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Introduction

Teleparallel gravity is a gauge theory of translations locally invariant under the Lorentz group
where the gravitational �eld is a manifestation of the non-trivial geometry given by the torsion
and not the curvature. In Sec. 1 we revisit the foundations of general relativity and teleparallel
gravity from a geometric point of view, we study the teleparallel equivalent to general relativity
formulation and why we need to look for cosmological viable models in teleparallel gravity. In
this latter idea, we explore the �eld equations of f(T,B) and f(T ) gravity.

In Sec. 2 we explore the so called cosmological principle and the associated FLRW geometry in
order to explore the Friedman equation in both general relativity and teleparallel gravity. We
also recall the basics of in�ationary cosmology in the slow roll approximation, brie�y discussing
how it solves some of the issues of the standard cosmology scenario, the presence of the scalar
�eld as the responsible mechanism of in�ation and �nally introduce the slow roll parameters.

In Sec. 3 we study the basics of linear perturbation theory. We begin by focusing in the cosmo-
logical case in general relativity by writing the most general metric and identify background and
perturbed quantities in order to fully decompose the perturbed quantities into scalar, vector
and tensor perturbations using the SVT decomposition. We brie�y discuss the gauge problem,
obtain the gauge transformations of the perturbations in general relativity and construct the
gauge-invariant potentials associated to each type of perturbation. Finally, we discuss linear
perturbation theory in teleparallel gravity, focusing only in the tensor perturbation case, show-
ing the relation between the perturbation in teleparallel gravity and general relativity and at
last obtaining the �eld equations associated to the tensor perturbations, which are the equation
we will use to study the production of primordial gravitational waves in the next sections.

In Sec. 4 we explore the production of gravitational waves from vacuum �uctuations. Vacuum
�uctuations are understood as �uctuations of the scalar �eld responsible for in�ation, and such
scalar �eld perturbations do not produce tensor anisotropic stress. Since the �uctuations are in
the in�aton �eld, we consider two backgrounds compatible with an exponentially accelerated
expansion as that required by in�ation, namely, a de Sitter and quasi de Sitter expansions.
We proceed to study the gravitational waves generated both general relativity and teleparallel
gravity from these �uctuation within both backgrounds. We found that there is not di�erences
in the de Sitter background case in comparison to general relativity and really strong di�erences
in the value of the tensor spectral index on both theories. We also discuss the density energy
spectrum of such waves in the context of both theories and �nally, brie�y discuss what are the
implications on the power spectrum if we consider any other quantum state for the universe
di�erent from the vacuum one.

In Sec. 5 we explore the power spectrum of primordial gravitational waves, but this time we also
include any possible source of tensor anisotropic stress. We use the method of Green's function
to obtain the most general solution of the gravitational waves equation in teleparallel gravity
with tensor anisotropic stress. We compute the most general contribution to the peaks of the
power spectrum coming from the anisotropic stress and brie�y discuss some particular cases,
namely, local thermal �uctuations, �rst order cosmological phase transitions and primordial
magnetic �elds, which are well known sources of tensor anisotropic stress in general relativity.
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In Sec. 6 we present the conclusions of this thesis. We discuss the main observational predic-
tions of teleparallel gravity compared to those of general relativity. We discuss how teleparallel
gravity extended models allow for a high value of the tensor spectral index whereas general
relativity only a small value. We also analyse the observational implications on the peaks of
the power spectrum in the ϵ → 0, limit which allows us to directly compare the peaks on
teleparallel gravity with those of general relativity. We also discuss the di�erence between the
energy density of gravitational waves in teleparallel gravity and general relativity.

Finally, in appendix A with discuss about the spin connection in teleparallel gravity and in
appendix B the gauge problem of the cosmological linear perturbation in teleparallel gravity.
Such topics are closely related with the topic of the thesis, they are not needed to read the
thesis and understand the results but are worth reading as supplementary information about
the subtleties of the topics on this thesis.
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1. Theoretical Foundations

1.1. General Relativity

1.1.1. Geometrical setup

General Relativity (GR) is the most successful theory of gravity nowadays [1]. GR describes
the spacetime structure as di�erentiable 4-dimensional manifold M with a symmetric non-
degenerate bilinear form gx : TxM × TxM → R in each tangent space of the manifold such
that, ∀x ∈ M it satis�es

gx : TxM× TxM → R (1)

(vx, wx) 7→ gx(vx, wx) = gµν(x)v
µ
xw

ν
x,

where the positive-de�nite conditions is not required, .i.e, the metric tensor is a Lorentz metric
[2]. The manifold is also endowed with a linear connection ∇ which is compatible with the
metric ∇g = 0 and symmetric ∇[µ∇ν]f = 0, ∀f : M → R such that [3]

∇ : X (M)×X (M) → X (M) (2)

(V,W ) 7→ ∇VW, (3)

where X (M) is the space of vector �elds onM, such that, ifX, Y, Z ∈ X (M) then ∀f : M → R
and a ∈ R, ∇ satis�es:

1. ∇X(aY + Z) = a∇XY +∇XZ,

2. ∇X(fY ) = f∇XY + (X[f ])Y ,

3. ∇fX+aYZ = f∇XZ + a∇YZ.

∇VW is called the covariant derivative of W w.r.t V [3].
The symmetric condition along with the metric compatibility condition over the linear connec-
tion de�ne a unique form of the connection coe�cients ∇µeν = Γρ

νµeρ, the so called Christo�el

Symbols

Γλ
αν =

1

2
gλµ (gµα,ν + gνµ,α − gαν,µ) . (4)

The connection associated with the Christo�el Symbols is called the Levi-Civita connection[4].

In this geometrical setup, six axioms are imposed on the theory. To be more speci�c, any
point-like test particle follow a trajectory de�ned by the geodesic equations, which is a geomet-
rical form of the Weak Equivalence Principle. The existence of Riemann normal coordinates

guarantees that locally, the laws of physics are those of the Special Relativity, which is the
Einstein Equivalence Principle.

The four �nal axioms are related to the �eld equations that govern the physics in this geomet-
rical setup and the source of the gravitational �eld. The principle of general covariance states
that the metric tensor gµν is the unique fundamental mathematical object to appear in the �eld
equations and, in general, all laws of physics. The other axioms states that the �eld equations
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must be of second order, linear on the second derivatives of the metric tensor, and that the
matter, modelled by its energy-momentum tensor, is source for gravitational interaction. These
conditions are achieve by the Einstein Field equations which are going to be discussed in the
following.

1.1.2. Field equations

The standard way of deducing the Einstein Field Equations is through a variational principle
(See Appendix B of [5] for a brief discussion on the topic) which consists of varying and mini-
mizing an action w.r.t the dynamical object of the theory. In the case of GR, the action is the
Einstein-Hilbert action plus a matter action minimally coupled to gravity, and the variation is
w.r.t. the metric tensor.

The Einstein-Hilbert action is given by

SEH [gµν ] =
1

2k

∫
R
√
−gd4x, (5)

with R the Ricci scalar, g the determinant of the metric and κ = 8πG. On the other hand, the
matter action is given by

Smatt =

∫
LM

√
−gd4x with Tµν = − 2√

−g
∂(LM

√
−g)

∂gµν
. (6)

Hence, the action of GR is given by

S[gµν ,ψψψ] =
1

2κ

∫
R
√
−gd4x+ Smatt[gµν ,ψψψ], (7)

such that, by varying w.r.t gµν and minimizing we get

0 = δS =

∫ (
1

2κ

[
Rµν

√
−g − 1

2
gµνR

√
−g
]
+
∂(LM

√
−g)

∂gµν

)
δgµνd4x, (8)

which lead us to the Einstein-Field equations

Rµν −
1

2
gµνR = 8πGTµν . (9)

The deduction of the Einstein Field Equations (9) seems to be highly dependent on the Einstein-
Hilbert action. However, this is not the case, since there exists a more general result obtained
by Lovelock [6][7], which states that the most general rank 2 tensor Aµν which is concomitant
of the metric tensor gµν and its �rst two derivatives, divergence free, symmetric and linear in
the second derivatives of gµν in 4 dimensions is

Aµν = aGµν + bgµν , (10)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor. Hence, the only possible second-order Euler-

Lagrange equations in 4 dimensions coming from a scalar density L = L(gµν) are the Einstein
Field Equations with a possible cosmological constant, provided one does not add extra �elds
or vary the number of dimensions [1]. Thus, in order to obtain �eld equations which are not the
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Einstein Field Equations, relaxing the previous conditions are necessary, namely, allow more
fundamental �elds besides the metric tensor, accept derivatives of the metric tensor with order
greater than 2, work on a manifolds with dimension di�erent from 4, etc.

Several models of modi�ed and extended gravity rely on relaxing these conditions. In this
work we will explore the so called Teleparallel Gravity and a brief introduction on the topic is
presented in the next subsection.

1.2. Teleparallel Gravity

Teleparallel Gravity (TG) is one of the possibilities to solve some of the observational issues
present in GR. The fundamental concept of TG is not the curvature of spacetime, as in GR,
but rather the curvature of spacetime's torsion. The mathematical foundation is a vector �ber
bundle where the tangent vector spaces are identi�ed with the Minkowski space, compared
to the coordinate spaces of GR. In this sense, the dynamical �elds are the tetrad �elds and
spin connection, compared to the metric and linear connection in GR. The success of TG
consist of being a possible solution of the Dark Energy problem through extended models of
the Teleparallel Equivalent to General Relativity, see [8]. Let us dive into the details of this
theory.

1.2.1. Geometrical setup and gauge theory

TG has quite a di�erent geometrical setup than GR, as mentioned previously. In TG we work
on a 4-dimensional vector bundle (cf. refs [9][10]) ξ = (M, E, π) with M the space-time mani-
fold, E = R1,3 the Minkowski space-time and π : E → M a smooth map such that Ep = π−1(p)
is a vector space isomorphic to E.

Analogous to GR, we have two geometrical objects that play important roles on the theory
[11].The �rst one is the tetrad e ∈ Ω1(M,R1,3), i.e., a set of di�erential 1-forms on M assum-
ing values on the Minkowski space.

Upon the introduction of local coordinates, the tetrad �elds e = {eA}3A=0 read as eA = eAµdx
µ.

The tetrad �elds and their dual vectors eA = eAµdx
µ and EA = E µ

A ∂µ constitute non-coordinate
basis of 1 Γ(T ∗U) and Γ(TU) at each local coordinate system U ⊂ M, respectively [12][13],
and satisfy orthonormality conditions

eAµE
ν

A = δνµ and eAµE
µ

B = δBA , (11)

i.e., E µ
A = (eAµ)

−1.

Since eAµ is a 1-form on M assuming values on R1,3, under di�eomorphism over M and local
Lorentz transformation ΛA

B(x) ∈ SO+(1, 3), the components of the tetrad �elds transform as

eAµ′ =
∂xν

∂xµ′ e
A
ν and eAµ = ΛA

Be
B
µ. (12)

1Γ(TU) are the sections over the tangent bundle and Γ(T ∗U) the sections over the cotangent bundle.
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Among all the possible tetrad �elds, a particular set of tetrad �elds exist such that, in every
point of the manifold p ∈ M, the metric is diagonalized

gAB(p) = ηAB(p) = gµν(p)E
µ
A(p)E

ν
B(p), (13)

or consequently

gµν(p) = eAµ(p)e
B
ν(p)ηAB(p). (14)

Such tetrad are called Orthonormal Basis or Orthonormal Frames [14], which are the type of
tetrad �eld we will be working with throughout the entire text.

The second one is the spin connection ω ∈ Ω1(M, so(1, 3)), i.e., is a set of di�erential 1-forms
assuming values on so(1, 3), the Lie Algebra of the Lorentz Group [15]. To be more speci�c,
the spin connection, in a local coordinate system U , is de�ned as [13]

ω =
1

2
ωAB

µdx
µ ⊗ SAB ∈ Γ (T ∗U ⊗ so(1, 3)) , x 7→ (x,ωx) (15)

where ωx = 1
2
ωAB

µ(x)dx
µ⊗SAB ∈ T ∗U ⊗ so(1, 3). The components of the spin connection must

be antisymmetric w.r.t the Lorentzian indices.

With the spin connection and the tetrad �elds, it is possible to induce a linear connection on
the base manifold M [15] whose coe�cients are given by

Γρ
νµ ≡ Eρ

A∂µe
A
ν + Eρ

Aω
A
Bµe

B
ν = Eρ

ADµe
A
ν , (16)

where Dµ is the Fock-Ivanenko derivative.

From these properties it is possible to show that the covariant derivative, whose coe�cient of
connection are de�ned in (16), of the tetrad �eld is zero and that, due to the antisymmetry of
the spin connection, the metric is compatible with this linear connection.

Nevertheless, similar to GR, we require some axioms imposed over the geometry. TG requires
that the curvature 2-form vanishes (cf. ref [15])

R =
1

4
RA

BνµS
B
Adx

ν ∧ dxµ with RA
Bνµ = ∂νω

A
Bµ − ∂µω

A
Bν + ωA

Dνω
D
Bµ − ωA

Dµω
D
Bν ≡ 0. (17)

This condition can only be achieved through the so called purely inertial spin connection [15][11]

ωA
Bµ = ΛA

C(x)∂µΛ
C
B(x). (18)

On the other hand, TG also requires the torsion 2-form to be non-vanishing

T =
1

2
TA
νµPAdx

ν ∧ dxµ with TA
νµ = ∂νe

A
µ − ∂µe

A
ν + ωA

Cνe
C
µ − ωA

Cµe
C
ν ̸= 0, (19)
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where PA are the generators of the translational group. The latter condition is achieved by
imposing covariance w.r.t an in�nitesimal gauge translation, associating a non-trivial transla-
tional potential to the construction of the covariant derivative (cf. ref [15]). Hence, the theory
arises as a Gauge Theory of the translational Group and invariant under local Lorentz Trans-
formation due to condition (18) over the spin connection.

These are the main theoretical di�erences and theoretical strengths of the theory. Similar to
all other theories of the fundamental forces, TG arises as Gauge Theory which is also locally
Lorentz invariant. In TG, the space-time manifold is globally �at but with non-trivial geometry
given by the torsion, hence, the gravitational interaction is mediated through torsion and not
curvature.

Since the torsion is di�erent from zero, we can see that

−2Γρ
[νµ] = T ρ

νµ = eρAT
A
νµ ̸= 0, (20)

hence, the linear connection on the base manifold is not symmetric and thus a di�erent con-
nection than the Levi-Civita connection, receiving the name of Teleparallel Connection.

According to the de�nition of the contortion tensor Kρ
µν [16], we can relate the Teleparallel

Connection with the Levi-Civita connection 2 as

Γρ
µν =

◦
Γρ
µν +Kρ

µν , (21)

and being able to compute the curvature tensor as [17]

Rα
βµν =

◦
Rα

βµν +
◦
∇µK

α
νβ −

◦
∇νK

α
µβ +Kα

µρK
ρ
νβ −Kα

νρK
ρ
µβ. (22)

Consequently, the Ricci scalar is split as

R =
◦
R + T −B, (23)

where

T = Tα
σρS

σρ
α =

1

4
T µνλTµνλ +

1

2
T µνλTνµλ − T µTµ, (24)

S σρ
α =

1

4
(T σρ

α + T ρσ
α − T σρ

α − 2T λσ
λδ

ρ
α + 2T λρ

λδ
σ
α) =

1

2
(Kσρ

α + T σδρα − T ρδσα) , (25)

B =
2

e
∂µ (eT

µ) = 2∇µT
µ, (26)

are the Torsion Scalar, Superpotential Tensor and Boundary Term, respectively, with Tµ = T λ
λµ.

The determinant of the tetrad is given by e = det(eaλ) =
√
−g.

However, since no curvature is present in TG, R = 0 and then

◦
R = −T +B, (27)

which will allow us to discuss the �eld equations down below.

2Henceforward, when discussing TG, we will refer every quantity computed with the Levi-Civita connection

with a circle over it, thus,
◦
Γρ
µν refers to the Levi-Civita connection itself.
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1.2.2. TEGR �eld equations

Consider the GR action (7), and substitute
√
−g = e and

◦
R = −T +B into it

STEGR =
1

2κ

∫
(−T +B) ed4x+ Smatt[gµν , ψ]. (28)

Since B is a boundary term ∫
Bedx = 0, (29)

and then we arrive to the Teleparallel Equivalent to General Relativity (TEGR) action [17]

STEGR = − 1

2κ

∫
Ted4x+ Smatt[gµν , ψ]. (30)

Hence, TEGR and GR Lagrangian density di�er only by a boundary term and as a consequence,
the �eld action are completely equivalent in TEGR and GR, providing the same physical e�ect.
That is where TEGR acquires its name. Therefore, whether the gravitational e�ects are due
to curvature or torsion is a matter of interpretation [18].

In TG it is usual to work within a particular Gauge called Weitzenböck Gauge, which consists
of working with zero spin connection ωA

Bµ = 0. Within this Gauge, the Teleparallel connection
is called the Weitzenböck connection, and then our entire theory depends exclusively on the
tetrad.

Taking variation of (30) w.r.t the tetrad and minimizing leads to [5]

1

2κ

∫
d4x [eδT + Tδe] = δSmatt, (31)

where

δe = eeλAδe
A
λ , δT = −4Tα

µAS
µλ
α δeAλ + 4S µλ

A ∂µδe
A
λ . (32)

Therefore, neglecting total derivatives, the TEGR �eld equations are

−4Tα
µAS

µλ
α − 4

e
∂µ(eS

µλ
A ) + TeλA = 2κθλA, (33)

such that

θλA =
1

e

δ(eLmatt)

δeAλ
. (34)

These equations can be recast in a more familiar way as

◦

Gλ
ν ≡ κT λ

ν =
2

e
eAν ∂µ(eS

λµ
A )− 2Tα

µνS
µλ
α +

1

2
Tδλν , (35)

with
◦

Gλ
ν the Einstein tensor computed with the Levi-Civita connection and T λ

ν = eAν θ
λ
A the

energy-momentum tensor 3.

3We changed the notation of the energy-momentum tensor from T to T in order to avoid confusion with the

torsion.
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1.2.3. f(T ) and f(T,B) gravity

Since TEGR and GR are equivalent, the �eld equation (35) su�er from the same advantages
and disadvantages phenomenologically speaking, i.e. at the level of the classical equations of
motion. Therefore, we will look for extensions of TEGR in the context of TG. A way to extend
TEGR is considering, instead of −T + B, a general function of the torsion scalar and the
boundary term f(T,B) in the action (30) as

Sf(T,B) =
1

2κ

∫
ef(T,B)d4x+ Smatt, (36)

which is known as f(T,B) gravity.

By varying and minimizing the action w.r.t to the tetrad, we obtain [5]

δSf(T,B) =

∫
1

2κ
[fδe+ efBδB + efT δT + 2κδ(eLmatt)] d

4x, (37)

where, neglecting total derivatives, we obtain

efT δT = 4
[
−fT∂µ(eS µλ

A )− ∂µ(fT )eS
µλ
A + efTT

α
µAS

λµ
α

]
δeAλ , (38)

fδe = efeλaδe
A
λ , (39)

efBδB = −efBBeλA − 2eeλA
◦
□fB + 2eeνA

◦
∇λ

◦
∇νfB + 4e(∂µfB)S

λµ
A . (40)

Hence, the �eld equations of f(T,B) gravity are

−efBBeλA − 2eeλA
◦
□fB+2eeνA

◦
∇λ

◦
∇νfB − 4e(∂µfB)S

µλ
A (41)

− 4∂µ(fT )eS
µλ
A − 4fT∂µ

(
eSµλ

A

)
+ 4efTT

α
µAS

λµ
α + efeλA = −2eκθλA,

that can be recast in term of the Einstein tensor in the Levi-Civita connection as

◦
Gλ

ν ≡ κT λ
ν =δλν

◦
□fB −

◦
∇λ

◦
∇νfB +

1

2
fBBδ

λ
ν + 2 [∂µfB + ∂µfT ]S

µλ
ν +

2

e
eAν fT∂µ(eS

µλ
A ) (42)

− 2fTT
α
µνS

λµ
α − 1

2
fδλν .

If we suppose that there is no dependence on the boundary term B of the functional f(T,B) =

f(T ), which implies that the functional cannot longer imitate f(
◦
R) gravity [8], the equations

(42) reduce to

◦
Gλ

ν ≡ κT λ
ν = 2(∂µfT )S

µλ
ν +

2

e
eAν fT∂µ(eS

µλ
A )− 2fTT

α
µνS

λµ
α − 1

2
fδλν , (43)

which are the �eld equations of f(T ) gravity. If we choose f(T ) = −T , equations (43) recover
equations (35) which is expected.

It is in f(T ) and f(T,B) gravity where we are going to analyse the quantum production of
Gravitational Waves (GW), since TEGR is completely equivalent to GR and thus the produc-
tion of GW is the same. However, before engaging in such endeavour we need to discuss the
background cosmology and linear perturbation theory around that scheme.
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2. Background Cosmology

2.1. FLRW metric

The FLRWmetric relies on the cosmological principle, which states that the universe is spatially
isotropic and homogeneous and has been shown to be successful in describing the universe on
large scales [19][20].
The mathematical description of this is to consider the space-time manifold to be foliated with
maximally symmetric spacelike slices M = R × Σ [21], where R represents the time direction
and Σ = {Σt}t∈R such that ∀t ∈ R and ∀ points p, q ∈ Σt there exists an isometry Φ of gµν [2]

Φ :M →M, (Φ∗g)µν = gµν , (44)

such that Φ(p) = q 4, that accounts for homogeneity.
For isotropy, we state that the spacetime is spatially isotropic if ∀p ∈ Σt and any two vectors
V and W in TpΣt, there is an isometry of the spacetime such that Φ∗W

5 is parallel to V [22].

The relationship between homogeneity and isotropy is not necessary, the space can be homo-
geneous but anisotropic and vice versa, nevertheless, if a space is isotropic in every point, then
homogeneity is a consequence of such scheme [22].

The geometry of the entire manifold is encoded in the metric tensor gµν , and for a spacetime
spatially homogeneous and isotropic, the metric tensor is given by

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
, dΩ2 = dθ2 + sin2(θ)dφ2, (45)

which is the Friedman-Lemaître-Robertson-Walker (FLRW) metric, where the components of
the metric are given explicitly as

(gµν) =


1 0 0 0

0 − a(t)2

1−kr2
0 0

0 0 −a(t)2r2 0
0 0 0 −a(t)2r2 sin2(θ)

 . (46)

The FLRW metric is given in spatial comoving coordinates (r, θ, ϕ) and cosmic time. a(t) is
called the scale factor and k = +1, 0,−1 the spatial curvature.

The evolution of the scale factor a(t) will be given by the solution of the �eld equations of the
theory.

It is possible to work with a di�erent, yet useful, time measurement called conformal time [23]

adη = dt → η − ηi =

∫ t

ti

dt′

a(t′)
, (47)

4Φ∗ is the pull-back of the mapping.
5Φ∗ is the pushforward of the mapping.
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where c(η − ηi) represents the comoving distance travelled by a photon between times ti and t
[23]. Using the conformal time, the FLRW metric can be recast as

ds2 = a(η)2
(
dη2 − dr2

1− kr2
− r2dΩ2

)
. (48)

From now on we will be working with the spatially �at case k = 0, which is the scenario
supported by observations [24], and with Cartesian coordinates (x, y, z).

2.2. Basics of in�ationary cosmology

The standard cosmological model have several achievements like, to name a few, explaining
the thermal history of the universe, the CMB, the Large-Scale-Structure and expansion of the
Universe [25][26] but also have shortcomings. For discussion of cosmological in�ation, we will
describe three of these issues.

1. The �atness problem. Observational data shows that the spatial curvature of the universe
is approximately �at Ωk ≈ 0 [24]. The �atness problem states exactly that: why do we
observe today this value of the curvature density? Since this condition requires a �ne
tuning of |Ω−1| in the early universe in order to achieve this current value of the curvature
density [27].

2. The horizon problem. This problems relies on the validity of the cosmological principle on
large scales. Why casually disconnected regions of the universe appear to be in thermal
equilibrium T0 = 2.7255 K? Since it appears that even going backwards on time, the
distance between those zones were large enough to be casually disconnected and then no
possible mechanism would exist to bring thermal equilibrium [27][28].

3. The monopole problem. This is a problem that does not purely rely on cosmology but
also in particle physics. The problem is basically the lack of observation of magnetic
monopoles in the present day of the universe since GUT models predict a high density
number of magnetic monopoles [27][28].

These problems are solved by the proposal of an early period of the universe where the space-
time expanded exponentially from a tiny size to a really big one. This period is known as
cosmological in�ation or simply in�ation.

In this way, in�ation solves the �atness problem by predicting that |1−Ω| decays exponentially
with time, decaying to zero in the present day, regardless of the initial conditions on the curva-
ture of space [28]. The horizon problem is solved by predicting a really small size right before
in�ation dhor ∼ 10−28 m, hence, the regions of the universe are casually connected and are
able to get into thermal equilibrium, and then in�ation expands the universe to dhor ∼ 1016 m
where some regions become casually disconnected as observed today [28]. Finally, it solves the
monopole problem by predicting that the density number of magnetic monopoles decreases ex-
ponentially with time, hence, being approximately zero today and then practically undetectable
[28].

There are several ways to model the in�ationary era, the standard way is by including a scalar
�eld, as a perfect �uid, to the gravitational theory in the energy-momentum tensor of the �eld
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equations.

It begins by de�ning the matter action of the scalar �eld as [29]

Sϕ =

∫
d4x

√
−g
[
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

]
, (49)

where we can derive the energy-momentum tensor as

T µν
ϕ = gµν

[
1

2
gρσ∂ρϕ∂σϕ+ V (ϕ)

]
− gµρgνσ∂ρϕ∂σϕ, (50)

which has the same form as a perfect �uid with energy density, pressure and four velocity given
by

ρ = −1

2
gµν∂µϕ∂νϕ+ V (ϕ), (51)

P = −1

2
gµν∂µϕ∂νϕ− V (ϕ), (52)

uµ = [−gρσ∂ρϕ∂σϕ]−1/2 gµτ∂τϕ, (53)

respectively.

For a spatially homogeneous scalar �eld, only the pressure and energy density are non-vanishing
and are given by

ρ =
1

2
ϕ̇2 + V (ϕ), P =

1

2
ϕ̇2 − V (ϕ), (54)

where the conservation equation of the energy momentum tensor implies that

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0, (55)

in a FLRW metric (see subsection 2.1).

In the case of a FLRW background, the acceleration equation for a spatially homogeneous scalar
�eld reads as

Ḣ = −4πGϕ̇2. (56)

Hence, if an exponential acceleration like an in�ationary era is required, the only dimensionless
combination possible with Ḣ requires [23]

|Ḣ|
H2

≪ 1, (57)

or in terms of the scalar �eld

ϕ̇2 ≪ V (ϕ). (58)
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This is the �rst slow-roll condition, and encourage the de�nition o the slow-roll parameter ϵ as

ϵ ≡ − Ḣ

H2
, (59)

then the �rst slow-roll condition is achieved by |ϵ| ≪ 1.

It is also necessary that the exponential expansion lasts for long enough, which is realised by
de�ning the second slow-roll parameter

ηϕ = − 1

H

ϕ̈

ϕ̇
, (60)

and imposing η ≪ 1 [23]. The conditions |ϵ|, ηϕ ≪ 1 are enough to guarantee an exponential
phase acceleration that lasts for long enough to produce the desired results of an in�ationary
era.

2.3. FLRW in General Relativity

2.3.1. Friedman equations

Using the FLRW metric in cosmic time (45), the Ricci tensor can be computed as

R00 = −3
ä

a
, R11 =

aä+ 2ȧ2 + 2k

1− kr2
, R22 = r2(aä+ 2ȧ2 + 2k), (61)

R33 = r2 sin2(θ)(aä+ 2ȧ2 + 2k),

and then the Ricci scalar becomes

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
. (62)

On the other hand, we will model the matter content as a perfect �uid whose energy-momentum
tensors is

Tµν = (ρ+ P )UµUν − Pgµν , (63)

where on comoving coordinates Uµ = (1, 0, 0, 0), and T = T µ
µ = ρ − 3P . The conservation

equation of the perfect �uid is given by

ρ̇+ 3H(ρ+ P ) = 0. (64)

Finally, the �eld equations of FLRW in GRn called Friedman equations are given by

H2 =
8π

3
ρ− k

a2
, H2 + Ḣ =

ä

a
= −4π

3
(ρ+ 3P ). (65)

It seems that the conservation equation (64) along with the Friedman equations (65) would
give us enough information to obtain the time evolution of the three quantities involved in this
system of equations (a(t), ρ(t), P (t)). Nonetheless, this is not the situation, since combining
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the conservation equation with the �rst Friedman equation will result in the second Friedman
equation. Hence, instead of 3 equations for three variables we haver got two, and an extra
condition is needed to solve completely the system.

The extra condition is usually achieved through the barotropic equations of state

P = ωρ, (66)

where in general ω = ω(t) [28]. The case where ω = const is of great importance, since it can
model radiation ω = 1/3, dust (baryons or CDM) ω = 0, or the cosmological constant ω = −1
[4]. By the introduction of the critical density

ρc =
3H2

8π
, (67)

the �rst Friedman equation is rewritten as

k

H2a2
=

ρ

ρc
− 1 ≡ Ω− 1, (68)

with Ω = ρ/ρc is called the density parameter.

2.4. FLRW in Teleparallel Gravity

2.4.1. Isotropic and homogeneous tetrad

For the discussion of isotropic and homogeneous tetrad, we will summarize brie�y the discus-
sion found in [11] for the �at case k = 0.

The idea is to recover the concept of symmetries from Cartan geometry and then use a similar
approach in TG. With this in mind, the de�nition of symmetry in TG is as follows

De�nition 2.1. � A symmetry of a TG geometry (M, e,ω) is a group action φ : G×M →M
of a Lie group G such that the metric (14) and the linear connection induced on the base
manifold (16) are invariant, i.e., φ∗

ug = g and φ∗
uΓ = Γ, ∀u ∈ G. The teleparallel geometry is

then called symmetric under the group action φ.�

Nevertheless, in physics we are usually interested in working with in�nitesimal symmetries.
With this in mind, it is possible to arrive at the following conditions

(LXξ
e)Aµ = −λAξ Be

B
µ, (LXξ

ω)ABµ = Dµλ
A
ξ B, (69)

where

(LXξ
e)Aµ = Xν

ξ ∂νe
A
µ + ∂µX

ν
ξ e

A
ν , (LXξ

ω)ABµ = Xν
ξ ∂νω

A
Bµ + ∂µX

ν
ξ ω

A
Bν , (70)

are the Lie derivatives of the tetrad and the spin connection, Xν
ξ are the generator of the

symmetry,

Dµλ
A
ξ B = ∂µλ

A
ξ B + ωA

Cµλ
C
ξ B − ωC

Bµλ
A
ξ C , (71)
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and λ : g×M → so(1, 3) is the local Lie algebra homomorphism.

When working on the Weitzenböck gauge, (69) reduce to

(LXξ
e)Aµ = −λAξ Be

B
µ, 0 ≡ (LXξ

ω)ABµ = ∂µλ
A
ξ B, (72)

giving a system of equation, in terms of the generators of the symmetry, for the tetrad and
then giving the su�cient conditions to �nd the tetrad that exhibits the desired symmetry in
the Weitzenböck gauge.

With this in consideration, the tetrad that exhibits the cosmological symmetry in Cartesian
coordinate sis given by

eAµ =


1 0 0 0
0 a(t) 0 0
0 0 a(t) 0
0 0 0 a(t)

 , (73)

with a constant lapse function n(t) = 1 in order to have the FLRW metric as (45).
In conformal time the tetrad becomes

eAµ = a(η)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (74)

2.4.2. FLRW equations: TEGR, f(T ) and f(T,B)

Using the tetrad (73) in TEGR, we arrive at the same Friedmann equation in GR (65) with
spatially �at curvature k = 0. Now, in order to obtain the Friedmann equation in f(T ) and
f(T,B), we need to compute the torsion and superpotential tensor along with the torsion scalar
and boundary term.
The non-vanishing components of the torsion and superpotential tensor are [30]

T i
0j = Hδij, S 0j

i = −Hδij, (75)

whereas the torsion scalar and boundary term are given by

T = −6H2 and B = −6(3H2 + Ḣ). (76)

Hence, the �eld equation of f(T ) gravity (43) are given by [8]

−6H2fT − 1

2
f = κρ, (77)

−2fT (3H
2 + Ḣ)− 2HḟT − 1

2
f = −κP, (78)

and the �eld equations for f(T,B) gravity are

3HḟB − 3H2(3fB + 2fT )− 3fBḢ − 1

2
f(T,B) = κρ, (79)

−(3H2 + Ḣ)(2fT + 3fB)− 2HḟT + f̈B − 1

2
f(T,B) = −κP. (80)
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3. Linear Perturbation Theory

3.1. Perturbation around FLRW

For this section, we will follow principally the discussion found in ref. [23], but also use ref.
[31] and ref. [29] when needed and summarize what we need for this wok.
The idea of linear perturbation theory is to work with small deviation δgµν from a background
manifold

gµν = ḡµν + δgµν , (81)

where ḡµν is the metric of the background manifold, in our case, the FLRW metric in conformal
time (48). The deviation form the background metric are considered to be small, so any non-
linear term involving the deviation must be vanishing

|δgµν | ≪ 1 → (δgµν)
n = 0, n = 2, 3, . . . . (82)

In the following, we will �rst discuss linear perturbation theory in GR and later on, discuss in
detail linear perturbation theory in TG.

Using the decomposition of the metric (81), we can compute the Christo�el Symbols as

Γρ
µν = Γ̄ρ

µν + δΓρ
µν , (83)

where Γ̄ρ
µν are the background Christo�el Symbols given by (4) in terms of the background

metric 6, and the perturbed Christo�el Symbols are given by

δΓµ
νρ =

1

2
ḡµσ
(
δgσν,ρ + δgσρ,ν − δgνρ,σ − 2δgσαΓ̄

α
νρ

)
. (84)

Analogously, the Ricci tensor is given by

Rµν = R̄µν + δRµν , (85)

where the perturbation of the Ricci tensor is

δRµν = δΓρ
µν,ρ − δΓρ

µρ,ν + Γ̄ρ
µνδΓ

σ
ρσ + δΓρ

µνΓ̄
σ
ρσ − Γ̄ρ

µσδΓ
σ
νρ − δΓρ

µσΓ̄
σ
νρ . (86)

Finally, the Einstein tensor is also given by

Gµ
ν = Ḡµ

ν + δGµ
ν , (87)

with the perturbation given by

δGµ
ν = ḡµρδRρν + δgµρR̄ρν −

1

2
δµνδR with δgµν = −ḡµρδgρσḡνσ. (88)

On the other hand, we also need to compute the perturbations at �rst order of the energy-
momentum tensor.

6Any mathematical symbol with a bar indicates that it was computed with the background metric.
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Recall the de�nition of the energy-momentum tensor (63) for the background cosmology

T̄µν = (ρ̄+ P̄ )ūµūν − P̄ ḡµν . (89)

With the introduction of a projector onto the hypersurface orthogonal to ūµ

θ̄µν = ḡµν − ūµūν where θ̄µν ū
µ = 0, (90)

the energy-momentum of the perfect �uid can be rewritten as

T̄µν = ρ̄ūµūν − P̄ θ̄µν . (91)

In ref. [32], based on a covariant split of any two-rank tensor onto the four-velocity, it was ob-
tained that the energy-momentum tensor for an almost perfect �uid, which includes dissipation
e�ects, is given by

Tαβ = ρuαuβ − (P + π)θαβ + qαuβ + qβuα + παβ, (92)

where the dissipative terms qα, παβ and π (called the heat transfer contribution, anisotropic
stress and bulk viscosity respectively), satisfy

qµu
µ = 0, παβu

β = π[αβ] = πα
α = 0 (93)

and π is the trace of the anisotropic stress. Observe that we can work with π = 0 by rede�ning
the pressure term as P + π → P , which is the convention we will follow.

By comparing (91) with (92), we can observe that qα and παβ are already �rst order contri-
bution to the perturbation of the energy-momentum tensor of the perfect �uid, whereas the
perturbation of the energy density, pressure and four-velocity proceed as usual

ρ = ρ̄+ δρ(η,x), P = P̄ + δP (η,x), uµ = ūµ + δuµ(η,x). (94)

The splitting of the energy-momentum tensor into a zero and a �rst order perturbation reads
as

Tµν = T̄µν + δTµν , (95)

such that the �rst order perturbation of the energy-momentum tensor is

δTµν = δρūµūν + ρ̄δuµūν + ρ̄ūµδuν + qµūν + qν ūµ − θ̄µν(δP + π)− P̄ δθµν + πµν , (96)

with
δθµν = δgµν − δuµūν − ūµδuν . (97)

The perturbation for the energy-momentum tensor with mixed components is

δT µ
ν = ḡµρδTρν + δgµρT̄ρν . (98)

Considering that, the Einstein �eld equations are given by

Gµ
ν = κT µ

ν (99)
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with Gµ
ν = Ḡµ

ν + δGµ
ν and T µ

ν = T̄ µ
ν + δT µ

ν , the perturbed Einstein �eld equations are

δGµ
ν = κδT µ

ν . (100)

The previous discussion did not make use of the FLRW background and any coordinate system,
however, we can make this explicit by writing the metric as

gµν = a2(η)

[1 + 2ψ(η,x)] −wi(η,x)

−wi(η,x) −δij[1− 2ϕ(η,x)]− χij(η,x)

 , (101)

where δijχij = 0. Observe that, if ψ = ϕ = wi = χij = 0, we recover the components of the
FLRW metric tensor in conformal time (48), hence, our linear perturbation δgµν is encoded in
terms of the scalar ψ, ϕ, vector wi and tensor χij perturbation.

3.2. The Gauge Problem

We started the previous discussion by stating the small deviation from the background as

gµν(η,x) = ḡµν(η,x) + δgµν(η,x), (102)

which can be recast as

δgµν(η,x) = gµν(η,x)− ḡµν(η,x). (103)

This di�erence is an �ill-posed statement� [23], since ḡµν is a tensor on the background manifold
and gµν is a tensor on the physical manifold, hence, we are comparing two di�erent tensors on
two di�erent manifolds. Thus, a mapping that allows us to identify points on the background
manifold with those of the physical manifold is required. Such mapping is called the gauge, and
will allow us to use the conformal time and comoving coordinates of the background manifold
on the physical manifold.

If we change the coordinates system, we can change the value of the perturbation variables
and even introduce �ctitious perturbations [31]. It is then mandatory to build the so-called
gauge-invariant potentials, which are expressions that will remain unchanged under a change
of coordinates and will serve as the physical perturbations of the theory.

3.2.1. Gauge transformations

We begin by an in�nitesimal change of coordinates on the background coordinates

xµ → x̃µ = xµ + ξµ(η,x). (104)

From the tensor transformation rules, at �rst order on ξ, the metric tensor transform as

gµν(x) = ĝµν(x) + ∂αgµν(x)ξ
α + ∂µξ

ρgρν(x) + ∂νξ
ρgρµ(x) (105)

= ĝµν(x) +∇νξµ +∇µξν .
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Therefore, at �rst order, the perturbed quantities transform as

ψ̂ = ψ −Hξ0 − ξ0
′
, (106)

ŵi = wi − ζ ′i + ∂iξ
0, (107)

ϕ̂ = ϕ−Hξ0 − 1

3
∂lξ

l, (108)

χ̂ij = χij − ∂jζi − ∂iζj +
2

3
δij∂lξ

l, (109)

where the prime denotes the derivative w.r.t the conformal time, H = a′

a
and ζi ≡ δilξ

l.

Moreover, the transformation of the energy-momentum tensor w.r.t this change of coordinates
is

T̂µν(x) = Tµν(x)− ∂αTµν(x)ξ
α − ∂µξ

ρTρν(x)− ∂νξ
ρTρµ(x) , (110)

and the, the perturbed quantities transform as

δ̂ρ = δρ− ρ̄′ξ0, v̂i = vi + ∂iξ
0, q̂i = qi, (111)

ˆδP = δP − P̄ ′ξ0 π̂ij = πij, (112)

where δui = avi.

The fact that the heat transfer contribution and anisotropic stress is zero is just a manifestation
of the Stewart-Walker lemma [33], which states that a linear perturbation δQ of a background
quantity Q is gauge-invariant if and only if one of the following conditions hold

1. Q̄ = 0.

2. Q̄ is a constant scalar.

3. Q̄ is a linear combination of products of Kronecker deltas.

3.2.2. SVT decomposition

The Scalar-Vector-Tensor (SVT) decomposition consists in fully identify the scalar, vector and
tensor parts of the perturbation. We have already seen that our perturbations have scalar parts
ϕ, ψ, vector part wi and tensor part χij, however, it is still possible to obtain other two scalar
contributions from wi and χij, and another vector one from χij.

This can be accomplished by the use of Helmholtz Theorem [34], which states that, if we
consider a vector function F(r), and de�ne its divergence and curl as

D(r) ≡ ∇ · F(r), C(r) ≡ ∇× F(r), (113)

the vector �eld can be rewritten as

F(r) = −∇U +∇×W, ∇× (∇U) = 0 and ∇ ·C(r) = 0, (114)

where

U(r) =
1

4π

∫
V

D(r′)

|r− r′|
d3r′, W(r) =

1

4π

∫
C(r′)

|r− r′|
d3r′, (115)
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i.e., the vector �eld can be decomposed as a divergenceless plus an irrotational part.

Based on this, we decompose our vector perturbation as a divergenceless plus an irrotational
part

wi = w
||
i + w⊥

i , with ϵijk∂jw
||
i = 0, ∂kw⊥

k = 0. (116)

By comparing (116) and (114), we observe that the irrotational part is the gradient of a scalar

w
||
i = ∂iw, and we de�ne the divergenceless part as w⊥

i = Si, and then our vector perturbation
read as

wi = ∂iw + Si. (117)

Analogously, the tensor part cam be split into three parts, a longitudinal part χ
∥
ij, an orthogonal

part χ⊥
ij, and the transverse contribution χT

ij as follows

χij = χ
∥
ij + χ⊥

ij + χT
ij , (118)

where every part satisfy

ϵijk∂l∂jχ
∥
lk = 0 , ∂i∂jχ⊥

ij = 0 and ∂jχT
ij = 0 . (119)

The longitudinal and orthogonal part are built from the divergence of χij and apply Helmholtz
Theorem to it. Hence, we can rewrite each part as

χ
∥
ij =

(
∂i∂j −

1

3
δij∇2

)
2µ , χ⊥

ij = ∂jAi + ∂iAj , ∂iAi = 0 , χT
ij = hij, (120)

and then the tensor perturbation becomes

χij =

(
∂i∂j −

1

3
δij∇2

)
2µ+ ∂jAi + ∂iAj + hij. (121)

Therefore, the 10 degrees of freedom of the metric have been decomposed into 4 scalar modes
ϕ, ψ, w, µ, 4 divergenceless vector modes Si, Ai, and two tensor degrees of freedom hij.

The same idea can be applied to the gauge �elds ξµ of the in�nitesimal transformation (104)
as follows

ξ0 ≡ α, ζi = δilξ
l = ∂iβ + εi, (122)

where εi is divergenceless ∂
lεl = 0.

Using the SVT decomposition of the perturbation and the gauge �elds, and using the gauge
transformation rules of the perturbation quantities (106), we can compute the gauge trans-
formation rules for the scalar ϕ, ψ, w, µ, vector wi, Si and tensor part hij, which turn out to
be

ψ̂ = ψ −Hα− α′, (123)

ϕ̂ = ϕ+Hα +
1

3
∇2β, (124)

ŵ = w − β′ + α, (125)

µ̂ = µ− β, (126)
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for the scalar part,

Ŝi = Si − ϵ′i (127)

Âi = Ai − ϵi, (128)

for the vector part, and
χ̂ij = χij, (129)

i.e., the tensor part is already gauge-invariant.

By combining equation (123)-(126), we obtain the so called Bardeen Potentials

Ψ = ψ +
1

a
[(w − µ′) a]

′
, Φ = ϕ−H (w − µ′) +

1

3
∇2µ, (130)

which are the scalar gauge-invariant potentials.

Likewise, by combing (127) and (128) we arrive at the vector gauge-invariant potential

Wi = Si − A′
i. (131)

Since we are working in linear perturbation theory, any interaction between modes is a second
order perturbation and the negligible, thus the scalar, vector and tensor modes evolve indepen-
dently.

The same procedure can be done for the matter perturbations, however, this topic lies beyond
the scope of this thesis and will not be performed here.

3.2.3. Gauge �xing

Since we have already constructed the gauge-independent potential for every mode, we can
exploit the gauge freedom to simplify the equations, Let us discuss some examples.

Considering only scalar perturbations (ϕ, ψ, w, µ), we can select a gauge, called the Newtonian
gauge, such that

ŵ = µ̂ = 0, (132)

which from equations (123)-(126) determine the sacalar gauge transformation as

β = µ, α = µ′ − w, (133)

and the Bardeen potentials become

Ψ = ψ̂, Φ = ϕ̂, (134)

hence, our scalar perturbation depends exclusively on the Bardeen potentials.

In this gauge, the metric tensor reads as

ds2 = a2(η)[(1 + 2Ψ)dη2 − (1− 2Φ)δijdx
idxj], (135)
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and the perturbation theory have several consequences.

One of the most important consequences, in GR, is that Φ and Ψ are not physically indepen-
dent �elds but di�er only by the scalar part of the anisotropic stress of the energy-momentum
tensor and, in absence of scalar anisotropic stress πS = 0, they are the same �eld Ψ = Φ and
the metric resembles the weak �eld limit of GR about a Minkowski spacetime with Φ playing
the role of the gravitational potential [31].

Other choices are also possible, for instance, by choosing

ψ̂ = 0 and ŵ = 0, (136)

we arrive at the Synchronous gauge whose metric tensor is

ds2 = a2(η)

[
dη2 −

(
(1− 2ϕ)δij +

{
∂i∂j −

1

3
δij∇2

}
2µ

)
dxidxj

]
. (137)

This gauge is useful when dealing with �uctuation of the in�ation �eld or when dealing with
a universe dominated by cold dark matter [31][29]. There exist di�erent gauges and gauge
transformations that will not be covered here, some of these can be found in ref. [35].

3.3. Gravitational Waves in General Relativity

When considering a pure tensor perturbation

δg00 = 0, δg0i = 0, δgij = hij, (138)

with δijhij = ∂ihij = 0 as discussed before, the non-zero components of the perturbed Einstein
tensor (88) is

−2a2δGi
j = h′′ij + 2Hh′ij −∇2hij. (139)

If we consider the Fourier transform of a generic �eld f(η,x) to be

f̃(η,k) =

∫
d3xf(η,x)e−ik·x, f(η,x) =

∫
d3k

(2π)3
f̃(η,k)eik·x, (140)

and apply it to (139), then the Einstein �eld equations in Fourier Space are

h′′ij + 2Hh′ij + k2hij = −16πGa2πT
ij, (141)

where πT
ij is the tensor part of the anisotropic stress. Equations (141) constitute the equations

for Gravitational Waves (GW) from a FLRW background.

Generally speaking, since hij is a symmetric 3-dimensional tensor, it has six independent com-
ponents, however the transverse condition ∂ihij = 0 impose 3 constrictions, and the traceless
condition δijhi,j = 0 another one, hence, reducing the number of independent components
from six to only two, which are the so called h+ and h× polarizations, such that, if the GW
propagates in the ẑ direction k̂ = ẑ, the tensor perturbation is

hij(kẑ) =

 h+ h× 0
h× −h+ 0
0 0 0

 , (142)
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or rather compact as

hij(kẑ) = h+ ± ih×. (143)

If a rotation about the z-axis is performed, the tensor perturbation transforms as [23]

h̄+ ± ih̄× = e∓2iθ(h+ ± ih×), (144)

and it is said that the GW has helicity 2 or is a Spin 2 �eld when it is quantized.

For a general direction, we can write the tensor �eld in terms of the polarization tensors ϵλij as
[36]

hij(η.k) =
∑
λ=±2

ϵλij(k̂)hλ(η,k),
∑
λ=±2

ϵλijϵ
λ′∗
ij = δλλ

′
, (145)

where the polarization tensors and vectors are given by

eij(k̂,±2) =
√
2e±,ie±,j , e±,i(k̂) ≡

(e1 ± ie2),i√
2

, (146)

with {ea, eb} two dimensional vectors orthogonal to a vector k̂ that results of going to Fourier
space with the transverse condition

∂ihij = 0 → k̂ihij = 0. (147)

In this scenario, the +,× polarizations are given by

h+(η,k) =
1√
2
h+2(η,k) +

1√
2
h−2(η,k) , (148)

h×(η,k) =
i√
2
h+2(η,k)−

i√
2
h−2(η,k) . (149)

From the previous equation, we can see that hλ(η,k) satisfy the GW equation (141), and h+,×
also satisfy it.

3.4. Linear Perturbation in Teleparallel Gravity

3.4.1. Tetrad perturbation

Now it is time to discuss linear perturbation theory in TG. Since this is one the central topics
of this work, we will discuss it in detail.

We begin by considering small deviation from the isotropic and homogeneous tetrad ēAµ as
follows

eAµ = ēAµ + δeAµ. (150)

From the relation between the tertad and the metric (14), we observe that

ḡµν + δgµν =
(
ēAµ + δeAµ

) (
ēBν + δeBν

)
ηAB, (151)
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from where, neglecting second order perturbations, we have that

δgµν = ēAµδe
B
νηAB + ēBνδe

A
µηAB, (152)

or in a simpli�ed manner [37]

δgµν = 2τ(µν) where τµν = ēAµδe
B
νηAB. (153)

From eq. (84) and eq. (153), we obtain the perturbed Chrysto�el symbols in TG

δ
◦
Γρ

µν =
1

2
ḡρσ
( ◦

∇̄µδgσν +
◦

∇̄νδgµσ −
◦

∇̄σδgµν

)
= ḡρσ

( ◦

∇̄µτ(σν) +
◦

∇̄ντ(µσ) −
◦

∇̄στ(µν)

)
(154)

= ḡρσ
(
τ(σµ),ν + τ(σν),µ − τ(µν),σ − 2τ(σα)Γ̄

α
µν

)
. (155)

On the other hand, since we are working on linear perturbation of the gravitational sector,
the Weitzenböck gauge is still employed throughout this discussion, and no extra degrees of
freedom are added to the theory. Thus, from Weitzenböck connection (16) we have

Γ̄ρ
νµ + δΓρ

νµ = (Ēρ
A + δEρ

A)∂µ(ē
A
ν + δeAν), (156)

from where the perturbed Weitzenböck connection is

δΓρ
νµ = Ēρ

A∂µδe
A
ν + δEρ

A∂µē
A
ν , (157)

where the perturbed inverse tetrad is

δEν
A = −Ēµ

AĒ
ν
Bδe

B
µ. (158)

Consequently, from the de�nition of the contortion tensor (21), we obtain the perturbed con-
tortion tensor as

δKρ
µν = δΓρ

µν − δ
◦
Γρ
µν , (159)

and also from (20), we can obtain the perturbed torsion tensor as

δT ρ
νµ = δΓρ

µν − δΓρ
νµ. (160)

Now, for the superpotential tensor (25), its linear perturbation is

δS σρ
α =

1

2

(
ḡρβδKσ

βα + ḡσβδTβδ
ρ
α − ḡρβδTβδ

σ
α + δgρβK̄σ

βα + δgσβT̄βδ
ρ
α − δgρβT̄βδ

σ
α

)
, (161)

and then, the perturbation of the torsion scalar is

δT = T̄ σ
µνδS

µν
σ + δT σ

µνS̄
µν

σ . (162)

Finally, for the boundary term we have (26)

B = 2∇µT
µ = 2gµα∇µT

λ
λα = 2gµα

(
∂µTα + Γλ

ρµT
ρ
λα − Γρ

λµT
λ
ρα − Γρ

αµTρ
)
,

and consequently, the linear perturbation of the boundary term is

δB = 2
(
δgµα

[
∂µT̄α + Γ̄λ

ρµT̄
ρ
λα − Γ̄ρ

λµT̄
λ
ρα − Γ̄ρ

αµT̄ρ
]

(163)

+ḡµα
[
∂µδTα + δΓλ

ρµT̄
ρ
λα + Γ̄λ

ρµδT
ρ
λα − δΓρ

λµT̄
λ
ρα − Γ̄ρ

λµδT
λ
ρα − δΓρ

αµT̄ρ − Γ̄ρ
αµδTρ

])
.

Now we are in position of computing the linear perturbation of the �eld equations in TG.
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3.4.2. Perturbed equations

In this case, we will focus our attention into the f(T,B) gravity scenario (42), since the f(T )
and TEGR scenarios are achieved by imposing the conditions f̄B̄ = 0 and f̄(T̄ ) = −T̄ in the
f(T,B) scenario.

Consider the most general functional of T and B as f(T,B), with the �rst order partial deriva-
tives fT and fB. The linear perturbation of these functional are

f(T,B) = f(T̄ + δT, B̄ + δB) = f̄ + f̄T̄ δT + f̄B̄δB ≡ f̄ + δf, (164)

where we have de�ned f̄ = f(T̄, B̄) and δf = f̄T̄ δT + f̄B̄δB.

For fT and fB we have

fT (T,B) = f̄T̄ + δfT , fB(T,B) = f̄B̄ + δfB (165)

where

δfT = f̄T̄ T̄ δT + f̄T̄ B̄δB and δfB = f̄B̄T̄ δT + f̄B̄B̄δB. (166)

From (42), recall the Einstein tensor in TG as

◦
Gλ

ν =δλν
◦
□fB −

◦
∇λ

◦
∇νfB +

1

2
fBBδ

λ
ν + 2 [∂µfB + ∂µfT ]S

µλ
ν +

2

e
eAν fT∂µ(eS

µλ
a ) (167)

− 2fTT
α
µνS

λµ
α − 1

2
fδλν ,

and de�ne the following expressions

A =
◦
□fB, (168)

Bλ
ν =

◦
∇λ

◦
∇νfB, (169)

C = fBB, (170)

Dλ
ν = [∂µfB + ∂µfT ]S

µλ
ν , (171)

F λ
ν =

1

e
eAνfT∂µ(eS

µλ
a ), (172)

Hλ
ν = fTT

α
µνS

λµ
α , (173)

such that the Einstein tensor is just

◦
Gλ

ν = δλνA−Bλ
ν +

1

2
δλνC + 2Dλ

ν + 2F λ
ν − 2Hλ

ν −
1

2
fδλν . (174)

Now, we follow to compute the perturbation of the quantities de�ned in equations (168)-(173)
in order to obtain the perturbation of the Einstein tensor.

From (168), it can be seen that

A =
◦
□fB =

◦
∇µ(∂

µfB) = gµβ
◦
∇µ(∂βfB) (175)

= gµβ
(
∂µ∂βfB −

◦
Γρ
βµ∂ρfB

)
,
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and thus, its linear perturbation is

δA = δgµβ
(
∂µ∂β f̄B̄ −

◦

Γ̄ρ
βµ∂ρf̄B̄

)
+ ḡµβ

(
∂µ∂βδfB − δ

◦
Γρ
βµ∂ρf̄B̄ −

◦

Γ̄ρ
βµ∂ρδfB

)
. (176)

From (169) we have that

Bλ
ν =

◦
∇λ

◦
∇νfB = gλβ

(
∂β∂νfB −

◦
Γρ
νβ∂ρfB

)
, (177)

where the linear perturbation is

δBλ
ν = δgλβ

(
∂β∂ν f̄B̄ −

◦

Γ̄ρ
νβ∂ρf̄B̄

)
+ ḡλβ

(
∂β∂νδfB − δ

◦
Γρ
νβ∂ρf̄B̄ −

◦

Γ̄ρ
νβ∂ρδfB

)
, (178)

or succinctly as

δBλ
ν = δgλβ

◦

∇̄β

◦

∇̄ν f̄B̄ + ḡλβ
( ◦

∇̄β

◦

∇̄νδfB − δ
◦
Γρ
νβ∂ρf̄B̄

)
. (179)

From equation (170) we have that

C = fBB → C̄ + δC = (f̄B̄ + δfB)(B̄ + δB), (180)

from where

δC = f̄B̄δB + δfBB̄ . (181)

From equation (171) we have

Dλ
ν = ∂µ (fB + fT )S

µλ
ν , (182)

where it is straightforward to see that

δDλ
ν = ∂µ (δfB + δfT ) S̄

µλ
ν + ∂µ

(
f̄B̄ + f̄T̄

)
δS µλ

ν . (183)

In the equation (172) the determinant of the tetrad appears, hence, we need �rst to compute
the linear perturbation of the determinant.

Let us begin by considering

e = det(eAλ), (184)

and expand the determinant in a �rst order Taylor series about ē as follows

det(eAλ) = det(ēAλ + δeAλ) = det(ēAλ) + δeBµ
∂det(eAλ)

∂eBµ

∣∣∣∣
e=ē

, (185)

and from the Jacobi's formula [38] we have that

∂det(eAλ)

∂eBµ
= adj(eAλ)

µ
B, (186)
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however, since the tetrad is non-singular

adj(eAλ)
µ
B = det(eAλ)E

µ
B, (187)

and therefore

∂det(eAλ)

∂eBµ

∣∣∣∣
e=ē

= det(ēAλ)Ē
µ
B = ēĒµ

B. (188)

Thus, the linear perturbation of the tetrad is

δe = ēĒµ
Bδe

B
µ . (189)

Hence, from equation (172) we have that

F̄ λ
ν + δF λ

ν =
1

ē+ δe

(
ēAν + δeAν

) (
f̄T̄ + δfT

)
∂µ

(
[ē+ δe]

[
S̄ µλ
A + δS µλ

A

])
(190)

=

(
1

ē
− δe

ē2

)(
ēAν + δeAν

) (
f̄T̄ + δfT

)
∂µ

(
[ē+ δe]

[
S̄ µλ
A + δS µλ

A

])
,

from where we obtain the linear perturbation to be

δF λ
ν =

1

ē
ēAν f̄T̄∂µ

(
ēδS µλ

A + δeS̄ µλ
A

)
+

[
1

ē
ēAνδfT +

(
1

ē
δeAν −

δe

ē2
ēAν

)
f̄T̄

]
∂µ

(
ēS̄ µλ

A

)
, (191)

with

S̄ µλ
A = Ēα

AS̄
µλ

α and δS µλ
A = Ēα

AδS
µλ

α + δEα
AS̄

µλ
α . (192)

Finally, from (173) we have

H̄λ
ν + δHλ

ν =
(
f̄T̄ + δfT

) (
T̄α
µν + δTα

µν

) (
S̄ λµ
α + δS λµ

α

)
, (193)

and the its linear perturbation is

δHλ
ν = S̄ λµ

α

[
f̄T̄ δT

α
µν + δfT T̄

α
µν

]
+ f̄T̄ T̄

α
µνδS

λµ
α . (194)

Therefore, the perturbed Einstein tensor is simply

δ
◦
Gλ

ν = δλν δA− δBλ
ν +

1

2
δλν δC + 2δDλ

ν + 2δF λ
ν − 2δHλ

ν −
1

2
δfδλν . (195)

3.4.3. Gravitational Waves in Teleparallel Gravity

Consider the background tetrad in conformal time (74) and a transverse and traceless tensor
perturbation

δeAµ =
a(η)

2

(
0 0
0 hij

)
, (196)

where from (153), the nature of the tensor perturbation in TG is the same as the GR scenario.
Using (196), the linear perturbation of the torsion tensor and the superpotential tensor are [30]
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δT i
0j =

1

2
h′ij, δT i

jk =
1

2
(∂jhik − ∂khij), δS

0i
0 = 0, δS 0j

i =
1

4a2
h′ij, δS jk

i = − 1

4a2
(∂jhik − ∂khij).

(197)

Analogously, using the equations (162) and (163), a direct computation of the perturbation of
the torsion scalar (162) and the boundary term (163), from the perturbed tetrad (196), gives

δT = δB = 0.

From the previous result, we have

δf = δfT = δfB = 0 → f(T,B) = f̄(T̄, B̄), (198)

fT (T,B) = f̄T̄ (T̄, B̄), fB(T,B) = f̄B̄(T̄, B̄), (199)

hence, we will drop the bar notation on the functional f(T,B) and its derivatives when dis-
cussing tensor perturbation.
Finally, the perturbed Einstein tensor (195) is given by

δGi
j =

fT
2a2

δik
(
h′′kj + [2 + ν]Hh′kj −∇2hkj

)
, (200)

where the parameter ν

ν =
1

H
f ′
T

fT
, (201)

called the Planck mass run rate, encodes all the information about the extension of TG, since
ν = 0 recovers the equation of GR. The Planck mass run is the friction term caused by the
expansion of the universe [39].
By combining the perturbation of the Einstein tensor and the energy-momentum tensor, and
working in the Fourier space, we arrive to 7

h′′kj + [2 + ν]Hh′kj + k2hkj =
16πGa2

fT
πT
ij. (202)

If fT = −1 we recover the GW equation in GR (141). The equation (141) corresponds to a
tensor wave propagating at the speed of light [8], in agreement to measurements of GW [40].

Observe that in the case f(T,B) = f(T ) the same equation holds, and in the case of f(T,B) =

f(−T +B) = f(
◦
R), with fT → fR, then ν = 1

H
f ′
R

fR
which is found in the literature [30][41].

Finally, if we consider (202) in vacuum

h′′kj + [2 + ν]Hh′kj + k2hkj = 0, (203)

which can be derived from an action of the type (cf. [42])

S =

∫
d3xdη(−a2fT )

[
h′ijh

′ij − ∂khij∂
khij

]
, (204)

7Observe that πT
ij in the (+,−,−,−) is −πT

ij in the signature (−,+,+,+), with πT
ij = δikπ

k
j
T
.
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and the going to Fourier space, which requires fT < 0 in order to preserve the positive sign o
the Lagrangian density as in the GR limit fT = −1 [8].
Therefore, we have obtained that the main di�erences on the GW coming from GR and TG
are the dissipation term ν and the extra factor of fT over the right hand side of the equations.
GW in TG are not constrained by present observations, since tensor waves propagate at speed
of light and also no constraints exist for the Planck run rate [30], hence. we can explore its
production in the early universe and track its Power Spectrum which could be detected on
future GW detectors like LISA.

https://lisa.nasa.gov/
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4. Production of Gravitational Waves: Vacuum case

Let us begin by considering the production of GW coming directly from in�ation. As we
discussed in Subsec. 2.2, in�ation is usually modelled by an scalar �eld through the energy-
momentum tensor in the form of a perfect �uid. Therefore, when making perturbation of the
energy-momentum tensor of the scalar �eld (50), we only deal with δρ, δP and δuµ perturba-
tions, hence, no tensor anisotropic stress is generated during in�ation

πT
ij = 0, (205)

thus, the GW equations on GR and TG are given by

h′′ij + 2Hh′ij + k2hij = 0 and h′′ij + [2 + ν]Hh′ij + k2hij = 0, (206)

with ν the parameter de�ned in (201).
Since we are interested in studying the production during in�ation, which occurs at the very
beginning of the universe, we propose a quantized tensor �eld

hij(η,x) =
∑
λ=±2

∫
d3k

(2π)3

[
h(η, k)eik·xa(k, λ)eij(k̂, λ) + h∗(η, k)e−ik·xa†(k, λ)e∗ij(k̂, λ)

]
, (207)

where the creator and annihilation operators satisfy the commutation relations

[a(k, λ), a(k′, λ′)] = 0 ,
[
a(k, λ), a†(k′, λ′)

]
= (2π)3δ(3)(k− k′)δλλ′ . (208)

We will suppose that the universe is in a vacuum quantum state |0⟩ such that

a(k, λ) |0⟩ = 0, (209)

and such that, in the in�nite past η → −∞, the modes resemble the quantisation of a free �eld
in Minkowski space [23][43]. Such vacuum state is called the Bunch-Davies vacuum.
Thus, the Primordial Power Spectrum will be de�ned from the correlator, the vacuum value
expectation, of the gravitational wave

⟨0|hij(η,x)hlm(η,x′)|0⟩ =
∫

d3k

(2π)3
|h(η, k)|2eik·(x−x′)Πij,lm(k̂) , (210)

where
Πij,lm(k̂) ≡

∑
λ=±2

eij(k̂, λ)e
∗
lm(k̂, λ) . (211)

But, what is exactly the Power Spectrum? de�ning h(η,k, λ) = h(η, k)a(k, λ), we can rewrite
the value expectation as

⟨0|hij(η,x)hlm(η,x′)|0⟩ =
∑
λ=±2

∫
d3kd3k′

(2π)6
⟨0|h(η,k, λ)h†(η,k, λ)|0⟩ei(k·x−k′·x′)eij(k̂, λ)e

∗
lm(k̂, λ).

(212)
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Outside the horizon k|η| → 0 the �eld loses its quantum nature and then we identify the
expectation value with the ensemble average, the expectation value of a random �eld among
all the possible values that it can assume, of the classical random �elds8

⟨0|h(η,k, λ)h†(η,k, λ)|0⟩ −→
k|η|→0

⟨h(η,k, λ)h∗(η,k, λ)⟩ = (2π)3δD(k− k′)Ph(η, k), (213)

therefore

⟨0|hij(η,x)hlm(η,x′)|0⟩ =
∫

d3k

(2π)3
Ph(η, k)e

ik·(x−x′)Πij,lm(k̂) , (214)

Where the equality must be understood outside the horizon. From (210) and (214) we conclude
that

Ph(η, k) = |h(η, k)|2 (215)

is the Primordial Power Spectrum (PPS) of gravitational waves coming from in�ation.

We will study the PPS of GW in GR and TG for two di�erent backgrounds, the �rst one a
perfect de Sitter space Ḣ = 0 and the second one a quasi-de Sitter space Ḣ = −ϵH2

Λ.

4.1. De Sitter background: General Relativity and Teleparallel Gravity

Let us consider a perfectly de-Sitter background

H = HΛ = const → Ḣ = 0, (216)

and recall that for tensor perturbation

f(T,B) = f̄(T̄, B̄), (217)

i.e., the functional is just the background functional, and since T̄ = −6H2 and B̄ = −6(3H2 +
Ḣ), then

f ′
T =

dt

dη
ḟT =

dt

dη

(
fTT

˙̄T + fTB
˙̄B
)
= 0, (218)

and then ν = 0. This implies that for a perfect de Sitter background, GW waves satisfy the
same equation on GR and TG

h′′ij + 2Hh′ij + k2hij = 0. (219)

If we insert (207) into the latter equation, we observe that h(η, k) and its conjugate satisfy

h′′ + 2Hh′ + k2h = 0, (220)

with h = h+,× accounting for the two degrees of freedom, then we only need to solve this
equation to obtain the PPS.

8We will assume that the GW �eld is a Gaussian random �eld, i.e., its statistics obeys isotropy and homogeneity.
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The condition H = HΛ = const in conformal time reads as

a(η) = − 1

HΛη
or H = −1

η
, (221)

with η < 0. Then the equation for GW becomes

h′′ − 2

η
h′ + k2h = 0. (222)

Now, we will work canonically normalized tensor modes [23][36]

ĥ =
h√
32πG

, (223)

and then perform the following change of variable

g = aĥ =
ah√
32πG

≡ MPl

2
ah. (224)

The normalization factor is in order to properly compare tensor and scalar perturbation, and to
give units of L3 orM−3 to the power spectrum [23]. With this change of variable , the equation
to solve is

g′′ +

(
k2 − 2

η2

)
g = 0, (225)

with the initial condition on the in�nite past to be the

g =
1√
2k
e−ikη. (226)

Generally speaking, the power spectrum will depend on the conformal time, so, at what time it
should be analysed? Since the tensor mode is a constant outside the horizon k/a ≪ H [29], it
provides a initial condition when the scale re enters the horizon during the radiation-dominated
era, hence it should be at a time such that k|η| → 0, i.e., for an asymptotic behaviour at large
scales.

The formal solutions of (225) are the complex functions

g ⊂
{
C(k)k

(
1− i

kη

)
e−ikη, C∗(k)k

(
1 +

i

kη

)
eikη
}
, (227)

where, in order to satisfy the initial condition in the in�nite past, we need to choose the �rst
solution

g(η, k) = C(k)k

(
1− i

kη

)
e−ikη, (228)

such that, for a time ηi as the in�nite past limit k|ηi| → ∞, or k|ηi| ≫ 1, we have

g(ηi, k) = C(k)ke−ikηi =
1√
2k
e−ikηi → C(k)k =

1√
2k
. (229)
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In this case, the solution is just

g(η, k) =
e−ikη

√
2k

(
1− i

kη

)
. (230)

Returning to the original �eld using (224)

h =
√
32πG

1

a

e−ikη

√
2k

(
1− i

kη

)
, (231)

the power spectrum is

Ph(η, k) =
16πG

k
H2

Λη
2

(
1 +

1

k2η2

)
, (232)

and then the dimensionless power spectrum, which is de�ned for an arbitrary random �eld G
as [23]

∆2
G(k) ≡

k3PG(k)

2π2
, (233)

for the tensor perturbation, considering that there are two polarization states, is [42]

∆2
h(η, k) ≡

d ⟨0| ĥ2ik |0⟩
d ln k

= 64πG
k3

2π2
|ĥ(η, k)|2 = 2H2

Λ

π2M2
pl

[1 + k2η2]. (234)

In the limit k|η| → 0, the scale-invariant dimensionless power spectrum is recovered

∆2
h(k) =

2

π2

H2
Λ

M2
pl

, (235)

which is an important prediction from in�ation [31].

4.2. Quasi de-Sitter background: General Relativity

4.2.1. Power Spectrum and Tensor Spectral Index

The case of a perfect de Sitter expansion is not realistic, hence, our approach here consists in
working with a quasi-de Sitter expansion of the type

Ḣ = −ϵH2
Λ, (236)

with ϵ the �rst slow roll parameter |ϵ| ≪ 1, hence, all calculations are done at �rst order in ϵ. In
this case, GR and TG obey di�erent GW equations, hence we split the discussion into two parts.

In this case, the scale factor is

a(η) =
1

HΛ

1

|η|1+ε
, where |η| = −η, (237)
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and the conformal Hubble factor is

H = −1 + ϵ

η
. (238)

Hence, using the same change of variable (224), the equation of GW in GR with a quasi-de
Sitter background becomes

g′′ +

(
k2 − 2 + 3ε

η2

)
g = 0. (239)

The solution to the equation (239) is in term of Hankel functions of the �rst and second kind

g(η, k) ⊂
{
C(k)

√
|η|H(1)

α (k|η|), C∗(k)
√
|η|H(2)

α (k|η|)
}
, α =

3

2
+ ϵ, (240)

with α given at �rst order in ϵ.

Using the asymptotic expansion of Hankel functions for large |z| and α real [44]

H(1)
α ∼

√
2

πz
ei(z−απ

2
−π

4 ), H(2)
α ∼

√
2

πz
e−i(z−απ

2
−π

4 ), (241)

we can choose the H
(1)
α solution in order to satisfy the initial condition

g(η, k) = C(k)
√
|η|H(1)

α (k|η|). (242)

Therefore, using (241) for the in�nite past k|η| → ∞ and matching with equation (226), the
integration constant is

C(k) =

√
π

2
eiα

π
2
+iπ

4 , (243)

and then the solution is simply

g(η, k) =

√
π

2
ei

απ
2
+iπ

4

√
|η|H(1)

α (k|η|). (244)

Returning to the original �eld h, the solution is

h =
√
32πG

1

a

√
π

2
ei

απ
2
+iπ

4

√
|η|H(1)

α (k|η|), (245)

and then the power spectrum is

Ph(η, k) =
π|η|
M2

pla
2

∣∣H(1)
α (k|η|)

∣∣2 . (246)

In the limit outside the horizon k|η| → 0, we can use that

H(1)
α (x) ∼

x→0
−iΓ(α)

π

(x
2

)−α

, (247)
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with Γ(z) the gamma function, to obtain the dimensionless power spectrum as

∆2
h(η, k) =

k3|η|Γ(α)2

π3M2
pla

2

(
k|η|
2

)−2α

, α =
3

2
+ ϵ, (248)

where have taken into account the two polarizations. Considering ϵ at �rst order in the scale
dependence and zero elsewhere, we obtain that

∆2
h(η, k) =

2

π2M2
pla

2|η|2
(k|η|)−2ϵ =

2

π2

H2
Λ

M2
pl

k−2ϵ, (249)

due to (237). The power spectrum is no longer scale-invariant, but depends on k as a power
law whose exponent is

nT = −2ϵ, (250)

which is the tensor spectral index and is expected to be small due to the smallness of ϵ.

4.2.2. The energy spectrum of GW

The energy spectrum, i.e. the gravitational-wave energy density per logarithmic wave number
interval is de�ned as [42]

ΩGW(η, k) =
1

ρcrit(η)

⟨0| ρGW(η) |0⟩
d ln k

, (251)

where the critical density is given by

ρcrit(η) =
3H2(η)

8πG
. (252)

In order to determine ρGW, we need to work with the action of the gravitational �eld as a �uid
in a FLRW background and compute its energy-momentum tensor (6). In the case of GR, the
action for GW is

S =

∫
d3xdη

√
−ḡ [ḡµν∂µhij∂νhij] , (253)

from where we can identify the Lagrangian density as

L = ḡµν∂µhij∂νhij. (254)

Since the energy-momentum tensor, considering the signature (+,−,−,−), is given by

Tµν =
2√
−ḡ

∂(L
√
−ḡ)

∂ḡµν
= 2

∂L
∂ḡµν

− ḡµνL, (255)

we obtain the energy-momentum tensor to be

Tµν = 2∂µhij∂νhij − ḡµν ḡ
αβ∂αhij∂βhij, (256)
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from where the gravitational-wave energy density is

ρGW = T 0
0 =

(h′ij)
2 + (∇hij)2

a(η)2
, (257)

where its vacuum expectation value is

⟨0| ρGW |0⟩ =
∫ ∞

0

k3

2π2

|h′|2 + k2|h|2

a2
dk

k
, (258)

such that the energy spectrum is just

ΩGW(η, k) =
8πG

3H(η)2
k3

2π2

|h′|2 + k2|h|2

a2
. (259)

According to [42], when the k-mode re-enters the horizon after in�ation, it satis�es

|h′(η, k)|2 = k2|h(η, k)|, (260)

and then, the energy spectrum is simply

ΩGW(η, k) =
1

12

k2∆2
h(η, k)

a2(η)H2(η)
, (261)

considering the canonically normalized tensor �elds.

This energy spectrum can be computed at di�erent times so we can analyse the possible mea-
surements at di�erent experiments, for instance, at today's time we can analyse the possible
density that LIGO or LISA may detect, or at a time of recombination such that CMB exper-
iments may provide information. However, in order to do such analysis, we need the transfer
function for the power spectrum, since equation (249) can only be detected at a time η∗ when
the k-mode re-enters the horizon after in�ation, and then it evolves after that time η∗. However,
such analysis lies beyond the scope of this work, since our main purpose is to study the power
spectrum of GW in TG and the physics after in�ation on this theory has been barely studied
[8][45].

4.3. Quasi-de Sitter background: Teleparallel Gravity

4.3.1. Power Spectrum and Tensor Spectral Index for several models

As stated before, in the quasi-de Sitter scenario, GW in TG satisfy a di�erent equation because
of the presence of the parameter ν. Since the gravitational wave equation depends on the func-
tional proposed, we will consider the following models that have been shown to be compatible
with late time cosmological observations [46][8].

1. Power law models. We will consider two models in f(T ) and f(T,B) in the form of a
power law model 9

f(T ) = −T + f0(−T )m, f(T,B) = −T + f0(−T )m + f1(−B)m. (262)

9Remember that δT = δB = 0, and hence T = T̄ and B̄ = B.

https://www.ligo.caltech.edu/
https://lisa.nasa.gov/
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Both cases provide the same derivative w.r.t the torsion scalar

fT = −1−mf0(−T )m−1, (263)

and hence produce the same equation for GW. Observe that the stability condition fT < 0
is achieved if sign(f0) = sign(m) 10 which from observations [47][46] imply m, f0 > 0,
m ̸= 1.

2. Mixed power law model. In this case, the f(T,B) is

f(T,B) = −T + f0(−T )m(−B)n, (264)

such that

fT = −1−mf0(−T )m−1(−B)n, (265)

and the stability condition fT < 0 is achieved by m, f0 > 0 according to observations [46].

3. Exponential model. In this case, the f(T ) model to consider is

f(T ) = −T + βTΛ(1− e−qT/TΛ), (266)

where we have de�ned TΛ = −6H2
Λ. This model recovers GR in the q → ∞ limit [48].

The derivative w.r.t the torsion scalar is

fT = −1 + βqe−qT/TΛ , (267)

where the stability condition fT < 0 requires βq < 0 which is ful�lled, since observations
requires q > 0 and β < 0 [49].

These models have been studied in literature from various points of views ranging from Noether
symmetries to precision cosmology and in�ation [50][51][52], showing that they are good can-
didate to explain the current accelerated expansion era [53][54].

Now, we are working in a quasi-de Sitter expansion, where all computations are done at �rst
order in ϵ, which allow us to unify the discussion of all the models into a single discussion by
computing the ν parameter as follows.
For the power law models of f(T ) and f(T,B) we have that

ν = − f02
m+13m(m− 1)mϵ ((ϵ+ 1)2H2

Λ(−η)2ϵ)m

f06mm(ϵ+ 1) ((ϵ+ 1)2H2
Λ(−η)2ϵ)m + 6(ϵ+ 1)3H2

Λ(−η)2ϵ
, (268)

which at �rst order in ϵ gives

ν = −f02
m+13m(m− 1)mϵ (H2

Λ)
m

f06mm (H2
Λ)

m + 6H2
Λ

= 2
f0m(1−m)|TΛ|m−1

1 +mf0|TΛ|m−1
ϵ, (269)

where we have de�ned TΛ = −6H2
Λ and BΛ = −18H2

Λ . If m = 0, 1 we obtain ν = 0 as expected
since those cases are just TEGR.

10A change on the signature would imply sign(f0) = −sign(m).
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For the mixed power law model of f(T,B) we have

ν = −
f0mϵ2

n+m3n+m−1
(

3n
3(ϵ+1)2(−η)2ϵ−ϵ

+ (m−1)(−η)−2ϵ

(ϵ+1)2

)
(H2

Λ (3(ϵ+ 1)2(−η)2ϵ − ϵ)) n ((ϵ+ 1)2H2
Λ(−η)2ϵ)m

(ϵ+ 1)H2
Λ (f0m6n+m−1 (H2

Λ (3(ϵ+ 1)2(−η)2ϵ − ϵ)) n ((ϵ+ 1)2H2
Λ(−η)2ϵ)m−1 + 1)

,

(270)

which at �rst order in ϵ is

ν = −f0mϵ2
n+m+132n+m(n+m− 1) (H2

Λ)
n+m

f0m2n+m32n+m (H2
Λ)

n+m + 6H2
Λ

= 2
f0m(1−m− n)|TΛ|m−1|BΛ|n

1 +mf0|TΛ|m−1|BΛ|n
ϵ. (271)

Finally, for the exponential f(T ) model we have

ν =
2βq2ϵ(ϵ+ 1)(−η)2ϵ

βq − eq(ϵ+1)2(−η)2ϵ
, (272)

which at �rst order in ϵ gives

ν =
2βq2ϵ

βq − eq
. (273)

We observe that all the studied models recover the following form of the ν parameter

ν = 2γϵ, (274)

where the form of γ depends on the model. Hence, our discussion can be performed with
ν = 2γϵ taking into account that γ takes the following form for each model

γ =



f0m(1−m)|TΛ|m−1

1+mf0|TΛ|m−1 , for the power law models,
f0m(1−m−n)|TΛ|m−1|BΛ|n

1+mf0|TΛ|m−1|BΛ|n
, for the mixed power law model,

βq2

βq−eq , for the exponential model.

(275)

It is possible to �nd γ for an arbitrary functional f(T,B), we will show this later on, however
we would like to point out that these particular models not only guarantee that fT < 0, but
the also provide fT < −1 which is something that will a�ect the peaks of the power spectrum
coming from tensor anisotropic stress sources.

Consider the ν parameter as a function of ϵ and expand at �rst order in Taylor

ν(ϵ) = ν(ϵ = 0) + ϵ∂ϵν|ϵ=0, (276)

where we have already argued in (218) that at ϵ = 0, f ′
T = 0 and then ν(ϵ = 0) = 0.

Under the same argument, we have

∂ϵν|ϵ=0 = − η

fTΛ

∂ϵf
′
T |ϵ=0, (277)
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where we introduce the notation of subscript Λ to indicate that the derivative is evaluated at
a pure de Sitter background TΛ = −6H2

Λ and BΛ = 3TΛ. A direct calculation using the chain
rule shows that

∂ϵν|ϵ=0 = 2

(
fTΛTΛ

|TΛ|+ fTΛBΛ
|BΛ|

fTΛ

)
, (278)

therefore, the γ parameter for a general f(T,B) functional is

γ =
fTΛTΛ

|TΛ|+ fTΛBΛ
|BΛ|

fTΛ

. (279)

However, in spite of the general form of γ for any functional has been obtained, the condition
fT < 0 needs to be ful�lled and only some particular models accomplish this according to
observational data, that is why we considered such particular models at the beginning of the
discussion.

With this in mind, the computation of the power spectrum goes as follows.

As in the case of GR, we need a change of variable that takes us from the equation (202) in
vacuum to an equation of an harmonic oscillator without damping e�ect, however, for TG, the
transformation (224) does not give the desired result, hence, we need to �nd the proper change
of variable for TG.

We propose the following ansatz

h(η, k) =
2

Mpl

f(η)g(η, k), (280)

thus, the GW equation in vacuum is

g′′f + g(f ′′ + [2 + ν]Hf ′ + k2f) + g′(2f ′ + [2 + ν]Hf) = 0. (281)

Hence, in order to remove the damping term, the f(η) function, must satisfy

2f ′ + [2 + ν]Hf = 0, (282)

whose solution is

f(η) =
1

a(η)
Exp

(
−1

2

∫
Hνdη

)
. (283)

We observe that the transformation does not depend on the model and if ν = 0 we recover the
transformation in GR (224).

The GW equation is then given by

g′′ + g

(
k2 +

f ′′

f
+ [2 + ν]Hf ′

f

)
= 0, (284)

such that, for the quasi-de Sitter background and ν = 2γϵ, we obtain at �rst order that

g′′ + g

(
k2 − 2 + 3(1 + γ)ϵ

η2

)
= 0. (285)
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We observe that the solutions is the same as the GR case but with a di�erent α parameter

g(η, k) ⊂
{
C(k)

√
|η|H(1)

α (k|η|), C∗(k)
√

|η|H(2)
α (k|η|)

}
, α =

3

2
+ ϵ(1 + γ), (286)

and the same integration constant. Thus the solution is the same form as GR

g(η, k) =

√
π

2
ei

απ
2
+iπ

4

√
|η|H(1)

α (k|η|). (287)

When returning the the original �eld we have a di�erent situation than GR, since

h =
2

Mpl

f(η)g(η, k), (288)

and

f(η) =
1

a(η)
Exp

(
−1

2

∫
Hνdη

)
= a(η)−(1+ϵγ), (289)

then the original �eld is

h =
√
32πGa−(1+ϵγ)

√
π

2
ei

απ
2
+iπ

4

√
|η|H(1)

α (k|η|). (290)

The power spectrum is then

Ph(η, k) = 32πGa−2(1+ϵγ)π

4
|η||H(1)

α (k|η|)|2, (291)

with the dimensionless power spectrum given by

∆2
h(η, k) =

k3|η|
πM2

pl

a−2(1+ϵγ)|H(1)
α (k|η|)|2. (292)

At large scales k|η| → 0 the dimensionless power spectrum is

∆2
h(η, k) =

k3|η|Γ(α)2

π3M2
pl

a−2(1+ϵγ)

(
k|η|
2

)−2α

, α =
3

2
+ ϵ(1 + γ) (293)

such that using (237), it simpli�es to

∆2
h(η, k) =

k3|η|Γ(α)2

π3M2
pl

H
2(1+γϵ)
Λ |η|2+2ϵ(1+γ)

(
k|η|
2

)−3−2ϵ(1+γ)

=
Γ(α)223+2ϵ(1+γ)

π3M2
pl

H
2(1+γϵ)
Λ k−2ϵ(1+γ),

(294)

and then, taking the k-dependence at �rst order in ϵ and zero order everywhere else, we obtain

∆2
h(η, k) =

2H2
Λ

π2M2
pl

k−2ϵ(1+γ), (295)

then, the tensor spectral index is

nT = −2ϵ(1 + γ), (296)



4.3 Quasi-de Sitter background: Teleparallel Gravity 39

with γ given by (275).

This is an important result since the tensor spectral index of TG allows a large dependency
on the scale for the tensor waves, and hence, if future detectors like LISA are able to measure
the primordial GW background and �nd a non-small tensor spectral index, it would directly
suggest that modi�cation of gravity are needed. Current estimations of the tensor spectral
index suggest it to be very small, however it is an inferred value from the tensor-to-scalar ratio
which highly depends on GR [24][55].

4.3.2. Energy density of GW in Teleparallel Gravity

In this case we proceed in a similar manner as GR, where we need to �nd ρGW in TG in order
to compute (251). We begin by considering the action of GW in TG

S =

∫
d3xdη(−a2fT )

[
h′ijh

′ij − ∂khij∂
khij

]
, (297)

that can be written in terms of the background tetrad as

S =

∫
d3xdηē(−fT )

[
Ēµ

AĒ
ν
Bη

AB∂µhij∂νhij
]
, (298)

where the Lagrangian density is

L = (−fT )
[
Ēµ

AĒ
ν
Bη

AB∂µhij∂νhij
]
. (299)

Then, the energy momentum tensor of GW is given by

T λ
ν = ēAν θ

λ
A, θλA =

1

ē

δ(ēL)
δēAλ

. (300)

In order to compute the energy-momentum tensor of GW in TG, we need to use the following
variational identity [5][8]

δĒµ
C

δēAλ
= −Ēλ

CĒ
µ
A, (301)

and remember that total derivatives vanish under the integral of the action. Hence, taking into
consideration the signature, we obtain

T λ
ν = 2(−fT )Ēλ

AĒ
µ
Bη

AB∂µhij∂νhij +
[
Ēµ

CĒ
α
Bη

CB∂µhij∂αhij
]
ēAν

1

ē

δ(ēfT )

δēAλ
. (302)

For the calculation of δ(ēfT )

δēAλ
, we will use the �eld equation of f(T,B). Observe that, neglecting

total derivatives [5]

W λ
A[f, e] ≡

δ(ef(T,B))

δeAλ
=− efBBE

λ
A − 2eEλ

A

◦
□fB + 2eEν

A

◦
∇λ

◦
∇νfB − 4e(∂µfB)S

µλ
A (303)

− 4∂µ(fT )eS
µλ
A − 4fT∂µ

(
eSµλ

A

)
+ 4efTT

α
µAS

λµ
α + efEλ

A,
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from where we can observe that

W λ
A[fT , ē] ≡

δ(ēfT (T,B))

δēAλ
=− ēfTBB̄Ē

λ
A − 2ēĒλ

A

◦
□fTB + 2ēĒν

A

◦

∇̄λ
◦

∇̄νfTB − 4ē(∂µfTB)S̄
µλ
A

(304)

− 4∂µ(fTT )ēS̄
µλ
A − 4fTT∂µ

(
ēS̄µλ

A

)
+ 4ēfTT T̄

α
µAS̄

λµ
α + ēfT Ē

λ
A,

therefore, the energy momentum tensor is

T λ
ν = 2(−fT )Ēλ

AĒ
µ
Bη

AB∂µhij∂νhij +
[
Ēµ

CĒ
α
Bη

CB∂µhij∂αhij
]
ēAν

1

ē
W λ

A[fT , ē]. (305)

Observe that in the TEGR limit fT = −1 we recover the same energy-momentum tensor of GR
(256) with mixed indices. Hence, for λ = ν = 0, we observe that

ēA0
1

ē
W 0

A[fT , ē] = −2κρ̄fT , (306)

where we introduce the notation

a2(η)κρ̄fT ≡ 3Hf ′
TB − 6H2(fTB + fTT )− 3fTBH′ − a2(η)

2
fT , (307)

to de�ne the background energy density given by the background �eld equations in f(T,B)
gravity (79), in conformal time, if the functional f(T,B) is replaced by fT (T,B). Thus, the
energy density of GW in TG is

ρTGGW =
2

a2(η)

[
−(h′ij)

2(fT + κρ̄fT ) + κρ̄fT (∇hij)2
]
. (308)

Again, if fT = −1, then κρ̄fT = 1
2
and the energy density is the same found in GR (257).

Analogously as the GR case, we can obtain the energy density by computing the vacuum
expectation of the energy density and imposing the same condition when k-mode re-enters the
horizon, from where we obtain

Ω(η, k) =
1

12

k2∆2
h(η, k)

a2(η)H2(η)
(−fT ), (309)

where it is trivial to see that fT = −1 recovers the same result as GR.

4.4. From the Bunch-Davies vacuum state to Quantum Coherent

States

4.4.1. About the polarization of primordial GW

Generally speaking, when GW are discussed in GR, the weak �eld limit is employed

gµν = ηµν + hµν , (310)

and then arriving to the simple wave equation

□h̄µν = −16πGTµν , (311)
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by de�ning the trace-reversed perturbation

h̄µν = hµν −
h

2
ηµν → h = −h̄. (312)

The transverse and traceless condition is imposed on both hµν and h̄µν , leaving only two prop-
agating degrees of freedom (DoF) +,× [56]. However, this is not the case for a general metric
theory of gravity, where there exists six possible polarizations given by the six electric compo-
nents of the Riemann tensor Ri0j0 [57] that, in the notation of Newman-Penrose, are encoded
into four functions

Ψ2 = −1

6
Rz0z0, Ψ3 =

1

2
(−Rx0z0 + iRy0z0), Ψ4 = Ry0y0 −Rx0x0 + 2iRx0y0, (313)

Φ22 = −(Rx0x0 +Ry0y0), (314)

where each function has an associated helicity s, namely, Ψ2 and Φ22 have s=0 (scalar DoF),
Ψ3 with s = ±1 (vector DoF) and Ψ4 has s = ±2 (tensor DoF). In the case of TG we have
two scenarios. If f(T ) gravity is the theory, then we still only have two polarizations +,×
[58]. If f(T,B) gravity is the theory, we have a similar situation to f(

◦
R) gravity, where the

trace-reversed perturbation is de�ned by

hµν = h̄µν −
h̄

2
ηµν +

fBB(0, 0)

fT (0, 0)
ηµνR

(1). (315)

We observe that both traces h and h̄ are not the same due to the presence of fBB(0,0)
fT (0,0)

R(1).

Although the transverse and traceless condition can be imposed over h̄µν in order to obtain
plane wave solutions, they cannot be imposed over hµν at the same time [56][59], hence, more
degrees of freedom appears in the perturbation, namely, the longitudinal and breathing modes
appear.

However, when discussing tensor perturbations around a FLRW background, we employ the
SVT decomposition and we consider our primordial GW to be the transverse and traceless part
of this decomposition, imposing exactly four constriction leaving two degrees of freedom, the
+,× and it is independent of the theory and only dependent on the SVT decomposition. And
since the pertrubation in GR is proportional to the symmetric part of the perturbation in TG,
the primordial GW have the same polarization in GR and TG, and that is what was meant
by having the same nature as GR, the tensor perturbation in both GR and TG is a massless
helicity-2 �eld with polarizations +,×.

4.4.2. Expectation value and Power Spectrum

In the previous section we consider the state of the universe to be the Bunch-Davies vacuum
state, however, since the physics before in�ation is unknown, we can assume a di�erent quan-
tum state for the universe. We will summarize the discussion found in [60] where the universe
is supposed to be in a quantum coherent state.

We begin by assuming that the initial state is a Schrödinger type coherent state as a consequence
of the pre-in�ationary dynamics, where some excitation is assumed in the beginning of the
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universe. For both polarization modes we de�ne their creation and annihilation operators as

b⊕ |n,m⟩ =
√
n |n− 1,m⟩ , b†⊕ |n,m⟩ =

√
n+ 1 |n+ 1,m⟩ , (316)

b⊗ |n,m⟩ =
√
m |n,m− 1⟩ , b†⊗ |n,m⟩ =

√
m+ 1 |n,m+ 1⟩ , (317)

where |n,m⟩ represents n gravitons with + polarization and m with × polarization. The total
number of gravitons is N = n + m. It is also possible to de�ne operators that create and
annihilate both polarizations as

A†
α,β = αb†⊗ + βb†⊗, (318)

Aα, β = α∗b⊗ + β∗b⊗, (319)

such that |α|2 and |β|2 represent the probability the create or annihilate a polarization mode,
hence, |β|2 + |α|2 = 1. The quantum state of a graviton of number N that consists of any
polarization mode is

|N , α, β⟩ = 1√
ν!

(
A†

α,β

)ν
|0⟩ , (320)

where the vacuum state is |0, α, β⟩ = |0⟩ . There is a degeneracy of ν + 1 gravitons in the
graviton state. The operator A†

α,β increase by unity the number of gravitons as

A†
α,β |N , α, β⟩ =

√
N + 1 |N + 1, α, β⟩ , Aα,β |N , α, β⟩ =

√
N |N − 1, α, β⟩ . (321)

Then, we de�ne the state of the universe to be a Schrödinger type coherent state as

Aα,β |Ψ, α, β⟩ = Ψ |Ψ, α, β⟩ , (322)

where Ψ = |Ψ|eiθ is a complex eigenvalue. The state |Ψ, α, β⟩ can be written in the |N , α, β⟩
basis as

|Ψ, α, β⟩ = e−
|Ψ|2
2

∞∑
N=0

ΨN
√
N !

|N , α, β⟩ = e−
|Ψ|2
2

+ΨA†
αβ |0⟩ (323)

= exp
(
ΨA†

αβ −Ψ∗Aαβ

)
|0⟩ ≡ D(Ψ) |0⟩ ,

where D(Ψ) is the displacement operator which satis�es

D(Ψ) = exp
(
αΨb†⊕ − α∗Ψ∗b⊗ + βΨb†⊗ − β∗Ψ∗b⊗

)
≡ D⊕(αΨ)D⊗(βΨ). (324)

Equation (323) implies that

b⊕ |Ψ, α, β⟩ = αΨ |Ψ, α, β⟩ , b⊗ |Ψ, α, β⟩ = βΨ |Ψ, α, β⟩ . (325)

This relations are needed in order to compute the power spectrum. If we decompose the tensor
�eld as (207) where the creation and annihilation operators, we obtain each operator for each
polarization as

hk⊕ = b⊕h(k, η) + b†⊕h
∗(k, η), (326)

hk⊗ = b⊗h(k, η) + b†⊗h
∗(k, η), (327)
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with h(k, η) the solution of the GW equation either in GR or TG. Hence, the power spectrum
for the plus mode is

⟨Ψ, α, η|hk⊕hk⊕ |Ψ, α, η⟩ = |h(η, k)|2 + 2|Ψ|2|α|2|h(η, k)|2 +Ψ2α∗2h(η, k)2 +Ψ∗2α2h∗(η, k)2,
(328)

for the cross mode is

⟨Ψ, α, η|hk⊗hk⊗ |Ψ, α, η⟩ = |h(η, k)|2 + 2|Ψ|2|β|2|h(η, k)|2 +Ψ2β∗2h(η, k)2 +Ψ∗2β2h∗(η, k)2,
(329)

and the power spectrum between both modes is

⟨Ψ, α, η|hk⊕hk⊗ |Ψ, α, η⟩ = |Ψ|2|h(η, k)|2(α∗β + β∗α) + Ψ2h(η, k)2αβ +Ψ∗2h∗(η, k)2α∗β∗.
(330)

Observe that this result is independent of the theory, and the distinction between theories
appear in the h(η, k) solutions. This results is based on the supposition of an excited quantum
state of the universe, however the mechanism for such excitation is not discussed, then to
formally obtain a power spectrum like this detected in an experiment we must specify the
concrete mechanism for such excitation, and then being able to specify the parameters α, β,Ψ.
It is possible to perform a similar analysis for di�erent states, but this lays outside the purpose
of this work.



44

5. Production of Gravitational Waves: Including tensor

anisotropic e�ects

5.1. Stochastic derivation of Gravitational Waves

In this section, we will discuss another way of dealing with perturbation that will allow us to
introduce e�ects of tensor anisotropic stress, like those coming from thermal �uctuations, into
the power spectrum. We will begin by discussing the GR case in a perfect de Sitter background,
we will follow the discussion in [36] and [61] for such endeavour.

Consider the tensor �eld h to be divided into two di�erent perturbations, a short wavelength
much more smaller than the horizon h<, and a long-wavelength part h>, such that

h(η,x) = h<(η,x) + h>(η,x). (331)

The short wavelength mode summarizes all vacuum �uctuations and its physical e�ects appear
through the phenomenology of the long wavelength perturbation, in this case, it will appear
through the power spectrum. The short wavelength mode represents high momentum modes
of the �eld k > H, i.e., wavelength much smaller than the horizon, this is achieved through a
�lter or window function , hence, our short wavelength mode is written as

h<(η,x) =

∫
d3k√
(2π)3

W (η, k)
[
h(η, k)eik·xa(k, λ) + h∗(η, k)e−ik·xa†(k, λ)

]
, (332)

where the window function is

W (η, k) = θ(k − εH), (333)

and ε is a suitable parameter that allows to achieve the purpose of h< to be a short wavelength
contribution.

In the case of GR, the equation of gravitational waves in vacuum for a perfect de Sitter back-
ground is

h′′ − 2

η
h′ −∇2h = 0, (334)

working in the physical space. By introducing the separation of the �eld (331) we obtain that

h′′> − 2

η
h′> −∇2h> = ϱQ, ϱQ = −

(
h′′< − 2

η
h′< −∇2h<

)
, (335)

with ϱQ called the quantum noise. Let us compute the quantum noise explicitly. Observe that
the only quantities that depend on the conformal time are W (η, k) and h(η, k), hence

ϱQ = −
∫

d3k√
(2π)3

[(
∂2η −

2

η
∂η + k2

)
(W (η, k)h(η, k))eik·xa(k, λ) (336)

+

(
∂2η −

2

η
∂η + k2

)
(W (η, k)h∗(η, k))e−ik·xa†(k, λ)

]
, (337)
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and observe that(
∂2η −

2

η
∂η + k2

)
W (η, k)h(η, k) =

(
W ′′ − 2

η
W ′
)
h+ 2W ′h′ +W

(
∂2η −

2

η
∂η + k2

)
h, (338)

but we require h(η, k) to satisfy the GW equation(
∂2η −

2

η
∂η + k2

)
h = 0, (339)

and then (
∂2η −

2

η
∂η + k2

)
W (η, k)h(η, k) =

(
W ′′ − 2

η
W ′
)
h+ 2W ′h′. (340)

Thus, de�ning

fk(η) =

(
W ′′ − 2

η
W ′
)
h+ 2W ′h′, (341)

the quantum noise becomes

ϱQ(η,x) = −
∫

d3k√
(2π)3

[
a(k, λ)fk(η)e

ik·x + a†(k, λ)f ∗
k (η)e

−ik·x] . (342)

With this obtained, the vacuum expectation value of the quantum noise is

⟨0| ϱQ(η1,x1)ϱQ(η2,x2) |0⟩ =
∫

d3k

(2π)3
eik·(x1−x2)fk(η1)f

∗
k (η2), (343)

or in Fourier space is

⟨0| ϱQ(η1,k)ϱQ(η2, q) |0⟩ = δD(k− q)fk(η1)f
∗
k (η2). (344)

In Fourier space, the equation (335) becomes(
∂2η −

2

η
∂η + k2

)
h> = ϱQ(η,k), (345)

which is a inhomogeneous version of the equation studied previously. In order to solve this
equation we will use the method of Green's function. The idea of Green's function is that we
have a di�erential operator L given by

L = α(x)
d2

dx2
+ β(x)

d

dx
+ γ(x), (346)

such that we require to solve the inhomogeneous equation

Ly(x) = f(x), (347)

under certain boundary conditions [62]. Green's function is then a function G(x; ξ) that satis�es

LG(x; ξ) = δD(x− ξ), (348)
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from where the solution of the inhomogeneous equation reads as

y(x) =

∫
G(x; ξ)f(ξ). (349)

The condition (348) implies that the Green's function must satisfy the following continuity
conditions

G(x; ξ)
∣∣
x=ξ+

= G(x; ξ)
∣∣
x=ξ−

,
∂G

∂x

∣∣∣
x=ξ+

− ∂G

∂x

∣∣∣
x=ξ−

=
1

α(ξ)
. (350)

In our case, we are interested in a retarded Green's function whose boundary condition reads
as G(x; ξ) = 0 if x < ξ. In order to construct such Green's function with the desired boundary
conditions, we propose that the Green's function is just a Heaviside step function times a linear
combination of the independent solutions of the homogeneous equation Ly1 = Ly2 = 0 as

G(x; ξ) = θ(x− ξ) [A(ξ)y1(x) +B(ξ)y2(ξ)] ≡ θ(x− ξ)L(x, ξ), (351)

such that LL(x, y) = 0. The continuity conditions (350) imply that

L(ξ, ξ) = 0, L′(ξ, ξ) =
1

α(ξ)
. (352)

Hence, we can see explicitly that

LG = α(x)δ′D(x− ξ)L(x, ξ) + 2α(x)δD(x− ξ)L′(x, ξ) + β(x)L(x, ξ). (353)

Now, in order to see that LG = δD(x− ξ), we need to show that∫
LGf(x)dx = f(ξ), (354)

since δD(x − ξ) only makes sense as a distribution. Using the following property of the Dirac
delta ∫

δ′(x)ϕ(x)dx = −
∫
δ(x)ϕ′(x)dx, (355)

such that, using the conditions (352) we observe∫
LGf(x)dx =

∫
α(x)δ′D(x− ξ)L(x, ξ)f(x)dx+ 2

∫
α(x)δD(x− ξ)L′(x, ξ)f(x)dx

+

∫
β(x)L(x, ξ)f(x)dx = −

∫
δD(x− ξ)(α(x)L(x, ξ)f(x))′dx

+ 2

∫
α(x)δD(x− ξ)L′(x, ξ)f(x)dx+

∫
β(x)L(x, ξ)f(x)dx

= −L(ξ, ξ)(α(x)f(x))′x=ξ − L′(ξ, ξ)α(ξ)f(ξ) + 2α(ξ)L′(ξ, ξ)f(ξ)

+ β(ξ)L(ξ, ξ)f(ξ) = α(ξ)L′(ξ, ξ)f(ξ) = f(ξ),

which shows that G(x; ξ) is indeed the required Green's function. Applying the boundary
conditions, we can �nd the coe�cients A(ξ) and B(ξ) to be

A(ξ) =
1

α(ξ)

y2(x)

y2(x)y′1(x)− y1(x)y′2(x)

∣∣∣
x=ξ

, B(ξ) = − 1

α(ξ)

y1(x)

y2(x)y′1(x)− y1(x)y′2(x)

∣∣∣
x=ξ

. (356)
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In the case of GW, we have the di�erential equation for GW(
∂2η −

2

η
∂η + k2

)
GR(η, ηi, k) = δ(η − ηi), (357)

we now take advantage of the solutions for the vacuum case where the solutions of the homo-
geneous equation have been obtained (227), however, we �rst need to perform the change of
variable (224) for h>, which leave us with the following equation(

∂2η −
2

η2
+ k2

)
g> = a(η)ϱ̂Q(η,k), (358)

where ϱ̂Q is the quantum noise computed with the canonically quantized tensor �elds. The,
the retarded Green's function satisfy(

∂2η −
2

η2
+ k2

)
GR(η, ηi, k) = δD(η − ηi), (359)

and hence, from the previous discussion of Green's functions and using the solutions of the
vacuum case (227), we obtain the Green's function to be

GR(η, ηi, k) =
θ(η − ηi)

ηηik3
Im
[
eik(η−ηi)(1− ikη)(1 + ikηi)

]
, (360)

and then the solution is simply

g>(η,k) =

∫ η

−∞
GR(η, ηi, k)a(ηi)ϱ̂Q(ηi,k)dηi, (361)

such that returning to the original �eld

h>(η,k) =
1

a(η)

∫ η

−∞
GR(η, ηi, k)a(ηi)ϱQ(ηi,k)dηi (362)

=

∫ η

−∞
GR(η, ηi, k)ϱQ(ηi,k)dηi,

where by using that a(η) = − 1
HΛη

, we can recover

GR(η, ηi, k) =
a(ηi)

a(η)
GR(η, ηi, k) =

θ(η − ηi)

η2i k
3

Im
[
eik(η−ηi)(1− ikη)(1 + ikηi)

]
, (363)

which is the Green's function found in [36].
Since the solution for the �eld is given in terms of the Green's function

h>(η,k) =

∫ η

−∞
GR(η, ηi, k)ϱQ(ηi,k)dηi, (364)

taking the equal time correlator, we get

⟨h>(η,k)h>(η,q)⟩ = δD(k+ q)

∣∣∣∣∫ η

−∞
GR(η, ηi, k)fk(ηi)dηi

∣∣∣∣2 , (365)
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where we have used the expectation value of the quantum noise in Fourier space (344). An
integration by parts shows that∫ η

−∞
dηiGR(η, ηi, k)fk(ηi) =

iHΛ√
2k3

(1 + ikη), (366)

and hence, considering the canonically normalized �elds, we have〈
ĥ>(η,k)ĥ>(η,q)

〉
= Ph(k) =

16πGH2
Λ

k3
(1 + k2η2), (367)

the same power spectrum obtained in the previous section. Therefore, this stochastic derivation
is completely analogous to the previously discussed method, however, the introduction of the
Green's function gives an enormous advantage of being able to introduce e�ects of possible
tensor anisotropic stress. In the following we will discuss the stochastic derivation in TG with
a general tensor anisotropic stress contribution to later on analyse di�erent sources of this
anisotropic stress.

5.2. Stochastic derivation in Teleparallel Gravity

Now, we will follow the stochastic derivation in TG with a quasi-de Sitter background, but we
will consider also the e�ects of tensor anisotropic stress into the calculation. Let us consider
the equation for Gw in TG with canonically normalized �elds

ĥ′′kj + [2 + ν]Hĥ′kj + k2ĥkj =
16πGa2

fT
πT
ij, (368)

and multiply both sides by ϵλ∗ij and sum over the spatial indices

(
∂2η + [2 + ν]H∂η + k2

)∑
ij

ϵλ∗ij ĥij =
16πGa2

fT

∑
ij

ϵλ∗ij π
T
ij, (369)

and now, observe that

∑
ij

ϵλ∗ij ĥij =
∑
ij

ϵλ∗ij
∑
λ′

ϵλ
′

ij ĥ
λ′
=
∑
λ′

(∑
ij

ϵλ
′

ij ϵ
λ∗
ij

)
ĥλ

′
=
∑
λ′

δλ
′λĥλ

′
= ĥλ,

therefore, the equation for GW becomes(
∂2η + [2 + ν]H∂η + k2

)
ĥλ(η,k) =

16πGa2

fT

∑
ij

ϵλ∗ij π
T
ij ≡ − 1

fT
ϱλT (η,k), (370)

ϱλT (η,k) is the tensor anisotropic noise.
We now perform the split into short and long wavelength modes (331) from where we obtain(

∂2η + [2 + ν]H∂η + k2
)
ĥλ>(η,k) = ϱ̂λQ(η,k)−

1

fT
ϱλT (η,k), (371)

and then proceed to make the change of variable

ĥλ>(η,k) = f(η)gλ>(η,k) with f(η) = a(η)−(1+γϵ), (372)



5.3 The contribution to the power spectrum from the anisotropic stress 49

the equation becomes(
∂2η + k2 − 2 + 3ϵ(1 + γ)

η2

)
gλ>(η,k) = a(η)1+γϵ

(
ϱ̂λQ(η,k)−

1

fT
ϱλT (η,k)

)
. (373)

Observe that in our case, the quantum noise is di�erent from GR as

ϱλQ(η,x) = −
∫

d3k√
(2π)3

[
a(k, λ)fλ,TG

k (η)eik·x + a†(k, λ)fλ,TG
k

∗
(η)e−ik·x

]
, (374)

with

fλ,TG
k (η) =

(
W ′′ − 2

η
[1 + ϵ(1 + γ)]W ′

)
hλ + 2W ′hλ

′
. (375)

Hence, in order to solve (373) we need to compute the retarded Green's function for TG in
a quasi-de Sitter background. We take advantage of the solutions in vacuum (286) together
with the previous discussion of retarded Green's function (356) to obtain the retarded Green's
function in TG given by

GR
TG(η, ηi, k) = θ(η − ηi)

π

2

√
|η|
√

|ηi| Im
[
H(1)

α (k|ηi|)H(2)
α (k|η|)

]
, α =

3

2
+ ϵ(1 + γ), (376)

then the solution of (373) is

gλ>(η,k) =

∫ η

−∞
dηia(ηi)

1+γϵGR
TG(η, ηi, k)ϱ̂

λ
Q(ηi,k)−

∫ η

−∞
dηi

a(ηi)
1+γϵ

fT (ηi)
GR
TG(η, ηi, k)ϱ

λ
T (ηi,k).

(377)

Therefore, returning to the ĥλ> �eld, we have

ĥλ>(η,k) =

∫ η

−∞
dηi

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)ϱ̂

λ
Q(ηi,k) (378)

−
∫ η

−∞
dηi

1

fT (ηi)

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)ϱ

λ
T (ηi,k).

This the general solution for the GW �eld in TG in a quasi-de Sitter background with the e�ects
of tensor anisotropic stress included. Observe that, if fT = −1, then γ = 0 and then we have
also obtained the general solution in GR for a quasi-de Sitter background. Now, we proceed to
compute the equal time correlator of this �eld in order to obtain the power spectrum.

5.3. The contribution to the power spectrum from the anisotropic

stress

5.3.1. General Case

Taking the equal time correlator of the general solution (378) we have
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〈
ĥλ>(η,k)ĥ

λ′
> (η, q)

〉
= (379)∫ η

−∞
dη1

[
a(η1)

a(η)

]1+γϵ

GR
TG(η, η1, k)

∫ η

−∞
dη2

[
a(η2)

a(η)

]1+γϵ

GR
TG(η, η2, k) ⟨0| ϱ̂λQ(η1,k)ϱ̂λ

′
Q (η2, q) |0⟩

+

∫ η

−∞
dη1

1

fT (η1)

[
a(η1)

a(η)

]1+γϵ

GR
TG(η, η1, k)

∫ η

−∞
dη2

1

fT (η2)

[
a(η2)

a(η)

]1+γϵ

GR
TG(η, η2, k)

⟨0| ϱλT (η1,k)ϱλ
′

T (η2, q) |0⟩ ,

and we recall the form of the autocorrelator of the quantum noise (344)

⟨0| ϱ̂λQ(η1,k)ϱ̂λ
′

Q (η2, q) |0⟩ = 32πGδD(k+ q)δλλ
′
fTGk (η1)f

TG
k

∗
(η2), (380)

where the factor 32πG is due to the canonical normalization. Therefore, taking into account
that there are two polarization states, the equal time correlator is

〈
ĥ>(η,k)ĥ>(η, q)

〉
= 64πGδD(k+ q)

∣∣∣∣∣
∫ η

−∞
dηi

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)f

TG
k (ηi)

∣∣∣∣∣
2

(381)

+

∫ η

−∞
dη1

1

fT (η1)

[
a(η1)

a(η)

]1+γϵ

GR
TG(η, η1, k)

∫ η

−∞
dη2

1

fT (η2)

[
a(η2)

a(η)

]1+γϵ

GR
TG(η, η2, k)∑

λ

⟨0| ϱλT (η1,k)ϱλT (η2, q) |0⟩ .

By construction, the �rst term is just the power spectrum from vacuum �uctuation 11

Ph(η, k) = 64πG

∣∣∣∣∣
∫ η

−∞
dηi

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)f

TG
k (ηi)

∣∣∣∣∣
2

=
2π|η|
M2

pl

a−2(1+ϵγ)|H(1)
α (k|η|)|2,

(382)

which has been previously computed, whereas we de�ne the second term as

δD(k− q)PT (η, k) =

∫ η

−∞
dη1

1

fT (η1)

[
a(η1)

a(η)

]1+γϵ

GR
TG(η, η1, k)

∫ η

−∞
dη2

1

fT (η2)

[
a(η2)

a(η)

]1+γϵ

GR
TG(η, η2, k)

(383)∑
λ

⟨0| ϱλT (η1,k)ϱλT (η2, q) |0⟩ ,

as the contribution from tensor anisotropic stress to the power spectrum, such that the total
power spectrum is simply

P (η, k) = Ph(η, k) + PT (η, k). (384)

For the sake of completeness, we now proceed to discuss the contribution PT (η, k) from di�erent
sources.

11This might not be clear at �rst sight, however a direct calculation shows this result explicitly taking into

account that |η| ≤ |η∗| with η∗ the time where the mode k re-enters the horizon.
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5.3.2. From Thermal Fluctuations

From equation (381), we observe that the tensor anisotropic stress contribution only a�ects
the power spectrum of the long wavelength tensor �eld. In this case, we will consider non-
zero values of the tensor anisotropic stress coming from thermal �uctuations. Hence, the use
of hydrodynamics as a long wavelength description of �uids is required [63]. The energy-
momentum tensor for a �uid in perfect equilibrium (thermal, chemical and mechanical) is just
the energy-momentum tensor of a perfect �uid [63].

T̄ µν = (ρ̄+ P̄ )ūµūν − P̄ ḡµν , (385)

with ρ̄ + P̄ = T̄ s̄ + µBnB the local enthalpy density. We will consider that the temperature
and four velocities are not constant but vary slowly, thus non-equilibrium correction δT µν and
occasional long-wavelength thermal �uctuations must be considered [64]

T µν = T̄ µν + δT µν + Sµν (386)

= T̄ µν − ηvθ
ργθνσWγσ − χ (θµγuν + θνγuµ)Qγ − ζθµνuγ;γ + Sµν ,

where we have de�ned the shear tensor Wαβ and the heat-�ow vector Qα as [65]

Wαβ = uα;β + uβ;α − 2

3
gµνu

γ
;γ, Qα = T;α + Tuα;βu

β, (387)

with ηv the shear viscosity, ζ the bulk viscosity and χ the heat conduction. The background
term T̄ µν contains the average values of the temperature and four velocity (T = T̄, v̄i = 0) with
δui = avi, the non-equilibrium correction δT µν the �rst order correction (T = δ, vi = δvi), and
Sµν local thermal �uctuations. The non-equilibrium correction have no projection onto tensor
modes [36], only the local thermal �uctuations will contribute to the tensor anisotropic stress.
It was found that [63][66] the correlator for the local thermal �uctuations is [36][64]

〈
Sij(X)Smn(Y )

〉
= 2T

[
ηv (δimδjn + δinδjm) +

(
ζ − 2ηv

3

)
δijδmn

]
δD(X − Y )√

−ḡ
, (388)

where the convention of raising and lowering spatial indices with the Kronecker delta has been
used. Hence, identifying the tensor anisotropic stress with the thermal �uctuations, we have∑

λ

⟨0| ϱλT (η1,k)ϱλT (η2, q) |0⟩ = (16πG)2a4
∑
λ

ϵλijϵ
λ∗
mn

〈
Sij(η1,k)S

mn(η2,q)
〉

(389)

= (16πG)2a4Πij,mn

〈
Sij(η1,k)S

mn(η2,q)
〉
,

where Πij,mn is the sum over helicities [23][29] given by

Πij,mn(k̂) = δimδjn + δinδjm − δijδmn + δij k̂mk̂n + δmnk̂ik̂j − δimk̂j k̂n − δjnk̂ik̂m − δink̂j k̂m − δjmk̂ik̂n

+ k̂ik̂j k̂mk̂n , (390)

and k̂i = ki/k the normalized wave vector. Therefore, considering that δimδim = δii = 3, it is
straightforward to see that

Πij,mn

〈
Sij(η1,k)S

mn(η2,q)
〉
=

8TηvδD(k− q)δD(η1 − η2)

a4
, (391)
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from where we have∫ η

−∞
dη1

1

fT (η1)

[
a(η1)

a(η)

]1+γϵ

GR
TG(η, η1, k)

∫ η

−∞
dη2

1

fT (η2)

[
a(η2)

a(η)

]1+γϵ

GR
TG(η, η2, k)∑

λ

⟨0| ϱλT (η1,k)ϱλT (η2, q) |0⟩ =
∫ η

−∞
dη1

1

fT (η1)

[
a(η1)

a(η)

]1+γϵ

GR
TG(η, η1, k)

∫ η

−∞
dη2

1

fT (η2)

[
a(η2)

a(η)

]1+γϵ

GR
TG(η, η2, k)(16πG)

2a4
8TηvδD(k− q)δD(η1 − η2)

a4

= δD(k− q)64πG

∫ η

−∞
dηi32πG

(
1

fT (ηi)

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)

)2

T (ηi)ην(ηi),

and thus the thermal contribution to the power spectrum in TG is

PT (η, k) = 64πG

∫ η

−∞
dηi32πG

(
1

fT (ηi)

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)

)2

T (ηi)ην(ηi). (392)

Then the dimensionless power spectrum is

∆2
T (η, k) =

64πGk3

2π2

∫ η

−∞
dηi32πG

(
1

fT (ηi)

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)

)2

T (ηi)ην(ηi). (393)

Observe that there is a lot of physics to be yet discussed. To be more speci�c, the value of
the shear viscosity has to be studied in the context of TG, since in the case of GR this value
depends on the damping coe�cient of a heat bath in thermal equilibrium with the in�aton �eld
[36][67]. Such e�ects has not yet been studied in the context of TG, so a more exact prediction
of the power spectrum will depend on physics of in�ation in TG and the possibility to generate
such thermal �uctuations. However, if such thermal e�ects can be fully studied in TG, equation
(393) will account its contribution to the power spectrum of primordial GW.

5.3.3. From cosmological phase transitions

Another possible source of GW is a �rst order phase transition of the relativistic matter in
the early universe [68]. Formally speaking, a �rst order phase transition is a discontinuity on
a phase boundary, loci of separate regions of analyticity, on the partial derivatives of the bulk
free energy per unit volume w.r.t the axes of the phase diagram [69]. Roughly speaking, it is
an abrupt change of a thermodynamic variable when a parameter of control is changed, like in
the liquid-gas transition of water when temperature is increased. If a �rst order phase transi-
tion occurred in the early universe, the mechanism is through bubble nucleation that generates
inhomogeneities and turbulence in the cosmic plasma sourcing the background of GW [70]. Let
us discuss the generation of GW in TG from a general phase transition with an associated
anisotropic stress, which is generated by colliding bubbles and turbulence in the cosmic plasma
[71].

Consider a tensor anisotropic stress split into two uncorrelated helicity modes

πij(η,k) = ϵ+ijπ+(η,k) + ϵ×ijπ×(η,k), (394)
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such that

⟨π+(η,k)π+(η′,q)⟩ = ⟨π×(η,k)π×(η′,q)⟩ = (2π)3δD(k− q)ρ2XPπ(η, η
′, k), (395)

⟨π+(η,k)π×(η′,q)⟩ = 0. (396)

Thus, the contribution to the power spectrum is

PT (η, k) =(64πG)2π3

∫ η

−∞
dη1

1

fT (η1)

[
a(η1)

a(η)

]1+γϵ

a2(η1)ρX(η1)G
R
TG(η, η1, k) (397)∫ η

−∞
dη2

1

fT (η2)

[
a(η2)

a(η)

]1+γϵ

a2(η2)ρX(η2)G
R
TG(η, η2, k)Pπ(η1, η2, k).

There exist di�erent possibilities of the unequal time correlator of the the anisotropic stress
Pπ(η1, η2, k), for instance, in the case of turbulence, it is possible to have a totally coherent
source such that

Pπ(η1, η2, k) =
√
Pπ(η1, η1, k)Pπ(η2, η2, k), (398)

it is also possible to have a source with �nite coherence time with

Pπ(η1, η2, k) =
√
Pπ(η1, η1, k)Pπ(η2, η2, k)θ(xc − |η| − η2|k), xc ∼ 1, (399)

or even a totally incoherent source

Pπ(η1, η2, k) = Pπ(η2, η2, k)∆η∗δ(η1 − η2), (400)

with ∆η∗ the time duration of the phase transition at T = T∗. It is also possible to determine
the unequal correlator in the case of bubble collision in terms of the bubble nucleation rate
and the number of bubbles [72]. The details of these cases lie beyond the scope of this work.
Among all the possibilities, a phase transition due to electroweak symmetry breaking is a highly
possible source of a �rst order phase transition, hence, the search for such symmetry breaking
and its contributions to the physics of the early universe in the context of TG has to be studied,
since in GR it appears as a peak on the spectrum of GW, in TG we should analyse in detail the
peak due to this symmetry breaking in order to distinguish both models phenomenologically.
In the context of a totally incoherent source, we have

PT = (64πG)2π3∆η∗

∫ η

−∞

(
dηi

1

fT (ηi)

[
a(ηi)

a(η)

]1+γϵ

a2(ηi)ρX(ηi)G
R
TG(η, ηi, k)Pπ(ηi, ηi, k)

)2

,

(401)

this will let us to easily discuss in the conclusion section the principal di�erences with the
vacuum and thermal �uctuation contributions.

5.3.4. From magnetic �elds

For this case, we will follow the discussion found in ref. [73]. Similar to turbulence and bubble
nucleation, primordial magnetic �elds can be generated from phase transitions and even from
second order phase transitions. The idea is to de�ne a correlation of the magnetic �eld over a
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certain scale. The most general way to achieve that is by introducing the following correlator
of the divergenceless magnetic �eld

⟨Bi(k)Bj(q)⟩ = (2π)3δD(k− q)PB(k), (402)

with

PB(k) =


CBk

2, 0 < k < L−1

CBL
α−2kα, L−1 < k < λ−1

0, otherwise,
(403)

with α < −3, L the correlation scale, λ the dissipation scale and CB an undetermined constant.
The idea is that once the magnetic �eld is generated, it is dissipated slowly unlike turbulence.
The correlation scale is time dependent as

L(η) = L∗

(
η

η∗

)γ

, (404)

with 0 < γ < 1, L∗ is the correlation length at η∗ when the magnetic �eld is created. The
dissipation scale also depends on time, however the exact form is irrelevant for the calculation.
Now, similar to the Loitsyansky's integral that measures the angular momentum of the �uid
and is a constant in time, the following conserved quantity is imposed〈

B2
〉
L5 = constant, (405)

which is equivalent to CB being constant [74]. Then, the comoving magnetic energy is given by

〈
B2
〉
(η) =

〈
B2
〉
(η∗)

(
η∗
η

)5γ

. (406)

Finally, the correlator of the comoving anisotropic stress for magnetic �elds is the one of a
coherent source [75]

⟨πij(η1,k)πmn(η2,q)⟩ =
√
πB(η1, k)

√
πB(η2, k)δD(k− q)Πij,mn, (407)

with

πB ≈ C2
B


A2

1L
−7, 0 < k < L−1

A2
2L

α−7kα, L−1 < k < λ−1

0, otherwise,
(408)

and A2
1 =

2α−4
7(2α+3)

, A2
2 =

α−2
5(2α+3)

. Therefore, we obtain∑
λ

⟨0| ϱλT (η1,k)ϱλT (η2, q) |0⟩ = 8a−4(16πG)2
√
πB(η1, k)

√
πB(η2, k)δD(k− q), (409)

and then the contribution to the power spectrum is

PT (η, k) =(64πG)(32πG)

∣∣∣∣∣
∫ η

−∞
dηi

a−2(ηi)

fT (ηi)

[
a(ηi)

a(η)

]1+γϵ

GR
TG(η, ηi, k)

√
πB(ηi, k)

∣∣∣∣∣
2

. (410)

Therefore, we can explore a pletora of possible sources of anisotropic stress in the study of
primordial GW in TG with the provided solution, as we have seen through the last examples.
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6. Conclusion

The results found in this work have several implications. Let us begin by considering the vac-
uum �uctuations in a perfect de Sitter background. In this case we have that the propagation
equations in GR and TG are exactly the same and then their associated GW �elds are the
same. This has the implication of having the same scale-invariant power spectrum (235) which
means that if the primordial GW background is directly measured with an almost zero scale
dependence, both GR and TG survive as a possible theory to describe such phenomenology.
If the background is a quasi de Sitter expansion driven by the �rst slow roll parameter, the
propagation equations for both theories are di�erent which has a direct observational implica-
tion on the tensor spectral indices. In the case of GR the tensor spectral index is nT = −2ϵ
whereas in TG is nT = −2ϵ(1+γ) with γ given by (275). The slow roll parameter is considered
to be small, this implies that in GR the tensor spectral index should be small, however, the γ
parameter appearing in the TG case allows for a high value of the tensor index. This implies
that, although a value near to zero of the tensor spectral index will not discard TG as a possible
gravitational theory, a high value of the tensor spectral index will strongly suggest the need of
an extensions of gravity, with TG being a potential explanation of such value as we can see
from the results of this thesis. Notice that in order to perform these observations, we need a
direct measurement of the tensor spectral index and not an inferred value from the tensor-to
scalar-ratio as done nowadays.

When tensor anisotropic stress is included, we have found the most general solution for GW in
TG, which serves a cornerstone for the TG community since this will allow for future studies of
primordial GW with any desired tensor anisotropic stress. From this solution, the associated
power spectrum from such anisotropies was obtained in (384), however, it is not possible to
easily obtain physics from that result but we can take the ϵ → 0 to see the physics behind
the solution, since, even if in the vacuum case GR and TG are indistinguishable, when tensor
anisotropies are present it is not the case. In this limit, the Green's function of TG found in
(376) recovers that of GR [67]

a(ηi)

a(η)
GR(η, ηi, k) =

θ(η − ηi)

η2i k
3

Im
[
eik(η−ηi)(1− ikη)(1 + ikηi)

]
≡ GR(η, ηi, k) , (411)

and then the power spectrum becomes

δD(k − q)PT (η, k) =
1

f 2
T

∫ η

−∞
dηiG

2
R(η, ηi, k)

∑
λ

⟨0| ϱλT (ηi,k)ϱλT (ηi, q) |0⟩ ≡
1

f 2
T

δD(k − q)PGR
T (η, k) ,

(412)

where we can identify the contribution in GR as

δD(k − q)PGR
T (η, k) =

∫ η

−∞
dηiG

2
R(η, ηi, k)

∑
λ

⟨0| ϱλT (ηi,k)ϱλT (ηi, q) |0⟩ . (413)

This is an import result on the cosmological phenomenology of TG. This result tells us that
the peaks of the power spectrum coming from tensor anisotropies in TG are suppressed, with
a suppression factor given by 1/f 2

T where the cosmological extended models in TG satisfy
fT < −1, compared with the same peaks in GR. We discussed some of these peaks in the thesis
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and their features are well known in GR, hence, if a measurement of the power spectrum of GW
and the peaks due to tensor anisotropies are obtained and they turn out to be suppressed with
respect to the amplitude expected in GR the need of extensions of gravity will be manifest and
TG extended models provide an explanation for this suppression and would pose as the possible
successful gravitational theory. If the peaks are ampli�ed, TG is also an explanation for that
but we need to look for new cosmological viable models in TG that satisfying −1 < fT < 0
compared to those studied in the literature and discussed in subsection 4.3. Finally, working
with the same ϵ → 0 limit, the energy density of GW that was found in (309), and as we
have discussed, the cosmological viable extended models in TG, at least the ones discussed in
subsection 4.3, are in the form fT = −1 + FT with FT < 0, from where it is possible to notice
that

Ω(η, k) =
1

12

k2∆2
h(η, k)

a2(η)H2(η)
− FT

1

12

k2∆2
h(η, k)

a2(η)H2(η)
≡ ΩGR + ΩFT

, (414)

from where we have de�ned the energy density of GR and from the extensions as

ΩGR ≡ 1

12

k2∆2
h(η, k)

a2(η)H2(η)
, ΩFT

= −FT
1

12

k2∆2
h(η, k)

a2(η)H2(η)
, (415)

and since FT < 0, we have that

Ω(η, k) = ΩGR + ΩFT
> ΩGR . (416)

The latter inequality tells us the the amount of energy density of GW that we can expect from
TG extended models is greater than that of GR providing another important prediction for
extended models of TG.

Therefore, we found that Teleparallel Gravity in its TEGR formulation has the same strength
and shortcoming as GR, hence, has the same accuracy in explaining the current data as GR.
For extended models, it has been shown that those models are capable of solving some of the
issues of GR about the late universe. However, few studies have been done in the context of
the early universe, that is why the focus of this thesis is to explore the primordial universe. In
the latter context, we have found so far important observational prediction of the primordial
background of GW in TG and we have discussed how a direct measurement of such background
can help us to see if TG is a better gravitational theory than GR in explaining the phenomena
of the early universe, particularly, by looking into the power spectrum and the energy density.
Finally, these results open the TG community to explore the early universe using GW in the
light of future GW detectors, like LISA or the Einstein Telescope and providing the general
solution of such waves.

https://lisa.nasa.gov/
https://www.et-gw.eu
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A. Spin connection and inertial e�ects

When discussing the geometrical setup of TG, we introduced a geometrical object called the spin
connection, which is a di�erential 1-form assuming values on the Lie Algebra of the Lorentz
Group. The idea of introducing such connection is to construct a theory which is covariant
under the translation group and locally invariant under Lorentz. Let us begin by considering
an in�nitesimal transformation of coordinates

xA −→ xA = x′A + ϵA(xµ), (417)

from where a scalar �eld ϕ transforms as

ϕ(xA) −→ ϕ(x′A) = ϕ(xA − ϵA), (418)

and the in�nitesimal di�erence is

δϕ ≡ ϕ(xA)− ϕ(x′A) = ϵA∂Aϕ. (419)

However, we should expect a similar transformation for any Lorentz scalar �eld, particularly
for the partial derivative ∂µϕ, but this is not the case, since the in�nitesimal di�erence is given
by

δ(∂µϕ) = ϵA∂A∂µϕ+ (∂Aϕ)(∂µϵ
A). (420)

This justi�es the introduction of a translational potential

Bµ = BA
µ PA, (421)

which is a 1-form assuming values on the Lie algebra of the translation group, such that its
in�nitesimal di�erence is

δBA
µ = −∂µϵA, (422)

and the derivative is changed by

∂µ → eµ = ∂µ +BA
µ ∂A. (423)

This new derivative transform covariantly w.r.t to translational change of coordinates

δ(eµϕ) = ϵA∂Aeµϕ. (424)

The presence of this covariant derivative de�nes a non-trivial tetrad �eld given by

eµ = eAµ∂A → eAµ = ∂µx
A +BA

µ, (425)

where BA
µ ̸= ∂µϵ

A accounts for the non-triviality of the tetrad.

Now, we require the theory to be invariant under local Lorentz transformations, hence, we
perform a local Lorentz transformation on the Minkowski coordinates and consequently also on
the tetrad �eld

xA −→ ΛA
Bx

B, eAµ = ΛA
Be

B
µ , (426)
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however, from eq. (425) we see that this transformation implies

ΛA
Be

B
µ = ∂µ(Λ

A
Bx

B) + ΛA
BB

B
µ, (427)

from where isolating the tetrad �eld we obtain

eAµ = ∂µx
A +BA

µ + ωA
Bµx

B, (428)

from where

ωA
Bµ = ΛA

D∂µΛ
D
B, (429)

is the purely inertial spin connection introduced previously. This is a very particular spin
connection, to see exactly what type of connection it is consider the general transformation of
the spin connection w.r.t to a Lorentz transformation [15]

ωA
Bµ

′
(x) = ΛA

C(x)ω
C
Dµ(x)Λ

D
B (x) + ΛA

D(x)∂µΛ
D
B(x), (430)

hence, the purely inertial spin connection corresponds to a zero spin connection in a general in-
ertial frame, thus the spin connection represents all the inertial e�ects on the arbitrary Lorentz
frame. The Weitzenböck gauge corresponds to working in the particular Lorentz frame Λ = 0.
The presence of the spin connection causes TG to be completely equivalent to GR even in
the presence of spinor �eld, in the sense that any particle, spinless or not, follows the same
trajectories as in GR [76][77]. In the absence of the spin connection, GR and TG are only
equivalent for spinless particles. Hence, the spin connection and the formulation of TG allows
us to successfully include spinors to a gravitational theory.

The presence of the spin connection not only a�ects the trajectories of test particles but also
the �eld equations themselves. When computing the �eld equations, we �xed the spin con-
nection to zero and made variations of the action w.r.t the tetrad �eld, but, if we consider
a non-zero purely inertial spin connection we need to also perform variations of the action
w.r.t the spin connection. Performing variations w.r.t to the purely inertial spin connection,
parametrised by the Lorentz transformation Λ does not impose any new �eld equations [17],
since such variation is a surface term on the action. Hence, whether or not a purely spin con-
nection is explicitly included in TEGR is a matter of preference in the context of �eld equations.

If we go beyond TEGR and work with extended models, f(T ) or f(T,B) gravity in our case, the
presence of the spin connection a total di�erent story. When performing variation of the action
w.r.t the spin connection it will not act as a surface term inside the action but reduces to the
antisymmetric part of the �eld equations [78][79]. However, the antisymmetric part of the �eld
equations do not provide new dynamics but rather a constriction of the spin connection, hence,
if we manage to �nd a spin connection that makes the antisymmetric part of �eld equations
to vanish we are only left with equations coming from variations w.r.t to the tetrad. When
the this issue �rst arose our understanding of the problem was to try to �nd a pair tetrad-spin
connection that make the antisymmetric part of the �eld equation zero, leaving an entire dis-
cussion of good and bad tetrads when the spin connection was chosen in Weitzenböck gauge
[80]. Nowadays the discussion is quite di�erent, the choose of a vanishing or non-vanishing
spin connection is up to preference since both symmetric and antisymmetric parts of �eld equa-
tions need to be solved simultaneously even if the background symmetry is displayed for both
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the tetrad and spin connection �eld. For instance, in the case of spherical symmetry, even if
we choose a tetrad and a non-vanishing spin connection that exhibit spherical symmetry, we
will always have two non-vanishing antisymmetric part of the �eld equations [11]. The case
of cosmological symmetry implies a general result, which states that any rank-2 tensor with
cosmological symmetry, generated by the vector �elds generator of translations or rotations,
vanishes, particularly the antisymmetric part of the �eld equations. Then, independently of the
theory, the antisymmetric part of the �eld equations of a theory with cosmological symmetry
will vanish, hence, we can always work with the Weitzenböck gauge and only focus to solve
the symmetric part of the �eld equations when working in a background with cosmological
symmetry.

If we break the cosmological symmetry, as in the case of linear perturbation theory, we only
need to perturb the tetrad �eld and keep the spin connection as in the background scenario
since we still want to include inertial e�ects through the spin connection. Nevertheless, we will
require to solve both the symmetric and antisymmetric part of the �eld equation, since they
will not vanish due to the breaking of the cosmological symmetry. In the case of a transverse
and traceless tensor perturbation, shown in eq. (200), the antisymmetric part of the perturbed
�eld equation vanishes due to the symmetry of hij, however, the same result does not hold for
scalar perturbations, as we show in the next section.
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B. Gauge problem on Teleparallel Gravity

In this appendix we will discuss the gauge problem in the context of TG. We will follow a
similar discussion as in the GR case. Let us consider an in�nitesimal change of the background
coordinates

x → x̃ = x+ ξ, (431)

such that the tetrad �elds will transform as

eAµ(x) =
∂x̃σ

∂xµ
ẽAσ(x̃) =

(
δσµ + ∂µξ

σ
) (
ẽAσ(x) + ξα∂αẽ

A
σ(x)

)
, (432)

from where

eAµ(x) = ẽAµ(x) + ξα∂αē
A
µ(x) + (∂µξ

σ) ēAσ(x), (433)

where we have already considered only �rst order contributions. Now, we will consider the
most general tetrad already in the SVT decomposition [30][81]

eAµ = ēAµ + δeAµ, (434)

with the background tetrad ēAµ given by eq. (74) and the perturbed tetrad is

δeAµ = a(η)

(
ψ ∂iw + wi

∂iω + ωi −ϕδij + ∂⟨i∂j⟩h+ ϵijk(∂
kσ + σk) + ∂iEj +

1
2
hij,

)
(435)

with

∂⟨i∂j⟩h =

(
∂i∂j −

1

3
δij∇2

)
h, (436)

and from where the metric perturbation is

δgµν = 2τ(µν) = a2(η)

(
2ψ ∂i(w − ω) + wi − ωi

∂i(w − ω) + wi − ωi −2
[
−ϕδij + ∂⟨i∂j⟩h+ ∂(iEj) +

1
2
hij
]) (437)

which is the same perturbation as in eq. (101) in the SVT decomposition [31]. From this,
considering the SVT transformation of the gauge �eld (122) the gauge transformation of the
perturbed quantities is

ψ → ψ̃ = ψ −Hα− α′, w → w̃ = w − α, w̃i = wi, ω → ω̃ = ω − β′, (438)

ωi → ω̃i = ωi − ϵi
′, ϕ→ ϕ̃ = ϕ+Hα +

1

3
∇2β, h→ h̃ = h− β, (439)

Ej → Ẽj = Ej − ϵj, h̃ij = hij, σ̃ = σ, σ̃k = σk. (440)

Observe that these transformations are the same as in the GR case. Fro, these transformations,
we obtain the same Bardeen potentials as in the GR case

Ψ = ψ +
1

a
[(ω − w − h′)a]

′
, Φ = ϕ−H(ω − w − h′) +

1

3
∇2h, (441)
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the same vector potential

Wi = ωi − wi − E ′
i, (442)

and the tensor perturbation are also gauge invariant. Once the gauge invariant potentials have
been introduced in TG, we are able to choose a particular gauge to work the scalar and vector
perturbations.

In the case of scalar perturbations, we can work with the Newtonian gauge such that w = ω and
h = 0, and then, we obtain the components of the perturbed Einstein tensor in f(T ) gravity
for scalar perturbations given by

δG0
0

2
= −a−2fT∇2ψ − 12a−4H2fTT∇2ζ + 3a−2H(fT − 12a−2H2fTT ) (ψ

′ +Hϕ) , (443)

δG0
i

2
= −a−1(fT − 12a−2fTTH2)(∂iψ

′ +H∂iϕ) + 4FTTHa−3∂i∇2ζ (444)

δGi
0

2
= a−3fT [∂i(ψ

′ +Hϕ)]− 12a−4fTTH
[
a−1H

]′
∂iψ, (445)

δGi
j
(i=j)

2
= a−2fT

[
ϕ(2a(a−1H)′ + 3H2) +

1

2
(∇2 − ∂2j )(ϕ− ψ) +Hϕ′ + 3Hψ′ + a(a−1ψ′)′

]
(446)

+ a−4fTT

[
−ϕ(36H4 + 60a(a−1H)′H2)− 12H3ϕ′ − 36H(a(a−1H)′ +H2)ψ′ − 12aH2(a−1ψ′)′

−10a(a−1H)′∇2ζ − 4H2∇2ζ + 6a(a−1H)′∂2j ζ − 4H∇2ζ ′
]

(447)

+ 12a−5fTTTH2(a−1H)′
[
12H(ψ′ +Hϕ)− 4∇2ζ

]
,

1

3
Tr

(
δGi

j

2

)
= a−2fT

[
ϕ(2a(a−1H)′ + 3H2) +

1

3
∇2(ϕ− ψ) +Hϕ′ + 3Hψ′ + a(a−1ψ)′

]
(448)

+ fTTa
−4
[
−ϕ(36H4 + 60a(a−1H)′H2)− 12H3ϕ′ − 36H(a(a−1H)′ +H2)ψ′ − 12aH2(a−1ψ′)′

−(8a(a−1H)′ + 4H2)∇2ζ − 4H∇2ζ ′
]
+ 12a−5fTTT (a

−1H)′H2
[
12H(ψ′ +Hϕ)− 4∇2ζ

]
,

δGi
j
(i ̸=j)

2
= a−2

[
12fTT Ḣ∂i∂jζ + fT∂i∂j(ψ − ϕ)

]
, (449)

where we have de�ned the parameter ζ = Hω. To obtain the perturbed �eld equations, we just
need to match these perturbations with perturbation of the energy-momentum tensor, which
result in the same equations reported in ref. [82].

In the case of f(T,B) gravity, we have the following perturbed Einstein tensor for scalar per-
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turbations

δG0
0 = −1

2
fT δT +

(
B̄

2
− ∇2

a2

)
δfB +

3HδfB ′

a2
− 6H2δfT

a2
+

2HfT
a2

∇2ω +
ψ′

a2
(12HfT − 3f ′

B)

(450)

− 2

a2
fT∇2ψ +

6Hϕ
a2

(2HfT − f ′
B) ,

δG0
i =

1

a2
[H∂i(3δfB + 2δfT )− 2fT∂i(Hϕ+ ψ′) + ∂i(f

′
Bϕ− δf ′

B)] , (451)

δGi
0 =

1

a2
[−H∂iδfB + 2fT∂i(Hϕ+ ψ′) + ∂i(−f ′

Bϕ+ 2(f ′
B + f ′

T )∂iψ + δf ′
B)] ,

(452)

δGi
j

(i ̸=j)
=

1

a2
∂i∂j [fT (ψ − ϕ)− ω(f ′

B + f ′
T ) + δfB] , (453)

1

3
Tr
[
δGi

j

(i=j)
]
= −1

2
fT δT + δfB

(
B̄

2
− 2

3a2
∇2

)
− 2

δfT
a2
(
H′ + 2H2

)
+

1

a2
δfB

′′ − 2

a2
HδfT ′ − 1

a2
Hf ′

B

(454)

+
1

a2

[
ft

(
4(2H2 +H′) +

2

3
∇2

)
+ 2H(f ′

B + 2f ′
T )− 2f

′′

B

]
ϕ+

2∇2ω

3a2
(3fTH + f ′

T + f ′
B)

− 2fT
3a2

∇2ψ +
ϕ′

a2
(2HfT − f ′

B) +
2ψ′

a2
(5HfT + f ′

T ) +
2fT
a2

ψ
′′
,

with

δfT = fBT δT + fTBδB, δfB = fBT δT + fBBδB, (455)

and the perturbation of the boundary term and torsion scalar are

δB =
2

a2
[
6ϕ(2H2 +H′) + 2H∇2ω + 3Hϕ′ + 15Hψ′ +∇2(ϕ− 2ψ)

]
, δT =

4H
a2
(
3Hϕ+∇2ω + 3ψ′) ,

(456)

respectively. These equations are completely equivalent to those found in ref. [30]. We can
see that the antisymmetric part of the �eld equations odes not vanish as in the tensor case,
hence, both the symmetric and antisymmetric parts need to be solved simultaneously. We
will not discuss the case of vector perturbation, however, it is worth mentioning that vector
perturbations require the same stability condition fT < 0 as in the case of GW, and is a similar
result in the case of f(R) where the vector perturbation are not propagating [30].
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