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Abstract

Dynamic gene expression is fundamental for cellular processes. Next-generation sequencing

(NGS) based RNA sequencing (RNA-seq) technologies have revolutionized our ability to ex-

plore RNA dynamics. Facilitating the direct observation of newly synthesized RNA molecules,

nascent RNA-seq o�ers a unique avenue to dissect transcriptional activity. Among the nascent

RNA-seq methods are SLAM-seq and TimeLapse-seq, both harnessing metabolic labeling and

nucleotide conversions to simultaneously detect nascent and steady-state RNA within one exper-

iment. However, existing pipelines developed for the processing of nucleotide conversion datasets

like SLAM-DUNK are limited to speci�c RNA-seq library protocols, and sequencing modes,

therefore limiting its utility. To address this limitation, I present a reproducible and adaptable

analysis pipeline based on the Snakemake framework, designed to accommodate diverse RNA-seq

libraries. The pipeline integrates all essential SLAM-DUNK steps and surpasses its capabilities

by (i) being applicable to data generated by for diverse protocols, (ii) generating informative

quality controls, and (iii) aiding downstream analyses. Using public and in-house datasets for

validation, my pipeline proved to accurately quantify nucleotide conversions, revealing compa-

rable results to prior studies. In addition, the pipeline was used to systematically compare

SLAM-seq and TimeLapse-seq methodologies, providing a direct comparison of conversion rates

generated from each method. This pipeline's adaptability, reproducibility, and informative out-

puts contribute to a deeper understanding of gene regulation mechanisms through nascent RNA

analysis.
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Chapter 1

Introduction

1.1 Gene expression dynamics and RNA sequencing

Gene expression is the biological process by which the information encoded in a gene is tran-

scribed into RNAs, playing a fundamental role in determining an organism's traits and response

to its environment (Alberts, 2017). In the case of protein coding genes, the transcribed RNAs are

messenger RNAs (mRNAs), a type of single-stranded RNAs directly involved in protein synthesis

by encoding protein information and transporting it from the nucleus to the cytoplasm for its

translation. In addition there are also non-coding RNA (ncRNA) genes that encode for di�erent

species of RNAs such as rRNAs, tRNAs, snoRNAs, lincRNAs; these genes are transcribed into

functional RNA molecules rather than encoding for proteins like mRNAs, participating as struc-

tural, catalytic or regulatory RNAs (Eddy, 2001; He & Hannon, 2004). These di�erent RNA

species originate from distinct polymerases; for instance, RNA polymerase I (Pol I) is responsi-

ble for synthesizing ribosomal RNAs (rRNAs) and Pol III synthesizes transfer RNAs (tRNAs)

alongside other small structural RNA species. On the other hand, RNA polymerase II (Pol II)

governs the production of various RNA types, including protein-coding mRNAs, long non-coding

RNAs (lncRNAs), primary microRNAs (pri-miRNAs), and enhancer RNAs (eRNAs; Sims et al.,

2004; Hsin & Manley, 2012; Jonkers & Lis, 2015; Wissink et al., 2019).

Within gene expression, dynamic mechanisms govern how genes are selectively activated or

silenced within each cell, leading to the unique molecular composition and functional characteris-
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CHAPTER 1. INTRODUCTION 2

tics that distinguish one cell type from another even when they share the same genomic material.

Underlying this complex process, transcription and thus RNA abundance within a cell, is highly

regulated in response to changing environmental conditions and cellular cues (e.g. temperature,

stress, chemical signals, etc.), ensuring precise timing and levels of gene expression (Levine &

Tjian, 2003; Davidson, 2010).

RNA sequencing (RNA-seq) is a powerful next-generation sequencing (NSG) technique that

enables the comprehensive analysis of gene expression on a genome-wide scale (Stark et al., 2019).

By sequencing and quantifying the abundance of RNA molecules within cells, RNA-seq can be

used as a method to uncover the dynamic landscape of gene expression under di�erent biological

conditions. Total RNA-seq entails the sequencing of the entire RNA transcriptome, including

both coding and non-coding RNAs (Wang et al., 2009a). In contrast, mRNA-seq selectively

enriches polyadenylated (poly(A)) RNA therefore, capturing only mRNAs, providing a snapshot

of protein-coding transcripts and their expression levels (Mortazavi et al., 2008; Wang et al.,

2009). Both total RNA-seq and mRNA-seq provide insights into the steady-state levels of RNA

molecules reporting the accumulated RNA content within the cells at a given moment. However,

it's important to recognize that RNA regulation extends beyond transcription, encompassing

various other processes including RNA processing and decay (Dölken et al., 2008; Rabani et al.,

2011; Alpert et al., 2017).

1.2 Nascent RNA sequencing for ongoing transcriptional activity

analysis

Nascent RNA-based methods have emerged as a promising alternative for identifying alterations

in gene expression, along with intricate RNA dynamics encompassing processing and degradation.

By speci�cally detecting newly synthesized RNA within the total RNA pool, these sequencing-

based methodologies o�er a more immediate and direct insight into the products of ongoing

transcriptional activity within cells (Wang et al., 2009; Wissink et al., 2019). The two most

used approaches to distinguish between steady-state and nascent RNA are immunoprecipitation

(IP)-based methods (Fig. 1a-b) and sequence composition methods (Fig. 1c; Wissink et al.,

2019).
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While both approaches aim to uncover gene expression changes, they diverge in their strate-

gies and outcomes (Table 1). First, IP-based techniques employ RNA immunoprecipitation with

antibody-mediated enrichment of a protein, followed by the isolation, reverse transcription, and

sequencing of its interacting RNAs (Wissink et al., 2019). These techniques include metabolic

labeling protocols, that rely on the immunoprecipitation of newly synthesized RNA with incor-

porated nucleotide analogues such as 5-bromouridine 5'-triphosphate (BrU) for Global run-on

sequencing (GRO-seq; Fig. 1a; Core et al., 2008) or 4-thiouridine (4sU) for transient transcrip-

tome sequencing (TT-seq; Schwalb et al., 2016). Alternatively, other IP methods targeting Pol

II-associated transcripts, like mammalian native elongating transcript sequencing (mNET-seq;

Nojima et al., 2015), have also been employed for nascent RNA analysis and do not rely on the

incorporation of a nucleotide analogue (Fig. 1b). These techniques exclusively capture newly

synthesized RNA, yielding insights into the immediate products of transcription while omitting

information about total RNA levels. However, while e�ective for nascent RNA analysis, these

methods often involve more intricate protocols, extensive RNA handling, and a high amount of

starting material (Stark et al., 2019; Wissink et al., 2019).

Method Strategy Outcome

GRO-seq BrU labeling and IP Nascent RNA

TT-seq 4sU labeling and IP Nascent RNA

mNET-seq Pol II IP Nascent RNA

SLAM-seq and TimeLapse-seq 4sU labeling and sequence composition Steady-state and nascent RNA

Table 1: Characteristics of nascent RNA analysis methods. GRO-seq, global run-on
sequencing; TT-seq, transient transcriptome sequencing; mNET-seq, mammalian native elongat-
ing transcript sequencing; SLAM-seq, thiol(SH)-linked alkylation for the metabolic sequencing
of RNA.

1.3 SLAM-seq and TimeLapse-seq metabolic labeling methods

for nascent RNA quanti�cation

In contrast to IP-based methods, sequence composition methods rely on the nucleotide content of

the transcripts after sequencing for the identi�cation of nascent RNAs within the total RNA pool.

The general experimental strategy involves the incubation of cells in a medium supplemented

with cell-permeable nucleotide analogs (i.e. 4sU), these nucleotide analogs are then incorporated
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Figure 1: Nascent RNA analysis methods. Nascent RNA analysis methods enrich newly
transcribed RNAs fro this to an unenriched (steady-state RNA) control, by di�erent methods for
either immunoprecipitation (a and b) or sequence composition analysis (c). (a) Run-on methods
label RNA by adding a time-limited pulse of modi�ed ribonucleotides into cell media; various
modi�ed nucleotides can be used, but global run-on sequencing (GRO-seq) and its corresponding
5-bromouridine 5'-triphosphate (BrU) nucleotide analogue are shown. After incorporation of the
modi�ed bases, nascent-RNA strands are enriched by immunoprecipitation (IP) with antibod-
ies speci�c to the modi�ed nucleotide used and are prepared for RNA-sequencing (RNA-seq)
analysis. (b) RNA polymerase II (Pol II) IP methods pull down Pol II-associated RNAs after
chromatin digestion with micrococcal nuclease. During chromatin digestion, the nascent RNA
is protected from nuclease activity by its Pol II footprint. The protected RNA is extracted
and processed for RNA-seq analysis. (c) Sequence composition methods label RNA similarly to
run-on methods, but they use the nucleotide analogue 4-thiouridine (4sU). For the shown SLAM-
seq method, alkylation of 4sU after RNA extraction prompts misincorporation of G nucleotides
during reverse transcription, allowing 4sU incorporation sites to be directly determined by muta-
tional analysis with base-pair resolution. Preparation of a 3 '-end RNA-seq library increases the
signal by reducing the amount of unlabelled RNA carried through to sequencing. Figure taken
from Stark et al., 2019.
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into newly synthesized RNA during transcription an serve as a marker for distinguishing nascent

RNA from steady-state RNA via identi�cation of chemically induced nucleotide-conversions dur-

ing sequencing data analysis (Fig. 1c; Wissink et al., 2019). Based on this principle, two di�erent

methods have been developed: SLAM-seq (thiol(SH)-linked alkylation for the metabolic sequenc-

ing of RNA; Herzog et al., 2017) and TimeLapse-seq (Scho�eld et al., 2018).

By sequencing the total RNA pool, SLAM-seq and TimeLapse-seq o�er an alternative that

eliminates the need for RNA enrichment and complex experimental procedures. Additionally,

by comparing nascent RNA (4sU labeled) with stable RNA (unlabeled) within the same sample,

single-nucleotide conversion approaches minimize potential sources of variation and additionally

provide information about total RNA levels.

Conceptually similar, both approaches work by detecting the incorporated 4sU as single-

nucleotide thymine-to-cytosine mutations (T > C) through reverse transcription and subsequent

sequencing (Fig. 2), providing a binary and quanti�able marker to distinguish between nascent

and steady-state RNA during data analysis. Notably, SLAM-seq chemistry uses alkylation of the

4sU thione to induce mutations and the uses 3'-end mRNA sequencing (QuantSeq; Saunders et

al., 2006), whereas TimeLapse-seq uses an oxidative nucleophilic aromatic substitution reaction

for cytidine pattern matching and uses total RNA-seq.

Figure 2: 4sU metabolic labeling for nascent RNA detection methods. Work�ow
of 4-thiouridine (4sU) metabolic labeling methods SLAM-seq and TimeLapse-seq, di�ering on
the employed chemistry for 4sU incorporation into newly transcribed RNA but both leading to
thymine-to-cytosine conversion detection after sequencing. SLAM-seq chemistry involves alky-
lation of 4sU after RNA extraction, prompting misincorporation of G nucleotides during reverse
transcription, allowing 4sU incorporation sites to be directly determined by mutational analysis
with base-pair resolution (Herzog et al., 2017). TimeLapse-seq instead uses an oxidative nucle-
ophilic aromatic substitution reaction to fully recode the hydrogen bonding pattern of 4sU to
match the native pattern of cytidine (Scho�eld et al., 2018).
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1.4 Data analysis implications for nucleotide-conversion datasets

Relying directly on the data analysis to identify and quantify nucleotides with T > C conversions,

SLAM-seq and TimeLapse-seq require a custom nucleotide-conversion centered analysis. Devel-

oped as a complementary analysis tool for SLAM-seq data, Digital Unmasking of Nucleotide

conversions in K-mers (SLAM-DUNK; Neumann et al., 2019), is an data analysis pipeline that

enables the quanti�cation of nucleotide conversions in high-throughput RNA-seq datasets.

The usage of this pipeline o�ers a range of signi�cant advantages. Firstly, it accounts for

technicalities regarding reads containing several single-nucleotide mutations, such as: genomic

sequence content, conversion-aware read mapping, exclusion of false-positive T > C conver-

sions (from sequencing error and experimentally-induced) and Single Nucleotide Polymorphism

(SNP) correction for accurate quanti�cation. Secondly, the DUNK pipeline is divided into four

sequential modules (map, �lter, snp and count) allowing custom con�guration of parameters and

resources used for a given step. More importantly, SLAM-DUNK provides a comprehensive anal-

ysis regarding both unconverted and nucleotide-conversion-containing reads, reporting relevant

estimations related to read coverage, base-content and nucleotide conversion rates for nascent

and stable RNA. Overall, providing a comprehensive approach that covers the analysis of both

steady-state and nascent RNA contexts.

However, built around the SLAM-seq original method, DUNK analysis is based on QuantSeq

data as input. Designed speci�cally for the analysis of data from a 3'-end mRNA sequencing

protocol, SLAM-DUNK operates under certain technical assumptions about the data character-

istics: sequencing in a single-end format, the presence of one read per transcript, uniform length

of targeted 3' untranslated regions (UTRs) used and high multimapping rates due to the use

of low sequence complexity in 3' UTRs. While these considerations are accurately addressed

throughout the pipeline and it has been suggested that 3' RNA-seq can yield similar results

as whole transcript sequencing (Tandonnet & Torres, 2017; Ma et al., 2019), it is important

that experimental strategies are designed around the objective and resource availability. Con-

sequently, the incompatibility of the original SLAM-DUNK analysis with other RNA-seq data

strategies represents a signi�cant limitation, restricting its applicability and utility. Highlighting

the necessity of the development of an SLAM-DUNK-like pipeline that can produce comparable

results regarding stable and nascent RNA dynamics while remaining compatible with a range of
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standard RNA-seq library preparation protocols (e.g. total RNA, mRNA).

1.5 Reproducibility and scalability in omics data analysis pipelines

Two fundamental considerations for the development of robust pipelines for omics data analysis

are reproducibility and scalability. Work�ow managers play a crucial role in omics data anal-

ysis by providing systematic and automated frameworks to perform complex data processing

pipelines. These tools simplify the computational process, enhance reproducibility, and optimize

resource utilization, enabling researchers to e�ectively handle and interpret the complex datasets

generated. Some of the most used work�ow manager systems are Next�ow (Di Tommaso et al.,

2017) and Snakemake (Köster & Rahmann, 2012).

Next�ow and Snakemake are both robust work�ow management systems designed to stream-

line and automate complex data analysis pipelines in the omics research �eld. Next�ow out-

performs in cross-infrastructure task execution, o�ering adaptability, portability and nf-core

community support, while Snakemake stands out for its human-readable syntax that simpli�es

the creation of pipelines (Köster & Rahmann, 2012; Di Tommaso et al., 2017; Ewels et al., 2020;

Jackson et al., 2021; Mölder et al., 2021). While Next�ow emphasizes scalability and repro-

ducibility, Snakemake prioritizes both these aspects along with e�ciency, making them valuable

tools for tackling complex data analysis challenges.

Although a version of the SLAM-DUNK pipeline has been integrated into the Next�ow

community (nf-core) framework (https://nf-co.re/slamseq/1.0.0) to enhance reproducibility and

facilitate computational resource management for extensive analysis, the pipeline's compatibility

is exclusive to 3' RNA-seq strategies. Notably, any desired modi�cations to the work�ow's steps

are only possible through input arguments, allowing parameter adjustments within a run, but

without the �exibility to alter the source code for modi�cations of the computational step.

Hence, to establish an automated pipeline that conducts SLAM-DUNK analysis while ensuring

adaptability across diverse RNA-seq protocols, the design of a new analysis pipeline within a

work�ow manager was imperative.



Chapter 2

Aim

2.1 General

Data analysis pipelines like SLAM-DUNK have enabled the precise quanti�cation of nucleotide

conversions within high-throughput RNA-seq datasets in order to determine transcription rates.

These approaches o�er valuable insights into the intricate dynamics of stable and nascent RNA

molecules. However, the existing limitations of the original SLAM-DUNK analysis, particularly

its speci�city to certain RNA-seq data strategies, underscore the need for the development of

more adaptable methodologies.

Given that no pre-existing pipeline for datasets containing T > C conversions covers chal-

lenges regarding automation, reproducibility and adaptability. Here we aim to develop a pipeline

based on Snakemake that enables nucleotide-conversion-based RNA analysis for multiple RNA-

seq library preparation protocols. This project addresses this challenge by proposing an extended

framework that accommodates a wider array of RNA-seq library preparation protocols as well

as di�erent metabolic labeling methods (SLAM-seq and TimeLapse-seq), aiming to provide a

comprehensive understanding of RNA dynamics across diverse experimental designs. By taking

advantage of the power of quantitative nucleotide-conversion-based RNA analysis and expand-

ing its applicability, this study contributes to the generation of data analysis tools that can

help answer questions regarding our comprehension of gene expression regulation and cellular

processes.

8
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The work�ow behind the designed pipeline comprehensively incorporates all four SLAM-

DUNK steps, each of them adapted to accommodate di�erent RNA-seq libraries. Additionally,

the work�ow includes supplementary pre-processing, quality control steps, and extra outputs that

go beyond what is o�ered by nf-co.re/slamseq or the SLAM-DUNK tool. Regarding automation,

I opted to utilize Snakemake as work�ow manager backbone due to its simpli�ed Python-based

syntax, easy setup for high-performance computing (HPC) systems, and overall clarity in de�ning

the structure when compared to Next�ow. Overall, this comprehensive approach results in an

extensive and reproducible analysis framework for nascent RNA data, based on metabolic labeling

for nucleotide conversions (see Results).

In order to test the performance of the pipeline within a range of standard RNA-seq library

preparation protocols, I used four di�erent datasets, two of them publicly available and two

generated for this project (Table 2). As described, the 3' UTR SLAM and Total RNA TimeLapse

datasets are both from the original method publications. I used these datasets to ensure that the

results produced from our pipeline were comparable to the previously shown. Within these public

datasets, we selected samples that are either metabolically labeled or not with no additional

biological modi�cations to avoid variance coming from experimental design. Additionally, we

wanted to compare SLAM-seq and TimeLapse-seq with data generated in the same model system

and with the same library preparation and sequencing protocols.. For this, two mESCs mRNA

datasets were generated by another lab member, Huiwen Li (see Materials and Methods) and

used for the comparative analysis.

Dataset Labeling protocol Sequencing strategy Cell type
Total num.
of samples Reference

1 3' UTR SLAM SLAM-seq QuantSeq Haploid mESC 6 Herzog et al., 2017

2 mRNA SLAM SLAM-seq mRNA-seq Diploid mESC 4
Schneider lab
(unpublished)

3 mRNA TimeLapse TimeLapse-seq mRNA-seq Diploid mESC 2
Schneider lab
(unpublished)

4 Total RNA TimeLapse TimeLapse-seq Total RNA-seq MEF 8 Scho�eld et al., 2018

Table 2: Datasets used for pipeline prototyping. Di�erent datasets used for testing of
the nucleotide-conversion nascent RNA pipeline. Two public (1 and 4) and two generated (2
and 3) were used to compare di�erences in results according to categories shown on the table.
Total number of samples sums untreated (no 4sU) and treated (+4sU) samples from a given
reference, each category representing half of the dataset (e.g. total of 6, represents 3 no 4su and
3 +4sU samples). For more information about data obtainment and generation see Materials
and Methods.
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2.2 Particular

1. Use Snakemake to generate a reproducible automated work�ow structure for nascent RNA

sequencing data analysis.

2. Allow use of pair-end data as input for SLAM-DUNK analysis.

3. Adapt DUNK steps to non-3' RNA sequencing approaches.

4. Include standard quality controls into the pipeline for automatic generation.

5. Generate additional outputs that can be used for further analysis outside the pipeline.

6. Compare nucleotide-conversion results among test datasets focusing on RNA-seq library

preparation protocols (3' mRNA-seq, mRNA-seq and total RNA) and metabolic labeling

methods (SLAM-seq and TimeLapse-seq) di�erences.



Chapter 3

Results

3.1 Automated pipeline for customizable analysis

The pipeline for identi�cation of T > C conversions in paired-end RNA-seq data reported here,

addresses two main challenges: (i) analysis reproducibility and scalability, and (ii) accurate iden-

ti�cation of nucleotide-conversions for paired-end RNA-seq data. Regarding the �rst challenge,

the complete data analysis was written as a Snakemake pipeline (Köster & Rahmann, 2012;

Mölder et al., 2021), achieving automation and high reproducibility of the analysis without com-

promising its �exibility. In the Snakemake work�ow manager every individual computational

step, e.g a shell command or a R script, is denoted as a rule with a de�ned set of input and

output �les. Snakemake constructs a directed acyclic rule graph (DAG) to determine �le depen-

dencies and an optimal computation order to produce the desired output �les and jobs are then

submitted accordingly.

Once Snakemake was set as the backbone of the pipeline, we focused on the second chal-

lenge of this analysis: nucleotide-conversion identi�cation. For this, I �rst established a general

RNA sequencing analysis work�ow with the pertinent considerations for a nucleotide-conversion

centered analysis at all steps (Fig. 3). These considerations account for related data analysis

adaptations concerning mutation tolerance and correct identi�cation, quanti�cation of both total

and labeled reads, additional normalization due to sequencing mode change and calculation of

nucleotide-conversion rates.

11
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Figure 3: Pipeline for T > C conversions in paired-end RNA-seq data overview. The
pipeline is split into input (left), general work�ow (middle) and output (right). The work�ow
shows only the general steps and considerations taken for the development of the pipeline (see
text for details).

Once �le handling and overall work�ow structure were established, I translated the general

steps into rules, generating a job-execution system based on output-input interactions, where

each rule represents either a command or script executed in order to generate a desired output.

This pipeline consists of a total of 25 interconnected rules representing the whole work�ow

(Supplementary Fig. 1). Along with intermediate processing �les, the resulting pipeline generates

a set of relevant outputs for nucleotide-conversion centered RNA-seq analysis such as: coverage

tracks, count matrices for total and nascent reads, nucleotide conversion rates tables and plots,

and quality control reports (Fig. 3).

3.2 Nucleotide-conversion aware mapping for multiple RNA-seq

library protocols

Within the mapping step of our pipeline, two additional challenges were taken into considera-

tion: (i) conversion-aware read assignment, and (ii) �exibility regarding the sequencing library
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preparation used as input. To address the �rst, NextGenMap (Sedlazeck et al., 2013) was used,

setting it to a T > C conversions aware mode implemented by the DUNK pipeline (Neumann et

al., 2019). In contrast to a standard scoring, the conversion-aware scoring scheme from DUNK,

avoids both mismatch penalty or match score for T > C conversions (see Materials and Methods).

While the map module inside the DUNK pipeline covers the single-nucleotide mutation tol-

erance needed, the original work�ow was built based on a 3'-end mRNA sequencing library

preparation (QuantSeq), limiting the data analysis to single-end mode and 3' regions centered.

In order to allow the use of di�erent sequencing library preparation protocols, we implemented

NextGenMap for paired-end data and tested it for di�erent sequencing methods (Fig. 4a). As

shown, conversion-aware mapping was able to identify and assign reads containing T > C nu-

cleotide conversions independently of the sequencing mode and experimental protocol (Fig. 4b).

b

a

Figure 4: Alignment coverage and T > C reads assignment. Genomic tracks visualized
from BAM �les. (a) Shows di�erence in coverage for the di�erent library preparation protocols.
(b) Assignment of T > C reads regardless of the nucleotide changes, as well as di�erence in point
mutations for no 4sU (light gray) and +4sU (dark gray) for SLAM-seq (top) and TimeLapse-seq
(bottom). Single nucleotide mismatches from the reference are highlighted in colors over the
tracks, mutations to A in green, T in red, G in yellow and C in blue.
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3.3 Filtering and multimapper reconciliation

In standard RNA-Seq analysis, after mapping a �ltering step is performed evaluating reads by

identity, quality, mismatch number and other characteristics depending on the alignment tool

used, in our case, this particular characteristic was the assignment of multi-mapping reads.

Congruently to the analysis, this step was developed based on -slamdunk �lter- (Neumann et

al., 2019). In addition to �traditional� alignment �ltering, DUNK's �lter includes an annotation-

based multimapper reconciliation to reassign reads with multiple location hits. The conservative

reassignment strategy behind it, builds around the sequencing method used and a supplied

annotation table indicating the mapping regions (see Materials and Methods).

Coming from 3' UTR regions, sequences used on the original SLAM-DUNK method have a

lower sequence complexity, tending to report an increased number of reads mapping equally well

to several genomic regions (multimappers). While our approach focuses on RNA-seq protocols

from coding regions, implying a higher sequence complexity than 3' UTRs therefore better unique

mapping rates, testing the �ltering step of the pipeline on our mRNA datasets showed unexpected

multimapper hits within no-coding regions. To address this, we tested two di�erent reference

annotation �les to �lter out non-relevant reads, �rst, a transcript-level annotation; and second,

an exon-level annotation. Exploring coverage tracks for genes that previously showed multimap

records on no-coding regions, we noticed that using an exon-level reference allowed us to rescue

relevant multimap reads.

3.4 Quanti�cation of T > C conversions and normalization

On top of T > C conversion tolerance during the mapping step, an important concept behind

nucleotide-conversion oriented analysis is the accurate identi�cation of false-positives to avoid

overestimation. In addition to false-positive T > C conversions coming from standard sequencing

error, the chemical treatments used for both SLAM-seq and TimeLapse-seq reported an increase

of experimental-induced conversions (Herzog et al., 2017; Scho�eld et al., 2018). To distinguish

between true experimental-induced and false-positive conversions, -slamdunk snp- (Neumann et

al., 2019) module was implemented into the pipeline. Brie�y, Single Nucleotide Polymorphism

(SNP) calling is performed on the �ltered mapped reads, and if the fraction of reads carrying
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an alternative base among all reads exceeds given variant fraction and coverage cut-o�, DUNK

classi�es the SNP position as a true SNP to be masked.

Following the mapping, �ltering and SNP calling, the resulting data contains mainly high-

quality T > C conversions; these conversions will allow the distinction between total (with and

without conversions) and nascent (only with conversions) reads. To be able to quantify both

total and nascent reads, we continued using DUNK's quanti�cation method. Similar to the

�lter module, -slamdunk count- requires an annotation table, but this time indicating counting

windows. Deferring to the sequencing-based approach for the de�nition of the mapping regions,

where depending on the genomic feature enriched for a given sequencing strategy, in this step

we opted to use a transcription-oriented strategy, using whole transcripts as annotated feature

to delimit counting windows, this way all reads mapping to a single transcript independently of

the exon are collapsed to the same entry (see Methods).

In addition to the annotation, the count module enclosed in our pipeline requires two user-

given thresholds: (i) a minimum quality threshold, and (ii) a minimum number of conversions

within a read in order for it to be considered nascent. All together with the �ltered reads and

masked SNPs, the tool generates a count table per sample containing both total and nascent

read counts, along with some other relevant values (e.g. conversion rate, T content, counts per

million, etc.; Supplementary Tab. 1) at the count window level that will later be collapsed by

gene entry to facilitate further (not included in this pipeline) downstream analysis at gene-level.

After generating this count plots for all of our datasets, we distinguished between total and

nascent reads to test the ability of the pipeline to identify nascent reads on previously tested

datasets (published data from SLAM-seq and TimeLapse-seq), and to con�rm that the metabolic

labeling was successful for both protocols in our own datasets. As shown in Figure 5, all datasets

independently of the protocol, present a signi�cant di�erence between untreated and treated

samples regarding the nascent counts.

Next, to test if the conversion threshold was enough to account for background error conver-

sions, we �rst grouped the resulting nascent read counts of the mRNA sequencing datasets by

the number of T > C conversions using di�erent thresholds (Fig. 6). Being the most permissive

option, employing 2 as threshold resulted in the highest amount of conversion positive reads (n)

on untreated (no 4sU) samples (Table 3). While a threshold of 4 yielded a very low number of
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Figure 5: Treatment (+4sU) e�ect on nascent read counts. Total nascent RNA counts
before (no 4sU) and after metabolic labeling (+4sU) for all datasets. Number of reads on the
TcReadCount columns for each dataset using a minimum conversion threshold of 2 were summed
to get the total number of nascent read counts.

false-positive reads (199 for SLAM-seq and 334 for TimeLapse-seq), we noticed that the loss of

13,000 TC reads compared to a threshold of 2, was too stringent. Additionally, the e�ect on

counts reduction relative to the increase of the threshold showed to be impaired between labeling

protocols, SLAM-seq datasets showed a stronger reduction on false-positive T > C reads (T >

C reads reported on no 4sU), while maintaining comparable number of T > C reads on +4sU

samples (Table 3). Considering this, we opted for a background-subtraction on top of a permis-

sive threshold, avoiding background-error conversions' noise in further analysis while aiming to

keep real signals (see Materials and Methods).

After background subtraction, the di�erence between untreated vs. treated samples is strong

enough to identify gene-expression changes for the same genes across di�erent conditions. Nev-

ertheless, there are still two additional variant factors to be taken into consideration before

proceeding with further analysis: gene size and transcript abundance. Since our approach is

based on genomic features that di�er in size and this can later cause biased results, we imple-

mented a normalization step in our pipeline, where a gene-size normalized count entry is added

for both total and nascent read counts.
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Figure 6: Minimum T > C conversion threshold e�ect. Density of gene entries (y
axis) grouped by number of T > C reads (x axis) reported using di�erent T > C conversion
thresholds during the quanti�cation step. Results are divided by metabolic labeling presence: no
4sU (above) or +4sU (below); and method SLAM-seq (left) or TimeLapse-seq (right). Outliers
are not shown.

Conversion threshold Total T > C reads

SLAM-seq TimeLapse-seq

no 4sU +4sU no 4sU +4sU

2 4,045 15,498 4,234 15,996

3 748 9,099 963 8,934

4 199 2,609 334 2,174

Table 3: Total number nascent reads after minimum T > C conversion �ltering.

Total number of reads identi�ed as nascent after minimum T > C conversion �ltering using
di�erent thresholds (2,3 and 4), and for SLAM-seq and TimeLapse-seq methods.
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Di�erences on transcript abundances can also be a source of biased results in further analyses.

To account for these di�erences during the same normalization step, we also compute the �fraction

of labeled transcript� de�ned by SLAM-DUNK. This takes not only the ratio of labeled to

unlabeled transcripts into consideration, but also if the base composition of those transcripts

gives them a higher probability to have conversions, i.e. U-rich transcripts that correspond to

T-rich genomic regions. Since a higher chance to present T > C conversions due to nucleotide

composition was shown to lead to an overestimation for T-rich and underestimated for T-poor

regions (Neumann et al., 2019), the computation of the fraction of labeled transcript is achieved

by normalizing to T content and read coverage during the quanti�cation step (see Materials and

Methods).

To conclude the quanti�cation steps, we also generate a set of count matrices containing

all samples of a given dataset, collapsed by gene entry. As a result di�erent count matrices

are generated for each raw and gene-size normalized counts: (i) total read counts, (ii) nascent

read counts and (iii) nascent/total read counts. The resulting matrices also contain additional

�elds useful for downstream analysis (e.g. conversion rates calculation, di�erential expression

analysis, quality controls, etc.); a description of these �elds can be found at Supplementary

Tab. 2. Altogether with previous steps on the pipeline, quanti�cation outputs are evaluated

using -alleyoop tcperreadpos-, -alleyoop snpeval- and standard MultiQC controls, for assessment

regarding sequencing reads quality, variant calling and conversion biases, etc.; these quality

controls are automatically reported on a QC report generated within the pipeline.

3.5 Comparative analysis

While the count step output calculates fraction of labeled transcript, serving as conversion rates

of the transcripts, we also wanted to compare conversion rates at base-level and for di�erent

nucleotides. Within our pipeline, -alleyoop utrrates- (Neumann et al., 2019) is used to compute

these individual nucleotide conversion rates for all samples. Once again, the original was based on

a 3' UTR analysis. In order to use the whole transcript for rate calculation instead of UTRs, we

reuse the count windows annotation table as a region de�ning argument. Computing individual

conversion rates per nucleotide combination at the given count window level, is achieved by

simply normalizing a given nucleotide conversion over all possible conversions of the reference
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base and accounting for strandness for correct interpretation of A > G on the minus strand to

convert into T > C (see Materials and Methods).

Exploring the conversion rates for our mESCs mRNA datasets we again con�rmed that both

metabolic labeling techniques were successful, presenting a clear tendency for T > C conversions

after treatment, with a slightly stronger e�ect on SLAM-seq samples (Fig. 7). Moreover, we

see similar levels of basal and after treatment rates for non T > C mutations. Comparing

our results to the published datasets for SLAM-seq and TimeLapse-seq, we observed di�erent

conversion rates between datasets generated using the same labeling protocol (Fig. 8), suggesting

a di�erential detection of conversion rates depending on the sequencing method.
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Figure 7: Individual nucleotide conversion rates for mRNA libraries. Conversion rates
per base within whole transcript reads of mRNA-seq libraries, prepared from mESCs before (no
4sU, left) and after metabolic labeling (+4sU, right) for SLAM-seq (top) and TimeLapse-seq
(below) methods (see Materials and Methods).

Following this, we tested if these di�erences could be noticeable in a gene expression manner.

Using only samples from mESCs with no additional treatment besides metabolic labeling, we

examined expression levels for both total reads (steady state) and nascent (T > C reads) counts
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Figure 8: T > C conversion rates for all libraries. Conversion rates per base within
de�ned counting window-mapping reads depending on the library (3' UTR for QuantSeq; whole
transcript for mRNA and total RNA-seq), before (no 4sU) and after metabolic labeling (+4sU)
for all datasets.

per million (CPM); highlighting pluripotency OSN genes (Oct4, Sox2 and Nanog), as well as

some mESCs housekeeping genes. Describe patterns and focus on housekeeping or OSN genes

expression matching or not expected levels given the sample type (Fig. 9).
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Figure 9: Transcriptional output in mRNA datasets. Transcriptional output for genes
in mRNA-seq datasets from SLAM-seq (left) and TimeLapse-seq (right). Norm. T > C reads
represent abundance of de novo transcripts in counts per million (cpm) and normalized by gene
size; Norm. steady state represents total reads minus-T > C reads in counts per million (cpm)
and normalized by gene size. Core OSN (Oct4 (Pou5f1), Sox2, Nanog) pluripotency transcription
factors highlighted in red and a gene with housekeeping function in blue.
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Discussion

Discussion The use of nucleoside analogs like 4-thiouridine (4sU) for metabolic labeling of newly

synthesized RNA enables the tracking of RNA dynamics (Kawata et al., 2020). By chemical

treatment of the 4sU containing nascent RNA prior to sequencing, T-to-C conversions are in-

duced that can be detected by NGS sequencing. This enables the di�erentiation between total

and nascent RNAs through bioinformatic detection, providing valuable insights into the kinetics

of RNA synthesis, processing, and decay. In this project, I (i) developed a versatile and auto-

mated pipeline to analyze nascent RNA sequencing data from metabolic labeling experiments

across multiple RNA-seq library preparation protocols, addressing the accurate quanti�cation of

nucleotide conversions within high-throughput RNA-seq datasets generated from non-3' mRNA

library preparation protocols (mRNA-seq and total RNA-seq) and (ii) used it to compare di�er-

ent 4sU metabolic labeling based methods (speci�cally SLAM-seq and TimeLapse-seq)..

The reported pipeline for the identi�cation of T > C conversions allowed us to overcome

challenges regarding nucleotide-conversion analysis and pipeline automation. First, built around

the Snakemake framework, I achieved automation and high reproducibility of the analysis while

maintaining the adaptability via input-based sample characterization. The Snakemake structure

allowed us to perform parallel processing of each sample within the dataset compatible with

standard and high-performance computing (HPC) softwares, ensuring computational scalability.

Moreover, contributing to its reproducibility, the pipeline can be downloaded as a template from

GitHub (see Materials and Methods).

22
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Secondly, I optimized the data processing steps in order to establish a versatile pipeline ca-

pable of analyzing non-3' sequencing protocols and in particular paired-end sequencing data,

coupled with the ability to selectively de�ne �ltering and quanti�cation windows depending on

the RNA sequencing protocol used. This allows the pipeline to be used for di�erent sequencing

strategies such as mRNA-seq or total RNA-seq, irrespective of factors such as sequencing tech-

nology or read length. This approach eliminates the necessity for protocol-speci�c adjustments

or data segmentation, as the methodology inherently executes customized computations for each

sample within a diverse dataset. This �exibility was validated during our data analysis, where

we processed our internally generated mRNA-seq datasets along with the publicly available total

RNA-seq TimeLapse-seq data.

Third, I demonstrated the accurate quanti�cation of nucleotide conversions for di�erent

nascent RNA-seq technologies through application of my pipeline to various datasets, including

re-analysis of the original published datasets from SLAM-seq and TimeLapse-seq methodologies,

respectively. As shown on Figure 8, the pipeline was able to detect conversion rates on dif-

ferent datasets and we obtained comparable results to the previously reported conversion rates

for SLAM-seq (Herzog et al., 2017) and TimeLapse-seq (Scho�eld et al., 2018). Thus we can

reliably di�erentiate stable and nascent RNA populations regardless of the sequencing strategy

or labeling method.

Additionally, we generated datasets using identical cell types, labeling times, and sequencing

protocols to enable a direct comparison between SLMA-seq and TimeLapse-seq (see Materials

and Methods). Interestingly, while, as described in chapter 1.3, both methods can in principle

be used to detect nascent RNA, we obtained higher T > C read counts and conversion rates

for SLAM-seq labeling when compared to TimeLapse-seq (Table 3; Fig. 7-8). This �nding

holds relevance for guiding the design of forthcoming laboratory experiments. Furthermore,

when examining conversion rates across all four datasets, the re-analyzed published datasets

showed the lowest and highest conversion rates, with QuantSeq (3' mRNA library preparation

protocol) SLAM-seq having the lowest and total RNA-seq TimeLapse-seq having the highest (Fig.

8). However, the fold-changes between the absence of 4sU and its presence (+4sU) remained

consistent across datasets relative to the conversion rates in treated (+4sU) samples.

Finally, the pipeline generates informative outputs regarding not only processing steps but

also quality controls, while maintaining its compatibility with further downstream analysis. As
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part of the outputs, standard RNA-seq as well as nucleotide-conversion oriented quality controls

are integrated on the MultiQC report output, containing an overview of these quality controls

generated through the whole data analysis. Furthermore, output generation such as count ma-

trices for (i) total read counts, (ii) nascent read counts and (iii) nascent/total read counts, were

implemented to enhance the utility of the pipeline, providing useful results for downstream anal-

ysis (e.g. di�erential expression, multivariate data analysis).

By o�ering compatibility with di�erent sequencing library protocols and metabolic labeling

methods, this pipeline broadens the scope of research possibilities and supports the exploration

of gene expression dynamics across diverse experimental designs. While the initial focus is on

accurate processing of metabolically labeled datasets, the pipeline lays the foundation for fu-

ture downstream analyses related to nucleotide conversion. Additionally, future integration of

our pipeline with time course analysis holds the potential for a multi-dimensional approach to

decipher the intricate dynamics of gene expression. Through the incorporation of RNA de-

cay measurements, this strategy could uncover the comprehensive life cycle of RNA molecules,

spanning from their genesis during transcription to their eventual degradation over time. This

comprehensive approach, merging nucleotide labeling, detection, and time course analysis, will

enable a deep exploration of transcriptional activity, RNA stability and decay patterns, thereby

enhancing our understanding of the regulatory mechanisms governing gene expression changes.

While sequence composition methods like SLAM-seq and TimeLapse-seq exhibit �exibility

and applicability, they may introduce biases due to nucleotide analog e�ects on RNA metabolism

and the need for meticulous optimization (Watson et al., 2021). In contrast, computational

strategies tailored for conventional RNA-seq datasets, like the exon-intron split analysis (EISA;

Gaidatzis et al., 2015), o�er an alternative for studying transcriptional and post-transcriptional

gene expression regulation. EISA quanti�es changes in mature RNA and pre-mRNA reads, pro-

viding an alternative methodology to the previously discussed nascent RNA techniques. This

computational approach presents an attractive option to explore gene expression dynamics with-

out the constraints of speci�c experimental manipulations, thus o�ering a valuable tool for de-

ciphering the intricacies of gene regulation. Nevertheless, this method operates under the as-

sumption of constant RNA processing rates, attributing changes on these rates entirely to RNA

degradation; this assumption becomes a strong limitation when studying conditions where RNA

is regulated at processing and degradation levels (Furlan et al., 2021).
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In conclusion, the presented pipeline contributes to the �eld of RNA sequencing analysis,

providing a powerful tool to uncover the intricacies of gene expression regulation by reporting

not only nascent transcription, but also steady-state RNA levels. Its adaptability and compre-

hensive structure make it a valuable resource for the analysis of nascent RNA sequencing data

from metabolic labeling experiments, promoting reproducibility and utility regardless of the ex-

perimental design, overall facilitating deeper insights into the molecular mechanisms governing

gene expression dynamics.
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Materials and Methods

Sample generation

Mouse embryonic stem cells (mESCs) mRNA datasets were in-house generated by Huiwen Li.

For these datasets, 4sU metabolic labeling in mESCs was performed by incubating mESCs in

standard medium but adding 4sU to a �nal concentration of 100 uM. Cells were harvested

followed by total RNA extraction using TRIzol, followed by chemically treatment to gener-

ate nucleotide conversions accordingly to two labeling protocols (alkylation for SLAM-seq and

oxidative-nucleophilic-aromatic-substitution for TimeLapse-seq), subsequently ethanol precipi-

tated and subjected to mRNA library preparation and high throughput sequencing.

Datasets

For validation, we used published datasets from SLAM-seq and TimeLapse-seq original pub-

lications (Herzog et al., 2017; Scho�eld et al., 2018; respectively). SLAM-seq dataset con-

tains 6 samples generated by performing 45 min 4sU-pulse labeling in haploid mESCs at a

�nal concentration of 100 uM and QuantSeq 3' mRNA library preparation (GEO accession:

GSE99972). Samples from TimeLapse-seq dataset were supplemented with 4sU (1mM) for 1

hr in MEFs and sequenced after total RNA library preparation (GEO accession: GSE95854,

samples: GSM2843697, GSM2843698, GSM2843701, GSM2843702, GSM2843705, GSM2843706,

26



CHAPTER 5. MATERIALS AND METHODS 27

GSM2843709 and GSM2843710).

Snakemake work�ow

All data processing steps were implemented inside a Snakemake v7.25.3 (Mölder et al., 2021)

pipeline. Snakemake was used with �use-conda option to create the speci�ed software environ-

ments via Conda/Bioconda. In addition, particular to the High-performance computing (HPC)

cluster used, �ags �pro�les and -j were added for job submission and resource management re-

quirements via Slurm (Yoo et al., 2003). Total and mRNA datasets were processed at the same

time on the same Snakemake pipeline while Quant-seq samples were processed separately on an

adapted version of our pipeline to account for the single-end reads and particular annotation �les

to be used.

For the input, a con�guration �le was written to specify mandatory parameters and extra

arguments for each job comprehending the pipeline. For usage convenience, it follows a tool-

based structure, indicating which parameters are necessary for a given tool as well as default

values and options when required. Allowing us to track and change the processing parameters

without modifying the source code and keeping all processing information inside a single �le that

can easily be handled and addressed. Additionally, the sample manifest is a tab-separated table

containing information about the sample set , in which some of the column names and values are

directly linked to the pipeline and used either for conditional command execution or wildcards

de�nition.

Sequencing data pre-processing

Trim Galore! v0.6.6 (https://github.com/FelixKrueger/TrimGalore) was used to trim adapters,

removal of short reads (<20 nt) and quality �ltering of initial raw NGS reads using a Phred score

threshold of 20. Quality argument (-q or �2colour) was conditionally determined for all datasets

depending on the sequencing technology indicated on the sample manifest table.
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Mapping

The overall pipeline was based on the SLAM-DUNK v0.3.2 (Herzog et al., 2017) software tool.

Trimmed reads were mapped to GRCm38 reference genome using NextGenMap v0.5.0 (Sedlazeck

et al., 2013) directly, instead of slamdunk map, to allow paired-end data as input proper. For

proper identi�cation of T > C conversions option �slam-seq 2 setting a conversion-aware mode,

using the following scoring scheme and was implemented on the original SLAM-DUNK method

to avoid both mismatch penalty or match score for T > C conversions:

Reference genome

A T G C

A 10 -15 -15 -15

Read position T -15 10 -15 -15

G -15 -15 10 -15

C -15 0 -15 10

Additionally, particular BAM/SAM tags are included indicating the type and number of

conversions for proper identi�cation on further analysis.

As for the �ltering step, an interval tree is used to identify overlapping multimap reads

within the provided mapping windows, removing any reads that align to more than 1 window

and reads aligned to non-relevant regions (i.e. not annotated in the supplied reference). As a

result, any multimappers with alignments to both single annotated and non-relevant regions will

be unequivocally assigned to the single region. Instead, when multiple alignments to a single

region are reported, one will be chosen at random; and for cases where a read maps to several

mapping windows, the model is unable to reassign the read uniquely and therefore discards it

from the analysis.

Annotation tables generation

The pipeline requires two di�erent annotation tables on BED �le format to de�ne mapping and

counting windows. In order to avoid versioning issues for annotation and genome compatibility
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and keep the pipeline as reproducible as possible with the minimum amount of inputs, we decided

to build our own tables from GTF annotation �les. Since the mapping windows can be either

exonic or whole transcript regions, depending on the sequencing protocol, the pipeline identi�es

the sequencing method from the sample manifest and conditionally creates an exon or transcript-

level mapping windows annotation. As, for the counting windows, a transcript-level annotation

is used in all instances.

The creation of these tables consists of a very basic command line parsing of GTF �les by

feature, extracting values following the BED �le format: chromosome, genomic coordinates,

corresponding Ensembl Gene ID and strand. Additionally we create a corresponding gene-level

annotation table including biological relevant information (e.g. gene name, biotype, gene size,

etc.) that is not used in our pipeline but can be used for downstream analysis.

SNP calling

As described, the VarScan 2.4.1 (Koboldt et al., 2012) based -slamdunk snp- module was used

to perform SNP masking. For correct variant fraction consideration we used a threshold of 0.2

for diploid samples (mRNA and total RNA) and 0.8 for haploids (Quant-seq), these values were

based on the original method establishment recommendations (Herzog et al., 2017; Neumann et

al., 2019). The coverage threshold was kept as default (10).

Background subtraction and normalization

Background error subtraction was performed �rst by calculating the mean T > C conversions

per gene entry over di�erent biological replicates from the same untreated sample, then this

mean background signal was directly substrate from the corresponding treated samples. Sample

correspondence was established via sample manifest. For gene size normalization, gene length

was taken from genomic coordinates and then used to scale both total and nascent counts.
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Conversion rates computation

Conversion rates were calculated using -alleyoop utrrates- (Neumann et al., 2019), using the

counting windows annotation �le to delimit transcripts as feature of interest. Withind alleyoop

every the amount of conversions for a given nucleotide conversion is separated by strand so A >

G conversions can be identify as T > C and normalized by all the possible conversions for the

original nucleotide:

e.g.

A → G =
A → G

A → A+A → G+A → C +A → T

Pipeline availability

A template version of the pipeline reported in this project can be found in GitHub as paurosales/labeled-

nascent-rnaseq-snakemake-pipeline.
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Supplementary Material

Column Datatype Description

Chromosome chr Chromosome on which the transcript resides

Start dbl Start position of the transcript (0-based)

End dbl End position of the transcript (exclusive, 0-based)

Name chr Ensembl ID of the corresponding gene for the transcript

Length dbl Length of the transcript

Strand chr Strand of the transcript

ConversionRate dbl ConversionsOnTs / CoverageOnTs for the given transcript

ReadsCPM dbl
Number of reads that mapped to the transcript normalized by

library size of retained reads after �ltering (counts per million, CPM)

Tcontent dbl Number of Thymines within the transcript

CoverageOnTs dbl Cumulative coverage on each Thymine of the transcript

ConversionsOnTs dbl Cumulative number of T>C conversions in the transcript

ReadCount dbl Number of reads mapping to the transcript

TcReadCount dbl
Number of reads mapped to the transcript with

at least k T>C conversions (T>C reads)

multimapCount dbl
Number of retained reads considered as multimappers

mapping to the transcript

ConversionRateLower dbl Lower bound con�dence interval for transcript (not used)

ConversionRateUpper dbl Upper bound con�dence interval for transcript (not used)

Table S1: Output count �le content description. Column description for the tab-separated
tcount �les generated after slam_count step. For tables generated after alley_collapsed the
columns keep the same structure but values are know at gene-level annotation, collapsing all
transcripts from a given gene to the same entry.
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Column Datatype Description

Chromosome chr Chromosome on which the gene resides

Start dbl Start position of the gene (0-based)

End dbl End position of the gene (exclusive, 0-based)

Name chr Gene Ensembl ID

Strand chr Strand of the gene

Length dbl Length of the gene

Symbol dbl Gene Ensembl symbol

Biotype dbl Gene Ensembl biotype

avgReadsCPM dbl Average ReadsCPM within the transcript compromising the gene

avgTcontent dbl Average number of Thymines within the transcript compromising the gene

avgCoverageOnTs dbl Average coverage on each Thymine of the transcripts compromising the gene

avgMultimapper dbl
Average number of retained reads considered as multimappers

mapping to the transcript

SAMPLES dbl Gene counts for all given samples (one column per sample)

Table S2: Output count matrices content description. Column description for the tab-
separated count matrices �les for counts from (i) ReadCount, (ii) TcReadCount and (iii) Read-
Count/TcReadCount entries on the tcount �les generated after alley_merge steps.
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