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Abstract

We present a study of the 2- and 3-dimensional XY model, or O(2) model, out of equi-
librium through Monte Carlo simulations. In particular, we analyze the dynamics of the
topological defects of the system (vortices) when we linearly lower the temperature at
various cooling rates, starting above the critical temperature, Tc, down to T < Tc. In 3
dimensions we test Zurek’s prediction for the scaling behavior of the density of topological
defects that remains after a cooling procedure for a system that undergoes a second order
phase transition. We find that the remnant density depends on the cooling rate with a
power-law, in partial agreement with Zurek’s prediction. This property is independent
of the Monte Carlo algorithm that we choose. Still, the exact scaling behavior depends
on the algorithm. A power-law has also been observed in experiments of systems with
continuous phase transitions. This approach could be extended to estimate the density
of cosmic strings that persists from the expansion and cooling of the early universe, by
simulating different models.
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Resumen

Se presenta un estudio del modelo XY, o modelo O(2), en dos y tres dimensiones, a través
de simulaciones Monte Carlo fuera del equilibrio. En particular, se analiza la dinámica
de los defectos topológicos del sistema (vórtices) cuando la temperatura se reduce lineal-
mente a diferentes tasas de enfriamiento, iniciando arriba de la temperatura cŕıtica, Tc,
y terminando en T < Tc. En tres dimensiones se pone a prueba la predicción dada por
Zurek para el escalamiento de la densidad de los defectos topológicos que queda después
de un proceso de enfriamiento para un sistema que sufre una transición de fase de segundo
orden. Se encuentra que la densidad remanente depende de la tasa de enfriamiento con
una ley de potencia, en acuerdo parcial con la predicción de Zurek. Esta propiedad es inde-
pendiente del algoritmo Monte Carlo que se escoja. Aún aśı, el escalamiento exacto, dado
por el exponente de la ley de potencia, depende del algoritmo. También se ha observado
una ley de potencia en experimentos de sistemas con transiciones de fase continuas. Este
enfoque puede ser extendido para estimar la densidad de cuerdas cósmicas que persiste de
la expansión y el enfriamiento del universo temprano, a través de simulaciones de distintos
modelos.
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Introduction

The established theories assume that the early universe underwent several phase transi-
tions during its rapid expansion and cooling, immediately after the Big Bang. Possible
remnants of these transitions are topological defects, which are field configurations that
may persist under cooling and symmetry breaking. There are different types of topolog-
ical defects that emerge, depending on the symmetry breaking pattern. This has been
studied in detail by Kibble [1]. Some of these defects might have persisted until today and
current observations suggest that cosmic strings are the best candidate to be observed in
the future, through experiments like the Laser Interferometer Space Antenna (LISA) [2].
The idea is to detect the gravitational radiation that excitations of cosmic strings loops
could emit.

To theoretically study cosmic strings formation, it is standard to simulate systems
that exhibit this kind of defects. In particular, the classical XY, or O(2), model is a
convenient option. Its three-dimensional version undergoes a second order phase transition
and contains vortices as topological defects. The vortices can be connected to create vortex
lines which may generate large networks, analogous to the ones that cosmic strings could
form. Studying the creation of these networks in equilibrium might not be useful to
estimate the current density of cosmic strings in the universe, because of the cooling and
expansion of the latter. Therefore, simulations of the dynamics of these networks during
a cooling process, that passes through the phase transition from T > Tc down to T < Tc,
are suitable. If the cooling is very slow, the system is quasi-adiabatic. However, the
phase transition naturally leads to the loss of equilibrium in the vicinity of the critical
point. Some generic properties of a system that undergoes a second order phase transition
during a linear cooling at different rates were predicted by Zurek [3]. Specifically, he
gives an estimate for the density of topological defects that persists at the transition time
between the region in equilibrium and the region out of equilibrium. He mentions that
the density of topological defects should scale with a power-law in the inverse cooling
rate. In addition, an scaling exponent is given. His work has been experimentally tested
in different settings [4–6]. The power-law is always observed, but there is no consensus
regarding the scaling exponent.

In this thesis we study the dynamics of the vortex density of the two- and three-
dimensional XY model by means of Monte Carlo simulations. We attempt to verify Zurek’s
prediction by systematically applying distinct algorithms to simulate the evolution of the
vortex density during a linear cooling process. For this purpose, we use the Metropolis
and heatbath algorithms, which are local-update schemes. All the codes were self-written
in C++.

The structure of this thesis is the following:

• Chapter 1: We review the Kibble mechanism and show some examples of the emer-
gence of topological defects in different theories. At the end of the chapter, we review
the prediction by Zurek for the density of topological defects.
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Introduction

• Chapter 2: We review the classical XY model in two and three dimensions. In the
two-dimensional version, we discuss the importance of the vortices to explain the so-
called BKT transition. We also give the relevant features of the three-dimensional
version of the model.

• Chapter 3: We describe the basic concepts of Markov chains, which are needed to
understand the working of importance sampling Monte Carlo simulations. We review
some technical aspects of these simulations, together with the implementation of four
different algorithms to simulate the XY model.

• Chapter 4: We present simulation results of the two-dimensional XY model in equi-
librium and out of equilibrium, performed with different algorithms. The results are
compared with the literature.

• Chapter 5: We present simulation results of the three-dimensional XY model. We
attempt to verify Zurek’s prediction for the scaling of the topological defects during
a linear cooling process. We use the algorithms Metropolis and heatbath.

• Chapter 6: We summarize the work and present our conclusions.
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Chapter 1

The Kibble-Zurek mechanism

Symmetry breaking and phase transitions play an important role in the understanding
of numerous physical phenomena. Examples include the spontaneous organization and
structuring of the water molecules in the liquid to ice transition, all the way to the Higgs
mechanism, which explains the masses of the elementary particles of the Standard Model.
It is also standard to assume that the early universe, after the Big Bang (10−35 s −
10−11 s), underwent several phase transitions that broke some symmetries during its rapid
expansion and cooling. A review of phase transitions in the early universe is given in
Ref. [7].

Evidence of such transitions could possibly be found by searching for topological defects.
These are configurations that form in the symmetric phase before a transition. They come
in a variety of types, such as domain walls, cosmic strings or monopoles. After a cooling
process, some of these defects could have survived and might even be detectable today.
Such structures are well known in condensed matter systems; nevertheless, their existence
in the cosmos is only hypothetical. Still, the appearance of some of the defects previously
mentioned is unlikely due to contradictions with current observations. Until now, cosmic
strings are considered the best candidate to be observed in the future. These strings
could connect and form large loops throughout the cosmos. Excitations of these loops
would generate gravitational waves that could be detected. Upcoming experiments, like
the Laser Interferometer Space Antenna (LISA), are expected to provide some insight in
this regard. According to Ref. [2], the power spectra of some cosmic strings models could
be observed in LISA’s frequency detection range (0.1 mHz − 1 Hz).

In the following section, we briefly describe the mechanism through which topological
defects might form.

1.1 The Kibble mechanism

In 1976, Kibble presented a mechanism that explains the formation of topological defects
in the early universe [1]. To review the idea, we consider a model with a complex scalar
field, ϕ(x) ∈ C, at finite temperature, described by the Lagrangian

L =
1

2
∂µϕ

†∂µϕ− 1

2
m2

0|ϕ|2 −
λ

4!
|ϕ|4, (1.1)

with m2
0 < 0 and λ > 0. Note that this Lagrangian has a global U(1) symmetry, ϕ(x) →

exp(iα)ϕ(x). If one computes the effective potential to one loop, them2
0 parameter acquires

1



The Kibble mechanism Chapter 1.

a correction due to the temperature (see Ref. [8] or Chapter 6 of [9])

Veff(|ϕ|) =
1

2
m2(T )|ϕ|2 + λ

4!
|ϕ|4, m2(T ) = m2

0

(
1 +

T 2λ

24m2
0

+O(λ2)

)
. (1.2)

Re( ) Im( )
V( )

Figure 1.1: Effective potential (1.2) for m2 < 0. We see that the classical ground state is
degenerate, there is a full circle of minima.

For temperatures T > Tc ≡
√
−24m2

0/λ (at one loop), the m2 parameter is positive and
the potential has a global minimum at ϕ = 0. This means that for T > Tc the ground
state is unique and symmetric with respect to U(1) transformations. However, for T < Tc

the value of m2 is negative, which in turn changes the shape of the potential, as depicted
in Figure 1.1. In this situation, the classical ground state is found when the vacuum
expectation value of ϕ takes the form

⟨ϕ⟩ =
√

−6m2(T )

λ
eiθ, θ ∈ [0, 2π). (1.3)

Then, if one fixes a value of θ, we observe that the ground state is not U(1) symmetric
anymore, which means that the symmetry is spontaneously broken.

In his seminal work, Kibble [1] proposed that at early stages of the universe, when it
was very hot and dense, a number of symmetries were unbroken. As it expanded and
cooled, they broke. However, at some time t, distances separated by more than ct were
not causally connected anymore. Therefore, the vacuum expectation value of ϕ could take
different phases θ for disconnected regions. As a consequence, the universe acquired a
domain structure similar to the one of ferromagnets. The size of these domains is related
to the correlation length ξ, which is defined through the decay of the connected correlation
function

⟨ϕ(x)ϕ(y)⟩c ∼ e−|x−y|/ξ. (1.4)

In this situation, different types of topological defects can arise in the boundaries between
the domains. This entire process is known as the Kibble mechanism.

Refs. [1,10] also show that, depending on the symmetry breaking pattern, it is possible
to classify the topological defects that the theory possesses in terms of homotopy groups.

2



Topological defects Chapter 1.

1.2 Topological defects

In this section, we present examples of theories where topological defects form. In all of
them, the defects appear as a consequence of the breaking of a symmetry.

Figure 1.2: Schematic representation of an Ising ferromagnet at T < Tc. We observe that
the system divides into domains, separated by walls (green dashed lines).

1.2.1 Domain walls

We first introduce the domain walls by considering an Ising ferromagnetic material, de-
scribed by the following classical Hamiltonian

H = −J
∑
⟨ij⟩

SiSj , Si ∈ {−1, 1}, (1.5)

where J is a coupling constant and the sum runs over the nearest neighbors of a cubic
lattice with N sites, see Figure 1.2. For a temperature higher than the critical value,
T > Tc, the material loses its magnetic properties, because the spins are, for the most
part, randomly oriented. For T < Tc in equilibrium, the spins tend to align in regions
with uniform orientations and there is a non-zero overall magnetization. These regions are
known as domains and their boundaries are referred to as walls. In this example and for
dimension d > 2, the Z2 symmetry (changing Si → −Si) is spontaneously broken below
the critical temperature, since for T < Tc the reflection symmetry is broken within the
domains and the overall magnetization is non-zero. It is important to mention that the
contribution to the energy above its minimum value is contained in the walls. To see this,
we introduce the following variable between two neighbouring sites

nij =
1− SiSj

2
=

{
1 if there is a wall between Si and Sj ,

0 otherwise.
(1.6)

Substituting nij in eq. (1.5) yields

H = −NdJ + 2J
∑
⟨ij⟩

nij , (1.7)

where d is the system’s dimension. Thus, each element of a wall contributes a factor 2J
to H and they carry the system’s energy, above the minimum.

3



Topological defects Chapter 1.

x

(x)

2 2

Figure 1.3: Solution to the classical equations of motion of the Lagrangian (1.8). The
green arrow indicates the width of the kink, which carries most of the energy.

Another example where this type of topological defects emerges is in a λϕ4 model. For
simplicity, let us consider ϕ to be a real scalar field in one (spatial) dimension, i.e. a static
field,

L(ϕ(x), ∂xϕ(x)) = −1

2

(
dϕ

dx

)2

− V (ϕ), V (ϕ) =
λ

4
(ϕ2 − η2)2, λ, η2 > 0. (1.8)

The interaction term in eq. (1.8) is known as the double well potential. It corresponds to
a cut with the plane where Re(ϕ) = 0 to the potential shown in Figure 1.1. It has two
classical ground states at ϕ = ±η. The field equation is

−d2ϕ

dx2
+ λ(ϕ2 − η2)ϕ = 0. (1.9)

Its solution, with the boundary conditions dϕ/dx = 0 at x = ±∞ and ϕ(±∞) = ±η
(minimum energy states at x = ±∞), is

ϕ(x) = η tanh

(√
λ

2
ηx

)
. (1.10)

There is a region of width defined as 2
√
2/(η

√
λ) that interpolates both asymptotic values

of ϕ, see Figure 1.3. Most of the non-trivial energy is localized in this zone.

This kind of solutions are known as domain walls1: they consist of low-energy domains,
separated by highly energetic walls. In this example, the reflection symmetry ϕ → −ϕ is
broken in each asymptotic regime. In d > 1, the emergence of domain walls is often related
to the spontaneous breaking of a discrete symmetry. As it was pointed out in Ref. [11],
the existence of domain walls in the universe would introduce strong deviations of the
homogeneity and isotropy of the Cosmic Microwave Background (CMB), which are not
observed. Thus, this type of topological defects is not generally expected in the cosmos.

1.2.2 Monopoles

Monopoles were found as solutions to the equations of motion of non-Abelian gauge theo-
ries by Polyakov and ’t Hooft [12,13]. In this section we show an example, introduced by

1Being more precise, the usual name in one dimension is “kink”. Its generalization to higher dimensions
is known as “domain wall”.

4



Topological defects Chapter 1.

’t Hooft in 1974 [13], of a non-Abelian gauge theory that has magnetic monopoles in four
dimensions. The Lagrangian consists of a three-component real scalar field with a quartic
interaction and a local symmetry group2 SO(3)

L =
1

2
Dµϕ

aDµϕa − m2

2
ϕaϕa − λ

8
(ϕaϕa)2 − 1

4
Ga

µνG
µνa, a = 1, 2, 3, (1.11)

where λ > 0 and

Ga
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν ,

Dµϕ
a = ∂µϕ

a + gϵabcW b
µϕ

c, (1.12)

where g is the gauge coupling and W a
µ the gauge field. If one chooses m2 < 0, the SO(3)

gauge symmetry “breaks” and the potential has a form similar to the one shown in Figure
1.1. The minimum is found when

F 2 ≡ ϕaϕa = |ϕ|2, F 2 = −2m2

λ
. (1.13)

In the broken phase, if one expands in the vicinity of a minimum, e.g.

ϕ1 = ϕ2 = 0, ϕ3 = F + h(x), (1.14)

the fields W 1
µ and W 2

µ acquire a mass MW = gF , while the third component of the field

gets a mass Mh =
√
λF . This third component that is left has an SO(2) symmetry that

persists after the breaking of SO(3). In the Standard Model formulation, where instead of
SO(3) we have SU(2), the combination W± = (W 1

µ ± iW 2
µ)/

√
2 would be identified with

the W± bosons and the ϕ3 component with the Higgs boson.

In order to find monopoles, ’t Hooft proposed to seek spherically-symmetric and static
solutions. In particular, he showed that if the fields have the following asymptotic behavior

ϕa(r⃗ ) ∼ F
ra

r
when r = |(r1, r2, r3)| → ∞ (1.15)

and the gauge is fixed as

W a
i (r⃗ ) ∼ −ϵiab

rb

gr2
, W a

0 (r⃗ ) = 0, i = 1, 2, 3 (1.16)

the field equations are satisfied and monopoles appear. For instance, the equation for ϕ is(
m2 +

λ

2
ϕbϕb

)
ϕa = DµDµϕ

a. (1.17)

By inserting the asymptotic expressions of eqs. (1.15) and (1.16), one sees that the left-
hand side of eq. (1.17) is zero, while for the right-hand side we have

Dµϕa = ∂µ

(
Fra
r

)
+ FϵabcW

b
µ

rc
r
. (1.18)

For µ = 0 we readily see that this expression is zero, if the gauge is fixed as in eq. (1.16).
For the spatial components we derive the first term

Diϕa = F

(
δia
r

− rira
r3

)
− Fϵabcϵibd

rcrd
r3

. (1.19)

2For the group index a, the upper or lower position does not matter.

5



Topological defects Chapter 1.

We use the identity ϵabcϵibd = δiaδcd − δadδci to obtain

Diϕa = F

[
δia
r

− rira
r3

− δia
r

+
rira
r3

]
= 0. (1.20)

To find the monopoles, one introduces a tensor Fµν generalizing the usual electromag-
netic tensor. ’t Hooft proposes

Fµν =
1

|ϕ|
ϕaGa

µν −
1

g|ϕ|3
ϵabcϕaDµϕ

bDνϕ
c, (1.21)

because if one inserts the expression at the minimum ϕ1 = ϕ2 = 0, ϕ3 = F , the usual
version of Fµν = ∂µW

3
ν −∂νW

3
µ is recovered. The asymptotic expressions (1.15) and (1.16)

imply that the second term of eq. (1.21) vanishes at r → ∞. For the first term we compute

ϕaG
a
µν = −Fra

r

[
∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν

]
. (1.22)

Again, if µ = 0 or ν = 0 the equation is zero due to the gauge fixing in eq. (1.16). Thus,
we consider only the spatial components

ϕaG
a
ij = −Fra

gr

[
∂i

(ϵjabrb
r2

)
− ∂j

(ϵiabrb
r2

)
− 1

r4
ϵabcϵibdϵjcfrdrf

]
= −Fra

gr

[
ϵjab
r4

(δbir
2 − 2rirb)−

ϵiab
r4

(δjbr
2 − 2rjrb)−

1

r4
ϵabcϵibdϵjcfrdrf

]
= −Fra

gr5
[
r2(ϵjai − ϵiaj) + 2(rjrbϵiab − rirbϵjab)− ϵabcϵibdϵjcfrdrf

]
. (1.23)

Since rarbϵjab is the product of a symmetric tensor with an antisymmetric one, the term
vanishes. One may also show that

raϵabcϵibdϵjcfrdrf = r2raϵija, (1.24)

by using the identity above eq. (1.20). Therefore

ϕaG
a
ij = −Fϵijara

gr5
[
r2(ϵija + ϵija)− r2ϵija

]
= − F

gr3
ϵijara, (1.25)

which in turn yields

F0µ = 0, Fij = − 1

gr3
ϵijara. (1.26)

The magnetic field components correspond to

B1 = −F23 =
r1
gr3

, B2 = F13 =
r2
gr3

, B3 = −F12 =
r3
gr3

. (1.27)

Then

B⃗ =
r̂

gr2
, r̂ =

r⃗

r
. (1.28)

Hence, we see that the model presented here indeed allows for magnetic monopoles with
charge gM = 1/g as a solution. In Ref. [13], the monopole mass is estimated to be

M ≃ 4π

g2
MW ≃ 137MW , (1.29)

where we assumed g = e (electric charge) by analogy. If we insert the mass of the W boson
MW ≃ 80 GeV , although we are not dealing with the Standard Model, then a monopole

6



Topological defects Chapter 1.

Figure 1.4: The left-hand diagram corresponds to a configuration where the minimum
of the potential points radially outward for different domains, i.e. a monopole, as in eq.
(1.15). The right-hand diagram represents an antimonopole.

would be highly massive, which makes these hypothetical particles very hard to produce
in accelerators.

In the context of the Kibble mechanism, the monopoles form in the boundaries between
the domains, see Figure 1.4. Since they are defects of dimension zero, we expect their
density to be 1/ξ3, where ξ is the correlation length introduced in eq. (1.4). Monopoles
appear in Grand Unified Theories (GUTs) as well (for instance in SU(5) [14] and SO(10)
[15]), but their mass estimate is about 1016 GeV and the density of defects in the universe
is unrealistically large, as discussed in Ref. [16].

1.2.3 Cosmic strings

To finish this section, we discuss cosmic strings. The simplest model where local cosmic
strings appear is the Abelian Higgs model, i.e. a one-component complex scalar field,
ϕ(x) ∈ C, with a U(1) gauge symmetry, described by the Lagrangian

L = (Dµϕ)
†Dµϕ− λ

(
ϕ†ϕ− η2

2

)2

− 1

4
FµνF

µν , (1.30)

where

Fµν = ∂µAν − ∂νAµ,

Dµϕ = ∂µϕ+ ieAµϕ. (1.31)

The potential corresponds to Figure 1.1. Once again, a ground state is found when

⟨ϕ⟩ = η√
2
eiθ, θ ∈ [0, 2π). (1.32)

As we have mentioned before, the value of θ can be different in non-causally connected
regions. If one traces a closed loop around several domains, the phase of the ground state
could change by a factor of 2nπ, with n ∈ Z, see Figure 1.5. In the case when n ̸= 0, we say
that a cosmic string passes through the loop. This would correspond to tracing a closed
loop around the circle of minima in the potential. The core of the string corresponds to
the center of the potential, where ϕ = 0.

In 1973 Nielsen and Olesen [17] found, in a more quantitative manner, cosmic strings
in this model. Their idea is to search for static cylindrically-symmetric solutions of the

7
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form

ϕ(r⃗ ) =
η√
2
einθf(r), Ai(r⃗ ) = −ϵijx

j n

er2
g(r), i, j = 1, 2, n ∈ Z, (1.33)

where r and θ are the polar coordinates. The asymptotic behavior of f(r) and g(r) is
proposed to be

lim
r→∞

f(r) = 1, lim
r→∞

g(r) = 1, (1.34)

and f(0) = g(0) = 0. By plugging the Ansätze (1.33) in the equations of motion,[
DµD

µ + 2λ

(
|ϕ|2 − 1

2
η2
)]

ϕ = 0,

∂νF
µν + ie(ϕ†Dµϕ− ϕDµϕ†) = 0, (1.35)

one can find approximate solutions for f(r) and g(r), as shown in Refs. [17,18]. Now, if we
compute the magnetic flux through a closed loop in the plane z = 0 for r approximating
to infinity, we have∫

B⃗ · ds⃗ =
∫
(∇× A⃗) · ds⃗ =

∮
S1
∞

A⃗ · d⃗l =
∫ 2π

0
Aθ rdθ =

∫ 2π

0

n

er
rdθ =

2πn

e
, (1.36)

where S1
∞ denotes a circle with radius approaching infinity. Thus, we see that the magnetic

flux is quantized. In other words, there is a winding, given by the winding number n. In
condensed matter, these solutions for the fields are known as flux tubes in superconductors.
In particle physics, they are known as cosmic strings. It has been proved [17,18] that these
strings have an energy density (energy per length, known as string tension) µ ∝ η2. The
value of η fixes the energy scale. For typical GUTs η ≃ 1016 GeV, while for an electroweak
phase transition η ≃ 102 GeV.

Until now, cosmic strings have not been observed. However, there is no evidence
that discourages their existence, contrary to the case of monopoles and domain walls.
Still, the string tension is constrained by the CMB data and simulations. For instance,
Ref. [19] provides an upper bound of µ < 1.584 × 1031 GeV2, which hardly allows for
GUT strings, if we assume that their tension is proportional to η2. At some stage it
was believed that cosmic strings could be the seeds for the formation of large structures,
such as galaxies. This point of view is now discarded by COBE and WMAP data for the
Cosmic Microwave Background [20–23]. One concludes that the CMB anisotropies cannot
be explained through defect models. In particular, the acoustic peaks of the CMB are not
predicted by any of these. Instead, their positions and shapes are more in agreement with
the theory of inflation. These fluctuations in the CMB eventually lead to the formation
of galaxies.

At last, we mention that it is also possible to find string solutions if the U(1) symmetry
is global. In that case, however, their tension diverges.

More complete reviews of topological defects in the early universe can be found in
Refs. [24–26].

In this thesis we will focus on the study of cosmic strings through their condensed
matter analogue: vortex lines. To do so, we refer to the XY model, which we introduce
in Chapter 2.

1.3 Zurek’s contribution to the Kibble mechanism

In 1985, Zurek [3] complemented the Kibble mechanism by giving an estimate for the
number of topological defects that remains after a second order phase transition, crossing

8
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= 0

Figure 1.5: The left-hand diagram shows a configuration of domains where the ground
state has different directions. If one traces a loop around the domains, the phase changes
by 2π. The right-hand diagram depicts a cosmic string passing through the loop.

from the disordered phase to the ordered one. He did so for condensed matter systems, but
the result is supposed to be valid for any setting where a second order phase transition
arises. For that reason, the Kibble mechanism is nowadays sometimes known as the
Kibble-Zurek mechanism. To explain the idea, let us suppose that we have a system with
a critical temperature Tc. In equilibrium, close to criticality, the correlation length and
the relaxation time (the time that the system takes to achieve equilibrium) behave as

ξ(ϵ) =
Cξ

|ϵ|ν
, τ(ϵ) =

Cτ

|ϵ|zν
, ϵ =

Tc − T

Tc
, (1.37)

where Cξ and Cτ are constants. The exponent ν is a critical exponent, which depends on
the universality class of the system, whereas z is known as the dynamical critical exponent.
They can be obtained by simulations or experiments. The correlation length is determined,
as we pointed out in eq. (1.4), through the decay of a correlation function.

We assume the system to be linearly quenched3 with time

ϵ(t) =
t

τQ
or T (t) = Tc

(
1− t

τQ

)
t ∈ [−τQ, τQ], (1.38)

where τQ is known as the inverse cooling rate. This parameter controls the speed of the
cooling process. Note that we have the following values of T at t = −τQ, 0 and τQ

T (t) =


T = 2Tc at t = −τQ,

T = Tc at t = 0,

T = 0 at t = τQ.

(1.39)

If we choose a large enough τQ, the system will remain in equilibrium during each instant
of time of the quenching, i.e. the process will be adiabatic. However, since the relaxation
time diverges at Tc, the rate at which ϵ(t) evolves (|ϵ/ϵ̇| = t) will be below τ , temporarily
taking the system out of equilibrium. Then, we say that the system is in a frozen stage. If
one keeps cooling the system, the relaxation time lowers and the system leaves the frozen
stage. This process is illustrated in Figure 1.6.

The main predictions that Zurek made are the behavior of the correlation length and
the density of topological defects at the transition between the adiabatic and frozen stages.

3In the literature, the term quench is used as synonym of cooling in this context.
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0t t t

| / |
Frozen
stage
Adiabatic
stage

Figure 1.6: We linearly cool the system with time, starting at equilibrium at T = 2Tc,
down to T = 0. Before −t̂, the evolution rate of ϵ, |ϵ/ϵ̇|, is above τ . Then, if one quenches
the system very slowly, it remains in equilibrium for t < −t̂ (adiabatic stage). In the
interval bounded by −t̂ and t̂, the relaxation time grows larger than the dashed line.
Therefore, it is impossible for the system to achieve equilibrium (frozen stage). For t > t̂
the equilibrium can be recovered, since τ decreases.

We denote the time at which this transition is reached as ±t̂. Such predictions can be
easily deduced by equating the relaxation time with the evolution rate of ϵ(t)

τ(t̂ ) =
Cτ

|ϵ(t̂ )|zν
=

∣∣∣∣ϵ(t̂ )ϵ̇(t̂ )

∣∣∣∣ = t̂, ϵ(t̂ ) =
t̂

τQ
=⇒ t̂ = (Cττ

zν
Q )

1
1+zν . (1.40)

Then we substitute in ϵ

ϵ̂ ≡ ϵ(t̂ ) =

(
Cτ

τQ

) 1
1+zν

. (1.41)

Therefore, the correlation length is given by

ξ̂ ≡ ξ(t̂ ) = Cξ

(
τQ
Cτ

) ν
1+zν

. (1.42)

The density of topological defects is obtained if we assume that they have dimension D
and the system dimension d

n ∼ ξ̂D

ξ̂d
∝
(

1

τQ

) (d−D)ν
1+zν

. (1.43)

For cosmic strings (one dimensional objects) in three spatial dimensions we have d−D = 2,
the exponents z and ν will be discussed later in the thesis.

We remark that eq. (1.43) is only valid when the relaxation time follows a power-law,
as a function of |ϵ|, in the vicinity of the critical point. This is the case of many models,
like the one that we will study here.

A more complete review of Zurek’s contributions, together with an extension of his
prediction for quantum systems, is given in Ref. [27]. Several experiments have tried to
test his prediction, eq. (1.43), in condensed matter systems [28]. Some of them successfully
verified the power-law dependence of the density of topological defects on the inverse
cooling rate. For instance, in Ref. [4] the authors considered a two-dimensional optical
system: a liquid crystal light valve illuminated by a uniform laser beam. In this case,
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a diffraction pattern appears and there is a phase transition controlled by the laser’s
intensity. The topological defects are identified as points in the pattern. A power-law

n ∝ τ
−1/2
Q is predicted by eq. (1.43), if one uses the corresponding critical exponents for

this particular system. Ref. [4] obtains a very close value, −0.50± 0.04, for the exponent.

Other experiments only confirm Zurek’s prediction partially, i.e. a power-law is ob-
served but the scaling exponent is different. Ref. [5] presents an experiment of a fluid
undergoing a conduction-convection transition, controlled by the temperature. The den-
sity of topological defects is observed to be proportional to τ−0.27

Q . For this system, the

critical exponents and eq. (1.43) predict τ
−1/2
Q . Thus we see a discrepancy.

In this work we will compute the density of topological defects of the 3d XY model
after a quenching process in order to test eq. (1.43). Our tool are Monte Carlo simulations,
which we describe in Chapter 3.

11



Chapter 2

The XY model

The XY model is a classical spin model defined by the Hamiltonian

H = −J
∑
⟨ij⟩

S⃗i · S⃗j = −J
∑
⟨ij⟩

cos(θi − θj), S⃗i = (cos θi, sin θi) ∈ S1, θi ∈ (−π, π], (2.1)

where J > 0 is a coupling constant and the sum runs over the nearest neighbors on a
lattice with N sites. In this thesis we assume periodic boundary conditions. We see that
the Hamiltonian is invariant under global O(2) transformations (planar rotations). For
that reason, the system described by eq. (2.1) is also known as the O(2) model. It is
used as a toy model to study numerical methods, topology or phase transitions. Still,
it is known that it describes some real systems with good precision, such as superfluid
4He [29–32].

Of particular interest is the two-dimensional version, because of the Berezinskĭı –
Kosterlitz–Thouless (BKT) transition [33–35]. This is a topological phase transition,
caused by the topological defects (vortices in this case) of the system. Unlike a usual
continuous transition, the BKT transition is not related to the breaking of a symmetry.
Therefore, it is not in contradiction with the Mermin–Wagner theorem [36], which states
that a continuous, global symmetry cannot be spontaneously broken in two dimensions.
Kosterlitz and Thouless were awarded with the Nobel Prize in 2016 due to the explanation
of the BKT transition [37,38].

In three dimensions, the topological defects are known as vortex lines (lines that pass
through a set of vortices), which are one-dimensional objects. They can be connected to
form large networks throughout the lattice and be interpreted as cosmic strings.

In this chapter, we will review the important features of the two- and three-dimensional
version of the XY model.

2.1 Correlation function

In order to motivate the existence of a phase transition in two dimensions, we begin by
analyzing the behavior of the correlation function at low temperature T . We will do so
for general dimension d ≥ 2. At low T , the system is dominated by configurations with
small angles between nearest neighbor spins and we can expand the cosine up to second
order in the Hamiltonian

βH ≈ −βJdN +
βJ

2

∑
⟨ij⟩

(θi − θj)
2, β ≡ 1

T
. (2.2)
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If we consider that the lattice sites are separated by a distance a, we can rewrite the second
term as

Jβ

2

∑
⟨ij⟩

(θi − θj)
2 =

Jβ

2

∑
r⃗,µ

(θ(r⃗ + ae⃗µ)− θ(r⃗ ))2 , µ = 1, 2 · · · d, (2.3)

where r⃗ denotes the position vector and e⃗µ the unit vector in the µ-direction. If a is
small enough, we can approximate the sum by an integral and the angle difference by a
derivative

βH ≈ βE0 +
βJa2−d

2

∫
ddr |∇θ(r⃗ )|2, (2.4)

where E0 = JdN is the ground state energy. We extend the range of θ to (−∞,∞) and
define the spin stiffness as ρs = Ja2−d. Then, the partition function takes the form1

Z =

∫
Dθ e−βH ≈

∫
Dθ exp

(
−βE0 −

βρs
2

∫
ddr |∇θ(r⃗ )|2

)
. (2.5)

Now, let us compute the spin correlation function

⟨S⃗(x⃗ ) · S⃗(⃗0 )⟩ =
〈
cos
(
θ(x⃗ )− θ(⃗0 )

)〉
= Re

〈
ei(θ(x⃗ )−θ(⃗0 ))

〉
= Re

[
1

Z

∫
Dθ exp

(
− βE0 −

βρs
2

∫
ddr |∇θ(r⃗ )|2 + i(θ(x⃗ )− θ(⃗0 ))

)]
. (2.6)

We analyze the exponent

I(x⃗ ) ≡ −βρs
2

∫
ddr |∇θ(r⃗ )|2 + i(θ(x⃗ )− θ(⃗0 )) (2.7)

under a Fourier transformation2

θ(x⃗ ) =
1

(2π)d

∫
ddk θ(k⃗ )e−ik⃗·x⃗, ∇θ(x⃗ ) = − i

(2π)d

∫
ddk θ(k⃗ )e−ik⃗·x⃗ k⃗. (2.8)

The latter implies that∫
ddr |∇θ(r⃗ )|2 = − 1

(2π)2d

∫
ddr ddk ddk′ θ(k⃗ )θ(k⃗′ )k⃗ · k⃗′eir⃗·(k⃗+k⃗′)

=
1

(2π)d

∫
ddk k2θ(k⃗ )θ(−k⃗ ), (2.9)

where we used ∫
ddr eir⃗·(k⃗+k⃗′) = (2π)dδ(k⃗ + k⃗′). (2.10)

Thus,

I(x⃗ ) =
1

(2π)d

∫
ddk

[
−βρs

2
k2θ(k⃗ )θ(−k⃗ ) + i(e−ik⃗·x⃗ − 1)θ(k⃗ )

]
. (2.11)

For convenience we rewrite eq. (2.11) in the following way, by completing the square

I(x⃗ ) = − 1

(2π)d

∫
ddk

βρs
2

k2
[
θ(−k⃗ )− i

(
e−ik⃗·x⃗ − 1

) 1

βρsk2

]
×
[
θ(k⃗ )− i

(
eik⃗·x⃗ − 1

) 1

βρsk2

]
− 1

(2π)d

∫
ddk

1

2βρsk2

(
eik⃗·x⃗ − 1

)(
e−ik⃗·x⃗ − 1

)
, (2.12)

1We work in units of kB = 1.
2We denote θ(x⃗ ) and its Fourier transformation θ(k⃗ ) with the same symbol.
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where we have used ∫
ddkeik⃗·x⃗ =

∫
ddke−ik⃗·x⃗. (2.13)

The reason to do this is that now we have split the integral in two parts: one that depends
on θ and another one that does not include it. We can perform a change of variables

θ∗(k⃗ ) = θ(−k⃗ ) = θ′(−k⃗ ) + i
(
e−ik⃗·x⃗ − 1

) 1

βρsk2
,

θ(k⃗ ) = θ′(k⃗ ) + i
(
eik⃗·x⃗ − 1

) 1

βρsk2
, (2.14)

to obtain

I(x⃗ ) = − 1

(2π)d

∫
ddk

βρs
2

k2θ′(−k⃗ )θ′(k⃗ )

− 1

(2π)d

∫
ddk

1

2βρsk2

(
eik⃗·x⃗ − 1

)(
e−ik⃗·x⃗ − 1

)
, (2.15)

where we used ∫
ddk

1

k2
eik⃗·x⃗ =

∫
ddk

1

k2
e−ik⃗·x⃗. (2.16)

Since the transformations (2.14) are shifts, the functional measure Dθ does not change.
Then, if we insert eqs. (2.5) and (2.15) into eq. (2.6) we obtain

⟨S⃗(x⃗ ) · S⃗(⃗0 )⟩ = exp

[
− 1

(2π)d

∫
ddk

1

2βρsk2

(
eik⃗·x⃗ − 1

)(
e−ik⃗·x⃗ − 1

)]

= exp

[
− 1

(2π)d
1

βρs

∫
ddk

1− e−ik⃗·x⃗

k2

]
≡ exp (−g(x⃗ )) . (2.17)

The solution to the integral yields the low-temperature behavior of the correlation function.
We will compute its asymptotic form for d ≥ 2. We distinguish two cases:

• For d > 2 and x = |x⃗| we have

g(x⃗ ) =
1

(2π)d
1

βρs

∫
ddk

1

k2
− 1

(2π)d
1

βρs

∫
dΩd

∫ ∞

0
dk kd−1 e

−ikx cos θ

k2

=
1

(2π)d
1

βρs

∫
ddk

1

k2
− 1

(2π)d
1

βρs

∫
dΩd

Γ(d− 2)

(ix cos θ)d−2
, (2.18)

where Ωd is the solid angle in d dimensions. If we take the limit x → ∞, the second
term vanishes and we are left with

g ∼ 1

(2π)d
1

βρs

∫
ddk

1

k2

=
1

(2π)d
1

βρs

∫
dΩd

∫ Λ

0
dk kd−3. (2.19)

Since the second integral diverges in infinity, we introduce a UV cut-off Λ. Therefore,
for large x, we have

g ∼ 1

(2π)d
Sd

βρs(d− 2)
Λd−2, d > 2, (2.20)

where Sd is the surface of a d-dimensional sphere,

Sd =
2πd/2

Γ
(
d
2

) . (2.21)
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• Now we consider the case d = 2. Again we introduce a UV cut-off

g(x⃗ ) =
1

(2π)2
1

βρs

∫
d2k

1− e−ikx cos θ

k2

=
1

(2π)2
1

βρs

∫ Λ

0
dk

∫ 2π

0
dθ

1− e−ikx cos θ

k

=
1

2π

1

βρs

∫ Λ

0
dk

1− J0(kx)

k
, (2.22)

where J0 is the Bessel function of order zero. We perform the change of variable
q = kx and split the integral in the following way∫ 1

0
dq

1− J0(q)

q
+

∫ Λx

1
dq

1− J0(q)

q
. (2.23)

The dominant part of this integral corresponds to∫ Λx

1
dq

1

q
= ln(Λx). (2.24)

The other terms, ∫ 1

0
dq

1− J0(q)

q
−
∫ Λx

1
dq

J0(q)

q
, (2.25)

can be absorbed in a constant C (independent of x) if we let Λ → ∞. Thus, g takes
the form

g(x⃗ ) ∼ 1

2π

1

βρs
ln(Λx) + C, d = 2. (2.26)

By using eqs. (2.20) and (2.26) we obtain

⟨S⃗(x⃗ ) · S⃗(⃗0 )⟩ ∼


exp

(
− 1

(2π)d
SdΛ

d−2

ρs(d−2)T
)

d > 2,

A(Λx)
− T

2πρs d = 2,

(2.27)

where A = eC is a dimensionless constant. We see that in dimensions larger than two,
for large x the correlation function is asymptotically constant. Then, we say that there
is a long-range order. For d = 2 there is an algebraic decay and the large x limit yields
a vanishing correlation function at T ̸= 0. This corresponds to a quasi-long-range order.
We mention the fact that an algebraic decay usually occurs at the critical temperature Tc

of a transition. For this particular model in two dimensions, we observe that the algebraic
decay is always present at low temperature, which indicates a diverging correlation length.

On the other hand, for the high-temperature regime it is possible to show that (see for
instance Ref. [39])

⟨S⃗(x⃗ ) · S⃗(⃗0 )⟩ = e−x/ξ, ξ =
a

ln (2T/J)
. (2.28)

This result does not depend on the dimension. Therefore there is always an exponential
decay for high temperature. The different types of decay in the low- and high-temperature
regime in two dimensions suggest that there could be a phase transition. However, it
cannot be related to the spontaneous breaking of symmetry, otherwise there would be a
contradiction with the Mermin-Wagner theorem.

15



Vortices in two dimensions Chapter 2.

Figure 2.1: Vector field associated with a vortex for n = 1, C = π/2 (left-hand side) and
an anti-vortex for n = −1, C = π (right-hand side), see eq. (2.31).

2.2 Vortices in two dimensions

Berezinskĭı [33,34] and later Kosterlitz and Thouless [35] explained this transition with
the dynamics of the topological defects of the system, which correspond to vortices. To
show that these defects arise as minimal energy excitations, let us consider the variation
of the Hamiltonian for small a (lattice spacing)

δH

δθ(x⃗)
=

J

2

δ

δθ(x⃗ )

∫
d2r |∇θ(r⃗ )|2

=
J

2

δ

δθ(x⃗ )

(∫
d2r [∇ · (θ∇θ)]−

∫
d2r θ∇2θ

)
= 0. (2.29)

Using Gauss’s theorem, we observe that the first term vanishes, for the case of periodic
boundaries. Thus, the solutions to

∇2θ = 0 (2.30)

yield the minimum energy configurations. A simple solution corresponds to a constant
value of θ, but there are other type of functions that satisfy Laplace’s equation. They are
of the form

θ(φ) = nφ+ C, (2.31)

where φ is the polar angle, θ the spin angle, n an integer number due to the 2π periodicity
and C a constant. A graphical depiction of these configurations is shown in Figure 2.1. A
subset of a configuration with n = 1 has a vortex, while for n = −1 we say that it has an
anti-vortex.

In discrete space, the vortices can be determined by dividing the lattice into plaquettes,
which are arrangements of four sites, as shown in Figure 2.2. The vorticity of a plaquette
is

vi =
1

2π
(∆θi,i+x̂ +∆θi+x̂,i+x̂+ŷ +∆θi+x̂+ŷ,i+ŷ +∆θi+ŷ,i) , (2.32)

where i is a lattice site and ∆θi,j ≡ (θj − θi) mod 2π ∈ (−π, π], i and j are two neighboring
sites. It turns out that vi can only take the values 1, 0 or −1.3 Again, vi = 1 represents a
vortex and vi = −1 an anti-vortex.

3In principle |vi| = 2 is also possible but its statistical probability vanishes.
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i + ŷ

i

i + x̂ + ŷ

i + x̂

vi = 1

Figure 2.2: Plaquette on the lattice with vorticity vi = 1.

For the moment we will work in the small a limit, i.e. with expression (2.31). The
energy needed to create one of these configurations is

EV − E0 =
J

2

∫
d2r |∇θ(r⃗ )|2 = J

2

∫ 2π

0

∫ L

r0

n2

r2
rdrdφ = n2πJ ln

L

r0
, (2.33)

where L represents the linear size of the system and r0 the radius of the vortex core, related
to the lattice spacing a. Now we will compute the Helmholtz free energy F = E−TS. To
do so, we need the entropy, S, which we can obtain through Boltzmann’s formula. If we
take into account that the number of ways to arrange a vortex of size r0 in an area of L2,
with resolution r0, is proportional to L2/r20, then

S = ln

(
A
L2

r20

)
, (2.34)

where A is a constant. Hence

F = (n2πJ − 2T ) ln
L

r0
+ T lnA. (2.35)

For T > n2πJ/2 the first term of F is negative. Then, as L becomes larger, the free energy
decreases. If T < n2πJ/2, when L grows the free energy increases. This indicates that
for high temperature the density of vortices can be significant, because they become more
stable configurations (the free energy is minimized). This again suggests the possibility of
a phase transition. A rough estimate of the critical temperature is Tc = πJ/2. The vortex
proliferation is consistent with the decay of the correlation function for high temperatures,
eq. (2.28). At T > Tc, the correlation ⟨S⃗(x⃗ )·S⃗(⃗0 )⟩ decays exponentially, thus the spins are
not very correlated over large distances. This implies that their orientations are mostly
random, which in turn provides the possibility for the formation of a large number of
vortices or anti-vortices. For low temperature, spins tend to align and the formation of
vortices is suppressed.

Typical configurations have a number of defects, if the temperature is not too low and
the volume not too small, thus one has to study the interaction between vortices and
anti-vortices. Ref. [35] shows that the interaction energy between them is

Eint = −πJ
∑
i ̸=j

ninj ln
|r⃗i − r⃗j |

r0
, (2.36)

where ni is the vorticity of a defect. For a vortex–anti-vortex pair we have ninj < −1 and
the energy is minimized when they are bound together. If the distance between them goes
to zero, the pair annihilates, yielding a net vorticity of n = 0. Moreover, from eq. (2.36) we
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observe that the vortex–anti-vortex interaction is attractive (F⃗ = −∇Eint), while defects
with the same value of n interact via a repulsive force.

In order to derive eq. (2.36), it is necessary that∑
i

ni = 0. (2.37)

With periodic boundaries this condition is actually implied by Stokes’ theorem. This is
consistent, since in Ref. [35] the authors point out that the total vorticity of the system
has to be zero so that there can be a finite interaction energy between the vortices in an
infinite volume. This can be seen if we take into account the energy needed to create a
configuration with vortices,

EV − E0 =

(∑
i

ni

)2

πJ ln
L

r0
. (2.38)

For large L this diverges unless
∑

i ni = 0.

When the distance between the members of a pair is large, their interaction force
decreases. In such a case one can treat the vortices as if they were free. Thus, the BKT
transition occurs between two phases. At low temperature, there is only a low density of
tightly bound vortex–anti-vortex pairs. At high temperature the pairs unbind, giving rise
to a significant density of free vortices.

2.3 3d XY model

In three dimensions, the XY model has a second order phase transition, which is not
explained through topological defects. Still, it is possible to define the vorticity of each
plaquette in the same way as in two dimensions, eq. (2.32). One difference is that now
we have to consider each plaquette of the three-dimensional cubes that form the lattice.
In addition, the cores of the vortices now form a one-dimensional line that crosses the
plaquettes, see Figure 2.3. These lines can be connected by following a direction which is
defined with the vorticity of the plaquettes, see Figure 2.4. The connections can extend
throughout the lattice and form large loops and networks. For this reason, vortices in
three dimensions are better known as vortex lines and are analogous to cosmic strings.
Therefore one can use the 3d XY model as a testbed to study the dynamics of these defects
in the universe and to test Zurek’s prediction, explained in Section 1.3.

It has been conjectured that the properties of such networks could yield information
about the phase transition in three dimensions [40, 41]. However, there is an ambiguity
in the procedure to connect the lines that pass through each plaquette. Different ways
to join them yield different strings properties. In Figure 2.5, we show an example where
difficulties to connect the lines arise. Ref. [42] has explored this issue. In this work we will
only study the dynamics of the lines that pass through each plaquette (without joining
them), avoiding ambiguities with the manner to connect them to form large networks.

Since there is a second order phase transition, some thermodynamic quantities diverge
in the infinite-volume limit at the critical temperature Tc, such as

CV =
⟨E2⟩ − ⟨E⟩2

V T 2
∼ 1

|T − Tc|α
, Heat capacity,

χM =
⟨M2⟩ − ⟨M⟩2

V
∼ 1

|T − Tc|γ
, Magnetic susceptibility,
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Figure 2.3: Vortex line passing through a plaquette with positive vorticity.

Figure 2.4: The upper panel shows a possible way to define the direction that a vortex line
follows when passing through a plaquette. The green arrow indicates a vortex (pointing
inwards the cube), while the red one refers to an anti-vortex (pointing outwards). The
lower panel shows an example of a loop with definite direction crossing four plaquettes.
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Figure 2.5: In some cubes of the lattice, there may be ambiguities on how to connect the
vortex lines. For the example in this figure we see that there are two possible ways to
connect them. Both manners yield different properties for the network [42].

where M = |M⃗ |, M⃗ =
∑
i

S⃗i, is the magnetization,

ξ ∼ 1

|T − Tc|ν
, Correlation length, (2.39)

where ⟨E⟩ is the energy expectation value, ⟨M⟩ the mean magnetization and V the volume.

The critical exponents and temperature can be obtained by means of Monte Carlo
simulations. This has been reported many times with very high precision. Thus, we will
not repeat those computations with our simulations. Instead, we only mention the value
of the exponents and Tc, in units of J = kB = 1, for future reference [43,44]

βc =
1

Tc
= 0.45416474(10), α = −0.0151(3), γ = 1.3178(2), ν = 0.67169(7). (2.40)

More complete reviews of the XY model, its topology and the BKT transition can be
found in Refs. [38, 39,45,46].
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Chapter 3

Monte Carlo simulations

In statistical mechanics one is usually interested in calculating expectation values

⟨O⟩ = 1

Z
tr
(
Oe−βĤ

)
, β =

1

T
, (3.1)

where
Z = tr

(
e−βĤ

)
(3.2)

is the partition function of the system and Ĥ the Hamilton operator. In the functional
integral formulation we can also write

⟨O⟩ = 1

Z

∫
D[σ]O[σ]e−βH[σ], Z =

∫
D[σ] e−βH[σ], (3.3)

where the integral is over all the possible configurations. In field theory, the partition
function is given by a functional integral in Euclidean space. In most cases, it is impossible
to analytically compute ⟨O⟩ for an arbitrary observable. Thus, numerical methods are
often required to study statistical systems. The main objective of these methods is to
generate a set of N configurations, {σ}, to numerically evaluate the functional integral as
a sum over {σ}. Generating configurations that follow a uniform probability distribution
is not useful, because some of them contribute much more to the partition function than
others. The idea of importance sampling methods is to randomly generate configurations
that are distributed according to the probability in equilibrium

p[σ] =
1

Z
e−βH[σ]. (3.4)

This can be achieved by Monte Carlo methods. That way, if N ≫ 1, one can determine
⟨O⟩ through

⟨O⟩ ≈ 1

N

∑
[σ]

O [σ] . (3.5)

Each evaluation of O for a given configuration [σ] is called a measurement. The statistical
error of eq. (3.5) decreases as 1/

√
N . Many Monte Carlo methods rely on Markov chains.

These are sequences of configurations where the creation of the nth configuration only
needs the information of the (n − 1)th configuration. With long chains, one can obtain,
in principle, the value of ⟨O⟩ to an arbitrary precision. Still, one is limited to work with
finite volumes in discrete space. In order to obtain the thermodynamic and continuum
limits, the usual procedure is to work with high statistics (large N) for several volumes
V (as large as possible) and lattice spacings a (as fine as possible) to extrapolate ⟨O⟩ to
V → ∞ and a → 0 with an educated guess.
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In this chapter we will review the basic concepts of Markov chains needed to understand
the working of Monte Carlo methods. Later, we will explain the implementation of four
different algorithms (Metropolis, worm, cluster and heatbath algorithm). We refer to the
XY model, although these algorithms are also applicable to other systems.

3.1 Markov chains

As we mentioned before, Markov chains are sequences of configurations where each new
configuration is generated by considering only the previous one

[σ0] → [σ1] → [σ2] → · · · → [σt−1] → [σt] → · · · . (3.6)

The index t is known as the Markov time. The generation of a chain requires an initial
configuration [σ0] and a transition probability that is independent of t, i.e.

T (σ′ = σt|σ = σt−1) = T (σ′|σ), (3.7)

where T (σ′|σ) is the transition probability of moving from [σ] to [σ′]. This quantity has
to be normalized

0 ≤ T (σ′|σ) ≤ 1,
∑
[σ′]

T (σ′|σ) = 1. (3.8)

The transition probability tells us how to update the configurations. It is important that
the Markov chains that we generate in Monte Carlo simulations are ergodic or irreducible.
This means that if we have two arbitrary configurations [σ] and [σ′], the transition prob-
ability of moving from [σ] to [σ′], after a finite number of updates, is larger than zero. If
this property is not fulfilled, one could wrongly generate only a subset of the total sample
space, see Figure 3.1. Furthermore, the ergodicity together with other conditions, such as∑

[σ′]

T (σ|σ′)p[σ′] = p[σ] for all [σ], (3.9)

where p[σ] is the equilibrium distribution or stationary distribution, ensure that in the
limit t → ∞ the probability distribution of the chain converges to, precisely, p[σ]. One
can also guarantee that the large t limit will not be affected by our choice of [σ0]. For a
proof of these statements, see Ref. [47].

A sufficient condition to fulfill eq. (3.9) is

T (σ′|σ)p[σ] = T (σ|σ′)p[σ′], (3.10)

since the transition probability is normalized. This relation is known as detailed balance.
It is important to remark that its solution is not unique for fixed p[σ]. There are different
transition probabilities that agree with detailed balance. One can take advantage of this
fact to invent efficient algorithms to perform simulations. In the following sections, we
will briefly discuss some technical aspects related to Monte Carlo methods.

3.1.1 Autocorrelation

Before measuring any observable with the configurations generated through Monte Carlo
algorithms, one has to perform a large number of updates to assure that our set {σ} follows
the correct distribution p[σ]; this process is called thermalization. When the thermalization
has been achieved, one can start to measure different observables numerically. Between
each configuration that is used for measurements one has to apply several updates, because
subsequent configurations of the Markov chain are correlated. A quantitative manner to
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Figure 3.1: In the left-hand graph we sketch an example of an ergodic chain. It reaches
the entire sample space. The right-hand graph represents a non-ergodic chain, since it is
restricted to only a subset of the sample space.

determine the correlation level of the configurations of our chain and the number of updates
to thermalize the system consists of computing the autocorrelation time τ . Generally, one
seeks an algorithm that has a certain value of τ for the smallest computing (CPU) time
possible.

To properly define the autocorrelation time let us consider a set of measurements
{x1, x2, · · · , xN} of an observable X. The correlation function at Markov time t is given
by

CX(t) = ⟨xixi+t⟩ − ⟨xi⟩⟨xi+t⟩ =
1

N − t

N−t−1∑
i=0

xi+t(xi − xN−t−1), (3.11)

where

xN−t−1 =
1

N − t

N−t−1∑
i=0

xi, t = 0, · · · , N − 1. (3.12)

For large t, the following decay of the correlation function is generic

CX(t) ∝ e−t/τexp , (3.13)

where we refer to τexp as the exponential autocorrelation time. It can be obtained by
measuring the correlation function of an observable, e.g. the energy, and fitting eq. (3.13).
In general, τexp depends on the observable. Thus, to avoid any ambiguity, one considers
τexp = sup({τOexp|O an observable of interest}).

One can also show that τexp gives an estimate of the number of updates that one
has to perform to achieve thermalized configurations (configurations in equilibrium). In
particular, it is possible to prove that (see Refs. [48,49]) if P t is the probability distribution
at a time t in the Markov process, π is the equilibrium distribution (the one that is obtained
in the t → ∞ limit) and f(x) is a function defined on the sample space Ω with the norm

||f(x)|| =

√∫
Ω
|f(x)|2π(x)dx, (3.14)

for large t one has

sup

{∣∣∣∣ ∫
Ω
f(x)P t(x)dx−

∫
Ω
f(x)π(x)dx

∣∣∣∣, ||f(x)|| ≤ 1

}
≤ exp(−t/τexp). (3.15)

Therefore, τexp is interpreted as the relaxation time of the system, since for t ≫ τexp the
chain can be considered to be in equilibrium.
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There is another type of autocorrelation time, which is known as the integrated auto-
correlation time, τint. For τint > 1/2 it is given by

τint =
1

2
+

N∑
t=1

CX(t)

CX(0)
. (3.16)

For large N the standard error of ⟨X⟩ is related to τint through (see Ref. [49])

Sσ =

√
Var(X)

N
=

√
⟨(X − ⟨X⟩)2⟩

N
≈
√

2τint
N

CX(0). (3.17)

The statistical error is proportional to the square root of the variance. In this manner,
τint provides a way of finding an error that takes into account correlations between mea-
surements. However, this is not the usual procedure in practice. Instead one uses different
methods to compute the error, like the one that we will discuss in the next section. Still,
τint has a useful interpretation: it tells us that we are using an effective sample of N/2τint
decorrelated measurements. When τint ≤ 1/2, the effective sample is N , which indicates
a perfect decorrelation. Once again, τint depends on the observable that we consider, so
one has to take τint = sup({τOint|O an observable of interest}).

In the literature, a distinction between τint and τexp is not often made, because for large
N and τexp ≫ 1 both times are proportional. This is seen as follows

τint =
1

2
+

N∑
t=1

CX(t)

CX(0)
≈ 1

2
+A

∞∑
t=1

(
e−1/τexp

)t
, (3.18)

where we used eq. (3.13) and A is a constant. Then

τint ≈
1

2
+A

e−1/τexp

1− e−1/τexp
≈ 1

2
+A

1− 1/τexp
1/τexp

=
1

2
+A(τexp − 1) ≈ Aτexp. (3.19)

In systems that exhibit smooth phase transitions, it is known that both τexp and τint
diverge at the critical point in infinite volume

τexp ∝ 1

|T − Tc|zexpν
, τint ∝

1

|T − Tc|zintν
. (3.20)

The exponent zexp is equal to z in eq. (1.37) and ν is the critical exponent of the correlation
length. This means that close to the critical point, the number of updates that one has
to perform in order to equilibrate the system and to decorrelate the measurements grows
indefinitely. This behavior is called critical slowing down. Some algorithms, like the cluster
algorithms, are very efficient in suppressing this problem because their dynamical critical
exponents are small, zint, zexp < 1, see Refs. [50, 51].

Thus, there are two types of autocorrelation time, each one with a different interpre-
tation. The exponential autocorrelation time tells us how long it takes to equilibrate the
system (in Markov time units), while the integrated time is related to the correlation of
subsequent configurations in the Markov chain [49]. In practice, the computation of τ is
a difficult task. For instance, to determine τexp one has to fit an exponential decay to
the correlation function. However, this decay does not always capture the behavior of the
data. In addition, τint requires a lot of statistics to avoid fluctuations at large t. For these
reasons, we we will not address the calculation of τ in this thesis.
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3.1.2 Statistical error

To compute the statistical error of an observable obtained with Monte Carlo simulations,
one can often not use the standard error. Some observables, like the correlation length,
are determined indirectly through fits to the data. In such fits, the standard error is
not defined. Furthermore, the computation of Sσ assumes that our measurements are
statistically independent. This is not the case in simulations, unless τint ≤ 1/2. As we
mentioned before, one could compute the integrated autocorrelation time to find the error,
but its determination is not trivial nor computationally cheap. For this reason, one often
uses alternative methods to compute the error of a mean value, considering the possible
correlation of data. In particular, we will explain the idea of the jackknife error, σJ , which
was used to estimate the uncertainties of the results in this work.

Let us suppose that we have N measurements of a variable x. We describe the calcu-
lation of σJ as a recipe:

• We calculate the average ⟨x⟩ of the N measurements.

• We divide the N measurements in M blocks. M should preferably be a number that
satisfies N/M ∈ N.

• For each block m = 1 . . .M , we consider the set of the N − N/M measurements
without the block m and calculate its average ⟨x⟩m.

• The jackknife error is defined as

σJ =

√√√√M − 1

M

M∑
m=1

(⟨x⟩m − ⟨x⟩)2. (3.21)

An important remark is that when M = N , σJ coincides with the standard error, since
for that case we have

⟨x⟩m =
1

N − 1

N∑
m′ ̸=m

xm′ , (3.22)

thus

⟨x⟩m − ⟨x⟩ = 1

N − 1

N∑
m′ ̸=m

xm′ − 1

N

N∑
m′=1

xm′

=
1

N(N − 1)
(x1 + · · ·+ xm + · · ·xN )− 1

N
xm − 1

N(N − 1)
xm

=
1

N − 1
(⟨x⟩ − xm) . (3.23)

Then

σJ =

√√√√ N − 1

N(N − 1)2

N∑
m=1

(xm − ⟨x⟩)2 =

√√√√ 1

N(N − 1)

N∑
m=1

(xm − ⟨x⟩)2. (3.24)

However, it is not the idea to take M = N , but to work with M ≪ N . In general, σJ
changes for a different number of blocks M and it tends to be somewhat larger than the
standard error. Therefore, normally one calculates the right-hand side of eq. (3.21) for
several M and chooses the error as the largest value of the σJ that one obtains.

Further information about Markov chains and its statistical analysis can be found in
Refs. [48, 49,52–54].
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3.2 Monte Carlo algorithms

In this section we will explain the implementation of four different algorithms to simulate
the XY model. Each one can also be applied to other systems. The codes were self-written
with C++. The implementations are available in a GitHub repository [55].

3.2.1 Metropolis algorithm

The Metropolis algorithm was the first importance sampling Monte Carlo algorithm used
to simulate statistical mechanics systems [56]. It is also one of the easiest algorithms to
implement and has a wide variety of applications. We will explain its implementation for
the XY model as a recipe.

1. Create an initial configuration [σ0]. This can be done, for instance, by assigning
random directions to the spins on the lattice in the range (−π, π] (hot start) or by
aligning all the spins in one direction (cold start).

2. Pick a site i with spin S⃗i and propose the change S⃗i → S⃗′
i, where the direction of S⃗′

i

is randomly chosen in the interval (−π + ϵ, π − ϵ]. One has the freedom to fix ϵ. In
this thesis we select ϵ = 0, i.e. we consider the full angular range.

3. Accept or reject the update based on the transition probability

T (σ′|σ0) = min

(
1,

exp(−βH[σ′])

exp(−βH[σ0])

)
, (3.25)

where [σ0] is the initial configuration and usually [σ′] only differs at one site i. The
transition probability can be implemented as follows: if ∆H = H[σ′] − H[σ0] > 0
we generate a random number r ∈ (0, 1). If r < exp(−β∆H), we accept the change.
Otherwise, the configuration stays the same. If ∆H ≤ 0 we always accept the
change.

4. Repeat steps 2 and 3 updating a variety of lattice sites. This can be done randomly
or in a lexicographic order. After revising Ld sites, with d dimension of the system
and L its linear size, we say that we have performed a sweep.

We can verify that the transition probability (3.25) satisfies detailed balance,

T (σ′|σ0) exp(−βH[σ0]) = min

(
1,

exp(−βH[σ′])

exp(−βH[σ0])

)
exp(−βH[σ0])

= min
(
exp(−βH[σ0]), exp

(
−βH[σ′]

))
= min

(
1,

exp(−βH[σ0])

exp(−βH[σ′])

)
exp
(
−βH[σ′]

)
= T (σ0|σ′) exp

(
−βH[σ′]

)
. (3.26)

We used the positivity of all the factors involved to manipulate the minimum.

An application of this algorithm, together with a review of its properties, in the con-
text of quantum mechanics is given in Ref. [57]. The local updates make this algorithm
inefficient close to a critical point. Its zint and zexp exponents are approximately 2, see for
instance Refs. [58,59]. This means that the number of thermalization sweeps and updates
between measurements has to be very large close to criticality, which increases the CPU
time. Still, for simulations out of equilibrium it is particularly useful, as we will explain
later in this chapter.
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3.2.2 Cluster algorithm

The basic idea of this algorithm is to create bonds between neighboring sites with a cer-
tain probability criterion. After the bonds have been created throughout the lattice, one
identifies the clusters. That is, one identifies the sets of sites that are connected through
the bonds. Then, to generate a new configuration one collectively reflects the spins of each
cluster with respect to a line, with probability one half, see Figure 3.2. In the literature
one distinguishes two types of cluster algorithms: the Swendsen-Wang or multi-cluster
algorithm [60], where one identifies all the clusters on the lattice and considers flipping
them all, and the Wolff or single-cluster algorithm [61], where one flips only one cluster
for each update with probability one. Both of them generate ergodic Markov chains and
satisfy detailed balance, as shown in Refs. [60,61]. Their implementation is quite similar.

In the following steps we describe the implementation of the multi-cluster algorithm,
which we will just refer to as “the cluster algorithm”:

1. Begin with a hot or cold start, or any other start.

2. Define a direction with a random vector r⃗ ∈ S1. For two nearest-neighboring spins
S⃗i and S⃗j , we create a bond with probability

p = 1− exp
[
−2β(r⃗ · S⃗i)(r⃗ · S⃗j)

]
. (3.27)

We do this step for every pair of nearest neighbors.

3. Once the bonds are created, we identify the clusters. This is technically the most
difficult step. When inefficiently done, it can consume a lot of CPU time. There
exists, however, an efficient way to do it, which is known as the Hoshen-Kopelman
algorithm [62]. The advantage of this method is that it can identify the clusters in
a computing time only linear in the volume of the system. This algorithm is imple-
mented in our codes for two- and three-dimensional lattices with periodic boundaries.

4. Attempt to reflect the spins of the clusters with respect to the line orthogonal to
r⃗ with some probability, usually p = 1/2. In practice this can be done as follows:
choose a cluster C and consider a random number R ∈ (0, 1). If R < 1/2, we
collectively change all the spins of C according to

S⃗i → S⃗i − 2r⃗(r⃗ · S⃗i), S⃗i ∈ C. (3.28)

Otherwise, the cluster is kept invariant. One repeats this step for all the clusters.

5. Return to step 2.

Steps 2, 3, 4 and 5 conform a sweep with the cluster algorithm. Every time that one
repeats step 2, a new random vector r⃗ ∈ S1 is generated, but it remains fixed until the
end of step 4.

The cluster algorithm is the best known option to simulate O(N) models in equilibrium,
because it deals very efficiently with the critical slowing down. As we mentioned before,
its dynamical critical exponent z tends to be very small compared with the Metropolis
algorithm, see e.g. Refs. [63,64]. In essence, this is due to the fact that the cluster algorithm
performs collective updates, i.e. one updates entire clusters, instead of modifying site by
site like Metropolis. Therefore, decorrelation and thermalization are usually done in less
computing time than with local-update schemes. Furthermore, the Hoshen-Kopelman
method makes this algorithm efficient. Nevertheless, for simulations out of equilibrium
the cluster algorithm is not a very good option, because it tends to equilibrate the system
very quickly. Moreover, this does not coincide with the real process in nature, which is
supposed to be local.
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r

Figure 3.2: In the upper-left panel we show a configuration where some spins have been
linked by bonds with a probability given by eq. (3.27). Notice the periodic boundaries,
which are manifest in the bonds. The different colors represent the clusters. The black
points are clusters of one element. The upper-right panel shows the result after reflecting
the green cluster with respect to the orthogonal line to a random vector r⃗.

3.2.3 Heatbath algorithm

The heatbath algorithm is another local-update scheme, which was first used to simulate
pure gauge theories as an improvement compared to Metropolis. In the beginning, it was
implemented for a pure SU(2) gauge theory [65] and later for SU(3) [66] and SU(N) [67]. In
Ref. [68] the first implementation of this algorithm in classical spin models is shown, before
the invention of the cluster algorithm. It is somewhat more efficient than Metropolis but
less than the cluster algorithm, see e.g. Ref. [69]. To explain the implementation consider
the contribution to the Hamiltonian, in units of J = 1, at a site x on the lattice

Hx = −S⃗x ·
∑
±µ

S⃗x+µ̂ = −S⃗x · σ⃗x = −Sxσx cos θ = −σx cos θ, (3.29)

where σ⃗x is the vector sum of all the spin neighbors of S⃗x, θ is the angle between σ⃗x and
S⃗x and |S⃗x| = Sx, |σ⃗x| = σx. The probability of having this spin orientation, i.e. the angle
θ at x, is

Px(θ) =
exp(−βHx(θ))∫ π

−π exp(−βHx(θ′))dθ′
. (3.30)

The idea of the heatbath algorithm is to update the angle θ → φ based on this probability
distribution. To do so one could generate a random number r ∈ (0, 1) and solve the
equation

r =

∫ φ

−π
Px(θ

′)dθ′ (3.31)
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for φ. Then the spin at the site x is changed, θ → φ. An update of every site or the same
number of random sites conforms a sweep.

Solving eq. (3.31) cannot be done analytically for this particular model. Therefore one
has to numerically compute φ. For fixed β (simulation in equilibrium) one can calculate
φ for numerous values of r and make a lookup table. However, in simulations out of
equilibrium β changes in each sweep and numerically integrating eq. (3.31) for each spin
update consumes a lot of CPU time. To deal with this problem we will use the Hattori-
Nakajima algorithm [70], which enables us to obtain angles distributed according to eq.
(3.30).

The Hattori-Nakajima algorithm adopts the rejection method [70]. The idea is to
find a normalized distribution P̃x(θ) that approximates eq. (3.30), i.e. a function that
interpolates the real distribution Px(θ) between βHx = 0 and βHx = ∞. With P̃x one
defines a monotonically increasing function h(z) : (0, 1] → (−π, π] with the property

P̃x(h(z))h
′(z) = 1, ∀z ∈ (0, 1], (3.32)

where h′ is the derivative of h. One also defines

g(z) = R(βHx)
Px(h(z))

P̃x(h(z))
, z ∈ (0, 1],

R(βHx) = min

({
P̃x(θ)

Px(θ)

∣∣∣∣θ ∈ (−π, π]

})
. (3.33)

Appendix A of Ref. [70] proves the following. Let {ω} and {ω′} be two independent
sequences of uniform random numbers in the interval (0, 1]. Define an ordered subsequence
of {ω}, name it {ω̃}, by selecting those numbers that satisfy

ω′ ≤ g(ω). (3.34)

Then the sequence
h(ω̃1), h(ω̃2), h(ω̃3), · · · (3.35)

follows the distribution given by eq. (3.30). The same reference proposes a P̃x(θ) and
h(z) such that one can generate random numbers distributed according to Px by following
these steps:

1. Define a = βHx and

α(a) = min

{√
a(2− ϵ),max{

√
ϵa, δ(a)}

}
,

γ(a) = max

{
α(a)2

a
,
cosh(πα(a))− 1

exp(2a)− 1

}
− 1, (3.36)

where

δ(a) = 0.35max{0, a− a∗}+ 1.03
√

max{0, a− a∗}

ϵ = 0.001, a∗ = 0.798953686083986. (3.37)

Define also

h(z) =
2

α(a)
tanh−1

{√
1 + γ(a)

1− γ(a)
tan

[
(2z − 1) tan−1

(√
1− γ(a)

1 + γ(a)
tanh

πα(a)

2

)]}
g(z) = exp [−aG(h(z))] , (3.38)
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where

G(θ) = 1− cos θ − 1

a
ln

[
1 +

1

1 + γ(a)

(
cosh(α(a)θ)− 1

)]
. (3.39)

2. Generate two random numbers, ω and ω′, with uniform distribution in the interval
(0, 1].

3. If ω′ ≤ g(ω) we can safely say that h(ω) is distributed according to (3.30). Otherwise,
we return to step 2.

Therefore, the implementation of the heatbath algorithm reduces to applying these
three steps to every spin on the lattice, where h(ω) would be identified with the new angle
between the spin at the site x and σ⃗x. One has to derive the spin angle with respect to
the horizontal axis by properly transforming θ.

3.2.4 Worm algorithm

The last algorithm that we will discuss is the worm algorithm, which was introduced by
Prokof’ev and Svistunov in 2001 [71]. The idea is to work in a dual space to the spin space
and to sample configurations there. Before commenting more on the implementation, we
have to rewrite the partition function in terms of the variables of this dual space. Let us
recall that the Hamiltonian is given by

H = −
∑
⟨ij⟩

S⃗i · S⃗j (3.40)

in units of J = kB = 1. Thus, the partition function is

Z =

N∏
k=1

∫ 2π

0

dθk
2π

exp

β∑
⟨ij⟩

cos(θi − θj)


=

N∏
k=1

∫ 2π

0

dθk
2π

∏
⟨ij⟩

exp [β cos(θi − θj)] . (3.41)

If we use the following identity
∞∑

ν=−∞
Iν(β) exp(iνθ) = exp(β cos θ), (3.42)

where Iν(β) is the modified Bessel function of the first kind of order ν, we can rewrite Z
as

Z =
N∏
k=1

∫ 2π

0

dθk
2π

∏
⟨ij⟩

 ∞∑
Jij=−∞

IJij (β) exp [iJij(θi − θj)]

 . (3.43)

The next step is to integrate over the angles. To do so we will consider, for simplicity, a
one-dimensional lattice with N sites and periodic boundary, but the final result will be
valid for a general dimension d. Then

Z =

N∏
k=1

∫ 2π

0

dθk
2π

∞∑
J12=−∞

∞∑
J23=−∞

· · ·
∞∑

JN1=−∞
IJ12(β) exp [iJ12(θ1 − θ2)] IJ23(β)

× exp [iJ23(θ2 − θ3)]× · · · × IJN1
(β) exp [iJN1(θN − θ1)]

=
∑
{Jij}

IJ12(β)IJ23(β) · · · IJN1
(β)

∫ 2π

0
· · ·
∫ 2π

0

dθ1dθ2 . . . dθN
(2π)N

exp [iθ1 (J12 − JN1)]

× exp [iθ2 (J23 − J12)]× · · · × exp
[
iθN

(
JN1 − J(N−1)N

)]
, (3.44)

30



Monte Carlo algorithms Chapter 3.

where we define ∑
{Jij}

≡
∞∑

J12=−∞

∞∑
J23=−∞

· · ·
∞∑

JN1=−∞
. (3.45)

We will interpret the variable Jij as the flux that passes from the site i to j. Thus, we can
think of Jij as the number of lines that enter or emanate from the site i in the direction
of j. For instance, we can add up +1 to the flux Jij if a line coming from j enters the site
i, while we add −1 if a line exits from i towards j. With this interpretation, we can also
write Jji ≡ −Jji, i.e. the flux from i to j is minus the flux from j to i. Then

Z =
∑
{Jij}

IJ12(β)IJ23(β) · · · IJN1
(β)

∫ 2π

0
· · ·
∫ 2π

0

dθ1dθ2 . . . dθN
(2π)N

exp [iθ1 (J12 + J1N )]

× exp [iθ2 (J23 + J21)]× · · · × exp
[
−iθN

(
JN(N−1) + JN1

)]
=
∑
{Jij}

IJ12(β)IJ23(β) · · · IJN1
(β)

∫ 2π

0
· · ·
∫ 2π

0

dθ1dθ2 . . . dθN
(2π)N

exp [iθ1∇ · J1]×

exp [iθ2∇ · J2]× · · · × exp [iθN∇ · JN ] , (3.46)

where ∇ · Ji ≡
∑

j Jij is the divergence at the site i. Integrating over the angles we see
that only when ∇ · Ji = 0, ∀i = 1, . . . , N (Gauss’s law without sources) the configuration
contributes to the partition function. Therefore

Z =
∑
{JCP}

IJ12(β)IJ23(β) · · · IJN1
(β)

=
∑
{JCP}

∏
⟨ij⟩

IJij (β), (3.47)

where {JCP} stands for closed path configuration, which means that the configuration
satisfies ∇ · Ji = 0 for i = 1, . . . , N . The expression for Z shown in eq. (3.47) is valid in
general space dimension d. The extension is straightforward. It is usual to refer to eq.
(3.47) as the flow representation of Z.

With the interpretation that we gave to the variables Jij , we can depict the configu-
rations that contribute to the partition function as sets of sites x, where at each x the
number of lines that exits is the same as the number of lines that enters (flux at x equal
to zero), see Figure 3.3 (a).

The worm algorithm samples a larger space than the one corresponding to Z. This space
is defined by those configurations that contribute to the correlation function between two
sites I and M

G = Z⟨S⃗I · S⃗M ⟩ =
∫ 2π

0

∫ 2π

0

dθIdθM
(2π)2

N∏
k ̸=I,M

∫ 2π

0

dθk
2π

S⃗I · S⃗M

∏
⟨ij⟩

exp [β cos(θi − θj)]

=

∫ 2π

0

∫ 2π

0

dθIdθM
(2π)2

N∏
k ̸=I,M

∫ 2π

0

dθk
2π

cos(θI − θM )
∏
⟨ij⟩

exp [β cos(θi − θj)] . (3.48)

By performing similar steps as with the partition function, it can be proved that the
correlation function takes the form

G =
∑

{JOP}

∏
⟨ij⟩

IJij (β), (3.49)
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(a)

I

M

(b)

Figure 3.3: Diagram (a) shows a configuration that contributes to the partition function
in the flow representation, notice the periodic boundary. At each site, the number of lines
that emanate is equal to the number of lines that enter, i.e. the divergence is zero. Diagram
(b) depicts a configuration that contributes to the correlation function. We observe that
the flux is zero at each site, except at I, where ∇·JI = −1 and at M , where ∇·JM = 1.

where {JOP} stands for open path configuration. This refers to the configurations where
∇·Ji = 0, ∀i ̸= I,M and ∇·JM,I = ±1. A graphical example is shown in Figure 3.3 (b).

The idea of the worm algorithm is to sample the G-space in such a way that when
I = M we recover a configuration of the Z-space. This is achieved by following these
steps:

1. Select a random site on the lattice and fix there I = M .

2. Choose one of the neighbors of M , say N , and propose an update of the flux from
JMN to J ′

MN = JMN + 1 (note that this also modifies the flux at N).

3. Accept the update with probability

p = min

(
1,

IJ ′
MN

(β)

IJMN
(β)

)
, (3.50)

where IJ is a Bessel function of the first kind of order J . If the update is accepted,
we move from M to N (I does not move); otherwise we repeat the previous step.

4. Repeat steps 2 and 3 until I = M . When this happens, we go back to step 1.

After performing these steps several times one obtains configurations in the flow repre-
sentation that are distributed according to H. The fact that one leaps from configurations
in the G-space to configurations in the Z-space makes this algorithm very efficient. In
Ref. [71] the dynamical critical exponent is found to be z = 0.2 for the 3d XY model and
z = 0.16 for the 2d XY model.

When the system is thermalized, we can measure observables. This is, however, usually
hard with the worm algorithm, because the degrees of freedom are not spins anymore, but
flux variables. Therefore, one has to find an equivalent way to measure the observables in
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terms of Jij . For instance, the expectation value of the energy is given by

⟨E⟩ = − 1

Z

∂Z

∂β
. (3.51)

To find an expression for ⟨E⟩ in terms of Jij we consider the one-dimensional case. Once
again, the final result will be valid in any dimension and the proof is just a generalization.
Then

Z =
∑
{JCP}

IJ12(β)IJ23(β) · · · IJN1(β). (3.52)

By computing the derivative with respect to β we obtain

∂Z

∂β
=
∑
{JCP}

(
I ′J12(β)IJ23(β) · · · IJN1

(β) + IJ12(β)I
′
J23(β) · · · IJN1

(β) + · · ·

+ IJ12(β)IJ23(β) · · · I ′JN1
(β)

)
=
∑
{JCP}

(
I ′J12(β)

IJ12(β)
+

I ′J23(β)

IJ23(β)
+ · · ·+

I ′JN1
(β)

IJN1
(β)

)
IJ12(β)IJ23(β) · · · IJN1

(β). (3.53)

Therefore

⟨E⟩ = −
〈∑

⟨ij⟩

I ′Jij (β)

IJij (β)

〉
. (3.54)

This equation provides a way to measure the energy with the worm algorithm. One is
often interested in determining the specific heat

CV = − 1

V
β2∂⟨E⟩

∂β
= β2 ⟨E2⟩ − ⟨E⟩2

V
(3.55)

as well. Then, an expression for ⟨E2⟩ in terms of the flux variables is also needed. To find
it we calculate

⟨E2⟩ = 1

Z

∂2Z

∂β2
. (3.56)

By using eq. (3.52) we have

⟨E2⟩ =
〈
I ′′J12(β)

IJ12(β)
+ · · ·+

I ′′JN1
(β)

IJN1
(β)

−
(
I ′J12(β)

IJ12(β)

)2

− · · · −
(
I ′JN1

(β)

IJN1
(β)

)2

+

(
I ′J12(β)

IJ12(β)
+ · · ·+

I ′JN1
(β)

IJN1
(β)

)2〉
. (3.57)

Therefore, for general d

⟨E2⟩ =
〈∑

⟨ij⟩

I ′′Jij (β)

IJij (β)

〉
−
〈∑

⟨ij⟩

(
I ′Jij (β)

IJij (β)

)2〉
+

〈(∑
⟨ij⟩

I ′Jij (β)

IJij (β)

)2〉
. (3.58)

Unfortunately, other observables, like the density of vortices, are not easily computable
in this formulation. We did not find a way to transform the flux variables back to spins
either. For these reasons, we do not use the worm algorithm to study the dynamics of the
topological defects of the XY model in this thesis. Still, it is useful to compare some of
the results with the other algorithms as a cross-check and their efficiency.

This algorithm is also applicable to quantum field theories, see e.g. Refs. [72, 73], but
it suffers from the same problem: it is not possible to find an equivalent way to measure
expectation values for arbitrary observables and there is no general procedure to find a
dual space to simulate.
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Chapter 4

Simulations of the 2d XY model

In this chapter we present simulation results of the 2d XY model in equilibrium and out
of equilibrium. In the simulations in equilibrium we compare the four algorithms to show
that we always obtain the same results, which guarantees that our implementations are
correct.

4.1 Simulations in equilibrium

We show results of the energy density, magnetization density, specific heat, magnetic
susceptibility and vortex density measured with the Metropolis, cluster and heatbath al-
gorithm. We work with lattices of volume L2, with L = 8, 16, 24, 32 and 64. We thermalize
the system with 103 sweeps starting with a hot start (see Section 3.2 for a definition of
sweep for each algorithm) and perform 104 measurements, separated by 50 decorrelation
sweeps in all the cases.

With the worm algorithm, we only determine the energy density and the specific heat.
For this algorithm we discarded the first 103 configurations of the Z-space to achieve the
thermalization. We do not make decorrelation updates either, because at each step the
system jumps from the Z-space to the G-space. We use 105 configurations to perform
measurements for L = 8, 16, 24 and 32, while for L = 64 we use 106 configurations.

In Figure 4.1, we present the energy density, magnetization density, specific heat and
magnetic susceptibility for a lattice with L = 24. In general we see a perfect agreement
between the algorithms. The energy and magnetization density are very stable observables,
thus we do not see any discrepancy. However, for CV and χM we observe that close to the
critical temperature of the BKT transition [74,75],

Tc = 0.89290(5), βc = 1.11994(6), (4.1)

these observables do not perfectly agree for the different algorithms. This is an effect of
the high autocorrelations in the neighborhood of the critical point. To achieve a better
agreement we would need to increase the number of decorrelation sweeps. In Figure 4.2
we present the same results but for a larger lattice, L = 32.

In Figure 4.3, we show the density of vortices, ρV , and the density of anti-vortices, ρAV ,
measured with the cluster, Metropolis and heatbath algorithms for L = 64. To determine
the vorticity we used eq. (2.32) for each plaquette. This observable does not show strong
autocorrelation effects, as we can see in Figure 4.3 (d), where all the algorithms coincide.
We observe that ρV is numerically equal to −ρAV . This is consistent with the fact that
with periodic boundary conditions the number of vortices must be equal to the number
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of anti-vortices, as pointed out in Chapter 2. For this reason, in the continuation we will
only study the behavior of ρV .
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Figure 4.1: Observables measured with different algorithms for a lattice of size 24 ×
24. With the worm algorithm we only compute ⟨E⟩ and CV . For the energy and the
magnetization density we see perfect agreement between all the algorithms. For CV and
χM we observe small discrepancies close to the critical point of the BKT transition, βc =
1.11994(6). The latter shows that the specific heat and the magnetic susceptibility are
more sensitive to autocorrelation effects and that we would need more decorrelation sweeps
to obtain exactly the same results.

Figure 4.4 shows results of χM measured with the cluster, Metropolis and heatbath
algorithm for several lattice sizes. We also present results of CV for several lattice sizes with
the worm algorithm. We observe that the peak of CV does not have a strong dependence
on L. On the other hand, the increasing peak in χM is more noticeable and it is attributed
to the phase transition. For large volumes, the position of the peak indicates the critical
temperature. In Figure 4.4 (a) we see that the peak’s position shifts to β ≃ 1.12 as the
volume increases. Ref. [76] provides the scaling of this position in terms of L. By naming
T ∗ to the temperature that corresponds to the maximum of χM , Ref. [76] provides

T ∗ ≃ Tc +
A

(lnL)2
, (4.2)

where Tc is the critical temperature and A is a constant. Our data shows a very good
agreement with this scaling, as we exhibit in Figure 4.5. With eq. (4.2) one can attempt
to determine Tc. Our fit yields

Tc = 0.915(2). (4.3)
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Figure 4.2: Observables measured with different algorithms for a lattice of size 32 × 32.
We observe that the peak of χM increases with the volume (see Figure 4.1 for reference).
This is due to the phase transition.

This value is slightly different than the one reported with high precision in Refs. [74, 75],
see eq. (4.1). To achieve a better compatibility we would need to consider larger volumes
and higher statistics.

At last, in Figure 4.4 (d) we see that the results of L = 64 are plagued with large
error bars, which were computed with the jackknife method. This is once again due to
the autocorrelation effects that the Metropolis algorithm is more sensitive to have. Such
effects become stronger with increasing volume. To achieve better results we would need
more decorrelation steps for this particular algorithm. Still, this is consistent with what
we mentioned before: Metropolis is highly inefficient to deal with autocorrelation, close to
criticality.

4.2 Simulations out of equilibrium

Now we describe a way to simulate a cooling process. We only study the dynamics of
the density of vortices, ρV . This will be the main focus of the next chapter in the 3d
model. We present the main ideas here for the two-dimensional XY model, which has
been analyzed in this context before, in particular in Ref. [77]. This allows us to compare
results.

First, we need to define a way to lower the temperature of the system with time. We
will interpret a sweep as a unit of time. Notice that this unit depends on the algorithm
that we choose. Then, in order to compare with the results of Ref. [77] and also inspired
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Figure 4.3: Comparison of the density of vortices and anti-vortices for a lattice of size
64× 64. The results were obtained with the cluster, Metropolis and heatbath algorithm.
We did not find any way to compute the vorticity of a plaquette with the worm algorithm.
We observe a perfect agreement between the algorithms. In addition, we see that ρV is
exactly equal to −ρAV , as it should be for periodic boundary conditions. The vorticity
was measured by using eq. (2.32).

by eq. (1.38) of the Zurek mechanism, we adopt the following linear quenching scheme

T (t) = Tc

(
1−

t− τQ
τQ

)
, t ∈ [0, 2τQ] . (4.4)

We start at T = 2Tc and we linearly reduce the temperature down to T = 0. Notice
that our time t only takes integer values. If τQ is long, we perform a slow cooling. As a
consequence, the system is quasi-adiabatic at each instant of time before the phase tran-
sition, so the values of our observables are expected to remain the same as in equilibrium.
On the other hand, if τQ is short, we apply a fast cooling. Then, the quenching is out of
equilibrium at almost any instant of time.

In any case, it is impossible to maintain the equilibrium for all t, because of the BKT
transition, so either way the system will leave equilibrium in a vicinity of Tc.

To simulate a cooling process we first thermalize the system at 2Tc (t = 0). This can
be done with the cluster, heatbath or Metropolis algorithm, but it is preferable to use
the cluster algorithm because it is most efficient. We then apply eq. (4.4) to reduce the
temperature according to the number of sweeps that we are performing. The result of this
procedure will be different for distinct algorithms, because each one thermalizes (equili-
brates) the system at a different rate. Here it is not appropriate to perform decorrelation
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sweeps, because by doing so we would equilibrate the system at each instant of the cooling,
which we want to avoid. To generate a good statistics, we have to repeat this same process
many times and measure ρV for all t.

In Figure 4.6 we show the evolution of the density of vortices with time for τQ = 8 (fast
cooling) and τQ = 512 (slow cooling). We compare the outcome of the process when using
the Metropolis or cluster algorithm. We performed the cooling 103 times, starting each
time in a different equilibrium configuration. We observe that before the phase transition
both algorithms give essentially the same result. This is more noticeable for τQ = 512,
because the quenching is almost adiabatically. However, in the vicinity of t = τQ, which
corresponds to T = Tc (see eq. (4.1)), the evolution splits. This is a sign that the system
is leaving equilibrium. For t > τQ (T < Tc), the density of vortices measured with the
cluster algorithm tends to approach to zero faster than with the Metropolis algorithm.
This is due to the fact that the cluster algorithm is highly efficient, so it thermalizes the
system quickly, which in turn moves ρV close to its equilibrium value (for T < Tc the
equilibrium value of ρV is close to zero). In other words, the cluster algorithm tends to
destroy the vortices faster than the Metropolis algorithm during a quenching, with respect
to the number of sweeps. Therefore, if one is interested in studying the remaining density
of vortices for a temperature lower than Tc, it is better to use the Metropolis algorithm,
another local-update scheme or the single-cluster algorithm.

In Ref. [77] the dependence of ρV (T = 0) on τQ is studied with the Metropolis algorithm.
It is observed that it follows a logarithmic decay for very short τQ, but at large τQ it turns
into a power-law. For large L and τQ that work reports ρV (T = 0) ∝ τ−0.72

Q . We attempt
to verify this result by using our implementation of the Metropolis algorithm. In the
upper plot of Figure 4.7, we show the evolution of the density of vortices for a lattice with
L = 100 and several values of τQ. By using the point that corresponds to the largest t,
i.e. the density at T = 0, we plot ρV (T = 0) vs. τQ in the lower panel of Figure 4.7. If
we perform a power-law fit we obtain ρV ∝ τ bQ, with b = −0.746(13). Thus, our result is
compatible, within two sigmas, with the one of Ref. [77].

For the 2d XY model we do not try to verify Zurek’s prediction, eq. (1.43), because in
two dimensions the transition is not second order, as we explained in Chapter 2. Therefore,
the estimate that Zurek gives for the density of topological defects is not supposed to be
valid. Still, we observe a power-law behavior for the remnant density of vortices after the
cooling and it is worth to consider the exponents. In the next chapter we will study the
3d version of this model, which does have a second order phase transition. We will apply
the same method presented here to study the evolution of ρV during a cooling process,
but with the inclusion of the heatbath algorithm and more lattice sizes.
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Figure 4.4: Comparison of the observables for several lattice sizes and different algorithms.
For L = 64, the magnetic susceptibility measured with the Metropolis algorithm has large
error bars and strange values for β > βc. This indicates a problem with autocorrelated
measurements. We observe that as the volume gets larger, the peak in χM shifts close to
βc ≃ 1.12.
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Figure 4.5: Position of the maximum of χM for several volumes. We observe a behavior
consistent with the one reported in Ref. [76]. The fit constants we obtain are Tc = 0.915(2)
and A = 1.9(1)
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Figure 4.6: Evolution of the density of vortices during a linear quench at different speeds
for a 100 × 100 lattice. A unit of time is given by one sweep, which depends on the
algorithm that is used. The upper plot shows a fast quench (τQ small), while the lower
plot shows a slow quench (τQ large). For t ≪ τQ we observe that both algorithms coincide.
This happens because at the beginning the cooling is adiabatic, but as we get closer to
the critical point (Tc ≃ 0.89), at a time t = τQ, the system leaves equilibrium. Therefore,
ρV splits depending on the algorithm. Since the cluster algorithm is highly efficient, it
tends to equilibrate the system very quickly. As a consequence, ρV is close to zero, which
is its value in equilibrium at T = 0. On the other hand, the Metropolis algorithm is not
very efficient, so after the phase transition it does not destroy the vortices as quickly as
the cluster algorithm.
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Figure 4.7: The upper plot shows the evolution of the density of vortices for a linear
cooling process at different speeds. We worked on a lattice of size 100 × 100 with the
Metropolis algorithm to better preserve some remaining vortices at T = 0. The lower
figure is a power-law fit to the density of vortices at T = 0 as a function of τQ. The
exponent that we obtain is consistent with the one presented in Figure 14 of Ref. [77].
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Chapter 5

3d XY model out of equilibrium

In this chapter we present our simulation results of the 3d XY model out of equilibrium.
Again, we are mainly interested in the dynamics of the density of vortices, ρV , during a
cooling process described by

T (t) = Tc

(
1−

t− τQ
τQ

)
, t ∈ [0, 2τQ]. (5.1)

Since the model in three dimensions undergoes a second order phase transition, we can
test Zurek’s prediction for the remnant density of vortices. Now we also use the heatbath
algorithm to perform the simulations. This enables us to compare the outcome of the
cooling process with two different ways of simulating the evolution out of equilibrium.
The objective is to find generic properties that do not depend on the algorithm, which
might be compatible with a cooling process in nature.

5.1 Cooling process

In Figure 5.1, we show the evolution of the vortex density during a linear cooling process for
a lattice of size V = 603. In panels (a) and (b) we present a comparison of the dynamics of
ρV simulated with the Metropolis, heatbath and cluster algorithms. Before the transition
we observe that the evolution for the three algorithms coincides, which indicates that the
cooling is adiabatic. Close to t = τQ, where T = Tc,

Tc ≃ 2.2018, (5.2)

the value of ρV splits depending on the algorithm. This indicates the loss of equilibrium.
In a similar manner as in two dimensions, the efficiency of the cluster algorithm moves
ρV to zero at T = 0. For the heatbath algorithm, the remnant density after the cooling is
below the results of the Metropolis algorithm, but its magnitude is still sufficient to study
the dynamics of ρV without working with numerical values very close to zero, which could
cause trouble.

To test Zurek’s prediction for the scaling exponent, we need the density of vortices
at t̂, i.e. at the transition time between the region in equilibrium and the region out of
equilibrium, see Figure 1.6. In principle, one could estimate t̂ by using eq. (1.40), which
we reproduce here for convenience

t̂ = (Cττ
zν
Q )

1
1+zν , (5.3)

where Cτ is the proportionality constant between the relaxation time and 1/|T − Tc|zν .
As we mentioned in Chapter 3, the relaxation time is related to the exponential auto-
correlation time in Monte Carlo simulations. Thus, one could attempt to compute τ in
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order to obtain Cτ and determine the exact value of t̂. As we have pointed out before,
the determination of τ is a difficult task. To avoid computing it, some experiments (see
for instance Ref. [6]) measure the density of vortices that remains after cooling from 2Tc

down to a fixed temperature T < Tc, instead of analyzing its value at t̂. We expect the
scaling behavior of ρV in τQ, in particular the exponent of the power-law in eq. (1.43), to
be independent of the final temperature that we choose. Later we will propose a way of
estimating t̂ that does not rely on the knowledge Cτ .
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Figure 5.1: The upper plots show a comparison of the evolution of the density of vortices
as simulated by the Metropolis, heatbath and cluster algorithms. We start at Ti = 2Tc

and end at Tf = 0. As in two dimensions, the cluster algorithm is highly efficient, so it
tends to rapidly move ρV to its equilibrium value. For the heatbath algorithm the remnant
density after the phase transition is below the outcome of the Metropolis algorithm, but
it is still useful to study the dynamics out of equilibrium. Close to Tc, the equilibrium is
lost and the evolution of ρV splits. The lower plots show the cooling process for a fixed
algorithm and several τQ.

5.2 Testing Zurek’s prediction

In this section, we test the prediction by Zurek for the scaling of the density of vortices
after a linear cooling process at different values of τQ

ρV ∝ τ
−2ν/(1+zν)
Q ≡ τ−ζ

Q . (5.4)

First, we will study the density of vortices that remains after the cooling process down to
some fixed temperature. To be consistent with Zurek’s assumptions, we still work with
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eq. (5.1), which describes a linear cooling down to zero temperature, starting from 2Tc.
To fix a different final temperature, Tf , we cool the system according to eq. (5.1), but
consider the density ρV that corresponds to the Markov time t that satisfies Tf = T (t).
Since t takes integer values in our simulations, we fix Tf within a tolerance range of 10−2.

In Figure 5.2, we show the density of vortices that remains after cooling down to
Tf ≃ 0.5, as a function of τQ. Simulations were performed by updating random sites.
For the Metropolis algorithm we observe that ρV as a function of τQ follows a power-
law behavior to a very high precision. This does not depend on the volume. Thus, the
convergence to the infinite volume limit is easily achieved.

102 2 × 102 3 × 102 4 × 102

Q

10 3

10 2

V

Tf 0.5

L = 40 Metropolis
L = 50 Metropolis
L = 60 Metropolis
L = 40 Heatbath
L = 50 Heatbath
L = 60 Heatbath

Figure 5.2: Remnant density of vortices at Tf ≃ 0.5 < Tc vs. the inverse cooling rate. For
the Metropolis algorithm we observe that the data follow a power-law decay in τQ with a
high accuracy, independently of the volume. For the heatbath algorithm the results suffer
from finite-size effects, so only in large volumes we observe a power-law. We fit functions
of the form ρV ∝ τ−ζ

Q .

On the other hand, the results of the heatbath algorithm do depend on the volume,
which indicates the presence of finite-size effects. Furthermore, for small L the data do not
obey a power-law, but as we enlarge the volume we see that it tends to follow this behavior.
The finite-size effects can be explained by the fact that in a finite volume the relaxation
time does not actually diverge at the critical temperature, just like the correlation length.
As a consequence, if the algorithm is efficient enough, the observables are shifted towards
their value in equilibrium, even after the phase transition. The Metropolis algorithm does
not exhibit this effect, which makes it convenient to study the dynamics of a system out
of equilibrium. Still, the fact that the remnant density has a power-law behavior in τQ,
when computed with both algorithms in a large volume, proves that there are universal
features of a system out of equilibrium that do not depend on its exact dynamics.

There is no particular reason to choose Tf ≃ 0.5 as the final temperature to measure
the remnant density of vortices, beyond the fact that 0.5 < Tc. Thus, one would expect
similar results when the system is cooled down to a different temperature, as long as
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Tf < Tc. In Figures 5.4 and 5.5, we show that this is the case, by presenting ρV vs. τQ at
a final temperature below the critical point in a volume V = 603. In all cases, a power-law
is observed, confirming this behavior as a generic feature of a linear cooling at different
speeds. The exact scaling exponents have, however, a dependence on the algorithm and on
Tf . In Table 5.1 we display some of the scaling exponents, ζ as defined in eq. (5.4), that we
obtain for different final temperatures and for both algorithms. A plot of ζ(Tf ) is shown
in Figure 5.3 as well. We can compare them to Zurek’s prediction ζ = (d−D)ν/(1 + zν)
by substituting d = 3, D = 1, ν = 0.67169 and z = 2, such that

ζ ≃ 0.5733. (5.5)

Our results do not coincide with this exponent. Moreover, the scaling exponents that we
found are not constant, although their values are close within the errors in the region
Tf ∈ [0.001, 0.6].

As we mentioned before, Zurek’s prediction for ζ is supposed to be valid only at the
transition between the region in equilibrium and out of equilibrium, which occurs at some
time t̂. Thus, the method that we have just presented, which is inspired by the literature
[6,77], might not be suitable to test Zurek’s prediction. We now propose a way to estimate
the value of t̂ by analyzing the evolution of the density of vortices. The idea is to determine
the time at which the evolution of ρV splits for the different algorithms, as shown in Figures
5.1 (a) and (b). We conjecture that this time sets the beginning of the frozen stage or the
region out of equilibrium. Notice that this particular time will depend on τQ, so the final
temperature is not fixed. This method also allows us to use the cluster algorithm, since at
t̂ the density of vortices is still considerable. To estimate t̂, we establish the –arbitrary–
condition that the difference in the value of ρV , measured with the three algorithms, is
greater than 10−2, see Figure 5.6.

By applying this process for various τQ, we plot ρV (t̂ ) against τQ, as shown in Figure 5.7.
For all three algorithms, we observe approximately a power-law behavior at t̂. However,
once again we do not coincide with the scaling exponent ζ that Zurek predicts. Moreover,
the scaling exponent does not agree with the ones in Table 5.1 either.

Tf Metropolis Heatbath

0.001 0.8705(57) 1.0313(336)
0.01 0.8531(23) 0.9277(117)
0.1 0.8889(34) 0.8734(42)
0.2 0.8952(47) 0.8829(38)
0.3 0.8905(30) 0.8984(58)
0.4 0.8911(22) 0.9103(56)
0.5 0.9073(35) 0.9116(49)
0.6 0.9181(34) 0.9077(43)

Table 5.1: Exponent ζ for the scaling ρV ∝ τ−ζ
Q , for which Zurek predicts ζ ≃ 0.5733.

We do not coincide with his prediction, although we do observe a power-law behavior. In
addition, the dependence of ζ on Tf is not monotonous.

5.3 Interpretation

The results that we presented are in partial agreement with Zurek’s work. We do observe
a power-law decay for the behavior of the remnant density of vortices as a function of τQ,
but the exact scaling exponent, ζ, is not the same as he predicts. One possible explanation
for this discrepancy could be that t̂ is not well determined, but, as we pointed out, it is
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Figure 5.3: Exponent ζ as a function of the final temperature of the cooling for the
Metropolis and heatbath algorithms. The data correspond to V = 603. In the region
Tf ∈ [0.001, 0.6] we observe, in general, good compatibility between the results of both
algorithms. For larger values of Tf the results of heatbath become unstable due to the
volume. In addition, the behavior of ζ is non-monotonic. We plot the value of Zurek’s
prediction for comparison.

difficult to carry out this step. Still, it is important that the emergence of power-law is
independent of the algorithm that we use. Therefore, the power-law is independent of the
exact dynamics of the system, making this property generic.

Experiments that perform a linear cooling process in systems that undergo second order
phase transitions also observe this feature, see Refs. [4–6]. The methods that we employ
in this thesis can be applied to any model with topological defects. This could be valuable
to support the fact that the power-law behavior is indeed generic in a linear cooling.

In addition, it would be of interest to apply these methods to other cosmic strings
models to estimate their (hypothetical) density. Even so, to give a proper estimate, one
would need to choose an algorithm and a cooling process that matches the dynamics
of the early universe. In this work we have used the Metropolis, heatbath and cluster
algorithms, together with a linear cooling scheme, to simulate the XY model and we
have found generic features. However, we also observed that the exact evolution of ρV
depends on the particular dynamics of the algorithm. Therefore, to perform simulations
out of equilibrium and to use them to compare the outcome with properties of nature,
we would need to know the universal features of its dynamics. It could be argued that
nature’s dynamics is expected to be local and thus a local-update scheme, like Metropolis
or heatbath, is adequate. Nonetheless, we saw that the outcome is not exactly the same,
although similar. On the other hand, a linear cooling process is not right either, since the
cooling of the universe during the expansion was not linear. Further research is needed in
these directions.
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Figure 5.4: Remnant vortex density at different final temperatures after the cooling pro-
cess. These results were obtained with the Metropolis algorithm. We refer to L = 60 and
Tf in the range 0.001–0.6.
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Figure 5.5: Remnant vortex density at different final temperatures after the cooling pro-
cess. These results were obtained with the heatbath algorithm. We refer to L = 60 and
Tf in the range 0.001–0.6.
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Figure 5.6: We show the estimate of t̂ that we obtain by considering the time when the
absolute difference of the value of ρV measured with the three algorithms is greater than
10−2. We observe that t̂ gets closer to the time where the temperature is Tc as we increase
τQ. This happens because as τQ grows the cooling is slower, so the adiabatic stage is
longer. For τQ = 32 we have t̂ = 27 and for τQ = 64 the value of t̂ is 58.
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Figure 5.7: Density of vortices at the estimated transition time, t̂, between the adiabatic
and frozen stages. For all three cases we observe approximately a power-law decay as
predicted by Zurek. However, once again the exponent ζ is far away from his prediction
for the z = 2 case, ζ ≃ 0.5733. Here we do not observe finite-size effects.
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Summary and conclusions

In this thesis we have presented a systematic study of the dynamics of the topological
defects of the 2- and 3-dimensional XY model (vortices) when a linear cooling at different
rates is applied. To do so, we used Monte Carlo simulations as our tool. The main
results were obtained with the Metropolis and heatbath algorithms, which are local-update
schemes. Contrary to the case in equilibrium, more efficient algorithms based on collective
updates, like the multi-cluster algorithm, are not very practical to study the dynamics out
of equilibrium, because they tend to equilibrate the system unrealistically fast. The single-
cluster, however, could be useful because it only updates one cluster for each sweep.

Our simulations show that the evolution of the density of vortices during the linear
cooling follows a well-defined behavior that is consistent, at least qualitatively, with the
dynamics explained by Zurek for a system that undergoes a second order phase transition,
see Figure 1.6. A comparison between the results of the three algorithms, Figures 4.5
and 5.1, makes it evident that there are two stages of the cooling process. The first stage
corresponds to an adiabatic cooling, where the system is in equilibrium at each instant of
time. This can be seen in our results because the three algorithms give the same value
for ρV (t). The second stage, corresponds to the splitting of ρV for each algorithm due to
the different increase of the relaxation time. Therefore, at this stage, the evolution of ρV
depends on the particular dynamics that each algorithm performs. This indicates the loss
of equilibrium.

In the 2-dimensional model we confronted our results of the Metropolis algorithm with
the ones of Ref. [77]. After a linear cooling starting at 2Tc, the remnant density of vortices
at T = 0 indeed follows a power-law decay in τQ. The exponent that we obtain for the
scaling is −0.746(13), which is compatible with the result of Ref. [77]: −0.72. This com-
parison shows that the outcome of our implementations is consistent with previous results
in the literature, which encouraged us to apply the same method to the 3-dimensional XY
model, where no simulations out of equilibrium had been performed. We remark that for
the 2-dimensional model, Zurek’s prediction for the scaling of the density of topological
defects is not intended, because the transition is not second order, but instead topological.
It is still interesting that the behavior of ρV after the cooling is similar.

To test Zurek’s prediction for the scaling of ρV with τQ, we studied the 3-dimensional
XY model. In this case we performed a systematic study by using the Metropolis and
heatbath algorithm and by analyzing the results in different volumes. The remnant density
of vortices at a final temperature Tf < Tc (after the cooling) behaves indeed as a power-
law in τQ, as shown in Figures 5.4 and 5.5. We found this feature to be independent of
the final temperature that one chooses for the cooling. Moreover, for large volumes this
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property is observed both with the Metropolis and heatbath algorithms. Thus, based on
our results, we conclude that the power-law behavior for the remnant density is a generic
property that does not depend on the exact dynamics of the system. In addition, recent
work [78] suggests that this feature does not depend on whether or not a phase transition
occurs, like in the 1d Ising or XY model, where no phase transition is exhibited.

However, the exact scaling, given by the exponent ζ, shows a slight dependence on
the algorithm and the final temperature that we fix to do the cooling (see Table 5.1).
Furthermore, our values for ζ do not coincide with the prediction by Zurek, ζ ≃ 0.5733,
for the particular model that we studied. This discrepancy could be associated to the
fact that Zurek’s prediction is actually valid for the time t̂, where the transition between
the adiabatic and frozen stages occurs. Still, Zurek’s prediction has been successfully
tested in experiments by measuring only the density of topological defects at a final fixed
temperature after the cooling, see e.g. Ref. [6], but no t̂ is specified. We proposed a way
to estimate the value of t̂ by analyzing the evolution of ρV and determining the time at
which its dynamics splits for each algorithm. Then, we studied once more the behavior of
ρV as a function of τQ and found an approximate power-law behavior. Nevertheless, the
scaling exponent does not agree with Zurek’s value for ζ either. Thus, our results only
show a partial agreement with his prediction. Better precision requires to measure τexp.
The objective would be to determine τexp, for several values of T , in equilibrium in order
to fit a power-law to obtain with precision the dynamical critical exponent z and Cτ , as
shown in eq. (1.40). That way, the estimation of t̂ should be precise and Zurek’s prediction
for the exponent ζ can be better tested.

This work could continue in different directions. First, one can apply the same method
to other simple models that undergo second order phase transitions, in order to verify
whether the power-law behavior is universal. This type of studies have been done already
with simulations in different systems (see e.g. Refs. [6, 79]), but not in a systematic way,
i.e. for different volumes and algorithms as in this work.

Extensions of the Kibble-Zurek mechanism exist [80]. They provide predictions for the
scaling behavior of the density of topological defects as a function of τQ at arbitrary times
t during the linear cooling, not necessarily at t̂. This could be further tested in different
models.

One could take the next step and apply this method to a gauge theory with cos-
mic strings as topological defects, for instance the Abelian Higgs model (Nielsen-Olesen
strings). This could be useful to estimate the remnant density of cosmic strings in the
universe. Finally, it is yet open question which cooling schemes and algorithms are appro-
priate to simulate nature out of equilibrium. As for now, the universal property that we
observed is limited to a power-law.
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