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Resumen

A lo largo de esta tesis se desarrollan modelos teóricos exactos para estudiar (i) la estadística completa, fluctuaciones
típicas y atípicas, del número de eigenvalores ND dentro de una curva suave de Jordan en un dominio D del plano
complejo y (ii) las propiedades universales de la llamada densidad espectral condicionada ρ (z|R), i.e., la densidad
espectral cuando un parámetro externo R fija el número de eigenvalores dentro de la curva, para un ensamble de
matrices aleatorias diluidas (matrices con varias entradas igual a cero) no-Hermitianas infinitamente grandes. Dada
la complejidad de los ensambles diluidos, únicamente se tienen métodos aproximados, los cuales fallan en reproducir
los aspectos clave de estos sistemas. Esta tesis desarrolla un formalismo exacto para ambos casos y obtiene teorías
efectivas en términos de ecuaciones no lineales de autoconsistencia, mostrando excelentes resultados. Particular-
mente, los hallazgos de la densidad condicionada fortalecen conjeturas previas encontradas para ensambles diluidos
Hermitianos, llevando a conjeturar los presentes resultados como propiedades universales de los ensambles diluidos
tanto Hermitianos como no-Hermitianos.

Esta tesis se divide de la siguiente manera. En el Capítulo 1 se introducen las bases necesarias para el desarrollo de
la investigación, las cuales contemplan el concepto de universalidad y las teorías de grandes desviaciones, de gráfos, y
de matrices aleatorias. Específicamente, se presentan conceptos clave como son la función generadora de cumulantes
F , el teorema de Gärtner-Ellis, los grafos aleatorios de Erdős-Rényi, el método de replicas, entre otros. A lo largo de
este primer capítulo, se busca proporcionar, en todo momento, los aspectos más importantes de las teorías, haciendo
siempre hincapié en su conexión con la física.

Posteriormente, en el Capítulo 2, se presenta el desarrollo de la investigación; esta última, es a su vez dividida
en tres secciones. La primera de ellas, la Seccion 2.1, introduce los ensambles de matrices aleatorias diluidas, seña-
lando los trabajos previos más importantes del área y de los cuales se desprende la presente tesis. A continuación,
en las Secciones 2.2 y 2.3, se estudia la estadística completa, fluctuaciones típicas y atípicas, del número ND y las
propiedades universales de la densidad condicionada ρ (z|R), respectivamente. Se define la variable aleatoria ND

junto con las funciones F (de esta se obtienen las fluctuaciones típicas y atípicas de ND) y ρ (z|R), y se obtiene, para
cada caso, una expresión general válida-en principio-para cualquier ensamble de matrices aleatorias no-Hermitianas
del tipo campo medio (ensambles donde las fuerzas de acoplamiento no dependen de la distancia entre componentes),
particularmente para matrices diluidas no-Hermitianas. Para mostrar la exactitud de ambas teorias, estas son aplicadas
a la matriz de adyacencia de grafos aleatorios pesados con acoplamientos asimétricos, en los cuales herramientas es-
tándar de la teoría de matrices aleatorias no son aplicables, y se obtienen resultados exactos para el ensamble real
diluido de Ginibre. En ambos estudios, el resultado principal es una teoría efectiva que determina la estadísitca com-
pleta del número ND y las propiedades universales de la densidad condicionada ρ (z|R) en términos de ecuaciones no
lineales de autoconsistencia. Dada la naturaleza de dichas ecuaciones, estas son resueltas a través de métodos numéri-
cos. Ambas teorías son comparadas con diagonalización numérica exacta para matrices de tamaño finito, mostrando
excelentes resultados.

Finalmente, en el Capítulo 3 se presentan las conclusiones generales de la investigación y se señalan trabajo a
futuro. Para cerrar la presente sección, se hace del conocimiento del lector que el primer proyecto concerniente a la
estadística completa del número ND ya ha sido publicado [1], mientras que el segundo referido a la densidad espectral
condicionada ρ (z|R) se encuentra en su fase final.
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Abstract

Throughout this thesis, we develop exact theoretical models to study (i) the complete statistics, typical and atypical
fluctuations, of the number ND of eigenvalues within a smooth Jordan curve in a domain D on the complex plane
C and (ii) the universal properties of the so-called conditional spectral density ρ (z|R), i.e., the spectral density
when an external parameter R fixes the number of eigenvalues inside the curve, for an ensemble of infinitely large
sparse non-Hermitian random matrices (matrices with several entries equal to zero). Owing to the complexity of the
diluted ensembles, we only count with approximate methods that fail to reproduce the key aspects of these systems.
This thesis develops an exact formalism for both points (i) and (ii), and obtains effective theories in terms of self-
consistency nonlinear equations, showing excellent results. In particular, our findings for the constrained density
strengthen previous conjectures found for Hermitian diluted ensembles, leading us to conjecture the present results as
universal properties for both Hermitian and non-Hermitian sparse ensembles.

We divide this thesis as follows. In Chapter 1, we introduce the research foundations, covering the concepts of
universality, large deviation theory, graph theory, and random matrix theory. Specifically, we present key concepts
such as the cumulant generating function F , the Gärtner-Ellis theorem, the Erdős-Rényi random graphs, and the
replica method. Throughout this first chapter, we seek to provide, at all times, the most important aspects of the
theories, always emphasizing their connections with physics.

Subsequently, in Chapter 2, we present our research; the latter is further divided into three sections. We begin in
Section 2.1 by introducing the diluted ensembles, emphasizing the previous works from which our research follows.
Next, in Sections 2.2 and 2.3, we study the complete statistics, typical and atypical fluctuations, of the number ND

and the universal properties of ρ (z|R), respectively. We define the random variable ND, together with the cumulant
generating function F (from this, we deduce the typical and atypical fluctuations of ND) and ρ (z|R), and obtain, for
both, a general expression valid-in principle-for any non-Hermitian random matrix ensemble of the mean-field type
(ensembles where the coupling strengths do not depend on the distance between components), particularly for sparse
non-Hermitian ensembles. To demonstrate the accuracy of both theories, we apply them to the adjacency matrix of
weighted random graphs with asymmetric couplings, where standard tools from random matrix theory are no longer
applicable, and obtain exact results for the diluted version of the real Ginibre ensemble. In both studies, the principal
outcome is an effective theory in terms of nonlinear self-consistency equations that determines the complete statistics
of the number ND and the universal properties of ρ (z|R). Due to the nature of these equations, they are solved only
through numerical methods. Both theories are compared with exact numerical diagonalization for finite-size matrices,
showing excellent results.

Finally, in Chapter 3, we display the general conclusions of the research and indicate future work. To close this
section, we inform the reader that the first project concerning the complete statistics of the number ND of eigenvalues
within a smooth Jordan curve has already been published [1], while the second one referring to the conditional spectral
density ρ (z|R) is in its final phase.
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Preface

Physics is becoming so unbelievably complex that it is taking longer
and longer to train a physicist. It is taking so long, in fact, to train a
physicist to the place where he understands the nature of physical
problems that he is already too old to solve them.

Eugene Wigner (1902-1995)

Undoubtedly, one of the most astonishing features in nature is the presence of a universal behaviour, i.e., a
behaviour displayed by several classes of physical systems. The basis of universality ought to be understood as
a collective behaviour coming from diverse microscopic effects regardless of the details that involve them. The
notion of universality enters formally in the study of phase transitions, where critical exponents for many physical
systems depend only on the system dimensionality and the Hamiltonian symmetries [2–4]. We need to express this
extraordinary behaviour in a universal language; this is the language of mathematics. Universality and far-reaching
mathematical expressions correspond to each other. For instance, we can describe the statistical behaviour near critical
points for thermodynamic systems and lasers by one exponential distribution function. For such distributions, the
time-space evolution is given by special differential equations such as the Fokker-Plank and Schrödinger equations.
Such evolution equations can be formulated in a far-reaching way, i.e., we can use one basic evolution equation to
describe many classes of physical systems. In other words, a compressed formulation of universal behaviour can be
found on the level of differential evolution equations [5]. This pillar of theoretical physics appears in random matrix
theory (RMT) as a fundamental result which indicates that in the large matrix size limit, various statistical properties
of eigenvalues and eigenvectors are universal in the sense that they are independent of the details concerning the
matrix elements. Therefore, understanding how these universal properties arise and to what extent they are valid, are
essential technical elements in RMT.

Since its informal inception by Wishart in 1928 into the context of multivariate statistics [6] and later popularized
by Wigner in 1955 for the problem of heavy nuclei [7, 8], RMT has transformed into an area of extensive research
finding applications in areas such as physics [9, 10], mathematics [11, 12], biology [13, 14], statistics [15], and fi-
nance [16]. Its faculty for modelling systems with large degrees of freedom and its enormous predictive capacity
make it an area where, in principle, all sorts of systems can be modelled. Early research in RMT focused on ma-
trices with Hermitian symmetry and all-to-all interactions, where the degrees of freedom interacted similarly to the
mean-field models in statistical physics; nowadays, we bifurcate RMT into Hermitian and non-Hermitian random
matrices. One of the successes for Hermitian random matrices was obtaining the joint probability distribution of
eigenvalues (JPDE) function, from where applications in quantum mechanics [17,18], quantum chaos [19,20], quan-
tum cosmology [21], string theory [22, 23], among others, emerged. Another fascinating result for large Hermitian
ensembles, proof of the universality, was the discovery of a limiting spectral distribution, a result known as the Wigner
semicircle law [24]. For non-Hermitian ensembles, the situation is far more complicated.Thanks to the endeavours
of Ginibre [25] and Girko [26–28], and recently to the work of Tao [29], we currently have a JPDE function and a
limiting spectral distribution for the so-called Ginibre ensembles known as Girko’s or the circular law (the analogue
to Wigner’s law). Unfortunately, in general, there is no analogous description for non-Hermitian ensembles. Conse-
quently, little do we know about the spectral properties of non-Hermitian random matrices. This may be mainly due
to the mathematical limitations: the lack of symmetries and large spectral instabilities of the spectrum under small
perturbations present in non-Hermitian matrices hamper us in applying the most common mathematical methods and
in establishing both a JPDE function and a limiting spectral density [30]. Clear examples are the ensembles of sparse
random matrices, where their unique features make them complicated cases to explore.

Sparse ensembles consist of matrices with only a finite number of nonzero elements, where the theory and meth-
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ods established for Hermitian random matrices no longer apply. In contrast with ensembles of all-to-all interactions,
sparse matrices model complex systems where a given degree of freedom interacts with a small number of others.
These systems can be represented in terms of random graphs, where the nodes denote the individual entities compos-
ing the system and the links connecting them their interactions [31]. Sparse ensembles find applications in studies
of percolation limits [10], Anderson localization of electronic states [32], Griffiths singularities in disordered sys-
tems [33], and in general real-world complex systems, where interactions between components are often directed and
depend on functional locality [34, 35]. Since Rodgers and Bray aimed to reproduce the spectral density for sparse
Hermitian ensembles [36], numerous publications sought to provide an analytical method capable of unravelling
the eigenvalues and eigenvectors statistical properties of these ensembles [37–40]; unfortunately, all of them were
hindered by the technical difficulties arising from the combined effects of sparseness and asymmetry. Some of the
authors, to overcome the obstacles, simplified their procedures leading to a series of approximate methods [41–43];
sadly, such methods ended up with an incomplete description of the spectra. During the last fourteen years, the
spectral properties of sparse ensembles have become a topic of continuous research since the study of complex net-
works, geometrical and topological properties, has moved to the study of the spectral properties of their adjacency
matrices. Nonetheless, and despite the still-growing interest, rigorous results for sparse ensembles, particularly for
sparse non-Hermitian random matrices, are mainly non-existent owing to the technical difficulties their analyzes im-
ply. Hence, convergence proofs for eigenvalues and eigenvectors to a deterministic limit at large matrix dimensions
hardly exists [31].

The present doctoral thesis develops within a research group whose ultimate goal is to establish under what con-
ditions universal features emerge in strongly correlated systems together with their range of validity, having as main
objective the study of the statistical properties of an ensemble of sparse non-Hermitian random matrices. Owing to the
limited knowledge we have about the spectral properties of sparse random matrices, this thesis seeks to complement
the research conducted in Refs. [44, 45] and by means of diverse mathematical tools from statistical physics, RMT,
and complex systems, provides accurate theoretical models to study the full statistics of the number of eigenvalues
ND within a smooth Jordan curve on a domainD ⊆ C and the universal properties of the conditioned spectral density
in the limit of infinitely large matrix dimensions for an ensemble of sparse non-Hermitian random matrices. It is my
hope that future students find this work interesting and challenging enough to venture into the fascinating world of
RMT and complex systems, where areas as diverse as measure, probability, quantum field theory, and condensed
matter, among many others, combine to form a beautiful explossion of complexity.



Chapter 1

Introduction and preliminars

We are merely explorers of infinity in
the pursuit of absolute perfection.

The man who knew infinity (film)

This first chapter provides the basic concepts and mathematical theories required for the correct development of
the research conducted in this thesis; to cover them all, we have divided the chapter into four sections. We commence
in Section 1.1 by introducing the concept of universality, a key term in physics and mathematics, and one of the
cornerstones in random matrix theory from which a great deal of research detach. Immediately after in Section 1.2,
we present large deviation theory as the mathematical modelling in charge of studying the atypical fluctuations of
a random variable X , i.e., the behaviour of X far from its average. In this section, we also introduce the rate and
cumulant generating functions along with the Gärtner-Ellis theorem, responsible of relating both functions through
a Legendre transform. For Section 1.3 we display the essential concepts of graph theory and present the famous
Erdős-Rényi random graphs. Finally, we close with Section 1.4 by formally introducing the bases of random matrix
theory, such as the basic definitions, the concept of universality, Hermitian and non-Hermitian ensembles, and the
replica method within the formalism of random matrices. This last section seeks to provide the reader with a clear
image of the marked difference between Hermitian and non-Hermitian random matrices and point out the enormous
necessity of more research for the latter case.

1.1 Universality
It is well-known that all thermodynamics systems at the macroscopic level, as time moves, will eventually reach their
equilibrium state and obey the laws of thermodynamics, whichever the nature of the interactions between the atoms
and molecules at the microscopic level is. In other words, at the macroscopic level, the essential behaviour of physical
systems is governed by the same laws of thermodynamics [5, 46]:

1. First law: in a thermodynamic process involving a closed system, the increment in the internal energy is equal
to the difference between the heat accumulated by the system and the work done by it.

2. Second law: every process occurring in nature proceeds in the sense in which the sum of the entropies of all
bodies taking part in the process increases.

3. Third law: the entropy of a system tends to a constant value as its temperature approaches absolute zero.

Then, the juxtaposition between the microscopic and macroscopic frameworks concentrates on the question, how
does one derive the macroscopic laws of thermodynamics from the microscopic laws of atoms? The answer is given
precisely by the fact that the same laws of thermodynamics ought to emerge despite the atomic interaction details.
This notion of a collective behaviour independent of its components gives rise to the universality concept. Indeed, in
statistical mechanics, universality is a widespread feature consisting of the observation that there are properties for a
large class of systems independent of the system’s dynamical details. These systems display universality in a scaling
limit when a large number of interacting parts come together [5].

1



2 1.1. Universality

Universality originates in the study of phase transitions, where critical exponents are considered universal, i.e.,
independent of the details of the system’s Hamiltonian. Nonetheless, they continue to depend on the dimensionality
of the system and any symmetry of the Hamiltonian [2, 3]. In the vicinity of critical points, the topology concerning
phase diagrams for diverse systems, such as the gas-liquid mixture and ferromagnetic materials, are astonishingly
similar [4, 46]. Moreover, experiments and computer simulations have pointed out that the critical exponents of the
corresponding phase transitions for broad classes of physical systems are the same and depend only on the number
of components and the symmetry of the order parameter, the spatial dimension, and the character of the interactions
(short-ranged or long-ranged). I.e., in the critical region, those systems behave collectively, and only global features
such as their spacial dimension and symmetry play a role [46,47]. There are cases in which the universality hypothesis
is violated; nevertheless, this is generally believed to only occur in cases of very particular Hamiltonians [3].

In recent years, the concept of universality has expanded its usage to a wide variety of mathematical problems. An
area called by some authors macroscopic mathematics. The idea is that several problems, apparently not connected,
behave at the appropriate scale in the same way [48]. We find two examples of this in probability theory via the central
limit theorem (CLT) and extreme value theory (EVT). Formally speaking, the CLT states that for {X1, . . . , Xn}, a
collection of random variables with finite mean µ and variance σ2, the probability distribution of the sum for large n
will tend to a normal distribution with mean nµ and variance nσ2 for every a ∈ R [49, 50], i.e.,

lim
n→∞

P

(∑n
i=1 Xi − nµ√

nσ

)
= 1√

2π

aˆ

−∞

e−x2/2dx. (1.1)

On the other hand, EVT focuses on the extreme samplesXmax ≡ max (X1, . . . , Xn) andXmin ≡ min (X1, . . . , Xn)
of the set {X1, . . . , Xn} and states that if {Xi}ni=1 are all independent identically distributed (i.i.d.) random variables
with probability p, the cumulative probability

Qn (x) ≡ Prob [Xmax ≤ x] = Prob [X1 ≤ x, . . . ,Xn ≤ x] =

1 −
∞̂

x

p (x′) dx′

n

(1.2)

under the rescaled variable z = (x− an) /bn with an, bn ∈ R non-universal constants, will tend to a limit distribution
F (z) (extreme value distribution) in the large n limit [51, 52]; in other words,

lim
n→∞

Qn(an + bnz) = F (z). (1.3)

The universality for Q (z) is provided by the Fisher-Tippett-Gnedenko theorem, which establishes that F (z) can only
be equal to the limiting distributions Gumbel, Fréchet, and Weibull, depending on the decaying speed of the right tail
and upper endpoint of its support (analogous for Xmin) [53–55]. Further details can be consulted in Refs. [56–59].

Both results, CLT and EVT, illustrate a key feature within the notion of universality, the limiting distribution
concept. Formally speaking, we say a sequence of distributions fn converges to a limiting distribution f if

lim
n→∞

fn (x) = f (x) . (1.4)

What we are indicating with Eq. (1.4) is that the sequence {fn (x)} converges to a universal limit regardless of
the specific details of the sequence distributions [30].

This notion of universality is also present in random matrix theory (RMT) as a fundamental result in the limit of
large matrix size, where various statistical properties of eigenvalues and eigenvectors are universal in the sense that
they do not depend on the matrix elements details [9, 10, 31]. Hence, universality corresponds to a statement about
certain limiting behaviours happening as the size of matrices tends to infinity. For instance, the spacing between
eigenvalues is described by universal laws and corresponds to one of the basic features of RMT. It was the motivation
behind Wigner’s idea to introduce random matrices to model energy levels in quantum systems [10]; universality was
the starting point for RMT. After early success in reproducing the universal features in the spectra of highly excited
nuclei, RMT was used to model various physical and mathematical systems. An example is found in quantum me-
chanics, where a wealth of empirical and numerical evidence suggested universality for local fluctuations in quantum
energy or quasi-energy spectra of systems that display global chaos in their classical phase spaces [18,60]. In the end,
universality is one of the fundamental principles of RMT.
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1.2 Large deviation theory

Within nature, there are certain types of events such as earthquakes, floods, hurricanes, and financial crises (among
others), which do not happen on a daily basis. Nonetheless, when such events tend to occur, the consequences are
often disastrous [61]. Hence, it is desirable to possess models or theories that adequately provide information and
predict the times in which those situations might occur; specifically, we require a mathematical theory to model the
occurrence probabilities for those events. Large deviation theory (LDT) is the mathematical tool responsible for
providing accurate information about the occurrence probabilities of such atypical events. Interestingly, the Poisson
probability distribution is also commonly used to refer to "rare events" occurrence.

Given a discrete random variable Y , the Poisson distribution P(y) ≡ Prob [Y = y] = e−µµy/y! (µ > 0, the rate
parameter) measures the probability that a certain number of random events, with the mean of occurrence constant
over time, happen in a specific period [62–64]. The law of rare events or Poisson limit theorem, states that in the limit
of the Binomial distribution B (n, p) when the number n of independent Bernoulli trials is very large (n → ∞) and
the success probability p for each trial is small (p → 0), np = µ, the total number of events will follow, approximately,
the Poisson distribution P (µ) [64]; in practice, P (µ) is an adequate approximation when n ≥ 100 and p ≤ 0.05 [65].
In other words, P (µ) appears when the number of opportunities for an event to occur is large, but the probability of
occurrence on any trial is small. Some events modelled by P include the number of earthquakes occurring during
some fixed time, wars per year [49], deaths in a given period [66, 67], and the probability of mutation for a particular
cell within a large group of cells [68].

LDT sees the light for the first time in Crámer’s works concerning insurance and actuarial mathematics, looking
for corrections to the results provided by the central limit theorem [69]; nevertheless, it would not be until approxi-
mately thirty years later that this newborn theory would be formalized firstly by the works of Donsker and Varadhan
within the context of Markov processes in the 1970s [70–73] and later, in the 1980s, by Freidlin and Wentzell [74].
Although LDT is widely known in the mathematical literature [75–77], it is not a subject commonly studied in the
physics curriculum; the first informal encounter physicists have with LDT is through the use of mathematical tech-
niques such as the Laplace or saddle point method [78]. However, LDT appears naturally in physics and has been
extensively used by physicists for more than one hundred years via a different language than the one utilized by
mathematicians; in fact, physicists are responsible for the first result obtained by appealing to such a theory [75–80].

LDT is a probabilistic approach centred on studying the atypical fluctuations of a random variable, i.e., the prob-
ability that a random variable yN takes values far from its expected value ⟨yN ⟩. LDT assumes that the probabilities
decay exponentially as the value of variable N (an extensive parameter) increases [75–81]. Formally speaking [81],

PyN
(x) ≡ Prob [yN ≤ x] ≍

{
e−ω(−)

N ψ(−)(x), if x < ⟨yN ⟩
1 − e−ω(+)

N ψ(+)(x), if x > ⟨yN ⟩
, (1.5)

where ψ(+)(x) and ψ(−)(x) are the so-called right and left rate functions (or Crámer functions [79]) in charge of
controlling the probability that yN takes larger and smaller values than ⟨yN ⟩. The parameters ω(+)

N and ω(−)
N control

the decaying speed of the probabilities, both depending onN ; to obtain non-trivial results for ψ(±)(x), we must select
appropriate values for ω(±)

N [81].

It is essential to understand the meaning of the notation in Eq. (1.5) since the large deviation principle (the basis of
LDT) follows from it. The symbol ≍ indicates asymptotic convergence in the limitN → ∞; then, we say that PyN

(x)
fulfills the large deviation principle (LDP) if the following limits exist and both are different from zero [78, 79, 81],

− lim
N→∞

lnPyN
(x)

ω
(−)
N

= ψ(−)(x),

− lim
N→∞

ln (1 − PyN
(x))

ω
(+)
N

= ψ(+)(x).
(1.6)

Should it happen that any of the limits in Eq. (1.6) is equal to infinity or zero for a given value of x, we say that
the function PyN

(x) falls off either super-exponential or sub-exponential, respectively, in N . In other words, PyN
(x)

decays faster or slower than e−Na, with a > 0 [78]; the cases of interest for LDT are those whose limits exist and are
different from zero or infinity.
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Alternatively, we can state the previous definition of Eq. (1.5) via the probability density function as [78, 79]

PyN
(x) = Prob [yN = x] ≍ e−WNψ(x), such that WNψ(x) =

{
ω

(−)
N ψ(−)(x) if x < ⟨yN ⟩
ω

(+)
N ψ(+)(x) if x > ⟨yN ⟩

. (1.7)

Thus, we can display the LDP in terms of the rate function ψ(x) and parameter WN as [78, 79]

− lim
N→∞

ln PyN
(x)

WN
= ψ(x). (1.8)

The previous limit in Eq. (1.8) may not exist, yet we can still find upper and lower limits both exponential in N
such that e−Nψ−(x) ≤ PyN

(x) ≤ e−Nψ+(x). These two bounds establish the precise meaning of the statement that
PyN

decays exponentially with N , giving rise to two large deviations principles defined in terms of an inferior and
superior limit yielding ψ(−)(x) and ψ(+)(x), respectively [75–78]. In this thesis, we utilize Eq. (1.7) to introduce
LDT assuming, at all times, that ψ(−)(x) = ψ(+)(x) for all values of x.

When random variables are completely independent or weakly correlated, the rate function must fulfill [78,79,81]

i. ψ(x) is convex, i.e. ψ′′(x) > 0;

ii. ψ(x) > 0 for x ̸= ⟨yN ⟩;

iii. ψ(x) = 0 for x = ⟨yN ⟩;

iv. if x is near ⟨yN ⟩, ψ(x) ≈ (x− ⟨yN ⟩)2
/(2σ2) where σ2 = 1/ψ′′(x)|x=⟨yN ⟩,

being the last point none other than the CLT. This last fact enables us to identify LDT as a generalization of the CLT.

From a practical point of view, we can think of LDT as a collection of methods gathered together to solve two
principal problems [78]:

1. Establish a large deviation principle for a given random variable,

2. Derive the expression for the associated rate function.

It is possible to address both problems simultaneously; nonetheless, solving them does not always turn out to
be a trivial task. In general, it may be extremely difficult or even impossible to derive large deviation principles
through direct calculations; for instance, combinatorial methods based on Stirling approximations cannot be used for
continuous random variables [78]. For those highly complicated cases, a general calculation path is provided by a
significant LDT result known as the Gärtner-Ellis theorem [82,83]. For this research, the Gärtner-Ellis theorem we use
corresponds to a simplified version of the original theorem, yet, such a form is sufficient for the applications covered
in this work. Before proclaiming the theorem, let us define a mathematical object within LDT, and an essential piece
of our research, known as the cumulant generating function (CGF) from which the Gärtner-Ellis theorem emerges
naturally [78, 79].

Definition 1.1 (Cumulant generating function). Let yN be a random variable parametrized by a positive N ∈ N,
we define the scaled cumulant generating funciton of yN as

F(µ) = lim
N→∞

1
N

ln
〈
eNµyN

〉
, (1.9)

with µ ∈ R.

Theorem 1.1 (Gärtner-Ellis). If F(µ) exists and is differentiable for all values of µ ∈ R, then yN satisfies the
large deviation principle with rate function ψ(x) given by the Legendre transform of the scaled cumulant generating
function,

ψ(x) = sup
µ∈R

[µx− F(µ)] . (1.10)

Proof. Let us assume that F(µ) exists and is differentiable for all values of µ; then, yN obeys the large deviation
principle, PyN

(x) ≍ e−Nψ(x). Consequently,
ˆ
e−N [ψ(x)−µx]dx ≍ exp

[
−N inf

x∈R
(ψ(x) − µx)

]
,
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and so
F(µ) = sup

x∈R
[µx− ψ(x)] .

Since we have assumed F(µ) to be differentiable everywhere, the Legendre transform can be inverted, verifying the
validity of Eq. (1.10)

This simple and heuristic proof seeks to illustrate two fundamental facts: firstly, to point out how the Legen-
dre transform rises as a natural consequence of the Laplace approximation and, secondly, to demonstrate that the
Gärtner-Ellis theorem is "born" as a direct implication of the LDP combined with Laplace’s approximation [78, 84].
Unfortunately, even with all the excitement this theorem could carry, not all rate functions can be calculated from
it [78, 79]. Prior to proceeding in more detail with this last statement, let us mention two important properties con-
cerning the CGF:

1. F(µ) is always convex. This comes as a general consequence of Hölder’s inequality [78] and it was rigorously
demonstrated in the works inequalities by Hardy, Littlewood, and Pólya (theorems 197 and 213) [85].

2. The convexity of F(µ) directly implies continuity in the interior of its domain and differentiability everywhere
except, maybe, in a denumerable number of points [86, 87].

So far, the rate functions obtained from the Gärtner-Ellis theorem are strictly convex, i.e., they do not possess linear
parts. On the one hand, this last fact is verified easily from the formal definition of the Legendre transform; on the
other hand, to demonstrate that such a transform yields strictly convex functions when F(µ) is differentiable requires
further work [78]. The details covering such proof are in Ref. [87] section 26, "The Legendre transformation".

Thus, if the Legendre transform yields necessarily convex functions, the immediate limitation concerning the
Gärtner-Ellis theorem are non-convex rate functions and, in particular, rate functions with two or more local or global
minima. The breakdown of this theorem for these functions is directly related to the differentiability condition of
the CGF [78]. To correctly illustrate the last statement, let us take the example of a multi-atomic distribution whose
probability density function is given by [88]

PyN
(x) = 1

2
δ (x± 1) . (1.11)

Owing to the form of Eq. (1.11), the corresponding rate function for this case possesses the form,

ψ(x) =

{
0, ifx = ±1
∞, otherwise

. (1.12)

It is clear that the rate function of Eq. (1.12) has two minima; consequently, it cannot be, by any circumstance, a
convex function. Thus, we cannot express it as the Legendre transform of its CGF.

Naturally, this creates more questions concerning the Gärtner-Ellis theorem and how to calculate rate functions.
Interrogations as [78]: is there a general connection between the differentiability of F(µ) and the convexity of rate
functions? Why is the differentiability condition for F(µ) in the Gärtner-Ellis theorem so important? And, probably
the most fundamental of all, what is the result of the Legendre-Fenchel transform of F(µ) in general? For the research
developed in this thesis, we assume that the CGF is such that the Gärtner-Ellis theorem is valid. Should the reader
wish to find answers to the previous questions, we strongly recommend Refs. [78, 86, 87].

1.3 Graph theory
If we could describe the world we live in, would we depict it as a simple or complex system where all its components
interact variously? Certainly, guided by our daily experiences, many of us would agree to portray the world as a highly
complex system. Interacting molecules in living cells, nerve cells in the brain, computers in a telecommunication
network, and the social network of interacting people are just a few examples of complex systems that are linked
together somehow [34,35]. While it is true that we can study the behaviour of individual components, it is worthwhile
performing research within the nature of their interactions in order to extract relevant information about the system.
Following this line of thought, there is a crucial aspect to have in mind when we are dealing with these systems:
the pattern of connections between the components; this pattern, for any given system, can be represented as a
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network [35]. Then, it should not surprise us that, depending on particular patterns of interaction, the behaviour of
the system changes [34, 35, 89]. Over the years, a large number of mathematical tools for analyzing, modelling, and
understanding networks have been developed, providing useful information such as what network is useful for certain
problems and making predictions about processes like city traffic, the internet, diseases, etc. [34, 35]. In the end,
a network corresponds to simplified versions of interacting systems that capture only the basic connection patterns.
Nevertheless, networks are formidable means of representing such patterns between the parts of a system [35, 89].

Being these systems modelled as networks, Graph Theory (GT) is the mathematical modelling investigating these
complex systems. Next, we define the necessary notions of graph theory [34, 35, 89–92].

Definition 1.2 (Graph). We define a graph G = (V, E) as a family of two sets V and E , such that V = {1, ..., N}
are the so-called vertices and E ⊆ V × V the edges.

Definition 1.3 (Neighbours). Given two vertices i and j ∈ V , we say they are neighbours if (i, j) ∈ E .

Definition 1.4 (Neighbourhood). We define the neighbourhood ∂i of a given vertex i ∈ V as the set of adjacent
vertices to it.

Definition 1.5 (Degree). We define the degree deg(i) ≡ |∂i| for any vertex i ∈ V as the number of edges that are
incident to the vertex

Definition 1.6 (Path). We define a path as the set of edges that connects any sequence of different vertices

Definition 1.7 (Tree). We say a graph is a tree if for any two vertices there is exactly one path connecting them.

Figure 1.1: Graphic representation of a graph and a tree graph. Left panel: sketch of a graph picturing three vertices i, j, and k
with edges (i, j) and (j, k); as the figure illustrates, vertices i and j, as well as j and k, are neighbours, but vertices i and k are
not. Right panel: diagram of a tree graph picturing the fact that for any pair of vertices involved there is exactly one unique path
connecting them.

Fig. 1.1 is called a graph diagram and acts as an intuitive representation of an actual graph [90–92]. In general,
networks do not possess the regularity of a crystal lattice or any predictable architecture; they look as if they were
spun randomly [34, 35, 89]. From a modelling point of view, a network is a simple object formed of only nodes and
links. However, the crucial aspect when building networks is to decide where to place the links between the nodes
to reproduce the complexity of real systems. One of the simplest procedures, and the one we use in this thesis, is to
place the links between the nodes randomly [89]. This idea of random nets was first introduced within the context
of mathematical biology for different branches [93] and popularized a decade later by Erdős and Rényi [94, 95].
Nowadays, random networks find applications not only in fields of physics and mathematics as complex networks,
problems optimization, and information theory [35, 96] but also in areas such as linguistics [97], biology [98], and
social sciences [99]. These prominent advances are mainly due to the research’s modern perspective in constrast with
the traditional graph theory viewpoint. Instead of answering questions on specific graphs, current research focuses
on studying the statistical properties of large graphs that appear in various scientific and social contexts [100].

Then, how do we build a network? The answer consists of only three steps [89]:

1. Start with N isolated nodes.

2. For each node pair, generate a random number between 0 and 1. If such a number is less than or equal to p (a
certain probability measure), connect the node pair with a link; otherwise, leave them disconnected.
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3. Repeat the previous step for the rest of the node pairs.

The resulting structure is commonly denoted as random graph, random network, or Erdős-Rényi networks, owing
to the works of Erdős and Rényi [94, 95]. It is also called the G (n, p) model, referring to all random graphs with
n vertices connected via a probability p, where the presence of each edge is statistically independent of all others.
There is also a second model called the G (n,M) model, denoting all those graphs with n vertices connected by M
edges randomly; these models are perhaps the simplest ones we can consider [35]. Also, there are two types of graphs
whose characteristics depend entirely on the behaviour of their edges. If the direction of their edges matters, we say
the graph is a directed graph or digraph; if not, we call it an undirected graph. Formally speaking, a directed graph
is defined by a set of nodes and links where each link is an ordered pair of nodes [34, 90, 101]. We find this latter
type of graph in areas such as biology [102,103], where the directions of biological processes, cellular processes, and
molecular functions (to mention a few) are essential [104].

From a mathematical perspective, it is convenient to define a graph by means of its adjacency matrix C.

Definition 1.8 (Adjacency matrix). We define C ∈ MN×N ({0, 1}) the adjacency matrix of a graph as

Cij =

{
1, if (i, j) ∈ E
0, otherwise

. (1.13)

The adjacency matrix encompasses all the essential information of a graph [34] and is helpful if we wish to store
a large graph on a computer [90]. Furthermore, the previous concepts of directed and undirected graphs are easily
translated into the matrix language. If the graph is directed (undirected), the adjacency matrix C is non symmetric
(symmetric) [34, 35, 90–92, 101, 105, 106].

Since real-world-networks are characterized frequently by a finite average degree in their connections, k = deg(i)
for i ∈ V , a natural choice, and appealing to the G(n, p) model, is to consider models with a connection probability
decreasing with N , i.e. p = ⟨k⟩ /N . To obtain the degree distribution P (k), we need to use that the probabilities of
creating a vertex with degree k and that vertex is connected to other k vertices, but not connected to the remaining
N − 1 − k vertices are the same; in other words, we deal with a Bernoulli process [101],

P (k) =
(
N − 1
k

)
pk (1 − p)N−1−k

. (1.14)

In the limit N → ∞ for p constant, by the law of rare events [64], the binomial distribution approximates the
Poisson distribution [107, 108]

P (k) = e−⟨k⟩ ⟨k⟩k

k!
. (1.15)

These graphs are known as Poisson random graphs. They have the property that the probability function for each
entry in their adjacency matrix is

P (Cij) = pδCij ,1 + (1 − p) δCij ,0. (1.16)

Throughout this thesis, we employ the Poisson random graphs via the G(n, p) model since, in real-world-
networks, the number of links is rarely fixed. Also, we stipulate that the network must be a simple graph, i.e., it
should not have multi-edges or self-edges, in which case the position of each edge is chosen among only those pairs
that are distinct and not already connected. Consequently, the joint probability density function for the adjacency
matrix C is given by

P
(

{Cij}Nij=1

)
=
∏
i<j

[
pδCij ,1 + (1 − p) δCij ,0

]
δCij ,Cji

. (1.17)

For these graphs, it is well-known that their spectrum contains a dense collection (an infinite number) of Dirac δ
peaks [105, 109–112]. The latter can be verified in Fig. 1.2, where, for notation purposes, we have denoted ⟨k⟩ as c;
nomenclature that we will maintain throughout this work and will refer to as the average connectivity [110, 113].

The immediate observation one realizes in Fig. 1.2 is that the spectrum, depending on the c value, commences
showing δ peaks all over it. These are δ peaks in the sense of distribution theory and correspond to exact degeneracies
of the eigenvalues; nonetheless, owing to the arbitrary width of the histogram bins, their heights are not representative
[110, 112]. Ref. [110] demonstrated that for any value of c and considerably large N (N = 1000, 2000, 4000), the
highest δ peaks appear at positions x = 0,±1,±

√
2,±

√
3,±

(√
5 ± 1

)
/2,±

√
2 ±

√
2, etc., and belong to small
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trees eigenvalues [112]. Furthermore, the authors also proved that in the large limit N → ∞ (fixed c), the spectral
density displays an infinity of δ peaks at all eigenvalues of finite trees and the corresponding eigenvectors are strictly
localized in the sense that the number of non-vanishing coordinates is finite [110, 112]. The δ peaks are mainly due
to small trees present at all c values, and their heights are exponentially decreasing functions of c [110].

Figure 1.2: Spectral density of Poissonian random graphs for different values c of the average connectivity. Histograms of the
spectrum for Poisson random graphs using fixed values of average connectivities of c = 0.8, 1.2, 2.0, 3.0, 5.0, and 10.0, for
10, 000 matrices each of size 300 × 300

.

The fact that the δ peaks are more visible for small c values is related to a field known as Percolation theory (PT).
For the research conducted on this thesis, we do not require PT; we mention it only for completeness purposes. PT
provides a theoretical framework to understand the topological effects of removing nodes considering an arbitrary
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network topology in which each node is occupied with probability p; as p increases, connected components called
clusters start emerging [101]. Recalling that the c value indicates the average number of connected nodes within a
network, it is intuitive to assume that while small p forms small clusters, large p creates a giant cluster that fills most
of the network (although there could be small clusters too), and p = 1 fully recovers the network [35, 101]. From
a practical point of view, when we insert small values of c, we break the graph, favouring the appearance of Dirac
δ peaks in the spectra. More information concerning PT can be found in Refs. [34, 35, 101], as well as in all their
bibliographies.

1.4 Random matrix theory

1.4.1 Basic concepts and universality
Firstly introduced by Wishart in 1928 within the context of multivariate statistics in the analysis of large populations
samples [6], and later proposed by Wigner [7, 8] in the area of nuclear physics,

the assumption is that the Hamiltonian which governs the behaviour of a complicated system is a random symmetric
matrix with no particular properties except for its symmetric nature [114],

random matrix theory (RMT) has become an indispensable tool in areas besides physics and mathematics, such as
biology, statistics, and finance [9–11, 13, 16]. In physics, pure and applied mathematics, a wide variety of problems
are modelled by RMT in the following sense: let us say we wish to study some statistical quantities {ak} in a
neighbourhood of some point A and we intend to compare them with the eigenvalues {λk} of a random matrix in a
vicinity of some point Λ. If the statistics of the initial {ak}’s are described correctly by the statistics of the {λk}’s,
both appropriately scaled,

ak → ãk = γa (ak −A) , λk → λ̃k = γk (λk − Λ)

with γa(λ) scaling factors, we said then that the {ak}’s are modelled by RMT [48, 115]. The crucial premise of
RMT is that the large-scale behaviour of a complex system should be governed by its symmetries and the statistical
properties of its many parameters and should not be sensitive to the precise details of each interacting element [31].

Mainly developed by Dyson [116], providing the foundations, and Mehta [11], describing the mathematical bases,
the main objective of RMT has always been the study of the statistical properties of eigenvalues and eigenvectors of
sets of matrices whose entries are completely random variables called ensembles. Initially, RMT was used to predict
the form of the spectral correlation functions employing only certain symmetries of the systems, such as the spin
value and time-reversal symmetry invariance [111]; after that, its use spread far beyond highly correlated systems.
For instance, Bohigas et al. [19] introduced a conjecture, supported mainly by numeric evidence, arguing that RMT
also correctly described the statistics of the spectrum of quantum systems whose classical analog is chaotic; other
systems where RMT has also proved to work correctly are the so-called disordered systems. This last formulation
was conjectured by Gor’kov and Eliashberg [117] and demonstrated in 1982 by Efetov [118]. More information
concerning the general applications of RMT, as well as a review of their first implementations in physics, can be
consulted in Refs. [10] and [17, 116, 119], respectively. Specifically, Ref. [116] provides an excellent introduction
to RMT along with the collection of the original papers, published until 1965, of the first works realized on nuclear
physics by Dyson, Mehta, Porter, and other authors.

Nowadays, the research field of RMT in physics has grown considerably, encompassing areas such as quantum
mechanics [17], quantum chaos [19, 20], string theory [22, 23], quantum cosmology [21], disordered systems [120–
124], quantum chromodynamics [125], among others [126]. Noteworthy is that RMT has become a branch sui generis
of theoretical physics with its own concepts and mathematical methods [17]. We commence establishing the basic
definitions of RMT:

Definition 1.9 (Random matrix). The array A ∈ MN×M (K) whose entries Aij correspond to random variables
taking values over K = R, C, H, and O is denominated as random matrix.

Definition 1.10 (Spectrum). Let A ∈ MN×N (K) be a random matrix; the set of the eigenvalues of A, ΛA =
{λ1, ..., λN} such that λ ∈ R, C, H, and O, is called the spectrum ofA.

In applications, the entries Aij represent the strength and sign of pairwise interactions between elements. De-
pending on the context, various properties of the system under study lie within the corresponding eigenvalues λj and
eigenvectors vj , whether the latter are left or right eigenvectors [31]. For this thesis, we focus on the case K = C
and introduce the following definition:
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Definition 1.11 (Empirical spectral density). Given A ∈ MN×N (C) a random matrix with spectrum Λ, we define
the empirical spectral density (ESD) as

ρA (z) = 1
N

N∑
i=1

δ (z − λi) , (1.18)

with z ∈ C and δ the Dirac delta distribution on the complex plane.

The ESD is one of the simplest ways to capture the spectral properties of matrices as well as operators [31].
Commonly, the interest in this quantity lies in its averaged limit distribution at large N , i.e.,

ρ (z) = lim
N→∞

1
N

〈
N∑
i=1

δ (z − λi)

〉
A

. (1.19)

Depending on the random matrix ensemble selection, as N → ∞, the spectrum and averaged empirical spectral
density (AESD) ρ (z) may converge to a deterministic distribution [31]. The AESD ρ (z) results from averaging
ρA (z) overA.

Generally, research focuses on the spectral properties of operators such as the Hamiltonian or, more generally,
matrix operators describing certain types of correlations. Nonetheless, providing mathematical expressions for such
operators is not always possible, and even if it were, their analyses turn out to be highly complicated. RMT replaces
those deterministic operators by random matrices, transforming unsolvable problems into solvable ones while keeping
many of their principal features. Since several physical systems display universal characteristics, i.e. properties that
do not depend on the system details, we can employ appropriate random matrix models, which may be solvable
analytically, for such systems. Hence, the importance of RMT as an alternative tool to deterministic operators mainly
lies in the universality of the spectral properties of random matrices. In other words, establishing universality for
matrix ensembles is a crucial technical element in RMT [10].

We can assign three meanings to the concept of universality [10]:

1. Several statistical properties of eigenvalues and eigenvectors in the limit N → ∞ are independent of the
probability distribution choice for the matrix elements.

2. In the N → ∞ limit, RMT becomes equivalent to other more physically-motivated effective field theories
that depend on the same global symmetries. Thus, we can think of RMT as the simplest, solvable model that
captures the fundamental degrees of freedom of a theory.

3. The emerging limiting distributions in the N → ∞ limit also appear as the limit of other statistical ensembles,
not necessarily related to random matrices.

The conjecture of universality for symmetric and Hermitian random matrices establishes that [10, 31]:

local eigenvalues statistics of many random matrix ensembles in the large matrix size limit are the same, i.e., they do
not depend on the exact probability distribution placed on a set of matrices but only on some general characteristics

of the ensemble.

There are specific features that play a role in determining the so-called universality classes [10]:

1. Invariance of ensembles under specific conjugation operations.

2. The distinction between real symmetric or complex Hermitian random matrix ensembles. Even without the
invariance assumption, universality of local eigenvalue statistics is conjectured to hold [127–130]. Universality
is also expected to exist in certain classes of non-Hermitian matrices [10, 131].

3. The nature of the point where we consider the local statistics of eigenvalues. Depending on the spectrum point,
there are specific universality classes such as the bulk, edge and hard-edge universality; details in Refs. [9, 10].

Ref. [10] provides a formal statement of universality for symmetric and Hermitian random matrices via the k-point
correlation function. Let {X1, . . . , Xn} be a collection of random variables with Pn(x1, . . . , xn) ∈ Rn a symmetric,
invariant under coordinates permutations probability density, and the k-point correlation function defined as

Rnk(x1, . . . , xk) = n!
(n− k)!

ˆ
· · ·
ˆ
Pn(x1, . . . , xn)dxk+1 . . . dxn. (1.20)
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Next, let x∗ ∈ R be a reference point and cn > 0 a constant such that each point xi, i = 1, . . . , n, can be centred
around x∗ and rescaled by cn, i.e.,

(x1, x2, . . . , xn) → (cn(x1 − x∗), cn(x2 − x∗), . . . , cn(xn − x∗)) .

Consequently, the centred and scaled points will have a rescaled k-th point correlation function of the form

1
ckn
Rn,k

(
x∗ + x1

cn
, x∗ + x2

cn
, . . . , x∗ + xn

cn

)
. (1.21)

Universality at x∗ means that for a suitable sequence (cn), the rescaled k-point correlation function will have
a finite specific limit as n → ∞. In other words, the statistics of the random variable Rnk (x1, . . . , xn) remains
asymptotically unchanged in the limit n → ∞ as each Xi is rescaled [30]. The universality classes are determined
by the form the k-point correlation function is rewritten (details in Refs. [9, 10, 48]).

1.4.2 Classical and Ginibre ensembles

Within RMT, there is a wide variety of ensembles, but perhaps, the most common explored over the years have
been the Gaussian [9, 11] or Wigner-Dyson [132] ensembles, also known as classical ensembles [18]. Since we
commonly characterize systems by their Hamiltonians, which by definition are represented by Hermitian matrices,
these ensembles are introduced as N × N Hermitian matrices whose entries are drawn from a Gaussian distribution
with different mean and variance depending on whether or not the entries are on the diagonal (details in Ref. [9]) and
joint distribution invariant under conjugation operations by appropriate unitary matrices U [9, 11, 115].

We sayA ∈ MN×N (K) belongs to the Gaussian ensembles ifA is drawn according to the distribution [9,11,115]

P (A) dA = 1
ZN

e− β
2 TrA2

dA, (1.22)

with β the Dyson index having values β = 1, 2, and 4 whenever K = R, C, or H, respectively; dA the volume form
or volume measure implying the wedge product of the independent elements of dA, and the normalization constant

ZN =
ˆ
e− β

2 TrA2
dA. (1.23)

The classical ensembles divide into different classes depending on whether their elements are real, complex, or
real quaternion and their invariance under conjugationA → UAU−1 by orthogonal, unitary, and unitary symplectic
matrices, respectively; these invariances are deeply connected to the concept of time-reversal symmetry in quantum
mechanics [9, 11, 18, 115, 132]. Consequently, we classify them according to their properties concerning the time-
reversal operator T and relate them to a specific value of the Dyson index (Dyson’s threefold way [11, 133]) as
follows [9, 18, 115]:

1. Gaussian Orthogonal Ensemble GOE (β = 1): models the statistical properties of physical systems with
time-reversal symmetry such that the time-reversal operator fulfills T 2 = 1;

2. Gaussian Unitary Ensemble GUE (β = 2): models the statistical properties of physical systems lacking
time-reversal symmetry;

3. Gaussian Symplectic Ensemble GSE (β = 4): models the statistical properties of physical systems with
time-reversal symmetry such that the time-reversal operator fulfills T 2 = −1.

One of the achievements of RMT has been expressing the joint probability distribution of eigenvalues (JPDE) of
the three ensembles in a unified analytical expression of the form [9, 11]

Pβ (x) = 1
Zβ

exp

(
−β

2

N∑
i=1

x2
i

) ∏
1≤i<j≤N

|xj − xi|β , (1.24)
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with xi ∈ R and Zβ a constant that permits to normalize Pβ (x) to unity, i.e.
ˆ
Pβ (x) dx = 1. (1.25)

Def. 1.9 on page 9 establishes that K could also take values on O; then, the immediate question is whether or
not there is a Dyson labelling for this case. Effectively, the classification exists for real octonion elements, having
Eq. (1.24) as the JPDE function with the modification N = 2 and β = 8; further details can be consulted in Ref. [9].
Since we do not require this case for future developments in this thesis, we will omit it for the subsequent chapters.

Eq. (1.24) illustrates that the probability of two eigenvalues being close together is small and vanishes like a power
of β as the distance between them increases [48]. Dyson went a step further [133–137] and, introducing the function
V : Λ → R, rewrote Eq. (1.24) as a Gibbs-Boltzmann distribution

Pβ (x) = 1
ZN

e− β
2 F (x), such that F (x) =

N∑
i=1

V (xi) −
N∑
i̸=j

ln |xi − xj | ; (1.26)

clearly, for the Gaussian ensembles V (x) = x2. Written in such a form, Eq. (1.26) describes the thermodynamical
properties of a one-dimensional gas of N equally charged (one-component [9]) particles constrained to move along a
one-dimensional line confined by the external potential V (x) and with pairwise interaction equal to − ln |xi − xj |.
We refer to this charged gas as the one-dimensional Coulomb gas or Dyson one-component log gas [9, 132–137].
Eq. (1.26) is not restricted only to the Gaussian ensembles; by adequately writing V , we can recover, for instance, the
Wishart-Laguerre ensemble JPDE [9, 10, 138].

After the classical ensembles, Ginibre moved forward and placed the natural generalization to non-Hermitian
random matrices by simply dropping the used symmetries [25]. The so-called Ginibre ensemble consists of N ×
N random matrices with all their entries independent and drawn from a Gaussian distribution with variance 1/N ,
modelling complex systems where all their elements interact with directed interaction. As for the classical ensembles,
Ginibre deduced the JPDE function for the non-Hermitian Gaussian matrices with complex and quaternion entries
[25]; it was not until approximately twenty-six years later that Lehmann and Sommers [139] derived the JPDE for the
real Ginibre ensemble case. Owing to its form,

P (z1, ..., zN ) = 1
ZN

exp

−N
N∑
i=1

∥zi∥2 + 2
∑
i<j

ln ∥zi − zj∥

 (1.27)

with ZN a normalization constant, the JPDE for the complex Ginibre ensemble (Eq. (1.27)) can also be mapped to a
Boltzmann distribution describing a one-component two-dimensional Coulomb gas ofN interacting charges confined
to move in a quadratic potential with a neutral background and pairwise interaction equal to 2 ln ∥zi − zj∥ [9, 25].
Both equations, (1.26) and (1.27), illustrate two competing interactions for the fluid of charged particles: a quadratic
potential thrusting all particles toward the origin and a logarithmic repulsion spreading any pair of particles apart.

These two types of ensembles (Gaussian and Ginibre) offer each one a universal result for the spectral distribution
convergence in the thermodynamic limit N → ∞. On the one hand, for the Gaussian ensembles, and in general for
Wigner matrices (symmetric and Hermitian) [30], the limiting spectral density converges almost surely to

ρW (λ) =

{
1
π

√
2N − λ2, if |λ| <

√
2N

0, if |λ| >
√

2N
, (1.28)

the so-called Wigner semicircle law [11,24]. In more recent textbooks, such as Ref. [9], the author refers to Eq. (1.28)
as the particle density for the log-potential systems (Eq. (1.26)) and the limiting value of the global density,

ρ̃ (x) ≡ lim
N→∞

√
2
N
ρW

(√
2Nx

)
, (1.29)

as the Wigner semicircle law

ρ̃W (x) = 2
π

√
1 − x2, (1.30)
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for |x| < 1 and equal to zero otherwise (Fig. 1.3, left panel) [9]. On the other hand, for the complex [11] an
real [140] Ginibre ensembles, and in general for non-Hermitian matrices with complex entries of zero mean and unit
variance [29], as N → ∞ the normalized limiting spectral density (eigenvalues rescaled as λ/

√
N , λ ∈ C) converges

both in probability and almost surely to the unit disk on the complex plane

ρG (z) = 1
π

1[0,1] (∥z∥) dz, (1.31)

where the indicator function 1Ω (x) is equal to one if x ∈ Ω and zero otherwise. Eq. (1.31) is known as Girko’s
circular law or simply circular law (Fig. 1.3, right panel) [26–28]. For small N , the density of states on the real
axis is higher than the average density, whereas slightly above and below the real axis, it is smaller than the average.
Ref. [141] demonstrated that this non-uniform behaviour was due to finite-size effects (Fig. 3, Ref. [141]) and orig-
inated from the fact that the level repulsion of eigenstates near the real axis is less than the average level repulsion.
This effect vanishes as N → ∞ roughly as N−1/2 [141].

Figure 1.3: Limit distribution for the classical and Ginibre ensembles. Left panel: Wigner semicircle law for symmetric and
Hermitian random matrices. Right panel: Girko’s circular law for fully asymmetric and non-Hermitian random matrices.

Both limiting spectral distributions, Eq. (1.30) and (1.31), illustrate the roots of universality: the details of the
distributions characterizing the all-to-all random interactions for Hermitian and non-Hermitian systems lack of im-
portance for the spectral distribution in the limit of infinitely large random matrices [31].

Inspired by the Wigner semicircle law, it was conjectured that Girko’s law should also be a universal result for non-
Hermitian random matrices. This conjecture was just recently proved for non-Hermitian matrices whose entries Aij
are independent complex random variables with zero mean and unit variance [29]; for further background on Girko’s
circle law, see Refs. [30, 142]. The main problem one faces in providing a limiting spectrum in the N → ∞ limit
for non-Hermitian random matrices is their spectral instability. While the well-known methods employed for large
Hermitian matrices ensure spectral stability, small perturbations of order ε > 0 for large non-Hermitian matrices
can lead to large fluctuations within the spectrum, making the usual techniques highly inefficient [30]. This last
argument, combined with an unknown JPDE function for many non-Hermitian ensembles, make the study of the
statistical properties of non-Hermitian random matrices a still-open problem.

1.4.3 Replica method

Let us suppose we have a physical system whose Hamiltonian HJ [σ] depends on the configuration [σ] of the spins
that form it and on some other control variables J (quenched variables), which are distributed according to a prob-
ability distribution PJ [143]; an example of a system with such characteristics is the Ising model [3, 144]. For each
choice of the Js, we define the partition function

ZJ =
∑
σ

e−βHJ [σ] (1.32)
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and free energy

FJ = − 1
βN

ln
∑
σ

e−βHJ [σ], (1.33)

with N representing the total number of the σ variables [143].

Statistical mechanics deals with computing the free energy at given Js; at all times, we assume the latter are
random variables whose probability distribution is known. Physically, computing of Eq. (1.33) at fixed values of the
quenched variables comes from the fact that changes in the Js tend to happen on infinitely larger time scales than the
ones characterizing the σ shifts [143]. For instance, let us consider the Ising model with N spins with no external
magnetic field (h = 0), whose Hamiltonian is given by

HJ [σ] = −
∑
⟨i,j⟩

Jijσiσj , (1.34)

where the symbol ⟨i, j⟩ means the sum over nearest neighbours. The quenched variables Jij , for all i, j ∈ {1, . . . , N},
represent the magnetic coupling between the neighbouring sites i and j, whereas the σi variable (spin at site i)
switches between two possible configurations: spin up (σi = +1) and spin down (σi = −1) for all sites i = 1, . . . , N
[3,145,146]. Before analyzing the Hamiltonian (1.34), it is necessary to determine all the couplings Jij so they remain
fixed all the time (details in Ref. [145]); this process leads to a particular choice, or realization, of the couplings [145].
If interactions within the system are not too complicated, thermodynamics arguments assure that in the limitN → ∞,
FJ assumes the same value for each set of the control parameters J that has a non-vanishing probability, i.e., FJ is a
self-averaging quantity [143]. For disordered systems with self-averaging quantities, their thermodynamic properties
are the same regardless of the specific choice of quenched variables. Hence, these must be a kind of average over the
disorder caused by the realization. In other words, an average over the quenched disorder [147, 148].

We are commonly interested in deriving the so-called free energy per particle

f ≡ lim
N→∞

⟨FJ ⟩J = − 1
β

lim
N→∞

1
N

⟨lnZJ ⟩J , (1.35)

where the symbol ⟨. . . ⟩J denotes the quenched disorder average [143, 149]. To obtain f , we must compute the
disorder average after calculating the logarithm but before evaluating the thermodynamic limit N → ∞ [149]. In
general, direct attempts to compute Eq. (1.35) are very complicated. To overcome this difficulty, we appeal to a
mathematical technique known as the replica method. The basis of this method lies in the computation of f by
some analytic continuation procedure from the average of the partition function for n uncoupled replicas of the initial
system [143, 149, 150]. Practically, we depart from the exact relation

lnZ = lim
m→0

Zm − 1
m

(1.36)

and rewrite Eq. (1.32) as

ZnJ =
∑
σ1

· · ·
∑
σn

exp

(
−

n∑
a=1

βHJ [σa]

)
, (1.37)

where we have assumed n ∈ Z+ and introduced n replicas of the same system [143]; then, averaging the logarithm
of Eq. (1.35) is equivalent to averaging Eq. (1.37) and taking the n → 0 limit [150]. Indeed, the partition function of
the n replicas of the same system is the partition function of the original system powered to n. In principle, we must
first calculate the n → 0 limit followed by the N → ∞ limit; nonetheless, in practice, we reverse the order of the
limits [143, 150]. Despite a non-existent formal mathematical justification for such an inversion, numerical results
have demonstrated the efficiency of this approach.

Throughout this thesis, and inspired by the terminology used in Ref. [149], we refer to Eq. (1.37) as the replica
trick and the complete procedure for computing Eq. (1.35) as the replica method. Hence, the replica method encom-
passes the following three steps [143]:

(i) compute Eq. (1.37) for positive integer n,

(ii) extend the resulting equation to an analytic function for n, and

(iii) calculate the free energy f .
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The replica method was first translated to the language of RMT in the seminal work of Edwards and Jones [151]
as an alternative proof to Mehta’s derivation of the Wigner semicircle law [12] based on expressing the ESD of an
N × N symmetric random matrix M as the product of n multiple Fresnel integrals [152]. Appealing to Eq. (1.36),
the authors expressed the ESD (Eq. (1.18)) as

ρM (λ) = lim
ε→0+

lim
n→0

−2
Nnπ

Im ∂

∂λ


(

ei π
4

√
π

)Nn ˆ ( N∏
j=1

n∏
a=1

dxja

)
exp

−i

N∑
j,k=1

n∑
a=1

xja (λεIN −M)jk xka

− 1

 ,

(1.38)
where they defined λε ≡ λ − iε (ε > 0), assuming at all times that integration held for all values of n and the

analytic continuation was possible. Eq. (1.38) pointed out the replica method as a new and straightforward technique
for calculating the spectrum of symmetric and Hermitian random matrices [151].

In general, for square symmetric and Hermitian matrices H, RMT follows the same path carried out by the physics
of disordered systems and determines the desired statistical properties of the eigenvalues and eigenvectors via the trace
of the resolvent (Stieltjes transform) [150] or Green matrix [36] G (z) = (zIN − H)−1 with z ∈ C \ ΛH commonly
defined as z = λ− iε (ε > 0) [153], expressing the AESD (Eq. (1.19)) as

ρ (λ) = lim
N→∞

lim
ε→0+

1
Nπ

Im ⟨TrG(z)⟩H . (1.39)

The immediate advantage of Eq. (1.39) is the possibility of extracting useful information employing basic math-
ematical manipulations [31]; some authors [10, 153, 154] follow a similar procedure and express the AESD as
ρ (λ) = − limN→∞

1
Nπ∂z∗ ⟨TrG (z) |z=λ⟩H.

To facilitate the handling of Eq. (1.39), RMT uses the equality of Eq. (1.36) and reformulates the average of the
resolvent trace as

⟨TrG (z)⟩H = −2 lim
n→0

1
n
∂z ⟨Zn(z)⟩H , (1.40)

with

Zn(z) =
ˆ ( N∏

i=1

n∏
a=1

dψia√
2π

)
exp

−1
2

N∑
i,j=1

n∑
a=1

ψia (zIN − H)ij ψja

 (1.41)

the partition function of n replicas on the initial random system running over the auxiliary real vector field ψ =
(ψ1, ..., ψN )T and H the N ×N Hermitian random matrix modelling the Hamiltonian’s system [150].

Although the spectrum of Hermitian matrices has zero Lebesgue measure on the real axis R, the spectrum of
non-Hermitian matrices generally possesses a non-zero Lebesgue measure on the complex plane C; consequently,
the usage of the resolvent is no longer possible. In order to proceed with the last argument, it is worth recalling that
while the spectrum of matrices is composed of different discrete sets of eigenvalues, the spectrum of an operator
also has continuous components and eigenvalues of infinite multiplicity [31]. According to Borel’s and Lebesgue’s
decomposition theorems [155,156], the spectral distribution ρ for operators can be divided into three mutually singular
components [31]

ρ = ρac + ρsc + ρpp, (1.42)

each supported by an analogous split within the spectrum

Λ = Λac ∪ Λsc ∪ Λpp. (1.43)

The absolute continuous part ρac stands as a function supported on Λac ⊆ C, a set of non-zero Lebesgue measure; the
singular continuous component ρsc is a continuous distribution on Λsc ⊆ C, a set with zero Lebesgue measure; and,
finally, the pure point contribution ρpp corresponds to a countable sum of weighted Dirac δ distributions supported
on a collection of points Λpp. Furthermore, the pure point part of the spectrum can be bifurcate into eigenvalues of
finite and infinite multiplicity, being the former the discrete part of the spectrum. For finite dimensional matrices, the
ESD ρA is discrete; however, as the matrix dimension tends to infinity, ρA can converge to a spectral distribution ρ
that may have continuous components and eigenvalues of infinite multiplicity [31].

It is the fact that the spectrum for symmetric and Hermitian matrices lies on R, the cornerstone for inferring the
eigenvalue distribution ρ from the trace of G (z), which exists in the non-real part of C. Appealing to the Sokhot-
ski–Plemelj theorem [157], δ (x) = 1/π limε→0+ Im (x− iε)−1, and the Lorentzian representation of the δ distribu-
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tion, we can prove that for H ∈ MN×N (C) a Hermitian matrix,

1
π

Im
[

1
N

TrG (λ− iε)
]

= 1
π

+∞ˆ

−∞

ε

ε2 + (x− λ)2 ρH (x) dx; (1.44)

tending ε → 0+, we recover the ESD ρH (λ) for λ ∈ R. Eq. (1.44) corresponds to the regularized version of the
spectral density and is considered the cornerstone of Hermitian RMT since both limits ε → 0+ and N → ∞ can be
safely interchangeable, allowing us to work entirely with the well-behaved resolvent defined in the upper half part of
C [31]. Unfortunately, for non-Hermitian random matrices, the spectrum does not have zero Lebesgue measure on
C, setting aside the safe ground provided by the resolvent. Should we wish to appeal to the trace of the resolvent for
non-Hermitian matrices, we would find ourselves with the equivalent of Eq. (1.39) under the modification [158]

TrG (z, z∗) =
N∑
i=1

1
(x− Reλi) + i (y − Imλi)

. (1.45)

Even when it is desirable to proceed with Eq. (1.45), handling it is far from an easy task. Then, one is tempted to
appeal to quaternionic variables and rewrite the sum of Eq. (1.45) as

N∑
i=1

1
(q − λi) |q − λi|

, (1.46)

with q = a + bi + cj + dk a quaternionic variable and |q| ≡
√
a2 + b2 + c2 + d2 its absolute value. The form

Eq. (1.46) has taken, is far from being written as a simple trace, making any attempt to use Eq. (1.39) a dead end [158].
To use the replica method on non-Hermitian matrices, we need to introduce certain modifications to the non-Hermitian
problems so we can apply the tools from Hermitian RMT (the details of this argument will be mentioned in the
following chapter). In the same way, the usage of the replica method may naturally arise within the mathematical
handlings of certain systems, leading to an extension of n not only to real but also to complex values. This remarkable
extension has the feature that now the analytic continuation is allowed to reach further values in both R and C.

From a formal mathematical perspective, the usage of the replica method seems like a counterintuitive construc-
tion: we depart from a particular integration that makes no sense for n other than positive integers and attempt to
analytically continue it to a close vicinity of n = 0 or other value. Certainly, this procedure stands as a non-trivial
task. Firstly, the analytic continuation, in general, is not unique, and secondly, to retain control over the continuation,
the latter must rest on an exact calculation of the average replicated partition function for n ∈ Z+ [153]. Naturally,
these facts lead to more interrogations concerning the mathematical formality behind the analytical extension to real
or complex values of n. Ref. [149] provides a series of answers based on the analyticity and convexity of the replicated
partition function (Eq. (1.37)). Sadly, the analyticity argument ends on a dead end due to the difficulty in demonstrat-
ing that Eq. (1.37) is analytical and bounded; on the other hand, the convexity argument offers a simpler alternative
to formally prove the analytic continuation of the replicated partition function (for specific details see Ref. [149]). In
the end, the existing mismatch between the available partition function (n ∈ Z+) and the needed partition function
(n ∈ R or C) is at the heart of the trickery of the replica field theories and the center of many discussions about the
applicability of the method [153]. For this thesis, we appeal to the convexity argument to base the analytic continu-
ation of our equations as well as the existence of the thermodynamic limit and its interchange with the replica limits
through our calculations.

To conclude this subsection, we highlight that the replica method is not the only available technique to explore
the statistical properties of the different ensembles of random matrices. Along with it, there are several methods as
the Painlevé equations, "supersymmetry", orthogonal polynomials, and cavity method, among others. If the reader
wishes to know more about these methods, we recommend Refs. [10].



Chapter 2

Statistical properties of sparse
non-Hermitian random matrices

Science is not a collection of truths. It is
a continuing exploration of mysteries.

Freeman John Dyson (1923-2020)

This second chapter displays the achievements obtained in this doctoral research for sparse non-Hermitian random
matrices. To provide a complete picture of these kinds of ensembles, we separate the chapter into three sections. In
Section 2.1, we introduce sparse random matrices by mentioning the seminal work of Rodgers and Bray, the famous
approximate methods EMA, SDA, DEMA, and SEMA (to be introduced in this section), and the recent research of
Kühn et al., the immediate predecessors of our research. We display the crucial elements of the mentioned studies
and highlight the equations responsible for the actual status of the area; the remaining two sections show the entire
findings of our research for sparse non-Hermitian random matrices applied to the particular case of the diluted version
of the real Ginibre ensemble. In Section 2.2, we obtain the complete statistics, typical and atypical fluctuations, of
the number of eigenvalues ND inside a smooth Jordan curve in a region D contained in the complex plane for the
diluted real Ginibre ensemble. Finally, for Section 2.3, we retake ND and constrain it to have a specific quantity
of eigenvalues within the Jordan curve, introducing an adjustable parameter within our theory and computing the
so-called constrained spectral density. For both final sections, all our findings are analyzed and compared with exact
numerical diagonalization for ensembles of finite random matrices, displaying excellent agreement.

2.1 Background
Large sparse random matrices (SRMs) arise naturally in the adjacency matrix of large graphs, whose vertices present
degrees selected from a fixed distribution [10]. Formally speaking, SRMs are matrices having a mean finite number p
of non-zero elements per row with a general distribution ρ(J) [36–39]. In contrast to their non-diluted counterparts,
SRMs model complex systems where a given degree of freedom interacts only with a small number of others; also, it is
possible to find sparsity in disordered quantum systems, such as the quantum Ising chains, where the spins in the chain
interact with a small additional number of spins from a total added to the model [159]. Commonly, real-world complex
systems such as neuronal networks and ecosystems interact via directed interactions; then, it is appropriate to model
these systems throughout sparse non-Hermitian random matrices [31]. Contrary to the well-known classical and
Ginibre ensembles, where the limiting distribution for the spectral density follows the Wigner semicircle and Girko’s
law (Fig. 1.3), respectively, sparse matrices are the only non-trivial ensembles with i.i.d. elements whose spectral
limiting behaviour differs [39]. Surprisingly, the introduction of sparsity within the ensembles greatly complicates
their analysis, making our understanding of the spectral properties rudimentary [10]. For instance, sparse random
ensembles are not invariant under the O(N) and U(N) symmetries; consequently, many of the methods applied
to unitary and orthogonal ensembles with successful results are no longer valid for the sparse cases. Furthermore,
standard techniques, such as the use of the resolvent (Eq. (1.40)), lack validity on sparse non-Hermitian random
matrices [31]. In other words, every possible advance related to this type of ensemble seems hampered due to the lack
of standard mathematical techniques to conduct proper research [10].
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In general, we obtain an SRM ensemble by diluting any known classical random matrix ensemble, allowing us
to consider the limits of validity of the Wigner-Dyson theories and their universal statistics when matrices strongly
deviate from their classical analogue [32, 39]. The study of the spectral properties of SRMs was first motivated
by mean-field spin systems [160–162] where the exchange interactions are significantly diluted but of infinite range
and by combinatorial optimization problems [163–165]. Sparse models also work as representations to study the
quantum-mechanical behaviour of systems that are classically chaotic [166], for exponential relaxation in glassy
systems [40], percolation limits (see [10] and references therein), Anderson localization of electronic states [32],
Lifshitz tails [167], Griffiths’ singularities in disordered systems [33], and as a tool to study the largest eigenvalue in
d-regular graphs [168, 169]. Nowadays, the interest in these systems is directed towards complex networks, where
geometric and topological features are translated to the spectral properties of adjacency matrices [170, 171]. Despite
the still-growing interest in SRMs, fundamental questions about eigenvalue distributions remain unanswered [31].
For instance, one of the central pieces in RMT that is still missing for the SRM ensembles is the joint probability
distribution of eigenvalues (JPDE) function.

Motivated to understand the role of Griffiths’ singularities in both the statistics and dynamics of dilute spin systems
at temperatures between the critical temperatures of the dilute and non-dilute systems, Rodgers and Bray published in
1988 the seminal paper [36] on SRMs. In their publication, the authors considered an N ×N real symmetric matrix
J whose elements Jij , for all i, j = 1, ..., N , were i.i.d. random variables following the probability distribution

P (Jij) =
[
1 − p

N

]
δ (Jij) + p

2N
[δ (Jij − 1) + δ (Jij + 1)] ; (2.1)

then, appealing to the Green’s matrix trace (Eq. (1.40)) and replica method, the authors expressed the AESD as

ρ (µ) = lim
N→∞

lim
ε→0+

lim
n→0

2
Nnπ

Im∂µ ⟨Zn (µ+ iε)⟩J , (2.2)

with ε > 0 and ⟨Zn(µ+ iε)⟩J the Gaussian integral

⟨Zn (µ+ iε)⟩J =
ˆ  N,n∏

i,a=1
dϕia

 exp

 i
2

(µ+ iε)
N,n∑
i,a=1

ϕ2
ia + p

2N

N∑
i,j=1

{
cos

(
n∑
a=1

ϕiaϕja

)
− 1

} . (2.3)

To decouple the sites of Eq. (2.3), the authors employed the famous Hubbard-Stratonovich transformation and
expanded the function f(x) = cos(x) − 1 to construct an equivalent functional self-consistency problem described
by a non-linear integral equation for a function g defined via a suitable average of the function f

g (ϕ) =
´

[cos (ϕ ·ψ) − 1] eF (ψ)dnψ´
exp [F (ψ)] dnψ

, (2.4)

with ϕ = (ϕ1, ..., ϕn) a vector in the n-dimensional replica space and

F (ψ) = i

2
µψ2 + pg (ψ) . (2.5)

Since the integral expression of Eq. (2.4) could not be solved by analytical methods, the authors appealed to a
perturbative expansion in powers of 1/p with the leading term reproducing the Wigner semicircle law to approximate
a solution [36]. Subsequent analyzes based on the supersymmetric method [37–40] were conducted to determine the
spectral properties of SRM such as the average spectrum [37, 38] and correlation functions [39], leading to integral
expressions too complicated to be solved by means of analytical procedures.

Afterwards, a series of approximate methods [41–43] based on the replica method were published to solve the
hamper caused by the integral expressions obtained in Refs. [36–40]. The first difference between these approxi-
mate methods to the previous approaches came with the decoupling of sites. Instead of employing the Hubbard-
Stratonovich transformation, these series of works appealed to a very useful way to study the mean-field theory of
diluted systems by introducing a function ρ (ϕ) called the replicated density [172], measuring the fraction of sites
with a field ϕi equal to a chosen value ϕ (the vector denoting the n-dimensional replica space),

ρ (ϕ) = 1
N

∑
i

δ (ϕ− ϕi) . (2.6)
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The implementation of Eq. (2.6) led to a path integral formulation for the AESD in terms of an effective action
SEFF (see Eq. (17) in Ref. [42]) solved by means of the saddle-point method, leading to a stationary condition for
the SEFF. Such an equation could not be solved using any known analytical procedures, resulting in the use of
approximations. The first approximate method, known as effective medium approximation (EMA), considered the
extended part of the spectrum and postulated that all matrix elements were of the same order of magnitude, i.e. all
sites were equivalent and played the same role, simplifying the replicated density with a Gaussian ansatz (see Eqs. (6)
and (22) of Refs. [41] and [42] respectively). Since EMA assumes uniform connectivity, it does not reflect geometry
fluctuations within the spectrum, making its description for the diluted ensembles better for large c values of the
average connectivity. For low and moderate values of c, it does not yield an accurate description of the central part of
the spectrum, as well as the tails and the presence of weighted Dirac δ peaks throughout the spectral density [42].

To solve the inaccuracies of EMA, a second approximation known as the single defect approximation (SDA) was
introduced. In this scheme, the original saddle-point equation from EMA was modified such that any chosen site
had k neighbours following a Poisson distribution, and each one interacted with the central site through an effective
Hamiltonian (Eq. (8) in Ref. [41]). Hence, in SDA, the connectivity for any site was allowed to fluctuate, but its neigh-
bours continued to be treated as part of the effective medium [41, 42]. Although SDA emerged as an enhancement of
EMA capable of reflecting the geometry fluctuations within the spectral density, its description of the full spectrum
was still incomplete. For instance, in Poisson random graphs, SDA is capable of reproducing the weighted Dirac δ
peak at the spectrum’s centre for low and moderate values of the average connectivity c; nevertheless, it is unable to
display the remaining δ peaks at the left and right of the central peak as well as the tails of the spectrum (see Fig. 3 in
Ref. [173]). Later, the approximate methods dual effective medium approximation (DEMA) and symmetric medium
approximation (SEMA) were introduced to study the spectrum of covariance matrices of the form J = ATA, with
A ∈ MM×N (R) a sparse random matrix, approximating the replicated densities by Gaussian ansatz, providing de-
cent results but failing to correctly describe the tails of the spectrum, as well as the highest part of it (see Figs. 1 and
2 of Ref. [43]). For further details on the DEMA and SEMA methods, check Ref. [43].

It was the research conducted by Kühn [174] and subsequently by Rogers, Pérez Castillo, and Takeda [173]
that introduced new methods capable of providing accurate results for the spectral properties of sparse Hermitian
random matrices. Starting from the key principles of Refs. [36–38, 41–43], Ref. [174] took Poisson and Laplacian
random graphs and successfully obtained stationary conditions for the replicated density parameter ρ and its conjugate
variable ρ̂. As with the approximate methods, the saddle-point equations proved to be too complicated to be solved
by analytical methods. Instead of appealing to the Hubbard-Stratonovich transformation or a Gaussian ansatz to
approximate the replicated density, Kühn used the fact that a solution preserving both the permutation symmetry
among replicas and rotational symmetry in the replica space is exact for the problem at hand and proposed a replica-
symmetric ansatz where ρ and ρ̂ were uncountably infinite superpositions of normalized complex Gaussians of the
form

ρ (u) =
ˆ
π (ω)

∏
a

e− ω
2 u

2
a√

2π/ω
dω (2.7)

and

iρ̂ (u) = ĉ

ˆ
π̂ (ω̂)

∏
a

e− ω̂
2 u

2
a√

2π/ω̂
dω̂, (2.8)

with u ≡ (u1, ..., un) a vector in the replica space and π, π̂ weight functions to be determined. The implementation of
Eqs. (2.7) and (2.8) changed entirely the previous frameworks and permitted the authors to arrive at a self-consistent
equation for AESD that can be solved utilizing iterative processes [174].

The research conducted by Rogers et al. followed the same path as Ref. [174] and using the cavity method, an
equivalent technique to the replica method, provided an analytical expression for the AESD not only for Poisson
random graphs but also for covariance matrices [173]. Moreover, the authors went a step ahead and analytically
demonstrated that in the large c limit, it was possible to recover the Wigner semicircle law for the Poisson random
graphs and the Marcenko-Pastur law [175] for the covariance matrices. Their results not only did accurately reproduce
the spectrum of Hermitian Poisson random graphs and covariance matrices but also fulfilled the existing gaps in the
approximate methods. On the one hand, for Poisson random graphs, the analytical results perfectly described the tails
and weighted Dirac δ peaks of the spectrum (see Figs. 3, 4, and 5 of Ref. [173]); on the other hand, for covariance
matrices, the method correctly reproduced the highest part and tails of the spectrum (Fig. 6 in Ref. [173]).

Both previous techniques carried a crucial ingredient. Since the previous methods failed to reproduce the presence
of weighted Dirac δ peaks, Refs. [173] and [174] approximated the δ peaks with Lorentzian functions by introducing a
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small quantity ε > 0 in the replica and cavity equations; we refer to this small value as the regularizer. The immediate
step came with Rogers and Pérez Castillo [44], who, appealing anew to the cavity method, developed a powerful
machinery capable of reproducing the spectrum of sparse non-Hermitian random matrices; this technique has its core
at the so-called Hermitisation method [158, 176]. The idea behind such a method is to introduce a regularisation to
non-Hermitian spectra by enlarging the dimension of the problem via a 2N × 2N block matrix with the regularising
parameter ε > 0 [158]; the method name refers to early implementations where the introduced 2N × 2N block
matrix was Hermitian, permitting access to the standard tools of Hermitian RMT [158, 176]. Hence, appealing to the
Hermitisation method, Ref. [44] expressed the AESD as a Gaussian integral over a set of N spinors ψ = (u, v)T

(u, v ∈ C), displaying a straightforward connection with the language of statistical physics. The usage of the cavity
method resulted in a set of equations whose solution not only reproduced the spectrum of asymmetric Poisson random
graphs for low and moderate values of c (Figs. 1 and 2 of Ref. [44]) but also demonstrated the recovery of Girko’s
law in the fully connected limit c → ∞.

Thanks to the equivalence between the cavity and replica methods, a treatment for the spectrum of sparse non-
Hermitian random matrices through a replica analysis is possible by adequately handling the corresponding saddle-
point equations and a suitable replica-symmetric ansatz. Both schemes, the cavity and replica methods, faithfully
reproduce the spectrum of symmetric Poisson random graphs with asymmetric weights for distinct values of the
average connectivity c. Fig. 2.1 illustrates the comparison of the AESD, at Rez = 0.10, between the exact analytical
results by the replica method and numerical diagonalization for a set of finite asymmetric Poisson random graphs
with averages connectivities c = 5 and c = 10. The existing discrepancies in the tails of the spectra were previously
reported in Ref. [44] and attributed to the discretization effects of the histogram due to the finite size of the matrices
employed in the diagonalization.

Figure 2.1: Comparison between the theoretical findings obtained by the replica method and exact diagonalization results of the
AESD (Eq. (1.19)) at the cut Rez = 0.10 for Poisson random graphs with Gaussian edge weights. Continuous blue lines stand
as the theoretical findings and red grid lines (histogram) correspond to exact diagonalization results for average connectivities of
c = 5 (left panel) and c = 10 (right panel).

Thanks to the all previously mentioned research, now we have powerful methods capable of tackling the spec-
tral properties of sparse Hermitian and non-Hermitian random matrices; nonetheless, we are far from answering all
possible interrogations concerning sparse ensembles. For instance, questions about how spectral properties, such as
the distribution of interaction strengths and the distribution of the number of links per node, depend on the structural
details of the associated random graph [31] and a theoretical framework for localization in sparse ensembles, are just
examples of the extensive research that must be carried out.

In the following sections, we display all the work realized throughout this doctoral research. We take as a departing
point the work carried out by Rogers et al. in Refs. [44, 45, 173], and via a replica analysis, we develop analytical
methods to study i) the full statistics (typical and atypical fluctuations) of the number of eigenvalues ND within a
smooth Jordan curve contained in a domain D of the complex plane C, and ii) the atypical fluctuations of the AESD
(Eq. (1.19)), when we impose an external constraint fixing a prescribed fraction R of the number of eigenvalues ND

inside the curve; the so-called conditioned spectral density. To demonstrate the exactness of our research, we apply
all our results to the diluted version of the real Ginibre ensemble. In order to properly display all our work, we divide
our findings into two independent sections, each divided into a theory and results subsection. In Section 2.2, we show
all the research conducted for the full statistics of ND, while in Section 2.3, we show our analysis for the atypical
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fluctuations of the AESD. We compare our results with numerical diagonalization for ensembles of finite random
matrices, displaying excellent agreement.

2.2 Analytic approach for the number statistics of non-Hermitian random
matrices

One of the observables in RMT that one can study is the distribution of the number ND of eigenvalues contained
in a domain D ⊆ C (the index) delimited by a smooth Jordan curve, the so-called number statistics or full count-
ing statistics. The research concerning the fluctuations of ND stands as a rich mathematical problem by itself and
finds applications in the study of the ground state of spinless "fermions" in a harmonic trap [177–181], the number
of stable directions around the stationary points on disordered energy landscapes [120, 123], localized or extended
nature of eigenstates in disordered quantum systems [111, 182, 183], and the stability of large interacting biologi-
cal systems [184–186], where many problems turn into a task of counting the number of eigenvalues of a random
matrix inside a specific domain. Due to the excellent machinery of the Coulomb fluid method [134–137], a consid-
erable deal of results characterizing the typical and atypical fluctuations of the index have emerged, especially for
Gaussian Hermitian random matrices with complex, real, and real quaternion entries [177–179, 187]. Concerning
non-Hermitian random matrices, the question of how many eigenvalues lie in a certain region of C was addressed for
the complex and real Ginibre ensembles [188, 189], providing analytical expressions for the probability distribution
and rate function [189]. On the contrary, the number statistics information has only been extracted for the complex
Ginibre ensemble [180,181] due to its analogy with the Coulomb fluid method (Eq. (1.27)), where the location of the
N eigenvalues is mapped into the position ofN fermions on a 2D rotating harmonic trap in the ground state [181]; re-
garding the shape of D, Refs. [180,181,189] have all employed circular domains. While studies such as [190], [191],
and [192] focused their endeavours on the local and global relations between Gaussian analytic functions and the
Ginibre ensembles considering non-circular domains, results for sparse non-Hermitian random matrices are scarce
and for very complicated domains are out of reach.

Non-Hermitian matrices with real entries find crucial applications in high-dimensional non-equilibrium systems
[31, 141, 184–186, 193–195], where the matrices model the pairwise interaction among the system components. A
salient example lies in neural networks, where it is acquainted that such systems display an explosion of complexity as
a function of certain disorder parameters, springing up a phase transition to chaos [193,194,196,197]; the mechanism
underpinning such phase transition remains unclear [196]. Although methods such as Fredholm determinants and
Pfaffians [9, 10] are used to tackle the index, there is not yet a general procedure for its study. Hence, ND remains
poorly characterized, especially for sparse non-Hermitian matrices. Mainly departing from Ref. [44], this first project
seeks to provide a complete description of the index ND for an ensemble of sparse non-Hermitian random matrices.
The strongest feature of our theory is that we can perform the analysis of ND for arbitrarily large ensembles of non-
Hermitian random matrices without knowing the corresponding JPDE function. We appeal to the replica method and
explicitly derive results for the diluted version of the real Ginibre ensemble where we consider symmetric adjacency
matrices of Poisson random graphs with asymmetric couplings. The principal outcome of the theory is a set of
effective equations valid for infinitely large sparse non-Hermitian random matrices from which the first two cumulants
(mean and variance) as well as the rate function controlling the typical and atypical fluctuations of ND detach. To
demonstrate the effectiveness of our theory, we support all our theoretical results with exact diagonalization carried
out for finite random matrices displaying excellent agreement.

Although the method can, in principle, be applied to any non-Hermitian random matrix ensemble, its success will
depend on the specific details of the ensemble at hand. Key elements such as the replica technique, as we presented it,
can be applied successfully to ensembles of the mean-field type, such as the adjacency matrix of asymmetric Erdős-
Rényi random graphs with arbitrary degree distributions [101], where the coupling strengths do not depend on the
distance between their components. It has been known for a long time that, in general, dimensionality performs a
crucial role in determining whether or not the results obtained by the mean-field theory are accurate [198]. Thanks
to the Ginzburg criterion [199], we know that better results will come for high-dimensional systems [198]; hence,
models of small and finite-dimensional lattices [200] and optical lattices with non-Hermitian disorder [201, 202] are
not treatable by the replica method and consequently not solvable via our theory.

This section is organized as follows. We commence in Subsection 2.2.1, where we introduce the CGF F of the
number ND and explain how to get an analogy of the latter with the partition function of a system ofN spinors placed
over a graph. Immediately after, we introduce the ensemble of sparse random matrices with asymmetric couplings,
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obtaining a path integral formulation for the CGF. Appealing to the saddle-point method and replica-symmetric ansatz
formalism, we obtain an effective theory for F valid for infinitely large sparse non-Hermitian random matrices. We
close in Subsection 2.2.2, where resorting to the population dynamics algorithm, we numerically solve the effective
equations and apply the results to the diluted version of the real Ginibre ensemble. We compare our findings with
numerical diagonalization for finite-size matrices, showing excellent agreement. All the details of our derivations are
properly shown in Appendices A.

2.2.1 The analytical method

Tha path integral formalism

Let A ∈ MN×N (C) be a non-Hermitian random matrix drawn from a distribution P (A) and Λ = {λ1, . . . , λN} its
spectrum, with {λi}Ni=1 ∈ C. The number of eigenvalues within a domain D ⊆ C enclosed by a smooth Jordan curve
γ ≡ ∂D is provided by

NA(γ) = N

ˆ

D

ρA (x, y) dxdy, (2.9)

with ρA(x, y) the ESD (Eq. (1.18)) around the point z = x + iy. Since NA(γ) is a random variable, we extract all
its statistics information in the N → ∞ limit via the CGF, which we define as

Fγ (µ) = − lim
N→∞

1
N

ln
〈
e−µNA(γ)

〉
, (2.10)

with ⟨· · · ⟩ the average over the probability distribution P(A). Resorting to Hölder’s inequality [156], we can prove
that the momentarily defined function L (µ) ≡ N−1 ln ⟨exp [−µNA (γ)]⟩ is convex. However, from how we have
defined Fγ (µ), in contrast with F (µ) (Eq. (1.9)), it is clear that the first one is concave. Fortunately, this does
not modify our results since Fγ (µ) can be thought of as −F (−µ) [84]. Furthermore, since we have assumed the
Gärtner-Ellis theorem holds (Theorem 1.1 in Section 1.2), the limit N → ∞ exists and differs from zero or infinity.

In order to extract the cumulants of NA (and consequently the statistical information), we need to derivate
Eq. (2.10) and evaluate it at µ = 0 [78]; formally speaking, the n-th cumulant κn is given by κn = ∂nµFγ (µ) |µ=0.
Hence, the intensive mean Nκ1 = ⟨NA⟩ and variance Nκ2 =

〈
N 2
A

〉
− ⟨NA⟩2 read

κ1 = ∂µFγ (µ) |µ=0 and κ2 = −∂2
µFγ (µ) |µ=0. (2.11)

The usage of the CGF does not remain only in its capacity to deduce the cumulants via a simple relation. Its
importance goes further as it provides crucial information about the atypically large fluctuations of NA. Appealing to
LDT (Eq. (1.7)), we know that the probability for NA = Nn, with 0 ≤ n ≤ 1, in the N → ∞ limit, decays as [79]

Prob [NA = Nn] ≍ e−Nϕγ (n), (2.12)

with ϕγ(n), the associated rate function. Moreover, thanks to the Gärtner-Ellis theorem, we can deduce the behaviour
of the rate function via the Legendre transform of the CGF Fγ

ϕγ(n) = − inf
µ∈R

[nµ− Fγ (µ)] . (2.13)

Noteworthy is that ϕγ (n) complies with being a convex function, regardless of the CGF shape [84].

Thus, the calculation of the CGF is our principal goal throughout this first work since, as manifest in Eqs. (2.11)
and (2.13), the complete statistics of NA, typical and atypical fluctuations, detach from it. It is worth remembering
that, in the statistical physics context, the CGF Fγ and rate function ϕγ correspond to the canonical free energy and
microcanonical entropy, respectively [78]. Thus, the first and second cumulants of Fγ are the average energy and
heat capacity. For further details, we refer the reader to Refs. [78, 79].

To commence with the calculation, we need to understand how NA depends on matrix A so we can compute the
average of Eq. (2.10). We depart rewriting the ESD (Appendix A.1, Eqs. (A.2) and (A.3)) as

ρA (z, z∗) = 1
Nπ

∂z∗∂z ln det
[
(zIN −A) (zIN −A)†

]
, (2.14)
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where we have defined ∂z ≡ 1
2 (∂x − i∂y), ∂z∗ ≡ 1

2 (∂x + i∂y), and IN the N × N identity matrix. Inserting
Eq. (2.14) into Eq. (2.9) and using Green’s theorem (Appendix A.1, Eqs. (A.4) and (A.5)), we find that

NA (γ) = − 1
2πi

ffi

γ

∂z lnQA (z, z∗) dz, (2.15)

with
QA (z, z∗) = 1

det
[
(zIN −A) (zIN −A)†

] (2.16)

and (· · · )∗, (· · · )† the complex and Hermitian conjugated, respectively.

The next step is to discretize the γ contour, which is traversed once counterclockwise, into a series of finite points
{zℓ}Lℓ=1 ⊆ C such that zL+1 ≡ z1 and ∆zℓ ≡ zℓ+1 − zℓ. Consequently, we rewrite Eqs. (2.10) and (2.15) as

NA (γ) = − 1
2πi

lim
L→∞

L∑
ℓ=1

[lnQA (zℓ+1, z
∗
ℓ ) − lnQA(zℓ, z∗

ℓ )] (2.17)

and

Fγ(µ) = − lim
N→∞

lim
L→∞

1
N

ln

〈
L∏
ℓ=1

[QA (zℓ+1, z
∗
ℓ )]n+ [QA (zℓ, z∗

ℓ )]n−

〉
, (2.18)

where n± are non-integer numbers defined as n± ≡ ± µ
2πi .

Even though Eqs. (2.16) and (2.17) display the exact dependence of the variable NA on the random matrix A, to
succeed in computing the CGF (Eq. (2.18)) we need to appeal to multidimensional Gaussian integrals rewriting QA
in a quadratic from. Then, appealing to the Hermitization method [158,176], we introduce the 2N ×2N block matrix

F η (z, z∗) =
(

ηIN i (zIN −A)
i (zIN −A)†

ηIN

)
, (2.19)

such that we recover Eq. (2.16) via the relation QA = limη→0+ (detF η)−1. The parameter η > 0 is the regularizer
[173,174,176] and ensures that F η has a positive Hermitian part, enabling us to represent QA as a Gaussian integral
over a set of spinors ψi ∈ C2 (i = 1, ..., N ),

QA (z, z∗) = lim
η→0+

ˆ ( N∏
i=1

dψidψ
†
i

π2

)
exp

−
N∑
i=1

ψ†
iMη(z, z∗)ψi + i

N∑
i,j=1

ψ†
iBijψj

 , (2.20)

with matricesMη andBij defined as

Mη (z, z∗) ≡ ηI2 + i (zσ+ + z∗σ−) , Bij ≡ Aijσ+ +A†
ijσ−, (2.21)

and σ+, σ− the usual ladder operators

σ+ =
(

0 1
0 0

)
and σ− =

(
0 0
1 0

)
. (2.22)

The form of QA in Eq. (2.20) resembles the partition function of a system of N spinors placed over a graph and
coupled through the set of 2×2 complex matrices {Bij}Ni,j=1. In other words,Bij , for all i, j = 1, . . . , N , quantifies

the existing pairwise interaction betwewen spinorsψi andψj ; both {Bij}Ni,j=1 and the graph structure are determined
by the specific properties of P (A).

The analogy ofQA with a partition function permits us to use well-known tools from statistical physics. Nonethe-
less, there is still the problem of evaluating the complex-valued exponents n±; as long as we have not assessed the
complex exponents, any direct attempt at computing Eq. (2.18) is hampered. To overcome this inconvenience, we
appeal to the replica method and evaluate the average of Eq. (2.18) assuming n± ∈ N+. Immediately after, we com-
pute the N → ∞ limit and, finally, we analytically continue the resulting Fγ to its limiting value n± → ±µ/2πi. As



24 2.2. Analytic approach for the number statistics of non-Hermitian random matrices

a consequence of assuming the Gärtner-Ellis theorem holds, the thermodynamic limit N → ∞ in Eq. (2.18) exists
and is different from zero or infinite (a proof of this limit for the free energy in the Sherrington-Kirkpatrick model
can be found in Ref. [203]). The existence of the remaining limits, as well as the analytic continuation of Fγ (µ),
are not proved rigorously. However, throughout the entire calculation, we assume the expressions to be such that all
limits exist and are interchangeable; assumptions that we later verify in the numerical procedure. Therefore, inserting
Eq. (2.20) into Eq. (2.18), we obtain a general expression for the cumulant generating function

Fγ(µ) = − lim
N→∞

lim
L→∞

lim
n±→ ±µ

2πi

lim
η→0+

1
N

ln
ˆ ( N∏

i=1

L∏
ℓ=1

n+∏
a=1

dΨiℓa

)(
N∏

i=1

L∏
ℓ=1

n−∏
b=1

dΦiℓb

)

× exp

[
−

N∑
i=1

L∑
ℓ=1

( n+∑
a=1

ψ†
iℓaMη (zℓ+1, z∗

ℓ )ψiℓa +
n−∑
b=1

ϕ†
iℓbMη (zℓ, z∗

ℓ )ϕiℓb

)]

×

〈
exp

[
i

N∑
i<j

L∑
ℓ=1

{ n+∑
a=1

(
ψ†

iℓaBijψjℓa +ψ†
jℓaB

†
ijψiℓa

)
+

n−∑
b=1

(
ϕ†

iℓbBijϕjℓb + ϕ†
jℓbB

†
ijϕiℓb

)}]〉
,

(2.23)

where, for simplicity, we have set Aii = 0 and dΨi ≡ dψidψ
†
i/π

2, dΦi ≡ dϕidϕ
†
i/π

2 for all i = 1, . . . , N . We
emphasize that Eq. (2.23) is fully general and valid for any contour γ ∈ C and arbitrary non-Hermitian random matrix
ensemble. Nevertheless, the success in computing the average and obtaining a final expression for the CGF depends
on the choice of P (A).

Having established a general expression for the CGF, we apply the method to an ensemble of sparse non-Hermitian
random matrices; we have opted for the adjacency matrix of random graphs with asymmetric couplings [34,35,101].
Then, we write the matrix A elements as Aij = cijJij , where {cij}Ni,j=1 correspond to the entries of the adjacency

matrix C (Definition 1.8) and {Jij}Ni,j=1 are i.i.d. random variables drawn from a distribution pJ . While {cij}Ni,j=1

encode the topology of the graph, {Jij}Ni,j=1 represent the asymmetric interaction strengths between sites, i.e., the

element Jij weights the influence of site i over site j, for all i, j ∈ {1, . . . , N}. Therefore, the set {Jij}Ni,j=1 denotes

the quenched variables of the system. On the other hand, the adjacency matrix C entries {cij}Ni,j=1 are drawn from
Eq. (1.17), with c ∈ R+ the average connectivity independent of N . Hence, the random matrix A corresponds to
the adjacency matrix of a weighted random graph with directed edges, where the number of neighbours connected to
each node follows a Poisson distribution with an average connectivity c [35, 95]. This type of matrix encodes what
some authors denominate asymmetric information [34] and are found in areas such as economy [34], sociology [99],
and biology [98].

After performing the average over C, Eq. (2.23) takes the form

Fγ(µ) = − lim
N→∞

lim
L→∞

lim
n±→ ±µ

2πi

lim
η→0+

1
N

ln
ˆ ( N∏

i=1

L∏
ℓ=1

n+∏
a=1

dΨiℓa

)(
N∏

i=1

L∏
ℓ=1

n−∏
b=1

dΦiℓb

)

× exp

[
−

N∑
i=1

L∑
ℓ=1

( n+∑
a=1

ψ†
iℓaMη (zℓ+1, z∗

ℓ )ψiℓa +
n−∑
b=1

ϕ†
iℓbMη (zℓ, z∗

ℓ )ϕiℓb

)]

× exp

[
c

2N

N∑
i,j=1

〈
exp

[
i

L∑
ℓ=1

{ n+∑
a=1

(
ψ†

iℓaJψjℓa +ψ†
jℓaJ

†ψiℓa

)
+

n−∑
b=1

(
ϕ†

iℓbJϕjℓb + ϕ†
jℓbJ

†ϕiℓb

)}]
− 1

〉
J

]
,

(2.24)

with ⟨· · · ⟩J indicating the average over the quenched disorder J = Jσ+ + J ′σ− and the real-valued interaction
strengths J and J ′ independently drawn from pJ .

In order to decouple the sites in Eq. (2.24), we follow the work done by Refs. [41–43] through Eq. (2.6) and
introduce the following order-parameter function

P (Ψ,Φ) = 1
N

N∑
i=1

L∏
ℓ=1

[
n+∏
a=1

δ (ψℓa −ψiℓa)

][
n−∏
b=1

δ (ϕℓb − ϕiℓb)

]
, (2.25)

with the shorthand notation P (Ψ,Φ) ≡ P
(

Ψ,Φ; {Ψi,Φi}Ni=1

)
, Ψ ≡ {ψℓa}, and Φ ≡ {ϕℓb}, for ℓ = 1, . . . , L,

a = 1, . . . , n+, and b = 1, . . . , n−. Analogously, we denote {Ψi} ≡ {ψiℓa} and {Φi} ≡ {ϕiℓb} for i = 1, . . . , N .
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After a sequence of algebraic manipulations (Appendix A.1, Eqs. (A.6)-(A.11)), we express Eq. (2.24) as the
logarithm of a path integral over the order parameter P and conjugated order parameter P̂ ,

Fγ(µ) = − lim
N→∞

lim
L→∞

lim
n±→ ±µ

2πi

lim
η→0+

1
N

ln
ˆ
e−NS[{P,P̂}]D

[{
P, P̂

}]
, (2.26)

with the corresponding action S
[{
P, P̂

}]
defined as

S
[{
P, P̂

}]
= − ln

(ˆ
e−τ(Ψ,Φ)−iP̂ (Ψ,Φ)dΨdΦ

)
− i

ˆ
P (Ψ,Φ) P̂ (Ψ,Φ) dΨdΦ

− c

2

ˆ 〈
eiΞ(Ψ,Φ,Ψ′,Φ′) − 1

〉
J
P (Ψ,Φ) P̂

(
Ψ′,Φ′) dΨdΦdΨ′dΦ′.

(2.27)

Given the length of the terms involved in S
[{
P, P̂

}]
, we have introduced the auxiliary functions

τ (Ψ,Φ) ≡
L∑
ℓ=1

(
n+∑
a=1

ψ†
ℓaMη (zℓ+1, z

∗
ℓ )ψℓa +

n−∑
b=1

ϕ†
ℓbMη (zℓ, z∗

ℓ )ϕℓb

)
(2.28)

and

Ξ
(
Ψ,Φ,Ψ′,Φ′) ≡

L∑
ℓ=1

[
n+∑
a=1

(
ψ†
ℓaJψ

′
ℓa +ψ′†

ℓaJ
†ψℓa

)
+

n−∑
b=1

(
ϕ†
ℓbJϕ

′
ℓb + ϕ′†

ℓbJ
†ϕℓb

)]
. (2.29)

The replica-symmetric ansatz

Thanks to the form of the cumulant generating function, we can solve the integral utilizing the saddle-point method
[204]. Consequently, in the N → ∞ limit, the path integral of Eq. (2.26) converges to

ˆ
e−NS[{P,P̂}]D

[{
P, P̂

}]
≍ e−NS[{P0,P̂0}], (2.30)

where P and P̂0 are the pair of functions that extremize the action functional S
[{
P, P̂

}]
. Thus, the stationary

conditions for P and P̂ are given via the following saddle-point equations

−iP̂ (Ψ,Φ) = c

ˆ 〈
eiΞ(Ψ,Φ,Ψ′,Φ′) − 1

〉
J
P
(
Ψ′,Φ′) dΨ′dΦ′ (2.31)

and

P (Ψ,Φ) = e−τ(Ψ,Φ)−iP̂ (Ψ,Φ)´
e−τ(Ψ′,Φ′)−iP̂ (Ψ′,Φ′)dΨ′dΦ′ , (2.32)

where for simplicity we have chosen to drop the subindex 0 in the functions P and P̂ . Contrary to the approximate
methods EMA, SEMA, DEMA, and SDA [41–43], where the authors performed certain simplifications to Eq. (2.32)
to study the spectral density, we follow Refs. [44, 45, 172–174] and realize that the problem at hand can be exactly
solved by means of self-consistent equations.

As we had previously mentioned, the CGF, Eq. (2.26), represents the system’s free energy; consequently, we can
think about the existence of the free energy landscape (FEL). Geometrically, an energy landscape is a graph of the
energy functions across the system’s configuration space. Thus, the FEL is essentially a rugged energy landscape
with a large number of local minima, with the lowest one being the global minimum; the system’s dynamics depends
on how the minima are connected throughout the landscape. For a system to attain equilibrium, it needs to navigate
toward the global minimum [145, 146, 205–207]. The FEL is a stable object since it is uniquely determined by the
equilibrium properties of the system, with no dynamics or time involved [205].

To proceed with the derivation, we need to appeal to the foundations of the saddle-point method (Eq. (2.30)) and
formulate an ansatz on the state’s structure in which the system is trapped. Therefore, we place the following replica-
symmetric (RS) ansatz regarding the functional form of the order parameter P (Ψ,Φ) that emerges in the effective
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replica theory,

P (Ψ,Φ) =
ˆ ( L∏

ℓ=1

dΣℓdΓℓ

)
ω
(

{Σℓ,Γℓ}Lℓ=1

) L∏
ℓ=1

[
n+∏
a=1

e−ψ†
ℓaΣ−1

ℓ ψℓa

det Σℓ

n−∏
b=1

e−ϕ†
ℓbΓ−1

ℓ ϕℓb

det Γℓ

]
, (2.33)

where Σℓ and Γℓ are 2 × 2 complex matrices defined for each zℓ ∈ γ and ω
(

{Σℓ,Γℓ}Lℓ=1

)
is the joint probability

distribution of the pair of matrices {Σℓ,Γℓ}Lℓ=1 along the L points of the contour. We take the joint distribution to be
normalized to unity, i.e., ˆ ( L∏

ℓ=1

dΣℓdΓℓ

)
ω
(

{Σℓ,Γℓ}Lℓ=1

)
= 1. (2.34)

The RS ansatz in Eq. (2.33) means that we assume that the state in the FEL on which the system is located corresponds
to the global minimum without any additional internal structure [205].

The physical interpretation of Eq. (2.33) is as follows [205]: suppose we throw n replicas at the global minimum
of the FEL to probe its structure. If the minimum is a plain paraboloid, there is no reason for any couple of the replicas
to be exceptional; once they have equilibrated inside the state, all are equivalent and can be permutated as we please
without modifying the physics of the problem. This argument is present indeed in Refs. [172] and [174], where the
RS ansatz preserves both permutation symmetry among replicas and rotational symmetry in the replica space. Should
it happen that the bottom contains different sub-minima, the situation would change completely. The replicas thrown
at the bottom would end up in the different sub-minima, impeding the replica permutation [205]. For this scenario,
we must introduce an ansatz based on grouping the replicas into distinct blocks representing the sub-minima; within
the blocks, we assume replica symmetry though not between them [172].

Inserting the RS ansatz into the action and saddle-point expressions (Eqs. (2.27), (2.31), and (2.32), respectively),
and after some algebraic manipulations (Appendix A.2, Eqs. (A.12)-(A.19)), we deduce the exact expression for the
joint probability function ω,

ω
(

{Σℓ,Γℓ}Lℓ=1

)
= 1

Λ

∞∑
k=0

e−cck

k!

ˆ [ k∏
r=1

(
L∏
ℓ=1

dΣrℓdΓrℓ

)
ω
(

{Σrℓ,Γrℓ}Lℓ=1

)]

×

〈
exp

[
− µ

2πi

L∑
ℓ=1

(ln det Υℓ − ln det ζℓ)

]
L∏
ℓ=1

δ
(
Σℓ − Υ−1

ℓ

)
δ
(
Γℓ − ζ−1

ℓ

)〉
J1,...,k

,

(2.35)

and action S,

S = − ln

( ∞∑
k=0

e−cck

k!

ˆ [ k∏
r=1

(
L∏
ℓ=1

dΣrℓdΓrℓ

)
ω
(

{Σrℓ,Γrℓ}Lℓ=1

)]〈
e− µ

2πi

∑L
ℓ=1(ln det Υℓ−ln det ζℓ)

〉
J1,...,k

)

+ c

2

ˆ [ L∏
ℓ=1

dΣℓdΓℓdΣ′
ℓdΓ′

ℓ

]
ω
(

{Σℓ,Γℓ}Lℓ=1

)
ω
({

Σ′
ℓ,Γ

′
ℓ

}L
ℓ=1

)〈
e− µ

2πi

∑L
ℓ=1(ln det νℓ−ln det ξℓ)

〉
J

− c

2
,

(2.36)

with Λ in Eq. (2.35) a normalization constant and the symbol ⟨· · · ⟩J1,...,k
in both expressions the average over the set

J1, . . .Jk. In both equations, (2.35) and (2.36), we have computed the replica limits n± → ±µ/2πi assuming they
yield to correct results and have introduced the following pairs of 2 × 2 complex auxiliary matrices

Υℓ ≡ Mη (zℓ+1, z
∗
ℓ ) +

k∑
r=1

JrΣrℓJ
†
r, ζℓ ≡ Mη (zℓ, z∗

ℓ ) +
k∑
r=1

JrΓrℓJ†
r, (2.37)

and
νℓ ≡ I2 + ΣℓJΣ′

ℓJ
†, ξℓ ≡ I2 + ΓℓJΓ′

ℓJ
†. (2.38)

The remaining step is the computation of the continuum limit L → ∞ so that we obtain the final expression for the
CGF. In Appendix A.3 (Eqs. (A.20)-(A.25)), we explain how to calculate such a limit. So far, we have computed
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all limits assuming they yield correct results and are interchangeable; these conjectures are some of our strongest
assumptions since our final results follow from them.

The main outcome of our method is an effective theory defined over the space of functions mapping each point
z ∈ γ onto a pair of 2 × 2 complex matrices (Γ(z),R(z)) with the CGF given by the expression

Fγ(µ) = − c

2
+ lim
η→0+

ln

〈
e

− µ
2πi

fl
γ

Tr[Γ−1(z)R(z)]dz
〉

{Γ,R}

+ c

2

〈〈
e

− µ
2πi

fl
γ

Tr[G(z)H(z)]dz〉
J

〉
{Γ,R},{Γ′,R′}

 ,
(2.39)

where, to keep the notation simple, we have introduced the 2 × 2 complex auxiliary matrices at z ∈ γ

G(z) =
[
I2 + Γ(z)JΓ′(z)J†

]−1
and H(z) = Γ(z)JR′(z)J† +R(z)JΓ′(z)J†. (2.40)

The brackets ⟨· · · ⟩{Γ,R} in the different elements of Eq. (2.39) denote the average over all possible paths {Γ,R}
throughout the γ curve. Any path {Γ,R} can be thought of as the limit L → ∞ of a sequence {Γ (zℓ) ,R (zℓ)}Lℓ=1,
with zℓ ∈ γ; thus, the path measure takes the form d {Γ,R} ≡ limL→∞

∏L
ℓ=1 dΓ (zℓ) dR (zℓ). Formally speaking,

the average over {Γ,R} for any arbitrary functional S [{Γ,R}] reads

⟨S [{Γ,R}]⟩{Γ,R} =
ˆ
ω [{Γ,R}] S [{Γ,R}] d {Γ,R} , (2.41)

with ω [{Γ,R}] the path probability distribution following from the solution of the self-consistency equation

ω [{Γ,R}] = 1
Λ

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

d {Γr,Rr}ω [{Γr,Rr}]

)
eµW [{Γ,R}]

× ⟨δF [R(z) − Πk(z)] δF [Γ(z) − χk(z)]⟩J1,...,k
;

(2.42)

the symbol δF in the average ⟨· · · ⟩J1,...,k
represents the functional Dirac δ in the path space and the normalization

constant Λ finally reads

Λ =
[ˆ

e−µW [{Γ,R}]ω ({Γ,R}) d {Γ,R}
]−1

. (2.43)

The statistical contribution of each path in Eq. (2.42) is weighted by the function exp (µW [{Γ,R}]) known as
the weighted factor, which is controlled by the term

W [{Γ,R}] = 1
2πi

ffi

γ

Tr
[
Γ−1(z)R(z)

]
dz; (2.44)

as we indicated in Eq. (2.39) for the CGF, the path probability distribution ω [{Γ,R}] ought to be solved in the
η → 0+ limit. As we did with the previous equations, to keep the notation as simple as possible, we have introduced
in Eq. (2.42) the auxiliary matrices

χk(z) =

(
Mη (z, z∗) +

k∑
r=1

JrΓr(z)J†
r

)−1

and Πk(z) = −χk(z)

(
iσ+ +

k∑
r=1

JrRr(z)J†
r

)
χk(z) (2.45)

at z ∈ γ. Noteworthy is that the matrix χk corresponds to the inverse of the matrix ζℓ (Eq. (2.37)) once the L → ∞
limit has been computed; we opted to make this change in the notation to differentiate the status of the calculation.

In order to obtain the first and second cumulants, κ1 and κ2, we need to compute the first and second derivatives
of Fγ (µ) and evaluate them at µ = 0. As with the CGF, we assume both expressions exist and yield correct results.
Hence, appealing to Eq. (2.11), we obtain

κ1 = − lim
η→0+

⟨W [{Γ,R}]⟩{Γ,R} + c

2

〈ffi
γ

〈
Tr [G(z)H(z)] dz

2πi

〉
J

〉
{Γ,R},{Γ′,R′}

 (2.46)
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and

κ2 = lim
η→0+

〈(W [{Γ,R}])2〉
{Γ,R} − ⟨W [{Γ,R}]⟩2

{Γ,R} + c

2

〈〈ffi
γ

Tr [G(z)H(z)] dz

2πi

2〉
J

〉
{Γ,R},{Γ′,R′}

 ,

(2.47)
for the first and second cumulants, respectively. Recalling the Gärtner-Ellis theorem, we deduce the rate function
ϕγ from the CGF via the Legendre transform, obtaining a parametric expression for it in terms of the fraction n of
eigenvalues within the γ curve (Appendix A.4, Eqs. (A.28)-(A.30)),

{(n, ϕ(n))} = {(κ1(µ),Fγ(µ) − µκ1(µ))} . (2.48)

Although Eqs. (2.46), (2.47), and (2.48) are the ones we compute to extract the statistical information of the
number NA, all detach from the CGF Fγ (µ) and path probability ω [{Γ,R}]. Hence, Eq. (2.39) for the cumulant
generating function and Eq. (2.42) for the path probability are the main outcomes of our work, since it is from them
that we deduce the typical and atypical fluctuations of NA for an ensemble of sparse non-Hermitian random matrices.

2.2.2 The numerical method

In general, there is no analytical solution for Eq. (2.42); consequently, we need to resort to a variation of the statistical
numerical population dynamics method [96] known as weighted population dynamics [208] to obtain numerical
solutions for the path probability ω [{Γ,R}]. For this numerical procedure, we discretize the γ curve into a finite
collection of points {z1, . . . zL} and define the finite set of 2×2 complex random matrices {Γ(zi),R(zi)}Li=1 sampled
consistently with Eq. (2.42) via a Monte Carlo scheme. Thus, we switch from the functional density ω [{Γ,R}] to
the joint distribution ω

[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
. Since the matrices Γ and R are correlated for any collection of points

along the γ curve, both ω [{Γ,R}] and ω
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
do not factorize.

We introduce a population with a number ofM sets of matrices {Rα(z1), . . . ,Rα(zL),Γα(z1), . . . ,Γα(zL)}Mα=1

at each point zℓ ∈ γ. Hence, the joint probability distribution ω
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
formally reads

ω
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
∼ 1
M

M∑
α=1

(
L∏
ℓ=1

δ [R(zℓ) −Rα(zℓ)] δ [Γ(zℓ) − Γα(zℓ)]

)
eµW [{Γ(zℓ),R(zℓ)}L

ℓ=1], (2.49)

withW [{Γ,R}] given by Eq. (2.44). While for the standard population dynamics algorithm, the update only involves
the actualization of one element per iteration, for the weighted population dynamics algorithm, the weighted factor
eµW [{Γ(zℓ),R(zℓ)}L

ℓ=1] ≡ Θ
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
indicates the number of elements that change per iteration according

to the rule
np =

⌊
Θ
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]⌋
+ r, (2.50)

with ⌊· · ·⌋ the floor function and r ∈ [0, 1] a random number equal to one with probability Θ
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
−

⌊Θ
[
{Γ(zℓ),R(zℓ)}Lℓ=1

]
⌋ and equal to zero otherwise [208].

To demonstrate the exactness of the method, we have selected as γ curves disks with different radii centred at
the origin and, as a sparse ensemble, the diluted version of the real Ginibre ensemble. Fig. 2.2 depicts the first two
cumulants κ1 and κ2 depending on the various radii R of the disks with the matrix entries drawn from pJ a Gaussian
distribution with zero mean and variance 1/c, and average connectivities of c = 3 and c = 10; the shaded regions
displayed within the figure delimit the error involved in the numerical solution of Eq. (2.42) via the sample standard
deviation. The latter is an estimator (a statistic used to predict the value of a population parameter) of a population
standard deviation σ. Suppose we have a sample {X1, . . . , Xn} from a population whose variance σ2 is unknown,
and we wish to estimate it via the sample data. If the population mean is unknown, we replace it with its estimator X
and estimate σ2 through

s2 = 1
n− 1

n∑
i=1

(
Xi −X

)2
. (2.51)
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Defined in such a form, Eq. (2.51) is an unbiased estimator, i.e.,
〈
s2〉 = σ2. Taking the square root of s2 does not

affect its unbiased estimator condition; therefore,

s =

√√√√ 1
n− 1

n∑
i=1

(
Xi −X

)2
(2.52)

corresponds to the sample standard deviation, formally known as the corrected sample standard deviation [209].
Fig. 2.2 compares the theoretical findings of Eqs. (2.46) and (2.47) with the results obtained by the Metropolis
algorithm (Appendix D, Section D.6) for N × N adjacency matrices A with directed edges and different values of
N . While the first cumulant κ1 exhibits an excellent agreement between the theoretical findings and the Metropolis
algorithm, whatever the value of N , the second cumulant κ2 shows a stronger dependence with the matrix dimension
N , achieving better convergence between results as the value of N increases.

Figure 2.2: The intensive mean κ1 (left panel) and variance κ2 (right panel) of the number of eigenvalues NA within a disk of
radius R centred at the origin of the complex plane C. The matrix A corresponds to the adjacency matrix of a weighted random
graph of directed edges with averages connectivities c = 3 (solid red line) and c = 10 (solid orange line). The asymmetric
interactions are independently drawn from a Gaussian distribution pJ with zero mean and variance 1/c. Theoretical solid lines are
obtained from Eqs. (2.46) and (2.47) via the weighted population dynamics algorithm, while the markers result from the Metropolis
algorithm for sets of N × N random matrices. For the theoretical results, the disk is discretized into 3000 points and a population
of 104 is iterated 4 × 107 times. For the Metropolis algorithm, 104 samples are averaged and the process is repeated 10 times.

It is well-known that for small and moderate values of c, the spectral density of sparse non-Hermitian random
matrices displays δ-peaks at the origin z = 0 [44]; consequently, for c = 3 both cumulants, κ1 and κ2, ought to
converge to a finite value at the R → 0+ limit. In contrast, for larger values of c, the sparse matrices commence to
fill up and the δ-peaks start to "disappear"; consequently, we should expect that the behaviour displayed by the first
cumulant resembles that of the complex Ginibre ensemble. For c = 3, Fig. 2.2 shows for both κ1 and κ2 convergence
to a finite value as R goes to zero from above, pointing out the fact that the theory is capable of reproducing the mean
and variance behaviour of the weighted δ peaks characterizing the spectrum in the N → ∞ limit. On the other hand,
for c = 10, the average κ1 indeed resembles the complex Ginibre behaviour κ1 ∝ R2 in the large N limit [180];
for values of R ≈ 0, κ1 is slightly bigger than R2 and starts to approach it from above as the value of c gets bigger
(Fig. 2.2, left panel). In both cases, c = 3 and c = 10, and as R increases, the limiting value of k1 turns out to be
one (Girko’s law). While this indeed happens for both values of c, the rate at which it occurs varies: for c = 3 the
convergence of κ1 is slower compared to c = 10, whose at R ≈ 1.12 has already reached the limiting value. This
behaviour clearly illustrates the distinct level of dilution in the ensemble depending on the different values of c.

The behaviour exhibited by κ2, in contrast to κ1, turns out to be interestingly far different. It has been demon-
strated that sparse and asymmetric random matrices commonly possess delocalized and localized eigenvectors around
the origin z = 0 and close to the spectrum’s border, respectively, and that eigenvalue repulsion is stronger within the
delocalized region [14, 32, 174, 210, 211]. The first difference in the variance of NA between the diluted real and
complex Ginibre ensembles comes from the scaling behaviour: contrary to the complex case whose variance divides
into three significantly different regimes [180], Fig. 2.2 makes clear that since κ2 is finite for R > 0, it exhibits a
linearly scaling behaviour with N ≫ 1 due to the weak eigenvalue repulsion at the boundaries of ρ (z). A feature
absent in the complex Ginibre ensemble. For c = 10, the variance of NA displays a marked maximum at some radius
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value close to R = 1; ahead of it, an abrupt decay of the curve. For c = 3, the variance shows a less-decaying con-
tinuous behaviour after its maximum (Fig. 2.2, right panel). The reason for such conduct lies within the spectrum’s
nature in the N → ∞ limit: whereas for higher values of c, the matrix dilution decreases, resembling the real Ginibre
ensemble [25–27, 180], for small and moderate values of c, such as c = 3, the spectrum’s diamond shape extends a
bit beyond the disk of R = 1 [44], enabling the variance of NA to take extreme values. This characteristic is also
visible in the error bars of the variance: for lower values of c, the matrix is considerably diluted, leading to stronger
fluctuations within the spectrum (Fig. 1.2) [112] and bigger error bars; a feature absent for larger values of c.

Figure 2.3: Rate function ϕγ (n) for the fraction n = NA/N of eigenvalues inside a disk of radius R = 0.5 centred at the
origin of the complex plane C. The matrix A corresponds to the adjacency matrix of a Poisson random graph with connectivity
c = 4 and asymmetric Gaussian weights of zero mean and variance 1/c. The continuous red line represents the theoretical
findings at N → ∞ and the different markers are the results of numerical diagonalization for sets of N × N random matrices.
The diagonalization results are averaged over 107 samples and the process is repeated 10 times; for the theoretical findings, a
population of 104 iterated 4 × 107 times is used with a discretization of 3000 points over the disk.

Fig. 2.3 presents the theoretical results for the rate function ϕγ (n) of the fraction n = NA/N of eigenvalues
inside a disk of radius R = 0.5 obtained by Eq. (2.48) together with direct diagonalization for three different sizes
N of random matrices. The continuous red line stands as our theoretical findings, the symbols the results via direct
diagonalization, and the shaded region is the error involved in the numerical solution of Eq. (2.42). Just as it happened
with κ2, the results displayed in Fig. 2.3 demonstrate better agreement between theory and numerical diagonalization
as the value of N increases, supporting the exactness of the method. The more surprising feature of ϕγ (n) for the
diluted real Ginibre ensemble, compared to the complex case [180], lies in the asymmetry around its minimum located
at n = κ1. Owing to the strong eigenvalue repulsion around the origin z = 0, large fluctuations of n involving
more attraction of eigenvalues within the disk are less probable; consequently, the rate function grows faster for
values n > κ1 in contrast to n < κ1. Since this type of repulsion is absent for the complex Ginibre ensemble, its
corresponding rate function stands as a symmetric function around its minimum (Fig. 3, Ref. [180])

2.3 Conditioned spectral density for the diluted real Ginibre ensemble
The study of stability conditions in several physical systems, such as food webs [212], is a current example where
RMT has proved to be extremely useful. Firstly introduced in 1972, it is the seminal work of May [213], the key
research that establishes the necessary criteria for studying stability conditions in the dynamics of several systems.
Such a criterion indicates that if all the real parts of the eigenvalues are negative (positive) the equilibrium is stable
(unstable) [213]. It is well-known that structures within the field of disordered systems as liquids and spin glasses,
exhibit extremely complicated energy or free energy landscapes displaying an enormous amount of maxima, minima,
and saddle points, whose effects on the dynamics and statistics of the systems are noticeable [120]. Hence, it is an
area where ideas and methods from RMT are widely used, resulting in plenty of results [111,121,124,183,214,215].
The local stability of an extreme on an N -dimensional potential energy surface V (x) is entirely determined by the
symmetric Hessian matrix H of the potential Hℓm = ∂2

xℓxm
V , with all its N eigenvalues measuring the curvature

of the potential energy. If all its eigenvalues are positive (negative), the corresponding stationary point is a local
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minimum (local maximum); if some, but not all, are positive, the stationary point is a saddle. However, owing to
the dependence on the systems’ configurations, the entries of H at a stationary point are often correlated, making
the exact derivation of H highly difficult. Fortunately, a fructiferous scheme substituting the Hessian matrix with an
appropriate random matrix has demonstrated to be extremely helpful. In many cases, significant information about
the systems’ dynamics is obtained by discarding these correlations and replacing H with an N × N real symmetric
Gaussian matrix [123, 216, 217]. The implementation of this technique, denominated by Majumdar et al. as the
random Hessian model (RHM) [187], has proven to be a successful tool in areas such as cosmology [218], quantum
cosmology [21, 219, 220], string theory [22, 23], and neural networks [221].

The index, defined by some authors as the number of eigenvalues exceeding a certain threshold [187,222] and by
others as the number of eigenvalues below it [45,223], is a random variable that has recently attracted much attention
due to its connection with the study of stability conditions. For N × N symmetric and Hermitian random matrices
with spectrum {λ1, . . . , λN}, the number of eigenvalues exceeding a threshold x ∈ R is defined as

n (x) ≡
N∑
i=1

Θ (λi − x) , (2.53)

where Θ (x) is the Heaviside step function. The random variable n+ ≡ n (0) (the number of positive eigenvalues)
arises naturally in the study of the potential landscape V (x) stability, where it is a crucial indicator of the number of
directions in which a stationary point is stable [187,222]. However, one may be interested in the curvature distribution
around specific saddle points with a given number of stable directions, i.e., saddle points having a prescribed fraction
of positive eigenvalues. In such a context, the so-called Conditioned Spectral Density (CSD) arises, namely, the
Hessian eigenvalue distribution constrained to have a fixed fraction of positive eigenvalues. The CSD provides a way
to study the spectrum of constrained rare samples deviating from the typical behaviour [45].

By means of the well-known Coulomb fluid method [133–137], Satya et al. computed the CSD for ensembles
of Gaussian [123, 187, 216], Wishart [224], and Cauchy [222] random matrices, where the effect of constraining the
eigenvalues in different regions was modelled as having one or more confining walls; their research aimed to study
the probability distribution of the ensembles having a fraction k = n+/N of positive eigenvalues. Departing from
Eq. (2.53), the authors defined such probability as

Pβ (n+ = kN,N) =
ˆ
Pβ (λ) δ

(
n+ −

N∑
i=1

Θ (λi)

)
dλ (2.54)

and, appealing to the JPDE function for the Gaussian, Wishart, and Cauchy ensembles (Eq. (1.26)), rewrote it as a
path integral in the space of normalized densities ρH (λ) (Eq. (1.18)); details at Refs [57, 123, 187, 216, 222, 224].
Utilizing the saddle-point method, the authors demonstrated that for the three ensembles in the large limit N → ∞,
Pβ (n+ = kN,N) ≍ exp

[
−βN2ψ (k)

]
, with ψ the rate function defined for 0 ≤ k ≤ 1 and β-independent, and that

the constrained density ρ⋆ (λ) (using the authors’ notation), i.e. the AESD having a prescribed fraction of k positive
eigenvalues, displayed three universal features resulting from the repulsive Coulomb interaction between eigenvalues:

1. ρ⋆ (λ) was an asymmetric function with a noncompact support.

2. The eigenvalues accumulated at the walls.

3. There was an abrupt transition in the spectrum as the constrained eigenvalues reached their typical value.

All these universal properties lie in the nature shown by the support of the constrained density ρ⋆ (λ). For all three
ensembles, when k differs from its typical value ktyp, there is no single support solution for ρ⋆ (λ). The eigenvalues
(particles) are constrained to split into two regions on the real line R: a fraction k to the right and a fraction 1 − k
to the left of the constraint x ∈ R. As k → ktyp, the two supports merge into a single support solution [123, 187,
216, 222, 224]. For example, for the Gaussian ensembles [123, 187, 216], ρ⋆ (λ) divides into two supports, one to
the left and one to the right of x = 0, presenting a singularity at such a value, i.e., an accumulation of eigenvalues
at the threshold (Fig. 1 in Ref. [216]). As k → 1 from below, the area formed by the constrained density at the left
support decreases, leaving us with only one support to the right of zero. On the other hand, when k continuously
decreases, the area of the left support grows and the upper edge increases. When k = 1/2, the two supports merge
into a single support and reduce to the Wigner semicircle law (Fig. 2 in Ref. [216]). In the end, ρ⋆ (λ) corresponds to
the equilibrium (or optimal) charge density of the eigenvalue fluid given a fixed fraction k of positive charges [216].
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Subsequent research to the invariant ensembles was conducted in Refs. [188, 189], where Allez et al. answered
the question of how many eigenvalues lie outside an open disk of radius R = 0.5 in C for the complex and real
Ginibre ensembles. Defining the index NR as the number of eigenvalues with modulus greater than R, the authors
studied the probability distribution P (p,N) that a specific fraction of eigenvalues p = NR/N would lie outside
the radius R disk for both ensembles. Resorting to the JPDE function for the complex (β = 2) and real (β = 1)
Ginibre ensembles [25, 139, 225], and expressing P (p,N) as a functional path integral over the space of normalized
densities ρA (z), the authors demonstrated that in the N → ∞ limit, P (p,N) ≍ exp [−β/2ψR (p)] with ψR the rate
function for both ensembles and 0 ≤ p ≤ 1 the parameter controlling the number of eigenvalues outside the disk.
Together with the analytical expressions for P (p,N) and ψR, Ref. [189] also proved that the constrained density
ρ⋆ (z) exhibited the following three features:

(i) ρ⋆ (z) was an asymptotic density supported by centred circles.

(ii) Accumulation of eigenvalues at the border of the disk.

(iii) An abrupt transition in the spectrum as the constrained eigenvalues reach their typical fluctuations.

To illustrate the above three points, let us take the case where we impose an atypically small amount of eigenval-
ues (charges) p < ptyp outside the open ball BR (0) = {z ∈ C|∥z∥ < R}, that is, an abnormally large number of
eigenvalues 1 − p > 1 − ptyp on the closed ball BR (0). Within BR (0), the density of ρ⋆ (z) is equal to 1/π, which
corresponds to a proportion R2 of the charges. The charge excess ptyp − p pulled inside BR (0) has no choice but
to lie exactly on the circle of radius R, where they allocate uniformly. Outside BR (0), we expect the charges to be
allocated in one single annulus. Under no constraint, the CSD is regular on its full support, and we recover Girko’s
law (Fig. 1 in Ref. [189]). As with the invariant ensembles, ρ⋆ (z) is the optimal charge density that minimizes the
path integral action [189].

The above properties displayed by the constrained density ρ⋆ for the invariant and Ginibre ensembles are the same
and result from the repulsive Coulomb interaction between eigenvalues shown by their corresponding JPDE functions
(Eq. (1.26) and (1.27)). So, the first natural question would be whether or not all these properties of the constrained
density on the invariant ensembles [123, 187, 216, 222, 224] will still be valid for SRMs now that we do not have
a JPDE function. The answer to such a query appeared in Ref. [45], where Pérez Castillo and Metz computed the
CSD for the adjacency matrix of the Erdős-Rényi random graphs and sparse Wishart random matrices, for which
the traditional Coulomb fluid approach is unworkable. Establishing the index as the number of eigenvalues below a
certain threshold x ∈ R,

IN (x) ≡
N∑
i=1

Θ (x− λi) , (2.55)

the authors defined the CSD as

ρ (λ|k) = lim
N→∞

1
N

〈∑N
i=1 δ (λ− λi) δ [kN − IN (x)]

〉
⟨δ [kN − IN (x)]⟩

, (2.56)

where the symbol ⟨· · · ⟩ denoted the average over the random matrix ensemble and 0 ≤ k ≤ 1 was the adjustable pa-
rameter indicating the specific fraction of eigenvalues below x. Specifically, Eq. (2.56) corresponds to the conditional
probability density for the eigenvalues in [λ, λ+ dλ], as long as there are precisely kN eigenvalues smaller than
x [45]. As with Refs. [44] and [173], the authors solved the problem by means of self-consistent equations (details
in Ref. [45]). Resorting to the replica method and replica-symmetric ansatz formalism, the authors found that in the
limit of infinitely large matrices N → ∞, the CSD, for both ensembles, displayed the following three outstanding
properties, totally in contrast with the invariant cases:

1. ρ (λ|k) had a compact support.

2. No accumulation of eigenvalues around x.

3. No transition in the spectrum as the constrained eigenvalues approach their typical value.

All these features seem to come from the weak or absent repulsion between the eigenvalues of SRMs, where they
are allowed to be arbitrarily close to each other; we provide further details about this in Subsection 2.3.2. Added
to the above features, ρ (λ|k) for the infinitely large Erdős-Rényi random graphs also fulfilled with always being a
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symmetric function. Depending on whether k > ktyp or k < ktyp, the spectrum may have an excess or defect of
eigenvalues to the left of the constraint, respectively. For the Erdős-Rényi random graphs case, as k → ktyp, ρ (λ|k)
displayed a continuous change in its shape and a smooth decrease in the area formed by it (Fig. 1 in Ref. [45]). Since
the CSD is always symmetric, the constrained graph ensemble should be empty for k < 1/2. Consequently, the
authors glimpsed the possibility of a transition at some critical value kc equal to or larger than 1/2 [45].

In this section, we retake the previous question and tackle the CSD ρ (z|Rγ) for an ensemble of N × N sparse
non-Hermitian random matrices in the N → ∞ limit when the constraint Rγ ∈ [0, 1] fixing a specific fraction of
eigenvalues within a smooth Jordan curve γ is imposed. As with the full counting statistics of the number ND [1]
(Section 2.2), the strongest feature of our theory is the capacity to perform a formal analysis of the CSD in ensembles
of arbitrarily large sparse non-Hermitian random matrices with real and complex entries, even when the corresponding
JPDE functions are unknown. Resorting to the replica method and replica-symmetric formalism, we derive a general
expression for ρ (z|Rγ), valid for any non-Hermitian random matrix in the N → ∞ limit, and obtain explicit results
for the diluted version of the real Ginibre ensemble considering symmetric adjacency matrices of Poisson random
graphs with asymmetric couplings. We end with an effective expression for ρ (z|Rγ) in terms of a self-consistency
equation and succeed in showing that, in the N → ∞ limit, the CSD displays the following three striking features,
which agree with the conclusions of Ref. [45] for the Erdős-Rényi random graphs:

(i) ρ (z|Rγ) is a symmetric function on a connected compact support.

(ii) There is no accumulation of eigenvalues at the boundaries of the γ curve.

(iii) There is no abrupt transition in the spectrum as the constrained eigenvalues approach their typical fluctuations.

As with the Erdős-Rényi random graphs and Whisart random matrices, these features seem to emerge from the
existing and absent eigenvalue repulsion in the delocalized and localized regions, respectively, in sparse and asym-
metric random matrices [14, 32, 174, 210, 211, 226]. We compare all our results with Monte Carlo simulations for
finite random matrices showing an excellent agreement.

We divide the calculation of the CSD into two parts: the analytical development (Subsection 2.3.1) and the
numerical treatment (Subsection 2.3.2). While the latter focuses on providing a solution to the self-consistency
equation through statistical numerical methods and presenting all our results for the diluted real Ginibre ensemble, the
analytical procedure is further divided into two parts. In the first part, we define ρ (z|Rγ) and, by means of the CGF,
achieve an analogy with statistical physics, obtaining the fully general expression for the CSD. Immediately after, we
apply the general equation to the ensemble of symmetric Poisson graphs with asymmetric couplings and manage to
rewrite ρ (z|Rγ) as a path integral. In the second part, we solve the integral equation via the saddle-point method
and introduce a replica-symmetric ansatz assuming invariance of the equations under replica permutations. Finally,
we combine all the expressions together and obtain the final equation for the CSD in terms of the self-consistency
equation. We show in detail all the mathematical manipulations in Appendix B.

2.3.1 The analytical development

The path integral formalism

We commence by introducingA ∈ MN×N (C) a non-Hermitian random matrix drawn from some distribution P (A)
with spectrum Λ = {λ1, ..., λN} and {λi}Ni=1 ∈ C. Subsequently, we take the ESD (Eq. (1.18)) and the number NA
(Eq. (2.9)) with γ = ∂D the smooth Jordan curve (D ⊆ C) and define the CSD as

ρ (z|Rγ) = lim
N→∞

⟨ρA(z)δ [NA(γ) −NRγ ]⟩
⟨δ [NA(γ) −NRγ ]⟩

, (2.57)

with z = x+ iy, the symbol ⟨· · · ⟩ the average over the distribution P (A), and Rγ ∈ [0, 1] the adjustable parameter
controlling the number of eigenvalues within the γ curve. In order to compute the average of Eq. (2.57), we need to
know the exact dependence of ρ (z|Rγ) with the A matrix. Then, appealing to Eqs. (2.14) and (2.16), together with
the Laplace representation of Dirac’s δ, we rewrite the CSD as

ρ (z|Rγ) = − lim
N→∞

1
Nπ

∂z∂z∗

´ 〈
lnQA(z, z∗)e−µNA(γ)〉 eµNRγ dµ´ 〈

e−µNA(γ)
〉
eµNRγ dµ

; (2.58)
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with ∂z = 1
2 (∂x − i∂y) and ∂z∗ = 1

2 (∂x + i∂y) the derivatives over z and z∗ = x − iy, respectively. Eq. (2.58)
provides us with clues about the dependence of the CSD on the matrixA by means of the equations of Section 2.2.1;
however, we still cannot compute the average over P (A). Furthermore, we need to know the effects of the variable
µ on ρ (z|Rγ). Specifically, the effects of µ on the number NA.

We recall from Subsection 2.2.1 that the complete statistical information of NA, typical and atypical fluctuations,
is encoded within the CGF Fγ (µ) (Eq. (2.10)). Then, to be able to express ρ (z|Rγ) in terms of Fγ (µ), we resort to
the following variation of Eq. (1.36)

⟨g (x) ln f (x)⟩ = lim
n→0

1
n

⟨g (x)⟩ ln
[

⟨g (x) fn (x)⟩
⟨g (x)⟩

]
, (2.59)

selecting f = QA (z, z∗) and g = e−µNA(γ), and introduce Fγ (µ) to the resulting expression (Eq. (B.1)). After
a few algebraic manipulations and the use of the saddle-point method (Appendix B.1, Eqs. (B.1)-(B.3)), we rewrite
Eq. (2.58) as

ρ (z|Rγ) = − lim
N→∞

lim
n→0

1
nNπ

∂z∂z∗ ln
〈
e−µ0NA(γ) [QA(z, z∗)]n

〉
, (2.60)

where the value µ0 follows from the solution of the saddle-point equation

Rγ = ∂µFγ(µ)|µ=µ0 . (2.61)

The effect of the parameter µ0 over the spectrum is the following: µ0 < 0 (> 0) favours a major (lower) concentration
of eigenvalues inside the γ curve. To keep the notation simple, we drop the zero subscript of parameter µ0 for the
subsequent developments. It is worth recalling that Fγ (µ) is a concave function whose limit N → ∞ exists and is
different from zero or infinity since we assume that the Gärtner-Ellis result (Theorem 1.1) holds.

Invoking Eq. (2.15) and discretizing the γ curve into a set of points {ωℓ}Lℓ=1 ⊆ C such that ωL+1 ≡ ω1 and
ωℓ+1 ≡ ωℓ + ∆ωℓ, we arrive at the following exact identity for the number NA

NA(γ) = − 1
2πi

lim
L→∞

L∑
ℓ=1

[lnQA (ωℓ+1, ω
∗
ℓ ) − lnQA (ωℓ, ω∗

ℓ )] , (2.62)

transforming Eq. (2.60) into

ρ (z|Rγ) = − lim
N→∞

lim
L→∞

lim
n→0

1
nNπ

∂z∂z∗ ln

〈
[QA(z, z∗)]n

L∏
ℓ=1

[QA (ωℓ+1, ω
∗
ℓ )]n+ [QA(ωℓ, ω∗

ℓ )]n−

〉
, (2.63)

with n± complex numbers defined as n± ≡ ±µ/2πi.

Eq. (2.63) displays the specific dependence of the CSD on the non-Hermitian random matrix A; nonetheless, the
computation of the average is far from easy. Then, we need to express ρ (z|Rγ) in a more suitable form. To do it, we
resort to the matrix F η (Eq. (2.19)) [158, 176] and once more express QA as a Gaussian integral,

QA (z, z∗) = lim
η→0+

ˆ ( N∏
i=1

dψidψ
†
i

π2

)
exp

−
N∑
i=1

ψ†
iMη(z, z∗)ψi + i

N∑
i,j=1

ψ†
iBijψj

 ,
over a set of spinors ψi ∈ C2, for i = 1, . . . , N , maintaining the previous definitions of the matrices Mη , Bij ,
σ+, and σ− (Eqs. (2.21) and (2.22)). We recall that in its integral form, QA represents the partition function of a
system of N spinors placed over a graph and coupled through the 2 × 2 set of complex matrices {Bij}Ni,j=1. Owing
to the imaginary nature of the numbers n± in Eq. (2.63), we are required to invoke once more the replica method
assuming n± ∈ N+, to subsequently calculate the N → ∞ limit and finally perform the analytical continuation of
the CSD to their values n± → ±µ/2πi. As a consequence of assuming the Gärtner-Ellis theorem to be valid, the
thermodynamic limit N → ∞ exists and differs from zero or infinity. Analogous to the full counting statistics of
the number NA (Section 2.2), the remaining limits in Eq. (2.63) and the analytical continuation of ρ (z|Rγ) are not
rigorously proven. Nevertheless, at all moments, we assume the CSD is such that all the remaining limits to exist and
to be interchangeable. We verify these assumptions later during the numerical procedure.
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Inserting the integral representation of QA (z, z∗) into Eq. (2.63), we obtain a general expression, valid for any
contour γ ∈ C and non-Hermitian random matrix ensemble, for the CSD

ρ (z|Rγ) = − lim
N→∞

lim
L→∞

lim
n→0

lim
n±→ ±µ

2πi

lim
η→0+

1
nNπ

∂z∂z∗ ln
ˆ ( N∏

i=1

L∏
ℓ=1

n+∏
a=1

dΨiℓa

)(
N∏

i=1

L∏
ℓ=1

n−∏
b=1

dΦiℓb

)(
N∏

i=1

n∏
c=1

dΩic

)

× exp

[
−

N∑
i=1

(
n∑

c=1

Ω†
icMη(z, z∗)Ωic +

L∑
ℓ=1

{ n+∑
a=1

ψ†
iℓaMη(ωℓ+1, ω∗

ℓ )ψiℓa +
n−∑
b=1

ϕ†
iℓbMη(ωℓ, ω∗

ℓ )ϕiℓb

})]

×

〈
exp

[
i

N∑
i<j

(
n∑

c=1

{
Ω†

icBijΩjc + Ω†
jcB

†
ijΩic

}
+

L∑
ℓ=1

[ n+∑
a=1

{
ψ†

iℓaBijψjℓa +ψ†
jℓaB

†
ijψiℓa

}

+
n−∑
b=1

{
ϕ†

iℓbBijϕjℓb + ϕ†
jℓbB

†
ijϕiℓb

}])]〉
,

(2.64)

where we have written the measures over the spinors as dΨi ≡ dψidψ
†
i/π

2 (analogous for dΦi and dΩi) to simplify
the notation. As with Fγ (µ) (Eq. (2.23)), the success in computing the average of Eq. (2.64), and consequently in
obtaining a final expression for ρ (z|Rγ), depends on the P (A) choice.

We test the exactness of our theory withA, the adjacency matrix of a weighted random graph with directed edges
following a Poisson distribution. Hence, we express the elements of A as Aij = cijJij [31], with {cij}Ni,j=1 the
entries of the adjacency matrixC (Definition 1.8) drawn from Eq. (1.17), with c ∈ R+ the average connectivity inde-
pendent of N , and {Jij}Ni,j=1 real-valued i.i.d. random variables drawn from a probability distribution pJ . Whereas

the entries {cij}Ni,j=1 encode the topology of the graph, the elements {Jij}Ni,j=1 correspond to the system quenched
variables and represent the asymmetric interactions between sites. Performing the average overC in Eq. (2.64) leads
us to

ρ (z|Rγ) = − lim
N→∞

lim
L→∞

lim
n→0

lim
n±→ ±µ

2πi

lim
η→0+

1
nNπ

∂z∂z∗ ln
ˆ ( N∏

i=1

L∏
ℓ=1

n+∏
a=1

dΨiℓa

)(
N∏

i=1

L∏
ℓ=1

n−∏
b=1

dΦiℓb

)(
N∏

i=1

n∏
c=1

dΩic

)

× exp

[
−

N∑
i=1

{
n∑

c=1

Ω†
icMη(z, z∗)Ωic +

L∑
ℓ=1

( n+∑
a=1

ψ†
iℓaMη(ωℓ+1, ω∗

ℓ )ψiℓa +
n−∑
b=1

ϕ†
iℓbMη(ωℓ, ω∗

ℓ )ϕiℓb

)}]

× exp

[
c

2N

N∑
i,j=1

〈
exp

[
i

{
n∑

c=1

(
Ω†

icJΩjc + Ω†
jcJ

†Ωic

)
+

L∑
ℓ=1

[ n+∑
a=1

(
ψ†

iℓaJψjℓa +ψ†
jℓaJ

†ψiℓa

)

+
n−∑
b=1

(
ϕ†

iℓbJϕjℓb + ϕ†
jℓbJ

†ϕiℓb

)]}]
− 1

〉
J

]
,

(2.65)

with ⟨· · · ⟩J the average over the quenched disorder J = Jσ+ + J ′σ− and J , J ′ real-valued interaction strengths
drawn independently from the distribution pJ .

To decouple the sites of Eq. (2.65), we follow the procedure of Refs. [41–43] and introduce the equivalent to the
replicated density ρ (ϕ) (Eq. (2.6)) via the next order parameter

P (Ψ,Φ,Ω) ≡ 1
N

N∑
i=1

[
n∏
c=1

δ (Ωc − Ωic)

]
L∏
ℓ=1

[
n+∏
a=1

δ (ψℓa −ψiℓa)
n−∏
b=1

δ (ϕℓb − ϕiℓb)

]
, (2.66)

with the shorthand notation P (Ψ,Φ,Ω) ≡ P
(

Ψ,Φ,Ω; {Ψi,Φi,Ωi}Ni=1

)
, Ψ ≡ {ψℓa}, Φ ≡ {ϕℓb}, and Ω ≡

{Ωc}nc=1, for ℓ = 1, . . . , L, a = 1, . . . , n+, and b = 1, . . . , n−. Analogously, Ψi ≡ {ψiℓa}, Φi ≡ {ϕiℓb}, and
Ωi ≡ {Ωic} for i = 1, . . . , N .

After a series of manipulations (Appendix B.1, Eqs. (B.5)-(B.8)), we express Eq. (2.65) as the logarithm of a path
integral over the order parameter P and its conjugated parameter P̂

ρ (z|Rγ) = − lim
N→∞

lim
L→∞

lim
n→0

lim
n±→ ±µ

2πi

lim
η→0+

1
nNπ

∂z∂z∗ ln
ˆ
e−NS[{P,P̂}]D

[{
P, P̂

}]
, (2.67)
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with the action S
[{
P, P̂

}]
given by

S
[{
P, P̂

}]
= − ln

(ˆ
e−τ(Ψ,Φ,Ω)−iP̂ (Ψ,Φ,Ω)dΨdΦdΩ

)
− i

ˆ
P (Ψ,Φ,Ω) P̂ (Ψ,Φ,Ω) dΨdΦdΩ

− c

2

ˆ 〈
eiΞ(Ψ,Φ,Ω,Ψ′,Φ′,Ω′) − 1

〉
J

P (Ψ,Φ,Ω) P̂
(
Ψ′,Φ′,Ω′) dΨdΦdΩdΨ′dΦ′dΩ′.

(2.68)

To facilitate the handling of Eq. (2.67), we have introduced the auxiliary functions

τ (Ψ,Φ,Ω) ≡
n∑
c=1

Ω†
cMη(z, z∗)Ωc +

L∑
ℓ=1

(
n+∑
a=1

ψ†
ℓaMη(ωℓ+1, ω

∗
ℓ )ψℓa +

n−∑
b=1

ϕ†
ℓbMη(ωℓ, ω∗

ℓ )ϕℓb

)
(2.69)

and

Ξ
(
Ψ,Φ,Ω,Ψ′,Φ′,Ω′) ≡

L∑
ℓ=1

[
n+∑
a=1

(
ψ†
ℓaJψ

′
ℓa +ψ′†

ℓaJ
†ψℓa

)
+

n−∑
b=1

(
ϕ†
ℓbJϕ

′
ℓb + ϕ′†

ℓbJ
†ϕℓb

)]

+
n∑
c=1

(
Ω†
cJΩ′

c + Ω′†
c J

†Ωc

)
,

(2.70)

maintaining the notation employed for Eq. (2.27).

Replica-symmetric ansatz and the auto-consistent equations

To solve the integral of Eq. (2.67), we resort to the saddle-point method. Hence, the asymptotic convergence shown
in Eq. (2.30) still holds with the corresponding action given by Eq. (2.68); for notation purposes, we drop the zero
subscript from the order parameter P and its conjugated variable P̂ . Then, the stationary conditions for P and P̂ obey
the following saddle-point equations

iP̂ (Ψ,Φ,Ω) = −c
ˆ 〈

eiΞ(Ψ,Φ,Ω,Ψ′,Φ′,Ω′) − 1
〉
J
P
(
Ψ′,Φ′,Ω′) dΨ′dΦ′dΩ′ (2.71)

and

P (Ψ,Φ,Ω) = e−τ(Ψ,Φ,Ω)−iP̂ (Ψ,Φ,Ω)´
e−τ(Ψ′,Φ′,Ω′)−iP̂ (Ψ′,Φ′,Ω′)dΨ′dΦ′dΩ′ . (2.72)

To proceed with the derivation, with a modest amount of foresight, we assume that the state in which the system
is trapped corresponds to the global minimum of Eq. (2.67) and propose the next replica-symmetric (RS) ansatz
concerning the functional form of the order parameter P (Ψ,Φ,Ω) that appears in the effective replica theory

P (Ψ,Φ,Ω) =
ˆ

d∆
[
L∏
ℓ=1

dΣℓdΓℓ

]
ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
×

(
n∏
c=1

e−Ω†
c∆−1Ωc

det ∆

)
L∏
ℓ=1

[
n+∏
a=1

e−ψ†
ℓaΣ−1

ℓ ψℓa

det Σℓ

n−∏
b=1

e−ϕ†
ℓbΓ−1

ℓ ϕℓb

det Γℓ

]
,

(2.73)

with ∆, Σℓ, Γℓ ∈ M2×2 (C) and the set of matrices {Σℓ,Γℓ}Lℓ=1 defined for each point ωℓ on the γ curve. The

function ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
corresponds to the joint probability distribution for the complete set of matrices and

complies with being normalized to unity, i.e.,

ˆ
d∆

(
L∏
ℓ=1

dΣℓdΓℓ

)
ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
= 1. (2.74)

Inserting the RS anzats into the saddle-point equations and action (Eqs. (2.71), (2.72), and (2.68), respectively),
and after a sequence of algebraic manipulations (Appendix B.2, Eqs. (B.9)-(B.14)), we find the exact expression for
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the joint probability distribution,

ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
= 1
N

∞∑
k=0

e−cck

k!

ˆ [ k∏
r=1

(
d∆r

L∏
ℓ=1

dΣrℓdΓrℓ

)
ω
(

∆r, {Σrℓ,Γrℓ}Lℓ=1

)]〈
δ
(
∆ − F−1)

× e−n ln det F− µ
2πi

∑L
ℓ=1(ln det Υℓ−ln det ζℓ)

L∏
ℓ=1

δ
(
Γℓ − ζ−1

ℓ

)
δ
(
Σℓ − Υ−1

ℓ

)〉
J1,...,k

,

(2.75)

and action,

S = − ln

( ∞∑
k=0

e−cck

k!

ˆ [ k∏
r=1

(
d∆r

L∏
ℓ=1

dΣrℓdΓrℓ

)
ω
(

∆r, {Σrℓ,Γrℓ}Lℓ=1

)]

×

〈
exp

[
−n ln detF − µ

2πi

L∑
ℓ=1

(ln det Υℓ − ln det ζℓ)

]〉
J1,...,k

)

+ c

2

ˆ (
d∆d∆′

[
L∏
ℓ=1

dΣℓdΓℓdΣ′
ℓdΓ′

ℓ

])
ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
ω
(

∆′,
{

Σ′
ℓ,Γ

′
ℓ

}L
ℓ=1

)
×

〈
exp

[
−n ln detK − µ

2πi

L∑
ℓ=1

(ln detνℓ − ln det ξℓ)

]〉
J

− c

2
,

(2.76)

with N in Eq. (2.75) a normalization constant and the symbol ⟨· · · ⟩J1,...,k
in both expressions the average over

the set J1, . . . ,Jk. Due to the similarity of the joint probability distribution ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
and action S

with Eqs. (2.35) and (2.36), respectively, we have resorted to the previous auxiliary matrices Υℓ, ζℓ, νℓ, and ξℓ of
Eqs. (2.37) and (2.38), and defined a new pair of 2 × 2 complex auxiliary matrices

F ≡ Mη (z, z∗) +
k∑
r=1

Jr∆rJ
†
r and K ≡ I2 + ∆J∆′J†, (2.77)

so that we can keep the notation for both expressions as simple as possible.

In both equations, (2.75) and (2.76), we have computed the replica limits n± → ±µ/2πi assuming that they yield
the correct results. The remaining steps are the calculation of the continuum limit L → ∞, the replica limit n → 0,
and the partial derivatives ∂z∗ and ∂z . Although the calculation of the first two limits and the first derivative ∂z∗ are
straightforward (the continuum limit L → ∞ procedure is analogous to that of the CGF), the second derivative ∂z
calculation requires further analysis. We assume the both derivatives ∂z and ∂z∗ to exist, and the CSD is such that
both are interchangeable. We have also corroborated this last assumption in our numerical analysis.

After computing the continuum limit L → ∞, the resulting functional density ω [∆, {Γ,R}] (Eq. (B.15)) and
action S (Eq. (B.16)) are such that the calculation of the replica limit n → 0 requires no further effort. The evaluation
of the first derivative ∂z∗ is also immediate thanks to the inherent characteristics of the saddle-point expressions,
Eq. (B.20) and (B.21), leaving us with an equation for ρ (z|Rγ) in terms of the η → 0+ limit and the second
derivative ∂z (Eq. (B.22)). However, the evaluation of ∂z represents a non-trivial task. Assuming a dependence of the
functional density ω [∆, {Γ,R}] on ∂z (Appendix B.3, Eqs. (B.22)-(B.26)), and after some algebraic manipulations,
we obtain the final expression for the CSD

ρ (z|Rγ) = 1
π

lim
η→0+

⟨Tr [iσ−∂z∆ (z)]⟩∆,∂z∆,{Γ,R} , (2.78)

where the symbol ⟨· · · ⟩∆,∂z∆,{Γ,R} denotes the average over all possible paths {Γ,R} in the γ curve and all z
points within the complex plane ∆(z) and ∂z∆ (z). As with Fγ (µ), any path {Γ,R} can be thought of as the limit
L → ∞ of a sequence {Γ (ωℓ) ,R (ωℓ)}Lℓ=1, with ωℓ ∈ γ for all ℓ. Hence, the path integration measure formally reads
d {Γ,R} = limL→∞

∏L
ℓ=1 dΓ (ωℓ) dR (ωℓ). Invoking the auxiliary matrices χk (ω) and Πk (ω) from Eq. (2.45),
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and defining the pair of 2 × 2 complex matrices

χ̂k(z) =

[
Mη(z, z∗) +

k∑
r=1

Jr∆r (z)J†
r

]−1

and Π̂k(z) = −χ̂k

(
iσ+ +

k∑
r=1

Jr∂z∆r (z)J†
r

)
χ̂k, (2.79)

the average ⟨· · · ⟩∆,∂z∆,{Γ,R} for any functional S [∆, ∂z∆, {Γ,R}] is formally read

⟨S [∆, ∂z∆, {Γ,R}]⟩∆,∂z∆,{Γ,R} =
ˆ
ω [∆, ∂z∆, {Γ,R}] S [∆, ∂z∆, {Γ,R}] d∆d (∂z∆) d {Γ,R} , (2.80)

with ω [∆, ∂z∆, {Γ,R}] the resulting functional density following from the solution of the self-consistency equation

ω [∆, ∂z∆, {Γ,R}] = 1
N

∞∑
k=0

e−cck

k!

ˆ [ k∏
r=1

d∆rd (∂z∆r) d {Γr,Rr} ω [∆r, ∂z∆r, {Γr,Rr}]

]
eµW [{Γ,R}]

×
〈

δ [∆ (z) − χ̂k (z)] δ
[
∂z∆ (z) − Π̂k (z)

]
δF [Γ (ω) − χk (ω)] δF [R (ω) − Πk (ω)]

〉
J1,...,k

.

(2.81)

Note that in Eq. (2.81), we explicitly indicate the dependence of the functional density on the second partial derivative
∂z . The symbol δF within the average ⟨· · · ⟩J1,...,k

represents the functional Dirac δ over the path space and the
normalization constant N takes the form

N =
(ˆ

e−µW [{Γ,R}]ω [∆, ∂z∆, {Γ,R}] d∆d(∂z∆)d {Γ,R}
)−1

. (2.82)

As for the CGF case, the statistical contribution of each path is weighted by the exponential factor of Eq. (2.81)
and the W [{Γ,R}] term of Eq. (2.44); both equations (2.78) and (2.81) ought to be solved in the η → 0+ limit. The
Eq. (2.78) for the conditioned spectral density ρ (z|Rγ) and Eq. (2.81) for the functional density ω [∆, ∂z∆, {Γ,R}]
are the principal outcomes of this second research. From them, we derive all the possible features that the spectrum of
an ensemble of sparse non-Hermitian random matrices undergoes when the constraint Rγ ∈ [0, 1] fixing the number
of eigenvalues NA within the smooth Jordan curve γ is placed.

2.3.2 Numerical analysis and results

As it happened with the path probability ω [{Γ,R}] (Eq. (2.42)), the functional density ω [∆, ∂z∆, {Γ,R}] has no
known analytical solution; then, we anew appeal to the weighted population dynamics algorithm. Firstly, we discretize
the γ curve into a finite collection of points {ω1, . . . ωL} and define the finite set of 2 × 2 complex random matrices
{Γ (ωℓ) ,R (ωℓ)}Lℓ=1 sampled consistently with Eq. (2.81) via a Monte Carlo scheme. Then, once again we make a

switch from the functional density ω [∆, ∂z∆, {Γ,R}] to the joint distribution ω
[
∆, ∂z∆, {Γ (ωℓ) ,R (ωℓ)}Lℓ=1

]
.

Since ω [∆, ∂z∆, {Γ,R}] contains all the possible correlations for any collection of points, both ω [∆, ∂z∆, {Γ,R}]
and ω

[
∆, ∂z∆, {Γ (ωℓ) ,R (ωℓ)}Lℓ=1

]
do not factorize.

To move forward, we introduce a population of a total number of M sets of matrices

{∆α, ∂z∆α,Γα (ω1) , . . . ,Γα (ωL) ,Rα (ω1) , . . . ,Rα (ωL)}Mα=1 ,

with ∆α and ∂z∆α ∈ M2×2 (C) for all α = 1, . . . ,M . Therefore, the joint probability distribution formally reads

ω
[
∆, ∂z∆, {Γ (ωℓ) ,R (ωℓ)}Lℓ=1

]
∼ 1
M

M∑
α=1

eµW [{Γ(ωℓ),R(ωℓ)}L
ℓ=1]
(
δ [∆ − ∆α (z)] δ [∂z∆ − ∂z∆α (z)]

×
L∏
ℓ=1

δ [Γ (ωℓ) − Γα (ωℓ)] δ [R (ωℓ) −Rα (ωℓ)]

) (2.83)

where the weighted factor eµW [{Γ(ωℓ),R(ωℓ)}L
ℓ=1] = Θ

[
{Γ (ωℓ) ,R (ωℓ)}Lℓ=1

]
indicates the number of population
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elements that are updated according to Eq. (2.50). To demonstrate the exactness of the theory, we have chosen as γ
curve the boundary of a disk of radius R = 0.5 centred at the origin of C and divided our findings into three figures:
Figs. 2.4, 2.5, and 2.6. While Figs. 2.4 and 2.5 show the results obtained by numerical diagonalization and theory,
separately, Fig. 2.6 displays the comparison between both schemes exhibiting excellent agreement.

Figure 2.4: Numerical diagonalization for the spectral density constrained to have a specific fraction of eigenvalues inside a
disk of radius R = 0.5 centred at the origin of the complex plane for different values of µ. The matrix A corresponds to the
adjacency matrix of a Poisson random graph with average connectivity c = 4 and asymmetric Gaussian weights of zero mean
and variance 1/c. Top: fraction of eigenvalues inside the disk of radius R = 0.5 as a function of the parameter µ for a range of
values µ ∈ [−2.1, 2.1]. Bottom: density plots of the CSD for the disk of radius R = 0.5 and values of µ = −0.66 (left panel),
µ = 0.0 (central panel), and µ = 0.82 (right panel). For the diagonalization procedure, 103 samples are averaged and the process
is repeated 400 times for matrices of 800 × 800.

Fig. 2.4 depicts the results obtained by numerical diagonalization employing the Metropolis algorithm (Appendix
D) for A the adjacency matrix of a Poisson random graph with Gaussian directed edges of mean value equal zero
and variance 1/c, the diluted real Ginibre ensemble, using as γ curve a disk of radius R = 0.5 centred at the origin
of C. The upper row of Fig. 2.4 shows the first cumulant κ1, with its corresponding error bars, for the fraction of
eigenvalues inside the disk as a function of the parameter µ for a range of values −2.1 ≤ µ ≤ 2.1, passing through its
typical fluctuations at µ = 0.0. On the other hand, the lower row of Fig. 2.4 displays three density plots of the CSD for
the values µ = −0.66 (left panel), µ = 0.0 (central panel), and µ = 0.82 (right panel). All graphs in Fig. 2.4 portray
the changes the spectrum undergoes depending on the value of the µ parameter: µ < 0 (> 0) will favour a major
(minor) concentration of eigenvalues inside the γ curve (as we had predicted in Eq. (2.60)). In both rows, we observe
how the transition from the atypical to the typical fluctuations occurs in a smooth-continuous form, i.e., there is no
abrupt transition as the number of constrained eigenvalues approaches its typical value at µ = 0.0. Furthermore, and
contrary to the spectral density displayed in Fig. 1 of Ref. [189], the support of the constrained density for the diluted
real Ginibre ensemble shown in the lower row of Fig. 2.4 corresponds to a connected compact set in the complex
plane whether µ is positive or negative.

In Fig. 2.5, we display the principal outcome of the theory: the theoretical results from Eqs. (2.78) and (2.81) via
the population dynamics algorithm for the diluted real Ginibre ensemble considering symmetric values of µ around
µ = 0 of µ = (−1.62, 1.62), (−1.14, 1.14), and (−0.5, 0.5), indicating, for each value, the fraction of eigenvalues
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Rγ within the selected smooth Jordan curve. To demonstrate the accuracy of the method, we have settled as γ curve
the border of a disk of radius R = 0.5, represented by a yellow plane at Imz = 0.5, centred at the origin of C
and have plotted the CSD at the cut Rez = 0.10 for the different µ colouring the positive values as blue curves, the
negative values as green curves, and the typical case µ = 0 as a red curve. We observe how effectively, for every µ, the
spectrum goes through a continuous-smooth shift in its curvature as the value of Imz approaches the radius of the disk,
supporting our previous conclusions of Fig. 2.4 that the CSD possesses a compact support and that there is no sudden
transition as the conditioned eigenvalues get close to their typical fluctuations. Also, we notice how the theoretical
results faithfully reproduce the behaviour of the constrained eigenvalues when the µ value is either negative (major
concentration) or positive (less concentration); Fig. 2.5 also deploys another crucial fact concerning the behaviour
of the eigenvalues at the border of the disk. From the lower row of Fig. 2.4, we observe how the eigenvalues seem
to concentrate at the boundary of the disk; nevertheless, such an effect is no longer visible for the different values
of µ in Fig. 2.5. Effectively, Fig. 2.5 proves that such a perception is due to finite size effects that disappear as the
matrix dimension becomes infinitely large, i.e., in the N → ∞ limit; the same effect was also perceptible in Fig. 2
of Ref. [45] for the Erdős-Rényi random graphs and Wishart random matrices. The reader will have noticed that the
CSD in Fig. 2.5 corresponds, for each µ, to a symmetric function around the origin; this is because the spectrum of
infinitely large random graphs ought to be symmetric since these are bipartite graphs [31, 44, 110, 112].

Figure 2.5: Theoretical results for the spectral density at the cut Rez = 0.10 conditioned to have a fixed fraction of eigenvalues
Rγ inside a disks of radius R = 0.5 for several positive (blue curves) and negative (green curves) values of µ. The matrix A
corresponds to the adjacency matrix of a weighted random graph of directed edges with average connectivity c = 4, where the
asymmetric interactions are independently drawn from a Gaussian distribution pJ with zero mean and variance 1/c. The cuts for
the several values of µ illustrate the continuous-smooth shift the CSD undergoes in its curvature and the absence of a sudden phase
transition as the constrained eigenvalues approximate their typical fluctuations at µ = 0 (red curve). All the results were obtained
using a population of 3.5 × 103 with an iteration of 16625 × 103 times and a discretization of 300 points over the disk.

Finally, in Fig. 2.6, we compare the theoretical findings from Eqs. (2.78) and (2.81) with the results obtained
by numerical diagonalization for the adjacency matrix of a weighted random graph of directed edges with average
connectivity c = 4 for the several µ values of Fig. 2.5 at the cut Rez = 0.10. While in the left panels, we display
the CSD for the negative values of µ, in the right panels we show their positive counterparts, exhibiting, in all cases,
excellent agreement between results. The few existing discrepancies amid the red grid lines (numerical diagonaliza-
tion) and the continuous blue lines (theoretical results) in the tails of the spectrum and throughout the curvature shifts
for the different values of µ were previously reported in Ref. [44] and are due to the discretization the histogram
introduces. Moreover, the behaviour induced by the red grid lines in both panels permits us to observe more in detail
the false-eigenvalue-concentration-effect at the disk border, precisely around the values of Imz where the curvature
of the spectral density changes. This effect is easily noticeable for µ = 1.62, where the many shifts in the curvature
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make it difficult for the numerical diagonalization to accurately display the constrained density. Clearly, this false
impression disappears when the limit N → ∞ is considered and which is correctly represented by the continuous
blue lines.

Figure 2.6: Comparison between the exact theoretical and diagonalization results of the CSD for a disk of radius R = 0.5 centred
at the origin of C. The matrixA corresponds to the adjacency matrix of a Poisson random graph with average connectivity c = 4
and asymmetric Gaussian weights of zero mean and variance 1/c. Solid blue lines are the theoretical findings, while red grid lines
(histogram) are the exact diagonalization results for values of µ = −1.66, −1.14, −0.5 (left panels) and µ = 1.66, 1.14, 0.5
(right panels), both at Rez = 0.10. For the diagonalization, 103 samples are averaged and the process is repeated 400 times for
matrices of 800 × 800; for the exact theoretical results, a population of 3500 with a discretization of 300 points over the γ curve
and 16625 × 103 iterations is employed.

The authors in Ref. [189] demonstrated that the CSD for a number of eigenvalues outside a disk of radiusR = 0.5
for the complex and real Ginibre ensembles exhibited (i) an asymptotic density supported on either balls, annuli, or
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circles centred at the origin of C (Fig. 1 and Eq. (9) in Ref. [189]), (ii) a concentration of the eigenvalues at the border
of the disk (Fig. 1 in Ref. [189]), and (iii) a phase transition of the Coulomb gas as the constrained eigenvalues reach
their typical fluctuations, all of them derived from the Coulomb gas picture of Eq. (1.27). Interestingly, the phase
transition of the Coulomb gas leads to a third-order phase transition in the corresponding rate function [189]. Due
to the similarity between the Coulomb gas picture for the classical (Eq. (1.26)) and Ginibre ensembles (Eq. (1.27)),
the results obtained for the constrained density in both cases agree and display the same universal features [123, 187,
216, 222, 224]. On the other hand, Ref. [44] proved that introducing sparsity within the invariant ensembles breaks
the usual scheme and leads to contrasting results for the CSD.

Our findings of the CSD for the diluted real Ginibre ensemble in the limit of infinitely large matrices N → ∞
highlight the results of Ref. [44] and can be summarized in the following three features:

(i) ρ (z|Rγ) is a symmetric function over a connected compact support.

(ii) No accumulation of eigenvalues at the border of the disk.

(iii) No abrupt transition as the constrained eigenvalues reach their typical fluctuations.

All these astonishing features seem to result from the weak or absent repulsion among the eigenvalues of sparse non-
Hermitian random matrices. We know, thanks to Ref. [211], that, in general, the spectrum of non-Hermitian random
matrices near the origin (delocalized region) displays significant eigenvalue repulsion while at the borders (localized
zone), the eigenvalues behave as an ideal gas. Previous research has demonstrated that for both the Erdős-Rényi
random graphs [210] and sparse symmetric random matrices [32], the fluctuations ⟨[δn (λ)]2⟩ of the number of eigen-
values n (λ) are proportional to the mean ⟨n (λ)⟩ for localized states and to the logarithm ln ⟨n (λ)⟩ for delocalized
states. These features seem also to occur for sparse non-Hermitian random matrices, where the eigenvalues are al-
lowed to be arbitrarily close to each other [211]. All these arguments lead us to conjecture that properties (i), (ii),
and (iii) are universal for sparse random matrices, whether they are Hermitian or non-Hermitian.



Chapter 3

Concluding remarks

I would rather have questions that can’t
be answered than answers that can’t be
questioned.

Richard Phillips Feynman (1918-1988)

In this thesis, we departed from the previous research conducted in Refs. [44,45] for symmetric and non-Hermitian
SRMs, and resorting to various RMT mathematical techniques such as the Hermitization [158] and replica meth-
ods [149], and by means of the so-called replica-symmetric formalism, we developed new and powerful methods
capable of studying (i) the complete statistics surrounding the number ND of eigenvalues within a smooth Jordan
curve contained inside a domain D ⊆ C, and (ii) the spectral properties of the so-called conditioned spectral den-
sity ρ (z|Rγ), that is, the spectral density ρ (z) constrained to have a specific fraction Rγ of eigenvalues inside the
Jordan curve. The ultimate goal of our research was to extend the scarce knowledge we have concerning sparse non-
Hermitian random matrices in the limit of infinitely large matrix dimensions and verify whether or not new universal
properties arise under the introduction of sparsity together with their range of validity. To demonstrate the exactness
of our methods, we selected the diluted version of the real Ginibre ensemble as the sparse ensemble and confirmed
our theoretical findings with finite numerical diagonalization, obtaining excellent results.

For both methods, the most outstanding features were that they did not rely on the knowledge of the JPDE function
for sparse non-Hermitian random matrices and that they can be applied, in principle, to any non-Hermitian random
matrix ensemble of the mean-field type, i.e., ensembles where the coupling strengths do not depend on the distance
between the components. Another significant achievement was the capacity of the theories to calculate the complete
statistical information of the number ND and the spectral features of ρ (z|Rγ), taking into account the weights
characterizing the diverse δ peaks throughout the spectra for small and moderate values of the average connectivity
c; a fact where the approximate methods EMA, SDA, SEMA, and DEMA failed [41–43].

Regarding the full counting statistics of the number ND, we observed that, while the first cumulant κ1 showed
excellent agreement between the exact theoretical findings and the results by numerical diagonalization for small and
moderate values of c, the second cumulant κ2 displayed a stronger dependence with the matrix dimensions N used
in the numerical diagonalization. Whereas the complex Ginibre ensemble exhibits three different regimes for the
variance of ND in the large N limit [180], κ2 for the diluted real Ginibre ensemble only presented a unique regime
and a linear scaling behaviour with N . This difference was due to the distinctive eigenvalue repulsion present in each
ensemble. For both cumulants, κ1 and κ2, the results shown in Fig. 2.2 varying the radius of the disk from R = 0.05
toR ≈ 1.58 for the diluted real Ginibre ensemble resembles those displayed by the complex Ginibre ensemble (Fig. 2
in Ref. [180]) when we consider larger values of the average connectivity c. This, indeed, reflects the level of dilution
present in the sparse ensemble. So, it is natural to expect that in the zero dilution case, i.e., in the fully connected
limit c → ∞ [44], we will fully recover the results of Fig. 2 in Ref. [180] for the complex Ginibre ensemble. While
for the latter, the eigenvalues undergo a strong repulsion given by Eq. (1.27), the eigenvalue repulsion for the diluted
real Ginibre ensemble is considerably weaker [211]. The effects of such a remarkable difference were also visible in
the asymmetry of the rate function ϕγ (n) compared to the complex Ginibre ensemble rate function [180]. Previous
research evidenced that it was possible to recover the scaling behaviour of the variance for Gaussian Hermitian
random matrices from their diluted version by including finite-size corrections in their corresponding saddle-point
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integrals [227]. For Gaussian non-Hermitian random matrices, we expect an analogous situation, i.e., we look forward
to recovering the results for the Ginibre ensemble [180] by taking into account finite-size corrections to the saddle-
point integral of Eq. (2.26).

Regarding the CSD for the diluted real Ginibre ensemble considering the border of the disk of radius R =
0.5 centred at the origin of C as the smooth Jordan curve γ, we observed a completely contrasting behaviour with
respect to its non-diluted counterpart. Contrary to the real and complex Ginibre ensembles [189], we discovered that
ρ (z|Rγ) was (i) a symmetric function on a connected compact support with (ii) no accumulation of eigenvalues
at the border of the disk and (iii) no phase transition as the eigenvalues approach their typical fluctuations. While
the connected compact support, along with points (ii) and (iii), was displayed for both the Erdős-Rényi random
graphs and Wishart random matrices in the limit N → ∞ [45], we only observed the symmetry of ρ (z|Rγ) for
the infinitely large random graphs. As we have pointed out, this last feature is because random graphs are bipartite
graphs [31, 44, 110, 112]. As with the full counting statistics of ND, these outstanding characteristics follow from
the weak and absent eigenvalue repulsion of the spectrum [211]. Whereas the eigenvalue repulsion for the complex
Ginibre ensemble, for instance, follows Eq. (1.27), the relative variance ⟨[δn (λ)]2⟩/ ⟨n (λ)⟩ for symmetric sparse
random matrices is equal to one for localized states (absent eigenvalue repulsion) and much smaller than one for
delocalized states (significant eigenvalue repulsion) [32]. Since both states appear in the spectrum of non-Hermitian
matrices, and hence in sparse non-Hermitian matrices, that feature seems to be also present in the diluted real Ginibre
ensemble spectrum, permitting the eigenvalues to be arbitrarily close to each other. Since our findings agree with the
results displayed by Ref. [45] for the CSD of noninvariant ensembles, they lead us to conjecture that properties (i),
(ii), and (iii) stand as new universal features for the diverse ensembles of sparse random matrices whether they are
Hermitian or non-Hermitian.

The results obtained in both studies highlight the efficiency and capacity of the theories to compute the statistical
and spectral properties of infinitely large sparse non-Hermitian random matrices. Had we stayed only with finite
numerical diagonalization, we would not have provided an accurate description of such properties. For instance,
while finite numerical diagonalization for the CSD indicated the accumulation of eigenvalues at the borders of the
disk of radius R = 0.5 (Fig. 2.4), the theory corrected such a misinterpretation and lets us conclude that they were
only finite-size effects.

In the end, we fulfilled the objectives we had set for ourselves. We provided an accurate description of the typical
and atypical fluctuations surrounding the random variable ND for the diluted real Ginibre ensemble and discovered
new universal features for the conditioned spectral density ρ (z|Rγ) that emerge when we add the sparsity condition to
non-Hermitian ensembles. Nevertheless, there are still many questions to be answered and properties to be discovered.
For instance, we desire a formal picture of the localization and delocalization properties for sparse non-Hermitian
random matrices as the one of Ref. [226]; in addition, we also wish to apply our method to different physical systems
that allow us to provide a more complete physical interpretation to the diverse results we have presented throughout
this thesis. All these are questions and objectives we intend to treat in future research.



Appendix A

Mathematical procedure for the full
counting statistics of ND

In this first appendix, we provide in detail the mathematical manipulations required for Chapter 2, Section 2.2, di-
viding them into four parts: firstly, the path integral formulation of the CGF Fγ (µ); secondly, the implementation
of the replica-symmetric ansatz; thirdly, the calculation of the continuous limit L → ∞; and lastly, the derivation of
the parametric rate function. The first Section A.1 covers from Eq. (2.14), the alternative expression for the ESD, to
the path integral representation of the CGF, Eq. (2.26); the second Section A.2 departs from the replica-symmetric
ansatz (Eq. (2.33)) implementation on the saddle-point equations of section 2.2.1 and arrives to Eqs. (2.35) and (2.36),
the explicit expressions for the joint probability distribution function ω and action S, respectively. The third Section
A.3 focuses on obtaining the final expressions for the cumulant generating function Fγ (µ) and path probability
ω [{Γ,R}] through the computation of the continuous limit L → ∞ and, finally, the last Section A.4 displays the
necessary mathematical handlings to obtain the parametric form of the rate function ϕγ (n), Eq. (2.48).

A.1 Constructing the path integral

Contrary to the well-known cases of symmetric and Hermitian random matrices [151], where the δ function appearing
in the spectral density is rewritten using the Sokhotski–Plemelj theorem [157] and immediately after the resulting
equation is formulated in terms of multivariate Gaussian integrals [10, 150], the treatment of Eq. (1.18) requires
further algebraic manipulations.

Given any number z ∈ C such that z = x+ iy, we obtain

∂z = 1
2

(∂x − i∂y) and ∂z∗ = 1
2

(∂x + i∂y) , (A.1)

with z∗ = x− iy the complex conjugate of z; hence, for any well-behaved function f , we have that ∂z∗∂zf = 1
4 ∇2f .

Recalling from electrostatics the fundamental solution to Poisson’s two-dimensional differential equation for a point
source electric potential (Green’s function) [228], ∇2 ln ∥x− x0∥2 = 4πδ (x− x0), and using the equality between
the Laplacian and the partial derivatives of z and z∗, we have that

∂z∗∂z ln
[
(z − z0) (z − z0)∗] = πδ (z − z0) . (A.2)

Inserting Eq. (A.2) into Eq. (1.18), we rewrite the ESD

ρA (z, z∗) = 1
Nπ

∂z∗∂z ln

([
N∏
i=1

(z − λi)

][
N∏
i=1

(z − λi)∗

])
, (A.3)

permitting us to arrive at Eq. (2.14).

Appealing to the definition of the wedge product ∧Nj=1duj = J ∧Nj=1 dvj with J the Jacobian [9], we find that
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´
dzdz∗ = −2i

´
dxdy. Consequently, from Eq. (2.14), we have that

NA (γ) = − 1
2πi

ˆ

D

∂z∗∂z ln det
[
(zIN −A) (zIN −A)†

]
dz∗dz, (A.4)

which, resorting to Green’s theorem
ffi

∂Ω

(f1dz + f2dz∗) =
¨

Ω

(∂zf2 − ∂z∗f1) dzdz∗ (A.5)

(Ω ⊆ C a connected compact set), placing f1 = ∂z ln det
[
(zIN −A) (zIN −A)†

]
, f2 = 0 derives in Eq. (2.15).

To arrive at Eq. (2.26), we need to decouple the sites i and j of Eq. (2.24). Then, using the well-known properties
of the Dirac δ function, we express the argument of the exponential function in the last row of Eq. (2.24) as

c

2N

N∑
i,j=1

ˆ L∏
ℓ=1

[( n+∏
a=1

dΨℓadΨ′
ℓa

n−∏
b=1

dΦℓbdΦ′
ℓb

) n+∏
a=1

δ (ψℓa −ψiℓa) δ
(
ψ′

ℓa −ψjℓa

) n−∏
b=1

δ (ϕℓb − ϕiℓb) δ
(
ϕ′

ℓb − ϕjℓb

)]

×

〈
exp

[
i

L∑
ℓ=1

{ n+∑
a=1

(
ψ†

ℓaJψ
′
ℓa +ψ′†

ℓaJ
†ψℓa

)
+

n−∑
b=1

(
ϕ†

ℓbJϕ
′
ℓb + ϕ′†

ℓbJ
†ϕℓb

)}]
− 1

〉
J

,

(A.6)

which we rewrite in terms of the order parameter P (Ψ,Φ) (Eq. (2.25))

c

2N

ˆ L∏
ℓ=1

( n+∏
a=1

dΨℓadΨ′
ℓa

n−∏
b=1

dΦℓbdΦ′
ℓb

)
P (Ψ, Φ) P

(
Ψ′Φ′)

×

〈
exp

[
i

L∑
ℓ=1

{ n+∑
a=1

(
ψ†

ℓaJψ
′
ℓa +ψ′†

ℓaJ
†ψℓa

)
+

n−∑
b=1

(
ϕ†

ℓbJϕ
′
ℓb + ϕ′†

ℓbJ
†ϕℓb

)}]
− 1

〉
J

.

(A.7)

To make easier the ensuing manipulations for Eq. (A.7), we introduce the short notation dΨ ≡
∏L
ℓ=1
∏n+
a=1 dΨℓa

and dΦ ≡
∏L
ℓ=1
∏n−
b=1 dΦℓb for the measures. Recalling the auxiliary functions

τ (Ψi, Φi) =
L∑

ℓ=1

( n+∑
a=1

ψ†
iℓaMη (zℓ+1, z∗

ℓ )ψiℓa +
n−∑
b=1

ϕ†
iℓbMη (zℓ, z∗

ℓ )ϕiℓb

)
(A.8)

and

Ξ
(
Ψ, Φ, Ψ′, Φ′) =

L∑
ℓ=1

[ n+∑
a=1

(
ψ†

ℓaJψ
′
ℓa +ψ′†

ℓaJ
†ψℓa

)
+

n−∑
b=1

(
ϕ†

ℓbJϕ
′
ℓb + ϕ′†

ℓbJ
†ϕℓb

)]
, (A.9)

together with Fourier’s functional form of Dirac’s δ [229], we write the last row of Eq. (2.24) as
ˆ

D
[{
P, P̂

}]
exp

(
c

2
N

ˆ
dΨdΨ′dΦdΦ′P (Ψ,Φ)P

(
Ψ′Φ′) 〈eiΞ(Ψ,Φ,Ψ′,Φ′) − 1

〉
J

)
× exp

[
iN

ˆ
dΨdΦP̂ (Ψ,Φ)

(
P (Ψ,Φ) − 1

N

N∑
i=1

δ (Ψ − Ψi) δ (Φ − Φi)

)]
.

(A.10)

Placing Eq. (A.10) into Eq. (2.24), we reformulate the cumulant generating function

Fγ(µ) = − lim
N→∞

lim
L→∞

lim
n±→ ±µ

2πi

lim
η→0+

1
N

ln
ˆ

D
[{

P, P̂
}] ˆ N∏

i=1

[
dΨidΦi exp

(
−τ (Ψi, Φi) − iP̂ (Ψi, Φi)

)]
× exp

[
c

2N

ˆ
dΨdΨ′dΦdΦ′P (Ψ, Φ) P

(
Ψ′Φ′) 〈eiΞ(Ψ,Φ,Ψ′,Φ′) − 1

〉
J

+ iN

ˆ
dΨdΦP (Ψ, Φ) P̂ (Ψ, Φ)

]
,

(A.11)

permitting us to arrive at the path integral expression of the CGF (Eq. (2.26)).
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A.2 The replica-symmetric ansatz and the path probability function

Using the Maclaurin series of the exponential together with the replica-symmetric ansatz, we rewrite Eq. (2.31) as

e−iP̂ (Ψ,Φ) =
∞∑

k=0

e−cck

k!

ˆ ( k∏
r=1

L∏
ℓ=1

dΣrℓdΓrℓ

)[
k∏

r=1

ω
(

{Σrℓ, Γrℓ}L
ℓ=1

)] ˆ ( k∏
r=1

dΨ′
rdΦ′

r

)〈
k∏

r=1

L∏
ℓ=1

×

 n+∏
a=1

e
−ψ′†

rℓa
Σ−1

rℓ
ψ′

rℓa+i
(
ψ

†
ℓa
Jrψ

′
rℓa+ψ′†

rℓa
J†

rψℓa

)
det Σrℓ

n−∏
b=1

e
−ϕ′†

rℓb
Γ−1

rℓ
ϕ′

rℓb+i
(
ϕ

†
ℓb
Jrϕ

′
rℓb+ϕ′†

rℓb
J†

rϕℓb

)
det Γrℓ

〉
J1,...,k

,

(A.12)

which, using the well-known Gaussian integrals, can be reexpressed as

e−iP̂ (Ψ,Φ) =
∞∑

k=0

e−cck

k!

ˆ ( k∏
r=1

L∏
ℓ=1

dΣrℓdΓrℓ

)[
k∏

r=1

ω
(

{Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
k∏

r=1

L∏
ℓ=1

[ n+∏
a=1

exp
(

−ψ†
ℓaJrΣrℓJ

†
rψℓa

) n−∏
b=1

exp
(

−ϕ†
ℓbJrΓrℓJ

†
rϕℓb

)]〉
J1,...,k

.

(A.13)

Placing Eq. (A.13) into Eq. (2.32) and recognizing its denominator as a constant Λ, we rewrite the second-saddle
point equation

P (Ψ, Φ) = 1
Λ

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

L∏
ℓ=1

dΣrℓdΓrℓ

)[
k∏

r=1

ω
(

{Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
L∏

ℓ=1

( n+∏
a=1

e−ψ†
ℓa[Mη(zℓ+1,z∗

ℓ )+
∑k

r=1 JrΣrℓJ
†
r]ψℓa

n−∏
b=1

e−ϕ†
ℓb[Mη(zℓ,z∗

ℓ )+
∑k

r=1 JrΓrℓJ
†
r]ϕℓb

)〉
J1,...,k

,

(A.14)

where, appealing to the Dirac δ function, we reformulate as

P (Ψ, Φ) = 1
Λ

∞∑
k=0

e−cck

k!

ˆ ( L∏
ℓ=1

dΣℓdΓℓ

) ˆ ( k∏
r=1

L∏
ℓ=1

dΣrℓdΓrℓ

)[
k∏

r=1

ω
(

{Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
exp

[
−

L∑
ℓ=1

{
n+ ln det

(
Mη(zℓ+1, z∗

ℓ ) +
k∑

r=1

JrΣrℓJ
†
r

)
+ n− ln det

(
Mη(zℓ, z∗

ℓ ) +
k∑

r=1

JrΓrℓJ
†
r

)}]

×
L∏

ℓ=1

δ

[
Σℓ − 1

Mη(zℓ+1, z∗
ℓ ) +

∑k
r=1 JrΣrℓJ

†
r

]
δ

[
Γℓ − 1

Mη(zℓ, z∗
ℓ ) +

∑k
r=1 JrΓrℓJ

†
r

]〉
J1,...,k

×
L∏

ℓ=1

( n+∏
a=1

e−ψ†
ℓa

Σ−1
ℓ
ψℓa

det Σℓ

n−∏
b=1

e−ϕ†
ℓb

Γ−1
ℓ
ϕℓb

det Γℓ

)
.

(A.15)

From Eqs. (A.15) and (2.33), we deduce that

ω
(

{Σℓ, Γℓ}L
ℓ=1

)
= 1

Λ

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

L∏
ℓ=1

dΣrℓdΓrℓ

)[
k∏

r=1

ω
(

{Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
e−

∑L
ℓ=1[n+ ln det(Mη(zℓ+1,z∗

ℓ )+
∑k

r=1 JrΣrℓJ
†
r)+n− ln det(Mη(zℓ,z∗

ℓ )+
∑k

r=1 JrΓrℓJ
†
r)]

×
L∏

ℓ=1

δ

[
Σℓ − 1

Mη(zℓ+1, z∗
ℓ ) +

∑k
r=1 JrΣrℓJ

†
r

]
δ

[
Γℓ − 1

Mη(zℓ, z∗
ℓ ) +

∑k
r=1 JrΓrℓJ

†
r

]〉
J1,...,k

,

(A.16)

which, with the replica limits n± → ±µ/2πi computed and the implementation of the 2 × 2 complex auxiliary
matrices Υℓ and ζℓ from Eq. (2.37), turns into Eq. (2.35). The procedure to arrive at Eq. (2.36) is quite similar to the
one carried out for the joint probability ω

(
{Σℓ,Γℓ}Lℓ=1

)
, i.e., it is based on the same mathematical manipulations.
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Resorting to Eqs. (A.8) and (A.9), together with the first saddle-point equation (Eq. (2.31)), we rewrite the action
S
[{
P, P̂

}]
(Eq. (2.27)) as

S
[{

P, P̂
}]

= − ln
ˆ

dΨdΦe−τ(Ψ,Φ)−iP̂ (Ψ,Φ) + c

2

ˆ
dΨdΦdΨ′dΦ′P (Ψ, Φ) P̂

(
Ψ′, Φ′) 〈eiΞ(Ψ,Φ,Ψ′,Φ′)

〉
J

− c

2 .

(A.17)
The remaining procedure encompasses solving the two integrals appearing in Eq. (A.17). For the term involving the

logarithm, we appeal to Eq. (A.13) and compute the Gaussian integrals, arriving at the expression

− ln
∞∑

k=0

e−cck

k!

ˆ ( k∏
r=1

L∏
ℓ=1

dΣrℓdΓrℓ

)[
k∏

r=1

ω
(

{Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
exp

[
−

L∑
ℓ=1

{
n+ ln det

(
Mη (zℓ+1, z∗

ℓ ) +
k∑

r=1

JrΣrℓJ
†
r

)
+ n− ln det

(
Mη (zℓ, z∗

ℓ ) +
k∑

r=1

JrΓrℓJ
†
r

)}]〉
J1,...,k

.

(A.18)

For the missing term, we introduce the replica-symmetric ansatz into the second integral of Eq. (A.17) and solving
the Gaussian integrals we obtain

c

2

ˆ [ L∏
ℓ=1

dΣℓdΓℓdΣ′
ℓdΓ′

ℓ

]
ω
(

{Σℓ, Γℓ}L
ℓ=1

)
ω
({

Σ′
ℓ, Γ′

ℓ

}L

ℓ=1

)
×

〈
exp

[
−

L∑
ℓ=1

{
n+ ln det

(
I2 + ΣℓJΣ′

ℓJ
†
)

+ n− ln det
(
I2 + ΓℓJΓ′

ℓJ
†
)}]〉

J

.

(A.19)

Adding both terms, (A.18) and (A.19), together with the 2 × 2 complex auxiliary matrices Υℓ, ζℓ and νℓ, ξℓ from
Eqs. (2.37) and (2.38), respectively, and after computing the replica limit n± → ±µ/2πi assuming it yield the correct
results, we arrive at Eq. (2.36).

A.3 The continuous limit throughout the γ contour

Recalling the definition of theMη matrix (Eq. (2.21)), we find

Mη(zℓ+1, z
∗
ℓ ) = Mη(zℓ, z∗

ℓ ) + i∆zℓσ+ +O
(
∆z2

ℓ

)
, (A.20)

for ∆zℓ ≪ 1. Then, expanding all quantities in powers of ∆zℓ up to the leading term, we obtain the equality(
Mη (zℓ+1, z∗

ℓ ) +
k∑

r=1

JrΣrℓJ
†
r

)−1

= 1
Mη (zℓ, z∗

ℓ ) +
∑k

r=1 JrΣrℓJ
†
r

(
I2 − σ+

i∆zℓ

Mη (zℓ, z∗
ℓ ) +

∑k
r=1 JrΣrℓJ

†
r

)
.

(A.21)
Looking at the δ arguments of Eq. (2.35), it turns out convenient to perform the change of variable Σℓ → Γℓ+∆zℓRℓ,
withRℓ ∈ M2×2 (C) for all ℓ ∈ {1, ..., L}, leading us to write the right-hand side of Eq. (A.21)

1
Mη (zℓ, z∗

ℓ ) +
∑k
r=1 JrΓrℓJ

†
r

+ ∆zℓ

[
1

Mη (zℓ, z∗
ℓ ) +

∑k
r=1 JrΓrℓJ

†
r

iσ+
1

Mη (zℓ, z∗
ℓ ) +

∑k
r=1 JrΓrℓJ

†
r

+

1
Mη (zℓ, z∗

ℓ ) +
∑k
r=1 JrΓrℓJ

†
r

k∑
r=1

JrRrℓJ
†
r

1
Mη (zℓ, z∗

ℓ ) +
∑k
r=1 JrΓrℓJ

†
r

]
,

(A.22)

where we did use that terms of order O
(
∆z2

ℓ

)
vanish and that under the proposed change of variable

1
Mη (zℓ+1, z∗

ℓ ) +
∑k

r=1 JrΣrℓJ
†
r

→ 1
Mη (zℓ, z∗

ℓ ) +
∑k

r=1 JrΓrℓJ
†
r

[
I2 − ∆zℓ

∑k
r=1 JrRrℓJ

†
r

Mη (zℓ, z∗
ℓ ) +

∑k
r=1 JrΓrℓJ

†
r

]
.

(A.23)
Rewriting the measure of Eq. (2.35) throughout the computation of the Jacobian, using that for A ∈ MN×N (C)
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det eA = eTrA, and computing the limit L → ∞ in the resulting equations, we arrive at the expressions

ω [{Γ,R}] = 1
Λ

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

d {Γr,Rr} ω [{Γr,Rr}]

)〈
δF

[
R(z) + Γ(z)

(
iσ+ +

k∑
r=1

JrRr(z)Jr

)
Γ(z)

]

× δF

[
Γ(z) − 1

Mη(z, z∗) +
∑k

r=1 JrΓr(z)J†
r

]
e

− µ
2πi

fl
γ dzTr

(
iσ++

∑k
r=1 JrRr(z)Jr

Mη(z,z∗)+
∑k

r=1 JrΓr(z)J
†
r

)〉
J1,...,k

(A.24)

and

S = − c

2 − ln
∞∑

k=0

e−cck

k!

ˆ ( k∏
r=1

d {Γr,Rr} ω [{Γr,Rr}]

)〈
e

− µ
2πi

fl
γ dzTr

(
iσ++

∑k
r=1 JrRr(z)Jr

Mη(z,z∗)+
∑k

r=1 JrΓr(z)J
†
r

)〉
J1,...,k

+ c

2

ˆ
d {Γ,R} d

{
Γ′,R′}ω ({Γ,R}) ω

({
Γ′,R′})〈e

− µ
2πi

fl
γ dzTr

(
Γ(z)JR′(z)J†+R(z)JΓ′(z)J†

I2+Γ(z)JΓ′(z)J†

)〉
J

(A.25)

for the path probability and action, respectively.

Appealing to the complex auxiliary matrices of Eqs. (2.40) and (2.45), together with the average ⟨· · · ⟩{Γ,R}
defined in Eq. (2.41) and the fact that under integration

Γ (z) →

(
Mη(z, z∗) +

k∑
r=1

JrΓr(z)J†
r

)−1

(A.26)

and

R (z) → −Γ(z)

(
iσ+ +

k∑
r=1

JrRr(z)Jr

)
Γ(z), (A.27)

we arrive at Eqs. (2.39) and (2.42) for the cumulant generating function Fγ (µ) and path probability ω [{Γ,R}],
respectively. Note that throughout the development of the present section, we have dropped the auxiliary matrix
notation and worked directly with the full-length equations so that we could correctly display the calculations.

A.4 Computing the rate function
Resorting to Eq. (1.7), we write the rate function ϕγ in terms of the probability density PA of NA

PA (NA) ≍ e−Nϕγ (n), (A.28)

making possible to formulate the cumulant generating function as

Fγ(µ) = − lim
N→∞

1
N

ln
ˆ

exp
[
−µNA −NΦ

(
NA
N

)]
dNA. (A.29)

Employing the saddle-point method, we obtain that

Fγ (µ) ≍ − sup
n∈R

{−µn− Φ(n)} ≡ −Φ̃ (−µ) . (A.30)

Thanks to having assumed the Gärtner-Ellis theorem to hold, we know that the rate function ϕγ (n) is convex re-
gardless of the CGF form [78, 84]. Assuming that ϕγ (n) is also differentiable, and observing that n = Φ̃′ (µ) and
Φ(n) = µΦ̃′(µ) − Φ̃(µ), we arrive finally at Eq. (2.48).



Appendix B

Mathematical handlings of the CSD for the
diluted real Ginibre ensemble

In this second appendix, we display, in detail, all the mathematical handlings of Section 2.3, Chapter 2. As we did
in Appendix A, we have divided the handling into three sections: firstly, the path integral formulation of the CSD;
secondly, the implementation of the replica-symmetry ansatz; and, finally, the computation of the partial derivatives
∂z∗ and ∂z . For the first Section B.1, we commence from Eq. (2.14), the alternative expression of the ESD, and build
the path integral equation for the CSD (Eq. (2.67)); immediately after, in Section B.2, we implement the replica-
symmetry ansatz on the resulting saddle point equations of Section 2.3.1 and obtain explicit expressions for the joint
probability function ω and action S (Eqs. (2.75) and (2.76), respectively). Owing to the calculation of the L → ∞
limit is analogous to the one carried out in Section A.3, we skipp it and present directly in Section B.3 the explicit
computation of the ∂z∗ and ∂z derivatives.

B.1 Building the path integral

Appealing to Eq. (2.59) and the CGF (Eq. (2.10)), we rewrite the CSD (Eq. (2.58)) as

ρ (z|Rγ) = − lim
N→∞

lim
n→0

1
nNπ

∂z∂z∗

´
e−N [Fγ (µ)−µRγ ] ln

(〈
e−µNA(γ) [QA(z, z∗)]n

〉
/e−NFγ (µ)) dµ´

e−N [Fγ (µ)−µRγ ]dµ
. (B.1)

Utilizing that by the saddle-point method
ˆ
e−N [Fγ (µ)−µRγ ] ln

〈
e−µNA(µ) [QA (z, z∗)]n

〉
dµ ≍ e−N [Fγ (µ0)−µ0Rγ ] ln

〈
e−µ0NA(µ) [QA (z, z∗)]n

〉
(B.2)

and ˆ
e−N [Fγ (µ)−µRγ ]dµ ≍ e−N [Fγ (µ0)−µ0Rγ ], (B.3)

with µ0 the point where the function Fγ (µ) − µRγ attains its minimum, we arrive at Eq. (2.60) with Eq. (2.61), the
resulting saddle-point condition.

To arrive at Eq. (2.67), we need to decouple the sites i and j of the general expression of ρ (z|Rγ) (Eq. (2.65)).
Then, analogous to Eq. (A.6), we rewrite the term involving the average ⟨· · · ⟩J of Eq. (2.65) as

c

2N

N∑
i,j=1

ˆ L∏
ℓ=1

[ n+∏
a=1

δ (ψℓa −ψiℓa) δ
(
ψ′

ℓa −ψjℓa

) n−∏
b=1

δ (ϕℓb − ϕiℓb) δ
(
ϕ′

ℓb − ϕjℓb

)] [ n∏
c=1

δ (Ωc − Ωic) δ
(
Ω′

c − Ωjc

)]

×
〈

e
i
{∑n

c=1(Ω†
cJΩ′

c+Ω′†
c J

†Ωc)+
∑L

ℓ=1

[∑n+
a=1

(
ψ

†
ℓa
Jψ′

ℓa+ψ′†
ℓa
J†ψℓa

)
+
∑n−

b=1

(
ϕ

†
ℓb
Jϕ′

ℓb+ϕ′†
ℓb
J†ϕℓb

)]}
− 1
〉
J

dΨdΦdΩdΨ′dΦ′dΩ′,

(B.4)
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which, by means of the order parameter P (Ψ,Φ,Ω) of Eq. (2.66), transforms into

c

2N

ˆ
dΨdΦdΩdΨ′dΦ′dΩ′P (Ψ, Φ, Ω) P

(
Ψ′, Φ′, Ω′)

×
〈

e
i
{∑n

c=1(Ω†
cJΩ′

c+Ω′†
c J

†Ωc)+
∑L

ℓ=1

[∑n+
a=1

(
ψ

†
ℓa
Jψ′

ℓa+ψ′†
ℓa
J†ψℓa

)
+
∑n−

b=1

(
ϕ

†
ℓb
Jϕ′

ℓb+ϕ′†
ℓb
J†ϕℓb

)]}
− 1
〉
J

.

(B.5)

To facilitate the handling of the subsequent equations, we have introduced the shorthand notation dΩ ≡
∏n
c=1 dΩc,

dΨ ≡
∏L
ℓ=1
∏n+
a=1 dΨℓa, and dΦ ≡

∏L
ℓ=1
∏n−
b=1 dΦℓb. Insering Eq. (B.5) into Eq. (2.65) and using the auxiliary

functions

τ (Ψi,Φi,Ωi) =
n∑
c=1

Ω†
icMη(z, z∗)Ωic +

L∑
ℓ=1

(
n+∑
a=1

ψ†
iℓaMη(ωℓ+1, ω

∗
ℓ )ψiℓa +

n−∑
b=1

ϕ†
iℓbMη(ωℓ, ω∗

ℓ )ϕiℓb

)
(B.6)

and

Ξ
(
Ψ,Φ,Ω,Ψ′,Φ′,Ω′) =

L∑
ℓ=1

[
n+∑
a=1

(
ψ†
ℓaJψ

′
ℓa +ψ′†

ℓaJ
†ψℓa

)
+

n−∑
b=1

(
ϕ†
ℓbJϕ

′
ℓb + ϕ′†

ℓbJ
†ϕℓb

)]

+
n∑
c=1

(
Ω†
cJΩ′

c + Ω′†
c J

†Ωc

)
,

(B.7)

together with the Fourier representation of the functional Dirac δ for the exponential term of Eq. (2.65) involving the
average over the disorder ⟨· · · ⟩J , we arrive at the expression

ρ (z|Rγ) = lim
N→∞

lim
L→∞

lim
n→0

lim
n±→ ±µ

2πi

lim
η→0+

−1
nNπ

∂z∂z∗ ln
ˆ

D
[{

P, P̂
}] ˆ N∏

i=1

[
dΨidΦidΩie

−τ(Ψi,Φi,Ωi)−iP̂ (Ψi,Φi,Ωi)
]

× exp
(

c

2N

ˆ
dΨdΦdΩdΨ′dΦ′dΩ′P (Ψ, Φ, Ω) P

(
Ψ′, Φ′, Ω′) 〈eiΞ(Ψ,Φ,Ω.Ψ′,Φ′,Ω′) − 1

〉
J

)
× exp

[
iN

ˆ
dΨdΦdΩP̂ (Ψ, Φ, Ω) P (Ψ, Φ, Ω)

]
,

(B.8)

from which the path integral formulation for the CSD detaches (Eq. (2.67)) with its action provided by Eq. (2.68).

B.2 The replica-symmetric ansatz and the joint probability distribution
Following the same path carried out for Eq. (A.12), we rewrite Eq. (2.71) as

e−iP̂ (Ψ,Φ,Ω) =
∞∑

k=0

e−cck

k!

ˆ [ k∏
r=1

(
d∆r

L∏
ℓ=1

dΣrℓdΓrℓ

)
ω
(

∆r, {Σrℓ, Γrℓ}L
ℓ=1

)] ˆ ( k∏
r=1

dΨ′
rdΦ′

rdΩ′
r

)

×

〈
k∏

r=1

[
n∏

c=1

e−Ω′†
rc∆−1

r Ω′
rc+i(Ω†

cJrΩ′
rc+Ω′†

rcJ
†
rΩc)

det ∆r

L∏
ℓ=1

( n+∏
a=1

e
−ψ′†

rℓa
Σ−1

rℓ
ψ′

rℓa+i
(
ψ

†
ℓa
Jrψ

′
rℓa+ψ′†

rℓa
J†

rψℓa

)
det Σrℓ

×
n−∏
b=1

e
−ϕ′†

rℓb
Γ−1

rℓ
ϕ′

rℓb+i
(
ϕ

†
ℓb
Jrϕ

′
rℓb+ϕ′†

rℓb
J†

rϕℓb

)
det Γrℓ

)]〉
J1,...,k

;

(B.9)

solving the integrals for the variables
(
Ψ′,Φ′,Ω′), we obtain an equivalent expression to Eq. (A.13),

e−iP̂ (Ψ,Φ,Ω) =
∞∑

k=0

e−cck

k!

ˆ [ k∏
r=1

(
d∆r

L∏
ℓ=1

dΣrℓdΓrℓ

)
ω
(

∆r, {Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
k∏

r=1

(
n∏

c=1

e−ΩcJr∆rJ
†
rΩc

L∏
ℓ=1

[ n+∏
a=1

e−ψ†
ℓa
JrΣrℓJ

†
rψℓa

n−∏
b=1

e−ϕ†
ℓb
JrΓrℓJ

†
rϕℓb

])〉
J1,...,k

.

(B.10)
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Inserting Eq. (B.10) into Eq. (2.72), we get an analogous expression to Eq. (A.15) for the CSD, where we identify

ω
(

∆, {Σℓ, Γℓ}L
ℓ=1

)
= 1

N

∞∑
k=0

e−cck

k!

ˆ [ k∏
r=1

(
d∆r

L∏
ℓ=1

dΣrℓdΓrℓ

)
k∏

r=1

ω
(

∆r, {Σrℓ, Γrℓ}L
ℓ=1

)]

×

〈
δ

[
∆ − 1

Mη (z, z∗) +
∑k

r=1 Jr∆rJ
†
r

]
e−n ln det(Mη(z,z∗)+

∑k
r=1 Jr∆rJ

†
r)

× e−
∑L

ℓ=1[n+ ln det(Mη(zℓ+1,z∗
ℓ )+

∑k
r=1 JrΣrℓJ

†
r)+n− ln det(Mη(zℓ,z∗

ℓ )+
∑k

r=1 JrΓrℓJ
†
r)]

×
L∏

ℓ=1

δ

[
Σℓ − 1

Mη(zℓ+1, z∗
ℓ ) +

∑k
r=1 JrΣrℓJ

†
r

]
δ

[
Γℓ − 1

Mη(zℓ, z∗
ℓ ) +

∑k
r=1 JrΓrℓJ

†
r

]〉
J1,...,k

(B.11)

as the joint probability distribution function. Identifying the expressions within the arguments of the exponential and
δ functions as the ones appearing in the 2 × 2 complex auxiliary matrices Υℓ, ζℓ, and F of Eqs. (2.37) and (2.77), we
successfully arrive at Eq. (2.75).

As we did for Fγ (µ), we express the CSD action in terms of the functions τ and Ξ (Eqs. (B.6) and (B.7)),

S
[{
P, P̂

}]
= − c

2
+ c

2

ˆ
dΨdΦdΩdΨ′dΦ′dΩ′P (Ψ,Φ,Ω) P̂

(
Ψ′,Φ′,Ω′) 〈eiΞ(Ψ,Φ,Ω,Ψ′,Φ′,Ω′)

〉
J

− ln
ˆ

dΨdΦdΩe−τ(Ψ,Φ,Ω)−iP̂ (Ψ,Φ,Ω);
(B.12)

solving the first and second integrals, we obtain

c

2

ˆ [
d∆d∆′

L∏
ℓ=1

dΣℓdΓℓdΣ′
ℓdΓ′

ℓ

]
ω
(

∆, {Σℓ,Γℓ}Lℓ=1

)
ω
(

∆′,
{

Σ′
ℓ,Γ

′
ℓ

}L
ℓ=1

)
×

〈
exp

[
−n ln det

(
I2 + ∆J∆′J†

)
−

L∑
ℓ=1

{
n+ ln det

(
I2 + ΣℓJΣ′

ℓJ
†
)

+ n− ln det
(
I2 + ΓℓJΓ′

ℓJ
†
)}]〉

J

(B.13)

and

ln
∞∑

k=0

e−cck

k!

ˆ ( k∏
r=1

[
d∆r

L∏
ℓ=1

dΣrℓdΓrℓ

])[
k∏

r=1

ω
(

∆r, {Σrℓ, Γrℓ}L
ℓ=1

)]〈
e−n ln det(Mη(z,z∗)+

∑k
r=1 Jr∆rJ

†
r)

× exp

[
−

L∑
ℓ=1

{
n+ ln det

(
Mη (ωℓ+1, ω∗

ℓ ) +
k∑

r=1

JrΣrℓJ
†
r

)
+ n− ln det

(
Mη (ωℓ, ω∗

ℓ ) +
k∑

r=1

JrΓrℓJ
†
r

)}]〉
J1,...,k

,

(B.14)

respectively. Resorting to the complex matrices Υℓ, ζℓ, F and K, we manage to arrive finally at Eq. (2.76).

B.3 Computing ∂z∗ and ∂z for the conditioned spectral density

The calculation of the continuum limit L → ∞ in Eqs. (2.75) and (2.76) is analogous to the one carried out for the
CGF (Eqs. (A.20)-(A.25)), leading us to an exact equation for the functional density,

ω [∆, {Γ,R}] = 1
N

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

d∆rd {Γr,Rr} ω [∆r, {Γr,Rr}]

)〈
exp (µW [{Γ,R}] + n ln det ∆)

× δ

[
∆ − 1

Mη (z, z∗) +
∑k

r=1 Jr∆rJ
†
r

]
δF

[
Γ (ω) − 1

Mη (ω, ω∗) +
∑k

r=1 JrΓr (ω)J†
r

]

× δF

[
R (ω) + Γ (ω)

(
iσ+ +

k∑
r=1

JrRr (ω)J†
r

)
Γ (ω)

]〉
J1,...,k

,

(B.15)
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and action,

S = c

2

〈〈
exp

−n ln det
(
I2 + ∆J∆′J†

)
− µ

2πi

ffi

γ

Tr [G (ω)H (ω)] dω

〉
J

〉
∆,{Γ,R},∆′,{Γ′,R′}

− c

2
− ln

〈
exp

[
−n ln det

(
Mη (z, z∗) +

k∑
r=1

Jr∆rJ
†

)
−W [{Γ,R}]

]〉
∆,{Γ,R}

,

(B.16)

where W [{Γ,R}] is given by Eq. (2.44) and G (ω), H (ω) ∈ M2×2 (C) are the auxiliary matrices defined in
Eq. (2.40). For both expressions, (B.15) and (B.16), we have used the fact that under integration,

∆ →

(
Mη (z, z∗) +

k∑
r=1

Jr∆rJ
†

)−1

, (B.17)

Γ (ω) →

(
Mη (ω, ω∗) +

k∑
r=1

JrΓr (ω)J†

)−1

, (B.18)

and

R (ω) → −Γ (ω)

(
iσ+ +

k∑
r=1

JrRr (ω)J†
r

)
Γ (ω) ; (B.19)

note that in (B.18) and (B.19), the continuum limit L → ∞ has already been computed. In order to correctly display
the subsequent manipulations, we momentarily abandon the auxiliary matrices notation and work with the full-length
expressions.

From the asymptotic convergence of ρ (z|Rγ) (Eq. (2.30)), we observe that calculating the first derivative ∂z∗ on
the logarithm of the path integral translates into computing ∂z∗ directly on the action S. Since we expressed the latter
in terms of averages over the functional density ω [∆, {Γ,R}], we have

∂S
∂z∗ = ∂ω

∂z∗
∂S
∂ω

+ ∂S
∂z∗ . (B.20)

In other words, to obtain ∂z∗S, we need to calculate the partial derivative of ω [∆, {Γ,R}], which, by its expression,
seems like a complicated task. Fortunately, appealing to the saddle-point equations, Eqs. (2.71) and (2.72), we manage
to write

∂S
∂ω

= ∂S
∂P

∂P

∂ω
+ ∂S
∂P̂

∂P̂

∂ω
, (B.21)

where both ∂PS and ∂P̂S are equal to zero. Therefore, post calculation, we express ρ (z|Rγ) in terms of the partial
derivative ∂z and the limit η → 0+,

ρ (z|Rγ) = 1
π

lim
η→0+

∂z ⟨Tr [iσ−∆ (z)]⟩∆,{Γ,R} , (B.22)

with

ω [∆, {Γ,R}] = 1
N

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

d∆rd {Γr,Rr} ω [∆r, {Γr,Rr}]

)〈
exp

 µ

2πi

ffi

γ

Tr
[
Γ−1(z)R(z)

]
dz


× δ

[
∆ (z) − 1

Mη (z, z∗) +
∑k

r=1 Jr∆rJ
†
r

]
δF

[
Γ (ω) − 1

Mη (ω, ω∗) +
∑k

r=1 JrΓr (ω)J†
r

]

× δF

[
R (ω) + Γ (ω)

(
iσ+ +

k∑
r=1

JrRr (ω)J†
r

)
Γ (ω)

]〉
J1,...,k

.

(B.23)

the corresponding functional density. Noteworthy is that in Eq. (B.23), in contrast with Eq. (B.15), we have already
calculated the replica limit n → 0.
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As mentioned in Subsection 2.3.1, calculating both the partial derivative ∂z∗ and the replica limit n → 0 was a
straightforward procedure. To compute the remaining derivative ∂z , we must proceed with a deeper analysis. We
assume a dependence of the functional density of Eq. (B.23) on ∂z of the form

δ

(
∂z∆ − ∂z

1
Mη (z, z∗) +

∑k
r=1 Jr∆rJ

†
r

)
. (B.24)

Realizing the change of variable z → z + ∆z so ∆ → ∆ + ∆z∂z∆, we obtain

1
Mη (z, z∗) +

∑k
r=1 Jr∆rJ

†
r

→ 1
Mη (z, z∗) +

∑k
r=1 Jr∆rJ

†
r

[
I2 − ∆z

iσ+ +
∑k
r=1 Jr∂z∆rJ

†

Mη (z, z∗) +
∑k
r=1 Jr∆rJ

†
r

]
,

(B.25)
from where we identify

∂z∆ = − 1
Mη (z, z∗) +

∑k
r=1 Jr∆rJ

†
r

(
iσ+ +

∑k
r=1 Jr∂z∆rJ

†

Mη (z, z∗) +
∑k
r=1 Jr∆rJ

†
r

)
. (B.26)

Combining all the above expressions, we arrive at the final equation of the conditioned spectral density ρ (z|Rγ)
for the diluted real Ginibre ensemble (Eq. (2.78)) with the functional density ω [∆, ∂z∆, {Γ,R}] given by Eq. (2.81).



Appendix C

Population dynamics algorithm

For this third appendix, we depict the bases of the population dynamics algorithm and, by two simple schemes, we
illustrate its implementation in Eqs. (2.42) and (2.81).

In general, equations such as (2.42) and (2.81) cannot be solved in closed form; consequently, one must appeal to
numerical methods to estimate the functional densities ω [{Γ,R}] and ω [∆, ∂z∆, {Γ,R}], respectively. The method
we use to estimate both distributions is known in statistical physics as the population dynamics algorithm [96]. This
algorithm efficiently generates samples of random variables whose distribution closely approximates the so-called
special endogeneous1 solution to a stochastic fixed-point equation [230]. In general, stochastic fixed-point equations
can possess various solutions; nevertheless, one is commonly interested in the so-called endogenous solutions, that
is, solutions obtained via weighted branching processes [230, 231]. It could happen that the endogenous solution is
not unique, but it is still possible to characterize all endogenous solutions via the special endogenous solution, which
is the only attracting solution constructed by iterating the stochastic fixed-point equation [230].

The idea behind this method is to approximate the target distribution through a sample of N i.i.d. copies of the
random variables, called population, on which the distribution evolves [96]. The algorithm performance is based
on sampling with a constant replacement of the random variables from the population as iterations advance, i.e., the
next level of recursion samples with replacement from the population previously replaced according to the target
distribution [230]. As N becomes large, the empirical distributions should converge to the actual desired distribution
[96].

For Subsection 2.2, the distribution to approximate corresponds to Eq. (2.42),

ω [{Γ,R}] = 1
Λ

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

d {Γr,Rr} ω [{Γr,Rr}]

)
eµW [{Γ,R}] ⟨δF [R(z) − Πk(z)] δF [Γ(z) − χk(z)]⟩J1,...,k

,

(C.1)
which, as we have explained, is discretized into a finite collection of points {z1, . . . , zL} with the 2×2 complex matri-
ces {Γ(zℓ),R(zℓ)}Lℓ=1 (Eq. (2.49)). Now, we illustrate how ω [{Γ,R}] is solved numerically through the population
dynamics algorithm:

1. Firstly, we introduce a population of the form {Rα(z1), . . . ,Rα(zL),Γα(z1), . . . ,Γα(zL)}Mα=1.

2. Immediately after, we draw a random number k ∈ Z+ from a Poisson distribution e−cck/k! with average c.
We randomly pick k elements {Γβ(z1), . . . ,Γβ(zL),Rβ(z1), . . . ,Rβ(zL)}kβ=1 from the initial population and
create the set of 2 × 2 complex matrices {J1, . . . ,Jk} to compute the Dirac δ operations of Eq. (C.1).

3. Next, we calculate the weighted factor W [{Γ,R}] via the Eq. (2.50) and replace np members of the original
population according to the following procedure: for each value of np, we draw a random number rnp

from a
uniform distribution between 1 and M such that{

Γrj
(z1), . . . ,Γrj

(zL)
}np

j=1 → {χk(z1), . . . ,χk(zL)}

and {
Rrj (z1), . . . ,Rrj (zL)

}np

j=1 → {−Πk(z1), . . . ,−Πk (zL)} .
1An endogeneous variable is a random variable in a statistical model that is determined by its relation with the other varaibles within the model.
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4. Finally, we return to the second step until we have achieved convergence.

For subsection 2.3 the probability distribution to approximate is more complicated and corresponds to Eq. (2.81),

ω [∆, ∂z∆, {Γ,R}] = 1
N

∞∑
k=0

e−cck

k!

ˆ ( k∏
r=1

d∆rd (∂z∆r) d {Γr,Rr} ω [∆r, ∂z∆r, {Γr,Rr}]

)
eµW [{Γ,R}]

×
〈

δ [∆ (z) − χ̂k (z)] δ
[
∂z∆ (z) − Π̂k (z)

]
δF [Γ (ω) − χk (ω)] δF [R (ω) − Πk (ω)]

〉
J1,...,k

;

(C.2)

nonetheless, the algorithm’s base remains the same.

1. We introduce the population {∆α, ∂z∆α,Rα(ω1), . . . ,Rα(ωL),Γα(ω1), . . . ,Γα(ωL)}Mα=1.

2. Subsequently, we draw a number k ∈ Z+ according to a Poisson distribution with average c. We randomly
select k elements {∆β , ∂z∆β ,Rβ(ω1), . . . ,Rβ(ωL),Γβ(ω1), . . . ,Γβ(ωL)}Mβ=1 from the initial population
and create the set of matrices {J1, . . . ,Jk}, with Jβ ∈ M2×2 (C) for all β = 1, . . . , k.

3. We evaluate the weight factorW [{Γ,R}] via the Eq. (2.50) and replace np members of the original population
according to {

∆rj
(z)
}np

j=1 → χ̂k (z) ,
{
∂z∆rj

(z)
}np

j=1 → Π̂k (z) ,

{
Γrj

(ω1), . . . ,Γrj
(ωL)

}np

j=1 → {χk(ω1), . . . ,χk(ωL)} ,

and {
Rrj

(ω1), . . . ,Rrj
(ωL)

}np

j=1 → {−Πk(ω1), . . . ,−Πk (ωL)} ,

with rj a random number drawn from a uniform distribution between 1 and M for all j = 1, . . . , np.

4. To conclude, we return to step 2 until we have achieved convergence.

As we can see, the population dynamics algorithm is a highly efficient procedure to obtain the probability distribution
of cases when an analytical solution seems hopeless. The effectiveness of the algorithm can be observed through the
different figures displayed within the main text.



Appendix D

Monte Carlo methods

In this last appendix, we present a concise overview of the Monte Carlo methods (MCM), centring our attention
on the Metropolis algorithm; to provide an appropriate description, we have partitioned the appendix into six parts.
We begin in Section D.1 by introducing the general motivations behind the MCM; immediately after, we move to
Section D.2, displaying the concepts of simple and importance sampling. In Section D.3, we introduce the basic
definitions of Markov processes, and in Sections D.4 and D.5, we present the conditions of ergodicity, detailed
balance, and acceptance ratios. Finally, in Section D.6 we place all the previous concepts together and introduce the
Metropolis algorithm.

D.1 Bases

Many of the calculations performed on statistical mechanics focus on the properties of condensed matter systems.
The problem in these calculations is the fact that such systems are composed of atoms and molecules; even when
these components follow quite simple equations of motion or are generally all the same, it is the large number of
equations (the magnitude of the problem) that is responsible for the lacking of exact solutions. In other words, while
the formal developments of statistical mechanics are commonly quite elegant, the computation of properties for some
models turns out to be highly complicated. For instance, let us say we wish to calculate the partition function Z of a
specific system. To carry out it, we must perform a sum over a large number of states; moreover, if we are interested
in the thermodynamic limit, the sum has to run over an infinite number of states, which undoubtedly is far more
complicated. Indeed, for most models, finding an exact analytical expression for the partition function Z or any other
equivalent thermodynamic quantity still seems far away. To overcome the difficulties, several computational methods
have been developed [232].

The most straightforward computational form for solving problems in statistical physics is to take the model under
study and place it on a finite-size lattice so that the partition function becomes a sum over a finite number of terms; one
of the numerical methods capable of calculating such a partition function is known as Monte Carlo simulation [232].
Strictly speaking, a Monte Carlo simulation generates random objects or processes utilizing a computer. These objects
can arise naturally, like complex road networks, transport of neutrons, and evolution of the stock market (to mention a
few), or (as in many cases) being artificially introduced to provide solutions to deterministic problems. For these last,
Monte Carlo simulations involve random samplings from certain probability distributions [233]. Whether the objects
arise naturally or artificially, the idea behind Monte Carlo techniques is to repeat the experiments a large number of
times to obtain many quantities of interest using the law of large numbers [49,234,235] and other statistical inference
methods [233].

Hence, Monte Carlo methods are a broad of computational algorithms relying on repeated random sampling to
obtain numerical results [236]. We can think of them as techniques whose main characteristic is the use of random
numbers as raw material. There are commonly three uses for the MCM [232–234, 236–238]: numerical integration,
optimization, and generation of probability sample distributions. Nonetheless, dealing with MCM frequently means
calculating the expected value of an observable Q (this could be the internal energy, magnetization, etc.). The ideal
path to perform such a calculation is averaging the observable over all states µ of the system, weighting each one with
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its Boltzmann probability through the equation [232]

⟨Q⟩ =
∑
µQµe

−βEµ∑
µ e

−βEµ
. (D.1)

Unfortunately, the computation of Eq. (D.1) is viable only on small systems; generally, such a task is numerically
impossible. In larger systems, the best option is to pick a subset of states and perform the calculation. It is here when
Monte Carlo techniques appear, randomly selecting states from a certain distribution pµ [232, 237].

D.2 Simple and importance sampling

The immediate option to deal with the computation of ⟨Q⟩ is to select a set of states {µ1, µ2, . . . , µM} with probability
pµi

for all i = 1, 2, . . . ,M . Consequently, we rewrite Eq. (D.1) as [232, 237]

QM =
∑M
i=1 Qµi

p−1
µi
e−βEµi∑M

i=1 e
−βEµip−1

µi

; (D.2)

Eq. (D.2) is called the estimator and has the property that in the limit M → ∞, QM = ⟨Q⟩. But then, what kind of
states must be selected for an accurate estimate of ⟨Q⟩? In other words, who pµi

must be? The easiest choice would
be placing all states with the same probability pµ,

QM =
∑M
i=1 Qµi

e−βEµi∑M
i=1 e

−βEµi

. (D.3)

This procedure is known as simple sampling. Formally speaking, simple sampling consists of a subset of individuals
(sample) chosen from a larger set (a population) in which each element has the same probability of being picked
at any stage during the sampling process, and each subset of k individuals possesses the same probability of being
chosen for the sample as any other subset of k individuals [239].

Despite the advances this procedure could represent in calculating ⟨Q⟩, it faces the following problems [232,237]:

1. Practically, it is only possible to sample a small fraction of the total number of states. Consequently, QM stands
as a poor guide to evaluating ⟨Q⟩.

2. Not all states produce significant contributions to Eq. (D.3). I.e., it is very unlikely that the selected states
{µ1, . . . , µM} coincide with the foremost states of the system.

It would be efficient to select those states in charge of the main contributions, ignore the rest, and perform the
sums of Eq. (D.3). Following such a path would provide an excellent estimate of ⟨Q⟩ occupying only a small number
of states. This procedure of selecting only the important states from an immense number of possibilities is known
as importance sampling and stands as the essence of thermal MCM [232]. Hence, instead of selecting M states in
such a way that every state is as likely to get picked out as every other, states are chosen so that the probability for a
particular state µ is pµ = Z−1 exp (−βEµ) [232, 237],

QM =
∑M
i=1 Qµi

(
Z−1eβEµi

)
e−βEµi∑M

i=1
(
Z−1eβEµi

)
e−βEµi

= 1
M

M∑
i=1

Qµi . (D.4)

The reason behind the selection of pµ is that systems are not sampling all states with equal probability; instead, they
sample according to the Boltzmann probability distribution [232].

Undoubtedly, Eq. (D.4) turns out to be simpler and works better than Eq. (D.3). Principally, when systems spend
the majority of their time in a small number of states (such as the lowest-lying states at low temperatures) since these
will be precisely the states that will be chosen more often, and the relative frequency with which they will be picked
out will correspond exactly to the amount of time systems would spend in those states. Then, how exactly do we
select these states? States with their correct Boltzmann probability. A standard solution is via the Markov processes;
almost all Monte Carlo schemes rely on Markov processes as the generating engine for the set of states used [232].
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D.3 Markov processes
All definitions within this section are taken from Refs. [240–242].

Definition D.1. A stochastic process is a collection of random variables
{
Xt

∣∣∣t ∈ T
}

on a common probability space,
parametrized by the set T known as the index set (parameter set or time set). Each Xt in the collection takes values
from the set S called state space.

Commonly, we identify the index set as time. Hence, we talk about past and future states within the stochastic
process. If T is countable, the stochastic process is called a stochastic sequence or discrete parameter stochastic
process; if S is countable, the process is named a discrete state (space) process. If S ⊆ R, the stochastic process is
known as a real-valued process.

Strictly speaking, a Markov process is a stochastic process that satisfies the so-called Markov property. This last
establishes that for any integer n ≥ 0, if t0 < t1 < · · · < tn are parameter values, the conditional Xtn probabilities
relative toXt0 , . . . , Xtn−1 are the same as those relative only toXtn−1 . In other words, a Markov process is a process
for which predictions can be made based solely on its present; furthermore, such predictions are as good as the ones
that could be made knowing the process’s complete history. From this point, we can define the case when the Markov
process has either a discrete state space or a discrete index set, known as the Markov chain.

Definition D.2. A Markov chain is a stochastic process
{
Xt

∣∣∣t ∈ T
}

such that the probability distribution of the
future state Xt+1 depends only on the current state Xt,

P
(
Xt+1 = xt+1

∣∣∣X0 = x0, . . . , Xt = xt

)
= P

(
Xt+1 = xt+1

∣∣∣Xt = xt

)
. (D.5)

Definition D.3. Let µ and ν be states over the space of states. The transition probability between such states is
defined as the probability of generating the state ν given that the process is in the state µ, P

(
Xt+1 = ν

∣∣∣Xt = µ
)

.
Such a probability is denoted as P (µ → ν) and fulfills

i) P(µ → ν) ≤ 1 ii)
∑
ν P(µ → ν) = 1. (D.6)

All transition probabilities should not vary over time and should depend only on the properties of the states µ
and ν. These two conditions assure that the probability for the Markov process generating the state ν from state µ is
regardless of anything that had happened. We point out that P (µ → µ) ̸= 0, that is, there is a finite probability that
the Markov process stays in the state µ. Hence, departing from the state µ, the new second state ν is generated; later,
such state is used to produce a new third state λ, and so on. Formally speaking [232],

in a Monte Carlo simulation, a Markov process is employed repeatedly to generate a Markov chain of states.

The Markov process is such that when it has run long enough, starting from any state of the system, it will
eventually produce a succession of states appearing with probability given by the Boltzmann distribution. This process
is known as coming to equilibrium. Additionally, for the Markov chain to produce states with the required probability,
two more conditions are needed: ergodicity and detailed balance [232, 237].

D.4 Ergodicity and detailed balance
The request of ergodicity assures us that after some time, the process will have visited all possible states of the system.
In other words, ergodicity makes it possible for the Markov process to reach any state within the system from any
other state if it runs long enough. To be more accurate, let us place the following example: every state ν in the system
appears with some non-zero probability pν within the Boltzmann distribution. Now, let us suppose there is a state
µ such that ν is inaccessible from µ no matter how long the process runs. If we intend to commence the process
from the state µ, we will fail since the probability of finding ν will be zero and not pµ as we require. The ergodicity
condition establishes that it is allowed to make some transition probabilities zero, but there must be at least one path
of non-zero transition probabilities between any two states [232].

On the other hand, the detailed balance condition guarantees us that the Boltzmann distribution is generated after
the system has come to equilibrium rather than any other distribution. For the Markov chain to reach equilibrium, the
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rate at which the system realizes transitions into and out of any state µ must be equal [232],∑
ν

pµP (µ → ν) =
∑
ν

pνP (ν → µ) ⇒ pµ =
∑
ν

pνP (ν → µ) . (D.7)

Eq. (D.7) indicates that for any set of transition probabilities, the probability distribution pµ will be an equilibrium of
the dynamics of the Markov process. Sadly, this condition does not guarantee that the probability distribution tends
to pµ from any system state if the process runs long enough. We place an additional requirement on the previous
probabilities transitions to solve this inconvenience [232, 235, 237, 238],

pµP (µ → ν) = pνP (ν → µ). (D.8)

Eq. (D.8) is none other than the detailed balance condition, which indicates that on average, the system should go
from µ to ν just as often as it goes from ν to µ. The left-hand side of Eq. (D.8) stands as the probability of being in the
state µ multiplied by the probability of making a transition to another state ν, i.e., it is the overall rate at which shifts
from µ to ν happen. Consequently, the right-hand side corresponds to the overall rate for the reverse transition [232];
the fulfillment of Eq. (D.7) follows from Eq. (D.8).

Hence, selecting the set of transition probabilities to satisfy Eq. (D.8) makes it possible for the Markov chain to
tend to any distribution pµ. Since the Boltzmann probability is the desired distribution, the detailed balance condition
must make the transition probabilities to satisfy [232, 237]

P (µ → ν)
P (ν → µ)

= pν
pµ

= e−β(Eν −Eµ). (D.9)

Eqs. (D.8) and (D.9), together with ergodicity, guarantee that the equilibrium distribution within the Markov
process will be none other than the Boltzmann distribution. One last refinement is still required to efficiently construct
a Monte Carlo calculation; nonetheless, all previous concepts constitute the bases on which all modern equilibrium
Monte Carlo calculations are based [232].

D.5 Acceptance ratios
So far, throughout the previous sections, we have explained how to produce an appropriate Monte Carlo calculation,
arriving at the requirements of ergodicity and detailed balance. However, finding the required set of transition proba-
bilities can become an arduous task. We could suggest many candidates that create new states ν from previous states
µ and yet, not find those with the correct transition probabilities. So, as we mentioned before, a final refinement called
acceptance ratio or acceptance probability is needed [232].

The transition probabilities are divided into two parts [232]:

P (µ → ν) = g (µ → ν)A (µ → ν) ; (D.10)

• g (µ → ν) is called the selection probability and indicates the probability that at a given initial state µ, the
algorithm generates a new state ν.

• A (µ → ν) is the acceptance ratio, which establishes that when departing from a state µ and having generated
a new state ν, the new state must be accepted and the system modified to it a fraction of the time A (µ → ν);
the rest of the time, the system should remain in µ.

The advantage of Eq. (D.10) is the freedom to set A (µ → ν) ∈ [0, 1] and g (µ → ν) any desired value. Placing
A (µ → ν) = 0 indicates the algorithm always stays in the departing state; in other words, P (µ → µ) = 1. Appealing
to Eq. (D.10), we rewrite Eq. (D.9)

P (µ → ν)
P (ν → µ)

= g (µ → ν)
g (ν → µ)

A (µ → ν)
A (ν → µ)

, (D.11)

allowing us to choose freely the selection probabilities g (µ → ν) and g (ν → µ) since Eq. (D.9) only fixes the ratio;
the rate A (µ → ν) /A (ν → µ) takes values within the interval [0,∞). Hence, appealing to all previous discussions,
the idea would be to construct an algorithm that creates a state ν starting from a specific state µ with some set of
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probabilities g (µ → ν) and then accept or reject the change with acceptance ratios A (µ → ν) satisfying Eq. (D.11).
Indeed, this procedure will satisfy all previous requirements for the transition probabilities and produce a string of
states where, when the system reaches equilibrium, each one will appear with the Boltzmann probability [232].

What would happen if the acceptance ratios were too slow? Should that situation occur, the algorithm would
pass most of the time in the state it is in and would not go anywhere. To prevent this from happening, we select the
acceptance ratios to be as close to unity as possible. Eq. (D.11) fixes the ratio of the acceptance ratios; then, it is
viable to multiply both of them by the same factor, and the equation would still be true. The only condition is that
A (µ → ν) and A (ν → µ) ∈ [0, 1]. In practice, we set the larger of the acceptance ratios to one and have the other
take whatever necessary value to fulfill the detailed balance condition. In this way, we ensure the acceptance ratios to
be as large as they can be while still satisfying the relevant conditions and, indeed, that the ratio in one direction will
be unity. Thus, movements in that direction will always be accepted [232].

D.6 The Metropolis algorithm
The algorithm was first introduced in 1953 by Nicholas Metropolis et al. [243] and later extended in 1970 by W. K.
Hastings [244]; nowadays, stands as one of the most widely used algorithms in statistical physics [232, 238]. Strictly
speaking, the Metropolis algorithm generates a Markov chain on a state space S, such that its stationary distribution
corresponds to a target distribution P [235]. The basic architecture of the algorithm lies within the concepts discussed
in the previous sections [232]. We select a set of selection probabilities g (µ → ν) fulfilling the ergodicity condition,
a set of acceptance ratiosA (µ → ν) such that Eq. (D.11) satisfies Eq. (D.9), and then, the algorithm accepts or rejects
the new state with our chosen acceptance probability.

In the Metropolis algorithm, the selection probabilities g (µ → ν) for each possible state ν are all chosen to be
equal. Consequently, Eq. (D.11) takes the form [232]

P (µ → ν)
P (ν → µ)

= A (µ → ν)
A (ν → µ)

. (D.12)

To maximize the acceptance ratios, and produce a most efficient algorithm, we set the acceptance ratio µ → ν to
be [232, 235, 237, 238]

A (µ → ν) = min
{

1, P (µ → ν)
P (ν → µ)

}
; (D.13)

Eq. (D.13) is known as the Metropolis function [237]. In order to sample a probability distribution P , the Metropolis
algorithm follows the next scheme [238, 245]:

1. Select an initial state µ ∈ S.

2. Propose a new state ν ∈ S throughout a Markov chain, equalizing the selection probabilities.

3. Accept the new state ν with acceptance probability

A (µ → ν) = min
{

1, P (µ → ν)
P (ν → µ)

}
;

should the new state be rejected, add it to the Markov chain.

4. Return to the second step until the Markov chain is long enough.

To ensure the Markov chain has reached a steady state (fluctuations around the target density are minimal), we
divide the algorithm into two parts. The first part corresponds to the thermalization process, where we let the Markov
chain reach its stationary state; the second part, on the other hand, stands as the generator and collector of samples of
the desired distribution [245].
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[175] V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Mathematics
of the USSR-Sbornik, vol. 1, p. 457, Apr. 1967.

[176] J. Feinberg and A. Zee, “Non-gaussian non-hermitian random matrix theory: Phase transition and addition
formalism,” Nuclear Physics B, vol. 501, pp. 643–669, Jun. 1997.

[177] R. Marino, S. N. Majumdar, G. Schehr, and P. Vivo, “Phase transitions and edge scaling of number variance in
gaussian random matrices,” Physical Review Letters, vol. 112, p. 254101, Jun. 2014.

[178] I. Pérez Castillo, “Spectral order statistics of gaussian random matrices: Large deviations for trapped fermions
and associated phase transitions,” Physical Review E, vol. 90, p. 040102, Oct. 2014.

[179] R. Marino, S. N. Majumdar, G. Schehr, and P. Vivo, “Number statistics for β-ensembles of random matrices:
Applications to trapped fermions at zero temperature,” Physical Review E, vol. 94, p. 032115, Sep. 2016.

[180] B. Lacroix-A-Chez-Toine, J. A. M. Garzón, C. S. H. Calva, I. Pérez Castillo, A. Kundu, S. N. Majumdar, and
G. Schehr, “Intermediate deviation regime for the full eigenvalue statistics in the complex ginibre ensemble,”
Physical Review E, vol. 100, p. 012137, Jul. 2019.

[181] B. Lacroix-A-Chez-Toine, S. N. Majumdar, and G. Schehr, “Rotating trapped fermions in two dimensions and
the complex ginibre ensemble: Exact results for the entanglement entropy and number variance,” Physical
Review A, vol. 99, p. 021602, Feb. 2019.

[182] F. L. Metz and I. P. Castillo, “Level compressibility for the anderson model on regular random graphs and the
eigenvalue statistics in the extended phase,” Physical Review B, vol. 96, p. 064202, Aug. 2017.

[183] K. S. Tikhonov and A. D. Mirlin, “Statistics of eigenstates near the localization transition on random regular
graphs,” Physical Review B, vol. 99, p. 024202, Jan. 2019.

[184] Y. V. Fyodorov and B. A. Khoruzhenko, “Nonlinear analogue of the May-Wigner instability transition,” Pro-
ceedings of the National Academy of Sciences, vol. 113, pp. 6827–6832, Jun. 2016.

[185] R. E. McMurtrie, “Determinants of stability of large randomly connected systems,” Journal of Theoretical
Biology, vol. 50, pp. 1–11, Mar. 1975.

[186] S. Allesina and S. Tang, “Stability criteria for complex ecosystems,” Nature, vol. 483, pp. 205–208, Feb. 2012.

[187] S. N. Majumdar, C. Nadal, A. Scardicchio, and P. Vivo, “Index distribution of Gaussian random matrices,”
Physical Review Letters, vol. 103, p. 220603, Nov. 2009.

[188] S. N. Armstrong, S. Serfaty, and O. Zeitouni, “Remarks on a constrained optimization problem for the Ginibre
ensemble,” arXiv e-prints, p. arXiv:1304.1964, Apr. 2013.

[189] R. Allez, J. Touboul, and G. Wainrib, “Index distribution of the ginibre ensemble,” Journal of Physics A:
Mathematical and Theoretical, vol. 47, p. 042001, Jan. 2014.

[190] M. Krishnapur and B. Virág, “The Ginibre Ensemble and Gaussian Analytic Functions,” International Mathe-
matics Research Notices, vol. 2014, pp. 1441–1464, Nov. 2012.

[191] S. Ghosh and A. Nishry, “Gaussian complex zeros on the hole event: The emergence of a forbidden region,”
Communications on Pure and Applied Mathematics, vol. 72, pp. 3–62, Nov. 2019.

[192] S. Ghosh and M. Krishnapur, “Rigidity Hierarchy in Random Point Fields: Random Polynomials and Deter-
minantal Processes,” Communications in Mathematical Physics, vol. 388, pp. 1205–1234, Dec. 2021.

[193] K. Rajan and L. F. Abbott, “Eigenvalue spectra of random matrices for neural networks,” Physical Review
Letters, vol. 97, p. 188104, Nov. 2006.



Bibliography 71

[194] H. Sompolinsky, A. Crisanti, and H. J. Sommers, “Chaos in random neural networks,” Physical Review Letters,
vol. 61, pp. 259–262, Jul. 1988.

[195] F. Schuessler, A. Dubreuil, F. Mastrogiuseppe, S. Ostojic, and O. Barak, “Dynamics of random recurrent
networks with correlated low-rank structure,” Physical Review Research, vol. 2, p. 013111, Feb. 2020.

[196] G. Wainrib and J. Touboul, “Topological and dynamical complexity of random neural networks,” Physical
Review Letters, vol. 110, p. 118101, Mar. 2013.

[197] G. Hermann and J. Touboul, “Heterogeneous connections induce oscillations in large-scale networks,” Physical
Review Letters, vol. 109, p. 018702, Jul. 2012.

[198] J. Als-Nielsen and R. J. Birgeneau, “Mean field theory, the ginzburg criterion, and marginal dimensionality of
phase transitions,” American Journal of Physics, vol. 45, pp. 554–560, Jun. 1977.

[199] D. J. Amit, “The ginzburg criterion-rationalized,” Journal of Physics C: Solid State Physics, vol. 7, p. 3369,
Sep. 1974.

[200] N. Hatano and D. R. Nelson, “Localization transitions in non-hermitian quantum mechanics,” Phys. Rev. Lett.,
vol. 77, pp. 570–573, Jul. 1996.

[201] A. F. Tzortzakakis, K. G. Makris, and E. N. Economou, “Non-hermitian disorder in two-dimensional optical
lattices,” Physical Review B, vol. 101, p. 014202, Jan. 2020.

[202] Y. Huang and B. I. Shklovskii, “Spectral rigidity of non-hermitian symmetric random matrices near the ander-
son transition,” Physical Review B, vol. 102, p. 064212, Aug. 2020.

[203] R. B. Griffiths, “A proof that the free energy of a spin system is extensive,” Journal of Mathematical Physics,
vol. 5, pp. 1215–1222, Sep. 1964.

[204] J. L. López and P. J. Pagola, “An explicit formula for the coefficients of the saddle point method,” Constructive
Approximation, vol. 33, pp. 145–162, Feb. 2010.

[205] C. Rainone, Metastable Glassy States Under External Perturbations: Monitoring the Effects of Compression
and Shear-strain. Springer Theses, Springer International Publishing, 2017.

[206] D. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge Molecular
Science, Cambridge University Press, 2003.

[207] M. Jesi, Spin Glasses: Criticality and Energy Landscapes. Springer Theses, Springer International Publishing,
2016.

[208] F. L. Metz and I. Pérez Castillo, “Large deviation function for the number of eigenvalues of sparse random
graphs inside an interval,” Physical Review Letters, vol. 117, p. 104101, Sep. 2016.

[209] S. Ross, Introductory Statistics. Elsevier Science, 2010.

[210] F. Slanina, “Localization of eigenvectors in random graphs,” The European Physical Journal B, vol. 85, Oct.
2012.

[211] G. H. Zhang and D. R. Nelson, “Eigenvalue repulsion and eigenvector localization in sparse non-hermitian
random matrices,” Physical Review E, vol. 100, p. 052315, Nov. 2019.

[212] S. Allesina, J. Grilli, G. Barabás, S. Tang, J. Aljadeff, and A. Maritan, “Predicting the stability of large struc-
tured food webs,” Nature Communications, vol. 6, Jul. 2015.

[213] R. M. May, “Will a large complex system be stable?,” Nature, vol. 238, pp. 413–414, Aug. 1972.

[214] F. L. Metz and I. Pérez Castillo, “Level compressibility for the Anderson model on regular random graphs and
the eigenvalue statistics in the extended phase,” Physical Review B, vol. 96, p. 064202, Aug. 2017.

[215] Y. Zhao and R. M. Stratt, “Measuring order in disordered systems and disorder in ordered systems: Random
matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains,” The
Journal of Chemical Physics, vol. 148, p. 204501, May 2018.



72 Bibliography

[216] S. N. Majumdar, C. Nadal, A. Scardicchio, and P. Vivo, “How many eigenvalues of a gaussian random matrix
are positive?,” Physical Review E, vol. 83, p. 041105, Apr. 2011.

[217] A. Cavagna, I. Giardina, and G. Parisi, “Analytic computation of the instantaneous normal modes spectrum in
low-density liquids,” Physical Review Letters, vol. 83, pp. 108–111, Jul. 1999.

[218] M. Yamada and A. Vilenkin, “Hessian eigenvalue distribution in a random gaussian landscape,” Journal of
High Energy Physics, vol. 2018, Mar. 2018.

[219] A. Kobakhidze and L. Mersini-Houghton, “Birth of the universe from the landscape of string theory,” The
European Physical Journal C, vol. 49, pp. 869–873, Nov. 2006.

[220] R. Holman and L. Mersini-Houghton, “Why the universe started from a low entropy state,” Physical Review
D, vol. 74, p. 123510, Dec. 2006.

[221] J. Pennington and Y. Bahri, “Geometry of neural network loss surfaces via random matrix theory,” in Proceed-
ings of the 34th International Conference on Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of
Proceedings of Machine Learning Research, pp. 2798–2806, PMLR, 06–11 Aug. 2017.

[222] R. Marino, S. N. Majumdar, G. Schehr, and P. Vivo, “Index distribution of Cauchy random matrices,” Journal
of Physics A: Mathematical and Theoretical, vol. 47, p. 055001, Jan. 2014.

[223] I. Pérez Castillo, “Large deviations of the shifted index number in the gaussian ensemble,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2016, p. 063207, Jun. 2016.

[224] S. N. Majumdar and P. Vivo, “Number of relevant directions in principal component analysis and Wishart
random matrices,” Physical Review Letters, vol. 108, p. 200601, May 2012.

[225] C. Bordenave and D. Chafaï, “Around the circular law,” Probability Surveys, vol. 9, no. none, pp. 1 – 89, 2012.

[226] F. L. Metz, I. Neri, and D. Bollé, “Localization transition in symmetric random matrices,” Physical Review E,
vol. 82, p. 031135, Sep. 2010.

[227] F. L. Metz, “Replica-symmetric approach to the typical eigenvalue fluctuations of gaussian random matrices,”
Journal of Physics A: Mathematical and Theoretical, vol. 50, p. 495002, Nov. 2017.

[228] A. Zangwill, Modern Electrodynamics. Modern Electrodynamics, Cambridge University Press, 2013.

[229] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena. International series of monographs on physics,
Oxford University Press, 2021.

[230] M. Olvera-Cravioto, “Convergence of the Population Dynamics algorithm in the Wasserstein metric,” arXiv
e-prints, p. arXiv:1705.09747, May 2017.

[231] U. Roesler, The Weighted Branching Process, pp. 219–236. Cham: Springer International Publishing, 2016.

[232] M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics. Clarendon Press, 1999.

[233] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the monte carlo method is so important today,”
WIREs Computational Statistics, vol. 6, pp. 386–392, Nov.-Dec. 2014.

[234] C. Graham and D. Talay, Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of
Stochastic Simulation. Stochastic Modelling and Applied Probability, Springer Berlin Heidelberg, 2013.

[235] A. Blum, J. Hopcroft, and R. Kannan, Foundations of Data Science. Cambridge University Press, 2020.

[236] A. Johansen, “Monte carlo methods,” in International Encyclopedia of Education (Third Edition) (P. Peterson,
E. Baker, and B. McGaw, eds.), pp. 296–303, Oxford: Elsevier, third edition ed., 2010.

[237] K. Binder and D. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction. Graduate Texts
in Physics, Springer Berlin Heidelberg, 2010.

[238] B. Ripley, Stochastic Simulation. Wiley Series in Probability and Statistics, Wiley, 2009.



Bibliography 73

[239] D. Starnes, D. Yates, and D. Moore, The Practice of Statistics. W. H. Freeman, 2010.

[240] P. Jones and P. Smith, Stochastic Processes: An Introduction, Third Edition. Chapman & Hall/CRC Texts in
Statistical Science, CRC Press, 2017.

[241] A. Basu, Introduction to Stochastic Processes. Alpha Science International, 2003.

[242] J. Doob, Stochastic Processes. Probability and Statistics Series, Wiley, 1953.

[243] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations
by fast computing machines,” The Journal of Chemical Physics, vol. 21, pp. 1087–1092, Jun. 1953.

[244] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika,
vol. 57, pp. 97–109, Apr. 1970.

[245] C. P. Robert, “The Metropolis-Hastings algorithm,” arXiv e-prints, p. arXiv:1504.01896, Apr. 2015.


	Font Page
	Resumen
	Abstract
	Contents
	Acknowledgments
	Preface
	Chapter 1. Introduction and Preliminars
	Universality
	Large deviation theory
	Graph theory
	Random matrix theory
	Basic concepts and universality
	Classical and Ginibre ensembles
	Replica method


	Chapter 2. Statistical Properties of Sparse non-Hermitian Random Matrices
	Background
	Analytic approach for the number statistics of non-Hermitian random matrices
	The analytical method
	The numerical method

	Conditioned spectral density for the diluted real Ginibre ensemble
	The analytical development
	Numerical analysis and results


	Chapter 3. Concluding Remarks
	Appendix A. Mathematical Procedure for the full Counting Statistics of ND
	Constructing the path integral
	The replica-symmetric ansatz and the path probability function
	The continuous limit throughout the  contour
	Computing the rate function

	Appendix B. Mathematical Handlings of the CSD for the Diluted Real Ginibre Ensemble
	Building the path integral
	The replica-symmetric ansatz and the joint probability distribution
	Computing z* and z for the conditioned spectral density

	Appendix C. Population Dynamics Algorithm
	Appendix D. Monte Carlo Methods
	Bases
	Simple and importance sampling
	Markov processes
	Ergodicity and detailed balance
	Acceptance ratios
	The Metropolis algorithm

	Bibliography

