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Introduction

In combinatorial topology, given a combinatorial object we want to associate to this object a
topological space and study its properties. Usually, this space is a simplicial complex. For example
one of the most studied graph complexes is the neighborhood complex defined by Lovasz [20] in his
proof of the Kneser conjecture. This complex can be generalized to a CW-complex: the complex
of graph homomorphisms for two graphs [18]. Another widely studied complex is the independence
complex [1, 6, 17, 22]. Here we will study this complex and some generalizations.

Given a graph G we will define a filtration of simplicial complexes associated to G, where the
first is the independence complex and the last the complex is formed by the acyclic sets of vertices.
We will show some properties of this filtration and we will calculate its homotopy type for various
families of graphs.

In the first chapter we will give the tools will use all along the dissertation. In the first section
we will state the basic definitions we will need from graph theory. The second section will focus
on the results needed from algebraic topology, in particular some results about the homotopy type
of independence complexes and the tool of homotopy colimits for cubical diagrams; here we will
give some general lemmas for the homotopy type of a union of CW-complexes. The last section
will be about polyhedral products, mostly we will focus on polyhedral joins and we will show their
connection with polyhedral smash products. In this section we will prove some original results
about the homotopy type of certain polyhedral joins.

In the second chapter we will define the filtration and give its basic properties. The following
three chapters will focus on calculating the homotopy type for some graph families: in the third
chapter for paths, cycles, cactus graphs and double stars; in the fourth for various graph products
(here we prove a conjecture from [14]) and in the fifth for lexicographic products, where we will
see the relation between the complexes of the filtration for lexicographic products and polyhedral
joins. We will finish with a chapter with some final remarks on some of the problems that remain
open.

All the results are from the following three papers:

• Homotopy type of the independence complex of some categorical products of graphs with Omar
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Antolín Camarena.

• The Forest Filtration of a Graph.

• Polyhedral joins and graph complexes.
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Introducción

En combinatoria topológica, a un objeto combinatorio queremos asociarle un espacio topológico
y estudiar las propiedades de dicho espacio. Usualmente este espacio es un complejo simplicial.
Por ejemplo, uno de los complejos de gráficas más estudiados es el complejo de vecindades que
definió Lovasz [20] cuando demostró la conjetura de Kneser. Este complejo simplicial se puede
generalizar a un complejo CW, el complejo de homomorphismos entre dos gráficas [18]. Otro
complejo ampliamente estudiado es el complejo de independencia de una gráfica [1, 6, 17, 22]. En
esta tesis estudiaremos este complejo así como algunas generalizaciones.

Dada una gráfica G definiremos una filtración de complejos simpliciales asociados a G, de los
cuales el primero es el complejo de independencia y el último es el complejo cuyos simplejos son
conjuntos acíclicos de vértices. Mostraremos varias propiedades de esta filtración y calcularemos el
tipo de homotopía para varias familias de gráficas.

En el primer capítulo daremos las herramientas que usaremos a lo largo de la tesis. Primero
daremos las definiciones básicas de teoría de gráficas que necesitamos. En la segunda sección dare-
mos los resultados de topología algebráica necesarios para la tesis, en particular daremos resultados
básicos sobre el tipo de homotopía del complejo de independencia y daremos los resultados nece-
sarios acerca de la herramienta de colímites homotópicos sobre diagramas cúbicos, aquí daremos
algunos lemas generales sobre el tipo de homotopía de algunas uniones de complejos CW’s. La úl-
tima sección del capítulo será sobre productos poliedrales, particularmente sobre joins poliedrales y
su relación con productos smash poliedrales. En esta sección daremos algunos resultados originales
acerca del tipo de homotopía para para algunos joins poliedrales particulares.

En el segundo capítulo definiremos la filtración y daremos sus propiedades básicas. Los siguientes
tres capítulos estarán enfocados en calcular el tipo de homotopía para algunas familias de gráficas:
en el tercer capítulo para trayectorias, ciclos, gráficas cactus y dobles estrellas; en el cuarto capítulo
para algunos productos de gráficas (aquí probamos una conjetura de [14]) y en el quinto capítulo
para productos lexicográficos, en donde mostraremos la relación entre los complejos de la filtración
para productos lexicográficos y joins poliedrales. Terminaremos con un capítulo con observaciones
finales y un recuento de algunos de los problemas que quedan abiertos.
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Todos los resultados provienen de los siguientes tres artículos:

• Homotopy type of the independence complex of some categorical products of graphs con Omar
Antolín Camarena.

• The Forest Filtration of a Graph.

• Polyhedral joins and graph complexes.
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Chapter 1

Preliminaries

In this chapter we give the basic definitions needed and the tools we will use. First we give some
notation. For a non-negative number n we take rns “ t0, 1, . . . , nu. Given a finite set X, we take:

• PpXq the set of all the subsets of X.

•
ˆ

X

k

˙

the set of subsets with k elements.

• For subset S Ď X, Sc is its complement.

As usual Z is the set of integers. We denote the q-dimensional sphere by Sq. For two spaces
(complexes, sets) X and Y , X ã−! Y denotes the inclusion.

1.1 Graph theory

All graphs are simple, no loops or multiedges. For a graph G, V pGq is its vertex set and EpGq its
edge set. The cardinality of V pGq is the order of G and the cardinality of EpGq is the size of G.

For a vertex v, NGpvq “ tu P V pGq : uv P EpGqu is its open neighborhood and NGrvs “ NGpGqY

tvu its closed neighborhood, we omit the subindex G if there is no risk of confusion. The degree of
a vertex v is the cardinality of its open neighborhood and will be denoted by dGpvq. The maximum
of the degrees it is denoted by ∆pGq and the minimum by δpGq. Given a graph G its complement

graph is the graph Gc with vertex set V pGcq “ V pGq and edge set EpGcq “

ˆ

V pGq

2

˙

´ EpGq.

Given a graph G, another graph H is a subgraph of G if V pHq Ď V pGq and EpHq Ď EpGq.
For a set S Ď V pGq, the induced subgraph is the subgraph GrSs with vertex set S and two vertices
adjacent if and only if they are adjacent in G. For a set S Ď V pGq, G ´ S “ GrV pGq ´ Ss. If
S “ tvu, we will write G´ v insted of G´ tvu. We will say a subgraph is an induced subgraph if it
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is the subgraph induced by its vertices. For an edge e P EpGq, G´ e is the graph obtain from G by
removing the edge form the edge set. If e “ tu, vu is not an edge of G, G ` e is the graph obtained
form G by adding e to the edge set.

• Kn is the complete graph with vertex set t1, . . . , nu and edge set tti, ju : i ‰ ju.

• Cn is the cycle of length n ě 3 with vertex set tu1, . . . , unu and edge set tu1u2, . . . , un´1un, unu1u.

• Pn “ Cn ´ tun, u1u is the path of length n ´ 1.

• Kn,m is the complete bipartite graph with vertex set U Y V , where U “ tu1, . . . , unu and
V “ tv1, . . . , vmu, and uivj is an edge for any i and j.

For a graph G, its girth is the smallest length of its cylces– if the graph does not have cycles we
say its girth is 8, denoted by gpGq. A graph G is a forest if it does not have a cycle as a subgraph.

A vertex set S Ď V pGq is independent if GrSs has no edges. The maximum number ofn a
independent set is the independence number of the graph and is denoted by αpGq.

Given two graphs G and H, there are three graphs over the vertex set V pGq ˆ V pHq:

1. The cartesian product G@H, where tpu1, v1qpu2, v2qu is an edge if u1 “ u2 and v1v2 P EpHq,
or if u1u2 P EpGq and v1 “ v2.

2. The categorical product G ˆ H, where tpu1, v1qpu2, v2qu is an edge if u1u2 P EpGq and v1v2 P

EpHq.

3. The lexicographic product G˝H, where tpu1, v1qpu2, v2qu is an edge if u1 “ u2 and v1v2 P EpHq

or u1u2 P EpGq.

Given two graphs G and H with disjoint vertex sets, we define:

1. Their join as the graph G ˚ H with V pG ˚ Hq “ V pGq Y V pHq and

EpG ˚ Hq “ EpGq Y EpHq Y tuv : u P V pGq and v P V pHqu

2. The disjoint union as the graph G\H with vertex set V pGqYV pHq and edge set EpGqYEpHq.

Given a graph G and a non-negative integer r ě 2, we take rG as the disjoint union of r copies of
G with disjoint vertex sets.

For all the graph definitions not stated here we follow [10].
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1.2 Algebraic topology

We assume familiarity with algebraic topology (homotopy, homology groups, etc) at level of a first
graduate course (see [16]). All spaces will be taken with the the compactly generated topology. All
the homology and cohomology groups will be with integer coefficients.

For completeness, we enunciate the following well know result about maps between simply
connected CW-complexes.

Whitehead Theorem. (see [16] Corollary 4.33) If X and Y are simply connected CW-complexes
and there is a continuous map f : X −! Y such that f˚ : HnpXq −! HnpY q is an isomorphism
for each n, then f is an homotopy equivalence.

Now, we give the proof of following folklore result.

Theorem 1. If X is a simply connected CW-complex such that H̃qpXq – Za for some q ě 2 and
the rest of the homology groups are trivial, then X »

ł

a

Sq.

Proof. By the Hurewicz Theorem, πdpXq – H̃dpXq – Za. Therefore, there are pointed maps

si : Sd −! X

for each 1 ď i ď a and with these maps we can construct a map

s :
ł

a

Sd −! X

such that s˚ is an isomorphism on πd. Thus s induces an isomorphism on reduced homology groups
between simply connected spaces and, by the Whitehead Theorem, is an homotopy equivalence.

The following result which helps to see that some complexes are homotopy equivalent to a wedge
of spheres of two consecutive dimensions is a special case of Example 4C.2 of [16].

Proposition 2. Let X be a simply connected CW-complex such that, for some d ě 2, H̃dpXq – Za,
H̃d`1pXq – Zb and H̃qpXq – 0 for any q ‰ d, d ` 1, then

X »
ł

a

Sd _
ł

b

Sd`1

The last result can be generalized for other pairs of non-consecutive dimensions [3].

1.2.1 Simplicial complexes

A simplicial complex K is a family of subsets of an finite set V pKq, the vertices of the complex,
such that if τ Ď σ and σ P K, then τ P K. We want to remark that we take the empty set as
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a simplex and we allow ghost vertices– this is useful while working with polyhedral products and
Alexander duals. The elements of K are called simplices and the dimension of a simplex is its
cardinality minus 1, for example the vertices are simplices of dimension 0, the edges of dimension
1 and so on. The dimension of K, dimpKq, is the maximum of the dimensions of its simplicies.
SqpKq is the set of simplicies of cardinality q ` 1.

Given a simplicial complex K and a simplex σ, the link of σ is the subcomplex lkpσq “ tτ P

K : τ X σ “ H ^ τ Y σ P Ku and its star is stpσq “ tτ P K : τ Y σ P Ku. For a vertex we will
write lkpvq and stpvq insted of lkptvuq or stptvuq. The q-skeleton of a complex K, denoted skqK,
is the subcomplex of all the simplicies with at most q ` 1 elements.

For a finite set V we take ∆V “ PpV q and ∆n if V “ rns.
Given two simplicial complexes K,L with disjoint set of vertices, we define their join as the

simplicial complex K ˚J with vertex set V pKq YV pLq, and whose simplices are the pairwise unions
of simplices of K and simplices of L. The join of n copies of K will be denoted by K˚n.

We would not distinguish between a complex and its geometric realization.
Given a complex X on n vertices its Alexander dual is the complex

X˚ “ tσ Ď V pXq : V pXq ´ σ R Xu

Theorem 3. (see [8]) Let X be a simplicial complex with n vertices, then

H̃ipXq – H̃n´i´3pX˚q

Given a connected complex K, a spanning tree T is a 1-dimensional connected subcomplex that
seen as a graph is a tree. Given a spanning tree T , we take the free group HT with S1pKq as
generators and with the relations

• uv “ 1 for all the edges of T

• puvqpvwq “ uw if tu, v, wu is a simplex of K

Theorem 4. (see [28] Theorem 7.34) If K is a connected simplicial complex and T is a spanning
tree, then π1 pK, ˚q – HT .

1.2.2 Independence complex

For a graph G, the independence complex F0pGq is the complex whose simplicies are independent
sets of vertices. Of all the complexes of the filtration we will define the next chapter, this complex
is the most studied (see for example [1, 2, 6, 12, 13, 17, 19, 22]).

Now we give the tools we will use throughout the dissertation for calculating homotopy types
of independence complexes.
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Lemma 5. [12] If Npuq Ď Npvq, then F0pGq » F0pG ´ vq.

The last lemma can be seen as a particular case of part (a) of the following proposition.

Proposition 6. [1] There is always a cofibre sequence

F0pG ´ NGrvsq
� � // F0pG ´ vq

� � // F0pGq // ΣF0pG ´ NGrvsq // ¨ ¨ ¨

In particular

a) if F0pG´NGrvsq is contractible then the natural inclusion F0pG´vq ã! F0pGq is a homotopy
equivalence,

b) if F0pG ´ NGrvsq ã! F0pG ´ vq is null-homotopic then there is a splitting

F0pGq » F0pG ´ vq _ ΣF0pG ´ NGrvsq.

For a vertex v, we define its star cluster as the subcomplex of F0pGq given by

SCpvq “
ď

uPNpvq

stpuq.

Theorem 7. [6] Let G be a a graph and let v be a non-isolated vertex of G which is contained in
no triangle. Then

F0pGq » ΣpstF0pGqpvq X SCpvqq.

1.2.3 Homotopy colimits

We now define the main tool we will use to calculate homotopy types: homotopy colimits for
punctured cubes (we will follow [23]). For any non-negative integer n we take n “ t1, . . . , nu and
P1pnq “ Ppnq ´ tnu. A n-cube X consists of:

• a topological space X pSq for each S in Ppnq, and

• a continuous function fSĎT : X pSq −! X pT q for each S Ď T ,

such that fSĎS “ 1X pSq and for any R Ď S Ď T the following diagram commutes

X pRq
fRĎS //

fRĎT ##

X pSq

fSĎT

��
X pT q.

14



A punctured n-cube X is like an n-cube without being defined for the set n. A punctured n-cube
of interest for a given topological space X is the constant punctured cube CX , where CXpSq “ X

for any set S and all the functions are 1X . The colimit of a punctured n-cube is the space

colimpX q “

¨

˝

ğ

SPP1pnq

X pSq

˛

‚

O

„

where „ is the equivalence relation generated by fSĎT1
pxSq „ fSĎT2

pxSq for T1, T2 and S Ď T1, T2.
From the definition is clear that colimpCXq – X for any X.

For any n ě 1 and S in P1pnq we take:

∆pSq “

#

pt1, t2, . . . , tnq P Rn :
n

ÿ

i“1

ti “ 1 and ti “ 0 for all i P S

+

and dSĎT : ∆pT q −! ∆pSq the corresponding inclusion. Now, for a punctured n-cube X , its
homotopy colimit is

hocolimpX q “

¨

˝

ğ

SPP1pnq

X pSq ˆ ∆pSq

˛

‚

O

„

where pxS , dSĎT ptqq „ pfSĎT pxSq, tq. When n “ 2, we will specify the punctured 2-cube as the
diagram

D : X oo
f

Z
g // Y

and its homotopy colimit is called the homotopy pushout.
Given a punctured n-cube X for n ě 2 and defining the punctured n ´ 1-cubes X1pSq “ X pSq

and X2pSq “ X pS Y tnuq, we have that (Lemma 5.7.6 [23])

hocolimpX q – hocolim pX pn ´ 1q − hocolimpX1q −! hocolimpX2qq

If for all S Ď n the map
colim
TĹS

−! X pSq

is a cofibration, we say call it cofibrant punctured cube. If we have CW-complexes X1, . . . , Xn such
that the intersections are subcomplexes and take the punctured cube given by the intersections
and the inclusions, then the punctured cube is cofibrant and hocolimpX q » colimpX q (Proposition
5.8.25 [23]). We will be concerned mostly with the case in which each space X pn ´ tiuq is a
simplicial complex and the other spaces are intersections of these complexes with the maps being
the corresponding inclusions, hence the punctured cube will be cofibrant. For example we can
compute the homotopy type of a union of the CW complexes X,Y, Z that intersect in subcomplexes,
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by means of three homotopy pushouts, as shown in the following diagram whose top and bottom
squares, as well as the rightmost vertical square are homotopy pushouts and where R » X YY YZ:

X X Y X Z //

&&

��

Y X Z

��

##
X X Z //

��

P //

��

Z

��

X X Y //

&&

Y

""
X // Q // R

If X ,Y are n-cubes, a map between this cubes is a colecction of maps

g
S
: X pSq −! YpSq

such that for all S Ď T the following diagram commutes

X pSq
fSĎT //

gS

��

X pT q

gT

��
YpSq

fSĎT

// YpT q

(this is equivalent to the existence of pn ` 1q-cube Z : Ppn ` 1q −! Top pasting the two cubes
by the maps gS). Now, if all the maps g

S
are homotopy equivalences we will say that the map is

a homotopy equivalence, this is justified because in that case hocolimpX|P1pnq
q » hocolimpY|P1pnq

q

(Theorem 5.7.8 [23]).

Theorem 8. (See 6.2.8 [4]) If the following diagram is homotopy commutative (α ˝ f » f 1 ˝ β and
γ ˝ g » g1 ˝ β)

S : X

α

��

Z
foo g //

β

��

Y

γ

��
S 1 : X 1 Z 1

f 1

oo
g1

// Y 1

with α, β, γ homotopy equivalences. Then hocolimpSq » hocolimpS 1q.

Its a folklore result that if the intersection of two CW-complexes is a subcomplex such that the
inclusions are null-homotopic, then the union has the homotopy type of the wedge of the complexes
and the suspension of their intersection. We will prove this result giving a slightly more general
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result for homotopy pushouts.

Lemma 9. Let X,Y, Z be spaces with maps f : Z −! X and g : Z −! Y such that both maps are
null-homotopic. Then

hocolim pSq » X _ Y _ ΣZ

where
S : Y oo

g
Z

f // X

Proof. We take the diagrams

D1 : ΣZ _ Y oo ? _ΣZ �
� // ΣZ _ X

and
S : Y oo

g
Z

f // X

where the point of the wedge in X and Y are a point for which the constant map is homotopic to
f and g respectively. Taking the next diagram:

Z //

��

˚ //

��

X

��
˚ //

��

ΣZ �
� //

_�

��

ΣZ _ X

��
Y // ΣZ _ Y // hocolimpD1q

Taking the diagram D3 given by the compositions

Z // ˚ // X

Z // ˚ // Y

we have that hocolimpD3q » hocolimpD1q and by hypothesis we can construct a homotopy com-
mutative diagram between S and D3 with the identities. Therefore, by Theorem 8 hocolimpDq »

X _ Y _ ΣZ.

Now we give some general lemmas about the homotopy type of an union of CW-complexes,
these lemmas we will use in the next chapters.

Lemma 10. Let J1, . . . , Jn be n ě 2 complexes such that each Ji is either contractible or is
homotopy equivalent to a wedge of spheres of dimension not less than r and for any S non-empty
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subset of n,
č

iPS

Ji “ JS is contractible or is homotopy equivalent to a wedge of spheres of dimension

r|S|, where r2 ď r ´ 1 and ri`1 “ ri ´ 1. Then

n
ď

i

Jn »

n
ł

i“1

Xi

where
Xi “

ł

tl1,...,liuPPpnq

Σi´1pJl1 X ¨ ¨ ¨ X Jliq

Proof. For n “ 2 it is clear by Lemma 9. For n ě 3 take X pSq “ JSc , for n ´ 1 X1pSq “ X pSq and
X2pSq “ X pS Y tnuq. Then

hocolimpX q – hocolim pJn  − hocolimpX1q −! hocolimpX2qq

By the inductive hypothesis hocolimpX1q is homotopy equivalent to a wedge of spheres of dimension
r2 or contractible, therefore the map hocolimpX1q −! Jn is null-homotopic. By inductive hypothesis
hocolimpX2q is homotopy equivalent to a wedge of spheres of dimension at least r2`1 or contractible,
so the map between hocolimpX1q and hocolimpX2q is null-homotopic, applying Lemma 9 we obtain
the result.

Corollary 11. Let J1, . . . , Jn be n ě 2 CW-complexes such that for any S subset of t1, . . . , nu with
|S| ě 2,

č

iPS

Ji “ JS is a contractible subcomplex. Then

n
ď

i

Jn »

n
ł

i“1

Ji

Lemma 12. Let X1, . . . , Xk simplicial complexes such that the intersection of two or more is
contractible or empty, Xi is connected for all i and there is a graph G with k edges and a bijection
γ : t1, . . . , ku −! EpGq such that

Ş

iPS γpiq ‰ H if and only if
Ş

iPS Xi ‰ H for all non-empty

subsets S of t1, . . . , ku. Then X “

k
ď

i“1

Xi has the homotopy type of the nerve of tXiuiPk with the

complexes Xi attached to the corresponding point in the nerve.

Proof. By induction on k. For k “ 1, 2 the result is clear. Assume it is true for any r ď k and
take X1, . . . , Xk`1 simplicial complexes such that the intersection of two or more is contractible
or empty, Xi is connected for all i and there is a graph G with k ` 1 edges and a bijection
γ : t1, . . . , k ` 1u −! EpGq such that

Ş

iPS γpiq ‰ H if an only if
Ş

iPS Xi ‰ H for all non-empty
subsets S of t1, . . . , k ` 1u. Now, take N to be the nerve complex of X1, . . . , Xk`1. For any
i P t1, . . . , k ` 1u, lkpiq is:
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(a) Empty if in the corresponding edge both vertices have degree 1.

(b) Contractible if in the corresponding edge one vertex has degree 1 and the other degree at least
2.

(c) Homotopy equivalent to S0 if in the corresponding edge both vertices have degree at least 2.

Taking the homotopy pushout of the diagram associated to X1, . . . , Xk`1 we know that it is homo-
topy equivalent to the homotopy pushout of the diagram

S : hocolimpS2q hocolimpS1qoo // Xk`1

where S1 is the homotopy colimit of the diagram associated to X1 X Xk`1, . . . , Xk X Xk`1, and S2

is the homotopy colimit of the diagram associated to X1, . . . , Xk. Now hocolimpS1q » lkpk ` 1q, so
we have three possibilities:

(a) hocolimpS1q “ H, then hocolimpSq » hocolimpS2q \ Xk`1

(b) hocolimpS1q » ˚, then hocolimpSq » hocolimpS2q _ Xk`1

(c) hocolimpS1q » S0, then hocolimpSq » hocolimpS2q _ S1 _ Xk`1

1.3 Polyhedral products

Given a topological space X, X^n will be the smash product of n copies of X and X˚n will be the
join of n copies of X.

Given a family of pointed pairs of CW-complexes pX,Aq “ tpXi, Aiquni“1 and K a simplicial
complex on n vertices, we take the polyhedral smash product determined by pX,Aq and K as the
space

ẐKpX,Aq “ D̂pHq Y
ď

σPK

D̂pσq

with

D̂pσq “
ľ

iPn

Yi, where Yi “

#

Xi if i P σ

Ai if i R σ

Theorem 13. [5] Let K be a complex with n vertices and pX,Aq a family of pointed pairs of
CW-complexes such that Ai ã−! Xi is null-homotopic. Then

ẐKpX,Aq »

´

K ˚ D̂pHq

¯

_
ł

σPK

lkpσq ˚ D̂pσq
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Given a complex K with vertices n and pX,Aq “ tpX1, A1q, . . . , pXn, Anqu a family of pairs of
CW-complexes, we define the polyhedral join as the space

˚

ZK pX,Aq “
ď

σPK

Jpσq

with

Jpσq “ ˚
iPn

Yi, where Yi “

#

Xi if i P σ

Ai if i R σ

Theorem 14. If pX,Aq “ tpX1, A1q, . . . , pXn, Anqu is a family of pairs of CW-complexes and
pΣX,ΣAq “ tpΣX1,ΣA1q, . . . , pΣXn,ΣAnqu the family of their suspensions as pointed pairs, then

Σ
˚

ZK pX,Aq » ẐK pΣX,ΣAq .

Proof. If σ1, . . . , σr are the maximal simplices of K, we take the punctured r-cube

X pSq “
č

iPSc

Jpσiq

with the inclusions as maps. Then
˚

ZK pX,Aq » hocolimpX q and we have a weak-homotopy
equivalence ΣhocolimpX q » hocolimpΣX q (see [23] Corollary 5.8.10). Now, for any non-empty
CW-complexes Z1, . . . , Zl with base points z1, . . . , zl

ÿ

ˆ

˚
iPl

Zi

˙

–

ˆ

ÿ

ˆ

˚
iPl

Zi

˙˙N

„ ,

where x „ y if x, y P
ř

´

Ťl
j“1 zj ˚

`

˚iPl´tju Zi

˘

¯

; that last space is contractible by the Nerve
Theorem, as its nerve is the pl ´ 1q-simplex. We take the the punctured r-cube

X̃ pSq “

˜

ÿ

˜

č

iPSc

Jpσiq

¸¸O

„ .

Now the quotient maps give us an homotopy equivalence of cubes, therefore hocolimpΣX q »

hocolimpX̃ q.
Now we take the punctured r-cube Y given by:

YpSq “
č

iPSc

D̂pσiq,

for pΣX,ΣAq with the inclusions as maps. Therefore ẐKpΣX,ΣAq » hocolimpYq.
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Defining ρpSq “

#

j R
č

iPSc

σi : Aj “ H

+

, if we take

ỸpSq “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˝

ľ

jPρpSqc

Yj

˛

‚

O

„ if n ´ |ρpSq| “ l ą 0

S0 if ρpSq “ n,

where the quotient is by the contractible subspace
ľ

jPρpSqc

Σp˚jq, we have that hocolimpY0q »

hocolimpỸq, where Y0pSq is ỸpSq without doing the quotient. Taking the inclusions of Y0pSq

in YpSq, we have that hocolimpY0q » hocolimpYq.
Now, we take the punctured cube

ZpSq “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˝I l ˆ
ź

iPρpSqc

Bi

˛

‚

O

„ if n ´ |ρpSq| “ l ą 0

S0 if ρpSq “ n

,

where the quotient is by the subspace

BI l ˆ
ź

iRfpSq

Bi

ď

I l ˆ W pB1, . . . , Blq,

with Bi “ Xi if i P
č

jPSc

σj and Bi “ Ai if i R
č

jPSc

σj , and for S Ď T , the map fSĎT is the

inclusion if ρpSq “ ρpT q and the constant maps to the base point in other case. We will see that
hocolimpX̃ q » hocolimpZq » hocolimpỸq.

If ρpSq ‰ n, we take the following composition of quotient maps

I l ˆ
ź

iRρpSq

Bi
//

ź

iRρpSq

ΣBi
//

ľ

iRρpSq

ΣBi
// ỸpSq

where the first map sends
`

pt1, . . . , tlq, pxiqiRρpSq

˘

to prti, xisqiRρpSq. Therefore ZpSq – ỸpSq. In
other case both spaces are S0. If ρpSq “ ρpT q for S Ă T , then the maps of Z are inclusions and we
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have the following commutative diagram:

ZpSq //

��

ZpT q

��
ỸpSq // ỸpT q

In other case, the maps for both cubes are the constant map to the base point. From this we have
that hocolimpZq » hocolimpỸq.

If ρpSq ‰ n and ρpSqc “ ti1, . . . , ilu with ij ă ij`1, we take the following composition of quotient
maps

I l ˆ

l
ź

j“1

Bij
// I l´1 ˆ

˜

Bi1 ˚

l
ź

j“2

Bij

¸

// ¨ ¨ ¨ // I ˆ
l

˚
j“1

Bij
//
ÿ l

˚
j“1

Bij
// X̃ pSq

from which we see that ZpSq – X̃ pSq. Otherwise both spaces are S0. As before, these maps induce
a homotopy equivalence and therefore hocolimpX̃ q » hocolimpZq.

From the last theorem and Theorem 13 we get the following corollary:

Corollary 15. If pX,Aq “ tpX1, A1q, . . . , pXn, Anqu is a family of pairs of CW-complexes such
that the inclusion ΣAi ã−! ΣXi is null-homotopic for all i, then

Σ
˚

ZK pX,Aq » Σ

ˆ

K˚
˚

D pHq

˙

_
ł

σPK

Σlkpσq˚
˚

D pσq.

Proposition 16. For d ď n,

˚

Zskd∆n

˜

ł

r´1

S0,H

¸

»
ł

fdpr,nq

Sd,

where

fdpr, nq “

d`1
ÿ

i“0

p´1qd`1´i

ˆ

n ` 1

i

˙

ri.

Proof. We will set X “
ł

r´1

S0. Now, for d “ n,

˚

Zskd∆n pX,Hq “
˚

Z∆n pX,Hq “
n`1
˚
i“1

˜

ł

r´1

S0
¸

»
ł

pr´1qn`1

Sn.
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We will use induction on d and for each d induction on n. For d “ 1,
˚

Zsk1∆n pX,Hq is the complete
pn ` 1q-partite graph with r vertices in each partition. Therefore:

˚

Zskd∆n pX,Hq »
ł

pn`1
2 qr2´pn`1qr`1

S1.

Now, assume it is true for d ´ 1 and any n and also for pd, n ´ 1q; and consider the case pd, nq. By
case analysis on the first vertex of ∆n, we obtain:

˚

Zskd∆n pX,Hq “

«˜

ł

r´1

S0
¸

˚
˚

Z
skd´1∆n´1 pX,Hq

ff

ď ˚

Z
skd∆n´1 pX,Hq .

Since the intersection of those two subcomplexes is
˚

Z
skd´1∆k´1

pX,Hq, we can conclude that
˚

Zskd∆n

pX,Hq is homotopy equivalent to the homotopy pushout of

ł

pr´1qfdpr,nq

Sd oo ? _
ł

fdpr,nq

Sd´1 � � //
ł

fd`1pr,nq

Sd.

Both inclusions in that diagram must be null-homotopic, so Lemma 9 applies, and we obtain the
desired homotopy type: a wedge of fdpr, nq copies of Sd, where

fdpr, nq :“ rfd´1pr, n ´ 1q ` fdpr, n ´ 1q.

Now we need only prove the stated formula for fdpr, nq. For d “ 1 or d “ n we know it is true.
Assume the formula is true for d ´ 1 and any n and also for pd, n ´ 1q; and consider the case of
pd, nq. Now,

fdpr, nq “

d
ÿ

i“0

p´1qd´i

ˆ

n

i

˙

ri`1 `

d`1
ÿ

i“0

p´1qd`1´i

ˆ

n

i

˙

ri

Reindexing the first sum from i “ 1 to d`1, and using a standard identity for binomial coefficients,
we obtain the desired formula.
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Chapter 2

Definition and basic properties of the
filtration

In this chapter we define the filtration which is studied and give properties of it. Let G be a graph,
we define its d-forest complex as the complex

FdpGq “ tσ Ď V pGq : Grσs is a forest with ∆pGrσsq ď du;

for d “ 8 we take
F8pGq “ tσ Ď V pGq : Grσs is a forestu.

For d “ 0, F0pGq is the independence complex of G and for d “ 1 is also called the 2-independence
complex of G —the r-independence complex of G has as simplices sets A Ď V pGq such that every
connected component of GrAs has at most r vertices. Note that if d ` 1 “ mintr : G is K1,r-freeu,
then FlpGq “ FdpGq for all l ě d.

Given a graph G let tdpGq “ maxt|V pT q| : T is an induced forest such that ∆pT q ď du, by
definition tdpGq “ dimpFdpGqq ` 1, therefore knowing the homotopy type of FdpGq or its homology
groups gives us a lower bound for tdpGq.

Theorem 17. For any graph G and all d, the pair pFd`1pGq,FdpGqq is d-connected.

Proof. For any d, we have that skiFdpGq “ skiFd`1pGq for all i ď d because a forest of order i ` 1

has maximum degree at most i. Then all the cells in Fd`1pGq ´FdpGq have dimension greater than
d and this implies the result (see [16] Corollary 4.12).

By definition the following results are clear.
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Proposition 18. For d ě 1,
FdpKnq »

ł

pn´1qpn´2q

2

S1.

Proposition 19. For n ě 3 and d ě 2,

FdpCnq – Sn´2.

A subset of vertices σ is an independent set if all of its subsets of cardinality 2 are independent.
This says that in order to be a simplex of the independence complex, a set of vertices only need
have its 1-skeleton contained in the complex. This type of complexes are called flag complexes.
Now, for F1pGq, its 1-skeleton is the complete graph of the same order as G, therefore it is not a
flag complex in general, because it is not contractible for all graphs. The following result tells us
that it has an analogous property but for the 2-skeleton, rather than the 1-skeleton.

Proposition 20. Let σ be a subset of V pGq such that all of its subsets of cardinality 3 are simplices
of F1pGq, then σ is a simplex of F1pGq.

Proof. If |σ| ď 3 the result is clear. Now let σ “ tv0, v1, v2, v3u. Then, for τ “ tv0, v1, v2u, we have
that Gτ “ Grτ s is forest such that ∆pGτ q ď 1. Now, v3 at most can have one neighbor in τ and it
must be a vertex of degree 0 in Gτ . Therefore Gσ “ Grσs is a graph such that ∆pGσq ď 1, which
implies it is a forest and σ is a simplex of F1pGq.

Assume the result is true for any subset of at most k ě 4 vertices that has its 2-skeleton in
F1pGq. Let σ “ tv0, . . . , vku a subset of k ` 1 vertices such that its 2-skeleton is in F1pGq. By
induction hypothesis, τ “ tv0, . . . , vk´1u is a simplex of F1pGq, therefore, taking Gτ as before,

Gτ – rK1 \ Ms

with r, s ě 0 and r ` 2s “ k ` 1. By hypothesis, vk can not be adjacent to a vertex in Ms and only
can be adjacent to one vertex in rK1. So σ induces a graph with maximum degree at most 1 and
therefore σ is a simplex of F1pGq.

This can not be generalized for FdpGq with d ě 2 as FdpCd`3q shows.
If a simplicial complex K is such that H̃qpKq fl 0, then fipKq ě fi

`

∆q`1
˘

and f0pKq “ q ` 2

if and only if K – B
`

∆q`1
˘

, from this we get the following Proposition.

Proposition 21. Let G be a graph such that H̃qpFdpGqq fl 0 for some d and q, then G has at least
q ` 2 different induced forests of q ` 1 vertices and maximun degree at most d.

Proposition 22. Let G be a graph of order q ` 2, with q ě 1, then:

1. If H̃qpFqpGqq fl 0, then G – K1,q`1 or G – Cq`2

25



2. If H̃qpF8pGqq fl 0, then G – Cq`2

Proof. For d “ q or d “ 8, we have that FdpGq – B
`

∆q`1
˘

and for any proper subset of the
vertices S, FdpGrSsq must be contractible. If ∆pGq “ q ` 1, then G can not have cycles because
V pGq ´ tvu is a simplex for any vertex and F8pGq » ˚. Take v a vertex such that dGpvq “ q ` 1,
then FqpGq “ stpvqYFqpG´vq and, because H̃qpFqpG´vqq – 0, using the Mayer-Vietoris sequence
we have that H̃q´1plkpvqq fl 0. Therefore lkpvq – B p∆qq. If q “ 1, then lkpvq is two disjoint vertices
from where it follows that G – K1,2 or G – C3. Assume q ě 2, then Npvq must be an independent
set and G – K

1,q`1
.

Assume ∆pGq ď q, then G must have a cycle, otherwise FdpGq » ˚ for d “ q or d “ 8. Let
C ď G be an induced cycle. If V pCq Ĺ V pGq, because any proper subset is a simplex, V pCq will
be a simplex, but this can not happen. Therefore G – Cq`2.

Proposition 23. If e P EpGq is bridge, then F8pGq “ F8pG ´ eq.

Lemma 24. If G “ G1 \ G2, then for all d,

FdpGq “ FdpG1q ˚ FdpG2q.

Proposition 25. If G “ G1 \ ¨ ¨ ¨ \ Gk, then for d ě 0,

connpFdpGqq ě 2k ´ 2 `

k
ÿ

i“1

connpFdpGiqq.

Proof. This follows from FdpGq “ FdpG1q ˚ ¨ ¨ ¨ ˚ FdpGkq

Lemma 26. If v is a vertex such that no cycle of G contains it, then F8pGq » ˚.

Proof. Beacause v does not belongs to a cycle, then F8pGq “ tvu ˚ F8pG ´ vq.

Corollary 27. If δpGq ď 1, then F8pGq » ˚.

Corollary 28. If G has a vertex v such that NGpvq “ tv1, v2u, then F8pGq » ΣlkF8pGq
pviq for

i “ 1, 2.

Proof. Because NGpvq “ tv1, v2u, then dG´vipvq “ 1 and therefore F8pG´viq » ˚. Now F8pGq »

hocolimpSq with S : F8pG ´ viq  −â lkFpG,8q
pviq ã−! stFpG,8q

pviq, by Lemma 9 we obtain the
result.

Lemma 29. Let G be a graph that is the union of three graphs G1, G2, G0 such that:

• G0 – K3

• V pG0q “ tv, v1, v2u
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• V pG1q X V pG0q “ tv1u, V pG2q X V pG0q “ tv2u and V pG1q X V pG2q “ H

Then, lkF8pGqpvq » hocolimpSq with S the diagram:

F8pG1q ˚ F8pG2 ´ v2q oo ? _F8pG1 ´ v1q ˚ F8pG2 ´ v2q
� � // F8pG1 ´ v1q ˚ F8pG2q

Proof. Because

lkF8pGqpvq “ pF8pG1q ˚ F8pG2 ´ v2qq Y pF8pG1 ´ v1q ˚ F8pG2qq

and

pF8pG1q ˚ F8pG2 ´ v2qq X pF8pG1 ´ v1q ˚ F8pG2qq “ F8pG1 ´ v1q ˚ F8pG2 ´ v2q

we have that
lkF8pGqpvq “ colimpSq » hocolimpSq

Proposition 30. Let G be a graph with n vertices and gpGq ă 8, then H̃i pF8pGqq – 0 for all
i ă gpGq ´ 2.

Proof. The Alexander Dual has dimension n´gpGq´1, thus H̃k pF˚
8pGqq – 0 for all k ą n´gpGq´1.

By Theorem 3, H̃i pF8pGqq – 0 for all i ă gpGq ´ 2.

In the last proposition we saw that the girth gives us a lower bound for the homological con-
nectivity of F8pGq, now we will see that this bound also works for the connectivity, first we show
that gpGq ě 4 implies that F8pGq is simply connected, by showing this for F2pGq.

Proposition 31. Let G be a graph with gpGq ě 4, then π1 pF2pGqq – 0.

Proof. We will prove it for connected graphs. We take T a spanning tree of G and take the finitely
presented group HT with set of generators EpGq Y EpGcq and with the following relations:

• uv “ 1 for all the edges of T ,

• puvqpvwq “ uw if tu, v, wu is a simplex of F2pGq.

by Theorem 4 we have that HT – π1 pF2pGqq.
Note that any triple of vertices tu, v, wu spans a forest in G because gpGq ě 4, so the 2-skeleton

of F2pGq contains all possible triangles.
We will show that all generators uv are trivial by induction on the distance k “ dT pu, vq. If

k “ 1, this is clear by the first type of relation. Assume uv is trivial if dT pu, vq ď k. Take uv such
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that dT pu, vq “ k ` 1 and take uw1w2 ¨ ¨ ¨wkv the uv-path in T . Since tu,w1, vu is a simplex of
F2pGq, the second relation implies uv “ puw1qpw1vq “ w1v where we have dT pw1, vq “ k.

Because F8pGq is always connected, using the last proposition, Proposition 30 and the Hurewicz
Theorem we have the following result:

Theorem 32. For any graph G, conn pF8pGqq ě gpGq ´ 3.
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Chapter 3

Homotopy type calculations I: Paths,
Cycles, Catus Graphs and Double
stars

3.1 Paths and cycles

The homotopy type of all r-independence complexes of paths was calculated by Salvetti [27] using
Discrete Morse theory. Here we give a different proof for F1 using homotopy pushouts, which also
shows that the inclusion F1pP4r`3q ã−! F1pP4pr`1qq is a homotopy equivalence. This will allow us
to calculate the homotopy type of F1pCnq avoiding Discrete Morse theory, which was the tool used
in [11].

Proposition 33. [27]

F1pPnq »

$

’

&

’

%

S2r´1 if n “ 4r

˚ if n “ 4r ` 1 or n “ 4r ` 2

S2r`1 if n “ 4r ` 3

Proof. For r “ 0, it is clear that F1pP1q » ˚ » F1pP2q. For P3, F1pP3q – K3. For F1pP4q

lkpv4q “ F1pP2q Y tv3u ˚ F1pP1q » ˚

therefore the inclusion i : F1pP3q ã−! F1pP4q is a homotopy equivalence.
Next, we will prove that F1pP4r`1q » F1pP4r`2q » ˚ for all r ě 1.
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Assume that it is true for any 1 ď r ď k. For F1pP4pk`1qq, by induction hypothesis,

lkpv4pk`1qq “ F1pP4k`2q Y tv4k`3u ˚ F1pP4k`1q » ˚

therefore the inclusion F1pP4k`3q ã−! F1pP4pk`1qq is a homotopy equivalence.
Now, for F1pP4pk`1q`1q we have

lkpv4pk`1q`1q “ F1pP4k`3q Y tv4pk`1qu ˚ F1pP4k`2q.

Setting X “ F1pP4k`2q and Y “ tv4k`3u ˚ F1pP4k`2q, we have by induction hypothesis that

X X Y “ F1pP4k`2q » ˚

therefore F1pP4k`3q ã−! lkpv4pk`1q`1q is a homotopy equivalence.

F1pP4k`3q
»
//

��

»

,,
lkpv4pk`1q`1q //

��

F1pP4pk`1qq

��
stpv4pk`1q`1q // stpv4pk`1q`1q // F1pP4pk`1q`1q

F1pP4pk`1q`1q » stpv4pk`1q`1q » ˚

For F1pP4pk`1q`2q:

lkpv4pk`1q`2q “ F1pP4pk`1qq Y tv4pk`1q`1u ˚ F1pP4k`3q;

because F1pP4k`3q ã−! F1pP4pk`1qq is an homotopy equivalence, we have that lkpv4pk`1q`2q » ˚

and therefore
F1pP4pk`1q`2q » F1pP4pk`1q`1q » ˚.

We have that F1pP4pk`1qq » F1pP4k`3q; now for this last complex:

lkpv4k`3q “ F1pP4k`1q Y tv4k`2u ˚ F1pP4kq,

where F1pP4k`1q » ˚, therefore
lkpv4k`3q » ΣF1pP4kq.
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Since F1pP4k`2q » ˚, we have that F1pP4k`3q » Σ2F1pP4kq and

F1pP4pk`1qq » Σ2F1pP4kq » Σ2S2k´1 » S2k`1.

Doing the exact same argument we can see that F1pP4pk`1q`3q » Σ2F1pP4pk`1qq and therefore

F1pP4pk`1q`3q » Σ2S2k`1 » S2k`3.

In the proof of the last proposition we saw that the inclusion F1pP4k`3q ã−! F1pP4pk`1qq ob-
tained by erasing the last (or the first) vertex is an homotopy equivalence. We will use this fact in
the following corollary.

Corollary 34. [11]

F1pCnq »

$

’

’

’

’

’

&

’

’

’

’

’

%

ł

3

S2r´1 if n “ 4r

S2r´1 if n “ 4r ` 1

S2r if n “ 4r ` 2

S2r`1 if n “ 4r ` 3

Proof. For n “ 3, 4, the only possible simplices are a vertex or pair of vertices, any set with
more vertices will have a 3-path or a cycle. Therefore F1pC3q – K3 and F1pC4q – K4. For
n “ 5, taking v1, v2, v3, v4, v5 the vertices of the cycle with edges vivi`1, the facets of F1pC5q are
σi “ tvi, vi`2, vi`3u. The edge vi`2vvi`3 only is contained in σi, so we can collapse it for all i.
Therfore F1pC5q » F0pC5q – S1.

Assume n ě 6 and let v1, . . . , vn be the vertices of the cycle. Then lkpvnq “ K1 Y K2 Y K3

where
K1 “ F1pCn ´ vn ´ v2 ´ vn´1q – CpF1pPn´4qq

K2 “ F1pCn ´ vn ´ v1 ´ vn´2q – CpF1pPn´4qq

K3 “ F1pCn ´ vn ´ v1 ´ vn´1q – F1pPn´3q

Now
K1 X K2 X K3 “ K1 X K2 “ F1pCn ´ vn ´ v1 ´ v2 ´ vn´1 ´ vn´2q – F1pPn´5q

K1 X K3 “ F1pCn ´ vn ´ v1 ´ v2 ´ vn´1q – F1pPn´4q

K2 X K3 “ F1pCn ´ vn ´ v1 ´ vn´1 ´ vn´2q – F1pPn´4q

K1 Y K2 » ΣF1pPn´5q

If n “ 4r, K1 X K2 – F1pP4pr´2q`3q, K3 » ˚ and K1 X K3 – F1pP4pr´1qq – K2 X K3. By the
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observation before the corollary, the inclusion K1XK2XK3 ã−! K1XK3 is a homotopy equivalence.
Therefore pK1 Y K2q X K3 » K2 X K3 and

lkpvnq »
ł

2

S2r´2,

Since
F1pC4r ´ vnq » S2r´1,

we obtain the result.
If n “ 4r ` 1, K1 X K3 » K2 X K3 – F1pP4pr´1q`1q » ˚ and K2 Y K3 » K3. Because

K1 X K2 X K3 “ K1 X K2, we have that

pK2 Y K3q X K1 » K1 X K3 » ˚

and
K1 Y K2 Y K3 » K2 Y K3 » K3 – F1pP4pr´1q`2q » ˚.

Therefore F1pC4r`1q » F1pP4rq » S2r´1.
For n “ 4r ` 2 and n “ 4r ` 3, F1pCn ´ vnq » ˚, therefore F1pCnq » Σlkpvnq. If n “ 4r ` 2,

K1 XK2 – F1pP4pr´1q`1q » ˚ and K1 XK3,K2 XK3 – F1pP4pr´1q`2q » ˚. Then K1 YK2 » ˚ and
pK1 Y K2q X K3 » ˚. From this we have that lkpvnq » K3, therefore

F1pC4r`2q » ΣF1pP4pr´1q`3q » S2r.

If n “ 4r ` 3, K2 X K3 – F1pP4pr´1q`3q and the inclusion K2 X K3 ã−! K3 is a homotopy
equivalence, therefore K2 YK3 » ˚. From this lkpvnq » ΣpK1 X pK2 YK3qq. Since K1 XK2 XK3 “

K1 X K2, we have that K1 X pK2 Y K3q » K1 X K3 and

F1pC4r`3q » Σ2F1pP4pr´1q`3q » S2r`1.

Proposition 35.
F8pCn ` eq – Sn´3

Proof. Assume the vertices of G “ Cn ` e are labeled v, w1, . . . , wr, u, wr`1, . . . , wr`k with e “ vu

(Figure 3.1). Because F8pG ´ vq » ˚, we have that F8pGq » Σlkpvq. Now, lkpvq is formed by the
subsets of V pG ´ vq such that together with v they do not induce a cycle, therefore the facets are

σ0 “ rw1, . . . , wr, wr`1, . . . , wr`ks
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v

u

w1

wrwr`1

wr`k

Figure 3.1: Cn ` e

and
σij “ rw1, . . . , ŵi, . . . , wr, u, wr`1, . . . , , ŵr`j , . . . , wr`ks

for 1 ď i ď r, 1 ď j ď k. If we call K the complex form by σ0 and its subsets, and L the complex
which facets are the simplices σij , we get that lkpvq “ K Y L and both of this complexes are
contractible, therefore lkpvq » ΣK X L.

Now, taking X the complex with facets rwr`1, . . . , , ŵr`j , . . . , wr`ks and Y the complex with
facets rw1, . . . , ŵi, . . . , wrs, we have that K X L – X ˚ Y . Because X – Sk´2 and Y – Sr´2, we
have that K X L – Sk´2 ˚ Sr´2 – Sr`k´3 and, because r ` k “ n ´ 2, F8pGq » Sn´3.

3.2 Cactus Graphs

For any graph G, we take the block graph BpGq in which the vertices are the blocks of G and the
cut-vertices of G, where vB is an edge if v is a vertex of B. If G is connected, then BpGq is a tree.

A graph G is a cactus graph if all of its blocks are isomorphic to a cycle or to K2. We will say
that a block is saturated if all of its vertices are cut vertices and sbpGq is the number of saturated
blocks. A vertex v is saturated if it is shared by two or more saturated blocks, with svpGq the
number of saturated vertices. In this section we will see that the forest complex of a cactus graphs
is contractible or it has the homotopy type of a sphere and we give a lower bound for the dimension
of the sphere. Before we proove this, we will need somme auxiliary results.

The following lemma tell us that given a cactus graph with saturated blocks, either it has a
saturated block without saturated vertices or we can find a saturated block B such that the graph
can be seen as the union of two cactus graphs, one with only B as a saturated block, and the
intersection of these graphs is the only saturated vertex of B.

Lemma 36. Let G be a cactus graph such that sbpGq ě 1, then there is a saturated block B such
that either it does not have saturated vertices, or:

(i) it has only one saturated vertex v, and
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(ii) the connected component of BpGq ´ v which contains B does not have any other saturated
block.

Proof. If there are no saturated vertices, there is nothing to prove. Assume svpGq ě 1. If there is a
saturated block without a saturated vertex, again there is nothing to prove. Assume all saturated
blocks have at least one saturated vertex.

Let V1 be the set of all saturated blocks of G and V2 the set of all saturated vertices. In the
subgraph T “ BpGqrV1 Y V2s all the leaves are blocks, because each saturated vertex is in at least
two saturated blocks, therefore dT pvq ě 2 for all the vertices of V2. We take L Ď V1 the set of all
the leaves of T and let pB1, B2q be a pair in L ˆ L such that

dpB1, B2q “ maxtdpX,Y q : pX,Y q P L ˆ Lu

Take v1 the only saturated vertex in B1 and v2 the only saturated vertex in B2. We claim that the
only B1B2-path in BpGq contains both v1 and v2. If not, then B1 and B2 are in different connected
components of T and, assuming v1 is not in the B1B2-path, any leaf B1 in the same component of
B1 is such that dpB1, B2q ą dpB1, B2q. Therefore v1 and v2 are in the only B1B2-path.

If in BpGq´v1 there are saturated blocks in the same component than B1, the distance between
these and B2 is larger that the distance between B1 and B2, which can not happen. Therefore B1

and v1 are as wanted.

The following two lemmas and corollary will give us the homotopy type of the forest complex
when the cactus graph does not have saturated blocks.

Lemma 37. Let G be a cactus graph such that all of its blocks are cycles and such that it does not
have saturated blocks, then

F˚
8pGq » SbpGq´2.

Proof. Let B0, . . . , Bk be the blocks of G. If k “ 0, then F˚
8pGq “ H “ S´1. Assume, k ě 1. We

take Xi “ V pGq ´ V pBiq for all i, this are the facets of F˚
8pGq and we have that

k
č

i“0

Xi “ H

č

iPS

Xi ‰ H, @S Ĺ rks

Then, its nerve is isomorphic to B∆k – Sk´1. Therefore, F˚
8pGq » SbpGq´1.

Lemma 38. Let G be a cactus graph different from K3, then F8pGq is simply connected.
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Proof. If G has only one block and G is not K3, G must be a single vertex, K2 or a cycle with
at least 4 vertices, thus F8pGq is contractible or a sphere of dimension at least 2. Assume G has
k ě 2 blocks. For each block that is not isomorphic to K2 we can erase one edge to we obtain T ,
a spanning tree of G and F8pGq. Taking the free group HT with EpGq Y EpGcq as generators and
wtih the relations

• uv “ 1 for all the edges of T

• puvqpvwq “ uw if tu, v, wu is a simplex of F8pGq

we have that HT – π1 pF8pGqq (see [28] Theorem 7.34). Take uv P EpGq Y EpGcq ´ EpT q.
If u, v are in the same block, this block must be a cycle. If the cycle has 4 or more vertices,

there is a uv-path uw1w2 ¨ ¨ ¨wrv in T . Now, tu,w1, vu, tw1.w2, vu, . . . , twr´1, wr, vu are simplicies
of F8pGq, then uv “ w1v “ w2v “ ¨ ¨ ¨ “ wlv “ 1. If the cycle is uvw, because there are k ě 2

blocks, one of the vertices must be a cut vertex:

• If u is a cut vertex, u has a neighbor x in another block such that ux is in T . Then tu, v, xu is
a simplex of F8pGq and uv “ xv. Now, tv, w, xu and tu,w, xu are simplices, thus xv “ xw “

uw “ 1. The case in which v is a cut vertex is analogous.

• If w is a cut vertex, w has a neighbor x in another block such that wx is in T . Then tu, v, xu,
tu,w, xu and tv, w, xu are simplices. Therefore xv “ vw “ 1 “ uw “ ux and uv “ ux “ 1.

If u, v are in different blocks, then there are cut vertices w1, . . . , wr, with r ě 1, such that they
are on the only uv-path in T and wj it is not in the only uwi-path for any j ą i, and there are
no more cut vertices in the path. Then tu,w1, vu, tw1, w2, vu, . . . , twr´1, wr, vu are simplices and
uv “ w1v “ w2v “ ¨ ¨ ¨ “ wrv “ 1.

Therefore π1pF8pGqq – HT – 0.

Corollary 39. Let G a cactus graph such all of its blocks are cycles and does not have saturated
blocks, then

F8pGq » Sn´bpGq´1.

Proof. If bpGq “ 1, then G is a cycle and F8pGq – Sn´2. Assume bpGq ě 2, then, by Lemma
38, F8pGq is simply connected and , by Lemma 37, F˚

8pGq » SbpGq´1. Therefore, by Theorem
3, F8pGq is a simply connected complex such that its only nontrivial reduced homology group is
in dimension q “ n ´ bpGq ´ 1, which is isomorphic to Z. By Theorem 1, F8pGq is homotopy
equivalent to a sphere of the desired dimension.

Now we proof the main result of this section, the last result will help us to do the proof by
induction on the number of saturated vertices.
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Theorem 40. If G is a cactus graph then F8pGq is either contractible or homotopy equivalent to
a sphere of dimension at least n ´ bpGq ´ 1.

Proof. If δpGq “ 1, then F8pGq » ˚. Assume δpGq “ 2. If there is a cut vertex of degree 2, then
F8pGq » ˚. Assume there is no cut vertex of degree 2. If G has a bridge e, then G ´ e “ G1 ` G2

and, by Proposition 23, F8pGq “ F8pG1q ˚ F8pG2q. If G has more bridges, then we continue this
process until we get that F8pGq “ F8pH1q ˚ ¨ ¨ ¨ ˚F8pHr`1q, where r is the number of bridges and
each Hi is a cactus graph such that every block is a cycle. So, if every F8pHiq has ni vertices, is
not contractible and is homotopy equivalent to a sphere of dimension at least ni ´bpHiq´1, F8pGq

will be homotopy equivalent to a sphere of dimension at least n ´ bpGq ` r ´ 1 ą n ´ bpGq ´ 1.
Therefore we only need to prove the result for cactus graphs which do not have blocks isomorphic
to K2.

If G does not have saturated blocks, by Corollary 39,

F8pGq » Sn´bpGq´1.

So assume sbpGq ě 1, which implies that bpGq ě 4. Now, we prove the result by induction on
svpGq. If svpGq “ 0, then take B0 a saturated block of G and B1, . . . , Bk the remaining blocks.
Let Xi “ V pGq ´ V pBiq, then X0, X1, . . . , Xk are the facets of F˚

8pGq. Because B0 is saturated,

k
č

i“1

Xi “ H.

Let S Ď rks ´ t0u such that
σ “

č

iPS

Xi ‰ H.

Then there is 0 ă j ď k such that j R S and V pBjq X σ ‰ H, with Bj a non-saturated block or
a saturated block (which can not share vertices with B0). Then there is a vertex v in V pBjq such
that v is not vertex of the blocks with index in S nor is a vertex of B0, therefore v P X0, v P σ and
X0 Xσ ‰ H. From this we get that the nerve is a cone with apex vertex X0 and F˚

8pGq » ˚. Then,
by Lemma 38 and Theorem 3, F8pGq is simply connected and all of its reduced homology groups
are trivial. Therefore, by Theorem 1.2, F8pGq is contractible. This argument only used that there
is an isolated saturated block, a saturated block which does not have saturated vertices; therefore
we can assume that there is no isolated saturated block.

Assume the result is true for svpGq ď k and let G be a cactus graph with svpGq “ k ` 1 and
with all of its blocks isomorphic to cycles. By Lemma 36 there is B0 a saturated block such that
only one of its vertices is a saturated vertex, say v, and in the connected component of BpGq ´ v

which contains B0 there are no more saturated blocks. We call G1 the subgraph formed by the
blocks in this connected component, and G2 the subgraph induced by the remaining blocks. Then
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G “ G1 Y G2 and G1 X G2 – K1. Now

lkF8pGqpvq “ lkF8pG1qpvq ˚ lkF8pG2qpvq

We will show that lkF8pG1qpvq » ˚. There are two possibilities:

1. B0 – C3. Then V pB0q “ tv, v1, v2u and G1 “ H1 Y B0 Y H2, with V pH1q X V pB0q “ tv1u,
V pH2q X V pB0q “ tv2u and V pH1q X V pH2q “ H. Then, by Lemma 29, lkF8pG1qpvq »

hocolimpSq with S the diagram:

F8pH1q ˚ F8pH2 ´ v2q −â F8pH1 ´ v1q ˚ F8pH2 ´ v2q ã−! F8pH1 ´ v1q ˚ F8pH2q

By construction, G1 does not have saturated blocks, then δpH1´v1q “ 1 or it has a cut vertex
of degree 2. Therefore F8pH1 ´ v1q » ˚. Analogously, F8pH2 ´ v2q » ˚. From this, we get
that hocolimpSq » ˚.

2. B0 – Cn with n ě 4. Let v1, v2 be the neighbors of v in B0 and take H be the graph obtained
from G1 by erasing v and adding the edge v1v2. Then

lkF8pG1qpvq “ F8pHq » ˚,

because F8pHq has only one saturated block.

Therefore lkF8pGqpvq » ˚ and F8pGq » F8pG´vq. If there is a non-saturated block which contains
v, then δpG ´ vq “ 1 or there is a cut vertex of degree 2, and therefore F8pGq » ˚. Assume that
there is no non-saturated block with v among its vertices. Now, in G ´ v, all the remaining edges
of the blocks that contain v are bridges, so we can remove them, let H be the graph thus obtained.
If B0, B1, . . . , Bl´1 are the blocks that contain v, with n0, n1, . . . , nl´1 their respective orders, then
H “ H1 ` ¨ ¨ ¨ ` Hr where

r “

l´1
ÿ

i“0

ni ´ 1.

By inductive hypothesis, each F8pHiq is contractible or is homotopy equivalent to a sphere of
dimension at least |V pHiq| ´ bpHiq ´ 1. Then, F8pHq is contractible or it has the homotopy type
of a sphere of dimension at least

r ´ 1 `

r
ÿ

i“1

|V pHiq| ´ bpHiq ´ 1 “ n ´ 1 ´ pbpGq ´ lq ´ 1 “ n ´ bpGq ` l ´ 2 ą n ´ bpGq ´ 1.
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3.3 Double stars

We finish this chapter with the calculations for the double stars.
Let Str,s be the double star with V pStr,sq “ tu0, u1, . . . , ur, v0, v1, . . . , vsu and EpStr,sq “

tuiu0 : i ą 0u Y tviv0 : i ą 0u Y tu0v0u. Now we calculate the homotopy type of the com-
plexes of the filtration for these graphs, the idea will be to see the complex as the union of four
subcomplexes and calculate the homotopy colimit of the punctured cube given by the intersections.

Proposition 41.
F1pStr,sq » S1

and for 2 ď d ă 8

FdpStr,sq »
ł

pr´1
d´1qps´1

d´1q

S2d´1

Proof. For F1pStr,sq, the link of u0 has as facets σi “ tui, v1, . . . , vsu for all i and tv0u, therefore

lkpu0q » S0.

Since F1pStr,s ´ u0q » ˚, we have that F1pStr,sq » Σlkpu0q » S1.
For d ě 2, if r ď d ´ 1 or s ď d ´ 1, then FdpStr,sq » ˚, because the set tu1, . . . , uru or the

set tv1, . . . , vsu would be contained in all facets. Assume r, s ě d. The facets of FdpStr,sq, besides
X “ tu1, . . . , ur, v1 . . . , vsu, are of 3 types:

1. αS “ S Y tu0, v1, . . . , vsu, where S Ď tu1, . . . , uru and |S| “ d.

2. βS “ S Y tv0, u1, . . . , uru, where S Ď tv1, . . . , vsu and |S| “ d.

3. σ
S1,S2

“ tu0, v0uYS1 YS2, where S1 Ď tu1, . . . , uru, S2 Ď tv1, . . . , vsu and |S1| “ |S2| “ d´1.

Take τ “ PpXq ´ tHu, α the complex generated by tαSu, β the complex generated by tβSu and σ

the complex generated by the tσ
S1,S2

u, FdpStr,sq “ α Y β Y σ Y τ . Now, these four complexes are
contractible and so are α X σ, β X σ, α X τ, β X τ . Also

α X β X σ X τ “ α X σ X τ “ β X σ X τ “ α X β X σ “ σ X τ – skd´2∆
r´1 ˚ skd´2∆

s´1

and α X β X τ “ α X β. We compute the homotopy colimit of the punctured 4-cube given by this
union using the recursive formula given in the preliminaries. This what the formula gives applied
to the top and bottom of the 4-cube:
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α X β X σ X τ //

((

��

α X β X σ

��

&&
α X σ X τ //

��

σ X τ //

��

α X σ

��

β X σ X τ //

–

''

β X σ

»

%%
σ X τ // ˚ // Σpσ X τq

α X β X τ
– //

&&

��

α X β

��

""
α X τ

» //

��

˚ //

��

α

��

β X τ //

&&

β

""
τ // ˚ // ˚

We find that the complex has the homotopy type of the following homotopy pushout:

S : ˚ − Σpσ X τq −! τ

hocolimpSq » Σ2pσ X τq »
ł

pr´1
d´1qps´1

d´1q

S2d´1.
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Chapter 4

Homotopy type calculations II: Joins,
categorical products and cartesian
products

4.1 Graph joins

Remember that given two graphs G and H with disjoint vertex sets, we defined their join as the
graph G ˚ H with V pG ˚ Hq “ V pGq Y V pHq and

EpG ˚ Hq “ EpGq Y EpHq Y tuv : u P V pGq and v P V pHqu.

It is well-known that F0pG ˚Hq “ F0pGq \F0pHq., The following lemma will tell us the homotopy
type for the other d’s under somme hypothesis. With this lemma one can calculate the homotopy
type for various families of graphs that can be seen as a join.

Lemma 42. Let G and H graphs with disjoint vertex sets with orders n1 and n2 respectively. Then:

1. F1pG ˚ Hq » F1pGq _ F1pHq _
ł

n1n2´1

S1

2. If F0pGq and F0pHq are connected. Then, for all d ě 2

FdpG ˚ Hq »

˜

ł

n2´1

Σsk
d´1

F0pGq

¸

_

˜

ł

n1´1

Σsk
d´1

F0pHq

¸

_

¨

˝

ł

pn1´1qpn2´1q

S2
˛

‚_ A _ B

with A “ FdpGq Y Cpsk
d´1

F0pGqq and B “ FdpHq Y Cpsk
d´1

F0pHqq
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Proof. For d “ 1,
F1pG ˚ Hq “ F1pGq Y F1pHq Y Kn1,n2 .

Now F1pGq XF1pHq XKn1,n2 “ F1pGq XF1pHq “ H, therefore F1pG ˚Hq is homotopy equivalent
to the homotopy pushout of

X  − sk0F1pGq −! F1pGq,

where X is the homotopy pushout of

F1pHq − sk0F1pHq −! Kn1,n2 .

Thus
X » F1pHq _

ł

n1pn2´1q

S1.

From this the result follows.
For d ě 2,

FdpG ˚ Hq “ FdpGq Y FdpHq Y K1 Y K2,

with K1 “
Ť

uPV pHqtuu ˚ sk
d´1

F0pGq and K2 “
Ť

uPV pGqtuu ˚ sk
d´1

F0pHq. Now:

K1 –
ł

n2´1

Σsk
d´1

F0pGq,

K2 –
ł

n1´1

Σsk
d´1

F0pHq.

Taking L1 “ FdpGq and L2 “ FdpHq, we have that

L1 X L2 “ H, K1 X L1 “ sk
d´1

F0pGq, K2 X L2 “ sk
d´1

F0pHq, K1 X K2 – Kn,m,

L1 X K1 X K2 “ L1 X K2 –
ł

n1´1

S0,

L2 X K2 X K1 “ L2 X K1 –
ł

n2´1

S0.

Taking X “ K1 Y L1 and Y “ K2 Y L2, we have that FdpG ˚ Hq “ X Y Y and X X Y “

pL1 X K2q Y pL2 X K1q Y pK1 X K2q “ K1 X K2. Therefore FpG ˚ H, dq » hocolimpSq with

S : X  −â Kn,m ã−! Y

Now, the inclusion i : Kn,m ã−! X is really the inclusion Kn,m ã−! K1, which is null-homotopic,
and therefore i is null-homotopic. In the same way we see that the inclusion in Y is null-homotopic
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and that
FdpG ˚ Hq » X _ Y _

ł

pn1´1qpn2´1q

S2.

Now, K1 X L1 “ sk
d´1

F0pGq and its inclusion in K1 is null-homotopic, therefore we can compute
the homotopy type of X by pasting these two homotopy pushout squares:

sk
d´1

F0pGq //

��

˚ //

��

K1

��
L1

// L1 Y Cpsk
d´1

F0pGqq // K1 _ pL1 Y Cpsk
d´1

F0pGqqq » X

Now L1 Y Cpsk
d´1

F0pGqq “ A. With an similar argument for Y we arrive at the result.

With the last Lemma we can construct graphs for which F8pGq is not homotopy equivalent to
a wedge of spheres. Let K be a triangulation of the projective plane and let H be the complement
graph of the 1-skeleton of the baricentric subdivision, then F0pGq – K and G “ P4 ˚ H is a graph
such that FdpGq has torsion for all d ě 3.

Lemma 43. Let G be a graph and take d ě 1, then

FdpK1 ˚ Gq » FdpGq Y Cpsk
d´1

F0pGqq

Proof. The link of the apex vertex is sk
d´1

F0pGq, thus the homotopy pushout square

sk
d´1

F0pGq //

��

˚

��
FdpGq // FdpGq Y Cpsk

d´1
F0pGqq

computes FpK1 ˚ G, dq.

Theorem 44. For the complete bipartite graph we have that F0pKn,mq » S0,

F1pKn,mq »
ł

nm´1

S1,

FdpKn,mq »
ł

pn´1qpm´1q

S2 _
ł

npm´1
d q`mpn´1

d q

Sd,

for 8 ą d ě 2 and
F8pKn,mq »

ł

pn´1qpm´1q

S2.
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Proof. If d “ 0 is clear. The case d “ 1 is a particular case of Lemma 42. For d ě 2, by Lemma 42

FdpKn,mq »

˜

ł

m´1

Σsk
d´1

F0pKc
nq

¸

_

˜

ł

n´1

Σsk
d´1

F0pKc
mq

¸

_

¨

˝

ł

pn´1qpm´1q

S2
˛

‚_ A _ B

with A “ FdpKc
nq Y Cpsk

d´1
F0pKc

nqq and B “ FdpKc
mq Y Cpsk

d´1
F0pKc

mqq.
Now, for all d, k, r,

FdpKc
kq – ∆k´1, skrFdpKc

kq »
ł

pk´1
r`1q

Sr;

therefore
A »

ł

pn´1
d q

Sd; B »
ł

pm´1
d q

Sd,

from which we obtain the result.

Corollary 45. Let G1, G2, . . . , Gk be vertex disjoint graphs. For d ě 1, if FdpGiq » ˚ for all i,
then

FdpG1 ˚ G2 ˚ ¨ ¨ ¨ ˚ Gkq »
ł

pk´1qpk´2q

2

S1 _
ł

iăj

FdpGi ˚ Gjq

Proof. Let Vi be the vertex set of Gi and take G “ G1 ˚G2 ˚ ¨ ¨ ¨ ˚Gk. If we take vertices from more
than two sets of the partition, we will always have a cycle, and therefore each facet of the complex
is contained in Vi Y Vj for some i ‰ j. Then, taking Xij “ FdpG rVi Y Vjsq for i ă j, we have that
FdpGq “

ď

iăj

Xij and we can define a bijection γ : tij : i ă ju −! EpKkq such that the hypothesis

of Lemma 12 are achieved.

As an immediate consequence, because Kn1,...,nk
– Kc

n1
˚ ¨ ¨ ¨ ˚ Kc

nk
we have the homotopy type

for the multipartite graphs.

Corollary 46. For d ě 1,

FdpKn1,...,nk
q »

ł

pk´1qpk´2q

2

S1 _
ł

iăj

FdpKni,nj
q.

Theorem 47. [19]

F0pCnq »

$

’

&

’

%

Sr´1 _ Sr´1 if n “ 3r

Sr´1 if n “ 3r ` 1

Sr if n “ 3r ` 2

For each n ě 3 the graph Wn`1 “ K1 ˚ Cn is the wheel graph.
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Proposition 48. Let Wn`1 be the wheel on n ` 1 vertices, then

FdpWn`1q »

$

’

&

’

%

S3r´2 _ Sr _ Sr if n “ 3r

S3r´1 _ Sr if n “ 3r ` 1

S3r _ Sr`1 if n “ 3r ` 2

for d ą tn2 u ´ 1 and

F1pWn`1q »

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ł

3

S2r´1 _
ł

n´1

S1 if n “ 4r

S2r´1 _
ł

n´1

S1 if n “ 4r ` 1

S2r _
ł

n´1

S1 if n “ 4r ` 2

S2r`1 _
ł

n´1

S1 if n “ 4r ` 3

Proof. Since αpCnq “ tn2 u, for d ą tn2 u ´ 1 we have that F0pCnq “ sk
d´1

F0pCnq. By Lemma 43,

FdpWn`1q » FdpCnq Y CpF0pCnqq.

By Theorem 47, the inclusion of the intersection is null-homotopic, therefore

FdpWn`1q » F8pCnq _ ΣF0pCnq

For d “ 1, sk0F0pCn, 0q “
Ž

n´1 S0, the rest of the proof is the same as before.

4.2 Categorical products

4.2.1 Complexes of Kn ˆ Km

In [14] is shown using Discrete Morse theory that the homotopy type of the categorical product of
complete graphs is the wedge of copies of S1. For completeness we give a short proof using simpler
tools.

Proposition 49. [14]
F0pKn1

ˆ Kn2
q »

ł

pn1´1qpn2´1q

S1

Proof. Taking V pKn1
q “ t1, 2, . . . , n1u and V pKn2

q “ t1, 2, . . . , n2u, then

V pKn1
ˆ Kn2

q “ tpi, jq : 1 ď i ď n1 ^ 1 ď j ď n2u
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and, because the definition of the categorical product, the maximal simplices of F0pKn1 ˆKn2q are
as:

σi “ tpi, 1q, pi, 2q, . . . , pi, n2qu or τj “ tp1, jq, p2, jq, . . . , pn1, jqu

Now, for i ‰ k and j ‰ l we have: σi X σk “ H, τj X τl “ H, σi X τj “ tpi, jqu. By the Nerve
Theorem (see [7] Theorem 10.6), we get that

F0pKn1
ˆ Kn2

q » Kn1,n2

Which is easy to see that has the homotopy type of the wedge of pn1 ´ 1qpn2 ´ 1q copies of S1.

Now we will show what happens for d ě 1.

Proposition 50.
F1pKn ˆ Kmq »

ł

pnm´4qpn´1qpm´1q

4

S2

Proof. We take V pKrq “ rrs ´ t0u for any r. We proceed by induction on n. For n “ 1, the
result is clear. For n “ 2 we will prove it by induction on m. For m “ 1, 2 it is clear and for
m “ 3, K2 ˆ K3 – C6. Taking vi “ p1, iq and ui “ p2, iq, we have that lkpvmq “ X Y Y , where
Y “ F1pK2 ˆ Kmq ´ N rvns and X is the complex with facets tui, vi, umu for i ě m ´ 1. Then
X » ˚, as it is a cone with apex um, and X X Y – Ki,m » ˚. Therefore,

lkpvnq » Y – F1pK1,m´1q »
ł

m´2

S1.

Taking H “ K2 ˆ Km ´ vm, the link of um in F1pHq has as facets the simplex tu1, . . . , um´1u and
the edges tui, viu for i ě m ´ 1, therefore it is contractible and

F1pHq » F1pH ´ umq – F1pK2 ˆ Km´1q »
ł

pm´2qpm´3q

2

S2,

from which the result follows.
Now assume the result is true for Kr ˆ Km for all r ď n ´ 1. Take vi “ pn, iq, G0 “ Kn ˆ Km,

Gi “ Gi´1 ´ vi for i ě 1, Xi
j,k “ |tpj, kq, pj, iq, pn, kqu| for k ě i ` 1 and j ď n ´ 1, Xi

j,k “

|tpj, kq, pj, iqu| for k ď i ´ 1 and j ď n ´ 1,

Xi “
ď

k‰i, jďn´1

Xi
j,k

and Y i “ F1pGi´1 ´ N rvisq. Then, taking Li the link of vi in F1pGi´1q, we have that

Li “ Xi Y Y i.
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Now, in Xi, the vertices pj, kq with j ď n ´ 1 and k ‰ i are only in one facet and can be erased,
therefore Xi is homotopy equivalent to the subcomplex with maximal facets tpj, iq, pn, kqu with
k ě i ` 1 and j ď n ´ 1, which is isomorphic to Kn´1,m´i. Because Xi X Yi is isomorphic to this
subcomplex, we have that

Li » Y i – F1pKn´i,m´1q »
ł

pm´1qpn´iq´1

S1

for i ď n ´ 1. Now, Ln » Y n » ˚, therefore

F1pGn´1q » F1pGnq – F1pKn´1 ˆ Kmq »
ł

ppn´1qm´4qpn´2qpm´1q

4

S2.

From this we have that

F1pG0q » F1pKn´1 ˆ Kmq _ ΣY 1 _ ΣY 2 _ ¨ ¨ ¨ _ ΣY n´1.

Now ΣY 1 _ ΣY 2 _ ¨ ¨ ¨ _ ΣY n´1 is homotopy equivalent to the wedge of

m´1
ÿ

i“1

ipn ´ 1q ´ 1 “
pn ´ 1qmpm ´ 1q

2
´ pm ´ 1q

copies of the 2-sphere. Since

ppn ´ 1qm ´ 4qpn ´ 2qpm ´ 1q

4
“

n´2
ÿ

i“1

impm ´ 1q

2
´ pm ´ 1q,

we have that F1pKn ˆ Kmq is homotopy equivalent to the wedge of

n´1
ÿ

i“1

impm ´ 1q

2
´ pm ´ 1q “

pnm ´ 4qpn ´ 1qpm ´ 1q

4

2-spheres.

Lemma 51. For d ě 2, Fd`1pK2 ˆ Knq » FdpK2 ˆ Knq

Proof. We know that FdpK2 ˆ Knq is simply connected for all d ě 2, because F1pK2 ˆ Knq is a
wedge of 2-spheres. We will show that HqpFd`1pK2 ˆ Knq,FdpK2 ˆ Knqq – 0 for all q. We know
that HqpFd`1pK2 ˆ Knq,FdpK2 ˆ Knqq – 0 for all q ď d. For q ě d ` 3, for any q-simplex σ of
Fd`1pK2 ˆ Knq, we can partition its vertices in two sets V1, V2 such that all the vertices in Vi are
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1

...

...

...
d ` 1

(a)

1

...

...

...
d ` 1

(b)

Figure 4.1:

of the form pi, jq for some j. Next we show that |V1| “ 0 or |V2| “ 0. If not, we can assume that

|V1| ď

Z

d ` 3

2

^

ď

R

d ` 3

2

V

ď |V2|

therefore |V2| ě 3; there are several cases:

• If |V1| “ 1, then |V2| ě d ` 3 and the vertex of V1 has degree at least d ` 2, which can not
happen.

• If |V1| “ 2, then |V2| ě d ` 2 and there will be at least two vertices of V2 such their second
coordinates are different from those of the vertices of V1; therefore there will be an induced
4-cycle in the vertices of σ, which can not happen.

• If |V1| ě 3, because |V2| ě 3, there will be an induced 4-cycle or an induced 6-cycle in the
vertices of σ, which can not happen.

Therefore |V1| “ 0 or |V2| “ 0 and σ is a simplex of FdpK2 ˆ Knq. From this, we have that
HqpFd`1pK2 ˆ Knq,FdpK2 ˆ Knqq – 0 for all q ě d ` 3.

For q “ d ` 2, the only q-simplices of Fd`1pK2 ˆ Knq which are not simplices of FdpK2 ˆ Knq

are of the form |V1| “ 1 and |V2| “ d ` 2 (or vice versa), where the only vertex of V1 is adjacent
to all but one vertex of V2 (Figure 4.1(a)). For q “ d ` 1, the only q-simplices of Fd`1pK2 ˆ Knq

which are not simplices of FdpK2 ˆ Knq are of the form |V1| “ 1 and |V2| “ d ` 1 (or vice versa),
where the only vertex of V1 is adjacent to all the vertices of V2 (Figure 4.1(b)). From all this, we
get that there are no relative d`2-cycles and that all of the relative d`1-cycles are images of some
relative d ` 2-boundary. Therefore the remaining two relative homology groups are also trivial.

From all this we have that the inclusion Fd`1pK2 ˆ Knq ã−! FdpK2 ˆ Knq induces an iso-
morphism for all homology groups between simply connected complexes, by Whitehead Theorem
Fd`1pK2 ˆ Knq » FdpK2 ˆ Knq.
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Proposition 52. For d ě 2,

FdpK2 ˆ Knq »
ł

pn
3q

S4 _
ł

pn´1
3 q

S3.

Proof. We only have to prove it for d “ 2. The result is clear for n “ 1, 2, 3. Assume n ě 4. Taking

k “

ˆ

n

3

˙

, let X1, . . . , Xk be the subcomplexes of F2pK2 ˆ Knq corresponding to all the induced

6-cycles. Then Xi – S4. The other facets of F2pK2 ˆKnq, besides the ones in some Xi, are t1u ˆn

and t2u ˆ n. Then
F2pK2 ˆ Knq “ X1 Y X2 Y ¨ ¨ ¨ Y Xk Y Y1 Y Y2

where Y1 “ Ppt1u ˆ nq ´ tHu and Y2 “ Ppt2u ˆ nq ´ tHu. Now we will calculate the ho-
mology of F2pK2 ˆ Knq using the Mayer-Vietoris spectral sequence (see [29]). Taking U “

tX1, X2, . . . , Xk, Y1, Y2u and U “ N pUq, the first page of the sequence is

Zk oo 0 oo 0 oo 0 oo 0

0 oo 0 oo 0 oo 0 oo 0

0 oo 0 oo 0 oo 0 oo 0

0 oo 0 oo 0 oo 0 oo 0

C0pUq oo C1pUq oo C2pUq oo C3pUq oo 0

Because the nerve of X1, X2, . . . , Xk is isomorphic to the nerve of 2-simplices of sk2∆n´1, and U is
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isomorphic to the suspension of this nerve, we have that the second page is

Zk
gg 0 gg 0 gg 0 0

0 gg 0 gg 0 gg 0 0

0 gg 0 gg 0 gg 0 0

0 gg 0 gg 0 gg 0 0

Z 0 0 Zr 0

where r “
`

n´1
3

˘

. From this we have that E8
p,q “ E2

p,q. Therefore

H̃qpF2pK2 ˆ Knqq –

$

’

&

’

%

Zk if q “ 4

Zr if q “ 3

0 if q ‰ 4, 3

Therefore, because F1pK2 ˆKnq is simply connected, F2pK2 ˆKnq is a simply connected complex
which satisfies the hypothesis of Proposition 2, from which we see that is has the desired homotopy
type.

Theorem 53. For d ě 2,
FdpKn ˆ Kmq »

ł

a

S4 _
ł

b`c

S3,

where a “
`

m
2

˘`

n
3

˘

`
`

n
2

˘`

m
3

˘

, b “
`

m
2

˘`

n´1
3

˘

`
`

n
2

˘`

m´1
3

˘

and c “
`

n´1
2

˘`

m´1
2

˘

.

Proof. In FdpKn ˆ Kmq the facets have their vertices contained in two rows or two columns, oth-
erwise they will have a cycle. Then, taking the subgraphs

Hi,j “ Kn ˆ Kmrtpk, lq : l “ i or l “ jus,

Gi,j “ Kn ˆ Kmrtpk, lq : k “ i or k “ jus,

and the complexes Xi,j “ FdpHi,jq, Yi,j “ FdpGi,jq, we have that

FdpKn ˆ Kmq “
ď

ePEpKmq

Xe Y
ď

ePEpKnq

Ye
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From the last Proposition we know that

Xe »
ł

pn
3q

S4 _
ł

pn´1
3 q

S3

Ye »
ł

pm
3 q

S4 _
ł

pm´1
3 q

S3

Taking the Mayer-Vietoris spectral sequence, the first page looks like

Za oo 0 oo 0 oo 0 oo 0

Zb oo 0 oo 0 oo 0 oo 0

0 oo 0 oo 0 oo 0 oo 0

0 oo 0 oo 0 oo 0 oo 0

C0pUq oo C2pUq oo C3pUq oo C4pUq oo 0

Where U is the nerve of the cover, a “
`

n
2

˘`

m
3

˘

`
`

m
2

˘`

n
3

˘

and b “
`

n
2

˘`

m´1
3

˘

`
`

m
2

˘`

n´1
3

˘

. Now, U
is isomorphic to the join of the nerve of the X 1s with the nerve of the Y 1s, which are homotopy
equivalent to Km and Kn respectively, therefore U »

Ž

c S3 with c “
`

n´1
2

˘`

m´1
2

˘

. From all this,
we have that the second page of the sequence is

Za
gg 0 gg 0 gg 0 0

Zb gg 0 gg 0 gg 0 0

0 gg 0 gg 0 gg 0 0

0 gg 0 gg 0 gg 0 0

Z 0 0 Zc 0
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Therefore E8
p,q “ E2

p,q and

H̃qpFdpKn ˆ Kmqq –

$

’

&

’

%

Za if q “ 4

Zb`c if q “ 3

0 if q ‰ 4, 3

As in the proof of the last theorem, we have a simply connected complex which satisfies the hy-
pothesis of Proposition 2.

As we will see in Proposition 71

F0pK2 ˆ Km ˆ Knq »
ł

pn´1qpm´1qpnm´2q

2

S3.

Now, for other d ě 1, because K2 ˆ K2 – K2 \ K2 we have the following corollary

Corollary 54. For d ě 1,

FdpK2 ˆ K2 ˆ Knq »

$

’

’

’

&

’

’

’

%

ł

pn´2q2pn´1q2

4

S5 d “ 1

ł

pn
3q

2

S9 _
ł

2pn
3qpn´1

3 q

S8 _
ł

pn´1
3 q

2

S7 d ě 2

Question 55. What is the homotopy type of FdpK2 ˆ Km ˆ Knq for d ě 1?

4.2.2 Independence Complex of Ck ˆ Kn

In this section we will be focus on F0pCk ˆ Knq, and for this we will need the homotopy type of
the independence complex of various graphs, such as Pk ˆ Kn (Theorem 59).

Now the case C5 ˆ K2 allows us to find a counterexample showing that the homotopy type of
the independence complex of categorical product does not depend only on the homotopy type of
the independence complexes of the factors. To see this, we take Mq as the union of q disjoint edges,
from where we get that G “ K2 ˆ K2 – M2, G ˆ G – M8 and C5 ˆ G is equal to two disjoint
copies of C5 ˆK2. Now F0pC5q – S1 – F0pGq and, by Proposition 57, F0pC5 ˆK2q » S2, therefore
F0pC5 ˆ Gq » S5 fi S7 – F0pG ˆ Gq.

4.2.2.1 C3 ˆ Kn, C4 ˆ Kn, C5 ˆ Kn and Ck ˆ K2

From Proposition 49, we have for K3 – C3 that

F0pC3 ˆ Knq »
ł

2pn´1q

S1
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u1

u2

u3

u4

1 2

(a) n “ 2k

u1

u2

u3

u4

u5

1 2

(b) n “ 2k ` 1

Figure 4.2: Cn ˆ K2

Proposition 49 can also be used to calculate the homotopy type of F0pC4 ˆ Knq. Taking V pC4q “

tu1, u2, u3, u4u and V pKnq as before, C4 ˆ Kn is such that NC4ˆKnppu1, iqq “ NC4ˆKnppu3, iqq and
NC4ˆKnppu2, iqq “ NC4ˆKnppu4, iqq for all 1 ď i ď n. We define

H “ C4 ˆ Kn ´ ptu3u ˆ V pKnqq Y ptu4u ˆ V pKnqq

Now, H – K2 ˆ Kn, so
F0pC4 ˆ Knq » F0pHq »

ł

n´1

S1

In fact, if NGpuq Ă NGpvq then F0pGˆHq » F0pG´vˆV pHqq for any H, therefore F0pC4 ˆHq »

F0pK2 ˆ Hq for any H.
It is easy to see that:

Cn ˆ K2 –

#

2Cn if n ” 0 pmod 2q

C2n if n ” 1 pmod 2q

for any n ě 3, because Cn ˆ K2 is a 2-regular bipartite graph, so it is an even cycle or the disjoint
union of even cycles. By Weichsel’s Theorem (see [15] Theorem 5.9), Cn ˆ K2 is connected if and
only if one of the graph has an odd cycle, and if both graphs are bipartite, the product has exactly
two connected components (see figure 4.2.). From this, we get the next lemma.

Lemma 56.

F0pCn ˆ K2q »

#

F0pCnq ˚ F0pCnq if n ” 0 pmod 2q

F0pC2nq if n ” 1 pmod 2q

Then, for calculating the homotopy type of the independence complex of Cn ˆK2 we only need
the homotopy type of the independence complexes of cycles which, by Theorem 47, are

F0pCnq »

$

’

&

’

%

Sk´1 _ Sk´1 if n “ 3k

Sk´1 if n “ 3k ` 1

Sk if n “ 3k ` 2
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From all this, the next proposition follows:

Proposition 57.

F0pCn ˆ K2q »

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ł

4

S4k´1 if n “ 6k

S4k if n “ 6k ` 1

S4k`1 if n “ 6k ` r with r P t2, 4u

S4k`1 _ S4k`1 if n “ 6k ` 3

S4k`2 if n “ 6k ` 5

Now we will calculate the homotopy type of F0pC5 ˆ Knq for all n ě 2.

Proposition 58. For all n ě 2

F0pC5 ˆ Knq »
ł

n´1

S2

Proof. We will see that F0pC5 ˆ Kn`1q » F0pC5 ˆ Knq _ S2. Taking G0 – C5 ˆ Kn`1, we have:

NG0
ppu1, n ` 1qq “

n
ď

i“1

tpu2, iq, pu5, iqu

and taking H1 “ G0 ´ NG0
rpu1, n ` 1qs we have:

NH1
ppu3, n ` 1qq “

n
ď

i“1

tpu4, iqu Ď

n
ď

i“1

tpu4, iq, pu1, iqu “ NH1
ppu5, n ` 1qq

and

NH1
ppu4, n ` 1qq “

n
ď

i“1

tpu3, iqu Ď

n
ď

i“1

tpu3, iq, pu1, iqu “ NH1
ppu2, n ` 1qq,

so that F0pH1q » F0pH 1
1q, where H 1

1 “ H1 ´ pu2, n` 1q ´ pu5, n` 1q. Now, in H 1
1 all the vertices of

the form pu1, iq with 1 ď i ď n are isolated, so F0pH 1
1q is contractible. Therefore, by Proposition 6,

F0pG0q » F0pG1q, with G1 “ G0 ´ pu1, n ` 1q. We define H2 “ G1 ´ NG1
rpu2, n ` 1qs, noting that

NG1
ppu2, n ` 1qq “

n
ď

i“1

tpu1, iq, pu3, iqu

Then NH2
ppu2, iqq Ď NH2

ppu4, jqq for 1 ď i, j ď n and therefore F0pH2q » F0pH 1
2q with H 1

2 “

H2 ´pu4, 1q´pu4, 2q´¨ ¨ ¨´pu4, nq. In H 1
2, pu5, n`1q is an isolated vertex, so F0pH 1

2q is contractible
and, by Proposition 6, F0pG1q » F0pG2q, with G2 “ G1 ´ pu2, n ` 1q.

Now, using the part (b) of Proposition 6, we will see that |F0pG2q| » |F0pW1q| _ |ΣF0pW2q|,
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with W1 “ G2 ´ pu3, n ` 1q and W2 “ G2 ´ NG2rpu3, n ` 1qs. In W2,

NW2
ppu3, iqq “ tpu4, n ` 1qu Ď NW2

ppu5, jqq

for all 1 ď i, j ď n, so F0pW2q » F0pW2 ´ pu5, 1q ´ ¨ ¨ ¨ ´ pu5, nqq and

W2 ´ pu5, 1q ´ ¨ ¨ ¨ ´ pu5, nq – 2K1,n

Therefore F0pW2q » S1. For W1, we first will see that F0pW1q » F0pW1 ´ pu4, n ` 1qq. For this,
we take W “ W1 ´ NW1rpu4, n ` 1qs. In W ,

NW ppu4, iqq “ tpu5, n ` 1qu Ď NW ppu1, jqq

for all 1 ď i, j ď n, then

F0pW q » F0pW ´ pu1, 1q ´ ¨ ¨ ¨ ´ pu1, nqq – F0pKc
n \ K1,nq » ˚

Then F0pW1q » F0pW1 ´ pu4, n ` 1qq. In W 1 “ W1 ´ pu4, n ` 1q,

NW 1 ppu5, iqq Ď NW 1 ppu5, n ` 1qq

for all 1 ď i ď n. Then

F0pW1q » F0pW 1 ´ pu5, n ` 1qq – F0pC5 ˆ Knq »
ł

n´1

S2

Therefore, the inclusion F0pW2q ã! F0pW1q is null-homotopic and

F0pC5 ˆ Kn`1q » F0pG2q » F0pW1q _ ΣF0pW2q »
ł

n

S2

4.2.2.2 Ck ˆ Kn for k ě 6

In this section we will prove a conjecture from [14] about the homotopy type of F0pC6 ˆ Knq,
showing the homotopy type of F0pC3r ˆKnq for all r and all n in Theorem 68; for the other cycles
Theorem 69 will give us the connectivity and all but two of the reduced homology groups. For
this we will need to calculate the homotopy type of the independence complex of various auxiliary
graphs. The idea is to use the star cluster of a vertex and Theorem 7 to get an decomposition of
the complexes for which Proposition 10 can be use, so the suspension of this union will have the
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same homotopy type as the independence complex of Ck ˆ Kn. The complexes of the union will
be isomorphic to the independence complex of the graphs Gk,n (Figure 4.3(c)), these graphs are
isomorphic to Ck ˆ Kn ´ N rus ´ N rvs where the vertices u and v are adjacent vertices and their
independence complexes are isomorphic to the intersection of their links. For the homotopy type
of this family we will need the homotopy type of the independence complex of Pk ˆ Kn and the
graph family Hk,n (Figure 4.3(b)), for which we will need the independence complex of the family
Wk,n (Figure 4.3(a)). We also will need to see how is the intersection of two or more complexes of
the decomposition, for this we will need to see what hapends with the independence complexes of
other two families: H̊k,n and W̊k,n. The idea for the calculation for the auxiliary families will be
use Lemma 5, Proposition 6 or Theorem 7 and Proposition 10.

Theorem 59. For n ě 2,

F0pPk ˆ Knq »

$

’

’

’

’

’

&

’

’

’

’

’

%

ł

pn´1qr

S2r´1 if k “ 3r

˚ if k “ 3r ` 1
ł

pn´1qr`1

S2r`1 if k “ 3r ` 2

Proof. The proof is by induction on k. For k “ 1, F0pP1 ˆ Knq » ˚ for any n. For k “ 2,
F0pP2 ˆ Knq “ F0pK2 ˆ Knq and by Theorem 49 the homotopy type is as claimed. For k “ 3,

F0pPk ˆ Knq » F0pPk ´ tpu3, iq : 1 ď i ď nu ˆ Knq – F0pK2 ˆ Knq

Supose that for any r ď k the theorem is true.

F0pPk`1 ˆ Knq » F0pPk`1 ´ tpu3, iq : 1 ď i ď nu ˆ Knq – F0pPk´2 ˆ Kn \ K2 ˆ Knq

Now
F0pPk´2 ˆ Kn \ K2 ˆ Knq » F0pPk´2 ˆ Knq ˚

ł

n´1

S1 »
ł

n´1

Σ2F0pPk´2 ˆ Knq

The rest follows by induction.

For k ě 2 and n ě 3 we define:

• Wk,n as the graph obtained from Pk ˆ Kn by ading two new vertices v1, v2 and the edges
ttpu1, iq, v1u : i ‰ 2u Y ttpuk, iq, v2u : i ‰ 2u (Figure 4.3(a)).

• Hk,n as the graph obtained from Pk ˆ Kn by ading two new vertices v1, v2 and the edges
ttpu1, iq, v1u : i ě 2u Y ttpuk, iq, v2u : i ‰ 2u (Figure 4.3(b)).
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(b) Hk,n
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...

(c) Gk,n

Figure 4.3:

• Gk,n as the graph obtained from Hk,n by ading two new vertices w1, w2 and the edges
tv1, w1u, tw1, w2u, tw2, v2u (Figure 4.3(c)).

Lemma 60.

F0pWk,nq »

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ł

n´1

S1 if k “ 2

ΣF0pWk´1,nq if k “ 3r and r ě 1

Σ2F0pWk´2,nq if k “ 3r ` 1 and r ě 1
ł

n´1

Σ2F0pHk´3,nq if k “ 3r ` 2 and r ě 1

Proof. For k “ 2, Npv1q “ Nppu2, 2qq and Npv2q “ Nppu1, 2qq. Therefore

F0pW2,nq » F0pW2,n ´ v1 ´ v2q – F0pK2 ˆ Knq »
ł

n´1

S1

For k “ 3r, in W3r,n ´ v1 we have that Nppu1, iqq Ď Nppu3, iqq for all 1 ď i ď n, therefore

F0pW3r,n ´ v1q » F0pW1q

with W1 “ W3r,n ´ tpu3, iqq : 1 ď i ď nu. In W1, we have that Nppu4, iqq Ď Nppu6, iqq for all
1 ď i ď n, therefore

F0pW1q » F0pW2q

with W2 “ W1 ´ tpu6, iqq : 1 ď i ď nu. We keep doing this until we have erased all the vertices of
the form pu3j , iq for 1 ď j ď r and 1 ď i ď n, in this new graph W3r the vertex v2 is isolated, and
thus F0pW3rq » ˚. Therefore

F0pW3r,nq » ΣI pW3r,n ´ N rv1sq – ΣF0pW3r´1,nq

For k “ 3r ` 1, we do the same as in the last case, we take W3r`1,n ´ v1 and erase all the
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Figure 4.4:

vertices of the form pu3j , iq for 1 ď j ď r and 1 ď i ď n, and call this graph W3r. In W3r, the
vertex pu3r`1, 2q is an isolated vertex, therefore IpW3rq » ˚ and

F0pW3r`1,nq » ΣF0 pW3r`1,n ´ N rv1sq – ΣF0pW3r,nq » Σ2F0pW3r´2,nq

For k “ 3r ` 2, by Theorem 7, we have that

F0pWk,nq » Σ pstpv1q X SCpv1qq

Now
stpv1q X SCpv1q “

ď

wPNWk,n
pv1q

pstpv1q X stpwqq

For any vertex w, stpwq – F0pGwq, with Gw “ Wk,n ´ Npwq (Figures 4.4(a),4.4(b)).
For any neighbor of v1, stpv1q X stpwq – stpv1q X stppu1, 1qq “ F0pT q with

T “ Wk,n ´
`

NWk,n
rv1s Y NWk,n

ppu1, 1qq
˘

(Figure 4.4(c)). Now, because NT ppu1, 2qq Ă NT ppui, 3qq for any i ě 2, we see that

F0pT q » ΣF0pHk´3,nq.

Now, for any pu1, iq, pu1, jq such that i, j and 2 are three distinct numbers, if we set Ki “ stpv1q X

stppu1, iqq, then Ki X Kj » ˚ because it is a cone, the vertex pu1, 2q is an isolated vertex in the
corresponding subgraph. By Corollary 11,

stF0pWk,nqpv1q X SCpv1q »
ł

n´1

ΣF0pHk´3,nq
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Lemma 61. For k ě 2, n ě 3 and r ě 2:

F0pHk,nq »

$

’

’

’

’

&

’

’

’

’

%

ΣI pHk´1,nq if k “ 3r

Σ2I pHk´2,nq if k “ 3r ` 1
˜

ł

n´1

Σ4F0pHk´6,nq

¸

_

˜

ł

n´2

Σ2F0pHk´3,nq

¸

if k “ 3r ` 2

Proof. For k “ 3r, we take G “ H3r,n ´v1 (Figure 4.5(a)). In this graph, NGppu1, iqq Ď NGppu3, iqq

for all 1 ď i ď n, so F0pGq » F0pG1q where

G1 “ G ´
ď

1ďiďn

NGppu3, iqq.

Now, in G1, NGppu4, iqq Ď NGppu6, iqq for all 1 ď i ď n, so F0pG1q » F0pG2q where

G2 “ G1 ´
ď

1ďiďn

NGppu6, iqq.

We keep doing this until we get a graph Gr – K1 ` rK2 ˆ Kn where the isolated vertex is v2.
Therefore F0pGq » ˚ and F0pH3rq » ΣF0pH3r,n ´ NH3r,nrv1sq – ΣF0pH3r´1,nq.

For k “ 3r ` 1, we take G “ H3r`1,n ´ v1 and do the same proces as before, this time in Gr the
vertex pu3r`1, 2q is isolated, so F0pGq » ˚. Therefore

F0pH3r`1q » ΣF0pH3r`1,n ´ NH3r,n
rv1sq – ΣF0pH3r,nq – Σ2F0pH3r´1,nq
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For k “ 3r ` 2, by Theorem 7

F0pHk,nq » Σ pstpv1q X SCpv1qq ,

stpv1q X stppu1, 2qq – F0pJ1q,

with J1 obtained from Wk´2,n attaching a leaf to v1 (Figure 4.5(c)), and

stpv1q X stppu1, iqq – F0pJ2q,

with J2 “ Wk,n ´ Nppu2, 3qq (Figure 4.5(d)).
In J1 ´ ppu2, 2qq, the vertex pu1, 1q is an isolated vertex, therefore

F0pJ1q » ΣF0pJ1 ´ N rpu1, 2qsq – ΣF0pW3r´1,nq »
ł

n´1

Σ3F0pH3pr´2q`2q.

In J2 ´ ppu2, 3qq, the vertex pu1, 1q is an isolated vertex, therefore

F0pJ2q » ΣF0pJ2 ´ N rpu2, 3qsq – ΣF0pH3pr´1q`2,nq

Now the intersection of any of these complexes is contrctible, because the vertex pu1, 1q is an isolated
vertex in the corresponding subgraph. Thus, by Corollary 11,

Σ pstpv1q X SCpv1qq »

˜

ł

n´1

Σ4F0pHk´6,nq

¸

_

˜

ł

n´2

Σ2F0pHk´3,nq

¸

.

Lemma 62. For k ě 2 and n ě 3, F0pHk,nq has the homotopy type of a wedge of spheres of the
following dimension:

(a) 2r if k “ 3r.

(b) 2r ` 1 if k “ 3r ` 1 or k “ 3r ` 2.
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Moreover, for small k we can say how many spheres:

F0pHk,nq »

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ł

n´2

S1 if k “ 2

ł

n´2

S2 if k “ 3

ł

n´2

S3 if k “ 4

ł

pn´1q`pn´2q2

S3 if k “ 5

Proof. For k “ 2, the neighborhood of pu1, 2q contains the neighborhood of v1, so we can erase
pu1, 2q. In this new graph the neighborhood of pu2, 1q contains the neighborhood of v2, so we can
erase pu2, 1q. Now the neighborhood of pu1, 1q contains the neigborhood of v2, and the one of pu2, 1q

the one of v1, so we can erase pu1, 1q and pu2, 2q. This new graph is isomorphic to K2 ˆ Kn´1, so

F0pH2,nq »
ł

n´2

S1.

For k “ 3, H3,k ´ NH3,k
rv1s – H2,n and F0pH3,n ´ v1q » ˚, therefore

F0pH3,nq »
ł

n´2

S2.

For k “ 4, H4,n ´ NH4,nrv1s – H3,n and F0pH4,n ´ v1q » ˚, therefore

F0pH4,nq »
ł

n´2

S3.

For k “ 5, we know that
F0pH5,nq » Σ pstpv1q X SCpNpv1qqq

and that

stpv1q X SCpNpv1qq “

n´1
ď

i“1

Ki,

where, taking Npv1q “ tu1, . . . , un´1u,

Ki “ stpv1q X stpuiq “ F0 ppG ´ Npv1qq X pG ´ Npuiqqq .

For i “ 1, pG ´ Npv1qq X pG ´ Npu1qq is isomorphic to W3,n with a leaf adjacent to v1, therefore,
erasing all the neighbors of v1 but the leaf, we get that

K1 » ΣF0pW2,nq » ΣF0pK2 ˆ Knq,
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so
K1 »

ł

n´1

S2.

For i ě 2, pG ´ Npv1qq X pG ´ Npuiqq is isomorphic to H3,n with a leaf adjacent to v1, therefore,
erasing all the neighbors of v1 but the leaf, we get that

Ki » ΣF0pH2,nq »
ł

n´2

S2.

In any intersection of these complexes the leaf becomes an isolated vertex, therefore the intersections
are contractible, so

stpv1q X SCpNpv1qq »

n´1
ł

i“1

Ki.

Therefore
F0pH5,nq »

ł

pn´1q`pn´2q2

S3

Using H2,n and H5,n as the base for the induction and the last lemma we get that F0pHk,nq has
the homotopy type of the wedge of spheres of the desired dimension.

From Lemma 61 we see that the homotopy type of F0pHk,nq only depends of the homotopy
type of the complexes F0pH3r`2,nq, which is, by Lemma 62, the wedge of some number of p2r ` 1q-
spheres. If we let hpr, nq denote to the number of spheres in F0pH3r`2,nq we have the following
recursion relation:

(a) hp0, nq “ n ´ 2

(b) hp1, nq “ n ´ 1 ` pn ´ 2q2 “ 1 ` hp0, nq ` php0, nqq2

(c) hpr, nq “ pn ´ 1qhpr ´ 2, nq ` pn ´ 2qhpr ´ 1, nq for r ě 2

This recursion can be solved by standard techniques, and better still, once the solution is found,
it is easy to verify by induction. The solution works out to be

hpr, nq “
pn ´ 1qr`2 ´ p´1qr

n
. (4.1)

Now from Lemmas 61 and 62, we get:
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Lemma 63.

F0pHk,nq »

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ł

hpr´1,nq

S2r if k “ 3r

ł

hpr´1,nq

S2r`1 if k “ 3r ` 1

ł

hpr,nq

S2r`1 if k “ 3r ` 2

Now we can determine the homotopy type of Gk,n.

Lemma 64. For k ě 2 and n ě 3

F0pGk,nq »

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ł

n

S2 if k “ 2

ł

hpr´1,nq

S2r if k “ 3r

ł

hpr´1,nq

S2r`1 if k “ 3r ` 1

ł

hpr´1,nq`pn´1qr`1

S2r`2 if k “ 3r ` 2 and r ě 1

Proof. For k “ 2, G2,n ´ N rv1s – K2 ` K1,n, therefore F0pG2,n ´ N rv1sq » S1. In G2,n ´ v1 the
only neighbor of w1 is w2, so

F0pG2,n ´ v1q » F0pG2,n ´ v1 ´ v2q – F0pK2 ` K2 ˆ Knq »
ł

n´1

S2,

and therefore,
F0pG2,nq »

ł

n

S2.

For k “ 3r, 3r ` 1, Gk,n ´ N rw1s is isomorphic to Hk,n ´ v1 and as we saw in the proof of the
Lemma 61, F0pHk,n ´ v1q » ˚. Therefore

F0pGk,nq » F0pGk,n ´ w1q.

In Gk,n ´ w1, the only neighbor of w2 is v2, so we can erase all the neighbors of v2 except w2 and
we get

F0pGk,n ´ w1q » F0pK2 ` Hk´1,nq – ΣF0pHk´1,nq.

Using Lemma 63, we get the result.
For k “ 3r ` 2 with r ě 1, in the graph Gk,n ´ N rv1s the only neighbor of w2 is v2, so we can

erase all the neighbors of v2 but for w2 and we get that

F0pGk,n ´ N rv1sq » F0pK2 ` Hk´2,nq – ΣF0pHk´2,nq,
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which, by Lemma 62, has the homotopy type of a wedge of p2r ` 1q-spheres. Now, in Gk,n ´ v1 the
only neighbor of w1 is w2, so we can remove v2 and obtain

F0pGk,n ´ v1q » F0pK2 ` Pk ˆ Knq – ΣF0pPk ˆ Knq,

which, by Theorem 59, has the homotopy type of a wedge of pn ´ 1qr`1 p2r ` 2q-spheres, and thus
the inclusion F0pGk,n ´ N rv1sq ã−! F0pGk,n ´ v1q is null-homotopic. Therefore,

F0pGk,nq » Σ2F0pHk´2,nq _ ΣF0pPk ˆ Knq.

By Theorem 59 and Lemma 63 we get the result.

For n ě 3 and k ě 2, we define:

• W̊k,n as the graph obtained from Wk,n by taking the path of length 3 with vertices w1, w, w2

and edges ttw1, wutw,w2uu and making v1 adjacent to w1 and v2 to w2.

• H̊k,n as the graph obtained from Hk,n by taking two new vertices w1 and w2, and making v1

adjacent to w1 and v2 to w2.

Lemma 65.

F0pW̊k,nq »

$

’

’

’

’

’

&

’

’

’

’

’

%

ł

pn´1qr

S2r`1 if k “ 3r

˚ if k “ 3r ` 1
ł

pn´1qr`1

S2r`2 if k “ 3r ` 2

Proof. When k “ 3r, in T “ W̊3r,n ´ N rw1s, the neighborhood of the vertex pu1, iq is contain
in the neighborhood of the vertex pu3, iq for all i. Then, we can erase the row u3 form T and
the independence complex of this new graph is homotopy equivalent to F0pGq. In this new graph
the neighborhood of pu4, iq is contained in the one of pu6, iq, so we can erase the row u6 and the
homotopy type will not change. Continuing with this process until we have erased all the rows u3k

for 1 ď k ď r, we obtain a graph which is isomorphic to K2 ` rK2 ˆ Kn, so

F0pT q » ΣF0prK2 ˆ Knq »
ł

pn´1qr

S2r.

Now, in W̊3r,n ´ w1 the only neighbor of w is w2, so we can erase v2. In this new graph, the
neighborhood of pu3r, iq is contain in the one of pu3r´2, iq, so we can erase the row u3r´2. Continuing
this process as before, we erase the rows u3k´2 for all 1 ď k ď r. At the end of this, the vertex v1
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is an isolated vertex, so F0pW̊3r,n ´ w1q » ˚ and therefore

F0pW̊3r,nq » ΣF0pT q »
ł

pn´1qr

S2r`1.

For k “ 3r ` 1, as before we take T “ W̊3r`1,n ´ N rw1s and erase the rows u3k for 1 ď k ď r, we
get a graph in which the vertex pu3r`1, 2q is an isolated vertex, then F0pT q » ˚ and F0pW̊3r`1,nq »

F0pW̊3r,n ´ w1q. In W̊3r`1,n ´ w1, the only neighbor of w is w2, so we can erase v2. In this new
graph, the neighborhood of pu3r`1, iq is contained in the one of pu3r´1, iq, so we can erase the row
u3r´1. Continuing this process as before, we erase the rows u3k´1 for all 1 ď k ď r. At the end of
this, the vertex pu1, 2q is an isolated vertex, so F0pW̊3r`1,n ´ w1q » ˚ and therefore

F0pW̊3r`1,nq » ˚.

For k “ 3r ` 2, as before we take T “ W̊3r`2,n ´ N rw1s and erase the rows u3k for 1 ď k ď r. In
this graph the neighborhood of pu3r`1, 2q is contain in the one of v2, so we can erase v2 and w2

becomes an isolated vertex. Therefore

F0pW̊3r`2,nq » F0pW̊3r`2,n ´ w1q.

In W̊3r`2,n ´ w1, the only neighbor of w is w2, so we can erase v2. In this new graph, the neigh-
borhood of pu3r`2, iq is contain in the one of pu3r, iq, so we can erase the row u3r. Continuing this
process, we erase the rows u3k for all 1 ď k ď r. In this graph the neighborhood of v1 is equal to
the one of pu2, 2q, so we can erase v1, therefore

F0pW̊3r`2,nq » F0pK2 \ pr ` 1qK2 ˆ Knq »
ł

pn´1qr`1

S2r`2.

Lemma 66.

F0pH̊k,nq »

$

’

&

’

%

S2 if k “ 2

S3 if k “ 3

Σ2F0pHk´2,nq for all k ě 4

Proof. Because Npwiq “ tviu, we can erase the vertices pu1, iq and puk, jq for i ą 1 and j ‰ 2. Now

1. If k “ 2, the resulting graph is isomorphic to 3K2.

2. If k ě 4, the resulting graph is isomorphic to 2K2 \ Hk´2,n.

3. If k “ 3, the only neighbor of pu2, 1q in the resulting graph is pu3, 2q, so we can erase al the
vertices pu2, iq with i ą 2. This new graph is isomorphic to 4K2.

64



Before we prove the main result of this section, we need the next lemma.

Lemma 67. For v “ pu1, 1q P V pCr ˆ Knq, the complex stpvq X SCpvq is the union of complexes
X1, . . . , Xn´1, Y1, . . . , Yn´1, where

1. For any i, Xi – Yi – F0pGr´4,nq.

2. For any i and r ě 7, Xi X Yi – F0pW̊r´5,nq.

3. For any i ‰ j and r ě 7, Xi X Yj – F0pH̊r´5,nq.

4. For any i ‰ j, Xi X Xj » ˚ » Yi X Yj.

5. For any L1, . . . , Lm, with m ě 3 and Li P tX1, . . . , Xn´1, Y1, . . . , Yn´1u, we have

m
č

j“1

Lj » ˚

Proof. By definition
SCpvq “

ď

uPNpvq

stpuq

and in Cr ˆ Kn, |Npvq| “ 2pn ´ 1q, we call

Xi “ stpvq X stppu2, i ` 1qq

and
Yi “ stpvq X stppun, i ` 1qq

Now, Xi is the independence complex of the induced subgraph given by de set

Si “ V pCr ˆ Knq ´ pNpvq Y Nppu2, i ` 1qqq

where, taking w “ pu2, i ` 1q,

Npvq Y Npwq “ tpu2, jq : j ą 1u Y tpun, jq : j ą 1u Y tpu1, jq : j ‰ i ` 1u Y tpu3, jq : j ‰ i ` 1u

therefore pCr ˆ KnqrSis – Gr´4,n.
Now, XiXXj – F0ppCr ˆKnqrSisXpCr ˆKnqrSjsq, with i ‰ j, in pCr ˆKnqrSisXpCr ˆKnqrSjs

the vertex pu2, 1q is an isolated vertex, therefore Xi X Xj » ˚. For Y 1
i s is analogous, with pur, 1q

being the isolated vertex. Now, for the intersection of more than 2 complexes, one or both of these
vertices are isolated.
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¨ ¨ ¨

(a) Ki X Li

¨ ¨ ¨

(b) Ki X Lj

Figure 4.6:

Now, taking Si as before and

Rj “ V pCr ˆ Knq ´ pNpvq Y Nppur, j ` 1qqq

taking t “ pur, i ` 1q

Npvq Y Nptq “ tpu2, lq : l ą 1u Y tpun, lq : l ą 1u Y tpu1, lq : l ‰ j ` 1u Y tpur´1, lq : l ‰ j ` 1u

Then Xi X Yj – F0ppCr ˆ KnqrSi X Rjsq and

• If i “ j, then pCr ˆ KnqrSi X Rjs – W̊r´5,n.

• If i ‰ j, then pCr ˆ KnqrSi X Rjs – H̊r´5,n.

Remember from equation 4.1 that hpr, nq “
pn´1q

r`2
´p´1q

r

n .

Theorem 68.

F0pCk ˆ Knq »

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ł

2pn´1q

S1 if k “ 3

ł

pn´1q

S1 if k “ 4

ł

n´2

S2 if k “ 5

ł

pn´1qp3n´2q

S3 if k “ 6

ł

npn´1qhpr´3,nq`2pn´1qr

S2r´1 if k “ 3r and r ě 3
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Proof. For k ď 5, we have already seen it. For k “ 6, we now that

F0pC6 ˆ Knq » Σstppu1, 1qq X SCppu1, 1qq

where

SCppu1, 1qq “

¨

˝

ď

pui,n´1q

ią1

stppui, n ´ 1qq

˛

‚Y

¨

˝

ď

pui,2q

ią1

stppui, 2qq

˛

‚

Making the intersecction we get K1, . . . ,Kn´1, L1, . . . , Ln´1 complexes which are isomorphic to
F0pG2,nq, which has the homotopy type of an wedge of n 2-dimentional spheres. The intersection of
any Ki and Li is ismomorphic to the independence complex of the graph in Figure 4.6(a), which has
an isolated vertex, so KiXLi » ˚. For i ‰ j, the complex KiXLj is isomorphic to the independence
complex of the graph in Figure 4.6(b), which is homotopy equivalent to S1. The intersection of
three or more of these complexes is always contractible. Therefore, stppu1, 1qq XSCppu1, 1qq has the
hompotopy type of the wedge of 2pn´1q copies of

ł

n

S2 with pn´1qpn´2q copies of S2. Therefore

F0pC6 ˆ Knq »
ł

pn´1qp3n´2q

S3

For k “ 3r with r ě 3, by the Lemma 67, stpvqXSCpvq is the union of complexes K1, . . . ,Kn´1, L1, . . . , Ln´1,
where

1. For any i, Ki – Li – F0pGk´4,nq.

2. For any i, Ki X Li – F0pW̊k´5,nq.

3. For any i ‰ j, Ki X Lj – F0pH̊k´5,nq.

4. For any i ‰ j, Ki X Kj » ˚ » Li X Lj .

5. For any X1, . . . , Xl, with l ě 3 and Xi P tK1, . . . ,Kn´1, L1, . . . , Ln´1u, we have

l
č

j“1

Xj » ˚

So we have 2pn ´ 1q copies of F0pG3pr´3q`2,nq, which has the homotopy type of the wedge of
hpr ´ 3, nq ` pn ´ 1qr´1 copies of S2r´2, pn ´ 1qpn ´ 2q copies of F0pH̊3pr´2q`1,nq which has the
homotopy type of

Σ2F0pH3pr´3q`2,nq »
ł

hpr´3,nqpn´2q

S2r´3
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and n ´ 1 copies of F0pW̊3pr´2q`1,nq » ˚. By Proposition 10 and taking its suspension we get that

F0pC3r ˆ Knq »
ł

npn´1qhpr´3,nq`2pn´1qr

S2r´1

Theorem 69. For r ě 2:

(a) π1pF0pC3r`1 ˆ Knqq – 0 – π1pF0pC3r`2 ˆ Knqq.

(b) H̃qpF0pC3r`1 ˆ Knqq – 0 for all q ‰ 2r, 2r ´ 1.

(c) H̃qpF0pC3r`2 ˆ Knqq – 0 for all q ‰ 2r ` 1, 2r.

(d) F0pC3r`1 ˆ Knq has the homotopy type of a wedge of 2r-spheres, 2r ` 1-spheres and moore
spaces of the type MpZm, 2rq.

(e) F0pC3r`2 ˆKnq has the homotopy type of a wedge of 2r`1-spheres, 2r`2-spheres and moore
spaces of the type MpZm, 2r ` 1q.

Proof. From Lemma 67 and Theorem 7, for s “ 1, 2, F0pC3r`s ˆ Knq » ΣpX Y Y q, where

X –

n´1
ď

i“1

Xi, Y –

n´1
ď

i“1

Yi, Xi – F0pG3r`s´4,nq – Yi

and
č

iPS

Xi » ˚ »
č

iPS

Yi

for any S Ă t1, . . . , n ´ 1u and |S| ě 2. By Proposition 10, Lemmas 67 and 64,

X »
ł

pn´1qhpr´2,nq

S2r´3`s » Y

By the Seifert–van Kampen Theorem (see [28] Theorem 7.40), π1pX Y Y q – 0.
Now, for C3r`1 ˆ Kn, by Lemma 67,

X X Y “
ď

1ďi,jďn´1

Xi X Yj

where
Xi X Yi – F0pW̊3pr´2q`2,nq

Xi X Yj – F0pH̊3pr´2q`2,nq for i ‰ j
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and pXi X Yjq X pXr X Ysq » ˚. By Proposition 10

X X Y »

¨

˝

ł

pn´2qpn´1q

I
´

H̊3pr´2q`2,n

¯

˛

‚_

˜

ł

n´1

I
´

W̊3pr´2q`2,n

¯

¸

By Lemmas 63, 65 and 66a,

X X Y »
ł

pn´1qr`pn´2qpn´1qhpr´3,nq

S2r´2.

Then, by the Mayer-Vietoris sequence, taking K “ X Y Y ,

0 // H̃2r´1pKq // Zl // Zd ‘ Zd // H̃2r´2pKq // 0

where l “ pn ´ 1qr ` pn ´ 2qpn ´ 1qhpr ´ 3, nq and d “ pn ´ 1qhpr ´ 2, nq. Therefore H̃qpKq – 0 for
q ‰ 2r ´ 1, 2r ´ 2 and taking the suspension we get the result. For C3r`2 ˆ Kn is analogous.

Parts (d) and (e) follow form the previous parts (see example 4C.2 [16]).

Proposition 57 tell us that for any k F0pCk ˆK2q has the homotopy type of a wedge of spheres
of the same dimension and Theorem 68 tell us that for k “ 3r and any n this is also true, so one can
ask what happen for the other k’s. For k ı 0 pmod 3q, the last Theorem tell us that the complex
may have nontrivial homology only in two consecutive dimensions; and by calculations done with
Sage we know that for C7 ˆK3, C7 ˆK4, C7 ˆK5, C8 ˆK3, C10 ˆK3, C10 ˆK3, their independence
complexes have non-trivial free homology groups in these two dimensions. From all this we can ask
the following question:

Question 70. Are the homology groups of F0pCk ˆ Knq always torsion-free?

An afirmative answer would tell us that F0pCk ˆKnq always has the homotopy type of a wedge
of spheres.

4.2.3 Independence Complex of K2 ˆ Kn ˆ Km

In this section we will calculate the homotopy type of F0pK2 ˆ Kn ˆ Kmq. We take the following
polynomial.

fpl, n,mq “
pl ´ 1qpn ´ 1qpm ´ 1qplnm ´ 4q

4

Proposition 71.
F0pK2 ˆ Kn ˆ Kmq »

ł

fp2,n,mq

S3

Proof. We take G “ K2 ˆ Kn ˆ Km, then:
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p1, 2, 3q p2, 1, 3q

p1, 2,mq p2, 1,mq

p1, 3, 2q p2, 3, 1q

p1, n, 2q p2, n, 1q

...

......

...

......

......

p2, 1, 2q

p2, 2, 1q

p1, 2, 1q

p1, 1, 2q

p2, 1, 1q p1, 2, 2q

Figure 4.7: GrSs “ Qn,m

• If either n or m is equal to 1, then fp2, n,mq “ 0.

• If n “ 2 then
F0pGq “ F0pK2 ˆ Kmq ˚ F0pK2 ˆ Kmq »

ł

pm´1q2

S3

and the formula holds. The same is true for m “ 2.

• If n “ 3, then fp2, 3,mq is the formula for C6 ˆ Km. The same for m “ 3.

Assume that n,m ě 3. Because K2 is one of the factors in the product, G has no K3 and by
Theorem 7

F0pGq » Σpstpp1, 1, 1qq X SCpp1, 1, 1qqq

As before, stpp1, 1, 1qq X SCpp1, 1, 1qq “
ď

vPNGpp1,1,1qq

pstpp1, 1, 1qq X stpvqq

We will first see that each of the complexes of this union is homotopy equivalent to the wedge of
n`m´3 spheres. For p2, 2, 2q, stpp1, 1, 1qqXstpp2, 2, 2qq “ IpGrSsq with S “ V pGq´NGpp1, 1, 1qqY

NGpp2, 2, 2qq. Now S “ σ Y τ , with

σ “ tp1, 2, 1q, p1, 2, 2q, . . . , p1, 2,mq, p1, 1, 2q, p1, 2, 2q, . . . , p1, n, 2qu

and
τ “ tp2, 1, 1q, p2, 1, 2q, . . . , p2, 1,mq, p2, 1, 1q, p2, 2, 1q, . . . , p2, n, 1qu

therefore, GrSs is the graph in Figure 4.7, which we will call Qn,m. Beacuse n,m ě 3, m ` n ě 6.
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If m ` n “ 6, then m,n “ 3 and if we remove the vertex p2, 1, 1q and its neighbors, we get the
disjoint union of two copies of P3, therefore F0pQ3,3 ´ NQ3,3pp2, 1, 1qq » S1. Now, Q3,3 ´ p2, 1, 1q

is isomorphic to C8 plus a vertex v adjacent to two vertices in C8 which are at distance 4; if we
remove this vertex and its neighbors we get two disjoint copies of P3, therefore, by Proposition 6,
F0pQ3,3 ´ p2, 1, 1qq » S2 _ S2. Then, again by Proposition 6, F0pQ3,3q »

ł

3

S2. Assume that for

all 6 ď n ` m ď k, F0pQn,mq »
ł

n`m´3

S2 and take Qn,m such that n ` m “ k ` 1, without loss of

generality assume that m ě 4. Now, in F “ Qn,m ´NQn,m
rp1, 2, 3qs the only neighbor of p1, 2, 1q is

p2, 1, 3q, therefore F0pF q » F0pF ´ Rq with

R “ tp1, 2, 2q, p1, 2, 4q, . . . , p1, 2,mq, p1, 3, 1q, . . . , p1, n, 2qu

and F ´ R – M2, and thus F0pF q » S1. Now, in T “ Qn,m ´ p1, 2, 3q NT pp2, 1, 4qq Ď NT pp2, 1, 3qq,
by Lemma 5, F0pT q » F0pT ´p2, 1, 3qq. Because T ´p2, 1, 3q – Qn,m´1, by the inductive hypothesis,

F0pT q »
ł

n`m´4

S2,

and by Proposition 6,
F0pQn,mq »

ł

n`m´3

S2.

Now,

pstpp1, 1, 1qq X stpvqq X pstpp1, 1, 1qq X stpuqq “ stpp1, 1, 1qq X stpuq X stpvq “ IpGrAsq,

with A “ V pGq ´ NGpp1, 1, 1qq Y NGpuq X NGpvq. There are two possibilities

• u and v have two coordinates equal. Assume that u “ p2, a, bq and v “ p2, a, cq, with b, c ą 1

and b ‰ c. Take p2, a, 1q, px, y, zq P A. If x “ 1, then y “ a because b ‰ c. Therefore
p2, a, 1qpx, y, zq R EpGq for all px, y, zq P A and F0pGrAsq » ˚.

• u and v have only on coordinate equal. Assume u “ p2, a, bq and v “ p2, c, dq, with a ‰ c,
b ‰ d and a, b, c, d ą 1. Then

A “ tp1, a, dq, p1, c, bq, p2, 1, 1q, p2, 1, 2q, . . . , p2, 1,mq, p2, 2, 1q, . . . , p2, n, 1qu

In GrAs, the only neighborhood of p2, 1, dq is p1, c, bq and only one of p2, c, 1q is p1, a, dq, so we
can erase all other vertices without changing the homotopy type, and therefore F0pGrAsq »

F0pM2q – S1.

Therefore, the inclusion of the intersection of two complexes of the union stpp1, 1, 1qq XSCpp1, 1, 1qq
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is null-homotopic. Now, the intersection of three complexes is equal to F0pGrDsq with D “ V pGq ´

Ngpp1, 1, 1qq Y NGpu1q X NGpu2q X NGpu3q. There are two possibilities

• If three vertices have only the first coordinate equal, p2, a, bq, p2, c, dq, p2, e, fq, then the only
vertices with the first coordinate equal to 1 that are not neighbors of p2, a, bq or p2, c, dq are
p1, a, dq and p1, c, bq, which are neighbors of p2, e, fq, therefore

D “ t2u ˆ V pKnq ˆ V pKmq

and
F0pGrDsq » ˚.

• If two vertices have two coordinates equal, the intersection is a cone as with only two vertices.

Then the union stpp1, 1, 1qq X SCpp1, 1, 1qq achieve the hypothesis of Proposition 10. Now p1, 1, 1q

has pn ´ 1qpm ´ 1q neighbors and for each neighbor there are another pn ´ 2qpm ´ 2q neighbors
differing in two coordinates, these pairs are counted twice, therefore stpp1, 1, 1qq X SCpp1, 1, 1qq is
homotopy equivalent to the wedge of

pn ´ 1qpm ´ 1qpn ` m ´ 3q `
pn ´ 1qpm ´ 1qpn ´ 2qpm ´ 2q

2
“

pn ´ 1qpm ´ 1qp2mn ´ 4q

4

spheres, and taking the suspension we arrive at the result.

We finish this section with the following conjecture.

Conjecture 72.
F0pKn ˆ Km ˆ Klq »

ł

fpn,m,lq

S3

4.3 F8 pP2 @ Pnq

The independence complex of square grid graph Pn @ Pm has been studied for many cases [9, 21].
Here we study the case P2 @ Pn for the forest complex.

Proposition 73.

F8 pP2 @ Pkq »

$

’

&

’

%

S4r´1 if k “ 3r

˚ if k “ 3r ` 1

S4r`2 if k “ 3r ` 2.

Proof. By Theorem 32, F8 pP2 @ Pkq is simply connected. We will show that it has at most one
non-trivial reduced homology group. The Alexander dual of F8 pP2 @ Pkq has as maximal simplicies
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the complements of Xi “ tpi, 1q, pi ` 1, 1q, pi, 2q, pi ` 1, 2qu for 1 ď i ď k ´ 1. Taking Ui “ Xc
i and

U the cover formed by these Ui, we have that

N pUq » F˚
0 pPkq.

It is standard that [19]:

F0pPkq »

$

’

&

’

%

Sr´1 if k “ 3r

˚ if k “ 3r ` 1

Sr if k “ 3r ` 2.

Thus, by Theorem 3, N pUq has non-trivial reduced cohomology groups if k “ 3r or k “ 3r ` 2, in
which case the groups are in dimensions are 2pr´1q and 2r´1 respectively. Therefore F8 pP2 @ Pkq

is contractible if k “ 3r ` 1 and

H̃q pF8 pP2 @ P3rqq –

#

Z if q “ 4r ´ 1

0 if q ‰ 4r ´ 1,

H̃q pF8 pP2 @ P3r`2qq –

#

Z if q “ 4r ` 2

0 if q ‰ 4r ` 2.

By Theorem 1, in these cases the complex has the homotopy type of a sphere of the desired
dimension.
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Chapter 5

Homotopy type calculations III:
Lexicographic products

In this last chapter we will study the complexes of some lexicographic products and will see its
relation with polyhedral joins. Remember that the lexicographic product G ˝ H is the graph
obtained by taking a copy of H for each vertex of G and all the possible edges between two copies
if the corresponding vertices are adjacent in G. First we will see that the independence complex of
a lexicographic product has the homotopy type of a homotopy colimit.

Proposition 74. Let G and H be two graphs. Then F0pG ˝ Hq » hocolimX , with X a punctured
n-cube, where F0pGq has n maximal simplices σ1, . . . , σn,

X pSq – F0pHq˚ns

and ns “

ˇ

ˇ

ˇ

ˇ

ˇ

č

iRS

σi

ˇ

ˇ

ˇ

ˇ

ˇ

Proof. By definition, the maximal simplices of F0pG ˝Hq are given by taking a maximal simplex σ

of F0pGq and for each vertex of σ taking a maximal simplex in the corresponding copy of F0pHq.
Fixing σ and taking all the possible combinations of maximal simplices in the copies of F0pHq, we
get the simplicial complex

Xσ “ ˚
uPσ

F0pHuq

where Hu is the copy of H corresponding to the vertex u. Thus, if σ1, . . . , σn are the maximal
simplices of F0pGq, then

F0pG ˝ Hq “

n
ď

i“1

Xσi
.
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Taking the punctured cube X given by the intersections we get a cofibrant punctured cube satisfying
F0pG ˝ Hq » hocolimX .

Now we will see that for the second factor only the homotopy type of its independence complex
matters.

Theorem 75. Let H1 and H2 be graphs such that F0pH1q » F0pH2q, then F0pG˝H1q » F0pG˝H2q.

Proof. If σ1, . . . , σk are the maximal simplices of F0pGq, taking Gi “ Grσis, Xi “ F0pGi ˝ H1q and
Yi “ F0pGi ˝ H2q, we have that Xi – F0pH1q˚|σi|, Yi – F0pH2q˚|σi|.

From this, F0pG ˝H1q “ X1 Y ¨ ¨ ¨ YXk and F0pG ˝H2q “ Y1 Y ¨ ¨ ¨ YYk. We take the punctured
k-cubes

X pSq “
č

iPSc

Xi and YpSq “
č

iPSc

Yi

with the inclusions as the maps. If f : F0pH1q −! F0pH2q is a homotopy equivalence, taking
fS : X pSq −! YpSq the corresponding induced homotopy equivalence if

č

iPSc

σi ‰ H, we have

that the collection of maps tfS : S P P1pkqu is an homotopy equivalence between the punctured
cubes.

Now, the homotopy type of F0pG˝Hq does depend on finer details of G than just the homotopy
type of its independence complex: for example the independence complexes of P5 and P6 have the
same homotopy type [19] but the ones for the corresponding lexicographic products do not have
to agree. In [24] the homotopy type of F0pPn ˝ Hq is given when F0pHq is homotopy equivalent
to a wedge of spheres and in [26] for any graph H, here we will determine the homotopy type
of F0pPn ˝ Hq for any graph H and all n with a different proof. For this we need the following
polynomials:

a0px, yq “ 0, b0px, yq “ y, c0px, yq “ 2y

and for r ě 1,
arpx, yq “ xybr´1px, yq ` px ` xyqar´1px, yq ` xr´1y,

brpx, yq “ xycr´1px, yq ` px ` xyqbr´1px, yq ` xry,

crpx, yq “ xyarpx, yq ` px ` xyqcr´1px, yq ` 2xry.
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Theorem 76. For any graph H

F0pPn ˝ Hq »

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

F0pHq if n “ 1

F0pHq \ F0pHq if n “ 2

Σ
`

F0pHq^2
˘

\ F0pHq if n “ 3

Sr´1 _
ł

arpx,yq

ł

aij

`

ΣiF0pHq^j
˘

if n “ 3r ě 6

ł

brpx,yq

ł

bij

`

ΣiF0pHq^j
˘

if n “ 3r ` 1 ě 4

Sr _
ł

crpx,yq

ł

cij

`

ΣiF0pHq^j
˘

if n “ 3r ` 2 ě 5

where zij is the coefficient of the term xiyj of the corresponding polynomial.

Proof. For n “ 1, 2, 3 the theorem is clear. For n “ 4, F0pP4 ˝ Hq is the union of three complexes
X1, X2, X3 isomorphic to F0pHq˚2 corresponding to the edges of P c

4 . We compute the homotopy
type of the union via pushouts:

H
– //

%%

��

H

��

))
F0pHq

– //

��

F0pHq //

��

F0pHq˚2

��

F0pHq //

##

F0pHq˚2

((
F0pHq˚2 //

ł

2

F0pHq˚2 _ ΣF0pHq //
ł

3

F0pHq˚2
ł

2

ΣF0pHq

For n “ 5, F0pP5 ˝ Hq is the union of two complexes X1 – F0pHq˚3 and X2 – F0pP4 ˝ Hq, where
X1 X X2 –

ğ

2

F0pHq. Therefore, by Lemma 9,

F0pP5 ˝ Hq » F0pHq˚3 _
ł

3

F0pHq˚2 _
ł

4

ΣF0pHq _ S1.

For n “ 6, F0pP6 ˝ Hq is the union of two complexes X1 – F0pHq ˚ F0pP4 ˝ Hq and X2 –

F0pHq ˚ F0pP3 ˝ Hq, where X1 X X2 – F0pP3 ˝ Hq. By Lemma 9,

F0pP6 ˝ Hq » F0pHq ˚ F0pP4 ˝ Hq _ F0pHq ˚ F0pP3 ˝ Hq _ ΣF0pP3 ˝ Hq
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»
ł

4

F0pHq˚3 _ F0pHq˚2 _
ł

3

ΣF0pHq˚2 _
ł

2

ΣF0pHq _ S1.

For n ě 7,
F0pPn ˝ Hq – pF0pHq ˚ F0pPn´2 ˝ Hqq Y pF0pHq ˚ F0pPn´3 ˝ Hqq .

Therefore F0pPn ˝ Hq has the homotopy type of the homotopy pushout of

F0pHq ˚ F0pPn´2 ˝ Hq oo ? _F0pPn´3 ˝ Hq
� � // F0pHq ˚ F0pPn´3 ˝ Hq

and from this, by Lemma 9,

F0pPn ˝ Hq » F0pHq ˚ F0pPn´2 ˝ Hq _ ΣF0pPn´3 ˝ Hq _ F0pPn´3 ˝ Hq

The rest follows by inductive hypothesis.

Now we give the generating functions for the polynomials of the last Theorem. Taking

F ptq “
ÿ

rě0

arpx, yqtr, Gptq “
ÿ

rě0

brpx, yqtr, Hptq “
ÿ

rě0

crpx, yqtr,

we have that:

F ptq “ xytGptq ` px ` xyqtF ptq `
ÿ

rě1

xr´1ytr

Gptq “ xytHptq ` px ` xyqtGptq ` y `
ÿ

rě1

xrytr

Hptq “ xyF ptq ` px ` xyqtHptq ` 2y ` 2
ÿ

rě1

xrytr

Taking Kptq “
ÿ

rě1

xr´1ytr we see that

xKptq “ y

ˆ

1

1 ´ xt
´ 1

˙

“
xyt

1 ´ xt
.
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Therefore Kptq “
yt

1 ´ xt
and

F ptq “ xytGptq ` px ` xyqtF ptq `
yt

1 ´ xt

Gptq “ xytHptq ` px ` xyqtGptq ` y `
xyt

1 ´ xt

Hptq “ xyF ptq ` px ` xyqtHptq ` 2y `
2xyt

1 ´ xt

From this we obtain:

F ptq “
xyt

1 ´ px ` xyqt
Gptq `

yt

p1 ´ px ` xyqtqp1 ´ xtq

Gptq “
xyt

1 ´ px ` xyqt
Hptq `

y

p1 ´ px ` xyqtqp1 ´ xtq

Hptq “
xy

1 ´ px ` xyqt
F ptq `

2y

p1 ´ px ` xyqtqp1 ´ xtq

Solving these equations we arrive at:

F ptq “
´px2y3 ` x2y2qt3 ` px2y3 ` x2 ´ x2y2y ´ 2xy2 ´ xyqt2 ` pxy2 ` y ´ xyqt

p1 ´ xtq rp1 ´ px ` xyqtq3 ´ x3y3t2s
,

and from this the other generating functions can be easily obtained.
We now give a formula for the homotopy type of the suspension of F0 for any lexicographic

product in terms of the F0’s of the factors and induced subgraphs of the first factor. For this,
notice that the independence complex of a lexicographic product is a polyhedral join, as has been
pointed out in [25].

Theorem 77. For any graphs G and H,

ΣF0pG ˝ Hq » ΣF0pGq _
ł

σPF0pGq

ÿ

˜

F0

˜

G ´
ď

vPσ

N rvs

¸

˚ F0pHq˚|σ|

¸

.

Proof. By definition, F0pG ˝ Hq “
˚

ZF0pGq pF0pHq,Hq. Then, by Theorem 14, we have that

ΣF0pG ˝ Hq » ẐF0pGqpΣF0pHq,S0q,
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and by Theorem 13,

ẐF0pGqpΣF0pHq,S0q » ΣF0pGq _
ł

σPF0pGq

ÿ

˜

F0

˜

G ´
ď

vPσ

N rvs

¸

˚ F0pHq˚|σ|

¸

As an immediate corollary we have the following:

Corollary 78. For any graph G such that F0pGq is connected and any graph W ,

H̃qpF0pG ˝ W qq – H̃qpF0pGqq ‘
à

σPF0pGq

H̃q

˜

F0

˜

G ´
ď

vPσ

N rvs

¸

˚ F0pW q˚|σ|

¸

.

The last theorem gives us an equivalence between the suspensions of two spaces, so it is natural
to ask if the formula is true without suspending, for some G. For example, for n “ 5, 6 is not hard
to see that

F0pCn ˝ Hq » F0pCnq _
ł

σPF0pCnq

lkpσq ˚ F0pHq˚|σ|.

Question 79. Is the above homotopy equivalence valid for other positive integers n?

Also, using the same proof of Theorem 76 it can be show that for n ě 4, the homotopy type of
F0pPn ˝Hq follows the formula of Theorem 77, but without the suspension. So another question is
the following:

Question 80. For which graphs G, with F0pGq connected, is it true that

F0pG ˝ Hq » F0pGq _
ł

σPF0pGq

˜

F0

˜

G ´
ď

vPσ

N rvs

¸

˚ F0pHq˚|σ|

¸

for all H?

Now for any graph G, the graph K2 ˝G is also the graph join of two copies of G and Lemma 42
give us the homotopy type for this product, so we get that for G a graph of order n we have that:

1. F1pK2 ˝ Gq »
ł

2

F1pGq _
ł

n2´1

S1.

2. If F0pGq is connected, then, for all d ě 2,

FdpK2 ˝ Gq »
ł

2n´2

Σsk
d´1

F0pGq _
ł

pn´1q2

S2 _
ł

2

A

where A “ FdpGq Y Cpsk
d´1

F0pGqq.
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Now we can see that in contrast with F0, the homotopy type of the second factor does not
determine the homotopy type of FdpG ˝ q for d ě 1. It is known that F0pP5q » F0pP6q » S1

and F0pP4q » ˚ (see [19]), by Proposition 33 F1pP5q » F1pP6q » ˚, and it is not hard to see that
sk1pF0pP5qq » S1 _ S1 and sk1pF0pP4qq » ˚. From all this and Lemma 42 we have that

F1pK2 ˝ P5q »
ł

24

S1 fi
ł

35

S1 » F1pK2 ˝ P6q,

F2pK2 ˝ P4q »
ł

9

S2 fi
ł

36

S2 » F2pK2 ˝ P5q,

and for d ě 3,
FdpK2 ˝ P4q »

ł

9

S2 fi
ł

26

S2 » FdpK2 ˝ P5q.

Until now we only have worked with F0; for d ě 1, sadly FdpG ˝Hq is not a polyhedral join but
˚

ZFdpGq

`

∆V pHq,H
˘

is a subcomplex. Now, for H “ Kn we will make calculations for some graphs
G.

Proposition 81. For any r and n,

F1 pK1,n ˝ Krq »
ł

pr´1
2 q

n

S2n´1 _
ł

pnr2´1q`pr´1
2 q

S1;

for 2 ď d ď n ´ 1,

Fd pK1,n ˝ Krq »
ł

pr´1
2 q

n

S2n´1 _
ł

rf
d´1

pr,n´1q

Sd _
ł

pr
2q

S1;

and for d “ 8,
F8 pK1,n ˝ Krq »

ł

pr´1
2 q

n

S2n´1 _
ł

rpr´1qn

Sn _
ł

pr
2q

S1.

Proof. For d “ 1 the result follows from Lema 42.
We take 0, 1, . . . , n as the vertices of K1,n with 0 the vertex of degree n and Ki

r the copy of Kr

corresponding to the vertex i.
For 2 ď d ď n ´ 1, Fd pK1,n ˝ Krq “ X Y Y Y Z where

X “ V
`

K0
r

˘

˚
˚

Z
skd´1∆n´1 psk0Kr,Hq, Y “ Fd

`

K0
r

˘

»
ł

pr´1
2 q

S1,

Z “
n
˚
i“1

FdpKi
rq »

ł

pr´1
2 q

n

S2n´1.
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We have that Y X Z “ H, X X Y “ sk0Y and

X X Z “
˚

Z
skd´1∆n´1 psk0Kr,Hq »

ł

f
d´1

pr,n´1q

Sd´1

Once again we compute the homotopy type of union via homotopy pushouts as explained at the
end of the preliminaries:

H
– //

''

��

H

��

&&
ł

r´1

S0 » //

��

ł

r´1

S0 //

��

ł

pr´1
2 q

S1

��

ł

f
d´1

pr,n´1q

Sd´1 //

&&

ł

pr´1
2 q

n

S2n´1

$$
ł

pr´1qf
d´1

pr,n´1q

Sd // hocolimpS 1q // hocolimpSq

where S 1 is the diagram of the bottom of the cube. Then

hocolimpS 1q »
ł

pr´1
2 q

n

S2n´1 _
ł

rf
d´1

pr,n´1q

Sd

and the rest follows from this.
Now, for d “ 8, F8 pK1,n ˝ Krq “ X Y Y Y Z where Y and Z are as before, and

X “
˚

Z∆n psk0Kr,Hq »
ł

pr´1qn`1

Sn.

As before, Y X Z “ H, X X Y “ sk0Y and

X X Z “
˚

Z
∆n´1 psk0Kr,Hq »

ł

pr´1qn

Sn´1.

Again we use the technique we’ve been using to compute the homotopy type of the union via
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homotopy pushouts:

H
– //

%%

��

H

��

&&
ł

r´1

S0 » //

��

ł

r´1

S0 //

��

ł

pr´1
2 q

S1

��

ł

pr´1qn

Sn´1 //

##

ł

pr´1
2 q

n

S2n´1

$$
ł

pr´1qn`1

Sn // hocolimpS 1q // hocolimpSq

where S 1 again is the diagram of the bottom of the cube. Then

hocolimpS 1q »
ł

pr´1
2 q

n

S2n´1 _
ł

rpr´1qn

Sn.

The result follows.

Proposition 82. For any integers n,m, r ě 2,

ΣF8pKn,m ˝ Krq »
ł

pr´1
2 q

n

S2n _
ł

pr´1
2 q

m

S2m _
ł

a

Sn`1 _
ł

b

Sm`1 _
ł

c

S3,

where a “ mpr ´ 1qn ` m2pr ´ 1qm, b “ npr ´ 1qm ` n2pr ´ 1qn and c “ prn ´ 1qprm ´ 1q.

Proof. Assume U “ tu1, . . . , unu and V “ tv1, . . . , vmu are the partition of the vertices of Kn,m.
Taking

X “
˚

ZF8pKn,mq
psk0Kr,Hq , Y “

˚

Z
∆U

pKr,Hq , W “
˚

Z
∆V

pKr,Hq ,

we have that F8pKn,m ˝ Krq “ X Y Y Y W . Now, Y X W “ X X Y X W “ H and

X X Y “
˚

Z
∆U

psk0Kr,Hq , X X W “
˚

Z
∆V

psk0Kr,Hq .
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Taking any vertices ui P U and vj P V , we can factor the inclusions to X as

X X Y �
� // ˚

Z
∆

UYtvju
pV pKrq,Hq

� � // X

X X W �
� // ˚

Z
∆V Ytuiu

pV pKrq,Hq
� � // X

where the first inclusions are null-homotopic. Therefore

hocolim pX Y Y  −â X X W ã−!W q » X Y Y _ W _ ΣpX X W q

and
hocolim pX  −â X X Y ã−! Y q » X _ Y _ ΣpX X Y q

From where we obtain that

F8pKn,m ˝ Krq » X _ Y _ W _ ΣpX X W q _ ΣpX X Y q

Now, for ΣF8pKn,m˝Krq we only need to determine the homotopy type of Σ
˚

ZF8pKn,mq
psk0Kr,Hq.

Now,

Σ
˚

ZF8pKn,mq
psk0Kr,Hq » ẐF8pKn,mq

˜

ł

r´1

S1,S0
¸

Because the inclusion of S0 in a wedge of copies of S1 is null-homotopic, we have that

ẐF8pKn,mq

˜

ł

r´1

S1,S0
¸

» ΣF8pKn,mq _
ł

σPF8pKn,mq

lkpσq ˚ D̂pσq.

We have D̂ “
ľ

|σ|

ł

r´1

S1 »
ł

pr´1q|σ|

S|σ|, and thus

ẐF8pKn,mq

˜

ł

r´1

S1,S0
¸

» ΣF8pKn,mq _
ł

σPF8pKn,mq

¨

˝

ł

pr´1q|σ|

Σ|σ|`1lkpσq

˛

‚.

If we take any two vertices from U and any two from V , we get a cycle. Therefore |σ X U | ď 1 or
|σ X V | ď 1 for any simplex σ. Take σ P F8pKn,mq. There are two possibilities:

• σ is totally contained in U or V . Assume σ Ď U . There are two cases:
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1. If |σ| “ 1, then
lkpσq “

`

sk0∆
V ˚ ∆U´σ

˘

Y ∆V

and
lkpσq » hocolim

`

˚ − sk0∆
V −! ˚

˘

»
ł

m´1

S1.

2. If |σ| ą 1, then

lkpσq – sk0∆
V ˚ ∆U´σ »

$

&

%

˚ if |σ| ă n
ł

m´1

S0 if |σ| “ n.

• σ X U ‰ H ‰ σ X V . Assume |σ X U | “ 1. There are three cases:

1. If 2 “ |σ|, then lkpσq “ ∆V ´σ \ ∆U´σ and thus is homotopy equivalent to S0.

2. If 2 ă |σ| ă m ` 1, then lkpσq “ ∆V ´σ and therefore is contractible.

3. If |σ| “ m ` 1, then σ is a maximal simplex and lkpσq “ H.

Therefore:

ẐF8pKn,mq

˜

ł

r´1

S1,S0
¸

»
ł

c

S3 _
ł

a1

Sn`1 _
ł

b1

Sm`1,

where a1 “ pm ´ 1qpr ´ 1qn ` mpr ´ 1qn`1, b1 “ pn ´ 1qpr ´ 1qm ` npr ´ 1qm`1 and c “ nmpr ´

1q2 ` npm ´ 1qpr ´ 1q ` mpn ´ 1qpr ´ 1q ` pn ´ 1qpm ´ 1q “ prn ´ 1qprm ´ 1q.

Theorem 83. For any positive integers r, n1, . . . , nk ě 2, with k ě 3 and G “ Kn1,...,nk
˝ Kr we

have that

ΣF8pGq »

k
ł

i“1

¨

˚

˝

ł

pr´1
2 q

ni

S2ni _
ł

ai

Sni`1

˛

‹

‚

_
ł

b

S3 _
ł

pk´1
2 q

S2

where
ai “ pr ´ 1qni ` pti ` 1qpr ´ 1qni`1 ` tipr ´ 1qni ,

b “
ÿ

iăj

pni ´ 1qpnj ´ 1q `
ÿ

iăj

ninjpr ´ 1q2 `

k
ÿ

i“1

tinipr ´ 1q, and

ti “
ÿ

j‰i

nj ´ 1.

Proof.

F8pGq “
˚

ZF8pKn1,...,nk
q

psk0Kr,Hq Y

k
ğ

i“1

˚

Z
∆Vi

pKr,Hq
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For all i,
˚

ZF8pKn1,...,nk
q

psk0Kr,Hq X
˚

Z
∆Vi

pKr,Hq “
˚

Z
∆Vi

psk0Kr,Hq .

As in the proposition before, we take v P Vj with j ‰ i. Then the inclusion factors as

˚

Z
∆Vi

psk0Kr,Hq ã−!
˚

Z
∆ViYtvu

psk0Kr,Hq ã−!
˚

ZF8pKn1,...,nk
q

psk0Kr,Hq ,

and is thus null-homotopic. Therefore,

F8pGq »
˚

ZF8pKn1,...,nk
q

psk0Kr,Hq _

k
ł

i“1

ˆ

˚

Z
∆Vi

pKr,Hq _ Σ
˚

Z
∆Vi

psk0Kr,Hq

˙

.

For the suspension, as in the last proposition, we have that

Σ
˚

ZF8pKn1,...,nk
q

psk0Kr,Hq » ΣF8pKn1,...,nk
q _

ł

σPF8pKn1,...,nk
q

lkpσq˚
˚

D pσq

» ΣF8pKn1,...,nk
q _

ł

σPF8pKn1,...,nk
q

ł

pr´1q|σ|

Σ|σ|`1lkpσq.

Now,
ΣF8pKn1,...,nk

q »
ł

pk´1
2 q

S2 _
ł

iăj

ΣF8pKni,nj
q.

Because any three vertices vi P Vi, vj P Vj and vl P Vl, with i ă j ă l, form a cycle, the simplices
with vertices in two Vi, Vj , with i ‰ j, have the link as in the corresponding bipartite graph.
Therefore, if σ is a simplex such that σ X Vi ‰ H ‰ σ X Vj , for i ‰ j, and |σ X Vi| “ 1, there are
three cases:

1. If 2 “ |σ|, then lkpσq “ ∆Vj´σ \ ∆Vj´σ and thus is homotopy equivalent to S0.

2. If 2 ă |σ| ă nj ` 1, then lkpσq “ ∆Vj´σ and therefore is contractible.

3. If |σ| “ nj ` 1, then σ is a maximal simplex and lkpσq “ H.

Now if σ is a simplex such that σ Ď Vi, then

1. If |σ| “ 1, then

lkpσq –

˜˜

ğ

j‰i

sk0∆
Vj

¸

˚ ∆Vi´σ

¸

Y

˜

ğ

j‰i

∆Vj

¸

and

lkpσq » hocolim

˜

˚ −
ğ

j‰i

sk0∆
Vj −! ˚

¸

»
ł

ti

S1.
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2. If |σ| ą 1, then

lkpσq –

˜

ğ

j‰i

sk0∆
Vj

¸

˚ ∆Vi´σ »

$

&

%

˚ if |σ| ă ni
ł

ti

S0 if |σ| “ ni

Theorem 84. For 1 ď d ď mintn ´ 1,m ´ 1u,

ΣFdpKn,m ˝ Krq »
ł

ad

S2 _
ł

bd

S3 _
ł

cd

Sd`1 _
ł

pr´1
2 q

n

S2n _
ł

pr´1
2 q

m

S2m,

where a1 “ r2nm´1, b1 “ c1 “ 0 and, for d ě 2, ad “ pn`mqpr´1q, bd “ nmpr´1q2`pm´1qpn´1q,
and

cd “ n

ˆ

m ´ 1

d

˙

r`m

ˆ

n ´ 1

d

˙

r`

„

n

ˆ

m

d

˙

` m

ˆ

n

d

˙ȷ

pr´1qd`1`mn

„ˆ

n ´ 2

d ´ 1

˙

`

ˆ

m ´ 2

d ´ 1

˙ȷ

pr´1q2

`

d
ÿ

i“2

„

m

ˆ

n

i

˙ˆ

n ´ i ´ 1

d ´ i

˙

` n

ˆ

m

i

˙ˆ

m ´ i ´ 1

d ´ i

˙ȷ

pr ´ 1qi

`

d
ÿ

i“3

„

m

ˆ

n

i ´ 1

˙ˆ

n ´ i

d ´ i

˙

` n

ˆ

m

i ´ 1

˙ˆ

m ´ i

d ´ i

˙ȷ

pr ´ 1qi

Proof. Assume U “ tu1, . . . , unu and V “ tv1, . . . , vmu are the partition of the vertices of Kn,m.
Taking

X “
˚

ZFdpKn,mq
psk0Kr,Hq , Y “

˚

Z
∆U

pKr,Hq , W “
˚

Z
∆V

pKr,Hq ,

we have that FdpKn,m ˝ Krq “ X Y Y Y W . Now, Y X W “ X X Y X W “ H and

X X Y “
˚

Z
∆U

psk0Kr,Hq , X X W “
˚

Z
∆V

pV pKrq,Hq .

The inclusions X X Y ã−! Y and X X Z ã−! Z are null-homotopic, therefore

FdpKn,m ˝ Krq »
ł

pr´1
2 q

n

S2n´1 _
ł

pr´1
2 q

m

S2m´1 _ hocolimpSq,

where
S : ˚ \ ˚ oo X X Y \ X X W �

� // X

Now, if we define a new complex K from FdpKn,mq by gluing two new simplices ∆U ˚ tu0u and
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∆V ˚ tv0u, with u0, v0 new vertices, we have that K » FdpKn,mq and

hocolimpSq –
˚

ZK

`

L,H
˘

,

where Lui
“ sk0Kr “ Lvj for i, j ą 0 and Lu0

“ pt “ Lv0 . Now,

Σ
˚

ZK

`

L,H
˘

» ΣFdpKn,mq _
ł

σPK

ł

pr´1q|σ|

Σ|σ|`1lkpσq.

For any σ which contains u0 or v0, D̂pσq » ˚, therefore we only need to know the link for simplices
without those vertices. Take U 1 “ U Y tu0u and V 1 “ V Y tv0u

• If σ Ď U , there are three possibilities:

1. If |σ| “ 1, then lkpσq “ ∆U 1
´tuiu \ skd´1∆

V 1

»
ł

pm´1
d q

Sd´1 _ S0.

2. If 2 ď |σ| ď d, then

lkpσq “

˜

ł

m´1

S0 ˚ skd´|σ|´1∆
U 1

´σ

¸

Y ∆U 1
´σ »

ł

mp
n´|σ|´1
d´|σ| q

Sd´|σ|.

3. If |σ| ě d ` 1, then lkpσq “ ∆U 1
´σ » ˚.

• Assume |σ X U | “ 1 and |σ| ě 2.

1. If |σ| “ 2, for d ě 2

lkpσq “ skd´2∆
U 1

´σ \ skd´2∆
V 1

´σ »
ł

pn´2
d´1q

Sd´2 \
ł

pm´2
d´1 q

Sd´2.

2. If 3 ď |σ| ď d, then
lkpσq “ skd´|σ|∆

V 1
´σ »

ł

p
m´|σ|

d´|σ| q

Sd´|σ|.

3. If |σ| “ d ` 1, then lkpσq “ H.

Theorem 85. For any positive integers r, n1, . . . , nk ě 2, with k ě 3 and G “ Kn1,...,nk
˝ Kr we
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have for 1 ď d ď mintn1 ´ 1, . . . , nk ´ 1u that

ΣFdpGq »
ł

ad

S2 _
ł

bd

S3 _
ł

cd

Sd`1 _

k
ł

i“1

¨

˚

˝

ł

pr´1
2 q

ni

S2ni

˛

‹

‚

,

where b1 “ c1 “ 0,

a1 “
ÿ

ti,juPpk
2q

pr2 ´ 2r ` 2qninj `

k
ÿ

i“1

nipti ` 1qpr ´ 1q ´ k ` 1,

and for d ě 2 ad “
pk´1qpk´2q

2 ,

bd “

k
ÿ

i“1

pr ´ 1qni

˜

d
ÿ

l“2

pti ´ l ` 2q

¸

`
ÿ

ti,juPpk
2q

pn2
in

2
j ´ n2

inj ´ nin
2
j ` rninjq

taking

ti “
ÿ

j‰i

nj ´ 1, pi “
ÿ

j‰i

ˆ

nj ´ 2

d

˙

cd “ pr ´ 1q

˜

k
ÿ

i“1

«

d
ÿ

l“2

pti ` 1q

ˆ

ni

l

˙ˆ

ni ´ l ´ 1

d ´ l

˙

` nipti ` 1q

ˆ

ni ´ 2

d ´ 1

˙

` nipi

ff¸

`
ÿ

ti,juPpk
2q

pr ´ 1q

„

ninj

ˆˆ

ni ´ 1

d ´ 2

˙

`

ˆ

nj ´ 1

d ´ 2

˙

` ni

ˆ

nj

d

˙˙ȷ

`
ÿ

ti,juPpk
2q

ninj

„

nj

ˆ

ni ´ 1

d

˙

` ni

ˆ

nj ´ 1

d

˙

` nj

ˆ

ni

d

˙ȷ

`pr ´ 1q

¨

˚

˝

ÿ

ti,juPpk
2q

ninj

d
ÿ

l“2

„

ni

ˆ

nj

l

˙ˆ

nj ´ 1

d ´ k ´ 1

˙

` nj

ˆ

ni

l

˙ˆ

ni ´ 1

d ´ k ´ 1

˙ȷ

˛

‹

‚

Proof. Assume V1, . . . , Vk are the partition of the vertices of Kn1,...,nk
. We have

FdpGq “
˚

ZFdpKn1,...,nk
q

psk0Kr,Hq Y

k
ğ

i“1

ˆ

˚
ni

Kr

˙

.

For all 1 ď i ď k,
˚

ZFdpKn1,...,nk
q

psk0Kr,Hq X ˚
ni

Kr “
˚

Z
∆Vi

psk0Kr,Hq ,
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and the inclusion
˚

Z
∆Vi

psk0Kr,Hq ã−! ˚
ni

Kr is null-homotopic. Therefore

ΣFdpGq “ Σ
˚

ZK

`

L,H
˘

_

k
ł

i“1

¨

˚

˝

ł

pr´1
2 q

ni

S2ni

˛

‹

‚

,

where:

• K is the complex obtain from FdpKn1,...,nk
q by ading the simplexes ∆V 1

i , where V 1
i “ ViYtv0i u

with v0i a new vertice.

• Lu “ sk0Kr for any u P V pGq.

• Lv0
i

“ pt for all i.

As before,
Σ

˚

ZK

`

L,H
˘

» ΣK _
ł

σPK

ł

pr´1q|σ|

Σ|σ|`1lkpσq.

Since any three vertices form three different sets of the vertex partition give a cycle and for any
σ which contains a v0i we have that D̂pσq » ˚, the only links we need to determine are those of
simplices contain in one or two sets and that do not contain a vertex v0i .

Let σ be a simplex such that σ Ď Vi for some i.

1. If |σ| “ 1, for d “ 1, lkpσq “

˜

ğ

j‰i

sk0∆
Vj

¸

Y ∆Vi´σ »
ł

ti`1

S0 and for d ě 2

lkpσq “

˜˜

ğ

j‰i

sk0∆
Vj

¸

˚ skd´2∆
Vi´σ

¸

Y

˜

ğ

j‰i

skd´1∆
Vj

¸

Y ∆V 1
i ´σ.
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H
– //

%%

��

H

��

  
ł

ti

S0 » //

��

ł

ti

S0 //

��

ğ

j‰i

ł

p
nj´2

d q

Sd´1

��

ł

p
ni´2
d´1 q

Sd´2 //

##

˚

��
ł

tip
ni´2
d´1 q

Sd´1 // ŽSd´1 //
ł

Sd´1 _
ł

ti´k`2

S1

2. If 2 ď |σ| ď d, then

lkpσq “ ∆V 1
i ´σ Y

˜˜

ğ

j‰i

sk0∆
Vj

¸

˚ skd´|σ|´1∆
Vi´σ

¸

»
ł

pti`1qp
ni´|σ|´1

d´|σ| q

Sd´|σ|.

3. If d ` 1 ď |σ| ď ni, then lkpσq “ ∆V 1
i ´σ » ˚.

Let σ be a simplex such that |σ X Vi| ě 1 and |σ X Vj | “ 1 for i ‰ j.

1. If |σ X Vi| “ 1, for d “ 1 lkpσq “ H and for d ě 2,

lkpσq “ skd´2∆
Vi \ skd´2∆

Vj »
ł

p
ni´1
d´2 q

Sd´2 \
ł

p
nj´1

d´2 q

Sd´2.

2. If |σ X Vi| “ l with 2 ď l ď d ´ 1, then

lkpσq “ skd´l´1∆
Vi »

ł

p
ni´1
d´l´1q

Sd´l´1,

3. If |σ X Vi| “ d, then lkpσq “ H.
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Final remarks

Most of the work done has been calculating the homotopy type for various families of graphs. Now
remains the question if there are more relations between some topological invariants of the filtration
and some propierties of the corresponding graph, like the relation between the connectibity of the
forest complex and the girth of the graph.

It is known that the Lusternik–Schnirelmann category of the independence complex gives a
lower bound for the chromatic number, so one can ask if there is a relation between the Lus-
ternik–Schnirelmann category of the forest complex and some chromatic parameter of the graph,
like the vertex arboricity for example.

Some topological questions that remain open are:

• Find a graph G for which F1pGq and/or F2pGq have torsion in some homology group.

• For which families of graphs the formula of Theorem 77 is achieve without suspension?

• Which topological spaces have the homotopy type of FdpGq for some d ą 0 and graph G?
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