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Resumen 
 

Los productos de evapotranspiración (ET) basados en percepción remota han 

sido evaluados utilizando datos de latitudes medias del hemisferio norte, 

principalmente; por tanto, su desempeño en latitudes bajas se conoce poco. En 

respuesta a este sesgo, se compiló una base de datos de mediciones eddy covarianza de 

40 sitios entre las latitudes 30º S y 30º N. Los datos de flujo se obtuvieron de la red 

emergente MexFlux en México, y de las bases de datos abiertas de FLUXNET, AsiaFlux 

y OzFlux. Los productos evaluados fueron MODIS ET (las colecciones C5 y C6 de 

MOD16), Global Land Evaporation Amsterdam Model (GLEAM) ET, y Atmosphere-Land 

Exchange Inverse (ALEXI) ET. Los productos se compararon con flujos originales 

(ETorig) y con flujos corregidos por falta de cierre de balance de energía (ETebc). Se 

utilizaron tres métricas estadísticas comunes: coeficiente de determinación (R2), error 

cuadrático medio (RMSE) y porcentaje de sesgo (PBIAS). El efecto que la diferencia 

entre clasificación de vegetación en pixel y vegetación en sitio tiene en los resultados 

de la evaluación se investigó examinando la relación entre las métricas estadísticas y 

los índices de coincidencia de vegetación de cada producto. Los resultados de 

evaluación de este estudio, en conjunto con aquellos publicados en estudios anteriores, 

se utilizaron para examinar el desempeño de los productos latitudinalmente. En 

general, las diferencias entre las colecciones de MOD16 fueron menores que las 

diferencias con los otros productos. El desempeño de los productos varió dependiendo 

del juego de datos con que se comparó (ETorig o ETebc): Cuando se utilizó ETorig, GLEAM 

presentó los mejores resultados en las diferentes coberturas vegetales y climas 

estudiados. MOD16 y ALEXI presentaron resultados similares, y ninguno fue superior 

al otro consistentemente. Cuando se utilizó ETebc, ningún producto sobresalió en 

términos de sesgo bajo y correlaciones fuertes. Los resultados de la evaluación no 

mostraron una relación significativa con el grado de coincidencia de vegetación entre 

el pixel y el sitio. El análisis latitudinal mostró tendencias de R2 menor (todos los 

productos) pero mejor PBIAS y RMSE normalizado (MOD16 y GLEAM) para bosques en 

latitudes bajas. 

Un segundo estudio enfocado en la evaluación de la utilidad de GLEAM, ALEXI Y 

MOD16 C6 como indicadores de sequía agrícola se llevó a cabo. La sequía agrícola es la 

causa principal de la pérdida de rendimiento de cultivos a nivel mundial. Observaciones 

oportunas de condiciones de sequía son cruciales para anticipar dichas pérdidas. El 

índice estandarizado de precipitación (SPI) y el índice de vegetación de diferencia 

normalizada (NDVI) han sido ampliamente investigados como indicadores de sequía 

agrícola. Recientemente, se ha demostrado que el índice de estrés evaporativo (ESI), el 

cual se define como la anomalía estandarizada de la razón entre ET real y ET de 

referencia, también tiene potencial para el análisis de la sequía agrícola. Hasta el 
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momento, la mayor parte de las investigaciones se han enfocado en el ESI calculado a 

partir de registros de ET del producto ALEXI. La utilidad de ESIs derivados de MOD16 

y GLEAM ha sido poco investigada. Este segundo estudio evaluó el desempeño de ESIs 

basados en GLEAM, MOD16 C6 y ALEXI, así como de SPI derivado de datos de 

precipitación in situ y de anomalías estandarizadas del producto NDVI (derivado de 

percepción remota), a través del cálculo de correlaciones (Pearson) con anomalías de 

rendimiento de cultivos no irrigados del ciclo primavera-verano (Abril-Septiembre) en 

el centro de México. Los rendimientos anuales de cultivo a nivel municipal se estimaron 

a partir de datos de producción y área sembrada durante el periodo 2003–2020. El 

análisis de correlaciones se llevó a cabo para todos los cultivos combinados (en 82 

municipios dominados por campos agrícolas) y para maíz por separado (en 43 

municipios dominados por campos de maíz). Esto debido a que el maíz es el cultivo más 

importante en la región. Se calcularon promedios espaciales de los píxeles contenidos 

en los municipios individuales y de los píxeles de todos los municipios combinados (82 

para todos los cultivos, 42 para maíz) en tres escalas de tiempo: mensuales, primavera-

verano, anuales. Las correlaciones temporales de los datos de 82 y 42 municipios 

agregados fueron mayores con los promedios de primavera-verano de los índices que 

con los promedios anuales.  De forma similar, las correlaciones de meses individuales 

fueron mayores para meses de la temporada primavera-verano que para meses fuera 

de ella. Las correlaciones máximas fueron observadas para el mes de Junio, pero solo 

para los índices de percepción remota. En general, las correlaciones fueron mayores 

para los índices de percepción remota que para SPI obtenido de datos medidos in situ. 

ESIMODIS (r = 0.65–0.74) y ESIALEXI (r = 0.58–0.69) se desempeñaron de forma similar o 

ligeramente mejor que el índice de anomalías de NDVI (r = 0.51–0.71). Las 

correlaciones de ESIGLEAM fueron afectadas por una anomalía negativa importante 

observada en 2005 por este producto.  Las correlaciones espaciales entre las anomalías 

de rendimiento de cultivo y los índices de sequía a escala municipal durante 2011 (año 

de sequía) fueron débiles en general. Los resultados de este estudio confirman el 

potencial de ESI basado en percepción remota para la evaluación de sequía agrícola. 

Adicionalmente, los resultados muestran la necesidad de más estudios comparativos 

del desempeño de ESI basado en diferentes productos de percepción remota de ET.  
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Abstract 
 

Remote sensing-based evapotranspiration (ET) products have been evaluated 

primarily using data from northern middle latitudes; therefore, little is known about 

their performance at low latitudes. To address this bias, an evaluation dataset was 

compiled using eddy covariance data from 40 sites between latitudes 30° S and 30° N. 

The flux data were obtained from the emerging network in Mexico (MexFlux) and from 

openly available databases of FLUXNET, AsiaFlux, and OzFlux. The evaluated products 

were: MODIS ET (MOD16, both the discontinued collection 5 (C5) and the latest 

collection (C6)), Global Land Evaporation Amsterdam Model (GLEAM) ET, and 

Atmosphere-Land Exchange Inverse (ALEXI) ET. Products were compared with 

unadjusted fluxes (ETorig) and with fluxes corrected for the lack of energy balance 

closure (ETebc). Three common statistical metrics were used: coefficient of 

determination (R2), root mean square error (RMSE), and percent bias (PBIAS). The 

effect of a vegetation mismatch between pixel and site on product evaluation results 

was investigated by examining the relationship between the statistical metrics and 

product-specific vegetation match indexes. Evaluation results of this study and those 

published in the literature were used to examine the performance of the products 

across latitudes. Differences between the MOD16 collection 5 and 6 datasets were 

generally smaller than differences with the other products. Performance and ranking 

of the evaluated products depended on whether ETorig or ETebc was used. When using 

ETorig, GLEAM generally had the highest R2, smallest PBIAS, and best RMSE values 

across the studied land cover types and climate zones. Neither MOD16 nor ALEXI 

performed consistently better than the other. When using ETebc, none of the products 

stood out in terms of both low bias and strong correlations. The product evaluation 

results showed no significant relationship with the degree of match between the 

vegetation at the pixel and site scale. The latitudinal comparison showed tendencies of 

lower R2 (all products) but better PBIAS and normalized RMSE values (MOD16 and 

GLEAM) for forests at low latitudes than for forests at northern middle latitudes. For 

non-forest vegetation, the products showed no clear latitudinal differences in 

performance. 

A second study focused on evaluating the utility of GLEAM, MOD16 C6 and ALEXI 

as indicators of agricultural drought was performed. Agricultural drought is the main 

cause of yield losses worldwide. Timely observations of drought conditions are crucial 

to anticipate these losses. Standardized precipitation index (SPI) and normalized 

difference vegetation index (NDVI) have been widely investigated as agricultural 

drought indicators. Recently, it was shown that the evaporative stress index (ESI), 

defined as the standardized anomaly of the ratio of actual ET to reference ET, has 

potential for agricultural drought assessment. So far, most research has focused on ESI 
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calculated using ALEXI ET retrievals. The utility of MOD16- and GLEAM-derived ESIs 

has been little investigated. This second study evaluated the performance of ESIs based 

on GLEAM, MOD16 and ALEXI, SPI derived from in situ rainfall data, and standardized 

anomalies of remotely sensed NDVI by calculating Pearson correlations with yield 

anomalies for rainfed, spring-summer (April-September) crops in central Mexico. 

Municipal-level estimates of annual yield were calculated from data on production and 

sown area for 2003−2020. Correlation analyses were performed for all crops combined 

(82 cropland-dominated municipalities) and for corn separately (42 corn-plantations-

dominated municipalities), as the latter is the most important crop in the region. Spatial 

averages of the drought indices were calculated from the pixels of individual 

municipalities and the pixels of all municipalities combined (82 for all crops and 42 for 

corn) for three different time scales: monthly, spring-summer and annual. Temporal 

correlations of aggregated data from all 82 or 42 municipalities were higher for spring-

summer averages of the drought indices than for annual averages. Similarly, 

correlations were higher for individual months of the spring-summer production cycle 

than for months before or after this period. The highest correlations were observed for 

the month of June in the case of the remote sensing-based indices. Overall, correlations 

were higher for the remote sensing-based indices than for SPI obtained from in-situ 

data. ESIMODIS (r = 0.65–0.74) and ESIALEXI (r = 0.58–0.69) performed similarly or 

slightly better than the NDVI anomaly index (r = 0.51–0.71). Correlation results for 

ESIGLEAM were affected by large negative anomalies in 2005 observed only for this index. 

Spatial correlations between municipal-level yield data and drought indices for the 

2011 drought year were generally weak. The results of this study confirm the potential 

of remotely sensed ESI for agricultural drought assessment. In addition, the results 

show the need for more comparative studies on the performance of ESIs based on 

different remote sensing ET datasets. 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Índice 

 

 
Resumen  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     i   

 

Abstract  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    iii   

 

1. Introducción  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    1 
1.1 Antecedentes de evaluación de productos de evapotranspiración basados en percepción remota      1  

1.2 Antecedentes de la utilidad de productos de percepción remota para el monitoreo de sequía 

 agrícola                                                                                                                                                                                       3 

1.3 Enfoque y objetivos de la investigación                                                                                                                                           4 

 

2. Metodología  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        6 
2.1 Evaluación de productos de evapotranspiración basados en percepción remota en sitios  

eddy covarianza de latitudes bajas                                                                                                                                                                           6                                                                                                      

2.1.1 Datos                                                                                                                                                                              6 

2.1.1.1 Datos MODIS de ET                                                                                                                                                7 

2.1.1.2 Datos GLEAM de ET                                                                                                                                         8 

2.1.1.3 Datos ALEXI de ET                                                                                                                                                8 

2.1.1.4 Datos eddy covarianza de ET                                                                                                                        9 

2.1.1.5 Otros datos                                                                                                                                            13 

2.1.2 Evaluación del desempeño de los productos                                                                                                              14 

2.1.2.1 Gráficas de dispersión y análisis de regresión                                                                                                 14 

2.1.2.2 Métricas de desempeño estadístico                                                                                                             15 

2.1.2.3 Combinando las métricas de desempeño en un puntaje único                                              16 

2.1.2.4 Sensibilidad a los datos de referencia seleccionados                                                                                 16 

2.1.2.5 Evaluación de las tendencias estacionales de ET de los productos                                                   16  

2.1.3 Índice de concordancia de vegetación (VMI) y fracción de aguas  

superficiales (OWF)                                                                                                                                                 16 

2.1.4 Comparación meridional del desempeño de productos                                                                                    17 

2. Evaluación de índices de estrés evaporativo, precipitación y vegetación para el monitoreo 

de sequía agrícola en el centro de México.                                                                                                                                                       20 

2.2.1 Área de estudio                                                                                                                                                            20 

2.2.2 Datos                                                                                                                                                                        23 

2.2.2.1 Datos agrícolas                                                                                                                                      23 

2.2.2.2 ESI de ALEXI                                                                                                                                           24 

2.2.2.3 ESI de GLEAM                                                                                                                                        25 

2.2.2.4 ESI de MOD16                                                                                                                                        25 

2.2.2.5 Anomalías de NDVI                                                                                                                                          25 

2.2.2.6 SPI                                                                                                                                                              26 

2.2.3 Análisis de datos                                                                                                                                                     26 

2.2.3.1 Anomalías de rendimiento de cultivo y de índices de sequía                                                                   26                 

2.2.3.2 Ajuste espacial de los datos                                                                                                                         27 



vi 
 

2.2.3.3 Análisis de correlación                                                                                                                                27 

 

3. Resultados  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     29 
3.1 Evaluación a partir de flujos eddy covarianza de ET                                                                                                                       29 

3.1.1 Cierre de balance de energía de los flujos eddy covarianza                                                                                   29 

3.1.2 Evaluación de productos de ET por tipo de cobertura de suelo                                                                          30 

3.1.3 Evaluación de productos de ET por tipo de clima                                                                                              35 

3.1.4 Sensibilidad a los datos de referencia seleccionados                                                                                           39 

3.1.5 Desempeño de los productos versus VMI                                                                                                                39 

3.1.6 Comparación meridional del desempeño de productos                                                                                          40 

3.2 Utilidad para evaluar sequía agrícola                                                                                                                       41 

3.2.1 Patrones temporales y espaciales de los índices de sequía                                                                                41 

3.2.2 Patrones temporales y espaciales de las anomalías de rendimiento de cultivo                                   45 

3.2.3 Análisis de correlación                                                                                                                                          46 

3.2.3.1 Correlaciones temporales                                                                                                                            46 

3.2.3.2 Correlaciones espaciales                                                                                                                                 49 

 

4. Discusión  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       50  
4.1 El efecto del problema de cierre de balance de energía en los resultados de evaluación de  

productos                                                                                                                                                                                      50 

4.2 Desempeño relativo de los productos evaluados                                                                                                     51 

4.3 Comparación meridional del desempeño de productos                                                                                                     53 

4.4 Desempeño de los productos versus la concordancia de vegetación entre pixel y sitio                                 54 

4.5 Desempeño de los índices de sequía evaluados                                                                                                               55 

4.6 Temporalidad de los picos de correlación con rendimientos de cultivos                                                                        56 

4.7 La sequía del 2011                                                                                                                                                          56 

 

5. Conclusiones  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   57 

 

6. Apéndice  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    59 

 

7. Referencias  bibliográficas .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    75 



vii 
 

Index 

 

 
Resumen  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     i   

 

Abstract  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    iii   

 

1. Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    1 
1.1 Background on the evaluation of remote sensing-based evapotranspiration products                                    1 

1.2 Background on the utility of remote sensing products for agricultural drought monitoring                        3 

1.3 Research approach and objectives                                                                                                                                           4 

 

2. Methodology  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   6 
2.1 Evaluation of remote sensing-based evapotranspiration products at low-latitude eddy 

 covariance sites                                                                                                                                                                                                      6                                                                                                      

2.1.1 Data                                                                                                                                                                              6 

2.1.1.1 MODIS ET data                                                                                                                                               7 

2.1.1.2 GLEAM ET data                                                                                                                                         8 

2.1.1.3 ALEXI ET data                                                                                                                                                8 

2.1.1.4 Eddy covariance ET data                                                                                                                        9 

2.1.1.5 Other datasets                                                                                                                                            13 

2.1.2 Evaluation of product performance                                                                                                              14 

2.1.2.1 Scatter plots and regression analysis                                                                                                 14 

2.1.2.2 Statistical performance metrics                                                                                                             15 

2.1.2.3 Combining the different performance metrics into a single score                                          16 

2.1.2.4 Sensitivity to the choice of reference dataset                                                                                 16 

2.1.2.5 Evaluation of seasonal trends in ET from products                                                                     16  

2.1.3 Vegetation match index (VMI) and open water fraction (OWF)                                                       16 

2.1.4 Latitudinal comparison of product performance                                                                                   17 

2.2 Evaluation of evaporative stress, precipitation and vegetation indices for monitoring  

agricultural drought in central Mexico                                                                                                                                                      20 

2.2.1 Study area                                                                                                                                                            20 

2.2.2 Data                                                                                                                                                                        23 

2.2.2.1 Agricultural dataset                                                                                                                                23 

2.2.2.2 ESI from ALEXI                                                                                                                                         24 

2.2.2.3 ESI from GLEAM                                                                                                                                   25 

2.2.2.4 ESI from MOD16                                                                                                                                    25 

2.2.2.5 NDVI anomaly                                                                                                                                          25 

2.2.2.6 SPI                                                                                                                                                              26 

2.2.3 Data analysis                                                                                                                                                     26 

2.2.3.1 Crop yield and drought index anomalies                                                                                         26                 

2.2.3.2 Spatial matching of data                                                                                                                        27 

2.2.3.3 Correlation analysis                                                                                                                               27 

 



viii 
 

3. Results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    29 
3.1 Evaluation against eddy covariance ET                                                                                                                       29 

3.1.1 Energy balance closure of eddy covariance data                                                                                       29 

3.1.2 Evaluation of ET products by land cover type                                                                                          30 

3.1.3 Evaluation of ET products by climate zone                                                                                              35 

3.1.4 Sensitivity to the choice of reference dataset                                                                                           39 

3.1.5 Product performance versus VMI                                                                                                                39 

3.1.6 Latitudinal comparison of product performance                                                                                    40 

3.2 Utility for agricultural drought assessment                                                                                                                41 

3.2.1 Temporal and spatial patterns of drought indices                                                                                   41 

3.2.2 Temporal and spatial patterns of crop yield anomalies                                                                          45 

3.2.3 Correlation analysis                                                                                                                                          46 

3.2.3.1 Temporal correlations                                                                                                                           46 

3.2.3.2 Spatial correlations                                                                                                                                 49 

 

4. Discussion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      50  
4.1 The effect of the energy balance closure problem on product evaluation results                                         50 

4.2 Relative performance of the evaluated products                                                                                                     51 

4.3 Latitudinal comparison of product performance                                                                                                     53 

4.4 Product performance versus vegetation-match between pixel and site                                                         54 

4.5 Performance of evaluated drought indices                                                                                                               55 

4.6 Time of peak correlation with yield anomalies                                                                                                         56 

4.7 The 2011 drought event                                                                                                                                                          56 

 

5. Conclusions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     57 

 

6. Appendix    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     59 

 

7. References   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

Índice de figuras | Figure Index 

 
Figure 1. Map showing the geographic location of the 40 eddy covariance sites used in 
the evaluation, zoomed in for Mexico and northern Australia. The numbers identify the 
sites in Table 2.                                                                                                                                       13 

 

Figure 2. Maps showing (a) Mexico and the proportion of rainfed, spring-summer crops 
(represented by the green portion) relative to the total area with annual crops 
(represented by the size of the circle) by state for the period 2003–2020 (data source: 
http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php); (b) the study domain, with 
the 82 selected municipalities marked in green and the corresponding states in pink 
(Mexico City is shown in gray for reference); and (c) elevation in the study domain at 
30 m resolution. 
(data source: https://www.inegi.org.mx/app/geo2/elevacionesmex/).                           20 
 

Figure 3. Percentage of sown area of the major crops in the 82 selected municipalities 
relative to the total area sown with rainfed, spring-summer crops during the period 
2003–2020.                                                                                                                                           21 
 
Figure 4. Average monthly rainfall in the 82 selected municipalities for the period 
2003–2018, as calculated from the municipal-level data described in Section 2.2.2.6.   21 
 
Figure 5. Average monthly NDVI (solid line) and standard deviation (gray area) in the 
82 selected municipalities for the period 2003–2020. Also shown is the NDVI during 
the 2011 drought year (dashed line with dots). The NDVI data were obtained from the 
MODIS MOD13C2 dataset.                                                                                                                  21 
 
Figure 6. Schematic overview of the data used for the correlation analyses and their 
level of spatial and temporal aggregation. Also indicated are the figures showing the 
results of each analysis.                                                                                                                      28 
 
Figure 7. Scatter plots of daytime sums of sensible heat flux (H) and evapotranspiration 
(ETorig) versus available energy (Rn−G−S; all terms in units of millimeters) for different 
land cover types for the eddy covariance sites used in the evaluation. Shown are the 
regression slope (value before the slash), the intercept (value after the slash), the 
coefficient of determination (R2), the energy balance ratio (EBR), the linear regression 
line (solid red line), and the 1:1 line (dashed line).                                                                  29 
 
Figure 8. Scatter plots of daytime sums of sensible heat flux (H) and evapotranspiration 
(ETorig) versus available energy (Rn−G−S; all terms in units of millimeters) for different 
climate zones for the eddy covariance sites used in the evaluation. Shown are the 
regression slope (value before the slash), the intercept (value after the slash), the 
coefficient of determination (R2), the energy balance ratio (EBR), the linear regression 
line (solid red line), and the 1:1 line (dashed line).                                                                  30 



x 
 

 
Figure 9. Unadjusted eddy covariance ET observations (ETorig) versus remote sensing-
based ET for each land cover type for each of the evaluated products. Shown are the 
regression slope (value before the slash), the intercept (value after the slash), the 
coefficient of determination (R2), the linear regression line (solid red line), and the 1:1 
line (dashed line).                                                                                                                                 31 
 
Figure 10. Mean performance statistics (R2, RMSE, PBIAS) by land cover type for each 
of the evaluated products for the unadjusted eddy covariance ET observations (ETorig) 
and those corrected for the lack of energy balance closure (ETebc).                                     32 
 
Figure 11. Heat maps of the Ideal Point Error (IPE) for each of the evaluated products 
for each of the comparisons by land cover type and climate zone for the unadjusted 
eddy covariance ET observations (ETorig) and those corrected for the lack of energy 
balance closure (ETebc). The IPE values are shown on the plot. The lower the IPE, the 
better the relative performance of the product. Blue/red colors indicate best/worst IPE 
scores. The asterisks in the heatmap for ETorig indicate where the ranking of a product 
differed from that based on the IPE scores for the common reference dataset (Figure 
S3; Section 2.1.2.4).                                                                                                                              33 
 
Figure 12. Average monthly ET for the four ET products together with the average 
monthly unadjusted ET observations (ETorig) and those corrected for the lack of energy 
balance closure (ETebc) for different land cover types in the northern and southern 
hemispheres. Curves were calculated using the common reference dataset. Only land 
cover-hemisphere combinations for which data from at least two sites were available 
are shown. The number of sites in each land cover-hemisphere combination is given 
between parentheses. The error band represents the standard deviation of the mean 
monthly ETorig at the different sites.                                                                                               34 
 
Figure 13. Unadjusted eddy covariance ET observations (ETorig) versus remote sensing-
based ET for each climate zone for each of the evaluated products. Shown are the 
regression slope (value before the slash), the intercept (value after the slash), the 
coefficient of determination (R2), the linear regression line (solid red line), and the 1:1 
line (dashed line).                                                                                                                                 36 
 
Figure 14. Mean performance statistics (R2, RMSE, PBIAS) by climate zone for each of 
the evaluated products for the unadjusted eddy covariance ET observations (ETorig) and 
those corrected for the lack of energy balance closure (ETebc).                                                37 
 
Figure 15. Average monthly ET for the four ET products together with the average 
monthly unadjusted ET observations (ETorig) and those corrected for the lack of energy 
balance closure (ETebc) for different climate zones in the northern and southern 
hemispheres. Curves were calculated using the common reference dataset. Only climate 
zone-hemisphere combinations for which data from at least two sites were available 
are shown. The number of sites in each climate zone-hemisphere combination is given 



xi 
 

between parentheses. The error band represents the standard deviation of the mean 
monthly ETorig at the different sites.                                                                                                 38 
 
Figure 16. Binned scatter plots between the performance metrics (R2, RMSE, PBIAS) 
and the vegetation match index for each of the evaluated products. Shown are the 
regression lines and the p-values indicating the statistical significance of the regression 
slopes.                                                                                                                                                         39 
 
Figure 17. Zonal averages (southern and northern low latitudes and northern middle 
latitudes) of the performance metrics grouped by forest and non-forest vegetation for 
MOD16 and GLEAM (R2, NRMSE, PBIAS) and ALEXI (only R2). Averages were calculated 
using evaluation results from this study and from the literature. See Section 2.1.4 for 
further details.                                                                                                                                         40 
 
Figure 18. Maps of spring-summer averages of ESIGLEAM, ESIALEXI, ESIMODIS and NDVIanom 
in the study domain for 2003–2020.                                                                                                   42 
 
Figure 19. Spring-summer averages of the drought indices as calculated using 
aggregated data from all 82 municipalities for the period 2003–2020. Also shown are 
the yield anomalies for all crops (82 municipalities) and corn (42 municipalities).         43 
 
Figure 20. Monthly maps of ESIGLEAM, ESIALEXI, ESIMODIS and NDVIanom in the study domain 
for the spring-summer production cycle of the 2011 drought year.                                       44 
 
Figure 21. Averages of the monthly values of the four drought indices (ESIGLEAM, ESIALEXI, 
ESIMODIS, NDVIanom, SPI) used in this study for all 82 municipalities during the 2011 
drought year.                                                                                                                                             44 
 
Figure 22. Total area sown (ha), total area harvested (ha), total production (tons), yield 
(tons/ha) and yield anomalies (-) from 2003 to 2020 for all 82 municipalities (all crops) 
and for the 42 corn-dominated municipalities.                                                                             45 
 
Figure 23. Map of yield anomalies for rainfed, spring-summer crops during the 2011 
drought year in all municipalities of the six study states.                                                         46 
 
Figure 24. Temporal correlations between crop yield anomalies and monthly, spring-
summer and annual average values of the drought indices as calculated using spatially 
aggregated data from all 82 municipalities (all crops) and the 42 corn-dominated 
municipalities for the period 2003–2020. The blue bars and solid lines represent 
statistically significant correlations (p < 0.05), while the white bars and dashed lines 
represent non-significant correlations.                                                                                           46 
 
Figure 25. Maps of temporal correlations (2003–2020) between crop yield anomalies 
and drought index values for June and spring-summer for 80 of the 82 municipalities 
(all crops) clustered around Mexico City.  



xii 
 

Data from the two municipalities of Jalisco were not included in this analysis to allow 
for visual distinction between municipalities.                                                                                           48 
 
Figure 26. Spatial correlations between crop yield anomalies and monthly, spring-

summer and annual average values of the drought indices for all 82 municipalities (all 

crops) and the 42 corn-dominated municipalities during the 2011 drought year. The 

blue bars and solid lines represent statistically significant correlations (p < 0.05), while 

the white bars and dashed lines represent non-significant correlations.                              49 

 

Figure S1. Eddy covariance ET observations corrected for the lack of energy balance 
closure (ETebc) versus remote sensing-based ET for each land cover type for each of the 
evaluated products. Shown are the regression slope (value before the slash), the 
intercept (value after the slash), the coefficient of determination (R2), the linear 
regression line (solid red line), and the 1:1 line (dashed line).                                                59 
 

Figure S2. Eddy covariance ET observations corrected for the lack of energy balance 
closure (ETebc) versus remote sensing-based ET for each climate zone for each of the 
evaluated products. Shown are the regression slope (value before the slash), the 
intercept (value after the slash), the coefficient of determination (R2), the linear 
regression line (solid red line), and the 1:1 line (dashed line).                                               60 
 

Figure S3. The same as in Figure 11 of the main text but now for the common reference 

dataset (i.e., same sites and same MODIS intervals for all four products).                             61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

1. Introduction 
 

1.1 Background on the evaluation of remote sensing-based evapotranspiration 
products 

The low latitudes (30° S–30° N) are characterized by large contrasts in terrestrial 
evapotranspiration (ET). They are home to tropical rainforests and other ecosystems 
with abundant rainfall where energy (radiation) is the main constraint to ET (see, for 
example, Fisher et al., 2009; Bruijnzeel et al., 2011). They are also home to tropical and 
subtropical arid and semi-arid ecosystems where ET is limited by water supply (see, 
for example, Eamus et al., 2013; Delgado-Balbuena et al., 2019). Estimates of ET for this 
region are needed for local and regional applications such as water resource 
management and drought monitoring and for global applications such as climate 
change studies (Wang and Dickinson, 2012; Fisher et al., 2017). The spatial and 
temporal scale of these applications require other methods than those used to study ET 
at the plot to ecosystem scale (i.e., lysimeter, sap flow, and micrometeorological 
methods). Recently, the potential of remote sensing-based ET estimates for these 
purposes has been recognized (Dolman et al., 2014; Fisher et al., 2017; Sheffield et al., 
2018). 

Since the 1990s, numerous remote sensing-based ET models have been developed (see 
Ke Zhang et al., 2016 for an overview). These models can be broadly divided into three 
categories (in no specific order): models based on the (1) Penman-Monteith (Monteith, 
1965) or (2) Priestley-Taylor (Priestley and Taylor, 1972) equations and (3) models 
that determine the sensible heat flux (H) and calculate ET (or latent heat flux, LE) as 
the residual of the surface energy balance (i.e., so-called SEB models; Wang and 
Dickinson, 2012; Ke Zhang et al., 2016; Chen and Liu, 2020). Of interest to the user 
community is the development of global ET products from these models that are readily 
available to the public and regularly updated to include the latest data. Two such 
datasets have been produced since the early 2010s: 1) the MODIS ET product based on 
the MOD16 algorithm (Penman-Monteith type model; Mu et al., 2007, 2011; Running et 
al., 2019); and 2) the ET product from the Global Land Evaporation Amsterdam Model 
(GLEAM; Priestley-Taylor type model; Miralles et al., 2011; Martens et al., 2017). More 
recently, global ET datasets based on the SEB model of Senay et al. (2013, 2020) and 
the Penman-Monteith-Leuning (PML) model of Yongqiang Zhang et al. (2016, 2019) 
have become available. Efforts are also underway to develop a global ET product based 
on the Atmosphere-Land Exchange Inverse (ALEXI) model (another SEB-based 
approach; Anderson et al., 2011; Hain and Anderson, 2017; Holmes et al., 2018). 

Measurements of ET from eddy covariance flux towers have been used as the standard 
reference data against which remote sensing-based ET products are evaluated 
(Miralles et al., 2011; Mu et al., 2011; Holmes et al., 2018; Yongqiang Zhang et al., 2019; 



2 
 

Senay et al., 2020), despite the problems related to the lack of energy balance closure 
observed at eddy covariance sites and the scale difference between the flux footprint 
and the model pixels (see below). Broadly speaking, two different types of evaluation 
studies can be distinguished: 1) those that evaluate the published ET datasets 
(hereafter referred to as product evaluation studies); and 2) those that evaluate the 
performance of the underlying models (model evaluation studies). In the latter type of 
study, all models are run with the same input data to isolate the effect of different 
modeling approaches from differences in forcing data (Vinukollu et al., 2011a, b; 
McCabe et al., 2016; Michel et al., 2016; Melo et al., 2021). Because remote sensing ET 
models are sensitive to changes in input data (Vinukollu et al., 2011b; Badgley et al., 
2015), the results of model evaluation studies do not necessarily apply to the actual 
products. 

The performance of remote sensing-based ET products at low latitudes is largely 
unknown because most evaluation studies have focused on the northern middle 
latitudes (30° N–60° N; Miralles et al., 2011; Mu et al., 2011; Kim et al., 2012; Hu et al., 
2015; Velpuri et al., 2013; Tang et al., 2015; Reitz et al., 2017; Holmes et al., 2018; Khan 
et al., 2018). The few studies that evaluated ET products at low latitudes did this at a 
small number (two to five) of eddy covariance sites (Ruhoff et al., 2013; Ramoelo et al., 
2014; Aguilar et al., 2018; Souza et al., 2019). The bias toward the northern middle 
latitudes can be explained by geographic differences in the availability of eddy 
covariance data (Schimel et al., 2015; Villareal and Vargas, 2021). 

Because of the lack of evaluation results from the low latitudes, it is unknown whether 
global remote sensing-based ET products perform equally well at all latitudes. One can 
think of several reasons why this might not be the case. For example, the MOD16 ET 
algorithm was calibrated using eddy covariance data from sites located primarily in the 
US and Canada (Mu et al., 2011). Hence, it is possible that the model is less accurate in 
other regions of the world, including the low latitudes (Kun Zhang et al., 2019). 
Similarly, GLEAM uses constant values for the Priestley-Taylor coefficient (α; Miralles 
et al., 2011), while α varies with climate (Shuttleworth, 1993) and forest type 
(Komatsu, 2005). Because the distribution of climate and forest types is related to 
latitude, the use of constant values for α may result in (apparent) latitude-dependent 
biases in ET. Latitudinal differences in product performance can also be caused by 
regional differences in input data quality (Vinukollu et al., 2011b) or cloud cover 
(Running et al., 2019). 

While eddy covariance observations of ET are probably the best option to evaluate 
remote sensing datasets, there are two problems to consider: 1) the energy balance 
observed at eddy covariance sites is usually not closed; and 2) the footprint of the eddy 
covariance observations and the pixels of the ET products have different spatial scales. 
The degree of energy balance closure is quantified by the energy balance ratio (EBR), 
which is the ratio of turbulent energy fluxes (H + LE) to available energy, A (Wilson et 
al., 2002). Available energy is the difference between net radiation (Rn) and changes in 
energy storage. The average EBR observed at eddy covariance sites is about 0.8 (Wilson 
et al., 2002; Stoy et al., 2013). While the cause of the energy imbalance is still being 
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investigated, there are several plausible explanations, including the systematic 
underestimation of the eddy covariance fluxes (Frank et al., 2016; Gao et al., 2017; 
Mauder et al., 2020). As a practical solution to the closure problem, the energy surplus 
is added to H and LE. Because it is unknown in what proportion the energy should be 
divided between the fluxes (Mauder et al., 2020), the surplus is usually distributed in 
proportion to the magnitude of H and LE, which preserves the Bowen ratio (Twine et 
al., 2000). Comparisons with independent estimates of ET have yielded contrasting 
results, with some studies finding better agreement for energy balance closure-
corrected ET (Barr et al., 2012; Mauder et al., 2018) and others for unadjusted ET 
(Denager et al., 2020). Although the energy balance closure problem has been 
recognized for many years (Wilson et al., 2002; Foken et al., 2011), its effect on the 
evaluation results of remote sensing-based ET products or models has rarely been 
examined (Michel et al., 2016; Melton et al., 2021). 

The evaluation results can also be affected by the scale difference between the footprint 
of the eddy covariance observations and the pixels of the ET products. The flux footprint 
is typically smaller than 1 km2 (Chu et al., 2021), while the pixel sizes of ET products 
are as small as 0.25 km2 (MOD16) and as large as 750 km2 (GLEAM). The scale 
difference can result in a mismatch in vegetation between pixel and site (Hobeichi et 
al., 2018; Jiménez et al., 2018). Such a mismatch may also result from errors in the 
vegetation input data used by the models (due to, for example, incorrect classification). 
Because most models calculate ET using land cover-specific parameters (Anderson et 
al., 2007a; Miralles et al., 2011; Mu et al., 2011), a mismatch between the actual 
vegetation of the observation site and that detected in the model pixel could potentially 
affect the evaluation results (Hu et al., 2015). However, the few studies that have 
examined this issue found no clear effect (Hobeichi et al., 2018; Jiménez et al., 2018). 

1.2 Background on the utility of remote sensing products for agricultural drought 
monitoring  

Optimal availability of soil moisture is essential for crop growth and yield (de Wit, 1958; 
Howell, 1990). Rainfall and evapotranspiration (ET) are the main climatic factors 
determining the amount of soil water available for crops (Monteith and Moss, 1977). 
Evapotranspiration consists of water loss through the leaf stomata (transpiration) and 
evaporation of water from the soil (De Wit, 1958). If rainfall does not keep up with ET, 
crop growth slows (Monteith and Moss, 1977). This marks the start of an agricultural 
drought (Palmer, 1968). Agricultural drought is the most important cause of crop 
production losses (FAO, 2021). The frequency and severity of droughts are expected to 
increase as a result of global climate change (Dai, 2013). Combined with the rising 
demand for food, this represents a major threat to global food security (FAO, 2021). 

Near-real time observations of agricultural drought conditions are critical to anticipate 
crop production losses (Tadesse et al., 2015). The severity of drought is usually 
measured using the Standardized Precipitation Index (SPI) calculated from in-situ 
observations of rainfall (McKee et al., 1993). The SPI represents the number of standard 
deviations that rainfall is below or above the long-term mean. Successful application of 
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the SPI approach requires a sufficiently dense network of rain gauges to measure 
spatiotemporal variability, as well as continuous observations of good quality; 
however, these conditions are often not met (Rodríguez-Pineda et al., 2005; 
AghaKouchak et al., 2015). Drought indices derived from satellite observations provide 
a useful alternative because of their spatial continuity and consistency over time 
(AghaKouchak et al., 2015). The Normalized Difference Vegetation Index (NDVI) is one 
of the most widely used indices for agricultural drought monitoring (Funk and Budde, 
2009). Similar to SPI, NDVI observations can be transformed into standardized 
anomalies (Peters et al., 2002). More recently, the Evaporative Stress Index (ESI) has 
been investigated as an agricultural drought indicator, showing often better 
performance than more traditional indices based on precipitation or NDVI (or similar 
vegetation indices) (Anderson et al., 2016a; Mladenova et al., 2017). ESI is defined as 
the standardized anomaly of the ratio of actual ET to reference ET (RET) (Anderson et 
al., 2013). Most of the work on ESI has used ET retrievals from the Atmosphere-Land 
Exchange Inverse (ALEXI) model (Anderson et al., 2016a, b; Mladenova et al., 2017; 
Anghileri et al., 2022; Potopová et al., 2023). The performance of other remote sensing-
based ET products, such as MOD16 (using data from the moderate-resolution imaging 
spectroradiometer, MODIS; Mu et al., 2011) and GLEAM (Global Land Evaporation 
Amsterdam Model; Miralles et al., 2011) has been little studied (Ghazaryan et al., 2020). 

1.3 Research approach and objectives 

This thesis consists of two research exercises. First, an evaluation of satellite-derived 
ET products based on eddy covariance measurements was performed. The objectives 
of this study were to: 1) evaluate the performance of the MOD16 and GLEAM global ET 
products as well as of ET based on the ALEXI model at 40 eddy covariance sites in the 
low latitudes; 2) examine the effect of the energy balance closure problem on product 
evaluation results; 3) examine the dependence of product evaluation results on the 
vegetation-match between pixel and site; and 4) investigate potential latitudinal 
dependence of product performance. The MOD16 and GLEAM products were chosen 
because they are the longest regularly produced remote sensing-based ET datasets. 
From MOD16, both the discontinued collection 5 (C5) and the latest collection (C6) 
were evaluated (Mu et al., 2011; Running et al., 2019). In the case of GLEAM, the v3.3a 
dataset was evaluated (Martens et al., 2017). While most applications of ALEXI have 
focused on the continental US, recent efforts have paved the way for routine global 
implementation of ALEXI (Hain and Anderson, 2017). The reference dataset compiled 
in this study provides an excellent opportunity to evaluate the performance of ALEXI at 
low latitudes. The products were evaluated using a reference dataset of eddy 
covariance observations, including data from the emerging flux network in Mexico 
(MexFlux; Vargas et al., 2013; Delgado-Balbuena et al., 2018) and from openly available 
databases of FLUXNET (Pastorello et al., 2020), AsiaFlux, and OzFlux (Beringer et al., 
2016). 

Second, the potential of satellite-derived evaporative stress for agricultural drought 
assessment was investigated, in a study case for central Mexico. The goal of this 
research was to examine the performance of three ESIs (based on the ALEXI, MOD16 
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and GLEAM ET datasets, respectively), along with SPI calculated from in-situ rainfall 
data, and standardized anomalies of remotely sensed NDVI as indicators of agricultural 
drought in central Mexico. The drought indices were evaluated by examining temporal 
correlations with crop yield anomalies over the period 2003−2020 and spatial 
correlations during the 2011 drought year. Anomalies in crop yields were calculated 
using municipal-level agricultural data provided by the Mexican government since 
2003. The analysis focused on rainfed crops grown during the spring-summer (April-
September) production cycle. The spring-summer production cycle coincides with the 
wet season, which runs from May to October. Spring-summer crops make up 87% of 
the rainfed agriculture in Mexico (excluding perennial crops; SIAP, 2020). The 
correlation analysis was conducted for all rainfed, spring-summer crops combined and 
for corn only. The latter made up about 50% of the cropland studied. 
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2. Methodology 

 

2.1 Evaluation of remote sensing-based ET products at low-latitude eddy covariance 
sites 

2.1.1 Data 

The remote sensing-based ET products evaluated in this study have different spatial 
and temporal resolutions (Table 1). The comparisons with the eddy covariance ET 
observations were made at the original spatial resolution of each product, except in the 
case of MOD16 C6 for which the 500-m data were resampled to a 1-km resolution to 
match MOD16 C5. Using the original spatial resolution is the common practice when 
evaluating these products against eddy covariance data (see references in Table S3). An 
exception was made for MOD16 C6 to allow for a more direct comparison with the 
previous C5 version. The effect of the scale mismatch between product pixel and flux 
footprint on the evaluation results was examined using the vegetation match index 
(Section 2.1.3). For each product, ET data were obtained from the pixels matching the 
location of the flux towers (Velpuri et al., 2013; Hu et al., 2015). To evaluate all products 
at the same temporal resolution (some performance statistics depend on the temporal 
resolution of the data), the daily GLEAM and ALEXI data were averaged over the 8-day 
MODIS interval. This was the highest common temporal resolution possible among the 
evaluated datasets. Likewise, the eddy covariance data were averaged to yield mean 
daily ET for each MODIS interval (Section 2.1.1.4). 

The remote sensing ET products were evaluated by grouping the data by land cover 
type and climate zone (Section 2.1.2). The eddy covariance data from the various sites 
were collected during different periods between 2000 and 2019, with the length of the 
data records ranging from 1 to 11 years (Table 2). Hence, the flux datasets for a given 
land cover type or climate zone may not coincide in time. In addition, data availability 
varied among the evaluated products. MOD16 C5 was discontinued in 2015 and GLEAM 
data for 2019 were not available at the time of download (Table 1). For GLEAM and 
ALEXI, seven and four sites, respectively, were omitted from the analysis because the 
fraction of open water in the corresponding pixels was too high due to proximity to the 
coast (Sections 2.1.1.2 and 2.1.1.3). This problem did not affect MOD16 because of the 
smaller pixel size. As a result, the amount of data available for each of the comparisons 
by land cover type and climate zone often varied from product to product (Table 3). 
Ideally, one would compare the products using a common reference dataset (i.e., same 
sites and same MODIS intervals). However, this would reduce the amount of available 
data by about one-third (12 fewer sites and about 36% fewer MODIS intervals). 
Therefore, it was decided to perform the regression analysis of observations versus 
product estimates (Section 2.1.2.1) and the comparison of the performance statistics 
by land cover type and climate zone (Sections 2.1.2.2 and 2.1.2.3) using the complete 
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dataset. The extent to which the two approaches (all data or a common reference 
dataset) may have influenced the results was examined through a sensitivity analysis 
(Section 2.1.2.4). The seasonal trend analysis (Section 2.1.2.5) was performed using the 
common reference dataset. 

The MOD16 and GLEAM ET data were extracted from the published global ET datasets. 
Because detailed information about the models and datasets used to generate these 
products can be found in the references listed in Table 1, only a brief explanation is 
provided below. The ALEXI ET data were calculated specifically for this study. The 
methodology is described in Anderson et al. (2011) and Hain and Anderson (2017). For 
completeness, the main features of the model and the specific input datasets used are 
briefly described below. 

 GLEAM v3.3a MOD16 C5 MOD16 C6 ALEXI 

Spatial 
resolution 

0.25° 1 km 500 m 0.05° 

Temporal 
resolution 

daily 8-day 8-day daily 

Temporal 
coverage 

1980–2018 2000–2014 2000–present 2002–2019 

Principle Priestley-Taylor Penman-Monteith Penman-Monteith Two-source energy 
balance 

Public 
access 

yes yes yes no 

References Miralles et al. 
(2011); Martens 
et al. (2017) 

Mu et al. (2011, 
2013) 

Mu et al. (2011); 
Running et al. (2019) 

Anderson et al. 
(1997, 2007a, 
2011); Hain and 
Anderson (2017) 

Table 1. General characteristics of the remote sensing-based ET products evaluated in this study. 

 

2.1.1.1 MODIS ET data 

The MOD16 ET product is derived using a three-source Penman-Monteith model, which 
estimates ET as the sum of evaporation from the dry canopy (transpiration), wet 
canopy (interception loss), and soil (Mu et al., 2007, 2011). Separate calculations are 
performed for the day and night. The model uses MODIS retrievals of: albedo (for the 
calculation of Rn); fraction of absorbed photosynthetically active radiation, FPAR (to 
partition Rn between canopy and soil); land cover type (to assign the physiological 
parameters needed to calculate the leaf stomatal and aerodynamic resistances); and 
leaf area index (to calculate the bulk canopy resistances). The land cover-specific 
parameters in the MOD16 algorithm were obtained by comparison with eddy 
covariance flux data from 46 sites (located primarily in the US and Canada). MOD16 C5 
used C4 MOD12Q1 Land Cover Type 2 data, while MOD16 C6 uses the MCDLCHKM 
product (Running et al., 2019). The meteorological data (incoming shortwave radiation 
and air temperature and humidity) are obtained from reanalysis products (Modern-Era 
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Retrospective analysis for Research and Applications version 2 (MERRA-2) for C5 and 
Goddard Earth Observing System Model Version 5 (GEOS-5) for C6). Transpiration and 
soil evaporation are constrained by vapor pressure deficit, VPD (i.e., there is no soil 
moisture control). The C5 data were downloaded from the University of Montana’s 
Numerical Terradynamic Simulation Group (NTSG) website 
(https://www.ntsg.umt.edu/project/modis/mod16.php). The C6 data were obtained 
from NASA’s Land Processes Distributed Active Archive Center (LP DAAC) 
(https://lpdaac.usgs.gov/). The gap-filled version of the C6 dataset was used. The gap-
filling method is the same as that used for MOD16 C5 (Running et al., 2019). Apart from 
the difference in resolution, the C5 and C6 datasets were produced using different 
reanalysis datasets and different MODIS vegetation and albedo products. 

2.1.1.2 GLEAM ET data 

In GLEAM, ET is defined as the sum of the following processes: transpiration from short 
and tall vegetation, bare soil evaporation, rainfall interception loss from tall vegetation, 
open water evaporation, and snow sublimation (Miralles et al., 2011; Martens et al., 
2017). The rainfall interception loss module is based on the Gash (1979) analytical 
rainfall interception model (Miralles et al., 2010). GLEAM v3.3a used the MEaSUREs 
VCF5KYRv001 product (Hansen et al., 2018) to determine the fractions of bare soil, 
short vegetation, and tall vegetation. The model first calculates potential ET with the 
Priestley-Taylor equation using Rn and air temperature from reanalysis data (ERA-
Interim). For bare soil and short vegetation, the typical value of 1.26 is used for the 
Priestley-Taylor α coefficient, while for tall vegetation α = 0.97 (Martens et al., 2017). 
Actual ET is calculated by multiplying potential evaporation with land cover-dependent 
stress functions. The stress functions simulate soil water constraints on transpiration 
and soil evaporation. Soil water content is estimated using a multilayer running water 
balance model that uses a merged precipitation product, ET from the previous time 
step, and microwave surface soil moisture as the main inputs. The soil is divided in 
three layers: shallow (0–10 cm); intermediate (10–100 cm); and deep (100–250 cm). 
Tall vegetation can extract water from all three layers, short vegetation can extract 
water from the shallow and intermediate layers, and for bare soil evaporation only 
water from the shallow layer is available. The stress functions for vegetation also 
simulate the effect of phenology using microwave vegetation optical depth. The data 
were accessed through the GLEAM website (https://www.gleam.eu). GLEAM pixels 
containing more than 20% open water were excluded (this concerned a total of seven 
sites; Table S2). The open water fraction (OWF) was obtained from the MOD44B 
product (Section 2.1.3). This filtering was performed only for GLEAM. In the case of 
ALEXI, sites affected by the presence of open water were filtered out during production 
of the dataset (Section 2.1.1.3), while in the case of MOD16, no sites were affected 
because of the smaller pixel size. 

2.1.1.3 ALEXI ET data 

The ALEXI algorithm consists of a two-source SEB model coupled with an atmospheric 
boundary layer model (Anderson et al., 1997, 2007a). The latent heat flux is calculated 
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separately for the canopy and soil. An initial estimate of the canopy LE is obtained using 
the Priestley-Taylor equation with α = 1.26 (assuming potential transpiration). Next, 
the soil LE is calculated as the residual of the energy balance. If the resulting soil LE is 
negative, the actual canopy LE must be less than the potential value (which may 
indicate an effect of soil water limitation on transpiration). The α coefficient is then 
reduced until the residual soil LE is non-negative. The calculated LE represents the 
instantaneous flux at approximately one hour before local noon. This time corresponds 
to the end of the time span over which H is calculated (see below). The instantaneous 
latent heat fluxes are extrapolated to daily ET values by multiplying by the ratio of daily 
total to instantaneous shortwave radiation and dividing by the latent heat of 
vaporization. The ALEXI algorithm calculates H from the morning rise in the 
radiometric surface temperature (Hain and Anderson, 2017). By using the temporal 
change in surface temperature, the effect of bias in the temperature retrievals on H is 
minimized. This ALEXI implementation uses the MODIS land surface temperature 
product (MYD11C1), retrieved using a generalized split-window atmospheric 
compensation technique (Wan, 2004). The composite values of surface temperature 
are partitioned between canopy and soil using estimates of vegetation cover fraction 
from leaf area index. The leaf area index data were obtained from the 8-day MODIS 
MOD15A3 product (Myneni et al., 2002). Instead of using absolute values of air 
temperature, ALEXI uses the slope of the vertical temperature profile (lapse rate) in the 
boundary layer. The lapse rate profile, as well as the surface longwave radiation flux 
and wind speed were obtained from the NCEP Climate Forecast System Reanalysis 
product (CFS-R, CFSRv2; Saha et al., 2010). Incoming shortwave radiation fluxes were 
obtained from the CERES SYN1deg product (Doelling, 2012). Soil heat flux is calculated 
as a diurnal varying function of net radiation (Santanello and Friedl, 2003). The ALEXI 
model uses land cover data to assign canopy parameters such as canopy height (to 
calculate the aerodynamic resistances to H) and leaf absorptivity (to estimate Rn for the 
canopy and soil). The land cover data were obtained from the MODIS MCD12C1 product 
(Land Cover Type 2). Since the thermal infrared based surface temperature 
observations are only available during clear sky conditions, ALEXI employs a gap-filling 
technique to generate estimates of weekly totals. The clear-sky fraction of actual ET to 
incoming radiation is interpolated to a daily record and then multiplied by the daily 
incoming radiation to generate a complete record. Along the coast the coarse-scale 
meteorological inputs result in limited retrievals; this is why four coastal sites (Table 
S2) are not included in the ALEXI dataset. 

2.1.1.4 Eddy covariance ET data 

Data from four different flux networks (MexFlux, FLUXNET, AsiaFlux, OzFlux) were 
used to evaluate the ET products. The data from MexFlux were obtained directly from 
the site PIs (12 sites) because they were not available through a repository. The data 
from the other networks were obtained through the respective web-based portals. 
FLUXNET data available under the open data policy (tier 1) of the FLUXNET2015 
dataset were used (Pastorello et al., 2020). This dataset includes a total of 28 sites 
between latitudes 30° S and 30 °N. From OzFlux and AsiaFlux, openly available data 
from sites not included in FLUXNET2015 were considered (three and nine sites, 
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respectively). Prior to the more extensive data quality control (see below), sites for 
which the data record was too short (< 1 year), latent heat flux data were not available, 
or the degree of energy balance closure was too low (EBR < 0.5) were excluded (one 
site from MexFlux, four sites from FLUXNET, and seven sites from AsiaFlux). This left a 
total of 40 sites for further analysis (Figure 1, Table 2). Information needed for the 
correction of the soil heat flux (G) data or for the calculation of the sensible and latent 
heat storage terms, S (see below) was obtained from the metadata accompanying the 
datasets, from articles or other publications, or directly from the site PIs. 

The remote sensing ET products were evaluated using the mean daily eddy covariance 
ET (mm day−1) calculated for each MODIS interval. The comparisons were made using 
the unadjusted eddy covariance fluxes (ETorig) and those corrected for the lack of 
energy balance closure (ETebc). FLUXNET2015 includes corrected fluxes (Pastorello et 
al., 2020) but the datasets from the other networks do not. For consistency, the fluxes 
were corrected using the same method for all datasets (including FLUXNET2015). After 
filling the missing half-hourly or hourly values (see below), a correction factor was 
calculated for each MODIS interval as A/(H + LE), where each term is the average 
daytime flux in W m−2 (see above for definition of terms). Daytime was defined as 
having solar radiation > 10 W m−2. This method is based on the assumption that H and 
LE were underestimated by the same percentage (Twine et al., 2000). The available 
energy was calculated as Rn − G − S. The correction was only applied to the daytime 
data because, in absolute terms, the missing energy is small during the night (Stoy et 
al., 2013; Mauder et al., 2020) so that the correction will have little effect on total daily 
ET. In addition, this eliminated the need to ensure the completeness and consistency of 
the energy balance data for the nighttime period. The daytime and nighttime LE as well 
as the other energy balance terms (only daytime data) were converted from energy 
units (W m−2) to millimetres (mm) using a constant value for the latent heat of 
vaporization (2.45 MJ kg−1). The unadjusted nighttime fluxes were added to daytime 
ETorig and ETebc to give daily ETorig and ETebc. 

Data on G were available for 24 of the 40 sites. At all these sites G was measured using 
the soil heat flux plate method (Sauer, 2002). For six sites, the measurements were not 
corrected for heat storage above the plates (Mayocchi and Bristow, 1995). This 
correction was applied retrospectively using the method of Wang and Bou-Zeid (2012). 
This method calculates G at the soil surface (which is required in the energy balance 
calculations) from the time series of G at any depth. It requires the thermal diffusivity 
of the soil, which was calculated as the ratio of soil thermal conductivity to soil 
volumetric heat capacity. The thermal conductivity was calculated following Lu et al. 
(2014) using site-specific soil physical data. The volumetric heat capacity was 
calculated from soil bulk density and soil moisture. For sites without data on G but with 
data on soil temperature (seven sites), G was estimated using the method of Hsieh et al. 
(2009). Estimates of G derived from temperature measurements at depths > 2 cm were 
corrected for heat storage using the method of Wang and Bou-Zeid (2012). For the 
remaining nine sites, G was estimated using the method of Mu et al. (2011), using in 
situ air temperature and Rn, and vegetation cover estimated from the MODIS FPAR 
product (MCD15A2H; see Section 2.1.1.5 for more details about this dataset). 
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The sensible and latent heat storage terms are generally not included in the flux 
datasets (Stoy et al., 2013; Pastorello et al., 2020). In this study, S was estimated from 
the half-hourly changes in air temperature and humidity measured at the reference 
level (Brutsaert, 1982). This estimate did not include heat storage in the vegetation 
biomass. 

 Site ID or 

site name 

Lat. Lon. Data 

period 

Network Country Land 

cover 

Climate  

class 

EF EBR Elev. 

(m) 

Reference 

1 PDF −2.35 114.03 2002–2005 AsiaFlux Indonesia EBF Af 0.77 0.82 30 Hirano et al. (2015) 

2 BR-Sa1 −2.86 −54.96 2002–2011 FLUXNET Brazil EBF Am 0.76 0.71 88 Saleska (2002–2011) 

3 BR-Sa3 −3.02 −54.97 2000–2004 FLUXNET Brazil EBF Am 0.77 0.82 100 Goulden (2000–2004) 

4 CN-Din 23.17 112.54 2003–2005 FLUXNET China EBF Cwa 0.60 0.68 300 Yu et al. (2006) 

5 GF-Guy 5.28 −52.92 2004–2014 FLUXNET French 

Guiana 

EBF Am 0.75 0.85 48 Bonal et al. (2008) 

6 La Orduña 19.47 −96.93 2014–2018 MexFlux Mexico EBF Cfa 0.56 0.82 1210 Holwerda et al. (2016); 

Holwerda and Meesters 

(2019) 

7 Puerto 

Morelos 

20.85 −86.90 2017–2018 MexFlux Mexico EBF Aw 0.51 0.75 10 Alvarado-Barrientos et 

al. (2021) 

8 El 

Sargento 

29.34 −112.28 2014–2016 MexFlux Mexico EBF BWh 0.59 0.99 0 Delgado-Balbuena et al. 

(2018) 

9 MY-PSO 2.97 102.31 2003–2009 FLUXNET Malaysia EBF Af 0.64 0.98 112 MY-PSO (2003–2009) 

10 Cape 

Tribulation 

−16.10 145.45 2012–2018 OzFlux Australia EBF Am 0.72 0.77 40 Liddell (2013) 

11 Cow Bay −16.24 145.43 2011–2019 OzFlux Australia EBF Am 0.72 0.63 86 Liddell (2013) 

12 Robson 

Creek 

−17.12 145.63 2014–2019 OzFlux Australia EBF Cwa 0.61 0.71 710 Liddell (2013) 

13 CLM 24.59 121.42 2007–2009 AsiaFlux Taiwan ENF Cfb 0.50 0.86 1638 Chu et al. (2014) 

14 AR-Vir −28.24 −56.19 2009–2012 FLUXNET Argentina ENF Cfa 0.79 0.72 127 Posse et al. (2016) 

15 CN-Qia 26.74 115.06 2003–2004 FLUXNET China ENF Cfa 0.70 0.76 100 Yu et al. (2006) 

16 Atopixco 20.61 −98.59 2017–2018 MexFlux Mexico ENF Cwb 0.43 0.99 2064 Hidalgo-Sánchez et al. 

(2021) 

17 Álamos 27.00 −108.79 2015–2017 MexFlux Mexico DBF BSh 0.57 0.71 368 Rojas-Robles et al. 

(2020) 

18 Chamela 19.51 −105.04 2007–2010 MexFlux Mexico DBF Aw 0.30 0.82 73 González del Castillo et 

al. (2018) 

19 Sierra Los 

Locos 

29.96 −110.46 2010–2014 MexFlux Mexico DBF BSh 0.42 0.73 1314 Pérez-Ruiz et al. (2021) 

20 El Palmar 21.02 −90.06 2016–2018 MexFlux Mexico DBF Aw 0.40 1.03 8 Figueroa-Espinoza et al. 

(2021); Uuh-Sonda et 

al. (2022) 

21 Rayón 29.74 −110.53 2008–2015 MexFlux Mexico DBF BSh 0.23 0.81 632 Verduzco et al. (2018); 

Pérez-Ruiz et al. (2021) 

22 Tesopaco 27.83 −109.28 2004–2008 MexFlux Mexico DBF BSh 0.31 0.76 426 Verduzco et al. (2015) 

23 PA-SPn 9.32 −79.63 2007–2009 FLUXNET Panama DBF Am 0.66 0.91 78 Wolf et al. (2011) 

24 ZM-Mon −15.44 23.25 2007–2009 FLUXNET Zambia DBF Aw 0.45 0.77 1053 Merbold et al. (2009) 

25 AU-ASM −22.28 133.25 2010–2014 FLUXNET Australia SAV BWh 0.16 0.83 600 Cleverly et al. (2013) 

26 AU-Ade −13.08 131.12 2007–2009 FLUXNET Australia SAV Aw 0.58 0.96 100 Beringer et al. (2011) 

27 AU-DaS −14.16 131.39 2008–2014 FLUXNET Australia SAV Aw 0.51 0.90 110 Hutley et al. (2011) 

28 AU-Dry −15.26 132.37 2009–2014 FLUXNET Australia SAV Aw 0.46 0.80 175 Cernusak et al. (2011) 

29 AU-How −12.49 131.15 2003–2014 FLUXNET Australia WSA Aw 0.63 0.89 64 Beringer et al. (2007) 

30 AU-RDF −14.56 132.48 2011–2013 FLUXNET Australia SAV Aw 0.40 0.87 171 Bristow et al. (2016) 

31 SD-Dem 13.28 30.48 2007–2009 FLUXNET Sudan SAV BWh 0.40 0.83 500 Ardö et al. (2008) 

32 AU-DaP −14.06 131.32 2007–2013 FLUXNET Australia GRA Aw 0.45 0.74 67 Hutley et al. (2011) 

33 AU-Emr −23.86 148.47 2011–2013 FLUXNET Australia GRA BSh 0.32 0.67 170 Schroder et al. (2014) 

34 AU-Fog −12.55 131.31 2006–2008 FLUXNET Australia GRA Aw 0.72 0.80 4 Beringer et al. (2013) 

35 AU-Stp −17.15 133.35 2008–2014 FLUXNET Australia GRA BSh 0.33 0.82 225 Beringer et al. (2011) 

36 AU-TTE −22.29 133.64 2012–2014 FLUXNET Australia GRA BWh 0.12 1.03 553 Cleverly et al. (2016) 

37 CG-Tch −4.29 11.66 2006–2009 FLUXNET Congo GRA Aw 0.48 0.98 82 Merbold et al. (2009) 

38 Ojuelos 21.78 −101.61 2011–2016 MexFlux Mexico GRA BSk 0.41 0.83 2228  Delgado-Balbuena et 

al. (2019) 

39 PA-SPs 9.31 −79.63 2007–2009 FLUXNET Panama GRA Am 0.67 0.96 68 Wolf et al. (2011) 

40 US-KS2 28.61 −80.67 2003–2006 FLUXNET United 

States 

CSH Cfa 0.59 0.81 3 Drake and Hinkle 

(2003–2006) 

Table 2. Eddy covariance sites used in the evaluation of the remote sensing-based ET products. Shown 
for each site are: number to locate site on map in Figure 1; site ID or site name used by the flux network; 
latitude and longitude (decimal degrees); period with data availability; flux network; country; IGBP land 
cover type; Köppen-Geiger climate class; evaporative fraction (EF); energy balance ratio (EBR); site 
elevation (m); and reference(s) to article(s) with additional information or to dataset. 

The data from the 40 sites were carefully screened for inconsistencies. These checks 
were in addition to those performed by the site PIs/teams and by some of the networks 
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(FLUXNET, Pastorello et al., 2014, 2020; OzFlux, Isaac et al., 2017). For the daytime 
period, all data needed for the energy balance calculations were checked. For the 
nighttime period, only the LE data were screened. The quality checks were similar to 
those performed by Pastorello et al. (2014) for FLUXNET2015. Where possible, errors 
in the radiation, air temperature, and relative humidity data were corrected with the 
help of the site PIs, using calculated clear-sky radiation (in the case of the radiation 
data), or using data from another sensor or from a nearby station (Allen, 2008; 
Pastorello et al., 2014). No attempts were made to correct questionable eddy 
covariance flux data (H, LE) or soil data (G, temperature, moisture). 

Gap-filling of the data was carried out in two steps. In the first step, gaps in the half-
hourly or hourly data were filled on a daily basis. For the daytime period, missing values 
of any energy balance term, x (where x = LE, H, G, S) on a particular day were filled 
using  , where  is the average daytime ratio of x to Rn and Rn,i the net radiation during 
time step i with missing data. For any x, the maximum allowed percentage of missing 
values was 30%. For the nighttime period, missing values of LE on a particular day were 
replaced by the mean nighttime LE for that day (also using an upper threshold of 30% 
for the percentage of missing data). For consistency, the same method was used for all 
datasets (i.e., the gap-filled data in FLUXNET2015 were not used). In the second step, 
missing daily values of ETorig and ETebc were replaced by the mean of the available 
observations for individual MODIS intervals. The maximum allowed percentage of 
missing values was 25% (i.e., two days for an 8-day MODIS interval) (Hu et al., 2015). 

Energy balance closure was analyzed for each site individually by summing the 8-day 
mean daytime totals of H + ETorig and A and calculating the energy balance ratio as: EBR 
= ∑(H + ETorig)/∑A, with all terms in mm (Wilson et al., 2002). Energy balance closure 
was also analyzed by grouping the data according to land cover type and climate zone 
(Section 2.1.2). For the pooled data in each group, the 8-day mean daytime totals of H 
+ ETorig were plotted against A and the corresponding linear regression line and EBR 
were calculated. 

Geographic coordinates and land cover type data for each site were obtained from the 
metadata accompanying the datasets or from the literature (Table 2). The classification 
scheme of the International Geosphere-Biosphere Programme (IGBP) was followed. 
This classification system is adopted by most flux networks. It is also used in most 
evaluation studies of remote sensing ET models (see, e.g., Velpuri et al., 2013; McCabe 
et al., 2016; Michel et al., 2016). 

For each site, the evaporative fraction (EF) was calculated as (Shuttleworth et al., 
1989): EF = ∑ETorig/∑(H + ETorig), where ETorig and H are the mean daytime latent and 
sensible heat fluxes for each MODIS interval, not corrected for the lack of energy 
balance closure. The obtained values are listed in Table 2. 
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Figure. 1. Map showing the geographic location of the 40 eddy covariance sites used in the evaluation, 
zoomed in for Mexico and northern Australia. The numbers identify the sites in Table 2.  

2.1.1.5 Other datasets 

The Köppen-Geiger climate class of each site was obtained using the 1-km resolution 
global map of Beck et al. (2018). The map was downloaded from 
www.gloh2o.org/koppen/. Each site was assigned the climate class of the pixel where 
the flux tower was located. The 40 sites represented a total of 10 different climate 
classes (Table 2). For the evaluation of the remote sensing ET products, these were 
grouped into four main climate zones (Section 2.1.2). For each of these climate zones, 
the average EF was calculated using the site-specific values listed in Table 2. 

To investigate the match between the actual vegetation type at the flux tower site and 
the vegetation class or category used in the remote sensing ET models (Section 2.1.3), 
the yearly MODIS land cover (MCD12Q1; 500 m resolution) and vegetation cover 
(MOD44B; 250 m resolution) products were used. The data were downloaded from the 
NASA LP DAAC website. From MCD12Q1, the Land Cover Type 2 data were used. From 
MOD44B, the data layers containing percent tree cover and percent non-tree vegetation 
were used. For each site, the following three subsets were generated for the years with 
eddy covariance data: Subset 1) four pixels of MCD12Q1 data corresponding to the 1-
km MOD16 pixel; Subset 2) all pixels of MOD44B data falling within the 0.25° GLEAM 
pixel; and Subset 3) all pixels of MCD12Q1 data corresponding to the 5-km ALEXI pixel. 
These subsets were used in the analysis described in Section 2.1.3. 

Finally, FPAR data from the MCD15A2H product were used to calculate G with the 
method of Mu et al. (2011) (Section 2.1.1.4). This product is an 8-day composite dataset 
with a spatial resolution of 500 m. The data were again obtained from NASA’s LP DAAC. 
The pixels matching the location of the flux towers were used. Data with a cloud flag or 
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retrieved by the backup algorithm were replaced by interpolated values (Zhao et al., 
2005). 

2.1.2 Evaluation of product performance 

The remote sensing ET products were evaluated by grouping the data by IGBP land 
cover type and Köppen-Geiger climate zone (Velpuri et al., 2013; McCabe et al., 2016). 
To avoid groups with only one site, the woody savanna site was included in the group 
with the savanna sites and the closed shrubland site was left out of the evaluations by 
land cover type (but included in the evaluations by climate zone). This resulted in the 
following five groups of vegetation cover types: evergreen broadleaf forest (EBF); 
deciduous broadleaf forest (DBF); evergreen needleleaf forest (ENF); savanna (SAV); 
and grassland (GRA).  

  GLEAM MOD16 C5 MOD16 C6 ALEXI 

Land cover type EBF 9 (49) 11 (47) 12 (67) 8 (47) 

 ENF 4 (7) 3 (6) 4 (7) 4 (7) 

 DBF 6 (23) 5 (18) 8 (27) 8 (27) 

 SAV 7 (33) 7 (33) 7 (33) 7 (33) 

 GRA 7 (28) 8 (29) 8 (31) 8 (31) 

      

Climate zone Af, Am 8 (42) 9 (46) 9 (55) 7 (39) 

 Aw 8 (37) 10 (43) 12 (46) 11 (45) 

 C 7 (19) 7 (15) 8 (24) 8 (24) 

 B 10 (42) 9 (33) 11 (45) 10 (42) 

Table 3. Number of eddy covariance sites and site years (between parentheses) available in the complete 
dataset for each product by land cover type and climate zone. Note that the number of site years 
corresponds to the length of the flux tower records. Actual data availability was lower due to, for example, 
missing or erroneous data. 

Likewise, the sites were grouped into the following four main climate zones: i) Af, Am: 
tropical fully humid and tropical monsoon, respectively (from now on referred to as 
tropical wet); ii) Aw: tropical savanna; iii) B: dry; and iv) C: mild temperate. Sites 
assigned the mild temperate (C) climate were either located on tropical or subtropical 
mountains (five sites) or in lowland areas in the subtropics (three sites) (see also 
Richter, 2016). Table 3 shows the number of sites and the number of site years available 
in the complete dataset for each product by land cover type and climate zone. 

2.1.2.1 Scatter plots and regression analysis 

Scatter plots allow visual evaluation of the match between the remote sensing-based 
and the observed ET data (Velpuri et al., 2013; McCabe et al., 2016; see also Chang and 



15 
 

Hanna, 2004). In addition, the slope, intercept, and coefficient of determination (R2) of 
the fitted linear regression line provide a quantitative way to evaluate product 
performance (Willmott, 1982; Velpuri et al., 2013; McCabe et al., 2016). Most studies 
evaluating remote sensing ET products perform the regression analysis with the 
product estimates on the y-axis and the observations on the x-axis (see, e.g., Mu et al., 
2011; Velpuri et al., 2013; McCabe et al., 2016). However, Piñeiro et al. (2008) showed 
that this can lead to erroneous estimates of the regression coefficients. Therefore, in 
this study the observations were used as the y variable and the product estimates as 
the x variable (Piñeiro et al., 2008). For each land cover type and climate zone in Table 
3, the eddy covariance observations were plotted against the ET estimates of each 
product and the corresponding linear regression lines were calculated, using the pooled 
data from the different sites in each group. This analysis was performed using both 
ETorig and ETebc. 

2.1.2.2. Statistical performance metrics 

In addition to visual inspection of the scatter plots and examination of the regression 
results, three commonly used statistics in evaluation studies of remote sensing ET 
products were calculated: root mean square error (RMSE), percent bias (PBIAS), and 
the coefficient of determination (R2) (see references in Table S3). The use of these 
common statistics allowed for comparison with evaluation results from other latitudes 
(Section 2.1.4). The selected metrics provide complementary information about 
product performance. The RMSE is a measure of total error (i.e., both random and 
systematic errors) and is defined by:  

𝑅𝑀𝑆𝐸 = √𝑁−1 ∑[𝐸𝑇(𝑃𝑟𝑜𝑑) − 𝐸𝑇(𝑂𝑏𝑠)]2                                               (1) 

 

where ET(Prod) is the product ET, ET(Obs) the eddy covariance ET, and N the total 
number of data points (i.e., the number of MODIS intervals). 

The PBIAS is the systematic (bias) error in percent of the average of the observations: 

  

𝑃𝐵𝐼𝐴𝑆 =
𝑁−1 ∑[𝐸𝑇(𝑃𝑟𝑜𝑑−𝐸𝑇(𝑂𝑏𝑠)]

𝑁−1 ∑ 𝐸𝑇(𝑂𝑏𝑠)
 ×  100                                         (2) 

  

Third, in addition to the R2 calculated from the pooled data (Section 2.1.2.1), the R2 of 
the linear regression between product ET and observed ET was calculated for each site 
separately. Besides being a measure of correlation, R2 indicates how much of the 
variation in observed ET is explained by the product ET. 

The three metrics were calculated using both ETorig and ETebc. Averages of both sets of 
RMSE, PBIAS, and R2 values were calculated for each land cover type and climate zone 
in Table 3. The average metrics by land cover type and climate zone were displayed 



16 
 

graphically in plots for each product (McCabe et al., 2016) for ETorig and ETebc. The 
results for the individual sites can be found in Table S2. 

2.1.2.3 Combining the different performance metrics into a single score 

To facilitate comparison of the overall performance of the different ET products, the 
individual metrics (R2, RMSE, PBIAS) were combined into the Ideal Point Error (IPE) 
score (Elshorbagy et al., 2010; Dawson et al., 2012). The IPE score takes values between 
0 and 1, with 0 indicating perfect performance (i.e., all metrics are at their optimum 
values) and 1 being assigned to the worst performing product. In practice, no product 
(and no observation) is without error. Therefore, the best performing product will 
usually have an IPE greater than 0. The IPE values were calculated for each of the 
comparisons by land cover type and climate zone. The calculation of IPE consists of two 
steps. In the first step, each performance metric is standardized to the worst score for 
that metric. Dawson et al. (2012) provides expressions for this standardization step for 
different categories of performance measures (denoted by S1–S5; their Table 1). PBIAS 
is not listed in this table. However, as mentioned by Dawson et al. (2012), the flexibility 
of this method allows other metrics to be included. PBIAS classifies as an S4 category 
metric and was standardized using the corresponding expression. In the second step, 
the IPE is calculated from the standardized metrics using Equation (2) in Dawson et al. 
(2012). The results were plotted as heatmaps for ETorig and ETebc. 

2.1.2.4 Sensitivity to the choice of reference dataset 

The statistical metrics (R2, RMSE, PBIAS) and the IPE scores were calculated as 
explained above but now using the common reference dataset. This direct comparison 
approach included 12 fewer sites and about 36% fewer MODIS intervals than when 
using all data (see Table S1 for the number of sites and site years by land cover type 
and climate zone). The sensitivity analysis was performed for ETorig only. Differences in 
the ranking of products for each of the comparisons by land cover type and climate zone 
were determined by comparing the IPE scores from both approaches. Changes in 
ranking were indicated by adding an asterisk to the IPE scores in the heatmap for ETorig. 

2.1.2.5 Evaluation of seasonal trends in ET from products 

The ability of the products to capture seasonal changes in ET was examined by plotting 
the average monthly ET for each product together with the average monthly ETorig and 
ETebc. This was again done for each land cover type and climate zone in Table 3. To 
account for the different timing of the rainy seasons, separate plots were made for sites 
located in the northern and southern hemispheres. 

2.1.3 Vegetation match index (VMI) and open water fraction (OWF) 

The effect of a mismatch between the vegetation at the flux tower site and that detected 
in the model pixel on the product evaluation results was examined by calculating a 
vegetation match index (VMI). The models underlying the investigated ET products 
differ in the level of detail with which they distinguish between different vegetation 
types. Both MOD16 and ALEXI assign land cover-specific parameters to a wide range of 
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cover types, while GLEAM only considers two vegetation categories (i.e., tall and short 
vegetation). However, also for MOD16 and ALEXI the largest differences between the 
land cover-specific parameters occur between tall and short (or forest and non-forest) 
vegetation types (Anderson et al., 2007a; Mu et al., 2011). Therefore, for all three 
products, VMI was calculated based on these two vegetation categories. 

The datasets used to calculate the VMIs are described in Section 2.1.1.5. As explained in 
Section 1.1, a mismatch in vegetation can be caused by scale differences or inaccuracies 
in the vegetation input data. To account for the latter, vegetation data were selected 
that were as similar as possible to those used to generate the products (Sections 
2.1.1.1–2.1.1.3). For MOD16 and ALEXI, MCD12Q1 Land Cover Type 2 data were used 
(Subsets 1 and 3, respectively). The data from Subsets 1 and 3 were aggregated into 
forest and non-forest categories. For sites with a forest land cover (EBF, DBF, ENF; 
Table 2), VMIMOD16 or VMIALEXI was calculated as the proportion of forest vegetation 
present in the 1-km MOD16 or 5-km ALEXI pixel. For sites with a non-forest land cover 
(SAV, GRA), the VMIs were calculated as the proportion of non-forest vegetation. For 
GLEAM, MOD44B vegetation cover data were used (Subset 2). These data were 
assumed to be similar to those of the VCF5KYR product (used as input to GLEAM v3.3a; 
Section 2.1.1.2). The VCF5KYR product is based on AVHRR observations calibrated with 
MODIS data (Hansen et al., 2018). In each data layer of the MOD44B product, pixels with 
water are masked out with a fill value of 200. Hence, VMIGLEAM was calculated as either 
the average percent tree cover (for sites with forest vegetation) or the average percent 
nontree vegetation (for sites with non-forest vegetation) multiplied by the fraction of 
land pixels. In addition, the open water fraction (OWF) was calculated. This index was 
used to filter out sites for which the pixel contained more than 20% water (Section 
2.1.1.2). 

The dependence of product performance on the vegetation-match between pixel and 
site was examined by plotting the performance metrics (R2, RMSE, PBIAS) against VMI. 
Individual site values for the metrics were bin-averaged into four evenly spaced 
intervals of 0.25 VMI units wide in the case of GLEAM and ALEXI or for each of the five 
discrete VMI values in the case of MOD16. For each metric-VMI combination, the linear 
regression line was calculated. In addition to visual inspection of the scatter plots, the 
p-values of the calculated regression slopes were used to evaluate whether there was a 
relationship between VMI and product performance. For this analysis, performance 
statistics obtained for ETorig were used. 

2.1.4 Latitudinal comparison of product performance 

To investigate latitudinal dependence of the performance of the ET products examined 
here, a literature search was conducted to find studies that evaluated these products. 
To allow for direct comparison, only studies that evaluated the products with eddy 
covariance-based ET were considered. Furthermore, a study needed to report at least 
one of the three performance metrics used in this study (R2, RMSE, PBIAS) or provide 
the data from which these metrics could be calculated. The performance statistics 
depend on the averaging time used. Hence, ideally, only studies using the same time 
average as used here (8-day) should be considered. This would, however, drastically 
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reduce the number of evaluation results available. Therefore, studies using daily or 
monthly time averages were also included in the initial search.  
 
 

  MOD16 GLEAM ALEXI 

  Forest Non-forest Forest Non-forest Forest Non-forest 

 R2 19 30 2 9 27 26 

30° N–60° N NRMSE 11 23 2 9 NA NA 

 PBIAS 11 23 2 9 NA NA 

        

 R2 15 9 16 4 14 5 

0°–30° N NRMSE 13 9 16 4 14 4 

 PBIAS 13 9 16 4 14 4 

        

 R2 9 16 8 11 6 19 

0°–30° S NRMSE 8 16 8 11 6 12 

 PBIAS 8 16 8 11 6 12 

Table 4. Number of evaluation results (NER) from this study and from the literature, broken down into 
results for R2, NRMSE and PBIAS, and grouped by latitudinal zone, ET product and vegetation category 
(see Section 2.1.4 for further explanation). NA is not Not Available. 

 

In the end, a total of 15 studies were found (Table S3). As will be shown below, the 
evaluation results were different for ETorig and ETebc. Of the 15 studies found in the 
literature, 13 used ETorig and only two used ETebc. No studies were found that used both. 
For the final analysis, only studies using ETorig were considered. The study of Miralles 
et al. (2011) was also excluded because: i) GLEAM ET was calculated using in situ 
measured Rn; ii) comparisons were made using modelled ET for the vegetation type 
(i.e., tall or short vegetation) matching that at the tower site; and iii) days with rainfall 
were excluded. Likewise, the study of Mu et al. (2011) was excluded because their 
evaluation results are in fact calibration results. This yielded a total of 12 studies, 
including the current one. Most studies used MOD16 C5 because MOD16 C6 was only 
recently released. Therefore, the results obtained here for C5 were used. To account for 
latitudinal differences in ET, RMSE was normalized by mean ETorig (NRMSE). Not all 
studies reported ETorig (Table S3). The studies evaluated product performance at a 
minimum of two eddy covariance sites to a maximum of 119 sites. Most studies 
reported evaluation results for individual sites but some reported averages for land 
cover classes (e.g., Velpuri et al., 2013; Reitz et al., 2017). The latter were treated as if 
they were results for individual sites. Performance results were grouped into results 
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for forest and non-forest vegetation; there were not enough performance data available 
to create more specific subgroups. The results were further grouped into three 
latitudinal bands: southern low latitudes (30° S–0°); northern low latitudes (0°–30° N); 
and northern middle latitudes (30° N–60° N). For latitudes outside these regions, there 
were not enough data available (Table S3). Table 4 summarizes the number of 
evaluation results (NER) available, broken down into results for R2, NRMSE, and PBIAS, 
and grouped by latitudinal zone, product, and vegetation category. Averages of each 
performance metric for each product-vegetation category combination were plotted as 
a function of latitude. 
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2.2 Evaluation of evaporative stress, precipitation and vegetation indices for 
monitoring agricultural drought in central Mexico.  

 
 
2.2.1 Study area 
 

 

Figure 2. Maps showing (a) Mexico and the proportion of rainfed, spring-summer crops (represented by 
the green portion) relative to the total area with annual crops (represented by the size of the circle) by 
state for the period 2003–2020 (data source: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php); 
(b) the study domain, with the 82 selected municipalities marked in green and the corresponding states 
in pink (Mexico City is shown in gray for reference); and (c) elevation in the study domain at 30 m 
resolution (data source: https://www.inegi.org.mx/app/geo2/elevacionesmex/). 

For this analysis, only municipalities where more than 50% of the surface area was 
sown with rainfed, spring-summer crops were selected (see Section 2.2.2.1). This 
selection yielded a total of 82 municipalities, all of which were located in central Mexico 
(Figures 2a, b; Table 5). Two municipalities were located in the state of Jalisco and the 
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others were distributed in clusters around Mexico City in the states of Hidalgo, Morelos, 
State of Mexico, Puebla and Tlaxcala. The selected municipalities range in surface area 
from 4 to 492 km2 (Table 5). Figure 2a shows the share of rainfed, spring-summer crops 
relative to the total area with annual crops by state for the period 2003–2020. This 
information was obtained from the agricultural dataset described in Section 2.2.2.1 
(SIAP, 2020). It can be observed that the study domain is an important rainfed 
agricultural region. Several states outside the domain also had important areas with 
rainfed, spring-summer crops. However, none of the municipalities in these states 
fulfilled the selection criteria (Section 2.2.2.1). Corn was the most commonly grown 
crop in the 82 municipalities (50% of the total area sown), followed by barley (18%) 
(Fig. 2). Other important crops in the study domain include oats, wheat, beans and 
sorghum. 
 

 
 

Figure 3. Percentage of sown area of the major crops in the 82 selected municipalities relative to the 
total area sown with rainfed, spring-summer crops during the period 2003–2020. 
 

 

          
 
Figure 4. Average monthly rainfall in the 82 
selected municipalities for the period 2003–
2018, as calculated from the municipal-level 
data described in Section 2.2.2.6. 
 

 

Figure 5. Average monthly NDVI (solid line) 
and standard deviation (gray area) in the 82 
selected municipalities for the period 2003–

2020. Also shown is the NDVI during the 2011 
drought year (dashed line with dots). The NDVI 
data were obtained from the MODIS MOD13C2 

dataset.
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State Municipality 

Geographic area 
[km2] 

Area sown with 
all-crops [%] 

Area sown 
with corn [%] 

Dominant 
crop 

Hidalgo  Apan  322 82 6 Barley 

  Epazoyucan  140 69 2 Barley 

  Tizayuca  77 63 4 Barley 

  Tlanalapa  83 54 4 Barley 

  Zapotlán de Juárez  117 53 0 Barley 

  Zempoala  320 56 6 Barley 
Jalisco  La Barca  418 59 58* Corn 

  Jamay  163 91 87* Corn 
State of Mexico  Almoloya de Juárez  485 55 45 Corn 

  Atizapán  7 83 72* Corn 

  Axapusco  231 51 3 Barley 

  Ayapango  36 73 60* Corn 

  Calimaya  101 70 66* Corn 

  Cocotitlán  15 100 69* Corn 

  Chapultepec  13 62 59* Corn 

  Joquicingo  64 51 40 Corn 

  Juchitepec  140 73 23 Corn 

  Metepec  68 66 63* Corn 

  Mexicaltzingo  11 70 65* Corn 

  Nopaltepec  84 50 2 Barley 

  Ozumba  46 61 32 Corn 

  Rayón  23 71 61* Corn 

  San Antonio La Isla  19 100 100* Corn 

  San Felipe del Progreso  368 52 43 Corn 

  Temascalapa  164 77 4 Barley 

  Tenango del Valle  208 63 46 Corn 

  Tepetlixpa  43 56 19 Corn 

  Villa de Allende  309 59 44 Corn 

  Zumpango  224 55 9 Barley 

  San José del Rincón  492 56 43 Corn 
Morelos  Yecapixtla  176 63 20 Sorghum 

  Temoac  37 100 23 Sorghum 
Puebla  Acajete  185 65 58* Corn 

  Acteopan  75 52 16 Sorghum 

  Aljojuca  52 100 100* Corn 

  Coronango  37 67 60* Corn 

  Cuautlancingo  38 67 65* Corn 

  Cuyoaco  301 54 15 Barley 

  Domingo Arenas  12 100 100* Corn 

  Esperanza  79 65 45 Corn 

  General Felipe Ángeles  92 69 51* Corn 

  Juan C. Bonilla  23 90 84* Corn 

  Mazapiltepec de Juárez  55 52 26 Corn 

  Nealtican  19 100 100* Corn 

  Rafael Lara Grajales  4 100 100* Corn 

  San Gregorio Atzompa  12 63 60* Corn 

  San Jerónimo Tecuanipan  40 59 34 Corn 

  San Martín Totoltepec  7 83 58* Corn 

  San Matías Tlalancaleca  52 67 55* Corn 

  San Miguel Xoxtla  6 73 70* Corn 

  San Pedro Cholula  76 61 60* Corn 

  San Salvador El Seco  220 57 38 Corn 

  Santa Isabel Cholula  33 55 31 Corn 

  Soltepec  115 59 47 Corn 

  Teteles de Avila Castillo  10 79 79* Corn 

  Tlaltenango  21 95 86* Corn 

  Zaragoza  31 100 84* Corn 
Tlaxcala  Apetatitlán de Antonio Carvajal  12 74 60* Corn 

  Atlangatepec  108 100 20 Barley 

  Apizaco  43 100 70* Corn 

  Calpulalpan  255 79 12 Wheat 

  Cuapiaxtla  85 100 89* Corn 

  Cuaxomulco  17 68 51* Corn 

  Muñoz de Domingo Arenas  36 100 76* Corn 

  Huamantla  340 61 47 Corn 
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  Contla de Juan Cuamatzi  26 72 62* Corn 

  Sanctórum de Lázaro Cárdenas  100 72 28 Corn 

  Nanacamilpa de Mariano Arista  109 59 30 Corn 

  Santa Cruz Tlaxcala  29 55 49 Corn 

  Tenancingo  12 54 54* Corn 

  Terrenate  155 64 30 Corn 

  Tocatlán  14 98 52* Corn 

  Ziltlaltépec de Trinidad  77 58 52* Corn 

  Tzompantepec  38 81 65* Corn 

  Xaloztoc  42 100 51* Corn 

  Xaltocan  103 92 35 Wheat 

  Papalotla de Xicohténcatl  24 83 82* Corn 

  Xicohtzinco  7 75 74* Corn 

  Yauhquemehcan  37 66 13 Wheat 

  Benito Juárez  26 100 100* Corn 

  San José Teacalco  36 54 27 Corn 
   San Lucas Tecopilco  29 100 47 Corn 

Table 5. List of the 82 selected municipalities, their geographic area and the average percentage of area 
sown with rainfed, spring-summer crops (all crops) and rainfed, spring-summer corn (the 42 corn-
dominated municipalities are marked with and asterisk) for the period 2003–2020. Also shown is the 
crop occupying the largest surface area. 

The study domain is part of the Central Plateau of Mexico, which is surrounded by large 
mountain ranges to the east (Sierra Madre Oriental), west (Sierra Madre Occidental) 
and south (Eje Neovolcánico Transversal). The elevation of the 82 selected 
municipalities ranges from 1300 to 2800 m asl (Fig. 1c). According to the 1-km Kӧppen-
Geiger climate classification map of Beck et al. (2018), the dominating climate in the 
selected municipalities is temperate with dry winters (Cw), followed by tropical-
savanna (Aw). For some municipalities in the north and east of the domain, the climate 
is classified as arid-steppe (BS). Figure 4 shows the mean monthly rainfall in the 
selected municipalities for the period 2003–2018. The municipalities experience a wet 
season from June to September and a dry season from November to April. May and 
October are transitional months. The mean annual rainfall in the selected municipalities 
was 848 mm for the period 2003–2018. Figure 5 shows the average monthly NDVI in 
the selected municipalities for the period 2003–2020. Large seasonal variation in NDVI 
can be observed, with the higher values of NDVI coinciding with the wet season (Fig. 3) 
and the spring-summer production cycle. 

2.2.2 Data 

2.2.2.1 Agricultural dataset  

The agricultural data were obtained from the website of the Agrifood and Fisheries 
Information Service (SIAP, Servicio de Información Agroalimentaria y Pesquera) of 
Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries, and Food 
(SAGARPA, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca, y 
Alimentación) (http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php, accessed in 
October 2021). Municipal-level data are available since 2003. From 1991 to 2002, data 
were reported by state. The database is generated from annual surveys, following the 
Normativity for Agricultural and Fishery Basic Statistic Generation (SIAP, 2010). The 
data have yearly temporal resolution. Annual crops are grown in two production cycles: 
spring-summer (April-September) and fall-winter (October-March) (SIAP, 2018). For 
each municipality, the following data are provided by production cycle: watering 
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method (irrigation or rainfed), crop type, production (tons), area sown and area 
harvested (ha). The dataset also provides information on yield, which is calculated as 
the ratio of crop production to area harvested (tons ha−1). However, because this does 
not account for production losses associated with unharvested crops, yield was 
calculated as the ratio of production to area sown (Anderson et al., 2016a). 

Although the agricultural database contains detailed municipal-level statistics by 
production cycle and watering method, spatial data on the geographic location of the 
different crops are not available. In addition, the coarse resolution of some of the 
remote sensing products (0.05°, 0.25°; see below) makes it almost impossible to isolate 
the rainfed, spring-summer crops from other crops and land covers. Therefore, it was 
decided to spatially match the remote sensing data with the municipal-level crop yield 
data by taking the average of all pixels in a given municipality (Section 2.2.3.2). To 
increase the representation of rainfed, spring-summer crops in the remote sensing 
data, only municipalities where more than 50% of the area was sown with these types 
of crops were selected. This yielded a total of 82 municipalities (Table 5; Fig. 1b). No 
requirement for the minimum size of the selected municipalities was implemented.  

As shown in Fig. 2, corn made up about 50% of the sown area in the 82 municipalities. 
This reflects the situation at the national level, where corn is the main crop in terms of 
production and consumption (SIAP, 2018). Because of the importance of corn, the 
correlation analysis was performed for all rainfed, spring summer crops combined 
(hereafter referred to as all crops) and for corn only. To increase the representation of 
corn in the remote sensing data, only municipalities where more than 50% of the area 
was sown with corn were selected for this analysis (42 of the 82 municipalities). 

2.2.2.2 ESI from ALEXI 

The ESI data based on the ALEXI ET retrievals were extracted from the global product 
created at 0.05° resolution (approximately 5 km). Data for 2003−2020 were retrieved 
from gis1.servirglobal.net/data/esi (November 2021). ESIALEXI is calculated as the 
standardized anomaly (see Section 2.2.3.1 for equation) of the ratio of actual ET to 
reference ET (RET) (Anderson et al., 2013). The ALEXI implementation used to 
generate the global ESI product calculates actual ET from MODIS land surface 
temperature retrievals, while RET is calculated using the Food and Agricultural 
Organization Penman-Monteith equation (FAO-56 PM) for a hypothetical grass surface 
(Anderson et al., 2013). See Anderson et al. (1997, 2007a) for more information about 
the ALEXI algorithm and Allen et al. (1998) for more information about the FAO-56 PM 
method. The global ESI product is calculated weekly from all clear-sky ET retrievals 
within the previous 4- or 12-week window (Anderson et al., 2007b). The 4-week 
composite for the last week of each month was used because it best approximates a 
monthly average, which was needed for the correlation analysis (see Section 2.2.3.3). 
The ESIALEXI product is calculated using means and standard deviations of ET retrievals 
over the period 2000 to present (November 2021 in our case). Although this period 
does not exactly match that covered by the agricultural data, it is considered close 
enough to be representative. 
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2.2.2.3 ESI from GLEAM 

For the calculation of ESI from GLEAM, the evaporative stress factor published along 
with the ET data was used. The evaporative stress factor is a multiplicative factor that 
takes values between 1 and 0 and converts potential ET (PET) into ET (Martens et al., 
2017). It is therefore equivalent to ET/PET. The stress factor represents soil water 
constraints on transpiration and soil evaporation. In the GLEAM model, soil water 
content is calculated using a multilayer running water balance algorithm, which uses a 
merged rainfall product, modeled ET and microwave observations of surface soil 
moisture as the main inputs. The stress factor also accounts for the effect of phenology 
on ET using microwave observations of vegetation optical depth (Martens et al., 2017). 
PET is calculated with the Priestley-Taylor equation (Priestley and Taylor, 1972). The 
GLEAM data are produced at 0.25º resolution (approximately 25 km) at daily and 
monthly time steps. Monthly values of the evaporative stress factor from the version 
3.5a dataset were used in this study. Data for the period 2003−2020 were downloaded 
from www.gleam.eu (September 2021). The calculation of the GLEAM evaporative 
stress index (ESIGLEAM) is described in Section 2.2.3.1. 

2.2.2.4 ESI from MOD16 

For the calculation of the evaporative stress index based on MOD16 ET and PET 
(ESIMOD16), Collection 6 data were used. The data were retrieved from 
https://e4ftl01.cr.usgs.gov//DP132/MOLT/MOD16A2.006/ (June 2023). MOD16 ET is 
derived using a three-source Penman-Monteith model, which estimates ET as the sum 
of transpiration, wet-canopy evaporation and soil evaporation (Mu et al., 2007, 2011). 
Transpiration and soil evaporation are constrained by vapor pressure deficit (i.e., there 
is no direct soil moisture control). PET is calculated as the sum of potential 
transpiration and soil evaporation and evaporation from the wet canopy and soil. 
Potential transpiration is calculated using the Priestley-Taylor equation. The MOD16 
data are produced at 500 m spatial resolution and 8-day temporal resolution. For the 
calculation of the monthly averages, only 8-day ET and PET composite values with at 
least four days within the month in question were used. Only good quality pixels were 
considered. For the correlation analysis, ESIMOD16 was calculated at the original 
resolution of 500 m. For the maps in Figures 18 and 20, ET and PET had to be resampled 
to a resolution of 0.05° before ESI could be calculated due to computer memory 
limitations. Further details about the calculation of ESIMOD16 are given in Section 2.2.3.1. 

2.2.2.5 NDVI anomaly 

The NDVI anomalies were calculated using the time series of NDVI derived from 
observations with the MODIS Terra sensor. For this analysis, the 0.05° monthly product 
was used (MOD13C2, Collection 6.1; Didan and Barreto-Munoz, 2019). Data for the 
period 2003−2020 were retrieved from the NASA Earth Data online search engine 
(search.earthdata.nasa.gov, February 2022). MOD13C2 NDVI is derived from the 
MOD13A2 (1-km, 16-day) product. Good-quality pixels of MOD13A2 surface 
reflectance are spatially aggregated to 0.05º. All 16-day composites overlapping a given 
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calendar month are averaged with weights proportional to the degree of overlap to 
produce the monthly product (Didan and Barreto-Munoz, 2019). MOD13C2 NDVI is 
then computed as the ratio of the difference of near infrared (NIR) and red reflectance 
to their sum (Deering, 1978). The calculation of the monthly standardized anomalies 
(NDVIanom) is described in Section 2.2.3.1 (see also Peters et al., 2002). 

2.2.2.6 SPI 

Monthly SPI values were calculated using daily rainfall data from the network of 
climatological stations of the Mexican National Weather Service (SMN, Servicio 
Meteorológico Nacional), available at: 
https://smn.conagua.gob.mx/es/climatologia/informacion-
climatologica/informacion-estadistica-climatologica (last accessed in April 2023). 
Because the most recent data available are from 2018, the period over which the SPI 
values were calculated (2002–2018) was two years shorter than the period over which 
the crop anomalies were calculated. For each municipality, all stations within 50 km 
distance of its geographic boundary were identified. The shapefiles of the 
municipalities were obtained from the 2021 edition of the National Geostatistical 
Framework (Marco Geoestadístico). This dataset was produced by the Mexican 
National Institute of Statistics and Geography (INEGI, Instituto Nacional de Estadística 
y Geografía) and downloaded from: https://www.inegi.org.mx/temas/mg/#Descargas 
(April 2023). Next, monthly rainfall totals were calculated for each station only for the 
months with no missing daily values. In general, data availability was low across the 
stations. Therefore, the following approach was used to obtain a semi-continuous series 
of monthly rainfall for each municipality. First, monthly averages were calculated using 
only data from stations within the geographic boundary of the municipality. Averages 
were calculated from all available data, regardless of whether data were missing for a 
particular station during a given month. If the number of months for which an average 
could not be calculated exceeded 20% of the total period, stations from within 10 km of 
the municipal boundary were included. This procedure was repeated, increasing the 
distance by 10 km each time, until the number of months with missing values was less 
than 20%. For most municipalities, this was achieved with only stations within their 
geographic boundary (18 municipalities) or within 10 km of their boundary (49 
municipalities). For two municipalities, data from stations up to 30 km from the 
boundary had to be included. For the stations used to calculate the municipal averages, 
the percentage of missing data was 30% on average. Next, 1-month SPI values were 
calculated for each municipality using the Python package standard_precip 
(Nussbaumer, 2021). SPI was calculated by fitting a two-parameter gamma probability 
density function to the rainfall data, using the L-moments approach. 

2.2.3 Data analysis 

2.2.3.1 Crop yield and drought index anomalies 

The crop yield data show the impacts of the Sustainable Modernization of Traditional 
Agriculture Program (Modernización Sustentable de la Agricultura Tradicional, 
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MasAgro) implemented in 2011 (Fig. 10). The goal of this program was to increase corn 
and wheat yields on smallholder farms through improvements in seed varieties, 
fertilization and land management practices (Donnet et al., 2017). From 2012, an 
upward trend in yields can be observed for both all-crops and corn. At the same time, 
the land area used for crops decreased. As a result, production remained about the same 
in the studied municipalities. To correct for the effect of the MasAgro program, yield 
anomalies (YA) for each municipality and each crop category were calculated as the 
difference between actual yield and predicted yield based on a linear regression on 
time. For the period 2003–2011, YAs were calculated as deviations from the average. 
For the temporal correlation analysis (using the spatially aggregated data), YAs were 
calculated from total production and total sown area in all 82 (all crops) or 42 (corn) 
municipalities (see Section 2.2.3.3). In this way, differences in cultivated area between 
municipalities were accounted for. 

For the drought indices based on the GLEAM stress factor, the MOD16 ET/PET ratio and 
NDVI, the standardized anomalies (SA) were calculated using (see, for example, Peters 
et al., 2002): 

𝑆𝐴 =
𝑋−𝑀

𝑆𝐷
                                                              (3) 

where SA is the standardized anomaly of the GLEAM stress factor (ESIGLEAM), the 
MOD16 ET/PET ratio (ESIMOD16) or NDVI (NDVIanom) for a given pixel, month and year, 
X is the GLEAM stress factor, MOD16 ET/PET ratio or NDVI for the pixel, month and 
year in question, M the 2003−2020 mean GLEAM stress factor, MOD16 ET/PET ratio 
or NDVI for the pixel and month in question, and SD the corresponding standard 
deviations. 

2.2.3.2 Spatial matching of the data 

For the correlation analysis, spatial averages of the drought indices were calculated at 
two scales: i) the individual municipal level; and ii) all municipalities combined (82 for 
all crops and 42 for corn; Fig. 6). For the gridded data (ESIALEXI, ESIGLEAM, ESIMODIS, 
NDVIanom), spatial averages were calculated as the mean of all pixels within each 
individual municipality or within each group of municipalities. Pixels were considered 
to fall within a given municipality if they intersected the boundary of that municipality. 
For GLEAM, the municipality-level ESI values were often based on data from only one 
pixel; in addition, different municipalities shared the same pixel. Spatial averages of the 
SPI values were calculated using the surface area of the municipalities as a weighting 
factor. 

2.2.3.3 Correlation analysis 

The strength of the relationship between the crop yield anomalies and the drought 
indices was evaluated with the Pearson’s correlation coefficient. The correlations were 
considered statistically significant if the p-value was smaller than 0.05. Two different 
temporal correlation analyses were performed (Fig. 6). In the first analysis, correlation 
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coefficients were calculated between annual yield anomalies determined from the 
aggregated data of all 82 (all crops) or 42 (corn) municipalities and corresponding 
spatial averages of the drought indices for three different time scales: monthly, spring-
summer and annual. Spring-summer values were calculated as the average of the 6-
month production cycle (April-September) and annual values were calculated as the 
average of all months in a given calendar year. For the analysis at the monthly time 
scale, correlation coefficients were calculated for each calendar month, including those 
before and after the production cycle. This in order to identify months for which the 
drought indices showed a higher or lower association with the annual yield anomalies. 
In the second analysis, correlation coefficients were calculated for each individual 
municipality. The results were plotted as maps to examine the spatial patterns of the 
correlation coefficients and compare these among the drought indices. In this analysis, 
the correlations coefficients were calculated using spring-summer averages and June 
values of the drought indices. The June values of the drought indices were used because 
this month was amongst the months with the highest correlations (Fig. 12). The spatial 
correlation analysis consisted of calculating the correlation coefficients between the 
2011 crop yield anomalies of all 82 (all crops) or 42 (corn) municipalities and the 
corresponding municipal-level drought indices derived for monthly, spring-summer 
and annual time periods. For the analysis at the monthly time scale, the correlation 
coefficients were again calculated for each calendar month. 
 

Figure 6. Schematic overview of the data used for the correlation analyses and their level of spatial and 
temporal aggregation. Also indicated are the figures showing the results of each analysis. 
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3. Results 
 

3.1 Evaluation against eddy covariance ET 

 

3.1.1 Energy balance closure of eddy covariance data 

Table 2 shows the daytime energy balance ratio (EBR) for each of the 40 individual 
sites. The average daytime EBR for the 40 sites was 0.83, with a standard deviation (SD) 
of 0.10, and with values ranging from 0.63 to 1.03. Figures 7 and 8 show scatter plots 
between the sum of the daytime turbulent heat fluxes and available energy grouped by 
land cover type and climate zone, respectively. The daytime EBR values calculated from 
the pooled data were similar across land cover types (ranging from 0.79 to 0.87) and 
climate zones (ranging from 0.77 to 0.85). The slopes and intercepts of the regression 
lines ranged from 0.67 to 0.80 and −0.01 to 0.67 mm day−1, respectively, across land 
cover types and from 0.72 to 0.81 and 0.00 to 0.69 mm day−1, respectively, across 
climate zones. The coefficient of determination (R2) ranged from 0.64 and 0.82 across 
land cover types and from 0.59 and 0.82 across climate zones. 

 

Figure 7. Scatter plots of daytime sums of sensible heat flux (H) and evapotranspiration (ETorig) versus 
available energy (Rn−G−S; all terms in units of millimeters) for different land cover types for the eddy 
covariance sites used in the evaluation. Shown are the regression slope (value before the slash), the 
intercept (value after the slash), the coefficient of determination (R2), the energy balance ratio (EBR), 
the linear regression line (solid red line), and the 1:1 line (dashed line). 
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Figure 8. Scatter plots of daytime sums of sensible heat flux (H) and evapotranspiration (ETorig) versus 
available energy (Rn−G−S; all terms in units of millimeters) for different climate zones for the eddy 
covariance sites used in the evaluation. Shown are the regression slope (value before the slash), the 
intercept (value after the slash), the coefficient of determination (R2), the energy balance ratio (EBR), 
the linear regression line (solid red line), and the 1:1 line (dashed line). 

3.1.2 Evaluation of ET products by land cover type 

Figures 9 and S1 show scatter plots comparing eddy covariance-based and remote 
sensing-based ET by land cover type for each of the evaluated products for ETorig and 
ETebc, respectively. First, the results for ETorig will be examined. Although the scatter 
plots and the regression results for MOD16 C5 and MOD16 C6 show some differences, 
these were generally smaller than the differences with the other products (see also 
below). Hence, from now on the two collections will be referred to as MOD16. When 
necessary, a distinction will be made between the two. Overall, GLEAM ET showed the 
best agreement with ETorig. This follows from the results of the regression analysis (i.e., 
slope closer to 1, intercept closer to 0, higher R2) and can be observed visually as a 
narrower distribution of data points around the 1:1 line. For DBF and SAV, the 
correlations between GLEAM ET and ETorig were strong (R2 of 0.81 and 0.73, 
respectively). A weak correlation was observed for EBF (R2 = 0.32). The agreement 
with ETorig was generally poorer for MOD16 and ALEXI. Neither of these products 
consistently outperformed the other. The scatter plots show a clear overestimation of 
ETorig by MOD16 for ENF and a clear underestimation for SAV. Although both products 
showed weaker correlations with ETorig than GLEAM, this was most pronounced for 
ALEXI. Also MOD16 and ALEXI had the strongest correlations for DBF and SAV and the 
weakest for EBF. When evaluating the products with ETebc, the regression slopes and 
intercepts increased, while changes in R2 were generally small (Figure S1). 
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Figure 9. Unadjusted eddy covariance ET observations (ETorig) versus remote sensing-based ET for each 
land cover type for each of the evaluated products. Shown are the regression slope (value before the 
slash), the intercept (value after the slash), the coefficient of determination (R2), the linear regression 
line (solid red line), and the 1:1 line (dashed line).  

Figure 10 shows the mean R2, RMSE, and PBIAS by land cover type for each of the 
evaluated products for ETorig and ETebc. Again, the results for ETorig will be examined 
first. As already observed in Figure 9, the mean performance statistics show that the 
differences between MOD16 C5 and MOD16 C6 are generally smaller than the 
differences with the other products. One exception is ENF; this group, however, 
included a relatively small number of sites and site years (Table 3), which may have 
affected the comparisons. Figure 10 confirms the superior performance of GLEAM. 
Overall, GLEAM had the strongest correlations, the lowest RMSEs, and the smallest 
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PBIAS values. In agreement with the graphical analysis, neither MOD16 nor ALEXI was 
second best over all land covers. Both GLEAM and MOD16 tended to overestimate ETorig 
for forest vegetation and underestimate ETorig for non-forest vegetation; however, 
biases were smaller for GLEAM. ALEXI tended to overestimate ETorig for all land cover 
types. The variation in PBIAS across land cover types was smaller for GLEAM and ALEXI 
than for MOD16. As seen in the scatter plots, ALEXI had the weakest correlations with 
ETorig. All ET products had the strongest correlations for DBF and SAV and the weakest 
for EBF. 

 

Figure 10. Mean performance statistics (R2, RMSE, PBIAS) by land cover type for each of the evaluated 
products for the unadjusted eddy covariance ET observations (ETorig) and those corrected for the lack of 
energy balance closure (ETebc).  

As expected, PBIAS shifted to more negative values when the products were evaluated 
with ETebc (Figure 10). Depending on whether PBIAS decreased or increased, the 
corresponding RMSE became smaller or larger (although not for all products; see 
below). The use of ETebc generally had little effect on the correlations (as also seen in 
the scatter plots). For GLEAM, PBIAS values were negative for all land cover types when 
using ETebc and were generally greater in absolute terms than when using ETorig. As a 
result, the RMSEs were larger (and closer to those of the other products) when using 
ETebc than when using ETorig. For MOD16, PBIAS values were also negative for most land 
cover types when using ETebc. The corresponding RMSEs were either somewhat larger 
(e.g., SAV, GRA) or smaller (e.g., EBF, ENF) than when using ETorig. In the case of ALEXI, 
PBIAS values decreased for all land cover types except SAV. However, only in the case 
of EBF this was accompanied by a decrease in RMSE. For ENF, DBF and GRA, the RMSE 
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actually increased. A partial explanation for this is the tendency of ALEXI to 
overestimate low ETebc and underestimate high ETebc (DBF, GRA; Figure S1). 

Figure 11 shows the IPE scores for the different ET products by land cover type as 
obtained using ETorig or ETebc for evaluation. The IPE scores confirm that GLEAM ET 
best matched ETorig across all land cover types. The IPE scores also support the earlier 
observations that: i) the differences in performance between the two MOD16 
collections were generally smaller than the differences with the other products; and ii) 
neither MOD16 nor ALEXI consistently outperformed the other. Figure 11 shows that 
the IPE values of the products converged when using ETebc for evaluation. This largely 
reflects the changes in PBIAS and RMSE mentioned above. When using ETebc there is no 
product that stands out in terms of both small PBIAS and high R2 across all land cover 
types. 

 

Figure 11. Heat maps of the Ideal Point Error (IPE) for each of the evaluated products for each of the 
comparisons by land cover type and climate zone for the unadjusted eddy covariance ET observations 
(ETorig) and those corrected for the lack of energy balance closure (ETebc). The IPE values are shown on 
the plot. The lower the IPE, the better the relative performance of the product. Blue/red colors indicate 
best/worst IPE scores. The asterisks in the heatmap for ETorig indicate where the ranking of a product 
differed from that based on the IPE scores for the common reference dataset (Figure S3; Section 2.1.2.4). 
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Figure 12. Average monthly ET for the four ET products together with the average monthly unadjusted 
ET observations (ETorig) and those corrected for the lack of energy balance closure (ETebc) for different 
land cover types in the northern and southern hemispheres. Curves were calculated using the common 
reference dataset. Only land cover-hemisphere combinations for which data from at least two sites were 
available are shown. The number of sites in each land cover-hemisphere combination is given between 
parentheses. The error band represents the standard deviation of the mean monthly ETorig at the different 
sites. 

Figure 12 compares the seasonal trends in ET from the products with those from the 
observations by land cover type by hemisphere. Note that these curves were calculated 
using the common reference dataset. Only curves calculated with data from at least two 
sites are shown. Clear differences in the seasonality and timing of rainfall can be 
observed. In both hemispheres, ET of EBF was characterized by weak seasonality, with 
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constant high values throughout the year. Yet, MOD16 C5 seemed to capture the small 
variations in ET quite well. This was also the case for GLEAM, except during the wet 
season in the southern hemisphere when it showed a strong positive bias. A closer look 
at the data showed that this involved the two Brazilian rainforests (Table 2; Figure 1). 
Similarly, ALEXI had a strong positive bias at the end of the dry season in the southern 
hemisphere. This could be traced mainly to EBF in northeastern Australia (Table 2; 
Figure 1). For ENF, all products seemed to represent the observed seasonal trend in ET 
fairly well. For DBF, GLEAM closely followed the observed seasonal trend in ET. MOD16 
had a negative bias during the dry season. Conversely, ALEXI had a positive bias during 
the transition from the wet to dry season. For SAV and GRA, both GLEAM and MOD16 
had a strong negative bias during the dry season. Conversely, ALEXI seemed to have a 
positive bias during the dry period in these cover types. 

3.1.3 Evaluation of ET products by climate zone 

The performance of the ET products was also examined across four main climate zones 
(Table 3). For each climate zone, an average evaporative fraction (EF) was calculated 
from the site-specific values in Table 2, yielding (ranked from wet to dry): 0.73 ± 0.04 
(SD) for Af, Am (tropical wet); 0.60 ± 0.10 for C (mild temperate); 0.50 ± 0.11 for Aw 
(tropical savanna); and 0.35 ± 0.11 for B (dry). The tropical wet climate zone included 
mainly EBF sites (seven in total; Table 3). The mild temperate climate zone included all 
ENF sites and for the rest mainly EBF sites. The savanna and dry climate zones included 
mostly SAV, DBF, and GRA sites. The results of this analysis were presented in the same 
way as in the previous section, i.e., scatter plots (Figures 13 and S2), average 
performance statistics (R2, RMSE, PBIAS; Figure 14), heatmaps of IPE scores (Figure 
11), and average seasonal trends in ET (Figure 15). 

The comparisons by climate zone confirmed many of the findings in the previous 
section. Again, the differences in performance between the two MOD16 ET collections 
were usually smaller than the differences with the other products (Figures 13 and 14). 
Furthermore, the performance and ranking of the products depended on whether ETorig 
or ETebc was used for evaluation. When using ETorig, GLEAM again showed the strongest 
correlations and best agreement (i.e., closeness to observations) (Figures 13 and 14). 
As a result, GLEAM had the smallest RMSEs and best IPE scores across all climate zones 
(Figures 14 and 11, respectively). Again, neither MOD16 nor ALEXI performed 
consistently better than the other. That is, MOD16 showed better agreement with ETorig 
for the Aw climate zone, whereas ALEXI gave better results for the B and C climate zones 
(as summarized by the IPE scores in Figure 11). Finally, there was no clear ranking 
among the products when ETebc was used for evaluation (Figure 11). This mainly 
reflected the underestimation of GLEAM ET with respect to ETebc, leading to higher (i.e., 
more negative) PBIAS values and larger RMSEs than when using ETorig (Figure 14). For 
MOD16, PBIAS and RMSE values both decreased (e.g., C climate zone) and increased 
(Aw climate zone). For ALEXI, PBIAS decreased to values close to zero (C, Aw, B); 
however, instead of decreasing, the corresponding RMSEs increased. The use of ETebc 
generally had little effect on the correlations (Figures 13, S2, and 14). 
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Figure 13. Unadjusted eddy covariance ET observations (ETorig) versus remote sensing-based ET for each 
climate zone for each of the evaluated products. Shown are the regression slope (value before the slash), 
the intercept (value after the slash), the coefficient of determination (R2), the linear regression line (solid 
red line), and the 1:1 line (dashed line). 

All products had the weakest correlations in the wet tropical climate zone and the 
strongest in the tropical savanna and dry climate zones (Figure 14). This is consistent 
with the results in Section 3.1.2 (weakest correlations for EBF and strongest 
correlations for SAV and DBF). Overall, ALEXI had again the weakest correlations. The 
biases of MOD16 ET varied markedly across climate zones (Figure 14). When compared 
with ETorig, MOD16 tended to overestimate ET in the wet tropical and mild temperate 
climate zones and underestimate ET in the dry climate zone. This result is consistent 
with the positive biases observed in Figure 10 for forest vegetation (dominating the 
wet tropical and mild temperate climate zones) and the negative biases for non-forest 
vegetation (dominating the dry climate zone). Biases in GLEAM showed the same 
tendency but were generally much smaller in size. For ALEXI, the bias with respect to 
ETorig was practically zero in the wet tropical climate zone but positive in the other 
climate zones. 
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Figure 14. Mean performance statistics (R2, RMSE, PBIAS) by climate zone for each of the evaluated 
products for the unadjusted eddy covariance ET observations (ETorig) and those corrected for the lack of 
energy balance closure (ETebc). 

The seasonal trend analysis (Figure 15) revealed the same patterns as found earlier in 
Section 3.1.2, again reflecting the close correspondence between climate and 
vegetation. For the tropical wet climate zone, MOD16 C5 ET closely followed the 
observed seasonal changes in ET. This was also the case for GLEAM, except for the 
positive bias during the wet season in the southern hemisphere (traced back mainly to 
the Brazilian rainforests; Section 3.1.2). The positive bias of ALEXI ET at the end of the 
dry season in the southern hemisphere can also be observed again (traced back mainly 
to EBF in northeastern Australia; Section 3.1.2). In addition, ALEXI ET showed large, 
seemingly erratic, variations in the northern hemisphere. For the mild temperate 
climate zone, all products represented the observed seasonal trend in ET fairly well. For 
the tropical savanna climate, both MOD16 and GLEAM had a strong negative bias during 
the dry season, which was also observed in the plots for GRA and SAV in Figure 12. The 
positive bias for ALEXI during the dry period can also be observed again. For the dry 
climate zone, GLEAM ET closely followed the observed seasonal trend in ET. ALEXI had 
again a positive bias during the dry period. MOD16 had a strong negative bias during 
the wet season in the southern hemisphere. 
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Figure 15. Average monthly ET for the four ET products together with the average monthly unadjusted 
ET observations (ETorig) and those corrected for the lack of energy balance closure (ETebc) for different 
climate zones in the northern and southern hemispheres. Curves were calculated using the common 
reference dataset. Only climate zone-hemisphere combinations for which data from at least two sites 
were available are shown. The number of sites in each climate zone-hemisphere combination is given 
between parentheses. The error band represents the standard deviation of the mean monthly ETorig at 
the different sites.  
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3.1.4 Sensitivity to the choice of reference dataset 

The IPE scores based on the common reference dataset (Figure S3) show similar results 
to those obtained using all data (Figure 11, ETorig). For both the comparisons by land 
cover type and climate zone, GLEAM ET generally showed the best agreement with 
ETorig. Furthermore, the differences among the two MOD16 collections and ALEXI were 
generally too small to identify a second best performing product. Differences in ranking 
results between the two approaches were observed only for MOD16 and ALEXI (Figure 
11). 

3.1.5 Product performance versus VMI 

Figure 16 shows binned scatter plots between the performance metrics (R2, RMSE, 
PBIAS) and the vegetation match index for the different products. In addition, the 
regression lines and the p-values indicating the statistical significance of the regression 
slopes are shown. The VMIs for each individual site are given in Table S2. The average 
VMI was 0.77 ± 0.41 for MOD16, 0.71 ± 0.40 for ALEXI, and 0.51 ± 0.23 for GLEAM. 
These results indicate a decreasing vegetation-match between pixel and site with 
increasing pixel size, although the VMIs of GLEAM and the other products cannot be 
directly compared as they are based on different data. For none of the products there 
was an improvement in performance (i.e., increasing R2 or decreasing RMSE or PBIAS) 
with increasing VMI (Figure 16). Moreover, for none of the regressions the slope was 
statistically significant. 

 

 
 

Figure 16. Binned scatter plots between the 
performance metrics (R2, RMSE, PBIAS) and the 
vegetation match index for each of the evaluated 
products. Shown are the regression lines and 
the p-values indicating the statistical 
significance of the regression slopes. 
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3.1.6 Latitudinal comparison of product performance 

Figure 17 shows zonal averages (southern and northern low latitudes and northern 
middle latitudes) of the performance metrics grouped by forest and non-forest 
vegetation for MOD16 and GLEAM and ALEXI. The averages were calculated using 
evaluation results from this study and from the literature (Tables S2 and S3). For ALEXI, 
no data on NRMSE and PBIAS were available for the northern middle latitudes (Table 
4). Figure 17 should be interpreted with caution because the number of evaluation 
results (NER) available varied considerably among latitudinal zones, products, and 
vegetation categories (Table 4). In the case of forest vegetation, correlations (all 
products) seem to be weaker while PBIAS and NRMSE scores (MOD16 and GLEAM) 
seem to be better at low latitudes than at northern middle latitudes. Both MOD16 and 
GLEAM seem to overestimate ETorig in all latitudinal zones. In contrast, in the case of 
non-forest vegetation the performance metrics show no clear variation with latitude. 
Moreover, both MOD16 and GLEAM seem to underestimate ETorig in all latitudinal 
zones. 

 
 
Figure 17. Zonal averages (southern and northern low latitudes and northern middle latitudes) of the 
performance metrics grouped by forest and non-forest vegetation for MOD16 and GLEAM (R2, NRMSE, 
PBIAS) and ALEXI (only R2). Averages were calculated using evaluation results from this study and from 
the literature. See Section 2.1.4 for further details. 
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3.2 Utility for agricultural drought assessment 
 

3.2.1 Temporal and spatial patterns of drought indices 

Figure 18 shows maps of spring-summer averages of ESIGLEAM, ESIALEXI, ESIMODIS and 
NDVIanom in the study domain for 2003–2020. The point-based SPI data were not 
mapped. In 2005, 2009 and 2011, important reductions in ET and NDVI were observed 
in parts of the study domain. The ET products showed differences in the magnitude of 
the ET reductions and the location where they occurred. Of particular note are the 
differences for 2005, when ESIGLEAM showed much larger negative anomalies than 
ESIALEXI and ESIMODIS. From 2014 to 2018, conditions were generally wetter, as 
evidenced by the above-average ET and NDVI values. During the last two years of the 
study period, ET and NDVI were again below average across parts of the domain.  

Figure 19 shows spring-summer averages of the drought indices as calculated using the 
spatially aggregated data from the 82 selected municipalities for the period 2003–2020. 
The SPI and yield anomalies for all crops and corn are also shown. Overall, the different 
drought indices showed similar temporal patterns that largely agree with those 
observed in the maps of Fig. 6. The magnitude of the anomalies is generally small when 
averaged over all municipalities (i.e., within one standard deviation above or below the 
mean), especially in the case of SPI. The exception is the large negative anomaly of 
ESIGLEAM in 2005 (also noted in Fig. 6): while the values of the other drought indices 
were around −0.5, ESIGLEAM was almost −2. The SPI data show precipitation deficits 
that match the ET and NDVI reductions in 2005, 2009 and 2011, and above-average 
precipitation for 2014 to 2018 coinciding with the positive anomalies in ET and NDVI. 
The yield anomalies generally followed the pattern of the drought indices. The 
correlations between the YAs and the drought indices are shown later (Fig. 12, Section 
3.2.3.1). 

Figure 20 shows monthly maps of ESIGLEAM, ESIALEXI, ESIMODIS and NDVIanom in the study 
domain for the spring-summer production cycle of the 2011 drought year. All ESIs 
showed an increase in evaporative stress from April to June. ESIGLEAM and ESIALEXI 
showed a north-south gradient, with the driest conditions occurring in northern parts 
of Jalisco and the State of Mexico and in the states of Hidalgo and Tlaxcala. This gradient 
was less clear for ESIMODIS. For July and August, all ESIs indicate wetter conditions, 
except in northern parts of Jalisco. ESIGLEAM also suggests continued dry conditions in 
northern parts of the State of Mexico. Especially in July, ESIALEXI was affected by missing 
data due to cloudiness. For September, the ESIs again indicate drier conditions. 
However, while ESIALEXI values were strongly negative in most of the study domain, 
ESIGLEAM and ESIMODIS showed relatively small anomalies in the states of Hidalgo and 
Puebla. For the majority of months, ESIGLEAM showed the most negative values, 
suggesting higher evaporative stress. NDVIanom also became increasingly negative from 
April to June. Values of NDVI showed some recovery in July and August, but there were 
still regions in the study domain with large negative anomalies (western and 
northwestern parts of the State of Mexico, northern parts of Jalisco, and eastern parts 
of Tlaxcala).   
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Figure 18. Maps of spring-summer averages of ESIGLEAM, ESIALEXI, ESIMODIS and NDVIanom in the study domain for 2003–2020. 
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Figure 19. Spring-summer averages of the drought indices as calculated using aggregated data from all 
82 municipalities for the period 2003–2020. Also shown are the yield anomalies for all crops (82 
municipalities) and corn (42 municipalities). 

 
Figure 21 shows averages of the monthly values of ESIGLEAM, ESIALEXI, ESIMODIS, NDVIanom 
and SPI for all 82 municipalities during the 2011 drought year. For proper 
interpretation, anomalies during the dry months (Jan–Apr, Nov and Dec) involve small 
absolute values of precipitation, evapotranspiration and vegetation greenness (Figures 
4 and 5). Further, spatially averaging the data across all municipalities led to smaller 
values of the monthly anomalies as compared to those observed in the monthly maps 
in Fig. 8. The SPI data show two precipitation deficit events during the spring-summer 
production cycle: May and September. With SPI between −1 and −2, average drought 
conditions across the 82 municipalities can be classified as mild for these months (see 
Table 1 in Lloyd-Hughes and Saunders, 2002). The SPI data further suggest that rainfall 
was close to normal from June through August. The behavior of the ESIs and NDVIanom 
during the spring-summer production cycle was largely similar to that observed for SPI, 
except that the anomalies in ET and NDVI in response to the below-average 
precipitation in May seemed to occur one month later. ESIMODIS also shows a one-month 
delay from the September precipitation deficit. The range of values was much larger for 
the ESIs and SPI than for NDVIanom. Monthly NDVI values were below average 
throughout the year. 
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Figure 20. Monthly maps of ESIGLEAM, ESIALEXI, ESIMODIS and NDVIanom in the study domain for the spring-
summer production cycle of the 2011 drought year. 

 

 
Figure 21. Averages of the monthly values of the four drought indices (ESIGLEAM, ESIALEXI, ESIMODIS, 
NDVIanom, SPI) used in this study for all 82 municipalities during the 2011 drought year. 
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3.2.2 Temporal and spatial patterns of crop yield anomalies 

Figure 22 shows sown and harvested area, production, yield and yield anomaly for all 
crops (82 municipalities) and corn (42 municipalities) for the period 2003–2020. The 
temporal variation in the time series was similar for all crops and corn, probably 
because corn made up about 50% of crops in the all-crops category. As mentioned 
earlier in Methods, yields increased after 2011 as a result of the MasAgro program. 
Hence, YAs for 2012 to 2020 were calculated as the difference between actual yield and 
predicted yield based on a linear regression on time. Figure 22 shows that the largest 
negative YAs were observed in 2011. During this year, a large portion of the sown area 
was not harvested. The YAs for the drier-than-average years of 2005, 2009 and 2019 
(Fig. 6) did not exceed −0.5 standard deviation. The wetter period from 2014 to 2018 
generally resulted in above-average yields, except in 2018. 

Figure 23 shows a map of yield anomalies for rainfed, spring-summer crops during the 
2011 drought year in all municipalities of the six study states. Areas with large negative 
anomalies occurred west-northwest and east of Mexico City. These areas include 
several of the municipalities selected for this study. Large negative yield anomalies 
were also observed in northern parts of Jalisco. The spatial patterns in the yield 
anomalies are broadly consistent with those observed for the gridded drought indices 
(Fig. 8). 
 

 
Figure 22. Total area sown (ha), total area harvested (ha), total production (tons), yield (tons/ha) and 
yield anomalies (-) from 2003 to 2020 for all 82 municipalities (all crops) and for the 42 corn-dominated 
municipalities. 
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Figure 23. Map of yield anomalies for rainfed, spring-summer crops during the 2011 drought year in all 
municipalities of the six study states. 

 
3.2.3 Correlation analysis 
 
3.2.3.1 Temporal correlations 
 

 
Figure 24. Temporal correlations between crop yield anomalies and monthly, spring-summer and annual 
average values of the drought indices as calculated using spatially aggregated data from all 82 
municipalities (all crops) and the 42 corn-dominated municipalities for the period 2003–2020. The blue 
bars and solid lines represent statistically significant correlations (p < 0.05), while the white bars and 
dashed lines represent non-significant correlations. 

 

Figure 24 shows temporal correlations between crop yield anomalies and monthly, 
spring-summer and annual average values of the drought indices for the spatially 
aggregated data from all 82 municipalities (all crops) and the 42 corn-dominated 
municipalities for the period 2003–2020. In all cases, correlations were higher for 
spring-summer averages than for annual averages. Similarly, correlations were higher 
for individual months of the spring-summer production cycle than for the months 
before or after this period. Pre-season (January through March) correlations were 
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somewhat higher than post-season (October through December) correlations. Because 
of the above findings, only results for spring-summer averages and corresponding 
individual months were examined in more detail. 

Starting with the spring-summer averages, it can be observed that the strength of the 
correlations ranged from moderate (0.4 to 0.6) to strong (0.6 to 0.8), with little 
difference between the two crop categories. For all crops, NDVIanom and ESIMODIS showed 
the highest correlations (r = 0.71 and r = 0.70, respectively), followed by ESIALEXI (r = 
0.63), then SPI (r = 0.60) and finally ESIGLEAM (r = 0.47). Similar correlations and 
ranking of indices were observed for corn: ESIMODIS (r = 0.74), NDVIanom (r = 0.70), 
ESIALEXI (r = 0.69), SPI (r = 0.56), ESIGLEAM (r = 0.46). It was previously noted that 
ESIGLEAM showed a much larger negative anomaly for 2005 than the other drought 
indices (Figures 18 and 19, Section 3.2.1). Performing the correlation analyses for 
ESIGLEAM without the 2005 data yielded considerably higher values of r (0.59 for all 
crops and 0.63 for corn). 

Regarding correlations for individual months of the spring-summer period, the remote 
sensing-based drought index values for June generally showed the strongest 
association with the YAs. The strength of the correlations was similar (all crops) or 
lower (corn) than that observed for the spring-summer averages. For all crops, the 
remote-sensing based drought indices ranked from highest to lowest r for June as: 
ESIMODIS (r = 0.69), ESIALEXI (r = 0.68), NDVIanom (r = 0.66), ESIGLEAM (r = 0.55). For corn, 
the ranking was the same: ESIMODIS (r = 0.65), ESIALEXI (r = 0.58), NDVIanom (r = 0.51), 
ESIGLEAM (r = 0.47). Correlation coefficients for ESIGLEAM increased again when excluding 
the 2005 data: r = 0.77 for all crops and r = 0.64 for corn. For SPI, correlations peaked 
earlier (April, May) than for the ESIs and NDVIanom, but were not statistically significant.  

Figure 25 shows maps of the temporal correlations between all crops yield anomalies 
and drought indices for all municipalities except the two from Jalisco for the period 
2003–2020. Results are shown for spring-summer averages and June values of the 
drought indices because these showed the strongest correlations with the yield 
anomalies for the spatially aggregated data (Fig. 12). In general, the different drought 
indices showed a similar spatial pattern of high and low correlations. For SPI, this 
pattern was observed only for spring-summer averages; when using June values, 
correlations were generally very weak (see also Fig. 12). Municipalities with higher and 
lower correlations showed some degree of clustering. For example, clusters with higher 
correlations can be observed in eastern Tlaxcala and southern Hidalgo. A cluster with 
lower correlations can be observed in the northeastern part of the State of Mexico, 
including some adjacent municipalities in Hidalgo and Puebla. 
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Figure 25. Maps of temporal correlations (2003–2020) between crop yield anomalies and drought index 
values for June and spring-summer for 80 of the 82 municipalities (all crops) clustered around Mexico 
City. Data from the two municipalities of Jalisco were not included in this analysis to allow for visual 
distinction between municipalities. 
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3.2.3.2 Spatial correlations 
 

 
Figure 26. Spatial correlations between crop yield anomalies and monthly, spring-summer and annual 
average values of the drought indices for all 82 municipalities (all crops) and the 42 corn-dominated 
municipalities during the 2011 drought year. The blue bars and solid lines represent statistically 
significant correlations (p < 0.05), while the white bars and dashed lines represent non-significant 
correlations. 

 
Figure 26 shows spatial correlations between 2011 crop yield anomalies and drought 
indices for all 82 municipalities (all crops) and the 42 corn-dominated municipalities. 
The correlations were calculated for the monthly, spring-summer and annual average 
values of the drought indices. Spatial correlations were much lower than the temporal 
correlations in Fig. 12. Except for ESIALEXI and NDVIanom, most correlations were not 
statistically significant. Both ESIALEXI and NDVIanom showed somewhat higher 
correlations for corn than for all crops. Unlike the temporal correlations, there was no 
specific month for which the correlations were stronger. 
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4. Discussion 

4.1. The effect of the energy balance closure problem on product evaluation results 

The average energy balance ratio for the 40 sites in this study (0.83) is nearly identical 
to that reported by Stoy et al. (2013) for 173, mainly mid-latitude, FLUXNET sites 
(0.84). When grouped by land cover type or climate zone, the ranges of EBR values were 
fairly small (0.79–0.87 or 0.77–0.85, respectively). A greater range was observed for 
the 173 FLUXNET sites grouped by land cover type (0.70–0.94; Table 2 in Stoy et al., 
2013). 

As mentioned in Section 1.1, the reasons for the energy balance closure problem and 
the extent to which it affects the ET fluxes are not yet clear. Despite being long 
recognized, the effect of the energy balance closure problem on the evaluation results 
of remote sensing-based ET products has rarely been examined (Michel et al., 2016; 
Melton et al., 2021). This study found that the performance and ranking of the evaluated 
products depended on whether the unadjusted or the energy balance closure corrected 
ET fluxes were used. When using ETorig, GLEAM showed the best overall performance 
with the strongest correlations and smallest biases. However, when using ETebc, none 
of the products was superior to the others. Not surprisingly, the use of ETebc instead of 
ETorig affected the product biases more than the correlations. Overall, MOD16 and 
GLEAM underestimated ET compared to ETebc. For ALEXI, PBIAS decreased when using 
ETebc instead of ETorig, but the corresponding RMSEs tended to increase rather than 
decrease. For most SEB approaches used in the OpenET project, cumulative totals of ET 
over the growing season or water year also agreed better with ETebc than with ETorig 
(Melton et al., 2021). 

Both MOD16 and GLEAM include parameters that were calibrated using field 
observations of ET. MOD16 was calibrated using ET obtained from eddy covariance-
based estimates of water use efficiency (WUE) and MODIS-based gross primary 
production (GPP), with WUE being calculated as the ratio between GPP and ET fluxes 
not corrected for energy balance closure (Mu et al., 2011). The use of ETorig could 
possibly explain the negative bias of MOD16 with respect to ETebc (Michel et al., 2016). 
However, the GPP fluxes may have been underestimated for the same reason as ETorig 
(Foken et al., 2011). In that case, the estimated WUE would not (or only partly) be 
affected. In GLEAM, fixed values are used for the Priestley-Taylor coefficient for short 
(α = 1.26) and tall (α = 0.97) vegetation (Martens et al., 2017). These values are 
averages of α values published in the literature, which in turn were obtained by 
comparing field measurements of ET under well-watered conditions with potential ET. 
Some of the α values were derived with ETorig, but others were obtained using ET 
estimates based on other methods, such as the weighing lysimeter and Bowen ratio 
energy balance techniques (see references cited in Martens et al., 2017). Hence, also the 
negative bias error of GLEAM with respect to ETebc cannot be directly linked to 
calibration with ETorig. ALEXI ET had smaller PBIAS when using ETebc than when using 
ETorig. In contrast to the other models, ALEXI is not calibrated with field data. However, 
no conclusions can be drawn from this observation without a better understanding of 
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the effect of the energy balance closure problem on ETorig. In addition, the RMSEs of 
ALEXI tended to increase rather than decrease when using ETebc.  
The literature review showed that most studies evaluated the products using ETorig 
(Table S3). It is recommended to use both ETorig and ETebc as long as the effect of the 
energy balance closure problem on ETorig is not clear.  The remainder of the discussion 
will focus on the results obtained with ETorig to facilitate comparisons with the 
literature. 
 
4.2. Relative performance of the evaluated products 

Similar results were obtained when grouping the data by land cover type or climate 
zone, showing the close relationship between the two (see, for example, Cui et al., 
2021). Therefore, the results of these two analyses will be discussed together and 
interchangeably. As explained in Section 1.1, a distinction should be made between 
product and model evaluation studies. The former evaluate the published ET products 
while the latter evaluate the performance of the underlying models using a common 
input dataset. Because modeled ET is sensitive to the input data, the results of the model 
evaluation studies do not necessarily apply to the final ET products (see Section 1.1 for 
references). 

Overall, GLEAM had the best performance across different land cover types and climate 
zones in the low latitudes; neither MOD16 nor ALEXI could be identified as the second 
best performing product. These results were obtained regardless of whether the 
comparisons were made using all data or a common reference dataset. There are very 
few product evaluation studies that have compared the performance of the products 
assessed in this study. Khan et al. (2018, 2020) compared the performance of GLEAM 
and MOD16 at nine and five eddy covariance sites, respectively; in both studies, about 
one third of sites were located in the low latitudes and about two thirds in the middle 
latitudes (see also Table S3). Khan et al. (2018) used ETorig to evaluate the products, 
while Khan et al. (2020) used ETebc. Consistent with the results of this study, Khan et al. 
(2018) found that GLEAM generally corresponded better with ETorig than MOD16. Also 
when using ETebc, Khan et al. (2020) found that GLEAM outperformed MOD16 (as 
opposed to this study where differences were small when using ETebc). In the absence 
of other comparative studies, the compilation of product evaluation results for the 
latitudinal analysis (Figure 17, Table S3) allows for an indirect comparison of product 
performance. Focusing only on the results for the northern middle latitudes (to exclude 
the evaluation data from this study), the overall better match of GLEAM with ETorig as 
compared to MOD16 is also evident from the studies included in this analysis (see Table 
S3 for references). The stronger correlations of GLEAM as compared to ALEXI are also 
noticeable when comparing the R2 values from studies that evaluated these products 
separately. 

An overall better performance of GLEAM as compared to MOD16 was also observed in 
the model evaluation studies by McCabe et al. (2016) and Michel et al. (2016). GLEAM 
also performed better than the surface energy balance approach evaluated in these 
studies (i.e., the SEBS model of Su, 2002). Similarly, Vinukollu et al. (2011a) obtained 
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better performance results for a Priestley-Taylor approach developed by NASA’s Jet 
Propulsion Laboratory (PT-JPL; Fisher et al., 2008) than for MOD16 and SEBS. 
However, all these studies concluded that no single model was superior in all cases. The 
same conclusion was reached in a recent model evaluation study for South America 
(Melo et al., 2021). Such a conclusion is not supported by the results of this study as 
GLEAM performed better than MOD16 and ALEXI in all land cover types and climate 
zones. It is not known whether this is a feature of the low latitudes (i.e., the other studies 
focused mainly on the middle latitudes), whether it is related to the differences 
between product and model evaluation studies discussed earlier, or whether it is a 
result specific to the products studied here. 

All products had the weakest correlations in the wet tropical climate zone (dominated 
by EBF) and the strongest in the tropical savanna and dry climate zones (dominated by 
DBF and SAV). For the most part this reflects differences in seasonality (i.e., the greater 
the variation in ET, the stronger the correlations; Miralles et al., 2011; Yilmaz et al., 
2014) rather than differences related to the performance of the products. ALEXI 
generally had the weakest correlations of all products. Comparing the R2 values from 
the studies used for the latitudinal analysis shows values for ALEXI between those of 
MOD16 and GLEAM (northern middle latitudes, Figure 17). Although this is an indirect 
comparison (because it involves studies that evaluated the products separately), it 
suggests that the low correlations observed in this study for ALEXI are not a general 
feature of the product. A known challenge for thermal-based approaches is the filtering 
of cloud-contaminated data and the resulting gaps between successful retrievals. 
Failure to detect cloud-contaminated data can lead to large errors in ALEXI ET 
estimates (Anderson et al., 2007a; Yilmaz et al., 2014). The uncertainty in gap-filled 
ALEXI ET can be twice as large as that in ET generated by the algorithm under clear-sky 
conditions (Anderson et al., 2007a). These cloud-related problems could be responsible 
for the weak correlations of ALEXI, but that still does not explain the difference with the 
northern middle latitudes where the data are also affected by clouds. A possible 
approach to solving these problems is to use cloud-tolerant microwave-based land 
surface temperature in ALEXI (Holmes et al., 2018). Finally, Holmes et al. (2018) found 
that averaging 0.05° ALEXI ET estimates to 0.25° spatial resolution generally improved 
correlations with flux tower data. They attributed this to the presence of noise in the 
MODIS land surface temperature data that outweighed the benefits of the higher 
resolution compared to a 0.25° average. However, the overall effect reported in that 
study is too small to explain the differences in correlation with the other products 
observed here. More work is needed to understand the reasons for the low correlations 
of ALEXI observed at the low-latitude sites studied here. 

Both MOD16 and GLEAM had a positive bias for forest vegetation and a negative bias 
for non-forest vegetation. No such land cover type-dependent biases were observed for 
ALEXI. The biases of MOD16 and GLEAM are also evident from the evaluation results of 
other studies (northern middle latitudes, Figure 17). Both Kun Zhang et al. (2019) and 
Brust et al. (2021) showed that the biases in MOD16 can be significantly reduced when 
calibrating the algorithm with more and a greater diversity of sites than used in the 
original calibration. Brust et al. (2021) found that the accuracy of MOD16 can also be 
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improved by including the effect of soil moisture on ET. Although the apparent 
vegetation type-dependent biases were less pronounced in GLEAM, more work is 
needed to understand the causes. In a model evaluation study, Miralles et al. (2016) 
found the opposite pattern, i.e., MOD16 and GLEAM underestimated ET (determined 
from rainfall and streamflow data) in wet regions (dominated by forest vegetation) and 
overestimated ET in dry regions (dominated by non-forest vegetation types). A similar 
pattern was observed in the model evaluation study by Michel et al. (2016) (using ETorig 
as reference data). In the model evaluation study for South America, GLEAM 
underestimated ET in both wet and dry regions (Melo et al., 2021). The biases of 
MOD16 were small in that study. This shows again that the results of model evaluation 
studies do not necessarily apply to the actual ET products. 

None of the products were able to correctly represent the seasonal trend in ET in all 
land cover types and climate zones. Detailed analyses such as this one can help identify 
the causes of the biases discussed above. For example, the negative biases of MOD16 
and GLEAM in GRA and SAV seemed to occur mainly during the dry season. This may 
indicate an overestimation of the effect of water stress on ET. In contrast, ALEXI seemed 
to overestimate ET during the dry season. In some cases, the differences between the 
product-based and the observed trends could be traced to individual sites. The 
overestimation of ET of Brazilian rainforest by GLEAM during the wet season was also 
observed by Chen et al. (2022). These authors suggested the lack of an atmospheric 
moisture control on transpiration as a possible cause of this overestimation. It is likely 
that the erratic variation observed in the ALEXI data for the tropical wet sites was 
caused by the cloud-related problems discussed above. However, to correctly identify 
possible seasonal biases, a more comprehensive analysis that includes more sites and 
site years is needed. 

The results showed that the differences between the MOD16 C5 and C6 products were 
generally smaller than the differences with the other products. Differences between C5 
and C6 were to be expected because of differences in input data and spatial resolutions 
(Mu et al., 2013; Running et al., 2019). The differences persisted when using the 
common reference dataset (Figure S3). Future work can focus on quantifying the level 
of consistency between these two collections. 

4.3. Latitudinal comparison of product performance 

The literature review revealed that remote sensing-based ET products have been 
evaluated primarily in the northern middle latitudes. The bias is the result of 
geographic differences in the availability of eddy covariance data due to uneven 
distribution of flux towers (see, for example, Schimel et al., 2015) and regional 
differences in data sharing (Villareal and Vargas, 2021). With the results of this study, 
the availability of evaluation data for the low latitudes was significantly improved. This 
allowed a comparison of product performance across latitudes. The results of this 
analysis should be interpreted with caution, however, because the number of 
evaluation results available varied considerably among latitudes, products, and 
vegetation categories (Table 4). 
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Smaller normalized RMSEs and smaller PBIAS values suggest better performance of 
MOD16 and GLEAM for low-latitude forests than for northern mid-latitude forests. The 
weaker correlations at low latitudes are thought to be the result of differences in 
seasonality rather than differences in performance (see below). The similarity between 
the latitudinal trends in NRMSE and PBIAS of MOD16 and GLEAM is striking 
considering the different approaches, forcing data, and resolutions of the underlying 
models. More work is needed to understand the causes of the apparent latitudinal 
dependence of these products. In the case of non-forest vegetation, none of the 
performance metrics showed a clear trend with latitude. Noteworthy is that both 
MOD16 and GLEAM seem to overestimate ET of forest vegetation and underestimate 
ET of non-forest vegetation in all latitudinal bands (see also discussion above). 

A limitation of the current analysis is that regional differences were not detected 
because of the broad zonal bands used. For example, NRMSEs were considerably larger 
for seasonally dry DBF (0.36 and 0.84 for GLEAM and MOD16, respectively; data not 
shown) than for wet tropical EBF (0.27 and 0.46, respectively). Similarly, Vinukollu et 
al. (2011b) and Miralles et al. (2016) found higher relative uncertainties for the 
subtropics than for the tropics. In these studies, relative uncertainty was estimated 
from the spread between different model outputs. 

The weaker correlations for low-latitude forests are most likely explained by the small 
seasonal variation in ET of EBF. The seasonal variation in ET of temperate forests is 
much greater due to stronger seasonal variations in radiation and temperature 
(Baldocchi and Ryu, 2011). Again, however, differences among forests in the low 
latitudes were large. For example, the R2 values for DBF were about twice as high as 
those for EBF (Figure 10). There were no clear latitudinal differences in R2 for non-
forest vegetation. At low latitudes, non-forest vegetation occurs mainly in regions with 
high seasonality of rainfall (e.g., savanna regions) and thus large variations in ET. 
Likewise, temperate non-forest vegetation types such as grass and crops show large 
variations in ET due to seasonal variation in radiation and temperature (e.g., Monteith 
and Moss, 1977). 

4.4. Product performance versus vegetation-match between pixel and site 

The linear regression analyses across all 40 sites showed that there was no relationship 
between the product evaluation results and the vegetation-match between pixel and 
site. Indirect evidence for this was also provided by the finding that the product with 
the largest pixel size and the lowest average VMI (GLEAM) performed best overall. 
Similar results were obtained by Hobeichi et al. (2018) and Jiménez et al. (2018). 
Hobeichi et al. (2018) investigated the effect of a vegetation mismatch between pixel 
and site on the performance of a merged ET product. For this they divided the eddy 
covariance sites in two groups, those for which the IGBP land cover type was the same 
as that of the pixel and those for which it was not. They used MODIS land cover data at 
the same spatial resolution (0.5°) as the merged ET product. No clear differences in the 
performance of the product were observed between the two groups of sites. Jiménez et 
al. (2018) investigated the effect of a vegetation mismatch between pixel and site on 
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the performance of the GLEAM, PT-JPL, and MOD16 algorithms. The models were run 
with a common input dataset at a spatial resolution of 0.25°. For all three models a 
single vegetation match index was used (called homogeneity index). This index was 
calculated using MODIS IGBP land cover data (MCD12Q1) and MODIS vegetation cover 
data (MOD44B). Also in their study, no significant relationships were found between 
model performance and the homogeneity index. A challenge is to correctly define the 
vegetation match index (Hobeichi et al., 2018). In this study, only two vegetation 
categories were considered (forest and non-forest vegetation), as the land cover type-
dependent parameters in MOD16 and ALEXI can be broadly grouped into these two 
categories (and GLEAM only distinguishes between these two categories). In the other 
studies, a match was only obtained if the specific IGBP land cover type corresponded. 
This may be too stringent if the parameters are similar among certain cover types. 
Understanding the sensitivity of the model outputs to the land cover type-specific 
parametrizations can help determine which of these approaches is more adequate. 
Nevertheless, the results obtained so far suggest that errors other than those caused by 
a vegetation mismatch between pixel and site are more important (Jiménez et al., 
2018). 

4.5 Performance of the evaluated drought indices 

The performance of the drought indices as indicators of agricultural drought was 
evaluated by examining temporal correlations with crop yield anomalies in central 
Mexico for 2003–2020. Agriculture in this region is dominated by rainfed crops, which 
are frequently affected by drought (Liverman, 1999). The highest correlations for all 
crops and corn were in the range r = 0.65 to r = 0.71, suggesting indeed a substantial 
moisture constraint on crop growth. Overall, the remote sensing-based indices 
outperformed SPI calculated from the network of rain gauges of the National Weather 
Service. Of the remote sensing-based indices, the ET anomaly indices generally 
performed similarly or slightly better than the NDVI anomaly index. With regard to the 
relative performance of the ET-based indices, ESIMODIS performed slightly better than 
ESIALEXI. The correlation results for ESIGLEAM were affected by large negative anomalies 
in 2005 observed only for this index. Performing the correlation analyses without the 
2005 data yielded performance results similar to those of the other ESIs. 

The results of this study support the growing evidence that ESI has added value as an 
indicator of agricultural drought. For example, Anderson et al. (2016a) showed that 
ESIALEXI generally correlated better with crop yield anomalies in Brazil than anomalies 
in remotely sensed LAI (MODIS) and rainfall (TRMM). Anderson et al. (2016b) reported 
strong to very strong correlations (r = 0.7–0.8) between ESIALEXI and yield anomalies 
for crops growing under moisture-limited conditions in the Czech Republic. Mladenova 
et al. (2017) found better correlations with corn and soybean yields in central and 
eastern US for ESIALEXI than for two vegetation indices calculated from MODIS data 
(NDVI, EVI). However, not all studies confirm the good performance of ESI in detecting 
agricultural drought. For example, Anghileri et al. (2022) found stronger correlations 
with rainfed maize yields in Malawi for indices based on precipitation (CHIRPS) and 
vegetation indices calculated from MODIS data (NDVI, ESI) than for ESIALEXI. 
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To my knowledge, this is the first study comparing the performance of ESIs based on 
different remote sensing ET datasets. Moreover, most studies so far have focused on 
ESIALEXI (Anderson et al., 2016a, b; Mladenova et al., 2017; Anghileri et al., 2022; 
Potopová et al., 2023). Very few studies have investigated the potential of ESIs based 
on other remote sensing ET datasets (Ghazaryan et al., 2020; Tadesse et al., 2015). In 
this study, ESIMODIS generally showed higher temporal correlations with crop yield 
anomalies than ESIALEXI. When leaving out the 2005 data, ESIGLEAM had similar temporal 
correlations as compared to ESIALEXI. Hence, future studies should include ESIs based 
on different remote sensing ET datasets to obtain more information about their relative 
performance. 

4.6 Time of peak correlation with yield anomalies 

All remote sensing-based indices showed the highest correlation with the annual yield 
anomalies for the month of June. The time of peak correlation often coincides with crop 
growth stages when moisture stress has the largest impact on seasonal yields 
(Anderson et al., 2016a, b). For corn, the beginning of the reproductive stage, about two 
months after emergence, has been identified as a critical period (Unganai and Kogan, 
1998; Mladenova et al., 2017; Yang et al., 2018). June is two months into the spring-
summer period, suggesting that the time of peak correlation observed here 
corresponds to this moisture sensitive period, at least for corn. The existence of 
maximum correlation in June shows the potential of the studied drought indices to 
provide early warning of moisture stress-induced yield reductions (Unganai and Kogan, 
1998; Anderson et al., 2016a). For this, it is important that the remote sensing data on 
which the indices are based are updated at least every month. Currently, this is only the 
case for the MODIS data. In addition, the higher spatial resolution of the MODIS data 
makes it easier to exclude pixels not dominated by crops. The above arguments and the 
fact that ESIMODIS showed the highest correlations of all ESIs warrant further 
investigation of this index. 

4.7 The 2011 drought event 

The ability of the drought indices to explain spatial patterns of crop yield anomalies 
during the 2011 drought year was found to be very low. The correlations were higher 
for ESIALEXI and NDVIanom than for the other indices. However, because of the low 
correlations it is difficult to draw conclusions about the relative performance of the 
different indices. For ESIGLEAM, an obvious explanation for the low correlations is the 
low spatial resolution, which caused different municipalities to share the same pixel. 
Another explanation for the low correlations may be that the impact of drought on yield 
depends on many other factors such as access to technological (fertilizer, improved 
seed, conservation agriculture) and economic resources, which varies by municipality 
and state (Liverman, 1990; Romero-Perezgrovas et al., 2014; Zahniser et al., 2019). In 
addition, the lack of correlation may be due to errors in the agricultural data and the 
data sources on which the drought indices are based (Liverman, 1990). These errors 
were probably lower in the spatially aggregated data used for the temporal correlation 
analysis. 
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5. Conclusions 
 
There is a geographical bias in the availability of evaluation data for remote sensing-
based ET products in favor of the northern middle latitudes. To address this bias, three 
products (GLEAM, MOD16, ALEXI) were evaluated at 40 eddy covariance sites in the 
low latitudes. From MOD16, the discontinued collection 5 (C5) and the latest collection 
(C6) were evaluated. Two potential problems need to be considered when using eddy 
covariance observations of ET as reference data. First, eddy covariance data suffer from 
uncertainties related to the energy balance closure problem. Second, scale differences 
and classification errors can lead to a mismatch in vegetation between pixel and site 
(which in turn can complicate the comparisons). Because of the geographical bias in 
evaluation studies, it is unknown whether the products perform equally well at all 
latitudes. 
 
The differences between MOD16 C5 and C6 were generally smaller than the differences 
with the other products. More work is needed, however, to determine the degree of 
consistency between the two collections. 
 
Performance and ranking of the evaluated products depended on whether or not the 
eddy covariance ET data were corrected for the lack of energy balance closure. When 
using the unadjusted fluxes (ETorig), GLEAM showed the best overall performance 
across the studied land cover types and climate zones, with the strongest correlations 
and smallest biases. Neither MOD16 nor ALEXI consistently outperformed the other. 
When using the corrected fluxes (ETebc), there was no product that stood out in terms 
of both low bias and strong correlations. 
 

The uncertainty associated with the energy balance closure problem affected the 
product biases more than the correlations. Most product evaluation studies use ETorig 
as reference data. Use of both ETorig and ETebc is recommended until a better 
understanding of the effect of the energy balance closure problem on ET is obtained. 
Few studies have compared the performance of the products examined here. However, 
a comparison of results from studies that evaluated these products separately seems to 
confirm that GLEAM generally outperforms the other products (when using ETorig as 
reference data). 
 
Latitudinal dependence of product performance was examined using the results of this 
study and those published in the literature. The comparison suggests that MOD16 and 
GLEAM perform better for low-latitude forests than for northern mid-latitude forests. 
However, regional differences, such as between the tropics and subtropics, can be large 
and were not detected because of the broad zonal bands used in this analysis. In the 
case of non-forest vegetation, the products show no clear latitudinal differences in 
performance. 
 
No relationship was found between the product evaluation results and the degree of 
match between the vegetation at the flux tower site and that detected in the model pixel. 
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More work is needed to understand the effect of a vegetation mismatch between pixel 
and site on product performance. 

As for the agricultural drought application study, correlations of standardized 
anomalies in the ratio actual ET to reference ET (ESI) calculated from three remote 
sensing-based datasets (ALEXI, MOD16, GLEAM), SPI calculated from in-situ rainfall 
data, and standardized anomalies of remotely sensed NDVI with yield anomalies for 
rainfed crops in central Mexico for 2003–2020 were examined. Overall, the ESIs and 
NDVIanom showed higher correlations than SPI, highlighting the potential of satellite 
observations for monitoring agricultural drought. The added value of ESI shown by 
other studies was confirmed by the correlation results. Research on ESI has so far 
focused mainly on ALEXI, but the good results obtained in this study for MOD16 show 
that ESIs based on other remote sensing ET datasets deserve further investigation. Peak 
correlations occurring about two months into the crop production cycle show the 
potential of the remote-sensing indices to provide early warning of drought-related 
yield losses. However, this requires timely availability of the remote sensing variables, 
which is currently only the case for the MODIS-based products. The low correlations 
found between the municipality-level yield anomalies and drought indices for the 2011 
drought year suggest the importance of other factors and possibly different degrees of 
vulnerability to drought. 

The interpretation of the results of the two research exercises of this thesis as a whole 
should be performed with caution, given the differences in methodologies and sampling 
sizes. In the evaluation based on eddy covariance measurements (uncorrected) and on 
3 statistical metrics, GLEAM highlighted with a strong performance in the low latitudes. 
ALEXI and MOD16 followed, showing similar performances among each other. In the 
agricultural drought assessment in central Mexico, however, better results were found 
for ALEXI and MOD16, based only in Pearson correlations with yield anomalies. It is not 
possible to recognize a single product as the top performer from the combination of 
results of both studies. The performance and strengths of the products varied in the 
different tests, thus showing potential for different applications. It is suggested, 
therefore, to direct efforts towards comparative research of remote sensing-based ET 
products, rather than single-product evaluations.  
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6. Appendix 

 

 
 

Figure S1. Eddy covariance ET observations corrected for the lack of energy balance closure (ETebc) 
versus remote sensing-based ET for each land cover type for each of the evaluated products. Shown are 
the regression slope (value before the slash), the intercept (value after the slash), the coefficient of 
determination (R2), the linear regression line (solid red line), and the 1:1 line (dashed line). 
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Figure S2. Eddy covariance ET observations corrected for the lack of energy balance closure (ETebc) 
versus remote sensing-based ET for each climate zone for each of the evaluated products. Shown are the 
regression slope (value before the slash), the intercept (value after the slash), the coefficient of 
determination (R2), the linear regression line (solid red line), and the 1:1 line (dashed line). 
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Figure S3. The same as in Figure 11 of the main text but now for the common reference dataset (i.e., same 

sites and same MODIS intervals for all four products).  
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Table S1. Number of eddy covariance sites and site years available in the common reference 
dataset by land cover type and climate zone. Note that the number of site years corresponds 
to the length of the flux tower records. Actual data availability was lower due to, for example, 
missing or erroneous data. 

  
 

 Sites Site years 

Land cover type EBF 7 27 

 ENF 3 6 

 DBF 4 15 

 SAV 7 33 

 GRA 7 26 

 
Climate zone 

 
Af, Am 

 
6 

 
27 

 Aw 8 37 

 C 6 11 

 B 8 32 
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Table S2. Evaluation results (R2, RMSE, PBIAS) for each of the ET products as obtained at the individual eddy covariance sites using the unadjusted 

eddy covariance ET observations (ETorig). Also shown is the vegetation match index (VMI) for each product for each site. NA is Not Available because the 

product was discontinued (MOD16 C5) or because the site was located too close to the coast (GLEAM, ALEXI; see Sections 2.1.1.2 and 2.1.1.3 for 

details). 
 

R2 RMSE (mm day−1) PBIAS (%) VMI (-) 
 

Site ID 

 

 
PDF 0.26 0.22 0.21 0.04 0.58 0.72 0.86 0.75 −7 9 12 −2 0.55 1.00 1.00 

BR-Sa1 0.04 0.20 0.35 0.38 0.94 0.90 0.94 1.60 13 21 17 45 0.54 1.00 1.00 

BR-Sa3 0.00 0.13 0.21 0.24 0.58 0.60 0.86 1.64 2 10 5 40 0.56 1.00 1.00 

CN-Din 0.59 0.43 0.44 0.65 0.88 1.21 1.21 1.03 31 55 46 42 0.30 1.00 0.77 

GF-Guy NA 0.03 0.00 0.04 NA 0.87 1.11 1.64 NA 11 5 −6 NA 1.00 1.00 

La Orduña 0.54 0.80 0.52 0.44 0.61 1.17 1.52 0.89 2 40 50 24 0.39 0.50 0.04 

Puerto Morelos NA NA 0.16 NA NA NA 0.69 NA NA NA −7 NA NA 0.00 NA 

El Sargento NA 0.15 0.09 NA NA 3.86 2.97 NA NA −99 −75 NA NA 0.00 NA 

MY-PSO 0.22 0.18 0.13 0.13 0.38 0.66 0.71 0.89 0 11 −4 5 0.44 1.00 0.73 

Cape Tribulation 0.54 0.32 0.22 NA 0.88 1.44 1.78 NA 14 35 42 NA 0.71 1.00 NA 

Cow Bay 0.41 0.05 0.04 NA 1.37 1.93 2.20 NA 36 55 65 NA 0.70 1.00 NA 

Robson Creek 0.36 0.02 0.18 0.00 0.78 2.14 1.96 1.45 5 47 55 31 0.49 1.00 0.98 

CLM 0.36 0.70 0.50 0.42 1.17 1.85 1.41 1.22 47 96 66 39 0.72 1.00 1.00 

AR-Vir 0.79 0.26 0.46 0.56 0.71 1.84 1.36 0.96 −13 26 19 −15 0.23 1.00 0.37 

CN-Qia 0.86 0.83 0.70 0.58 0.62 1.03 0.72 1.12 15 35 2 30 0.39 0.50 0.15 

Atopixco 0.22 NA 0.08 0.20 1.09 NA 1.17 0.90 −2 NA 24 16 0.32 1.00 0.49 

Álamos 0.78 NA 0.86 0.47 0.78 NA 1.73 1.18 0 NA 34 0 0.13 0.00 0.01 

Chamela NA 0.46 0.63 0.43 NA 1.80 1.12 2.02 NA 136 66 151 NA 1.00 0.92 

Sierra Los Locos 0.82 NA 0.85 0.79 0.57 NA 0.71 0.57 2 NA −33 5 0.11 0.00 0.00 

El Palmar NA NA 0.52 0.67 NA NA 1.13 0.95 NA NA 3 −6 NA 1.00 0.58 

Rayón 0.83 0.83 0.84 0.67 0.53 0.77 0.75 0.73 −4 −38 −39 12 0.10 0.00 0.00 

Tesopaco 0.87 0.74 0.77 0.70 0.59 1.39 1.19 0.89 19 27 17 46 0.17 0.00 0.00 

PA-SPn 0.04 0.53 0.50 0.01 0.90 0.92 0.76 1.92 2 −23 −13 −36 0.42 0.00 0.10 

ZM-Mon 0.80 0.64 0.68 0.40 0.46 1.10 0.65 1.21 −5 −49 −10 50 0.07 0.00 0.00 

AU-ASM 0.88 0.52 0.59 0.63 0.30 0.77 0.69 0.58 11 −56 −43 41 0.57 1.00 1.00 
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AU-Ade 0.79 0.79 0.59 0.65 0.89 1.30 1.69 1.07 −19 −36 −45 −18 0.85 1.00 1.00 

AU-DaS 0.84 0.72 0.67 0.48 0.78 0.96 1.03 0.95 −13 −28 −29 10 0.77 1.00 1.00 

AU-Dry 0.80 0.78 0.76 0.35 0.75 0.71 0.76 0.95 −15 −19 −23 2 0.76 1.00 1.00 

AU-How 0.76 0.75 0.69 0.34 0.94 1.20 1.15 1.14 −15 −29 −28 −14 0.70 1.00 1.00 

AU-RDF 0.47 0.38 0.33 0.39 1.27 1.23 1.30 1.42 24 −9 −17 46 0.80 1.00 1.00 

SD-Dem 0.83 0.72 0.63 0.62 1.16 1.51 1.75 0.98 −59 −76 −88 −23 0.50 1.00 1.00 

AU-DaP 0.88 0.78 0.71 0.51 0.62 1.07 1.14 1.32 7 17 10 26 0.78 1.00 1.00 

AU-Emr 0.50 0.31 0.18 0.05 0.84 0.64 0.68 1.00 51 8 16 52 0.60 1.00 1.00 

AU-Fog 0.02 0.04 0.13 0.12 2.87 2.84 2.72 2.13 −59 −61 −61 −41 0.72 1.00 1.00 

AU-Stp 0.83 0.71 0.74 0.70 0.56 0.87 0.91 0.70 −10 −38 −42 −4 0.68 1.00 1.00 

AU-TTE 0.89 0.54 0.39 0.38 0.44 0.75 0.74 0.64 −25 −65 −57 28 0.61 1.00 1.00 

CG-Tch NA 0.29 0.02 0.20 NA 2.00 1.19 1.80 NA 129 54 107 NA 1.00 0.70 

Ojuelos 0.87 0.58 0.64 0.70 0.58 0.93 0.96 0.66 −25 −34 −41 17 0.53 1.00 1.00 

PA-SPs 0.01 0.15 0.27 0.04 1.15 1.27 1.00 1.59 15 29 15 −32 0.52 1.00 0.90 

US-KS2 NA 0.59 0.61 0.64 NA 1.27 0.99 0.84 NA 41 28 −16 NA 0.75 0.87 
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Table S3. Evaluation results (R2, RMSE, NRMSE, PBIAS) for MOD16, GLEAM, and ALEXI from studies that used eddy covariance ET observations as 

reference data. The column labeled “EBC” indicates whether or not the eddy covariance data were corrected for the lack of energy balance closure. 

Sites were categorized into forest and non-forest vegetation based on the land cover information provided in the articles. Site IDs are as reported in 

the articles. When available, the observed (Obs) and the remote sensing-based (Prod) ET estimates are shown. All ET and RMSE values were 

converted to a common time scale (mm day−1). NA is Not Available. 

 

Study Site ID Lat. 
Vegetation 

category 
EBC 

ET 

(Obs.) 

 (mm 
day−1) 

ET (Prod.) 

(mm day-1) 
R2 

RMSE  

(mm day-1) 

NRMSE  

(-) 

PBIAS  

(%) 
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Hu et al. IT-MBo 46.02 non-forest no 1.5 NA NA NA 0.85 NA NA 0.59 NA NA 0.39 NA NA 3 NA NA  

2015 NL-Ca1 51.97 non-forest no 1.39 NA NA NA 0.9 NA NA 0.56 NA NA 0.4 NA NA 24 NA NA  

 ES-Amo 36.84 non-forest no 0.66 NA NA NA 0.08 NA NA 0.33 NA NA 0.5 NA NA 11 NA NA  

 ES-LJu 36.93 non-forest no 0.84 NA NA NA 0.18 NA NA 0.4 NA NA 0.48 NA NA −4 NA NA  

 ES-Lma 39.94 non-forest no 2.19 NA NA NA 0.61 NA NA 1.17 NA NA 0.53 NA NA −42 NA NA  

 IT-Col 41.85 forest no 1.27 NA NA NA 0.49 NA NA 1.26 NA NA 0.99 NA NA 66 NA NA  

 IT-Ro2 42.39 forest no 1.64 NA NA NA 0.77 NA NA 1.57 NA NA 0.96 NA NA 68 NA NA  

 FR-Pue 43.74 forest no 0.93 NA NA NA 0.79 NA NA 0.41 NA NA 0.44 NA NA 20 NA NA  

 CZ-BK1 49.51 forest no 0.83 NA NA NA 0.72 NA NA 0.89 NA NA 1.07 NA NA 73 NA NA  

 DE-Kli 50.89 non-forest no 1.11 NA NA NA 0.83 NA NA 0.47 NA NA 0.42 NA NA 23 NA NA  

 CH-Oe2 47.28 non-forest no 1.96 NA NA NA 0.81 NA NA 0.72 NA NA 0.37 NA NA −20 NA NA  

 BE-Bra 51.3 forest no 0.93 NA NA NA 0.88 NA NA 0.86 NA NA 0.92 NA NA 69 NA NA  

 DE-Tha 50.96 forest no 1.11 NA NA NA 0.86 NA NA 0.79 NA NA 0.71 NA NA 47 NA NA  

 IT-SRo 43.73 forest no 1.78 NA NA NA 0.2 NA NA 1.08 NA NA 0.61 NA NA 16 NA NA  

 RU-Fyo 56.46 forest no 1.03 NA NA NA 0.96 NA NA 0.34 NA NA 0.33 NA NA 25 NA NA  

                      

Kim et al. KBU 47.21 non-forest no NA NA NA NA 0.01 NA NA 0.72 NA NA NA NA NA NA NA NA  

2012 MBF 44.38 forest no NA NA NA NA 0.56 NA NA 1.32 NA NA NA NA NA NA NA NA  
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 QHB 37.6 non-forest no NA NA NA NA 0.03 NA NA 0.96 NA NA NA NA NA NA NA NA  

 SKT 48.35 forest no NA NA NA NA 0.58 NA NA 0.46 NA NA NA NA NA NA NA NA  

 TKY 36.15 forest no NA NA NA NA 0.52 NA NA 1.63 NA NA NA NA NA NA NA NA  

 TMK 42.74 forest no NA NA NA NA 0.53 NA NA 1.06 NA NA NA NA NA NA NA NA  

 TUR 64.21 forest no NA NA NA NA 0.08 NA NA 2.18 NA NA NA NA NA NA NA NA  

 BKS −0.86 forest no NA NA NA NA 0.14 NA NA 2.61 NA NA NA NA NA NA NA NA  

 GDK 37.7 forest no NA NA NA NA 0.67 NA NA 1.14 NA NA NA NA NA NA NA NA  

 HFK 34.9 non-forest no NA NA NA NA 0.3 NA NA 0.77 NA NA NA NA NA NA NA NA  

 MKL 14.5 forest no NA NA NA NA 0.17 NA NA 2.73 NA NA NA NA NA NA NA NA  

 MMF 44.32 forest no NA NA NA NA 0.31 NA NA 1.12 NA NA NA NA NA NA NA NA  

 MSE 36 non-forest no NA NA NA NA 0.27 NA NA 1.34 NA NA NA NA NA NA NA NA  

 SKR 14.49 forest no NA NA NA NA 0.07 NA NA 2.57 NA NA NA NA NA NA NA NA  

 

TSE 45 forest no NA NA NA NA 0.29 NA NA 0.55 NA NA NA NA NA NA NA NA  

YLF 62.26 forest no NA NA NA NA 0.25 NA NA 0.7 NA NA NA NA NA NA NA NA  

YPF 62.24 forest no NA NA NA NA 0.3 NA NA 0.64 NA NA NA NA NA NA NA NA  

                      

Yang et al. CBS 42.6 forest no 1.24 NA NA NA NA 0.72 NA NA 0.87 NA NA 0.7 NA NA 45 NA  

2017 HB 37.62 non-forest no 1.43 NA NA NA NA 0.67 NA NA 0.74 NA NA 0.52 NA NA −7 NA  

 NMG 44.5 non-forest no 0.8 NA NA NA NA 0.42 NA NA 0.72 NA NA 0.9 NA NA −10 NA  

 DX 30.85 non-forest no 1.5 NA NA NA NA 0.72 NA NA 0.81 NA NA 0.54 NA NA −15 NA  

 QYZ 26.73 forest no 1.86 NA NA NA NA 0.59 NA NA 0.98 NA NA 0.53 NA NA 27 NA  

 DHS 23.17 forest no 1.92 NA NA NA NA 0.38 NA NA 1.28 NA NA 0.67 NA NA 39 NA  

 XSBN 21.95 forest no 1.78 NA NA NA NA 0.16 NA NA 1.14 NA NA 0.64 NA NA 38 NA  

 YC 36.95 non-forest no 1.58 NA NA NA NA 0.46 NA NA 1.04 NA NA 0.66 NA NA 12 NA  

                      

Khan et al. BNS 21.95 forest no 2.25 3.1 2.54 NA 0.44 0.49 NA 1.58 0.9 NA 0.7 0.4 NA 38 13 NA  

2018 CMC 37.16 non-forest no 1.87 1.9 2.31 NA 0.11 0.46 NA 1.27 0.78 NA 0.68 0.42 NA 1 24 NA  

 MSE 36.05 non-forest no 1.87 1.9 2.31 NA 0.49 0.64 NA 0.84 0.75 NA 0.45 0.4 NA 1 24 NA  

 KBU 47.21 non-forest no 1.44 1.15 1.19 NA 0 0.41 NA 0.59 0.67 NA 0.41 0.47 NA −20 −17 NA  
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 QHB 37.6 non-forest no 1.44 1.15 1.19 NA 0.66 0.85 NA 1.46 1.21 NA 1.01 0.84 NA −20 −17 NA  

 PSO 2.97 forest no 2.25 3.1 2.54 NA 0.15 0.16 NA 0.73 0.49 NA 0.32 0.22 NA 38 13 NA  

 SMC 37.94 forest no 2.25 3.1 2.54 NA 0.58 0.62 NA 1.05 0.71 NA 0.47 0.31 NA 38 13 NA  

 IRI 14.2 non-forest no 1.87 1.9 2.31 NA 0 0.24 NA 1.05 1.54 NA 0.56 0.82 NA 1 24 NA  

 HBG 37.48 non-forest no 1.44 1.15 1.19 NA 0.61 0.9 NA 0.7 0.46 NA 0.49 0.32 NA −20 −17 NA  

                      

Tang et al. Yucheng 38.82 non-forest no 2.03 NA NA NA 0.56 NA NA 1.2 NA NA 0.59 NA NA −37 NA NA  

2015 Guanatao 36.51 non-forest no 1.68 NA NA NA 0.35 NA NA 1.25 NA NA 0.74 NA NA −47 NA NA  

 Daxing 39.62 non-forest no 2.03 NA NA NA 0.15 NA NA 1.25 NA NA 0.62 NA NA −43 NA NA  

 Miyun 40.63 non-forest no 1.5 NA NA NA 0.82 NA NA 0.5 NA NA 0.33 NA NA −5 NA NA  

 Arou 38.94 non-forest no 1.39 NA NA NA 0.7 NA NA 0.75 NA NA 0.54 NA NA −9 NA NA  

 Dayekou 38.53 forest no 0.67 NA NA NA 0.07 NA NA 0.8 NA NA 1.19 NA NA −13 NA NA  

 Yingke 38.85 non-forest no 2.06 NA NA NA 0.82 NA NA 1.46 NA NA 0.71 NA NA −57 NA NA  

Velpuri et al. Cropland 37 non-forest no 1.67 NA NA NA 0.7 NA NA 0.83 NA NA 0.5 NA NA −20 NA NA  

2013 Forest 37 forest no 1.53 NA NA NA 0.56 NA NA 1.1 NA NA 0.72 NA NA 13 NA NA  

 

W_Savann 

a 
37 non-forest no 1.27 NA NA NA 0.71 NA NA 0.63 NA NA 0.5 NA NA −8 NA NA  

Grassland 37 non-forest no 1.33 NA NA NA 0.41 NA NA 0.97 NA NA 0.73 NA NA −20 NA NA  

 Shrubland 37 non-forest no 1.57 NA NA NA 0.69 NA NA 1.13 NA NA 0.72 NA NA −30 NA NA  

                      

Ruhoff et al. PDG −21.60 non-forest no 2.5 3.2 NA NA 0.61 NA NA 0.78 NA NA 0.31 NA NA 22 NA NA  

2013 USE −21.00 non-forest no 2.5 2.5 NA NA 0.67 NA NA 0.46 NA NA 0.18 NA NA 1 NA NA  

                      

Ramoelo et 

al. 
Skukuza −25.00 non-forest no 1.75 NA NA NA 0.58 NA NA 0.65 NA NA 0.37 NA NA −11 NA NA  

2014 Malopeni −23.90 non-forest no 0.7 NA NA NA 0.23 NA NA 0.38 NA NA 0.54 NA NA 21 NA NA  

                      

Aguilar et al. 
2018 

Valle de 
Yaqui1 

27.28 non-forest no 2.65 2.76 NA NA 0.72 NA NA 0.68 NA NA 0.26 NA NA 4 NA NA  
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Valle de 
Yaqui 2 

22.28 non-forest no 4.01 2.65 NA NA 0.58 NA NA 1.85 NA NA 0.46 NA NA −37 NA NA  

 
Rayón 29.74 non-forest no 1.36 0.88 NA NA 0.88 NA NA 0.77 NA NA 0.57 NA NA −35 NA NA  

 
El Mogor 32 non-forest no 0.96 0.92 NA NA 0.45 NA NA 0.38 NA NA 0.4 NA NA −3 NA NA  

 
La Paz 24.1 non-forest no 0.73 0.55 NA NA 0.38 NA NA 0.4 NA NA 0.55 NA NA −25 NA NA  

 
                     

Reitz et al. Agriculture 37 non-forest no NA NA NA NA 0.16 NA NA 1.66 NA NA NA NA NA NA NA NA  

2017 Forest 37 forest no NA NA NA NA 0.33 NA NA 1.16 NA NA NA NA NA NA NA NA  

 
Shrubs 37 non-forest no NA NA NA NA 0.4 NA NA 0.87 NA NA NA NA NA NA NA NA  

 
Grass 37 non-forest no NA NA NA NA 0.62 NA NA 0.8 NA NA NA NA NA NA NA NA  

 
                     

Holmes et al. AT-Neu 47.12 forest no NA NA NA NA NA NA 0.61 NA NA 3.26 NA NA NA NA NA NA  

2018 AU-Ade −13.08 non-forest no NA NA NA NA NA NA 0.76 NA NA 7.29 NA NA NA NA NA NA  

 
AU-DaP −14.06 non-forest no NA NA NA NA NA NA 0.67 NA NA 5.39 NA NA NA NA NA NA  

 
AU-DaS −14.16 non-forest no NA NA NA NA NA NA 0.59 NA NA 4.61 NA NA NA NA NA NA  

 
AU-Dry −15.26 non-forest no NA NA NA NA NA NA 0.31 NA NA 4.6 NA NA NA NA NA NA  

 
AU-Stp −17.15 non-forest no NA NA NA NA NA NA 0.35 NA NA 5.73 NA NA NA NA NA NA  

 
AU-Tum −35.66 forest no NA NA NA NA NA NA 0.72 NA NA 3.23 NA NA NA NA NA NA  

 
AU-Wac −37.43 forest no NA NA NA NA NA NA 0.64 NA NA 2.87 NA NA NA NA NA NA  

 
AU-Wom −37.42 forest no NA NA NA NA NA NA 0.71 NA NA 4.16 NA NA NA NA NA NA  

 
BE-Bra 51.31 forest no NA NA NA NA NA NA 0.66 NA NA 2 NA NA NA NA NA NA  

 
BE-Lon 50.55 non-forest no NA NA NA NA NA NA 0.71 NA NA 2.2 NA NA NA NA NA NA  

 
BE-Vie 50.31 forest no NA NA NA NA NA NA 0.72 NA NA 1.89 NA NA NA NA NA NA  

 
CA-Qfo 49.69 forest no NA NA NA NA NA NA 0.48 NA NA 2.11 NA NA NA NA NA NA  

 
CA-SF1 54.48 forest no NA NA NA NA NA NA 0.61 NA NA 3.51 NA NA NA NA NA NA  

 
CA-SF2 54.25 forest no NA NA NA NA NA NA 0.49 NA NA 3.64 NA NA NA NA NA NA  

 
CA-SF3 54.09 forest no NA NA NA NA NA NA 0.66 NA NA 2.29 NA NA NA NA NA NA  

 
CH-Cha 47.21 NA no NA NA NA NA NA NA 0.76 NA NA 5.54 NA NA NA NA NA NA  

 
CH-Dav 46.82 forest no NA NA NA NA NA NA 0.29 NA NA 3.79 NA NA NA NA NA NA  



69  

 
CH-Fru 47.12 NA no NA NA NA NA NA NA 0.81 NA NA 3.09 NA NA NA NA NA NA  

 
CN-Du2 42.05 non-forest no NA NA NA NA NA NA 0.38 NA NA 3.54 NA NA NA NA NA NA  

 
CZ-wet 49.02 non-forest no NA NA NA NA NA NA 0.85 NA NA 1.86 NA NA NA NA NA NA  

 
DE-Geb 51.1 non-forest no NA NA NA NA NA NA 0.72 NA NA 2.21 NA NA NA NA NA NA  

 
DE-Gri 50.95 forest no NA NA NA NA NA NA 0.77 NA NA 1.74 NA NA NA NA NA NA  

 
DE-Hai 51.08 forest no NA NA NA NA NA NA 0.83 NA NA 1.86 NA NA NA NA NA NA  

 
DE-Kli 50.89 non-forest no NA NA NA NA NA NA 0.71 NA NA 2.04 NA NA NA NA NA NA  

 
DE-Lkb 49.1 forest no NA NA NA NA NA NA 0.71 NA NA 2.09 NA NA NA NA NA NA  

 
DE-Obe 50.78 forest no NA NA NA NA NA NA 0.76 NA NA 1.91 NA NA NA NA NA NA  

 
DE-Seh 50.87 non-forest no NA NA NA NA NA NA 0.71 NA NA 3.44 NA NA NA NA NA NA  

 
DE-Tha 50.96 forest no NA NA NA NA NA NA 0.74 NA NA 2 NA NA NA NA NA NA  

 
ES-LgS 37.1 non-forest no NA NA NA NA NA NA 0.71 NA NA 1.61 NA NA NA NA NA NA  

 
FI-Hyy 61.85 forest no NA NA NA NA NA NA 0.71 NA NA 1.91 NA NA NA NA NA NA  

 
FI-Sod 67.36 forest no NA NA NA NA NA NA 0.22 NA NA 3.21 NA NA NA NA NA NA  

 
FR-Gri 48.84 non-forest no NA NA NA NA NA NA 0.67 NA NA 3.09 NA NA NA NA NA NA  

 
IT-Col 41.85 forest no NA NA NA NA NA NA 0.52 NA NA 2.91 NA NA NA NA NA NA  

 
IT-Lav 45.96 forest no NA NA NA NA NA NA 0.66 NA NA 2.69 NA NA NA NA NA NA  

 
IT-MBo 46.01 non-forest no NA NA NA NA NA NA 0.67 NA NA 2.99 NA NA NA NA NA NA  

 
IT-PT1 45.2 non-forest no NA NA NA NA NA NA 0.88 NA NA 2.4 NA NA NA NA NA NA  

 
IT-Ren 46.59 forest no NA NA NA NA NA NA 0.56 NA NA 4.71 NA NA NA NA NA NA  

 
IT-Tor 45.84 forest no NA NA NA NA NA NA 0.38 NA NA 4.54 NA NA NA NA NA NA  

 
NL-Loo 52.17 forest no NA NA NA NA NA NA 0.49 NA NA 4.13 NA NA NA NA NA NA  

 
RU-Fyo 56.46 forest no NA NA NA NA NA NA 0.69 NA NA 2.5 NA NA NA NA NA NA  

 
SD-Dem 13.28 non-forest no NA NA NA NA NA NA 0.58 NA NA 5.99 NA NA NA NA NA NA  

 
US-AR1 36.43 non-forest no NA NA NA NA NA NA 0.56 NA NA 4.43 NA NA NA NA NA NA  

 
US-AR2 36.64 non-forest no NA NA NA NA NA NA 0.56 NA NA 2.89 NA NA NA NA NA NA  

 
US-ARM 36.61 non-forest no NA NA NA NA NA NA 0.52 NA NA 3.1 NA NA NA NA NA NA  

 
US-ARb 35.55 non-forest no NA NA NA NA NA NA 0.67 NA NA 4.43 NA NA NA NA NA NA  

 
US-ARc 35.55 non-forest no NA NA NA NA NA NA 0.74 NA NA 5.36 NA NA NA NA NA NA  
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US-Blo 38.9 forest no NA NA NA NA NA NA 0.67 NA NA 3.99 NA NA NA NA NA NA  

 
US-Cop 38.09 non-forest no NA NA NA NA NA NA 0.05 NA NA 1.69 NA NA NA NA NA NA  

 
US-GLE 41.36 forest no NA NA NA NA NA NA 0.21 NA NA 3.89 NA NA NA NA NA NA  

 
US-Los 46.08 forest no NA NA NA NA NA NA 0.56 NA NA 2.76 NA NA NA NA NA NA  

 
US-MMS 39.32 forest no NA NA NA NA NA NA 0.83 NA NA 2.27 NA NA NA NA NA NA  

 
US-Me2 44.45 forest no NA NA NA NA NA NA 0.53 NA NA 4.41 NA NA NA NA NA NA  

 
US-NR1 40.03 forest no NA NA NA NA NA NA 0.41 NA NA 3 NA NA NA NA NA NA  

 
US-Ne1 41.17 non-forest no NA NA NA NA NA NA 0.77 NA NA 4.86 NA NA NA NA NA NA  

 
US-Ne2 41.16 non-forest no NA NA NA NA NA NA 0.76 NA NA 4.59 NA NA NA NA NA NA  

 
US-Ne3 41.18 non-forest no NA NA NA NA NA NA 0.77 NA NA 3.91 NA NA NA NA NA NA  

 
US-SRG 31.79 non-forest no NA NA NA NA NA NA 0.45 NA NA 4.03 NA NA NA NA NA NA  

 
US-SRM 31.82 non-forest no NA NA NA NA NA NA 0.25 NA NA 4.04 NA NA NA NA NA NA  

 
US-Syv 46.24 forest no NA NA NA NA NA NA 0.77 NA NA 2.54 NA NA NA NA NA NA  

 
US-Ton 38.43 non-forest no NA NA NA NA NA NA 0.64 NA NA 2.3 NA NA NA NA NA NA  

 
US-Twt 38.11 non-forest no NA NA NA NA NA NA 0.61 NA NA 10.4 NA NA NA NA NA NA  

 
US-Var 38.41 non-forest no NA NA NA NA NA NA 0.25 NA NA 3.01 NA NA NA NA NA NA  

 
US-WCr 45.81 forest no NA NA NA NA NA NA 0.61 NA NA 2.93 NA NA NA NA NA NA  

 
US-Whs 31.74 non-forest no NA NA NA NA NA NA 0.48 NA NA 2.49 NA NA NA NA NA NA  

 
US-Wkg 31.74 non-forest no NA NA NA NA NA NA 0.37 NA NA 2.71 NA NA NA NA NA NA  

 
ZA-Kru −25.02 non-forest no NA NA NA NA NA NA 0.38 NA NA 4.33 NA NA NA NA NA NA  

 ZM-Mon −15.44 non-forest no NA NA NA NA NA NA 0.58 NA NA 3.54 NA NA NA NA NA NA  

                      

Mu et al. USARM 36.6 non-forest no 1.43 NA NA NA 0.17 NA NA 1 NA NA 0.7 NA NA NA NA NA  

2011 USBo1 40 non-forest no 1.82 NA NA NA 0.53 NA NA 1.03 NA NA 0.57 NA NA NA NA NA  

 USNe1 41.2 non-forest no 1.62 NA NA NA 0.66 NA NA 1.18 NA NA 0.73 NA NA NA NA NA  

 USNe2 41.2 non-forest no 1.56 NA NA NA 0.64 NA NA 1.18 NA NA 0.76 NA NA NA NA NA  

 USNe3 41.2 non-forest no 1.46 NA NA NA 0.62 NA NA 0.97 NA NA 0.66 NA NA NA NA NA  

 USRo3 44.7 non-forest no 1.35 NA NA NA 0.56 NA NA 0.79 NA NA 0.59 NA NA NA NA NA  

 USRo1 44.7 non-forest no 1.39 NA NA NA 0.52 NA NA 0.82 NA NA 0.59 NA NA NA NA NA  
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 USSO2 33.4 non-forest no 1.04 NA NA NA 0 NA NA 0.93 NA NA 0.89 NA NA NA NA NA  

 USBaR 44.1 forest no 0.84 NA NA NA 0.69 NA NA 1.03 NA NA 1.23 NA NA NA NA NA  

 USMOz 38.7 forest no 2.2 NA NA NA 0.58 NA NA 1.04 NA NA 0.47 NA NA NA NA NA  

 USMMS 39.3 forest no 1.16 NA NA NA 0.67 NA NA 0.81 NA NA 0.7 NA NA NA NA NA  

 USOHo 41.6 forest no 1.94 NA NA NA 0.69 NA NA 0.83 NA NA 0.43 NA NA NA NA NA  

 USUMB 45.6 forest no 1.22 NA NA NA 0.79 NA NA 0.6 NA NA 0.49 NA NA NA NA NA  

 USWWCr 45.8 forest no 0.97 NA NA NA 0.72 NA NA 0.76 NA NA 0.78 NA NA NA NA NA  

 USBLo 38.9 forest no 1.99 NA NA NA 0.06 NA NA 1.41 NA NA 0.71 NA NA NA NA NA  

 USFuf 35.1 forest no 1.24 NA NA NA 0.18 NA NA 1 NA NA 0.81 NA NA NA NA NA  

 USMe5 44.4 forest no 0.99 NA NA NA 0.07 NA NA 0.58 NA NA 0.59 NA NA NA NA NA  

 USMe2 44.5 forest no 1.18 NA NA NA 0.08 NA NA 0.79 NA NA 0.67 NA NA NA NA NA  

 USMe3 44.3 forest no 0.93 NA NA NA 0.14 NA NA 0.57 NA NA 0.61 NA NA NA NA NA  

 USNR1 40 forest no 1.54 NA NA NA 0.41 NA NA 1 NA NA 0.65 NA NA NA NA NA  

 CANS1 55.9 forest no 0.56 NA NA NA 0.49 NA NA 0.51 NA NA 0.91 NA NA NA NA NA  

 CANS2 55.9 forest no 0.57 NA NA NA 0.56 NA NA 0.43 NA NA 0.75 NA NA NA NA NA  

 CANS3 55.9 forest no 0.54 NA NA NA 0.53 NA NA 0.51 NA NA 0.94 NA NA NA NA NA  

 CANS4 55.9 forest no 0.38 NA NA NA 0.58 NA NA 0.58 NA NA 1.53 NA NA NA NA NA  

 CANS5 55.9 forest no 0.58 NA NA NA 0.5 NA NA 0.65 NA NA 1.12 NA NA NA NA NA  

 CANS6 55.9 forest no 0.53 NA NA NA 0.52 NA NA 0.48 NA NA 0.91 NA NA NA NA NA  

 CANS7 56.6 forest no 0.59 NA NA NA 0.48 NA NA 0.44 NA NA 0.75 NA NA NA NA NA  

 USWrc 45.8 forest no 1.54 NA NA NA 0.17 NA NA 1.28 NA NA 0.83 NA NA NA NA NA  

 USWI4 46.7 forest no 2.09 NA NA NA 0.06 NA NA 1.7 NA NA 0.81 NA NA NA NA NA  

 USARb 35.5 non-forest no 2.15 NA NA NA 0.74 NA NA 0.88 NA NA 0.41 NA NA NA NA NA  

 USARc 35.5 non-forest no 2.36 NA NA NA 0.74 NA NA 1.04 NA NA 0.44 NA NA NA NA NA  

 USAtq 70.5 non-forest no 0.11 NA NA NA 0 NA NA 0.53 NA NA 4.82 NA NA NA NA NA  

 USAud 31.6 non-forest no 0.78 NA NA NA 0.16 NA NA 0.79 NA NA 1.01 NA NA NA NA NA  

 USWkg 31.7 non-forest no 0.63 NA NA NA 0.07 NA NA 0.7 NA NA 1.11 NA NA NA NA NA  

 USWlr 37.5 non-forest no 1.86 NA NA NA 0.21 NA NA 0.75 NA NA 0.4 NA NA NA NA NA  

 USFpe 48.3 non-forest no 0.77 NA NA NA 0.64 NA NA 0.81 NA NA 1.05 NA NA NA NA NA  
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 USDix 40 forest no 1.56 NA NA NA 0.46 NA NA 1.63 NA NA 1.04 NA NA NA NA NA  

 USLPH 42.5 forest no 1.35 NA NA NA 0.58 NA NA 1.37 NA NA 1.01 NA NA NA NA NA  

 USSyv 46.2 forest no 0.89 NA NA NA 0.61 NA NA 1.13 NA NA 1.27 NA NA NA NA NA  

 USlvo 68.5 non-forest no 0.19 NA NA NA 0 NA NA 0.34 NA NA 1.79 NA NA NA NA NA  

 USFR2 29.9 non-forest no 2.08 NA NA NA 0.62 NA NA 0.85 NA NA 0.41 NA NA NA NA NA  

 USSP3 29.8 forest no 2.68 NA NA NA 0.23 NA NA 1.49 NA NA 0.56 NA NA NA NA NA  

 BRSa1 −2.90 forest no 3.08 NA NA NA 0.11 NA NA 1.28 NA NA 0.42 NA NA NA NA NA  

 BRSa3 −3.00 forest no 3.63 NA NA NA 0.12 NA NA 1.39 NA NA 0.38 NA NA NA NA NA  

 USFwf 35.4 non-forest no 0.94 NA NA NA 0.12 NA NA 0.75 NA NA 0.8 NA NA NA NA NA  

 USTon 38.4 non-forest no 1.13 NA NA NA 0.56 NA NA 0.68 NA NA 0.6 NA NA NA NA NA  

                      

Miralles et 
al. 

AT-Neu 47.12 non-forest no 0.85 NA 0.78 NA NA 0.86 NA NA NA NA NA NA NA NA −9 NA  

2011 BE-Lon 50.55 non-forest no 1.16 NA 1.19 NA NA 0.83 NA NA NA NA NA NA NA NA 2 NA  

 CA-Ca1 49.87 forest no 1.16 NA 0.62 NA NA 0.42 NA NA NA NA NA NA NA NA −46 NA  

 CA-Ca2 49.88 non-forest no 0.76 NA 0.6 NA NA 0.86 NA NA NA NA NA NA NA NA −21 NA  

 CA-Ojp 53.92 forest no 0.62 NA 0.88 NA NA 0.62 NA NA NA NA NA NA NA NA 42 NA  

 CA-Qcu 49.27 non-forest no 0.91 NA 0.92 NA NA 0.81 NA NA NA NA NA NA NA NA 1 NA  

 CA-QFO 49.69 forest no 0.7 NA 0.91 NA NA 0.81 NA NA NA NA NA NA NA NA 29 NA  

 CH-Oe1 47.29 non-forest no 1.46 NA 0.94 NA NA 0.86 NA NA NA NA NA NA NA NA −36 NA  

 CN-Xfs 44.13 non-forest no 0.58 NA 0.98 NA NA 0.69 NA NA NA NA NA NA NA NA 68 NA  

 DE-Geb 51.1 non-forest no 0.85 NA 1 NA NA 0.81 NA NA NA NA NA NA NA NA 17 NA  

 DE-Hai 51.08 forest no 0.71 NA 1.06 NA NA 0.83 NA NA NA NA NA NA NA NA 50 NA  

 DE-Har 47.93 forest no 1.51 NA 1.32 NA NA 0.72 NA NA NA NA NA NA NA NA −12 NA  

 DE-Kli 50.89 non-forest no 0.84 NA 0.95 NA NA 0.83 NA NA NA NA NA NA NA NA 13 NA  

 DE-Meh 51.28 non-forest no 0.81 NA 1.1 NA NA 0.86 NA NA NA NA NA NA NA NA 36 NA  

 DE-Tha 50.96 forest no 1.24 NA 0.99 NA NA 0.76 NA NA NA NA NA NA NA NA −20 NA  

 DE-Wet 50.45 forest no 0.98 NA 1.35 NA NA 0.72 NA NA NA NA NA NA NA NA 38 NA  

 ES-LMa 39.94 forest no 1.17 NA 0.69 NA NA 0.56 NA NA NA NA NA NA NA NA −41 NA  
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 ES-VDA 42.15 non-forest no 0.74 NA 0.63 NA NA 0.61 NA NA NA NA NA NA NA NA −15 NA  

 FI-Hyy 61.85 forest no 0.67 NA 0.83 NA NA 0.79 NA NA NA NA NA NA NA NA 23 NA  

 FI-Sod 67.36 forest no 0.65 NA 0.52 NA NA 0.53 NA NA NA NA NA NA NA NA −21 NA  

 FR-Lam 43.49 non-forest no 1.02 NA 1.27 NA NA 0.44 NA NA NA NA NA NA NA NA 25 NA  

 HU-Bug 46.69 non-forest no 1 NA 1.03 NA NA 0.86 NA NA NA NA NA NA NA NA 3 NA  

 HU-Mat 47.85 non-forest no 1.03 NA 0.88 NA NA 0.85 NA NA NA NA NA NA NA NA −14 NA  

 IT-AMP 41.9 non-forest no 0.96 NA 0.9 NA NA 0.69 NA NA NA NA NA NA NA NA −6 NA  

 NL-Hor 52.03 non-forest no 1.33 NA 0.75 NA NA 0.71 NA NA NA NA NA NA NA NA −44 NA  

 NL-Loo 52.17 forest no 1.4 NA 0.73 NA NA 0.46 NA NA NA NA NA NA NA NA −48 NA  

 PT-Mi2 38.48 non-forest no 0.76 NA 0.65 NA NA 0.41 NA NA NA NA NA NA NA NA −14 NA  

 RU-Fyo 56.46 forest no 0.92 NA 0.89 NA NA 0.85 NA NA NA NA NA NA NA NA −4 NA  

 US-Arc 35.54 non-forest no 1.96 NA 1.76 NA NA 0.9 NA NA NA NA NA NA NA NA −10 NA  

 US-Aud 31.59 non-forest no 0.71 NA 0.99 NA NA 0.58 NA NA NA NA NA NA NA NA 40 NA  

 US-Bo1 40.01 non-forest no 1.42 NA 1.79 NA NA 0.69 NA NA NA NA NA NA NA NA 26 NA  

 US-Goo 34.25 non-forest no 0.99 NA 0.99 NA NA 0.67 NA NA NA NA NA NA NA NA 1 NA  

 US-IB2 41.84 non-forest no 1.6 NA 1.25 NA NA 0.85 NA NA NA NA NA NA NA NA −22 NA  

 US-Me2 44.45 forest no 1.02 NA 0.89 NA NA 0.67 NA NA NA NA NA NA NA NA −12 NA  

 US-MOz 38.74 forest no 1.66 NA 1.65 NA NA 0.76 NA NA NA NA NA NA NA NA 0 NA  

 US-NC1 35.81 non-forest no 1.55 NA 0.95 NA NA 0.72 NA NA NA NA NA NA NA NA −39 NA  

 US-SRM 31.82 non-forest no 0.88 NA 1.27 NA NA 0.48 NA NA NA NA NA NA NA NA 44 NA  

 US-Syv 46.24 forest no 0.73 NA 0.71 NA NA 0.81 NA NA NA NA NA NA NA NA −4 NA  

 US-Ton 38.43 forest no 1.12 NA 0.74 NA NA 0.72 NA NA NA NA NA NA NA NA −34 NA  

 US-WCr 45.81 forest no 1 NA 1.14 NA NA 0.77 NA NA NA NA NA NA NA NA 14 NA  

 US-Wkg 31.74 non-forest no 0.48 NA 0.84 NA NA 0.45 NA NA NA NA NA NA NA NA 73 NA  

 AU-How −12.49 forest no 2.48 NA 2.07 NA NA 0.74 NA NA NA NA NA NA NA NA −17 NA  

 BR-Ban −9.82 forest no 2.96 NA 2.73 NA NA 0.22 NA NA NA NA NA NA NA NA −8 NA  

                      

Souza et al. PRS −29.50 non-forest yes 2.96 1.82 NA NA 0.42 NA NA 1.68 NA NA 0.57 NA NA −39 NA NA  

2019 CAS −30.50 non-forest yes 3.08 2.04 NA NA 0.25 NA NA 2.04 NA NA 0.66 NA NA −34 NA NA  
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Khan et al. Tum −35.66 forest yes NA NA NA NA 0.81 0.56 NA 0.67 1 NA NA NA NA NA NA NA  

2020 DaP −14.06 non-forest yes 2.35 NA 2.2 NA 0.69 0.88 NA 1.05 0.67 NA 0.45 0.29 NA −14 −6 NA  

 ASM −22.28 forest yes NA NA NA NA 0.49 0.81 NA 1.17 0.67 NA NA NA NA NA NA NA  

 Wom −37.42 forest yes NA NA NA NA 0.36 0.49 NA 1.17 1.17 NA NA NA NA NA NA NA  

  Cpr −34.00 non-forest yes NA NA NA NA 0.06 0.81 NA 0.83 0.43 NA NA NA NA NA NA NA  
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