

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

ESTUDIO DE LA DEGRADACIÓN DE IBUPROFENO MEDIANTE REACCIONES TIPO FENTON HETEROGÉNEAS UTILIZANDO UN NANOCOMPOSITO DE MAGNETITA / HALOISITA COMO CATALIZADOR

TESIS

QUE PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. ERICK AXEL GARCÍA GARCÍA

TUTOR PRINCIPAL: DRA. YOLANDA MARINA VARGAS RODRÍGUEZ FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN, UNAM

CUAUTITLÁN IZCALLI, ESTADO DE MÉXICO, OCTUBRE DE 2023

1

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

ESTUDIO DE LA DEGRADACIÓN DE IBUPROFENO MEDIANTE REACCIONES TIPO FENTON HETEROGÉNEAS UTILIZANDO UN NANOCOMPOSITO DE MAGNETITA / HALOISITA COMO CATALIZADOR

T E S I S PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. Erick Axel García García

Ciudad de México a 20 de octubre de 2023

Jurado asignado

Presidente:	Dra. Tatiana Klimova Berestneva
Vocal:	Dra. Margarita Rivera Hernández
Vocal:	Dr. René Miranda Ruvalcaba
Vocal:	Dr. Lauro Bucio Galindo
Secretario:	Dr. Julio César Morales Mejía

Lugar donde se realizó la tesis:

Laboratorio de Nanomateriales y Catálisis (Lab 11) del Edificio de Investigación multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México.

Lugares donde se presentó este trabajo:

2do Congreso Iberoamericano de ciencia, educación y tecnología. Il Simposio de tendencias actuales de la química y ciencia de materiales. 2do Simposio nacional de zeolitas.

TUTOR DE TESIS

Dra. Yolanda Marina Vargas Rodríguez Departamento de Ciencias Químicas. Facultad de Estudios Superiores Cuautitlán. Universidad Nacional Autónoma de México. Campo Uno: Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx. México. ymvargas@unam.mx

Agradecimientos

Investigación realizada gracias al Programa **UNAM-PAPIIT IN113722**: Eliminación de contaminantes de preocupación emergente en cuerpos de agua a través de adsorción y reacción tipo Fenton Heterogénea utilizando materiales magnéticos soportados.

Investigación realizada gracias al Programa LANAFONU del ININ.

Estudios realizados gracias al Consejo Nacional de Ciencia y Tecnología (CONACYT), con número de CVU de 1225471 por la beca que otorgó durante mis estudios de maestría.

Al Dr. Antonio Gómez Cortés del Instituto de Física de la UNAM por caracterización por adsorción-desorción de nitrógeno. A la M. en D. Guadalupe Iveth Vargas Rodríguez de la FES Cuautitlán, por el apoyo técnico.

A la coordinación del Programa de Maestría y Doctorado en Ciencias Químicas por su apoyo y atención en todos los tramites realizados.

A la Universidad Nacional Autónoma de México (UNAM) por haber dado la oportunidad y el privilegio de pertenecer a una de las mejores universidades del mundo.

A mis maestros que tuve durante la carrera de química en la FESC, por haberme brindado sus enseñanzas, así como haberme motivado y compartido el gusto por conocimiento y el amor por la ciencia.

A mi tutora, maestra, compañera y amiga la Dra. Yolanda Marina Vargas Rodríguez por el apoyo total y profesional que me ha brindado por tantos años durante mi formación como profesionista. Así como a mis amigos del laboratorio 11 de cinética y catálisis por haberme apoyado y ser parte del desarrollo de este proyecto.

Al comité del jurado de este trabajo, integrado por la Dra. Tatiana Klimova Berestneva, la Dra. Margarita Rivera Hernández, el Dr. Lauro Bucio Galindo, el Dr. René Miranda Ruvalcaba y al Dr. Julio César Morales Mejía por revisar este trabajo y brindarme de sus conocimientos y aportaciones para mejorar profesionalmente.

Dedicatorias

A mis padres Pedro García y Evangelina García por su apoyo y amor incondicional.

A mis hermanos Alan García y Andy García por su motivación y coraje para nunca rendirse.

A la música de Speed Metal Force y Leva, su música representa todo lo bueno de mi familia y en lo que creemos.

"The necessary speed, the force of the soul"

Speed Metal Force.

Contenido

Glosario	8
RESUMEN	9
ABSTRACT	
1. INTRODUCCIÓN	11
1.1. Productos químicos de preocupación emergente	11
1.2. Ibuprofeno y su presencia en el ambiente	
1.3. Métodos de tratamiento de ibuprofeno	
Objetivos	17
Objetivo general	
Objetivos particulares	17
Hipótesis	17
CAPÍTULO 2. ANTECEDENTES TEORICOS	
2.1. Adsorción	
2.1.1. Modelos cinéticos de adsorción	
2.1.2. Equilibrio de adsorción e Isotermas de adsorción	21
2.2. Procesos de oxidación avanzada	
2.3. Reacciones Fenton	
2.3.1. Reacciones tipo Fenton heterogéneas	
2.3.2. Reacciones tipo Fenton heterogéneas soportados	
2.4. Magnetita	
2.5. Nanotubos de haloisita	
2.6. Métodos de síntesis de magnetita	
2.7. Caracterización de catalizadores	42
2.7.1. Difracción de rayos X	42
2.7.2. Adsorción y desorción de nitrógeno	47
2.8. Diseño de experimentos	53
2.9. Métodos de cuantificación	
2.9.1. Espectrofotometría	
2.9.2. Espectroscopia infrarroja por transformada de Fourier	65
2.9.3. Cromatografía de gases	67
CAPÍTULO 3. DESARROLLO EXPERIMENTAL	73
3.1. Síntesis del catalizador	

3.1.1. Materiales, reactivos y equipos	73
3.1.2 Procedimiento experimental	73
3.2. Caracterización del catalizador	74
3.2.1. Adsorción-desorción de nitrógeno	74
3.2.3. Espectroscopía infrarroja por transformada de Fourier (FTIR)	75
3.3. Cuantificación de ibuprofeno por espectrofotometría UV	75
3.3.1. Materiales y equipos	75
3.3.2. Procedimiento experimental	75
3.4. Diseño de experimentos tipo Box Behnken para la adsorción de ibuprofeno	75
3.5. Adsorción de ibuprofeno en Fe ₃ O ₄ /NTH	77
3.6. Diseño experimental de monitoreo y de optimización para la degradación de IBU	78
3.7. Mineralización de ibuprofeno por reacción Fenton heterogénea	79
3.7.1. Materiales y equipos	79
3.7.2. Procedimiento experimental	79
3.8. Oxidación total de ibuprofeno	82
CAPÍTULO 4. RESULTADOS Y DISCUSIÓN	83
4.1. Síntesis de nanocatalizador	83
4.2. Caracterización del nanocatalizador	84
4.2.1. Adsorción y desorción de nitrógeno	84
4.2.2. Difracción de rayos X (DRX)	86
4.2.3. Espectroscopía infrarroja por transformada de Fourier (FTIR)	88
4.3. Curva de calibración de ibuprofeno	88
4.4. Adsorción de ibuprofeno en Fe $_3O_4/NTH$	93
4.4.1. Superficie de respuesta	93
4.4.2. Cinética de la adsorción de ibuprofeno sobre Fe₃O₄/NTH	97
4.4.3. Equilibrio de adsorción	101
4.4.4. Espectro FTIR de la adsorción de Ibuprofeno en Fe ₃ O ₄ /NTH	105
4.5. Mineralización de ibuprofeno por reacción tipo Fenton heterogénea	106
4.6. Oxidación de Ibuprofeno por reacción Fenton heterogénea	116
CONCLUSIONES	119
REFERENCIAS	121

Glosario

AINES	Antinflamatorios no esteroideos
ANOVA	Análisis de la varianza
BET	Brunauer-Emmett-Teller
$C_{13}H_{18}O_2$	Ibuprofeno
CONAGUA	Comisión Nacional del Agua
DQO	Demanda química de oxígeno
DRX	Difracción de rayos X
Fe ₃ O ₄	Magnetita
Fe ₃ O ₄ /NTH	Magnetita soportada en nanotubos de haloisita
FTIR	Espectroscopía de infrarrojo con transformada de Fourier
H_2O_2	Peróxido de hidrogeno
IBU	Ibuprofeno
MNP	Nanocompuestos de partículas nanomagnéticas
NT´s	Nanotubos
NTH	Nanotubos de haloisita
°OH	Radicales hidroxilos
°OOH	radicales perhidroxilo
PAO	Procesos avanzados de oxidación
PPO	Pseudo primer orden
PSO	Pseudo segundo orden
ppb	Partes por billón
ppm	Partes por millón
ppt	Partes por trillón
PQPE	Productos químicos de preocupación emergente
STP	Condiciones normalizadas de presión y temperatura

RESUMEN

Productos guímicos de preocupación emergente (PQPE) como son los productos farmacéuticos, cada vez se encuentran más en los efluentes a nivel mundial, lo que ha generado gran preocupación debido a sus posibles impactos en la vida silvestre y los humanos. El ibuprofeno (IBU), es uno de los fármacos más detectados. En este trabajo, fue investigada la eliminación de IBU en suspensiones acuosas de magnetita (Fe₃O₄) en presencia de nanotubos de haloisita (NTH) a través de una reacción heterogénea tipo Fenton. Se trabajó con un diseño experimental y con la metodología de superficie de respuesta, tanto para evaluar los efectos del tiempo de la concentración de IBU en la adsorción, como de los factores pH y dosis de catalizador para la reacción Fenton. Para la adsorción, los resultados mostraron que la adsorción de IBU depende del pH (8.5% a pH 2 y 2-3% a pH 7 y 12), estos resultados indican que a pH ácidos se ve favorecida la adsorción de IBU en Fe₃O₄/NTH, debido a que los protones del ácido carboxílico del IBU forman puentes de hidrógeno con las superficie de Fe₃O₄ y con los enlaces O⁻Si, de la capa externa de los nanotubos de haloisita, que los resultados se ajustan a una cinética de pseudo segundo orden y a una isoterma de adsorción de Freundlich (R²=0.99872 y R²=0.99126 respectivamente). Respecto a la mineralización de IBU, los resultados de la prueba de ANOVA indican que depende principalmente del pH, obteniéndose las mejores condiciones a pH 2, 1 g L^{-1} de dosis de catalizador y 0.5 M de H_2O_2 (99% de mineralización). Se ajustaron los datos experimentales para lograr el mayor porcentaje de mineralización a pH 7, los cuales fueron de 1.5 g L⁻¹ de dosis de catalizador y 0.5 M de H₂O₂ (98% de mineralización y 99% de eliminación de IBU).

ABSTRACT

Chemicals of Emerging Concern (PQPE) such as pharmaceuticals are increasingly found in effluents globally, which has generated great concern due to their potential impacts on wildlife and humans. Ibuprofen (IBU) is one of the most detected drugs. In this work, the elimination of IBU in aqueous suspensions of nanomagnetite in the presence of halloysite nanotubes (NTH) was investigated through a heterogeneous Fenton-type reaction. We worked with an experimental design and the response surface methodology, both to evaluate the effects of the time of the IBU concentration on the adsorption, as well as the pH factors and catalyst dosage for the Fenton reaction. For adsorption, the results showed that the adsorption of IBU depends on the pH (8.5% at pH 2 and 2-3% at pH 7 and 12), these results indicate that at acidic pH the adsorption of IBU on Fe₃O₄ is favored. NTH, because the protons of the carboxylic acid of the IBU form hydrogen bonds with the surfaces of Fe₃O₄ and with the O -Si bonds, of the external layer of the halloysite nanotubes, the results fit a kinetic pseudo-second order and a Freundlich adsorption isotherm (R²=0.99872 and R²=0.99126 respectively). Regarding the mineralization of IBU, the results of the ANOVA test indicate that they depend mainly on the pH, with the best conditions being obtained at pH 2, 1 g L⁻¹ catalyst dose and 0.5 M H₂O₂ (99% mineralization). The experimental data were adjusted to achieve the highest percentage of mineralization at pH 7, which were 1.5 g L⁻¹ catalyst dose and 0.5 M H_2O_2 (98% mineralization and 99% IBU removal).

1. INTRODUCCIÓN

1.1. Productos químicos de preocupación emergente

Los productos químicos de preocupación emergente (PQPE) son contaminantes presentes en los sistemas acuosos en el rango de partes por billón (ppb) o partes por trillón (ppt) (Dakar and Gandhi, 2019). Sin embargo, actualmente se han encontrado PQPE en el rango de hasta partes por millón (ppm).

Dentro de los PQPE se encuentran los productos farmacéuticos y de cuidado personal (PPCP) que se definen como "cualquier producto utilizado por individuos para la salud personal por razones médicas o utilizadas por la agroindustria para mejorar el crecimiento o la salud del ganado" por la Agencia de Protección Ambiental (EPA, por sus siglas en inglés: Environmental Protection) de los Estados Unidos. Los PPCP abarcan miles de productos químicos que componen fragancias, cosméticos, medicamentos de uso humano y medicamentos veterinarios (Tabla 1).

TIPO DE CONTAMINANTE (Producto farmacéutico)	EJEMPLO
Antibióticos de uso veterinario y médico	Trimetoprima, eritromicina, lincomicina sulfametoxazola
Medicamentos analgésicos y antiinflamatorios	Codeína, ibuprofeno, acetaminofeno, ácido acetilsalicílico, diclofenaco, fenoprofeno
Medicamentos psiquiátricos	Diazepam, fluoxetina, carbamazepina
Reguladores de lípidos	Bezafibrato, ácido clofíbrico, ácido fenofíbrico, atorvastatina
Beta bloqueadores	Metoprolol, propranolol, timolol, atenolol

Tabla 1. Contaminantes de preocupación emergente.

Se ha demostrado la presencia en el agua y el suelo. La fuente de estos contaminantes puede deberse a actividades simples como afeitarse, lavar la ropa, limpiar el hogar/industrias/oficinas, usar lociones de protección solar o tomar medicamentos recetados. Las personas aportan fármacos al medio ambiente cuando:

- Los residuos de medicamentos/farmacéuticos salen del cuerpo y entran al medio acuático a través de líneas de alcantarillado o cuerpos de agua superficiales directamente.
- Medicamentos de aplicación externa, productos de limpieza y productos para el cuidado personal, lavado por el desagüe de la ducha y entrar en las aguas grises.
- Los medicamentos no utilizados o vencidos se colocan en contenedores y posteriormente pueden ingresar al vertedero de deshechos.

Otra de las fuentes principales de fármacos son las descargas de aguas servidas no tratadas y los efluentes de las plantas de tratamiento (Figura 1.1). En la actualidad, las plantas de tratamiento no están diseñadas para tratar y eliminar productos y subproductos farmacéuticos, por lo que dichos compuestos pueden llegar finalmente a aguas superficiales (ríos, lagos, mar) y aguas subterráneas (Petrović *et al.,* 2003).

Según las propiedades fisicoquímicas de los fármacos, sus metabolitos, productos de degradación y las características de los suelos, estas sustancias pueden llegar a alcanzar las aguas subterráneas y contaminar los acuíferos o bien quedar retenidas en el suelo y acumularse pudiendo afectar al ecosistema y a los humanos a través de la cadena trófica (Barceló y López, 2012).

Figura 1.1. Flujo de fármacos a través del medio ambiente (tomado de Kumar et al., 2019).

La característica de este grupo de contaminantes es que no necesitan persistir en el ambiente para causar efectos negativos, puesto que sus altas tasas de transformación/remoción se pueden compensar por su introducción continua en el ambiente. Para la mayoría de estos PPCP la incidencia, la contribución de riesgo y los datos eco toxicológicos, no están disponibles. Así que es difícil predecir qué efectos de salud pueden tener en seres humanos y organismos acuáticos (Barceló, 2003).

1.2. Ibuprofeno y su presencia en el ambiente

Los analgésicos son fármacos de gran consumo mundial, considerados los de mayor automedicación entre ellos el naproxeno, el ibuprofeno y el acetaminofén (Lee *et al.*, 2007).

El ibuprofeno (Tabla 2), es uno de los antinflamatorios no esteroideos (AINES) más usados en la actualidad. Fue creado por el grupo de científicos de la compañía Boots en 1960 (Lednicer, 2008). Posee acción analgésica, antipirética y antinflamatoria. El ibuprofeno es considerado la primera opción al adquirir un medicamento antinflamatorio para tratar dolor leve y moderado (Nelson y Cox, 2008). Además, es uno de los medicamentos antinflamatorios catalogados por la Organización Mundial de la Salud (OMS) como esenciales. Se ha reportado que la producción

anual de ibuprofeno fue de 45,233 toneladas en 2022 y se estima que crecerá su producción en 4.8% en los próximos años. En la Tabla 2, se presentan algunas propiedades importantes de ibuprofeno.

Nombre	Ácido 2-(4-isobutilfenil) propanoíco		
Peso molecular	206.29 g mol ⁻¹		
Fórmula	С		
Log Kow	3.97		
рКа	4.9		
Solubilidad en agua	15 mgL ⁻¹		
Presión de vapor	1.18 x 10 ⁻¹⁸ atm (STP)		
Punto de fusión	75-78 °C		

Tabla 2. Propiedades fisicoquímicas del ibuprofeno.

El ibuprofeno ha sido encontrado en plantas de tratamiento de aguas, en aguas residuales domésticas y en cuerpos de agua superficiales. En la Figura 1.2, se presenta la ocurrencia de ibuprofeno en plantas de tratamiento de aguas de Australia, Canadá, Chile, China, Finlandia, Ghana, Grecia, India, Japón, Corea, México, Nueva Zelanda, Palestina, Polonia, Portugal, Sudáfrica, Singapur, España, Suiza, Tailandia, Turguía, Emiratos Árabes Unidos, Reino Unido, Estados Unidos, Vietnam (Wu et al., 2023) y en la República Checa (Dvořáková Březinova et al., 2018). En aguas residuales domésticas de España (Matamoros and Bayona, 2006), (Matamoros et al., 2008), (Hijosa-Valsero et al., 2010), (Ávila et al., 2014), Dinamarca (Matamoros et al., 2007, 2009), Singapur (Zhang et al., 2016), República Checa (Chen et al. 2016), Alemania (Kahl et al., 2017), Reino Unido (Reif et al., 2011), Suecia (Breitholtz et al., 2012), México (Moeder et al., 2017). En cuerpos de agua superficiales como la Presa Madín en México (Galar-Martínez et al., 2010), (González-González et al., 2014), Valle de Tula, México (Gibson et al., 2010), Río Mississippi, EE. UU. (Zhang et al., 2007), cuenca del Lago Erie al norte de Ohio, EE. UU, (Wu et al., 2009), río Minkyung, en Corea del Sur (Kim et al., 2009), Delta del río Perla en el sur de China, (Peng et al., 2008), y en las aguas costeras en Taiwán (Fang et al., 2012), por citar algunos ejemplos.

Figura 1.2. Ocurrencia de ibuprofeno en:
Plantas de tratamiento de aguas.
Aguas
residuales domésticas y en
Cuerpos de agua superficiales.

En México, la Red Nacional de Monitoreo en 2008 constaba de 389 estaciones permanentes y 285 móviles (448 localizadas en cuerpos de agua superficial, 71 en costas y 155 en acuíferos) (CONAGUA 2008). En 2011 se contó con 1815 sitios distribuidos en México. Los resultados obtenidos en estos monitoreos se realizan para las ciudades más pobladas y algunas zonas industriales, por lo que se carece de información en sitios alejados del centro, como algunos estados del norte y de las penínsulas de Baja California y Yucatán, al igual que en zonas económicamente marginadas como Guerrero, Oaxaca y Chiapas.

Para ser potable, el agua debe cumplir los límites de los 48 parámetros de calidad establecidos por la Norma Oficial Mexicana NOM 127- SSA1- 2021. El suministro y la calidad de dicha agua es responsabilidad de los municipios quienes tienen la atribución de decidir si la distribución a los usuarios es administrada por el gobierno o por la iniciativa privada. Para el año 2007 se logró una cobertura del recurso cercana al 90% en todo el país; sin embargo, no toda el agua entregada contó con la calidad de potable conforme a la normatividad (CONAGUA, 2008).

Se han reportado evidencias de que el ibuprofeno presenta diferentes efectos adversos en los organismos, incluido el daño celular y genético al bivalvo de agua dulce *Dreissena polymorpha* (Parolini *et al.*, 2011), retrasar la eclosión de huevos de peces de agua dulce Oryzias latipes y

cladóceros de agua dulce llamados *Daphnia magna* y *Moina macrocopa* (Han *et al.*, 2010); inhibiendo la fotosíntesis de la diatomea de agua dulce *Navicula sp.* (Ding *et al.*, 2017), dañan los hemocitos de *Ruditapes philippinarum* (Aguirre-Martínez et al., 2013), y afectan el crecimiento de la microalga de agua dulce *Scenedesmus rubescens* (Moro *et al.*, 2014).

1.3. Métodos de tratamiento de ibuprofeno

Los tratamientos de aguas residuales no son del todo satisfactorios, al punto que se ha detectado que muchos compuestos persisten sin alteración alguna (Teijon, 2004). Por tal razón, es importante identificar y evaluar la eficiencia de otras tecnologías para el tratamiento de aguas (Figura 1.3), con el fin de proponer alternativas que permitan minimizar la presencia de contaminantes emergentes a un bajo costo económico, energético y ambiental (Barceló y López, 2012).

Figura 1.3. Diversas tecnologías aplicadas a la degradación de fármacos (tomado de Kumar *et al.*, 2019).

Objetivos

Objetivo general

Sintetizar magnetita *in situ* en nanotubos de haloisita, a través del método de coprecipitación y evaluar su actividad adsorbente y catalítica en ibuprofeno en disolución acuosa, para obtener un método alterno en la eliminación de este contaminante de preocupación emergente.

Objetivos particulares

- Sintetizar un catalizador de magnetita/nanotubos de haloisita.
- Caracterizar el catalizador por las técnicas de adsorción-desorción de nitrógeno, difracción de rayos X y espectroscopía de infrarrojo con transformada de Fourier (FTIR).
- Realizar un diseño de experimentos en *Design Expert*, para determinar los factores que influyen en la adsorción de ibuprofeno en medio acuoso sobre magnetita/nanotubos de haloisita.
- Hacer un estudio cinético y de equilibrio de adsorción de ibuprofeno en magnetita/nanotubos de haloisita y ajustar los resultados a los modelos de pseudo primer orden, pseudo segundo orden y difusión intra partícula.
- Realizar un diseño de experimentos en *Design Expert*, para investigar el efecto del pH, concentración de H₂O₂, concentración de Ibuprofeno, y cantidad de catalizador, para encontrar las condiciones óptimas para la oxidación de Ibuprofeno.

Hipótesis

Considerando que la magnetita es un adsorbente y además participa como catalizador en la reacción tipo Fenton heterogénea para la formación de radicales hidroxilos y promover la mineralización de ibuprofeno, se pretende sintetizar un adsorbente y catalizador de magnetita/nanotubos de haloisita, para adsorber, oxidar y mineralizar IBU en condiciones suaves de reacción.

CAPÍTULO 2. ANTECEDENTES TEORICOS

2.1. Adsorción

En esta sección se presentan los fundamentos de adsorción de sustancias soluble (adsorbatos) sobre adsorbentes, los modelos cinéticos a los cuales se pueden ajustar los resultados de adsorción y los modelos de las isotermas de equilibrio de adsorción a los cuales se pueden ajustar los resultados de adsorción.

Las fuerzas moleculares en la superficie de un sólido se encuentran en estado de desequilibrio (también denominado estado de insaturación), y para lograr el equilibrio responden atrayendo materiales hacia ellas y reteniendo gases o sustancias disueltas con las que se mantengan en contacto. A este proceso se le denomina adsorción, al material o catalizador adsorbente, y a la sustancia retenida adsorbato (Figura 2.1) (Adamson, 1997).

Figura 2.1. Diferentes fenómenos de sorción posibles (tomado de Adamson, 1997).

La adsorción puede realizarse en monocapa y en multicapas. Se conocen dos tipos de adsorción desde el punto de vista de las fuerzas que intervienen en la adsorción de gases sobre superficies sólidas (Tabla 3): la adsorción física y la adsorción química (Adamson, 1997).

CARACTERÍSTICAS	FISISORCIÓN	QUIMISORCIÓN
Calor de adsorción -∆H °Ads	4 – 40 KJ mol ⁻¹	40 – 800 KJ mol ⁻¹
Energía de activación	No hay	Si hay
Capas formadas	Multicapas	Monocapa
Identidad química	Se mantiene	No se mantiene
Selectividad	No selectiva	Selectiva
Interacción	Fuerzas intermoleculares	Enlaces covalentes

Tabla 3. Características de la fisisorción y quimisorción (tomado de Adamson, 1997).

2.1.1. Modelos cinéticos de adsorción

Modelo de pseudo primer orden

La ecuación de rapidez de pseudo primer orden (PPO) de Lagergren se ha aplicado ampliamente durante mucho tiempo. Esta ecuación se basa en la ley de acción de masas para la cinética de adsorción como fenómeno químico y una ecuación de difusión para la difusión a través de una película líquida límite (Lagergren, 1898), mostrada en la Ecuación 2.1.

Constante de rapidez de PPO =
$$\kappa_1 (q_e - q_t)$$
 (2.1)

En donde k_1 es la constante de rapidez, $q_e y q_t$ son los valores de la masa de IBU absorbida por unidad de masa (mg·g⁻¹) a tiempo t, respectivamente. Valores pequeños de k_1 y valores grandes de (q_e - q_t) pueden ser obtenidos cuando la adsorción es lenta. Por lo tanto, es más preciso calcular la rapidez que comparar los valores de la constante de rapidez (k_1). Cuando las concentraciones de adsorbato son altas y el adsorbente tiene pocos sitios activos los resultados de adsorción se ajustan a modelos de PPO (Wang y Guo 2020).

Modelo de pseudo segundo orden

Este modelo desarrollado por Langmuir para adsorbatos gaseosos sobre adsorbentes sólidos en donde las moléculas gaseosas que inciden sobre una superficie sólida o líquida en general se condensan en ella y son retenidos o adsorbidos en la superficie por fuerzas similares a las que mantienen los átomos o grupos de moléculas de cuerpos sólidos. Si estas fuerzas son débiles la vida" de las moléculas adsorbidas en la superficie es corta, de modo que el número de moléculas" adsorbidas en cualquier momento es relativamente pequeño. Por otro lado, cuando las fuerzas son fuertes, la rapidez de evaporación de las moléculas puede ser tan lenta que la superficie queda prácticamente cubierta por completo por una capa monomolecular. De moléculas adsorbidas. Cuando ocurre una adsorción "verdadera", la película adsorbida no debe exceder una molécula de espesor. Las fuerzas que causan la adsorción son típicamente químicas y exhiben todas las grandes diferencias en intensidad y calidad características de las fuerzas químicas. Bajo ciertas condiciones, las relaciones estequiométricas deberían regir las cantidades de gas adsorbidas. en superficies saturadas. Estas relaciones pueden no mantenerse debido a efectos de impedimento estérico entre las moléculas adsorbidas. Se desarrollan ecuaciones que dan la relación entre la cantidad del gas adsorbido y la presión y otras variables bajo diversas condiciones supuestas (Langmuir, 1918).

Para adsorbente en solución, el modelo de pseudo segundo orden (PSO) asume que la capacidad de adsorción es proporcional al número de centros activos del adsorbente y que la rapidez de adsorción se encuentra controlada por adsorción química. Un conocimiento de todos los detalles moleculares de la reacción incluyendo la energética y la estereoquímica, distancias y ángulos interatómicos a lo largo del curso de la reacción y los pasos moleculares individuales implicados en el mecanismo (Ho & McKay 1999).

El modelo de PSO se ajusta bien en experimentos en donde la concentración (Co) es baja y el adsorbente es abundante en sitios activos. Al igual que con la constante k_1 del modelo de PPO la constante k_2 del modelo de PSO, generalmente es utilizada para describir la rapidez de adsorción al equilibrio, pero es más preciso determinar y comparar la rapidez del modelo de PSO con la Ecuación 2.2 (Wang y Guo 2020).

Constante de rapidez de PSO =
$$\kappa_2 (q_e - q_t)^2$$
 (2.2)

Modelo de difusión intrapartícula

Los modelos de difusión interna suponen que la difusión del adsorbato dentro del adsorbente es el paso más lento. La difusión del adsorbato en la película líquida alrededor del adsorbente y la adsorción en los sitios activos son instantáneas. La rapidez de la adsorción está gobernada por dos procesos: a) cuando la concentración es alta la rapidez está controlada por difusión en y a través del adsorbente y puede ser descrita por una ecuación que contenga una constante, cuya magnitud está determinada por la relación de la constante de difusión interna de la molécula entre el cuadrado del radio del adsorbente, b) cuando las concentraciones de las disoluciones son bajas la rapidez está limitada por la difusión a través de la capa del líquido en la periferia del adsorbente y puede ser descrita por una ecuación que tenga una única constante, cuya magnitud es determinada por la relación de la constante de difusión de la molécula adsorbente y la desorbente y puede ser descrita por una ecuación que tenga una única constante, cuya magnitud es determinada por la relación de la constante de difusión de la molécula adsorbida entre grosor de la película y la constante de equilibrio (Boyd *et al.*, 1947).

Los factores principales que determinan la naturaleza del mecanismo de control de velocidad son la constante de distribución, k, y el radio de la partícula (ro) Valores grandes de k y/o valores pequeños de ro favorecen la rapidez determinada por la difusión de la película, si la temperatura y el caudal se mantienen constantes (Boyd *et al.*, 1947).

2.1.2. Equilibrio de adsorción e Isotermas de adsorción

Cuando ocurre una adsorción positiva en un sistema sólido-líquido, ocurre por la separación del soluto de la disolución y su concentración en la superficie del sólido hasta que se establece un equilibrio dinámico en la superficie entre la concentración del soluto que permanece en adsorbida y la concentración en la disolución. Regularmente, a medida que se incrementa la concentración de soluto se incrementa la cantidad de material adsorbido por unidad de masa del adsorbente, pero no de una forma directamente proporcional. A partir de lo anterior se han generado diversas isotermas que se ajustan a los resultados experimentales.

Isoterma de Henry

Esta es la isoterma de adsorción más simple en la que la cantidad de adsorbato superficial es proporcional a la presión parcial del gas adsorbente (Fost y Aly, 1981). Este modelo isotérmico describe un ajuste apropiado para la adsorción de adsorbato a concentraciones relativamente

bajas, de modo que todas las moléculas de adsorbato estén aisladas de sus vecinas más cercanas (Ruthven, 1984).

Isoterma de Langmuir

La isoterma de Langmuir, al igual que la isoterma de Freundlich fue diseñada originalmente para describir la adsorción en fase gas-sólida, se utiliza para cuantificar la capacidad de adsorción de adsorbentes. La isoterma de Langmuir explica la cobertura de la superficie equilibrando las tasas relativas de adsorción y desorción (equilibrio dinámico). La adsorción es proporcional a la fracción de la superficie del adsorbente que está abierta mientras que la desorción es proporcional a la fracción de la superficie del adsorbente que está cubierta (Günay *et al.*, 2007). Además, asume que solo se puede formar una monocapa, que la adsorción es localizada por lo que se obtendrá un valor límite de la cantidad adsorbida de soluto por unidad de adsorbente (q_e), y que el calor de adsorción es independiente de la superficie cubierta (Shaw, 1996).

Isoterma de Freundlich

La isoterma de Freundlich o clásica, aunque fue diseñada originalmente para describir la adsorción en fase gas-sólida, se utiliza para cuantificar la capacidad de adsorción de adsorbentes. Se ajusta muy bien en sistemas con baja concentración de adsorbato en solución, por lo que no supone la formación de una monocapa (Shaw, 1966). Esta isoterma es un caso especial en el que las energías superficiales heterogéneas varían en la superficie cubierta (q_e). Los datos se ajustan generalmente a una función lineal logarítmica, en donde la ordenada al origen indica de forma aproximada la capacidad de adsorción y la pendiente la intensidad de adsorción. La isoterma solo se ajusta a los datos experimentales a concentraciones moderadas (Adamson, 1997).

2.2. Procesos de oxidación avanzada

Los procesos avanzados de oxidación (PAO) son tratamientos alternativos y/o complementarios a los sistemas convencionales (Tabla 4). Estos procesos implican la generación de radicales hidroxilos (°0H) en cantidades suficientes como para degradar la materia orgánica del medio (Glaze *et al.* 1987). Estos radicales, de alto potencial de oxidación (E°=2.80 V), pueden ser generados por diversos métodos (combinación de ozono/peróxido de hidrógeno, procesos Fenton, foto-Fenton, procesos fotocatalíticos heterogéneos, etc.) y son capaces de oxidar

compuestos orgánicos, posibilitando su mineralización y transformación a CO₂, H₂O y otros compuestos inorgánicos estables (Bianco *et al.*, 2011).

TECNOLOGIAS AVANZADAS DE OXIDACION					
Procesos no fotoquímicos	Procesos fotoquímicos				
 Oxidación en medio alcalino (O₃). 	Procesos fotoquímicos.				
Ozonización con peróxido de hidrógeno	Fotólisis del agua en el ultravioleta				
(O ₃ /H ₂ O ₂).	de vacío (UVV).				
• Procesos Fenton (H ₂ O ₂).	UV/peróxido de hidrógeno.				
Oxidación electroquímica.	• UV/O ₃ .				
Radiólisis beta y tratamiento con haces	 Foto-Fenton y variantes. 				
de electrones.	• Fotocatálisis heterogénea.				

Tabla 4 Características de PAO (Bianco et al., 2011).

- Plasma no térmico
- Descarga electrohidráulica-ultrasonido.

También, los PAO pueden ser utilizados para tratar contaminantes a muy bajas concentraciones (Nichela *et al.*, 2013) y, por lo general, no generan grandes volúmenes de lodos que requieren de un complejo proceso de tratamiento posterior (Padoley *et al.*, 2011). Teniendo una amplia variedad de aplicaciones (Tabla 5).

Tabla 5 Ventajas de PAO.

VENTAJAS DE PROCESOS DE OXIDACIÓN AVANZADA

- Genera la producción de potentes agentes oxidantes.
- Generalmente se consigue la mineralización completa.
- No genera lodos que a su vez requieren de procesos de tratamiento.
- Son muy útiles para combatir contaminantes refractarios.
- Sirven para tratar contaminantes a muy baja concentración (ppb).
- No se forman subproductos de reacción, o se forman a bajas concentraciones.
- Son eficaces para disminuir la concentración de compuestos formados por pre tratamiento alternativo, como la desinfección.
- Generalmente, mejora las propiedades organolépticas del agua tratada.
- Consume menos energía que otros métodos.
- Elimina efectos de contaminantes de residuales como el cloro.

2.3. Reacciones Fenton

En particular los procesos de oxidación Fenton han sido aplicados con éxito al tratamiento de aguas naturales y de efluentes industriales, lixiviados de vertedero, aguas de operaciones mineras, aguas subterráneas y suelos contaminados, a la degradación de compuestos orgánicos volátiles, de residuos de la industria del petróleo, explosivos, pesticidas y herbicidas, así como a una extensa relación de sustancias y compuestos químicos individuales, entre los que se encuentran numerosos aditivos y colorantes de uso habitual en la industria textil (Rodríguez *et al.*, 2014). Además de su elevada capacidad para mineralizar compuestos orgánicos refractarios a la biodegradación y reducir la toxicidad de los efluentes, los procesos Fenton son especialmente eficaces en la eliminación del color, gracias a la gran afinidad de los radicales hidroxilos (°OH) hacia los grupos cromóforos. Esta característica hace a los procesos Fenton muy útiles para el tratamiento de aguas residuales de la industria textil, y es la razón por la cual se ha impulsado su creciente desarrollo y aplicación a escala industrial durante las dos últimas décadas (Oller *et al.*, 2011).

La posibilidad de generar radicales hidroxilos (°OH). La presión atmosférica y temperatura ambiente a partir de la denominada reacción de Fenton, descrita a finales del siglo XIX, se conoce desde los años 30 del siglo pasado. La reacción Fenton clásica se produce cuando se hace reaccionar peróxido de hidrógeno y iones Fe (II) en solución acuosa a pH ácido. El ion ferroso inicia la reacción de descomposición del peróxido, que da como resultados la generación de los altamente reactivos radicales (°OH) y de agua, se muestra en la ecuación 1.

$$Fe^{2+}$$
 + H_2O_2 \rightarrow Fe^{3+} + $^{\circ}OH$ + OH^- (1)

El proceso de oxidación Fenton fue descrito por primera vez en 1894 por Henry J. Fenton, cuando descubrió que el peróxido de hidrógeno (H₂O₂) reacciona con iones ferrosos (Fe²⁺) para oxidar ácido tartárico (Pignatello et al. 2006). Además de formar radicales (°OH), se generan radicales perhidroxilo (°OOH) E°=1.76 V, los cuales inician una reacción de oxidación en cadena que elimina la materia oxidable. Por su parte, los iones férricos (Fe³⁺) resultantes pueden reaccionar con H₂O₂, lo cual conduce a la regeneración de Fe²⁺ (Ghosh *et al.*, 2010). La constante de rapidez de esta reacción tiene un valor de 0.01 $M^{-1}S^{-1}$ aproximadamente (Neyens & Baeyens, 2003), por lo que se considera como la reacción limitante del proceso (ecuación 2).

$$Fe^{3+}$$
 + H₂O₂ \rightarrow Fe^{2+} + °OOH + H₃O⁺ (2)

Un exceso de H₂O₂ y/o de iones de hierro al inicio del proceso, respecto de la cantidad de contaminante a tratar, limita la eficiencia de esta. De igual modo, puede producirse la reacción entre radicales °0H y la reacción con radicales °0OH, provocando una reducción en el rendimiento del proceso, de acuerdo con las ecuaciones de 3 a 6 (Ghosh *et al.* 2010).

$$^{\circ}OH + ^{\circ}OOH \rightarrow H_2O + O_2$$
 (6)

El proceso Fenton depende entre otros factores, de la concentración de los agentes oxidantes y catalíticos, temperatura, pH y tiempo de reacción (Pontes *et al.* 2010). Asimismo, la eficiencia de este proceso está relacionada con la naturaleza del contaminante a degradar y con la presencia de otros compuestos orgánicos e inorgánicos (Kavitha & Palanivelu, 2004).

A pesar de que el proceso Fenton puede ocurrir a temperatura ambiente, un aumento de ésta (70 °C) favorece la cinética de las reacciones de oxidación. No obstante, el incremento excesivo de temperatura puede provocar la degradación del H₂O₂ (Malíková *et al.*, 2009).

El proceso Fenton es afectado considerablemente por el pH. Las condiciones óptimas para el proceso de degradación de contaminantes orgánicos son en un medio ácido, un valor de entre 3 y 4. Condiciones de pH muy ácidas (menores a 3) o muy alcalinas (mayores a 11) inhiben la degradación de los contaminantes (Durán-Moreno *et al.*, 2011; Xu *et al.*, 2004). Un aumento del pH conduce a la precipitación del hierro como Fe(OH)₃, impidiendo que se lleve a cabo, la regeneración de Fe²⁺. Por otro lado, a pH excesivamente ácido (menores a 3) se forma [Fe(H2O)6]²⁺ el cual reacciona lentamente con el H₂O₂, ralentizando la generación de radicales °OH (Pignatello *et al.*, 2006). A su vez, bajo estas condiciones de acidez, la regeneración del catalizador a partir de H₂O₂ se ve inhibida, ya que a un bajo pH el H₂O₂ se estabiliza en forma de iones hidronio H₃O⁺ (Malíková *et al.*, 2009).

Aunque sumamente eficientes en la eliminación de contaminantes orgánicos, los inconvenientes asociados al proceso Fenton clásico (Tabla 6), han impulsado la introducción de modificaciones y diseños alternativos al proceso convencional durante las dos últimas décadas.

VENTAJAS	DESVENTAJAS
 Gran aplicabilidad. Se ha empleado con éxito en la degradación de contaminantes presentes en efluentes petroquímicos, tratamiento de fangos y suelos contaminados. Los reactivos utilizados son abundantes, comercialmente accesibles y de fácil manejo. No existen limitaciones en la transferencia de masa y los reactores utilizados son sencillos de operar. No precisa de fuente de energía y las reacciones de oxidación pueden llevarse a cabo en condiciones estándar de presión y temperatura 	 Hay ocasiones en las que no se consigue la mineralización completa del contaminante Requiere de cierto pH de trabajo antes y después del proceso. Forma complejos de Fe en disolución.

Tabla 6. Ventajas y desventajas del proceso Fenton homogéneo.

El objetivo básico es tener mejor generación de radicales hidroxilos (Figura 2.2), siendo así más eficientes la oxidación de compuestos orgánicos (Ghosh *et al.*, 2010).

Figura 2.2. Tipos de procesos Fenton (Ghosh et al., 2010).

2.3.1. Reacciones tipo Fenton heterogéneas

La reacción Fenton clásica presenta varias desventajas como las condiciones ácidas para llevar a cabo la reacción, así como como los residuos que se generan al final de esta, lo que no lo hacen rentable para su uso industrial. Por lo que se hace una modificación al proceso, utilizando una fase sólida y una fase acuosa, conocidas como reacciones tipo Fenton heterogéneas.

El proceso Fenton heterogéneo emplea un sólido portador de hierro (Fe²⁺/Fe³⁺) como catalizador. El uso de los soportes en la catálisis heterogénea permite incrementar el área superficial de la especie metálica, proporcionando una matriz que mejora la dispersión de nanopartículas. También, incrementa la estabilidad química y térmica del catalizador (Muñoz, 2015).

El desarrollo de catalizadores magnéticos facilita su recuperación por medio de campos magnéticos, Existe una gran variedad de sólidos de hierro que pueden ser utilizados en la catálisis heterogénea, ya sean resinas de intercambio, zeolitas o compuestos de origen natural, como es el caso de los óxidos de hierro (Navalón *et al.*, 2011).

Los minerales naturales como la ferrihidrita, goetita, óxidos de magnesio y las arcillas han sido usados para la activación de reacciones de oxidación de compuestos orgánicos (Ahmad *et al*, 2010). Los minerales como la magnetita (Fe₃O₄) son catalizadores más efectivos comparados con los óxidos de hierro Fe (II) para la catálisis heterogénea en la oxidación de contaminantes orgánicos (Matta *et al.*, 2007). La magnetita tiene una estructura muy estable y una amplia actividad catalítica, posee características ferromagnéticas y puede ser usada para varios ciclos catalíticos en procesos de oxidación, además se encuentra en abundancia en el entorno ambiental y es fácil de separar (Schwertmann and Cornell, 2009).

El proceso foto-Fenton heterogéneo emplea, además, radiación UV/Vis. Este tipo de reacciones ofrece la posibilidad de la utilización de radiación solar como fuente primaria de energía, mejor generación de radicales hidroxilos (°OH), como se presenta en el esquema 7 (Méndez, 2010):

$$H_2O_2 + \hbar v \rightarrow 2^{\circ}OH$$
 (7)

2.3.2. Reacciones tipo Fenton heterogéneas soportados

Los nanotubos (NT´s) han atraído la atención de muchos científicos alrededor del mundo debido a sus propiedades estructurales, mecánicas y electrónicas, las cuales permiten que tengan aplicaciones potenciales en dispositivos electrónicos, sensores químicos y biológicos, materiales compuestos o materiales adsorbentes. La modificación de los NTH mejora su dispersión en soluciones, forma defectos en la estructura incrementando la cantidad de sitios activos en la superficie y el área específica, etc. Todas estas propiedades hacen de estos NTH excelentes candidatos para ser utilizados como materiales adsorbentes. Estas modificaciones son muy importantes ya que la superficie de las NTH puede ser alterada convenientemente para incrementar sus propiedades de adsorción, y así poder crear materiales para una aplicación específica. La modificación de los materiales implica la integración o incremento de diferentes grupos funcionales en la estructura de éstos (Ago, 1999).

2.4. Magnetita

Muchos de estos procesos de catálisis heterogénea han integrado el uso de catalizadores con partículas de tamaño nanométrico por lo que en los últimos años un gran número de investigaciones se ha enfocado en la síntesis de nanopartículas férricas o ferrosas (Tabla 7). Así diversas formas de óxidos de hierro como FeO (wustita) α -Fe₂O₃ (hematita) y γ -Fe₂O₃ (28ltramic) se han empleado exitosamente en catálisis (Xu *et al.*, 2009).

NOMBRE	FÓRMULA	SISTEMA CRISTALINO	ρ gcm-³	COLOR	COMPORTAMIENTO MAGNÉTICO
WUSTITA	FeO	Cúbico	5.9	Gris- negro	Antiferro- magnético
MAGHEMITA	γ -Fe ₂ O ₃	Cúbico o tetragonal	4.87	Rojizo- café	Ferri-magnético
HEMATITA	α -Fe ₂ O ₃	Romboédrica o hexagonal	5.26	Rojo	Débilmente Ferro- magnético o Antiferro- magnético
	β -Fe ₂ O ₃	Cúbica, romboédrica o hexagonal	-	-	-
	E-Fe ₂ O ₃	Cúbica, romboédrica o hexagonal	-	-	-
MAGNETITA	Fe ₃ O ₄	Cúbica	5.18	Negro	Ferrimagnético
LEPIDOCROCITA	γ-FeOOH	Ortorrómbico	4.09	Naranja	Antiferromagnético
GOETITA	α-FeOOH	Ortorrómbico	4.26	Amarillo café	Antiferromagnético
AKAGANEITA	β-FeOOH	Monoclínico	-	Amarillo café	Antiferromagnético
BERNALITA	Fe(OH) ₃	Ortorrómbico	3.32	Verde oscuro	-
	Fe(OH) ₂	Hexagonal	-	Blanco	-

Tabla 7. Diferentes tipos de óxidos de hierro (tomado de Xu et al., 2009).

Sin embargo, las nanopartículas de Fe₃O₄ (magnetita) han tomado mayor importancia en sus posibles aplicaciones gracias a que exhiben buena actividad catalítica además de la posibilidad de ser modificadas mediante anclaje de ciertas especies químicas y a sus propiedades ferromagnéticas que facilitan su separación de los medios de reacción mediante la aplicación de campos magnéticos de intensidad apropiada.

La magnetita (Tabla 8) se puede preparar fácilmente sin embargo también existen yacimientos a nivel mundial de los cuales puede ser obtenida y posteriormente purificada (Chen, 2016).

Fórmula química	Fe3O4
Clase	Óxido
Grupo	Espinela
Etimología	Deriva de la región de magnesia (macedonia)
Sistema y clase	Isométrico 4/m32/M
Tipo de celda unitaria	FCC (espinela inversa)
Grupo espacial	Fd3m, a = 8.4 A, Z = 8
Posiciones en DRX	Valores de espacio interplanar d(A): 2.96-2.53-1.61-1.48-1.09
Color	Negro metálico
Densidad	5.2 g cm ⁻³
Propiedades ópticas	Opaco, de color gris e isótropo
Propiedades magnéticas	Ferrimagnético
Dureza	5.5 Mohs
Área superficial	4 – 100 m ² g ⁻¹
Conductividad eléctrica	$10^2 - 10^3 \Omega^{-1} \text{cm}^{-1}$
ΔG°	-1012.6 Kjmol ⁻¹
ΔH°	-1115.7 Kjmol ⁻¹
ΔS°	146.1 Kjmol ⁻¹ K ⁻¹

Tabla 8. Propiedades fisicoquímicas de la magnetita (tomado de Chen, 2016).

La magnetita Fe₃O₄ es un óxido mixto de hierro, su composición corresponde a 27.6% de oxígeno y 72.4% de hierro. Presenta un sistema cúbico centrado en las caras (FCC, a=8.4 A) con estructura de espinela inversa (Figura 2.3). En su celda unitaria de 56 átomos, 32 son de oxígeno y 24 son cationes de hierro, de los cuales 16 están en forma férrica (Fe³⁺) y 8 en forma ferrosa

(Fe²⁺). Las posiciones tetraédricas corresponden específicamente a cationes Fe^{2+} y en las posiciones octaédricas se alojan cationes Fe^{3+} (Bragg, 1915).

Figura 2. 3. Estructura de la magnetita (FCC) (tomado de Yang, 2011).

La mezcla de ambas posiciones (capas octaédricas y octaédricas / tetraédricas) a lo largo de la dirección [111] genera superposición de planos (111) (Figura 2.4), ocasiona cristales de magnetita preferiblemente octaédricos (Yang, 2011). Los octaedros regulares presentan estructuras energéticas favorables (energías de red cristalina más bajas), razón por la cual los cristales de magnetita se encuentran con mayor frecuencia en esta forma (Cornell, 2003). Sin embargo, Schwertmann, 2000 establece que es posible controlar el crecimiento del cristal en direcciones preferenciales y con ello la obtención de partículas con diferentes morfologías y diferentes planos de exposición como lo son el (220), (311), (400), (511) y (440).

En la superficie de la magnetita, los sitios activos son cationes Fe^{3+} y Fe^{2+} así como aniones 0^{2-} y su nivel de exposición depende de los planos mostrados preferencialmente por el cristal (Li, 2014). Los cationes Fe^{3+} que se comportan como ácidos de Lewis se exponen en una monocapa formando celdas totalmente coordinadas actuando como bases de Bronsted Lowry (Yang, 2009). Por tanto, ambos sitios activos (átomos de hierro y de oxígeno) se encuentran en la superficie accesible al sustrato, lo que confiere a la magnetita características potenciales como catalizador y como soporte catalítico magnético (Rim, 2012).

Figura 2.4. Sitios activos expuestos en el plano (111) de la superficie de la magnetita. (Rim, 2012).

En la estructura de Fe₃O₄, las dos posiciones cristalinas (tetraédricas y octaédricas) forman la base para dos subredes cúbicas intercaladas con contribuciones de momentos magnéticos desiguales y antiparalelos (Mazo, 2006). Esto da lugar al comportamiento Ferrimagnético a temperaturas menores que la temperatura de Curie (T= 585 C), los momentos magnéticos de los espines de todos los cationes Fe^{3+} se anulan entre sí y no contribuyen a la magnetización del sólido, en comparación con los cationes Fe^{2+} que si tienen sus momentos magnéticos alineados en la misma dirección su momento total es responsable de la magnetización neta de este tipo de material (Figura 2.5). Por encima de la temperatura de Curie el óxido muestra un comportamiento paramagnético (Callister, 2007).

Figura 2.5. Comportamiento magnético de la magnetita a) Sin campo magnético aplicado, b) Con campo magnético aplicado (Callister, 2007).

A temperaturas superiores a la temperatura de Verwey (T = 120 K) los electrones en los sitios octaédricos de la magnetita se encuentran térmicamente deslocalizados entre los cationes Fe^{3+} y Fe^{2+} (fenómeno conocido como electrón hopping). Por lo que ocasiona la mayor conductividad eléctrica y térmica en comparación con otros óxidos de característica similares (Mazo, 2006). En general, las propiedades magnéticas de este tipo de ferrita dependen fuertemente del tamaño de partícula (Kumar, 2015).

La magnetita tiene una superficie suficientemente reactiva para inmovilizar metales, ligantes orgánicos, enzimas y otros tipos de moléculas que le confieren funcionalidades específicas. Generalmente se considera inerte en medios biológicos, lo que hace apropiado su uso en métodos de imagen y de separación en tejidos vivos (Reddy, 2012).

También, se ha utilizado como soporte catalítico haciendo uso de la capacidad de modificación de su superficie, la cual resulta apropiada para la inmovilización de metales y de óxidos metálicos (Noval, 2016). Puede aportar sitios activos directamente, sin modificaciones ni funcionalización de su superficie, siendo catalizador de ciertas reacciones orgánicas gracias a sus propiedades óxido /reductoras (Baeza, 2016).

En general, diversos óxidos nanoestructurados basados en magnetita son buenos dispositivos para la manufactura de materiales magnéticos, películas de protección sensibles y pigmentos, así como para el tratamiento y eliminación de residuos y agentes contaminantes del agua (Costa *et al.*, 2011).

2.5. Nanotubos de haloisita

Los minerales arcillosos son materiales naturales, son constituyentes esenciales de gran parte de los suelos y sedimentos debido a que son, en su mayor parte, productos finales de la meteorización de los silicatos que, formados a mayores presiones y temperaturas, en el medio exógeno se hidrolizan. Engloba a un grupo de minerales, filosilicatos, cuyas propiedades fisicoquímicas dependen de su estructura y de su tamaño de grano (González, 1990).

Las arcillas tienen una estructura porosa debido a esto se le atribuye una gran área superficial y una gran capacidad de adsorción. Sus excelentes propiedades reológicas y propiedades químicas inertes, así como su baja o nula toxicidad por lo que son muy utilizados a nivel industrial para diversas funciones como adsorbentes, catalizadores, excipientes de medicamentos y soportes en la síntesis de materiales (Tan, 2013).

Las arcillas (Figura 2.6), al igual que el resto de los filosilicatos, presentan una estructura basada en el apilamiento de planos de iones oxígeno e hidroxilos. Los grupos tetraédricos (SiO₄) ⁴⁻ se unen compartiendo tres de sus cuatro oxígenos con otros vecinos formando capas, de extensión infinita y fórmula (Si₂O₅) ²⁻, que constituyen la unidad fundamental de los filosilicatos. En ellas los tetraedros se distribuyen formando hexágonos. El silicio tetraédrico puede estar, en parte, sustituido por Al³⁺ o Fe³⁺.

Figura 2. 6. Estructura de las arcillas (Tomado de Tan, 2013).

Los filosilicatos se clasifican atendiendo a que sean bilaminares o trilaminares y dioctaédrico o trioctaédricos (Tabla 9).

	DIOCTAEDRICOS		TRIOCTAEDRICOS		CARGA
BILAMINARES	Canditas	Caolinita	Serpentina	Antigorita	X = 0
		Nacrita Dickita Haloisita		Crisotilo Lizardita Bertierina	
TRILAMINARES	Pirofilita	Montmorillonita	Talco	Saponita	
	Esmectitas	Beidellita Nontronita		Hectorita	X = 0.2-0.6
	Vermiculitas	Moscovita	Vermiculitas	Biotita	X = 1
	Micas	Paragonita	Micas	Flogopita Lepidolita	
FIBROSOS	Paligorskita		Sepiolita	•	

Tabla 9 Estructura de los filosilicatos (tomado de Tan, 2013).

Las propiedades catalíticas de los aluminosilicatos son resultado directo de su elevada superficie específica y tipo de centros activos (Figueras, 1988).
La haloisita es un mineral de arcilla tipo 1:1 dioctaédrico (Tabla 10) con una amplia distribución en suelos tropicales muy húmedos y regiones subtropicales, es formada por la meteorización de varios tipos de rocas ígneas y no ígneas (Joussein *et al.*, 2007). La haloisita puede ser considerada como un polimorfo hidratado de la caolinita con láminas curvadas que es capaz de ubicar moléculas de agua en el espaciado interlaminar.

Tabla 10. Características de la haloisita (tomado de Joussein et al., 2007).

La haloisita hidratada tiene un espaciado basal de 1 nm (10.5 Å) que decrece a 0.72nm (7.2 Å) con la deshidratación; esta última es una estructura metaestable por lo que es llamada comúnmente meta-haloisita (Cheng *et al.*, 2010). Se ha demostrado que la deshidratación de la haloisita ocurre entre 70-100 \circ C y una descomposición térmica aproximadamente a 400 \circ C (Brigatti *et al.*, 2006).

Las partículas de haloisita pueden adoptar diferentes morfologías como esferas, tubos, placas o listones. La forma tubular alargada está mejor cristalizada (Figura 2.7), por lo que es la morfología más comúnmente encontrada, generando una estructura con cavidad nanotubular en el alcance submicroscópico (Joussein *et al.*, 2005).

Figura 2.7. Estructura de la haloisita a) Láminas octaédricas y tetraédricas, b) Forma tubular, c) Imagen por SEM, d) Imagen por TEM. (Tomado de Yuan *et al.*, 2015).

Las fibras de haloisitas tubulares de las distintas regiones varían en dimensiones, todas presentan una relación típica de menos de 3.0 µm de largo por 0.3 µm de diámetro exterior, aunque en algunas muestras se pueden encontrar túbulos de hasta 20 µm. La forma cilíndrica a causa de la curvatura de las láminas 1:1, es ocasionada por un desajuste en la alineación de la capa tetraédrica de sílice unida a la capa octaédrica de alúmina (Bates *et al.*, 1950).

Las caras interior y exterior de las paredes del tubo llevan normalmente una carga negativa neta, que funciona como un anión polivalente, mientras que sus bordes son anfóteros con cargas negativas a pH alto y carga positiva a pH bajo (Figura 2.8). Esta forma inusual de distribución de carga favorece la fijación borde-cara en suspensiones acuosas con un pH por debajo de 6 y facilita la unión de cationes sobre las caras que no han reaccionado (Deasy, 2002).

Figura 2.8. Nanotubos de haloisita en función del pH (tomado de Deasy, 2002).

La razón para la generación de la carga negativa superficial, al aumentar el pH, es que en la estructura curvada la sílice está situada principalmente en la superficie exterior de los túbulos, mientras que la alúmina está presente principalmente en la superficie interna y en los bordes de los tubos. La exposición del mineral al agua provoca la formación de grupos hidroxilo en la superficie que se pueden ionizar. Dado que la superficie exterior es predominantemente de sílice, la carga de la superficie será negativa en un amplio intervalo de pH, mientras que la alúmina muestra un mayor comportamiento anfótero. En consecuencia, la haloisita presenta una superficie polianiónica, debido a los grupos Si-OH expuestos en la superficie externa de los nanotubos y a los grupos AI-OH expuestos en la superficie interna (Machado *et al.*, 2008).

La haloisita se ha investigado también en la industria automotriz para formar el material soporte en convertidores catalíticos de sistemas de escape (Luo *et al.*, 2010). Sus nuevas propiedades físicas y químicas, derivadas de la versatilidad estructural que involucra una doble capa (aluminosilicatos), generan oportunidades para aplicaciones avanzadas en los campos de la electrónica, la catálisis heterogénea, materiales biológicos y sistemas funcionales (Barrientos *et al.*, 2009; Lvov *et al.*, 2008; Marney *et al.*, 2008).

Particularmente en catálisis heterogénea, la haloisita es un material promisorio como soporte catalítico debido a las características químicas de la doble capa de tipo sílica-alúmina que conforma el material y a sus propiedades texturales (Viseras *et al.*, 2008).

2.6. Métodos de síntesis de magnetita

Los nanocompuestos de partículas nanomagnéticas (MNP) son una clase de híbridos, en lugar de MNP singular. La preparación considera las propiedades de las MNP y los minerales de arcillas, como se ve en procesos típicos para la preparación de nanocompuestos y minerales arcillosos, así también como el empleo de la combinación de surfactantes modificados-MN y la intercalación de compuestos moleculares magnéticos (Zhou *et al.*, 2011).

En cuanto a MNP, hasta ahora los óxidos de hierro magnéticos se han empleado ampliamente para nanocompuestos de MNP debido principalmente a su bajo costo, fácil preparación, baja toxicidad y biocompatibilidad (Berry y Curtis, 2003; Samanta *et al.*, 2008).

En general, un proceso de preparación de MNP implica: la purificación y modificación de minerales de arcilla; preparación y modificación de MNP (desnudos o recubiertos) y la combinación entre MNP y arcillas (Ma *et al.*, 2005). Además, se deben considerar las condiciones de preparación como lo son: la temperatura de reacción, calcinación, oxidación/reducción, valor de pH y los iones inorgánicos empleados (Szabó *et al.*, 2007).

Las modificadoras orgánicas también juegan un papel en la determinación de forma, el tamaño de partícula, la distribución del tamaño, la aglomeración, el espaciado entre capas de mineral de arcilla, la composición química, la superficie propiedades, el magnetismo y las aplicaciones específicas del material (Gao *et al.*, 2015). Durante o después de la preparación, la adición de iones funcionales orgánicos o inorgánicos al nanocompuesto puede crear grupos o sitios reactivos adicionales (Tireli *et al.*, 2015). Además, estos grupos o sitios activos pueden ser modificados o injertados. Así, los nanocompuestos pueden lograr diversas funcionalidades (Mao *et al.*, 2014).

Síntesis de coprecipitación

La co-precipitación es un método simple de sintetizar magnetita a través de soluciones con sales de hierro (Fe³⁺ y Fe²⁺), en condiciones básicas (pH= 11), bajo una atmósfera inerte y a una temperatura elevada. El tamaño, forma y composición de las partículas magnéticas depende del tipo de sal utilizado (clorhidratos, sulfatos, nitratos, etc.), el radio de los iones (Fe³⁺ y Fe²⁺), la temperatura de reacción, el pH y la fuerza iónica del medio. El uso de aditivos orgánicos como estabilizadores y agentes reductores facilita la preparación de polímeros monodispersos. Las

propiedades magnéticas como la coercitividad y la saturación magnética pueden ser controladas intercambiando iones Al³⁺ (López, 2015). Una de las ventajas de este método es su reproducibilidad, las desventajas es que las partículas obtenidas tienden a estar polidispersas.

Síntesis por termodescomposición

La descomposición térmica de compuestos organometálicos en solventes orgánicos con punto de ebullición altos contiene surfactantes estabilizadores, los cuales han sido usados en la preparación de nanocristales de magnetita monodispersa de menor tamaño (Park, 2004). Las partículas nanomagnéticas solubles en agua se preparan usando FeCl_{3*}6H₂O y 2-pirrolidona como solvente de coordinación bajo reflujo a 245 C. El principal tamaño de partícula es de 4, 12 y 60 nm, respectivamente cuando el tiempo de reflujo es de 1, 10 y 24 horas. Las formas de las partículas cambian de esféricas en una etapa temprana a morfologías cúbicas con el aumento del tiempo de reflujo (Li, 2005).

Síntesis por ondas de combustión

Las ondas de combustión de autopropagación (740 °C) permiten la liberación de oxígeno del Fe_2O_3 a lo largo de los límites interfaciales entre la superficie del óxido metálico. Esta reacción acelerada transforma directamente el Fe_2O_3 en nanoestructuras de Fe_3O_4 con capas de revestimiento de carbono de 5 a 20 nm de grosor. El uso de ondas de combustión puede permitir la precisión manipulación de las composiciones químicas de nanoestructuras, como la formación de nanoestructuras híbridas orgánicas / inorgánicas (Shin, 2016).

Síntesis hidrotermal

Una reacción de una solución sólido-líquido se ha empleado bajo condiciones hidrotermales para sintetizar una amplia variedad de materiales nanomagnéticos. Consiste en el uso de linoleato metálico, ácido linoleico y una solución de etanol-agua a diferentes temperaturas de reacción bajo condiciones hidrotermales. Este método ha sido desarrollado para la síntesis de Fe₃O₄ monodispersa. La morfología puede variar de esférica a octaédrica, así también como el tamaño, el cual puede variar de entre 30 a 290 nm (Wang, 2016). La morfología, dimensión y el control de crecimiento de los nanocristales de Fe_xO_y pueden modificarse dependiendo el factor cinético,

como el volumen empleado de H₂O, la concentración de Fe³⁺, la temperatura de reacción y el radio de ion alcalino utilizado (Tong, 2015).

Síntesis por emulsión

Una estrategia de combinación de reticulación en emulsión inversa y la técnica de montaje coloidal ha sido probada para sintetizar Fe₃O₄ / composito de histidina como un nuevo tipo de material magnético poroso. Los nanocompositos obtenidos tienen una morfología uniforme, propiedades ferromagnéticas, excelente capacidad de adsorción y una gran facilidad de separación (Yang, 2015).

Síntesis microbial

La síntesis microbial de nanotubos magnéticos y nanotubos con Zn se puede lograr utilizando una bacteria (*Clostridium sp.*) con Fe como agente reductor, akaganeita (β -FeOOH) o Zn- β -Zn-FeOOH durante la fermentación de la glucosa (Kim, 2015). Este tipo de síntesis tiene la propiedad de obtener partículas monodispersas y propiedades ferromagnéticas. La desventaja de este método es que las MNP probablemente estén recubiertas con biomoléculas producidas por actividades microbianas que pueden no ser deseables para ciertas aplicaciones (Chen, 2016).

Síntesis verde

La química verde tiene como objetivo minimizar el impacto ambiental de producción y utilización de productos químicos, incluidos las nanopartículas. La síntesis verde ecológica de nanopartículas implica el uso de energía alternativa (Varma, 2014). En general, la síntesis verde es limpia, no tóxica y respetuosa con el medio ambiente. El nanocatalizador es recuperable por decantación magnética y podría ser reutilizado varias veces sin pérdida significativa de actividad catalítica (Sajadi, 2016).

2.7. Caracterización de catalizadores

2.7.1. Difracción de rayos X

La difracción de rayos X (DRX) es una técnica de análisis, no destructiva, rápida, confiable y sencilla, para realizar la identificación y cuantificación de las fases presentes en un material sólido, además de determinar la estructura cristalina de sólidos. Por lo que DRX es una herramienta fundamental de investigación en distintas áreas como física del estado sólido, catálisis heterogénea, mineralogía y ciencia de materiales, entre otras (Vargas *et al.*, 2014).

Los rayos X son radiación electromagnética cuya longitud de onda (1 Å, 10^{-10} m) es del mismo orden de magnitud que los espacios interatómicos de un sólido. En el espectro electromagnético los rayos X se localizan entre los rayos γ y la radiación ultravioleta (Figura 2.9).

Figura 2.9. Espectro electromagnético (Albella et al., 1993).

Los rayos X se producen por una rápida deceleración de partículas cargadas. Después de generar electrones térmicamente, generalmente por medio de un filamento de tungsteno (Figura 2.10) éstos se aceleran mediante la aplicación de una intensa diferencia de potencial del orden de 30-40 KV (Albella *et al.*, 1993).

Figura 2.10. Emisión de rayos X (tomado de Hammond, 1992).

Posteriormente estos electrones se hacen incidir sobre un blanco metálico continuamente enfriado, comúnmente de cobre (o bien de Mo, Ni, Cr o Fe entre otros elementos) de manera que parte de su energía ioniza algunos de los átomos del blanco dejando huecos en niveles de baja energía. Otra parte de su energía se transmite a electrones de orbitales de baja energía que pasan a un estado de excitación (2p o 3p) durante un corto tiempo (t $\approx 10^{-8}$ s), después del cual llenan los huecos de los orbitales de baja energía (1s). Debido a la energía excedente del electrón, ocurre la emisión de un fotón, radiación X (Figura 2.11). Ya que las transiciones de energía tienen valores fijos, la longitud de onda de los rayos X generados es característica del elemento que conforma el blanco metálico utilizado (Hammond, 1992).

Figura 2.11. 1) Excitación por bombardeo de electrones (Excitación primaria). 2) Emisión del espectro característico de rayos X (radiación X primaria) tomado de Hammond, 1992.

Los rayos X incidentes en una muestra cristalina, cuyos átomos se encuentran agrupados de forma periódica y ordenada, son dispersados en todas direcciones, produciendo fenómenos de interferencia, tanto constructiva como destructiva. (Hammond, 1992). La mayor parte de las dispersiones crean interferencias de tipo destructivo, cancelándose entre sí. Sin embargo, en determinadas direcciones, debido al orden periódico de los átomos, puede ocurrir que las ondas dispersadas se encuentren en fase y se refuercen mutuamente dando origen al fenómeno de difracción (Figura 2.12).

Figura 2.12. Fenómeno de difracción (tomado de Albella et al., 1993).

Para que la difracción tenga lugar en una estructura cristalina, debe cumplirse la Ley de Bragg (Ecuación 2.3).

$$2 d_{hkl} \operatorname{sen} \theta = n \lambda$$
 (2.3)

Donde:

d = Distancia entre planos hkl adyacentes de la red

 θ = Ángulo del haz difractado

n = Un número entero

 λ = Longitud de onda monocromática de los rayos X incidentes

El sistema de medición consta de 8 partes principales: goniómetro, fuente de rayos X, rendijas de divergencia, anti dispersiva y del detector, monocromador, sujetador de muestras y detector (Figura 2.13).

Figura 2.13. Elementos principales del sistema de difracción de rayos X, modelo D8 ADVANCE: (1) goniómetro, (2) fuente de rayos X, (3) rendija de dispersión, (4) rendija de antidispersión, (5) rendija del detector, (6) monocromador, (7) sujetador de muestras y (8) detector (tomado de Albella *et al.*, 1993).

El equipo de difracción de rayos X tiene un arreglo entre la fuente de rayos X, la muestra y el detector que se conoce como geometría Bragg-Brentano (Figura 2.14), la cual está construida en torno a un goniómetro de radio fijo. El haz de rayos X procedente del foco lineal del tubo incide sobre la muestra plana, situada en el eje del goniómetro y una rendija situada sobre el círculo del goniómetro reenfoca el haz de rayos X difractado por la muestra dirigiéndose hacia el detector, registrando la intensidad de los rayos X recibida frente al doble del ángulo de Bragg (20).

Figura 2.14. Equipo de difracción de rayos X (tomado de Albella et al., 1993).

La DRX es utilizada ampliamente para estudiar la distribución de los átomos, iones o moléculas, así como en la determinación de fases y estructuras de sólidos cristalinos. Debido a los diferentes planos cristalinos que posee, un sólido cristalino generará un patrón de difracción característico que constará de una serie de picos con posiciones (ángulos 20) e intensidades propias.

Cada reflexión corresponde a los diferentes conjuntos de planos cristalinos con índices de Miller (hkl) propios. Pequeños desórdenes locales como defectos, impurezas, amorficidad, etc., afectará el patrón de difracción de rayos X (Figura 2.15).

Figura 2.15. Espectro de difracción típico de rayos X (tomado de Hammond, 1992).

Además, a través del patrón de difracción de rayos X, es posible calcular el tamaño de cristalito de la muestra, al analizar los anchos de las reflexiones, de modo que el tamaño de cristalito es inversamente proporcional al ancho de la reflexión. Para la obtención del tamaño de cristalito se utiliza la Ecuación de Sherrer (Ecuación 2.4).

$$D = k\lambda /\beta \cos\theta \qquad (2.4)$$

Donde:

D es el tamaño promedio de la partícula

k es una constante en función de la forma de la partícula

λ la longitud de onda de la radiación incidente

b el ancho del pico en radiantes

 θ es el ángulo difractado entre 2

2.7.2. Adsorción y desorción de nitrógeno

Una de las propiedades más importantes de los catalizadores heterogéneos es su área superficial específica, así como la textura del poro del catalizador que incluye el volumen de poro, el diámetro y la distribución de tamaño de poro. El área superficial específica es la superficie externa de las partículas y la superficie disponible dentro de los poros de los materiales porosos:

ultramicroporos (tamaño menor a 7 nm), microporos (tamaño menor a 2 nm), mesoporos (2 nm < tamaño < 50 nm) y macroporos (tamaño > 50 nm).

Los poros de un material (Figura 2.16) se clasifican como poros abiertos (canales continuos de un extremo a otro de la superficie del material) y poros cerrados (aislados de poros vecinos).

Figura 2.17. Tipo de poros en sólidos (tomado de Leofanti et al., 1999).

Al entrar en contacto un gas con la superficie de un sólido se produce un equilibrio entre las moléculas adsorbidas y las moléculas en fase gaseosa, que depende de la presión del gas y de la temperatura. Al graficar el volumen adsorbido en función de la presión relativa se obtiene un gráfico denominado isoterma de adsorción (Figura 2.18). A presiones relativas bajas se inicia la adsorción de N₂ hasta adsorber una monocapa. Posteriormente la adsorción se realiza en multicapas y enseguida ocurre una condensación capilar (exclusiva de materiales mesoporosos). Finalmente puede realizarse la desorción. Cuando la isoterma de adsorción no coincide con la de desorción (debido a la condensación capilar en los poros del catalizador) se dice que las isotermas adsorción-desorción forman una curva de histéresis (Jiang, 2004).

Figura 2.18. Isoterma de adsorción A) adsorción B) desorción (tomado de Jiang, 2004).

La adsorción de gas por medio de sólidos es importante para determinar el área específica y la distribución de tamaño de poro en materiales utilizados como catalizadores, adsorbentes industriales, pigmentos cerámicos y materiales de construcción. A partir de los valores de adsorción se determinan propiedades texturales como el área superficial específica y la distribución de tamaño de poro en materiales sólidos (Vargas *et al.*, 2014).

Los gases utilizados preferentemente son N₂, CO₂, Kr y Ar. Para materiales mesoporosos y macroporosos se adsorbe N₂ y para microporosos Kr y Ar. La adsorción ocurre cerca del punto de ebullición del adsorbato, por tanto, cuando se adsorbe nitrógeno el experimento se realiza a la temperatura de ebullición del mismo (77 K), con Ar a 87 K, con Kr a 77 K y con CO₂ a 273 K, y en muestras de materiales previamente desgasificadas (Figura 2.19).

Figura 2.19. Equipo Autosorb-1 C (cortesía de Quantacrome Instruments).

Los equipos generalmente miden áreas específicas en el intervalo de 0.01 a 2000 m² /g, la distribución de tamaño de poro entre 0.3 nm a 400 nm, el volumen total de poros y el volumen parcial de micro, meso y macroporos.

Para determinar el tipo de poro se realiza también la isoterma de adsorción/desorción. La desorción es el proceso inverso a la adsorción. Sin embargo, este proceso se presenta a presiones relativas inferiores a la adsorción, por lo que se observa en la isoterma de adsorción-desorción un ciclo de histéresis en el intervalo de la multicapa y se asocia con la condensación capilar en los poros de materiales mesoporosos.

Actualmente la IUPAC reconoce seis tipos de isotermas de adsorción dependiendo del tipo de poro del material de estudio, la isoterma presentará una de las seis formas posibles y cuatro tipos de histéresis (H), según la forma del poro (Figura 2.20).

 Tipo H1: Característica de sólidos constituidos por partículas atravesadas por poros en forma de canales abiertos en ambos extremos o canales formados por agregados o aglomerados de partículas esferoidales, con poros de tamaño y forma uniforme.

- Tipo H2: Con poros similares a los del tipo H1, pero en este caso el tamaño o la forma no son uniformes.
- Tipo H3: Está asociada con aglomerados de partículas que presentan poros con forma de rendija o laminares, con forma y/o tamaño no uniforme.
- Tipo H4: Típica de poros similares a los del tipo H3, pero con tamaño y forma uniformes.
- Tipo H5: Típica de materiales porosos que tienen mesoporos abiertos y parcialmente cerrados.

Figura 2.20. Isotermas de adsorción para distintos tipos de sólidos (tomado de Jiang, 2004).

Los métodos de cálculo para la obtención del área específica y las propiedades texturales dependen del mecanismo de la adsorción (Tabla 11).

Mecanismo	Intervalo de P/Po	Modelo de cálculo
Llenado de microporos	1x 10-7 a 0.02	 DFT (Teoría funcional de densidad) GCMT (Gran Montecarlo canónica) HK y ST (Horvath-Kavazoe y Saito- Foley) DR (Dubinin-Radushkevich) DA (Dubinin-Astakov)
Formación de submonocapas	0.01 a 0.1	• DR (Dubinin-Radushkevich)
Monocapa completa	005-0.3	BET (Brunauer-Emmet-Teller)Langmuir
Multicapas	>0.1	 BET (Brunauer-Emmet-Teller) T-plot (de Boer)
Condensación capilar	>0.35	BJH (Barret-Joyner-Halenda)DH

Tabla 11. Método de cálculo para obtención del área específica y las propiedades texturales de los materiales en función del mecanismo de adsorción (Jiang, 2004).

Con los datos del volumen adsorbido y de la presión relativa un gráfico para obtener la isoterma de adsorción. Los resultados se ajustan en forma lineal a la ecuación de BET (Ecuación 2.5). El eje y está representado por la Ecuación 2.6 y el eje x, por la Ecuación 2.7 (Brunauer *et al.*, 1938).

$$\frac{1}{Vads\left(\frac{Po}{P}-1\right)} = \frac{1}{VmC} + \frac{C-1}{VmC} \frac{P}{Po}$$
(2.5)

$$y = \left(\frac{1}{Vads\left(\frac{Po}{P}-1\right)}\right) \tag{2.6}$$

$$x = \frac{P}{Po}$$
(2.7)

Donde:

P = Presión del gas adsorbido (nitrógeno)

Po = Presión de saturación del gas adsorbido

V_{ads} = Volumen del gas adsorbido (STP = 1 atm y 20 °C)

V_m = Volumen de gas adsorbido, correspondiente a la formación de una monocapa

C = Constante

Se obtiene la ordenada al origen y la pendiente del gráfico, con las Ecuaciones 2.8 y 2.9 respectivamente y el Vm con la Ecuación 2.8.

ordenada al origen (a)
$$= \frac{1}{VmC}$$
 (2.8)

pendiente (b) =
$$\frac{C-1}{C Vm}$$
 (2.9)

$$Vm = \frac{1}{a_{+b}}$$
(210)

Donde a y b son constantes. Una vez obtenido el Vm, se determina el área superficial específica (As), con la Ecuación 2.11.

$$As = \left(\frac{Vm}{22414}\right) N a \sigma \tag{2.11}$$

2.8. Diseño de experimentos

El diseño de experimentos se centra en fenómenos que son observables y repetibles. Por lo tanto, sin el uso del pensamiento estadístico, los conceptos de observabilidad y repetibilidad se vuelven intrínsecamente contradictorios. Cada observación lleva consigo cierto grado de variabilidad; nada ocurre de manera idéntica dos veces, incluso cuando se trata de mediciones del mismo evento, estas tienden a variar. Es importante ser precavido en la planificación y el análisis de un experimento. El punto de partida fundamental para llevar a cabo una planificación adecuada es la aplicación de los principios fundamentales del diseño de experimentos: aleatorización, repetición y bloqueo. Estos principios están directamente relacionados con la obtención de datos que sean efectivamente útiles para dar respuesta a las preguntas formuladas; en otras palabras, la validez del análisis de los datos se sustenta en estos principios (Gutiérrez H., 2008).

En la figura 2.21 se muestra la clasificación general de los diseños experimentales de acuerdo con su objetivo.

1. Diseños para comparar dos o más tratamientos	Diseño completamente al azar Diseño de bloques completos al azar Diseño de cuadros latino y grecolatino		
2. Diseños para estudiar el efecto de varios factores sobre una o más variables de respuesta	Diseños factoriales 2^k Diseños factoriales 3^k Diseños factoriales fraccionados 2^{k-p}		
3. Diseños para la optimización	Diseños para el modelo de primer orden	Diseños factoriales $2^k y 2^{k-p}$ Diseño de Plakett-Burman Diseño simplex	
	Diseños para el modelo de segundo orden	Diseño de composición central Diseño de Box-Behnken Diseños factoriales 3 ^k y 3 ^{k - p}	
4. Diseños robustos	Arreglos ortogonales (diseños factoriales) Diseño con arreglos interno y externo		
5. Diseños de mezclas	Diseño simplex-reticular Diseño simplex con centroide Diseño con restricciones Diseño axial		

Figura 2.21 Clasificación de los diseños experimentales (tomado de Gutiérrez H., 2008).

Análisis de la varianza

El análisis de la varianza, a menudo abreviado como ANOVA, es una poderosa técnica estadística utilizada para descomponer y estimar diversas fuentes de variación. Su propósito principal es separar la variabilidad debida a errores aleatorios de cualquier otra variación que pueda surgir al modificar el factor de control. De esta manera, se puede evaluar si un cambio en el factor de control resulta en diferencias significativas entre los valores promedio obtenidos.

Además, las técnicas de ANOVA pueden aplicarse en situaciones donde existen múltiples fuentes de variación aleatoria. En ambos casos, ya sea que se trate de un factor controlado o aleatorio, además de la variabilidad inherente a las mediciones, se les conoce como ANOVA de un solo factor (Miller J., 2002).

Metodología de superficie de respuesta

La Metodología de Superficie de Respuesta (MSR), es una estrategia experimental y de análisis que aborda la resolución del desafío de identificar las condiciones óptimas de operación de un proceso. Estas condiciones óptimas se definen como aquellas que generan resultados óptimos en una o varias características de calidad del producto.

Para comprender mejor este concepto, es necesario considerar dos áreas clave: la región experimental y la región de operabilidad. La región experimental comprende el espacio definido por los rangos de experimentación utilizados para cada factor. Por otro lado, la región de operabilidad abarca todas las posibles combinaciones de los niveles de los factores donde el proceso puede funcionar. Es importante destacar que la región de operabilidad siempre es igual o más amplia que la región experimental. Se suelen representar estas regiones de manera regular, como se muestra en la figura 2.22.

En el contexto de la MSR, es esencial tener en mente estas dos regiones, ya que el punto óptimo que buscamos puede estar en cualquier lugar dentro de la región de operabilidad, lo que incluye tanto dentro como fuera de la región experimental inicial (Gutiérrez H., 2008).

Tabla 2.22. Ejemplo de regiones de operabilidad (cubo mayor) y experimental (tomado de Gutiérrez H., 2008)

La metodología de superficie de respuesta involucra tres componentes fundamentales: el diseño, el modelo y la técnica de optimización. El diseño y el modelo son considerados de manera conjunta y dependen del tipo de comportamiento esperado en la respuesta. Específicamente, el modelo puede ser de primer o segundo orden, lo que significa que puede ser plano o presentar curvatura. En consecuencia, el tipo de diseño empleado y el método de optimización se clasifican en función de si se trata de un modelo de primer o segundo orden. En la figura 2.23 se representa un esquema de la metodología de superficie de respuesta, donde se identifican tres etapas en la búsqueda del punto óptimo: el cribado, la búsqueda de primer orden y la búsqueda de segundo orden.

Tabla 2.23. Esquema de los elementos de la MSR en su contexto amplio (tomado de Gutiérrez H., 2008).

Diseños factoriales

El propósito de un diseño factorial es investigar cómo varios factores influyen en una o más respuestas cuando existe un interés igual en todos los factores. Estos factores pueden clasificarse en dos categorías: cualitativos (como máquinas, tipos de material, operadores, la presencia o ausencia de una operación previa, etc.) o cuantitativos (tales como temperatura, humedad, velocidad, presión, etc.).

Diseño factorial 2³

El diseño factorial 2^3 implica el estudio de tres factores, cada uno con dos niveles. Consta de 2^3 = 2 × 2 × 2 = 8 tratamientos diferentes, que pueden identificarse utilizando la misma notación que se introdujo en el diseño 2^2 (véase tabla 6.1). Los tratamientos del diseño 2^3 y su representación geométrica se muestran en la figura 6.10. La región experimental ahora es un cubo regular centrado en el origen (0, 0, 0), cuyos vértices son los ocho tratamientos.

Con este diseño se pueden estudiar los $2^3 - 1 = 7$ efectos: tres efectos principales A, B, C; tres interacciones dobles AB, AC, BC y una interacción triple ABC. Por lo general, el enfoque se centra en el estudio de los efectos principales y las interacciones dobles.

Figura 2.24. Diseño factorial 2³ y su representación geométrica (tomado de Gutiérrez H., 2008).

Diseño de Box-Behnken

Este tipo de diseño se utiliza cuando se manejan tres o más factores y suele ser eficiente en términos del número de experimentos necesarios. Se trata de un diseño rotable o casi rotable que se caracteriza por no incluir como tratamientos los vértices de la región experimental.

Puede observarse su representación geométrica en la figura 2.25 Es importante notar que los puntos de este diseño están situados en el centro de las aristas de un cubo centrado en el origen. Como se mencionó previamente, este diseño excluye los tratamientos ubicados en los vértices del cubo, como (1, 1, 1) y (-1, -1, -1), que en algunas situaciones experimentales pueden ser extremos y difíciles de realizar.

Figura 2.25. Representación del diseño de Box-Behnken para tres factores (tomado de Gutiérrez H., 2008).

2.9. Métodos de cuantificación

2.9.1. Espectrofotometría

La espectrofotometría es una técnica analítica que permite el análisis cuantitativo y cualitativos de compuestos químicos, empleando radiación electromagnética (luz), la cual se hace irradiar en una molécula orgánica a una cierta longitud de onda, ocurriendo el fenómeno de adsorción, pudiéndose medir la absorbancia o transmitancia resultante, que por medio de la ley de Beer es posible determinar la concentración de un analito (Harris, 2003). La luz visible, que es la forma

de radiación electromagnética que vemos, representa sólo una pequeña fracción del espectro electromagnético (Figura 2.26).

Figura 2.26. Espectro electromagnético, donde aparecen los procesos moleculares representativos que ocurren cuando se absorbe luz en cada una de sus regiones (tomado de Harris, D. 2003).

Es conveniente describir la luz (λ) tanto en términos de partículas como de ondas. Las ondas de la luz constan de campos eléctricos y magnéticos que oscilan en planos perpendiculares entre sí (Figura 2.27). La longitud de onda es la distancia entre las crestas de dos ondas. La frecuencia (v) es el número de oscilaciones completas de una onda en un segundo. La unidad de frecuencia es el inverso de los segundos, s⁻¹. Una oscilación por segundo también se llama Hertz (Hz).

Figura 2.27. Radiación electromagnética polarizada en un plano cartesiano (tomado de Harris, D. 2003).

Espectrofotometría UV-Visible

Cuando una molécula absorbe un fotón aumenta la energía de la molécula. Se dice que la molécula ha pasado a un estado excitado. Si una molécula emite un fotón, disminuye la energía de la molécula (Figura 2.28). El estado de mínima energía de una molécula se llama estado fundamental, las radiaciones visible y UV hacen que los electrones pasen a orbitales de mayor energía.

Figura 2.28. Fenómeno de adsorción y emisión de un fotón al ser incidido en una molécula (tomado de Cheng, 2010).

Cuando una muestra absorbe luz, la irradiancia del haz de luz disminuye. La irradiancia (P) es la energía por segundo y por unidad de área del haz de luz. La luz se hace pasar a través de un monocromador (prisma, red de difracción o incluso un filtro) para seleccionar una longitud de onda (Figura 2.29). La luz de una sola longitud de onda se llama monocromática. La luz

monocromática, con una irradiancia Po, incide en una muestra de longitud b. La irradiancia del haz que emerge por el lado opuesto de la muestra es P.

Figura 2.29. Diagrama esquemático de un espectrofotómetro de haz simple (tomado de Wachs, 2001).

Un espectrofotómetro de haz simple tiene inconvenientes, porque la muestra y la referencia se deben colocar alternadamente en el camino del haz. Para medidas a distintas longitudes de onda se debe medir a cada longitud de onda. La transmitancia, T se define como la fracción de la luz incidente que pasa a través de la muestra:

$$T = \frac{P}{Po}$$
(12)

La absorbancia se define como:

$$A = \log\left(\frac{P_0}{P}\right) = -\log T \tag{13}$$

La relación logarítmica de Po/P aumenta con la concentración, porque para cada porción infinitesimal del volumen total, la disminución de potencia es proporcional a la potencia que incide sobre esa sección. Cuando la luz atraviesa la muestra, la pérdida de potencia disminuye en cada nueva capa, porque también disminuye la magnitud de la potencia incidente que llega a esa capa. La absortividad molar puede valer desde 0 (si la probabilidad de absorción del fotón es 0) hasta aproximadamente 10⁵ M⁻¹ cm⁻¹ (cuando la probabilidad del fotón se acerca a 1). La absorbancia está relacionada con la concentración de la sustancia, por la ley de Lambert-Beer:

$$A = \varepsilon bC \tag{14}$$

La concentración de la muestra (C) normalmente viene dada en unidades de mol/L (M). El camino óptico (b) normalmente se expresa en centímetros (cm). La cantidad ε se llama absortividad molar y tiene unidades de M⁻¹cm⁻¹ La absortividad molar es característica de cada sustancia que nos dice cuánta luz absorbe a una longitud de onda determinada. La ley de Lambert-Beer se cumple para soluciones diluidas; para valores de c altos, ε varía con la concentración, debido a fenómenos de dispersión de la luz, agregación de moléculas y cambios del medio.

En un espectrofotómetro de doble haz (Figura 2.30) la luz pasa alternadamente a través de la muestra y la referencia (el blanco) mediante un espejo rotatorio (cortador de haz), que dirige el haz de luz. Cuando la luz pasa a través de la muestra, el detector mide la irradiancia P. Cuando el cortador dirige el haz a la cubeta de la referencia, el detector mide Po. El haz se corta varias veces por segundo, y el circuito compara automáticamente P y Po para obtener la transmitancia y la absorbancia. Este procedimiento posibilita una corrección automática de los cambios de intensidad de la fuente y de la respuesta del detector, con el tiempo y la longitud de onda, porque la potencia que emerge de las dos muestras se compara con mucha frecuencia.

Figura 2.30. Diagrama esquemático del dispositivo óptico cartesiano (tomado de Harris, 2003).

Una lámpara de wolframio es una excelente fuente de radiación continua visible y de radiación infrarroja próxima. Un filamento típico de wolframio trabaja a una temperatura próxima a 3000 K, y produce radiación útil en el intervalo de 320 a 2500 nm (Figura 2.31).

Este intervalo cubre toda la región visible y también parte de las regiones UV e IR. La espectroscopia UV normalmente utiliza una lámpara de arco de deuterio, en la que una descarga eléctrica (una chispa) disocia D2 y emite radiación UV desde 200 a 400 nm. En un espectrofotómetro típico UV-VIS, se produce el cambio de lámpara de deuterio a lámpara de W al pasar por 360 nm, de modo que siempre se utiliza la fuente que da máxima intensidad. En las regiones visible y UV son también muy usadas las lámparas de descarga eléctrica (de chispa) que están llenas de vapor de Hg o gas Xe.

Figura 2.31. La intensidad de luz de una lámpara de wolframio y el de una lámpara de deuterio a 3200 K (tomado de Harris, 2003).

Un detector produce una señal eléctrica cuando incide en él un haz de fotones. Por ejemplo, un fototubo emite electrones desde una superficie fotosensible, cargada negativamente, cuando inciden sobre ella radiaciones de luz visible o UV. Los electrones atraviesan el vacío hasta un colector cargado positivamente, cuya corriente es proporcional a la intensidad de la radiación. La respuesta del detector depende de la longitud de onda de los fotones incidentes (Figura 2.32). Cuanto mayor es la sensibilidad, mayor es la respuesta (corriente o voltaje) del detector, para una potencia incidente dada.

Figura 2.32. Respuesta de varios detectores en función de la longitud de onda (tomado de Harris, 2003).

El espectro de absorción es una representación gráfica que indica la cantidad de luz absorbida (ϵ) a diferentes valores de λ . A partir de una solución diluida de un compuesto, cuya absorbancia máxima entra dentro del rango de medida del espectrofotómetro, se verá el valor de absorbancia a diferentes longitudes de onda frente a un blanco que contenga el disolvente de la solución de la muestra a caracterizar (Figura 2.33).

Figura 2.33. Espectro de absorción para la acetona (tomado de Cheng, 2010).

El espectro de absorción de un cromóforo depende, fundamentalmente, de la estructura química de la molécula. No obstante, hay una gran cantidad de factores que originan variaciones en los valores de λ max y ε , entre los que se incluye el pH, la polaridad del solvente o moléculas vecinas y la orientación de los cromóforos vecinos; y cada uno afecta de forma particular. A partir del espectro de absorción se obtendrá el valor de λ al que el compuesto presenta la mayor absorbancia (λ max). Empleado para la determinaciones cualitativas y cuantitativas del compuesto.

2.9.2. Espectroscopia infrarroja por transformada de Fourier.

El análisis de Fourier es un método mediante el cual una curva se descompone en una suma de términos con senos y cosenos, conocida como serie de Fourier. Cuando se aplica el análisis de Fourier a un interferograma, permite determinar las intensidades de las diferentes longitudes de onda que lo conforman (Harris, 2004).

En un espectrómetro de transformada de Fourier, la disposición se muestra en la figura 2.34, donde la muestra se sitúa entre el interferómetro y el detector. Dado que la muestra absorbe ciertas longitudes de onda de luz, el interferograma incluye el espectro de la fuente menos el espectro de la muestra. En primer lugar, se adquiere el interferograma de una solución de referencia y se convierte en su espectro correspondiente. Es importante destacar que el interferograma se registra en intervalos discretos en lugar de manera continua. Cuanto mayor sea el número de datos registrados, mayor será el tiempo y la memoria necesarios para realizar el cálculo de la transformada de Fourier.

Figura 2.34. Esquema de un espectrómetro de IR con transformada de Fourier (tomada de Harris, 2003).

En comparación con los instrumentos dispersivos, un espectrómetro basado en la transformada de Fourier presenta notables mejoras en la relación señal/ruido para una determinada resolución, una precisión de frecuencia mucho mayor y brinda amplias capacidades para el procesamiento de datos. La mejora en la relación señal/ruido se debe principalmente al enfoque del espectrómetro basado en la transformada de Fourier, ya que utiliza la energía de todo el espectro en lugar de analizar bandas de ondas más pequeñas de manera sucesiva, como lo hace un monocromador.

La capacidad de reproducir con precisión las posiciones de los números de onda de un espectro al siguiente, característica distintiva de los espectrómetros basados en la transformada de Fourier, permite promediar las señales de múltiples barridos, lo que contribuye aún más a mejorar la relación señal/ruido. La precisión en los números de onda y los bajos niveles de ruido permiten restar espectros que presentan diferencias mínimas entre sí, y aprovechar estas pequeñas diferencias de manera efectiva.

2.9.3. Cromatografía de gases

La cromatografía de gases es una técnica analítica instrumental que sirve para la separación, purificación, identificación y cuantificación de compuestos. En cromatografía la fase móvil (el disolvente que desciende a través de la columna) es un líquido o un gas. La fase estacionaria (la que se encuentra fija en el interior) es normalmente un líquido viscoso enlazado químicamente a las paredes interiores de un tubo capilar o a la superficie de las partículas sólidas empaquetadas dentro de la columna y llevados a un detector para obtener un cromatograma.

La muestra de un líquido volátil o de un gas se inyecta a través de un septo (diafragma de silicona), en un inyector caliente, en cuyo interior se evapora rápidamente. El vapor es arrastrado a través de la columna por el gas portador, que puede ser He, N₂ o H₂, y los analitos después de separados llegan al detector, cuya respuesta aparece en la pantalla de un ordenador o en un registrador (Figura 3.35). La columna debe estar lo suficientemente caliente para que los analitos alcancen una presión de vapor adecuada y eluyan en un tiempo razonable. El detector se mantiene a una temperatura más elevada que la columna, de forma que los analitos se encuentren en forma gaseosa (Harrris, 2003).

La inyección en columna se usa con muestras que se descomponen por encima de su punto de ebullición, y es la forma preferida en análisis cuantitativo. La disolución se inyecta directamente en la columna, sin pasar por un inyector caliente. La temperatura inicial de la columna es suficientemente baja para que condensen los solutos en una banda estrecha. La cromatografía se inicia calentando la columna. De este modo se somete la muestra a la temperatura más baja posible, y se pierde poco soluto. La aguja de una jeringa estándar, de microlitros, se acopla directamente dentro de una columna.

Cuando se introduce la aguja a través del septo de silicona en el inyector caliente del cromatógrafo, la muestra no se evapora inmediatamente, porque en la aguja no hay muestra. Si hubiera muestra en la aguja, los compuestos más volátiles comenzarán a evaporarse, y desaparecerían antes de inyectar la muestra. La burbuja de aire detrás de la porción de muestra impide que se mezclen la muestra y el disolvente. La porción siguiente de disolvente lava la aguja, eliminando restos de muestra, y la última porción de aire elimina los restos de disolvente en la aguja (Figura 2.36).

Figura 2.36. Técnica de inyección «sándwich» (tomado de Watson, 1997).

El Helio es el gas portador más común y es compatible con la mayoría de los detectores. Si se usa un detector de ionización de llama, el N_2 da un límite de detección menor que el He. Los gases H_2 , He y N_2 dan prácticamente la misma altura de plato óptima (0,3 mm) a caudales significativamente diferentes (figura 2.37).

Figura 2.37. Curvas de Van Deemter en cromatografía de gases de n-C₁₇H₃₆ a 175 °C, usando N₂, He y H₂ en una columna de 0,25 mm de diámetro y 25 m de longitud, de pared recubierta de fase estacionaria OV-111 (tomado de Freeman, 1981).

Las separaciones más rápidas se consiguen usando H₂ como gas portador, pudiéndose alcanzar mayor rapidez trabajando por encima de su velocidad óptima, aunque perdiendo un poco de resolución. El H₂ y el He proporcionan mejor resolución (menor altura de plato) que el N₂, a caudales altos, porque los solutos se difunden más rápidamente a través del H₂ y del He que del N₂. Las impurezas que puedan existir en el gas portador degradan la fase estacionaria. Se deben usar gases de una gran calidad, y aun éstos se deben pasar a través de purificadores para eliminar el oxígeno, el agua o trazas de compuestos orgánicos, antes de entrar en la columna.

En la inmensa mayoría de los análisis se utilizan columnas tubulares abiertas, largas y estrechas, fabricadas de sílice fundida (SiO₂) y recubiertas de poliimida (un plástico capaz de resistir 350 °C), como soporte y como protección contra la humedad atmosférica. Los diámetros interiores típicos son entre 0,1 y 0,53 mm, y las longitudes típicas, de 15 a 100 m. Las columnas estrechas dan mayores resoluciones que las columnas anchas, pero requieren una presión de trabajo mayor y tienen menos capacidad de muestra. Las columnas tubulares abiertas son de mayor resolución, permiten mayor rapidez de análisis, y mayor sensibilidad que las columnas empaquetadas, aunque tienen menor capacidad de muestra. Las columnas tubulares abiertas abiertas estrechas tienen mayor resolución que las tubulares más anchas, pero necesitan mayor presión para poder funcionar, y tienen menor capacidad de muestra. (Figura 2.38).

Figura 2.38. a) Dimensiones típicas de las columnas tubulares abiertas utilizadas en cromatografía de gases. b) Columna cromatográfica de sílice fundida. (tomado de Harris, 2003).

Las columnas de pared recubierta, se caracterizan por estar recubiertas en su interior por una película de fase estacionaria líquida de un grosor de 0,1 a 0,5 µm (Figura 2.39). Al disminuir el grosor de la fase estacionaria aumenta la resolución, disminuye el tiempo de retención, y también disminuye la capacidad de carga. El diseño de columna recubierta de soporte consta de partículas sólidas adheridas a la pared interior, que están recubiertas de la fase estacionaria líquida. Como tienen mayor área superficial, las columnas recubiertas de soporte pueden procesar muestras mayores que las columnas de pared recubierta. La eficacia de las columnas recubiertas de soporte es intermedia entre las de pared recubierta y las empaquetadas.

Figura 2.39. Sección transversal de columnas de pared recubierta de fase estacionaria líquida, sólida y de capa porosa. cartesiano (tomado de Harris, 2003).

La elección de la fase estacionaria líquida se basa en la regla «lo semejante disuelve a lo semejante» (Figura 2.40). Las columnas no polares son las más indicadas para solutos no polares. Las columnas de polaridad intermedia son las mejores para solutos de polaridad intermedia, y las muy polares, para solutos muy polares.

Figura 2.40. Fases estacionarias de uso frecuente en cromatografía de gases capilar. cartesiano (tomado de Harris, 2003).

En un detector de ionización de llama, el eluato se quema en una mezcla de H₂ y aire. Los átomos de carbono (excepto los de carbonilos y carboxilos) producen radicales CH, que producen iones CHO⁺.

$$CH + O \rightarrow CHO^+ + e^-$$
 (15)

Sólo uno de 10⁵ átomos de carbono produce un ion, pero la producción de iones es estrictamente proporcional al número de átomos de carbono susceptibles de ionizarse, que penetran en la
llama. Los cationes que se producen en la llama conducen la corriente eléctrica desde la punta del quemador, que actúa de ánodo, a un colector catódico (Figura 2.41). Esta corriente eléctrica es la señal que da el detector.

La respuesta a los compuestos orgánicos es directamente proporcional a la cantidad de soluto en siete órdenes de magnitud. En ausencia de solutos orgánicos, la corriente casi es nula. El límite de detección es 100 veces menor que el de un detector de conductividad térmica y se reduce en un 50% cuando se usa como gas portador N₂ en lugar de He.

Un cromatograma es la representación de la respuesta del detector en función del tiempo de elución, en donde los compuestos que son menos afín a la columna y con menor peso molecular eluyen en un menor tiempo. Por medio del tiempo de retención y el área de pico de cada componente es posible determinar cualitativamente y cuantitativamente un compuesto.

CAPÍTULO 3. DESARROLLO EXPERIMENTAL

En este capítulo se presenta el desarrollo experimental para la síntesis del catalizador, la caracterización de los nanotubos de haloisita, magnetita y de las nanopartículas magnéticas sintetizadas. El método espectrofotométrico para la cuantificación de IBU en medio acuoso. La descripción de los estudios de adsorción. También se describe, el diseño de experimentos tipo *Box Behnken* para el estudio de adsorción y la degradación de IBU a través de una reacción de oxidación avanzada y la técnica de demanda química de oxígeno para la determinación de IBU degradado. Finalmente, se describe la metodología de cromatografía de gases-masas, utilizada para la obtención de IBU eliminado.

3.1. Síntesis del catalizador

3.1.1. Materiales, reactivos y equipos

Nanotubos de haloisita ($H_4Al_2Si_2O_9$ 2 H_2O) (NTH), cloruro de hierro (III) (FeCl₃ 6 H_2O), sulfato ferroso (FeSO₄ .7 H_2O) e NH₄OH (28%), se adquirieron de Sigma-Aldrich y se utilizaron sin purificar. Se utilizó una balanza Analítica Ohaus CP214, una Parrilla con agitación magnética Labnet D032, una Mufla Thermo Scientific FD1545M y 10 Imanes de Neodimio (NdFeB) de 15 mm de diámetro, espesor de 2 mm, grado N35.

3.1.2 Procedimiento experimental

Se sintetizó magnetita en un lote y posteriormente se sintetizó el catalizador (Fe₃O₄/NTH), a través del método de coprecipitación utilizando sales de Fe(II) y Fe(III) en un medio básico en presencia de NTH. Para la obtención de magnetita, no se utilizaron NTH. En la campaña de extracción se preparó el sistema de reacción, que se presenta en la Figura 3.1. Se adicionaron los NTH y agua destilada en el matraz de 3 bocas y se mantuvo en agitación constante y a una temperatura de 60°C. Después, se adicionaron las sales de FeSO₄ y FeCl₃ previamente solubilizadas en agua destilada, nuevamente se mantuvo a una temperatura de 60°C por un lapso de 1 hora con agitación constante. Posteriormente, se adicionó lentamente NH₄OH hasta alcanzar un pH=11 manteniendo una temperatura de 70 °C con agitación por 2 horas. Se dejó reposar por 1 día, generando una fase heterogénea. La mezcla de reacción se vertió en una probeta de 1000 mL y con ayuda de los imanes de Neodimio, se decantó el líquido y se lavó

repetidamente con agua destilada, hasta la obtención de un pH neutro. El producto sólido obtenido se secó en una estufa a 70 °C por 2 días hasta la eliminación total de agua. Se trituró el sólido con mortero hasta la obtención de un polvo fino.

Figura 3.1. Metodología para la síntesis de Fe₃O₄/NTH.

3.2. Caracterización del catalizador

Los NTHs, la magnetita y el catalizador sólido obtenido se caracterizaron difracción de rayos X (DRX), adsorción-desorción de nitrógeno, espectroscopía infrarroja por transformada de Fourier (FTIR).

3.2.1. Adsorción-desorción de nitrógeno

El área superficial específica de las muestras se determinó mediante el método Brunauer Emmett-Teller (BET). El volumen de poro y la distribución del tamaño de poro se estimó mediante el método Barrett-Joyner Halenda (BJH) a 77 K (Autosorb 1 MP, Quantachrome Instrument). Antes de las mediciones, las muestras se desgasificaron al vacío a 573 K durante 10 h.

La identificación de las fases cristalina se realizó por DRX (difractómetro de rayos X Bruker AXS, D8 Advanced Plus, con radiación monocromática CuKa1, I = 1.54056 Å). La recopilación de datos se realizó en el rango de escaneo de 2 a 70° 20, con un ancho de paso de 0.02° y un tiempo de conteo por paso de 1.8 segundos. Las condiciones normales de operación fueron 35 kV y 30 mA.

3.2.3. Espectroscopía infrarroja por transformada de Fourier (FTIR)

Los espectros de infrarrojo para la muestra de $Fe_3O_4/NTH /NTH$ y la de ibuprofeno adsorbido sobre la muestra de $Fe_3O_4/NTH /NTH$, se obtuvieron con un equipo Perkin Elmer 283, empleando pastillas de KBr. En un intervalo de intensidad de la radiación infrarroja, de 400 a 4000 en número de onda (cm⁻¹).

3.3. Cuantificación de ibuprofeno por espectrofotometría UV

En esta sección, se describe el desarrollo del método analítico para cuantificar el ibuprofeno no adsorbido por el catalizador utilizando la técnica de espectrofotometría ultravioleta (UV), a través de una curva de calibración de ibuprofeno en función de la concentración en ppm.

3.3.1. Materiales y equipos

El ibuprofeno se adquirió de Sigma-Aldrich y se usó sin purificación previa. Se utilizó agua desionizada para preparar las disoluciones. Para hacer los barridos de absorbancia en función de longitud de onda se utilizó un espectrofotómetro UV-Vis Perkin Elmer Modelo Lambda 25.

3.3.2. Procedimiento experimental

Para el estudio de la adsorción de IBU sobre Fe₃O₄/NTH se prepararon disoluciones entre 1.5 a 15 mg L⁻¹de IBU en agua desionizada a un volumen total de 10 mL. Se dejo en agitación constante por 24 horas. Se trabajo a una temperatura constante de 293.15 K. El pH fue ajustado a los valores de pH deseados utilizando 0.1 M de ácido sulfúrico o 0.1 M de hidróxido de sodio. Después del ajuste de pH, se realizó un barrido entre 210 y 250 nm en el espectrofotómetro. Las disoluciones y experimentos se realizaron por triplicado.

3.4. Diseño de experimentos tipo Box Behnken para la adsorción de ibuprofeno

Se utilizó el software *Design Expert 11* para realizar un diseño de optimización Box Behnken y obtener el modelo matemático para predecir las condiciones óptimas experimentales de la adsorción de IBU en suspensiones de Fe₃O₄/NTH. Se seleccionó una concentración constante de IBU de 15 mg L⁻¹ y como variables el pH y la dosis de Fe₃O₄/NTH, a la temperatura constante de 293.15 K (Tabla 12).

FACTORES	NIVELES			
VALORES CODIFICADOS	-1	0	+1	
Fe₃O₄/NTH pH	0.5 g L ⁻¹ 2	1.5 g L⁻¹ 7	2.5 g L ⁻¹ 12	

Tabla 12 Factores y niveles del diseño Box Behnken para la adsorción de IBU sobre Fe₃O₄/NTH.

Para conocer el número de experimentos a realizar se utilizó la ecuación 3.1.

$$N^F = n \acute{u}mero \ de \ experimentos \tag{3.1}$$

donde N son los niveles y F los factores, dando un total de 9 experimentos con 3 puntos centrales, esto se hizo por duplicado, sumando un total de 24 experimentos (Anexo 3.1).

El porcentaje de IBU adsorbido se cuantificó por espectrofotometría UV-visible utilizando la ecuación 3.2.

$$IBU \ adsorbido \ (\%) = \frac{Co-Cf}{Co}$$
(3.2)

Donde Co es la concentración inicial de IBU (15 mg L⁻¹) y Cf la concentración final de IBU después de 24 horas de adsorción. Y se utilizó la ecuación 3.4.3 para calcular la cantidad de IBU adsorbido sobre el adsorbente.

$$q_e = \frac{(Co - Ce)V}{g} \tag{3.3}$$

donde q_e es la concentración de IBU al equilibrio en la superficie del adsorbente (mg g⁻¹) Co es la concentración inicial del IBU en medio acuoso (mg L⁻¹), Ce la concentración de IBU al equilibrio en medio acuoso (mg L⁻¹), V es el volumen de agua de la muestra (L) y g es la masa del adsorbente (g).

3.5. Adsorción de ibuprofeno en Fe₃O₄/NTH

La adsorción de IBU en suspensiones de Fe₃O₄/NTH se realizó en tubos centrífuga de propileno de 15 mL. Típicamente, disoluciones de 15 mg L⁻¹, fueron preparadas en agua desionizada. El pH fue ajustado a los valores de pH deseados utilizando 0.1 M de ácido sulfúrico o 0.1 M de hidróxido de sodio. Después del ajuste de pH, la dosis correspondiente de Fe₃O₄/NTH fue mezclada con 10 mL de IBU y la mezcla. A la mezcla de reacción, se agitó durante diferentes tiempos. Después de los tiempos establecidos, los tubos se centrifugaron por 15 min a 4000 rpm para eliminar el Fe₃O₄/NTH y se tomó una muestra de la disolución de IBU para determinar la absorbancia en el espectrofotómetro. De acuerdo con el diseño Box Behnken, se realizaron 24 experimentos, variando los factores pH, dosis de adsorbente y concentración inicial de IBU, en las condiciones descritas en el Anexo 1.

Adicionalmente, se realizó un estudio de la cinética y equilibrio de adsorción, se trabajó a un pH=2, concentraciones de IBU de 9, 11, 13 y 15 mg L⁻¹, de IBU, dosis de adsorbente Fe₃O₄/NTH de 1.5 g L⁻¹ y temperatura de 298.15K. El estudio se realizó durante 15 días tomando muestras cada 24 h, estos experimentos se realizaron por duplicado. Posteriormente, para el estudio de adsorción se utilizaron los modelos de Henry, Langmuir y Freundlich. y para el estudio cinético se siguió un modelo de cinética de pseudo primer orden, pseudo segundo orden y difusión intra particular.

En la Figura 3.2, se muestra el procedimiento experimental que se siguió para la adsorción de IBU sobre Fe₃O₄/NTH.

Figura 3.2. Procedimiento experimental para la adsorción de IBU sobre Fe₃O₄/NTH.

3.6. Diseño experimental de monitoreo y de optimización para la degradación de IBU

Se utilizó el software *Design Expert 11* para realizar un diseño de monitoreo y posteriormente un diseño de optimización *Box Behnken* y obtener el modelo matemático que nos pueda predecir las condiciones óptimas experimentales de la mineralización de IBU a una concentración de constante de 15 mg L⁻¹ utilizando Fe₃O₄/NTH como catalizador, teniendo como variables al pH y la concentración de Fe₃O₄/NTH, a una temperatura de 293.15 (Tabla 13).

Tabla 13 . Factores y niveles del diseño Box Behnken para la adsorción de IBU sobre Fe $_3O_4/NTH.$

FACTORES		NIVELES	
H2O2	-1 0.05 M	+1 0.5 M	
pH	2	12	
Fe ₃ O ₄ /NTH	0.5 g L ⁻¹	1.0 g L ⁻¹	

Para conocer el número de experimentos a realizar se utilizó la ecuación 3.4.1 teniendo 3 factores con 2 niveles obtenemos un total de 8 experimentos, esto se hizo por duplicado, sumando un total de 16 experimentos, mostrados en el Anexo 2.

Posteriormente se realizó un diseño de optimización tipo Box Behnken para encontrar las condiciones óptimas de mineralización de IBU a una concentración de 15 mg L⁻¹ y un pH de 7, de acuerdo con los parámetros de la Tabla 14.

FACTORES		NIVELES	
	-1	0	+1
H_2O_2	0.25 M	0.5 M	0.75 M
Fe ₃ O ₄ /NTH	0.5 g L ⁻¹	1.5 g L⁻¹	2.5 g L⁻¹

Tabla 14. Factores y niveles del diseño Box Behnken para la mineralización de IBU sobre Fe $_{3}O_{4}/NTH$.

Para conocer el número de experimentos a realizar se utilizó la ecuación 3.4.1 teniendo 2 factores con 3 niveles obtenemos un total de 9 experimentos, esto se hizo por duplicado, dando un total de 18 experimentos (Anexo 1).

3.7. Mineralización de ibuprofeno por reacción Fenton heterogénea

3.7.1. Materiales y equipos

Ag₂SO₄, HgSO₄, K₂Cr₂O₇, KC₈H₅O, H₂O₂ 0.1 M de ácido sulfúrico o 0.1 M de hidróxido de sodio. Para la DQO se utilizó un equipo digestor para viales de DQO HI 83980 Hanna. Para la lectura de la absorbancia de Cr³⁺ y Cr⁶⁺ un espectrofotómetro UV-vis Perkin Elmer Modelo Lambda 25.

3.7.2. Procedimiento experimental

La mineralización de IBU en suspensiones de Fe₃O₄/NTH se realizó en tubos centrífuga de propileno de 15 mL. Típicamente, disoluciones de 15 mg L⁻¹, fueron preparadas en agua desionizada. El pH fue ajustado a los valores de pH deseados utilizando 0.1 M de ácido sulfúrico o 0.1 M de hidróxido de sodio. Después del ajuste de pH, la dosis correspondiente de Fe₃O₄/NTH fue mezclada con 10 mL de IBU. La mezcla de reacción se agitó durante una hora para lograr

una adsorción mínima. La reacción tipo Fenton heterogénea fue iniciada por la adición apropiada de una cantidad de peróxido de hidrógeno. Después de 24 h de reacción, el catalizador se separó con un imán de las muestras de reacción. Se recolectó inmediatamente una muestra del líquido sobrenadante y se determinó la demanda química de oxígeno (DQO).

Para la determinación de la DQO se siguió un método en microescala (Morales-Mejía, Vargas Campos, 2021). Se prepararon disoluciones con un patrón primario, el biftalato de potasio de alta pureza (Sigma-Aldrich). El patrón fue secado a 105 °C por 60 minutos y luego disuelto en agua tridestilada, para tener soluciones de 25, 50, 75, 100, 125, 150, 175, 200, 250 y 250 mg L⁻¹ con las cuales se realizaron una curva patrón midiendo también la DQO.

Se utilizaron tubos de vidrio borosilicato, los cuales fueron previamente lavados con una solución 1:10 (en volumen) de ácido sulfúrico concentrado en agua tridestilada, enjuagados con agua y secados al aire. Se prepararon las soluciones catalizadoras y de digestión (Tabla 15), de manera tal que en la adaptación a microescala se mantuvo la misma concentración de dicromato, de sulfato de plata y de ácido sulfúrico en el tubo de vidrio, justo antes de comenzar la digestión.

	Método adaptado a microescala
Solución catalítica (Ag ₂ SO ₄)	Solución comercial a 10 g/L de Ag₂SO₄en H₂SO₄ concentrado
Solución de digestión (Cr ₂ O ₇ ²⁻)	10.22 g de K ₂ Cr ₂ O ₇ , 0.75g de HgSO ₄ (secados a 105°C por 2 horas), 400 mL de agua tridestilada, 500 mL de H ₂ SO ₄ concentrado (lentamente), enfriando a temperatura ambiente con hielo externamente; aforar a 1000 mL con agua; en este orden

Tabla 15. Método de preparación de muestras para la medición de DQO a un método a microescala.

Posteriormente a las soluciones de la Tabla 15, las muestras provenientes de los experimentos de la reacción Fenton heterogénea y las soluciones patrón de biftalato de potasio se agregaron a los tubos de vidrio del digestor, en el orden que lo indica en la Tabla 16; los tubos fueron tapados firmemente, agitados lentamente y colocados en el bloque digestor (HANNA Instruments, HI 83980) precalentado a 150 °C. Ahí se efectuó la digestión de las soluciones patrón a 150 °C durante 2 horas (reflujo cerrado); culminada la digestión, los viales fueron enfriados lentamente al aire hasta temperatura ambiente y agitados suavemente sin invertir el

tubo de vidrio; las absorbancias de las soluciones digeridas y enfriadas fueron leídas en el espectrofotómetro (UV-vis Perkin Elmer Modelo Lambda 25) en una celda de vidrio rectangular con longitud de paso óptico de 1 cm, usando agua tridestilada como blanco.

Tabla 16. Método de preparación para de las soluciones catalítica y digestora para la medición de DQO a un método a microescala.

	Método adaptado a microescala
Muestra	1.0 mL
Solución catalizadora (Ag ₂ SO ₄)	1.0 mL
Solución de digestión $(Cr_2O_7^{2-})$	0.5 mL
Volumen total en el tubo (mL)	2.5 mL

Finalmente, para calcular el porcentaje de mineralización de IBU se utilizó la Ecuación 3.7.

IBU Mineralizado (%) = $(1 - \frac{DQO_{IBU 15 mg L-1} - DQO_{muestra}}{DQO_{IBU 15 mg L-1}}) \times 100$ (Ec. 3.7)

Figura 3.3. Metodología para la mineralización de IBU por reacción tipo-Fenton heterogénea.

3.8. Oxidación total de ibuprofeno

Con base a los resultados obtenidos en el diseño de experimentos para la mineralización de IBU, se realizó una reacción tipo Fenton heterogénea en las condiciones óptimas de reacción en las cuales se obtiene una mayor mineralización de IBU.

Se midió la concentración de IBU antes y después de la reacción Fenton heterogénea por medio de cromatografía de gases acoplado a un espectrómetro de masas. Se realizó una curva de calibración utilizando IBU a las concentraciones de 2.5, 5, 10 y 15 mg L⁻¹ y se obtuvo el espectro de masas para el ibuprofeno. Posteriormente se realizó la medición de las muestras provenientes de la reacción Fenton heterogénea por duplicado y a través de la curva de calibración se obtuvo la concentración remanente para cada muestra, así como los subproductos de degradación.

CAPÍTULO 4. RESULTADOS Y DISCUSIÓN

4.1. Síntesis de nanocatalizador

Se sintetizó Fe₃O₄ y Fe₃O₄/NHT por medio del método de coprecipitación que consiste en la mezcla de sales de FeSO₄ y FeCl₃ utilizando NH₄OH como base, llevándose a cabo las reacciones mostradas en los esquemas 4.1 y 4.2.

Magnetita:

Fe (II) + Fe (III)
$$\rightarrow$$
 Fe₃O₄ (4.1)

• Magnetita soportada en haloisita (Fe₃O₄/NTH):

Fe (II) + Fe (III)
$$\rightarrow$$
 Fe₃O₄ (4.2)
 Δ

En la Figura 4.1 se presentan las nanopartículas de Fe₃O₄ sintetizadas son de color negro metálico, en tanto el catalizador Fe₃O₄/NTH es un sólido color café oscuro. Se observa que tanto Fe₃O₄ como el catalizador tienen propiedades magnéticas, siendo atraídos por un campo magnético.

Figura 4.1. a) Magnetita; b) Fe₃O₄/ / NTH y c) Fe₃O₄/NTH en suspensión con campo magnético.

4.2. Caracterización del nanocatalizador

4.2.1. Adsorción y desorción de nitrógeno

En la figura 4.2 se presenta la distribución de tamaño de poro de las muestras de magnetita, haloisita y Fe₃O₄ obtenidas por el método BJH. Se observa para todos los casos la presencia de partículas mesoporosas (20 - 500 Å) y macroporosas diámetro de poro mayor a 500 Å) (Leofanti *et al.*, 1998). Para la haloisita, la distribución de tamaño de poro es trimodal con máximo en 33, 110 y 750 Å respectivamente. La distribución de tamaño de poro para magnetita es de tipo monomodal con un máximo de 77 Å. En tanto que el catalizador de magnetita/haloisita, presenta una distribución de tamaño de poro bimodal con máximos en 33 y 179.8 Å.

Respecto a la adsorción-desorción de nitrógeno de las muestras de haloisita, magnetita y magnetita/haloisita (Figura 4.3), se observa que las tres muestras presentan ciclos de histéresis, indicando la presencia de material mesoporoso. Para los NTH se observa un ciclo de histéresis muy pequeño de tipo H3, característico de los materiales mesoporosos que forman aglomerados de partículas con poros o forma de hendidura-laminar con tamaño no uniforme (Leofanti *et at.*, 1998) y que ha sido observado en diferentes muestras de NTH (Churchman et al., 1995) (Wang *et al.*, 2013). Las muestras de magnetita y magnetita/haloisita muestran ciclos de histéresis de tipo H1, característico de los sólidos que consisten en partículas cruzadas por canales casi cilíndricos o formados por agregados (consolidados) o aglomerados (no consolidados) de partículas esferoidales con poros de tamaño y forma uniforme (Leofanti *et at.*, 1998). La similitud de los tipos de histéresis entre magnetita y magnetita/haloisita, indica un mayor contenido de magnetita en el catalizador que haloisita.

El área superficial específica de los Fe₃O₄, NTH y Fe₃O₄/NTH, se determinó con los resultados de la adsorción de N₂ sobre las superficies, utilizando la ecuación de BET. Los resultados de las propiedades texturales se presentan en la Tabla 4.1.

Figura 4.2. Distribución de tamaño de poro de las muestras de haloisita, magnetita, magnetita/haloisita.

Figura 4.3. Ciclos de histéresis: tipo H₃ para nanotubos de haloisita y tipo H₁ para magnetita y magnetita/haloisita.

Muestra	Area BET (m² g⁻¹)	Volumen total de poro (cm g ⁻¹)	Diámetro de poro promedio	Distribución de tamaño de poro (A)
Fe ₃ O ₄	90.27	0.1979	87.72	20-10000
NTH	34.44		200	20-1000
Fe ₃ O ₄ /NTH	67.69	19.09	112.8	20-10000

Tabla 17 Resultados de la adsorción de N₂ sobre las superficies Fe₃O₄, NTH y Fe₃O₄/NTH.

4.2.2. Difracción de rayos X (DRX)

El patrón de difracción de rayos X de la muestra Fe₃O₄/NTH se presenta en la Figura 4.4. Las fases cristalinas identificadas son magnetita y nanotubos de haloisita, de acuerdo con las fichas Power Diffraction Pattern (PDF) 01-076-0958 y 00-009-0451 respectivamente. Los NTH fueron identificados con las reflexiones en 20 (11.87°, 20.1°, 24.5°, 35.1°, 38.1°, 54.6° y 62.6°). Esta identificación está marcada por el resultado más importante para el d₀₀₁ que corresponde a la reflexión en 11.87°, que se observaron en el patrón. Esta reflexión corresponde a un espacio-d alrededor de 7.77 Å que es un resultado característico para un NTH deshidratado (7 Å) (Brindley, 1980) (Downs *et al*, 1993). Para la fase de magnetita fueron identificado con las reflexiones en 20 (30,11°, 35,46°, 43.1°, 57.0° y 62.59°). Esta identificación esta marcad por el resultado más importante para el d₂₂₀ que corresponde a la reflexión en 30,11°, que se observaron en el patrón.

Figura 4.4. Patrón de difracción de rayos X de (a) nanotubos de haloisita (NTH), (b) magnetita sintetizada (Mag) y (c) catalizador sintetizado (Mag/NTH).

Tamaño de cristalito

Por medio de la ecuación de Scherrer, se determinó el tamaño de cristalito (D) en nm (Ec. 4.1). Se seleccionaron las reflexiones de mayor intensidad para NTH y Fe₃O₄ en el patrón de difracción de rayos X de la muestra de Fe₃O₄/NTH de la Figura 4.4. En la ecuación se sustituyó λ (1.54184 Å), y el ancho total a la mitad del máximo (FWHM), determinado en el software *OriginPro 2022*. Los tamaños de partículas de los picos seleccionados se representan en la tabla 18. Los tamaños de cristalito de los NTH naturales y la magnetita sintetizada por el método de coprecipitación son de 13.74 y 12.60 nm respectivamente. Sin embargo, cuando se realiza la síntesis de Fe₃O₄ en la presencia de NTH el tamaño de cristalito tanto de los NTH como de Fe₃O₄, se incrementan a 25.23 nm y 40.83 nm respectivamente.

Tabla 18 Tamaño de cristalito de NT	H naturales, magnetita sintetizada	y Fe₃O₄/NTH.
-------------------------------------	------------------------------------	--------------

Muestra	Difracción de ángulo de 2 theta	Diametro (nm)
NTH	19.95	13.74
Magnetita	35.60	12.60
Fe ₃ O ₄ /NTH	19.95	25.23

4.2.3. Espectroscopía infrarroja por transformada de Fourier (FTIR)

El espectro de FTIR de la muestra de Fe₃O₄/NTH se presenta en la figura 4.6. El espectro muestra las vibraciones para NTH- en el intervalo de 4000–400 cm⁻¹. Las bandas en 3695 cm-1 y 3622 cm⁻¹ corresponden al alargamiento de grupos O – H estructurales de los NTH. Las bandas 3527, 3456 y 1650 cm⁻¹ son debidas al estiramiento y doblamiento de las moléculas de agua. Las bandas de absorción encontradas en 1091 cm-1 y 1032 cm-1 son debidas a la presencia de Si – O – Si y la banda en 910 cm⁻¹ corresponde a la flexión de Al-O-OH respectivamente para NTH (Yuan *et al.*, 2012). También, se observa una vibración en 553 cm⁻¹ que corresponde a magnetita, es importante mencionar que la magnetita presenta esta vibración característica en el espectro infrarrojo en el intervalo de 540 a 570 cm⁻¹ (Fe-O).

Figura 4.5. Espectro de infrarrojo para la muestra de Fe₃O₄/NTH.

4.3. Curva de calibración de ibuprofeno

Para obtener la curva de calibración de ibuprofeno en medio acuoso, se trazaron los espectros de absorbancia en función de longitud de onda en el intervalo de 200-300 nm, para las concentraciones de 1.5 a 15 mg L⁻¹. Se realizaron los espectros a los pH de 2, 7 y 12 (Figuras 4.6 - 4.8), en donde se observa que la longitud de onda de máxima absorción para las disoluciones a pH 2 es de 222 nm y de 224 nm para las disoluciones de IBU a pH 7 y 12 respectivamente.

Figura 4.6. Espectros de absorción UV de disoluciones de ibuprofeno a pH= 2.

Figura 4.7. Espectros de absorción de UV de disoluciones de ibuprofeno a pH de 7.

Figura 4.8. Espectros de absorción UV de disoluciones de ibuprofeno a pH de 12.

Con los resultados de absorbancia a la longitud de onda de máxima absorbancia se trazaron las curvas de absorbancia en función de la concentración de ibuprofeno (mg L⁻¹) a los pH de 2, 7 y 12 como se muestra en las figuras 4.9 - 4.11 respectivamente. Posteriormente, los datos se ajustaron a la ecuación de una línea recta, y se encontró que los resultados de absorbancia en función de la concentración de IBU (mg L⁻¹), se ajustan a la ecuación de Lambert-Beer (Libro de análisis) con R² de 0.99408, 0.98839 y 0.99759 para pH de 2, 7 y 12 respectivamente. El coeficiente de absortividad (ϵ) en L mg⁻¹ cm⁻¹ es 0.2135 para pH 2 y de 0.2289 para valores de pH de 7 y 12.

Ecuación pН Coeficiente de determinación R² 2 A = 0.06802 + 0.2135 [IBU] 0.99408 7 A = 0.04551 + 0.2289 [IBU] 0.98839 12 A = 0.06802 + 0.2399 [IBU] 0.99839 0.45 pH = 20.40 0.35 0.30 Absorbancia 0.25 0.20 0.15 Equation = a + b*x Intercept 0.06802 ± 0.0 0.10 Slope 0.02135 ± 8.2

6 7

Figura 4.9. Curva de calibración para ibuprofeno a pH=2.

Concentración IBU (mg L⁻¹)

0.05

0.00

0

1 2 3 4 5

Residual Sum

R-Square (CO Adj. R-Square

8 9 10 11 12 13 14 15 16

Pearson's r

2.37388E-4

0.99778

0.99556

0.99408

Tabla 19. Curvas de calibración de IBU en disolución acuosa en función del pH.

Figura 4.10. Curva de calibración para ibuprofeno a pH=7.

Figura 4.11. Curva de calibración para ibuprofeno a pH=12.

4.4. Adsorción de ibuprofeno en Fe₃O₄/NTH

4.4.1. Superficie de respuesta

Con el objetivo de conocer las condiciones óptimas para la adsorción IBU sobre Fe_3O_4/NTH , se realizó un diseño de experimentos teniendo como variables al pH y la concentración de Fe_3O_4/NTH . Además, se realizaron estudios cinéticos y se obtuvieron las isotermas de adsorción. Por medio de Espectroscopia UV se calculó la concentración remanente de IBU para cada sistema utilizando las ecuaciones correspondientes a las curvas de calibración en función del pH.

Posteriormente, a través del software *Design Expert 11*, se obtuvieron los modelos estadísticos lineal, cuadrático y cúbico. En la Tabla 20, se presentan los valores secuenciales de p, Valor p, de falta de ajuste, la R² ajustada y la R² predicha para los modelos. De acuerdo con los valores de la Tabla 20, el mejor ajuste de los resultados de adsorción, considerando diferentes valores pH y dosis del adsorbente, es con el modelo cuadrático.

Modelo	Valor de p	Ajuste de valor de p	R ² ajustado	R ² predicho	
Linear	0.0009	0.0006	0.7401	0.6220	
2FI	0.8766	0.0005	0.7085	0.4662	
Cuadrático	0.0004	0.0122	0.9721	0.8767	Sugerido
Cúbico	0.3341	0.0071	0.9758	0.0083	

Tabla 20. Resumen estadístico de modelos de un modelo de optimización Box-Behnken para la adsorción de IBU sobre Fe_3O_4/NTH .

Con el modelo cuadrático se trazó con el software *Design Expert 11*, el gráfico de superficie de respuesta de la adsorción de IBU en función del pH y de la dosis del adsorbente, mostrado en la Figura 4.12, en donde se observa que a pH más ácidos se obtiene una adsorción mayor, a pH 2 aproximadamente del 8%, a pH neutro alrededor de 3% y en pH 12 disminuye entre 2-2.5%. También, se observa un ligero incremento en la adsorción al incrementar la cantidad de Fe₃O₄/NTH llegando a un máximo.

Figura 4.12. Porcentaje de IBU adsorbido a una concentración de 15 mg L⁻¹ sobre Fe₃O₄/NTH en función del pH y concentración de Fe₃O₄/NTH.

Estos resultados indican que a pH ácidos se ve favorecida la adsorción de IBU en Fe₃O₄/NTH, debido a que los protones del ácido carboxílico del IBU forman puentes de hidrógeno con la superficie de la magnetita (Liyanage A. S., 2020), como se observa en la Figura 4.15. Por otra parte, a pH básicos, el ibuprofeno está en su forma aniónica debido a la desprotonación de su grupo carboxílico la cual presenta una carga negativa al igual que la superficie de Fe₃O₄/NTH repeliéndose entre sí y desfavoreciendo la adsorción.

Figura 4.13. Puntos formados entre el IBU y la superficie de la magnetita (tomado de Liyanage, 2020).

El incremento en la adsorción con el incremento de la cantidad de Fe₃O₄/NTH, es debido a que aumentan el número de sitios activos para la adsorción del IBU. (Figura 4.14).

Figura 4.14. PZC (6.5) de la magnetita (tomado de Liyanage, 2020).

Los resultados se evaluaron en función de los valores estadísticos de la suma de cuadrados (SS), los grados de libertad (df), la media cuadrada, el índice de variación de Fisher (valor F) y la probabilidad (valor P). Los resultados del análisis ANOVA se muestran en la Tabla 4.5. Los resultados fueron inferiores a 0,050, lo que indica que este término del modelo es significativo.

Hipótesis nula (Ho): $X_{pH} = X_{Fe3O4/NTH}$ Hipótesis alterna (H1): $X_{pH} \neq X_{Fe3O4/NTH}$ Criterio: se acepta Ho si $F_{exp} < F_{tab}$ o P > 0.05 se acepta H1 si $F_{exp} > F_{tab}$ o P < 0.05

Variable	Suma de cuadrados	df	Suma de cuadrados	Valor F	Valor p	
Modelo	83.31	5	16.66	77.53	< 0.0001	significante
А-рН	66.40	1	66.40	308.97	< 0.0001	
B-Fe ₃ O ₄ /NTH	0.2091	1	0.2091	0.9728	0.3621	
AB	0.0576	1	0.0576	0.2680	0.6232	
A ²	16.62	1	16.62	77.32	0.0001	
B ²	1.44	1	1.44	6.68	0.0415	
Residual	1.29	6	0.2149			
Lack of Fit	1.24	3	0.4137	25.71	0.0122	
Error	0.0483	3	0.0161			
Cor Total	84.60	11				

Tabla 21 . Análisis de varianza para la adsorción de IBU sobre Fe₃O₄/NTH.

También, se obtuvo la ecuación del modelo cuadrático que describe cuantitativamente la relación de la respuesta con los factores y así poder conocer las condiciones experimentales óptimas de experimentación para la absorción de IBU sobre Fe₃O₄/NTH (Ec. 4.1).

IBU adsorbido (%) =
$$3.47 - 3.33 \text{ A} + 0.1867 \text{ B} - 0.12 \text{ AB} + 2.5 \text{ A}^2 - 0.7338 \text{ B}^2$$
 (Ec. 4.1)

Finalmente, por medio del software *Design Expert 11* se obtienen las condiciones óptimas experimentales para la absorción de IBU a una concentración de 15 mg L-1 y una temperatura de 298.15 K son a un pH de 2 y una concentración de Fe₃O₄/NTH de 1.5 g L-1, adsorbiendo una cantidad de 1.1 mg por cada gramo de adsorbente.

4.4.2. Cinética de la adsorción de ibuprofeno sobre Fe₃O₄/NTH

Para conocer la rapidez de adsorción de IBU sobre el adsorbato Fe₃O₄/NTH, se realizó una cinética de adsorción, en donde se obtuvieron datos de la cantidad adsorbida de IBU por gramo de adsorbente a 297.15 K en función del tiempo (pH=2 y dosis del adsorbente de 1.5 mg g⁻¹), Figura 4.17. Se observa que se incrementa la cantidad adsorbida de IBU sobre Fe₃O₄/NTH, según la concentración. Esto se debe a que a mayores concentraciones de IBU, es mayor el desplazamiento del equilibrio de adsorción-desorción hacia el proceso de adsorción hasta alcanzar las mayores concentraciones, lo que muestra una saturación de los sitios activos del adsorbente. Estos resultados de adsorción de IBU sobre Fe₃O₄/NTH, se ajustaron a los modelos de ecuaciones cinéticas de adsorción de pseudo primer orden, pseudo segundo orden y difusión intrapartícula.

Figura 4.15. Cinética de adsorción de IBU sobre Fe₃O₄/NTH

4.4.2.1. Difusión intrapartícula

Este modelo se describe mediante la ecuación 4.2.

$$q_{t} = \kappa_{t} t^{1/2} + C \tag{4.2}$$

donde q_t es la cantidad de masa de IBU adsorbida por unidad de masa (mg·g⁻¹) en el tiempo t, y kt (min^{-1/2}) y C son constantes. A partir de un gráfico de la masa absorbida (q_t) frente a t ^{1/2},

Figura 4.16. Los datos se ajustaron a una regresión lineal. A partir de la ecuación de la recta se obtuvieron las constantes de difusión intrapartícula (k_t) y, C. Los resultados, que se presentan en la Tabla 22

Figura 4.16. Modelo cinético de difusión intrapartícula orden para la adsorción de IBU sobre Fe_3O_4/NTH .

Tabla 22 Valores de constantes asociadas al Modelo cinético de difusión intrapartícula para la adsorción de IBU sobre Fe₃O₄/NTH.

IBU (mg L-1)	R ²	Constante k (min ²)	Constantes C (mg g ⁻¹)
9	0.93788	$\kappa_3 = 0.00184$	C = 0.46913
11	0.98232	$\kappa_3 = 0.00221$	C = 0.55944
13	0.99102	$\kappa_3 = 0.00383$	C = 0.46501
15	0.99254	$\kappa_3 = 0.00400$	C = 0.56147

4.4.2.2. Pseudo primer orden

El modelo de pseudo primer orden está definido por la ecuación (4.3)

$$\ln \left(q_e - q_t \right) = \ln q_e - \kappa_1 t \tag{4.3}$$

En donde $q_e y q_t$, son los valores de la masa de IBU absorbida por unidad de masa (mg·g⁻¹) a tiempo t, respectivamente, y k₁ (min⁻¹) es la constante de adsorción de pseudo primer orden. Se realizó el gráfico de ln (qe - qt) en función al tiempo y los datos se ajustaron a una regresión lineal (Figura 4.17) y se calculó la constante k. Estos datos se presentan en la Tabla 23.

Figura 4.17. Modelo cinético de pseudo primer orden para la adsorción de IBU sobre Fe $_{3}O_{4}/NTH$.

Tabla 23 Valores de constantes asociadas al modelo cinético de pseudo primer orden para	la
adsorción de IBU sobre Fe ₃ O ₄ /NTH.	

IBU (mg L ⁻¹)	R ² Constantes asociadas (mi	
9	0.90328	$\kappa_1 = 1.6149E-4$
11	0.95801	$\kappa_1 = 2.0789E-4$
13	0.95856	$\kappa_1 = 1.2504E-4$
15	0.97334	$\kappa_1 = 1.9711E-4$

4.4.2.3. Pseudo segundo orden

El modelo cinético de pseudo segundo orden se expresa mediante la ecuación (4.4).

$$t/q_t = 1/\kappa_2 q_e^2 + (1/q_e)t$$
(4.4)

Donde q_e es la masa absorbida por unidad de masa (mg·g⁻¹) en equilibrio, q_t es la cantidad de IBU adsorbida por unidad de masa (mgg⁻¹) en cualquier momento y k_2 (g·mg⁻¹·min⁻¹) es la constante de velocidad de pseudo segundo orden. Para evaluar k_2 en este modelo, se representó t/ q_t en función del tiempo, Figura 4.18. Después de una regresión lineal, q_e se determinó a partir del valor inverso de la pendiente y k_2 , a partir de la intersección de la gráfica, Ec. (4.5). Los resultados, que se presentan en la Tabla 24.

$$\kappa_2 = \frac{1}{aq_e^2} \tag{4.5}$$

Figura 4.18. Modelo cinético de pseudo segundo orden para la adsorción de IBU sobre Fe $_3O_4/NTH$.

Tabla 24. Valores de constantes asociadas al modelo cinético de pseudo segundo orden para la adsorción de IBU sobre Fe₃O₄/NTH.

IBU (mg L ⁻¹)	R ²	Constantes asociadas (g·mg ⁻¹ ·min ⁻¹)
9	0.99979	$\kappa_2 = 9.050 \text{E-4}$
11	0.99687	$\kappa_2 = 6.467 \text{E-}4$
13	0.99354	$\kappa_2 = 3.008\text{E-4}$
15	0.99872	$\kappa_2 = 3.276\text{E-4}$

Con base en los resultados de R², el modelo al que mejor se ajusta la adsorción de IBU es al de PSO, característico de adsorbentes en concentraciones iniciales bajas y con adsorbentes con abundantes en sitios activos (Banerjee *et al.*, 2016). Para 15 mg L⁻¹, la k₂ es de 3.276 E-4 (g·mg⁻¹·min⁻¹), con R² es de 0.99872, modelos cinéticos de pseudo orden han sido obtenidos regularmente para la adsorción de ibuprofeno con otros adsorbentes como óxido de grafeno (Banerjee *et al.*, 2016), cobre dopado (Xiong *et al.*, 2021), nanocompositos de sílice super paramagnética (Kollarahithlu & Balakrishnan, 2021) y estructuras organometálicas de circonio funcionalizado (Alkhathami *et al.*, 2023).

4.4.3. Equilibrio de adsorción

Se adquirieron los datos de adsorción al equilibrio (14 h de adsorción), y estos se ajustaron a las isotermas de Henry, Freundlich y Langmuir.

4.4.3.1 Isoterma de Henry

La isoterma de adsorción de Henry se usa comúnmente para describir los procesos de adsorción a bajas concentraciones y se expresa matemáticamente mediante la ecuación 4.6. donde C_e (mg· L⁻¹) es la concentración de equilibrio de IBU, q_e (mg· g⁻¹) es la cantidad de equilibrio de IBU, κ (mg L·mg⁻¹· g⁻¹) es la constante para un adsorbato y un adsorbente determinados, por unidad de masa de adsorbente, en el equilibrio. Se trazó una gráfica q_e vs C_e a 298.15 K (Figura 4.19). Los datos se ajustaron a una regresión lineal.

Figura 4.19. Isoterma de Henry para la adsorción de IBU sobre Fe₃O₄/NTH.

4.4.3.2. Isoterma de Freundlich

La isoterma de adsorción de Freundlich se usa comúnmente para describir los procesos de adsorción en superficies heterogéneas y se expresa matemáticamente mediante la ecuación 4.7.

$$\log q_e = \log \kappa + \frac{1}{n} \log C_e$$
(4.7)

Donde C_e (mg· L⁻¹ es la concentración de equilibrio de IBU, q_e (mg· g⁻¹) es la cantidad de equilibrio de IBU, κ (mg· g⁻¹) y n son constantes para un adsorbato y un adsorbente determinados, por unidad de masa de adsorbente, en equilibrio. Valores altos de k indican la capacidad de adsorción. La pendiente 1/n de la ecuación de Freundlich indica la heterogeneidad de la superficie del adsorbente, donde valores de 1/n cercanos a cero implican una mayor heterogeneidad mientras que valores de 1/n más cercanos a la unidad implican una menor heterogeneidad. Para evaluar los resultados mediante la isoterma de Freundlich, se trazó una gráfica log q_e vs log C_e a 298.15 K (Figura 4.20) Los datos se ajustaron a una regresión lineal; y se obtuvieron los valores de las constantes n y κ (Tabla 4.11).

Figura 4.20. Isoterma de Freundlich para la adsorción de IBU sobre Fe₃O₄/NTH.

4.4.3.3. Isoterma de Langmuir

La isoterma de Langmuir, matemáticamente mostrada en la ecuación 4.8, que asume una adsorción en monocapa.

$$\frac{C_e}{q_e} = \frac{1}{q_{max}\kappa_l} + \frac{1}{q_o} C_e \tag{4.8}$$

Donde C_e (mg· L⁻¹) es la concentración de equilibrio, q_e (mg· g⁻¹) es la cantidad de adsorbato adsorbido por unidad de masa de adsorbente y q_{max} es la capacidad de adsorción (mg g⁻¹) y K_L es la constante de Langmuir y está relacionada con la afinidad de adsorción (Lmg⁻¹). Se realizó el gráfico de C_e/q_e vs Ce (Figura 4.21). Los resultados y los valores de las constantes se presentan en la Tabla 25.

Figura 4.21. Isoterma de Langmuir para la adsorción de IBU sobre Fe₃O₄/NTH

Isoterma	R ²	Constantes asociadas	
Henry	0.98837	кн =0.06783 mg L⋅mg ⁻¹ ⋅ g ⁻¹	
Freundlich	0.99126	$\kappa_{\rm F} = 0.1244 \text{ (mg g}^{-1}\text{)}$ (1/n) = 0.83162	
Langmuir	0.87356	κ_l = 0.0197 (L mg ⁻¹) q_{mas} = 5.144 mg g ⁻¹	

Tabla 25. Valores de constantes asociadas a la isotermas para la adsorción de IBU sobre Fe $_3O_4/NTH$.

Los datos experimentales de las muestras de IBU se analizaron utilizando modelos de Henry, Langmuir y Freundlich. El modelo de Henry ($R^2 = 0.98837$) comúnmente para describir los procesos de adsorción a bajas concentraciones como en las utilizadas en este trabajo, también supone una adsorción en monocapa sobre un soporte estructuralmente homogéneo. El modelo de Langmuir (R^2 =0.87356) supone una adsorción en monocapa sobre un soporte estructuralmente homogéneo además de que los sitios de sorción son energéticamente equivalentes. Sin embargo, el Fe₃O₄/NTH no tiene una superficie homogénea ya que la distribución de la magnetita se distribuye de manera heterogénea sobre la superficie de los NTH. por lo que estos no se ajustan al tipo de adsorción de IBU sobre Fe₃O₄/NTH.

Por otro lado, el modelo de Freundlich (R²=0.99126) fue el que tuvo una mejor correlación, supone energías de adsorción heterogéneas en la superficie de un adsorbente, sin embargo, mantienen una baja heterogeneidad ya que el valor de 1/n es cercano a uno Los valores de constantes asociadas a la isotermas para la adsorción de IBU sobre Fe₃O₄/NTH están en la tabla 26.

Adsorbente	tiempo	cantidad máxima adsorbida		Referencia
NTH	75 horas	q _e = 39.52 mgg ⁻¹	k _f =2.46 mg g⁻¹ 1/n = 0.25	J. Kurczewska et al 2017
CNT- COOH/MnO ₂ / Fe ₃ O ₄	Co= 20 a 100 mgL ⁻¹ 0.5 horas ph 2 Co=10 - 100 mgL ⁻	q _e =103.09 mgg ⁻¹	k _f = 19.231mg g⁻ ¹ 1/n = 0.6353	I. Lung, et al.
Fe₃O₄/Douglas fir biochar	60 min ph 2 a 10 Co = 100 mg L ⁻¹	q _e = 35 mg g⁻¹	k _f =6.2 mg g⁻¹ 1/n = 0.158	Liyanage, A.S., 2020
Fe ₃ O ₄ /NTH	30 min pH 2 Co: 15 mg L ⁻¹	q _e = 1.1 mg g ⁻¹	k _f =0.1244 (mg g⁻¹ 1/n =0.83162	Este trabajo

Tabla 26. Comparación de adsorción de IBU en otros trabajos.

4.4.4. Espectro FTIR de la adsorción de Ibuprofeno en Fe₃O₄/NTH

El espectro de FTIR correspondiente a la IBU adsorbido a pH 7 en Fe₃O₄/NTH se presenta en la Figura 4.22. Se observan las vibraciones para NTH-Fe₃O₄ en el intervalo de 4000–400 cm⁻¹. Las bandas en 3695 cm⁻¹ y 3622 cm⁻¹ corresponden al alargamiento de grupos O – H estructurales de los NTH. Las bandas 3527, 3456 y 1650 cm⁻¹ son debidas al estiramiento y doblamiento de las moléculas de agua. Las bandas de absorción encontradas en 1091 cm⁻¹ y 1032 cm⁻¹ son debidas a la presencia de Si – O – Si y la banda en 910 cm⁻¹ corresponde a la flexión de Al-O-OH respectivamente para NTH (Yuan *et al.*, 2012). Además, se observa la vibracion en 553 cm⁻¹ que corresponde a magnetita. Sin embargo, no se logra apreciar las vibraciones características de ibuprofeno como la banda intensa en 1721,5 cm⁻¹ que se atribuye al estiramiento del grupo carbonilo C=O de la función carboxilo (Silverstein *et al.*, 1991), y que se ha observado en espectros de FTIR en fase sólida (Matkovic *et al.*, 2004), probablemente debido a que la muestra a la que se realizó el espectro de FTIR no tuvo suficiente tiempo de adsorción para ser detectada en el espectro.

4.5. Mineralización de ibuprofeno por reacción tipo Fenton heterogénea

El principal objetivo de este trabajo es encontrar las condiciones óptimas experimentales en una reacción tipo Fenton heterogénea para la degradación de IBU, a través de un diseño de experimentos, en el cual las variables de estudio fueron el pH, concentración de Fe₃O₄/NTH y concentración de peróxido de hidrógeno (H₂O₂) a una temperatura de 25°C.

Se utilizó el software estadístico *Design Expert 11* para evaluar las variables y ver su efecto sobre la mineralización de IBU. Primero se realizó un diseño de monitoreo para seleccionar los valores significativos importantes, cuyos cambios muestran diferencia significativa en la mineralización de IBU, posteriormente se utilizó un diseño de optimización para encontrar el modelo matemático que nos pueda predecir las condiciones óptimas experimentales. Para la cuantificación de IBU mineralizado por medio de la reacción fenton heterogénea se midió la demanda química de oxígeno (DQO) por medio de un método a microescala (Morales-Mejía, 2021).

La reacción para la mineralización de IBU por medio de una reacción tipo Fenton heterogénea es la mostrada en la ecuación 4.9.

$$Fe_{3}O_{4}/NTH$$

$$C_{13}H_{18}O_{2} + 33H_{2}O_{2} \rightarrow 13CO_{2} + 42H_{2}O \qquad (4.9)$$

Para conocer la cantidad de IBU que no fue mineralizada, así como los posibles subproductos de oxidación generados en la reacción Fenton heterogénea, se midió la demanda química de oxígeno, en donde al utilizar un oxidante fuerte como el dicromato de potasio, en un medio ácido, es posible oxidar totalmente al IBU (esquema 4.10). Así como a los subproductos de oxidación del IBU remanente en el sistema después de la reacción Fenton heterogénea (ecuación 4.11).

$$4H^{+} + C_{13}H_{18}O_{2} + 5Cr_{2}O_{7}^{2-} \rightarrow 13CO_{2} + 11H_{2}O + 10Cr^{3+}$$
(4.10)
(8d + c)H⁺ + CnHaObHc + dCr₂O₇²⁻ $\rightarrow 13CO_{2} + eH_{2}O + 2dCr^{3+}$ (4.11)

Después de la oxidación con dicromato se cuantificó por espectroscopia visible la cantidad de Cr³⁺ formado debido a la reducción del dicromato de potasio, el cual pasa de un color amarillo a verde al oxidar al IBU (Figura 4.23).

Figura 4.23. Oxidación total de IBU a diferentes concentraciones utilizando Cr (VI) como agente oxidante.
Previamente, se realizó una curva de calibración para saber la longitud de onda máxima de absorción para la cuantificación de mineralización del IBU, en donde tiene una mayor correlación para la longitud de onda de 444nm (R^2 = 0.98898) debido a que las concentraciones de IBU son bajas (menores a 15 mg L⁻¹) (Figura 4.24 y Figura 4.25).

Figura 4.24. Oxidación de total de IBU a diferentes concentraciones utilizando Cr (VI) como agente oxidante a una longitud de onda de 444 nm

Figura 4.25. Oxidación de total de IBU a diferentes concentraciones utilizando Cr (VI) como agente oxidante a una longitud de onda de 596 nm.

También se realizó la DQO para el caso de que se use biftalato de potasio como material orgánico a oxidar (Ecuacion 4.12) y se realizó una curva de calibración a concentraciones de biftalato de potasio de 0, 25, 50, 75, 100, 125, 150, 175, 200, 225 y 250 mg L⁻¹.

 $41H_2SO_4 + 2KC_8H_5O_4 + 10K_2Cr_2O_7 \rightarrow 16CO_2 + 10Cr_2(SO_4)_3 + 46H_2O + 11K_2SO_4$ (4.12)

Figura 4.26. Oxidación de total de IBU a diferentes concentraciones utilizando Cr (VI) como agente oxidante a una longitud de onda de 444 nm.

Figura 4.27. Oxidación de total de IBU a diferentes concentraciones utilizando Cr (VI) como agente oxidante a una longitud de onda de 596 nm.

Finalmente, en el esquema 4.13 se tiene la reacción química si se plantea la oxidación del biftalato de potasio con oxígeno molecular. por lo tanto, de acuerdo con las ecuaciones 4.11 y 4.12, un mol de dicromato tiene la misma capacidad oxidativa que 1.5 moles de oxígeno molecular y con base a la ecuación 4.13, la DQO teórica del biftalato es de 1.175 g de oxígeno por cada gramo de biftalato de potasio (Figura 4.28).

$$H_2SO_4 + 2KC_8H_5O_4 + 15O_2 \rightarrow 16CO_2 + 6H_2O + K_2SO_4$$
(4.13)

Figura 4.28. DQO del biftalato de potasio.

Utilizando el software *Design Expert 11* se obtuvieron los modelos estadísticos (Tabla 27), en el cual el que más se ajusta es el modelo cuadrático, en donde es posible conocer los factores principales, así como las interacciones entre estos.

Modelo	Valor p secuncial	Deviación p	R² Ajustada	R² predicho	
Linear	0.0026	0.0011	0.9773	0.9595	
2FI	0.8426	0.0009	0.9990	0.9980	
Cuadrático	0.0002	0.0193	0.9995	0.9995	Sugerido

Tabla 27 Resumen estadístico de un modelo de optimización Box-Behnken para la mineralización de IBU.

Se obtuvieron las siguientes gráficas de superficie de respuesta en donde se puede muestra en qué condiciones experimentales se obtiene un mayor porcentaje de mineralización de IBU.

FIGURA 4.29. Gráficas de IBU mineralizado en función de la concentración de Fe₃O₄/NTH (g L⁻¹), pH y concentración de H₂O₂ (M).

Por medio de un análisis de varianza (ANOVA) se realizó la siguiente prueba de hipótesis:

Los resultados se presentan en la Tabla 28. Debido a que F _{exp} > F _{tab} y P < 0.05 para los factores pH, Fe₃O₄/NTH y H₂O₂, así también para las interacciones AC, BC y ABC por lo que se acepta la hipótesis alterna, se puede apreciar el efecto de cada variable con el siguiente diagrama de Pareto (Figura 4.26) en donde la line negra representa la prueba t, en donde la variable con un valor superior tiene un efecto significativo sobre la mineralización de IBU.

Variable	Suma de cuadrados	df	Medio de cuadrados	Valor F	Valor P	
Modelo	3465.44	7	495.06	4685.36	< 0.0001	significante
А-рН	2899.55	1	2899.55	27441.87	< 0.0001	
B- H ₂ O _{2.}	23.40	1	23.40	221.47	< 0.0001	
C- Fe ₃ O ₄ /NTH	464.73	1	464.73	4398.24	< 0.0001	
AB	0.1620	1	0.1620	1.53	0.2439	
AC	75.30	1	75.30	712.64	< 0.0001	
BC	1.03	1	1.03	9.70	0.0110	
ABC	1.27	1	1.27	12.03	0.0060	
Curvatura	0.0000	0				
Curvatura	379.43	1	379.43	3590.97	< 0.0001	
Error	1.06	10	0.1057			
Total	3845.92	18				

Tabla 28 Análisis de varianza para la mineralización de IBU.

Figura 4.30. Diagrama de Pareto, el color azul indica los efectos negativos y el color anaranjado representa los efectos positivos en la mineralización de IBU.

También, a partir del ANOVA del modelo cuadrático se obtiene la ecuación 4.14, que describe cuantitativamente la relación de la respuesta, con los factores y así puede predecir la cantidad de IBU mineralizado.

El principal efecto para la mineralización de IBU fue el pH, el cual incrementa la cantidad de IBU mineralizada conforme se hace más ácido el sistema, debido a que se favorece la formación de radicales hidroxilos (HO⁻) según la ecuación 1 los cuales son los responsables de la oxidación de IBU.

Otro factor significativo en la mineralización de IBU fue la concentración de Fe₃O₄/NTH. La formación de radicales hidroxilos se genera en la superficie del Fe₃O₄ /NTH al reaccionar el Fe con peróxido de hidrógeno, formando así radicales hidroxilos, por lo que al aumentar la concentración de catalizador aumentan los sitios activos disponibles para la formación de radicales hidroxilos y favorece la mineralización de IBU. según la ecuación 1 y 2.

También la interacción AC (pH con Fe₃O₄/NTH) tuvo un valor significativo en la mineralización, debido a que el pH afecta a la superficie de Fe₃O₄/NTH debida a la protonación de la Fe₃O₄ y NTH a pH ácidos lo que favorece la formación de radicales hidroxilos.

La concentración de H₂O₂ también afecta significativamente la mineralización del IBU ya que los radicales hidroxilos provienen del peróxido de hidrógeno por lo que al aumentar su concentración favorece la mineralización. También la interacción BC (Fe₃O₄/NTH con H₂O₂) muestra contribución debido a que él tiene que reaccionar el H₂O₂ con Fe₃O₄/NTH para formar a los radicales hidroxilos.

Con base a los resultados obtenidos en el diseño de monitoreo se realizó un diseño de optimización tipo Box Behnken con el objetivo de encontrar las condiciones óptimas en la mineralización de IBU (15 mg L⁻¹) a un pH de 7 y una temperatura de 25 °C. Se analizaron los factores de concentración de catalizador Fe₃O₄/NTH y concentración de oxidante H₂O₂y se obtuvieron los modelos estadísticos (Tabla 29), en el cual el que más se ajusta es el modelo de cuadrático.

Modelo	Valor p	Ajuste valor de p	R² Ajustada	R ² Predicha	
Linear	0.7970	0.0141	-0.1621	-0.7955	
2FI	0.7379	0.0113	-0.2881	-2.6005	
Cuadrático	< 0.0001	0.5212	0.9251	0.8204	Sugerido
Cubico	0.8415	0.2246	0.8969	-1.0033	

Tabla 29 Resumen estadístico de modelos de optimización para la mineralización de IBU.

Adicionalmente, se obtuvo la gráfica de superficie de respuesta (Figura 4.31), en donde se muestra las condiciones óptimas experimentales en donde se obtiene un mayor porcentaje de mineralización de IBU a un pH de 7 y una temperatura de 298.15 K (0.5 M de H_2O_2 y 1.5 mg L⁻¹ de dosis del catalizador Fe₃O₄/NTH), ya que aun aumento de concentración de estas hay una saturación en los sitios activos en la superficie del catalizador que es donde ocurre la formación de radicales hidroxilos.

FIGURA 4.31. Gráficas dé IBU mineralizado en función de Fe₃O₄/NTH y H₂O₂ a un pH de 7.

También, se obtuvo la ecuación 4.15 del modelo cuadrático que describe cuantitativamente la relación de la respuesta con los factores y así poder conocer las condiciones óptimas de experimentación para la mineralización de IBU. En donde A: H₂O₂ y B: Fe₃O₄/NTH.

A pH 7, la dosis del catalizador afecta la mineralización de IBU y la concentración de H_2O_2 también afecta significativamente la mineralización del IBU ya que los radicales hidroxilos provienen del peróxido de hidrógeno por lo que al aumentar su concentración favorece la mineralización. También la interacción AB (Fe₃O₄/NTH con H₂O₂) muestra contribución debido a que él tiene que reaccionar el H₂O₂ con Fe₃O₄/NTH para formar a los radicales hidroxilos. Esta ecuación se cumple en el intervalo de concentraciones mostrado en la superficie de respuesta de la Figura 4.31.

4.6. Oxidación de ibuprofeno por reacción Fenton heterogénea.

Con base a los resultados obtenidos en el diseño de experimentos para la mineralización de IBU, se realizó una reacción tipo Fenton heterogénea en las condiciones óptimas de reacción en las cuales se obtiene una mayor mineralización de IBU, se realizó por triplicado (Tabla 4.30).

Tabla 4.30. Condiciones óptimas experimentales para la mineralización de IBU.

IBU	Fe₃O₄/NTH	H_2O_2	рН	tiempo	mineralizado
15 mg L ⁻¹	1.5 g L ⁻¹	0.5 M	7	24 h	99.99 %

Se realizó una curva de calibración utilizando IBU a las concentraciones de 2.5, 5, 10 y 15 mgL⁻¹ y se obtuvo el espectro de masas para el ibuprofeno.

Figura 4.32. Curva de calibración de cromatografía de gases para IBU.

Se obtuvieron los cromatogramas correspondientes a la curva de calibración (ANEXO) y también se obtuvo el espectro de masas correspondiente al IBU.

Figura 4.33. Cromatograma de IBU a una concentración de 5 mg L⁻¹.

Figura 4.34. Espectro de masas de IBU.

Posteriormente se realizó la medición de las muestras provenientes de la reacción Fenton heterogénea por duplicado y a través de la curva de calibración se obtuvo la concentración remanente para cada muestra, así como los espectros de masas de los subproductos de oxidación (Tabla 31).

	Sistema	IBU removido (%)	Subproductos formados
1		99.99%	Tiempo de retención = 0.415 min
2		99.99%	Tiempo de retención = 0.415 min
3		96.66 %	Tiempo de retención = 0.415 min, 1.24 min

.

Tabla 31. Porcentaje de ibuprofeno removido por medio de una reacción Fenton heterogénea.

CONCLUSIONES

Con el objetivo de obtener un método alterno para la eliminación de ibuprofeno, que es un contaminante de preocupación emergente, en este trabajo se sintetizó magnetita (Fe₃O₄) *in situ* a través del método de coprecipitación sobre nanotubos de haloisita (NTH). Las nanopartículas obtenidas fueron caracterizadas por DRX, FTIR y BET Al respecto se presentan las siguientes conclusiones:

- Se encontró por difracción de rayos-X, que se logró la síntesis de Fe₃O₄ sobre NTH y a través de la ecuación de Scherrer, se determinó que el tamaño de las partículas de Fe₃O₄ fueron de 13.74 nm para la NTH, 12.6 para Fe₃O₄ y 25.23 nm para Fe₃O₄/NTH.
- Por adsorción-desorción de nitrógeno se determinó que la muestra de Fe₃O₄/NTH, tiene una distribución de tamaño de poro multimodal de material meso y macroporoso, con un ciclo de histéresis tipo H₁, y área superficial de 67.69 m²g⁻¹. A través de la FTIR, se observó la formación de magnetita (Fe₃O₄).

Después de establecer las propiedades texturales y estructurales de Fe₃O₄/NTH, se realizó un diseño de experimentos Box Behnken en *Design Expert 11*, para determinar los factores que influyen en la adsorción de ibuprofeno en medio acuoso sobre Fe₃O₄/NTH. Derivado de lo anterior se presentan las siguientes conclusiones:

- Los resultados de adsorción de IBU que se ajustaron a la ecuación del modelo cuadrático y la superficie de respuesta mostraron que la adsorción de ibuprofeno depende del pH (8.5% a pH 2 y 2-3% a pH 7 y 12), estos resultados indican que a pH ácidos se ve favorecida la adsorción de IBU en Fe₃O₄/NTH, debido a que los protones del ácido carboxílico del IBU forman puentes de hidrógeno con las superficie de Fe₃O₄.También, se encontró que a mayor cantidad de H₂O₂ y de dosis de Fe₃O₄/NTH se incrementó la adsorción.
- A través del análisis estadístico ANOVA, se encontró que la relación de la respuesta con los factores A: pH, B: dosis de Fe₃O₄/NTH se obtiene a través de la ecuación:
 IBU adsorbido (%) = 3.47 3.33 A + 0.1867 B 0.12 AB + 2.5 A² 0.7338 B².
- Además, que los resultados se ajustan a una cinética de pseudo-segundo orden y a una isoterma de adsorción de Freundlich (R²=0.99872, κ₂ = 3.276E-4 y R²=0.99126 y κ_F = 0.1244 (mg g⁻¹).

También, se realizó un diseño de experimentos en *Design Expert 11*, para determinar los factores que influyen en la remoción de ibuprofeno en medio acuoso sobre Fe₃O₄/NTH a través de la reacción tipo Fenton heterogénea. A continuación, se presentan las siguientes conclusiones:

- A través de diseño experimentos de monitoreo factorial 2³ se encontraron las mejores condiciones para ajustar el modelo para mineralización a pH 7.
- Se obtuvo la ecuación del modelo cuadrático que describe cuantitativamente la relación de la respuesta con los factores y así poder conocer las condiciones óptimas de experimentación y los principales factores para la mineralización de IBU.
 IBU Mineralizado (%) = 98.6 + 1.39 A + 0.2817 B 0.9275 AB 1.51A² 7.93 B²
- Por medio del software *Design Expert 11* se utilizó un diseño de experimentos tipo Box Behnken y se obtuvieron las condiciones óptimas experimentales para la mineralización de IBU (15 mg L-1) a un pH de 7 y 298.15 K que son a una concentración de catalizador de 1.5 mg L-1 y una concentración de oxidante de 0.5M, ya que aun aumento de concentración de estas hay una saturación en los sitios activos en la superficie del catalizador que es donde ocurre la formación de radicales hidroxilos.
- Finalmente, se logró eliminar hasta un 99.99% de ibuprofeno utilizando las condiciones óptimas de reacción.

Como conclusión final, se encontró un método alternativo con el cual la superficie del material Fe₃O₄/NTH sintetizado por el método de coprecipitación, permite tanto la adsorción de IBU como la formación de radicales hidroxilos para promover la mineralización completa de ibuprofeno en soluciones acuosas en condiciones suaves de reacción (pH 7).

REFERENCIAS

- Adamson A., y Gast, A. (1997). Physical Chemistry of surfaces. New York: Wiley. https://doi.org/10.1002/pol.1977.130151014
- Ago H., Kugler T., Čacialli F., Salaneck W.R., Shaffer M. S. P., Windle A.H., y Friend R.H., (1999), "Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes", The Journal of Physical Chemistry B, 103 (38), 8116-8121. <u>https://doi.org/10.1021/jp991659y</u>
- Aguirre-Martínez, G.V., Buratti, S., Fabbr, E., Delvalls, A.T., Martín-Díaz, M.L. (2013). Using lysosomal membrane stability of haemocytes in Ruditapes philippinarum as a biomarker of cellular stress to assess contamination by caffeine, ibuprofen, carbamazepine and novobiocin. Journal of Environmental Sciences, 25 (7), 1408–1418. DOI: 10.1016/s1001-0742(12)60207-1
- Ahmad, M., Teel, A., Watts, R.J., (2010). Persulfate activation by subsurface minerals. J Contam Hydrol 115, 34-45. <u>https://doi.org/10.1016/j.jconhyd.2010.04.002</u>
- Ainhoa C, Chica E., Peñuela G. (2014). Aplicación del proceso Fenton en el tratamiento de aguas residuales de origen petroquímico. Ingeniería y Competitividad, Volumen 16, No. 2, p. 211 - 223. <u>https://doi.org/10.25100/iyc.v16i2.3696</u>
- Alivisatos, A. P. (1996). "Semiconductor clusters, nanocrystals and quantum dots". Science, 271, 933-937. <u>https://doi.org/10.25100/iyc.v16i2.3696</u>
- Albella, J.M.; Cintas, A.M.,; Miranda, T. y Serratosa, J.M. (1993) "Introducción a la Ciencia de Materiales: Técnicas de preparación y caracterización". Textos Universitarios nº 20, C.S.I.C., Madrid.
- Atkins, P y De Paula, J. (1998). Fisicoquímica (6ed). Oxford University Press.
- Ávila, C., Nivala, J., Olsson, L., Kassa, K., Headley, T., Mueller, R.A., Bayona, J.M., García, J. (2014). Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Science of The Total Environment, 494–495, 211–217. https://doi.org/10.1016/j.scitotenv.2014.06.128
- Ayla Jay, J. y Ford, T. Water, (2001). Concentrations, bioaccumulation, and human health implications of heavy metals in Lake Chapala. En: Hansen, A. M. van Afferden. (eds) The Lerma-Chapala Watershed. Evaluation and Management. Nueva York: Kluwer Academic/Plenum Publishers, pp. 123-136
- Banin, U., Cao, Y. W., Katz, D., y Millo, O. (1999). Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature, 400, 542-544 <u>https://doi.org/10.1038/22979</u>
- Barceló D. (2003). Emerging pollutants in water analysis. Trends in Analytical Chemistry. 22:XIV-XVI. <u>http://dx.doi.org/10.1016/S0165-9936(03)01106-3</u>
- Barceló, D., López de Alda, M.J. (2012). Contaminación y calidad química del agua:el problema de los contaminantes emergentes. Instituto de Investigaciones Químicas y Ambientales CSIC (Barcelona). Panel Científico-Técnico de Seguimiento de la Política de Aguas (11.03.2008).
- Barrientos-Ramírez, S., Oca-Ramírez, G. M., Ramos-Fernandez, E. V., Sepulveda Escribano, A., Pastor-Blas, M.M. y Gonzalez-Montiel, A. (2011). Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Applied Catalysis A 406, 22-33. <u>https://doi.org/10.1016/j.apcata.2011.08.003</u>
- Becerril J. (2012). Optimización de metodologías analíticas para la determinación de contaminantes emergentes en aguas de abastecimiento y residuales. Universidad de Santiago de Compostela. Disponible desde internet en: http://minerva. usc.es/handle/10347/6150. Consultado el 1 de mayo de 2014.

- Breitholtz, M., Näslund, M., Stråe, D., Borg, H., Grabic, R., Fick, J., (2012). An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants. Ecotoxicology and Environmental Safety, 78, 63–71. https://doi.org/10.1016/j.ecoenv.2011.11.014
- Bianco, B., De Michelis, I., & Vegliò, F. (2011). Fenton treatment of complex industrial wastewater: optimization of process conditions by surface response method. Journal of Hazardous Materials, 186 (2-3), 1733-1738. <u>https://doi.org/10.1016/j.jhazmat.2010.12.054</u>
- Boyd, G. E., Adamson, A. W., & Myers, L. S. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics1. Journal of the American Chemical Society, 69(11), 2836–2848. <u>https://doi.org/10.1021/ja01203a066</u>
- Brindley G.W. (1980) Order-disorder in the clay mineral structures. p. 125-196 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Mineralogical Society, London. <u>https://doi.org/10.1180/mono-5.2</u>
- Brunauer S., Emmett, P.H. y Teller E., (1938), "Adsorption of Gases in Multimolecular Layers", J. Am. Chem. Soc. 60, 309-319. <u>https://doi.org/10.1021/ja01269a023</u>
- Buser H, Poiger T, y Muller M. (1999). Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science & Technology, 33:2529-2535. https://doi.org/10.1021/es981014w
- Calister W. (2007). Introducción a la ciencia e ingeniería de los materiales, Vol 2, ed 3, Reverté: Barcelona, España, pp 695-697.
- Castellan, G. Bedolla, A., Basin, C., y Rodríguez M.(1998). Fisicoquímica. México: Addison-Wesley Iberoamericana.
- Chen C., Wang P., Li L., (2016). Applications of bacterial magnetic nanoparticles in nanobiotechnology, J. Nanosci. Nanotechnol. 16 2164–2171. https://doi.org/10.1166/jnn.2016.10954.
- Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., Chen, Z. (2016). Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Science of The Total Environment, 566–567, 1660–1669. <u>https://doi.org/10.1016/j.scitotenv.2016.06.069</u>
- Cheng, H., Yang, Y., Liu, Q., Zhang, J. y Frost, R. L. (2010). A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite-A mid-infrared and nearinfrared study. Spectrochimica Acta A 77, 856-861. <u>https://doi.org/10.1016/j.saa.2010.08.018</u>

Churchman, G. J., Davy, T. J., Aylmore, L. A., Gilkes, R. J., & Self, P. G. (1995). Characteristics of fine pores in some halloysites. Clay Minerals, 30 (2) 89-98. https://doi.org/10.1180/claymin.1995.030.2.01

- Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E., y Heath, J. P. (1997). Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science, 277, 1978-1981. <u>https://doi.org/10.1126/science.277.5334.1978</u>
- Cornell R., Schwertmann U., (2003). The iron oxides: Structure, properties, reactions, occurrences and uses, 2th ed. Wiley-VCH Verlang GmbH and Co. KGaA: Weinheim, Germany, pp 32, 87-92. <u>http://dx.doi.org/10.1002/3527602097</u>
- Costa A., Ballatin B., Spegni A., Casoli F., Gardini D. (2012). Synthesis of nanostructured magnetic photocatalyst by colloidadl approach and spray drying technique. Journal of Colloid and Interface Science.388. 31-39. <u>https://doi.org/10.1016/j.jcis.2012.07.077</u>
- Cuesta, S. y Meneses, L. (2015). Estudio espectroscópico experimental y computacional de ibuprofeno y sus precursores de síntesis. LA GRANJA: Revista de Ciencias de la Vida. 21(1) 2015: 5-16. <u>https://doi.org/10.17163/lgr.n21.2015.01</u>
- Daniel, M.-C., y Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chemical Reviews, 104, 293-346. <u>https://doi.org/10.1021/cr030698+</u>

- De Anda, J., y Ulrich, M. (2007). Modificaciones en el régimen hidrològico y sus efectos en la acumulación de fòsforo y fosfatos en el lago de Chapala, México. INCI, Caracas, 32, (2). Recuperado de <u>www.scielo.org.vc</u>.
- De-Jong, K. P. (2009). Synthesis of solid catalysts. Wiley-VCH. https://doi.org/10.1002/cctc.201000072
- Ding, T.D., Yang, M.T., Zhang, J.M., Yang, B., Lin, K.D., Li, J.Y., Gan, J., (2017). Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Journal of Hazardous Materials, 330, 127–134. DOI: 10.1016/j.jhazmat.2017.02.004
- Dhodapkar, R. S., & Gandhi, K. N. (2019). 3 Pharmaceuticals and personal care products in aquatic environment: chemicals of emerging concern, Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, Elsevier Inc. <u>https://doi.org/10.1016/B978-0-12-816189-0.00003-2</u>
- Durán-Moreno, A., García-González, S.A., Gutiérrez-Lara, M.R., Rigas, F., & RamírezZamora, R.M. (2011). Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process. Journal of Hazardous Materials 186, 1652–1659. <u>https://doi.org/10.1016/j.jhazmat.2010.12.043</u>
- Dvořáková Březinova, T., Vymazal, J., Koželuh, M., & Kule, L. (2018). Occurrence and removal of ibuprofen and its metabolites in full-scale constructed wetlands treating municipal wastewater. Ecological Engineering, 120, 1–5. https://doi.org/10.1016/j.ecoleng.2018.05.020
- Ellepola, N., Ogas, T., Turner, D. N., Gurung, R., Maldonado, S., Tello, R., Patidar, L., Rogelj, S., Piyasena, E. (2019). A toxicological study on photo-degradation products of environmental ibuprofen: Ecological and human health implications. Ecotoxicology and Environmental Safety 188 (2020). https://doi.org/10.1016/j.ecoenv.2019.109892
- Ershov, G. G. (1997). Metal ions in unusual and unstable oxidation states in aqueous solutions: preparation and properties. Russian Chemical Reviews, 66, 93-106. https://doi.org/10.1070/RC1997v066n02ABEH000264
- Fang, T.-H., Nan, F.-H., Chin, T.-S., Feng, H.-M., (2012). The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Marine Pollution Bulletin. 64, 1435–1444. https://doi.org/10.1016/j.marpolbul.2012.04.008
- Faraday, M. (1957). Experimental relations of gold (and other Metals) to light. Philosophical Transactions of the Royal Society. Londres, 147, 145. <u>https://doi.org/10.1098/rstl.1857.0011</u>
- Figueras, F. (1988). Pillared Clays as Catalysts. Catalysis Reviews, 30(3), 457–499. doi:10.1080/01614948808080811 http://dx.doi.org/10.1080/01614948808080811
- Fost, S. D., & Aly, M. O. (1981). Adsorption Processes for Water Treatment, Betterworth Publications, Stoneharm, Massachusetts, Mass, USA. <u>http://doi.org/10.1007/978-3-319-58136-1</u>
- Galar-Martínez, M., Gomez-Olivan, L.M., Amaya-Chavez, A., Razo-Estrada, C., García-Medina, S., (2010). Oxidative stress induced on Cyprinus carpio by pollutants present in the water and sediment of Madín reservoir. Journal of Environmental Science and Health, Part A, 45, 155e160. <u>https://doi.org/10.1080/10934520903425780</u>
- García-Galán, Ma. Jesús., Garrido, Teresa., Fraile, Josep., Ginebreda, Antoni., Díaz Cruz, M. Silvia., y Barceló, Damià. (2010). Simultaneous occurrence of nitrates ando sulfonamides antibiotics in two groundwater bodies of Catalonia (Spain). Journal of Hydrology. 383:93–101. <u>https://doi.org/10.1016/j.jhydrol.2009.06.042</u>
- Gibson, R., Durán-Alvarez, J.C., Estrada, K.L., Chávez, A., Jiménez Cisneros, B., (2010). Accumulation and leaching potential of some pharmaceuticals and potential endocrine

disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 81, 1437–1445. <u>https://doi.org/10.1016/j.chemosphere.2010.09.006</u>

- Gómez M. (2006). Determination of pharmaceuticals of various therapeutic classes by solidphase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. Journal of Chromatography A, 1114:224-233. https://doi.org/10.1016/j.chroma.2006.02.038
- Ghosh, P., Samanta, A.N., & Ray, S. (2010). COD reduction of petrochemical industry wastewater using Fenton's oxidation. The Canadian Journal of Chemical Engineering 88 (6), 1021-1026. <u>https://doi.org/10.1002/cjce.20353</u>
- Glaze, W.H., Kang, J.W., & Chapin, D.H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering 9 (4), 335-352. <u>https://doi.org/10.1080/01919518708552148</u>
- González-González, É.D., Gomez-Oliván, L.M., Galar-Martínez, M., Vieyra-Reyes, P., Islas-Flores, H., García-Medina, S., Jiménez-Vargas, J.M., Razo-Estrada, A.C., Pérez-Pasten, B.R. (2014). Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín Reservoir (Mexico) induce oxidative stress in gill, blood and muscle of common carp (Cyprinus carpio). Archives of Environmental Contamination and Toxicology, 67, 281e295. <u>https://doi.org/10.1007/s00244-014-0048-0</u>
- Grieve, K., Mulvaney, P., y Grieser, F. (2000). Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Current Opinion in Colloid and Interface Science, 5, 168-172. https://doi.org/10.1016/S1359-0294(00)00050-9
- Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1-2), 362–371. <u>https://doi.org/10.1016/j.jhazmat.2006.12.034</u>
- Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B., Yun, J., Choi, K., Khim, J.S., Zhang, X., Giesy, J.P., (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology, 98 (3), 256–264. DOI: 10.1016/j.aquatox.2010.02.013
- Hammond, C. Introduction to Crystallography. Royal Microscopical Society Microscopy Handbooks 19. Oxford Science Publications. Oxford, (1990). https://doi.org/10.1002/crat.2170280620
- Hijosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martín-Villacorta, J., Béceras, E., Bayona, J.M. (2010). Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Research, 44, 3669–3678. https://doi.org/10.1016/j.watres.2010.04.022
- Ho, Y. S & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. <u>https://doi.org/10.1016/S0032-9592(98)00112-5</u>
- Hou Y., Yua J., Gao S., (2003). Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. Journal of Materials Chemistry. 13, 1983-1987. <u>https://doi.org/10.1039/B305526D</u>
- Huerta, L., Contreras-Valadez, R., Palacios –Mayorga, S., Miranda, J., Calva-Vasquez, G., (2002). Total elemental composition of soils contaminated with wastewater irrigation by combining IBA techniques: Nuclear instruments and methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 189(1-4), 158-162. https://doi.org/10.1016/S0168-583X(01)01029-1
- Jia-le Wu, Ze-hua Liu, Qing-guang Ma, Lu Dai, Zhi Dang (2023). Occurrence, removal and risk evaluation of ibuprofen and acetaminophen in municipal wastewater treatment plants: A critical review. Science of the Total Environment, 891, 164600. https://doi.org/10.1016/j.scitotenv.2023.164600

- Jiang Q. y Zhao Y., (2004). Effects of activation conditions on BET specific surface area of activated carbon nanotubes, Microporous and Mesoporous Materials 76(1-3), 215-219. <u>https://doi.org/10.1016/j.micromeso.2004.08.020</u>
- Joussein, E., Petit, S., Delvaux, B. (2007). Behavior of halloysite clay under formamide treatment. Applied Clay Science 35, 17-24. <u>https://doi.org/10.1016/j.clay.2006.07.002</u>
- Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. y Delvaux, B. (2005). Halloysite clay minerals: a review. Clay Minerals 40, 383-426. https://doi.org/10.1180/0009855054040180
- Kahl, S., Nivala, J., van Afferden, M., Müller, R.A., Reemtsma, T., (2017). Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: emerging organic contaminants as indicators. Water Research, 125, 490–500. https://doi.org/10.1016/j.watres.2017.09.004
- Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55 (9), 1235-1243. https://doi.org/10.1016/j.chemosphere.2003.12.022
- Kim, J.-W., Jang, H.-S., Kim, J.-G., Ishibashi, H., Hirano, M., Nasu, K., Ichikawa, N., Takao, Y., Shinohara, R., Arizono, K., (2009). Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from mankyung river, South Korea. Journal of Health Sciences, 55, 249–258. <u>https://doi.org/10.1248/jhs.55.249</u>
- Kim, Y.-G., Oh, S. k., y Crooks, R. M. (2004). Chemistry of Materials, 16, 167-172.
- Kim Y., Yul Y., (2015). Microbial synthesis and characterization of superparamagnetic Znsubstituted magnetite nanoparticles, Journal of Nanoscience and Nanotechnology. 15 6129–6132. <u>https://doi.org/10.1166/jnn.2015.10458</u>
- Kimura, K., Hara, H., Watanabe, Y., (2005). Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs), Desalination 178 (1-3), 135-140. https://doi.org/10.1016/j.desal.2004.11.033
- Kumar R., Sakthievel R., Behura R., Mishra B., Das D. (2015). Synthesis of magnetite nanoparticles from mineral waste. Journal of Alloys and Compounds, 645, 398-404. https://doi.org/10.1016/j.jallcom.2015.05.089
- Kumar A., Rana A., Sharma G., Naushad M. (2019). Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. Journal of Molecular Liquids 290. https://doi.org/10.1016/j.molliq.2019.111177
- Lagergren S. (1898). Zur Theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska Vetenskapsakademien, Handlingar, 24(4),1–39. <u>https://doi.org/10.1007/BF01501332</u>
- Lednicer, D. (2008). The organic Chemistry of Drug Synthesis. Wiley-Interscience, New Jersey, págs. 85–86. <u>https://doi.org/10.1002/9780470180679.indcum</u>
- Lesser y Asociados, (2013). Estudios Técnicos de Geohidrología, Calidad del agua, Tenencia de la Tierra y Aspectos Sociales en la zona de captación para el Sistema Mezquital para el abastecimiento de agua en bloque al Valle de México e Hidalgo. CONAGUA, México, 2013, 5 capítulos. https://www.lesser.com.mx/geologia-e-hidrogeoquimica.html
- Levis, S. R. y Deasy, P. B. (2002). Characterization of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics 243, 125-134.https://doi.org/10.1016/S0378-5173(02)00274-0
- Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219. <u>https://doi.org/10.1016/S0920-5861(98)00050-9</u>
- Li C., Wei R., Xu Y., Sun A., Wei L., (2014). Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res. 7. 536-543. <u>https://doi.org/10.1007/s12274-014-0421-3</u>
- Li Z., Sun Q., Gao M.,(2005). Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4, Angew. Chem. 117 125–128. https://doi.org/10.1002/anie.200460715

- Liyanage AS, Canaday S, Pittman CU, Mlsna T (2020). Rapid remediation of pharmaceuticals from wastewater using magnetic Fe3O4/ Douglas fir biochar adsorbents. Chemosphere 258:127336. <u>https://doi.org/10.1016/j.chemosphere.2020.127336</u>
- Loaiza-Ambuludi S., Panizza, M., Oturan, N., Ozcan Ali., Oturan A. (2013). Electro-fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium. Journal of Electroanalytical Chemistry 702, 31-36. <u>https://doi.org/10.1016/j.jelechem.2013.05.006</u>
- Lopez y Zamora. (2007). Dibenzo-p-dioxinas policloradas y dibenzofuranos en peces de 4 regiones diferentes de Mexico. Ciencias Marinas, vol. 33, num. 2,, pp. 217-227. http://dx.doi.org/10.7773/cm.v33i2.1180
- López-López, M.T., Durán, J.D.G., Delgado, A.V., González-Caballero, F., (2005). Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. Journal of Colloid and Interface Science. 291, 144–151. https://doi.org/10.1016/j.jcis.2005.04.099
- Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y. y Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research 44, 1489-1497. <u>https://doi.org/10.1016/j.watres.2009.10.042</u>
- Machado, G. S., Castro, K. A. D. F., Wypych, F. y Nakagaki, S. (2008). Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. Journal of Molecular Catalysis A 283, 99-107. <u>https://doi.org/10.1016/j.molcata.2007.12.009</u>
- Marney, D.C.O., Russell, L.J., Wu D.Y., Nguyen, T., Cramm, D., Rigopoulos, N., Wright, N. y Greaves, M. (2008). The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polymer Degradation and Stability 93, 1971- 1978. <u>https://doi.org/10.1016/j.polymdegradstab.2008.06.018</u>
- Matamoros, V., Bayona, J.M., (2006). Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environmental Science & Technology, 41, 8171– 8177. <u>https://doi.org/10.1021/es0607741</u>
- Matamoros, V., Garcia, J., Bayona, J.M., (2008). Organic micropollutant removal in a full scale surface flow constructed wetland fed with secondary effluent. Water Research, 42, 653– 660. <u>https://doi.org/10.1016/j.watres.2007.08.016</u>
- Matta, R., Hanna, K., Chiron, S., (2007). Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of The Total Environment. 385, 242-251. https://doi.org/10.1016/j.scitotenv.2007.06.030
- Mendez-Arriaga, F., Esplugas, S., Gimenez, J. (2010). Degradation of the emerging contaminant ibuprofen in water by photo-fenton. Water Research 44. 589-595. <u>https://doi.org/10.1016/j.watres.2009.07.009</u>
- Medintz, I. L., Uyeda, H. T., Goldman, E. R., y Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435-446. https://doi.org/10.1038/nmat1390
- Mizuno, N., y Misono, M., (1998). Heterogeneous Catalysis. Chemical Reviews, 98(1), 199-218. https://doi.org/10.1021/cr960401q
- Morales-Mejía, J. Č., Vargas-Martínez, M. G., & Medina Camps, J. (2021). La demanda química de oxígeno con el procedimiento APHA/AWWA/WEF 5220 D para rango alto adaptado a microescala. Tecnología Y Ciencias Del Agua, 12(1), 113-132. <u>https://doi.org/10.24850/j-tyca-2021-01-04</u>
- Moeder, M., Carranza-Diaz, O., López-Angulo, G., Vega-Aviňa, R., Chávez-Durán, F.A., Jomaa, S., Winkler, U., Schrader, S., Reemtsma, T., Delgado-Vargas, F., (2017). Potential of vegetated ditches to manage organic pollution derived from agricultural runoff and domestic sewage: a case study in Sinaloa (Mexico). Science of The Total Environment, 598, 1106– 1175. <u>https://doi.org/10.1016/j.scitotenv.2017.04.149</u>

- Moro, I., Matozzo, V., Piovan, A., Moschin, E., Vecchia, F.D. (2014). Morpho-physiological effects of ibuprofen on Scenedesmus rubescens. Environmental Toxicology and Pharmacology, 38 (2), 379–387. DOI: 10.1016/j.etap.2014.06.005
- Nasrazadani, S., & Raman, A. (1993). The application of infrared spectroscopy to the study of rust systems—II. Study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3). Corrosion Science, 34(8), 1355–1365. <u>https://doi.org/10.1016/0010-938X(93)90092-U</u>
- Navalon S., Dhakshinamoorthy, A., Alvaro, M., Garcia H. (2011). Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem 4. 1712-1730. <u>https://doi.org/10.1002/cssc.201100216</u>
- Neyens, E., & Baeyens, J. (2003). A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials 98 (1-3), 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0
- Nichela, D.A., Berkovic, A.M., Costante, M.R., Juliarena, M.P., & García, F.S. (2013). Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)- based systems. Chemical Engineering Journal 228, 1148-1157. <u>https://doi.org/10.1016/j.cej.2013.05.002</u>
- Oller, I., Malato, S., & Sánchez-Pérez, J.A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination - A review. The Science of the Total Environment 409 (20) 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
- Padoley, K.V., Mudliar, S.N., Banerjee, S.K., Deshmukh, S.C., & Pandey, R.A. (2011). Fenton oxidation: A pretreatment option for improved biological treatment of pyridine and 3-cyanopyridine plant wastewater. Chemical Engineering Journal 166 (1), 1–9. https://doi.org/10.1016/j.cej.2010.06.041
- Park J., An K., Hwang Y., J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 3 891– 895. <u>https://doi.org/10.1038/nmat1251</u>
- Parcker, J.I., Werner, J.J. Latch, D.E., McNeil, K., Arnold, W.A. (2003). Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen, Aquat. Science. 64 (4) 342-351. <u>https://doi.org/10.1007/s00027-003-0671-8</u>
- Patel, K., Kapoor, S., Dave, D., y Murkherjee, T. (2005). Synthesis of nanosized silver colloids by microwave dielectric heating. Journal of Chemical Sciences, 117, 53. https://doi.org/10.1007/BF02704361
- Parolini, M., Binelli, A., Provini, A., 2011. Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicology and Environmental Safety, 74 (6), 1586– 1594. DOI: 10.1016/j.ecoenv.2011.04.025
- Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., Wang, Z., (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of The Total Environment, 397, 158–166. <u>https://doi.org/10.1016/j.scitotenv.2008.02.059</u>
- Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M., y Mulvaney, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249, 1870-1901. <u>https://doi.org/10.1016/j.ccr.2005.01.030</u>
- Petrović, M., González, S. y Barceló, D. (2003). Analysis and removal of emerging contaminants in water and drinking water. TrAC Trends in Analytical Chemistry. 22(10):685-696. <u>https://doi.org/10.1016/S0165-9936(03)01105-1</u>
- Picasso G., Vega J., Uzuriaga R., Ruiz G. (2012). Preparación de nanopartículas de magnetita por los métodos sol-gel y precipitación: estudio de la composición química y estructura. Rev Soc Quím Perú. 78 (3). 170-181. Tomado de: http:www.redalyc.org/articulo.oa?id=371937628003

- Pignatello, J.J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology 36 (1), 1-84. <u>https://doi.org/10.1080/10643380500326564</u>
- Pontes, R.F., Moraes, J.E., Machulek, A.Jr., & Pinto, J.M. (2010). A mechanistic kinetic model for phenol degradation by the Fenton process. Journal of Hazardous Materials 176 (1-3), 402-413. <u>https://doi.org/10.1016/j.jhazmat.2009.11.044</u>
- Reif, R., Besancon, A., Le Corre, K., Jefferson, B., Lema, J.M., Omil, F., (2011). Comparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent posttreatment on vertical flow reed beds. Water Science & Technology, 63, 2411–2417. <u>https://doi.org/10.2166/wst.2011.123</u>
- Reddy, L.H. Arias J. L. Nicolas J. Couvreur, P. (2012). Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112. 5818-5878. <u>https://doi.org/10.1021/cr300068p</u>
- Rim K., Eom D., Chan S., Flytzani S., Flynn G., Wen X., (2012). Scanning Tunneling Microscopy and theoretical study of water adsorption on Fe3O4 ; Implications for catalysis. J. Am. Chem Soc, 134, 18979-18985. <u>https://doi.org/10.1021/ja305294x</u>
- Rodrigues, C., Boaventura, R., Madeira, L. (2014). Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/ flocculation and Fenton's oxidation. Environmental Technology, 35(10), 1307-1319. https://doi.org/10.1080/09593330.2013.866983
- Rubasinghege, G., Gurung, R., Rijal, H., Maldonado, S., Chan, A., Acharya, S., Rogelj, S., Piyasena, M. (2017). Abiotic degradation and environmental toxicity of ibuprofen: Roles of mineral particles and solar radiation. Water Research, 131 (2018) 22-32. https://doi.org/10.1016/j.watres.2017.12.016
- Ruthven, D. M. (1984). Principle of Adsorption and Adsorption Processes, John Willey and Sons, New Jersey, NJ, USA. <u>https://doi.org/10.1002/aic.690310335</u>
- Sajadi, M. Nasrollahzadeh, M. Maham, (2016) Aqueous extract from seeds of Silybum marianum L. as a green material for preparation of the Cu/Fe3O4 nanoparticles: a magnetically recoverable and reusable catalyst for the reduction of nitroarenes, J. Colloid Interface Sci. 469 (2016) 93–98. <u>https://doi.org/10.1016/j.jcis.2016.02.009</u>
- Schmid, G. (2004). Nanoparticles. From theory to application. Weinheim: Wiley-VCH.
- Sabri, N., Hanna K., Yargeau, V., (2012). Chemical oxidation of ibuprofen in the presence of iron species at near neutral ph. Science of the total environment. 427-428, 382-389. <u>https://doi.org/10.1016/j.scitotenv.2012.04.034</u>
- Shaw, D. J. (1966). Introduction to Colloid and Surface Chemistry. Butterworths. London https://www.academia.edu/42800679/Introduction_to_Colloid_and_Surface_Chemistry
- Shin J., Lee K., T. Yeo, W. Choi, (2016), Facile one-pot transformation of iron oxides from Fe2O3 nanoparticles to nanostructured Fe3O4@C core-shell composites via combustion waves, Sci. Rep. 6, 21792, <u>https://doi.org/10.1038/srep21792</u>
- Shipway, A. N., Katz, E., y Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor application. ChemPhysChem., 1, 18-52.<u>https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L.</u>
- Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H., & He, H. (2013). Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous and Mesoporous Materials, 179, 89–98. doi: 10.1016/j.micromeso.2013.05.007. https://doi.org/10.1016/j.micromeso.2013.05.007
- Tong G., Liu Y., Wu T., Tong C., Du F., (2015). H2O-steered size/phase evolution and magnetic properties of large-scale, monodisperse FexOy nanomaterials, J. Mater. Chem. C 3 5506–5515. https://doi.org/10.1039/C5TC00347D

- Varma R., (2014). Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation, Green Chem. 16 2027–2041. https://doi.org/10.1039/C3GC42640H
- Viseras, M.T., Aguzzi, C., Cerezo, P., Viseras, C. y Valenzuela, C. (2008). Equilibrium and kinetics of 5-aminosalicylic acid adsorption of halloysite. Microporous and Mesoporous Materials 108, 112-116. <u>https://doi.org/10.1016/j.micromeso.2007.03.033</u>

Wachs, I. E. (2001). Characterization of catalytic materials. New York: Momentum Press.

- Wang L., Zhao Q., Hou J., Yan J., Zhang F., J. Zhao, H. Ding, Y. Li, Ding L., (2016). One-step solvothermal synthesis of magnetic Fe3O4–graphite composite for Fenton-like degradation of levofloxacin, J. Environ. Sci. Health Part A 51 52–62. <u>https://doi.org/10.1080/10934529.2015.1079112</u>
- Xie, R. C., y Shang, J. K. (2007). Morphological control in solvothermal synthesis of titanium oxide. Journal of Materials Science, 42, 6583. <u>https://doi.org/10.1007/s10853-007-1506-0</u>
- Xu, X.R., Zhao, Z.Y., Li, X.Y., & Gu, J.D. (2004). Chemical oxidative degradation of methyl tertbutyl ether in aqueous solution by Fenton's reagent. Chemosphere 55, 73-79. https://doi.org/10.1016/j.chemosphere.2003.11.017
- Xu, L., Ma. Y, Jiang, Z. Huang, W. (2009). Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. J. Am. Chem. Soc. 131. 1366-1367. https://doi.org/10.1021/ja908081s
- Yang T., Wen X., Cao D., Li Y., Wang J., Huo C. (2009). Structures and energetics of H2O adsorption on the Fe3O4 (111) surface. J. Fuel Chem Technol, 37, 506-512. https://doi.org/10.1016/S1872-5813(10)60006-0
- Yang Q, Lan F., Yi Q., Wu Y., Gu Z., (2015). A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption, Nanoscale 7, 7617–17622. <u>https://doi.org/10.1039/C5NR05800G</u>
- Yang C., Wub J., Hou Y., (2011). Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun, 47, 5130-5141. https://doi.org/10.1039/C0CC05862A

Yuan, P., Southon, P. D., Liu, Z., & Kepert, C. J. (2012). Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology, 23(37), 375705. <u>http://doi.org/10.1088/0957-4484/23/37/375705</u>

- Zanella, R. (2012). Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo Nano Vol. 5, No. 1. 69-79. <u>https://doi.org/10.22201/ceiich.24485691e.2012.1.45167</u>
- Zhang, D.Q., Luo, J., Lee, Z.M.P., Gersberg, R.M., Liu, Y., Tan, S.K., Ng, W.J. (2016). Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamics. Environmental Technology, 37, 1467–1479. https://doi.org/10.1080/09593330.2015.1119201
- Zhang, S., Zhang, Q., Darisaw, S., Ehie, O., Wang, G. (2007). Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66, 1057–1069. <u>https://doi.org/10.1016/j.chemosphere.2006.06.067</u>
- Zheng, B.G., Zheng, Z., Zhang J.B., Luo, X.Z., Wang, J.Q., Liu, Q., Wang, L.H. (2011). Degradation of the emerging contaminant ibuprofen in aqueous solution by gamma irradiation. Desalination 276, 379-385. <u>https://doi.org/10.1016/j.desal.2011.03.078</u>
- Zhu, H., Zhang, C., y Yin, Y. (2004). Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. Journal of Crystal Growth, 270, 722-728. <u>https://doi.org/10.1016/j.jcrysgro.2004.07.008</u>
- Zwiener, C., Frimmel, F.H. (2000). Oxidative treatment of pharmaceuticals in water. Water Res, 34 (6), 1881-1885). <u>https://doi.org/10.1016/S0043-1354(99)00338-3</u>

ANEXOS

	Factor 1	Factor 2
No. Experimento	A: pH	B: Fe ₃ O ₄ /NTH
		(g L ⁻¹)
1	2	0.5
2	7	0.5
3	12	0.5
4	2	1.5
5	7	1.5
6	12	1.5
7	2	2.5
8	7	2.5
9	12	2.5
10	7	1.5
11	7	1.5
12	7	1.5

Anexo 1. Condiciones experimentales y número de experimentos de un diseño Box Behnken para la adsorción de IBU a 15 g L⁻¹ sobre Fe₃O₄/NTH.

	Factor 1	Factor 2	Factor
No. Experimento	A: pH	B: Fe ₃ O ₄ /NTH	C: H ₂ O ₂
		(g L⁻¹)	(M)
1	2	0.5	0.05
2	2	0.5	0.5
3	2	1.0	0.05
4	2	1.0	0.5
5	12	1.0	0.05
6	12	1.0	0.5
7	12	1.0	0.05
8	12	1.0	0.5
Anovo 2 Cond		ontolog v nýmore do ovnoringento	a da un diacíão da manitaras

Anexo 2. Condiciones experimentales y número de experimentos de un diseño de monitoreo para la mineralización de IBU a 15 g L⁻¹sobre Fe₃O₄/NTH.

No.	Factor 1 A: Fe₃O₄/NTH	Factor 2 B: H ₂ O ₂
Experimento	(g L ⁻¹)	(M)
1	0.5	0.25
2	0.5	0.50
3	0.5	0.75
4	1.5	0.25
5	1.5	0.50
6	1.5	0.75
7	2.5	0.25
8	2.5	0.50
9	2.5	0.75
Anevo 3 Condicione	os experimentales y púmero de exp	orimontos do un disoño do ontimizaciór

Anexo 3. Condiciones experimentales y número de experimentos de un diseño de optimización tipo Box Behnken para la mineralización de IBU a 15 g L⁻¹sobre Fe₃O₄/NTH.

Phase classification

Name	Aluminum Silicate Hydroxide Hydrate
Mineral Name	Halloysite-10A
Formula	Al ₂ Si ₂ O ₅ (OH) ₄ * ₂ H ₂ O
Pearson symbol	hP23
Quality	I (Indexed)

Bibliographic data

Publication

MacEwan, Amoros., Anales Edafol. Fisol. Vegetal (Madrid) 9, 363 (1950) Reference

Crystal structure

Published crystallographic data					
Space group	P -				
Crystal system	hexagonal				
Cell parameters	a=5.122000 Å c=10.030000 Å				
Cell volume	227.880005 ų				
Z	1				

Diffraction data

rubiisiieu unnaction inies	Pub	lished	diffraction	lines
----------------------------	-----	--------	-------------	-------

d [Å]	Int.	hkl	Remark
10.100000	90	001	hkl generated by input software.
4.420000	100	100	hkl generated by input software.
3.340000	90	003	
2.560000	80	110	hkl generated by input software.
2.360000	60		
2.230000	20	200	hkl generated by input software.
2.060000	10		
1.678000	80	210	hkl generated by input software.
1.481000	90	300	hkl generated by input software.
1.283000	70	220	hkl generated by input software.
1.232000	70	310	hkl generated by input software.
1.105000	40	314	hkl generated by input software.
1.021000	20	119	hkl generated by input software.
0.963000	20	411	hkl generated by input software.
0.855000	40	330	hkl generated by input software.
0.838000	20	420	hkl generated by input software.

Experimental

Physical PropertiesMeas. density2.ColorColor

2.140000 g/cm³ Colorless

Remarks

Remarks General

Colorless.

Copyright International Centre for Diffraction Data (ICDD)

Phase classification	
Name	Iron Oxide
Mineral Name	Magnetite
Formula	Fe ₃ O ₄
Pearson symbol	oP56
I/Ic	2.030000
Quality	C (calculated)

Bibliographic data

Publication Reference

, Calculated from ICSD using POWD-12++ **38**, 2121 (1997)

Crystal structure

Published crystallographic data					
Space group	Pmc21 (26)				
Crystal system	orthorhombic				
Cell parameters	a=11.868000 Å b=11.851000 Å c=16.752001 Å				
Cell volume	2356.129883 ų				
Z	8				

Diffraction data

d (Å) Int. hkl Remark 11.851000 1 1 0 Doubly indexed line 9.674790 1 0 11 Doubly indexed line 8.385930 3 0 12 Doubly indexed line 7.498820 1 111 Doubly indexed line 5.25500 15 12 Doubly indexed line 5.225500 185 0 Multiply indexed line 5.356320 1 0.21 5.306010 1 210 Doubly indexed line 5.35330 4 0.13 Multiply indexed line 5.306010 1 2.01 Doubly indexed line 4.837400 1 0.22 Doubly indexed line 4.837400 1 0.22 Doubly indexed line 4.482320 99 2.12 Doubly indexed line 4.192960 373 2.04 Doubly indexed line 3.953330 1 0.30 Multiply indexed line 3.953330 1 0.31 Multiply indexed line 3.957330 1 3.0	Published diffraction	lines			
11.851000 1 0 10 Doubly indexed line 9.674790 1 0 11 8.385930 3 1 10 Doubly indexed line 7.498820 1 1 111 6.840040 68 1 0 2 Doubly indexed line 5.925500 185 0 2 0 Multiply indexed line 5.26320 1 0 2 1 Doubly indexed line 5.306010 1 2 10 Doubly indexed line 5.054380 4 0 1 3 Multiply indexed line 5.054380 4 0 1 3 Multiply indexed line 4.837400 1 0 2 2 Doubly indexed line 4.837400 1 0 2 2 Doubly indexed line 4.837400 1 0 2 2 Doubly indexed line 4.192960 373 2 0 4 Doubly indexed line 4.067490 5 2 2 1 Doubly indexed line 3.950330 1 0 14 Multiply indexed line 3.76750 112 114 Multiply indexed line 3.746750 112 114 Multiply indexed line <		d [Å]	Int.	hkl	Remark
11.851000 1 0 1 0 Doubly indexed line. 8.385930 3 1 1 0 Doubly indexed line. 7.498820 1 1 1 1 6.840040 68 1 0 2 Doubly indexed line. 5.925500 185 1 2 Doubly indexed line. 5.925500 185 0 2 1 Doubly indexed line. 5.306010 1 2 10 Doubly indexed line. 5.306010 1 2 10 Doubly indexed line. 5.054380 4 1 2 1 Multiply indexed line. 6.305410 1 2 1 2 Doubly indexed line. 4.837400 6.4837400 1 2 2 2 Doubly indexed line. 4.482320 999 1 2 2 Doubly indexed line. 4.19260 373 0 0 4 Doubly indexed line. 4.067490 5 2 3 Doubly indexed line. 3.950330 1 0 3 4 Multiply indexed line. 3.957100 4 3 2 2 Doubly indexed line. 3.77100 0 3 2		11.851000	1	100	Doubly indexed line.
9.674790 1 0.11 8.385930 3 10.2 Doubly indexed line. 7.498820 1 1.1 6.840040 68 10.2 Doubly indexed line. 5.925500 185 1.2 Multiply indexed line. 5.925500 185 1.2 Multiply indexed line. 5.306010 1 2.10 Doubly indexed line. 5.306010 1 2.0 Doubly indexed line. 5.054380 4 0.13 Multiply indexed line. 4.837400 1 2.02 Doubly indexed line. 4.482320 999 2.12 Doubly indexed line. 4.482320 999 2.12 Doubly indexed line. 4.192960 373 2.0 Doubly indexed line. 4.067490 5 2.21 Doubly indexed line. 3.950330 1 0.30 Multiply indexed line. 3.950330 1 0.30 Multiply indexed line. 3.746750 112 1.14 Multiply indexed line.		11.851000	1	010	Doubly indexed line.
8.385930 3 1 1 0 7.498820 1 1 1 6.840040 68 1 2 Doubly indexed line, 5.925500 185 1.2 Doubly indexed line, 5.925500 5.925500 185 1.2 Multiply indexed line, 5.925500 5.925500 185 1.2 Multiply indexed line, 5.054380 5.054380 4 1.1 2.0 Doubly indexed line, 5.054380 4 1.1 Multiply indexed line, 4.837400 1 2.2 Doubly indexed line, 4.837400 1 2.2 Doubly indexed line, 4.482320 999 2.12 Doubly indexed line, 4.192960 373 2.0 Doubly indexed line, 3.950330 1 0.3 Multiply indexed line, 3.950330 1 0.3 Multiply indexed line, 3.950330 1 0.3 Multiply indexed line, 3.746750 1.12 1.3 Multiply indexed line, 3.577100 4<		9.674790	1	011	
8.385930 3 0 0 2 Doubly indexed line. 6.840040 68 1 2 Doubly indexed line. 6.840040 68 0 1 Doubly indexed line. 5.925500 185 0 2 Doubly indexed line. 5.366301 1 2 10 Doubly indexed line. 5.306010 1 2 10 Doubly indexed line. 5.054380 4 0 1 Multiply indexed line. 4.837400 1 2.02 Doubly indexed line. 4.482320 4.482320 999 2.12 Doubly indexed line. 4.192960 4.192960 373 2.04 Doubly indexed line. 4.067490 3.950330 1 0.30 Multiply indexed line. 3.950330 1 0.40 3.844700 3 1.23 Multiply indexed line. 3.777100 4 3.02 Doubly indexed line. 3.746750 112 1.14 Multiply indexed line. 3.7476750 12		8.385930	3	110	Doubly indexed line.
7.49820 1 1 1 6.840040 68 0 12 Doubly indexed line 5.925500 185 0 20 Multiply indexed line 5.925500 185 0 20 Multiply indexed line 5.306010 1 1 0 Doubly indexed line 5.306010 1 2 10 Doubly indexed line 5.306310 1 2 Doubly indexed line 4.837400 1 0.22 Doubly indexed line 4.837400 1 2.2 Doubly indexed line 4.482320 999 1.2 Doubly indexed line 4.482320 999 1.2 Doubly indexed line 4.067490 5 2.3 Doubly indexed line 3.950330 1 0.14 Multiply indexed line 3.94700 3 1.2 1 Multiply indexed line 3.746750 112 1.4 Multiply indexed line 3.746750 3.844700 3 3.2 Doubly indexed line 3.577100 4 3.2 Doubly indexed line		8.385930	3	002	Doubly indexed line.
6.840040 68 1 0 2 Doubly indexed line 5.925500 185 1 2 Doubly indexed line 5.925500 185 0 2 0 Multiply indexed line 5.306010 1 2 10 Doubly indexed line 5.306010 1 2 10 Doubly indexed line 5.054380 4 0 1 3 Multiply indexed line 4.837400 1 2 0 2 Doubly indexed line 4.837400 1 2 2 Doubly indexed line 4.48320 999 1 2 2 Doubly indexed line 4.48320 999 1 2 2 Doubly indexed line 4.067490 5 2 2 1 Doubly indexed line 3.950330 1 0 3 0 Multiply indexed line 3.950330 1 0 3 1 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.746750 12 2 3 Multiply indexed line 3.226750 3.22		7.498820	1	111	5 II I I II
0.84040 08 0 1.2 Multiply indexed line 5.925500 185 0.2 Multiply indexed line 5.306010 1 2.10 Doubly indexed line 5.306010 1 2.10 Doubly indexed line 5.054380 4 0.13 Multiply indexed line 6.837400 1 2.02 Doubly indexed line 4.837400 1 2.2 Doubly indexed line 4.483200 999 2.12 Doubly indexed line 4.482320 999 2.12 Doubly indexed line 4.192960 373 2.20 Doubly indexed line 4.067490 5 2.21 Doubly indexed line 3.950330 1 0.14 Multiply indexed line 3.946750 112 1.30 Multiply indexed line 3.746750 112 1.30 Multiply indexed line 3.746750 112 1.30 Multiply indexed line 3.746750 112 1.4 Multiply indexed line 3.746750		6.840040	68	102	Doubly indexed line.
5.925500 185 1 1 2 Multiply indexed line 5.925500 185 0 2 0 Multiply indexed line 5.306010 1 2 1 0 Doubly indexed line 5.054380 4 1 2 1 Doubly indexed line 6.054380 4 1 2 1 Doubly indexed line 4.837400 1 2 0 2 Doubly indexed line 4.837400 1 2 0 2 Doubly indexed line 4.482320 999 1 2 2 Doubly indexed line 4.192960 373 2 0 Doubly indexed line 4.192960 373 2 0 Doubly indexed line 3.950330 1 0 3 0 Multiply indexed line 3.950330 1 0 3 1 Multiply indexed line 3.746750 112 114 Multiply indexed line 3.746750 112 114 Multiply indexed line 3.577100 4 0 3 2 Doubly indexed line 3.288320 1 2 3 0 Multiply indexed line 3.26750		6.840040	105	012	Doubly indexed line.
5.92300 1.5 0.2 0 Multiply indexed line 5.306010 1 2.10 Doubly indexed line 5.306010 1 2.10 Doubly indexed line 5.054380 4 0.13 Multiply indexed line 4.837400 1 0.22 Doubly indexed line 4.837400 1 0.22 Doubly indexed line 4.482320 999 1.22 Doubly indexed line 4.482320 999 1.22 Doubly indexed line 4.192960 373 0.40 Doubly indexed line 4.667490 5 0.23 Doubly indexed line 3.950330 1 0.14 Multiply indexed line 3.950330 1 0.31 Multiply indexed line 3.746750 112 1.4 Multiply indexed line 3.577100 4 30.2 Doubly indexed line 3.421650 52 0.24 Multiply indexed line 3.226750 3 0.11 2.4 Multiply indexed line 3.226750 </td <td></td> <td>5.925500</td> <td>185</td> <td>112</td> <td>Multiply indexed line</td>		5.925500	185	112	Multiply indexed line
5.306010 1 0.2.1 5.306010 1 2.10 Doubly indexed line 5.054380 4 1.2.1 Multiply indexed line 4.837400 1 2.0.2 Doubly indexed line 4.837400 1 2.2 Doubly indexed line 4.482320 999 2.2 Doubly indexed line 4.482320 999 2.2 Doubly indexed line 4.192960 373 2.0 Doubly indexed line 4.067490 5 2.2 Doubly indexed line 3.950330 1 0.3.0 Multiply indexed line 3.950330 1 0.3.0 Multiply indexed line 3.950330 1 0.3.0 Multiply indexed line 3.746750 112 1.1.4 Multiply indexed line 3.746750 12 1.4 Multiply indexed line 3.527100 4 3.2 Doubly indexed line 3.421650 52 2.0.4 Multiply indexed line 3.526750 3 2.3 M		5.925500	105	020	Multiply indexed line
5.306010 1 2.10 Doubly indexed line 5.306010 1 2.10 Doubly indexed line 5.054380 4 1.21 Multiply indexed line 4.837400 1 2.02 Doubly indexed line 4.837400 1 2.22 Doubly indexed line 4.482320 999 1.22 Doubly indexed line 4.192960 373 2.00 Doubly indexed line 4.192960 373 0.4 Doubly indexed line 4.067490 5 2.21 Doubly indexed line 3.950330 1 0.30 Multiply indexed line 3.950330 1 0.30 Multiply indexed line 3.746750 112 1.30 Multiply indexed line 3.746750 112 1.4 Multiply indexed line 3.527100 4 0.2 Doubly indexed line 3.421650 52 0.24 Multiply indexed line 3.288320 1 2.30 Multiply indexed line 3.260809 390 <td></td> <td>5.360320</td> <td>1</td> <td>210</td> <td>Doubly indexed line</td>		5.360320	1	210	Doubly indexed line
5.054380 4 1 2 1 Multiply indexed line 5.054380 4 0 1 3 Multiply indexed line 4.837400 1 0 2 2 Doubly indexed line 4.837400 1 0 2 2 Doubly indexed line 4.482320 999 2 1 2 Doubly indexed line 4.482320 999 2 1 2 Doubly indexed line 4.482320 999 2 1 2 Doubly indexed line 4.482320 999 2 2 Doubly indexed line 4.482320 99 2 2 Doubly indexed line 4.067490 5 2 2 1 Doubly indexed line 3.950330 1 0 1 4 Multiply indexed line 3.950330 1 0 3 1 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.746750 12 1 1 4 Multiply indexed line 3.577100 4 0 3 2 Doubly indexed line 3.288320 1 2 2 3 3.288320 1 2 4 Multiply indexed line 3.26		5.306010	1	120	Doubly indexed line.
5.054380 4 0 1 3 Multiply indexed line 4.837400 1 2 2 Doubly indexed line 4.837400 1 2 2 Doubly indexed line 4.482320 999 1 2 Doubly indexed line 4.192960 373 20 Doubly indexed line 4.192960 373 20 Doubly indexed line 4.067490 5 2 2 Doubly indexed line 3.950330 1 0 3 Multiply indexed line 3.844700 3 12 Multiply indexed line 3.746750 112 13 Multiply indexed line 3.746750 112 14 Multiply indexed line 3.577100 4 3 2 Doubly indexed line 3.52740 1 2 3 Multiply indexed line 3.52740 1 2 3 Multiply indexed line 3.288320 1 2 3 Multiply indexed line 3.226750 3 2 1 Multiply indexed line 3.266020 3 2 D		5 054380	4	120	Multiply indexed line
4.837400 1 2 0 Doubly indexed line 4.837400 1 0 2 Doubly indexed line 4.482320 999 1 2 Doubly indexed line 4.192960 373 2 Doubly indexed line 4.192960 373 0 4 Doubly indexed line 4.067490 5 2 1 Doubly indexed line 3.950330 1 0.14 Multiply indexed line 3.950330 1 0.3 Multiply indexed line 3.746750 112 1.3 Multiply indexed line 3.746750 112 1.3 Multiply indexed line 3.746750 112 1.3 Multiply indexed line 3.746750 112 2.3 Multiply indexed line 3.421650 52 0.2.4 Multiply indexed line 3.226750 3 2.3 Multiply indexed line 3.268320 1 2.4 Multiply indexed line 3.26750 3 2.3 Multiply		5.054380	4	013	Multiply indexed line
4.837400 1 0 2 2 Doubly indexed line 4.482320 999 2 1 2 Doubly indexed line 4.482320 999 2 1 2 Doubly indexed line 4.192960 373 0 4 Doubly indexed line 4.067490 5 0 2 3 Doubly indexed line 4.067490 5 0 2 3 Doubly indexed line 3.950330 1 0 3 1 Multiply indexed line 3.950750 112 1 1 4 Multiply indexed line 3.746750 1 2 2 3 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.288320 1 2 2 3 Multiply indexed line 3.266750 3 0 1 5 Multiply indexed line 3.266760 3 0 4 Multiply indexed line 3.267700 <td< td=""><td></td><td>4.837400</td><td>1</td><td>202</td><td>Doubly indexed line.</td></td<>		4.837400	1	202	Doubly indexed line.
4.482320 999 2 1 2 Doubly indexed line 4.482320 999 1 2 2 Doubly indexed line 4.192960 373 0 0 4 Doubly indexed line 4.067490 5 2 1 Doubly indexed line 4.067490 5 2 2 1 Doubly indexed line 3.950330 1 0 3 0 Multiply indexed line 3.950330 1 0 3 1 Multiply indexed line 3.844700 3 0 3 1 Multiply indexed line 3.746750 112 1 3 0 Multiply indexed line 3.746750 112 1 3 0 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.746750 112 2 3 0 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.28320 1 2 3 0 Multiply indexed line 3.266750 3 2 3 1 Multiply indexed line 3.26750 3.060890 390 2 3 2 Doubly indexed line <t< td=""><td></td><td>4.837400</td><td>1</td><td>022</td><td>Doubly indexed line.</td></t<>		4.837400	1	022	Doubly indexed line.
4.482320 999 1.2.2 Doubly indexed line 4.192960 373 2.2.0 Doubly indexed line 4.067490 5 2.2.1 Doubly indexed line 3.950330 1 0.3.0 Multiply indexed line 3.950330 1 0.3.0 Multiply indexed line 3.950330 1 0.3.1 Multiply indexed line 3.844700 3 0.3.1 Multiply indexed line 3.746750 112 1.3.0 Multiply indexed line 3.746750 112 1.4.4 Multiply indexed line 3.746750 12 2.0.0 Doubly indexed line 3.746750 12 2.1.4 Multiply indexed line 3.746750 12 2.3.0 Multiply indexed line 3.577100 4 0.3.2 Doubly indexed line 3.421650 52 2.4 Multiply indexed line 3.226750 3 2.3.1 Multiply indexed line 3.260890 390 2.3.2 Doubly indexed line 3.060890 390 2.3.2 Doubly indexed line 2.97700 </td <td></td> <td>4.482320</td> <td>999</td> <td>212</td> <td>Doubly indexed line.</td>		4.482320	999	212	Doubly indexed line.
4.192960 373 2.2.0 Doubly indexed line. 4.067490 5 2.2.1 Doubly indexed line. 3.950330 1 0.3.0 Multiply indexed line. 3.950330 1 0.3.1 Multiply indexed line. 3.950330 1 0.3.1 Multiply indexed line. 3.844700 3 0.3.1 Multiply indexed line. 3.746750 112 1.3.0 Multiply indexed line. 3.746750 112 1.3.0 Multiply indexed line. 3.746750 112 1.3.0 Multiply indexed line. 3.421650 52 2.0.4 Multiply indexed line. 3.421650 52 0.2.4 Multiply indexed line. 3.288320 1 2.2.3 Multiply indexed line. 3.268520 1 2.4 Multiply indexed line. 3.268520 1 2.4 Multiply indexed line. 3.26750 3 2.3.1 Multiply indexed line. 3.26750 3 2.3 Multiply indexed line. 3.060890 390 2.2 Doubly indexed line.		4.482320	999	122	Doubly indexed line.
4.192960 373 0 0 4 Doubly indexed line 4.067490 5 2 2 Doubly indexed line 3.950330 1 0 3 Multiply indexed line 3.950330 1 0 3 Multiply indexed line 3.950330 1 0 3 Multiply indexed line 3.844700 3 0 3 Multiply indexed line 3.746750 112 1 3 Multiply indexed line 3.746750 112 1 4 Multiply indexed line 3.746750 112 1 4 Multiply indexed line 3.421650 52 0 4 Multiply indexed line 3.421650 52 0 4 Multiply indexed line 3.288320 1 2 3 Multiply indexed line 3.266750 3 0 1 5 Multiply indexed line 3.060890 390 2 2 Doubly indexed line 3.060890 390 2 3 2 Doubly indexed line 2.967000 387 4 0 Multiply indexed line 2.917470 <td< td=""><td></td><td>4.192960</td><td>373</td><td>220</td><td>Doubly indexed line</td></td<>		4.192960	373	220	Doubly indexed line
4.067490 5 2 2 1 Doubly indexed line. 3.950330 1 0 3 0 Multiply indexed line. 3.950330 1 0 1 4 Multiply indexed line. 3.844700 3 0 3 1 Multiply indexed line. 3.844700 3 1 2 3 Multiply indexed line. 3.746750 112 1 3 0 Multiply indexed line. 3.746750 112 1 1 4 Multiply indexed line. 3.746750 12 1 4 Multiply indexed line. 3.746750 12 1 4 Multiply indexed line. 3.421650 52 2 0 4 Multiply indexed line. 3.421650 52 0 2 4 Multiply indexed line. 3.288320 1 2 3 0 Multiply indexed line. 3.260890 390 2 2 2 Doubly indexed line. 3.260890 390 2 2 2 Doubly indexed line. 3.26600 3 0 1 5 Multiply indexed line. 2.967000 387 4 0 Multiply indexed line. 2.91747		4.192960	373	004	Doubly indexed line
4.067490 5 0.2.3 Doubly indexed line 3.950330 1 0.3.0 Multiply indexed line 3.844700 3 0.3.1 Multiply indexed line 3.844700 3 1.2.3 Multiply indexed line 3.844700 3 1.2.3 Multiply indexed line 3.746750 112 1.1.4 Multiply indexed line 3.746750 1.2.2 1.1.4 Multiply indexed line 3.746750 1.2.2 2.0.4 Multiply indexed line 3.421650 52 0.2.4 Multiply indexed line 3.421650 52 0.2.4 Multiply indexed line 3.268320 1 2.2.3 3 3.288320 1 2.3.0 Multiply indexed line 3.266750 3 0.1.5 Multiply indexed line 3.060890 390 3.2.2 Doubly indexed line 2.967000 387 4.0 Multiply indexed line 2.917470 11 0.4.1 Doubly indexed line 2.917470 11 0.4.1 Doubly indexed line 2.83520 <t< td=""><td></td><td>4.067490</td><td>5</td><td>221</td><td>Doubly indexed line</td></t<>		4.067490	5	221	Doubly indexed line
3.950330 1 0 3 0 Multiply indexed line 3.950330 1 0 1 1 Multiply indexed line 3.844700 3 1 2 3 Multiply indexed line 3.746750 112 1 3 0 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.746750 1 2 2 Doubly indexed line 3.74750 4 0 3 2 Doubly indexed line 3.746750 1 2 2 3 Multiply indexed line 3.421650 52 0 4 Multiply indexed line 3.288320 1 2 3 0 Multiply indexed line 3.226750 3 0 1 5 Multiply indexed line 3.060890 390 2 3 2 Doubly indexed line 2.967000 387 4 0 Multiply indexed line 2.967000 387 4 0 Multiply indexed line 2.917470 11 0 4 1 Doubly indexed line 2.94700 387 4 0 Multiply indexed line 2.873660 2 3		4.067490	5	023	Doubly indexed line.
3.950330 1 0.1.4 Multiply indexed line 3.844700 3 0.3.1 Multiply indexed line 3.746750 112 1.3.0 Multiply indexed line 3.746750 112 1.3.0 Multiply indexed line 3.746750 112 1.1.4 Multiply indexed line 3.746750 12.2 1.4 Multiply indexed line 3.746750 2.2.0 2.0ubly indexed line 3.421650 52 2.0.4 Multiply indexed line 3.288320 1 2.2.3 Multiply indexed line 3.226750 3 2.3.1 Multiply indexed line 3.226750 3 2.3 Doubly indexed line 3.060890 390 3.2.2 Doubly indexed line 2.967000 387 4.0 Multiply indexed line 2.967000 387 4.0 Multiply indexed line 2.967000 387 4.0 Multiply indexed line 2.967000 387 0.4.0 Multiply indexed line 2.974730		3.950330	1	030	Multiply indexed line
3.844700 3 0.3.1 Multiply indexed line 3.844700 3 1.2.3 Multiply indexed line 3.746750 112 1.1.4 Multiply indexed line 3.746750 112 1.1.4 Multiply indexed line 3.577100 4 0.3.2 Doubly indexed line 3.421650 52 2.0.4 Multiply indexed line 3.421650 52 0.2.4 Multiply indexed line 3.328320 1 2.3.0 Multiply indexed line 3.226750 3 2.3.1 Multiply indexed line 3.226750 3 2.3.2 Doubly indexed line 3.060890 390 2.2.2 Doubly indexed line 3.060890 390 2.3.2 Doubly indexed line 2.967000 387 4.0.0 Multiply indexed line 2.917470 11 0.2.5 Doubly indexed line 2.917470 11 0.2.5 Doubly indexed line 2.873660 2 0.3.4 Multiply indexed line 2.873660 2 3.4 Multiply indexed line 2.794730<		3.950330	1	014	Multiply indexed line
3.844700 3 1 2 3 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.577100 4 3 0 2 Doubly indexed line 3.577100 4 0 3 2 Doubly indexed line 3.421650 52 0 2 4 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.4268320 1 2 3 0 Multiply indexed line 3.288320 1 2 4 Multiply indexed line 3.266750 3 0 1 5 Multiply indexed line 3.060890 390 3 2 2 Doubly indexed line 3.060890 390 3 2 3 Doubly indexed line 2.967000 387 4 0 Multiply indexed line 2.967000 387 0 4 0 Multiply indexed line 2.967000 387 4 0 Multiply indexed line 2.97470 11 0 4 1 Doubly indexed line 2.873660 2 0 3 4 Multiply indexed line 2.74730 </td <td></td> <td>3.844700</td> <td>3</td> <td>031</td> <td>Multiply indexed line</td>		3.844700	3	031	Multiply indexed line
3.746750 112 1 3 0 Multiply indexed line 3.746750 112 1 1 4 Multiply indexed line 3.577100 4 0 3 2 Doubly indexed line 3.421650 52 2 0 4 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.421650 52 0 2 4 Multiply indexed line 3.421650 3 0 1 2 2 3 Multiply indexed line 3.288320 1 2 3 0 Multiply indexed line 3.286320 1 2 4 Multiply indexed line 3.26750 3 0 1 5 Multiply indexed line 3.060890 390 3 2 2 Doubly indexed line 3.060890 390 3 2 2 Doubly indexed line 2.967000 387 4 0 Multiply indexed line 2.917470 11 0 4 1 Doubly indexed line 2.94700 12 0 4 Multiply indexed line 2.873660 2 0 3 4 Multiply indexed line 2.873660 2 3 4 Multiply indexed line 2.794730		3.844700	3	123	Multiply indexed line
3.746750 112 1 1 4 Multiply indexed line. 3.577100 4 3 0 2 Doubly indexed line. 3.577100 4 3 2 Doubly indexed line. 3.421650 52 2 0 4 Multiply indexed line. 3.421650 52 0 2 4 Multiply indexed line. 3.288320 1 2 3 0 Multiply indexed line. 3.288320 1 2 3 1 Multiply indexed line. 3.266750 3 2 3 1 Multiply indexed line. 3.266780 390 3 2 2 Doubly indexed line. 3.060890 390 2 3 2 Doubly indexed line. 2.967000 387 4 0 Multiply indexed line. 2.917470 11 0 4 1 Doubly indexed line. 2.917470 11 0 4 1 Doubly indexed line. 2.873660 2 3 0 4 Multiply indexed line. 2.873660 2 3 4 Multiply indexed line. 2.794730 86 3 1 4 Multiply indexed line. 2.794730 86 13 4 Multiply indexed line. <		3.746750	112	130	Multiply indexed line
3.577100 4 3 0 2 Doubly indexed line. 3.577100 4 0 3 2 Doubly indexed line. 3.421650 52 0 2 4 Multiply indexed line. 3.421650 52 0 2 4 Multiply indexed line. 3.288320 1 2 2 3 Multiply indexed line. 3.288320 1 2 3 1 Multiply indexed line. 3.226750 3 0 1 5 Multiply indexed line. 3.060890 390 3 2 2 Doubly indexed line. 3.060890 390 2 3 2 Doubly indexed line. 2.967000 387 0 4 0 Multiply indexed line. 2.967000 387 0 4 0 Multiply indexed line. 2.917470 11 0 4 1 Doubly indexed line. 2.873660 2 3 0 4 Multiply indexed line. 2.873660 2 3 4 Multiply indexed line. 2.83520 4 2 3 Multiply indexed line. 2.794730 86 1 3 4 Multiply indexed line. 2.794730 86 1 3 4 Multiply indexed line.		3.746750	112	114	Multiply indexed line
3.577100 4 0.3.2 Doubly indexed line 3.421650 52 2.0.4 Multiply indexed line 3.421650 52 0.2.4 Multiply indexed line 3.288320 1 2.2.3 3.288320 1 2.4.3 Multiply indexed line 3.226750 3 2.3.1 Multiply indexed line 3.226750 3 0.1.5 Multiply indexed line 3.060890 390 3.2.2 Doubly indexed line 2.967000 387 4.0 Multiply indexed line 2.873660 2 3.4 Multiply indexed line 2.873660 2 3.4 Multiply indexed line 2.794730 86 3.1.4 Multiply indexed line 2.794730 86 3.4 Multiply indexed line 2.717800 12.4 0.16 </td <td></td> <td>3.577100</td> <td>4</td> <td>302</td> <td>Doubly indexed line.</td>		3.577100	4	302	Doubly indexed line.
3.421650 52 20 4 Multiply indexed line 3.421650 52 02 4 Multiply indexed line 3.288320 1 23 0 Multiply indexed line 3.288320 1 124 Multiply indexed line 3.226750 3 231 Multiply indexed line 3.226750 3 232 Doubly indexed line 3.060890 390 232 Doubly indexed line 2.967000 387 400 Multiply indexed line 2.967000 387 400 Multiply indexed line 2.917470 11 0.41 Doubly indexed line 2.917470 11 0.41 Doubly indexed line 2.873660 2 30.4 Multiply indexed line 2.83520 4 323 Multiply indexed line 2.794730 86 13.4 Multiply indexed line 2.794730 86 13.4 Multiply indexed line 2.717800 124 1.06 Multiply indexed line 2.653000 33 2.40 Multiply indexed line		3.577100	4	032	Doubly indexed line.
3.421650 52 0.24 Multiply indexed line 3.352940 1 2.23 3.288320 1 2.23 3.288320 1 2.4 Multiply indexed line 3.226750 3 2.31 Multiply indexed line 3.060890 390 3.22 Doubly indexed line 3.060890 390 2.32 Doubly indexed line 3.060890 390 2.32 Doubly indexed line 2.967000 387 4.00 Multiply indexed line 2.967000 387 0.40 Multiply indexed line 2.917470 11 0.41 Doubly indexed line 2.873660 2 0.34 Multiply indexed line 2.873660 2 0.34 Multiply indexed line 2.794730 86 31.4 Multiply indexed line 2.794730 86 31.4 Multiply indexed line 2.717800 124 0.6 Multiply indexed line 2.653000 33 4.20 Multiply indexed line 2.653000 33 4.20 Multiply indexed line		3.421650	52	204	Multiply indexed line
3.352940 1 223 3.288320 1 230 Multiply indexed line 3.288320 1 231 Multiply indexed line 3.226750 3 231 Multiply indexed line 3.226750 3015 Multiply indexed line 3.060890 390 322 Doubly indexed line 3.060890 390 232 Doubly indexed line 2.967000 387 040 Multiply indexed line 2.967000 387 040 Multiply indexed line 2.967000 387 040 Multiply indexed line 2.917470 11 041 Doubly indexed line 2.873660 2 304 Multiply indexed line 2.873660 2 3 4 Multiply indexed line 2.833520 4 23 Multiply indexed line 2.794730 86 1 34 Multiply indexed line 2.794730 86 1 34 Multiply indexed line 2.653000 33 420 Multiply indexed line 2.653000 33		3.421650	52	024	Multiply indexed line
3.288320 1 2.3 Multiply indexed line 3.288320 1 1.2.4 Multiply indexed line 3.226750 3 2.1 Multiply indexed line 3.060890 390 3.2.2 Doubly indexed line 3.060890 390 2.3.2 Doubly indexed line 2.967000 387 4.0 Multiply indexed line 2.917470 11 0.4.1 Doubly indexed line 2.873660 2 3.0.4 Multiply indexed line 2.873660 2 3.3 Multiply indexed line 2.833520 4 2.3 Multiply indexed line 2.794730 86 3.1.4 Multiply indexed line 2.794730 86 1.3.4 Multiply indexed line 2.653000 33 4.2.0 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.618150		3.352940	1	223	Mandata Inc. Social according to a
3.28320 1 1 2 4 Multiply indexed line 3.226750 3 0 1 5 Multiply indexed line 3.26750 301 2 Doubly indexed line 3.060890 390 2 2 Doubly indexed line 2.967000 387 400 Multiply indexed line 2.967000 387 400 Multiply indexed line 2.917470 11 0 41 Doubly indexed line 2.917470 11 0 2 Doubly indexed line 2.873660 2 30 4 Multiply indexed line 2.873660 2 3 4 Multiply indexed line 2.833520 4 32 3 Multiply indexed line 2.833520 4 32 3 Multiply indexed line 2.794730 86 1 3 Multiply indexed line 2.794730 86 1 3 4 Multiply indexed line 2.653000 33 2 0 Multiply indexed line 2.618150 2.618150		3.288320	1	230	Multiply indexed line
3.226750 3 2.3 1 Multiply indexed line 3.060890 390 3.2 2 Doubly indexed line 3.060890 390 2.3 2 Doubly indexed line 2.967000 387 4.0 Multiply indexed line 2.967000 387 0.4.0 Multiply indexed line 2.917470 11 0.4.1 Doubly indexed line 2.917470 11 0.4.1 Doubly indexed line 2.917470 11 0.4.1 Doubly indexed line 2.873660 2 3.0.4 Multiply indexed line 2.873660 2 3.4 Multiply indexed line 2.833520 4 3.2.3 Multiply indexed line 2.794730 86 3.1.4 Multiply indexed line 2.794730 86 1.3.4 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.618150 1 2.4.1 Multiply indexed line 2.586340 1 2.4 Doubly indexed line </td <td></td> <td>3.288320</td> <td>1</td> <td>124</td> <td>Multiply indexed line</td>		3.288320	1	124	Multiply indexed line
3.220730 30 32 Doubly indexed line. 3.060890 390 2.32 Doubly indexed line. 2.967000 387 4.00 Multiply indexed line. 2.967000 387 0.40 Multiply indexed line. 2.967000 387 0.40 Multiply indexed line. 2.917470 11 0.41 Doubly indexed line. 2.917470 11 0.25 Doubly indexed line. 2.873660 2 0.4 Multiply indexed line. 2.873660 2 0.4 Multiply indexed line. 2.873660 2 0.34 Multiply indexed line. 2.833520 4 3.23 Multiply indexed line. 2.794730 86 3.14 Multiply indexed line. 2.717800 124 10.6 Multiply indexed line. 2.653000 33 4.20 Multiply indexed line. 2.653000 33 4.20 Multiply indexed line. 2.618150 1 2.41 Multiply indexed line. 2.586340 1 2.34 Doubly indexed line. 2.55577		3.220/50	2	231	Multiply indexed line
3.060890 390 2.2 Doubly indexed line. 3.060890 387 4.0 Multiply indexed line. 2.967000 387 4.0 Multiply indexed line. 2.967000 387 0.4.0 Multiply indexed line. 2.917470 11 0.4.1 Doubly indexed line. 2.917470 11 0.2.5 Doubly indexed line. 2.873660 2 3.0.4 Multiply indexed line. 2.873660 2 3.4 Multiply indexed line. 2.873660 2 3.4 Multiply indexed line. 2.833520 4 3.2.3 Multiply indexed line. 2.794730 86 3.1.4 Multiply indexed line. 2.794730 86 1.3.4 Multiply indexed line. 2.717800 124 1.6 Multiply indexed line. 2.653000 33 4.2.0 Multiply indexed line. 2.653000 33 4.2.0 Multiply indexed line. 2.653000 33 2.4.0 Multiply indexed line. 2.658340 1 2.4 Multiply indexed line.		3 060890	200	322	Doubly indexed line
2.967000 387 4 0 0 Multiply indexed line 2.967000 387 0 4 0 Multiply indexed line 2.917470 11 0 4 1 Doubly indexed line 2.917470 11 0 2 5 Doubly indexed line 2.873660 2 3 0 4 Multiply indexed line 2.873660 2 3 0 4 Multiply indexed line 2.833520 4 3 2 3 Multiply indexed line 2.833520 4 2 3 3 Multiply indexed line 2.794730 86 3 1 4 Multiply indexed line 2.794730 86 1 3 4 Multiply indexed line 2.717800 124 1 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.586340 1 3 2 4 Doubly indexed line 2.555770 1 1 3 3 Multiply indexed line 2.52		3 060890	390	232	Doubly indexed line
2.967000 387 0 4 0 Multiply indexed line 2.917470 11 0 4 1 Doubly indexed line 2.917470 11 0 2 5 Doubly indexed line 2.873660 2 3 0 4 Multiply indexed line 2.873660 2 3 0 4 Multiply indexed line 2.873660 2 3 4 Multiply indexed line 2.833520 4 3 2 3 Multiply indexed line 2.833520 4 2 3 3 Multiply indexed line 2.794730 86 3 1 4 Multiply indexed line 2.794730 86 1 3 4 Multiply indexed line 2.717800 124 0 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.586340 1 3 2 4 Doubly indexed line 2.586340 1 3 2 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.526330 <td></td> <td>2.967000</td> <td>387</td> <td>400</td> <td>Multiply indexed line</td>		2.967000	387	400	Multiply indexed line
2.917470 11 0 4 1 Doubly indexed line. 2.917470 11 0 2 5 Doubly indexed line. 2.873660 2 3 0 4 Multiply indexed line. 2.873660 2 0 3 4 Multiply indexed line. 2.873660 2 0 3 4 Multiply indexed line. 2.833520 4 2 3 Multiply indexed line. 2.833520 4 2 3 Multiply indexed line. 2.833520 4 2 3 Multiply indexed line. 2.794730 86 3 1 4 Multiply indexed line. 2.794730 86 1 3 4 Multiply indexed line. 2.794730 86 1 3 4 Multiply indexed line. 2.794730 124 0 1 6 Multiply indexed line. 2.653000 33 2 4 0 Multiply indexed line. 2.653000 33 2 4 1 Multiply indexed line. 2.618150 1 2 4 1 Multiply indexed line. 2.586340 1 2 3 4 Doubly indexed line. 2.555770 2.555770 1 1 3 3 Multiply indexed line. <		2.967000	387	040	Multiply indexed line
2.917470 11 0.2.5 Doubly indexed line 2.873660 2 3.0.4 Multiply indexed line 2.873660 2 3.0.4 Multiply indexed line 2.833520 4 3.2.3 Multiply indexed line 2.833520 4 3.2.3 Multiply indexed line 2.833520 4 2.3.3 Multiply indexed line 2.794730 86 3.1.4 Multiply indexed line 2.794730 86 1.3.4 Multiply indexed line 2.794730 124 1.0.6 Multiply indexed line 2.717800 124 0.6 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.618150 1 2.4.1 Multiply indexed line 2.586340 1 2.3.4 Doubly indexed line 2.555770 1 1.4.3 Multiply indexed line 2.526330 1 2.0.6 Multiply indexed line 2.526330 1 2.6 Multiply indexed line 2.470810		2.917470	11	041	Doubly indexed line.
2.873660 2 3 0 4 Multiply indexed line 2.873660 2 0 3 4 Multiply indexed line 2.833520 4 3 2 3 Multiply indexed line 2.833520 4 3 2 3 Multiply indexed line 2.833520 4 2 3 3 Multiply indexed line 2.794730 86 3 1 4 Multiply indexed line 2.794730 86 1 3 4 Multiply indexed line 2.794730 86 1 4 Multiply indexed line 2.794730 86 1 4 Multiply indexed line 2.794730 124 1 0 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 0 4 3 Multiply indexed line 2.586340 1 3 2 4 Doubly indexed line 2.556370 1 1 4 3 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.499610 1 3 3 3 Multiply indexed line 2.499610 <t< td=""><td></td><td>2.917470</td><td>11</td><td>025</td><td>Doubly indexed line.</td></t<>		2.917470	11	025	Doubly indexed line.
2.873660 2 0.3.4 Multiply indexed line 2.833520 4 3.2.3 Multiply indexed line 2.833520 4 2.3.3 Multiply indexed line 2.833520 4 2.3.3 Multiply indexed line 2.794730 86 3.1.4 Multiply indexed line 2.794730 86 1.3.4 Multiply indexed line 2.717800 124 1.0.6 Multiply indexed line 2.717800 124 0.1.6 Multiply indexed line 2.653000 33 4.2.0 Multiply indexed line 2.653000 33 4.2.0 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.653001 3.2.4 Doubly indexed line 2.6586340 2.586340 1 3.2.4 Doubly indexed line 2.555770 1 1.4.3 Multiply indexed line 2.526330 1 0.2.6 Multiply indexed line 2.499610 1 3.3.3 Multiply indexed line		2.873660	2	304	Multiply indexed line
2.833520 4 3 2 3 Multiply indexed line 2.833520 4 2 3 3 Multiply indexed line 2.794730 86 3 1 4 Multiply indexed line 2.794730 86 1 3 4 Multiply indexed line 2.794730 124 1 0 6 Multiply indexed line 2.717800 124 1 0 6 Multiply indexed line 2.717800 124 0 1 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653001 3 2 4 0 Multiply indexed line 2.658040 1 3 2 4 Doubly indexed line 2.586340 1 2 3 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.526330 1 0 3 5 Multiply indexed line 2.499610 1 3 3 3 Multiply indexed line 2.499610		2.873660	2	034	Multiply indexed line
2.833520 4 2.3.3 Multiply indexed line 2.794730 86 3.1.4 Multiply indexed line 2.794730 86 1.3.4 Multiply indexed line 2.794730 86 1.3.4 Multiply indexed line 2.717800 124 1.0.6 Multiply indexed line 2.717800 124 0.16 Multiply indexed line 2.653000 33 4.2.0 Multiply indexed line 2.653000 33 2.4.0 Multiply indexed line 2.618150 1 2.4.1 Multiply indexed line 2.586340 1 3.2.4 Doubly indexed line 2.586340 1 2.3.4 Doubly indexed line 2.555770 1 1.4.3 Multiply indexed line 2.555770 1 0.3.5 Multiply indexed line 2.526330 1 0.2.6 Multiply indexed line 2.499610 1 3.3 Multiply indexed line 2.499610 1 3.3 Multiply indexed line 2.470810 3 2.1.6 Doubly indexed line 2.470810 <td></td> <td>2.833520</td> <td>4</td> <td>323</td> <td>Multiply indexed line</td>		2.833520	4	323	Multiply indexed line
2.794730 86 3 1 4 Multiply indexed line 2.794730 86 1 3 4 Multiply indexed line 2.717800 124 1 0 6 Multiply indexed line 2.717800 124 0 1 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.586340 1 3 2 4 Doubly indexed line 2.586340 1 2 3 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.555770 1 0 3 5 Multiply indexed line 2.526330 1 0 2 6 Multiply indexed line 2.499610 1 3 3 Multiply indexed line 2.499610 1 3 3 Multiply indexed line 2.470810 3 1 2 6 Doubly indexed line 2.470810<		2.833520	4	233	Multiply indexed line
2.794730 86 1 3 4 Multiply indexed line 2.717800 124 1 0 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.618150 1 3 2 4 Doubly indexed line 2.586340 1 3 2 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.555770 1 0 3 5 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.499610 1 3 3 Multiply indexed line 2.499610 1 3 3 Multiply indexed line 2.499610 1 3 3 Multiply indexed line 2.470810 3 2 1 6 Doubly indexed line 2.470810 3 1 2 6 Doubly indexed line 2.421010		2.794730	86	314	Multiply indexed line
2.717800 124 1 0 6 Multiply indexed line 2.717800 124 0 1 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.618150 1 3 2 4 Doubly indexed line 2.618150 1 3 2 4 Doubly indexed line 2.586340 1 3 2 4 Doubly indexed line 2.586340 1 2 3 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.499610 1 3 3 3 Multiply indexed line 2.499610 1 3 3 3 Multiply indexed line 2.470810 3 1 2 6 Doubly indexed line 2.470810 3 1 2 6 Doubly indexed line 2.421010		2.794730	86	134	Multiply indexed line
2.717800 124 0 1 6 Multiply indexed line 2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.618150 1 3 2 4 Doubly indexed line 2.586340 1 3 2 4 Doubly indexed line 2.586340 1 2 3 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.499610 1 3 3 3 Multiply indexed line 2.499610 1 3 5 Multiply indexed line 2.470810 3 2 1 6 Doubly indexed line 2.470810 3 1 2 6 Doubly indexed line 2.421010 1 4 0 4 Doubly indexed line 2.421010		2.717800	124	106	Multiply indexed line
2.653000 33 4 2 0 Multiply indexed line 2.653000 33 2 4 0 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.618150 1 2 4 1 Multiply indexed line 2.618150 1 0 4 3 Multiply indexed line 2.586340 1 3 2 4 Doubly indexed line 2.586340 1 2 3 4 Doubly indexed line 2.555770 1 1 4 3 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.526330 1 2 0 6 Multiply indexed line 2.499610 1 3 3 3 Multiply indexed line 2.499610 1 3 5 Multiply indexed line 2.470810 3 2 1 6 Doubly indexed line 2.470810 3 1 2 6 Doubly indexed line 2.421010 1 4 0 4 Doubly indexed line 2.421010 1 4 0 4 Doubly indexed line		2.717800	124	016	Multiply indexed line
2.653000 33 2.40 Multiply indexed line 2.618150 1 2.41 Multiply indexed line 2.618150 1 0.43 Multiply indexed line 2.586340 1 3.24 Doubly indexed line 2.586340 1 3.24 Doubly indexed line 2.586340 1 2.34 Doubly indexed line 2.555770 1 1.43 Multiply indexed line 2.526330 1 2.06 Multiply indexed line 2.526330 1 0.26 Multiply indexed line 2.499610 1 3.33 Multiply indexed line 2.499610 1 3.5 Multiply indexed line 2.470810 3 2.16 Doubly indexed line 2.470810 3 1.26 Doubly indexed line 2.421010 1 4.04 Doubly indexed line 2.421010 1 0.44 Doubly indexed line		2.653000	33	420	Multiply indexed line
2.618150 1 2.4 1 Multiply indexed line 2.618150 1 0.4 3 Multiply indexed line 2.586340 1 3.2 4 Doubly indexed line 2.586340 1 2.3 4 Doubly indexed line 2.586340 1 2.3 4 Doubly indexed line 2.555770 1 1.4 3 Multiply indexed line 2.555770 1 0.3 5 Multiply indexed line 2.526330 1 2.0 6 Multiply indexed line 2.499610 1 3.3 3 Multiply indexed line 2.499610 1 3.3 5 Multiply indexed line 2.470810 3 2.1 6 Doubly indexed line 2.470810 3 1.2 6 Doubly indexed line 2.421010 1 4.0 4 Doubly indexed line 2.421010 1 0.4 4 Doubly indexed line		2.653000	33	240	Multiply indexed line
2.518150 1 0.4.3 Multiply indexed line. 2.586340 1 3.2.4 Doubly indexed line. 2.586340 1 2.3.4 Doubly indexed line. 2.555770 1 1.4.3 Multiply indexed line. 2.555770 1 0.3.5 Multiply indexed line. 2.5553770 1 0.3.5 Multiply indexed line. 2.526330 1 2.0.6 Multiply indexed line. 2.526330 1 0.2.6 Multiply indexed line. 2.499610 1 3.3 Multiply indexed line. 2.499610 1 3.5 Multiply indexed line. 2.499610 1 1.3.5 Multiply indexed line. 2.470810 3 2.1.6 Doubly indexed line. 2.470810 3 1.2.6 Doubly indexed line. 2.421010 1 0.4.4 Doubly indexed line. 2.421010 1 0.4.4 Doubly indexed line. 2.421010 1 0.4.4 Doubly indexed line.		2.618150	1	241	Multiply indexed line
2.586340 1 3.2.4 Doubly indexed line. 2.586340 1 2.3.4 Doubly indexed line. 2.555770 1 1.4.3 Multiply indexed line. 2.555770 1 0.3.5 Multiply indexed line. 2.526330 1 2.0.6 Multiply indexed line. 2.526330 1 0.2.6 Multiply indexed line. 2.526330 1 0.2.6 Multiply indexed line. 2.499610 1 3.3.3 Multiply indexed line. 2.499610 1 1.3.5 Multiply indexed line. 2.470810 3 2.1.6 Doubly indexed line. 2.47010 1 4.0.4 Doubly indexed line. 2.421010 1 0.4.4 Doubly indexed line. 2.394620 1 4.2.3 Doubly indexed line.		2.618150	1	U43	multiply indexed line
2.580340 1 2.34 Doubly indexed line. 2.555770 1 1.4.3 Multiply indexed line. 2.555770 1 0.3.5 Multiply indexed line. 2.526330 1 2.0.6 Multiply indexed line. 2.526330 1 0.2.6 Multiply indexed line. 2.499610 1 3.3.3 Multiply indexed line. 2.499610 1 3.5.5 Multiply indexed line. 2.470810 3 2.1.6 Doubly indexed line. 2.470810 3 1.2.6 Doubly indexed line. 2.421010 1 4.0.4 Doubly indexed line. 2.421010 1 0.4.4 Doubly indexed line. 2.394620 1 4.2.3 Doubly indexed line.		2.586340	1	324 224	Doubly indexed line.
2.555770 1 1 1 4.3 Multiply indexed line 2.555770 1 0.3.5 Multiply indexed line 2.526330 1 2.0.6 Multiply indexed line 2.526330 1 0.2.6 Multiply indexed line 2.526330 1 0.2.6 Multiply indexed line 2.526330 1 0.2.6 Multiply indexed line 2.499610 1 3.3.3 Multiply indexed line 2.499610 1 1.3.5 Multiply indexed line 2.470810 3 2.1.6 Doubly indexed line 2.470810 3 1.2.6 Doubly indexed line 2.421010 1 4.0.4 Doubly indexed line 2.394620 1 4.2.3 Doubly indexed line		2.586340	1	234	Multiply indexed line.
2.535770 1 0.355 Multiply indexed line 2.526330 1 2.0 6 Multiply indexed line 2.526330 1 0.2 6 Multiply indexed line 2.526330 1 0.2 6 Multiply indexed line 2.499610 1 3.3.3 Multiply indexed line 2.499610 1 1.3.5 Multiply indexed line 2.470810 3 2.1.6 Doubly indexed line 2.470810 3 1.2.6 Doubly indexed line 2.421010 1 4.0.4 Doubly indexed line 2.421010 1 0.4.4 Doubly indexed line 2.394620 1 4.2.3 Doubly indexed line		2.335//0	1	143	Multiply indexed line
2.526330 1 2.676 Multiply indexed line 2.526330 1 0.2 6 Multiply indexed line 2.499610 1 3.3 3 Multiply indexed line 2.499610 1 1.3.5 Multiply indexed line 2.470810 3 2.1.6 Doubly indexed line 2.470810 3 1.2.6 Doubly indexed line 2.421010 1 4.0.4 Doubly indexed line 2.421010 1 0.4.4 Doubly indexed line 2.394620 1 4.2.3 Doubly indexed line		2.333/10	1	206	Multiply indexed line
2.32030 1 0.20 Finitupy indexed line 2.499610 1 3.3 Multiply indexed line 2.499610 1 1.35 Multiply indexed line 2.499610 3 2.16 Doubly indexed line 2.470810 3 1.26 Doubly indexed line 2.470810 3 1.26 Doubly indexed line 2.421010 1 0.44 Doubly indexed line 2.421010 1 0.44 Doubly indexed line 2.394620 1 4.23 Doubly indexed line		2.320330	1	200 026	Multiply indexed line
2.49901011335Multiply indexed line2.4996101135Multiply indexed line2.4708103216Doubly indexed line2.4708103126Doubly indexed line2.421010144Doubly indexed line2.4210101044Doubly indexed line2.394620142Doubly indexed line		2.320330	1	י∠ט	Multiply indexed line
2.475010 1 1 1 5 Flattply indexed line. 2.470810 3 2 1 Doubly indexed line. 2.470810 3 1 2 Doubly indexed line. 2.470810 3 1 2 Doubly indexed line. 2.421010 1 4 4 Doubly indexed line. 2.394620 1 4 2 Doubly indexed line.		2.499010	1	125	Multiply indexed line
2.470010 3 2.10 Doubly indexed line. 2.470810 3 1.2.6 Doubly indexed line. 2.421010 1 4.0.4 Doubly indexed line. 2.421010 1 0.4.4 Doubly indexed line. 2.394620 1 4.2.3 Doubly indexed line.		2.499010	ک T	216	Doubly indexed line
2.470010 5 12 0 Doubly indexed line. 2.421010 1 4 0 4 Doubly indexed line. 2.421010 1 0 4 4 Doubly indexed line. 2.394620 1 4 2 3 Doubly indexed line.		2.770010	נ ר	176	Doubly indexed line
2.421010 1 0 4 4 Doubly indexed line. 2.421010 1 0 4 4 Doubly indexed line. 2.394620 1 4 2 3 Doubly indexed line.		2.470010	د ۱	1 Z O 4 O 4	Doubly indexed line.
2.394620 1 4 2 3 Doubly indexed line		2.421010	1	044	Doubly indexed line
		2.394620	1	423	Doubly indexed line

	_	24.3	Doubly indexed line.
2.370200	1	414	Multiply indexed line.
2.370200	1	050	Multiply indexed line.
2.347490	1	325	Multiply indexed line.
2.347490	1	017	Multiply indexed line.
2.324990	25	334	Multiply indexed line.
2 324990	25	150	Multiply indexed line
2 301270	1	151	Doubly indexed line
2.301270	1	117	Doubly indexed line.
2.301270	1		Doubly indexed line.
2.281100	61	306	Multiply indexed line.
2.281100	61	036	Multiply indexed line.
2.241160	33	424	Multiply indexed line.
2.241160	33	244	Multiply indexed line.
2.201110	1	250	
2.182350	4	251	Multiply indexed line.
2.182350	4	145	Multiply indexed line.
2 130900	75	522	Multiply indexed line
2 130900	75	252	Multiply indexed line
2.130900	147	2 3 2	Baubly indexed line.
2.096480	147	440	Doubly indexed line.
2.096480	14/	008	Doubly indexed line.
2.080250	9	441	Multiply indexed line.
2.080250	9	227	Multiply indexed line.
2.064190	2	434	Multiply indexed line.
2.064190	2	054	Multiply indexed line.
2 047760	2	253	Multiply indexed line
2 047760	2	037	Multiply indexed line
2.04/700	27	5 J /	Multiply indexed line.
2.034350	27	1 5 4	Multiply indexed line.
2.034350	2/	154	Multiply indexed line.
2.004010	74	416	Doubly indexed line.
2.004010	74	146	Doubly indexed line.
1.974660	20	208	Multiply indexed line.
1.974660	20	028	Multiply indexed line.
1.947580	1	254	Multiply indexed line.
1.947580	1	128	Multiply indexed line
1 935320	4	161	Multiply indexed line
1 935320	4	055	Multiply indexed line
1.000020	1	055	Multiply indexed line.
1.922330	1	240	Multiply indexed line.
1.922350	1	246	Multiply indexed line.
1.900150	44	612	
1.897700	45	162	
1.873370	217	260	Multiply indexed line.
1.873370	217	228	Multiply indexed line.
1.839600	3	163	Multiply indexed line.
1.839600	3	147	Multiply indexed line
1 830050	21	534	Multiply indexed line
1 930050	21	354	Multiply indexed line.
1.030030	21	420	Multiply indexed line.
1.007070	70	430	Multiply indexed line.
1.80/8/0	/8	056	Multiply indexed line.
1.788550	7	604	Doubly indexed line.
1.788550	7	516	Doubly indexed line.
1.786450	7	064	Doubly indexed line.
1.786450	7	156	Doubly indexed line.
1.766560	1	328	Multiply indexed line.
1.766560	1	238	Multiply indexed line.
1.757400	2	361	Multiply indexed line.
1 757400	2	210	Multiply indexed line
1 720510	42	627	Multiply indexed line.
1./20210	42	052	Multiply indexed line.
1 720510		302	Muluply maexed line.
1.730510	42		A A 10 C A 1 C A 1 C A 10 C
1.730510 1.710830	42 30	408	Multiply indexed line.
1.730510 1.710830 1.710830	42 30 30	408 048	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430	42 30 30 1	4 0 8 0 4 8 7 0 0	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660	42 30 30 1 1	4 0 8 0 4 8 7 0 0 4 5 4	Multiply indexed line. Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660	42 30 30 1 1	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8	Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.693660 1.684790	42 30 30 1 1 1 3	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3	Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790	42 30 30 1 1 3 3	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9	Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190	42 30 30 1 1 3 3 3	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0	Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190	42 30 30 1 1 3 3 1 1	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8	Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.677190	42 30 30 1 1 3 3 1 1 25	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8 1 0 10	Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710	42 30 30 1 1 3 3 1 1 25 25	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8 1 0 10 0 1 10	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710	42 30 30 1 1 3 3 1 25 25	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8 1 0 10 0 1 10 4 2 °	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.658710	42 30 30 1 1 3 3 1 25 25 19	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8 1 0 10 0 1 10 4 2 8 2 4 0	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.658710 1.643150 1.643150	42 30 30 1 1 1 3 3 1 1 25 25 19 19	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8 1 0 10 0 1 10 4 2 8 2 4 8	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040	42 30 1 1 1 3 3 1 1 25 25 19 19 19	4 0 8 0 4 8 7 0 0 4 5 4 1 4 8 3 6 3 0 3 9 5 5 0 3 3 8 1 0 10 0 1 10 4 2 8 2 4 8 6 3 4 0 5 5 0	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190 1.677190 1.67719 1.658710 1.658710 1.643150 1.628040 1.628040	42 30 30 1 1 3 3 1 1 25 25 19 19 19	$\begin{array}{c} 4 & 0 & 8 \\ 0 & 4 & 8 \\ 7 & 0 & 0 \\ 4 & 5 & 4 \\ 1 & 4 & 8 \\ 3 & 6 & 3 \\ 0 & 3 & 9 \\ 5 & 5 & 0 \\ 3 & 3 & 8 \\ 1 & 0 & 10 \\ 0 & 1 & 10 \\ 0 & 1 & 10 \\ 0 & 1 & 10 \\ 0 & 1 & 10 \\ 2 & 4 & 8 \\ 6 & 3 & 4 \\ 2 & 7 & 0 \end{array}$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.620750	42 30 1 1 3 3 1 25 25 19 19 1 1 2	$\begin{array}{c} 4 & 0 & 8 \\ 0 & 4 & 8 \\ 7 & 0 & 0 \\ 4 & 5 & 4 \\ 1 & 4 & 8 \\ 3 & 6 & 3 \\ 0 & 3 & 9 \\ 5 & 5 & 0 \\ 3 & 3 & 8 \\ 1 & 0 & 10 \\ 0 & 1 & 10 \\ 4 & 2 & 8 \\ 2 & 4 & 8 \\ 2 & 4 & 8 \\ 6 & 3 & 4 \\ 2 & 7 & 0 \\ 4 & 5 & 5 \end{array}$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.628040 1.620750 1.620750	42 30 1 1 1 3 3 1 1 25 25 19 19 1 1 2 2 2 2 2	$\begin{array}{c} 4 & 0 & 8 \\ 0 & 4 & 8 \\ 7 & 0 & 0 \\ 4 & 5 & 4 \\ 1 & 4 & 8 \\ 3 & 6 & 3 \\ 0 & 3 & 9 \\ 5 & 5 & 0 \\ 3 & 3 & 8 \\ 1 & 0 & 10 \\ 0 & 1 & 10 \\ 4 & 2 & 8 \\ 2 & 4 & 8 \\ 6 & 3 & 4 \\ 2 & 7 & 0 \\ 4 & 5 & 5 \\ 2 & 7 & 1 \end{array}$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.628040 1.6220750 1.612190	42 30 1 1 3 3 1 25 25 19 19 19 1 1 2 2 2 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 1 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 1 0 \\ 4 \ 2 \ 8 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 0 \end{array}$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.658710 1.643150 1.643150 1.628040 1.620750 1.620750 1.62190	42 30 1 1 3 3 1 25 25 19 19 1 1 2 2 2 2 1 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 1 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 10 \\ 0 \ 1 \ 10 \\ 0 \ 1 \ 10 \\ 0 \ 1 \ 10 \\ 0 \ 1 \ 10 \\ 0 \ 1 \ 10 \\ 2 \ 4 \ 2 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \end{array}$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.643150 1.628040 1.628040 1.620750 1.6220750 1.612190 1.612190	42 30 1 1 3 3 1 1 25 25 19 19 1 1 2 2 2 1 1 30	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 3 \ 3 \ 8 \\ 3 \ 3 \ 3 \\ 3 \ 3 \ 8 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 2 \ 2 \ 2 \\ 0 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 10 \ 1$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.628040 1.620750 1.620750 1.612190 1.612190 1.600000	42 30 1 1 3 3 1 1 25 25 19 19 1 1 2 2 1 1 2 2 1 1 30	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 1 \ 0 \ 1 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 6 \\ 1 \ 6 \ 6 \\ 1 \ 6 \ 6 \\ 1 \ 6 \ 6 \\ 1 \ 6 \ 6 \\ 1 \ 6 \ 6 \\ 1 \ 6 \ 6 \ 6 \\ 1 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.6220750 1.612190 1.612190 1.612190 1.600000 1.500120	42 30 1 1 3 3 1 1 25 25 19 19 1 1 2 2 1 1 30 30 30	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 1 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 1 0 \\ 4 \ 2 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 0 \\ 0 \ 2 \ 1 0 \\ 7 \ 2 \ 2 \\ 6 \ 1 \ 6 \\ 7 \ 2 \ 7 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 0 \\ 0 \ 2 \ 1 0 \\ 7 \ 2 \ 2 \\ 6 \ 1 \ 6 \\ 7 \ 7 \\ 7 \ 2 \ 2 \\ 6 \ 1 \ 6 \\ 7 \ 7 \ 7 \\ 7 \ 7 \\ 7 \ 7 \ 7 \\ 7 \ 7 \\ 7 \ 7 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Doubly indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.628040 1.622050 1.622050 1.622050 1.612190 1.612190 1.600000 1.600000 1.598130	42 300 1 1 1 3 3 1 1 25 25 19 19 1 1 2 2 1 1 30 300 300 300	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 1 \ 0 \ 10 \\ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 2 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 6 \ 1 \ 6 \\ 2 \ 7 \ 2 \\ 6 \ 1 \ 6 \\ 2 \ 7 \ 2 \\ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 2 \ 1 \ 1 \\ 2 \ 1 \ 10 \\ 10 \ 10 \\ 10 \ 10 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Doubly indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.643150 1.628040 1.628040 1.620750 1.622050 1.612190 1.612190 1.600000 1.598130 1.598130	42 300 1 1 1 3 3 1 1 25 25 19 19 1 1 2 2 1 1 30 30 30 300 300	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 7 \\ 0 \ 2 \ 7 \\ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 0 \ 1 \ 10 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 1 \ 10 \\ 10 \ 10 \\ 10 \ 10 \\ 10 \ 10 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.658710 1.643150 1.643150 1.628040 1.628040 1.620750 1.620750 1.612190 1.612190 1.612190 1.600000 1.598130 1.578950	42 30 1 1 3 3 1 1 25 25 19 19 1 1 2 2 1 1 30 30 30 30 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 1 \ 0 \ 1 \ 0 \\ 4 \ 5 \\ 5 \ 5 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \\ 4 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 \\ 0 \\ 1 \ 1 \\ 0 \\ 1 \ 1 \\ 0 \\ 1 \ 1 \\ 0 \\ 1 \ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.643150 1.628040 1.6220750 1.6220750 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950	42 30 1 1 1 3 1 1 25 25 19 19 1 1 2 2 1 1 30 30 30 30 1 1	$\begin{array}{c} 4 & 0 & 8 \\ 0 & 4 & 8 \\ 7 & 0 & 0 \\ 4 & 5 & 4 \\ 1 & 4 & 8 \\ 3 & 6 & 3 \\ 0 & 3 & 9 \\ 5 & 5 & 0 \\ 3 & 3 & 8 \\ 1 & 0 & 10 \\ 4 & 2 & 8 \\ 2 & 7 & 0 \\ 4 & 2 & 7 \\ 2 & 7 & 1 \\ 2 & 0 & 10 \\ 0 & 2 & 10 \\ 7 & 2 & 2 \\ 6 & 1 & 6 \\ 2 & 7 & 2 \\ 1 & 2 & 10 \\ 4 & 4 & 7 \\ 0 & 4 & 9 \end{array}$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.620750 1.6220750 1.6220750 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950	42 30 1 1 1 3 3 1 1 25 25 19 19 1 1 2 2 1 1 1 30 30 30 30 30 1 1 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 3 \$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.643150 1.628040 1.628040 1.620750 1.622050 1.612190 1.612190 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600	42 300 1 1 1 3 3 1 1 25 25 199 19 1 1 2 2 1 1 300 300 300 300 1 1 1 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 1 \\ 2 \ 1 \\ 0 \ 1 \\ 0 \ 1 \\ 10 \\ 4 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 1 \\ 1 \ 1 \\ 0 \ 1 \\ 10 \\ 4 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 1 \ 1 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.658710 1.643150 1.643150 1.628040 1.620750 1.620750 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600 1.562960	42 30 1 1 3 3 1 25 25 19 19 1 1 2 2 1 1 30 30 30 30 1 1 1 1 3 3 0 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 1 \ 0 \ 1 \ 0 \\ 4 \ 2 \\ 8 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \\ 5 \ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 6 \\ 2 \ 7 \ 2 \\ 1 \ 2 \ 10 \\ 4 \ 4 \ 7 \\ 0 \ 4 \ 9 \\ 0 \ 7 \ 8 \\ 2 \ 7 \ 3 \\ \end{array}$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.628040 1.628040 1.620750 1.620750 1.620750 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600 1.562960	42 30 1 1 1 3 1 25 25 19 1 1 2 2 5 19 1 1 1 30 30 30 30 30 1 1 1 1 3 3 3 3 3	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 6 \ 1 \ 6 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 6 \ 1 \ 6 \\ 2 \ 7 \ 1 \\ 2 \ 10 \\ 4 \ 4 \ 7 \\ 0 \ 4 \ 9 \\ 0 \ 7 \ 4 \\ 0 \ 5 \ 8 \\ 1 \ 4 \ 9 \\ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 1 \ 4 \ 4$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.693660 1.693660 1.684790 1.684790 1.684790 1.677190 1.658710 1.658710 1.643150 1.628040 1.6220750 1.6220750 1.6220750 1.622190 1.600000 1.598130 1.576950 1.576950 1.569600 1.562960 1.562960	42 300 1 1 1 25 25 19 19 1 1 2 2 1 1 300 300 300 300 1 1 1 1 1 3 3 14	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 3 \$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.628040 1.628040 1.620750 1.620750 1.612190 1.612190 1.612190 1.612190 1.598130 1.576950 1.576950 1.569600 1.562960 1.556970	42 30 1 1 1 25 25 19 19 1 2 2 1 30 30 30 30 30 30 1 1 1 30 30 1 1 1 2 2 1 1 1 3 3 1 1 1 2 5 2 5 19 19 10 3 3 3 1 1 1 2 5 2 5 19 19 10 3 3 1 1 1 2 5 2 5 19 10 3 1 1 1 2 5 2 5 19 10 3 1 1 1 2 5 2 5 19 10 30 30 30 30 30 30 30 30 30 3	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 4 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 10 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 10 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \\ 2 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.620750 1.620750 1.612190 1.620750 1.612190 1.620750 1.598130 1.576950 1.576950 1.569600 1.562960 1.556970 1.562970 1.543580	42 30 1 1 25 25 19 1 1 2 2 1 1 30 30 30 1 1 1 1 3 3 1 4 4 2	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 6 \\ 3 \ 0 \\ 3 \ 0 \\ 1 \ 0 \\ 1 \ 0 \\ 4 \ 2 \\ 8 \\ 6 \ 3 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.643150 1.628040 1.620750 1.620750 1.620750 1.612190 1.600000 1.598130 1.576950 1.576950 1.576950 1.576950 1.569600 1.569700 1.556970 1.556970 1.556970 1.543580	42 30 1 1 1 25 25 19 19 1 1 2 2 1 1 30 30 30 30 1 1 1 1 3 3 14 14 2 2	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 4 \ 2 \ 7 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.693660 1.693660 1.684790 1.684790 1.684790 1.677190 1.677190 1.658710 1.643150 1.643150 1.628040 1.620750 1.620750 1.6220750 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600 1.569600 1.556970 1.556970 1.543580 1.543	42 300 1 1 1 25 25 19 1 1 2 2 1 1 30 300 300 1 1 1 1 3 3 14 14 42 42	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 3 \ 3 \ 3 \\ 4 \ 5 \\ 5 \ 5 \ 4 \\ 1 \ 7 \ 4 \\ 5 \ 4 \ 6 \\ 0 \ 3 \ 1 \ 4 \\ 5 \ 4 \ 6 \ 1 \ 1 \ 4 \\ 5 \ 4 \ 6 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.643150 1.628040 1.628040 1.620750 1.620750 1.612190 1.612190 1.612190 1.612190 1.612190 1.598130 1.576950 1.576950 1.569600 1.569600 1.562960 1.556970 1.543580 1.531180 1.5511	42 30 1 1 25 25 19 19 1 1 22 1 1 30 30 30 1 1 1 1 3 3 4 4 2 42 11	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \\ 4 \\ 5 \\ 1 \\ 4 \\ 8 \\ 3 \\ 6 \\ 3 \\ 3 \\ 9 \\ 5 \\ 5 \\ 0 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	Multiply indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.628040 1.6220750 1.6220750 1.6220750 1.6220750 1.612190 1.620750 1.6220750 1.598130 1.576950 1.576950 1.569600 1.569600 1.569600 1.56970 1.543580 1.543580 1.543580 1.531180 1.531180	42 30 1 1 25 25 19 1 1 2 2 1 1 30 30 30 30 1 1 1 3 3 14 14 2 42 11 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \\ 4 \ 5 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 0 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 0 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 5 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 10 \\ 7 \ 2 \ 2 \\ 7 \ 1 \\ 2 \ 10 \\ 4 \ 4 \ 7 \\ 0 \ 4 \ 9 \\ 0 \ 7 \ 4 \\ 5 \ 5 \ 4 \\ 1 \ 7 \ 4 \\ 5 \ 5 \ 5 \ 4 \\ 1 \ 7 \ 4 \\ 5 \ 5 \ 5 \ 4 \\ 1 \ 7 \ 4 \\ 5 \ 4 \ 6 \\ 4 \ 6 \ 4 \\ 4 \ 6 \ 4 \end{array}$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.620750 1.6220750 1.6220750 1.6220750 1.62190 1.600000 1.598130 1.576950 1.576950 1.576950 1.569600 1.569600 1.556970 1.543580 1.543580 1.531180 1.517410	42 300 1 1 1 25 25 19 19 1 1 2 2 1 1 300 300 300 300 300 300 300 310 1 1 1 3 314 42 42 11	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 9 \\ 5 \ 5 \ 0 \\ 1 \ 4 \\ 1 \ 4 \\ 8 \\ 2 \ 4 \\ 6 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.684790 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.628040 1.628040 1.6220750 1.6220750 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600 1.562960 1.562960 1.562960 1.562970 1.543580 1.543580 1.531180 1.517410 1.517410	42 300 1 1 1 25 25 19 19 1 1 2 2 1 30 300 300 300 300 300 300 3	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \ 3 \\ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 6 \ 3 \\ 6 \ 3 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 0 \\ 1 \ 2 \\ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 0 \\ 1 \ 2 \\ 0 \ 1 \ 0 \\ 1 \ 0 \\ 1 \ 10 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 1 \ 2 \\ 1 \ 2 \ 10 \\ 4 \ 4 \ 7 \\ 0 \ 7 \ 4 \\ 5 \ 7 \ 3 \\ 1 \ 7 \ 4 \\ 5 \ 4 \ 6 \\ 0 \ 3 \ 10 \\ 6 \ 4 \ 4 \\ 4 \ 6 \ 4 \\ 5 \ 2 \ 7 \\ 1 \ 7 \ 4 \\ 5 \ 7 \ 6 \\ 0 \ 3 \ 10 \\ 6 \ 4 \ 4 \\ 4 \ 6 \ 4 \\ 5 \ 2 \ 7 \\ 1 \ 7 \ 4 \\ 5 \ 7 \ 7 \\ 1 \ 7 \ 4 \\ 5 \ 7 \ 7 \\ 1 \ 7 \ 4 \\ 5 \ 7 \ 7 \\ 1 \ 7 \ 4 \\ 5 \ 7 \ 7 \\ 1 \ 7 \ 4 \\ 1 \ 7 \ 4 \\ 5 \ 7 \ 7 \\ 1 \ 7 \ 4 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.658710 1.658710 1.658710 1.643150 1.628040 1.628040 1.620750 1.620750 1.620750 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600 1.569600 1.562960 1.562960 1.562960 1.556970 1.543580 1.543580 1.531180 1.517410 1.517410	42 30 11 13 31 12 25 25 19 19 11 22 11 30 300 30 11 11 3 30 30 11 11 13 31 44 42 11 11 11	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \ 4 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 8 \\ 2 \ 4 \ 8 \\ 6 \ 3 \ 1 \ 0 \\ 1 \ 1 \ 0 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 \ 0 \\ 1 \ 1 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 \ 0 \\ 1 \ 2 \ 1 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 \\ 0 \ 2 \ 1 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 1 \\ 0 \ 2 \ 1 \\ 2 \ 7 \ 1 \\ 1 \ 7 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.710830 1.695430 1.693660 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.643150 1.628040 1.628040 1.620750 1.620750 1.612190 1.620750 1.612190 1.600000 1.598130 1.576950 1.576950 1.569600 1.569600 1.569600 1.569600 1.56970 1.556970 1.543580 1.543580 1.543580 1.531180 1.517410 1.517410	42 30 1 1 1 25 25 19 1 1 2 2 1 1 30 30 30 30 1 1 1 3 3 1 4 4 4 2 4 2 1 1 1 1 1 1 1 1 2 5 19 19 1 1 1 1 2 5 19 10 1 1 1 1 1 2 5 19 10 1 1 1 1 2 5 2 5 19 10 1 1 1 1 2 5 2 5 19 11 1 1 2 5 2 5 19 11 1 2 5 2 5 19 11 1 2 5 2 5 19 11 1 1 2 5 2 5 19 11 1 1 2 5 2 5 19 11 1 1 2 5 2 5 19 11 1 1 2 5 2 5 19 11 1 1 2 5 19 11 1 1 2 5 19 11 1 1 2 5 1 1 1 1 1 2 5 1 1 1 1 1 1 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 0 \\ 4 \ 5 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 3 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 6 \ 3 \ 1 \ 0 \\ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 7 \ 2 \ 2 \\ 7 \ 1 \\ 2 \ 0 \ 10 \\ 7 \ 2 \ 2 \\ 7 \ 1 \\ 2 \ 0 \ 10 \\ 7 \ 2 \ 1 \\ 2 \ 7 \ 1 \\ 1 \ 2 \ 10 \\ 1 \ 4 \ 4 \ 7 \\ 1 \ 4 \ 4 \ 7 \\ 1 \ 4 \ 4 \ 7 \\ 1 \ 4 \ 4 \ 7 \\ 1 \ 4 \ 4 \ 6 \\ 4 \ 5 \ 5 \ 4 \\ 1 \ 7 \ 4 \ 6 \\ 6 \ 4 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 7 \ 4 \\ 5 \ 7 \ 4 \\ 5 \ 7 \ 4 \\ 6 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 7 \ 6 \ 1 \\ 1 \ 4 \ 6 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 7 \ 6 \ 1 \\ 1 \ 6 \ 6 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 6 \ 1 \\ 1 \ 6 \ 6 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 6 \ 1 \\ 1 \ 6 \ 6 \ 6 \ 6 \ 6 \ 1 \\ 1 \ 6 \ 6 \ 6 \ 6 \ 6 \ 1 \\ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Multiply indexed line.
1.730510 1.710830 1.695430 1.695430 1.693660 1.684790 1.684790 1.677190 1.677190 1.658710 1.658710 1.643150 1.628040 1.620750 1.622050 1.622050 1.612190 1.612190 1.612190 1.600000 1.598130 1.576950 1.576950 1.576950 1.569600 1.569600 1.569600 1.556970 1.556970 1.556970 1.556970 1.556970 1.556970 1.543580 1.531180 1.531180 1.517410 1.517410	42 300 1 1 1 3 3 1 1 25 25 19 19 1 1 2 2 19 19 1 1 300 300 300 300 300 10 11 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4 \ 0 \ 8 \\ 0 \ 4 \ 8 \\ 7 \ 0 \ 4 \\ 5 \ 7 \ 0 \ 4 \\ 1 \ 4 \ 8 \\ 3 \ 6 \ 3 \\ 0 \ 3 \ 9 \\ 5 \ 5 \ 0 \\ 1 \ 0 \ 1 \ 10 \\ 4 \ 2 \ 8 \\ 2 \ 7 \ 0 \\ 4 \ 5 \ 5 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 7 \\ 2 \ 7 \ 1 \\ 2 \ 0 \ 10 \\ 0 \ 2 \ 7 \\ 1 \ 2 \ 1 \\ 0 \ 2 \ 1 \\ 0 \ 2 \ 7 \\ 1 \ 2 \ 1 \\ 0 \ 2 \ 7 \\ 1 \ 2 \ 1 \\ 0 \ 4 \ 9 \\ 0 \ 7 \ 4 \\ 5 \ 5 \ 4 \\ 1 \ 7 \ 4 \\ 5 \ 4 \ 6 \\ 0 \ 3 \ 14 \\ 4 \ 6 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 4 \ 6 \\ 0 \ 3 \ 14 \\ 4 \ 6 \ 4 \\ 5 \ 2 \ 7 \ 4 \\ 5 \ 6 \ 1 \ 1 \ 7 \\ 5 \ 6 \ 1 \ 1 \ 7 \\ 5 \ 6 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	Multiply indexed line. Multiply indexed line. Doubly indexed line. Doubly indexed line. Multiply indexed line.

	1.494290	23	562	Multiply indexed line.
	1.483500	23	800	Developed and the s
	1.481560	35	448	Doubly Indexed line.
	1.481560	35	080	Doubly indexed line.
	1.476540	19	645	Doubly indexed line.
	1.470540	19	027	Doubly indexed line.
	1.472010	4	740	Doubly indexed line.
	1.472010	4	563	Multiply indexed line
	1.465070	3	349	Multiply indexed line
	1.460230	7	734	Multiply indexed line.
	1.460230	7	374	Multiply indexed line.
	1.447820	32	4 1 10	Multiply indexed line.
	1.447820	32	1 4 10	Multiply indexed line.
	1.437920	5	608	Multiply indexed line.
	1.437920	5	068	Multiply indexed line.
	1.433800	3	821	
	1.427680	1	654	Multiply indexed line.
	1.427680	1	564	Multiply indexed line.
	1.422370	1	637	Multiply indexed line.
	1.422370	1	473	Multiply indexed line.
		Eve	orimon	tal
		ΞXĻ	Jennen	ldi
Physical Properties				
Calc density	1 305000 a/a	-m ³		
cale. defisity	1.505000 g/t			
		F	Remarks	5
Remarks				
General				
	AB2X4.			
Temperature				
Temperature	REM TEM -26	53 C.		
Temperature Article Title	REM TEM -26	53 C.		
Temperature Article Title	REM TEM -26 Structure of	53 C. magne	etite Fe3	O4 below the verwey transition temperature
Temperature Article Title Additional pattern	REM TEM -26 Structure of	53 C. magne	etite Fe3	O4 below the verwey transition temperature
Temperature Article Title Additional pattern	REM TEM -26 Structure of See PDF 01-	53 C. magne 076-09	etite Fe3	O4 below the verwey transition temperature
Temperature Article Title Additional pattern ICSD collection code	REM TEM -26 Structure of See PDF 01-	53 C. magne 076-09	etite Fe3	O4 below the verwey transition temperature
Temperature Article Title Additional pattern ICSD collection code	REM TEM -26 Structure of See PDF 01- 035003	53 C. magne 076-09	etite Fe3 957.	O4 below the verwey transition temperature
Temperature Article Title Additional pattern ICSD collection code Temperature factor	REM TEM -26 Structure of See PDF 01- 035003	53 C. magne 076-09	etite Fe3	O4 below the verwey transition temperature

Copyright International Centre for Diffraction Data (ICDD)

ITF

Ibuprofeno

	SAMPLE	INFORMATIO	O N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	806/23 Unknown 1:A,3 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Processed:	7/6/2023 4:12:00 AM CDT 7/6/2023 10:12:10 PM CDT		

Reported by User: NANCY LARA (NANCY) Report Method: Ibuprofeno Report Method IE 1160 Page: 1 of 2 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:17:17 PM America/Mexico_City

	Peak Name	RT	Area	% Area	Height
1		2.748	3202	27.42	2289
2	Ibuprofeno	3.244	8475	72.58	4786

	SAMPLE	INFORMATIC	N C
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	807/23 Unknown 1:A,4 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Processed:	7/6/2023 4:17:52 AM CDT 7/6/2023 10:22:10 PM CDT		

Reported by User: NANCY LARA (NANCY) Report Method: DCF Report Method IE1159 Page: 1 of 2 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:23:28 PM America/Mexico_City

	Peak Name	RT	Area	% Area	Height
1		0.501	11616	30.40	10920
2		2.748	10676	27.94	7456
3	lbuprofeno	3.244	15921	41.66	8441

Reported by User: NANCY LARA (NANCY) Report Method: DCF Report Method IE1159 Page: 2 of 2

Ibuprofeno

	SAMPLE	INFORMATIC	O N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	808/23 Unknown 1:A,5 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Processed:	7/6/2023 4:23:44 AM CDT 7/6/2023 10:12:19 PM CDT		

Reported by User: NANCY LARA (NANCY) Report Method: Ibuprofeno Report Method IE 1160 Page: 1 of 2 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:17:59 PM America/Mexico_City

	Peak Name	RT	Area	% Area	Height
1		2.748	2048	6.35	1440
2	Ibuprofeno	3.240	30215	93.65	13828

Untitled

	SAMPLE	INFORMATIO	N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	809/23 Unknown 1:A,6 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Processed:	7/6/2023 4:29:36 AM CDT 7/6/2023 10:18:57 PM CDT		

Auto-Scaled Chromatogram

Peak Results						
	Name	RT	Area	Height	Amount	Units
1		0.503	8184	7685		
2		2.750	13329	8523		
3	Ibuprofeno	3.242	43111	18341		

PDA Result Table							
	Name	RT	Purity1 Angle	Purity1 Threshold	Match1 Spect. Name	Match1 Angle	Match1 Threshold
1		0.503	4.759	25.615			
2		2.750	7.853	90.000			
3	Ibuprofeno	3.242	1.286	8.678			

Reported by User: NANCY LARA (NANCY) Report Method: Untitled Report Method ID: 128 Page: 1 of 1 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:24:26 PM America/Mexico_City

	SAMPLE	INFORMATIO	N C
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	813/23 Unknown 1:B,2 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Processed:	7/6/2023 4:53:03 AM CDT 7/6/2023 10:14:14 PM CDT		

Reported by User: NANCY LARA (NANCY) Report Method: DCF Report Method IE1159 Page: 1 of 2 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:19:57 PM America/Mexico_City

	Peak Name	RT	Area	% Area	Height
1		0.415	239067	96.63	95764
2		0.503	4704	1.90	4869
3		2.748	3633	1.47	2511
4	Ibuprofeno	3.244			

Reported by User: NANCY LARA (NANCY) Report Method: DCF Report Method IE 1159 Page: 2 of 2

Ibuprofeno

	SAMPLE	INFORMATIO	O N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	818/23 Unknown 1:B,7 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Processed:	7/6/2023 5:34:05 AM CDT 7/6/2023 10:25:58 PM CDT		

Reported by User: NANCY LARA (NANCY) Report Method: Ibuprofeno Report Method IE 1160 Page: 1 of 2 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:57:22 PM America/Mexico_City

	RT	Area	% Area	Height
1	0.416	347675	94.35	132442
2	0.502	15142	4.11	12737
3	2.750	5696	1.55	4307

Ibuprofeno

	SAMPLE	INFORMATIO	N C
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	819/23 Unknown 1:B,8 1 10.00 ul 5.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	NANCY Solicitud 113_23A Solicitud 113_23A Ibuprofeno 263.0nm PDA Spectrum PDA 263.0 nm
Date Acquired: Date Procesœd:	7/6/2023 5:39:57 AM CDT 7/6/2023 10:26:13 PM CDT		

Reported by User: NANCY LARA (NANCY) Report Method: Ibuprofeno Report Method IE1160 Page: 1 of 3 Project Name: Ensayos 2023\Solicitud 113-23A Date Printed: 7/6/2023 10:57:28 PM America/Mexico_City

	Peak Name	RT	Area	% Area	Height
1		0.415	41264	58.96	16536
2		0.502	14740	21.06	11585
3		1.243	5029	7.19	1140
4		2.748	7040	10.06	5267
5	Ibuprofeno	3.246	1911	2.73	1087

Reported by User: NANCY LARA (NANCY) Report Method: Ibuprofeno Report Method IE 1160 Page: 3 of 3