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Abstract

In this work an observer with �xed-time or �nite-time convergence for nonlinear systems is presented.
The addressed system class is as follows:

Σ :



ẋ1 = f1(y, u) + a1(t, y)x2,

...

ẋi = fi(y, x2, . . . , xi, u) + ai(t, y)xi+1,

...

ẋn = fn(y, x2, . . . , xn, u) + w̄(t, x),

y = x1,

where x ∈ Rn are the states of system, y is the measured output in R, u is a vector in Rm representing
the known inputs, and w̄(t, x) ∈ R is a bounded unknown input (|w̄(·)| ≤ ∆). For i = 1, . . . , n−1,
ai(t, y) are �known� scalar time functions which can depend on the output of the system. Moreover
ai(t, y) satisfy for all the time that 0 < ai ≤ ai(t, y) ≤ ai. The functions f(·) satis�es for small
values of x a Hölder condition and for large values of x satis�es a Lipschitz condition.

The proposed observer is described by the following dynamics:

Ω :



e1 = x̂1 − x1,

˙̂x1 = −k1La1(t, y)ϕ1(e1) + f1(y, u) + a1(t, y)x̂2,

...
˙̂xi = −kiLiai(t, y)ϕi(e1) + fi(y, x̂2, . . . , x̂i, u) + ai(t, y)x̂i+1,

...
˙̂xn = −knLnϕn(e1) + fn(y, x̂2, . . . , x̂n, u),

ϕi(e1) = φi ◦ · · ·φ2 ◦ φ1(e1), φi(s) = κi|s|
r0,i+1
r0,i sign(s) + θi|s|

r∞,i+1
r∞,i sign(s),

r0,i = r0,i+1 − d0 = 1− (n− i)d0, r∞,i = r∞,i+1 − d∞ = 1− (n− i)d∞.

The observer parameters have to be chosen according with the next table:

IV



Abstract V

Table 1: Observer parameters.

Parameter Range

d0, d∞ [−1, 0] ,
[
0, 1

n−1

)
L, ki [1,∞), (0,∞)

θi, κi [0,∞), [0,∞)

This observer is capable of providing an exact estimate of the system state x(t) in �xed-time
and the gains can be set to achieve any desired upper bound of the convergence time. Furthermore,
this work also designs a bi-homogeneous observer for mechanical systems with quadratic terms,
uncertain inputs, viscous and dry frictions. Using state transformations to deal with the quadratic
term, in this work is possible to design observers for the following class of Euler-Lagrange systems:

� One degree of freedom mechanical system with uncertain inputs, viscous and dry frictions,

m(q)q̈ + c(q)q̇2 +H(q, q̇) + ϱ⌈q̇⌋0 + g(q) = τ + w(t, q, q̇).

� Two degree of freedom mechanical system with uncertain inputs, viscous and dry frictions.

M(q)q̈ + C(q, q̇)q̇ +G(q) +Hq̇ + Λsign(q̇) = Du+ δ̃(t, q, q̇).

� N degree of freedom mechanical system with uncertain inputs and dry frictions.

M(q)q̈ + C(q, q̇)q̇ +G(q) + Λ sign(q̇) = τ + δ̃(t, q, q̇).

Keywords: Homogeneity in the bi-limit, nonlinear observers, prede�ned-time convergence,
sliding-mode observers.
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Notation

Along the thesis, the main notation is as follows:

� ∃ - �There exists�.

� | · | - �Absolute value of a function�.

� ∀ - �For all�.

� ∇ - �The gradient of function�.

� Z - Set of rational numbers.

� R - Set of real numbers.

� C - Set of complex numbers.

� R+ = {x ∈ R : x > 0}.

� R≥0 = {x ∈ R : x ≥ 0}.

� || · || - Euclidean norm of a vector.

� K - Set of strictly increasing continuous functions α : R≥0 → R≥0, such that α(0) = 0.

� Let f : Rn → Rm be a di�erentiable vector-valued function, ∂f(x)∂x the Jacobian matrix of f .

If m = 1, then ∂f(x)
∂x = ∇f(x) is the gradient of f .

� For the functions f : Rn → Rp, g : Rm → Rn, f ◦ g denotes the composition of f with g, i.e.,
for x ∈ Rm, (f ◦ g) (x) = f(g(x)) ∈ Rp.

� For some positive n, m ∈ Z+, a function f : Rn → Rm is said to be of class Ck if its partial
derivatives up to k-th order exist and are continuous.

� {ι}nι=m - Sequence of natural numbers from m to n.

� max and min - Maximum and minimum value of a function, respectively.
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Chapter 1

Introduction

In the automatic control area, a plant is de�ned as a mechanism or process that needs to be controlled
or supervised. For the modeling of the plant, the concept of state variables is frequently used, which
represents the more important variables that better describe the system behavior. The knowledge of
state variables at each instant of time (by means of their measurement) leads to a better supervision
of the plant or a better performance of the controlled system. However, the measurement of all
state variables is not always feasible, either due to the nonexistence of an appropriate measuring
instrument, or because of its high cost, or due to other factors.

To deal with the problem of not knowing some or all of the state variables, a state estimator or
observer is used. A state observer is a dynamic system based on a model of the plant that uses the
available information from its inputs and outputs in order to provide estimated states that converge
to the real state values of the plant.

The presence of internal or external perturbations, parametric uncertainties, in the following will
be referred to simply as uncertainty/perturbation (UP) and the plant model as the uncertain system,
gives rise to the problem of designing unknown input observers (UIO). The UIO are estimators or
observers of states that provide estimates which convergent to the real state variables of the plant,
in spite of the presence of UP considered as the unknown input of the observers.

This work deals with the problem of designing UIO for uncertain nonlinear systems using ho-
mogeneous and bi-homogeneous techniques. As is well know, the sliding-modes are homogeneous
of homogeneity degree minus one and due their properties of robustness, is one of the techniques
most used to design UIO. The sliding-mode observers (SMO) provide �nite-time convergence of the
output estimation error and asymptotic convergence to the real states. Other common techniques
for the designing UIO are Luenberger-like observer and the High-gain observer, which provide global
exponential convergence to the real states when their required conditions are satis�ed. Among these
conditions, there is the relative-degree-one restriction, which means that the arbitrary UP a�ect
only the �rst time derivative of a measured output of the plant.

The subject of study of this work is the design of observers for nonlinear systems with uncertain
inputs. Our goal is to obtain a methodology for designing observers capable of reconstructing the
state of the system in a �xed or �nite amount of time, that is, in a non-asymptotic way. The

1



1.1. Observers Construction: State of the Art 2

objective goes further: the convergence time should be able to be modi�ed, regardless of the initial
error. In the next section, a review of the literature is given.

1.1 Observers Construction: State of the Art

1.1.1 Observer Problem Statement (Nonlinear Systems without Unknown In-
puts) [20]

All over the section, the system under consideration will be considered to be described by a state-
space representation generally of the following form:

ẋ(t) =f(x(t), u(t)), x(0) = x0,

y(t) =h(x(t)),
(1.1)

where x denotes the state vector, taking values in X a connected manifold of dimension n, u denotes
the vector of known external inputs, taking values in some open subset U of Rm, and y denotes the
vector of measured outputs taking values in some open subset Y of Rp. In general χ(t, x0, u(t))
denote a solution of (1.1) going through x0 at t = 0, and as y(t, x0, u(t)) = h(χ(t, x0, u(t))) ) its
corresponding output.

Functions f and h will in general be assumed to be C∞ w.r.t. their arguments, and input
functions u(·) to be locally essentially bounded and measurable functions in a set U . The system
will be assumed to be forward complete.

Given a model (1.1), the purpose of acting on the system, or monitoring it, will in general need
to know x(t), while in practice one has only access to u and y. The observation problem can then
be formulated as follows:

Given a system described by a representation (1.1), �nd an estimate x̂(t) for x(t) from the
knowledge of u(τ), y(τ) for 0 ≤ τ ≤ t.

Clearly this problem makes sense when one cannot invert h w.r.t. x at any time. One can
use the idea of an explicit �feedback� in estimating x(t), as this is done for control purposes: more
precisely, noting that if one knows the initial value x(0), one can get an estimate for x(t) by simply
integrating (1.1) from x(0), the feedback-based idea is that if x(0) is unknown, one can try to correct
on-line the integration x̂(t) of (1.1) from some erroneous x̂(0), according to the measurable error
h(x̂(t))− y(t), namely to look for an estimate x̂ of x as the solution of a system:

˙̂x = f
(
x̂(t), u(t)

)
+ k
(
t, h
(
x̂(t)

)
− y(t)

)
, with k(t, 0) = 0. (1.2)

Such an auxiliary system is what will be de�ned as an observer, and the above equation is the most
common form of an observer for a system (1.1) (as in the case of linear systems). More generally,
an observer can be de�ned as follows:
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De�nition 1 Observer. Considering a system (1.1), an observer is given by an auxiliary system:

Ẋ(t) = F
(
X(t), u(t), y(t), t

)
,

x̂(t) = H
(
X(t), u(t), y(t), t

)
,

(1.3)

such that:

(i) x̂(0) = x(0) ⇒ x̂(t) = x(t), ∀t ≥ 0;

(ii) ||x̂(t)− x(t)|| → 0 as t→ ∞;

If (ii) holds for any x(0), x̂(0), the observer is global.

Notice also that with notations of (1.1) and (1.3), the di�erence x̂− x will be called observer error.

For a possible design of a observer, one must be able to recover the information on the state
via the output measured from the initial time, and more particularly to recover the corresponding
initial value of the state. This means that observability is characterized by the fact that from an
output measurement, one must be able to distinguish between various initial states, or equivalently,
one cannot admit indistinguishable states:

De�nition 2 (Indistinguishability [50]) A pair (x, x̄) ∈ Rn × Rn is indistinguishable for a system
(1.1) if:

∀u ∈ U , ∀t ≥ 0, y(t, x, u(t)) = y(t, x̄, u(t)).

A state x is indistinguishable from x̄ if the pair (x, x̄) is indistinguishable.

From this, observability can be de�ned:

De�nition 3 (Observability) A system (1.1) is observable if it does not admit any indistinguishable
pair (x, x̄).

This de�nition is quite general (global), and even too general for practical use, since one might be
mainly interested in distinguishing states from their neighbors:

Consider for instance the case of the following system:

ẋ = u, y = sin(x). (1.4)

Clearly, y cannot help distinguishing between x and x+2kπ, and thus the system is not observable.
It is yet clear that y allows to distinguish states of (−π

2 ,
π
2 ).

This brings to consider a weaker notion of observability:
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De�nition 4 (Locally observable/Weak observability) A system (1.1) is weakly observable if there
exists a neighborhood U of any x such that there is no indistinguishable state from x in U .

An even more local de�nition of observability can be given:

De�nition 5 (Strongly locally observable/Local weak observability ) A system (1.1) is locally weakly
observable if there exists a neighborhood U of any x such that for any neighborhood V of x contained
in U , there is no indistinguishable state from x in V when considering time intervals for which
trajectories remain in V .

The advantage of local weak observability over the other concepts is that it lends itself to a
simple algebraic test (rank condition). To describe it we need some additional tools.

De�nition 6 (Observation space) The observation space for a system (1.1) is de�ned as the smallest
real vector space (denoted by O(h)) of C∞ functions containing the components of h and closed under
Lie derivation along fu := f(·, u) for any constant u ∈ Rm (namely such that for any φ ∈ O(h),
Lfuφ(x) ∈ O(h), where Lfuφ(x) =

∂φ
∂xf(x, u)).

De�nition 7 (Observation space) The observation space is de�ned as the real vector space of C∞

functions that are constant on the indistinguishable sets.

The idea behind this de�nition is that, if two or more states are indistinguishable, we cannot
determine which one was the initial state. However, for a scalar function that takes the same value on
these states (i.e., that belongs to the observation space de�ned as above), we can determine its initial
value, since we do not need to distinguish between the indistinguishable states to know its initial
value. Note that if the indistinguishable sets consist of single points (i.e., the system is observable),
all the state components, regarded as scalar functions of the state, belong to the observation space,
and as a result, the observable codistribution has dimension equal to n. Finally, note that the Lie
derivatives of the system outputs up to any order are constant on the indistinguishable set.

De�nition 8 Observability rank condition. A system (1.1) is said to satisfy the observability rank
condition if:

∀x, dim dO(h)|x = n

where dO(h)|x = n is the set of dφ(x) with φ ∈ O(h).

De�nition 9 A system (1.1) satisfying the observability rank condition is locally weakly observable.

As an example, consider a system of the following form:

ẋ =Ax,

y =Cx with x ∈ Rn.
(1.5)
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For this system, the observability rank condition is equivalent to local weak observability (which is
itself equivalent to observability) and is characterized by the so-called Kalman rank condition:

De�nition 10 For a system of the form (1.5):

� The observability rank condition is equivalent to rankOn−1 = n with On−1 the so-called ob-
servability matrix de�ned by

On−1 =


C
CA
CA2

...
CAn−1

 .

� The observability rank condition is equivalent to the observability of the system.

Notice that if system (1.5) satis�es the above observability rank condition, the pair (A,C) is
usually called observable.

In general, the observability rank condition is not enough for a possible observer design: this
is due to the fact that in general, observability depends on the inputs, namely it does not prevent
from the existence of inputs for which observability vanishes.

As a simple example, consider the following system:

ẋ =

[
1 u
0 1

] [
x1
x2

]
,

y =
[
1 0

] [ x1
x2

]
.

(1.6)

� If u(t) = 1 then the resulting system is LTI and it is observable since

rank(O1) = rank
[
1 0
1 1

]
= 2.

� If u(t) = 0 then the resulting system is LTI and not observable since

rank(O1) = rank
[
1 0
1 0

]
= 1.

This means that the purpose of observer design requires a look at the inputs.

In view of example (1.6) additional conditions to those previously presented might be required
for possible observer designs, related to inputs. The purpose below is to discuss such conditions.
More precisely, notions of universal inputs and uniform observability for systems (1.1) are introduced
(for more details, see [23]).
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De�nition 11 Universal inputs [resp. on [0, t]]. An input u is universal (resp. on [0, t]) for system
(1.1) if ∀x0 ̸= x

′
0, ∃τ ≥ 0 (resp. ∃τ ∈ [0, t]) such that y(t, x, u(t)) ̸= y(t, x̄, u(t)).

An input u is a singular input if it is not universal.

As an example, for system (1.6), u(t) = 0 is a singular input.

De�nition 12 Uniformly observable systems (resp. locally). A system is uniformly observable
(UO) if every input is universal (resp. on [0, t]).

In other words, if a system is uniformly observable it means that the system is observable for any
input u, what is a strong property for nonlinear systems.

Example 1. The system (1.7) below is uniformly observable [42] (see also [44]):

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 . . . 1
0 0 0 . . . 0

x+


φ1(x1, u)
φ2(x1, x2, u)
...
φn−1(x1, · · · , xn−1, u)
φn(x, u)

 ,
y = [1, 0, . . . , 0]x; x = [x1, . . . , xn]

T .

(1.7)

This can be checked by considering any pair of distinct states x ̸= x
′
: assuming indeed that their

respective components xk and x
′
k coincide up to order i and that xi+1 = x

′
i+1, then it is clear from

(1.8) that ẋi−1 − ẋ
′
i−1 and thus there exists t0 such that xi(t) ̸= x

′
i(t) for 0 < t < t0. By induction,

we easily end up with the existence of some time for which x1(t) = x
′
1(t), which is true for any u.

This property actually means that observability is independent of the inputs and thus can allow
an observer design also independent of the inputs, as in the case of LTI systems.

Notice that more speci�c notions of observability, which have been introduced in connection
with more speci�c designs not presented in details here will be omitted (such as �in�nitesimal ob-
servability� or �di�erential observability�, related to �high gain techniques� as in [43]). Additionally,
a �nal remark can be given as follows:

Remark 1 If the considered system is not observable, but satis�es the following: ∀u such that x0
and x

′
0 are indistinguishable by u:

χu(t, x0)− χu(t, x
′
0) → 0 as t→ ∞

it satis�es a property of detectability, and in that case one may have the opportunity to design an
observer.
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The property of detectability says that even if two di�erent initial conditions are not distinguish-
ablewith the output, the corresponding system solutions become close asymptotically, and thus, we
still get a �good� estimate no matter which we pick. It is easy to see that observability implies
detectability. This is a well-known necessary condition which can be found, for instance, in [7].

1.1.2 Known Input Observers

Some observers are presented here for the particular structure of system (1.7). Remember that the
observer approach we consider is that of designing an auxiliary system intended to give an estimate
x̂ of the actual state vector x in the sense that x̂(t)− x(t) → 0 as t→ ∞. Hence the main problem
turns to be an observer design so as to make the origin asymptotically stable for the corresponding
observer error system.

1.1.2.1 High-Gain Observers

The basic idea of the High-Gain Observer was presented around the same time by di�erent groups.
In France by the group around J.P. Gauthier and H. Hammouri [44, 43, 55]. In the USA the group
around H. Khalil [34, 10, 11], see also [39, 95].

Consider the system represented by (1.7). It will be assumed that φi(x1, · · · , xi, u) satisfy the
following assumption (Lipschitz condition):

Assumption 1 For a positive real number µ. The functions fi(·) ful�lled the following property
globally ∀xia, xib ∈ Ri, i = 2, . . . , n,

|fi(y, x2a, . . . , xia, u)− fi(y, x2b, . . . , xib, u)| ≤ µ
i∑

j=2

|xja − xjb|. (1.8)

Under these conditions the classical High-Gain Observer [44, 43]

˙̂x =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 . . . 1
0 0 0 . . . 0

 x̂+


φ1(y, u)
φ2(y, x̂2, u)
...
φn−1(y, · · · , x̂n−1, u)
φn(x̂, u)

+ ΛL


k1(x̂1 − x1)
k2(x̂1 − x1)
...
kn−1(x̂1 − x1)
kn(x̂1 − x1)

 (1.9)

where

ΛL =


L 0 . . . 0 0
0 L2 . . . 0 0
...

...
. . .

...
...

0 0 · · · Ln−1 0
0 0 · · · 0 Ln

 , (1.10)
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converges exponentially when 
k1 1 0 · · · 0
k2 0 1 · · · 0
...

...
. . .

...
...

kn−1 0 0 · · · 1
kn 0 0 · · · 0


is Hurwitz, and L is su�ciently large. Moreover, the convergence velocity is proportional to L, the
e�ect of the functions fi(·) is dominated for a gain L su�ciently large. It is important to mention
that if L is big then the peaking phenomenon appears.

1.1.2.2 Homogeneous Observers

In this section, we show that under slightly stronger Hölder constraints, asymptotic convergence
can actually be achieved when considering homogeneous observers. It is at the beginning of the
century that people started to consider homogeneous observers with various motivations: exact
di�erentiators [59, 60, 61], domination as a tool for designing stabilizing output feedback [5]. As
shown in [16], the advantage of this type of observers is their ability to face Hölder nonlinearities.

Consider the system represented by (1.7). It will be assumed that φi(x1, · · · , xi, u) satisfy the
following assumption (Hölder condition):

Assumption 2 Assume that there exist d0 in [−1, 0] and a positive real number µ. The functions
fi(·) ful�lled the following property globally ∀xia, xib ∈ Ri, i = 2, . . . , n,

|fi(y, x2a, . . . , xia, u)− fi(y, x2b, . . . , xib, u)| ≤ µ
i∑

j=2

|xja − xjb|
1−(n−i−1)d0
1−(n−j)d0 . (1.11)

This property captures many possible contexts. In the case in which 1−(n−i−1)d0
1−(n−j)d0 > 0, it implies that

the function fi(·) is Hölder with power 1−(n−i−1)d0
1−(n−j)d0 . When the 1−(n−i−1)d0

1−(n−j)d0 = 0, it simply implies
that the function fn(·) is bounded.

Under these conditions the observers for a non-Lipschitz triangular form [16]

˙̂x =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 . . . 1
0 0 0 . . . 0

 x̂+


φ1(y, u)
φ2(y, x̂2, u)
...
φn−1(y, · · · , x̂n−1, u)
φn(x̂, u)

+ ΛL



k1⌈x̂1 − x1⌋
r0,2
r0,1

k2⌈x̂1 − x1⌋
r0,3
r0,1

...

kn−1⌈x̂1 − x1⌋
r0,n
r0,1

kn⌈x̂1 − x1⌋
r0,n+1
r0,1


, (1.12)

where r0,i = 1−(n−i)d0, ΛL equal to (1.10), converges exponentially when d0 = 0 and in �nite-time
when d0 in [−1, 0).
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A generalization of observer (1.12) was presented in [5] in the context of �bi-limit� homogeneity,
i.e., for nonlinearities having two homogeneity degrees (around the origin and around in�nity).

1.1.3 Observer Problem Statement (Nonlinear Systems with Unknown Input)
[74]

As it is well-known, the possibility of constructing an observer is tied to the observability/detectability
properties of the system's model. When only the initial conditions are unknown, observability cor-
responds to the (theoretical) possibility of estimating the state in a �nite time-horizon, whereas if
the system is only detectable the state estimation can only be attained asymptotically. In a more
realistic situation, besides the uncertainty in the initial conditions, also model parameters, system's
dynamics or even input uncertainties are usually present. In these cases, the (classical) concepts of
observability/detectability have to be modi�ed to consider the given uncertainties. Observability
would then correspond to the possibility of reconstructing the state in a �nite-time horizon de-
spite of the uncertainties acting on the system, while detectability would allow this reconstruction
asymptotically.

Observability and Detectability analysis is a classical topic in the control literature. To review
some of the classical methods to analyze these properties let us consider a nonlinear system

ẋ(t) =f
(
x(t), u(t), w(t)

)
, x(0) = x0,

y(t) =h
(
x(t)

)
,

(1.13)

where x ∈ Rn is the measured (output) variable, u ∈ Rm is the measured (or known) input and
w ∈ Rq is the unmeasured (or unknown) input (UI). f : Rn × Rm × Rq → Rn is a smooth vector
�eld and h : Rn → Rp is a smooth function. We will assume that the trajectories of the system
(1.13) are de�ned for all times (t ≥ 0) and for every input, which is also a reasonable assumption
for models of actual physical systems. In general χ(t, x0, u(t), w(t)) denoted a solution of (1.13)
going through x0 at t = 0, and as y(t, x0, u(t), w(t)) = h(χ(t, x0, u(t), w(t))) ) its corresponding
output.

For a nonlinear system (1.13), when there are no unknown inputs, i.e., w = 0, the possibility
of determining uniquely the state in a �nite time interval is equivalent to the absence of indistin-
guishable states (see De�nition 2). For systems with unknown inputs (1.13), similar concepts can
be introduced, that are in general input dependent (see e.g., [67]). In the following de�nition we
consider a class of signals U for the known inputs u and a class of signals W for the unknown inputs
w.

De�nition 13 (State Observability and detectability with UI [75]) Consider for system (1.13) an
input u, an initial state x and an unknown input w.

� If x̄ ̸= x is such that y(t, x, u, w) = y(t, x̄, u, w̄), ∀t ∈ [0,∞) and for some w, w̄ ∈ W, then x̄
is a strongly indistinguishable state from x. Te set of strongly u-indistinguishable states from
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x is denoted by IUI(u,x). Te pre�x `u− (·)' refers to the situation when the known input does not
afect the observability property of the system. In the literature, this phenomenon is called the
uniform observability.

� System (1.13), is strongly u-observable for every x, and for any pair of w, w̄ ∈ W and for
any u(t) holds: IUI(u,x) = {x}. It means that the state trajectory is strongly u-distinguishable.

In other words, the observability means that if (as assumed) x̄ is indistinguishable from x,
and y(t, x, u, w) ̸= y(t, x̄, u, w̄) and χ(t, x, u, w) ̸= χ(t, x̄, u, w̄) holds, then x̄ = x (the
assumption on indistinguishability was a contradiction). Thus, the observable system state
is only indistinguishable from `itself '. It is worth emphasising that if system (1.13) is not
associated with any indistinguishable initial conditions (trajectories), then it is fully observable.

� System (1.13), is strongly u-detectable for every x, for every x̄ ∈ IUI(u,x), and for any u(t) and

also for any pair of w, w̄ ∈ W that causes indistinguishable x. That means y(t, x, u, w) =
y(t, x̄, u, w̄); from which it follows that χ(t, x, u, w) → χ(t, x̄, u, w̄) as t → ∞ (asymptoti-
cally).

� System (1.13), is strongly u-asydetectable if y(t, x̄, u, w̄) → y(t, x, u, w) implies χ(t, x̄, u, w̄) →
χ(t, x, u, w) as t→ ∞.

� System (1.13), is strongly observable [detectable, asydetectable] if it is strongly u-observable
[u-detectable, u-asydetectable] for every u ∈ U .

For systems without unknown inputs the previous concepts reduce to the usual concepts of
(u-)observability and (u-)detectability. Moreover, for linear time invariant (LTI) systems these
concepts coincide with the corresponding ones introduced in [48]. Note that in that paper strong
asydetectability has been called strong∗ detectability.

Since, two identical outputs y(t, x, u, w) = y(t, x̄, u, w̄) also satisfy the condition y(t, x, u, w) →
y(t, x̄, u, w̄) it follows that strong (u-)asydetectability implies strong (u-)detectability. However, the
converse is not true for continuous time systems. Moreover, strong (u-)observability implies strong
(u-)detectability, but it does not necessarily imply strong (u-)asydetectability.

These properties are at the heart of the possibility of constructing unknown input observers
(UIO), i.e., algorithms that are able to estimate the state asymptotically.

There are some usual tests to determine (state) observability. In the next paragraphs we will
recall some of them.

1.1.3.1 Systems with Unknown Inputs

Consider an LTI system

f(x, u, w) =Ax+Bu+Dw,

h(x) =Cx,
(1.14)
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where x ∈ Rn, y ∈ R are the system state and the output, w ∈ R is the unknown input (disturbance),
u ∈ R is the known control and the known matrixes A, B, C, D have suitable dimensions. The
equations are understood in the Filippov sense ([35]) in order to provide for the possibility to use
discontinuous signals in observers. Note that Filippov solutions coincide with the usual solutions,
when the right-hand sides are continuous. It is assumed also that all considered inputs allow the
existence and extension of solutions to the whole semi-axis t ≥ 0.

The conditions for observability and detectability of LTI systems with unknown inputs are
studied, for example,in [48].

De�nition 14 s ∈ C is called an invariant zero of the triplet A,D,C if rank R(s) < n+ rank (D),
where R(s) is the Rosenbrock matrix of system (1.14)

R(s) =

[
sI −A −D
C 0

]
. (1.15)

It is assumed in the following de�nitions that u = 0.

De�nition 15 System (1.14) is called (strongly) observable if for any initial state x(0) and w(t) ≡ 0
(any input w(t)), y(t) ≡ 0 with ∀t ≥ 0 implies that also x ≡ 0 [48].

The following statements are equivalent:

(i) The system (1.14) is strongly observable.

(ii) The triple A,D,C has no invariant zeros.

(iii) The output of the system (1.14) has relative degree n with respect to the unknown input w(t).

Remember that the values of s that do not satisfy (1.14) are the invariant zeros of the system [66],
which include the transmission zeros and the output decoupling zeros, that is, the eigenvalues of
the system that are unobservable. Invariant zeros are directly related to the possibility of making
the output of the system zero. Therefore equation (1.15) can be interpreted as a minimum phase
condition of the system: the invariant zeros of the system (C,A,D), if they exist, must be located
in the open left half-plane of the complex plane, that is, they must be �stable�.

De�nition 16 The system is strongly detectable, if for any w(t) and x(0) it follows from t(t) ≡ 0
with ∀t ≥ 0 that x→ 0 with t→ ∞ [48].

The following statements are equivalent
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(i) The system (1.14) is strongly detectable.

(ii) The system (1.14) is minimum phase (i.e. the invariant zeroes of the triple A,D,C satisfy
Re s < 0).

(iii) The system (1.14) is strongly detectable if and only if the relative degree with respect to the
unknown input exists, and the system is minimum-phase.

1.1.4 Unknown Input Observers (UIO)

One of the techniques most commonly used for designing UIO, when the relative degree of the
UI with respect to the output is n, is the sliding modes. The sliding-mode observers ([13, 33,
96, 87]) have proven to be e�cient for providing theoretically exact �nite-time convergence of the
output estimation error, asymptotic convergence to the real states, and in some cases even the
reconstruction of the IU.

In LTI systems with bounded UP and under the strong detectability/observability condition the
design of sliding-mode observers (SMO) has been extensively studied in the last decade (see e.g.
[40, 41, 14, 15]). However, one drawback of the SMO is that, most of them, need the state vector
a�ected by UI to be uniformly bounded. To overcome this restriction for LTI systems with bounded
UI, the work in [40] proposes a strategy where the Luenberger observer driving the estimation error
to a bounded region of the origin, in cascade with a high-order sliding mode (HOSM) di�erentiator
allows global theoretically exact �nite-time estimation of the system states. The applicability of
this strategy is not clear for the case of nonlinear systems.

In the same direction, in [9] an observer that estimates globally, exactly and in �nite time the
unmeasured states, despite the presence of bounded UI, is designed for a class of chain of integrators,
in this work it is shown that the standard dissipative structure can be used for stabilization of the
observation error, but in this case, the highest derivative of the output dissipative error depends
on the dissipative observer gains and consequently it is not suitable to use it. A scaled dissipative
stabiliser is proposed, ensuring that the highest derivative of the output estimation error is inde-
pendent of the stabiliser gains. After this, a HOSM di�erentiator with the adjusted gains to the
upper-bound of the unknown inputs is used.

The crucial point for the success of SMO is that they bring with them an implicit or explicit
use of a di�erentiation process. One of the most well known SM di�erentiators, which is also the
�rst SM di�erentiator to appear in the literature, is the Super-Twisting Algorithm (STA) based SM
di�erentiator [58]. This SM di�erentiator is de�ned as

ż1 = −1.5L
1
2 |z1 − f(t)| sign(z1 − f(t)) + z2,

ż2 = −1.1L sign(z1 − f(t)),
(1.16)

which guarantees a �nite-time estimation of time derivative of f(t) when |f̈(t) ≤ L, where z1− f(t)
and z2 − ḟ(t) are robustly driven to zero in �nite-time. Generalizations of the STA based di�er-
entiator were presented in [68, 69, 28], and from these works some SM di�erentiators of arbitrary
order are obtained ([60, 70]).
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One of the most used algorithms for the design of UIO is the Generic Second Order Algorithm
(GSOA), which is described by the di�erential equation

ż1 = −k1ϕ1(z1 − f(t)) + z2,

ż2 = −k2ϕ2(z1 − f(t)),
(1.17)

where ki are positive and the nonlinearities ϕ1(·) and ϕ2(·) are

ϕ1(·) = µ1|z1 − f(t)|p sign(z1 − f(t)) + µ2|z1 − f(t)|q sign(z1 − f(t)), µ1, µ2 ≥ 0,

ϕ2(·) = µ21p|z1 − f(t)|2p−1 sign(z1 − f(t)) + µ1µ2(p+ q)|z1 − f(t)|p+q−1 sign(z1 − f(t))

µ22q|z1 − f(t)|2q−1 sign(z1 − f(t)),

(1.18)

with q ≥ 1 ≥ p ≥ 1
2 are real numbers. Note that ϕ1(·) and ϕ2(·) are bi-homogeneous as is show

in [72]. Moreover, ϕ1(·) and ϕ2(·) are monotone increasing continuous functions for all p > 1
2 , but

when p = 1
2 the function ϕ2(·) has a (bounded) discontinuity at (z1 − f(t)) = 0. Since ϕ2(·) is not

necessarily a continuous function, in general the di�erential equation (1.17) does not have classical
solutions, so that solutions of (1.17) are all trajectories in the sense of Filippov [35].

In [8], a global sliding-mode observer with theoretically exact �nite-time convergence using
dissipative properties and the generic second order algorithm, is proposed. This observer is bi-
homogeneous, and allows to omit the need the state vector a�ected by UI to be uniformly bounded.
This observer can not be extended to arbitrary order systems.

1.2 Motivation

The initial motivation for this work came from the sliding-mode control. The achievements of this
community in �nite-time and �xed-time convergence in estimation of certain nonlinear systems
moved us to extent these results to a larger class of nonlinear systems. A �rst attempt was made
in [8], where the general super twisting algorithm (which is bi-homogeneous) is used to design an
observer for uncertain one degree of freedom mechanical systems, the problem with this approach
is that is not possible to extend the main idea to to higher order systems. Other approach based
on bi-homogeneous properties is presented in [6], where an observer with varying gains is proposed
for non linear system, this observer is not able to deal with uncertain inputs.

A second motivation relies on the advantages that go along with the �nite and �xed-time con-
vergence. Academically speaking, �nite-time convergence means that the state of a system can be
recovered exactly something that does not happen when the convergence is asymptotic. But not
only that, �nite-time convergence also means a faster recovery of the estimation in the presence of
perturbations, and in some cases, disturbance rejection. On the other hand, �xed-time convergence
has opened the opportunity of providing times of reliability for the estimates. Since �xed-time
convergence implies that the convergence time cannot exceed,under any circumstance, certain limit,
this allows to know when an estimate can be trusted. Given that these two properties are interesting
and useful, it is natural to try to use them in other applications.
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1.3 Contributions

The main contribution of this thesis is an bi-homogeneous observer for general nonlinear systems
with �xed-time convergence. The observer and its properties are presented in Chapter 3, where the
observer is introduced in (3.4). There, not only the type of convergence is given, but an upper bound
for the convergence time is provided (Theorem 9). Also, robustness of the observer in the presence
of bounded disturbances is studied, and some conclusions about the behavior of the estimation
error are obtained. The proposed observer can be used in the design of observers for one degree of
freedom mechanical systems as shown in Chapter 4, this result is reported in the following article:

� O Texis-Loaiza, JA Moreno, L Fridman Bi-homogeneous observers for uncertain 1-DOF me-
chanical systems. Int J Robust Nonlinear Control. 2023; 1- 15. doi: 10.1002/rnc.6622.

The idea presented in chapter 4 is extended in chapter 5, where is presented a bi-homogeneous
observer for two degree of freedom mechanical systems, this result is reported in the following article:

� O Texis-Loaiza, R Meléndez-Pérez, JA Moreno, L Fridman , �Bi-Homogeneous Observers for
Uncertain 2-DOF Mechanical Systems,� in IEEE Control Systems Letters, vol. 7, pp. 133-138,
2023, doi: 10.1109/LCSYS.2022.3186853.

1.4 Thesis Structure

Beside the introduction, the thesis is organized in �ve chapters:

� Chapter 2 is a collection of concepts and ideas that support the developments presented in
the chapters after it. The considered topics are stability, nonlinear systems, homogeneity, and
bi-homogeneity.

� In Chapter 3, the bi-homogeneous observer is presented and its properties are investigated.
This chapter contains the core of the thesis and its main contribution.

� Chapter 4, the proposed methodology in Chapter 3 is used to design bi-homogeneous observers
for linearizable mechanical systems in the velocity. Particularly an observer for 1-DOF me-
chanical systems having uncertainties and/or perturbations non-vanishing at the equilibrium
and that may grow with position and velocity. This observer, based on the properties of ho-
mogeneity in the bi-limit [5, 72], converges in prede�ned-time, i.e. it converges in �xed-time
and the gains can be set to achieve any desired upper bound of the convergence time. This
methodology is extended for 2-DOF mechanical systems.

� Chapter 5, in this Chapter, the proposed methodology in Chapter 4 is generalized to design
bi-homogeneous observers for triangularizable mechanical systems in the velocity.

� Finally, in Annexes A, B and C, all the proofs are shown.



Chapter 2

Preliminaries

This chapter presents some notation and a brief review of concepts of homogeneity and stability
that will be use along this thesis. Most of these results are taken from the works in [97, 12, 80, 35,
17, 18, 62, 81].

Along this report, the following notation is used. For a real variable z ∈ R and a real number
p ∈ R, the symbol ⌈z⌋p = |z|p sign(z) is the signed power p of z. According to this, ⌈z⌋0 = sign(z),
d
dz ⌈z⌋

p = p|z|p−1 and d
dz |z|

p = p⌈z⌋p−1 almost everywhere for z. Note that ⌈z⌋2 = |z|2 sign(z) ̸= z2,
and if p is an odd number, then ⌈z⌋p = zp and |z|p = zp for any even integer p. Moreover,
⌈z⌋p⌈z⌋q = |z|p+q, ⌈z⌋p⌈z⌋0 = |z|p, and ⌈z⌋0|z|p = ⌈z⌋p.

2.1 Lyapunov Stability

Consider the autonomous system
ẋ = f(x), (2.1)

where x ∈ R are states of the system, f : D → Rn is a continuous mapping in a domain D ⊂ Rn.
Without loss of generality,let x̄ = 0 ∈ D be an equilibrium point of (2.1), i.e. f(0) = 0. Then

De�nition 17 (Lyapunov stability) [56] The equilibrium point x = 0 of (2.1) is

� stable if, for each ϵ > 0, there is δ = δ(ϵ) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ϵ,∀t ≥ 0,

� unstable if it is not stable,

� asymptotically stable if it is stable and δ can be chosen so that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0.

15
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De�nition 17 states that an equilibrium point of a system is stable if every solution that starts
in a neighbourhood of the origin (i.e. ||x(0)|| < δ) stays close, otherwise the origin is unstable.
Moreover, if all trajectories converge to origin, it is asymptotically stable. Generally, proving the
stability of an equilibrium point of (2.1) by means of De�nition 17 is not possible. To manage it, a
useful tool is de�ned by the Barbashin-Krasovskii theorem:

Theorem 1 [56] Let x = 0 be an equilibrium point for (2.1). Let V : Rn → R be a continuously
di�erentiable function such that

V (0) = 0 and, V (x) > 0, ∀ x ̸= 0 : (2.2)

||x|| → ∞ ⇒ V (x) → ∞, (2.3)

V̇ (x) < 0, ∀x ̸= 0, (2.4)

then x = 0 is globally asymptotically stable.

In Theorem 1, the function V (x) is known as Lyapunov function. Likewise, if a Lyapunov
function V (x) satis�es locally the conditions (2.2) - (2.4), then asymptotically stability is got locally
as well. If a function V (x) is proven to satisfy (2.2), then V (x) is named candidate Lyapunov
function. In general, it is easy to propose a candidate Lyapunov function but �nding a function
that satis�es the conditions (2.2) - (2.4) is more complicated.

2.1.1 Stability of Di�erential Inclusions

Consider the di�erential inclusion
ẋ ∈ F (t, x), (2.5)

where x ∈ Rn are states. F : [0,+∞)×R → R is a multivalued function. F is assumed to be a non
empty subset, compact and convex of R for every x ∈ R and it is a upper semi-continuous function.
Likewise, a solution of this di�erential inclusion is any function x(t) that is de�ned in some interval
I ⊆ [0,∞] and is absolutely continuous in each compact subinterval of I such that ẋ ∈ F (t, x(t))
almost everywhere on I. The equilibrium point is de�ned as 0 ∈ F (t, 0). A di�erential inclusion
ẋ ∈ F (x) that is associated to ẋ ∈ F (t, x) is referred to as Filippov di�erential inclusion and its
solutions as Filippov solutions [35, 71]. Since solutions of di�erential inclusion are not unique, two
de�nitions of stability are introduced [25]. The �rst one is weak stability, when stability is satis�ed
by at least one solution, and strong stability, which ensures the property for all solutions.

De�nition 18 [25] F is strongly asymptotically stable if, and only if, its solutions globally exist
and there exists a function β ∈ KL such that for every solution x(t, x(0)) of 2.5, the inequality
||x(t, x(0))|| ≤ β(t, ||x(0)||) is satis�ed.

Lemma 1 [12] Let F : [0,+∞] × R → R be a set-valued map such that the (local) existence of
solutions of 2.5 is ensured. Assume that there exists a strict LF V , i.e. a function V = V (t, x)
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such that, for some functions a, b, c ∈ K∞
0 ,

a(||x||) ≤ V (t, x) ≤ b(||x||), ∀t ∈ [0,+∞), x ∈ R, (2.6)

t1 ≤ t2 ⇒ V (t2, x(t2))− V (t1, x(t1)) ≤ −
∫ t2

t1

c(||x(τ)||)dτ (2.7)

for each pair times (t1, t2) and each solution x(·) : |t1, t2| → Rn of 2.5. Then the origin is Uniformly
Globally Asymptotically Stables (UGAS) for 2.5.

Note that Lyapunov functions for di�erential inclusions are similar to Lyapunov functions for
DEs.

2.1.2 Types of Stability

In this subsection, the system 2.5 is considered to de�ne the type of stability of a system.

2.1.2.1 Exponential Stability

De�nition 19 [12] The origin is said to be exponentially stable for (2.1) if there exist three numbers
ω < 0, M > 0 and δ > 0 such that for any x0 ∈ βδ, the solution x(·) of (2.1) issuing from x0 at
t = 0 is de�ned on [0,+∞) and it ful�lls

∀t ≥ 0, ||x(t)|| ≤Meωt||x0||. (2.8)

The in�mum of the numbers ω < 0 for which (2.8) is satis�ed (for some constants M , δ > 0) is
called the exponent of 0.

Theorem 2 [12] Let f be a vector �eld of class C1 on a neighbourhood Ω of 0 ∈ R, and assume that

f(0) = 0. Then (2.1) is exponentially stable at 0 if, and only if, the Jacobian matrix A =
(
∂f
∂x

)∣∣∣
x=0

is Hurwitz. Moreover, the exponent of 0 is sup {Re(λ), λ ∈ σ(A)}, being σ(A) the eigenvalues of A.

Theorem 3 [12] Let f be a vector �eld of class C1 near 0 and such that f(0) = 0. Then the
following statements are equivalent:

1. 0 is exponentially stable for (2.1),

2. There exists a function V of class C1 in a neighbourhood of 0 such that, for some positive
constants C1, C2, C3, r and δ

||x|| < δ ⇒ C1||x||r ≤ V (x) ≤ C2||x||r, (2.9)

||x|| < δ ⇒ ⟨∇V (x), f(x)⟩ ≤ −C3||x||r, (2.10)
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3. There exists a symmetric positive de�nite matrix S ∈ Rn×n such that, for some positive
constants C, δ

||x|| < δ ⇒ ⟨Sx, f(x)⟩ ≤ −C||x||2. (2.11)

2.1.2.2 Rational Stability

De�nition 20 [12] The origin is said to be rationally stable for (2.1) if there exist positive numbers
M , k, η and δ (with η ≤ 1) such that for any x0 ∈ Bδ the solution x(·) of (2.1) issuing from x0 at
t = 0 is de�ned on [0,+∞) and it ful�lls

∀t ≥ 0, ||x(t)|| ≤M(1 + ||x0||kt)−
1
k ||x0||η. (2.12)

Theorem 4 [12] Let f be a vector �eld of class C1 near 0 and such that f(0) = 0. Then the origin
is rationally stable if, and only if, there exists a continuous function V de�ned in a neighbourhood
of 0 and such that, for some positive constants C1, C2, C3, r1, r2, r3 and δ, with r3 > r2

||x|| < δ ⇒ C1||x||r1 ≤ V (x) ≤ C2||x||r2 , (2.13)

||x|| < δ ⇒ V̇ (x) ≤ −C3||x||r3 . (2.14)

Corollary 1 [12] Let f be a vector �eld of class C1 near 0 and such that f(0) = 0. Let ψ(t, x) the
�ow of the system (2.5). Assume that (2.12) is satis�ed and that for some constants C, p, δ > 0∣∣∣∣∣∣∣∣∂ψ∂x (t, x)

∣∣∣∣∣∣∣∣ ≤ C
(
1 + ||x||kt

)p
, ∀t ≥ 0, ||x|| < δ. (2.15)

Assume that ||g(x)|| = 0
(
||x||k+η+r(1−η)

)
as x → 0. Then the origin is still AS for the perturbed

system
ẋ = f(x) + g(x). (2.16)

2.1.2.3 Finite-Time Stability

De�nition 21 [12, 21] Consider f to be

� a continuous vector �eld de�ned on a neighbourhood of 0,

� f(0) = 0,

� ẋ = f(x) possesses unique solutions in forward time,
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and let ϕ(t, x) denote the �ow map, which is continuously de�ned on an open set in R+ × Rn.
Then the origin is said to be �nite-time stable for ẋ = f(x) if it is stable and there exist an
open neighbourhood U of the origin and a function T : U\ {0} → (0,+∞) (called the settling-
time function) such that, for each x ∈ U\ {0}, ϕ(·, x) is de�ned on [0, T (x)), ϕ(t, x) ∈ U\ {0} ∀ ∈
[0, T (x)), and limt→T (x) ϕ(t, x) = 0.

Theorem 5 [12, 21] Let f be as in De�nition 21. Then the origin is �nite-time stable and the
settling-time function is continuous at 0 if, and only if, there exist real numbers C > 0 and α ∈ (0, 1),
and a continuous positive de�nite function V de�ned on an open neighbourhood Ω of 0, such that

∀x ∈ Ω\ {0} , V̇ (x) ≤ −CV (x)α. (2.17)

If this is the case, then the settling-time function T (x) is actually continuous in a neighbourhood of
0, and it ful�lls (for ||x|| small enough)

T (x) ≤ 1

C(1− α)
V (x)1−α. (2.18)

2.1.2.4 Fixed-Time Stability

De�nition 22 [80] The origin is said to be �xed-time stable, also called as uniformly in the initial
condition �nite-time stable [27], for ẋ = f(x) if it is globally �nite-time stable and the settling-time
function T (x) is bounded by a positive number Tmax > 0, i. e. T (x) ≤ Tmax, ∀x ∈ Rn.

2.2 Classical Homogeneity

Consider the function g : Rn → R. Classically, g is said to be homogeneous1 of degree m ∈ R, if n
and all ϵ ∈ R>0,

g(ϵx) = ϵmg(x). (2.19)

Note that homogeneity is a scaling property, it means that if in x0 the value of the function is g(x0),
then all values of the function in the points y = ϵx0 are determined by ϵmg(x0). One very simple
example of a homogeneous function is a linear one. Linear functions are homogeneous of degree
m = 1, for example if g(x) = ax, a ̸= 0, a ∈ R, then g(ϵx) = ϵg(x). Another example of such
functions are homogeneous polynomial functions. Now consider all the di�erentiable homogeneous
functions g of degree m. A very interesting property of these functions is given by the Euler's
formula

∇g(x) · x = mg(x), (2.20)

observe that all the di�erentiable homogeneous functions are characterized by such equation. One
very useful advantage that homogeneous functions o�er is in the �eld of di�erential equations.
Recall that homogeneous ordinary di�erential equations are separable equations. So, the process of
solving them is simpli�ed due to their homogeneity.
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2.3 Weighted Homogeneity

Homogeneity is a useful scaling property for functions as well as for di�erential equations. This idea
has been extended to a wider class of functions by generalizing the way the scaling is performed.
Such extension known as weighted homogeneity has been studied, for example in [97, 51]. The classic
homogeneity can be extended to functions and vector �elds by mean of the following de�nition

De�nition 23 [12, 25] Fix a set of coordinates (x1, · · · , xn) ∈ Rn. Let r = (r1, · · · , rn), ri ∈ R>0.
The components of r are called the weights of the coordinates.

� The one-parameter family of dilations (δrϵ )ϵ>0 (associated with r) is de�ned by

δrϵx := (ϵr1x1, . . . , ϵ
rnxn) , ∀x ∈ Rn,∀ϵ > 0.

� A function V : Rn → R is said to be r-homogeneous of degree m ∈ R or (r,m)-homogeneous
for short if

V (δrϵ (x)) = ϵmV (x),∀x ∈ Rn, ∀ϵ > 0.

� A vector �eld f = [f1(x), . . . , fn(x)]
T is said to be r-homogeneous of degree k or (r, k)-

homogeneous, if the component fi is δ
r-homogeneous of degree k + ri, ∀i, i.e.

fi(ϵ
r1x1, . . . , ϵ

rnxn) = ϵk+rifi(x),∀x ∈ Rn, ∀ϵ > 0, i = 1, . . . , n,

or equivalently
f(δrϵ ) = ϵkδrϵf(x), ∀x ∈ R, ∀ϵ > 0.

� A multivalued vector �eld F (x) ∈ Rn is said to be r-homogeneous of degree k if

F (δrϵ ) = ϵkδrϵF (x), ∀x ∈ R, ∀ϵ > 0.

In De�nition 23, the idea of classic homogeneity is conserved, having an scaling factor. However,
this is weighted for each coordinate.

De�nition 24 [12] The (generalized) Euler vector �eld e associated with the family of dilations
(δrϵ )ϵ>0 is de�ned by

e = [r1x1, . . . , rnxn]
T .

Proposition 1 [12] Let (δrϵ )ϵ>0 and e be as in De�nition 24. Let V (respectively f) be a function
(respectively a vector �eld) of class C1 ∈ Rn, and let m, k ∈ R. Then

1. V is r-homogeneous of degree m if, and only if, e · V = mV .

2. f is r-homogeneous of degree m if, and only if, [e, f ] = ∂f
∂xe−

∂e
∂xf = kf .
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Corollary 2 [12] Let (δrϵ ) be any family of dilations on Rn, and let V1, V2 (respectively f1, f2) be
r-homogeneous functions (respectively, vector �elds) of degrees m1, m2 (respectively k1, k2). Then
V1V2 (respectively V1f1, [f1, f2]) is r-homogeneous of degree m1+m2 (respectively m1+k1, k1+k2).

An important tool for homogeneous functions (respectively, vector �elds) is the homogeneous
norm, which is de�ned as follows:

De�nition 25 [12] A r-homogeneous norm is a map x→ ||x||r,p, where p ≥ 1,

||x||r,p :=

(
n∑
i=1

|xi|
p
ri

) 1
p

, ∀x ∈ Rn.

The set Sr,p {x : ||x||r,p = 1} is the corresponding r-homogeneous unit sphere.

Homogeneous functions possess some important properties, for instance:

� Property 1: Consider two continuous, (r, lk)-homogeneous, real-valued functions Vk : Rn →
R, k = 1, 2, lk ∈ R. Then:

(a) The product V1(x)V2(x) is (r, l1 + l2)-homogeneous.

(b) If V1 is positive-de�nite, there exist constants c1 ≤ c2 such that the inequality

c1 [V1(x)]
l2
l1 ≤ V2(x) ≤ c1 [V1(x)]

l2
l1 ,

holds for all x ∈ Rn. Moreover, if V2 is also positive-de�nite, then c1 ∈ R+.

� Property 2: Consider a continuously di�erentiable function V : Rn → R and a continuous
vector �eld f : Rn → Rn, or a set-valued vector �eld F : Rn ⇒ Rn. The Lie derivative of
V (x) along the vector �eld f(x) is denoted by LfV (x) = ∇V (x) · f(x) = ⟨∇V (x)f(x)⟩, and

LFV (x) := {y ∈ R|y = ⟨∇V (x), ν⟩, ν ∈ F (x)} ,

is the Lie derivative of V (x) along F (x). If V and f (resp. F ) are r-homogeneous of degrees
lV > 0 and lf ∈ R, respectively, then LfV (resp. LFV ) is (r, lV + lf )-homogeneous. This
implies that ∂V (x)

∂xi
is (r, lV − ri)-homogeneous, with ri being the weight of the coordinate xi.

2.3.1 Homogeneous Systems

Weighted homogeneity is very useful for the analysis of dynamical systems. Below are listed, in a
roughly manner, some characteristics of homogeneous systems.
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� Local properties are equivalent to global ones.

� If a homogeneous system has an asymptotically stable equilibrium point, then the convergence
rate of the trajectories can be determined by the homogeneous degree of the system.

� There are converse Lyapunov theorems that assert the existence of smooth homogeneous LFs
for homogeneous systems.

� Robustness properties of a homogeneous control system can be determined immediately based
on its homogeneity degree.

Such properties and many others can be found formally in [97, 47, 51, 21, 22, 12, 17], below some
of them are recalled.

One of the main characteristics of systems with non-Lipschitz vector �elds is that their trajec-
tories can exhibit �nite-time convergence to the equilibrium points. The following de�nition was
originally given in [21], however its version from [18] is recalled.

De�nition 26 System ẋ = f(x), is said to be �nite-time-stable at the origin (on an open neighbor-
hood V ⊂ Rn of the origin) if:

1. There exists a function δ ∈ K such that for all x0 ∈ V, ||ϕ(t : t0, x0)|| ≤ δ(||x0||) for all t ≥ 0.

2. There exists a function T : V\ {0} → R≥0 such that for all x0 ∈ V\ {0}, ϕ(t : t0, x0) is de�ned,
unique, non-zero in [0, T (x0)), and limt→T (x0) ϕ(t : t0, x0) = 0.

De�nition 27 System ẋ ∈ F (x) is said to be �nite-time-stable at the origin (on an open neighbor-
hood V ⊂ Rn of the origin) if:

1. There exists a function δ ∈ K such that for all x0 ∈ V, ||ϕ(t : t0, x0)|| ≤ δ(||x0||) for all t ≥ 0
and all ϕ(t : t0, x0) ∈ Sx0.

2. There exists a function T0 : V\ {0} → R≥0 such that for all x0 ∈ V and all ϕ(t : t0, x0) ∈ Sx0,
limt→T (x0) ϕ(t : t0, x0) = 0.

The function T is the settling-time function. This is extended to the origin as T (0) = 0. In
general, T is discontinuous at the origin, however, as proved in [21] for continuous systems and
in [76] for discontinuous ones (di�erential inclusions), roughly speaking, T is continuous if there
exists a LF for the system such that V̇ ≤ −cV α(x), c > 0, α ∈ (0, 1). For the case of homogeneous
systems the existence of a homogeneous LF and [22]-Lemma guarantee the last inequality. Hence,
a �nite-time stable homogeneous system has always a continuous and locally bounded settling-time
function T . In the literature there are several results on the existence of homogeneous LFs for
(continuous and discontinuous) homogeneous systems, however the results given in [85] and [17] can
be seen as generalizations of all its predecessors. The following theorem was taken from [12].
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Theorem 6 Consider ẋ = f(x), with f continuous and homogeneous of degree k for some vector of
weights r. If the system's origin is an asymptotically stable equilibrium point, then for any p ∈ Z+

and any m > p ·maxi ri, there exists a class Cp homogeneous function V of degree m, which is a
strict LF for ẋ = f(x).

For the case of di�erential inclusions there is the following result.

Theorem 7 Let F be a homogeneous set-valued vector �eld of degree k with the basic conditions,
the following is equivalent:

� The di�erential inclusion ẋ ∈ F (x), is strongly globally asymptotically stable.

� For all m > 0max {k, 0}, there exist a pair (v,W ) of continuous functions such that:

1. V is of class C∞, positive de�nite and homogeneous of degree m;

2. W is C∞, and strictly positive for all x ∈ Rn\ {0}. W is homogeneous of degree m+ k;

From the last two theorems it is possible to characterize the convergence rate of the trajectories
regarding the system's homogeneous degree.

Corollary 3 Consider ẋ = f(x) with f continuous and homogeneous of degree k for some vector
of weights r. Suppose that its origin is an asymptotically stable equilibrium point.

� If k > 0, x = 0 is rationally stable.

� If k = 0, x = 0 is exponentially stable.

� If k < 0, x = 0 is �nite-time stable.

Corollary 4 [61, 17] Let F be as in Theorem 7. If k < 1 and ẋ = F (x) is strongly globally
asymptotically stable, then it is strongly globally �nite-time stable.

2.4 Homogeneous Approximations of Functions and Systems: Ho-

mogeneity in the Bi-Limit

Let us recall some de�nitions of homogeneity in the bi-limit. However, for more details, we refer
the reader to [5] and [26] for homogeneity in the bi-limit of continuous or discontinuous systems,
respectively.
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De�nition 28 (Homogeneity in the 0-limit)

� A function φ : Rn → R is said to be homogeneous in the 0-limit with associated triple
(r0, l0, φ0), or simply (r0, l0, φ0)-homogeneous, where r0 ∈ Rn+ is the vector of weights, l0 ∈ R≥0

is the degree, and φ0 : Rn → R is the approximating function, if φ is continuous, φ0 is con-
tinuous and not identically zero, and for each compact set C ∈ Rn\ {0} and each λ > 0, there
exists ϵ0 such that

max
x∈C

∣∣∣∣φ(δr0ϵ x)ϵl0
− φ0(x)

∣∣∣∣ ≤ λ,∀ϵ ∈ (0, ϵ0].

� A vector �eld f : Rn → Rn, with components fi : Rn → R, i = {ι}nι=1 , is said to be
homogeneous in the 0-limit with associated triple (r0, l0, f0), or simply (r0, l0, f0)-homogeneous,
where r0 ∈ Rn+ is the vector of weights1, l0 ∈ R is the degree, and f0 : Rn → Rn is the
approximating vector �eld, if for each i = {ι}nι=1, l0+r

0
i ≥ 0 and the function fi is homogeneous

in the 0-limit with associated triple (r0, l0 + r0i , f0,i).

� A set-valued vector �eld F : Rn ⇒ Rn is said to be homogeneous in the 0-limit with associated
triple (r0, l0, F0), or simply (r0, l0, F0)-homogeneous, where r0 ∈ Rn+ is the vector of weights,
l0 ∈ R is the degree, and F0 : Rn → Rn is the approximating set-valued vector �eld, if F and
F0 satisfy the standard assumptions of section 2.1.1, and for each compact set C ∈ Rn\ {0}
and each λ > 0, there exists ϵ0 such that

max
x∈C

dH

(
ϵ−l0 (δr0ϵ )−1 F (δr0ϵ x), F0(x)

)
≤ λ, ∀ϵ ∈ (0, ϵ0],

where dH H is the Hausdor� distance2.

De�nition 29 (Homogeneity in the ∞-limit)

� A function φ : Rn → R is said to be homogeneous in the ∞-limit with associated triple
(r∞, l∞, φ∞), or simply (r∞, l∞, φ∞)-homogeneous, where r∞ ∈ Rn+ is the vector of weights,
l∞ ∈ R≥0 is the degree, and φ∞ : Rn → R is the approximating function, if φ is continuous,
φ∞ is continuous and not identically zero, and for each compact set C ∈ Rn\ {0} and each
λ > 0, there exists ϵ∞ such that

max
x∈C

∣∣∣∣φ(δr∞ϵ x)

ϵl∞
− φ∞(x)

∣∣∣∣ ≤ λ,∀ϵ ≥ ϵ∞.

� A vector �eld f : Rn → Rn, with components fi : Rn → R, i = {ι}nι=1 , is said to be homoge-
neous in the ∞-limit with associated triple (r∞, l∞, f∞), or simply (r∞, l∞, f∞)-homogeneous,
where r∞ ∈ Rn+ is the vector of weights, l∞ ∈ R is the degree, and f∞ : Rn → Rn is the approx-
imating vector �eld, if for each i = {ι}nι=1, l∞ + r∞i ≥ 0 and the function fi is homogeneous
in the 0-limit with associated triple (r∞, l∞ + r∞i , f∞,i).

1Note that the components of the weight vectors r0 ∈ Rn
+ and r∞ ∈ Rn

+ will be denoted r0i and r∞i for i = {ι}nι=1,
respectively.

2Consider two nonempty sets A ⊂ Rn and B ⊂ Rn and a point x ⊂ Rn. The distance between x
and A is given by ρ(x,A) = infA ||x − a||, and the Hausdor� distance dH between A and B is de�ned by:
dH(a,B)=max {supA ρ(x,B), supB ρ(x,A)}
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� A set-valued vector �eld F : Rn ⇒ Rn is said to be homogeneous in the ∞-limit with associated
triple (r∞, l∞, F∞), or simply (r∞, l∞, F∞)-homogeneous, where r∞ ∈ Rn+ is the vector of
weights, l∞ ∈ R is the degree, and F∞ : Rn → Rn is the approximating set-valued vector
�eld, if F and F∞ satisfy the standard assumptions of section 2.1.1, and for each compact set
C ∈ Rn\ {0} and each λ > 0, there exists ϵ∞ such that

max
x∈C

dH

(
ϵ−l∞ (δr∞ϵ )−1 F (δr∞ϵ x), F∞(x)

)
≤ λ, ∀ϵ ≥ ϵ∞.

De�nition 30 (Homogeneity in the bi-limit ([5])) A function φ : Rn → R (or a vector �eld
f : Rn → Rn, or set-valued vector �eld F : Rn ⇒ Rn) is said to be homogeneous in the bi-limit, or
bl-homogeneous for short, if it is homogeneous in the 0-limit and homogeneous in the ∞-limit.

Note that if a function φ (resp. a vector �eld f or a set-valued vector �eld F ) is homogeneous
in the bi-limit, the approximating functions φ0 or φ∞ (resp. f0, f∞ or F0 or F∞) are homogeneous
in the standard sense with its corresponding weights and degrees.

The next theorem generalizes theorem 2.20 in Reference [5] to DIs.

Theorem 8 (Homogeneous in the bi-limit Lyapunov functions [26]) Consider a homogeneous
in the bi-limit set-valued vector �eld Rn ⇒ Rn, with associated triples (r0, l0, F0) and (r∞, l∞, F∞)
such that all satisfy the standard of section 2.1.1 and that the origins of the DIs

ẋ ∈ F (x), ẋ ∈ F0(x), ẋ ∈ F∞,

are globally asymptotically stable equilibria. Let m0 and m∞ be real numbers such that m0 >
max i

{
r0i
}
and m∞ > max i{r∞i }. Then there exists a C1, positive de�nite, and proper function

V : Rn → R≥0, such that for each i ∈ {ι}nι=1, the function x→ ∂V
∂xi

is bl-homogeneous with associated

triples (r0,m0− r0i ,
∂V0
∂xi

) and (r∞,m∞− r∞i , ∂V∞∂xi ) and the (set-valued) functions x→ ∇V (x) ·F (x),
x→ ∇V0(x) · F0(x), and x→ V∞(x) · F∞(x) are negative de�nite. Moreover, if l0 ≤ l∞ there exist
positive constants 0 < c1 ≤ c2, κ∞ > 0 and κ∞ > 0 such that the following inequalities hold for all
x ∈ Rn

c1µ(x) ≤ V (x) ≤ c2µ(x) (2.21)

V̇ (x) ≤ sup
ν∈F (x(t))

(∇V (x) · ν) ≤ −κ0V
m0+l0

m0 (x)− κ∞V
m∞+l∞

m∞ (x), (2.22)

where the bl-homogeneous function µ(x) is

µ(x) = ||x||m0
r0,p + ||x||m∞

r∞,p.

For bl-homogeneous systems the type of convergence is characterized by the homogeneity degrees
of the homogeneous approximations. In general, the l0 (degree of homogeneity in the 0-limit)
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determines the behavior near the origin, while l∞ (degree of homogeneity in the ∞-limit) far from
it (near ∞). For the following lemma de�ne the function, depending on ν ∈ R≥0 and t ∈ R≥0

Φ(t, ν; l,m, k) =




(
ν−

l
m + l

mkt
)−m

l when t ≤ −m
lkν

− l
m

0 when t ≥ −m
lkν

− l
m

if l < 0,

exp(−kt)ν if l = 0,
ν(

1+ l
m
kν

l
m t

)m
l

if l > 0.

(2.23)

Φ is a KL function, that is, Φ(t, 0; l,m, k) = 0, it is monotonic increasing in ν, decreasing in t and
limt→∞Φ(t, v; l,m, k) = 0.

Lemma 2 Consider a homogeneous in the bi-limit set-valued vector �eld F : Rn ⇒ Rn, satisfying
the assumptions of Theorem 8. Then x = 0 is a globally AS equilibrium point of ẋ ∈ F (x), such
that for all x0 ∈ Rn all solutions x(t, x0) ∈ S(x0) satisfy

µ(x(t)) ≤ 1

c1
min {Φ0(t, c2µ(x0)),Φ∞(t, (c2µ(x0)))} , (2.24)

with the positive constants c1, c2, κ0, κ∞, m0, m∞ > 0 given in Theorem 8, and where Φ0(t, ν) =
Φ(t, ν; l0,m0, κ0), Φ∞(t, ν) = Φ(t, ν; l∞,m∞, κ∞). In particular

(i) If l0 < 0 then x = 0 is (globally) Finite-Time Stable (FTS) and the settling-time function
T (x0) (see Lemma 2 from [26])) is bounded ∀x0 ∈ Rn by

T (x0) ≤ − m0

l0κ0
V

− l0
m0 (x0) ≤ − m0

l0κ0
(c2µ(x0))

− l0
m0 . (2.25)

(ii) If l0 < 0 and l∞ > 0 then x = 0 is �xed-time stable [80], that is, it is globally FTS and the
settling-time function T (x0) is globally bounded by a positive constant T̄ , independent of x0,
that is, ∃T̄ ∈ R+ such that for all x0 ∈ Rn

T (x0) ≤ T̄ .

Function T (·) is called the settling-time function of the DI, and it is continuous at zero and
locally bounded. Moreover, the �xed-time constant T can be estimated from the Lyapunov
function of Theorem 8 as

T (x0) ≤ T̄ =
m∞
l∞κ∞

(
κ0
κ∞

) 1(
m∞
m0

l0
l∞

−1

)
− m0

l0κ0

(
κ0
κ∞

) 1(
1− m0

m∞
l0
l∞

)
. (2.26)



Chapter 3

Bi-Homogeneous Observer for Nonlinear

Systems in Triangular Form

3.1 Bi-Homogeneous Observers for a Non-Lipschitz Triangular Form

The classical theory of observers aims to reconstruct the state of a dynamic system from the knowl-
edge of the inputs, outputs and the dynamic model of the system.A physical system is often subject
to disturbances, such as measurement uncertainties, system faults and external disturbances. These
disturbances have an adverse e�ect on the normal behavior of the process, and their estimation can
be used to design a control system capable of minimizing these e�ects. These disturbances are called
Unknown Inputs (UI) when they appear as additional inputs to the process, and their presence can
make the estimation of system states di�cult.

In the Linear Time Invariant (LIT) case it is well known that a necessary and su�cient condition
for the existence of an observer is detectable. However, when the input is not completely known
and certain inputs to the system cannot be measured, detectability is not su�cient and strong
observability is required to ensure the existence of an Unknown Inputs Observer (UIO). In the LIT
case this problem has been studied for a long time and the necessary and su�cient conditions to
solve the problem are well known [29], [48], [52]. Unknown Inputs Observer have proven to be very
useful, and have been widely used, for example, in the design of robust observers, in decentralized
control, and in the area Detection and Isolation of Faults in dynamic systems.

If the UI in a nonlinear system is arbitrary, the unknown input observer theory ([48, 84, 83])
requires that the measured output has relative degree one with respect to (w.r.t.) the UI. When
the measured output has relative degree greater that one w.r.t the UI, the existence of an UIO not
only depends of strong observability propertie of system i.e. if the system is strongly observable
and the UI is arbitrary, there is not any UIO capable of estimating the trajectories of system. The
existence of an UIO depends on the strong observability property of the system and the existence
of a bound for the UI (there is a positive constant such that the norm of the UI is less or equal than
this positive constant).

One of the techniques most commonly used for designing UIO is the sliding modes. The sliding-

27
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mode observers ([13, 33, 96, 87]) have proven to be e�cient for providing theoretically exact �nite-
time convergence of the output estimation error, asymptotic convergence to the real states, and in
some cases even the reconstruction of the UI.

As the sliding modes, the bi-homogeneity properties have been used for the design of UIO as
is the case of the work presented in [8]. In this work an observer based on the generalized super-
twisting (GST) algorithm is presented. This observer estimates globally and in �nite-time the states
of the nonlinear system despite of the existence of unknown inputs.

In the case when there are no unknown inputs, the observation problem is no less di�cult,
unlike for linear systems, there is no systematic procedure to design a state observer for a given
nonlinear model. In particular, the theory of high gain ([44]; [43]) and Luenberger observers have
been developed for autonomous nonlinear systems but their extension to controlled systems is not
straightforward. Most of the methods consist of (one or) two steps:

S1) Finding a reversible coordinate transformation, allowing us to rewrite the system dynamics
in a convenient form for writing and/or analyzing the observer. Among the possible transformation
operations are: Di�eomorphic or semidi�eomorphic state transformations; di�eomorphic output
transformations; time transformations; and state immersions. The �nal systems in which the original
one are transformed are usually: linear time invariant systems, bilinear systems, state a�ne systems
or linear systems with a structured nonlinear perturbation (for example, in the case of the high-gain
observers, with triangular structured nonlinearity).

S2) For the transformed system an observer will be designed. If this system is linear, then a
standard Luenberger observer is designed. Bilinear or state a�ne systems can be treated as linear
time varying systems, and a Kalman observer can be designed. When the system is linear with a
nonlinear perturbation, it is usual to propose an observer that consists of a copy of the plant and an
output injection, and the e�ect of the nonlinearity will be compensated by a high gain, for example.

In the classical high-gain observer scheme, the nonlinearities of the system must satisfy a
Lipchitz-type condition. On the other hand, when the nonlinearities verify some Hölder-type con-
dition, in [16] it is shown that the classical high gain observer may still be used.

The state estimation problem is further complicated when the system is a�ected by unknown
inputs (UI), giving rise to the problem of designing unknown input observers (UIO). A condition for
the existence of an observer with unknown inputs is strong observability. For strongly observable
systems, one of the techniques most commonly used for designing UIO, when the UI is bounded is
the sliding modes. The sliding-mode observers (SMO) provide �nite-time convergence of the output
estimation error and asymptotic convergence to the real states. These robustness properties of SMO
are obtained when the UI is bounded and under the assumption that the trajectories of the system
are uniformly bounded.
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3.1.1 Contribution and Structure of the Section 3.1

In this section we focus on the design of observers for nonlinear systems in the triangular form with
and without unknown inputs. The proposed methodology results in an observer with theoretically
exact convergence and in �nite- or �xed-time despite the existence of unknown inputs in the system.

Section 3.1.2 presents the problem statement. The construction of proposed observer is described
in Section 3.1.3. The main results are presented in Section 3.1.4. Section 3.1.5 illustrates the main
results through computer simulations. In Section 3.2 some conclusion are drawn. The Appendix A
contains all the proofs.

3.1.2 Problem Statement

Consider nonlinear systems of the form:

ẋ(t) = f(t, x(t), u(t), w(t, x(t))), x(0) = x0,

y(t) = h(x(t)),
(3.1)

where x ∈ Rn is the state, u ∈ Rm is the known input, w ∈ Rq is the unknown input (UI) and y ∈ Rp
is the measured output. f : Rn ×Rm → Rn is a smooth vector �eld, h : Rn → Rp and g : Rn → Rq
are smooth functions. We denote X(t, x0, u(t), w(t)) a solution of (3.1) going through x0 at t = 0,
and as y(t, x0, u(t), w(t)) = h(X(t, x0, u(t), w(t))) ) its corresponding output. We assumed that
the trajectories of the system (3.1) are de�ned for all times (t ≥ 0) and for every input in a domain
D ⊂ Rn (i.e. the trajectories are complete). We are interested in estimating X(t, x0, u(t), w(t))
knowing y and u.

We consider the system (3.1) to be uniformly observable (or observable independently on the
input), and strongly observable with respect to uncertain input w(t). This implies that the observ-
ability map is independent of the unknown input, and that the states can be recovered by means of
the derivatives of the output and known input alone ([48], [74]). In the usual case when there are no
unknown inputs, i.e., w(t) = 0, system (3.1) can be transformed into an observable canonical form
using any di�eomorphism as shown in [42] (e.g. observable canonical form (3.2) (with ai = 1)). In
the case where there are unknown inputs (w(t) ̸= 0); if the system is represented by an observable
canonical form, then, there is any di�eomorphism that transforms system (3.1) to (3.2).

We consider systems that can be transformed to the following form:

Σ :



ẋ1 = f1(y, u) + a1(t, y)x2,

...

ẋi = fi(y, x2, . . . , xi, u) + ai(t, y)xi+1,

...

ẋn = fn(y, x2, . . . , xn, u) + w̄(t, x),

y = x1,

(3.2)
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where x ∈ Rn are the states of system, y is the measured output in R, u is a vector in Rm
representing the known inputs, and w̄(t, x) ∈ R is a bounded unknown input (|w̄(·)| ≤ ∆) which
may depend on the measured output. For i = 1, . . . , n − 1, ai(t, y) are �known� scalar time
functions which can depend on the output of the system. Moreover ai(t, y) satisfy for all the time
that 0 < ai ≤ ai(t, y) ≤ ai. On the functions f(·) the following assumption is made:

Assumption 3 For positive real numbers µ0,i, µ∞,i, and homogeneity weights d0, d∞ in the 0-
limit and in the ∞-limit respectively, such that −1 ≤ d0 ≤ 0 ≤ d∞ < 1

n−1 is satis�ed. The functions

fi(·) ful�lled the following property globally ∀ xia, xib ∈ Ri, i = 2, . . . , n,

|fi(y, x2a, . . . , xia, u)− fi(y, x2b, . . . , xib, u)| ≤ µ0,i

i∑
j=2

|xja − xjb|α0,ij + µ∞,i

i∑
j=2

|xja − xjb|α∞,ij ,

(3.3)

where α0,ij =
1−(n−i−1)d0
1−(n−j)d0 and α∞,ij =

1−(n−i−1)d∞
1−(n−j)d∞ .

Assumption 3 allows us to consider non-linearities with the following characteristics:

(i) In the case in which α0,ij > 0, it implies that the functions fi(·) that satis�es a Hölder
condition satisfy assumption 3.3. When α0,ij = 0 it implies that the function fn(·) may not
vanish at the origin (fn(0, u) ̸= 0) and satisfy assumption 3.3.

(ii) In the case in which α∞,ij ≥ 1, it implies that the function fi(·) that satis�es a Lipschitz
condition satisfy assumption 3.3.

The observer implementation (3.4) needs to satisfy Assumption 3. But if Assumption 3 is
satis�ed only locally and the trajectories of system evolve in a compact set, then, it is still possible
to use the observer (3.4) considering that outside this compact the functions of the system are
constant (see Section 3.1.4.1).

The main goal of this work is to design a global observer bi-homogeneous for the systems (3.2),
that allows to estimate asymptotically the exact value of the systems state in �nite-time or in
�xed-time, despite of the existence of unknown inputs in the system.
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3.1.3 Observer Structure

For system (3.2), the following observer is proposed:

Ω :



e1 = x̂1 − x1,

˙̂x1 = −k1La1(t, y)ϕ1(e1) + f1(y, u) + a1(t, y)x̂2,

...
˙̂xi = −kiLiai(t, y)ϕi(e1) + fi(y, x̂2, . . . , x̂i, u) + ai(t, y)x̂i+1,

...
˙̂xn = −knLnϕn(e1) + fn(y, x̂2, . . . , x̂n, u),

(3.4)

where the nonlinear output injection terms, given by

ϕi(e1) = φi ◦ · · ·φ2 ◦ φ1(e1) (3.5)

are the composition of the monotonic growing functions φi : R → R (note that ⌈z⌋p = |z|p sign(z))

φi(s) = κi⌈s⌋
r0,i+1
r0,i + θi⌈s⌋

r∞,i+1
r∞,i . (3.6)

φi is a sum of two (signed) power functions, with powers selected as r0, n = r∞, n = 1, and for
i = 1, · · · , n+ 1

r0,i =r0,i+1 − d0 = 1− (n− i)d0,

r∞,i =r∞,i+1 − d∞ = 1− (n− i)d∞,
(3.7)

which are completely de�ned by two parameters −1 ≤ d0 ≤ d∞ < 1
n−1 . With this selection the

powers in (3.6) satisfy r0,i+1

r0,i
≤ r∞,i+1

r∞,i
, so that the �rst term in φi(s) is dominating for small values of

s, while the second is dominating for large values of s. This domination e�ect is naturally extended
to the injection terms ϕi in (3.5). The homogeneity weights of x̂i in the 0-limit are r0,i and in the
∞-limit are r∞,i.

The system Ω is a copy of the system (3.2) with bi-homogeneous injection terms ϕi and ϕn. The
homogeneity weights of x̂i in the 0-limit are r0,i and in the ∞-limit are r∞,i respectively. Note that,
for large values of the estimation error (e1), the powers

r∞,i+1

r∞,i
, causing a strong correction e�ect.

Indeed, if d∞ > 0 �xed-time convergence is attained. While the �internal� gains κi, θi > 0 can be
selected freely, the gains ki and L ≥ 1, have to be chosen such that the stability of the observer is
guaranteed.

3.1.3.1 Discussion on the Proposed Observer

In this paper, an observer based on the bi-homogeneous di�erentiator developed in [72] is proposed.
The proposed observer contains a copy of the system's dynamics plus bi-homogeneous correction
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terms. Note that for the bi-homogeneous di�erentiator in [72] the system's dynamics is trivial, since
its objective is to estimate as close as possible some time derivatives of a signal y(t).

The use of bi-homogeneous correction terms in the design of observers for nonlinear systems
has been used previously in [6], [8]. In [6], an observers which incorporate a gain update law and
nonlinear output error injection terms is proposed. This observer estimates globally and in �xed-
time the states of the system. In [8], an observer based on the generalized super-twisting (GST)
algorithm is presented. This observer estimates globally and in �nite-time the states of the system
despite of the existence of unknown inputs.

The proposed observer considers a design gain L which is similar to that used by classical high-
gain observers. The gain L in the classical high-gain observers and the observers proposed in this
paper, reduces the e�ect of the nonlinearities in the system. Note that, in particular, if d∞ = 0 the
observer (3.4) has the same characteristics as the classical high gain observer, with the di�erence
that the observer (3.4) converges in �nite-time.

In particular, selecting d0 = d∞ = d and considering ai(t) = 1 , the observer (3.4) becomes
homogeneous as in [16]. For d = 0 one obtains the classical High-Gain observer and for d = −1
the discontinuous observer proposed in [73] is recovered. Note that if d < 0 (resp. d = 0) the
estimation converges in �nite-time (resp. exponentially). For d > 0 the convergence is asymptotic,
but it attains any neighborhood of zero in a time which is uniform in the initial conditions [5].

Of particular interest for a observer is a property that is only achieved when d0 = −1. In
that case ϕn is discontinuous and it induces a Sliding-Mode at the origin, allowing the estimation
to converge exactly, robustly and in �nite-time to the true states of the system (3.2) despite the
existence of UI in the system. For all other values of d0 (d0 > −1), observer convergence is only
achieved if w(t) = 0. Remember that in both cases above the function fn must ful�ll Assumption
3.

3.1.4 Properties of the Observer

The main result of this work states that the observer (3.4) is able to estimate asymptotically the
true states of the system (3.2).

Theorem 9 Let the functions fi(·) be such that Assumption 3 is ful�lled. Select −1 ≤ d0 ≤ d∞ <
1

n−1 and choose arbitrary positive (internal) gains κi > 0 and θi > 0, for i = 1, · · · , n. Suppose
that either w̄(t) = 0 or d0 = −1. Under these conditions, there exist appropriate gains ki > 0 and
L ≥ 1, such that the solutions of observer (3.4) converge globally and asymptotically to the true
states of the system (3.2), i.e. x̂i(t) → xi(t) as t → ∞. In particular, they converge in �xed-time,
i.e. ∃T̄ > 0 such that for any x̂i(0) ∈ Rn, x̂i(t) ≡ xi(t) for t ≥ T̄ , for i = 1, · · · , n, if either
(a) −1 < d0 < 0 < d∞ < 1

n−1 and w̄(t, x) = 0 or

(b) −1 = d0 < 0 < d∞ < 1
n−1 and w̄(t, x) ̸= 0. □
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All proofs are given in appendix A. Observer (3.4) has two distinguishing features compared to its
homogeneous counterparts:

(i) The class of functions fi is much larger e.g. more complete friction models (see, [78]).

(ii) The type of convergence that can be achieved. If −1 ≤ d0 < 0 and d∞ = 0 we obtain
convergence to the true states of the system globally, exactly and in �nite-time. On the other
hand, if 0 < d∞ < 1

n−1 , the type of convergence will be globally, exactly and in �xed-time.

3.1.4.1 Relaxing the Theorem 9

Let D be a compact subset of Rn, and consider that it is known that every solution X(t, x, u, w)
of (3.2) lies entirely in D. The previous consideration does not guarantee that the trajectories of
observer (3.4) remain in the same set. Hence, we de�ne f̂i, to be used instead of fi in the observers,
as

f̂i(y, x2, . . . , xi, u) = satf̄i
(
fi(y, x2, . . . , xi, u)

)
(3.8)

where f̄i = max
x∈D

|fi(y, x2, . . . , xi, u)|. Now consider any compact set D̃ strictly contained in D, there

exist µ̃0,i and µ̃∞,i such that (3.3) holds for f̂i for all (xa, xb) ∈ Rn × D̃. We have f̂i = fi on D̃,
so that if the system trajectories remain in D̃, the model made of the triangular form (3.2) with
f̂i replacing fi is still valid. Then, by taking f̂i instead of fi in the observers, we can modify the
assumptions in Theorem 9, so that fi veri�es Assumption 3 only on the compact set D.

If Assumption 3 holds on a compact set, then for any α̃0,ij and α̃∞,ij such that α̃0,ij ≤ α0,ij

and α̃∞,ij ≤ α∞,ij for all (i, j), there exists µ̃0,i and µ̃∞,i such that Assumption 3 with α̃0,ij , α̃∞,ij ,
µ̃0,i and µ̃∞,i also holds on this compact set. Finally it is possible modify Theorem 9 so that it is
ful�lled only in the compact D.

3.1.4.2 Estimation Error Dynamics and Lyapunov Function

De�ning the observation error as e = x̂− x, their dynamics satisfy (i = 1, · · · , n− 1)

Σobse

{
ėi =− kiL

iai(t, y)ϕi(e1) + ai(t, y)ei+1 + δi(·),
ėn =− knL

nϕn(e1) + δn(·) + w̄(t, x),
(3.9)

where δ1(·) = 0 and δj(y, x2, . . . , xj , e2, . . . , ej , u) = fj(y, x2+e2, . . . , xj+ej , u)−fj(y, x2, . . . , xj , u)
for j = 2, · · · , n.

If we introduce the state and time transformation (for i = 1, · · · , n) z1 = e1
1 , . . . , zi =

ei
Li−1ki−1

,
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τ = Lt, we can write the estimation error dynamics as

Σobsz


z
′
i =− k̃iai(t, y) (ϕi(z1)− zi+1) +

1

ki−1

δi
Li
,

z
′
n =− k̃n

(
ϕn(z1)−

δn + w̄(·)
knLn

)
,

(3.10)

where k0 = 1, k̃i = ki
ki−1

for i = 1, · · · , n, and z′
i =

dzi
dτ corresponds to the derivative with respect

to τ .

For the convergence proof we will use a (smooth) bl-homogeneous Lyapunov Function V ([72]).
To de�ne it we select for n ≥ 2 two positive real numbers p0 and p∞, corresponding to the homo-
geneity degrees of the 0-limit and the ∞-limit approximations of V , such that

p0 ≥ max
i∈{1, ··· , n}

{r0,i}+ d0,

p∞ ≥ max
i∈{1, ··· , n}

{
2r∞,i +

r∞,i

r0,i
d0

}
,

(3.11)

p0
r0,i

≤ p∞
r∞,i

. (3.12)

For i = 1, · · · , n choose arbitrary positive real numbers β0,i > 0, β∞,i > 0 and de�ne the functions

Zi (zi, zi+1) =
∑

j∈{0,∞}

βj,i

[
rj,i
pj

|zi|
pj
rj,i − zi⌈ξi⌋

pj−rj,i
rj,i +

pj − rj,i
pj

|ξi|
pj
rj,i

]
, (3.13)

where ξi = φ−1
i (zi+1). For i = 1, · · · , n − 1, φ−1

i (·) is the inverse function of φi(·) in (3.6). For
i = n take ξn = zn+1 ≡ 0, i.e. Zn(zn) = β0, n

1
p0
|zn|p0 +β∞, n

1
p∞

|zn|p∞ . The homogeneity weights of
zi in the 0-limit and in the ∞-limit are the same as x̂i. The Lyapunov function candidate is then
de�ned as

V (z) =

n−1∑
j=1

Zj (zj , zj+1) + Zn(zn). (3.14)

Proposition 2 Let Assumption 3 be satis�ed, and select p0 and p∞ such that (3.11)-(3.12) are
ful�lled. Choose −1 ≤ d0 ≤ d∞ < 1

n−1 and w(t) = 0 in case d0 ̸= −1. Under these conditions, there

exist gains ki > 0, for i = 1, · · · , n, and L ≥ 1, such that V (z) in (3.14) is a C1, bl-homogeneous
Lyapunov function for the estimation error dynamics (3.10). Moreover, V satis�es (3.15) for some
positive constants ℓ0, ℓ∞ and for monotonic decreasing function of L, Υ0(L), Υ∞(L)

V
′
(z) ≤− (ℓ0 −Υ0 (L))V (z)

p0+d0
p0 − (ℓ∞ −Υ∞ (L))V (z)

p∞+d∞
p∞ . (3.15)

Thus, z = 0 is a Globally Asymptotically Stable equilibrium point of (3.10) selecting L ≥ 1 su�-
ciently large such that Υ0(L) < ℓ0 and Υ∞(L) < ℓ∞. In particular, if d0 < 0 < d∞ then z = 0 is
Fixed-Time Stable (FxTS) Polyakov and Poznyak [82], that is, it is globally FxTS and the settling-
time function T (z0) is globally bounded by a positive constant T̄ , independent of z0, i.e., ∃T̄ ∈ R>0
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such that ∀z0 ∈ Rn, T (z0) ≤ T̄ . T (·) is continuous at zero and locally bounded. Moreover, the
�xed-time T̄ can be estimated from (3.15) as

T̄ ≤ 1

L

 p∞
d∞(ℓ∞−Υ∞(L))

(
ℓ0−Υ0(L)
ℓ∞−Υ∞(L)

) 1(
p∞
p0

d0
d∞

−1

)
− p0

d0(ℓ0−Υ0(L))

(
ℓ0−Υ0(L)
ℓ∞−Υ∞(L)

) 1(
1− p0

p∞
d0
d∞

) . (3.16)

Proposition 2 can be proved from Theorem 1 and Lemma 3 in [26].

3.1.4.3 Gain Calculation

Stabilizing gains ki > 0, i = 1 · · · , n, and L ≥ 1, for the observer (3.4) can be calculated using
V (z) and V̇ (z).

Proposition 3 Let assumption 3 be satis�ed and |w̄(·)| ≤ ∆. A sequence of stabilizing gains ki > 0,
for i = 1, · · · , n and L ≥ 1, can be calculated as follows: (a) Consider w̄(·) = 0, fi(x̄i, u) = 0
for i = 1, · · · , n and select ki as in [72]. (b) Consider w̄(·) ̸= 0, fi(x̄i, u) ̸= 0 and select L large
enough such that V̇ (z) < 0.

It is possible to show that the gain L has two important tasks. (1) From inequality (3.16) gives
an upper bound for the settling time. It can be shown that, when L tends to in�nity, the upper
bound of the convergence time T̄ tends to zero. Therefore, any arbitrary convergence time can be
attained by selecting L appropriately. (2) From (A.16) it is possible to see that when L → ∞ the
e�ect of fi(x̄i, u) decreases.

3.1.4.4 E�ect of Perturbation w̄(t, x)

For the case when d0 ̸= −1 and in the presence of unknown inputs ∆ > 0, the estimation error
cannot be zero asymptotically, but it is uniformly and ultimately. This also happens when d0 = −1,
d∞ > −1 and the observer gain L ≥ 1 is not su�ciently large to fully compensate the e�ect of
w̄(t, x).

Proposition 4 Let Assumption 3 be satis�ed and select stabilizing gains ki and L ≥ 1 for the
observer(3.4) for w(t, x) = 0. If −1 < d0 ≤ d∞ < 1

n−1 or −1 = d0 < d∞ < 1
n−1 then the estimation

error system (3.10) is Input-to-State Stable (ISS) with respect to the input w̄(t, x).

It follows from Proposition 4 that the state z is bounded when w̄(t, x) is bounded, and z → 0 if
w̄(t, x) → 0.
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3.1.5 Example

To illustrate the interest for applications of our observer we consider the same �academic� bioreactor
as the one studied in [44]. Denoting by n1 and n2 the concentrations of microorganisms and
substrate, respectively, and assuming that the rate of growth is given by the �Contois model�, we
get the following standard equations for the bioreactor:

ṅ1 =
a1n1n2

a2n1 + n2
− un1,

ṅ2 =− a3
a1n1n2

a2n1 + n2
− un2 + ua4,

y =n1,

(3.17)

where y = n1 is measured. The constants ai are positive and the control input u is in the interval
Mu = [umin, umax] ⊂ (0, 1). Consider a4 = a04 + a4w, where a4w is an additive time-varying
parametric uncertainties and a04 is the known nominal parameter. In Gauthier, Hammouri, and
Othman [44], it is observed that the following set is forward invariant:

Mn =
{
n ∈ R2 : n1 > ϵ1, n2 > ϵ2, a4 − a3n1 − n2 > 0

}
where, ϵ1 =

(a1−umax)ϵ2
a2umax

and umin ≥ ϵ2
a4−ϵ2

a3a1
a2

. This guarantees that the bioreactor state remains in
a known compact set.

Following Gauthier, Hammouri, and Othman [44], we change the coordinates as:

(n1, n2) → (x1, x2) = T (n1, n2) =

(
n1,

a1n1n2
a2n1 + n2

)
, (3.18)

with x evolving inMx = T (Mn). In these new coordinates the system is in the explicit observability
canonical form (the details of the transformation are shown in appendix A.2):

ẋ1 =x2 − x1u,

ẋ2 =f2(x1, x2, u) + w(t, x1, x2),

y =x1,

(3.19)

with,

w̄(t, x1, x2) =
a1a4wu

a2
− 2a4wu

a2x1
x2 +

a4wu

a1a2x21
x22, (3.20)

and
f2(x1, x2, u) = m0 +m1x2 +m2x

2
2 +m3x

3
2, (3.21)

where:

m0 =
a1a

0
4u

a2
, m1 = −u− a1a3

a2
− 2a04u

a2x1
,

m2 =
2a3
a2x1

+
a04u

a1a2x21
, m3 =

1

a1x21
− a3
a1a2x21

.
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It can be veri�ed that f2(x1, x2, u) is di�erentiable with respect to their arguments, these together
with the boundedness of the states n1, n2, x1, x2 ensure the Lipschitzian of f2(x1, x2, u).

Note that, system (3.19) belongs to the class of systems described by (3.2), with a1(t) = a2(t) =
1, f1(x1, u) = −x1u, f2(x1, x2, u) as (3.21) and w(t, x1, x2) as (3.20). For a nominal high gain
observer, as in Gauthier, Hammouri, and Othman [44], the nonlinearity f2(x1, x2, u) is bounded
as:

|f2(x1, x2, u)− f2(x1, x̂2, u)| ≤ df2 max|x2 − x̂2|,

where, from the Mean Value Theorem,

df2 max = max
(u,x1,x2)∈Mu×Mx

∣∣m1 + 2m2x2 + 3m3x
2
2

∣∣ .
For an observer as (3.4), the bound is

|f2(x1, x2, u)− f2(x1, x̂2, u)| ≤ df2 max|x2 − x̂2|1+d0 + df2 max|x2 − x̂2|
3
2 ,

with −1 ≤ d0 ≤ 0 and d∞ = 0.5.

In this case, we can design an observer of the form (3.4) for system (3.19):

e1 =x̂1 − x1,

˙̂x1 =− k1Lϕ1(e1) + x̂2 + f1(y, u),

˙̂x2 =− k2L
2ϕ2(e1) + f2(y, x̂2, u),

(3.22)

where the nonlinearities ϕ1 and ϕ2 are de�ned as

ϕ1(e1) = κ1⌈e1⌋
1

1−d0 + θ1⌈e1⌋2,

ϕ2(e1) = κ2⌈ϕ1(e1)⌋1+d0 + θ2 ⌈ϕ1(e1)⌋
3
2 .

In the discontinuous case i.e. d0 = −1 the term ⌈·⌋0 in ϕ2 ensures robustness of the observer against
uncertain inputs ω(·), and the other nonlinear terms ensure �xed-time convergence.

Going back to the original coordinate systems, we get the following equation for the observer:

ŷ =n̂1,

e1 =n̂1 − n1,

˙̂n1 =
a1n̂1n̂2

a2n̂1 + n̂2
− un1 − k1Lϕ1(e1),

˙̂n2 =− a3
a1n̂1n̂2

a2n̂1 + n̂2
− un̂2 + ua04 +

[
k1L

n̂22
a2n̂21

− k2L
2 (a2n̂1 + n̂2)

2

a1a2n̂21

]
ϕ2(e1).

(3.23)

The following parameters of the bioreactor described by (3.17) were chosen for the simulation: a1 =
1 h−1, a2 = 1, a3 = 1, a04 = 1 g/l. The additive parametric uncertainty of a4 is a4w = sin(1.5πt).
The initial cell mass concentration is n1(t0) = 2 g/l, and the initial substrate concentration is
n2(t0) = 3 g/l. The initial value of the estimated cell mass concentration is n̂1(t0) = 1 g/l, and the
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initial value of the estimated substrate concentration is n̂2(t0) = 1 g/l. The control input, that is,
the dilution rate, is chosen as u = 0.5 h−1.

Choosing d∞ = 0.5 and d0 = −1, it is possible to prove that with k1 = 2.6, k2 = 1.3, L = 1.2,
θ1 = θ2 = κ1 = 1 and κ2 = 1.15, the observer (3.23) estimates the true states of system (3.17)
in �xed-time. Moreover, considering the same gains and choosing d∞ = 0.5 and d0 ∈ (−1, 0], it
is possible to show that the estimated trajectory x̂2 in (3.22) does not converge to the true state
x2 of (3.19); but it converges to some neighborhood of x2 and therefore n̂2 converges to some
neighborhood of n2, see �gure 3.1.

Figure 3.1 shows that choosing d0 = −1 the exact convergence time is T ≈ 0.7263[s], despite
the presence of unknown inputs in the system. From �gure 3.1 it is also possible to observe that
if d0 ̸= −1 the observation error does not converge to zero, but converges to a neighborhood
close to zero. Note that, when d0 → 0 the observation error grows. For this simulation explicit
Euler discretization with step size 10−4 was used. Figure 3.2 illustrates for d0 = −1 the observer
convergence time versus the (logaritmic) norm of initial conditions. From Figure 3.2 it is possible
to see that the upper bound of the settling time is T̄ = 1.087[s]; for this simulation explicit Euler
discretization with step size 10−8 was used.

Figure 3.1: (a) State n2 of (3.17) and its estimation state n̂2 . (b) The estimation error e2.
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Figure 3.2: Convergence time versus the logarithmus of the initial condition ||e0||.

3.2 Conclusions

For systems in the triangular form with unknown inputs, continuous and discontinuous (exact and
robust) observers have been proposed, which converge globally and in �xed- or �nite-time to the
true states of the system and it is even possible to prede�ned the convergence time by selecting an
appropriate value of the gain L.

The proposed observer unify well known observers, e.g. the Luenberger-like observer, the High-
gain observer, and Observers for a non-Lipschitz triangular form which was proposed by [16]. The
proposed methodology allows to consider a bigger class of nonlinear system, and omits the necessity
of the uses of cascade schemas.



Chapter 4

Bi-Homogeneous Observers for Linearizable

Mechanical Systems in the Velocity

The state estimation problem for uncertain nonlinear systems is one of the most important prob-
lems in control theory. Control of mechanical systems requires normally the information about
position and velocity. Since only the position is usually available for measurement, the estimation
of the velocity is required. The main challenges in constructing observers to estimate velocity in
mechanical systems are the presence of highly nonlinear friction terms, Coriolis (centrifugal) forces,
parametrical uncertainties, and time-varying non-vanishing perturbations. When the model of the
nonlinear system, and the parameters and inputs are known, there is an extensive literature pro-
viding global and asymptotically converging velocity estimation (see, for example, [44] and [19]). A
rather challenging problem in the construction of global observers for mechanical systems is how to
deal with the quadratic term of the Coriolis forces.

The presence of uncertain disturbances (e. g., dry friction, unknown torque, etc.) makes the
challenge of global exact estimation of the velocity even more di�cult. Under the assumption that
the trajectories of the system are uniformly bounded for all future times, the sliding mode observers
based on super-twisting di�erentiators [30] have shown their e�ciency in estimating the velocity of
mechanical systems theoretically exactly and in �nite-time, despite of the presence of non-vanishing
but bounded uncertainties and/or perturbations.

A disadvantage of this observer is that only a part of the model depending on the position, as e.g.
the elastic force with known Hook constant, can be compensated in the observer. Consequently, the
Coriolis (centrifugal) forces, and the friction terms cannot be considered, even if their models are
exactly known. Super-Twisting-based Observers, capable of also dealing with linearly growing terms
in the velocity, have been introduced in [70]. They are able to consider quadratic Coriolis terms
only semi-globally. To counteract the known Coriolis force, in [8] a global, �nite-time convergent,
theoretically exact observer, is presented, taking advantage of the dissipative properties of the
super-twisting algorithm and the transformation proposed in [19].

An important motivation for the design of exact observers converging in �nite-time is for its
application in control: after the convergence of the observer, the controller can be switched on,
avoiding the undesirable e�ect of the transient of the observation error. However, although e.g.

40
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super-twisting-based observers do converge in �nite time, the actual convergence time is unknown,
since it depends on the initial conditions, and it grows unboundedly with their size. The observers
homogeneous in the bilimit, proposed in [28, 69, 70, 72, 1], assure a �nite upper bound for the
convergence time, after which the controller can be surely switched on. In [80] this property has
been termed �xed-time convergence. If a desired upper bound for the convergence time is imposed
for the controller [92], [93], [31], [2], [94], [46],[3] or the observer/di�erentiator design [1], [77], we
speak about prede�ned-time stability [54].

4.1 Bi-Homogeneous Observers For Uncertain 1-DOF Mechanical

Systems

As is mentioned in the introduction a rather challenging problem in the construction of global
observers for mechanical systems is how to deal with the quadratic term of the Coriolis forces. A
solution to this problem for 1-DOF systems is presented in [19], where the transformation proposed
in [57] is used to deal with the Coriolis term.

4.1.1 Contribution and Structure of the Section 4.1

The objective of this section is to design an observer for 1-DOF mechanical systems having uncer-
tainties and/or perturbations non-vanishing at the equilibrium and that may grow with position
and velocity. This observer, based on the properties of homogeneity in the bi-limit [5, 72], converges
in prede�ned-time, i.e. it converges in �xed-time and the gains can be set to achieve any desired
upper bound of the convergence time. This is illustrated in a simulation study, where di�erent
acceleration options are discussed.

Section 4.1.2 presents the problem statement. The construction of proposed observer is described
in Section 4.1.3. The main results are presented in Section 4.1.4. Section 4.1.5 illustrates the main
results through computer simulations. In Section 4.1.6 some conclusion are drawn. The Appendix
B contains all the proofs.

4.1.2 Problem Statement

Consider one-degree-of-freedom (1-DOF) mechanical systems with uncertainties/perturbations given
as

m(q)q̈ + c(q)q̇2 +H(q, q̇) + ϱ⌈q̇⌋0 + g(q) = τ + w(t, q, q̇) (4.1)

where q ∈ R is the (measured) generalized position, q̇ is the generalized velocity; m(q) is the
inertia; c(q)q̇2 is Coriolis and centrifugal forces; H(q, q̇) is a continuous nonlinearity (e.g. continuous
frictions); ϱ ∈ R and ϱ⌈q̇⌋0 is the dry friction (⌈q̇⌋0 = sign(q̇)), which possibly contains relay terms
depending on q̇, g(q) denotes gravitational forces; w(t, q, q̇) is a bounded unknown input for all q
and q̇ (|w(t, q, q̇)| ≤ ∆) and τ is the measured torque.
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Considering ξ1 = q, ξ2 = q̇ and u = τ , the state space representation of (4.1) is given by

ξ̇1 =ξ2,

ξ̇2 =
1

m(ξ1)

(
f2(y, ξ2)− c(ξ1)ξ

2
2 + u− g(ξ1) + w(·)

)
,

y =ξ1,

(4.2)

where
f2(y, ξ2) = −H(y, ξ2)− ϱ⌈ξ2⌋0. (4.3)

Note that, since ξ2 = ẏ, it follows that system (4.2) is uniformly observable with respect to u, i.e.
it is observable for any input u, and it is strongly observable with respect to the uncertain input
w(t, q, q̇).

Suppose that the family of one-degree-of-freedommechanical systems with uncertainties/perturbations
represented by (4.2) satis�es the following assumptions:

As1. The inertia m(ξ1) satis�es

∃ m1, m2 > 0; ∀ξ1, m1 ≤ m(ξ1) ≤ m2, (4.4)
d

dt
(m(ξ1)) = m′(ξ1)ξ2 = 2c(ξ1)ξ2. (4.5)

As2. For positive real numbers µ0, µ∞ and homogeneity degrees d0 = −1 and 0 ≤ d∞ < 1 in the
0−limit and in the ∞−limit, respectively, the function f2(y, ξ2) ful�lls the following property
globally, i.e. ∀ y, ξ2a, ξ2b ∈ R,

|f2(y, ξ2a)− f2(y, ξ2b)| ≤ 2µ0 + µ∞ |ξ2a − ξ2b|1+d∞ . (4.6)

As3. System (4.2) is forward complete, i.e. its solutions are de�ned for all future times t ≥ t0.

Remark 2 Assumption As1 is a standard hypothesis for inertial and Coriolis terms in mechanical
systems [19],[90] e.g. mass-spring-damper systems with variable mass [91], [45], [37], [36], [32]. As
for Assumption As2, f2(y, ξ2) in (4.6) is allowed to be non-vanishing or discontinuous when ξ2 = 0,
i.e. f2(y, 0) ̸= 0, as it happens in the presence of dry-friction. f2(y, ξ2) can also grow unboundedly
with the velocity, e.g. if f2(y, ξ2) is globally Hölder with respect to ξ2 and uniformly in y, then
inequality (4.6) is satis�ed with 1 + d∞ ≥ 1. Note that the Coriolis term (c(q)q̇2) does not satisfy
(4.6) globally for any value of d∞ < 1, and therefore the Coriolis term cannot be considered in the
analysis in the same form as f2(y, ξ2). Furthermore, if the system is considered with the states in
(4.2), and an observer based on a copy of the system is designed for it, the term c(q)q̇2 could cause
the observer's trajectories to escape to in�nity in �nite time. In order to avoid this, a state space
transformation is used in the following section that cancels the quadratic term. Assumption As3 is
natural to make the observation problem meaningful.

The main goal of this paper is to design a global observer for system (4.2) estimating the
unmeasured generalized velocity q̇ globally, theoretically exactly, in �nite-time or �xed-time.
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4.1.3 Construction of the Observer

To deal with the Coriolis term, consider the transformation presented in [8], given by the global
di�eomorphism

x =

[
x1
x2

]
= T (ξ) =

[
T1(ξ1)

T2(ξ1, ξ2)

]
=

[ ∫ ξ1
a Υ (µ)dµ
Υ (ξ1)ξ2

]
, (4.7)

where Υ (y) =
√

m(y)
m(a) and a is a constant de�ned in the domain of − c(ξ1)

m(ξ1)
. For more details refer

to [8] and [57]. Using (4.7) on (4.2) the following transformed system is obtained

ẋ1 = x2, (4.8)

ẋ2 =
Υ (T̃1)

m(T̃1)

(
f2(T̃1, (Υ (T̃1))

−1x2) + u− g(T̃1) + w(t, T̃1, (Υ (T̃1))
−1x2)

)
,

where y = T̃1 = T−1
1 (x1) is the measured variable. Notice that the transformed system (4.8) does not

contain the quadratic term of the Coriolis force, that is the aim of introducing the transformation.

Based on (4.8) the following observer can be designed

e1 = x̂1 − x1,

˙̂x1 = −k1Lϕ1(e1) + x̂2, (4.9)

˙̂x2 = −k2L2ϕ2(e1) +
Υ (T̃1)

m(T̃1)

(
f2(T̃1, (Υ (T̃1))

−1x̂2) + u− g(T̃1)
)
,

where the nonlinearities ϕ1 and ϕ2 are given by

ϕ1(e1) = κ1⌈e1⌋
1
2 + θ1⌈e1⌋

1
1−d∞ , (4.10)

ϕ2(e1) = κ2⌈e1⌋0 + θ2

⌈
κ1⌈e1⌋

1
2 + θ1⌈e1⌋

1
1−d∞

⌋1+d∞
,

where the degree of homogeneity of the observer at the 0−limit is d0 = −1 and at the ∞−limit
0 ≤ d∞ < 1. The homogeneity weights of x̂1 and x̂2 in the 0-limit are (2, 1) and in the ∞-limit
are (1 − d∞, 1). When the error is near to 0, the behavior of the observer is similar to that of
the Super-Twisting [70], and the discontinuous term ⌈·⌋0 in ϕ2 ensures robustness of the observer
against bounded unknown inputs, i.e. w(·), and convergence in �nite-time. For large values of the
estimation error the powers 1+ d∞ ≥ 1 and 1

1−d∞ ≥ 1, causing a strong correction e�ect. Indeed, if
0 < d∞ < 1, �xed-time convergence is attained. While the "internal" gains κ1, κ2, θ1, θ2 > 0 can
be selected freely, the gains

k1, k2 > 0, L ≥ 1 , (4.11)

have to be chosen such that the stability of the observer is guaranteed.

Going back to the original coordinate system, i.e. x̂ = T
(
ξ̂
)
(see (4.7)), the following equation

is obtained for the observer:

˙̂
ξ =

[
∂T (ξ̂)

∂ξ

]−1

˙̂x
∣∣∣
x̂=T(ξ̂)

, (4.12)
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where

∂T (ξ)

∂ξ
=

 Υ (ξ1) 0

d
dt
(m(ξ1))

2
√
m(a)

√
m(ξ1)

Υ (ξ1)

 , and [∂T (ξ)
∂ξ

]−1

=

 1
Υ (ξ1)

0

− c(ξ1)ξ2
m(ξ1)Υ (ξ1)

1
Υ (ξ1)

 . (4.13)

Using ξ̂1 = ξ1 = y for the realization of the observer, its dynamics becomes

˙̂
ξ1 = − k1L

Υ (ξ1)
ϕ1(T ) + ξ̂2, (4.14)

˙̂
ξ2 = − k2L

2

Υ (ξ1)
ϕ2(T ) +

1

m(ξ1)

(
f2

(
ξ1, ξ̂2

)
+ u− g(ξ1)

)
− c(ξ1)

m(ξ1)
ξ̂2

(
ξ̂2 −

k1L

Υ (ξ1)
ϕ1(T )

)
,

where T = T1(ξ̂1)− T1(ξ1).

4.1.4 Main Results and Properties of the Observer

The main result of this work states that the observer (4.14) is able to estimate globally and in
�nite-time or �xed-time the true states of the system (4.2).

Theorem 10 Assume that As1 and As3 are satis�ed, and let the function f2 be such that Assump-
tion As2 is ful�lled. Select 0 ≤ d∞ < 1 and choose arbitrary positive (internal) gains κi > 0 and
θi > 0, for i = 1, 2. Suppose further that |w(t)| ≤ ∆. Under these conditions, there exist appro-
priate gains ki > 0 and L ≥ 1, such that the solutions of the observer (4.14) converge globally to
the true states of the system (4.2), i.e. ξ̂i(t) → ξi(t) as t → ∞. In particular, they converge in
�xed-time, i.e. there exists T̄ > 0 such that for any ξ̂i(0) ∈ R2, ξ̂i(t) ≡ ξi(t) for t ≥ T̄ , for i = 1, 2,
if 0 < d∞ < 1.

All proofs are given in section B.1. Observer (4.14) has two distinguishing features, compared to
its homogeneous counterparts:

(i) The class of functions f2 considered is much larger. It can ensure the theoretically exact
�xed-time convergence for a rather complete friction model f2, containing the sum of static,
Coulomb and viscous friction with Stribeck e�ect (see Figure 4.1).

(ii) Due to the presence of the term 0 < d∞ < 1 in ϕ1(·) and ϕ2(·), it is able to converge in
�xed-time. Moreover, the estimation of the convergence time given in Proposition 5 below
allows to prede�ne the upper bound for settling time.

In this paper, an observer based on the bi-homogeneous di�erentiator developed in [72] is pro-
posed. The proposed observer contains a copy of the system's dynamics plus bi-homogeneous
correction terms. Note that for the bi-homogeneous di�erentiator in [72] the system's dynamics is
trivial, since its objective is to estimate as close as possible some time derivatives of a signal y(t).
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x2

f
2
( )×

Figure 4.1: Example of friction model. Static, Coulomb, and linear viscous friction-Stribeck
e�ect.

The use of bi-homogeneous correction terms in the design of observers for uncertain 1-DOF
mechanical systems has been used previously in [8], where an observer based on the generalized
super-twisting (GST) algorithm is presented. This observer estimates globally and in �nite-time
the states of the system despite of the existence of unknown inputs. The observer proposed in [8]
is able to consider nonlinearities of the form H(q, q̇) = h1(q, q̇)+h2(q, q̇), where the nonlinearity h1
contains globally Lipschitz functions w.r.t. velocity (as e.g. viscous friction) and the nonlinearity
h2 contains monotone functions w.r.t. velocity, which do not need to be globally Lipschitz (e.g.
air resistance −k⌈q̇⌋2 or the family −k⌈q̇⌋α with α > 0). The observer proposed in this paper is
only able to consider a smaller class of nonlinearities than the observer proposed in [8] i.e. it only
considers nonlinearities of the form H(q, q̇) = h1(q, q̇). For this type of nonlinearities, the observer
(4.9) estimates globally and, when d∞ > 0, in prede�ned-time the states of the system despite of
the presence of unknown inputs. These di�erences in the properties between the observer in [8] and
the one in the present manuscript is a consequence of the di�erences in the correction terms used,
the proposed Lyapunov functions and of the analysis methodology applied to test the stability of
the error dynamics.

The proposed observer considers a design gain L which is similar to that used by classical high-
gain observers. The gain L in the classical high-gain observers and the observers proposed in this
paper, reduces the e�ect of the nonlinearities in the system. Note that, in particular, if d∞ = 0 the
observer (4.9) has for large values of x1 and x2 the same characteristics as the classical high gain
observer, with the di�erence that the observer (4.9) converges in �nite-time.

4.1.4.1 Estimation of the Convergence Time

De�ning the observation error as e = x̂− x, their dynamics satisfy

Σobse :


ė1 =− k1Lϕ1(e1) + e2,

ė2 =− k2L
2ϕ2(e1) +

Υ (y)

m(y)

(
δ2(y, x2, e2)− w(t, y, (Υ (y)−1x2)

)
,

(4.15)
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where

δ2(·) = f2
(
y, (Υ (y))−1(x2 + e2)

)
− f2

(
y, (Υ (y))−1x2

)
.

Note that u does not appear in the observation error (4.15) and, therefore, according to Theorem
10, the convergence of the observer is assured for any input u.

Performing the state and time transformation z1 = e1, z2 = e2
Lk1

, τ = Lt, the dynamics of the
estimation error can be rewritten as

Σobsz :


z
′
1 =− k̃1 (ϕ1(z1)− z2) ,

z
′
2 =− k̃2ϕ2(z1) +

Υ (y)

k1L2m(y)
(δ2(y, x2, Lk1z2)− w(·)) ,

(4.16)

where k̃1 = k1, k̃2 = k2
k1
, and z

′
i =

dzi
dτ corresponds to the derivative with respect to τ .

For the convergence proof a (smooth) bl-homogeneous Lyapunov function as in [72] is used. Fix
for n = 2 two positive real numbers p0 and p∞, corresponding to the homogeneity degrees of the
0−limit and the ∞−limit approximations of V to be next de�ned, such that

p0 > 1, p∞ ≥ max

{
1,

3

2
(1− d∞)

}
, p0 ≤

2

1− d∞
p∞ . (4.17)

For i = 1, 2 choose arbitrary positive real numbers β0, i > 0, β∞, i > 0 and de�ne the functions

Z1 (z1, z2) =β0,1

(
2
p0
|z1|

p0
2 − z1⌈ζ⌋

p0−2
2 + p0−2

p0
|ζ|

p0
2

)
+ β∞,1

(
1−d∞
p∞

|z1|
p∞

1−d∞ − z1⌈ζ⌋
p∞−1+d∞

1−d∞ + p∞−1+d∞
p∞

|ζ|
p∞

1−d∞

)
,

Z2(z2) =β0,2
1

p0
|z2|p0 + β∞,2

1

p∞
|z2|p∞ ,

(4.18)

where ζ = φ−1
1 (z2) and φ1(z2) = κ1⌈z2⌋

1
2 + θ1⌈z2⌋

1
1−d∞ . The homogeneity weights of z1 and z2 at

the 0-limit and at the ∞-limit are the same as those of x̂1 and x̂2. The Lyapunov function candidate
is then de�ned as

V (z) = Z1 (z1, z2) + Z2 (z2) . (4.19)

Proposition 5 Let Assumptions As1-As3 be satis�ed. Choose d0 = −1, 0 ≤ d∞ < 1 and select
p0 and p∞ such that (4.17) are ful�lled. Under these conditions, there exist gains k1 > 0 and
k2 > 0, such that V (z) in (4.19) is a C1, bl-homogeneous Lyapunov function for the estimation
error dynamics (4.16). Moreover, V satis�es (4.20) for some positive constants ℓ0, ℓ∞, and for
monotonic decreasing function of L, Υ0(L), Υ∞(L)

V
′
(z) ≤ −

(
ℓ0 −Υ0(L)

)
V (z)

p0−1
p0 −

(
ℓ∞ −Υ∞(L)

)
V (z)

p∞−1
p∞ . (4.20)

Thus, z = 0 is a Globally Asymptotically Stable equilibrium point of (4.16), if L ≥ 1 is selected
large enough, such that Υ0(L) < ℓ0 and Υ∞(L) < ℓ∞. In particular, if 0 < d∞ < 1, then z = 0
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is �xed-time Stable (FxTS) [80], that is, it is globally FxTS and the settling-time function T (z0)
is a continuous globally bounded by a positive constant T̄ , independent of z0. Moreover, T̄ can be
estimated as

T̄ ≤ 1
L

 p∞
d∞(ℓ∞−Υ∞(L))

(
ℓ0−Υ0(L)
ℓ∞−Υ∞(L)

) 1(
p∞
p0

d0
d∞

−1

)
− p0

d0(ℓ0−Υ0(L))

(
ℓ0−Υ0(L)
ℓ∞−Υ∞(L)

) 1(
1− p0

p∞
d0
d∞

) . (4.21)

Proposition 5 can be proved using Theorem 1 and Lemma 3 in [26].

Remark 3 The inequality (4.21) gives an upper bound for the settling time. It can be shown that,
when L tends to in�nity, the upper bound of the convergence time T̄ tends to zero. Therefore,
any arbitrary convergence time can be attained by selecting L appropriately, and thus the observer
converges in prede�ned time, since it satis�es De�nition 2 of prede�ned time convergence presented
in [54].

Remark 4 Since the measured output of the system is usually accompanied by measurement noise,
it is important to analyze the e�ect of noise on the observer. With this aim, consider that the
measured input y(t) is composed of the base signal y0(t), and a noise signal ν(t), that we will
assume to be uniformly bounded, i.e. y(t) = y0(t) + ν(t), with ,|ν(t)| ≤ η. In the presence of noise
the estimation error cannot be zero, but it is uniformly and ultimately bounded. This also happens,
when d0 = −1, 0 ≤ d∞ < 1, and the (stabilizing) observer gains are not su�ciently large to fully
compensate the e�ect of w(·). If the noise and perturbation are bounded, then the estimation error
e(t) will be also bounded, and if ν(t) → 0, then e(t) → 0. The precision of the observer in the
presence of noise is mostly determined by the 0-limit approximation and, therefore, is similarly to
the observer based on the Levant's di�erentiator [79].

4.1.4.2 Robustness Analysis of the Proposed Observer for m(q) Uncertain

Consider the system (4.1) with an additive perturbation in the term m(q) denoted by mw(q):

(m(q) +mw(q)) q̈ + (c(q) + cw(q)) q̇
2 +H(q, q̇) + ϱ⌈q̇⌋0 + g(q) = τ + w(t, q, q̇) (4.22)

where q ∈ R is the (measured) generalized position, q̇ is the generalized velocity; m(q) is the inertia
term; c(q)q̇2 are Coriolis and centrifugal forces; cw(q)q̇2 are the unknown Coriolis and centrifugal
forces; H(q, q̇) is a continuous nonlinearity (e.g. continuous frictions); ϱ ∈ R and ϱ⌈q̇⌋0 is the
dry friction (⌈q̇⌋0 = sign(q̇)), which possibly contains relay terms depending on q̇, g(q) denotes
gravitational forces; w(t, q, q̇) is a bounded unknown input (|w(t, q, q̇)| ≤ ∆) and τ is the measured
torque.
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Considering ξ1 = q, ξ2 = q̇ and u = τ , the state space representation of (4.22) is given by

ξ̇1 =ξ2,

ξ̇2 =
1

m(ξ1) +mw(ξ1)

(
f2(y, ξ2)− (c(ξ1) + cw(ξ1)) ξ

2
2 + u− g(ξ1) + w(·)

)
,

y =ξ1,

(4.23)

where
f2(y, ξ2) = −H(y, ξ2)− ϱ⌈ξ2⌋0.

System (4.23) is uniformly observable with respect to u (or observable independently on the input),
and strongly observable with respect to uncertain input w(t, q, q̇). Suppose that the family of
one-degree-of-freedom mechanical systems with uncertainties/perturbations represented by (4.23)
satis�es the following assumptions:

Bs1. The inertia term m(ξ1) +mw(ξ1) satis�es

∃ m1, m2 > 0; ∀ξ1, m1 ≤ m(ξ1) +mw(ξ1) ≤ m2,

d

dt
(m(ξ1) +mw(ξ1)) = 2 (c(ξ1) + cw(ξ1)) ξ2.

Bs2. For positive real numbers µ0, µ∞ and homogeneity degrees d0 = −1 and 0 ≤ d∞ < 1 in
the 0−limit and in the ∞−limit, respectively, the function f2(y, ξ2) ful�lles the following
property globally, i.e. ∀ y, ξ2a, ξ2b ∈ R,

|f2(y, ξ2a)− f2(y, ξ2b)| ≤ 2µ0 + µ∞ |ξ2a − ξ2b|1+d∞ .

Bs3. System (4.23). is forward complete, i.e. its solutions are de�ned for all future times t ≥ t0.

To deal with the Coriolis term, consider the transformation (4.7). Using (4.7) on (4.23) the
following transformed system is obtained

ẋ1 =x2,

ẋ2 =
Υ (T̃1)

m(T̃1)+mw(T̃1)

(
f2(T̃1, (Υ (T̃1))

−1x2)− cw(T̃1)
(
(Υ (T̃1))

−1x2

)2
+ u− g(T̃1) + w(·)

)
+ Υ (T̃1)

m(T̃1)
c(T̃1)

(
(Υ (T̃1))

−1x2

)2
mw(T̃1)

m(T̃1)+mw(T̃1)
,

(4.24)

where y = T̃1 = T−1
1 (x1) is the measured variable, Υ (T̃1) =

√
m(T̃1)
m(a) and a is a constant de�ned in

the domain of − c(ξ1)
m(ξ1)

. For system (4.24) consider the observer (4.9).

e1 =x̂1 − x1,

˙̂x1 =− k1Lϕ1(e1) + x̂2,

˙̂x2 =− k2L
2ϕ2(e1) +

Υ (T̃1)

m(T̃1)

(
f2(T̃1, (Υ (T̃1))

−1x̂2) + u− g(T̃1)
)
.
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De�ning the observation error as e = x̂− x between (4.24) and (4.9), their dynamics satisfy

Σobse :

{
ė1 =− k1Lϕ1(e1) + e2,

ė2 =− k2L
2ϕ2(e1) +

Υ (y)
m(y)

(
δ2(y, x2, e2)− w(t, y, (Υ (y))−1x2

)
+ Fw(y, x2),

(4.25)

where δ2(·) = f2
(
y, (Υ (y))−1(x2 + e2)

)
− f2

(
y, (Υ (y))−1x2

)
, and

Fw(y, x2) =
Υ (y)
m(y)

(
f2(y, (Υ (y))

−1x2)− c(y)
(
(Υ (y))−1x2

)2
+ u− g(y) + w(·)

)
mw(y)

m(y)+mw(y)

+ Υ (y)
m(y)+mw(y)

(
cw(y)

(
(Υ (y))−1x2

)2)
.
(4.26)

Performing the state and time transformation z1 = e1, z2 = e2
Lk1

, τ = Lt, the dynamics of the
estimation error can be rewritten as

Σobsz :

{
z
′
1 =− k̃1 (ϕ1(z1)− z2) ,

z
′
2 =− k̃2ϕ2(z1) +

Υ (y)
k1L2m(y)

(
δ2(y, x2, Lk1z2)− w(t, y, (Υ (y))−1x2

)
+ Fw(y, x2)

k1L2 ,
(4.27)

where k̃1 = k1, k̃2 = k2
k1
, and z

′
i =

dzi
dτ corresponds to the derivative with respect to τ . The dynamics

of the observation error (4.27) is composed of the dynamics of the nominal observation error (4.16)
plus the function Fw(y, x2) determined by (4.26) which depends on the states of the plant and the
unknown inputs mw(y) and cw(y). If mw(y) = 0 then cw(y) = 0 and Fw(y, x2) = 0 and therefore
the dynamics of the error (4.27) is equal to (4.16).

From the dynamics of the observation error (4.25) it is possible to conclude:

(i) The error system (4.27) is Input-to-State Stable (ISS) with respect to the input Fw. This
implies that the state z is bounded when Fw is bounded, and z → 0 if Fw → 0.

(ii) (4.26) shows that Fw is bounded if the states of the plant y, x2 and the input u are bounded.

(iii) If Fw(y, x2) is bounded and L is large enough, then the e�ect of Fw(y, x2) can be fully
compensated if the gain k2 in (4.9) is chosen correctly, making the observation error to converge
exactly and in �nite-time or �xed-time.
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4.1.4.3 Convergence Acceleration and Scaling of the Uncertain Input

Perform on system (4.9), for arbitrary constants α > 0 and L > 1, the following scaling of the gains,

κi →
(
L2

α

) d0
r0,i

κi, θi →
(
L2

α

) d∞
r∞,i

θi, (4.28)

where r0,i = r0,i+1− d0 = 1− (2− i)d0, r∞,i = r∞,i+1− d∞ = 1− (2− i)d∞. It is easy to show that
the linear state transformation

ei =
Ln−i+1

α
ei, (4.29)

transforms the scaled error system to system (4.15). This means that the convergence is accelerated
and the constant ∆ increased as

T (·) → 1

L
T (·), ∆ → α∆.

Using the scaling (4.28), it is possible to prede�ne an arbitrary pair of convergence time T̄ ∗ and
constant ∆∗ to the observer, following the procedure:

(i) Given 0 < d∞ < 1, d0 = 0, κi > 0 and θi > 0, �x a set of stabilizing gains ki and the
corresponding supported perturbation size ∆.

(ii) Calculate the corresponding convergence time T̄ , either by means of (4.21) or by simulations.

(iii) Select the scaling gains (α, L) of (4.28) as α ≥ ∆∗

∆ and L ≥ T̄ ∗

T̄
.

4.1.5 Simulation Examples

4.1.5.1 Example 1

Consider the following system ([8]):

(
1 + cos2(q)

)
q̈ − 1

2
sin(2q)q̇2 + g sin(q)− sin2(q) + 1

3
q̇ + 0.5 sign(q̇) = u+ w(t). (4.30)

where q ∈ R is the position,
(
1 + cos2(q)

)
is the inertia, −1

2 sin(2q)q̇
2 is the Coriolis force, − sin2(q)+1

3 q̇
is a continuous nonlinear term, 0.5 sign(q̇) is a discontinuous term (e.g. dry friction) and w(t) =
0.4 sin(3t) cos(4t3) + 0.5 cos(πt) + 0.6 is a bounded perturbation (|w(t)| ≤ 1.5). This system has
relative degree two w.r.t. the measured output q and the perturbation w(t).

For this example, assumptions As1, As2 are satis�ed, with m(ξ1) = 1 + cos2(ξ1), c(ξ1) =
1
2 sin(2ξ1), f2 = − sin2(ξ1)+1

3(1+cos2(ξ1))
ξ2 + 0.5 sign(ξ2) and parameters µ0 = 0.5, µ∞ = 0.67.
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Fix a = π
2 for transformation (4.7), therefore, function Υ (y) becomes Υ (y) =

√
1 + cos2(y).

Choosing d∞ = 0.3, it is possible to prove that with k1 = 2.16, k2 = 3.65, L = 1, κ1 = κ2 = θ1 =
θ2 = 1, observer (4.9) estimates the true states of system (4.30) in �xed-time. For the simulations,

consider u = 0 and the initial conditions as
(
ξ1(0), ξ2(0)

)
= (1, 1),

(
ξ̂1(0), ξ̂2(0)

)
= (2, 2).

Figure 4.2 shows that exact convergence time is T ≈ 1.457[s], despite the presence of unknown
inputs in the system. The zoom in �gure 4.2-(b) shows the chattering produced by the discontinuous
term in the observer. Explicit Euler discretization with step size 10−4 was used. Figure 4.3 illustrates
the observer convergence time versus the (logaritmic) norm of initial conditions. From Figure 4.3
it is possible to see that the upper bound of the settling time is T̄ = 2.25[s]; for this simulation
explicit Euler discretization with step size 10−7 was used.
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Figure 4.2: (a) State ξ2 = q̇ of (4.30) and its estimation state ξ̂2 . (b) The estimation error e2.
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Figure 4.3: Observer convergence for di�erent initial conditions.
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4.1.5.2 Example 1 - Acceleration of Observer Convergence in a Noisy Environment

Consider the signal y(t) = y0(t)+ν(t), where y0(t) is the unknown base signal, and ν(t) is the noise.
The e�ect of noise depends mostly on the corrections terms Lκ1⌈e1⌋

1
2 and L2κ2⌈e1⌋0 ([79], [38]). It

can be seen from (4.11), that the convergence rate can be modi�ed in two di�erent ways:

(i) Adjusting the gains θ1 and θ2.

(ii) Adjusting the gain L.

To illustrate the advantages and disadvantages of both approaches, some simulations are performed.
Consider system (4.30) and the proposed observer (4.14) with d∞ = 0.3, k1 = 2.16, k2 = 3.65,
κ1 = κ2 = 1 and the noise ν(t) = 0.010 sin(200t). The gains θ1, θ2 and L are chosen as shown in the
Figures 4.4-(a1), -(a2), -(b1), -(b2). Gains θ1, θ2 and L are selected in such a way that, for di�erent
initial conditions the convergence time is t = 1[s].

Figures 4.4-(a1) and 4.4-(b1) show the estimation error, when L = 1 and the gains θ1 and θ2 are
adjusted (method (i)). From this �gures, it is easy see that, the peaking e�ect is greater in �gure
4.4-(b1), when the convergence time is succeeded by adjusting θ1 and θ2.

Figures 4.4-(a2) and 4.4-(b2) show the estimation error, when θ1 = θ2 = 1 and the gain L is
adjusted (method (ii)). It can be seen that the peaking e�ect is not greatly ampli�ed compared to
the 4.4-(a1) and 4.4-(b1).

Figures 4.4-(a3) and 4.4-(b3) compare the steady state responses obtained from �gures 4.4-(a1),
4.4-(a2) and 4.4-(b1), 4.4-(b2) respectively. From the simulations (�gure 4.4) it is possible to conclude
the following: The method (i) produces noise similar to that obtained by the Levant's di�erentiator
[58], but the peaking e�ect is big. The method (ii) produces a smaller peaking e�ect but ampli�es
the noise, because the gain L increase the observer terms Lκ1⌈e1⌋

1
2 and L2κ2⌈e1⌋0.

It is well known that the peaking e�ect can destroy the closed-loop system stability. That is
why a reasonable way to use the strategy (i) for the acceleration of convergence of observer is the
following:

Step 1. Fix a desired convergence time T̄ for the observer, and set the appropriate gain
L. Start the observer and keep the controller o� before the time T̄ has been reached, i.e,
u = 0, 0 ≤ t < T̄ . During this phase, the trajectories of the system may eventually grow,
but they remain bounded, since mechanical systems with u = 0 do not have �nite escape
time. The proposed observer is assured to estimate exactly the states of the system within
the interval 0 ≤ t < T̄ .

Step 2. When t = T̄ turn the controller on, i.e., u ̸= 0, ∀t ≥ T̄ . Since the observation error
is equal to zero for all t ≥ T̄ , the controller will behave exactly as a state feedback. Finally,
if the controller is stabilizing, the system-controller scheme will be stable.
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Figure 4.4: Estimation error ξ̂2−ξ2, in the presence of noise ν(t) = 0.010 sin(200t), for di�erent
initial conditions.

4.1.5.3 Example 2

Consider an inverted pendulum on a cart which is adapted from from [88], [89] and [24]. In dimen-
sionless form, the dynamics of the inverted pendulum on a car in �gure 4.5 are governed by the
second-order di�erential equation for q:(

1− 3m

4
cos2(q)

)
q̈ +

3m

8
q̇2 sin(2q)− sin(q)−D cos(q)− w(t) = 0. (4.31)

Here m is the relative mass of the pendulum, 1 − m is the relative mass of the cart, w(t) =
0.4 sin(3t) cos(4t3) + 0.5 cos(πt) + 0.6 represents the bounded perturbation (|w(t)| ≤ 1.5), q is the
angular position and q̇ is the angular velocity. Time t is measured in units of

√
2L/(3g) where

L is the length of the pendulum and g describes gravity. The rescaled state-dependent feedback
control force D drives the cart in the horizontal direction trying to stabilize the upward equilibrium
position q = 0.

Writing the system (4.31) in the form (4.2), one obtains m(ξ1) =
(
1− 3m

4 cos2(ξ1)
)
, c(ξ1) =

3m
8 sin(2ξ1)q̇

2, u = − sin(ξ1) − D cos(ξ1) and f2 = 0. Assumption As1 is satis�ed with m1 =

1 − (3ϵ/4) and m2 = 1. Finally, the condition d
dt (m(ξ1)) = 2c(ξ1)ξ2 can be straightforwardly

veri�ed from trigonometric properties. Fixing a = π
2 for transformation (4.7), function Υ (y) becomes

Υ (y) =
√(

1− 3ϵ
4 cos2(y)

)
. Choosing d∞ = 0.3, k1 = 1.95, k2 = 1.87, L = 1, κ1 = 1, κ2 = 2 and

θ1 = θ2 = 1, observer (4.14) estimates the true states of system (4.31) in �xed-time. For the
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simulations, consider u = 0 and the initial conditions as(
ξ1(0), ξ2(0)

)
= (0.5, 0.5),

(
ξ̂1(0), ξ̂2(0)

)
= (2.5, 2.5).

Figure 4.6 illustrates the exact convergence time T = 1.265[s] despite the presence of unknown inputs
in the system. The zoom in �gure 4.6-(b) shows the chattering produced by the discontinuous term
in the observer. An explicit Euler discretization with step size 10−4 was used.

Figure 4.5: Sketch of the inverted pendulum on a cart.

0 0.5 1 1.5 2
0

1

2

3

4

5

0 0.5 1 1.5 2
-2

-1

0

1

2

 1.265  

-5

0

5
10

-4

Figure 4.6: (a) State ξ2 = q̇ of (4.31) and its estimation state ξ̂2 . (b) The estimation error e2.
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4.1.6 Conclusions of Section 4.1

The section 4.1 proposes an observer for su�ciently wide class of one degree of freedom mechani-
cal systems with Coriolis forces, dry and viscous frictions, and non-vanishing bounded uncertain-
ties/perturbations. The bi-limit structure of proposed observer ensures a prede�ned-time conver-
gence to the system state.

The simulation example discusses two di�erent possibilities to adjust the settling time: one using
the 0-limit gain and another one is using ∞-limit gain. Moreover, the simulations with noisy inputs
coincide with the statement formulated in [79] basing on frequency domain analysis, for the choice
of the observer gains for the system with the big errors of initial conditions.

It is necessary to mention that the acceleration of observer convergence using increasing only
∞-limit gain produces a big peaking e�ect, i.e. it is reasonable only, when the controller is not
running or saturated.
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4.2 Bi-Homogeneous Observer For Uncertain 2-DOF Mechanical

Systems

In this chapter we extend the idea shown in section 4.1, to design a bi-homogeneous observer for
uncertain 2-DOF mechanical systems. Since in the 2-DOF mechanical systems it is not possible to
use the transformation of states proposed by [57] to deal with the quadratic term, in this chapter
the transformation of states proposed by [65] is used. Likewise, the observer correction terms are
modi�ed in such a way that the convolution between them is not necessary.

4.2.1 Contribution and Structure of the Section 4.2

The objective of this paper is to design an observer for 2-DOF mechanical systems having uncertain-
ties and/or perturbations non-vanishing at the equilibrium and that may grow with position and
velocity. This observer, based on the properties of homogeneity in the bi-limit [5, 80, 72], converges
in prede�ned-time, i.e. it converges in �xed-time and the gains can be set to achieve any desired
upper bound of the convergence time.

Section 4.2.2 presents the problem statement. The construction of proposed observer is described
in Section 4.2.3. The main results are presented in Section 4.2.4. Section 4.2.5 illustrates the main
results through computer simulations. In Section 4.2.6 some conclusion are drawn. Appendix B.2
contains all the proofs.

4.2.2 Problem Statement

Consider the 2-DOF mechanical systems with uncertainties/perturbations given by:

M(q)q̈ + C(q, q̇)q̇ +G(q) +Hq̇ + Λsign(q̇) = Du+ δ̃(t, q, q̇), (4.32)

where q = (q1, q2)
T ∈ R2 is the measured position, M(q) ∈ R2×2 is the inertia matrix, C(q, q̇)

represents Coriolis and centrifugal forces, Λ, D ∈ R2×2, H ∈ R2×2 is a known matrix, Hq̇ and
Λ sign(q̇) are viscous and dry frictions, G(q) denotes gravitational forces, δ̃(t, q, q̇) is a bounded
perturbation/uncertainty, and u ∈ R2 is the control input.

Suppose that the family of two-degrees-of-freedommechanical systems with uncertainties/perturbations
represented by (4.32) satis�es the following assumptions:

A1. Matrix M(q) is known and depends only on q2 as

M(q2) =

[
m11 m12(q2)

m12(q2) m22(q2)

]
. (4.33)
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A2. There exist two constants m > 0, m > 0 such that, ∀q2,

0 < mI ≤M(q2) ≤ mI, (4.34)

where I denotes the identity matrix of dimension 2× 2.

A3. The perturbation/uncertainty δ̃(t, q, q̇) is bounded, i.e. there exists a constant Lδ̃ > 0 such
that ||δ̃(t)|| ≤ Lδ̃.

Assumption A1 is restrictive, but it is satis�ed by a class of mechanical systems, e.g. the cart-
pendulum system, and Furuta pendulum. Assumption A2 is common for most Euler-Lagrange
systems, however, there are some Euler-Lagrange systems which do not satisfy it. The inequalities
in (4.34) are interpreted in the standard sense of matrix inequalities i.e. if A, B ∈ Rn×n are
symmetric matrices, then B < A means that the matrix A − B is positive de�nite and B > A
means that A−B is positive semi-de�nite (see Section 6.5.2 in [90]). Assumption A3 is a standard
condition for the construction of the observer due to the fact that the system has relative degree
greater than one.

In the family of 2-DOF systems (4.32), the entries of Coriolis and centrifugal matrix C(q, q̇) =
[c11, c12; c21, c22] are de�ned from the entries of M(q2) through the Christo�el symbols ([86, 90])
as:

ckj =
1

2

2∑
i=1

(
∂mkj(q2)

∂qi
+
∂mki(q2)

∂qj
− ∂mij(q2)

∂qk

)
q̇i, (4.35)

for k, j = 1, 2. Therefore, in our particular case, the Coriolis and centrifugal matrix is reduced to

C(q, q̇) =

[
0 m′

12(q2)q̇2
0 1

2m
′
22(q2)q̇2

]
. (4.36)

The objective of this article is to design a global observer for the system (4.32) estimating
unmeasured generalized velocities globally, theoretically accurately, in �nite-time or �xed-time.

4.2.3 Construction of the Observer

4.2.3.1 Transformation of States to Deal with Coriolis Term.

If the system (4.32) satis�es the assumptions A1 and A2, then with the notations introduced above
and setting v = [v1, v2]

T = Du − G(q), δ = [δ1, δ2] = δ̃(t, q, q̇) − Λ sign(q̇), the system (4.32) is
expressed as

q̇ =z,

ż =M−1(q2) [v − C(q, z)z −Hz + δ(t, q, z)] .
(4.37)
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Consider the di�eomorphism (state transformation)
θ1
θ2
w1

w2

 = T (q, z) =


q1 +

∫ q2
0

m12(s)
m11(s)

ds

q2
m11(q2)z1 +m12(q2)z2

γ(q2)z2

 , (4.38)

where γ(q2) =
√

m11m22(q2)−m12(q2)2

m11
=
√

|M(q2)|
m11

. Notice that
√
m ≤ γ(q2) ≤

√
m is satis�ed.

Transformation (4.38) is proposed in [9, 65], and can be realized despite of the uncertainties, since
we assume in A1 that the inertia matrix is known. Transformed system from (4.37) using (4.38) is
given by:

Σ1 :

{
θ̇1=

w1
m11

,

ẇ1=v1 + f1(θ2, w1, w2) + δ1,
(4.39a)

Σ2 :

{
θ̇2=

w2
γ(θ2)

,

ẇ2=
m11v2−m12(θ2)v1

m11γ(θ2)
+ f2(θ2, w1, w2) + δ̄2,

(4.39b)

where

f1(· ) =− H11w1 − H12w2,

f2(· ) =m12(θ2)H11−m11H21

m11γ(θ2)
w1 +

m12(θ2)H12−m11H22

m11γ(θ2)
w2,

and δ̄2 = (m11δ2−m12(θ2)δ1)/(m11γ(θ2)). The terms Hij are elements of the matrix H = HΥ(θ2)
with Υ(θ2) = [1/m11, −m12(θ2)/(m11γ(θ2)); 0, 1/γ(θ2)].

Note that the transformed system (4.39) does not contain quadratic terms in the unmeasured
variables. System (4.39) can be analyzed as the two subsystems (4.39a) and (4.39b) interconnected
by the functions f1(· ) and f2(· ).

4.2.3.2 Observer Structure

Based on (4.39) the following observer can be designed:

Ω1 :

{
˙̂
θ1=− ko1

m11
Lϕ̃11(eθ1) +

ŵ1
m11

,
˙̂w1=−ko2L2ϕ̃12(eθ1) + v1 + f̂1(· ),

(4.40a)

Ω2 :

{˙̂
θ2=− lo1

γ(θ2)
Lϕ̃21(eθ2) +

ŵ2
γ(θ2)

,

˙̂w2=−lo2L2ϕ̃22(eθ2) +
m11v2−m12(θ2)v1

m11γ(θ2)
+ f̂2(· ),

(4.40b)

where eθ1 = θ̂1 − θ1, eθ2 = θ̂2 − θ2, and

f̂1(· ) = −H11ŵ1 − H12ŵ2,

f̂2(· ) = m12(θ2)H11−m11H21

m11γ(θ2)
ŵ1 +

m12(θ2)H12−m11H22

m11γ(θ2)
ŵ2.
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Nonlinearities ϕ̃i1(eθi), ϕ̃i2(eθi) for i = 1, 2, are given by

ϕ̃i1(eθi) =
(
L2

α

) d0
2
κi1⌈eθi⌋

1
2 +

(
L2

α

) d∞
1−d∞ θi1⌈eθi⌋

1
1−d∞ ,

ϕ̃i2(eθi) =
(
L2

α

) 2d0
2
κi2⌈eθi⌋

0 +
(
L2

α

) 2d∞
1−d∞ θi2⌈eθi⌋

1+d∞
1−d∞ ,

where the degree of homogeneity of the observers Ω1 and Ω2 at the 0-limit is d0 = −1 and at the
∞-limit 0 ≤ d∞ < 1. The homogeneity weights of θ̂1, ŵ1, θ̂2 and ŵ2 in the 0-limit are (2, 1, 2, 1)
and in the ∞-limit are (1−d∞, 1, 1−d∞, 1). The estimated states in original coordinates for (4.37)
is given by [

ẑ1
ẑ2

]
=Υθ2

[
ŵ1

ŵ2

]
=

[
1
m11

− m12(θ2)
m11γ(θ2)

0 1
γ(θ2)

][
ŵ1

ŵ2

]
. (4.41)

The observer (4.40) is a copy of the transformed system with nonlinear injection terms ϕ̃i1 and
ϕ̃i2. These injections appear additively in the system. The discontinuous term ⌊eθi⌉0 = sign(eθi)
ensures robustness of the observer against bounded perturbation/uncertainty and the other terms
in the nonlinearities ensure �nite-time (d∞ = 0) or �xed-time (0 < d∞ < 1) convergence to the real
states.

4.2.4 Main Result and Properties of the Observer

The main result of this work states that the estimation states (4.41) converge in �nite-time or
�xed-time to the velocity ż of the system (4.37).

Theorem 11 Assume that the system (4.32) satis�es the hypotheses A1 to A3. Select 0 ≤ d∞ < 1
and choose arbitrary positive (internal) gains κi1 > 0, κi2 > 0, θi1 > 0 and θi2 > 0, for i = 1, 2.
Under these conditions, there exist appropriate gains koi > 0, loi > 0, α ≥ 1 and L ≥ 1 such that
the solutions of the observer (4.40) converge globally to the true states of the system (4.39), i.e.
the estimation states (4.41) converge globally to the velocity ż of the system (4.37), ẑi(t) → zi(t)
as t → ∞. In particular, they converge in �xed-time, i.e. there exists T̄ > 0 such that for any
θ̂i(0) ∈ R2 and ŵi(0) ∈ R2, ẑi(t) ≡ zi(t) for t ≥ T̄ , for i = 1, 2, if 0 < d∞ < 1.

All proofs are given in Appendix B.2. Observer (4.40) has three distinguishing features, compared
to its homogeneous counterparts and prescribed-time observers:

(i) It can ensure the theoretically exact �xed-time convergence for a rather complete friction
model, containing the sum of static, Coulomb and viscous friction.

(ii) Due to the presence of the term in 0 < d∞ < 1, it is able to converge in �xed-time. Moreover,
the estimation of T̄ in Proposition 6 allows to prede�ne the upper bound for the convergence
time.
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(iii) Due to the presence of the term d∞ > 0, the gains growing to in�nity at the prede�ned time,
as required in the observers proposed in [77] for example, are not necessary. And thus the
observer dynamics is well-de�ned for all ∀t > 0.

4.2.4.1 Observation Error Dynamics and Lyapunov Function

De�ning the observation error as eθ1 = θ̂1 − θ1, ew1 = ŵ1 − w1, eθ2 = θ̂2 − θ2 and ew2 = ŵ2 − w2,
their dynamics satisfy:

Πe1 :

{
ėθ1=− ko1

m11
Lϕ̃11(eθ1) +

ew1
m11

,

ėw1=−ko2L2ϕ̃12(eθ1) + ψ1(θ2, ew1 , ew2)− δ1,
(4.42a)

Πe2 :

{
ėθ2 = − lo1

γ(θ2)
Lϕ̃21(eθ2) +

ew2
γ(θ2)

,

ėw2 = −lo2L2ϕ̃22(eθ2) + ψ2(θ2, ew1 , ew2)−
m11δ2−m12(θ2)δ1

m11γ(θ2)
,

(4.42b)

where

ψ1(· ) = −H11ew1 − H12ew2 ,

ψ2(· ) = m12(θ2)H11−m11H21

m11γ(θ2)
ew1 +

m12(θ2)H12−m11H22

m11γ(θ2)
ew2 .

Scaling the observation error as ϵθi =
L2

α eθi and ϵwi =
L
αewi for i = 1, 2, it is obtained

Πϵ1 :

ϵ̇θ1 =L
[
− ko1
m11

ϕ11(ϵθ1) +
ϵw1
m11

]
,

ϵ̇w1=L
[
−ko2ϕ12(ϵθ1) +

ψ1(θ2,ϵw1 ,ϵw2 )
L − δ1

α

]
,

(4.43a)

Πϵ2 :

ϵ̇θ2 =L
[
− lo1
γ(θ2)

ϕ21(ϵθ2) +
ϵw2
γ(θ2)

]
,

ϵ̇w2=L
[
−lo2ϕ̃22(ϵθ2) +

ψ2(θ2,ϵw1 ,ϵw2 )
L − m11δ2−m12(θ2)δ1

αm11γ(θ2)

]
.

(4.43b)

For the construction of the Lyapunov function, perform the state and time transformation
zθ1 = ϵθ1 , zw1 =

ϵw1
ko1
, zθ2 = ϵθ2 , zw2 =

ϵw2
lo1

, τ = Lt, the dynamics of the estimation error can be
rewritten as

Πz1 :

{
z
′
θ1

= − ko1
m11

(ϕ11(zθ1) + zw1) ,

z
′
w1

= −k̃o2ϕ12(zθ1) +
ψ1(θ2,zw1 ,zw2 )

ko1L
− δ1

ko1α
,

(4.44a)

Πz2 :

{
z
′
θ2

= − lo1
γ(θ2)

(ϕ21(zθ2) + zw2) ,

z
′
w2

= −l̃o2ϕ22(zθ2) +
ψ2(θ2,zw1 ,zw2 )

lo1L
− m11δ2−m12(θ2)δ1

lo1αm11γ(θ2)
,

(4.44b)

where

ϕi1(zθi) =κi1⌈zθi⌋
1
2 + θi1⌈zθi⌋

1
1−d∞ ,

ϕi2(zθi) =κi2⌈zθi⌋
0 + θi2⌈zθi⌋

1+d∞
1−d∞ ,

(4.45)
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k̃o2 = ko2
ko1

and l̃o2 = lo2
lo1
. z

′
θi
=

dzθi
dτ and z

′
wi

=
dzwi
dτ corresponds to the derivative with respect to τ .

Functions ψ1 and ψ2 are de�ned as

ψ1=−H11ko1zw1−H12lo1zw2 ,

ψ2=
m12(θ2)H11−m11H21

m11γ(θ2)
ko1zw1+

m12(θ2)H12−m11H22

m11γ(θ2)
lo1zw2 .

For the convergence proof we will use smooth Lyapunov Functions homogeneous in the bi-limit
derived in [72]. Fix for n = 2 two positive real numbers p0 and p∞ corresponding to the homogeneity
degrees of the 0−limit and the ∞−limit approximations, such that

p0 > 1, p∞ ≥ max

{
1,

3

2
(1− d∞)

}
, p0 ≤

2p∞
1− d∞

. (4.46)

For η = 1, 2 and i = 1, 2 choose arbitrary positive real numbers β0,ηi > 0, β∞,ηi > 0 and de�ne
the functions

Zη1
(
zθη , zwη

)
=

∑
j∈{0,∞}

βj,η1

[
rj,1
pj,η

|zθη |
pj
rj,1 − zθ1⌈ζη⌋

pj−rj,1
rj,1 +

pj − rj,1
pj

|ζη|
pj
rj,1

]
,

Zη2
(
zwη

)
= β0,η2

1

p0
|zwη |p0 + β∞,η2

1

p∞
|zwη |p∞ ,

(4.47)

where ζη = ϕ−1
η1 (zwη), ϕη1 = κη1⌈zwη⌋

1
2 +θη,1⌈zwη⌋

1
1−d∞ , r0,1 = 2 and r∞,1 = 1−d∞. The Lyapunov

candidate functions are then de�ned for i = 1, 2, as

Vi(zθi , zwi) = Zi1(zθi , zwi) + Zi2 (zwi) . (4.48)

The Lyapunov function candidate for system (4.44) is then de�ned as

V (zθ1 , zw1 , zθ2 , zw2) = V1(zθ1 , zw1) + V2(zθ2 , zw2). (4.49)

Proposition 6 Let Assumptions A1-A3 be satis�ed and select p0 and p∞ such that (4.46) are
ful�lled. Choose 0 ≤ d∞ < 1. Under these conditions, there exist gains koi > 0, loi > 0, and
L ≥ 1, such that V (z) in (4.49) is a C1, bl-homogeneous Lyapunov function for the estimation error
dynamics (4.44). Moreover, V satis�es (4.50) for some positive constants ℓ0, ℓ∞, for monotonic
decreasing function of L, Υψ0(L), Υψ∞(L) and for monotonic decreasing function of α, Υδ0(α),
Υδ∞(α)

V
′
(z) ≤−

(
ℓ0 −Υψ0(L)−Υδ0(α)

)
V (z)

p0−1
p0 −

(
ℓ∞ −Υψ∞(L)−Υδ∞(α)

)
V (z)

p∞+d∞
p∞ . (4.50)

Thus, z = 0 is a Globally Asymptotically Stable equilibrium point of (4.44), if L ≥ 1 and α ≥ 1
are selected large enough, such that Υψ0(L) + Υδ0(α) < ℓ0 and Υψ∞(L) + Υδ∞(α) < ℓ∞. In
particular, if 0 < d∞ < 1, then z = 0 is Fixed-Time Stable (FxTS) [80], that is, it is globally
FxTS and the settling-time function T (z0) is a continuous globally bounded by a positive constant
T̄ , independent of z0. Moreover, T̄ can be estimated as (with Υ0 = ℓ0 − Υψ0(L) − Υδ0(α) and
Υ∞ = ℓ∞ −Υψ∞(L)−Υδ∞(α)):

T̄ ≤ 1
L

 p∞
d∞Υ∞

(
Υ0
Υ∞

) 1(
p∞
p0

d0
d∞

−1

)
− p0

d0Υ0

(
Υ0
Υ∞

) 1(
1− p0

p∞
d0
d∞

) . (4.51)
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Theorem 11 is in fact a consequence of proposition 6 (See Theorem 1 and Lemma 3 in [26] for
details).

Remark 5 From the expression (4.51), giving an upper bound of the prede�ned convergence time
T̄ , it is possible to see that when L→ ∞ then T̄ → 0. This fact satis�es De�nition 2 of prede�ned-
convergence presented in [54], and shows that any prede�ned convergence time can be attained by
selecting an appropriate value of L.

4.2.5 Simulation Example

Consider a pendulum on a cart system. Figure 4.7 shows the functional principle of the system.
The nonlinear mathematical model of the cart-pendulum, is given by [53]

Figure 4.7: Pendulum on a cart system.

q̇1 =z1, q̇2 = z2,

ż1 =
a1ϖ + (g sin(q2)− k3z2) cos(q2)

a1a2 − cos2(q2)
+ δ̃1,

ż2 =
ϖ cos(q2) + a2 (g sin(q2)− k3z2)

a1a2 − cos2(q2)
+ δ̃2,

(4.52)

whereϖ = k1u−z22 sin(q2)−k2z1−fs sign(z1). The states represent, q1 ≡ cart position [m], q2 ≡ pen-
dulum angular position [rad], z1 ≡ cart velocity [ms ], z2 ≡ pendulum angular velocity [ rads ]. The coef-
�cient fs of dry friction is fs = 0.5 and perturbations are δ̃ = (0.5 sin(t/π)− 0.2, 0.4 cos(πt/3)− 0.3)T .
Moreover, u is the control input [N ] and the cart-pendulum parameters are shown in Table 4.1,
which are given by the manufacturer [53]. Obtaining a1 =

Jp
ml = 0.3545, a2 1l = 90.9091, k1 = p1

ml =

979.9833, k2 =
fc−p2
ml = 161.3845, k3 =

fp
ml = 0.0146.

Writing the system (4.52) in the form (4.32), one obtainsM(q2) = [a2, − cos(q2); − cos(q2), a1],
C(q, q̇) = [0, q̇2 sin(q2); 0, 0], G(q) = [0, −g sin(q2)]T , H = [k2, 0; 0, k3], Λ = [fs, 0; 0, 0], where
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Table 4.1: Original system parameters.

Description Value

m Equivalent mass of cart and pendulum 0.872 [Kg]

l Distance from axis of rotation to center of mass of system 0.011 [m]

fc Dynamic cart friction coe�cient 1
[
N · sm

]
fp Rotational friction coe�cient 1.4· 10−4

[
N ·m·s
rad

]
Jp Pendulum inertial moment with respect to rotation axis 0.0034 [Kg·m2]

g Gravity acceleration 9.81 [m/s2]

p1 Control force to PWM signal ratio 9.4 [N ]

p2 Control force to cart velocity ratio −0.548 [N ·s
m ]

it is possible to see that assumption A1 is satis�ed. The eigenvalues of M(q2) are given by (a1 +
a2 ±

√
(a1 − a2)2 + 4 cos(q2))/2, from which can obtain m = (a1 + a2 −

√
(a1 − a2)2 + 4)/2, and

m = (a1 + a2 +
√
(a1 − a2)2 + 4)/2 that satisfy the assumption A2. For assumption A3, Lδ̃ = 1.5.

In this case Υq2 =
[

1
a2

cos(q2)
a2γ(q2)

; 0 1
γ(q2)

]
and γ(q2) =

√
(a1a2 − cos2(q2)) /a2. The following

parameters are obtained from transformation:

(θ1, θ2, w1, w2) =

(
a2q1 − sin(q2)

a2
, q2, a2z1 − cos(q2)z2, γ(q2)z2

)
. (4.53)

Choosing d∞ = 0.5, it is possible to prove that with ko1 = 12.16m11, ko2 = 8.65, lo1 = 6.13
√
m,

lo2 = 10.11, L = 1.2, α = 2, κi1 = κ12 = 100, κ22=1, θi1 = 1 and θi2 = 4, observer (4.40) with (4.41)
estimates the true states of system (4.52) in �xed-time. For the simulations, consider u = 0.5 cos(q1−
q2) + 0.5 and the initial conditions as (q1(0), z1(0), q2(0), z2(0)) = (−0.1, −0.1, 0.2, −0.1) and(
θ̂1(0), ŵ1(0), θ̂2(0), ŵ2(0)

)
= (5, 5, 5, 5).

Figures 4.8-4.9 shows that upper bound time is t > 0.4527[s]; explicit Euler discretization with
step size 10−6 was used. From the Fig. 4.10, it is clear that the upper bound of the settling
time is T̄ = 4.7[s]. It can be seen from (4.51), that the upper bound of settling time can be
modi�ed adjusting the gain L. To illustrate the advantages and disadvantages of this approach,
some simulations are performed. Figure 4.9 show the estimation error when L = 1.2 and Fig. 4.11,
when L = 4. From the simulations (Fig. 4.9 and 4.11) it is possible to conclude the following:
Increasing the gain L reduces the convergence time of the estimation error, but the peaking e�ect
is larger. That is why a reasonable way to use the strategy of increasing L for the acceleration of
convergence of observer is the following:

1. Fix a desired convergence time T̄ for the observer, and set the appropriate gain L. Start the
observer and keep the controller o� before the time T̄ has been reached, i.e, u = 0, 0 ≤ t <
T̄ . During this phase, the trajectories of the system may eventually grow, but they remain
bounded, since mechanical systems with u = 0 do not have �nite escape time. The proposed
observer is assured to estimate exactly the states of the system within the interval 0 ≤ t < T̄ .
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2. When t = T̄ turn the controller on, i.e., u ̸= 0, ∀t ≥ T̄ . Since the observation error is equal
to zero for all t ≥ T̄ , the controller will behave exactly as a state feedback. Finally, if the
controller is stabilizing, the system-controller scheme will be stable.
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Figure 4.8: True states z1, z2 of (4.52) and their estimated states ẑ1, ẑ2.
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Figure 4.9: The estimation errors with L = 1.2.
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Figure 4.10: Convergence time versus the logarithmus of the initial condition.
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Figure 4.11: The estimation errors with L = 3.

4.2.6 Conclusions

This section proposes the observer for su�ciently wide class of 2-DOF mechanical systems with
Coriolis forces, dry and viscous frictions, and non-vanishing bounded uncertainties/perturbations.
The bi-limit structure of proposed observer ensures a prede�ned upper bound of settling time to the
system state. The observers are also simpler, since the usual cascade con�guration of a Luenberger
(linear) observer and a HOSM di�erentiator is replaced by a nonlinear observer with bihomogeneous
injection terms. This simpli�es and reduces the order of the observer realization. It is necessary to
mention that the acceleration of observer convergence using increasing only gain L produces a big
peaking e�ect, i.e. it is reasonable only, when the controller is not running or saturated.



Chapter 5

Bi-Homogeneous Observers for

Triangularizable Mechanical Systems in the

Velocity

The state estimation problem for uncertain nonlinear systems is one of the most important problems
in control theory. Control of mechanical systems requires normally the information about position
and velocity. Since only the position is usually available for measurement, the estimation of the
velocity is required. The main challenges in constructing observers to estimate velocity in mechanical
systems are the presence of highly nonlinear friction terms, Coriolis (centrifugal) forces, parametrical
uncertainties, and time-varying non-vanishing perturbations.

In this chapter a cascade observation scheme is proposed to estimate the unmeasured velocities
of triangularizable mechanical systems in the velocity. The proposed observer uses bi-homogeneity
properties to achieve the observation objective.

5.1 Bi-Homogeneous Observer For Uncertain N-DOF Mechanical

Systems

5.1.1 Problem Statement

Consider the n-DOF mechanical systems with uncertainties/perturbations given by

M(q)q̈ + C(q, q̇)q̇ +G(q) + Λ sign(q̇) = τ + δ̃(t, q, q̇), (5.1)

where q = (q1, . . . , qn)
T ∈ Rn is the measured position, M(q) ∈ R2×2 is the inertia matrix,

C(q, q̇) represents Coriolis and centrifugal forces, Λ ∈ Rn×n, is a known matrix, Λ sign(q̇) are
dry frictions, G(q) denotes gravitational forces, δ̃(t, q, q̇) is a bounded perturbation/uncertainty,
and τ = (τ1, . . . , τn)

T ∈ Rn is the control input.

66
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Suppose that the family of two-degrees-of-freedommechanical systems with uncertainties/perturbations
represented by (5.1) satis�es the following assumptions:

A1. Matrix M(q) is symmetric and positive de�nite for all q.

A2. There exist two constants m > 0, m > 0 such that, ∀q ∈ Rn,

0 < mI ≤M(q) ≤ mI, (5.2)

where I denotes the identity matrix of dimension n× n.

A3. The perturbation/uncertainty δ̃(t, q, q̇) is bounded, i.e. there exists a constant Lδ̃ > 0 such
that ||δ̃(t)|| ≤ Lδ̃.

In the family of n-DOF systems (5.1), the matrix C(q, q̇) is the centrifugal terms (k = j) and
Coriolis terms (k ̸= j); its matrix element is

cjk(q, q̇) =
n∑
i=1

cijk(q)q̇i, (5.3)

where Cijk(q) are called Christo�el symbols of �rst kind and de�ned as

cikj =
1

2

(
∂mjk

∂qi
+
∂mji

∂qk
− ∂mik

∂qj

)
. (5.4)

Equality (5.3) shows that we can write the matrix C(q, q̇) as

C(q, q̇) =
n∑
i=1

q̇iCi(q) (5.5)

where the entries of matrix Ci are the Cijk(q)'s.

The objective of this article is to design a global observer for the system (5.1) estimating un-
measured generalized velocities globally, theoretically accurately in �xed-time.

5.1.2 Construction of the Observer

5.1.2.1 Transformation of States to Deal With Coriolis Term

To deal with the Coriolis term, consider the methodology proposed in [64]; where su�cient condi-
tions are derived which lead to a change of coordinates which removes the undesired nonlinearities
in some equations of the dynamics and follows on a triangular form. For this, assume the following
assumptions:
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B1. There exists a di�eomorphism θ = [θ1, θ2, . . . , θn]
T = ψ(q) such that

M(q) = NT (q)D(θ)N(q), (5.6)

where N(q) = ∂ψ
∂q is the Jacobian matrix of ψ and D(θ) = Diag (d1(θ), . . . , dn(θ)) is an

n-dimensional invertible diagonal matrix.

B2. For all 1 ≤ i ≤ n and 1 ≤ k ≤ i, the component di(θ) satis�es
∂di(θ)
∂θk

= 0.

The above assumptions provide the following result.

Proposition 7 Assume that system (5.1) with y = q as output satis�es assumptions (A1), (A2),
(A3), (B1) and (B2), then under the action of the di�eomorphism, (q, q̇) → (θ, ω), where ωi =
di(θ)θ̇i for all 1 ≤ i ≤ n− 1 and ωn = θ̇n, this system is written:

Σ :



σ̇1 = A1(y)σ1 +Bu1 +Bδ̄1,
σ̇2 = A2(y)σ2 +Bu2 +Bδ̄2 + φ2(y, σ1),

...
σ̇n−1 = An−1σn−1 +Bun−1 +Bδ̄n−1 + φn−1 (y, σ1, . . . , σn−2) ,
σ̇n = dn(y)An(y)σn +

1
dn(y)

Bun +
1

dn(y)
Bδ̄n + φn (y, σ1, . . . , σn−1) ,

y = θ,

(5.7)

with u = (N−1)T (τ − g(q)) , δ̄ = (N−1)T
(
δ̃(·)− Λ sign(q̇)

)
,

B =

[
0
1

]
, σi =

[
θi
ωi

]
, Ai =

[
0 1

di(θ)

0 0

]
,

and the φi's are the nonlinear terms

φi (y, σ1, . . . , σi−1) =

(
0,

1

2

i−1∑
k=1

1

dk(θ)

∂dk(θ)

∂θi
ω2
k

)T
.

Note that, in the new coordinates θ, ω the transformed equations are simpler than in the original
coordinates. This fact is due to the triguangular structure in the velocity of the system (5.7). Also
note that in the new coordinates it is possible to design an observer for the transformed system.

5.1.2.2 Construction of Observer

An essential feature of the system (5.7), is that it is triangular w.r.t the variables σ1, σ2, . . . , σn:
the σ1-subsystem does not depend on σ2, σ2-subsystem does not depend on σ3 and so on up to
subsystem σn. This property leads us to consider �rst the σ1-subsystem constituted by the two �rst
equations of system (5.7):

Σ1 :

{
θ̇1 =

ω1
d1(θ)

,

ω̇1 = u1 + δ̄1.
(5.8)
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This system is linear with respect to the unmeasured variable ω1. In fact, the system (5.8) can be
considered as a linear system with a time-varying coe�cient 1

d1(θ)
. Consequently, an observer which

converges globally and in �xed-time can be determined for this system.

Proposition 8 The auxiliary dynamical system

Ω1 :

{ ˙̂
θ1 = −k11L1

d1(θ)
ϕ̃11(eθ1) +

w1
d1(θ)

˙̂w1 = −k12L2
1ϕ̃12(eθ1) + u1,

(5.9)

with eθ1 = θ̂1− θ1, is an bi-homogeneous observer of system (5.8), which converges in �xed-time for
all t ≥ T1. The nonlinearities ϕ̃11 and ϕ̃12 are de�ned as

ϕ̃11(eθ1) =
(
L2
1

α1

) d0
2
κ11⌈eθ1⌋

1
2 +

(
L2
1

α1

) d∞
1−d∞ θ11⌈eθ1⌋

1
1−d∞ ,

ϕ̃12(eθ1) =
(
L2
1

α1

) 2d0
2
κ12⌈eθ1⌋0 +

(
L2
1

α1

) 2d∞
1−d∞ θ12⌈eθ1⌋

1+d∞
1−d∞ .

(5.10)

Where d0 = −1, and 0 < d∞ < 1. The design gains for this system are

k11, k12, κ11, κ12, θ11, θ12 > 0; L1, α1 ≥ 1. (5.11)

The proof of Proposition 8 is given in Appendix C. Observer (5.9) converges to the states of sub-
system (5.8) for all t ≥ T1. Where T1 is the upper bound of the convergence time of the observer
to the true states of subsystem (5.8).

Continuing with the design of the observer, now consider the σ1-subsystem and σ2-subsystem
constituted by the �rst four equations of system (5.7):

Σ1 :

{
θ̇1 =

ω1
d1(θ)

,

ω̇1 = u1 + δ̄1,

Σ2 :

{
θ̇2 =

ω2
d2(θ)

,

ω̇2 = u2 + δ̄2 +
1
2

1
d1(θ)

∂d1(θ)
∂θ1

ω2
1.

(5.12)

This system is triangular with respect to velocity, i.e, system Σ1 does not depend on the velocity
ω2 and system Σ2 depends only on velocity ω1 and ω2. The triangular structure of the system with
respect to velocity allows us to continue with the design of the observator.

Proposition 9 The following auxiliary dynamical system:

Ω1 :

{ ˙̂
θ1 = −k11L1

d1(θ)
ϕ̃11(eθ1) +

w1
d1(θ)

˙̂w1 = −k12L2
1ϕ̃12(eθ1) + u1,

Ω2 :


˙̂
θ2 = −k21L2

d2(θ)
ϕ̃21(eθ2) +

w2
d2(θ)

˙̂w2 = −k22L2
2ϕ̃22(eθ2) + u2 +

1
2

1
d1(θ)

∂d1(θ)
∂θ1

(ω1 + eω1)
2 ,

(5.13)
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with eθ2 = θ̂2 − θ2, is an bi-homogeneous observer of system (5.12), which converges in �xed-time
for all t ≥ T1 + T2. The nonlinearities ϕ̃21 and ϕ̃22 are de�ned as

ϕ̃21(eθ2) =
(
L2
2

α2

) d0
2
κ21⌈eθ2⌋

1
2 +

(
L2
2

α2

) d∞
1−d∞ θ21⌈eθ2⌋

1
1−d∞ ,

ϕ̃22(eθ2) =
(
L2
2

α2

) 2d0
2
κ22⌈eθ2⌋0 +

(
L2
2

α2

) 2d∞
1−d∞ θ22⌈eθ2⌋

1+d∞
1−d∞ .

The design gains for this system are as 5.11 and

k21, k22, κ21, κ22, µ21, µ22 > 0; L2, α2 ≥ 1. (5.14)

The proof of Proposition 9 is given in Appendix C. Observer (5.13) converges to the states of subsys-
tem (5.12) for all t ≥ T1+T2. Where T2 is the upper bound of the convergence time of the observer
Ω2 to the true states of subsystem Σ2. Note that, after t ≥ T1 the term 1

2
1

d1(θ)
∂d1(θ)
∂θ1

(ω1 + eω1)
2 →

1
2

1
d1(θ)

∂d1(θ)
∂θ1

ω2
1 and therefore it is possible use the observer Ω2 to estimate the true states of the

system Ω2 in �xed-time.

Following the methodology described above the following observer can be developed for the
system (5.7).

Ω :



˙̂σ1 = −L1K1(y)ϕ̃1(eθ1) +A1(y)σ̂1 +Bu1
˙̂σ2 = −L2K2(y)ϕ̃2(eθ2) +A2(y)σ̂2 +Bu2 + φ2(y, σ̂1)

...
˙̂σn−1 = −Ln−1Kn−1(y)ϕ̃n−1(eθn−1) +An−1σ̂n−1 +Bun−1 + φn−1 (y, σ̂1, . . . , σ̂n−2)

˙̂σn = −Dn(y)LnKn(y)ϕ̃n(eθn) + dn(y)An(y)σ̂n +B un
dn(y)

+ φn (y, σ̂1, . . . , σ̂n−1)

(5.15)

with eθi = θ̂i − θi,

σ̂i =

[
θ̂i
ω̂i

]
, ϕ̃i(eθi) =

[
ϕ̃i1(eθi)

ϕ̃i2(eθi)

]
, Li =

[
Li 0
0 L2

i

]
, Ki =

[
ki1
di(θ)

0

0 ki2

]
, Dn =

[
dn(y) 0
0 1

]
.

Nonlinearities ϕ̃i1(eθi) and ϕ̃i2(eθi), are given by

ϕ̃i1(eθi) =
(
L2
i
αi

) d0
2
κi1⌈eθi⌋

1
2 +

(
L2
i
αi

) d∞
1−d∞ θi1⌈eθi⌋

1
1−d∞ ,

ϕ̃i2(eθi) =
(
L2
i
αi

) 2d0
2
κi2⌈eθi⌋

0 +
(
L2
i
αi

) 2d∞
1−d∞ θi2⌈eθi⌋

1+d∞
1−d∞ .

Where the degree of homogeneity of the observer Ω at the 0-limit is d0 = −1 and at the ∞-limit
0 < d∞ < 1. For i = 1, . . . , n, the homogeneity weights of θ̂i and ŵi in the 0-limit are (2, 1) and in
the ∞-limit are (1− d∞, 1).

The observer (5.15) is a copy of the transformed system (5.7), with nonlinear injection terms ϕ̃i1
and ϕ̃i2. These injections appear additively in the system. The discontinuous term ⌊eθi⌉0 = sign(eθi)
ensures robustness of the observer against bounded perturbation/uncertainty and the other terms
in the nonlinearities ensure �xed-time (0 < d∞ < 1) convergence to the real states.



5.1. Bi-Homogeneous Observer For Uncertain N-DOF Mechanical Systems 71

5.1.3 Main Result and Properties of the Observer

The main result of this work states that the observer (5.15) converge in �xed-time to the velocities
ωi of the system (5.7).

Theorem 12 Assume that the system (5.1) satis�es the hypotheses A1 to A3, B1 and B2. Select
0 < d∞ < 1 and choose arbitrary positive (internal) gains κi1 > 0, κi2 > 0, θi1 > 0 and θi2 > 0, for
i = 1, · · · , n. Under these conditions, there exist for j = 1, 2, appropriate gains kij > 0, lij > 0,
αi ≥ 1 and Li ≥ 1 such that the solutions of the observer (5.15) converge globally to the true states
of the system (5.7) in �xed-time for all t ≥

∑n
i=1 Ti.

Note that Ti is the upper bound of settling time of each subsystem Ωi. All proofs are given in
Appendix C.

5.1.3.1 Observation Error Dynamics and Lyapunov Function

De�ning the observation error as ei = [eθi , ewi ]
T with eθi = θ̂i − θi, ewi = ŵi − wi, their dynamics

satisfy

Πe :



ė1 = −L1K1(y)ϕ̃1(eθ1) +A1(y)e1 −Bδ̄1,

ė2 = −L2K2(y)ϕ̃2(eθ2) +A2(y)e2 +Bδ̄2 +Υ2(y, σ1, e1),
...

ėn−1 = −Ln−1Kn−1(y)ϕ̃n−1(eθn−1) +An−1en−1 +Bδ̄n−1 +Υn−1 (·) ,
ėn = −Dn(y)LnKn(y)ϕ̃n(eθn) + dn(y)An(y)en +

1
dn(y)

Bδ̄n +Υn (·) ,

(5.16)

where Υi(y, σ1, . . . , σi−1, e1, . . . , ei−1) = φi(y, σ1 + e1, . . . , σi−1 + ei−1)− φi(y, σ1, . . . , σi−1).

Scaling the observation error as ϵi = [ϵθi , ϵwi ]
T with ϵθi =

L2
i
αi
eθi and ϵwi =

Li
αi
ewi , it is obtained

Πϵ :



ϵ̇1 = Lϵ1

[
−K1(y)ϕ1(ϵθ1) +A1(y)ϵ1 − 1

α1
Bδ̄1

]
,

ϵ̇2 = Lϵ2

[
−K2(y)ϕ2(ϵθ2) +A2(y)ϵ2 +

1
α2
Bδ̄2 +

1
α2
Υ2(y, σ1, ϵ1)

]
,

...

ϵ̇n−1 = Lϵn−1

[
−Kn−1(y)ϕn−1(ϵθn−1) +An−1ϵn−1 +

1
αn−1

Bδ̄n−1 +
1

αn−1
Υn−1 (·)

]
,

ϵ̇n = Lϵn

[
−Dn(y)Kn(y)ϕn(ϵθn) + dn(y)An(y)ϵn +

1
dn(y)

1
αn
Bδ̄n +

1
αn

Υn (·)
]
,

(5.17)

where

Lϵi =

[
Li 0
0 Li

]
, ϕi(ϵθi) =

[
ϕi1(ϵθi)
ϕi2(ϵθi)

]
.

Nonlinearities ϕi1(ϵθi) and ϕi2(ϵθi), are given by

ϕi1(ϵθi) =κi1⌈ϵθi⌋
1
2 + θi1⌈ϵθi⌋

1
1−d∞ ,

ϕi2(ϵθi) =κi2⌈ϵθi⌋
0 + θi2⌈ϵθi⌋

1+d∞
1−d∞ .
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For the construction of the Lyapunov function, perform the state and time transformation
zi = [zθi , zwi ]

T with zθi = ϵθi , zwi =
ϵwi
ki1

, τi = Lit, the dynamics of the estimation error can be
rewritten as:

Πz :



z
′
1 = −K̄1(y)

(
ϕ1(zθ1) + Ā1(y)z1 − 1

k12
1
α1
Bδ̄1

)
z
′
2 = −K̄2(y)

(
ϕ2(zθ2) + Ā2(y)z2 +

1
k22

1
α2
Bδ̄2 +

1
k22

1
α2
Υ2(y, σ1, z1)

)
...

z
′
n−1 = −K̄n−1(y)

(
ϕn−1(zθn−1) + Ān−1zn−1 +

1
kn−1,2

1
αn−1

Bδ̄n−1 +
1

kn−1,2

1
αn−1

Υn−1 (·)
)

z
′
n = −Dn(y)K̄n(y)

(
ϕn(zθn) + Ān(y)zn +

1
dn(y)

1
kn2

1
αn
Bδ̄n +

1
kn2

1
αn

Υn (·)
)

(5.18)

where z
′
θi
=

dzθi
dτi

and z
′
wi

=
dzwi
dτi

corresponds to the derivative with respect to τi,

Āi =

[
0 −1
0 0

]
, K̄i =

[
ki1
di(θ)

0

0 ki2
ki1

]
.

For the convergence proof we will use smooth Lyapunov Functions homogeneous in the bi-limit
derived in [72]. Fix two positive real numbers p0 and p∞ corresponding to the homogeneity degrees
of the 0−limit and the ∞−limit approximations, such that

p0 > 1, p∞ ≥ max

{
1,

3

2
(1− d∞)

}
, p0 ≤

2p∞
1− d∞

. (5.19)

For i = 1, 2, . . . , n (where n is the number of degrees of freedom of the system) and η = 1, 2
choose arbitrary positive real numbers β0,iη > 0, β∞,inη > 0 and de�ne the functions

Zi1 (zθi , zwi) =
∑

j∈{0,∞}

βj,i1

[
rj,1
pj

|zθi |
pj
rj,1 − zθi⌈ζi⌋

pj−rj,1
rj,1 +

pj − rj,1
pj

|ζi|
pj
rj,1

]
,

Zi2 (zwi) = β0,i2
1

p0
|zwi |p0 + β∞,i2

1

p∞
|zwi |p∞ ,

(5.20)

where ζi = ϕ−1
i1 (zwi) and ϕi1(zwi) = κi1⌈zwi⌋

1
2 + θi,1⌈zwi⌋

1
1−d∞ . The Lyapunov candidate functions

for each system zi are then de�ned for i = 1, 2, . . . , n, as:

Vi(zθi , zwi) = Zi1(zθi , zwi) + Zi2 (zwi) . (5.21)

Proposition 10 Let Assumptions A1-A3 and B1-B2 be satis�ed. Select p0 and p∞ such that (5.19)
is ful�lled. For η = 1, . . . , n (where η is the number of degrees of freedom of the system) and for
t ≥

∑η−1
i=1 Ti, there are gains kη1 > 0, kη2 > 0, Lη ≥ 1 and αη > 1, such that Vη(z) in (5.21) is a C1,

bl-homogeneous Lyapunov function for the z
′
η-subsystem of the estimation error dynamics (5.18).

Moreover, Vη satis�es (5.22) for some positive constants ℓ0η, ℓ∞η and for monotonic decreasing
functions of αη, Υη0(αη), Υη∞(αη),

V
′
η (zη) ≤−

(
ℓ0η −Υη0(αη)

)
Vη(zη)

p0−1
p0 −

(
ℓ∞η −Υη∞(αη)

)
Vη(zη)

p∞+d∞
p∞ . (5.22)
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Thus, zη = 0 is a Globally Asymptotically Stable equilibrium point of z
′
η-subsystem of the estimation

error dynamics (5.18), if αη > 1 is selected large enough, such that Υη0(αη) < ℓ0η and Υη∞(αη) <
ℓ∞η. Since 0 < d∞ < 1, then zη = 0 is �xed-time Stable (FxTS) [80], that is, it is globally FxTS
and the settling-time function Tη(zη0) is a continuous globally bounded by a positive constant T̄η,
independent of zη0. Moreover, T̄η can be estimated as (with Υη0 = ℓ0η − Υη0(αη) and Υη∞ =
ℓ∞η −Υη∞(αη)):

T̄η ≤ 1
Lη

 p∞
d∞Υη∞

(
Υη0

Υη∞

) 1(
p∞
p0

d0
d∞

−1

)
− p0

d0Υη0

(
Υη0

Υη∞

) 1(
1− p0

p∞
d0
d∞

) . (5.23)

Based on Proposition 10, it is possible to conclude that the proposed observer estimates the
trajectories of the system (5.7) for all t ≥

∑n
i=1 T̄i. Moreover from the expression (5.23), given an

upper bound of the prede�ned convergence time T̄η, it is possible to see that when Lη → ∞ then
T̄η → 0. This fact satis�es De�nition 2 of prede�ned-convergence presented in [54], and shows that
any prede�ned convergence time can be attained by selecting an appropriate value of Lη.

5.1.4 Example for 2-DOF Mechanical Systems

Consider the 2-DOF mechanical systems with unknown inputs as

M(q)q̈ + C(q, q̇)q̇ +G(q) + Λ sign(q̇) = τ + δ̃(t, q, q̇), (5.24)

where q = (q1, q2)
T ∈ R2 is the measured position, M(q) ∈ R2×2 is the inertia matrix, C(q, q̇) rep-

resents Coriolis and centrifugal forces, Λ ∈ R2×2, Λ sign(q̇) is dry friction, G(q) denotes gravitational
forces, δ̃(t, q, q̇) is an unknown input and τ ∈ R2×1 is the control input.

Suppose that the family of two-degrees-of-freedommechanical systems with uncertainties/perturbations
represented by (5.24) satis�es the assumptions A1-A3 and B1-B2.

Setting v = [v1, v2]
T = τ − g(q), δ = [δ1, δ2] = δ̃(t, q, q̇) − Λ sign(q̇), system (5.24) can be

expressed as:

q̇ =z,

ż =M−1(q2) [v − C(q, z)z + δ] .
(5.25)

The idea of the change of coordinates below was used in [4] to deal with a class of nonlinear
systems that are nonlinear in unmeasured states. Consider the di�eomorphism de�ned by:[

x1
x2

]
=

 q1 +
∫ q2
0

m12(s)
m11(s)

ds∫ q2
0 α(s)ds

 (5.26)

where α(q2) =
√

m11(q2)m22(q2)−m12(q2)2

m11(q2)
=
√

|M(q2)|
m11(q2)

, notice that
√
m ≤ α(q2) ≤

√
m is satis�ed. Its

Jacobian matrix is given by

N(q) =

[
1 m12(q2)

m11(q2)

0 α(q2)

]
. (5.27)
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It is possible to shows that

D(q) =
(
N−1

)T
(q2)M(q2)N

−1(q2) =

[
m11(q2) 0

0 1

]
(5.28)

which satis�es assumptions (B1) and (B2), so Proposition (7) applies. The new con�guration vector
x = [x1, x2] is well de�ned, but it is easy to choose functions, e.g., α(q2) =

√
1 + cos2 q2 for which

x appears to admit no closed form expression in terms of elementary functions. This obstacle can
be overcome via a suitable modi�cation on the de�nition of x1 and x2. More precisely, in the new
coordinates de�ned by: 

θ1
θ2
w1

w2

 = T (q, z) =


q1 +

∫ q2
0

m12(s)
m11(s)

ds

q2
m11(q2)z1 +m12(q2)z2

α(q2)z2

 . (5.29)

System (5.25) can be simpli�ed as (the details of the transformation are shown in appendix
C.1):

θ̇1 =
1

m11(θ2)
ω1,

ω̇1 = v1 + δ1,

θ̇2 =
1

α(θ2)
ω2,

ω̇2 =
1

α(θ2)

(
v2 −

m12(θ2)

m11(θ2)
v1

)
+

1

α(θ2)

(
δ2 −

m12(θ2)

m11(θ2)
δ1

)
+

m
′
11(q2)

2m2
11(θ2)α(θ2)

ω2
1.

(5.30)

For system (5.30) it is possible to use the observer proposed in (5.15) to estimate the true
trajectories of the system globally, exactly and in �xed-time.

5.1.5 Application to the Two-Link Direct Drive Robot Manipulator

As an example, consider the two-link direct drive robot manipulator. In the case of horizontal plane
arm setting, the gravitational forces are identically zero. When the momentum of inertia concerning
the links are symbolized as I1 and I2, the terms in the dynamic can be obtained by means of the
Euler�Lagrange dynamic equation. Taking into account, the symbols listed in Table 5.1, the robot
dynamics, are represented by [49, 63]:

M(q) =

[
p1 + 2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

]
(5.31)

where p1 = I1 + I2 +m1l
2
c1 +m2

(
l21 + l2c2

)
, p2 = I2 +m2l

2
c2, p3 = m2l1lc2.

C(q, q̇) = −p3 sin(q2)
[

q̇2 q̇1 + q̇2
−q̇1 0

]
(5.32)
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Figure 5.1: Schematic drawing of two-link manipulator.

The entries of the gravitational torque vector G(q) are given by:

g1 =m1lc1g sin(q1) +m2g (lc2 sin(q1 + q2) + l1 sin(q1)) ,

g2 =m2lc2g sin(q1 + q2),
(5.33)

the inputs of system are de�ned by τ = [0.5 cos(q1 − q2) + 0.6, 0]T , Coulomb frictions are Λ sign(q̇) =
[fs1 sign(q̇1), fs2 sign(q̇2)]

T and perturbations are δ̃ = [0.5 sin(t/π)− 0.2, 0.4 cos(πt/3)− 0.3]T .

Table 5.1: Parameters and de�nition of the manipulators

Parameter Symbol Value

Link 1 length l1 0.3 [m]

Link 2 length l2 0.2 [m]

Link 1 mass m1 3 [kg]

Link 2 mass m2 2 [kg]

Link 1 inertia I1 0.231 [kg m2]

Link 2 inertia I2 0.0071 [kg m2]

Link 1 Coulomb friction fs1 3.243 [Nm]

Link 2 Coulomb friction fs2 0.885 [Nm]

Gravity acceleration g 9.8 [ms−2]

Choosing d∞ = 0.5, it is possible to prove that with k11 = 12.16m11, k12 = 8.65, K21 =
6.13α(θ2), K22 = 10.11, L1 = L2 = 1, α1 = α2 = 1, κi1 = κi2 = 1, θi1 = 1, θ12 = 10 and
θ22 = 20, observer (5.15) estimates the true states of system (5.31)-(5.33) in �xed-time. For the
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simulations, consider initial conditions as (q1(0), q̇1(0), q2(0), q̇2(0)) = (−0.1, −0.1, 0.2, −0.1) and(
θ̂1(0), ŵ1(0), θ̂2(0), ŵ2(0)

)
= (0.5, 0, 0.5, 0).

Figures 5.2-5.3 shows that upper bound time is t > 0.4[s]; explicit Euler discretization with step
size 10−5 was used. It can be seen from (5.23) and �gure 5.4, that the upper bound of settling
time can be modi�ed adjusting the gains L1 and L2. The simulations were carried out in two steps:
1. The observer that estimates the �rst velocity (ω1) of the system is turned on. 2.- After the
�rst observer has estimated the �rst velocity (ω1) exactly and in a �xed-time, the second observer
turns on. Once the second observer converges to the true states of the system, the whole observer
estimates the unmeasured states of the system ω1 and ω2.
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Figure 5.2: Velocity estimation errors of transformed system (5.30), with L1 = L2 = 1.
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Figure 5.3: Velocity estimation errors of system in original coordinates, with L1 = L2 = 1.



5.1. Bi-Homogeneous Observer For Uncertain N-DOF Mechanical Systems 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1

-1

0

1
10

-3

Figure 5.4: Velocity estimation errors of system in original coordinates, with L1 = L2 = 2.

In order to show a di�erent technique for the operation of the proposed observer, a simulation
is shown below in which the two proposed observers for the system are started at the same time.
The simulation parameters are the same as the previous case considering L1 = L2 = 2.
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Figure 5.5: Velocity estimation errors of system in original coordinates, with L1 = L2 =

2 (second method) and initial conditions equal to
(
θ̂1(0), ŵ1(0), θ̂2(0), ŵ2(0)

)
=

(0.5, 0, 0.5, 0).

The problem with this method is that the transient of the second velocity estimate depends on
the initial conditions of the �rst observer (observer for ω1). In order to show this e�ect consider the

same observer with initial condition equal to
(
θ̂1(0), ŵ1(0), θ̂2(0), ŵ2(0)

)
= (5, 3, 0.5, 0).
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Figure 5.6: Velocity estimation errors of system in original coordinates, with L1 = L2 =

2 (second method) and initial conditions equal to
(
θ̂1(0), ŵ1(0), θ̂2(0), ŵ2(0)

)
=

(5, 3, 0.5, 0).

5.1.6 Conclusions

This section proposes the observer for su�ciently wide class of N-DOF mechanical systems with
Coriolis forces, dry frictions, and non-vanishing bounded uncertainties/perturbations. The bi-limit
structure of proposed observer ensures a prede�ned upper bound of settling time to the system
state. The observers are also simpler, since the usual cascade con�guration of a Luenberger (linear)
observer and a HOSM di�erentiator is replaced by a nonlinear observer with bihomogeneous injection
terms. This simpli�es and reduces the order of the observer realization. It is necessary to mention
that the acceleration of observer convergence using increasing only gain Li. Due to the assumptions
made for the existence of the di�eomorphism that leads the system to a triangular form inthe
velocities, it is not possible to consider viscous frictions, as in Chapter 4.



Chapter 6

Conclusions

The design of observers for uncertain nonlinear systems is currently one of the main topics in control
and observation theory. In realistic scenarios, the unknown inputs is considered for the design of
observers, however many systems are not strongly observable with respect to the unknown inputs.
This property of system with respect to the uncertain input (bounden uncertain inputs) is one of
the necessary conditions for the existence of observers when the uncertain input is arbitrary. In this
thesis, a way to design bi-homogeneous observers is presented. The method proposed uses explicitly
de�ned bi-homogeneous Lyapunov functions.

The proposed observers are based in bi-homogeneous properties i.e. observers with discontinuous
properties and continuous properties at the same time. This observer ensures a prede�ned upper
bound of settling time to the system state. Furthermore, the bi-homogeneous observer has been
used to estimate the true states of euler-lagrange systems as is show in Chapter 4 and 5.

The �xed-time convergence has proved to have some advantages. This property can be described
as the synergy of uniformity w.r.t. the initial conditions and �nite-time convergence. The �nite-
time convergence means, in theory, exact recovery of the system state. The uniformity implies that
a time ensuring the reliability of the estimate can be given, being this time independent from the
initial estimation error. This information can be very valuable in applications that evolve fast,
where quick decision making is mandatory.

The main properties provided by the observer can be summarized in the following points:

� Under ideal conditions, the estimated state converges to the system state's exactly, in a time
that is bounded by a constant which is independent of the initial.

� In the presence of disturbances, the error committed by the observer remains bounded and
retain a relation with the size of the disturbances.

� It is possible to consider a larger class of nonlinearities e.g. Friction models that consider
viscous and dry frictions.
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Appendix A

Bi-homogeneous Observer for Nonlinear

Systems in Triangular Form

A.1 Proof Theorem 9

For i = 2, · · · , n, δi(y, x2, . . . , xi, e2, . . . , ei, u) = fj(y, x2 + e2, . . . , xi+ ei, u)− fj(y, x2, . . . , xi, u).
Assumption 3 implies that,

|δi| ≤ µ0,i

i∑
η=2

|eη|
r0,i+1
r0,η + µ∞,i

i∑
η=2

|eη|
r∞,i+1
r∞,η , (A.1)

where µ0,i and µ∞,i are positive constants. Since ei = Li−1ki−1zi the inequality (A.1) becomes

|δi|
Li

≤µ0,i
i∑

η=2

L
(η−1)r0,i+1−ir0,η

r0,η k

r0,i+1
r0,η

η−1 |zη|
r0,i+1
r0,η + µ∞,i

i∑
η=2

L
(η−1)r∞,i+1−ir∞,η

r∞,η k

r∞,i+1
r∞,η

η−1 |zη|
r∞,i+1
r∞,η ,

=
µ0,i

L
r0,1
n

i∑
η=2

Lα0,iηk

r0,i+1
r0,η

η−1 |zη|
r0,i+1
r0,η +

µ∞,i

L
r∞,1

n

i∑
η=2

Lα∞,iηk

r∞,i+1
r∞,κ

η−1 |zκ|
r∞,i+1
r∞,η ,

≤ µ̃0,i

L
r0,1
n

i∑
η=2

|zη|
r0,i+1
r0,η +

µ̃∞,i

L
r∞,1

n

i∑
η=2

|zη|
r∞,i+1
r∞,η ,

(A.2)

where µ̃0,i and µ̃∞,i depends on kη and µ0,i, µ∞,i respectively. The last inequality is valid for L ≥ 1
and it follows since the exponents

α0,iη =

(
(η−1)r0,i+1−ir0,η

)
n+r0,1r0,η

nr0,η
≤ 0, (A.3)

α∞,iη =

(
(η−1)r∞,i+1−ir∞,η

)
n+r∞,1r∞,η

nr∞,η
≤ 0. (A.4)
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To prove that (A.3) and (A.4) are true, we analyze both numerators as follows (whit j = {0, ∞}
and r∞,1 ≤ r0,1 ≤ n):

Nj = ((η − 1)rj,i+1 − irj,η)n+ rj,1rj,η,

≤ ((η − 1)rj,i+1 − irj,η)n+ nrj,η,

= n ((η − 1) r0,i+1 − ir0,η + r0,η) .

(A.5)

From (3.7) it is known that r0,i+1 ≤ r0,η, r∞,η ≤ r∞,i+1 and therefore it is possible to bound (A.3)
and (A.4) as follows:

α0,iη ≤
n(−i+ η)r0,η

nr0,η
≤ 0,

α∞,iη ≤
n(−i+ η)r∞,i+1

nr∞,η
≤ 0.

(A.6)

From (A.6) it is easy to see that (A.3) and (A.4) are satis�ed for all i and η.

The inequality (A.2) can be bounded as follows

|δi|
Li

≤ µi

L
r∞,1

n

i∑
η=2

(
|zη|

r0,i+1
r0,η + |zη|

r∞,i+1
r∞,η

)
≤ µi

L
r∞,1

n

i∑
η=2

|ϕδi,η(zη)|, (A.7)

where µi =
µ̃0,i

L
r0,1−r∞,1

n

+ µ̃∞,i, and the terms ϕδi,η(zη) are de�ned as

ϕδi,η(zη) = φi ◦ . . . ◦ φη(zη) (A.8)

with,

φi(s) = κi⌈s⌋
r0,i+1
r0,i + θi⌈s⌋

r∞,i+1
r∞,i . (A.9)

Note that (A.9) is equal to (3.6) and therefore, they have the same characteristics.

Since d∞ > d0, φ(·) in (3.6) and (A.9) is homogeneous in the 0- and ∞-limits, with approximat-

ing functions φi, 0(·) = κi⌈·⌋
r0,i+1
r0,i and φi,∞(·) = θi⌈·⌋

r∞,i+1
r∞,i , respectively. For i = 1, · · · , n − 1,

the inverse φ−1
i (s) is also homogeneous in the 0-limit and in the ∞-limit ([5]), with approximating

functions φ−1
i, 0(s) = ⌈s/κi⌋

r0,i
r0,i+1 and φ−1

i,∞(s) = ⌈s/θi⌋
r∞,i

r∞,i+1 , respectively. Note also that when
d0 > 0, for i = 1, · · · , n − 1, φ−1

i, 0(s) is homogeneous of negative degree, and therefore φ−1
i, 0(s) is

not di�erentiable at s = 0. However, ⌈φ−1
i, 0(s)⌋µ is di�erentiable at s = 0 for every µ ≥ r0,i+d0

r0,i
, and

|φ−1
i, 0(s)|µfor every µ ≥ r0,i+d0

r0,i
.

For i = 1, · · · , n − 1, functions ϕi in (3.5) and ϕδi,η in (A.8), being compositions of φ, are C
on R, C1 on R\{0}, strictly increasing and surjective. In case d0 = −1 and for η = 1, . . . , n − 1,

functions ϕn(z1) = κn⌈z1⌋0+θn⌈φn−1◦· · ·φ2◦φ1(z1)⌋
r∞,n+1
r∞,n , ϕδn,η(zη) = κn⌈zη⌋0+θn⌈φn−1◦· · ·φ2◦

φη(zη)⌋
r∞,n+1
r∞,n and ϕδn,n(zn) = κn⌈zn⌋0 + θn⌈zn⌋

r∞,n+1
r∞,n are discontinuous. ϕi's and ϕδi,η's in (3.5)
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and (A.8) respectively are also homogeneous in the 0-limit and in the ∞-limit, with approximating
functions

ϕi,0(z1) = Ki, 0⌈z1⌋
r0,i+1
r0,1 ,

ϕi,∞(z1) = Ki,∞⌈z1⌋
r∞,i+1
r∞,1 ,

ϕδi,η,0(zη) = Kδi,η,0⌈zη⌋
r0,i+1
r0,η ,

ϕδi,η,∞(zη) = Kδi,η,∞⌈zη⌋
r∞,i+1
r∞,η ,

where Ki,0 = Πij=1κ

r0,i+1
r0,j+1

j , Ki,∞ = Πij=1θ

r∞,i+1
r∞,j+1

j , Kδi,η,0 = Πij=ηκ

r0,i+1
r0,j+1

j and Kδi,η,∞ = Πij=ηθ

r∞,i+1
r∞,j+1

j .
For δi(·) = 0 and w(t) = 0, system (3.10) is bl-homogeneous with homogeneity degrees d0, d∞ and
weights r0 = [r0,1, · · · , r0,n] and r∞ = [r∞,1, · · · , r∞,n] as in (3.7).

Since φn is not involved in the de�nition of Zi, it has to satisfy weakened conditions compared
to the other functions φi. From the properties of functions φi it follows that Zi is C on R. For Zi
to be C1 on R the powers in (3.13) have to be su�ciently large, what is the case if (3.11) is ful�lled.
Note that if (3.12) is met, Zi is also bl-homogeneous with approximations Zi, 0(zi, zi+1), given by

the �rst term in (3.13) with ξi = ⌈ zi+1

κi
⌋

r0,i
r0,i+1 ; and Zi,∞(zi, zi+1), given by the second term in (3.13)

with ξi = ⌈ zi+1

θi
⌋

r∞,i
r∞,i+1 . Moreover, Zi(zi, zi+1) ≥ 0.

Lemma 3 ([72]). Zi(zi, zi+1) ≥ 0 for every i = 1, · · · , n, and Zi(zi, zi+1) = 0 if and only if
φ1(z1) = zi+1.

The partial derivatives of Zi(zi, zi+1), for which we introduce the symbols σi and si, are given
by

σi(zi, zi+1) ≜
∂Zi(zi, zi+1)

∂zi
=

∑
j={0,∞}

βj,i

(
⌈zi⌋

pj−rj,i
rj,i − ⌈ξi⌋

pj−rj,i
rj,i

)
, (A.10)

si(zi, zi+1) ≜
∂Zi(zi, zi+1)

∂zi+1
=

∑
j={0,∞}

−βj,i pj−rj,irj,i
(zi − ξi) |ξi|

pj−2rj,i
rj,i ∂ξi

∂zi+1
, (A.11)

where ξi = φ−1
i (zi+1). Note that sn(zn, zn+1) ≡ 0, and that functions σi(zi, zi+1) and si(zi, zi+1)

are C on R, bl-homogeneous of degrees p0 − r0,i, p0 − r0,i+1 for the 0-approximation and p∞ − r∞,i,
p∞ − r∞,i+1 for the ∞-approximation, respectively.

For calculation of the time derivative of V (3.14) along the trajectories of (3.10), we consider
|w(t)| ≤ ∆ if d0 = −1 and w(t) ≡ 0 when d0 ̸= −1. In that case

V
′
(z) ∈WT (z),

WT (z) = −W (z) +Wnl(z),
(A.12)
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where

Wnl(z) =
n∑
j=2

vj
1

kj−1

δj
Lj

− vn
∆

kn−1Ln
[−1, 1] ,

W (z) =

n−1∑
j=1

k̃jaj(t)vj (ϕj(z1)− zj+1) + k̃nvnϕn(z1),

(A.13)

with

v1 =σ1, vj = sj−1 + σj , j = 2, . . . , n− 1,

vn =sn−1 + σn.

It has been shown in [72] that there exist positive values of
(
k̃1, · · · , k̃n

)
such that W (z) > 0.

Considering inequality (A.7), Wnl(z) can be upper bounded in all cases by

Wnl ≤
n∑
j=2

j∑
η=2

γj

L
r∞,1

n

|vj | |ϕδj,η(zη)| −
γwvn

L
r∞,1

n

[−∆, ∆] , (A.14)

where γj = µi/kj−1 and γe = 1/(kn−1L
n2−r∞,1

n ). Function Wnl(z) and W (z) are bl-homogeneous of
degree p0+d0 for the 0-approximation and p∞+d∞ for the ∞-approximation. Using the properties
of bl-homogeneous functions (see [5, 26]), it is possible to conclude that, there exist a positive
constant λ such that

Wnl(z) ≤
λ

L
r∞,1

n

W (z). (A.15)

Putting everything together, WT (z) becomes

WT (z) ≤ −(1− λ

L
r∞,1

n

)W (z). (A.16)

It is clear that we can chose L large enough, such that WT (z) is negative de�nite.

A.2 Coordinate Transformation of Example 3.1.5

The system (A.17) is obtained from the derivative with respect to time in (3.18) together with the
system (3.17).

ẋ =
∂T (n1, n2)

∂n
ṅ, (A.17)

where [
x1
x2

]
= T (n1, n2) =

[
n1

a1n1n2
a2n1+n2

]
,
∂T (n1, n2)

∂n
=

[
1 0

a1n2
2

(a2n1+n2)2
a1a2n2

1
(a2n1+n2)2

]
. (A.18)
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Therefore, from system (A.17) it is possible to obtain the following system:

ẋ1 =
a1n1n2

a2n1 + n2
− un1,

ẋ2 =
a1n

2
2

(a2n1 + n2)2

(
a1n1n2

a2n1 + n2
− un1

)
+

a1a2n
2
1

(a2n1 + n2)2

(
−a3

a1n1n2
a2n1 + n2

− n2u+ a4u

)
.

(A.19)

Note that

a1n
2
2

(a2n1 + n2)2
→ a1n

2
1

a1n21

a1n
2
2

(a2n1 + n2)2
→ 1

a1n21

(
a1n1n2

a2n1 + n2

)2

→ 1

a1x21
x22,

a1a2n
2
1

(a2n1 + n2)2
→ a1n

2
2

a1n22

a1a2n
2
1

(a2n1 + n2)2
→ a2

a1n22

(
a1n1n2

a2n1 + n2

)2

→ a2
a1n22

x22.

From x2 =
a1n1n2
a2n1+n2

, it is possible to obtain that n2 = a2x1x2
a1x1−x2 , therefore:

a2
a1n22

x22 →
(a1x1 − x2)

2

a1a2x21
=

a1
a2

− 2x2
a2x1

+
x22

a1a2x21
.

Taking into account the previous steps, system (A.19) can be rewrite as:

ẋ1 =x2 − ux1,

ẋ2 =
1

a1x21
x22 (x2 − ux1) +

(a1x1 − x2)
2

a1a2x21

(
−a3x2 −

a2x1x2
a1x1 − x2

u+ a4u

)
.

(A.20)

Finally, performing the operations, the system results:

ẋ1 =x2 − ux1

ẋ2 =
x32
a1x21

− ux22
a1x1

− a1a3x2
a2

+
2a3x

2
2

a2x1
− a3x

3
2

a1a2x21

− x2u+
ux22
a1x1

+
a1a4u

a2
− 2a4ux2

a2x1
+

a4ux
2
2

a1a2x21
.

(A.21)

Considering a4 = a04 + a4w, system (A.21) can be rewrite as system (3.19).



Appendix B

Bi-Homogeneous Observers for Linearizable

Mechanical Systems in the Velocity

B.1 Proof Theorem 10

For future purposes, functions ϕ1(e1) and ϕ2(e1) in (4.9) can be rewritten as

ϕ1(e1) = φ1(e1),

ϕ2(e1) = φ2 ◦ φ1(e1),
(B.1)

these terms are the composition of the monotonic growing functions φi : R → R

φ1(s) = κ1⌈s⌋
1
2 + θ1⌈s⌋

1
1−d∞ ,

φ2(s) = κ2⌈s⌋0 + θ2⌈s⌋1+d∞ .
(B.2)

Choosing 0 ≤ d∞ < 1, the powers in (B.2) satisfy 1
2 ≤ 1

1−d∞ and 0 ≤ 1 + d∞, so that the �rst term
in φi(s) is dominating for the small values of s, while the second is dominating for the large values
of s. This domination e�ect is naturally extended to the injection terms ϕi in (B.1).

V in (4.19) is bl-homogeneous of degrees p0 and p∞, C1 on R and its time derivative along
solutions of (4.16) is

V
′
(z) ∈W (z), (B.3)

W (z) = −k̃1v1 (ϕ1(z1)− z2)− k̃2v2

(
ϕ2(z1)−

Υ (y)

m(y)k2

∆

L2
[−1, 1]

)
+Wnl(z), (B.4)

where Wnl(z) = v2
Υ (y)
m(y)k1

δ2
L2 , v1 = σ1, v2 = s1 + σ2, and

σ1 ≜
∂Z1(z1, z2)

∂z1
= β0,1

(
⌈z1⌋

p0−2
2 − ⌈ζ⌋

p0−2
2

)
+ β∞,1

(
⌈z1⌋

p∞−1+d∞
1−d∞ − ⌈ζ⌋

p∞−1+d∞
1−d∞

)
,

s1 ≜
∂Z1(z1, z2)

∂z2
= −β0,1 p0−2

2 (z1 − ζ) |ζ|
p0−4

2
∂ζ
∂z2

− β∞,1
p∞−1+d∞

1−d∞ (z1 − ζ) |ζ|
p∞−2(1−d∞)

1−d∞ ∂ζ
∂z2

,

σ2 ≜
∂Z2(z2)

∂z2
= β0, 2⌈z2⌋p0−1 + β∞, 2⌈z2⌋p∞−1,

(B.5)

85
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where ζ = φ−1
1 (z2).

Now consider the term Wnl(z). Assumption As2 implies that

|δ2| ≤ 2µ0 + µ∞|e2|1+d∞ , (B.6)

where µ0 and µ∞ are positive constants. Since e1 = z1 and e2 = Lk1z2 the inequality (B.6) becomes

|δ2|
L2

≤2µ0
L2

+ µ∞L
r∞,3−2k1+d∞1 |z2|1+d∞ ,

≤2L−1µ0 +
µ∞

L
1−d∞

2

Lα∞k1+d∞1 |z2|1+d∞ ,

≤2L−1µ0 +
µ̃∞

L
1−d∞

2

|z2|1+d∞ ,

(B.7)

where µ̃∞,i depends only on µ∞ and the gain k1. The last inequality is valid for L ≥ 1 and it follows
since the exponent

α∞ =
2
(
r∞,3 − 2

)
+
(
1− d∞

)
2

≤ 0.

Moreover, the last inequality of (B.7) can be bounded as follows

|δ2|
L2

≤µ2
∣∣∣κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞

∣∣∣ , (B.8)

where µ2 = 2L−1µ0 + L− 1−d∞
2 µ̃∞. Therefore, Wnl(z) can be upper bounded by

Wnl ≤ γ2 |v2|
∣∣∣κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞

∣∣∣ , (B.9)

where γ2 =
Υ (y)µ2
m(y)k1

. Thus, from (B.4),

W (z) ≤ −k̃1v1 (ϕ1(z1)− z2)− k̃2v2

(
ϕ2(z1)− Υ (y)

m(y)k2
∆
L2 [−1, 1]

)
+ γ2|v2|

∣∣∣κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞
∣∣∣ .

(B.10)
It is necessary to show, that there exist values of k̃i > 0 and L ≥ 1 such that, W is negative de�nite.
To show that W (z) < 0, consider the value of W restricted to the hypersurface:

Z1 = {φ1(z1) = z2} .

Note that on Z1 functions σ1 and s1 vanish, i.e. σ1 = s1 = 0. Let W1 =WZ1 represent the value of
W (z) restricted to the manifold Z1. The value of W1 is obtained by replacing in W (z) the variable
z1 by z1 = φ−1

1 (z2), so that W1 becomes a function of z2.

The �rst term in W (z) (B.10) is non positive, i.e., −k1σ1(z1, z2) (ϕ1(z1)− z2) ≤ 0, and it
vanishes on Z1. Evaluating W (z) on Z1, W1(z2) can be rewritten as

W1(z2) =− k̃2σ2

(
φ2(z2)−

Υ (y)

m(y)k2

∆

L2
[−1, 1]

)
+ γ2

∣∣∣σ2∣∣∣ ∣∣∣κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞
∣∣∣ ,

=− k̃2

(
β0, 2⌈z2⌋p0−1 + β∞, 2⌈z2⌋p∞−1

)(
κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞ − Υ (y)

m(y)k2

∆

L2
[−1, 1]

)
+ γ2

∣∣∣β0,2⌈z2⌋p0−1 + β∞,2⌈z2⌋p∞−1
∣∣∣ ∣∣∣κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞

∣∣∣ .
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If ∆̃ ≜ Υ (y)∆
m(y)κ2k2L2 < 1, the following equality is satis�ed for the set-valued map

κ2

(
⌈z2⌋0 − ∆̃ [−1, 1]

)
= κ2⌈z2⌋0

[
1− ∆̃, 1 + ∆̃

]
.

So, for any ν > 0, κ2
(
⌈z2⌋0 − ∆̃ [−1, 1]

)
⌈z2⌋ν > 0 for z2 ̸= 0, and κ2

(
⌈z2⌋0 − ∆̃ [−1, 1]

)
⌈z2⌋ν = 0

for z2 = 0. Therefore, with W ∗
1 (z2) = max {W1(z2)}

W ∗
1 (z2) =− k̃2

(
β0, 2|z2|p0−1 + β∞, 2|z2|p∞−1

)(
κ2

(
1− ∆

κ2k2

)
+ θ2|z2|1+d∞

)
+

γ2

L
1−d∞

2

∣∣∣β0,2⌈z2⌋p0−1 + β∞,2⌈z2⌋p∞−1
∣∣∣ ∣∣∣κ2⌈z2⌋0 + θ2⌈z2⌋1+d∞

∣∣∣ , (B.11)

where γ2 = Υ (y)
m(y)k1

(
2µ0

L
1+d∞

2

+ µ̃∞

)
. Function W ∗

1 (z2) is single-valued, upper semi-continuous, bl-

homogeneous and negative de�nite for any k̃2 > γ2 and L ≥ 1. The same is true for its homogeneous
approximations (as shown in [73] ). From Lemma 9 of [72] it follows, that there exist positive values
of k̃1 and k2 such that W (z) < 0. Note that, if L → ∞, γ2 → 0, i.e., the e�ect of second term of
(B.11) decreases as L increases.

B.2 Proof Theorem 11

Lyapunov function V in (4.49) is bl-homogeneous of degrees p0 and p∞, C1 on R and its derivative
along solutions of (4.44) with respect to the new time variable τ is:

V
′
(z) ∈WT (z),

WT (z) =−W1(zθ1 , zw1)−W2(zθ2 , zw2) +
v12ψ1(·)
ko1L

+ v22ψ2(·)
lo1L

− v12δ1
ko1α

− v22(m11δ2−m12(θ2)δ1)
lo1αm11γ(θ2)

,

where,

W1(zθ1 , zw1) =
ko1
m11

v11 (ϕ11(zθ1)− zw1) + k̃o2v12ϕ12 (zθ1) ,

W2(zθ2 , zw2) =
lo1√
m
v21 (ϕ21(zθ2)− zw2) + l̃o2v22ϕ22 (zθ2) ,

with vi1 = σi1, vi2 = si1 + σi2, and

σi1 ≜β0,i1
(
⌈zθi⌋

p0−2
2 − ⌈ζi⌋

p0−2
2

)
+ β∞,i1

(
⌈zθi⌋

p∞−1+d∞
1−d∞ − ⌈ζi⌋

p∞−1+d∞
1−d∞

)
,

si1 ≜− β0,i1
p0−2
2 (zθi − ζi) |ζi|

p0−4
2

∂ζi
∂zwi

− β∞,i1
p∞−1+d∞

1−d∞ (zθi − ζi) |ζi|
p∞−2(1−d∞)

1−d∞
∂ζi
∂zwi

,

σi2 ≜ β0,i2⌈zwi⌋p0−1 + β∞,i2⌈zwi⌋p∞−1, ζη = ϕ−1
η1 (zwη) and ϕη1 = κη1⌈zwη⌋

1
2 + θη,1⌈zwη⌋

1
1−d∞ .

It has been shown in [72] that there exist gains ko1, k̃o2, lo1, l̃o2 appropriately selected such that
W1(zθ1 , zw1), W2(zθ2 , zw2) and W (z) =W1(zθ1 , zw1) +W2(zθ2 , zw2) are positive de�nite.
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Consider the terms v12ψ1(·)
ko1L

and v22ψ2(·)
lo1L

. Functions v12 and v22 are bl-homogeneous of degree p0−1
for the 0-approximation and p∞ − 1 for the ∞-approximation. Each term zwi is bl-homogeneous
of degree 1 for the 0-approximation and for the ∞-approximation. Using the properties of bl-
homogeneous functions (see [5], [26]), terms v12ψ1(·)

ko1L
and v22ψ2(·)

lo1L
are bl-homogeneous of degree p0 for

the 0-approximation and p∞ for the ∞-approximation. Note that, since for d0 = −1 and d∞ ≥ 0
we have that p0 + d0 ≤ p0 and p∞ + d∞ ≥ p∞, then it is possible to conclude that, there exist
positive constants λ1 and λ2 such that:

v12ψ1(·)
ko1L

≤ λ1
LW (z), v22ψ2(·)

lo1L
≤ λ2

LW (z).

For the last two terms in WT (z), which include the unknown inputs, there is a positive constant λ3
such that

1
α

(
v22m12

lo1m11

√
m

− v12
ko1

)
δ1 − 1

α
v22m11

lo1m11

√
m
δ2 ≤ λ3

αW (z)|δ|∞, (B.12)

where |δ|∞ = max{|δ1 + δ2|}.

Putting everything together, WT (z) becomes

WT (z) ≤ −W (z) + λ1+λ2
L W (z) + λ3

αW (z)|δ|∞,

= −
(
1− λ1+λ2

L − λ3
α |δ|∞

)
W (z).

(B.13)

It is clear that in absence of unknown inputs |δ|∞ = 0 we can chose L large enough, such that
WT (z) is negative de�nite, moreover, with |δ|∞ ̸= 0 we can chose α su�ciently large, such that due
to do = −1, WT (z) is negative de�nite and thus �nite-time stability is reached.



Appendix C

Bi-Homogeneous Observers for Triangularizable

Mechanical Systems in the Velocity

Lyapunov functions Vi in (5.21) are bl-homogeneous of degrees p0 and p∞, C1 on R. Suppose that for
η = 2, . . . , n, exist a time tη ≥

∑η−1
i=1 Ti such that if t ≥ tη then Υη(y, σ1, . . . , ση−1, e1, . . . , eη−1) =

φη(y, σ1 + e1, . . . , ση−1 + eη−1) − φη(y, σ1, . . . , ση−1) = 0, remember that for all t, Υ1(y) = 0. For
t ≥ tη the derivative of Vi along solutions of subsystem zi (4.44) with respect to the time variable
τi is:

V
′
i (zi) ∈WT i(zi),

WT i(zi) =−Wi(zθi , zwi)−
vi2
ki1αi

δ̄i +
vi2
ki1αi

Υη(y, σ1, . . . , ση−1, e1, . . . , eη−1),∀t ≥ tη, Υ(·) = 0,

where,

Wi(zθi , zwi) =
ki1

max(di(θ))
vi1 (ϕi1(zθi)− zwi) + k̃i2vi2ϕi2 (zθi) ,

with vi1 = σi1, vi2 = si1 + σi2, and

σi1 ≜β0,i1
(
⌈zθi⌋

p0−2
2 − ⌈ζi⌋

p0−2
2

)
+ β∞,i1

(
⌈zθi⌋

p∞−1+d∞
1−d∞ − ⌈ζi⌋

p∞−1+d∞
1−d∞

)
,

si1 ≜− β0,i1
p0−2
2 (zθi − ζi) |ζi|

p0−4
2

∂ζi
∂zwi

− β∞,i1
p∞−1+d∞

1−d∞ (zθi − ζi) |ζi|
p∞−2(1−d∞)

1−d∞
∂ζi
∂zwi

,

σi2 ≜ β0,i2⌈zwi⌋p0−1 + β∞,i2⌈zwi⌋p∞−1, ζη = ϕ−1
η1 (zwη) and ϕη1 = κη1⌈zwη⌋

1
2 + θη,1⌈zwη⌋

1
1−d∞ .

It has been shown in [72] that there exist gains ki1, k̃i2 appropriately selected such thatWi(zθi , zwi),
is positive de�nite. Functions vi2 are bl-homogeneous of degree p0 − 1 for the 0-approximation
and p∞ − 1 for the ∞-approximation. Each term zwi is bl-homogeneous of degree 1 for the 0-
approximation and for the ∞-approximation. Note that, since for d0 = −1 and d∞ ≥ 0 we have
that p0 + d0 ≤ p0 and p∞ + d∞ ≥ p∞, then it is possible to conclude that, there exist a positive
constant λi such that

vi2
ki1αi

δ̄i ≤ λi
αi
Wi(zi)|δi|∞, |δi|∞ = max{|δi|}. (C.1)
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Putting everything together, WT (z) becomes

WT i(zI) ≤ −Wi(zi) +
λi
αi
Wi(zi)|δi|∞,

= −
(
1− λi

αI
|δi|∞

)
Wi(zi).

(C.2)

It is clear that in absence of unknown inputs |δi|∞ = 0, WT i(zi) is negative de�nite, moreover, with
|δi|∞ ̸= 0 we can chose αi su�ciently large, such that due to do = −1, WT i(z) is negative de�nite
and thus �nite-time stability is reached.

C.1 Coordinate Transformation of Example 5.1.4

Consider the 2-DOF mechanical systems with unknown inputs (5.24),

M(q)q̈ + C(q, q̇)q̇ +G(q) + Λ sign(q̇) = τ + δ̃(t, q, q̇). (C.3)

Suppose that the family of two-degrees-of-freedommechanical systems with uncertainties/perturbations
satis�es the assumptions A1-A3 and B1-B3 of Chapter 5.

In the family of 2-DOF systems (C.3), the entries of Coriolis and centrifugal matrix C(q, q̇) =[
c11 c12
c21 c22

]
is de�ned from the entries of M(q2) through the Christo�el symbols [90] as:

ckj =
1

2

2∑
i=1

(
∂mkj(q2)

∂qi
+
∂mki(q2)

∂qj
− ∂mij(q2)

∂qk

)
q̇i,

for k, j = 1, 2. Therefore, the Coriolis and centrifuges matrix is reduced to

C = (q, q̇) =

[
1
2m

′
11(q2)q̇2

1
2m

′
11(q2)q̇1 +m′

12(q2)q̇2
1
2m

′
11(q2)q̇1

1
2m

′
22(q2)q̇2

]
.

Setting v = [v1, v2]
T = τ − g(q), δ = [δ1, δ2] = δ̃(t, q, q̇) − Λ sign(q̇), system (C.3) can be

expressed as:

q̇ =z,

ż =M−1(q2) [v − C(q, q̇)q̇ + δ] .
(C.4)

Under the action of the di�eomorphism, (q, q̇) → (θ, ω), where ω1 = d1(θ)θ̇1 and ω2 = θ̇2, system
(C.3) can be written as:

θ̇ = N1(q)q̇ = N1(q)N
−1
1 D−1

ω ω,

ω̇ =
[
N2(q, q̇)−

(
N−1

1

)T
C(q, q̇)

]
q̇ +

(
N−1

1

)T
[v −Hq̇ + δ] ,

=
[
N2(q, q̇)−

(
N−1

1

)T
C(q, q̇)

]
N−1

1 D−1
ω ω +

(
N−1

1

)T [
v −HN−1

1 D−1
ω ω + δ

]
,
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where Dω = Diag (d1(θ), 1), ψ2(q, q̇) = Dw(θ)N1(q)q̇, N2(q) =
∂ψ2

∂q .

Consider the point transformation de�ned by

[
θ1
θ2

]
= ψ1(q) =

[
ψ11(q)
ψ12(q)

]
=

 q1 +
∫ q2
0

m12(s)
m11(s)

ds∫ q2
0 α(s)ds

 , (C.5)

where α(q2) =
√

m11(q2)m22(q2)−m12(q2)2

m11(q2)
=
√

|M(q2)|
m11(q2)

, notice that
√
m ≤ α(q2) ≤

√
m is satis�ed. Its

Jacobian matrix is given by

N1(q) =

[
n11(q) n12(q)
n21(q) n22(q)

]
=

[
∂ψ11(q)
∂q1

∂ψ11(q)
∂q2

∂ψ12(q)
∂q1

∂ψ12(q)
∂q2

]
=

[
1 m12(q2)

m11(q2)

0 α(q2)

]
,

and

N−1
1 (q) =

1

∆N1

[
n22(q) −n12(q)
−n21(q) n11(q)

]
=

[
1 − m12(q2)

m11(q2)α(q2)

0 1
α(q2)

]
,

where |N1(q)| = ∆N1 = n11(q)n22(q)− n12(q)n21(q) = α(q2). It is possible to shows that

D1(q) = N−T
1 M(q)N−1

1 =

[
d1(q) 0
0 1

]
=

[
m11(q2) 0

0 1

]
where d1(q) =

(
n22(q)
∆N

m11(q)− n21(q)
∆N

m21(q)
)
n22(q)
∆N

−
(
n22(q)
∆N

m12(q)− n21(q)
∆N

m22(q)
)
n21(q)
∆N

.

Function ψ2(q, q̇) satis�es:[
ω1

ω2

]
= ψ2(q, q̇) = Dw(θ)N1(q)q̇ =

[
m11(q2)q̇1 +m12(q2)q̇2

α(q2)q̇2

]
.

Its Jacobian matrix is given by

N2(q, q̇) =
∂ψ2

∂q =

[
0 ∂m11(q2)

∂q2
q̇1 +

∂m12(q2)
∂q2

q̇2

0 ∂α(q2)
∂q2

q̇2

]
,

where ∂α(q2)
∂q2

= 1
2α(q2)

(
m2

12(q2)m
′
11(q2)

m2
11(q2)

− 2
m12(q2)m

′
12(q2)

m11(q2)
+m

′
22(q2)

)
.

The con�guration vector θ = [θ1, θ2]
T is well de�ned, but it is easy to choose functions, e.g.,

α(q2) =
√

1 + cos2 q2 for which θ appears to admit no closed form expression in terms of elementary
functions. This obstacle can be overcome via a suitable modi�cation on the de�nition of θ1 and θ2.
More precisely, in the new coordinates de�ned by

[
θ1
θ2

]
= ψ1a(q) =

 q1 +
∫ q2
0

m12(s)
m11(s)

ds

q2

 . (C.6)
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Its Jacobian matrix is given by

N1a(q) =

[
∂ψ11a(q)
∂q1

∂ψ11a(q)
∂q2

∂ψ12a(q)
∂q1

∂ψ12a(q)
∂q2

]
=

[
1 m12(q2)

m11(q2)

0 1

]
.

System (C.3) can be simpli�ed as:

θ̇ = N1a(q)N
−1
1 D−1

ω ω,

ω̇ =
[
N2(q, q̇)−

(
N−1

1

)T
C(q, q̇)

]
N−1

1 D−1
ω ω +

(
N−1

1

)T
[v + δ] .

(C.7)

Finally the system can be written as:

θ̇1 =
1

m11(θ2)
ω1,

ω̇1 = v1 + δ1,

θ̇2 =
1

α(θ2)
ω2,

ω̇2 =
1

α(θ2)

(
v2 −

m12(θ2)

m11(θ2)
v1

)
+

1

α(θ2)

(
δ2 −

m12(θ2)

m11(θ2)
δ1

)
+

m
′
11(q2)

2m2
11(θ2)α(θ2)

ω2
1.

(C.8)
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