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Abstract  

 
Polarimetry has received a great deal of interest recently, mainly because of advances in 

technology, particularly with advances in variable retarders, and polarized detectors. Also, 

many new applications have been developed, for example in remote sensing, microscopy, 

medical applications, astronomy, and metrology, among others. With this interest in new 

techniques and applications, there has been a great deal of work on data-extraction and 

calibration methods, required to correct the effects of experimental or measurement errors in 

polarimeters. In this thesis, we present a method for calibration and data-extraction for a 

Stokes polarimeter working with three different wavelengths simultaneously. This type of 

system has applications in the measurement of glucose in blood, or in remote sensing to 

measure in multiple wavelengths to have a better characterization of a scene. In the Stokes 

polarimeter considered in this work, we use two liquid crystal variable retarders (LCVR’s) 

combined with a Glan-Thompson linear polarizer. A recently developed fitting calibration 

procedure is used. We use the same calibration samples and LCVR voltages for all three 

wavelengths, giving simultaneous measurement and calibration. We compare the 

performance of the polarimeter, after calibration, using four or six calibration samples in our 

experiment. Experimental results show good agreement with the expected results, with the 

fitting calibration procedure giving an approximately 50% reduction in total RMS error with 

four calibration samples, and a small increased reduction in the error, as compared to the four 

samples case, when six calibration samples are used. 

 

 

 

 

 

 

 

 

 



 
 

Resumen  

 
El interés en la polarimetría recientemente ha tenido un aumento significativo, esto en gran 

parte debido al avance tecnológico, particularmente por los avances de los retardadores 

variables y los detectores polarizados. También, el desarrollo de nuevas aplicaciones, por 

ejemplo, en percepción remota, microscopía, aplicaciones médicas, astronomía y metrología, 

entre otras. Dado el interés en estas nuevas técnicas y aplicaciones, hay mucho trabajo sobre 

los métodos de calibración y extracción de datos, que son requeridos para corregir los efectos 

de los errores experimentales y de medición en los polarímetros. En esta tesis, se presenta un 

método para la calibración y extracción de datos para un polarímetro de Stokes trabajando 

con tres diferentes longitudes de onda simultáneamente. Este tipo de sistemas tienen 

aplicaciones en la medición de glucosa en la sangre, o en percepción remota para medir en 

múltiples longitudes de onda lo cual permite una mejor caracterización para una imagen que 

se esté analizando. Para el polarímetro de Stokes considerado en este trabajo, empleamos un 

par de retardadores variables de cristal líquido (LCVR´s por sus siglas en inglés) combinado 

con un polarizador lineal Glan-Thompson. Además, un método reciente de ajuste es 

empleado en el proceso de calibración. Usamos las mismas muestras de calibración y los 

mismos valores de voltaje aplicados a las LCVR’s para las tres longitudes de onda, 

permitiendo obtener las mediciones y la calibración de datos de manera simultánea. Se 

comparó el rendimiento del polarímetro, después de la calibración, usando cuatro y seis 

muestras de calibración en nuestro experimento. Los resultados experimentales muestran una 

adecuada concordancia con los resultados esperados, con el procedimiento de ajuste del 

método de calibración dando una reducción de aproximadamente el 50% en el error total 

RMS con cuatro muestras de calibración, y un pequeño incremento en la reducción del error, 

en comparación con el caso de cuatro muestras de calibración, cuando usamos seis muestras.    
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1. Introduction  

Polarimetry has attracted a great deal of interest recently, particularly for applications in 

medicine [1-5], remote sensing [1,6,7] and astronomy [1,8-16], among others. Many 

applications require the polarization characterization of a light beam, through the 

measurement of the Stokes vector of the light. The Stokes vector is a four-element vector: 

𝑆 = (

𝑆0
𝑆1
𝑆2
𝑆3

) 

where, as will be shown in Chapter 2 of this thesis, 𝑆0 is related to the total intensity in the 

beam, 𝑆1 is related to the difference between horizontal and vertical linear polarized light, 

𝑆2is the difference between linear polarized light at +45° and at -45°, and 𝑆3 is the difference 

between right and left circular polarized light. This vector completely describes the 

polarization state of a light beam. In this thesis we present analysis of systems to measure the 

Stokes vector. There are also polarimeters to measure the Mueller matrix of a sample, that is 

the changes a sample makes on an input Stokes vector, but this type of polarimeter will not 

be discussed in this work. 

New calibration and data-extraction techniques, combined with electro-optic retarders, have 

permitted the development of polarimeters which are faster and more precise [17-28]. There 

have also been developments in large bandwidth polarimeters, particularly in channeled 

spectropolarimeters. However, there are still many applications which require measurement 

of polarization at only a few wavelengths, particularly in medicine, microscopy and remote 

sensing for which dual-wavelength or RGB (Red, Green, Blue) polarization images provide 

useful information [2,3,29]. There are methods that can reconstruct full Stokes spectra, for 

example channeled polarimetry. However, this method requires the measurement of the 

complete spectrum to be able to reconstruct the variation of the Stokes parameters, so it will 

not work if only a few wavelengths are available. Also, for other methods, the calibration 

process becomes complicated to correct for all the wavelengths [2], and the experimental 

setups are more complicated [29].  
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The main problem with all of these systems is the calibration and data extraction for the 

different wavelengths, since the retardances of the polarimeter components vary with these 

wavelengths [2, 3]. In this work, we propose a calibration and data-extraction method for the 

measurement of three wavelengths simultaneously, which uses only one configuration of 

retardances and one set of calibration samples. The method is shown to be fast, robust and 

precise. It uses a simple calibration process, a standard Stokes polarimeter experimental 

setup, and can be extended easily to more wavelengths if required. These advantages reduce 

the measurement time required and the cost of the polarimeter, compared to similar setups. 

The proposed method is applied to a Stokes polarimeter using two liquid-crystal variable 

retarders (LCVR’s). It is clear that the polarimeter cannot be optimized for the three 

wavelengths simultaneously, and because of this we use a recently developed fitting 

procedure to reduce the errors in the measured Stokes vectors [25].  

The proposed experimental setup employs beam splitters similar to the division of amplitude 

polarimeters in order to introduce the beams for different wavelengths into the optical system 

and to separate the three wavelengths to three different detectors. Although, in this case it is 

not relevant to know the proportions of the total intensity for the different segmented beams, 

we know this information for each arm in the system. Also, the results are normalized with 

respect to the total intensity and therefore variations of the source intensities do not affect the 

final results. A time-sequential polarimeter with phase modulation elements was 

instrumented in this project. The phase modulation was induced by applying a set of 

retardance configurations to analyze four or six polarization states and register the intensity 

values associated with them. A Mueller matrix analysis was performed to be able to 

reconstruct the Stokes vectors of the three wavelengths used.         

There are different types of polarimeters which have been developed and used for different 

applications and purposes. It is possible to distinguish the following classification: time-

sequential polarimeters which can employ rotating, or phase modulation, elements 

(polarization modulation), division of aperture and division of amplitude polarimeters. In this 

section a brief summary of the main types of polarimeters is presented. A detailed discussion 

of the polarimeter used in this work is given in chapter 2. 

In time-sequential polarimeters the measurements are taken sequentially in time and 

variables such as angle positions or retardance values are changed between measurements 

with the polarimeter. Usually, this class of polarimeters employ a single source and a 

detector. Rotating element polarimeters employ rotating polarization elements such as linear 

retarders and polarizers. One advantage of this class of polarimeters is that in general the 

optical system design is very simple and one disadvantage is that they employ rotating 

mounts to rotate the polarizing elements. Phase modulation or polarization modulation 

polarimeters also take measurements sequentially in time, but these employ polarization 

modulators which are polarizing devices that induce a retardance between the orthogonal 
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components of the electric field of the light as a function of an applied voltage. Some 

advantages of this class of polarimeters are the simplicity of the optical system and the 

absence of moving elements. On the other hand, one disadvantage is that to describe the 

modulation of the retardance induced by the polarization modulators on the light beam as a 

function of the applied voltage, it is necessary obtain the characterization curve of each of 

the polarizing devices used in the polarimeter [17,18]. A time-sequential polarimeter with 

two polarization modulators followed by a linear polarizer is used in this work given the 

advantages listed above.         

Generally, rotating element polarimeters work by modulating the intensity signal at the 

output of the polarimeter as a function of the rotation angle of the elements. This modulation 

signal can be described by a Fourier series and the polarization information can be obtained 

from the coefficients of this series, specifically, the four Stokes parameters can be 

reconstructed by using these coefficient values. Some optical systems for this class of 

polarimeters are described below. 

o A rotating linear polarizer: for this optical system only a polarizer is used to modulate the 

intensity signal while it rotates.  

 
Figure 1 Rotating polarimeter employing only one rotating linear polarizer as analyzer. 

The intensity signal modulation is given by the Fourier series [18]: 

𝐼(𝜃𝐴1) =
𝑎0

2
+

𝑎1

2
cos 2𝜃𝐴1 +

𝑏2
2
sin 2𝜃𝐴1                                        (1) 

This expression is given as a function of the rotation angle of the polarizer. Carrying out a 

Fourier analysis only the three linear Stokes parameters can be obtained: 

𝑆0 = 𝑎0,     𝑆1 = 𝑎1     𝑎𝑛𝑑     𝑆2 = 𝑏2                                           (2) 

o Rotating and fixed linear polarizers: in this optical system a pair of linear polarizers are 

used, one of them fixed in front of the detector after the other which rotates to modulate 

the intensity signal. The fixed polarizer guarantees that the detector detects only one 

polarization to avoid errors from the variation of the detector signal with polarization 

[18].  
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Figure 2 Rotating polarimeter employing a pair of linear polarizers, one of them fixed and the other rotating. 

The modulated signal is composed of two frequencies, and it is described by the Fourier 

series [18]: 

𝐼(𝜃𝐴2) =
𝑎0

4
+

1

4
∑(𝑎2𝑛 cos 2𝑛𝜃𝐴2 + 𝑏2𝑛 sin 2𝑛𝜃𝐴2)

2

𝑛=1

                     (3) 

Similarly to the previous case, only the first three linear Stokes parameters can be obtained 

[18]: 

𝑆0 = 𝑎0 − 𝑎4,     𝑆1 =
2

3
(𝑎2 − 𝑎0 + 2𝑎4)    𝑎𝑛𝑑     𝑆2 = 0.4(2𝑏2 + 𝑏4)            (4) 

o A rotating retarder and a fixed polarizer: in this system a fixed linear polarizer is 

employed in front of the detector followed by a retarder which rotates, generating a 

modulation signal at the output of the system. For this case, the generated signal is also 

composed of two frequencies [18].  

 
Figure 3 Rotating polarimeter employing a linear fixed polarizer and a rotating retarder. 

For this configuration the Fourier series that describes de modulation signal is [18]: 

𝐼(𝜃𝐴3) =
𝑎0

2
+

1

2
∑(𝑎2𝑛 cos 2𝑛𝜃𝐴3 + 𝑏2𝑛 sin 2𝑛𝜃𝐴3)

2

𝑛=1

                     (5) 

Given this, the four Stokes parameters are given by [18]: 

𝑆0 = 𝑎0 − 𝑎4,     𝑆1 = 2𝑎4     𝑆2 = 2𝑏4    𝑎𝑛𝑑     𝑆3 = 𝑏2                          (6) 

Another class of time-sequential polarimeter is the phase modulation polarimeter, this type 

of polarimeter employs polarization modulators which induce a retardance between the 

orthogonal components of the electric field of the light beam as a response to an electrical 

signal. In general, the modulation of the intensity signal for the phase modulation 
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polarimeters is given by changing the retardance values induced by the polarization 

modulators on the light beam. In this sense, to calculate the Stokes parameters, it is necessary 

to analyze the optical system employed by performing a matrix analysis through the Mueller 

matrix calculus, as described in chapter 2 of this thesis. Below are described some optical 

systems for this class of polarimeter.  

o A fixed linear polarizer and a fixed polarization modulator (PM): this polarimeter 

employs a linear polarizer and a polarization modulator, with fixed axes angles, with their 

principal axes at 45° to each other [18]. 

 
Figure 4 Phase modulation polarimeter employing a linear fixed polarizer and a fixed polarization modulator 

(PM). 

By analyzing this optical system through the individual Mueller matrices of its optical 

elements it is possible obtain the expression for the modulated intensity as a function of the 

retardance values induced by the polarization modulator, 𝛿𝑃𝑀1: 

𝐼(𝛿𝑃𝑀1) =
𝑆0
2

+
𝑆1
2
cos 𝛿𝑃𝑀1 −

𝑆3
2
sin 𝛿𝑃𝑀1                                      (7) 

If the Bickel and Bailey [19] method is used to reconstruct the Stokes parameters, only simple 

algebraic operations have to be performed with the intensity measurement values. For this 

system, only three Stokes parameters can be calculated, 𝑆0, 𝑆1 and 𝑆3, and at least four 

intensity measurements are needed to do that [18] through the following equation: 

(

𝑆0
𝑆1
𝑆2
𝑆3

) = (

𝐼𝐻 + 𝐼𝑉
𝐼𝐻 − 𝐼𝑉
𝐼− − 𝐼+
𝐼𝑅 − 𝐼𝐿

)                                                                 (8) 

where 𝐼𝐻 , 𝐼𝑉, 𝐼−, 𝐼+, 𝐼𝑅 and 𝐼𝐿 are the intensity values associated with the six polarization states 

analyzed in the beam under study (Horizontal, Vertical, -45°, +45, Left-handed and Right-

handed polarization states). To analyze for these polarization states, it is necessary to apply 

electrical signals to the polarization modulator (shown in figure 4) to modulate the retardance 

induced on the beam. In this case only four retardance values are applied, as shown in Table 

1. 
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Table 1 Retardance values induced by the polarization modulator in order to analyze a specific polarization 

state which is associated with an intensity value.  

 

When these retardance values are configured in the Stokes polarimeter then the 

corresponding intensity values are measured and the three Stokes parameters can be 

calculated through equation (8). 

To calculate the 𝑆2 Stokes parameter an alternative configuration can be used. 

o A fixed linear polarizer and a fixed polarization modulator (PM): this configuration 

employs a linear polarizer and a fixed polarization modulator, with their principal axes at 

45° to each other and rotated 45° with respect to the previous configuration (see figure 

4) [18]. 

 
Figure 5 Alternative phase modulation polarimeter employing a linear fixed polarizer and a fixed polarization 

modulator (PM). 

In this case, the intensity signal modulation is given by: 

𝐼(𝛿𝑃𝑀2) =
𝑆0
2

+
𝑆2
2
cos 𝛿𝑃𝑀2 +

𝑆3
2
sin 𝛿𝑃𝑀2                                       (9) 

By a similar analysis, it is possible to show that the retardance values necessary to measure 

intensities associated with specific polarization states are given in Table 2. 

Table 2 Retardance values induced by the polarization modulator to analyze a specific polarization state 

associated with an intensity value for the alternative optical system.  

 

Intensity 

0

180

90

270

𝛿𝑃𝑀1 (degrees) 

𝐼𝐻
𝐼𝑉
𝐼𝐿
𝐼𝑅

Intensity

0

180

90

270

𝛿𝑃𝑀2 (𝑑      )

𝐼+
𝐼−
𝐼𝑅
𝐼𝐿
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In this sense, equation (8) is used to reconstruct the Stokes parameters 𝑆0, 𝑆2 and 𝑆3, 

considering that 𝑆0 = 𝐼+ + 𝐼−. At least four intensity measurements are needed to do that. 

o A fixed linear polarizer and a pair of fixed polarization modulators: in this polarimeter a 

pair of PM´s with their fast axes at 45° to each other are employed followed by a linear 

polarizer with its transmission axis parallel to the fast axis of the first PM.  

The configuration and analysis for this polarimeter is presented in detail in chapter two in 

points 2.4 and 2.5 as this type of polarimeter was used in this work.   

A division of amplitude polarimeter consists of an optical setup which employs a beam 

splitter (BS) to divide an incident beam into a reflected and a transmitted beam. The beam 

splitter introduces known amounts of retardance and diattenuation into the transmitted and 

reflected beams. Each beam is analyzed by a pair of Wollastone prisms (WP1 and WP2) 

which are followed by four photodetectors (D1, D2, D3 and D4), see figure 7 [36,37].  

 
Figure 6 Division of amplitude polarimeter experimental setup. A beam splitter (BS) splits an incident beam 

into a reflected and a transmitted beam. Then each beam is analyzed by a Wollaston prism (WP1 and WP2) 

followed by four photodetectors (D1, D2, D3 and D4).  

Two advantages of this type of polarimeter are that they do not employ moving elements and 

they allow us to obtain the four Stokes parameters of the incident beam which describe the 

polarization state of this beam. Three points to consider for this type of polarimeter are: they 

require that the cross section of the incident beam be uniformly polarized, it is necessary to 

know the proportions of the total light flux for the different segmented beams and, we need 

to assume that ideally all photodetectors have the same absolute response, or we have to 

calibrate them [36,37].  

The response 𝜉 of the polarimeter as a function of the Stokes vector of the incident beam 

𝑆𝐷𝐴𝑖 and the characteristic matrix 𝑭 for the system which depends on the wavelength used 

is: 

𝜉 = 𝑭𝑆𝐷𝐴𝑖                                                                  (10) 
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where the response of each photodetector can be described in terms of its sensitivity 𝐶𝑘, and 

the light flux arriving on each detector, 𝐼𝑓𝑙𝑢𝑥𝑘. 

𝜉 = 𝐶𝑘𝐼𝑓𝑙𝑢𝑥𝑘                                                                (11) 

Four signals are detected, so 𝑘 = 1,2,3,4.               

Given this, the Stokes vector of the incident beam can be calculated as: 

𝑆𝐷𝐴𝑖 = 𝑭−1𝜉                                                               (12) 

𝑭 is a 4x4 matrix where each element (𝑓𝑖𝑗, 𝑖 = 1,2,3,4 and 𝑗 = 1,2,3,4) is given as a function 

of the elements of the reflection and transmission matrices of the beam splitters ( 𝑖𝑗 and 𝑡𝑖𝑗, 

𝑖 = 1,2,3,4 and 𝑗 = 1,2,3,4), the azimuth angles of the Wollastone prisms (𝐴1 𝑎𝑛𝑑 𝐴2), and 

the detector sensitives (𝐶1, 𝐶2, 𝐶3 𝑎𝑛𝑑 𝐶4) [36, 37].  

𝑓1𝑗 = 𝐶1( 1𝑗 +  2𝑗 cos 2𝐴1 +  3𝑗 sin 2𝐴1)                               (13) 

𝑓2𝑗 = 𝐶2( 1𝑗 −  2𝑗 cos 2𝐴1 −  3𝑗 sin 2𝐴1)                               (14) 

𝑓3𝑗 = 𝐶3(𝑡1𝑗 + 𝑡2𝑗 cos 2𝐴2 + 𝑡3𝑗 sin 2𝐴2)                               (15) 

𝑓4𝑗 = 𝐶4(𝑡1𝑗 − 𝑡2𝑗 cos 2𝐴2 − 𝑡3𝑗 sin 2𝐴2)                               (16) 

where 𝑗 = 1,2,3,4. 

A division of aperture polarimeter works by subdividing its aperture into a specific number 

of sub-apertures. Polarization information of the beam is analyzed by independent 

polarization analyzers for each subdivision [17, 38]. Different configurations have been 

proposed for this type of polarimeter [39]. Given the well-known matrix analysis through 

Mueller matrices and Stokes vectors, an optimal configuration for this type of polarimeter 

has four sub-apertures. A commercial setup for a polarized CMOS camera is shown in Figure 

7, using a 2x2 block of miniature polarizers in front of the CMOS pixels. This system 

measures only the linear components of the Stokes vector 



9 
 

 
 Figure 7 Construction of a CMOS camera with a 2x2 array of polarizers in front of the pixels. Taken from 

the ThorLabs catalog https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=13033 

 

Figure 8 Division of aperture polarimeter experimental setup. The sample is illuminated by a source, the light 

travels through this sample and is collected by an objective lens which is followed by a collimating lens. 

Then, the light travels to the polarization analyzer which consists of a linear retarder and a polarizer 

subdivided in four quadrants.  
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Figure 9 Similar to the above setup but in this division of aperture polarimeter a second retarder has been 

added. 

Figure 8 shows a laboratory system used to measure the full Stokes vector. In this case the 

retarder, polarizer and detector are subdivided in 4 quadrants and in which the retardance 

and/or the polarization can vary. 

For each quadrant or sub-aperture, the relationship between the Stokes vectors for the 

incident and output beams of light is given by: 

𝑆𝐷𝐴𝑃𝑂𝑈𝑇 = 𝑴𝐷𝐴𝑃𝑆𝑌𝑆𝑆𝐷𝐴𝑃𝐼𝑁                                                   (17) 

To calculate the four Stokes parameters of the Stokes vector for the incident beam, 𝑆𝐷𝐴𝑃𝐼𝑁, 

at least four intensity measurements are required. These intensity measurements are taken 

simultaneously by the four subdivisions of the aperture Stokes polarimeter. From equation 

(17), the first parameter of the Stokes vector for the output beam represents the total intensity 

measured by the detector. In this sense, the Mueller matrices of the optical systems shown in 

figures 8 and 9, are very important and can be calculated through the individual Mueller 

matrices of their polarization elements. Equations (18) and (19) represent these matrices for 

each setup [39].  

       𝑴𝐷𝐴𝑃𝑆𝑌𝑆8 = 𝑴𝑃𝑂𝐿(𝜃𝐷𝐴𝑃2)𝑴𝑅𝐸𝑇1(𝜃𝐷𝐴𝑃1, 𝛿𝐷𝐴𝑃1)                                (18) 

𝑴𝐷𝐴𝑃𝑆𝑌𝑆9 = 𝑴𝑃𝑂𝐿(𝜃𝐷𝐴𝑃3)𝑴𝑅𝐸𝑇2(𝜃𝐷𝐴𝑃2, 𝛿𝐷𝐴𝑃2)𝑴𝑅𝐸𝑇1(𝜃𝐷𝐴𝑃1, 𝛿𝐷𝐴𝑃1)             (19) 

Given that the first Stokes parameter of the output beam is the total intensity and a total of 

four intensity measurements can be taken with the Stokes polarimeter and the matrix of the 

optical system is also known, the relationship for the two setups shown in figures 8 and 9 is 

[39]: 

𝐼𝐷𝐴𝑃 = 𝑨𝐷𝐴𝑃𝑆𝐷𝐴𝑃𝐼𝑁                                                                              (20) 
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where 𝑨𝐷𝐴𝑃 is a 4x4 characteristic matrix of the system, and it is expressed as a function of 

the retardance values and the position of the principal axes of the retarders and polarizers in 

the polarimeter [39].  

From equation (20), the full Stokes vector and therefore the polarization state of the incident 

beam can be calculated as [39]: 

𝑆𝐷𝐴𝑃𝐼𝑁 = 𝑨𝐷𝐴𝑃
−1 𝐼                                                                            (21)  

where 𝑨𝐷𝐴𝑃
−1  is the inverse of the 4x4 characteristic matrix 𝑨𝐷𝐴𝑃 [39].  

In this thesis we present the principal results of the experimental and simulated work 

performed using a two LCVR and one linear polarizer to form a full-Stokes polarimeter. In 

chapter 2, the general polarimetry theory used is presented, in chapter 3 we describe the 

results obtained, and in chapter 4 the principal conclusions are discussed. 
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2. Polarization of light.  
 

2.1 Introduction. 

Polarization is a fundamental property of light which is directly related to its vector nature, 

more specifically, to the behavior of its electric field vector.  In nature, light is non-polarized 

or partially polarized and therefore the electric field amplitude and the phase can vary 

randomly, spatially and temporarily. A polarized light beam is one that has preference either 

as to transverse direction or it maintains a constant phase relation between its component 

fields. The polarization of light is directly related to amplitude, direction and phase values of 

the electric field vector components. If we consider that a beam is traveling along the positive 

z axis the electric field vector will be contained within the 𝑥 − 𝑦 plane and it is described by 

[18]: 

𝑬0 = 𝐸𝑥�̂� + 𝐸𝑦�̂�                                                                             (22) 

where the orthogonal electric field components are given by [18]: 

 𝐸𝑥 = 𝐸0𝑥 cos(Ω𝑡 − 𝑘𝑧)                                                                (23) 

𝐸𝑦 = 𝐸0𝑦 cos(Ω𝑡 − 𝑘𝑧 + 𝛿)                                                        (24) 

In these equations Ω is the angular frequency of the light beam, 𝑘 is the wave number in the 

propagation medium 𝑘 = 2𝜋 𝜆⁄  and 𝛿 = 𝛿𝑦 − 𝛿𝑥 is the phase difference between the 

oscillations of the orthogonal components, 𝐸𝑥 and 𝐸𝑦 [18].   

The electric field vector can describe a geometric figure when it moves on the 𝑥 − 𝑦 plane, 

and generally, the movement can be described by an ellipse. Figure 9 represents this ellipse 

[18]. 

 

Figure 9 Polarization ellipse [18]. 
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The orthogonal components of the electric field can also be written as: 

𝐸𝑥 = 𝐸0𝑥 cos(𝜏 + 𝛿𝑥)                                                         (25) 

𝐸𝑦 = 𝐸0𝑦 cos(𝜏 + 𝛿𝑦)                                                         (26) 

where the propagator term is 𝜏 = Ω𝑡 − 𝑘𝑧. 

If we apply the trigonometric identity for the cosine of the sum of two angles, we can rewrite 

equations (25) and (26) as [18]: 

𝐸𝑥

𝐸0𝑥
= cos 𝜏 cos 𝛿𝑥 − sin 𝜏 sin 𝛿𝑥                                                   (27) 

𝐸𝑦

𝐸0𝑦
= cos 𝜏 cos 𝛿𝑦 − sin 𝜏 sin 𝛿𝑦                                                   (28) 

Multiplying equations (27) and (28) by sin 𝛿𝑦 and sin 𝛿𝑥, respectively [18]: 

𝐸𝑥

𝐸0𝑥
sin 𝛿𝑦 = cos 𝜏 cos 𝛿𝑥 sin 𝛿𝑦 − sin 𝜏 sin 𝛿𝑥 sin 𝛿𝑦                                 (29) 

𝐸𝑦

𝐸0𝑦
sin 𝛿𝑥 = cos 𝜏 cos 𝛿𝑦 sin 𝛿𝑥 − sin 𝜏 sin 𝛿𝑦 sin 𝛿𝑥                                 (30) 

and subtracting equation (30) from equation (29), squaring and applying the trigonometric 

identity sin(𝛿𝑦 − 𝛿𝑥) = sin 𝛿𝑦 cos 𝛿𝑥 − cos 𝛿𝑦 sin 𝛿𝑥 [18]: 

𝐸𝑥
2

𝐸0𝑥
2 sin2 𝛿𝑦 +

𝐸𝑦
2

𝐸0𝑦
2 sin2 𝛿𝑥 − 2

𝐸𝑥

𝐸0𝑥

𝐸𝑦

𝐸0𝑦
sin 𝛿𝑥 sin 𝛿𝑦 = cos2 𝜏 sin2(𝛿𝑦 − 𝛿𝑥)        (31) 

In a similar way, equations (27) and (28) can be multiplied by cos 𝛿𝑦 and cos 𝛿𝑥, respectively 

[18]:  

𝐸𝑥

𝐸0𝑥
sin 𝛿𝑦 = cos 𝜏 cos 𝛿𝑥 cos 𝛿𝑦 − sin 𝜏 sin 𝛿𝑥 cos 𝛿𝑦                             (32) 

𝐸𝑦

𝐸0𝑦
sin 𝛿𝑥 = cos 𝜏 cos 𝛿𝑦 cos 𝛿𝑥 − sin 𝜏 sin 𝛿𝑦 cos 𝛿𝑥                             (33) 

The difference between equations (33) and (32) is calculated, the result is squared and the 

same trigonometric identity for  sin(𝛿𝑦 − 𝛿𝑥) is applied to obtain [18]:    
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𝐸𝑥
2

𝐸0𝑥
2 cos2 𝛿𝑦 +

𝐸𝑦
2

𝐸0𝑦
2 cos2 𝛿𝑥 − 2

𝐸𝑥

𝐸0𝑥

𝐸𝑦

𝐸0𝑦
cos 𝛿𝑥 cos 𝛿𝑦 = sin2 𝜏 sin2(𝛿𝑦 − 𝛿𝑥)         (34) 

By adding equations (31) and (34) and applying the trigonometric identity cos(𝛿𝑦 − 𝛿𝑥) =

cos 𝛿𝑦 cos 𝛿𝑥 + sin 𝛿𝑦 sin 𝛿𝑥 [18]: 

𝐸𝑥
2

𝐸0𝑥
2 +

𝐸𝑦
2

𝐸0𝑦
2 − 2

𝐸𝑥
2

𝐸0𝑥
2

𝐸𝑦
2

𝐸0𝑦
2 cos 𝛿 = sin2 𝛿                                      (35) 

where 𝛿 = 𝛿𝑦 − 𝛿𝑥 as before. 

This is the general equation of the ellipse of figure 9. Two possible degenerate cases of the 

ellipse can be a circle and a line, which correspond to circularly and linearly polarized states, 

respectively [18]. For circularly polarized light 𝛿 = 90° (or −90°) and the amplitudes 𝐸0𝑥 =

𝐸0𝑦, and for linearly polarized light 𝐸0𝑦 = 0 for horizontal polarized light, 𝐸0𝑥 = 0 for 

vertical polarized light, 𝛿 = 0° and 𝛿 = 180° with 𝐸0𝑥 = 𝐸0𝑦, for +45° and -45° polarized 

light, respectively. In general, for linear polarized light 𝛿 = 0° and the polarization direction 

is given by tan−1 (
𝐸0𝑦

𝐸0𝑥
).  

Considering a monochromatic wave, only the orthogonal components of the electric field 𝐸𝑥 

and 𝐸𝑦 in equation (35) are dependent on time. The amplitudes and relative phases are 

constant. To represent equation (35) in terms of observables we can take the time average for 

these components which are denoted as [18]: 

〈𝐸𝑥
2〉 =

1

2
𝐸0𝑥

2                                                                      (36) 

〈𝐸𝑦
2〉 =

1

2
𝐸0𝑦

2                                                                      (37) 

  〈𝐸𝑥𝐸𝑦〉 =
1

2
𝐸0𝑥𝐸0𝑦 cos 𝛿                                                           (38) 

where the factor ½ comes from the average over an integer number of periods of the cosine 

time variation. Multiplying equation (35) by 4𝐸0𝑥
2 𝐸0𝑦

2  and substituting equations (36), (37) 

and (38), we have [18]: 

2𝐸0𝑥
2 𝐸0𝑦

2 + 2𝐸0𝑥
2 𝐸0𝑦

2 − (2𝐸0𝑥𝐸0𝑦 cos 𝛿)2 = (2𝐸0𝑥𝐸0𝑦 sin 𝛿)
2
                      (39)    

If we add and subtract the quantity 𝐸0𝑥
4 + 𝐸0𝑦

4  to the left side of equation (39) and regroup 

terms, we get [18]: 
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(𝐸0𝑥
2 + 𝐸0𝑦

2 )2 − (𝐸0𝑥
2 − 𝐸0𝑦

2 )
2
− (2𝐸0𝑥𝐸0𝑦 cos 𝛿)2 = (2𝐸0𝑥𝐸0𝑦 sin 𝛿)

2
         (40)    

Each term inside parentheses is renamed as a Stokes parameter [18]: 

𝑆0 = 𝐸0𝑥
2 + 𝐸0𝑦

2                                                              (41) 

𝑆1 = 𝐸0𝑥
2 − 𝐸0𝑦

2                                                              (42) 

𝑆2 = 2𝐸0𝑥𝐸0𝑦 cos 𝛿                                                         (43) 

𝑆3 = 2𝐸0𝑥𝐸0𝑦 sin 𝛿                                                         (44) 

Then equation (40) can be written as: 

𝑆0
2 = 𝑆1

2 + 𝑆2
2 + 𝑆3

2                                                        (45) 

where 𝑆0, 𝑆1, 𝑆2 and 𝑆3 are known as the Stokes parameters of the light wave. Equation (45) 

is valid for a completely polarized light beam. If the beam is partially polarized or 

unpolarized, it can be shown [18] that:    

𝑆0
2 ≥ 𝑆1

2 + 𝑆2
2 + 𝑆3

2                                                       (46) 

It is also important to point out that the parameter 𝑆0 is the total energy in the beam and 

corresponds to the direct measurement of the beam by a detector. 

2.2 Stokes vectors and Mueller matrices. 

A very useful mathematical tool for representing the polarization state of light was described 

by Sir George Gabriel Stokes (1819-1903). The polarization state of light is represented by 

the four measurable quantities described in the previous section called the Stokes polarization 

parameters. One characteristic which is very important is that unpolarized or partially 

polarized (and completely polarized) light can be described by the Stokes parameters. The 

four Stokes parameters are defined as 𝑆0, 𝑆1, 𝑆2 and 𝑆3. The first parameter represents the 

total intensity of the optical field; the remaining parameters describe the predominance of a 

determined polarization state in the beam. 𝑆1 describes the predominance of linear horizontal 

or vertical polarization states, 𝑆2 describes the tendency of linear +45° or -45° polarization 

states and 𝑆3 describes the predominance of circular right- or left-handed polarization states. 

All Stokes parameters represent observables; this means that they are real quantities [18]. 

The four parameters can be represented as a vector which is called the Stokes vector and 

describes the polarization state of a light beam. 
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𝑆 = (

𝑆0
𝑆1
𝑆2
𝑆3

)                                                               (47) 

In figure 10, we can see a geometrical representation of six polarization states and their 

polarization Stokes vectors.  

In general, the polarization state of a beam of light changes when the beam interacts with 

matter due to different effects such as scattering or diffraction, diattenuation or birefringence, 

within the matter. Matter changes the initial polarization state of an incident beam by 

changing the amplitudes of the constituent electric fields, the direction of propagation or the 

relative phase between the electric field components, as well as by transferring energy from 

polarized states to the un-polarized state, called depolarization [18]. 

Polarizers and retarders are the two most common optical devices used to change the 

polarization state of light and are the basis of polarimeters. A linear polarizer produces a 

linearly polarized beam of light for any polarization of light passing through it. There are 

also circular and elliptical polarizers, which also require the use of a retarder, as described 

below, as well as a linear polarizer. The orientation of the polarization state transmitted by a 

linear polarizer is defined by the properties of the polarizer, this direction is called the 

transmission axis of the linear polarizer (the extinction axis is perpendicular to it). An 

important parameter of the linear polarizer is the extinction coefficient, which is the 

attenuation capability to extinguish a component along the extinction axis; it is expressed as 

the ratio between the transmittance of an incident linear polarization parallel to the 

transmission axis and an incident linear polarization perpendicular to the transmission axis. 

So, an extinction coefficient of 100,000:1 means that the polarizer transmits 100,000 times 

more light when the incident polarization is parallel to the transmission axis than when the 

incident polarization is perpendicular to the extinction axis. 
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Figure 10 Geometrical representations for a) horizontal, b) vertical, c) +45, d) -45, e) circular left-handed and 

f) circular right-handed polarization states. These geometrical figures are registered at a fixed point, and the 

red lines indicate the trajectory of the end point of the electric field vector in time. 

A retarder is an optical element which changes the phase between the orthogonal components 

of the electric field of the incident beam. A retarder is a plate cut from a birefringent material 

so that it has two orthogonal axes, one of them with a smaller refractive index than the other. 

The direction on the plate with the smaller refractive index is called the fast axis and the 

direction with the high refractive index is the slow axis. The materials used for retarders can 

be plastics for low-quality devices, and quartz or calcite for higher quality retarders. The 

delay between the orthogonal electric field components is the retardance [18]. For normal 

incidence on a retarder, the phase difference or retardance is given by the product of the wave 

number, 𝑘 = 2𝜋 𝜆⁄ , the refractive index difference between the fast and slow axes, Δ𝑛, and 

the thickness of the retarder plate, 𝑡: 

Δ𝜙 = 𝑘 Δ𝑛 𝑡                                                              (48) 
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A phase difference of 2𝜋 between the two electric field components will give no change in 

the polarization since this phase change gives the same relative positions in the wave cycle 

for the two components. This means that the thickness, 𝑡, of the retarder plate can be such 

that the retardance is an integer times 2𝜋 plus the retardance required, or the thickness can 

give a phase equal to the retardance. The first type of retarder is called a multiple-order 

retarder, and the second is a zero-order retarder. Zero-order retarders are more expensive and 

more difficult to manufacture, because they are very thin, although they are more stable than 

the multiple-order retarders. Therefore, the retardances reported for retarders are 

Δ𝜙 𝑚𝑜𝑑 2𝜋. The most common commercial retarders are half-wave plates, with a retardance 

of 180°, generally used to rotate linear polarization, and quarter-wave plates, with a 

retardance of 90°, used to produce circular or elliptical polarized light. Clearly, since the 

retardance, Δ𝜙, depends on the wavelength through the wavenumber, retarders are 

wavelength dependent. 

These polarizing elements, or any sample, can change the initial polarization state of light 

beams, that is they can change the incident Stokes vector of a light beam into a different 

output Stokes vector. In general, this interaction can be represented by matrix algebra: 

(

 

𝑆0
′

𝑆1
′

𝑆2
′

𝑆3
′)

 = (

𝑚00 𝑚01 𝑚02 𝑚03

𝑚10 𝑚11 𝑚11 𝑚13

𝑚20 𝑚21 𝑚22 𝑚23

𝑚30 𝑚31 𝑚32 𝑚33

)(

𝑆0
𝑆1
𝑆2
𝑆3

)                                      (49)  

Where the first vector on the left is the Stokes vector of the output beam of light after the 

interaction with the optical element and the vector on the right-hand side of the equation is 

the Stokes vector of the incident beam. The 4x4 matrix is known as the Mueller matrix of the 

optical element and represents the effect of this optical element or sample on the polarization 

state of the light. Mueller matrices were used by Hans Mueller to describe polarizing 

properties such as diattenuation, retardance, depolarization, and their form, either linear, 

circular, or elliptical. As was mentioned before, two important elements for this work are the 

polarizer and retarder. The Mueller matrices for these cases are described by the following 

equations [17]: for a polarizer with its transmission axis at an angle 𝜃 to the horizontal: 

  𝑴𝑝𝑜𝑙(𝜃) =
1

2
(

1 cos 2𝜃 sen 2𝜃 0
cos 2𝜃 cos2 2𝜃 sen 2𝜃 cos 2𝜃 0
sen 2𝜃 sen 2𝜃 cos 2𝜃 sen2 2𝜃 0

0 0 0 0

)                        (50) 

and for a retarder: 
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𝑴𝑟𝑒𝑡(𝜙, 𝜃)

= (

1 0 0 0
0 cos2 2𝜃 + cos𝜙 sen2 2𝜃 (1 − cos𝜙) sen 2𝜃 cos 2𝜃 − sen𝜙 sen 2𝜃

0 (1 − cos𝜙) sen 2𝜃 cos 2𝜃 sen2 2𝜃 + cos𝜙 cos2 2𝜃 sen𝜙 cos 2𝜃
0 sen𝜙 sen 2𝜃 − sen𝜙 cos 2𝜃 cos𝜙

)      (51) 

where 𝜃 is the rotation angle of the transmission axis for the polarizer and the fast axis for 

the retarder, and 𝜙 is the retardance of the retarder. Examples of these elements for 

commonly used values of the parameters in the polarimeters developed in this thesis are: 

Horizontal linear polarizer: 

𝑴𝑝𝑜𝑙(0) =
1

2
(

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)                                            (52) 

Linear polarizer at 45°: 

𝑴𝑝𝑜𝑙(45) =
1

2
(

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

)                                            (53) 

Vertical linear polarizer: 

𝑴𝑝𝑜𝑙(90) =
1

2
(

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

)                                        (54) 

Half-wave retarder with its fast axis horizontal: 

𝑴𝑟𝑒𝑡(180,0) = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)                                      (55) 

Half-wave retarder with its fast axis at 45°: 

𝑴𝑟𝑒𝑡(180,45) = (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)                                      (56) 

Half-wave retarder with its fast axis vertical: 
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𝑴𝑟𝑒𝑡(180,90) = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)                                      (57) 

Quarter-wave retarder with its fast axis horizontal: 

𝑴𝑟𝑒𝑡(90,0) = (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

)                                      (58) 

Quarter-wave retarder with its fast axis at 45°: 

𝑴𝑟𝑒𝑡(90,45) = (

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

)                                       (59) 

Quarter-wave retarder with its fast axis vertical: 

𝑴𝑟𝑒𝑡(90,90) = (

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

)                                        (60) 

2.3 Stokes polarimeter. 

Polarimetry is the science that allows the measurement of polarization properties of light. 

Stokes polarimeters are optical devices used to determine the polarization state of light in a 

beam, and can be used to extract, for example, oscillation direction and helicity of the electric 

field, or degree of polarization. Mueller polarimeters determine the change in polarization 

caused by the interaction of a controlled beam with a sample. A light beam can be transmitted, 

reflected, diffracted or scattered beam by a sample. Generally, the term sample describes 

some type of light-matter interaction, or the sequence of such interactions.  

A polarization State Analyzer (PSA) is a combination of retarders and polarizer to permit the 

measurement of different polarization states of a light beam. The elements of a PSA can 

change through rotation, or, in the case of electrooptic elements, change in retardance through 

changes in applied voltage. This allows various polarization states to be measured to permit 

the reconstruction of the Stokes vector of the incident beam. To measure the Mueller matrix 

of a sample, the changes between controlled polarization states incident on the sample, and 

the output polarization states after the sample must be measured. This means that a Mueller 
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polarimeter is composed of a Polarization State Generator (PSG) to control the incident 

polarization, and a PSA is used to analyze the output polarization states [17]. 

To measure the Stokes vector a minimum of 4 measurements are needed, since the Stokes 

vector has 4 unknown parameters. If we consider a classical method to measure the four 

parameters of the Stokes vector for a light beam when the experimental setup is configured 

by a wave plate with its fast axis at 0°, 𝑴𝑟𝑒𝑡(𝜙, 0°) and, a polarizer, 𝑴𝑝𝑜𝑙(𝜃), that is a 

variable retarder and a rotating linear polarizer, the Mueller matrix for the Stokes polarimeter 

can be obtained from equations (50) and (51) [18]: 

𝑴𝑆𝑃(𝜙, 𝜃) = 𝑴𝑝𝑜𝑙(𝜃)𝑴𝑟𝑒𝑡(𝜙, 0°) 

 

𝑴𝑆𝑃(𝜙, 𝜃) = (

1 cos 2𝜃 cos𝜙 sin 2𝜃 sin𝜙 sin 2𝜃

cos 2𝜃 cos2 2𝜃 cos𝜙 sin 2𝜃 cos 2𝜃 sin𝜙 sin 2𝜃 cos 2𝜃

sin 2𝜃 sin 2𝜃 cos 2𝜃 cos𝜙 sin2 2𝜃 sin𝜙 sin2 2𝜃
0 0 0 0

)   (61) 

The Stokes vector after the polarizer is given by 𝑆′ = 𝑴𝑆𝑃(𝜙, 𝜃)𝑆 and from equation (49) 

we can obtain the expression for the first parameter of the output beam, 𝑆0
′ , which represents 

the total intensity at the output of the Stokes polarimeter. By substituting equation (61) into 

equation (49) the expression for 𝑆0
′  is given by:  

𝑆0
′ =

1

2
(𝑆0 + 𝑆1 cos 2𝜃 + 𝑆2 cos𝜙 sin 2𝜃 + 𝑆3 sin 𝜙 sin 2𝜃) = 𝐼𝑇(𝜙, 𝜃)                    (62) 

From equation (62), and using the values of the cosine and sine, it is possible to calculate the 

Stokes parameters of the incident beam, 𝑆0, 𝑆1, 𝑆2 and 𝑆3 [18]. 

𝑆0 = 𝐼𝑇(0°, 0°) + 𝐼𝑇(0°, 90°)                                                  (63) 

𝑆1 = 𝐼𝑇(0°, 0°) − 𝐼𝑇(0°, 90°)                                                  (64) 

𝑆2 = 2𝐼𝑇(0°, 45°) − 𝑆0                                                  (65) 

𝑆3 = 2𝐼𝑇(90°, 45°) − 𝑆0                                                  (66) 

where 𝐼𝑇(0°, 0°), 𝐼𝑇(0°, 90°), 𝐼𝑇(0°, 45°) and 𝐼𝑇(90°, 45°) are the intensities associated with 

horizontal, vertical, +45 and circular right-handed polarization states, respectively. To 

calibrate the Stokes polarimeter, note that the total error value obtained with these equations 

can be large given that the parameters 𝑆2 and 𝑆3 depend on the value of 𝑆0, so any error in 

𝑆0 due to the experimental errors or measurement noise, is repropagated in the values of 𝑆2 

and 𝑆3. This represents a problem for the calibration of Stokes polarimeters with this 

configuration. 
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In order to eliminate this problem, it is possible to add two intensity measurements, 

𝐼𝑇(0°, −45°) and 𝐼𝑇(90°, −45°) which are associated with -45° and circular left-handed 

polarization states, respectively. For this case, six measurements are made to determine the 

four Stokes parameters for the incident beam. Equations (65) and (66) are valid for this case 

but the parameters 𝑆2 and 𝑆3 can also be calculated independently from  𝑆0, as: 

𝑆2 = 𝐼𝑇(0°, 45°) − 𝐼𝑇(0°,−45°)                                                  (67) 

𝑆3 = 𝐼𝑇(90°, 45°) − 𝐼𝑇(90°, −45°)                                                  (68) 

For this case, as will be seen below, the method to determine the Stokes vector of the incident 

beam is optimized in terms of the propagation of experimental errors to the final calculated 

Stokes parameters. 

Now, the above analysis can be performed by using an equation system represented by a 

matrix equation. If we use only four intensity measurements, associated with horizontal, 

vertical, +45 and circular right-handed polarization states, to calculate the Stokes parameters 

for the incident beam, from equation (62) we have the following equation system: 

1

2
(𝑆0 + 𝑆1 cos 2𝜃ℎ + 𝑆2 cos𝜙ℎ sin 2𝜃ℎ + 𝑆3 sin𝜙ℎ sin 2𝜃ℎ) = 𝐼𝑇ℎ

                   (69) 

1

2
(𝑆0 + 𝑆1 cos 2𝜃𝑣 + 𝑆2 cos𝜙𝑣 sin 2𝜃𝑣 + 𝑆3 sin𝜙𝑣 sin 2𝜃𝑣) = 𝐼𝑇𝑣                    (70) 

1

2
(𝑆0 + 𝑆1 cos 2𝜃+ + 𝑆2 cos𝜙+ sin 2𝜃+ + 𝑆3 sin𝜙+ sin 2𝜃+) = 𝐼𝑇+                    (71) 

1

2
(𝑆0 + 𝑆1 cos 2𝜃𝑅 + 𝑆2 cos𝜙𝑅 sin 2𝜃𝑅 + 𝑆3 sin𝜙𝑅 sin 2𝜃𝑅) = 𝐼𝑇𝑅

                   (72) 

where sub-indexes h, v, + and R denote the four polarization states analyzed. This system of 

equations can be rewritten as follows: 

1

2
(

1 cos 2𝜃ℎ cos𝜙ℎ sin 2𝜃ℎ sin𝜙ℎ sin 2𝜃ℎ
1 cos 2𝜃𝑣 cos𝜙𝑣 sin 2𝜃𝑣 sin𝜙𝑣 sin 2𝜃𝑣
1 cos 2𝜃+ cos𝜙+ sin 2𝜃+ sin 𝜙+ sin 2𝜃+

1 cos 2𝜃𝑅 cos𝜙𝑅 sin 2𝜃𝑅 sin 𝜙𝑅 sin 2𝜃𝑅

)(

𝑆0
𝑆1
𝑆2
𝑆3

) =

(

 
 

𝐼𝑇ℎ

𝐼𝑇𝑣
𝐼𝑇+
𝐼𝑇𝑅)

 
 
                (73)     

which can be written as: 

𝑴4𝑆 = 𝐼4                                                                 (74) 

where 
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𝑴4 =
1

2
(

1 cos 2𝜃ℎ cos𝜙ℎ sin 2𝜃ℎ sin 𝜙ℎ sin 2𝜃ℎ
1 cos 2𝜃𝑣 cos𝜙𝑣 sin 2𝜃𝑣 sin𝜙𝑣 sin 2𝜃𝑣
1 cos 2𝜃+ cos𝜙+ sin 2𝜃+ sin𝜙+ sin 2𝜃+

1 cos 2𝜃𝑅 cos𝜙𝑅 sin 2𝜃𝑅 sin𝜙𝑅 sin 2𝜃𝑅

)      (75) 

So that, the Stokes vector of the incident beam, 𝑆𝑖𝑛𝑐 can be calculated as: 

𝑆𝑖𝑛𝑐 = (𝑴4)
−1𝐼4                                                                 (76) 

where (𝑴4)
−1 is the inverse matrix of  𝑴4. 

𝑴4 is called the characteristic matrix of the polarimeter. Tyo demonstrated that the 

experimental error propagation of the intensity measurement can be determined by the 

condition number of the characteristic matrix [20]. The condition number is defined as the 

quotient between the largest and the smallest singular value of the characteristic matrix. To 

ensure an optimized intensity measurement, the condition number of the Stokes polarimeter 

characteristic matrix must be optimized to the minimum value. The minimum value found 

by Tyo for the condition number is √3 for a Stokes polarimeter measuring all 4 Stokes 

parameters [20].     

Given the matrix representation, it is clear that to optimize the Stokes parameter measurement 

when we work with only four intensity measurements, we need to minimize the condition 

number associated with the matrix 𝑴4. Experimentally, we can optimize the condition 

number of the PSA by adjusting the individual retardance values for the LCVR’s, and the 

position of the principal axes for them and for the polarizer. For the matrix 𝑴4, with the 

configuration given by equation (48), the matrix has the values: 

𝑴4 =
1

2
(

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 0 1

)                                          (77) 

and the condition number of this matrix is 3.2255, which is larger than the optimized value 

√3 = 1.7321. 

For the other case, in which six intensity measurements are taken, the equation system is 

represented by the following matrix equation: 
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1

2

(

 
 
 

1 cos 2𝜃ℎ cos𝜙ℎ sin 2𝜃ℎ sin𝜙ℎ sin 2𝜃ℎ
1 cos 2𝜃𝑣 cos𝜙𝑣 sin 2𝜃𝑣 sin𝜙𝑣 sin 2𝜃𝑣
1 cos 2𝜃+ cos𝜙+ sin 2𝜃+ sin 𝜙+ sin 2𝜃+

1 cos 2𝜃− cos𝜙− sin 2𝜃− sin𝜙− sin 2𝜃−
1 cos 2𝜃𝑅 cos𝜙𝑅 sin 2𝜃𝑅 sin𝜙𝑅 sin 2𝜃𝑅
1 cos 2𝜃𝐿 cos𝜙𝐿 sin 2𝜃𝐿 sin 𝜙𝐿 sin 2𝜃𝐿)

 
 
 
(

𝑆0
𝑆1
𝑆2
𝑆3

) =

(

 
 
 
 

𝐼𝑇ℎ

𝐼𝑇𝑣
𝐼𝑇+
𝐼𝑇−
𝐼𝑇𝑅

𝐼𝑇𝐿)

 
 
 
 

                (78) 

For this case, two intensity measurements are added, which are associated with -45 and left-

handed polarization states. Sub-indexes – and L in equation (78) refer to these polarization 

states. Equation (78) can be written as: 

𝑴6𝑆 = 𝐼6                                                                 (79) 

where  

𝑴6 =
1

2

(

 
 
 

1 cos 2𝜃ℎ cos 𝜙ℎ sin 2𝜃ℎ sin𝜙ℎ sin 2𝜃ℎ
1 cos 2𝜃𝑣 cos 𝜙𝑣 sin 2𝜃𝑣 sin𝜙𝑣 sin 2𝜃𝑣
1 cos 2𝜃+ cos𝜙+ sin 2𝜃+ sin𝜙+ sin 2𝜃+
1 cos 2𝜃− cos 𝜙− sin 2𝜃− sin𝜙− sin 2𝜃−
1 cos 2𝜃𝑅 cos 𝜙𝑅 sin 2𝜃𝑅 sin𝜙𝑅 sin 2𝜃𝑅
1 cos 2𝜃𝐿 cos 𝜙𝐿 sin 2𝜃𝐿 sin𝜙𝐿 sin 2𝜃𝐿)

 
 
 
             (80) 

The Stokes vector of the incident beam, 𝑆 can be calculated as: 

𝑆 = (𝑴6)
↑𝐼6                                                                 (81) 

where, in this case, (𝑴6)
↑ is the pseudoinverse matrix of  𝑴6. For this case the Moore-

Penrose pseudoinverse is employed given that 𝑴6 is a non-square matrix [33].   

Similarly to the four intensity measurements case, the minimum condition number value for 

the pseudoinverse matrix of 𝑴6 allows us to obtain the optimized Stokes vector for the 

incident beam.  

For the configuration of equation (78), 

𝑴6 =
1

2

(

  
 

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1)

  
 
                                  (82) 

and the condition number of this matrix is √3 = 1.7321, equal to the optimized value, with 

the least propagation of experimental errors to the final Stokes vector. 
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2.4 Stokes polarimeter with two LCVR´s. 

By measuring the intensities obtained with different configurations of retardance in the PSA, 

it is possible to determine the polarization state of a beam. As shown above, to measure the 

four unknown Stokes parameters we require six configurations of retardance on the LCVR´s 

to obtain six independent measurements of intensity according to the work of Bickel and 

Bailey [19]. Then, one characteristic matrix is obtained from the retardance values on the 

LCVR´s. Given that the retardance induced by the LCVR´s depends on the wavelength of 

the incident beam then the configurations of retardance of the polarimeter will also be 

different for each wavelength for a chosen configuration of voltages. To choose the voltages 

to be used for the LCVR’s in our polarimeter, we take the Bickel and Bailey configuration 

[19] for a specific wavelength called the ‘central wavelength’ or the ‘reference wavelength’ 

and calculate the retardances obtained for the other wavelengths using their respective 

calibration curves. 

To avoid rotation of polarization elements, in our polarimeter we use one LCVR with its fast 

axis horizontal, followed by a second LCVR with its fast axis at 45° to the horizontal, and 

followed by a linear polarizer with its transmission axis horizontal. 

Equation (83) is the Mueller matrix of the Stokes polarimeter and it can be calculated as the 

product of the individual matrices of the optical elements (see equations (50) and (51)). In 

this case, see Figure 4, for LCVR 1, 𝜃𝐿1 = 0° and 𝛿1, are the angle of the fast axis and the 

retardance, respectively. Similarly, for LCVR 2, 𝜃𝐿2 = 45° and 𝛿2, are the angles of the fast 

axis and the retardance, respectively.   

𝑴𝑆 = 𝑴𝑝𝑜𝑙(0)𝑴𝑟𝑒𝑡(𝛿2, 45)𝑴𝑟𝑒𝑡(𝛿1, 0)

=
1

2
(

1 cos 𝛿2 sin 𝛿1  𝑖𝑛 𝛿2 −cos 𝛿1 sin 𝛿2
1 cos 𝛿2 sin δ1  𝑖𝑛 𝛿2 −cos 𝛿1 sin 𝛿2
0 0 0 0
0 0 0 0

)                   (83) 

 

The Stokes vector of the incident beam (light beam coming from the laser) is given as 𝑆 =

(𝑆0     𝑆1     𝑆2     𝑆3)
𝑇 where T is the transpose, and the total intensity, 𝐼, of the light beam at 

the photo detector is given by the first parameter of, 𝑆′, the Stokes vector at the output of the 

experimental system. By multiplying the Stokes vector 𝑆 by the Mueller matrix 𝑴𝑆, it can be 

seen that the first parameter of the Stokes vector 𝑆′, denoted as 𝑆0′, is given by 

𝑆0′ = 𝐼(𝛿1, 𝛿2) =
1

2
(𝑆0 + 𝑆1 𝑐𝑜 𝛿2 + 𝑆2  𝑖𝑛 𝛿1  𝑖𝑛 𝛿2 − 𝑆3 𝑐𝑜 𝛿1  𝑖𝑛 𝛿2)                (84) 

 

Using the Bickel and Bailey [19] configuration, we obtain the Stokes vector from: 
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𝑆 = (

𝑆0
𝑆1
𝑆2
𝑆3

) = (

𝐼𝐻 + 𝐼𝑉
𝐼𝐻 − 𝐼𝑉

𝐼+45 − 𝐼−45

𝐼𝑅 − 𝐼𝐿

)                                                               (85) 

 

We require the detection of the linearly polarized components 𝐼𝐻, 𝐼𝑉, 𝐼+ and 𝐼−, (horizontal, 

vertical, +45 and -45 polarization, respectively), and circularly polarized components, 𝐼𝑅 and 

𝐼𝐿, (circular right- and left-handed polarization, respectively). From equations (84) and (85), 

it can be seen that to detect the horizontal polarization component of the incident Stokes 

vector there are two necessary conditions: cos 𝛿2 = 1 and sin 𝛿2 = 0, that is, 𝛿2 =

0, 2𝜋, 4𝜋,… For those conditions the intensity at the detector is described as: 

 

𝑆0 = 𝐼 =
1

2
(𝑆0𝑖 + 𝑆1𝑖) =

1

2
((𝐼𝐻 + 𝐼𝑉) + (𝐼𝐻 − 𝐼𝑉)) = 𝐼𝐻            (86) 

 

To analyze for the intensity associated with the vertical polarization state, the conditions are 

cos 𝛿2 = −1 and sin 𝛿2 = 0, that is, 𝛿2 = π, 3𝜋, 5𝜋, …, and, therefore 𝑆0 is given as: 

𝑆0 = 𝐼 =
1

2
(𝑆0𝑖 − 𝑆1𝑖) =

1

2
((𝐼𝐻 + 𝐼𝑉) − (𝐼𝐻 − 𝐼𝑉)) = 𝐼𝑉            (87) 

 

For the +45 polarization state the conditions are sin 𝛿1 = 1 and sin 𝛿2 = 1, that is, 𝛿1 =
π

2
,
5𝜋

2
,
9𝜋

2
, …, and 𝛿2 =

π

2
,
5𝜋

2
,
9𝜋

2
, …, and therefore the total intensity is:    

𝑆0 = 𝐼 =
1

2
(𝑆0𝑖 + 𝑆2𝑖) =

1

2
((𝐼+45 + 𝐼−45) + (𝐼+45 − 𝐼−45)) = 𝐼+45            (88) 

 

Similarly, forthe  -45 polarization state we have the conditions are sin 𝛿1 = −1 and sin 𝛿2 =

1, that is, 𝛿1 =
3π

2
,
7𝜋

2
,
11𝜋

2
, …, and 𝛿2 =

π

2
,
5𝜋

2
,
9𝜋

2
, …, so that:  

𝑆0 = 𝐼 =
1

2
(𝑆0𝑖 − 𝑆2𝑖) =

1

2
((𝐼+45 + 𝐼−45) − (𝐼+45 − 𝐼−45)) = 𝐼−45            (89) 

 

In the same way, to detect only the intensity associated with the circular right-handed 

polarization state, the conditions are cos 𝛿1 = −1 and sin 𝛿2 = 1, that is, 𝛿1 = π, 3𝜋, 5𝜋,…, 

and 𝛿2 =
π

2
,
5𝜋

2
,
9𝜋

2
, …, given this we have: 

𝑆0 = 𝐼 =
1

2
(𝑆0𝑖 + 𝑆3𝑖) =

1

2
((𝐼𝑅 + 𝐼𝐿) + (𝐼𝑅 − 𝐼𝐿)) = 𝐼𝑅            (90) 
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Finally, the total intensity associated with the left-handed polarization state is given by 

equation (91) under the conditions cos 𝛿1 = 1 and sin 𝛿2 = 1, that is, 𝛿1 = 0, 2𝜋, 4𝜋,…, and 

𝛿2 =
π

2
,
5𝜋

2
,
9𝜋

2
, …: 

𝑆0 = 𝐼 =
1

2
(𝑆0𝑖 − 𝑆3𝑖) =

1

2
((𝐼𝑅 + 𝐼𝐿) − (𝐼𝑅 − 𝐼𝐿)) = 𝐼𝐿            (91) 

A summary of the required retardances is shown in Table 3. 

Table 3: Set of configurations of retardance used to detect the six polarization states in a light beam with the 

Bickel and Bailey method [19]. 

 

In table 3, the retardances for LCVR1 required to detect horizontal and vertical linear 

polarization are undetermined, and in practice we use the same retardance as required for 

detection of the left-handed polarized light to reduce the number of voltage changes on this 

LCVR. The applied voltages are then found from the measured calibration curve for the 

central wavelength. It is important to emphasize that this set of configurations can only be 

employed for the central wavelength.  

For the other wavelengths we use equation (84) which represents the total intensity at the 

detector, where 𝛿1 and 𝛿2, are the retardances induced on the LCVR’s at the other 

wavelengths. Now, the six measurements required for the Bickel and Bailey case for the 

central wavelength give six measurements of intensity for the other wavelengths, which we 

shall denote as cases I, II, III,…VI. Using equation (84) for each of the six intensity 

measurements, we can write a matrix equation relating the detected intensities and the 

retardances of the LCVR’s [10] 

1

2

(

 
 
 

1 𝑐𝑜 𝛿2𝐼  𝑖𝑛 𝛿1𝐼  𝑖𝑛 𝛿2𝐼 𝑐𝑜 𝛿1𝐼  𝑖𝑛 𝛿2𝐼
1 𝑐𝑜 𝛿2𝐼𝐼  𝑖𝑛 𝛿1𝐼𝐼  𝑖𝑛 𝛿2𝐼𝐼 𝑐𝑜 𝛿1𝐼𝐼  𝑖𝑛 𝛿2𝐼𝐼
1 𝑐𝑜 𝛿2𝐼𝐼𝐼  𝑖𝑛 𝛿1𝐼𝐼𝐼  𝑖𝑛 𝛿2𝐼𝐼𝐼 𝑐𝑜 𝛿1𝐼𝐼𝐼  𝑖𝑛 𝛿2𝐼𝐼𝐼
1 𝑐𝑜 𝛿2𝐼𝑉  𝑖𝑛 𝛿1𝐼𝑉  𝑖𝑛 𝛿2𝐼𝑉 𝑐𝑜 𝛿1𝐼𝑉  𝑖𝑛 𝛿2𝐼𝑉
1 𝑐𝑜 𝛿2𝑉  𝑖𝑛 𝛿1𝑉  𝑖𝑛 𝛿2𝑉 𝑐𝑜 𝛿1𝑉  𝑖𝑛 𝛿2𝑉
1 𝑐𝑜 𝛿2𝑉𝐼  𝑖𝑛 𝛿1𝑉𝐼  𝑖𝑛 𝛿2𝑉𝐼 𝑐𝑜 𝛿1𝑉𝐼  𝑖𝑛 𝛿2𝑉𝐼)

 
 
 

(

𝑆0
𝑆1
𝑆2
𝑆3

) =

(

 
 
 

𝐼𝐼
𝐼𝐼𝐼
𝐼𝐼𝐼𝐼
𝐼𝐼𝑉
𝐼𝑉
𝐼𝑉𝐼)

 
 
 
                (92) 

Polarization state LCVR 1 LCVR 2

Horizontal 0 0

Vertical 0 180

45 90 90

-45 270 90

Right-handed 180 90

Left-handed 0 90
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Which can be written as 

 

𝑴𝐶𝑆 = 𝐼                                                                                                (93) 

 

Where 𝑴𝐶  is the characteristic matrix of the polarimeter for the configuration of retardances 

for the given wavelength; 𝑆, is the Stokes vector of the incident beam; and 𝐼, is the vector of 

the intensity measurements. From equation (85), it is possible to calculate the Stokes 

parameters of the incident beam by using the pseudo-inverse of the matrix 𝑴𝐶 , denoted as 

𝑴𝐶
↑  [22]. 

 

𝑴𝐶
↑ = (𝑴𝐶

𝑇𝑴𝐶)
−1𝑴𝐶

𝑇                                                                          (94) 

 

and the solution of equation (94) is given by: 

 

𝑆 = 𝑴𝐶
↑ 𝐼                                                                                                (95) 

 

Equation (95) allows us to reconstruct the Stokes vector of the incident beam for the three 

wavelengths employed in the system.   
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3. Liquid crystal variable retarder 

characterization. 

 
3.1 Liquid crystal variable retarders. 

The characterization of an LCVR is very important to determine the relationship between the 

observed retardance and the applied voltage. It is important to verify the manufacturer’s 

characterization, particularly given that we have measured variations in the performance of 

our LCVRs over time on the scale of weeks and months. It is also important to be able to 

produce a set of polarization states with high precision [2].        

 

A nematic liquid-crystal variable retarder, LCVR, (nematic: is a state of a liquid crystal in 

which the molecules are oriented in parallel but are not arranged in well-defined planes [3]), 

is constructed by a pair of parallel, closely-spaced optically-flat fused silica windows coated 

with transparent conductive indium tin oxide (ITO). The space between the two windows is 

filled with birefringent nematic liquid-crystal material. Then, electrical contacts are attached, 

and the device is environmentally sealed. Uniaxial birefringent layers are formed by 

anisotropic nematic liquid crystal molecules which, on average, are aligned with their long 

axes parallel, but with their centers randomly distributed. With no voltage applied, the liquid 

crystal molecules lie parallel to the glass substrates and the maximum retardation is achieved. 

When voltage is applied, the molecules begin to tip perpendicularly to the fused silica 

windows. As the voltage increases, the molecules tip further causing a reduction in the 

effective birefringence and hence the retardance [4] (see figure 11).      

 
Figure 11 Schematic diagram of a LCVR showing molecular alignment with-out (a) and with (b) applied 

voltage [4].   
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3.2 Characterization method 

The characterization of an LCVR involves an experimental setup such as that shown in figure 

12. 

 
Figure 12 Experimental setup required to characterize a LCVR [4].  

As is shown in figure 12, the nematic liquid-crystal variable retarder is placed between two 

crossed linear polarizers. A light source generates a beam which travels through the first 

linear polarizer, and then it travels through the variable retarder which has its optical axis 

oriented at 45° with respect to the first linear polarizer optical axis. Finally, the light beam 

travels through a second linear polarizer with its optical axis oriented perpendicularly to the 

first linear polarizer optical axis. A detector measures the transmitted light intensity through 

the optical system. The measured intensity depends on the retardance of the LCVR, which 

depends directly on the liquid crystal birefringence and on the applied voltage.  

 

Through an analytical procedure, it is possible to determine the light intensity detected by 

the sensor at the output of the optical system shown in figure 12. In this sense, it is important 

to remember that the total intensity of a light beam is represented by the first parameter of its 

Stokes vector. Also, a sample can be represented by a Mueller matrix. The Mueller matrix of 

the optical system (sample) shown in figure 12 can be analyzed by using the Mueller matrices 

of each optical component in the system. So, to know the total intensity detected by the 

sensor, it is necessary to obtain the first element of the Stokes vector for the light beam which 

arrives at the sensor, in other words, the light beam at the output of the second linear polarizer. 

The Mueller matrix of the system is denoted by equation (96), which is the product of the 

Mueller matrix for the first polarizer at 0°, the LCVR with its axis at 45° and an unknown 

retardance 𝛿, and the second polarizer with its axis at 90°. The Mueller matrices for each of 

these components are given in equations (97), (98) and (99).  

 

𝑴𝑆 = 𝑀𝑃(90°)𝑀𝑅(𝛿, 45°)𝑀𝑃(0°)                                                (96) 

 

𝑴𝑃(90°) =
1

2
(

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

)                                               (97) 

 



31 
 

𝑴𝑅(𝛿, 45°) = (

1 0 0 0
0 cos 𝛿 0 −sen δ
0 0 1 0
0 sen δ 0 cos𝛿

)                                             (98) 

 

𝑴𝑃(0°) =
1

2
(

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

)                                                                  (99) 

 

Performing the matrix multiplications, the Mueller matrix of the full system is given by 

equation (100): 

𝑴𝑆 =
1

4
(

1 − cos 𝛿 1 − cos 𝛿 0 0
−1 + cos 𝛿 −1 + cos 𝛿 0 0

0 0 0 0
0 0 0 0

)                                   (100) 

  

From equation (17), it is clear that to obtain the Stokes vector for the output beam; we must 

multiply the Mueller matrix of the optical system by the Stokes vector of the incident beam. 

However, it is also clear that the polarization of the light beam generated by the source will 

make no difference because the first linear polarizer fixes it as linearly polarized light at 0°. 

The only difference for different incident polarizations is an intensity term depending on the 

incident polarization, which does not affect the relative intensity measurements. So, for 

simplicity we consider that the light beam generated by the source is unpolarized. The Stokes 

vector of the output light beam is, therefore, denoted by: 

 

𝑆 = 𝐴(

1 − cos 𝛿 1 − cos 𝛿 0 0
−1 + cos 𝛿 −1 + cos 𝛿 0 0

0 0 0 0
0 0 0 0

)(

1
0
0
0

) = 𝐴(

1 − cos 𝛿
−1 + cos 𝛿

0
0

)          (101) 

 

where 𝐴 denotes all the constant terms which depend on the Stokes vector normalization and 

the experimental parameters such as the polarizer absorption and the polarization efficiency. 

The first component of the Stokes vector of the output light beam, and therefore the total 

light intensity detected by the sensor (𝐼) is denoted by the expression 𝑆0 = 𝐼 = 𝐴(1 − cos 𝛿), 

where 𝛿 denotes the retardance of the LCVR. By analyzing this expression, the maximum 

intensity detected by the sensor (𝐼𝑚𝑎𝑥) occurs when cos 𝛿 = −1, which is when 𝛿 = 180°:  

 

𝐼𝑚𝑎𝑥 = 𝐴(1 − cos(180°)) = 2𝐴                                           (102) 

 

so that the value of the constant  𝐴 is 
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𝐴 =
𝐼𝑚𝑎𝑥

2
                                                                                  (103) 

Finally, the expression for the light intensity detected by the sensor can be written as [30, 

31]: 

𝐼 =
𝐼𝑚𝑎𝑥

2
(1 − cos 𝛿)                                                                  (104) 

 

and the retardance is given by [30]: 

 

𝛿 = cos−1 (1 −
2𝐼

𝐼𝑚𝑎𝑥
)                                                              (105) 

 

Equation (105) allows us to determine the retardance of a nematic liquid-crystal variable 

retarder by measuring the intensity as the applied voltage is varied. Experimentally, the 

applied voltage on the LCVR can be varied and the intensity for each applied voltage must 

be registered. By using the experimental information, applied voltage versus intensity can be 

plotted. However, one problem with equation (105) is that it involves the  cos−1 function. 

Numerical calculation of the cos−1 function gives results in the range [0, 𝜋] so, when this 

equation is employed to determine the retardance of the LCVR, it is necessary to unwrap the 

retardance in order to obtain correct results outside this range [30, 31]. 

 

Another problem with this method is related to the error distribution for the calculation of 

the retardance. Equation (105) can be written as: 

𝑐𝑜 (𝛿) = 1 −
2𝐼

𝐼𝑚𝑎𝑥
                                                           (106) 

and calculating the derivatives, 

 
𝑑𝛿

𝑑𝐼
=

1

 𝑖𝑛(𝛿)
(−

2

𝐼𝑚𝑎𝑥
)                                                       (107) 

 
𝑑𝛿

𝑑𝐼𝑚𝑎𝑥
=

1

 𝑖𝑛(𝛿)

2𝐼

(𝐼𝑚𝑎𝑥)2
                                                     (108) 

 
and the total error is: 

 

𝜎𝛿
2 = (

1

 𝑖𝑛(𝛿)
)
2

{(
2

𝐼𝑚𝑎𝑥
)
2

𝜎𝐼
2 + (

2𝐼

(𝐼𝑚𝑎𝑥)2
)
2

𝜎𝐼𝑚𝑎𝑥

2 }                         (109) 

 
where 𝜎𝛿 is the error in the retardance value, 𝜎𝐼 is the error in the measured intensity value 

and 𝜎𝐼𝑚𝑎𝑥
 is the error in the maximum intensity value. In what follows we assume that 𝜎𝐼 =

𝜎𝐼𝑚𝑎𝑥
. The value of 𝐼 goes from 0 to 𝐼𝑚𝑎𝑥, so the value of the error in the retardance has a 

minimum value, when 𝐼 = 0, of 
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𝜎𝛿
2 = (

1

 𝑖𝑛(𝛿)
)
2

{(
2

𝐼𝑚𝑎𝑥
)
2

𝜎𝐼
2}                                            (110) 

 
and a maximum value, when 𝐼 = 𝐼𝑚𝑎𝑥, of 

 

𝜎𝛿
2 = (

1

 𝑖𝑛(𝛿)
)
2

{2 (
2

𝐼𝑚𝑎𝑥
)
2

𝜎𝐼
2}                                      (111) 

 

When 𝛿 = 180° or 360°,  𝑖𝑛(𝛿) = 0, and 
1

𝑠𝑖𝑛(𝛿)
= ∞, which means that the error in the 

retardance should be very high at the values of retardance of 180° or 𝜋 (half a wavelength of 

retardance), or 360° or 2𝜋 (a full wave of retardance). However, in practice, we have found 

that the results for these values of the retardance are reasonably stable, with only a small 

increase in the error. This may be due to the measurement errors associated with the stability 

of the voltages applied to the LCVRs. There is a variability of the voltage meaning that it is 

not possible to have the case of a retardance of exactly 𝜋 or 2𝜋, meaning that the error in 

these values is reduced. 

 

3.3 Results 

In this section, the principal results of the process to obtain the characteristic curves for the 

two LCVR’s used in the developed polarimeter are presented. First, the normalized intensity 

values are plotted as a function of the applied voltage. The retardance values are calculated 

through equation (105) and these normalized intensity values, and the retardance, are 

presented as a function of the applied voltage. Then, the unwrapping process is graphically 

represented. Finally, the characteristic curves are obtained and plotted for the three 

wavelengths used in the experiment. 

Figure 13 shows the applied voltage versus the normalized intensity values for the two 

LCVR´s. 
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Figure 13 LCVR 1 (left) and LCVR 2 (right) normalized intensity curves for 450 nm, 543 nm and 633 nm. 

Then equation (105) is used to calculate the retardance for each value of the applied voltage 

and in figure 14 the applied voltage versus retardance values are plotted. 

 

Figure 14 LCVR 1 (left) and LCVR 2 (right) retardance curves for 450 nm, 543 nm and 633 nm. 

From figure 14 it can be seen that the retardance values are “locked” between the values of 

0 and 180° because of the permitted values in the numerical calculation of the 𝑐𝑜 −1 function. 

These curves must be extended at the points where the gradient changes abruptly to give 

smooth curves. This is the unwrapping process which involves changing the sign of the 

gradient of the curves from the abrupt gradient change and to the left of this point, in our 

case, for each segment of the curves. This unwrapping process is shown graphically in figures 

15,16 and 17. 

From these characterization curves, the voltages required to produce the necessary 

retardances for the reference wavelength were found, and from these values the retardance 

values for the other wavelengths were calculated. Table 4 presents the voltages used in the 

experimental configuration of the polarimeter. The central wavelength, the green laser with 
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a wavelength of 543 nm, was used as the reference wavelength, with the retardances for this 

colour giving the Bickel and Bailey configuration [19]. 

 

 

 

Figure 15 LCVR 1 (left) and LCVR 2 (right) first unwraping step for 450 nm, 543 nm and 633 nm, at the first 

abrupt gradient change on the left-hand side of the graphs. 

 

 

Figure 16 LCVR 1 (left) and LCVR 2 (right) second unwarping step for 450 nm, 543 nm and 633 nm, for the 

second abrupt gradient change from the left in the original curves. 
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Figure 17 Completely unwrapped LCVR 1 (left) and LCVR 2 (right) characterization curves for 450 nm, 543 

nm and 633 nm, by performing the unwrapping process on the final abrupt gradient change in the curves of 

Figure 16. 

 

 

 

Table 4 shows the retardances calculated from the characterization curves of Figure 17, for the other two 

wavelengths using the same voltage values as for the central wavelength. 

 

 

 

By using the retardance values shown in table 4, we can obtain the three characteristic 

matrices for the wavelengths employed in this work and which are calculated in the following 

Chapter.  

 

 

 

Applied voltage (Volts) Retardance (Degrees) Applied voltage (Volts) Retardance (Degrees)

633 nm -0.389 2.203

543 nm 0 0

450 nm 4.751 5.038

633 nm -0.389 147.915

543 nm 0 180

450 nm 4.751 254.17

633 nm 73.057 72.71

543 nm 90 90

450 nm 126.823 127.305

633 nm 218.471 72.71

543 nm 270 90

450 nm 364.595 127.305

633 nm 146.517 72.71

543 nm 180 90

450 nm 250.217 127.305

633 nm -0.389 72.71

543 nm 0 90

450 nm 4.751 127.305

3.286

2.142

2.555

5.697

5.797

2.585

3.325

3.325

3.325

3.325

Polarization at 543 nm Wavelength
LCVR 1 LCVR 2

5.697

5.697

Horizontal

Vertical

45

-45

Right-handed

Left-handed
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4. Stokes polarimeter with three simultaneous 

wavelengths  
 

4.1 Experimental setup 

 

Figure 18 shows the experimental setup used in this work. Only one polarimeter is used to 

analyze the three wavelengths simultaneously.  

        

 
 

Figure 18 Scheme of the Stokes polarimeter setup employed in this work. The angles associated with each 

component refer to the relative angle of the optical axis of that component with respect to the horizontal 

plane. Measurements are taken simultaneously. The wavelengths employed are 633 nm, 543 nm y 450 nm. 

  

The laser sources used are two He-Ne polarized lasers (Melles Griot, model 25-LGP-193-

249, 543 nm and, JDS Uniphase, model 1137P 633 nm) and a polarized laser diode module 

(Thorlabs, model CPS450, 450 nm). One mirror and two beamsplitters (Thorlabs, model 

CM1-BP133 and CM1-BP150) are used to ensure co-propagating beams. At the input of the 

system there is a Glan-Thompson linear polarizer (Thorlabs, model GTH5M) to ensure that 

all three input beams are linearly polarized in the same plane. Then the sample is placed in 

the beam path, just before the components of the Stokes polarimeter, which are two 

Meadowlark compensated LCVR’s and a Glan-Taylor linear polarizer (Thorlabs, model 

GT10-A), as described above. Finally, the light beam is split onto three photo sensors 

(Thorlabs, model S120C) by using beam splitters (Thorlabs, model CM1-BP150), and in 

front of each photo sensor there is a laser-line filter (bandwidth 10 nm) which selects only 

one of the three wavelengths to be analyzed (Thorlabs, models FL632.8-10, FL543.5-10 and 

FB450-10). Note that the effect of the beam splitters on the polarization of the beams is also 

compensated by the calibration procedure. The experiment is controlled from the computer 
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via LabView. For the results presented below, the sample can be rotated from 0° to 180° in 

steps of 10°. Software LabVIEW is used to configure the position of the rotation mount and 

the voltage values applied to the LCVR´s. 

 

4.2 Fixed retarder retardance measurements: Chenault Chipman method. 

To calibrate the polarimeter shown in figure 18, two wave plates were used to generate 

known calibration beams. Two configurations which have been published in the literature 

were tested: a system with four known calibration beams, and a system with six known 

calibration beams. Given that these optical elements induce a retardance on the orthogonal 

components of an incident beam, and that this retardance depends on the wavelength of the 

incident beam, we measured the retardance induced by the quarter-wave plate and the half-

wave plate, which were designed for 633 nm, at the other two wavelengths used, with the 

technique described by Chenault and Chipman [30]. This technique also can be used to 

measure the linear diattenuation of a polarizer. In figure 19 a scheme of the experimental 

setup is shown. 

 

Figure 19 Scheme of the experimental setup used for the Chenault Chipman method. 

This scheme uses a pair of linear polarizers with parallel transmission axes. The analyzed 

sample is placed between the polarizers with its principal axis parallel to the transmission 

axis of the polarizers and then is rotated, measuring the transmitted intensity at the detector 

for each rotation angle. The principal parameters of the sample are shown in figure 19, the 

linear diattenuation, 𝒟; and the retardance 𝛿𝐶𝐻; which are given by [35]: 

𝒟 =
𝓆1 − 𝓆2

𝓆1 + 𝓆2
                                                                                      (112) 

𝛿𝐶𝐻 = |𝛿𝐶𝐻1 − 𝛿𝐶𝐻2|                                                                         (113) 

where 𝓆1 and 𝓆2 are the principal intensity transmittances and, 𝛿𝐶𝐻1, 𝛿𝐶𝐻2 are the orthogonal 

retardance components. Given this, the Mueller matrix for a sample with linear diattenuation 

𝒟, and retardance 𝛿𝐶𝐻, is given by [35]: 
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𝑴𝑆𝐴𝑀𝑃−𝐶𝐻(𝒟, 𝛿𝐶𝐻) = 𝒯𝐶𝐻

(

 

1 𝒟 0 0
𝒟 1 0 0

0 0 √1 − 𝒟2 cos 𝛿𝐶𝐻 √1 − 𝒟2 sin 𝛿𝐶𝐻

0 0 −√1 − 𝒟2 sin 𝛿𝐶𝐻 √1 − 𝒟2 cos 𝛿𝐶𝐻)

              (114)  

where 𝒯𝐶𝐻 =
1

2
(𝓆1 + 𝓆2) is the average transmission of the sample.   

The Mueller matrix for the entire system shown in figure 19 is given by [35]: 

𝑴𝑆𝑦𝑠−𝐶𝐻 = 𝑴𝐿𝑃−𝐶𝐻 2(𝒟2)𝑹𝐶𝐻(−𝜃𝐶𝐻)𝑴𝑆𝐴𝑀𝑃−𝐶𝐻(𝒟, 𝛿𝐶𝐻)𝑹𝐶𝐻(𝜃𝐶𝐻)𝑴𝐿𝑃−𝐶𝐻 1(𝒟1)   (115)  

where 𝑴𝐿𝑃−𝐶𝐻 𝑖(𝒟𝑖) (𝑖 = 1,2) are the Mueller matrices of the fixed linear polarizers, LP-CH 

1 and LP-CH 2[35]: 

𝑴𝐿𝑃−𝐶𝐻 𝑖(𝒟𝑖) = 𝒯𝐶𝐻 𝑖

(

 
 
 
 

1 𝒟𝑖 0 0
𝒟𝑖 1 0 0

0 0 √1 − 𝒟𝑖
2 √1 − 𝒟𝑖

2

0 0 −√1 − 𝒟𝑖
2 √1 − 𝒟𝑖

2

)

 
 
 
 

                        (116) 

 where 𝒯𝐶𝐻 𝑖 is the average transmission defined in the equation (114).  

Also, 𝑹𝐶𝐻(𝜃𝐶𝐻) is the Mueller matrix of a rotator which is a very useful tool when it is 

necessary describe a rotatory movement of a polarizing element (our sample in this case) [18, 

35]: 

𝑹𝐶𝐻(𝜃𝐶𝐻) = (

1 0 0 0
0 cos 2𝜃𝐶𝐻 sin 2𝜃𝐶𝐻 0
0 − sin 2𝜃𝐶𝐻 cos 2𝜃𝐶𝐻 0
0 0 0 1

)                                      (117)    

If the Mueller matrix of the optical system shown in figure 19 is known, see equation (115), 

then the relationship between the Stokes vectors of the incident and output beams is described 

by: 

𝑆𝐶𝐻𝑜 = 𝑴𝑆𝑦𝑠−𝐶𝐻𝑆𝐶𝐻𝑖                                                              (118)     

Therefore, for a specific wavelength the total intensity in the system is modulated by the 

rotation angle of the sample, 𝜃𝐶𝐻; the linear diattenuation and retardance of the sample, 𝒟 

and 𝛿𝐶𝐻, respectively; the linear diattenuation of the fixed polarizers, 𝒟𝑖; the average 

transmission of the polarizers; the radiance of the source and the responsivity of the detector. 

Given that the first parameter of the Stokes vector of the output beam, 𝑆𝐶𝐻𝑜, represents the 
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total measured intensity, it is possible to obtain the expression that describes this total 

intensity, 𝐼(𝜃𝐶𝐻), by solving equation (115) and employing equations (114), (116) and (117) 

[35]: 

𝐼(𝜃𝐶𝐻) = 𝜌𝐶𝐻 (1 +
1

2
𝒟1𝒟2(1 + √1 − 𝒟2 cos 𝛿𝐶𝐻) + 𝒟(𝒟1 + 𝒟2) cos 2𝜃𝐶𝐻 +

1

2
𝒟1𝒟2(1 − √1 − 𝒟2 cos 𝛿𝐶𝐻) cos 4𝜃𝐶𝐻)                                      (119)   

where 𝜌𝐶𝐻 is a normalization factor which carries information about the average transmission 

of the optical elements employed, the radiance of the source and the responsivity of the 

detector.   

In equation (119) the principal parameter is the rotation angle of the sample, this is because 

experimentally, the sample is rotated from 0° to 360° to modulate the total intensity signal. 

This equation can be rewritten as a Fourier series by replacing the parameters, except the 

rotation angle of the sample, by the coefficients 𝑎𝐶𝐻0, 𝑎𝐶𝐻2 and 𝑎𝐶𝐻4 [35]: 

𝐼(𝜃𝐶𝐻) = 𝜌𝐶𝐻(𝑎𝐶𝐻0 + 𝑎𝐶𝐻2 cos 2𝜃𝐶𝐻 + 𝑎𝐶𝐻4 cos 4𝜃𝐶𝐻)                                      (120)   

Hence, the linear diattenuation and retardance of the sample can be derived from equation 

(120) through a Fourier analysis of the detected intensity signal [35]:   

𝒟 =
𝑎𝐶𝐻2

𝑎𝐶𝐻0 + 𝑎𝐶𝐻4
(
1 + 𝒟1𝒟2

𝒟1 + 𝒟2
)                                                      (121) 

𝛿𝐶𝐻 = cos−1

(

 
 𝑎𝐶𝐻0 + 𝑎𝐶𝐻4 (1 +

2
𝒟1𝒟2

)

[(𝑎𝐶𝐻0 + 𝑎𝐶𝐻4)2 − 𝑎𝐶𝐻2
2 (

1 + 𝒟1𝒟2

𝒟1 + 𝒟2
)
2

]

1
2

)

 
 
                                 (122) 

where 𝒟1 and 𝒟2 are the linear diattenuation of the fixed polarizers.  

The values of 𝒟1 and 𝒟2 used were calculated experimentally by using a separate, simple 

method, to use Eq. (122) to give a more precise value of the retardances. Three polarizers 

were used in this case, one of them as the sample with diattenuation, 𝒟𝑠. First, 𝒟1 and 𝒟2 are 

taken as the ideal diattenuation values. Then 𝒟𝑠 is calculated experimentally through 

equation (121). Subsequently, 𝒟1 is calculated in a similar way but in this case the value for 

𝒟𝑠 calculated before is used and the diattenuation of the second polarizer is taken as the ideal 

value, 𝒟2. Finally, 𝒟2 is calculated experimentally by using equation (121) and taking the 

diattenuation values 𝒟1 and 𝒟𝑠 calculated previously. This is an iterative methodology that 

can be repeated until the diattenuation values converge to constant values [35]. 
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Experimentally diattenuation values were calculated, 𝒟1 = 0.99 ± 1.20𝑥10−7 and 𝒟2 =

0.99 ± 1.87𝑥10−6, for the two fixed polarizers shown in figure 19.  

 

Figure 20 Theoretical (line) and experimental (asterisks) curves for the half-wave plate for a) 633 nm, b) 543 

nm and c) 450 nm. 

 

Once the linear diattenuation of the fixed polarizers shown in figure 19 are known, it is 

possible to calculate the retardance of the half- and a quarter-wave plates for a specific 

wavelength through equation (122). The total intensity signal is modulated experimentally 

as a function of the rotation angle of the sample by rotating it from 0° to 360° and taking the 

intensity measurements. The theoretical total intensity signal is generated by using equation 

(120). Then, the theoretical curve is fit to the experimental one by changing the Fourier 

coefficient values and the normalization factor value. By changing these values, we can 

match the theoretical and the experimental curves. Finally, the Fourier coefficient values 
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found are used in equation (122) to calculate the retardance value of the wave plate analyzed 

for a specific wavelength. 

Figure 20 shows the theoretical (line) and experimental (asterisk) curves for the three 

different wavelengths for the half-wave-plate. The quarter-wave plate theoretical and 

experimental curves are shown in figure 21 for the three wavelengths.  

 
Figure 21 Theoretical (line) and experimental (asterisks) curves for the quarter-wave plate for a) 633 nm, b) 

543 nm and c) 450 nm. 

 

Table 3 shows the experimental values for the half-wave and quarter-wave plate retarders for 

the three wavelengths employed and the estimated average percentage error. These values 

are used for the known calibration samples for the corresponding colours in our calibration 

algorithm. 
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Table 3 shows the retardance values calculated for the half and quarter-wave plates for the three wavelengths. 

 

 

4.3 Stokes parameters measurement.  

Considering 543 nm as the reference wavelength, the characteristic matrices for each color, 

for the case of 6 intensity measurements, calculated from equation (64), and from the data in 

Table 2, are given by:    

 

𝑴𝐶(𝐺𝑅𝐸𝐸𝑁) =

(

 
 
 

0.5000 0.5000 0.0000 0.0000
0.5000 −0.5000 0.0000 0.0000
0.5000 0.0000 0.5000 0.0000
0.5000 0.0000 −0.5000 0.0000
0.5000 0.0000 0.0000 0.5000
0.5000 0.0000 0.0000 −0.5000)

 
 
 
                         (90) 

 

𝑴𝐶(𝐵𝐿𝑈𝐸) =

(

 
 
 

0.5000 0.4981 0.0036 −0.0438
0.5000 −0.1364 −0.0398 0.4794
0.5000 −0.3030 0.3184 0.2384
0.5000 −0.3030 0.0319 −0.3964
0.5000 −0.3030 −0.3742 0.1346
0.5000 −0.3030 0.0329 −0.3963)

 
 
 
                         (91) 

 

𝑴𝐶(𝑅𝐸𝐷) =

(

 
 
 

0.5000 0.4996 −0.0001 −0.0192
0.5000 −0.4236 −0.0018 −0.2656
0.5000 0.1486 0.4567 −0.1391
0.5000 0.1486 −0.2970 0.3738
0.5000 0.1486 0.2634 0.3982
0.5000 0.1486 −0.0032 −0.4774)

 
 
 
                         (92) 

 

The condition numbers for these matrices are 1.7322, 2.6196 and 2.3312, respectively for 

each color. We used the 6-intensity measurement case since here we can only have 1 

optimized case, with green light, and the other two cases are not optimized. For the case of 4 

intensity measurements, the non-optimized cases have very large condition numbers, which 

we found gives very large errors in the final Stokes parameters. 

The required Stokes vector of the incident light is then calculated by using equation (72). To 

show the principle of operation of the polarimeter, results are presented for rotating known 

Half-wave plate % Estimated error Quarter-wave plate % Estimated error

633 180 9.7 90 1.4

543 154.16 3.1 107.46 4

450 101.54 2.8 126.87 3.4

Retardance (Degrees)
Wavelength
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components: a linear polarimeter, a half-wave plate and a quarter-wave plate. The reported 

total RMS error in each case is given by: 

 

𝑅𝑀𝑆 =
√

∑ ∑
1

4𝑁
(𝑆𝑒𝑥𝑝 − 𝑆𝑡𝑒𝑜)2

𝑆𝑡𝑜𝑘𝑒𝑠
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝑎𝑛𝑔𝑙𝑒

                           (93) 

 

where 𝑆𝑒𝑥𝑝 is the experimental Stokes values, 𝑆𝑡𝑒𝑜 is the theoretical, expected Stokes values, 

and N is the number of rotation angles used.  

4.4 Calibration method. 

It is well-known that a precise polarization measurement requires a calibration and data 

extraction method to compensate the effect of experimental errors. In this work we use a 

recently developed fitting procedure [23]. Here we also compare the results of using four or 

six known polarization states as calibration samples: the four known samples are produced 

by: 

 a linear polarizer with the transmission axis oriented at 130°  

 a linear polarizer with the transmission axis oriented at 30° 

 a horizontal linear polarizer followed by a half-wave plate with the fast axis oriented 

at 30° 

 a horizontal linear polarizer followed by a quarter-wave plate with the fast axis 

oriented at 30° 

For six known calibration samples we add the cases of: 

 a horizontal polarizer followed by a half-wave plate with fast axes at 130° 

 a horizontal polarizer followed by a quarter-wave plate with fast axes at 130° 

Clearly, it is expected that the case of using 6 calibration polarization states should give better 

results than the case of 4 calibration states, since more data is being used to correct the 

experimental errors. However, this process will take more time with more data to be 

measured, which could be a disadvantage, and for this reason we tested both cases. The 

angles of 30° and 130° for the axes of the calibration samples were chosen to avoid problems 

with these axes being either parallel or perpendicular to the axes of the first polarizer on the 

left of Figure 18. Particularly, when polarizer axes are crossed there is no transmission. 
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Figure 22 Flow diagram of the calibration method. 

 

The intensity measurements obtained with these calibration samples in the polarimeter are 

different from the expected theoretical results, due to the experimental errors in the positions 

of the optical axes of the retarders, polarizers and LCVR’s (a total of four error parameters) 

and errors in each of the different retardance values for the LCVR’s and retarders used to 

generate the calibration beams. For the errors in the retardance values, it is important to take 

into account one error parameter for each different retardance value in the LCVR’s (a total 

of 7 error parameters). All of these errors are taken as the fitting parameters to fit the 

theoretically expected values including the experimental errors, to the experimentally 

obtained intensity values [23]. Then in the data extraction step, these fitted parameters for 
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the experimental errors are taken as fixed and are used to give a better model for the 

polarimeter and a new fit is performed, fitting the theoretical signals for the unknown Stokes 

vectors to the experimental measurements to find the Stokes vector elements of the unknown 

beam [23]. This fitting procedure is performed independently for each of the wavelengths 

used in the experiment, although the measurements are performed simultaneously. 

Figure 22 shows schematically the calibration method employed to fit experimental and 

theoretical curves through minimization of the RMS error parameter. This is a general 

scheme that can be applied for the cases reported in this thesis.  

4.5 Results 

Figures 23, 24 and 25 (left) show the uncalibrated Stokes parameters for rotating components 

of: a Glan-Thompson polarizer, a half-wave plate and a quarter-wave plate retarder, 

respectively. In all cases the expected theoretical data are represented by lines and 

experimental data are represented by geometrical shapes. In this case we take four calibration 

samples. Figures 26, 27 and 28 (left) show similar results, for the case of six calibration 

beams. Capital letters TR and ER refer to theoretical and experimental results, respectively.. 

The RMS error values are larger for the uncalibrated cases (left) than for the RMS error 

values for the calibrated cases (right). Also, for the 450 nm wavelength these values are larger 

than the other two wavelengths. This was expected since the condition number for this 

wavelength is the largest (section 4.3). For the 633 nm and 543 nm wavelengths the RMS 

error values are closer to each other. The polarimeter was optimized to the green colour, and 

the half-wave and quarter-wave plates are designed for the red colour (see Table 4).      

When the calibration method is applied (figures 23, 24, 25, 26, 27 and 28, right), we can 

observe a better fit between experimental and theoretical results with respect to the original 

data (same figures, left). Figures 23, 24 and 25 (right) show the Stokes parameters for a 

rotating Glan-Thompsom polarizer, a half-wave plate and a quarter-wave plate retarder, 

respectively. Figures 26, 27 and 28 (right) show similar results, for the case of six calibration 

beams. Again, capital letters TR and ER refer to theoretical and experimental, respectively.    
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Figure 23 Stokes parameters for a Glan-Thompsom polarizer as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right).  
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Figure 24 Stokes parameters for a half-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 
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Figure 25 Stokes parameters for a quarter-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 
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Figure 26 Stokes parameters for a Glan-Thompsom polarizer as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 
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Figure 27 Stokes parameters for a half-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 
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Figure 28 Stokes parameters for a quarter-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 

 

 

 

 

 



53 
 

Figures 29, 30 and 31, show a reduction of the absolute error for the Stokes parameters 

between theoretical and experimental results after the calibration process. The absolute error 

was calculated for each Stokes parameter for the case of six calibration beams, where we 

have the smallest RMS error (see table 4).  

  

Figure 29 Absolute error for a Glan-Thompsom polarizer as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 
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Figure 30 Absolute error for a half-wave plate as a function of the angle for the three wavelengths. Uncalibrated 
(left) and calibrated (right). 

 

 

 

 



55 
 

 

Figure 31 Absolute error for a quarter-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 

 

In general, we can see an important reduction of the absolute error for all cases after the 

calibration procedure. The absolute error values oscillate between 0 and 0.2 before 

calibration, and between 0 and 0.1 after that process. Although, for the half-wave plate and 

the quarter-wave plate to 450 nm this reduction is not very visible, it is noted that there is a 

flattening of most of the points in the graph.     
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Table 4 shows a comparison of the RMS error values for both cases studied in this section 

for each wavelength.  

Table 4: RMS error values for each sample.  

  Polarizer Half-wave plate Quarter-wave plate 

RMS error values  

(without calibration) 

633nm 0.0821 0.0960 0.0997 

543nm 0.0876 0.0905 0.1164 

450nm 0.1119 0.1427 0.1388 

RMS error values  

(four calibration samples) 

633nm 0.0298 0.0276 0.0454 

543nm 0.0408 0.0398 0.0414 

450nm 0.0366 0.0783 0.0798 

RMS error values  

(six calibration samples) 

633nm 0.0242 0.0252 0.0332 

543nm 0.0336 0.0344 0.0348 

450nm 0.0314 0.0751 0.0779 

 

It is also interesting to note that the use of six calibration samples instead of four calibration 

samples gives a very small further reduction in the total RMS error, suggesting that for many 

cases the case of four calibration samples is adequate for many applications. 
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5. Optimized Stokes polarimeter with three 

simultaneous wavelengths 
 

5.1 Experimental error propagation and the condition number of the characteristic 

matrix. 

As described previously, the condition number is defined as the ratio between the largest and 

the smallest singular values in the characteristic matrix, 𝜅. Also, the condition number 

measures how sensitive the inverse of a matrix is to perturbations in the input data and to 

roundoff errors made during the solution process. In this sense, an optimized Stokes 

polarimeter is defined as the optical system with a characteristic matrix which has a minimum 

error in the final Stokes vector result. In terms of the condition number, an optimized system 

must show the smallest value of 𝜅. The minimum value reported by Tyo for an optimized 

characteristic matrix in a full-Stokes polarimeter is √3 (6). Experimentally, the condition 

number value of the characteristic matrix for a Stokes polarimeter can be modified by 

adjusting the individual retardance values to each retarder, and the relative positions of the 

principal axes to each polarizing element (retarders and polarizers).  

The case reported in the previous chapter used the central green wavelength (543 nm) as 

reference to set the configuration of the applied voltages in order to reconstruct the Stokes 

parameters for the three wavelengths. In this case, the condition numbers for the three 

characteristic matrices of the wavelengths used were different from each other. In fact, the 

polarimeter is optimized for the 543 nm wavelength and therefore the condition number value 

for this wavelength was very close to √3, and the condition number values for the other two 

wavelengths were larger than this value, 2.6196 and 2.3312 for the blue and red cases, 

respectively  

In this section the results obtained for an optimized case are presented. This is, the condition 

number values of all three characteristic matrices for the three wavelengths are set close to 

the minimum value by choosing the positions of the principal axes and the retardance values 

of the LCVR´s in the Stokes polarimeter to minimize the condition numbers of the three 

wavelengths simultaneously. Given that only one configuration of voltages is applied to the 

LCVR´s to vary the retardance values for the three wavelengths, if the applied voltage values 

are modified then the retardance values change for all three colors.  

A MatLab program was written to search for optimized configurations for a 6 measurement 

Stokes polarimeter, varying the position of the principal axes and the applied voltage values 

of the LCVRs. The characterizations of the LCVRs in terms of the resulting retardance as a 

function of the applied voltage were used to calculate the retardances for each LCVR and for 

each wavelength, and then the characteristic matrices for each case were calculated. The 
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condition number values of the characteristic matrices for each wavelength were analyzed 

for each value of the polarimeter parameters. The cases of simultaneous minimum values of 

the condition number for the three characteristic matrices were stored as well as the 

corresponding LCVR axes angles and required voltage values.  Given that almost all the 

optimized configurations published in the literature have the angle between the fast axes of 

the two LCVRs equal to 45°, this parameter was fixed in our search algorithm. The MatLab 

program used for this part of the project is presented in appendix D of this thesis. 

5.2 Experimental results for the optimized case. 

 

5.2.1 Determination of the configuration of retardances for the optimized case. 

The results of the search algorithm described in the previous section were various different 

configurations of the Stokes polarimeter with slightly different condition numbers of the 

characteristic matrices for each wavelength. We chose one configuration with the three 

condition numbers nearly the same to better balance the error distribution between the three 

wavelengths. There were configurations where some of the condition numbers were smaller, 

but the corresponding condition numbers for the other wavelengths were larger, meaning that 

there would be a larger error in these cases.  

Table 5 shows the retardances calculated from the characterization curves of Figure 17 for the optimized case. 

Optimized case 
Wavelength 

(nm) 

LCVR 1 LCVR 2 

Applied 

voltage (Volts) 

Retardance 

(Degrees) 

Applied 

voltage (Volts) 

Retardance 

(Degrees) 

Configuration 

1 

633 

2.883 

120.986 

5.742 

2.059 

543 148.563 5.566 

450 206.116 9.120 

Configuration 

2 

633 

2.094 

243.958 

2.285 

206.307 

543 301.598 256.491 

450 390.615 348.648 

Configuration 

3 

633 

4.14 

35.289 

3.006 

102.133 

543 45.279 126.325 

450 64.853 178.780 

Configuration 

4 

633 

1.95 

277.627 

4.996 

14.380 

543 345.328 20.053 

450 449.140 29.106 

Configuration 

5 

633 

2.952 

108.495 

3.053 

97.853 

543 131.818 120.842 

450 185.494 170.123 

Configuration 

6 

633 

6.538 

-8.726 

2.604 

148.299 

543 -8.350 187.272 

450 -7.425 252.332 
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Table 5 presents the voltages used in the experimental configuration of the optimized 

polarimeter. As mentioned above, the positions of the fast axes of the LCVRs remain 

separated at 45° from one another, but the position of the fast axis of  LCVR 1 is 21.96° with 

respect to the position of the polarizer in the Stokes polarimeter (defined as 0° with respect 

to the optical table).  

 

Figure 32 Stokes parameters for a Glan-Thompsom polarizer as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right).  
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5.2.2 Results for the optimized case. 

From the retardance values shown in table 5, the three characteristic matrices can be 

calculated for the three wavelengths employed:  

𝑴𝐶(𝑅𝐸𝐷) =

(

 
 
 

0.5000 0.1277 0.3863 −0.2907
0.5000 −0.4377 −0.0110 0.2415
0.5000 0.0007 −0.1099 −0.4878
0.5000 0.3447 0.1450 0.3319
0.5000 −0.3465 0.2888 −0.2157
0.5000 0.0370 −0.4802 −0.1345)

 
 
 
                         (94) 

 

𝑴𝐶(𝐺𝑅𝐸𝐸𝑁) =

(

 
 
 

0.5000 0.0403 04749 −0.1511
0.5000 −0.1414 0.0256 0.4789
0.5000 −0.1274 −0.1753 −0.4506
0.5000 0.4981 −0.0295 −0.0316
0.5000 −0.4533 0.2045 −0.0523
0.5000 −0.0239 −0.4902 0.0955 )

 
 
 
                         (95) 

 

𝑴𝐶(𝐵𝐿𝑈𝐸) =

(

 
 
 

0.5000 0.0576 0.4529 0.2039
0.5000 0.4864 0.0039 −0.1156
0.5000 −0.1619 −0.3509 −0.3172
0.5000 0.1088 0.3407 −0.3494
0.5000 −0.4909 −0.0017 0.0947
0.5000 0.1291 −0.2916 0.3851 )

 
 
 
                         (96) 

 

The condition number values for these cases are: 1.8855, 1.8974, and 1.9316 for the red, 

green and blue wavelengths, respectively. We could not find a different configuration with 

all three condition numbers smaller than these values. The average condition number in this 

case is 1.9048, which is better than the value for the nonoptimized case described in the 

previous chapter, for which the average is 2.2277. 

Figures 32, 33 and 34 show the uncalibrated (left) and calibrated (right) Stokes parameters 

for rotating components of: a Glan-Thompsom polarizer, a half-wave plate retarder and a 

quarter-wave plate retarder, respectively, for this optimized case. In all cases the expected 

theoretical data are represented by lines and experimental data are represented by geometrical 

shapes. Here we take six calibration beams as known samples, as described in the previous 

section:  

 a linear polarizer with the transmission axis oriented at 130°  

 a linear polarizer with the transmission axis oriented at 30° 

 a horizontal linear polarizer followed by a half-wave plate with the fast axis oriented 

at 30° 
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 a horizontal linear polarizer followed by a quarter-wave plate with the fast axis 

oriented at 30° 

 a horizontal polarizer followed by a half-wave plate with fast axes at 130° 

 a horizontal polarizer followed by a quarter-wave plate with fast axes at 130°. 

 

Figure 33 Stokes parameters for a half-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 
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Figure 34 Stokes parameters for a quarter-wave plate as a function of the angle for the three wavelengths. 
Uncalibrated (left) and calibrated (right). 

 

Table 6 shows a comparison of the RMS error values for each wavelength and optical element 

analyzed.   
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Table 6 RMS error values for each sample.  

 Wavelength/Sample Polarizer 
Half-wave 

plate 

Quarter-wave 

plate 

RMS Error 

(without 

calibration) 

633 nm 0.0471 0.0538 0.0596 

543 nm 0.0731 0.0751 0.0778 

450 nm 0.0429 0.0850 0.0696 

RMS Error 

(six calibration 

samples) 

633 nm 0.0465 0.0487 0.0475 

543 nm 0.0731 0.0728 0.0720 

450 nm 0.0391 0.0789 0.0627 

 

Comparing these results with the results obtained in the previous chapter with a polarimeter 

optimized only for the central wavelength of 543 nm, it can be observed that the uncalibrated 

data for the optimized polarimeter described in this section has smaller errors than the 

uncalibrated data for the unoptimized polarimeter in the previous chapter. The largest 

reductions in rms errors, of around 50%, are for the cases of wavelengths 633 nm and 450 

nm, which have reductions in the condition numbers of their characteristic matrices. Even 

the case of 543 nm, for which the condition number increases from the previous setup, has a 

small but noticeable reduction in the rms error for the uncalibrated cases. It can also be 

observed that the calibration process in this case shows less reduction in the rms error in the 

calibrated data. In fact, the calibrated rms errors in this case are either about the same as (for 

450 nm), or larger than (for 633 nm and 543 nm) the calibrated values in the previous 

unoptimized cases. In the cases reported here for the optimized polarimeter the reduction of 

the RMS error values after the calibration method is applied for the quarter-wave plate is 

20%, 7% and 10% for 633 nm, 543 nm and 450 nm, respectively. For the half wave-plate a 

small reduction of the RMS error values is observed (9%, 3% y 7% respectively). Finally, 

the reduction for the polarizer is smaller than the other polarizing elements (1%, 0% y 9% 

respectively).  

The results presented here suggest that the method with one wavelength optimized and the 

other two wavelengths not optimized, with the calibration method used in this thesis gives 

better results than the method minimizing all three condition numbers of the characteristic 

matrices for the three wavelengths, as the final rms errors are smaller for the former case. 

One reason for this may be that it is not possible to minimize the three condition numbers 

more simultaneously, or at least we could not find a solution with smaller condition number. 

This means that none of the three wavelength systems are completely optimized (with 

condition number √3), whereas for the previous case one of the systems (for 543nm) was 

optimized, which may affect the obtained results. 



64 
 

Also, it is interesting that for the three wavelengths in the optimized case presented in this 

chapter, the uncalibrated rms errors are smaller than the unoptimized case. This suggests that 

the optimized polarimeter is closer to the ideal, expected configuration than the unoptimized 

case, which means that the experimental errors, in particular the alignment errors and errors 

in the retardance values required, are smaller in the optimized case. This in turn may mean 

that it is more difficult for the proposed calibration method to detect and correct these small 

errors. More work needs to be done to study these cases. 
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6. Conclusions and future work 
 

6.1 Conclusions. 

The operation principle for Stokes polarimeter working with three wavelengths 

simultaneously has been demonstrated. The Stokes polarimeter instrumented allows us to 

measure the Stokes vector of a light beam simultaneously for three different wavelengths. 

The measurement of the polarization intensities and calibration samples are simultaneous, 

with the calibration and data-extraction processes being performed by software, 

independently for each wavelength.  

We have shown that a proposed fitting calibration method works correctly and improves the 

fit between the experimental and theoretical, or expected curves, when we use only four 

known calibration beams. The RMS error values show a reduction of about 50% in the total 

RMS values after calibration. It is interesting that for the case of six calibration samples, the 

results show only a slight improvement in the total RMS error values. This suggests that four 

calibration samples may be enough in many applications to achieve adequate results using 

the fitting calibration procedure used here. 

We have compared results of measurements in a full Stokes LCVR polarimeter for the 

measurement of three wavelengths simultaneously, with two configurations. One, non-

optimized, configuration has the CN for the central wavelength at the ideal value of √𝟑, and 

the other two wavelengths have high condition numbers, fixed by the voltages used in the 

configuration of the central wavelength. This configuration was presented in the paper 

published in the indexed journal Applied Optics [18]. The second, or optimized, 

configuration has all three wavelengths with approximately the same CN, and with a lower 

average value closer to the ideal. This second configuration has smaller errors in the 

measured Stokes parameters before calibration and generally worse errors than the first 

configuration after calibration. 

The results presented here suggest that the method with one wavelength using an optimized 

condition number, with the other two wavelengths having an unoptimized condition number 

gives better results with the proposed calibration method. The method minimizing all three 

condition numbers of the characteristic matrices for the three wavelengths gives larger errors 

than the first case in the calibrated data. One reason for this may be that it is not possible to 

minimize the three condition numbers simultaneously closer to the ideal value of 1.732, or at 

least we could not find a solution with the three condition numbers with similar values less 

than the values obtained around 1.9. This means that none of the three wavelength systems 

are completely optimized (with condition number 1.732), whereas for the previous case one 

of the systems (for 543nm) was optimized to this value, and this may affect the obtained 

results. It is noticeable that the central wavelength of 543nm, which has an increase in the 
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condition number from the non-optimized to the optimized case, gives a calibrated RMS 

error of twice as much in the optimized case compared to the non-optimized case.  

We have shown that the polarimeter configurations used in this work give average total RMS 

error values of 0.0601 for the optimized case, and 0.0411 for the non-optimized case, 

averaged over the three wavelengths and the three reference samples used. These values are 

comparable to values reported in the literature for one-wavelength polarimeters and is 

adequate for many applications. Another general conclusion from this work is that it is not 

clear how to choose the best configuration for this type of polarimeter, where the 

characteristic matrices are coupled, but the analysis of the measured data is independent for 

each case. In the example presented here the characteristic matrices are coupled through the 

voltages applied to the LCVRs, and the analysis was independent for each wavelength. Since 

the unknown Stokes vector to be measured is different for each wavelength, it is not possible 

to write a single characteristic matrix for all the cases at once, and so a single minimum 

condition number cannot de defined.  

6.2 Future work. 

Possible activities required as future work to continue with the project described in this thesis 

are: 

o To develop a simulation of the Stokes polarimeter working with three different wave 

lengths to analyze the error propagation. 

o According to the above result, the simulation developed can be extended to more 

wavelengths to demonstrate how flexible the Stokes polarimeter developed can be.  

o To review the literature on other calibration methods and analyze the implementation 

to the optimized case.   

o To implement at least two different calibration methods reviewed on the above point 

to the data acquired for the optimized case.   

o To define a general method for optimization of polarimeters with multiple, coupled 

characteristic matrices. 
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7. Appendices 
 

7.1 Appendix A: LabVIEW programs for LCVR characterization. 

In this appendix we present both the front panel and block diagrams of the LabView program 

to obtain the experimental data used to calculate the characterization curves of the LCVR´s 

for each wavelength used. Data are taken simultaneously for the three colours. 142 voltage 

values were measured.  

 

 

Figure A1: front panel of the LabView program. The inputs are the iteration and the 

experiment numbers. Outputs are the voltage applied on the LCVR, the intensity measured 

for the three wavelengths and the actual number of the iteration and the experiment.    
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Figure A2: LabView block diagram for initializing the program to the first iteration and 

first experiment. Also, it allows us to setup the voltage values applied to generate the first 

section of the calibration curve, given that in the central curve it is necessary to use a 

smaller step than in the curve tails.    

 

Figure A3: LabView block diagram to setup the voltage values for the central calibration 

curve with a smaller step than in the curve tails.    
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Figure A4: LabView block diagram to setup the voltage values to generate the last section 

of the calibration curve.   

 

Figure A5: LabView block diagram for the overall data reading and storage for the three 

wavelengths. The intensity measured is showed in the front panel of the figure A1. 
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7.2 Appendix B: LabVIEW programs for the Chenault-Chipman method. 

In this appendix we present the block diagram and front panel for the LabView program 

developed to take the experimental measurements for the calculation of the retardance values 

of the half-wave and quarter-wave plates using the Chenault-Chapman method. 

 

Figure B1: front panel for control of the Chenault-Chipman method. The inputs are the 

number of angles to measure, the number of experiments and the step to move the rotating 

mount. The outputs are the intensity values for the three wavelengths and the indicators of 

the angle, the experiment and the position of the fast axis for the analyzed retarder.  

 

 

Figure B2: Block diagram of the program developed to obtain the data used to calculate the 

retardance values of the half-wave and quarter-wave plates using the Chenault-Chipman 

method. This program allows us to read and store the intensities measured for the three 

wavelengths to generate the characteristic curves for each wave plate. This information is 

shown in the front panel of figure B1. 
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7.3 Appendix C: LabVIEW programs for the Stokes polarimeter. 

In this appendix we present the program developed to obtain the experimental data used to 

calculate the Stokes parameters for each sample analyzed.  

 

Figure C1: front panel of the LabView program to control the Stokes polarimeter. The 

inputs are the number of voltages to set up for each channel, the configuration voltage 

values to apply, also, the angle and experiment numbers to analyze, and finally, the step to 

rotate the principal axis of the sample. In the output, the front panel shows the voltage 

applied to the current iteration, the angle and experiment numbers, the current position of 

the principal axis angle, and finally, the current intensity value measured for each 

wavelength.     
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Figure C2: block diagram of the LabView program to setup the voltage on the LCVRs. The 

voltage values are set up from the front panel.  
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Figure C3: block diagram of the LabView program to read the voltage values applied to the 

LCVRs for a specific configuration of retardances. These values are shown on the front 

panel. 

 

Figure C4: block diagram of the LabView program to read the intensity measurement for a 

specific configuration of retardances for the three wavelengths. This information is sent to 

be averaged later in a text document.  
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7.4 Appendix D: MatLab programs. 

Appendix D1: MatLab program developed to generate the theoretical and experimental 

curves for the Stokes parameters for the three wavelengths. Also, it allows us to calculate the 

RMS error for both four and six calibration samples. 

clear all 
close all 
clc 

  
v=[5.697 3.286 2.142 2.555 5.797 2.585 3.325]; %v=[v1I v1III v1IV v1V v2I 

v2II v2III] Configuration of voltage values applied to the LCVRs. 

  
CCDa=importdata('Char_Cur_all_wavelengths.txt'); %Storage data of the 

retardances values from the characteristic curves for three wavelengths. 

  
CCR1=[CCDa(:,1) CCDa(:,2)]; %633 nm LCVR1 
CCR2=[CCDa(:,4) CCDa(:,5)]; %633 nm LCVR2 
CCG1=[CCDa(:,7) CCDa(:,8)]; %543 nm LCVR1 
CCG2=[CCDa(:,10) CCDa(:,11)]; %543 nm LCVR2 
CCB1=[CCDa(:,13) CCDa(:,14)]; %450 nm LCVR1 
CCB2=[CCDa(:,16) CCDa(:,17)]; %450 nm LCVR2 

  
%Position of the principal axes for the polarizing elements 
ar1=0; %fast axis of the first LCVR 
ar2=45; %fast axis of the second LCVR 
ap=0; %transmission axis of the linear polarizer in the Stokes 

polarimeter 
ai=45; %transmission axis of the firts linear polarizer (it allows us to 

be sure that the incident beams are linearly polarized)  

  
%Retardance values for the three wavelengths 
%the function RET allows us to find the retardance value for a specific 
%voltage value in the characteristic curve previously storaged. 
r1IR=RET(CCR1,length(CCR1),v(1)); %retardance value on the LCVR 1 for 

case I and 633 nm (it is the same value for cases II and VI) 
r1IIR=r1IR; 
r1IIIR=RET(CCR1,length(CCR1),v(2)); %retardance value on the LCVR 1 for 

case III and 633 nm 
r1IVR=RET(CCR1,length(CCR1),v(3)); %retardance value on the LVR 1 for 

case IV and 633 nm 
r1VR=RET(CCR1,length(CCR1),v(4)); %retardance value on the LVR 1 for case 

V and 633 nm 
r1VIR=r1IR; 

  
r2IR=RET(CCR2,length(CCR2),v(5)); %retardance value on the LCVR 2 for 

case I and 633 nm 
r2IIR=RET(CCR2,length(CCR2),v(6)); %retardance value on the LCVR 2 for 

case II and 633 nm 
r2IIIR=RET(CCR2,length(CCR2),v(7)); %retardance value on the LCVR 2 for 

case III and 633 nm (it is the same value for cases IV, V nad VI) 
r2IVR=r2IIIR; 
r2VR=r2IIIR; 
r2VIR=r2IIIR; 
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r1IG=RET(CCG1,length(CCG1),v(1)); %retardance value on the LCVR 1 for 

case I and 543 nm (it is the same value for cases II and VI) 
r1IIG=r1IG; 
r1IIIG=RET(CCG1,length(CCG1),v(2)); %retardance value on the LCVR 1 for 

case III and 543 nm 
r1IVG=RET(CCG1,length(CCG1),v(3)); %retardance value on the LVR 1 for 

case IV and 543 nm 
r1VG=RET(CCG1,length(CCG1),v(4)); %retardance value on the LVR 1 for case 

V and 543 nm 
r1VIG=r1IG; 

  
r2IG=RET(CCG2,length(CCG2),v(5)); %retardance value on the LCVR 2 for 

case I and 543 nm 
r2IIG=RET(CCG2,length(CCG2),v(6)); %retardance value on the LCVR 2 for 

case II and 543 nm 
r2IIIG=RET(CCG2,length(CCG2),v(7)); %retardance value on the LCVR 2 for 

case III and 543 nm (it is the same value for cases IV, V nad VI) 
r2IVG=r2IIIG; 
r2VG=r2IIIG; 
r2VIG=r2IIIG; 

  
r1IB=RET(CCB1,length(CCB1),v(1)); %retardance value on the LCVR 1 for 

case I and 450 nm (it is the same value for cases II and VI) 
r1IIB=r1IB; 
r1IIIB=RET(CCB1,length(CCB1),v(2)); %retardance value on the LCVR 1 for 

case III and 450 nm 
r1IVB=RET(CCB1,length(CCB1),v(3)); %retardance value on the LVR 1 for 

case IV and 450 nm 
r1VB=RET(CCB1,length(CCB1),v(4)); %retardance value on the LVR 1 for case 

V and 450 nm 
r1VIB=r1IB; 

  
r2IB=RET(CCB2,length(CCB2),v(5)); %retardance value on the LCVR 2 for 

case I and 450 nm 
r2IIB=RET(CCB2,length(CCB2),v(6)); %retardance value on the LCVR 2 for 

case II and 450 nm 
r2IIIB=RET(CCB2,length(CCB2),v(7)); %retardance value on the LCVR 2 for 

case III and 450 nm (it is the same value for cases IV, V nad VI) 
r2IVB=r2IIIB; 
r2VB=r2IIIB; 
r2VIB=r2IIIB; 

  
%Definition of the error parameters 
eai=0; 
ear1=0; 
ear2=0; 
eas=0; 
er1I=0; 
er1II=0; 
er1III=0; 
er1IV=0; 
er1V=0; 
er1VI=0; 
er2I=0; 
er2II=0; 
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er2III=0; 
er2IV=0; 
er2V=0; 
er2VI=0; 
erhb=0; 
erhg=0; 
erhr=0; 
erqb=0; 
erqg=0; 
erqr=0; 

  
for k=1:19 
as=10*(k-1); %principal axis of the sample. It is rotating from 0° to 

180°    
Msp=0.5*[1 cos(2*deg2rad(as+eas)) sin(2*deg2rad(as+eas)) 

0;cos(2*deg2rad(as+eas)) (cos(2*deg2rad(as+eas)))^2 

sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 0;sin(2*deg2rad(as+eas)) 

sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) (sin(2*deg2rad(as+eas)))^2 

0;0 0 0 0]; 
rh=180+erhr; %retardance of the half-wave plate for 633 nm. 
Msh=[1 0 0 0;0 

(cos(2*deg2rad(as+eas)))^2+cos(deg2rad(rh))*(sin(2*deg2rad(as+eas)))^2 

(1-cos(deg2rad(rh)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) -

sin(deg2rad(rh))*sin(2*deg2rad(as+eas));0 (1-

cos(deg2rad(rh)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 

(sin(2*deg2rad(as+eas)))^2+cos(deg2rad(rh))*(cos(2*deg2rad(as+eas)))^2 

sin(deg2rad(rh))*cos(2*deg2rad(as+eas));0 

sin(deg2rad(rh))*sin(2*deg2rad(as+eas)) -

sin(deg2rad(rh))*cos(2*deg2rad(as+eas)) cos(deg2rad(rh))]; 
rq=90+erqr; %retardance of the quarter-wave plate for 633 nm. 
Msq=[1 0 0 0;0 

(cos(2*deg2rad(as+eas)))^2+cos(deg2rad(rq))*(sin(2*deg2rad(as+eas)))^2 

(1-cos(deg2rad(rq)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) -

sin(deg2rad(rq))*sin(2*deg2rad(as+eas));0 (1-

cos(deg2rad(rq)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 

(sin(2*deg2rad(as+eas)))^2+cos(deg2rad(rq))*(cos(2*deg2rad(as+eas)))^2 

sin(deg2rad(rq))*cos(2*deg2rad(as+eas));0 

sin(deg2rad(rq))*sin(2*deg2rad(as+eas)) -

sin(deg2rad(rq))*cos(2*deg2rad(as+eas)) cos(deg2rad(rq))]; 
%StTheo is a function which allow us to obtain the theoretical intensity 
%vector. The inputs are the principal axis position of the polarizing 

elements, the configuration of retardance for the wavelength used, the 

error parameter values calculated previously and the Mueller matrix of 

the sample.   
IPR{k}=StTheo(ar1,ar2,ap,ai,r1IR,r1IIR,r1IIIR,r1IVR,r1VR,r1VIR,r2IR,r2IIR

,r2IIIR,r2IVR,r2VR,r2VIR,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msp); 
IHR{k}=StTheo(ar1,ar2,ap,ai,r1IR,r1IIR,r1IIIR,r1IVR,r1VR,r1VIR,r2IR,r2IIR

,r2IIIR,r2IVR,r2VR,r2VIR,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msh); 
IQR{k}=StTheo(ar1,ar2,ap,ai,r1IR,r1IIR,r1IIIR,r1IVR,r1VR,r1VIR,r2IR,r2IIR

,r2IIIR,r2IVR,r2VR,r2VIR,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msq); 
end 

  
%PMC function is employed to calculate the characteristic matrix and its 

pseudo-inverse  
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PMCR=PMC(r1IR,r1IIR,r1IIIR,r1IVR,r1VR,r1VIR,r2IR,r2IIR,r2IIIR,r2IVR,r2VR,

r2VIR,er1I,er1II,er1III,er1IV,er1V,er1VI,er2I,er2II,er2III,er2IV,er2V,er2

VI); 

  
%StPar function is used to obtain the normalized Stokes parameters of the 
%theorteical case. This function requires as input data the pseudo-

inverse 
%of the characteristic matrix and the intensity vector which were 
%calculated previously.  
SPR=StPar(PMCR,IPR{1,1},IPR{1,2},IPR{1,3},IPR{1,4},IPR{1,5},IPR{1,6},IPR{

1,7},IPR{1,8},IPR{1,9},IPR{1,10},IPR{1,11},IPR{1,12},IPR{1,13},IPR{1,14},

IPR{1,15},IPR{1,16},IPR{1,17},IPR{1,18},IPR{1,19}); 
SHR=StPar(PMCR,IHR{1,1},IHR{1,2},IHR{1,3},IHR{1,4},IHR{1,5},IHR{1,6},IHR{

1,7},IHR{1,8},IHR{1,9},IHR{1,10},IHR{1,11},IHR{1,12},IHR{1,13},IHR{1,14},

IHR{1,15},IHR{1,16},IHR{1,17},IHR{1,18},IHR{1,19}); 
SQR=StPar(PMCR,IQR{1,1},IQR{1,2},IQR{1,3},IQR{1,4},IQR{1,5},IQR{1,6},IQR{

1,7},IQR{1,8},IQR{1,9},IQR{1,10},IQR{1,11},IQR{1,12},IQR{1,13},IQR{1,14},

IQR{1,15},IQR{1,16},IQR{1,17},IQR{1,18},IQR{1,19}); 

  
for k=1:19 
as=10*(k-1);     
Msp=0.5*[1 cos(2*deg2rad(as+eas)) sin(2*deg2rad(as+eas)) 

0;cos(2*deg2rad(as+eas)) (cos(2*deg2rad(as+eas)))^2 

sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 0;sin(2*deg2rad(as+eas)) 

sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) (sin(2*deg2rad(as+eas)))^2 

0;0 0 0 0]; 
rh=154.158+erhg; 
Msh=[1 0 0 0;0 

(cos(2*deg2rad(as+eas)))^2+cos(deg2rad(rh))*(sin(2*deg2rad(as+eas)))^2 

(1-cos(deg2rad(rh)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) -

sin(deg2rad(rh))*sin(2*deg2rad(as+eas));0 (1-

cos(deg2rad(rh)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 

(sin(2*deg2rad(as+eas)))^2+cos(deg2rad(rh))*(cos(2*deg2rad(as+eas)))^2 

sin(deg2rad(rh))*cos(2*deg2rad(as+eas));0 

sin(deg2rad(rh))*sin(2*deg2rad(as+eas)) -

sin(deg2rad(rh))*cos(2*deg2rad(as+eas)) cos(deg2rad(rh))]; 
rq=107.46+erqg; 
Msq=[1 0 0 0;0 

(cos(2*deg2rad(as+eas)))^2+cos(deg2rad(rq))*(sin(2*deg2rad(as+eas)))^2 

(1-cos(deg2rad(rq)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) -

sin(deg2rad(rq))*sin(2*deg2rad(as+eas));0 (1-

cos(deg2rad(rq)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 

(sin(2*deg2rad(as+eas)))^2+cos(deg2rad(rq))*(cos(2*deg2rad(as+eas)))^2 

sin(deg2rad(rq))*cos(2*deg2rad(as+eas));0 

sin(deg2rad(rq))*sin(2*deg2rad(as+eas)) -

sin(deg2rad(rq))*cos(2*deg2rad(as+eas)) cos(deg2rad(rq))]; 
IPG{k}=StTheo(ar1,ar2,ap,ai,r1IG,r1IIG,r1IIIG,r1IVG,r1VG,r1VIG,r2IG,r2IIG

,r2IIIG,r2IVG,r2VG,r2VIG,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msp); 
IHG{k}=StTheo(ar1,ar2,ap,ai,r1IG,r1IIG,r1IIIG,r1IVG,r1VG,r1VIG,r2IG,r2IIG

,r2IIIG,r2IVG,r2VG,r2VIG,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msh); 
IQG{k}=StTheo(ar1,ar2,ap,ai,r1IG,r1IIG,r1IIIG,r1IVG,r1VG,r1VIG,r2IG,r2IIG

,r2IIIG,r2IVG,r2VG,r2VIG,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msq); 
end 
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PMCG=PMC(r1IG,r1IIG,r1IIIG,r1IVG,r1VG,r1VIG,r2IG,r2IIG,r2IIIG,r2IVG,r2VG,

r2VIG,er1I,er1II,er1III,er1IV,er1V,er1VI,er2I,er2II,er2III,er2IV,er2V,er2

VI); 

  
SPG=StPar(PMCG,IPG{1,1},IPG{1,2},IPG{1,3},IPG{1,4},IPG{1,5},IPG{1,6},IPG{

1,7},IPG{1,8},IPG{1,9},IPG{1,10},IPG{1,11},IPG{1,12},IPG{1,13},IPG{1,14},

IPG{1,15},IPG{1,16},IPG{1,17},IPG{1,18},IPG{1,19}); 
SHG=StPar(PMCG,IHG{1,1},IHG{1,2},IHG{1,3},IHG{1,4},IHG{1,5},IHG{1,6},IHG{

1,7},IHG{1,8},IHG{1,9},IHG{1,10},IHG{1,11},IHG{1,12},IHG{1,13},IHG{1,14},

IHG{1,15},IHG{1,16},IHG{1,17},IHG{1,18},IHG{1,19}); 
SQG=StPar(PMCG,IQG{1,1},IQG{1,2},IQG{1,3},IQG{1,4},IQG{1,5},IQG{1,6},IQG{

1,7},IQG{1,8},IQG{1,9},IQG{1,10},IQG{1,11},IQG{1,12},IQG{1,13},IQG{1,14},

IQG{1,15},IQG{1,16},IQG{1,17},IQG{1,18},IQG{1,19}); 

  
for k=1:19 
as=10*(k-1);     
Msp=0.5*[1 cos(2*deg2rad(as+eas)) sin(2*deg2rad(as+eas)) 

0;cos(2*deg2rad(as+eas)) (cos(2*deg2rad(as+eas)))^2 

sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 0;sin(2*deg2rad(as+eas)) 

sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) (sin(2*deg2rad(as+eas)))^2 

0;0 0 0 0]; 
rh=101.537+erhb; 
Msh=[1 0 0 0;0 

(cos(2*deg2rad(as+eas)))^2+cos(deg2rad(rh))*(sin(2*deg2rad(as+eas)))^2 

(1-cos(deg2rad(rh)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) -

sin(deg2rad(rh))*sin(2*deg2rad(as+eas));0 (1-

cos(deg2rad(rh)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 

(sin(2*deg2rad(as+eas)))^2+cos(deg2rad(rh))*(cos(2*deg2rad(as+eas)))^2 

sin(deg2rad(rh))*cos(2*deg2rad(as+eas));0 

sin(deg2rad(rh))*sin(2*deg2rad(as+eas)) -

sin(deg2rad(rh))*cos(2*deg2rad(as+eas)) cos(deg2rad(rh))]; 
rq=126.87+erqb; 
Msq=[1 0 0 0;0 

(cos(2*deg2rad(as+eas)))^2+cos(deg2rad(rq))*(sin(2*deg2rad(as+eas)))^2 

(1-cos(deg2rad(rq)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) -

sin(deg2rad(rq))*sin(2*deg2rad(as+eas));0 (1-

cos(deg2rad(rq)))*sin(2*deg2rad(as+eas))*cos(2*deg2rad(as+eas)) 

(sin(2*deg2rad(as+eas)))^2+cos(deg2rad(rq))*(cos(2*deg2rad(as+eas)))^2 

sin(deg2rad(rq))*cos(2*deg2rad(as+eas));0 

sin(deg2rad(rq))*sin(2*deg2rad(as+eas)) -

sin(deg2rad(rq))*cos(2*deg2rad(as+eas)) cos(deg2rad(rq))]; 
IPB{k}=StTheo(ar1,ar2,ap,ai,r1IB,r1IIB,r1IIIB,r1IVB,r1VB,r1VIB,r2IB,r2IIB

,r2IIIB,r2IVB,r2VB,r2VIB,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msp); 
IHB{k}=StTheo(ar1,ar2,ap,ai,r1IB,r1IIB,r1IIIB,r1IVB,r1VB,r1VIB,r2IB,r2IIB

,r2IIIB,r2IVB,r2VB,r2VIB,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msh); 
IQB{k}=StTheo(ar1,ar2,ap,ai,r1IB,r1IIB,r1IIIB,r1IVB,r1VB,r1VIB,r2IB,r2IIB

,r2IIIB,r2IVB,r2VB,r2VIB,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,Msq); 
end 

  
PMCB=PMC(r1IB,r1IIB,r1IIIB,r1IVB,r1VB,r1VIB,r2IB,r2IIB,r2IIIB,r2IVB,r2VB,

r2VIB,er1I,er1II,er1III,er1IV,er1V,er1VI,er2I,er2II,er2III,er2IV,er2V,er2

VI); 



79 
 

  
SPB=StPar(PMCB,IPB{1,1},IPB{1,2},IPB{1,3},IPB{1,4},IPB{1,5},IPB{1,6},IPB{

1,7},IPB{1,8},IPB{1,9},IPB{1,10},IPB{1,11},IPB{1,12},IPB{1,13},IPB{1,14},

IPB{1,15},IPB{1,16},IPB{1,17},IPB{1,18},IPB{1,19}); 
SHB=StPar(PMCB,IHB{1,1},IHB{1,2},IHB{1,3},IHB{1,4},IHB{1,5},IHB{1,6},IHB{

1,7},IHB{1,8},IHB{1,9},IHB{1,10},IHB{1,11},IHB{1,12},IHB{1,13},IHB{1,14},

IHB{1,15},IHB{1,16},IHB{1,17},IHB{1,18},IHB{1,19}); 
SQB=StPar(PMCB,IQB{1,1},IQB{1,2},IQB{1,3},IQB{1,4},IQB{1,5},IQB{1,6},IQB{

1,7},IQB{1,8},IQB{1,9},IQB{1,10},IQB{1,11},IQB{1,12},IQB{1,13},IQB{1,14},

IQB{1,15},IQB{1,16},IQB{1,17},IQB{1,18},IQB{1,19}); 

  
%STVEC function is used to obtain the normalized Stokes parameters of the 
%experimental case. This function requires as input data the pseudo-

inverse 
%of the characteristic matrix and the intensity values of experimental 

measurements.  
SVRP=STVEC('LP','RED',PMCR); 
SVGP=STVEC('LP','GREEN',PMCG); 
SVBP=STVEC('LP','BLUE',PMCB); 

  
SVRH=STVEC('HWP','RED',PMCR); 
SVGH=STVEC('HWP','GREEN',PMCG); 
SVBH=STVEC('HWP','BLUE',PMCB); 

  
SVRQ=STVEC('QWP','RED',PMCR); 
SVGQ=STVEC('QWP','GREEN',PMCG); 
SVBQ=STVEC('QWP','BLUE',PMCB); 

  
%RMS Error for the three wavelengths and six calibration samples 
SPGT30=SPG(4,:); 
SPGE30=SVGP(4,:); 
SPGT130=SPG(14,:); 
SPGE130=SVGP(14,:); 
SHGT30=SHG(4,:); 
SHGE30=SVGH(4,:); 
SHGT130=SHG(14,:); 
SHGE130=SVGH(14,:); 
SQGT30=SQG(4,:); 
SQGE30=SVGQ(4,:); 
SQGT130=SQG(14,:); 
SQGE130=SVGQ(14,:); 

  
RMSG=sqrt((1/24)*((SPGT30(1)-SPGE30(1))^2+(SPGT30(2)-

SPGE30(2))^2+(SPGT30(3)-SPGE30(3))^2+(SPGT30(4)-SPGE30(4))^2+(SPGT130(1)-

SPGE130(1))^2+(SPGT130(2)-SPGE130(2))^2+(SPGT130(3)-

SPGE130(3))^2+(SPGT130(4)-SPGE130(4))^2+(SHGT30(1)-

SHGE30(1))^2+(SHGT30(2)-SHGE30(2))^2+(SHGT30(3)-SHGE30(3))^2+(SHGT30(4)-

SHGE30(4))^2+(SHGT130(1)-SHGE130(1))^2+(SHGT130(2)-

SHGE130(2))^2+(SHGT130(3)-SHGE130(3))^2+(SHGT130(4)-

SHGE130(4))^2+(SQGT30(1)-SQGE30(1))^2+(SQGT30(2)-SQGE30(2))^2+(SQGT30(3)-

SQGE30(3))^2+(SQGT30(4)-SQGE30(4))^2+(SQGT130(1)-

SQGE130(1))^2+(SQGT130(2)-SQGE130(2))^2+(SQGT130(3)-

SQGE130(3))^2+(SQGT130(4)-SQGE130(4))^2)); 

  
SPRT30=SPR(4,:); 
SPRE30=SVRP(4,:); 
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SPRT130=SPR(14,:); 
SPRE130=SVRP(14,:); 
SHRT30=SHR(4,:); 
SHRE30=SVRH(4,:); 
SHRT130=SHR(14,:); 
SHRE130=SVRH(14,:); 
SQRT30=SQR(4,:); 
SQRE30=SVRQ(4,:); 
SQRT130=SQR(14,:); 
SQRE130=SVRQ(14,:); 

  
RMSR=sqrt((1/24)*((SPRT30(1)-SPRE30(1))^2+(SPRT30(2)-

SPRE30(2))^2+(SPRT30(3)-SPRE30(3))^2+(SPRT30(4)-SPRE30(4))^2+(SPRT130(1)-

SPRE130(1))^2+(SPRT130(2)-SPRE130(2))^2+(SPRT130(3)-

SPRE130(3))^2+(SPRT130(4)-SPRE130(4))^2+(SHRT30(1)-

SHRE30(1))^2+(SHRT30(2)-SHRE30(2))^2+(SHRT30(3)-SHRE30(3))^2+(SHRT30(4)-

SHRE30(4))^2+(SHRT130(1)-SHRE130(1))^2+(SHRT130(2)-

SHRE130(2))^2+(SHRT130(3)-SHRE130(3))^2+(SHRT130(4)-

SHRE130(4))^2+(SQRT30(1)-SQRE30(1))^2+(SQRT30(2)-SQRE30(2))^2+(SQRT30(3)-

SQRE30(3))^2+(SQRT30(4)-SQRE30(4))^2+(SQRT130(1)-

SQRE130(1))^2+(SQRT130(2)-SQRE130(2))^2+(SQRT130(3)-

SQRE130(3))^2+(SQRT130(4)-SQRE130(4))^2)); 

  
SPBT30=SPB(4,:); 
SPBE30=SVBP(4,:); 
SPBT130=SPB(14,:); 
SPBE130=SVBP(14,:); 
SHBT30=SHB(4,:); 
SHBE30=SVBH(4,:); 
SHBT130=SHB(14,:); 
SHBE130=SVBH(14,:); 
SQBT30=SQB(4,:); 
SQBE30=SVBQ(4,:); 
SQBT130=SQB(14,:); 
SQBE130=SVBQ(14,:); 

  
RMSB=sqrt((1/24)*((SPBT30(1)-SPBE30(1))^2+(SPBT30(2)-

SPBE30(2))^2+(SPBT30(3)-SPBE30(3))^2+(SPBT30(4)-SPBE30(4))^2+(SPBT130(1)-

SPBE130(1))^2+(SPBT130(2)-SPBE130(2))^2+(SPBT130(3)-

SPBE130(3))^2+(SPBT130(4)-SPBE130(4))^2+(SHBT30(1)-

SHBE30(1))^2+(SHBT30(2)-SHBE30(2))^2+(SHBT30(3)-SHBE30(3))^2+(SHBT30(4)-

SHBE30(4))^2+(SHBT130(1)-SHBE130(1))^2+(SHBT130(2)-

SHBE130(2))^2+(SHBT130(3)-SHBE130(3))^2+(SHBT130(4)-

SHBE130(4))^2+(SQBT30(1)-SQBE30(1))^2+(SQBT30(2)-SQBE30(2))^2+(SQBT30(3)-

SQBE30(3))^2+(SQBT30(4)-SQBE30(4))^2+(SQBT130(1)-

SQBE130(1))^2+(SQBT130(2)-SQBE130(2))^2+(SQBT130(3)-

SQBE130(3))^2+(SQBT130(4)-SQBE130(4))^2)); 

 

In this part, the functions required for the above program are described. 

StTheo function  

StTheo is a function which allow us to obtain the theoretical intensity vector. The inputs are 

the principal axis position of the polarizing elements, the configuration of retardance for the 
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wavelength used, the error parameter values calculated previously and the Mueller matrix of 

the sample. 

function 

[I]=StTheo(ar1,ar2,ap,ai,r1I,r1II,r1III,r1IV,r1V,r1VI,r2I,r2II,r2III,r2IV

,r2V,r2VI,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,er2I,er2II,er2

III,er2IV,er2V,er2VI,Ms) 
%incident polarization state 
Si=[1;0;0;0]; 

  
%Mueller matrices for the first polarizer Mi an the Polarizer in the 

Stokes 
%polarimeter Mp 
Mi=0.5*[1 cos(2*deg2rad(ai+eai)) sin(2*deg2rad(ai+eai)) 

0;cos(2*deg2rad(ai+eai)) (cos(2*deg2rad(ai+eai)))^2 

sin(2*deg2rad(ai+eai))*cos(2*deg2rad(ai+eai)) 0;sin(2*deg2rad(ai+eai)) 

sin(2*deg2rad(ai+eai))*cos(2*deg2rad(ai+eai)) (sin(2*deg2rad(ai+eai)))^2 

0;0 0 0 0]; 
Mp=0.5*[1 cos(2*deg2rad(ap)) sin(2*deg2rad(ap)) 0;cos(2*deg2rad(ap)) 

(cos(2*deg2rad(ap)))^2 sin(2*deg2rad(ap))*cos(2*deg2rad(ap)) 

0;sin(2*deg2rad(ap)) sin(2*deg2rad(ap))*cos(2*deg2rad(ap)) 

(sin(2*deg2rad(ap)))^2 0;0 0 0 0]; 

  
%caso I 
Mr1I=LCVRS(r1I,ar1,er1I,ear1); %LCVR function generates the Mueller 

matrix for the LCVR for a specific retardance value and position of the 

fast axis. Also, error parameters are considered.   
Mr2I=LCVRS(r2I,ar2,er2I,ear2); 

  
SoI=Mp*Mr2I*Mr1I*Ms*Mi*Si; 
II=SoI(1); %Only the first parameter of the output Stokes vector is 

obtained.  

  
%caso II 
Mr1II=LCVRS(r1II,ar1,er1II,ear1); 
Mr2II=LCVRS(r2II,ar2,er2II,ear2); 

  
SoII=Mp*Mr2II*Mr1II*Ms*Mi*Si; 
III=SoII(1); 

  
%caso III 
Mr1III=LCVRS(r1III,ar1,er1III,ear1); 
Mr2III=LCVRS(r2III,ar2,er2III,ear2); 

  
SoIII=Mp*Mr2III*Mr1III*Ms*Mi*Si; 
IIII=SoIII(1); 

  
%caso IV 
Mr1IV=LCVRS(r1IV,ar1,er1IV,ear1); 
Mr2IV=LCVRS(r2IV,ar2,er2IV,ear2); 

  
SoIV=Mp*Mr2IV*Mr1IV*Ms*Mi*Si; 
IIV=SoIV(1); 
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%caso V 
Mr1V=LCVRS(r1V,ar1,er1V,ear1); 
Mr2V=LCVRS(r2V,ar2,er2V,ear2); 

  
SoV=Mp*Mr2V*Mr1V*Ms*Mi*Si; 
IV=SoV(1); 

  
%caso VI 
Mr1VI=LCVRS(r1VI,ar1,er1VI,ear1); 
Mr2VI=LCVRS(r2VI,ar2,er2VI,ear2); 

  
SoVI=Mp*Mr2VI*Mr1VI*Ms*Mi*Si; 
IVI=SoVI(1); 

  
%intensities 
I=[II;III;IIII;IIV;IV;IVI]; 
end 

 

LCVR function 

LCVR function generates the Mueller matrix for the LCVR for a specific retardance value 

and position of the fast axis. Also, error parameters are considered.   

function [Mr]=LCVRS(r,ar,er,ear) 
Mr=[1 0 0 0;0 

(cos(2*deg2rad(ar+ear)))^2+cos(deg2rad(r+er))*(sin(2*deg2rad(ar+ear)))^2 

(1-cos(deg2rad(r+er)))*sin(2*deg2rad(ar+ear))*cos(2*deg2rad(ar+ear)) -

sin(deg2rad(r+er))*sin(2*deg2rad(ar+ear));0 (1-

cos(deg2rad(r+er)))*sin(2*deg2rad(ar+ear))*cos(2*deg2rad(ar+ear)) 

(sin(2*deg2rad(ar+ear)))^2+cos(deg2rad(r+er))*(cos(2*deg2rad(ar+ear)))^2 

sin(deg2rad(r+er))*cos(2*deg2rad(ar+ear));0 

sin(deg2rad(r+er))*sin(2*deg2rad(ar+ear)) -

sin(deg2rad(r+er))*cos(2*deg2rad(ar+ear)) cos(deg2rad(r+er))];  
end 

 

PMC function 

PMC function is employed to calculate the characteristic matrix and its pseudo-inverse for 

the Stokes polarimeter. The inputs are the retardance configuration and the errors associated 

with this value. 

%Functión to calculate the characteristic matrix and its pseudo-inverse  

  
function 

[PMC]=PMC(r1I,r1II,r1III,r1IV,r1V,r1VI,r2I,r2II,r2III,r2IV,r2V,r2VI,er1I,

er1II,er1III,er1IV,er1V,er1VI,er2I,er2II,er2III,er2IV,er2V,er2VI) 
MC=0.5*[1 cos(deg2rad(r2I+er2I)) 

sin(deg2rad(r1I+er1I))*sin(deg2rad(r2I+er2I)) -

cos(deg2rad(r1I+er1I))*sin(deg2rad(r2I+er2I));1 cos(deg2rad(r2II+er2II)) 

sin(deg2rad(r1II+er1II))*sin(deg2rad(r2II+er2II)) -

cos(deg2rad(r1II+er1II))*sin(deg2rad(r2II+er2II));1 

cos(deg2rad(r2III+er2III)) 
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sin(deg2rad(r1III+er1III))*sin(deg2rad(r2III+er2III)) -

cos(deg2rad(r1III+er1III))*sin(deg2rad(r2III+er2III));1 

cos(deg2rad(r2IV+er2IV)) 

sin(deg2rad(r1IV+er1IV))*sin(deg2rad(r2IV+er2IV)) -

cos(deg2rad(r1IV+er1IV))*sin(deg2rad(r2IV+er2IV));1 

cos(deg2rad(r2V+er2V)) sin(deg2rad(r1V+er1V))*sin(deg2rad(r2V+er2V)) -

cos(deg2rad(r1V+er1V))*sin(deg2rad(r2V+er2V));1 cos(deg2rad(r2VI+er2VI)) 

sin(deg2rad(r1VI+er1VI))*sin(deg2rad(r2VI+er2VI)) -

cos(deg2rad(r1VI+er1VI))*sin(deg2rad(r2VI+er2VI))]; 

  
PMC=((MC.')*MC)\(MC.'); 
end 

 

StPar function  

StPar function is used to obtain the normalized Stokes parameters of the theoretical data. This 

function requires as input data the pseudo-inverse of the characteristic matrix and the 

intensity vector which were calculated previously. 

function 

[SPN]=StPar(PMC,IP1,IP2,IP3,IP4,IP5,IP6,IP7,IP8,IP9,IP10,IP11,IP12,IP13,I

P14,IP15,IP16,IP17,IP18,IP19) 
S0P=PMC*IP1; 
S0PN=[S0P(1)/S0P(1) S0P(2)/S0P(1) S0P(3)/S0P(1) S0P(4)/S0P(1)]; 

  
S10P=PMC*IP2; 
S10PN=[S10P(1)/S10P(1) S10P(2)/S10P(1) S10P(3)/S10P(1) S10P(4)/S10P(1)]; 

  
S20P=PMC*IP3; 
S20PN=[S20P(1)/S20P(1) S20P(2)/S20P(1) S20P(3)/S20P(1) S20P(4)/S20P(1)]; 

  
S30P=PMC*IP4; 
S30PN=[S30P(1)/S30P(1) S30P(2)/S30P(1) S30P(3)/S30P(1) S30P(4)/S30P(1)]; 

  
S40P=PMC*IP5; 
S40PN=[S40P(1)/S40P(1) S40P(2)/S40P(1) S40P(3)/S40P(1) S40P(4)/S40P(1)]; 

  
S50P=PMC*IP6; 
S50PN=[S50P(1)/S50P(1) S50P(2)/S50P(1) S50P(3)/S50P(1) S50P(4)/S50P(1)]; 

  
S60P=PMC*IP7; 
S60PN=[S60P(1)/S60P(1) S60P(2)/S60P(1) S60P(3)/S60P(1) S60P(4)/S60P(1)]; 

  
S70P=PMC*IP8; 
S70PN=[S70P(1)/S70P(1) S70P(2)/S70P(1) S70P(3)/S70P(1) S70P(4)/S70P(1)]; 

  
S80P=PMC*IP9; 
S80PN=[S80P(1)/S80P(1) S80P(2)/S80P(1) S80P(3)/S80P(1) S80P(4)/S80P(1)]; 

  
S90P=PMC*IP10; 
S90PN=[S90P(1)/S90P(1) S90P(2)/S90P(1) S90P(3)/S90P(1) S90P(4)/S90P(1)]; 
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S100P=PMC*IP11; 
S100PN=[S100P(1)/S100P(1) S100P(2)/S100P(1) S100P(3)/S100P(1) 

S100P(4)/S100P(1)]; 

  
S110P=PMC*IP12; 
S110PN=[S110P(1)/S110P(1) S110P(2)/S110P(1) S110P(3)/S110P(1) 

S110P(4)/S110P(1)]; 

  
S120P=PMC*IP13; 
S120PN=[S120P(1)/S120P(1) S120P(2)/S120P(1) S120P(3)/S120P(1) 

S120P(4)/S120P(1)]; 

  
S130P=PMC*IP14; 
S130PN=[S130P(1)/S130P(1) S130P(2)/S130P(1) S130P(3)/S130P(1) 

S130P(4)/S130P(1)]; 

  
S140P=PMC*IP15; 
S140PN=[S140P(1)/S140P(1) S140P(2)/S140P(1) S140P(3)/S140P(1) 

S140P(4)/S140P(1)]; 

  
S150P=PMC*IP16; 
S150PN=[S150P(1)/S150P(1) S150P(2)/S150P(1) S150P(3)/S150P(1) 

S150P(4)/S150P(1)]; 

  
S160P=PMC*IP17; 
S160PN=[S160P(1)/S160P(1) S160P(2)/S160P(1) S160P(3)/S160P(1) 

S160P(4)/S160P(1)]; 

  
S170P=PMC*IP18; 
S170PN=[S170P(1)/S170P(1) S170P(2)/S170P(1) S170P(3)/S170P(1) 

S170P(4)/S170P(1)]; 

  
S180P=PMC*IP19; 
S180PN=[S180P(1)/S180P(1) S180P(2)/S180P(1) S180P(3)/S180P(1) 

S180P(4)/S180P(1)]; 

  
SPN=[S0PN;S10PN;S20PN;S30PN;S40PN;S50PN;S60PN;S70PN;S80PN;S90PN;S100PN;S1

10PN;S120PN;S130PN;S140PN;S150PN;S160PN;S170PN;S180PN]; 
end 

 

STEVEC function 

This function is used to obtain the normalized Stokes parameters of the experimental case. 

This function requires as input data the pseudo-inverse of the characteristic matrix and the 

intensity values of experimental measurements. 

function [StVe]=STVEC(sa,w,MPse) 
for k=1:19 
%Lect function allows us to storage the intensity vector obtained 

experimentally.   
I=Lect(sa,w,10*(k-1)); 
S=MPse*I'; 
SN{k}=[S(1)/S(1) S(2)/S(1) S(3)/S(1) S(4)/S(1)]; 
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end 

  
S0=SN{1,1}; 
S10=SN{1,2}; 
S20=SN{1,3}; 
S30=SN{1,4}; 
S40=SN{1,5}; 
S50=SN{1,6}; 
S60=SN{1,7}; 
S70=SN{1,8}; 
S80=SN{1,9}; 
S90=SN{1,10}; 
S100=SN{1,11}; 
S110=SN{1,12}; 
S120=SN{1,13}; 
S130=SN{1,14}; 
S140=SN{1,15}; 
S150=SN{1,16}; 
S160=SN{1,17}; 
S170=SN{1,18}; 
S180=SN{1,19}; 

  
StVe=[S0;S10;S20;S30;S40;S50;S60;S70;S80;S90;S100;S110;S120;S130;S140;S15

0;S160;S170;S180]; 
end 

 

Lect function 

Lect function allows us to store the intensity vector obtained experimentally.   

function [I]=Lect(samp,wale,angle) 
filename=sprintf('%s_%s_%d.txt',samp,wale,angle); 
D=importdata(filename); 
I=[mean(D(1,:)) mean(D(2,:)) mean(D(3,:)) mean(D(4,:)) mean(D(5,:)) 

mean(D(6,:))]; 
end 

 

RET function  

% Function to calculate the retardance values from the characterization 

curves 

  
function [ret]=RET(CC,l,v) 
for i=1:l 
   va=CC(i,1); 
   if (v>=va) 
       ret=((CC(i+1,2)-CC(i,2))/(CC(i+1,1)-CC(i,1)))*(v-CC(i,1))+CC(i,2); 
   end 
end 
end 
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Appendix D2: MatLab program developed to calibrate the Stokes polarimeter. The error 

parameters are calculated by applying Powell´s method. 

toclear all 
close all 
clc 

  
step=0.5; %step fixed value 

  
%Initializing error parameter values 
eai=0; 
ear1=0; 
ear2=0; 
eas=0; 
er1I=0; 
er1II=0; 
er1III=0; 
er1IV=0; 
er1V=0; 
er1VI=0; 
er2I=0; 
er2II=0; 
er2III=0; 
er2IV=0; 
er2V=0; 
er2VI=0; 
erhb=0; 
erhg=0; 
erhr=0; 
erqb=0; 
erqg=0; 
erqr=0; 

  
%RMS error value for a specific wavelength. This is calculated for the 
%initializing error parameter values defined above 

  
%RMSError function is showed in appendix D1  
RMSG=RMSError(eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,er2I,e

r2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb); 

  
%Powell´s method is applied for the RMS  function that allows us to move 
%along the first direction to its minimum (first error parameter), then 

from here along the second direction to its minimum, and so on, cycling 

through the whole set of directions as many times as necessary, until the 

function stops decreasing or take a smaller than a fixed value.       

  
while RMSG>0.026 %fixed limit of RMS error value 
%Each function into the cycle allows us to vary the error parameters 
%defined above by a step fixed. The RMSError value varies by variation of 

the error parameter values.  
Deas=RMSeas(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,er2

I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
eas=Deas(1); 
RMSG=Deas(2); 
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Dear1=RMSear1(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
ear1=Dear1(1); 
RMSG=Dear1(2); 
Dear2=RMSear2(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
ear2=Dear2(1); 
RMSG=Dear2(2); 
Deai=RMSeai(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,er2

I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
eai=Deai(1); 
RMSG=Deai(2); 
Der1I=RMSer1I(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er1I=Der1I(1); 
RMSG=Der1I(2); 
Der1II=RMSer1II(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er1II=Der1II(1); 
RMSG=Der1II(2); 
Der1III=RMSer1III(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1

VI,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG)

; 
er1III=Der1III(1); 
RMSG=Der1III(2); 
Der1IV=RMSer1IV(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er1IV=Der1IV(1); 
RMSG=Der1IV(2); 
Der1V=RMSer1V(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er1V=Der1V(1); 
RMSG=Der1V(2); 
Der1VI=RMSer1VI(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er1VI=Der1VI(1); 
RMSG=Der1VI(2); 
Der2I=RMSer2I(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er2I=Der2I(1); 
RMSG=Der2I(2); 
Der2II=RMSer2II(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er2II=Der2II(1); 
RMSG=Der2II(2); 
Der2III=RMSer2III(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1

VI,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG)

; 
er2III=Der2III(1); 
RMSG=Der2III(2); 
Der2IV=RMSer2IV(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er2IV=Der2IV(1); 
RMSG=Der2IV(2); 
Der2V=RMSer2V(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er2V=Der2V(1); 
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RMSG=Der2V(2); 
Der2VI=RMSer2VI(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI

,er2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
er2VI=Der2VI(1); 
RMSG=Der2VI(2); 
Derhr=RMSerhr(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
erhr=Derhr(1); 
RMSG=Derhr(2); 
Derhg=RMSerhg(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
erhg=Derhg(1); 
RMSG=Derhg(2); 
Derhb=RMSerhb(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
erhb=Derhb(1); 
RMSG=Derhb(2); 
Derqr=RMSerqr(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
erqr=Derqr(1); 
RMSG=Derqr(2); 
Derqg=RMSerqg(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
erqg=Derqg(1); 
RMSG=Derqg(2); 
Derqb=RMSerqb(step,eas,ear1,ear2,eai,er1I,er1II,er1III,er1IV,er1V,er1VI,e

r2I,er2II,er2III,er2IV,er2V,er2VI,erhr,erhg,erhb,erqr,erqg,erqb,RMSG); 
erqb=Derqb(1); 
RMSG=Derqb(2); 
end 

 

Appendix D3: In this appendix we present the MatLab program which was used to find the 

optimum retardance values for the optimized case described in Chapter 5.  

OptimizeCondNum3LambdaSearch.m 

 

clear 

clc 

  

% program to read in the data of volts vs retardance for two LCVRs in a 

% Stokes polarimeter, for 3 wavelengths. This data is then used to 

optimize 

% the polarimeter simultaneously for the 3 wavelengths. 

% This program fixes the polarizer of the polarimeter at 0 degs, and 

varies 

% the axis angles of the 2 LCVRs between 0 and 90 degs with step 

axis_step  

% degs, with axis2 = axis1 + 45 degs, and the voltage of the 2 LCVRs  

% between the minimum and the maximum given by the data read in. 

% Note that there are num_meas intensity measurements for each 

polarization  

% measurement, and each intensity measurement must be included in the 

% optimization. 

% The first row of the Mueller matrix of each intensity measurement 
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% configuration gives the characteristic matrix of the polarimeter, and 

the 

% optimized polarimeter is given by the lowest condition number of the 

% characteristic matrix. The lowest average condition number gives the 

% optimized system for the 3 simultaneous wavelengths.  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% set parameters for the program % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% number of intensity measurements 

global num_meas; 

num_meas = 4; 

 

% fixed polarizer angle in the polarimeter 

polangle = 0.0; 

 

global mpol; 

% Mueller matrix for the polarizer at this angle 

mpol = mueller_polarizer(polangle); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% read in volts vs retardance data % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

global lcvr1450; 

global lcvr2450; 

global lcvr1543; 

global lcvr2543; 

global lcvr1633; 

global lcvr2633; 

 

lcvr1450 = Lect('450_LCVR1'); 

lcvr2450 = Lect('450_LCVR2'); 

 

lcvr1543 = Lect('543_LCVR1'); 

lcvr2543 = Lect('543_LCVR2'); 

 

lcvr1633 = Lect('633_LCVR1'); 

lcvr2633 = Lect('633_LCVR2'); 

 

% vectors of sizes of data 

szx = zeros(1,6); 

szy = zeros(1,6); 

 

[szx(1),szy(1)] = size(lcvr1450); 

[szx(2),szy(2)] = size(lcvr2450); 

 

[szx(3),szy(3)] = size(lcvr1543); 

[szx(4),szy(4)] = size(lcvr2543); 

 

[szx(5),szy(5)] = size(lcvr1633); 

[szx(6),szy(6)] = size(lcvr2633); 

 

% get the smallest size to search for the minimum condition number in 

this 

% range. 
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sx = min(szx); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% optimize condition number % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% number of parameters for optimization 

N = 13; 

 

% p is the matrix with the N polarimeter parameters 

% (here first = nearest sample, second = further from sample) 

%      p(1) = voltage of LCVR 1 for measurement 1 

%      p(2) = voltage of LCVR 2 for measurement 1 

%      p(3) = voltage of LCVR 1 for measurement 2 

%      p(4) = voltage of LCVR 2 for measurement 2 

%      p(5) = voltage of LCVR 1 for measurement 3 

%      p(6) = voltage of LCVR 2 for measurement 3 

%      p(7) = voltage of LCVR 1 for measurement 4 

%      p(8) = voltage of LCVR 2 for measurement 4 

%      p(9) = voltage of LCVR 1 for measurement 5 

%      p(10) = voltage of LCVR 2 for measurement 5 

%      p(11) = voltage of LCVR 1 for measurement 6 

%      p(12) = voltage of LCVR 2 for measurement 6 

%      p(13) = axis angle of LCVR1 

 

p = 

[3.28,5.797,3.28,2.585,3.28,3.31,2.15,3.31,2.55,3.31,5.697,3.31,50.0]; 

% p = [3.28,5.797,3.28,2.585,3.28,3.31,2.15,3.31,30.0]; 

 

% define optp as global to be able to read it in the sample optiimization 

% this will be the optimized polarimeter configuration 

global optp; 

 

% parameter used to find the values of the signals after optimization 

global done; 

done = 0; 

 

% call the optimization algorithm  

options = optimset('MaxFunEvals',10000,'MaxIter',10000,'TolFun',1e-

6,'TolX',1e-6); 

[optp,funval] = fminsearch(@StokesCondNum, p, options); 

 

p = optp; 

p(13) = 20.0; 

[optp,funval] = fminsearch(@StokesCondNum, p, options); 

 

% store the optimized values of the intensities to file 

done = 1; 

StokesCondNum(optp); 

done = 0; 

 

optp*180.0/pi 

funval 

 

 

StokesCondNum() 

function cn = StokesCondNum(p) 
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% StokesCondNum calculates the average condition number of a Stokes  

% polarimeter characterization matrix for 3 wavelengths. 

% There are 13 parameters: 2 voltages for the 2 LCVRs in the system  

% for each of the 6 measuerements, and the 

% axis angle for the first LCVR. It is assumed that the second retarder 

% axis angle is at 45 degs from the first retarder and that the polarizer 

% in the polarimeter is at 0 degs. 

% Returns the condition number of the polarimeter configuration 

 

global num_meas; 

% maximum index in parameter vector 

max_ind = 2*num_meas+1; 

 

global mpol; 

 

global lcvr1450; 

global lcvr2450; 

global lcvr1543; 

global lcvr2543; 

global lcvr1633; 

global lcvr2633; 

 

global done; 

 

cm450 = zeros(num_meas,4); 

cm543 = zeros(num_meas,4); 

cm633 = zeros(num_meas,4); 

 

% generate the characteristic matrices for the 3 wavelengths 

for i = 1:num_meas 

         

    temp = interp1(lcvr1450(:,1),lcvr1450(:,2),p(2*1-1)); 

 

    % wavelength 450nm 

    % calculate the characteristic matrix for each case 

    mret1 = mueller_retarder(interp1(lcvr1450(:,1),lcvr1450(:,2),p(2*i-

1)), p(max_ind)); 

    mret2 = mueller_retarder(interp1(lcvr2450(:,1),lcvr2450(:,2),p(2*i)), 

p(max_ind)+45); 

 

    polar = mpol * mret2 * mret1; 

 

    cm450(i,:) = polar(1,:); 

 

    % wavelength 543nm 

    % calculate the characteristic matrix for each case 

    mret1 = mueller_retarder(interp1(lcvr1543(:,1),lcvr1543(:,2),p(2*i-

1)), p(max_ind)); 

    mret2 = mueller_retarder(interp1(lcvr2543(:,1),lcvr2543(:,2),p(2*i)), 

p(max_ind)+45); 

 

    polar = mpol * mret2 * mret1; 

 

    cm543(i,:) = polar(1,:); 

 

    % wavelength 633nm 

    % calculate the characteristic matrix for each case 
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    mret1 = mueller_retarder(interp1(lcvr1633(:,1),lcvr1633(:,2),p(2*i-

1)), p(max_ind)); 

    mret2 = mueller_retarder(interp1(lcvr2633(:,1),lcvr2633(:,2),p(2*i)), 

p(max_ind)+45); 

 

    polar = mpol * mret2 * mret1; 

 

    cm633(i,:) = polar(1,:); 

end 

 

% get the condition numbers 

cn450 = cond(cm450); 

cn543 = cond(cm543); 

cn633 = cond(cm633); 

 

% average condition number 

cn = (cn450 + cn543 + cn633) / 3.0; 

     

if (done == 1) 

         

    fileID = fopen('volts.txt','w'); 

    fprintf(fileID,'LCVR1\tLCVR2\n'); 

    for i = 1:num_meas 

        fprintf(fileID,'%4.4g\t%4.4g\n',p(2*i-1),p(2*i)); 

    end 

    fprintf(fileID,'\nLCVR1 axis angle %4.4g %4s\n',p(max_ind),'degs'); 

    fclose(fileID); 

         

    fileID = fopen('retardances450.txt','w'); 

    fprintf(fileID,'LCVR1\tLCVR2\n'); 

    for i = 1:num_meas 

                  

      

fprintf(fileID,'%4.4g\t%4.4g\n',interp1(lcvr1450(:,1),lcvr1450(:,2),p(2*i

-1)),interp1(lcvr1450(:,1),lcvr1450(:,2),p(2*i))); 

    end 

    fclose(fileID); 

         

    fileID = fopen('retardances543.txt','w'); 

    fprintf(fileID,'LCVR1\tLCVR2\n'); 

    for i = 1:num_meas 

      

fprintf(fileID,'%4.4g\t%4.4g\n',interp1(lcvr1543(:,1),lcvr1543(:,2),p(2*i

-1)),interp1(lcvr1543(:,1),lcvr1543(:,2),p(2*i))); 

    end 

    fclose(fileID); 

         

    fileID = fopen('retardances633.txt','w'); 

    fprintf(fileID,'LCVR1\tLCVR2\n'); 

    for i = 1:num_meas 

      

fprintf(fileID,'%4.4g\t%4.4g\n',interp1(lcvr1633(:,1),lcvr1633(:,2),p(2*i

-1)),interp1(lcvr1633(:,1),lcvr1633(:,2),p(2*i))); 

    end 

    fclose(fileID); 

         

    fileID = fopen('cm450.txt','w'); 
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    for i = 1:num_meas 

 

fprintf(fileID,'%4.4g\t%4.4g\t%4.4g\t%4.4g\n',cm450(i,1),cm450(i,2),cm450

(i,3),cm450(i,4)); 

    end 

    fclose(fileID); 

         

    fileID = fopen('cm543.txt','w'); 

    for i = 1:num_meas 

 

fprintf(fileID,'%4.4g\t%4.4g\t%4.4g\t%4.4g\n',cm543(i,1),cm543(i,2),cm543

(i,3),cm543(i,4)); 

    end 

    fclose(fileID); 

         

    fileID = fopen('cm633.txt','w'); 

    for i = 1:num_meas 

            

fprintf(fileID,'%4.4g\t%4.4g\t%4.4g\t%4.4g\n',cm633(i,1),cm633(i,2),cm633

(i,3),cm633(i,4)); 

    end 

    fclose(fileID); 

         

    fileID = fopen('CondNum.txt','w'); 

    fprintf(fileID,'%8s %4.6g\n', 'cn450',cn450); 

    fprintf(fileID,'%8s %4.6g\n', 'cn543',cn543); 

    fprintf(fileID,'%8s %4.6g\n', 'cn633',cn633); 

    fprintf(fileID,'\n%8s %4.6g\n', 'average',cn); 

    fclose(fileID); 

  end 

end 

 

mueller_polarizer() 

 

function m = mueller_polarizer(theta) 

 

% Calculate the Mueller matrix of a polarizer m 

% input extinction values in x and y, px and py 

% and the angle of the polarizer axis theta 

 

a = 0.5; 

 

m(1,1) = a; 

m(1,2) = a * cosd(2 * theta); 

m(1,3) = a * sind(2 * theta); 

m(1,4) = 0; 

 

m(2,1) = a * cosd(2 * theta); 

m(2,2) = a * cosd(2 * theta) * cosd(2 * theta); 

m(2,3) = a * sind(2 * theta) * cosd(2 * theta); 

m(2,4) = 0; 

 

m(3,1) = a * sind(2 * theta); 

m(3,2) = a * sind(2 * theta) * cosd(2 * theta); 

m(3,3) = a * sind(2 * theta) * sind(2 * theta); 

m(3,4) = 0; 
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m(4,1) = 0; 

m(4,2) = 0; 

m(4,3) = 0; 

m(4,4) = 0; 

 

 

mueller_retarder() 

 

function m = mueller_retarder(ret,thetar) 

 

% Calculate the Mueller matrix of a retarder m 

% input retardance ret and axis angle thetar 

 

m(1,1) = 1; 

m(1,2) = 0; 

m(1,3) = 0; 

m(1,4) = 0; 

 

m(2,1) = 0; 

m(2,2) = cosd(2 * thetar)*cosd(2 * thetar) + cosd(ret)* sind(2 * 

thetar)*sind(2 * thetar); 

m(2,3) = (1 - cosd(ret)) * cosd(2 * thetar) * sind(2 * thetar); 

m(2,4) = sind(ret) * sind(2 * thetar); 

 

m(3,1) = 0; 

m(3,2) = (1 - cosd(ret)) * cosd(2 * thetar) * sind(2 * thetar); 

m(3,3) = sind(2 * thetar)*sind(2 * thetar) + cosd(ret)* cosd(2 * 

thetar)*cosd(2 * thetar); 

m(3,4) = - sind(ret) * cosd(2 * thetar); 

 

m(4,1) = 0; 

m(4,2) = -sind(ret) * sind(2 * thetar); 

m(4,3) = sind(ret) * cosd(2 * thetar); 

m(4,4) = cosd(ret); 

 
 

 

 

 

 

 

 

 

 



95 
 

7.5 Appendix E: publications and presentations. 

Appendix E1 shows the first article published on Applied Optics journal on June 2021. 
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Appendix E2: Proof of the participation in the virtual conference Roberto Ortega in the 

Instituto de Ciencias Aplicadas y Tecnología at the UNAM. 
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