

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
 PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

THE FOREST FILTRATION AND POLYHEDRAL JOINS

TESIS
QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS

PRESENTA:
ANDRÉS CARNERO BRAVO

DIRECTOR
DR. OMAR ANTOLÍN CAMARENA INSTITUTO DE MATEMÁTICAS, UNAM CU

MIEMBROS DEL COMITÉ TUTOR
DR. LUIS MONTEJANO PEIMBERT
INSTITUTO DE MATEMÁTICAS, UNAM JURIQUILLA
DR. EDGARDO ROLDÁN PENSADO
CENTRO DE CIENCIAS MATEMÁTICAS, UNAM

UNAM - Dirección General de Bibliotecas
Tesis Digitales
Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A la memoria de mi padre, Genaro Salvador Carnero Roqué

Contents

Contents 2
List of Symbols 4
Agradecimientos 5
Introduction 6
Introducción 9
1 Preliminaries 10
1.1 Graph theory 10
1.2 Algebraic topology 12
1.2.1 Simplicial complexes 12
1.2.2 Independence complex 13
1.2.3 Homotopy colimits 14
1.3 Polyhedral products 19
2 Definition and basic properties of the filtration 24
3 Homotopy type calculations I: Paths, Cycles, Catus Graphs and Double stars 29
3.1 Paths and cycles 29
3.2 Cactus Graphs 33
3.3 Double stars 38
4 Homotopy type calculations II: Joins, categorical products and cartesian prod-
ucts 40
4.1 Graph joins 40
4.2 Categorical products 44
4.2.1 Complexes of $K_{n} \times K_{m}$ 44
4.2.2 Independence Complex of $C_{k} \times K_{n}$ 51
4.2.2.1 $\quad C_{3} \times K_{n}, \quad C_{4} \times K_{n}, \quad C_{5} \times K_{n}$ and $C_{k} \times K_{2}$ 51
4.2.2.2 $\quad C_{k} \times K_{n}$ for $k \geqslant 6$ 54
4.2.3 Independence Complex of $K_{2} \times K_{n} \times K_{m}$ 69
$4.3 \quad \mathcal{F}_{\infty}\left(P_{2} \square P_{n}\right)$ 72
5 Homotopy type calculations III: Lexicographic products 74
Final remarks 91
Bibliography 92
Index 95

List of Symbols

$\alpha(G)$	Independence number
$b(G)$	Number of blocks
$d_{G}(v)$	Degree of v
$\delta(G)$	Minimum degree
$\Delta(G)$	Maximum degree
$g(G)$	Girth
$N_{G}(v)$	(Open) Neighborhood of v
$N_{G}[v]$	Closed Neighborhood of v
C_{n}	Cycle graph
P_{n}	Path graph
K_{n}	Complete graph
$K_{n, m}$	Complete bipartite graph
$S t_{r, s}$	Double star graph
$G \times H$	Categorical product
$G \square H$	Cartesian product
$G \circ H$	Lexicographic product
$G * H$	Graph join
$B(G)$	Block graph
\underline{n}	The set $\{1, \ldots, n\}$
$\mathcal{P}_{1}(\underline{n})$	all the subsets of \underline{n} but \underline{n}
$\mathcal{F}_{d}(G)$	The d-forest complex of G
$\mathcal{F}_{\infty}(G)$	The forest complex of G
$\tilde{H}_{n}()$	The n-reduced integral homology group
$\tilde{H}^{n}()$	The n-reduced integral cohomology group
K^{*}	The Alexander dual of the simplicial complex K
$\hat{Z}_{K}(\underline{X}, \underline{A})$	Polyhedral smash product of the family $(\underline{X}, \underline{A})$
$Z_{K}(\underline{X}, \underline{A})$	Polyhedral join of the family $(\underline{X}, \underline{A})$

Agradecimientos

Primero que a nadie, quiero agradecer a mi familia, a mi madre y a mi hermano, que siempre me han apoyado. Sin su continuo apoyo no podría haber terminado el doctorado. Tristemente mi padre no pudo llegar a ver esta tesis.

A los sinodales Dr. Luis Montejano, Dra. Deborah Oliveros, Dr. Javier Bracho y Dr. Rafael Villarroel por sus observaciones y correcciones, así como por aceptar revisar este trabajo.

A mi tutor, el Dr. Omar Antolín Camarena por todo el apoyo que me ha brindado y todo lo que me ha enseñado durante $\operatorname{los} 4$ años en los que he sido su alumno.

A mis amigos Oldair, Jaime y Diosel, por todas las pláticas y cervezas.

A David Maureira (el kikis) y Ana, por su amistad.

A Elsa y Frida, por su amistad y la camaradería de muchos años.

Quiero agradecer el apoyo brindado por el Proyecto CONACYT Ciencia de Frontera 2019 CF 217392.

Introduction

In combinatorial topology, given a combinatorial object we want to associate to this object a topological space and study its properties. Usually, this space is a simplicial complex. For example one of the most studied graph complexes is the neighborhood complex defined by Lovasz [20] in his proof of the Kneser conjecture. This complex can be generalized to a CW-complex: the complex of graph homomorphisms for two graphs [18]. Another widely studied complex is the independence complex $[1,6,17,22]$. Here we will study this complex and some generalizations.

Given a graph G we will define a filtration of simplicial complexes associated to G, where the first is the independence complex and the last the complex is formed by the acyclic sets of vertices. We will show some properties of this filtration and we will calculate its homotopy type for various families of graphs.

In the first chapter we will give the tools will use all along the dissertation. In the first section we will state the basic definitions we will need from graph theory. The second section will focus on the results needed from algebraic topology, in particular some results about the homotopy type of independence complexes and the tool of homotopy colimits for cubical diagrams; here we will give some general lemmas for the homotopy type of a union of CW-complexes. The last section will be about polyhedral products, mostly we will focus on polyhedral joins and we will show their connection with polyhedral smash products. In this section we will prove some original results about the homotopy type of certain polyhedral joins.

In the second chapter we will define the filtration and give its basic properties. The following three chapters will focus on calculating the homotopy type for some graph families: in the third chapter for paths, cycles, cactus graphs and double stars; in the fourth for various graph products (here we prove a conjecture from [14]) and in the fifth for lexicographic products, where we will see the relation between the complexes of the filtration for lexicographic products and polyhedral joins. We will finish with a chapter with some final remarks on some of the problems that remain open.

All the results are from the following three papers:

- Homotopy type of the independence complex of some categorical products of graphs with Omar

Antolín Camarena.

- The Forest Filtration of a Graph.
- Polyhedral joins and graph complexes.

Introducción

En combinatoria topológica, a un objeto combinatorio queremos asociarle un espacio topológico y estudiar las propiedades de dicho espacio. Usualmente este espacio es un complejo simplicial. Por ejemplo, uno de los complejos de gráficas más estudiados es el complejo de vecindades que definió Lovasz [20] cuando demostró la conjetura de Kneser. Este complejo simplicial se puede generalizar a un complejo CW, el complejo de homomorphismos entre dos gráficas [18]. Otro complejo ampliamente estudiado es el complejo de independencia de una gráfica [1, 6, 17, 22]. En esta tesis estudiaremos este complejo así como algunas generalizaciones.

Dada una gráfica G definiremos una filtración de complejos simpliciales asociados a G, de los cuales el primero es el complejo de independencia y el último es el complejo cuyos simplejos son conjuntos acíclicos de vértices. Mostraremos varias propiedades de esta filtración y calcularemos el tipo de homotopía para varias familias de gráficas.

En el primer capítulo daremos las herramientas que usaremos a lo largo de la tesis. Primero daremos las definiciones básicas de teoría de gráficas que necesitamos. En la segunda sección daremos los resultados de topología algebráica necesarios para la tesis, en particular daremos resultados básicos sobre el tipo de homotopía del complejo de independencia y daremos los resultados necesarios acerca de la herramienta de colímites homotópicos sobre diagramas cúbicos, aquí daremos algunos lemas generales sobre el tipo de homotopía de algunas uniones de complejos CW's. La última sección del capítulo será sobre productos poliedrales, particularmente sobre joins poliedrales y su relación con productos smash poliedrales. En esta sección daremos algunos resultados originales acerca del tipo de homotopía para para algunos joins poliedrales particulares.

En el segundo capítulo definiremos la filtración y daremos sus propiedades básicas. Los siguientes tres capítulos estarán enfocados en calcular el tipo de homotopía para algunas familias de gráficas: en el tercer capítulo para trayectorias, ciclos, gráficas cactus y dobles estrellas; en el cuarto capítulo para algunos productos de gráficas (aquí probamos una conjetura de [14]) y en el quinto capítulo para productos lexicográficos, en donde mostraremos la relación entre los complejos de la filtración para productos lexicográficos y joins poliedrales. Terminaremos con un capítulo con observaciones finales y un recuento de algunos de los problemas que quedan abiertos.

Todos los resultados provienen de los siguientes tres artículos:

- Homotopy type of the independence complex of some categorical products of graphs con Omar Antolín Camarena.
- The Forest Filtration of a Graph.
- Polyhedral joins and graph complexes.

Chapter 1

Preliminaries

In this chapter we give the basic definitions needed and the tools we will use. First we give some notation. For a non-negative number n we take $[n]=\{0,1, \ldots, n\}$. Given a finite set X, we take:

- $\mathcal{P}(X)$ the set of all the subsets of X.
- $\binom{X}{k}$ the set of subsets with k elements.
- For subset $S \subseteq X, S^{c}$ is its complement.

As usual \mathbb{Z} is the set of integers. We denote the q-dimensional sphere by \mathbb{S}^{q}. For two spaces (complexes, sets) X and $Y, X \longleftrightarrow Y$ denotes the inclusion.

1.1 Graph theory

All graphs are simple, no loops or multiedges. For a graph $G, V(G)$ is its vertex set and $E(G)$ its edge set. The cardinality of $V(G)$ is the order of G and the cardinality of $E(G)$ is the size of G.

For a vertex $v, N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ is its open neighborhood and $N_{G}[v]=N_{G}(G) \cup$ $\{v\}$ its closed neighborhood, we omit the subindex G if there is no risk of confusion. The degree of a vertex v is the cardinality of its open neighborhood and will be denoted by $d_{G}(v)$. The maximum of the degrees it is denoted by $\Delta(G)$ and the minimum by $\delta(G)$. Given a graph G its complement graph is the graph G^{c} with vertex set $V\left(G^{c}\right)=V(G)$ and edge set $E\left(G^{c}\right)=\binom{V(G)}{2}-E(G)$.

Given a graph G, another graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a set $S \subseteq V(G)$, the induced subgraph is the subgraph $G[S]$ with vertex set S and two vertices adjacent if and only if they are adjacent in G. For a set $S \subseteq V(G), G-S=G[V(G)-S]$. If $S=\{v\}$, we will write $G-v$ insted of $G-\{v\}$. We will say a subgraph is an induced subgraph if it
is the subgraph induced by its vertices. For an edge $e \in E(G), G-e$ is the graph obtain from G by removing the edge form the edge set. If $e=\{u, v\}$ is not an edge of $G, G+e$ is the graph obtained form G by adding e to the edge set.

- K_{n} is the complete graph with vertex set $\{1, \ldots, n\}$ and edge set $\{\{i, j\}: i \neq j\}$.
- C_{n} is the cycle of length $n \geqslant 3$ with vertex set $\left\{u_{1}, \ldots, u_{n}\right\}$ and edge set $\left\{u_{1} u_{2}, \ldots, u_{n-1} u_{n}, u_{n} u_{1}\right\}$.
- $P_{n}=C_{n}-\left\{u_{n}, u_{1}\right\}$ is the path of length $n-1$.
- $K_{n, m}$ is the complete bipartite graph with vertex set $U \cup V$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{m}\right\}$, and $u_{i} v_{j}$ is an edge for any i and j.

For a graph G, its girth is the smallest length of its cylces- if the graph does not have cycles we say its girth is ∞, denoted by $g(G)$. A graph G is a forest if it does not have a cycle as a subgraph.

A vertex set $S \subseteq V(G)$ is independent if $G[S]$ has no edges. The maximum number ofn a independent set is the independence number of the graph and is denoted by $\alpha(G)$.

Given two graphs G and H, there are three graphs over the vertex set $V(G) \times V(H)$:

1. The cartesian product $G \square H$, where $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right\}$ is an edge if $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$, or if $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$.
2. The categorical product $G \times H$, where $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right\}$ is an edge if $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in$ $E(H)$.
3. The lexicographic product $G \circ H$, where $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right\}$ is an edge if $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $u_{1} u_{2} \in E(G)$.

Given two graphs G and H with disjoint vertex sets, we define:

1. Their join as the graph $G * H$ with $V(G * H)=V(G) \cup V(H)$ and

$$
E(G * H)=E(G) \cup E(H) \cup\{u v: u \in V(G) \text { and } v \in V(H)\}
$$

2. The disjoint union as the graph $G \sqcup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

Given a graph G and a non-negative integer $r \geqslant 2$, we take $r G$ as the disjoint union of r copies of G with disjoint vertex sets.

For all the graph definitions not stated here we follow [10].

1.2 Algebraic topology

We assume familiarity with algebraic topology (homotopy, homology groups, etc) at level of a first graduate course (see [16]). All spaces will be taken with the the compactly generated topology. All the homology and cohomology groups will be with integer coefficients.

For completeness, we enunciate the following well know result about maps between simply connected CW-complexes.

Whitehead Theorem. (see [16] Corollary 4.33) If X and Y are simply connected $C W$-complexes and there is a continuous map $f: X \longrightarrow Y$ such that $f_{*}: H_{n}(X) \longrightarrow H_{n}(Y)$ is an isomorphism for each n, then f is an homotopy equivalence.

Now, we give the proof of following folklore result.
Theorem 1. If X is a simply connected $C W$-complex such that $\tilde{H}_{q}(X) \cong \mathbb{Z}^{a}$ for some $q \geqslant 2$ and the rest of the homology groups are trivial, then $X \simeq \bigvee_{a} \mathbb{S}^{q}$.
Proof. By the Hurewicz Theorem, $\pi_{d}(X) \cong \tilde{H}_{d}(X) \cong \mathbb{Z}^{a}$. Therefore, there are pointed maps

$$
s_{i}: \mathbb{S}^{d} \longrightarrow X
$$

for each $1 \leqslant i \leqslant a$ and with these maps we can construct a map

$$
s: \bigvee_{a} \mathbb{S}^{d} \longrightarrow X
$$

such that s_{*} is an isomorphism on π_{d}. Thus s induces an isomorphism on reduced homology groups between simply connected spaces and, by the Whitehead Theorem, is an homotopy equivalence.

The following result which helps to see that some complexes are homotopy equivalent to a wedge of spheres of two consecutive dimensions is a special case of Example 4C. 2 of [16].
Proposition 2. Let X be a simply connected $C W$-complex such that, for some $d \geqslant 2, \tilde{H}_{d}(X) \cong \mathbb{Z}^{a}$, $\tilde{H}_{d+1}(X) \cong \mathbb{Z}^{b}$ and $\tilde{H}_{q}(X) \cong 0$ for any $q \neq d, d+1$, then

$$
X \simeq \bigvee_{a} \mathbb{S}^{d} \vee \bigvee_{b} \mathbb{S}^{d+1}
$$

The last result can be generalized for other pairs of non-consecutive dimensions [3].

1.2.1 Simplicial complexes

A simplicial complex K is a family of subsets of an finite set $V(K)$, the vertices of the complex, such that if $\tau \subseteq \sigma$ and $\sigma \in K$, then $\tau \in K$. We want to remark that we take the empty set as
a simplex and we allow ghost vertices- this is useful while working with polyhedral products and Alexander duals. The elements of K are called simplices and the dimension of a simplex is its cardinality minus 1 , for example the vertices are simplices of dimension 0 , the edges of dimension 1 and so on. The dimension of $K, \operatorname{dim}(K)$, is the maximum of the dimensions of its simplicies. $S_{q}(K)$ is the set of simplicies of cardinality $q+1$.

Given a simplicial complex K and a simplex σ, the link of σ is the subcomplex $l k(\sigma)=\{\tau \in$ $K: \tau \cap \sigma=\varnothing \wedge \tau \cup \sigma \in K\}$ and its star is $\operatorname{st}(\sigma)=\{\tau \in K: \tau \cup \sigma \in K\}$. For a vertex we will write $l k(v)$ and $s t(v)$ insted of $l k(\{v\})$ or $s t(\{v\})$. The q-skeleton of a complex K, denoted $s k_{q} K$, is the subcomplex of all the simplicies with at most $q+1$ elements.

For a finite set V we take $\Delta^{V}=\mathcal{P}(V)$ and Δ^{n} if $V=[n]$.
Given two simplicial complexes K, L with disjoint set of vertices, we define their join as the simplicial complex $K * J$ with vertex set $V(K) \cup V(L)$, and whose simplices are the pairwise unions of simplices of K and simplices of L. The join of n copies of K will be denoted by $K^{* n}$.

We would not distinguish between a complex and its geometric realization.
Given a complex X on n vertices its Alexander dual is the complex

$$
X^{*}=\{\sigma \subseteq V(X): V(X)-\sigma \notin X\}
$$

Theorem 3. (see [8]) Let X be a simplicial complex with n vertices, then

$$
\tilde{H}_{i}(X) \cong \tilde{H}^{n-i-3}\left(X^{*}\right)
$$

Given a connected complex K, a spanning tree T is a 1-dimensional connected subcomplex that seen as a graph is a tree. Given a spanning tree T, we take the free group H_{T} with $S_{1}(K)$ as generators and with the relations

- $u v=1$ for all the edges of T
- $(u v)(v w)=u w$ if $\{u, v, w\}$ is a simplex of K

Theorem 4. (see [28] Theorem 7.34) If K is a connected simplicial complex and T is a spanning tree, then $\pi_{1}(K, *) \cong H_{T}$.

1.2.2 Independence complex

For a graph G, the independence complex $\mathcal{F}_{0}(G)$ is the complex whose simplicies are independent sets of vertices. Of all the complexes of the filtration we will define the next chapter, this complex is the most studied (see for example $[1,2,6,12,13,17,19,22]$).

Now we give the tools we will use throughout the dissertation for calculating homotopy types of independence complexes.

Lemma 5. [12] If $N(u) \subseteq N(v)$, then $\mathcal{F}_{0}(G) \simeq \mathcal{F}_{0}(G-v)$.
The last lemma can be seen as a particular case of part (a) of the following proposition.
Proposition 6. [1] There is always a cofibre sequence

$$
\mathcal{F}_{0}\left(G-N_{G}[v]\right) \leftharpoonup \mathcal{F}_{0}(G-v) \leftharpoonup \mathcal{F}_{0}(G) \longrightarrow \Sigma \mathcal{F}_{0}\left(G-N_{G}[v]\right) \longrightarrow \cdots
$$

In particular
a) if $\mathcal{F}_{0}\left(G-N_{G}[v]\right)$ is contractible then the natural inclusion $\mathcal{F}_{0}(G-v) \hookrightarrow \mathcal{F}_{0}(G)$ is a homotopy equivalence,
b) if $\mathcal{F}_{0}\left(G-N_{G}[v]\right) \hookrightarrow \mathcal{F}_{0}(G-v)$ is null-homotopic then there is a splitting

$$
\mathcal{F}_{0}(G) \simeq \mathcal{F}_{0}(G-v) \vee \Sigma \mathcal{F}_{0}\left(G-N_{G}[v]\right)
$$

For a vertex v, we define its star cluster as the subcomplex of $\mathcal{F}_{0}(G)$ given by

$$
S C(v)=\bigcup_{u \in N(v)} s t(u)
$$

Theorem 7. [6] Let G be a a graph and let v be a non-isolated vertex of G which is contained in no triangle. Then

$$
\mathcal{F}_{0}(G) \simeq \Sigma\left(s t_{\mathcal{F}_{0}(G)}(v) \cap S C(v)\right)
$$

1.2.3 Homotopy colimits

We now define the main tool we will use to calculate homotopy types: homotopy colimits for punctured cubes (we will follow [23]). For any non-negative integer n we take $\underline{n}=\{1, \ldots, n\}$ and $\mathcal{P}_{1}(\underline{n})=\mathcal{P}(\underline{n})-\{\underline{n}\}$. A n-cube \mathcal{X} consists of:

- a topological space $\mathcal{X}(S)$ for each S in $\mathcal{P}(\underline{n})$, and
- a continuous function $f_{S \subseteq T}: \mathcal{X}(S) \longrightarrow \mathcal{X}(T)$ for each $S \subseteq T$,
such that $f_{S \subseteq S}=1_{\mathcal{X}(S)}$ and for any $R \subseteq S \subseteq T$ the following diagram commutes

A punctured n-cube \mathcal{X} is like an n-cube without being defined for the set \underline{n}. A punctured n-cube of interest for a given topological space X is the constant punctured cube \mathcal{C}_{X}, where $\mathcal{C}_{X}(S)=X$ for any set S and all the functions are 1_{X}. The colimit of a punctured n-cube is the space

$$
\operatorname{colim}(\mathcal{X})=\left(\bigsqcup_{S \in \mathcal{P}_{1}(\underline{n})} \mathcal{X}(S)\right) / \sim
$$

where \sim is the equivalence relation generated by $f_{S \subseteq T_{1}}\left(x_{S}\right) \sim f_{S \subseteq T_{2}}\left(x_{S}\right)$ for T_{1}, T_{2} and $S \subseteq T_{1}, T_{2}$. From the definition is clear that $\operatorname{colim}\left(\mathcal{C}_{X}\right) \cong X$ for any X.

For any $n \geqslant 1$ and S in $\mathcal{P}_{1}(\underline{n})$ we take:

$$
\Delta(S)=\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} t_{i}=1 \text { and } t_{i}=0 \text { for all } i \in S\right\}
$$

and $d_{S \subseteq T}: \Delta(T) \longrightarrow \Delta(S)$ the corresponding inclusion. Now, for a punctured n-cube \mathcal{X}, its homotopy colimit is

$$
\operatorname{hocolim}(\mathcal{X})=\left(\bigsqcup_{S \in \mathcal{P}_{1}(\underline{n})} \mathcal{X}(S) \times \Delta(S)\right) / \sim
$$

where $\left(x_{S}, d_{S \subseteq T}(t)\right) \sim\left(f_{S \subseteq T}\left(x_{S}\right), t\right)$. When $n=2$, we will specify the punctured 2 -cube as the diagram

$$
\mathcal{D}: \quad X \prec^{f} Z \stackrel{g}{\longrightarrow} Y
$$

and its homotopy colimit is called the homotopy pushout.
Given a punctured n-cube \mathcal{X} for $n \geqslant 2$ and defining the punctured n-1-cubes $\mathcal{X}_{1}(S)=\mathcal{X}(S)$ and $\mathcal{X}_{2}(S)=\mathcal{X}(S \cup\{n\})$, we have that (Lemma 5.7.6 [23])

$$
\operatorname{hocolim}(\mathcal{X}) \cong \operatorname{hocolim}\left(\mathcal{X}(\underline{n-1}) \longleftarrow \operatorname{hocolim}\left(\mathcal{X}_{1}\right) \longrightarrow \operatorname{hocolim}\left(\mathcal{X}_{2}\right)\right)
$$

If for all $S \subseteq \underline{n}$ the map

$$
\underset{T \subsetneq S}{\operatorname{colim}} \longrightarrow \mathcal{X}(S)
$$

is a cofibration, we say call it cofibrant punctured cube. If we have CW-complexes X_{1}, \ldots, X_{n} such that the intersections are subcomplexes and take the punctured cube given by the intersections and the inclusions, then the punctured cube is cofibrant and $\operatorname{hocolim}(\mathcal{X}) \simeq \operatorname{colim}(\mathcal{X})$ (Proposition $5.8 .25[23])$. We will be concerned mostly with the case in which each space $\mathcal{X}(\underline{n}-\{i\})$ is a simplicial complex and the other spaces are intersections of these complexes with the maps being the corresponding inclusions, hence the punctured cube will be cofibrant. For example we can compute the homotopy type of a union of the CW complexes X, Y, Z that intersect in subcomplexes,
by means of three homotopy pushouts, as shown in the following diagram whose top and bottom squares, as well as the rightmost vertical square are homotopy pushouts and where $R \simeq X \cup Y \cup Z$:

If \mathcal{X}, \mathcal{Y} are n-cubes, a map between this cubes is a colecction of maps

$$
g_{S}: \mathcal{X}(S) \longrightarrow \mathcal{Y}(S)
$$

such that for all $S \subseteq T$ the following diagram commutes

(this is equivalent to the existence of $(n+1)$-cube $\mathcal{Z}: \mathcal{P}(\underline{n+1}) \longrightarrow T o p$ pasting the two cubes by the maps g_{S}). Now, if all the maps g_{S} are homotopy equivalences we will say that the map is a homotopy equivalence, this is justified because in that case $\operatorname{hocolim}\left(\mathcal{X}_{\left.\right|_{\mathcal{P}_{1}(\underline{n})}}\right) \simeq \operatorname{hocolim}\left(\mathcal{Y}_{\left.\right|_{\mathcal{P}_{1}(\underline{n})}}\right)$ (Theorem 5.7.8 [23]).

Theorem 8. (See 6.2.8 [4]) If the following diagram is homotopy commutative ($\alpha \circ f \simeq f^{\prime} \circ \beta$ and $\gamma \circ g \simeq g^{\prime} \circ \beta$)

with α, β, γ homotopy equivalences. Then $\operatorname{hocolim}(\mathcal{S}) \simeq \operatorname{hocolim}\left(\mathcal{S}^{\prime}\right)$.
Its a folklore result that if the intersection of two CW-complexes is a subcomplex such that the inclusions are null-homotopic, then the union has the homotopy type of the wedge of the complexes and the suspension of their intersection. We will prove this result giving a slightly more general
result for homotopy pushouts.
Lemma 9. Let X, Y, Z be spaces with maps $f: Z \longrightarrow X$ and $g: Z \longrightarrow Y$ such that both maps are null-homotopic. Then

$$
\operatorname{hocolim}(\mathcal{S}) \simeq X \vee Y \vee \Sigma Z
$$

where

$$
\mathcal{S}: \quad Y \stackrel{g}{\longleftarrow} Z \xrightarrow{f} X
$$

Proof. We take the diagrams

$$
\mathcal{D}_{1}: \quad \Sigma Z \vee Y \longleftrightarrow \Sigma Z \hookrightarrow \Sigma Z \vee X
$$

and

$$
\mathcal{S}: \quad Y \gtrless^{g} Z \xrightarrow{f} X
$$

where the point of the wedge in X and Y are a point for which the constant map is homotopic to f and g respectively. Taking the next diagram:

Taking the diagram \mathcal{D}_{3} given by the compositions

we have that $\operatorname{hocolim}\left(\mathcal{D}_{3}\right) \simeq \operatorname{hocolim}\left(\mathcal{D}_{1}\right)$ and by hypothesis we can construct a homotopy commutative diagram between \mathcal{S} and \mathcal{D}_{3} with the identities. Therefore, by Theorem $8 \operatorname{hocolim}(\mathcal{D}) \simeq$ $X \vee Y \vee \Sigma Z$.

Now we give some general lemmas about the homotopy type of an union of CW-complexes, these lemmas we will use in the next chapters.

Lemma 10. Let J_{1}, \ldots, J_{n} be $n \geqslant 2$ complexes such that each J_{i} is either contractible or is homotopy equivalent to a wedge of spheres of dimension not less than r and for any S non-empty
subset of $\underline{n}, \bigcap_{i \in S} J_{i}=J_{S}$ is contractible or is homotopy equivalent to a wedge of spheres of dimension $r_{|S|}$, where $r_{2} \leqslant r-1$ and $r_{i+1}=r_{i}-1$. Then

$$
\bigcup_{i}^{n} J_{n} \simeq \bigvee_{i=1}^{n} X_{i}
$$

where

$$
X_{i}=\bigvee_{\left\{l_{1}, \ldots, l_{i}\right\} \in \mathcal{P}(\underline{n})} \Sigma^{i-1}\left(J_{l_{1}} \cap \cdots \cap J_{l_{i}}\right)
$$

Proof. For $n=2$ it is clear by Lemma 9. For $n \geqslant 3$ take $\mathcal{X}(S)=J_{S^{c}}$, for $n-1 \mathcal{X}_{1}(S)=\mathcal{X}(S)$ and $\mathcal{X}_{2}(S)=\mathcal{X}(S \cup\{n\})$. Then

$$
\operatorname{hocolim}(\mathcal{X}) \cong \operatorname{hocolim}\left(J_{n} \longleftarrow \operatorname{hocolim}\left(\mathcal{X}_{1}\right) \longrightarrow \operatorname{hocolim}\left(\mathcal{X}_{2}\right)\right)
$$

By the inductive hypothesis hocolim $\left(\mathcal{X}_{1}\right)$ is homotopy equivalent to a wedge of spheres of dimension r_{2} or contractible, therefore the map hocolim $\left(\mathcal{X}_{1}\right) \longrightarrow J_{n}$ is null-homotopic. By inductive hypothesis $\operatorname{hocolim}\left(\mathcal{X}_{2}\right)$ is homotopy equivalent to a wedge of spheres of dimension at least $r_{2}+1$ or contractible, so the map between hocolim $\left(\mathcal{X}_{1}\right)$ and $\operatorname{hocolim}\left(\mathcal{X}_{2}\right)$ is null-homotopic, applying Lemma 9 we obtain the result.

Corollary 11. Let J_{1}, \ldots, J_{n} be $n \geqslant 2 C W$-complexes such that for any S subset of $\{1, \ldots, n\}$ with $|S| \geqslant 2, \bigcap_{i \in S} J_{i}=J_{S}$ is a contractible subcomplex. Then

$$
\bigcup_{i}^{n} J_{n} \simeq \bigvee_{i=1}^{n} J_{i}
$$

Lemma 12. Let X_{1}, \ldots, X_{k} simplicial complexes such that the intersection of two or more is contractible or empty, X_{i} is connected for all i and there is a graph G with k edges and a bijection $\gamma:\{1, \ldots, k\} \longrightarrow E(G)$ such that $\bigcap_{i \in S} \gamma(i) \neq \varnothing$ if and only if $\bigcap_{i \in S} X_{i} \neq \varnothing$ for all non-empty subsets S of $\{1, \ldots, k\}$. Then $X=\bigcup_{i=1}^{k} X_{i}$ has the homotopy type of the nerve of $\left\{X_{i}\right\}_{i \in \underline{k}}$ with the complexes X_{i} attached to the corresponding point in the nerve.

Proof. By induction on k. For $k=1,2$ the result is clear. Assume it is true for any $r \leqslant k$ and take X_{1}, \ldots, X_{k+1} simplicial complexes such that the intersection of two or more is contractible or empty, X_{i} is connected for all i and there is a graph G with $k+1$ edges and a bijection $\gamma:\{1, \ldots, k+1\} \longrightarrow E(G)$ such that $\bigcap_{i \in S} \gamma(i) \neq \varnothing$ if an only if $\bigcap_{i \in S} X_{i} \neq \varnothing$ for all non-empty subsets S of $\{1, \ldots, k+1\}$. Now, take \mathcal{N} to be the nerve complex of X_{1}, \ldots, X_{k+1}. For any $i \in\{1, \ldots, k+1\}, l k(i)$ is:
(a) Empty if in the corresponding edge both vertices have degree 1.
(b) Contractible if in the corresponding edge one vertex has degree 1 and the other degree at least 2.
(c) Homotopy equivalent to \mathbb{S}^{0} if in the corresponding edge both vertices have degree at least 2 .

Taking the homotopy pushout of the diagram associated to X_{1}, \ldots, X_{k+1} we know that it is homotopy equivalent to the homotopy pushout of the diagram

$$
\mathcal{S}: \operatorname{hocolim}\left(\mathcal{S}_{2}\right) \longleftarrow \operatorname{hocolim}\left(\mathcal{S}_{1}\right) \longrightarrow X_{k+1}
$$

where S_{1} is the homotopy colimit of the diagram associated to $X_{1} \cap X_{k+1}, \ldots, X_{k} \cap X_{k+1}$, and \mathcal{S}_{2} is the homotopy colimit of the diagram associated to X_{1}, \ldots, X_{k}. Now $\operatorname{hocolim}\left(\mathcal{S}_{1}\right) \simeq l k(k+1)$, so we have three possibilities:
(a) $\operatorname{hocolim}\left(\mathcal{S}_{1}\right)=\varnothing$, then $\operatorname{hocolim}(\mathcal{S}) \simeq \operatorname{hocolim}\left(\mathcal{S}_{2}\right) \sqcup X_{k+1}$
(b) $\operatorname{hocolim}\left(\mathcal{S}_{1}\right) \simeq *$, then $\operatorname{hocolim}(\mathcal{S}) \simeq \operatorname{hocolim}\left(\mathcal{S}_{2}\right) \vee X_{k+1}$
(c) $\operatorname{hocolim}\left(\mathcal{S}_{1}\right) \simeq \mathbb{S}^{0}$, then $\operatorname{hocolim}(\mathcal{S}) \simeq \operatorname{hocolim}\left(\mathcal{S}_{2}\right) \vee \mathbb{S}^{1} \vee X_{k+1}$

1.3 Polyhedral products

Given a topological space $X, X^{\wedge n}$ will be the smash product of n copies of X and $X^{* n}$ will be the join of n copies of X.

Given a family of pointed pairs of CW-complexes $(\underline{X}, \underline{A})=\left\{\left(X_{i}, A_{i}\right)\right\}_{i=1}^{n}$ and K a simplicial complex on n vertices, we take the polyhedral smash product determined by $(\underline{X}, \underline{A})$ and K as the space

$$
\hat{Z}_{K}(\underline{X}, \underline{A})=\hat{D}(\varnothing) \cup \bigcup_{\sigma \in K} \hat{D}(\sigma)
$$

with

$$
\hat{D}(\sigma)=\bigwedge_{i \in \underline{n}} Y_{i}, \quad \text { where } Y_{i}= \begin{cases}X_{i} & \text { if } i \in \sigma \\ A_{i} & \text { if } i \notin \sigma\end{cases}
$$

Theorem 13. [5] Let K be a complex with n vertices and ($\underline{X}, \underline{A}$) a family of pointed pairs of $C W$-complexes such that $A_{i} \longleftrightarrow X_{i}$ is null-homotopic. Then

$$
\hat{Z}_{K}(\underline{X}, \underline{A}) \simeq(K * \hat{D}(\varnothing)) \vee \bigvee_{\sigma \in K} l k(\sigma) * \hat{D}(\sigma)
$$

Given a complex K with vertices \underline{n} and $(\underline{X}, \underline{A})=\left\{\left(X_{1}, A_{1}\right), \ldots,\left(X_{n}, A_{n}\right)\right\}$ a family of pairs of CW-complexes, we define the polyhedral join as the space

$$
\stackrel{*}{Z}_{K}(\underline{X}, \underline{A})=\bigcup_{\sigma \in K} J(\sigma)
$$

with

$$
J(\sigma)=\underset{i \in \underline{n}}{*} Y_{i}, \quad \text { where } Y_{i}= \begin{cases}X_{i} & \text { if } i \in \sigma \\ A_{i} & \text { if } i \notin \sigma\end{cases}
$$

Theorem 14. If $(\underline{X}, \underline{A})=\left\{\left(X_{1}, A_{1}\right), \ldots,\left(X_{n}, A_{n}\right)\right\}$ is a family of pairs of $C W$-complexes and $(\underline{\Sigma X}, \underline{\Sigma A})=\left\{\left(\Sigma X_{1}, \Sigma A_{1}\right), \ldots,\left(\Sigma X_{n}, \Sigma A_{n}\right)\right\}$ the family of their suspensions as pointed pairs, then

$$
\Sigma \stackrel{*}{Z}_{K}(\underline{X}, \underline{A}) \simeq \hat{Z}_{K}(\underline{\Sigma X}, \underline{\Sigma A})
$$

Proof. If $\sigma_{1}, \ldots, \sigma_{r}$ are the maximal simplices of K, we take the punctured r-cube

$$
\mathcal{X}(S)=\bigcap_{i \in S^{c}} J\left(\sigma_{i}\right)
$$

with the inclusions as maps. Then $\stackrel{*}{Z}_{K}(\underline{X}, \underline{A}) \simeq \operatorname{hocolim}(\mathcal{X})$ and we have a weak-homotopy equivalence $\Sigma \operatorname{hocolim}(\mathcal{X}) \simeq \operatorname{hocolim}(\Sigma \mathcal{X})$ (see [23] Corollary 5.8.10). Now, for any non-empty CW-complexes Z_{1}, \ldots, Z_{l} with base points z_{1}, \ldots, z_{l}

$$
\sum\left(\underset{i \in \underline{l}}{*} Z_{i}\right) \cong\left(\sum\left(\underset{i \in \underline{l}}{*} Z_{i}\right)\right) / \sim
$$

where $x \sim y$ if $x, y \in \sum\left(\bigcup_{j=1}^{l} z_{j} *\left(*_{i \in \underline{l}-\{j\}} Z_{i}\right)\right)$; that last space is contractible by the Nerve Theorem, as its nerve is the $(l-1)$-simplex. We take the the punctured r-cube

$$
\tilde{\mathcal{X}}(S)=\left(\sum\left(\bigcap_{i \in S^{c}} J\left(\sigma_{i}\right)\right)\right) / \sim .
$$

Now the quotient maps give us an homotopy equivalence of cubes, therefore hocolim $(\Sigma \mathcal{X}) \simeq$ $\operatorname{hocolim}(\tilde{\mathcal{X}})$.

Now we take the punctured r-cube \mathcal{Y} given by:

$$
\mathcal{Y}(S)=\bigcap_{i \in S^{c}} \hat{D}\left(\sigma_{i}\right)
$$

for $(\underline{\Sigma X}, \underline{\Sigma A})$ with the inclusions as maps. Therefore $\hat{Z}_{K}(\underline{\Sigma X}, \underline{\Sigma A}) \simeq \operatorname{hocolim}(\mathcal{Y})$.

Defining $\rho(S)=\left\{j \notin \bigcap_{i \in S^{c}} \sigma_{i}: A_{j}=\varnothing\right\}$, if we take

$$
\tilde{\mathcal{Y}}(S)=\left\{\begin{array}{cc}
\left(\bigwedge_{j \in \rho(S)^{c}} Y_{j}\right) / \sim & \text { if } n-|\rho(S)|=l>0 \\
\mathbb{S}^{0} & \text { if } \rho(S)=\underline{n}
\end{array}\right.
$$

where the quotient is by the contractible subspace $\bigwedge_{j \in \rho(S)^{c}} \Sigma\left(*_{j}\right)$, we have that hocolim $\left(\mathcal{Y}_{0}\right) \simeq$ $\operatorname{hocolim}(\tilde{\mathcal{Y}})$, where $\mathcal{Y}_{0}(S)$ is $\tilde{\mathcal{Y}}(S)$ without doing the quotient. Taking the inclusions of $\mathcal{Y}_{0}(S)$ in $\mathcal{Y}(S)$, we have that $\operatorname{hocolim}\left(\mathcal{Y}_{0}\right) \simeq \operatorname{hocolim}(\mathcal{Y})$.

Now, we take the punctured cube

$$
\mathcal{Z}(S)=\left\{\begin{array}{cc}
\left(I^{l} \times \prod_{i \in \rho(S)^{c}} B_{i}\right) / \sim & \text { if } n-|\rho(S)|=l>0 \\
\mathbb{S}^{0} & \text { if } \rho(S)=\underline{n}
\end{array}\right.
$$

where the quotient is by the subspace

$$
\partial I^{l} \times \prod_{i \notin f(S)} B_{i} \bigcup I^{l} \times W\left(B_{1}, \ldots, B_{l}\right)
$$

with $B_{i}=X_{i}$ if $i \in \bigcap_{j \in S^{c}} \sigma_{j}$ and $B_{i}=A_{i}$ if $i \notin \bigcap_{j \in S^{c}} \sigma_{j}$, and for $S \subseteq T$, the map $f_{S \subseteq T}$ is the inclusion if $\rho(S)=\rho(T)$ and the constant maps to the base point in other case. We will see that $\operatorname{hocolim}(\tilde{\mathcal{X}}) \simeq \operatorname{hocolim}(\mathcal{Z}) \simeq \operatorname{hocolim}(\tilde{\mathcal{Y}})$.

If $\rho(S) \neq \underline{n}$, we take the following composition of quotient maps

$$
I^{l} \times \prod_{i \notin \rho(S)} B_{i} \longrightarrow \prod_{i \notin \rho(S)} \Sigma B_{i} \longrightarrow \bigwedge_{i \notin \rho(S)} \Sigma B_{i} \longrightarrow \tilde{\mathcal{Y}}(S)
$$

where the first map sends $\left(\left(t_{1}, \ldots, t_{l}\right),\left(x_{i}\right)_{i \notin \rho(S)}\right)$ to $\left(\left[t_{i}, x_{i}\right]\right)_{i \notin \rho(S)}$. Therefore $\mathcal{Z}(S) \cong \tilde{\mathcal{Y}}(S)$. In other case both spaces are \mathbb{S}^{0}. If $\rho(S)=\rho(T)$ for $S \subset T$, then the maps of \mathcal{Z} are inclusions and we
have the following commutative diagram:

In other case, the maps for both cubes are the constant map to the base point. From this we have that $\operatorname{hocolim}(\mathcal{Z}) \simeq \operatorname{hocolim}(\tilde{\mathcal{Y}})$.

If $\rho(S) \neq \underline{n}$ and $\rho(S)^{c}=\left\{i_{1}, \ldots, i_{l}\right\}$ with $i_{j}<i_{j+1}$, we take the following composition of quotient maps

$$
I^{l} \times \prod_{j=1}^{l} B_{i_{j}} \longrightarrow I^{l-1} \times\left(B_{i_{1}} * \prod_{j=2}^{l} B_{i_{j}}\right) \longrightarrow \cdots \longrightarrow I \times \underset{j=1}{*} B_{i_{j}} \longrightarrow \sum_{j=1}^{*} B_{i_{j}} \longrightarrow \tilde{\mathcal{X}}(S)
$$

from which we see that $\mathcal{Z}(S) \cong \tilde{\mathcal{X}}(S)$. Otherwise both spaces are \mathbb{S}^{0}. As before, these maps induce a homotopy equivalence and therefore $\operatorname{hocolim}(\tilde{\mathcal{X}}) \simeq \operatorname{hocolim}(\mathcal{Z})$.

From the last theorem and Theorem 13 we get the following corollary:
Corollary 15. If $(\underline{X}, \underline{A})=\left\{\left(X_{1}, A_{1}\right), \ldots,\left(X_{n}, A_{n}\right)\right\}$ is a family of pairs of $C W$-complexes such that the inclusion $\Sigma A_{i} \longleftrightarrow \Sigma X_{i}$ is null-homotopic for all i, then

$$
\Sigma \stackrel{*}{Z}_{K}(\underline{X}, \underline{A}) \simeq \Sigma(K * \stackrel{*}{D}(\varnothing)) \vee \bigvee_{\sigma \in K} \Sigma l k(\sigma) * \stackrel{*}{D}(\sigma)
$$

Proposition 16. For $d \leqslant n$,

$$
\stackrel{*}{Z}_{s k_{d} \Delta^{n}}\left(\bigvee_{r-1} \mathbb{S}^{0}, \varnothing\right) \simeq \bigvee_{f_{d}(r, n)} \mathbb{S}^{d}
$$

where

$$
f_{d}(r, n)=\sum_{i=0}^{d+1}(-1)^{d+1-i}\binom{n+1}{i} r^{i}
$$

Proof. We will set $X=\bigvee_{r-1} \mathbb{S}^{0}$. Now, for $d=n$,

$$
\stackrel{*}{Z}_{s k_{d} \Delta^{n}}(X, \varnothing)=\stackrel{*}{Z}_{\Delta^{n}}(X, \varnothing)=\stackrel{n+1}{i=1}\left(\bigvee_{r-1} \mathbb{S}^{0}\right) \simeq \bigvee_{(r-1)^{n+1}} \mathbb{S}^{n}
$$

We will use induction on d and for each d induction on n. For $d=1, \stackrel{*}{Z}_{s k_{1} \Delta^{n}}(X, \varnothing)$ is the complete $(n+1)$-partite graph with r vertices in each partition. Therefore:

$$
\stackrel{*}{Z}_{s k_{d} \Delta^{n}}(X, \varnothing) \simeq \underset{\binom{n+1}{2} r^{2}-(n+1) r+1}{ } \mathbb{S}^{1}
$$

Now, assume it is true for $d-1$ and any n and also for $(d, n-1)$; and consider the case (d, n). By case analysis on the first vertex of Δ^{n}, we obtain:

$$
\stackrel{*}{Z}_{s k_{d} \Delta^{n}}(X, \varnothing)=\left[\left(\bigvee_{r-1} \mathbb{S}^{0}\right) * \stackrel{Z}{Z}_{s k_{d-1} \Delta^{n-1}}(X, \varnothing)\right] \bigcup \overbrace{Z_{k_{d} \Delta^{n-1}}}(X, \varnothing)
$$

Since the intersection of those two subcomplexes is $\stackrel{*}{Z}_{s k_{d-1} \Delta^{k-1}}(X, \varnothing)$, we can conclude that $\stackrel{*}{Z}_{s k_{d} \Delta^{n}}$ (X, \varnothing) is homotopy equivalent to the homotopy pushout of

$$
\bigvee_{(r-1) f_{d}(r, n)} \mathbb{S}^{d} \longleftrightarrow \bigvee_{f_{d}(r, n)} \mathbb{S}^{d-1} \hookrightarrow \bigvee_{f_{d+1}(r, n)} \mathbb{S}^{d}
$$

Both inclusions in that diagram must be null-homotopic, so Lemma 9 applies, and we obtain the desired homotopy type: a wedge of $f_{d}(r, n)$ copies of \mathbb{S}^{d}, where

$$
f_{d}(r, n):=r f_{d-1}(r, n-1)+f_{d}(r, n-1)
$$

Now we need only prove the stated formula for $f_{d}(r, n)$. For $d=1$ or $d=n$ we know it is true. Assume the formula is true for $d-1$ and any n and also for $(d, n-1)$; and consider the case of (d, n). Now,

$$
f_{d}(r, n)=\sum_{i=0}^{d}(-1)^{d-i}\binom{n}{i} r^{i+1}+\sum_{i=0}^{d+1}(-1)^{d+1-i}\binom{n}{i} r^{i}
$$

Reindexing the first sum from $i=1$ to $d+1$, and using a standard identity for binomial coefficients, we obtain the desired formula.

Chapter 2

Definition and basic properties of the filtration

In this chapter we define the filtration which is studied and give properties of it. Let G be a graph, we define its d-forest complex as the complex

$$
\mathcal{F}_{d}(G)=\{\sigma \subseteq V(G): G[\sigma] \text { is a forest with } \Delta(G[\sigma]) \leqslant d\}
$$

for $d=\infty$ we take

$$
\mathcal{F}_{\infty}(G)=\{\sigma \subseteq V(G): G[\sigma] \text { is a forest }\}
$$

For $d=0, \mathcal{F}_{0}(G)$ is the independence complex of G and for $d=1$ is also called the 2-independence complex of G-the r-independence complex of G has as simplices sets $A \subseteq V(G)$ such that every connected component of $G[A]$ has at most r vertices. Note that if $d+1=\min \left\{r: G\right.$ is $K_{1, r}$-free $\}$, then $\mathcal{F}_{l}(G)=\mathcal{F}_{d}(G)$ for all $l \geqslant d$.

Given a graph G let $t_{d}(G)=\max \{|V(T)|: T$ is an induced forest such that $\Delta(T) \leqslant d\}$, by definition $t_{d}(G)=\operatorname{dim}\left(\mathcal{F}_{d}(G)\right)+1$, therefore knowing the homotopy type of $\mathcal{F}_{d}(G)$ or its homology groups gives us a lower bound for $t_{d}(G)$.

Theorem 17. For any graph G and all d, the $\operatorname{pair}\left(\mathcal{F}_{d+1}(G), \mathcal{F}_{d}(G)\right)$ is d-connected.
Proof. For any d, we have that $s k_{i} \mathcal{F}_{d}(G)=s k_{i} \mathcal{F}_{d+1}(G)$ for all $i \leqslant d$ because a forest of order $i+1$ has maximum degree at most i. Then all the cells in $\mathcal{F}_{d+1}(G)-\mathcal{F}_{d}(G)$ have dimension greater than d and this implies the result (see [16] Corollary 4.12).

By definition the following results are clear.

Proposition 18. For $d \geqslant 1$,

$$
\mathcal{F}_{d}\left(K_{n}\right) \simeq \bigvee_{\frac{(n-1)(n-2)}{2}} \mathbb{S}^{1}
$$

Proposition 19. For $n \geqslant 3$ and $d \geqslant 2$,

$$
\mathcal{F}_{d}\left(C_{n}\right) \cong \mathbb{S}^{n-2}
$$

A subset of vertices σ is an independent set if all of its subsets of cardinality 2 are independent. This says that in order to be a simplex of the independence complex, a set of vertices only need have its 1 -skeleton contained in the complex. This type of complexes are called flag complexes. Now, for $\mathcal{F}_{1}(G)$, its 1 -skeleton is the complete graph of the same order as G, therefore it is not a flag complex in general, because it is not contractible for all graphs. The following result tells us that it has an analogous property but for the 2-skeleton, rather than the 1-skeleton.

Proposition 20. Let σ be a subset of $V(G)$ such that all of its subsets of cardinality 3 are simplices of $\mathcal{F}_{1}(G)$, then σ is a simplex of $\mathcal{F}_{1}(G)$.

Proof. If $|\sigma| \leqslant 3$ the result is clear. Now let $\sigma=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. Then, for $\tau=\left\{v_{0}, v_{1}, v_{2}\right\}$, we have that $G_{\tau}=G[\tau]$ is forest such that $\Delta\left(G_{\tau}\right) \leqslant 1$. Now, v_{3} at most can have one neighbor in τ and it must be a vertex of degree 0 in G_{τ}. Therefore $G_{\sigma}=G[\sigma]$ is a graph such that $\Delta\left(G_{\sigma}\right) \leqslant 1$, which implies it is a forest and σ is a simplex of $\mathcal{F}_{1}(G)$.

Assume the result is true for any subset of at most $k \geqslant 4$ vertices that has its 2 -skeleton in $\mathcal{F}_{1}(G)$. Let $\sigma=\left\{v_{0}, \ldots, v_{k}\right\}$ a subset of $k+1$ vertices such that its 2 -skeleton is in $\mathcal{F}_{1}(G)$. By induction hypothesis, $\tau=\left\{v_{0}, \ldots, v_{k-1}\right\}$ is a simplex of $\mathcal{F}_{1}(G)$, therefore, taking G_{τ} as before,

$$
G_{\tau} \cong r K_{1} \sqcup M_{s}
$$

with $r, s \geqslant 0$ and $r+2 s=k+1$. By hypothesis, v_{k} can not be adjacent to a vertex in M_{s} and only can be adjacent to one vertex in $r K_{1}$. So σ induces a graph with maximum degree at most 1 and therefore σ is a simplex of $\mathcal{F}_{1}(G)$.

This can not be generalized for $\mathcal{F}_{d}(G)$ with $d \geqslant 2$ as $\mathcal{F}_{d}\left(C_{d+3}\right)$ shows.
If a simplicial complex K is such that $\tilde{H}_{q}(K) \not \equiv 0$, then $f_{i}(K) \geqslant f_{i}\left(\Delta^{q+1}\right)$ and $f_{0}(K)=q+2$ if and only if $K \cong \partial\left(\Delta^{q+1}\right)$, from this we get the following Proposition.

Proposition 21. Let G be a graph such that $\tilde{H}_{q}\left(\mathcal{F}_{d}(G)\right) \not \equiv 0$ for some d and q, then G has at least $q+2$ different induced forests of $q+1$ vertices and maximun degree at most d.

Proposition 22. Let G be a graph of order $q+2$, with $q \geqslant 1$, then:

1. If $\tilde{H}_{q}\left(\mathcal{F}_{q}(G)\right) \nsupseteq 0$, then $G \cong K_{1, q+1}$ or $G \cong C_{q+2}$

$$
\text { 2. If } \tilde{H}_{q}\left(\mathcal{F}_{\infty}(G)\right) \not \equiv 0 \text {, then } G \cong C_{q+2}
$$

Proof. For $d=q$ or $d=\infty$, we have that $\mathcal{F}_{d}(G) \cong \partial\left(\Delta^{q+1}\right)$ and for any proper subset of the vertices $S, \mathcal{F}_{d}(G[S])$ must be contractible. If $\Delta(G)=q+1$, then G can not have cycles because $V(G)-\{v\}$ is a simplex for any vertex and $\mathcal{F}_{\infty}(G) \simeq *$. Take v a vertex such that $d_{G}(v)=q+1$, then $\mathcal{F}_{q}(G)=s t(v) \cup \mathcal{F}_{q}(G-v)$ and, because $\tilde{H}_{q}\left(\mathcal{F}_{q}(G-v)\right) \cong 0$, using the Mayer-Vietoris sequence we have that $\tilde{H}_{q-1}(l k(v)) \nsupseteq 0$. Therefore $l k(v) \cong \partial\left(\Delta^{q}\right)$. If $q=1$, then $l k(v)$ is two disjoint vertices from where it follows that $G \cong K_{1,2}$ or $G \cong C_{3}$. Assume $q \geqslant 2$, then $N(v)$ must be an independent set and $G \cong K_{1, q+1}$.

Assume $\Delta(G) \leqslant q$, then G must have a cycle, otherwise $\mathcal{F}_{d}(G) \simeq *$ for $d=q$ or $d=\infty$. Let $C \leqslant G$ be an induced cycle. If $V(C) \subsetneq V(G)$, because any proper subset is a simplex, $V(C)$ will be a simplex, but this can not happen. Therefore $G \cong C_{q+2}$.

Proposition 23. If $e \in E(G)$ is bridge, then $\mathcal{F}_{\infty}(G)=\mathcal{F}_{\infty}(G-e)$.
Lemma 24. If $G=G_{1} \sqcup G_{2}$, then for all d,

$$
\mathcal{F}_{d}(G)=\mathcal{F}_{d}\left(G_{1}\right) * \mathcal{F}_{d}\left(G_{2}\right)
$$

Proposition 25. If $G=G_{1} \sqcup \cdots \sqcup G_{k}$, then for $d \geqslant 0$,

$$
\operatorname{conn}\left(\mathcal{F}_{d}(G)\right) \geqslant 2 k-2+\sum_{i=1}^{k} \operatorname{conn}\left(\mathcal{F}_{d}\left(G_{i}\right)\right)
$$

Proof. This follows from $\mathcal{F}_{d}(G)=\mathcal{F}_{d}\left(G_{1}\right) * \cdots * \mathcal{F}_{d}\left(G_{k}\right)$
Lemma 26. If v is a vertex such that no cycle of G contains it, then $\mathcal{F}_{\infty}(G) \simeq *$.
Proof. Beacause v does not belongs to a cycle, then $\mathcal{F}_{\infty}(G)=\{v\} * \mathcal{F}_{\infty}(G-v)$.
Corollary 27. If $\delta(G) \leqslant 1$, then $\mathcal{F}_{\infty}(G) \simeq *$.
Corollary 28. If G has a vertex v such that $N_{G}(v)=\left\{v_{1}, v_{2}\right\}$, then $\mathcal{F}_{\infty}(G) \simeq \Sigma l k_{\mathcal{F}_{\infty}(G)}\left(v_{i}\right)$ for $i=1,2$.

Proof. Because $N_{G}(v)=\left\{v_{1}, v_{2}\right\}$, then $d_{G-v_{i}}(v)=1$ and therefore $\mathcal{F} \propto\left(G-v_{i}\right) \simeq *$. Now $\mathcal{F}_{\infty}(G) \simeq$ $\operatorname{hocolim}(\mathcal{S})$ with $\mathcal{S}: \mathcal{F}_{\infty}\left(G-v_{i}\right) \longleftrightarrow l k_{\mathcal{F}(G, \infty)}\left(v_{i}\right) \longleftrightarrow s t_{\mathcal{F}(G, \infty)}\left(v_{i}\right)$, by Lemma 9 we obtain the result.

Lemma 29. Let G be a graph that is the union of three graphs G_{1}, G_{2}, G_{0} such that:

- $G_{0} \cong K_{3}$
- $V\left(G_{0}\right)=\left\{v, v_{1}, v_{2}\right\}$
- $V\left(G_{1}\right) \cap V\left(G_{0}\right)=\left\{v_{1}\right\}, V\left(G_{2}\right) \cap V\left(G_{0}\right)=\left\{v_{2}\right\}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\varnothing$

Then, $l k_{\mathcal{F}_{\infty}(G)}(v) \simeq \operatorname{hocolim}(\mathcal{S})$ with \mathcal{S} the diagram:

$$
\mathcal{F}_{\infty}\left(G_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}-v_{2}\right) \longleftrightarrow \mathcal{F}_{\infty}\left(G_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}-v_{2}\right) \longleftrightarrow \mathcal{F}_{\infty}\left(G_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}\right)
$$

Proof. Because

$$
l k_{\mathcal{F}_{\infty}(G)}(v)=\left(\mathcal{F}_{\infty}\left(G_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}-v_{2}\right)\right) \cup\left(\mathcal{F}_{\infty}\left(G_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}\right)\right)
$$

and

$$
\left(\mathcal{F}_{\infty}\left(G_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}-v_{2}\right)\right) \cap\left(\mathcal{F}_{\infty}\left(G_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}\right)\right)=\mathcal{F}_{\infty}\left(G_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}-v_{2}\right)
$$

we have that

$$
l k_{\mathcal{F}_{\infty}(G)}(v)=\operatorname{colim}(\mathcal{S}) \simeq \operatorname{hocolim}(\mathcal{S})
$$

Proposition 30. Let G be a graph with n vertices and $g(G)<\infty$, then $\tilde{H}_{i}\left(\mathcal{F}_{\infty}(G)\right) \cong 0$ for all $i<g(G)-2$.

Proof. The Alexander Dual has dimension $n-g(G)-1$, thus $\tilde{H}^{k}\left(\mathcal{F}_{\infty}^{*}(G)\right) \cong 0$ for all $k>n-g(G)-1$. By Theorem 3, $\tilde{H}_{i}\left(\mathcal{F}_{\infty}(G)\right) \cong 0$ for all $i<g(G)-2$.

In the last proposition we saw that the girth gives us a lower bound for the homological connectivity of $\mathcal{F}_{\infty}(G)$, now we will see that this bound also works for the connectivity, first we show that $g(G) \geqslant 4$ implies that $\mathcal{F}_{\infty}(G)$ is simply connected, by showing this for $\mathcal{F}_{2}(G)$.

Proposition 31. Let G be a graph with $g(G) \geqslant 4$, then $\pi_{1}\left(\mathcal{F}_{2}(G)\right) \cong 0$.
Proof. We will prove it for connected graphs. We take T a spanning tree of G and take the finitely presented group H_{T} with set of generators $E(G) \cup E\left(G^{c}\right)$ and with the following relations:

- $u v=1$ for all the edges of T,
- $(u v)(v w)=u w$ if $\{u, v, w\}$ is a simplex of $\mathcal{F}_{2}(G)$.
by Theorem 4 we have that $H_{T} \cong \pi_{1}\left(\mathcal{F}_{2}(G)\right)$.
Note that any triple of vertices $\{u, v, w\}$ spans a forest in G because $g(G) \geqslant 4$, so the 2 -skeleton of $\mathcal{F}_{2}(G)$ contains all possible triangles.

We will show that all generators $u v$ are trivial by induction on the distance $k=d_{T}(u, v)$. If $k=1$, this is clear by the first type of relation. Assume $u v$ is trivial if $d_{T}(u, v) \leqslant k$. Take $u v$ such
that $d_{T}(u, v)=k+1$ and take $u w_{1} w_{2} \cdots w_{k} v$ the $u v$-path in T. Since $\left\{u, w_{1}, v\right\}$ is a simplex of $\mathcal{F}_{2}(G)$, the second relation implies $u v=\left(u w_{1}\right)\left(w_{1} v\right)=w_{1} v$ where we have $d_{T}\left(w_{1}, v\right)=k$.

Because $\mathcal{F}_{\infty}(G)$ is always connected, using the last proposition, Proposition 30 and the Hurewicz Theorem we have the following result:

Theorem 32. For any graph $G, \operatorname{conn}\left(\mathcal{F}_{\infty}(G)\right) \geqslant g(G)-3$.

Chapter 3

Homotopy type calculations I: Paths, Cycles, Catus Graphs and Double stars

3.1 Paths and cycles

The homotopy type of all r-independence complexes of paths was calculated by Salvetti [27] using Discrete Morse theory. Here we give a different proof for \mathcal{F}_{1} using homotopy pushouts, which also shows that the inclusion $\mathcal{F}_{1}\left(P_{4 r+3}\right) \longleftrightarrow \mathcal{F}_{1}\left(P_{4(r+1)}\right)$ is a homotopy equivalence. This will allow us to calculate the homotopy type of $\mathcal{F}_{1}\left(C_{n}\right)$ avoiding Discrete Morse theory, which was the tool used in [11].

Proposition 33. [27]

$$
\mathcal{F}_{1}\left(P_{n}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{2 r-1} & \text { if } n=4 r \\
* & \text { if } n=4 r+1 \text { or } n=4 r+2 \\
\mathbb{S}^{2 r+1} & \text { if } n=4 r+3
\end{array}\right.
$$

Proof. For $r=0$, it is clear that $\mathcal{F}_{1}\left(P_{1}\right) \simeq * \simeq \mathcal{F}_{1}\left(P_{2}\right)$. For $P_{3}, \mathcal{F}_{1}\left(P_{3}\right) \cong K_{3}$. For $\mathcal{F}_{1}\left(P_{4}\right)$

$$
l k\left(v_{4}\right)=\mathcal{F}_{1}\left(P_{2}\right) \cup\left\{v_{3}\right\} * \mathcal{F}_{1}\left(P_{1}\right) \simeq *
$$

therefore the inclusion i : $\mathcal{F}_{1}\left(P_{3}\right) \longleftrightarrow \mathcal{F}_{1}\left(P_{4}\right)$ is a homotopy equivalence.
Next, we will prove that $\mathcal{F}_{1}\left(P_{4 r+1}\right) \simeq \mathcal{F}_{1}\left(P_{4 r+2}\right) \simeq *$ for all $r \geqslant 1$.

Assume that it is true for any $1 \leqslant r \leqslant k$. For $\mathcal{F}_{1}\left(P_{4(k+1)}\right)$, by induction hypothesis,

$$
l k\left(v_{4(k+1)}\right)=\mathcal{F}_{1}\left(P_{4 k+2}\right) \cup\left\{v_{4 k+3}\right\} * \mathcal{F}_{1}\left(P_{4 k+1}\right) \simeq *
$$

therefore the inclusion $\mathcal{F}_{1}\left(P_{4 k+3}\right) \longleftrightarrow \mathcal{F}_{1}\left(P_{4(k+1)}\right)$ is a homotopy equivalence.
Now, for $\mathcal{F}_{1}\left(P_{4(k+1)+1}\right)$ we have

$$
l k\left(v_{4(k+1)+1}\right)=\mathcal{F}_{1}\left(P_{4 k+3}\right) \cup\left\{v_{4(k+1)}\right\} * \mathcal{F}_{1}\left(P_{4 k+2}\right) .
$$

Setting $X=\mathcal{F}_{1}\left(P_{4 k+2}\right)$ and $Y=\left\{v_{4 k+3}\right\} * \mathcal{F}_{1}\left(P_{4 k+2}\right)$, we have by induction hypothesis that

$$
X \cap Y=\mathcal{F}_{1}\left(P_{4 k+2}\right) \simeq *
$$

therefore $\mathcal{F}_{1}\left(P_{4 k+3}\right) \longleftrightarrow l k\left(v_{4(k+1)+1}\right)$ is a homotopy equivalence.

For $\mathcal{F}_{1}\left(P_{4(k+1)+2}\right)$:

$$
l k\left(v_{4(k+1)+2}\right)=\mathcal{F}_{1}\left(P_{4(k+1)}\right) \cup\left\{v_{4(k+1)+1}\right\} * \mathcal{F}_{1}\left(P_{4 k+3}\right) ;
$$

because $\mathcal{F}_{1}\left(P_{4 k+3}\right) \longleftrightarrow \mathcal{F}_{1}\left(P_{4(k+1)}\right)$ is an homotopy equivalence, we have that $l k\left(v_{4(k+1)+2}\right) \simeq *$ and therefore

$$
\mathcal{F}_{1}\left(P_{4(k+1)+2}\right) \simeq \mathcal{F}_{1}\left(P_{4(k+1)+1}\right) \simeq *
$$

We have that $\mathcal{F}_{1}\left(P_{4(k+1)}\right) \simeq \mathcal{F}_{1}\left(P_{4 k+3}\right) ;$ now for this last complex:

$$
l k\left(v_{4 k+3}\right)=\mathcal{F}_{1}\left(P_{4 k+1}\right) \cup\left\{v_{4 k+2}\right\} * \mathcal{F}_{1}\left(P_{4 k}\right)
$$

where $\mathcal{F}_{1}\left(P_{4 k+1}\right) \simeq *$, therefore

$$
l k\left(v_{4 k+3}\right) \simeq \Sigma \mathcal{F}_{1}\left(P_{4 k}\right)
$$

Since $\mathcal{F}_{1}\left(P_{4 k+2}\right) \simeq *$, we have that $\mathcal{F}_{1}\left(P_{4 k+3}\right) \simeq \Sigma^{2} \mathcal{F}_{1}\left(P_{4 k}\right)$ and

$$
\mathcal{F}_{1}\left(P_{4(k+1)}\right) \simeq \Sigma^{2} \mathcal{F}_{1}\left(P_{4 k}\right) \simeq \Sigma^{2} \mathbb{S}^{2 k-1} \simeq \mathbb{S}^{2 k+1}
$$

Doing the exact same argument we can see that $\mathcal{F}_{1}\left(P_{4(k+1)+3}\right) \simeq \Sigma^{2} \mathcal{F}_{1}\left(P_{4(k+1)}\right)$ and therefore

$$
\mathcal{F}_{1}\left(P_{4(k+1)+3}\right) \simeq \Sigma^{2} \mathbb{S}^{2 k+1} \simeq \mathbb{S}^{2 k+3}
$$

In the proof of the last proposition we saw that the inclusion $\mathcal{F}_{1}\left(P_{4 k+3}\right) \longleftrightarrow \mathcal{F}_{1}\left(P_{4(k+1)}\right)$ obtained by erasing the last (or the first) vertex is an homotopy equivalence. We will use this fact in the following corollary.

Corollary 34. [11]

$$
\mathcal{F}_{1}\left(C_{n}\right) \simeq\left\{\begin{array}{cc}
\bigvee \mathbb{S}^{2 r-1} & \text { if } n=4 r \\
3 & \text { if } n=4 r+1 \\
\mathbb{S}^{2 r-1} & \text { if } n=4 r+2 \\
\mathbb{S}^{2 r} & \text { if } n=4 r+3
\end{array}\right.
$$

Proof. For $n=3,4$, the only possible simplices are a vertex or pair of vertices, any set with more vertices will have a 3 -path or a cycle. Therefore $\mathcal{F}_{1}\left(C_{3}\right) \cong K_{3}$ and $\mathcal{F}_{1}\left(C_{4}\right) \cong K_{4}$. For $n=5$, taking $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ the vertices of the cycle with edges $v_{i} v_{i+1}$, the facets of $\mathcal{F}_{1}\left(C_{5}\right)$ are $\sigma_{i}=\left\{v_{i}, v_{i+2}, v_{i+3}\right\}$. The edge $v_{i+2} v_{v_{i}+3}$ only is contained in σ_{i}, so we can collapse it for all i. Therfore $\mathcal{F}_{1}\left(C_{5}\right) \simeq \mathcal{F}_{0}\left(C_{5}\right) \cong \mathbb{S}^{1}$.

Assume $n \geqslant 6$ and let v_{1}, \ldots, v_{n} be the vertices of the cycle. Then $l k\left(v_{n}\right)=K_{1} \cup K_{2} \cup K_{3}$ where

$$
\begin{aligned}
& K_{1}=\mathcal{F}_{1}\left(C_{n}-v_{n}-v_{2}-v_{n-1}\right) \\
& \cong C\left(\mathcal{F}_{1}\left(P_{n-4}\right)\right) \\
& K_{2}=\mathcal{F}_{1}\left(C_{n}-v_{n}-v_{1}-v_{n-2}\right) \\
& \cong C\left(\mathcal{F}_{1}\left(P_{n-4}\right)\right) \\
& K_{3}=\mathcal{F}_{1}\left(C_{n}-v_{n}-v_{1}-v_{n-1}\right) \cong \mathcal{F}_{1}\left(P_{n-3}\right)
\end{aligned}
$$

Now

$$
\begin{gathered}
K_{1} \cap K_{2} \cap K_{3}=K_{1} \cap K_{2}=\mathcal{F}_{1}\left(C_{n}-v_{n}-v_{1}-v_{2}-v_{n-1}-v_{n-2}\right) \cong \mathcal{F}_{1}\left(P_{n-5}\right) \\
K_{1} \cap K_{3}=\mathcal{F}_{1}\left(C_{n}-v_{n}-v_{1}-v_{2}-v_{n-1}\right) \cong \mathcal{F}_{1}\left(P_{n-4}\right) \\
K_{2} \cap K_{3}=\mathcal{F}_{1}\left(C_{n}-v_{n}-v_{1}-v_{n-1}-v_{n-2}\right) \cong \mathcal{F}_{1}\left(P_{n-4}\right) \\
K_{1} \cup K_{2} \simeq \Sigma \mathcal{F}_{1}\left(P_{n-5}\right) \\
\text { If } n=4 r, K_{1} \cap K_{2} \cong \mathcal{F}_{1}\left(P_{4(r-2)+3}\right), K_{3} \simeq * \text { and } K_{1} \cap K_{3} \cong \mathcal{F}_{1}\left(P_{4(r-1)}\right) \cong K_{2} \cap K_{3} . \text { By the }
\end{gathered}
$$

observation before the corollary, the inclusion $K_{1} \cap K_{2} \cap K_{3} \longleftrightarrow K_{1} \cap K_{3}$ is a homotopy equivalence. Therefore $\left(K_{1} \cup K_{2}\right) \cap K_{3} \simeq K_{2} \cap K_{3}$ and

$$
l k\left(v_{n}\right) \simeq \bigvee_{2} \mathbb{S}^{2 r-2}
$$

Since

$$
\mathcal{F}_{1}\left(C_{4 r}-v_{n}\right) \simeq \mathbb{S}^{2 r-1}
$$

we obtain the result.
If $n=4 r+1, K_{1} \cap K_{3} \simeq K_{2} \cap K_{3} \cong \mathcal{F}_{1}\left(P_{4(r-1)+1}\right) \simeq *$ and $K_{2} \cup K_{3} \simeq K_{3}$. Because $K_{1} \cap K_{2} \cap K_{3}=K_{1} \cap K_{2}$, we have that

$$
\left(K_{2} \cup K_{3}\right) \cap K_{1} \simeq K_{1} \cap K_{3} \simeq *
$$

and

$$
K_{1} \cup K_{2} \cup K_{3} \simeq K_{2} \cup K_{3} \simeq K_{3} \cong \mathcal{F}_{1}\left(P_{4(r-1)+2}\right) \simeq *
$$

Therefore $\mathcal{F}_{1}\left(C_{4 r+1}\right) \simeq \mathcal{F}_{1}\left(P_{4 r}\right) \simeq \mathbb{S}^{2 r-1}$.
For $n=4 r+2$ and $n=4 r+3, \mathcal{F}_{1}\left(C_{n}-v_{n}\right) \simeq *$, therefore $\mathcal{F}_{1}\left(C_{n}\right) \simeq \Sigma l k\left(v_{n}\right)$. If $n=4 r+2$, $K_{1} \cap K_{2} \cong \mathcal{F}_{1}\left(P_{4(r-1)+1}\right) \simeq *$ and $K_{1} \cap K_{3}, K_{2} \cap K_{3} \cong \mathcal{F}_{1}\left(P_{4(r-1)+2}\right) \simeq *$. Then $K_{1} \cup K_{2} \simeq *$ and $\left(K_{1} \cup K_{2}\right) \cap K_{3} \simeq *$. From this we have that $l k\left(v_{n}\right) \simeq K_{3}$, therefore

$$
\mathcal{F}_{1}\left(C_{4 r+2}\right) \simeq \Sigma \mathcal{F}_{1}\left(P_{4(r-1)+3}\right) \simeq \mathbb{S}^{2 r}
$$

If $n=4 r+3, K_{2} \cap K_{3} \cong \mathcal{F}_{1}\left(P_{4(r-1)+3}\right)$ and the inclusion $K_{2} \cap K_{3} \longleftrightarrow K_{3}$ is a homotopy equivalence, therefore $K_{2} \cup K_{3} \simeq *$. From this $l k\left(v_{n}\right) \simeq \Sigma\left(K_{1} \cap\left(K_{2} \cup K_{3}\right)\right)$. Since $K_{1} \cap K_{2} \cap K_{3}=$ $K_{1} \cap K_{2}$, we have that $K_{1} \cap\left(K_{2} \cup K_{3}\right) \simeq K_{1} \cap K_{3}$ and

$$
\mathcal{F}_{1}\left(C_{4 r+3}\right) \simeq \Sigma^{2} \mathcal{F}_{1}\left(P_{4(r-1)+3}\right) \simeq \mathbb{S}^{2 r+1}
$$

Proposition 35.

$$
\mathcal{F}_{\infty}\left(C_{n}+e\right) \cong \mathbb{S}^{n-3}
$$

Proof. Assume the vertices of $G=C_{n}+e$ are labeled $v, w_{1}, \ldots, w_{r}, u, w_{r+1}, \ldots, w_{r+k}$ with $e=v u$ (Figure 3.1). Because $\mathcal{F}_{\infty}(G-v) \simeq *$, we have that $\mathcal{F}_{\infty}(G) \simeq \Sigma l k(v)$. Now, $l k(v)$ is formed by the subsets of $V(G-v)$ such that together with v they do not induce a cycle, therefore the facets are

$$
\sigma_{0}=\left[w_{1}, \ldots, w_{r}, w_{r+1}, \ldots, w_{r+k}\right]
$$

Figure 3.1: $C_{n}+e$
and

$$
\sigma_{i j}=\left[w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{r}, u, w_{r+1}, \ldots, \hat{w}_{r+j}, \ldots, w_{r+k}\right]
$$

for $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant k$. If we call K the complex form by σ_{0} and its subsets, and L the complex which facets are the simplices $\sigma_{i j}$, we get that $l k(v)=K \cup L$ and both of this complexes are contractible, therefore $l k(v) \simeq \Sigma K \cap L$.

Now, taking X the complex with facets $\left[w_{r+1}, \ldots, \hat{w}_{r+j}, \ldots, w_{r+k}\right]$ and Y the complex with facets $\left[w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{r}\right]$, we have that $K \cap L \cong X * Y$. Because $X \cong \mathbb{S}^{k-2}$ and $Y \cong \mathbb{S}^{r-2}$, we have that $K \cap L \cong \mathbb{S}^{k-2} * \mathbb{S}^{r-2} \cong \mathbb{S}^{r+k-3}$ and, because $r+k=n-2, \mathcal{F}_{\infty}(G) \simeq \mathbb{S}^{n-3}$.

3.2 Cactus Graphs

For any graph G, we take the block graph $B(G)$ in which the vertices are the blocks of G and the cut-vertices of G, where $v B$ is an edge if v is a vertex of B. If G is connected, then $B(G)$ is a tree.

A graph G is a cactus graph if all of its blocks are isomorphic to a cycle or to K_{2}. We will say that a block is saturated if all of its vertices are cut vertices and $s b(G)$ is the number of saturated blocks. A vertex v is saturated if it is shared by two or more saturated blocks, with $s v(G)$ the number of saturated vertices. In this section we will see that the forest complex of a cactus graphs is contractible or it has the homotopy type of a sphere and we give a lower bound for the dimension of the sphere. Before we proove this, we will need somme auxiliary results.

The following lemma tell us that given a cactus graph with saturated blocks, either it has a saturated block without saturated vertices or we can find a saturated block B such that the graph can be seen as the union of two cactus graphs, one with only B as a saturated block, and the intersection of these graphs is the only saturated vertex of B.

Lemma 36. Let G be a cactus graph such that $\operatorname{sb}(G) \geqslant 1$, then there is a saturated block B such that either it does not have saturated vertices, or:
(i) it has only one saturated vertex v, and
(ii) the connected component of $B(G)-v$ which contains B does not have any other saturated block.

Proof. If there are no saturated vertices, there is nothing to prove. Assume $\operatorname{sv}(G) \geqslant 1$. If there is a saturated block without a saturated vertex, again there is nothing to prove. Assume all saturated blocks have at least one saturated vertex.

Let V_{1} be the set of all saturated blocks of G and V_{2} the set of all saturated vertices. In the subgraph $T=B(G)\left[V_{1} \cup V_{2}\right]$ all the leaves are blocks, because each saturated vertex is in at least two saturated blocks, therefore $d_{T}(v) \geqslant 2$ for all the vertices of V_{2}. We take $L \subseteq V_{1}$ the set of all the leaves of T and let $\left(B_{1}, B_{2}\right)$ be a pair in $L \times L$ such that

$$
d\left(B_{1}, B_{2}\right)=\max \{d(X, Y):(X, Y) \in L \times L\}
$$

Take v_{1} the only saturated vertex in B_{1} and v_{2} the only saturated vertex in B_{2}. We claim that the only $B_{1} B_{2}$-path in $B(G)$ contains both v_{1} and v_{2}. If not, then B_{1} and B_{2} are in different connected components of T and, assuming v_{1} is not in the $B_{1} B_{2}$-path, any leaf B^{\prime} in the same component of B_{1} is such that $d\left(B^{\prime}, B_{2}\right)>d\left(B_{1}, B_{2}\right)$. Therefore v_{1} and v_{2} are in the only $B_{1} B_{2}$-path.

If in $B(G)-v_{1}$ there are saturated blocks in the same component than B_{1}, the distance between these and B_{2} is larger that the distance between B_{1} and B_{2}, which can not happen. Therefore B_{1} and v_{1} are as wanted.

The following two lemmas and corollary will give us the homotopy type of the forest complex when the cactus graph does not have saturated blocks.

Lemma 37. Let G be a cactus graph such that all of its blocks are cycles and such that it does not have saturated blocks, then

$$
\mathcal{F}_{\infty}^{*}(G) \simeq \mathbb{S}^{b(G)-2}
$$

Proof. Let B_{0}, \ldots, B_{k} be the blocks of G. If $k=0$, then $\mathcal{F}_{\infty}^{*}(G)=\varnothing=\mathbb{S}^{-1}$. Assume, $k \geqslant 1$. We take $X_{i}=V(G)-V\left(B_{i}\right)$ for all i, this are the facets of $\mathcal{F}_{\infty}^{*}(G)$ and we have that

$$
\begin{gathered}
\bigcap_{i=0}^{k} X_{i}=\varnothing \\
\bigcap_{i \in S} X_{i} \neq \varnothing, \quad \forall S \subsetneq[k]
\end{gathered}
$$

Then, its nerve is isomorphic to $\partial \Delta^{k} \cong \mathbb{S}^{k-1}$. Therefore, $\mathcal{F}_{\infty}^{*}(G) \simeq \mathbb{S}^{b(G)-1}$.
Lemma 38. Let G be a cactus graph different from K_{3}, then $\mathcal{F}_{\infty}(G)$ is simply connected.

Proof. If G has only one block and G is not K_{3}, G must be a single vertex, K_{2} or a cycle with at least 4 vertices, thus $\mathcal{F}_{\infty}(G)$ is contractible or a sphere of dimension at least 2. Assume G has $k \geqslant 2$ blocks. For each block that is not isomorphic to K_{2} we can erase one edge to we obtain T, a spanning tree of G and $\mathcal{F}_{\infty}(G)$. Taking the free group H_{T} with $E(G) \cup E\left(G^{c}\right)$ as generators and wtih the relations

- $u v=1$ for all the edges of T
- $(u v)(v w)=u w$ if $\{u, v, w\}$ is a simplex of $\mathcal{F}_{\infty}(G)$
we have that $H_{T} \cong \pi_{1}\left(\mathcal{F}_{\infty}(G)\right)$ (see [28] Theorem 7.34). Take $u v \in E(G) \cup E\left(G^{c}\right)-E(T)$.
If u, v are in the same block, this block must be a cycle. If the cycle has 4 or more vertices, there is a $u v$-path $u w_{1} w_{2} \cdots w_{r} v$ in T. Now, $\left\{u, w_{1}, v\right\},\left\{w_{1} . w_{2}, v\right\}, \ldots,\left\{w_{r-1}, w_{r}, v\right\}$ are simplicies of $\mathcal{F}_{\infty}(G)$, then $u v=w_{1} v=w_{2} v=\cdots=w_{l} v=1$. If the cycle is $u v w$, because there are $k \geqslant 2$ blocks, one of the vertices must be a cut vertex:
- If u is a cut vertex, u has a neighbor x in another block such that $u x$ is in T. Then $\{u, v, x\}$ is a simplex of $\mathcal{F}_{\infty}(G)$ and $u v=x v$. Now, $\{v, w, x\}$ and $\{u, w, x\}$ are simplices, thus $x v=x w=$ $u w=1$. The case in which v is a cut vertex is analogous.
- If w is a cut vertex, w has a neighbor x in another block such that $w x$ is in T. Then $\{u, v, x\}$, $\{u, w, x\}$ and $\{v, w, x\}$ are simplices. Therefore $x v=v w=1=u w=u x$ and $u v=u x=1$.

If u, v are in different blocks, then there are cut vertices w_{1}, \ldots, w_{r}, with $r \geqslant 1$, such that they are on the only $u v$-path in T and w_{j} it is not in the only $u w_{i}$-path for any $j>i$, and there are no more cut vertices in the path. Then $\left\{u, w_{1}, v\right\},\left\{w_{1}, w_{2}, v\right\}, \ldots,\left\{w_{r-1}, w_{r}, v\right\}$ are simplices and $u v=w_{1} v=w_{2} v=\cdots=w_{r} v=1$.

Therefore $\pi_{1}\left(\mathcal{F}_{\infty}(G)\right) \cong H_{T} \cong 0$.
Corollary 39. Let G a cactus graph such all of its blocks are cycles and does not have saturated blocks, then

$$
\mathcal{F}_{\infty}(G) \simeq \mathbb{S}^{n-b(G)-1}
$$

Proof. If $b(G)=1$, then G is a cycle and $\mathcal{F}_{\infty}(G) \cong \mathbb{S}^{n-2}$. Assume $b(G) \geqslant 2$, then, by Lemma $38, \mathcal{F}_{\infty}(G)$ is simply connected and, by Lemma $37, \mathcal{F}_{\infty}^{*}(G) \simeq \mathbb{S}^{b(G)-1}$. Therefore, by Theorem $3, \mathcal{F}_{\infty}(G)$ is a simply connected complex such that its only nontrivial reduced homology group is in dimension $q=n-b(G)-1$, which is isomorphic to \mathbb{Z}. By Theorem $1, \mathcal{F}_{\infty}(G)$ is homotopy equivalent to a sphere of the desired dimension.

Now we proof the main result of this section, the last result will help us to do the proof by induction on the number of saturated vertices.

Theorem 40. If G is a cactus graph then $\mathcal{F}_{\infty}(G)$ is either contractible or homotopy equivalent to a sphere of dimension at least $n-b(G)-1$.

Proof. If $\delta(G)=1$, then $\mathcal{F}_{\infty}(G) \simeq *$. Assume $\delta(G)=2$. If there is a cut vertex of degree 2 , then $\mathcal{F}_{\infty}(G) \simeq *$. Assume there is no cut vertex of degree 2. If G has a bridge e, then $G-e=G_{1}+G_{2}$ and, by Proposition $23, \mathcal{F}_{\infty}(G)=\mathcal{F}_{\infty}\left(G_{1}\right) * \mathcal{F}_{\infty}\left(G_{2}\right)$. If G has more bridges, then we continue this process until we get that $\mathcal{F}_{\infty}(G)=\mathcal{F}_{\infty}\left(H_{1}\right) * \cdots * \mathcal{F}_{\infty}\left(H_{r+1}\right)$, where r is the number of bridges and each H_{i} is a cactus graph such that every block is a cycle. So, if every $\mathcal{F}_{\infty}\left(H_{i}\right)$ has n_{i} vertices, is not contractible and is homotopy equivalent to a sphere of dimension at least $n_{i}-b\left(H_{i}\right)-1, \mathcal{F}_{\infty}(G)$ will be homotopy equivalent to a sphere of dimension at least $n-b(G)+r-1>n-b(G)-1$. Therefore we only need to prove the result for cactus graphs which do not have blocks isomorphic to K_{2}.

If G does not have saturated blocks, by Corollary 39,

$$
\mathcal{F}_{\infty}(G) \simeq \mathbb{S}^{n-b(G)-1}
$$

So assume $s b(G) \geqslant 1$, which implies that $b(G) \geqslant 4$. Now, we prove the result by induction on $s v(G)$. If $s v(G)=0$, then take B_{0} a saturated block of G and B_{1}, \ldots, B_{k} the remaining blocks. Let $X_{i}=V(G)-V\left(B_{i}\right)$, then $X_{0}, X_{1}, \ldots, X_{k}$ are the facets of $\mathcal{F}_{\infty}^{*}(G)$. Because B_{0} is saturated,

$$
\bigcap_{i=1}^{k} X_{i}=\varnothing
$$

Let $S \subseteq[k]-\{0\}$ such that

$$
\sigma=\bigcap_{i \in S} X_{i} \neq \varnothing
$$

Then there is $0<j \leqslant k$ such that $j \notin S$ and $V\left(B_{j}\right) \cap \sigma \neq \varnothing$, with B_{j} a non-saturated block or a saturated block (which can not share vertices with B_{0}). Then there is a vertex v in $V\left(B_{j}\right)$ such that v is not vertex of the blocks with index in S nor is a vertex of B_{0}, therefore $v \in X_{0}, v \in \sigma$ and $X_{0} \cap \sigma \neq \varnothing$. From this we get that the nerve is a cone with apex vertex X_{0} and $\mathcal{F}_{\infty}^{*}(G) \simeq *$. Then, by Lemma 38 and Theorem $3, \mathcal{F}_{\infty}(G)$ is simply connected and all of its reduced homology groups are trivial. Therefore, by Theorem $1.2, \mathcal{F}_{\infty}(G)$ is contractible. This argument only used that there is an isolated saturated block, a saturated block which does not have saturated vertices; therefore we can assume that there is no isolated saturated block.

Assume the result is true for $s v(G) \leqslant k$ and let G be a cactus graph with $s v(G)=k+1$ and with all of its blocks isomorphic to cycles. By Lemma 36 there is B_{0} a saturated block such that only one of its vertices is a saturated vertex, say v, and in the connected component of $B(G)-v$ which contains B_{0} there are no more saturated blocks. We call G_{1} the subgraph formed by the blocks in this connected component, and G_{2} the subgraph induced by the remaining blocks. Then
$G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2} \cong K_{1}$. Now

$$
l k_{\mathcal{F}_{\infty}(G)}(v)=l k_{\mathcal{F}_{\infty}\left(G_{1}\right)}(v) * l k_{\mathcal{F}_{\infty}\left(G_{2}\right)}(v)
$$

We will show that $l k_{\mathcal{F}_{\infty}\left(G_{1}\right)}(v) \simeq *$. There are two possibilities:

1. $B_{0} \cong C_{3}$. Then $V\left(B_{0}\right)=\left\{v, v_{1}, v_{2}\right\}$ and $G_{1}=H_{1} \cup B_{0} \cup H_{2}$, with $V\left(H_{1}\right) \cap V\left(B_{0}\right)=\left\{v_{1}\right\}$, $V\left(H_{2}\right) \cap V\left(B_{0}\right)=\left\{v_{2}\right\}$ and $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\varnothing$. Then, by Lemma 29, lk $k_{\mathcal{F}_{\infty}\left(G_{1}\right)}(v) \simeq$ $\operatorname{hocolim}(\mathcal{S})$ with \mathcal{S} the diagram:

$$
\mathcal{F}_{\infty}\left(H_{1}\right) * \mathcal{F}_{\infty}\left(H_{2}-v_{2}\right) \longleftrightarrow \mathcal{F}_{\infty}\left(H_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(H_{2}-v_{2}\right) \longleftrightarrow \mathcal{F}_{\infty}\left(H_{1}-v_{1}\right) * \mathcal{F}_{\infty}\left(H_{2}\right)
$$

By construction, G_{1} does not have saturated blocks, then $\delta\left(H_{1}-v_{1}\right)=1$ or it has a cut vertex of degree 2. Therefore $\mathcal{F}_{\infty}\left(H_{1}-v_{1}\right) \simeq *$. Analogously, $\mathcal{F}_{\infty}\left(H_{2}-v_{2}\right) \simeq *$. From this, we get that $\operatorname{hocolim}(\mathcal{S}) \simeq *$.
2. $B_{0} \cong C_{n}$ with $n \geqslant 4$. Let v_{1}, v_{2} be the neighbors of v in B_{0} and take H be the graph obtained from G_{1} by erasing v and adding the edge $v_{1} v_{2}$. Then

$$
l k_{\mathcal{F}_{\infty}\left(G_{1}\right)}(v)=\mathcal{F}_{\infty}(H) \simeq *
$$

because $\mathcal{F}_{\infty}(H)$ has only one saturated block.
Therefore $l k_{\mathcal{F}_{\infty}(G)}(v) \simeq *$ and $\mathcal{F}_{\infty}(G) \simeq \mathcal{F}_{\infty}(G-v)$. If there is a non-saturated block which contains v, then $\delta(G-v)=1$ or there is a cut vertex of degree 2 , and therefore $\mathcal{F}_{\infty}(G) \simeq *$. Assume that there is no non-saturated block with v among its vertices. Now, in $G-v$, all the remaining edges of the blocks that contain v are bridges, so we can remove them, let H be the graph thus obtained. If $B_{0}, B_{1}, \ldots, B_{l-1}$ are the blocks that contain v, with $n_{0}, n_{1}, \ldots, n_{l-1}$ their respective orders, then $H=H_{1}+\cdots+H_{r}$ where

$$
r=\sum_{i=0}^{l-1} n_{i}-1
$$

By inductive hypothesis, each $\mathcal{F}_{\infty}\left(H_{i}\right)$ is contractible or is homotopy equivalent to a sphere of dimension at least $\left|V\left(H_{i}\right)\right|-b\left(H_{i}\right)-1$. Then, $\mathcal{F}_{\infty}(H)$ is contractible or it has the homotopy type of a sphere of dimension at least

$$
r-1+\sum_{i=1}^{r}\left|V\left(H_{i}\right)\right|-b\left(H_{i}\right)-1=n-1-(b(G)-l)-1=n-b(G)+l-2>n-b(G)-1
$$

3.3 Double stars

We finish this chapter with the calculations for the double stars.
Let $S t_{r, s}$ be the double star with $V\left(S t_{r, s}\right)=\left\{u_{0}, u_{1}, \ldots, u_{r}, v_{0}, v_{1}, \ldots, v_{s}\right\}$ and $E\left(S t_{r, s}\right)=$ $\left\{u_{i} u_{0}: i>0\right\} \cup\left\{v_{i} v_{0}: i>0\right\} \cup\left\{u_{0} v_{0}\right\}$. Now we calculate the homotopy type of the complexes of the filtration for these graphs, the idea will be to see the complex as the union of four subcomplexes and calculate the homotopy colimit of the punctured cube given by the intersections.

Proposition 41.

$$
\mathcal{F}_{1}\left(S t_{r, s}\right) \simeq \mathbb{S}^{1}
$$

and for $2 \leqslant d<\infty$

$$
\mathcal{F}_{d}\left(S t_{r, s}\right) \simeq \bigvee_{\substack{r-1 \\ d-1 \\ d \\ s-1 \\ d-1}} \mathbb{S}^{2 d-1}
$$

Proof. For $\mathcal{F}_{1}\left(S t_{r, s}\right)$, the link of u_{0} has as facets $\sigma_{i}=\left\{u_{i}, v_{1}, \ldots, v_{s}\right\}$ for all i and $\left\{v_{0}\right\}$, therefore

$$
l k\left(u_{0}\right) \simeq \mathbb{S}^{0}
$$

Since $\mathcal{F}_{1}\left(S t_{r, s}-u_{0}\right) \simeq *$, we have that $\mathcal{F}_{1}\left(S t_{r, s}\right) \simeq \Sigma l k\left(u_{0}\right) \simeq \mathbb{S}^{1}$.
For $d \geqslant 2$, if $r \leqslant d-1$ or $s \leqslant d-1$, then $\mathcal{F}_{d}\left(S t_{r, s}\right) \simeq *$, because the set $\left\{u_{1}, \ldots, u_{r}\right\}$ or the set $\left\{v_{1}, \ldots, v_{s}\right\}$ would be contained in all facets. Assume $r, s \geqslant d$. The facets of $\mathcal{F}_{d}\left(S t_{r, s}\right)$, besides $X=\left\{u_{1}, \ldots, u_{r}, v_{1} \ldots, v_{s}\right\}$, are of 3 types:

1. $\alpha_{S}=S \cup\left\{u_{0}, v_{1}, \ldots, v_{s}\right\}$, where $S \subseteq\left\{u_{1}, \ldots, u_{r}\right\}$ and $|S|=d$.
2. $\beta_{S}=S \cup\left\{v_{0}, u_{1}, \ldots, u_{r}\right\}$, where $S \subseteq\left\{v_{1}, \ldots, v_{s}\right\}$ and $|S|=d$.
3. $\sigma_{S_{1}, S_{2}}=\left\{u_{0}, v_{0}\right\} \cup S_{1} \cup S_{2}$, where $S_{1} \subseteq\left\{u_{1}, \ldots, u_{r}\right\}, S_{2} \subseteq\left\{v_{1}, \ldots, v_{s}\right\}$ and $\left|S_{1}\right|=\left|S_{2}\right|=d-1$.

Take $\tau=\mathcal{P}(X)-\{\varnothing\}, \alpha$ the complex generated by $\left\{\alpha_{S}\right\}, \beta$ the complex generated by $\left\{\beta_{S}\right\}$ and σ the complex generated by the $\left\{\sigma_{S_{1}, S_{2}}\right\}, \mathcal{F}_{d}\left(S t_{r, s}\right)=\alpha \cup \beta \cup \sigma \cup \tau$. Now, these four complexes are contractible and so are $\alpha \cap \sigma, \beta \cap \sigma, \alpha \cap \tau, \beta \cap \tau$. Also

$$
\alpha \cap \beta \cap \sigma \cap \tau=\alpha \cap \sigma \cap \tau=\beta \cap \sigma \cap \tau=\alpha \cap \beta \cap \sigma=\sigma \cap \tau \cong s k_{d-2} \Delta^{r-1} * s k_{d-2} \Delta^{s-1}
$$

and $\alpha \cap \beta \cap \tau=\alpha \cap \beta$. We compute the homotopy colimit of the punctured 4 -cube given by this union using the recursive formula given in the preliminaries. This what the formula gives applied to the top and bottom of the 4 -cube:

We find that the complex has the homotopy type of the following homotopy pushout:

$$
\begin{gathered}
\mathcal{S}: * \longleftarrow \Sigma(\sigma \cap \tau) \longrightarrow \tau \\
\operatorname{hocolim}(\mathcal{S}) \simeq \Sigma^{2}(\sigma \cap \tau) \simeq \bigvee_{\binom{r-1}{d-1}\binom{s-1}{d-1}} \mathbb{S}^{2 d-1} .
\end{gathered}
$$

Chapter 4

Homotopy type calculations II: Joins, categorical products and cartesian products

4.1 Graph joins

Remember that given two graphs G and H with disjoint vertex sets, we defined their join as the graph $G * H$ with $V(G * H)=V(G) \cup V(H)$ and

$$
E(G * H)=E(G) \cup E(H) \cup\{u v: u \in V(G) \text { and } v \in V(H)\}
$$

It is well-known that $\mathcal{F}_{0}(G * H)=\mathcal{F}_{0}(G) \sqcup \mathcal{F}_{0}(H)$., The following lemma will tell us the homotopy type for the other d 's under somme hypothesis. With this lemma one can calculate the homotopy type for various families of graphs that can be seen as a join.

Lemma 42. Let G and H graphs with disjoint vertex sets with orders n_{1} and n_{2} respectively. Then:

1. $\mathcal{F}_{1}(G * H) \simeq \mathcal{F}_{1}(G) \vee \mathcal{F}_{1}(H) \vee \bigvee_{n_{1} n_{2}-1} \mathbb{S}^{1}$
2. If $\mathcal{F}_{0}(G)$ and $\mathcal{F}_{0}(H)$ are connected. Then, for all $d \geqslant 2$

$$
\mathcal{F}_{d}(G * H) \simeq\left(\bigvee_{n_{2}-1} \Sigma s k_{d-1} \mathcal{F}_{0}(G)\right) \vee\left(\bigvee_{n_{1}-1} \Sigma s k_{d-1} \mathcal{F}_{0}(H)\right) \vee\left(\bigvee_{\left(n_{1}-1\right)\left(n_{2}-1\right)} \mathbb{S}^{2}\right) \vee A \vee B
$$

with $A=\mathcal{F}_{d}(G) \cup C\left(s k_{d-1} \mathcal{F}_{0}(G)\right)$ and $B=\mathcal{F}_{d}(H) \cup C\left(s k_{d-1} \mathcal{F}_{0}(H)\right)$

Proof. For $d=1$,

$$
\mathcal{F}_{1}(G * H)=\mathcal{F}_{1}(G) \cup \mathcal{F}_{1}(H) \cup K_{n_{1}, n_{2}}
$$

Now $\mathcal{F}_{1}(G) \cap \mathcal{F}_{1}(H) \cap K_{n_{1}, n_{2}}=\mathcal{F}_{1}(G) \cap \mathcal{F}_{1}(H)=\varnothing$, therefore $\mathcal{F}_{1}(G * H)$ is homotopy equivalent to the homotopy pushout of

$$
X \longleftarrow s k_{0} \mathcal{F}_{1}(G) \longrightarrow \mathcal{F}_{1}(G)
$$

where X is the homotopy pushout of

$$
\mathcal{F}_{1}(H) \longleftarrow s k_{0} \mathcal{F}_{1}(H) \longrightarrow K_{n_{1}, n_{2}} .
$$

Thus

$$
X \simeq \mathcal{F}_{1}(H) \vee \bigvee_{n_{1}\left(n_{2}-1\right)} \mathbb{S}^{1}
$$

From this the result follows.
For $d \geqslant 2$,

$$
\mathcal{F}_{d}(G * H)=\mathcal{F}_{d}(G) \cup \mathcal{F}_{d}(H) \cup K_{1} \cup K_{2}
$$

with $K_{1}=\bigcup_{u \in V(H)}\{u\} * s k_{d-1} \mathcal{F}_{0}(G)$ and $K_{2}=\bigcup_{u \in V(G)}\{u\} * s k_{d-1} \mathcal{F}_{0}(H)$. Now:

$$
\begin{aligned}
K_{1} & \cong \bigvee_{n_{2}-1} \Sigma s k_{d-1} \mathcal{F}_{0}(G) \\
K_{2} & \cong \bigvee_{n_{1}-1} \Sigma s k_{d-1} \mathcal{F}_{0}(H)
\end{aligned}
$$

Taking $L_{1}=\mathcal{F}_{d}(G)$ and $L_{2}=\mathcal{F}_{d}(H)$, we have that

$$
\begin{gathered}
L_{1} \cap L_{2}=\varnothing, K_{1} \cap L_{1}=s k_{d-1} \mathcal{F}_{0}(G), K_{2} \cap L_{2}=s k_{d-1} \mathcal{F}_{0}(H), K_{1} \cap K_{2} \cong K_{n, m} \\
L_{1} \cap K_{1} \cap K_{2}=L_{1} \cap K_{2} \cong \bigvee_{n_{1}-1} \mathbb{S}^{0} \\
L_{2} \cap K_{2} \cap K_{1}=L_{2} \cap K_{1} \cong \bigvee_{n_{2}-1} \mathbb{S}^{0}
\end{gathered}
$$

Taking $X=K_{1} \cup L_{1}$ and $Y=K_{2} \cup L_{2}$, we have that $\mathcal{F}_{d}(G * H)=X \cup Y$ and $X \cap Y=$ $\left(L_{1} \cap K_{2}\right) \cup\left(L_{2} \cap K_{1}\right) \cup\left(K_{1} \cap K_{2}\right)=K_{1} \cap K_{2}$. Therefore $\mathcal{F}(G * H, d) \simeq \operatorname{hocolim}(\mathcal{S})$ with

$$
\mathcal{S}: X \longleftrightarrow K_{n, m} \longleftrightarrow Y
$$

Now, the inclusion $i: K_{n, m} \longleftrightarrow X$ is really the inclusion $K_{n, m} \longleftrightarrow K_{1}$, which is null-homotopic, and therefore i is null-homotopic. In the same way we see that the inclusion in Y is null-homotopic
and that

$$
\mathcal{F}_{d}(G * H) \simeq X \vee Y \vee \bigvee_{\left(n_{1}-1\right)\left(n_{2}-1\right)} \mathbb{S}^{2}
$$

Now, $K_{1} \cap L_{1}=s k_{d-1} \mathcal{F}_{0}(G)$ and its inclusion in K_{1} is null-homotopic, therefore we can compute the homotopy type of X by pasting these two homotopy pushout squares:

Now $L_{1} \cup C\left(s k_{d-1} \mathcal{F}_{0}(G)\right)=A$. With an similar argument for Y we arrive at the result.
With the last Lemma we can construct graphs for which $\mathcal{F}_{\infty}(G)$ is not homotopy equivalent to a wedge of spheres. Let K be a triangulation of the projective plane and let H be the complement graph of the 1 -skeleton of the baricentric subdivision, then $\mathcal{F}_{0}(G) \cong K$ and $G=P_{4} * H$ is a graph such that $\mathcal{F}_{d}(G)$ has torsion for all $d \geqslant 3$.

Lemma 43. Let G be a graph and take $d \geqslant 1$, then

$$
\mathcal{F}_{d}\left(K_{1} * G\right) \simeq \mathcal{F}_{d}(G) \cup C\left(s k_{d-1} \mathcal{F}_{0}(G)\right)
$$

Proof. The link of the apex vertex is $s k_{d-1} \mathcal{F}_{0}(G)$, thus the homotopy pushout square

computes $\mathcal{F}\left(K_{1} * G, d\right)$.
Theorem 44. For the complete bipartite graph we have that $\mathcal{F}_{0}\left(K_{n, m}\right) \simeq \mathbb{S}^{0}$,

$$
\begin{gathered}
\mathcal{F}_{1}\left(K_{n, m}\right) \simeq \bigvee_{n m-1} \mathbb{S}^{1} \\
\mathcal{F}_{d}\left(K_{n, m}\right) \simeq \bigvee_{(n-1)(m-1)} \mathbb{S}^{2} \vee \bigvee_{n\binom{m-1}{d}+m\binom{n-1}{d}} \mathbb{S}^{d}
\end{gathered}
$$

for $\infty>d \geqslant 2$ and

$$
\mathcal{F}_{\infty}\left(K_{n, m}\right) \simeq \bigvee_{(n-1)(m-1)} \mathbb{S}^{2}
$$

Proof. If $d=0$ is clear. The case $d=1$ is a particular case of Lemma 42. For $d \geqslant 2$, by Lemma 42

$$
\mathcal{F}_{d}\left(K_{n, m}\right) \simeq\left(\bigvee_{m-1} \Sigma s k_{d-1} \mathcal{F}_{0}\left(K_{n}^{c}\right)\right) \vee\left(\bigvee_{n-1} \Sigma s k_{d-1} \mathcal{F}_{0}\left(K_{m}^{c}\right)\right) \vee\left(\bigvee_{(n-1)(m-1)} \mathbb{S}^{2}\right) \vee A \vee B
$$

with $A=\mathcal{F}_{d}\left(K_{n}^{c}\right) \cup C\left(s k_{d-1} \mathcal{F}_{0}\left(K_{n}^{c}\right)\right)$ and $B=\mathcal{F}_{d}\left(K_{m}^{c}\right) \cup C\left(s k_{d-1} \mathcal{F}_{0}\left(K_{m}^{c}\right)\right)$.
Now, for all d, k, r,

$$
\mathcal{F}_{d}\left(K_{k}^{c}\right) \cong \Delta^{k-1}, s k_{r} \mathcal{F}_{d}\left(K_{k}^{c}\right) \simeq \bigvee_{\binom{k-1}{r+1}} \mathbb{S}^{r}
$$

therefore

$$
A \simeq \bigvee_{\binom{n-1}{d}} \mathbb{S}^{d} ; B \simeq \bigvee_{\binom{m-1}{d}} \mathbb{S}^{d}
$$

from which we obtain the result.
Corollary 45. Let $G_{1}, G_{2}, \ldots, G_{k}$ be vertex disjoint graphs. For $d \geqslant 1$, if $\mathcal{F}_{d}\left(G_{i}\right) \simeq *$ for all i, then

$$
\mathcal{F}_{d}\left(G_{1} * G_{2} * \cdots * G_{k}\right) \simeq \bigvee_{\frac{(k-1)(k-2)}{2}} \mathbb{S}^{1} \vee \bigvee_{i<j} \mathcal{F}_{d}\left(G_{i} * G_{j}\right)
$$

Proof. Let V_{i} be the vertex set of G_{i} and take $G=G_{1} * G_{2} * \cdots * G_{k}$. If we take vertices from more than two sets of the partition, we will always have a cycle, and therefore each facet of the complex is contained in $V_{i} \cup V_{j}$ for some $i \neq j$. Then, taking $X_{i j}=\mathcal{F}_{d}\left(G\left[V_{i} \cup V_{j}\right]\right)$ for $i<j$, we have that $\mathcal{F}_{d}(G)=\bigcup_{i<j} X_{i j}$ and we can define a bijection $\gamma:\{i j: i<j\} \longrightarrow E\left(K_{k}\right)$ such that the hypothesis of Lemma 12 are achieved.

As an immediate consequence, because $K_{n_{1}, \ldots, n_{k}} \cong K_{n_{1}}^{c} * \cdots * K_{n_{k}}^{c}$ we have the homotopy type for the multipartite graphs.

Corollary 46. For $d \geqslant 1$,

$$
\mathcal{F}_{d}\left(K_{n_{1}, \ldots, n_{k}}\right) \simeq \bigvee_{\frac{(k-1)(k-2)}{2}} \mathbb{S}^{1} \vee \bigvee_{i<j} \mathcal{F}_{d}\left(K_{n_{i}, n_{j}}\right)
$$

Theorem 47. [19]

$$
\mathcal{F}_{0}\left(C_{n}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{r-1} \vee \mathbb{S}^{r-1} & \text { if } n=3 r \\
\mathbb{S}^{r-1} & \text { if } n=3 r+1 \\
\mathbb{S}^{r} & \text { if } n=3 r+2
\end{array}\right.
$$

For each $n \geqslant 3$ the graph $W_{n+1}=K_{1} * C_{n}$ is the wheel graph.

Proposition 48. Let W_{n+1} be the wheel on $n+1$ vertices, then

$$
\mathcal{F}_{d}\left(W_{n+1}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{3 r-2} \vee \mathbb{S}^{r} \vee \mathbb{S}^{r} & \text { if } n=3 r \\
\mathbb{S}^{3 r-1} \vee \mathbb{S}^{r} & \text { if } n=3 r+1 \\
\mathbb{S}^{3 r} \vee \mathbb{S}^{r+1} & \text { if } n=3 r+2
\end{array}\right.
$$

for $d>\left\lfloor\frac{n}{2}\right\rfloor-1$ and

$$
\mathcal{F}_{1}\left(W_{n+1}\right) \simeq\left\{\begin{array}{cc}
\bigvee \mathbb{S}^{2 r-1} \vee \bigvee_{n-1} \mathbb{S}^{1} & \text { if } n=4 r \\
\mathbb{S}^{2 r-1} \vee \bigvee_{n-1}^{\mathbb{S}^{1}} & \text { if } n=4 r+1 \\
\mathbb{S}^{2 r} \vee \bigvee_{n-1}^{\mathbb{S}^{1}} & \text { if } n=4 r+2 \\
\mathbb{S}^{2 r+1} \vee \bigvee_{n-1} \mathbb{S}^{1} & \text { if } n=4 r+3
\end{array}\right.
$$

Proof. Since $\alpha\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, for $d>\left\lfloor\frac{n}{2}\right\rfloor-1$ we have that $\mathcal{F}_{0}\left(C_{n}\right)=s k_{d-1} \mathcal{F}_{0}\left(C_{n}\right)$. By Lemma 43,

$$
\mathcal{F}_{d}\left(W_{n+1}\right) \simeq \mathcal{F}_{d}\left(C_{n}\right) \cup C\left(\mathcal{F}_{0}\left(C_{n}\right)\right)
$$

By Theorem 47, the inclusion of the intersection is null-homotopic, therefore

$$
\mathcal{F}_{d}\left(W_{n+1}\right) \simeq \mathcal{F}_{\infty}\left(C_{n}\right) \vee \Sigma \mathcal{F}_{0}\left(C_{n}\right)
$$

For $d=1, s k_{0} \mathcal{F}_{0}\left(C_{n}, 0\right)=\bigvee_{n-1} \mathbb{S}^{0}$, the rest of the proof is the same as before.

4.2 Categorical products

4.2.1 Complexes of $K_{n} \times K_{m}$

In [14] is shown using Discrete Morse theory that the homotopy type of the categorical product of complete graphs is the wedge of copies of \mathbb{S}^{1}. For completeness we give a short proof using simpler tools.

Proposition 49. [14]

$$
\mathcal{F}_{0}\left(K_{n_{1}} \times K_{n_{2}}\right) \simeq \bigvee_{\left(n_{1}-1\right)\left(n_{2}-1\right)} \mathbb{S}^{1}
$$

Proof. Taking $V\left(K_{n_{1}}\right)=\left\{1,2, \ldots, n_{1}\right\}$ and $V\left(K_{n_{2}}\right)=\left\{1,2, \ldots, n_{2}\right\}$, then

$$
V\left(K_{n_{1}} \times K_{n_{2}}\right)=\left\{(i, j): 1 \leqslant i \leqslant n_{1} \wedge 1 \leqslant j \leqslant n_{2}\right\}
$$

and, because the definition of the categorical product, the maximal simplices of $\mathcal{F}_{0}\left(K_{n_{1}} \times K_{n_{2}}\right)$ are as:

$$
\sigma_{i}=\left\{(i, 1),(i, 2), \ldots,\left(i, n_{2}\right)\right\} \quad \text { or } \quad \tau_{j}=\left\{(1, j),(2, j), \ldots,\left(n_{1}, j\right)\right\}
$$

Now, for $i \neq k$ and $j \neq l$ we have: $\sigma_{i} \cap \sigma_{k}=\varnothing, \tau_{j} \cap \tau_{l}=\varnothing, \sigma_{i} \cap \tau_{j}=\{(i, j)\}$. By the Nerve Theorem (see [7] Theorem 10.6), we get that

$$
\mathcal{F}_{0}\left(K_{n_{1}} \times K_{n_{2}}\right) \simeq K_{n_{1}, n_{2}}
$$

Which is easy to see that has the homotopy type of the wedge of $\left(n_{1}-1\right)\left(n_{2}-1\right)$ copies of \mathbb{S}^{1}.
Now we will show what happens for $d \geqslant 1$.

Proposition 50.

$$
\mathcal{F}_{1}\left(K_{n} \times K_{m}\right) \simeq \bigvee_{\frac{(n m-4)(n-1)(m-1)}{4}} \mathbb{S}^{2}
$$

Proof. We take $V\left(K_{r}\right)=[r]-\{0\}$ for any r. We proceed by induction on n. For $n=1$, the result is clear. For $n=2$ we will prove it by induction on m. For $m=1,2$ it is clear and for $m=3, K_{2} \times K_{3} \cong C_{6}$. Taking $v_{i}=(1, i)$ and $u_{i}=(2, i)$, we have that $l k\left(v_{m}\right)=X \cup Y$, where $Y=\mathcal{F}_{1}\left(K_{2} \times K_{m}\right)-N\left[v_{n}\right]$ and X is the complex with facets $\left\{u_{i}, v_{i}, u_{m}\right\}$ for $i \geqslant m-1$. Then $X \simeq *$, as it is a cone with apex u_{m}, and $X \cap Y \cong K_{i, m} \simeq *$. Therefore,

$$
l k\left(v_{n}\right) \simeq Y \cong \mathcal{F}_{1}\left(K_{1, m-1}\right) \simeq \bigvee_{m-2} \mathbb{S}^{1}
$$

Taking $H=K_{2} \times K_{m}-v_{m}$, the link of u_{m} in $\mathcal{F}_{1}(H)$ has as facets the simplex $\left\{u_{1}, \ldots, u_{m-1}\right\}$ and the edges $\left\{u_{i}, v_{i}\right\}$ for $i \geqslant m-1$, therefore it is contractible and

$$
\mathcal{F}_{1}(H) \simeq \mathcal{F}_{1}\left(H-u_{m}\right) \cong \mathcal{F}_{1}\left(K_{2} \times K_{m-1}\right) \simeq \bigvee_{\frac{(m-2)(m-3)}{2}} \mathbb{S}^{2}
$$

from which the result follows.
Now assume the result is true for $K_{r} \times K_{m}$ for all $r \leqslant n-1$. Take $v_{i}=(n, i), G_{0}=K_{n} \times K_{m}$, $G_{i}=G_{i-1}-v_{i}$ for $i \geqslant 1, X_{j, k}^{i}=|\{(j, k),(j, i),(n, k)\}|$ for $k \geqslant i+1$ and $j \leqslant n-1, X_{j, k}^{i}=$ $|\{(j, k),(j, i)\}|$ for $k \leqslant i-1$ and $j \leqslant n-1$,

$$
X^{i}=\bigcup_{k \neq i, j \leqslant n-1} X_{j, k}^{i}
$$

and $Y^{i}=\mathcal{F}_{1}\left(G_{i-1}-N\left[v_{i}\right]\right)$. Then, taking L_{i} the link of v_{i} in $\mathcal{F}_{1}\left(G_{i-1}\right)$, we have that

$$
L_{i}=X^{i} \cup Y^{i}
$$

Now, in X^{i}, the vertices (j, k) with $j \leqslant n-1$ and $k \neq i$ are only in one facet and can be erased, therefore X^{i} is homotopy equivalent to the subcomplex with maximal facets $\{(j, i),(n, k)\}$ with $k \geqslant i+1$ and $j \leqslant n-1$, which is isomorphic to $K_{n-1, m-i}$. Because $X^{i} \cap Y_{i}$ is isomorphic to this subcomplex, we have that

$$
L_{i} \simeq Y^{i} \cong \mathcal{F}_{1}\left(K_{n-i, m-1}\right) \simeq \bigvee_{(m-1)(n-i)-1} \mathbb{S}^{1}
$$

for $i \leqslant n-1$. Now, $L_{n} \simeq Y^{n} \simeq *$, therefore

$$
\mathcal{F}_{1}\left(G_{n-1}\right) \simeq \mathcal{F}_{1}\left(G_{n}\right) \cong \mathcal{F}_{1}\left(K_{n-1} \times K_{m}\right) \simeq \bigvee_{\frac{((n-1) m-4)(n-2)(m-1)}{4}} \mathbb{S}^{2}
$$

From this we have that

$$
\mathcal{F}_{1}\left(G_{0}\right) \simeq \mathcal{F}_{1}\left(K_{n-1} \times K_{m}\right) \vee \Sigma Y^{1} \vee \Sigma Y^{2} \vee \cdots \vee \Sigma Y^{n-1}
$$

Now $\Sigma Y^{1} \vee \Sigma Y^{2} \vee \cdots \vee \Sigma Y^{n-1}$ is homotopy equivalent to the wedge of

$$
\sum_{i=1}^{m-1} i(n-1)-1=\frac{(n-1) m(m-1)}{2}-(m-1)
$$

copies of the 2-sphere. Since

$$
\frac{((n-1) m-4)(n-2)(m-1)}{4}=\sum_{i=1}^{n-2} \frac{i m(m-1)}{2}-(m-1),
$$

we have that $\mathcal{F}_{1}\left(K_{n} \times K_{m}\right)$ is homotopy equivalent to the wedge of

$$
\sum_{i=1}^{n-1} \frac{i m(m-1)}{2}-(m-1)=\frac{(n m-4)(n-1)(m-1)}{4}
$$

2-spheres.

Lemma 51. For $d \geqslant 2, \mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right) \simeq \mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$
Proof. We know that $\mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$ is simply connected for all $d \geqslant 2$, because $\mathcal{F}_{1}\left(K_{2} \times K_{n}\right)$ is a wedge of 2 -spheres. We will show that $H_{q}\left(\mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right), \mathcal{F}_{d}\left(K_{2} \times K_{n}\right)\right) \cong 0$ for all q. We know that $H_{q}\left(\mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right), \mathcal{F}_{d}\left(K_{2} \times K_{n}\right)\right) \cong 0$ for all $q \leqslant d$. For $q \geqslant d+3$, for any q-simplex σ of $\mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right)$, we can partition its vertices in two sets V_{1}, V_{2} such that all the vertices in V_{i} are

Figure 4.1:
of the form (i, j) for some j. Next we show that $\left|V_{1}\right|=0$ or $\left|V_{2}\right|=0$. If not, we can assume that

$$
\left|V_{1}\right| \leqslant\left\lfloor\frac{d+3}{2}\right\rfloor \leqslant\left\lceil\frac{d+3}{2}\right\rceil \leqslant\left|V_{2}\right|
$$

therefore $\left|V_{2}\right| \geqslant 3$; there are several cases:

- If $\left|V_{1}\right|=1$, then $\left|V_{2}\right| \geqslant d+3$ and the vertex of V_{1} has degree at least $d+2$, which can not happen.
- If $\left|V_{1}\right|=2$, then $\left|V_{2}\right| \geqslant d+2$ and there will be at least two vertices of V_{2} such their second coordinates are different from those of the vertices of V_{1}; therefore there will be an induced 4-cycle in the vertices of σ, which can not happen.
- If $\left|V_{1}\right| \geqslant 3$, because $\left|V_{2}\right| \geqslant 3$, there will be an induced 4 -cycle or an induced 6 -cycle in the vertices of σ, which can not happen.

Therefore $\left|V_{1}\right|=0$ or $\left|V_{2}\right|=0$ and σ is a simplex of $\mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$. From this, we have that $H_{q}\left(\mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right), \mathcal{F}_{d}\left(K_{2} \times K_{n}\right)\right) \cong 0$ for all $q \geqslant d+3$.

For $q=d+2$, the only q-simplices of $F_{d+1}\left(K_{2} \times K_{n}\right)$ which are not simplices of $\mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$ are of the form $\left|V_{1}\right|=1$ and $\left|V_{2}\right|=d+2$ (or vice versa), where the only vertex of V_{1} is adjacent to all but one vertex of V_{2} (Figure 4.1(a)). For $q=d+1$, the only q-simplices of $F_{d+1}\left(K_{2} \times K_{n}\right)$ which are not simplices of $\mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$ are of the form $\left|V_{1}\right|=1$ and $\left|V_{2}\right|=d+1$ (or vice versa), where the only vertex of V_{1} is adjacent to all the vertices of V_{2} (Figure $4.1(\mathrm{~b})$). From all this, we get that there are no relative $d+2$-cycles and that all of the relative $d+1$-cycles are images of some relative $d+2$-boundary. Therefore the remaining two relative homology groups are also trivial.

From all this we have that the inclusion $\mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right) \longleftrightarrow \mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$ induces an isomorphism for all homology groups between simply connected complexes, by Whitehead Theorem $\mathcal{F}_{d+1}\left(K_{2} \times K_{n}\right) \simeq \mathcal{F}_{d}\left(K_{2} \times K_{n}\right)$.

Proposition 52. For $d \geqslant 2$,

$$
\mathcal{F}_{d}\left(K_{2} \times K_{n}\right) \simeq \bigvee_{\binom{n}{3}} \mathbb{S}^{4} \vee \bigvee_{\binom{n-1}{3}} \mathbb{S}^{3}
$$

Proof. We only have to prove it for $d=2$. The result is clear for $n=1,2,3$. Assume $n \geqslant 4$. Taking $k=\binom{n}{3}$, let X_{1}, \ldots, X_{k} be the subcomplexes of $\mathcal{F}_{2}\left(K_{2} \times K_{n}\right)$ corresponding to all the induced 6 -cycles. Then $X_{i} \cong \mathbb{S}^{4}$. The other facets of $\mathcal{F}_{2}\left(K_{2} \times K_{n}\right)$, besides the ones in some X_{i}, are $\{1\} \times \underline{n}$ and $\{2\} \times \underline{n}$. Then

$$
\mathcal{F}_{2}\left(K_{2} \times K_{n}\right)=X_{1} \cup X_{2} \cup \cdots \cup X_{k} \cup Y_{1} \cup Y_{2}
$$

where $Y_{1}=\mathcal{P}(\{1\} \times \underline{n})-\{\varnothing\}$ and $Y_{2}=\mathcal{P}(\{2\} \times \underline{n})-\{\varnothing\}$. Now we will calculate the homology of $\mathcal{F}_{2}\left(K_{2} \times K_{n}\right)$ using the Mayer-Vietoris spectral sequence (see [29]). Taking $U=$ $\left\{X_{1}, X_{2}, \ldots, X_{k}, Y_{1}, Y_{2}\right\}$ and $\mathcal{U}=\mathcal{N}(U)$, the first page of the sequence is

Because the nerve of $X_{1}, X_{2}, \ldots, X_{k}$ is isomorphic to the nerve of 2-simplices of $s k_{2} \Delta^{n-1}$, and \mathcal{U} is
isomorphic to the suspension of this nerve, we have that the second page is

where $r=\binom{n-1}{3}$. From this we have that $E_{p, q}^{\infty}=E_{p, q}^{2}$. Therefore

$$
\tilde{H}_{q}\left(\mathcal{F}_{2}\left(K_{2} \times K_{n}\right)\right) \cong\left\{\begin{array}{cc}
\mathbb{Z}^{k} & \text { if } q=4 \\
\mathbb{Z}^{r} & \text { if } q=3 \\
0 & \text { if } q \neq 4,3
\end{array}\right.
$$

Therefore, because $\mathcal{F}_{1}\left(K_{2} \times K_{n}\right)$ is simply connected, $\mathcal{F}_{2}\left(K_{2} \times K_{n}\right)$ is a simply connected complex which satisfies the hypothesis of Proposition 2, from which we see that is has the desired homotopy type.

Theorem 53. For $d \geqslant 2$,

$$
\mathcal{F}_{d}\left(K_{n} \times K_{m}\right) \simeq \bigvee_{a} \mathbb{S}^{4} \vee \bigvee_{b+c} \mathbb{S}^{3}
$$

where $a=\binom{m}{2}\binom{n}{3}+\binom{n}{2}\binom{m}{3}, b=\binom{m}{2}\binom{n-1}{3}+\binom{n}{2}\binom{m-1}{3}$ and $c=\binom{n-1}{2}\binom{m-1}{2}$.
Proof. In $\mathcal{F}_{d}\left(K_{n} \times K_{m}\right)$ the facets have their vertices contained in two rows or two columns, otherwise they will have a cycle. Then, taking the subgraphs

$$
\begin{aligned}
& H_{i, j}=K_{n} \times K_{m}[\{(k, l): l=i \text { or } l=j\}] \\
& G_{i, j}=K_{n} \times K_{m}[\{(k, l): k=i \text { or } k=j\}]
\end{aligned}
$$

and the complexes $X_{i, j}=\mathcal{F}_{d}\left(H_{i, j}\right), Y_{i, j}=\mathcal{F}_{d}\left(G_{i, j}\right)$, we have that

$$
\mathcal{F}_{d}\left(K_{n} \times K_{m}\right)=\bigcup_{e \in E\left(K_{m}\right)} X_{e} \cup \bigcup_{e \in E\left(K_{n}\right)} Y_{e}
$$

From the last Proposition we know that

$$
\begin{aligned}
& X_{e} \simeq \bigvee_{\binom{n}{3}} \mathbb{S}^{4} \vee \bigvee_{\binom{n-1}{3}} \mathbb{S}^{3} \\
& Y_{e} \simeq \bigvee_{\binom{m}{3}} \mathbb{S}^{4} \vee \bigvee_{\binom{m-1}{3}} \mathbb{S}^{3}
\end{aligned}
$$

Taking the Mayer-Vietoris spectral sequence, the first page looks like

Where \mathcal{U} is the nerve of the cover, $a=\binom{n}{2}\binom{m}{3}+\binom{m}{2}\binom{n}{3}$ and $b=\binom{n}{2}\binom{m-1}{3}+\binom{m}{2}\binom{n-1}{3}$. Now, \mathcal{U} is isomorphic to the join of the nerve of the X^{\prime} s with the nerve of the $Y^{\prime} \mathrm{s}$, which are homotopy equivalent to K_{m} and K_{n} respectively, therefore $\mathcal{U} \simeq \bigvee_{c} \mathbb{S}^{3}$ with $c=\binom{n-1}{2}\binom{m-1}{2}$. From all this, we have that the second page of the sequence is

Therefore $E_{p, q}^{\infty}=E_{p, q}^{2}$ and

$$
\tilde{H}_{q}\left(\mathcal{F}_{d}\left(K_{n} \times K_{m}\right)\right) \cong\left\{\begin{array}{cc}
\mathbb{Z}^{a} & \text { if } q=4 \\
\mathbb{Z}^{b+c} & \text { if } q=3 \\
0 & \text { if } q \neq 4,3
\end{array}\right.
$$

As in the proof of the last theorem, we have a simply connected complex which satisfies the hypothesis of Proposition 2.

As we will see in Proposition 71

$$
\mathcal{F}_{0}\left(K_{2} \times K_{m} \times K_{n}\right) \simeq \bigvee_{\frac{(n-1)(m-1)(n m-2)}{2}} \mathbb{S}^{3}
$$

Now, for other $d \geqslant 1$, because $K_{2} \times K_{2} \cong K_{2} \sqcup K_{2}$ we have the following corollary
Corollary 54. For $d \geqslant 1$,

$$
\mathcal{F}_{d}\left(K_{2} \times K_{2} \times K_{n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{\substack{2}} \mathbb{S}^{5} & d=1 \\
\bigvee_{\binom{n}{3}^{2}} \mathbb{S}^{9} \vee \bigvee_{2\binom{n}{3}\binom{n-1}{3}}^{\frac{(n-2)^{2}(n-1)^{2}}{4}} \mathbb{S}^{8} \vee \bigvee_{\binom{n-1}{3}^{2}} \mathbb{S}^{7} & d \geqslant 2
\end{array}\right.
$$

Question 55. What is the homotopy type of $\mathcal{F}_{d}\left(K_{2} \times K_{m} \times K_{n}\right)$ for $d \geqslant 1$?

4.2.2 Independence Complex of $C_{k} \times K_{n}$

In this section we will be focus on $\mathcal{F}_{0}\left(C_{k} \times K_{n}\right)$, and for this we will need the homotopy type of the independence complex of various graphs, such as $P_{k} \times K_{n}$ (Theorem 59).

Now the case $C_{5} \times K_{2}$ allows us to find a counterexample showing that the homotopy type of the independence complex of categorical product does not depend only on the homotopy type of the independence complexes of the factors. To see this, we take M_{q} as the union of q disjoint edges, from where we get that $G=K_{2} \times K_{2} \cong M_{2}, G \times G \cong M_{8}$ and $C_{5} \times G$ is equal to two disjoint copies of $C_{5} \times K_{2}$. Now $\mathcal{F}_{0}\left(C_{5}\right) \cong \mathbb{S}^{1} \cong \mathcal{F}_{0}(G)$ and, by Proposition $57, \mathcal{F}_{0}\left(C_{5} \times K_{2}\right) \simeq \mathbb{S}^{2}$, therefore $\mathcal{F}_{0}\left(C_{5} \times G\right) \simeq \mathbb{S}^{5} \not \not \mathbb{S}^{7} \cong \mathcal{F}_{0}(G \times G)$.
4.2.2.1 $\quad C_{3} \times K_{n}, \quad C_{4} \times K_{n}, C_{5} \times K_{n}$ and $C_{k} \times K_{2}$

From Proposition 49, we have for $K_{3} \cong C_{3}$ that

$$
\mathcal{F}_{0}\left(C_{3} \times K_{n}\right) \simeq \bigvee_{2(n-1)} \mathbb{S}^{1}
$$

Figure 4.2: $C_{n} \times K_{2}$

Proposition 49 can also be used to calculate the homotopy type of $\mathcal{F}_{0}\left(C_{4} \times K_{n}\right)$. Taking $V\left(C_{4}\right)=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $V\left(K_{n}\right)$ as before, $C_{4} \times K_{n}$ is such that $N_{C_{4} \times K_{n}}\left(\left(u_{1}, i\right)\right)=N_{C_{4} \times K_{n}}\left(\left(u_{3}, i\right)\right)$ and $N_{C_{4} \times K_{n}}\left(\left(u_{2}, i\right)\right)=N_{C_{4} \times K_{n}}\left(\left(u_{4}, i\right)\right)$ for all $1 \leqslant i \leqslant n$. We define

$$
H=C_{4} \times K_{n}-\left(\left\{u_{3}\right\} \times V\left(K_{n}\right)\right) \cup\left(\left\{u_{4}\right\} \times V\left(K_{n}\right)\right)
$$

Now, $H \cong K_{2} \times K_{n}$, so

$$
\mathcal{F}_{0}\left(C_{4} \times K_{n}\right) \simeq \mathcal{F}_{0}(H) \simeq \bigvee_{n-1} \mathbb{S}^{1}
$$

In fact, if $N_{G}(u) \subset N_{G}(v)$ then $\mathcal{F}_{0}(G \times H) \simeq \mathcal{F}_{0}(G-v \times V(H))$ for any H, therefore $\mathcal{F}_{0}\left(C_{4} \times H\right) \simeq$ $\mathcal{F}_{0}\left(K_{2} \times H\right)$ for any H.

It is easy to see that:

$$
C_{n} \times K_{2} \cong \begin{cases}2 C_{n} & \text { if } n \equiv 0(\bmod 2) \\ C_{2 n} & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

for any $n \geqslant 3$, because $C_{n} \times K_{2}$ is a 2-regular bipartite graph, so it is an even cycle or the disjoint union of even cycles. By Weichsel's Theorem (see [15] Theorem 5.9), $C_{n} \times K_{2}$ is connected if and only if one of the graph has an odd cycle, and if both graphs are bipartite, the product has exactly two connected components (see figure 4.2.). From this, we get the next lemma.

Lemma 56.

$$
\mathcal{F}_{0}\left(C_{n} \times K_{2}\right) \simeq\left\{\begin{array}{cc}
\mathcal{F}_{0}\left(C_{n}\right) * \mathcal{F}_{0}\left(C_{n}\right) & \text { if } n \equiv 0(\bmod 2) \\
\mathcal{F}_{0}\left(C_{2 n}\right) & \text { if } n \equiv 1(\bmod 2)
\end{array}\right.
$$

Then, for calculating the homotopy type of the independence complex of $C_{n} \times K_{2}$ we only need the homotopy type of the independence complexes of cycles which, by Theorem 47, are

$$
\mathcal{F}_{0}\left(C_{n}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{k-1} \vee \mathbb{S}^{k-1} & \text { if } n=3 k \\
\mathbb{S}^{k-1} & \text { if } n=3 k+1 \\
\mathbb{S}^{k} & \text { if } n=3 k+2
\end{array}\right.
$$

From all this, the next proposition follows:

Proposition 57.

$$
\mathcal{F}_{0}\left(C_{n} \times K_{2}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{4} \mathbb{S}^{4 k-1} & \text { if } n=6 k \\
\mathbb{S}^{4 k} & \text { if } n=6 k+1 \\
\mathbb{S}^{4 k+1} & \text { if } n=6 k+r \text { with } r \in\{2,4\} \\
\mathbb{S}^{4 k+1} \vee \mathbb{S}^{4 k+1} & \text { if } n=6 k+3 \\
\mathbb{S}^{4 k+2} & \text { if } n=6 k+5
\end{array}\right.
$$

Now we will calculate the homotopy type of $\mathcal{F}_{0}\left(C_{5} \times K_{n}\right)$ for all $n \geqslant 2$.
Proposition 58. For all $n \geqslant 2$

$$
\mathcal{F}_{0}\left(C_{5} \times K_{n}\right) \simeq \bigvee_{n-1} \mathbb{S}^{2}
$$

Proof. We will see that $\mathcal{F}_{0}\left(C_{5} \times K_{n+1}\right) \simeq \mathcal{F}_{0}\left(C_{5} \times K_{n}\right) \vee \mathbb{S}^{2}$. Taking $G_{0} \cong C_{5} \times K_{n+1}$, we have:

$$
N_{G_{0}}\left(\left(u_{1}, n+1\right)\right)=\bigcup_{i=1}^{n}\left\{\left(u_{2}, i\right),\left(u_{5}, i\right)\right\}
$$

and taking $H_{1}=G_{0}-N_{G_{0}}\left[\left(u_{1}, n+1\right)\right]$ we have:

$$
N_{H_{1}}\left(\left(u_{3}, n+1\right)\right)=\bigcup_{i=1}^{n}\left\{\left(u_{4}, i\right)\right\} \subseteq \bigcup_{i=1}^{n}\left\{\left(u_{4}, i\right),\left(u_{1}, i\right)\right\}=N_{H_{1}}\left(\left(u_{5}, n+1\right)\right)
$$

and

$$
N_{H_{1}}\left(\left(u_{4}, n+1\right)\right)=\bigcup_{i=1}^{n}\left\{\left(u_{3}, i\right)\right\} \subseteq \bigcup_{i=1}^{n}\left\{\left(u_{3}, i\right),\left(u_{1}, i\right)\right\}=N_{H_{1}}\left(\left(u_{2}, n+1\right)\right),
$$

so that $\mathcal{F}_{0}\left(H_{1}\right) \simeq \mathcal{F}_{0}\left(H_{1}^{\prime}\right)$, where $H_{1}^{\prime}=H_{1}-\left(u_{2}, n+1\right)-\left(u_{5}, n+1\right)$. Now, in H_{1}^{\prime} all the vertices of the form $\left(u_{1}, i\right)$ with $1 \leqslant i \leqslant n$ are isolated, so $\mathcal{F}_{0}\left(H_{1}^{\prime}\right)$ is contractible. Therefore, by Proposition 6 , $\mathcal{F}_{0}\left(G_{0}\right) \simeq \mathcal{F}_{0}\left(G_{1}\right)$, with $G_{1}=G_{0}-\left(u_{1}, n+1\right)$. We define $H_{2}=G_{1}-N_{G_{1}}\left[\left(u_{2}, n+1\right)\right]$, noting that

$$
N_{G_{1}}\left(\left(u_{2}, n+1\right)\right)=\bigcup_{i=1}^{n}\left\{\left(u_{1}, i\right),\left(u_{3}, i\right)\right\}
$$

Then $N_{H_{2}}\left(\left(u_{2}, i\right)\right) \subseteq N_{H_{2}}\left(\left(u_{4}, j\right)\right)$ for $1 \leqslant i, j \leqslant n$ and therefore $\mathcal{F}_{0}\left(H_{2}\right) \simeq \mathcal{F}_{0}\left(H_{2}^{\prime}\right)$ with $H_{2}^{\prime}=$ $H_{2}-\left(u_{4}, 1\right)-\left(u_{4}, 2\right)-\cdots-\left(u_{4}, n\right)$. In $H_{2}^{\prime},\left(u_{5}, n+1\right)$ is an isolated vertex, so $\mathcal{F}_{0}\left(H_{2}^{\prime}\right)$ is contractible and, by Proposition $6, \mathcal{F}_{0}\left(G_{1}\right) \simeq \mathcal{F}_{0}\left(G_{2}\right)$, with $G_{2}=G_{1}-\left(u_{2}, n+1\right)$.

Now, using the part (b) of Proposition 6 , we will see that $\left|\mathcal{F}_{0}\left(G_{2}\right)\right| \simeq\left|\mathcal{F}_{0}\left(W_{1}\right)\right| \vee\left|\Sigma \mathcal{F}_{0}\left(W_{2}\right)\right|$,
with $W_{1}=G_{2}-\left(u_{3}, n+1\right)$ and $W_{2}=G_{2}-N_{G_{2}}\left[\left(u_{3}, n+1\right)\right]$. In W_{2},

$$
N_{W_{2}}\left(\left(u_{3}, i\right)\right)=\left\{\left(u_{4}, n+1\right)\right\} \subseteq N_{W_{2}}\left(\left(u_{5}, j\right)\right)
$$

for all $1 \leqslant i, j \leqslant n$, so $\mathcal{F}_{0}\left(W_{2}\right) \simeq \mathcal{F}_{0}\left(W_{2}-\left(u_{5}, 1\right)-\cdots-\left(u_{5}, n\right)\right)$ and

$$
W_{2}-\left(u_{5}, 1\right)-\cdots-\left(u_{5}, n\right) \cong 2 K_{1, n}
$$

Therefore $\mathcal{F}_{0}\left(W_{2}\right) \simeq \mathbb{S}^{1}$. For W_{1}, we first will see that $\mathcal{F}_{0}\left(W_{1}\right) \simeq \mathcal{F}_{0}\left(W_{1}-\left(u_{4}, n+1\right)\right)$. For this, we take $W=W_{1}-N_{W_{1}}\left[\left(u_{4}, n+1\right)\right]$. In W,

$$
N_{W}\left(\left(u_{4}, i\right)\right)=\left\{\left(u_{5}, n+1\right)\right\} \subseteq N_{W}\left(\left(u_{1}, j\right)\right)
$$

for all $1 \leqslant i, j \leqslant n$, then

$$
\mathcal{F}_{0}(W) \simeq \mathcal{F}_{0}\left(W-\left(u_{1}, 1\right)-\cdots-\left(u_{1}, n\right)\right) \cong \mathcal{F}_{0}\left(K_{n}^{c} \sqcup K_{1, n}\right) \simeq *
$$

Then $\mathcal{F}_{0}\left(W_{1}\right) \simeq \mathcal{F}_{0}\left(W_{1}-\left(u_{4}, n+1\right)\right)$. In $W^{\prime}=W_{1}-\left(u_{4}, n+1\right)$,

$$
N_{W^{\prime}}\left(\left(u_{5}, i\right)\right) \subseteq N_{W^{\prime}}\left(\left(u_{5}, n+1\right)\right)
$$

for all $1 \leqslant i \leqslant n$. Then

$$
\mathcal{F}_{0}\left(W_{1}\right) \simeq \mathcal{F}_{0}\left(W^{\prime}-\left(u_{5}, n+1\right)\right) \cong \mathcal{F}_{0}\left(C_{5} \times K_{n}\right) \simeq \bigvee_{n-1} \mathbb{S}^{2}
$$

Therefore, the inclusion $\mathcal{F}_{0}\left(W_{2}\right) \hookrightarrow \mathcal{F}_{0}\left(W_{1}\right)$ is null-homotopic and

$$
\mathcal{F}_{0}\left(C_{5} \times K_{n+1}\right) \simeq \mathcal{F}_{0}\left(G_{2}\right) \simeq \mathcal{F}_{0}\left(W_{1}\right) \vee \Sigma \mathcal{F}_{0}\left(W_{2}\right) \simeq \bigvee_{n} \mathbb{S}^{2}
$$

4.2.2.2 $C_{k} \times K_{n}$ for $k \geqslant 6$

In this section we will prove a conjecture from [14] about the homotopy type of $\mathcal{F}_{0}\left(C_{6} \times K_{n}\right)$, showing the homotopy type of $\mathcal{F}_{0}\left(C_{3 r} \times K_{n}\right)$ for all r and all n in Theorem 68 ; for the other cycles Theorem 69 will give us the connectivity and all but two of the reduced homology groups. For this we will need to calculate the homotopy type of the independence complex of various auxiliary graphs. The idea is to use the star cluster of a vertex and Theorem 7 to get an decomposition of the complexes for which Proposition 10 can be use, so the suspension of this union will have the
same homotopy type as the independence complex of $C_{k} \times K_{n}$. The complexes of the union will be isomorphic to the independence complex of the graphs $G_{k, n}$ (Figure 4.3(c)), these graphs are isomorphic to $C_{k} \times K_{n}-N[u]-N[v]$ where the vertices u and v are adjacent vertices and their independence complexes are isomorphic to the intersection of their links. For the homotopy type of this family we will need the homotopy type of the independence complex of $P_{k} \times K_{n}$ and the graph family $H_{k, n}$ (Figure $4.3(\mathrm{~b})$), for which we will need the independence complex of the family $W_{k, n}$ (Figure 4.3(a)). We also will need to see how is the intersection of two or more complexes of the decomposition, for this we will need to see what hapends with the independence complexes of other two families: $\stackrel{\circ}{H}_{k, n}$ and $\stackrel{\circ}{W}_{k, n}$. The idea for the calculation for the auxiliary families will be use Lemma 5, Proposition 6 or Theorem 7 and Proposition 10.

Theorem 59. For $n \geqslant 2$,

$$
\mathcal{F}_{0}\left(P_{k} \times K_{n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{(n-1)^{r}} \mathbb{S}^{2 r-1} & \text { if } k=3 r \\
* & \text { if } k=3 r+1 \\
\bigvee_{(n-1)^{r+1}} \mathbb{S}^{2 r+1} & \text { if } k=3 r+2
\end{array}\right.
$$

Proof. The proof is by induction on k. For $k=1, \mathcal{F}_{0}\left(P_{1} \times K_{n}\right) \simeq *$ for any n. For $k=2$, $\mathcal{F}_{0}\left(P_{2} \times K_{n}\right)=\mathcal{F}_{0}\left(K_{2} \times K_{n}\right)$ and by Theorem 49 the homotopy type is as claimed. For $k=3$,

$$
\mathcal{F}_{0}\left(P_{k} \times K_{n}\right) \simeq \mathcal{F}_{0}\left(P_{k}-\left\{\left(u_{3}, i\right): 1 \leqslant i \leqslant n\right\} \times K_{n}\right) \cong \mathcal{F}_{0}\left(K_{2} \times K_{n}\right)
$$

Supose that for any $r \leqslant k$ the theorem is true.

$$
\mathcal{F}_{0}\left(P_{k+1} \times K_{n}\right) \simeq \mathcal{F}_{0}\left(P_{k+1}-\left\{\left(u_{3}, i\right): 1 \leqslant i \leqslant n\right\} \times K_{n}\right) \cong \mathcal{F}_{0}\left(P_{k-2} \times K_{n} \sqcup K_{2} \times K_{n}\right)
$$

Now

$$
\mathcal{F}_{0}\left(P_{k-2} \times K_{n} \sqcup K_{2} \times K_{n}\right) \simeq \mathcal{F}_{0}\left(P_{k-2} \times K_{n}\right) * \bigvee_{n-1} \mathbb{S}^{1} \simeq \bigvee_{n-1} \Sigma^{2} \mathcal{F}_{0}\left(P_{k-2} \times K_{n}\right)
$$

The rest follows by induction.
For $k \geqslant 2$ and $n \geqslant 3$ we define:

- $W_{k, n}$ as the graph obtained from $P_{k} \times K_{n}$ by ading two new vertices v_{1}, v_{2} and the edges $\left\{\left\{\left(u_{1}, i\right), v_{1}\right\}: i \neq 2\right\} \cup\left\{\left\{\left(u_{k}, i\right), v_{2}\right\}: i \neq 2\right\}$ (Figure 4.3(a)).
- $H_{k, n}$ as the graph obtained from $P_{k} \times K_{n}$ by ading two new vertices v_{1}, v_{2} and the edges $\left\{\left\{\left(u_{1}, i\right), v_{1}\right\}: i \geqslant 2\right\} \cup\left\{\left\{\left(u_{k}, i\right), v_{2}\right\}: i \neq 2\right\}$ (Figure 4.3(b)).

Figure 4.3:

- $G_{k, n}$ as the graph obtained from $H_{k, n}$ by ading two new vertices w_{1}, w_{2} and the edges $\left\{v_{1}, w_{1}\right\},\left\{w_{1}, w_{2}\right\},\left\{w_{2}, v_{2}\right\}$ (Figure 4.3(c)).

Lemma 60.

$$
\mathcal{F}_{0}\left(W_{k, n}\right) \simeq\left\{\begin{array}{cc}
\bigvee \mathbb{S}^{1} & \text { if } k=2 \\
\mathcal{F}_{0}\left(W_{k-1, n}\right) & \text { if } k=3 r \text { and } r \geqslant 1 \\
\Sigma^{2} \mathcal{F}_{0}\left(W_{k-2, n}\right) & \text { if } k=3 r+1 \text { and } r \geqslant 1 \\
\bigvee_{n-1} \Sigma^{2} \mathcal{F}_{0}\left(H_{k-3, n}\right) & \text { if } k=3 r+2 \text { and } r \geqslant 1
\end{array}\right.
$$

Proof. For $k=2, N\left(v_{1}\right)=N\left(\left(u_{2}, 2\right)\right)$ and $N\left(v_{2}\right)=N\left(\left(u_{1}, 2\right)\right)$. Therefore

$$
\mathcal{F}_{0}\left(W_{2, n}\right) \simeq \mathcal{F}_{0}\left(W_{2, n}-v_{1}-v_{2}\right) \cong \mathcal{F}_{0}\left(K_{2} \times K_{n}\right) \simeq \bigvee_{n-1} \mathbb{S}^{1}
$$

For $k=3 r$, in $W_{3 r, n}-v_{1}$ we have that $N\left(\left(u_{1}, i\right)\right) \subseteq N\left(\left(u_{3}, i\right)\right)$ for all $1 \leqslant i \leqslant n$, therefore

$$
\mathcal{F}_{0}\left(W_{3 r, n}-v_{1}\right) \simeq \mathcal{F}_{0}\left(W_{1}\right)
$$

with $\left.W_{1}=W_{3 r, n}-\left\{\left(u_{3}, i\right)\right): 1 \leqslant i \leqslant n\right\}$. In W_{1}, we have that $N\left(\left(u_{4}, i\right)\right) \subseteq N\left(\left(u_{6}, i\right)\right)$ for all $1 \leqslant i \leqslant n$, therefore

$$
\mathcal{F}_{0}\left(W_{1}\right) \simeq \mathcal{F}_{0}\left(W_{2}\right)
$$

with $\left.W_{2}=W_{1}-\left\{\left(u_{6}, i\right)\right): 1 \leqslant i \leqslant n\right\}$. We keep doing this until we have erased all the vertices of the form $\left(u_{3 j}, i\right)$ for $1 \leqslant j \leqslant r$ and $1 \leqslant i \leqslant n$, in this new graph $W_{3 r}$ the vertex v_{2} is isolated, and thus $\mathcal{F}_{0}\left(W_{3 r}\right) \simeq *$. Therefore

$$
\mathcal{F}_{0}\left(W_{3 r, n}\right) \simeq \Sigma I\left(W_{3 r, n}-N\left[v_{1}\right]\right) \cong \Sigma \mathcal{F}_{0}\left(W_{3 r-1, n}\right)
$$

For $k=3 r+1$, we do the same as in the last case, we take $W_{3 r+1, n}-v_{1}$ and erase all the

Figure 4.4:
vertices of the form $\left(u_{3 j}, i\right)$ for $1 \leqslant j \leqslant r$ and $1 \leqslant i \leqslant n$, and call this graph $W_{3 r}$. In $W_{3 r}$, the vertex $\left(u_{3 r+1}, 2\right)$ is an isolated vertex, therefore $I\left(W_{3 r}\right) \simeq *$ and

$$
\mathcal{F}_{0}\left(W_{3 r+1, n}\right) \simeq \Sigma \mathcal{F}_{0}\left(W_{3 r+1, n}-N\left[v_{1}\right]\right) \cong \Sigma \mathcal{F}_{0}\left(W_{3 r, n}\right) \simeq \Sigma^{2} \mathcal{F}_{0}\left(W_{3 r-2, n}\right)
$$

For $k=3 r+2$, by Theorem 7 , we have that

$$
\mathcal{F}_{0}\left(W_{k, n}\right) \simeq \Sigma\left(s t\left(v_{1}\right) \cap S C\left(v_{1}\right)\right)
$$

Now

$$
s t\left(v_{1}\right) \cap S C\left(v_{1}\right)=\bigcup_{w \in N_{W_{k, n}}\left(v_{1}\right)}\left(s t\left(v_{1}\right) \cap s t(w)\right)
$$

For any vertex $w, \operatorname{st}(w) \cong \mathcal{F}_{0}\left(G_{w}\right)$, with $G_{w}=W_{k, n}-N(w)$ (Figures 4.4(a),4.4(b)).
For any neighbor of $v_{1}, \operatorname{st}\left(v_{1}\right) \cap \operatorname{st}(w) \cong \operatorname{st}\left(v_{1}\right) \cap \operatorname{st}\left(\left(u_{1}, 1\right)\right)=\mathcal{F}_{0}(T)$ with

$$
T=W_{k, n}-\left(N_{W_{k, n}}\left[v_{1}\right] \cup N_{W_{k, n}}\left(\left(u_{1}, 1\right)\right)\right)
$$

(Figure 4.4(c)). Now, because $N_{T}\left(\left(u_{1}, 2\right)\right) \subset N_{T}\left(\left(u_{i}, 3\right)\right)$ for any $i \geqslant 2$, we see that

$$
\mathcal{F}_{0}(T) \simeq \Sigma \mathcal{F}_{0}\left(H_{k-3, n}\right)
$$

Now, for any $\left(u_{1}, i\right),\left(u_{1}, j\right)$ such that i, j and 2 are three distinct numbers, if we set $K_{i}=s t\left(v_{1}\right) \cap$ $s t\left(\left(u_{1}, i\right)\right)$, then $K_{i} \cap K_{j} \simeq *$ because it is a cone, the vertex $\left(u_{1}, 2\right)$ is an isolated vertex in the corresponding subgraph. By Corollary 11,

$$
s t_{\mathcal{F}_{0}\left(W_{k, n}\right)}\left(v_{1}\right) \cap S C\left(v_{1}\right) \simeq \bigvee_{n-1} \Sigma \mathcal{F}_{0}\left(H_{k-3, n}\right)
$$

Figure 4.5:

Lemma 61. For $k \geqslant 2, n \geqslant 3$ and $r \geqslant 2$:

$$
\mathcal{F}_{0}\left(H_{k, n}\right) \simeq\left\{\begin{array}{cc}
\Sigma I\left(H_{k-1, n}\right) & \text { if } k=3 r \\
\Sigma^{2} I\left(H_{k-2, n}\right) & \text { if } k=3 r+1 \\
\left(\bigvee_{n-1} \Sigma^{4} \mathcal{F}_{0}\left(H_{k-6, n}\right)\right) \vee\left(\bigvee_{n-2} \Sigma^{2} \mathcal{F}_{0}\left(H_{k-3, n}\right)\right) & \text { if } k=3 r+2
\end{array}\right.
$$

Proof. For $k=3 r$, we take $G=H_{3 r, n}-v_{1}$ (Figure 4.5(a)). In this graph, $N_{G}\left(\left(u_{1}, i\right)\right) \subseteq N_{G}\left(\left(u_{3}, i\right)\right)$ for all $1 \leqslant i \leqslant n$, so $\mathcal{F}_{0}(G) \simeq \mathcal{F}_{0}\left(G_{1}\right)$ where

$$
G_{1}=G-\bigcup_{1 \leqslant i \leqslant n} N_{G}\left(\left(u_{3}, i\right)\right)
$$

Now, in $G_{1}, N_{G}\left(\left(u_{4}, i\right)\right) \subseteq N_{G}\left(\left(u_{6}, i\right)\right)$ for all $1 \leqslant i \leqslant n$, so $\mathcal{F}_{0}\left(G_{1}\right) \simeq \mathcal{F}_{0}\left(G_{2}\right)$ where

$$
G_{2}=G_{1}-\bigcup_{1 \leqslant i \leqslant n} N_{G}\left(\left(u_{6}, i\right)\right) .
$$

We keep doing this until we get a graph $G_{r} \cong K_{1}+r K_{2} \times K_{n}$ where the isolated vertex is v_{2}. Therefore $\mathcal{F}_{0}(G) \simeq *$ and $\mathcal{F}_{0}\left(H_{3 r}\right) \simeq \Sigma \mathcal{F}_{0}\left(H_{3 r, n}-N_{H_{3 r, n}}\left[v_{1}\right]\right) \cong \Sigma \mathcal{F}_{0}\left(H_{3 r-1, n}\right)$.

For $k=3 r+1$, we take $G=H_{3 r+1, n}-v_{1}$ and do the same proces as before, this time in G_{r} the vertex $\left(u_{3 r+1}, 2\right)$ is isolated, so $\mathcal{F}_{0}(G) \simeq *$. Therefore

$$
\mathcal{F}_{0}\left(H_{3 r+1}\right) \simeq \Sigma \mathcal{F}_{0}\left(H_{3 r+1, n}-N_{H_{3 r, n}}\left[v_{1}\right]\right) \cong \Sigma \mathcal{F}_{0}\left(H_{3 r, n}\right) \cong \Sigma^{2} \mathcal{F}_{0}\left(H_{3 r-1, n}\right)
$$

For $k=3 r+2$, by Theorem 7

$$
\begin{gathered}
\mathcal{F}_{0}\left(H_{k, n}\right) \simeq \Sigma\left(s t\left(v_{1}\right) \cap S C\left(v_{1}\right)\right), \\
\\
\operatorname{st}\left(v_{1}\right) \cap \operatorname{st}\left(\left(u_{1}, 2\right)\right) \cong \mathcal{F}_{0}\left(J_{1}\right)
\end{gathered}
$$

with J_{1} obtained from $W_{k-2, n}$ attaching a leaf to v_{1} (Figure $4.5(\mathrm{c})$), and

$$
\operatorname{st}\left(v_{1}\right) \cap \operatorname{st}\left(\left(u_{1}, i\right)\right) \cong \mathcal{F}_{0}\left(J_{2}\right)
$$

with $J_{2}=W_{k, n}-N\left(\left(u_{2}, 3\right)\right)$ (Figure 4.5(d)).
In $J_{1}-\left(\left(u_{2}, 2\right)\right)$, the vertex $\left(u_{1}, 1\right)$ is an isolated vertex, therefore

$$
\mathcal{F}_{0}\left(J_{1}\right) \simeq \Sigma \mathcal{F}_{0}\left(J_{1}-N\left[\left(u_{1}, 2\right)\right]\right) \cong \Sigma \mathcal{F}_{0}\left(W_{3 r-1, n}\right) \simeq \bigvee_{n-1} \Sigma^{3} \mathcal{F}_{0}\left(H_{3(r-2)+2}\right)
$$

In $J_{2}-\left(\left(u_{2}, 3\right)\right)$, the vertex $\left(u_{1}, 1\right)$ is an isolated vertex, therefore

$$
\mathcal{F}_{0}\left(J_{2}\right) \simeq \Sigma \mathcal{F}_{0}\left(J_{2}-N\left[\left(u_{2}, 3\right)\right]\right) \cong \Sigma \mathcal{F}_{0}\left(H_{3(r-1)+2, n}\right)
$$

Now the intersection of any of these complexes is contrctible, because the vertex $\left(u_{1}, 1\right)$ is an isolated vertex in the corresponding subgraph. Thus, by Corollary 11,

$$
\Sigma\left(s t\left(v_{1}\right) \cap S C\left(v_{1}\right)\right) \simeq\left(\bigvee_{n-1} \Sigma^{4} \mathcal{F}_{0}\left(H_{k-6, n}\right)\right) \vee\left(\bigvee_{n-2} \Sigma^{2} \mathcal{F}_{0}\left(H_{k-3, n}\right)\right)
$$

Lemma 62. For $k \geqslant 2$ and $n \geqslant 3, \mathcal{F}_{0}\left(H_{k, n}\right)$ has the homotopy type of a wedge of spheres of the following dimension:
(a) $2 r$ if $k=3 r$.
(b) $2 r+1$ if $k=3 r+1$ or $k=3 r+2$.

Moreover, for small k we can say how many spheres:

$$
\mathcal{F}_{0}\left(H_{k, n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{n-2} \mathbb{S}^{1} & \text { if } k=2 \\
\bigvee_{n-2} \mathbb{S}^{2} & \text { if } k=3 \\
\bigvee_{n-2} \mathbb{S}^{3} & \text { if } k=4 \\
\bigvee_{(n-1)+(n-2)^{2}}^{n} \mathbb{S}^{3} & \text { if } k=5
\end{array}\right.
$$

Proof. For $k=2$, the neighborhood of $\left(u_{1}, 2\right)$ contains the neighborhood of v_{1}, so we can erase $\left(u_{1}, 2\right)$. In this new graph the neighborhood of $\left(u_{2}, 1\right)$ contains the neighborhood of v_{2}, so we can erase $\left(u_{2}, 1\right)$. Now the neighborhood of $\left(u_{1}, 1\right)$ contains the neigborhood of v_{2}, and the one of $\left(u_{2}, 1\right)$ the one of v_{1}, so we can erase $\left(u_{1}, 1\right)$ and $\left(u_{2}, 2\right)$. This new graph is isomorphic to $K_{2} \times K_{n-1}$, so

$$
\mathcal{F}_{0}\left(H_{2, n}\right) \simeq \bigvee_{n-2} \mathbb{S}^{1}
$$

For $k=3, H_{3, k}-N_{H_{3, k}}\left[v_{1}\right] \cong H_{2, n}$ and $\mathcal{F}_{0}\left(H_{3, n}-v_{1}\right) \simeq *$, therefore

$$
\mathcal{F}_{0}\left(H_{3, n}\right) \simeq \bigvee_{n-2} \mathbb{S}^{2}
$$

For $k=4, H_{4, n}-N_{H_{4, n}\left[v_{1}\right]} \cong H_{3, n}$ and $\mathcal{F}_{0}\left(H_{4, n}-v_{1}\right) \simeq *$, therefore

$$
\mathcal{F}_{0}\left(H_{4, n}\right) \simeq \bigvee_{n-2} \mathbb{S}^{3}
$$

For $k=5$, we know that

$$
\mathcal{F}_{0}\left(H_{5, n}\right) \simeq \Sigma\left(s t\left(v_{1}\right) \cap S C\left(N\left(v_{1}\right)\right)\right)
$$

and that

$$
s t\left(v_{1}\right) \cap S C\left(N\left(v_{1}\right)\right)=\bigcup_{i=1}^{n-1} K_{i}
$$

where, taking $N\left(v_{1}\right)=\left\{u_{1}, \ldots, u_{n-1}\right\}$,

$$
K_{i}=s t\left(v_{1}\right) \cap s t\left(u_{i}\right)=\mathcal{F}_{0}\left(\left(G-N\left(v_{1}\right)\right) \cap\left(G-N\left(u_{i}\right)\right)\right) .
$$

For $i=1,\left(G-N\left(v_{1}\right)\right) \cap\left(G-N\left(u_{1}\right)\right)$ is isomorphic to $W_{3, n}$ with a leaf adjacent to v_{1}, therefore, erasing all the neighbors of v_{1} but the leaf, we get that

$$
K_{1} \simeq \Sigma \mathcal{F}_{0}\left(W_{2, n}\right) \simeq \Sigma \mathcal{F}_{0}\left(K_{2} \times K_{n}\right)
$$

$$
K_{1} \simeq \bigvee_{n-1} \mathbb{S}^{2}
$$

For $i \geqslant 2,\left(G-N\left(v_{1}\right)\right) \cap\left(G-N\left(u_{i}\right)\right)$ is isomorphic to $H_{3, n}$ with a leaf adjacent to v_{1}, therefore, erasing all the neighbors of v_{1} but the leaf, we get that

$$
K_{i} \simeq \Sigma \mathcal{F}_{0}\left(H_{2, n}\right) \simeq \bigvee_{n-2} \mathbb{S}^{2}
$$

In any intersection of these complexes the leaf becomes an isolated vertex, therefore the intersections are contractible, so

$$
\operatorname{st}\left(v_{1}\right) \cap S C\left(N\left(v_{1}\right)\right) \simeq \bigvee_{i=1}^{n-1} K_{i}
$$

Therefore

$$
\mathcal{F}_{0}\left(H_{5, n}\right) \simeq \bigvee_{(n-1)+(n-2)^{2}} \mathbb{S}^{3}
$$

Using $H_{2, n}$ and $H_{5, n}$ as the base for the induction and the last lemma we get that $\mathcal{F}_{0}\left(H_{k, n}\right)$ has the homotopy type of the wedge of spheres of the desired dimension.

From Lemma 61 we see that the homotopy type of $\mathcal{F}_{0}\left(H_{k, n}\right)$ only depends of the homotopy type of the complexes $\mathcal{F}_{0}\left(H_{3 r+2, n}\right)$, which is, by Lemma 62 , the wedge of some number of $(2 r+1)$ spheres. If we let $h(r, n)$ denote to the number of spheres in $\mathcal{F}_{0}\left(H_{3 r+2, n}\right)$ we have the following recursion relation:
(a) $h(0, n)=n-2$
(b) $h(1, n)=n-1+(n-2)^{2}=1+h(0, n)+(h(0, n))^{2}$
(c) $h(r, n)=(n-1) h(r-2, n)+(n-2) h(r-1, n)$ for $r \geqslant 2$

This recursion can be solved by standard techniques, and better still, once the solution is found, it is easy to verify by induction. The solution works out to be

$$
\begin{equation*}
h(r, n)=\frac{(n-1)^{r+2}-(-1)^{r}}{n} \tag{4.1}
\end{equation*}
$$

Now from Lemmas 61 and 62, we get:

Lemma 63.

$$
\mathcal{F}_{0}\left(H_{k, n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{h(r-1, n)} \mathbb{S}^{2 r} & \text { if } k=3 r \\
\bigvee_{h(r-1, n)} \mathbb{S}^{2 r+1} & \text { if } k=3 r+1 \\
\bigvee_{h(r, n)} \mathbb{S}^{2 r+1} & \text { if } k=3 r+2
\end{array}\right.
$$

Now we can determine the homotopy type of $G_{k, n}$.
Lemma 64. For $k \geqslant 2$ and $n \geqslant 3$

$$
\mathcal{F}_{0}\left(G_{k, n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{n} \mathbb{S}^{2} & \text { if } k=2 \\
\bigvee_{n} \mathbb{S}^{2 r} & \text { if } k=3 r \\
\bigvee_{h(r-1, n)} \mathbb{S}^{2 r+1} & \text { if } k=3 r+1 \\
\bigvee_{h(r-1, n)} \mathbb{S}^{2 r+2} & \text { if } k=3 r+2 \text { and } r \geqslant 1
\end{array}\right.
$$

Proof. For $k=2, G_{2, n}-N\left[v_{1}\right] \cong K_{2}+K_{1, n}$, therefore $\mathcal{F}_{0}\left(G_{2, n}-N\left[v_{1}\right]\right) \simeq \mathbb{S}^{1}$. In $G_{2, n}-v_{1}$ the only neighbor of w_{1} is w_{2}, so

$$
\mathcal{F}_{0}\left(G_{2, n}-v_{1}\right) \simeq \mathcal{F}_{0}\left(G_{2, n}-v_{1}-v_{2}\right) \cong \mathcal{F}_{0}\left(K_{2}+K_{2} \times K_{n}\right) \simeq \bigvee_{n-1} \mathbb{S}^{2}
$$

and therefore,

$$
\mathcal{F}_{0}\left(G_{2, n}\right) \simeq \bigvee_{n} \mathbb{S}^{2}
$$

For $k=3 r, 3 r+1, G_{k, n}-N\left[w_{1}\right]$ is isomorphic to $H_{k, n}-v_{1}$ and as we saw in the proof of the Lemma 61, $\mathcal{F}_{0}\left(H_{k, n}-v_{1}\right) \simeq *$. Therefore

$$
\mathcal{F}_{0}\left(G_{k, n}\right) \simeq \mathcal{F}_{0}\left(G_{k, n}-w_{1}\right)
$$

In $G_{k, n}-w_{1}$, the only neighbor of w_{2} is v_{2}, so we can erase all the neighbors of v_{2} except w_{2} and we get

$$
\mathcal{F}_{0}\left(G_{k, n}-w_{1}\right) \simeq \mathcal{F}_{0}\left(K_{2}+H_{k-1, n}\right) \cong \Sigma \mathcal{F}_{0}\left(H_{k-1, n}\right)
$$

Using Lemma 63, we get the result.
For $k=3 r+2$ with $r \geqslant 1$, in the graph $G_{k, n}-N\left[v_{1}\right]$ the only neighbor of w_{2} is v_{2}, so we can erase all the neighbors of v_{2} but for w_{2} and we get that

$$
\mathcal{F}_{0}\left(G_{k, n}-N\left[v_{1}\right]\right) \simeq \mathcal{F}_{0}\left(K_{2}+H_{k-2, n}\right) \cong \Sigma \mathcal{F}_{0}\left(H_{k-2, n}\right)
$$

which, by Lemma 62 , has the homotopy type of a wedge of $(2 r+1)$-spheres. Now, in $G_{k, n}-v_{1}$ the only neighbor of w_{1} is w_{2}, so we can remove v_{2} and obtain

$$
\mathcal{F}_{0}\left(G_{k, n}-v_{1}\right) \simeq \mathcal{F}_{0}\left(K_{2}+P_{k} \times K_{n}\right) \cong \Sigma \mathcal{F}_{0}\left(P_{k} \times K_{n}\right),
$$

which, by Theorem 59, has the homotopy type of a wedge of $(n-1)^{r+1}(2 r+2)$-spheres, and thus the inclusion $\mathcal{F}_{0}\left(G_{k, n}-N\left[v_{1}\right]\right) \longleftrightarrow \mathcal{F}_{0}\left(G_{k, n}-v_{1}\right)$ is null-homotopic. Therefore,

$$
\mathcal{F}_{0}\left(G_{k, n}\right) \simeq \Sigma^{2} \mathcal{F}_{0}\left(H_{k-2, n}\right) \vee \Sigma \mathcal{F}_{0}\left(P_{k} \times K_{n}\right)
$$

By Theorem 59 and Lemma 63 we get the result.
For $n \geqslant 3$ and $k \geqslant 2$, we define:

- $\dot{W}_{k, n}$ as the graph obtained from $W_{k, n}$ by taking the path of length 3 with vertices w_{1}, w, w_{2} and edges $\left\{\left\{w_{1}, w\right\}\left\{w, w_{2}\right\}\right\}$ and making v_{1} adjacent to w_{1} and v_{2} to w_{2}.
- $\stackrel{\circ}{H}_{k, n}$ as the graph obtained from $H_{k, n}$ by taking two new vertices w_{1} and w_{2}, and making v_{1} adjacent to w_{1} and v_{2} to w_{2}.

Lemma 65.

$$
\mathcal{F}_{0}\left(\dot{\circ}_{k, n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{(n-1)^{r}} \mathbb{S}^{2 r+1} & \text { if } k=3 r \\
* & \text { if } k=3 r+1 \\
\bigvee_{(n-1)^{r+1}} \mathbb{S}^{2 r+2} & \text { if } k=3 r+2
\end{array}\right.
$$

Proof. When $k=3 r$, in $T=\stackrel{\circ}{W}_{3 r, n}-N\left[w_{1}\right]$, the neighborhood of the vertex $\left(u_{1}, i\right)$ is contain in the neighborhood of the vertex $\left(u_{3}, i\right)$ for all i. Then, we can erase the row u_{3} form T and the independence complex of this new graph is homotopy equivalent to $\mathcal{F}_{0}(G)$. In this new graph the neighborhood of $\left(u_{4}, i\right)$ is contained in the one of $\left(u_{6}, i\right)$, so we can erase the row u_{6} and the homotopy type will not change. Continuing with this process until we have erased all the rows $u_{3 k}$ for $1 \leqslant k \leqslant r$, we obtain a graph which is isomorphic to $K_{2}+r K_{2} \times K_{n}$, so

$$
\mathcal{F}_{0}(T) \simeq \Sigma \mathcal{F}_{0}\left(r K_{2} \times K_{n}\right) \simeq \bigvee_{(n-1)^{r}} \mathbb{S}^{2 r}
$$

Now, in $\stackrel{\circ}{W}_{3 r, n}-w_{1}$ the only neighbor of w is w_{2}, so we can erase v_{2}. In this new graph, the neighborhood of $\left(u_{3 r}, i\right)$ is contain in the one of $\left(u_{3 r-2}, i\right)$, so we can erase the row $u_{3 r-2}$. Continuing this process as before, we erase the rows $u_{3 k-2}$ for all $1 \leqslant k \leqslant r$. At the end of this, the vertex v_{1}
is an isolated vertex, so $\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r, n}-w_{1}\right) \simeq *$ and therefore

$$
\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r, n}\right) \simeq \Sigma \mathcal{F}_{0}(T) \simeq \bigvee_{(n-1)^{r}} \mathbb{S}^{2 r+1}
$$

For $k=3 r+1$, as before we take $T=\stackrel{\circ}{W}_{3 r+1, n}-N\left[w_{1}\right]$ and erase the rows $u_{3 k}$ for $1 \leqslant k \leqslant r$, we get a graph in which the vertex $\left(u_{3 r+1}, 2\right)$ is an isolated vertex, then $\mathcal{F}_{0}(T) \simeq *$ and $\mathcal{F}_{0}\left(\stackrel{\circ}{0}_{3 r+1, n}\right) \simeq$ $\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r, n}-w_{1}\right)$. In $\stackrel{\circ}{W}_{3 r+1, n}-w_{1}$, the only neighbor of w is w_{2}, so we can erase v_{2}. In this new graph, the neighborhood of $\left(u_{3 r+1}, i\right)$ is contained in the one of $\left(u_{3 r-1}, i\right)$, so we can erase the row $u_{3 r-1}$. Continuing this process as before, we erase the rows $u_{3 k-1}$ for all $1 \leqslant k \leqslant r$. At the end of this, the vertex $\left(u_{1}, 2\right)$ is an isolated vertex, so $\mathcal{F}_{0}\left(\stackrel{\circ}{W r+1, n}-w_{1}\right) \simeq *$ and therefore

$$
\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r+1, n}\right) \simeq *
$$

For $k=3 r+2$, as before we take $T=\stackrel{\circ}{W}_{3 r+2, n}-N\left[w_{1}\right]$ and erase the rows $u_{3 k}$ for $1 \leqslant k \leqslant r$. In this graph the neighborhood of $\left(u_{3 r+1}, 2\right)$ is contain in the one of v_{2}, so we can erase v_{2} and w_{2} becomes an isolated vertex. Therefore

$$
\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r+2, n}\right) \simeq \mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r+2, n}-w_{1}\right)
$$

In ${ }^{\circ}{ }_{3 r+2, n}-w_{1}$, the only neighbor of w is w_{2}, so we can erase v_{2}. In this new graph, the neighborhood of $\left(u_{3 r+2}, i\right)$ is contain in the one of $\left(u_{3 r}, i\right)$, so we can erase the row $u_{3 r}$. Continuing this process, we erase the rows $u_{3 k}$ for all $1 \leqslant k \leqslant r$. In this graph the neighborhood of v_{1} is equal to the one of $\left(u_{2}, 2\right)$, so we can erase v_{1}, therefore

$$
\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3 r+2, n}\right) \simeq \mathcal{F}_{0}\left(K_{2} \sqcup(r+1) K_{2} \times K_{n}\right) \simeq \bigvee_{(n-1)^{r+1}} \mathbb{S}^{2 r+2}
$$

Lemma 66.

$$
\mathcal{F}_{0}\left(\dot{\circ}_{k, n}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{2} & \text { if } k=2 \\
\mathbb{S}^{3} & \text { if } k=3 \\
\Sigma^{2} \mathcal{F}_{0}\left(H_{k-2, n}\right) & \text { for all } k \geqslant 4
\end{array}\right.
$$

Proof. Because $N\left(w_{i}\right)=\left\{v_{i}\right\}$, we can erase the vertices $\left(u_{1}, i\right)$ and $\left(u_{k}, j\right)$ for $i>1$ and $j \neq 2$. Now

1. If $k=2$, the resulting graph is isomorphic to $3 K_{2}$.
2. If $k \geqslant 4$, the resulting graph is isomorphic to $2 K_{2} \sqcup H_{k-2, n}$.
3. If $k=3$, the only neighbor of $\left(u_{2}, 1\right)$ in the resulting graph is $\left(u_{3}, 2\right)$, so we can erase al the vertices $\left(u_{2}, i\right)$ with $i>2$. This new graph is isomorphic to $4 K_{2}$.

Before we prove the main result of this section, we need the next lemma.
Lemma 67. For $v=\left(u_{1}, 1\right) \in V\left(C_{r} \times K_{n}\right)$, the complex $s t(v) \cap S C(v)$ is the union of complexes $X_{1}, \ldots, X_{n-1}, Y_{1}, \ldots, Y_{n-1}$, where

1. For any $i, X_{i} \cong Y_{i} \cong \mathcal{F}_{0}\left(G_{r-4, n}\right)$.
2. For any i and $r \geqslant 7, X_{i} \cap Y_{i} \cong \mathcal{F}_{0}\left(\dot{W}_{r-5, n}\right)$.
3. For any $i \neq j$ and $r \geqslant 7, X_{i} \cap Y_{j} \cong \mathcal{F}_{0}\left(\stackrel{\circ}{H}_{r-5, n}\right)$.
4. For any $i \neq j, X_{i} \cap X_{j} \simeq * \simeq Y_{i} \cap Y_{j}$.
5. For any L_{1}, \ldots, L_{m}, with $m \geqslant 3$ and $L_{i} \in\left\{X_{1}, \ldots, X_{n-1}, Y_{1}, \ldots, Y_{n-1}\right\}$, we have

$$
\bigcap_{j=1}^{m} L_{j} \simeq *
$$

Proof. By definition

$$
S C(v)=\bigcup_{u \in N(v)} s t(u)
$$

and in $C_{r} \times K_{n},|N(v)|=2(n-1)$, we call

$$
X_{i}=\operatorname{st}(v) \cap \operatorname{st}\left(\left(u_{2}, i+1\right)\right)
$$

and

$$
Y_{i}=s t(v) \cap s t\left(\left(u_{n}, i+1\right)\right)
$$

Now, X_{i} is the independence complex of the induced subgraph given by de set

$$
S_{i}=V\left(C_{r} \times K_{n}\right)-\left(N(v) \cup N\left(\left(u_{2}, i+1\right)\right)\right)
$$

where, taking $w=\left(u_{2}, i+1\right)$,

$$
N(v) \cup N(w)=\left\{\left(u_{2}, j\right): j>1\right\} \cup\left\{\left(u_{n}, j\right): j>1\right\} \cup\left\{\left(u_{1}, j\right): j \neq i+1\right\} \cup\left\{\left(u_{3}, j\right): j \neq i+1\right\}
$$

therefore $\left(C_{r} \times K_{n}\right)\left[S_{i}\right] \cong G_{r-4, n}$.
Now, $X_{i} \cap X_{j} \cong \mathcal{F}_{0}\left(\left(C_{r} \times K_{n}\right)\left[S_{i}\right] \cap\left(C_{r} \times K_{n}\right)\left[S_{j}\right]\right)$, with $i \neq j$, in $\left(C_{r} \times K_{n}\right)\left[S_{i}\right] \cap\left(C_{r} \times K_{n}\right)\left[S_{j}\right]$ the vertex $\left(u_{2}, 1\right)$ is an isolated vertex, therefore $X_{i} \cap X_{j} \simeq *$. For $Y_{i}^{\prime} s$ is analogous, with $\left(u_{r}, 1\right)$ being the isolated vertex. Now, for the intersection of more than 2 complexes, one or both of these vertices are isolated.

Figure 4.6:

Now, taking S_{i} as before and

$$
R_{j}=V\left(C_{r} \times K_{n}\right)-\left(N(v) \cup N\left(\left(u_{r}, j+1\right)\right)\right)
$$

taking $t=\left(u_{r}, i+1\right)$

$$
N(v) \cup N(t)=\left\{\left(u_{2}, l\right): l>1\right\} \cup\left\{\left(u_{n}, l\right): l>1\right\} \cup\left\{\left(u_{1}, l\right): l \neq j+1\right\} \cup\left\{\left(u_{r-1}, l\right): l \neq j+1\right\}
$$

Then $X_{i} \cap Y_{j} \cong \mathcal{F}_{0}\left(\left(C_{r} \times K_{n}\right)\left[S_{i} \cap R_{j}\right]\right)$ and

- If $i=j$, then $\left(C_{r} \times K_{n}\right)\left[S_{i} \cap R_{j}\right] \cong \stackrel{\circ}{W}_{r-5, n}$.
- If $i \neq j$, then $\left(C_{r} \times K_{n}\right)\left[S_{i} \cap R_{j}\right] \cong \stackrel{\circ}{H}_{r-5, n}$.

Remember from equation 4.1 that $h(r, n)=\frac{(n-1)^{r+2}-(-1)^{r}}{n}$.

Theorem 68.

$$
\mathcal{F}_{0}\left(C_{k} \times K_{n}\right) \simeq\left\{\begin{array}{cc}
\bigvee_{2(n-1)} \mathbb{S}^{1} & \text { if } k=3 \\
\bigvee_{(n-1)}^{(n-1} \mathbb{S}^{1} & \text { if } k=4 \\
\bigvee_{n-2} \mathbb{S}^{2} & \text { if } k=5 \\
\bigvee_{(n-1)(3 n-2)} \mathbb{S}^{3} & \text { if } k=6 \\
\bigvee_{n(n-1) h(r-3, n)+2(n-1)^{r}} & \mathbb{S}^{2 r-1} \\
\text { if } k=3 r \text { and } r \geqslant 3
\end{array}\right.
$$

Proof. For $k \leqslant 5$, we have already seen it. For $k=6$, we now that

$$
\mathcal{F}_{0}\left(C_{6} \times K_{n}\right) \simeq \Sigma s t\left(\left(u_{1}, 1\right)\right) \cap S C\left(\left(u_{1}, 1\right)\right)
$$

where

$$
S C\left(\left(u_{1}, 1\right)\right)=\left(\bigcup_{\substack{\left(u_{i}, n-1\right) \\ i>1}} \operatorname{st}\left(\left(u_{i}, n-1\right)\right)\right) \cup\left(\bigcup_{\substack{\left(u_{i}, 2\right) \\ i>1}} \operatorname{st}\left(\left(u_{i}, 2\right)\right)\right)
$$

Making the intersecction we get $K_{1}, \ldots, K_{n-1}, L_{1}, \ldots, L_{n-1}$ complexes which are isomorphic to $\mathcal{F}_{0}\left(G_{2, n}\right)$, which has the homotopy type of an wedge of $n 2$-dimentional spheres. The intersection of any K_{i} and L_{i} is ismomorphic to the independence complex of the graph in Figure 4.6(a), which has an isolated vertex, so $K_{i} \cap L_{i} \simeq *$. For $i \neq j$, the complex $K_{i} \cap L_{j}$ is isomorphic to the independence complex of the graph in Figure $4.6(\mathrm{~b})$, which is homotopy equivalent to \mathbb{S}^{1}. The intersection of three or more of these complexes is always contractible. Therefore, $\operatorname{st}\left(\left(u_{1}, 1\right)\right) \cap S C\left(\left(u_{1}, 1\right)\right)$ has the hompotopy type of the wedge of $2(n-1)$ copies of $\bigvee_{n} \mathbb{S}^{2}$ with $(n-1)(n-2)$ copies of \mathbb{S}^{2}. Therefore

$$
\mathcal{F}_{0}\left(C_{6} \times K_{n}\right) \simeq \bigvee_{(n-1)(3 n-2)} \mathbb{S}^{3}
$$

For $k=3 r$ with $r \geqslant 3$, by the Lemma $67, \operatorname{st}(v) \cap S C(v)$ is the union of complexes $K_{1}, \ldots, K_{n-1}, L_{1}, \ldots, L_{n-1}$, where

1. For any $i, K_{i} \cong L_{i} \cong \mathcal{F}_{0}\left(G_{k-4, n}\right)$.
2. For any $i, K_{i} \cap L_{i} \cong \mathcal{F}_{0}\left(\dot{ }_{k-5, n}\right)$.
3. For any $i \neq j, K_{i} \cap L_{j} \cong \mathcal{F}_{0}\left(\dot{\circ}_{k-5, n}\right)$.
4. For any $i \neq j, K_{i} \cap K_{j} \simeq * \simeq L_{i} \cap L_{j}$.
5. For any X_{1}, \ldots, X_{l}, with $l \geqslant 3$ and $X_{i} \in\left\{K_{1}, \ldots, K_{n-1}, L_{1}, \ldots, L_{n-1}\right\}$, we have

$$
\bigcap_{j=1}^{l} X_{j} \simeq *
$$

So we have $2(n-1)$ copies of $\mathcal{F}_{0}\left(G_{3(r-3)+2, n}\right)$, which has the homotopy type of the wedge of $h(r-3, n)+(n-1)^{r-1}$ copies of $\mathbb{S}^{2 r-2},(n-1)(n-2)$ copies of $\mathcal{F}_{0}\left(\dot{H}_{3(r-2)+1, n}\right)$ which has the homotopy type of

$$
\Sigma^{2} \mathcal{F}_{0}\left(H_{3(r-3)+2, n}\right) \simeq \bigvee_{h(r-3, n)(n-2)} \mathbb{S}^{2 r-3}
$$

and $n-1$ copies of $\mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3(r-2)+1, n}\right) \simeq *$. By Proposition 10 and taking its suspension we get that

$$
\mathcal{F}_{0}\left(C_{3 r} \times K_{n}\right) \simeq \bigvee_{n(n-1) h(r-3, n)+2(n-1)^{r}} \mathbb{S}^{2 r-1}
$$

Theorem 69. For $r \geqslant 2$:
(a) $\pi_{1}\left(\mathcal{F}_{0}\left(C_{3 r+1} \times K_{n}\right)\right) \cong 0 \cong \pi_{1}\left(\mathcal{F}_{0}\left(C_{3 r+2} \times K_{n}\right)\right)$.
(b) $\tilde{H}_{q}\left(\mathcal{F}_{0}\left(C_{3 r+1} \times K_{n}\right)\right) \cong 0$ for all $q \neq 2 r, 2 r-1$.
(c) $\tilde{H}_{q}\left(\mathcal{F}_{0}\left(C_{3 r+2} \times K_{n}\right)\right) \cong 0$ for all $q \neq 2 r+1,2 r$.
(d) $\mathcal{F}_{0}\left(C_{3 r+1} \times K_{n}\right)$ has the homotopy type of a wedge of $2 r$-spheres, $2 r+1$-spheres and moore spaces of the type $M\left(\mathbb{Z}_{m}, 2 r\right)$.
(e) $\mathcal{F}_{0}\left(C_{3 r+2} \times K_{n}\right)$ has the homotopy type of a wedge of $2 r+1$-spheres, $2 r+2$-spheres and moore spaces of the type $M\left(\mathbb{Z}_{m}, 2 r+1\right)$.

Proof. From Lemma 67 and Theorem 7, for $s=1,2, \mathcal{F}_{0}\left(C_{3 r+s} \times K_{n}\right) \simeq \Sigma(X \cup Y)$, where

$$
X \cong \bigcup_{i=1}^{n-1} X_{i}, \quad Y \cong \bigcup_{i=1}^{n-1} Y_{i}, \quad X_{i} \cong \mathcal{F}_{0}\left(G_{3 r+s-4, n}\right) \cong Y_{i}
$$

and

$$
\bigcap_{i \in S} X_{i} \simeq * \simeq \bigcap_{i \in S} Y_{i}
$$

for any $S \subset\{1, \ldots, n-1\}$ and $|S| \geqslant 2$. By Proposition 10 , Lemmas 67 and 64 ,

$$
X \simeq \bigvee_{(n-1) h(r-2, n)} \mathbb{S}^{2 r-3+s} \simeq Y
$$

By the Seifert-van Kampen Theorem (see [28] Theorem 7.40), $\pi_{1}(X \cup Y) \cong 0$.
Now, for $C_{3 r+1} \times K_{n}$, by Lemma 67 ,

$$
X \cap Y=\bigcup_{1 \leqslant i, j \leqslant n-1} X_{i} \cap Y_{j}
$$

where

$$
\begin{gathered}
X_{i} \cap Y_{i} \cong \mathcal{F}_{0}\left(\stackrel{\circ}{W}_{3(r-2)+2, n}\right) \\
X_{i} \cap Y_{j} \cong \mathcal{F}_{0}\left(\stackrel{\circ}{H}_{3(r-2)+2, n}\right) \text { for } i \neq j
\end{gathered}
$$

and $\left(X_{i} \cap Y_{j}\right) \cap\left(X_{r} \cap Y_{s}\right) \simeq$ *. By Proposition 10

$$
X \cap Y \simeq\left(\bigvee_{(n-2)(n-1)} I\left(\stackrel{\circ}{H}_{3(r-2)+2, n}\right)\right) \vee\left(\bigvee_{n-1} I\left(\stackrel{\circ}{W}_{3(r-2)+2, n}\right)\right)
$$

By Lemmas 63, 65 and 66a,

$$
X \cap Y \simeq \bigvee_{(n-1)^{r}+(n-2)(n-1) h(r-3, n)} \mathbb{S}^{2 r-2}
$$

Then, by the Mayer-Vietoris sequence, taking $K=X \cup Y$,

$$
0 \longrightarrow \tilde{H}_{2 r-1}(K) \longrightarrow \mathbb{Z}^{l} \longrightarrow \mathbb{Z}^{d} \oplus \mathbb{Z}^{d} \longrightarrow \tilde{H}_{2 r-2}(K) \longrightarrow 0
$$

where $l=(n-1)^{r}+(n-2)(n-1) h(r-3, n)$ and $d=(n-1) h(r-2, n)$. Therefore $\tilde{H}_{q}(K) \cong 0$ for $q \neq 2 r-1,2 r-2$ and taking the suspension we get the result. For $C_{3 r+2} \times K_{n}$ is analogous.

Parts (d) and (e) follow form the previous parts (see example 4C.2 [16]).
Proposition 57 tell us that for any $k \mathcal{F}_{0}\left(C_{k} \times K_{2}\right)$ has the homotopy type of a wedge of spheres of the same dimension and Theorem 68 tell us that for $k=3 r$ and any n this is also true, so one can ask what happen for the other k 's. For $k \not \equiv 0(\bmod 3)$, the last Theorem tell us that the complex may have nontrivial homology only in two consecutive dimensions; and by calculations done with Sage we know that for $C_{7} \times K_{3}, C_{7} \times K_{4}, C_{7} \times K_{5}, C_{8} \times K_{3}, C_{10} \times K_{3}, C_{10} \times K_{3}$, their independence complexes have non-trivial free homology groups in these two dimensions. From all this we can ask the following question:

Question 70. Are the homology groups of $\mathcal{F}_{0}\left(C_{k} \times K_{n}\right)$ always torsion-free?
An afirmative answer would tell us that $\mathcal{F}_{0}\left(C_{k} \times K_{n}\right)$ always has the homotopy type of a wedge of spheres.

4.2.3 Independence Complex of $K_{2} \times K_{n} \times K_{m}$

In this section we will calculate the homotopy type of $\mathcal{F}_{0}\left(K_{2} \times K_{n} \times K_{m}\right)$. We take the following polynomial.

$$
f(l, n, m)=\frac{(l-1)(n-1)(m-1)(\ln m-4)}{4}
$$

Proposition 71.

$$
\mathcal{F}_{0}\left(K_{2} \times K_{n} \times K_{m}\right) \simeq \bigvee_{f(2, n, m)} \mathbb{S}^{3}
$$

Proof. We take $G=K_{2} \times K_{n} \times K_{m}$, then:

Figure 4.7: $G[S]=Q_{n, m}$

- If either n or m is equal to 1 , then $f(2, n, m)=0$.
- If $n=2$ then

$$
\mathcal{F}_{0}(G)=\mathcal{F}_{0}\left(K_{2} \times K_{m}\right) * \mathcal{F}_{0}\left(K_{2} \times K_{m}\right) \simeq \bigvee_{(m-1)^{2}} \mathbb{S}^{3}
$$

and the formula holds. The same is true for $m=2$.

- If $n=3$, then $f(2,3, m)$ is the formula for $C_{6} \times K_{m}$. The same for $m=3$.

Assume that $n, m \geqslant 3$. Because K_{2} is one of the factors in the product, G has no K_{3} and by Theorem 7

$$
\mathcal{F}_{0}(G) \simeq \Sigma(s t((1,1,1)) \cap S C((1,1,1)))
$$

As before, $\operatorname{st}((1,1,1)) \cap S C((1,1,1))=\bigcup_{v \in N_{G}((1,1,1))}(s t((1,1,1)) \cap s t(v))$
We will first see that each of the complexes of this union is homotopy equivalent to the wedge of $n+m-3$ spheres. For $(2,2,2), \operatorname{st}((1,1,1)) \cap s t((2,2,2))=I(G[S])$ with $S=V(G)-N_{G}((1,1,1)) \cup$ $N_{G}((2,2,2))$. Now $S=\sigma \cup \tau$, with

$$
\sigma=\{(1,2,1),(1,2,2), \ldots,(1,2, m),(1,1,2),(1,2,2), \ldots,(1, n, 2)\}
$$

and

$$
\tau=\{(2,1,1),(2,1,2), \ldots,(2,1, m),(2,1,1),(2,2,1), \ldots,(2, n, 1)\}
$$

therefore, $G[S]$ is the graph in Figure 4.7 , which we will call $Q_{n, m}$. Beacuse $n, m \geqslant 3, m+n \geqslant 6$.

If $m+n=6$, then $m, n=3$ and if we remove the vertex $(2,1,1)$ and its neighbors, we get the disjoint union of two copies of P_{3}, therefore $\mathcal{F}_{0}\left(Q_{3,3}-N_{Q_{3,3}}((2,1,1)) \simeq \mathbb{S}^{1}\right.$. Now, $Q_{3,3}-(2,1,1)$ is isomorphic to C_{8} plus a vertex v adjacent to two vertices in C_{8} which are at distance 4 ; if we remove this vertex and its neighbors we get two disjoint copies of P_{3}, therefore, by Proposition 6 , $\mathcal{F}_{0}\left(Q_{3,3}-(2,1,1)\right) \simeq \mathbb{S}^{2} \vee \mathbb{S}^{2}$. Then, again by Proposition $6, \mathcal{F}_{0}\left(Q_{3,3}\right) \simeq \bigvee_{3} \mathbb{S}^{2}$. Assume that for all $6 \leqslant n+m \leqslant k, \mathcal{F}_{0}\left(Q_{n, m}\right) \simeq \bigvee_{n+m-3} \mathbb{S}^{2}$ and take $Q_{n, m}$ such that $n+m=k+1$, without loss of generality assume that $m \geqslant 4$. Now, in $F=Q_{n, m}-N_{Q_{n, m}}[(1,2,3)]$ the only neighbor of $(1,2,1)$ is $(2,1,3)$, therefore $\mathcal{F}_{0}(F) \simeq \mathcal{F}_{0}(F-R)$ with

$$
R=\{(1,2,2),(1,2,4), \ldots,(1,2, m),(1,3,1), \ldots,(1, n, 2)\}
$$

and $F-R \cong M_{2}$, and thus $\mathcal{F}_{0}(F) \simeq \mathbb{S}^{1}$. Now, in $T=Q_{n, m}-(1,2,3) N_{T}((2,1,4)) \subseteq N_{T}((2,1,3))$, by Lemma $5, \mathcal{F}_{0}(T) \simeq \mathcal{F}_{0}(T-(2,1,3))$. Because $T-(2,1,3) \cong Q_{n, m-1}$, by the inductive hypothesis,

$$
\mathcal{F}_{0}(T) \simeq \bigvee_{n+m-4} \mathbb{S}^{2}
$$

and by Proposition 6,

$$
\mathcal{F}_{0}\left(Q_{n, m}\right) \simeq \bigvee_{n+m-3} \mathbb{S}^{2} .
$$

Now,

$$
(s t((1,1,1)) \cap s t(v)) \cap(s t((1,1,1)) \cap s t(u))=\operatorname{st}((1,1,1)) \cap s t(u) \cap s t(v)=I(G[A])
$$

with $A=V(G)-N_{G}((1,1,1)) \cup N_{G}(u) \cap N_{G}(v)$. There are two possibilities

- u and v have two coordinates equal. Assume that $u=(2, a, b)$ and $v=(2, a, c)$, with $b, c>1$ and $b \neq c$. Take $(2, a, 1),(x, y, z) \in A$. If $x=1$, then $y=a$ because $b \neq c$. Therefore $(2, a, 1)(x, y, z) \notin E(G)$ for all $(x, y, z) \in A$ and $\mathcal{F}_{0}(G[A]) \simeq *$.
- u and v have only on coordinate equal. Assume $u=(2, a, b)$ and $v=(2, c, d)$, with $a \neq c$, $b \neq d$ and $a, b, c, d>1$. Then

$$
A=\{(1, a, d),(1, c, b),(2,1,1),(2,1,2), \ldots,(2,1, m),(2,2,1), \ldots,(2, n, 1)\}
$$

In $G[A]$, the only neighborhood of $(2,1, d)$ is $(1, c, b)$ and only one of $(2, c, 1)$ is $(1, a, d)$, so we can erase all other vertices without changing the homotopy type, and therefore $\mathcal{F}_{0}(G[A]) \simeq$ $\mathcal{F}_{0}\left(M_{2}\right) \cong \mathbb{S}^{1}$.

Therefore, the inclusion of the intersection of two complexes of the union $\operatorname{st}((1,1,1)) \cap S C((1,1,1))$
is null-homotopic. Now, the intersection of three complexes is equal to $\mathcal{F}_{0}(G[D])$ with $D=V(G)-$ $N_{g}((1,1,1)) \cup N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{3}\right)$. There are two possibilities

- If three vertices have only the first coordinate equal, $(2, a, b),(2, c, d),(2, e, f)$, then the only vertices with the first coordinate equal to 1 that are not neighbors of $(2, a, b)$ or $(2, c, d)$ are $(1, a, d)$ and $(1, c, b)$, which are neighbors of $(2, e, f)$, therefore

$$
D=\{2\} \times V\left(K_{n}\right) \times V\left(K_{m}\right)
$$

and

$$
\mathcal{F}_{0}(G[D]) \simeq * .
$$

- If two vertices have two coordinates equal, the intersection is a cone as with only two vertices.

Then the union $s t((1,1,1)) \cap S C((1,1,1))$ achieve the hypothesis of Proposition 10. Now $(1,1,1)$ has $(n-1)(m-1)$ neighbors and for each neighbor there are another $(n-2)(m-2)$ neighbors differing in two coordinates, these pairs are counted twice, therefore $\operatorname{st}((1,1,1)) \cap S C((1,1,1))$ is homotopy equivalent to the wedge of

$$
(n-1)(m-1)(n+m-3)+\frac{(n-1)(m-1)(n-2)(m-2)}{2}=\frac{(n-1)(m-1)(2 m n-4)}{4}
$$

spheres, and taking the suspension we arrive at the result.
We finish this section with the following conjecture.

Conjecture 72.

$$
\mathcal{F}_{0}\left(K_{n} \times K_{m} \times K_{l}\right) \simeq \bigvee_{f(n, m, l)} \mathbb{S}^{3}
$$

$4.3 \quad \mathcal{F}_{\infty}\left(P_{2} \square P_{n}\right)$

The independence complex of square grid graph $P_{n} \square P_{m}$ has been studied for many cases [9, 21]. Here we study the case $P_{2} \square P_{n}$ for the forest complex.

Proposition 73.

$$
\mathcal{F}_{\infty}\left(P_{2} \square P_{k}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{4 r-1} & \text { if } k=3 r \\
* & \text { if } k=3 r+1 \\
\mathbb{S}^{4 r+2} & \text { if } k=3 r+2 .
\end{array}\right.
$$

Proof. By Theorem 32, $\mathcal{F}_{\infty}\left(P_{2} \square P_{k}\right)$ is simply connected. We will show that it has at most one non-trivial reduced homology group. The Alexander dual of $\mathcal{F}_{\infty}\left(P_{2} \square P_{k}\right)$ has as maximal simplicies
the complements of $X_{i}=\{(i, 1),(i+1,1),(i, 2),(i+1,2)\}$ for $1 \leqslant i \leqslant k-1$. Taking $U_{i}=X_{i}^{c}$ and U the cover formed by these U_{i}, we have that

$$
\mathcal{N}(U) \simeq \mathcal{F}_{0}^{*}\left(P_{k}\right)
$$

It is standard that [19]:

$$
\mathcal{F}_{0}\left(P_{k}\right) \simeq\left\{\begin{array}{cc}
\mathbb{S}^{r-1} & \text { if } k=3 r \\
* & \text { if } k=3 r+1 \\
\mathbb{S}^{r} & \text { if } k=3 r+2
\end{array}\right.
$$

Thus, by Theorem $3, \mathcal{N}(U)$ has non-trivial reduced cohomology groups if $k=3 r$ or $k=3 r+2$, in which case the groups are in dimensions are $2(r-1)$ and $2 r-1$ respectively. Therefore $\mathcal{F}_{\infty}\left(P_{2} \square P_{k}\right)$ is contractible if $k=3 r+1$ and

$$
\begin{gathered}
\tilde{H}_{q}\left(\mathcal{F}_{\infty}\left(P_{2} \square P_{3 r}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { if } q=4 r-1 \\
0 & \text { if } q \neq 4 r-1,\end{cases} \\
\tilde{H}_{q}\left(\mathcal{F}_{\infty}\left(P_{2} \square P_{3 r+2}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { if } q=4 r+2 \\
0 & \text { if } q \neq 4 r+2\end{cases}
\end{gathered}
$$

By Theorem 1, in these cases the complex has the homotopy type of a sphere of the desired dimension.

Chapter 5

Homotopy type calculations III: Lexicographic products

In this last chapter we will study the complexes of some lexicographic products and will see its relation with polyhedral joins. Remember that the lexicographic product $G \circ H$ is the graph obtained by taking a copy of H for each vertex of G and all the possible edges between two copies if the corresponding vertices are adjacent in G. First we will see that the independence complex of a lexicographic product has the homotopy type of a homotopy colimit.

Proposition 74. Let G and H be two graphs. Then $\mathcal{F}_{0}(G \circ H) \simeq \operatorname{hocolim} \mathcal{X}$, with \mathcal{X} a punctured n-cube, where $\mathcal{F}_{0}(G)$ has n maximal simplices $\sigma_{1}, \ldots, \sigma_{n}$,

$$
\mathcal{X}(S) \cong \mathcal{F}_{0}(H)^{* n_{s}}
$$

and $n_{s}=\left|\bigcap_{i \notin S} \sigma_{i}\right|$
Proof. By definition, the maximal simplices of $\mathcal{F}_{0}(G \circ H)$ are given by taking a maximal simplex σ of $\mathcal{F}_{0}(G)$ and for each vertex of σ taking a maximal simplex in the corresponding copy of $\mathcal{F}_{0}(H)$. Fixing σ and taking all the possible combinations of maximal simplices in the copies of $\mathcal{F}_{0}(H)$, we get the simplicial complex

$$
X_{\sigma}=\underset{u \in \sigma}{*} \mathcal{F}_{0}\left(H_{u}\right)
$$

where H_{u} is the copy of H corresponding to the vertex u. Thus, if $\sigma_{1}, \ldots, \sigma_{n}$ are the maximal simplices of $\mathcal{F}_{0}(G)$, then

$$
\mathcal{F}_{0}(G \circ H)=\bigcup_{i=1}^{n} X_{\sigma_{i}}
$$

Taking the punctured cube \mathcal{X} given by the intersections we get a cofibrant punctured cube satisfying $\mathcal{F}_{0}(G \circ H) \simeq \operatorname{hocolim} \mathcal{X}$.

Now we will see that for the second factor only the homotopy type of its independence complex matters.

Theorem 75. Let H_{1} and H_{2} be graphs such that $\mathcal{F}_{0}\left(H_{1}\right) \simeq \mathcal{F}_{0}\left(H_{2}\right)$, then $\mathcal{F}_{0}\left(G \circ H_{1}\right) \simeq \mathcal{F}_{0}\left(G \circ H_{2}\right)$.
Proof. If $\sigma_{1}, \ldots, \sigma_{k}$ are the maximal simplices of $\mathcal{F}_{0}(G)$, taking $G_{i}=G\left[\sigma_{i}\right], X_{i}=\mathcal{F}_{0}\left(G_{i} \circ H_{1}\right)$ and $Y_{i}=\mathcal{F}_{0}\left(G_{i} \circ H_{2}\right)$, we have that $X_{i} \cong \mathcal{F}_{0}\left(H_{1}\right) *\left|\sigma_{i}\right|, Y_{i} \cong \mathcal{F}_{0}\left(H_{2}\right)^{*\left|\sigma_{i}\right|}$.

From this, $\mathcal{F}_{0}\left(G \circ H_{1}\right)=X_{1} \cup \cdots \cup X_{k}$ and $\mathcal{F}_{0}\left(G \circ H_{2}\right)=Y_{1} \cup \cdots \cup Y_{k}$. We take the punctured k-cubes

$$
\mathcal{X}(S)=\bigcap_{i \in S^{c}} X_{i} \quad \text { and } \quad \mathcal{Y}(S)=\bigcap_{i \in S^{c}} Y_{i}
$$

with the inclusions as the maps. If $f: \mathcal{F}_{0}\left(H_{1}\right) \longrightarrow \mathcal{F}_{0}\left(H_{2}\right)$ is a homotopy equivalence, taking $f_{S}: \mathcal{X}(S) \longrightarrow \mathcal{Y}(S)$ the corresponding induced homotopy equivalence if $\bigcap_{i \in S^{c}} \sigma_{i} \neq \varnothing$, we have that the collection of maps $\left\{f_{S}: S \in \mathcal{P}_{1}(\underline{k})\right\}$ is an homotopy equivalence between the punctured cubes.

Now, the homotopy type of $\mathcal{F}_{0}(G \circ H)$ does depend on finer details of G than just the homotopy type of its independence complex: for example the independence complexes of P_{5} and P_{6} have the same homotopy type [19] but the ones for the corresponding lexicographic products do not have to agree. In [24] the homotopy type of $\mathcal{F}_{0}\left(P_{n} \circ H\right)$ is given when $\mathcal{F}_{0}(H)$ is homotopy equivalent to a wedge of spheres and in [26] for any graph H, here we will determine the homotopy type of $\mathcal{F}_{0}\left(P_{n} \circ H\right)$ for any graph H and all n with a different proof. For this we need the following polynomials:

$$
a_{0}(x, y)=0, \quad b_{0}(x, y)=y, \quad c_{0}(x, y)=2 y
$$

and for $r \geqslant 1$,

$$
\begin{aligned}
a_{r}(x, y) & =x y b_{r-1}(x, y)+(x+x y) a_{r-1}(x, y)+x^{r-1} y \\
b_{r}(x, y) & =x y c_{r-1}(x, y)+(x+x y) b_{r-1}(x, y)+x^{r} y \\
c_{r}(x, y) & =x y a_{r}(x, y)+(x+x y) c_{r-1}(x, y)+2 x^{r} y
\end{aligned}
$$

Theorem 76. For any graph H

$$
\mathcal{F}_{0}\left(P_{n} \circ H\right) \simeq\left\{\begin{array}{cc}
\mathcal{F}_{0}(H) & \text { if } n=1 \\
\mathcal{F}_{0}(H) \sqcup \mathcal{F}_{0}(H) & \text { if } n=2 \\
\Sigma\left(\mathcal{F}_{0}(H)^{\wedge 2}\right) \sqcup \mathcal{F}_{0}(H) & \text { if } n=3 \\
\bigvee^{r-1} \vee\left(\Sigma^{i} \mathcal{F}_{0}(H)^{\wedge j}\right) & \text { if } n=3 r \geqslant 6 \\
\bigvee_{a_{r}(x, y)} \bigvee_{a_{i j}}\left(\Sigma^{i} \mathcal{F}_{0}(H)^{\wedge j}\right) & \text { if } n=3 r+1 \geqslant 4 \\
\mathbb{S}_{r}(x, y) b_{b i j} \\
\bigvee_{c_{r}(x, y)} \bigvee_{c_{i j}}\left(\Sigma^{i} \mathcal{F}_{0}(H)^{\wedge j}\right) & \text { if } n=3 r+2 \geqslant 5
\end{array}\right.
$$

where $z_{i j}$ is the coefficient of the term $x^{i} y^{j}$ of the corresponding polynomial.
Proof. For $n=1,2,3$ the theorem is clear. For $n=4, \mathcal{F}_{0}\left(P_{4} \circ H\right)$ is the union of three complexes X_{1}, X_{2}, X_{3} isomorphic to $\mathcal{F}_{0}(H)^{* 2}$ corresponding to the edges of P_{4}^{c}. We compute the homotopy type of the union via pushouts:

For $n=5, \mathcal{F}_{0}\left(P_{5} \circ H\right)$ is the union of two complexes $X_{1} \cong \mathcal{F}_{0}(H)^{* 3}$ and $X_{2} \cong \mathcal{F}_{0}\left(P_{4} \circ H\right)$, where $X_{1} \cap X_{2} \cong \bigsqcup_{2} \mathcal{F}_{0}(H)$. Therefore, by Lemma 9,

$$
\mathcal{F}_{0}\left(P_{5} \circ H\right) \simeq \mathcal{F}_{0}(H)^{* 3} \vee \bigvee_{3} \mathcal{F}_{0}(H)^{* 2} \vee \bigvee_{4} \Sigma \mathcal{F}_{0}(H) \vee \mathbb{S}^{1}
$$

For $n=6, \mathcal{F}_{0}\left(P_{6} \circ H\right)$ is the union of two complexes $X_{1} \cong \mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{4} \circ H\right)$ and $X_{2} \cong$ $\mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{3} \circ H\right)$, where $X_{1} \cap X_{2} \cong \mathcal{F}_{0}\left(P_{3} \circ H\right)$. By Lemma 9,

$$
\mathcal{F}_{0}\left(P_{6} \circ H\right) \simeq \mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{4} \circ H\right) \vee \mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{3} \circ H\right) \vee \Sigma \mathcal{F}_{0}\left(P_{3} \circ H\right)
$$

$$
\simeq \bigvee_{4} \mathcal{F}_{0}(H)^{* 3} \vee \mathcal{F}_{0}(H)^{* 2} \vee \bigvee_{3} \Sigma \mathcal{F}_{0}(H)^{* 2} \vee \bigvee_{2} \Sigma \mathcal{F}_{0}(H) \vee \mathbb{S}^{1}
$$

For $n \geqslant 7$,

$$
\mathcal{F}_{0}\left(P_{n} \circ H\right) \cong\left(\mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{n-2} \circ H\right)\right) \cup\left(\mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{n-3} \circ H\right)\right)
$$

Therefore $\mathcal{F}_{0}\left(P_{n} \circ H\right)$ has the homotopy type of the homotopy pushout of

$$
\mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{n-2} \circ H\right) \longleftrightarrow \mathcal{F}_{0}\left(P_{n-3} \circ H\right) \longleftrightarrow \mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{n-3} \circ H\right)
$$

and from this, by Lemma 9,

$$
\mathcal{F}_{0}\left(P_{n} \circ H\right) \simeq \mathcal{F}_{0}(H) * \mathcal{F}_{0}\left(P_{n-2} \circ H\right) \vee \Sigma \mathcal{F}_{0}\left(P_{n-3} \circ H\right) \vee \mathcal{F}_{0}\left(P_{n-3} \circ H\right)
$$

The rest follows by inductive hypothesis.
Now we give the generating functions for the polynomials of the last Theorem. Taking

$$
F(t)=\sum_{r \geqslant 0} a_{r}(x, y) t^{r}, \quad G(t)=\sum_{r \geqslant 0} b_{r}(x, y) t^{r}, \quad H(t)=\sum_{r \geqslant 0} c_{r}(x, y) t^{r}
$$

we have that:

$$
\begin{aligned}
& F(t)=x y t G(t)+(x+x y) t F(t)+\sum_{r \geqslant 1} x^{r-1} y t^{r} \\
& G(t)=x y t H(t)+(x+x y) t G(t)+y+\sum_{r \geqslant 1} x^{r} y t^{r} \\
& H(t)=x y F(t)+(x+x y) t H(t)+2 y+2 \sum_{r \geqslant 1} x^{r} y t^{r}
\end{aligned}
$$

Taking $K(t)=\sum_{r \geqslant 1} x^{r-1} y t^{r}$ we see that

$$
x K(t)=y\left(\frac{1}{1-x t}-1\right)=\frac{x y t}{1-x t}
$$

Therefore $K(t)=\frac{y t}{1-x t}$ and

$$
\begin{aligned}
& F(t)=x y t G(t)+(x+x y) t F(t)+\frac{y t}{1-x t} \\
& G(t)=x y t H(t)+(x+x y) t G(t)+y+\frac{x y t}{1-x t} \\
& H(t)=x y F(t)+(x+x y) t H(t)+2 y+\frac{2 x y t}{1-x t}
\end{aligned}
$$

From this we obtain:

$$
\begin{aligned}
F(t) & =\frac{x y t}{1-(x+x y) t} G(t)+\frac{y t}{(1-(x+x y) t)(1-x t)} \\
G(t) & =\frac{x y t}{1-(x+x y) t} H(t)+\frac{y}{(1-(x+x y) t)(1-x t)} \\
H(t) & =\frac{x y}{1-(x+x y) t} F(t)+\frac{2 y}{(1-(x+x y) t)(1-x t)}
\end{aligned}
$$

Solving these equations we arrive at:

$$
F(t)=\frac{-\left(x^{2} y^{3}+x^{2} y^{2}\right) t^{3}+\left(x^{2} y^{3}+x^{2}-x^{2} y^{2} y-2 x y^{2}-x y\right) t^{2}+\left(x y^{2}+y-x y\right) t}{(1-x t)\left[(1-(x+x y) t)^{3}-x^{3} y^{3} t^{2}\right]},
$$

and from this the other generating functions can be easily obtained.
We now give a formula for the homotopy type of the suspension of \mathcal{F}_{0} for any lexicographic product in terms of the \mathcal{F}_{0} 's of the factors and induced subgraphs of the first factor. For this, notice that the independence complex of a lexicographic product is a polyhedral join, as has been pointed out in [25].

Theorem 77. For any graphs G and H,

$$
\Sigma \mathcal{F}_{0}(G \circ H) \simeq \Sigma \mathcal{F}_{0}(G) \vee \bigvee_{\sigma \in \mathcal{F}_{0}(G)} \sum\left(\mathcal{F}_{0}\left(G-\bigcup_{v \in \sigma} N[v]\right) * \mathcal{F}_{0}(H)^{*|\sigma|}\right)
$$

Proof. By definition, $\mathcal{F}_{0}(G \circ H)=\stackrel{*}{Z}_{\mathcal{F}_{0}(G)}\left(\mathcal{F}_{0}(H), \varnothing\right)$. Then, by Theorem 14, we have that

$$
\Sigma \mathcal{F}_{0}(G \circ H) \simeq \hat{Z}_{\mathcal{F}_{0}(G)}\left(\Sigma \mathcal{F}_{0}(H), \mathbb{S}^{0}\right)
$$

and by Theorem 13,

$$
\hat{Z}_{\mathcal{F}_{0}(G)}\left(\Sigma \mathcal{F}_{0}(H), \mathbb{S}^{0}\right) \simeq \Sigma \mathcal{F}_{0}(G) \vee \bigvee_{\sigma \in \mathcal{F}_{0}(G)} \sum\left(\mathcal{F}_{0}\left(G-\bigcup_{v \in \sigma} N[v]\right) * \mathcal{F}_{0}(H)^{*|\sigma|}\right)
$$

As an immediate corollary we have the following:
Corollary 78. For any graph G such that $\mathcal{F}_{0}(G)$ is connected and any graph W,

$$
\tilde{H}_{q}\left(\mathcal{F}_{0}(G \circ W)\right) \cong \tilde{H}_{q}\left(\mathcal{F}_{0}(G)\right) \oplus \bigoplus_{\sigma \in \mathcal{F}_{0}(G)} \tilde{H}_{q}\left(\mathcal{F}_{0}\left(G-\bigcup_{v \in \sigma} N[v]\right) * \mathcal{F}_{0}(W)^{*|\sigma|}\right)
$$

The last theorem gives us an equivalence between the suspensions of two spaces, so it is natural to ask if the formula is true without suspending, for some G. For example, for $n=5,6$ is not hard to see that

$$
\mathcal{F}_{0}\left(C_{n} \circ H\right) \simeq \mathcal{F}_{0}\left(C_{n}\right) \vee \bigvee_{\sigma \in \mathcal{F}_{0}\left(C_{n}\right)} l k(\sigma) * \mathcal{F}_{0}(H)^{*|\sigma|}
$$

Question 79. Is the above homotopy equivalence valid for other positive integers n ?
Also, using the same proof of Theorem 76 it can be show that for $n \geqslant 4$, the homotopy type of $\mathcal{F}_{0}\left(P_{n} \circ H\right)$ follows the formula of Theorem 77 , but without the suspension. So another question is the following:

Question 80. For which graphs G, with $\mathcal{F}_{0}(G)$ connected, is it true that

$$
\mathcal{F}_{0}(G \circ H) \simeq \mathcal{F}_{0}(G) \vee \bigvee_{\sigma \in \mathcal{F}_{0}(G)}\left(\mathcal{F}_{0}\left(G-\bigcup_{v \in \sigma} N[v]\right) * \mathcal{F}_{0}(H)^{*|\sigma|}\right)
$$

for all H ?
Now for any graph G, the graph $K_{2} \circ G$ is also the graph join of two copies of G and Lemma 42 give us the homotopy type for this product, so we get that for G a graph of order n we have that:

1. $\mathcal{F}_{1}\left(K_{2} \circ G\right) \simeq \bigvee_{2} \mathcal{F}_{1}(G) \vee \bigvee_{n^{2}-1} \mathbb{S}^{1}$.
2. If $\mathcal{F}_{0}(G)$ is connected, then, for all $d \geqslant 2$,

$$
\mathcal{F}_{d}\left(K_{2} \circ G\right) \simeq \bigvee_{2 n-2} \Sigma s k_{d-1} \mathcal{F}_{0}(G) \vee \bigvee_{(n-1)^{2}} \mathbb{S}^{2} \vee \bigvee_{2} A
$$

where $A=\mathcal{F}_{d}(G) \cup C\left(s k_{d-1} \mathcal{F}_{0}(G)\right)$.

Now we can see that in contrast with \mathcal{F}_{0}, the homotopy type of the second factor does not determine the homotopy type of $\mathcal{F}_{d}(G \circ \ldots)$ for $d \geqslant 1$. It is known that $\mathcal{F}_{0}\left(P_{5}\right) \simeq \mathcal{F}_{0}\left(P_{6}\right) \simeq \mathbb{S}^{1}$ and $\mathcal{F}_{0}\left(P_{4}\right) \simeq *$ (see [19]), by Proposition $33 \mathcal{F}_{1}\left(P_{5}\right) \simeq \mathcal{F}_{1}\left(P_{6}\right) \simeq *$, and it is not hard to see that $s k_{1}\left(\mathcal{F}_{0}\left(P_{5}\right)\right) \simeq \mathbb{S}^{1} \vee \mathbb{S}^{1}$ and $s k_{1}\left(\mathcal{F}_{0}\left(P_{4}\right)\right) \simeq *$. From all this and Lemma 42 we have that

$$
\begin{aligned}
& \mathcal{F}_{1}\left(K_{2} \circ P_{5}\right) \simeq \bigvee_{24} \mathbb{S}^{1} \not \not \bigvee_{35} \mathbb{S}^{1} \simeq \mathcal{F}_{1}\left(K_{2} \circ P_{6}\right), \\
& \mathcal{F}_{2}\left(K_{2} \circ P_{4}\right) \simeq \bigvee_{9} \mathbb{S}^{2} \nsim \bigvee_{36} \mathbb{S}^{2} \simeq \mathcal{F}_{2}\left(K_{2} \circ P_{5}\right),
\end{aligned}
$$

and for $d \geqslant 3$,

$$
\mathcal{F}_{d}\left(K_{2} \circ P_{4}\right) \simeq \bigvee_{9} \mathbb{S}^{2} \not \not \bigvee_{26} \mathbb{S}^{2} \simeq \mathcal{F}_{d}\left(K_{2} \circ P_{5}\right)
$$

Until now we only have worked with \mathcal{F}_{0}; for $d \geqslant 1$, sadly $\mathcal{F}_{d}(G \circ H)$ is not a polyhedral join but $\stackrel{*}{Z}_{\mathcal{F}_{d}(G)}\left(\Delta^{V(H)}, \varnothing\right)$ is a subcomplex. Now, for $H=K_{n}$ we will make calculations for some graphs G.

Proposition 81. For any r and n,

$$
\mathcal{F}_{1}\left(K_{1, n} \circ K_{r}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1} \vee \bigvee_{\left(n r^{2}-1\right)+\binom{r-1}{2}} \mathbb{S}^{1} ;
$$

for $2 \leqslant d \leqslant n-1$,

$$
\mathcal{F}_{d}\left(K_{1, n} \circ K_{r}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1} \vee \bigvee_{r f_{d-1}(r, n-1)} \mathbb{S}^{d} \vee \bigvee_{\binom{r}{2}} \mathbb{S}^{1}
$$

and for $d=\infty$,

$$
\mathcal{F}_{\infty}\left(K_{1, n} \circ K_{r}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1} \vee \bigvee_{r(r-1)^{n}} \mathbb{S}^{n} \vee \bigvee_{\binom{r}{2}} \mathbb{S}^{1}
$$

Proof. For $d=1$ the result follows from Lema 42.
We take $0,1, \ldots, n$ as the vertices of $K_{1, n}$ with 0 the vertex of degree n and K_{r}^{i} the copy of K_{r} corresponding to the vertex i.

For $2 \leqslant d \leqslant n-1, \mathcal{F}_{d}\left(K_{1, n} \circ K_{r}\right)=X \cup Y \cup Z$ where

$$
\begin{gathered}
X=V\left(K_{r}^{0}\right) * \stackrel{*}{Z}_{s k_{d-1} \Delta^{n-1}}\left(s k_{0} K_{r}, \varnothing\right), \quad Y=\mathcal{F}_{d}\left(K_{r}^{0}\right) \simeq \bigvee_{\binom{r-1}{2}} \mathbb{S}^{1} \\
Z=\underset{i=1}{*} \mathcal{F}_{d}\left(K_{r}^{i}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1}
\end{gathered}
$$

We have that $Y \cap Z=\varnothing, X \cap Y=s k_{0} Y$ and

$$
X \cap Z=\stackrel{*}{Z}_{s k_{d-1} \Delta^{n-1}}\left(s k_{0} K_{r}, \varnothing\right) \simeq \bigvee_{f_{d-1}(r, n-1)} \mathbb{S}^{d-1}
$$

Once again we compute the homotopy type of union via homotopy pushouts as explained at the end of the preliminaries:

where \mathcal{S}^{\prime} is the diagram of the bottom of the cube. Then

$$
\operatorname{hocolim}\left(\mathcal{S}^{\prime}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1} \vee \bigvee_{r f_{d-1}(r, n-1)} \mathbb{S}^{d}
$$

and the rest follows from this.
Now, for $d=\infty, \mathcal{F}_{\infty}\left(K_{1, n} \circ K_{r}\right)=X \cup Y \cup Z$ where Y and Z are as before, and

$$
X=\stackrel{*}{Z}_{\Delta^{n}}\left(s k_{0} K_{r}, \varnothing\right) \simeq \bigvee_{(r-1)^{n+1}} \mathbb{S}^{n}
$$

As before, $Y \cap Z=\varnothing, X \cap Y=s k_{0} Y$ and

$$
X \cap Z=\stackrel{*}{Z}_{\Delta^{n-1}}\left(s k_{0} K_{r}, \varnothing\right) \simeq \bigvee_{(r-1)^{n}} \mathbb{S}^{n-1}
$$

Again we use the technique we've been using to compute the homotopy type of the union via
homotopy pushouts:

where \mathcal{S}^{\prime} again is the diagram of the bottom of the cube. Then

$$
\operatorname{hocolim}\left(\mathcal{S}^{\prime}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1} \vee \bigvee_{r(r-1)^{n}} \mathbb{S}^{n}
$$

The result follows.

Proposition 82. For any integers $n, m, r \geqslant 2$,

$$
\Sigma \mathcal{F}_{\infty}\left(K_{n, m} \circ K_{r}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n} \vee \bigvee_{\binom{r-1}{2}^{m}} \mathbb{S}^{2 m} \vee \bigvee_{a} \mathbb{S}^{n+1} \vee \bigvee_{b} \mathbb{S}^{m+1} \vee \bigvee_{c} \mathbb{S}^{3}
$$

where $a=m(r-1)^{n}+m^{2}(r-1)^{m}, b=n(r-1)^{m}+n^{2}(r-1)^{n}$ and $c=(r n-1)(r m-1)$.
Proof. Assume $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{m}\right\}$ are the partition of the vertices of $K_{n, m}$. Taking

$$
X=\stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n, m}\right)}\left(s k_{0} K_{r}, \varnothing\right), Y=\stackrel{Z}{Z}_{\Delta^{U}}\left(K_{r}, \varnothing\right), W={\underset{Z}{\Delta^{V}}}_{*}\left(K_{r}, \varnothing\right)
$$

we have that $\mathcal{F}_{\infty}\left(K_{n, m} \circ K_{r}\right)=X \cup Y \cup W$. Now, $Y \cap W=X \cap Y \cap W=\varnothing$ and

$$
X \cap Y=\stackrel{*}{Z}_{\Delta^{U}}\left(s k_{0} K_{r}, \varnothing\right), X \cap W=\stackrel{*}{Z}_{\Delta^{V}}\left(s k_{0} K_{r}, \varnothing\right)
$$

Taking any vertices $u_{i} \in U$ and $v_{j} \in V$, we can factor the inclusions to X as

$$
\begin{aligned}
& X \cap Y \leftharpoonup \stackrel{*}{\mathcal{Z}}_{\Delta}^{U \cup\left\{v_{j}\right\}} \\
& \\
& \left.X \cap W\left(K_{r}\right), \varnothing\right) \longleftrightarrow X \\
& X \longrightarrow \dot{\mathcal{Z}}_{\Delta V \cup\left\{u_{i}\right\}}\left(V\left(K_{r}\right), \varnothing\right) \longleftrightarrow X
\end{aligned}
$$

where the first inclusions are null-homotopic. Therefore

$$
\operatorname{hocolim}(X \cup Y \longleftrightarrow X \cap W \longleftrightarrow W) \simeq X \cup Y \vee W \vee \Sigma(X \cap W)
$$

and

$$
\operatorname{hocolim}(X \longleftrightarrow X \cap Y \longleftrightarrow Y) \simeq X \vee Y \vee \Sigma(X \cap Y)
$$

From where we obtain that

$$
\mathcal{F}_{\infty}\left(K_{n, m} \circ K_{r}\right) \simeq X \vee Y \vee W \vee \Sigma(X \cap W) \vee \Sigma(X \cap Y)
$$

Now, for $\Sigma \mathcal{F}_{\infty}\left(K_{n, m} \circ K_{r}\right)$ we only need to determine the homotopy type of $\Sigma \stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n, m}\right)}\left(s k_{0} K_{r}, \varnothing\right)$. Now,

$$
\Sigma \stackrel{*}{Z}_{\mathcal{F} \infty\left(K_{n, m}\right)}\left(s k_{0} K_{r}, \varnothing\right) \simeq \hat{Z}_{\mathcal{F} \infty\left(K_{n, m}\right)}\left(\bigvee_{r-1} \mathbb{S}^{1}, \mathbb{S}^{0}\right)
$$

Because the inclusion of \mathbb{S}^{0} in a wedge of copies of \mathbb{S}^{1} is null-homotopic, we have that

$$
\hat{Z}_{\mathcal{F}_{\infty}\left(K_{n, m}\right)}\left(\bigvee_{r-1} \mathbb{S}^{1}, \mathbb{S}^{0}\right) \simeq \Sigma \mathcal{F}_{\infty}\left(K_{n, m}\right) \vee \bigvee_{\sigma \in \mathcal{F}_{\infty}\left(K_{n, m}\right)} l k(\sigma) * \hat{D}(\sigma)
$$

We have $\hat{D}=\bigwedge_{|\sigma|} \bigvee_{r-1} \mathbb{S}^{1} \simeq \bigvee_{(r-1)^{|\sigma|}} \mathbb{S}^{|\sigma|}$, and thus

$$
\hat{Z}_{\mathcal{F}_{\infty}\left(K_{n, m}\right)}\left(\bigvee_{r-1} \mathbb{S}^{1}, \mathbb{S}^{0}\right) \simeq \Sigma \mathcal{F}_{\infty}\left(K_{n, m}\right) \vee \bigvee_{\sigma \in \mathcal{F}_{\infty}\left(K_{n, m}\right)}\left(\bigvee_{(r-1)^{|\sigma|}} \Sigma^{|\sigma|+1} l k(\sigma)\right)
$$

If we take any two vertices from U and any two from V, we get a cycle. Therefore $|\sigma \cap U| \leqslant 1$ or $|\sigma \cap V| \leqslant 1$ for any simplex σ. Take $\sigma \in \mathcal{F}_{\infty}\left(K_{n, m}\right)$. There are two possibilities:

- σ is totally contained in U or V. Assume $\sigma \subseteq U$. There are two cases:

1. If $|\sigma|=1$, then

$$
l k(\sigma)=\left(s k_{0} \Delta^{V} * \Delta^{U-\sigma}\right) \cup \Delta^{V}
$$

and

$$
l k(\sigma) \simeq \operatorname{hocolim}\left(* \longleftarrow s k_{0} \Delta^{V} \longrightarrow *\right) \simeq \bigvee_{m-1} \mathbb{S}^{1}
$$

2. If $|\sigma|>1$, then

$$
l k(\sigma) \cong s k_{0} \Delta^{V} * \Delta^{U-\sigma} \simeq\left\{\begin{array}{cc}
* & \text { if }|\sigma|<n \\
\bigvee_{m-1} \mathbb{S}^{0} & \text { if }|\sigma|=n
\end{array}\right.
$$

- $\sigma \cap U \neq \varnothing \neq \sigma \cap V$. Assume $|\sigma \cap U|=1$. There are three cases:

1. If $2=|\sigma|$, then $l k(\sigma)=\Delta^{V-\sigma} \sqcup \Delta^{U-\sigma}$ and thus is homotopy equivalent to \mathbb{S}^{0}.
2. If $2<|\sigma|<m+1$, then $l k(\sigma)=\Delta^{V-\sigma}$ and therefore is contractible.
3. If $|\sigma|=m+1$, then σ is a maximal simplex and $l k(\sigma)=\varnothing$.

Therefore:

$$
\hat{Z}_{\mathcal{F}_{\infty}\left(K_{n, m}\right)}\left(\bigvee_{r-1} \mathbb{S}^{1}, \mathbb{S}^{0}\right) \simeq \bigvee_{c} \mathbb{S}^{3} \vee \bigvee_{a^{\prime}} \mathbb{S}^{n+1} \vee \bigvee_{b^{\prime}} \mathbb{S}^{m+1}
$$

where $a^{\prime}=(m-1)(r-1)^{n}+m(r-1)^{n+1}, b^{\prime}=(n-1)(r-1)^{m}+n(r-1)^{m+1}$ and $c=n m(r-$ $1)^{2}+n(m-1)(r-1)+m(n-1)(r-1)+(n-1)(m-1)=(r n-1)(r m-1)$.

Theorem 83. For any positive integers $r, n_{1}, \ldots, n_{k} \geqslant 2$, with $k \geqslant 3$ and $G=K_{n_{1}, \ldots, n_{k}} \circ K_{r}$ we have that

$$
\Sigma \mathcal{F}_{\infty}(G) \simeq \bigvee_{i=1}^{k}\left(\bigvee_{\binom{r-1}{2}^{n_{i}}} \mathbb{S}^{2 n_{i}} \vee \bigvee_{a_{i}} \mathbb{S}^{n_{i}+1}\right) \vee \bigvee_{b} \mathbb{S}^{3} \vee \bigvee_{\binom{k-1}{2}} \mathbb{S}^{2}
$$

where

$$
\begin{gathered}
a_{i}=(r-1)^{n_{i}}+\left(t_{i}+1\right)(r-1)^{n_{i}+1}+t_{i}(r-1)^{n_{i}} \\
b=\sum_{i<j}\left(n_{i}-1\right)\left(n_{j}-1\right)+\sum_{i<j} n_{i} n_{j}(r-1)^{2}+\sum_{i=1}^{k} t_{i} n_{i}(r-1), \text { and } \\
t_{i}=\sum_{j \neq i} n_{j}-1
\end{gathered}
$$

Proof.

$$
\mathcal{F}_{\infty}(G)=\stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n_{1}}, \ldots, n_{k}\right)}\left(s k_{0} K_{r}, \varnothing\right) \cup \bigsqcup_{i=1}^{k} \stackrel{*}{Z}_{\Delta^{v_{i}}}\left(K_{r}, \varnothing\right)
$$

For all i,

$$
\stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n_{1}}, \ldots, n_{k}\right)}\left(s k_{0} K_{r}, \varnothing\right) \cap \stackrel{*}{Z}_{\Delta^{V_{i}}}\left(K_{r}, \varnothing\right)=\stackrel{*}{Z}_{\Delta^{V_{i}}}\left(s k_{0} K_{r}, \varnothing\right)
$$

As in the proposition before, we take $v \in V_{j}$ with $j \neq i$. Then the inclusion factors as

$$
\stackrel{*}{Z}_{\Delta^{V_{i}}}\left(s k_{0} K_{r}, \varnothing\right) \longleftrightarrow \stackrel{*}{Z}_{\Delta^{V_{i} \cup\{v\}}}\left(s k_{0} K_{r}, \varnothing\right) \longleftrightarrow \stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n_{1}}, \ldots, n_{k}\right)}\left(s k_{0} K_{r}, \varnothing\right)
$$

and is thus null-homotopic. Therefore,

$$
\mathcal{F}_{\infty}(G) \simeq \stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n_{1}}, \ldots, n_{k}\right)}\left(s k_{0} K_{r}, \varnothing\right) \vee \bigvee_{i=1}^{k}\left(\stackrel{*}{Z}_{\Delta^{v_{i}}}\left(K_{r}, \varnothing\right) \vee \Sigma^{*}{ }_{\Delta^{v_{i}}}\left(s k_{0} K_{r}, \varnothing\right)\right)
$$

For the suspension, as in the last proposition, we have that

$$
\begin{gathered}
\Sigma \stackrel{*}{Z}_{\mathcal{F}_{\infty}\left(K_{n_{1}}, \ldots, n_{k}\right)}\left(s k_{0} K_{r}, \varnothing\right) \simeq \Sigma \mathcal{F}_{\infty}\left(K_{n_{1}, \ldots, n_{k}}\right) \vee \bigvee_{\sigma \in \mathcal{F}_{\infty}\left(K_{n_{1}, \ldots, n_{k}}\right)} l k(\sigma) * \stackrel{*}{D}(\sigma) \\
\simeq \Sigma \mathcal{F}_{\infty}\left(K_{n_{1}, \ldots, n_{k}}\right) \vee \bigvee_{\sigma \in \mathcal{F}_{\infty}\left(K_{n_{1}, \ldots, n_{k}}\right)} \bigvee_{(r-1)^{|\sigma|}} \Sigma^{|\sigma|+1} l k(\sigma) .
\end{gathered}
$$

Now,

$$
\Sigma \mathcal{F}_{\infty}\left(K_{n_{1}, \ldots, n_{k}}\right) \simeq \bigvee_{\binom{k-1}{2}} \mathbb{S}^{2} \vee \bigvee_{i<j} \Sigma \mathcal{F}_{\infty}\left(K_{n_{i}, n_{j}}\right)
$$

Because any three vertices $v_{i} \in V_{i}, v_{j} \in V_{j}$ and $v_{l} \in V_{l}$, with $i<j<l$, form a cycle, the simplices with vertices in two V_{i}, V_{j}, with $i \neq j$, have the link as in the corresponding bipartite graph. Therefore, if σ is a simplex such that $\sigma \cap V_{i} \neq \varnothing \neq \sigma \cap V_{j}$, for $i \neq j$, and $\left|\sigma \cap V_{i}\right|=1$, there are three cases:

1. If $2=|\sigma|$, then $l k(\sigma)=\Delta^{V_{j}-\sigma} \sqcup \Delta^{V_{j}-\sigma}$ and thus is homotopy equivalent to \mathbb{S}^{0}.
2. If $2<|\sigma|<n_{j}+1$, then $l k(\sigma)=\Delta^{V_{j}-\sigma}$ and therefore is contractible.
3. If $|\sigma|=n_{j}+1$, then σ is a maximal simplex and $l k(\sigma)=\varnothing$.

Now if σ is a simplex such that $\sigma \subseteq V_{i}$, then

1. If $|\sigma|=1$, then

$$
l k(\sigma) \cong\left(\left(\bigsqcup_{j \neq i} s k_{0} \Delta^{V_{j}}\right) * \Delta^{V_{i}-\sigma}\right) \cup\left(\bigsqcup_{j \neq i} \Delta^{V_{j}}\right)
$$

and

$$
l k(\sigma) \simeq \operatorname{hocolim}\left(* \longleftarrow \bigsqcup_{j \neq i} s k_{0} \Delta^{V_{j}} \longrightarrow *\right) \simeq \bigvee_{t_{i}} \mathbb{S}^{1}
$$

2. If $|\sigma|>1$, then

$$
l k(\sigma) \cong\left(\bigsqcup_{j \neq i} s k_{0} \Delta^{V_{j}}\right) * \Delta^{V_{i}-\sigma} \simeq \begin{cases}* & \text { if }|\sigma|<n_{i} \\ \bigvee_{t_{i}} \mathbb{S}^{0} & \text { if }|\sigma|=n_{i}\end{cases}
$$

Theorem 84. For $1 \leqslant d \leqslant \min \{n-1, m-1\}$,

$$
\Sigma \mathcal{F}_{d}\left(K_{n, m} \circ K_{r}\right) \simeq \bigvee_{a_{d}} \mathbb{S}^{2} \vee \bigvee_{b_{d}} \mathbb{S}^{3} \vee \bigvee_{c_{d}} \mathbb{S}^{d+1} \vee \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n} \vee \bigvee_{\binom{r-1}{2}^{m}} \mathbb{S}^{2 m}
$$

where $a_{1}=r^{2} n m-1, b_{1}=c_{1}=0$ and, for $d \geqslant 2, a_{d}=(n+m)(r-1), b_{d}=n m(r-1)^{2}+(m-1)(n-1)$, and

$$
\begin{aligned}
c_{d}=n\binom{m-1}{d} r+m & \binom{n-1}{d} r+\left[n\binom{m}{d}+m\binom{n}{d}\right](r-1)^{d+1}+m n\left[\binom{n-2}{d-1}+\binom{m-2}{d-1}\right](r-1)^{2} \\
& +\sum_{i=2}^{d}\left[m\binom{n}{i}\binom{n-i-1}{d-i}+n\binom{m}{i}\binom{m-i-1}{d-i}\right](r-1)^{i} \\
& +\sum_{i=3}^{d}\left[m\binom{n}{i-1}\binom{n-i}{d-i}+n\binom{m}{i-1}\binom{m-i}{d-i}\right](r-1)^{i}
\end{aligned}
$$

Proof. Assume $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, \ldots, v_{m}\right\}$ are the partition of the vertices of $K_{n, m}$. Taking

$$
X=\stackrel{*}{Z}_{\mathcal{F}_{d}\left(K_{n, m}\right)}\left(s k_{0} K_{r}, \varnothing\right), Y=\stackrel{*}{Z}_{\Delta^{U}}\left(K_{r}, \varnothing\right), W=\stackrel{*}{Z}_{\Delta^{V}}\left(K_{r}, \varnothing\right)
$$

we have that $\mathcal{F}_{d}\left(K_{n, m} \circ K_{r}\right)=X \cup Y \cup W$. Now, $Y \cap W=X \cap Y \cap W=\varnothing$ and

$$
X \cap Y=\stackrel{*}{Z}_{\Delta^{U}}\left(s k_{0} K_{r}, \varnothing\right), X \cap W=\stackrel{*}{Z}_{\Delta^{V}}\left(V\left(K_{r}\right), \varnothing\right)
$$

The inclusions $X \cap Y \longleftrightarrow Y$ and $X \cap Z \longleftrightarrow Z$ are null-homotopic, therefore

$$
\mathcal{F}_{d}\left(K_{n, m} \circ K_{r}\right) \simeq \bigvee_{\binom{r-1}{2}^{n}} \mathbb{S}^{2 n-1} \vee \bigvee_{\binom{r-1}{2}^{m}} \mathbb{S}^{2 m-1} \vee \operatorname{hocolim}(\mathcal{S})
$$

where

$$
\mathcal{S}: \quad * \sqcup * \longleftarrow X \cap Y \sqcup X \cap W \leftharpoonup X
$$

Now, if we define a new complex K from $\mathcal{F}_{d}\left(K_{n, m}\right)$ by gluing two new simplices $\Delta^{U} *\left\{u_{0}\right\}$ and
$\Delta^{V} *\left\{v_{0}\right\}$, with u_{0}, v_{0} new vertices, we have that $K \simeq \mathcal{F}_{d}\left(K_{n, m}\right)$ and

$$
\operatorname{hocolim}(\mathcal{S}) \cong \stackrel{*}{\mathcal{Z}}_{K}(\underline{L}, \underline{\varnothing})
$$

where $L_{u_{i}}=s k_{0} K_{r}=L_{v_{j}}$ for $i, j>0$ and $L_{u_{0}}=p t=L_{v_{0}}$. Now,

$$
\Sigma \stackrel{*}{Z}_{K}(\underline{L}, \underline{\varnothing}) \simeq \Sigma \mathcal{F}_{d}\left(K_{n, m}\right) \vee \bigvee_{\sigma \in K} \bigvee_{(r-1)^{|\sigma|}} \Sigma^{|\sigma|+1} l k(\sigma)
$$

For any σ which contains u_{0} or $v_{0}, \hat{D}(\sigma) \simeq *$, therefore we only need to know the link for simplices without those vertices. Take $U^{\prime}=U \cup\left\{u_{0}\right\}$ and $V^{\prime}=V \cup\left\{v_{0}\right\}$

- If $\sigma \subseteq U$, there are three possibilities:

1. If $|\sigma|=1$, then $l k(\sigma)=\Delta^{U^{\prime}-\left\{u_{i}\right\}} \sqcup s k_{d-1} \Delta^{V^{\prime}} \simeq \bigvee_{\substack{m-1 \\ d}} \mathbb{S}^{d-1} \vee \mathbb{S}^{0}$.
2. If $2 \leqslant|\sigma| \leqslant d$, then

$$
l k(\sigma)=\left(\bigvee_{m-1} \mathbb{S}^{0} * s k_{d-|\sigma|-1} \Delta^{U^{\prime}-\sigma}\right) \cup \Delta^{U^{\prime}-\sigma} \simeq \bigvee_{m\binom{n-|\sigma|-1}{d-|\sigma|}} \mathbb{S}^{d-|\sigma|}
$$

3. If $|\sigma| \geqslant d+1$, then $l k(\sigma)=\Delta^{U^{\prime}-\sigma} \simeq *$.

- Assume $|\sigma \cap U|=1$ and $|\sigma| \geqslant 2$.

1. If $|\sigma|=2$, for $d \geqslant 2$

$$
l k(\sigma)=s k_{d-2} \Delta^{U^{\prime}-\sigma} \sqcup s k_{d-2} \Delta^{V^{\prime}-\sigma} \simeq \bigvee_{\binom{n-2}{d-1}} \mathbb{S}^{d-2} \sqcup \bigvee_{\binom{m-2}{d-1}} \mathbb{S}^{d-2}
$$

2. If $3 \leqslant|\sigma| \leqslant d$, then

$$
l k(\sigma)=s k_{d-|\sigma|} \Delta^{V^{\prime}-\sigma} \simeq \bigvee_{\substack{m-|\sigma| \\ d-|\sigma|}} \mathbb{S}^{d-|\sigma|}
$$

3. If $|\sigma|=d+1$, then $l k(\sigma)=\varnothing$.

Theorem 85. For any positive integers $r, n_{1}, \ldots, n_{k} \geqslant 2$, with $k \geqslant 3$ and $G=K_{n_{1}, \ldots, n_{k}} \circ K_{r}$ we
have for $1 \leqslant d \leqslant \min \left\{n_{1}-1, \ldots, n_{k}-1\right\}$ that

$$
\Sigma \mathcal{F}_{d}(G) \simeq \bigvee_{a_{d}} \mathbb{S}^{2} \vee \bigvee_{b_{d}} \mathbb{S}^{3} \vee \bigvee_{c_{d}} \mathbb{S}^{d+1} \vee \bigvee_{i=1}^{k}\left(\bigvee_{\binom{r-1}{2}^{n_{i}}} \mathbb{S}^{2 n_{i}}\right)
$$

where $b_{1}=c_{1}=0$,

$$
a_{1}=\sum_{\{i, j\} \in\left(\frac{k}{2}\right)}\left(r^{2}-2 r+2\right) n_{i} n_{j}+\sum_{i=1}^{k} n_{i}\left(t_{i}+1\right)(r-1)-k+1
$$

and for $d \geqslant 2 a_{d}=\frac{(k-1)(k-2)}{2}$,

$$
b_{d}=\sum_{i=1}^{k}(r-1) n_{i}\left(\sum_{l=2}^{d}\left(t_{i}-l+2\right)\right)+\sum_{\{i, j\} \in\left(\frac{k}{2}\right)}\left(n_{i}^{2} n_{j}^{2}-n_{i}^{2} n_{j}-n_{i} n_{j}^{2}+r n_{i} n_{j}\right)
$$

taking

$$
\begin{gathered}
t_{i}=\sum_{j \neq i} n_{j}-1, \quad p_{i}=\sum_{j \neq i}\binom{n_{j}-2}{d} \\
c_{d}=(r-1)\left(\sum_{i=1}^{k}\left[\sum_{l=2}^{d}\left(t_{i}+1\right)\binom{n_{i}}{l}\binom{n_{i}-l-1}{d-l}+n_{i}\left(t_{i}+1\right)\binom{n_{i}-2}{d-1}+n_{i} p_{i}\right]\right) \\
+ \\
\sum_{\{i, j\} \in\left(\frac{k}{2}\right)}(r-1)\left[n_{i} n_{j}\left(\binom{n_{i}-1}{d-2}+\binom{n_{j}-1}{d-2}+n_{i}\binom{n_{j}}{d}\right)\right] \\
+\sum_{\{i, j\} \in\left(\frac{k}{2}\right)} n_{i} n_{j}\left[n_{j}\binom{n_{i}-1}{d}+n_{i}\binom{n_{j}-1}{d}+n_{j}\binom{n_{i}}{d}\right] \\
+(r-1) \\
\left.\sum_{\{i, j\} \in\left(\frac{k}{2}\right)} n_{i} n_{j} \sum_{l=2}^{d}\left[n_{i}\binom{n_{j}}{l}\binom{n_{j}-1}{d-k-1}+n_{j}\binom{n_{i}}{l}\binom{n_{i}-1}{d-k-1}\right]\right)
\end{gathered}
$$

Proof. Assume V_{1}, \ldots, V_{k} are the partition of the vertices of $K_{n_{1}, \ldots, n_{k}}$. We have

$$
\mathcal{F}_{d}(G)=\stackrel{*}{Z}_{\mathcal{F}_{d}\left(K_{n_{1}}, \ldots, n_{k}\right)}\left(s k_{0} K_{r}, \varnothing\right) \cup \bigsqcup_{i=1}^{k}\left(\underset{n_{i}}{*} K_{r}\right)
$$

For all $1 \leqslant i \leqslant k$,

$$
\stackrel{*}{Z}_{\mathcal{F}_{d}\left(K_{\left.n_{1}, \ldots, n_{k}\right)}\right)}\left(s k_{0} K_{r}, \varnothing\right) \cap{\underset{n_{i}}{*} K_{r}=\stackrel{*}{Z}_{\Delta^{V_{i}}}\left(s k_{0} K_{r}, \varnothing\right), ~, ~, ~}^{(1)}
$$

and the inclusion $\stackrel{*}{Z}_{\Delta^{v_{i}}}\left(s k_{0} K_{r}, \varnothing\right) \longleftrightarrow \underset{n_{i}}{*} K_{r}$ is null-homotopic. Therefore

$$
\Sigma \mathcal{F}_{d}(G)=\Sigma \stackrel{*}{Z}_{K}(\underline{L}, \underline{\varnothing}) \vee \bigvee_{i=1}^{k}\left(\bigvee_{\binom{r-1}{2}^{n_{i}}} \mathbb{S}^{2 n_{i}}\right)
$$

where:

- K is the complex obtain from $\mathcal{F}_{d}\left(K_{n_{1}, \ldots, n_{k}}\right)$ by ading the simplexes $\Delta^{V_{i}^{\prime}}$, where $V_{i}^{\prime}=V_{i} \cup\left\{v_{i}^{0}\right\}$ with v_{i}^{0} a new vertice.
- $L_{u}=s k_{0} K_{r}$ for any $u \in V(G)$.
- $L_{v_{i}^{0}}=p t$ for all i.

As before,

$$
\Sigma \stackrel{*}{Z}_{K}(\underline{L}, \underline{\varnothing}) \simeq \Sigma K \vee \bigvee_{\sigma \in K} \bigvee_{(r-1)^{|\sigma|}} \Sigma^{|\sigma|+1} l k(\sigma)
$$

Since any three vertices form three different sets of the vertex partition give a cycle and for any σ which contains a v_{i}^{0} we have that $\hat{D}(\sigma) \simeq *$, the only links we need to determine are those of simplices contain in one or two sets and that do not contain a vertex v_{i}^{0}.

Let σ be a simplex such that $\sigma \subseteq V_{i}$ for some i.

1. If $|\sigma|=1$, for $d=1, l k(\sigma)=\left(\bigsqcup_{j \neq i} s k_{0} \Delta^{V_{j}}\right) \cup \Delta^{V_{i}-\sigma} \simeq \bigvee_{t_{i}+1} \mathbb{S}^{0}$ and for $d \geqslant 2$

$$
l k(\sigma)=\left(\left(\bigsqcup_{j \neq i} s k_{0} \Delta^{V_{j}}\right) * s k_{d-2} \Delta^{V_{i}-\sigma}\right) \cup\left(\bigsqcup_{j \neq i} s k_{d-1} \Delta^{V_{j}}\right) \cup \Delta^{V_{i}^{\prime}-\sigma}
$$

2. If $2 \leqslant|\sigma| \leqslant d$, then

$$
l k(\sigma)=\Delta^{V_{i}^{\prime}-\sigma} \cup\left(\left(\bigsqcup_{j \neq i} s k_{0} \Delta^{V_{j}}\right) * s k_{d-|\sigma|-1} \Delta^{V_{i}-\sigma}\right) \simeq \bigvee_{\left(t_{i}+1\right)\left(\begin{array}{c}
n_{i}-|\sigma|-1 \\
d-|\sigma| \\
\hline
\end{array}\right.} \mathbb{S}^{d-|\sigma|}
$$

3. If $d+1 \leqslant|\sigma| \leqslant n_{i}$, then $l k(\sigma)=\Delta^{V_{i}^{\prime}-\sigma} \simeq *$.

Let σ be a simplex such that $\left|\sigma \cap V_{i}\right| \geqslant 1$ and $\left|\sigma \cap V_{j}\right|=1$ for $i \neq j$.

1. If $\left|\sigma \cap V_{i}\right|=1$, for $d=1 \operatorname{lk}(\sigma)=\varnothing$ and for $d \geqslant 2$,

$$
l k(\sigma)=s k_{d-2} \Delta^{V_{i}} \sqcup s k_{d-2} \Delta^{V_{j}} \simeq \bigvee_{\substack{n_{i}-1 \\ d-2}} \mathbb{S}^{d-2} \sqcup \bigvee_{\binom{n_{j}-1}{d-2}} \mathbb{S}^{d-2}
$$

2. If $\left|\sigma \cap V_{i}\right|=l$ with $2 \leqslant l \leqslant d-1$, then

$$
l k(\sigma)=s k_{d-l-1} \Delta^{V_{i}} \simeq \bigvee_{\substack{n_{i}-1 \\ d-l-1}} \mathbb{S}^{d-l-1}
$$

3. If $\left|\sigma \cap V_{i}\right|=d$, then $l k(\sigma)=\varnothing$.

Final remarks

Most of the work done has been calculating the homotopy type for various families of graphs. Now remains the question if there are more relations between some topological invariants of the filtration and some propierties of the corresponding graph, like the relation between the connectibity of the forest complex and the girth of the graph.

It is known that the Lusternik-Schnirelmann category of the independence complex gives a lower bound for the chromatic number, so one can ask if there is a relation between the Lus-ternik-Schnirelmann category of the forest complex and some chromatic parameter of the graph, like the vertex arboricity for example.

Some topological questions that remain open are:

- Find a graph G for which $\mathcal{F}_{1}(G)$ and/or $\mathcal{F}_{2}(G)$ have torsion in some homology group.
- For which families of graphs the formula of Theorem 77 is achieve without suspension?
- Which topological spaces have the homotopy type of $\mathcal{F}_{d}(G)$ for some $d>0$ and graph G ?

Bibliography

[1] Adamaszek, M. Splittings of independence complexes and the powers of cycles. J. Combin. Theory Ser. A 119, 5 (2012), 1031-1047.
[2] Adamaszek, M., and Barmak, J. A. On a lower bound for the connectivity of the independence complex of a graph. Discrete Mathematics 311 (2011), 2566-2569.
[3] Antolín Camarena, O., and Carnero Bravo, A. Homotopy type through homology groups. https://arxiv.org/abs/2212.07509 (2022).
[4] Arkowitz, M. Introduction to homotopy theory. Universitext. Springer, New York, 2011.
[5] Bahri, A., Bendersky, M., Cohen, F., and Gitler, S. The polyhedral product functor: A method of decomposition for moment-angle complexes, arrangements and related spaces. Advances in Mathematics 225, 3 (oct 2010), 1634-1668.
[6] Barmak, J. A. Star clusters in independence complexes of graphs. Adv. Math. 241 (2013), 33-57.
[7] BJörner, A. Topological methods. In Handbook of combinatorics, Vol. 1, 2. Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819-1872.
[8] Björner, A., and Tancer, M. Note: Combinatorial alexander duality a short and elementary proof. Discrete \mathcal{E} Computational Geometry 42, 4 (aug 2008), 586-593.
[9] Bousquet-Mélou, M., Linusson, S., and Nevo, E. On the independence complex of square grids. J. Algebraic Combin. 27, 4 (2008), 423-450.
[10] Chartrand, G., Lesniak, L., and Zhang, P. Graphs \& digraphs, sixth ed. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2016.
[11] Deshpande, P., and Singh, A. Higher independence complexes of graphs and their homotopy types. J. Ramanujan Math. Soc. 36, 1 (2021), 53-71.
[12] Engström, A. Complexes of directed trees and independence complexes. Discrete Math. 309, 10 (2009), 3299-3309.
[13] Engström, A. Independence complexes of claw-free graphs. European Journal of Combinatorics 29 (2008), 234-241.
[14] Goyal, S., Shukla, S., and Singh, A. Homotopy type of independence complexes of certain families of graphs. Contrib. Discrete Math. 16, 3 (2021), 74-92.
[15] Hammack, R., Imrich, W., and Klavžar, S. Handbook of product graphs, second ed. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, 2011. With a foreword by Peter Winkler.
[16] Hatcher, A. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[17] Haxell, P. Surveys in Combinatorics 2019, vol. 456 of London Mathematical Society Lecture Note Series. Cambridge University Press, 2019, ch. Topological connectedness and independent sets in graphs, pp. 89-113.
[18] Kozlov, D. Combinatorial algebraic topology, vol. 21 of Algorithms and Computation in Mathematics. Springer, Berlin, 2008.
[19] Kozlov, D. N. Complexes of directed trees. J. Combin. Theory Ser. A 88, 1 (1999), 112-122.
[20] LovÁsz, L. Kneser's conjecture, chromatic number, and homotopy. Journal of Combinatorial Theory, Series A 25, 3 (1978), 319-324.
[21] Matsushita, T., and Wakatsuki, S. Independence complexes of ($n \times 4$) and ($n \times 5$)-grid graphs. Topology Appl. 334 (2023), Paper No. 108541, 18.
[22] Meshulam, R. Domination numbers and homology. Journal of Combinatorial Theory, Series A 102, 2 (2003), 321-330.
[23] Munson, B. A., and Volić, I. Cubical homotopy theory, vol. 25 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015.
[24] Okura, K. Independence complex of the lexicographic product of a forest.
[25] Okura, K. Shellability of polyhedral joins of simplicial complexes and its application to graph theory. Electron. J. Combin. 29, 3 (2022), Paper No. 3.53, 21.
[26] Okura, K. On the homotopy type of the polyhedral join over the independence complex of a forest. https://arxiv.org/abs/2303.11984 (2023).
[27] Paolini, G., and Salvetti, M. Weighted sheaves and homology of Artin groups. Algebr. Geom. Topol. 18, 7 (2018), 3943-4000.
[28] Rotman, J. J. An introduction to algebraic topology, vol. 119 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1988.
[29] Stafa, M. The mayer-vietoris spectral sequence. www.math.tulane.edu/ ${ }^{\text {m mstafa/papers/mayer.vietoris.ss.pdf }}$ (2016).

Index

$B(G), 33$
$C_{n}, 11$
$G * H, 11$
$G[S], 10$
$G \circ H, 11$
$G \square H, 11$
$G \times H, 11$
$G^{c}, 10$
$G_{k, n}, 55$
$H_{k, n}, 55$
$K * J, 13$
$K_{n}, 11$
$K_{n, m}, 11$
$K_{n_{1}, \ldots, n_{k}}, 43$
$N_{G}(v), 10$
$N_{G}[v], 10$
$P_{n}, 11$
$W_{k, n}, 55$
$W_{n+1}, 43$
$\Delta^{V}, 13$
$\Delta^{n}, 13$
$\alpha(G), 11$
$\stackrel{*}{Z}_{K}(\underline{X}, \underline{A}), 20$
$\hat{Z}_{K}(\underline{X}, \underline{A}), 19$
$\mathcal{F}_{0}(G), 13$
$\mathcal{F}_{d}(G), 24$
$\stackrel{\circ}{H}_{k, n}, 63$
$\stackrel{\circ}{W}_{k, n}, 63$

```
dim(K), 13
g(G),11
lk(\sigma),13
st(\sigma),13
```

Alexander dual, 13
cofibrant punctured cube, 15
colimit, 15
disjoint union, 11
double star, 38
forest, 11
girth, 11
graph product
cartesian product, 11
categorical product, 11
join, 11
lexicographic product, 11
graphs
block graph, 33
cactus graph, 33
complement graph, 10
complete bipartite graph, 11
complete graph, 11
cycle, 11
path, 11
wheel graph, 43
homotopy colimit, 15
homotopy pushout, 15
independence complex, 13
independence number, 11
indepentent set, 11
induced subgraph, 10
join, 13
link, 13
multipartite graphs, 43
n-cube, 14
neighborhood
closed, 10
open, 10
polyhedral join, 20
polyhedral smash product, 19
punctured n-cube, 15
q-skeleton, 13
simplicial complex
dimension, 13
simplicial complex, 12
star, 13
star cluster, 14

