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The purpose of studying economics is not to acquire a set of

ready-made answers to economic questions, but to learn how to

avoid being deceived by economists.

Joan Robinson, Marx, Marshall and Keynes

Hay dos panes. Usted se come dos. Yo ninguno. Consumo

promedio: un pan por persona.

Nicanor Parra



Contents

1 Introduction 5

2 Theoretical Framework and Data 13

2.1 Hurst exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Ordinal Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Analysis of Efficiency in High-Frequency Digital Markets Using the Hurst Exponent 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Ordinal Synchronization and Typical States in High-Frequency Digital Markets 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Individual Analysis of Stocks through Ordinal Patterns . . . . . . . . . . . . . . . . . . 39

4.3 Collective Analysis of Stocks through Transcript Synchronicity Dynamical Networks . . 41

4.4 Clustering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 A Markov Model for State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3



4

Appendices 59

4.A Correlation Matrixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.B Multiscale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusions 63



Chapter 1

Introduction

Capital by its nature drives beyond every spatial barrier. Thus the

creation of the physical conditions of exchange – of the means of

communication and transport – the annihilation of space by time –

becomes an extraordinary necessity for it.

Karl Marx, Grundrisse

Speed is now taking primacy over quantity, as a factor in wealth.

The hidden face of the maintenance of accumulation is the

acceleration of circulation. The function of the control devices is

thus to maximize the volume of commodity flows by minimizing the

events, obstacles, and accidents that would slow them down.

Cybernetic capitalism tends to abolish time itself, to maximize fluid

circulation to the maximum: the speed of light. Such is already the

case for certain financial transactions. The categories of “real time”

of “just in time”, show clearly this hatred of duration. For this very

reason, time is our ally.

Tiqqun, The Cybernetic Hypothesis

Durante mucho tiempo los mercados financieros modernos han fascinado tanto a investigadores como

al público en general, desde los esfuerzos in situ para comprender las primeras burbujas financieras

modernas [1] hasta los estudios sociológicos, económicos y técnicos de su estructura y función social

5
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[2][3]. Han sido blanco de los elogios más entusiastas, como heraldos del desarrollo económico y la

innovación [4], ası́ como de la censura más severa, como un juego psicológico, especulativo y, dejado

a sus anchas, socialmente dañino [5]; esto no deberı́a de sorprendernos, toda vez que los últimos dos

siglos han atestiguado su surgimiento como una de las caracterı́sticas más destacadas de nuestra sociedad

global contemporánea [6], tal como los aún sensibles recuerdos y consecuencias que dejó tras de sı́ la

crisis financiera mundial de 2008 se encargan de recordarnos [7]. Más aún, los mercados financieros y su

fauna sin escrúpulos han penetrado tan profundamente en nuestra imaginación como para convertirse en

protagonistas de un género cinematográfico en crecimiento que abarca pelı́culas y documentales como

Wall Street Wolf, The Big Short e Inside Job.

Con todo, es necesario recuperar una y otra vez una idea que, por obvia que pueda parecer, ha sido

sorprendentemente negligida por muchos famosos teóricos del mercado [8]: los mercados financieros

son, como cualquier otra institución social, de carácter histórico [9]. Cambian con el tiempo, tanto social

como técnicamente. Es por eso que es inútil proponer teorı́as globales y ahistóricas de los mercados

financieros. Se hace en cambio necesario continuar renovando nuestra comprensión de ellos a medida

que evolucionan.

En este trabajo nos centraremos en una encarnación histórica muy especı́fica de los mercados financieros:

los contemporáneos y ya ubicuos Mercados Digitales de Alta Frecuencia. Desde los años setenta y

principalmente desde los noventa, los mercados financieros han experimentado cambios importante en

su estructura técnica y social: cada vez más, son algoritmos los que toman decisiones sobre qué, cuándo,

cómo y cuánto comprar y vender en el mercado, todo esto en una escala temporal de milisegundos. En

palabras de un historiador de tales transformaciones: “En los mercados financieros actuales, la lógica

no es la de coordinar las interacciones interpersonales sino la de administrar las señales electrónicas

puntuadas que codifican las órdenes de masas de inversionistas anónimos. El arte de las finanzas ya no

se trata de miradas y señales manuales, sino de jugar con algoritmos ágiles, procesadores informáticos

sofisticados, enrutadores pirateados y sistemas de telecomunicaciones especializados que son los cimientos

materiales de la bolsa de valores contemporánea. A través de la tecnologı́a, los pisos comerciales se

convirtieron en una amalgama de cables y software; y a través de la automatización, las bulliciosas

multitudes humanas se transformaron en colas electrónicas silenciosas y veloces” [10]. Nacidos en

la encrucijada del desarrollo tecnológico, la búsqueda de ganancias, la opacidad institucionalizada, la

fragmentación espacial y los cambios polı́ticos, los Mercados Digitales de Alta Frecuencia y la veloz

carrera armamentista que estos provocan son una caracterı́stica fundamental, aunque relativamente reciente

y no bien entendida, de la vida social contemporánea, cuyo desacoplamiento de los tiempos humanos y de

comercio-a-la-velocidad-de-la-luz [11] conlleva consecuencias impredecibles y potencialmente catastróficas,
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como quedó demostrado con el llamado Flash Crash del 6 de mayo de 2010 cuando, sin motivo aparente,

el mercado cayó seiscientos puntos en pocos minutos, recuperando su estado anterior en solo unos

minutos más. El dominio de los algoritmos ha reforzado la opacidad estructural de los mercados [12][13],

al igual que en muchas otras áreas de la vida social contemporánea en las que la inteligencia artificial

juega un papel importante [14]. Como se narra en [13], tan recientemente como en 2010 esta opacidad

habı́a impedido que muchos actores del mercado tuvieran una idea adecuada de lo que ocurrı́a frente a

ellos.

Por supuesto, una institución tecnosocial tan compleja merece ser y ha sido estudiada desde muchos

puntos de vista diferentes por economistas, antropólogos, historiadores, estadı́sticos y, quizás sorprendentemente,

fı́sicos. Aunque la historia de la relación entre Fı́sica y Finanzas se remonta al menos al trabajo pionero

de L. Bachelier [15] publicado hace más de un siglo, e incluso antes [16], no fue sino en las últimas

décadas que se estableció un creciente campo del conocimiento que aplica herramientas de la Fı́sica, y

particularmente de la Mecánica Estadı́stica, para estudiar fenómenos económicos a través del estudio

de series de tiempo [17][18][19]. Para citar solo algunos ejemplos recientes, en [20] y [21] los autores

aplican la teorı́a de matrices aleatorias para estudiar correlaciones en mercados financieros con el fin

de describir varios estados del mercado y transiciones entre estados, mientras que en [22] se presenta

un modelo microscópico para transacciones de alta frecuencia realizadas automáticamente, utilizando

herramientas de la teorı́a cinética de los gases. Nuestro trabajo se enmarca en esa tradición, conocida con

el nombre de Econofı́sica.

Ası́, abordaremos los Mercados Digitales de Alta Frecuencia desde un punto de vista matemático,

aplicando un conjunto de herramientas estadı́sticas y analı́ticas provenientes de diferentes campos, desde

la Teorı́a de Sistemas Complejos hasta el Aprendizaje Estadı́stico No Supervisado, al estudio de nuestro

conjunto de datos particular, que cubre un perı́odo de un año de transacciones totalmente automatizadas

en los mercados de Estados Unidos y México, del 7 de marzo de 2018 al 7 de marzo de 2018.

Nos ocuparemos de dos cuestiones especı́ficas. Primero abordaremos el clásico tema de la eficiencia

del mercado. La Hipótesis del Mercado Eficiente (HME), un dogma de la economı́a ortodoxa, postula la

incorporación inmediata de toda la información relevante para la formación de los precios a través de la

interacción en los mercados de agentes económicos altamente racionales, lo que resulta en un “mercado

justo” basado en precios en principio impredecibles. Para los mercados clásicos, existe amplia evidencia

en contra de la eficiencia, comenzando con el trabajo pionero de Mandelbrot [23]. Sin embargo, en los

Mercados Digitales de Alta Frecuencia contemporáneos, para cuyos agentes económicos “verdaderamente

racionales” (esto es, los algoritmos) se podrı́a esperar que se cumpliera la HME, la evidencia a favor o
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en contra es menos abundante. En este trabajo ofreceremos evidencia estadı́stica clara contra la HME

en Mercados Digitales de Alta Frecuencia a través del Análisis del Exponente de Hurst de acciones

individuales, discutiendo también algunas consideraciones metodológicas sobre su validación estadı́stica.

Una vez establecida la ineficiencia para nuestros datos, profundizaremos en nuestro entendimiento

de los Mercados Digitales de Alta Frecuencia al estudiarlos de forma colectiva, como una red dinámica,

utilizando para ello herramientas como patrones ordinales y análisis de agrupamiento (clustering), avanzando

ası́ en la dirección señalada por los recientes estudios sobre detección de estados tı́picos del mercado, bien

ejemplificados en [24], ası́ como por el trabajo clásico de Bandt y Pompe [25]. Nuestra red dinámica de

acciones, el peso de cuyos aristas se define por medio de una medida de sincronziación ordinal inspirada

en Teorı́a de la Información, nos permite detectar dı́as atı́picos, ası́ como dos temporadas separadas

del año comercial, caracterizadas por su grado de sincronicidad centralizada o descentralizada. Todo

esto se confirma cuantitativamente mediante la aplicación de un par de algoritmos de agrupamiento

para encontrar estados significativos y cuantitativamente distinguibles del mercado, correspondientes

a diferentes niveles dinámica colectiva centralizada/descentralizada, finalmente modelados mediante un

proceso de Markov simple.

Nuestra investigación es metodológica tanto como aplicada: queremos comprender los Mercados

Digitales de Alta Frecuencia, ası́ como proponer nuevas rutas metodológicas para lograrlo, estadı́stica y

fenomenológicamente.

Este trabajo está organizado de la siguiente manera: el capı́tulo 2 contiene el marco teórico necesario

para comprender nuestros resultados originales: presenta el análisis R/S y la teorı́a del exponente de

Hurst, ası́ como los patrones ordinales y algunas medidas de complejidad que aplican conceptos de

Teorı́a de la Información, cerrando con los detalles de nuestro conjunto de datos. El cuerpo principal de

este trabajo está contenido en los capı́tulos 3, que contiene nuestro análisis de Hurst de la eficiencia en

los Mercados Digitales de Alta Frecuencia, y 4, que aborda el tema de la dinámica ordinal colectiva y los

estados tı́picos en tales mercados. El capı́tulo 5 cierra el trabajo con las conclusiones generales.
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Modern financial markets have fascinated researchers and the general public for a long time, from

the in-situ efforts to understand the first modern financial bubbles [1] to the sociological, economical

and technical accounts of their structure and social role [2][3]. They have been targets for the most

enthusiast eulogies, as heralds of economic development and innovation [4], as well as for the more

severe reprimands, as a psicological, speculative and, if let to its own, socially harmful game [5]; this is

no surprise, as the last two centuries have witnessed their raising as one of the most salient features of

our contemporary global society [6], as the memories and consequences left behind by the 2008 global

financial crisis, still felt today, take care of reminding us [7]. Indeed, financial markets and their reckless

fauna have penetrated so deeply in our imagination as to become main characters in a growing filming

genre encompasing movies and documentaries such as Wall Street Wolf, The Big Short and Inside Job.

Even so, we have to bring again and again an idea which, obvious as it seems, has been astonishingly

overlooked by many famous market theorists [8]: Financial markets are, as any other social institutions,

historical in character [9]. They change through time, socially as well as technically. That is why it is

futile to advance global, a-historical theories of financial markets. Thus, it is necessary to keep renewing

our understanding of them as they evolve.

Here, we will focus in a very specific historical incarnation of financial markets: contemporary and

already ubiquitous High-Frequency Digital Markets. Since the seventies, but mainly since the nineties,

financial markets have gone through a major change in its technical and social structure: more and more,

they are algorithms who make decisions about what, when, how and how much to trade in the market,

all of this in the scale of miliseconds. In words of an historian of such transformations: “In present-

day financial markets, the logic is not one of coordinating interpersonal interactions but of managing

the punctuated electronic signals that encode the orders from masses of anonymous investors. The

art of finance is no longer about gazes and hand signals, but about toying with the nimble algorithms,

sophisticated computer processors, hacked routers, and specialized telecommunication systems that are

the material foundations of the contemporary stock exchange. Through technology, trading floors became

an amalgam of cables and software; and through automation, rowdy human crowds were refashioned

into silent and speedy electronic queues” [10]. Born in the crossroads of technology development, profit

seeking, institutionalized opaqueness, spatial fragmentation and political changes [26], High-Frequency

Digital Markets and the speed arms race they provoque are a fundamental, yet relatively recent and not

well understood, feature of contemporary social life, its decouplement of human and light-speed-trading

times [11] bearing unpredictable, potentially catastrophic consecuences, as demonstrated by the so-called

Flash Crash on May 6, 2010 when, for no obvious reason, the market fell six hundred points in a few

minutes, recovering to its previous state in just a few minutes more. The rising of algorithms have
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rendered markets structurally even more opaque [12][13], just as in many other areas of contemporary

social life in which artifical intelligence has an important role [14]. As narrated in [13] and depicted

in movies ans series such as Margin Call and The Fear Index, as recently as 2010 this opaqueness had

prevented too many market players from knowing what was going on.

Of course, such a complex techno-social institution deserves being and has been studied from many

different points of view by economists, anthropologists, historians, statisticians and, perhaps surprisingly,

physicists. Although the history of the relation between Physics and Finance dates back at least to the

pioneer work of L. Bachelier [15] published more than a century ago and even earlier [16], it was not

until recent decades that a growing and well established body of research using tools from Physics,

and particularly statistical mechanics, to understand economic phenomena through time series analysis

had emerged [17][18] [19]. To cite just a few recent examples, in [20] and [21] the authors apply

random matrix theory to study cross-correlations in financial markets, in order to describe various market

states and state transitions, while in [22] a microscopic model for automatically done high-frequency

transactions is presented, using tools from the kinetic theory of gases. Our work is framed in that tradition,

branded as Econophysics.

So, we will approach High-Frequency Digital Markets from a mathematical point of view, applying

a set of statistical and analytical tools coming from different fields from Complex Systems Theory to

Unsupervised Statistical Learning to the study of our data set, covering a period of one year of fully

automated transactions in the US and Mexican markets, from March 7, 2018 to March 7, 2018.

Two specific questions will concern us in this work. First, we will adress the classical issue of market

efficiency. The Efficient Market Hypothesis (EMH), a dogma in mainstream economics, postulates the

immediate incorporation of all relevant information for the formation of prices through the interaction in

the markets of highly rational economic agents, which results in a “fair market” based on in-principle-

unpredictable prices. For classical markets, there is ample evidence against efficiency, starting with the

path-breaking work by Mandelbrot [23]. However, for contemporary High-Frequency Digital Markets,

for whose “ truly rational” economic agents (that is, algorithms) it could be expected that EMH should be

fulfilled, the evidence is less abundant in either direction. We will offer clear statistical evidence against

EMH in High-Frequency Digital Markets through Hurst Exponent Analysis of individual stocks, also

offering some methodological considerations about its appropiate statistical validation.

After inefficiency is established for our data set, we will go deeper in our study of High-Frequency

Digital Markets by studying our data set, this time collectivelly, as a dynamical network through Ordinal

Patterns and Clustering Analysis, thus building on recent work on typical market states detection, well
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exemplified in [24], as well as on the classical work of Bandt and Pompe [25]. Our dynamical network

of stocks, the weight of whose edges is defined by means of an information-theoretic measure of ordinal

synchronization, allows us to detect outlier trading days as well as two separate seasons of the treading

year, characterized by their degree of centralized or decentralized synchronicity. All this is quantitatively

confirmed by applying a couple of clustering algorithms to find meaningful and quantitatively distinguishable

market states corresponding to different levels of centralized collective dynamics, to be modeled by a

simple Markov process.

Our inquiry is both methodological and applied: we want to understand High-Frequency Digital

Markets as well as to propose new methodological insights on how to accomplish that, both statistically

and phenomenologically.

This work is organized as follows: chapter 2 contains the theoretical framework needed to understand

our original results: it introduces R/S analysis and Hurst exponent theory, as well as ordinal patterns

and information-theoretic measures of complexity, closing with the details on our data set. The main

body of this work es contained in chapters 3, containing our Hurst analysis of efficiency in High-

Frequency Digital Markets, and 4, tackling the issue of collective ordinal dynamics and typical states

in such markets. Chapter 5 closes the work with general conclusions.
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Chapter 2

Theoretical Framework and Data

My young son asks me: Must I learn mathematics?

What’s the use, I’d like to say.

That two pieces

Of bread are more than one–

You can see that already.

My young son asks me: Must I learn French?

What is the use, I feel like saying. This State’s collapsing.

And if you just rub your belly with your hand and

Groan, you’ll be understood with little trouble.

My young son asks me: Must I learn history?

What is the use, I feel like saying. Learn to stick

Your head in the earth, and maybe you’ll still survive.

Yes, learn mathematics, I tell him.

Learn your French, learn your history!

Bertolt Brecht, 1940

In this chapter we introduce all the theory needed to understand the results of this investigation,

which are exposed in the next two chapters. Accordingly, this chapter is divided in two sections, the first

of which discusses the Hurst exponent, to be extensively applied in chapter 3 to test efficiency, while

the second one discusses ordinal patterns and information-theoretic measures, which are the base for the

study on market collective dynamics in chapter 4.

13
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2.1 Hurst exponent

The method that we will use to test efficiency has its origins in the work of Hurst [27], framed in the

context of his studies in hydrology and later refined by Mandelbrot and Wallis [28]. Given a time series

xn, n = 1, . . . ,m, with mean µ = (1/m)
∑m

i=1 xi and variance σ2 = (1/m)
∑m

i=1(xi −µ)2, we define its partial

centered sums as yn =
∑n

i=1(xi − µ) and its R/S statistics or rescaled range as the ratio between the range

of the partial centered sums series and the standard deviation of the original series:

R/S =
maxn6m yn −minn6m yn

σ
,

Hurst noted that the rescaled range of the time series of annual flows of the Nilo river as a function

of the length n of the series was asymptotically a power law when n tends to infinity: E(R/S (n)) ∼ nH

for n sufficiently large, where E(R/S (n)) is the mean of the R/S statistics calculated on the subseries of

length n of the original series. The exponent H of the power law is known as the Hurst exponent. It is

known that under the hypothesis of the original series being a random walk, the exponent is H = 0.5

[28]; instead, Hurst found H > 0.5.

The Hurst exponent of a time series is obtained in this work as follows: Given n less than the length

of the series, we calculate R/S of all subseries of length n of the original series and define E(R/S (n)) as

the average of these calculations. Finally, the Hurst exponent of the series is calculated as the exponent

of the function c · nH that best fits (in the least squares sense) the function n 7→ E(R/S (n)) for n large

enough. Taking into account the asymptotic nature of the Hurst exponent, as well as the sensitivity of the

R/S statistic to the length of the time series [29], uniformly spaced values of n are taken on a logarithmic

scale, with a minimum n of the order of 29.

In general, a Hurst exponent H greater than 0.5 is associated with the long-term persistence of the

series: the range grows faster than expected from a random walk, that is, movements in one direction

follow, with greater probability, movements in the same direction; while H < 0.5 is associated with long-

term antipersistence: the range grows more slowly than that of a random walk, that is, movements in one

direction are more likely to follow movements in the other direction, this on average and for large enough

lengths. In both cases, the deviation of H from its hypothetical value 0.5 can be taken as a long-term

memory measure: the movements of the series are not independent of the remote past.

The study of long-term correlations measured by Hurst exponent has been applied in Physics, for

example in [30] to the ion saturation current fluctuations and in [31] to gamma ray data. In the context of

financial time series that concerns us here, this long-term memory translates into deviations from market
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efficiency (see chapter 3).

The remaining part of this section will be devoted to briefly discuss the approaches in the literature

that will be used in the next section to define our methodology, as well as some results related to those of

this work.

In [32] it is argued that, given a sequence of independent and identically distributed random variables,

the shape of the probability distributions of the random variables affects the Hurst exponent of the series.

The authors calculate the Hurst exponent Hstock for daily series of the S&P500 index. Then, they shuffle

the series in order to remove its memory, after which they calculate the Hurst index of the shuffled series,

denoted by Hperm (actually, this process of shuffling and calculating is repeated a certain number of

times, Hperm is defined as the mean and the standard deviation is reported). The difference between Hstock

and Hperm is an indicator of the memory of the original series, while if Hperm is different of 0.5 this is

attributed to the distributions of the variables, since the shuffled series are, by construction, memoryless.

It is proposed then to use Hperm as an indicator of lack of memory, instead of the canonical value 0.5,

that is, Hstock > (<)Hperm would be and indicator of (anti)persistency. In other words, the significant null

hypothesis will be not Hstock = 0.5, but Hstock = Hperm.

In [33] it is argued that the R/S statistic is sensitive to short-term correlations, so that if for a time

series is obtained H , 0.5, this is not enough to conclude the presence of long-term memory. In [34] the

authors propose that, to ensure that the results of the R/S analysis are due to long-term correlations, the

following experiment is carried out: the series is divided into blocks of, for example, 50 elements each

one, and the elements within each block are permuted to destroy the short-range correlations. With this

new series the previous analyzes are repeated and the long-term memory is corroborated if the change in

the Hurst exponent is insignificant.

In [35] and [36] the need to observe the evolution of the efficiency, measured by the Hurst exponent,

over time is stated. The first article uses one-minute resolution data from 1983 to 2009 from the SP500.

The Hurst exponent of the daily subseries is calculated and a decreasing evolution is observed from

0.8 towards 0.5, with a statistically insignificant difference for the period 2005-2009. Similar results

are obtained for the monthly exponents. For the purposes of this project, it is important to underline

their explanation of the phenomenon: they attribute it to the growth of algorithmic trading. In the second

article, daily exponent series are studied of eleven emerging markets between 1992 and 2002, with similar

results.

Other perspectives on market efficiency by studying Hurst exponent had been proposed in the past.

Very interesting is the discussion in [37], in which the authors study a measure of quantitative correlation
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between theoretical inefficiency and empirical predictability for 60 financial indices from different countries.

The Hurst exponent is taken as a measure of market inefficiency, while to measure predictability they

use one of the most basic techniques of supervised machine learning: Nearest Neighbor (NN), and its

proportion of correct answers. A considerable positive correlation (around 60%) between inefficiency

and predictability is reported.

In [38] it is shown that before the great economic collapses of 1929, 1987 and 1998 a clear decrease

in the Hurst exponent from the persistence regime (H > 0.5) to the anti-persistence regime (H < 0.5) is

observed.

In [39] Peters carries out an extensive analysis of the R/S statistic, the relevance of which he argues

through the Fractal Market Hypothesis (FMH) as an alternative to the EMH. The fractal properties of the

financial time series would be due to the differences in the time horizons of the financial agents, who,

according to their interests, incorporate certain pieces of relevant information into the price of an asset

that are not relevant for other time horizons. Market stability is attributed to the dynamic interaction of

these different scales.

2.2 Ordinal Patterns

For our study on collective dynamics of the US Market we will use a few tools coming from ordinal

patterns series analysis and information theory.

Permutation entropy was introduced in [25] as a (non-parametric) complexity measure, robust to

dynamical noise, invariant with respect to nonlinear monotonous transformation and computationally

efficient. It is defined as follows: First, given a time series xn for n = 1, . . . ,N and two parameters m < N

and l, the pattern length and the time lag respectively, we consider, S m, the group of permutations of

length m and, for 0 < t 6 N − (m − 1) · l, we say that the sliding window xl
m(t) = (xt, xt+l, . . . , xt+(m−1)·l) is

of type πt ∈ S m if πt = (i1, . . . , im) is the only m-permutation satisfying the following conditions:

(1) xt+is·l 6 xt+is+1·l for s = 1, . . . ,m − 1, and

(2) is < is+1 if xt+is·l = xt+is+1·l,

and we denote this with Φ(xl
m(t)) = πt.

For example: if x = (1.2, 3.2, 2.3, 1.4, 1.1, 4.3, 3.1) is a time series then, since x5 < x1 < x4 < x3 <
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x7 < x2 < x6, we have the 5-length ordinal patterns:

π1 = Φ(x1
5(1)) = (4, 0, 3, 2, 1)

π2 = Φ(x1
5(2)) = (3, 2, 1, 0, 4)

π3 = Φ(x1
5(3)) = (2, 1, 0, 4, 3),

thus obtaining the 5-length ordinal pattern series

πx = ((4, 0, 3, 2, 1), (3, 2, 1, 0, 4), (2, 1, 0, 4, 3)),

and similarly from the time series y = (3.2, 4.2, 5.1, 0.4, 0.9, 2.3, 3.4) we obtain

πy = ((3, 4, 0, 1, 2), (2, 3, 4, 0, 1), (1, 2, 3, 4, 0)).

The study of this new ordinal patterns series {πt}t<N−(m−1)·l, has been applied to biomedicine [40] [41]

[42] [43] [44] [45] [46] [47], paleoclimatology [48], economics [49] [50] [51] [52] [53] [54], geology

[55] and engineering [56] for classification and prediction of deterministic and stochastic non-linear

dynamics.

The choice for m is generally unproblematic, as it is understood that m must be as large as posible

without compromising statistical reliability when measuring information-theoretic quantities on m-length

ordinal patterns distributions (to be definied below), for which is enough to set m! << N, being m!

the cardinality of the permutation group S m [57] [48]. Our data (see next section) dictates the choice

m = 5. As for the lag time l, it has been shown to be critically important, since a naı̈ve choice could

lead to spurious results, making thus necessary to carry out a multiscale analysis (that is, varying l)

before drawing any conclusions [58]. Our results, however, have shown to be highly independent of this

parameter, and our conclusions, to be exposed in chapter 4, are the same no matter which value of l we

pick, in a range going from l = 1 to l = 100 (see section 4.B for some figures supporting this claim).

This is in itself an interesting result: we are observing here a phenomenon which is present in a wide

range of time scales, which allows us to drop the l parameter in the subsequent discussion. The figures in

chapter 4 correspond to l = 1.

So, for any π ∈ S m its relative frequency is defined as:

pm(π) =
#{t | t 6 N − m + 1,Φ(xm(t)) = π}

N − m + 1
. (2.2.1)

Although the original proposal by Bandt and Pompe consisted basically in the study of time series

through Shannon entropy of the ordinal patterns distribution, called permutation entropy (PE) and given

by
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PE(m) = −
∑
π∈S m

pm(π) log pm(π), (2.2.2)

a vast stream of theoretical and methodological approaches has developed since then, giving place to

a constellation of complexity measures, important examples of which are weighted permutation entropy

[59] [60], symbolic transfer entropy [61] [62], statistical complexity [52] [63] [64], various measures of

coupling and synchronicity [46] [65][62] [66] and network-based measures [55] (we will define some of

them below). Other studies had combined these analytical tools with Machine Learning techniques [42]

[67], and still others had exploited the algrebraic structure of S m [66] [68] [69] [62].

We must be very careful in applying permutation entropy, the authors of [70] warn us. The presence

of equal consecutive values in the original time series, which is frequently dealt with by preserving

the temporal order in the corresponding permutation, could lead to draw false conclusions by detecting

spurious patters. To adress this issue one can sum low amplitude noise to the original series in order to

(randomly) break equalities, as proposed in [71], and that is exactly what we do in this work, with an

artificially generated uniform distribution series of amplitude 10−7.

We will need some (more or less) classic definitions for the next sections. Given two probability

distributions p, q defined on a finite set, its Jensen-Shannon divergence is defined as

DJS(p, q) =
DKL(p ||M) + DKL(q ||M)

2
,

where M = (p + q)/2 and DKL is the Kullback-Leiber divergence:

DKL(p || q) =
∑

i

pi log
pi

qi
,

or the relative entropy from q to p, of which DJS is thus a smoothed, symmetric version.

So, if pm is the probability distribution of ordinal patterns of the time series xi, its statistical complexity

(Com) is defined as [52] [63] [64]

Com(pm) = DJS(pm, um) H(pm), (2.2.3)

where um is the uniform distribution on S m and H( · ) is the Shannon entropy. Thus, Com(p) aims to

measure complexity through a trade-off between randomness and determinism: while Shannon entropy

increases as pm aparts away from determinism towards randomness, reaching a maximum for um, its

divergence from um grows as pm aparts away from randomness. PE(m) and Com(p) have been jointly

used to classify dynamical regimes [52].
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Missing Patterns Frequency (MPF) [72] is defined as

MPF(pm) =
#{π ∈ S m | pm(π) = 0}

m!
. (2.2.4)

As deterministic dynamics are expected to display a relatively small set of ordinal patterns in contrast

to random dynamics [72] [50] [51], MPF is understood to quantify determinism degrees.

Yet another methodology for studying ordinal patterns, this time as nodes of a network, has been

proposed in [73][74] [75] [55], where the directed edges are weighted according to the transition probability

of passing from one pattern to another inmediatly in time, thus taking patterns as states of the process.

So, for the ordinal sequence {πt}t<N−m+1 nodes are defined as the ordinal patterns and the weight of their

edges are given by the transition probabilities pm(π′| π) of observing for some t that πt+m = π′ given that

πt = π. We can then compute the node entropy as

NE(π) = −
∑
π′∈S m

pm(π′| π) log(pm(π′| π)). (2.2.5)

These measures, unlike the previously defined, aim to quantify determinism not in terms of pattern

frequency, but of pattern transitions in time. Minimum Node Entropy (MNE) and Global Node Entropy

(GNE) are defined as [76]

MNE(pm) = min{NE(π) | π ∈ S m} (2.2.6)

and

GNE =
∑
π∈S m

pm(π) NE(π), (2.2.7)

respectively, so MNE measures how deterministic can a pattern be in a given network, while GNE

gives us a global, weighted score of pattern transitions determinism. Finally, Missing Transitions Frequency

(MTF) is defined as

MTF(pm) =
#{(π, π′) ∈ S m × S m | pm(π′| π) = 0}

(m!)2 , (2.2.8)

and is of course the analogous measure of MPF for pattern transitions.
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A classification plane is proposed in [76], whose axes are given by GNE and the MNE, both of them

measured using non-overlapping ordinal patterns to avoid transition constrains. This methodology seems

to be very useful, not to mention intuitive, to distinguish between (linear) stochastic and (non-linear)

deterministic dynamics. When applied to stock market time series, this methodology allows the authors

to discriminate financial dynamics from fractional Gaussian noise, since financial scores lie below the

diagonal around which the noises cluster. We will find this plane useful in the following discussion.

2.3 Data

The data used in this investigation are the time series of prices of the automated (algorithmic) operations

that occurred from March 7, 2018 to March 7, 2019 in the Mexican and US markets (251 trading days).

For the US market there were 539,834,024 records and for the Mexican market 78,863,574 records.

The importance for this work that our data comes from fully automated transactions cannot be

overstated: it is for this alone that we are able to test efficiency and test our methodological insights

specifically for Algorithmic High-Frequency markets, which is one of the main incentives for our inquiry,

as stated in the Introduction.

The data belongs to 59 assets, of these, 35 correspond to companies listed on the Mexican stock

exchange: AC, ALSEA, ALPEK, ALPHA, AMX, ASUR, BIMBO, BSMX, CEMEX, CUERVO, ELEKTRA,

FEMSA, GAP, GCARSO, GENTERA, GFINBUR, GFNORTE, GMEXICO, GMXT, GRUMA, IENOVA,

KIMBER, KOF, LALA, LIVEPOL, MEGA, MEXCHEM, NEMAK, OMA, PENOLES, PINFRA, RA,

TLEVISA, VOLAR, WALMEX; while the other 24 are from the US market: ABT, BAC, BMY, C, CSCO,

F, FB, FOXA, GE, GM, HPQ, INTC, KO, MDLZ, MO, MS, MSFT, ORCL, PFE, TWTR, T, USB, WFC,

VZ. The details can be seen in tables 2.1 and 2.2.

The following analysis are carried out for the series of logarithmic returns, calculated in this way: If

the original time series of prices of a given asset is {xi}i∈I , we first build an ordered partition {Aτ
t } of the

original time series in which each Aτ
t is the set containing all data points which were registered between

seconds t · τ and (t + 1) · τ, and then define

x(t, τ) :=
1
|Aτ

t |

∑
x∈Aτt

log(x).

Finally, the logarithmic returns are given by
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Market code Name

1 ABT Abbott Laboratories

2 BAC Bank of America Corporation

3 BMY Bristol-Myers Squibb Company

4 C Citigroup Inc.

5 CSCO Cisco Systems, Inc.

6 F Ford Motor Company

7 FB Facebook, Inc.

8 FOXA Tweenty-First Century Fox, Inc.

9 GE General Electric Company

10 GM General Motors Company

11 HPQ HP Inc.

12 INTC Intel Corporation

13 KO The Coca-Cola Company

14 MDLZ Mondelez International, Inc.

15 MO Altria Group, Inc.

16 MS Morgan Stanley

17 MSFT Microsoft Corporation

18 ORCL Oracle Corporation

19 PFE Pfizer Inc.

20 T AT&T Inc.

21 TWTR Twitter, Inc.

22 USB U.S. Bancorp

23 VZ Verizon Communication, Inc.

24 WFC Wells Fargo & Company

Table 2.1: Assets of the US market

r(t, τ) = x(t + 1, τ) − x(t, τ).
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Market code Name

1 AC Arca Continental, S.A.B de C. V.

2 ALFA Alfa, S.A.B de C. V.

3 ALPEC Alpek, S.A.B de C. V.

4 ALSEA Alsea, S.A.B de C. V.

5 AMX América Móvil, S.A.B de C. V.

6 ASUR Grupo Aeroportuario del Sureste, S.A.B de C. V.

7 BIMBO BIMBO & Grupo Bimbo, S.A.B de C. V.

8 BSMX Grupo Financiero Santander, S.A.

9 CEMEX Cemex, S.A.B de C. V.

10 CUERVO Becle, S.A.B de C. V.

11 ELEKTRA ELEKTRA & Grupo Elektra, S.A.B de C. V.

12 FEMSA Fomento Económico Mexicano, S.A.B de C. V.

13 GAP Grupo Aeroportuario del Pacı́fico, S.A.B de C. V.

14 GCARSO Grupo Carso, S.A.B de C. V.

15 GENTERA Gentera, S.A.B de C. V.

16 GFINBUR Grupo Financiero Inbursa, S.A.B de C. V.

17 GFNORTE Grupo Financiero Banorte, S.A.B de C. V.

18 GMEXICO Grupo México, S.A.B de C. V.

19 GMXT GMéxico Trasportes, S.A.B de C. V.

20 GRUMA Gruma, S.A.B de C. V.

21 IENOVA Infraestructura Energética Nova, S.A.B de C. V.

22 KIMBER Kimberly Clark de México, S.A.B de C. V.

23 KOF US Coca-Cola Femsa, S.A.B de C. V.

24 LALA Grupo Lala, S.A.B de C. V.

25 LIVEPOL El Puerto de Liverpool, S.A.B de C. V.

26 MEGA Megacable Holdings, S.A.B de C. V.

27 MEXCHEM MexicHem, S.A.B de C. V.

28 NEMAK Nemak, S.A.B de C. V.

29 OMA Grupo Aeroportuario del Centro Norte, S.A.B de C. V.

30 PENOLES Industrias Peñoles, S.A.B de C. V.

31 PINFRA Promotora y Operadora de Infraestructura, S.A.B de C. V.

32 RA Regional, S.A.B de C. V.

33 TLEVISA Grupo Televisa

34 VOLAR Controladora Vuela Compañı́a de Aviación, S.A.B de C. V.

35 WALMEX Walmart de México

Table 2.2: Assets of the Mexican market



Chapter 3

Analysis of Efficiency in High-Frequency

Digital Markets Using the Hurst Exponent

[”Neo-liberal” discourse] considered as a virtue the optimal market

allocation of information -and no longer that of wealth- in society.

In this sense, the market is but the instrument of a perfect

coordination of players thanks to which the social totality can find a

durable equilibrium. Capitalism thus becomes unquestionable,

insofar as it is presented as a simple means -the best possible means-

of producing social self-regulation.

Tiqqun, The Cybernetic Hypothesis

3.1 Introduction

It is important to establish that when speaking of the efficiency of the markets, two great perspectives

of analysis must be distinguished: the so-called distributive efficiency and the informational efficiency.

It is to the second approach to which we dedicate this chapter. The informational efficiency of prices is

defined as the immediate incorporation of all relevant information for the formation of prices through the

interaction in the markets of highly sophisticated economic agents.

Introduced by Fama in [77], this Efficient Market Hypothesis has been widely questioned, for example

in [78] and [79]. The informational efficiency of a market implies that the consecutive price differences

23
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must be independent. Indeed, if there were any correlation between consecutive prices, it could be used

to perform arbitrage, an action that would be in contradiction with the assumed efficiency. Thus, one can

examine the short-term movement patterns that describe the returns of the assets in the market in question

and attempt to identify the process underlying those returns. If the market is efficient, the model will not

be able to identify a pattern and we will conclude that the returns follow a random walk process. If a

model is able to establish a pattern, past market data can be used to predict future market movements and

the market is therefore inefficient, since efficiency implies unpedictability.

Note that the observation of a random walk is a necessary condition for efficiency. There are studies

that show that this condition is not sufficient [80], [81]. Consequently, the deviations of a random walk

allow rejecting the informational efficiency of the assets under study.

One of the most common explanations for the inefficiency of real markets has been the “animal

spirit” of Keynes [5], that is, the psychological and emotional factors that lead investors to make their

decisions in capital markets when there is uncertainty, the ways in which human emotions can drive

making financial decisions in uncertain and volatile environments.

Another explanation comes from the work of H. Simon [82], through the concept of limited rationality,

which postulates that most people are only partially rational and act on emotional impulses without

rational foundations in many of his actions.

Various authors, such as Lo in [83] and McCauley in [79] for example, recover the elementary fact

that financial markets are, like all social phenomena, of a historical and dynamic nature, that is, agents

respond to their specific social, political, psychological and technical conditions, which is why it is

inappropriate to postulate general and anti-historical hypotheses about their behavior.

As indicated in chapter 1, in recent years most of the operations in the large financial markets have

been automated and are now computers and not human beings who make decisions by executing certain

algorithms. Although in the last decades evidence has accumulated against the efficiency of the traditional

markets, one could imagine that, with the execution of orders controlled by computer algorithms, devoid

of feelings and emotional decisions, efficiency could be achieved in financial markets. Indeed, High

Frequency Digital Markets were brought to life precisely to exploit (human) market inefficiencies [13],

and although this could be read as an historical refutation of classical markets inefficiencies, the effect of

High Frequency Trading (HFT) dominance over financial markets remains controversial. For supporters

of markets efficiency might argue that the very existence of HFT points to the asymptotic efficiency of

markets, because it is meant to remove such human marginal inefficiencies [84] .Following such a logic,

it must be expected that the hegemony of HFT would have the effect of rendering markets more efficient
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than before. On the other hand, the Flash Crash of 2010, refered in chapter 1, as well as the raising

frequency of big prices deviations known as “black swans” [85], have made clear that HFT generates

its own new inefficiencies by predating and running out long-term financial strategies in fragmented

markets [86][87]. This is a fundamental debate, since the confirmation or refutation of the Efficient

Market Hypothesis bear important practical consequences: under-estimation of financial risks has been

shown to play a fundamental role in financial crises such as the Black Monday [88].

The objective of this chapter is to offer evidence, through the analysis of time series of automated

transactions in the US and Mexican markets, that the use of computational algorithms in automated

high-frequency markets has not led these markets to the efficiency prescribed by the neoclassical theory.

The organization of the chapter is as follows: Section 2 describes the characteristics of the data and the

methodology used for our analysis. In Section 5 the results obtained are discussed. Section 6 contains

the conclusions. The theoretical background has been discussed in section 2.1.

The results in this chapter are contained in a published paper by the author of this thesis and his main

advisor, Dr. Ricardo Mansilla [89].

3.2 Methodology

In this chapter, we use τ = 1 and τ = 5 and study daily and weekly subseries to analyze daily and weekly

dynamics throughout the trading year (recall that τ is the number of seconds to partition and average the

original time series, see section 2.3).

To analyze the evolution of the Hurst exponent throughout the period under study, which is one year,

we calculate the Hurst exponent Hstock of subseries of a certain number N of days, slided one day at a

time [36]. For example, if N = 5, the Hurst exponent of the first five days of the series is calculated, then

that of the series that goes from the second to the sixth day, etc., and the last calculation is for the series

of the last five days, with which the evolution of the weekly Hurst exponent Hstock throughout the year is

obtained.

There is no satisfactory analytical theory for the R/S statistic; most of the results on the subject are

derived from computer simulations, which implies that they depend on particular models. Thus, although

R/S is non-parametric, it is usually used to test the null hypothesis of Gaussian random walk [39], so its

rejection may be due to non-Gaussianity or short-term memory. That is why the methodology that will

be used below to establish the statistical significance of our calculations, inspired by the the proposals
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discussed in Section II, is based on global and local permutations of the series in question [34], [36], [32].

Continuing with the previous example with N = 5, for each subseries of five days of the original

series, we shuffle its terms to destroy its memory, and the Hurst exponent is calculated for this new

radomized subseries. The process of shuffling and calculating the Hurst exponent is repeated one hundred

times, thus obtaining a statistical sample, which we will call Hperm, of the Hurst exponent of the subseries

under the null hypothesis of lack of long-term memory, so we can use its quantiles to test the statistical

significance of the difference between Hstock and Hperm.

To rule out that the results thus obtained are due to short-term memory, we obtain in a similar way

a statistical sample of locally randomized Hurst exponents. Given a weekly subseries (N = 5) and a

fixed length l, the subseries is divided into blocks of l elements and the elements within each block

are shuffled to destroy short-term correlations, without altering the long-range memory structure. This

process is repeated a hundred times to get a statistical sample which we will call Hlocperm. Thus, if not

only Hstock, but also Hlocperm is statistically different of Hperm, then it is ruled out that the rejection of the

null hypothesis is due to short-range correlations.

We make all these calculations for each subseries of N days, so we can observe the evolution of Hstock,

Hperm and Hlocperm throughout the year.

3.3 Results and discussion

In figures 3.1 and 3.2 we plot for τ = N = 1 and τ = N = 5, respectively, the evolution of Hstock (blue

curve) and the area between the 0.1 and 0.9 quantiles of Hperm (purple zone). Thus, when the blue curve

passes outside this area, it is concluded that the corresponding original (daily or weekly) subseries has

long-term memory: the difference between Hstock and Hperm is statistically significant; while when the

Hstock curve passes inside, the randomness of the subseries cannot be ruled out: the difference between

Hstock and Hperm is not statistically conclusive.

Figure 3.1 shows that for the US market it is not possible in general to reject the null hypothesis

Hstock = Hperm when τ = N = 1 (daily series of one-second averages), while the inspection of figure 3.2

allows to conclude the existence of a clear tendency to anti-persistence (Hstock < Hperm) for τ = N = 5.

In what follows we will focus on the latter case. Figure 3.3 shows for l = 300 the effect of locally

shuffling the series to destroy their short-term memory. As before, we plot Hstock and the 0.1 and 0.9

quantiles of Hlocperm. Although the Hurst exponent tends to increase slightly after the local shuffling, the
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global Hlocperm shape is considerably similar to Hstock, reinforcing the idea that its behavior reflects well

the long-term memory from the original series. Note that this tendency to increase Hlocperm is not valid

for all assets, for example, F.

Once we have visually detected the general trend towards anti-persistence and the effect of local

shuffling, we can define two annual inefficiency indices, one of them given by the percentage of windows

whose Hurst exponent Hstock is below the 0.1 quantil of Hperm, the second by the percentage of windows

such that the mean of Hlocperm does the same. We will call each of them weak and strong anti-persistence

indices, and we will denote them by Id, I f respectively.

To be more specific, if Hq
perm is the q-quantile of Hperm and

Nd = #{sliding N-days windows such that Hstock < H0.1
perm},

then, since our data consist of 251 trading days and therefore we have 251 − N + 1 sliding N-days

windows, we set Id := Nd/(251 − N + 1). Analogously we define I f := N f /(251 − N + 1), where

N f = #{sliding N-days windows such that E(Hlocperm) < H0.1
perm}

and E(Hlocperm) is the mean of the statistical sample Hlocperm. Figure 3.4 shows the table of Id and I f

results by asset and its average per market (US). It is concluded that most of the assets spend a significant

part of the year under the anti-persistence regime.

It is important to note that even in the case of assets with a low level of inefficiency measured with

these indices (TWTR for example), the antipersistence trend is clear given that the Hstock and Hlocperm

curves remain in the lower part of the Hperm zone throughout the year (recall that the antipersistence

threshold that we define: the 0.1 quantile of Hperm, is as arbitrary as the more traditional 0.05), a result

that is hardly due to to statistical sensitivity of the methods used, since it is observed systematically in

all assets and throughout the year. Thus, although they are useful as summary indicators, they should

not be considered as the ultimate criterion of efficiency. These observations on the qualitative nature of

the process are possible thanks to the use of a dynamic approach to observe the evolution of the Hurst

exponent [36], as opposed to the more traditional method of calculating a single exponent for each series,

a method that reduces the problem to a purely quantitative and static criterion.

To formalize this idea and obtain, also here, a quantitative indicator: considering the subset of the

M = b251/Nc consecutive weekly series without overlap (where bnc is the largest integer less than or
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equal to n) and given q 6 0.5 and nd the number of these weekly series such that Hstock is less than Hq
perm,

the q-quantil of Hperm, and assuming the M consecutive weekly series as independent experiments, that

is, assuming that these series are statistically independent of each other (efficiency, lack of memory at that

scale), what is the probability of observing, as we do, at least nd windows (realizations) in which Hstock is

below Hq
perm? This problem is equivalent to determining the probability of obtaining at least nd heads in

a sequence of M tosses with an (unfair) coin with probability q of observing a head in each realization.

This probability is modeled with the binomial distribution:

Pq(nd) =

M∑
i=nd

(
M
i

)
qi(1 − q)M−i.

Thus, this p-value indicates how likely it is to observe the behavior described above in an efficiency

scenario given by the independence between non-overlapping weekly series. Once again, we define a

strong version of this index given by Pq(n f ), where n f is the number of weekly series such that the mean

of Hlocperm is less than the quantile q of Hperm. The results for q = 0.1 and q = 0.5 are shown in Figure

3.5. The evidence against the null efficiency hypothesis thus formulated is compelling. Except for the

maximum value in the table, which is obtained for TWTR with P0.1(n f ) = 0.215, all stocks clearly reject

the null hypothesis with a 95% level of confidence, almost always by a considerable margin, and even

TWTR does it for the other three parameter combinations.

Similar results were obtained for the Mexican market (figuras 3.6 y 3.7), although due to their lower

resolution τ = 30 and N = 30 are used. It is observed that the result of the local permutations is more

ambiguous in this case, which can be interpreted as short-term memory lack.

In the next chapter we will inquiry into the structure of stock correlations to better understand their

collective dynamics beyond the individual question on efficiency.

3.4 Conclusions

This chapter discussed the efficiency in high-frequency digital markets, quantified by the Hurst exponent

measured by the R/S statistic. Results indicate that, in the period from March 7, 2018 to March 7,

2019 and for the 24 assets in the United States market and the 35 in the Mexican market studied here,

the Efficient Market Hypothesis is clearly rejected: the presence of long-term memory, particularly of

anti-persistence, is clear.
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As noted before, the relevance of these results to the question of efficiency in automated digital

markets lies in the nature of our data, coming from fully automated (algorithmic) transactions. It is

because of this that we can draw the main conclusion of this chapter: automated digital markets do not

meet the efficiency postulated by neoclassical theory. Thus, classical explanations of the inefficiencies

of human markets, based on the psychological or emotional factors of human beings [5] or on their

limited rationality [82], must be discarded, since the algorithms that have ordered the transactions here

studied do not suffer from these human limitations. Market inefficiency therefore seems to be due to more

fundamental factors of economic dynamics. This opens a new line of investigation in the search for the

real sources of the lack of efficiency.
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ABT BMY PFE BAC

C USB WFC CSCO

HPQ INTC F GM

FB MSFT ORCL TWTR

FOXA GE KO MDLZ

MO MS T VZ

Figure 3.1: Evolution of Hstock and 0.1 and 0.9 quantiles of Hperm for the series of US market for τ = 1 y

N = 1.
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Figure 3.2: Evolution of Hstock and 0.1 and 0.9 quantiles of Hperm for the series of US market for τ = 5 y

N = 5.



32
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Figure 3.3: Evolution of Hstock and 0.1 and 0.9 quantiles of Hlocperm for the series of the US market for

τ = 5, N = 5 y l = 300.
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Figure 3.4: Values of Id and I f for the US market for τ = 5 y N = 5.
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Figure 3.5: Values of Pq(n) for the US market τ = 5, N = 5 y q = 0.1, 0.5.
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Figure 3.6: Values of Id and I f for the Mexican market for τ = 30 y N = 30.
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Figure 3.7: Values of Pq(n) for the Mexican market for τ = 30, N = 30 y q = 0.1, 0.5.



Chapter 4

Ordinal Synchronization and Typical States in

High-Frequency Digital Markets

No one but man himself–with his own hands– produces these

commodities and determines their prices, except that, here again,

something flows from his actions which he does not intend or desire;

here again, need, object, and the result of the economic activity of

man have come into jarring contradiction.

In the entity which embraces oceans and continents, there is no

planning, no consciousness, no regulation, only the blind clash of

unknown, unrestrained forces playing a capricious game with the

economic destiny of man. Of course, even today, an all-powerful

ruler dominates all working men and women: capital. But the form

which this sovereignty of capital takes is not despotism but anarchy.

And it is precisely this anarchy which is responsible for the fact that

the economy of human society produces results which are

mysterious and unpredictable to the people involved. Its anarchy is

what makes the economic life of mankind something unknown,

alien, uncontrollable.

Rosa Luxemburg, What is Economics?

37
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4.1 Introduction

In the previous chapter we have analyzed the issue of informational efficiency in high-frequency digital

markets t and individual level. Now we want to go further in our understanding of high-frequency digital

market dynamics

Financial markets are highly complex evolving systems, which means that their statistical dynamics

is constantly redefined by the interaction of economic agents. Thus, it is not surprising that, in order

to understand these dynamics, much effort have been recently dedicated to study them as dynamical

networks which can be analyzed and classified, either topologically to quantify crisis periods [90] [91]

or by clustering them to detect market states [92][93] [94] [24] [95] and posibly early precursors for the

catastrophic ones [21] [20].

This approach looks very promising for studying Algorithmic High-Frequency Trading, whose rise

during the last decades was recently shown to display an even higher degree of networked structure

and complexity than those of traditional markets [96]. However, those network-based studies have been

carried out mainly by defining edge weights through correlation matrixes, which amounts to ignore non-

linear interactions (see [97] for an exception, which does not use cluster analysis, but Machine Learning

techniques). This is not adequate for high-frequency data, normally expected to be very noisy and highly

non-linear and non-stationary. Thus, in order to successfully apply the same network-clustering pipeline

of those previous works and, at the same time, be able to detect locally complex non-linear interactions,

we define dynamical networks of stocks by means of their transcript synchronicity, a measure of pairwise

coupling of time series defined through ordinal patterns, a tool which has been successfully applied to

discern non-linear deterministic and stochastic dynamics in real-world data [98].

Once this has been done, we propose to study the obtained dynamical network through the distribution

of its Eigenvector Centrality and Degree, two well known measures of connectivity for network nodes

which we use to define suitable phase representation spaces in order to detect meaningful market states

through a couple of clustering algorithms. This allows us to detect two whole coherent and quantitatively

distinguishable seasons, characterized by their degree of centralized/decentralized synchronicity.

So, the goal of this chapter is twofold: to adapt an increasingly popular methodology for studying

financial markets as dynamical networks and clusters as market states to the needs of Algorithmic High-

Frequency Trading Data, and to show with its application to a particular data set of fully automated

transactions its potential for detection of collective dynamical regimes.

In order to underline the necessity of collective analysis, we include a section in which ordinal pattern
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analysis for individual stocks is carried out as a start point, and whose findings are latter shown to be

reproduced, extended and further explained at the collective level. For this, we use some of the most

common information-theoretic measures related to ordinal patterns.

The chapter is organized as follows: Section 3 describes the characteristics of the data. In Section 4 we

apply the previosly defined measures to individual stocks, in order to detect anomalous behaviors. Section

5 contains the definition of our transcript synchronicity coefficient, which we use to define our dynamical

network and discuss the more convenient phase representation spaces for the sake of our analysis. In

Section 6 we carry out the clustering analysis to detect typical market states, which in Section 7 are

modeled as first order Markov processes. Section 8 contains the conclusions. The theoretical background

for this chapter is to be found in section 2.2

The results in this chapter are contained in paper published by the author of this thesis and his main

advisor, Dr. Ricardo Mansilla [99].

4.2 Individual Analysis of Stocks through Ordinal Patterns

In this chapter, we use τ = 5 and study daily subseries to analyze daily dynamics throughout the trading

year; we also restrict ourselves to the US market, because of its higher frequency data. Again, recall that

τ is the number of seconds to partition and average the original time series, see section 2.3.

Before addressing the analysis of collective behaviors in our data set, which is the main concern of

this chapter, lets take a look at the stocks individually. To do this we calculate, for the daily series of five

seconds average logarithmic returns of each stock, Permutation Entropy (PE, equation 2.2.2), Statistical

Complexity (Com, equation 2.2.3), Missing Patterns Frequency (MPF, equation 2.2.4), Minimum Node

Entropy (MNE, 2.2.6), Global Node Entropy (GNE, equation 2.2.7) and Missing Transitions Frequency

(MTF, equation 2.2.8), the last three without overlapping patterns, just as in [76]. We use m = 5, that

is, we study 5-length ordinal patterns of daily series of returns of 5-seconds averages of logarithms of

prices, the choice for m being dictated by considerations about statistical reliability and the problem of

undersampling for PE, Com and MPF [57] [48] (although the same problem remains for MNE, GNE and

MTF [76], we keep m = 5 for the sake of a better visualization). Next, we plot the evolution of such

quantities along the year, as well as the MNE vs GNE plane.

For the vast majority of stocks, MNE, GNE and MTF clearly present an unusual (outlier) behavior

for the days 82, 181 and 201, which we will call outlier days, while we will refer to the other days as
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Figure 4.1: Ordinal Entropy Measures for KO. (a) Permutation Entropy, Complexity, Missing Pattern

Frequency, Missing Transition Frequency, Global Node Entropy, Minimum Node Entropy; (b) Minimum

Node Entropy vs Global Node Entropy plane; (c) Daily number of transactions.

Figure 4.2: Ordinal Entropy Measures for FOXA. (a) Permutation Entropy, Complexity, Missing Pattern

Frequency, Missing Transition Frequency, Global Node Entropy, Minimum Node Entropy; (b) Minimum

Node Entropy vs Global Node Entropy plane; c) Daily number of transactions.

typical (figure 4.1 shows this for KO (The Coca-Cola Company); outlier days are indicated by vertical

gray lines in the left and right panels). MNE and GNE abruptly decrease for the outlier days, while MTF

does the opposite, thus supporting the idea that these days present complex, semi-deterministic behavior:

given a certain pattern, the transition to the next one has candidates much more probable than others. In

some of the stocks we can further visualize what appears to be a small number of discrete levels for MNE

(see second panel in figure 4.2 for an example). This suggests the existence of a finite number of typical

market states, each corresponding to a specific level of MNE. The problem with these measures is that

they need length series n >> (m!)2, and, as already mentioned, we could be undersampling for m = 5,
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when we begin to classify outlier days. PE, Com and MPF are not capable of detecting (visually at least)

the outlier days.

By inspecting in the same figure the graphs of the daily number of transactions of each stock (right

panel), we can notice that the first two outlier days are low-liquidity days for many of them, although not

necessarily global minima or even specially severe drops in some others, while the last outlier does not

present this behavior. Thus, low liquidity is not enough to explain this phenomenon.

4.3 Collective Analysis of Stocks through Transcript Synchronicity

Dynamical Networks

To get a deeper insight on this behavior and figure out if it is, as it seems to be, a collective behavior,

we study the synchronization index given by the transcript entropy of pairs of stocks, that is: for each

pair (i, j) of stocks and each trading day T , we obtain their daily ordinal pattern sequences (πi(t))n
t=1 and

(π j(t))n
t=1 to obtain the transcript series [66] as τi, j(t) = π j(t) ◦ πi(t)−1, where the product and the inverse

are those of the permutation group S m: for π, ρ ∈ S m, π = (π1, . . . , πm) and ρ = (ρ1, . . . , ρm),

π ◦ ρ = (πρ1 , . . . , πρm), and

π−1 : πk → k for k < m

is the sorting operation. In this way, the transcript τi, j(t) is the result of ordering π j(t) according to the

ordinal type of πi(t).

Lets illustrate this with an example: if, as in Section 2, x = (1.2, 3.2, 2.3, 1.4, 1.1, 4.3, 3.1) and y =

(3.2, 4.2, 5.1, 0.4, 0.9, 2.3, 3.4) are two time series then, as we have seen, their respective 5-length ordinal

pattern sequences are

πx = ((4, 0, 3, 2, 1), (3, 2, 1, 0, 4), (2, 1, 0, 4, 3))

and

πy = ((3, 4, 0, 1, 2), (2, 3, 4, 0, 1), (1, 2, 3, 4, 0)).

The group inverse of πx(1) = (4, 0, 3, 2, 1), which denotes the function
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0→ 4

1→ 0

2→ 3

3→ 2

4→ 1,

is just the inverse function

4→ 0

0→ 1

3→ 2

2→ 3

1→ 4,

or, conveniently, expresed, πx(1)−1 = (1, 4, 3, 2, 0). After similar calculations for the remaining ordinal

patterns we obtain the series of group inverses

πx−1 = ((1, 4, 3, 2, 0), (3, 2, 1, 0, 4), (2, 1, 0, 4, 3)).

Now, to obtain our first transcript we compose the two functions πx(1)−1 = (1, 4, 3, 2, 0) and πy(1) =

(3, 4, 0, 1, 2), thus obtaining the function

πx(1)−1 πy(1)

0 → 1 → 4

1 → 4 → 2

2 → 3 → 1

3 → 2 → 0

4 → 0 → 3

better represented as πy(1)◦πx(1)−1 = (4, 2, 1, 0, 3). After repeating the operations with the other pairs

of ordinal patterns, we finally get the transcript series:

τx,y = ((4, 2, 1, 0, 3), (0, 4, 3, 2, 1), (3, 2, 1, 0, 4))

We take the normalized entropy of this transcript series (that is, the usual permutation entropy of this

transcript series) as a (daily) coefficient of desynchronization, and one minus that quantity as our measure

of synchronization, which we will call transcript synchronization and denote by Htranscript
T (i, j), so
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Htranscript
T (i, j) = 1 +

∑
π∈S m

pm(π) log pm(π),

where pm is as defined in 2.2.1, but for the transcript series:

pm(π) =
#{t | t 6 N − m + 1, τi, j(t) = π}

N − m + 1
.

Transcript synchronization measures the diversity of transcripts: low transcript synchronization means

high variety of transcripts, that is, a lot of different transcripts and then a lot of information is needed to

deduce the (ordinal) dynamics of one series given complete knowledge of the other, and analogously for

high transcript synchronization. Transcripts have been applied to study synchronization in time series in

[68], [69], [100], [62].

Thus we obtain for each trading day a (symmetric) transcript synchronization matrix Htranscript
T of

dimension nstock × nstock whose i j value is the transcript synchronization of stocks i and j during day

T . By considering each of these daily matrixes as adjacency matrixes, we obtain a dynamical weighted

network through the year, the nodes of which are the stocks and the weight of whose edges are given by

our transcript synchronization coefficient. We can thus analyze our time series with classical network-

based measures, following [92] [93] [94] [20] [24] [90] [21] [95], which have done that for correlation

matrixes, and [97], where mutual information networks are studied. We consider two well known such

network measures here: degree and eigenvector centrality.

Given a stock labeled as i and a trading day T , we define its degree as

Degree(i,T ) =
1
C

nstocks∑
j=1, j,i

Htranscript
T (i, j),

so the degree of a node is just the sum of its transcript synchronization with all the other stocks and the

normalizing constant C is such that
∑

i Degree(i,T ) = 1, while its eigenvector centrality is defined as the

i-th component of the normalized solution to the equation

EVC(i,T ) =
1
λ

nstocks∑
j=1

Htranscript
T (i, j) EVC( j,T ),

where λ is the largest eigenvalue of the adjacency matrix Htranscript
T . This is equivalent to find the

normalized eigenvector with positive components corresponding to λ, which is known to exist by the

Frobenius Theorem. So for each trading day T we have Degree and EVC, two nstocks-dimensional vectors

widely applied as measures of the importance, centrality or connectedness of a node in the network.
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Figure 4.3: Evolution Through the Trading Year of Histograms of (a) Degree and (b) Eigenvector

Centrality for Transcript Synchronization Dynamical Network.

In what follows we remove the first day of the year, for it turns out to be a very peculiar outlier. If

we plot the evolution of the histograms of Degree and EVC (figure 4.3) we can observe a very important

increment in the mode of Degree (this will be much more clear in figure 4.4) during the outlier days

and further detect not just those three days, but what appears as two complete consecutive, although

intermitent, regimes of highly centralized and decentralized connectivity, the latter weakly present at the

beginning of the year and again with much more persistence roughly from day 150 to day 210, and the

former just between those periods, approximately from day 50 to day 150. Thus, our outlier days seem

to be an extreme manifestation of these collective dynamics. Recall that the detection of outlier days and

different states at this collective level was by no means an obvious thing to expect, since the only measures

capable of detecting them in the individual level were those measuring transitions between consecutive

ordinal patterns, while our transcript synchronization coefficient focuses only in simultaneous pairs of

patterns across the market.

To further illustrate this behavior, in figures 4.4 and 4.5 we plot the mean, standard deviation,

minimum value and maximum frequency of the previously plotted daily histograms. First of all, for

Degree one can easily confirm the presence of the outlier days, as its mean and minimum abruptly

increase. Also, and this holds for both figures, at the beginning of the year (March) and during the highly

decentralized season we can observe that the mean of the distributions of EVC and Degree increases,

while standard deviation decrease, that is to say, the histograms shrink.

Recall that here highly decentralized synchronization means a more uniform distribution of degree-
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Figure 4.4: Evolution of Degree (a) Mean, (b) Standard Deviation, (c) Minimun and (d) Maximum.

eigenvector centrality among stocks, that is, most of the nodes are equally important in the network.

That’s why high connectedness can be associated with the shrinking of histograms, in opposition to

centralized synchronicity, which happens when there are clearly dominating stocks, much more centrals

to the network than the others.

Also in the evolution of Degree and EVC per stock (figure 4.6), we can see a different regime in

about the same period, when their values seem to be distributed more uniformly between stocks than

before: both high and low scored stocks tend to equalize each other towards a intermediate value (in the

heat graph, blues and reds moves towards white). An exceptional stock, that seems to remain very central

to the network through the entire year but with particular force during the highly centralized season is

Citigroup (C). The next stock in importance seems to be Morgan Stanley (MS), also from the Financial

sector. Interestingly, Facebook (FB) and U. S. Bancorp (USB) increase their influential score just the day
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Figure 4.5: Evolution of Eigenvector Centrality (a) Mean, (b) Standard Deviation, (c) Minimun and (d)

Maximum.

after the last two oulier days. Degree very clearly shows again the presence of outlier days, and we can

spot the stocks driving their dynamics: the already noted Citigroup and Morgan Stanley, but also Cisco

Systems (CSCO), Oracle (ORCL), Microsoft (MSFT) and Ford (F): with the exception of Ford, all of

them belonging to the digital technology sector. The last outlier day seems to be a very decentralized

one, its corresponding row displaying a remarkably uniform color.

Of course, the visual evidence here presented is not clear enough as to conclude in any formal way

the existence of such dynamical regimes. It is to formalize and further investigate this structure that the

next sections are dedicated.

Let’s say that if the normalized eigenvector centrality or degree vectors are understood to be measures

of market direction and strength, by measuring which specific stocks are driving it and how much, their
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Figure 4.6: Evolution Through the Trading Year of (a) Degree and (b) Eigenvector Centrality per stock.

histograms, by disregarding the latter information, can be understood to measure just the intensity of this

“market force”, how much stocks are well connected and so on.

4.4 Clustering Analysis

Next, we want to apply a couple of clustering algorithms to our dynamical network, looking for typical

market states, for which we need first to define a matrix distance ζ(A, B) to measure similarity between

daily transcript synchronization networks. After inspection of similarity matrixes with different metrics

(L1, L2, Jensen-Shannon Distance (the square root of DJS)) and different phase representation (distances

are measured between the whole transcript synchronization matrixes, the EVC or degree vectors, and

also between their histograms) one can conclude that whether we use L2 or Jensen-Shannon Distance we
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arrive to similar results, and the difference lies in the phase representations, of which the histograms of

degree or/and EVC seem to be the most informative ones. Thus, in what follows we will be studying

not the adjacency matrixes themselves, but the histograms of their EVC and Degree vectors. Since it is

more meaningful than L2 norm when measuring distances between probability distributions (it can be

understood as a minimum redundancy measure [101]), we will use the Jensen-Shannon distance for the

dendogram clustering. This is done also in order to reflect the structure found in the previous section.

If we then plot the Jensen-Shannon distance matrix Di j = ζJS (Htranscript
i ,Htranscript

j ), whose i j term

equals the Jensen-Shannon distance between networks corresponding to days i and j, on Degree phase

space (figure 4.7) we can clearly distinguish our outlier days as particularly distant of the typical days,

which are very close to each other, thus confirming our previous idea: these days we observe a collective

behavior in terms of determinism. In the same figure, as also in figure 4.8, which shows the same for

EVC phase space, we observe at least two well separated seasons, previously identified as centralized

and decentralized connectedness seasons. They exhibit oscillations but are clearly distinguisable by their

internal coherence (low distances detected as blue blocks on diagonal) as well as the high distances

between them (yellow strips in the figures). For comparison, see section 4.A for analogous figures when

classical correlation coefficients are used instead of transcript synchronization.

While both phase spaces are good detecting structure in periods (highly decentralized season for

instance), degree is far better highlighting outlier days.

Of course, to choose the phase space as that of the histograms is problematic in that it adds an extra,

posibly very sensitive parameter, and more generally a whole new problem: the number of bins and the

binning process. Here we choose ten uniformly sized bins covering the whole range of the corresponding

quantity throughout the trading year.

We can now use ζ to cluster our daily matrixes (and thus our dynamical weighted network) looking for

distinctions between collective states [92] [93] [20][24]. For this, we use two very different algorithms:

first, an aglomerative dendogram with the Jensen-Shannon distance, whose merging process is set to stop

by a cut-off threshold, chosen after careful inspection of the dendograms (figures 4.9 and 4.10, the

threshold is shown as an horizontal gray line, and is set to 0.13 for Degree and 0.14 for EVC) and

the L2-based K-Means algorithm. As the dendogram gives us lots of clusters with just a couple of

elements as their members, we, in order to keep the number of clusters reasonable, merge all of those

with 3 elements or less into a unique set labeled as “Noise”, yet at the cost of losing some information

about outliers, which as we will see will be recovered by the K-Means algorithm. The other clusters,

which are our states and after the last merge into the noise set turn out to be 12 for Degree and 14 for
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Figure 4.7: Jensen-Shannon Distance Matrix in Degree Phase Space. Its i j term equals the Jensen-

Shannon distance between networks corresponding to days i and j

EVC, are ordered according to the Jensen-Shannon distance between the centroid (mean) of each of

them and the corresponding uniform distributions, while the clusters obtained by the K-Means algorithm

are ordered by their L2-norm. Thus, low states are those whose centroids lie nearer to the uniform

distribution, that is, they are centralized synchronicity states, and the high states are for the same reason

decentralized states. The state of a given trading day reflects then, as was our intention, the level of

centralization/decentralization. The cophenetic correlation of the JS-based dendograms are 0.41 and

0.43 for Degree and EVC phase spaces respectively. When applying K-Means algorithm, we choose the

same number of clusters as that obtained by the dendogram algorithm.

In figures 4.11- 4.14), the upper panel displays the evolution of states throughout the year: black

small dots at the bottom of the graph indicate noise days when dendogram is used, blue medium-sized
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Figure 4.8: Jensen-Shannon Distance Matrix in EVC Phase Space. Its i j term equals the Jensen-Shannon

distance between networks corresponding to days i and j

dots indicate typical-and-not-noisy days and red big dots indicate outlier days; when a noisy day happen

to be also an outlier day, it is shown as a red big dot. The lower panel of the same figures displays the

ζJS or L2-ordered centroids of the clusters (states). While both clustering methods agree in the detection

of a low-states season and a high-states one, as well as in the shape of the centroids (of non-singleton

clusters), they display different, complementary features.

First of all, it is noteworthy that both phase spaces and with both clustering methods, very different

in nature and using two different distances, display very similar dynamics. This is a strong feature

supporting our findings, as we can observe the highly decentralized season with particular persistence

and clarity, as well as roughly monthly oscillations, less clear for dendogram algorithm due to the way

we labeled days as noisy.
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Figure 4.9: Clustering Dendogram on Degree Phase Space with Jensen-Shannon Distance. x axis

represents the daily networks to be clustered, y axis represents distance. Labels are omitted for better

visualization. The cut-off threshold is set to 0.13 and displayed as an horizontal gray line.

We have now more information to further classify outlier days and grasp a little more about their

nature, but first some comments are required. First of all, both clustering algorithms on both phase

spaces agree in this: the last outlier day belongs to a higher state than that of the other outlier days. This
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Figure 4.10: Clustering Dendogram on EVC Phase Space with Jensen-Shannon Distance. x axis

represents the daily networks to be clustered, y axis represents distance. Labels are omitted for better

visualization. The cut-off threshold is set to 0.14 and displayed as an horizontal gray line.

allows us to conclude that the last outlier day is of a particularly decentralized nature when compared

with the others. That been said, the figures disagree in how different are those states: both algorithms

finds high states for all three outlier days in EVC phase space; while this could be accepted without
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further thoughts for K-Means algorithm, this is unlikely for dendogram algorithm, since we would have

expected the outlier days being classified as noise because of the way in which we defined the Noise set.

Moreover, they are not only not classified as noise by dendogram algorithm: K-Means algorithm itself

does not recognize them as outliers in any significant way, since they are not singled out as members of

clusters with no more elements than themselves; and it is at this point that we should remember that EVC

phase space was the one with more difficulties when it came to detect outlier days. On the contrary, in

Degree phase space, which since the beginning was the strongest for outlier detection, our dendogram

correctly recognizes all three outlier days as noise, which encourages us to affirm that it is to this phase

space that we must turn in order to better understand outlier days. This insight is confirmed by inspecting

the findings of K-Means algorithm on Degree phase space: it finds the first two oulier days belonging

to a state, the lowest one, of which they are the only members, just as the last outlier day conforms

a (singleton) state of its own, and a very high one indeed. Thus, outlier days, at first singled out by

the individual analysis of stocks, are again and independently detected as outliers during the clustering

analysis.

The previous discussion should let clear that our collective analysis is able, not just to reproduce,

but to further explain the nature of our individually detected outlier days as extreme manifestations of

a collective behavior present throughout the trading year (centralized and decentralized synchronicity),

as well as to discriminate between them in terms of that observed behavior: the first two outlier days

are shown to be the most centrally synchronized of the whole year, while the last one is of a highly

centralized nature, and a very peculiar one since it constitutes a market state on its own.

4.5 A Markov Model for State Transitions

Finally, in order to model these state dynamics in a simple way, we briefly propose a first order Markov

model for prediction of the next day state given that we know today market state.

To check whether this Markovian approach is adequate or not we, just as in [20], compute the

empirical transition probability matrix P from one state to the next, given that we know the current state,

as well as the theoretical stationary probability distribution of states for such a Markov model given by

the first order transition matrix P, that is, the probability distribution π giving the expected probabilities

of finding the market in a given state over a very long period (provided it is Markovian), and satisfying

the linear equation:

π j =
∑

i

Pi jπi,
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and compare it to the empirical frequencies of states through the year (figure 4.15), just to find that they

are indeed very similar to each other for every combination of phase spaces and clustering algorithms.

We then conclude that the states dynamics is consistent with a Markov process in which enough time has

passed as to reach its steady state, and that to guess tomorrow state given knowledge about today state is

in general a reasonable bet.

A considerable part of our work on ordinal patterns has been done with the Python package ordpy

[102], while clustering analysis has been carried out through scikit-learn [103]. We also have made

extensive, though elementary, use of NumPy [104].

4.6 Conclusions

In order to analyze collective states dynamics of stocks in high-frequency digital markets, and to overcome

the limitations of correlation matrixes in detecting non-linear interactions in noisy time series, we proposed

to study transcripts synchronization dynamical networks and their eigenvector centrality and degree

vectors distributions.

After measuring different information theoretic quantities on the daily ordinal pattern series of individual

stocks and detecting three outlier, semi-deterministic days in most of them and discrete levels in some, we

have shown them to be extreme manifestations of a collective, emergent behavior not entirely reflected in

individual dynamics. Applying two very different clustering algorithms, we were able to detect specific,

persistent and quantitatively distinguishable market states throughout the one-year period of study, as well

as two well defined and quantitatively distinguishable seasons of the trading year, characterized by their

degree of centralized/decentralized synchronicity, with remarkable similar results for both algorithms.

We also succesfully classified our previously found outlier days in terms of centralized and decentralized

synchronicity. Finally, we showed that state transitions dynamics can be well described as a simple first

order Markov process.

Of course, our work has several limitations that ought to be highlighted. As already mentioned, to

choose the phase space as that of the histograms of EVC and Degree leaves open the question of the

correct number of bins to be used. Also, it would be desirable to find a more objective criterion to

choose the number of clusters; various purely quantitative ones are discussed in the litearature (see for

a summary [105]), but none of those are convincing from our viewpoint; and ultimately, as explained in

[106], clustering analysis is a problem dependent process and should not be subordinated to an abstract,

global score. As our aim in this work was to propose and illustrate a methodology, as well as to adapt the
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network-clustering pipeline often mentioned thorughout this work [24] to high-frequency digital markets,

we did not deepen into this questions; instead, in both cases we contented ourselves with confirming the

robustness of our results by varying the number of bins and dendogram threshold and founding similar

qualitative results in a reasonable range of values and with two very different clustering algorithms for

our particular data set.

It would be desirible to have an ecomomic explanation for the behavior here observed; unfortunately,

that is significantly difficult for high-frequency digital markets, because algorithms are particularly opaque

in their trading decisions [13] [12]. At the moment, we can just stand for a phenomenological approach

such as that of this chapter.
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Figure 4.15: Empirical Frequency of States and Theoretical Stationary Distribution for the Markov

Model. (a) Degree, Dendogram; (b) Degree, K-Means; (c) EVC, Dendogram; (d) EVC, K-Means.



Appendix

4.A Correlation Matrixes

For the sake of comparison, and to make clear why we use transcript synchronicity as our pairwise

coupling measure instead of the more classic and straightforward correlation coefficient, we include here

a few figures similar to those displayed above, but this time for correlation matrixes. However, since we

are talking here about synchronization, we use the absolute value of such correlation coefficients, since

a correlation coefficient equal to −1 should be understood as two perfectly (linearly) synchronized time

series.

In figure 4.A.1 we can see that, althought some structure is still present in the evolution of the

histogram of Degree for correlation matrixes, its presence is less clear than that observed in 4.3, while

the histogram of EVC is not useful at all when correlation coefficients are used.

Figure 4.A.1: Evolution Through the Trading Year of Histograms of (a) Degree and (b) Eigenvector

Centrality for Correlation Dynamical Network.
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This should be clearer in figure 4.A.2, which shows the matrix of Jensen-Shannon distances between

daily correlation matrixes, analogously to figures 4.7 and 4.8. The first panel of this figure still correctly

detects oulier days clearly enough, but the knowledge of the centralized and decentralized seasons is

almost totally lost, while the second panel is too noisy to conclude anything. Consequently, clustering

analysis yields poorer results when compared to our previous transcript-based analysis.

Figure 4.A.2: Jensen-Shannon Distance Matrix in (a) Degree and (b) EVC Phase Spaces. Its i j term

equals the Jensen-Shannon distance between correlation networks corresponding to days i and j.

4.B Multiscale Analysis

In section 2.2 we made the statement that our results are robust to variations of the time lag parameter

l. As already mentioned, in [58] the authors make it clear that a multiscale analysis is unavoidable if

we want to guarantee the validity of our results. Thus, we plot here a couple of figures obtained when

l = 5, 25, 50, 75 and 100 and everything else is kept as before. For brevity and space, we limit ourselves

to plot the distance matrixes analogous to figures 4.7 and 4.8.

Figure 4.B.1, displays Jensen-Shannon distance matrixes for Degree (upper panel) and EVC (lower

panel) phase spaces. It is clear that these matrixes are pretty similar to those just refered, detecting outlier

days as well as highly centralized and decentralized seasons. Labels and colorbars have been removed to

improve visualization. Clustering analysis yields similar results.
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Figure 4.B.1: Jensen-Shannon Distance Matrixes in Degree (upper panel) and EVC (lower panel) Phase

Spaces. Its i j term equals the Jensen-Shannon distance between transcript sychronization networks

corresponding to days i and j for l = 5, 25, 50, 75 and 100, plotted in that order from left to right.
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Chapter 5

Conclusions

Terminó la comedia:

Dentro de unos minutos parto para Chillán en bicicleta.

No me quedo ni un dı́a más aquı́

Sólo estoy esperando que se me sequen un poco las plumas.

Si preguntan por mı́

Digan que ando en el sur, y que no vuelvo hasta el próximo mes.

Digan que estoy enfermo de viruela.

Atiendan el teléfono

¿Qué no oyen el ruido del teléfono?

¡Ese ruido maldito del teléfono va a terminar volviéndome loco!

Si preguntan por mı́, pueden decir que me llevaron preso

Digan que fui a Chillán a visitar la tumba de mi padre.

Yo no trabajo ni un minuto más. Basta con lo que he hecho

¿Que no basta con todo lo que he hecho?

¡Hasta cuándo demonios quieren que siga haciendo el ridı́culo!

Juro no escribir nunca más un verso. Juro no resolver más

ecuaciones

Se terminó la cosa para siempre

¡A Chillán los boletos!

¡A recorrer los lugares sagrados!

Nicanor Parra, Hombre al Agua

As stated in the Introduction, the spreading of Algorithmic Trading has arisen a lot of interesting
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questions in the most different scientific areas, as well as a reasonable feeling of uncertainty about its

potential consequences. Here we have tried, by mathematical means and from a phenomenological point

of view, to tackle a couple of them: market efficiency and collective ordinal dynamics.

The first issue is studied through the Hurst exponent (chapter 3). Results indicate that, in the period

from March 7, 2018 to March 7, 2019 and for the 24 assets in the United States market and the 35 in the

Mexican market studied here, the Efficient Market Hypothesis is clearly rejected: the presence of long-

term memory, particularly of anti-persistence, is clear. This is an important result for economic theory:

wheter human or algorithmic, market efficiency remains elusive to say the least. Although that should

be clear since the Flash Crash of 2010, the statistical evidence here offered bring us one step closer to

understand market inefficiency in “normal” conditions.

Next, we took a deeper look into the structure of correlations between stocks. After an individual

analysis of 24 stocks of the US market during a trading year of fully automated transactions by means

of ordinal pattern series, we defined an information-theoretic measure of pairwise synchronization for

time series which allows us to study this subset of the US market as a dynamical network. We applied

to the resulting network a couple of clustering algorithms in order to detect collective market states,

characterized by their degree of centralized or descentralized synchronicity. This collective analysis has

shown to reproduce, classify and explain the anomalous behavior previously observed at the individual

level. We also found two whole coherent seasons of highly centralized and descentralized synchronicity,

respectively. Finally, we modeled these states dynamics through a simple Markov model.

So it is our hope to have contributed a little to the understanding of this recent historical stage of

financial markets characterized by algorithms and speed-light trading, through our analysis of a particular

data set, as well as to have proposed useful methodological insights potentially applicable to a broad

variety of phenomena.

Of course, a lot of questions remain open, the three more obvious being: if human “imperfect

rationality” is not the cause of market inefficiency, then which is? What is the economic explanation of

outlier days and centralized/decentralized seasons of the trading year? And finally, are these phenomena

specific to our data set, or are they a common feature of High-Frequency Digital Markets? To answer

these questions will require a lot of collective efforts by scholars from different areas of science, efforts

well beyond the intentions and capacities of this work. Let those questions be the inspiration for future

research.
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[62] José M. Amigó, Roberto Monetti, Beata Graff, and Grzegorz Graff. Computing algebraic transfer

entropy and coupling directions via transcripts. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 26(11):113115, 2016. doi:10.1063/1.4967803.
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comparative study of cluster validity indices. Pattern Recognition, 46(1):243–256, 2013. doi:

https://doi.org/10.1016/j.patcog.2012.07.021.

[106] Ulrike von Luxburg, Robert C. Williamson, and Isabelle Guyon. Clustering: Science or

art? In Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver,

editors, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, volume 27 of

Proceedings of Machine Learning Research, pages 65–79, Bellevue, Washington, USA, 02 Jul

2012. PMLR.

https://doi.org/https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/https://doi.org/10.1016/j.patcog.2012.07.021

	Introduction
	Theoretical Framework and Data
	Hurst exponent
	Ordinal Patterns
	Data

	Analysis of Efficiency in High-Frequency Digital Markets Using the Hurst Exponent
	Introduction
	Methodology
	Results and discussion
	Conclusions

	Ordinal Synchronization and Typical States in High-Frequency Digital Markets
	Introduction
	Individual Analysis of Stocks through Ordinal Patterns
	Collective Analysis of Stocks through Transcript Synchronicity Dynamical Networks
	Clustering Analysis
	A Markov Model for State Transitions
	Conclusions

	Appendices
	Correlation Matrixes
	Multiscale Analysis

	Conclusions

