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Introduction

In combinatorial topology, given a combinatorial object we want to associate to this object a
topological space and study its properties. Usually, this space is a simplicial complex. For example
one of the most studied graph complexes is the neighborhood complex defined by Lovasz [20] in his
proof of the Kneser conjecture. This complex can be generalized to a CW-complex: the complex
of graph homomorphisms for two graphs [18]. Another widely studied complex is the independence
complex [1, 6, 17, 22]. Here we will study this complex and some generalizations.

Given a graph G we will define a filtration of simplicial complexes associated to G, where the
first is the independence complex and the last the complex is formed by the acyclic sets of vertices.
We will show some properties of this filtration and we will calculate its homotopy type for various
families of graphs.

In the first chapter we will give the tools will use all along the dissertation. In the first section
we will state the basic definitions we will need from graph theory. The second section will focus
on the results needed from algebraic topology, in particular some results about the homotopy type
of independence complexes and the tool of homotopy colimits for cubical diagrams; here we will
give some general lemmas for the homotopy type of a union of CW-complexes. The last section
will be about polyhedral products, mostly we will focus on polyhedral joins and we will show their
connection with polyhedral smash products. In this section we will prove some original results
about the homotopy type of certain polyhedral joins.

In the second chapter we will define the filtration and give its basic properties. The following
three chapters will focus on calculating the homotopy type for some graph families: in the third
chapter for paths, cycles, cactus graphs and double stars; in the fourth for various graph products
(here we prove a conjecture from [14]) and in the fifth for lexicographic products, where we will
see the relation between the complexes of the filtration for lexicographic products and polyhedral
joins. We will finish with a chapter with some final remarks on some of the problems that remain
open.

All the results are from the following three papers:

o Homotopy type of the independence complex of some categorical products of graphs with Omar



Antolin Camarena.
o The Forest Filtration of a Graph.

e Polyhedral joins and graph complezes.



Introduccion

En combinatoria topolégica, a un objeto combinatorio queremos asociarle un espacio topoldgico
y estudiar las propiedades de dicho espacio. Usualmente este espacio es un complejo simplicial.
Por ejemplo, uno de los complejos de gréaficas mas estudiados es el complejo de vecindades que
defini6 Lovasz [20] cuando demostro la conjetura de Kneser. Este complejo simplicial se puede
generalizar a un complejo CW, el complejo de homomorphismos entre dos graficas [18]. Otro
complejo ampliamente estudiado es el complejo de independencia de una grafica [1, 6, 17, 22]. En
esta tesis estudiaremos este complejo asi como algunas generalizaciones.

Dada una grafica G definiremos una filtraciéon de complejos simpliciales asociados a G, de los
cuales el primero es el complejo de independencia y el dltimo es el complejo cuyos simplejos son
conjuntos aciclicos de vértices. Mostraremos varias propiedades de esta filtracion y calcularemos el
tipo de homotopia para varias familias de graficas.

En el primer capitulo daremos las herramientas que usaremos a lo largo de la tesis. Primero
daremos las definiciones bésicas de teoria de graficas que necesitamos. En la segunda seccién dare-
mos los resultados de topologia algebraica necesarios para la tesis, en particular daremos resultados
bésicos sobre el tipo de homotopia del complejo de independencia y daremos los resultados nece-
sarios acerca de la herramienta de colimites homotopicos sobre diagramas ciibicos, aqui daremos
algunos lemas generales sobre el tipo de homotopia de algunas uniones de complejos CW’s. La 1l-
tima seccion del capitulo serd sobre productos poliedrales, particularmente sobre joins poliedrales y
su relacion con productos smash poliedrales. En esta secciéon daremos algunos resultados originales
acerca del tipo de homotopia para para algunos joins poliedrales particulares.

En el segundo capitulo definiremos la filtracion y daremos sus propiedades basicas. Los siguientes
tres capitulos estaran enfocados en calcular el tipo de homotopia para algunas familias de graficas:
en el tercer capitulo para trayectorias, ciclos, graficas cactus y dobles estrellas; en el cuarto capitulo
para algunos productos de graficas (aqui probamos una conjetura de [14]) y en el quinto capitulo
para productos lexicograficos, en donde mostraremos la relacion entre los complejos de la filtracion
para productos lexicograficos y joins poliedrales. Terminaremos con un capitulo con observaciones

finales y un recuento de algunos de los problemas que quedan abiertos.



Todos los resultados provienen de los siguientes tres articulos:

o Homotopy type of the independence complex of some categorical products of graphs con Omar

Antolin Camarena.
o The Forest Filtration of a Graph.

e Polyhedral joins and graph complezes.



Chapter 1

Preliminaries

In this chapter we give the basic definitions needed and the tools we will use. First we give some

notation. For a non-negative number n we take [n] = {0,1,...,n}. Given a finite set X, we take:

e P(X) the set of all the subsets of X.
X .
° (k) the set of subsets with £ elements.

e For subset S € X, S is its complement.

As usual Z is the set of integers. We denote the g-dimensional sphere by S?. For two spaces

(complexes, sets) X and Y, X < Y denotes the inclusion.

1.1 Graph theory

All graphs are simple, no loops or multiedges. For a graph G, V(G) is its vertex set and E(G) its
edge set. The cardinality of V(G) is the order of G and the cardinality of E(G) is the size of G.
For a vertex v, Ng(v) = {u € V(G) : wv € E(G)} is its open neighborhood and Ng[v] = Ng(G)u
{v} its closed neighborhood, we omit the subindex G if there is no risk of confusion. The degree of
a vertex v is the cardinality of its open neighborhood and will be denoted by dg(v). The maximum
of the degrees it is denoted by A(G) and the minimum by §(G). Given a graph G its complement
graph is the graph G°¢ with vertex set V/(G°) = V(G) and edge set E(G°) = V(QG)> — E(G).
Given a graph G, another graph H is a subgraph of G if V(H) < V(G) and E(H) < E(G).
For a set S € V(G), the induced subgraph is the subgraph G[S] with vertex set S and two vertices

adjacent if and only if they are adjacent in G. For a set S € V(G), G- S = G[V(G) — S]. If
S = {v}, we will write G — v insted of G — {v}. We will say a subgraph is an induced subgraph if it
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is the subgraph induced by its vertices. For an edge e € F(G), G — e is the graph obtain from G by
removing the edge form the edge set. If e = {u, v} is not an edge of G, G + e is the graph obtained
form G by adding e to the edge set.

K, is the complete graph with vertex set {1,...,n} and edge set {{7,j}: @ # j}.

C, is the cycle of length n > 3 with vertex set {u1, ..., u,} and edge set {ujua, ..., Up_1Un, Unu }.

P, = C,, — {up,u1} is the path of length n — 1.

K, m is the complete bipartite graph with vertex set U u V, where U = {uq,...,u,} and

V ={v1,...,vn}, and u;v; is an edge for any ¢ and j.

For a graph G, its girth is the smallest length of its cylces— if the graph does not have cycles we
say its girth is oo, denoted by g(G). A graph G is a forest if it does not have a cycle as a subgraph.

A vertex set S < V(G) is independent if G[S] has no edges. The maximum number ofn a
independent set is the independence number of the graph and is denoted by «(G).

Given two graphs G and H, there are three graphs over the vertex set V(G) x V(H):

1. The cartesian product GO H, where {(u1, v1)(uz,v2)} is an edge if u; = ug and vivz € E(H),

or if ujug € E(G) and vy = vs.

2. The categorical product G x H, where {(u1,v1)(u2,v2)} is an edge if ujus € E(G) and vyvg €

3. The lexicographic product Go H, where {(u1,v1)(ug,v2)} is an edge if u; = ug and vivy € E(H)
or uius € E(G).

Given two graphs G and H with disjoint vertex sets, we define:

1. Their join as the graph G « H with V(G « H) = V(G) v V(H) and

E(G+H)=EG)VEH)v{uw: ueV(G)andve V(H)}

2. The disjoint union as the graph G H with vertex set V(G)uV (H) and edge set E(G)UE(H).

Given a graph G and a non-negative integer r > 2, we take rG as the disjoint union of r copies of
G with disjoint vertex sets.

For all the graph definitions not stated here we follow [10].

11



1.2 Algebraic topology

We assume familiarity with algebraic topology (homotopy, homology groups, etc) at level of a first
graduate course (see [16]). All spaces will be taken with the the compactly generated topology. All
the homology and cohomology groups will be with integer coefficients.

For completeness, we enunciate the following well know result about maps between simply

connected CW-complexes.

Whitehead Theorem. (see [16] Corollary 4.33) If X andY are simply connected CW-complezes
and there is a continuous map f : X — 'Y such that f, : Hy(X) — H,(Y) is an isomorphism

for each n, then f is an homotopy equivalence.
Now, we give the proof of following folklore result.

Theorem 1. If X is a simply connected CW-complex such that flq(X) ~ 7% for some q = 2 and
the rest of the homology groups are trivial, then X ~ \/Sq.

Proof. By the Hurewicz Theorem, 7q(X) =~ Hg(X)

lle

Z%. Therefore, there are pointed maps
s;i:ST— X
for each 1 < ¢ < a and with these maps we can construct a map
S \/ st — X
a

such that s, is an isomorphism on 74. Thus s induces an isomorphism on reduced homology groups

between simply connected spaces and, by the Whitehead Theorem, is an homotopy equivalence. [J

The following result which helps to see that some complexes are homotopy equivalent to a wedge

of spheres of two consecutive dimensions is a special case of Example 4C.2 of [16].

Proposition 2. Let X be a simply connected CW-complex such that, for some d = 2, I:Id(X) ~ 7%,
Hy1(X) = Zb and Hy(X) = 0 for any q # d,d + 1, then

X =~\/s?v\/s!
a b
The last result can be generalized for other pairs of non-consecutive dimensions [3].

1.2.1 Simplicial complexes

A simplicial complex K is a family of subsets of an finite set V(K), the vertices of the complex,

such that if 7 € ¢ and 0 € K, then 7 € K. We want to remark that we take the empty set as
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a simplex and we allow ghost vertices— this is useful while working with polyhedral products and
Alexander duals. The elements of K are called simplices and the dimension of a simplex is its
cardinality minus 1, for example the vertices are simplices of dimension 0, the edges of dimension
1 and so on. The dimension of K, dim(K), is the maximum of the dimensions of its simplicies.
Sy(K) is the set of simplicies of cardinality ¢ + 1.

Given a simplicial complex K and a simplex o, the link of o is the subcomplex lk(c) = {7 €
K: 17no=g A Tuoe K} and its star is st(c) = {r € K : T uo € K}. For a vertex we will
write lk(v) and st(v) insted of Ik({v}) or st({v}). The g-skeleton of a complex K, denoted sk K,
is the subcomplex of all the simplicies with at most ¢ + 1 elements.

For a finite set V we take AV = P(V) and A" if V = [n].

Given two simplicial complexes K, L with disjoint set of vertices, we define their join as the
simplicial complex K = J with vertex set V(K)u V(L), and whose simplices are the pairwise unions
of simplices of K and simplices of L. The join of n copies of K will be denoted by K*™.

We would not distinguish between a complex and its geometric realization.

Given a complex X on n vertices its Alexander dual is the complex
X*={ocV(X): V(X)—0c¢ X}

Theorem 3. (see [8]) Let X be a simplicial complex with n vertices, then

Hi(X) ~ H"73(X*)

Given a connected complex K, a spanning tree T is a 1-dimensional connected subcomplex that
seen as a graph is a tree. Given a spanning tree T, we take the free group Hp with S;(K) as

generators and with the relations
e uv =1 for all the edges of T
o (uv)(vw) = vw if {u, v, w} is a simplex of K
Theorem 4. (see [28] Theorem 7.34) If K is a connected simplicial complex and T is a spanning

tree, then m (K, *) =~ Hrp.

1.2.2 Independence complex

For a graph G, the independence complez Fo(G) is the complex whose simplicies are independent
sets of vertices. Of all the complexes of the filtration we will define the next chapter, this complex
is the most studied (see for example [1, 2, 6, 12, 13, 17, 19, 22]).

Now we give the tools we will use throughout the dissertation for calculating homotopy types

of independence complexes.
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Lemma 5. [12] If N(u) € N(v), then Fo(G) ~ Fo(G —v).
The last lemma can be seen as a particular case of part (a) of the following proposition.

Proposition 6. [1] There is always a cofibre sequence

.F()(G—NG[’U])C—>J:0(G—U)( ]:Q(G) Z}—()(G—NG['U])H

In particular

a) if Fo(G — Ng[v]) is contractible then the natural inclusion Fo(G —v) — Fo(G) is a homotopy

equivalence,

b) if Fo(G — Ng[v]) — Fo(G — v) is null-homotopic then there is a splitting

]:Q(G) ~ .FO(G — 11) Vv Zfo(G - Ng[v]).

For a vertex v, we define its star cluster as the subcomplex of Fy(G) given by

SC(v) = U st(u).

ueN (v)

Theorem 7. [6] Let G be a a graph and let v be a non-isolated vertex of G which is contained in

no triangle. Then
FolG) = Sstz,(c)(v)  SO()).

1.2.3 Homotopy colimits

We now define the main tool we will use to calculate homotopy types: homotopy colimits for
punctured cubes (we will follow [23]). For any non-negative integer n we take n = {1,...,n} and
P1(n) = P(n) — {n}. A n-cube X consists of:

e a topological space X (5) for each S in P(n), and
e a continuous function fscr : X(S) — X(T) for each S < T,

such that fscs = 1x(s) and for any R < S < T the following diagram commutes

14



A punctured n-cube X is like an n-cube without being defined for the set n. A punctured n-cube
of interest for a given topological space X is the constant punctured cube Cx, where Cx(S) = X

for any set S and all the functions are 1x. The colimit of a punctured n-cube is the space

colim(X) = | || &(9) / ~
)

SEPl (ﬂ

where ~ is the equivalence relation generated by fscr (zs) ~ fscr, (zs) for T1,To and S < Ty, Ts.
From the definition is clear that colim(Cx) = X for any X.
For any n > 1 and S in P;1(n) we take:

A(S) = {(thtz,--.,tn)GR”: Zti =1andt =0 for allz’eS}

i=1

and dgcr @ A(T) — A(S) the corresponding inclusion. Now, for a punctured n-cube X, its

homotopy colimit is

hocolim(X) = || (9) x A(S) / ~
SE'Pl(ﬂ)
where (zg,dscr(t)) ~ (fscr(zs),t). When n = 2, we will specify the punctured 2-cube as the
diagram
D: x<l 7 %y

and its homotopy colimit is called the homotopy pushout.

Given a punctured n-cube X for n > 2 and defining the punctured n — 1-cubes X;(S) = X(5)
and Xo(S) = X(S U {n}), we have that (Lemma 5.7.6 [23])

hocolim(X’) = hocolim (X (n — 1) «— hocolim(&;) — hocolim(X3))

If for all S € n the map

colim — X(5)
TSS

is a cofibration, we say call it cofibrant punctured cube. If we have CW-complexes X1, ..., X,, such
that the intersections are subcomplexes and take the punctured cube given by the intersections
and the inclusions, then the punctured cube is cofibrant and hocolim(X') ~ colim(X’) (Proposition
5.8.25 [23]). We will be concerned mostly with the case in which each space X(n — {i}) is a
simplicial complex and the other spaces are intersections of these complexes with the maps being
the corresponding inclusions, hence the punctured cube will be cofibrant. For example we can

compute the homotopy type of a union of the CW complexes X, Y, Z that intersect in subcomplexes,

15



by means of three homotopy pushouts, as shown in the following diagram whose top and bottom

squares, as well as the rightmost vertical square are homotopy pushouts and where R~ X uY u Z:

XnYnZ YnnZ

—
N

If X, are n-cubes, a map between this cubes is a colecction of maps
gs - X(5) — V(9)

such that for all § € T the following diagram commutes

fser

X(S5) X(T)

Y(S) ——= I(T)

fscr

(this is equivalent to the existence of (n + 1)-cube Z : P(n + 1) — Top pasting the two cubes
by the maps gs). Now, if all the maps g, are homotopy equivalences we will say that the map is
a homotopy equivalence, this is justified because in that case hocolim(&]|, /) ~ hocolim(Y, )
(Theorem 5.7.8 [23]).

Theorem 8. (See 6.2.8 [4]) If the following diagram is homotopy commutative (ao f ~ f' o and
vog=gop)

S: X<—f A

bk

S/: Xlﬁzlﬁyl
J g9

with o, B,y homotopy equivalences. Then hocolim(S) ~ hocolim(S’).

Its a folklore result that if the intersection of two CW-complexes is a subcomplex such that the
inclusions are null-homotopic, then the union has the homotopy type of the wedge of the complexes

and the suspension of their intersection. We will prove this result giving a slightly more general
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result for homotopy pushouts.

Lemma 9. Let X,Y, Z be spaces with maps f : Z — X and g : Z — Y such that both maps are
null-homotopic. Then
hocolim (§) > X vY v £Z

where
S: vy<2 7z Jt.x
Proof. We take the diagrams
D : ZvY <~— Y737 vX
and
S: vy<2 7z 1. x

where the point of the wedge in X and Y are a point for which the constant map is homotopic to

f and g respectively. Taking the next diagram:

Z * X
* TZC XZ v X
Y ——= %7 vY —— hocolim(D,)

Taking the diagram D3 given by the compositions

f——x— X

[ ————>Y

we have that hocolim(D3) ~ hocolim(D;) and by hypothesis we can construct a homotopy com-
mutative diagram between S and D3 with the identities. Therefore, by Theorem 8 hocolim(D) ~
XvYviZz. U

Now we give some general lemmas about the homotopy type of an union of CW-complexes,

these lemmas we will use in the next chapters.

Lemma 10. Let Jyi,...,J, be n = 2 complexes such that each J; is either contractible or is

homotopy equivalent to a wedge of spheres of dimension not less than r and for any S non-empty

17



subset of n, ﬂ J; = Jg is contractible or is homotopy equivalent to a wedge of spheres of dimension
€S
7|5, where ro <7 —1 and riz1 =r; — 1. Then

Ve

where
Xi= \/ I'ynondy)
{l1,...,l;}€P(n)
Proof. For n = 2 it is clear by Lemma 9. For n > 3 take X(S) = Jge, for n — 1 X1(S) = X(S) and
Xa(S) = X(S u {n}). Then

hocolim(X') = hocolim (J,, «— hocolim(&x};) — hocolim(X?3))

By the inductive hypothesis hocolim(&X;) is homotopy equivalent to a wedge of spheres of dimension
r9 or contractible, therefore the map hocolim(X;) — J,, is null-homotopic. By inductive hypothesis
hocolim(X>) is homotopy equivalent to a wedge of spheres of dimension at least ro+1 or contractible,
so the map between hocolim (X)) and hocolim(X5) is null-homotopic, applying Lemma 9 we obtain
the result. O

Corollary 11. Let Jy,...,J, be n =2 CW-complexes such that for any S subset of {1,...,n} with
|S| =2, ﬂ Ji = Js is a contractible subcomplex. Then

€S
n n
Un=\V
i i=1
Lemma 12. Let Xq,..., X, simplicial complexes such that the intersection of two or more is

contractible or empty, X; is connected for all i and there is a graph G with k edges and a bijection

v:{l,....k} — E(G) such that (\,cs V(i) # & if and only if (\,cg Xi # & for all non-empty
k

subsets S of {1,...,k}. Then X = U X, has the homotopy type of the nerve of {X;}ier with the
i=1

complexes X; attached to the corresponding point in the nerve.

Proof. By induction on k. For k = 1,2 the result is clear. Assume it is true for any r < k and
take X7,..., Xx11 simplicial complexes such that the intersection of two or more is contractible
or empty, X; is connected for all ¢ and there is a graph G with £ + 1 edges and a bijection
v:{l,...,k+ 1} — E(G) such that (),.sv(i) # & if an only if (),.¢ X; # & for all non-empty
subsets S of {1,...,k + 1}. Now, take A to be the nerve complex of Xi,...,Xgy1. For any
ie{l,....k+ 1}, k(i) is:

18



(a) Empty if in the corresponding edge both vertices have degree 1.

(b) Contractible if in the corresponding edge one vertex has degree 1 and the other degree at least
2.

(c) Homotopy equivalent to S° if in the corresponding edge both vertices have degree at least 2.

Taking the homotopy pushout of the diagram associated to X7, ..., X1 we know that it is homo-

topy equivalent to the homotopy pushout of the diagram
S : hocolim(Sz) <—— hocolim(S1) — Xj41

where S; is the homotopy colimit of the diagram associated to X1 N Xg41,..., X N Xg11, and Sy
is the homotopy colimit of the diagram associated to X1, ..., Xx. Now hocolim(S;) ~ lk(k+ 1), so

we have three possibilities:
(a) hocolim(Sy) = &, then hocolim(S) ~ hocolim(Sz2) U Xj4+1
(b) hocolim(Sy) ~ #, then hocolim(S) ~ hocolim(S2) v Xj41

(¢) hocolim(Sy) ~ SY, then hocolim(S) ~ hocolim(S2) v St v Xj11

1.3 Polyhedral products

Given a topological space X, X" will be the smash product of n copies of X and X*" will be the
join of n copies of X.

Given a family of pointed pairs of CW-complexes (X, A) = {(X;, A;)}, and K a simplicial
complex on n vertices, we take the polyhedral smash product determined by (X, A) and K as the

space
Zx(X,A) = D(@) v | D(o)
oeK
with
. X; ifi
D(U)=/\Y¢7 where Y; = ’ ?z.ea
ien A, ifido

Theorem 13. [5] Let K be a complex with n vertices and (X, A) a family of pointed pairs of
CW-complexes such that A; — X; is null-homotopic. Then

(X, A) ~ (K . [)(@)) v \/ th(o) * D(o)

ceK
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Given a complex K with vertices n and (X, A) = {(X1, 41),...,(Xn, An)} a family of pairs of
CW-complexes, we define the polyhedral join as the space

Zr (X, 4) = | J(0)

oeK

with
Xi ifieo

J(o)= % Y;, whereY; =

iEn
Theorem 14. If (X, A4) = {(X1,41),...,(Xn,4,)} is a family of pairs of CW-complexes and
(EX,3A) = {(EX1,24,),...,(2X,,,2A,)} the family of their suspensions as pointed pairs, then
Y Zx (X, 4) > Zxc (SX, ZA).

Proof. If 01, ..., 0, are the maximal simplices of K, we take the punctured r-cube

x(s) = () J(o)

€Se

with the inclusions as maps. Then % k (X,A) ~ hocolim(X) and we have a weak-homotopy
equivalence ¥ hocolim(X) ~ hocolim(XX) (see [23] Corollary 5.8.10). Now, for any non-empty

CW-complexes Z1, ..., Z; with base points zq,..., 2

E(27)= (2(57)/~

where z ~ y if z,y € > (Ué‘:1 Zj * (*iEk{j} Zi)); that last space is contractible by the Nerve
Theorem, as its nerve is the (I — 1)-simplex. We take the the punctured r-cube

- (s( )~

Now the quotient maps give us an homotopy equivalence of cubes, therefore hocolim(XX) =~

hocolim(X).

Now we take the punctured r-cube ) given by:

Y(S) = () Do),

€S5S¢

for (XX, X A) with the inclusions as maps. Therefore 7 (XX,XA) ~ hocolim(}).
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Defining p(S) = {j ¢ ﬁ ot Aj = @}, if we take

€Se

YA\ Yj/~ if n—|p(S) =1>0

Y(S) = Jjep(9)e
SO if p(S) = n,

where the quotient is by the contractible subspace /\ (%), we have that hocolim()p) ~
jep(9)e
hocolim(Y), where Yy(S) is Y(S) without doing the quotient. Taking the inclusions of Y(S)

in Y(5), we have that hocolim()y) ~ hocolim(}).

Now, we take the punctured cube

It x H B; /~ ifn—1[p(S)|=101>0

2(8) iep(S)°
s° if p(S) =n

where the quotient is by the subspace

or' x ] BiUIZ x W(By,...,B),
i¢f(5)

with B; = X, if i € ﬂ oj and B; = A; if i ¢ ﬂ oj, and for S < T, the map fscr is the
jese jese
inclusion if p(S) = p(T) and the constant maps to the base point in other case. We will see that

hocolim(X’) ~ hocolim(Z) ~ hocolim(}).

If p(S) # n, we take the following composition of quotient maps

I'< ] Bi— [] =Bi—— )\ =B,——=(9)
igp(S) i¢p(S) i¢p(S)

where the first map sends ((t1,...,t), (zi)igp(s)) 0 ([ti,mi])ﬁp(s). Therefore Z(S) =~ Y(S). In
other case both spaces are S°. If p(S) = p(T) for S = T, then the maps of Z are inclusions and we
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have the following commutative diagram:

Z(8) —— Z(T)

V(8) ——= V(T)

In other case, the maps for both cubes are the constant map to the base point. From this we have

that hocolim(Z) =~ hocolim()).
If p(S) # nand p(S)° = {i1,...,4} with i; < 7,11, we take the following composition of quotient
maps
! ! ! ! -
I' x By, ——=TI'""' x| B;, * By | ———Ix % B, —— % B, —— X(S

from which we see that Z(S) = X(S). Otherwise both spaces are S°. As before, these maps induce

a homotopy equivalence and therefore hocolim(X) ~ hocolim(Z). O
From the last theorem and Theorem 13 we get the following corollary:

Corollary 15. If (X, A) = {(X1,41),...,(Xn, An)} is a family of pairs of CW-complezes such

that the inclusion 3 A; — XX, is null-homotopic for all i, then

v \/ Slk(o)=* D (o).

S 7k (X,A) ~ % <K* D (@)) vV

Proposition 16. For d < n,

Zopan (\/SO,@> ~ \/ s
r—1

fd (Tvn)

where it
fatrm) = Y (- ()

Proof. We will set X = \/§°. Now, for d = n,

r—1

* _* _ n+1 0 - n
Zsk-dAn (X’ Q) =Z an (Xag) = ifl <T\/1S ) ~ \/ Ss™.

(r—1)nt+1
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We will use induction on d and for each d induction on n. For d = 1, %MIM (X, ) is the complete

(n + 1)-partite graph with r vertices in each partition. Therefore:

%
Zar X.2)~ /8L

(7L;1)T'2—(n+1)r+1

Now, assume it is true for d — 1 and any n and also for (d,n — 1); and consider the case (d,n). By

case analysis on the first vertex of A™, we obtain:

ES’MA” (X’ @) = l<\/ SO) * gskd—lAnfl (X’ Q) U gsde”*1 (X7 Q) -
r—1

* ES
Since the intersection of those two subcomplexes is Z . (X, &), we can conclude that Z

a—1ak-1 skq AT

(X, &) is homotopy equivalent to the homotopy pushout of

\/ S \/ sl o \/ se.
(r—1)fa(r,n) fa(r,n) fa+1(r,n)

Both inclusions in that diagram must be null-homotopic, so Lemma 9 applies, and we obtain the
desired homotopy type: a wedge of f4(r,n) copies of S¢, where

falr,n) i=rfa_1(r,n—1) + fa(r,n—1).

Now we need only prove the stated formula for fy(r,n). For d = 1 or d = n we know it is true.
Assume the formula is true for d — 1 and any n and also for (d,n — 1); and consider the case of
(d,n). Now,

fa(r,n) = Zl;)(l)di <7;)7'”1 + g(l)dﬂi (?) i

Reindexing the first sum from ¢ = 1 to d + 1, and using a standard identity for binomial coefficients,

we obtain the desired formula. O

23



Chapter 2

Definition and basic properties of the
filtration

In this chapter we define the filtration which is studied and give properties of it. Let G be a graph,

we define its d-forest complex as the complex
Fi(G) = {oc € V(GQ): Glo] is a forest with A(G[o]) < d};

for d = o0 we take
Fo(G) ={c = V(G): G|o] is a forest}.

For d = 0, Fy(G) is the independence complex of G and for d = 1 is also called the 2-independence
complex of G —the r-independence complex of G has as simplices sets A € V(G) such that every
connected component of G[A] has at most r vertices. Note that if d + 1 = min{r: G is K ,-free},
then Fi(G) = Fu(G) for all | = d.

Given a graph G let t4(G) = max{|V(T)|: T is an induced forest such that A(T") < d}, by
definition t4(G) = dim(F4(G)) + 1, therefore knowing the homotopy type of F4(G) or its homology

groups gives us a lower bound for ¢4(G).
Theorem 17. For any graph G and all d, the pair (Fai1(G), Fa(G)) is d-connected.

Proof. For any d, we have that sk; Fyq(G) = sk;Fqs1(G) for all i < d because a forest of order i + 1
has maximum degree at most ¢. Then all the cells in F441(G) — F4(G) have dimension greater than
d and this implies the result (see [16] Corollary 4.12). O

By definition the following results are clear.
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Proposition 18. Ford > 1,
Fa(Kn) =~ \/ s

(n—1)(n—2)
2

Proposition 19. Forn > 3 and d > 2,
Fa(Cp) = S"2.

A subset of vertices o is an independent set if all of its subsets of cardinality 2 are independent.
This says that in order to be a simplex of the independence complex, a set of vertices only need
have its 1-skeleton contained in the complex. This type of complexes are called flag complezes.
Now, for F31(G), its 1-skeleton is the complete graph of the same order as G, therefore it is not a
flag complex in general, because it is not contractible for all graphs. The following result tells us

that it has an analogous property but for the 2-skeleton, rather than the 1-skeleton.

Proposition 20. Let o be a subset of V(G) such that all of its subsets of cardinality 3 are simplices
of F1(G), then o is a simplex of F1(G).

Proof. 1f |o| < 3 the result is clear. Now let o = {vg, v1,v2,v3}. Then, for 7 = {vg, v1,v2}, we have
that G, = G[7] is forest such that A(G,) < 1. Now, v3 at most can have one neighbor in 7 and it
must be a vertex of degree 0 in G,. Therefore G, = G|[o] is a graph such that A(G,) < 1, which
implies it is a forest and o is a simplex of F1(G).

Assume the result is true for any subset of at most k > 4 vertices that has its 2-skeleton in
Fi(G). Let 0 = {vg,...,vx} a subset of k + 1 vertices such that its 2-skeleton is in F;(G). By

induction hypothesis, 7 = {vo,...,vg_1} is a simplex of F;(G), therefore, taking G, as before,
G, =rKy u M,

with ;s > 0 and r + 2s = k + 1. By hypothesis, v can not be adjacent to a vertex in M, and only
can be adjacent to one vertex in 7K. So ¢ induces a graph with maximum degree at most 1 and

therefore o is a simplex of F1(G). O

This can not be generalized for F;(G) with d = 2 as F4(Cy43) shows.
If a simplicial complex K is such that H,(K) % 0, then f;(K) = f; (A7) and fo(K) = g + 2
if and only if K =~ ¢ (Aq+1), from this we get the following Proposition.

Proposition 21. Let G be a graph such that Hy(F4(G)) # 0 for some d and q, then G has at least

q + 2 different induced forests of ¢ + 1 vertices and mazimun degree at most d.
Proposition 22. Let G be a graph of order q + 2, with q = 1, then:

1. If Hy(F,(G)) #£0, then G = K, ., or G = Cyia

1,q+1
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2. If Hy(F»(G)) 20, then G = Cyyq

Proof. For d = q or d = o0, we have that F4(G) =~ ¢ (A‘”l) and for any proper subset of the
vertices S, F4(G[S]) must be contractible. If A(G) = ¢ + 1, then G can not have cycles because
V(G) — {v} is a simplex for any vertex and F(G) ~ #. Take v a vertex such that dg(v) = ¢ + 1,
then F,(G) = st(v) UF,(G—v) and, because H,(F,(G—v)) = 0, using the Mayer-Vietoris sequence
we have that H, 1 (lk(v)) # 0. Therefore lk(v) = @ (A%). If ¢ = 1, then Ik(v) is two disjoint vertices
from where it follows that G = K; 2 or G = (5. Assume ¢ > 2, then N(v) must be an independent
set and G = K

Assume A(G) < g, then G must have a cycle, otherwise Fy4(G) ~ # for d = g or d = 0. Let
C < G be an induced cycle. If V(C) < V(G), because any proper subset is a simplex, V(C) will
be a simplex, but this can not happen. Therefore G = Cy4». O

1,9+1°

Proposition 23. If e € E(G) is bridge, then Fon(G) = Fo (G — €).

Lemma 24. If G = G1 u Gy, then for all d,
Fa(G) = Fa(Gy) = Fa(G2).

Proposition 25. If G = G1 u--- u Gk, then for d =0,
k
conn(Fq(G)) = 2k — 2 + 2 conn(Fq(Gy)).

i=1
Proof. This follows from F4(G) = Fy4(G1) # - - - = Fa(Gy) O
Lemma 26. If v is a vertex such that no cycle of G contains it, then Foo(G) ~ #.
Proof. Beacause v does not belongs to a cycle, then Fo, (G) = {v} * Foo (G — v). O
Corollary 27. If §(G) < 1, then Fop(G) ~ .

Corollary 28. If G has a vertex v such that Ng(v) = {vi,va}, then Fo(G) =~ Xk, (vi) for
i=1,2.

Proof. Because Ng(v) = {v1,v2}, then dg_,, (v) = 1 and therefore Foo(G —v;) ~ . Now Fo (G) ~
hocolim(S) with S: Foo (G — vi) «— ki, (vi) = st ., (vi), by Lemma 9 we obtain the
result. O

Lemma 29. Let G be a graph that is the union of three graphs G1,Ga, Gy such that:
° GQ = K3

[ ] V(Go) = {’U,’Ul,’UQ}
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e V(G1) nV(Go) = {uv1}, V(G2) nV(Gp) = {va} and V(G1) nV(G2) = &

Then, Uk, ((v) ~ hocolim(S) with S the diagram:
Foo(G1) # Foo(Go — v9) =—Fn(G1 — v1) * Feo(Ga — 02)— Foo (G1 — v1) * Foo(Go)
Proof. Because
lkr, ()(v) = (Foo(G1) * Foo(Go — v2)) U (Foo(G1 — 1) * Fou(Ga))
and
(Foo(G1) * Foo(Ga — 12)) N (Foo(G1 — v1) #* Foo(G2)) = Foo(G1 — v1) #* Foo (G — v2)

we have that
lkx, (@) (v) = colim(S) ~ hocolim(S)
O

Proposition 30. Let G be a graph with n vertices and g(G) < o0, then H; (Fon(G)) = 0 for all
i<g(G)—2.

Proof. The Alexander Dual has dimension n—g(G)—1, thus H* (F%(G)) = 0 for all k > n—g(G)—1.
By Theorem 3, H; (Fo(G)) = 0 for all i < g(G) — 2. O

In the last proposition we saw that the girth gives us a lower bound for the homological con-
nectivity of F,(G), now we will see that this bound also works for the connectivity, first we show
that g(G) = 4 implies that Fo,(G) is simply connected, by showing this for F»(G).

Proposition 31. Let G be a graph with g(G) = 4, then m1 (F2(G)) = 0.

Proof. We will prove it for connected graphs. We take 7" a spanning tree of G and take the finitely
presented group Hr with set of generators F(G) u E(G¢) and with the following relations:

e yv = 1 for all the edges of T,
o (uv)(vw) = ww if {u,v,w} is a simplex of F2(G).

by Theorem 4 we have that Hpr = m (F2(G)).

Note that any triple of vertices {u, v, w} spans a forest in G because g(G) > 4, so the 2-skeleton
of F2(G) contains all possible triangles.

We will show that all generators uv are trivial by induction on the distance k = dp(u,v). If

k = 1, this is clear by the first type of relation. Assume uw is trivial if dp(u,v) < k. Take uv such
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that dr(u,v) = k + 1 and take wwjws - - - wiv the uwv-path in T. Since {u,w,v} is a simplex of

F2(G), the second relation implies uv = (uw;)(w1v) = wiv where we have dp(wq,v) = k. O

Because Fy,(G) is always connected, using the last proposition, Proposition 30 and the Hurewicz

Theorem we have the following result:

Theorem 32. For any graph G, conn (Fo(G)) = g(G) — 3.
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Chapter 3

Homotopy type calculations 1I: Paths,
Cycles, Catus Graphs and Double

stars

3.1 Paths and cycles

The homotopy type of all r-independence complexes of paths was calculated by Salvetti [27] using
Discrete Morse theory. Here we give a different proof for /7 using homotopy pushouts, which also
shows that the inclusion Fi(Py,43) < F1(Py(r4+1)) is a homotopy equivalence. This will allow us
to calculate the homotopy type of F1(C,,) avoiding Discrete Morse theory, which was the tool used
in [11].

Proposition 33. [27]

S2r-t ifn=4r
Fi(Pp) ~ * ifn=4r+1orn=4r+2
S+l ifn=4r+3

Proof. For r = 0, it is clear that Fy(P;) ~ = ~ F1(P2). For P3, F1(P;) =~ K5. For Fi(FPy)
lk(ve) = F1(P2) U {vg} = F1(Py) ~ =

therefore the inclusion i: F;(Ps) «—— F1(Py) is a homotopy equivalence.
Next, we will prove that Fy(Py11) ~ F1(Pyry2) = = for all r > 1.
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Assume that it is true for any 1 < < k. For F1(Py41)), by induction hypothesis,
Ik(va(ks1)) = F1(Pagr2) U {vapsa} * Fi(Pagyr) ~ *

therefore the inclusion 7y (Pyxq3) = F1(Par+1)) is a homotopy equivalence.

Now, for Fi(Py(k+1)+1) we have
Ik(vars1)+1) = F1(Pak+3) U {vages 1)} * F1(Pakt2)-
Setting X = F1(Pyr+2) and Y = {vgp 43} * F1(Pag+2), we have by induction hypothesis that
X Y = Fi(Pagyo2) ~ *

therefore F1(Pag13) < lk(vs(xs1)+1) is @ homotopy equivalence.

/:\
Fi(Par+3) ——== lk(vaks1)+1) —= F1(Pagr+1))

l | |

st(Va(r+1)+1) — S(Vae+1)+1) — F1(Par+1)+1)

F1(Pagrrry41) = st(Vagrry41) = *

For ]:1(P4(k+1)+2)Z
Uk(Vakr1y+2) = F1(Pages1)) Y {vages 11} = F1(Pak+3);

because Fi(Pury3) — F1(Pyr+1)) is an homotopy equivalence, we have that lk(vypi1)42) =~ *

and therefore

F1(Parrryr2) = Fi(Pagrerny11) =

We have that Fi(Py(x11)) ~ F1(Par+3); now for this last complex:

lk(vagys) = Fi(Pak+1) U {vags2} = Fi(Par),

where Fi(Pyg+1) = *, therefore
lk(’()4k+3) ~ 2]:1 (P4k).

30



Since Fi(Pyi2) ~ *, we have that Fi(Pyy3) ~ X2F; (Py.) and
F1(Pygorny) = B2F; (Pyg) ~ 82821 ~ §24HL
Doing the exact same argument we can see that Fi(Py(xy1)+3) =~ Ezfl(P4(k+1)) and therefore
F1(Pyhy1yss) = BSFH ~ §2043,

O

In the proof of the last proposition we saw that the inclusion Fi(Pyx13) < Fi1(Pyr+1)) ob-
tained by erasing the last (or the first) vertex is an homotopy equivalence. We will use this fact in

the following corollary.

Corollary 34. [11]
\/ st ifn=4r

3
Fi(Cp) ~ §2r-t ifn=4r+1
S2r ifn=4r+2
Ser+l ifn=4r+3
Proof. For n = 3,4, the only possible simplices are a vertex or pair of vertices, any set with
more vertices will have a 3-path or a cycle. Therefore Fi(C3) = K3 and F1(Cy) =~ Ky4. For
n = 5, taking v1, ve, vs3,v4,v5 the vertices of the cycle with edges v;v;11, the facets of F1(C5) are
0; = {v;,Vi12,0;+3}. The edge v;12v,,13 only is contained in o;, so we can collapse it for all 4.
Therfore F1(Cy) ~ Fo(Cs) =~ S*.
Assume n > 6 and let vy,...,v, be the vertices of the cycle. Then lk(v,) = K1 U Ky U K3
where

K= Fi(Cp, — vy —v2 — 1) = C(Fi(Pp-4))
K2 = ]:1(0” — Up — V1 — Unfg) = C(]:l(Pn,4))
Kj = -7:1(Cn —Up — V1 — Unfl) = -7:1(Pn73)

Now
KinKonK3=KinKy= .7:1(Cn —VUp — V1 — V2 —Up_1— ’Un,Q) = ]:1(Pn,5)

K1 N Kg = .Fl(Cn — Up — V1 — V2 — ’Un_l) = .Fl(Pn_4)
Ky n K3 = F(Cy, — vy — 1 — Up—1 — Up—2) = F1(Pr_s)
K1 \ K2 >~ E]‘—l(Pn,g,)

Ifn = 47’7 Kl N K2 = ]:1(P4(,,,,2)+3)7 Kg ~ % and K1 N K3 = ‘/—"1(P4(T,1)) = K2 N K3. By the
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observation before the corollary, the inclusion K1 n Ko n K3 — K; n K3 is a homotopy equivalence.
Therefore (K7 U K3) n K3 ~ Ko n K3 and

lh(v,) = \/§*72,

2

Since
]:1<C4r - Un) = SZT_lv

we obtain the result.
Ifn=4r+1 Kin Ky ~ Koyn Kz =~ ‘/—"1(P4(7,,1)+1) ~ x and Ky U K3 ~ Kj3. Because
K1 n Ky n K3 =K1 n Ky, we have that

(KQUKg)ﬁKlzKlﬂKgﬁ*

and
K1 V) K2 U Kg o~ KQ U K3 o~ Kg = ./_'.1(P4(T,1)+2) >~ ok,

Therefore F;(Cypy1) ~ Fr(Pyy) ~ S L

For n = 4r + 2 and n = 4r + 3, F1(C), — vy,) ~ #, therefore F1(C),) ~ Zlk(v,). If n = 4r + 2,
Kin Ky = Fi(Pyr—1)41) ~ * and Ky n K3, Ko 0 K3 = F1(Pyr—1)42) =~ *. Then K; U Ky >~ % and
(K1 U K3) n K3 ~ %. From this we have that lk(v,) ~ K3, therefore

F1(Cari2) ~ SF1 (Pyr—1)13) =~ S

If n =4r+3, Ko n K3 = Fi(Py;—1)+3) and the inclusion Ky n K3 — K3 is a homotopy
equivalence, therefore Ky U K3 ~ %. From this [k(v,,) ~ £(K1 n (K2 U K3)). Since K1 n Ko n K3 =
K n Ky, we have that Ky n (K2 u K3) ~ K; n K3 and

F1(Carys) = S2Fi (Pyro1y43) = S

Proposition 35.

Proof. Assume the vertices of G = C), + e are labeled v, w1, ..., Wy, U, Wri1,...,Wr 1k With e = vu
(Figure 3.1). Because Fy (G — v) ~ *, we have that F,(G) ~ Xlk(v). Now, lk(v) is formed by the
subsets of V(G — v) such that together with v they do not induce a cycle, therefore the facets are

oo = [/Z,U17 cees Wry Wrg 1,y - - - 7w7‘+k]
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Figure 3.1: C,, + ¢

and

Oij = [wla~"7wi7"'7w7‘7u7w’r+1u"'77w7”+j7"'7w7“+k3:|

for1 <i<r, 1<j<k. If we call K the complex form by o and its subsets, and L the complex
which facets are the simplices ;;, we get that lk(v) = K u L and both of this complexes are
contractible, therefore lk(v) ~ XK n L.

Now, taking X the complex with facets [wyi1,...,,Wrij,..., Wrpx| and Y the complex with
facets [wy,...,W;,...,w,], we have that K n L = X Y. Because X =~ S¥"2 and Y =~ S"2, we
have that K n L =~ S¥72 % S"=2 =~ §"++=3 and, because r + k = n — 2, Fop (G) ~ S"~3. O

3.2 Cactus Graphs

For any graph G, we take the block graph B(G) in which the vertices are the blocks of G' and the
cut-vertices of G, where vB is an edge if v is a vertex of B. If G is connected, then B(G) is a tree.

A graph G is a cactus graph if all of its blocks are isomorphic to a cycle or to K. We will say
that a block is saturated if all of its vertices are cut vertices and sb(G) is the number of saturated
blocks. A vertex v is saturated if it is shared by two or more saturated blocks, with sv(G) the
number of saturated vertices. In this section we will see that the forest complex of a cactus graphs
is contractible or it has the homotopy type of a sphere and we give a lower bound for the dimension
of the sphere. Before we proove this, we will need somme auxiliary results.

The following lemma tell us that given a cactus graph with saturated blocks, either it has a
saturated block without saturated vertices or we can find a saturated block B such that the graph
can be seen as the union of two cactus graphs, one with only B as a saturated block, and the

intersection of these graphs is the only saturated vertex of B.

Lemma 36. Let G be a cactus graph such that sb(G) = 1, then there is a saturated block B such

that either it does not have saturated vertices, or:

(i) it has only one saturated vertex v, and
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(ii) the connected component of B(G) — v which contains B does not have any other saturated
block.

Proof. If there are no saturated vertices, there is nothing to prove. Assume sv(G) = 1. If there is a
saturated block without a saturated vertex, again there is nothing to prove. Assume all saturated
blocks have at least one saturated vertex.

Let V] be the set of all saturated blocks of G and V5 the set of all saturated vertices. In the
subgraph T = B(G)[V; u V»] all the leaves are blocks, because each saturated vertex is in at least
two saturated blocks, therefore dp(v) = 2 for all the vertices of V5. We take L < V; the set of all
the leaves of T and let (B, Bz) be a pair in L x L such that

d(By, By) = max{d(X,Y): (X,Y)eL x L}

Take vy the only saturated vertex in By and vy the only saturated vertex in By. We claim that the
only By Ba-path in B(G) contains both v; and vy. If not, then By and By are in different connected
components of T' and, assuming v is not in the By Ba-path, any leaf B’ in the same component of
By is such that d(B’, By) > d(Bi, Bz). Therefore v; and vs are in the only By Ba-path.

If in B(G) — vy there are saturated blocks in the same component than By, the distance between
these and Bs is larger that the distance between B; and Bs, which can not happen. Therefore B,

and v; are as wanted. O

The following two lemmas and corollary will give us the homotopy type of the forest complex

when the cactus graph does not have saturated blocks.

Lemma 37. Let G be a cactus graph such that all of its blocks are cycles and such that it does not

have saturated blocks, then
FE(G) ~s"O~2,

Proof. Let By, ..., By be the blocks of G. If k = 0, then F%(G) = & = S™!. Assume, k > 1. We
take X; = V(G) — V(B;) for all 4, this are the facets of FX(G) and we have that

k
NXi=2
i=0
(X =@, VS < [k]
€S
Then, its nerve is isomorphic to dA* = S¥~1. Therefore, F* (G) ~ SH(&)~1, O

Lemma 38. Let G be a cactus graph different from Ks, then For(G) is simply connected.
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Proof. If G has only one block and G is not K3, G must be a single vertex, Ky or a cycle with
at least 4 vertices, thus Fo,(G) is contractible or a sphere of dimension at least 2. Assume G has
k = 2 blocks. For each block that is not isomorphic to Ko we can erase one edge to we obtain T,
a spanning tree of G and F(G). Taking the free group Hr with E(G) u E(G°) as generators and

wtih the relations
e uv =1 for all the edges of T
o (uv)(vw) = ww if {u,v, w} is a simplex of For (G)

we have that Hr = m (Foo(GQ)) (see [28] Theorem 7.34). Take uwv € E(G) u E(G°) — E(T).

If w,v are in the same block, this block must be a cycle. If the cycle has 4 or more vertices,
there is a wv-path uwyws - - wv in T. Now, {u,wy, v}, {wi.wa, v}, ..., {wr_1,w,,v} are simplicies
of F(G), then uv = wiv = wov = -+ = wyv = 1. If the cycle is wvw, because there are k > 2

blocks, one of the vertices must be a cut vertex:

e If u is a cut vertex, u has a neighbor z in another block such that ua is in T. Then {u, v, 2} is
a simplex of Fu (G) and wv = zv. Now, {v,w,x} and {u,w, xz} are simplices, thus zv = zw =

uw = 1. The case in which v is a cut vertex is analogous.

e If w is a cut vertex, w has a neighbor z in another block such that wz is in T. Then {u,v, 2},

{u,w,z} and {v,w,x} are simplices. Therefore zv = vw =1 = vw = uz and wv = ux = 1.

If u, v are in different blocks, then there are cut vertices wi, ..., w,, with r > 1, such that they

are on the only wv-path in T" and w; it is not in the only ww;-path for any j > ¢, and there are

no more cut vertices in the path. Then {u, w1, v}, {wi,ws,v},..., {w,—1,w,,v} are simplices and
UV = WU = W = -+ = w,v = 1.
Therefore m1(F(G)) = Hr = 0. O

Corollary 39. Let G a cactus graph such all of its blocks are cycles and does not have saturated
blocks, then
]:oo<G) ~ Sn_b(G)_l.

Proof. If b(G) = 1, then G is a cycle and F,(G) =~ S"~2. Assume b(G) > 2, then, by Lemma
38, Fuo(G) is simply connected and , by Lemma 37, F%(G) ~ S*@)~1. Therefore, by Theorem
3, Foo(G) is a simply connected complex such that its only nontrivial reduced homology group is
in dimension ¢ = n — b(G) — 1, which is isomorphic to Z. By Theorem 1, F(G) is homotopy

equivalent to a sphere of the desired dimension. O

Now we proof the main result of this section, the last result will help us to do the proof by

induction on the number of saturated vertices.
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Theorem 40. If G is a cactus graph then Fy(G) is either contractible or homotopy equivalent to

a sphere of dimension at least n — b(G) — 1.

Proof. 1If 6(G) = 1, then F,(G) ~ #. Assume 6(G) = 2. If there is a cut vertex of degree 2, then
Foo(G) =~ . Assume there is no cut vertex of degree 2. If G has a bridge e, then G —e = G1 + G»
and, by Proposition 23, Fo, (G) = Foo(G1) * Foo(G2). If G has more bridges, then we continue this
process until we get that Fo, (G) = Foo (Hy) # - - - % Foo (Hyr41), where r is the number of bridges and
each H; is a cactus graph such that every block is a cycle. So, if every Fo,(H;) has n; vertices, is
not contractible and is homotopy equivalent to a sphere of dimension at least n; —b(H;) — 1, Fs (G)
will be homotopy equivalent to a sphere of dimension at least n — b(G) +r —1 > n — b(G) — 1.
Therefore we only need to prove the result for cactus graphs which do not have blocks isomorphic
to Ks.
If G does not have saturated blocks, by Corollary 39,

Fuo(G) ~ 0O,

So assume sb(G) = 1, which implies that b(G) = 4. Now, we prove the result by induction on
sv(G). If sv(G) = 0, then take By a saturated block of G and By, ..., By the remaining blocks.
Let X; = V(G) — V(B;), then X, X1,..., X} are the facets of FX(G). Because By is saturated,

k
Nxi=2.
i=1
Let S < [k] — {0} such that
o= ﬂ X; # .
€S

Then there is 0 < j < k such that j ¢ S and V(B;) n o # ¢, with B; a non-saturated block or
a saturated block (which can not share vertices with Bp). Then there is a vertex v in V(B;) such
that v is not vertex of the blocks with index in .S nor is a vertex of By, therefore v € X, v € o and
Xono # &. From this we get that the nerve is a cone with apex vertex Xy and F2% (G) ~ . Then,
by Lemma 38 and Theorem 3, 7o, (G) is simply connected and all of its reduced homology groups
are trivial. Therefore, by Theorem 1.2, Fo,(G) is contractible. This argument only used that there
is an isolated saturated block, a saturated block which does not have saturated vertices; therefore
we can assume that there is no isolated saturated block.

Assume the result is true for sv(G) < k and let G be a cactus graph with sv(G) = k + 1 and
with all of its blocks isomorphic to cycles. By Lemma 36 there is By a saturated block such that
only one of its vertices is a saturated vertex, say v, and in the connected component of B(G) — v
which contains By there are no more saturated blocks. We call G; the subgraph formed by the

blocks in this connected component, and G5 the subgraph induced by the remaining blocks. Then
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G =G1uUGyand G; n Gy =~ K;. Now

lkr, () (v) = lkr, () (V) * lkr, (G, (v)

We will show that lkr, (g,)(v) =~ *. There are two possibilities:

1. BO = 03. Then V(Bo) = {’U,Ul,vg} and Gl = H1 U BO U HQ, with V(Hl) N V(Bo) = {’Ul},
V(Hz) n V(By) = {vo} and V(Hi) n V(Hz) = . Then, by Lemma 29, lkr_(c,)(v) ~
hocolim(S) with S the diagram:

JT"OO(Hl) * .Fgo(HQ — 1}2) — .Fgo(Hl — ’Ul) * foo(Hg — Ug) — ‘Foo(Hl — Ul) * fw(HQ)

By construction, G; does not have saturated blocks, then 6(H; —vy) = 1 or it has a cut vertex
of degree 2. Therefore Fo,(Hy — v1) ~ *. Analogously, Fy(Ha — v2) ~ x. From this, we get
that hocolim(S) ~ =.

2. By = C), with n > 4. Let v, v be the neighbors of v in By and take H be the graph obtained
from GGy by erasing v and adding the edge vivs. Then

lkr, () (v) = Fo(H) ~ %,

because Fo,(H) has only one saturated block.

Therefore lkr, () (v) ~ * and Foo (G) ~ Foo (G —v). If there is a non-saturated block which contains
v, then §(G — v) = 1 or there is a cut vertex of degree 2, and therefore Fo,(G) >~ *. Assume that
there is no non-saturated block with v among its vertices. Now, in G — v, all the remaining edges
of the blocks that contain v are bridges, so we can remove them, let H be the graph thus obtained.
If By, B1,...,B;_1 are the blocks that contain v, with ng,n1,...,n;_1 their respective orders, then
H = H, +---+ H, where

-1
r= Z n; — 1.
i=0

By inductive hypothesis, each Fy (H;) is contractible or is homotopy equivalent to a sphere of
dimension at least |V (H;)| — b(H;) — 1. Then, Fo(H) is contractible or it has the homotopy type
of a sphere of dimension at least

r—1+zrl|V(Hi)\—b(Hi)—l:n—l—(b(G)—l)—l:n—b(G)+l—2>n—b(G)—1.
i=1
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3.3 Double stars

We finish this chapter with the calculations for the double stars.

Let St,s be the double star with V(St,s) = {uo,u1,...,Ur,v0,01,...,0s} and E(St, ) =
{ujup: i > 0} u {vwg: ¢ > 0} U {uovg}. Now we calculate the homotopy type of the com-
plexes of the filtration for these graphs, the idea will be to see the complex as the union of four

subcomplexes and calculate the homotopy colimit of the punctured cube given by the intersections.

Proposition 41.
fl(Str,s) ~ Sl

and for 2 <d < o
Fa(Strs)~ \/ s
(=)o)

Proof. For F1(St, ), the link of uy has as facets o; = {u;,v1,...,vs} for all ¢ and {vg}, therefore
lk(uo) =~ SO.

Since JF1 (St s — up) ~ *, we have that F;(St, s) ~ Slk(ug) ~ St.
Ford>2,ifr <d—1ors <d-—1, then F4(St,s) ~ =, because the set {uy,...,u,} or the
set {v1,...,vs} would be contained in all facets. Assume r,s > d. The facets of F4(St, ), besides

X ={u1,...,up,v1...,0s}, are of 3 types:
1. asg =S v {ug,v1,...,vs}, where S < {uq,...,u,} and |S| = d.
2. Bs =S u{vg,uy,...,u.}, where S < {vq,...,vs} and |S| = d.
3. 04,5, = {ug,vo} U S1USe, where S7 € {uq,...,u.}, Sa S {v1,...,vs} and |S1| = |S2| = d—1.

Take 7 = P(X) — {J}, a the complex generated by {ag}, 8 the complex generated by {8s} and o
the complex generated by the {0, . }, Fa(St,s) =au B uourT. Now, these four complexes are

contractible and so are a n o, B no,an 1,8 nT. Also
anfBnont=anont=06nonT=anfBno=0nT=skqoA" ! xskg_ oA

and an fn7T=an . We compute the homotopy colimit of the punctured 4-cube given by this
union using the recursive formula given in the preliminaries. This what the formula gives applied
to the top and bottom of the 4-cube:
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anfBnonT anfno

anonNT l oNnT anco
BnonT ‘ Bno
oNT \* S(onT)
anfBnT = anf

anNnT L * «

~J N

We find that the complex has the homotopy type of the following homotopy pushout:

BT

Sixe—X(onT)—T

hocolim(S) ~ ¥%(0 N 7) ~ \/ §2d-1,
(2 G
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Chapter 4

Homotopy type calculations 1I: Joins,
categorical products and cartesian

products

4.1 Graph joins

Remember that given two graphs G and H with disjoint vertex sets, we defined their join as the
graph G + H with V(G H) = V(G) u V(H) and

E(G+H)=EG)uvEH)u{w: ueV(G) and ve V(H)}.

It is well-known that Fo(G = H) = Fo(G) u Fo(H)., The following lemma will tell us the homotopy
type for the other d’s under somme hypothesis. With this lemma one can calculate the homotopy

type for various families of graphs that can be seen as a join.
Lemma 42. Let G and H graphs with disjoint vertex sets with orders ni and ng respectively. Then:

1. F(G+H)~F(G) v FAH) v \/ s

nlngfl

2. If Fo(G) and Fo(H) are connected. Then, for all d = 2

]:d(G*H) ~ <\/ ESkd_lfo(G)> \% (\/ ZSkd_l]:O(H>> \ ( \/ S2> vAv B
)

no—1 ni—1 (n1—1)(n2—1

with A = F4(G) v C(sk,_,Fo(G)) and B = Fq(H) v C(sk,_,Fo(H))
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Proof. For d =1,
Fi1(GxH) = Fi(G) v Fi(H) U Ky, nyp-

Now F1(G) nFi(H) N Ky, ny = F1(G) n Fi(H) = &, therefore F; (G = H) is homotopy equivalent
to the homotopy pushout of
X — Skofl(G) — ]‘—1(G),

where X is the homotopy pushout of
fl(H) — Skofl(H) — Kﬂl,nz'

Thus
X=~FH) v \/ s.

ni(n2—1)

From this the result follows.
For d > 2,
Fa(G+x H) = Fq(G) u Fy(H) u K1 U Ko,

with K1 = U,y {u} * sk, Fo(G) and Ko = ey () {u} * sk, Fo(H). Now:

K= \/ Ssk, ,Fo(G),

n2—1

Ky = \/ Ssk,_, Fo(H).

np—1

Taking L; = F4(G) and Ly = F4(H), we have that
LinLy = @, KinlL = Skd,l‘FO(G)y Kon Ly = (9]<J(7171./'—"0(I’I)7 Kin Ky~ Knm’u

IinKinKog=L1n Ky~ \/SO,

nlfl

LgﬁKgﬁKlngﬂKlg \/SO

no—1

Taking X = K; uL; and Y = Ky U Ly, we have that F4y(G+ H) = X Y and X nY =
(L1 n K3) u (La n Ky) u (K n K3) = K1 n Ky. Therefore F(G # H,d) ~ hocolim(S) with

S: Xe— Ky ;m—Y

Now, the inclusion ¢: K, ,;, — X is really the inclusion K, ,, — K, which is null-homotopic,

and therefore ¢ is null-homotopic. In the same way we see that the inclusion in Y is null-homotopic
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and that
FaGxH)=~XvYv \/ ¢
(n1—1)(ng—1)
Now, Ky n Ly = sk, , Fo(G) and its inclusion in K is null-homotopic, therefore we can compute

the homotopy type of X by pasting these two homotopy pushout squares:

Skd,l]:O(G) * K1

| |

Li———Liu(C(sk, ,Fo(G)) —= K1 v (L1 u C(sk,_,Fo(G))) ~ X

Now L; u C(sk,_,Fo(G)) = A. With an similar argument for Y we arrive at the result. O

With the last Lemma we can construct graphs for which F(G) is not homotopy equivalent to
a wedge of spheres. Let K be a triangulation of the projective plane and let H be the complement
graph of the 1-skeleton of the baricentric subdivision, then Fo(G) =~ K and G = P, * H is a graph
such that F;(G) has torsion for all d > 3.

Lemma 43. Let G be a graph and take d = 1, then
Fa(Ky#G) = Fa(G) v C(sk,_, Fo(G))
Proof. The link of the apex vertex is sk, , Fo(G), thus the homotopy pushout square

Skd—l ]:0 (G) *

|

Fa(G) —— Fu(G) L C(sk,_, Fo(G))

computes F(K; * G, d). O

Theorem 44. For the complete bipartite graph we have that Fo(Kym) ~ S°,

]:1(Kn7m) ~ \/ Sla

nm—1
fd(Kn,m) =~ \/ S2 \Y \/ Sd’
(n—1)(m—1) n(mdfl)_,'_m(ngl)

foro>d>2 and

FolKnm)~ \/ S
(n=1)(m-1)
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Proof. If d = 0 is clear. The case d = 1 is a particular case of Lemma 42. For d > 2, by Lemma 42

Fa(Kpm) =~ (\/ Eskdl]-'o(KfL)> v (\/ zskdlfo(K;)> v \/ §|vAvB
m—1 n—1

(n—1)(m—1)

with A = Fy(KS) u C(sk,_Fo(KS)) and B = Fy(KE,) v C(sk,_, Fo(KS,)).
Now, for all d, k, r,
Fa(K7) = AFY sk, Fu(K7) ~ \/ ST
(+51)

therefore

from which we obtain the result. O

Corollary 45. Let G1,Gs, ..., Gy be vertex disjoint graphs. For d = 1, if Fq(G;) ~ = for all i,
then
Fa(Gr#Gyw-xGy) = \/ S'v\/FulGixGy)
(k=1)(k—2) i<j

Proof. Let V; be the vertex set of G; and take G = G # Gg - - - x G. If we take vertices from more
than two sets of the partition, we will always have a cycle, and therefore each facet of the complex
is contained in V; U V; for some ¢ # j. Then, taking X;; = Fq(G [V; u V}]) for ¢ < j, we have that
Fa(G) = U X,; and we can define a bijection v: {ij: i < j} — E(K}) such that the hypothesis

1<j
of Lemma 12 are achieved. O

. . . ~ c c
As an immediate consequence, because K, . n, = K;; *---% K] we have the homotopy type

for the multipartite graphs.

Corollary 46. Ford > 1,

‘Fd(Knl,...,nk) =~ \/ Sl Y \/Fd(Kn,,n])

(k—1)(k—2) i<j
2

Theorem 47. [19]
Sty st ifn=3r
Fo(Cy) ~ Sr—t ifn=3r+1
ST ifn=3r+2

For each n > 3 the graph W, .1 = K; = C,, is the wheel graph.
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Proposition 48. Let W, .1 be the wheel on n + 1 vertices, then

Sr2vStvS ifn=3r
Fa(Wyy1) ~ S3r=1 v ST ifn=3r+1
SRRV U ifn=23r+2

ford>|

I3

|—1 and

\/Szr*1 v \/S1 ifn=4r
1

3 n—
827’_1\/\/81 ifn=4r+1

Fi(Whs1) ~ nl
1(Wot) SUAVAS ifn = dr + 2

n—1
st v \/ st ifn=4r+3
n—1

Proof. Since o(Cy) = |5 ], for d > | 5] — 1 we have that Fo(Cy) = sk,_, Fo(Cy). By Lemma 43,
Fa(Wn1) = Fa(Cn) u C(Fo(Cr))-

By Theorem 47, the inclusion of the intersection is null-homotopic, therefore
Fa(Wni1) = Foo(Cn) v F(Cn)

For d = 1, skoFo(Cn,0) =\/,_; S°, the rest of the proof is the same as before. O

4.2 Categorical products

4.2.1 Complexes of K,, x K,,

In [14] is shown using Discrete Morse theory that the homotopy type of the categorical product of
complete graphs is the wedge of copies of S'. For completeness we give a short proof using simpler

tools.

Proposition 49. [14]
Fo(Kn, x Kpy)) =~ \/ 8

(n1—=1)(n2—1)

Proof. Taking V(K,,) ={1,2,...,n1} and V(K,,) = {1,2,...,n2}, then

V(Kn, x Kp,) ={(,7): 1<i<ni Al<j<ng}
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and, because the definition of the categorical product, the maximal simplices of Fo(K,,, x K,,) are

Ui:{(i71)’(i’2)a""(i’n2)} or Tj :{(17j)7(2’j)v""(n1’j)}

Now, for ¢ # k and j # | we have: 0, "o, = &, 7, "7, = &, 0; n7; = {(¢,7)}. By the Nerve
Theorem (see [7] Theorem 10.6), we get that

Fo(Kn, x Kpy) =~ Kn, n,

Which is easy to see that has the homotopy type of the wedge of (ny —1)(ng — 1) copies of St. O

Now we will show what happens for d > 1.

Proposition 50.
Fi(K, x K,) ~ \ S?

(nm—4)(n—1)(m—1)
4

Proof. We take V(K,) = [r] — {0} for any r. We proceed by induction on n. For n = 1, the
result is clear. For n = 2 we will prove it by induction on m. For m = 1,2 it is clear and for
m =3, Ky x K3 = Cg. Taking v; = (1,4) and u; = (2,4), we have that lk(v,,) = X UY, where
Y = Fi(K2 x Kp,) — N[v,] and X is the complex with facets {u;,v;, um} for ¢ = m — 1. Then

X =~ *, as it is a cone with apex u,,, and X nY = K ,,, ~ %. Therefore,

k(vn) =Y = Fi(Kim) ~ \/ S".
m—2

Taking H = Ky x K, — vy, the link of u,, in F;(H) has as facets the simplex {u1,...,u,n—1} and

the edges {u;,v;} for i = m — 1, therefore it is contractible and

Fi(H) ~ Fi(H —up) = Fi(Ka x Kpp) =~ \/ &%

(m—2)(m—3)
2

from which the result follows.

Now assume the result is true for K, x K,, for all »r <n — 1. Take v; = (n,7), Gy = K,, X K,
Gi = Giqg —w fori =1, X7, = [{(j,k),(4,1),(n,B)}| for k > i+ 1and j < n—1, X} =
{4, k), (j, )} for k <i—1landj<n—1,

T _ 7
X= U X
ki, j<n—1

and Y = F(G;_1 — N[v;]). Then, taking L; the link of v; in F;(G;_1), we have that
Li=X'uY"

45



Now, in X?, the vertices (j,k) with j <n — 1 and k # i are only in one facet and can be erased,
therefore X* is homotopy equivalent to the subcomplex with maximal facets {(j,i), (n,k)} with
k >4+ 1and j <n — 1, which is isomorphic to K,,_1 ,—;. Because X' NnY; is isomorphic to this

subcomplex, we have that

Li~Y' > F(Kn—im-1) =~ \/ St

(m—1)(n—i)—1

fori <mn—1. Now, L, ~ Y™ ~ %, therefore

]-—I(anl) = fl(Gn) = ]:1(an1 X Km) ~ \/ §2.

((n=1)m—4)(n—2)(m—1)
4

From this we have that
Fi(Go) ~ Fi(Kp 1 x Kp) vEYL v EY2y .oy SV
Now XY'!' v XY2 v --. v 2Y"! is homotopy equivalent to the wedge of

2 in—1)—1= (”*1)”;(7”*1) —(m—1)

copies of the 2-sphere. Since

2

((n = m = D =2(m =) _Fimm-1)
1 2 7

4

i=

we have that F; (K, x K,,) is homotopy equivalent to the wedge of

2 zm(n;— 1 (m—1) = (nm — 4)(n4— H(m—-1)
i=1

2-spheres. O

Lemma 51. Ford > 2, Fqi1(Ky x K,) ~ Fy(Ks x K;,)

Proof. We know that F4(Ks x K,,) is simply connected for all d > 2, because F; (K> x K,,) is a
wedge of 2-spheres. We will show that Hy(Fgi1 (K2 x Ky), Fa(K2 x K,)) = 0 for all g. We know
that Hy(Far1(K2 x K,,), Fa(K2 x K,,)) = 0 for all ¢ < d. For ¢ > d + 3, for any g-simplex o of

Far1 (Ko x K,,), we can partition its vertices in two sets V7, V3 such that all the vertices in V; are
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d+1 d+1

() (b)

Figure 4.1:

of the form (i, j) for some j. Next we show that |[Vi| = 0 or |V3| = 0. If not, we can assume that

d+3 d+3
|V1| < {QJ < {QW < |V2|

therefore |Va| > 3; there are several cases:

o If |Vi| = 1, then |V2| = d + 3 and the vertex of V5 has degree at least d + 2, which can not
happen.

o If |Vi| = 2, then |Va| = d + 2 and there will be at least two vertices of V, such their second
coordinates are different from those of the vertices of Vi; therefore there will be an induced

4-cycle in the vertices of o, which can not happen.

o If |V4| = 3, because |Va| = 3, there will be an induced 4-cycle or an induced 6-cycle in the

vertices of o, which can not happen.

Therefore |Vi] = 0 or |V3| = 0 and o is a simplex of Fy(K> x K,). From this, we have that
Hy(Fa1 (Ko x Ky,), Fa(Ke x K,,)) =0 for all ¢ > d + 3.

For ¢ = d + 2, the only ¢-simplices of Fy41(Ks x K,) which are not simplices of Fy(Ks x Kp,)
are of the form |Vi| = 1 and |V2| = d + 2 (or vice versa), where the only vertex of V; is adjacent
to all but one vertex of V, (Figure 4.1(a)). For ¢ = d + 1, the only ¢-simplices of Fyy1 (K2 x Kj,)
which are not simplices of Fgq(K>2 x K,,) are of the form |Vi| =1 and |V2| = d + 1 (or vice versa),
where the only vertex of V; is adjacent to all the vertices of Vo (Figure 4.1(b)). From all this, we
get that there are no relative d + 2-cycles and that all of the relative d + 1-cycles are images of some
relative d + 2-boundary. Therefore the remaining two relative homology groups are also trivial.

From all this we have that the inclusion Fyq1(Ks x K;,) «— Fgq(K2 x K,,) induces an iso-
morphism for all homology groups between simply connected complexes, by Whitehead Theorem
Far1(Ko x Kp) ~ Fa(Ky x Ky). O
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Proposition 52. Ford > 2,

Fa(Ka x Kp) = \/8*v \/ S
(:) (n;l)
Proof. We only have to prove it for d = 2. The result is clear for n = 1,2,3. Assume n > 4. Taking
k= (Z), let Xi,..., X be the subcomplexes of F2(K> x K,,) corresponding to all the induced
6-cycles. Then X; =~ S*. The other facets of Fo(Ky x K,,), besides the ones in some X;, are {1} x n

and {2} x n. Then
Fo(Kox Kp)=X10uXou---uXuYiuY,

where Y7 = P({1} x n) — {J} and Yo = P({2} x n) — {&}. Now we will calculate the ho-
mology of Fo(Ks x K,,) using the Mayer-Vietoris spectral sequence (see [29]). Taking U =
{X1,Xo,..., Xk, Y1,Ys} and U = N(U), the first page of the sequence is

ZF 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Co(U) =— C1(U) Ca(U) CsU) <—0
Because the nerve of X;, X»,..., X}, is isomorphic to the nerve of 2-simplices of sko A™~ !, and U is
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isomorphic to the suspension of this nerve, we have that the second page is

0\&\0
Z 0 0 7" 0

where r = ("gl) From this we have that E;?q = Equ. Therefore

7k ifg=4
Hy(F2(Koy x Kp)) =< 7" ifq=3
0 ifg+#4,3

Therefore, because Fi(Ks x K,,) is simply connected, Fa (K2 x K,,) is a simply connected complex
which satisfies the hypothesis of Proposition 2, from which we see that is has the desired homotopy
type. U

Theorem 53. Ford > 2

Fa(Ky, x Ko, vy V§

ahere a = (3)(3) + (B)(3) b= (D)3 + (5 ande= (7)),

Proof. In Fy(K,, x K,,) the facets have their vertices contained in two rows or two columns, oth-

erwise they will have a cycle. Then, taking the subgraphs
H;; = K, x K, [{(k,): l=1o0rl=j}],

Gi; = Kn x Kp[{(k,1): k=iork=j}],

and the complexes X; ; = Fq(H; ;), Yi; = Fa(G; ;), we have that

]:d(KnXKm)_ U Xe U U Y

e€E(K.,) eeE(K
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From the last Proposition we know that

X, ~ \/84 v \/ s?
© )

Y, ~ \/ S* v \/ s?
= ()
Taking the Mayer-Vietoris spectral sequence, the first page looks like
7 0 0 0 0
zb 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Where U is the nerve of the cover, a = (3)(3) + (3)(3) and b = (3) (7"3_1) + () ("gl) Now, U

is isomorphic to the join of the nerve of the X’s with the nerve of the Y’s, which are homotopy
equivalent to K, and K, respectively, therefore U ~ \/,_ S? with ¢ = (”51) (m; 1). From all this,
we have that the second page of the sequence is

VA 0 0 0 0

S

0
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Therefore E;?q = FE? and

p,q
Ze ifqg=4
Hy(Fa(K, x Kp,)) =< zbte  ifqg=3
0 ifg#4,3

As in the proof of the last theorem, we have a simply connected complex which satisfies the hy-

pothesis of Proposition 2. O

As we will see in Proposition 71

Fo(Ky x Ky x Ky,) ~ \/ S8,

(n—1)(m=1)(nm—2)
2

Now, for other d > 1, because Ky x Ko =~ K5 11 K5 we have the following corollary

Corollary 54. Ford > 1,

P d=1
<n—2>24<n—1>2

\/ng \/ S8 v \/ S” d=2

(3)° 2(3)("5") ("3’

]:d(KQ X KQ XKn) >~

Question 55. What is the homotopy type of Fy(Ka x K, x K,,) ford>17¢

4.2.2 Independence Complex of C} x K,

In this section we will be focus on Fo(Cy x K,), and for this we will need the homotopy type of
the independence complex of various graphs, such as Py x K,, (Theorem 59).

Now the case C5 x Ky allows us to find a counterexample showing that the homotopy type of
the independence complex of categorical product does not depend only on the homotopy type of
the independence complexes of the factors. To see this, we take M, as the union of ¢ disjoint edges,
from where we get that G = Ko x Ko =~ My, G x G = Mg and C5 x G is equal to two disjoint
copies of C5 x K. Now Fo(C5) =~ S! =~ Fy(G) and, by Proposition 57, Fo(Cs x Ka) ~ S?, therefore
Fo(Cs x G) ~S° 2 S™ = Fy(G x G).

4.2.2.1 (C3xK,, Cy xK,, C;x K, and C}, x Ky

From Proposition 49, we have for K3 =~ C5 that

-7:()(03 X Kn) ~ \/ St

2(n—1)
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J

A
Wy

=

2

(a) n =2k b)n=2k+1

Figure 4.2: C,, x K,

Proposition 49 can also be used to calculate the homotopy type of Fo(Cy x K,,). Taking V(Cy) =
{u1,us,us,us} and V(K,,) as before, Cy x K,, is such that N¢, xx, ((u1,7)) = No,xk,, ((us, 1)) and
Neo,xk, ((u2,7)) = No,xk,, ((ug,4)) for all 1 < i < n. We define

H=0Cyx K, — ({us} x V(K,)) u {us} x V(K,))

Now, H ~ Ky x K,,, so
Fo(Cua x Kp) =~ Fo(H) ~ \/ 8
n—1

In fact, if Ng(u) € Ng(v) then Fo(G x H) ~ Fo(G—v x V(H)) for any H, therefore Fo(Cy x H) ~
Fo(Ky x H) for any H.

It is easy to see that:
2C, ifn =0 (mod2)

Cn X K2 =
Cyp, ifn=1 (mod2)

for any n > 3, because C,, x K is a 2-regular bipartite graph, so it is an even cycle or the disjoint
union of even cycles. By Weichsel’s Theorem (see [15] Theorem 5.9), C), x K is connected if and
only if one of the graph has an odd cycle, and if both graphs are bipartite, the product has exactly

two connected components (see figure 4.2.). From this, we get the next lemma.

Lemma 56.
Fo(Cp) = Fo(Cy) if n=0 (mod 2)

Fo(Cp x K3) ~ { Fo(Con) if n=1 (mod 2)

Then, for calculating the homotopy type of the independence complex of C,, x K5 we only need
the homotopy type of the independence complexes of cycles which, by Theorem 47, are

Sk—1\ Skt if n =3k
Fo(Cp) ~ Skt ifn=3k+1
Sk ifn=3k+2
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From all this, the next proposition follows:

Proposition 57.

\/S4k_1 if n = 6k
4
Stk ifn=06k+1
Fo(Crn x Ka) ~ s if n = 6k + r with r € {2,4}
Stk+l , Sth+l if n=6k+3
Sth+2 ifn=6k+5

Now we will calculate the homotopy type of Fo(C5 x K,,) for all n = 2.

Proposition 58. For alln > 2
Fo(Cs x K,) \/ S?

Proof. We will see that Fo(Cs x K,11) ~ Fo(Cs x K,,) v S%. Taking Gy = C5 x K, 1, we have:
Ng, ((u1,n +1)) = U{(Uz,i), (us,i)}
=1

and taking Hy = Gg — Ng,[(u1,n + 1)] we have:

n

NH1((U3’n+ 1)) = U Usg, }C U{ Ug, u17 )} = NH1((u5vn+ 1))

=1

and
NH1(<U4’n + 1)) = U{(U?HZ)} = U{(ui’ni)’ (ulﬂi)} = NH1((U27n + 1))a

i=1
so that Fo(Hi) ~ fo(H{) where H{ = H; — (ug,n+1) — (us,n +1). Now, in H] all the vertices of
the form (uq,4) with 1 <14 < n are isolated, so Fo(Hj) is contractible. Therefore, by Proposition 6,
Fo(Go) ~ Fo(G1), with G1 = Go — (u,n +1). We define Hy = G; — Ng, [(uz2,n + 1)], noting that

N, ((ugyn +1)) = ( J{(u1, ), (us, i)}
i=1
Then Ny, ((u2,7)) © Np,((ug,7)) for 1 < 4,5 < n and therefore Fo(Hs) ~ Fo(HL) with H) =
Hy— (ugq,1)— (u4,2) — - — (ug,n). In HY, (us,n+1) is an isolated vertex, so Fo(Hj) is contractible

and, by Proposition 6, Fo(G1) ~ Fo(G2), with G2 = G1 — (ug,n + 1).
Now, using the part (b) of Proposition 6, we will see that |Fo(Ga2)| ~ |Fo(W1)| v [BFo(Wa)],
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with Wy = Go — (u3z,n + 1) and Wy = G2 — Ng, [(uz,n + 1)]. In W,
Nw, ((us, 1)) = {(ua;n + 1)} N ((us, )
for all 1 < < n, so Fo(Wa) ~ Fo(Wa — (us,1) — -+ — (us,n)) and
Wy — (us,1) — -+ — (us,n) = 2Kq ,

Therefore Fo(W2) ~ St. For Wy, we first will see that Fo(W7) ~ Fo(Wy — (ug,n + 1)). For this,
we take W = W7 — Ny, [(uq,n + 1)]. In W,

Nw ((u4,7)) = {(us,n + 1)} = Nw ((u1,4))
for all 1 < < n, then
FoW) = Fo(W — (u1,1) =+ = (u1,n)) = Fo(K L Ky pn) =%
Then Fo(W7) ~ Fo(W1 — (ug,n + 1)). In W/ = Wy — (ug,n + 1),
Nw((us,4)) € Nw((us, n + 1))
for all 1 <4 < n. Then

Fo(Wh) ~ Fo(W' — (us,n + 1)) = Fo(Cs x K,) \/S2

Therefore, the inclusion Fo(Wa) — Fo(W7) is null-homotopic and

Fo(Cs x Kny1) =~ Fo(G2) =~ Fo(W1) v BFo(Wa) ~ \/52

4.2.2.2 (Opx K, for k=6

In this section we will prove a conjecture from [14] about the homotopy type of Fo(Cs x K,,),
showing the homotopy type of Fo(Cs, x K,,) for all r and all n in Theorem 68; for the other cycles
Theorem 69 will give us the connectivity and all but two of the reduced homology groups. For
this we will need to calculate the homotopy type of the independence complex of various auxiliary
graphs. The idea is to use the star cluster of a vertex and Theorem 7 to get an decomposition of

the complexes for which Proposition 10 can be use, so the suspension of this union will have the
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same homotopy type as the independence complex of Cy x K,. The complexes of the union will
be isomorphic to the independence complex of the graphs Gy, (Figure 4.3(c)), these graphs are
isomorphic to Cy x K, — N[u] — N[v] where the vertices v and v are adjacent vertices and their
independence complexes are isomorphic to the intersection of their links. For the homotopy type
of this family we will need the homotopy type of the independence complex of P, x K, and the
graph family Hy, ,, (Figure 4.3(b)), for which we will need the independence complex of the family
Wi (Figure 4.3(a)). We also will need to see how is the intersection of two or more complexes of
the decomposition, for this we will need to see what hapends with the independence complexes of
other two families: Hkn and Wkn The idea for the calculation for the auxiliary families will be

use Lemma 5, Proposition 6 or Theorem 7 and Proposition 10.

Theorem 59. Forn > 2,

\/ Y ifk=3r
(n—1)"
Fo(Py x Kp) ~ * ifk=3r+1

\/ S ik =3r+2

(n—1)r+1

Proof. The proof is by induction on k. For k = 1, Fo(P, x K,) ~ # for any n. For k = 2,
Fo(Pe x K,) = Fo(K2 x K,,) and by Theorem 49 the homotopy type is as claimed. For k = 3,

fo(Pk X Kn) ~ .Fo(Pk — {(U3,i) 1< < Tl} X Kn) >~ ]:()(KQ X Kn)
Supose that for any r < k the theorem is true.
Fo(Pry1 % Ky) ~ Fo(Pry1 — {(us, i) : 1<i<n} x K,) = Fo(Pr2x K, uKs x K,)

Now
Fo(Pr—a x Ky 1 Ky x Ky) > Fo(Poa x Kp) # \/ 8 = \/ S2Fo(Pr—z x Ky)
n—1

n—1

The rest follows by induction. O
For k > 2 and n > 3 we define:

e W as the graph obtained from P} x K, by ading two new vertices v,v2 and the edges
{{(u1,2),v1} : i # 2} U {{(up,4),v2} : @ # 2} (Figure 4.3(a)).

e M} , as the graph obtained from P, x K, by ading two new vertices v;,v2 and the edges
{{(u1,9),v1} : i =2} U {{(ug,1),v2} : @ # 2} (Figure 4.3(b)).
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(a‘) Wk,n (b) Hk,n (C) Gk,n

Figure 4.3:

e Gy as the graph obtained from Hj, by ading two new vertices wi,ws and the edges
{v1, w1}, {wy, wa}, {wa, va} (Figure 4.3(c)).

Lemma 60.

\/ s if k=2
n—1
Fo(Win) ~ SFo(Wi-1,n) ifk=3randr>=1
, $2Fo(Wi—2,n) ifk=3r+1andr=>=1
\/ Y2Fo(Hy 3,) ifk=3r+2andr =1

n—1

Proof. For k =2, N(v1) = N((ug,2)) and N(va) = N((uq,2)). Therefore

Fo(Wan) ~ Fo(Wa,, —v1 — v2) = Fo(Ka x Ky,) \/ st

For k = 3r, in Ws,.,, — v1 we have that N((u1,7)) € N((us,?)) for all 1 <4 < n, therefore
Fo(Wapn —v1) = Fo(Wh)

with Wy = Wa,, — {(us,4)) : 1 <i<n}. In Wy, we have that N((u4,?)) S N((us,?)) for all
1 < i < n, therefore

Fo(Wy) =~ Fo(Wy)

with Wy = Wy — {(ug,4)) : 1 <1i < n}. We keep doing this until we have erased all the vertices of
the form (usj,4) for 1 < j <r and 1 <4 < n, in this new graph W3, the vertex v, is isolated, and
thus Fo(Ws,) ~ . Therefore

‘FO(WST’,'H,) ~¥] (WST,n - N[Ul]) = E-FlO(I/VBT—l,n)
For £k = 3r 4+ 1, we do the same as in the last case, we take W3,41, — v1 and erase all the
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v2

(b) G(ULl)

Figure 4.4:

vertices of the form (ugj,i) for 1 < j < r and 1 < ¢ < n, and call this graph Ws,. In W3, the
vertex (usq+1,2) is an isolated vertex, therefore I(W3,.) ~ * and

FoWari1n) = EFo (Wari1,n — N[v1]) = SFo(Wap ) ~ S2Fo(War—a,)
For k = 3r + 2, by Theorem 7, we have that
Fo(Win) ~ X (st(vy) n SC(v1))
Now

st(v)) nSC(w) = | (st(vr) nost(w))

wEka,n (’Ul)

For any vertex w, st(w) = Fo(Gw), with Gy = Wy, — N(w) (Figures 4.4(a),4.4(b)).
For any neighbor of vy, st(v1) n st(w) = st(vy) N st((u1,1)) = Fo(T) with

T =Win— (Nw,, [v1] v Nw, ,((u1,1)))
(Figure 4.4(c)). Now, because Nr((u1,2)) < Nr((us,3)) for any i = 2, we see that
Fo(T') ~ EFo(Hi-3,n)-

Now, for any (u1,1), (u1,7) such that ¢, j and 2 are three distinct numbers, if we set K; = st(v1) N
st((u1,1)), then K; n K; ~ * because it is a cone, the vertex (u1,2) is an isolated vertex in the

corresponding subgraph. By Corollary 11,

St]:o(Wk,n,)(Ul) N SC(Ul) = \/ Z]'-O(ka?),n)
n—1
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(b) H3'r+2,n (C) Jl

Figure 4.5:
O
Lemma 61. Fork>2,n>3 andr > 2:
XI(Hp—1n) if k= 3r
Fo(Hyn) ~ 22T (Hr—2,n) ifk=3r+1
(\/ E4F0(Hk_6,n)> v <\/ EQFO(H,C_M)) ifk=3r+2
n—1 n—2

Proof. For k = 3r, we take G = Hs, , —v1 (Figure 4.5(a)). In this graph, Ng((u1,7)) € Na((us, 1))
for all 1 <i < n, so Fo(G) ~ Fy(G1) where

Gi=G— | Na((us, ).

1<i<n

Now, in Gy, Ng((u4,7)) € Ng((us, 1)) for all 1 <1 < n, so Fo(G1) ~ Fo(G2) where

Gy =Gi— | Nal(us, ).

1<ig<n

We keep doing this until we get a graph G, = K; + rKy x K, where the isolated vertex is vs.
Therefore fo(G) ~ % and .FQ(H:),T) o~ Z]:()(Hg,.,n — NHST,n [’Ul]) = Z]:()(ng_lm).
For k = 3r + 1, we take G = H3,41,, —v1 and do the same proces as before, this time in G, the

vertex (usy41,2) is isolated, so Fo(G) ~ *. Therefore

-FO(H3T+1) ~ Efo(Her,n - NHgm [Ul]) = Efo(Hsr,n) = 22-7:0(H3r—1,n)
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For k = 3r + 2, by Theorem 7
Fo(Hin) >~ X (st(v1) n SC(vy)),
st(vr) N st((u1,2)) = Fo(J1),
with J; obtained from Wj_s , attaching a leaf to v; (Figure 4.5(c)), and
st(vy) M st((u1,1)) = Fo(J2),

with Jo = Wy, — N((ug, 3)) (Figure 4.5(d)).

In J; — ((ug2,2)), the vertex (uy, 1) is an isolated vertex, therefore

Fo(h) = SFo(J1 — N[(u1,2)]) = SFo(War—1.0) = \/ Z3Fo(Hs(—2)42)-

n—1

In Jy — ((u2,3)), the vertex (uy, 1) is an isolated vertex, therefore
Fo(J2) =~ XFo(J2 — N[(uz,3)]) = XFo(Hz(r-1)42,n)

Now the intersection of any of these complexes is contrctible, because the vertex (uq,1) is an isolated

vertex in the corresponding subgraph. Thus, by Corollary 11,

by (st(vl) N SC(Ul)) o~ (\/ 24}-0(Hk—6,n)> Vv (\/ ZQFO(Hk—S,n)> .
n—1 n—2

O

Lemma 62. For k > 2 and n = 3, Fo(Hg,n) has the homotopy type of a wedge of spheres of the

following dimension:
(a) 2r if k = 3r.

(b) 2r+1ifk=3r+1ork=3r+2.
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Moreover, for small k we can say how many spheres:

\/ st if k=2
n—2
\/ §? ifk=3
n—2
FolHin) = \/ §? ifk =4
S ifk=5
(n—1)+(n—2)2

\

Proof. For k = 2, the neighborhood of (u;,2) contains the neighborhood of vy, so we can erase
(u1,2). In this new graph the neighborhood of (u3,1) contains the neighborhood of vs, so we can
erase (uz,1). Now the neighborhood of (u1, 1) contains the neighborhood of vy, and the one of (us, 1)

the one of vy, so we can erase (u1,1) and (ug,2). This new graph is isomorphic to Ky x K, _1, so
Fo(Ha,) \/ St

For k = 3, H3y — Np, . [v1] = Han, and Fo(Hsn, — v1) ~ *, therefore
Fo(Hs,) \/ S2.

For k =4, Hypn — Np, ,[0,] = Hsn and Fo(Hy, — v1) = *, therefore
Fo(Hyp) \/ S3.

For k = 5, we know that
Fo(Hs,n) ~ X (st(vr) n SC(N(v1)))

and that

st(vy) n SC(N O
where, taking N(vy) = {u1,...,un—1},
K; = st(v1) nst(u;) = Fo (G — N(v1)) n (G — N(u;)))-

Fori =1, (G— N(v1)) n (G — N(uy)) is isomorphic to W3 ,, with a leaf adjacent to vy, therefore,
erasing all the neighbors of v; but the leaf, we get that

Kl ~ E.FO(WQﬁn) ~ E.FO(KQ X Kn),
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SO
K ~ \/ S2.
n—1

For i > 2, (G— N(vn)) n (G — N(u;)) is isomorphic to Hs ,, with a leaf adjacent to vy, therefore,
erasing all the neighbors of v; but the leaf, we get that

K; ~YFy(Hy,) ~ \/ S2.
n—2

In any intersection of these complexes the leaf becomes an isolated vertex, therefore the intersections

are contractible, so
n—1

st(v1) 0 SC(N(v)) = \/ Ki.

i=1
Therefore

‘FO(H5,7L) x>~ \/ SB

(n—1)+(n—2)2
Using Hs ,, and Hs,, as the base for the induction and the last lemma we get that Fo(Hy,,) has
the homotopy type of the wedge of spheres of the desired dimension. O

From Lemma 61 we see that the homotopy type of Fo(Hy ) only depends of the homotopy
type of the complexes Fo(Hsy42,,), which is, by Lemma 62, the wedge of some number of (2r + 1)-
spheres. If we let h(r,n) denote to the number of spheres in Fo(Hsz,12,) we have the following

recursion relation:
(a) h(0,n) =n—2
(b) h(L,n) =n—1+ (n—2)2 =1+ h(0,n) + (h(0,n))?
(c) h(r,n) = (n— Dh(r —2,n) + (n — 2)h(r —1,n) for r > 2

This recursion can be solved by standard techniques, and better still, once the solution is found,
it is easy to verify by induction. The solution works out to be
(n— 1) —(=1)

h(r,n) = - . (4.1)

Now from Lemmas 61 and 62, we get:
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Lemma 63.
\/ s?r if k= 3r

(r—1,n)

2r+1 : _
]:O(Hk,n)z \/1 )S ka—37"+1

\/ ST+ ifk=3r+2

h(r,n)

Now we can determine the homotopy type of Gy, .

Lemma 64. Fork>2 andn >3

\/§? if k=2
s?r if k= 3r

h(r—1,n)
Fo(Grn) ~ \/ 241
5 S T+

h(r—1,n)

ifk=3r+1

S+ ifk=3r+2andr =1
h(r—1,n)+(n—1)r+1

Proof. For k = 2, Go,, — N[v1] = K3 + K1 p, therefore Fo(G2, — N[v1]) ~ S'. In G2, — v the

only neighbor of wy is ws, so

fo(GQm — ’U1) ~ fo(Ggm — U1 — UQ) >~ .FO(KQ + K9 % Kn) ~ \/ Sz,

and therefore,
Fo(Gan) \/ 2.

For k = 3r,3r + 1, Ggn, — N[w1] is isomorphic to Hy, — v1 and as we saw in the proof of the
Lemma 61, Fo(Hg,, —v1) =~ *. Therefore

Fo(Grn) =~ Fo(Grp —w1).

In G, — w1, the only neighbor of wy is v2, so we can erase all the neighbors of vy except ws and
we get
Fo(Grn —wi) =~ Fo(Ka + Hy—1n) = EFo(Hr—1,n)-

Using Lemma 63, we get the result.
For k = 3r 4+ 2 with » > 1, in the graph Gy, — N[v1] the only neighbor of ws is vs, so we can

erase all the neighbors of vy but for wy and we get that
Fo(Grn — Nlv1]) = Fo(Ko + Hi—2p) = EFo(Hi—2.n),
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which, by Lemma 62, has the homotopy type of a wedge of (2r + 1)-spheres. Now, in Gy, ,, — v1 the

only neighbor of wy is ws, so we can remove v, and obtain
fo(ka — ’Ul) ~ fo(KQ + P x Kn) >~ Z]:()(Pk X Kn),

which, by Theorem 59, has the homotopy type of a wedge of (n — 1)"*! (27 + 2)-spheres, and thus
the inclusion Fo(Gyg,n, — N[v1]) < Fo(Gk,n — v1) is null-homotopic. Therefore,

Fo(Grn) =~ X2 Fo(Hy—2) v SFo(Pr x K,,).

By Theorem 59 and Lemma 63 we get the result. O
For n = 3 and k > 2, we define:

° Wkn as the graph obtained from Wj, ,, by taking the path of length 3 with vertices w;, w, ws

and edges {{w1,w}{w,ws}} and making v; adjacent to wy and vy to ws.

° Hkn as the graph obtained from Hj, ,, by taking two new vertices w; and ws, and making v;

adjacent to wy and v to ws.

Lemma 65.

\/ s if k = 3r
. (n—1)"
Fo(Wi.n) >~ * ifk=3r+1
\/ §* ifk=3r+2
(n=1)r+t
Proof. When k = 3r, in T = Vi/gr,n — N[wi], the neighborhood of the vertex (uj,%) is contain
in the neighborhood of the vertex (us,i) for all i. Then, we can erase the row us form T and
the independence complex of this new graph is homotopy equivalent to Fo(G). In this new graph
the neighborhood of (u4,%) is contained in the one of (ug,%), so we can erase the row ug and the
homotopy type will not change. Continuing with this process until we have erased all the rows wuszy

for 1 < k < r, we obtain a graph which is isomorphic to Ky + rKs x K, so

Fo(T) ~ S Fo(rKy x K,,) ~ \/ s?r.
(

n—1)"

Now, in W3, , — w; the only neighbor of w is ws, so we can erase ve. In this new graph, the
neighborhood of (u3,, #) is contain in the one of (us,—2,1), so we can erase the row uz,_s. Continuing

this process as before, we erase the rows ugg_s for all 1 < k < r. At the end of this, the vertex vq
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is an isolated vertex, so fo(WgT’n — w1 ) ~ = and therefore

Fo(Wsrn) = SFo(T) = \/ $¥*.

(n—1)r

For k = 3r + 1, as before we take T = W37-+17n — N[w1] and erase the rows ugy for 1 < k < r, we
get a graph in which the vertex (ug,1,2) is an isolated vertex, then Fo(T) ~ * and fo(Wngan) ~
fo(Wgr’n —wi). In Vcifgr“,n — w1, the only neighbor of w is wy, so we can erase vs. In this new
graph, the neighborhood of (ug,+1,%) is contained in the one of (us,.—1,), so we can erase the row
us-—1. Continuing this process as before, we erase the rows ug,_1 for all 1 < k < r. At the end of

this, the vertex (u1,2) is an isolated vertex, so ]:()(Wgr+1,n — w1 ) ~ * and therefore
Fo(Wsri1,m) >~ =

For k = 3r + 2, as before we take T = VO[/37=+21n — N|w;] and erase the rows ug, for 1 <k <r. In
this graph the neighborhood of (us;+1,2) is contain in the one of vs, so we can erase ve and ws

becomes an isolated vertex. Therefore
FoWspion) = Fo(Wsri2n —wi).

In Wngm — w1, the only neighbor of w is wsy, so we can erase vs. In this new graph, the neigh-
borhood of (ugy42,7) is contain in the one of (us,, %), so we can erase the row us,. Continuing this
process, we erase the rows ugy for all 1 < k < r. In this graph the neighborhood of v; is equal to

the one of (ug,2), so we can erase vy, therefore

FoWsrian) = Fo(Kou (r+ DKy x Kp) = \/ 82

(n—1)r+1
]
Lemma 66.
S? if k=2
Fo(Hy.n) ~ S3 ifk=3

S2Fo(Hy—2y,) forallk >4
Proof. Because N(w;) = {v;}, we can erase the vertices (u1,%) and (ug,j) for i > 1 and j # 2. Now
1. If kK = 2, the resulting graph is isomorphic to 3K5.
2. If k > 4, the resulting graph is isomorphic to 2K 1 Hy_3 .
3. If k = 3, the only neighbor of (us,1) in the resulting graph is (us,2), so we can erase al the

vertices (ug, ) with ¢ > 2. This new graph is isomorphic to 4K5.
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Before we prove the main result of this section, we need the next lemma.

Lemma 67. For v = (u1,1) € V(C, x K,,), the complex st(v) n SC(v) is the union of complexes

Xl, . 7Xn71’Y1’ .. ~3Yn71; where

1. Forany i, X, =Y; = Fo(Groan)-

o

2. Foranyiandr =17, X;nY; = Fo(W,_5.1).

3. Foranyi#jandr=7 X;,nY; = Fo(Hr—5).

4. Foranyi#j, Xin X; ~x=>Y;nY;.

5. Forany Ly,..., Ly, withm >3 and L; € {Xq,...,Xp-1,Y1,...

ﬂLj:*

m
j=1

Proof. By definition
SCw) = [J st(w)

ueN (v)
and in C, x K, |[N(v)| = 2(n — 1), we call

X; = st(v) m st((uz,i+ 1))

and
Y; = st(v) n st((up,t + 1))

,Yo_1}, we have

Now, X; is the independence complex of the induced subgraph given by de set

S; =V (Cr x K,;) — (N(v) u N((uzg,i+ 1)))

where, taking w = (uq,i + 1),

N(w) v N(w) = {(uz,4) : §>1} 0 {(un,5): §> 1o {(ur,4): j#i+1o{(us,j): j#i+1}

therefore (Cy x Kp,)[Si] = Gr_an-

Now, X; n X, = Fo((Cr x K,,)[Si] n (Cr x K,)[S;]), with ¢ # j, in (C,. x K,,)[Si] " (Cr x K,,)[S;]

the vertex (ug,1) is an isolated vertex, therefore X; n X; ~ %. For Y/s is analogous, with (u,, 1)

being the isolated vertex. Now, for the intersection of more than 2 complexes, one or both of these

vertices are isolated.
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(a) Kl N Lz (b) Kz [l Lj

Figure 4.6:

Now, taking S; as before and
Rj =V(Cp x Kpn) = (N(v) v N((ur,j +1)))
taking t = (u,, i + 1)
N(v) UN(t) ={(ug,l) : I >1} U{(up,l): I>1} o {(u,l): T#5+1} o {(up_1,0): 1 #7541}
Then X; nY; = Fo((Cr x Ky,)[S; n R;]) and

o

o Ifi= j, then (CT X Kn)[SZ N RJ] = Wr—5,n'
o If i # j, then (C, x K,))[S; n R;] = H, 5.
Remember from equation 4.1 that h(r,n) = M

Theorem 68.

\/ s ifk=3
2(n—1)
\/ s ifk=4
(n—1)
2 ; —
Fo(Cr x Kp) ~ \/2S ifk=5
s3 ifk=6
(n—1)(3n—2)
Sl ifk=3r andr =3

n(n—1)h(r—3,n)+2(n—1)"
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Proof. For k < 5, we have already seen it. For k = 6, we now that

Fo(Cs x Kp) ~ Est((u1,1)) n SC((u1,1))

where
SC((u1,1)) = U st((us,m—1)) |u U st((ug,2))
R g
Making the intersecction we get Ki,...,K,_1,L1,...,L,_1 complexes which are isomorphic to

Fo(G2,n), which has the homotopy type of an wedge of n 2-dimentional spheres. The intersection of
any K; and L; is ismomorphic to the independence complex of the graph in Figure 4.6(a), which has
an isolated vertex, so K; nL; ~ #. For ¢ # j, the complex K; n L; is isomorphic to the independence
complex of the graph in Figure 4.6(b), which is homotopy equivalent to S'. The intersection of
three or more of these complexes is always contractible. Therefore, st((u1,1)) nSC((u1,1)) has the
hompotopy type of the wedge of 2(n — 1) copies of \/ S? with (n—1)(n —2) copies of S?. Therefore

]:0(06 X Kn) ~ \/ S3
(n—1)(3n—2)

For k = 3r with r > 3, by the Lemma 67, st(v)nSC(v) is the union of complexes Ki,..., K,_1,L1,...,Ly_1,

where
1. For any i, K; = L; = Fo(Gr—a.n)-
2. For any i, K; n L; =~ fo(Wk_&n).
3. Forany i # j, K; n L; = fo(ﬁk_&n).
4. Forany i # j, Kin Kj ~ =+~ L; n L.

5. For any X1,...,X;, with{ >3 and X; € {Ky,...,K,—1,L1,...,L,_1}, we have
!
j=1

So we have 2(n — 1) copies of Fo(G3(r—3)+2,n), Which has the homotopy type of the wedge of
h(r —3,n) + (n — 1)"~! copies of S** =2, (n — 1)(n — 2) copies of .7'—0(1?[3(7-_2)_;'_17”) which has the
homotopy type of

S Fo(Hs(r—3)42,n) = \/ s?r=3
h(r—3,n)(n—2)
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and n — 1 copies of fO(VT/;;(T_Q)H,n) ~ %. By Proposition 10 and taking its suspension we get that

]:()(Cg,« X Kn) >~ \/ S2T_1
n(n—1)h(r—3,n)+2(n—1)"

Theorem 69. Forr > 2:
(a) T (Fo(Cari1 x Ky)) = 0 = w1 (Fo(Csria x Ky)).
(b) fIq(.FO(C’3r+1 x Kp)) =0 for all g # 2r,2r — 1.
(¢) Hy(Fo(Czpyo x K)) =0 for all g # 2r + 1,2r.

(d) Fo(Csry1 x K,,) has the homotopy type of a wedge of 2r-spheres, 2r + 1-spheres and moore
spaces of the type M (Zyy,, 2r).

(e) Fo(Cspry2 x Ky,) has the homotopy type of a wedge of 2r + 1-spheres, 2r + 2-spheres and moore
spaces of the type M (Zy,, 2r + 1).

Proof. From Lemma 67 and Theorem 7, for s = 1,2, Fo(Carys x K,) ~ 3(X 0Y), where

n—1 n—1
X=X, V=]V, Xi=Fo(Garisan) 2V
i=1 i=1

and

for any S < {1,...,n — 1} and |S| = 2. By Proposition 10, Lemmas 67 and 64,

\/ SQT—3+S ~Y

(n—1)h(r—2,n)

s
2

By the Seifert—van Kampen Theorem (see [28] Theorem 7.40), (X vY) = 0.
Now, for C5,+1 x K, by Lemma 67,

XAY = U X;nY;

where
XinY; = Fo(Ws(r—2)+2,n)

X; 0 Yy = Fo(Har—zy1a,) fori # j
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and (X; nYj) n (X, nY;) ~ = By Proposition 10

Xay~| \/ 1 (ﬁg(r_2)+2,n) v (\/ I (W3(r—2)+2,n)>

(n—2)(n—1) n—1

By Lemmas 63, 65 and 66a,

XnY ~ \/ S¥r—2,

(n—1)"+(n—2)(n—1)h(r—3,n)

Then, by the Mayer-Vietoris sequence, taking K = X uY,
0—— ]:Igr_l(K) — 7797 —— H2T_2(K) ——0

where | = (n —1)" + (n — 2)(n — 1)h(r — 3,n) and d = (n — 1)h(r — 2,n). Therefore H,(K) = 0 for
q # 2r — 1,2r — 2 and taking the suspension we get the result. For C3,,.5 x K, is analogous.

Parts (d) and (e) follow form the previous parts (see example 4C.2 [16]). O

Proposition 57 tell us that for any k Fo(Cy x K5) has the homotopy type of a wedge of spheres
of the same dimension and Theorem 68 tell us that for k¥ = 3r and any n this is also true, so one can
ask what happen for the other k’s. For k # 0 (mod 3), the last Theorem tell us that the complex
may have nontrivial homology only in two consecutive dimensions; and by calculations done with
Sage we know that for C; x K3, C7 x K4, C7 x K5, Cg x K3,C19 x K3,C19 X K3, their independence
complexes have non-trivial free homology groups in these two dimensions. From all this we can ask

the following question:
Question 70. Are the homology groups of Fo(Ck x K,,) always torsion-free?

An afirmative answer would tell us that Fo(Cy x K,,) always has the homotopy type of a wedge

of spheres.

4.2.3 Independence Complex of Ky x K,, x K,

In this section we will calculate the homotopy type of Fo(Ky x K, x K,,). We take the following
polynomial.
(—Dn—-1)(m-—1)(Inm—4)

f<l7n7m) = 4

Proposition 71.
]:()(KQ X Kn X Km) ~ \/ SS
)

f(2,n,m

Proof. We take G = K5 x K,, x K,,, then:
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(2,1,2) (1,2,1)

(1,2,m) (2,1, m)
(2,1,1) (1,2,2)
(1,3,2) (2,3,1)

(2,2,1) (1,1,2)

Figure 4.7: G[S] = Qn.m

e If either n or m is equal to 1, then f(2,n,m) = 0.

o If n =2 then
Fo(G) = Fo(Kz x Kp)  Fo(Ka x Kp) =~ \/ 8
(

m—1)2

and the formula holds. The same is true for m = 2.
e If n =3, then f(2,3,m) is the formula for Cg x K,,. The same for m = 3.

Assume that n,m > 3. Because K is one of the factors in the product, G has no K3 and by
Theorem 7
As before, st((1,1,1)) n SC((1,1,1)) = U (st((1,1,1)) n st(v))

veNg((1,1,1))
We will first see that each of the complexes of this union is homotopy equivalent to the wedge of

n+m—3 spheres. For (2,2,2), st((1,1,1)) nst((2,2,2)) = I(G[S]) with S = V(G) — N¢((1,1,1)) u
Ne((2,2,2)). Now S =0 u T, with

oc=1{(1,2,1),(1,2,2),...,(1,2,m),(1,1,2),(1,2,2),...,(1,n,2)}

and
r={(2,1,1),(2,1,2),...,(2,1,m),(2,1,1),(2,2,1),...,(2,n,1)}

therefore, G[S] is the graph in Figure 4.7, which we will call @, ,,. Beacuse n,m > 3, m +n > 6.
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If m +n = 6, then m,n = 3 and if we remove the vertex (2,1,1) and its neighbors, we get the

disjoint union of two copies of Ps, therefore Fo(Q33 — Ng,,((2,1,1)) ~ St. Now, Q33 — (2,1,1)

is isomorphic to Cg plus a vertex v adjacent to two vertices in Cg which are at distance 4; if we

remove this vertex and its neighbors we get two disjoint copies of Pj3, therefore, by Proposition 6,

Fo(Qs3 —(2,1,1)) ~ S? v S2. Then, again by Proposition 6, Fo(Qs,3) ~ \/82. Assume that for
3

all 6 <n+m <k, Fo(Qnm) ~ \/ S? and take Qn,m such that n + m = k + 1, without loss of

n+m—3
generality assume that m > 4. Now, in F' = Q,, m — Ng,, ,.[(1,2,3)] the only neighbor of (1,2,1) is

(2,1, 3), therefore Fo(F) ~ Fo(F — R) with
R=1{(1,2,2),(1,2,4),...,(1,2,m),(1,3,1),...,(1,n,2)}

and F — R =~ My, and thus Fo(F) ~ S'. Now, in T' = Q.m — (1,2,3) Nr((2,1,4)) = Nr((2,1,3)),
by Lemma 5, Fo(T) ~ Fo(T—(2,1,3)). Because T—(2,1,3) = Qn .m—1, by the inductive hypothesis,

Fo(T)~ \/ ¢,

n+m—4

and by Proposition 6,
Fo(@um)~ \/ S

n+m—3

Now,
(st((1,1,1)) nst(v)) n (st((1,1,1)) nst(u)) = st((1,1,1)) n st(u) n st(v) = I(G[A]),

with A = V(G) — Ng((1,1,1)) u Ng(u) n Ng(v). There are two possibilities

e ¢ and v have two coordinates equal. Assume that v = (2,a,b) and v = (2,a,c), with b,c > 1
and b # c¢. Take (2,a,1),(x,y,2z) € A. If x = 1, then y = a because b # ¢. Therefore
(2,a,1)(x,y,2) ¢ E(G) for all (z,y,z) € A and Fo(G[A]) ~ =.

e ¢ and v have only on coordinate equal. Assume u = (2,a,b) and v = (2,¢,d), with a # ¢,
b#dand a,b,c,d > 1. Then

A={(1,a,d),(1,¢,0),(2,1,1),(2,1,2),...,(2,1,m),(2,2,1),...,(2,n,1)}
In G[A], the only neighborhood of (2,1,d) is (1, ¢, b) and only one of (2,¢,1) is (1,a,d), so we

can erase all other vertices without changing the homotopy type, and therefore Fo(G[A]) ~
fo(MQ) ~ Sk

Therefore, the inclusion of the intersection of two complexes of the union st((1,1,1)) n.SC((1,1,1))
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is null-homotopic. Now, the intersection of three complexes is equal to Fo(G[D]) with D = V(G) —
Ny((1,1,1)) U Ng(u1) n Ng(uz) n Ng(ug). There are two possibilities

e If three vertices have only the first coordinate equal, (2,a,b),(2,¢,d), (2,¢, f), then the only
vertices with the first coordinate equal to 1 that are not neighbors of (2,a,b) or (2,¢,d) are
(1,a,d) and (1, ¢,b), which are neighbors of (2, e, f), therefore

D= {2} X V(Kn) X V(Km)

and
Fo(G[D]) ~ =.

e If two vertices have two coordinates equal, the intersection is a cone as with only two vertices.

Then the union st((1,1,1)) n SC((1,1,1)) achieve the hypothesis of Proposition 10. Now (1,1,1)
has (n — 1)(m — 1) neighbors and for each neighbor there are another (n — 2)(m — 2) neighbors
differing in two coordinates, these pairs are counted twice, therefore st((1,1,1)) n SC((1,1,1)) is
homotopy equivalent to the wedge of

n—1)(m-1n-2)(m—-2) nm-—1)(m-—1)2mn—4)

(n=1)(m—-1)(n+m-3)+ 5 = 1

spheres, and taking the suspension we arrive at the result. O
We finish this section with the following conjecture.

Conjecture 72.

FolKp x Ky x K;) ~ \/ S?
f(n,m,l)

The independence complex of square grid graph P, O P, has been studied for many cases [9, 21].

Here we study the case P, O P, for the forest complex.

Proposition 73.
S4r—1 if k=3r
Foo (PoOPy) ~ * ifk=3r+1
S¥+2 ifk = 3r + 2.

Proof. By Theorem 32, Fo, (P» O Py) is simply connected. We will show that it has at most one

non-trivial reduced homology group. The Alexander dual of F,, (P, O Py) has as maximal simplicies
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the complements of X; = {(¢,1), (i + 1,1),(¢,2), (i + 1,2)} for 1 < ¢ < k — 1. Taking U; = X{ and

U the cover formed by these U;, we have that
N(U) = Fg(Pr).

It is standard that [19]:
sr=1 if k = 3r
Fo(Po)~{ %  ifk=3r+1
St itk =3r+2.

Thus, by Theorem 3, A (U) has non-trivial reduced cohomology groups if k = 3r or k = 3r + 2, in

which case the groups are in dimensions are 2(r —1) and 2r — 1 respectively. Therefore Fo, (P, O Py)

is contractible if k = 3r + 1 and

. 7Z ifqg=4r—1
H,(Fo (PoOP3;)) =
(P2 (RO Py)) {0 IS

~ 7 ifq=dr+2
Hq (‘Foo (P2|:|P3r+2)) 2{

0 ifq+#4dr+2.

By Theorem 1, in these cases the complex has the homotopy type of a sphere of the desired

dimension.
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Chapter 5

Homotopy type calculations 11I:

Lexicographic products

In this last chapter we will study the complexes of some lexicographic products and will see its
relation with polyhedral joins. Remember that the lexicographic product G o H is the graph
obtained by taking a copy of H for each vertex of G and all the possible edges between two copies
if the corresponding vertices are adjacent in G. First we will see that the independence complex of

a lexicographic product has the homotopy type of a homotopy colimit.

Proposition 74. Let G and H be two graphs. Then Fo(G o H) ~ hocolim X, with X a punctured

n-cube, where Fo(G) has n maximal simplices o1,...,0,,

and ng =

Mo

i¢S

Proof. By definition, the maximal simplices of Fo(G o H) are given by taking a maximal simplex o
of Fo(G) and for each vertex of o taking a maximal simplex in the corresponding copy of Fo(H).
Fixing o and taking all the possible combinations of maximal simplices in the copies of Fo(H), we
get the simplicial complex

Xo = % Fo(Hy)

ueo
where H, is the copy of H corresponding to the vertex w. Thus, if o1,...,0, are the maximal
simplices of Fo(G), then

Fo(GoH) = U X,,.
=1

(3
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Taking the punctured cube X’ given by the intersections we get a cofibrant punctured cube satisfying
Fo(G o H) ~ hocolim X' O

Now we will see that for the second factor only the homotopy type of its independence complex

matters.
Theorem 75. Let Hy and Hy be graphs such that Fo(Hy) ~ Fo(Hz), then Fo(GoHy) ~ Fo(GoHs).

Proof. If 01, ..., 0 are the maximal simplices of Fy(G), taking G; = G[o;], X; = Fo(G; o Hy) and
Y; = Fo(G; o Hy), we have that X; = Fo(H;)*l7!| V; = Fo(Ho)*lil.
From this, Fo(Go Hy) = Xy u---u Xy and Fo(Go Hs) = Y U--- U Y. We take the punctured
k-cubes
X(S)=()X;, and ¥(9) =YV
eS¢ eS¢
with the inclusions as the maps. If f : Fo(H;) — Fo(H2) is a homotopy equivalence, taking
fs : X(S) — Y(S) the corresponding induced homotopy equivalence if ﬂ o; # &, we have

€Se
that the collection of maps {fs : S € P1(k)} is an homotopy equivalence between the punctured

cubes. O

Now, the homotopy type of Fo(G o H) does depend on finer details of G than just the homotopy
type of its independence complex: for example the independence complexes of P; and Ps have the
same homotopy type [19] but the ones for the corresponding lexicographic products do not have
to agree. In [24] the homotopy type of Fo(P, o H) is given when Fo(H) is homotopy equivalent
to a wedge of spheres and in [26] for any graph H, here we will determine the homotopy type
of Fo(P, o H) for any graph H and all n with a different proof. For this we need the following

polynomials:

aO(xay) = 07 bo(l‘,y) =Y, CO(I7y) = 2y

and for r > 1,

ar(z,y) = 2ybr_1(x,y) + (x + zy)a,_1(z,y) + "'y,

br(2,y) = wycr1(z,y) + (x + zy)br1 (2, y) + 2"y,

or(@,y) = zyar(z,y) + (# + vy)er—1(2,y) + 22"y.
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Theorem 76. For any graph H

Fo(H) ifn =1
Fo(H) u Fo(H) ifn =2
2 (Fo(H)"?) u Fo(H) ifn=23

sy \/ VEFRH)Y)  ifn=3r>6
ar(z,y) aij
\V V E R ) ifn=3r+1>4
b,,w(m,y) bLJ
s'v \/ VEFE)Y)  ifn=3r+2>5

cr(m,y) Cij

Fo(PpoH) ~ <

where z;; is the coefficient of the term x'y’ of the corresponding polynomial.

Proof. For n = 1,2, 3 the theorem is clear. For n = 4, Fy(P, o H) is the union of three complexes
X1, Xo, X3 isomorphic to Fo(H)*? corresponding to the edges of P§. We compute the homotopy

type of the union via pushouts:

16} — 16}
S T
Fo(H) L = Fo(H) Fo(H)*?
Fo(H) Fo(H)*?
Fo(H)*2 \2‘/?0(117)*2 v SFy(H) — \3/.7-'0(H)*2 \2/ SFo(H)

For n = 5, Fo(Ps o H) is the union of two complexes X; = Fo(H)*? and Xy =~ Fo(P; o H), where
Xin Xy > |_|fo(H). Therefore, by Lemma, 9,
2

Fo(Pso H) =~ Fo(H)** v \/ Fo(H)** v \/ Fo(H) v S".

3 4
For n = 6, Fo(Ps o H) is the union of two complexes X; =~ Fo(H) = Fo(Py o H) and X5 =
Fo(H) = Fo(P3 o H), where X1 n Xo =~ Fy(P3; 0 H). By Lemma 9,

fo(P(;OH) sz(H)*.Fo(P4OH) Vfo(H)*fo(PgOH) VEfo(PgoH)



= \/ Fo(H)** v Fo(H)** v \/ SFo(H)** v \/ SFo(H) v S".
3 2

Forn > 7,
Fo(Puo H) = (Fo(H) % Fo(Pa—z o H)) U (Fo(H)  Fo(Pos o H)).

Therefore Fo(P, o H) has the homotopy type of the homotopy pushout of

Fo(H) # Fo(Pr—g o H) <—Fy(Py—3 0 H)—— Fo(H) = Fo(Pr—30 H)
and from this, by Lemma 9,

Fo(P,oH) ~ Fo(H) « Fo(Pr—20 H) v XFy(Py—zo H) v Fo(Pp_30 H)

The rest follows by inductive hypothesis.

Now we give the generating functions for the polynomials of the last Theorem. Taking

F(t) = Z ar(x;y)tra G(t) = Z br(xay)tra H(t) = Z Cr(zvy)tra

r=0 r=0 r=0

we have that:

F(t) = 2ytG(t) + (x + xy)tF(t) + Z "yt

r=1

G(t) = zytH(t) + (z + 2zy)tG(t) + y + Z z"yt"

r=1

H(t) = 2yF(t) + (z + xy)tH(t) + 2y + 2 Z z"yt"

r=1

Taking K (t) = Z 2" tyt” we see that

r=1

7



yt

Therefore K(t) = T — and
F(t) = aytG(t) + (z + zy)tF(t) + 1 gtnmt
G(t) = xzytH(t) + (z + zy)tG(t) + y + 1?;
H(t) = ayF(t) + (z + zy)tH(t) + 2y + 12fy;t
From this we obtain:
xyt yt
PO = T Y T e —an
xyt Yy
O = v T T v e —on
Ty 2y
K e e AR (e EE DIy

Solving these equations we arrive at:

— (223 + 22?3 + (223 + 22 — 2%y%y — 22y% — aY)t? + (2y?® +y — 2Y)t
(1 —at)[(1 — (x + zy)t)3 — x3y3¢?] ’

F(t) =

and from this the other generating functions can be easily obtained.

We now give a formula for the homotopy type of the suspension of Fy for any lexicographic
product in terms of the Fy’s of the factors and induced subgraphs of the first factor. For this,
notice that the independence complex of a lexicographic product is a polyhedral join, as has been

pointed out in [25].

Theorem 77. For any graphs G and H,

SR(GoH) = SF(@) v\ Y (ﬂ (G— U Nm) *foun*"’) |
)

oceFo (G vET
Proof. By definition, Fo(G o H) :E}'o(G) (Fo(H), ). Then, by Theorem 14, we have that

E.Fo(G o H) ~ ZfO(G)(Zfo(H),SO),
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and by Theorem 13,

Zroe)(SFo(H),S”) ~2F(@) v \/ Z( < —JN[v )wfo )*a|)

oeFo(G) vET

As an immediate corollary we have the following:

Corollary 78. For any graph G such that Fo(G) is connected and any graph W,

f{q(fO(GOW)) ~ f{q(fo(G))@) (—D ﬁq (fo ( U Nv ) x Fol )*al) )

oeFo(G) vET

The last theorem gives us an equivalence between the suspensions of two spaces, so it is natural
to ask if the formula is true without suspending, for some G. For example, for n = 5,6 is not hard
to see that

Fo(CpoH)=Fo(Co) v \/ k(o) Fo(H)*l.

oc€Fo(Cr)

Question 79. Is the above homotopy equivalence valid for other positive integers n?

Also, using the same proof of Theorem 76 it can be show that for n > 4, the homotopy type of
Fo(P, o H) follows the formula of Theorem 77, but without the suspension. So another question is

the following:
Question 80. For which graphs G, with Fo(G) connected, is it true that
Fo(GoH)~Fo(G) v \/ ( ( — N > x Fol )*o>
0ceFo(G) vET
for all H?

Now for any graph G, the graph K5 oG is also the graph join of two copies of G and Lemma 42
give us the homotopy type for this product, so we get that for G a graph of order n we have that:

1. Fi(Ky0G) ~ \/Jf1 \/Sl.

n2—1

2. If Fo(G) is connected, then, for all d > 2

Fa(Ka0G)~ \/ sk, \Fo(G)v \/ $*v \/A

2n—2 (n—1)2

where A = F4(G) v C(sk,_, Fo(G)).
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Now we can see that in contrast with Fp, the homotopy type of the second factor does not
determine the homotopy type of Fy(G o__) for d > 1. It is known that Fo(Ps) ~ Fo(Ps) ~ S!
and Fo(Py) =~ # (see [19]), by Proposition 33 F;(Ps) ~ F1(Ps) ~ *, and it is not hard to see that
sk1(Fo(Ps)) ~ S v St and sk;(Fo(Py)) ~ *. From all this and Lemma 42 we have that

F1(Kz 0 Ps) \/SIQSVSl Fi(K3 0 Fg),

Fo(Kyo0 Py) ~ \/S2 \/§* ~ Fa(Kz 0 Py),
36

and for d > 3
Fa(Kz o0 Py) ~ \/SQ;ﬁ\/SQ Fa(Ks 0 Ps).

26
Until now we only have worked with Fy; for d > 1, sadly F4(G o H) is not a polyhedral join but

E}‘d(g) (AV(H), @) is a subcomplex. Now, for H = K,, we will make calculations for some graphs

G.

Proposition 81. For any r and n,

Fi(KinoK,)~ \/ sty \V oosh
(7‘;1)"

(-1 +('5")

I SV VAR VE:

(3" rfy y (rn=1) (2)

and for d = o0,
Fo (K150 Ky) ~ \/ sty \/ S™ v \/Sl.
(7 e
Proof. For d =1 the result follows from Lema 42.
We take 0,1,...,n as the vertices of K7, with 0 the vertex of degree n and K} the copy of K

corresponding to the vertex i.
For2<d<n-1,F;(KinoK,)=X0Y uZ where

X=V(E)5Z, o (shoKy @), Y = Fa(K) \/S1

skg_

Z= % Fiki)~ \/ s*L
- (T;l)n
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We have that Y n Z = J, X nY = skyY and

®
XnZz :Zskd_lAnfl (SkOKm@) = \/ st
fa_q(rn=1)

Once again we compute the homotopy type of union via homotopy pushouts as explained at the

S

/s - Vs’ Vs
r—1 (3"

end of the preliminaries:

e

%]

1)

\/ Sd_ 1 \/ SQn—l

fyq (rn—1) (rgl)n

N N

S¢ hocolim(S") —— hocolim(S)
(r—l)fd71 (ry,n—1)

where &’ is the diagram of the bottom of the cube. Then

hocolim(8’) ~ \/ sty \/ s¢
(Tgl)"

" a1 (ryn—1)

and the rest follows from this.
Now, for d = o0, Fo (K1,p0 K) = X UY U Z where Y and Z are as before, and

X =7, (shoK,. @)~ \/ S"

(r—1)n+1

As before, Y n Z =, X nY = skgY and

XnZ=7, , (skK.2)~ \/ 5"
(r—=1)™

Again we use the technique we’ve been using to compute the homotopy type of the union via
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homotopy pushouts:

I .

\/ SO ™ \/ S(] \/ Sl

r—1 r—1 (3"

e

1)

\/ Sn—l \/ S2n—1

(r=1)n (r;1)n

N N

s® hocolim(S’") —— hocolim(S)

(7‘71)"4'1

where &’ again is the diagram of the bottom of the cube. Then
hocolim(8’) ~ \/ sty \/ sm™.
(7‘51)” (r—1)n
The result follows. O

Proposition 82. For any integers n,m,r = 2,

SFo(Enmo )= \/ §"v \/ v \/s" v \/sm v /8,
(1;1)n (7-;1)m a b c

where a = m(r — )" + m?(r — )™, b=n(r — )™ +n?(r — 1)" and ¢ = (rn — 1)(rm — 1).

Proof. Assume U = {uq,...,u,} and V = {v1,...,v,} are the partition of the vertices of K, ,.

Taking

*

(skoKp, @), Y =2 (Kr, @), W =2, (Kr, D),

A

*
X =7

Foo(Kn,m)

we have that Foo(Kpm o Ky) =X Y UW. Now, Y nW =X nY nW = and

" *
XnY =Z v (skoKy, ), X n W =Z v (sko Ly, ).
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Taking any vertices u; € U and v; € V, we can factor the inclusions to X as

XnYC > Z V(K,), &) X
A

Uo{v;} (

XAWe—sZ (V(K,), &) X

AVeoiui}

where the first inclusions are null-homotopic. Therefore
hocolm(X Y «— X nW — W)X UY vWvEXnW)

and
hocolim (X «— X nY «—— YY)~ X vY vI(XNnY)

From where we obtain that
FoKpmoKy) X vY VW VvEXnW)vEXnY)

*
Now, for XF, (K, m oK, ) we only need to determine the homotopy type of & Z o en ) (sko K., ).

Now,

* A
X Zr, enm SkoKp, D)~ 2, (\/ Sl,S(’)

r—1

Because the inclusion of S in a wedge of copies of S' is null-homotopic, we have that

ZAI@(Kn,m) (\/ 81780> >~ Zfoo(Kn,m) Y \/ lk((r) % D(O’),

r—1 c€F o (Kn,m)

We have D = /\ \/S1 ~ \/ S‘”l, and thus

|Cf‘ r—1 (r—])\f’\
ZAFOO(K”’M) <\/Sl,SO> ~ X Fo(Kpm) Vv \/ \/ ElaHllk‘(U)
r—1 0€F o (Kn,m) \(r—1)lvl

If we take any two vertices from U and any two from V', we get a cycle. Therefore |c nU| < 1 or

|o N V] <1 for any simplex o. Take 0 € For (K, ). There are two possibilities:

e o is totally contained in U or V. Assume o € U. There are two cases:

83



1. If |o| = 1, then
k(o) = (skoAY + AV=7) U AV

and
lk(0) ~ hocolim ( «— skgAY — ) ~ \/ st

m—1

2. If |o| > 1, then

* if o] <n

~ \% U—-o
Zk(o) >~ sko AV * A ~ \/ SO if |0_| = n.
m—1

e 0 nU # @ #0nV. Assume |0 n U| = 1. There are three cases:

1. If 2 = |o|, then k(o) = AV =7 LU AU~ and thus is homotopy equivalent to S°.
2. If 2 < |o| <m + 1, then k(o) = AV~ and therefore is contractible.

3. If |o] = m + 1, then o is a maximal simplex and lk(o) = .

Therefore:
r—1 c a’ b’

where ' = (m — 1)(r — )" +m(r — D" 0 = (n—1)(r — )™ +n(r — 1)+ and ¢ = nm(r —

D2+nm—1)r—-1)+mh-1)Fr—-1)+mn-1)(m-1)=(n—1)(rm—1). O
Theorem 83. For any positive integers r,ny,...,ng = 2, with k = 3 and G = K,,, .. n, o K, we
have that
k
2]:00<G) ~ \/ \/ SQni v \/S’rlrfl v \/S?) v \/ SQ
=1 (7‘;1)"1‘ a; b (k;l)
where
ai=(r—1)" 4+t +1)(r— 1" t,(r —1)™,
k
= Z(nl —1(n; —1)+ Z ning(r — 1) + Z tini(r — 1), and
i<j i<j i=1
ti = Z nj -1
Jj#i
Proof.

-------
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For all i,
* * *
Z}'oc<Kn1 ..... ng) (sko Ky, F) N ZAVi (K, D) :ZAVi (sko Ky, &) -

As in the proposition before, we take v € V; with j # i. Then the inclusion factors as

% % *
ZAVi (SkOKMQ) <—>ZAV1.U{,,} (SkOKra @) ‘—>Z-7:Cx7(Kn1,...,nk) (SkOKmQ)v

and is thus null-homotopic. Therefore,

k
FoolG) 2Zs, . (skokr, @) v \/ (z v, (Kn@)vEZ,, (skOKT,Q)) :

..... ) A
i=1
For the suspension, as in the last proposition, we have that

N *
E Z]—‘w(Knl ,,,,, ny) (SkOKT7 Q) = E‘FOC(Knlw"'vnk) v \/ lk(a)* D (J)
0€F e (Kny,. .. ny,)

~ Efgo(Knl ,,,,, nk) V \/ \/ Z‘O‘l-‘rllk(o_)
Ue]:%(Knl,...,nk) (T—l)\”\

Now,

Efoo(Knl,...,nk> ~ \/ SQ Vv \/E}—OO(Km,nj)'

(k;l) i<j

Because any three vertices v; € V;, v; € V; and v; € Vj, with ¢ < j <[, form a cycle, the simplices
with vertices in two V;, V;, with ¢ # j, have the link as in the corresponding bipartite graph.
Therefore, if o is a simplex such that o " V; # & # 0 NV}, for i # j, and |o n V;| = 1, there are

three cases:
1. If 2 = |o|, then lk(o) = AYi=7 Ly AYi=9 and thus is homotopy equivalent to S°.
2. If 2 < |o| < nj + 1, then lk(o) = AYi=% and therefore is contractible.
3. If |o| = n; + 1, then o is a maximal simplex and k(o) = .

Now if ¢ is a simplex such that o < V;, then

(L)) ()

lk(o) ~ hocolim (* — |_| skoAYi — *> ~ \/Sl_
t;

J#i

1. If |o| = 1, then

lk(o

12

and
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2. If |o| > 1, then

* if |o| < n;

~ Vj Vi—o o .
lk(o) = <|_| skoA ) *A = \/SO if lo| =n;
t;

J#i

Theorem 84. For 1 <d < min{n — 1, m — 1},
SFa(Knmo K,) ~ \/82 v \/S3 v \/SCIJrl v \/ S v \/ s
aq ba cd (Tgl)’ﬂ (T;1)m

where a; = r’nm—1, by = ¢; = 0 and, ford > 2, ag = (n+m)(r—1), bg = nm(r—1)2+(m—1)(n—1),

and

TR (P 8 8 R A o R e Lo
) e

o) e R T

K3

Proof. Assume U = {uq,...,u,} and V = {v1,...,v,,} are the partition of the vertices of K, ,.
Taking
* * k
X :Z}'d(Kn,m) (skoK;, &), Y =Z v (K, &), W =Z v (Kr, &),

we have that Fy(Ky, m oK) =X Y UW. Now, Y nW =X nY nW = J and
* *
XnY =2, (shoK,, &), X0 W =2, (V(K;), D).
The inclusions X nY «—— Y and X n Z —— Z are null-homotopic, therefore

Fa(KnmoK) = \/ 71 v \/ "' v hocolim(8),
()" ("2)"

where

S: xUs<—-XNYUX"W——s X

Now, if we define a new complex K from Fu(K,, ) by gluing two new simplices AV = {uy} and
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AV« {vg}, with ug, vo new vertices, we have that K ~ Fy(K,, ) and
*
hocolim(S) =2, (L, d) ,

where L, = skoK; = L, for i,j >0 and L,, = pt = L,,. Now,

2, (L @) > SFaKnm) v \/ \/ S7Hk(0).

oeK (r—1)lel

For any ¢ which contains ug or vy, 15(0) ~ #, therefore we only need to know the link for simplices
without those vertices. Take U’ = U u {up} and V' =V U {vp}

e If o € U, there are three possibilities:

1. If |o| = 1, then lk(o) = AU —Hui} skd,lAvl ~ \/ st v s°.
(")

2. If 2 < |o] < d, then

k(o) = (\/ SO « Skd—lgl—lAUlg> AU ~ \/ gd—lol
m—1

3. If |o| = d + 1, then lk(0) = AV~ ~ &,
e Assume |0 nU| =1 and |o| > 2.

1. If |o| =2, for d = 2

lk(o) = skd,gAU/_U U skd,gAV/_” ~ \/ S92 \/ sé-2.
(i29) (5=

2. If 3 < |o| < d, then
k(o) = skg_ AV 77 = \/ sl
(52
3. If |o| = d + 1, then lk(0) = &.

Theorem 85. For any positive integers r,ny,...,ng = 2, with k = 3 and G = K,,, .. n, o K, we
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have for 1 < d < min{ny —1,...,n; — 1} that

k
E]:d(G) ~ \/S2 v \/S3 v \/Sd+1 v \/ \/ §2ni :
aq by

cd =1 (T—l)ni

~.

where by = ¢y =0,

k
ay = 2 (r2—2r+2)nmj +Zni(ti+1)(r—1) —k+1,
a1e(%) =

andford>2ad:(k*1)2ﬁ,

k d
bd=2r—1 <Zt—l+2> Z (nfn?—n?nj nm + rngn;)

taking
n; —2
t; = P C J
i Z.nj 15 Di Z( d )
JFu j#i
k[ d
ng i—1—1 n; — 2
== 1) At + 1 .
cqg = (r (;L;t+ < )( d1 >+m(tt+ )(d_1>+mpL]>
+ Zk (r—1) [nm; <<d—2> + (d 2) +nl(d)>]
{%J}G(E)
n; —1 n; —1 n;
B (7)) )
{i.73e(3)
+(r—1) Z ”nZn : -1 o (T n; —1
J (] d k__l J l d—k—l
{i.3}e(5)
Proof. Assume V7,...,V} are the partition of the vertices of K, . .. We have

" k
FilG) =Z sy, (K0, D) U |_|< )
=1

For all 1 <7 <k,

*

%
Z}_d(Knl ..... ny) (SkOKT’ @) N :Lk Kr :ZAVi (Sk(_)]:(,ﬂ7 @) s
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and the inclusion EAV'i (sko K, &) — sk K, is null-homotopic. Therefore

SFAG) =% 7, (L, &) v

k
i=1

\/ S2ni 7
()™

where:

e K is the complex obtain from F4(Kp,, . n,) by ading the simplexes AV: | where V! =V;u{vd}

with v{ a new vertice.
o L, = skoK, for any u € V(G).
e Lo = ptforall i.

As before,
*
7, (Lg)~skv\ \/ Sk
ceK (rfl)lul
Since any three vertices form three different sets of the vertex partition give a cycle and for any

o which contains a vY we have that 15(0) ~ %, the only links we need to determine are those of
0

P

simplices contain in one or two sets and that do not contain a vertex v

Let o be a simplex such that o < V; for some 1.

1. If l|o| =1, for d = 1, lk(o) = <|_| SkOAVJ'> UAYITT ~ \/ SY and for d > 2

j#i ti+1

k(o) = <<|_| skoAVf> * skdgAV’i_”> U <|_| skdlAVj> U AV,

J#i J#i
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e

SN

Ve s || st

ti t; J#i ("jd’Q)

Sd—l Sd_l Sd—l v Sl
V Vet —\/ V

(") ti—k+2

2. If 2 < |o| < d, then

lk(o) = AV U <<|_| skOAVJ) . skd_|g|_1AV"”> ~ \/ sl

i (1) ("7

3. Ifd+ 1< |o| <ny, then lk(o) = AV =7 ~ .
Let o be a simplex such that |0 " V;| = 1 and |6 n V}| =1 for i # j.

1. If lonV;| =1, for d =1 lk(o) = & and for d > 2,

k(o) = ska oAV Uska oAV ~ \/ 77205 \/ s
(") (")

2. If l[onV;| =1 with2 <1I<d-1, then

k(o) = skar 1AV = \/ s4771
(a7h)

3. If |o n V;| = d, then lk(o) = &.
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Final remarks

Most of the work done has been calculating the homotopy type for various families of graphs. Now
remains the question if there are more relations between some topological invariants of the filtration
and some propierties of the corresponding graph, like the relation between the connectibity of the
forest complex and the girth of the graph.

It is known that the Lusternik—Schnirelmann category of the independence complex gives a
lower bound for the chromatic number, so one can ask if there is a relation between the Lus-
ternik—Schnirelmann category of the forest complex and some chromatic parameter of the graph,
like the vertex arboricity for example.

Some topological questions that remain open are:
e Find a graph G for which F;(G) and/or F2(G) have torsion in some homology group.
e For which families of graphs the formula of Theorem 77 is achieve without suspension?

e Which topological spaces have the homotopy type of F,;(G) for some d > 0 and graph G?
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B(G), 33 dim(K), 13

Cp, 11 9(G), 11

G=+H, 11 lk(o), 13

G[S], 10 st(o), 13

GoH,11

GOH, 11 Alexander dual, 13

GxH, 11 cofibrant punctured cube, 15
G*, 10 colimit, 15

Gims 55

Hy p, 55 disjoint union, 11

Kx*J, 13 double star, 38

K,, 11

Ky 11 forest, 11

Koy, ngs 43 girth, 11

Ne(v), 10 graph product

Negl[v], 10 cartesian product, 11
P, 11 categorical product, 11
Wi,n, 55 join, 11

Wi, 43 lexicographic product, 11
AV, 13 graphs

A", 13 block graph, 33

?‘k(G)7 11 cactus graph, 33

ZA K (X, A), 20 complement graph, 10
Zk(X,A),19 complete bipartite graph, 11
Fo(G), 13 complete graph, 11
fd(G)a 24 cycle, 11

Hy,n, 63 path, 11

Wion, 63

, wheel graph, 43
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homotopy colimit, 15
homotopy pushout, 15

independence complex, 13
independence number, 11
indepentent set, 11

induced subgraph, 10
join, 13

link, 13

multipartite graphs, 43

n-cube, 14

neighborhood
closed, 10
open, 10

polyhedral join, 20

polyhedral smash product, 19

punctured n-cube, 15
g-skeleton, 13

simplicial complex
dimension, 13
simplicial complex, 12
star, 13

star cluster, 14
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