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POSGRADO EN CIENCIAS (FÍSICA)
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Abstract

In this work, a theoretic analysis of the Berry phase was done. In particular we studied the

Berry phase in systems with finite spin-orbit coupling (SOC), in order to find if it produces

a non-trivial Berry phase. We studied the case of an electron moving around a triangular

plaquette, where the electron interacts with the local magnetic moments. To achieve this, we

followed and reproduced meticulously the procedure outlined by S.-S. Zhang, H. Ishizuka, H.

Zhang, G. B. Halász, and C. D. Batista, in their article titled “Real-space Berry Curvature of

Itinerant Electron Systems with Spin-orbit Interaction”.

We did a geometric approach, where we used geodesics in the Bloch sphere. The geodesics

showed us how the spin states rotate due to SOC and how the Berry phase, geometrically, is

represented. We also did an algebraic approach, where we used the Wilson loop to find that

the electrons moving on a close path pick up a non-trivial Berry phase. Then the continuum

limit we find that, for systems with finite SOC, a Berry phase exists in collinear configurations.

Also a covariant expression for the Berry phase in the presence of SOC was found. The above

results are exemplified in an itinerant electron system moving in a kagome lattice, where we

found that the SOC modulates the band structures.
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temı́a a la oscuridad, hasta este momento.
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ser mi familia elegida. Gracias por enseñarme que los planes pueden cambiar y que eso está bien.
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me encanta la ciencia. Finalmente, agradezco a las mujeres que me precedieron por abrir el

camino y luchar para que personas como yo podamos estar aqúı hoy.

iv



Acknowledgements

I would like to extend my sincere and and deepest acknowledgements to my advisor, Dr. Isaac
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Pérez López, for their understanding and ongoing support during my time as a Master’s degree

student.

My wholeheartedly gratitude to the examination committee members: Dr. Jorge Gustavo

Hirsch, Dr. José Alberto Mart́ın Ruiz, Dr. Luis Alberto Hernández Rosas, and Dr. Miguel

Angel Bastarrachea Magnani. Their enlightening review, diverse expertise, and valuable cor-

rections and suggestions improved this thesis.

I would like to acknowledge Dr. Cristian Batista and Dr. Shang-Shun Zhang, for clarify-

ing the questions and doubts that I had about their fantastic investigation. Also, my sincere

gratitude to Dr. Joana Avelar Robledo, for her patient explanations and willingness to share

her knowledge.

To Dr. Francisco Mireles Higuera, who shared with me his passion for theoretical physics

and taught me about spintronics. I would like to thank Dr. David Ruiz Tijerina, for the ad-

vice and suggestions during the first semesters of my Master’s studies. My profound gratitude
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Chapter 1

Geometry, Topology and the Berry

Phase

1.1 A Brief Introduction to Geometry and Topology

In modern quantum physics, two areas of mathematics have become a fundamental part of the

theoretical physicist toolbox: geometry and topology [1].

Geometry, from the ancient greek geo meaning Earth and metron meaning measurement,

was invented by the ancients as a tool to measure distances and to survey areas [1]. Notwith-

standing its purpose, according to Girvin and Yang [1], the first encounter we have with ge-

ometry, as students in elementary school, does not involve distance, but rather it is based on

forms that are created using angles and straight segments. These geometric figures and bodies

have interesting properties. For example, think of an isosceles triangle, characterized for having

two equal edges and two equal angles. If we make this triangle larger and then we rotate it,

the resulting triangle is still an isosceles triangle, since its internal angles do not change. In

this sense, it can be stated that euclidean plane geometry is characterized as “the study of

invariants under linear scale changes and rotations” [1].

On the other hand, topology is a branch of mathematics that studies those properties

that do not vary under continuous transformations. An example of this is the transformation

of a coffee cup into a torus (i.e. a doughnut): the cup can be continuously transformed to

become a torus preserving one hole [1], as it is shown in Figure 1.1. Another example is the

transformation of a circle into a triangle: imagine you have a ribbon that forms a circle, if we

take two ribbon segments and push them, the circle becomes a triangle [1]. Some quantities

are invariant under linear scale change, but only some of them are invariant under continuous

arbitrary deformation. These last quantities are called topological invariants and have, as we

will see later, an important and fundamental role in physics [1].

1



Section 1.1. A Brief Introduction to Geometry and Topology

Figure 1.1: The transformation of a coffee cup into a doughnut is a continuous deformation:
the bowl of the cup is molded to make it shallower until it becomes a filled cylinder. Now we
have a filled cylinder with a handle that, by molding it, it turns into a torus (doughnut) shape.
The genus (in this case the hole) is conserved. Image from [2].

In recent years it has been shown that certain physical observables are universal under this

type of transformation of the Hamiltonian. This universality is explained by the fact that the

observable is represented by a topological invariant that protects the observable from changes

in the Hamiltonian [1]. This protection does not work if the Hamiltonian goes under a phase

transition. As topological invariants are special and give us information about properties of

materials [1], in this thesis we are going to give a brief introduction to two main concepts in

topology: homeomorphism and homotopy.

1.1.1 Homeomorphism

A homeomorphism is defined as a mapping from one space to another that is continuous and

whose inverse exists and it is also continuous [1]. A homeomorphism is a type of topological

equivalence, which means that the topological space does not vary under continuous transfor-

mations. Indeed, consider two topological spaces: X and Y . We say that a function f : X → Y

is a homeomorphism if it is continuous, has a continuous inverse function (the function f−1

exists) and it is bijective. The latter means that it is a one-to-one map and that every element

in the codomain has at least one element in the domain (even if it is not the only one) [3].

One example of a homeomorphism is the transformation of a coffee cup into a torus that we

have already described before (Figure 1.1). In this example, we map a region of the cup into a

region in the torus and the homeomorphism tells us exactly which pieces of the torus correspond

to pieces of the cup. Notice that a particular homeomorphism describes the range-domain cor-

respondence between spaces but does not describe how the continuous change is made. The
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coffee cup, the torus and all the geometric bodies transforming between these two objects be-

long to the same topological class, because the genus (in common language in this example, the

hole) is preserved under homeomorphism: the number of holes is neither increase nor reduce [1].

Another example of homeomorphism is the transformation of a polyhedron into a sphere.

Here, we can think of a regular polyhedron (for example a pentagonal pyramid) with its center

of gravity at a point O. Any other point of the polyhedron (for example point x) can be dragged

to a point f(x) on the surface of a sphere. Note that this is a continuous transformation. If

we consider the mapping by drawing a line from O to x, and follow this path of the point to

the surface of the sphere, then the new set of points given by f(x) have their center of gravity

also at O. This transformation (Figure 1.2) maps curvilinear polygons that are in the sphere’s

surface [3].

Figure 1.2: The homeomorphism from a regular polyhedron to a sphere. a) A regular poly-
hedron with its center of gravity O can be mapped in to a sphere by mapping the points x into
f(x), preserving the center of gravity of the regular polyhedron O (image b). Image from [3].

The quantities that do not change under homeomorphisms, as the genus mentioned in the

coffee cup-torus example, are called topological invariants. The genus is only one topological

invariant, but there are many more. Finally, it is important to say that the topological invariants

are not inherently geometric because homeomorphisms do not preserve geometry [1].

1.1.2 Homotopy

A homotopy is an equivalence relation among all maps that can be continuously deformed into

each other [1]. More precisely, if we suppose that f, g : X → Y are maps, F is homotopic if

there is a map F : X × I → Y , which satisfies that F (x, 0) = f(x) and F (x, 1) = g(x) [3].

Here, I = [0, 1] is the unit segment in R. Notice that the continuous map F takes as its first

entry an element of X and its second input is an interval over time t ∈ [0, 1], so that for

t = 0 the map F corresponds to the function f(x), and as the variable t changes, the function

continuously changes until it arrives to the map g(x) at t = 1 [3].
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To understand these concepts, let us consider a mapping of a unit circle into another

unit circle. Each circle has a vector position that is defined by its angular position θ and θ′,

respectively. The vectors can be written as:

r = r0 + (cos θ, sin θ), (1.1)

r′ = (cos θ′, sin θ′). (1.2)

Note that r0 is a vector that describes an arbitrary displacement so that in principle the two

circles are not the same. In this example the family of all possible homeomorphisms is given

by

θ′(θ, t) = θ + t sin

(
kθ

2

)
, (1.3)

where the family is labeled by the parameter t and k is a non-zero integer. Note that if t = 0,

θ′ = θ, so that r = r0 + r′. Moreover, if we also suppose that r0 = 0, equation (1.2) now

describes the identity map, that is:

r = (cos θ, sin θ) = r′. (1.4)

Note that for θ = 0 and θ = 2π the term sin
(
kθ
2

)
= 0, and therefore for any t we have a

map from one circle to another and any map of the family can be continuously deformed into

another circle if t is varied. These maps are homotopic to each other [1].

The Winding Number

To fix ideas, let us consider a family of maps defined by

θ′(θ, t) = mθ + t sin

(
kθ

2

)
, (1.5)

where m is a non-zero integer. As we can see, equation (1.3) is a particular case (m = 1) of

equation (1.5). Now we are interested in studying the case with m = −1. As we saw before,

m = 1 is a homeomorphism between two spaces (unit circles). The difference between this

mapping and the one described by m = −1 is that the path of the latter has opposite direction

than the former one. The two maps are not homotopic [1].

The integer parameter m is called the winding number and describes the homotopy class

for these maps. The rule for a continuous transformation is the following: all maps with the

same value of m can be deformed into each other (no matter the value of k and t), while the

maps with different values of m cannot be continuously deformed into each other. It is impor-

tant to mention that it is not possible to have a circle with zero radio because the mapping
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needs to travel around the circle [1].

For a general map θ′ = f(θ), the winding number is defined by

m =
1

2π

∫ 2π

0

dθ
df

dθ
. (1.6)

If we go back to the example of mapping unit circles, the distance traveled is 2πm. θ can be

thought of time, and df
dθ

its velocity [1].

In order to give the winding number a meaning, we can think of two unit circles, each one

with its own position vector indicating its orientation. One of the circles is a rubber band and

the other is a solid circle. Now, suppose that we wrap the solid circle using the rubber band.

In this example m represents the number of times that the rubber band wraps around the solid

circle. If the orientation of the circles is the same, then m > 0, otherwise m < 0 [1].

Figure 1.3: The winding number can be seen as the number of times that a rubber circum-
ference (red circle) can wrap the rigid circle (black circle). The winding number is positive if
the orientation vector of both is in the same direction (images d, e, and, f) and negative if it is
not (images a and b). Image from Jim Belk (in public domain).

After this very brief introduction to topology, we have the appropriate tools to understand

an important concept that we will explore in this thesis: the Berry phase.

1.2 Adiabatic Evolution and the Geometry of the Hilbert

Space

The Hilbert space is a linear vector space generated by orthonormal complex vectors, equipped

by an inner product [4]. In this section we are interested in studying the geometry of the Hilbert
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space, where physical states are represented by rays. More precisely, a ray is defined as the

equivalence class of non-zero vectors in the Hilbert space related to each other by an overall

complex number [1]. That is, we say two vectors v and w are equivalent, denoted as v ∼ w,

if v = λw with λ ∈ C. If the physical states, are chosen to be normalized as they usually are,

then λ = eiθ, with θ a global phase.

One important concept is the adiabatic evolution of a given Hamiltonian in its parameter

space. In this section, by adiabatic we mean that the Hamiltonian is varied slowly enough,

more precisely if te is a time scale related to some external protocol of the time evolution of the

Hamiltonian, then we must have that te � ti, where ti are the relaxation times related to the

eigenenergies of said Hamiltonian. Then, the adiabatic theorem tells us that when an initial

Hamiltonian Hi is adiabatically evolved into a final Hamiltonian Hf, the nth eigenstate of Hi

can be transformed into the nth eigenstate of Hf if there are not phase transitions [1].

To study the evolution in the Hilbert space we are going to follow the analysis presented

by Girvin and Yang [1]. Let us consider the following Hamiltonian:

H(t) = H[P(t)], (1.7)

so that the time dependence is given in terms of a set of parameters P :

P = (P1,P2, ...,PD), (1.8)

which can be understood as a vector in a D-dimensional parameter space. Note that D is

not necessarily related to the spatial dimension d of the physical system. For each P , we can

assume that the Hamiltonian given by equation (1.7) has a set of orthonormal eigenstates

H(P) |n(P)〉 = En(P) |n(P)〉 . (1.9)

Let us assume that the spectrum of the Hamiltonian is discrete and non-degenerate. Then, by

the adiabatic theorem, if the system is initially in the nth eigenstate of the Hamiltonian, that

is,

|ψn(t = 0)〉 = |n[P(t = 0)]〉 , (1.10)

then its evolution is given by

|ψn(t)〉 = Cn(t) |n[P(t)]〉 . (1.11)

Recall that if the Hamiltonian does not depend explicitly on time, Cn(t) becomes:

Cn(t) = e−iEnt/h̄. (1.12)
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If, however, the Hamiltonian is time-dependent, under adiabatic evolution Cn(t) is

Cn(t) = eiγn(t)exp

[
− i

h̄

∫ t

0

dt′En(t′)

]
. (1.13)

Note that in this last equation we have an additional phase γn(t) (whose origin can be seen in

Appendix A). Let us try to understand the physics behind it. In order to do that, we start

from the Schrödinger equation:

ih̄
d

dt
|ψn(t)〉 = H[P(t)] |ψn(t)〉 , (1.14)

where |ψn(t)〉 is given by equation (1.11). Then, take the inner product on both sides of the

last equation, and use the expression for Cn(t) given by equation (1.13), so that

En(t) = 〈n[P(t)]|C∗nH Cn |n[P(t)]〉

= ih̄C∗n(t) 〈n[P(t)]| d
dt
|Cn(t)n[P(t)]〉

= ih̄ 〈n[P(t)]| d
dt
|n[P(t)]〉+ ih̄C∗n 〈n[P(t)]| dCn(t)

dt
|n[P(t)]〉

= ih̄ 〈n[P(t)]| d
dt
|n[P(t)]〉 − h̄dγn(t)

dt
+ En(t).

(1.15)

Hence,
d

dt
γn(t) = i 〈n[P(t)]| d

dt
|n[P(t)]〉 . (1.16)

1.3 The Berry Connection and the Geometric Phase

To proceed further in our discussion, let us define the Berry connection as:

An(P) = i 〈n(P)| ∂
∂P |n(P)〉 . (1.17)

This definition is going to be useful when computing the so-called Berry phase. Now we can

integrate the differential equation that appears in equation (1.16)∫ t

0

dt′
d

dt′
γn(t′) =

∫ t

0

dt′i 〈n[P(t′)]| d
dt′
|n[P(t′)]〉 , (1.18)

so that

γn(t)− γn(0) = i

∫ t

0

〈n[P(t′)]| d
dt′
|n[P(t′)]〉 dt′ . (1.19)
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Notice furthermore that

d |n[P(t′)]〉
dt′

=
∑
µ

∂ |n(P)〉
∂Pµ

dPµ
dt′

=
∂ |n(P)〉
∂P · dP

dt′
(1.20)

so that the phase γn is

γn(t)− γn(0) = i

∫ t

0

〈n(P)| ∂
∂P |n(P)〉 · dP , (1.21)

or in terms of the Berry connection (equation (1.17)) the phase associated to the path C that

P follows in the parameter space can be written as

γn(t) =

∫
C

An(P) · dP , (1.22)

where we have taken γn(0) = 0 for simplicity [1].

Thus from the two phases that appear in equation (1.13), the first one is given by the equa-

tion (1.22) which only depends on the path C. This implies that γn has a geometric origin and

therefore is usually referred to as the geometric phase. The other phase in equation (1.13) de-

pends on the time integral of the energy spectrum. This phase is called the dynamical phase [1].

One can show that the geometric phase, given by equation (1.22), has the following prop-

erties:

1. It is real.

2. It is related to the Berry connection, which is also real.

3. The geometric phase is gauge-dependent, so it is not an observable.1

Following [1], the first property can be proven by noticing first that since 〈n(P)|n(P)〉 = 1,

then

∂

∂P 〈n(P)|n(P)〉 = 〈∂n(P)/∂P |n(P)〉+ 〈n(P)|∂n(P)/∂P〉

= 2 Re
[
〈n(P)|∂n(P)/∂P〉

]
= 0.

(1.23)

1According to Anton Capri [5], in quantum mechanics an observable can be defined as: “any physical quantity
whose value is obtained by a definite physical operation”. The observable O is represented in Hilbert space by a
self-adjoint operator O. If we take the expectation value of this operator in one specific gauge, the result must
be equal to the expectation value obtained in some other gauge. If this weren’t true, this would mean that the
observable depends on the gauge, which cannot be physical accepted [5, 6].
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Therefore the Berry connection and the geometric phase are real.

The third property can be shown by doing a phase change to the geometric phase with

the purpose of seeing if there is a gauge dependence. More precisely, consider

|n(P)〉 → eiζ(P) |n(P)〉 (1.24)

so that the Berry connection changes as

An(P)→ i 〈n(P)| i∂ζ(P)

∂P +
∂

∂P |n(P)〉

= An(P)− ∂ζ(P)

∂P ,

(1.25)

and, consequently, the geometric phase becomes

γn → i

∫ t

0

〈n(P)| ∂
∂P |e

iζ(P)n(P)〉 dP

=

∫
C

An(P) · dP −
∫ t

0

〈n(P)| ∂ζ(P)

∂P |n(P)〉 · dP

= γn − ζ[P(0)] + ζ[P(t)].

(1.26)

This change indicates a gauge dependence in the geometric phase and in the Berry connection,

implying that the geometric phase cannot be an observable [1].

1.4 The Berry Phase and the Berry Curvature

In the previous section we have shown that the Berry connection and the geometric phase are

gauge dependent. In 1984, Berry [7] considered a system that varies under an adiabatic process

and for which the initial and final points in the parameter space are the same, so that

P(t0) = P(tf ) . (1.27)

Since the path followed in the parameter space is a loop, we will express the geometric phase,

equation (1.22), as follows:

γn =

∮
An(P) · dP . (1.28)

This is the so-called Berry phase. Since the Berry phase is in a closed loop, it is gauge inde-

pendent. This implies, as we will exemplify below, that interesting physical consequences may

appear when γn 6= 0 [1].
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Mathematically, the Berry phase can be expressed as a flux passing through a loop in

parameter space. From this point of view, the Berry connection is mathematically similar to

a magnetic vector potential so one could look for an object that plays a similar role to that

of the electromagnetic field tensor, an anti-symmetric rank-two tensor field that lives in the

Minkowski space. This is so-called the Berry curvature and it is defined as follows:

ωnµν(P) = ∂PµAnν (P)− ∂PνAnµ(P). (1.29)

One can show that the Berry curvature is a rank-two tensor of dimension D × D [1]. Now,

using Stokes’ theorem and the Berry curvature we can rewrite the Berry phase as

γn =

∫
∂S

An(P) · dP =
1

2

∫
S

dPµ ∧ dPν ωnµν(P), (1.30)

where ∂S is the loop that encloses the surface S in the parameter space, dPµ ∧ dPν is an

infinitesimal element of surface that is oriented2, and the factor 1
2

is necessary to avoid adding

twice every element due to Einstein’s summation convention [1].

Now that the Berry phase and curvature have been defined, we can explore the different

forms that they take depending on the dimension of the parameter space. Clearly, in one

dimension, the Berry phase does not exist. On the other hand, in three dimensions the Berry

curvature can be nicely written as

ωnµνD=3
=
[
∂PµAnν − ∂PνAnµ

]
D=3

= (δµαδνβ − δναδµβ)∂PαAnβ

= ελαβ ελµν ∂PαAnβ = ελµν b
n
λ,

(1.31)

where we have introduced

bnλ = ελµν∂PµAnν . (1.32)

This vector can be expressed in a three-dimensional (D = 3) parameter space as

bn(P) = ∇P ×An

= i∇P × 〈n(P)| ∂
∂P |n(P)〉 ,

(1.33)

or more explicitly

bnλ = ελµν∂Pµ 〈nP |∂PνnP 〉

= ελµν

(
〈∂PµnP |∂PνnP 〉+ 〈nP |∂Pµ∂PνnP 〉

)
,

(1.34)

2The wedge product, also known as exterior product (∧), of p differentiable forms results in a p−form. A
p−form, is a special tensor that defines a p−dimensional and oriented surface element in the manifold and it
gives the proper integrand to be used in surface integrals [8].
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that is

bn = 〈∇Pn(P)|×|∇Pn(P)〉 . (1.35)

Furthermore, we see that in a D = 3 parameter space it is possible to rewrite the Berry

curvature, so that

γn =

∫
S

bn · dS =

∫
S

(∇P ×An) · dS. (1.36)

This result invokes a similarity between Berry phase an a magnetic flux. Due to this, in a

three-dimensional parameter space, the Berry phase is also known as the Berry flux.

Going back to the general case, we are interested on rewriting equation (1.29) as

ωnµν(P) = i∂Pµ 〈n(P)|∂Pνn(P)〉+ i∂Pν 〈n(P)|∂Pµn(P)〉

= i[ 〈∂Pµn(P)|∂Pνn(P)〉+ 〈n(P)|∂Pµ∂Pνn(P)〉

− 〈∂Pνn(P)|∂Pµn(P)〉 − 〈n(P)|∂Pν∂Pµn(P)〉 ]

= i[ 〈∂Pµn(P)|∂Pνn(P)〉 − 〈∂Pνn(P)|∂Pµn(P)〉 ]

(1.37)

Finally, we are going to derive a formula that allows to compute the Berry curvature easily.

This formula does not depend on the eigenstate variation in P . Following [1] we first notice

that: (
∂H

∂Pν

)
|n(P)〉 =

∂

∂Pν
[H |n(P)〉 ]−H ∂

∂Pν
|n(P)〉

=

(
∂En
∂Pν

)
|n(P)〉+ (En −H) |∂Pνn(P)〉 .

(1.38)

Doing the inner product of this result with 〈n′(P)|, for n 6= n′ we have that

〈n′(P)|

(
∂H

∂Pν

)
|n(P)〉 = 〈n′(P)| ∂En

∂Pν
|n(P)〉+ 〈n′(P)| En −H |∂Pνn(P)〉

= (En − En′) 〈n′(P)|∂Pνn(P)〉 .

(1.39)

Analogously, we can also write

〈n(P)|

(
∂H

∂Pµ

)
|n′(P)〉 = 〈n(P)| En′ −H |∂Pµn′(P)〉

= (En′ − En) 〈n(P)|∂Pµn′(P)〉 ,

(1.40)

Chapter 1. Geometry, Topology and Berry Phase 11



Section 1.4. The Berry Phase and the Berry Curvature

and using these results in the Berry curvature, this can be expressed as

ωnµν = i
∑
n6=n′
〈∂Pµn(P)|n′(P)〉 〈n′(P)|∂Pνn(P)〉 − c.c.

= i
∑
n6=n′

〈n(P)| ∂H
∂Pµ |n

′(P)〉 〈n′(P)| ∂H
∂Pν |n(P)〉

(En − En′)2 − c.c,
(1.41)

where there is no dependence on the variation of the eigenstate |n(P)〉. This formula is useful

because allows us to calculate the Berry curvature for fixed eigenstates [1].

In the next section, we will show a non-trivial example of the Berry phase: the Aharonov-

Bohm phase.

1.4.1 The Berry Phase in the Aharonov-Bohm Effect

As we have mentioned before, sometimes the Berry phase is non-trivial and it contains inter-

esting physics, as in the case of the Aharonov-Bohm effect. To understand this phenomenon,

think of a solid wall barrier that prohibits charge particles to get inside it. Inside the barrier, a

magnetic flux Φ passes through in the ẑ direction. According to classical physics the charged

particles are not affected by the magnetic field, as this is inside the wall. Recall also that

B = ∇×A, (1.42)

where B is the magnetic field and A is the vector potential. A classical charged particle outside

the barrier would experience classical free motion because it does not sense the magnetic field,

that is, it does not experience a Lorentz force. From a quantum mechanical point of view,

however, things are more interesting. There are many possible paths that the charged particle

can take and there are certain paths that cannot be transformed into each other continuously:

they are topological different. Every non-equivalent path has a different length, corresponding

quantum amplitude and winding number. Because of this, the effect between the complex

amplitudes related to the path and the magnetic flux is non-trivial, even though we still have

that

∇×A = 0, (1.43)

but whose contour integral of the vector potential is however∮
dr ·A(r) = nΦ . (1.44)

Here n is the winding number and Φ is the magnetic flux inside the barrier [1].

The importance of this phenomenon is the global effect that produces: charged particles
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Figure 1.4: Schematic diagram of the system. A magnetic field is oriented in to the ẑ direction,
around it there is hard wall barrier that keeps the flux confined. In classical physics, if there is
a particle outside the barrier it does not perceive the magnetic flux and so, does not experience
a Lorentz force. Quantum mechanically, there is a non-trivial effect between the magnetic flux
and the complex amplitudes related to every possible different topological path (labeled with
a different winding number). The box in the right side of the diagram indicates a box that
contains a particle. This box allow us to do an adiabatic analysis of a charged particle traveling
around the flux. Image from [1].

are scattered by the flux tube (in classical physics this would not be observed). This scattering

is proportional to the charge q and the total magnetic flux Φ. In this case, the path-integral

formalism of Feynman is very useful as it accounts for all trajectories. This formalism indicates

that any trajectory r(t) is associated to an amplitude

e
i
h̄
S[r], (1.45)

where S is the classical action, defined as

S(r) =

∫ t

0

dτL(ṙ, r), (1.46)

where L is the classical Lagrangian. Because of the presence of the vector potential, the

Lagrangian must be rewritten as

L → L+ [−eA(r) · ṙ], (1.47)

and, as a consequence, the amplitude is

exp

[
i

h̄

∫
dτ [L − eA(r) · ṙ]

]
, (1.48)
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which has a phase that depends on the vector potential, that is

θ = − e
h̄

∫
A(r) · dr, (1.49)

and following equation (1.44), it can bee seen that this phase depends in the winding number.

Using that the quantum flux is

Φ0 =
h

e
, (1.50)

the Aharonov-Bohm phase becomes

θ = − e
h̄

∮
dr ·A(r) = − e

h̄
nΦ = −2πe

h
nΦ = −2πn

Φ

Φ0

. (1.51)

In this example the Aharonov-Bohm phase is equal to the Berry phase that arises from the

adiabatic transport of an electron around a flux tube [1].

To do the analysis of the adiabatic transport of a electron around the flux tube, an excita-

tion gap in the Hamiltonian is necessary. This gap can be introduced by supposing that either

the electron is inside a box with hard walls or that it is inside another confining potential. The

Hamiltonian of the model is

H =
1

2me

[
p +

e

c
A(r)

]2

+ V (r−R0), (1.52)

where R0 indicates the position of one of the box’s corner. To simplify the derivation, let us

assume that the box orientation is fixed, this neglects any relation between the potential and

R0. In this model, P = R0 [1]. Assume also, that the box, and as a consequence the particle,

is always outside the magnetic flux tube, so the magnetic field is zero, ∇ × A = 0, but the

vector potential is not A 6= 0. If the vector potential is proportional to a gradient function,

both conditions are followed, so

A(r) =
Φ0

2π
∇χ(r), (1.53)

and must satisfy that ∮
dr ·A =

Φ0

2π

∮
dr ·∇χ(r) ≡ nΦ. (1.54)

A possible expression

χ(r) =
Φ

Φ0

ϕ(r), (1.55)

where ϕ(r) is the azimuthal angle of the point r.

In the case that the quantum ground state wave function is ξ0(r−R0) when A = 0 in all
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the space, the Schrödinger equation is

ψ(r) = e−iχR0
(r)ξ0(r−R0), (1.56)

where

χR0(r) ≡ 2π

Φ0

∫ r

R0

dr′ ·A(r′). (1.57)

Note that the integral has r as the upper limit, R0 as the lower limit and so, it is evaluated for

a path that is inside the box. As the vector potential has zero curl inside the box, this function

is well-defined. Due to all the possible combinations, this function must be multiplied by a

phase eiθ. Different choices can be taken for θ(R0) (in the parameter space) that correspond

to different gauges for χ(r). For this analysis we choose the values so that

ψ(r) = eiθ(R0)e−iχR0
(r)ξ0(r−R0) (1.58)

is real and positive at a point inside the box and different from the corner. This point is R0+∆,

and satisfies that ξ0(∆) 6= 0. We can assume that ξ0(r−R0) ∈ R and that ξ0(∆) > 0. Due to

these considerations

θ(R0) = χR0(R0 + ∆). (1.59)

It can be calculated that

∇R0θ(R0) = ∇R0χR0(R0 + ∆)

=
2π

Φ0

∇R0

∫ R0+∆

R0

dr′ ·A(r′)

=
2π

Φ0

[A(R0 + ∆)−A(R0)] ,

(1.60)

and

∇R0χR0(r) =
2π

Φ0

∇R0

∫ r

R0

dr′ ·A(r′)

= −2π

Φ0

A(R0).

(1.61)

Using this, we find that

A(R0) = i 〈ψ|∇R0|ψ〉

= i 〈ψ|∇R0|eiθ(R0)e−iχR0
(r)ξ0(r−R0)〉

= i2 〈ψ|∇R0θ(R0)−∇R0χR0(r)|ψ〉+ i 〈ψ|∇R0ξ0(r−R0)|eiθe−iχR0 〉

= −2π

Φ0

[
A(R0 + ∆)−A(R0)

]
+

2π

Φ0

A(R0) + 〈ξ0(r−R0)∇R0ξ0(r−R0)〉

= −2π

Φ0

A(R0 + ∆) + i

∫
d3rξ0(r−R0)∇R0ξ0(r−R0).

(1.62)
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Notice that

i

∫
d3rξ0(r−R0)∇R0ξ0(r−R0) =

i

2

∫
d3r∇R0ξ

2
0(r−R0)

= − i
2

∫
d3r∇rξ

2
0(r−R0),

(1.63)

and if we use the divergence theorem∮
S

ψ dS =

∫
V

∇ψ dV, (1.64)

we get that

i

∫
d3rξ0(r−R0)∇R0ξ0(r−R0) = − i

2

∮
S

ξ2
0(r−R0)dS = 0. (1.65)

This integral is equal to zero for the surface integral, since the function ξ0 vanishes outside the

box. We can write that

A(R0) = −2π

Φ0

A(R0 + ∆), (1.66)

which indicates that the Berry connection and, as a consequence, the Berry phase are related

to the vector potential which in turn is related to a magnetic field [1]. We want to explicitly

calculate the Berry phase using equation (1.36)

γ =

∮
dR0 ·A(R0)

= −2π

Φ0

∮
dR0 ·A(R0 + ∆)

= −2π

Φ0

nΦ.

(1.67)

In this case we have shown that the Aharonov-Bohm phase (equation (1.51)) is equal to the

Berry phase.

Let us finalize this chapter by introducing another concept: the Chern number.

1.4.2 The Chern Number

New quantum phases have arisen with the study of topological quantum matter. These phases

differ from the conventional phases: they posses neither symmetry breaking nor a local order

parameter. Because of that, topological phases are classified by integer indices that do not

change because they are protected, and only change their value when the gap energy is closed.

In two-dimensional lattice systems, the topology of the filled bands is given by the Chern

number. The Chern number is defined as the integral of the Berry curvature in k-space (bn(k))
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in the first Brillouin zone (1BZ):

Cn =
1

2π

∫
k∈1BZ

bn(k)dkxdky, (1.68)

and gives us the eigenvectors winding number. Note that if the band structure changes

smoothly, the Berry curvature changes too, but the Chern number remains unchanged [1, 9].

After this chapter, we have the tools to understand the importance of the Berry phase,

which is essential in this work. In the next chapter we are seeking to introduce the electron’s

physics and to explore the physics behind the behaviour of different magnetic materials.
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Chapter 2

Electron’s Physics and Magnetism

2.1 A Brief History of Magnetism

To talk about the beginnings of magnetism we need to go back in time 6,000 years, when

magnetite was discovered, as the first written records point out, in China. In the period that

comprises from 3,000 to 2,500 B.C., the first known primitive compass, made with a magnetite

object that had the shape of a spoon, was already developed. There is a military manual (1044

A.D.) where an illustration of a magnetized iron piece, with the shape of a fish, is floating

and points to the South. Some years later, a compass made with a magnetic needle was de-

scribed [10].

In Europe, the most ancient findings about magnetism and descriptions were made by the

Greeks. Back then, the discoveries of magnetism were due to people’s curiosity to understand

the ability of some materials in manipulating objects from a distance [10]. In ancient Greece

three main magnetism breakthroughs were made: Plato discovered the magnetic induction,

which explains why some magnetized materials can attract others; Lucretius found out that

two or more magnetic materials can also repeal each other; moreover they found the existence

of two magnetic poles [10].

Other important experiments were made by Gilbert and Descartes, that changed the

world. Gilbert (1544-1603) wrote Magnet, a book where he reproduced magnetic experiments

done before him and introduced his own experiments, observations and results. Also, repro-

ducing Peregrinus’ experiments with a terrella (a small magnetized sphere), Gilbert proposed

that the Earth is actually a magnet [10].

The first extensive theory of magnetism was done by René Descartes (1596-1650), who

wrote his ideas and discoveries in Part IV (sections 133-183) of his Principia. He called threaded

parts to the effluvia, a known concept at the time that refers to different magnetic fluids and
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Section 2.1. A Brief History of Magnetism

explained magnetism [10].

Gilbert and Descartes were great thinkers of their time, whose work touched many areas

like physics and philosophy. Gilbert did huge discoveries in magnetism and thought of its philo-

sophical implications. On the other hand, Descartes was a more rigorous man, scientifically

speaking, and his work was better grounded. A century latter (1750, approximately), the first

signs of what we understand now as modern science appeared [10]. This new era was char-

acterized by the interplay between experimental data and theory. One of the most important

scientist of this period was Charles Coulomb (1736-1806), who discovered that the attraction

or repulsion forces between two charges is proportional to the inverse of the squared distance

between them. He also found that magnetism can be thought of as a magnetic fluid bounded

to the molecules due to the polarization it induces by its motion. Then, Siméon Denis Poisson

(1781-1840), the mathematician who first studied the static potential, introduced the magneto-

static theory which allowed him to find solutions to many problems. After this, George Green

(1793-1841) extended Poisson’s work [10].

The path of magnetism changed with the study of the correlation between magnetism

and electricity. This opened the door to a new subject: Electrodynamics. The first scientist

who worked on this new topic was Hans Christian Oersted (1777-1851) who discovered that a

current that passes close to a suspended and magnetized needle moves the needle. After this,

André Marie Ampère (1775-1836) found out that the magnetization depends on the direction

of electric loop. Then, Michael Faraday (1791-1867) used for the first time the term magnetic

field and discovered that when polarized light passes through a medium whose magnetization

direction is the same than the light beam, the polarization plane rotates, and this change is

proportional to the magnetic field. Faraday’s research was summarized and extended by James

Clerk Maxwell (1831-1879) [10].

Faraday and Maxwell did important contributions to the study of magnetism. Both of

them realized that the charge is always present in discrete units. In 1874 Johnstone Stoney

suggested the existence of a minimum unit of charge, and in 1891 he coined the term electron

and used it to name the unit of charge [10] . In 1895 Jean Perrin discovered that an electron

beam, also known as the cathode ray, is made of charged particles with negative charge. After

this, Thomson estimated accurately the ratio between the charge of the electron and its rest

mass. These three discoveries just described, revolutionized the way that Physics was studied,

because of the consequences that the existence of the electron produces [10].

As time passed by, scientists focused more to understand the properties of the electron and

the physics behind it. Its spin was first detected in 1921 and quantum mechanics started to play

an important role in describing magnetism. Throughout this chapter we will introduce some
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basic properties of the electron and the role they play to understand the magnetic behaviour

of some materials.

2.2 Basic Properties of the Electron to Understand Mag-

netism

In solid materials, some magnetic properties are related to the electrons, whose nature as a

particle with negative charge changed how magnetism was studied [11, 12]. In 1924, Louis de

Broglie proposed that the wave-particle duality, originally introduced to a photon of light, can

be extended to material particles, so that they have an associated wavelength λ given by

λ =
h

γrmv
, (2.1)

in which m is the mass of the particle, v is its velocity and γr is the relativistic factor given by

γr =
1√

1− v2

c2

. (2.2)

Notice that γrmv = p is the particles momentum. Equation (2.1) is referred to as the de Broglie

wavelenght [11,12].

Before this, Niels Bohr postulated the quantization of the electron’s angular momentum,

that states that the magnitude of this momentum in an atom is quantized in multiples of h̄,

that is,

|L|= |r× p|= nh̄, (2.3)

where L is the angular momentum, r is the vector between the origin and the position of the

particle and n is an integer. This result, together with the de Broglie’s wavelength proposition,

led to the idea that the electron’s allowed orbits are in fact “stationary states with an integral

number of de Broglie wavelengths” [12], as it can be seen in Figure 2.1a. Note that a fractional

number of de Broglie’s wavelengths would result in a destructive pattern of interference [11]

(Figure 2.1b).
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Figure 2.1: The electron’s orbit are stationary states. a) These states have to be multiple
of an integer de Broglie’s wavelengths. b) If the number were not a integer, the wave would
interfere destructively with itself. Image from [11].

Since the electron’s angular momentum is quantized, it is appropriate to study magnetism

using quantum theory. With this in mind we are interested on understanding better the two

sources of the momentum of the electron: the orbital momentum, that is related to the electron’s

movement around the nucleus, and the electron’s intrinsic momentum: the spin [11].

2.2.1 The Orbital Momentum

The orbital momentum can be understood using the Bohr model (see Figure 2.2), in which

electrons rotate around the nucleus in circular orbits, whose electric charge is Ze, with Z the

atomic number. The electrons orbit the nucleus under an electric potential given by

φe = − Ze

4πε0r
, (2.4)

where ε0 is the vacuum permittivity [12]. On the other hand, the motion of the electron

produces a current loop, that has an associated magnetic momentum, viz.

m = − eL

2me

. (2.5)

Here me is the electron mass and L = r× p is the angular momentum [12].

Using that the allowed electron orbit has to be proportional to a integer number of de

Broglie wavelengths and by the arbitrary consideration of using ẑ as the chosen direction of the

spin, the magnetic momentum in this direction is

mz = − e

2me

mlh̄ = −µBml, (2.6)

where ml is the orbital magnetic quantum number that takes values ml = 0, ±1, ±2, ... and
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µB = eh̄
2me

is the Bohr magneton [12].

Figure 2.2: A schematic representation of an atom. The nucleus with charge Ze is in the
center of the atom and, traveling around it, is the electron. The angular momentum points
in the direction perpendicular to the electron’s orbit, and the magnetic momentum is in the
opposite direction [12]. Image from [12].

2.2.2 Electron’s Spin

The other important property of the electron is its spin, which is an intrinsic angular momen-

tum not related to its motion [12].

At the beginnings of the 1900s, Bohr’s theory of the electron, predicted that the electron’s

angular momentum L was quantized. Choosing, say, ẑ as a direction of quantization we know

that

Lz = mlh̄, (2.7)

where

ml = 0, ±1, ±2, ...,±l, (2.8)

where l is the quantum orbital number related to the |L| by the formula

L =
√
l(l + l)h̄, (2.9)

and L > Lz [11, 12].

Notice that, due to the uncertainty principle, nothing deterministic can be said about

the x and y components of L. Thus, according to this principle, the angular momentum can

classically be visualized as moving in a cone, so that Lz is determined by the arbitrary choice

of the quantization axis, while Lx and Ly remained undetermined [11].
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Figure 2.3: a) Space quantization of orbital angular momentum to the quantum number
l = 2. b) The angular momentum must live in a cone due to the uncertainty principle. Image
from [11].

In 1921, Otto Stern and Walter Gerlach were trying to assertain experimentally Bohr’s

theory. Their experiment was made of a beam of silver atoms, that came from a hot oven

approximately at 1000 °C. This beam traveled under the effect of a non-homogeneous external

magnetic field until the beam stroked a photographic plate that recorded the beam shape.

This experiment was designed under the assumption that an electron orbiting around a nucleus

produces a magnetic moment that is proportional to the orbital angular momentum. They

thought that the silver atoms had a non-zero magnetic momentum and that the magnetic field

would generate a torque in the magnetic dipole, so that the atoms would experience a force

in the beam direction. What they observed (in the now called Stern-Gerlach experiment) was

that the silver atoms stroke the plate only at two points, and they thought that this was the

experimental confirmation of Bohr’s theory [11].
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Figure 2.4: Schematic diagram of the Stern-Gerlach experiment. A silver beam that comes
from a hot oven passes though an non-homogeneous magnetic field and strikes in to a plate.
When there is no magnetic field the pattern in the plate should be a straight line. When there
is an external magnetic field, they observed that the beam splits in two different points [11].
Image from [11].

However, Stern and Gerlach made a mistake in the interpretation of their results. They had

predicted that because of space quantization, the silver beam would split in two components

because they thought that the silver atoms have a non-zero angular momentum. In reality

silver has a magnetic moment related to the spin (that was not even proposed at that time),

because the electronic configuration of silver is

Ag47 = [Kr]4d105s1, (2.10)

so it is the spin of the electron in the 5s shell that contributes to the atom’s magnetic mo-

ment [11,13].

Four years later, the first idea of the existence of the electron spin was made. Even when

the interpretation was later refuted, it had a huge importance because that was the first time

(1925) that the idea of the spin was introduced. The authors of this idea were Samuel Goudsmit

and George Uhlenbeck. They proposed that every electron had an intrinsic magnetic moment

(the spin) that was related to the rotation of the electron (that was thought of as a rigid

ball) around its own axis. Even when this approach managed to explain some physical phe-

nomena, when the electron’s rotation velocity was computed, they found out that their ideas

could not be correct, because the electron would had to rotate with a velocity bigger than c [11].

The idea of the spin saw again the light four years later, when, in 1929, Paul Dirac worked

with both quantum mechanics and special relativity to introduce a new theory: relativistic

quantum mechanics, which allowed him to explain that there should be a spin associated to
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the electron, which is an electron intrinsic magnetic momentum [11].

The spin magnetic quantum number ms describes the electron’s space quantization and

can take two different values. The quantum number ms = 1
2

for the spin up and ms = −1
2

for

the spin down [11]. The component on ẑ of the spin angular momentum is

Sz = msh̄ = ±1

2
h̄. (2.11)

The spin magnetic moment µs is

µs = − e

me

S, (2.12)

where S is the spin angular momentum. If we are only interested in the z component, the the

magnetic moment is

µsz = ± eh̄

2me

= ±µB. (2.13)

The orbital momentum and spin momentum of the electron are the main sources of the

total angular momentum and both interact with each other through the spin-orbit coupling [11].

2.3 The Spin-Orbit Coupling

The first quantum atomic models explained most of the hydrogen atom’s properties correctly,

but in other cases the answers given by quantum mechanics were incorrect. Some of the un-

explained phenomena were the splitting of spectral lines and the anomalous patterns found in

the Zeeman effect. In the first case, the theory predicted that for the hydrogen Balmer series

a spectral line would appear for a wavelength at 656.3 nm. Instead of this, two lines appeared,

separated only by 0.14 nm. The existence of two lines instead of one suggested that the existent

theory was incomplete [11]. In the Zeeman effect, it was expected that the spectral lines of an

atom should split into three components due to the effect of the magnetic field, but in some case

was observed that more than three spectral lines appeared. The nature of the “extra” spectral

lines was successfully explained by the spin-orbit coupling (SOC), also called the spin-orbit

interaction [11].

The SOC is present in most of the atoms due to the electron’s orbital l and spin momen-

tum s, giving raise to a total electronic angular momentum j = s + l1 that is proportional to

the magnetic moment m [12].

1In this paragraph we use l, s and j in lowercase letters because we are talking about atoms with one electron.
For atoms with more than one electron, we use capital letters L, S and J.
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In order to understand the SOC, it is helpful to use a semi-classical model. Thinking in

terms of Bohr’s electron model, we have that the electron is moving in a circular orbit around

a charged Ze nucleus (Figure 2.5a). If we change the nucleus’ framework to the electron’s

framework, the electron “sees”a charged particle around itself, while the electron is fixed [12].

The circular movement of a charge particle, in this case the nucleus, produces a current loop

I =
Zev

2πr
, (2.14)

where r is the orbit’s radius. The current loop produces an effective (non-external) magnetic

field Beff, normal to the plane of the orbit (see Figure 2.5b) and given by

Beff =
µ0I

2r
=
µ0Zev

4πr2
, (2.15)

where µ0 is the vacuum permeability. The effective magnetic field is responsible of the SOC,

because interacts with the electron intrinsic magnetic moment: the spin. In the ground state,

the spin is oppositely aligned with the angular electron’s momentum [12].

Recalling magnetostatic theory, when a magnetic moment is in the presence of a magnetic

field, a torque Γ appears

Γ = m×B, (2.16)

which is related to a magnetic energy

Em = −m ·B. (2.17)

In the case of the SOC, this magnetic energy reads

ESOC = −µBBeff = −µBµ0Zev

4πr2
. (2.18)

Notice that ESOC is proportional to the atomic number Z. So the SOC effect becomes more

important as Z increases [11, 12].
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Figure 2.5: Semi-classical model of atomic SOC. a) Schematic representation of Bohr’s model
and b) the schematic representation from the framework of a fixed electron that sees that the
nucleus moves around itself, creating an effective magnetic field Beff that is normal to the orbit
plane. Image from [14].

Let us analyze the SOC a bit more thoroughly. To achieve this purpose, we followed the

procedure done by Strange [15], where he used a non-relativistic Hamiltonian in which the spin

particle interacts with a magnetic field. [15]. Starting from Schrödinger’s equation for this case

(also called Pauli’s equation)

ih̄
∂Ψ(r, t)

∂t
=

[
1

2me

(
h̄

i
∇− eA(r)

)2

− µ̂ ·B(r) + U(r)

]
Ψ(r, t), (2.19)

where Ψ(r, t) is the wavefunction, me is the electron mass, A(r) is the vector potential, µ̂ is

the magnetic momentum, B = ∇ ×A is the magnetic field, U(r) = eV (r) is the electrostatic

potential energy, and V (r) is the electrostatic potential [15].

Recall that in the electron’s framework, the electron “sees” a magnetic field due to the

nucleus. The nucleus generates a loop current that is

I = −Zev, (2.20)

where v is the nucleus relative velocity to the electron [15]. Recall further that the nucleus

electric field is

E(r) =
Ze

4πε0r3
r, (2.21)

and that an electric current generates a magnetic field given by the Biot-Savart law

B(r) =
µ0

4π

I× r

r3
. (2.22)

From the latter, together with equations (2.20) and (2.21), and recalling that c = 1√
µ0ε0

, the
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magnetic field can be rewritten as

B(r) =
−µ0Ze

4πr3
v × r

= −µ0ε0v ×

(
Zer

4πε0r3

)
=
−1

c2
v × E.

(2.23)

Going back from the electron’s framework to the nucleus one, adding a factor of 1
2

due to

the Thomas precession, the part of the Pauli equation containing the magnetic field can be

rewritten as follows [15]:

H1 = −µ̂ ·B

=
e

2m
Ŝ ·B

=
−e

2mc2
Ŝ · (v × E),

(2.24)

With this in mind, we use that

F = eE = −edV (r)

dr
r̂, (2.25)

and then, substituting the last two equations into (2.24), one can finally obtain a formula for

the coupling between the spin and the orbital angular momentum.

H1 =
1

2mc2

1

r

(
dV (r)

dr

)
Ŝ · (v × r)

=
−1

2m2c2

1

r

dV (r)

dr
Ŝ · L̂,

(2.26)

It is also important to mention that in order to have H1 6= 0 it is necessary that dV (r)
dr
6= 0.

Finally note that in a Hamiltonian with a SOC present, only the total angular momentum is a

conserved quantity [15].

2.4 Main Types of Magnetic Behaviour

In materials, the different combinations of electronic spin and orbital momentum give rise to

different magnetic behaviours [16]. Here we discuss the four main kinds of magnetic behaviour

in materials: diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism. In this

section we are interested in giving a brief introduction to them.
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2.4.1 Diamagnetism

Diamagnetism only occurs when an external field is present. Before and after the presence of

the magnetic field there is no magnetization in the material. Its origin is the change in the

orbital moment that is produced when a external magnetic field is applied [16].

Diamagnetism is the reaction that some materials experience when an external field is

present. Here there is an overall alignment of the electrons orbital momenta with the whole

purpose to generate an effective field that cancels the external one [16].

In general, the magnetic susceptibility per volume is

χ =
µ0M

B
(2.27)

where M is the magnetization magnitude and B is the external magnetic field magnitude.

For a diamagnetic material the magnetic susceptibility is always negative [16]. This is due to

Lenz’s law, that states that “when the flux through and electrical circuit is changed, an induced

current is set up in such a direction as to oppose the flux change” [16]. That is, the induced

current is in a direction opposite to the external magnetic field. In a diamagnetic material, the

relative permeability, µr = µ
µ0

, is less than a unit [16].

Figure 2.6: A diamagnetic system, a) when there is not external magnetic field and b) when
a magnetic field is applied. Note that the induced current has an opposite direction to the
external magnetic field. Image from [16].

2.4.2 Paramagnetism

It is a phenomenon originated due to the presence of both, the orbital and spin momenta.

In such materials, this results into a non-zero magnetic dipole associated to each atom, but

randomly oriented in the material sample. When an external magnetic field is applied, the

atoms rotate and reorder themselves in the same orientation to the magnetic field. The magnetic

susceptibility, equation (2.27), is small and positive, while the relative permeability is bigger

than the unit [16].
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Figure 2.7: Paramagnetic behaviour. a) When H 6= 0 the dipole moments do not have specific
direction, b) when an external field is applied the atoms acquires the same orientation that the
field. Image from [16].

Diamagnetic and paramagnetic materials are considered non-magnetic materials, because

both of them show magnetic properties only when an external field is applied.

2.4.3 Ferromagnetism

Ferromagnetism is an ability present in some materials to show a permanent magnetization

even in the absence of an external magnetic field. This permanent magnetization may be due

to both orbital and spin momenta contributions, but usually the spin part contributes more

to this effect than the orbital part. In these materials, the exchange interactions result into

creating local domains in the material having a non-zero macroscopic magnetization. These

are usually called magnetic domains [16].

Figure 2.8: Ferromagnetic behaviour, the electrons are oriented without an external field.
Image from [16].

From the magnetic theory we know that, in general, the magnetic field is

B = µ0H + µ0M. (2.28)

In ferromagnetic materials the magnetic susceptibility can take values of the order of 106, and

as a consequence of this, due to equation (2.27), M � H [16] and then the equation (2.28) can
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be approximated by

B ≈ µ0M. (2.29)

2.4.4 Antiferromagnetism

In some magnetic materials, the exchange coupling between adjacent ions results into the spins

moments to be aligned antiparallel. This phenomenon is called antiferromagnetism [16].

An example of a material that presents antiferromagnetism is Manganese Oxide (MnO),

which composed of two ions: Mn+2 and O−2. The oxygen atoms do not contribute with a

magnetic moment, because both spin and orbital momentum are cancelled. On the other

hand, the manganese ions have a magnetic momentum, whose origin is predominantly from

the electron’s spin. So, the magnetic configuration for these ions is antiparallel as it is shown

in figure 2.9. It is important to note that while each manganese ion does possess a magnetic

momentum, overall magnetization of the material does not, because these momenta cancelled

out macroscopically [16].

Figure 2.9: Antiferromagnetic behaviour in MnO. The oxygen ions (blue) do not possess
any magnetic momenta, while the manganese ions (red) do possess a magnetic momenta whose
origin comes mainly from the spins [16]. The alignment of manganese ions is antiparallel. Image
from [16].

In this chapter we explored some of the most important behaviours of magnetic materials

and the most important ingredients: the electron role, the angular momentum, the spin mo-

mentum and the spin orbit coupling. This information is going to be useful in the exploration

of striking physical phenomena, where the electrons, the magnetic field, and (in some cases)

the spins take an important role: the Hall effects.
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Chapter 3

Hall Effects

The Hall effects are a set of physical phenomena that comprise the behaviour of two-dimensional

systems in which a longitudinal density current flows in the presence of an orthogonal magnetic

field either external or effective. Different kinds of Hall effects appear depending on the material

or the magnetic field properties. Our goal in this chapter is to give a brief introduction to the

Classical, Spin and Quantum Integer Hall effects and then to proceed to study in more detailed

the Anomalous Hall effect.

3.1 The Classical Hall Effect

The Classical Hall Effect (CHE) was discovered in 1879 by Edwin Hall while he was a PhD

student [17]. The CHE consists on the generation of a transverse voltage due to the presence of

a longitudinal electric current in a Hall bar (a thin plate of a metal or semiconductor) immerse

in an external magnetic field, normal to the Hall bar surface [18].

To explain further the CHE, let us consider the case of a conducting material Hall bar

with negative electric carriers: electrons. Suppose that, initially we subject the material to

an electric field along the sample, say, in the x̂ direction E = Exx̂. This generates a current

J = Jxx̂ which after a transient regime, results into a drift velocity, vd = −vdx̂, for the

electrons. Suppose then, that we switch on a magnetic field in the orthogonal direction to the

plane, B = Bzẑ (see Figure 3.1a). The moving electrons now feel a magnetic force

Fm = |q|vd ×B = qvdBzx̂× ẑ = −qvdBzŷ, (3.1)

that deflects the electrons in the −ŷ direction. The accumulation of negative charges at the

bottom edge of the Hall bar produces an excess of positive charges at the opposite edge (Figure

3.1c). This charge polarization between the edges produces, in turn, an electrostatic field that

32



Section 3.1. The Classical Hall Effect

Figure 3.1: Classical Hall effect. a) The Hall bar is crossed by a longitudinal current density
and there is an external magnetic field normal to the plate. b) When the longitudinal electric
field is turned on, immediately the electrons acquire a drift velocity in the opposite direction. c)
The negative current chargers are deflected to one side of the Hall bar because of the magnetic
force, leaving an accumulation of positive current chargers in the opposite edge, resulting in
an electrostatic field. Assuming that the system reaches mechanical equilibrium, then the
new electrostatic force has the same magnitude but opposite direction than the magnetic force
[17,19]. Image from [19].

generates another electrostatic force

Fe = |q|Ee = −q(−Ee)ŷ = qEeŷ, (3.2)

which is equal in magnitude and opposite in direction to the magnetic force, assuming of course,

mechanical equilibrium (equation (3.1)). As a result of this, the y component of the Lorentz

force is zero [17,19]

|q| (Ee + vd ×B)y = 0 . (3.3)

Thus, after the electrostatic force is generated, the system is in a stationary state, and

therefore there is not a force that deflects the charge current in the ŷ direction. Due to the

polarization, there exists a voltage between the opposite edges of the Hall bar, the so-called

the Hall voltage [17, 19]. It is possible to write the conductivity and resistivity in its tensorial
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form, which is (Nb. Einstein’s summation convention applies here)

Jµ = σµνEν , (3.4)

Eµ = ρµν Jν . (3.5)

In this case the resistivity is given by

ρyx =
Bz

nq
, (3.6)

thus ρyx is proportional to the magnetic field intensity and inversely proportional to the charge

q and the carrier density n [1].

The CHE provides the basic mechanisms to understand the other Hall effects that occur

under different conditions. An example of this is the integer quantum Hall effect that is present

when the sample is a two-dimensional electron gas and when the external magnetic field is

strong.

3.2 The Integer Quantum Hall Effect

The Integer Quantum Hall Effect (IQHE) was discovered in 1980 by von Klitzing, Dorda, and

Pepper [20]. In 1982, Paalanen, Tsui, and Gossard [21] measured its Hall resistance. Their

experimental setup consisted on a two-dimensional electron gas (2DEG) trapped between two

crystals: a GaAs and a GaAlAs one [22].

In the IQHE, a 2DEG is under the effect of a large external magnetic field. In this

experiment the main observation is that the resistance spectrum as a function of the magnetic

field has “horizontal steps”, which means that for different values of the external magnetic field,

the resistance has the same value (see Figure 3.2), instead of having a linear dependence as is

observed in the CHE [1]. Moreover, at these specific points the resistance is quantized and the

“horizontal steps” are known as quantum Hall plateaux [1,22]. The Hall resistance (considering

the same direction for the magnetic field and the current density as in the previous description

of the CHE) is

RH =
Vy
Ix

=
1

ν

h

e2
, (3.7)

where Vy is the magnitude of the voltage, Ix is the electron current magnitude, e is the electron

charge and ν takes integer values (ν = 1, 2, 3, ...). Note that the formula for RH implies that

the quantization is universal, independent of the sample or the magnetic field [1].

In 1981, Robert Laughlin [23] presented his thought experiment, where he used the rela-
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Figure 3.2: Hall resistance versus external magnetic field for a 2DEG trapped between a
GaAs and a GaAlAs crystals. The quantum Hall plateaux can be seen for different ν values,
the Hall plateaux are bigger as the magnetic field increases. Note that for non-large external
magnetic field, the Hall resistance has a linear behaviour [22]. Image from [22].

tionship between the electric current I and the total magnetic energy UB

Iµ =

(
∂UB

∂Φµ

)
Φ′,R′

, (3.8)

where Φ is a magnetic flux related to N current loops and R is the center of mass coordinate

of each loop. In addition, Laughlin used gauge invariance and the solutions of the Schrödinger

equation for a two-dimensional system of free electrons in a perpendicular magnetic field [22],

to show that the smallest increment in magnetic flux that can be accommodated by a 2DEG

carrying a current is ∆Φ = h/e. As a consequence of this, there is a change in the energy

∆UB = νeVH, (3.9)

so that an expression for the Hall resistance can be justified as follows:

RH =
VH

I
= VH

∆Φ

∆UB

= VH
h/e

eνVH

=
h

e2ν
. (3.10)

From this equation it can be noticed that the Hall resistance in the IQHE depends only

on universal constants and is indeed quantized [22].

The semi-classical interpretation of the current on the IQHE is that some electrons are

moving in skipping orbits. Indeed, in principle electrons should have a circular cyclotron mo-

tion, but for those electrons close to the edges their motion is interrupted by the collisions with

the boundaries. This means that the bulk electrons are localized in circular orbits while the

edge electrons are the ones that effectively produce an electric current (Figure 3.3) [1].
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Figure 3.3: Semi-classical representation of the IQHE. In a two-dimensional sample under a
intense magnetic field B, the electrons at the boundaries move in skipping orbits, while the
motion is circular at the bulk of the sample. These skipping orbits solely contribute to the
electric current transport [1]. Image from [24].

So far we have seen that these Hall effects produce a Hall voltage; but not all Hall effects

are characterized by this. The paradigmatic case is the so-called the spin Hall effect.

3.3 The Spin Hall Effect

In 1971 D’yakonov and Perel made the theoretical prediction of the Spin Hall Effect (SHE)

[25,26], which was named in 1999 by Hirsch [27], who chose this name due to its similarity with

the CHE [28].

The SHE is based on the linear response of a system with a strong SOC. In this case,

the sample is a two-dimensional system that, as in CHE, is crossed by a longitudinal electric

field, but there is no external magnetic field. Assuming that the system has strong SOC, this

produces an effective magnetic field Beff that deflects the electrons associated to the electric

current density. More precisely, electrons with spin up are deflected to one edge of the sample,

while electrons with spin down are deflected to the other side. As a consequence of this, each

edge of the sample has a different spin polarization [24,28].

While in the previous sections we have seen that the Hall effect produces a Hall voltage

due to charge current polarization, in the SHE there is no transverse voltage, because the prob-

ability of having a spin up electron is exactly the same one as having a spin down. That is,

there is the same amount of electrons at each boundary of the sample, but with different spin

polarization. This results into a net spin current at the edges [24,28].
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Figure 3.4: A schematic draw of SHE. The electrons are injected into the sample, which is
a two-dimensional system with strong SOC. The spin up electrons are deflected to one side of
the sample, while the spin down electrons are deflected to the opposite side. This produces a
spin polarization in the sample’s edges, and as a consequence a spin current appears [24, 28].
Image from [24].

While measuring experimentally the presence of the CHE is easy (just use a voltmeter

connected to the edges of the sample), verifying the presence of the SHE is not that simple

since there is no apparatus that could measure the polarization of electron spin. Therefore,

the experimental test of the SHE arrived almost 30 years after its theoretical prediction. Its

first successful measurement was done by Kato, Myers, Gossard and Awschalom in 2004 [29]

using the static Kerr rotation. In their experiment, the sample were GaAs layers with silicon

impurities. An electric field E = −Eẑ is applied and an in-plane magnetic field Bext is present

to promote the emergence of spin accumulation. A linear polarized laser beam is focused on

normal direction to the sample plane. The rotation axis is known. When the beam is reflected

its polarization changes due to the spin polarization of the sample, with a rotation angle that

depends on the magnetization [24, 28]. The results of these experiments can be seen in the

Figure 3.5.

In Figure 3.5b we can see two different results: on the left plot there is a spin density where

a spin accumulation is notable at the edges of the sample (in the figure the spin orientations

are highlighted using blue and red colors), that have opposite spin polarization. On the figure

to the right, we show a reflectivity image, where the spin accumulation can also be seen. Figure

3.5c shows the result of the Kerr rotation, highlighting the opposite polarization of the spin

accumulation at the edges of the sample [24,29].
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Figure 3.5: a) The schematic representation of the system. b) The spin density (left) and
the reflectivity (right). In the spin density, spin up electrons are in one color and spin down
electrons in another one. As it can be seen there are more electrons at the boundaries and
the spin polarization is opposite at the edges. c) Kerr rotation in microradians in terms of the
magnetic field (up) and in terms of A0, a measure of the spin density (down) [24, 29]. Image
from [29].

Let us move on now to introduce another striking Hall effect that shares some features

withe the SHE: the so-called anomalous Hall effect.

3.4 The Anomalous Hall Effect

In 1880, one year after Edwin Hall discovered the Classical Hall effect, he found out that the

Hall voltage was larger, approximately ten times larger, when the Hall bar was made of iron

instead of gold. He found out that, in general, this effect is an order of magnitude larger in

ferromagnetic materials. This is the so-called Anomalous Hall Effect (AHE). The experimen-

tal setup to study the AHE is the same to the one used for the CHE, but instead of having

a conducting plate, we have a ferromagnetic material whose magnetic domains provide a net

magnetization in the absence of an external magnetic field [30].

In 1929 Smith and Sears [31] proposed that the relationship between the resistivity ρxy,

the normal Hall coefficient R0, the anomalous Hall coefficient RS (typically at least an order of

magnitude larger than R0), the magnitude of the magnetization M and the external magnetic
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field H in ferromagnetic materials are related by the following formula

ρxy = R0(µ0H) +RSM,

where the magnetization component, which plays an important role in this effect, is absent in

the CHE. The magnetization appears here due to the electron spin and therefore it influences

the transport process. Another key ingredient of the AHE is the SOC, as we will see later.

Note that when H = 0, ρxy 6= 0 due to the magnetization [30].

As we described previously, the CHE is a direct consequence of the Lorentz force. On

the other hand, the origin of the AHE was unveiled in the 1950’s [32]. The AHE may be

described by three main mechanisms that can be classified as either intrinsic or extrinsic. The

intrinsic mechanism considers the interaction between the angular momentum L and the spin

of itinerant electrons s (Figure 3.6a), whose energy levels follow a band structure. On the other

hand, the extrinsic mechanism assumes a scattering process between the localised spins of ions

σ and electron’s orbital momentum L (Figure 3.6b). This extrinsic mechanism can further be

subdivided into two main processes: skew scattering and side jump mechanism [24, 30]. From

these contributions, the anomalous Hall conductivity σA
xy can be expressed as

σA
xy = σint

xy + σskew
xy + σside-jump

xy , (3.11)

where σint
xy is the intrinsic mechanism contribution to the conductivity, and σskew

xy and σside-jump
xy

correspond to the skew scattering and the side-jump mechanisms, respectively [30]. In the next

sections, we are going to present in more detail both the intrinsic and extrinsic mechanisms.

Figure 3.6: The AHE has its origin in the a) intrinsic mechanism, where the spin interacts
with the angular momentum and b) in the extrinsic mechanism, where the electron’s angular
momentum interacts with the ion’s momentum [24,30]. Image from [30].
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3.4.1 The Intrinsic Mechanism

The intrinsic mechanism was initially studied by Karplus and Luttinger in 1954 [33]. It is

called intrinsic because it depends on the band structure and it is independent of scattering

processes. Karplus and Luttinger discovered that when an external electric field is applied, the

group velocity of the electrons acquires an additional term that is perpendicular to the electric

field. This is called anomalous velocity. The total contribution of the anomalous velocity

in ferromagnetic materials with SOC is non-zero, when it is summed over all occupied band

states, so it contributes to the Hall effect [30, 32, 34]. The intrinsic AHE resistivity is given

approximately by the relation

ρxy ≈
σxy
σ2
xx

∝ ρ2
xx. (3.12)

In order to understand the nature and the contribution of intrinsic mechanism to the AHE

conductivity, we start by considering the equations of motion of an electron in a solid. The

Lorentz force is given by

F = h̄k̇ = −e(E(r)− ṙ×B(r)), (3.13)

and recall also that crystal with band structure having time reversal and inversion symmetry

results into the following expression for the group velocity

v = ṙ =
1

h̄

∂En(k)

∂k
. (3.14)

When we consider that the system is under a perturbation given by H ′ = eE · r, using pertur-

bation theory up to first order, we can find that the previous formula for the group velocity is

changed to:

v =
1

h̄

∂En(k)

∂k
+
e

h̄
E× bn(k)︸ ︷︷ ︸

va(n, k)

, (3.15)

where, as we saw in Chapter 1, bn is the Berry curvature which can be interpreted as a fictitious

magnetic flux associated to the electrons [1,34]. The second term in equation (3.15) represents

the anomalous velocity va(n, k), which is proportional to the Berry curvature of the band,

and it is always perpendicular to the electric field (the complete derivation of the anomalous

velocity is shown in Appendix B). In equation (3.14) there is no additional contribution to the

velocity because in crystals with both time reversal and spatial inversion symmetry the Berry

curvature vanishes in the Brillouin zone [30,34]. Using that −eE = h̄k̇1, we can write that

h̄ṙ =
∂En(k)

∂k
+ eE× bn(k) =

∂En(k)

∂k
− h̄k̇× bn(k). (3.16)

1The relation −eE = h̄k̇ is obtained from a semiclassical analysis. Let us think on a wave package that
represents a semiclassical particle with position R, momentum h̄K, and energy EnK. The velocity of this
particle is the group velocity of the wave package, so vn(K) = dR

dt = 1
m∗ h̄K = 1

h̄∇KEnK, and because the

Hamiltonian H = EnK + U(R) is a constant of motion dH
dt = 0 = dK

dt ·∇KEnK + dR
dt ·∇U(R), then we can

arrive to h̄K̇ = −∇U(R) = −eE(R) [1].
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The intrinsic contribution to the Hall conductivity, which depends on the bands and not

on the defects, can be calculated from Kubo’s formula [34–36] given by

σA
xy = e2h̄

∑
n 6=n′

∫
[f(En(k))− f(En′(k))]Im

{
〈n(k)|vx(k)|n′(k)〉 〈n′(k)|vy(k)|n(k)〉

[(En(k))− (En′(k))]2

}
, (3.17)

expression that, using the definition of the Berry curvature, reduces to

σAxy = −e
2

h̄

∑
n

∫
dk

(2π)3
f(En(k))bnz (k). (3.18)

We would like to emphasize that this last equation is known as the intrinsic conductivity since

it only depends on the band structure of the material and not on the concentration of the

impurities [30,34].

3.4.2 The Extrinsic Mechanism

The extrinsic mechanism is related to scattering processes in a periodic crystal. In order to

understand this, think of an electron wave packet getting closer to a scattering center. Before

the scattering process occurs, the wave packet is not perturbed, and so it travels in a straight

line. After scattering, the wave packet is no longer a packet, and becomes a set of spherical

waves whose center of mass also travels in a straight line. If the electron’s spin is pointing in a

direction orthogonal to the paper (Figure 3.7), the set of waves will change its trajectory due

to spin-orbit coupling. If the trajectory after the scattering differs from an angle to the original

one (Figure 3.7a), the electron is gaining a transverse momentum. This effect is known as skew

scattering. If the direction of both the before and after trajectories is the same but is displaced

from the origin, the side jump mechanism is present (Figure 3.7b) [30].
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Figure 3.7: The extrinsic mechanism of the AHE can be separated in the a) skew scattering
mechanism, where the trajectory of the wave packet has changed from an angle to the original
trajectory and; the b) side jump mechanism, where the direction of the trajectory is the same
after scattering but it is displaced [30]. Image from [30].

The Skew Scattering Mechanism

The skew scattering mechanism was first described by Smith in 1958 [37] for electrons that

interact via a short-range potential so that the spin-orbit Hamiltonian can be written as

HSO = −λSO(k× s) ·∇V , (3.19)

where λSO is the coupling parameter. The existence of spin-orbit interaction induces a trans-

verse polarization that can be seen as an impact parameter in the collision process and is the

source of the skew scattering [30].

This mechanism is related to the lifetime of the Bloch state transport, so its contribution

is larger when the crystal does not have impurities. As consequence of that, the Hall resistivity

for this mechanism can be described by

ρskewxy ≈ σskewxy ρ2
xx ∼ ρxx. (3.20)

The Side Jump Mechanism

The semi-classical argument for this mechanism is that the Gaussian packet undergoes a spatial

displacement. This displacement was first noticed by Smith (1958) [37] but was studied in more

detail a few years later by Berger (1964) [38]. Using the first Born approximation it can be
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calculated that the spatial displacement in, say, the ŷ direction is given by:

∆y = −λSOszkx, (3.21)

where sz = ±1/2 is the spin of the itinerant electron.

In a weak spin-orbit interacting system the side jump contribution can be computed only

by considering the disorder of the scattering potential. For strong SOC it is necessary to

consider the contribution from the scattering that arises from the part of the wave packet that

does not have SOC [30].

3.4.3 The Berry Phase and the AHE

As we mentioned before, Karplus and Luttinger discovered the anomalous velocity in the AHE

that arises from the inter-band matrix elements. This phenomenom was understood more

deeply thanks to the analysis that Thouless [39] did for the Hall conductivity and the QHE.

He proposed that one can trace the origin of the AHE to a Berry phase. Later it was found

that the Berry phase can arise from two different mechanisms [40].

The first mechanism was described by Jinwu Ye and collaborators [41]. They presented a

new theory for the AHE which is a generalization of the so-called colossal magnetoresistance.

This generalization allowed them to apply the existing theory into a system of conventional

ferromagnets. Their theory is based on the motion of a charged particle in a “topologically

non-trivial spin background”. The motion of the carrier is affected because the emergence of

a Berry phase, which affects the motion similarly as a magnetic field does. If the system also

has SOC, the AHE appears in the same magnitude and temperature dependence that the effect

that has been studied in the colossal magnetoresistance [40].

The other mechanism was described in 2002 by T. Jungwirth and collaborators [42]. They

found that non-coplanar ordering is not necessary in order for the AHE to appear. In this

study the Berry phase is in momentum space (instead of a Berry phase in real space that was

studied in the work of Ye; et al.). The AHE in this kind of systems is related to a ground state

property and depends on how the Bloch wave function coupled to the SOC evolves with respect

to the wave vector [40].

The explanation of this Berry phase can be understood considering that there is a to-

tal spin magnetization in a ferromagnetic system, which is responsible for inducing an orbital

current through the SOC. The joint total spin magnetization and the SOC create an effective

magnetic field. This field induces a polarization in the electrons’ spins degrees of freedom [40].
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In addition to the non-coplanar or coplanar ordering there is a main difference between

these mechanisms. While the mechanism described by Jungwirth et al. [42] requires a SOC

relativistic contribution, the mechanism described by Ye et al. [41] appears even when the rel-

ativistic contribution of the SOC is absent [40].

To understand more thoroughly this last mechanism, in the next chapter we are going to

describe the tight-binding method and to explore the double exchange mechanism.
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Berry Phases in Itinerant Magnetic

Systems: The Model

In this thesis we seek to find that for coplanar and collinear spin configurations, a Berry phase

different from 0 or π is acquired when an electron is moving along a closed path. These calcu-

lations are going to be done for an extended double-exchange model that considers spin-orbit

coupling and for SU(2) invariant systems. In this chapter we introduce the model and some

concepts that are going to be useful in this work. First, we are going to present the tight-binding

approximation, then we describe the double exchange mechanism and remind the concept of

gauge invariance, and after that we are going to present the model of interacting electrons.

4.1 The Tight-binding Method

The tight-binding method is a useful tool to calculate energy bands. To understand it, let

us consider, say, two hydrogen atoms in the ground state, originally well separated from each

other. Both atoms, denoted here as A and B has the same wavefunction: ψA (Figure 4.1a) and

ψB (Figure 4.1b), respectively [19], the label only indicates to which atom the same wavefunc-

tion corresponds to.

When the two atoms get closer we expect electrons to be able to tunnel between them.

Since electrons are indistinguishable now one electron will have an associated wavefunction

ψA + ψB, while the other one will be in the wavefunction ψA − ψB. In this very crude approxi-

mation we are assuming that there are no corrections to the atomic wavefunctions [1, 19].

The wavefunction in the combination ψA + ψB (Figure 4.1c), is non-zero in the midway

between the two protons, whilst in ψA − ψB (Figure 4.1d) the wavefunction vanishes at this

point. This means that ψA + ψB corresponds to a bonding orbital (Figure 4.1e), while the
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ψA − ψB case, for which the electron probability is zero between the two protons, gives rise to

an anti-bonding orbital (Figure 4.1f) [19].

Figure 4.1: a) The wavefunction ψA, b) the wavefunction ψB, c) the overlap ψA + ψB and d)
ψA − ψB, e) the electron probability distribution |ψA + ψB|2 and f) |ψA − ψB|2. Image from
Review of the Universe [43].

Now, we are interested in analyzing the case of group of atoms forming a crystal. Sup-

pose that the distance between the atoms is large enough so that they do not interact with

each other, so that their spectrum is unchanged. The spectrum of the whole system is highly

degenerate. As the atoms get closer, they will start to interact among them. The firs effect of

this will be to break the spectrum degeneracy, resulting in energy bands [19].

The tight-binding method tries to capture in a first approximation the aforementioned

phenomena: overlapping wavefunctions and the appearance of energy bands. The main idea of

this method is to use the non-interacting atoms wavefunctions to describe a crystal wavefunc-

tion [44]. This approximation is useful when the wavefunction superposition needs corrections

with respect to the non-interacting wavefunction, but in many cases of interest these corrections

are rather small. Indeed, the tight-binding method is very powerful and has been used to de-
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scribe, for instance, the energy bands that emerge from partially full d shells, which correspond

to transition metals, allowing also to describe the insulator energy bands [19,45].

The general formulation of this approximation is going to be developed. Let us suppose

that the periodic crystal Hamiltonian H can be approximated by the atomic Hamiltonian Hat

near a lattice point R, that is

H = Hat =
∑
R

Hat,R, (4.1)

where

Hat,Rψn = Enψn. (4.2)

Here Hat,R is the atomic Hamiltonian at R. We are somewhat assuming that |ψn(r −R)|2 is

very small when |ψn(r − R)| is larger than the lattice parameter. If we want to incorporate

interactions between the atoms, one can rewrite the crystal Hamiltonian as follows

H =
∑
R

Hat,R + ∆U(r), (4.3)

where ∆U(r) is a correction to the atomic potential. Since the system is periodic, the wave-

function must satisfy the Bloch condition:

ψnk(r) =
∑
R

eik·Rψn(r−R), (4.4)

where k takes values through the first Brillouin zone [19,45].

To show that ψnk(r) has indeed the periodicity of the crystal, first recall that the sum of

two vectors of the Bravais lattice, say R−R′, is also a vector of the Bravais lattice. Then,

ψnk(r + R) =
∑
R′

eik·R
′
ψn(r + R−R′) = eik·R

(∑
R

eik·Rψn(r− R)

)
= ψnk(r)eik·R. (4.5)

Note that, independently of the crude approximation we have discussed here for the crystal

Hamiltonian, a general solution for a latter, disregarding any approximation, must be of the

following form

ψ(r) =
∑
R

eik·Rφ(r−R), (4.6)

where now φ(r) is not necessarily an atomic wavefunction, but nevertheless it can be expanded

in terms of them

φ(r) =
∑
n

bnψn(r), (4.7)
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so that

Hψ(r) =

(∑
R

Hat,R + ∆U(r)

)
ψ(r) = E(k)ψ(r). (4.8)

Due to equation (4.7), sometimes the tight-binding method is also referred to as the method of

linear combinations of atomic orbitals, because within this approximation we are considering a

set of atomic levels [45].

In summary, the tight-binding approximation considers the atom as a system that is

isolated and with its own atomic levels and takes into account the moving of the electrons

between the atomic potentials [45].

4.1.1 Itinerant Electrons

When the outermost atomic shell is not closed, the remaining electrons in that shell can be

either localized or itinerant. Their properties are the result of which of the four following en-

ergies dominates the electron: thermal, intraatomic, interatomic or electron-lattice [46].

In the case of localized electrons, the intraatomic energy dominates their behaviour, while

in itinerant electrons, the energy that dominates is the interatomic one [46]. The itinerant

electrons move from one atom to another, with a transition amplitude that may also depend

on the spin state of the electron. For instance, in most transition metals, the electrons coming

from the d-shells become itinerant ones in the crystal [47].

In the model of this work we are considering itinerant electrons that interact with a back-

ground magnetic moments [40]. In this thesis, we are going to mention two important concepts:

the double exchange mechanism and the sd model.

4.2 The Double Exchange Mechanism

The double exchange mechanism was first proposed by Zener [48] to explain the ferromag-

netism in mixed valence manganites. A few years later Anderson and Hasegawa [49] used this

mechanism to solve a system of mixed valence dimers. The double exchange interaction re-

lates two localized magnetic moments with an itinerant electron that travels between them [10].

More precisely, the double exchange mechanism considers two magnetic ions, denoted

here as 1 and 2, and a mobile electron between the two ions. The model supposes that the

electron and ion spins interact say antiferromagnetically, so that they want to align in opposite

directions. Of course, if the physical effect is the opposite, the sign of the coupling constant
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ought to be negative. The corresponding Hamiltonian that considers both cases is:

H = −t
∑
m=↑, ↓

(c†1,mc2,m + H.C.) + J(σ1 · S1 + σ2 · S2), (4.9)

where t is the hopping between sites 1 and 2, c†i,m and ci,m are the electron creation and

annihilation operators at site i, with the spin degree of freedom, σi is the electron spin operator

at site i, and Si is the orientation of the ion spin. Here i only takes values 1 and 2 [10, 50].

The first term in equation (4.9) describes how the electron moves between the ion cores, so an

electron with spin up or down is annihilated at one site and create at the other. The second

term represents how the spin of the itinerant electron aligns with the fixed spin. In this first

approach, it is considered that each ion spin, which in this model are supposed to be fixed,

carries spin 1
2

[10]. There are sixteen basis states which are represented by

c†i,m |0〉 ⊗ γ+
1 γ

+
2 |↓↓〉 , (4.10)

where i = 1, 2 represents the position of the itinerant electron and m =↑ ↓ the spin direction.

Also γ+
i are operators that take different values depending on the ion fixed spin polarization

(at position i). For spin down γ+
i = 1 and for spin up γ+

i = S+
i , where S+

i is the raising spin

operator 1. Using these basis states we can calculate

Mi j = 〈i|H|j〉 , (4.11)

and from there, the eigenvalues and eigenvectors of the corresponding model [10].

To simplify the model, we will consider (as was also done in [40]) that the ion spins are

modeled as a classical ones

Sj = Snj (4.12)

Notice that the Hamiltonian (equation (4.9)) captures two distinct physical regimes for J � t

or J � t. In the first case, the Hamiltonian corresponds to the double exchange model and

it is used to describe ferromagnetism in manganites. On the other hand, the weak coupling

limit J � t also called the sd−model, successfully explains ferromagnetism due to itinerant

electrons [51].

We will see that in this system, an electron moving in a closed path acquires a Berry phase,

which is gauge invariant. Let us brief recall about the latter concept.

1Note that the operators γ+
i and S+

i have as super index a plus sign (+), which is different to the dagger (†)
symbol.
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4.2.1 Gauge Invariance

In quantum mechanics, if ψ(x, t) describes the quantum state of a physical system, so does

ψ(x, t)e−iθ. Note that θ is usually referred to as a global phase and it is constant. Thus

quantum states have a global symmetry

ψ(x, t)→ ψ(x, t)e−iθ, (4.13)

and this, inturn, automatically implies that the equation of motion is invariant under this global

symmetry.

There are other cases in which physical systems are invariant under a local phase trans-

formation. That is, if the phase is a function θ = f(x, t), the previous transformation becomes

indeed local:

ψ(x, t)→ ψ(x, t)e−if(x, t). (4.14)

Now, we have the basic concepts to present the details of the model.

4.3 Real-space Berry Phases in Itinerant Magnetic Sys-

tems: The Model

The model of this thesis is based on the work done by [40]. We consider itinerant electrons

that interact with magnetic moments. This interaction is made through an exchange coupling

J . Given the normalized vector field

nj = (sin θj cosϕj, sin θj sinϕj, cos θj), (4.15)

the classical spin of the ion j is given by equation (4.12).

The Hamiltonian that describes the system is

H = Ht +HJ, (4.16)

where

Ht =
∑
j, k

(tkjc
†
k Ukj cj + t∗kjc

†
j U
†
kj ck), (4.17)

is the tight-binding Hamiltonian that considers SOC and

HJ =
−JS

2

∑
j

c†jσcj · nj, (4.18)
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is the Hamiltonian that models the exchange coupling between electrons and ions.

The tight-binding Hamiltonian (equation (4.17)), corresponds to the kinetic energy of the

conduction electrons. This Hamiltonian considers the SOC by introducing the matrix Ukj.

When the electron is moving from site k to site j, the spin orientation changes due to the SOC.

On the other hand, the exchange coupling Hamiltonian describes the interaction between the

spin of the electron and that of the ion via Hund’s coupling.

To understand better both Hamiltonians, we present the definition of each element pre-

sented in equations (4.17) and (4.18). The creation and annihilation operators in spinor notation

are

ck =

[
ck↑

ck↓

]
, (4.19)

c†k =
[
c†k↑ c†k↓

]
, (4.20)

and

Ukj = exp

[
− iαkj

2
(akj · σ)

]
, (4.21)

in which αkj is the rotation angle that is induced by a finite SOC, akj is the unitary vector

that indicates the direction of the rotation axis, and σ = (σx, σy, σz) is the vector of the Pauli

matrices. The parameter that gives the hopping amplitude is

tkj = |tkj|eiβk . (4.22)

Note that if we choose αkj = 0, the Hamiltonian models a system in the absence of SOC,

so that there is no rotation angle induced, and the Hamiltonian becomes SU(2) invariant.

It is necessary to assume that the exchange interaction is of the order or larger than the

itinerant electrons’ bandwidth. This is called the double exchange limit. This model gives us

a low energy Hamiltonian that is a tight-binding model with spinless fermions whose hopping

amplitudes are

t̃kj = τkje
iγkj , (4.23)

in which the underlying magnetic moments are

τkj = tkj

√
1 + nk ·Rkj · nj

2
, (4.24)

where

Rkj = exp[αkj(akj · L)], (4.25)

is a rotation matrix of the SO(3) group, which is related to the rotation given by Ukj and
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L = (Lx, Ly, Lz), both belonging to the group SU(2) .

When the electron is moving through the triangle jkl, it acquires a net phase given by

Φjkl = βjkl + γjkl, (4.26)

where each contribution has a different origin. The contribution given by

βjkl = βjl + βlk + βkj, (4.27)

is a phase due to the complex hopping amplitudes tkj that can only take two values, 0 or π

because the Hamiltonian is time reversal invariant. On the other hand, the contribution given

by

γjkl = γjl + γlk + γkj, (4.28)

is the Berry phase. It appears due to the strong interaction between the local moments and

the electronic spin.

In the computing of the real-space Berry curvature, we will consider an adiabatic process

because it makes the analysis simpler and allows us to compare the Berry curvature with a

fictitious magnetic field that is coupled to the orbital motion of the itinerant electrons [40]. In

the presence of finite SOC the Berry connection is

γkj = arg[〈nk|Ukj|nj〉]. (4.29)

In the following chapter we are interested in understanding how the spin rotation induced

by the SOC changes the effective magnetic field. We also present the derivation of Berry phase

for this type of systems.
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Chapter 5

Real-space Berry Phases in Itinerant

Magnetic Systems

In this chapter we will calculate the Berry phase under different approaches. First, we are

going to take a geometric approach, then an algebraic approach and finally we will derive it in

the continuum limit. In these three approaches, we are going to obtain the Berry phase for a

SU(2) invariant system and for the case with SOC. This section presents in minute detail the

procedure done by Cristian Batista and collaborators in [40].

5.1 Geometric Approach

This section’s goal is to find a geometric description to the Berry phase. We are considering a

model that changes the spin direction along a geodesic.

5.1.1 Geodesic Spin Rotations

For any two unit and non-collinear vectors p and q there are two spin states associated with

them, that we denote as |p〉 and |q〉. We are interested in studying how the spin direction

changes from p to q through a geodesic in the Bloch sphere. This procedure is done using a

matrix Ũq,p, that for a geodesic, understood to be the shortest path possible, is

Ũq,p = exp

[
−iχq,p

2
(uq,p · σ)

]
. (5.1)

This matrix rotates the spin direction from p to the q direction. Note that

p · q = cosχq,p, (5.2)
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so χq,p = arccos(p · q) < π. The rotation axis is given by the unit vector

uq,p =
p× q

|p× q|
=

p× q

sinχq,p

. (5.3)

Using that

exp [iθ(v · σ)] = cos (θ) + i(v · σ) sin (θ), (5.4)

where θ is an angle and v is any vector, and also that

sin(2θ) = 2 sin(θ) cos(θ),

sin (θ)

sin (2θ)
=

1

2

[
cos

(
θ

2

)]−1

,
(5.5)

we can do the following derivation

〈q| Ũq,p |p〉 = 〈q| exp

[
−iχq,p

2
(uq,p · σ)

]
|p〉

= 〈q|cos

(
−χq,p

2

)
+ i(uq,p · σ) sin

(
−χq,p

2

)
|p〉

= cos
(χq,p

2

)
〈q|p〉 − i 〈q|(p× q) · σ

sin (χq,p)
sin

(
−χq,p

2

)
|p〉

= cos
(χq,p

2

)
〈q|p〉 − i

2

[
cos
(χq,p

2

)]−1

〈q|[(p× q) · σ]|p〉 ,

(5.6)

where

〈q| [(p× q) · σ] |p〉 = 2i sin2
(χq,p

2

)
〈q|p〉 , (5.7)

so that

〈q| Ũq,p |p〉 = cos
(χq,p

2

)
〈q|p〉+

[
cos
(χq,p

2

)]−1

sin2
(χq,p

2

)
〈q|p〉

= cos
(χq,p

2

) [
1 + tan2

(χq,p

2

)]
〈q|p〉

= cos
(χq,p

2

)
sec2

(χq,p

2

)
〈q|p〉

=
[
cos
(χq,p

2

)]−1

〈q|p〉 =
〈q|p〉
|〈q|p〉 |

.

(5.8)

It is important to note that since |〈q|p〉 | by definition is real and positive, the argument

of 〈q|Ũq,p|p〉 is actually the argument of 〈q|p〉 [40]. This result is going to be useful in the

derivation of an expression of the Berry curvature in the following section.
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5.1.2 SU(2) Invariant Case

The Berry connection in the presence of the SOC is given by equation (4.29). The electron spin

is not rotated as it hops between different sites αkj = 0, and so Ukj = e0 = 1. This implies that

γkj = arg[〈nk|nj〉]. (5.9)

Note that using the result shown in equation (5.8) we can write

γkj = arg[〈nk|Unk,nj |nj〉] = arg[〈nk|(U1/N
nk,nj

)N |nj〉]

= arg[〈nk|Unk,n
(N−1)
kj

...Unkj(2),nkj(1)Unkj(1),nj |nj〉],
(5.10)

where n
(n)
kj , with n = 1, 2, ..., N − 1 are unit vectors along the circle that contains the vectors

nj and nk (Figure 5.2a). Using the orthogonality relation 〈−p|p〉 = 0 and the resolution of the

identity

I = |p〉 〈p|+ |−p〉 〈−p| , (5.11)

and identifying |p〉 = |n(n)
kj 〉 at each intermediate step in the expression of the geodesic matrix

element that was found in the previous section (equation (5.8)), it can be obtained that

γkj = arg
[
〈nk|Ũnk,n

(N−1)
kj
|n(N−1)
kj 〉 〈n(N−1)

kj |...|n(2)
kj 〉 〈n

(2)
kj |Ũn

(2)
kj ,n

(1)
kj
|n(1)
kj 〉 〈n

(1)
kj |Ũn

(1)
kj ,nj
|nj〉

]
= arg

[
〈nk|n(N−1)

kj 〉
|〈nk|n(N−1)

kj 〉 |
...
〈n(2)

kj |n
(1)
kj 〉

|〈n(2)
kj |n

(1)
kj 〉 |

〈n(1)
kj |nj〉

|〈n(1)
kj |nj〉 |

]
.

(5.12)

Note that using

arg(xyz) = arg(x) + arg(y) + arg(z), (5.13)

we can rewrite the Berry phase when the electron spin is not rotated as it hops between the

sites of the triangle as follows

γkj = arg
[
〈nk|n(N−1)

kj 〉
]

+ ...+ arg
[
〈n(2)

kj |n
(1)
kj 〉
]

+ arg
[
〈n(1)

kj |nj〉
]
. (5.14)

The last equation is really important because it shows that the Berry phase for this system

can be written as a sum of a very large number of infinitesimal Berry connections (Nb. when

N → ∞) that are in a closed loop in the Hilbert space. This allows to express the Berry

phase as a surface integral of the Berry curvature whose boundary is the closed loop mentioned

before [40].

It is important to note that if we consider a triangle, the Berry phase (in this close path)

can be computed using equation (4.28). This Berry phase corresponds to half the solid angle

generated by the triangle formed by the three vectors nj, nk and nl [40]. The diagram of the
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triangular plaquette with the spin direction vectors and the SOC vector can be seen in Figure

5.1.

Figure 5.1: Triangular plaquette for an electron that picks a non-trivial Berry phase. The
configuration is coplanar, the spin vectors are depicted in black arrows, the SOC vectors are
in blue arrows and inside the triangle the direction of the bond orientation is shown. Image
from [40].

5.1.3 General Case with Spin-orbit Interaction

In this section we are interested on computing the Berry phase of this model with finite SOC.

Recall first the following useful results

Ukj |nj〉 ∝ |Rkj · nj〉 ,

|p〉 = |Rkj · nj〉 ,

I = |Rkj · nj〉 〈Rkj · nj|+ |−Rkj · nj〉 〈−Rkj · nj| .

(5.15)

Note that we are now considering that the system possesses SOC. Then, the Berry con-

nection in this case can be written as follows

γkj = arg [〈nk|Ukj |nj〉]

= arg [〈nk|Rkj · nj〉 〈Rkj · nj|Ukj|nj〉]

= arg
[
〈nk|Ũnk, Rkj ·nj |Rkj · nj〉 〈Rkj · nj|Ukj|nj〉

]
= arg

[
〈nk|Ũnk, Rkj ·njUkj|nj〉

]
.

(5.16)

In this representation the electron spin is rotated first around akj (due to the SOC) and then

along the circle that contains Rkj · nj and nk. We then use

U−1
kj Ũnk, Rkj ·njUkj = ŨR−1

kj ·nk,nj
, (5.17)
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to get that

γkj = arg
[
〈nk|Ũnk, Rkj ·njUkj|nj〉

]
= arg

[
〈nk|UkjŨR−1

kj ·nk,nj
|nj〉

]
, (5.18)

where the order of the spin rotation has changed. We are interested to compute the Berry

connection, for which the following identity is useful

UkjŨR−1
kj ·nk,nj

= ±UkjŨR−1
kj ·nk,νkj

Ũνkj ,nj = ±Ũnk, Rkj ·νkjUkjŨνkj ,nj , (5.19)

where νkj is an unit vector along the circle that contains nj and R−1
kj ·nk, and is also in the great

circle perpendicular to akj. The sign ± shows that the left and the right side of the equation

differs for a spin rotation of 2π, so that eiπ = −1.

The spin rotation mentioned before Ukj becomes a geodesic spin rotation Ũωkj ,νkj where

ωkj = Rkj · νkj. (5.20)

Thus, the previous identity given in equation (5.19) becomes

UkjŨR−1
kj ·nk,nj

= ±Ũnk,ωkj Ũωkj ,νkj Ũνkj ,nj . (5.21)

Notice that since νkj is then along the great circle that is perpendicular to akj, and, more over,

the great circle contains nj and R−1
kj · nk, and so νkj can be expressed as follows

νkj =
akj ×

[
nj × (R−1

kj · nk)
]∣∣akj × [nj × (R−1

kj · nk)
]∣∣ , (5.22)

and from here

ωkj = Rkj · νkj =
akj × [(Rkj · nj)× nk]

|akj × [(Rkj · nj)× nk]|
. (5.23)

Please note that νkj and ωkj are in the intersection of the great circles, and the negative

of these vectors (−νkj and −ωkj) are along these intersections too. Then, the Berry connection

becomes

γkj = arg
[
〈nk|UkjŨR−1

kj ·nk,nj
|nj〉

]
= arg

[
〈nk|±Ũnk,ωkj Ũωkj ,νkj Ũνkj ,nj |nj〉

]
= arg

[
±〈nk|Ũnk,ωkj |ωkj〉 〈ωkj|Ũωkj ,νkj |νkj〉 〈νkj|Ũνkj ,nj |nj〉

]
= arg [〈nk|ωkj〉] + arg [〈ωkj|νkj〉] + arg [〈νkj|nj〉] (mod π).

(5.24)

As it can be seen, the sign ± disappears in the last step. This is a consequence of choosing the

same sign in order to avoid that the contribution vanishes because of the condition 〈−p|p〉 = 0.

The importance of the last equation is that it shows that the Berry phase is the sum of nine
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different Berry connections that have the form that we saw in the SU(2) invariant case but with

an important difference. In the SU(2) invariant case, the system does not posses SOC, and we

found that the Berry phase is half the solid angle formed by the three vectors n. In this case,

were SOC is present, the Berry phase is half the solid angle of the nonagon created with the

three vectors n, the three vectors ν and the three vectors ω [40].

Also, the importance of the Berry curvature computed in equation (5.24) is that it shows

that for a system with SOC, it is possible to have an effective magnetic field if the spin config-

uration is collinear or coplanar.

Figure 5.2: Geometric approach for the Berry phase. a) Schematic representation of the
geodesic (green line) that connects the unit vectors nj and nk. b) Geometric representation
of equation (5.16): the spin direction is rotated due to the SOC around the vector akj, and
then is rotated along the geodesic that connects to Rkj · nk. c) Geometric representation of
equation (5.18): in this equation, the spin direction is rotated along the geodesic that connects
nj with R−1

kj · nk and around the vector akj. d). Geometric representation of the spin rotation

Ũωkj ,νkj [40]. Image from [40].

5.2 Algebraic Approach

In this section, we are seeking to show the same results we got in the geometric approach, but

using an algebraic one.
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5.2.1 SU(2) Invariant Case

In absence of the SOC the Berrry phase acquired by an electron moving along three sites (j,

k, and l) forming a triangle is

γjkl =
Ωjkl

2
. (5.25)

We introduce an arbitrary unit vector that is parallel to the quantization axis: n = ẑ. The

spin state at site j in this frame is given by

|nj〉 = cos
θj
2
|↑〉+ eiφj sin

θj
2
|↓〉 . (5.26)

When there is no SOC, we have that the Berry connection is

γkj = arg [〈nk|nj〉]

= arg

[(
〈↑| cos

θk
2

+ 〈↓| e−iφk sin
θk
2

)(
cos

θj
2
|↑〉+ eiφj sin

θj
2
|↓〉
)]

=

= arg

[
cos

θk
2

cos
θj
2

+ ei(φj−φk) sin
θk
2

sin
θj
2

]
.

(5.27)

Using that

ei(φj−φk) = cos (φj − φk) + i sin (φj − φk), (5.28)

and that

arg(z) = arctan
(y
x

)
, (5.29)

where z = x+ iy, it can be derived that the real and imaginary parts inside the argument above

are:

x = cos
θk
2

cos
θj
2

+ cos (φj − φk) sin
θk
2

sin
θj
2
, (5.30)

and

y = sin (φj − φk) sin
θk
2

sin
θj
2
. (5.31)

Substituting these expressions into the Berry connection we arrive at the following:

tan γkj =
sin (φj − φk) sin θk

2
sin

θj
2

cos θk
2

cos
θj
2

+ cos (φj − φk) sin θk
2

sin
θj
2

=
sin (θj − θk)

cot
θj
2

cot θk
2

+ cos (φj − φk)
.

(5.32)

Recall further that for 3 generic vectors, let’s say a, b and c:

tan

(
1

2
Ω

)
=

a · (b× c)

abc+ (a · b)c+ (a · c)b+ (b · c)a
, (5.33)
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where Ω is the solid angle subtended by the surface of the triangle ABC, and notation a = |a|.
In spherical coordinates:

nj = (sin θj cosφj, sin θj sinφj, cos θj), (5.34)

nk = (sin θk cosφk, sin θk sinφk, cos θk), (5.35)

and

n = ẑ. (5.36)

Using these vectors we compute all the ingredients that appear in equation (5.33)

n · (nj × nk) = ẑ · ẑ(sin θj cosφj sin θk sinφk − sin θk cosφk sin θj sinφj)

= sin θj sin θk(cos θj sinφk − cosφk sin θj)

= sin θj sin θk sin(φk − φj),

(5.37)

nnjnk = 1, (5.38)

(n · nj)nk = cos θj, (5.39)

(n · nk)nj = cos θk, (5.40)

(nj · nk)n = sin θj cosφj sin θk sinφk + sin θj sinφj sin θk sinφk + cos θj cos θk, (5.41)

cos (φj − φk) = cosφj cosφk + sinφj sinφk, (5.42)

All in all, the Berry connection is

tan γkj = tan
Ω(φj − φk, θj, θk)

2
=

sin θj sin θk sin (φk − φj)
1 + cos θj + cos θk + sin θj sin θk cos (φj − φk) + cos θj cos θk

.

Note further

1 + cos θj + cos θk + cos θj cos θk
sin θj sin θk

=

(
1 + cos θj

sin θj

)(
1 + cos θk

sin θk

)
= cot

θj
2

cot
θk
2
, (5.43)

and
sin θj sin θk cos (φj − φk)

sin θj sin θk
= cos (φj − φk), (5.44)

so that the Berry connection can be alternatively written as

tan γkj =
sinφj − φk

cot
θj
2

cot θk
2

+ cos (φj − φk)
= tan

Ω(φj − φk, θj, θk)
2

, (5.45)

γkj =
Ω(φj − φk, θj, θk)

2
, (5.46)

where Ω(φj − φk, θj, θk) is the solid angle subtended by the vectors n, nk and nj. The Berry
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phase, according to equation (5.25) is [40]

γjkl =
Ωjkl

2
, (5.47)

which agrees with expected when the Berry connections of the form of equation (5.46) are

summed to form the triangular plaquette.

5.2.2 General Case with Spin-orbit Interaction

Recall that in this case we have

γjkl = arg [〈nk|Ukj|nj〉 〈nl|Ulk|nk〉 〈nj|Ujl|nl〉] . (5.48)

Under local rotations of the spin reference frame, the Berry phase is invariant:

|n′j〉 = Uj |nj〉 , |n′k〉 = Uk |nk〉 , |n′l〉 = Ul |nl〉 ,
n′j = Rj · nj, n′k = Rk · nk, n′l = Rl · nl,

(5.49)

where R is the SO(3) rotation matrix associated with the SU(2) matrix Uj if

U ′kj = UkUkjU †j ,
U ′lk = UlUlkU †k ,
U ′jl = UjUjlU †l .

(5.50)

Let us now introduce the Wilson loop operator [52,53]

Ajkl = UjlUlkUkj = exp

[
−iαjkl

2
(ajkl · σ)

]
, (5.51)

which is gauge-invariant [40].

To find a useful expression for γjkl, we rotate to a local reference frame of two spins (for

example k and l), so that the unit operator transforms into the identity on two out of three

bonds. Consider that the bonds that are going to become the identity are kj and jl. Then, the

local unit transformations that perform this local rotation are:

Uj = I, Uk = U †kj, Ul = Ujl,

Rj = I, Rk = RT
kj, Rl = Rjl.

(5.52)

Note that if we compute this transformation, the Wilson loop Ajkl does not change, and so,

the unit operator of the bond lk has to be the Wilson loop, as we will see below [40].

Finally, we need to align the global quantization axis n̂ with ajkl, which represents the Wil-
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son loop’s rotation axis. In this new reference frame it is necessary to compute again the Berry

connections using that, in the presence of the SOC, the connection is γxy = arg[〈nx|Uxy|ny〉].
The new expression of the Berry connection is

γkj = arg[〈nk|Ukj|nj〉] = arg[〈n′k|UkUkjU
†
j |n′j〉] = arg[〈n′k|U

†
kjUkjI|n

′
j〉] = arg[〈n′k|n′j〉], (5.53)

which, similarly to the last result in the previous section, can be written as

γkj = arg[〈n′k|n′j〉] =
Ω(φ′j − φ′k, θ′j, θ′k)

2
. (5.54)

Of course, the same expression is obtained for γjl, that is:

γjl = arg[〈n′j|n′l〉] =
Ω(φ′l − φ′j, θ′l, θ′j)

2
. (5.55)

For the bond that contains the two spins whose local reference frames have been rotated, the

Berry connection is, in turn,

γlk = arg[〈nl|Ulk|nk〉] = arg[〈n′l|UlUlkU
†
k |n
′
k〉] = arg[〈n′l|UjlUlkUkj|n′k〉]

= arg[〈n′k|Ajkl|n′j〉] = arg[〈n′k|exp

[
−iαjkl

2
(ajkl · σ)

]
|n′j〉]

= arg[〈n′k|e−iαjkl/2 cos
θ′k
2

cos
θ′l
2

+ ei(φ
′
k−φl+

1
1
αjkl) sin

θ′k
2

sin
θ′l
2
|n′j〉],

(5.56)

and, using the result that we got before, the last expression can be written as

γlk =
−αjkl

2
+

Ω(φ′k − φl + αjkl, θ
′
k, θ

′
l)

2
. (5.57)

The Berry phase that the electron acquires while moving along the triangle given by jkl is then:

γjkl = γkj + γjl + γlk

=
Ω(φ′j − φ′k, θ′j, θ′k)

2
+

Ω(φ′l − φ′j, θ′l, θ′j)
2

− αjkl
2

+
Ω(φ′k − φl + αjkl, θ

′
k, θ

′
l)

2
.

(5.58)

Using the result of the Berry phase in the previous section, we can define

Ω′jkl
2
≡

Ω(φ′j − φ′k, θ′j, θ′k)
2

+
Ω(φ′l − φ′j, θ′l, θ′j)

2
+

Ω(φ′k − φ′l, θ′k, θ′l)
2

, (5.59)

and also

δΩ′jkl ≡ Ω(φ′k − φ′l + αjkl, θ
′
k, θ

′
l)− Ω(φ′k − φ′l, θ′k, θ′l), (5.60)
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which allows us to finally express the Berry phase as

γjkl =
Ω′jkl

2
+ γ̂jkl, (5.61)

where

γ̂jkl = −αjkl
2

+
δΩ′jkl

2
. (5.62)

It is important to notice that the Berry phase has acquired a new term given by γ̂jkl. This

contribution is due to the Wilson loop. Equation (5.61) is a generalization of equation (5.25)

which can be used only in SU(2) invariant systems because of the restrictions that we used.

In order to show that the collinear and the coplanar configurations induce a Berry phase

which is neither 0 nor π, and that this Berry phase acts as a magnetic flux, we are going to

think about a collinear ferromagnet. This means that, given a reference frame the spins point in

the same direction, and therefore, the solid angle contribution becomes zero. As a consequence

of this the Berry phase for this system simplifies to

γjkl = −αjkl
2
, (5.63)

This is the proof that a ferromagnetic system with SOC has a Berry phase in real space that

is proportional to the rotation angle of Wilson’s loop. This result reproduces that reported in

1954 by Karplus and Luttinger [33].

5.2.3 Limit of Small Spin-orbit Interaction

In this section we are going to explore the Berry phase for systems with small SOC, which im-

plies that αkj � 1 for all the bonds labeled as kj which are connected by hopping amplitudes.

These hopping amplitudes tkj are finite and because of the exponential decay of the atomic

orbitals we have considered that they vanished beyond a characteristic distance that is given

by a few lattice spaces.

At first, we expand the unit operator Ukj and the Wilson loop operator up to first order

in αkj and αjkl, respectively, so that

Ukj = 1− iαkj
2

(akj · σ) +O(α2), (5.64)
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and

Akjl = UjlUlkUkj =

[
1− iαjl

2
(ajl · σ)

] [
1− iαlk

2
(alk · σ)

] [
1− iαkj

2
(akj · σ)

]
+O(α2)

= 1− i

2
[(αlkalk + αjlajl + αkjakj) · σ] +O(α2),

(5.65)

where we have defined the following

αjkl = |νjkl|,

ajkl =
νjkl
|νjkl|

,

νjkl = αkjakj + αlkalk + αjlajl.

(5.66)

The Berry phase in equation (5.62), when expanded up to second order is

γ̂jkl ≈
[
−α
2

+
Ω(φ′k − φ′l + α, θ′k, θ

′
l)

2
− Ω(φ′k − φ′l, θ′k, θ′l)

2

] ∣∣∣∣
α=0

+ αjkl

[
−1

2
+

1

2

∂

∂α
Ω(φ′k − φ′l + α, θ′k, θ

′
l)

∣∣∣∣∣
α=0

]

=
αjkl

2

[
−1 +

∂

∂α
Ω(φ′k − φ′l + α, θ′k, θ

′
l)

∣∣∣∣∣
α=0

]
.

(5.67)

Following the same procedure that we did in equation (5.32), we know that

tan
Ω(φ′k − φ′l + α, θ′k, θ

′
l)

2
=

sin(φ′k − φ′l + α)

cot
θ′k
2

cot
θ′l
2

+ cos (φ′k − φ′l + α)
, (5.68)

from which we can get that

Ω(φ′k − φ′l + α, θ′k, θ
′
l)

2
= arctan

[
sin (φ′k − φ′l + α)

cot
θ′k
2

cot
θ′l
2

+ cos (φ′k − φ′l + α)

]
, (5.69)

and using
d

dx
arctan(u) =

u′

1 + u2
, (5.70)
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we can painfully write

∂

∂α

(
Ω(φ′k − φ′l + α, θ′k, θ

′
l)

2

)
=

cos(′k−φ
′
l+α)

[
cot

θ′k
2

cot
θ′l
2

+cos(′k−φ
′
l+α)

]
+sin2 (φ′k−φ

′
l+α)[

cot
θ′
k
2

cot
θ′
l

2
+cos(′k−φ

′
l+α)

]2

1 +

[
sin (φ′k−φ

′
l+α)

cot
θ′
k
2

cot
θ′
l

2
+cos (φ′k−φ

′
l+α)

]2

=
cos (φ′k − φ′l + α) cot

θ′k
2

cot
θ′l
2

+ 1(
cot

θ′k
2

cot
θ′l
2

)2

+ 2 cot
θ′k
2

cot
θ′l
2

cos (φ′k − φ′l + α) + 1
,

(5.71)

so that

∂

∂α

(
Ω(φ′k − φ′l + α, θ′k, θ

′
l)

2

) ∣∣∣∣∣
α=0

=
cos (φ′k − φ′l) cot

θ′k
2

cot
θ′l
2

+ 1(
cot

θ′k
2

cot
θ′l
2

)2

+ 2 cos (φ′k − φ′l) cot
θ′k
2

cot
θ′l
2

+ 1
. (5.72)

The Berry phase is then

γ̂jkl = αjkl

−1

2
+

cos (φ′k − φ′lp cot
θ′k
2

cot
θ′l
2

+ 1(
cot

θ′k
2

cot
θ′l
2

)2

+ 2 cos (φ′k − φ′l) cot
θ′k
2

cot
θ′l
2

+ 1



= αjkl

 1−
(

cot
θ′k
2

cot
θ′l
2

)2

2

[
1 +

(
cot

θ′k
2

cot
θ′l
2

)2

+ 2 cos (φ′k − φ′l) cot
θ′k
2

cot
θ′l
2

]
 .

(5.73)

Using the trigonometric identity

tan
θ

2
= ±

√
1− cosθ
1 + cos θ

, (5.74)

we get (
cot

θ′k
2

cot
θ′l
2

)2

=
1 + cos (θ′k) + cos (θ′l) + cos (θ′k) cos (θ′l)

1− cos (θ′k)− cos (θ′l) + cos (θ′k) cos (θ′l)
, (5.75)

so that

1−
(

cot
θ′k
2

cot
θ′l
2

)2

=
−2(cos θ′k + cos θ′l)

1− cos θ′k − cos θ′l + cos θ′k cos θ′l
, (5.76)

and

1 +

(
cot

θ′k
2

cot
θ′l
2

)2

=
2(1 + cos θ′k cos θ′l)

1− cos θ′k − cos θ′l + cos θ′k cos θ′l
. (5.77)

Utilizing

tan
θ

2
=

1− cos θ

sin θ
, (5.78)
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we obtain that

2 cos (φ′k − φ′l) cot
θ′k
2

cot
θ′l
2

=
2 cos (φ′k − φ′l) sin θ′k sin θ′l

1− cos θ′l − cos θ′k + cos θ′k cos θ′l
. (5.79)

From these, we can get that the additional contribution due to Wilson loop to the Berry phase

is

γ̂jkl =
−αjkl(cos θ′k + cos θ′l)

2[1 + cos θ′k cos θ′l + cos (φ′k − φ′l) sin θ′k sin θ′l]
. (5.80)

Note that when the directions of the spins are close to a ferromagnetic configuration, which

implies that θ′k ≈ θ′l ≈ θ′ and that φ′k ≈ φ′l ≈ φ′, the additional contribution to the Berry phase

reduces to the following expression

γ̂jkl =
−2αjkl cos θ′

2(1 + cos2 θ′ + sin2 θ′)
=
−αjkl cos θ′

2
, (5.81)

which is the projection of the spin-orbit total rotation to the common direction in which spins

are oriented.

If the spin-orbit rotation angle is zero (αjkl = 0), the Wilson loop operator is the identity.

In this case, the additional contribution to the Berry phases γ̂jkl vanishes, so that the Berry

phase reduces to

γjkl =
Ω′jkl

2
. (5.82)

The solid angle is the one subtended by the three magnetic moments in the local reference

frame where is required to gauge away the SOC. Even in the antiferromagnetic ordering, that

is coplanar in the original reference frame, in a rotated reference frame could exist a finite real

space Berry curvature.

Focusing in the C3 invariant system, the three angles are identical and fulfill that

αkj = αlk = αjl = α� 1, (5.83)

and the three vectors (akj, alk, ajl) are related by 2π
3

rotations around the ẑ axis. If the z

component in the vector akj disappears, this implies that

νjkl = α(akj + alk + ajl) = 0. (5.84)

In other words, up to first order in the SOC, the Wilson loop is equal to the identity since

αjkl = |νjkl|= |0|= 0. We are interested to get the three spin directions in the new reference
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frame. We can use that

n′j = Rj · nj,

n′k = Rk · nk,

n′l = Rl · nl,

(5.85)

with

Rj = I,

Rk = RT
kj,

Rl = Rjl,

(5.86)

where the matrices R up to first order in α are

Rkj = 1 + α(akj · L) +O(α2),

Rjl = 1 + α(ajl · L) +O(α2).
(5.87)

where L = (Lx, Ly, Lz) is the vector containing the SO(3) generators, whose irreducible matrix

representations are:

Lx =

0 0 0

0 0 −1

0 1 0

 , Ly =

 0 0 1

0 0 0

−1 0 0

 , Lz =

0 −1 0

1 0 0

0 0 0

 . (5.88)

Using these, we can compute that in the new reference frame

n′j = Rj · nj = I · nj = nj, (5.89)

n′k = Rk · nk = RT
kj · nk ≈ [1 + α(akj · L)]T · nk

= nk + α
(
−aykj cos θ′k, a

x
kj cos θ′k, a

y
kj sin θ′k cosφ′k − axkj sin θ′k sinφ′k

)
= nk − α(akj × nk),

(5.90)

n′l = Rl · nl = Rjl · nl ≈ [1 + α(ajl · L)] · nl
= nl + α

(
ayjl cos θ′l, −axjl cos θ′l, a

x
jl sin θ

′
l sinφ

′
l − a

y
jl sin θ

′
l cosφ′l

)
= nl − α(ajl × nl).

(5.91)

Note that the equations above are expanded up to first order in α, but they still have high

accuracy because we are working on the limit of small spin orbit interaction α� 1.

The Berry phase in this new reference frame and under the previous considerations takes
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a rather simple form

γjkl =
Ω′jkl

2
= arctan

[
n′j · (n′k × n′l)

n′jn
′
kn
′
l + (n′j · n′k)n′l + (n′j · n′l)n′k + (n′k · n′l)n′k

]
= π − 6α +O(α2).

(5.92)

In this section we transformed the original (local) reference frame, where the SOC was

gauged away to a new reference frame. In the new reference frame, a finite real-space Berry

curvature exists, even when in the original frame this could not be possible because of the

non-existence of the SOC (which implies that the Wilson loop operator is the identity). The

importance of this is that even when the magnetic ordering is collinear or coplanar in the local

reference frame, the ordering is non-coplanar in a different reference frame, which shows us that

there is no need of a non-coplanar ordering in the local frame [40].

5.3 Continuum Limit

In the last two sections we worked on how the Berry phase and the Berry curvature change

under different circumstances using the algebraic approach. A discussion of the same ideas can

be done in a more formal and elegant way if we take the continuum limit.

If the Wilson loop bond field is related to the SOC and if “the magnetic texture vary

slowly over a length scale which is longer than the lattice parameter”, the continuum limit is

appropriate. To fulfill the first condition, we need to induce long-wavelength deformations in

the lattice using a strain. The second condition is fulfilled in materials whose magnetic ordering

wave vector is very small.

In this section we are seeking to compute the Berry phase that the electronic wavefunction

acquires when the electron is moving along a closed path C, defined as

C = {xµ(τ), xµ(0) = xµ(T )}, (5.93)

where τ ∈ [0, T ]. In this section, we are going to derive an expression of the Berry phase for

the SU(2) invariant case. This result will be useful to get a general expression for the case with

spin-orbit interaction.
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5.3.1 SU(2) Invariant Case

For the SU(2) invariant case, we have seen that for a closed loop in the lattice

C : j → k → l→ ...→ m→ j, (5.94)

the Berry phase is

γC = arg[〈nj|nm〉 ... 〈nl|nk〉 〈nk|nj〉]. (5.95)

Note that we got the expression for an arbitrary loop from a superposition of the elementary

triangle loops. To do the continuum limit in equation (5.95) we need to divide the interval T

into N intervals so that

∆τ =
T

N
. (5.96)

In the limit N →∞, the Berry phase can be rewritten as

γC = lim
N→∞

arg

[
N−1∏
j=0

〈nx(τj+∆τ)|nx(τj)〉

]
. (5.97)

Doing a Taylor expansion on the ket vector |nx(τj+∆τ)〉 for ∆τ small, that is,

|nx(τj+∆τ)〉 = |nx(τj)〉+ ∆τ
∂

∂τj
|nx(τj)〉+O

(
∆τ 2

)
, (5.98)

we arrive at

γC = lim
N→∞

arg

[
N−1∏
j=0

〈nx(τj)|+ ∆τ

(
∂

∂τ
|nx(τj)〉

)†
+O

(
∆τ 2

)]
|nx(τj)〉 . (5.99)

Noticing further that(
∂

∂τ
|nx(τj)〉

)†
|nx(τj)〉 = 〈 ∂

∂τ
nx(τj)|nx(τj)〉 = −〈nx(τj)|∂τ |nx(τj)〉 , (5.100)

and substituting this result in the previous derivation, we obtain the following formula for the

Berry phase

γC = lim
N→∞

arg

[
N−1∏
j=0

(
1− 〈nx(τj)|∂τ |nx(τj)〉∆τ +O

(
∆τ 2

))]
. (5.101)
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We can use the definition of exponential in the Taylor series to rewrite the Berry phase as

γC = lim
∆τ→0

arg

{
N−1∏
j=0

exp
[
−〈nx(τj)|∂τ |nx(τj)〉∆τ +O

(
∆τ 2

)]}

= i lim
∆τ→0

[
N−1∑
j=0

〈nx(τj)|∂τ |nx(τj)〉∆τ +O
(
N∆τ 2

)]
,

(5.102)

and using the definition of the Riemann integral for a function f ∈ [a, b]∫ b

a

f(x)dx = lim
∆→0

n∑
i=1

f(εi)∆xi, (5.103)

we can rewrite the Berry phase expression as

γC = i

∫ T

0

〈nx(τ)|∂τ |nx(τ)〉 dτ, (5.104)

where the integral limits are given by the range of xµ(τ) which is τ ∈ [0, T ]. Recalling that the

definition of the line integral of a vector field F along a loop C in the direction r is∮
C
F(r) · dr =

∫ b

a

F(r(t)) · r′dt, (5.105)

we have that

γC = i

∮
C
〈n|∂µ|n〉 dxµ =

ΩC

2
, (5.106)

where ΩC is the solid angle created by the vector n around the loop C.

5.3.2 General Case with Spin-orbit Interaction

For the general case with the spin orbit interaction, we need to introduce the operators that

represents the rotation matrices in the expression of the Berry phase given in the equation

(5.95)

γC = arg [〈nj|Ujm|nm〉 . . . 〈nl|Ulk|nk〉 〈nk|Ukj|nj〉] . (5.107)

In the continuum limit, the bond matrices Ukj represent an infinitesimal SU(2) rotation

that connects the point x to the point x + dx by

Ux+dx,x = exp

[
1

2
σaAaµdxµ

]
. (5.108)
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In the continuum limit
j → x(τ),

k → x(t) + ẋ(τ)dτ,

Ukj → eiA(τ)dτ .

(5.109)

Notice that we can expand

eiA(τ)dτ = I + iA(τ)dτ +O(dτ 2), (5.110)

where

A(τ) =
1

2
σaAaµẋµ(τ). (5.111)

We computing

〈nx(τ+dτ)|eiA(τ)dτ |nx(τ)〉 = 〈nx(τ+dτ)|I + iA(τ)dτ +O(dτ 2)|nx(τ)〉 , (5.112)

note that

〈nx(τ+dτ)|eiA(τ)dτ |nx(τ)〉 =
[
〈nx(τ)| − dτ 〈nx(τ)∂τ |

]
eiA(τ)dτ |nx(τ)〉 . (5.113)

and following a procedure analogous to the one done in the previous section, we arrive to the

following conclusion

〈nx(τ+dτ)|eiA(τ)dτ |nx(τ)〉 = 1 +
[
i 〈nx(τ)|A(t)|nx(τ)〉+ 〈nx(τ)|∂τ |nx(τ)〉

]
dτ +O(dτ 2). (5.114)

Taking the product operator, extracting the argument of it, using the Riemann integral defini-

tion and rewriting the result, we can get that the Berry phase in a closed path is

γC = i

∮
C
〈n|Dµ|n〉 dxµ ≡

∮
C
Aµxµ, (5.115)

where

Dµ ≡ ∂µ −
iσa

2
Aaµ, (5.116)

in which

Aµ = i 〈n|∂µ|n〉+
1

2
naAaµ (5.117)

is the covariant Berry connection and we have defined

na ≡ 〈n|σa|n〉 . (5.118)
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We can use now Stokes’ theorem so that∮
C
Aµdxµ =

∫
SC

[∂µAν − ∂νAµ]d2σµν

=

∫
SC

{
∂µ

[
i 〈n|∂ν |n〉+

1

2
naAaν

]
− ∂ν

[
i 〈n|∂µ|n〉+

1

2
naAaµ

]}
d2σµν

=
1

2

∫
SC

[∂µ(naAaν)− ∂ν(naAaµ)]d2σµν + i

∫
SC

[∂µ 〈n|∂ν |n〉 − ∂ν 〈n|∂µ|n〉]d2σµν .

(5.119)

Note that

i[∂µ 〈n|∂ν |n〉 − ∂ν 〈n|∂µ|n〉] =
1

2
n · (∂µn× ∂νn), (5.120)

and as a consequence of this∮
C
Aµdxµ =

1

2

∫
SC

[∂µ(naAaν)− ∂ν(naAaµ)]d2σµν +
1

2

∫
SC

[n · (∂µn× ∂νn)]d2σµν . (5.121)

Note that in equation (5.121), the second term vanishes for a magnetic moment collinear or

coplanar configuration, while the first contribution could be finite, which implies that even for

this configuration, the SOC induces an effective magnetic field. This effective magnetic field is

given by

Bη =
1

2
εηµν∂µ(naAaν). (5.122)

We are seeking to compute the equation (5.121) in its covariant form. If the first term of this

equation is manipulated, it can be seen that

i

∫
SC

[∂µ 〈n|∂ν |n〉 − ∂ν 〈n|∂µ|n〉]]d2σµν

=

∫
sC

[
na∂µA

a
ν + (∂µn

a)Aaν − na∂νAaµ − (∂νn
a)Aaµ

]
d2σµν .

(5.123)

We know that the non-Abelian field strength is

F a
µν ≡ ∂µA

a
ν − ∂νAaµ − εabcAbµAcν , (5.124)

and then we can write

i

∫
SC

[∂µ 〈n|∂ν |n〉 − ∂ν 〈n|∂µ|n〉]]d2σµν

=

∫
sC

[
na
(
∂µA

a
ν − ∂νAaµ − εabcAbµAcν

)
+ naεabcAbµA

c
ν + Aaν∂µn

a − Aaµ∂νna
]
d2σµν

=

∫
sC

[
naF a

µν + naεabcAbµA
c
ν + Aaν∂µn

a − Aaµ∂νna
]
d2σµν .

(5.125)
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Let us now introduce the covariant derivative Dµ defined as

Dµ = ∂µ − LaAaµ. (5.126)

Note that if equation (5.116) is compared to equation (5.126) we can see that iσa

2
has been

substituted with the SO(3) generator La.

The covariant form of the solid angle density is

n · (Dµn×Dνn) = n · [(∂µ − LaAνµ)n× (∂ν − LaAaν)n]

= n · [(∂µn− LaAνµn)× (∂νn− LaAaνn)

= εabcna
(
δbn∂µn

n − εbmnAmµ nn
) (
δcl∂νn

l − εcklAkνnl
)

= εabcnaδbn∂µn
nδcl∂νn

l − εabcnaδbn∂µnnεcklAkνnl − εabcnaεbmnAkνnnδcl∂νnl

+ εabcnaεbmnAmµ n
nεcklAkνn

l,

(5.127)

where

εabcnaδbn∂µn
nδcl∂νn

l = εabcna∂µn
b∂νn

c, (5.128)

−εabcnaδbn∂µnnεcklAkνnl = −na∂µnbAaνnb + na∂µn
bAbνn

a = ∂µn
bAbν , (5.129)

−εabcnaεbmnAkνnnδcl∂νnl = −naAcµna∂νnc + naAaµn
c∂νn

c = −∂νncAcµ, (5.130)

and

εabcnaεbmnAmµ n
nεcklAkνn

l = naAcµn
aεcklAkνn

l − naAaµncεcklAkνnl. (5.131)

Note that (∂µn
b)nb and nc(∂νn

c) are equal to zero because both represent the dot product

between a unit vector and its vector derivative, which is tangent to the vector itself. Also

εcklncAkνn
l = ε123n1A2

νn
3 + ε132n1A3

νn
2 + ε213n2A1

νn
3 + ε231n2A3

νn
1 + ε312n3A1

νn
2 + ε321n3A2

νn
1

= n1A2
νn

3 − n3A2
νn

1 + n3A1
νn

2 − n2A1
νn

3 + n2A3
νn

1 − n1A3
νn

2 = 0,

(5.132)

and as a result of this, the second term in equation (5.131) vanishes, and the covariant form of

the solid angle density is

n · (Dµn×Dνn) = n · [(∂µ − LaAνµ)n× (∂ν − LaAaν)n]

= εabcna∂µn
b∂νn

c − ∂νncAaµ + ∂µn
bAbν + εclkAcµA

k
νn

l.
(5.133)

Recall also that

n · (∂µn× ∂νn) = εabcna∂µn
b∂νn

c, (5.134)
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so, gathering results, the Berry phase becomes

γC =
1

2

∫
SC

[
naF a

µν + naεabcAbµA
c
ν + Aaν∂µn

a − Aaµ∂νna + n · (∂µn× ∂νn)
]
d2σµν

=
1

2

∫
SC

[
naF a

µν + naεabcAbµA
c
ν + Aaν∂µn

a − Aaµ∂νna + εabcna∂µn
b∂νn

c
]
d2σµν

=
1

2

∫
SC

[
naF a

µν + n · (Dµn×Dνn)
]
d2σµν .

(5.135)

In this last equation, it can be seen that the strength of the effective gauge field generated by

the localized magnetic moments is the sum of the projection of the SU(2) field strength along

the direction n and the covariant scalar spin chirality S [54, 55], which is defined as

S ≡ Si · (Sj × Sk), (5.136)

where Si, Sj and Sk are the three local spins. The scalar spin chirality only appears in non-

coplanar spin configurations and, if an electron is hopping between these sites, it acquires a

Berry phase that induces an AHE1 [56].

The other big contribution of equation (5.135) is that it can be generalized immediately

to a case of time-dependent magnetic configurations. This can be done if the Greek indices

µ and ν take values from 0 to d, where 0 represents the time coordinate and d is the spatial

dimension of the system under study. The zeroth component of the SU(2) vector potential,

that corresponds to the time coordinate, is given by

Aa0 =
−gµB

2
Ha, (5.137)

where g is the gyro-magnetic factor. Note that this contribution arises from the Zeeman

coupling (anomalous Zeeman effect) between the external magnetic field H and the spin of the

conduction electrons. The action is

S[Ψ] =

∫
dtdx

(
Ψ†i∂tΨ−H

)
, (5.138)

and it is invariant under local-space transformations of the original spin reference frame. Indeed,

consider the following local space-time transformation

U = exp [iθa(x, t)σa/2] . (5.139)

under which the wavefunction Ψ in the continuum limit transform as Ψ→ UΨ, and

Aaµσ
a → UAaµσaU−1 − 2i(∂µU)U−1. (5.140)

1When the AHE is originated by a non-zero scalar spin chirality, it is called Topological Hall effect (THE) [54].
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One can show that, indeed, this transformation leaves the action invariant.

In the next chapter we will apply these concepts to a two-dimensional system with a

kagome crystal structure.
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Chapter 6

The Berry Curvature in Momentum

Space

In the following, we will use an example to explore the Berry curvature notion that we intro-

duced in the previous sections. For this example it is necessary to present the kagome lattice.

6.1 The Kagome Lattice

The kagome lattice receives its name from the Japanese words kago, that means basket, and

me, whose meaning is woven pattern (Figure 6.1). In a bamboo basket that has been woven in

a kagome pattern, it can be seen that the lattice is composed by triangles that overlap. Each

lattice site has four nearest neighbors. The name of this special lattice structure was given by

the first researchers that studied the concept of frustration [57].

Figure 6.1: A bamboo basket that has been woven in a kagome pattern. It can be seen that
the triangles overlap. Image from [57].

In Physics, a kagome lattice (Figure 6.2), according to Wang [58], is described as an

“intersecting web of corner-sharing triangles”. The interest in studying these lattices arises

from their geometric frustration.
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Figure 6.2: The kagome lattice.

6.1.1 Geometric Frustration

The geometric frustration is a phenomenon whereby a system has highly degenerated ground

state, which is the result of the geometry of the system itself [59].

The geometric frustration takes an important role in the antiferromagnetic Heisenberg

model because two of three spins are arranged antiparallel to each other, but the third spin is

under frustration. This means, no matter in which configuration the third spin is, it will agree

with one of the neighboring spins but disagree with the other (Figure 6.3) [60]. Due to the

spin frustration, it is not possible to minimize the energies of all bonds, even if the spins are

classical, and when the basic plaquette is a triangle [1].

Figure 6.3: Geometric frustration in a triangle plaquette in the antiferromagnetic Heisenberg
model. Image from [60].

If we were to allow the spins to be classical and continuous variables, the spins would

order themselves in the configuration shown in Figure 6.4. Note that in this spin configuration,

the total energy of the triangle is minimized, whilst the individual bonds energies are not

minimized [1].
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Figure 6.4: Triangle plaquette with nearest-neighbor antiferromagnetic couplings. In this
spin configuration the total triangle energy is minimized, while the individual bond energy is
not minimized. Image from [1].

Because of the geometry frustration, the kagome lattice in a nearest-neighbor antiferromag-

netic spin configuration presents a ground state similar to a spin liquid, whose spin distribution

presents disorder even at zero temperature. Quantum spin liquids present other interesting

properties such as having fractional excitations, forming quasi-particles that have, according

to Han and collaborators [61], an “effective spin or charge that is smaller than that of their

constituents”and sharing many of their properties with those of high-temperature supercon-

ductors [1, 59, 60].

The geometric frustration of the kagome lattice also affects its band structure [59,60,62].

6.1.2 The Band Structure of the Kagome Lattice in the Tight-

binding Method

Crystal Structure of the Kagome Lattice

In solid state physics, an ideal crystal is conformed by an infinite and periodical repetition of

an atom (or group of atoms). The position of this atom (or atoms) is usually referred to as

the atomic basis, which is fixed to the lattice, being the latter a group of mathematical points

where the basis is repeated.

In the kagome lattice, the atomic basis is conformed by three atoms, that will be labeled

as 1, 2 and 3 (Figure 6.5c). These atoms are infinitely repeated in the lattice (Figure 6.5a).

The translation between the lattice points in the kagome lattice is achieved by the following

primitive lattice vectors:

u1 = x̂, (6.1)

and

u2 =
1

2
x̂ +

√
3

2
ŷ. (6.2)
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The lattice vectors also allow us to determine what kind of Bravais lattice we are dealing with.

In this case, due to geometry, the Bravais lattice corresponds to a hexagonal one (Figure 6.5b).

Figure 6.5: Crystallography structure of the kagome lattice in real space: a) the points of
the lattice, b) the primitive cell, c) the basis and d) the kagome lattice conformed by the three
atomic basis (underlined in a yellow circle) repeated at each lattice point (orange points). Here
the primitive vectors are shown as black arrows.

The crystallography structure of a lattice allows us to obtain the reciprocal space lattice.

Reciprocal Space of the Kagome Lattice

The reciprocal space, also called k-space, is the Fourier transformation of the real space. This

space is important because of the information we can obtain from it as, for instance, the energy

band structure. The reciprocal vectors for the kagome lattice are

b1 = 2πx̂− 2π√
3
ŷ, (6.3)

b2 =
4π√

3
ŷ, (6.4)

and

b3 = 2πẑ, (6.5)

and they fulfil the condition

ui · bj = 2πδij. (6.6)

With these vectors, we can find the reciprocal lattice (Figure 6.6a) and, using the Wigner-Seitz

method, the 1BZ is shown in Figure 6.6b. In Figure 6.6c, the irreducible Brillouin zone is drawn

(pink triangle) and the high symmetry points are also marked. These points are

Γ = 0b1 + 0b2, (6.7)

M = 0b1 +
1

2
b2, (6.8)
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and

K =
1

3
b1 +

2

3
b2. (6.9)

The labels Λ, T and Σ are used for those points at the lines that define the boundary of the

irreducible Brillouin zone.

Figure 6.6: Reciprocal space for a kagome lattice: a) the reciprocal lattice, b) the 1BZ (purple)
obtained with the Wigner-Seitz method and c) the 1BZ (purple), the irreducible Brillouin zone
(pink) and the high symmetry points.

The Kagome Lattice Band Structure

To understand the band structure that usually appears on systems interacting on a kagome

lattice, we start with a simple model: a bipartite lattice (specifically, a honeycomb lattice)

whose sites will be labeled as A and B.

Let us assume that we have a honeycomb lattice in which an atom A connects with its

three neighbouring atoms of type B. Then, a tight-binding Hamiltonian capturing the free

motion of particles in this system is

H = −t
∑
n

∑
<j,n>

(
a†nbj + b†jan

)
. (6.10)

To express the Hamiltonian in k-space, we transform the above creation and annihilation op-

erators to said space. That is

an =
1√
N

∑
k

eik·rA,nak, (6.11)

and

bj =
1√
N

∑
q

eiq·rB,jbq, (6.12)
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so the Hamiltonian is rewritten as

H = − t

N

∑
n

∑
j,n

∑
k,q

(
e−ik·rA,neiq·rB,ja†kbq +H.C.

)
(6.13)

Using the identity
∑

n ei(q−k)·rA,n = Nδ(q− k), the Hamiltonian becomes

=
∑

k

(
ak
† bk

†
)( 0 −t

∑
j eik·r

j
NN

−t
∑

j e−ik·r
j
NN 0

)
︸ ︷︷ ︸

Hk

(
ak

bk

)
, (6.14)

where Hk is the Hamiltonian matrix representation for the honeycomb lattice, {rjNN} is the set

of vectors that connect the site A with its neighbors B, so that

rB,j = rA,n + rjNN . (6.15)

The last analysis can be extended to the kagome lattice, considering that an atom A has two

nearest neighbor B and two nearest neighbor C. The Hamiltonian matrix representation for the

kagome lattice is

Hk = −2t

 0 cos (k · rAB) cos (k · rAC)

cos (k · rAB) 0 cos (k · rBC)

cos (k · rAC) cos (k · rBC) 0

 , (6.16)

with

rAB =
1

2
x̂, (6.17)

rAC =
1

4
x̂ +

√
3

4
ŷ, (6.18)

and

rBC = −1

4
x̂ +

√
3

4
ŷ. (6.19)

With this information we can obtain the energy band structure of a simple system of particles

on a kagome lattice in the tight-binding approximation (Figure 6.7).
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Figure 6.7: The energy band structure of the kagome lattice a) in 3D and b) along the path
Γ−M−K− Γ in the irreducible Brillouin zone.

As it can be seen in Figure 6.7a, the band structure of the kagome lattice in the tight-

binding approximation has three bands. The third1 band (orange-yellow) reaches the highest

energy and touches the second band (cyan-blue) at six points, where the six Dirac cones are

formed. In the tight-binding approximation, the first band is a flat band, in which the velocity

of the electrons is zero and due to the strong electron correlation, interesting effects related to

the topology can be observed: fractional Hall effect, superconductivity at high temperatures,

among others [59, 60,62].

In Figure 6.7b, the band diagram along the irreducible Brillouin zone (Γ −M − K − Γ)

shows that the Dirac point is at the K point. Also the maximum separation between the first

and the second band is at the Γ point, where the second and third bands touch each other,

which could imply that the electronic transition between these bands at the center of the 1BZ

can be achieved easily.

The Figure 6.7 is going to be useful in the next section, where we are going to use the

double exchange mechanism to obtained the energy band structure of the kagome lattice when

the SOC is present.

6.2 The Berry Phase in a Kagome Lattice

We are taking the Hamiltonian of equation (4.16) where Ht is a tight-binding Hamiltonian

that considers SOC, t represents the hopping between the nearest neighbor and HJ carries the

information about the exchange coupling. Now, we are adding the Hamiltonian HH , which

1In this section, the bands are numbered from 1 to n, where n is the total number of bands. The band with
the lowest energy is called the first band, while the highest energy band is the n-th band. The bands in between
are numbered as their energy increase.
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gives the spin ordering that is shown in Figure 6.8.

HH =
∑
<jk>

Sµj J
µν
jk S

ν
k (6.20)

This Hamiltonian stabilizes the magnetic ordering Sj = Snj, so it is necessary to know the

normalized vectors. Taking into consideration the single triangular plaquette (Figure 6.8), these

vectors are

n1 = ŷ, (6.21)

n2 =
cos(30◦)x̂− sin(30◦)ŷ

|cos(30◦)x̂− sin(30◦)ŷ|
=

√
3

2
x̂− 1

2
ŷ√

3
4

+ 1
4

=

√
3x̂

2
− ŷ

2
, (6.22)

and

n3 =
− cos(30◦)x̂− sin(30◦)ŷ

|− cos(30◦)x̂− sin(30◦)ŷ|
=
−
√

3
2

x̂− 1
2
ŷ√

3
4

+ 1
4

=
−
√

3x̂

2
− ŷ

2
. (6.23)

Figure 6.8: Kagome lattice with uniform 120° magnetic ordering. The spins are shown in
black arrows (n1, n2 and n3) and the blue arrows represent the SOC in plane components.
Image from [40].

The in-plane components of the a-vectors that appear in the expression of the SOC, are given

by

a
‖
ij = εijknk, (6.24)

so that these vectors point in the opposite direction to the unit vectors as it is shown in the

following equations

a
‖
23 = −ŷ, (6.25)

a
‖
31 = −

√
3x̂

2
+

ŷ

2
, (6.26)
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and

a
‖
12 =

√
3x̂

2
+

ŷ

2
. (6.27)

Using this, we find that the SOC vectors are

a23 = cos θa
‖
23 + sin θẑ, (6.28)

a31 = cos θa
‖
31 + sin θẑ, (6.29)

and

a12 = cos θa
‖
12 + sin θẑ. (6.30)

6.2.1 Real-space Berry Phase in the Double Exchange Limit for

Collinear Configurations

In the double exchange limit, where J
t
→∞, the spin of the itinerant electrons must be parallel

to the fixed underlying local spins, because the tight-binding part is the one that considers the

change in the spin direction of the itinerant electrons. If θ = π
2
, all the SOC vectors are

aij = sin
π

2
ẑ = ẑ, (6.31)

so that the three vectors are collinear and point into the ẑ direction. An electron that moves

along the triangle plaquette, acquires a Berry phase γ123 = Ω123

2
= π, because it is similar

to the case where the SOC is absent. The Berry phase is a constant, so it is an invariant

quantity under time reversal symmetry, and there is no real magnetic field being generated.

In this case the band structure of the tight-binding Hamiltonian shows two Dirac points (see

references [63,64]) at the K point in the Brillouin zone.

6.2.2 Real-space Berry Phase in the Double Exchange Limit for

Coplanar Configurations

If the angle θ = 0, the SOC vectors are the in-plane contributions

a23 = a
‖
23, (6.32)

a31 = a
‖
31 (6.33)

and

a12 = a
‖
12, (6.34)
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and the electron that moves along this plaquette has a Berry phase given by γ123 = π − 6α

(agreeing with the algebraic approach) where we are only considering up to first order in α. In

this case a magnetic flux appears. This magnetic flux separates the Dirac points and the bands

acquire a Chern number, so they are topological non-trivial.

6.2.3 Momentum-space Berry Phase

We want to analyze the problem away from the double-exchange limit. Now, we need to

consider the reciprocal space of the Hamiltonian. The k-matrix representation of the tight-

binding Hamiltonian is

H12
k = te

iα
2
σ·a12

(
1 + e−ik·(u2−u1)

)
, (6.35)

H23
k = te

iα
2
σ·a23

(
1 + e−ik·u1

)
, (6.36)

H31
k = te

iα
2
σ·a31

(
1 + eik·u2

)
. (6.37)

On the other hand, the k-matrix representation of the antiferromagnetic Hamiltonian is

H11
k = −JS

2
n1 · σ, (6.38)

H22
k = −JS

2
n2 · σ, (6.39)

H33
k = −JS

2
n3 · σ, (6.40)

so that the matrix representation of the Hamiltonian in k-space is

Hk =

 H
11
k H12

k (H13
k )†

(H12
k )† H22

k H23
k

H31
k (H23

k )† H33
k

 , (6.41)

which can be used to obtain the energy bands. We have computed the energy band structure

for t = 1, −JS/2 = 0.5t and θ = 0. The latter was chosen with the purpose of studying the case

of the coplanar configuration. The band structure was computed for the case in the absence of

SOC and for the case when the SOC is present. It can be observed, in both cases, that instead

of having three bands (Figure 6.7) we have six bands due to the spin degree of freedom. In the

case where the SOC vanished, two bands touch each other, but they do not form a Dirac cone,

because the energy dispersion is no longer linear. When the SOC is present, the bands that

were touching each other shows a gap.
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Figure 6.9: Energy band structure for kagome lattice with −JS/2 = 0.5t, θ = 0 when a)
there is no SOC and b) when the SOC appears (α = 0.2π).

Then, we proceeded in showing cuts of the energy bands. The resulting energy band

structures of the Kagome lattice is shown in Figure 6.10. The Figure 6.10a corresponds to the

band structure in the absence of SOC, while the Figure 6.10b is the one in the presence of the

SOC2. Note that the first and the second bands (the latter appearing from the former due to

the extra spin degree of freedom) are almost flat due to the inherent geometric frustration of

antiferromagnetic model on a triangular configuration.

In the case without SOC (Figure 6.10a), the first and the second band do touch, but they

do not form Dirac points. The third band touches the second band at the Γ = (0, 0) point.

The fourth and the fifth bands touch each other, but they do not generate Dirac points because

the energy dispersion is not linear. Finally, the fifth and the sixth bands share the same value

in energy at the Γ point. On the other hand, in the presence of SOC (Figure 6.10b) the bands

do not touch each other at any point, that is, the SOC generates an overall gap between the

bands.

Finally, we obtained the band structure along a path in the irreducible Brillouin zone for

different α values. The Figure 6.11a is for α = 0, this is the case were the SOC is absent.

Figures 6.11b, 6.11c, and 6.11d are for α = 0.2π, α = 0.4π, and α = 0.8π. None of the

computed band structures show a Dirac point in the high symmetry point K. As we can see,

the gap between consecutive bands overall increases and they become flatter as the value for

the angle α gets closer to π. The latter is consequence of the SOC.

2In this chapter we are going to name the bands from first to sixth, starting with the lowest band and ending
with the highest one.
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Figure 6.10: Energy band structure for −JS/2 = 0.5t, θ = 0 in the a) absence and b) in
the presence of SOC (α = 0.2π). The mapping for these band structures goes from (−π, π) to
(π, −π).

Figure 6.11: Energy band structure for −JS/2 = 0.5t, θ = 0, a) without SOC, b) with SOC
α = 0.2π, c) with SOC α = 0.4π, and d) with SOC α = 0.8π
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Conclusions

In this work, a theoretical study of the Berry curvature and the Berry phase was done. We

started by presenting the basic topology concepts and then we derived the expression for the

Berry connection, curvature and phase. Then we introduced the AHE, whose origin can be

attributed to the Berry Phase.

In this thesis, we reproduced meticulously the derivations done by [40] of the Berry con-

nection and of the Berry phase for an electron moving around a triangular plaquette, while

it interacts with the local magnetic moments. The analysis was done for three different ap-

proaches: geometric, algebraic and in the continuum limit.

In the geometric approach, a spin state in the Bloch sphere is moved following a geodesic

path from its original direction to the direction of another spin state. This translation is done

using rotation matrices. In the SU(2) invariant case, it was obtained that the Berry phase

is half of the solid angle subtended by three vectors, whose Berry connections were added to

obtain that phase. When the SOC is present the Berry phase is half the solid angle of the

nonagon created by nine different vectors, and then, nine Berry connections were added. This

approach showed us that, when the SOC is present, an effective magnetic field appears even if

the spin configuration is collinear or coplanar.

In the algebraic approach we arrived to the conclusion that in systems with SOC the

electron that moves in a triangle plaquette picks up a non-trivial Berry phase that acts as a

fictitious magnetic flux. This Berry phase has an extra component that is proportional to the

Wilson loop.

In the continuum limit, the Berry phase was also analyzed, noticing that this limit could

be achieved with the superposition of multiple loops. In the case with SOC, we arrived to the

conclusion that the Berry phase can be written covariantly. This form contains the Abelian

field strength and the covariant form of the solid angle density. We also found that collinear

configurations can also produce an effective magnetic field when the SOC is present.

Finally, we studied the case of the kagome lattice with a coplanar ordering. We analyzed
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the band structures for three different situations: for the tight-binding model, and for the model

proposed by [40] in the absence and in the presence of SOC. From this analysis, we conclude

that the SOC has an important role of modulating the band structures.

For future work, we suggest to apply this analysis to materials containing this type of

interaction and compare the type of analysis done here with those obtained by other means, as

for instance, density functional theory or experimental measurements. .
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Appendix A

The Adiabatic Evolution in Quantum

Mechanics

We say that a system evolves adiabatically when its evolution is “infinitely slow” [65]. In

non-relativistic quantum mechanics, the adiabatic theorem tells us how the solutions of the

Schrödinger equation behave when the Hamiltonian is slowly varied in time [65].

In this appendix we are going to follow the procedure done by Dariusz Chruściński and

Andrzej Jamio lkowski [65]. Consider a time-dependent Hamiltonian H(t), whose spectrum is

non-degenerate and discrete. Its eigenfunctions and eigenvalues are time-dependent

H(t) |m(t)〉 = Em(t) |m(t)〉 , (A.1)

and the eigenvectors fulfill that 〈m(t)|l(t)〉 = δml. At a given time t, a quantum state |ψ(t)〉 of

the system can be written as

|ψ(t)〉 =
∑
m

cm(t)eiθm(t) |m(t)〉 , (A.2)

where

eiθm(t) = exp

[
− i
h̄

∫ t

0

Em(τ)dτ

]
(A.3)

is the so-called dynamical phase. We are interested in finding an expression for cm(t), solution

of the Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (A.4)
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Using equations (A.1) and (A.2), we get that

ih̄
d

dt

[∑
m

cm(t)eiθm(t) |m(t)〉

]
= H(t)

∑
m

cm(t)eiθm(t) |m(t)〉 (A.5)

∑
m

[
ċm(t)eiθm(t) |m(t)〉+ icm(t)θ̇m(t)eiθm(t) + cmeiθm(t) |ṁ(t)〉

]
=

1

ih̄

∑
m

Em(t)cm(t)eiθm(t) |m(t)〉

(A.6)

and then∑
m

ċm(t)eiθm(t) |m(t)〉 =
−i
h̄

∑
m

Em(t)cm(t)eiθm(t) |m(t)〉+
i

h̄

∑
m

Emcm(t)eiθm(t) |m(t)〉

−
∑
m

cm(t)eiθm(t) |ṁ(t)〉

= −
∑
m

cm(t)eiθm(t) |ṁ(t)〉 .

(A.7)

Next we do the expectation value using the bra state 〈l(t)| in the last equation∑
m

〈l(t)|ċm(t)eiθm(t)|m(t)〉 = −
∑
m

〈l(t)|cm(t)eiθm(t)|ṁ(t)〉 (A.8)

ċl(t)e
iθl(t) = −

∑
m

〈l(t)|cmeiθm(t)|ṁ(t)〉 (A.9)

ċl(t) = −
∑
m

cm(t)ei(θm−θl) 〈l(t)| d
dt
|m(t)〉 . (A.10)

Finally, we found that

ċl(t) = −cl(t) 〈l(t)|
d

dt
|l(t)〉 −

∑
m(6=l)

exp

[
− i
h̄

∫ t

0

(El(τ)− Em(τ)) dτ

]
〈m(t)| d

dt
|l(t)〉 . (A.11)

Now, we are interested in finding the adiabatic condition. In order to do this, we compute the

time-derivative of equation (A.1)

Ḣ(t) |l(t)〉+H(t) |l̇(t)〉 = Ėl(t) |l(t)〉+ El(t) |l̇(t)〉 , (A.12)

then we do the expectation value using 〈m(t)|, so that

〈m(t)| Ḣ(t) |l(t)〉+ 〈m(t)|H(t) |l̇(t)〉 = 〈m(t)| Ėl(t) |l(t)〉+ 〈m(t)| El(t) |l̇(t)〉

= El(t) 〈m(t)|l̇(t)〉 .
(A.13)

〈m(t)|Ḣ(t)|l(t)〉+ Em(t) 〈m(t)|l̇(t)〉 = El(t) 〈m(t)|l(t)〉 (A.14)

Appendix A. The Adiabatic Evolution in Quantum Mechanics 91



and rearranging we find that:

〈m(t)|l̇(t)〉 =
〈m(t)|Ḣ(t)|l(t)〉
El(t)− Em(t)

, (A.15)

for m 6= l. We can say that the Hamiltonian evolution is adiabatic if

|〈m(t)|Ḣ|l(t)〉 |� |El − Em|
∆Tlm

, (A.16)

where the characteristic transition time between the states |l(t)〉 and |m(t)〉 is given by ∆Tlm.

In the adiabatic limit ∆Tlm → ∞, and so in equation (A.16), the term |〈m(t)|Ḣ|l(t)〉 |→ 0.

This condition implies that in the equation (A.15), the term 〈m(t)|l̇(t)〉 = 0 for m 6= l. Then,

the second term in the equation (A.11) vanishes and the derivative of the coefficient cl(t) is

only

ċl(t) = −cl(t) 〈l(t)|
d

dt
|l(t)〉 . (A.17)

From this last equation, we can conclude that the coefficient cl(t) has the form eiγl(t), where

γl(t) = i 〈l(t)|l̇(t)〉. Finally, equation (A.2) becomes

|ψ(t)〉 =
∑
m

eiγm(t)exp

[
− i
h̄

∫ t

0

Em(τ)dτ

]
|m(t)〉 . (A.18)

For many years the phase eiγm(t) was absorbed in the eigenvector, but in the last few years

it was found that this phase cannot be ignored because sometimes (as in the Berry phase) it

has physical implications [65].

Appendix A. The Adiabatic Evolution in Quantum Mechanics 92



Appendix B

The Anomalous Velocity in the AHE

We mentioned, that in the AHE the electron’s group velocity acquires a new contribution: the

anomalous velocity. In this appendix we are going to show the derivation of this contribution

following the procedure shown by Girvin [1].

Let us consider the following Schrödinger equation:

H |ψ(r)〉 =

{
1

2m

[
p +

e

c
A(r)

]2

+ V (r)

}
|ψ(r)〉 = E |ψ(r)〉 , (B.1)

where V (r) is the periodic potential with the lattice periodicity, and |ψ(r)〉 is the eigenfunction.

If we think on a Bloch wavefunction |ψnk(r)〉, with wave vector k and n labeling the bands, it

fulfils, according to Bloch’s theorem, that the eigenfunctions of a crystal “in the independent

electron model are plane-waves modulated by a periodic function” [1], so that

|ψnk(r)〉 = eik·r |unk(r)〉 , (B.2)

where |unk(r)〉 has the periodicity of the Bravais lattice [1]. Using equation (B.2), and consid-

ering that p = −ih̄∇, then [66,67]

p |ψnk(r)〉 = −ih̄∇
[
eik·r |unk(r)〉

]
= h̄keik·r |unk(r)〉+ eik·rp |unk(r)〉 = eik·r(p + h̄k) |unk(r)〉 .

(B.3)

Then, for a eigenvalue of the wave vector k, we have an effective Hamiltonian hk given by

hk =
1

2m

[
p + h̄k +

e

c
A(r)

]2

+ V (r), (B.4)

and, in turn, |unk(r)〉 must obey the following eigenvalue equation [1]:

hk |unk(r)〉 = En(k) |unk(r)〉 . (B.5)
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The expectation value of the velocity of an electron is

〈ψnk(r)|v|ψnk(r)〉 = 〈ψnk(r)| p
m
|ψnk(r)〉

= 〈unk(r)|(p + h̄k)

m
|unk(r)〉

= 〈unk(r)|1
h̄

∂hk

∂k
|unk(r)〉

=
1

h̄

∂En(k)

∂k
,

(B.6)

where in the last step we have used the Hellmann-Feynman theorem1. Now, we consider a

perturbation given by the Hamiltonian

H ′ = eE · r. (B.8)

Then using perturbation theory up to first order, the perturbative wavefunction is

|ψ1
nk〉 =

∑′

n, n′,k,k′

|ψn′k′〉 〈ψn′k′| eE · r |ψnk〉
En(k)− En′(k′)

=
∑′

n, n′,k,k′

eE · |ψn
′k′〉 〈ψn′k′| r |ψnk〉
En(k)− En′(k′)

. (B.9)

We want to relate the position r with the velocity v, so we use the commutator between r and

H, in order to relate it with the Heisenberg equation of motion, so

〈ψn′k′|[r, H]|ψnk〉 = 〈ψn′k′|rH −Hr|ψnk〉 = 〈ψn′k′|r|ψnk〉 [En(k)− En′(k′)], (B.10)

so, using equations (B.9) and (B.10) the perturbation eigenvector can be rewritten as

|ψ1
nk〉 =

∑′

n, n′,k,k′

eE · |ψn
′k′〉 〈ψn′k′ |[r, H]|ψnk〉
[En(k)− En′(k′)]2

. (B.11)

Using the motion Heisenberg equation we have that

[r, H] = −[H, r] =
−h̄
i

ṙ = ih̄v, (B.12)

1The Hellmann-Feynman theorem states that when a Hamiltonian Hλ and the state of the wavefunction
|ψλ〉 depend on the same parameter λ, so that Hλ |ψλ〉 = Eλ |ψλ〉, 〈ψλ|ψλ〉 = 1, and d

dλ 〈ψλ|ψλ〉 = 0, the first
derivative of a Hamiltonian expectation value does not include any wavefunction derivative. The proof of this
theorem is the following:

dEλ
dλ

=
d

dλ
〈ψλ|Hλ|ψλ〉 = Eλ 〈

d

dλ
ψλ|ψλ〉+ 〈ψλ|

d

dλ
Hλ|ψλ〉+ Eλ 〈ψλ|

d

dλ
ψλ〉

= Eλ
d

dλ
〈ψλ|ψλ〉+ 〈ψλ|

d

dλ
Hλ|ψλ〉 = 〈ψλ|

d

dλ
Hλ|ψλ〉 .

(B.7)
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so

|ψ1
nk〉 =

∑′

n, n′,k,k′

ih̄eE · |ψn
′k′〉 〈ψn′k′ |v|ψnk〉

[En(k)− En′(k′)]2
. (B.13)

Note that

〈ψn′k′|v|ψnk〉 = e−i(k
′−k)·r 〈un′k′ |v|unk〉 = e−i(k

′−k)·r 〈un′k′|
1

h̄

∂hk

∂k
|unk〉 δk,k′ (B.14)

where all the elements vanish unless k = k′, so

|u1
nk〉 = ieE ·

∑
n6=n′

|un′k〉 〈un′k|∂hkk

∂k
|unk〉

[En(k)− En′(k)]2
. (B.15)

The eigenfunction |unk〉 up to first order in perturbation theory is

|ucnk〉 = |unk〉+ |u1
nk〉 , (B.16)

so, the velocity expectation value is

〈v〉 = 〈ucnk|v|ucnk〉 = (〈unk1 |+ 〈unk|)v(|unk〉+ |u1
nk〉)

= 〈u1
nk|v|unk〉+ 〈u1

nk|v|u1
nk〉+ 〈unk|v|unk〉+ 〈unk|v|u1

nk〉 .
(B.17)

Since we are only interested up to the first order in E, we disregard the term 〈u1
nk|v|u1

nk〉, and

therefore

〈v〉 = 〈unk|v|unk〉+ 〈u1
nk|v|unk〉+ 〈unk|v|u1

nk〉

= 〈unk|
1

h̄

∂hk

∂k
|unk〉+ 〈u1

nk|
1

h̄

∂hk

∂k
|unk〉+ 〈unk|

1

h̄

∂hk

∂k
|u1
nk〉︸ ︷︷ ︸

va(n, k)

=
1

h̄

∂En(k)

∂k
+ va(n, k),

(B.18)

where va(n, k) is the anomalous velocity, which is a correction to the equation (B.5) [1]. Now,

we are going to analyze the components of the anomalous velocity using equation (B.15). The

first term is

〈u1
nk|

1

h̄

∂hk

∂k
|unk〉 = −ie

h̄

∑
n6=n′

(〈unk|∂hk∂k
|un′k〉 〈un′k|) · E∂hk

∂k
|unk〉

[En(k)− En′(k)]2
, (B.19)

〈unk|
1

h̄

∂hk

∂k
|u1
nk〉 =

ie

h̄

∑
n 6=n′

〈unk|∂hk∂k
E · (|un′k〉 〈un′k|∂hk∂k

|unk〉)
[En(k)− En′(k)]2

; (B.20)

and so

va(n, k) =
ie

h̄

∑
n 6=n′

〈unk|∂hk∂k
|un′k〉

(
E · 〈un′k|∂hk∂k

|unk〉
)

[En(k)− En′(k)]2
+ C.C. (B.21)
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Using the vector triple product a× (b× c) = (a · c)b− (a · b)c, where a, b and c are vectors,

we have that

va(n, k) =
ie

h̄

∑
n6=n′

E× 〈unk|∂hk∂k
|un′k〉 × 〈un′k|∂hk∂k

|unk〉
[En(k− En′(k))]2

, (B.22)

where the Berry curvature given in equation (1.41) is present. It is important to mention that

the k-space is a 3D space, so

va(n, k) =
e

h̄
E× bn(k). (B.23)

If the parameter k is on the xy plane, the Berry curvature bn(k) points in the ẑ direction [1].

Using that −eE = h̄k̇, the total electron’s group velocity is

〈v〉 =
1

h̄

∂En(k)

∂k
+
e

h̄
E× bn(k) =

1

h̄

∂En(k)

∂k
− k̇× bn(k), (B.24)

and finally we arrive to the equation (3.15)

h̄ṙ =
∂En(k)

∂k
− h̄k̇× bn(k), (B.25)

were we can observe that the second term is the AHE contribution, and the Berry curvature is

interpreted as a fictitious magnetic flux that is related to the energy eigenvectors [1].
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[5] A. Z. Capri, Nonrelativistic Quantum Mechanics. World Scientific Publishing, 3 ed., 2002.

[6] D. Kobe and E.-T. Wen, “Gauge invariance in quantum mechanics: Charged harmonic

oscillator in an electromagnetic field,” Journal of Physics A: Mathematical and General,

vol. 15, no. 3, p. 787, 1982.

[7] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of

the Royal Society of London. A. Mathematical and Physical Sciences, vol. 392, no. 1802,

pp. 45–57, 1984.

[8] M. T. Vaughn, Introduction to Mathematical Physics. John Wiley & Sons, 2008.
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theory of the anomalous hall effect: Application to colossal magnetoresistance mangan-

ites,” Physical Review Letters, vol. 83, no. 18, p. 3737, 1999.

[42] T. Jungwirth, Q. Niu, and A. MacDonald, “Anomalous hall effect in ferromagnetic semi-

conductors,” Physical Review Letters, vol. 88, no. 20, p. 207208, 2002.

[43] R. of the Universe, “Covalent bond, hydrogen molecule,” Online site: https://universe-

review.ca/F12-molecule09.html.

Bibliography 99



[44] E. Kaxiras and J. D. Joannopoulos, Quantum Theory of Materials. Cambridge University

Press, 2019.

[45] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Cengage Learning, 2022.

[46] M. Schiavello, Photoelectrochemistry, Photocatalysis and Photoreactors Fundamentals and

Developments, vol. 146. Springer Science & Business Media pages=11, 2013.

[47] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, vol. 56. Springer Science

& Business Media, 2012.

[48] C. Zener, “Interaction between the d shells in the transition metals,” Physical Review,

vol. 81, no. 3, p. 440, 1951.

[49] P. W. Anderson and H. Hasegawa, “Considerations on double exchange,” Physical Review,

vol. 100, no. 2, p. 675, 1955.

[50] J. C. Cuevas and E. Scheer, Molecular Electronics: an Introduction to Theory and Exper-

iment. World Scientific, 2010.

[51] V. I. Anisimov, “Electronic structure of strongly correlated materials,” in AIP Conference

Proceedings, vol. 1297, pp. 3–134, American Institute of Physics, 2010.

[52] V. G. Ivancevic and T. T. Ivancevic, Applied Differential Geometry: a Modern Introduc-

tion, ch. Applied Bundle Geometry, p. 527. World Scientific, 2007.

[53] C.-Y. Wong, Introduction to high-energy heavy-ion collisions, ch. Results from Lattice

Gauge Theory, pp. 210–211. World scientific, 1994.

[54] Y. Shiomi, Anomalous and Topological Hall Effects in Itinerant Magnets. Springer Science

& Business Media, 2013.

[55] N. Nagaosa, Spin current, ch. Multiferroics, p. 180. Oxford University Press, second ed.,

2017.

[56] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, “Spin chirality, berry

phase, and anomalous hall effect in a frustrated ferromagnet,” Science, vol. 291, no. 5513,

pp. 2573–2576, 2001.

[57] M. Mekata, “Kagome: The story of the basketweave lattice,” Physics Today, vol. 56, no. 2,

p. 12, 2003.

[58] E. Hayward, “Kagome discoveries (interview with theoretical physicist ziqiang wang and

researcher kun jiang),” BC News, online site https://www.bc.edu/bc-web/bcnews/science-

tech-and-health/physics/kagome-magnet.html, 2018.

Bibliography 100



[59] S. Wexler, “E9: Optical kagome lattice,” Online site:

http://ultracold.physics.berkeley.edu/research/e5.

[60] C. Laboratory, “Optical kagome lattice,” Online site:

https://www.manybody.phy.cam.ac.uk/Research/kagome.

[61] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm,

and Y. S. Lee, “Fractionalized excitations in the spin-liquid state of a kagome-lattice

antiferromagnet,” Nature, vol. 492, no. 7429, pp. 406–410, 2012.

[62] Z. Sun, H. Zhou, C. Wang, S. Kumar, D. Geng, S. Yue, X. Han, Y. Haraguchi, K. Shimada,

P. Cheng, et al., “Observation of topological flat bands in the kagome semiconductor

nb3cl8,” Nano Letters, vol. 22, no. 11, pp. 4596–4602, 2022.

[63] M. El-Batanouny, Advanced Quantum Condensed Matter Physics: One-Body, Many-Body,

and Topological Perspectives, ch. Dirac Materials and Dirac Fermions, pp. 332–336. Cam-

bridge University Press, 2020.

[64] G.-G. Liu, P. Zhou, Y. Yang, H. Xue, X. Ren, X. Lin, H.-x. Sun, L. Bi, Y. Chong, and

B. Zhang, “Observation of an unpaired photonic dirac point,” Nature Communications,

vol. 11, no. 1, p. 2, 2020.
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