90057347 - 0.2244463i 9.28255E-05 2.29317E-05 7

Table 3.2: Results obtained using the iterative method (3.34).

Example 6. Let f be a function, with

f (x) =88.43x16 − 61.92x15 + 24.94x14 + 95.51x13 − 94.75x12 + 40.88x11

+ 65.89x10 + 85.7x9 + 28.55x8 + 31.37x7 + 31.13x6

+ 12.48x5 − 95.28x4 − 59.44x3 − 7.31x2.

Then the initial condition x0 = −9.86 is chosen to use the iterative methods given by (3.33) and (3.34).
Consequently, we obtain the results of Table 3.3 and Table 3.4.

• F N-R method without Aitken’s method

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 1.00393 -1.11795723 1.30000E-07 2.23178E-06 40
2 1.04143 -0.43822992 7.54300E-05 6.21616E-05 52
3 1.05194 -0.16991479 6.50004E-05 1.26695E-05 53
4 1.15095 -0.35589097 + 0.80514169i 1.51327E-07 5.71986E-05 67

Table 3.3: Results obtained using the iterative method (3.33).

• F N-R method with Aitken’s method

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.87132 -0.35589093 - 0.80514174i 7.86160E-05 2.32788E-05 7
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2 0.87264 0.48722967 - 0.92230783i 1.13741E-06 4.48612E-06 10
3 0.87366 0.28979196 - 1.12272312i 4.79113E-06 1.62050E-05 11
4 0.89238 -0.35589092 + 0.80514178i 6.16682E-06 6.68576E-07 8
5 0.89568 0.48722967 + 0.92230782i 3.89880E-05 7.47107E-06 10
6 0.89766 1.0660797 + 0.56313314i 3.00491E-05 5.93475E-05 9
7 1.00393 0.00000008 3.36500E-05 4.67840E-14 2
8 1.01491 0.87919885 4.09653E-05 1.68448E-05 5
9 1.02115 -0.16993135 9.72851E-05 1.39749E-08 3

10 1.04143 1.0660797 - 0.56313315i 6.75680E-05 6.95220E-05 5
11 1.05194 -0.43824114 1.88156E-05 2.58740E-06 3
12 1.12328 -0.71363729 - 0.41959459i 3.26455E-06 4.52706E-06 5
13 1.12610 -0.71363727 + 0.41959459i 8.75710E-06 1.99343E-07 8
14 1.13498 -1.11795723 1.23100E-05 2.23178E-06 4
15 1.15095 0.28979195 + 1.12272311i 2.35722E-06 3.11810E-05 10

Table 3.4: Results obtained using the iterative method (3.34).

Example 7. Let {fk}∞k=0 be a sequence of functions, with

fk(x) =
k∑

m=1

(−1)m+1x2m+1

(2m+ 1)Γ (2m+ 2)
−→
k→∞

x − π
2

+
∫ ∞
x

sin(t)
t

dt.

Then considering the value k = 50, the initial condition x0 = −17.28 is chosen to use the iterative
methods given by (3.33) and (3.34). Consequently, we obtain the results of Table 3.5 and Table 3.6.

• F N-R method without Aitken’s method

α xn ‖xn − xn−1‖2 ‖f50 (xn)‖2 n

1 0.70163 -14.94772136 + 6.14653734i 1.30298E-05 9.32400E-05 25
2 0.85274 -8.33609528 - 5.06388182i 1.69580E-05 3.33020E-05 12
3 1.00181 -0.00013924 + 0.00001328i 6.81766E-05 1.52026E-13 25
4 1.15221 8.33610117 + 5.06387543i 2.38905E-05 4.04742E-05 16

Table 3.5: Results obtained using the iterative method (3.33).

• F N-R method with Aitken’s method

α xn ‖xn − xn−1‖2 ‖f50 (xn)‖2 n

1 0.70006 21.39353648 - 6.837026i 4.12311E-08 1.31841E-08 9
2 0.70021 14.94772196 + 6.14653076i 1.12581E-05 6.28944E-08 8
3 0.70130 21.39353648 + 6.83702599i 3.60555E-08 2.00623E-07 9
4 0.70163 -27.77675536 - 7.34778011i 3.05941E-07 4.08123E-06 8
5 0.72911 -21.39353648 + 6.837026i 1.74642E-07 1.31841E-08 6
6 0.72933 -14.94772196 + 6.14653076i 1.98086E-05 6.28944E-08 5
7 0.72969 -21.39353648 - 6.837026i 2.65981E-05 1.31841E-08 8
8 0.73214 -8.33609941 + 5.06388042i 9.58390E-05 3.99288E-08 5
9 0.80714 8.33609941 + 5.06388043i 8.67685E-05 3.93431E-08 8

10 0.81260 -34.12862021 + 7.7539021i 4.21598E-05 9.52275E-05 8
11 0.85274 -8.33609941 - 5.06388042i 9.72662E-05 3.99288E-08 5
12 0.89041 -14.94772197 - 6.14653076i 8.26951E-05 1.22005E-07 7
13 1.00181 -0.0000215 + 0.00002121i 7.36947E-05 1.53039E-15 4
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14 1.10820 -27.77675547 + 7.34778007i 5.05482E-05 2.74956E-06 7
15 1.15221 27.77675547 + 7.34778014i 4.12311E-08 2.42256E-06 8
16 1.15395 14.94772196 - 6.14653077i 3.48421E-06 9.26415E-08 7
17 1.15404 8.33609941 - 5.06388043i 2.37921E-05 3.93431E-08 8

Table 3.6: Results obtained using the iterative method (3.34).

Example 8. Let f be a function, with

f (x) =sin
(
x2

)
,

and assuming that

f (α)(x) ≈
40∑
k=0

(−1)kΓ (4k + 3)
Γ (2k + 2)Γ (4k −α + 3)

x4k+2−α.

Then the initial condition x0 = 3.29 is chosen to use the iterative methods given by (3.33) and (3.34).
Consequently, we obtain the results of Table 3.7 and Table 3.8.

• F N-R method without Aitken’s method

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.84175 1.77244862 2.77800E-05 1.85430E-05 9
2 0.88194 3.54491603 3.76700E-05 5.90454E-05 8
3 0.88428 3.06996642 6.84700E-05 8.41408E-05 10
4 0.98182 2.50663097 9.01300E-05 1.35126E-05 3
5 1.09634 -2.50662031 2.44798E-05 3.99287E-05 4
6 1.10015 -4.68946323 2.10983E-05 8.31896E-05 9
7 1.10056 -5.01324797 2.00345E-05 8.60200E-05 9
8 1.10117 -5.60498334 4.21000E-06 8.82942E-05 21
9 1.14221 5.60499912 3.67000E-06 8.85993E-05 7

10 1.14547 5.31735876 7.47000E-06 2.96998E-05 7
11 1.15097 5.01325276 1.00200E-05 3.79931E-05 7
12 1.15908 4.68946617 1.54700E-05 5.56156E-05 7
13 1.17640 4.34160246 1.23700E-05 4.40009E-05 4

Table 3.7: Results obtained using the iterative method (3.33).

• F N-R method with Aitken’s method

α xn ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.80229 3.54490771 8.13400E-05 5.80583E-08 2
2 0.84175 3.9633273 3.07800E-05 1.89763E-08 2
3 0.88143 -5.31736155 2.80000E-06 2.88897E-08 3
4 0.88194 -4.34160716 1.38420E-05 3.18978E-06 3
5 0.88247 -3.54490738 2.57466E-05 2.28158E-06 3
6 0.88428 -1.77245385 2.22000E-06 3.20997E-09 3
7 0.88821 -0.00001155 6.94304E-05 1.33402E-10 4
8 0.90399 1.77245385 8.16500E-05 3.20997E-09 2
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9 0.92421 3.06998012 8.79300E-05 2.35742E-08 3
10 0.98182 2.50662827 9.91500E-05 2.32164E-08 2
11 1.09634 -2.50662975 8.33108E-05 7.39641E-06 2
12 1.10015 -4.68948099 8.10371E-05 8.33804E-05 3
13 1.10056 -5.01326496 7.11525E-05 8.43304E-05 3
14 1.10117 -5.60499585 6.68979E-05 5.19426E-05 4
15 1.14221 5.60499119 5.32600E-05 2.95920E-07 2
16 1.14547 5.31736154 1.01200E-05 1.35237E-07 2
17 1.15097 5.01325654 5.61300E-05 9.28656E-08 2
18 1.15908 4.68947211 1.28200E-05 9.53393E-08 2
19 1.17640 4.34160754 5.99300E-05 1.09846E-07 2

Table 3.8: Results obtained using the iterative method (3.34).

In all the examples shown there is a decrease in the number of iterations necessary to converge
to the solutions when implementing the Aitken’s method, which translates into the sequences gen-
erated showing an acceleration in their speed of convergence, which was to be expected given the
Proposition 3.3.1. On the other hand, although it is not explicitly mentioned, the implementation
of the Aitken’s method in any iterative method causes changes in the slopes of the lines that cross
the x-axis to generate the sequences that converge to the solutions. A consequence of the aforemen-
tioned is that if an iterative method is combined with the Aitken’s method, and the resulting method
converges to a solution ξ given an initial condition x0, when the original method is implemented
with the same initial condition it does not necessarily converge to the same solution ξ. However, in
a fractional iterative method where the initial condition generally remains fixed, the same princi-
ple applies but with the order α of the derivatives, a fact that can be seen in the different examples
presented.

The fractional iterative methods, such as the fractional Newton-Raphson method, can find mul-
tiple zeros of a function using a single initial condition. This partially solves the intrinsic problem
of classical iterative methods, which is that in general it is necessary to provide N initial conditions
to find N zeros of a function. Due to the fractional operators implemented, these methods can be
considered non-local parametric iterative methods, so they have two important characteristics: i)
The initial condition does not necessarily need to be near to the searched values due to the non-local
nature of fractional operators [12]. ii) When working in a space of N dimensions and it is necessary
to change the initial condition, unlike the classical iterative methods where in the worst case it is
necessary to vary the N entries of the initial condition until obtaining a suitable value, it is enough
to vary the parameter α of the fractional operators before opting to change the initial condition, until
a suitable value is found that allows generating a sequence that converges to a searched value [28].

The above features make fractional iterative methods an ideal numerical tool for working with
nonlinear algebraic equation systems that vary with respect to time-dependent parameters, such as
the system obtained by studying the temperatures and efficiencies of a hybrid solar receiver [10,11].
When working inN dimensions with a nonlinear system that evolves due to time-dependent param-
eters, as a consequence of nonlinearity, the solutions can change their position in space considerably
between each time step, so the use of a classical iterative method may require the task of determining
a suitable initial condition for each new time step, which may be a complicated task when it is not
clear in which region of space a solution is found and it is necessary to vary all the entries of the
initial condition until finding values that are suitable. However, when using a fractional iterative
method, it is enough to vary the parameter α of the fractional operators to generate the search for
solutions in different regions of space regardless of the number of dimensions [10].
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3.4 Conclusions

In this paper it is shown that F N-R with Aitken’s converges faster than the simple F N-R. In summary
the following results are presented: In Corollary 1.2.4, an alternative way is obtained to demonstrate
when an iterative method has an order of convergence at least linear. Considering Proposition 3.1.1
together with Proposition 3.1.2, it is proved that Newton’s method fulfills a necessary but not suffi-
cient condition to have an order of convergence at least quadratic. In Proposition 1.1.1, the radical
differences that may there exist between the results of the conventional calculus and the fractional
calculus when obtaining the derivative of a function are exposed, which is a consequence of depen-
dency of the integer parameter n(α), which generally has the fractional derivative. In Proposition
1.1.2, it is proved that under certain conditions, the results when calculating the derivative of a
function in the fractional calculus are analogous to those obtained in the conventional calculus. In
Proposition 3.2.1, it is proved that the F N-R method has an order of convergence at least linear, but
it follows that it has the ability to gradually change to an order of convergence at least quadratic as
the value α approaches the value of one. It also follows that the change in the order of convergence
in the F N-R method may be achieved by implementing a function in the order of the fractional
derivatives. In Proposition 3.3.1, it is proved that any succession may accelerate its speed of con-
vergence through the implementation of Aitken’s method, with which it follows that it is an ideal
alternative to accelerate the speed of convergence of any fractional iterative method that does not
have a structure similar to the F N-R method.

Taking into account the results in this paper, although there are surely different alternatives to
accelerate the speed of convergence of the fractional iterative methods, take for example the strategy
of changing the constant order α of the fractional derivative by a function and giving rise to the
method (3.19), the Aitken’s method is a simple and efficient method to accelerate the speed of con-
vergence of any fractional iterative method, in particular for the F N-R method, due it presents an
order of convergence at least linear for the case in which the order of the derivative is different from
one. Then in conjunction with the Aitken method, it is concluded that the F N-R method becomes
an efficient iterative method to calculate the largest possible number of zeros of a function.
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Chapter 4

Sets of Fractional Operators and Numerical
Estimation of the Order of Convergence of a
Family of Fractional Fixed-Point Methods

Part of the content of this chapter was published in the journal Fractal and Fractional [38].
Considering the large number of fractional operators that exist, and since it does not seem that

their number will stop increasing soon at the time of writing this paper, it is presented for the
first time, as far as the authors know, a simple and compact method to work the fractional calcu-
lus through the classification of fractional operators using sets. This new method of working with
fractional operators, which may be called fractional calculus of sets, allows generalizing objects of
the conventional calculus such as tensor operators, the Taylor series of a vector-valued function, and
the fixed-point method in several variables which allows generating the method known as the frac-
tional fixed-point method. Furthermore, it is also shown that each fractional fixed-point method
that generates a convergent sequence has the ability to generate an uncountable family of fractional
fixed-point methods that generate convergent sequences. So, it is presented a method to estimate
numerically in a region Ω the mean order of convergence of any fractional fixed-point method, and
it is shown how to construct a hybrid fractional iterative method to determine the critical points
of a scalar function. Finally, considering that the proposed method to classify fractional operators
through sets allows generalizing existing results of the fractional calculus, some examples are shown
of how to define families of fractional operators that satisfy some property to ensure the validity of
the results to be generalized.

Keywords: Fractional Operators; Fractional Iterative Methods; Order of Convergence; Critical
Points

4.1 Introduction

A fractional derivative is an operator that generalizes the ordinary derivative, in the sense that if

dα

dxα
,

denotes the differential of order α ∈ R, then α may be considered a parameter, such that the
first derivative corresponds to the particular case α = 1. On the other hand, a fractional differential
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equation is an equation that involves at least one differential operator of order α, with (n−1) < α ≤ n
for some positive integer n, and it is said to be a differential equation of order α if this operator
is the highest order in the equation. Analogously, a fractional partial differential equation is an
equation that involves at least one differential operator of order α, which in general are usually
partial derivatives of order α, that is,

∂α

∂tα
,

∂α

∂xα
,

∂α

∂yα
.

The fractional operators have many representations, but one of their fundamental properties is
that they allow retrieving the results of conventional calculus when α→ n. So, considering a scalar
function h : Rm → R and the canonical basis of R

m denoted by {êk}k≥1, it is possible to define the
following fractional operator of order α using Einstein notation

oαx h(x) := êko
α
k h(x), (4.1)

then denoting by ∂nk the partial derivative of order n applied with respect to the k-th component
of the vector x, using the previous operator it is possible to define the following set of fractional
operators

On
x,α(h) :=

{
oαx : ∃oαk h(x) and lim

α→n
oαk h(x) = ∂nkh(x) ∀k ≥ 1

}
, (4.2)

which may be proved to be a nonempty set through the following sets of fractional operators

On
0,x,α(h) :=

{
oαx : ∃oαk h(x) =

(
∂nk + (n−α)∂αk

)
h(x) and lim

α→n
∂αk h(x) , ∂nkh(x) ∀k ≥ 1

}
, (4.3)

On
1,x,α(h) :=

{
oαx : ∃oαk h(x) =

1
2

(
∂nk +∂αk

)
h(x) and lim

α→n
∂αk h(x) = ∂nkh(x) ∀k ≥ 1

}
, (4.4)

On
2,x,α(h) :=

{
oαx : ∃oαk h(x) = ∂αk h(x)− (n−α)n

(
∂αk h(x)

)3
and lim

α→n
∂αk h(x) = ∂nkh(x) ∀k ≥ 1

}
, (4.5)

whose complement may be defined as follows

On,c
x,α(h) :=

{
oαx : ∃oαk h(x) ∀k ≥ 1 and lim

α→n
oαk h(x) , ∂nkh(x) in at least one value k ≥ 1

}
, (4.6)

and which may be considered as a generating set of sets of fractional tensor operators. For
example, considering α,n ∈ Rd with α = êk[α]k and n = êk[n]k, it is possible to define the following
set of fractional tensor operators

On
x,α(h) :=

{
oαx : oαx ∈O[n]1

x,[α]1
(h)×O[n]2

x,[α]2
(h)× · · · ×O[n]d

x,[α]d
(h)

}
, (4.7)

therefore, considering a function h : Rm×R≥0→R, as well as the vectors α,n ∈R3 with α = êk[α]k
and n = êk[n]k, it is possible to combine the sets (4.2) and (4.7) to define new sets of fractional
operators related to the theory of differential equations, as shown with the following set
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Wn
t,x,α(h) :=

{
wαt,x = o[α]1

t − tr
(
o

([α]2,[α]3)
x

)
: o[α]1

t ∈O[n]1
t,[α]1

(h) and o
([α]2,[α]3)
x ∈O([n]2,[n]3)

0,x,([α]2,[α]3)(h)
}
, (4.8)

where tr(·) denotes the trace of a matrix. So, denoting the Laplacian operator by ∇2, it is possible
to obtain the following results:

If wαt,x ∈Wn
t,x,α(h) with n = (1,1,1) ⇒ lim

α→n
wαt,xh(x, t) =

(
∂t −∇2

)
h(x, t), (4.9)

If wαt,x ∈Wn
t,x,α(h) with n = (2,1,1) ⇒ lim

α→n
wαt,xh(x, t) =

(
∂2
t −∇2

)
h(x, t), (4.10)

which may generalize the diffusion equation and the wave equation respectively. To finish this
section, it is necessary to mention that the applications of fractional operators have spread to differ-
ent fields of science such as finance [39, 40], economics [41], number theory through the Riemann
zeta function [42, 43] and in engineering with the study for the manufacture of hybrid solar re-
ceivers [44, 45] . It should be mentioned that there is also a growing interest in fractional operators
and their properties for the solution of nonlinear algebraic systems [17, 27–32, 45–49], which is a
classical problem in mathematics, physics and engineering, which consists of finding the set of zeros
of a function f :Ω ⊂R

n→R
n, that is,

{ξ ∈Ω : ‖f (ξ)‖ = 0} , (4.11)

where ‖ · ‖ : Rn→R denotes any vector norm, or equivalently

{ξ ∈Ω : [f ]k(ξ) = 0 ∀k ≥ 1} , (4.12)

where [f ]k : Rn→ R denotes the k-th component of the function f . This paper presents a simple
and compact method to work the fractional calculus through the classification of fractional operators
using sets. This new method of working with fractional operators allows generalizing objects of
the conventional calculus such as tensor operators, the Taylor series of a vector-valued function,
and the fixed-point method in several variables which allows generating the method known as the
fractional fixed-point method. It is also shown that each fractional fixed-point method that generates
a convergent sequence has the ability to generate an uncountable family of fractional fixed-point
methods that generate convergent sequences. It is presented one method to estimate numerically in
a regionΩ the mean order of convergence of any fractional fixed-point method through the problem
of determining the critical points of a scalar function, and it is shown how to construct a hybrid
fractional iterative method to determine the critical points of a scalar function.

4.2 Fractional Fixed-Point Method

Let N0 be the set N∪{0}, if γ ∈Nm
0 and x ∈Rm, then it is possible to define the following multi-index

notation

51




γ! :=

m∏
k=1

[γ]k!,
∣∣∣γ ∣∣∣ :=

m∑
k=1

[γ]k , xγ :=
m∏
k=1

[x][γ]k
k

∂γ

∂xγ
:=

∂[γ]1

∂[x][γ]1
1

∂[γ]2

∂[x][γ]2
2

· · · ∂
[γ]m

∂[x][γ]m
m

. (4.13)

So, considering a function h : Ω ⊂ R
m→ R, it is possible to define the following set of fractional

operators

Sn,γx,α (h) :=
{
s
αγ
x = sαγx (oαx ) : oαx ∈Os

x,α(h) ∀s ≤ n2 and s
αγ
x h(x) := oα[γ]1

1 o
α[γ]2
2 · · ·oα[γ]m

m h(x) ∀α,
∣∣∣γ ∣∣∣ ≤ n} , (4.14)

from which it is possible to obtain the following results:

If sαγx ∈ Sn,γx,α(h) ⇒



lim
α→0

s
αγ
x h(x) = o0

1o
0
2 · · ·o

0
mh(x) = h(x)

lim
α→1

s
αγ
x h(x) = o[γ]1

1 o
[γ]2
2 · · ·o[γ]m

m h(x) =
∂γ

∂xγ
h(x) ∀

∣∣∣γ ∣∣∣ ≤ n
lim
α→k

s
αγ
x h(x) = ok[γ]1

1 o
k[γ]2
2 · · ·ok[γ]m

m h(x) =
∂kγ

∂xkγ
h(x) ∀k

∣∣∣γ ∣∣∣ ≤ kn
lim
α→n

s
αγ
x h(x) = on[γ]1

1 o
n[γ]2
2 · · ·on[γ]m

m h(x) =
∂nγ

∂xnγ
h(x) ∀n

∣∣∣γ ∣∣∣ ≤ n2

, (4.15)

and as a consequence, considering a function h :Ω ⊂R
m→R

m, it is possible to define the follow-
ing set of fractional operators

mSn,γx,α(h) :=
{
s
αγ
x : sαγx ∈ Sn,γx,α ([h]k) ∀k ≤m

}
. (4.16)

On the other hand, using little-o notation it is possible to obtain the following result:

If x ∈ B(a;δ) ⇒ lim
x→a

o ((x − a)γ )
(x − a)γ

→ 0 ∀
∣∣∣γ ∣∣∣ ≥ 1, (4.17)

with which it is possible to define the following set of functions

Rnαγ (a) :=
{
rnαγ : lim

x→a

∥∥∥rnαγ (x)
∥∥∥ = 0 ∀

∣∣∣γ ∣∣∣ ≥ n and
∥∥∥rnαγ (x)

∥∥∥ ≤ o (‖x − a‖n) ∀x ∈ B(a;δ)
}
, (4.18)

where rnαγ : B(a;δ) ⊂Ω→R
m. So, considering the previous set and some B(a;δ) ⊂Ω, it is possible

to define the following set of fractional operators

mTn,q,γx,α,p(a,h) :=

tα,px = tα,px
(
s
αγ
x

)
: sαγx ∈ mSM,γx,α (h) and t

α,p
x h(x) :=

p∑
|γ|=0

1
γ!
êjs

αγ
x [h]j(a)(x − a)γ + rpαγ (x)

∀α ≤ n
∀p ≤ q

 ,
(4.19)

mT∞,γx,α (a,h) :=

tα,∞x = tα,∞x
(
s
αγ
x

)
: sαγx ∈ mS∞,γx,α (h) and tα,∞x h(x) :=

∞∑
|γ|=0

1
γ!
êjs

αγ
x [h]j(a)(x − a)γ

 ,
(4.20)
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which allow generalizing the Taylor series expansion of a vector-valued function in multi-index
notation [17], where M = max {n,q}. As a consequence, it is possible to obtain the following results:

If tα,px ∈ mT1,q,γ
x,α,p(a,h) and α→ 1 ⇒ t

1,p
x h(x) = h(a) +

p∑
|γ|=1

1
γ!
êj
∂γ

∂xγ
[h]j(a)(x − a)γ + rpγ (x), (4.21)

If tα,px ∈ mTn,1,γx,α,p(a,h) and p→ 1 ⇒ tα,1x h(x) = h(a) +
m∑
k=1

êjo
α
k [h]j(a) [(x − a)]k + r1

αγ (x). (4.22)

Let f : Ω ⊂ R
n → R

n be a function with a point ξ ∈ Ω such that ‖f (ξ)‖ = 0. So, for some xi ∈
B(ξ;δ) ⊂ Ω and for some fractional operator tα,∞x ∈ nT∞,γx,α (xi , f ), it is possible to define a type of
linear approximation of the function f around the value xi as follows

tα,∞x f (x) ≈ f (xi) +
n∑
k=1

êjo
α
k [f ]j(xi) [(x − xi)]k ,

which may be rewritten more compactly as follows

tα,∞x f (x) ≈ f (xi) +
(
oαk [f ]j(xi)

)
(x − xi). (4.23)

where
(
oαk [f ]j(xi)

)
denotes a square matrix. On the other hand, if x→ ξ since ‖f (ξ)‖ = 0, it follows

that

0 ≈ f (xi) +
(
oαk [f ]j(xi)

)
(ξ − xi) ⇒ ξ ≈ xi −

(
oαk [f ]j(xi)

)−1
f (xi),

then defining the following matrix

Af ,α(x) =
(
[Af ,α]jk(x)

)
:=

(
oαk [f ]j(x)

)−1
, (4.24)

it is possible to define the following fractional iterative method

xi+1 := Φ(α,xi) = xi −Af ,α(xi)f (xi), i = 0,1,2, · · · , (4.25)

which corresponds to the more general case of the fractional Newton-Raphson method [17, 27,
28, 45]. As a consequence, considering an iteration function Φ : (R \Z) ×Rn → R

n, the iteration
function of a fractional iterative method may be written in general form as follows

Φ(α,x) := x −Ag,α(x)f (x), α ∈R \Z, (4.26)

where Ag,α is a matrix that depends, in at least one of its entries, on fractional operators of order
α applied to some function g : Rn→R

n, whose particular case occurs when g = f .
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So, it is possible to define the following sets of fractional operators

nOm
x,α(g) :=

{
oαx : oαx ∈Om

x,α ([g]k) ∀k ≤ n
}
, (4.27)

nOm,c
x,α (g) :=

{
oαx : oαx ∈Om,c

x,α ([g]k) ∀k ≤ n
}
, (4.28)

nOm,u
x,α (g) := nOm

x,α(g)∪ nOm,c
x,α (g), (4.29)

which allow defining the following sets of matrices

nMm
x,α(g) :=

{
Ag,α = Ag,α(oαx ) : oαx ∈ nOs,u

x,α(g) ∀s ∈Z≤m and Ag,α(x) =
(
[Ag,α]jk(x)

)
:=

(
oαk [g]j(x)

)}
, (4.30)

n IMm
x,α(g) :=

{
Ag,α ∈ nMm

x,α(g) : ∃A−1
g,α

}
, (4.31)

and therefore, the fractional Newton-Raphson method may be defined and classified through the
set of matrices n IM∞x,α(g) using the following set

{
Ag,α : ∃A−1

g,α ∈ n IM∞x,α(g) and Ag,α(x) =
(
[Ag,α]jk(x)

)
:=

(
oαk [g]j(x)

)−1
}
. (4.32)

Furthermore, considering that when using the classical Hadamard product in general opαx ◦ o
qα
x ,

o
(p+q)α
x , assuming the existence of a fixed set of matrices n IM∞x,α(g), joined with a modified Hadamard

product that fulfills the following property

o
pα
i,x ◦ o

qα
j,x :=

 o
pα
i,x ◦ o

qα
j,x , if i , j (Hadamard product of type horizontal)

o
(p+q)α
i,x , if i = j (Hadamard product of type vertical)

, (4.33)

by omitting the function g it has the ability to generate a group of fractional matrix operators
Aα that fulfill the following equation

Aα
(
o
pα
i,x

)
◦Aα

(
o
qα
j,x

)
:=


Aα

(
o
pα
i,x ◦ o

qα
j,x

)
, if i , j

Aα

(
o

(p+q)α
i,x

)
, if i = j

, (4.34)

through the following set

nGFNR(α) :=
{
A◦mα = Aα (omαx ) : ∃A◦mα ∈ n IM∞x,α(·) ∀m ∈Z and A◦mα =

(
[A◦mα ]jk

)
:=

(
omαk

)}
, (4.35)

where ∀A◦mi,α ∈ nGFNR(α), the following properties are defined


A◦0i,α ◦A

◦p
i,α = A◦pi,α := Ai,α

(
o
pα
i,x

)
A
◦p
i,α ◦A

◦q
i,α = A◦(p+q)

i,α := Ai,α
(
o

(p+q)α
i,x

)
A
◦p
i,α ◦A

◦q
j,α = A◦1k,α := Ak,α

(
o
pα
i,x ◦ o

qα
j,x

) , (4.36)

54



as a consequence

∀A◦1k,α ∈ nGFNR(α) such that Ak,α
(
oαk,x

)
= Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
∃A◦rk,α = A◦(r−1)

k,α ◦A◦1k,α = Ak,α
(
o
rpα
i,x ◦ o

rqα
j,x

)
, (4.37)

then it is possible to obtain the following corollary:

Corollary 4.2.1. Let g : Rn→R
n be a function such that ∃nOk,u

x,α(g) ∀k ∈Z, then it is fulfilled that

∀oαx ∈ nMO∞,ux,α (g) :=
⋂
k∈Z

nOk,u
x,α(g) ∃nG (Aα (oαx )) ⊂ nGFNR(α), (4.38)

such that nG (Aα (oαx )) is a group, and as a consequence

nGFNR(α) =
⋃

oαx ∈nMO∞,ux,α (g)

nG (Aα (oαx )) . (4.39)

Furthermore, defining Aα(g) =
(
[Aα(g)]jk

)
:=

(
[g]k

)
, it is possible to obtain the following result:

∀A◦mα ∈ nGFNR(α) ∃Ag,mα ∈ n IM∞x,α(g) such that Ag,mα := Aα (omαx ) ◦ATα (g) , (4.40)

therefore, the fractional Newton-Raphson method may also be defined through the set of frac-
tional matrix operators nGFNR(α) using the following set

{
A◦1α ∈ nGFNR(α) : ∃A−1

g,α = Aα (oαx ) ◦ATα (g) and A−1
g,α ∈ n IM∞x,α(g)

}
, (4.41)

so, ifΦFNR denotes the iteration function of the fractional Newton-Raphson method, it is possible
to obtain the following results:

Let α0 ∈R \Z ⇒ ∀A−1
g,α0
∈ n IM∞x,α(g) ∃ΦFNR = ΦFNR(Ag,α0

) ∴ ∀Ag,α0
∃
{
ΦFNR(Ag,α) : α ∈R \Z

}
,

(4.42)

Let α0 ∈R \Z ⇒ ∀A◦1α0
∈ nGFNR(α) ∃ΦFNR = ΦFNR(Aα0

) ∴ ∀Aα0
∃{ΦFNR(Aα) : α ∈R \Z} .

(4.43)

On the other hand, it is possible to define in a general way a fractional fixed-point method as
follows

xi+1 := Φ(α,xi), i = 0,1,2, · · · . (4.44)

Before continuing, it is necessary to mention that one of the main advantages of fractional iter-
ative methods is that the initial condition x0 can remain fixed, with which it is enough to vary the
order α of the fractional operators involved until generating a sequence convergent {xi}i≥1 to the
value ξ ∈Ω. Since the order α of the fractional operators is varied, different values of α can generate
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different convergent sequences to the same value ξ but with a different number of iterations (see
Figure 2.3). So, it is possible to define the following set

Convδ(ξ) :=
{
Φ : lim

x→ξ
Φ(α,x) = ξα ∈ B(ξ;δ)

}
, (4.45)

which may be interpreted as the set of fractional fixed-point methods that define a convergent
sequence {xi}i≥1 to some value ξα ∈ B(ξ;δ). So, denoting by card(·) the cardinality of a set, it is
possible to define the following theorem:

Theorem 4.2.2. Let Φ : (R \Z) ×Rn → R
n be an iteration function with a value α ∈ R \Z such that

Φ(α,x) ∈ Convδ(ξ) in a region Ω. So, if there exists ε > 0 small enough to ensure that there exists a
non-integer value β ∈ B(α;ε) such that

Φ(β,x) ∈ B
(
Φ(α,x);δβ

)
∀x ∈Ω and Φ(β,x) ∈ Convδ(ξ),

then it is fulfilled that

card(Convδ(ξ)) = card(R) . (4.46)

Proof. The proof of the theorem is carried out by contradiction. Assuming that

card(Convδ(ξ)) < card(R) .

So, considering that Φ(β,x) ∈ B
(
Φ(α,x);δβ

)
∀x ∈ Ω and that {Φ(α,x),Φ(β,x)} ⊂ Convδ(ξ), there

exists at least one value xk ∈ B(ξ;δ) such that

Φ(β,xk) ∈ B
(
Φ(α,xk);δβ

)
= B(xk+1;δβ) ⊂ B(ξ;δ), (4.47)

since β ∈ B(α;ε) for some ε small enough, without loss of generality, if (n − 1) < α < β < n with
n = dαe, it follows that

Φ(a,xk) ∈ B (Φ(α,xk);δa) ⊂ B
(
xk+1;δβ

)
∀a ∈ [α,β], (4.48)

as a consequence

Convδ(ξ) ⊃ {Φ(a,x) : a ∈ [α,β]} ⇒ card(Convδ(ξ)) ≥ card([α,β]) ,

then considering the following function

h(x) =
x −α
β −α

,
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it is fulfilled that

h : [α,β]→ [0,1] ⇒ card([α,β]) = card([0,1]) = card(R) ,

and therefore

card(Convδ(ξ)) ≥ card(R) .

Finally, it is necessary to mention that fractional iterative methods may be defined in the complex
space [17], that is,

{Φ(α,x) : α ∈R \Z and x ∈Cn} . (4.49)

However, due to the part of the integral operator that fractional operators usually have, it may be
considered that in the matrix Ag,α each fractional operator oαk is obtained for a real variable [x]k, and
if the result allows it, this variable is subsequently substituted by a complex variable [xi]k, that is,

Ag,α(xi) := Ag,α(x)
∣∣∣∣∣
x−→xi

, x ∈Rn, xi ∈Cn. (4.50)

So, considering the above as well as the Theorem 1.2.6 and the Theorem 4.2.2, the following
corollary is obtained:

Corollary 4.2.3. Let Φ : (R \Z)×Cn→ C
n be an interaction function with a sequence of different values

{αi}i≥1 ∈R \Z such that defines the following set

Conv
(
Ω, {αi}i≥1

)
:=

{
Φ(α,x) ∈ Convδ (ξα) for some ξα ∈Ω : α ∈ {αi}i≥1

}
.

So, if card
(
Conv

(
Ω, {αi}i≥1

))
= M with 1 < M <∞, then Φ has a mean order of convergence of order

(at least) p in Ω, and there exists a sequence {Pi}Mi≥1 ∈ B(p;δK ) with Pi = Pi(αi), that allows defining the
following value

P :=
1
M

M∑
i=1

Pi ,

and therefore, for M large enough it is fulfilled that

∣∣∣P − p∣∣∣ < ε. (4.51)
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4.3 Approximation to the Critical Points of a Function

Let Cs(Ω) a set of functions defined as follows

Cs(Ω) :=
{
f : ∃ ∂

γ

∂xγ
f (x) ∀

∣∣∣γ ∣∣∣ ≤ s and ∀x ∈Ω
}
. (4.52)

So, it is possible to obtain the following result:

Let f :Ω ⊂R
n→R a function such that f ∈ C2(Ω) ⇒ ∃∇f (x) and ∃Hf (x) ∀x ∈Ω, (4.53)

where∇f andHf denote the gradient of f and the Hessian matrix of f respectively. So in general,
for every scalar function f : Ω ⊂ C

n → C that belongs to the set C2(Ω), it is possible to define the
following set

C(Ω, f ) := {ξ ∈Ω : ‖∇f (ξ)‖ = 0} , (4.54)

which corresponds to the set of critical points of the function f in the region Ω. On the other
hand, denoting by Re(·) the real part of a complex, by det(·) the determinant of a matrix and by
sgn(·) the sign function such that for a square matrix A

sgn(A) :=
(
sgn

(
[A]jk

))
,

it is possible to define the following functions

∆d(ξ) := sgn(det(Re(Hf (ξ)))) and ∆t(ξ) := tr(sgn(Re(Hf (ξ)))) , (4.55)

which allow defining the following sets

CM(Ω, f ) := {ξ ∈C(Ω, f ) : ∆d(ξ) = 1 and ∆t(ξ) = −n} , (4.56)

Cm(Ω, f ) := {ξ ∈C(Ω, f ) : ∆d(ξ) = 1 and ∆t(ξ) = n} , (4.57)

CS(Ω, f ) := {ξ ∈C(Ω, f ) : ∆d(ξ) = −1 and ∆t(ξ) ∈ [−n,n]} , (4.58)

which correspond respectively to the sets of local maxima, local minima, and local saddle points
of the function f in the region Ω. So, defining the following set of functions

C2
H (Ω) :=

{
f ∈ C2(Ω) : ∃ (Hf (x))−1 ∀x ∈Ω

}
, (4.59)

and considering a function f : Ω ⊂ C
n → C such that f ∈ C2

H (Ω), it is possible to construct an
iteration function ΦH,δ : (R \Z)×Cn→C

n defined as follows

ΦH,δ(α,x) := x −Hg,α(x)∇f (x), (4.60)

which corresponds to the iteration function of a hybrid fractional iterative method, where

Hg,α(x) :=
{

Ag,α(x), if ‖∇f (x)‖ > δ
(Hf (x))−1 , if ‖∇f (x)‖ ≤ δ

, (4.61)

and Ag,α is a matrix of some fractional iterative method.
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4.3.1 Examples

Let f :Ω ⊂C
2→C be a function given by the following expression

f (x) =
(
2− [x]2

1 + [x]3
1[x]2

)
cos([x]1)−

(
2− [x]2

2

)
cos([x]2)− [x]1

(
5− [x]3

2 cos([x]2)− 2sin([x]1)
)
− [x]2 (7 + 2sin([x]2)) ,

then

∇f (x) =
(
3[x]2

1[x]2 cos([x]1) + [x]3
2 cos([x]2) + [x]2

1 (1− [x]1[x]2) sin([x]1)− 5

[x]3
1 cos([x]1) + 3[x]1[x]2

2 cos([x]2)− [x]2
2 (1 + [x]1[x]2) sin([x]2)− 7

)
,

Hf (x) =

[x]1
((

[x]1 + 6[x]2 − [x]21[x]2
)
cos([x]1) + 2(1− 3[x]1[x]2) sin([x]1)

)
[x]21 (3cos([x]1)− [x]1 sin([x]1)) + [x]22 (3cos([x]2)− [x]2 sin([x]2))

[x]21 (3cos([x]1)− [x]1 sin([x]1)) + [x]22 (3cos([x]2)− [x]2 sin([x]2)) −[x]2
((

[x]2 − [x]1
(
6− [x]22

))
cos([x]2) + 2(1 + 3[x]1[x]2) sin([x]2)

) .
So, considering the following function

Rndm (x) :=

 Re(x) , if |Im(x)| ≤ 10−m

x, if |Im(x)| > 10−m
, (4.62)

it is possible to define the following iteration function

Rnd5
(
ΦH,δ(α,x)

)
:= êj Rnd5

([
ΦH,δ

]
j (α,x)

)
. (4.63)

Before continuing, it is necessary to mention that a description of the algorithm that must be
implemented when working with a fractional iterative method given by the equation (4.44) may be
found in the reference [28]. Simplified examples of how a fractional iterative method given by a
matrix Ag,α should be programmed may be found in the references [50, 51].

Example 9. Using the function (4.62), the Riemann-Liouville fractional derivative (1.14) and ∇f , it is
possible to construct an iteration function analogous to the equation (4.26) using the following matrix

Agf ,β(xi) =
(
[Agf ,β]jk(xi)

)
:=

(
∂
β(α,[xi ]k)
k [gf ]j(x)

)−1

xi
, α ∈R \Z, (4.64)

which generates a particular case of the fractional quasi-Newton method [28, 45], where gf (x) and
β(α, [xi]k) are functions defined as follows

gf (x) := ∇f (xi) +Hf (xi)x and β(α, [xi]k) :=
{
α, if |[xi]k | , 0
1, if |[xi]k | = 0

. (4.65)

So, considering following initial condition

x0 = (5.21,5.21)T with ‖∇f (x0)‖2 ≈ 1,289.4083,

the following results are obtained:
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α [xk ]1 [xk ]2 ‖xk − xk−1‖2 ‖∇f (xk )‖2 Pk ∆d (xk ) ∆t(xk ) k

1 -0.530515 6.6771554 - 0.02130862i -0.014023 + 1.72836829i 1.41E-08 9.24E-05 0.9812 -1 2 167
2 -0.516037 0.01499973 - 1.73190718i 6.6757499 - 0.04157569i 1.41E-08 9.86E-05 1.0260 -1 -2 165
3 -0.472867 0.01499966 + 1.73190711i 6.67574974 + 0.04157578i 2.45E-08 9.54E-05 1.0000 -1 -2 180
4 -0.440017 6.67715551 + 0.02130861i -0.014023 - 1.72836833i 1.41E-08 9.47E-05 1.0113 -1 2 180
5 -0.372536 -1.12922862 + 1.02480512i 3.7817693 + 0.02894647i 3.22E-07 8.23E-05 0.9960 1 -2 92
6 -0.359168 -1.12922793 - 1.02480539i 3.78176969 - 0.02894643i 1.36E-06 7.78E-05 1.0255 1 -2 92
7 -0.317767 3.68514423 - 0.05398726i -1.20114465 + 1.03004598i 4.35E-07 7.98E-05 1.0095 1 -2 89
8 -0.175657 6.66385192 + 0.00958153i -3.05535188 + 0.51526774i 1.66E-07 9.98E-05 1.0145 1 2 129
9 -0.174937 9.69844564 - 0.00485976i -1.49692201 + 1.85490018i 1.41E-08 8.99E-05 0.9812 1 -2 180

10 -0.167409 9.69844566 + 0.00485981i -1.49692201 - 1.85490019i 1.00E-08 8.76E-05 1.0000 1 -2 178
11 -0.165538 3.68514454 + 0.0539876i -1.20114479 - 1.0300467i 8.66E-07 8.57E-05 1.0144 1 -2 117
12 -0.162111 -1.47430587 + 1.85378122i 9.71215809 + 0.012692i 1.41E-08 8.26E-05 1.0313 1 -2 178
13 -0.148486 12.78190313 - 0.00664448i -3.36083258 - 1.47015693i 1.00E-08 8.71E-05 1.0192 1 2 195
14 -0.141354 -1.47430585 - 1.85378123i 9.71215813 - 0.01269197i 3.00E-08 5.73E-05 0.9966 1 -2 179
15 -0.140788 -3.01831349 + 0.5058919i 6.69924174 + 0.01613682i 3.16E-08 9.57E-05 1.0285 1 2 146
16 -0.125015 19.0075656 -7.54961078 1.41E-08 8.38E-05 1.0000 1 2 197
17 -0.119655 -4.59285859 9.73129666 3.61E-08 4.16E-05 1.0195 1 -2 111
18 -0.092015 6.66385199 - 0.00958166i -3.05535203 - 0.51526774i 2.45E-08 8.85E-05 1.0044 1 2 85
19 -0.081244 12.81002482 -7.10966547 1.41E-08 8.10E-05 1.0399 1 2 190
20 -0.075076 9.71878342 -4.62771758 2.24E-08 9.26E-05 1.0000 1 -2 97
21 -0.073120 -3.01831348 - 0.50589194i 6.69924174 - 0.01613673i 4.58E-08 7.95E-05 1.0187 1 2 82
22 -0.056190 18.99311678 -9.30049381 1.41E-08 9.76E-05 0.9812 -1 0 145
23 -0.052492 -6.39937485 9.68519629 2.24E-08 9.90E-05 0.9563 -1 0 161
24 -0.052490 -7.09665187 12.81542466 2.24E-08 7.76E-05 1.0377 1 2 113
25 -0.037197 -5.68870793 - 0.65962195i 15.8889979 - 0.00516137i 1.41E-08 2.87E-05 0.9812 1 -2 183
26 -0.030387 -9.30202535 18.99474019 1.41E-08 7.22E-05 0.9812 -1 0 162

Table 4.1: Results obtained using the fractional quasi-Newton method [45].

Therefore

P ≈ 1.0060 ∈ B (p;δK ) ,

which is consistent with the Corollary 1.2.8, since in general if ξ ∈C(Ω, f ), then it is fulfilled that (see
reference [17])

lim
x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ , 0.

Example 10. Using the iteration function (4.63) and the matrix Agf ,β given by the equation (4.64), con-
sidering following values

δ = 7 and x0 = (4.78,4.78)T with ‖∇f (x0)‖2 ≈ 770.4734,

the following results are obtained:

α [xk ]1 [xk ]2 ‖xk − xk−1‖2 ‖∇f (xk )‖2 Pk ∆d (xk ) ∆t(xk ) k

1 -0.991504 3.98115471 3.92170125 1.00E-08 1.50E-06 2.1162 1 2 55
2 -0.985320 -0.20172521 -2.13862013 1.00E-08 3.55E-08 2.0096 -1 0 184
3 -0.977534 4.76944744 0.24682585 5.21E-06 4.75E-07 2.0536 -1 2 115
4 -0.957378 -0.14249533 7.84459109 2.32E-06 1.71E-06 2.1574 -1 0 44
5 -0.931674 1.52183063 + 0.04852431i -1.07285283 + 0.62177498i 1.64E-05 6.40E-08 1.9728 -1 0 147
6 -0.910766 -0.1411895 4.75629836 5.06E-07 4.42E-07 2.0939 -1 -2 99
7 -0.902424 -1.66983169 -1.47843397 3.51E-05 6.06E-08 2.0210 1 -2 141
8 -0.796926 7.84012182 0.11780088 5.96E-05 2.18E-06 2.2020 -1 0 32
9 -0.747172 -1.47430586 - 1.85378123i 9.71215811 - 0.01269197i 5.21E-06 1.45E-05 2.0987 1 -2 193
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10 -0.739854 9.69844563 - 0.0048598i -1.496922 + 1.85490017i 4.57E-06 1.59E-05 2.1076 1 -2 190
11 -0.734400 9.69844563 + 0.0048598i -1.496922 - 1.85490017i 4.77E-06 1.59E-05 2.1051 1 -2 194
12 -0.718024 -1.47430586 + 1.85378123i 9.71215811 + 0.01269197i 5.09E-06 1.45E-05 2.1055 1 -2 172
13 -0.691512 -1.12922847 - 1.02480556i 3.78176946 - 0.02894603i 4.21E-06 5.54E-07 2.0281 1 -2 166
14 -0.654774 -0.9615658 + 0.5828065i 1.85727226 + 0.22306481i 2.46E-06 1.41E-07 1.9957 -1 0 99
15 -0.639046 0.72967089 + 0.94166299i 0.62407461 - 0.91988663i 7.18E-07 1.54E-07 2.0484 1 2 128
16 -0.616404 3.68514466 + 0.05398708i -1.20114498 - 1.03004629i 6.54E-06 6.96E-07 1.9881 1 -2 150
17 -0.598098 -1.12922847 + 1.02480556i 3.78176946 + 0.02894603i 3.10E-06 5.54E-07 2.0471 1 -2 62
18 -0.591784 3.68514466 - 0.05398708i -1.20114498 + 1.03004629i 8.24E-06 6.96E-07 2.0008 1 -2 67
19 -0.531176 6.67715546 - 0.02130875i -0.01402295 + 1.7283683i 1.41E-08 4.70E-06 1.9773 -1 2 52
20 -0.527738 12.78275364 - 0.00603578i -0.00730626 + 2.36240058i 8.25E-07 2.69E-05 2.1144 -1 2 193
21 -0.511182 1.59511265 + 0.92462709i 0.28169602 - 0.00845802i 3.61E-08 9.30E-08 1.9993 -1 2 70
22 -0.503186 0.01499973 - 1.73190712i 6.67574976 - 0.04157565i 3.33E-05 3.96E-06 2.1931 -1 -2 57
23 -0.490941 -3.34309333 + 1.46646036i 12.79048871 + 0.01073275i 7.06E-07 4.43E-05 2.1248 1 2 194
24 -0.490753 0.00737884 - 2.36289538i 12.78266688 - 0.00836806i 8.19E-07 3.00E-05 2.1172 -1 -2 199
25 -0.470183 12.78275364 + 0.00603578i -0.00730626 - 2.36240058i 8.35E-07 2.69E-05 2.1169 -1 2 200
26 -0.468001 -3.34309333 - 1.46646036i 12.79048871 - 0.01073275i 9.49E-07 4.43E-05 2.0622 1 2 186
27 -0.463959 12.78190312 - 0.00664448i -3.36083257 - 1.47015693i 3.42E-07 3.36E-05 2.1539 1 2 200
28 -0.458777 1.30993837 - 0.36023537i 0.99738945 - 0.66890573i 1.16E-06 8.98E-08 1.9828 -1 2 53
29 -0.437585 0.01499973 + 1.73190712i 6.67574975 + 0.04157565i 8.14E-05 5.27E-06 2.0388 -1 -2 57
30 -0.429119 12.78190312 + 0.00664448i -3.36083257 + 1.47015693i 2.80E-07 3.36E-05 2.1486 1 2 184
31 -0.417531 6.67715546 + 0.02130875i -0.01402295 - 1.72836831i 8.14E-05 5.37E-06 2.0768 -1 2 49
32 -0.321303 15.88192661 + 0.00033296i -1.64153442 - 2.37001819i 1.37E-07 4.16E-05 2.1186 1 -2 192
33 -0.295259 15.88518055 + 0.00474592i -5.70013516 + 0.67487422i 4.69E-08 5.96E-05 2.1502 1 -2 195
34 -0.287905 -5.68870793 + 0.65962195i 15.8889979 + 0.00516137i 7.23E-07 2.87E-05 2.0120 1 -2 177
35 -0.278601 15.88518055 - 0.00474592i -5.70013516 - 0.67487422i 1.15E-07 5.96E-05 2.0524 1 -2 197
36 -0.264047 -5.68870793 - 0.65962195i 15.8889979 - 0.00516137i 3.32E-08 2.87E-05 2.1731 1 -2 194
37 -0.263797 6.66385192 - 0.00958162i -3.05535199 - 0.51526776i 3.78E-05 5.76E-06 2.0466 1 2 110
38 -0.242447 -4.59285856 9.73129667 1.34E-07 2.16E-05 2.7985 1 -2 199
39 -0.240107 9.71878344 -4.6277176 5.48E-07 7.22E-06 2.6624 1 -2 173
40 -0.235095 -3.01831353 + 0.50589193i 6.69924181 + 0.01613676i 3.61E-08 1.43E-06 1.9762 1 2 77
41 -0.212867 6.66385192 + 0.00958162i -3.05535199 + 0.51526775i 8.78E-05 6.78E-06 1.9815 1 2 57
42 -0.211725 19.0075656 -7.54961079 1.61E-04 4.83E-05 0.7767 1 2 197
43 -0.209337 -3.01831353 - 0.50589194i 6.69924181 - 0.01613676i 7.73E-05 3.05E-06 1.9919 1 2 64
44 -0.204931 -7.53686364 19.00985885 1.00E-08 3.66E-05 2.0867 1 2 158
45 -0.181783 12.81002482 -7.10966546 1.32E-07 3.93E-05 2.2517 1 2 196
46 -0.181407 -9.30202535 18.99474019 1.00E-08 7.22E-05 2.1044 -1 0 197
47 -0.178655 -7.09665188 12.81542466 1.00E-08 4.79E-05 2.6959 1 2 188
48 -0.175623 18.99311678 -9.3004938 1.00E-08 6.54E-05 2.1290 -1 0 187
49 -0.125919 -6.39937487 9.6851963 1.81E-06 2.11E-05 2.0664 -1 0 195
50 -0.092457 9.67778512 -6.40235748 5.02E-07 2.22E-05 2.2493 -1 0 183
51 -0.076797 19.02754978 -12.95559618 1.29E-04 4.95E-05 0.9503 1 2 156

Table 4.2: Results obtained using the iteration function (4.63) with the fractional quasi-Newton
method [45].

Therefore

P ≈ 2.0692 ∈ B (p;δK ) ,

which is consistent with the Corollary 1.2.8, since in general if ξ ∈C(Ω, f ), then it is fulfilled that (see
reference [17])

lim
x→ξ

∥∥∥∥Φ (1)
H,δ(α,x)

∥∥∥∥ = 0.

Example 11. Using the Riemann-Liouville fractional derivative (1.14), it is possible to construct the fol-
lowing matrix

Aε,β(xi) =
(
[Aε,β]jk(xi)

)
:=

(
∂
β(α,[xi ]k)
k δjk + εδjk

)
xi
, α ∈R \Z, (4.66)
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which generates a particular case of the fractional pseudo-Newton method [43], where δjk is the
Kronecker delta, ε is a positive constant� 1, and β(α, [xi]k) is a function defined by the equation (4.65). So,
using the iteration function (4.63) and the matrix Aε,β given by the equation (4.66), considering following
values

ε = 10−4, δ = 13 and x0 = (14.55,14.55)T with ‖∇f (x0)‖2 ≈ 65,057.2221,

the following results are obtained:

α [xk ]1 [xk ]2 ‖xk − xk−1‖2 ‖∇f (xk )‖2 Pk ∆d (xk ) ∆t(xk ) k

1 0.997025 6.40346174 -9.68745629 7.48E-06 2.99E-05 2.0712 -1 0 11
2 0.997053 -6.8254374 -6.80736533 1.34E-06 1.17E-05 2.1970 1 -2 37
3 0.997061 9.73394944 4.59418309 3.34E-06 1.33E-05 2.1262 1 2 33
4 0.998113 4.62598971 9.72138809 2.20E-07 1.78E-05 2.8079 1 2 13
5 0.998133 -9.67933962 6.40821255 3.58E-07 3.16E-05 2.1427 -1 0 19
6 0.998185 -3.75670368 + 0.00677324i 1.14479461 - 0.90835133i 6.32E-08 8.42E-07 1.9860 1 -2 184
7 0.998189 -3.75670368 - 0.00677324i 1.14479461 + 0.90835133i 2.47E-06 8.42E-07 1.9809 1 -2 126
8 0.998229 -12.81526848 -7.09878784 3.61E-08 3.00E-05 2.1703 1 -2 22
9 0.998469 -12.6804252 -15.85472455 1.00E-08 4.54E-05 2.2093 -1 0 49

10 0.999045 1.52183063 - 0.04852431i -1.07285283 - 0.62177498i 8.25E-06 6.40E-08 1.9673 -1 0 161
11 0.999065 7.09845974 -12.81449874 7.07E-08 2.76E-05 2.2122 1 2 33
12 0.999909 9.81602358 9.80895121 2.24E-08 4.07E-05 2.1124 1 2 25
13 0.999917 -7.09665188 12.81542466 1.06E-07 4.79E-05 2.1726 1 2 26
14 0.999921 -6.80274842 6.8263687 7.69E-06 1.15E-05 2.2126 1 2 28
15 0.999925 -12.80936242 7.11220453 1.30E-07 5.55E-05 2.2710 1 2 28
16 0.999929 -9.73194065 -4.58368411 2.72E-06 5.55E-06 2.7275 1 2 62
17 0.999937 -9.81505776 -9.80760476 1.13E-04 2.80E-05 1.4237 1 2 18
18 0.999941 -4.61844557 -9.71852806 1.53E-06 1.39E-05 2.8405 1 2 61
19 0.999945 6.80674644 -6.820744 4.50E-06 1.44E-05 2.1855 1 2 176
20 0.999953 12.81002482 -7.10966546 3.41E-07 3.93E-05 2.2868 1 2 44
21 1.003393 6.82167482 6.80212518 8.31E-06 1.48E-05 2.1795 1 -2 5
22 1.004893 -0.55742729 - 0.65679566i -0.20882106 - 1.14800938i 3.11E-07 1.41E-07 2.0709 -1 0 64
23 1.004925 3.68514466 + 0.05398708i -1.20114498 - 1.03004629i 5.10E-08 6.96E-07 1.9686 1 -2 119
24 1.004969 -1.12922847 + 1.02480556i 3.78176946 + 0.02894603i 4.58E-08 5.54E-07 1.9971 1 -2 137
25 1.005025 0.72967089 - 0.94166299i 0.62407461 + 0.91988663i 2.37E-05 1.54E-07 1.9983 1 2 84
26 1.005549 0.29601303 -4.65165906 1.49E-05 4.30E-07 2.1087 -1 -2 15
27 1.005849 3.68514466 - 0.05398708i -1.20114498 + 1.03004629i 6.25E-08 6.96E-07 1.9890 1 -2 184
28 1.005937 -1.12922847 - 1.02480556i 3.78176946 - 0.02894603i 1.41E-08 5.54E-07 1.9735 1 -2 82
29 1.006421 -1.3914151 - 0.70003547i 0.17621271 + 1.00035774i 1.02E-04 1.46E-07 2.0270 -1 0 50
30 1.006437 1.30993837 - 0.36023537i 0.99738945 - 0.66890573i 4.91E-06 8.98E-08 1.9863 -1 2 44
31 1.006465 -0.55742729 + 0.65679566i -0.20882106 + 1.14800938i 6.32E-08 1.41E-07 2.1428 -1 0 38
32 1.007481 -3.95538299 -3.88543329 9.14E-05 3.64E-06 2.3031 1 2 5
33 1.008713 1.59511265 - 0.92462709i 0.28169602 + 0.00845802i 1.63E-06 9.30E-08 2.1184 -1 2 20
34 1.009697 -2.30034423 -0.45950443 4.99E-06 7.08E-08 2.1235 -1 0 6
35 1.009817 0.09238517 + 0.91135195i -1.48626899 - 0.45588717i 5.70E-07 1.37E-07 1.9727 1 -2 28
36 1.009821 0.09238517 - 0.91135195i -1.48626899 + 0.45588717i 1.41E-08 1.37E-07 2.0053 1 -2 34
37 1.009861 -1.3914151 + 0.70003546i 0.17621271 - 1.00035774i 9.45E-05 2.55E-07 2.0119 -1 0 22
38 1.010385 1.30993837 + 0.36023537i 0.99738945 + 0.66890573i 4.13E-05 8.98E-08 1.9803 -1 2 38
39 1.908362 0.72967089 + 0.94166298i 0.62407461 - 0.91988663i 8.45E-05 1.83E-07 1.9642 1 2 14
40 1.913438 1.52183063 + 0.04852431i -1.07285283 + 0.62177498i 1.10E-07 6.40E-08 1.9787 -1 0 13
41 1.918790 -1.66983169 -1.47843397 1.14E-04 6.06E-08 2.2493 1 -2 5
42 1.920778 1.59511265 + 0.92462709i 0.28169602 - 0.00845802i 4.58E-08 9.30E-08 1.9835 -1 2 17
43 1.922506 3.8890101 -3.98878888 1.22E-07 1.48E-06 2.1461 1 -2 19
44 1.928090 -3.91843903 3.94777085 1.97E-07 2.03E-06 2.0974 1 -2 75
45 1.928198 4.76944744 0.24682585 4.45E-05 4.75E-07 2.0605 -1 2 19
46 1.938338 -0.1411895 4.75629836 6.65E-06 4.42E-07 2.0695 -1 -2 12
47 2.027490 -4.63811516 -0.17366027 3.50E-07 5.12E-07 2.4473 -1 2 6
48 2.027714 -0.9615658 - 0.5828065i 1.85727226 - 0.22306481i 1.22E-06 1.41E-07 2.0016 -1 0 80
49 2.027802 -0.9615658 + 0.5828065i 1.85727226 + 0.22306481i 8.66E-07 1.41E-07 2.0016 -1 0 23
50 2.028082 3.98115471 3.92170125 4.47E-08 1.50E-06 2.0806 1 2 9
51 2.050222 0.10127937 - 0.65790456i -0.69552033 - 1.28219351i 4.24E-08 2.55E-08 1.9278 1 -2 9
52 2.892915 -0.2017252 -2.13862013 8.96E-05 1.79E-07 2.0069 -1 0 5
53 2.979539 -9.68548222 -6.40422387 1.48E-05 6.43E-06 2.0748 -1 0 43
54 2.979543 -6.40734755 -9.67742959 1.68E-05 7.33E-06 2.0878 -1 0 43
55 2.983015 6.66385192 - 0.00958162i -3.05535199 - 0.51526776i 4.88E-06 5.76E-06 1.9701 1 2 65
56 2.983279 1.07448447 + 0.94219835i -3.88986554 + 0.11532861i 7.72E-05 9.22E-07 2.0229 1 -2 92
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57 2.989991 -3.01831353 + 0.50589193i 6.69924181 + 0.01613676i 5.64E-06 1.43E-06 1.9676 1 2 101
58 2.990235 12.78190312 + 0.00664448i -3.36083257 + 1.47015693i 3.33E-06 3.36E-05 2.0443 1 2 27
59 2.990955 -3.34309333 - 1.46646036i 12.79048871 - 0.01073275i 2.29E-06 4.43E-05 2.0444 1 2 26
60 3.002283 -12.78071432 + 0.00620911i 3.36250229 + 1.47445201i 7.91E-06 1.73E-05 2.0486 1 2 38
61 3.004719 9.55477471 12.75308268 3.30E-07 1.49E-05 2.1260 -1 0 9
62 3.013455 -6.65415389 + 0.00918318i 3.06649242 + 0.56418379i 5.49E-06 4.40E-06 1.9795 1 2 90
63 3.013911 9.68717241 6.39860852 1.86E-05 7.26E-06 2.0743 -1 0 199
64 3.014343 6.40322967 9.6796959 2.04E-05 1.09E-05 2.0718 -1 0 189
65 3.982916 6.66385192 + 0.00958162i -3.05535199 + 0.51526776i 8.57E-05 5.76E-06 2.1002 1 2 87
66 3.982992 12.78190312 - 0.00664448i -3.36083257 - 1.47015693i 1.25E-05 3.36E-05 2.0505 1 2 35
67 3.983884 3.02691487 + 0.54276524i -6.68492207 + 0.01504716i 1.41E-08 5.46E-06 1.9751 1 2 117
68 3.990568 3.34433054 + 1.46955548i -12.78880218 + 0.01004339i 7.60E-07 3.97E-05 2.1391 1 2 20
69 3.990580 3.34433054 - 1.46955548i -12.78880218 - 0.01004339i 9.72E-07 3.97E-05 2.1398 1 2 23
70 3.991060 -3.01831353 - 0.50589193i 6.69924181 - 0.01613676i 9.65E-06 1.43E-06 1.9672 1 2 81

Table 4.3: Results obtained using the iteration function (4.63) with the fractional psuedo-Newton
method [43].

Therefore

P ≈ 2.0994 ∈ B (p;δK ) ,

which is consistent with the Corollary 1.2.8, since in general if ξ ∈C(Ω, f ), then it is fulfilled that (see
reference [17])

lim
x→ξ

∥∥∥∥Φ (1)
H,δ(α,x)

∥∥∥∥ = 0.

Finally, it is necessary to mention that the fractional iterative methods, such as the fractional
Newton-Raphson method, can find multiple zeros of a function using a single initial condition,
this partially solves the intrinsic problem of classical iterative methods, which is that in general,
to find N zeros of a function, N initial conditions must be provided. Due to the fractional operators
implemented which are usually non-local operators, these methods may be considered non-local
parametric iterative methods, so they have two important characteristics for both real and complex
variables:

i) The initial condition does not necessarily have to be close to the sought values due to the non-
local nature of fractional operators [43].

ii) When working in a space of N dimensions, in the case that it is necessary to change the initial
condition, unlike the classical iterative methods where in the worst case it is necessary to vary
the N components of the initial condition until obtaining a suitable value, in the fractional
fixed-point methods it is enough to vary the parameter α of the fractional operators until found
an adequate value that allows generating a sequence that converges to a sought value [27].

It is necessary to mention that, although there exists theory such as theorems, prepositions, and
corollaries of classical iterative methods that can be transferred to fractional iterative methods, most
of these results are for local iterative methods, so it is necessary to continue developing theory with
results of non-local nature such as the Corollary 4.2.3.
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4.4 Conclusions

Considering the large number of fractional operators that exist [52, 53], and since it does not seem
that their number will stop increasing soon at the time of writing this paper [54–56], the most sim-
ple and compact method to work the fractional calculus is through the classification of fractional
operators using sets which, as shown in the previous sections, allows generalizing objects of the con-
ventional calculus such as the fixed-point method in several variables, which allows generating the
method known as the fractional fixed-point method, which in turn allows generating a new type of
numerical analysis using sets [45]. It is necessary to mention that the use of sets to classify fractional
operators allows generalizing the existing results of the fractional calculus to families of operators
that fulfill some property to ensure the validity of the results to be generalized, as shown by defining
the following sets of fractional operators

mOn
x,α(g)∩

{
oαx : oαk c = 0 ∀c ∈R and ∀k ≥ 1

}
, (4.67)

mOn
x,α(g)∩

{
oαx : oαk c , 0 ∀c ∈R \ {0} and ∀k ≥ 1

}
, (4.68)

mOn
x,α(g)∩

{
oαx : oαk is a local operator ∀k ≥ 1

}
, (4.69)

mOn
x,α(g)∩

{
oαx : oαk is a non-local operator ∀k ≥ 1

}
, (4.70)

mOn
x,α(g)∩

{
oαx : oαk is a linear operator ∀k ≥ 1

}
, (4.71)

mOn
x,α(g)∩

{
oαx : oαk is a non-linear operator ∀k ≥ 1

}
. (4.72)

Furthermore, it is possible to define elements of the fractional calculus that fulfill some property
such as the following set of matrices

{
Ag,α : ∃A−1

g,α ∈ m IM∞x,α(g) and Ag,α(x) =
(
[Ag,α]jk(x)

)
:=

(
oαk [g]j (x)

)−1
}
∩

{
oαx : oαk c , 0 ∀c ∈R \ {0} and ∀k ≥ 1

}
,

(4.73)

which allows defining the fractional quasi-Newton method. On the other hand, since that each
fractional fixed-point method that generates a convergent sequence has the ability to generate an
uncountable family of fractional fixed-point methods that generate convergent sequences as shown
by the Theorem 4.2.2, and considering that determining the critical points of a scalar function is
usually one of the most recurrent problems in physics, mathematics and engineering, it becomes
almost natural to estimate numerically in a region Ω the mean order of convergence of any frac-
tional fixed-point method by determining the critical points of a scalar function. Finally, it should
be mentioned that the result of the Theorem 4.2.2 may be transferred to the theory of fractional
differential equations, resulting in a new type of theory of differential equations using sets, which
allows defining the following sets of functions for some operator sαγx ∈ Ss,γx,α(f )

Csα
(
s
αγ
x ,Ω

)
:=

{
f : ∃sαγx f (x) ∀α

∣∣∣γ ∣∣∣ ≤ s and ∀x ∈Ω
}
, (4.74)

H s
α

(
s
αγ
x ,Ω

)
:=

{
f ∈ Csα

(
s
αγ
x ,Ω

)
: sαγx f (x) ∈ L2(Ω) ∀α

∣∣∣γ ∣∣∣ ≤ s} , (4.75)

and which allow defining multidimensional fractional partial differential equations [40]. There-
fore, working with fractional operators through sets opens the possibility that fractional calculus
becomes a more extensive theory, which should be renamed as fractional calculus of sets.
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Chapter 5

Acceleration of the Order of Convergence of a
Family of Fractional Fixed-Point Methods and
its Implementation in the Solution of a
Nonlinear Algebraic System Related to
Hybrid Solar Receivers

Part of the content of this chapter was published in the journal Applied Mathematics and Compu-
tation [45].

This paper presents one way to define an uncountable family of fractional fixed-point methods
through a set of matrices that can generate a group of fractional matrix operators, as well as one way
to define groups of fractional operators that are isomorphic to the group of integers under the addi-
tion, and shows one way to classify and accelerate the order of convergence of the family of proposed
iterative methods, which may be useful to continue expanding the applications of the fractional op-
erators. The proposed method to accelerate the order of convergence is used in a fractional iterative
method, and with the obtained method are solved simultaneously two nonlinear algebraic systems
that depend on time-dependent parameters, and that allow obtaining the temperatures and efficien-
cies of a hybrid solar receiver. Finally, two uncountable families of fractional fixed-point methods
are presented, in which the proposed method to accelerate convergence can be implemented.

Keywords: Fractional Operators; Group Theory; Order of Convergence; Fractional Iterative Meth-
ods

5.1 Introduction

In one dimension, a fractional derivative may be considered in a general way as a parametric operator
of order α, such that it coincides with conventional derivatives when α is a positive integer n. So,
when it is not necessary to explicitly specify the form of a fractional derivative, it is usually denoted
as follows

dα

dxα
.
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On the other hand, a fractional differential equation is an equation that involves at least one
differential operator of order α, with (n − 1) < α ≤ n for some positive integer n, and it is said to be
a differential equation of order α if this operator is the highest order in the equation. The fractional
operators have many representations, but one of their fundamental properties is that they allow
retrieving the results of conventional calculus when α → n. So, considering a scalar function h :
R
m → R and the canonical basis of R

m denoted by {êk}k≥1, it is possible to define the following
fractional operator of order α using Einstein notation

oαx h(x) := êko
α
k h(x). (5.1)

Therefore, denoting by ∂nk the partial derivative of order n applied with respect to the k-th compo-
nent of the vector x, using the previous operator it is possible to define the following set of fractional
operators

On
x,α(h) :=

{
oαx : ∃oαk h(x) and lim

α→n
oαk h(x) = ∂nkh(x) ∀k ≥ 1

}
, (5.2)

which may be proved to be a nonempty set through the following set of fractional operators

On
0,x,α(h) :=

{
oαx : ∃oαk h(x) =

(
∂nk +µ(α)∂αk

)
h(x) and lim

α→n
µ(α)∂αk h(x) = 0 ∀k ≥ 1

}
, (5.3)

whose complement may be defined as follows

On,c
x,α(h) :=

{
oαx : ∃oαk h(x) ∀k ≥ 1 and lim

α→n
oαk h(x) , ∂nkh(x) in at least one value k ≥ 1

}
, (5.4)

and which may be considered as a generating set of sets of fractional tensor operators. For
example, considering α,n ∈ Rd with α = êk[α]k and n = êk[n]k, it is possible to define the following
set of fractional tensor operators

On
x,α(h) :=

{
oαx : ∃oαx h(x) and oαx ∈O[n]1

x,[α]1
(h)×O[n]2

x,[α]2
(h)× · · · ×O[n]d

x,[α]d
(h)

}
. (5.5)

One of the most famous fixed-point methods is the well-known Newton-Raphson method. How-
ever, it sometimes goes unnoticed that this method has the following problem related to finding
roots of polynomials in the complex space: If it is necessary to find a complex root ξ ∈ C \R of a
polynomial using the Newton-Raphson method, a complex initial condition x0 must be provided,
and if a suitable initial condition is selected, this will lead to a complex solution, but there is also the
possibility that this may lead to a real solution. If the root obtained is real, it is necessary to change
the initial condition and expect that this will lead to a complex solution, otherwise, it is necessary to
change the value of the initial condition again, this process is repeated until it finally converges to a
complex solution. The process described above is very similar to what happens when different values
α are used in fractional operators until finding a solution that fulfills some established criterion.

Considering the Newton-Raphson method from the perspective of fractional calculus, it is pos-
sible to consider that an order α remains fixed, in this case α = 1, and the initial conditions x0 are
varied until found a solution ξ that fulfills some established criterion. It is necessary to mention that
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considering a relationship between fractional calculus and the Newton-Raphson method may seem
somewhat forced at first, but the latter is characterized by the fact that when it generates divergent
sequences of complex numbers, it can sometimes lead to the creation of fractals [36], and this fea-
ture is complemented quite well with the fact that the orders of the fractional derivatives seem to be
closely related to the fractal dimension [2]. Based on the above, it is possible to consider inverting
the behavior of the order α = 1 of the derivative and the initial condition x0, that is, leaving the initial
condition x0 fixed and varying the order α of the derivative, thus obtaining the fractional Newton-
Raphson method [17, 27, 28], which is nothing other than the Newton-Raphson method using any
definition of a fractional operator that fits the function whose zeros want to be determined.

Before continuing, it is necessary to mention that due to the large number of fractional opera-
tors that may exist [52, 54, 55, 57–65], some sets must be defined to fully characterize the fractional
Newton-Raphson method. It is worth mentioning that characterizing elements of fractional calculus
through sets is the main idea behind of the methodology known as fractional calculus of sets [38].
So, considering a function h :Ω ⊂R

m→R
m, it is possible to define the following sets

mOn
x,α(h) :=

{
oαx : oαx ∈On

x,α ([h]k) ∀k ≤m
}
, (5.6)

mOn,c
x,α(h) :=

{
oαx : oαx ∈On,c

x,α ([h]k) ∀k ≤m
}
, (5.7)

mOn,u
x,α(h) := mOn

x,α(h)∪mOn,c
x,α(h), (5.8)

where [h]k :Ω ⊂R
m→R denotes the k-th component of the function h. So, it is possible to define

the following set of fractional operators

mMO∞,ux,α (h) :=
⋂
k∈Z

mOk,u
x,α(h), (5.9)

which under the classical Hadamard product it is fulfilled that

o0
x ◦ h(x) := h(x) ∀oαx ∈ mMO∞,ux,α (h). (5.10)

As a consequence, it is possible to define the following sets of matrices

mM∞x,α(h) :=
{
Ah,α = Ah,α(oαx ) : oαx ∈ mMO∞,ux,α (h) and Ah,α(x) =

(
[Ah,α]jk(x)

)
:=

(
oαk [h]j(x)

)}
, (5.11)

m IM∞x,α(h) :=
{
Ah,α ∈ mM∞x,α(h) : ∃A−1

h,α

}
, (5.12)

and therefore, the fractional Newton-Raphson method may be defined and classified through the
set of matrices m IM∞x,α(h) using the following set:

{
Ah,α : ∃A−1

h,α ∈ m IM∞x,α(h) and Ah,α(x) =
(
[Ah,α]jk(x)

)
:=

(
oαk [h]j(x)

)−1
}
. (5.13)

Furthermore, considering that when using the classical Hadamard product in general opαx ◦ o
qα
x ,

o
(p+q)α
x . Assuming the existence of a fixed set of matrices m IM∞x,α(h), joined with a modified Hadamard

product that fulfills the following property
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o
pα
i,x ◦ o

qα
j,x :=

 o
pα
i,x ◦ o

qα
j,x , if i , j (Hadamard product of type horizontal)

o
(p+q)α
i,x , if i = j (Hadamard product of type vertical)

, (5.14)

by omitting the function h, the resulting set m IM∞x,α(·) has the ability to generate a group of frac-
tional matrix operators Aα that fulfill the following equation

Aα
(
o
pα
i,x

)
◦Aα

(
o
qα
j,x

)
:=


Aα

(
o
pα
i,x ◦ o

qα
j,x

)
, if i , j

Aα

(
o

(p+q)α
i,x

)
, if i = j

, (5.15)

through the following set [38]:

mGFNR(α) :=
{
A◦rα = Aα (orαx ) : ∃A◦rα ∈ m IM∞x,α(·) ∀r ∈Z and A◦rα =

(
[A◦rα ]jk

)
:=

(
orαk

)}
. (5.16)

Where ∀A◦pi,α,A
◦q
j,α ∈ mGFNR(α), with i , j, the following property is defined

A
◦p
i,α ◦A

◦q
j,α = A◦1k,α := Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
, p,q ∈Z \ {0} , (5.17)

as a consequence, it is fulfilled that

∀A◦1k,α ∈ mGFNR(α) such that Ak,α
(
oαk,x

)
= Ak,α

(
o
pα
i,x ◦ o

qα
j,x

)
∃A◦rk,α = A◦(r−1)

k,α ◦A◦1k,α = Ak,α
(
o
rpα
i,x ◦ o

rqα
j,x

)
. (5.18)

It is necessary to mention that for each operator oαx ∈ mMO∞,ux,α (h) it is possible to define a group
[1], which is isomorphic to the group of integers under the addition, as shown by the following
theorems:

Theorem 5.1.1. Let oαx be a fractional operator such that oαx ∈ mMO∞,ux,α (h). So, considering the modified
Hadamard product given by (5.14), it is possible to define the following set of fractional matrix operators

mG(Aα (oαx )) :=
{
A◦rα = Aα (orαx ) : r ∈Z and A◦rα =

(
[A◦rα ]jk

)
:=

(
orαk

)}
, (5.19)

which corresponds to the Abelian group generated by the operator Aα (oαx ).

Proof. It should be noted that due to the way the set (5.19) is defined, just the Hadamard product of
type vertical is applied among its elements. So, ∀A◦pα ,A

◦q
α ∈ mG(Aα (oαx )) it is fulfilled that

A
◦p
α ◦A

◦q
α =

(
[A◦pα ]jk

)
◦
(
[A◦qα ]jk

)
=

(
o

(p+q)α
k

)
=

(
[A◦(p+q)

α ]jk
)

= A◦(p+q)
α , (5.20)

with which it is possible to prove that the set mG(Aα (oαx )) fulfills the following properties, which
correspond to the properties of an Abelian group:
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∀A◦pα ,A

◦q
α ,A◦rα ∈ mG(Aα (oαx )) it is fulfilled that

(
A
◦p
α ◦A

◦q
α

)
◦A◦rα = A◦pα ◦

(
A
◦q
α ◦A◦rα

)
∃A◦0α ∈ mG(Aα (oαx )) such that ∀A◦pα ∈ mG(Aα (oαx )) it is fulfilled that A◦0α ◦A

◦p
α = A◦pα

∀A◦pα ∈ mG(Aα (oαx )) ∃A◦−pα ∈ mG(Aα (oαx )) such that A◦pα ◦A
◦−p
α = A◦0α

∀A◦pα ,A
◦q
α ∈ mG(Aα (oαx )) it is fulfilled that A◦pα ◦A

◦q
α = A◦qα ◦A

◦p
α

. (5.21)

Theorem 5.1.2. Let oαx be a fractional operator such that oαx ∈ mMO∞,ux,α (h) and let (Z,+) be the group
of integers under the addition. So, the group generated by the operator Aα (oαx ) is isomorphic to the group
(Z,+), that is,

mG (Aα (oαx )) � (Z,+) . (5.22)

Proof. To prove the theorem it is enough to define a bijective homomorphism between the sets
mG (Aα (oαx )) and (Z,+). Let ψ : mG (Aα (oαx )) → (Z,+) be a function with inverse function ψ−1 :
(Z,+)→ mG (Aα (oαx )). So, the functions ψ and ψ−1 may be defined as follows

ψ (A◦rα ) = r and ψ−1(r) = A◦rα , (5.23)

with which it is possible to obtain the following results:

 ∀A
◦p
α ,A

◦q
α ∈ mG(Aα (oαx )) it is fulfilled that ψ

(
A
◦p
α ◦A

◦q
α

)
= ψ

(
A
◦(p+q)
α

)
= p+ q = ψ

(
A
◦p
α

)
+ψ

(
A
◦q
α

)
∀p,q ∈ (Z,+) it is fulfilled that ψ−1 (p+ q) = A◦(p+q)

α = A◦pα ◦A
◦q
α = ψ−1(p) ◦ψ−1(q)

. (5.24)

Therefore, from the previous results, it follows that the function ψ defines an isomorphism be-
tween the sets mG (Aα (oαx )) and (Z,+).

Then, from the previous theorems it is possible to obtain the following corollaries:

Corollary 5.1.3. Let oαx be a fractional operator such that oαx ∈ mMO∞,ux,α (h) and let (Z,+) be the group
of integers under the addition. So, considering the modified Hadamard product given by (5.14) and some
subgroup H of the group (Z,+), it is possible to define the following set of fractional matrix operators

mG (Aα (oαx ) ,H) :=
{
A◦rα = Aα (orαx ) : r ∈H and A◦rα =

(
[A◦rα ]jk

)
:=

(
orαk

)}
, (5.25)

which corresponds to a subgroup of the group generated by the operator Aα (oαx ), that is,

mG (Aα (oαx ) ,H) ≤ mG (Aα (oαx )) . (5.26)
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Corollary 5.1.4. Let h : Rm→ R
m be a function such that ∃mMO∞,ux,α (h). So, if it is fulfilled the following

condition

∀oαx ∈ mMO∞,ux,α (h) ∃mG (Aα (oαx )) ⊂ mGFNR(α), (5.27)

such that mG (Aα (oαx )) is the group generated by the operator Aα (oαx ). As a consequence, it is fulfilled
that

mGFNR(α) =
⋃

oαx ∈mMO∞,ux,α (h)

mG (Aα (oαx )) . (5.28)

On the other hand, defining Aα(h) =
(
[Aα(h)]jk

)
:=

(
[h]k

)
, it is possible to obtain the following

result:

∀A◦rα ∈ mGFNR(α) ∃Ah,rα ∈ m IM∞x,α(h) such that Ah,rα := Aα (orαx ) ◦ATα (h) , (5.29)

as a consequence, the fractional Newton-Raphson method may also be defined through the set of
fractional matrix operators mGFNR(α) using the following set:

{
A◦1α ∈ mGFNR(α) : ∃A−1

h,α = Aα (oαx ) ◦ATα (h) and A−1
h,α ∈ m IM∞x,α(h)

}
. (5.30)

Therefore, if ΦFNR denotes the iteration function of the fractional Newton-Raphson method, it is
possible to obtain the following results:

Let α0 ∈R \Z ⇒ ∀A−1
h,α0
∈ m IM∞x,α(h) ∃ΦFNR = ΦFNR(Ah,α0

) ∴ ∀Ah,α0
∃
{
ΦFNR(Ah,α) : α ∈R \Z

}
,

(5.31)

Let α0 ∈R \Z ⇒ ∀A◦1α0
∈ mGFNR(α) ∃ΦFNR = ΦFNR(Aα0

) ∴ ∀Aα0
∃{ΦFNR(Aα) : α ∈R \Z} .

(5.32)

The change from leaving the initial condition x0 fixed and varying the order α of the fractional
operators, although seemingly simple, gives the fractional Newton-Raphson method the ability to
partially solve the intrinsic problem associated with classical fixed-point methods, which is that in
general, to find N zeros of a function, N initial conditions must be provided. This is because by
varying the order α of the fractional operators, the fractional Newton-Raphson method can find N
zeros of a function using a single initial condition (see Figure 2.4). It is necessary to consider that
mentioned above is also valid for any fixed-point method that implements fractional operators in
some way, which may be named as fractional fixed-point methods or fractional iterative methods.

To finish this section, it is necessary to mention that the applications of fractional operators have
spread to different fields of science such as finance [39, 40], economics [41], number theory through
the Riemann zeta function [42,43], and in engineering with the study for the manufacture of hybrid
solar receivers [10, 44]. It is worth mentioning that there exists also a growing interest in fractional
operators and their properties for solving nonlinear algebraic systems [29–32, 38, 47–49], which is a
classical problem in mathematics, physics and engineering, which consists of finding the set of zeros
of a function f :Ω ⊂R

n→R
n, that is,
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{ξ ∈Ω : ‖f (ξ)‖ = 0} , (5.33)

where ‖ · ‖ : Rn→R denotes any vector norm, or equivalently

{ξ ∈Ω : [f ]k(ξ) = 0 ∀k ≥ 1} . (5.34)

Although finding the zeros of a function may seem like a simple problem, it is generally nec-
essary to use numerical methods of the iterative type to solve it. So, considering that fractional
iterative methods can find N solutions of a system using a single initial condition, this paper shows
an alternative way to the Aitken’s method to accelerate the order of convergence of a family of frac-
tional fixed-point methods, which consists of implementing a function in the order of the fractional
operators involved, with which it is possible to obtain an order of convergence (at least) quadratic.

5.2 Fractional Fixed-Point Method

Let f : Ω ⊂ R
n → R

n be a function with a point ξ ∈ Ω such that ‖f (ξ)‖ = 0. So, considering an
iteration function Φ : (R \Z)×Rn→ R

n, the iteration function of a fractional iterative method may
be written in general form as follows

Φ(α,x) := x −Ag,α(x)f (x), α ∈R \Z, (5.35)

where Ag,α is a matrix that depends, in at least one of its entries, on fractional operators of order
α applied to some function g : Rn→ R

n, whose particular case occurs when g = f . So, it is possible
to define in a general way a fractional fixed-point method as follows

xi+1 := Φ(α,xi), i = 0,1,2, · · · . (5.36)

Before continuing, it is worth mentioning that one of the main advantages of fractional iterative
methods is that the initial condition x0 can remain fixed, with which it is enough to vary the order
α of the fractional operators involved until generating a sequence convergent {xi}i≥1 to the value
ξ ∈ Ω. Since the order α of the fractional operators is varied, different values of α can generate
different convergent sequences to the same value ξ but with a different number of iterations. So, it
is possible to define the following set

Convδ(ξ) :=
{
Φ : lim

x→ξ
Φ(α,x) = ξα ∈ B(ξ;δ)

}
, (5.37)

which may be interpreted as the set of fractional fixed-point methods that define a convergent
sequence {xi}i≥1 to some value ξα ∈ B(ξ;δ). So, denoting by card(·) the cardinality of a set, under
certain conditions it is possible to prove the following result (see reference [38], proof of Theorem
2):

card(Convδ(ξ)) = card(R) , (5.38)

from which it follows that the set (5.37) is generated by an uncountable family of fractional fixed-
point methods. Before continuing, it is necessary to define the following proposition [17]:
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Proposition 5.2.1. Let Φ : (R\Z)×Rn→R
n be an iteration function such that Φ ∈ Convδ(ξ) in a region

Ω. So, if Φ is given by the equation (5.35) and fulfills the following condition

lim
x→ξ

Ag,α(x) =
(
f (1)(ξ)

)−1
. (5.39)

Then, Φ fulfills a necessary (but not sufficient) condition to be convergent of order (at least) quadratic
in B(ξ;δ).

Proof. If Φ is given by the equation (5.35), the k-th component of the function Φ may be written as
follows

[Φ]k(α,x) = [x]k −
n∑
j=1

[Ag,α]kj(x)[f ]j(x), (5.40)

and considering that f (1)(x) =
(
[f (1)]jl(x)

)
:=

(
∂l[f ]j(x)

)
, it is possible to obtain the following result

[Φ (1)]kl(α,x) = ∂l[Φ]k(α,x) = δkl −
n∑
j=1

(
[Ag,α]kj(x)[f (1)]jl(x) +

(
∂l[Ag,α]kj(x)

)
[f ]j(x)

)
,

where δkl denotes the Kronecker delta. On the other hand, since f has a point ξ ∈ Ω such that
‖f (ξ)‖ = 0, it follows that

[Φ (1)]kl(α,ξ) = δkl −
n∑
j=1

[Ag,α]kj(ξ)[f (1)]jl(ξ).

Then, if Φ ∈ Convδ(ξ) and has an order of convergence (at least) quadratic in B(ξ;δ), by the
Corollary 1.2.8, it is fulfilled the following condition

n∑
j=1

[Ag,α]kj(ξ)[f (1)]jl(ξ) = δkl , ∀k, l ≤ n, (5.41)

which may be rewritten more compactly as follows

Ag,α(ξ)f (1)(ξ) = In,

where In denotes the identity matrix of n×n. Therefore, any matrix Ag,α that fulfills the following
condition

lim
x→ξ

Ag,α(x) =
(
f (1)(ξ)

)−1
,

ensures that the iteration function Φ given by the equation (5.35), fulfills a necessary (but not
sufficient) condition to be convergent of order (at least) quadratic in B(ξ;δ).

72



Considering the Corollary 1.2.8 and the Proposition 5.2.1, it is possible to define the following
sets to classify the order of convergence of some fractional iterative methods:

Ord1(ξ) :=
{
Φ ∈ Convδ(ξ) : lim

x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ , 0

}
, (5.42)

Ord2(ξ) :=
{
Φ ∈ Convδ(ξ) : lim

x→ξ

∥∥∥Φ (1)(α,x)
∥∥∥ = 0

}
, (5.43)

ord1(ξ) :=
{
Φ ∈ Convδ(ξ) : lim

x→ξ
Ag,α(x) ,

(
f (1)(ξ)

)−1
or lim

α→1
Ag,α(ξ) ,

(
f (1)(ξ)

)−1
}
, (5.44)

ord2(ξ) :=
{
Φ ∈ Convδ(ξ) : lim

x→ξ
Ag,α(x) =

(
f (1)(ξ)

)−1
or lim

α→1
Ag,α(ξ) =

(
f (1)(ξ)

)−1
}
. (5.45)

On the other hand, considering that depending on the nature of the function f , there exist cases
in which the Newton-Raphson method can present an order of convergence (at least) linear [17]. So,
it is possible to obtain the following relations between the previous sets

ord1(ξ) ⊂Ord1(ξ) and ord2(ξ) ⊂Ord1(ξ)∪Ord2(ξ), (5.46)

with which it is possible to define the following sets

Ord1
2(ξ) := ord2(ξ)∩Ord1(ξ) and Ord2

2(ξ) := ord2(ξ)∩Ord2(ξ). (5.47)

5.2.1 Acceleration of the Order of Convergence of the Set Ord1
2(ξ)

Let f : Ω ⊂ R
n → R

n be a function with a point ξ ∈ Ω such that ‖f (ξ)‖ = 0, and denoting by ΦNR
to the iteration function of the Newton-Raphson method, it is possible to define the following set of
functions

Ord2
NR(ξ) :=

{
f : lim

x→ξ

∥∥∥∥Φ (1)
NR(x)

∥∥∥∥ = 0
}
. (5.48)

So, it is possible to define the following corollary:

Corollary 5.2.2. Let f : Ω ⊂ R
n→ R

n be a function such that f ∈ Ord2
NR(ξ), and let Φ : (R \Z)×Rn→

R
n be an iteration function given by the equation (5.35) such that Φ ∈ ord1(ξ). So, if Φ also fulfills the

following condition

lim
α→1

Ag,α(ξ) =
(
f (1)(ξ)

)−1
. (5.49)

Then, Φ ∈Ord1
2(ξ). Therefore, it is possible to assign a positive value δ0, and replace the order α of the

fractional operators of the matrix Ag,α by the following function
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αf ([x]k ,x) :=
{
α, if |[x]k | , 0 and ‖f (x)‖ > δ0

1, if |[x]k | = 0 or ‖f (x)‖ ≤ δ0
, (5.50)

obtaining a new matrix that may be denoted as follows

Ag,αf (x) =
(
[Ag,αf ]jk(x)

)
, α ∈R \Z, (5.51)

and with which it is fulfilled that Φ ∈Ord2
2(ξ).

It is necessary to mention that the origin of the function (5.50) arises from the need to accelerate
the order of convergence of the fractional Newton-Raphson method, which generated the method
known as the fractional Newton method, whose matrix Ag,αf corresponds to a particular case in
which g = f [17,27,28]. Finally, for practical purposes, it may be defined that if a fractional iterative
method Φ fulfills the properties of the Corollary 5.2.2 and uses the function (5.50), it may be called
a fractional iterative method accelerated. It is worth mentioning that if Φ ∈ Convδ(ξ), it is possible
to obtain a numerical estimate of its order of convergence through the following corollary [1]:

Corollary 5.2.3. Let Φ : (R \Z) × Rn → R
n be an iteration function such that Φ ∈ Convδ(ξ). So, if

Φ has an order of convergence of order (at least) p in B(ξ;1/2), for some m ∈ N, there exists a sequence
{Pi}i≥m ∈ B(p;δK ) given by the following values

Pi :=
log(‖xi − xi−1‖)

log(‖xi−1 − xi−2‖)
, (5.52)

such that it fulfills the following condition:

lim
i→∞

Pi → p,

and therefore, there exists at least one value k ≥m such that

Pk ∈ B(p;ε). (5.53)

On the other hand, it should be noted that if Φ ∈ Convδ(ξ) and ‖f (ξ)‖ = 0, it is fulfilled that

lim
i→∞
‖xi − xi+1‖ ≈ lim

i→∞
‖f (xi)‖ ,

and as a consequence, it is possible to define the following corollary, which is useful for cases in
which it is not possible to apply the Corollary 5.2.3:

Corollary 5.2.4. Let Φ : (R\Z)×Rn→R
n be an iteration function given by the equation (5.35) such that

Φ ∈ Convδ(ξ). So, if Φ has an order of convergence of order (at least) p in B(ξ;1/2), for some m ∈N, there
exists a sequence

{
Pf ,i

}
i≥m
∈ B(p;δK ) given by the following values

Pf ,i :=
log(‖f (xi)‖)

log(‖f (xi−1)‖)
, (5.54)
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such that it fulfills the following condition:

lim
i→∞

Pf ,i → p,

and therefore, there exists at least one value k ≥m such that

Pf ,k ∈ B(p;ε). (5.55)

5.3 Equations of a Hybrid Solar Receiver

Considering the notation

s = (Tcell ,Thot,Tcold ,ηcell ,ηT EG)T := ([x]1, [x]2, [x]3, [x]4, [x]5)T ,

the following expressions



a0 =
2rintercon√

f ∗AT EG
(
b
√
f ∗ +
√
AT EG

) , a1 = ηoptCgDNI, a2 = rcell + rsol +Acell

(
rcop + rcer
AT EG

+ a0

)

a3 =
Acelll

f ∗AT EGkT EG
, a4 = Tair , a5 = Acell

(
rcer
AT EG

+Rheat exch + a0

)
, a6 = −ηcell,ref γcell

a7 = ηcell,ref (1 + 25γcell) , a8 =
√

1 +ZT , a9 = 273.15

,

and the following particular values [66]:



ηopt = 0.85, rintercon = 2.331× 10−7, Cg = 800
Acell = 9× 10−6, Rheat exch = 0.5, AT EG = 5.04× 10−5

ηcell,ref = 0.43, rcell = 3× 10−6, f ∗ = 0.7
γcell = 4.6× 10−4, rsol = 1.603× 10−6, b = 5× 10−4

rcop = 7.5× 10−7, rcer = 8× 10−6, l = 5× 10−4

kT EG = 1.5, ZT = 1

.

It is possible to define the following system of equations that corresponds to the combination
of a solar photovoltaic system with a thermoelectric generator system [67, 68], which is named as a
hybrid solar receiver



[x]1 = [x]2 + a1a2 (1− [x]4)
[x]2 = [x]3 + a1a3 (1− [x]4) (1− [x]5)
[x]3 = a4 + a1a5 (1− [x]4) (1− [x]5)
[x]4 = a6[x]1 + a7

[x]5 = (a8 − 1)
(
1− [x]3 + a9

[x]2 + a9

)(
a8 +

[x]3 + a9

[x]2 + a9

)−1

, (5.56)
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whose deduction, as well as details about its interpretation, may be found in the reference [66].
Using the system of equations (5.56), it is possible to define a function f1 :Ω ⊂R

5→R
5, that is,

f1(s) :=



[x]1 − [x]2 − a1a2 (1− [x]4)
[x]2 − [x]3 − a1a3 (1− [x]4) (1− [x]5)
[x]3 − a4 − a1a5 (1− [x]4) (1− [x]5)

[x]4 − a6[x]1 − a7

[x]5 − (a8 − 1)
(
1− [x]3 + a9

[x]2 + a9

)(
a8 +

[x]3 + a9

[x]2 + a9

)−1


, (5.57)

which depends on two parameters, the direct normal irradiance (DNI) and the ambient temper-
ature (Tair). These parameters are measured in real-time at certain times of the day [66], and it is
necessary to calculate a new solution of the system (5.56) for each new pair of parameters, that is,

(DNI,Tair)
f1−→ s ∈R5.

However, to simplify the task of finding the solutions of the system (5.56), it is possible through
the consecutive substitution of the variables [x]1, [x]4, [x]5 and some algebraic simplifications, to
obtain the following transcendental system [10]:


[x]2 = [x]3 − a1a3

(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))
(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

[x]3 = a4 − a1a5
(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))

(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

, (5.58)

whose solution allows knowing the values of the variables [x]1, [x]4 and [x]5 through the following
equations



[x]1 =
[x]2 − a1a2(a7 − 1)

1 + a1a2a6

[x]4 =
a6 (a1a2 + [x]2) + a7

1 + a1a2a6

[x]5 =
(a8 − 1)([x]2 − [x]3)

a8 ([x]2 + a9) + ([x]3 + a9)

. (5.59)

Using the system of equations (5.58), it is possible to define a function f2 :Ω ⊂R
2→R

2, that is,

f2(x) :=


[x]2 − [x]3 + a1a3

(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))
(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

[x]3 − a4 + a1a5
(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))

(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

 , (5.60)

and then finding the solutions of the function (5.60), through the equations (5.59), it is possible
to construct the solutions of the function (5.57).
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5.3.1 Solutions of the Equations of a Hybrid Solar Receiver

To solve the equation (5.60) and at the same time solve the equation (5.57), a fractional fixed-point
method will be used, as well as its accelerated version through the function (5.50). Before continuing,
it is necessary to mention that for some definitions of fractional operators it is fulfilled that the
derivative of order α of a constant is different from zero (for example: Riesz, Grünwald–Letnikov,
Riemann-Liouville, etc. [6–8]), that is,

∂αk c :=
∂α

∂[x]αk
c , 0, c = constant. (5.61)

So, considering a function f :Ω ⊂R
n→R

n with a point ξ ∈Ω such that ‖f (ξ)‖ = 0, the Riemann-
Liouville fractional derivative given by the equation (1.14), and an iteration function Φ : (R \Z) ×
R
n→R

n, it is possible to define the following fractional fixed-point method

xi+1 := Φ(α,xi) = xi −Agf ,β(xi)f (xi), i = 0,1,2, · · · , (5.62)

where Agf ,β(xi) is given by the following expression

Agf ,β(xi) =
(
[Agf ,β]jk(xi)

)
:=

(
∂
β(α,[xi ]k)
k [gf ]j(x)

)−1

xi
, α ∈R \Z, (5.63)

with gf (x) and β(α, [xi]k) functions defined as follows

gf (x) := f (xi) + f (1)(xi)x and β(α, [xi]k) :=
{
α, if |[xi]k | , 0
1, if |[xi]k | = 0

. (5.64)

The fractional iterative method given by the equation (5.62) is named the fractional quasi-
Newton method. On the other hand, if it is assumed that Φ ∈ Convδ(ξ), then it is fulfilled that
Φ ∈ ord1(ξ). Furthermore, the method fulfills the following condition

lim
α→1

∂
β(α,[xi ]k)
k [gf ]j(xi) = ∂k[f ]j(xi), 1 ≤ j,k ≤ n, (5.65)

and as a consequenceΦ ∈Ord1
2(ξ). So, if it is assumed that f ∈Ord2

NR(ξ), by the Corollary 5.2.2, it
is possible to construct the fractional quasi-Newton method accelerated using the following matrix

Agf ,αf (xi) =
(
[Agf ,αf ]jk(xi)

)
:=

(
∂
αf ([xi ]k ,xi )
k [gf ]j(x)

)−1

xi
, α ∈R \Z. (5.66)

Before continuing, it is necessary to mention that a description of the algorithm that must be
implemented when working with a fractional iterative method given by the equation (5.36) may be
found in the reference [28]. On the other hand, a simplified example of how the methods given by
the matrices (5.63) and (5.66) should be programmed may be found in the reference [1]. Using the
fractional fixed-point methods defined by the matrices (5.63) and (5.66), we proceed to find three
solutions of the function (5.60) keeping fixed the following values:

δ0 = 13 and x0 = (3000,3000)T .
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Example 12. Considering by hypothesis that f2 ∈Ord2
NR(ξ), and using the following values

DNI = 900, Tair = 20, α = 0.89825,

the following iterations are obtained by using the fractional iterative methods given by the matrices
(5.63) and (5.66).

i) If Φ use Agf ,β⇒ Φ ∈Ord1
2(ξ). On the other hand, from Table 5.1 and Corollary 5.2.3, P27 ≈ 1.09 ∈

B(p;δK ), which is consistent with Corollary 1.2.8, since in general
∥∥∥Φ (1)(α,ξ)

∥∥∥ , 0, which follows
from the proof of Proposition 5.2.1. So, it is concluded that Φ has an order of convergence (at least)
linear, that is, Φ ∈Ord1(ξ).

i [xi]2 [xi]3 ‖xi − xi−1‖2 ‖f2(xi)‖2 [xi]1 [xi]4 [xi]5 ‖f1(si)‖2
1 2048.526273 2036.688326 1.35E+03 2.01E+03 2052.245932 0.02901075 0.00087668 2.01E+03
2 1378.380727 1357.837031 9.54E+02 1.33E+03 1381.592211 0.16166606 0.00214528 1.33E+03
3 914.5756647 887.7554749 6.60E+02 8.65E+02 917.4354426 0.25347627 0.00391089 8.65E+02
4 599.7868499 568.5654338 4.48E+02 5.46E+02 602.4079218 0.31578871 0.00622874 5.46E+02
5 390.7721777 356.5990844 2.98E+02 3.34E+02 393.2347526 0.35716317 0.0090235 3.34E+02
6 255.3927888 219.4044444 1.93E+02 1.97E+02 257.7527048 0.38396151 0.0120214 1.97E+02
7 170.1536777 133.2761535 1.21E+02 1.11E+02 172.4489564 0.4008346 0.01478215 1.11E+02
8 118.188164 81.23045449 7.35E+01 5.95E+01 120.4440369 0.41112117 0.01686287 5.95E+01
9 87.62585188 51.33933793 4.27E+01 2.99E+01 89.85854925 0.41717098 0.01800683 2.99E+01

10 70.31181026 35.35034092 2.36E+01 1.43E+01 72.5313783 0.42059829 0.01823343 1.43E+01
11 60.85889363 27.58761689 1.22E+01 6.66E+00 63.07129347 0.4224695 0.01782623 6.66E+00
12 55.92035933 24.22121073 5.98E+00 3.07E+00 58.12901425 0.42344708 0.01721438 3.07E+00
13 53.49709311 22.89305436 2.76E+00 1.38E+00 55.70391046 0.42392677 0.01672394 1.38E+00
14 52.38726485 22.39252245 1.22E+00 6.02E-01 54.59324061 0.42414646 0.01643587 6.02E-01
15 51.90534374 22.20463447 5.17E-01 2.55E-01 54.11095406 0.42424185 0.01629349 2.55E-01
16 51.70286627 22.13313077 2.15E-01 1.06E-01 53.90832305 0.42428193 0.01622933 1.06E-01
17 51.61937072 22.10548244 8.80E-02 4.32E-02 53.82476418 0.42429846 0.01620181 4.32E-02
18 51.58529753 22.09465371 3.58E-02 1.76E-02 53.79066515 0.42430521 0.01619031 1.76E-02
19 51.5714752 22.09037372 1.45E-02 7.12E-03 53.77683234 0.42430794 0.01618559 7.12E-03
20 51.56588734 22.0886717 5.84E-03 2.87E-03 53.77124024 0.42430905 0.01618366 2.87E-03
21 51.56363304 22.08799215 2.35E-03 1.16E-03 53.76898424 0.42430949 0.01618288 1.16E-03
22 51.56272473 22.08772013 9.48E-04 4.67E-04 53.76807524 0.42430967 0.01618256 4.67E-04
23 51.56235904 22.08761106 3.82E-04 1.88E-04 53.76770927 0.42430975 0.01618243 1.88E-04
24 51.56221188 22.08756728 1.54E-04 7.56E-05 53.767562 0.42430978 0.01618238 7.58E-05
25 51.56215268 22.0875497 6.18E-05 3.04E-05 53.76750275 0.42430979 0.01618236 3.05E-05
26 51.56212886 22.08754263 2.48E-05 1.22E-05 53.76747891 0.42430979 0.01618235 1.20E-05
27 51.56211928 22.08753979 9.99E-06 4.92E-06 53.76746933 0.42430979 0.01618235 4.72E-06

Table 5.1: Iterations generated by the fractional quasi-Newton method.

ii) If Φ use Agf ,αf ⇒ Φ ∈ Ord2
2(ξ). On the other hand, from Table 5.2 and Corollary 5.2.4, Pf ,13 ≈

2.81 ∈ B(p;δK ), which is consistent with Corollary 1.2.8, since in general
∥∥∥Φ (1)(1,ξ)

∥∥∥ = 0, which
follows from the proof of Proposition 5.2.1. So, it is concluded that Φ has an order of convergence
(at least) quadratic, that is, Φ ∈Ord2(ξ).

i [xi]2 [xi]3 ‖xi − xi−1‖2 ‖f2(xi)‖2 [xi]1 [xi]4 [xi]5 ‖f1(si)‖2
1 2048.526273 2036.688326 1.35E+03 2.01E+03 2052.245932 0.02901075 0.00087668 2.01E+03
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2 1378.380727 1357.837031 9.54E+02 1.34E+03 1381.592211 0.16166606 0.00214528 1.34E+03
3 914.5756647 887.7554749 6.60E+02 8.65E+02 917.4354426 0.25347627 0.00391089 8.65E+02
4 599.7868499 568.5654338 4.48E+02 5.46E+02 602.4079218 0.31578871 0.00622874 5.46E+02
5 390.7721777 356.5990844 2.98E+02 3.34E+02 393.2347526 0.35716317 0.0090235 3.34E+02
6 255.3927888 219.4044444 1.93E+02 1.97E+02 257.7527048 0.38396151 0.0120214 1.97E+02
7 170.1536777 133.2761535 1.21E+02 1.11E+02 172.4489564 0.4008346 0.01478215 1.11E+02
8 118.188164 81.23045449 7.36E+01 5.95E+01 120.4440369 0.41112117 0.01686287 5.95E+01
9 87.62585188 51.33933793 4.28E+01 2.99E+01 89.85854925 0.41717098 0.01800683 2.99E+01

10 70.31181026 35.35034092 2.36E+01 1.43E+01 72.5313783 0.42059829 0.01823343 1.43E+01
11 60.85889363 27.58761689 1.22E+01 6.66E+00 63.07129347 0.4224695 0.01782623 6.66E+00
12 51.56100988 22.08746493 1.08E+01 1.04E-03 53.76635909 0.42431001 0.01618182 1.04E-03
13 51.56211284 22.08753788 1.11E-03 4.13E-09 53.76746288 0.4243098 0.01618235 3.03E-07

Table 5.2: Iterations generated by the fractional quasi-Newton method accelerated.

Example 13. Considering by hypothesis that f2 ∈Ord2
NR(ξ), and using the following values

DNI = 574.319, Tair = 16.832, α = 0.8996,

the following iterations are obtained by using the fractional iterative methods given by the matrices
(5.63) and (5.66).

i) If Φ use Agf ,β⇒ Φ ∈Ord1
2(ξ). On the other hand, from Table 5.3 and Corollary 5.2.3, P26 ≈ 1.09 ∈

B(p;δK ), which is consistent with Corollary 1.2.8, since in general
∥∥∥Φ (1)(α,ξ)

∥∥∥ , 0, which follows
from the proof of Proposition 5.2.1. So, it is concluded that Φ has an order of convergence (at least)
linear, that is, Φ ∈Ord1(ξ).

i [xi]2 [xi]3 ‖xi − xi−1‖2 ‖f2(xi)‖2 [xi]1 [xi]4 [xi]5 ‖f1(si)‖2
1 2029.854772 2022.247443 1.38E+03 2.00E+03 2032.218723 0.03297214 0.00056752 2.00E+03
2 1351.035349 1337.861649 9.64E+02 1.32E+03 1353.07091 0.16730757 0.00139631 1.32E+03
3 884.5286725 867.3584839 6.63E+02 8.49E+02 886.3385526 0.25962723 0.00256042 8.49E+02
4 570.3098992 550.3428213 4.46E+02 5.32E+02 571.9677708 0.32180977 0.00410184 5.32E+02
5 363.4003476 341.5519319 2.94E+02 3.23E+02 364.9581233 0.36275628 0.00597385 3.23E+02
6 230.608119 207.585416 1.89E+02 1.89E+02 232.1016543 0.38903529 0.00799251 1.89E+02
7 147.8561494 124.2274595 1.18E+02 1.06E+02 149.3096521 0.40541155 0.0098586 1.06E+02
8 98.01126796 74.27302588 7.06E+01 5.63E+01 99.44065736 0.41527564 0.01127184 5.63E+01
9 69.13937735 45.768905 4.06E+01 2.79E+01 70.5547995 0.42098926 0.01205541 2.79E+01

10 53.13057813 30.57994962 2.21E+01 1.29E+01 54.53825576 0.42415733 0.01220761 1.29E+01
11 44.6597286 23.22992376 1.12E+01 5.69E+00 46.06330831 0.42583368 0.01190151 5.69E+00
12 40.41192388 20.07409231 5.29E+00 2.44E+00 41.81344865 0.4266743 0.01143556 2.44E+00
13 38.42463196 18.85806286 2.33E+00 1.02E+00 39.82519534 0.42706758 0.01106236 1.02E+00
14 37.56159752 18.41580876 9.70E-01 4.16E-01 38.9617434 0.42723837 0.01084908 4.16E-01
15 37.20752766 18.25657936 3.88E-01 1.65E-01 38.60750225 0.42730844 0.01074838 1.65E-01
16 37.06714943 18.19864095 1.52E-01 6.44E-02 38.46705611 0.42733622 0.01070538 6.44E-02
17 37.01251861 18.17727243 5.87E-02 2.49E-02 38.41239886 0.42734703 0.01068795 2.49E-02
18 36.99146859 18.16930635 2.25E-02 9.54E-03 38.39133866 0.42735119 0.01068108 9.54E-03
19 36.98340172 18.16631458 8.60E-03 3.65E-03 38.38326789 0.42735279 0.01067841 3.65E-03
20 36.98031974 18.16518558 3.28E-03 1.39E-03 38.38018441 0.4273534 0.01067738 1.39E-03
21 36.97914434 18.16475823 1.25E-03 5.31E-04 38.37900845 0.42735363 0.01067699 5.30E-04
22 36.97869653 18.16459616 4.76E-04 2.02E-04 38.37856042 0.42735372 0.01067684 2.02E-04
23 36.97852602 18.16453462 1.81E-04 7.69E-05 38.37838983 0.42735375 0.01067678 7.67E-05
24 36.97846112 18.16451124 6.90E-05 2.93E-05 38.3783249 0.42735377 0.01067676 2.93E-05
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25 36.97843643 18.16450235 2.62E-05 1.11E-05 38.37830019 0.42735377 0.01067675 1.10E-05
26 36.97842703 18.16449898 9.99E-06 4.23E-06 38.37829079 0.42735377 0.01067675 4.12E-06

Table 5.3: Iterations generated by the fractional quasi-Newton method.

ii) If Φ use Agf ,αf ⇒ Φ ∈ Ord2
2(ξ). On the other hand, from Table 5.4 and Corollary 5.2.4, Pf ,12 ≈

2.77 ∈ B(p;δK ), which is consistent with Corollary 1.2.8, since in general
∥∥∥Φ (1)(1,ξ)

∥∥∥ = 0, which
follows from the proof of Proposition 5.2.1. So, it is concluded that Φ has an order of convergence
(at least) quadratic, that is, Φ ∈Ord2(ξ).

i [xi]2 [xi]3 ‖xi − xi−1‖2 ‖f2(xi)‖2 [xi]1 [xi]4 [xi]5 ‖f1(si)‖2
1 2029.854772 2022.247443 1.38E+03 2.00E+03 2032.218723 0.03297214 0.00056752 2.00E+03
2 1351.035349 1337.861649 9.64E+02 1.32E+03 1353.07091 0.16730757 0.00139631 1.32E+03
3 884.5286725 867.3584839 6.63E+02 8.49E+02 886.3385526 0.25962723 0.00256042 8.49E+02
4 570.3098992 550.3428213 4.46E+02 5.32E+02 571.9677708 0.32180977 0.00410184 5.32E+02
5 363.4003476 341.5519319 2.94E+02 3.23E+02 364.9581233 0.36275628 0.00597385 3.23E+02
6 230.608119 207.585416 1.89E+02 1.89E+02 232.1016543 0.38903529 0.00799251 1.89E+02
7 147.8561494 124.2274595 1.18E+02 1.06E+02 149.3096521 0.40541155 0.0098586 1.06E+02
8 98.01126796 74.27302588 7.06E+01 5.63E+01 99.44065736 0.41527564 0.01127184 5.63E+01
9 69.13937735 45.768905 4.06E+01 2.79E+01 70.5547995 0.42098926 0.01205541 2.79E+01

10 53.13057813 30.57994962 2.21E+01 1.29E+01 54.53825576 0.42415733 0.01220761 1.29E+01
11 36.97715447 18.16441312 2.04E+01 1.19E-03 38.37701761 0.42735403 0.0106761 1.19E-03
12 36.97842127 18.1644969 1.27E-03 7.75E-09 38.37828503 0.42735378 0.01067675 2.15E-07

Table 5.4: Iterations generated by the fractional quasi-Newton method accelerated.

Example 14. Considering by hypothesis that f2 ∈Ord2
NR(ξ), and using the following values

DNI = 94.3555, Tair = 8.373, α = 0.89914,

the following iterations are obtained by using the fractional iterative methods given by the matrices
(5.63) and (5.66).

i) If Φ use Agf ,β ⇒ Φ ∈Ord1
2(ξ). On the other hand, from Table 5.5 and Corollary 5.2.3, P25 ≈ 1.1 ∈

B(p;δK ), which is consistent with Corollary 1.2.8, since in general
∥∥∥Φ (1)(α,ξ)

∥∥∥ , 0, which follows
from the proof of Proposition 5.2.1. So, it is concluded that Φ has an order of convergence (at least)
linear, that is, Φ ∈Ord1(ξ).

i [xi]2 [xi]3 ‖xi − xi−1‖2 ‖f2(xi)‖2 [xi]1 [xi]4 [xi]5 ‖f1(si)‖2
1 2026.628123 2025.393793 1.38E+03 2.02E+03 2027.016086 0.03400122 0.00009211 2.02E+03
2 1343.689808 1341.54807 9.66E+02 1.33E+03 1344.023514 0.16909715 0.0002274 1.33E+03
3 872.9738032 870.1756552 6.66E+02 8.62E+02 873.2701122 0.26221217 0.0004193 8.62E+02
4 554.9152667 551.6514102 4.50E+02 5.43E+02 555.1863071 0.32512915 0.00067737 5.43E+02
5 344.7596997 341.173768 2.97E+02 3.33E+02 345.014044 0.36670122 0.00099809 3.33E+02
6 209.3841806 205.5840939 1.92E+02 1.97E+02 209.6277698 0.39348063 0.0013556 1.97E+02
7 124.6869147 120.7550587 1.20E+02 1.12E+02 124.9237751 0.41023508 0.00170264 1.12E+02
8 73.46486534 69.46807813 7.25E+01 6.09E+01 73.69765627 0.4203676 0.00198789 6.09E+01
9 43.70741877 39.70792607 4.21E+01 3.11E+01 43.93784558 0.42625409 0.00217704 3.11E+01

10 27.24135725 23.30847331 2.32E+01 1.47E+01 27.47047589 0.42951134 0.00225857 1.47E+01
11 18.66834592 14.88366691 1.20E+01 6.33E+00 18.89678346 0.43120722 0.0022372 6.33E+00
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12 14.54219733 10.9762278 5.68E+00 2.43E+00 14.77030707 0.43202343 0.00213764 2.43E+00
13 12.74609214 9.40115093 2.39E+00 8.48E-01 12.97405918 0.43237873 0.00201715 8.48E-01
14 12.04816377 8.85012383 8.89E-01 2.80E-01 12.27607536 0.43251679 0.00193289 2.80E-01
15 11.80217299 8.67286234 3.03E-01 9.00E-02 12.03006504 0.43256545 0.0018928 9.00E-02
16 11.72049312 8.61725575 9.88E-02 2.87E-02 11.94837868 0.43258161 0.0018775 2.87E-02
17 11.69412707 8.59983785 3.16E-02 9.08E-03 11.92201054 0.43258683 0.00187224 9.08E-03
18 11.68571741 8.59436551 1.00E-02 2.87E-03 11.91360021 0.43258849 0.00187051 2.87E-03
19 11.68304848 8.59264179 3.18E-03 9.09E-04 11.91093107 0.43258902 0.00186995 9.09E-04
20 11.68220328 8.59209796 1.01E-03 2.87E-04 11.9100858 0.43258919 0.00186977 2.87E-04
21 11.68193588 8.59192623 3.18E-04 9.08E-05 11.90981838 0.43258924 0.00186972 9.09E-05
22 11.68185132 8.59187198 1.00E-04 2.87E-05 11.90973381 0.43258925 0.0018697 2.87E-05
23 11.68182459 8.59185483 3.18E-05 9.08E-06 11.90970708 0.43258926 0.00186969 9.07E-06
24 11.68181614 8.59184941 1.00E-05 2.87E-06 11.90969863 0.43258926 0.00186969 2.86E-06
25 11.68181347 8.5918477 3.17E-06 9.08E-07 11.90969596 0.43258926 0.00186969 9.01E-07

Table 5.5: Iterations generated by the fractional quasi-Newton method.

ii) If Φ use Agf ,αf ⇒ Φ ∈ Ord2
2(ξ). On the other hand, from Table 5.6 and Corollary 5.2.4, Pf ,13 ≈

2.02 ∈ B(p;δK ), which is consistent with Corollary 1.2.8, since in general
∥∥∥Φ (1)(1,ξ)

∥∥∥ = 0, which
follows from the proof of Proposition 5.2.1. So, it is concluded that Φ has an order of convergence
(at least) quadratic, that is, Φ ∈Ord2(ξ).

i [xi]2 [xi]3 ‖xi − xi−1‖2 ‖f2(xi)‖2 [xi]1 [xi]4 [xi]5 ‖f1(si)‖2
1 2026.628123 2025.393793 1.38E+03 2.02E+03 2027.016086 0.03400122 9.21E-05 2.02E+03
2 1343.689808 1341.54807 9.66E+02 1.33E+03 1344.023514 0.16909715 0.0002274 1.33E+03
3 872.9738032 870.1756552 6.66E+02 8.62E+02 873.2701122 0.26221217 0.0004193 8.62E+02
4 554.9152667 551.6514102 4.50E+02 5.43E+02 555.1863071 0.32512915 0.00067737 5.43E+02
5 344.7596997 341.173768 2.97E+02 3.33E+02 345.014044 0.36670122 0.00099809 3.33E+02
6 209.3841806 205.5840939 1.92E+02 1.97E+02 209.6277698 0.39348063 0.0013556 1.97E+02
7 124.6869147 120.7550587 1.20E+02 1.12E+02 124.9237751 0.41023508 0.00170264 1.12E+02
8 73.46486534 69.46807813 7.25E+01 6.09E+01 73.69765627 0.4203676 0.00198789 6.09E+01
9 43.70741877 39.70792607 4.21E+01 3.11E+01 43.93784558 0.42625409 0.00217704 3.11E+01

10 27.24135725 23.30847331 2.32E+01 1.47E+01 27.47047589 0.42951134 0.00225857 1.47E+01
11 18.66834592 14.88366691 1.20E+01 6.33E+00 18.89678346 0.43120722 0.0022372 6.33E+00
12 11.68178703 8.59184524 9.40E+00 2.36E-05 11.90966952 0.43258927 0.00186968 2.36E-05
13 11.68181223 8.59184691 2.53E-05 4.23E-10 11.90969472 0.43258926 0.00186969 1.41E-08

Table 5.6: Iterations generated by the fractional quasi-Newton method accelerated.

From the previous results, it is observed that there exists a considerable improvement in the
order of convergence between the matrices (5.63) and (5.66). Therefore, it may be established that it
is more efficient to solve the function (5.57) by implementing the fractional quasi-Newton method
accelerated in the function (5.60). So, by providing multiple values of the parameters DNI and
Tair , it is possible to obtain a histogram of the efficiencies of a hybrid solar receiver analogous to
the one shown in Figure 5.1. Finally, it is necessary to mention that the Corollary 5.2.2 can also be
implemented in the generalized fractional quasi-Newton method, which is obtained by using the
matrix (5.63) with the following function

ga,b,f (x) := af (xi) + f (1)(xi)(x − bxi), a,b ∈R, (5.67)

as a consequence, it is possible to define the following set of matrices
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{
Ag,α = Ag,α (oαx ) : ∃A−1

g,α ∈ n IM∞x,α(g) and oαx ∈ nO1
x,α(g)

}
∩

{
oαx : oαk c , 0 ∀c ∈R \ {0} and ∀k ≥ 1

}
, (5.68)

and therefore, it is possible to define the following sets of fractional iterative methods

{
Φ : Ag,β uses g = ga,0,f with a ∈ (0,1]

}
, (5.69){

Φ : Ag,β uses g = g1,b,f with b ∈ (0,1]
}
, (5.70)

which correspond to two uncountable families of fractional fixed-point methods in which the
Corollary 5.2.2 may be implemented. Finally, it is necessary to mention that fractional iterative
methods may be defined in the complex space [38], that is,

{Φ(α,x) : α ∈R \Z and x ∈Cn} . (5.71)

However, due to the part of the integral operator that fractional operators usually have, it may be
considered that in the matrix Ag,α each fractional operator oαk is obtained for a real variable [x]k, and
if the result allows it, this variable is subsequently substituted by a complex variable [xi]k, that is,

Ag,α(xi) := Ag,α(x)
∣∣∣∣∣
x−→xi

, x ∈Rn, xi ∈Cn. (5.72)

Therefore, it is possible to obtain the following corollaries:

Corollary 5.3.1. Let f :Ω ⊂C
n→C

n be a function such that f ∈Ord2
NR(ξ), let g : Cn→C

n be a function
such that g(1)(x) = f (1)(x) ∀x ∈ B(ξ;δ), and let Φ : (R \Z)×Cn→C

n be an iteration function given by the
equation (5.35). So, for each operator oαx ∈ nO1

x,α(g) such that Aα (oαx ) ∈ nGFNR(α), there exists the matrix
A−1
g,α = Aα (oαx ) ◦ATα (g) such that it fulfills the following condition

lim
α→1

Ag,α(x) =
(
f (1)(x)

)−1
∀x ∈ B(ξ;δ). (5.73)

As a consequence, by the Corollary 5.2.2, if Φ
(
Ag,α

)
∈Ord1

2 (ξ) ⇒ Φ
(
Ag,αf

)
∈Ord2

2 (ξ).

Corollary 5.3.2. Let f :Ω ⊂C
n→C

n be a function such that f ∈Ord2
NR(ξ), let g : Cn→C

n be a function
such that g(1)(x) = f (1)(x) ∀x ∈ B(ξ;δ), and let Φ : (R \Z) ×Cn → C

n be an iteration function given by

the equation (5.35). So, for each finite sequence of operators
{
oαk,x

}N
k=1
∈ nO1

x,α(g) such that it fulfills the
following conditions

lim
α→1

(
oα1,x + oα2,x + · · ·+ oαN,x

)
=N∇x and Aα

(
oα1,x + oα2,x + · · ·+ oαN,x

)
∈ nGFNR(α), (5.74)

where ∇x denotes the gradient operator. It is possible to construct the following matrix

A−1
g,α =

1
N
Aα

(
oα1,x + oα2,x + · · ·+ oαN,x

)
◦ATα (g). (5.75)

As a consequence, by the Corollary 5.2.2, if Φ
(
Ag,α

)
∈Ord1

2 (ξ) ⇒ Φ
(
Ag,αf

)
∈Ord2

2 (ξ).
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Corollary 5.3.3. Let f : Ω ⊂ C
n → C

n be a function such that f ∈ Ord2
NR(ξ), let {gk}Nk=1 be a finite

sequence of functions gk : Cn→C
n such that it fulfills the following condition

(
g

(1)
1 + g(1)

2 + · · ·+ g(1)
N

)
(x) =Nf (1)(x) ∀x ∈ B(ξ;δ), (5.76)

and let Φ : (R \Z) × Cn → C
n be an iteration function given by the equation (5.35). So, for each

fractional operator oαx that fulfills the following conditions

oαx ∈
N⋂
k=1

nO1
x,α (gk) and Aα (oαx ) ◦ATα (g) ∈ n IM∞x,α(g), (5.77)

where g = g1 + g2 + · · ·+ gN . It is possible to construct the following matrix

A−1
g,α =

1
N
Aα (oαx ) ◦ATα (g1 + g2 + · · ·+ gN ). (5.78)

As a consequence, by the Corollary 5.2.2, if Φ
(
Ag,α

)
∈Ord1

2 (ξ) ⇒ Φ
(
Ag,αf

)
∈Ord2

2 (ξ).

Corollary 5.3.4. Let f : Ω ⊂ C
n → C

n be a function such that f ∈ Ord2
NR(ξ), let {gk}Nk=1 be a finite

sequence of functions gk : Cn→ C
n such that it defines a finite sequence of operators

{
oαk,x

}N
k=1

through the
following condition

oαk,x ∈ nMO∞,ux,α (gk) ∀k ≥ 1, (5.79)

and let Φ : (R \Z)×Cn→ C
n be an iteration function given by the equation (5.35). So, if there exists

a matrix AN,α such that it fulfills the following conditions

∃A−1
N,α =

N∑
k=1

Aα
(
oαk,x

)
◦ATα (gk) and lim

α→1
AN,α(x) =

(
f (1)(x)

)−1
∀x ∈ B(ξ;δ). (5.80)

As a consequence, by the Corollary 5.2.2, if Φ
(
AN,α

)
∈Ord1

2 (ξ) ⇒ Φ
(
AN,αf

)
∈Ord2

2 (ξ).

5.4 Conclusions

In all the examples shown, a decrease in the number of iterations necessary to converge to the so-
lutions is observed when implementing the function (5.50) in the fractional quasi-Newton method,
which means that the generated sequences show an acceleration in their order of convergence, which
was to be expected given the Corollary 5.2.2. The fractional fixed-point methods, such as the frac-
tional Newton-Raphson method, can find multiple zeros of a function using a single initial condition,
this partially solves the intrinsic problem of classical iterative methods, which is that in general, to
find N zeros of a function, N initial conditions must be provided. Due to the fractional operators
implemented, these methods may be considered non-local parametric iterative methods, so they
have two important characteristics [38]:
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i) The initial condition does not necessarily have to be close to the sought values due to the non-
local nature of fractional operators .

ii) When working in a space of N dimensions, in the case that it is necessary to change the initial
condition, unlike the classical iterative methods where, in the worst case, it is necessary to vary
the N components of the initial condition until a suitable value is obtained, in the fractional
fixed-point methods, it is enough to vary the parameter α of the fractional operators until an
adequate value is found that allows generating a sequence that converges to a sought value.

The above features, make the fractional fixed-point methods an ideal numerical tool for work-
ing with nonlinear algebraic equation systems that vary with time-dependent parameters, as is the
case of the functions (5.57) and (5.60), which allows studying the behavior of temperatures and
efficiencies of a hybrid solar receiver [10,44]. Due to many nonlinear algebraic systems related to en-
gineering and physics are often related to time-dependent parameters. Having a way to classify and
accelerate the order of convergence of fractional fixed-point methods through the Corollary 5.2.2,
may become a fundamental piece to continue expanding the applications of fractional operators.

Figure 5.1: Histogram and density curve of the efficiency of a hybrid solar receiver obtained from
a simulation corresponding to a period of thirty days, which is equivalent to 2410 pairs of pa-
rameters (DNI,Tair) randomly generated on the domain [12,958] × [11,45]. The selected domain
is based on data measured in real-time at the Center for Advanced Studies in Energy and Envi-
ronment (CEAEMA) [44, 66]. The values generated for the simulation presented the mean values
mean(DNI) = 662.35 and mean(Tair) = 31.28, with sample standard deviations std(DNI) = 257.83
and std(Tair) = 6.11, while the values of the efficiencies were obtained through the solutions of the
function (5.60) using the fractional quasi-Newton method accelerated.
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Chapter 6

Numerical Solution Using Radial Basis
Functions for Multidimensional Fractional
Partial Differential Equations of Type
Black-Scholes

Part of the content of this chapter was published in the journal Computational and Applied Math-
ematics [40].

In this paper, as far as the authors know, for the first time a one-dimensional partial differen-
tial model is generalized using fractional differential operators and the same principle that provides
the dimensional invariance of the radial basis functions methodology, resulting in a multidimen-
sional fractional partial differential model that can be solved using a numerical scheme of radial
basis functions. A radial basis functions scheme is proposed to solve numerically, on different node
configurations, multidimensional fractional partial differential equations, both in space and in time.
Using the QR factorization, a way to reduce the condition number of the interpolation matrices of
the proposed scheme is presented, the resulting scheme is used to numerically solve the diffusion
equation that may be obtained from the Black-Scholes model, as well as some generalizations of this
diffusion model with fractional differential operators and multiple dimensions. The Caputo frac-
tional derivative is discretized with an order error O(dtn−α+1), with (n− 1) < α ≤ n. The examples of
fractional partial differential equations that are presented involve the Caputo fractional operator in
the temporal part due to the memory phenomenon, and the Riemann-Liouville fractional operator
in the spatial part due to the property of nonlocality.

Keywords: Fractional Differential Equations, Meshless Methods, Black-Scholes Equations.

6.1 Introduction

A fractional derivative is an operator that generalizes the ordinary derivative, in the sense that if

dα

dxα
,

denotes the differential of order α, it can take values α ∈R and the first derivative is the particu-
lar case when α = 1. On the other hand, a fractional differential equation is an equation that involves
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at least one differential operator of order α, with (n − 1) < α ≤ n for some positive integer n, and it
is said to be a differential equation of order α if this operator is the highest order in the equation.
The growing interest in fractional calculus has been motivated by applications of fractional equa-
tions in different areas of research such as magnetic field theory, fluid dynamics, electrodynamics,
multidimensional processes, etc. One of the most popular examples is the convection-diffusion equa-
tions [69–72], in which the solutions may be interpreted as a probability distribution of one or more
underlying stochastic processes [39]. The applications of fractional operators have been extended to
other fields such as finance [39, 73], economics [12, 41], the Riemann zeta function [42, 43], and also
in the study for the manufacture of hybrid solar receivers [10,11,44,51]. It should be mentioned that
there is also a growing interest in fractional operators and their properties for the solution of nonlin-
ear systems [17, 27–31, 46, 50]. Stochastic processes in financial mathematics may be modeled using
Wiener processes or Brownian motion, leading to diffusion partial differential equations. But, if the
stochastic process is heavy-tailed rather than Gaussian, then the governing equations are fractional
partial differential equations [74].

An option is a security that gives the right to buy or sell an asset, subject to certain conditions,
within a specific period of time. In the financial markets, the selection and utilization of options
are one of the most used tools, so it is of the utmost importance to understand the methods that are
used to approach the task of price options [75]. An American option is one that can be exercised
at any time up to the expiration date of the option, while a European option is one that can only
be exercised at a certain future date. When the price option occurs, it is necessary to have a model
to describe the approximate behavior of the underlying asset. One of the most successful models
to fulfill this task was proposed in 1793 by Fischer Black and Myron Scholes [76], which was later
presented by Robert C. Merton in one of their publications in that same year [77], which is known
by the name of Black-Scholes model (or sometimes Black-Scholes-Merton model). This model is
based on the construction of a risk-free portfolio by taking positions in bonds (cash), option, and
the underlying value, with which it is intended to describe the behavior of the underlying assets in
price options. The Black-Scholes model is given by the following partial differential equation (with
a source term fI ), whose details, as well as its deduction, may be found in the reference [78]


∂
∂τ
f (S,τ) +

1
2
σ̃2S2 ∂

2

∂S2 f (S,τ) + r̃S
∂
∂S
f (S,τ)− r̃f (S,τ) = fI (S,τ), (S,τ) ∈ Ω̃× D̃,

f (S,τ) = fB(S,τ), (S,τ) ∈ ∂Ω̃× D̃,
f (S,τ0) = f0(S), S ∈ Ω̃,

(6.1)

with Ω̃ and D̃ subsets of R≥0. The Black-Scholes model is generally used for the valuation of
European or American call and put options on a stock that does not pay dividends, and has been
widely used due to the accuracy and efficiency it presents in predicting option prices. Consequently,
this model has been of utmost importance in generating considerable growth in options trading. It
is necessary to mention that obtaining a closed-form solution for the Black-Scholes model depends
on the solution of the heat diffusion equation. Therefore, it is important at this point to transform
the Black-Scholes equation to a diffusion equation through a change of variables. Considering D̃ a
finite interval and the following change of variables [79]

τ = tm − t and S = ex,

it is possible to rewrite the equation (6.1) as the following diffusion equation

86




∂
∂t
u(x, t)− 1

2
σ̃2 ∂

2

∂x2u(x, t)−
(
r̃ − 1

2
σ̃2

) ∂
∂x
u(x, t) + r̃u(x, t) = uI (x, t), (x, t) ∈Ω×D,

u(x, t) = uB(x, t), (x, t) ∈ ∂Ω×D,
u(x, t0) = u0(x), x ∈Ω.

(6.2)

Then theoretically, having found the solution of closed-form to the diffusion equation, it is pos-
sible to transform it to the solution of the Black-Scholes equation [80]. Due to the importance of the
Black-Scholes model, in recent years several methods have been suggested to solve it numerically,
among which the methods that involve the methodology of radial basis functions stand out [81–83],
since these methods are independent of the dimensions of the problems to be solved, which is a
characteristic they acquire due to the fact that the radial basis functions are constructed in terms of
a distance, which also gives them the characteristic of being meshless methods [83, 84]. It should
be mentioned that a complete study of the Black-Scholes model goes beyond the purpose of this
document, our interest will focus only on finding the numerical solution of some variations of the
previous model with fractional operators. Before continuing it is necessary to define the following
standardization factor

λαx := 1[x]α−n with n = dαe,

where [x] denotes the units of the variable x, and whose purpose is to guarantee that the units of
the fractional derivatives are the same as the integer derivatives, that is,

[
λαx

∂α

∂xα

]
=

[
∂n

∂xn

]
,

then using the same principle that provides the dimensional invariance to the numerical schemes
of radial basis functions, the equation (6.2) may be generalized considering fractional operators and
larger dimensions using the following expression


λαt

∂α

∂tα
u(x, t)−Lβ,ru(x, t) = uI (x, t), (x, t) ∈Ω×D,
u(x, t) = uB(x, t), (x, t) ∈ ∂Ω×D,
u(x, t0) = u0(x), x ∈Ω,

(6.3)

with

Lβ,r :=
1
2
σ̃2λ

β+1
r

∂β+1

∂rβ+1 +
(
r̃ − 1

2
σ̃2

)
λ
β
r
∂β

∂rβ
− r̃ , (6.4)

where 0 < α,β ≤ 1 and r = ‖x‖2 with x ∈ R
d . It should be noted that when α = β = d = 1, the

equation (6.3) coincides with the equation (6.2). The equation (6.3) falls into the category of a bi-
fractional Black-Scholes equation [85,86], with the addition that it extends to multiple dimensions by
considering the operator Lβ,r in terms of a distance, with which it becomes a dimensional invariant
operator analogously to the numerical schemes of radial basis functions. It is necessary to mention
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that with the discovery of the fractal assembly for stochastic processes, fractional partial differential
equations have been extended in financial theory [85–88], in these fractional financial models the
standard Brownian movement involved in classical models is replaced by the fractional Brownian
movement, which has the characteristic of not being a semi-martingale, which has as a consequence
that Itô’s theory of stochastic integrals cannot be applied directly. To avoid this problem, it is possible
to try to replace the Itô integral with a version of the pathwise Riemann-Stieltjes integral, obtaining a
resulting model of option values that admits arbitrage. With which it can be concluded that arbitrage
opportunities exist in fractional Black-Scholes models [75, 89].

Due to the fact that fractional operators have the property of non-locality and in some cases, such
as the Caputo fractional operator, they have the memory phenomenon, various researchers have
taken on the task of generalizing the model of Black-Scholes making use of fractional operators, as
is the case of the bi-fractional Black-Scholes model [85, 86], from which particular cases such as the
Black-Scholes model of fractional time are derived [75, 79]. Fractional order models of the financial
field have attracted many researchers, because the properties of fractional operators in conjunction
with the Black-Scholes model seem to provide a way to study the great volatility of the stock market.
However, due to the memory phenomenon of fractional operators, determining an exact solution for
the different fractional Black-Scholes models is not an easy task, so it is extremely important to have
an easily implemented numerical scheme that allows solving the bi-fractional Black-Scholes model
for being one of the most general models. In the following sections, the necessary parts will be
given to building in as much detail as possible a numerical scheme of radial basis functions, which
is easy to implement and which allows determining the numerical solution of the equation (6.3)
in different node configurations. Furthermore, due to the dimensional invariance of the numerical
schemes of the radial basis functions, taking Lβ,r → L into the equation (6.3) with L an arbitrary
linear operator bounded on Ω, the proposed scheme can be used to numerically solve (fractional)
partial differential equations analogous to the system (6.3) for different types of operators L, both
for the one-dimensional case and for the multidimensional case.

6.2 Meshless Methods

The meshless methods were created with the goal of eliminating some of the difficulties associated
with constructing a mesh to generate a numerical approximation. In meshless methods, the approx-
imation is built only from the nodes and this generates a computational time saving, since no time
is wasted creating a mesh suitable for the problem we are trying to solve. One of the first meshless
method was the Smoothed Particle Hydrodynamics Method [90, 91], designed to solve problems in
astrophysics and, later, in fluid dynamics.

6.2.1 Interpolation with Radial Basis Functions

Let
{
(xj ,uj)

}Np
j=1

be a set of values, where (xj ,uj) ∈ Ω × R ∀j ≥ 1 with Ω ⊂ R
d . The interpolation

problem in meshless methods is about finding a continuous function σ :Ω ⊂R
d →R, such that

σ (xj) = uj , ∀j ∈
{
1,2, · · · ,Np

}
. (6.5)

In general, for the interpolation problem a function σ is proposed as a linear combination using
constants to be determined λj ∈R and known base functions Bj :Ω ⊂R

d →R, that is
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σ (x) =
Np∑
j=1

λjBj(x),

then, from the interpolation condition (6.5), the following matrix system is obtained


B1(x1) B2(x1) · · · BNp(x1)
B1(x2) B2(x2) · · · BNp(x2)
...

...
. . .

...
B1(xNp) B2(xNp) · · · BNp(xNp)



λ1
λ2
...
λNp

 =


u1
u2
...
uNp

 , (6.6)

which may be written in compact form as

GΛ =U,

where Gjk = Bk(xj), Λj = λj and Uj = uj . It is said that the interpolation problem (6.6) is well
posed, that is, the solution to the problem exists and is unique, if and only if the matrix G is non-
singular.

The base functions Bj are generally polynomial and trigonometric functions, which are computa-
tionally expensive to deal with larger-dimensional problems due to their dependence on geometric
complexity. On the other hand, radial basis functions are constructed in terms of a distance, which
makes them independent of the dimension of the problems, which gives them a clear advantage over
other base functions. Before continuing it is necessary to have the following definition:

Definition 6.2.1. Let Φ : Rd → R be a function. Then, Φ is called radial, if there exists a function
φ : R≥0→R, such that

Φ(x) = φ(‖x‖),

where ‖ · ‖ : Rd →R denotes any vector norm (generally the Euclidean norm).

Let
{
xj

}Np
j=1

be a set of (random) nodes, then it is possible to construct a set of radial functions{
Φ(x,xj)

}Np
j=1

, with

Φ(x,xj) = φ
(∥∥∥x − xj∥∥∥) ,

therefore it is possible to generate a radial interpolant to implement the condition (6.5) as follows

σ (x) =
Np∑
j=1

λjΦ(x,xj). (6.7)

The methodology based on radial basis functions, proposed by Hardy [92], arises from the need
to apply multivariate interpolation in cartography problems using randomly dispersed nodes. Later,
Kansa [22, 23] proposed to consider the analytical derivatives of radial basis functions to develop
numerical schemes to solve partial differential equations.
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6.2.2 Solution of Differential Equations with Radial Basis Functions

In this section we will give a brief introduction of how the radial basis functions methodology is used
to solve a fractional partial differential equation, in the references [3,24,93–95], it is possible to find
more information and references to deepen the subject. Consider the following partial differential
equation


λαt

C
0D

α
t u(x, t)−Lβ,ru(x, t) = uI (x, t), (x, t) ∈Ω×D,

u(x, t) = uB(x, t), (x, t) ∈ ∂Ω×D,
u(x, t0) = u0(x), x ∈Ω,

(6.8)

where the subscripts I and B refer to the interior and the border of the domain respectively. For
the moment we focus on the fractional differential operator at interior of domain:

λαt
C
0D

α
t u(x, t)−Lβ,ru(x, t) = uI (x, t),

using the following notation


δα := λαt

δt−α

Γ (2−α)
,

umI (x) := uI (x, tm),

Oα(x) := O
(
x,dt2−α

)
,

and considering (1.22), we obtain that

δα

um(x)− cα,m−1u
0(x)−

m−1∑
k=1

(
cα,k−1 − cα,k

)
um−k(x)

−Lβ,rum(x) = umI (x) +Omα (x),

assuming m ≥ 1, we can write the previous expression as follows

(
δα −Lβ,r

)
um(x) = umI (x) + δα

cα,m−1u
0(x) +

(
1− δm−1,0

)m−1∑
k=1

(
cα,k−1 − cα,k

)
um−k(x)

+Omα (x), (6.9)

with δm−1,0 the Kronecker delta and umI (x) = uI (x, tm). The superscript in Omα is to indicate that
it is the associated error of the approximation (1.22) to the time step m. As a consequence of the
memory phenomenon of the fractional operator in time

Omα (x) = Omα
(
x,Om−1

α (x),Om−2
α (x), · · · ,O1

α(x)
)
, (6.10)

so it is necessary to be careful with the value chosen for m, a very high value (that is, 0 < dt� 1)
could lead to an error with an order of magnitude greater than expected. Once the equation (6.9)
is obtained, it is necessary to define the conditions from which the values um(x) are bounded, with
which it is possible to determine its stability and convergence, as shown in the references [82–84].
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Before continuing, we need to consider the following multi-index notation. Let N0 be the set N∪{0},
if γ ∈Nd

0 and x ∈Rd , then


∣∣∣γ ∣∣∣ :=

d∑
k=1

γk ,

∂γ

∂xγ
:=

∂|γ|

∂x
γ1
1 ∂x

γ2
2 · · ·∂x

γd
d

,

considering Ω ⊂ R
d and using the previous notation, it is possible to define the following set of

functions

H s(Ω) :=
{
f (x) ∈ Cs(Ω) :

∂γ

∂xγ
f (x) ∈ L2(Ω) ∀

∣∣∣γ ∣∣∣ ≤ s} , (6.11)

it should be noted that in general, if 0 < β ≤ 1, it is fulfills that

lim
β→1
Lβ,rf (x) −→L1,rf (x), (6.12)

then if f (x) ∈H2(Ω), there exists c > 0 such that

∥∥∥Lβ,rf (x)
∥∥∥ ≤ c∥∥∥L1,rf (x)

∥∥∥ , (6.13)

considering the above it is possible to prove the following proposition

Proposition 6.2.2. Let
{
uj(x)

}m
j=1

be a sequence, defined by (6.9) on a domain Ω ⊂ R
d , with uj(x) ∈

H2(Ω) ∀j ≥ 1. Then for all 0 < α,β ≤ 1, it is fulfills that

∥∥∥δαuj(x)
∥∥∥ ≤ M

cα,j−1
+
∥∥∥δαu0(x)

∥∥∥ , j = 1,2, · · · ,m, (6.14)

where

M = max
1≤k≤m

{∥∥∥ukI (x)
∥∥∥+

∥∥∥Lβ,ruk(x)
∥∥∥+

∥∥∥Okα(x)
∥∥∥} .

Proof. We proceed to prove (6.14) by induction:

i) For the case j = 1, from (6.9) we have that

(
δα −Lβ,r

)
u1(x) = u1

I (x) + δαu
0(x) +O1

α(x),

then
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∥∥∥∥(δα −Lβ,r)u1(x)
∥∥∥∥ ≤ ∥∥∥u1

I (x)
∥∥∥+

∥∥∥δαu0(x)
∥∥∥+

∥∥∥O1
α(x)

∥∥∥ , (6.15)

on the other hand, considering that u1(x) ∈H2(Ω)

δαu
1(x) =

(
δα −Lβ,r

)
u1(x) +Lβ,ru1(x),

then

∥∥∥δαu1(x)
∥∥∥ ≤ ∥∥∥∥(δα −Lβ,r)u1(x)

∥∥∥∥+
∥∥∥Lβ,ru1(x)

∥∥∥ , (6.16)

as a consequence of (6.15) and (6.16), we obtain that

∥∥∥δαu1(x)
∥∥∥ ≤ ∥∥∥u1

I (x)
∥∥∥+

∥∥∥Lβ,ru1(x)
∥∥∥+

∥∥∥O1
α(x)

∥∥∥+
∥∥∥δαu0(x)

∥∥∥ ,
therefore

∥∥∥δαu1(x)
∥∥∥ ≤ M

cα,0
+
∥∥∥δαu0(x)

∥∥∥ . (6.17)

ii) For the case 2 ≤ j ≤m− 1, we assume by induction hypothesis that it is fulfills that

∥∥∥δαuj(x)
∥∥∥ ≤ M

cα,j−1
+
∥∥∥δαu0(x)

∥∥∥ . (6.18)

iii) For the case j =m, from (6.9) we have that

(
δα −Lβ,r

)
um(x) = umI (x) + δα

cα,m−1u
0(x) +

m−1∑
k=1

(
cα,k−1 − cα,k

)
um−k(x)

+Omα (x),

in addition to the Proposition 1.1.4, we have that 0 < ck+1 < ck if 0 ≤ k <∞, then

∥∥∥∥(δα −Lβ,r)um(x)
∥∥∥∥ ≤ ∥∥∥umI (x)

∥∥∥+ cα,m−1

∥∥∥δαu0(x)
∥∥∥+

m−1∑
k=1

(
cα,k−1 − cα,k

)∥∥∥δαum−k(x)
∥∥∥+ ‖Omα (x)‖ , (6.19)

on the other hand, considering that um(x) ∈H2(Ω)
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δαu
m(x) =

(
δα −Lβ,r

)
um(x) +Lβ,rum(x),

then

‖δαum(x)‖ ≤
∥∥∥∥(δα −Lβ,r)um(x)

∥∥∥∥+
∥∥∥Lβ,rum(x)

∥∥∥ , (6.20)

as a consequence of (6.19) and (6.20), we obtain that

‖δαum(x)‖ ≤
∥∥∥umI (x)

∥∥∥+
∥∥∥Lβ,rum(x)

∥∥∥+ ‖Omα (x)‖+ cα,m−1

∥∥∥δαu0(x)
∥∥∥+

m−1∑
k=1

(
cα,k−1 − cα,k

)∥∥∥δαum−k(x)
∥∥∥ ,

then

‖δαum(x)‖ ≤M + cα,m−1

∥∥∥δαu0(x)
∥∥∥+

m−1∑
k=1

(
cα,k−1 − cα,k

)∥∥∥δαum−k(x)
∥∥∥ ,

as a consequence of the induction hypothesis (6.18)

‖δαum(x)‖ ≤M + cα,m−1

∥∥∥δαu0(x)
∥∥∥+

m−1∑
k=1

(
cα,k−1 − cα,k

)( M
cα,m−k−1

+
∥∥∥δαu0(x)

∥∥∥) ,
and from the Proposition 1.1.4, we have that 0 < cm−1 < cm−k−1 if 1 ≤ k ≤m− 1, therefore

‖δαum(x)‖ ≤M + cα,m−1

∥∥∥δαu0(x)
∥∥∥+

m−1∑
k=1

(
cα,k−1 − cα,k

)( M
cα,m−1

+
∥∥∥δαu0(x)

∥∥∥)
=M + cα,m−1

∥∥∥δαu0(x)
∥∥∥+

(
cα,0 − cα,m−1

)( M
cα,m−1

+
∥∥∥δαu0(x)

∥∥∥)
=

M
cα,m−1

+
∥∥∥δαu0(x)

∥∥∥ . (6.21)

From the equation (6.9) and considering the boundary of the domain, we obtain the following
system

L̃α,β,rum(x) = ũmα,IB(x) +Omα,Ω(x), (6.22)
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where

L̃α,β,rum(x) :=
{ (

δα −Lβ,r
)
um(x), if x ∈Ω,

um(x), if x ∈ ∂Ω,

ũmα,IB(x) :=

 umI (x) + δα

cα,m−1u
0(x) +

(
1− δm−1,0

)m−1∑
k=1

(
cα,k−1 − cα,k

)
um−k(x)

 , if x ∈Ω,

umB (x), if x ∈ ∂Ω,

Omα,Ω(x) :=
{
Omα (x), if x ∈Ω,

0, if x ∈ ∂Ω.

Now considering a radial interpolant

σm(x) =
Np∑
j=1

λmj Φ(x,xj),

and a set of (random) nodes
{
xj

}Np
j=1
⊂ Ω. Then, substituting the interpolant σm in the equation

(6.22), for each value of xj , an interpolation condition analogous to (6.5) is obtained. Therefore we
obtain the following matrix system


L̃α,β,rΦ11 L̃α,β,rΦ12 · · · L̃α,β,rΦ1Np

L̃α,β,rΦ21 L̃α,β,rΦ22 · · · L̃α,β,rΦ2Np
...

...
. . .

...
L̃α,β,rΦNp1 L̃α,β,rΦNp2 · · · L̃α,β,rΦNpNp



λm1
λm2
...
λmNp

 =


ũmα,IB,1 +Omα,Ω,1
ũmα,IB,2 +Omα,Ω,2

...
ũmα,IB,Np +Omα,Ω,Np

 , (6.23)

where


L̃α,β,rΦij = L̃α,β,rΦ(xi ,xj),

ũmα,IB,j = ũmα,IB(xj),

Omα,Ω,j = Omα,Ω(xj),

under the assumption that the above matrix is invertible, the interpolant may be written as

σm(x) =
Np∑
j=1

λmj Φ(x,xj) =
Np∑
j=1

(
λ̃mj + Õmα,Ω,j

)
Φ(x,xj),

from the previous expression, it becomes clear that the number of nodes chosen to find the so-
lution is also a factor in which care must be taken when considering the errors of the solution.
Assuming that the system (6.8) has an analytical solution us(x, t), we have that
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‖σm(x)−us(x, tm)‖ ≤Np max
1≤j≤Np

{∣∣∣∣Õmα,Ω,j ∣∣∣∣∥∥∥Φ(x,xj)
∥∥∥} ,

where in general

lim
dt→0

∣∣∣∣Õmα,Ω,j ∣∣∣∣ −→ 0,

considering that the system (6.8) for 0 < α,β < 1, in general has no analytical solution, we will
use the root mean squared error of the operator L̃α,β,r applied to the interpolant σm(x) with the
interpolation condition ũα,IB(xj) to estimate the error of the solution, that is,

RMSEm =

√√√√√
1
NP

Np∑
j=1

(
L̃α,β,rσmj − ũ

m
α,IB,j

)2
. (6.24)

The system (6.23) may be written compactly as follows

Gα,βΛ
m =Um

α ,

it is necessary to mention that in general, the matrix Gα,β fulfills the following condition

lim
Np→∞

cond(Gα,β) −→∞,

as a consequence, although det(Gα,β) , 0, there is a risk that the matrix Gα,β is analytically in-
vertible but numerically singular. To solve this problem, a preconditioning matrix P is generated
through the factorization QR of the matrix Gα,β [18], that is,

Gα,β =QR,

then the following matrix is defined

Q̃ := (Q̃ij) =
(
log

(
exp(Qij) +

1
cond(Gα,β)

))
, (6.25)

and the system (6.23) is replaced by the following system

G̃α,βΛ
m = Ũm

α , (6.26)

where

95



G̃α,β :=PGα,β =
(
Q̃R

)−1
Gα,β ,

Ũm
α :=PUm

α =
(
Q̃R

)−1
Um
α ,

with which the following relationship between the matrices Gα,β and G̃α,β is guaranteed

1
cond(Gα,β)

<
cond(G̃α,β)

cond(Gα,β)
� 1.

Examples

The following examples were made using Julia 1.3.1 on a computer with the following characteris-
tics: Windows 10 Home Single Language, Version 20H2, Processor Intel(R) Core(TM) i7-8550U CPU
@ 1.80GHz - 1.99 GHz, RAM 8.00 GB (7.90 GB usable). The mean times and their sample standard
deviations reported in the tables do not contemplate the construction of the matrices G̃α,β and P ,
correspond to the execution times of repeating 300 times the construction of each of the solutions
from the initial time step to the final time step, and were obtained using the commands @elapsed,
mean, and std. The examples of fractional partial equations that are presented involve the Caputo
fractional operator (1.22) in the temporal part due to the memory phenomenon, and the Riemann-
Liouville fractional operator (1.14) in the spatial part due to the nonlocality property. For a set of

chosen (random) nodes
{
xj

}Np
j=1

, a set of radial functions
{
Φ(x,xj)

}Np
j=1

is generated, where

Φ(x,xj) =
∥∥∥x − xj∥∥∥3

2
, (6.27)

the following examples are solved using the set of radial functions above and the system (6.26),
with the following particular values

σ̃ = 0.25, r̃ = 0.05, dt =
1

25
.

Example 15. 
λαt

C
0D

α
t u(x, t)−Lβ,ru(x, t) = uI (x, t), (x, t) ∈ [0,1]× [0,1],

u(x, t) = 0, (x, t) ∈ ∂([0,1])× [0,1],
u(x,0) = (1− x)sin2(x), x ∈ [0,1],

(6.28)

where

Lβ,r :=
1
2
σ̃2λ

β+1
r 0D

β+1
r +

(
r̃ − 1

2
σ̃2

)
λ
β
r 0D

β
r − r̃ ,

with
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uI (x, t) =σ̃2 [sin(2x)− (1− x)cos(2x)] (t + 1)2

+
[
2(t + 1) + r̃(t + 1)2

]
(1− x)sin2(x)

+
(
r̃ − 1

2
σ̃2

)[
sin2(x)− (1− x)sin(2x)

]
(t + 1)2,

and whose analytical solution for the particular case α = β = 1 is the following

u(x, t) = (t + 1)2(1− x)sin2(x).

Different numbers of Cartesian nodes are used to solve the system of equations (6.28) (see Figure 6.1).
The numerical solutions for different values of α and β for 64 Cartesian nodes are presented in Figure 6.2,
and some results are shown in Table 6.1.

α β Np cond(Gα,β) cond(G̃α,β) RMSE mean(T ime) std(T ime)

16 2.3794E+04 2.9780E+00 1.7053E-11 1.5037E-03 1.2712E-03
1 1 36 2.3019E+05 6.8279E+00 8.3934E-11 5.5631E-03 1.9694E-03

64 9.0631E+05 1.2043E+01 3.1488E-10 1.7692E-02 3.5101E-03

16 5.7914E+03 2.4068E+00 3.3554E-12 2.2094E-03 1.4711E-03
0.7 1 36 4.5750E+04 4.3238E+00 2.0243E-11 8.1406E-03 2.1313E-03

64 1.6742E+05 9.2905E+00 1.6041E-10 2.4090E-02 3.1777E-03

16 3.7961E+04 3.1908E+00 1.6771E-11 2.5244E-03 1.5367E-03
1 0.75 36 5.2796E+05 7.1673E+00 6.4600E-10 1.0806E-02 2.4329E-03

64 2.5333E+06 1.4359E+01 4.8098E-09 3.3549E-02 4.2080E-03

16 7.6985E+03 2.3360E+00 1.6493E-12 2.8572E-03 1.1747E-03
0.65 0.8 36 7.2103E+04 5.4366E+00 5.8844E-11 1.2131E-02 2.0226E-03

64 2.8995E+05 1.4726E+01 3.1042E-10 3.9521E-02 3.8249E-03

Table 6.1: Values obtained for the different numerical solutions, the value of RMSE is presented
for the final time step. The mean times and their sample standard deviations correspond to the
execution times of repeating 300 times the construction of each of the solutions from the initial time
step to the final time step.

Example 16.
λαt

C
0D

α
t u(x,y, t)−Lβ,ru(x,y, t) = uI (x,y, t), (x,y, t) ∈ [0,1]× [0,1]× [0,1],

u(x,y, t) = uB(x,y, t), (x,y, t) ∈ ∂([0,1]× [0,1])× [0,1],

u(x,y,0) =
1
4

(1− x2 − y2)(2− x2 − y2)sin2
(
2(x2 + y2)

)
, (x,y) ∈ [0,1]× [0,1],

(6.29)

where

Lβ,r :=
1
2
σ̃2λ

β+1
r 0D

β+1
r +

(
r̃ − 1

2
σ̃2

)
λ
β
r 0D

β
r − r̃ ,
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with

uB(x,y, t) =



1
4

(t + 1)2(1− y2)(2− y2)sin2
(
2y2

)
, if (x,y, t) ∈ {0} × [0,1]× [0,1],

1
4

(t + 1)2y2(y2 − 1)sin2
(
2(1 + y2)

)
, if (x,y, t) ∈ {1} × [0,1]× [0,1],

1
4

(t + 1)2(1− x2)(2− x2)sin2
(
2x2

)
, if (x,y, t) ∈ [0,1]× {0} × [0,1],

1
4

(t + 1)2x2(x2 − 1)sin2
(
2(1 + x2)

)
, if (x,y, t) ∈ [0,1]× {1} × [0,1],

and

uI (x,y, t) =
σ̃2

8

{
3−

[
3 + 58(x2 + y2)− 96(x2 + y2)2 + 32(x2 + y2)3

]
cos

(
4(x2 + y2)

)}
(t + 1)2

− σ̃
2

4

{
3(x2 + y2) +

[
4− 30(x2 + y2) + 18(x2 + y2)2

]
sin

(
4(x2 + y2)

)}
(t + 1)2

+
1
4

[
2(t + 1) + r̃(t + 1)2

]
(1− x2 − y2)(2− x2 − y2)sin2(2(x2 + y2))

+
1
2

(
r̃ − 1

2
σ̃2

)√
x2 + y2

[
3− 2(x2 + y2)

]
sin2

(
2(x2 + y2)

)
(t + 1)2

−
(
r̃ − 1

2
σ̃2

)√
x2 + y2

[
2− 3(x2 + y2) + (x2 + y2)2

]
sin

(
4(x2 + y2)

)
(t + 1)2,

whose analytical solution for the particular case α = β = 1 is the following

u(x,y, t) =
1
4

(t + 1)2(1− x2 − y2)(2− x2 − y2)sin2
(
2(x2 + y2)

)
.

For this example, we use a combination of Chebyshev type nodes within the domain and Cartesian nodes
at the boundary. Different numbers of nodes are used to solve the system of equations (6.29) (see Figure
6.4). The numerical solutions for different values of α and β for 196 nodes are presented in Figure 6.3, and
some results are shown in Table 6.2.

α β Np cond(Gα,β) cond(G̃α,β) RMSE mean(T ime) std(T ime)

100 2.5880E+06 2.6671E+00 1.1635E-09 1.9813E-01 1.0683E-02
1 1 144 8.3974E+06 2.7894E+00 9.8819E-10 3.8164E-01 2.9695E-02

196 2.4845E+07 2.4462E+00 3.6411E-08 6.6391E-01 3.9365E-02

100 1.0353E+06 2.0261E+00 3.6532E-10 2.3672E-01 2.9898E-02
0.7 1 144 3.2501E+06 1.9210E+00 8.7843E-10 4.1141E-01 2.3228E-02

196 9.5588E+06 1.6809E+00 1.9290E-09 7.2124E-01 3.5698E-02

100 2.8372E+06 3.1160E+00 4.2107E-09 2.6122E-01 1.0473E-02
1 0.75 144 1.0069E+07 4.5257E+00 1.5461E-08 4.5646E-01 4.1922E-02

196 3.1385E+07 3.2579E+00 4.9047E-08 7.5629E-01 3.6191E-02

100 9.3855E+05 2.2708E+00 1.2179E-09 2.4992E-01 2.7531E-02
0.65 0.8 144 3.1175E+06 2.1688E+00 3.4082E-09 4.6735E-01 2.5742E-02
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196 9.4450E+06 1.9046E+00 1.4679E-08 7.9115E-01 3.6922E-02

Table 6.2: Values obtained for the different numerical solutions, the value of RMSE is presented
for the final time step. The mean times and their sample standard deviations correspond to the
execution times of repeating 300 times the construction of each of the solutions from the initial time
step to the final time step.

Example 17. 
λαt

C
0D

α
t u(x,y, t)− L̃β,ru(x,y, t) = 0, (x,y, t) ∈ [0,3]× [0,3]× [0,2],
u(x,y, t) = uB(x,y, t), (x,y, t) ∈ ∂([0,3]× [0,3])× [0,2],

u(x,y,0) = max
{
e
√
x2+y2 − 1,0

}
, (x,y) ∈ [0,3]× [0,3],

(6.30)

where

L̃β,r := λβ+1
r 0D

β+1
r + (k − 1)λβr 0D

β
r − k,

with k = 2
r̃

σ̃2 , and

uB(x,y, t) =


e|y| − e−kt, if (x,y, t) ∈ {0} × [0,3]× [0,2],

e
√

9+y2 − e−kt, if (x,y, t) ∈ {3} × [0,3]× [0,2],

e|x| − e−kt, if (x,y, t) ∈ [0,3]× {0} × [0,2],

e
√

9+x2 − e−kt, if (x,y, t) ∈ [0,3]× {3} × [0,2],

whose analytical solution for the particular case α = β = 1 is the following

u(x,y, t) = max
{
e
√
x2+y2

,0
}(

1− e−kt
)

+ max
{
e
√
x2+y2 − 1,0

}
e−kt.

For this example, we use a combination of Halton type nodes within the domain and Cartesian nodes at
the boundary. Different numbers of nodes are used to solve the system of equations (6.30) (see Figure 6.7).
The numerical solutions for different values of α and β for 400 nodes are presented in Figure 6.6, and some
results are shown in Table 6.3.

α β Np cond(Gα,β) cond(G̃α,β) RMSE mean(T ime) std(T ime)

256 3.4131E+07 1.6150E+00 6.4994E-08 2.4628E+00 2.2455E-01
1 1 324 5.9011E+07 1.5172E+00 5.6883E-08 4.0704E+00 4.1549E-01

400 1.0829E+08 1.4017E+00 6.0874E-08 6.0908E+00 4.7621E-01

256 1.4109E+07 1.2935E+00 1.6425E-08 2.5874E+00 2.8555E-01
0.7 1 324 2.4407E+07 1.2147E+00 3.1375E-08 4.7683E+00 4.0278E-01

400 4.4967E+07 1.1758E+00 8.3827E-08 6.6833E+00 4.1220E-01

256 3.9371E+07 1.9052E+00 3.4258E-07 2.6486E+00 2.3067E-01
1 0.75 324 6.7738E+07 1.8131E+00 2.7555E-07 4.7491E+00 3.6928E-01
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400 1.2251E+08 1.5805E+00 4.6289E-07 7.1563E+00 4.5221E-01

256 1.3008E+07 1.3166E+00 2.2075E-08 2.7812E+00 1.8125E-01
0.65 0.8 324 2.2705E+07 1.2576E+00 2.1513E-08 5.0830E+00 3.6223E-01

400 4.1633E+07 1.2018E+00 7.3771E-08 7.4342E+00 4.5228E-01

Table 6.3: Values obtained for the different numerical solutions, the value of RMSE is presented
for the final time step. The mean times and their sample standard deviations correspond to the
execution times of repeating 300 times the construction of each of the solutions from the initial time
step to the final time step.

The errors in Figures 6.2 and 6.3 show an increasing behavior with time, which is consistent with
the condition (6.10). For the case where α = 1, the errors fulfill the following condition

Omα (x) = Omα
(
x,Om−1

α (x)
)
, (6.31)

however, the condition (6.10) is still fulfilling implicitly. On the other hand, in Figure 6.6 it is
observed that for the cases with the fractional derivative in time, the behavior of the errors is consis-
tent with the condition (6.10), while for the cases with the integer derivative in time, the behavior is
consistent to that expected for condition (6.31). The marked difference in errors for cases with frac-
tional derivative in time compared to cases with integer derivative in time could be caused by the
fact that the equation (6.30) lacks a source term uI (x, t) and the size of the domain Ω. It is necessary
to mention that the graphs of the numerical solutions of the equation (6.30) for the case y = x that are
presented in Figure 6.8, are consistent with the call options solutions presented in the reference [82].
The results obtained in the previous examples could be improved by implementing one or more of
the following strategies:

i) Selecting a smaller time step dt.

ii) Working with a greater number of nodes Np.

iii) Changing the set of radial functions
{
Φ(x,xj)

}Np
j=1

.

To keep errors under control, strategy iii) would be the most recommended. Polyharmonic radial
functions [93] could be used

Φ(x,xj) =
∥∥∥x − xj∥∥∥2n+1

2
, n ∈N,

or multiquadratic radial functions [93]

Φε(x,xj) =
[
1 +

(
ε
∥∥∥x − xj∥∥∥2

)2
]µ/2

, µ ∈ [−1,1] \ {0} ,

these last functions incorporate a parameter ε ∈ R>0, known as a shape parameter, which being
varied allows to improve the errors of the numerical solutions without the need to decrease the time
step or increase the number of nodes. However, finding the optimal shape parameter ε for each
problem is computationally expensive.
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In general, given the expression (6.9), which is a consequence of the memory phenomenon in
the fractional differential operator in time, a prudent strategy would be to leave as a last resort, to
improve errors in numerical solutions, use radial basis functions with a shape parameter. The latter
with the aim of not increase to a large degree the computational cost to solve multidimensional
fractional partial differential equation systems.

6.3 Conclusions

In this paper, a numerical scheme of radial basis functions was built, which is easy to implement
and allows to determine the numerical solution of the equation (6.3) in different node configura-
tions. Furthermore, due to the dimensional invariance of the numerical schemes of the radial basis
functions, taking Lβ,r → L into the equation (6.3) with L an arbitrary linear operator bounded on
Ω, the proposed scheme can be used to numerically solve (fractional) partial differential equations
analogous to the system (6.3) for different types of operators L, both for the one-dimensional case
and for the multidimensional case.

A meshless method via radial basis functions was implemented to solve time-space-fractional
equations of the Black-Scholes type. The results show that, although errors grow over time, is
an efficient technique and may be considered as a numerical technique for solving different one-
dimensional or multidimensional fractional partial differential equations. The flexibility of the
numerical schemes of radial basis functions was shown to solve multidimensional problems with
various types of nodes and it was also shown how to reduce the condition number of the matrices
involved. Problems related to the space-time-fractional Black-Scholes equations were solved in one
and two dimensions, reducing the condition number of the discretization matrices of the differential
operator by approximately less than one percent of their original value. Cartesian nodes were used
and also Chebyshev nodes and Halton nodes combined with Cartesian nodes, but in general, any
distribution of nodes, uniform or non-uniform, and combinations of them can be used.

The easy implementation of the numerical schemes of radial basis functions to solve fractional
equations on different node configurations, together with the dimensional invariance that these
schemes present, allow us to consider the generalization of systems of one-dimensional equations
to multiple dimensions as in the case of equation (6.3). Due to the numerical schemes of radial ba-
sis functions are meshless methods with dimensional invariance property, it allows us to focus on
making the scheme more stable and efficient by reducing the condition number of the interpolation
matrices involved.

The schemes that use radial basis functions are easy to implement compared to finite element
schemes or finite difference schemes, this characteristic becomes more evident when attacking prob-
lems in multiple dimensions, as a consequence of the dimensional invariance of the radial basis
functions methodology. However, even with this advantage over finite differences or finite element,
before using any numerical scheme of radial basis functions, the computational cost and susceptibil-
ity to numerical errors must be considered, since the matrices involved can be analytically invertible
but numerically singular.
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(a) Np = 16. (b) Np = 36.

(c) Np = 64.

Figure 6.1: Different numbers of Cartesian nodes used.
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(a) Analytical solution. (b) Numerical solution for (α,β) = (1,1). (c) RMSEm for (α,β) = (1,1).

(d) Numerical solution for (α,β) = (0.7,1). (e) RMSEm for (α,β) = (0.7,1).

(f) Numerical solution for (α,β) = (1,0.75). (g) RMSEm for (α,β) = (1,0.75).

(h) Numerical solution for (α,β) = (0.65,0.8). (i) RMSEm for (α,β) = (0.65,0.8).

Figure 6.2: The analytical solution and the numerical solutions with respect to space for different
moments in time are presented. The RMSE is presented with respect to time for the different nu-
merical solutions.
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(a) Analytical solution. (b) Numerical solution for (α,β) = (1,1). (c) RMSEm for (α,β) = (1,1).

(d) Numerical solution for (α,β) = (0.7,1). (e) RMSEm for (α,β) = (0.7,1).

(f) Numerical solution for (α,β) = (1,0.75). (g) RMSEm for (α,β) = (1,0.75).

(h) Numerical solution for (α,β) = (0.65,0.8). (i) RMSEm for (α,β) = (0.65,0.8).

Figure 6.3: The analytical solution and the numerical solutions with respect to space for the final
time step are presented. The RMSE is presented with respect to time for the different numerical
solutions.
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(a) Np = 100. (b) Np = 144.

(c) Np = 196.

Figure 6.4: Different numbers of nodes used.
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(a) Analytical solution. (b) Numerical solution for (α,β) = (1,1).

(c) Numerical solution for (α,β) = (0.7,1).

(d) Numerical solution for (α,β) = (1,0.75). (e) Numerical solution for (α,β) = (0.65,0.8).

Figure 6.5: The analytical solution and the numerical solutions with respect to space, with y = x, for
different moments in time are presented.
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(a) Analytical solution. (b) Numerical solution for (α,β) = (1,1). (c) RMSEm for (α,β) = (1,1).

(d) Numerical solution for (α,β) = (0.7,1). (e) RMSEm for (α,β) = (0.7,1).

(f) Numerical solution for (α,β) = (1,0.75). (g) RMSEm for (α,β) = (1,0.75).

(h) Numerical solution for (α,β) = (0.65,0.8). (i) RMSEm for (α,β) = (0.65,0.8).

Figure 6.6: The analytical solution and the numerical solutions with respect to space for the final
time step are presented. The RMSE is presented with respect to time for the different numerical
solutions.
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(a) Np = 256. (b) Np = 324.

(c) Np = 400.

Figure 6.7: Different numbers of nodes used.
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(a) Analytical solution. (b) Numerical solution for (α,β) = (1,1).

(c) Numerical solution for (α,β) = (0.7,1).

(d) Numerical solution for (α,β) = (1,0.75). (e) Numerical solution for (α,β) = (0.65,0.8).

Figure 6.8: The analytical solution and the numerical solutions with respect to space, with y = x,
for the final time step are presented. These graphs are consistent with the call option solutions
presented in the reference [82].
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[65] Fahd Jarad, Ekin Uğurlu, Thabet Abdeljawad, and Dumitru Baleanu. On a new class of frac-
tional operators. Advances in Difference Equations, 2017(1):1–16, 2017.

[66] P. M. Rodrigo, A. Valera, E. F. Fernández, and F. M. Almonacid. Performance and economic
limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules.
Applied energy, 238:1150–1162, 2019.

[67] Rasmus Bjørk and Kaspar Kirstein Nielsen. The performance of a combined solar photovoltaic
(pv) and thermoelectric generator (teg) system. Solar Energy, 120:187–194, 2015.

[68] Rasmus Bjørk and Kaspar Kirstein Nielsen. The maximum theoretical performance of uncon-
centrated solar photovoltaic and thermoelectric generator systems. Energy Conversion and Man-
agement, 156:264–268, 2018.

[69] Eli Barkai, Ralf Metzler, and Joseph Klafter. From continuous time random walks to the frac-
tional fokker-planck equation. Physical Review E, 61(1):132, 2000.

[70] A Blumen, G Zumofen, and J Klafter. Transport aspects in anomalous diffusion: Lévy walks.
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