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Agradezco al Dr. Octavio Héctor Castaños Garza por sus comentarios y observaciones al revisar
este trabajo.

Agradezco al Dr. Chumin Wang Chen por la revisión de este trabajo y por ayudarme a aclarar
algunos conceptos.

Agradezco al Dr. Santiago Francisco Caballero Beńıtez por la revisión de este trabajo y por
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Agradezco a mis amistades de la prepa (y secundaria) por las pláticas y su invaluable amistad:
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Abstract

In this thesis we investigate the ground state properties of an homogeneous balanced Fermi gas of
two components. We describe an ultracold atomic gas where there is a unique experimental control
over the effective interaction between fermions of different component by means of a magnetic field.
The modulation of the interaction allows us to obtain a crossover between a Bardeen-Cooper-
Schrieffer (BCS) state and a Bose-Einstein condensate state (BEC). As an approach we consider
the mean-field method, which includes the BCS-Leggett variational method. We consider three
cases: two-dimensional case with a contact interaction, three-dimensional case with a contact
interaction, and three-dimensional case with finite-range interactions. For these three cases we
analyze the spatial structure contained in three functions: density-density correlation function
between same components, density-density correlation function between different components, and
the variational pair wave function. The main contribution of this work is to analyze their large-
distance behavior, which is given by an exponential decay that modulates an oscillatory behavior.
Importantly, we found that the exponential decay is determined by a binding energy that arises
as a many-body effect. For the three-dimensional case we found that the relation between the
large-distance exponential decay and the binding energy is universal, in the sense that it does
not depend on the details of the interaction between fermions within the mean-field approach.
The large-distance exponential decay determines in an original way the characteristic size of local
density fluctuations and the size of pairs of fermions that describe the ground state. For the two-
dimensional case we present analytical expressions for the density-density correlation functions,
which explicitly exhibit the spatial structure of the gas.

Resumen
En esta tesis se investigan las propiedades del estado base de un gas de Fermi de dos componentes
homogéneo y balanceado. Se describe un gas atómico ultrafŕıo donde hay un control experimental
único sobre la interacción efectiva entre fermiones de componente distinta por medio de un campo
magnético. La modulación de la interacción permite obtener un cruce entre un estado Bardeen-
Cooper-Schrieffer (BCS) y un estado de condensado de Bose-Einstein (BEC). Como aproximación
se considera el método de campo medio, que incluye el método variacional de BCS-Leggett. Se
consideran tres casos: caso dos dimensional con interacción de contacto, caso tres dimensional con
interacción de contacto y caso tres dimensional con interacciones de alcance finito. Para los tres
casos se analiza la estructura espacial contenida en tres funciones: función de correlación densidad-
densidad entre componentes iguales, función de correlación densidad-densidad entre componentes
distintas y función de onda variacional del par. La contribución principal de este trabajo es el
análisis del comportamiento a grandes distancias, que está dado por un decaimiento exponencial
que modula un comportamiento oscilatorio. Importantemente, se encontró que el decaimiento

vii



viii ABSTRACT

exponencial está determinado por una enerǵıa de amarre que surge como un efecto de muchos
cuerpos. Para el caso tres dimensional se encontró que la relación entre el decaimiento a grandes
distancias y la enerǵıa de amarre es universal, en el sentido de que no depende de los detalles de
la interacción entre fermiones en la aproximación de campo medio. El decaimiento exponencial
a grandes distancias determina de manera original el tamaño caracteŕıstico de las fluctuaciones
locales de la densidad y el tamaño de pares de fermiones que describen al estado base. Para el
caso dos dimensional se presentan expresiones anaĺıticas de las funciones de correlación densidad-
densidad, que exhiben de manera expĺıcita la estructura espacial del gas.
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Chapter 1

Introduction

The challenge to understand quantum many-body systems has become a problem of general
relevance [1]. It encompasses technological and basic-research interests. Recently, technological
developments like laser cooling [2, 3], angle-resolved photoemission spectroscopy [4], magneto
optical traps [3], RF spectroscopy [5], and chemical vapor deposition [6], have allowed us to
explore a wide amount of physical situations where we can test our theoretical models for the
quantum many-body problem [2, 7, 8, 9, 10, 11]. Such is the case of ultracold atoms, where we
can modulate the interaction between atoms in different internal states by means of a magnetic
field. This mechanism for tuning the interaction is the so-called Feshbach resonance [3]. This
unique experimental advantage has allowed the observation of superfluidity in ultracold clouds
[2, 12]. Another remarkable aspect of ultracold gases is that they can be considered as bosons
or fermions, depending on the total number of fermions that compose the atom1. A model that
explains the emergence of superfluidity in fermionic-type gases is the so-called BEC-BCS crossover
[2, 8, 12, 13, 14]. In this work we will consider a homogeneous Fermi gas of two components which
has an attractive interaction between fermions of different component [13]. When we modulate the
interaction strength we can obtain a weakly interacting gas, which can be described by overlapping
pairs of fermions using the theory of Bardeen, Cooper and Schrieffer (BCS) [15]. As we increase
the interaction we find a continuum of quantum states that connect the weakly interacting regime
(BCS regime) to the strongly interacting regime. This continuum of quantum states is known as
the crossover region, due to the smooth evolution from one regime to the other [8, 9, 12]. The
strongly interacting regime is dominated by the presence of bosonic molecules (composed of two
fermions). At zero temperature these bosonic molecules can macroscopically occupy their zero
wave vector state forming a Bose-Einstein condensate (BEC). Then we will refer to the strongly
interacting regime as the BEC regime [16].

We address a many-body system which consists of a low-density two-component Fermi gas in the
low-energy regime, at zero temperature. We will consider the homogeneous case, invariant under
translations and rotations. Also we address a balanced system, where there are the same amount
of fermions in each of the two internal components. The low-energy regime allows us to simplify
the description of such a complicated system by neglecting terms that are estimated to be not so
relevant in this regime [8, 12]. Then we will use a BCS Hamiltonian, which considers interactions
between fermions of different component with opposite wave vectors [8, 12]. In this work we

1A simple way is to count the number of neutrons. If there is an even number, then the atom is a boson. If there
is an odd number, the atom is a fermion. For instance, 6Li has Z = 3 protons, Z = 3 electrons, and N = 3 neutrons,
so it is a fermion. On the other hand, 7Li has Z = 3 and N = 4, so it is a boson.

1



2 CHAPTER 1. INTRODUCTION

analyze three cases, depending on the spatial dimension and type of interaction between fermions:
two-dimensional case (2D) with a contact interaction [17], three-dimensional case (3D) with a
contact interaction [18], and three-dimensional case with finite-range interactions (four potentials)
[19]. In general the interaction between fermions requires a suitable complicated model. However,
the low-density regime allows us to focus on properties that should be independent of the details
of the interaction [13], or at least weakly dependent. Hence, when choosing different interaction
potentials we should look for properties that remain qualitatively invariant. As we have mentioned,
in the work presented here we have chosen the structureless contact interaction for the 2D and
3D cases [13, 20]. The contact interaction (delta potential) corresponds to a potential represented
by a Dirac delta function in position space, or to a constant in wave vector space. It is adequate
for modeling scattering process without knowing the details of the interaction potential, enabling
an easier way to perform theoretical calculations. The strength of the contact interaction can be
determined by the s-wave scattering length by means of a renormalization process [8, 12]. We
have explored four potentials in the 3D case [19], which are: the square well, exponential potential,
Yukawa potential, and Van der Waals type potential. To characterize the interaction strength we
should use a generic parameter that can be associated to any of the interaction potentials. For
the models used in this work it is enough to consider their respective s-wave scattering length [21],
although there are other situations where p-wave or d-wave can be considered [16, 22]. Then the
BEC-BCS crossover will be parametrized by this characteristic length.

We will study the ground state properties of the Fermi gas throughout the BEC-BCS crossover.
In general the ground state is not known [23], so we need to use an approximation. The approach we
will use is the BCS-Leggett variational method [13, 15], which consists in using the variational wave
function of BCS to minimize the grand potential energy, within the grand canonical ensemble [12],
since the BCS wave function does not have a fixed number of fermions (it is not an eigenfunction of
the number operator) [2]. This ingenious wave function collapses the description of a many-body
system into the behavior of a two-particle wave function (pair wave function) [13]. This so-called
pair wave function is a state of fermions of opposite component in a superposition where they
both have opposite wave vectors. Then, this variational approach describes the many-body system
with the formation of pairs of fermions. Another approach that is equivalent to the BCS-Leggett
variational approach, for describing ground state properties, is the mean-field method [24]. This
method consists in approximating the interaction term by another one which also emphasizes the
formation of pairs with opposite momentum and different component, giving rise to a pairing
mechanism that allows the formation of Cooper pairs in the BCS limit, or molecules in the BEC
limit. Additionally, the mean-field approach also allows us to consider excited states, since it gives
us a grand potential operator in diagonal form [12, 24].

The pairing mechanism that arises in both approaches, mean-field and BCS-Leggett variational
method, can be analyzed by means of density-density correlation functions between different
components [8, 15]. These functions exhibit the formation of so-called Cooper pairs in the weakly
interacting BCS limit [15], while in the strongly interacting BEC limit they show the formation
of molecules [8]. However, another two-body distribution that shows the evolution of the spatial
structure of pairs of fermions throughout the BEC-BCS crossover is the density-density correlation
function of same components [9]. In the weakly interacting regime this function exhibits the
dominance of Pauli blocking effect (two fermions of the same component are unlikely to be found
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close to each other), while in the strongly interacting regime we see that this blockade becomes
negligible due to the formation of bosonic molecules which can be close to each other. The
variational pair wave function also exhibits the evolution of pairs of fermions throughout the
BEC-BCS crossover [13]. Then, it has been interesting to understand the pairing mechanism by
analyzing pair distributions in position space [2, 8, 9, 12, 25].

An interesting quantity that has been addressed throughout the BEC-BCS crossover is the
binding energy of pairs. The most common one is the condensation energy [16], which is the
difference between the ground state energy of the non-interacting gas and the ground state energy
of the interacting gas, all divided by the number of pairs [26]. However, in the work presented here
we will focus on ultracold gases, where we can take advantage of the hyperfine structure of atoms,
such that we can consider a gas of two components, and we can change the internal state of an
atom into a third one [2, 14]. The minimum energy required for this process is what we will call
the threshold energy required to break a pair, since in this process we leave an unpaired fermion.
Hence, we can identify this as a binding energy that arises from the many-body system, not from
the individual interaction between fermions and we will focus our attention on it.

In general, the main contribution of the work presented here is the analysis of the large-
distance behavior of three functions that determine the two-body distributions of the BEC-BCS
crossover in the mean-field approach, or BCS-Legett variational approach. These are the density-
density correlation function between same components, the density-density correlation function
between different components, and the variational pair wave function. We addressed the 2D
case with a contact interaction [17], 3D case with a contact interaction [18], and 3D case with
finite-range interactions (square well, exponential potential, Yukawa potential, and Van der Waals
type potential) [19]. For each case, we found that the large-distance behaviors are given by an
exponential decay and an oscillatory function.

The exponential decay that we found defines a large-distance correlation length for each two-
body distribution2. For measuring a local homogeneous density in two different positions we have to
ensure that those two measurements are statistically independent. When we increase the distance
between those two positions the density-density correlation functions become negligible, allowing
us to consider statistically independent variables. Then, the large-distance exponential decay sets a
minimum separation for measuring homogeneous densities at different points, allowing us to define
the size of a bulk. So we need an experimental system bigger than a characteristic box given in
terms of the large-distance correlation length to have an homogeneous system that can be described
by the BCS-Leggett model of an homogeneous system [18]3. The establishment of a minimum size
of a system by means of a large-distance correlation length was addressed in the original BCS
theory only for the opposite spins correlation function (equivalent to the weakly interacting limit
of the crossover) [15], where they obtained the Pippard’s coherence length, that gives a minimum

2The adjective large-distance had to be added since there is another well-known distance called correlation
length [8]. These lengths contribute to the characterization of pairs of different component, since both lengths give
a characteristic radius that allow to determine if the local density values are statistically independent.

3Also, the density-density correlation functions can be written as expectation values of operators which determine
average local density fluctuations, as will be shown in equation (5.15). These density fluctuations (like the Cooper
pairs) have to be contained well inside the experimental system.



4 CHAPTER 1. INTRODUCTION

size for Cooper pairs (see the appendix D of Ref. [15]). Also, Leggett observed that in the BEC
limit (strongly interacting limit) the gap equation becomes a Schrödinger equation of a bound state.
Then, its solution, that determines the density correlation function between different components,
has an exponential decay given by the s-wave scattering length [13]. A similar behavior was
expected for the variational pair wave function using the Bethe-Peierls boundary condition [9, 27],
which gives an exponential decay of the pair wave function in terms of a positive s-wave scattering
length. Also, several research groups have addressed the determination of characteristic lengths
of the BEC-BCS crossover, like Giancarlo Calvanese Strinati [8], Andrea Perali [28], Pierbiagio
Pieri [8], Mohit Randeria [16], Gerardo Ortiz and Jorge Dukelsky [26]. Mainly the lengths that
have been studied are the correlation length ξpair (also called coherence length) and the healing
length ξphase. The correlation length ξpair gives a characteristic distance between (correlated)
fermions of different components, while the healing length characterizes the distance between
pairs of fermions. Also, the characteristic length of the variational pair wave function has been
addressed [26], showing a different behavior between the variational pair wave function and the
density-density correlation functions of different component in the BCS limit [26]. However, the
exponential decay of density-density correlation functions and the pair wave function was not
reported throughout the crossover region. The work presented here reports an exponential decay,
not only of the opposite spins correlation function (we recover the Pippard’s coherence length in
the BCS limit and the scattering length in the BEC limit, as will be shown in equations (5.28) and
(5.30)) but of the same spins correlation function and the variational pair wave function. Even
more, for the two-dimensional and three-dimensional cases with contact interaction we extract
from analytical results the exponential decay.

The large-distance correlation length also determines the characteristic size of Cooper pairs in
the BCS limit and of the bosonic molecules in the BEC limit, as expected [9, 15]. However, an
important result of the work presented here is that the aforementioned threshold energy required
to break a pair (a many-body binding energy) determines the large-distance exponential decay of
the correlation functions and the pair wave function. For the 3D case we found that this relation is
a universal property of the mean-field approach (or BCS-Leggett variational method) since it holds
for different potential models4. While we were unable to clearly define the origin of this behavior,
we believe it might be related to the fact that the BCS wave function is determined by a two-body
distribution, the pair wave function. This wave function has to exhibit the binding properties
of the system, so it acquires an exponential decay. Then, the pair wave function determines the
behavior of density-density correlation functions endowing them with the same exponential decay.

The wave vectors that characterize the oscillatory behavior of the density-density correlation
functions and of the pair wave function were calculated analytically for the 2D case, while for
the 3D cases, with a contact interaction and with finite range interactions, they were calculated
numerically. We were not able to relate the behavior of the wave vectors to another physical
quantity. Nevertheless, in agreement with Ref. [29], we also believe that, for the 3D cases, the
wave vectors that characterize the spatial oscillations are determined by the many-body distribution
in wave vector space. In general, for the 3D cases, the wave vectors (of the density correlation
functions and pair wave function) are given by the Fermi wave number (determined by the density

4We speculate that depending on the beyond mean-field technique the exponential decay can be lost. This
happens for the opposite spins correlation (coherence length) ξpair = ξ↑↓ [8].
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of the system) on the BCS side and they decrease to zero in the BEC limit. The 2D case turned to
have a different behavior from the 3D case. The wave vectors that characterize the 2D oscillations
are constants throughout the crossover, given by the Fermi wave number.

The analysis of the large-distance behavior allowed us to find explicit expressions of the density-
density correlation functions for the 2D case with a contact interaction [17]. These expressions
offer the opportunity to view how the thermodynamic quantities determine the formation of Cooper
pairs in the BCS limit and the formation of molecules in the BEC limit. We want to reemphasize
that these expressions also show the short-distance behavior and are valid for any region of the
crossover. Nevertheless, we expect a drastic change in these results when including beyond mean-
field corrections that are important for the 2D case [30].

Given that the large-distance correlation lengths offer a novel way of characterizing the size
of density fluctuations we can compare their behavior with the conventional correlation length
(coherence length for the opposite spins correlation function) defined as a second moment (average)
of the density correlation functions and squared norm of the pair wave function. This comparison
was made for the 2D case with a contact interaction [17] and for the 3D case with a contact
interaction [18].

The work presented here has been reported in the following references:

• J. C. Obeso-Jureidini and V. Romero-Roch́ın, Density correlation functions and the spatial
structure of the two-dimensional BEC-BCS crossover, Phys. Rev. A 105, 043307 (2022) [17].

• J. C. Obeso-Jureidini and V. Romero-Roch́ın, Spatial structure of the pair wave function
and the density correlation functions throughout the BEC-BCS crossover, Phys. Rev. A
101, 033619 (2020) [18].

• J. C. Obeso-Jureidini, G. A. Dominguez-Castro, E. Neri, R. Paredes, and V. Romero-Roch́ın,
Universal correlations along the BEC-BCS crossover, arXiv preprint arXiv:2211.03832 (2022)
[19].

The structure of the thesis is as follows:

• In Chapter 2 we give a brief account of the physical systems where BEC-BCS crossover
models have been implemented. Particularly, we describe the theoretical ingredients found
in ultracold gases that allow to test the crossover model. That is, two fermionic components
and the ability to tune the interaction between fermions of different component.

• In Chapter 3 we present the two-body scattering problem in 2D and in 3D. We introduce the
concept of s-wave scattering length, which allows us to characterize the interaction strength
between two particles in the low energy regime. We show that the contact interaction is an
ill-defined potential which has divergent physical properties. Those divergent properties will
allow us to renormalize the theory of the many-body problem. Also, we calculate the s-wave
scattering lengths of the finite-range interactions for the 3D case.
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• In Chapter 4 we introduce the BEC-BCS crossover model in the mean-field approach. We
also present the variational approach introduced by Leggett. We calculate the relevant
thermodynamic properties for determining the ground state of the many-body system. We
consider the 2D case with a contact interaction, the 3D case with a contact interaction, and
the 3D case with finite-range potentials. Also, we present the threshold energy required to
break a pair, which determines the large-distance behavior of the density-density correlation
functions and pair wave function.

• In Chapter 5 we analyze the density-density correlation functions and the pair wave function
for the three cases presented in Chapter 4. Here we present their large-distance behavior and
include the pair wave function. The 2D case is discussed in detail, since explicit expressions of
the correlation functions were obtained. We show that the exponential decay is determined by
the threshold energy required to break a pair. For the 3D case we argue that the relationship
between the large-distance exponential decay and a pair-binding energy is universal.

• In Chapter 6 we present the final remarks of this work. We elaborate further on the
exponential decay of the density-density correlation functions, and we elaborate on some
perspectives for future work.



Chapter 2

Overview of the BEC-BCS crossover

In this chapter we briefly describe some of the developments of the BEC-BCS crossover model that
are particularly relevant to the work presented here. The general physical model is an interacting
Fermi gas [13, 31], which exhibits different phases depending on the interaction strength between
the fermions [8], the number of components [32, 33, 34], the temperature [35, 36], and the confining
potential [34], even we can consider the system in the relativistic regime [37]. In the particular
case we will address, which is the homogeneous two-component Fermi gas, we can use the Bardeen,
Cooper and Schrieffer (BCS) state to describe the ground state of the interacting fermions. We
can describe a smooth evolution from the weakly interacting regime, known as BCS limit, to the
strongly interacting regime, known as Bose-Einstein condensate (BEC) regime, where fermions
form molecules that behave like bosons. The continuum of quantum states that connect the BEC
and BCS limits is known as the crossover. In the past decades it acquired relevance with the
realization of ultracold quantum gases [38], since unprecedented experimental control has been
achieved in those systems [2, 39]. However, it is a model that can be used to describe other
systems such as proton-neutron mixtures and neutron-neutron mixtures in the crust of neutron
stars [40], electrons in a solid [41], and it might be observed in Quantum Chromodynamics [42].

2.1 The BEC-BCS crossover

One of the first works to propose a BEC-BCS crossover was due to Eagles, trying to decribe
superconductivity in SrTiO3 doped with Zr [31]. However, in a seminal work [13], Leggett addressed
the superfluid properties of Helium-3 with the main motivation of describing Cooper pairs as
diatomic molecules [43]. In a sense, he generalized the BCS theory to consider strong interactions,
opening a new way to study the many-body problem, which we will follow in the work presented
here. Later, Nozières and Schmitt-Rink generalized the model to consider finite temperatures [35],
especially they calculated the critical temperature for the normal to superfluid phase transition.
The BCS description of a superconductor (superfluid) is based on the formation of pairs of fermions
of different component, so a natural question was the effect of imbalance between components [8].
Ground states with an imbalance were proposed soon after the formulation of BCS theory. For
example, there is a generalization of the BCS state where, instead of considering a Fermi sphere,
the fermions are distributed forming a structure of concentric shells centered at zero in wave vector
space. This state is known as the Sarma state [44]. More exotic ground states were proposed, like
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [45, 46]. Differently from the Sarma state, in
the FFLO state the shells formed by fermions in wave vector space can be displaced from the

7
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concentric position. Nevertheless, superconductivity was found in different materials which the
original BCS model was unable to describe. For instance it has been found in the so-called cuprate
superconductors (like YBCO) [47, 48], FeSe systems [49], magic angle twisted bilayer graphene [50],
and layer nitrides [51]. At the moment there are no complete explanations of all superconductors.
Simplified models to address superconductivity are BEC-BCS crossover models, where differently
from the original BCS approach, the electrons (and holes) can have stronger interactions. The
strength of the interactions does not form electron molecules that can be considered as bosons,
but the characteristic size of pairs is reduced so we can consider the formation of smaller pairs
than in the original BCS model [52, 53]. Very recently two-band superconductors have been
studied experimentally and theoretically with the hope of finding new mechanisms to enhance
superconductivity [54]. Some theoretical models are of the BEC-BCS crossover type like the one
reported in Ref. [54], where they find a non-zero critical temperature for superconductivity in
a quasi-one-dimensional superconductor (modeled by a BEC-BCS crossover with a Feshbach-like
resonance) coupled to a BCS superconductor in 3D (or quasi-2D) [54, 55, 56]. Then there is
a general interest in understanding BEC-BCS crossover models, which mark the context of the
work presented here. In the following we will not focus on superconductivity in solids, rather in
ground states which are necessary for superfluidity in homogeneous gases, such as those realized
in ultracold gases [2, 7, 8]. Also, we have to mention again that there is the possibility of finding
a BEC-BCS crossover in neutron-neutron mixtures in the crust of neutron stars [12, 40].

The theoretical understanding of ultracold gases has become a recent topic [7, 8, 12]. Mainly,
these gases give the opportunity to observe the behavior of quantum many-body systems, since
those experiments can be performed within the conditions where theoretical simplifications are
valid. Research in quantum gases has become such an important topic that some of the projects
in this field have been receiving funding from a huge project launched by the European Union,
which is the Quantum Flagship [1]. It is expected that this investment will accelerate technological
developments. In Mexico, there are also laboratories dedicated to the development of state-of-the-
art research in quantum systems, such as the Laboratorio Nacional de Materia Cuántica [57].
Particularly, the Laboratorio de Materia Ultrafŕıa at the Institute of Physics at UNAM explores
novel phenomena in ultracold gases, such as Faraday waves [57].

A breakthrough that allowed the emergence of ultracold atoms came when sophisticated tech-
niques allowed us to trap and cool atoms in gaseous form [58]. Then the excitement increased with
the ability to observe a Bose-Einstein condensate effect in these quantum gases [59]. Importantly
for the context of this work, a major achievement was the realization of an ultracold Fermi gas [38].
This milestone gave the physics community the opportunity to enrich our understanding by being
able to find analogues between our description of superconductivity in solids and our description
of superfluidity in quantum gasses [7, 60]. It is in these fermionic gases where the BEC-BCS
crossover has been analyzed with great experimental detail [2, 61]. Also, with the development of
new techniques for the creation of quantum gases in different confinement configurations (some of
them resemble electrons in a solid) other theoretical many-body models and effects were tested,
such as Bose-Hubbard models [62], tight-binding models [63], Anderson localization [64, 65], Bose-
Polaron [66], Fermi-Polaron [67]. See Refs. [2, 7, 10, 61, 68, 69, 70] for many other models and
effects that have been addressed in ultracold atom experiments.
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A common interest in all the variants of the BEC-BCS crossover (from the theoretical and
experimental approach) is the characterization of the size of superconducting pairs. In the work
presented here we will address a more general aspect, which is the characterization of the size of
density fluctuations. This focus contains the size of superconducting pairs, since pairs need to be
within the local density fluctuations. However, we will consider the most simple version of the
BEC-BCS crossover, which is BCS-Leggett approach with s-wave pairing at the mean-field level
[13], which we will present in Chapter 4.

2.2 Ultracold Fermi gases

As we have mentioned, the BCS-Leggett model, to be presented in Chapter 4, is a simplified
model that can describe qualitatively the experiments in ultracold gases. In this section we will
present some properties that allow to link the model with the experiments. A nice presentation
of the experimental details required to achieve an ultracold gas can be found in Ref. [3] and
in the references therein. Further details about the design and implementation of sophisticated
experimental techniques can be found in Refs. [11, 71].

The BCS-Leggett model requires of a Fermi gas of two components. Then we will show that the
hyperfine splitting of the electron states in atoms allows us to obtain a two-component ultracold
gas. As an example we will focus on Lithium-6 [3]. In vacuum the presence of a magnetic field ~B
splits the hyperfine states of an atom. The splitting is given by the Hamiltonian [71, 72, 73]

Ĥhf = ∆Ehf
~I · ~J − gJµB ~J · ~B − gIµB~I · ~B (2.1)

where we will restrict to the particular case of J = 1/2 so that we have introduced the difference
between hyperfine states in the absence of magnetic field ∆Ehf. Also we will consider the spin of the
nucleus to be I = 1 [73]. We have introduced the Bohr magneton µB = e~/(2me) and the respective
Landé factors of the electron gJ and of the nucleus gI, which have to be measured for each atom1.
The operator ~I denotes the spin of the nucleus and the electronic total angular momentum is
given by ~J. For the case of total angular momentum J = 1/2 Breit and Rabi found an explicit
equation for the eigenvalues of the Hamiltonian Ĥhf of equation (2.1) for intermediate values of
the magnetic field [75]. A nice derivation of this result is given in Ref. [76]. The restriction of
J = 1/2 allows us to consider a block diagonal representation of Ĥhf where the eigenvalues can be
obtained straightforwardly. The qualitative behavior of the states 22S 1/2 that we will consider for
6Li is shown in Figure 2.1 [5, 71]. In experiments the 6Li atoms can be prepared in the lowest
energy states shown in Figure 2.1: |1〉 and |2〉, which correspond to the two components of the
gas which we can arbitrarily denote | ↓〉 and | ↑〉. Figure 2.1 is to illustrate the hyperfine splitting
at intermediate magnetic fields. However, the experiments are carried at higher magnetic fields,
known as the Paschen-Back regime. Importantly, in this regime the energy separation between
the states |1〉, |2〉, and |3〉 becomes constant (independent of the field), which allow to implement
imaging techniques to analyze these systems [71].

1For 6Li we can use gI = −0.0004476540 and gJ = 2.0023010 [71, 73, 74].
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Figure 2.1: Energies of the hyperfine states as functions of the magnetic field B of the Hamiltonian
given in equation (2.1) for the case 22S 1/2. Each energy belongs to a state denoted by |i〉 for
i = 1, ..., 6. We can use the eigenvalues found by Breit and Rabi [75]. For Lithium-6 the energy
splittings are scaled with the energy difference in absence of magnetic field ∆Ehf/~ = 228.2 MHz
[71, 73, 74] and we have defined Bhf = ∆Ehf/[(gJ−gI)µB], see the text for the definitions of constants.
We can arbitrarily denote | ↓〉 = |1〉 and | ↑〉 = |2〉.

One of the techniques developed in ultracold gases is the ability to tune the effective interaction
strengths between atoms by means of so-called Feshbach resonances. Basically, the atoms are
prepared in low-energy states, like |1〉 and |2〉 of Figure 2.1, which have different effective interactions
for different values of the magnetic field B. These effective interactions allow us to set the system
in the different regions of the crossover at will. The interaction strengths have been characterized
experimentally by means of an s-wave scattering length for different atomic gases [71, 77, 78].

Let us give a general picture of the interaction between atoms. Since the atoms are moving
slowly, we can use the Born-Oppenheimer approximation to obtain potential energy curves [79],
the same curves used for estimating the stable nuclear separation in the model of the rigid molecule
[79]. For the two lowest hyperfine states, |1〉 and |2〉 of Figure 2.1, it is enough to consider the curves
given by the triplet 3Σu and the singlet 1Σg, where we are using molecular spectroscopic notation
[79]. An illustration of these curves can be found in Ref. [77]. These curves are used to describe
the interaction between atoms in the low energy regime using a two-channel model for scattering.
The coupling between channels comes from the hyperfine coupling between the spins of the atoms
and the spins of the nuclei, which is independent of the magnetic field [80]. However, the energy
difference between the two potential curves 3Σu and 1Σg depends on the external magnetic field [80].
A “Feshbach resonance” occurs when the bound state of the singlet potential 1Σg approaches the
low-energy scattering, which is formally called a potential resonance. A pedagogical presentation
of the potential resonance that occurs in this two-channel model can be found in Ref. [81].
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In Fig. 2.2 we show a model of the scattering length as function of the magnetic field for 6Li
[82]. This model was determined by fitting measurements, as reported in [82], and is given by

a(B) = ab

(
1 +

∆B

B − B0

)
[1 + α(B − B0)], (2.2)

where the parameters are ab = −1405a0, B0 = 83.4149 mT, ∆B = 30.0 mT, and α = 0.0040( mT)−1,
with a0 ≈ 5.292−11 m the Bohr radius [82]2. Although it is not necessary for the theoretical
calculations shown further below, this plot shows that there is an experimental control of the
effective interactions in 6Li by means of a magnetic field B. There are more accurate models for
the Feshbach resonance that have been obtained from more precise measurements [3]. That is, we
have the ability to tune the strength of the interactions between fermions, an important ingredient
for having a BEC-BCS crossover.
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Figure 2.2: Approximate behavior of the s-wave scattering length a scaled with Bohr radius a0

as function of the magnetic field B in units of militesla (mT). The parametrization is given in
equation (2.2) as reported in [82] for the states |1〉 and |2〉 of 6Li shown in Figure 2.1. The vertical
line at B0 = 83.4149 mT is where the resonance approximately occurs.

2In similar models it is enough to consider the first two factors of equation (2.2), where the width ∆B = Γ0/δµ
contains the information of the atoms, being δµ a difference between the magnetic moment of the atoms separated
and the magnetic moment of the bound state in the closed channel and Γ0 is determined by the coupling between
open and closed channels. For further details see [77].
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Chapter 3

Atomic scattering at low energies

Choosing a potential to model the interaction between particles is a difficult task [83, 84]. In
principle, the interaction can be inferred by measuring differential cross sections with a huge
amount of data [85]. However, it is easier to fit a model interaction with a few parameters that
can reproduce the experimental results [83, 86]. Typically, a structureless contact interaction is
chosen, which is adequate to model processes where the details of the interaction are irrelevant.
Nevertheless, the lack of structure introduces divergences that have to be identified and removed
by means of renormalization. The main purpose of this chapter is to present the required equations
for the renormalization of the many-body problem when using a contact interaction. Also, we will
briefly define the phase shifts in two and three dimensions. In particular we will emphasize the
determination of the s-wave scattering length of finite-range potentials for the three dimensional
case.

3.1 The T matrix of two-body scattering in 2D and 3D

In this section we consider two particles of mass m1 and m2 in the center-of-mass coordinate system,
with relative positions given by the vector ~r, interacting in the vacuum by a potential that depends
on the relative distance U(~r) = U(|~r|). The three-dimensional case D = 3 and the two-dimensional
case D = 2 will be considered simultaneously. Then we are considering two interacting particles in
the vacuum at zero temperature. The time-independent Schrödinger equation is [83, 87]

−
~2

2mr
∇2ψ(~r) + U(~r)ψ(~r) = Eψ(~r), (3.1)

where mr = m1m2/(m1 + m2) is the reduced mass, and the proper energy is E = ~2k2/(2mr). For the
scattering problem the wave function ψ(~r) should have the boundary condition

ψ(~r) = ei~k·~r + ψsc(~r), (3.2)

where the first term is a plane wave that represents the incidence, and whose wave vector ~k is
fixed. The second term represents the scattered wave. Since the time-independent Schrödinger
equation can be expressed as a Helmholtz equation this scattered wave can be written generally
as [23, 87, 88]1

ψsc(~r) =

∫
dDx G0(~r − ~x, E+)U(~x)ψ(~x), (3.3)

1For many integrals and sums the domain will correspond to all the space RD, for D = 2, 3.

13
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where we have introduced the free Green’s function of an outgoing wave G0(~r−~x, E+). This function
satisfies the differential equation2:

~2

2mr
(k2 + ∇2

~r )G0(~r − ~x, E+) = δ(D)(~r − ~x). (3.4)

To find the free Green’s functions it is convenient to change to wave vector space in equation (3.4),
solve the resulting equation, and return to space representation. However, other general way is
to use the equations defined by the operators and calculate the matrix elements. The operator
representation of (3.4) is

(E − Ĥ0)Ĝ0(E) = Î, (3.5)

where we have defined the kinetic energy operator Ĥ0 = p̂2/(2mr) and the identity operator Î. Then
the free Green’s function is given by

Ĝ0(z) = (z − Ĥ0)−1, (3.6)

where z can be a complex number. This operator has singularities at the proper energies of Ĥ0,
which are located on the real axis. However, approaching those points as a limit is useful for
calculations. In fact, for positive energies, approaching from above the real axis gives a Green’s
function of an outgoing wave (+), while approaching from below gives the one of an incoming
wave (−). To take this limit, and make a difference between outgoing and incoming waves, let us
introduce the following notation:

Ĝ0(z±) = lim
δ→0+

(z − Ĥ0 ± iδ)−1, (3.7)

where we are using the convention δ > 0 so that the case +δ allows us to approach from above the
real axis (outgoing), while the −δ case is for approaching from below (incoming). For the 3D case
we have [23, 88] 〈

~r
∣∣∣ Ĝ3D

0 (E+)
∣∣∣~x〉 = G3D

0 (~r − ~x, E+) = −
mreik|~r−~x|

2π~2|~r − ~x|
, (3.8)

where we are taking expectation values with eigenstates of the position operator which we denote
by |~x〉 and |~r〉. For the 2D case we have [88, 90]〈

~r
∣∣∣ Ĝ2D

0 (E+)
∣∣∣~x〉 = G2D

0 (~r − ~x, E+) = −
imr

2~2 H(1)
0 (k|~r − ~x|). (3.9)

To obtain equations (3.8) and (3.9) it is enough to use the completeness relations

I =

∫
dDx

∣∣∣~x〉 〈~x∣∣∣ , I =
1

(2π)D

∫
dDk

∣∣∣∣~k〉 〈
~k
∣∣∣∣ , (3.10)

with 〈~x|~k〉 = ei~k·~x. For later convenience we will use a tilde to indicate that a function is being
written in wave vector representation using the following definitions:

f̃ (~k) =

∫
dDr e−i~k·~r f (~r) , f (~r) =

1
(2π)D

∫
dDk ei~k·~r f̃ (~k). (3.11)

2Another convention to define the Green’s function is with a minus sign on the right side of equation (3.4). Also
the units ~2/(2mr) can vary in the definition [89], but the definition presented here is also commonly used [23, 83].
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Also, a useful relation is ∫
dDk ei~k·~r = (2π)Dδ(D)(~r). (3.12)

Similarly, we can define a complete Green’s function using the complete Hamiltonian Ĥ =

Ĥ0 + Û, where Û is the operator of the potential. This Green’s function is given by

Ĝ(z±) = lim
δ→0+

(z − Ĥ ± iδ)−1. (3.13)

A relation between the free Green’s function G0 and the complete Green’s function G can be
obtained by means of the following identity [85]:

Â−1 = B̂−1 + B̂−1(B̂ − Â)Â−1, (3.14)

where Â and B̂ are well defined operators. If we choose Â−1 = Ĝ(z) and B̂−1 = Ĝ0(z), using equations
(3.7) and (3.13), we get the Dyson equation [23, 85]

Ĝ(z) = Ĝ0(z) + Ĝ0(z)ÛĜ(z). (3.15)

In the same way, if we choose Â−1 = Ĝ0(z) and B̂−1 = Ĝ(z), we get

Ĝ(z) = Ĝ0(z) + Ĝ(z)ÛĜ0(z). (3.16)

Equations (3.15) and (3.16) have the complete Green’s function in both sides. We can introduce
an identity operator and rename the operators that do not involve G0 to avoid writting G(z) on
the right hand side. Hence, we have

Ĝ(z) = Ĝ0(z) + Ĝ0(z)ÛĜ(z)

= Ĝ0(z) + Ĝ0(z)ÛĜ(z)Ĝ−1
0 (z)Ĝ0(z)

= Ĝ0(z) + Ĝ0(z)T̂ (z)Ĝ0(z),

(3.17)

where in the first equality we used equation (3.15), in the second we introduced the identity
I = Ĝ−1

0 (z)Ĝ0(z) and in the last one we defined the T matrix operator (short for transition matrix
[83]). It can be noticed that it is analogous to a self-energy in the many-body problem [23]. A
quick view at equation (3.17) reveals that the T matrix contains all the information about the
interaction because Ĝ0 is independent of the potential. Comparing equation (3.17) with equations
(3.15) and (3.16) we find that

T̂ (z) = Ĝ−1
0 (z)Ĝ(z)Û = ÛĜ(z)Ĝ−1

0 (z). (3.18)

From this equation we can see that [83]

T̂ (z) − Û = Ĝ−1
0 (z)Ĝ(z)Û − Û

= [Ĝ−1
0 (z)Ĝ(z) − I]Û

= ÛĜ(z)Û,

(3.19)

where in the first equality we used equation (3.18), in the second we factored Û, and in the last one
we used (3.15). Then we get a relation between the T matrix and the complete Green’s function,
which in general is unknown,

T̂ (z) = Û + ÛĜ(z)Û. (3.20)
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However, we can use equation (3.18) to obtain a relation analogous to equations (3.15) and (3.16)
for the T matrix:

T̂ (z) = Û + ÛĜ0(z)T̂ (z). (3.21)

Following an extensive part of the literature, we will refer to this equation as the Lippmann-
Schwinger equation [10, 85, 91], although other equations have the same name [83, 89, 92]. We
can calculate the matrix elements of the T matrix in wave vector representation. Especially we are
interested in evaluating it in the fixed energy E = ~2k2/(2mr) and calculating T (~k′,~k, E) = 〈~k′|T̂ (E)|~k〉,
where the wave vector ~k is also fixed by the energy E. From equation (3.21) it is found that

T (~k′,~k, E) = Ũ(~k − ~k′) +
1

(2π)D

∫
dDk′′Ũ(~k′′ − ~k′)

1
E − Ek′′ + iδ

T (~k′′,~k, E). (3.22)

To obtain the last term have used the completeness relation for the wave vector basis given in
equation (3.10) to get〈
~k′

∣∣∣∣ ÛĜ0(E)T̂ (E)
∣∣∣∣~k′〉 =

1
(2π)D

∫
dD p dDl 〈~k′|Û

∣∣∣~p〉 〈~p∣∣∣ Ĝ0(E)|~l〉〈~l|T̂ (E)|~k′〉

=
1

(2π)D

∫
dD p dDl Ũ(~p − ~k′)

[
E −
~2 p2

2mr
+ iδ

]−1

(2π)Dδ(D)(~p − ~l)T (~l,~k, E),
(3.23)

where in the first equality we introduced completeness relations and in the last equality we identified
matrix elements. It is straightforward to obtain the matrix element 〈~p|Ĝ0(E)|~l〉 using equation (3.7),

from where we obtain the dirac delta δ(D)(~p − ~l). Equation (3.22) is well defined as long as the
potential Ũ(~q) remains physically acceptable. The advantage of introducing the T matrix is that
we can work with the scattered wave ψsc(~r) leaving aside the incident plane wave. This can be seen
by expressing the general solution, given in equation (3.2), with bra-ket notation:

|ψ〉 = |~k〉 + Ĝ0(E+)Û |ψ〉 , (3.24)

where we have the wave function ψ(~r) =
〈
~r
∣∣∣ψ〉, and 〈~r|~k〉 = ei~k·~r. Also we can identify the scattered

wave ψsc(~r) =
〈
~r
∣∣∣ψsc

〉
by means of equation (3.3),

|ψsc〉 = Ĝ0(E+)Û |ψ〉 . (3.25)

From equation (3.24) we find

|ψ〉 = [Î − Ĝ0(E+)Û]−1|~k〉, (3.26)

where on the right side we have known quantities, but it is operationally impractical. Using
equations (3.15) and (3.16) it can be shown that [Î− Ĝ0(E+)Û][Î+ Ĝ(E+)Û] = Î, so we can identify
the inverse function of Î − Ĝ0(E+)Û that we can substitute in equation (3.26),

|ψ〉 = [Î + Ĝ(E+)Û]|~k〉. (3.27)

Besides, from equation (3.18) we have Ĝ(E+)Û = Ĝ0(E+)T̂ (E+) that allows us to get an expression
for the state |ψ〉 in terms of the T matrix,

|ψ〉 = [Î + Ĝ0(E+)T̂ (E)]|~k〉. (3.28)
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Comparing equation (3.24) with equation (3.28) we find that the scattered state |ψsc〉 can be
determined by calculating the matrix elements of Ĝ0(E+)T̂ (E) because

|ψsc〉 = Ĝ0(E+)T̂ (E)|~k〉. (3.29)

Notice that the matrix elements of Ĝ0(E+)T̂ (E) appear naturally in equation (3.22), a particular
case of the Lippmann-Schwinger equation. Hence the solution to the scattering problem can be
found by determining the T matrix. The problem is still difficult, but the T matrix allows a
versatile formulation in which some approximations can be done. As an example, in the following
we will consider a contact interaction.

3.1.1 s-wave scattering from a delta potential

Regarding the difficulties that emerge when modeling the interaction between particles, it is
common to use a structureless potential known as contact interaction (delta potential), which
is ill-defined, as we will show. The operator of the contact interaction is defined by

Û
∣∣∣~x〉 = gδ(D)(~x)

∣∣∣~x〉 , (3.30)

where g is the interaction strength. From the Lippmann-Schwinger equation (3.21) we can find an
expression for the T matrix, provided the inverse of (I − ÛĜ0(z)) or (I − Ĝ0(z)Û) exists. Then we
get

T̂ (z) = Û(I − Ĝ0(z)Û)−1. (3.31)

We can iterate the T matrix in equation (3.21) or use the definition of a geometric series in equation
(3.31) to find the Born series [85]:

T̂ (z) = Û[I + Ĝ0(z)Û + Ĝ0(z)ÛĜ0(z)Û + Ĝ0(z)ÛĜ0(z)ÛĜ0(z)Û + ...]. (3.32)

In this equation it is easier to calculate the matrix elements than in equation (3.31). Equivalently
we can iterate the T matrix in equation (3.22). In the following we will consider the particular
case where the s-wave component of the T matrix is the dominant term. If we were to consider
other components, like p-wave or d-wave, we would have to follow a more careful analysis3. For a
contact interaction it is found that

T (~k′,~k, E) = g
[
1 +

g
(2π)D

∫
dDk′′

1
E − Ek′′ + iδ

+

(
g

(2π)D

∫
dDk′′

1
E − Ek′′ + iδ

)2

+ ...

]
. (3.33)

It can be seen that the integrals in each term are divergent, since for large wave vectors the
integrand goes like k′′D−1/Ek′′ . In a more explicit way we have a behavior of the form∫ ∞

dk′′
k′′D−1

k′′2
=

k′′ → ∞ for 3D,

ln(k′′)→ ∞ for 2D.
(3.34)

3In general we would have to expand the T matrix and the potential Ũ(~q − ~q′) of equation (3.22) in terms of
partial waves. See for instance Ref. [16] for the 2D case, and Ref. [22] for the 3D case. Then we would have to use
equation (3.22) for each partial wave. Depending on the spatial dimension, more assumptions have to be made on
the interaction potential Ũ(~q − ~q′) than the ones we are considering here [16, 22].
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Then we have a divergent expression for the T matrix, which implies an ill-defined Green’s function
G and a scattered wave without physical meaning. However, we can see that this divergence arises
from our election of a structureless contact interaction. A well-defined interaction should allow the
integrals to converge4. Then we can identify the interaction strength g as a non-physical quantity
which we adjust arbitrarily to ensure convergence. This is done by introducing a parameter known
as regulator Λ which controls the integration limits and the interaction strength, allowing g → 0
when Λ→ ∞ [94]. Using an identity for the geometric series we have [94]

T (~k′,~k, E) = g(Λ)
[
1 −

g(Λ)
(2π)D

∫ Λ

dDk′′
1

E − Ek′′ + iδ

]−1

. (3.35)

This equation can be rearranged to find the interaction strength g in terms of the T matrix plus
a divergent term that will allow us to cancel another divergence that arises in the many-body
problem5, due to the contact interaction,

1
g(Λ)

=
1

T (~k′,~k, E)
+

1
(2π)D

∫ Λ

dDk′′
1

E − Ek′′ + iδ
. (3.36)

This equation became important in the literature because it allows us to use a contact interaction in
the many-body problem [8, 12, 23, 91]. The use of a contact interaction enables an easier theoretical
treatment, but at the cost of having divergences that need to be removed by renormalizing the
theories6.

We can readily use equation (3.36) to renormalize the interaction strength in the many-body
problem7. However we might notice that the basis used here, for an homogeneous space, differs from
the one commonly used in the many-body problem, where we use periodic boundary conditions
with an auxiliary box whose size is taken to infinity at the end of calculations. We can still find an
analogous equation but we cannot use directly the Lippmann-Schwinger equation (3.21) because
the normalization of the free waves with periodic boundary conditions is not adequate to describe
a scattering process, unless a different definition for the T matrix is used [89]8. The free waves
with periodic boundary conditions are of the form

〈~r|~k〉 =
ei~k·~r

LD/2 , (3.37)

where LD is the size of the box in two dimensions D = 2 or in three dimensions D = 3 [96]. The
equation used to renormalize the theory using explicitly the periodic boundary conditions is

1
g(Λ)

=
1

T (~k′,~k, E)
+

1
LD

Λ∑
~k′′

1
E − Ek′′ + iδ

. (3.38)

4Further discussion about the form of the potentials can be found in quantum scattering books like [85, 93].
5It might be tempting to consider that the T matrix is zero in equation (3.35), but this possibility is discarded

since the T matrix is different from zero whenever there is an interaction, as seen in equation (3.21).
6A nice presentation of the renormalization procedure used in this work can be found in [95].
7We must mention that there are other schemes for renormalizing the models with a contact interaction, such

as a direct use of a renormalized contact interaction with a partial derivative [9].
8The important aspect is to find a solution to Schrödinger’s equation of the form given by equation (3.2),

regardless of the normalization.
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In this section we have introduced the T matrix, whose determination allows to solve the
scattering problem, as shown in equation (3.29). For the contact interaction we were only able to
say that it should be a finite quantity, by means of equation (3.35). As we are interested in using
an interaction adequate for the low-energy and dilute regime, we expect the T matrix to be given
approximately by a physical property belonging to this regime. In the following we will show that
a good approximation is given by the s-wave component of the total scattering cross section, which
can be determined considering only the respective s-wave scattering length.

3.2 Scattering from a finite-range potential in 2D

In the last section we considered a general formulation for the scattering problem from a potential
that depends on the relative distance between particles. In this section we will consider the
determination of the phase shifts for potentials that have a radius such that for distances larger
than this radius the potential can be neglected, which we call finite-range potentials. While the
steps to define and determine the phase shifts are similar between 2D and 3D, it is not common
to find a treatment of this topic in 2D. In this section we will follow closely Refs. [97] and [90] for
the presentation of the scattering, although we are mainly interested in obtaining an expression
for the T matrix in terms of the s-wave scattering length. We will start from equation (3.1), where
we can use separation of variables in polar coordinates ψ(~r) = R(r)Θ(θ). Then we get two coupled
equations. One corresponds to the angular momentum equation,

~2

2mr

d2Θ

dθ2 = −
~2m2

θ

2mr
Θ, (3.39)

while the other one is the radial equation,

r2 d2R
dr2 + r

dR
dr

+

[
2mr

~2

(
E − U(r)

)
r2 − m2

θ

]
R = 0. (3.40)

The angular momentum equation can be solved generally to find the two independent solutions,
Θ1(θ) = exp(imθθ) and Θ2(θ) = exp(−imθθ). However, the wave function must have a unique value in
each point in space and in this case the transformation θ → 2π+θ leaves invariant the system. Thus,
we find that the angular momentum quantum number must have integer values mθ = 0,±1,±2, ....
For the scattering problem we can choose θ = 0 as the angle of incidence, see Figure 3.1. For
a radial potential we expect that the direction of incidence defines a reflection symmetry, so we
require Θ(θ) = Θ(−θ). Then, it is enough to consider the following linear combinations:

Θ(θ) = cos(lθ), (3.41)

with l = 0, 1, 2, 3, .... Outside the range of the potential, where we can neglect it, the radial equation
(3.40) becomes the well-known Bessel differential equation, whose solution is a linear combination
of Bessel’s functions Jl(kr) and Neumann’s functions Nl(kr), both of order l [88]. Then, the wave
function ψ(~r) is given as

ψ(r, θ) =

∞∑
l=0

εl[alJl(kr) + blNl(kr)]cos(lθ), (3.42)
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where al and bl are linear coefficients and we have introduced [97]

εl =

1 if l = 0,
2 if l , 0,

(3.43)

so as to compare this expression with the one of the incident plane wave, given by [97]

ei~k·~r = eikrcos(θ) =

∞∑
l=0

εlJl(kr)cos(lθ)eilπ/2. (3.44)

r
θ

π/2

π/2

0

Figure 3.1: Illustration of the conventions used for the polar coordinates. The direction of incidence
will be taken in the direction θ = 0. The upper half plane corresponds to θ > 0, while the lower
one to θ < 0.

For large distances we can use the following approximations for the Bessel and Neumann
functions [88]:

Jl(kr)→

√
2
πkr

cos

(
kr −

lπ
2
−
π

4

)
, (3.45)

Nl(kr)→

√
2
πkr

sen

(
kr −

lπ
2
−
π

4

)
. (3.46)

Then at large distances the wave function ψ(r, θ) given in equation (3.42) behaves like

ψ(r, θ) ≈
∞∑

l=0

√
2
πkr

Blεl[cos(βl(kr))cos(δl) − sen(βl(kr))sen(δl)]cos(lθ), (3.47)

where we have defined βl(kr) = kr − lπ/2 − π/4 and we have introduced the phase shifts δl defined
by the linear coefficients, al = Blcos(δl) and bl = −Blsen(δl). Notice that the phase shifts are not
defined uniquely, there can be others differing by multiples of 2π. Using the trigonometric identity
cos(βl(kr) + δl) = cos(βl(kr))cos(δl) − sen(βl(kr))sen(δl) we get ψ(r, θ)

ψ(r, θ) =

∞∑
l=0

√
2
πkr

Bl εl cos

(
kr −

lπ
2
−
π

4
+ δl

)
cos(lθ). (3.48)

Then we see the meaning of δl. At large distances it is the shift of the circular wave due to the
presence of the finite-range potential. If there was no potential, the radial equation (3.40) would
become Bessel’s differential equation. Then the linear coefficients bl of equation (3.42) would
have to be zero because the Neumann function has a logarithmic divergence at the origin (a wave
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function cannot diverge), so this implies δl = 0.

Let us return to the problem of determining the scattered wave function ψsc(~r). Far from the
origin we expect the scattered wave to behave like a circular wave, so we have the asymptotic
behavior

ψ(r, θ) = ei~k·~r + ψsc(r, θ) ≈ ei~k·~r +
f (θ)eikr

√
r

, (3.49)

where we have defined a scattering amplitude f (θ) following Ref. [97]9. We can use equations
(3.44) and (3.48) to find an expression for f (θ),

f (θ) =

( √
r

eikr

)
[ψ(~r) − ei~k·~r]

=
e−iπ/4

√
2πk

∞∑
l=0

εl cos(lθ){ei2δl − 1},
(3.50)

where we had to set Bl = eiδleilπ/2 in equation (3.48) because each term cos(lθ) is linearly independent.
Then we can identify a differential scattering cross section | f (θ)|2 [90] and a total cross section λ
given by

λ =

∫ π

−π

| f (θ)|2dθ =
4
k

∞∑
l=0

εl sen2(δl) =
4
k

∞∑
l=0

εl
1

cot2(δl) + 1
. (3.51)

The total scattering cross section λ is a measure of the probability of a particle of mass mr being
scattered by the potential in any way by the potential U(r) [93], while the differential cross section
| f (θ)|2 is the probability of being scattered towards the angle θ. These are observable quantities
that could be measured, provided we have achieve a two-dimensional confinement. In the low
energy regime that concerns us the scattering cross sections are determined by the s-wave phase
shift. The anti-symmetry of the complete wave function (including spin) requires to consider an
anti-symmetric scattering amplitude when the particles are indistinguishable. If we consider spin
1/2 fermions the amplitude is given by [98]

fA(θ) = f (θ) ± f (π − θ), (3.52)

where the upper sign is for a singlet and the lower for the triplet states. Considering only the s-wave
component in the case of triplet states (same spin projection) gives a zero scattering amplitude,
since f (θ) is independent of the angle θ,

f (θ)|s-wave =
e−iπ/4

√
2πk

[ei2δ0 − 1]. (3.53)

In this sense fermions with same quantum numbers behave as non-interacting particles, since
fA(θ) ≈ 0. However, the next partial wave contribution l = 1 should be taken into account for the

9It is also common to find different conventions, such as [90]

ψ(r, θ) ≈ ei~k·~r +
eiπ/4 f (θ)eikr

√
kr

,

where f (θ) is a scattering amplitude.
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triplet states, where we would find a smaller value of | fA(θ)| than for the case of scattering in the
singlet state.

We are interested in characterizing the interaction strength for a generic finite-range potential
U(r) in equation (3.40). Then in the next subsection we will analyze the behavior of the phase
shifts and find that the s-wave contribution l = 0 dominates the scattering solution at low energies,
given in equation (3.48). From the s-wave phase shift we will be able to define an s-wave scattering
length which gives information about the interaction strength.

3.2.1 s-wave scattering length in 2D

For finite-range potentials, that satisfy U(r) < 0, we can divide the domains of the radial equation in
two, at least. We will denote the solution “inside” the potential with a subindex I and the solutions
“outside” with II. Then, we can proceed in the standard way. We solve the radial equation in each
domain and then we find the general solution by using the physical boundary conditions. That
is, continuity of the wave function and its derivative. For the scattering problem it is enough to
consider the continuity of the logarithmic derivative,

R′I(r)
RI(r)

∣∣∣∣∣∣
r=r0

=
R′II(r)
RII(r)

∣∣∣∣∣∣
r=r0

. (3.54)

In region II, “outside”, we have the condition

αsc = r0
R′II(r)
RII(r)

∣∣∣∣∣∣
r=r0

=
kr0[cot(δl)J′l (kr0) − N′l (kr0)]

[cot(δl)Jl(kr0) − Nl(kr0)]
, (3.55)

where we used equation (3.42), taking into account that each term is linearly independent. Also we
have defined a value for the boundary condition αsc, which depends on the details of the potential
(and on the angular momentum by means of the index l) because it is also determined by the
solution “inside”,

αsc = r0
R′I(r)
RI(r)

∣∣∣∣∣∣
r=r0

. (3.56)

Then, αsc represents the structure of the potential in the scattering problem, therefore the “sc”
label. Hence, we can solve equation (3.55) to find

cot(δl) =
αscNl(kr0) − kr0N′l (kr0)
[αscJl(kr0) − kr0J′l (kr0)]

. (3.57)

Observing the functional form of the cross section in equation (3.51) we can notice that a s-wave
scattering resonance occurs when cot(δ0) = 0. The wave vector k at which this condition occurs
determines the energy of s-wave scattering resonance Eres, as shown in Figure 3.2 for a circular
potential illustrated in the inset. In the low energy limit we expect that αsc becomes a constant
that depends on the details of the potential α(0)

sc . Then we can find a low-energy (or short-range)
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approximation for equation (3.57) using well-known asymptotic expansions for the Bessel and
Neumann functions [88]:

Jl(x) ≈
1

Γ(l + 1)

(
x
2

)l

, (3.58)

Nl(x) ≈



2
π

[ln(x) + γ − ln(2)] for l = 0,

−
(l − 1)!
π

(
2
x

)l

for l > 0,

(3.59)

where we are restricting to integer values of l ≥ 0. From this asymptotic expansions it can be seen
that the s-wave cot(δ0) is the dominant term at low energies in the total scattering cross section
λ, see equation (3.51), because it has a logarithmic behavior10, given by

cot(δ0) ≈ −
2

πα(0)
sc

+
2γ
π
−

2
π

ln(2) +
2
π

ln(kr0). (3.60)

Finally, we can introduce an identity function in the form of a composition ln ◦ exp to write
everything in one logarithm [16],

cot(δ0) ≈
1
π

{
ln[(kr0)2] + ln

[
exp

(
−

2

α(0)
sc

+ 2γ − 2ln(2)
)]}

=
1
π

ln

[
(kr0)2

4exp
(

2
α(0)

sc
− 2γ

)]

=
1
π

ln

(
E
Ea

)
.

(3.61)

In the last equality we defined the energy Ea, which is the approximate energy where a scattering
resonance would occur11. It is given by

Ea = 4
(
~2

2mrr2
0

)
exp

(
2

α(0)
sc

− 2γ
)
. (3.62)

From the energy Ea we can define the s-wave scattering length a2D, as a characteristic length of
scattering at low energies12. Here we will adopt the convention (for equal mass particles m, the
reduced mass is mr = m/2):

Ea =
~2

2mra2
2D

. (3.63)

10For l > 0 we have cot(δl) ≈ c1(kr0)−2l, where c1 is independent of kr0.
11For this interpretation we must obtain equation (3.61) using r0 � 1 while leaving free the wave vector k.
12In the literature there are different conventions to define the scattering length, but they differ by constants

[30, 99].
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Then, we can express the phase shift in terms of the s-wave scattering length:

cot(δ0) =
2
π

ln(ka2D) (3.64)

For a fixed wave vector k, the quantity that modulates the s-wave component in the cross-section is
a dimensionless logarithm ln(ka2D). Then the scattering length does not have the same geometrical
interpretation as the 3D scattering length, it does not shift directly the wave function, since it is
inside the logarithm. It is counter intuitive that the cross section diverges at low energies, for
k → 0. However, this can be thought to be related to the appearance of a bound state for the
potentials we have been discussing, finite-range potentials with no divergences. For example, in
2D a circular potential, as illustrated in the inset of Figure 3.2, always has a bound state. This is
different from the 3D case, where shallow potentials do not have a bound state. In Appendix A.1
we determine the equations for finding the bound state of the circular potential, and show that
the approximation |Ebound| ≈ Ea is valid for shallow circular potentials.

Figure 3.2: For a 2D circular potential of depth U0 and radius r0, shown in the inset, we show the
behaviors of the energy of s-wave scattering resonance Eres (solid line), the energy of the first bound
state Ebound (dotted line) and the approximate energy Ea (dashed line) given in equation (3.63), as
funcions of the depth. Primed variables indicate dimensionless form, for example E′a = 2mrr2

0Ea/~
2.

Let us remind that we want to find the T matrix in terms of the phase shifts. From equation
(3.29) we can calculate the wave vector representation of the scattered wave,

ψ̃sc(~k′) =
〈
~k′

∣∣∣∣ Ĝ0(E+)T̂ (E)
∣∣∣∣~k〉

=
1

E −
~2k′2

2mr
+ iδ

T (~k′,~k, E), (3.65)

where we used the completeness relations (3.10). Then, we can calculate its space representation,
where we can make approximations to find the large-distance behavior of the scattered wave ψsc(~r).
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Hence we will be able to find a relation between the scattering amplitude f (θ) and the T matrix
at low energies, and therefore the T matrix in terms of the phase shifts. So we have

ψsc(~r) =
1

(2π)2

∫
d2k′ ei~k′·~r 1

E −
~2k′2

2mr
+ iδ

T (~k′,~k, E). (3.66)

In the large distance regime r � 1 we can approximate the integrand by first assuming13 that the
T matrix depends on the magnitude of the wave vector ~k′, T (~k′,~k, E) = T (|~k′|,~k, E). This allows
us to write the Fourier transform of equation (3.66) as a Hankel transform, introducing a Bessel
function J0(k′r). Then, we can use the asymptotic form for the Bessel function given in equation
(3.45), which allows for an extension of the integral to the complex plane, where we can close an
integration contour and use Cauchy’s theorem. The final approximation is

ψsc(~r) ≈ −
1
4

√
2
πkr

eiπ/4eikrT (k,~k, E), (3.67)

which is valid for small wave vector k. Then we can compare this expression for the scattered wave
with its functional form at large distances, given in equation (3.49). This expression allows us to
find an approximate relation between the T matrix and the s-wave phase shift. We have, for small
wave vector k,

f (θ) ≈ −
mr

2π~2

√
2π
k

eiπ/4T (k,~k, E) (3.68)

Using the s-wave term of the scattering amplitude, given in equation (3.50) we find

T (k,~k, E) ≈
2~2

mr

[
1

−cot(δ0) + i

]
=

2~2

mr

[
1

2
π
ln(1/ka2D) + i

]
=

2~2

mr

[
1

− 1
π
ln(E/Ea) + i

] (3.69)

where we used
ei2δ0 − 1

2i
=

1
cot(δ0) − i

, (3.70)

and the relation between the phase shift and the s-wave scattering length, given in equation (3.64).
Another strange property is that in the low energy limit k → 0 the s-wave approximation of the
T matrix, given in equation (3.69), vanishes, since the denominator diverges as ln(E) → ∞. The
vanishing T matrix gives the impression that the particles become non-interacting. However, this
is not the case, since the T matrix cannot be zero when there is a potential Û, as seen in equation
(3.21). After obtaining equation (3.69) we have acquired the basic elements for performing the
renormalization procedure in the many-body problem14. That is, we can substitute equation (3.69)

13This condition is not necessary, but it makes easier the demonstration. For a more general dependence we can
follow the 3D arguments of Ref. [98], modifying them for the 2D case.

14We can consider the scattering of particles in a medium using a many-body t-matrix, which is one method for
including beyond mean-field terms [8, 12].
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into equation (3.36). We need to emphasize that this result has been obtained from a two-body
problem and we want to use it in the many-body problem. To do so, we need to consider a dilute
system, so that the structure of the interaction can be disregarded.

3.3 Scattering from a finite-range potential in 3D

In this section we will consider the determination of the phase shifts for finite-range potentials,
the ones that have a radius such that for distances larger than this radius the potential can be
neglected. It has to be mentioned that this is not the case for a Coulomb potential because
it decays very slow with the distance [83]. It is more common to find nice discussions about
scattering in 3D, see for instance [83, 85, 89, 93, 98, 100]. Then we will give a general overview of
the phase shifts, the cross section and its relation to the low energy approximation of the T matrix.

We can use separation of variables in Schrödinger equation (3.1) with ψ(~r) = R(r)Y(θ, ϕ) to
obtain a radial equation and the angular equation. However, for scattering from central potentials
we can set the polar angle θ = 0 in the direction of the incident wave vector ~k and notice that there
should be a rotational symmetry around the direction of incidence. Then we can restrict ourselves
to the plane where scattering occurs [98], equivalent to fixing the azimuth angle ϕ. Hence we have
the radial equation:

1
r2

d
dr

(
r2 dR

dr

)
+

[
k2 −

2mr

~2 U(r) −
l(l + 1)

r2

]
R = 0 (3.71)

and the angle equation
d
dθ

(
sin(θ)

dΘ

dθ

)
+ l(l + 1)sin(θ) = 0, (3.72)

where θ is the angle between ~k and ~r [98]. A general solution is given by [83]

ψ(r, θ) =

∞∑
l=0

Bl(2l + 1)ilRl(r)Pl
(
cos(θ)

)
. (3.73)

For finite-range potentials, the radial equation (3.71) is satisfied by the spherical Bessel functions
when the potential becomes negligible U(r) ≈ 0. The spherical Bessel function of the first kind is
defined by [88]

jl(x) =

√
π

2x
Jl+1/2(x), (3.74)

while the spherical Bessel function of the second kind is given by [88]

nl(x) =

√
π

2x
Nl+1/2(x). (3.75)

Then, the radial function Rl(r) is a linear combination of the two solutions, such that far from
the center of the potential, where kr � 1, we have the asymptotic limit:

Rl(r) ≈
sin(kr − πl/2 + δl)

kr
, (3.76)
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where we have introduced the phase shift δl that has information about the linear combination of
jl(kr) and nl(kr). Let us remember the expansion of a free plane wave in terms of partial waves
[83]:

ei~k·~r =

∞∑
l=0

(2l + 1)il jl(kr)Pl
(
cos(θ)

)
. (3.77)

Then, we can substitute equations (3.73), (3.76), and (3.77) into equation (3.2), which has the
following asymptotic limit at large distances:

ψ(~r) = ei~k·~r +
f (θ)
r

eikr, (3.78)

where f (θ) is known as the scattering amplitude. We find f (θ) to be given in terms of the phase
shifts:

f (θ) =
1
k

∞∑
l=0

(2l + 1)sin(δl) eiδl Pl(cos(θ)), (3.79)

where we had to set Bl = eiδl in equation (3.73) because each Legendre polynomial is linearly
independent. Then we can calculate the total cross section

σ =

∫ 2π

0
dϕ

∫ π

0
dθ sin(θ) | f (θ)|2 =

4π
k2

∞∑
l=0

(2l + 1)sin2(δl). (3.80)

From this sum we can identify the s-wave contribution to the total cross section, which can be the
dominant term at low energies, unless the antisymmetry of the wave function cancels those terms,
as discussed in equations (3.52) (3.53). That is, for fermions with spin s = 1/2 the scattering
amplitude is given by [98]

fA(θ) = f (θ) ± f (π − θ), (3.81)

where the upper sign is for a singlet and the lower for the triplet states. Considering only the s-wave
component in the case of triplet states (same spin projection) gives a zero scattering amplitude,
since f (θ) is independent of the angle θ,

f (θ)|s-wave =
sin(δl)eiδl

k
. (3.82)

Given that we will consider interactions between fermions of different spin, we need to characterize
the general behavior of the s-wave contribution for any finite-range interaction potential. For
this purpose we will find that it is adequate to define the s-wave scattering length, which we will
introduce in the next subsection.

3.3.1 s-wave scattering length in 3D

For the simplified potentials that we are considering, which are spherical and of finite range (can
be considered zero outside a characteristic radius), the information about the structure of the
potential is contained in the phase shifts δl. At low energies the dominant term of a spatially
symmetric wave functions is the one that characterizes the most spherically symmetric component
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with l = 0. However, this is not the general case. For example, depending on the anti-symmetry
of the wave function the first dominant term can be with l = 1 [98].

Like for the 2D case, we can divide the interval of the radial equation into two parts, inside
(Region I) and outside the potential (Region II), where the solutions of the radial equation (3.71)
behave like

RII(r) ∝ cos(δl) jl(kr) − sin(δl)nl(kr). (3.83)

Then, the continuity of the wave function and its derivatives at the boundaries can be joined in
one condition, the continuity of the logarithmic derivative,

R′I(r)
RI(r)

∣∣∣∣∣∣
r=r0

=
R′II(r)
RII(r)

∣∣∣∣∣∣
r=r0

. (3.84)

We can define the boundary condition inside the potential as

αsc = r0
R′I(r)
RI(r)

∣∣∣∣∣∣
r=r0

, (3.85)

while outside, where we can neglect the potential, the solution RII(r) is such that

r0
R′II(r)
RII(r)

∣∣∣∣∣∣
r=r0

=
kr0[cot(δl) j′l(kr0) − n′l(kr0)]

[cot(δl) jl(kr0) − nl(kr0)]
. (3.86)

Using equations (3.85) and (3.86) we can determine the phase shift, up to a term involving the
periodicity,

cot(δl) =
αscnl(kr0) − kr0n′l(kr0)

[αsc jl(kr0) − kr0 j′l(kr0)]
. (3.87)

In the low energy regime, kr0 � 1, we can use the small argument behavior of the spherical Bessel
functions, jl(x) ∝ xl and nl(x) ∝ x−l−1, to convince ourselves15 that the dominant phase shift is the
one with l = 0, the s-wave term, assuming a constant behavior of αsc when k → 0. Then we will
be interested in calculating its low-energy behavior. Taking the limit k → 0 we can see that the
following limit defines a characteristic length of the scattering process:

lim
k→0

k cot(δ0) = −
1
a
, (3.88)

where we have defined the s-wave scattering length a, which depends on the details of the potential
by means of αsc. Then, the s-wave scattering length represents the shift of the scattered wave
function ψsc(~r) in equation (3.2) for the 3D case. Basically, it represents the strength of the
potential. When it has a change of sign it indicates the availability of a bound state in the
potential. While the limit shown in equation (3.88) is correct, it is numerically difficult to calculate
the scattering length using equations (3.87) and (3.88). Also we have avoided giving an expression

15For the Van der Waals potential of equation (3.97) this behavior is not quite general, but it is enough for arguing
that the s-wave contribution is the dominant term. For more general expressions of the phase shifts see [77, 101].
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for the range of the potential r0, which can also be infinite (as a limit) [92]. For determining the
s-wave scattering length we will follow Ref. [86] and use the definition:

a = lim
r→0

[
r −

u(r)
u′(r)

]
k=0

, (3.89)

where u(r) is given in terms of the solution to the radial equation (3.71) as u(r) = rR(r). To
use equation (3.89) we can first solve the radial equation, with k = 0, in terms of u(r) with the
boundary conditions u(0) = 0 and u′(0) = 1 [86]. This can be done with a Runge-Kutta method
[102], which allows us to compute u(r) and u′(r) numerically [19, 86, 92]. We will not give a rigorous
demonstration of equation (3.89), but we will argue its validity. Far from the center of the potential
r � 1 (in region II) we can write the s-wave solution to the radial equation like

RII(r) ∝ cot(δ0) j0(kr) − n0(kr). (3.90)

For low energies k → 0 we can use the well-known behaviors j0(kr) ≈ 1 and n0(kr) ≈ −1/(kr) [88].
Hence

RII(r) ∝
1
k

(
k cot(δ0) +

1
r

)
∝ N

(
−

1
a

+
1
r

)
, (3.91)

where we have factored 1/k and we have made an early substitution of the s-wave scattering length,
using equation (3.88). Also we have written a normalization factor N . We can use this asymptotic
behavior in the definition of u(r) to verify the limit given in equation (3.89). We can notice that
the normalization constant N does not determine the value of a.

Further below we will model the interaction between fermions using representative potentials
of finite-range interactions, following the previous work reported in Refs. [92, 103, 104]. We will
characterize the deepness of the potentials by a constant V0, and the range of the potential by a
length R0 (not to be confused with r0 in our previous discussion). The potentials are [92]:

• The well-known square well, also known as finite spherical well [87]:

USW (r) =

−V0 r ≤ R0

0 r ≥ R0,
(3.92)

This potential has been a nice model for interactions because it can be solved explicitly
[83, 87]. Also it is a simplified model for the scattering properties that should be obtained
from a coupled-channels scattering problem [105], which are relevant for collision between
atoms in ultracold gases. An important feature of this potential is that it is exactly zero
outside the radius R0 and it has a discontinuity at the same radius R0. When the mass of
the particles is the same m1 = m2 = m, the s-wave scattering length of this potential is given
by [103]

a = R0

{
1 −

(
mV0R2

0

~2

)−1/2

tan

[(
mV0R2

0

~2

)1/2]}
(3.93)

The behavior of the s-wave scattering length is shown in Figure 3.3 (a).
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• The exponential potential:

Uexp (r) = −V0e−r/R0 , (3.94)

This potential was used by William Rarita and R. D. Present to model the interaction
between nuclei [106]. Also this potential was used in previous analysis of the BEC-BCS
crossover [92, 103, 104]. The exponential function is an analytic function (it is smooth) in all
space r ∈ [0,∞), which is one of the main properties that seem attractive of this potential.
Its s-wave scattering length, when the mass of the particles is the same m1 = m2 = m, is given
by [103]

a = −2R0

{
π

2

N0

[( 4mV0R2
0

~2

)1/2
]

J0

[(4mV0R2
0

~2

)1/2
] − ln

[(
mV0R2

0

~2

)1/2]
− γ

}
, (3.95)

where γ is the Euler-Mascheroni constant. The behavior of the s-wave scattering length is
shown in Figure 3.3 (b).

• The Yukawa potential:

UYuk (r) = −V0
R0

r
e−r/R0 . (3.96)

This potential appeared as an approximation in many models. For example it can be
regarded as a screened Coulomb potential. It seems to be used by van der Waals long
before Yukawa proposed it for modeling the neutron-proton interaction [107]. Actually there
are more accurate potentials to describe interactions between nucleons [8, 77]. Nevertheless,
its divergence at the origin is the main feature that we want to test in the many-body system.
The s-wave scattering length was calculated numerically as explained in equation (3.89). The
numerical calculations are shown in Figure 3.3 (c) [86].

• A Van der Waals type potential [103]:

UVdW (r) =

0 r ≤ R0

−V0R6
0/r

6 r ≥ R0,
(3.97)

Within the Born-Oppenheimer approximation of static nuclei, the interaction between two
atoms goes like r−6 due to the mutually induced dipoles in the atoms [93]. Then this potential
is of relevance for ultracold gases, where we expect a slow motion of the atoms [77]. The
main feature of this potential is that it has an algebraic decay. In Figure 3.3 (d) we show
the s-wave scattering length calculated numerically as explained in equation (3.89) [86].
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Figure 3.3: Examples of the behavior of the inverse of the scattering length a−1, scaled with the
Fermi wave number kF, as function of a parameter kFχ that represents the“depth”of the potentials,
given by kFχ = kFR0

√
V0/εF, with the Fermi energy given by εF = ~2k2

F/(2m). In all plots we use
kFR0 = 0.1. In (a) we have an example of the square well (3.92). (b) corresponds to the exponential
potential (3.94). (c) is an example of the Yukawa potential (3.96). (d) shows the one of the Van
der Waals type potential (3.97). These calculations were performed following Refs. [103] and [86].

In Figure 3.3 we show the scattering lengths a of the finite-range potentials calculated with
equation (3.89). We have introduced the Fermi wave number kF given by the density of a non-
interacting homogeneous gas n = k3

F/(3π
2) for using these calculations in the many-body problem.

Also we introduced the Fermi energy εF = ~2k2
F/(2m). The behaviors of the inverse scattering

lengths shown in Figure 3.3 tells us that an increase of (kFa)−1 from negative to positive values
corresponds to an increase in the strength of the interaction. These calculations are for simplified
models of two-particle interactions. As we have commented, the real interactions between atoms
are more complicated, but in the low-energy regime they can be characterized by the s-wave
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scattering length. Also, in experiments of ultracold gases the interactions are characterized by the
scattering lengths, like the model shown in Figure 2.2. Hence, in the following it will be adequate
to parametrize the interaction strength with the s-wave scattering length.

After having introduced models for the interaction between particles we can use them in the
many-body problem. A general observation is that we cannot avoid using two-body physics to
set an adequate interaction between particles. For our particular models under consideration the
s-wave scattering length characterizes the interaction strength between particles at low energies.
Then, in the many-body problem we can use an ill-defined contact interaction with a non-physical
interaction strength, where we would find an ultraviolet divergence due to the contact potential.
Since we know the origin of the divergence in the two-body scattering problem we can remove it
using the s-wave scattering length using equations (3.36) and (3.38). This process is the so-called
renormalization of the theory.

3.4 Remarks on differences and similarities between 2D and 3D

As can be seen, there have been many similarities between the scattering in 2D and 3D. However,
we will give a brief list of similarities between the scattering in 2D and 3D that we want to
emphasize:

• Notice that the phase shifts δl in both dimensions are not defined uniquely, there can be
others differing by multiples of 2π.

• In both dimensions, at low energies k → 0, we have restricted to the case of interactions
without spin, and then we take into account the spin states. For interaction between fermions
in a singlet state (s = 1/2), the dominant terms in the total cross sections λ in equation (3.51)
and σ in equation (3.80) correspond to the s-wave terms l = 0. However we could consider
other spin configurations or some other potentials, where the dominant terms are not the
s-wave terms [16, 22].

• When considering only the s-wave contribution to the scattering amplitudes in equations
(3.53) and (3.82) we can neglect the interaction between fermions in the same quantum
state.

Some differences that we want to remark between 2D and 3D are:

• The definitions of the scattering length in each dimension are different. In 2D it is a coefficient
for finite wave vector k, as seen in equation (3.64), while in 3D it is the low energy limit, as
defined in equation (3.88).

• Differently from the 3D case, the scattering length has to be a positive quantity because it
is inside a logarithm.

• Regarding the different definitions of the s-wave scattering length, in 3D it is easy to see that
in general the phase shift remains finite when k → 0. From equation (3.88) we have δ0 ≈ −ka,
while in 2D the logarithm gives a divergent expression as seen in equation (3.64).
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• Also, as shown in Figure 3.2 a 2D circular potential has an s-wave bound state for any depth,
while in 3D there is a minimum depth required for a bound state.
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Chapter 4

BEC-BCS crossover of ultracold Fermi gases

In this chapter we will present the main aspects of the BEC-BCS crossover. We will follow the
work of Leggett [13], who had the idea to extend the pairing mechanism of Bardeen, Cooper and
Schrieffer (BCS) to describe an homogeneous system with stronger interactions, where fermions
form molecules that are described by a Bose-Einstein condensate (BEC) at zero temperature. The
model we will consider is a homogeneous gas of fermions with two components, where we can tune
the attractive interaction between fermions of different component. When modulating the strength
of the interaction we can obtain a weakly interacting regime, which corresponds to the BCS limit,
where the formation of Cooper pairs poses the conditions for the existence of superfluidity. On
the other hand, we can tune the strength to the strongly interacting regime, where we obtain
the formation of molecules made of two fermions of different component. These molecules are
represented by an operator which satisfies bosonic commutation relations. Then, the strongly
interacting regime is known as the Bose regime [30]. In the following we will focus on the zero
temperature case, so we will refer to the strongly interacting limit as Bose-Einstein condensate
regime (BEC), although there is no macroscopic occupation of the ground state at a non-zero
temperature in an ideal 2D bose gas [108].

4.1 The BCS Hamiltonian

Let us begin with the mathematical description of our simplified model. We are considering an
homogeneous gas of two-component fermions with the same mass m. For brevity we will label the
components as spins ↑ , ↓. The form of a second quantization Hamiltonian adequate for the low
energy and low density gas is given by [13, 103, 109]:

Ĥ =
∑
~kσ

ε~kc
†

~kσ
c~kσ +

1
2LD

∑
~k1,~k2, ~Q

∑
σ1,σ2

Ũσ1σ2(|~k1 − ~k2|) c†
~k1,σ1

c†
~Q−~k1,σ2

c ~Q−~k2,σ2
c~k2,σ1

, (4.1)

where ε~k = ~2k2/(2m) is the kinetic energy of a fermion of mass m, c~kσ and c†
~kσ

are annihilation

and creation operators of fermions with momentum ~k and spin σ in an auxiliary box of size LD

with periodic boundary conditions. The vector ~Q can be regarded as the total wave vector of
the interacting pairs. The interaction potential in wave vector space is denoted by Ũσ1σ2(~k). The
algebra of the annihilation and creation operators is given by

[c~kσ, c
†

~qσ′]+ = Iδ~k~qδσσ′ , (4.2)

[c~kσ, c~qσ′]+ = [c†
~kσ
, c†

~qσ′]+ = 0, (4.3)

35
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where we have defined the anticommutator [c, c′]+ = cc′ + c′c and the delta symbols δ~k~q are zero

when ~k , ~q, and equal to one when ~k = ~q. Also these operators have their own vacuum state |0〉,
defined by

c~kσ |0〉 = 0. (4.4)

In analogy with the non-interacting Fermi gas, we have used creation and annihilation operators
of free particles with periodic boundary conditions. This is necessary since we want to determine
densities of particles or energy. If we had used the basis of free particles, without the auxiliary
volume, like in equation (3.11), we would find a problem defining a Fermi surface, since the infinite
number of particles of the system does not allow us to fill a finite Fermi sphere. Then it is adequate
to use periodic boundary conditions with an auxiliary box whose size will be taken to infinity at
the end of calculations LD → ∞.

The Hamiltonian of equation (4.1) does not have an explicit solution, so theoretical tools
have been developed to calculate observable properties, which try to capture the relevant features
[13, 15, 23, 110]. Here we will follow the works of Bardeen, Cooper and Schrieffer [15] and Leggett
[13] to describe a gas near its ground state. Then, we can remove some interaction terms based on
scattering properties. As pointed out in equations (3.52) and (3.81), we will neglect interactions
between same spins, and keep an interaction between opposite spins. This is because the interaction
between same spins is given by a p-wave term which is negligible in comparison to the s-wave term.
Also we will assume that the fermions move so slowly that we can neglect the interaction of pairs
of fermions moving with a wave vector ~Q , ~0. Hence we propose the BCS Hamiltonian [15]1

ĤBCS =
∑
~kσ

ε~kc
†

~kσ
c~kσ +

1
2LD

∑
~k1,~k2

∑
σ1

Ũσ1,−σ1(|~k1 − ~k2|) c†
~k1,σ1

c†
−~k1,−σ1

c
−~k2,−σ1

c~k2,σ1
. (4.5)

We can make the sum over the spin σ1 and notice that we can join the two terms by making a change
of variables in the wave vectors ~k1 → −~k1, ~k2 → −~k2. This can be done for our radial potential
because Ũσ1,−σ1(|~k1 −~k2|) = Ũ−σ1,σ1(|~k2 −~k1|). Then we obtain the final form of the Hamiltonian that
we will use:

ĤBCS =
∑
~kσ

ε~kc
†

~kσ
c~kσ +

1
LD

∑
~k1,~k2

Ũ(|~k1 − ~k2|) c†
~k1↑

c†
−~k1↓

c
−~k2↓

c~k2↑
, (4.6)

where we dropped the spin labels of the potential. For the BCS-Leggett variational approach we can
use this Hamiltonian to estimate the ground state energy [13]. However, we are also interested in
calculating excitation properties. This can be done using the Mean-Field method [111, 112, 113]2,
where we will substitute the interaction by a decomposed version of it using averages of operators
in the following form:

c†
~k1↑

c†
−~k1↓

c
−~k2↓

c~k2↑
→ 〈c†

~k1↑
c†
−~k1↓
〉 c
−~k2↓

c~k2↑
+ c†

~k1↑
c†
−~k1↓
〈c
−~k2↓

c~k2↑
〉 − 〈c†

~k1↑
c†
−~k1↓
〉〈c
−~k2↓

c~k2↑
〉. (4.7)

1We could work with the removed terms and make the Mean-field approach, where we would get Hartree and
Fock terms. If we consider an interaction that does not depend on the spin, they affect the gap equation. If
we consider a contact interaction, those terms are removed when renormalizing the theory, since they would be
proportional to the (non-physical) strength g→ 0−.

2We approximate an operator of the form ÂB̂ by small deviations (d̂, ê) around their expectation value of the
ground state Â = d̂ + 〈Â〉, B̂ = ê + 〈B̂〉 and neglect quadratic deviations d̂ê [111].
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The operator on the right side will be the interaction term of the mean-field approximation of
the BCS Hamiltonian. This approximation can be regarded as an approximation to a correlation
[111, 114]:

〈c†
~k1↑

c†
−~k1↓

c
−~k2↓

c~k2↑
〉 ≈ 〈c†

~k1↑
c†
−~k1↓
〉〈c
−~k2↓

c~k2↑
〉. (4.8)

The equality in equation (4.8) is not always a good approximation so there are many beyond-
mean-field techniques that have been developed in past years [23, 110, 115]. Nevertheless, the
mean-field approach gives a good qualitative description and it is a starting point for improving
the physical descriptions. For example, Gaussian fluctuations use a small deviation around the
mean-field values [115].

After making the mean-field approximation, given in equation (4.7), we are left with a Hamiltonian
that is easier to analyze. We will follow Bogoliubov [112] and Valatin [113] and define a Grand
potential operator which we can diagonalize by means of a Bogoliubov transformation. The
following is based on the nice presentation of Tinkham [24]. We have the mean-field approximation
of the Grand potential operator Ω̂M = ĤM − µN̂

Ω̂M =
∑
~kσ

ξ~kc
†

~kσ
c~kσ +

1
LD

∑
~k1

∑
~k2

Ũ(|~k1 − ~k2|) (c†
~k1↑

c†
−~k1↓

b~k2
+ b∗~k1

c
−~k2↓

c~k2↑
− b∗~k1

b~k2
), (4.9)

where b~k = 〈c
−~k↓c~k↑〉 and ξ~k = ε~k − µ. In the grand canonical ensemble, assuming that we have the

same amount of spin up particles as spin down N↑ = N↓, we have to introduce a number equation,
which determines the average number of particles [116]. For our homogeneous case we have to work
with the density because we will take the thermodynamic limit (N → ∞ and LD → ∞ keeping a
finite density N/LD):

〈N̂〉
LD =

1
LD

∑
~kσ

〈c†
~kσ

c~kσ〉. (4.10)

We can notice that there is a scalar quantity in the interaction term of equation (4.9) that can
be grouped by defining the so-called gap ∆~k. Hence, the gap is a quantity defined in terms of
the interaction and the expectation value 〈c

−~k↓c~k↑〉. The gap emphasizes the presence of pairs
of fermions, introducing a pairing mechanism that will allow the formation of Cooper pairs or
molecules. We define the gap equation in the following way:

∆~k = −
1

LD

∑
~k1

Ũ(~k1 − ~k)〈c
−~k1↓

c~k1↑
〉. (4.11)

In accordance with our previous assumptions of the scattering potentials, we will consider a gap
that depends on the norm of the wave vector |~k|, although we will keep the wave vector in the
subscript. Then, using equations (4.11) and (4.9), the Grand potential Ω̂M is given by3

Ω̂M =
∑
~kσ

ξ~kc
†

~kσ
c~kσ −

∑
~k1

(∆~k1
c†
~k1↑

c†
−~k1↓

+ ∆∗~k1
c
−~k1↓

c~k1↑
− ∆~k1

b∗~k1
). (4.12)

3Sometimes the last term is dropped in the sense that it is just a shift in energy. However, it is important to
keep it for calculating the ground state energy. Also for considering phase transitions it might be important [33].
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To diagonalize the grand potential operator we can perform a Bogoliubov transformation [112].
We have two types of fermions (↑, ↓), so we need to introduce two operators that will create
different quasiparticles γ~k and α~k. We define the transformation in the following way [24]:

c~k↑ = u∗~kγ~k + v~kα
†

~k
(4.13)

c
−~k↓ = −v~kγ

†

~k
+ u∗~kα~k, (4.14)

We are interested in defining a canonical transformation to preserve the fermionic anti-commuting
relations, else we would have to deal with complicated anti-conmutators. Hence, we impose a
condition that allows us to continue using a fermionic algebra of the operators [23]

|u~k|
2 + |v~k|

2 = 1. (4.15)

Then we have the fermionic algebra

[α~k, α~q]+ = [γ~k, γ~q]+ = [α~k, γ
±

~q ]+ = 0, (4.16)

and
[α~k, α

†

~q]+ = [γ~k, γ
†

~q]+ = Iδ~k~q, (4.17)

where we are using the anticonmutator [α, γ]+ = αγ + γα. After the transformation, the grand
potential operator in the mean-field approximation is given by

Ω̂M =
∑
~k

ξ~k

[
|u~k|

2γ†
~k
γ~k + u~kv~kγ

†

~k
α†
~k

+ v∗~ku∗~k α~kγ~k︸︷︷︸ +|v~k|
2 − |v~k|

2α†
~k
α~k

]

+
∑
~k

ξ~k

[
|v~k|

2 − |v~k|
2γ†

~k
γ~k − v∗~ku∗~k γ~kα~k︸︷︷︸−u~kv~kα

†

~k
γ†
~k

+ |u~k|
2α†

~k
α~k

]

+
∑
~k

[
(∆~ku~kv

∗

~k
+ ∆∗~k

u∗~kv~k)(γ
†

~k
γ~k + α†

~k
α~k − 1) + (∆~kv

∗2
~k
− ∆∗~k

u∗2~k ) α~kγ~k︸︷︷︸
+ (∆∗~kv2

~k
− ∆~ku

2
~k
)γ†
~k
α†
~k

+ ∆~kb
∗

~k

]
,

(4.18)

where we have indicated the non-diagonal terms, whose coefficients should be zero. This condition
allows us to determine the parameters u~k and v~k,

ξ~kv~ku~k + ξ~kv~ku~k + (∆∗~kv2
~k
− ∆~ku

2
~k
) = 0. (4.19)

Rearranging terms we have
2ξ~kv~ku~k + (∆∗~kv2

~k
− ∆~ku

2
~k
) = 0. (4.20)

Multiplying by ∆∗
~k
/u2

~k
we get (

∆∗~k

v~k
u~k

)2

+ 2ξ~k∆
∗

~k

v~k
u~k
− |∆~k|

2 = 0. (4.21)
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Below we will see that we can divide by u~k because it will turn out to be different from zero. We
can identify equation (4.21) with a quadratic polynomial in the variable ∆∗

~k
v~k/u~k whose solutions

lead us to:

v~k
u~k

=

−ξ~k ±
√
ξ2
~k

+ |∆~k|
2

∆∗
~k

=
−ξ~k ± E~k

∆∗
~k

, (4.22)

where we have defined
E~k =

√
ξ2
~k

+ |∆~k|
2. (4.23)

In equation (4.22) we have two possibilities for the term v~k/u~k, which are rarely discussed. If we
were to choose the negative sign, the quantity |v~k|

2 would not be integrable over all the momentum
space. Then, when calculating the expectation value of the number operator 〈N̂〉, we would get
a divergent density 〈N̂〉/LD → ∞, which contradicts our hypothesis of a finite density. Then we
have4

v~k
u~k

=
E~k − ξ~k

∆∗
~k

. (4.24)

Using the unitarity condition (4.15) we have

|v~k|
2 =

1
2

(
1 −

ξ~k
E~k

)
, |u~k|

2 =
1
2

(
1 +

ξ~k
E~k

)
, (4.25)

Hence the Bogoliubov transformation (4.13)-(4.14) is determined by the gap ∆~k and the chemical
potential µ. Consistently, we verify that u~k is different from zero because its norm is positive (then
it can be in denominators). Also, we find that |v~k|

2 → 0 when k → ∞ [allowing us to get a well
defined density in equation (4.10)]. Another observation that has to be made is that in some steps
we have divided by the gap ∆~k, so we would not expect it to be zero. However, a careful view at
the steps, for example in equations (4.19) and (4.22), shows that the parameters v~k and u~k can be
defined with their analytic continuation5 when ∆~k → 0. This important aspect is relevant for the
case of finite-range interactions that we will discuss in subsection 4.4.3, since ∆~k be zero at some

points ~k. Also we have verified numerically a good behavior of the gap when it has an oscillatory
behavior, having nodes [103] 6. Using the relations in (4.25) it can be verified that

ξ~k|u~k|
2 − ξ~k|v~k|

2 =
ξ2
~k

E~k
, (4.26)

4If we had started with the BCS-Leggett variational method we would have identified v~k/u~k as the Fourier
transform of the pair wave function, which has to be a square-integrable function, making natural the election of
the plus sign.

5An example of analytic continuation is given by the sinc function. We can show that

lim
x→0

x−1sin(x) = 1.

Then we can define the sinc(x) function as

sinc(x) =

x−1sin(x) for x , 0
1 if x = 0

6By hypothesis the system always has an interaction between fermions. In the mean-field approach a solution
with the gap equal to zero [no interaction term, see equation (4.12)] indicates that the approximations may not be
strictly valid.
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ξ~k|u~k|
2 + ξ~k|v~k|

2 = ξ~k, (4.27)

and

∆∗~k
u∗~kv~k =

|∆~k|
2

2E~k
. (4.28)

With those relations we can simplify the grand potential operator Ω̂M in equation (4.18), where
we already know that non-diagonal terms are zero. Then we obtain

Ω̂M =
∑
~k

{
E~kγ

†

~k
γ~k + E~kα

†

~k
α~k + ξ~k − E~k +

|∆~k|
2

2E~k

}
. (4.29)

This diagonal form allows us to identify the eigenvalues of the grand potential operator, particularly
the ground state value Ω0, given by

Ω0 =
∑
~k

ξ~k − E~k +
|∆~k|

2

2E~k
. (4.30)

In this case, the absence of quasiparticles corresponds to the ground state7 because when we create
one (γ~k or α~k) we increase the energy by E~k > 0. Also this form allows us to generate a complete
basis, by using the quasiparticle creation operators over their vacuum, which we will show to be
given by the BCS state |ΨBCS〉. To calculate the expectation values of equations (4.10) and (4.11)
we can substitute the free fermion operators using quasiparticle operators α~k and γ~k to obtain
expressions given in terms of v~k and u~k. Then we can use equation (4.25) to express the number
equation (4.10) and the gap equation (4.11) in terms of the chemical potential µ and the gap ∆~k,
as we will show in section 4.4.

4.2 The BCS-Leggett variational approach

We can define a grand potential operator Ω̂ using the BCS Hamiltonian (4.6), without using the
mean-field approach [shown in equation (4.7)] and follow the generalized BCS approach made by
Leggett [13] and Eagles [31] to describe a strongly interacting regime. The BCS wave function is

|ΨBCS〉 =
∏
~k

(u~k + v~kc
†

~k↑
c†
−~k↓

) |0〉 , (4.31)

where we are using the vacuum of free fermions |0〉 given in equation (4.4). Also, u~k and v~k are
the variational parameters, which are complex numbers in genral, that satisfy the normalization
condition

|u~k|
2 + |v~k|

2 = 1. (4.32)

This relation is useful for the calculation of any expectation value. It turns out that these
parameters are the same that determine the Bogoliubov transformation, given in equations (4.13)

7In general the ground state is not the vacuum of the quasiparticles, as can be found if we considered an imbalance
between up and down spins N↑ , N↓ [33].
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and (4.14). Hence it is enough to calculate the expectation value of the grand potential operator

Ω̂ =
∑
~kσ

(ε~k − µ)c†
~kσ

c~kσ +
1

LD

∑
~k1,~k2

Ũ(|~k1 − ~k2|) c†
~k1↑

c†
−~k1↓

c
−~k2↓

c~k2↑
, (4.33)

which is given by [109]

Ω0 = 2
∑
~k

(ε~k − µ)|v~k|
2 +

1
LD

∑
~k1

Ũ(~0)|v~k1
|2 +

1
LD

∑
~k1

∑
~k2,~k1

Ũ(|~k1 − ~k2|)v∗~k1
u~k1

v~k2
u∗~k2

(4.34)

Without loss of generality we will restrict the parameters to real values u~k, v~k ∈ R to facilitate the
discussion of the minimization procedure 8, which is given by

∂〈Ω̂〉

∂v~k
= 0 ,

∂2〈Ω̂〉

∂v2
~k

> 0, (4.35)

The first equality is satisfied9 when the parameters obey the so-called gap equation:

2u~kv~kE~k = −
1

LD

∑
~k2

Ũ(|~k − ~k2|)u~k2
v~k2
, (4.36)

where E~k = [(ε~k − µ)2 + ∆2
~k
]1/2. We can notice the appearance of the terms u~kv~k in equations (4.34)

and (4.36), which come from the expectation values 〈c†
~k↑

c†
−~k↓
〉 and 〈c

−~k↓c~k↑〉 (we are considering

u~k, v~k ∈ R). Then the BCS-Leggett variational approach also emphasizes the presence of pairs.
The form of equation (4.36) leads us to define a quantity that represents the interaction between
fermions, known as the gap ∆~k (which is also a real number). Then we have

∆~k = 2u~kv~kE~k. (4.37)

Before analyzing the inequality in equation (4.35), let us mention that the number equation, that
arises from the grand canonical ensemble [116], is given by the expectation value

〈N̂〉
LD =

1
LD

∑
~kσ

〈c†
~kσ

c~kσ〉 =
1

LD

∑
~kσ

v2
~k
, (4.38)

where we have used the BCS wave function of equation (4.31). Then, v2
~k

has to be integrable.

Using the normalization condition we obtain the expected relation for the variational parameters,
given in equation (4.25),

v2
~k

=
1
2

(
1 −

ξ~k
E~k

)
, u2

~k
=

1
2

(
1 +

ξ~k
E~k

)
, (4.39)

8In general the parameters would have the form v~k = eiφv(~k)|v~k |, u~k = eiφu(~k)|u~k |. Then the minimization would

be given by finding the critical points and analyzing the determinant of the Hessian matrix of Ω(|v~k |, φv(~k), φu(~k)).
However, since the imaginary part of the grand potential Ω0 in equation (4.34) is zero, we can argue that for a

general interaction potential Ũ(|~q|) the phases φv(~k), φu(~k) are constant.
9When deriving we use the following identity:

∂v~k1

∂v~k
= δ~k,~k1
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Let us return to the inequality in equation (4.35). It turns out to be satisfied by means of the gap
equation (4.36) and with the aid of the thermodynamic limit. It is found

∂2〈Ω̂〉

∂v2
~k

= 4
E~k

1 − v2
~k

> 0. (4.40)

Let us overemphasize that the thermodynamic limit in equation (4.40) allows us to drop another

term that involves the interaction potential explicitly Ũ(|~k|). Also, to justify that the second
derivative is positive we can interpret v2

~k
as the occupation of states in wave vector space, see

equation (4.38), and use equations (4.39). Then we can convince ourselves that 1−v2
~k
> 0, which can

be verified numerically in Figure 5.1. Although the mean-field approach is easier and contains the
variational method, it is interesting to go through the algebra of calculating the expectation value
〈Ω̂〉, because in this way we see explicitly how we can force the expectation value of the interaction
to have its mean-field value, given in equation (4.8). We require to use the thermodynamic limit
during the calculations, else we would have to carry a huge amount of terms. Now we can see that
the BCS state is the vacuum of the quasiparticles obtained in the mean-field approach (4.13)-(4.14).
For example:

α~q |ΨBCS〉 =(v~qc†
~q↑ + u~qc−~q↓)

∏
~k

(u~k + v~kc
†

~k↑
c†
−~k↓

) |0〉

=

[∏
~k,~q

(u~k + v~kc
†

~k↑
c†
−~k↓

)
]
(v~qc†

~q↑ + u~qc−~q↓)(u~q + v~qc†
~q↑c
†

−~q↓) |0〉

=

[∏
~k,~q

(u~k + v~kc
†

~k↑
c†
−~k↓

)
]
(v~qu~qc†

~q↑ + v2
~qc†
~q↑c
†

~q↑c
†

−~q↓ + u2
~qc−~q↓ + u~qv~qc−~q↓c

†

~q↑c
†

−~q↓) |0〉

=

[∏
~k,~q

(u~k + v~kc
†

~k↑
c†
−~k↓

)
]
[v~qu~qc†

~q↑ + v2
~qc†
~q↑c
†

~q↑c
†

−~q↓ + u2
~qc−~q↓ − u~qv~qc†

~q↑(I − c†
−~q↓c−~q↓)] |0〉

=0.

(4.41)

In the fist equality we introduced the definition of the BCS state. In the second equality we moved
all the operators which have ~k , ~q to the left. In the third equality we expanded the product of
operators. In the fourth we used anticommutation relations, so we can see that like terms cancel,
and Pauli exclusion principle makes zero one of the terms. In the same way we can verify that

γ~q |ΨBCS〉 = 0. (4.42)

Then we have verified that the BCS state is the vacuum of the quasiparticle operators (4.13)-(4.14).

Since we have a variational wave function, it is interesting to discuss its functional form. We
can see that this wave function belongs to the Fock space because it is a linear combination of
states with different number of particles. To see this we can perform the product of operators in
the BCS state (4.31) to identify terms with fixed number of particles. This product has to be made
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using an arbitrary order of the wave vectors ~k. Then we have [109, 117]

|ΨBCS〉 =

[∏
~k

u~k +
∑
~k1

(∏
~k,~k1

u~k

)
v~k1
β†
~k1

+
∑
~k1

∑
~k2>~k1

( ∏
~k,~k1,~k2

u~k

)
v~k1

v~k2
β†
~k1
β†
~k2

+
∑
~k1

∑
~k2>~k1

∑
~k3>~k2

( ∏
~k,~k1,~k2,~k3

u~k

)
v~k1

v~k2
v~k3
β†
~k1
β†
~k2
β†
~k3

+ ... +
∑
~k∞>~k1

( ∏
~k,~k1,...,~k∞

u~k

)
v~k1
...v~k∞β

†

~k1
...β†

~k∞

]
|0〉 ,

(4.43)

where we have defined β†
~k

= c†
~k↑

c†
−~k↓

, and the inequalities on the sums are to indicate that we

should keep the arbitrary order of the wave vectors. We can factorize a product of the parameters
u~k to obtain10

|ΨBCS〉 =

(∏
~k

u~k

)[
1 +

∑
~k1

v~k1

u~k1

β†
~k1

+
∑
~k1

∑
~k2>~k1

v~k1

u~k1

v~k2

u~k2

β†
~k1
β†
~k2

+
∑
~k1

∑
~k2>~k1

∑
~k3>~k2

v~k1

u~k1

v~k2

u~k2

v~k3

u~k3

β†
~k1
β†
~k2
β†
~k3

+ ... +
∑
~k∞>~k1

v~k1

u~k1

...
v~k∞
u~k∞

β†
~k1
...β†

~k∞

]
|0〉 ,

(4.44)

where on each sum we had to complete the product of u~k, so we had to divide by the missing
parameters. We can remove the restricted (arbitrary) order of the wave vectors by noting that
terms of the form β†

~k
β†
~k
|0〉 = 0 because of Pauli exclusion principle (using the same creation operator

twice over the vacuum gives zero). It can be shown that [β†
~k
, β†

~q] = 0. So that we can remove the

restriction over the sums and take into account that each combination of wave vectors ~ki will be
repeated M! times in the term with M pairs,

|ΨBCS〉 =

(∏
~k

u~k

)[
1 +

∑
~k1

v~k1

u~k1

β†
~k1

+
1
2!

∑
~k1

∑
~k2

v~k1

u~k1

v~k2

u~k2

β†
~k1
β†
~k2

+
1
3!

∑
~k1

∑
~k2

∑
~k3

v~k1

u~k1

v~k2

u~k2

v~k3

u~k3

β†
~k1
β†
~k2
β†
~k3

+ ... +
1

M∞!

∑
~k∞,...,~k1

v~k1

u~k1

...
v~k∞
u~k∞

β†
~k1
...β†

~k∞

]
|0〉 .

(4.45)

We can identify the series of the exponential function to get

|ΨBCS〉 =

(∏
~k

u~k

)
exp

(∑
~k

v~k
u~k
β†
~k

)
|0〉 . (4.46)

10Another more direct way is to note that

|ΨBCS〉 =
∏
~k

u~k

(
1 +

v~k
u~k
β†
~k

)
|0〉

=
∏
~q

u~q
∏
~k

(
1 +

v~k
u~k
β†
~k

)
|0〉
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Hence we can project to a state with fixed particle number in space representation. We get an
antisymmetric wave function,〈

~x1, ..., ~xN

∣∣∣ΨBCS

〉
=

(∏
~k

u~k

)
1

(N/2)!

∑
~k1,...,~kN/2

v~k1

u~k1

...
v~kN/2

u~kN/2

〈
~x1, ..., ~xN

∣∣∣ β†
~k1
...β†

~kN/2
|0〉 . (4.47)

We can identify the antisymmetric product of free fermions:〈
~x1, ..., ~xN

∣∣∣ β†
~k1
...β†

~kN/2
|0〉 =

〈
~x1, ..., ~xN

∣∣∣ c†
~k1↑

c†
−~k1↓

...c†
~kN/2↑

c†
−~kN/2↓

|0〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ei~k1·~x1χ↑(1) e−i~k1·~x1χ↓(1) ... ei~kN/2·~x1χ↑(1) e−i~kN/2·~x1χ↓(1)
ei~k1·~x2χ↑(2) e−i~k1·~x2χ↓(2) ... ei~kN/2·~x2χ↑(2) e−i~kN/2·~x2χ↓(2)

... ...
. . . ...

...

ei~k1·~xN−1χ↑(N − 1) e−i~k1·~xN−1χ↓(N − 1) ... ei~kN/2·~xN−1χ↑(N − 1) e−i~kN/2·~xN−1χ↓(N − 1)
ei~k1·~xNχ↑(N) e−i~k1·~xNχ↓(N) ... ei~kN/2·~xNχ↑(N) e−i~kN/2·~xNχ↓(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(4.48)

where we defined the one-particle spin function χσ which has spin σ =↑, ↓. When substituting
equation (4.48) into (4.47) we find an antisymmetric product which can be written in terms of a
two-particle wave function:

φ(i, j) = φBCS(~xi − ~x j)χ↑(i)χ↓( j), (4.49)

where we have separated the spatial dependence, which we will call the pair wave function11:

φBCS(~r) =
1

LD

∑
~k

ei~k·~r v~k
u~k
. (4.50)

For one pair (two fermions) we have〈
~x1, ~x2

∣∣∣ΨBCS

〉
= LD

(∏
~k

u~k

)
[φ(1, 2) − φ(2, 1)]. (4.51)

For two pairs (four fermions) we have〈
~x1, ~x2, ~x3, ~x4

∣∣∣ΨBCS

〉
= L2D

(∏
~k

u~k

)
[φ(4, 3)φ(2, 1) − φ(3, 4)φ(2, 1) − φ(4, 2)φ(3, 1) + φ(2, 4)φ(3, 1)

+φ(3, 2)φ(4, 1) − φ(2, 3)φ(4, 1) − φ(4, 3)φ(1, 2) + φ(3, 4)φ(1, 2) + φ(4, 1)φ(3, 2)
−φ(1, 4)φ(3, 2) − φ(3, 1)φ(4, 2) + φ(1, 3)φ(4, 2) + φ(4, 2)φ(1, 3) − φ(2, 4)φ(1, 3)
−φ(4, 1)φ(2, 3) + φ(1, 4)φ(2, 3) + φ(2, 1)φ(4, 3) − φ(1, 2)φ(4, 3) − φ(3, 2)φ(1, 4)

+φ(2, 3)φ(1, 4) + φ(3, 1)φ(2, 4) − φ(1, 3)φ(2, 4) − φ(2, 1)φ(3, 4) + φ(1, 2)φ(3, 4)].
(4.52)

Then we can conclude that the BCS variational wave function is a sum of terms with different
particle numbers. Each term is given by an anti-symmetric product of two-particle wave functions
denoted by [7] 〈

~x1, ..., ~xN

∣∣∣ΨBCS

〉
∝ A[φ(1, 2)...φ(N − 1,N)], (4.53)

11In the literature it is usual to refer to the Fourier transform of u~kv~k as the pair wave function.
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where A is to denote an antisymmetry operation.

Although we have not analyzed the behavior of the variational parameters u~k and v~k, we will
mention that the BCS wave function resembles a coherent state of bosons [7]

|ΨBCS〉 = CBCS exp(αb†
~0
) |0〉 , (4.54)

where [7]

CBCS = exp

[
−

1
2

∑
~k

ln(1 + |v~k/u~k|
2)
]
, (4.55)

and we have introduced a creation operator

b†
~0

=
∑
~k

v~k
αu~k

β†
~k
. (4.56)

The constant α is defined12 such that

〈ΨBCS| b
†

~0
b~0 |ΨBCS〉 =

N
2
. (4.57)

That is, the expectation value of the number operator associated to b~0 is the number of pairs N/2.
However, this operator has the following commutation relations [2, 12]:

[b~0, b~0] = 0 (4.58)

[b~0, b
†

~0
] =

∑
~k

v2
~k

α2u2
~k

(I − c†
~k↑

c~k↑ − c†
~k↓

c~k↓), (4.59)

where I is the identity operator. The relation in equation (4.59) is not of a boson operator, but
what can be shown is that in the BEC limit the parameters behave in such a way that

∑
~k

v2
~k

α2u2
~k

∣∣∣∣∣∣
BEC

≈ 1. (4.60)

Also, it is argued that the number operators have a negligible value in this limit [2]13. Then we can
neglect the two last terms in equation (4.59) to obtain a bosonic commutation relation [b~0, b

†

~0
] ≈ I.

However, in general we have to analyze all the matrix elements of [b~0, b
†

~0
], but the orthogonality

of the eigenvectors of Ω̂ allows us to restrict to a few of them. As a representative case we will
analyze the following matrix element for the contact interaction cases (2D and 3D):

〈ΨBCS|[b~0, b
†

~0
]|ΨBCS〉 =

∑
~k

v2
~k

α2u2
~k

(1 − 2v2
~k
), (4.61)

12Being careful with the thermodynamic limit we can set α = (N/2)1/2.
13We can argue that the weighted sums of number operators in equation can be neglected when considering a

restricted region of quantum states in the thermodynamic limit, or when operating over |ΨBCS〉. See Fig. 5.1 (d)
for the number occupation, although the arbitrary normalization hides the low values that they have.
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where the term 2v2
~k

comes from the terms c†
~kσ

c~kσ in equation (4.59). In the BEC limit, we will show

that −µ � ∆. Then we can make the following approximation:

v2
~k

=
1
2

(
1−

ε~k − µ√
(ε~k − µ)2 + ∆2

)
=

1
2

[
1−

1√
1 + ∆2/(ε~k − µ)2

]
≈

1
2

[
1−

(
1−

∆2

2(ε~k − µ)2

)]
=

∆2

4(ε~k − µ)2 , (4.62)

where the first equality is the exact form of v2
~k
, in the second equality we divided by ∆ in the second

term, in the third equality we used a Taylor series, and in the last equality we simplified terms.
For the Taylor series we have used that −µ � ∆, then ε~k − µ � ∆, so that 1 � ∆/(ε~k − µ). Finally,
we can argue that

1 − 2v2
~k
≈ 1 −

∆2

2(ε~k − µ)2 ≈ 1. (4.63)

Then, we can approximate the expectation value in equation (4.61),

〈ΨBCS|[b~0, b
†

~0
]|ΨBCS〉 ≈

∑
~k

v2
~k

α2u2
~k

. (4.64)

With similar arguments as those given in equation (4.62) we can show that in the BEC limit(
v~k
u~k

)2

=
∆√

(ε~k − µ)2 + ∆2 + (ε~k − µ)
≈

(
∆

2(ε~k − µ)

)2

. (4.65)

Then, from the number equation (4.38) we have

N = 2
∑
~k

v2
~k
≈ 2

∑
~k

v2
~k

u2
~k

, (4.66)

where the approximation is obtained using equations (4.62) and (4.65). Hence, we can use equations
(4.64) and that α2 = N/2, which comes from equation (4.57), to conclude that

〈ΨBCS|[b~0, b
†

~0
]|ΨBCS〉 ≈ 1. (4.67)

Then, we have argued that we can neglect the number operators in equation (4.59) in the strongly
interacting regime, which allows us to consider a gas of composite bosons. It remains to confirm
that in the BEC limit −µ � ∆, which will be shown in Section 4.4.

4.3 Binding energy of a pair

The methods we have presented are for an interacting Fermi gas of two components. However
in ultracold gases the structure of the atoms allows us to consider a third state |3〉 that can be
considered as empty. For Lithium-6 we show the low energy states in Figure 2.1. Then, we can
extend our Hamiltonian to consider this third non-interacting state [2]:

Ĥa = ĤBCS +
∑
~k

ε(3)
~k

c†
~k,3

c~k,3, (4.68)
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where we are using the BCS Hamiltonian of equation (4.6) and we have introduced creation and
annihilation operators of the third state c†

~k,3
, c~k,3. The kinetic energy is ε(3)

~k
= ~2k2/(2m).

We are interested in calculating the energy difference between the variational ground state
|ΨBCS〉 and a state where we remove a spin σ with wave vector ~k and put it on the third unoccupied
state. That is, the state given by c†

~k,3
c~kσ|ΨBCS〉. This corresponds to an experimental process in

which we transfer an atom in any of the states | ↑〉 or | ↓〉 into the third state |3〉 by means of
a radio-frequency pulse [14]. Then we want to consider excited states, which we will analyze in
the mean-field approach using Bogoliubov quasiparticles (the BCS-Leggett variational approach is
not enough for analyzing excited states). For consistency we will use the grand potential operator
Ω̂a = Ĥa − µN̂ − µ3N̂3, where we are using the restriction N↑ = N↓ and we have introduced a
chemical potential for the third state µ3. Since we will not consider any particles in that state we
have µ3 = 0, being a Fermi energy of the third state (in the absence of particles there is no Fermi
sphere). Using the Bogoliubov transformation given in equations (4.13) and (4.14) we have

c†
~k,3

c~k↑|ΨBCS〉 = v~kc
†

~k,3
α†
~k
|ΨBCS〉. (4.69)

and
c†
~k,3

c~k↓|ΨBCS〉 = −v~kc
†

~k,3
γ†
~k
|ΨBCS〉. (4.70)

We can identify that these are eigenstates of the gran potential operator Ω̂a, so we know that their
grand potential energy is Ω0 + E~k + ε(3)

~k
, where Ω0 is the ground state grand potential given in

equation (4.30), E~k is the energy of a quasiparticle, given in equation (4.23) and, ε(3)
~k

= ~2k2/(2m)
is the energy of a free particle. Although we can calculate the difference in energy of the grand
potential ∆Ω, we are interested in the internal energy difference ∆Ē, when we do not change the
number of particles. We can calculate it by

∆Ē = ∆Ω + µ∆N + µ3∆N3. (4.71)

For the process we are interested (removing one particle of spin ↑ or ↓ and putting it on the third
state) we have ∆N = −1. Since the chemical potential µ3 is zero we can forget about the last term
in equation (4.71). Hence we have

∆Ē = E~k + ε(3)
~k
− µ. (4.72)

This energy difference depends on the wave vector ~k. From the expressions of the quasiparticle
energies E~k and ε(3)

~k
we can notice that there is a minimum energy for this process to occur. Since

we are considering a state of paired fermions given by the pair wave function φBCS(~r), see equations
(4.49), (4.50) and (4.53), we will identify this threshold energy as the energy required to break a
pair εspec. This energy has been discussed in experimental works of radio-frequency spectroscopy
[2, 14], so we decided to use the subindex “spec”. In general it will be given by

εspec = min
~k
{E~k + ε(3)

~k
− µ}. (4.73)

We have assumed that the third state has the energy ε(3)
~k

, but in general it can have a shift ε(3)
~k

+ε3.

This shift does not change our previous arguments, but it would shift the threshold energy εspec,
so we can redefine the threshold energy to get equation (4.73), removing the energy shift that does
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not affect the components ↑ and ↓. For the contact interaction the minimum can be easily found
using derivatives [2, 14, 17, 18]. It is found that the threshold is when k = 0. For finite-range
potentials this value could be different due to the gap being a function of k. However, we found
that the minimum is still at k = 0 for the potentials given in equations (3.92)-(3.97) [19]. Then,
for any of the interactions and dimensions considered in this work we found

εspec =

√
µ2 + ∆2

0 − µ, (4.74)

where ∆0 is the value of the gap at k = 0, for the contact interactions ∆0 = ∆. We will return to
this result further below. Let us mention that the energy εspec also determines the critical velocity
for superfluidity on the BCS side [2]. For the contact interaction it is given by [2]

vc|BCS =
εspec

m
. (4.75)

This property is independent of the third state |3〉.

It has been very difficult to measure this threshold energy required to break a pair εspec for the
2D case [118] and for the 3D case [119]. In the simplified Hamiltonian (4.68) we are considering a
non-interacting third state |3〉, but in experiments they can interact with the other components.

4.4 Thermodynamic properties

For the zero temperature case we can calculate the value of the grand canonical potential using
the BCS-Leggett variational approach by means of an expectation value of the grand potential
operator, as we did in equation (4.33). Also we can use the mean-field method that we have
presented in the previous section, which also allows us to consider finite temperatures, since it
gives an approximation to the spectrum of excited states.

Mainly, the thermodynamic properties that we will present are the gap ∆~k and the chemical
potential µ, which are required to determine the ground state properties, since they determine the
parameters u~k and v~k, as shown in equations (4.25) and (4.39):

v2
~k

=
1
2

(
1 −

ε~k − µ√
(ε~k − µ)2 + ∆2

~k

)
, u2

~k
=

1
2

(
1 +

ε~k − µ√
(ε~k − µ)2 + ∆2

~k

)
.

Also we will show the threshold energy required to break a pair εspec, given in equation (4.74).
For the contact interaction cases in 2D and 3D we will show the ground state energies E0, the
Tan’s contact C (thermodynamic variable associated to the interaction between fermions [120])
and the isothermal compressibility κT . For the finite-range interactions we will only show the gaps
and chemical potentials, together with the threshold energy required to break a pair εspec. For a
complete analysis of the thermodynamic aspects of the 3D finite-range interactions see Refs. [92]
and [103].

For the contact interaction we will encounter an ultraviolet divergence due to the structureless
potential. We will remove the divergence by means of a renormalization procedure. However, for
well-defined finite range interactions we do not need the renormalization procedure.
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4.4.1 Two dimensions

Although it has been argued that the mean-field method in the two-dimensional case 2D should be
less accurate than in the three-dimensional case, it turns that for the contact interaction case many
observable quantities can be calculated explicitly [16, 20, 121], some integrals are well known. This
allows us to view explicitly the evolution of thermodynamic quantities throughout the crossover.

In both approaches, mean-field or variational method, we obtained the number and gap equations
[20]:

n =
〈N̂〉
L2 =

1
L2

∑
~k

(
1 −

ε~k − µ

E~k

)
, (4.76)

∆~k = −
1
L2

∑
~k1

Ũ(~k1 − ~k)∆~k1

2E~k1

, (4.77)

where E~k =
√

(ε~k − µ)2 + ∆2
~k
, and in the number equation we have made the sum over the spin.

Also we have made use of the relations given in equation (4.25), where we are neglecting a possible
complex phase in the gap14. For the two-dimensional case we will consider the contact interaction
given by

Ũ(~k) = g, (4.78)

where g is the interaction strength, which is a non-physical quantity. If we introduce this potential
in the gap equation (4.77) we find that the sum on the right side diverges. If the gap increases

with |~k| the sum would go like ∆~k/∆~k ≈ 1 which diverges. And, even if the gap goes to zero fast

enough, the left side depends on ~k, while the right side of equation (4.77) does not, so that the
gap must be a constant ∆~k = ∆. Again we find a divergent sum which goes like 1/ε~k. Thus we
are left with a divergent expression, associated to the use of a contact interaction [16], so we can
set the interaction strength as a (non-physical) parameter which allows us to obtain a well-defined
gap equation15

1 = −
g(Λ)
L2

Λ∑
~k1

1
2E~k1

, (4.79)

where we have introduced a cutoff Λ to regularize the sum (parameter that defines the integration
limits) such that g(Λ) → 0− when Λ → ∞. Notice that g(Λ) has to be negative to agree with the
positive left side of equation (4.79), given that E~k > 0. To remove the interaction strength and
replace it with a physical quantity we use the two-body scattering problem, which we presented
in Chapter 3. There we found a divergent expression for the T matrix in terms of the interaction
strength g, as shown in equations (3.36) and (3.38). We can use those equations to remove g(Λ)
obtaining a renormalized theory which now depends on the scattering length a2D instead of the
interaction strength g. Dividing equation (4.79) by g(Λ) and using equation (3.38) we find

1

T (k,~k, 2z)
+

1
L2

Λ∑
~k′′

1
E − Ek′′ + iδ

=
1

g(Λ)
= −

1
L2

Λ∑
~k1

1
2E~k1

, (4.80)

14The relative phase between u~k and v~k is the phase of the gap ∆~k which is relevant for the Josephson effect [24].
15We might call this the regularized gap equation.
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where the left side corresponds to equation (3.38) and the right side to equation (4.79). Also, we

are using the low energy behavior of the T matrix with |~k| → 0, given in equation (3.69) and we
have introduced the variable z = ~2k2/(2m) [so that E = 2z in equations (3.36), (3.38) and (3.69)].
In the following we will give more details on how to take the thermodynamic limit in equation
(4.80). Then, the renormalized gap equation is [16, 20]

1

T (k,~k, 2z)
= −

1
L2

∑
~k1

1
2(z − ε~k1

+ iδ)
−

1
L2

∑
~k1

1
E~k1

, (4.81)

Taking explicitly the limit L → ∞ we obtain an integral over the wave vector components ~k1 =

(kx, ky) on the right side of equation (4.81). We can make changes of variable to use polar coordinates
(θ, k). We can perform the angular integral over θ. We can make a last change of variables to use
a variable of energy ε = ~2k2/(2m). Then we find

m
2~2 [−cot(δ0(2z)) + i] =

m
(2π)~2

∫ ∞

0
dε

[
1

(ε − z − iδ)
−

1√
(ε − µ)2 + ∆2

]
, (4.82)

Using the low-energy approximation of the phase shift, given in equations (3.64) and (3.69) we
have

m
2~2

[
−

1
π

ln

(
2z
Ea

)
+ i

]
=

m
(2π)~2

∫ ∞

0
dε

[
1

(ε − z − iδ)
−

1√
(ε − µ)2 + ∆2

]
. (4.83)

In this expression we have a dependence on z in both sides that should cancel, as we will show. The
first integral on the right hand side can be integrated directly, giving a logarithm. The second term
can also be integrated and identified with an inverse hyperbolic sine sinh−1(x) = ln[x + (1 + x)1/2]
[122]. Then we have

m
2~2

[
−

1
π

ln

(
2z
Ea

)
+ i

]
=

m
(2π)~2

[
− ln

( √
(x − µ)2 + ∆2 + x − µ

)
+ ln(x − z − iδ)

]x=∞

x=0

=
m

(2π)~2

{
− ln(2) −

(
− ln

( √
µ2 + ∆2 − µ

)
+ ln(−z − iδ)

)}
,

(4.84)

where in the last equality we evaluated the limits. The upper limit was evaluated using the natural
logarithm for complex values16 in the following way:

lim
x→∞
−ln

( √
(x − µ)2 + ∆2 + x − µ

)
+ ln(x − z − iδ)

= lim
x→∞
−ln

( √
(x − µ)2 + ∆2 + x − µ

)
+ ln(|x − z − iδ|) + iarg(x − z − iδ)

= lim
x→∞
−ln

(
x(

√
(1 − µ/x)2 + ∆2/x2 + 1 − µ/x)

)
+ ln(x|1 − z/x − iδ/x|) + iarg(x − z − iδ)

= lim
x→∞
−ln(x) − ln

( √
(1 − µ/x)2 + ∆2/x2 + 1 − µ/x

)
+ ln(x) + ln(|1 − z/x − iδ/x|) + iarg(x − z − iδ),

(4.85)

16The logarithm ln : C \ {0} → C is defined as [123]

ln(z) = ln|z| + i arg(z),

where arg is the argument function which takes values in the arbitrary interval [y0, y0 + 2π] and |z| is the norm of an
element z ∈ C \ {0}. To recover the usual definition for real numbers we should use the convention arg(z) = 0 when
z ∈ R and z > 0, for z in the lower half plane arg(z) < 0, and for z in the upper half plane arg(z) > 0.
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where in the first equality we substituted the definition of the natural logarithm for complex values,
in the second we factorized the variable x inside each logarithm. In the third equality we used the
property of the logarithm ln(ab) = ln(a) + ln(b). In the last equality we can see that the first and
third term cancel between them, the second term can be evaluated to give −ln(2), the fourth term
is zero because we obtain ln(1) = 0. The last term is zero in the convention of the logarithm that
we are using (arg(z) = 0 for z ∈ R and z > 0). As we will find, the imaginary part on the left side
in equation (4.84) will be canceled with terms on the right side. For this we need to use again the
definition of the natural logarithm to evaluate the last term [123]. Then we have

m
2~2

[
−

1
π

ln

(
2z
Ea

)
+ i

]
= −

m
(2π)~2 ln(2) +

m
(2π)~2 ln

( √
µ2 + ∆2 − µ

)
−

m
(2π)~2

[
ln(|z + iδ|) + i arg(−z − iδ)

]
.

(4.86)

We have been keeping δ > 0 and z > 0. But now we can take the limit δ → 0+ making the value
−z − iδ get close to the real axis from below, so that arg(−z − iδ)→ −π [123]. Hence,

−
m

(2π)~2 ln

(
2z
Ea

)
+ i

m
2~2 = −

m
(2π)~2 ln(2) +

m
(2π)~2 ln

( √
µ2 + ∆2 − µ

)
−

m
(2π)~2 ln(z) + i

m
2~2 . (4.87)

We can simplify the equation by canceling terms to arrive at the condition [16, 20]

0 = ln

( √
µ2 + ∆2 − µ

Ea

)
. (4.88)

Since this is valid for any values of the resonance energy Ea, or for any s-wave scattering length
a2D = ~/(mEa)1/2, the argument in the logarithm must be equal to one. Then we arrive to the final
condition given by the gap equation:

Ea =
√
µ2 + ∆2 − µ. (4.89)

Now we return to the number equation, given in equation (4.76). Using the same change of
variables as in the renormalized gap equation (4.82), we obtain [16, 20]

n =
m

(2π)~2

∫ ∞

0
dε

(
1 −

(ε − µ)√
(ε − µ)2 + ∆2

)
. (4.90)

We can perform the integration by means of a table [122] or with elementary integration techniques,
similar to the gap equation. Then we get

n =
m

(2π)~2

(
µ +

√
µ2 + ∆2

)
(4.91)

Another expression that we can calculate exactly is the grand potential Ω0. As we are considering
an homogeneous system, the value of Ω0 should diverge in the thermodynamic limit, but its density
Ω0/L2 must remain finite. Then we have [17, 124]

Ω0

L2 =
1
L2

∑
~k

ξ~k − E~k +
∆2

2E~k

= −
m∆

4π~2

(
∆2

2
+ µ2 − µ

√
µ2 + ∆2

)
,

(4.92)
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A nice aspect that we found is that to calculate this expression we do not require to regularize
and introduce the scattering length, although the gap is determined by the renormalized equation
(4.81) [17]. The steps for calculating the grand potential density are given in the Appendix B.1.
This expression, being independent of the renormalization, will hold a property of the non-physical
contact interaction that is the so-called scale invariance in the isothermal compressibility [125].

A many-body Hamiltonian of a homogeneous 2D system where the interaction is given by a
Dirac delta exhibits an scale invariant behavior under under spatial scaling ~x→ λ~x and time scaling
t → λ2t [69]. This can be seen by writing the Hamiltonian with one-body operators of momentum
p̂i = (~/i)∇i and two-body operators for the interaction between fermions. In space representation,
for a fixed number of particles N, we have the following Hamiltonian[126, 127]:

ĤN =

N∑
i=1

−
~2

2m
∇2

i +
1
2

N∑
i=1

N∑
j=1, j,i

gδ(2)(~xi − ~x j), (4.93)

where ~xi is the position coordinate of the i-th particle and ∇2
i is the Laplace operator for the

coordinates of the i-th particle. After performing the scaling transformation ~xi → λ~xi we find that
the interaction term scales like gδ(2)(λ~xi − λ~x j) = λ−2gδ(2)(~xi − ~x j). The Laplace operator scales in a
similar way17. Then we find the scale invariant behavior of the Hamiltonian ĤN of equation (4.93)
[128],

ĤN →
ĤN

λ2 (4.94)

In general this behavior is not satisfied by the Hamiltonians because the interaction potential can
change in a different way under the scale transformation. Here, the property of the Dirac delta
function δ(2)(λ~x) = |λ|−2δ(2)(~x) allows us to find the scaling behavior of equation (4.94). Analogously,
we argue that the BCS Hamiltonian (4.6) exhibits the scale invariant behavior, since it also has a
contact interaction (delta potential) between fermions of opposite spin.

The same scaling property appears in the Hamiltonian of a non-interacting system ĤFree where18

the pressure PFree is given by the density PFree = ~2πn2/(2m). In our interacting case the pressure
P is also given by the density P = ~2πn2/(2m), even after the renormalization procedure, where
we introduce a characteristic length of the potential a2D that we expected to (anomalously) break
this symmetry [125]. As we will show in Chapter 5 the scale invariance behavior of the mean-
field theory is not shown in the density-density correlation functions, where we will find that the
interaction generates a characteristic length of the system.

Using the conditions (4.89) and (4.91) of the renormalized theory we find that given the density
and the intensity of the attractive interaction, represented by Ea = ~2/(ma2

2D), see Figure 3.2, we

17With some informal notation we have

∂2

∂(λxi)2 +
∂2

∂(λyi)2 =
1
λ2

(
∂2

∂x2
i

+
∂2

∂y2
i

)
18For a non-interacting gas in 2D we can see that from P = −(∂E/∂L2)S ,N we get P = E/L2 without the need of

performing any sum, because we only have kinetic energy and the wave vectors go like |~k| ∝ L−1. See for example
[129] for the 3D case.
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can determine the gap and chemical potential, and therefore the parameters u~k and v~k. However,
for plotting the thermodynamic properties it is useful to scale the variables with the density and
its characteristic energy, which is the Fermi energy of a non-interacting system. For spin 1/2 the
Fermi energy εF is related to the density n by [124]19

εF =
~2(2π)

2m
n. (4.95)

Accordingly the Fermi wave number is given by

n =
k2

F

2π
. (4.96)

Hence we can scale equations (4.89) and (4.91) to find

µ̃ = 1 −
Ẽa

2
, (4.97)

∆̃ =

√
2Ẽa, (4.98)

where the variables scaled with the Fermi energy εF will be denoted with a tilde. For example
µ̃ = µ/εF, ∆̃ = ∆/εF, Ẽa = Ea/εF. Also, using equations (4.97) and (4.98) we can obtain a simple
expression for the grand potential in the ground state

Ω̃0

N
= −

1
2

(
1 −

Ẽa

2

)
, (4.99)

and for the internal energy E0 = 〈ĤBCS〉,

Ẽ0

N
=

1
2

(1 − Ẽa). (4.100)

Let us remind that for a contact interaction Ea is the absolute value of an ever-present bound state
energy [16], and it represents the real strength of the interaction (not to be confused with g), as
illustrated in Figure 3.2. Then, from equations (4.97) and (4.98) we see that for weak interactions
the chemical potential is very similar to the Fermi energy of the non-interacting gas µ ≈ εF [16, 20].
Also, for weak interactions, the gap is a small quantity that represents the interaction between
fermions (fomenting the formation of pairs at the Fermi surface as shown in the upper panel (a)
of Figure 5.1 with large blue dashes). The ground state energy is approximately the one of a
non-interacting gas E0 ≈ NεF/2, see equation (4.100). This weakly interacting regime is known
as the BCS limit. On the other hand, for strong interactions we have a significantly big Ea,
such that the chemical potential is half the binding energy of the potential µ ≈ −Ea/2 [16, 20].
This is in agreement with the formation of a molecule, where we would have to add two particles
with a binding energy of −Ea to form a static molecule. The gap becomes large, but not bigger
than the absolute value of the chemical potential |µ|. Also the ground state energy behaves like
E0 ≈ −Ea(N/2), the binding energy of a pair multiplied by the number of pairs. From equation

19Sometimes a confusion arises when using the Fermi energy. This can be avoided by defining a wave number of
the density kn by n = k2

n/(2π) and an energy εn = ~2k2
n/(2m). However, we will keep using kF and εF .
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(4.100) we can see that the ground state energy E0 goes from a positive value on the BCS side to
a negative value on the BEC side. Also the chemical potential has a change of sign, being positive
on the BCS side and negative on the BEC side, where it is dominated by the two-body binding
energy. There are many arbitrary regions used to establish a division between the BEC and BCS
sides. The most common is where the chemical potential is zero [30, 130], indicating the lost of
a Fermi sphere and the chemical potential being dominated by the bound state energy Ea. The
behavior of the chemical potential and the gap can be seen in Figure 4.1.

−6

−4

−2

0

2

4

−2 −1.5 −1 −0.5 0 0.5

ln(1/kFa2D)

−ε̃spec
∆̃

µ̃

Figure 4.1: Chemical potential µ, gap ∆ and threshold energy required to break a pair εspec
[equal to the binding energy per pair εb = εspec as shown in equation (4.103)] as functions of the
dimensionless parameter ln(1/kFa2D) (representing the real interaction strength in 2D). Variables
are scaled with the Fermi energy εF of the non-interacting gas εF and with the Fermi wave number
kF. On the left we have the weakly interacting BCS limit, while on the right we have the strongly
interacting BEC limit. Differently from the 3D case there is no unitarity limit. In quasi-2D
experiments the interactions are analyzed in the interval −1 < ln(1/kFa2D) < 1 [118, 131]. This
figure was taken from [17].

Another quantity that is related to the binding energy of pairs is the so-called condensation
energy [16]. At zero temperature we will define it as the difference between the energy of a non-
interacting gas (which for the 2D case is NεF/2) minus the ground state energy of the interacting
gas (internal energy) E0 [given in equation (4.100)]. Then, the condensation energy is given by [16]

Eb =
N
2
εF − E0. (4.101)

This energy measures the energy associated to the formation of Cooper pairs in the BCS limit [15],
while in the BEC limit it measures the energy due to the formation of molecules. In the crossover
region it measures a generic energy difference due to the interaction between fermions. However,
we will focus on the binding (condensation) energy per pair, which is given by the condensation
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energy divided by the number or pairs N/2 [17],

εb =
2Eb

N
= Ea. (4.102)

As we will show later this is in stark contrast with the 3D case, since for the 2D case we have the
following equality [16, 17]

εspec = εb = Ea, (4.103)

while in 3D we have εspec , |εb|.

Another thermodynamic quantity that has become important is the Tan’s contact C = m2∆2/~4

which is the thermodynamic quantity20 given by [99, 120, 132, 133](
∂E0

∂(ln a2D)

)
A,N

=
~2CL2

2πm
, (4.104)

where we are using ln(a2D) as the thermodynamic conjugate variable of the contact. Because the
contact C is determined directly by the gap ∆ we have not plotted it in Figure 4.1. The contact is
an interesting quantity that represents the closeness of opposite spins [30]. This closeness increases
as we move from the BCS side to the BEC side (in agreement with the formation of molecules),
and a great achievement of the work presented here is that we can show this behavior explicitly
with density-density correlation functions, which we will discuss in Chapter 5.

Another thermodynamic property that we can analyze is the isothermal compressibility κT ,
which is given by

κT =
1
n

(
∂n
∂P

)
T

=
m
~2πn2 . (4.105)

This relationship has been related to a scale-invariant behavior [125]. Equation (4.105) shows the
same expression of a non-interacting gas. In the literature there can be found other criteria to
characterize the deviation of thermodynamic properties from the ones of a scale-invariant behavior.
We will not focus on those quantities [125, 128, 134], but in Chapter 5 we will show that the spatial
structure of the gas at the mean-field level is not of a scale-invariant system, although the isothermal
compressibility (4.105) has a scale invariant behavior [17]. Also we will show that the isothermal
compressibility κT allows us to identify a failure of the BCS approach which was identified by
John Bell [135, 136]. The failure appears in the relation between a non-zero particle fluctuation
〈(N̂ − 〈N̂〉)2〉 and a finite isothermal compressibility [116], which we will discuss in Chapter 5,

κT = LD 〈(N̂ − 〈N̂〉)
2〉

kBT 〈N̂〉2
, (4.106)

where T → 0 is the temperature and kB is Boltzmann constant. It was assumed that the failure
came from the contact interaction [135], since two particles can be annihilated in one region and
then created in any other region (arbitrarily separated) with the same probability. However, a
general analysis can show that the failure arises from the pairing mechanism (of both approaches,

20There are other ways to define the contact C that differ by numerical factors.
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mean-field and variational approach), being that the expectation value 〈c†
~k↑

c†
−~k↓
〉 that corresponds

to the interaction between fermions is the quantity that makes 〈(N̂ − 〈N̂〉)2〉 , 0. A possibility
to readdress in the future is the effect of including the interaction between same spins and terms
where the pairs can have a wave vector different from zero ~Q , ~0, see equations (4.1) and (4.6).

4.4.2 Three dimensions

The three-dimensional case poses several difficulties for the calculation of the thermodynamic
variables. In this case we cannot solve explicitly the gap and number equations:

n =
〈N̂〉
L3 =

1
L3

∑
~k

(
1 −

ε~k − µ

E~k

)
, (4.107)

∆~k = −
1
L3

∑
~k

Ũ(~k1 − ~k)∆~k1

2E~k1

, (4.108)

where E~k =
√

(ε~k − µ)2 + ∆2
~k
, and in the number equation we have made the sum over the spin,

using the balanced condition N↑ = N↓. Similarly to the discussion given between equations (4.77)

and (4.79), for the contact interaction Ũ(~k) = g we can conclude that the gap has to be a constant
∆~k = ∆ and we find again a divergent expression in equation (4.108) associated to the behavior

of the integrand of the gap equation at high values of the wave vector ~k1 (ultraviolet divergence).
Again, we know that the divergence is associated to the ill-defined contact interaction, so that we
can use the divergence that arises in the scattering problem to cancel the divergence shown in the
many-body problem. Differently from the 2D case, we can use the low-energy limit of equation
(3.36) or (3.38), by setting E = 0 and δ = 0 in those equations. In the thermodynamic limit the
resulting integrals can be expressed in terms of associated Legendre functions [26] [18], which are
easier to compute, so that a numerical solution can be obtained easily. The steps for obtaining
those nice expressions are lengthy, so we will give a general expression for handling the integrals
in Appendix B.2. In agreement with [26], the expressions obtained are [18]:

1
kFa

= (µ̃2 + ∆̃2)1/4P1/2(x) (4.109)

and

1 = −
3π
4

(µ̃2 + ∆̃2)1/4[µ̃P1/2(x) + (µ̃2 + ∆̃2)1/2P3/2(x)], (4.110)

where we have scaled variables with the Fermi energy of a non-interacting gas εF = ~2k2
F/(2m), with

the density given by n = k3
F/(3π

2). This is denoted by a tilde, µ̃ = µ/εF, ∆̃ = ∆/εF. Also we have

defined the variable x = −µ/
√
µ2 + ∆2 and we have used associated Legendre functions defined by

the Hypergeometric function [88]:

Pλ(x) = 2F1

(
− λ, λ + 1, 1,

1 − x
2

)
. (4.111)
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Equations (4.109) and (4.110) can be obtained without using sophisticated regularization proce-
dures. A technical aspect to point out is the way in which we can scale to get dimensionless
variables. In the 2D case we were able to integrate and solve explicitly the gap and number
equations without the need to scale variables with the Fermi wave number, which comes from the
density21. Instead, to solve the gap and number equations numerically in 3D it is natural to scale
variables with εF and kF. For example, a characteristic density for ultra cold gases is n ≈ 1012cm−3

[137], which is inconvenient to evaluate numerically. Another curious aspect about the scaling of
variables is that it turns out that the behavior of the chemical potential dominates the behavior
in the extreme limits, weakly (BCS) and strongly (BEC) interacting regimes. Hence, a natural
variable that arises in the process of evaluating the integrals of the gap and number equations is
x = −µ/

√
µ2 + ∆2, which has values in the interval (−1, 1).

Differently, for the contact interaction, the reduced BCS Hamiltonian does not exhibit an
scale invariant behavior, as discussed in equation (4.94), the interaction term scales like 1/(λ3L3).
However, we might expect a somewhat small deviation from the scale invariant behavior in the
weakly interacting regime (BCS), when the interaction term is very small. A similar observation
can be done for a Hamiltonian with finite-range interactions in the BCS limit.

Like for the 2D case, we can calculate an exact relation for the ground state energy E0 = 〈ĤBCS〉

in terms of the gap, chemical potential and scattering length [18, 26]:

Ẽ0

N
= −

3π
20

[
(kFa)−1∆̃2

2
−

4
π
µ̃

]
(4.112)

Since we do not have explicitly the gap ∆ and chemical potential µ as functions of the scattering
length a, we cannot analyze the behavior of the ground state energy with the same ease as we did
for the 2D case. However, we can still give some not so formal arguments looking at the numerical
solutions shown in Figure 4.2. Given that the gap increases proportionally to the real strength of
the interaction, in the weakly interacting regime (BCS) we expect that the term (kFa)−1∆̃2 becomes
negligible, so that asymptotically the ground state energy behaves like the non-interacting system
E0 ≈ 3µ/5 (with µ ≈ εF). In summary the BCS behavior (kFa)−1 → −∞ is given by

µ

εF
≈ 1 ,

∆

εF
≈ 8e−2eπ/kFa. (4.113)

On the other hand, in the strongly interacting regime we expect to obtain a gas of non-interacting
molecules condensed in a state with zero momentum. Hence, the energy should be given by the
amount of energy required to put the particles in this state E0 ≈ µN. For the contact potential, we
can use the Bethe-Peierls boundary condition [27] to find that the binding energy of the attractive
potential is Ep = ~2/(ma2), so we expect that the variation in energy when we introduce a particle
is half the binding energy µ ≈ −Ep/2. Then in the BEC limit (kFa)−1 → ∞ we have

µ

εF
≈ −

1
(kFa)2 ,

∆

εF
≈ (kFa)−1/2. (4.114)

21Although we could have scaled variables with kF and εF and then perform the integrals.
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Figure 4.2: Chemical potential µ and gap ∆ obtained by solving numerically equations (4.109)
and (4.110). Also we show threshold energy required to break a pair εspec given in equation (4.74),
and binding energy per pair εb, given in equation (4.116), as functions of the s-wave scattering
length (kFa)−1. Variables are scaled with the Fermi energy of the non-interacting gas εF and with
the Fermi wave number kF. On the left we have the weakly interacting BCS limit, while on the
right we have the strongly interacting BEC limit. In experiments the interval typically analyzed
is −1 < (kFa)−1 < 1 [2]. This figure was taken from [18].

Given that for the contact interaction we are assuming that it is enough to characterize the
interaction with one parameter, being the scattering length a, we obtain a so-called universal model
that can describe a wide amount of different systems [69]. For instance, in ultracold gases like 6Li
or 40K, where their broad Feshbach resonances are characterized by the scattering length, we
might expect to obtain identical equations of state written in terms of 1/(kFa) and a temperature
dependence T/TF, with TF the Fermi temperature given by kBTF = εF [69], similar to equation
(4.112).

Another important aspect of the 3D case is the unitary point, defined as the point where
1/a = 0. In our present mean-field model it does not show a remarkable behavior in any physical
quantity. However, in a more general two-channel Hamiltonian22, adequate for describing atoms
interacting by Feshbach resonances (which reduces to the BCS Hamiltonian (4.6) with a contact

22In the two-channel Hamiltonian we consider fermions that can interact to form a molecule (closed channel)
and a molecule that can dissociate into two unbounded fermions (open channel). For the molecule state we use a
bosonic operator b~q, while for the fermions we use the creation and annihilation operators c~qσ, c

†

~qσ. The interaction

term is of the form g
L3/2

∑
~k,~q

(
b†
~qc~k+~q/2↓c−~k+~q/2↑ + c†

−~k+~q/2↑
c†
~k+~q/2↓

b~q
)
. (4.115)

Also we would have kinetic energy terms for each type of particle: ε~kc†
~k↑

c~k↑, ε~kc†
~k↓

c~k↓, and (ε~q/2)b†
~k
b~k. For further

details see Ref. [33].
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interaction in the case of broad resonances), we find a scale invariant behavior at the unitarity [69],
like the one discussed in equation (4.94). Then it is expected to find thermodynamic properties
associated to scale invariance at the unitarity, such as an equation of state of the form P = 2E/(3L3)
and a vanishing bulk viscosity [69]. Also, when we include beyond mean-field terms (also known
as quantum fluctuations) it is concluded that the unitarity is where the gas becomes “strongly
interacting” [69]23. Also, within a perturbative approximation, higher-order correlations have to
be taken into account for describing the unitarity in terms of the scattering length [105]. Let us
make an observation for the BCS Hamiltonian given in equation (4.6). From Figure 4.2 we might
think that increasing the density allows us to get close to the unitarity. But, by hypothesis, in
order to use a contact interaction or an effective two-body interaction, we have to consider a dilute
system, so increasing the density would take us outside the regime of our model.

Let us analyze the condensation energy (binding energy) per pair εb which is given by the
difference between the ground state energy of a non-interacting gas 3NεF/5 and the ground state
energy of the interacting system E0, given in equation (4.112), divided by the number of pairs,

εb =
2
N

(
3
5

NεF − E0

)
=

2
5n

[
3(εF − µ)n +

m
4π~2a

∆2
]
> 0, (4.116)

where on the last equality we used the ground state energy given in equation (4.112). Differently
from the 2D case we find that

εspec , εb. (4.117)

This slightly different behavior is shown in Figure 4.224.

For the contact interaction case we can obtain a thermodynamic relation for Tan’s contact
C = m2∆2/~4 given by [120] (

∂E0

∂a−1

)
S ,V,N

= −
~2CL3

2πm
. (4.118)

Also we can calculate the isothermal compressibility,

κT =
1
n2

(
∂n
∂µ

)
a−1

. (4.119)

However, it is not quite direct to perform the partial derivative because we do not know explicitly
how the gap ∆ depends on the scattering length a, but we can use the following identity:(

∂n
∂µ

)
a−1

=

(
∂n
∂µ

)
∆

+

(
∂n
∂∆

)
µ

(
∂∆

∂µ

)
a−1

, (4.120)

23The BCS limit is weakly interacting by construction. The BEC limit is strongly interacting in the sense that we
increase the interaction between fermions to form a molecule, but these molecules can interact by a real repulsive
potential with a scattering length given by add = 0.6a so that relevant dimer-dimer interactions become negligible
in the BEC limit (a→ 0+), giving a weakly interacting regime.

24At the beginning we thought that the exponential decay at large distances could be determined by εb, since
numerically it is very similar to εspec.
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which has the same difficulty in the last derivative (∂∆/∂µ)a−1 . But we can use a jacobian identity
to express it in terms of known derivatives:(

∂∆

∂µ

)
a−1

(
∂µ

∂a−1

)
∆

(
∂a−1

∂∆

)
µ

= −1. (4.121)

Then, it is enough to use the gap equation (4.109) and number equation (4.110) to calculate the
partial derivatives. In Figure 4.3 we show the behavior of the isothermal compressibility throughout
the crossover. As expected, in the weakly interacting regime it takes values similar to the one of
a non-interacting gas. On the BEC side it diverges, in agreement with the behavior of an ideal
Bose-Einstein condensate [138].
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Figure 4.3: Isothermal compressibility κT scaled with the density n and the Fermi energy of a
non-interacting gas εF. In the BCS limit [(kFa)−1 → −∞] the compressibility behaves like the one
of a non-interacting gas, while in the BEC limit [(kFa)−1 → +∞] it diverges, in agreement with the
behavior of a non-interacting Bose-Einstein condensate [138].

We have determined the thermodynamic properties of the ground state approximation, given
by the mean-field method or the BCS-Leggett variational approach. As we have seen, for example
in equation (4.36), a quantity that plays an important role is u~kv~k. It emerges from the interaction
between fermions in the mean-field approach. In the next chapter we will analyze the spatial
structure of the system, where we will find that u~kv~k represents the formation of correlated pairs of
opposite spin, which evolve from Cooper pairs in the BCS limit to a bosonic molecule in the BEC
limit.

4.4.3 Three dimensions with finite-range interactions

We will present the chemical potential µ and the gap ∆~k, which depends on the wave vector,
for the finite-range interaction potentials given in equations (3.92)-(3.97). Differently from the
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contact interaction, the calculations do not require a renormalization procedure to obtain well-
defined physical properties. However, these calculations involve more operations and a thorough
analysis of numerical calculations. We will follow previous work [92, 103, 104], so we will give
a brief review of the behavior of the gap and chemical potential. An extensive analysis of the
thermodynamic properties has been presented in the thesis of Eleazar Neri [92].

For finite range potentials we can write the number equation (4.107) in the following form
[92, 103]:

1 =
3
4

∫ ∞

0
dx
√

x
(
1 −

x − µ̃
Ẽx

)
, (4.122)

where we are using scaled variables with the Fermi energy εF and the Fermi wave number kF:
x = k2/k2

F, µ̃ = µ/εF, ∆̃x = ∆~k/εF, Ẽx = [(x − µ̃)2 + ∆̃2
x]

1/2. The gap equation can be written as
[92, 103]:

∆̃x = −
1

16π3

∫ ∞

0
dx′
√

x′F̃(x, x′)
∆̃x′

2Ẽx′
, (4.123)

where we have defined the Kernel of the energy gap F̃(x, x′), which depends on the finite-range
potentials. For the potentials of equations (3.92)-(3.97) the Kernels are given by [92, 103]:

F̃SW(x, x′) =
8π2Ṽ0R̃0
√

xx′

(
sin(Y2)

Y2
−

sin(Y1)
Y1

)
, (4.124)

F̃exp(x, x′) =
8π2Ṽ0R̃0
√

xx′

(
1

1 + Y2
2

−
1

1 + Y2
1

)
, (4.125)

F̃Yuk(x, x′) =
8π2Ṽ0R̃0
√

xx′
ln

(
1 + Y2

2

1 + Y2
1

)1/2

, (4.126)

F̃VdW(x, x′) =
8π2Ṽ0R̃0
√

xx′

{[(
1
5
−

Y2
2

60
+

Y4
2

120

)
cos(Y2) +

(
−

Y2

20
+

Y3
2

120

)
sin(Y2) −

Y5
2

120

(
π

2
− Si(Y2)

)]
−

[(
1
5
−

Y2
1

60
+

Y4
1

120

)
cos(Y1) +

(
−

Y1

120
+

Y3
1

120

)
sin(Y1) −

Y5
1

120

(
π

2
− Si(Y2)

)]}
,

(4.127)

with Y1 = R̃0|
√

x −
√

x′| and Y2 = R̃0|
√

x +
√

x′|, where we are using the sine integral [88, 92],

Si(z) =

∫ z

0
dt

sin(t)
t

. (4.128)

Also, we are scaling the range of the potentials with the Fermi wave number R̃0 = kFR0, and
the depth of the potentials Ṽ0 = V0/εF. We can characterize the interaction strength with a
parameter kFχ = R̃0Ṽ1/2

0 . We are interested in describing an interacting gas in the dilute regime.
Hence, we have to determine measurable quantities that do not depend strongly on the details
of the interaction. Then, we are interested in exploring the properties of interactions with small
potential ranges R̃0. From previous works [94, 103] we have determined that R̃0 = 0.1 is an
adequate upper value for small interaction ranges [19]25. Also, we will argue that the behavior

25An estimate of the order of magnitude of potential ranges can be obtained by using a density n ≈ 1012cm−3

[137] and an atomic range of R0 = 5.3× 10−7 cm [105], which gives kFR0 ≈ 0.016. Then we are using an upper value.
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of the chemical potential and gap is similar to the contact interaction case when we decrease the
range of interactions.

In Figure 4.4 we show the behavior of the chemical potentials for each potential (pentagons).
We can compare their behavior with the chemical potential of the contact interaction (dotted
lines). As expected they have the same qualitative behavior, but each potential has a different
behavior on the BEC side. For larger potential ranges R we get a further deviation from the
contact interaction case26. This was expected, since the potential details acquire relevance for the
formation of molecules. Each potential has different values of the binding energies as function of
the scattering length. In panel (a) of Figure 4.4 we find a good agreement between the contact
interaction potential and the square well because the former is renormalized such that we recover
the physical properties of the later [77], like the bound state energy −~2/(ma2) on the BEC side.
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Figure 4.4: Chemical potentials (pentagons) as functions of the inverse of the s-wave scattering
length throughout the crossover. (a) corresponds to the square well potential (3.92), (b) to the
exponential potential (3.94), (c) to the Yukawa potential (3.96), and (d) to the Van der Waals
type potential (3.97). The diamonds (joined with solid lines) correspond to the threshold energy
required to break a pair εspec/εF of equation (4.74). For comparison in each panel we show with a
dotted line the chemical potential of the contact interaction, as shown in Figure 4.2.

The gaps for each finite-range potential are shown in Figure 4.5. Differently from the contact
interaction case the gaps exhibit a non-constant behavior in wave vector space. These behaviors
allow the natural convergence of the gap equation without the need of regularization. The
discontinuities in the square well and Van der Waals type potentials introduce an inherent oscillatory
structure in the gap functions ∆k [92, 103]. We can see that the gaps are approximately constant
near the wave vector k = 0, in the low-energy regime. This behavior agrees with the constant
behavior of the gaps in the contact interaction. Then we can see that the constant behavior of
the gap is adequate for describing the low-energy regime, but fails to describe the high-energy
behavior, giving rise to the ultraviolet divergence discussed in subsection 4.4.2.

26A curious observation is that the Van der Waals type potential decreases significantly the values of the chemical
potential at unitarity (kFa)−1 = 0, as happens with Quantum Monte Carlo simulations and measurements [69].
However, the values depend significantly on the range kFR0.
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Figure 4.5: Gaps ∆k as functions of the wave vector k for different values of the inverse scattering
lengths (kFa)−1. Each panel corresponds to different potentials. In (a) we have the square well
(3.92), in (b) we have the exponential potential (3.94), in (c) we have the Yukawa potential (3.96),
and in (d) the Van der Waals type potential (3.97). Notice the constant behavior of each gap for
values of k/kF ∈ [0, 5]. This Figure was taken from [19].

After calculating the threshold energy required to break a pair εspec, using equation (4.73), we
found that the energy is determined by the value of the gaps at k = 0, which we denote by ∆0.
Then we found a general expression for the threshold energy εspec valid for any of the considered
potentials, which is given by equation (4.74) [19],

εspec =

√
µ2 + ∆2

0 − µ.

Numerical calculations are shown in Figure 4.4 with diamonds. From equation (4.74) we were able
to define a length associated to these many-body binding energies, which we found to be in good
agreement with the large-distance correlation lengths calculated numerically, as we will show in
the next chapter [19].
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Chapter 5

Universality of density correlation functions

Having determined the mean-field ground state of the homogeneous gas of a two-component Fermi
gas throughout the BEC-BCS crossover, we can analyze the behavior of pairs of fermions. In
this chapter we will introduce the concept of Cooper pair by means of density-density correlation
functions, and we will show the evolution from Cooper pairs to molecules as we tune from the BCS
side to the BEC side. This will be done by using the position space representation, which allows
us to study the spatial structure of our system. Before considering the interacting system we will
present the density-density correlation functions of the non-interacting system, the free Fermi gas.
Then we will show the behavior of these distributions when the interaction is considered. The
particular contribution of the work presented here is that we were able to study the large-distance
behavior throughout the crossover. In this regime we found an exponential decay that modulates
the amplitude of spatial oscillations. For the density-density correlation function of opposite spins
the exponential decay was known only in the extreme limits, BEC and BCS, but not throughout
the crossover. Although questionable, the physical intuition that allowed us to find this exponential
decay is the relationship between a two-body bound state and its exponential decay. As we have
seen, in general there is no two-body bound state (except in 2D), so the binding energy has to be
a many-body effect. Then, we were able to readdress the characterization of density fluctuations
in an original way that was missing throughout the crossover.

5.1 Spatial structure of the non-interacting gas

Before analyzing the spatial structure of the interacting gas we will show the behavior of the
density-density correlation functions of a non-interacting system [139]. This is the typical Fermi
gas of two components that is introduced in a condensed matter course [111, 116]. For the balanced
case we have N↑ = N↓, such that the total number of particles is N = N↑ + N↓ and the total density
is n = N/LD. The ground state is the well-known Fermi sea [111]:

|FS 〉 =

↑∏
σ=↓

kF∏
~k

c†
~kσ
|0〉 , (5.1)

where again we are using an arbitrary order to make the product over the wave vectors whose
norm is less than kF.

We can analyze the spatial distribution of particles by calculating expectation values of local
density operators. Let us define a field operator ψ̂σ(~x), which annihilates a fermion of spin σ in

65
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position ~x [127]:

ψ̂σ(~x) =
1

LD/2

∑
~k

ei~k·~xc~kσ, (5.2)

where we are using a linear combination of free fermions with periodic boundary conditions inside
a box of size LD. At the end of calculations we will take the limit of L→ ∞. Then, we can define a
density operator n̂σ(~x) whose eigenvalues are the local density of particles with spin σ at position
~x,

n̂σ(~x) = ψ̂†σ(~x)ψ̂σ(~x). (5.3)

Naturally, for our homogeneous Fermi sea, given in equation (5.1), the local density of particles is
independent of the position, being a fixed quantity that determines our system Nσ/LD. Similarly,
we can define an operator n̂σ(~x)n̂σ′(~y) to obtain information about the probability of finding a spin
σ in position ~x when there is a spin σ′ in position ~y, in analogy to its classical definition [139]. We
will define a density-density correlation function between spin σ and σ′ in the following way:

Cσσ′(~x, ~y) = 〈n̂σ(~x)n̂σ′(~y)〉 − 〈n̂σ(~x)〉〈n̂σ′(~y)〉. (5.4)

This quantity measures the statistically independence of the local densities at position ~x with spin
σ and position ~y with spin σ′. The statistical properties of fermions will endow this function with a
structure. For non-interacting classical particles the density-density correlation functions are zero
[139]. Instead, let us show the structure of the same spins correlation function of the non-interacting
quantum gas. Since we are considering a balanced case N↑ = N↓ we have C↑↑(~x, ~y) = C↓↓(~x, ~y). Using
the definition of field operators (5.2) and (5.3) we get

〈n̂↑(~x)n̂↑(~y)〉 =
1

L2D

∑
~k,~p,~m,~u

ei(~p−~k)·~x ei(~u−~m)·~y 〈c†
~k↑

c~p↑c
†

~m↑c~u↑〉. (5.5)

Since we know the action of the creation and annihilation operators over the Fermi sea, given in
equation (5.1), we can identify the combination of wave vectors ~k, ~p, ~m, ~u that give a non-zero

contribution [23, 111]. We can identify two cases. One is when ~u = ~m and ~k = ~p. The other case

is when ~k = ~u and ~p = ~m. After rearranging the operators we can use the thermodynamic limit to
obtain

〈n̂↑(~x)n̂↑(~y)〉 =

(
n
2

)2

+
1

L2D

∑
~k

∑
~p

ei(~p−~k)·~xei(~k−~p)·~x〈c†
~k↑

c~p↑c
†

~p↑c~k↑〉

=

(
n
2

)2

+
1

L2D

∑
~p

ei~p·(~x−~y)
∑
~k

ei~k·(~y−~x)〈c†
~k↑

c~k↑〉 −

∣∣∣∣∣∣ 1
LD

∑
~k

ei~k·(~x−~y)〈c†
~k↑

c~k↑〉

∣∣∣∣∣∣2,
(5.6)

where in the last equality we used the anticommutation relations. We can disregard some restrictions
due to the thermodynamic limit, as those will be negligible when L→ ∞. We can use the identity∑

~p

ei~p·(~x−~y) = LD δ(D)(~x − ~y), (5.7)
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and take explicitly the thermodynamic limit that allows us to turn the sums into integrals. Then
we obtain

〈n̂↑(~x)n̂↑(~y)〉 =

(
n
2

)2

+
n
2
δ(D)(~x − ~y) −

∣∣∣∣∣∣ 1
(2π)D

∫
dDk ei~k·(~x−~y) θ(kF − |~k|)

∣∣∣∣∣∣2, (5.8)

where we are using the Heaviside step function θ(x) and the Fermi wave number and we have used
〈n̂σ(~x)〉 = n/2. We can substitute the expectation value of equation (5.8) into the definition of the
same spins correlation function given in equation (5.4) with σ = σ′ =↑ to calculate the same spins
correlation function:

C↑↑(~x, ~y) =
n
2
δ(D)(~x − ~y) −

∣∣∣∣∣∣ 1
(2π)D

∫
dDk ei~k·(~x−~y) θ(kF − |~k|)

∣∣∣∣∣∣2. (5.9)

For the 3D case we can make a change of variables to use spherical coordinates. After integration
we obtain [9, 140]:

C3D
↑↑ (~x, ~y) =

n
2
δ(3)(~x − ~y) −

∣∣∣∣∣∣sin(kF |~x − ~y|) − kF |~x − ~y|cos(kF |~x − ~y|)
2π2|~x − ~y|3

∣∣∣∣∣∣2, (5.10)

where the density defines the 3D Fermi wave number as n = k3
F/(3π

2). For the 2D case we can
make a change of variables in equation (5.9) to use polar coordinates. After integration we have
[141]

C2D
↑↑ (~x, ~y) =

n
2
δ(2)(~x − ~y) −

∣∣∣∣∣∣kF J1(kF |~x − ~y|)
2π kF |~x − ~y|

∣∣∣∣∣∣2, (5.11)

where the relation between the density and the Fermi wave number is n = k2
F/(2π). In both

dimensions we have a Dirac delta term which corresponds to the presence of a spin in its own
position [139, 142]1. Another common feature is a negative term, that comes from the anticom-
mutation relations. These terms describe the statistical effect of not finding two spins of the same
component close to each other. This property is called Pauli blocking effect. Also, the minus sign
corresponds to a so-called anticorrelation because the presence of a spin decreases the probability
of finding a spin of the same component very close to it.

For the opposite spins correlation function it can be easily shown that they are zero, in both
dimensions,

C↑↓(~x, ~y) = 0. (5.12)

This is because there is no statistical relation between the location of different spins, and there are
no interactions that can modify the probability distribution of the particles. That is

〈n̂↑(~x)n̂↓(~y)〉 = 〈n̂↑(~x)〉〈n̂↓(~y)〉. (5.13)

We must make a warning in our interpretation of the density-density correlation functions. In the
following, we will see that the interaction term in the Hamiltonian modifies the behavior of the

1If there is a spin ↑ in position ~x, then there is a spin ↑ in position ~y = ~x. If we integrate ~x and ~y of C↑↑(~x, ~y) over
a small volume, we would count all the particles inside that volume, giving half the density n/2 (the coefficient of
the Dirac delta), minus a contribution of the Pauli blocking effect [139].
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density-density correlation functions, in particular the opposite spins C↑↓(~x, ~y). However, this is
not an effect of an interaction between two well-identified particles within our many-body system.
Rather it is an average effect, as can be seen from the definition in equation (5.4).

We can argue that the density-density correlation functions carry information about local
density fluctuations. Let us define an operator that gives the difference from the average density:

δn̂σ(~x) = n̂σ(~x) − 〈n̂σ(~x)〉. (5.14)

Then, we can write the density-density correlation function, given in equation (5.4), as

Cσσ′(~x, ~y) = 〈δn̂σ(~x) δn̂σ′(~y)〉. (5.15)

Then, we have the expectation value of local deviations of the density at points ~x and ~y for the
respective components σ and σ′. In its classical analogue, this form is used to conclude that near
a critical point the density fluctuations increase [142].

It is of interest to analyze the relationship between the density-density correlation functions
and the thermodynamic properties of the gas. In the grand canonical ensemble we can obtain
the relation between the number of particle fluctuations of the ensemble and the isothermal
compressibility κT , given by [116, 142]

κT = LD 〈(N̂ − 〈N̂〉)
2〉

kBT 〈N̂〉2
, (5.16)

where the average is over statistical ensembles with the respective density matrix, T is the temperature,
kB is the Boltzmann constant and we are considering a homogeneous gas inside a box of size LD in
D dimensions and we are using a total number of particle operator

N̂ =
∑
σ

∫
dDx n̂σ(~x). (5.17)

We can expand the expectation values in equation (5.16) and use equation (5.17) to obtain

κT n kBT =
1
〈N̂〉

〈∑
σ

∫
LD

dDx
[
n̂σ(~x) − 〈n̂σ(~x)〉

]∑
σ′

∫
LD

dDy
[
n̂σ′(~y) − 〈n̂σ′(~y)〉

]〉
, (5.18)

where n = 〈N̂〉/LD. We can further reduce these products of operators to obtain a relationship
between the integrals of density-density correlation functions and the isothermal compressibility:

κT n kBT =
2
〈N̂〉

∫
LD

dDx
∫

LD
dDy

[
C↑↑(~x, ~y) + C↑↓(~x, ~y)

]
, (5.19)

where we are assuming a balanced case N↑ = N↓ and we have introduced the definitions of density-
density correlation functions between same and different spins (5.4). This expression has been
derived for a non-zero temperature and we can notice that it is a general relation that is valid for
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interacting systems. However its zero temperature limit T → 0 should be well defined, as can be
verified for non-interacting systems. That is, if we use equations (5.10) and (5.11) we get

0 =

∫
LD

dDx
∫

LD
dDy

[
C↑↑(~x, ~y) + C↑↓(~x, ~y)

]
. (5.20)

However, for the BCS-Legget variational approach, which is the mean-field approach, we will see
that we get a contradiction when verifying equation (5.20). Part of the suprise will be that it
is the pairing mechanism, represented by the product of parameters u~kv~k, that contributes to the
non-zero value.

5.2 Spatial structure of the crossover with a contact interaction

Having shown the behavior of the density-density correlation functions of the non-interacting
system, we can make a comparison with the interacting ones throughout the BEC-BCS crossover.
As we have shown in equation (4.53) of Chapter 4 the variational ansatz of BCS introduces a
two-particle wave function φBCS(~r). Then, for the ground state we can analyze three quantities
(assuming we have the balanced case N↑ = N↓). These are the same spins correlation function
C↑↑(~x, ~y), the different spins correlation function C↑↓(~x, ~y) and the pair wave function φBCS(~r). Taking
into account the homogeneity and isotropy of the system we have that the correlation functions
depend on the relative position between the points under consideration. That is Cσσ′(~x, ~y) =

Cσσ′(~x − ~y). To simplify the notation we will define ~r = ~x − ~y, with its magnitude given by r = |~r|.
Then we have

C↑↑(~r) =
n
2
δ(D)(~r) − |g↑↑(~r)|2, (5.21)

C↑↓(~r) = |g↑↓(~r)|2, (5.22)

where we have defined functions given in terms of Fourier transforms:

g↑↑(~r) =
1

(2π)D

∫
dDk ei~k·~rv2

~k
(5.23)

and

g↑↓(~r) =
1

(2π)D

∫
dDk ei~k·~ru~kv~k. (5.24)

To obtain these functional forms we have used the definition of the density-density correlation
functions given in equation (5.4). We can calculate the expectation values using the BCS wave
function |ΨBCS〉, given in equation (4.31), or we can use the Bogoliubov transformation given
in equations (4.13) and (4.14). The later is easier because we know the action of quasiparticle
operators γ~k and α~k over the BCS state |ΨBCS〉. However, calculating the expectation values
without quasiparticle operators allows us to perceive the importance of the thermodynamic limit
in our calculations. Also, we are interested in analyzing the two-particle probability distribution
given by the pair wave function |φBCS(~r)|2. Let us remind that it is given by the Fourier transform
in equation (4.50),

φBCS(~r) =
1

(2π)D

∫
dDk ei~k·~r v~k

u~k
. (5.25)
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In each dimension we can take advantage of the isotropy and the dependence of the parameters
v~k and u~k on the norm |~k| to perform the angular integrals to end with a one-variable integral.
In three dimensions we get a one-dimensional Fourier transform [18]. In two dimensions we get
a Hankel transform [17]. The functional form of the parameters u~k and v~k introduce numerical
difficulties for calculating the Fourier or Hankel transforms because of the algebraic decay of the
integrands. Hence we will analyze separately the 2D case and then the 3D case. As we will show
in the following, being one of the main results of this work, the large-distance behavior of the
correlation functions C↑↑(r), C↑↓(r) and pair distribution |φBCS(r)|2 can be written as

ρα(r) ∝
1
r2 exp

(
−2r
χspec

)
Pα(καr + ϕα). (5.26)

where ρα(r) = C↑↑(r), C↑↓(r), |φBCS(r)|2. The functions Pα are oscillatory functions which depend
on the dimension of the system. The oscillations are characterized by a wave number κα and phases
ϕα, which also depend on the dimension of the system. The length χspec is what we will identify
as the large-distance correlation length given in terms of the threshold energy required to break a
pair, given in equation (4.74),

χspec =

(
~2

m εspec

)1/2

. (5.27)

This length depends on the dimension and features of the interaction implicitly by means of the
gap ∆~k and chemical potential µ, as we have seen previously in Chapter 4 section 4.4. We can
analyze the behavior of χspec by observing figures 4.1, 4.2, 4.4, and 4.5. In the BCS limit the
chemical potential is bigger than the gap at zero wave vector k = 0, µ � |∆0|. Then in the BCS
limit we have a highly correlated system, since the correlation length is quite large kFχspec � 1.
We recover the behavior of Pippard’s coherence length, used to describe the size of Cooper pairs
in the original BCS theory [15]. That is, we get

kFχspec ≈
2εF

∆0
, (5.28)

where we used equation (5.27) scaled with the Fermi wave number. The important aspect is that
the length depends on the inverse of the gap [25]2, since it is the minimum energy required to
create an excitation in the BCS limit. We have used that the chemical potential is similar to the
non-interacting case µ/εF ≈ 1 and that the gap is small ∆0/εF � 1, so that in the BCS limit we
can approximate

εspec

εF
≈

∆2
0

2ε2
F

. (5.29)

As we increase the strength of the interaction, the value of the large-distance correlation length
χspec decreases, indicating the formation of molecules. In the BEC limit, we have −µ � |∆0|, so
the large-distance correlation length χspec becomes dominated by the absolute value of chemical
potential, leading to a small value of the large-distance correlation length. We have

kFχspec =

(
−

2εF

µ

)1/2

, (5.30)

2In the work of BCS [15] and in the work of Kadin [25] an additional factor of π ≈ 3.14159 is introduced. Notice
that to obtain equation (5.28) we have not used any hypothesis over the density of states around the Fermi wave
number.
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where we are using that 1 � −µ. A particular point is where the chemical potential becomes zero,
so that χspec is determined by the gap, which represents the interaction between fermions.

Finally, let us remind that χspec gives information about the size of local density fluctuations,
as commented in equation (5.15). Then, we have characterized the size of density fluctuations
in an original way [17, 18, 19], since previous works were based on so-called correlation lengths
(coherence lengths) defined as averages, which we will present below. However there is another
important length that allows to characterize the behavior between pairs (between molecules in the
BEC limit), which is known as healing length ξphase [143]. We will not report any results about
this length, which requires beyond mean-field corrections [8], but we will briefly comment that the
healing length is smaller than χspec and the correlation lengths [to be presented in equation (5.85)]
in the BCS limit for the 3D case with contact interaction [8], but in the BEC limit, it becomes
larger, showing that the physical properties of the system are dominated by molecules and not by
the individual particles.

We will not follow the chronological order in which we obtained the results, but we will briefly
describe the development of ideas. First we addressed the large-distance behavior of the 3D case by
studying the Fourier transforms of the density-density correlation functions and pair wave function
in the complex plane C [18]. We found an exponential decay that we believed it could be determined
by the threshold energy required to break a pair εspec or by the condensation energy per pair εb,
which is the difference between the ground state energy of the non-interacting system and the
interacting system divided by the number of pairs. In that moment we were not able to define if
there was a real relationship or just a coincidence in order of magnitudes, see the similarities in
Figure 4.2. Later, we realized that our extensions of the Fourier transforms to the complex plane
yielded an exponential decay, which explicitly shows its relationship with εspec and not with εb for
the 3D case with a contact interaction. Then we addressed the 2D case. Following our intuition
that a many-body binding energy was present and that it could determine the large-distance
behavior, we were able to find explicit expressions for the density-density correlation functions
and analyze the large-distance behavior of the pair wave function [17]. Although mean-field is
not enough to describe the most significant aspects of 2D systems, those explicit expressions
allow us to become familiar with the spatial structure of the mean-field approach (BCS-Legget
variational approach). Later, in a joint effort [19], we used previous knowledge and techniques
[92, 103, 104, 144] to study the large-distance behavior of the 3D case considering finite-range
interactions [92, 103, 104]. This was an interesting task because we wanted to explore the possible
changes in the large-distance behavior when using more realistic potentials, instead of the contact
interaction. We found generalizations for the threshold energy εspec, shown in equation (4.74),
and found that it still determines the characteristic length of density fluctuations [19]. Then, this
last work determines the universal behavior of the density-density correlation functions at large
distances of the mean-field approach. The “universal” adjective comes from the fact that it is
a property independent of the interaction details, as used in the literature [69]. Later we will
comment on further perspectives when introducing beyond mean-field corrections.

As we have seen in equations (4.50), (5.23) and (5.24), the spatial structure will be obtained
from the respective Fourier transforms of v2

~k
, u~kv~k and v~k/u~k. Then it is of interest to analyze

their behavior throughout the crossover (in wave vector space). We will restrict to the contact
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interaction cases in 2D and 3D, which are shown in Figure 5.1. In the BCS limit, shown in panel
(a) of Figure 5.1 we see that v2

~k
resembles a step function,

v2
~k

=
1
2

(
1 −

ε~k − µ√
(ε~k − µ)2 + ∆2

)
≈ θ(kF − k), (5.31)

showing the presence of a slightly modified Fermi sea, as in the original BCS theory [15]. The
variational ansatz v~k/u~k behaves like a parabola in the BCS limit,

v~k
u~k

=

√
(ε~k − µ)2 + ∆2 − (ε~k − µ)

∆
≈
|ε~k − εF | − (ε~k − εF)

∆
, (5.32)

which has negligible contributions outside the Fermi wave number kF. In the BCS limit, the
distribution u~kv~k reveals the formation of pairs of fermions near the boundaries of the Fermi sea
with a localized behavior around kF [15], which we can identify as Cooper pairs,

u~kv~k =
∆

2
√

(ε~k − µ)2 + ∆2
≈

∆

2
√

(ε~k − εF)2 + ∆2
, (5.33)

where the smallness of the gap ∆ allows us to keep a non-divergent distribution. In panels (b)
and (c) of Figure 5.1 we can see that as we increase the interaction strength, moving towards the
BEC limit, the distributions v2

~k
, u~kv~k and v~k/u~k become broader, losing their sharp behavior. The

maximum of u~kv~k shifts from k = kF towards k = 0. Also we can see the vanishing of the Fermi
surface in the behavior of v2

~k
. In the BEC limit u~kv~k and v~k/u~k become alike, since −µ � ∆. That

is3

u~kv~k ≈
v~k
u~k
≈

∆

2(ε~k − µ)
. (5.34)

A curious observation is that in both dimensions the behavior of combinations of the parameters
u~k and v~k as functions of |~k| are similar when we vary the real strength of the interaction, as can
be seen in Figure 5.1. Then the structure of our system in wave vector space is not so good for
identifying differences between 2D and 3D (with a contact interaction). In contrast we will see
that the spatial structure is quite different between 2D and 3D. We will discuss in more detail
the behavior in 2D because we were able to calculate explicitly the Hankel transforms that define

3In the BEC limit we have ε~k > 0, −µ � 1 and −µ/∆ � 1. Then we have

v~k
u~k

=
∆√

(ε~k − µ)2 + ∆2 + (ε~k − µ)
=

1√
(ε~k − µ)2/∆2 + 1 + (ε~k − µ)/∆

≈
1

2(ε~k − µ)/∆
,

where in the first equality we used the definitions of the variational parameters, see equations (4.25) and (4.39). In
the second equality we moved the gap from the numerator to the denominator. In the third equality we noticed
that −µ � 1, so ε~k − µ � 1, regardless of the wave vector k. Hence (ε~k − µ)/∆ � 1. Then we can neglect the second
term inside the square root, which allows us to verify the approximation. We can perform a similar procedure for
u~kv~k since

u~kv~k ≈
∆

2
√

(ε~k − µ)2 + ∆2
≈

∆

2(ε~k − µ)
.
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the correlation functions Cσσ′(~r). Instead, in 3D some features can only be argued or calculated
numerically.
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Figure 5.1: Comparison between the 2D (upper panel) and 3D (lower panel) combinations of
parameters. The short (green) dashes correspond to F (k) = v2

~k
, the large (blue) dashes correspond

to F (k) = u~kv~k, and the solid (red) line to F (k) = v~k/u~k. There is no strict correspondence
between the real strengths of the interaction between 2D and 3D, but each plot corresponds
to the same asymptotic limits or regions. In column (a) we have the weakly interacting BCS
limit with ln(1/kFa2D) = −8.49 and 1/(kFa3D) = −5. Column (b) is a representative point of the
crossover (near unitarity for the 3D case) with ln(1/kFa2D) = −0.891 and 1/(kFa3D) = 0.028. Column
(c) corresponds to the region where the chemical potential becomes zero, ln(1/kFa2D) = 0.023
and 1/(kFa3D) = 0.578. The strongly interacting BEC limit corresponds to column (d), with
ln(1/kFa2D) = 1.009 and 1/(kFa3D) = 2.728. All curves are normalized to set their maximum equal
to one. Figure adapted from [17].

Another interesting quantity is the number of condensed pairs N0, which is the largest eigenvalue
of the two-body density matrix [121],

ρ2(~x1, ~x2, ~y1, ~y2) = 〈ψ̂†
↑
(~x1)ψ̂†

↓
(~x2)ψ̂↓(~y1)ψ̂↑(~y2)〉, (5.35)

where we are using the field operators given in equation (5.2). The eigenvalues of this two-body
density matrix give information about the occupation of two-body states. For the case of fermions
we can find a macroscopic occupation of two-body states, like in our present case of BCS-Leggett
approach4. For a homogeneous gas, the existence of the largest eigenvalue of the density matrix

4We do not consider a one-body density matrix ρ1(~x, ~y) = 〈ψ̂†(~x)ψ̂(~y)〉, whose eigenvalues give information about
the occupation of one-body states, since for fermions the Pauli exclusion principle forbids the macroscopic occupation
of one-body states. Differently, for bosons, we would consider ρ1(~x, ~y) to exhibit the condensation.
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ρ2(~x1, ~x2, ~y1, ~y2) can be characterized by the density of condensed pairs n0 = N0/LD, which is given
by [145]

n0 =
N0

LD =
1

LD

∫
dD~x1

∫
dD~x2 |〈ψ̂↓(~x1)ψ̂↑(~x2)〉|2. (5.36)

In the mean-field approach or the BCS-Leggett variational approach this can be calculated using
quasiparticle operators or operating directly over the BCS state |ΨBCS〉 [121, 130]. It is found that

N0

LD =

∫
dD~r |g↑↓(~r)|2

=
1

LD

∑
~k

(u~kv~k)
2.

(5.37)

We can define the condensate fraction as N0/N, which is a quantity that depends on the behavior of
the opposite spins correlation function C↑↓(~r), see equations (5.22), and (5.24). Also we can notice
that it depends on the expectation value of the interaction term in the mean-field approximation
u~kv~k, which represents the pairing mechanism of the BCS theory.

After introducing some of the properties given in terms of density-density correlation functions,
let us readdress the relationship between fluctuations of particle number and the isothermal
compressibility for the interacting system. For the zero temperature limit we have the general
condition given in equation (5.20). Then, let us analyze the integrals of density-density correlation
functions at the mean-field level. For convenience, to identify the condensate fraction n0/n, let us
consider a non-zero coefficient given by the density 1/n. Then we have

1
n

∫
dD~r [C↑↑(~r) + C↑↓(~r)] =

1
n

[
n
2
−

∫
dD~r |g↑↑(~r)|2 + |g↑↓(~r)|2

]
=

1
n

[
n
2
−

1
LD

∑
~k

(v2
~k
)2 +

1
LD

∑
~k

(u~kv~k)
2
]
,

(5.38)

where in the last equality we used (3.11). We can use the normalization condition u2
~k

+ v2
~k

= 1 to

find that

1
n

∫
d2~r [C↑↑(~r) + C↑↓(~r)] = 2

n0

n
, 0. (5.39)

We were expecting the integral of the correlation functions to be zero [left side of equation (5.39)],
see equation (5.20), but the mean-field approximation of the BCS Hamiltonian (4.6) gives us a
non-zero value, given by the condensate fraction, which is a quantity that depends on the pairing
mechanism given by u~kv~k. This failure, identified by John Bell [135, 136] has been addressed with
beyond mean-field techniques on the integrals of the correlation functions [143]. But still there is
the question of how to handle (if possible) beyond mean-field terms in the correlation functions to
satisfy the sum rule at zero temperature, given in equation (5.20)5.

5Let us mention that in general the Kubo formula does not allow us to calculate the isothermal compressibility
[146].
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5.2.1 Two dimensions

Let us explicitly simplify the computation of a two-dimensional Fourier transform of a function
F (~k),

f (~r) =
1

(2π)2

∫
d2k ei~k·~rF (~k). (5.40)

When the function F (~k) depends on the norm of the wave vector, we can change to polar coordinates
and we can perform the integral over the angle to find

f (r) =
1

2π

∫ ∞

0
dk kF (k) J0(kr), (5.41)

where we have used the integral representation of the Bessel function of the first kind of order zero
[88]:

J0(kr) =
1

2π

∫ 2π

0
dθ eikr cos(θ). (5.42)

Equation (5.41) corresponds to a Hankel transform [88], which for our cases is difficult to compute
numerically. The integrands v2

~k
, u~kv~k and v~k/u~k decay algebraically (very slow), and the Bessel

function J0(kr) also oscillates, which makes more difficult the numerical integration [102]. However,
after analyzing numerical calculations of φBCS(r), g↑↑(r) and g↑↓(r) we found an oscillatory behavior
modulated by an exponential decay at large distances, as shown in equation (5.26) (see also the
lower panel of Figure 5.2). We realized that the nodes of g↑↑(r) were the zeros of J1(kFr), while the
nodes of g↑↓(r) were the zeros of J0(kFr). Then, it was tempting to find closed-form expressions
for the Fourier transforms g↑↑(r) and g↑↓(r). Looking at tables of integrals, like [147, 148, 149], we
were not able to identify Hankel transforms of v2

~k
, u~kv~k and v~k/u~k. Instead, we looked for (unknown)

functions“g↑↑(r)”and“g↑↓(r)”which could reproduce the large-distance behavior of equation (5.26),
in a trial and error way. We looked for their Fourier transforms (Hankel transforms) to see if they
agree with v2

~k
and u~kv~k, respectively. Remarkably, a key aspect that guide us was the hypothesis of

an exponential decay, given in equation (5.26), which made easier the search.

The integrals we require to find the Fourier transform of v2
~k

denoted by g↑↑(r) were [17, 147]6

∫ ∞

0
xν+1Kµ(ax) Iµ(bx) Jν(cx)dx =

(ab)−ν−1cνe−(ν+1/2)πiQν+1/2
µ−1/2(u)

√
2π(u2 − 1)

1
2 ν+

1
4

(5.43)

where

u =
a2 + b2 + c2

2ab
(5.44)

and Re(a) > |Re(b)| + |Im(c)|, Re(ν) > −1 and Re(µ + ν) > −1. The modified Bessel function of the
first kind Iν(x) is defined by means of the Bessel function of the first kind Jν(x) in the following
way [88]:

Iν(x) = e−νπi/2Jν(eiπ/2x). (5.45)

6Do not confuse the indices µ with the chemical potential.



76 CHAPTER 5. UNIVERSALITY OF DENSITY CORRELATION FUNCTIONS

The modified Bessel function of the second kind Kν(x) is defined in terms of Jν(x) and the Bessel
function of the second kind Nν(x) by [88]

Kν(x) =
π

2
iν+1[Jν(ix) + iNν(ix)]. (5.46)

The associated Legendre function is defined as [147, 148]

Qµ
ν(z) =

eµπi

2ν+1

Γ(ν + µ + 1)
Γ(ν + 3/2)

Γ(1/2)(z2 − 1)µ/2

zν+µ+1 F2 1

(
ν + µ

2
+ 1,

ν + µ + 1
2

; ν +
3
2
,

1
z2

)
, (5.47)

where F2 1 is the hypergeometric function [88], and Γ(x) is the gamma function [88]. The integral
representation of the hypergeometric function is a handy expression for our case:

F2 1(α, β, γ; z) =
1

B(β, γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − tz)−α dt, (5.48)

which is valid for Re(γ) > Re(β) > 0, where B(·, ·) is the beta function:

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1 dt. (5.49)

For the Fourier transform of u~kv~k, denoted by g↑↓(r), we used the following integral [147, 149]:∫ ∞

0
xJ0(ax)K0(bx)J0(cx) dx = [a4 + b4 + c4 − 2a2c2 + 2a2b2 + 2b2c2]−1/2

= {[b2 + (a − c)2] [b2 + (a + c)2]}−1/2,

(5.50)

where Re(b) > |Im(a)| and c > 0.

The details of the calculations are given in Appendix C.1. For the pair wave function φBCS(r)
we were not able to calculate an explicit expression throughout the crossover, but we were able
to calculate its asymptotic behavior in both limits, BEC and BCS. We calculated numerically
its behavior and we analyzed its Hankel transform representation in the complex plane when
considering large distances. Then, the density-density correlation functions are found to be [17]:

C↑↑(~r) =
n
2
δ(2)(~r) −

∣∣∣∣∣∣ m∆

2π~2 J1(kFr)K1

(
r

χspec

)∣∣∣∣∣∣2, (5.51)

C↑↓(~r) =

∣∣∣∣∣∣ m∆

2π~2 J0(kFr)K0

(
r

χspec

)∣∣∣∣∣∣2, (5.52)

where m is the mass of a fermion, ∆ is the gap, kF is the Fermi wave number defined in terms of
the density n = k2

F/(2π), and we have introduced the large-distance correlation length χspec defined
in equation (5.27). For the 2D case we find that the large-distance correlation length is given by
the s-wave scattering length, differently from the 3D case, see equations (3.63), (4.89), (4.103),
and (5.27),

χspec = a2D. (5.53)
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α
α

Figure 5.2: Distribution functions throughout the 2D crossover with logarithmic scale. Short
(green) dashes correspond to ρα(r) = −C↑↑(r) given in equation (5.51), the large (blue) dashes to
ρα(r) = C↑↓(r) given in equation (5.52), and solid (red) line to ρα(r) = |φBCS(r)|2. Each column
corresponds to different points of the crossover. In the lower panel the upper curves correspond to
|φBCS(r)|2, the middle ones to C↑↓(r), and the lower ones to C↑↑(r). In (a) we have the weakly
interacting BCS limit [ln(1/kFa2D) = −4.95], in (b) we have a point in the crossover region
[ln(1/kFa2D) = −0.34], (c) is where the chemical potential becomes zero [ln(1/kFa2D) = 0], and
(d) is in the strongly interacting BEC limit [ln(1/kFa2D) = 0.20]. In the upper panel we show the
short distance behavior, where we can see how the functions get localized as we move from the BCS
to the BEC limit. The lower panel shows the large-distance behavior, where we see an exponential
decay and an oscillatory behavior. This Figure was taken from [17].

Let us discuss the short-distance behavior of the density-density correlation functions. From
equations (5.51) and (5.52) we can use the well-known asymptotic behaviors of the Bessel functions
Jν(x) and Kν(x) to find [17, 88]

C↑↑(~r) ≈
n
2
δ(2)(~r) −

(
m∆

4π~2

)2[
kF a2D +

(kFr)2

2

(
1

kFa2D
ln

(
eγ−1/2 r
2a2D

)
−

kFa2D

4

)]2

. (5.54)

C↑↓(~r) ≈
[

m∆

2π~2 ln

(
r

a2D

)]2

, (5.55)

Hence, at short distances the opposite spins correlation function C↑↓(~r) has a logarithmic divergence
that is characterized by Tan’s contact C = m2∆2/~4, see equation (4.104). In contrast, for the 3D
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case this divergence is an algebraic one. We can also see that the Pauli blocking effect is also
determined by the contact, with the probability of finding same spins near each other diminishing
like [r2ln(r)]2. In 2D the (radial) Pauli blocking effect is higher, since in 3D it diminishes as r2.
Since in the BCS limit the gap is small ∆ � 1, the opposite spins correlation function becomes
negligible C↑↓(~r) ≈ 0. Accordingly, in the BCS limit, the same spins correlation function C↑↑(~r)
asymptotically (at short distances) behaves like the non-interacting one, shown in equation (5.11).
Part of these behaviors have been reported by Werner and Castin [99], where they assume a
zero-energy scattering state for an equivalent of the pair wave function. Differently, in the work
presented here we are not assuming a functional form for φBCS(r). The behaviors here emerge
naturally from the mean-field approximation of the many-body problem with a contact interaction.
To remark the contrast, in the BCS limit, at short distances, we found the asymptotic behavior of
the pair wave function:

φBCS(r) ≈
2εF

π∆
k2

F
J2(kFr)
(kFr)2 , (5.56)

where we can see that there is no logarithmic divergence near the origin, in contrast to Ref. [99].
This can be seen in the upper panel of Figure 5.2 (solid line). However, throughout the crossover
and in the BEC limit the squared norm of the pair wave function |φBCS(r)|2 acquires a behavior
that resembles equation (5.55) at short distances, as can be seen in Figure 5.2 from (b) to (d). In
fact, in the BEC limit when −µ � ∆ we have that u~kv~k ≈ v~k/u~k, see equation (5.34), so that

φBCS(r)|BEC ≈ g↑↓(r)|BEC, (5.57)

where we have used equations (4.50) and (5.24). Numerically we were not able to exhibit this
behavior, see Figure 5.3, but it is an analytical result that follows from equation (5.34).

0.1 0.5 1 5 10

10-39

10-29

10-19

10-9

10

kFr

ρ
1
/2
(r
)

|g↑↓(r)|

|ϕBCS(r)|

Figure 5.3: We show a comparison between |g↑↓(r)| and |φBCS(r)| in the BEC limit Ea/εF ≈ 70 with
arbitrary normalization. At short distances we find an overlap φBCS(r) ≈ g↑↓(r). However, the first
nodes of each function (small peaks before kFr ≈ 5) have a different position [17].

Before analyzing the large-distance behavior, let us comment on the anomalous breaking of
scale invariance, which is of theoretical interest for the contact interaction [125, 128]. In a non-
interacting gas the absence of a length other than the interparticle distance k−1

F leads to a scale-
invariant system. Hence, the density-density correlation functions of same spins (5.11) have a
power law decay, so there is no length to characterize the decay at large distances. Instead, for the
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interacting system we have an exponential decay that is given by the s-wave scattering length a2D

which is a quantity introduced by renormalizing the theory. Then we see that after renormalization
the system loses its scale invariance (anomalous breaking of scale invariance). As expected, the
scale invariance is lost due to the scattering length a2D that represents the interaction between
fermions.

Part of the novelty of the work presented here is the analysis of the large-distance behavior
of the density-density correlation functions. Differently from the 3D case, we can extract this
behavior explicitly for the density-density correlation functions. The pair wave function had to be
characterized numerically and we will give arguments to exhibit explicitly its exponential decay at
large distances. From equations (5.51) and (5.52) we find, for r � 1,

C↑↑(r) ≈ −
const

r2 exp
(
−

2r
a2D

)
cos2

(
kFr −

3π
4

)
, (5.58)

C↑↓(r) ≈
const

r2 exp
(
−

2r
a2D

)
cos2

(
kFr −

π

4

)
, (5.59)

where we have used the exact relation χspec = a2D and the well-known behaviors of the Bessel
functions Jν(x) and Kν(x) for large arguments. The exponential decay comes from the modified
Bessel functions of the second kind Kν(x), while the oscillatory behavior is due to the Bessel
functions of the first kind Jν(x). At large distances the Hankel transform of the pair wave function
can be approximated by

φBCS(r) ≈
1

2π

∫ ∞

0
dk

v~k
u~k

[
ei(kr−π/4) + e−i(kr−π/4)

√
2πkr

]
, (5.60)

where we have used the large-argument approximation of the Bessel function J0(kr) given in
equation (3.45), using complex exponential functions. The integral in equation (5.60) can be
analyzed in the complex plane. Using a change of variables and choosing a suitable contour of
integration to surround the branch cuts of v~k/u~k we can obtain an equivalent integral which allows
us to conclude that the pair wave function decays exponentially. The steps for this analysis are
given in Appendix C.2. We obtained

φBCS(r) ∝
1
√

kFr

∫ ∞

τ0

e−τkFr

(
2τ2 + µ̃

∆̃

)1/4[
cos

(√
τ2 + µ̃

∆̃

)(
cos(θ(τ)/2) −

τsin(θ(τ)/2)√
τ2 + µ̃

)

+sin

(√
τ2 + µ̃

∆̃

)(
τcos(θ(τ)/2)√

τ2 + µ̃
+ sin(θ(τ)/2)

)]( √
4τ2(τ2 + µ̃) − ∆̃2

∆̃

)
dτ,

(5.61)

where τ0 = {[(µ̃2 + ∆̃2)1/2 − µ̃]/2}1/2, we have used the scaled chemical potential µ̃ = µ/εF and gap
∆̃ = ∆/εF and we have introduced the function

θ(τ) = tan−1
( √

τ2 + µ̃

τ

)
. (5.62)

To argue that the pair wave function exhibits an exponential decay we notice that in escence
the integrand is bounded, and it decays exponentially when τ → ∞. Then, if we were to find
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the antiderivative (indefinite integral), when evaluating the upper limit we would get a zero
contribution. When evaluating the lower limit an exponential function will appear, but evaluated
at τ0. Then, we get a behavior of the form

φBCS(r) ∝
e−r/a2D

√
r
. (5.63)

This argument lacks strict mathematical formality. However, it is similar to the ones used in
Relativistic Quantum Field theory, for example, to illustrate the non-zero value of the propagation
amplitude of the Klein-Gordon Field outside the light-cone [150]. The point we want to emphasize
is the appearance of an exponential. When we approximate J0(kr) in the integral of the pair wave
function, see equation (5.60), with the asymptotic behavior given in equation (3.45), we remove
a very big part of the structure. Mainly, we remove the oscillations and part of the power law
decay. To reinforce the argument of an exponential decay we fitted the envelopes of numerical
calculations, like the ones shown in Figure 5.2, and found good agreement with the exponential
decay given by equation (5.26). The numerical fits are shown with (red) dots in Figure 5.5 (a).

Let us address the oscillatory behavior of the pair distributions under consideration. From our
explicit theoretical results, shown in equations (5.58) and (5.59), we can see that the oscillatory
behavior of the density-density correlation functions is characterized by the Fermi wave number
kF throughout the whole crossover. As we will see below, this is in stark contrast with the 3D case
where the wave vectors of the oscillations decrease as we approach the BEC limit. The oscillatory
behavior of the pair wave function was characterized numerically. In Figure 5.4 we show numerical
fits to the wave number κBCS. Then the oscillatory behavior of equation (5.26) is given by the wave
vectors

κα = kF (5.64)

for α =↑↑, ↑↓, BCS.
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Figure 5.4: (a) Large-distance wave vectors κα, with α =↑↑, ↑↓, BCS of equation (5.26) for the
2D case. The (red) dots correspond to numerical fits of κBCS. For comparison we show the wave
vectors of the correlation functions κ↑↑ = κ↑↓ = kF [theoretical results extracted from equations
(5.58) and (5.59) ]. (b) Large-distance phase differences between the distributions. The phases
are defined in equation (5.26). The phase difference ϕ↑↑ − ϕ↑↓ is a theoretical result, see equations
(5.58) and (5.59). This Figure was taken from [17].

Characteristic lengths that allow us to study the spatial structure of the gas are the so-called
correlation lengths for the correlation functions Cσσ′(~r) and the mean pair radius for the pair wave
function φBCS(r). This lengths can be defined in the following way [17]:

ξ2
α =
|
∫

r2ρα(r)d2r|

|
∫
ρα(r)d2r|

, (5.65)

where ρα(r) = |φBCS(r)|2,C↑↓(r),C↑↑(r). The opposite spins correlation function ξ↑↓ is also known as
pair coherence length (denoted as ξpair in recent works [8, 143]). Differently from the large-distance
correlation length χspec of equation (5.26), the correlation lengths ξα depend on the short distance
behavior, so that they might depend on the interaction details. The integrals of equation (5.65)
can be easily done in wave vector space. The correlation length ξ↑↓ has been extensively studied
in the literature [16, 28, 151, 152, 153]. The integrals can be performed similarly to the integral
of the renormalized gap equation (4.82). We were able to find explicit expressions for the three
lengths (we include ξ↑↓ = ξpair for completeness, although it is not an original result of the work
presented here, see Ref. [52]):

ξ2
BCS =

~2

m∆

[−1 + 2x2 + 2x
√

1 + x2 − xπ + 2arcsinh(x) − 2x arctan(x) + ln(4 + 4x2)]
x + 2

3 x3 + 2
3 (1 + x2)3/2

, (5.66)

ξ2
↑↓ =

~2

4m∆

[
x +

2 + x2

(1 + x2)

(
π

2
+ arctan(x)

)−1]
, (5.67)

ξ2
↑↑ =

~2

8m∆

4 + 3x[π + x(2 + πx)] + 6(x + x3)arctan(x)

(1 + x2)
(
π

2
+ arctan(x)

) , (5.68)
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where x = µ/∆. These lengths are shown in Figure 5.5. We can see that in the BCS limit
ln(1/kFa2D)→ −∞ the lengths ξ↑↑ and ξ↑↓ diverge like [17]

ξ↑↓ ≈
1

2
√

2
a2D,

ξ↑↑ ≈
1
2

√
3
2

a2D.

(5.69)

In our renormalized interaction the bound state energy decreases with an increase of a2D. In
contrast the mean pair raidus has a finite value in the BCS limit [17]

ξBCS ≈
√

6
1
kF
. (5.70)

This indicates that the pair wave function becomes dominated by the interparticle distance, up
to a normalization constant, as shown in equation (5.56). This behavior is in agreement with a
weak interaction regime, where we would expect small deviations from a non-interacting system
with an scale-invariant behavior. However, the pair wave function φBCS(r) is unable to describe a
non-interacting system. For obtaining the asymptotic limits given in equations (5.69) and (5.70)
we have used that x = µ/∆ � 1 in equations (5.66)-(5.68). Then we write the chemical potential µ
and gap ∆ in terms of the s-wave scattering length a2D using equations (4.97), (4.98), and (3.63).
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Figure 5.5: Characteristic lengths of two-body distributions throughout the crossover in 2D.
Short dashes correspond to the correlation lengths ξα of equation (5.65). Large (purple) dashes
correspond to the large-distance correlation length χspec. In (a) we show the lengths of φBCS(~r),
where the (red) dots are numerical fits extracted from the envelopes shown in the lower panel of
Figure 5.2 [upper (red) curves]. In (b) we show the ones of C↑↓(~r). In (c) the ones of C↑↑(~r). This
Figure was taken from [17].

On the other side, in the BEC limit ln(1/kFa2D)→ ∞, the lengths are dominated again by the
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s-wave scattering length, but in this limit a2D becomes small. We have [17]

ξ↑↓ ≈

√
2
3

a2D,

ξ↑↑ ≈

√
4
5

(kFa2D)a2D,

ξBCS ≈

√
2
3

a2D,

(5.71)

As expected, from equation (5.34), we see the same behavior between ξ↑↓ and ξBCS. The same spins
correlation length ξ↑↑ diminishes faster indicating the formation of molecules and the low effect of
Pauli-blocking in this limit [17], since it decays like ξ↑↑ ∝ a2

2D. In the 2D case the scattering length
is equal to the length associated to the threshold energy required to break a pair a2D = χspec.
Differently from the 3D case, to be presented below, the correlation lengths ξ↑↓ and ξBCS differ
from χspec = a2D by a numerical factor. For obtaining the asymptotic behaviors of the correlation
lengths in the BEC limit given in equation (5.69) we have used x = µ/∆ � −1.

Finally, let us mention that the condensate fraction has been calculated explicitly using wave
vector representation [154],

n0

n
=

1
4

π

2
+ arctan(µ/∆)

µ

∆
+

√
1 + (µ/∆)2

, (5.72)

which has the nice property of being an expression that depends on the quotient µ/∆ [154]. Another
nice aspect of our explicit expressions (5.51) and (5.52) is that we can calculate the condensate
fraction using position representation with well-known integrals of Bessel functions [122]. We
obtained an equivalent expression:

n0

n
=

∆̃2

4

[
arctan((1 − µ̃)−1/2)

2
√

1 − µ̃

]
, (5.73)

where µ̃ = µ/εF and ∆̃ = ∆/εF. From equation (5.72) we can see that in the BEC limit the
condensate fraction becomes a constant,

n0

n
≈

1
2
. (5.74)

We can use this limit in the density of condensed pairs given in equation (5.37) and the fact that
u~kv~k ≈ v~k/u~k in the BEC limit, as indicated in equation (5.34) to find that

∑
~k

v2
~k

u2
~k

∣∣∣∣∣∣
BEC

≈ N0. (5.75)

This result allows us to verify the boson commutation relations for the operators b~0, given that we
have verified equation (4.60).
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5.2.2 Three dimensions

The three-dimensional Fourier transforms with spherical symmetry can be converted into one-
dimensional Fourier transforms. In spherical coordinates the 3D Fourier transform of a function
F (k) is given by

f (~r) =
1

(2π)3

∫ k=∞

k=0

∫ ϕ=2π

ϕ=0

∫ θ=π

θ=0
eikrcos(θ)F (k)k2 sen(θ) dk dθ dϕ. (5.76)

Integration over the azimuth angle ϕ gives us a 2π factor. The integral over the polar angle can
be done using ∫ θ=π

θ=0
eikrcos(θ) (−ikr)

(−ir)
sen(θ) dθ = −

1
ir

[
eikr cos(θ)

]π
0

=
1
ir

[eikr − e−ikr]. (5.77)

Then we have

f (r) =
1

ir(2π)2

∫ ∞

0
F (k) k[eikr − e−ikr] dk

=
1

ir(2π)2

[ ∫ ∞

0
F (k)k eikrdk +

∫ 0

∞

F (k)(−k) e−ikr(−dk)
]
,

(5.78)

where in the last equality we splitted the integral. In the last term we can make a change of
vairable x = −k to join the two terms into one integral that has the form of a one-dimensional
Fourier transform:

f (r) =
1

ir(2π)2

∫ ∞

−∞

F (k)k eikr dk. (5.79)

Like in the 2D case we face the same problem of computing this integrals numerically for the
correlation functions Cσσ′(r) and pair wave function φBCS(r). We can take advantage of the branch
cuts that appear in the combinations of v2

~k
, u~kv~k and v~k/u~k [123]. When extending the integrals to

the complex plane, we can close a contour in the upper half, like the one shown in Figure 5.6.

l1
23

4

ll
l

x

y

Figure 5.6: Ilustration of the closed integration contour that surrounds the branch cuts of v2
~k
, u~kv~k

and v~k/u~k. When extending the integrals to the complex plane we have used k = x + iy. This figure
was taken from [18].



5.2. SPATIAL STRUCTURE OF THE CROSSOVER WITH A CONTACT INTERACTION 85

The integral over the whole contour is zero, since there are no poles inside the contour. Then we
obtain that the one-dimensional Fourier transform can be calculated by the integrals that surround
the branch cuts 7. The expressions that we found are given by [18, 155]:

(k∆r)φBCS(k∆r) = −8π(k∆)3
∫ ∞

t0

(
2t2 − µ∆√

t2 − µ∆

)√
4t2(t2 − µ∆) − 1 exp

[
−

√
t2 − µ∆(k∆r)

]
sen(t(k∆r)) dt,

(5.80)

(k∆r) g↑↑(k∆r) = −4π(k∆)3
∫ ∞

ti

(
2t2 − µ∆√

t2 − µ∆

)
2t

√
t2 − µ∆√

4t2(t2 − µ∆) − 1
exp

[
−

√
t2 − µ∆(k∆r)

]
cos(t(k∆r)) dt.

(5.81)

(k∆r) g↑↓(k∆r) = −4π(k∆)3
∫ ∞

ti

(
2t2 − µ∆√

t2 − µ∆

)
1√

4t2(t2 − µ∆) − 1
exp

[
−

√
t2 − µ∆(k∆r)

]
sen(t(k∆r)) dt,

(5.82)

where

t0 =

(
µ∆ + (µ2

∆
+ 1)1/2

2

)1/2

, (5.83)

and we have defined µ∆ = µ/∆ and the wave vector of the gap k∆ =
√

2m∆/~. Like for the pair
wave function in the 2D case, see equation (5.61), we can see that the integrand has an exponential
function. An antiderivative (indefinite integral) should have this same exponential evaluated in
the lower limit (the upper limit would give a zero contribution). Hence we can conclude that the
correlation functions have an exponential decay of the form [17]

ρα(r) ∝
e−2r/χspec

r2 . (5.84)

This verifies the exponential decay stated before in equation (5.26). The large-distance properties
have been analyzed numerically [18, 155]. Here we include those results for completeness8. Numerical
calculations of density-density correlation functions Cσσ′(r) and the pair distribution |φBCS(r)|2 are
shown in the lower panel of Figure 5.7. The straight lines formed by the envelopes with a great
decrease in orders of magnitude indicates an exponential decay.

7We must declare that the theoretical treatment of the 3D Fourier transforms to obtain equations (5.80), (5.81)
and (5.82) was part of the work presented for obtaining the degree of Master in Science (Physics) [155], where we
analyzed them numerically. The present work goes further and analyzes these equations analytically.

8The analysis of the oscillatory behavior is an original contribution of the work presented here. The exponential
decay corresponds to a previous work [155], although the explicit form of equation (5.84) was overlooked.
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Figure 5.7: Distribution functions throughout the 3D crossover. The upper panel corresponds to
the short-distance behavior. Short (green) dashes correspond to ρα(r) = −C↑↑(r), the large (blue)
dashes to ρα(r) = C↑↓(r), and solid (red) line to ρα(r) = |φBCS(r)|2. Each column corresponds to
different points of the crossover. The lower panel has a logarithmic scale to show the large-distance
behavior and we have ordered the functions: The upper curves correspond to |φBCS(r)|2, the middle
ones to C↑↓(r), and the lower ones to −C↑↑(r). In (a) we have the weakly interacting BCS limit
[1/kFa = −5.0], in (b) we have a point near unitarity from the BCS side [1/kFa = −0.0046], (c)
is near unitarity from the BEC side [1/kFa = 0.0064], and (d) is in the strongly interacting BEC
limit [1/kFa = 4.0]. The oscillatory behavior at short distances (upper panel) is modulated by an
algebraic decay and the exponential decay, so it cannot be seen. This Figure was taken from [18].

In the lower panel of Figure 5.7 we can see an oscillatory behavior throughout the crossover,
that was not studied in the BEC limit [18]. The wave vectors κα of equation (5.26) that characterize
these oscillations are shown in Figure 5.8. In the BCS limit we have κα = kF, for α =↑↑, ↑↓, BCS,
in agreement with a weakly interacting regime [15]. As we move to the BEC side the wave vectors
diminish, accelerating the convergence of φBCS(r) and g↑↓(r) to a bound state distribution (that
does not have oscillations), indicating the formation of molecules. This is a behavior very different
from the 2D case, see Figure 5.4.

To calculate the wave vectors we found the distance between consecutive nodes for each function.
Then we obtained an average distance d̄α, which determines the wave vectors κα = 2π/(2d̄). The
numerical computations were easier in the 3D case, so comparing Figure 5.4 (b) [17] with Figure
5.8 (b) [18] we can see that we were not able to calculate φ2D

BCS(r) in the deep BEC regime. Both
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plots should exhibit the same behavior, see equation (5.57). In that sense Figure 5.4 (b) is missing
an interval with ln(1/kFa2D) > 2. However, this is not a problem, since in both dimensions we
can use equations (4.50) and (5.24) to obtain the BEC asymptotic behavior φBCS ≈ g↑↓(r) because
u~kv~k ≈ v~k/u~k as discussed in equation (5.34)

We can see the evolution of the nodes of the two-body distributions from Figure 5.8 (b), where
we show phase differences between the two-body distributions. In the BCS limit the nodes of the
pair wave function φBCS(r) coincide with the nodes of g↑↓(r), as we move to the BEC side, past
the unitarity 1/(kFa) = 0 the nodes of φBCS(r) coincide with g↑↑(r), but then, in the BEC limit the
nodes of φBCS(r) approach the ones of g↑↓(r) again. Differently from the 2D case, the nodes of the
density-density correlation functions change their positions for different points of the crossover.
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∆
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1/(kFa)

ϕBCS − ϕ↑↓
ϕBCS − ϕ↑↑
ϕ↑↑ − ϕ↑↓

Figure 5.8: (a) Large-distance wave vectors κα, with α =↑↑, ↑↓, BCS of equation (5.26) for the 3D
case, the three lines overlap. (b) Large-distance phase differences between the distributions. The
phases are defined in equation (5.26). This Figure was taken from [18].

Similarly to the 2D case, the local density fluctuations have been characterized by the correlation
lengths defined as second moments of pair distributions,

ξ2
α =
|
∫

r2ρα(r)d3r|

|
∫
ρα(r)d3r|

, (5.85)

where ρα(r) = |φBCS(r)|2,C↑↓(r),C↑↑(r). With the same integral identities used for expressing the gap
equation (4.109) and number equation (4.110) in terms of associated Legendre functions, shown in
Appendix B.2 we can obtain explicit expressions for these lengths:

ξ2
BCS =

~2

m(µ2 + ∆2)1/2

 1 + 2z − z2 − 2z3 + 2
√

2(1 + z)1/2
(
P 5

2
(z) − zP 3

2
(z)

)
[√

2(1 − z)(1 + z)1/2
][
− 2F1

(
7
2 ,−

5
2 ; 2, 1−z

2

)
+ z2F1

(
5
2 ,−

3
2 ; 2, 1−z

2

) ]
 . (5.86)
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ξ2
↑↓ =

1
8
~2

2m
1(

µ2 + ∆2)1/2

5 + 8z + 3z2

(1 + z)2 . (5.87)

ξ2
↑↑ =

3
8
~2

2m
1(

µ2 + ∆2)1/2

(
1 − z
1 + z

)
, (5.88)

where z = −µ/
√
µ2 + ∆2 and we are using associated Legendre functions which are given in terms

of the Hypergeometric function Pλ(z) =2 F1(−λ, λ + 1, 1, (1 − z)/2). The correlation lengths are
illustrated in Figure 5.9.
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Figure 5.9: In each panel we show the correlation lengths (short dashes) defined as an average in
equation (5.85), numerical calculations of the large-distance correlation length with a numerical
factor kFχspec/

√
2, and a length associated to the condensation energy per pair kFχb = kF~/(2mεb)1/2

(separated dashes). Panel (a) corresponds to |φBCS(r)|2, panel (b) to C↑↓(r), and panel (c) to C↑↑(r).
The diamonds in panel (a) correspond to kFξBCS taken from Ref. [26]. The circles in panel (b)
correspond to kFξ↑↓ extracted from Ref. [143]. This Figure was taken from [18].

We can analyze the asymptotic behaviors in the BCS limit [8, 18, 26]

ξ↑↓ ≈
1
√

2

e2

8kF
e−

π
2kF a

ξ↑↑ ≈

√
3
2

e2

8kF
e−

π
2kF a

(5.89)

We can see that the correlation lengths increase in the weakly interacting regime in agreement
with a highly correlated system. In fact, the opposite spins correlation length ξ↑↓ recovers the

Pippard’s coherence length, since the gap goes like ∆ = 8εFe−2eπ/kFa, so that ξ↑↓ ∝ 1/
√

∆ [52]. The
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same-spins correlation length ξ↑↑ exhibits a similar behavior [18]. The limit of the mean pair radius
is a constant determined by the density of the system [26]

ξBCS ≈

√
21
2

1
kF
. (5.90)

This length does not agree with the behavior of the Pippard’s coherence length [26]. However, we
have shown that the pair wave function has a large-distance correlation length which agrees with
the behavior of Pippard’s coherence length [18].

On the other hand, in the BEC limit the correlation lengths decrease, in agreement with the
formation of a bound state,

ξ↑↓ ≈
a
√

2
,

ξ↑↑ ≈

√
1

2π
(kFa)3/2 a,

ξBCS ≈
a
√

2
.

(5.91)

The behavior of the opposite spins correlation function was expected from the gap equation, that
takes the form of a Schrödinger equation of a bound state in the BEC limit, with a binding energy
given by −~2/(ma2) [13]. In the same way as in 2D, the same spins correlation length ξ↑↑ decreases
faster, indicating the lost of the Pauli blocking effect due to molecule formation. For obtaining
the asymptotic limits it is useful to factorize into terms which can be calculated when z→ ±1 and
then use the fact that |µ/∆| → ∞ using the correct sign of the chemical potential, which is positive
in the BCS limit and negative in the BEC limit.

Now that we have introduced the correlation lengths in 2D and in 3D, let us discuss the
opposite spins correlation length ξ↑↓ also called coherence length [143]. With the discovery of
high temperature superconductors, it became important to find a way to classify them, so that
from experimental observations the mechanisms that enhance superconductivity could be identified
[52]. This is still an open problem which is being addressed [156, 157]. One way to obtain a higher
temperature superfluid (superconductor) was identified by Nozières and Schmitt-Rink [35], who
found that a stronger interaction between electrons would lead to a higher critical temperature
[35, 52]. However, in general it is not possible to represent explicitly such interactions, so it was
required to find a parameter that could indicate the interaction strength of the material [52]. In
Ref. [52] the coherence length ξ↑↓ was proposed for characterizing the interaction between fermions.
Also the coherence length was proposed to unify the description of a BEC-BCS crossover in such a
way that its value determines the BCS and BEC regimes in 2D and in 3D [28]. Our work determines
a large-distance correlation length which has an invariant expression between the 2D and 3D cases
(for contact interactions) given in equation (5.27). Then, we can contribute to the establishment of
another unifying parameter between 2D and 3D, since the large-distance correlation length can be
written in terms of thermodynamic quantities without denoting explicitly the spatial dimension,
see equation (5.27). Instead, the integrals of the correlation lengths carry a geometric factor that
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depends on the spatial dimension, see equations (5.65) and (5.85).

Lastly, the condensate fraction has been reported to be given by [121]

n0

n
=

3π∆̃3/2

23/28

√√√
µ̃

∆̃
+

√
1 +

µ̃2

∆̃2
. (5.92)

With the same arguments given in equation (5.72) for the 2D case we can verify the commutation
relations for the bosonic-like operators b~0 in the BEC limit, see equation (4.59). It can be shown
that in the BEC limit the condensate fraction becomes a constant [121],

n0

n
≈

1
2
. (5.93)

Since in this limit v~ku~k ≈ v~k/u~k we can verify equation (4.60) and hence the bosonic-like commutation
relation given in equation (4.59).

5.3 Universal behavior of density fluctuations in three dimensions

For the 3D case we will explore the large-distance behavior of the density-density correlation
functions Cσσ′(r) and the pair wave function distribution |φBCS(r)|2 for the finite-range potentials
presented in equations (3.92)-(3.97) of Chapter 3. We found that their large-distance behavior is
given again by an oscillatory behavior and an exponential decay, as presented in equation (5.26),
which we can compare with the results obtained for the contact interaction.

One of the main motivations for exploring the cases with finite-range potentials was to test
whether the relationship between the large-distance correlation length and the threshold energy
required to break a pair, as given in equation (5.26), holds for finite-range interactions [19]. We
have verified numerically the validity of this relation for the four finite-range potentials, which
have different representative features. Then the profound implication is that this relationship is
a property of the mean-field approach to the BCS Hamiltonian (4.6), and is independent on the
details of the interaction (provided it is an attractive interaction). Therefore, we found a universal
property of the mean-field approach. It will be interesting to explore if this behavior remains when
using beyond mean-field techniques. In analogy with the behavior of the opposite spins correlation
length (coherence length) ξ↑↓ we believe some approaches will introduce a power law decay [8].

We should remember that when we set our model Hamiltonian, as a BCS Hamiltonian in
equation (4.6) we had the hope of finding properties that do not depend strongly on the interaction
details. The finding of a universal property should call our attention, since it becomes a strong
property that is worth to examine if it survives corrections or generalizations. For example,
including finite temperature effects (at the mean-field level there is still an exponential decay
that agrees with our results for the 3D contact interaction case, see Ref. [158]), beyond mean-field
terms [8], testing it in a two-channel Hamiltonian [12], or considering an unbalance between fermion
components [33]. Universal properties are highly valued, since they allow us to group models that
share those properties, like happened in critical phenomena, where universality classes appeared
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[159, 160]. Also the finding of alternative models where a universal property breaks down allows
us to enrich or change our understanding of nature.
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Figure 5.10: Two-body distributions for the square well potential (3.92). (a) shows the behavior
of C↑↑(r), (b) the behavior of C↑↓(r) and (c) the behavior of |φBCS(r)|2. All functions are arbitrarily
normalized such that their maximum is equal to one. The vertical axis has a logarithmic scale.
Colors or intensity correspond to different values of interaction strength kFχ. In each plot the
upper curves correspond to the weakly interacting BCS limit (dark curves), and the lower curves
to the strongly interacting BEC limit (yellow-light curves). These plots show an exponential decay
and an oscillatory behavior [17]. The relation of kFχ with the s-wave scattering length can be seen
in Figure 3.3 (a).
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Figure 5.11: Two-body distributions for the exponential potential (3.94). (a) shows the behavior
of C↑↑(r), (b) the behavior of C↑↓(r) and (c) the behavior of |φBCS(r)|2. All functions are arbitrarily
normalized such that their maximum is equal to one. The vertical axis has a logarithmic scale.
Colors or intensity correspond to different values of interaction strength kFχ. In each plot the
upper curves correspond to the weakly interacting BCS limit (dark curves), and the lower curves
to the strongly interacting BEC limit (yellow-light curves). These plots show an exponential decay
and an oscillatory behavior [17]. The relation of kFχ with the s-wave scattering length can be seen
in Figure 3.3 (b).
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Figure 5.12: Two-body distributions for the Yukawa potential (3.96). (a) shows the behavior of
C↑↑(r), (b) the behavior of C↑↓(r) and (c) the behavior of |φBCS(r)|2. All functions are arbitrarily
normalized such that their maximum is equal to one. The vertical axis has a logarithmic scale.
Colors or intensity correspond to different values of interaction strength kFχ. In each plot the
upper curves correspond to the weakly interacting BCS limit (dark curves), and the lower curves
to the strongly interacting BEC limit (yellow-light curves). These plots show an exponential decay
and an oscillatory behavior [17]. The relation of kFχ with the s-wave scattering length can be seen
in Figure 3.3 (c).
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Figure 5.13: Two-body distributions for the Van der Waals type potential (3.97). (a) shows the
behavior of C↑↑(r), (b) the behavior of C↑↓(r) and (c) the behavior of |φBCS(r)|2. All functions are
arbitrarily normalized such that their maximum is equal to one. The vertical axis has a logarithmic
scale. Colors or intensity correspond to different values of interaction strength kFχ. In each plot the
upper curves correspond to the weakly interacting BCS limit (dark curves), and the lower curves
to the strongly interacting BEC limit (yellow-light curves). These plots show an exponential decay
and an oscillatory behavior [17]. The relation of kFχ with the s-wave scattering length can be seen
in Figure 3.3 (d).
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From Figure 5.10 to Figure 5.13 we can see the behaviors of the density-density correlation
functions Cσσ′(r) and the pair wave function |φBCS(r)|2 for each finite-range potential. These
numerical calculations were performed with a basic numerical integration method such as the
trapezoidal rule [102]. We can see the oscillatory behavior and an exponential decay for the
majority of the functions, given that the envelopes form straight lines with a rapid decay as we
increase the distance kFr. From Figure 5.10 to Figure 5.13 the three upper curves are not in an
interval where they exhibit an exponential decay. That is why those curves of r2C↑↓(r) seem to
decay slower than the other functions. For the deep BCS limit we had to use a different interval of
kFr ∈ [200, 300] to find the exponential decay, although this was done with less numerical accuracy.

The calculation of the large-distance correlation lengths involve some simple steps, although
these calculations take a long time. The local maximums of ln(|r2ρα(r)|) were extracted for ρα(r) =

C↑↑(r), C↑↓(r), |φBCS(r)|2. Then, using those points we fitted a function of the form

f (kFr) = m(kFr) + b. (5.94)

The slope m gives us the large-distance correlation length in the following way:

m = −
2

kFχα
, (5.95)

where the subindex α is for different two-body distributions α =↑↑, ↑↓, BCS. In Figure 5.14 we
show the large-distance correlation lengths calculated numerically, as reported in [19]. It is to be
noted that there is a good agreement between numerical fits (squares, triangles and asterisks) and
the length associated to the threshold energy required to break a pair χspec (solid line), given in
equation (5.27).

Qualitatively, the large-distance correlation lengths show the same behaviors (for finite-range
interactions and contact interaction). Particularly, in Figure 5.14 (a) we find almost an overlap
between the large-distance correlation length of the contact interaction and the one of the square
well. This could have been expected, since the renormalization process aims to recover the
behavior of potentials such as the square well [13, 105]. The large-distance correlation lengths
of the exponential potential (b) and Yukawa potential (c) exhibit their own behavior, with much
similarities to the contact interaction. Differently, the case of the Van der Waals type potential
has a large-distance correlation length smaller than the contact interaction case. This might
be a good indicator, since it tells us that the power law decay of a potential does not affect
drastically the range of density correlations, in comparison with the contact interaction. However,
this is a tentative conclusion which requires further analysis to ensure its validity. We have shown
calculations for a fixed range kFR0 = 0.1, which is a very high value for experimental situations9.
When decreasing this range we expect to recover the contact interaction case, so at the moment
we believe these calculations show an enhanced effect of finite-range interactions over the large-
distance behavior.

9An estimate of the order of magnitude can be obtained by using a density n ≈ 1012cm−3 [137] and an atomic
range of R0 = 5.3 × 10−7 cm [105], which gives kFR0 ≈ 0.016.
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Figure 5.14: Large-distance correlation lengths ξα = χα/2 as functions of the scattering length a for
different interaction potentials: (a) square well, (b) exponential potential, (c) Yukawa potential,
and (d) Van der Waals type potential. Lengths are scaled with the Fermi wave number kF.
Numerical calculations are shown with squares (blue) for the opposite spins correlation function
C↑↓(r), triangles (green) for the same spins correlation function C↑↑(r), and asterisks (red) for the
pair wave function |φBCS(r)|2. It is found an overlap with the length associated to the threshold
energy required to break a pair ξspec = χspec/2 (solid line). For comparison in each panel we show
the large-distance correlation length of the contact interaction with dotted lines. Hence, this Figure
verifies the exponential decay given in equation (5.26). This Figure was taken from [19].

The oscillatory behavior was also characterized numerically. We calculated the wave vectors κα
for each distribution using the separation between nodes in the plots shown from Figure 5.10 to
Figure 5.13. The wave vectors turned out to behave similarly to the contact interaction case, but
we were not able to characterize the difference in the deep BEC limit due to numerical difficulties.
The wave vectors are shown in Figure 5.15.
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Figure 5.15: Large-distance wave vectors κα as functions of the scattering length a for different
interaction potentials: (a) square well, (b) exponential potential, (c) Yukawa potential, and (d)
Van der Waals type potential. We have used the Fermi wave number kF to scale variables.
Numerical calculations are shown with squares (blue) for the opposite spins correlation function
C↑↓(r), triangles (green) for the same spins correlation function C↑↑(r), and asterisks (red) for the
pair wave function |φBCS(r)|2. The dotted lines correspond to the contact interaction case, shown
in Figure 5.8. This Figure was taken from [19].



Chapter 6

Conclusions and perspectives

We have analyzed the large-distance behavior of the density-density correlation functions C↑↑(r),
C↑↓(r) and the pair wave function |φBCS(r)|2 of the BEC-BCS crossover of a homogeneous Fermi
gas of two components, in the balanced case. We addressed the two-dimensional (2D) case with a
contact interaction [17], the three-dimensional (3D) case with a contact interaction [18], and the
3D case with finite-range interactions [19]. In those three cases we found that at large distances the
functions exhibit an oscillatory behavior and an exponential decay [17, 18, 19], given in equation
(5.26). Mainly, one of our findings was that the exponential decays χspec are determined by a
many-body binding energy εspec, for which we found a general expression given in equation (4.74)

εspec =

√
µ2 + ∆2

0 − µ, (6.1)

where ∆0 is the value of the gap at zero wave vector. Hence, we found χspec = ~/(mεspec)1/2, with
m the mass of a fermion.

Notably, for the 3D cases, we determined that the relationship between the large-distance
exponential decay and the many-body binding energy εspec is universal within the mean-field
approach, since it holds for different finite-range potentials, although the numerical values are
different for each potential, as shown in Figure 5.14. The universal character should call our
attention, since it might offer a property that joins different models, as in critical phenomena,
where distinct models belong to a universality class [159]. Also it should be interesting to explore
conditions that break this universal property, or to explore how robust is this property. We have also
determined that the relation between the large-distance exponential decay χspec and the binding
energy εspec is invariant between 2D and 3D for the contact interaction. It might be interesting to
explore this relation in other types of geometry, like one dimension [161] or quasi-2D [30].

The other main contribution was the characterization of the large-distance oscillatory wave
vectors of equation (5.26). We were not able to relate them to another physical quantity, as
happened between the exponential decay and the binding energy, but we believe the oscillations
might be related to the many-body distribution in wave vector space. However, a relation between
the wave vectors and the presence of a Fermi surface in the BCS limit was already established in
Ref. [29]. Also it might be interesting to explore a possible relationship with Friedel’s oscillations
that emerge when an impurity is placed in a superfluid of the BCS type [158, 162].

The ability to study the large-distance behavior in the 2D case allowed us to find analytical
expressions for the density-density correlation functions Cσσ′(r), given in equations (5.51) and
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(5.52). Although they belong to the mean-field approach, these analytical expressions give a wide
view of the spatial structure throughout the crossover. As we have shown, they exhibit the relation
between the short distance behavior and Tan’s contact, see equations (5.54) and (5.55). They show
the evolution of the Pauli blocking effect. They allowed us to calculate the condensate fraction,
shown in equation (5.73), and they allowed us to exhibit the failure of the BCS approach in fulfilling
the relation between the isothermal compressibility and the integrals of density-density correlation
functions in the zero temperature case, see equation (5.39).

Let us comment on the exponential decay at large distances. The density-density correlation
functions Cσσ′(r) carry information about the local density fluctuations separated by a distance
r, see equation (5.15). Then we have addressed the problem of determining characteristic sizes
of density fluctuations. Our general approach also addresses, as a particular case, the size of the
pairs that become Cooper pairs on the BCS side or molecules on the BEC side, since the opposite
spins correlation function C↑↓(r) determines them. Previous work had only been able to estimate
the opposite spin pair sizes in the deep BCS limit [15, 25, 143] or in the deep BEC limit [9, 13].
It is important to mention that an experimental system that exhibits the physical properties
associated to the homogeneous BEC-BCS crossover requires to have a minimum size given by the
large-distance correlation length (χspec/2)D, see equations (5.26) and (5.27). Remarkably, on the
BCS side these sizes are very large [18], which corresponds to a highly correlated system. Insted
in the BEC limit the large-distance correlation lengths decrease, indicating a low correlated system.

Part of the initial motivation for finding the large-distance exponential decay rests in the search
for a description of the normal to superfluid transition. This transition has been identified as
belonging to the XY-universality class within the renormalization group formalism [163]. However,
we believe that sometimes it is not quite clear how to chose the order parameters to describe
adequately the phase transitions. An important example has been shown by Ignacio Reyes
Ayala, Jackson Poveda Cuevas and Vı́ctor Romero Roch́ın in Ref. [164, 165], where they found
that the ideal Bose-Einstein condensation has critical exponents of a different universality class
than the accepted one (spherical model) [116, 166], exhibiting the importance of extracting the
order parameter from thermodynamic variables, and establishing a different approach to critical
phenomena1. Focusing on the BEC-BCS crossover, we thought that the isothermal compressibility
could diverge at the critical temperature, as it happens in the normal to superfluid transition
in helium-4 [168]. Some theoretical models predicted a divergence of the isothermal compressi-
bility [169], where the large-distance correlation length would exhibit a behavior of the critical
phenomena, giving a critical exponent [170]. However, experimental data suggested that the
isothermal compressibility remains finite at the normal-superfluid phase transition of the BEC-BCS
crossover [171]. Recently, other models have predicted a non-divergent behavior of the isothermal
compressibility [172, 173], ruling out the critical exponent in the large-distance correlation length.
Nevertheless, the finding of a large-distance exponential has become an interesting feature. For
example the large-distance correlation length has been analyzed for small temperatures in the 3D
case with a contact interaction for the opposite spins correlation function [158], finding a good
agreement with the work presented here.

1Following the aforementioned work, we have made an exploration of the critical phenomena of the liquid-vapor
critical point, where we found conditions that lead to the scaling behavior of the entropy, and therefore to the
manifestation of critical phenomena [167].
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Let us give some comments about the information contained in the correlation length defined as
a second moment, see equations (5.65) and (5.85). The integral that defines the correlation lengths
averages over all distances, particularly the short distance regime, which is a regime that we should
avoid by hypotheses because we are neglecting the details of the interaction considering a dilute gas.
However, the short-distance contribution is small, allowing to adequately condense information of
the spatial structure in the correlation lengths. Then we find a qualitative similarity between the
large-distance correlation length and the correlation length for the opposite spins. However, the
averaging at short distances makes difference between both lengths for the pair wave function and
the same spins correlation function, as can be seen in Figures 5.5 and 5.9, panels (a) and (c).

Let us remark some differences between the 2D case and the 3D case, since we have exploited the
similarities that arise in the mean-field approach. The first ones are about the Cooper instability,
two fermions interacting in the presence of a fixed Fermi sea can form a bound state. In 2D a
necessary and sufficient condition is the existence of a bound state in the two-body interaction
potential [16]. Instead in 3D an attractive interaction without a bound state is enough to show
the instability [174]. The definition of a s-wave scattering length is quite different between both
dimensions. Although in 2D there exist scattering resonances, they do not mark an important
point in the crossover region [20]. In contrast, for the 3D case, the scattering resonance defines the
unitarity, an important point of the crossover [69]. Other aspect related to the definitions of the
scattering lengths is the fact that the (non-physical) coupling constant that precedes the Dirac delta
of the contact interaction is unable to introduce a length in 2D, leading to the natural appearance
of a logarithm ln(a2D). Another difference is that in 2D beyond mean-field terms are necessary for
describing the presence of superfluidity by means of the Berezinskii–Kosterlitz–Thouless mechanism
[175]. Also we expect a drastic change in the 2D case when describing finite temperature properties,
since the BCS-Leggett approach describes a Bose-Einstein condensate at zero temperature, but in
2D the condensate can not be reached at finite temperatures. However, it might be interesting to
analyze the quasi-2D case to find if the large-distance behaviors persist when approaching a 2D
confinement [30]. A great difference arose in the large-distance oscillatory behavior. In 2D the
wave vectors that characterize the oscillations are constant throughout the crossover, while in 3D
they decrease as we move from the BCS side to the BEC side. We believe the constant behavior
is a property of the contact interaction in 2D, but further calculations are required to arrive to a
conclusion.

The great variety of physical phenomena that arises in many-body systems allows for a natural
continuation of the work presented here. As we have mentioned, the quest to find clear signatures
of the Fulde-Ferrell-Larkin-Ovchinnikov phase in ultracold gases [176] and superconductors [177]
is still of interest. We believe the theoretical characterization of sizes of density fluctuations will
provide a necessary condition to observe this exotic phase. We have some preliminary results in
addressing the unbalanced Sarma state [33, 44], where we believe there is a competition between
paired fermions and unpaired fermions. Paired fermions might give an exponential decay, but the
unpaired fermions might give a power law decay, thus giving a highly correlated system (like in
the BCS limit of the cases presented here). For the unbalanced case it will be useful to consider
the correlation length, given as a second moment, to characterize density fluctuations. There
are quantum critical points in the unbalanced case, where it might be worth analyzing the large-
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distance behavior of the density-density correlation functions [33]. Also, even if it is not directly
related to critical phenomena, it is interesting to address the large-distance behavior near the
normal to superfluid phase transition. For the 2D case it is necessary to consider beyond mean-field
corrections to describe the presence of a superfluid by means of a Berezinskii–Kosterlitz–Thouless
mechanism [175, 178, 179]. Then it might be interesting to compare the behavior of density-density
correlation functions and phase-phase correlation functions2, which exhibit the transition from an
exponential decay to an algebraic decay when decreasing the temperature below the transition
temperature TBKT. Another important aspect that should be analyzed is the relationship between
the integrals of density-density correlation functions and the isothermal compressibility at zero
temperature [135], shown in equations (5.20) and (5.39). The failure to fulfill this relation can be
regarded as a deviation from the real ground state. Then, a further analysis of this relation might
give a clue for including beyond mean-field corrections that allow for a better description of the
ground state. Also, it might be interesting the analysis of density-density correlation functions in
inhomogeneous systems, which describe more adequately the experimental situations in ultracold
gases and superconductors [34, 181]. The large-distance correlation length between opposite spins
(in 3D for a contact interaction) has been addressed in Ref. [158] for small finite temperature
within the mean-field approach, where they recover the behavior reported here. It remains to see
how beyond mean-field approximations modify the large-distance behavior [158]. Other prospective
is the consideration of a more general Hamiltonian, see equation (4.1), it might exhibit different
large-distance behaviors and it might fulfill the relationship between the isothermal compressibility
and the integrals of density-density correlation functions (5.19). Also, we might think about a way
of removing the condensate fraction from the calculation of particle number fluctuations3. It might
be interesting to study density-density correlation functions considering p-wave pairing [16]. Also,
we might explore the BEC-BCS crossover in nuclear matter [8]. Recently multiband models are
being explored [54, 55], so it might be interesting to analyze their spatial structure.

2Experimental measurements of density-density correlation functions of opposite spins have been performed
[180], but further improvements might be achieved in the future.

3Thanks to Santiago Francisco Caballero Beńıtez for this suggestion.



Appendix A

Atomic scattering at low energies

This is the appendix of Chapter 3. We calculate an approximate expression for the absolute value
of the s-wave bound state energy of a circular potential (2D).

A.1 Bound state of the circular potential

In this section we will follow the notation and conventions defined in subsection 3.2.1.

The circular potential is defined by:

U(r) =

−U0 si r ≤ r0 (region I),
0 si r > r0 (region II),

(A.1)

where r0 > 0 is the radius of the potential, shown in the inset of Figure 3.2.

The radial equation in region I is

r2 d2R
dr2 + r

dR
dr

+

[
2mr

~2 (Ebound + U0)r2 − l2
]
R = 0, (A.2)

where Ebound + U0 > 0. Then we can define

κ2 =
2mr

~2 (Ebound + U0) ≥ 0. (A.3)

Let us comment on the solutions of the Bessel differential equation. When l is a semi-integer it is
enough to consider both Bessel functions: Jl(κr) y J−l(κr), as linearly independent solutions. When
κ ≥ 0, and l is an integer, we have Jl(κr) = (−1)lJ−l(κr), so we need to consider another linearly
independent solution. In this case we use Neumann functions Nl(κr) defined by

Nl(x) =


cos(lπ)Jl(x) − J−l(x)

sen(lπ)
si l ∈/ Z,

lim
β→l

cos(βπ)Jβ(x) − J−β(x)
sen(βπ)

si l ∈ Z.

(A.4)

Going back to the radial equation, we have l = 0, 1, 2, ... since the angular part must be single
valued, which restricts the values of l. The Neumann function of order zero has a logarithmic
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divergence at zero, so that it is not square integrable. That is, for small arguments we have [88]

N0(x) =
2
π

(ln(x) + γ − ln(2)) + O(x2), (A.5)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Then we can conclude that the solution if
region I is

RI(κr) = AJl(κr). (A.6)

Instead, outside of the potential, in region II we have

r2 d2R
dr2 + r

dR
dr

+

[
2mr

~2 Ebr2 − l2
]
R = 0. (A.7)

In this case, by analogy with the spherical well (in 3D) the solution is given by Hankel functions
of the first kind

RII(kr) = H(1)
l (ikr), (A.8)

where we have defined

k =

√
2mr|Ebound|

~
. (A.9)

Then, the boundary conditions (continuity of the wave function and its derivatives) give us

AκJ′l (κr0)
AJl(κr0)

=
ikB d

dx H(1)
l (x)|x=ikr0

BH(1)
l (ikr0)

. (A.10)

Writing explicitly the parameters of the potential and the energy we have

r0

√
2mr(Eb+U0)
~

J′l
( √

2mr(Ebound+U0)
~

r0

)
Jl

( √
2mr(Ebound+U0)

~
r0

) =
ir0

√
2mr |Ebound |

~
DH(1)

l

(
ir0

√
2mr |Ebound |

~

)
H(1)

l

(
ir0

√
2mr |Ebound |

~

) , (A.11)

where DH(1)
l is the first derivative. We can define

E′bound =
2mrEbound

~2 r2
0 < 0 (A.12)

and

U′0 =
2mrU0

~2 r2
0 > 0. (A.13)

Hence we need to solve numerically√
E′
bound

+ U′0 J′l (
√

E′
bound

+ U′0)

Jl(
√

E′
bound

+ U′0)
=

i
√
|E′

bound
| DH(1)

l (i
√
|E′

bound
|)

H(1)
l (i

√
|E′

bound
|)

. (A.14)

To obtain Ebound shown in Figure 3.2 we used Mathematica [122].
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Analytical approximation

We will consider the case when E′bound → 0− en la ecuación (A.14) to find an approximate expression
for the bound state energy in the case of shallow potentials.

The boundary condition for the bound state problem, given in equation (A.11) is

κr0R′I(κr0)
RI(κr0)

=
kr0R′II(kr0)

RII(kr0)
. (A.15)

In analogy to the scattering problem at low energies, where we were using E → 0+ [or E → V(∞)],
we can define

α− =
κr0R′I(κr0)

RI(κr0)
. (A.16)

This constant α− will carry the information of the structure inside the potential (region I). Then
we have the condition

α− =
i
√
|E′

bound
| DH(1)

l (i
√
|E′

bound
|)

H(1)
l (i

√
|E′

bound
|)

. (A.17)

When considering E′bound → 0−, the right hand side the dominant term has a divergent behavior
given by

i
√
|E′

bound
| DH(1)

l (i
√
|E′

bound
|)

H(1)
l (i

√
|E′

bound
|)

=
2

2γ − 2ln(2) + ln(|E′
bound

|)
+ O(|E′bound|). (A.18)

It can be noticed that this is a general condition, that does not show the explicit structure of the
potential in region I, although the information is contained in the constant α−. Then, for shallow
potentials we have

α0− ≈
2

2γ − 2ln(2) + ln(|E′
bound

|)
. (A.19)

Rearranging the equation we have

2γ + ln(|E′bound|/4) =
2
α0−

, (A.20)

so that

|E′bound| = 4exp

(
2
α0−
− 2γ

)
. (A.21)

Going back to the definitions, we had |E′bound| = (kr0)2 = |Ebound|/ε0, where ε0 = ~2/(2mrr2
0). Hence,

the s-wave bound state energy for shallow potentials is

|Ebound| = 4ε0exp

(
2
α0−
− 2γ

)
. (A.22)

We can notice the similarity with Ea given in equation (3.62). However the difference is in
the constant that contains the information of the boundaries α. As shown in Figure 3.2, the
approximation Ea = |Ebound| is valid for shallow potentials.
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Appendix B

BEC-BCS crossover of ultracold Fermi gases

This is the appendix of Chapter 4. In section B.1 we give the details for calculating the gran
potential energy in 2D. Also, in section B.2 we give the integral identities for handling integrals
that appear in the 3D case with contact interaction.

B.1 Grand potential in 2D

Here we will show explicitly the calculation of the gran potential energy Ω0 for the ground state
in 2D, using the contact interaction. We start from the expression:

Ω0

L2 =
1

(2π)2

∫
d2k

(
ε − µ −

(ε − µ)2√
(ε − µ)2 + ∆2

−
∆2

2
√

(ε − µ)2 + ∆2

)
(B.1)

Changing to polar coordinates and integrating the angular variable we obtain

Ω0

L2 =
1

2π

∫
dk k

(
ε − µ −

(ε − µ)2√
(ε − µ)2 + ∆2

−
∆2

2
√

(ε − µ)2 + ∆2

)
(B.2)

We can scale the grand potential with the gap, provided that it is not zero, and make a change of
variable to y = ε/∆, with k∆ = (2m∆)1/2/~, to get

Ω0

∆L2 =
k2

∆

2π

∫ ∞

0

dy
2

(
y − µ∆ −

(y − µ∆)2√
(y − µ∆)2 + 1

−
1

2
√

(y − µ∆)2 + 1

)
. (B.3)

Then we can make another change of variables z = y − µ∆ to get

Ω0

∆L2 =
k2

∆

2π

∫ ∞

µ∆

dz
2

(
z −

z2

√
z2 + 1

−
1

2
√

z2 + 1

)
. (B.4)

Each term can be integrated separately,

Ω0

∆L2 =
k2

∆

2(2π)

[
z2

2
−

1
2

(
z
√

z2 + 1 − arcsinh(z)
)
−

1
2

arcsinh(z)
]∞
µ∆

=
k2

∆

4(2π)

[
z2 − z

√
z2 + 1

]∞
µ∆

,

(B.5)
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where in the last equation we canceled the arcsinh(z). To evaluate the upper limit of the integral
we need to use L’Hôpital’s rule,

lim
z→∞

z2
(
1 −

√
z2 + 1

z

)
= lim

z→∞

(
1 −

√
z2+1
z

)
1/z2 = lim

z→∞

−

( z2
√

z2+1
−
√

z2 + 1

z2

)
−2z−3

= lim
z→∞

(
z2

√
z2 + 1

−
√

z2 + 1
)

z
2

= lim
z→∞

(
−1
√

z2 + 1

)
z
2

= −
1
2

(B.6)

where in the last equality we identified a well-known limit (also obtained from L’Hôpital’s rule).
The calculation of this limit allows us to perform the integral without using the renormalization
procedure. Therefore, we have

Ω0

∆L2 =
k2

∆

4(2π)

[
−

1
2
−

(
µ2

∆ − µ∆

√
µ2

∆
+ 1

)]
(B.7)

We can now multiply by ∆ and substitute k∆ = (2m∆)1/2/~ to obtain equation (4.92).

B.2 Integral identities

In several calculation we find the following integral:∫ ∞

0

κλ

[(κ2 − µ̃)2 + ∆̃2]β
dκ. (B.8)

By means of a change of variable we obtain∫ ∞

0

κλ

[(κ2 − µ̃)2 + ∆̃2]β
dκ =

(µ̃2 + ∆̃2)λ/4+1/4−β

2

∫ ∞

0

xλ/2−1/2

[x2 + 2zx + 1]β
dx, (B.9)

where z = −µ̃/

√
µ̃2 + ∆̃2 and we have made the change of variable κ = (µ̃2 + ∆̃2)1/4x1/2. Hence, we

are interested in calculating

I(α, β, z) =

∫ ∞

0

xα

(x2 + 2xz + 1)β
dx, (B.10)

where α = λ/2− 1/2. Analyzing the dominant terms of the integrand, we can see that the integral
converges when

α − 2β + 1 < 0, (B.11)

which corresponds to the power of the dominant term when x → ∞. In the limit x → 0 the
integrand is well behaved. However, in some cases we have

α − 2β + 1 ≥ 0 (B.12)

so that the integral diverges. Nevertheless, we can separate those divergent terms allowing us to
join them with others so as to obtain well defined physical quantities. For this, we have to note
that there exists a positive integer n0 ≥ 1, such that

n0 > α − 2β + 1 > n0 − 1, (B.13)
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when α and β are of the form

α =
1
2
,

3
2
, · · · =

2m + 1
2

(B.14)

β =
1
2
, 1,

3
2
, 2, · · · =

l
2
. (B.15)

Hence, equation (B.10) can be written in the following way:

I(α, β, z) =

∫ ∞

0

xα

(1 + x)2β

(
1 −

2(1 − z)x
(1 + x)2

)−β
dx. (B.16)

Noticing that x/(1 + x)2 < 1 and that

lim
x→0

x
(1 + x)2 → 0, (B.17)

lim
x→∞

x
(1 + x)2 → 0, (B.18)

we can introduce a series expansion in equation (B.16),

(1 − y)−β =

∞∑
n=0

(β)n

n!
yn, (B.19)

where (β)n is the Pochamer symbol, such that (β)0 = 1. Integrating each term of the series we
obtain

I(α, β, z) =

n0−1∑
n=0

(β)n

n!
2n(1 − z)n

∫ ∞

0

xα+n

(1 + x)2n+2βdx +

+

∞∑
n=n0

(β)n

n!
2n(1 − z)n

∫ ∞

0

xα+n

(1 + x)2n+2βdx, (B.20)

where we have performed an explicit division between the divergent terms, which are the ones
of the first sum, and the convergent one, which are in the second sum. In this last sum we can
identify the definition of the Beta function B(p, q) defined as

B(p, q) =

∫ ∞

0

xp−1

(1 + x)p+q dx. (B.21)

Using its properties we can find that (only for the second sum in equation (B.20))∫ ∞

0

xα+n

(1 + x)2n+2βdx = B(α + n + 1, n + 2β − α − 1)

= Γ(α + 1)Γ(2β − α − 1)
(α + 1)n(2β − α − 1)n

Γ(2β + 2n)
. (B.22)

Another required property pertains to the Pochamer symbol:

(2β)n = 22n(β)n (β + 1/2)n. (B.23)
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Hence the second sum in equation (B.20) can be completed to obtain an hypergeometric function

2F1, by identification:

∞∑
n=n0

(β)n

n!
2n(1 − z)n

∫ ∞

0

xα+n

(1 + x)2n+2βdx

= B(α + 1, 2β − α − 1) 2F1(α + 1, 2β − α − 1; β +
1
2
,

1 − z
2

)

−

n0−1∑
n=0

B(α + 1, 2β − α − 1)
(α + 1)n (2β − α − 1)n

n!
(
β + 1

2

)
n

(
1 − z

2

)n

,

(B.24)

where we completed the hypergeometri function, given by

F(a, b; c, y) =

∞∑
n=0

(a)n(b)n

n!(c)n
yn. (B.25)

With equation (B.24) we can complete all the integrals that appear in the gap equation, number
equation, grand potential, and correlation lengths of the 3D case with a contact interaction. When
summing all the terms that diverge individually in the first sum of equation (B.20) with the ones
of another integral, we obtain finite physical results. That is:∣∣∣∣∣∣ n0−1∑

n=0

(β)n

n!
2n(1 − z)n

∫ ∞

0

xα+n

(1 + x)2n+2βdx +
[
Divergent terms from another integral

]∣∣∣∣∣∣ < ∞. (B.26)



Appendix C

Universality of density correlation functions

This is the appendix of Chapter 5. In section C.1 we give the details for calculating the analytical
expressions the density-density correlation functions C↑↑(r) and C↑↓(r) for the 2D case. In section
C.2 we give the steps for approximating the large-distance behavior of the pair wave function
φBCS(r) in 2D.

C.1 Calculation of density correlation functions in 2D

C.1.1 Same spins

We will obtain explictly the function g↑↑(r) that corresponds to the Fourier transform of v2
~k
. We

will use equation (5.43) with the parameters ν = 0, µ = 1

c = κ,

b = i,

a =

[ √
µ̃2 + ∆̃2 − µ̃

2

]1/2

=
√

1 − µ̃.

(C.1)

The coefficient k is correct by definition, since we want to calculate a Hankel transform. The
coefficient b was deduced from numerical calculations of g↑↑, we expected to have an oscillatory
function with a phase shift of π/2 relative to g↑↓(r), as shown in Figure 5.4. The coefficient b was
chosen so as to agree with the large-distance exponential decay that we were trying to find. Then
we have ∫ ∞

0
x K1(

√
1 − µ̃x) I1(ix) J0(κx) dx = −

1
i

∫ ∞

0
x K1(

√
1 − µ̃x) J1(x) J0(κx) dx

=
e−iπ/2

i
√

2π(1 − µ̃)

Q1/2
1/2(u)

(u2 − 1)1/4

(C.2)

with

u =
κ2 − µ̃

2i
√

1 − µ̃
(C.3)
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Now we will show the form of the associated Legendre function of the second kind Q1/2
1/2(u). From

equation (5.47) we have

Q1/2
1/2(u) =

eiπ/2

23/2

Γ(2)
Γ(2)

Γ(1/2)(u2 − 1)1/4

u2 F2 1

(
3
2
, 1, 2;

1
u2

)

=
eiπ/2

23/2

√
π(u2 − 1)1/4

u2 F2 1

(
3
2
, 1, 2;

1
u2

)
,

(C.4)

where we have introduced the hypergeometric function 2F1. Then, it is necessary to obtain an
explicit form for the hypergeometric function. To achieve this we will use its integral representation
given in equation (5.48). If we set z = 1/u2 we have

F2 1

(
3
2
, 1, 2; z

)
=

1
B(1, 1)

∫ 1

0
t0(1 − t)0(1 − tz)−3/2dt

=

∫ 1

0
(1 − tz)−3/2dt

=
2
z

(
1

√
1 − z

− 1
)
,

(C.5)

where we used the particular value of the beta function B(1, 1) = 1. Rewriting our expressions with
the variable u we have

F2 1

(
3
2
, 1, 2;

1
u2

)
= 2u2

(
1√

1 − 1
u2

− 1
)
. (C.6)

An important comment is in order. It is highly recommended to use the right side of equation
(C.6) as it is. The reason is because we should be careful that when relating the Fourier transform
and the Hankel transform, the functions with finite norm should have a transform with the same
finite norm1. When extending the square root to the complex plane we must be cautious of not
changing the logarithmic branch. Then, we must be careful when using operations like z = 1/z−1

inside the square root, since a change of branch introduces phases. Going back to the associated
Legendre function of the second kind in equation (C.4) we have

Q1/2
1/2(u) =

eiπ/2

23/2

√
π(u2 − 1)1/4

u2 F2 1

(
3
2
, 1, 2;

1
u2

)

=
eiπ/2

23/2

√
π(u2 − 1)1/4

u2

[
2u2

(
1√

1 − 1
u2

− 1
)]

=
eiπ/2

21/2

√
π(u2 − 1)1/4

(
1√

1 − 1
u2

− 1
)

(C.7)

1This affirmation is not so rigorous, but intuitive. We should use Plancherel theorem to see that if a function is
integrable and square integrable, then its Fourier transform should be square integrable.
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Then, returning to the Hankel transform, we have∫ ∞

0
x K1(

√
1 − µ̃x) I1(ix) J0(κx) dx = −

1
i

∫ ∞

0
x K1((1 − µ̃)1/2x) J1(x) J0(κx) dx

=
e−iπ/2

i
√

2π(1 − µ̃)

Q1/2
1/2(u)

(u2 − 1)1/4

=
e−iπ/2

i
√

2π(1 − µ̃)

1
(u2 − 1)1/4

[
eiπ/2

21/2

√
π(u2 − 1)1/4

(
1√

1 − 1
u2

− 1
)]

=
1

i2
√

(1 − µ̃)

(
1√

1 − 1
u2

− 1
)
.

(C.8)

Hence we can substitute the value of u = (κ2 − µ̃)/(2i
√

1 − µ̃) to find that∫ ∞

0
x K1(

√
1 − µ̃x) I1(ix) J0(κx) dx = −

1
i

∫ ∞

0
x K1((1 − µ̃)1/2x) J1(x) J0(κx) dx

=
1

i2
√

(1 − µ̃)

(
1(

1 − 1
u2

)1/2 − 1
)

=
1

i2
√

(1 − µ̃)

(
κ2 − µ̃

[(κ2 − µ̃)2 + 4(1 − µ̃)]1/2 − 1
)

(C.9)

where we have used

1 −
1
u2 = 1 −

1
−(κ2 − µ̃)2/(4(1 − µ̃))

= 1 +
4(1 − µ̃)
(κ2 − µ̃)2 =

(κ2 − µ̃)2 + 4(1 − µ̃)
(κ2 − µ̃)2 . (C.10)

Hence, from equation (C.9) we can identify the integral over the real numbers:∫ ∞

0
x K1((1 − µ̃)1/2x) J1(x) J0(κx) dx =

1

2
√

(1 − µ̃)

(
1 −

κ2 − µ̃

[(κ2 − µ̃)2 + 4(1 − µ̃)]1/2

)
. (C.11)

The relationship between v2
κ and g↑↑(ρ) is given by the following integral:

v2
κ =

(2π)
k2

F

∫ ∞

0
g↑↑(ρ)ρJ0(κρ)dρ, (C.12)

where we have scaled quantities with kF, and we have performed the change of variables κ = k/kF

and ρ = kFr. What we will do is to find a suitable function g↑↑(ρ) using equation (C.11). Let

g↑↑(ρ) = ΘK1((1 − µ̃)1/2ρ) J1(ρ), (C.13)
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with Θ a constant to be determined. Then we should have

v2
κ =

(2π)
k2

F

∫ ∞

0
g↑↑(ρ)ρJ0(κρ)dρ

=
(2π)
k2

F

Θ

∫ ∞

0
K1((1 − µ̃)1/2ρ) J1(ρ)ρJ0(κρ)dρ

=
(2π)
k2

F

Θ
1√

(1 − µ̃)

[
1
2

(
1 −

κ2 − µ̃

[(κ2 − µ̃)2 + 4(1 − µ̃)]1/2

)]
.

(C.14)

Since

v2
κ =

1
2

(
1 −

κ2 − µ̃

[(κ2 − µ̃)2 + 4(1 − µ̃)]1/2

)
, (C.15)

we can use ∆̃2 = 4(1 − µ̃) to obtain from equation (C.14) the following condition:

1 =
(2π)
k2

F

Θ
1√

(1 − µ̃)
, (C.16)

from where we can determine Θ,

Θ =
k2

F

(2π)

√
1 − µ̃ =

k2
F∆̃

4π
. (C.17)

Hence we obtain

g↑↑(ρ) =
∆̃k2

F

4π
K1

(
(1 − µ̃)1/2ρ

)
J1(ρ), (C.18)

where ρ = kFr.

C.1.2 Opposite spins

We will address the opposite spins correlation function. Given that we have polar symmetry, u~kv~k
depends on the norm of the wave vector k, and the Fourier transform can be expressed as a Hankel
transform [88]

g↑↓(~r) = g↑↓(r) =
1

(2π)

∫ ∞

0
dk k u~kv~k J0(kr). (C.19)

Also, it is worth remembering how to obtain u~kv~k when we know g↑↓(r) since this integral will be
the one found in a table of integrals [147],

u~kv~k =

∫
d2~re−i~k·~rg↑↓(r). (C.20)

If we express this integral in polar coordinates we obtain

u~kv~k =

∫ ∞

0
r dr

∫ 2π

0
dθe−ikr cos(θ)g↑↓(r)

=

∫ ∞

0
rg↑↓(r)(2π)J0(−kr) dr,

(C.21)



C.1. CALCULATION OF DENSITY CORRELATION FUNCTIONS IN 2D 115

where we have used the integral representation of the Bessel function of the first kind of order zero

(2π)J0(−kr) =

∫ 2π

0
dθe−ikr cos(θ). (C.22)

Using the parity property of the Bessel function, J0(kr) = J0(−kr), we get

u~kv~k = (2π)
∫ ∞

0
g↑↓(r)rJ0(kr) dr. (C.23)

Scaling with kF and performing a change of variable κ = k/kF and ρ = kFr we have

uκvκ =
(2π)
k2

F

∫ ∞

0
g↑↓(ρ)ρJ0(κρ)dρ. (C.24)

We will find a function g↑↓(ρ) that allows us to obtain uκvκ = ∆̃2−1[(κ2 − µ̃)2 + ∆̃2]−1/2. The search
for this function is based in the special case of equation (C.19) when the chemical potential is zero
[122]. We will use the following result, obtained from Ref. [147],∫ ∞

0
xJ0(ax)K0(bx)J0(cx) dx = [a4 + b4 + c4 − 2a2c2 + 2a2b2 + 2b2c2]−1/2

= {[b2 + (a − c)2] [b2 + (a + c)2]}−1/2,

(C.25)

where Re[b] > |Im[a]| y c > 0. This result can also be found in [149]. The analysis of the
large-distance behavior allowed us to choose correctly the coefficientes in the following way2

a = 1, (C.26)

b =

[ √
µ̃2 + ∆̃2 − µ̃

2

]1/2

, (C.27)

c = κ. (C.28)

Remarkably, the value of b is the one that determines the large-distance behavior, so we will verify
that it is correct. The value of c is correct by definition, since we want to calculate a Hankel
transform. The value of a = 1 was chosen since the nodes of g↑↓(r) in numerical calculations, agree
with the zeros of J0(kFr). Let us compare the right side of equation (C.25) with the square root in
the denominator of uκvκ. We should have

(κ2 − µ̃)2 + ∆̃2 = [b2 + (1 − κ)2][b2 + (1 + κ)2] (C.29)

Expanding both sides we have

κ4 + µ̃2 − 2µ̃κ2 + ∆̃2 = b4 + b2(1 + κ2 + 2κ) + b2(1 + κ2 − 2κ) + (1 − κ2)2

= b4 + 2b2 + 1 + 2(b2 − 1)κ2 + κ4 (C.30)

2Despite the simplicity of the final calculation presented here, we must mention that the search for this integral
was not so easy, since we analyzed several integrals given in Ref. [147].



116 CHAPTER C. UNIVERSALITY OF DENSITY CORRELATION FUNCTIONS

From the coefficients of κ2 we find:
2(b2 − 1) = −2µ̃ (C.31)

Then
b2 = −µ̃ + 1. (C.32)

Using the condition obtained from the number equation, given in equation (4.91),

1 =
µ̃

2
+

√
µ̃2 + ∆̃2

2
, (C.33)

we find that

b2 =

√
µ̃2 + ∆̃2 − µ̃

2
. (C.34)

Also we can verify that the constant terms in equation (C.30) agree:

b4 + 2b2 + 1 = µ̃2 + ∆̃2 (C.35)

If we substitute the value of b given in equation (C.34) se find

b4 + 2b2 + 1 = (−µ̃ + 1)2 + 2(1 − µ̃) + 1

= µ̃2 − 4µ̃ + 4

= µ̃2 + ∆̃2,

(C.36)

where in the last equality we used µ̃ = 1 − ∆̃2/4, which can be obtained combining the conditions
of the gap and number equations, shown in equations (4.97) and (4.98). Then we can conclude
that the value of b is right. We can go back to equation (C.25) which explicitly is∫ ∞

0
ρJ0(ρ)K0

([
(µ̃2 + ∆̃2)1/2 − µ̃

2

]1/2

ρ

)
J0(κρ) dρ = [(κ2 − µ̃)2 + ∆̃2]−1/2 (C.37)

With this equation we can determine the functional form of g↑↓(ρ) in equation (C.24). Let

g↑↓(ρ) = ΘJ0(ρ)K0

([
(µ̃2 + ∆̃2)1/2 − µ̃

2

]1/2

ρ

)
, (C.38)

where Θ is a constant to be determined. When substituting in equation (C.24) and using equation
(C.37) we have

∆̃

2
√

(κ2 − µ̃)2 + ∆̃2

=
(2π)
k2

F

Θ

[(κ2 − µ̃)2 + ∆̃2]1/2
. (C.39)

Then

Θ =
∆̃k2

F

4π
=

2m
~2k2

F

k2
F∆

4π
=

m∆

2π~2 . (C.40)

Hence we obtain

g↑↓(ρ) =
∆̃k2

F

4π
J0(ρ)K0

([
(µ̃2 + ∆̃2)1/2 − µ̃

2

]1/2

ρ

)
=

∆̃k2
F

4π
J0(ρ)K0

(
ρ

√
2kFχb

)
, (C.41)

where ρ = kFr. Rearranging terms, and substituting into equation (5.24) we obtain equation (5.52).
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C.2 Large-distance approximation of the pair wave function in 2D

The following was taken from Ref. [17]. For large arguments we can approximate the Bessel
function J0(kr), by [123]

J0(kr) ≈
ei(kr−π/4) + e−i(kr−π/4)

√
2πkr

. (C.42)

We can substitute this approximation into the definition of the Hankel transform (5.41) to obtain

φBCS(r) ≈
k3/2

∆
√

2π3r

[
S +(r)e−iπ/4 + S −(r)eiπ/4

2

]
, (C.43)

where we divided the integrals using the following definition:

S ±(r) =

∫ ∞

0

√
pF (p)e±ipk∆rdp. (C.44)

Also we have scaled the lengths with the wave vector k∆ associated to the gap ∆ = ~2k2
∆
/2m. Since

we will focus on the pair wave function we have

F (p) =
√

(p2 − µ∆)2 + 1 − (p2 − µ∆), (C.45)

where µ∆ = µ/∆. Performing the change of variable p = eiπ/2x in S +(r) and p = e−iπ/2x in S −(r) we
obtain

φBCS(r) ≈ −
ik3/2

∆

23/2
√
π3r

[ ∫
I

√
xF (ix)e−xk∆rdx

]
, (C.46)

where we have joined the two integrals into one which is over the imaginary axis, from x = −i∞ to
x = i∞. The integrand has five branch cuts, associated to the square roots, see equations (C.45)
and (C.46). The one associated to

√
x is a spurious branch cut that comes from the approximation

of the Bessel function J0(kr). The other four branch cuts are determined by:

Re[(x2 + µ∆)2 + 1] ≤ 0, and Im[(x2 + µ∆)2 + 1] = 0. (C.47)

Using x = a + ib we can find that those branch cuts are given by the points of the hyperbola
b2 − a2 = µ∆ whose magnitude satisfies |x|2 ≥ (µ2

∆
+ 1)1/2. Since the integrand on the right side of

equation (C.46) decreases exponentially for Re x→ ∞, we can close a contour to the right side of
the complex plane with a semicircle-like contour, which surrounds infinitesimally two branch cuts,
as illustrated in Figure C.1.
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a

b
l
l

l
l

1

2

3

4

Figure C.1: Qualitative illustration of the branch cuts of the integrand in equation (C.46). The
large dashes (green) correspond to the branch cuts of F (ix), see equation (C.45), while the short
dashes (orange) to the branch cut of

√
x. The solid line (purple) represents the contour used in

the Cauchy’s integral formula in equation (C.48). Close to the branch cuts we have four paths
denoted by li, with i = 1, 2, 3, 4. Figure taken from [17].

Given that we have a closed contour C, we can use Cauchy’s integral formula to obtain [123]∮
C

√
xF (ix)e−xk∆rdx = 0, (C.48)

Taking the radius of the semicircle to infinity, we get∫
I

√
xF (ix)e−xk∆rdx =2

∫
l2

√
x
√
|(x2 + µ∆)2 + 1|e−iπ/2e−xk∆rdx

+ 2
∫

l4

√
x
√
|(x2 + µ∆)2 + 1|e−iπ/2e−xk∆rdx,

(C.49)

where l2 and l4 are the paths shown in Figure C.1. The parametrization of l2 is given by γ2(t) =

t + i(t2 + µ∆)1/2, while the parametrization of l4 is γ4(t) = t − i(t2 + µ∆)1/2, with t ∈ [t0,∞), where

t0 =

(
(µ2

∆
+ 1)1/2 − µ∆

2

)1/2

. (C.50)

Using the explicit parametrizations γ2(t) and γ4(t) we can join the two integrals in equation (C.49)
into one integral:∫

I

√
xF (ix)e−xk∆rdx = 4

∫ ∞

t0

√
4t2(t2 + µ∆) − 1e−iπ/2e−tk∆rRe[e−i

√
t2+µ∆

√
γ2(t)γ′2(t)]dt. (C.51)

Noticing that the branch cuts always remain in their own quadrant we can obtain an alternative
expression for γ2(t) and its derivative. We can use de Moivre’s formula to obtain

γ2(t) = (2t2 + µ∆)1/2[cos θ(t) + isin θ(t)], (C.52)

where we have defined the function

θ(t) = arctan

( √
t2 + µ∆

t

)
. (C.53)
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This form allows us to handle the factor
√
γ2(t) in equation (C.51), since we can divide the respective

angle θ(t). Then we get∫
I

√
xF (ix)e−xk∆rdx =4

∫ ∞

t0

√
4t2(t2 + µ∆) − 1 e−iπ/2e−tk∆r(2t2 + µ∆)1/4

×

{
cos(

√
t2 + µ∆)

[
cos(θ(t)/2) −

tsin(θ(t)/2)√
t2 + µ∆

]
+ sin(

√
t2 + µ∆)

[
tcos(θ(t)/2)√

t2 + µ∆

+ sin(θ(t)/2)
]}

dt.

(C.54)

After substituting equation (C.54) into equation (C.46) and scaling variables with the Fermi wave
number kF instead of k∆ we obtain the desired result, corresponding to equation (5.61),

φBCS(r) ∝
1
√

kFr

∫ ∞

τ0

e−τkFr

(
2τ2 + µ̃

∆̃

)1/4[
cos

(√
τ2 + µ̃

∆̃

)(
cos(θ(τ)/2) −

τsin(θ(τ)/2)√
τ2 + µ̃

)

+sin

(√
τ2 + µ̃

∆̃

)(
τcos(θ(τ)/2)√

τ2 + µ̃
+ sin(θ(τ)/2)

)]( √
4τ2(τ2 + µ̃) − ∆̃2

∆̃

)
dτ,

(C.55)

where τ0 = {[(µ̃2 + ∆̃2)1/2 − µ̃]/2}1/2, and we have redefined the function

θ(τ) = tan−1
( √

τ2 + µ̃

τ

)
. (C.56)



120 CHAPTER C. UNIVERSALITY OF DENSITY CORRELATION FUNCTIONS



Bibliography

[1] Quantum technologies in a nutshell, https://qt.eu/about-quantum-flagship/

quantum-technologies-in-a-nutshell (Consultado el 26 de abril de 2023).

[2] W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold fermi gases, arXiv
preprint arXiv:0801.2500 (2008).

[3] D. Hernández-Rajkov, J. Padilla-Castillo, M. Mendoza-López, R. Coĺın-Rodŕıguez, A. Gutiérrez-
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PCF-UNAM (2019).

[166] J. D. Gunton and M. J. Buckingham, Condensation of the ideal bose gas as a cooperative transition,
Phys. Rev. 166, 152 (1968).

[167] J. C. Obeso-Jureidini, D. Olascoaga, and V. Romero-Roch́ın, Thermodynamic derivation of scaling
at the liquid–vapor critical point, Entropy 23, 10.3390/e23060720 (2021).

[168] M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Critical phenomena in microgravity: Past,
present, and future, Rev. Mod. Phys. 79, 1 (2007).

[169] F. Palestini, P. Pieri, and G. C. Strinati, Density and spin response of a strongly interacting fermi
gas in the attractive and quasirepulsive regime, Phys. Rev. Lett. 108, 080401 (2012).

[170] S. Ma, Modern Theory Of Critical Phenomena (Taylor & Francis, 2018).

[171] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Revealing the superfluid
lambda transition in the universal thermodynamics of a unitary fermi gas, Science 335, 563 (2012),
https://www.science.org/doi/pdf/10.1126/science.1214987 .

https://doi.org/10.1103/PhysRevB.105.054505
https://doi.org/https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/PhysRevLett.130.023001
https://doi.org/10.1103/PhysRevLett.130.023001
https://doi.org/10.1103/PhysRev.140.A1921
https://doi.org/10.1103/PhysRevLett.73.1845
https://doi.org/10.1103/PhysRevLett.73.1845
https://doi.org/10.1088/1742-5468/ab4984
https://doi.org/10.1088/1742-5468/ab4984
http://132.248.9.195/ptd2019/agosto/0793711/Index.html
https://doi.org/10.1103/PhysRev.166.152
https://doi.org/10.3390/e23060720
https://doi.org/10.1103/RevModPhys.79.1
https://doi.org/10.1103/PhysRevLett.108.080401
https://books.google.com.mx/books?id=R0haDwAAQBAJ
https://doi.org/10.1126/science.1214987
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1214987


. 131

[172] R. Sato, D. Kagamihara, K. Manabe, D. Inotani, and Y. Ohashi, Isothermal compressibility of an
ultracold fermi gas in the bcs–bec crossover, Journal of Low Temperature Physics 196, 119 (2019).

[173] D. Kagamihara, R. Sato, K. Manabe, H. Tajima, and Y. Ohashi, Isothermal compressibility and
effects of multibody molecular interactions in a strongly interacting ultracold fermi gas, Phys. Rev.
A 106, 033308 (2022).

[174] L. N. Cooper, Bound electron pairs in a degenerate fermi gas, Phys. Rev. 104, 1189 (1956).

[175] G. Bighin and L. Salasnich, Vortices and antivortices in two-dimensional ultracold fermi gases,
Scientific Reports 7, 1 (2017).

[176] M. Pini, P. Pieri, and G. Calvanese Strinati, Strong fulde-ferrell larkin-ovchinnikov pairing
fluctuations in polarized fermi systems, Phys. Rev. Res. 3, 043068 (2021).

[177] M. D. Croitoru and A. I. Buzdin, In search of unambiguous evidence of the
fulde–ferrell–larkin–ovchinnikov state in quasi-low dimensional superconductors, Condensed
Matter 2, 10.3390/condmat2030030 (2017).

[178] E. Taylor, A. Griffin, N. Fukushima, and Y. Ohashi, Pairing fluctuations and the superfluid density
through the bcs-bec crossover, Phys. Rev. A 74, 063626 (2006).

[179] B. C. Mulkerin, L. He, P. Dyke, C. J. Vale, X.-J. Liu, and H. Hu, Superfluid density and critical
velocity near the berezinskii-kosterlitz-thouless transition in a two-dimensional strongly interacting
fermi gas, Phys. Rev. A 96, 053608 (2017).

[180] P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar, M. Neidig, M. G. Ries, A. N. Wenz,
G. Zürn, and S. Jochim, Observation of the berezinskii-kosterlitz-thouless phase transition in an
ultracold fermi gas, Phys. Rev. Lett. 115, 010401 (2015).

[181] P. de Gennes, Superconductivity of Metals and Alloys, Advanced book classics (W.A. Benjamin,
1966).

https://doi.org/10.1103/PhysRevA.106.033308
https://doi.org/10.1103/PhysRevA.106.033308
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/PhysRevResearch.3.043068
https://doi.org/10.3390/condmat2030030
https://doi.org/10.1103/PhysRevA.74.063626
https://doi.org/10.1103/PhysRevA.96.053608
https://doi.org/10.1103/PhysRevLett.115.010401
https://books.google.com.mx/books?id=M8A8AAAAIAAJ

