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Introduction

Teleparallel gravity is a gauge theory of translations locally invariant under the Lorentz group
where the gravitational field is a manifestation of the non-trivial geometry given by the torsion
and not the curvature. In Sec. 1 we revisit the foundations of general relativity and teleparallel
gravity from a geometric point of view, we study the teleparallel equivalent to general relativity
formulation and why we need to look for cosmological viable models in teleparallel gravity. In
this latter idea, we explore the field equations of f(T, B) and f(T') gravity.

In Sec. 2 we explore the so called cosmological principle and the associated FLRW geometry in
order to explore the Friedman equation in both general relativity and teleparallel gravity. We
also recall the basics of inflationary cosmology in the slow roll approximation, briefly discussing
how it solves some of the issues of the standard cosmology scenario, the presence of the scalar
field as the responsible mechanism of inflation and finally introduce the slow roll parameters.

In Sec. 3 we study the basics of linear perturbation theory. We begin by focusing in the cosmo-
logical case in general relativity by writing the most general metric and identify background and
perturbed quantities in order to fully decompose the perturbed quantities into scalar, vector
and tensor perturbations using the SVT decomposition. We briefly discuss the gauge problem,
obtain the gauge transformations of the perturbations in general relativity and construct the
gauge-invariant potentials associated to each type of perturbation. Finally, we discuss linear
perturbation theory in teleparallel gravity, focusing only in the tensor perturbation case, show-
ing the relation between the perturbation in teleparallel gravity and general relativity and at
last obtaining the field equations associated to the tensor perturbations, which are the equation
we will use to study the production of primordial gravitational waves in the next sections.

In Sec. 4 we explore the production of gravitational waves from vacuum fluctuations. Vacuum
fluctuations are understood as fluctuations of the scalar field responsible for inflation, and such
scalar field perturbations do not produce tensor anisotropic stress. Since the fluctuations are in
the inflaton field, we consider two backgrounds compatible with an exponentially accelerated
expansion as that required by inflation, namely, a de Sitter and quasi de Sitter expansions.
We proceed to study the gravitational waves generated both general relativity and teleparallel
gravity from these fluctuation within both backgrounds. We found that there is not differences
in the de Sitter background case in comparison to general relativity and really strong differences
in the value of the tensor spectral index on both theories. We also discuss the density energy
spectrum of such waves in the context of both theories and finally, briefly discuss what are the
implications on the power spectrum if we consider any other quantum state for the universe
different from the vacuum one.

In Sec. 5 we explore the power spectrum of primordial gravitational waves, but this time we also
include any possible source of tensor anisotropic stress. We use the method of Green’s function
to obtain the most general solution of the gravitational waves equation in teleparallel gravity
with tensor anisotropic stress. We compute the most general contribution to the peaks of the
power spectrum coming from the anisotropic stress and briefly discuss some particular cases,
namely, local thermal fluctuations, first order cosmological phase transitions and primordial
magnetic fields, which are well known sources of tensor anisotropic stress in general relativity.



IV

In Sec. 6 we present the conclusions of this thesis. We discuss the main observational predic-
tions of teleparallel gravity compared to those of general relativity. We discuss how teleparallel
gravity extended models allow for a high value of the tensor spectral index whereas general
relativity only a small value. We also analyse the observational implications on the peaks of
the power spectrum in the ¢ — 0, limit which allows us to directly compare the peaks on
teleparallel gravity with those of general relativity. We also discuss the difference between the
energy density of gravitational waves in teleparallel gravity and general relativity.

Finally, in appendix A with discuss about the spin connection in teleparallel gravity and in
appendix B the gauge problem of the cosmological linear perturbation in teleparallel gravity.
Such topics are closely related with the topic of the thesis, they are not needed to read the
thesis and understand the results but are worth reading as supplementary information about
the subtleties of the topics on this thesis.
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1. Theoretical Foundations

1.1. General Relativity
1.1.1. Geometrical setup

General Relativity (GR) is the most successful theory of gravity nowadays [1]. GR describes
the spacetime structure as differentiable 4-dimensional manifold M with a symmetric non-
degenerate bilinear form ¢, : T,M x T, M — R in each tangent space of the manifold such
that, Vx € M it satisfies

go s TeM x T,M — R (1)

(Ua:a wm) = gz(vm wr) = g#V(x)Ung7

where the positive-definite conditions is not required, .i.e, the metric tensor is a Lorentz metric
[2]. The manifold is also endowed with a linear connection V which is compatible with the
metric Vg = 0 and symmetric V{,V,;f =0, Vf : M — R such that [3]

V:X(M) x X(M) = X(M) (2)
(V.W) = Vv W, (3)

where X (M) is the space of vector fields on M, such that, if X, Y, Z € X(M) thenVf : M — R
and a € R, V satisfies:

1. Vx(CLY—l-Z):CLVXY—l—VXz,
2. Vx(fY) = fVxY + (X[/])Y.
3. fo+ayZ = vaZ + CLVyZ.

Vy W is called the covariant derivative of W w.r.t V [3].

The symmetric condition along with the metric compatibility condition over the linear connec-
tion define a unique form of the connection coefficients Ve, = I e,, the so called Christoffel
Symbols

1
F(i\a/ = 59)\# (g,ua,u + Gy, — gow,u) . (4)

The connection associated with the Christoffel Symbols is called the Levi-Civita connection|4].

In this geometrical setup, six axioms are imposed on the theory. To be more specific, any
point-like test particle follow a trajectory defined by the geodesic equations, which is a geomet-
rical form of the Weak Fquivalence Principle. The existence of Riemann normal coordinates
guarantees that locally, the laws of physics are those of the Special Relativity, which is the
Einstein Equivalence Principle.

The four final axioms are related to the field equations that govern the physics in this geomet-
rical setup and the source of the gravitational field. The principle of general covariance states
that the metric tensor g, is the unique fundamental mathematical object to appear in the field
equations and, in general, all laws of physics. The other axioms states that the field equations
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must be of second order, linear on the second derivatives of the metric tensor, and that the
matter, modelled by its energy-momentum tensor, is source for gravitational interaction. These
conditions are achieve by the Einstein Field equations which are going to be discussed in the
following.

1.1.2. Field equations

The standard way of deducing the Einstein Field Equations is through a variational principle
(See Appendix B of [5] for a brief discussion on the topic) which consists of varying and mini-
mizing an action w.r.t the dynamical object of the theory. In the case of GR, the action is the
Einstein-Hilbert action plus a matter action minimally coupled to gravity, and the variation is
w.r.t. the metric tensor.

The Einstein-Hilbert action is given by

Senlou) = 5 [ By=gd'a, )

with R the Ricci scalar, g the determinant of the metric and x = 87G. On the other hand, the
matter action is given by

2 9(Lmv—9)
V=g og™

Smatt = /EJW\/ —gd4x with le = — (6)

Hence, the action of GR is given by

1o ¥ = 5 / R4 + Sumats g ¥, (7)

such that, by varying w.r.t g,, and minimizing we get

0= 55— / (i [RW\/—_g - %gw,R\/—_g} + M) S d's, (8)

gt
which lead us to the Einstein-Field equations

Ruw — 300 = 87T, (9)
The deduction of the Einstein Field Equations (9) seems to be highly dependent on the Einstein-
Hilbert action. However, this is not the case, since there exists a more general result obtained
by Lovelock [6][7], which states that the most general rank 2 tensor A*” which is concomitant
of the metric tensor g,, and its first two derivatives, divergence free, symmetric and linear in
the second derivatives of g, in 4 dimensions is

A = aGHY - g, (10)

where G* = RM — %g‘“’R is the Einstein tensor. Hence, the only possible second-order Euler-
Lagrange equations in 4 dimensions coming from a scalar density £ = £(g,,,) are the Einstein
Field Equations with a possible cosmological constant, provided one does not add extra fields
or vary the number of dimensions [1|. Thus, in order to obtain field equations which are not the
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Einstein Field Equations, relaxing the previous conditions are necessary, namely, allow more
fundamental fields besides the metric tensor, accept derivatives of the metric tensor with order
greater than 2, work on a manifolds with dimension different from 4, etc.

Several models of modified and extended gravity rely on relaxing these conditions. In this
work we will explore the so called Teleparallel Gravity and a brief introduction on the topic is
presented in the next subsection.

1.2. Teleparallel Gravity

Teleparallel Gravity (TG) is one of the possibilities to solve some of the observational issues
present in GR. The fundamental concept of TG is not the curvature of spacetime, as in GR,
but rather the curvature of spacetime’s torsion. The mathematical foundation is a vector fiber
bundle where the tangent vector spaces are identified with the Minkowski space, compared
to the coordinate spaces of GR. In this sense, the dynamical fields are the tetrad fields and
spin connection, compared to the metric and linear connection in GR. The success of TG
consist of being a possible solution of the Dark Energy problem through extended models of
the Teleparallel Equivalent to General Relativity, see [8]. Let us dive into the details of this
theory.

1.2.1. Geometrical setup and gauge theory

TG has quite a different geometrical setup than GR, as mentioned previously. In TG we work
on a 4-dimensional vector bundle (cf. refs [9][10]) £ = (M, E, 7) with M the space-time mani-
fold, E = R"? the Minkowski space-time and 7 : E — M a smooth map such that E, = 7! (p)
is a vector space isomorphic to E.

Analogous to GR, we have two geometrical objects that play important roles on the theory
[11].The first one is the tetrad e € Q' (M, R'?), i.e., a set of differential 1-forms on M assum-
ing values on the Minkowski space.

Upon the introduction of local coordinates, the tetrad fields e = {e"}3_ read as e = e/}, da*.
The tetrad fields and their dual vectors e? = e/ do* and E4 = E {9, constitute non-coordinate

basis of ! T(T*U) and T'(TU) at each local coordinate system U C M, respectively [12][13],
and satisfy orthonormality conditions

eAMEA” =0, and eAMEB“ =05, (11)
ie., B = (e,)".
Since eAM is a 1-form on M assuming values on R'3, under diffeomorphism over M and local

Lorentz transformation A“;(x) € SO*(1,3), the components of the tetrad fields transform as

a v
4 T eA and A AABeBH. (12)

el/:axul v “:

ID(TU) are the sections over the tangent bundle and I'(T*U) the sections over the cotangent bundle.
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Among all the possible tetrad fields, a particular set of tetrad fields exist such that, in every
point of the manifold p € M, the metric is diagonalized

9a8(p) = 1aB(P) = 9 (p) E4(p) E%(p), (13)

or consequently

g (p) = ', (p)e", (P)nas(p). (14)

Such tetrad are called Orthonormal Basis or Orthonormal Frames [14], which are the type of
tetrad field we will be working with throughout the entire text.

The second one is the spin connection w € QY(M, s0(1,3)), i.e., is a set of differential 1-forms
assuming values on so(1,3), the Lie Algebra of the Lorentz Group [15]. To be more specific,
the spin connection, in a local coordinate system U, is defined as [13]

1
w = §wAffdx“ ® S48 e T(T*U ®50(1,3)), z— (z,w,) (15)
where w, = fw*f(z)de* © S4P € T*U ®s0(1,3). The components of the spin connection must

be antisymmetric w.r.t the Lorentzian indices.

With the spin connection and the tetrad fields, it is possible to induce a linear connection on
the base manifold M [15] whose coefficients are given by

Y, = EfOue, + Ew'p.el = E49,€, (16)
where 9, is the Fock-Ivanenko derivative.

From these properties it is possible to show that the covariant derivative, whose coefficient of
connection are defined in (16), of the tetrad field is zero and that, due to the antisymmetry of
the spin connection, the metric is compatible with this linear connection.

Nevertheless, similar to GR, we require some axioms imposed over the geometry. TG requires
that the curvature 2-form vanishes (cf. ref [15])

1

R—R D

BWSfdx Adz*  with R4 Bup = ,,w“}gu — (%w“]‘gy + w‘%yw Bu — w’j‘juw%y =0. (17)

This condition can only be achieved through the so called purely inertial spin connection [15][11]
w = No(@)9,A%(x). (18)
On the other hand, TG also requires the torsion 2-form to be non-vanishing

1
T = §T$PAdx” Adat with T4, =0, — Oue) + wi, el —wi,el #0, (19)
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where P4 are the generators of the translational group. The latter condition is achieved by
imposing covariance w.r.t an infinitesimal gauge translation, associating a non-trivial transla-
tional potential to the construction of the covariant derivative (cf. ref [15]). Hence, the theory
arises as a Gauge Theory of the translational Group and invariant under local Lorentz Trans-
formation due to condition (18) over the spin connection.

These are the main theoretical differences and theoretical strengths of the theory. Similar to
all other theories of the fundamental forces, TG arises as Gauge Theory which is also locally
Lorentz invariant. In TG, the space-time manifold is globally flat but with non-trivial geometry
given by the torsion, hence, the gravitational interaction is mediated through torsion and not
curvature.

Since the torsion is different from zero, we can see that

—217

[vu] = Tupu = egTu‘i 7& 07 (20)

hence, the linear connection on the base manifold is not symmetric and thus a different con-
nection than the Levi-Civita connection, receiving the name of Teleparallel Connection.

According to the definition of the contortion tensor K}, [16], we can relate the Teleparallel
Connection with the Levi-Civita connection ? as

e, =15, + K/, (21)
and being able to compute the curvature tensor as [17|
o = Ry + VilCSg = VoK o+ KO K g = K K. (22)
Consequently, the Ricci scalar is split as
R=R+T-B, (23)
where
a op 1 UV 1 UV m
T = TapSa = ZT T;WA + §T TVM)\ -7 T/u (24)
1 1
S0 = (L7 + 17, = T, = 21300 + 2T7007) = 5 (K7, + T70, = T767), (25)
2
B=-0,(eT") =2V ,T", (26)
e

are the Torsion Scalar, Superpotential Tensor and Boundary Term, respectively, with T, = TA/\#.
The determinant of the tetrad is given by e = det(e$) = /—g.

However, since no curvature is present in TG, R = 0 and then
R=-T+B, (27)

which will allow us to discuss the field equations down below.

2Henceforward, when discussing TG, we will refer every quantity computed with the Levi-Civita connection
with a circle over it, thus, I'}, refers to the Levi-Civita connection itself.
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1.2.2. TEGR field equations
Consider the GR action (7), and substitute v/—g = e and R =—-T+ Binto it

1
STEGR = o / (=T + B) ed*x + Sma (9, V). (28)

Since B is a boundary term
/ Bed” =0, (29)

and then we arrive to the Teleparallel Equivalent to General Relativity (TEGR) action [17]

1
STEGR — _ﬂ / T€d4$ + Smatt [guw w] (30)

Hence, TEGR and GR Lagrangian density differ only by a boundary term and as a consequence,
the field action are completely equivalent in TEGR and GR, providing the same physical effect.
That is where TEGR acquires its name. Therefore, whether the gravitational effects are due
to curvature or torsion is a matter of interpretation [18].

In TG it is usual to work within a particular Gauge called Weitzenbock Gauge, which consists
of working with zero spin connection wABH = 0. Within this Gauge, the Teleparallel connection
is called the Weitzenbdck connection, and then our entire theory depends exclusively on the

tetrad.

Taking variation of (30) w.r.t the tetrad and minimizing leads to [5]

1
o / d'3 [e0T + Tbe] = 5 Sumane, (31)
K
where
de = eehdes, OT = —AT% S 5est + 45 20, 0€5. (32)
Therefore, neglecting total derivatives, the TEGR field equations are
4
—4T S — ~0u(eS I 4 Te = 2667, (33)
such that
1 6(€£matt)
e L 34
A7 e dei! (34)

These equations can be recast in a more familiar way as

ur™a

o 2 1
Gy = KT} = ~e)0u(eS3") — 215, 50 + ST, (35)
(&

with G the Einstein tensor computed with the Levi-Civita connection and 7,} = 20} the

energy-momentum tensor 3.

3We changed the notation of the energy-momentum tensor from T to 7 in order to avoid confusion with the
torsion.
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1.2.3. f(T) and f(T, B) gravity

Since TEGR and GR are equivalent, the field equation (35) suffer from the same advantages
and disadvantages phenomenologically speaking, i.e. at the level of the classical equations of
motion. Therefore, we will look for extensions of TEGR in the context of TG. A way to extend
TEGR is considering, instead of —T + B, a general function of the torsion scalar and the
boundary term f(T, B) in the action (30) as

1
St = %/ef(T, B)d49€ + Smatt (36)
which is known as f(7, B) gravity.

By varying and minimizing the action w.r.t to the tetrad, we obtain [5]

1
0Syr,B) = / o [foe +efsdB + efrdéT + 2k0(eLoman )] d*x, (37)
where, neglecting total derivatives, we obtain
efrdT =4 | = fru(eS)) = 0u(fr)eSi + e frT5,8, ] des, (38)
fde = efeldey, (39)
efgdB = —efgBel — 2662&]}9 + Qeez’ﬁl%’\%yfg + 46(8MfB)SAAM. (40)

Hence, the field equations of f(7, B) gravity are
—efpBe) — zeegﬁf3+2ee;@%,,f3 — 4e(0,fp)S (41)
— 40, (fr)eS ™ — 4f10), (w;@) + e frToS M + efel = —2ert),
that can be recast in term of the Einstein tensor in the Levi-Civita connection as
Gi = KT I(S;\éfB — VMV, fp + %fBB@ +2[0uf5 + Oufr) SS + geffTau(QS/{M) (42)
— 2f7T%, S — % fo.

If we suppose that there is no dependence on the boundary term B of the functional f(T, B) =

f(T), which implies that the functional cannot longer imitate f (]SE) gravity [8], the equations
(42) reduce to

: 2 L
G = KT = 2(0ufr) S, + —e frd(eS4%) = 2frT5, S0 = Sf63, )

which are the field equations of f(T') gravity. If we choose f(T') = —T, equations (43) recover
equations (35) which is expected.

It is in f(7T) and f(T, B) gravity where we are going to analyse the quantum production of
Gravitational Waves (GW), since TEGR is completely equivalent to GR and thus the produc-
tion of GW is the same. However, before engaging in such endeavour we need to discuss the
background cosmology and linear perturbation theory around that scheme.



2. Background Cosmology

2.1. FLRW metric

The FLRW metric relies on the cosmological principle, which states that the universe is spatially
isotropic and homogeneous and has been shown to be successful in describing the universe on
large scales [19]|20].

The mathematical description of this is to consider the space-time manifold to be foliated with
maximally symmetric spacelike slices M = R x ¥ [21], where R represents the time direction
and ¥ = {¥;},cr such that V¢ € R and V points p, ¢ € ¥, there exists an isometry ® of g, [2]

O:M— M, (®°9)w = g (44)

such that ®(p) = ¢ *, that accounts for homogeneity.
For isotropy, we state that the spacetime is spatially isotropic if Vp € ¥, and any two vectors
V and W in T,%;, there is an isometry of the spacetime such that ®,W® is parallel to V' [22].

The relationship between homogeneity and isotropy is not necessary, the space can be homo-
geneous but anisotropic and vice versa, nevertheless, if a space is isotropic in every point, then
homogeneity is a consequence of such scheme [22].

The geometry of the entire manifold is encoded in the metric tensor g,,, and for a spacetime
spatially homogeneous and isotropic, the metric tensor is given by

dr?

1—kr?

ds? = di* — a(t)? ( + rdeQ) . dO2 = d6® + sin?(0)dy?, (45)

which is the Friedman-Lemaitre-Robertson- Walker (FLRW) metric, where the components of
the metric are given explicitly as

1 0 0 0

0 _1a(2)22 0 0 46
) =10 0" e 0 (46)

0 0 0 —a(t)?r? sin?(0)

The FLRW metric is given in spatial comoving coordinates (r,0,¢) and cosmic time. a(t) is
called the scale factor and k = 41,0, —1 the spatial curvature.

The evolution of the scale factor a(t) will be given by the solution of the field equations of the
theory.

It is possible to work with a different, yet useful, time measurement called conformal time [23]

t dt/
dn = dt = —, 47
adn - n=n /ta(t,) (47)

i

4®* is the pull-back of the mapping.
5, is the pushforward of the mapping.
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where ¢(n — n;) represents the comoving distance travelled by a photon between times ¢; and ¢
[23]. Using the conformal time, the FLRW metric can be recast as

2
ds* = a(n)? <d772 EE e TQdQQ) : (48)

From now on we will be working with the spatially flat case & = 0, which is the scenario
supported by observations [24], and with Cartesian coordinates (x,y, z).

2.2. Basics of inflationary cosmology

The standard cosmological model have several achievements like, to name a few, explaining
the thermal history of the universe, the CMB, the Large-Scale-Structure and expansion of the
Universe [25][26] but also have shortcomings. For discussion of cosmological inflation, we will
describe three of these issues.

1. The flatness problem. Observational data shows that the spatial curvature of the universe
is approximately flat € =~ 0 [24]. The flatness problem states exactly that: why do we
observe today this value of the curvature density? Since this condition requires a fine
tuning of |2—1| in the early universe in order to achieve this current value of the curvature
density [27].

2. The horizon problem. This problems relies on the validity of the cosmological principle on
large scales. Why casually disconnected regions of the universe appear to be in thermal
equilibrium Ty = 2.7255 K? Since it appears that even going backwards on time, the
distance between those zones were large enough to be casually disconnected and then no
possible mechanism would exist to bring thermal equilibrium [27][28].

3. The monopole problem. This is a problem that does not purely rely on cosmology but
also in particle physics. The problem is basically the lack of observation of magnetic
monopoles in the present day of the universe since GUT models predict a high density
number of magnetic monopoles [27][28].

These problems are solved by the proposal of an early period of the universe where the space-
time expanded exponentially from a tiny size to a really big one. This period is known as
cosmological inflation or simply inflation.

In this way, inflation solves the flatness problem by predicting that |1 — Q| decays exponentially
with time, decaying to zero in the present day, regardless of the initial conditions on the curva-
ture of space [28]. The horizon problem is solved by predicting a really small size right before
inflation dnor ~ 1072 m, hence, the regions of the universe are casually connected and are
able to get into thermal equilibrium, and then inflation expands the universe to dpo, ~ 10 m
where some regions become casually disconnected as observed today [28]. Finally, it solves the
monopole problem by predicting that the density number of magnetic monopoles decreases ex-
ponentially with time, hence, being approximately zero today and then practically undetectable
[28].

There are several ways to model the inflationary era, the standard way is by including a scalar
field, as a perfect fluid, to the gravitational theory in the energy-momentum tensor of the field
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equations.

It begins by defining the matter action of the scalar field as [29]
Sy = / d*z\/—g nga,mm + V(qﬁ)] : (49)
where we can derive the energy-momentum tensor as
T =g" Bg”@,wgeﬁ + V(szﬁ)] — 9"79" 0,000, (50)

which has the same form as a perfect fluid with energy density, pressure and four velocity given
by

1
p==59"0u00,0 +V(9), (51)
P = 24" 8,006 — V(9) (52)
' = [—g"0,60,6] "% 9" 0: ¢, (53)

respectively.

For a spatially homogeneous scalar field, only the pressure and energy density are non-vanishing
and are given by

p= 3B +V(9), P=5# V() (54)
where the conservation equation of the energy momentum tensor implies that
¢+3Ho+V'(¢) =0, (55)
in a FLRW metric (see subsection 2.1).

In the case of a FLRW background, the acceleration equation for a spatially homogeneous scalar
field reads as

H = —4nG . (56)

Hence, if an exponential acceleration like an inflationary era is required, the only dimensionless
combination possible with H requires [23]

1H]

<L (57)

or in terms of the scalar field

¢ < V(9). (58)
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This is the first slow-roll condition, and encourage the definition o the slow-roll parameter € as
H

_ﬁ7 (59)

€=
then the first slow-roll condition is achieved by |e| < 1.

It is also necessary that the exponential expansion lasts for long enough, which is realised by
defining the second slow-roll parameter

.
=g (60)

and imposing n < 1 [23]. The conditions |e|, 74 < 1 are enough to guarantee an exponential
phase acceleration that lasts for long enough to produce the desired results of an inflationary
era.

2.3. FLRW in General Relativity
2.3.1. Friedman equations

Using the FLRW metric in cosmic time (45), the Ricci tensor can be computed as

ad + 2a® + 2k
1—Ekr?
Rss = 12 sin’(0) (ad + 24> + 2k),

+ | - —|——2
a a

a
a

Ry = —337 Ry = , Roy = 7(ad + 24% + 2k), (61)

and then the Ricci scalar becomes

R=6 (62)

On the other hand, we will model the matter content as a perfect fluid whose energy-momentum
tensors is

7;1/ = (;0 + P)UuUu - Pg,uw (63)

where on comoving coordinates U, = (1,0,0,0), and T = T% = p — 3P. The conservation
equation of the perfect fluid is given by

p+3H(p+ P)=0. (64)
Finally, the field equations of FLRW in GRn called Friedman equations are given by

8w k - a uv
H*=—p——, H*+H=-=——(p+3P). 65
T =" T, 1 ap) (65)
It seems that the conservation equation (64) along with the Friedman equations (65) would
give us enough information to obtain the time evolution of the three quantities involved in this
system of equations (a(t), p(t), P(t)). Nonetheless, this is not the situation, since combining
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the conservation equation with the first Friedman equation will result in the second Friedman
equation. Hence, instead of 3 equations for three variables we haver got two, and an extra
condition is needed to solve completely the system.

The extra condition is usually achieved through the barotropic equations of state
P =wp, (66)

where in general w = w(t) [28]. The case where w = const is of great importance, since it can
model radiation w = 1/3, dust (baryons or CDM) w = 0, or the cosmological constant w = —1
[4]. By the introduction of the critical density

3H?
Pe = . (67)
s
the first Friedman equation is rewritten as
k p
=——-1=0Q-1 68
H2a2 pc Y ( )

with Q = p/p, is called the density parameter.

2.4. FLRW in Teleparallel Gravity
2.4.1. Isotropic and homogeneous tetrad

For the discussion of isotropic and homogeneous tetrad, we will summarize briefly the discus-
sion found in [11] for the flat case k = 0.

The idea is to recover the concept of symmetries from Cartan geometry and then use a similar
approach in TG. With this in mind, the definition of symmetry in TG is as follows

Definition 2.1. “ A symmetry of a TG geometry (M, e, w) is a group action ¢ : G X M — M
of a Lie group G such that the metric (14) and the linear connection induced on the base
manifold (16) are invariant, i.e., ¢Xg = g and @' = I', Vu € G. The teleparallel geometry is
then called symmetric under the group action ¢.”

Nevertheless, in physics we are usually interested in working with infinitesimal symmetries.
With this in mind, it is possible to arrive at the following conditions

(EXge)A“ = —Ag‘Bef;, (Eng)ABH = DM/\?B, (69)
where
(Lxce)’) = X£oeh, + 0. X e, (Lxw)'p, = XLOw'y, + 0. X{w s, (70)

are the Lie derivatives of the tetrad and the spin connection, X¢ are the generator of the
symmetry,
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and \: g x M — so(1,3) is the local Lie algebra homomorphism.

When working on the Weitzenbock gauge, (69) reduce to
(EXée)AM = —/\?BeBH, 0= (Exéw)ABH = (9#)\?3, (72)

giving a system of equation, in terms of the generators of the symmetry, for the tetrad and
then giving the sufficient conditions to find the tetrad that exhibits the desired symmetry in
the Weitzenbock gauge.

With this in consideration, the tetrad that exhibits the cosmological symmetry in Cartesian
coordinate sis given by

1 0 0 0
A 0 Cb(t) 0 0
“““lo 0o a@) o |’ (73)
0 0 0 at)
with a constant lapse function n(t) = 1 in order to have the FLRW metric as (45).
In conformal time the tetrad becomes
1 00 0
0100
w=a g 01 o (74)
0001

2.4.2. FLRW equations: TEGR, f(T) and f(T, B)

Using the tetrad (73) in TEGR, we arrive at the same Friedmann equation in GR (65) with
spatially flat curvature £ = 0. Now, in order to obtain the Friedmann equation in f(7') and
f(T, B), we need to compute the torsion and superpotential tensor along with the torsion scalar
and boundary term.

The non-vanishing components of the torsion and superpotential tensor are [30]

T, =Hs, 5% =—Hd, (75)
whereas the torsion scalar and boundary term are given by
T=—6H* and B=—6(3H*+ H). (76)
Hence, the field equation of f(T') gravity (43) are given by [§]
1
_6H2fT - §f = Rp, (77)
: 1
—2fr(3H" + H) = 2H fr — 5 f = —rP, (78)
and the field equations for f(T, B) gravity are
. : 1
3HfB_3H2(3fB+2fT>_3fBH_§f<T’B) = kp, (79)

—(3H%+ H)(2fr + 3fp) — 2H fr + f5 — %f(T, B) = —kP. (80)
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3. Linear Perturbation Theory

3.1. Perturbation around FLRW

For this section, we will follow principally the discussion found in ref. [23|, but also use ref.
[31] and ref. [29] when needed and summarize what we need for this wok.

The idea of linear perturbation theory is to work with small deviation dg,, from a background
manifold

G = guu + 6guu7 (81)

where g, is the metric of the background manifold, in our case, the FLRW metric in conformal
time (48). The deviation form the background metric are considered to be small, so any non-
linear term involving the deviation must be vanishing

09| <1 —  (0gw)"=0,n=2,3,.... (82)

In the following, we will first discuss linear perturbation theory in GR and later on, discuss in
detail linear perturbation theory in TG.

Using the decomposition of the metric (81), we can compute the Christoffel Symbols as

re, = fﬁy + 0I” (83)

>
where fﬁy are the background Christoffel Symbols given by (4) in terms of the background
metric ¢, and the perturbed Christoffel Symbols are given by

1_ .. =a
5F5p = §gﬂ (690'1/,p + (5g0p,l/ - 69147,0' - 25gUOLFVp) . (84)

Analogously, the Ricci tensor is given by

R,uz/ - R;w + 6R,u1/ ) (85)

where the perturbation of the Ricci tensor is

OR, = oI, ,— oI, + ffwél“ga + oI, 1%, — fZO_(Sng — 5wang : (86)
Finally, the Einstein tensor is also given by

Gh =GP+ 6G" (87)

with the perturbation given by
_ 1
0G", = g" R, + 69" R,, — 56“1,5R with  dg"" = —§""09,,5" . (88)

On the other hand, we also need to compute the perturbations at first order of the energy-
momentum tensor.

6 Any mathematical symbol with a bar indicates that it was computed with the background metric.
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Recall the definition of the energy-momentum tensor (63) for the background cosmology
Tw = (p+ P, — Pg,,. (89)

With the introduction of a projector onto the hypersurface orthogonal to u,

0 = G — Uy, where 6,u" =0, (90)

the energy-momentum of the perfect fluid can be rewritten as

7_711/ = ﬁauﬂu - Peuu- (91)

In ref. [32], based on a covariant split of any two-rank tensor onto the four-velocity, it was ob-
tained that the energy-momentum tensor for an almost perfect fluid, which includes dissipation
effects, is given by

Tap = puaty — (P =+ T)0ap + qalis + qtia + Tas, (92)

where the dissipative terms ¢,, mos and 7 (called the heat transfer contribution, anisotropic
stress and bulk viscosity respectively), satisfy

quut =0, ﬂaguﬁ = Mg = 7% =0 (93)

and 7 is the trace of the anisotropic stress. Observe that we can work with m = 0 by redefining
the pressure term as P + m — P, which is the convention we will follow.

By comparing (91) with (92), we can observe that ¢, and m,s are already first order contri-
bution to the perturbation of the energy-momentum tensor of the perfect fluid, whereas the
perturbation of the energy density, pressure and four-velocity proceed as usual

p=p+ipn,x), P=P+0P(nx) u' =u" -+ ). (94)

The splitting of the energy-momentum tensor into a zero and a first order perturbation reads
as

7:11/ = 7711/ + 67:11/7 (95)
such that the first order perturbation of the energy-momentum tensor is
8T = dpli iy, + pou,t, + p,du, + qui, + @iy — 0, (0P + ) — P80, + 7., (96)
with
80, = 69, — Su, i, — U, 0u, . (97)

The perturbation for the energy-momentum tensor with mixed components is
67’#V — gﬂp(s’]’py + 59#1”7;1/ ) (98)
Considering that, the Einstein field equations are given by

G", =kT", (99)
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with G#, = G*, + 6G*, and T*, = T*, + 0T*,, the perturbed Einstein field equations are
SGH = KkST™ . (100)

The previous discussion did not make use of the FLRW background and any coordinate system,
however, we can make this explicit by writing the metric as

[1 4 2¢(n, )] —w;(n, x)
Guw = a*(n) , (101)
—wi(n,x) =01 = 2¢(n, x)] — xi;(n, x)

where 67y,;; = 0. Observe that, if v = ¢ = w; = x;; = 0, we recover the components of the
FLRW metric tensor in conformal time (48), hence, our linear perturbation dg,, is encoded in
terms of the scalar 1, ¢, vector w; and tensor y;; perturbation.

3.2. The Gauge Problem

We started the previous discussion by stating the small deviation from the background as

G (0, @) = G (0, @) + 69, (n, ), (102)

which can be recast as

09 (0, ) = (0, ®) — G (1, ). (103)

This difference is an “ill-posed statement” 23], since g, is a tensor on the background manifold
and g, is a tensor on the physical manifold, hence, we are comparing two different tensors on
two different manifolds. Thus, a mapping that allows us to identify points on the background
manifold with those of the physical manifold is required. Such mapping is called the gauge, and
will allow us to use the conformal time and comoving coordinates of the background manifold
on the physical manifold.

If we change the coordinates system, we can change the value of the perturbation variables
and even introduce fictitious perturbations |31]. It is then mandatory to build the so-called
gauge-invariant potentials, which are expressions that will remain unchanged under a change
of coordinates and will serve as the physical perturbations of the theory.

3.2.1. Gauge transformations

We begin by an infinitesimal change of coordinates on the background coordinates
ot — 7t =t 4 H(n, x). (104)
From the tensor transformation rules, at first order on &, the metric tensor transform as

9 () = G0() + 00y (2)E" + 0,87 gpu () + €  Gppu(T) (105)
= ij(x) + V& + Vo
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Therefore, at first order, the perturbed quantities transform as

V=1 —HE — " (106)
Wy = w; — G+ 9;¢°, (107)
b=0-HE o, (108)
Xij = Xij — 0;G — 0i¢; + §5z‘jal§l7 (109)

where the prime denotes the derivative w.r.t the conformal time, H = %’ and ¢; = §;¢.

Moreover, the transformation of the energy-momentum tensor w.r.t this change of coordinates
is

T (@) = T (2) = 0T (0)€% = 0,7 T () = 0,67 Tpu() | (110)
and the, the perturbed quantities transform as
op=3dp—p'€°, b = v + 0iE°, 4 = (111)

where du; = av;.

The fact that the heat transfer contribution and anisotropic stress is zero is just a manifestation
of the Stewart-Walker lemma [33|, which states that a linear perturbation d@) of a background
quantity () is gauge-invariant if and only if one of the following conditions hold

1. @ =0.

Qi

2. @ is a constant scalar.

3. @ is a linear combination of products of Kronecker deltas.

3.2.2. SVT decomposition

The Scalar-Vector-Tensor (SVT) decomposition consists in fully identify the scalar, vector and
tensor parts of the perturbation. We have already seen that our perturbations have scalar parts
¢, 1, vector part w; and tensor part x;;, however, it is still possible to obtain other two scalar
contributions from w; and Y;;, and another vector one from x;;.

This can be accomplished by the use of Helmholtz Theorem [34], which states that, if we
consider a vector function F(r), and define its divergence and curl as

D(r) =V - -F(r), C(r)=V xF(r), (113)
the vector field can be rewritten as
F(r)=-VU+VxW, Vx(VU)=0 and V- -C(r)=0, (114)

where

=L [ 2w [y

r—r
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i.e., the vector field can be decomposed as a divergenceless plus an irrotational part.

Based on this, we decompose our vector perturbation as a divergenceless plus an irrotational
part

w; = wy +wi,  with eijkajwy =0, Owp =0. (116)
By comparing (116) and (114), we observe that the irrotational part is the gradient of a scalar

w!l = d;w, and we define the divergenceless part as w;" = S;, and then our vector perturbation

S

read as
Wi = O + 5 (117)
[

Analogously, the tensor part cam be split into three parts, a longitudinal part x;;, an orthogonal

part ij, and the transverse contribution XZ-T]- as follows

Xis = Xl + X5 + x5 (118)

where every part satisfy
eijkalan}'k =0, 0¥x;=0 and &y, =0. (119)

The longitudinal and orthogonal part are built from the divergence of x;; and apply Helmholtz
Theorem to it. Hence, we can rewrite each part as

1 .
X = (82-8]» - §5ijvz> 2, X =0A+ 804, 0A=0, xj=hy  (120)
and then the tensor perturbation becomes
1
XU:(@%_g%Vﬁ2M+@AH%M%+Mj (121)

Therefore, the 10 degrees of freedom of the metric have been decomposed into 4 scalar modes
¢, 0, w, i, 4 divergenceless vector modes S;, A;, and two tensor degrees of freedom h;;.

The same idea can be applied to the gauge fields £# of the infinitesimal transformation (104)
as follows

C=a, (=068=0B+c, (122)

where ¢; is divergenceless d'e; = 0.

Using the SVT decomposition of the perturbation and the gauge fields, and using the gauge
transformation rules of the perturbation quantities (106), we can compute the gauge trans-
formation rules for the scalar ¢, v, w, u, vector w;, S; and tensor part h,;, which turn out to
be

V=1 —Ha—d, (123)
b=0+Ha+ 1%, (124)
w=w-8+a, (125)
fr=p—p, (126)
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for the scalar part,

Ai = A — €, (128)
for the vector part, and
Xij = Xijs (129)

i.e., the tensor part is already gauge-invariant.

By combining equation (123)-(126), we obtain the so called Bardeen Potentials

Uyt (-], @ =6—H(w— )+ Vi, (130)
a 3

which are the scalar gauge-invariant potentials.
Likewise, by combing (127) and (128) we arrive at the vector gauge-invariant potential
Wi, =S; — Al (131)

Since we are working in linear perturbation theory, any interaction between modes is a second
order perturbation and the negligible, thus the scalar, vector and tensor modes evolve indepen-
dently.

The same procedure can be done for the matter perturbations, however, this topic lies beyond
the scope of this thesis and will not be performed here.

3.2.3. Gauge fixing

Since we have already constructed the gauge-independent potential for every mode, we can
exploit the gauge freedom to simplify the equations, Let us discuss some examples.

Considering only scalar perturbations (¢, ¥, w, i), we can select a gauge, called the Newtonian
gauge, such that

w=p=0, (132)
which from equations (123)-(126) determine the sacalar gauge transformation as
B=u o=y —w, (133)
and the Bardeen potentials become
V=1, O=¢, (134)
hence, our scalar perturbation depends exclusively on the Bardeen potentials.

In this gauge, the metric tensor reads as

ds* = a*(n)[(1 + 2W¥)dn* — (1 — 2®)d;;dx'da’], (135)
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and the perturbation theory have several consequences.

One of the most important consequences, in GR, is that ® and ¥ are not physically indepen-
dent fields but differ only by the scalar part of the anisotropic stress of the energy-momentum
tensor and, in absence of scalar anisotropic stress 7° = 0, they are the same field ¥ = ® and
the metric resembles the weak field limit of GR about a Minkowski spacetime with ® playing
the role of the gravitational potential [31].

Other choices are also possible, for instance, by choosing

=0 and w=0, (136)

we arrive at the Synchronous gauge whose metric tensor is
1 o
ds* = a*(n) [d?f — ((1 —20)0;; + {ai(?j — géijvz} 2u) dx’dx”} . (137)

This gauge is useful when dealing with fluctuation of the inflation field or when dealing with
a universe dominated by cold dark matter [31][29]. There exist different gauges and gauge
transformations that will not be covered here, some of these can be found in ref. [35].

3.3. Gravitational Waves in General Relativity
When considering a pure tensor perturbation
dgoo =0, 0goi =0, dgi; = hij, (138)

with 6 h;; = 0'h;; = 0 as discussed before, the non-zero components of the perturbed Einstein
tensor (88) is

—2a*0G"; = hi; + 2Hh}; — V?hy;. (139)
If we consider the Fourier transform of a generic field f(n, x) to be
r 3 —ik-x Pk ik-x
f(777 k) - d xf(n7 iB)@ ) f(777 11) - Wf@% k)e ) (140)

and apply it to (139), then the Einstein field equations in Fourier Space are
hi; + 2HhY; + k*hy; = —167Ga’r];

i (141)
where 773} is the tensor part of the anisotropic stress. Equations (141) constitute the equations

for Gravitational Waves (GW) from a FLRW background.

Generally speaking, since h;; is a symmetric 3-dimensional tensor, it has six independent com-
ponents, however the transverse condition d'h;; = 0 impose 3 constrictions, and the traceless
condition 6“h;; = 0 another one, hence, reducing the number of independent components
from six to only two, which are the so called h, and h, polarizations, such that, if the GW
propagates in the 2 direction k= Z, the tensor perturbation is

hy hy O
hij(k3)= [ he —hy 0 |, (142)
0 0 0
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or rather compact as
hij(kZ) = hy £ ihy. (143)
If a rotation about the z-axis is performed, the tensor perturbation transforms as [23]
hy +ihy = eT*?(h, £ ih,), (144)
and it is said that the GW has helicity 2 or is a Spin 2 field when it is quantized.

A

For a general direction, we can write the tensor field in terms of the polarization tensors €;; as
[36]
hijnk) = Y ey(k)ha(n, k), et =M, (145)
A=+2 A==£2
where the polarization tensors and vectors are given by
. . +ies)
e (b 42) = VIesen, . exa(l) = AEC:s (146)

7

with {e,, ey} two dimensional vectors orthogonal to a vector k that results of going to Fourier
space with the transverse condition

In this scenario, the +, X polarizations are given by

h+(77a k) = %hw(% k) + %h—2(77’ k) ) (148)
e (1K) = ——hpa(n, k) — ——h_s(n. k) (149)

V2 V2

From the previous equation, we can see that hy(n, k) satisfy the GW equation (141), and h
also satisfy it.

3.4. Linear Perturbation in Teleparallel Gravity
3.4.1. Tetrad perturbation
Now it is time to discuss linear perturbation theory in TG. Since this is one the central topics

of this work, we will discuss it in detail.

We begin by considering small deviation from the isotropic and homogeneous tetrad éAM as
follows

e, =&, + ¢, (150)

From the relation between the tertad and the metric (14), we observe that

guu + 59”1/ = (éAu + 56A,u) (éBV + 565;) NAB, (151)
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from where, neglecting second order perturbations, we have that
0Guw = éAﬂéeBynAB + éBl’,éeAMT]AB, (152)
or in a simplified manner [37]
0 = 27wy Where 7T, = éAuéeEfjnAB. (153)

From eq. (84) and eq. (153), we obtain the perturbed Chrystoffel symbols in TG

o

o 1 o o o o °
OTP 0, = igpa (Vﬁgw + V09,0 — V,,égw,> =g (V/J(UV) + VuT(uo) — VUT(W)) (154)
= 3% (Teowyw + Tlowyp = Tuo — 2T0a) [ - (155)

On the other hand, since we are working on linear perturbation of the gravitational sector,
the Weitzenbdck gauge is still employed throughout this discussion, and no extra degrees of
freedom are added to the theory. Thus, from Weitzenbock connection (16) we have

[0, + 000, = (EXy + 0B )0,(e", + 6¢), (156)
from where the perturbed Weitzenbock connection is
oT%, = E°,0,0¢", + 0E’,0,¢",, (157)
where the perturbed inverse tetrad is
SE", = —E" E"36¢",. (158)

Consequently, from the definition of the contortion tensor (21), we obtain the perturbed con-
tortion tensor as

K, = oT%, — oL (159)

pv

and also from (20), we can obtain the perturbed torsion tensor as
oT), = ory, — oIy . (160)
Now, for the superpotential tensor (25), its linear perturbation is
1 _ _ _
08 .7F = 5 (gpﬁcﬂ(ga + g7P6T367 — gPP6Tp67 + 59”6Kga + 6977 T367 — 59”67}355) , (161)
and then, the perturbation of the torsion scalar is
oT =1T7,05," + 17,5, . (162)
Finally, for the boundary term we have (26)
B = QV#TM = 2g#avuT/\)\a = 2gua (aﬂTa + F;);,LLTP)\a - Ff;\uTi)Oé B FZ#TP) ’
and consequently, the linear perturbation of the boundary term is
6B =2 (69" [0, T + T, T, — T4, T — 4,1, (163)
+3" [0,0T, + 61, 1%, + T7,0T%, — 618 17, — T4 6T, — 012, T, — I%,,0T,]) .

Now we are in position of computing the linear perturbation of the field equations in TG.
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3.4.2. Perturbed equations

In this case, we will focus our attention into the f(T, B) gravity scenario (42), since the f(T')
and TEGR scenarios are achieved by imposing the conditions fz = 0 and f(7) = —7 in the
f(T, B) scenario.

Consider the most general functional of 7" and B as f(7T, B), with the first order partial deriva-
tives fr and fg. The linear perturbation of these functional are

f(T,B) = f(T +0T,B+6B) = f+ f76T + fgdB = f + §f, (164)
where we have defined f = f(T,B) and §f = f70T + f50B.
For fr and fp we have

fr(T,B) = fr+dfr, fe(T.B)=fz+dfs (165)

where
§fr = fr76T + f756B and 6fg = faréT + fz50B. (166)
From (42), recall the Einstein tensor in TG as
o o o o 1 2
GY =00 fp — V'V, fp + 3 fBB6) +2[0,f5 + Oufr] S + Eef fro(eS) (167)
1
o A A
— 24T, SN — S f3),

and define the following expressions

A=0fs, (168)

B, =V*V, f5, (169)

C = fpB, (170)

D, = [0.f5 + 0ufr] S}, (171)

F, = éeA,,fTau(eSa“), (172)

H, = frT¢,8.", (173)

such that the Einstein tensor is just

A=A - B + %530 42D 428 —2H — % . (174)

Now, we follow to compute the perturbation of the quantities defined in equations (168)-(173)
in order to obtain the perturbation of the Einstein tensor.

From (168), it can be seen that
A=0fp = V(0" f5) = ¢"°V,(9f5) (175)
— ¢ (9,035 — T4,0,f5)
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and thus, its linear perturbation is

§A = 5ghP (auaﬁ f5—T1%,0, f,;) + g (aﬂaﬁa f5—o00%,0,f5 — 1%,0,0 fB) . (176)

From (169) we have that
B, = V'V fa = ¢ (050,05 = 110,03) (177)
where the linear perturbation is
0B, = 09 (0s0,F5 = Tisufs) + 3" (950,005 = 01040, f5 — T0s0,005) . (178)

or succinctly as

OB, = 60"V 5N, f5+ 5 (VsVid fp — 00,0005 ) | (179)

From equation (170) we have that
C = fpB — C+6C = (fg+6f5)(B+IB), (180)

from where

§C = fpéB + 6fpB| (181)

From equation (171) we have
D, =, (fs + fr) S, (182)

where it is straightforward to see that

6D)\1/ :8# (6fB+5fT) SVHA—i_aM (fB+fT) 581/#)\ . (183)

In the equation (172) the determinant of the tetrad appears, hence, we need first to compute
the linear perturbation of the determinant.

Let us begin by considering
e = det(e’), (184)

and expand the determinant in a first order Taylor series about € as follows

det (e
det(e) = det(e + de?)) = det(e?)) + 56% 32—(5)\) : (185)
e
M e=e
and from the Jacobi’s formula |38] we have that
ddet (e
MU — adjled)s (156)

B
aeu
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however, since the tetrad is non-singular

adj(ed)" = det(e) By, (187)
and therefore
Odet(e4)) AN £ =
ae—Bu)‘ . = det(e?)E"; = eE". (188)

Thus, the linear perturbation of the tetrad is

e = eE"z0e", . (189)

Hence, from equation (172) we have that

FA 4+ 6F = HL&B (&%, +de?) (fr +6fr) O, ([é + de] [SA”A + 5SA’”D (190)
= (é — g) (&, +6e’) (fr +6fr) O, ([é + de] [SA’“ + 5SA’“D :

from where we obtain the linear perturbation to be

de 4

e, — e ) fT] 9, (@Sﬁ) . (191)

_ _ 1 1
SFA =~ f70, (a&SAW + 5eSA“’\) + {5615 fr+ (

e

SAMA — EOCASQHA and 5SAH>\ — EOCA(SSQMA + 5EOCASO['U)\. (192)
Finally, from (173) we have

), +6H, = (fr +6fr) (T3, + 6T5,) (S +6SM), (193)

Qv
and the its linear perturbation is

SH?, = S M [fT(STj + (5fTT§V] + fTTlf‘V(SSaA“. (194)

14

Therefore, the perturbed Einstein tensor is simply

0Gh = 6)0A — B, + %5350 +26D%, + 26F), — 20H%, — %5 [0, (195)

3.4.3. Gravitational Waves in Teleparallel Gravity

Consider the background tetrad in conformal time (74) and a transverse and traceless tensor
perturbation

b, = @ (8 h(:) , (196)

where from (153), the nature of the tensor perturbation in TG is the same as the GR scenario.
Using (196), the linear perturbation of the torsion tensor and the superpotential tensor are [30]
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i 1 i 1 i 0j 1 ik 1
oT 0j = o ;ja 5Tjk = §<8jhik - 5khz‘j>75soo =0, 657 = @h;p 657" = _@(ajh(ik _)akhij)'
197

Analogously, using the equations (162) and (163), a direct computation of the perturbation of
the torsion scalar (162) and the boundary term (163), from the perturbed tetrad (196), gives

0T =0B = 0.
From the previous result, we have
fr(T,B) = f#(T, B), fp(T,B) = f3(T,B), (199)

hence, we will drop the bar notation on the functional f(7, B) and its derivatives when dis-
cussing tensor perturbation.
Finally, the perturbed Einstein tensor (195) is given by

fr

005 = 32

5" (hig; + [2 + V)M — Vi) (200)
where the parameter v

_ 1/
YT

called the Planck mass run rate, encodes all the information about the extension of TG, since
v = 0 recovers the equation of GR. The Planck mass run is the friction term caused by the
expansion of the universe |39].

By combining the perturbation of the Einstein tensor and the energy-momentum tensor, and
working in the Fourier space, we arrive to *

(201)

16wrGa?
hi; + 2+ VIHh + K hey = i T
If fr = —1 we recover the GW equation in GR (141). The equation (141) corresponds to a
tensor wave propagating at the speed of light [8], in agreement to measurements of GW [40)].

(202)

Observe that in the case f(7, B) = f(T) the same equation holds, and in the case of f(T, B) =

o

f(=T + B) = f(R), with f — fg, then v = %2 which is found in the literature [30][41].

Finally, if we consider (202) in vacuum
hi; + 2+ v[Hhy + k*hey = 0, (203)

which can be derived from an action of the type (cf. [42])

S = / d*zdn(—a® fr) [W;h'" — dphi;0"hY] | (204)

"Observe that W;"; in the (+,—,—,—) is —77,;‘9 in the signature (—, +, +, +), with WZ; = (Sikwa.
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and the going to Fourier space, which requires fr < 0 in order to preserve the positive sign o
the Lagrangian density as in the GR limit fr = —1 [8].

Therefore, we have obtained that the main differences on the GW coming from GR and TG
are the dissipation term v and the extra factor of fr over the right hand side of the equations.
GW in TG are not constrained by present observations, since tensor waves propagate at speed
of light and also no constraints exist for the Planck run rate [30], hence. we can explore its
production in the early universe and track its Power Spectrum which could be detected on
future GW detectors like LISA.


https://lisa.nasa.gov/
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4. Production of Gravitational Waves: Vacuum case

Let us begin by considering the production of GW coming directly from inflation. As we
discussed in Subsec. 2.2, inflation is usually modelled by an scalar field through the energy-
momentum tensor in the form of a perfect fluid. Therefore, when making perturbation of the
energy-momentum tensor of the scalar field (50), we only deal with dp, 6P and du* perturba-
tions, hence, no tensor anisotropic stress is generated during inflation

Th =0, (205)
thus, the GW equations on GR and TG are given by
hii+ 2Hh; + k*hy; =0 and b} + 2+ v]HA, + k*hi; = 0, (206)

with v the parameter defined in (201).
Since we are interested in studying the production during inflation, which occurs at the very
beginning of the universe, we propose a quantized tensor field

hiy(nx) = 3 / (;l:;g [0, )™ a(ke, A)eyg(k, A) + 1 (n, ke ™al (k, ey (b, V)|, (207)
A==£2

where the creator and annihilation operators satisfy the commutation relations
la(k,\),a(kK, )] =0,  [ak,\),al(K,N)] = (27)*6®) (k — K)oy - (208)
We will suppose that the universe is in a vacuum quantum state |0) such that
a(k, A) [0) =0, (209)

and such that, in the infinite past 7 — —oo, the modes resemble the quantisation of a free field
in Minkowski space [23][43]. Such vacuum state is called the Bunch-Davies vacuum.

Thus, the Primordial Power Spectrum will be defined from the correlator, the vacuum value
expectation, of the gravitational wave

A’k e (3! “
<O’hij(nax)hlm<nvxl)|0> = / (27T)3|h(777k)’261k( )Hij,lm<k) ) (210)
where ) X R
Wijim(k) = Y eij(k, Nep, (k, A) - (211)
A=42

But, what is exactly the Power Spectrum? defining h(n, k, \) = h(n, k)a(k, \), we can rewrite
the value expectation as

Prd*K e
<O‘hij(nax)hlm(777xl)’0> = Z /W«)‘h(n?ka )‘)hT(naka )‘>yo>el(k ) )eij(k7)‘)elm(k7 >‘)
A==%2
(212)
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Outside the horizon k|n| — 0 the field loses its quantum nature and then we identify the
expectation value with the ensemble average, the expectation value of a random field among
all the possible values that it can assume, of the classical random fields®

<O’h(777 k7 )‘>hT(777 k? >‘)‘0> — <h(777 k7 A)h*(% k7 )‘)> = (27T)35D (k - k/)Ph<T]7 k)? (213)

k|n|—0

therefore

&Pk e i
Ol 3313100 = [ 555 P )00 () (14)

Where the equality must be understood outside the horizon. From (210) and (214) we conclude
that

is the Primordial Power Spectrum (PPS) of gravitational waves coming from inflation.

We will study the PPS of GW in GR and TG for two different backgrounds, the first one a
perfect de Sitter space H = 0 and the second one a quasi-de Sitter space H = —eH3.

4.1. De Sitter background: General Relativity and Teleparallel Gravity

Let us consider a perfectly de-Sitter background
H = H, = const — H =0, (216)
and recall that for tensor perturbation
f(T,B) = [(T,B), (217)

i.e., the functional is just the background functional, and since T=—6H?and B=—6(3H?+
H), then

fr= —fT = (fTTT + fTBB> =0, (218)

and then v = 0. This implies that for a perfect de Sitter background, GW waves satisfy the
same equation on GR and TG

hi; + 2Hhi; + k*hi; = 0. (219)
If we insert (207) into the latter equation, we observe that h(n, k) and its conjugate satisfy
R +2HK + k*h =0, (220)

with h = hy « accounting for the two degrees of freedom, then we only need to solve this
equation to obtain the PPS.

8 We will assume that the GW field is a Gaussian random field, i.e., its statistics obeys isotropy and homogeneity.
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The condition H = H, = const in conformal time reads as
a(n) =——4— or H=——, (221)
with 7 < 0. Then the equation for GW becomes
" 2 / 2
h' ——=h"+k*h = 0. (222)
n

Now, we will work canonically normalized tensor modes [23][36]

- h

and then perform the following change of variable

ah Mpl a
V32rG 2

The normalization factor is in order to properly compare tensor and scalar perturbation, and to
give units of L3 or M3 to the power spectrum [23]. With this change of variable , the equation
to solve is

g=ah= h. (224)

2
9"+ <k2 - F) 9=0, (225)
with the initial condition on the infinite past to be the

1
9= ok

Generally speaking, the power spectrum will depend on the conformal time, so, at what time it
should be analysed? Since the tensor mode is a constant outside the horizon k/a < H [29], it
provides a initial condition when the scale re enters the horizon during the radiation-dominated
era, hence it should be at a time such that k|n| — 0, i.e., for an asymptotic behaviour at large
scales.

e~k (226)

The formal solutions of (225) are the complex functions

gC {C(k)k (1 — k:in) e~k C*(k)k (1 - kin) ei’”’} : (227)

where, in order to satisfy the initial condition in the infinite past, we need to choose the first
solution

g, k) = C(k)k (1 _ kl—n> ek, (228)

such that, for a time 7; as the infinite past limit k|n;| — oo, or k|n;| > 1, we have

. 1 .
g(mi, k) = C(k)ke ™ = ——e 1 5 C(k)k =

Nors (229)

oy
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In this case, the solution is just

ol k) = <1 _ kin) | (230)

Returning to the original field using (224)

1 e~kn i
h=327G~ 1—— ), 231
™ V2k < /W?) (231)

the power spectrum is

167G 1
Pu(n, k) = —— Hop? (1 + kan) : (232)

and then the dimensionless power spectrum, which is defined for an arbitrary random field G
as [23]

k3P (k)
AZ(k) = —2 233
L) =55, (233)
for the tensor perturbation, considering that there are two polarization states, is [42]
d (0] k2, |0) k3 2H?2
A7 (n, k) = ———20 = 64nG—— |h(n, k)|* = =251+ k7). 234
In the limit k|n| — 0, the scale-invariant dimensionless power spectrum is recovered
2 H3
Aj (k) = =5 235

which is an important prediction from inflation [31].

4.2. Quasi de-Sitter background: General Relativity
4.2.1. Power Spectrum and Tensor Spectral Index

The case of a perfect de Sitter expansion is not realistic, hence, our approach here consists in
working with a quasi-de Sitter expansion of the type

H = —eH?, (236)

with e the first slow roll parameter |¢| < 1, hence, all calculations are done at first order in €. In
this case, GR and TG obey different GW equations, hence we split the discussion into two parts.

In this case, the scale factor is

1 1
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and the conformal Hubble factor is
B 14+€
o

,H:

(238)

Hence, using the same change of variable (224), the equation of GW in GR with a quasi-de
Sitter background becomes

2+3
g+ (k:2 — ;;2 5) g=0. (239)

The solution to the equation (239) is in term of Hankel functions of the first and second kind

oK) < {COWIAD (Ral), C RV R}, o= +e  (200)

with a given at first order in e.

Using the asymptotic expansion of Hankel functions for large |z| and « real [44]

HO ~ | Zeilas-0) g@ & | Zeilead1), (241)
v Tz

we can choose the HY" solution in order to satisfy the initial condition

g(n.k) = C(k)/In[H" (k). (242)

Therefore, using (241) for the infinite past k|n| — oo and matching with equation (226), the
integration constant is

(ME]

INE]
INE]

C(k) = ﬁeia%“% (243)

and then the solution is simply

T jam ,m
on, k) = YT 4% T H (k). (241)

Returning to the original field h, the solution is

1 s TT ;T
h = VERGL YT D (k). (245
a
and then the power spectrum is

m|n| 2
Pu(n, k) = 57z 5 [HE (k)| (246)
pl

In the limit outside the horizon k|n| — 0, we can use that

HO(z) ~ —i) <f>_a, (247)

z—0 s 2
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with ['(z) the gamma function, to obtain the dimensionless power spectrum as

F3n|C()? (Kl 3
h(na k) ﬂ_gMglaQ 9 , 2 + € ( 8)

where have taken into account the two polarizations. Considering e at first order in the scale
dependence and zero elsewhere, we obtain that

2

2 H/2\ k—2e
w2 Mg a?|n|?

22t
m M

Aj(n, k) =

(lnl)~* = (249)

due to (237). The power spectrum is no longer scale-invariant, but depends on k as a power
law whose exponent is
ny = —2e, (250)

which is the tensor spectral index and is expected to be small due to the smallness of e.

4.2.2. The energy spectrum of GW

The energy spectrum, i.e. the gravitational-wave energy density per logarithmic wave number
interval is defined as [42]

1 (0] paw(n)|0)
Perit(N) dink ’

Qaw(n, k) = (251)

where the critical density is given by

peslm) = 25 (252)

In order to determine pgw, we need to work with the action of the gravitational field as a fluid
in a FLRW background and compute its energy-momentum tensor (6). In the case of GR, the
action for GW is

5= [ dadny=g 1" 0uts0ms). (253)

from where we can identify the Lagrangian density as

L = g"0,hi;0,h;. (254)
Since the energy-momentum tensor, considering the signature (+, —, —, —), is given by
2 J(L\/—g oL
77w = = ( — g) =2— - guwcv (255)
v—g 9 og

we obtain the energy-momentum tensor to be

77“/ - 28ﬂhij8,,hij - guy§aﬂ0ahijaghij, (256)
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from where the gravitational-wave energy density is

(Wij)? 4 (Vhi)?

pGW 7-{()] a,(n)Q 9 ( )
where its vacuum expectation value is
3|2+ K2|h)? dk
0 0) = — 258
O powl0) = [ (259)

such that the energy spectrum is just

87G K3 |W|2 + k2|h[?

Q k) = 259
aw (1, k) 3H(n)? 2m? a? (259)
According to [42], when the k-mode re-enters the horizon after inflation, it satisfies
B (0, k)* = K*|h(n, k)|, (260)
and then, the energy spectrum is simply
1 K2A%(n, k
Qane () = 15 ) (261)

T 12a2(n)H2(n)’

considering the canonically normalized tensor fields.

This energy spectrum can be computed at different times so we can analyse the possible mea-
surements at different experiments, for instance, at today’s time we can analyse the possible
density that LIGO or LISA may detect, or at a time of recombination such that CMB exper-
iments may provide information. However, in order to do such analysis, we need the transfer
function for the power spectrum, since equation (249) can only be detected at a time 7, when
the k-mode re-enters the horizon after inflation, and then it evolves after that time 7,. However,
such analysis lies beyond the scope of this work, since our main purpose is to study the power
spectrum of GW in TG and the physics after inflation on this theory has been barely studied
[8][45]-

4.3. Quasi-de Sitter background: Teleparallel Gravity
4.3.1. Power Spectrum and Tensor Spectral Index for several models

As stated before, in the quasi-de Sitter scenario, GW in TG satisfy a different equation because
of the presence of the parameter v. Since the gravitational wave equation depends on the func-
tional proposed, we will consider the following models that have been shown to be compatible
with late time cosmological observations [46][8].

1. Power law models. We will consider two models in f(7') and f(7, B) in the form of a
power law model ?

() = =T+ fo(=T)", f(T.B) = =T+ fo(=T)" + fi(=B)™. (262)

Remember that 67 = 6B = 0, and hence T =T and B = B.
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Both cases provide the same derivative w.r.t the torsion scalar
fr=—-1—mfo(=T)"", (263)

and hence produce the same equation for GW. Observe that the stability condition f7 < 0
is achieved if sign(fy) = sign(m) ' which from observations [47]|[46] imply m, fo > 0,
m # 1.

2. Mized power law model. In this case, the f(T, B) is
f(T,B) =T+ fo(-T)"(-B)", (264)
such that
fr=—-1—mfo(-=T)"1(-B)", (265)
and the stability condition fr < 0 1is achieved by m, fo > 0 according to observations [46].
3. Ezponential model. In this case, the f(T') model to consider is
F(T) = =T + BTx(1 — e™7/Tn), (266)

where we have defined Ty, = —6H3. This model recovers GR in the ¢ — oo limit [48].
The derivative w.r.t the torsion scalar is

fr=—1+ Bge~ T/, (267)

where the stability condition fr < 0 requires Sq < 0 which is fulfilled, since observations
requires ¢ > 0 and 3 < 0 [49].

These models have been studied in literature from various points of views ranging from Noether
symmetries to precision cosmology and inflation [50][51][52], showing that they are good can-
didate to explain the current accelerated expansion era [53][54].

Now, we are working in a quasi-de Sitter expansion, where all computations are done at first
order in ¢, which allow us to unify the discussion of all the models into a single discussion by
computing the v parameter as follows.

For the power law models of f(7T') and f(T, B) we have that

fo2m 3™ (m — yme ((e + 1)*H3 (—n)*) ™

- ; 268
YT e mle + 1) (e + DZHE (—n)*) ™+ 6(c + LPHZ(—n)* (268)

which at first order in € gives
_ A2 (m = Dme ()™ fom(1 = m)| Ty (269)

fo6mm (H)™+6H: = 14+ mfo|Tpm!

where we have defined Ty = —6H3 and By, = —18Hj . If m = 0,1 we obtain v = 0 as expected
since those cases are just TEGR.

10A change on the signature would imply sign(fo) = —sign(m).
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For the mixed power law model of f(T', B) we have

Fame2 3 (e 4 U ) (HR (3 + 120 - )" (e + D2HR(-m)*) "

S (e+1)2(—n)>—e (e+1)?
(€ + 1) HE (fomGm+m=1 (HE (3(e + 1)*(=n)* —€)) " (e + 1)*HE (—n)*) ™' + 1)
(270)
which at first order in € is
| fme s o = 1) (Y™ fom( = m = T B
- f0m2n+m32n+m (H{Q\) ntm 6H{2\ - 14+ melTA‘millBAVL
Finally, for the exponential f(7") model we have
_ 2B¢%e(e +1)(—n)*
V= /Bq _ eq(€+1)2(_n)26 Y (272)
which at first order in € gives
28q%€
= ) 273
YT B e (273)
We observe that all the studied models recover the following form of the v parameter
v = 2e, (274)

where the form of v depends on the model. Hence, our discussion can be performed with
v = 2ye taking into account that ~ takes the following form for each model

( —
fom(1—m)|Ty "1
L folTp[™ T
fom(1=m—n)|Ty|" 1| By|"

for the power law models,

- i 275
v 12+mf0\TA\m*1’BA’n , for the mixed power law model, (275)
\ ﬁgzeq ! for the exponential model.

It is possible to find « for an arbitrary functional f(7, B), we will show this later on, however
we would like to point out that these particular models not only guarantee that fr < 0, but
the also provide fr < —1 which is something that will affect the peaks of the power spectrum
coming from tensor anisotropic stress sources.

Consider the v parameter as a function of € and expand at first order in Taylor
7/(6) = V<E = O) + eaeV|e:07 (276)
where we have already argued in (218) that at e = 0, f = 0 and then v(e = 0) = 0.

Under the same argument, we have

86V|E=0 = _f%aefé‘lezth (277)
A

Y
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where we introduce the notation of subscript A to indicate that the derivative is evaluated at
a pure de Sitter background T = —6H/2\ and By = 3T). A direct calculation using the chain
rule shows that

T B
8€V|€:0 -9 (fTATAl A|;fTABA| A|> ’ (278)
A

therefore, the v parameter for a general f(7', B) functional is

_ Jrun | TAl + fraB,a | Bal
7 = .
fTA

However, in spite of the general form of v for any functional has been obtained, the condition
fr < 0 needs to be fulfilled and only some particular models accomplish this according to
observational data, that is why we considered such particular models at the beginning of the
discussion.

(279)

With this in mind, the computation of the power spectrum goes as follows.

As in the case of GR, we need a change of variable that takes us from the equation (202) in
vacuum to an equation of an harmonic oscillator without damping effect, however, for TG, the
transformation (224) does not give the desired result, hence, we need to find the proper change
of variable for TG.

We propose the following ansatz

W, k) = Milfm)g(n, k), (250)

thus, the GW equation in vacuum is
FF+ g+ 2+ VH 4 R F) + g (f + 2+ vHF) =0, (281)
Hence, in order to remove the damping term, the f(n) function, must satisfy
2f' + 2+ v|Hf =0, (282)
whose solution is

Fn) = ﬁExp (-% / Hydn) | (283)

We observe that the transformation does not depend on the model and if v = 0 we recover the
transformation in GR (224).

The GW equation is then given by

9" +g (k2 + 7// +[2+ u]%f%) =0, (284)

such that, for the quasi-de Sitter background and v = 2ve, we obtain at first order that

2+ 3(1
J"+g (k:2 _zHC A 3(772+ 7)e> —0. (285)
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We observe that the solutions is the same as the GR case but with a different o parameter

« 3
g(n. k) < {COVIED (i), C* )/ IIHP (k) . a =S +e(1+7),  (286)
and the same integration constant. Thus the solution is the same form as GR

on, k) = T FHE D (ki) (287)

When returning the the original field we have a different situation than GR, since

h= M%lf(n)g(m k), (288)

and
o0 = b (= [ Hw ) = a0+, (259)

then the original field is

h=V32rGa~ 4y YT M“a/m HWY (k|n]). (290)
The power spectrum is then
Pa(n, k) = 82mGa 4 Sl | HO (kln)) (291)

with the dimensionless power spectrum given by

E2nl _oqte
N0 k) = S0 B (202)

At large scales k|n| — 0 the dimensionless power spectrum is

k2T (e)? kln[\ 3
A2 _ —2(14ey) [ N1 = — 1 2
h(n’ k) 7T3M§l a 2 Y a 2 + 6( + Fy) ( 93)

such that using (237), it simplifies to

—3—2¢(1+7) .
A2 (77 k;) = WH2(1+76)|77|2+2€(1+7) M v _ F(a)223+2 (14+7) H2(1+76)k—25(1+ﬂ
AT 7T3M§1 A 2 7T3]\451 A ;

(294)
and then, taking the k-dependence at first order in € and zero order everywhere else, we obtain
2H?
2

Ale(n7 k) = M2

ZUR p2e4), (295)

then, the tensor spectral index is

nry = —2¢(1+7), (296)
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with ~ given by (275).

This is an important result since the tensor spectral index of TG allows a large dependency
on the scale for the tensor waves, and hence, if future detectors like LISA are able to measure
the primordial GW background and find a non-small tensor spectral index, it would directly
suggest that modification of gravity are needed. Current estimations of the tensor spectral
index suggest it to be very small, however it is an inferred value from the tensor-to-scalar ratio
which highly depends on GR [24][55].

4.3.2. Energy density of GW in Teleparallel Gravity

In this case we proceed in a similar manner as GR, where we need to find pgw in TG in order
to compute (251). We begin by considering the action of GW in TG

S = / d*xdn(—a’ fr) [hi;h'"7 — Ophi;0"h7] (297)
that can be written in terms of the background tetrad as
S = / d*zdne(— fr) [E* B yn*PO,hij0,hi;] (298)
where the Lagrangian density is
L= (—fr) [E*E"gn*POuhi;0,hi;] - (299)

Then, the energy momentum tensor of GW is given by

x_ Lo(eL)

T, =e)0), 0)=- .
v v7A A e 56?

(300)

In order to compute the energy-momentum tensor of GW in TG, we need to use the following
variational identity [5][8]

seh ~E° By, (301)

and remember that total derivatives vanish under the integral of the action. Hence, taking into
consideration the signature, we obtain
4 1é(efr)

T = 2= fr) By By OuhijOhi + [ B 0 B OuhigOahig] €, = (302)
A

For the calculation of %, we will use the field equation of f(T, B). Observe that, neglecting
A

total derivatives [5]

d(ef(T, B))

A = cfsBE) - 2eE\0f5 + 2eE4V 'V, f — 4e(9,f5)S 1™ (303)
A

Wylf.el =

— 40, (fr)eS ™ — 4f10, (esgﬁ) +defr T2, S + ef B,
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from where we can observe that

é(efr(T’, B))

5o = — efrpBE) — 26 EAO frp + 28B4V Y, frp — 46(8, fr5)S [
A

(304)
B SO A ~ QM = o QA S£ A
40, (frr)ES ™ — Afrr0, <eSA ) +defrr TS0 + efr B,

W[ fr.el =

therefore, the energy momentum tensor is
. _ 1 -
Ti\/ = 2(—fT)EAAEMBnABauhijayhij + [E“CEaBnCBauhijaahij] eAVEW)A[fT7 6]. (305)

Observe that in the TEGR limit fr = —1 we recover the same energy-momentum tensor of GR,
(256) with mixed indices. Hence, for A = v = 0, we observe that

a1 . _
G%EWOA[fTv €] = —2kpy,, (306)

where we introduce the notation

a*(n)
2

a’*(n)kpg, = 3H frp — 6H*(fre + frr) — 3frsH — Ir, (307)

to define the background energy density given by the background field equations in f(7, B)
gravity (79), in conformal time, if the functional f(7, B) is replaced by fr(7, B). Thus, the
energy density of GW in TG is

pew = 200 (= (hiy)* (fr + 6ppr) + Kppe (Vhig)*] (308)

Again, if fr = —1, then kpy, = 3 and the energy density is the same found in GR (257).

Analogously as the GR case, we can obtain the energy density by computing the vacuum
expectation of the energy density and imposing the same condition when k-mode re-enters the
horizon, from where we obtain

1 K2A2(n. k
0. k) = - 220 )

= IQW(_fT>7 (309)

where it is trivial to see that fr = —1 recovers the same result as GR.

4.4. From the Bunch-Davies vacuum state to Quantum Coherent
States

4.4.1. About the polarization of primordial GW
Generally speaking, when GW are discussed in GR, the weak field limit is employed

Guv = Nuv + h/u/’ (310)
and then arriving to the simple wave equation

Ohy = —167GT,, (311)



4.4  From the Bunch-Davies vacuum state to Quantum Coherent States 41

by defining the trace-reversed perturbation

by = Iy — gn,u, — h = —h. (312)
The transverse and traceless condition is imposed on both h,, and ﬁuw leaving only two prop-
agating degrees of freedom (DoF) +, x [56]. However, this is not the case for a general metric
theory of gravity, where there exists six possible polarizations given by the six electric compo-
nents of the Riemann tensor R;;o [57] that, in the notation of Newman-Penrose, are encoded
into four functions

1 1 _ .
Uy = ——R.0.0, Y3= 5(_Rx0z0 + ZRZ/OZO)) s RZJOZIO = Raoao + QZR“TOyO’ (313)

6
CDQQ - _(Ra:OxO + Ry0y0)7 (314)

where each function has an associated helicity s, namely, W5 and @9 have s=0 (scalar DoF),
U3 with s = £1 (vector DoF) and U, has s = £2 (tensor DoF). In the case of TG we have
two scenarios. If f(T') gravity is the theory, then we still only have two polarizations +, X
[58]. If f(T, B) gravity is the theory, we have a similar situation to f (R) gravity, where the
trace-reversed perturbation is defined by

. h fe5(0,0)
Py = My — =y + oLy, RY. 315
T I 277u + £2(0,0) U (315)
We observe that both traces h and h are not the same due to the presence of ]?:}—E)OE)(;)R(I).

Although the transverse and traceless condition can be imposed over BW in order to obtain
plane wave solutions, they cannot be imposed over h,,, at the same time [56][59], hence, more
degrees of freedom appears in the perturbation, namely, the longitudinal and breathing modes
appear.

However, when discussing tensor perturbations around a FLRW background, we employ the
SVT decomposition and we consider our primordial GW to be the transverse and traceless part
of this decomposition, imposing exactly four constriction leaving two degrees of freedom, the
+, x and it is independent of the theory and only dependent on the SVT decomposition. And
since the pertrubation in GR is proportional to the symmetric part of the perturbation in TG,
the primordial GW have the same polarization in GR and TG, and that is what was meant
by having the same nature as GR, the tensor perturbation in both GR and TG is a massless
helicity-2 field with polarizations +, x.

4.4.2. Expectation value and Power Spectrum

In the previous section we consider the state of the universe to be the Bunch-Davies vacuum
state, however, since the physics before inflation is unknown, we can assume a different quan-
tum state for the universe. We will summarize the discussion found in |60] where the universe
is supposed to be in a quantum coherent state.

We begin by assuming that the initial state is a Schrodinger type coherent state as a consequence
of the pre-inflationary dynamics, where some excitation is assumed in the beginning of the
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universe. For both polarization modes we define their creation and annihilation operators as

be [n,m) = v/nln—1,m), bl |n,m)=vn+Tln+1,m), (316)
bg |n,m) = v/m|n,m—1), bl |n,m)=vm+1|n,m+1), (317)

where |n, m) represents n gravitons with + polarization and m with x polarization. The total
number of gravitons is N’ = n + m. It is also possible to define operators that create and
annihilate both polarizations as

Al 5 = abl, + bk, (318)
Aa, B = a*b + Bb, (319)
such that |a|? and |S]? represent the probability the create or annihilate a polarization mode,

hence, |B]? + |a*> = 1. The quantum state of a graviton of number N that consists of any
polarization mode is

1 v
_ T
N B) = = (4ls) 10). (320)
where the vacuum state is |0,«, ) = |0). There is a degeneracy of v + 1 gravitons in the

graviton state. The operator A, ; increase by unity the number of gravitons as

Al IV 0, B) = VN + 1IN + 1,0, 8), Aap NV, o, B8) = VNN —1,a,8). (321)
Then, we define the state of the universe to be a Schrédinger type coherent state as
AuglV,0,8) =V |V, a, ), (322)

where U = |U|e? is a complex eigenvalue. The state |¥, a, 3) can be written in the [N, «, 5)
basis as

0,0, 8) = Z ¢—w o, B) = e F V4L |g) (323)

— exp (\DALﬁ — U A ) [0) = D(W) 10),
where D(¥) is the displacement operator which satisfies
D(¥) = exp (oz\Ilblé — & Uby, + BUDL, — 5*\1/%@) = Do (W) Dy (B0). (324)
Equation (323) implies that
be |V, , 8) = a¥ |V, , ), bg |V, ,B) =6V |V, a,pb). (325)

This relations are needed in order to compute the power spectrum. If we decompose the tensor
field as (207) where the creation and annihilation operators, we obtain each operator for each
polarization as

hE = boh(k,n) + bLh* (K, ), (326)
he, = beh(k,n) + 05" (k, n), (327)
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with h(k,n) the solution of the GW equation either in GR or TG. Hence, the power spectrum
for the plus mode is

(W, a0, nl Wb, [V, ) = [h(n, k)[* + 210 Plal?|h(n, k)P + W20 ?h(n, k)? + ©*2a?h* (1, k()Z, )
328

for the cross mode is

(U, a,n| RERE [T, a,m) = [h(n, K)[> + 2|9 |82 |h(n, k)| + W2B*2h(n, k) + 2 B2h* (n, k)?,
(329)

and the power spectrum between both modes is

(W, ) BERE 1, ,m) = [W2[h(n, k) 2(a* B + B*a) + U2h(y, k)a + W*2h* (n, k)’ 8"
(330)

Observe that this result is independent of the theory, and the distinction between theories
appear in the h(n, k) solutions. This results is based on the supposition of an excited quantum
state of the universe, however the mechanism for such excitation is not discussed, then to
formally obtain a power spectrum like this detected in an experiment we must specify the
concrete mechanism for such excitation, and then being able to specify the parameters «, 5, V.
It is possible to perform a similar analysis for different states, but this lays outside the purpose
of this work.
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5. Production of Gravitational Waves: Including tensor
anisotropic effects

5.1. Stochastic derivation of Gravitational Waves

In this section, we will discuss another way of dealing with perturbation that will allow us to
introduce effects of tensor anisotropic stress, like those coming from thermal fluctuations, into
the power spectrum. We will begin by discussing the GR case in a perfect de Sitter background,
we will follow the discussion in [36] and [61] for such endeavour.

Consider the tensor field A to be divided into two different perturbations, a short wavelength
much more smaller than the horizon h., and a long-wavelength part A, such that

The short wavelength mode summarizes all vacuum fluctuations and its physical effects appear
through the phenomenology of the long wavelength perturbation, in this case, it will appear
through the power spectrum. The short wavelength mode represents high momentum modes
of the field £ > H, i.e., wavelength much smaller than the horizon, this is achieved through a
filter or window function , hence, our short wavelength mode is written as

4’k

where the window function is

ho(n, ) = W (n, k) [h(n, k)e™ > a(k, X) + h*(n, k)e” ™ >a' (k, )], (332)

W, k) = 0(k — eH), (333)

and ¢ is a suitable parameter that allows to achieve the purpose of h. to be a short wavelength
contribution.

In the case of GR, the equation of gravitational waves in vacuum for a perfect de Sitter back-
ground is

TV v 0, (334)
7

working in the physical space. By introducing the separation of the field (331) we obtain that
" 2 l 2 " 2 / 2
h>—5h>—V hs =0q, 0g=— h<—ﬁh<—v h< ), (335)

with g called the quantum noise. Let us compute the quantum noise explicitly. Observe that
the only quantities that depend on the conformal time are W (n, k) and h(n, k), hence

oo — [ LK
¢ J/@m)?

+ (@3 — %an + k2) (W (n, k)h*(n, k))e ™ *al(k, A)] : (337)

Kag — %an + k;z) (W (n, k)h(n, k))e™*a(k, \) (336)
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and observe that
2 2 2 " 2 ! AN 2 2 2

but we require h(n, k) to satisfy the GW equation

2
(ag - E&, + k2) h =0, (339)
and then
2 2
(2820, +42) wnonn. ) = (W= 2w ) 2w (340
Thus, defining
2
fr(n) = (W” — EW/> h+ 2W'R, (341)
the quantum noise becomes
dgk ik-x t * —ik-x

0(n,x) = — m

With this obtained, the vacuum expectation value of the quantum noise is

d3k ik-(z1—x *
(01 0 (m, ®1) 00 (12, 22) 0) = / Welk( ) fi(m) £ (o), (343)
or in Fourier space is
(0] 2 (m, k)oq(112: @) |0) = dp(k — ) fis(m) fi: (12). (344)
In Fourier space, the equation (335) becomes
s 2 2
(an — Otk ) hs = 0q(n, k), (345)

which is a inhomogeneous version of the equation studied previously. In order to solve this
equation we will use the method of Green’s function. The idea of Green’s function is that we
have a differential operator £ given by

d2

B ), (316)

L= a(z) o

such that we require to solve the inhomogeneous equation

Ly(x) = f(z), (347)

under certain boundary conditions [62|. Green’s function is then a function G(x; §) that satisfies

LG(x;€) = dp(z — &), (348)
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from where the solution of the inhomogeneous equation reads as

y(z) = / Gl )1 (6). (349)

The condition (348) implies that the Green’s function must satisfy the following continuity
conditions

oG

oG
G0, = GO, 52

v=tt  Ox

_
et~ o)

In our case, we are interested in a retarded Green’s function whose boundary condition reads
as G(x;&) = 0if x < £ In order to construct such Green’s function with the desired boundary
conditions, we propose that the Green’s function is just a Heaviside step function times a linear
combination of the independent solutions of the homogeneous equation Ly; = Ly, = 0 as

(350)

G(x:§) = 0(z — &) [A)y(x) + B(§)y2(8)] = 0(x — §) L(z,§), (351)
such that LL(z,y) = 0. The continuity conditions (350) imply that
e €)= 1
DEQ =0, L(E6= 1o (352)

Hence, we can see explicitly that

LG = a(x)dp(x — §)L(z, &) + 2a(z)op(z — §)L(x,§) + B(x) L(z, £). (353)
Now, in order to see that LG = dp(x — &), we need to show that

/ CGf(x)dr = [(€), (354)

since dp(z — &) only makes sense as a distribution. Using the following property of the Dirac
delta

/5’(m)¢(x)dx = —/5(x)¢’(a:)da:, (355)

such that, using the conditions (352) we observe

/M@%@—Qﬂwffx +/ﬁu (2)ds

= —L(& O (a(x)f(2))ime — L'(§, () () + 2a(¢ )L'(€ £/ (&)
+ B LS, €) () = al§)L'(§,€) f(§) = f(£),

which shows that G(z;€) is indeed the required Green’s function. Applying the boundary
conditions, we can find the coefficients A(£) and B(§) to be

1 Y2 () 1 y1 ()

&) BT @) — @R - 2O T T80 @) — n @) s

A(E) = (356)
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In the case of GW, we have the differential equation for GW

2
(a,% ~20,+ k) G, ) = (1 — ), (357)

we now take advantage of the solutions for the vacuum case where the solutions of the homo-
geneous equation have been obtained (227), however, we first need to perform the change of
variable (224) for h~, which leave us with the following equation

(5’5 - % + k2> 9> = a(n)0oq(n, k), (358)

where 0¢ is the quantum noise computed with the canonically quantized tensor fields. The,
the retarded Green’s function satisfy

2
(@3 T k) G®(n,mi, k) = p(n — my), (859)

and hence, from the previous discussion of Green’s functions and using the solutions of the
vacuum case (227), we obtain the Green’s function to be

O(n—mn; , ,
G, k) = L g [ (1 )1+ i) (360)
mi
and then the solution is simply
n
-0 = [ G K)ol ol W) (361)

such that returning to the original field

hs(n,k) = ﬁ /; G (n, i, k)a(n;) oq (ni, )i (362)
= /zo Gr(n,mi; k)oq (i, k)dn,
where by using that a(n) = —HLM, we can recover
Gl k) = B gy = VL Wty [y — o)1+ ikn)] (363

a(n) n; k3

which is the Green’s function found in [36].
Since the solution for the field is given in terms of the Green’s function

U
h>(n, k) = / Gr(n,mi, k) oq (i, k)dn;, (364)
taking the equal time correlator, we get

2

(e (1, K)hs (1, ) :5D<k+q>' [ antnnsnin] (365)
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where we have used the expectation value of the quantum noise in Fourier space (344). An
integration by parts shows that

K iHp
dn;,Gr(n,m;, k i) = —(1 +ikn), 366
| nGatnm i) = 21 i) (366)
and hence, considering the canonically normalized fields, we have
. A 167G H?
(ho (0. 10h= (1, @) = Po(k) = =21+ Kn?), (367)

the same power spectrum obtained in the previous section. Therefore, this stochastic derivation
is completely analogous to the previously discussed method, however, the introduction of the
Green’s function gives an enormous advantage of being able to introduce effects of possible
tensor anisotropic stress. In the following we will discuss the stochastic derivation in TG with
a general tensor anisotropic stress contribution to later on analyse different sources of this
anisotropic stress.

5.2. Stochastic derivation in Teleparallel Gravity

Now, we will follow the stochastic derivation in TG with a quasi-de Sitter background, but we
will consider also the effects of tensor anisotropic stress into the calculation. Let us consider
the equation for Gw in TG with canonically normalized fields

167Ga?

hi; + 2+ VIHR + K hiy = Tl (368)
and multiply both sides by (—:;\j* and sum over the spatial indices
“: 167Ga? .
(02 + 2+ VHO, + k) Y eXthyy = 7 M, (369)
ij ij
and now, observe that
A A NN N | BN NAZN 7
ij ij JV JV ij )V
therefore, the equation for GW becomes
- 167Ga? . 1
(92 + [2+ VMO, + k?) b (n, k) = [ e = —EQ;}(W, k), (370)

[

07(n, k) is the tensor anisotropic noise.
We now perform the split into short and long wavelength modes (331) from where we obtain
) A 1
(95 + 2+ V1D, + %) 12 (0. k) = &g (n. ) — +-n(m. k). (371)

and then proceed to make the change of variable

WA (n,k) = f(n)g2(n,k) with  f(n) = a(n) =0+, (372)
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the equation becomes

2+ 3e(1 4+~ ! - 1
(o840 = 220 10 = at = (24010 - - bnl) . 7
Observe that in our case, the quantum noise is different from GR as
Ay = — [T Tale VTS0 +alte VAT e 3
Q\'l 27‘[‘ )
with ,
MG (n) = (W” ; S+ e(1+ 7)) W’) hr 2 (375)

Hence, in order to solve (373) we need to compute the retarded Green’s function for TG in
a quasi-de Sitter background. We take advantage of the solutions in vacuum (286) together
with the previous discussion of retarded Green’s function (356) to obtain the retarded Green’s
function in TG given by

3
GRa(n,mi k) = 0(n — mi) \/!77 il T [HED (K[ )HEZ (KInl)] - o= 5 +e(1479), (376)

then the solution of (373) is

A ! 1+ve R A K a(m)”% R A
95(n, k) = dnia(n;) G (0, M, /f)QQ(% k) — dniWGTG(na i k) o (i, k).
(377)
Therefore, returning to the 72 field, we have
IA]A k) = K dn. a(nl) e R L A\ -k
S(n,k) = M G (n,mi, k)05 (i, k) (378)

a(n)
_ ! , 1 a(n;) e v
/—oo dme(m) {a(n)} Gia(n,mi, k)or (i, k).

This the general solution for the GW field in TG in a quasi-de Sitter background with the effects
of tensor anisotropic stress included. Observe that, if fr = —1, then v = 0 and then we have
also obtained the general solution in GR for a quasi-de Sitter background. Now, we proceed to
compute the equal time correlator of this field in order to obtain the power spectrum.

5.3. The contribution to the power spectrum from the anisotropic
stress

5.3.1. General Case

Taking the equal time correlator of the general solution (378) we have
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(W, 8)0% (n.9)) = (379)
1+4ve a 1+ve ,
/77 dm [C;(g’;))} Gia(n,m, k) /17 dn [a(g]z))} ' Gl (1m0, %) (0] 8¢y (., k)6 (n2, @) |0)
L 1 [am)]'™ g L 1 a(m)]™ g
wf an Fr(m) [ a(n) ] GHatnm. k) [ dn Frlm) [ a(n) ] Craln . b)

(0 (1, K)oy (112,9) 0) .
and we recall the form of the autocorrelator of the quantum noise (344)
(0] &gy (m, k) gy (12, q) [0) = 327G (k + @)™ fi7 (m) ' (m2), (380)

where the factor 327G is due to the canonical normalization. Therefore, taking into account
that there are two polarization states, the equal time correlator is

[ ] " et Ao

(1K) (n.9)) = 64xGn(k +a) | | (381)
" 1 a(n) e R ! 1 a(n2) e R

* /_oo ) [ a(n) } Cra (1. F) /_w e o) [ a(n) } Cra (.. k)

> (0] &3 (m. k) (n2, ) |0) .

A

By construction, the first term is just the power spectrum from vacuum fluctuation '

2

K a(m)}me R TG 2m|nl o 1 2
dn; [ Gra(n,mi, k )| = ;2 @ () HL) klnI%,

[ o |ais]  Ghemmiom) =T D (k)|

—0o0

Ph(n, k?) = 647G

(382)

which has been previously computed, whereas we define the second term as

sotk— Pk = [ an [ gy [ [ g

(383)

> (0] o) (m. K)oy (12, q) 10)

as the contribution from tensor anisotropic stress to the power spectrum, such that the total
power spectrum is simply

For the sake of completeness, we now proceed to discuss the contribution Pr(n, k) from different
sources.

11 This might not be clear at first sight, however a direct calculation shows this result explicitly taking into
account that |n| < |n.| with 7, the time where the mode k re-enters the horizon.
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5.3.2. From Thermal Fluctuations

From equation (381), we observe that the tensor anisotropic stress contribution only affects
the power spectrum of the long wavelength tensor field. In this case, we will consider non-
zero values of the tensor anisotropic stress coming from thermal fluctuations. Hence, the use
of hydrodynamics as a long wavelength description of fluids is required |63]. The energy-
momentum tensor for a fluid in perfect equilibrium (thermal, chemical and mechanical) is just
the energy-momentum tensor of a perfect fluid [63].

T = (p+ P)a"u” — Pg", (385)

with p + P = T5 + pgnp the local enthalpy density. We will consider that the temperature
and four velocities are not constant but vary slowly, thus non-equilibrium correction 67" and
occasional long-wavelength thermal fluctuations must be considered [64]

THY — 7‘~uu L 6T™ + g (386)
— Tuu . m@pmuoww —x (9/17“1/ 4 gwuu) Q~, _ Cguvuzy + S‘“’,

where we have defined the shear tensor W,5 and the heat-flow vector @, as [65]

%gwu:ﬁ/, Qo =T4+ Tua;ﬁuﬁ, (387)
with 7, the shear viscosity, ¢ the bulk viscosity and x the heat conduction. The background
term TH” contains the average values of the temperature and four velocity (T = T, v; = 0) with
du; = av;, the non-equilibrium correction 07 the first order correction (T' = 0,v; = dv;), and
S* local thermal fluctuations. The non-equilibrium correction have no projection onto tensor
modes [36], only the local thermal fluctuations will contribute to the tensor anisotropic stress.
It was found that [63]|66] the correlator for the local thermal fluctuations is |36][64]

Wap = Uap + Uga —

(S9(X)S™(Y)) = 2T {m (BimOjn + Oindjm) + (g - 2’7“) 0i;0m } op(X — V) (388)

Vel
where the convention of raising and lowering spatial indices with the Kronecker delta has been
used. Hence, identifying the tensor anisotropic stress with the thermal fluctuations, we have

> (0] 03 (n1, k) or (12, @) [0) = (167G)*a* Y " elens, (S (m, K)S™ (m2,@))  (389)
A

= (167G)*a 4Hz’j,mn (SY(m,k)S™ (n2,9)) ,
where I1;; ., is the sum over helicities [23][29] given by
szmn(l%) = Oim0jn + Oindjm — 0ij0mn + 5ij/%mffn + 5mni€iffj - 5imf€jffn - 5jnffif€m - 5ml;’j/%m - 5jmf€i
+ kikjkm ke | (390)

and k; = k; /k the normalized wave vector. Therefore, considering that 0;,0;, = d; = 3, it is
straightforward to see that

8Tn,0p(k — q)dp(m — n2)
a4

ILij mn (SY (m, k) S™ (n2,)) = , (391)
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from where we have

n 1 1+ye n 1 1+4e
/ dn {a(m)} G”]g(}(naﬁhk)/ dny {a(ng)] G%“%G(nan%k)

o fr(m) Laln) o 2 fr(no) | a(n)
) ) _ /[ L [am)]™™ on " 1 Ja(m) ]
;<0\@T(m,k)w(m,q)|0) _/_oodme(m) la(n)} Gra(n,m, k) /_OO dnsz(m) {a(n)}

T k — _
G?G(UanQ,k)(lﬁﬂG)Qa‘*g m.0p(k —a)dp(n — )

= op(k —q)64 G/_mdm?ﬂ G(fT(m){a(n)} GTG(n,m,k)> T(n:i)n. (i),

and thus the thermal contribution to the power spectrum in TG is

1 {a(m)

} %G%G(n,m,k)) Tom(n).  (392)

Pr(n, k) = 647G /_ N dn;32m G (fT(m) a(n)

Then the dimensionless power spectrum is

4 3 n
B3y = o | dm327rG<

2

} EG?a(njm,k)) T (i) (). (393)

272

[a(m)

fr(ni) L a(n)

Observe that there is a lot of physics to be yet discussed. To be more specific, the value of
the shear viscosity has to be studied in the context of TG, since in the case of GR this value
depends on the damping coefficient of a heat bath in thermal equilibrium with the inflaton field
[36][67]. Such effects has not yet been studied in the context of TG, so a more exact prediction
of the power spectrum will depend on physics of inflation in TG and the possibility to generate
such thermal fluctuations. However, if such thermal effects can be fully studied in TG, equation
(393) will account its contribution to the power spectrum of primordial GW.

5.3.3. From cosmological phase transitions

Another possible source of GW is a first order phase transition of the relativistic matter in
the early universe [68]. Formally speaking, a first order phase transition is a discontinuity on
a phase boundary, loci of separate regions of analyticity, on the partial derivatives of the bulk
free energy per unit volume w.r.t the axes of the phase diagram [69]. Roughly speaking, it is
an abrupt change of a thermodynamic variable when a parameter of control is changed, like in
the liquid-gas transition of water when temperature is increased. If a first order phase transi-
tion occurred in the early universe, the mechanism is through bubble nucleation that generates
inhomogeneities and turbulence in the cosmic plasma sourcing the background of GW [70]. Let
us discuss the generation of GW in TG from a general phase transition with an associated
anisotropic stress, which is generated by colliding bubbles and turbulence in the cosmic plasma
[71].

Consider a tensor anisotropic stress split into two uncorrelated helicity modes

mii(n, k) = €7 (0, k) + €57 (1, k), (394)
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such that
(me(n, k)i (', q)) = (mu (n, k)7 (1, Q)) = (27)°p(k — Q)p% Pr(n, 7, k), (395)
(m(n, k)7 (1',q)) = 0. (396)

Thus, the contribution to the power spectrum is

1{@

Pr(n, k) =(647G)*x° / ' dm—— } a*(m)px (m)Gig(n,m, k) (397)

o Sr(m) [a(n)
! 1 a(n2) e 2 R
[ [ G (e ) P ).

There exist different possibilities of the unequal time correlator of the the anisotropic stress
P.(n1,m9, k), for instance, in the case of turbulence, it is possible to have a totally coherent
source such that

Pﬂ'(n].anZ;k) = \/Pﬂ(nb/r/l?k)Pﬂ'(nQvTh?k)? (398)

it is also possible to have a source with finite coherence time with

Pn(m,m,k) = \/Pw(nlﬂh,k?)Pw(U2ﬂ727k)0($c - |77| - 772|]€), e~ 1, (399)

or even a totally incoherent source

Pﬂ'<7]177727 k) = P7r<772; M2, k)Aﬁ*5(T}1 - 772)7 (400)

with An, the time duration of the phase transition at 7" = T,. It is also possible to determine
the unequal correlator in the case of bubble collision in terms of the bubble nucleation rate
and the number of bubbles |72]. The details of these cases lie beyond the scope of this work.
Among all the possibilities, a phase transition due to electroweak symmetry breaking is a highly
possible source of a first order phase transition, hence, the search for such symmetry breaking
and its contributions to the physics of the early universe in the context of TG has to be studied,
since in GR it appears as a peak on the spectrum of GW, in TG we should analyse in detail the
peak due to this symmetry breaking in order to distinguish both models phenomenologically.
In the context of a totally incoherent source, we have

Pr = (647G)2An, / OO (wﬁ [%] %aQ(m)px(m)G%(n,m,k)Pw(m,m,k)> |

(401)
this will let us to easily discuss in the conclusion section the principal differences with the
vacuum and thermal fluctuation contributions.

5.3.4. From magnetic fields

For this case, we will follow the discussion found in ref. [73]. Similar to turbulence and bubble
nucleation, primordial magnetic fields can be generated from phase transitions and even from
second order phase transitions. The idea is to define a correlation of the magnetic field over a
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certain scale. The most general way to achieve that is by introducing the following correlator
of the divergenceless magnetic field

(Bi(k)Bj(a)) = (2m)*0p(k — q) Pr(k), (402)
with
Cgk?, 0< k<Lt
Pg(k) =< CpLo2k>, L' <k <\t (403)
0, otherwise,

with e < —3, L the correlation scale, A the dissipation scale and C'g an undetermined constant.
The idea is that once the magnetic field is generated, it is dissipated slowly unlike turbulence.
The correlation scale is time dependent as

L(n) = L. <nﬁ)7 (404)

with 0 < v < 1, L, is the correlation length at n, when the magnetic field is created. The
dissipation scale also depends on time, however the exact form is irrelevant for the calculation.
Now, similar to the Loitsyansky’s integral that measures the angular momentum of the fluid
and is a constant in time, the following conserved quantity is imposed

(B*) L” = constant, (405)

which is equivalent to Cg being constant [74|. Then, the comoving magnetic energy is given by

(B2) () = (B2) (n.) (Z}) . (406)

Finally, the correlator of the comoving anisotropic stress for magnetic fields is the one of a
coherent source [75]

(735 (M, K) T (112, @ \/7TB (11, K \/7TB (12, k)0p(k — a@)ILijmn, (407)
with
AL 0<k<L!
g~ Cu{ AZLTke, L7l <k< A7t (408)
0, otherwise,
and A? = 7(220; +43), A2 = 5(ng3) Therefore, we obtain
> (0] 03 (m, k)07 (112, @) [0) = 8a=*(167G)* /7 (m1, k) /7 (ma, k)op (k — @), (409)

A

and then the contribution to the power spectrum is

2

T a” () [a(m)] -
/OO di; fr(n:) [a(n)] G (n,mi, k) v/ 7p(ni, k)| (410)

Therefore, we can explore a pletora of possible sources of anisotropic stress in the study of
primordial GW in TG with the provided solution, as we have seen through the last examples.

Pr(n, k) =(647G)(327G)
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6. Conclusion

The results found in this work have several implications. Let us begin by considering the vac-
uum fluctuations in a perfect de Sitter background. In this case we have that the propagation
equations in GR and TG are exactly the same and then their associated GW fields are the
same. This has the implication of having the same scale-invariant power spectrum (235) which
means that if the primordial GW background is directly measured with an almost zero scale
dependence, both GR and TG survive as a possible theory to describe such phenomenology.
If the background is a quasi de Sitter expansion driven by the first slow roll parameter, the
propagation equations for both theories are different which has a direct observational implica-
tion on the tensor spectral indices. In the case of GR the tensor spectral index is np = —2¢
whereas in TG is np = —2¢(1++) with v given by (275). The slow roll parameter is considered
to be small, this implies that in GR the tensor spectral index should be small, however, the ~
parameter appearing in the TG case allows for a high value of the tensor index. This implies
that, although a value near to zero of the tensor spectral index will not discard TG as a possible
gravitational theory, a high value of the tensor spectral index will strongly suggest the need of
an extensions of gravity, with TG being a potential explanation of such value as we can see
from the results of this thesis. Notice that in order to perform these observations, we need a
direct measurement of the tensor spectral index and not an inferred value from the tensor-to
scalar-ratio as done nowadays.

When tensor anisotropic stress is included, we have found the most general solution for GW in
TG, which serves a cornerstone for the TG community since this will allow for future studies of
primordial GW with any desired tensor anisotropic stress. From this solution, the associated
power spectrum from such anisotropies was obtained in (384), however, it is not possible to
easily obtain physics from that result but we can take the ¢ — 0 to see the physics behind
the solution, since, even if in the vacuum case GR and TG are indistinguishable, when tensor
anisotropies are present it is not the case. In this limit, the Green’s function of TG found in
(376) recovers that of GR [67]

a\n; 9 7 4 —_n; . .
(n )GR(n,m, k)= (772—1;)1 [ kn "’)(1 —ikn)(1+ zkm)] = Gr(n,mi, k), (411)

and then the power spectrum becomes

1 n
op(k — q)Pr(n, k) 2—2/ dniGo(n,mi, k) > (0] 03 (ni, k) oy (mi, @) 10) = —5D(k q)PF(n, k),

7] - 7
(412)
where we can identify the contribution in GR as
"
dp(k —q) P (n, k) = / dniG(n,mi, k) > (0] 03 (mi, k) o3 (i, @) [0) - (413)
N /\

This is an import result on the cosmological phenomenology of TG. This result tells us that
the peaks of the power spectrum coming from tensor anisotropies in TG are suppressed, with
a suppression factor given by 1/f2 where the cosmological extended models in TG satisfy
fr < —1, compared with the same peaks in GR. We discussed some of these peaks in the thesis
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and their features are well known in GR, hence, if a measurement of the power spectrum of GW
and the peaks due to tensor anisotropies are obtained and they turn out to be suppressed with
respect to the amplitude expected in GR the need of extensions of gravity will be manifest and
TG extended models provide an explanation for this suppression and would pose as the possible
successful gravitational theory. If the peaks are amplified, TG is also an explanation for that
but we need to look for new cosmological viable models in TG that satisfying —1 < fr < 0
compared to those studied in the literature and discussed in subsection 4.3. Finally, working
with the same ¢ — 0 limit, the energy density of GW that was found in (309), and as we
have discussed, the cosmological viable extended models in TG, at least the ones discussed in
subsection 4.3, are in the form fr = —1 + Fr with Fr < 0, from where it is possible to notice

that
1 k2A%(n, k) 1 k2A2(n, k)
Qn. k)= ———n 0 g~ 2 Th D =) 0O 414
(n, k) 12a2(n)H2(n) T 12a2(n)H2(n) GR T 3irr (414)

from where we have defined the energy density of GR and from the extensions as

1 kK2A%(n, k) 1 kK2A%(n, k)
T 12a2(mH(n) T "12a2(n)H?(n)’ (415)

and since Fr < 0, we have that
Qn, k) = Qar + Qpp > Qer - (416)

The latter inequality tells us the the amount of energy density of GW that we can expect from
TG extended models is greater than that of GR providing another important prediction for
extended models of TG.

Therefore, we found that Teleparallel Gravity in its TEGR formulation has the same strength
and shortcoming as GR, hence, has the same accuracy in explaining the current data as GR.
For extended models, it has been shown that those models are capable of solving some of the
issues of GR about the late universe. However, few studies have been done in the context of
the early universe, that is why the focus of this thesis is to explore the primordial universe. In
the latter context, we have found so far important observational prediction of the primordial
background of GW in TG and we have discussed how a direct measurement of such background
can help us to see if TG is a better gravitational theory than GR in explaining the phenomena
of the early universe, particularly, by looking into the power spectrum and the energy density.
Finally, these results open the TG community to explore the early universe using GW in the
light of future GW detectors, like LISA or the Einstein Telescope and providing the general
solution of such waves.


https://lisa.nasa.gov/
https://www.et-gw.eu
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A. Spin connection and inertial effects

When discussing the geometrical setup of TG, we introduced a geometrical object called the spin
connection, which is a differential 1-form assuming values on the Lie Algebra of the Lorentz
Group. The idea of introducing such connection is to construct a theory which is covariant
under the translation group and locally invariant under Lorentz. Let us begin by considering
an infinitesimal transformation of coordinates

2t — =2 A, (417)
from where a scalar field ¢ transforms as
o(z") — (o) = p(a” — ), (418)
and the infinitesimal difference is
06 = ¢(a") — p(a") = "0ag. (419)

However, we should expect a similar transformation for any Lorentz scalar field, particularly
for the partial derivative d,¢, but this is not the case, since the infinitesimal difference is given
by

5(0,0) = €040, + (040)(D,e™). (420)
This justifies the introduction of a translational potential
B, = B;}P4, (421)

which is a 1-form assuming values on the Lie algebra of the translation group, such that its
infinitesimal difference is

0B;} = —0,€”, (422)
and the derivative is changed by
O — €y = 0, + B;l0a. (423)
This new derivative transform covariantly w.r.t to translational change of coordinates
5(eud) = €*0ae 0. (424)
The presence of this covariant derivative defines a non-trivial tetrad field given by

_ A A _ g A A
ep,=¢€,0a — €,=0a"+B,

(425)

where B“L # 0,e accounts for the non-triviality of the tetrad.

Now, we require the theory to be invariant under local Lorentz transformations, hence, we
perform a local Lorentz transformation on the Minkowski coordinates and consequently also on
the tetrad field

at — ALB, eﬁ = A’%ef, (426)
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however, from eq. (425) we see that this transformation implies
Apel, = 9, (Apa®) + AMBY (427)
from where isolating the tetrad field we obtain
eAM =, + Bﬁ + w"}guxB, (428)
from where
wAB,LL = AADa#ADB7 (429)

is the purely inertial spin connection introduced previously. This is a very particular spin
connection, to see exactly what type of connection it is consider the general transformation of
the spin connection w.r.t to a Lorentz transformation [15]

W' (@) = Mo(@)wD, (@) AR (@) + Ay (2)9,A 5 (), (430)

hence, the purely inertial spin connection corresponds to a zero spin connection in a general in-
ertial frame, thus the spin connection represents all the inertial effects on the arbitrary Lorentz
frame. The Weitzenbock gauge corresponds to working in the particular Lorentz frame A = 0.
The presence of the spin connection causes TG to be completely equivalent to GR even in
the presence of spinor field, in the sense that any particle, spinless or not, follows the same
trajectories as in GR [76][77]. In the absence of the spin connection, GR and TG are only
equivalent for spinless particles. Hence, the spin connection and the formulation of TG allows
us to successfully include spinors to a gravitational theory.

The presence of the spin connection not only affects the trajectories of test particles but also
the field equations themselves. When computing the field equations, we fixed the spin con-
nection to zero and made variations of the action w.r.t the tetrad field, but, if we consider
a non-zero purely inertial spin connection we need to also perform variations of the action
w.r.t the spin connection. Performing variations w.r.t to the purely inertial spin connection,
parametrised by the Lorentz transformation A does not impose any new field equations [17],
since such variation is a surface term on the action. Hence, whether or not a purely spin con-
nection is explicitly included in TEGR is a matter of preference in the context of field equations.

If we go beyond TEGR and work with extended models, f(T') or f(T, B) gravity in our case, the
presence of the spin connection a total different story. When performing variation of the action
w.r.t the spin connection it will not act as a surface term inside the action but reduces to the
antisymmetric part of the field equations [78][79]. However, the antisymmetric part of the field
equations do not provide new dynamics but rather a constriction of the spin connection, hence,
if we manage to find a spin connection that makes the antisymmetric part of field equations
to vanish we are only left with equations coming from variations w.r.t to the tetrad. When
the this issue first arose our understanding of the problem was to try to find a pair tetrad-spin
connection that make the antisymmetric part of the field equation zero, leaving an entire dis-
cussion of good and bad tetrads when the spin connection was chosen in Weitzenbock gauge
[80]. Nowadays the discussion is quite different, the choose of a vanishing or non-vanishing
spin connection is up to preference since both symmetric and antisymmetric parts of field equa-
tions need to be solved simultaneously even if the background symmetry is displayed for both
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the tetrad and spin connection field. For instance, in the case of spherical symmetry, even if
we choose a tetrad and a non-vanishing spin connection that exhibit spherical symmetry, we
will always have two non-vanishing antisymmetric part of the field equations [11]. The case
of cosmological symmetry implies a general result, which states that any rank-2 tensor with
cosmological symmetry, generated by the vector fields generator of translations or rotations,
vanishes, particularly the antisymmetric part of the field equations. Then, independently of the
theory, the antisymmetric part of the field equations of a theory with cosmological symmetry
will vanish, hence, we can always work with the Weitzenbock gauge and only focus to solve
the symmetric part of the field equations when working in a background with cosmological
symmetry.

If we break the cosmological symmetry, as in the case of linear perturbation theory, we only
need to perturb the tetrad field and keep the spin connection as in the background scenario
since we still want to include inertial effects through the spin connection. Nevertheless, we will
require to solve both the symmetric and antisymmetric part of the field equation, since they
will not vanish due to the breaking of the cosmological symmetry. In the case of a transverse
and traceless tensor perturbation, shown in eq. (200), the antisymmetric part of the perturbed
field equation vanishes due to the symmetry of h;;, however, the same result does not hold for
scalar perturbations, as we show in the next section.
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B. Gauge problem on Teleparallel Gravity

In this appendix we will discuss the gauge problem in the context of TG. We will follow a
similar discussion as in the GR case. Let us consider an infinitesimal change of the background
coordinates

Tt =x+¢, (431)

such that the tetrad fields will transform as

O
_ 0x A
oxr °

e (x) (@) = (6] + 0,87) (&, () + £*0ué’y () , (432)

from where

e’y (x) = &, (x) + 0.8, (2) + (0,£7) &, (), (433)

”w

where we have already considered only first order contributions. Now, we will consider the
most general tetrad already in the SVT decomposition [30][81]

eAu = éAH + 56’4“, (434)

with the background tetrad éAM given by eq. (74) and the perturbed tetrad is

A _ (0 Ow + w;
66 me (1(77) (8,w + Wi _¢5ij + 8<18J>h + e,-jk(ﬁko + O'k) + &Ej + %hw‘,) (435)
with
1
DuOjh = (aiaj — g(sijw) h, (436)

and from where the metric perturbation is

_ _ 2 2¢ Oi(w — w) +w; — w;
59“” - 27-('“1/) - (77) (81(@0 — W) -+ Ww; — W —2 [—Qﬁ(gij + 8<18]>h + 8(2E]) + %hw} (437)

which is the same perturbation as in eq. (101) in the SVT decomposition [31]. From this,
considering the SVT transformation of the gauge field (122) the gauge transformation of the
perturbed quantities is

Y=y —Ha—d, wob=w-—a, W=w, w-o0=w-—/F, (438)
- 1 -
Wi = 0 = w; — €, ¢%¢=¢+Ha+§v25, h—h=h-8, (439)

Ej—>Ej:Ej—€j, ilij:hijy o= o, 5’k20' . (440)

B

Observe that these transformations are the same as in the GR case. Fro, these transformations,
we obtain the same Bardeen potentials as in the GR case

‘I’=w+2[(w—w—h’)a]’, q)zqﬁ—?{(w—w—h’)Jr%VQh, (441)
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the same vector potential

and the tensor perturbation are also gauge invariant. Once the gauge invariant potentials have
been introduced in TG, we are able to choose a particular gauge to work the scalar and vector
perturbations.

In the case of scalar perturbations, we can work with the Newtonian gauge such that w = w and
h = 0, and then, we obtain the components of the perturbed Einstein tensor in f(7') gravity
for scalar perturbations given by

0
% = —a [V — 1207 H? frp V2 + 307 H(fr — 1207 °H? frr) (¢ + Ho) , (443)
0
Mz;i = —a ' (fr — 12072 froH?) (00 + HO9) + 4FrrHa 0, V¢ (444)
536 = a”? fr [0, + HY)] — 12" frrH [a”"H] D1, (445)
5G (i=9)
]2 =a2fr {gzﬁ(Za(al”H)/ + 3H?) + %(V2 — 3?)(@1) — )+ HP + 3HY + a(ali//)’}
(446)
+a frr [—o(36H* + 60a(a™"H)H?) — 12H¢' — 36H (ala™'H)' + H?)' — 12aH*(a"')
—10a(a™"H)'V?¢ — AH*V?( + 6a(a”"H)' 03¢ — AHV>(] (447)

+12a7° frerH2 (a7 H) [12H (Y + Ho) — 4V3(],

Loy (“’7’ ) —afy [qs@a(a-lm' FIHY) 4 1926 - 0) + Hof M a(a-w)’} (118)

+ frra”* [—¢(36H* + 60a(a™ " H)H?) — 12H*¢' — 36H (a(a™'H)" + H*)¢' — 12aH?*(a" "Y'
—(8a(a™"H) + 4H*)V2C — AHVA] + 12a7° frop(a ™ H) H? [12H (Y + Ho) — 4V3(],
5QG (i79) ,
——=a? [12 FrrHO.0;C + fr0:0;(1 — ¢>)} , (449)

where we have defined the parameter ( = Hw. To obtain the perturbed field equations, we just
need to match these perturbations with perturbation of the energy-momentum tensor, which
result in the same equations reported in ref. [82].

In the case of f(T, B) gravity, we have the following perturbed Einstein tensor for scalar per-
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turbations
1 B V2 3SHSf5  6H2S 2H /
5G0, = —5 /70T + (5 - —2) Sfp + anB - anT + GQfTW ol S (12H fr — 3f%)
(450)
M ompr 1),
8GO, = ? [’H&(Sé fB+20fr) = 2fr0i(Ho + ') + 0i(fpp — 0fp)] (451)
(5Gi0 = % [—HO:0fp + 2fr0;(Ho + wl) + ai(_le¢ + Q(fj’g + fé’)aﬂﬂ + 5f/B)] ,
(452)
6617 = 00Lﬁ@)<@—w0é+ﬁ0+dhk (453)

1 i (i=7) B 2 fT / " 2 / 1 /
31 [6G i } = —§fT5T +0fp (5 - @VQ - (H'+2H?) + —25fB - SHOfr — My

(454)
1 ) N2, . . " 2V3w , ,
+ ] fi l4CH*+H) + gv +2H(fg+2fr) —2fg| &+ 22 BfrH + fr+ fp)
2 / Y ! "
2Py v Gompr — o)+ 2 M+ )+ 2
with
Ofr = frdT + frpdB, 0fp = fproT + fppob, (455)
and the perturbation of the boundary term and torsion scalar are
2 4
B = = [60(2H? + H') + 2HV?w + 3HY + 15HY + V(¢ — 2¢)], 0T = a—? (3H¢ + Vw4 3¢)
(456)

respectively. These equations are completely equivalent to those found in ref. [30]. We can
see that the antisymmetric part of the field equations odes not vanish as in the tensor case,
hence, both the symmetric and antisymmetric parts need to be solved simultaneously. We
will not discuss the case of vector perturbation, however, it is worth mentioning that vector
perturbations require the same stability condition fr < 0 as in the case of GW, and is a similar
result in the case of f(R) where the vector perturbation are not propagating [30].
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