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Definitions, conventions and results

θ̃ < 0.

Metric tensor:

(ηµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Einstein summation convention:

aµbµ = a0b0 + a1b1 + a2b2 + a3b3 = a0b0 − a1b1 − a2b2 − a3b3.

Klein-Gordon-θ̃ equation:
∂2Φ+m2Φ− θ̃δ(z)Φ = 0.

P and Q coefficients:

Pq = − θ̃

2iq + θ̃
, Qq =

2iq

2iq + θ̃
.

Properties:

P ∗
q = P−q, Q∗

q = Q−q,

P−qQq + PqQ−q = 0, |Pq|2 + |Qq|2 = 1,∑
σ∈{L,R}

(δSσPq + (1− δSσ)Qq)
(
δS′σP

∗
q + (1− δS′σ)Q

∗
q

)
= δSS′ .

Ingoing L or left modes:

Φq
L(z) = H(−z)(eiqz + Pqe

−iqz) +H(z)Qqe
iqz

= (1 + PqH(z)) eiqz + PqH(−z)e−iqz = eiqz + Pqe
iq|z|.

Ingoing R or right modes:

Φq
R(z) = H(−z)Qqe

−iqz +H(z)(e−iqz + Pqe
iqz)

= (1 + PqH(−z)) e−iqz + PqH(z)eiqz = e−iqz + Pqe
iq|z|.

Ingoing and outgoing normal modes:

νS(x,k) = Φk3

S (x3)ei(k
1x2+k2x2), νS(x,k) = Φk3∗

S (x3)ei(k
1x2+k2x2).

Commutation relations of creation and annihilation operators of ingoing modes:[
aS(k), a

†
S′(k

′)
]
= (2π)3δ(3)(k − k′)δSS′ , [aS(k), aS′(k′)] = 0 =

[
a†S(k), a

†
S′(k

′)
]
.

Commutation relations of creation and annihilation operators of outgoing modes:[
αS(k), α

†
S′(k

′)
]
= (2π)3δ(3)(k − k′)δSS′ , [αS(k), αS′(k′)] = 0 =

[
α†
S(k), α

†
S′(k

′)
]
.

Relationship between ingoing and outgoing modes:

Φk3

L (x3) = Pk3Φk3∗
L (x3) +Qk3Φk3∗

R (x3), Φk3

R (x3) = Pk3Φk3∗
R (x3) +Qk3Φk3∗

L (x3).

αL(k) = Pk3aL(k) +Qk3aR(k), αR(k) = Pk3aR(k) +Qk3aL(k).



Orthogonality relations:〈
Φq

S

∣∣Φk
S′

〉
= 2πδ(k − q)δSS′ ,

〈
Φq∗

S

∣∣Φk
S′

〉
= [Qq − δSS′ ]2πδ(k − q).

Completeness relation:∑
S∈{L,R}

∫
k3>0

d3k[νS(x,k)ν
∗
S(x

′,k)] =
∑

S∈{L,R}

∫
k3>0

d3k[νS(x,k)ν
∗
S(x

′,k)] = (2π)3δ(3)(x− x′).

Quantized field:

Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
aS(k)νS(x,k)e

−iEkt + h.c.
]

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
αS(k)νS(x,k)e

−iEkt + h.c.
]
.

Hamiltonian:

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Eka

†
S(k)aS(k) =

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
Ekα

†
S(k)αS(k).

Pseudomomentum operator:

Q3 =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
(−1)Sk3a†S(k)aS(k).

Feynman propagator:

∆̃F (x, y) =
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)

=
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)

= ∆F (x− y) +
θ̃

2
i

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2 i)

e−ik0(x0−y0)+ik⊥·(x−y)⊥eik
3(|x3|+|y3|).

(∂2 +m2 − θ̃δ(x3)− iϵ)∆̃F (x, y) = −iδ(4)(x− y).

θ̃ transform:
j̃S(k) =

∫
d4yeik

0y0

ν∗
S(y,k)j(y) =

∫
d4yei(k

0y0−k⊥·y⊥)Φk3

S (y3)j(y).

Some recurring functions:

φk3

L (x3) = eik
3x3

+ sgn(x3)Pk3eik
3|x3|, φk3

R (x3) = e−ik3x3

− sgn(x3)Pk3eik
3|x3|,

αk3,k′3 = (2ik3 − θ̃)(2ik′3 + θ̃),

βS,S′(k3, k′3) = P

(
4k3θ̃

(k′3 − k3)αk3,k′3

[
(k3 − k′3) + iθ

k′3 + k3
δSS′ − (1− δSS′)

])
,

ηk
3

(x3, y3) =
∑

S∈{L,R}

Φk3

S (x3)Φk3∗
S (y3) (k3 > 0),

ηk
3

(x3, y3) = eik
3(x3−y3) + Pk3eik

3(|x3|+|y3|) (k3 ∈ R).



Summary

Taking axion electrodynamics and quantization of effects associated to dielectric media as a moti-
vation, we deal with the quantization of the scalar field in the presence of an interface, i. e., where
the space is divided in two regions characterized by a set of discontinuous parameters. Our goal
aims to establish the theoretical basis of a study of quantum processes related to the magneto-
electric effect in such spaces. For this, we build a toy-model that couples the scalar field with the
analogous of a magnetoelectric susceptibility θ that describes a planar boundary. We show that
the equation of motion is modified by the introduction of the interface, and that the normal modes
of such equation form a complete and orthogonal set. This allows us to quantize a scalar field
Φ in terms of that set, which we call the triplet wave basis, since it has contributions of incident,
reflected and transmitted waves. Such a procedure permits dealing with the effects of the interface
exactly, whereas with the usual quantization method (in free space) one can only treat the problem
by means of perturbation theory. We prove that the Hamiltonian in momentum space, as well as
the momentum on the direction parallel to the interface, defined in the triplet wave basis, have
an equivalent form to the corresponding objects in the vacuum. Throughout all of this work, we
discuss the non-conservation of momentum along the axis that crosses the interface, which is a
remarkable property arising from the violation of translation invariance along that direction. We
also solve the problem of defining a triplet wave basis for sinks in order to describe particle detec-
tors. With the developed tools, we discuss different physical phenomena such as the decay of a Φ

mode into two usual Klein-Gordon (free) particles, the scattering of two free particles mediated by
a Φ field, and the production of triplet wave modes by means of a classical source. We also contrast
this exact treatment with the one given by perturbation theory, showing consistency among both
approaches.



Resumen

Tomando como motivación la electrodinámica axiónica y la cuantización de efectos asociados a
medios dieléctricos, tratamos la cuantización del campo escalar en presencia de una interfase, i.e.,
donde el espacio está dividido en dos regiones caracterizadas por un conjunto de parámetros dis-
continuos. Nuestro propósito es establecer la base teórica para el estudio de procesos cuánticos
relacionados con el efecto magnetoeléctrico en estos espacios. Para ello, construimos un modelo
que acopla el campo escalar con el análogo de una susceptibilidad magnetoeléctrica θ que describe
una frontera plana. Mostramos que la ecuación de movimiento es modificada al introducir la in-
terfase, y que los modos normales de tal ecuación forman un conjunto ortogonal y completo. Esto
nos permite cuantizar un campo escalar Φ en términos de dicho conjunto, al cual denominamos
base de ondas triplete, ya que tiene contribuciones de una onda incidente, una reflejada y una
transmitida. Tal procedimiento permite analizar los efectos de la interfase de forma exacta, mien-
tras que con el método usual de cuantización (en espacio libre), sólo puede tratarse el problema
mediante teoría de perturbaciones. Probamos que el Hamiltoniano en espacio de momentos, así
como el momento en la dirección paralela a la interfase, definidos en la base de ondas triplete,
tienen una forma equivalente a los objetos correspondientes en el vacío. A lo largo de todo este
trabajo, discutimos la no conservación de momento a lo largo del eje que atraviesa la interfase, que
es una importante propiedad que surge de la violación de invariancia traslacional a lo largo de esa
dirección. También resolvemos el problema de definir una base de ondas triplete para sumideros
con el fin de describir detectores de partículas. Con las herramientas desarrolladas, discutimos
diferentes fenómenos físicos como el decaimiento de un modo Φ en dos partículas Klein-Gordon
usuales (libres), la dispersión de dos partículas libres mediadas por un campo Φ, y la producción
de modos de ondas triplete mediante una fuente clásica. También contrastamos este tratamiento
exacto con el proporcionado por la teoría de perturbaciones, mostrando que hay consistencia entre
ambos acercamientos.



1 Introduction

The study of quantum field theories in the presence of interfaces gained first relevance in
1970, when Carniglia and Mandel [1] introduced a technique for quantizing evanescent
waves (which result when a beam of light travels from a medium with high refractive
index to a medium with low refractive index) in a system where the half-space z < 0 is
filled with a dielectric medium. Until then, the problem had not been dealt with from the
field theory point of view, one of the reasons being that plane waves (normal modes of
Maxwell’s equations in vacuum) are insufficient to describe sources and apertures. The
solution to this difficulty arose by finding the normal modes of the equations of motion
that include the contribution of the dielectric medium. The normal modes of the system
are triplet waves formed by an incident, a reflected and a transmitted wave, which result
from the presence of the planar dielectric interface at z = 0. Moreover, these modes form
a complete and orthogonal set. The field is expanded in terms of these modes, and not
in terms of plane waves as is usual in field theory. Since the plane wave basis and the
triplet wave basis differ significantly, the coefficients of the expansion in terms of the new
basis are in general different from the ones that do not account for the interface. In this
way, the quantization of the field in terms of the new basis results in a set of creation
and annihilation operators that differ from the usual ones (without interfaces). While this
might complicate some calculations, it is notable that in momentum space some objects
like commutators, the Hamiltonian, and the Feynman propagator, to name a few, have
a similar structure to their equivalents in vacuum. It was precisely this fact that made
significant the treatment introduced by Carniglia and Mandel, whose aim at the time was
to analyze the photoemission due to a bound charge under the influence of an evanescent
field, obtaining a result that not only coincides with the semiclassical calculation, but that
also outperforms it in the sense that the presence of the interface is dealt with exactly by
being included in the modes [1].

In 1990, Glauber and Lewenstein [2] studied a system with the same boundary con-
ditions (i.e. vacuum on one side and dielectric on the other side of a planar interface),
comparing the vacuum quantization scheme with that of the system containing the di-
electric. With this, they showed that there are changes in the spontaneous emission rates
for electric and magnetic dipole transitions of excited atoms within or near dielectric me-
dia. Furthermore, using scattering theory, they proved that the coefficients connecting
the creation and annihilation operators of both quantization schemes can be interpreted
as scattering amplitudes. Subsequently, Janowicz and Żakowicz [3] studied the radiation
of a harmonic oscillator in the presence of the same vacuum-dielectric planar interface of
Refs. [1, 2]. The authors also used the triplet wave quantization scheme, which consid-
ers the boundary conditions at the vacuum-dielectric interface. In that research, radiative
frequency shifts were evaluated, which were then attributed to what the authors called
the Carniglia-Mandel photons. These objects are associated to the creation and annihila-
tion operators of the triplet wave basis. In 2001, Inoue and Hori [4] noted that although
the basis proposed by Carniglia and Mandel includes interface effects and can describe
sources, it was necessary to introduce a new basis (the detector basis) to be able to describe
sinks, and specifically particle detectors —just as the Carniglia-Mandel triplet mode basis
involves incident photons, the detector basis involves outgoing photons. These new de-
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tector modes are obtained in terms of time-reversal and spatial-rotation transforms of the
Carniglia-Mandel modes, and they allow to calculate the differential radiation probability
for atomic dipole radiation near a dielectric surface. A few years later, Claudia Eberlein
et al. used the mode triplet basis to conduct a series of investigations. In one of them, the
energy-level shift of a ground-state atom in front of a nondispersive dielectric half-space
was evaluated [5]. The Carniglia-Mandel basis allows condensing the contribution of
traveling waves and evanescent waves into a single expression that enables a very direct
analysis when the atom-surface separation is large. Likewise, Eberlein and Robaschik [6]
calculated the self-energy of a free electron in the presence of a flat dielectric surface at the
level of one loop, finding that the self-energy diagram has problems related to interface
dependency, which the authors remarkably resolved.

Nevertheless, permittivity and permeability are not the only parameters that character-
ize a dielectric. A huge class of important materials, called magnetoelectrics, incorporate
the magnetoelectric susceptibility θ that modifies the constitutive relations as

D = ϵE + θB, H =
1

µ
B − θE, (1.1)

giving rise to the so called magnetoelectric effect. This effect produces a coupling between
the electrical and magnetic properties of a material. In particular, the linear magnetoelec-
tric effect allows magnetic fields to generate polarizations and electric fields to give rise to
magnetizations. The prediction of this property in antiferromagnetic materials is credited
to Landau and Lifshitz [7]. The effect was also predicted in 1959 by Dzyaloshinskii [8] ,
and in 1960 it was confirmed experimentally that it is manifested in Cr2O3, an example of
an antiferromagnetic material [9]. The first investigations of the magnetoelectric effect are
condensed in Ref. [10]. A recent update of this study, including new methods for design-
ing magnetoelectric materials, new experimental techniques, and theoretical concepts for
understanding magnetoelectric behavior is also reported in Ref. [11].

Ferroic materials are capable of adopting a spontaneous internal alignment of some
property. In particular, there are multiferroic materials, which have more than one ferroic
property in the same phase. One example of this are materials that are both ferroelec-
tric and ferromagnetic, in which there is spontaneous and simultaneous polarization and
magnetization. Some multiferroic materials have been found to possess extremely large
magnetoelectric couplings. Although they are an important example, ferroic phases are
not the only ones that give rise to magnetoelectric media. These can also arise in magnet-
ically and/or electrically polarizable media [12, 13]. Unfortunately, the magnetoelectric
response is very much suppressed with the respect to the normal effects due to ϵ and µ,
which motivates the search for large magnetoelectric couplings which continues mainly
in multiferroic compounds [14].

In addition to multiferroics, a type of material in which the magnetoelectric effect is
manifested is that of topological insulators (TIs) that are invariant under time reversal
transformations. Microscopically, these materials are insulators in the bulk and conduc-
tive at surfaces, giving rise to a peculiar band structure [15, 16]. Topological phenomena
in condensed matter goes back to Ref. [17], where the conductivity of the quantum Hall
effect [18] was identified with the first Chern number of the Berry curvature of the recip-
rocal space. Bernevig [19] predicted the existence of TIs in two-dimensional HgTe quan-



Introduction 5

tum wells. Some time later, König confirmed it by experimentally [20]. Subsequently,
the phenomenon was generalized to three-dimensional systems: theoretical predictions
can be consulted in Refs. [21–26], while an important experimental confirmation of three-
dimensional TIs is shown in Ref. [27].

By means of the magnetoelectric effect, the generation of magnetic fields by static elec-
trical sources is studied in Refs. [28, 29], in which charges are located in front of a planar
magnetoelectric medium that occupies the half-space z > 0. Aiming to have more realistic
devices, in Ref. [30] the point charges were replaced by metallic spheres of finite radius.
Another system where this effect is manifested corresponds to a semispherical capacitor
(a dipolar source) surrounded by a spherical topologically insultating shell, which yields
measurable magnetic fields according to the precision of present-day magnetometers [31].
Recent advances in the manufacture of electrically manipulable magnetoelectric materi-
als [32, 33] and new developments in coating techniques for conductors [34], could give
viability to new configurations that give rise to new investigations with an experimental
approach.

The properties of a conventional insulator are determined by its permittivity ϵ and
its permeability µ. The equations that describe the behavior of such materials can be
derived from the Lagrangian Lem = (1/8π) (εE2 − (1/µ)B2) − ρΦ + (1/c)J · A once the
fields are expressed in terms of the electromagnetic potentials A,Φ, where ρ and J are the
charge and current densities and c is the speed of light. To include the magnetoelectric
effect manifested in some materials, one must add the term Lθ = α

4π2 θ(x)E · B, where
α is the fine structure constant and θ is the magnetoelectric susceptibility. The system
defined by Lem + Lθ is commonly referred to as axion electrodynamics [35] or Carroll-
Field-Jackiw electrodynamics [36]. One can show that if θ is constant, the term Lθ is a
total derivative, so that it does not affect the equations of motion [31]. Nevertheless, it has
physical consequences in systems where θ [37] is a function of the space-time coordinates.
To detect the magnetoelectric effect it is necessary to place adjacent media with different
values θ1 and θ2, such that ∂θ ̸= 0 in the interface.

It is important to bear in mind that the effective equations that emerge from the ex-
tra term Lθ can describe diverse physical phenomena according to the different choices
of θ. For instance, the electromagnetic response of general magnetoelectrics (θ real and
arbitrary) together with TIs (θ = 0, π) [24], the electrodynamics of metamaterials (θ ∈ C)
[38, 39] and the response of Weyl semi-metals (θ(x, t) = 2b · x− 2b0t) [38, 40, 41]. The term
Lθ also describes the interaction of the hypothetic axionic field with the electromagnetic
field in elementary particle physics [26, 42]. Axions remain as good candidates for the
particles that constitute dark matter [43].

The electromagnetic phenomena described above can be viewed as particular cases
of field theories where space in divided at least into two regions, characterized by a set
of discontinuous parameters across the interface. The necessity of a quantum version in
these cases has motivated us to review their construction in the simplest possible setting
in order to emphasize the main results without been obscured by complicated algebra
required by a more realistic field structure. Taking as inspiration the case of axion electro-
dynamics where the interface is crucial for its existence, we consider a system in which,
instead of a dielectric interface, we have only the analogous of a magnetoelectric interface,
i.e., such that on each side of the boundary there are media that have a different value of a
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constant parameter which we still call θ, in an abuse of notation. Our objective is to estab-
lish the theoretical bases for a further study of the magnetoelectric effect from the scope
of quantum electrodynamics. For this, we investigate the behavior of a scalar field in the
presence of a planar interface and study the consequences that this has on some physical
processes. An important property of our system is the non-conservation of momentum
along the z-axis due to the presence of the interface. This is manifested in various parts of
the present research.

The work is organized as follows. In Section 2 we start from the Lagrangian of a mas-
sive scalar field Φ to which we add a contribution proportional to θµ∂µΦ

2, which is a total
derivative when θµ is constant everywhere. This constitutes a simple toy-model that cou-
ples the scalar field with the analogous of a magnetoelectric susceptibility vector that is
particularized to describe the system with a planar interface at z = 0. In other words, we
define θµ = (0, 0, 0, θ(z)), where θ(z) = θ1H(−z) + θ2H(z).

The equation that describes this system is called the Klein-Gordon-θ̃ equation, and is
given by

∂2Φ +m2Φ− θ̃δ(z)Φ = 0, (1.2)

where θ̃ = θ2 − θ1. From this, we find the normal modes of the system, which we denote
as Φk3

S (z), with S ∈ {L,R} indicating if the incident wave arrives from the left or from the
right side of the interface. In Sections 3 and 4 we show that the normal modes form an
orthogonal and complete set. This allows us to express the field Φ in terms of such basis,
which in turn leads to a direct quantization of the scalar field in Section 5. When promoted
to operators, the coefficients of the expansion, namely aS(k) and a†S(k), are identified as
the annihilation and creation operators of the triplet wave basis. The commutation rela-
tions of such operators are analogous to the ones in the vacuum.

In Section 6 we calculate the energy-momentum tensor of the system and show that,
although energy and momenta in the x and y direction are conserved, the third compo-
nent of linear momentum is not conserved. This is a consequence of the presence of the
interface. We then define the 4-momentum operator and find the Hamiltonian. By using
the triple wave basis, we see that the total energy of an n-mode state is the sum of the
energies of each of the modes. Since the third component of the momentum operator has
a complicated form, we define a pseudomomentum operator Q3 that allows to label the
functions of the triplet wave basis.

In Section 7 we introduce the detector basis, or basis of outgoing modes, which is re-
lated to the ingoing basis by means of the transformation k3 → −k3, and that allows to de-
scribe particle sinks such as detectors. Both bases are connected by a simple linear relation.
In Section 8 we calculate the decay of a field Ψ that is not affected by the presence of the in-
terface into two fields Φ. We show that the total decay rate Γ̃ is larger than its equivalent in
vacuum Γ, due to additional decay channels that arise from the non-conservation of mo-
mentum. In Section 9 we define the Feynman propagator in coordinate space, which has
a relatively simple form. From this, we define a reduced Green’s function, that accounts
for the z dependence of the propagator, and arrive at the differential equation satisfied by
such function. We then compute the Feynman propagator in momentum space and show
that the non-homogeneity of the system implies that it cannot only depend on the 4-vector
k, but that it must also contain information of the third coordinate of the position vector.
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In Section 10 we study how a classical source may produce Φ modes. This gives us
a modified Hamiltonian that includes the contribution of the source, and that provides
us with an expression for the energy due to the θ̃ interface. Our results are written as
probabilities of producing m modes, which turn out to be ruled by a Poisson distribution.
In Section 11 we treat the θ̃ term as a perturbation and show that this gives the same results
as the exact treatment if we consider all orders in perturbation theory. We also calculate the
amplitude of having a particle with initial momentum k and final momentum k′. Finally,
in Section 12 we study the scattering of two scalar particles that are not affected by the
interface, mediated by a Φ. Although the calculation gets involved easily, we are able to
overcome several problems by defining an adimensional differential cross section.



2 Lagrangian and equation of motion

Consider the following Lagrangian:

L =
1

2
∂µΦ∂

µΦ− m2

2
Φ2 − θα(x)Φ∂αΦ, (2.1)

where the argument of θα(x) indicates an arbitrary dependence on the space-time coor-
dinates: (x) → (x0, x1, x2, x3). In some expressions, if context ensures no confusion, and
to avoid heavy notation, we may employ the variables (t, x, y, z) or (t,x) as equivalents
of (x0, x1, x2, x3). In Eq. (2.1), as in the whole course of this work, we adopt the Einstein
summation convention, by which repeated (greek) indices are assumed to be summed:

aµbµ = a0b0 + a1b1 + a2b2 + a3b3. (2.2)

Moreover, we define the metric tensor

(ηµν) ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.3)

by which we have

aµbµ = a0b0 + a1b1 + a2b2 + a3b3 = a0η00b
0 + a1η11b

1 + a2η22b
2 + a3η33b

3 (2.4)

= a0b0 − a1b1 − a2b2 − a3b3. (2.5)

The action is given by

S ≡
∫

d4xL =

∫
d4x

(
1

2
∂µΦ∂

µΦ− m2

2
Φ2 − θα(x)Φ∂αΦ

)
. (2.6)

Note that if θα(x) is constant, then−θα(x)Φ∂αΦ = ∂α

(
−θα(x)Φ2

2

)
, so the last term is a total

derivative, and therefore does not play any role in the dynamics of the system. We want
to obtain the nontrivial equation of motion (i.e., where θα(x) is not merely a constant, but
a function of the space-time coordinates). To achieve this, we calculate the variation of the
action with respect to Φ:

δS =

∫
d4x

(
∂µΦ∂

µδΦ−m2ΦδΦ− θα(x)δΦ∂αΦ− θα(x)Φ∂αδΦ
)

(2.7)

=

∫
d4x (∂µ (∂µΦδΦ)− ∂α (θ

α(x)ΦδΦ))

+

∫
d4xδΦ

(
−∂2Φ−m2Φ− θα(x)∂αΦ + ∂α (θ

α(x)Φ)
)
. (2.8)

We have integrated by parts and grouped all terms proportional to δΦ in the last line.
Using the divergence theorem, the first two terms are expressed as surface integrals:

δS =

∫
dσµδΦ (∂µΦ− θµ(x)Φ)+

∫
d4xδΦ

(
−∂2Φ−m2Φ− θα(x)∂αΦ + ∂α (θ

α(x)Φ)
)
, (2.9)
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where dσµ parametrizes the surface that encloses the system. Expanding the last term we
get

δS =

∫
dσµδΦ (∂µΦ− θµ(x)Φ)

+

∫
d4xδΦ

(
−∂2Φ−m2Φ− θα(x)∂αΦ + ∂αθ

α(x)Φ + θα(x)∂αΦ
)

(2.10)

=

∫
dσµδΦ (∂µΦ− θµ(x)Φ) +

∫
d4xδΦ

(
−∂2Φ−m2Φ + ∂αθ

α(x)Φ
)
. (2.11)

Thus, the surface integral at the interface is∫
dσµδΦ (∂µΦ− θµ(x)Φ) =

∫
d3xδΦnµ [(∂

µΦ1 − θµ1 (x)Φ1)− (∂µΦ2 − θµ2 (x)Φ2)] , (2.12)

where the subscripts denote each side of the boundary. Here, we have introduced the
vector with components nµ, which is normal to the surface (so that d3x is the magnitude
of dσ). The null variation at the interface must give the boundary conditions:

[(∂µΦ1 − θµ1 (x)Φ1)− (∂µΦ2 − θµ2 (x)Φ2)]Σ = 0. (2.13)

In turn, this gives rise to the equation of motion:

∂2Φ +m2Φ− ∂αθ
α(x)Φ = 0. (2.14)

In particular, the appearance of the last term implies that the normal modes (solutions for
definite values of k) will differ from those of the usual Klein-Gordon equation. We will
study such solutions for a specific case: the planar interface.

2.1 Planar interface

We assume that the space is divided into two regions R1 and R2, separated by an interface
Σ. In particular, we define a system where only the z component of the vector θα(x) is
non-zero. Such component is given by the function θ(z), which takes a constant value on
each side of the x− y plane:

θ31(t, x, y, z) = θ1, θ32(t, x, y, z) = θ2, (2.15)

θ(z) = θ1H(−z) + θ2H(z), (2.16)

∂αθ
α(t, x, y, z) = ∂zθ(z) = (θ2 − θ1) δ(z) = θ̃δ(z), (2.17)

where θ̃ ≡ (θ2 − θ1). In this sense, the x − y plane constitutes an interface Σ, as shown in
Fig. 1. The equation of motion becomes

∂2Φ +m2Φ− θ̃δ(z)Φ = 0, (2.18)

∂2
tΦ− ∂2

xΦ− ∂2
yΦ− ∂2

zΦ +m2Φ− θ̃δ(z)Φ = 0. (2.19)
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Figure 1: Planar interface dividing two regions (z < 0 and z > 0) with different values of the θ
parameter.

From the previous equations it is clear that only the direction perpendicular to the
interface is affected by the θ̃ term. Thus, we write the normal modes as separable solutions
of the form

e−iEktei(k
1x+k2y)Φk3

S (z), (2.20)

where E2
k = (k1)2 + (k2)2 + (k3)2 +m2 and the subindex S implies the possibility of modes

incident from the left side (S = L) or from the right side (S = R) of the interface. For this
to be consistent, we restrict the domain k3 to [0,∞). In other words, for the incident mode,
the magnitude of the ingoing momentum is given by k = (k1, k2, k3) ∈ R2 × R+, whereas
its direction of incidence is specified by the subindex S.

In this way, the general solution is given by

Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3

(
aS(k)e

−iEktei(k
1x+k2y)Φk3

S (z) + c.c.
)
, (2.21)

where the coefficients aS(k) are complex numbers, independent of the space-time coordi-
nates. We include the subindex k3 > 0 to emphasize that the z component of the momen-
tum is restricted to positive values.

For further convenience, and in consistency with the previous notation, we define

Φk3

1S(z) ≡ Φk3

S (z < 0) (R1), Φk3

2S(z) ≡ Φk3

S (z > 0) (R2). (2.22)

The edges of regions 1 (z < 0) and 2 (z > 0) have normal vectors (n1µ) = (0, 0, 0, 1) and
(n2µ) = (0, 0, 0,−1), respectively*.

*Regardless of our choice of interfaces, the condition n1µ = −n2µ = nµ is always satisfied.
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In this simple case, the boundary conditions at the interface are

Φ1 (t, x, y, z) = Φ2 (t, x, y, z) , (2.23)(
∂Φ1

∂xa

)
Σ

=

(
∂Φ2

∂xa

)
Σ

(a = 0, 1, 2), (2.24)

∂Φ1

∂z
− ∂Φ2

∂z
= θ̃Φ. (2.25)

Such conditions arise from Eq. (2.13) for this particular system since the gradient vector is

(∂µ) =

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
. (2.26)

2.2 Normal modes

For now, we will look only at the z dependence of the single mode solutions of Eq. (2.18),
which we will call the Klein-Gordon-θ̃ equation. To avoid cumbersome notation, in the
following few sections the label k3 will be denoted by q or k. For waves incident from the
left (or L modes) we have the solution

Φq
1L(z) = eiqz + PLqe

−iqz, Φq
2L(z) = QLqe

iqz, (2.27)

Φq
L(z) = H(−z)Φq

1L(z) +H(z)Φq
2L(z), (2.28)

while for waves incident from the right (or R modes) we have the solution

Φq
1R(z) = QRqe

−iqz, Φ2R(z) = e−iqz + PRqe
iqz, (2.29)

Φq
R(z) = H(−z)Φq

1R(z) +H(z)Φq
2R(z), (2.30)

with coefficients PSq and QSq (S ∈ {L,R}) to be determined by the boundary conditions.
Each of these modes includes contributions of incident, reflected, and transmitted plane
waves, as outlined in Fig. 2, with reflection and transmission amplitudes given by the P
and Q coefficients. It is important to bear in mind that the label k3 does not correspond to the
linear momentum. This is because the function Φk3

S (x3), as will be shown in a further Section, is
not an eigenstate of the momentum operator, since it is composed of three plane waves traveling in
different directions. However, in some contexts where clarity is not compromised, we may call it
linear momentum for simplicity.

The boundary conditions for the L modes are

Φq
1L(0) = Φq

2L(0),
∂Φq

2L(0)

∂z
− ∂Φq

1L(0)

∂z
= −θ̃ΦL(0). (2.31)

Respectively, from each of these it follows that

1 + PLq = QLq, QLq = −
2iq

θ̃
PLq → PLq = −

θ̃

2iq + θ̃
, QLq =

2iq

2iq + θ̃
. (2.32)

Equivalently, the boundary conditions for the R modes are

Φq
1R(0) = Φq

2R(0),
∂Φq

2R(0)

∂z
− ∂Φq

1R(0)

∂z
= −θ̃ΦR(0), (2.33)
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L R

Figure 2: The ingoing left and right modes include contributions of incident, reflected, and trans-
mitted plane waves.

from where we obtain the following expressions:

1 + PRq = QRq, QRq = −
2iq

θ̃
PRq → PRq = −

θ̃

2iq + θ̃
, QRq =

2iq

2iq + θ̃
. (2.34)

Since these coefficients are equal to those of the L modes, we will omit the subscripts L,
R.

The left modes are given by

Φq
L(z) = H(−z)(eiqz + Pqe

−iqz) +H(z)Qqe
iqz

= (1 + PqH(z)) eiqz + PqH(−z)e−iqz

= eiqz + Pqe
iq|z|.

(2.35)

In turn, the right modes are

Φq
R(z) = H(−z)Qqe

−iqz +H(z)(e−iqz + Pqe
iqz)

= (1 + PqH(−z)) e−iqz + PqH(z)eiqz

= e−iqz + Pqe
iq|z|.

(2.36)

A property that can be directly verified is

P ∗
q = P−q, Q∗

q = Q−q → Φq∗
L (z) = Φ−q

L (z). (2.37)

Observe that
Φq

R(z) = Φq
L(−z), (2.38)
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which will simplify further calculations. Moreover,

P−qQq + PqQ−q =

(
θ̃

2iq − θ̃

)(
2iq

2iq + θ̃

)
−

(
θ̃

2iq + θ̃

)(
2iq

2iq − θ̃

)
, (2.39)

P−qQq + PqQ−q = 0. (2.40)

In addition, it is clear that
|Pq|2 + |Qq|2 = 1. (2.41)

This should be no surprise since, as stated before, the P and Q coefficients correspond to
reflection and transmission amplitudes. Finally, as we will show in Section 7,∑

σ∈{L,R}

(δSσPq + (1− δSσ)Qq)
(
δS′σP

∗
q + (1− δS′σ)Q

∗
q

)
= δSS′ . (2.42)



3 Orthogonality

We want to verify the orthogonality of the Klein-Gordon-θ̃ modes. That is, we want to
compute 〈

Φq
L

∣∣Φk
L

〉
,
〈
Φq

R

∣∣Φk
R

〉
,
〈
Φq

R

∣∣Φk
L

〉
, (3.1)

where the inner product ⟨·|·⟩ is defined as

⟨f |g⟩ ≡
∫ ∞

−∞
dzf ∗(z)g(z). (3.2)

For our purpose, the following relations will be useful. We define the quantity

αqk ≡ (2iq − θ̃)(2ik + θ̃), (3.3)

that allows us to write

−Q∗
qQk − P ∗

q Pk =
θ̃2 + 4kq

αqk

, Pk − P ∗
q = −2iθ̃(k + q)

αqk

, (3.4)

−
(
Q∗

qPk + P ∗
q Qk

)
=

2iθ̃(q − k)

αqk

, Qk −Q∗
q = −

2iθ̃(k + q)

αqk

. (3.5)

The following equations are proven in Appendix C:∫ ∞

−∞
dzH(z)e±iωz = ±iP

(
1

ω

)
+ πδ(ω), (3.6)∫ ∞

−∞
dzH(−z)e±iωz = ∓iP

(
1

ω

)
+ πδ(ω). (3.7)

where P denotes the Cauchy principal value.

3.1 Product of equal modes

We now calculate the inner product〈
Φq

L

∣∣Φk
L

〉
=

∫ ∞

−∞
dzΦq∗

L (z)Φk
L(z) (3.8)

=

∫ ∞

−∞
dz (H(−z)Φq∗

1L +H(z)Φq∗
2L)
(
H(−z)Φk

1L +H(z)Φk
2L

)
(3.9)

=

∫ ∞

−∞
dz
[
H(−z)Φq∗

1LΦ
k
1L +H(z)Φq∗

2LΦ
k
2L

]
(3.10)

=

∫ ∞

−∞
dzH(−z)ei(k−q)z + Pk

∫ ∞

−∞
dzH(−z)e−i(q+k)z

+P ∗
q

∫ ∞

−∞
dzH(−z)ei(q+k)z + P ∗

q Pk

∫ ∞

−∞
dzH(−z)ei(q−k)z

+Q∗
qQk

∫ ∞

−∞
dzH(z)ei(k−q)z. (3.11)
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For now, we ignore the x and y dependence because the respective integrals directly give
the Dirac delta. From Eqs. (3.6) and (3.7) it follows that

〈
Φq

L

∣∣Φk
L

〉
=

[
−iP

(
1

k − q

)
+ πδ(k − q)

]
+ Pk

[
iP

(
1

q + k

)
+ πδ(k + q)

]
+ P ∗

q

[
−iP

(
1

q + k

)
+ πδ(k + q)

]
+ P ∗

q Pk

[
−iP

(
1

q − k

)
+ πδ(q − k)

]
+Q∗

qQk

[
iP

(
1

k − q

)
+ πδ(k − q)

]
.

(3.12)

Firstly, the terms that contain δ(k + q) vanish because q and k are both positive by defini-
tion. Secondly, we know that P (x) = −P (−x). With this in mind, we now write〈

Φq
L

∣∣Φk
L

〉
= (δ(k − q) term) + (p.p.), (3.13)

where (p.p) denotes the principal part. Thus,

(p.p.) =
[
1− P ∗

q Pk −Q∗
qQk

]
iP

(
1

q − k

)
+
[
Pk − P ∗

q

]
iP

(
1

q + k

)
. (3.14)

On the other hand,
1

q − k
=

q + k

q2 − k2
,

1

q + k
=

q − k

q2 − k2
. (3.15)

By virtue of Eq. (3.4),

(p.p.) =
[
1− P ∗

q Pk −Q∗
qQk

]
iP

(
1

q2 − k2
(q + k)

)
+
[
Pk − P ∗

q

]
iP

(
1

q2 − k2
(q − k)

)
(3.16)

= iP

(
1

q2 − k2

[(
1 +

θ̃2 + 4kq

αqk

)
(q + k)−

(
2iθ̃(q + k)

αqk

)
(q − k)

])
(3.17)

= iP

(
1

q − k

[(
1 +

θ̃2 + 4kq

αqk

)
−

(
2iθ̃

αqk

)
(q − k)

])
(3.18)

= iP

(
1

αqk(q − k)

[
αqk + θ̃2 + 4kq − 2iθ̃(q − k)

])
(3.19)

= iP

(
1

αqk(q − k)

[
(2iq − θ̃)(2ik + θ̃) + θ̃2 + 4kq − 2iθ̃(q − k)

])
= 0. (3.20)

Thus, 〈
Φq

L

∣∣Φk
L

〉
= (δ(k − q) terms), (3.21)

which ensures the orthogonality of the left modes. More explicitly,〈
Φq

L

∣∣Φk
L

〉
=
[
1 + P ∗

q Pk +Q∗
qQk

]
πδ(k − q) =

[
1 + |Pq|2 + |Qq|2

]
πδ(k − q). (3.22)
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However,

|Pq|2 + |Qq|2 =
θ̃2

4q2 + θ̃2
+

4q2

4q2 + θ̃2
= 1. (3.23)

With this, we conclude that 〈
Φq

L

∣∣Φk
L

〉
= 2πδ(k − q). (3.24)

We still need to verify the orthogonality of the right modes. To do so, we recall that
Φq

R(z) = Φq
L(−z), which leads us to〈

Φq
R

∣∣Φk
R

〉
=

∫ ∞

−∞
dzΦq∗

R (z)Φk
R(z) =

∫ ∞

−∞
dzΦq∗

L (−z)Φk
L(−z) (3.25)

=

∫ ∞

−∞
dzΦq∗

L (z)Φk
L(z) =

〈
Φq

L

∣∣Φk
L

〉
. (3.26)

3.2 Product of different modes

We proceed to compute the inner product〈
Φq

R

∣∣Φk
L

〉
=

∫ ∞

−∞
dzΦq∗

R (z)Φk
L(z) (3.27)

=

∫ ∞

−∞
dz (H(−z)Φq∗

1R +H(z)Φq∗
2R)
(
H(−z)Φk

1L +H(z)Φk
2L

)
(3.28)

=

∫ ∞

−∞
dz
[
H(−z)Φq∗

1RΦ
k
1L +H(z)Φq∗

2RΦ
k
2L

]
(3.29)

= Q∗
q

∫ ∞

−∞
dzH(−z)ei(q+k)z +Q∗

qPk

∫ ∞

−∞
dzH(−z)ei(q−k)z

+Qk

∫ ∞

−∞
dzH(z)ei(q+k)z + P ∗

q Qk

∫ ∞

−∞
dzH(z)ei(k−q)z (3.30)

= Q∗
q

[
−iP

(
1

q + k

)
+ πδ(k + q)

]
+Q∗

qPk

[
−iP

(
1

q − k

)
+ πδ(q − k)

]
+Qk

[
iP

(
1

q + k

)
+ πδ(k + q)

]
+ P ∗

q Qk

[
iP

(
1

k − q

)
+ πδ(k − q)

]
.(3.31)

Since q and k are both positive, δ(q + k) vanishes. We group in two terms as before:〈
Φq

R

∣∣Φk
L

〉
=

([
Q∗

qPk + P ∗
q Qk

]
πδ(k − q)

)
+

([
Qk −Q∗

q

]
iP

(
1

q + k

)
−
[
Q∗

qPk + P ∗
q Qk

]
iP

(
1

q − k

))
. (3.32)

From the expressions of Eq. (3.5), it follows that

〈
Φq

R

∣∣Φk
L

〉
=

([
2iθ̃(k − q)

αqk

]
πδ(k − q)

)

+

([
−2iθ̃(q + k)

αqk

]
iP

(
1

q + k

)
+

[
2iθ̃(q − k)

αqk

]
iP

(
1

q − k

))
. (3.33)
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The term proportional to (k − q)δ(k − q) vanishes, so that

〈
Φq

R

∣∣Φk
L

〉
=

2iθ̃

αqk

(
−(q + k)iP

(
1

q + k

)
+ (q − k)iP

(
1

q − k

))
(3.34)

= iP

(
(2iθ̃)

αqk(q2 − k2)
[−(q + k)(q − k) + (q − k)(q + k)]

)
= 0. (3.35)

Thus, we conclude 〈
Φq

R

∣∣Φk
L

〉
= 0. (3.36)

These products are condensed into a single expression:〈
Φq

S

∣∣Φk
S′

〉
= 2πδ(k − q)δSS′ , (3.37)

where S, S ′ ∈ {L,R}.

3.3 Other relevant products

With the previous results we can calculate the products〈
Φq∗

L

∣∣Φk
L

〉
,

〈
Φq∗

R

∣∣Φk
R

〉
,

〈
Φq∗

R

∣∣Φk
L

〉
. (3.38)

Since Φq∗
L (z) = Φ−q

L (z), we can easily calculate the first inner product of Eq. (3.38) by
modifying q → −q in Eq. (3.12):

〈
Φq∗

L

∣∣Φk
L

〉
=

[
−iP

(
1

k + q

)
+ πδ(k + q)

]
+ Pk

[
iP

(
1

−q + k

)
+ πδ(k − q)

]
+ Pq

[
iP

(
1

q − k

)
+ πδ(k − q)

]
+ PqPk

[
iP

(
1

q + k

)
+ πδ(−q − k)

]
+QqQk

[
iP

(
1

k + q

)
+ πδ(k + q)

]
.

(3.39)

As argued above, the terms involving δ(k + q) are null. The principal part is

(p.p.) = [1− PqPk −QqQk] iP

(
1

−q − k

)
+ [Pk − Pq] iP

(
1

−q + k

)
. (3.40)

This is equal to

iP

(
1

α−q,k(−q − k)

[
(−2iq − θ̃)(2ik + θ̃) + θ̃2 − 4kq − 2iθ̃(−q − k)

])
= 0. (3.41)

We conclude that 〈
Φq∗

L

∣∣Φk
L

〉
= (Pq + Pk)πδ(k − q) = Pq [2πδ(k − q)] , (3.42)

and so 〈
Φq∗

R

∣∣Φk
R

〉
= Pq [2πδ(k − q)] . (3.43)
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Equivalently, we calculate〈
Φq∗

R

∣∣Φk
L

〉
=
〈
Φ−q

R

∣∣Φk
L

〉
=Qq

[
iP

(
1

q − k

)
+ πδ(k − q)

]
+QqPk

[
iP

(
1

q + k

)
+ πδ(q + k)

]
+Qk

[
−iP

(
1

q − k

)
+ πδ(k − q)

]
+ PqQk

[
iP

(
1

k + q

)
+ πδ(k + q)

]
.

(3.44)

The terms involving δ(k + q) vanish by definition, and the principal part is null, so that〈
Φq∗

R

∣∣Φk
L

〉
= (Qq +Qk)πδ(k − q) = Qq[2πδ(k − q)]. (3.45)

These products can be condensed into a single expression:〈
Φq∗

S

∣∣Φk
S′

〉
= [δSS′Pq + (1− δSS′)Qq]2πδ(k − q) = [Qq − δSS′ ]2πδ(k − q). (3.46)

where S, S ′ ∈ {L,R}.

3.4 General expression

We include the x and y directions by defining the functions

νL(x,k) ≡ Φk3

L (x3)ei(k
1x2+k2x2), νR(x,k) ≡ Φk3

R (x3)ei(k
1x1+k2x2), (3.47)

and redefining the inner product as

⟨f |g⟩ ≡
∫ ∞

−∞
d3xf ∗(x)g(x). (3.48)

From this we have

⟨νS|νS′⟩ = (2π)3δ(3)(k − k′)δSS′ ,

⟨ν∗
S|νS′⟩ = [Qk3 − δSS′ ](2π)3δ(k3 − k′3)δ(2)(k⊥ + k′

⊥),
(3.49)

where k is the 3D wave vector and k⊥ ≡ (k1, k2) ∈ R2.



4 Completeness

We will now see that, under the appropriate conditions, the left and right modes form a
complete basis. To do this, we calculate the integral

1

2π

∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

R(z)Φ
k∗
R (z′)

)
. (4.1)

Using that Φk
R(z) = Φk

L(−z), this is

1

2π

∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

L(−z)Φk∗
L (−z′)

)
. (4.2)

From the definition of the left modes, namely

Φk
L(z) = H(−z)

(
eikz + Pke

−ikz
)
+H(z)

(
Qke

ikz
)
, (4.3)

we have

Φk
L(z)Φ

k∗
L (z′) =

[
H(−z)

(
eikz + Pke

−ikz
)
+H(z)

(
Qke

ikz
)]

×
[
H(−z′)

(
e−ikz′ + P−ke

ikz′
)
+H(z′)

(
Q−ke

−ikz′
)]

,
(4.4)

where we have used Q∗
k = Q−k and P ∗

k = P−k.
Expanding,

Φk
L(z)Φ

k∗
L (z′) = H(−z)H(−z′)

(
eik(z−z′) + P−ke

ik(z+z′) + Pke
−ik(z+z′) + |Pk|2eik(z

′−z)
)

+H(z)H(−z′)
(
Qke

ik(z−z′) + P−kQke
ik(z+z′)

)
+H(−z)H(z′)

(
Q−ke

ik(z−z′) + PkQ−ke
−ik(z+z′)

)
+H(z)H(z′)

(
|Qk|2eik(z−z′)

)
,

(4.5)

and changing signs,

Φk
L(−z)Φk∗

L (−z′) = H(z)H(z′)
(
eik(z

′−z) + P−ke
−ik(z+z′) + Pke

ik(z+z′) + |Pk|2eik(z−z′)
)

+H(−z)H(z′)
(
Qke

ik(z′−z) + P−kQke
−ik(z+z′)

)
+H(z)H(−z′)

(
Q−ke

ik(z′−z) + PkQ−ke
ik(z+z′)

)
+H(−z)H(−z′)

(
|Qk|2eik(z

′−z)
)
.

(4.6)
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Adding term by term, we arrive at

Φk
L(z)Φ

k∗
L (z′) + Φk

L(−z)Φk∗
L (−z′)

= H(z)H(z′)
(
eik(z

′−z) + P−ke
−ik(z+z′) + Pke

ik(z+z′) + |Pk|2eik(z−z′) + |Qk|2eik(z−z′)
)

+H(−z)H(z′)
(
Qke

ik(z′−z) + P−kQke
−ik(z+z′) +Q−ke

ik(z−z′) + PkQ−ke
−ik(z+z′)

)
+H(z)H(−z′)

(
Q−ke

ik(z′−z) + PkQ−ke
ik(z+z′) +Qke

ik(z−z′) + P−kQke
ik(z+z′)

)
+H(−z)H(−z′)

(
|Qk|2eik(z

′−z) + eik(z−z′) + P−ke
ik(z+z′) + Pke

−ik(z+z′) + |Pk|2eik(z
′−z)
)
.

(4.7)

Using P−kQk + PkQ−k = 0 and |Qk|2 + |Pk|2 = 1, as stated in Eqs. (2.40) and (2.41), the
expression reduces to

Φk
L(z)Φ

k∗
L (z′) + Φk

L(−z)Φk∗
L (−z′)

= H(z)H(z′)
(
eik(z

′−z) + eik(z−z′) + P−ke
−ik(z+z′) + Pke

ik(z+z′)
)

+H(−z)H(z′)
(
Qke

ik(z′−z) +Q−ke
ik(z−z′)

)
+H(z)H(−z′)

(
Q−ke

ik(z′−z) +Qke
ik(z−z′)

)
+H(−z)H(−z′)

(
eik(z

′−z) + eik(z−z′) + P−ke
ik(z+z′) + Pke

−ik(z+z′)
)
.

(4.8)

Integrating k from 0 to∞, we note that∫ ∞

0

dkQ−ke
ik(z−z′) =

∫ 0

−∞
dkQke

ik(z′−z),

∫ ∞

0

dkP−ke
ik(z+z′) =

∫ 0

−∞
dkPke

−ik(z′+z), (4.9)

and likewise, ∫ ∞

0

dkeik(z
′−z) =

∫ 0

−∞
dkeik(z−z′). (4.10)

This allows us to write∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

L(−z)Φk∗
L (−z′)

)
= H(z)H(z′)

∫ ∞

−∞
dk
(
eik(z−z′) + Pke

ik(z+z′)
)
+H(−z)H(z′)

∫ ∞

−∞
dk
(
Qke

ik(z′−z)
)

+H(z)H(−z′)
∫ ∞

−∞
dk
(
Qke

ik(z−z′)
)
+H(−z)H(−z′)

∫ ∞

−∞
dk
(
eik(z−z′) + Pke

−ik(z+z′)
)
.

(4.11)

On the other hand, note that we can summarize the second and third terms of Eq. (4.11)
in a single expression:

H(−z)H(z′)

∫ ∞

−∞
dk
(
Qke

ik(z′−z)
)
+H(z)H(−z′)

∫ ∞

−∞
dk
(
Qke

ik(z−z′)
)

=

∫ ∞

−∞
dk
(
H(−z)H(z′)Qke

ik(z′−z) +H(z)H(−z′)Qke
ik(z−z′)

)
.

(4.12)
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Due to the Heaviside functions, in the first term only the cases z′ > 0 and z < 0 are
relevant, so z′ − z = |z′ − z|. The second term survives only if z > 0 and z′ < 0, so
z − z′ = |z′ − z|. Thus, we can condense the previous equation as

H(−z)H(z′)

∫ ∞

−∞
dk
(
Qke

ik(z′−z)
)
+H(z)H(−z′)

∫ ∞

−∞
dk
(
Qke

ik(z−z′)
)

=

∫ ∞

−∞
dk (H(−z)H(z′) +H(z)H(−z′))Qke

ik|z−z′| (4.13)

=

∫ ∞

−∞
dkH(−zz′)Qke

ik|z−z′|, (4.14)

where we used that H(−z)H(z′) +H(z)H(−z′) = H(−zz′) (that is, the expression is non-
zero only if z and z′ have different signs). Similarly, by taking the expression proportional
to Pk in the first and fourth terms of Eq. (4.11), and using H(z)H(z′) + H(−z)H(−z′) =
H(zz′), we get

H(z)H(z′)

∫ ∞

−∞
dk
(
Pke

ik(z′+z)
)
+H(−z)H(−z′)

∫ ∞

−∞
dk
(
Pke

−ik(z+z′)
)

=

∫ ∞

−∞
dkH(zz′)Pke

ik|z+z′|,

(4.15)

which allows to abbreviate the integral in a convenient way as∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

L(−z)Φk∗
L (−z′)

)
=

∫ ∞

−∞
dkH(zz′)eik(z−z′) +

∫ ∞

−∞
dkH(−zz′)Qke

ik|z−z′| +

∫ ∞

−∞
dkH(zz′)Pke

ik|z+z′|.

(4.16)

From the first term we see that,∫ ∞

−∞
dkH(zz′)eik(z−z′) = H(zz′)2πδ(z − z′) = 2πδ(z − z′), (4.17)

where we used that the Dirac delta function is non-zero only when z = z′, in which case z
and z′ have the same sign and H(zz′) = 1.

The remaining term, namely∫ ∞

−∞
dkH(−zz′)Qke

ik|z−z′| +

∫ ∞

−∞
dkH(zz′)Pke

ik|z+z′|, (4.18)

requires a more careful treatment. First, let us recall that 1 + Pk = Qk, from which we
obtain ∫ ∞

−∞
dkH(−zz′)Qke

ik|z−z′| +

∫ ∞

−∞
dkH(zz′)Pke

ik|z+z′|

=

∫ ∞

−∞
dkH(−zz′)eik|z−z′| +

∫ ∞

−∞
dk
(
H(−zz′)eik|z−z′| +H(zz′)eik|z+z′|

)
Pk (4.19)

=

∫ ∞

−∞
dk
(
H(−zz′)eik|z−z′| +H(zz′)eik|z+z′|

)
Pk. (4.20)
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The last equality is due to the fact that∫ ∞

−∞
dkH(−zz′)eik|z−z′| = H(−zz′)2πδ(|z − z′|), (4.21)

where H(−zz′) is null whenever z and z′ have the same sign, particularly when z = z′. By
using the definition Pk = − θ̃

2ik+θ̃
, this integral results in∫ ∞

−∞
dk
(
H(−zz′)eik|z−z′| +H(zz′)eik|z+z′|

)
Pk

=
θ̃

2
i

∫ ∞

−∞
dk
(
H(−zz′)eik|z−z′| +H(zz′)eik|z+z′|

) 1

k − θ̃i/2
(4.22)

=
θ̃

2
i

(
H(−zz′)

∫ ∞

−∞
dk

eik|z−z′|

k − θ̃i/2
+H(zz′)

∫ ∞

−∞
dk

eik|z+z′|

k − θ̃i/2

)
. (4.23)

Since |z + z′| and |z − z′| are positive, to do the integral we must choose a semicircular
contour that encloses the upper half of the complex plane. This ensures that

ik|ζ| → i(Re(k) + i Im(k))|ζ| = iRe(k)|ζ| − Im(k)|ζ| (4.24)

becomes zero when the radius of the semicircle tends to infinity. Moreover, if θ̃ < 0 then
the chosen contour encloses no poles and the integral vanishes. Alternatively, if θ̃ > 0,
then

θ̃

2
i

(
H(−zz′)

∫ ∞

−∞
dk

eik|z−z′|

k − θ̃i/2
+H(zz′)

∫ ∞

−∞
dk

eik|z+z′|

k − θ̃i/2

)
= −θ̃π

(
H(−zz′)e−

θ̃
2
|z−z′| +H(zz′)e−

θ̃
2
|z+z′|

)
.

(4.25)

Notice that the first term can be analyzed by cases: (i) z > 0 and z′ < 0, or (ii) z < 0 and
z′ > 0. In any of them, the exponent is − θ̃

2
(|z| + |z′|). Analogously, the second term is

non-zero when (i) z > 0 and z′ > 0, or (ii) z < 0 and z′ < 0. Once again, the exponent is
− θ̃

2
(|z|+ |z′|), so the whole expression reduces to

−θ̃πe−
θ̃
2
(|z|+|z′|). (4.26)

From now on, we restrict ourselves to the case where

θ̃ < 0, (4.27)

since it ensures the completeness relation of the normal modes:∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

R(z)Φ
k∗
R (z′)

)
= 2πδ(z − z′). (4.28)

Notably, as we will see in a further section, the condition θ̃ < 0 is necessary to obtain a
positive-definite Hamiltonian.

Recalling the definition given in Eq. (3.47), the completeness relation is read as∑
S∈{L,R}

∫
k3>0

d3k[νS(x,k)ν
∗
S(x

′,k)] = (2π)3δ(3)(x− x′). (4.29)



5 Quantization

We have found the functions

Φk3

L (x3) =
(
1 + Pk3H(x3)

)
eik

3x3

+ Pk3H(−x3)e−ik3x3

, (5.1)

Φk3

R (x3) =
(
1 + Pk3H(−x3)

)
e−ik3x3

+ Pk3H(x3)eik
3x3

, (5.2)

that describe the z dependence of the single mode solutions to the Klein-Gordon-θ̃ equa-
tion. A consistency check is that in the limit θ̃ → 0 we have Pk3 → 0, so

Φk3

L (x3)→ eik
3x3

, Φk3

R (x3)→ e−ik3x3

. (5.3)

This modifies the modes accordingly:

lim
θ̃→0

νS(x,k) = e±ik3x3

ei(k⊥·x⊥), (5.4)

where the positive (negative) sign corresponds to L (R) modes. In this limit, the functions
become plane waves, which are solutions to the usual Klein-Gordon equation.

The most general solution to the Klein-Gordon-θ̃ equation is a linear combination of
normal modes:

Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
aS(k)νS(x,k)e

−iEkt + a∗S(k)ν
∗
S(x,k)e

iEkt
]

(5.5)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
aS(k)νS(x,k)e

−iEkt + c.c.
]
. (5.6)

We quantize by imposing the commutation relations[
aL(k), a

†
L(k

′)
]

= (2π)3δ(3)(k − k′), (5.7)[
aR(k), a

†
R(k

′)
]

= (2π)3δ(3)(k − k′), (5.8)[
aL(k), a

†
R(k

′)
]

= 0 =
[
aR(k), a

†
L(k

′)
]
, (5.9)

[aS(k), aS′(k′)] = 0 =
[
a†S(k), a

†
S′(k

′)
]
. (5.10)

More succinctly, [
aS(k), a

†
S′(k

′)
]
= (2π)3δ(3)(k − k′)δSS′ ,

[aS(k), aS′(k′)] = 0 =
[
a†S(k), a

†
S′(k

′)
]
.

(5.11)

The canonical momentum of the field Φ is ΠΦ = ∂L
∂Φ̇

= Φ̇. We will derive an equivalent
form of the commutation relations that involves the operators Φ and Φ̇. Since the field
expansion in terms of normal modes is given by

Φ(t,x) =

∫
k3>0

d3k

(2π)3
1√
2Ek

(
e−iEkt [aL(k)νL(x,k) + aR(k)νR(x,k)] + h.c.

)
, (5.12)
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its canonical momentum is merely

Φ̇(t,x′) = −i
∫
k′3>0

d3k′

(2π)3

√
Ek′

2

(
e−iEk′ t [aL(k

′)νL(x
′,k′) + aR(k

′)νR(x
′,k′)]− h.c.

)
. (5.13)

We want to compute the following commutator:

[
Φ(t,x), Φ̇(t,x′)

]
=

i

2

∫
k3,k′3>0

d3kd3k′

(2π)6

√
Ek′

Ek

(
[aL(k), a

†
L(k

′)]νL(x,k)ν
∗
L(x

′,k′)e−i(Ek−Ek′ )t

− [a†L(k), aL(k
′)]ν∗

L(x,k)νL(x
′,k′)ei(Ek−Ek′ )t

+ [aR(k), a
†
R(k

′)]νR(x,k)ν
∗
R(x

′,k′)e−i(Ek−Ek′ )t

− [a†R(k), aR(k
′)]ν∗

R(x,k)νR(x
′,k′)ei(Ek−Ek′ )t

)
.

(5.14)

From the relations of Eq. (5.11), we see that

[
Φ(t,x), Φ̇(t,x′)

]
=

i

2

∫
k3,k′3>0

d3kd3k′

(2π)3

√
Ek′

Ek

(
δ(3)(k − k′)[νL(x,k)ν

∗
L(x

′,k′)e−i(Ek−Ek′ )t + h.c.]

+δ(3)(k − k′)[νR(x,k)ν
∗
R(x

′,k′)e−i(Ek−Ek′ )t + h.c.]
)

(5.15)

=
i

2

∫
k3>0

d3k

(2π)3

(
[νL(x,k)ν

∗
L(x

′,k) + νR(x,k)ν
∗
R(x

′,k)]

+[ν∗L(x,k)νL(x
′,k) + ν∗R(x,k)νR(x

′,k)]

)
. (5.16)

Finally, by using the completeness relation of the normal modes we get

[
Φ(t,x), Φ̇(t,x′)

]
= iδ(3)(x− x′). (5.17)

Now we will find an expression for the creation and annihilation operators as inner
products involving the field operator Φ(t,x), its canonical momentum Φ̇(t,x), and the
normal modes νS(x,k)e−iEkt. We see that

iΦ̇(t,x) + Ek′Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3

[(√
Ek

2
+

Ek′√
2Ek

)
aS(k)e

−iEktνS(x,k)

+

(
−
√

Ek

2
+

Ek′√
2Ek

)
a†S(k)e

iEktν∗
S(x,k)

]
.

(5.18)
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Thus, by means of Eq. (3.49),∫
d3xeiEk′ tν∗S′(x,k′)

(
iΦ̇(t,x) + Ek′Φ(t,x)

)
=

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3

[(√
Ek

2
+

Ek′√
2Ek

)
aS(k)e

i(Ek′−Ek)t

∫
d3xν∗S′(x,k′)νS(x,k)

+

(
−
√

Ek

2
+

Ek′√
2Ek

)
a†S(k)e

i(Ek′+Ek)t

∫
d3xν∗S′(x,k′)ν∗S(x,k)

]
(5.19)

=
∑

S∈{L,R}

∫
k3>0

d3k

[(√
Ek

2
+

Ek′√
2Ek

)
aS(k)e

i(Ek′−Ek)tδ(3)(k − k′)δSS′

+

(
−
√

Ek

2
+

Ek′√
2Ek

)
a†S(k)e

i(Ek′+Ek)t[Qk3 − δSS′ ]δ(k3 − k′3)δ(2)(k⊥ + k′
⊥)

]
.(5.20)

Since the quantity
(
−
√

Ek

2
+

Ek′√
2Ek

)
δ(k3 − k′3)δ(2)(k⊥ + k′

⊥) vanishes, we are left with

∫
d3xeiEk′ tν∗

S′(x,k′)
(
iΦ̇(t,x) + Ek′Φ(t,x)

)
=

∑
S∈{L,R}

∫
k3>0

d3k

(√
Ek

2
+

Ek′√
2Ek

)
aS(k)e

i(Ek′−Ek)tδ(3)(k − k′)δSS′ (5.21)

=
√
2Ek′aS′(k′). (5.22)

Consequently, the annihilation operator aS(k) can be computed as

aS(k) =
1√
2Ek

〈
νS(x,k)e

−iEkt
∣∣∣iΦ̇(t,x) + EkΦ(t,x)

〉
, (5.23)

with S ∈ {L,R} (the analogous expression for the creation operator a†S(k) corresponds to
the Hermitian conjugate of Eq. (5.23)). In the limit θ̃ → 0 we have

aL(k) =
1√
2Ek

〈
ei(k

3x3+k⊥·x⊥)e−iEkt
∣∣∣iΦ̇(t,x) + EkΦ(t,x)

〉
, (5.24)

aR(k) =
1√
2Ek

〈
ei(−k3x3+k⊥·x⊥)e−iEkt

∣∣∣iΦ̇(t,x) + EkΦ(t,x)
〉
. (5.25)

Allowing k3 to take negative values, we can express these two operators as one:

a(k) =
1√
2Ek

〈
e−ik·x

∣∣∣iΦ̇(t,x) + EkΦ(t,x)
〉
, (5.26)

where k = (Ek,k) and x = (t,x). Thus, in the limit θ̃ → 0 we recover the expression for
the usual Klein-Gordon field.



6 Energy-momentum tensor

By definition, the energy-momentum tensor has components

T µ
ν ≡

∂L
∂(∂µΦ)

∂νΦ− Lδµν . (6.1)

In our case, the Lagrangian is given by

L =
1

2
∂µΦ∂

µΦ− m2

2
Φ2 − θ(x3)Φ∂3Φ, (6.2)

from which we obtain

∂L
∂(∂µΦ)

=
1

2

[
∂(∂ρΦ)

∂(∂µΦ)
∂ρΦ +

∂(∂ρΦ)

∂(∂µΦ)
∂ρΦ

]
− θ(x3)Φ

∂(∂3Φ)

∂(∂µΦ)
(6.3)

= δµρ∂
ρΦ− θ(x3)δµ3Φ = ∂µΦ− θ(x3)δµ3Φ. (6.4)

Thus, we get

T µ
ν =

(
∂µΦ∂νΦ− θ(x3)δµ3Φ∂νΦ

)
−
(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2 − θ(x3)Φ∂3Φ

)
δµν . (6.5)

Note that the term which breaks the symmetry of T µν under the exchange of indices
(µ↔ ν) is −θ(x3)δµ3Φ∂

νΦ, or equivalently θ(x3)ηµ3Φ∂νΦ, since the metric tensor is (ηµν) =
diag(1,−1,−1,−1).

We separate the energy-momentum tensor in two contributions T µ
ν = (T 0)µν +(T θ)µν ,

where:

(T 0)µν ≡ ∂µΦ∂νΦ−
(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2

)
δµν ,

(T θ)µν ≡ θ(x3)Φ(∂3Φδ
µ
ν − ∂νΦδ

µ
3 ).

(6.6)

It is easily shown that

∂µ(T
0)µν = ∂µ(∂

µΦ∂νΦ)− ∂µ

(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2

)
δµν (6.7)

= (∂2Φ)(∂νΦ) + (∂µΦ)(∂µ∂νΦ)− ∂ν

(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2

)
(6.8)

= (−m2 + θ̃δ(z))Φ∂νΦ + (∂µΦ)(∂µ∂νΦ)−
[
(∂ν∂ρΦ)(∂

ρΦ)−m2Φ∂νΦ
]

(6.9)

= θ̃δ(x3)Φ∂νΦ. (6.10)

In addition,

∂µ(T
θ)µν = ∂µ

[
θ(x3)Φ(∂3Φδ

µ
ν − ∂νΦδ

µ
3 )
]

(6.11)

= ∂ν
[
θ(x3)Φ∂3Φ

]
− ∂3

[
θ(x3)Φ∂νΦ

]
(6.12)

=
(
∂ν
[
θ(x3)∂3Φ

]
− ∂3

[
θ(x3)∂νΦ

])
Φ (6.13)

=
([
∂νθ(x

3)
]
∂3Φ−

[
∂3θ(x

3)
]
∂νΦ

)
Φ (6.14)

=
[
∂νθ(x

3)
]
Φ∂3Φ− θ̃δ(x3)Φ∂νΦ. (6.15)
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Finally, we arrive at
∂µT

µ
ν =

[
∂νθ(x

3)
]
Φ∂3Φ. (6.16)

If ν = 0, 1, 2, then ∂µT
µ
ν = 0, which implies that energy and momenta in the x and y

directions are conserved quantities. Nonetheless, ∂µT
µ
3 = θ̃δ(x3)Φ∂3Φ = θ̃

2
δ(x3)∂3Φ

2, so
the third component of linear momentum is not conserved. This is a clear consequence of
the presence of the interface, which breaks homogeneity in the direction of the z axis.

6.1 Symmetrization

6.1.1 Belinfante-Rosenfeld tensor

We introduce the Belinfante-Rosenfeld tensor, which has components

T µν
B ≡ T µν +

1

2
∂λ(S

µνλ + Sνµλ − Sλνµ), (6.17)

where Sλµν satisfies
Tµν − Tνµ = −∂λSλ

µν . (6.18)

From the previous equation it is clear that Sλ
µν must be antisymmetric under the exchange

of indices (µ ↔ ν). The Belinfante-Rosenfeld tensor is a modification to the energy-
momentum tensor that is constructed to be symmetric and to obey the same conservation
law, i.e., ∂µT

µν
B = ∂µT

µν . To verify the first of these assertions we calculate

T µν
B − T νµ

B =

[
T µν +

1

2
∂λ(S

µνλ + Sνµλ − Sλνµ)

]
−
[
T νµ +

1

2
∂λ(S

νµλ + Sµνλ − Sλµν)

]
= (T µν − T νµ)− 1

2
(∂λS

λνµ − ∂λS
λµν) (6.19)

= −∂λSλµν + ∂λS
λµν = 0, (6.20)

thus concluding that T µν
B = T νµ

B . To prove the second assertion, we see that

∂µ∂λ(S
µνλ + Sνµλ − Sλνµ) = ∂µ∂λ(S

µνλ − Sλνµ), (6.21)

since the derivatives ∂µ and ∂λ commute and Sνµλ = −Sνλµ, so that ∂µ∂λSνµλ = 0. We can
expand the expression and rename repeated indices

∂µ∂λ(S
µνλ − Sλνµ) = ∂µ∂λS

µνλ − ∂µ∂λS
λνµ (6.22)

= ∂µ∂λS
µνλ − ∂λ∂µS

µνλ = 0. (6.23)

In consecuence,

∂µT
µν
B = ∂µT

µν +
1

2
∂µ∂λ(S

µνλ + Sνµλ − Sλνµ) → ∂µT
µν
B = ∂µT

µν . (6.24)

Hence, we have proved both properties:

T µν
B = T νµ

B and ∂µT
µν = ∂µT

µν
B . (6.25)
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Let
Sλ

µν ≡ x3θ(x3)(δλνΦ∂µΦ− δλµΦ∂νΦ). (6.26)

Using that

∂3(x
3θ(x3)) =

(
∂3x

3
)
θ(x3) + x3∂3θ(x

3) = θ(x3) + x3θ̃δ(x3) = θ(x3), (6.27)

we have

∂λS
λ
µν = ∂ρ

[
x3θ(x3)

]
(δλνΦ∂µΦ− δλµΦ∂νΦ) + x3θ(x3)∂λ

[
δλνΦ∂µΦ− δλµΦ∂νΦ

]
(6.28)

= δ3λθ(x
3)(δλνΦ∂µΦ− δλµΦ∂νΦ) + x3θ(x3) [∂ν(Φ∂µΦ)− ∂µ(Φ∂νΦ)] (6.29)

= θ(x3)(δ3νΦ∂µΦ− δ3µΦ∂νΦ)

+x3θ(x3) [(∂νΦ)(∂µΦ) + Φ∂ν∂µΦ− (∂µΦ)(∂νΦ)− Φ∂µ∂νΦ] (6.30)

= θ(x3)(δ3νΦ∂µΦ− δ3µΦ∂νΦ) (6.31)

= θ(x3)(ηµ3Φ∂νΦ− ην3Φ∂µΦ). (6.32)

On the other hand,
Tµν − Tνµ = −θ(x3)(ηµ3Φ∂νΦ− ην3Φ∂µΦ), (6.33)

so that Sµνλ certainly satisfies Eq. (6.18): Tµν − Tνµ = −∂λSλ
µν . Moreover, it is straightfor-

ward to see that, in this particular case,

Sµνλ − Sλνµ = Sνµλ, (6.34)

giving rise to
1

2
(Sµνλ + Sνµλ − Sλνµ) = Sνµλ. (6.35)

This simplifies the expression for the symmetrized tensor to

T µν
B = T µν + ∂λS

µνλ. (6.36)

Therefore, the symmetrized tensor is

T µν
B = T µν + ∂λS

νµλ where

Sνµλ = x3θ(x3)(ηνλΦ∂µΦ− ηνµΦ∂λΦ) and T µν = (T 0)µν + (T θ)µν ,
(6.37)

along with the definitions of Eq. (6.6).
We will find an explicit expression for T µν

B , for which we calculate

∂λS
νµλ = ∂λ

[
x3θ(x3)

]
(ηνλΦ∂µΦ− ηνµΦ∂λΦ) + x3θ(x3)∂λ(η

νλΦ∂µΦ− ηνµΦ∂λΦ) (6.38)

= δ3λθ(x
3)(ηνλΦ∂µΦ− ηνµΦ∂λΦ) + x3θ(x3)(∂ν [Φ∂µΦ]− ηνµ∂λ[Φ∂

λΦ]) (6.39)
= θ(x3)

{
(ην3Φ∂µΦ− ηνµΦ∂3Φ) + x3(∂ν [Φ∂µΦ]− ηνµ∂Φ · ∂Φ− ηνµΦ∂2Φ)

}
. (6.40)

From the equation of motion,

x3(−ηνµΦ∂2Φ) = x3(ηνµm2Φ2 − ηνµθ̃δ(x3)Φ2) = x3ηνµm2Φ2, (6.41)
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because x3δ(x3) = 0. Thus,

∂λS
νµλ = θ(x3)

{
(ην3Φ∂µΦ− ηνµΦ∂3Φ) + x3(∂ν [Φ∂µΦ]− ηνµ(∂Φ)2 + ηνµm2Φ2)

}
(6.42)

= θ(x3)
{
ηµν(x3m2Φ2 − x3(∂Φ)2 − Φ∂3Φ) + ην3Φ∂µΦ+ x3∂ν [Φ∂µΦ]

}
(6.43)

= θ(x3)

{
ηµν(x3m2Φ2 − x3(∂Φ)2 − Φ∂3Φ) + x3∂µ∂ν

(
Φ2

2

)}
+θ(x3)ην3Φ∂µΦ. (6.44)

The first line of Eq. (6.44) remains the same under the exchange of indices (µ↔ ν), while
the term in the second line does not. Nonetheless, this last term adds to the quantity
θ(x3)ηµ3Φ∂νΦ, that breaks the symmetry of T µν , as stated right after Eq. (6.5), giving an
overall symmetric quantity.

We will see the explicit form of the tensors that add to give TB. The whole expression
for ∂λS

νµλ is proportional to θ(x3), so it can only affect terms that correspond to (T θ)µν ;
also, the tensor T 0 already satisfies (T 0)µν = (T 0)νµ. We get

T µν
B = (T 0)µν + (T θ)µν + ∂λS

νµλ,

(T 0)µν = ∂µΦ∂νΦ−
(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2

)
ηµν ,

(T θ)µν + ∂λS
νµλ = θ(x3)

{
Φ
(
ηµ3∂ν + ην3∂µ

)
Φ + x3

[
ηµν(m2Φ2 − (∂Φ)2) + ∂µ∂ν

(
Φ2

2

)]}
.

(6.45)

6.1.2 Equivalent Lagrangian

The relevant quantity to describe any physical system is the action: S =
∫
d4xL. Note the

following: ∫
d3xθ(x3)Φ∂3Φ =

∫
d3x

[
∂3(θ(x

3)Φ2)− Φ∂3(θ(x
3)Φ)

]
(6.46)

=

∫
d3x

[
−Φ∂3(θ(x3)Φ)

]
(6.47)

=

∫
d3x

[
−(∂3θ(x3))Φ2 − θ(x3)Φ∂3Φ

]
(6.48)

=

∫
d3x

[
−θ̃δ(x3)Φ2 − θ(x3)Φ∂3Φ

]
. (6.49)

From this, it is clear that ∫
d3xθ(x3)Φ∂3Φ =

∫
d3x

[
− θ̃

2
δ(x3)Φ2

]
. (6.50)

This means that we can redefine the Lagrangian as

L′ =
1

2
∂µΦ∂

µΦ− m2

2
Φ2 +

θ̃

2
δ(x3)Φ2, (6.51)
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without affecting any important results. This subtle distinction becomes relevant when
calculating the energy-momentum tensor, since now we obtain a symmetric form without
much effort:

T ′µ
ν =

∂L′

∂(∂µΦ)
∂νΦ− L′δµν (6.52)

= (∂µΦ∂νΦ)−

(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2 +

θ̃

2
δ(x3)Φ2

)
δµν . (6.53)

Once again, we can separate this expression as T ′µ
ν = (T ′0)µν + (T ′θ)µν , where

(T ′0)µν ≡ ∂µΦ∂νΦ−
(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2

)
δµν = (T 0)µν ,

(T ′θ)µν ≡ −
θ̃

2
δ(x3)Φ2δµν .

(6.54)

Let us recall that

∂µ(T
′0)µν = ∂µ(T

0)µν = θ̃δ(x3)Φ∂νΦ =
θ̃

2
δ(x3)∂νΦ

2. (6.55)

On the other hand,

∂µ(T
′θ)µν = − θ̃

2
δ(x3)∂νΦ

2 − θ̃

2
Φ2∂νδ(x

3), (6.56)

from which we get

∂µT
′µ
ν = − θ̃

2
Φ2∂νδ(x

3) = ∂ν

(
− θ̃

2
Φ2δ(x3)

)
+

θ̃

2
δ(x3)∂νΦ

2. (6.57)

This is not the same result that we obtained before, namely ∂µT
µ
3 =

θ̃
2
δ(x3)∂3Φ

2. Nonethe-
less, the expressions differ merely by a total derivative.

6.2 4-momentum operator

The 4-momentum operator is defined as

P ν ≡
∫

d3xT 0ν . (6.58)

It is clear that ∫
d3x(T 0ν

B − T 0ν) =

∫
d3x∂λS

ν0λ =

∫
d3x∂iS

ν0i. (6.59)

The last equality is due to the antisymmetry of Sνµλ. By the divergence theorem, the
volume integral becomes a surface integral and vanishes at infinity. Thus, it is irrelevant
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which tensor is chosen to define the 4-momentum. For simplicity we take the canonical
tensor, from which we obtain

H ≡ P 0 =

∫
d3x

[
(∂0Φ∂0Φ)−

(
1

2
∂ρΦ∂

ρΦ− m2

2
Φ2 − θ(x3)Φ∂3Φ

)]
(6.60)

=

∫
d3x

[
(∂0Φ∂0Φ)−

(
1

2
∂0Φ∂0Φ−

1

2
∂iΦ∂iΦ−

m2

2
Φ2 − θ(x3)Φ∂3Φ

)]
(6.61)

=

∫
d3x

[
1

2
(Φ̇)2 +

1

2
(∇Φ)2 + m2

2
Φ2 + θ(x3)Φ∂3Φ

]
. (6.62)

Likewise, for i = 1, 2, 3, we have

P i =

∫
d3xT 0i =

∫
d3xΦ̇∂iΦ. (6.63)

6.2.1 Hamiltonian

We separate the kinetic term of the Lagrangian into spatial and temporal components:

L =
1

2
Φ̇2 − 1

2
∂iΦ∂iΦ−

m2

2
Φ2 − θ(x3)Φ∂3Φ. (6.64)

The canonical momentum conjugate to the field is defined as

Π ≡ ∂L
∂Φ̇

= Φ̇. (6.65)

In this way, the Hamiltonian density acquires the form

H = ΠΦ̇− L (6.66)

= ΠΦ̇− 1

2
Φ̇2 +

1

2
∂iΦ∂iΦ +

m2

2
Φ2 + θ(x3)Φ∂3Φ (6.67)

=
1

2
(Φ̇)2 +

1

2
(∇Φ)2 + m2

2
Φ2 + θ(x3)Φ∂3Φ. (6.68)

This agrees with what was obtained in Eq. (6.62) by means of the energy-momentum
tensor.

We recall from Eq. (6.50) that∫
d3xθ(x3)Φ∂3Φ =

∫
d3x

[
− θ̃

2
δ(x3)Φ2

]
. (6.69)

Due to the delta function, this value becomes very large for x3 = 0, so if we want to obtain
a positive-definite Hamiltonian we should impose θ̃ < 0. This is consistent with what we
found when proving the completeness relation of the ingoing modes, where we restricted
ourselves to the case where θ̃ < 0.
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The term containing 1
2
(∇Φ)2 can be integrated by parts, resulting in∫

d3x

[
1

2
(∇Φ)2

]
=

∫
d3x

[
1

2
(∇Φ) · (∇Φ)

]
(6.70)

=

∫
d3x

1

2

[
∇ · (Φ∇Φ)− Φ∇2Φ

]
(6.71)

=

∫
d3x

[
−1

2
Φ∇2Φ

]
. (6.72)

In this way, the Hamiltonian is

H =

∫
d3x

[
1

2
Φ̇2 − Φ

2
∇2Φ +

Φ

2
m2Φ− Φ

2
θ̃δ(x3)Φ

]
(6.73)

=

∫
d3x

[
1

2
Φ̇2 +

Φ

2

(
−∇2 +m2 − θ̃δ(x3)

)
Φ

]
. (6.74)

This equation allows us to express the Hamiltonian in terms of creation and annihilation
operators, as we will now show. First, note that Klein-Gordon-θ̃ equation indicates that(
−∇2 +m2 − θ̃δ(x3)

)
Φ = −(∂0)2Φ. Therefore,

H =

∫
d3x

1

2

[
Φ̇2 − Φ(∂0)

2Φ
]
. (6.75)

Notice that

(∂0)
2Φ =

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
−E2

k√
2Ek

[
aS(k)νS(x,k)e

−iEkt + h.c.
]
, (6.76)

and so

−Φ(∂0)2Φ =
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
E2

k

2
√
EkEk′

×
[
aS(k)νS(x,k)e

−iEkt + h.c.
] [

aS′(k′)νS′(x,k′)e−iEk′ t + h.c.
]
.

(6.77)

On the other hand,

Φ̇2 =
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
(−iEk)(−iEk′)

2
√
EkEk′

×
[
aS(k)νS(x,k)e

−iEkt − h.c.
] [
aS′(k′)νS′(x,k′)e−iEk′ t − h.c.

]
.

(6.78)

By normal ordering, we obtain

H =
1

2

∑
S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
1

2
√
EkEk′

×
[
(E2

k − EkEk′)aS(k)aS′(k′)

∫
d3xνS(x,k)νS(x,k

′)

+ (E2
k + EkEk)a

†
S(k)aS′(k′)

∫
d3xν∗

S(x,k)νS(x,k
′) + h.c.

]
.

(6.79)
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Given Eq. (3.49),

(E2
k−EkEk′)

∫
d3xνS(x,k)νS(x,k

′) = (E2
k−EkEk′)[Qk3−δSS′ ](2π)3δ(k3−k′3)δ(2)(k⊥+k′

⊥),

(6.80)
and since (E2

k−EkEk′)δ(k
3−k′3)δ(2)(k⊥+k′

⊥) = 0, the first term vanishes. We are left with

H =
1

2

∑
S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
1

2
√
EkEk′

×
[
(E2

k + EkEk)a
†
S(k)aS′(k′)(2π)3δ(3)(k − k′)δSS′ + h.c.

]
.

(6.81)

By performing the sum over the primed variables we arrive at

H =
1

2

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
2E2

k

2Ek

[
a†S(k)aS(k) + h.c.

]
. (6.82)

We conclude that the Hamiltonian is given by

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Eka

†
S(k)aS(k). (6.83)

Since a†S(k)aS(k) can be interpreted as a number operator which indicates the number of
{S,k} modes when applied to an element of the Fock space, we see that the total energy
of an n-mode state is the sum of the energies of each of the modes.

6.2.2 Momentum and pseudomomentum

The eigenstates of the usual Klein-Gordon equation are plane waves, which are also eigen-
states of the gradient operator:

∂xe
ikx = ikeikx. (6.84)

In contrast, the eigenstates of the Klein-Gordon-θ̃ equation, given by e−iEktνS(x,k), are
not eigenstates of ∂3. We define the functions φk3

S (x3) as

∂3Φ
k3

L (x3) = ik3φk3

L (x3), ∂3Φ
k3

R (x3) = −ik3φk3

R (x3), (6.85)

i.e., φk3

S (x3) results from applying the differential operator ∂3 to the z-dependent factor of
the Klein-Gordon-θ̃ modes and factorizing the momentum in the z direction (this is done
to obtain an analogous expression to that of the usual Klein-Gordon modes). From this,
we have

φk3

L (x3) = eik
3x3

+ sgn(x3)Pk3e
ik3|x3|, φk3

R (x3) = e−ik3x3 − sgn(x3)Pk3e
ik3|x3|. (6.86)

Note that these functions, as Φk3

S (x3), also have the property φk3

L (−x3) = φk3

R (x3). Using
1 + Pk3 = Qk3 and H(z) +H(−z) = 1, we can write

φk3

L (x3) = H(−x3)(eik
3x3 − Pk3e

−ik3x3

) +H(x3)Qk3e
ik3x3

,

φk3

R (x3) = H(−x3)Qk3e
−ik3x3

+H(x3)(e−ik3x3 − Pk3e
ik3x3

).
(6.87)
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These functions differ from the modes

Φk3

L (x3) = H(−x3)(eik
3x3

+ Pk3e
−ik3x3

) +H(x3)Qk3e
ik3x3

,

Φk3

R (x3) = H(−x3)Qk3e
−ik3x3

+H(x3)(e−ik3x3

+ Pk3e
ik3x3

),
(6.88)

only by the sign of Pk3 . We define the states

µS(x,k) = φk3

S (x3)ei(k
1x1+k2x2), (6.89)

which give rise to
∂3νS(x,k) = (−1)Sik3µS(x,k), (6.90)

with (−1)L = 1 and (−1)R = −1. Once again, the functions νS(x,k) are not eigenstates
of the differential operator ∂3. This is a manifest consequence of the non-conservation of
linear momentum that comes from the non-homogeneity of the space in the z direction.
In the scope of quantum field theory, this implies that the states generated by the creation
operators cannot be labeled with the eigenvalues of P3. We will further see this implies
that the z component of the momentum operator cannot be diagonalized.

From the previous definition,

∂3Φ =
∑

S′∈{L,R}

∫
k′3>0

d3k′

(2π)3
k′3
√
2Ek′

[
iaS′(k′)

(
(−1)S′

µS′(x,k′)
)
e−iEk′ t + h.c.

]
, (6.91)

whereby the expression for the z component of the momentum operator becomes

P3 =

∫
d3xΦ̇∂3Φ (6.92)

=

∫
d3x

∑
S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
k′3

2

√
Ek

Ek′

[
− iaS(k)νS(x,k)e

−iEkt + h.c.
]

×
[
iaS′(k′)

(
(−1)S′

µS′(x,k′)
)
e−iEk′ t + h.c.

]
. (6.93)

In normal order this is

P3 =

∫
d3x

∑
S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
k′3

2

√
Ek

Ek′
(−1)S′

×
[
aS(k)aS′(k′)νS(x,k)µS′(x,k′)e−i(Ek+Ek′ )t

−a†S(k)aS′(k′)ν∗
S(x,k)µS′(x,k′)ei(Ek−Ek′ )t + h.c.

]
(6.94)

=
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
k′3

2

√
Ek

Ek′
(−1)S′

×
[
aS(k)aS′(k′)

∫
d3xνS(x,k)µS′(x,k′)e−i(Ek+Ek′ )t

−a†S(k)aS′(k′)

∫
d3xν∗

S(x,k)µS′(x,k′)ei(Ek−Ek′ )t + h.c.
]
. (6.95)
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We note that∫
d3xν∗

S(x,k)µS′(x,k′) = (2π)2δ(2)(k⊥ − k′
⊥)

∫
dx3Φk3∗

S (x3)φk′3

S′ (x3)

= (2π)2δ(2)(k⊥ − k′
⊥)
〈
Φk3

S

∣∣∣φk′3

S′

〉
.

(6.96)

Given the observation that φk3

S (x3) differs from Φk3

S (x3) only by the sign of Pk3 in the ex-
pressions of Eq. (6.87), we use Eq. (3.12) to write

〈
Φq

L

∣∣φk
L

〉
=

[
−iP

(
1

k − q

)
+ πδ(k − q)

]
− Pk

[
iP

(
1

q + k

)
+ πδ(k + q)

]
+ P ∗

q

[
−iP

(
1

q + k

)
+ πδ(k + q)

]
− P ∗

q Pk

[
−iP

(
1

q − k

)
+ πδ(q − k)

]
+Q∗

qQk

[
iP

(
1

k − q

)
+ πδ(k − q)

]
.

(6.97)

The principal part is

(p.p.) =
[
1 + P ∗

q Pk −Q∗
qQk

]
iP

(
1

q − k

)
−
[
Pk + P ∗

q

]
iP

(
1

q + k

)
(6.98)

= P

(
4qθ̃[(q − k) + iθ̃]

(k2 − q2)αqk

)
. (6.99)

On the other hand, the term associated with the Dirac delta is[
1− P ∗

q Pk +Q∗
qQk

]
πδ(k − q) =

8q2

4q2 + θ̃2
πδ(k − q). (6.100)

Therefore, 〈
Φq

L

∣∣φk
L

〉
=

8q2

4q2 + θ̃2
πδ(k − q) + P

(
4qθ̃[(q − k) + iθ̃]

(k2 − q2)αqk

)
. (6.101)

Likewise, 〈
Φq

L

∣∣φk
L

〉
=

∫ ∞

−∞
dzΦq∗

L (z)φk
L(z) =

∫ ∞

−∞
dzΦq∗

R (−z)φk
R(−z) (6.102)

=

∫ ∞

−∞
dzΦq∗

R (z)φk
R(z) =

〈
Φq

R

∣∣φk
R

〉
. (6.103)

Now we calculate the product involving different modes by modifying the sign of Pk

in Eq. (3.31):

〈
Φq

R

∣∣φk
L

〉
=Q∗

q

[
−iP

(
1

q + k

)
+ πδ(k + q)

]
−Q∗

qPk

[
−iP

(
1

q − k

)
+ πδ(q − k)

]
+Qk

[
iP

(
1

q + k

)
+ πδ(k + q)

]
+ P ∗

q Qk

[
iP

(
1

k − q

)
+ πδ(k − q)

]
.

(6.104)
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We have〈
Φq

R

∣∣φk
L

〉
=

([
P ∗
q Qk −Q∗

qPk

]
πδ(k − q)

)
+

([
Qk −Q∗

q

]
iP

(
1

q + k

)
+
[
Q∗

qPk − P ∗
q Qk

]
iP

(
1

q − k

))
(6.105)

= − 4iqθ̃

4q2 + θ̃2
πδ(k − q)− P

(
4qθ̃

(k − q)αqk

)
. (6.106)

Similarly as before,〈
Φq

R

∣∣φk
L

〉
=

∫ ∞

−∞
dzΦq∗

R (z)φk
L(z) =

∫ ∞

−∞
dzΦq∗

L (−z)φk
R(−z) (6.107)

=

∫ ∞

−∞
dzΦq∗

L (z)φk
R(z) =

〈
Φq

L

∣∣φk
R

〉
. (6.108)

We can write, by virtue of these results,〈
Φq

S

∣∣φk
S′

〉
=

4q

4q2 + θ̃2

[
2qδSS′ − iθ̃(1− δSS′)

]
πδ(k − q)

+ P

(
4qθ̃

(k − q)αqk

[
(q − k) + iθ

k + q
δSS′ − (1− δSS′)

])
.

(6.109)

Now we will work the other inner product that appears in the expression of the z compo-
nent of the momentum operator. We note that∫

d3xνS(x,k)µS′(x,k′) = (2π)2δ(2)(k⊥ + k′
⊥)

∫
dx3Φk3

S (x3)φk′3
S′ (x3)

= (2π)2δ(2)(k⊥ + k′
⊥)
〈
Φk3∗

S

∣∣∣φk′3

S′

〉
.

(6.110)

We start from Eq. (3.39), changing the sign of Pk:〈
Φq∗

L

∣∣φk
L

〉
=

[
−iP

(
1

k + q

)
+ πδ(k + q)

]
− Pk

[
iP

(
1

−q + k

)
+ πδ(k − q)

]
+ Pq

[
iP

(
1

q − k

)
+ πδ(k − q)

]
− PqPk

[
iP

(
1

q + k

)
+ πδ(−q − k)

]
+QqQk

[
iP

(
1

k + q

)
+ πδ(k + q)

]
.

(6.111)

We divide this into a delta term and a principal part term:〈
Φq∗

L

∣∣φk
L

〉
= [−Pk + Pq]πδ(k − q)

+ [1 + PqPk −QqQk] iP

(
1

−q − k

)
− [Pk + Pq] iP

(
1

−q + k

)
(6.112)

= [1 + PqPk −QqQk] iP

(
1

−q − k

)
− [Pk + Pq] iP

(
1

−q + k

)
(6.113)

= P

(
4qθ̃(k + q − iθ̃)

(k2 − q2)α−q,k

)
. (6.114)
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In the case of the equivalent product for different modes we rely on Eq. (3.44), modifying
the sign of Pk:

〈
Φq∗

R

∣∣φk
L

〉
=Qq

[
iP

(
1

q − k

)
+ πδ(k − q)

]
−QqPk

[
iP

(
1

q + k

)
+ πδ(q + k)

]
+Qk

[
−iP

(
1

q − k

)
+ πδ(k − q)

]
+ PqQk

[
iP

(
1

k + q

)
+ πδ(k + q)

]
.

Thus, 〈
Φq∗

R

∣∣φk
L

〉
= [Qq +Qk]πδ(k − q) (6.115)

+[Qq −Qk]iP

(
1

q − k

)
+ [PqQk −QqPk]iP

(
1

q + k

)
(6.116)

= 2Qqπδ(k − q) + P

(
4qθ̃

(k + q)α−q,k

)
. (6.117)

We combine both results in a single expression:〈
Φq∗

S

∣∣φk
S′

〉
=Qq2πδ(k − q)(1− δSS′)

+ P

(
4qθ̃

(k + q)α−q,k

[
k + q − iθ̃

k − q
δSS′ + (1− δSS′)

])
.

(6.118)

Now we define the function

βS,S′(k3, k′3) ≡ P

(
4k3θ̃

(k′3 − k3)αk3,k′3

[
(k3 − k′3) + iθ

k′3 + k3
δSS′ − (1− δSS′)

])
. (6.119)

From the property

α∗
k3,k′3 = [(2ik3 − θ̃)(2ik′3 + θ̃)]∗ = (−2ik3 − θ̃)(−2ik′3 + θ̃) = α−k3,−k′3 (6.120)

it follows that β∗
S,S′(k3, k′3) = βS,S′(−k3,−k′3) .

We substitute what is obtained in the expression for P3:

P3 =
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
k′3

2

√
Ek

Ek′
(−1)S′

(2π)2

×
{
aS(k)aS′(k′)δ(2)(k⊥ + k′

⊥)e
−i(Ek+Ek′ )t

×
[
Qk32πδ(k

3 − k′3)(1− δSS′) + βS,S′(−k3, k′3)
]

− a†S(k)aS′(k′)δ(2)(k⊥ − k′
⊥)e

i(Ek−Ek′ )t

×
[

4k3

4(k3)2 + θ̃2

[
2k3δSS′ − iθ̃(1− δSS′)

]
πδ(k3 − k′3) + βS,S′(k3, k′3)

]
+ h.c.

}
.

(6.121)
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Let us take the term

T1 ≡
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
k′3

2

√
Ek

Ek′
(−1)S′

(2π)2

×
{
aS(k)aS′(k′)δ(2)(k⊥ + k′

⊥)e
−i(Ek+Ek′ )t

[
Qk32πδ(k

3 − k′3)(1− δSS′)
]}

.

(6.122)

We perform the integral on the primed variables:

T1 =
∑

S,S′∈{L,R}

∫
k3>0

d3k

(2π)3
k3

2
(−1)S′

{
aS(k

1, k2, k3)aS′(−k1,−k2, k3)Qk3(1− δSS′)e−2iEkt

}
.

(6.123)
By expanding the sum over modes, we get

T1 =

∫
k3>0

d3k

(2π)3
k3

2
Qk3aR(k

1, k2, k3)aL(−k1,−k2, k3)e−2iEkt

−
∫
k3>0

d3k

(2π)3
k3

2
Qk3aL(k

1, k2, k3)aR(−k1,−k2, k3)e−2iEkt.

(6.124)

Finally, by making the change of variables (k1, k2) → (−k1,−k2) in the second term, we
obtain

T1 =

∫
k3>0

d3k

(2π)3
k3

2
Qk3aR(k

1, k2, k3)aL(−k1,−k2, k3)e−2iEkt

−
∫
k3>0

d3k

(2π)3
k3

2
Qk3aL(−k1,−k2, k3)aR(k

1, k2, k3)e−2iEkt.

(6.125)

Since the annihilation operators commute, it follows that T1 = 0.
Now let us define

T3 ≡
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
k′3

2

√
Ek

Ek′
(−1)S′

(2π)2δ(2)(k⊥ − k′
⊥)e

i(Ek−Ek′ )t

×
{
− a†S(k)aS′(k′)

[
4k3

4(k3)2 + θ̃2

[
2k3δSS′ − iθ̃(1− δSS′)

]
πδ(k3 − k′3)

]}
.

(6.126)

Performing the integral over the primed variables gives

T3 = −
∑

S,S′∈{L,R}

∫
k3>0

d3k

(2π)3
(−1)S′

a†S(k)aS′(k)

[
(k3)2

4(k3)2 + θ̃2

[
2k3δSS′ − iθ̃(1− δSS′)

]]
.

(6.127)
Expanding the sum over modes results in

T3 =−
∫
k3>0

d3k

(2π)3

[
(k3)2

4(k3)2 + θ̃2

]
×
{
2k3
[
a†L(k)aL(k)− a†R(k)aR(k)

]
− iθ̃

[
a†R(k)aL(k)− a†L(k)aR(k)

]}
.

(6.128)
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We observe that T †
3 = T3. So,

T3 + h.c. =−
∫
k3>0

d3k

(2π)3

[
4(k3)2

4(k3)2 + θ̃2

]
×
{
k3
[
a†L(k)aL(k)− a†R(k)aR(k)

]
− i

θ̃

2

[
a†R(k)aL(k)− a†L(k)aR(k)

]}
.

(6.129)

The z component of the momentum operator is

P3 =−
∫
k3>0

d3k

(2π)3

[
4(k3)2

4(k3)2 + θ̃2

]
×
{
k3
[
a†L(k)aL(k)− a†R(k)aR(k)

]
− i

θ̃

2

[
a†R(k)aL(k)− a†L(k)aR(k)

]}
+

∑
S,S′∈{L,R}

∫
k3,k′3>0

d3kd3k′

(2π)4
k′3

2

√
Ek

Ek′
(−1)S′

×
{
aS(k)aS′(k′)δ(2)(k⊥ + k′

⊥)e
−i(Ek+Ek′ )tβS,S′(−k3, k′3)

− a†S(k)aS′(k′)δ(2)(k⊥ − k′
⊥)e

i(Ek−Ek′ )tβS,S′(k3, k′3) + h.c.
}
.

(6.130)

From this point, no additional simplifications can be made, which means P3 cannot be
diagonalized. Nonetheless, we can define the pseudomomentum operator as

Q3 ≡
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
(−1)Sk3a†S(k)aS(k), (6.131)

from where we deduce the relation

Q3 = − lim
θ̃→0

P3 = lim
θ̃→0

P 3. (6.132)

A simple calculation shows

[P3,Φ(t,x)] =

[∫
d3x′Φ̇(t,x′)∂3′Φ(t,x

′),Φ(t,x)

]
(6.133)

=

∫
d3x′[Φ̇(t,x′)∂3′Φ(t,x

′),Φ(t,x)] (6.134)

=

∫
d3x′

(
Φ̇(t,x′)[∂3′Φ(t,x

′),Φ(t,x)] + [Φ̇(t,x′),Φ(t,x)]∂3′Φ(t,x
′)

)
(6.135)

=

∫
d3x′

(
Φ̇(t,x′)∂3′ [Φ(t,x

′),Φ(t,x)] + [Φ̇(t,x′),Φ(t,x)]∂3′Φ(t,x
′)

)
(6.136)

=

∫
d3x′[Φ̇(t,x′),Φ(t,x)]∂3′Φ(t,x

′) (6.137)

=

∫
d3x′

[
−iδ(3)(x− x′)

]
∂3′Φ(t,x

′) = −i∂3Φ(t,x) (6.138)
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or [P 3,Φ(t,x)] = i∂3Φ(t,x).
We will now compute the commutator [Q3,Φ(t,x)]. The following results will be use-

ful: [
a†S(k)aS(k), a

†
S′(k

′)
]
= a†S(k)

[
aS(k), a

†
S′(k

′)
]
= a†S(k)(2π)

3δ(3)(k − k′)δSS′ ,[
a†S(k)aS(k), aS′(k′)

]
= aS(k)

[
a†S(k), aS′(k′)

]
= −aS(k)(2π)3δ(3)(k − k′)δSS′ .

(6.139)

Explicitly, we have

[Q3,Φ(t,x)] =
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
(−1)Sk3√

2Ek′

×
[
a†S(k)aS(k),

(
aS′(k′)νS′(x,k′)e−iEk′ t + a†S′(k

′)ν∗S′(x,k′)eiEk′ t
)]

(6.140)

=
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
(−1)Sk3√

2Ek′

×
([

a†S(k)aS(k), aS′(k′)
]
νS′(x,k′)e−iEk′ t +

[
a†S(k)aS(k), a

†
S′(k

′)
]
ν∗S′(x,k′)eiEk′ t

)
(6.141)

=
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
(−1)Sk3√

2Ek′
(2π)3δ(3)(k − k′)δSS′

×
(
−aS(k)νS′(x,k′)e−iEk′ t + a†S(k)ν

∗
S′(x,k′)eiEk′ t

)
. (6.142)

Summing and integrating over the primed variables we obtain

[Q3,Φ(t,x)] = i
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
(−1)Sk3

√
2Ek

(
iaS(k)νS(x,k)e

−iEkt + h.c.
)
. (6.143)

We want to be able to express the right hand side of the previous equation as an oper-
ator applied to Φ(t,x). In the first place, by definition,

∂3Φ
k3

S (x3) = i(−1)Sk3φk3

S (x3), (6.144)

from where

∂2
3Φ

k3

L (x3) = −(k3)2
[(
1 + Pk3H(x3)

)
eik

3x3

+ Pk3H(−x3)e−ik3x3
]

+ik3Pk3δ(x
3)
(
eik

3x3

+ e−ik3x3
)

(6.145)

= −(k3)2
[(
1 + Pk3H(x3)

)
eik

3x3

+ Pk3H(−x3)e−ik3x3
]

+2ik3Pk3δ(x
3) cos

(
k3x3

)
. (6.146)

Note that δ(x3) cos(k3x3) = δ(x3) cos(0) = δ(x3). Consequently,

∂2
3Φ

k3

L (x3) = −(k3)2
[(
1 + Pk3H(x3)

)
eik

3x3

+ Pk3H(−x3)e−ik3x3
]

+2ik3Pk3δ(x
3) (6.147)

= −(k3)2Φk3

L (x3) + 2ik3Pk3δ(x
3), (6.148)
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and since Φk3

R (−x3) = Φk3

L (x3), we have

∂2
3Φ

k3

R (x3) = −(k3)2Φk3

L (−x3)− 2ik3Pk3δ(x
3) = (k3)2Φk3

R (x3) + 2ik3Pk3δ(x
3). (6.149)

It is readily seen that

−θ̃δ(x3)Φk3

S (x3) = −θ̃δ(x3)Φk3

S (0) = −θ̃(1 + Pk3)δ(x
3) = −θ̃Qk3δ(x

3) (6.150)

= −θ̃ 2ik3

2ik3 + θ̃
δ(x3) = 2ik3

(
−θ̃

2ik3 + θ̃

)
δ(x3) = 2ik3Pk3δ(x

3),(6.151)

which leads us to

∂2
3Φ

k3

S (x3) = −(k3)2Φk3

S (x3)− θ̃δ(x3)Φk3

S (x3) = −
[
(k3)2 + θ̃δ(x3)

]
Φk3

S (x3). (6.152)

(Although this looks like an eigenvalue equation, −
[
(k3)2 + θ̃δ(x3)

]
is not a scalar.) Thus,

∂2
3νS(x,k) = −

[
(k3)2 + θ̃δ(x3)

]
νS(x,k). (6.153)

Observe this implies

−
(
∂2
3 + θ̃δ(x3)

)
νS(x,k) = −∂2

3νS(x,k)− θ̃δ(x3)νS(x,k) (6.154)

=
[
(k3)2 + θ̃δ(x3)

]
νS(x,k)− θ̃δ(x3)νS(x,k) (6.155)

= (k3)2νS(x,k). (6.156)

Let us define the differential operator

D2
3 ≡ ∂2

3 + θ̃δ(x3). (6.157)

Since −(D3)
2 is an unbounded positive self-adjoint operator, according to Ref. [44] its

square root can be computed as

iD3 ≡ lim
(k3)2→0

[
(k3)

2 − (∂2
3 + θ̃δ(x3))

]{[
(k3)

2 − (∂2
3 + θ̃δ(x3))

]−1
}1/2

. (6.158)

The following is satisfied:

det
(
−D2

3 − (k3)2
)
= det

(
[iD3 + k3][iD3 − k3]

)
= det

(
iD3 + k3

)
det
(
iD3 − k3

)
= 0, (6.159)

which in turn means k3 and −k3 are eigenvalues of iD3 (both real, so iD3 is Hermitian).
Let κ+(x,k) and κ−(x,k) be their respective eigenfunctions. In consequence,

iD3(iD3κ±(x,k)) = ±k3(iD3κ±(x,k)) = (k3)2κ±(x,k). (6.160)

This second order differential equation, more precisely written as[(
∂2
3 + θ̃δ(x3)

)
+ (k3)2

]
κ±(x,k) = 0 (6.161)
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admits two independent solutions. Since[(
∂2
3 + θ̃δ(x3)

)
+ (k3)2

]
νS(x,k) = 0, (6.162)

the modes νS(x,k) must be linear combinations of κ±(x,k):

νS(x,k) =
∑
q

aSq(k)κq(x,k). (6.163)

Applying iD3 gives
iD3νS(x,k) = k3

∑
q

aSq(k)qκq(x,k). (6.164)

Now we define the following signed projectors in bra-ket notation

P± ≡
∑
q

q |κq⟩ ⟨κq| , PLR ≡
∑

S∈{L,R}

−(−1)S |νS⟩ ⟨νS| . (6.165)

Since the functions κ±(x,k) are orthogonal due to being eigenfunctions of the Hermitian
operator iD3 associated to different eigenvalues, then

P±κq(x,k) =
∑
q′

q′κq′(x,k)

(∫
d3x′κ∗

q′(x
′,k)κq(x

′,k)

)
=
∑
q′

q′κq′(x,k)δqq′ = qκq(x,k).

(6.166)
Thus, given q2 = 1,

P±iD3νS(x,k) = k3
∑
q

aSq(k)κq(x,k) = k3νS(x,k). (6.167)

Finally,
PLRP±iD3νS(x,k) = −(−1)Sk3νS(x,k). (6.168)

Clearly, all three operators PLR, P± and iD3 commute with each other. We define

iD3 ≡ PLRP±iD3. (6.169)

Let us recall the property Φk3∗
S (x3) = Φ−k3

S (x3), from which we see

iD3νS(x,k) = −(−1)Sk3νS(x,k) → iD3ν
∗
S(x,k) = (−1)Sk3ν∗

S(x,k) (6.170)

Applying this operator to Φ(t,x), we obtain

iD3Φ = i
∑

S,∈{L,R}

∫
k3>0

d3k

(2π)3
(−1)Sk3

√
2Ek

(
iaS(k)νS(x,k)e

−iEkt + h.c.
)
. (6.171)

We conclude [
Q3,Φ(t,x)

]
= iD3Φ(t,x). (6.172)
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So far, we have performed our calculations by using a basis of ingoing modes, parametrized
by the ingoing vector k. Such basis is adequate for describing particle sources (which in-
cide in the interface), but not particle sinks (e.g. detectors) associated with outgoing par-
ticles. We want to find a basis of outgoing or detector modes, which is obtained by means of
the substitution k3 → −k3 in the functions Φk3

S (x3) which we already know. In the ingoing
basis we have three contributions to each mode: an incident, a reflected and a transmitted
wave. In the new basis, we have an outgoing, a pseudoreflected and a pseudotransmitted
wave, as outlined in Fig. (3). Since we have become very familiar with the ingoing modes,

L R

Figure 3: The outgoing left and right modes include contributions of outgoing, pseudoreflected
and pseudotransmitted plane waves.

it is important to find the relationship between both bases, which will turn out to be a
simple linear combination. Let us recall that

Φk3

L (x3) = eik
3x3

+ Pk3e
ik3|x3|, Φk3

R (x3) = e−ik3x3

+ Pk3e
ik3|x3|,

where Pk3 = −θ̃
2ik3+θ̃

. Since Φk3∗
S (x3) = Φ−k3

S (x3), the basis of outgoing modes is given by
{Φk3∗

S (x3)}. To find the relationship with the ingoing basis, we start from the completeness
relation:

Φk3∗
S (x3) =

∫
dx′3δ(x3 − x′3)Φk3∗

S (x′3) =

∫
d′x3

∫ ∞

0

dk′3

2π

∑
S′∈{L,R}

Φk′3
S′ (x3)Φk′3∗

S′ (x′3)

Φk3∗
S (x′3).

(7.1)
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This is rewritten in terms of known products as

Φk3∗
S (x3) =

∫ ∞

0

dk′3

2π

∑
S′∈{L,R}

(∫
dx′3Φk′3∗

S′ (x′3)Φk3∗
S (x′3)

)
Φk′3

S′ (x3). (7.2)

We know that∫
dx′3Φk′3

S′ (x′3)Φk3

S (x′3) = [δSS′Pk3 + (1− δSS′)Qk3 ]2πδ(k
3 − k′3). (7.3)

Thus,
Φk3∗

S (x3) =
∑

S′∈{L,R}

[δSS′P ∗
k3 + (1− δSS′)Q∗

k3 ]Φ
k3

S′ (x3). (7.4)

That is,

Φk3∗
L (x3) = P ∗

k3Φ
k3

L (x3) +Q∗
k3Φ

k3

R (x3), Φk3∗
R (x3) = P ∗

k3Φ
k3

R (x3) +Q∗
k3Φ

k3

L (x3). (7.5)

We verify Eq. (7.5) directly by inserting the definitions of Φk3

S (x3):

AL ≡ P ∗
k3Φ

k3

L (x3) +Q∗
k3Φ

k3

R (x3) (7.6)

= P ∗
k3

(
eik

3x3

+ Pk3e
ik3|x3|

)
+Q∗

k3

(
e−ik3x3

+ Pk3e
ik3|x3|

)
. (7.7)

If x3 > 0, then

AL = P ∗
k3

(
eik

3x3

+ Pk3e
ik3x3

)
+Q∗

k3

(
e−ik3x3

+ Pk3e
ik3x3

)
(7.8)

= (P ∗
k3 + P ∗

k3Pk3 +Q∗
k3Pk3) e

ik3x3

+Q∗
k3e

−ik3x3

(7.9)

= (P ∗
k3 [1 + Pk3 ] +Q∗

k3Pk3) e
ik3x3

+Q∗
k3e

−ik3x3

(7.10)

= (P ∗
k3Qk3 +Q∗

k3Pk3) e
ik3x3

+Q∗
k3e

−ik3x3

(7.11)

= Q∗
k3e

−ik3x3

= e−ik3x3

+ P ∗
k3e

−ik3x3

. (7.12)

If x3 < 0, then

AL = P ∗
k3

(
eik

3x3

+ Pk3e
−ik3x3

)
+Q∗

k3

(
e−ik3x3

+ Pk3e
−ik3x3

)
(7.13)

= P ∗
k3e

ik3x3

+ (P ∗
k3Pk3 +Q∗

k3 +Q∗
k3Pk3) e

−ik3x3

(7.14)

= P ∗
k3e

ik3x3

+ (P ∗
k3Pk3 +Q∗

k3 [1 + Pk3 ]) e
−ik3x3

(7.15)

= P ∗
k3e

ik3x3

+ (P ∗
k3Pk3 +Q∗

k3Qk3) e
−ik3x3

(7.16)

= P ∗
k3e

ik3x3

+ e−ik3x3

. (7.17)

The two possibilities are summarized by

e−ik3x3

+ P ∗
k3e

−ik3|x3|, (7.18)

or AL = Φk3∗
L (x3). In a similar fashion, using that Φk3∗

R (x3) = Φk3∗
L (−x3), the homologous

relationship for R modes is obtained. With this, we verify Eq. (7.5), by which we can
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express one basis in terms of the other. The inverse relation is found by conjugating Eq.
(7.5):

Φk3

L (x3) = Pk3Φ
k3∗
L (x3) +Qk3Φ

k3∗
R (x3), Φk3

R (x3) = Pk3Φ
k3∗
R (x3) +Qk3Φ

k3∗
L (x3). (7.19)

Since the detector basis functions correspond to the complex conjugate of the ingoing
functions, the completeness relation is automatically satisfied:∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

R(z)Φ
k∗
R (z′)

)
= 2πδ(z − z′). (7.20)

Similarly, the orthogonality of the detector modes is a direct consequence of the orthogo-
nality of the ingoing modes:〈

Φq∗
S

∣∣Φk∗
S′

〉
= 2πδ(k − q)δSS′ ,

〈
Φq

S

∣∣Φk∗
S′

〉
= [Q∗

q − δSS′ ]2πδ(k − q).

Now we want to find an expression for the creation and annihilation operators of the
outgoing states. We start from the quantized field

Φ(t,x) ≡
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
aS(k)νS(x,k)e

−iEkt + h.c.
]

(7.21)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
aS(k)Φ

k3

S (x3)e−iEkt+ik⊥·x⊥ + h.c.
]

(7.22)

=

∫
k3>0

d3k

(2π)3
1√
2Ek

 ∑
S∈{L,R}

aS(k)Φ
k3

S (x3)

 e−iEkt+ik⊥·x⊥ + h.c.

 . (7.23)

We express this in terms of the detector basis:∑
S∈{L,R}

aS(k)Φ
k3

S (x3) = aL(k)Φ
k3

L (x3) + aR(k)Φ
k3

R (x3) (7.24)

= aL(k)
(
Pk3Φ

k3∗
L (x3) +Qk3Φ

k3∗
R (x3)

)
+aR(k)

(
Pk3Φ

k3∗
R (x3) +Qk3Φ

k3∗
L (x3)

)
(7.25)

= Φk3∗
L (x3) (Pk3aL(k) +Qk3aR(k))

+Φk3∗
R (x3) (Pk3aR(k) +Qk3aL(k)) . (7.26)

This suggests defining annihilation operators of outgoing modes as

αL(k) ≡ Pk3aL(k) +Qk3aR(k), αR(k) ≡ Pk3aR(k) +Qk3aL(k), (7.27)

with the corresponding Hermitian conjugates being the creation operators. We note that
in the limit θ̃ → 0,

αL(k) = aR(k), αR(k) = aL(k), (7.28)
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that is, an incoming L mode corresponds to an outgoing R mode, and vice versa. This is
the expected behavior.

Now we will calculate the commutators of the αS(k) operators. For this, we reminisce
that[

aS(k), a
†
S′(k

′)
]
= (2π)3δ(3)(k − k′)δSS′ , [aS(k), aS′(k′)] = 0 =

[
a†S(k), a

†
S′(k

′)
]
. (7.29)

We have, in more convenient notation,

αS(k) =
∑

σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) aσ(k), (7.30)

αS′(k′) =
∑

σ′∈{L,R}

(δS′σ′Pk′3 + (1− δS′σ′)Qk′3) aσ′(k′), (7.31)

from where we observe that[
αS(k), αS′(k′)

]
=

∑
σ,σ′∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) (δS′σ′Pk′3 + (1− δS′σ′)Qk′3)
[
aσ(k), aσ′(k′)

]
.

(7.32)
This commutator vanishes by virtue of Eq. (7.29). Likewise,[

αS(k), α
†
S′(k

′)
]

=
∑

σ,σ′∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) (δS′σ′P ∗
k′3 + (1− δS′σ′)Q∗

k′3)

×
[
aσ(k), a

†
σ′(k

′)
]

(7.33)

=
∑

σ,σ′∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) (δS′σ′P ∗
k′3 + (1− δS′σ′)Q∗

k′3)

×(2π)3δ(3)(k − k′)δσσ′ (7.34)

=
∑

σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) (δS′σP
∗
k3 + (1− δS′σ)Q

∗
k3)

×(2π)3δ(3)(k − k′). (7.35)

We note that∑
σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) (δS′σP
∗
k3 + (1− δS′σ)Q

∗
k3)

=
∑

σ∈{L,R}

(
δSσδS′σ|Pk3|2 + (1− δSσ)δS′σP

∗
k3Qk3 (7.36)

+δSσ(1− δS′σ)Pk3Q
∗
k3 + (1− δS′σ)(1− δSσ)|Qk3|2

)
=

∑
σ∈{L,R}

(
δSσδS′σ|Pk3|2 + δS′σP

∗
k3Q3 − δSσδS′σP

∗
k3Qk3 (7.37)

+δSσPk3Q
∗
k3 − δSσδS′σPk3Q

∗
k3 + |Qk3 |2 − (δS′σ + δSσ)|Qk3|2 + δSσδS′σ|Qk3|2

)
.
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Since |Qk3|2 + |Pk3 |2 = 1 and P ∗
k3Qk3 + Pk3Q

∗
k3 = 0, we get∑

σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3)
(
δS′σP

∗
k3 + (1− δS′σ)Q

∗
k3
)

=
∑

σ∈{L,R}

(
δSσδS′σ + δS′σP

∗
k3Qk3 + δSσPk3Q

∗
k3 + |Qk3 |2 − (δS′σ + δSσ)|Qk3 |2

)
(7.38)

=
∑

σ∈{L,R}

(
δSσδS′σ + δS′σ(P

∗
k3Qk3 − |Qk3 |2) + δSσ(Pk3Q

∗
k3 − |Qk3 |2) + |Qk3 |2

)
(7.39)

=
∑

σ∈{L,R}

(
δSσδS′σ + δS′σQk3(P

∗
k3 −Q∗

k3) + δSσQ
∗
k3(Pk3 −Qk3) + |Qk3 |2

)
(7.40)

=
∑

σ∈{L,R}

(
δSσδS′σ − δS′σQk3 − δSσQ

∗
k3 + |Qk3 |2

)
(7.41)

= δSS′ + (−Qk3 −Q∗
k3 + 2|Qk3 |2) = δSS′ , (7.42)

considering that
Qk3+Q∗

k3

2
= Re(Qk3) = |Qk3|2. Therefore,∑

σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) (δS′σP
∗
k3 + (1− δS′σ)Q

∗
k3) = δSS′ , (7.43)

as declared in Eq. (2.42). With this,[
αS(k), α

†
S′(k

′)
]
= (2π)3δ(3)(k − k′)δSS′ , [αS(k), αS′(k′)] = 0 =

[
α†
S(k), α

†
S′(k

′)
]
.

(7.44)
Furthermore, we calculate[

αS(k), a
†
S′(k

′)
]

=
∑

σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3)
[
aσ(k), a

†
S′(k

′)
]

(7.45)

= (2π)3δ(3)(k − k′)
∑

σ∈{L,R}

(δSσPk3 + (1− δSσ)Qk3) δσS′ (7.46)

= (2π)3δ(3)(k − k′) (δSS′Pk3 + (1− δSS′)Qk3) . (7.47)

It is easy to see that

[αS(k), aS′(k′)] = 0,
[
α†
S(k), a

†
S′(k

′)
]
= 0. (7.48)

The quantized field is written in terms of the detector modes as

Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
αS(k)Φ

k3∗
S (x3)e−iEkt+ik⊥·x⊥ + h.c.

]
. (7.49)

As in the case of the ingoing modes, it is convenient to define a function

νS(x,k) ≡ Φk3∗
S (x3)ei(k

1x1+k2x2), (7.50)
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so that the field is expressed more succinctly as

Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
αS(k)νS(x,k)e

−iEkt + h.c.
]
. (7.51)



8 A decay

We now consider a field Ψ that is not affected by the presence of the interface and an
interaction that describes the decay of one Ψ into two Φ’s:

L =
1

2
∂µΦ∂

µΦ−m
2

2
Φ2 − θ(z)Φ∂zΦ + LΨ + LΨΦ (8.1)

=
1

2
∂µΦ∂

µΦ− m2

2
Φ2 − θ(z)Φ∂zΦ +

1

2
∂µΨ∂µΨ− M2

2
Ψ2 + λΨΦ2, (8.2)

where M > 2m is a necessary condition for decay. Since we are interested in detecting the
outgoing Φ particles, we will express everything in terms of the detector modes.

We write the field expansion for Ψ,

Ψ(t,x) =

∫
d3p

(2π)3
1√
2Ep

[
b(p)e−ip·x + h.c.

]
, (8.3)

where we changed the label of the momenta to p = (Ep,p) to avoid confusion with the
expansion of Φ. Moreover, the set of creation and annihilation operators associated with
the Ψ particles can be obtained from

b(p) =
1√
2Ep

〈
e−ip·x

∣∣∣iΨ̇(t,x) + EpΨ(t,x)
〉
. (8.4)

The commutation relations are the usual free-field ones,[
b(p), b†(p′)

]
= (2π)3δ(3)(p− p′),

[
b†(p), b†(p′)

]
= [b(p), b(p′)] = 0, (8.5)

giving rise to [
Ψ(t,x), Ψ̇(t,x′)

]
= iδ(3)(x− x′), (8.6)

(this can be seen directly or by taking the limit θ̃ → 0 in the expression of the relations
already obtained). We add the commutation relations

[αS(k), b(p)] =
[
α†
S(k), b(p)

]
=
[
αS(k), b

†(p)
]
=
[
α†
S(k), b

†(p)
]
= 0, (8.7)

from which it is easily deduced that

[Φ(t,x),Ψ(t,x′)] =
[
Φ̇(t,x),Ψ(t,x′)

]
=
[
Φ(t,x), Ψ̇(t,x′)

]
=
[
Φ̇(t,x), Ψ̇(t,x′)

]
= 0. (8.8)

The initial state is merely a particle of the kind Ψ with momentum p, while the final
state is composed of two modes with labels {kS,k

′
S′}. In terms of creation operators acting

on the vacuum of the Fock space this is

|i⟩ ≡
√
2Epb

†(p) = |p⟩ , (8.9)

|f⟩ ≡
√

2Ek

√
2Ek′α

†
S(k)α

†
S′(k

′) |0⟩ = |kS,k
′
S′⟩ = |kS⟩ ⊗ |k′

S′⟩ . (8.10)

We want to compute the invariant amplitude that connects the initial state to the final
state. To first order, this is given by the quantity

T = iλ

∫
d4x ⟨f | T

{
Ψ(x)Φ2(x)

}
|i⟩ , (8.11)

where T is the time ordering operator.
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8.1 Decay rate and mean life
Our goal is to calculate the total decay rate and mean life of the Ψ particle that decays into
two Φ modes. In contrast to the equivalent process in the vacuum (θ̃ = 0), here we will
have additional decay channels that arise from the non-conservation of linear momentum
and that contribute positively to the decay rate. Decomposing the fields as

Φ(x) = Φ+(x) + Φ−(x), (8.12)

Φ+(x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEkt

√
2Ek

αS(k)νS(x,k), (8.13)

Φ−(x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
eiEkt

√
2Ek

α†
S(k)ν

∗
S(x,k), (8.14)

we see that applying the positive frequency term Φ+(x) to a 1-mode state gives

Φ+(x) |k′
S′⟩ =

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEkt

√
2Ek

αS(k)νS(x,k) |k′
S′⟩ (8.15)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEkt

√
2Ek

αS(k)νS(x,k)
√
2Ek′α

†
S′(k

′) |0⟩ (8.16)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEkt

√
2Ek

νS(x,k)
√
2Ek′(2π)

3δ(k − k′)δSS′ |0⟩ (8.17)

= e−iEk′ tνS′(x,k′) |0⟩ . (8.18)

In this sense, we define the contraction

Φ(x) |kS⟩ = e−iEktνS(x,k), (8.19)

⟨kS|Φ(x) = eiEktν∗
S(x,k), (8.20)

and likewise, for the Ψ particle,

Ψ(y) |p⟩ = e−ip·y, (8.21)

⟨p|Ψ(y) = eip·y. (8.22)

The following is the only non-trivial contribution for such process:

T = i2λ

∫
d4x(⟨kS| ⊗ ⟨k′

S′|)Φ(x)Φ(x)Ψ(x) |p⟩

= i2λ

∫
d4xeiEktν∗

S(x,k)e
iEk′ tν∗

S′(x,k′)e−ip·x.

(8.23)

The factor of 2 indicates the possible ways of contracting fields that give the same result.
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Going back to Eq. (8.23), and in the center of mass reference frame (p = 0), we have

T = i2λ

(∫
dx0ei(Ek+Ek′−M)x0

)(∫
dx⊥e

i(−k⊥−k′
⊥)·x⊥

)(∫
dx3Φk3

S (x3)Φk′3

S′ (x3)

)
, (8.24)

where k⊥ = (k1, k2), k′
⊥ = (k′1, k′2) and x⊥ = (x1, x2). Thus,

T = i2λ(2π)3δ(Ek + E ′
k −M)δ(2)(k⊥ + k′

⊥)
〈
Φk3∗

S

∣∣∣Φk′3

S′

〉
. (8.25)

Using the result of Eq. (3.46) we obtain

T = i2λ(2π)4
[
δSS′Pk3 + (1− δSS′)Qk3

]
δ(M − Ek − E ′

k)δ
(2)(k⊥ + k′

⊥)δ(k
3 − k′3). (8.26)

Note that the delta function δ(k3 − k′3) indicates that k3 = k′3. Nonetheless, this does not
correspond to momentum conservation, since the labels k3 are always positive and hence
do not specify a given direction. Eq. (8.26) indicates that the initial particle can decay
in a left and a right outgoing mode, conserving linear momentum, or in two left/right
outgoing modes, going from a null initial momentum to a final momentum equal to 2k3.
This is possible since there is no invariance under translations in the direction of the z axis,
so linear momentum in that direction is not conserved.

From the definitions of Pk3 and Qk3 , we see that the case without interfaces (θ̃ = 0)
reduces to

T = i2λ(2π)4
[
1− δSS′

]
δ(M − Ek − E ′

k)δ
(2)(k⊥ + k′

⊥)δ(k
3 − k′3), (8.27)

which means that the amplitude is different from zero only if the outgoing modes are
different, so that they have opposite linear momentum. One can also take the limit θ̃ → 0
before performing the integration:

T = i2λ

∫
d4xeiEktν∗

S(x,k)e
iEk′ tν∗

S′(x,k′)e−ip·x (8.28)

→ 2λ

∫
d4xeiEkte−ik·xeiEk′ te−ik′·xe−iEpt (8.29)

= 2λ(2π)4δ(3)(k + k′)δ(M − Ek − Ek′), (8.30)

from which the value of the amplitudeM = i2λ is factorized.
From Eq. (8.26) we extract

M = i2λ

[
δSS′Pk3 + (1− δSS′)Qk3

]
. (8.31)

Since δSS′(1− δSS′) = 0 ∀S, S ′ and δ2SS′ = δSS′ , the amplitude is

|M|2 = 4λ2

[
δSS′|Pk3|2 + (1− δSS′)|Qk3|2

]
, (8.32)
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where |Pk3|2 = θ̃2/[4(k3)2 + θ̃2] and |Qk3 |2 = 4(k3)2/[4(k3)2 + θ̃2].
The differential decay rate is given by

dΓSS′ =
1

2M

d3k

(2π)3
1

2Ek

d3k′

(2π)3
1

2Ek′
|M|2(2π)4δ(M − Ek − E ′

k)δ
(2)(k⊥ + k′

⊥)δ(k
3 − k′3)

=
1

32π2M

d3k

Ek

d3k′

Ek′
|M|2δ(M − Ek − E ′

k)δ
(2)(k⊥ + k′

⊥)δ(k
3 − k′3). (8.33)

To obtain the total decay rate we integrate over d3kd3k′:

ΓSS′ =
1

32π2M

∫
k3,k′3>0

d3kd3k′ 1

EkE ′
k

|M|2δ(M − Ek − E ′
k)δ

(2)(k⊥ + k′
⊥)δ(k

3 − k′3)

=
1

32π2M

∫
k3>0

d3k
|M|2

E2
k

δ(M − 2Ek). (8.34)

By using the property δ[g(x)] =
∑

i δ(x− xi)/|g′(xi)|, where g(xi) = 0, we get that

δ(M − 2Ek) =
M

4

1√
M2

4
−m2 − k2

⊥

δ

(
k3 −

√
M2

4
−m2 − k2

⊥

)
. (8.35)

Integrating k3 from 0 to ∞ and introducing cylindrical coordinates in the perpendicular
directions gives

ΓSS′ =
1

128π2

∫
k3>0

d3k
|M|2

E2
k

√
M2

4
−m2 − k2

⊥

δ

(
k3 −

√
M2

4
−m2 − k2

⊥

)
(8.36)

=
1

32π2M2

∫
d2k⊥

|M|2√
M2

4
−m2 − k2

⊥

(8.37)

=
1

32π2M2

∫ √
M2

4
−m2

0

dk⊥k⊥
|M|2√

M2

4
−m2 − k2

⊥

∫ 2π

0

dθ (8.38)

=
1

16πM2

∫ √
M2

4
−m2

0

dk⊥k⊥
|M|2√

M2

4
−m2 − k2

⊥

. (8.39)

Note that the amplitude is evaluated at k3 =
√

M2

4
−m2 − k2

⊥, i.e.,

|M|2 = 4λ2

[
−δSS′

θ̃2

4

k2
⊥ +m2 − M2

4
− θ̃2

4

+ (1− δSS′)
k2
⊥ +m2 − M2

4

k2
⊥ +m2 − M2

4
− θ̃2

4

]
. (8.40)

We now define

a ≡ M2

4
−m2, b ≡ M2

4
−m2 +

θ̃2

4
, (8.41)
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from where we arrive at

ΓSS′ =
4λ2

16πM2

∫ √
a

0

dk
k√

a− k2

[
δSS′

(
a− b

k2 − b

)
+ (1− δSS′)

(
k2 − a

k2 − b

)]
=

λ2

4πM2

[
δSS′(a− b)

∫ √
a

0

dk
k√

a− k2(k2 − b)
+ (1− δSS′)

∫ √
a

0

dk
k(a− k2)1/2

b− k2

]

=
λ2

4πM2

[
δSS′
√
b− a sin−1

(√
a

b

)
+ (1− δSS′)

{√
a−
√
b− a sin−1

(√
a

b

)}]
.

(8.42)

A new consistency check is that if a = b (or θ̃ = 0) the result without interfaces is recovered.
There are three decay channels. One when the outgoing modes are different, which in

the limit θ̃ → 0 corresponds to that of the usual system without interfaces:

ΓLR =
λ2

4πM2

[√
a−
√
b− a sin−1

(√
a

b

)]

=
λ2

8πM2

√M2 − 4m2 − |θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

 ,

(8.43)

and two when the modes are the same, which arises due to the non-conservation of mo-
mentum in the direction of the z-axis:

ΓLL = ΓRR =
λ2

4πM2

[√
b− a sin−1

(√
a

b

)]
=

λ2

8πM2

|θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

 . (8.44)

From Eq. (8.43), we see that the condition ΓLR > 0 imposes a constraint on M . Since the
argument of sin−1 is less than 1 and positive, then

sin−1

 1√
1 + θ̃2

M2−4m2

 <
π

2
, (8.45)

and so
√
M2 − 4m2 − |θ̃|π

2
> 0, or

M2 > 4m2 +
θ̃2π2

4
. (8.46)

If this condition is not met, a decay channel of the type LR is not possible.
The total decay rate is given by the sum of all decay channels:

Γ̃ = ΓLL + ΓRR + ΓLR (8.47)

=
λ2

4πM2

[
2
√
b− a sin−1

(√
a

b

)
+
√
a−
√
b− a sin−1

(√
a

b

)]
(8.48)

=
λ2

4πM2

[√
b− a sin−1

(√
a

b

)
+
√
a

]
, (8.49)
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Γ̃ =
λ2

8πM2

|θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

+
√
M2 − 4m2

 . (8.50)

This is consistent with the result without interfaces. In such a case, the amplitude is
|M|2 = 4λ2, giving

Γ =
λ2

4πM2

[
1

2

√
M2 − 4m2

]
=

λ2

8πM

(
1− 4m2

M2

)1/2

. (8.51)

The mean life of the decaying particle is given by the inverse of the decay rate:

τ̃ =
4πM2

λ2

[√
b− a sin−1

(√
a

b

)
+
√
a

]−1

, (8.52)

τ̃ =
8πM2

λ2

|θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

+
√
M2 − 4m2

−1

. (8.53)

In the limit θ̃ →∞we have

Γ̃θ̃→∞ =
2λ2

8πM2

√
M2 − 4m2 = 2Γ̃θ̃=0 ≡ 2Γ, (8.54)

since

lim
θ̃→∞
|θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

 =
√
M2 − 4m2. (8.55)

In general Γθ̃ ≥ Γ, since the additional channels due to non-conservation of momentum
contribute to the decay rate with the positive term

λ2

8πM2
|θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

 . (8.56)

We conclude that
Γ ≤ Γ̃ < 2Γ,

τ

2
< τ̃ ≤ τ. (8.57)

Thus, the additional decay channels imply that the mean life of the Ψ particle will be
shorter than its analog in the usual free space system (without interfaces).



9 Propagator

9.1 Coordinate space propagator: Green’s function

We will obtain an expression for the Green’s function of the Klein-Gordon-θ̃ equation in
configuration space. For this purpose, we introduce the contraction between two fields as

Φ(x)Φ(y) ≡

{
[Φ+(x),Φ−(y)], x0 > y0,

[Φ+(y),Φ−(x)], y0 > x0.
(9.1)

= H(x0 − y0)[Φ+(x),Φ−(y)] +H(y0 − x0)[Φ+(y),Φ−(x)], (9.2)

where we use the decomposition defined in the previous Section:

Φ+(x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEkt

√
2Ek

αS(k)νS(x,k), (9.3)

Φ−(x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
eiEkt

√
2Ek

α†
S(k)ν

∗
S(x,k). (9.4)

The commutator [Φ+(x),Φ−(y)] is obtained directly from the relations defining the op-
erators αS(k) and α†

S′(k′):

[Φ+(x),Φ−(y)]

=
∑

S,S′∈{L,R}

∫
k′3>0,k3>0

d3k

(2π)3
d3k′

(2π)3
e−iEkx

0

√
2Ek

eiEk′y
0

√
2Ek′

νS(x,k)ν
∗
S′(y,k′)[αS(k), α

†
S′(k

′)]

=
∑

S,S′∈{L,R}

∫
k′3>0,k3>0

d3kd3k′

(2π)3
e−iEkx

0

√
2Ek

eiEk′y
0

√
2Ek′

νS(x,k)ν
∗
S′(y,k′)δ(3)(k − k′)δSS′

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEk(x

0−y0)

2Ek

νS(x,k)ν
∗
S(y,k)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEk(x

0−y0)

2Ek

Φk3∗
S (x3)Φk3

S (y3)eik⊥·(x−y)⊥ .

(9.5)

We now define D(x, y) ≡ [Φ+(x),Φ−(y)]. We want to compute (∂2+m2−θ̃δ(x3))D(x, y).
The spatial x and y derivatives and the time derivative are straightforward:

∂2
0D(x, y) =

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
−E2

ke
−iEk(x

0−y0)

2Ek

Φk3∗
S (x3)Φk3

S (y3)eik⊥·(x−y)⊥ , (9.6)

−(∂2
1 +∂2

2)D(x, y) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
((k1)2 + (k2)2)e−iEk(x

0−y0)

2Ek

Φk3∗
S (x3)Φk3

S (y3)eik⊥·(x−y)⊥ .

(9.7)
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The second derivative in the direction perpendicular to the interface has already been
calculated in Eq. (6.152). All of these results lead us to

(∂2 +m2 − θ̃δ(x3))D(x, y)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3

[
∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 − θ̃δ(x3) +m2
]

2Ek

×e−iEk(x
0−y0)Φk3∗

S (x3)Φk3

S (y3)eik⊥·(x−y)⊥ (9.8)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3

[
−E2

k + k2
⊥ + (k3)2 + θ̃δ(x3)− θ̃δ(x3) +m2

]
2Ek

×e−iEk(x
0−y0)Φk3∗

S (x3)Φk3

S (y3)eik⊥·(x−y)⊥ (9.9)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
[−E2

k + k2 +m2] e−iEk(x
0−y0)

2Ek

Φk3∗
S (x3)Φk3

S (y3)eik⊥·(x−y)⊥ . (9.10)

The expression vanishes given the relation E2
k = k2 +m2, ensuring that

(∂2 +m2 − θ̃δ(x3))D(x, y) = 0. (9.11)

On the other hand,

∂2
[
H(±[x0 − y0])D(x, y)

]
= ∂µ∂

µ
[
H(±[x0 − y0])D(x, y)

]
(9.12)

=
[
∂2H(±[x0 − y0])

]
D(x, y) +

[
∂µH(±[x0 − y0])

]
[∂µD(x, y)]

+
[
∂µH(±[x0 − y0])

]
[∂µD(x, y)] +H(±[x0 − y0])∂2D(x, y)

=
[
±∂0δ(x0 − y0)

]
D(x, y) + 2∂0H(±[x0 − y0])∂0D(x, y)

+H(±[x0 − y0])∂2D(x, y) (9.13)

= ∓δ(x0 − y0)∂0D(x, y)± 2δ(x0 − y0)∂0D(x, y)

+H(±[x0 − y0])∂2D(x, y) (9.14)

= ±δ(x0 − y0)∂0D(x, y) +H(±[x0 − y0])∂2D(x, y). (9.15)

The property dδ(x)
dx

f(x) = −δ(x)df(x)
dx

was applied. Note that

∂0D(x, y) = ∂0[Φ
+(x),Φ−(y)] = [Φ̇+(x),Φ−(y)], (9.16)

with

Φ̇+(x) = −i
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

e−iEkt

√
2Ek

αS(k)νS(x,k). (9.17)

By means of the commutator of Eq. (9.5) we can deduce that

[Φ̇+(x),Φ−(y)] = −i
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

e−iEk(x
0−y0)

2Ek

νS(x,k)ν
∗
S(y,k) (9.18)

= − i

2

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEk(x

0−y0)νS(x,k)ν
∗
S(y,k). (9.19)
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In Eq. (9.15) this term multiplies δ(x0 − y0):

δ(x0 − y0)∂0D(x, y) = − i

2
δ(x0 − y0)

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
νS(x,k)ν

∗
S(y,k) = −

i

2
δ(4)(x− y),

(9.20)
where we have used the completeness relation. Consequently

(∂2 +m2 − θ̃(x3))H(±[x0 − y0])D(x, y)

= ∓ i

2
δ(4)(x− y) +H(±[x0 − y0])∂2D(x, y) + (m2 − θ̃(x3))H(±[x0 − y0])D(x, y).

(9.21)

By grouping the terms that affect D(x, y) and using Eq. (9.11) we arrive at

(∂2 +m2 − θ̃(x3))H(±[x0 − y0])D(x, y)

= ∓ i

2
δ(4)(x− y) +H(±[x0 − y0])(∂2 +m2 − θ̃δ(x3))D(x, y) = ∓ i

2
δ(4)(x− y).

(9.22)

From Eq. (9.5) it is evident that

[
Φ+(x),Φ−(y)

]∗
=
[
Φ+(y),Φ−(x)

]
, (9.23)

or equivalently, D(x, y) = D(y, x)∗. Therefore,

(∂2 +m2 − θ̃δ(x3))Φ(x)Φ(y) = (∂2 +m2 − θ̃δ(x3))H(x0 − y0)D(x, y)

+(∂2 +m2 − θ̃δ(x3))H(y0 − x0)D(y, x) (9.24)

= − i

2
δ(4)(x− y)

+
[
(∂2 +m2 − θ̃δ(x3))H(y0 − x0)D(x, y)

]∗
(9.25)

= −iδ(4)(x− y). (9.26)

Now we define the Feynman propagator:

∆̃F (x, y) =
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)

=
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k).

(9.27)
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The last equality can be deduced from Eqs. (7.4) and (7.43):

∑
S∈{L,R}

Φk3∗
S (x3)Φk3

S (y3) =
∑

S∈{L,R}

 ∑
σ∈{L,R}

[δSσP
∗
k3 + (1− δSσ)Q

∗
k3 ]Φ

k3

σ (x3)


×

 ∑
σ′∈{L,R}

[δSσ′Pk3 + (1− δSσ′)Qk3 ]Φ
k3∗
σ′ (y3)


=

∑
σ,σ′∈{L,R}

 ∑
S∈{L,R}

[δSσP
∗
k3 + (1− δSσ)Q

∗
k3 ][δSσ′Pk3 + (1− δSσ′)Qk3 ]

Φk3

σ (x3)Φk3∗
σ′ (y3)

=
∑

σ,σ′∈{L,R}

δσσ′Φk3

σ (x3)Φk3∗
σ′ (y3) =

∑
σ∈{L,R}

Φk3

σ (x3)Φk3∗
σ (y3).

This implies ∑
S∈{L,R}

νS(x,k)ν
∗
S(y,k) =

∑
S∈{L,R}

νS(x,k)ν
∗
S(y,k). (9.28)

The term +iϵ in Eq. (9.27) modifies the position of the poles in the complex plane. These
are found in

k2 −m2 + iϵ = 0 → k0 = ±
√

E2
k − iϵ = ±Ek ∓

iϵ

2Ek

, (9.29)

where we only take the first order term in the Taylor expansion of the square root. Such a
situation is illustrated in Fig. 4.

Figure 4: in the Feynman propagator.

This is equivalent to modifying the trajectory on which we perform the integral

∆̃F (x, y) =
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k), (9.30)

as shown in Fig. 5. When x0 > y0 (x0 < y0), the contour closes at the lower (upper) half
of the complex plane where k0 → −i∞ (k0 → i∞), so e−ik0(x0−y0) → 0. This leads to the
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Figure 5: Integration path of the Feynman propagator.

pole k0 = Ek (k0 = −Ek) living inside said contour. By means of the residue theorem, this
implies that

∆̃F (x, y) =H(x0 − y0)

 ∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
e−iEk(x

0−y0)

2Ek

νS(x,k)ν
∗
S(y,k)


+H(y0 − x0)

 ∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
eiEk(x

0−y0)

2Ek

ν∗
S(x,k)νS(y,k)

 .

(9.31)

From Eq. (9.5), and since [Φ+(x),Φ−(y)]
∗
= [Φ+(y),Φ−(x)] we see that

∆̃F (x, y) =H(x0 − y0)
[
Φ+(x),Φ−(y)

]
+H(y0 − x0)

[
Φ+(x),Φ−(y)

]∗
=H(x0 − y0)

[
Φ+(x),Φ−(y)

]
+H(y0 − x0)

[
Φ+(y),Φ−(x)

]
.

(9.32)

Thus, we conclude that the Feynman propagator ∆̃F (x, y) corresponds to the contraction
between two fields Φ:

∆̃F (x, y) ≡ Φ(x)Φ(y). (9.33)

We can directly apply the operator (∂2 +m2 − θ̃δ(x3)− iϵ) to the Feynman propagator
and see that, rewritten in this way, it is easier to prove that it corresponds to the Green’s
function:

(∂2 +m2 − θ̃δ(x3)− iϵ)∆̃F (x, y)

=
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i(−k2 +m2 − iϵ)

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k) (9.34)

+
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4

i
[
−2ik3Pk3 − θ̃(1 + Pk3)

]
δ(x3)e−ik0(x0−y0)

k2 −m2 + iϵ
Φk3

S (y3)eik⊥·(x−y)⊥

= −i
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k) (9.35)
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= −i
(∫

dk0

2π
e−ik0(x0−y0)

) ∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
νS(x,k)ν

∗
S(y,k)

 (9.36)

= −iδ(x0 − y0)δ(3)(x− y) = −iδ(4)(x− y). (9.37)

We have used that 2ik3Pk3+θ̃(1+Pk3) = 0. The propagator ∆̃F (x, y) is the Green’s function
of the Klein-Gordon-θ̃ equation:

(∂2 +m2 − θ̃δ(x3))∆̃F (x, y) = −iδ(4)(x− y). (9.38)

9.1.1 Reduced Green’s function

We have seen that the Feynman propagator is given by

∆̃F (x, y) =

∫
d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)ηk

3

(x3, y3), (9.39)

where k3 ∈ R and

ηk
3

(x3, y3) =
∑

S∈{L,R}

Φk3

S (x3)Φk3∗
S (y3)

= eik
3(x3−y3) + Pk3e

ik3(|x3|+|y3|)

= eik
3(x3−y3) +

θ̃

2
i
eik

3(|x3|+|y3|)

k3 − θ̃
2
i

.

(9.40)

We introduce the reduced Green’s function

g̃(x3, y3; k0,k⊥) ≡
∫ ∞

−∞

dk3

2πi

ηk
3
(x3, y3)

{(k3)2 − [(k0)2 − (k⊥)2 −m2 + iϵ]}
, (9.41)

so that

∆̃F (x, y) =

∫
dk0d2k⊥
(2π)3

e−ik0(x0−y0)+ik⊥·(x−y)⊥ g̃(x3, y3; k0,k⊥). (9.42)

To simplify further computations we define

α ≡
√

(k0)2 − (k⊥)2 −m2 + iϵ ∼
√

(k0)2 − (k⊥)2 −m2 + iϵ. (9.43)

We see that

(∂2 +m2 − θ̃δ(x3))∆̃F (x, y) (9.44)

=

∫
dk0d2k⊥
(2π)3

(−k2
0 + (k⊥)

2 − ∂2
3 +m2 − θ̃δ(x3))e−ik0(x0−y0)+ik⊥·(x−y)⊥ g̃(x3, y3; k0,k⊥)

=

∫
dk0d2k⊥
(2π)3

e−ik0(x0−y0)+ik⊥·(x−y)⊥(−∂2
3 − α2 − θ̃δ(x3))g̃(x3, y3; k0,k⊥), (9.45)
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where we have neglected the term +iϵ in the numerator. Since (∂2+m2−θ̃δ(x3))∆̃F (x, y) =
−iδ(4)(x− y), this must be equal to

−iδ(4)(x− y) =

∫
dk0d2k⊥
(2π)3

e−ik0(x0−y0)+ik⊥·(x−y)⊥ [−iδ(x3 − y3)], (9.46)

and therefore, the differential equation satisfied by the reduced Green’s function is

(∂2
3 + α2 + θ̃δ(x3))g̃(x3, y3; k0,k⊥) = iδ(x3 − y3). (9.47)

We will obtain an explicit expression for g̃(x3, y3; k0,k⊥). Note that

g̃(x3, y3; k0,k⊥) =

∫ ∞

−∞

dk3

2πi

eik
3(x3−y3)

(k3)2 − α2
+

θ̃

2
i

∫ ∞

−∞

dk3

2πi

eik
3(|x3|+|y3|)

(k3 − θ̃
2
i)[(k3)2 − α2]

. (9.48)

We will analyze term by term. First,∫ ∞

−∞

dk3

2πi

eik
3(x3−y3)

(k3)2 − α2
=

∫ ∞

−∞

dk3

2πi

eik
3(x3−y3)

[(k3)− α][(k3) + α]
. (9.49)

The integrand has two poles, −α and α. It is necessary to evaluate by cases: x3 − y3 > 0
and x3− y3 < 0. For the first one we choose a contour like the one in Fig. 6, which ensures
the convergence of the integral. Cauchy theorem implies

Figure 6: Contour for evaluating the first integral when x3 − y3 > 0.

∫
dk3

2πi

eik
3(x3−y3)

[(k3)− α][(k3) + α]
=

eiα(x
3−y3)

2α
. (9.50)

Due to Jordan’s lemma, the integral along the arc vanishes when the radius tends to infin-
ity, and thus we are left with∫ ∞

−∞

dk3

2πi

eik
3(x3−y3)

[(k3)− α][(k3) + α]
=

eiα(x
3−y3)

2α
. (9.51)
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If instead we have x3 − y3 < 0, then we must choose the contour of Fig. 7, which leads
to an equivalent calculation as that of the case x3 − y3 > 0. The only difference is that the
contour is clockwise oriented, and therefore the result carries an extra minus sign:

x3 − y3 < 0 =⇒
∫ ∞

−∞

dk3

2πi

eik
3(x3−y3)

[(k3)− α][(k3) + α]
] = −e−iα(x3−y3)

−2α
=

e−iα(x3−y3)

2α
. (9.52)

Figure 7: Contour for evaluating the first integral when x3 − y3 < 0.

Both cases can be summarized in a single expression:

∫ ∞

−∞

dk3

2πi

eik
3(x3−y3)

[(k3)− α][(k3) + α]
=

eiα|x
3−y3|

2α
. (9.53)

Now we must calculate

θ̃

2
i

∫ ∞

−∞

dk3

2πi

eik
3(|x3|+|y3|)

(k3 − θ̃
2
i)[(k3)2 − α2]

. (9.54)

Considering |x3|+ |y3| is positive, we must choose a contour as that of Fig. 6. Since θ̃ < 0,
the pole k3 = θ̃

2
i lies outside the contour and hence does not contribute to the integral.

Similarly as before, by means of the Cauchy’s integral theorem we obtain

θ̃

2
i

∫ ∞

−∞

dk3

2πi

eik
3(|x3|+|y3|)

(k3 − θ̃
2
i)[(k3)2 − α2]

=
θ̃
2
ieiα(|x

3|+|y3|)

2α(α− θ̃
2
i)

. (9.55)

Thus, we obtain the reduced Green’s function

g̃(x3, y3; k0,k⊥) =
eiα|x

3−y3|

2α
+

θ̃
2
ieiα(|x

3|+|y3|)

2α(α− θ̃
2
i)

. (9.56)
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We will see that this function indeed satisfies Eq. (9.47). First, we calculate

∂2
3

(
eiα|x

3−y3|

2α

)
= [2iαδ(x3 − y3)− α2]

(
eiα|x

3−y3|

2α

)
. (9.57)

Now, we see that

∂2
3

(
θ̃
2
ieiα(|x

3|+|y3|)

2α(α− θ̃
2
i)

)
= (2iαδ(x3)− α2)

(
θ̃
2
ieiα(|x

3|+|y3|)

2α(α− θ̃
2
i)

)
. (9.58)

From this,

(∂2
3 + α2)g̃(x3, y3; k0,k⊥) = −2iαδ(x3 − y3)

(
eiα|x

3−y3|

2α

)
+ 2iαδ(x3)

(
θ̃
2
ieiα(|x

3|+|y3|)

2α(α− θ̃
2
i)

)

= iδ(x3 − y3)− δ(x3)
θ̃
2

α− θ̃
2
i
eiα|y

3|. (9.59)

On the other hand,

θ̃δ(x3)g̃(x3, y3; k0,k⊥) = δ(x3)
θ̃

2α

(
1 +

θ̃
2
i

α− θ̃
2

i

)
eiα|y

3| = δ(x3)
θ̃
2

α− θ̃
2
i
eiα|y

3|. (9.60)

Inserting this in the previous equation gives

(∂2
3 + α2)g̃(x3, y3; k0,k⊥) = iδ(x3 − y3)− θ̃δ(x3)g̃(x3, y3; k0,k⊥). (9.61)

Thus, we conclude that the reduced Green’s function satisfies

(∂2
3 + α2 + θ̃δ(x3))g̃(x3, y3; k0,k⊥) = iδ(x3 − y3). (9.62)

9.2 Momentum space propagator

We want to find an expression for the propagator in momentum space. Since the interface
breaks homogeneity, we expect that the propagator does not merely depend on the mo-
mentum, but also on the position relative to the interface. We start by factorizing, in the
Feynman propagator, the function that depends on the coordinate perpendicular to the
interface:

∆̃F (x, y) =
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)

=

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)

 ∑
S∈{L,R}

νS(x,k)ν
∗
S(y,k)


=

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik⊥·(x−y)⊥

 ∑
S∈{L,R}

Φk3

S (x3)Φk3∗
S (y3)

 .

(9.63)
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We define
ηk

3

(x3, y3) ≡
∑

S∈{L,R}

Φk3

S (x3)Φk3∗
S (y3), (9.64)

so that the propagator takes the form

∆̃F (x, y) =

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)ηk

3

(x3, y3). (9.65)

Writing explicitly the coefficients as functions of θ̃, Pk3 = Pk3(θ̃) and Qk3 = Qk3(θ̃), an
useful property is

Pk3(−θ̃) = P ∗
k3(θ̃) = P−k3(θ̃), Qk3(−θ̃) = Q∗

k3(θ̃) = Q−k3(θ̃). (9.66)

Moreover, from the relation Φk3

L (−z) = Φk3

R (z) it follows that

ηk
3

(−x3,−y3) = Φk3

L (−x3)Φk3∗
L (−y3) + Φk3

R (−x3)Φk3∗
R (−y3) (9.67)

= Φk3

R (x3)Φk3∗
R (y3) + Φk3

L (x3)Φk3∗
L (y3) = ηk

3

(x3, y3). (9.68)

Explicitly,

ηk
3

(x3, y3) = Φk3

L (x3)Φk3∗
L (x3) + Φk3

R (x3)Φk3∗
R (x3) (9.69)

=
(
eik

3x3

+ Pk3e
ik3|x3|

)(
e−ik3x3

+ P−k3e
−ik3|x3|

)
(9.70)

+
(
e−ik3x3

+ Pk3e
ik3|x3|

)(
eik

3x3

+ P−k3e
−ik3|x3|

)
= eik

3(x3−y3) + P−k3e
ik3(x3−|y3|) + Pk3e

ik3(|x3|−y3) + |Pk3|2eik
3(|x3|−|y3|) (9.71)

+e−ik3(x3−y3) + P−k3e
−ik3(x3+|y3|) + Pk3e

ik3(|x3|+y3) + |Pk3|2eik
3(|x3|−|y3|).

Notice that

|Pk3|2 = 1− |Qk3|2 = 1− |1 + Pk3|2 (9.72)

= 1− (1 + Pk3)(1 + P−k3) = −Pk3 − P−k3 − |Pk3 |2, (9.73)

or equivalently,
2|Pk3|2 = −(Pk3 + P−k3), (9.74)

by virtue of which we get

ηk
3

(x3, y3) = eik
3(x3−y3) + P−k3e

ik3(x3−|y3|) + Pk3e
ik3(|x3|−y3) − (Pk3 + P−k3)e

ik3(|x3|−|y3|)

+ e−ik3(x3−y3) + P−k3e
−ik3(x3+|y3|) + Pk3e

ik3(|x3|+y3).
(9.75)

Grouping terms we arrive at

ηk
3

(x3, y3) = eik
3(x3−y3) + e−ik3(x3−y3) + Pk3

[
eik

3(|x3|−y3) + eik
3(|x3|+y3) − eik

3(|x3|−|y3|)
]

+ P−k3

[
e−ik3(|y3|−x3) + e−ik3(|y3|+x3) − e−ik3(|y3|−|x3|)

]
.

(9.76)
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Evaluating all possible cases

(x3 > 0, y3 > 0), (x3 > 0, y3 < 0), (x3 < 0, y3 > 0), and (x3 < 0, y3 < 0), (9.77)

we obtain
ηk

3

(x3, y3) = eik
3(x3−y3) + Pk3e

ik3(|x3|+|y3|) + c.c. (9.78)

In Eq. (9.63) we integrate over k3 > 0. The factor i
k2−m2+iϵ

is invariant under k3 → −k3,
so

I =

∫
k3>0

idk3

k2 −m2 + iϵ
ηk

3

(x3, y3)

=

∫
k3>0

idk3

k2 −m2 + iϵ

[
eik

3(x3−y3) + Pk3e
ik3(|x3|+|y3|) + e−ik3(x3−y3) + P−k3e

−ik3(|x3|+|y3|)
]

=

∫ ∞

−∞

idk3

k2 −m2 + iϵ

[
eik

3(x3−y3) + Pk3e
ik3(|x3|+|y3|)

]
.

(9.79)

In this form it is more transparent that the free propagator is recovered when θ̃ → 0, since
in such a case Pk3 → 0.

If we extend the domain of integration to k3 ∈ (−∞,∞) then

ηk
3

(x3, y3) = eik
3(x3−y3) + Pk3e

ik3(|x3|+|y3|). (9.80)

9.2.1 Propagation across the interface

Note that if x3 and y3 have opposite signs (i.e. if there is propagation across the interface),
then

ηk
3

(x3, y3) = fk3(x3 − y3). (9.81)

Explicitly, we have

ηk
3

(x3, y3) = (1 + Pk3)e
ik3|x3−y3| + c.c. = Qk3e

ik3|x3−y3| + c.c.. (9.82)

As shown above, we can dispense with complex conjugation if we extend the domain of
integration of k3 to (−∞,∞).

This form is elegant but not convenient because from

∆̃F (x) =

∫ ∞

−∞

d4k

(2π)4
e−ik·x∆̃F (k) (9.83)

we want to be able to identify ∆̃F (k).
We must find something of the form

ηk
3

(x3, y3) = Aeik
3(x3−y3) + c.c. (9.84)
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We write

ηk
3

(x3, y3) = (1 + Pk3)e
ik3|x3−y3| + c.c. = (1 + Pk3)e

ik3|x3−y3| + (1 + P ∗
k3)e

−ik3|x3−y3|

=
(
eik

3(x3−y3) + c.c.
)
+ Pk3e

ik3|x3−y3| + P ∗
k3e

−ik3|x3−y3|

=
(
eik

3(x3−y3) + c.c.
)
+ Pk3(θ̃)e

ik3|x3−y3| + Pk3(−θ̃)e−ik3|x3−y3|

=
(
eik

3(x3−y3) + c.c.
)
+
(
Pk3(sgn(x3 − y3)θ̃)eik

3(x3−y3) + c.c.
)

= (1 + Pk3(sgn(x3 − y3)θ̃)eik
3(x3−y3) + c.c.

= Qk3(sgn(x3 − y3)θ̃)eik
3(x3−y3) + c.c..

(9.85)

Taking k3 ∈ R and doing x3 − y3 → x3 we arrive at

ηk
3

(x3) = Qk3(sgn(x3)θ̃)eik
3x3

. (9.86)

From this, the propagator of Eq. (9.65) is written as

∆̃F (x) =

∫ ∞

−∞

d4k

(2π)4
e−ik·x i

k2 −m2 + iϵ
Qk3(sgn(x3)θ̃). (9.87)

Comparing with Eq. (9.83) we identify

∆̃F (k, x
3) =

i

k2 −m2 + iϵ
Qk3(sgn(x3)θ̃) = Qk3(sgn(x3)θ̃)∆F (k) (9.88)

∆̃F (k, y
3) = Qk3(−sgn(y3)θ̃)∆F (k) = (1 + Pk3(−sgn(y3)θ̃))∆F (k). (9.89)

Another reason to prefer this form over the one given in Eq. (9.82) is that the sign of θ̃ in
Qk3 makes physical sense: if there is propagation from z < 0 to z > 0 then ∆θ = θ̃. In
contrast, if the propagation is from z > 0 to z < 0 then ∆θ = −θ̃.

9.2.2 Propagation in homogeneous region

The analysis becomes more complicated when we consider propagation in the same re-
gion:

(x3 > 0, y3 > 0) ηk
3

(x3, y3) = eik
3(x3−y3) + Pk3e

ik3(x3+y3) + c.c., (9.90)

(x3 < 0, y3 < 0) ηk
3

(x3, y3) = eik
3(x3−y3) + Pk3e

−ik3(x3+y3) + c.c. (9.91)

We can also condense these two expressions

ηk
3

(x3, y3) = eik
3(x3−y3) + Pk3(sgn(x3 + y3)θ̃)eik

3(x3+y3)

= (1 + Pk3(sgn(y3)θ̃)e2ik
3y3)eik

3(x3−y3).
(9.92)

The integration must be done over the extended domain k3 ∈ (−∞,∞).
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We find that propagation in a homogeneous region gives rise to

∆̃F (k, y
3) = (1 + Pk3(sgn(y3)θ̃)e2ik

3y3)∆F (k). (9.93)

Eqs. (9.89) and (9.93) can be put in a single expression as

∆̃F (k, y
3) = (1 + Pk3(±sgn(y3)θ̃)eik

3y3(1±1))∆F (k), (9.94)

where the positive sign corresponds to propagation in a homogeneous region and the
negative sign to propagation through the interface.

The first term in Eq. (9.92) is just like that in a vacuum: it accounts for propagation
from x3 to y3. The second term, however, corresponds to the propagation from x3 to −y3,
i.e., the presence of the interface involves, in addition to the normal propagation from x3

to y3, the propagation from x3 to the mirror image of y3 with respect to the interface.



10 Classical source

We will now study how a classical source may produce Φ modes. This will give us a
modified Hamiltonian that includes the contribution of the source, and will also provide
us with an expression for the energy due to the θ̃ interface. Our results will be written
as probabilities of producing m modes, which will turn out to be governed by a Poisson
distribution.

We have seen that

∆̃F (x, y) =

∫
d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)ηk

3

(x3, y3), (10.1)

where
ηk

3

(x3, y3) =
∑

S∈{L,R}

Φk3

S (x3)Φk3∗
S (y3) = eik

3(x3−y3) + Pk3e
ik3(|x3|+|y3|) (10.2)

and the domain of integration is the extended one: k3 ∈ (−∞,∞). With this,

∆̃F (x, y) =

∫
d4k

(2π)4
i

k2 −m2 + iϵ
e−ik·(x−y)

+

∫
d4k

(2π)4
i

k2 −m2 + iϵ
Pk3e

−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)eik
3(|x3|+|y3|)

=∆F (x− y) +

∫
d4k

(2π)4
i

k2 −m2 + iϵ
Pk3e

−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)eik
3(|x3|+|y3|).

(10.3)

We are interested in the retarded propagator

∆̃R(x, y) ≡ H(x0 − y0)(D(x, y)−D(y, x)). (10.4)

Analogously,

∆̃R(x, y) = ∆R(x− y) +

∫
d4k

(2π)4
i

k2 −m2
Pk3e

−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)eik
3(|x3|+|y3|),

(10.5)
where the integration contour is carried out avoiding the two poles through the positive
region of the imaginary axis.

10.1 Field-source coupling

We consider a Klein-Gordon-θ̃ field coupled to an external classical source:

(∂2 +m2 − θ̃δ(x3))Φ = j(x), (10.6)

where j(x) is a known function, not null only during a finite time interval. Before the
source is turned on, the field has the form

Φ0(x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
αS(k)νS(x,k)e

−iEkt + h.c.
]
. (10.7)
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We work with the detector basis since we care about the production and possible detection
of Φ modes. We will show that the source affects the field in the following way:

Φ(x) = Φ0(x) + i

∫
d4y∆̃R(x, y)j(y). (10.8)

To do this, we note that ∆̃R(x, y) is the Green’s function of the Klein-Gordon-θ̃ equation:

(∂2 +m2 − θ̃δ(x3))∆̃R(x, y)

= (∂2 +m2 − θ̃δ(x3))H(x0 − y0)(D(x, y)−D(y, x)) (10.9)

= (∂2 +m2 − θ̃δ(x3))H(x0 − y0)D(x, y)

−(∂2 +m2 − θ̃δ(x3))H(x0 − y0)D(y, x) (10.10)

= − i

2
δ(4)(x− y)−

[
(∂2 +m2 − θ̃δ(x3))H(x0 − y0)D(x, y)

]∗
(10.11)

= −iδ(4)(x− y). (10.12)

In this way,

(∂2 +m2 − θ̃δ(x3))Φ(x)

= (∂2 +m2 − θ̃δ(x3))Φ0(x) + i

∫
d4y(∂2 +m2 − θ̃δ(x3))∆̃R(x, y)j(y) (10.13)

= i

∫
d4y

[
−iδ(4)(x− y)

]
j(y) = j(x). (10.14)

We will consider that the source only manifests itself at a time y0 < x0; moreover, it is
located on the left side of the interface, so y3 < 0. In such a case, the propagator of Eq.
(10.5) takes the form

∆̃R(x, y) = ∆R(x− y) +

∫
d4k

(2π)4
i

k2 −m2
Pk3e

−i(k0x0−k1x1−k2x2−k3|x3|)eik·y. (10.15)

If we are interested in knowing the field on the right side of the interface then x3 > 0, so
that

∆̃R(x, y) = ∆R(x−y)+

∫
d4k

(2π)4
i

k2 −m2
Pk3e

−ik·xeik·y =

∫
d4k

(2π)4
iQk3

k2 −m2
e−ik·xeik·y, (10.16)

given 1 + Pk3 = Qk3 . In such a way,

Φ(x) = Φ0(x) + i

∫
d4k

(2π)4
iQk3

k2 −m2
e−ik·x

(∫
d4yeik·yj(y)

)
(10.17)

= Φ0(x) + i

∫
d4k

(2π)4
iQk3

k2 −m2
e−ik·xJ(k) (10.18)

= Φ0(x) +

(∫
d3k

(2π)3
iQk3

2Ek

e−ik·xJ(k)−
∫

d3k

(2π)3
iQ∗

k3

2Ek

eik·xJ∗(k)

)
(10.19)

= Φ0(x) +

(∫
d3k

(2π)3
iQk3

2Ek

e−ik·xJ(k) + h.c
)
. (10.20)
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If instead the source is on the right side and we look at the behavior of the field on the left
side, the value of |x3| + |y3| changes by a sign with respect to the case already analyzed.
This can be alleviated by making the change of variables k3 → −k3 in Eq. (10.5); using
P−k3 = P ∗

k3 , we have

Φ(x) = Φ0(x) +

(∫
d3k

(2π)3
iQ∗

k3

2Ek

e−ik·xJ(k) + h.c.
)
. (10.21)

Now we consider that the source lives on the left side and we want to analyze the field in
this same region (i.e., x3 < 0 and y3 < 0). In such a case,

∆̃R(x, y) (10.22)

= ∆R(x− y) +

∫
d4k

(2π)4
i

k2 −m2
Pk3e

−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)eik
3(−x3−y3)(10.23)

= ∆R(x− y) +

∫
d4k

(2π)4
i

k2 −m2
Pk3e

−i(k0x0−k1x1−k2x2+k3x3)eik·y. (10.24)

Thus,

Φ(x) = Φ0(x) + i

∫
d4y∆̃R(x, y)j(y) (10.25)

= Φ0(x) +

(∫
d3k

(2π)3
i

2Ek

e−ik·xJ(k) + h.c.
)

+

∫
d4k

(2π)4
iPk3

k2 −m2
e−i(k0x0−k1x1−k2x2+k3x3)

(∫
d4yeik·yj(y)

)
(10.26)

= Φ0(x) +

(∫
d3k

(2π)3
i

2Ek

e−ik·xJ(k) + h.c.
)

+

∫
d4k

(2π)4
iPk3

k2 −m2
e−i(k0x0−k1x1−k2x2+k3x3)J(k). (10.27)

By making the change of variables k3 → −k3 in the third term and defining the vector
κ = (k0, k1, k2,−k3) we obtain

Φ(x) = Φ0(x) +

(∫
d3k

(2π)3
i

2Ek

e−ik·x [J(k) + P ∗
k3J(κ)] + h.c.

)
. (10.28)

If the source lives on the right side and we are interested in knowing the field in this
region, then

Φ(x) = Φ0(x) +

(∫
d3k

(2π)3
i

2Ek

e−ik·x [J(k) + Pk3J(κ)] + h.c.
)
. (10.29)
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10.2 θ̃-transform

The above equations are simple but we prefer that the expression containing the source is
written in terms of νS(x,k). For this we write

∆̃R(x, y) =
∑

S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k) (10.30)

= H(x0 − y0)

{ ∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

e−ik0(x0−y0)νS(x,k)ν
∗
S(y,k)

−
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

e−ik0(y0−x0)νS(y,k)ν
∗
S(x,k)

}
(10.31)

= H(x0 − y0)
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

×
{
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)− e−ik0(y0−x0)νS(y,k)ν

∗
S(x,k)

}
. (10.32)

Since y0 < x0,

Φ(x) = Φ0(x) + i

∫
d4y

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

×
{
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)− e−ik0(y0−x0)νS(y,k)ν

∗
S(x,k)

}
j(y) (10.33)

= Φ0(x) +
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

{
ie−ik0x0

νS(x,k)

(∫
d4yeik

0y0ν∗
S(y,k)j(y)

)

−ieik0x0

ν∗
S(x,k)

(∫
d4ye−ik0y0νS(y,k)j(y)

)}
(10.34)

= Φ0(x) +
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

×
{
ie−ik0x0

νS(x,k)

(∫
d4yeik

0y0ν∗
S(y,k)j(y)

)
+ h.c.

}
(10.35)

= Φ0(x) +

 ∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
i

2Ek

e−ik0x0

νS(x,k)j̃S(k) + h.c.

 , (10.36)

where we have considered j(y) to be a real function and have defined

j̃S(k) ≡
∫

d4yeik
0y0ν∗

S(y,k)j(y) =

∫
d4yei(k

0y0−k⊥·y⊥)Φk3

S (y3)j(y). (10.37)
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We will call this transform, which differs from the Fourier transform by the presence of
Φk3

S (y3) in the kernel, the θ̃ transform. Thus,

Φ(x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[(
αS(k) +

i√
2Ek

j̃S(k)

)
e−ik0x0

νS(x,k) + h.c.
]
. (10.38)

10.3 Modified Hamiltonian

We will now see how the presence of the source modifies the Hamiltonian. Note that the
Hamiltonian given in Eq. (6.83) can be rewritten in terms of outgoing operators as

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ekα

†
S(k)αS(k), (10.39)

since

∑
S∈{L,R}

α†
S(k)αS(k) =

∑
S∈{L,R}

 ∑
σ∈{L,R}

[δSσP
∗
k3 + (1− δSσ)Q

∗
k3 ]a

†
σ(k)


×

 ∑
σ′∈{L,R}

[δSσ′Pk3 + (1− δSσ′)Qk3 ]aσ′(k)

 ,

(10.40)

and due to Eq. (7.43) this turns out to be∑
S∈{L,R}

α†
S(k)αS(k) =

∑
S∈{L,R}

a†S(k)aS(k). (10.41)

We obtain the modified Hamiltonian by making the substitution

αS(k)→ αS(k) +
i√
2Ek

j̃S(k), (10.42)

since all the space-time dependence is carried by the functions e−ik0x0
νS(x,k), which are

the ones that are affected by the derivatives in the expression for the Hamiltonian

H =

∫
d3x

[
1

2
(Φ̇)2 +

1

2
(∇Φ)2 + m2

2
Φ2 + θ(x3)Φ∂3Φ

]
. (10.43)

Therefore, by normal ordering we have

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

(
α†
S(k)−

i√
2Ek

j̃∗S(k)

)(
αS(k) +

i√
2Ek

j̃S(k)

)
. (10.44)
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10.4 Ground state energy

We will now calculate the vacuum expectation value of the Hamiltonian and compare it
with that of the usual system. Note that

⟨0|H |0⟩ =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

1

2Ek

|j̃S(k)|2 (10.45)

=

∫
k3>0

d3k

(2π)3
Ek

1

2Ek

|j̃L(k)|2 +
∫
k3>0

d3k

(2π)3
Ek

1

2Ek

|j̃R(k)|2, (10.46)

where |0⟩ is the ground state of the free theory. We identify |j̃S(k)|2/2Ek as the proba-
bility density of creating a mode with labels {S, k}. Thus, the average number of modes
produced by the source is

〈
N
〉

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2Ek

|j̃S(k)|2 (10.47)

=

∫
k3>0

d3k

(2π)3
1

2Ek

|j̃L(k)|2 +
∫
k3>0

d3k

(2π)3
1

2Ek

|j̃R(k)|2 =
〈
NL

〉
+
〈
NR

〉
. (10.48)

It is natural that we can differentiate between L and R modes, since all the results have
been expressed in terms of the basis {νS(x,k)}. It can be difficult to compute

j̃S(k) =

∫
d4yei(k

0y0−k⊥·y⊥)Φk3

S (y3)j(y) (10.49)

given the nature of the kernel. If we consider that the source is located on the right side of
the interface, i.e.,

j(y) = 0 if y3 < 0, (10.50)

then we are only interested in knowing Φk3

S (y3) in the region y3 > 0. Note that

Φk3

L (y3 > 0) = Qk3e
ik3y3 , Φk3

R (y3 > 0) = e−ik3y3 + Pk3e
ik3y3 . (10.51)

So,

j̃L(k) =

∫
d4yQk3e

i(k0y0−k⊥·y⊥+k3y3)j(y) = Qk3

∫
d4yeiκ·yj(y) = Qk3J(κ), (10.52)

j̃R(k) =

∫
d4yeik·yj(y) +

∫
d4yPk3e

i(k0y0−k⊥·y⊥+k3y3)j(y) (10.53)

= J(k) + Pk3

∫
d4yeiκ·yj(y) (10.54)

= J(k) + Pk3J(κ), (10.55)

where κ = (k0, k1, k2,−k3). On the other hand, if the source is located on the left side of
the interface, i.e.

j(y) = 0 if y3 > 0, (10.56)
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then we are only interested in knowing Φk3

S (y3) in the region y3 < 0. Note that

Φk3

L (y3 < 0) = eik
3y3 + Pk3e

−ik3y3 , Φk3

R (y3 < 0) = Qk3e
−ik3y3 . (10.57)

Thus,

j̃L(k) =

∫
d4yei(k

0y0−k⊥·y⊥+k3y3)j(y) +

∫
d4yPk3e

ik·yj(y) (10.58)

=

∫
d4yeiκ·yj(y) +

∫
d4yPk3e

ik·yj(y) (10.59)

= J(κ) + Pk3J(k), (10.60)

j̃R(k) =

∫
d4yQk3e

ik·yj(y) = Qk3J(k). (10.61)

Recalling that 1 + Pk3 = Qk3 , in the first case we have

j̃L(k)− j̃R(k) = Qk3J(k)− (J(κ) + Pk3J(k)) = J(k)− J(κ). (10.62)

while in the second case we have

j̃L(k)− j̃R(k) = (J(k) + Pk3J(κ))−Qk3J(κ) = J(k)− J(κ). (10.63)

Regardless of where the source is, we find that

j̃L(k)− j̃R(k) = J(k)− J(κ), (10.64)

The left side of the equation corresponds to θ̃ transforms, while the right hand side corre-
sponds to Fourier transforms. When the source is on the right side,∑

S

|j̃S(k)|2 = |j̃L(k)|2 + |j̃R(k)|2 = |Qk3J(k)|2 + |J(κ) + Pk3J(k)|2 (10.65)

= |Qk3|2|J(k)|2 + |J(κ)|2 + 2|Pk3||J(k)J(κ)|+ |Pk3|2|J(k)|2 (10.66)

= |J(k)|2 + |J(κ)|2 + 2|Pk3 ||J(k)J(κ)|, (10.67)

where we have used that |Qk3|2 + |Pk3|2 = 1. If the source is on the left side, then∑
S

|j̃S(k)|2 = |j̃L(k)|2 + |j̃R(k)|2 = |J(k) + Pk3J(κ)|2 + |Qk3J(κ)|2 (10.68)

= |J(k)|2 + 2|Pk3||J(k)J(κ)|+ |Pk3|2|J(κ)|2 + |Qk3|2|J(κ)|2 (10.69)

= |J(k)|2 + |J(κ)|2 + 2|Pk3 ||J(k)J(κ)|. (10.70)

In any case, ∑
S

|j̃S(k)|2 = |J(k)|2 + |J(κ)|2 + 2|Pk3||J(k)J(κ)|. (10.71)

This, on the one hand, facilitates the computation of the θ̃ transform by expressing it
in terms of Fourier transforms; on the other, it shows that there is interference on the
plane-wave basis (due to the term 2|Pk3||J(k)J(κ)|). The disadvantage of using Fourier
transforms is that, although we can know the total number of modes produced, it is not
possible to distinguish if they are outgoing L or R modes.
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10.4.1 Energy due to the interface

Now we compare the energy of the system after turning off the source for a usual Klein-
Gordon field and for a Klein-Gordon-θ̃ field. From the previous results,

⟨0|H |0⟩ =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1

2
|j̃S(k)|2 =

∫
k3>0

d3k

(2π)3
1

2

 ∑
S∈{L,R}

|j̃S(k)|2


=

∫
k3>0

d3k

(2π)3
1

2

[
|J(k)|2 + |J(κ)|2 + 2|Pk3||J(k)J(κ)|

]
=

∫
k3>0

d3k

(2π)3
1

2
|J(k)|2 +

∫
k3>0

d3k

(2π)3
1

2
|J(κ)|2 +

∫
k3>0

d3k

(2π)3
|Pk3||J(k)J(κ)|.

(10.72)

In the second term we make the change of variables k3 → −k3, from which we obtain
J(κ)→ J(k). We also note that the third term is an even function of k3, so

⟨0|H |0⟩ =
∫
k3>0

d3k

(2π)3
1

2
|J(k)|2 +

∫
k3<0

d3k

(2π)3
1

2
|J(k)|2 + 1

2

∫
d3k

(2π)3
|Pk3||J(k)J(κ)|

=

∫
d3k

(2π)3
1

2
|J(k)|2 + 1

2

∫
d3k

(2π)3
|Pk3||J(k)J(κ)|.

(10.73)

The integration is done from −∞ to∞. We identify the energy of the system after turning
off the source in a usual Klein-Gordon field∫

d3k

(2π)3
1

2
|J(k)|2. (10.74)

The contribution to the energy due to the interface is

Eθ̃ =
1

2

∫
d3k

(2π)3
|Pk3 ||J(k)J(κ)|, (10.75)

which vanishes when θ̃ = 0, as expected. The integrand is always greater than or equal
to zero, and strictly greater when θ̃ ̸= 0; in other words, the presence of the interface
contributes positively to the energy.

On the other hand, from Eq. (10.64) we have that

|j̃L(k)− j̃R(k)|2 = |J(k)− J(κ)|2,∑
S

|j̃S|2 − 2|j̃L(k)j̃R(k)| = |J(k)|2 + |J(κ)|2 − 2|J(k)J(κ)|,

|J(k)|2 + |J(κ)|2 + 2|Pk3||J(k)J(κ)| − 2|j̃L(k)j̃R(k)| = |J(k)|2 + |J(κ)|2 − 2|J(k)J(κ)|,
|Pk3||J(k)J(κ)| − |j̃L(k)j̃R(k)| = −|J(k)J(κ)|,

|j̃L(k)j̃R(k)| = (1 + |Pk3|)|J(k)J(κ)|,(
|Pk3|

1 + |Pk3|

)
|j̃L(k)j̃R(k)| = |Pk3||J(k)J(κ)|.

(10.76)
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Therefore, in terms of θ̃ transforms,

Eθ̃ =
1

2

∫
d3k

(2π)3

(
|Pk3|

1 + |Pk3|

)
|j̃L(k)j̃R(k)|. (10.77)

The Hamiltonian of Eq. (10.44) can be separated:

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

(
α†
S(k)−

i√
2Ek

j̃∗S(k)

)(
αS(k) +

i√
2Ek

j̃S(k)

)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

(
α†
S(k)αS(k) +

i√
2Ek

α†
S(k)j̃S(k)−

i√
2Ek

αS(k)j̃
∗
S(k) +

|j̃S(k)|2

2Ek

)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ekα

†
S(k)αS(k) +

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
i

√
Ek

2

[
α†
S(k)j̃S(k)− αS(k)j̃

∗
S(k)

]
+

∑
S∈{L,R}

∫
k3>0

d3k

(2π)3
|j̃S(k)|2

2
.

(10.78)

The first term is the free Hamiltonian H0 and the third is equal to ⟨0|H |0⟩, that is, the
vacuum expectation value of the energy.

10.5 Time evolution operator

We will obtain an expression for the time evolution operator, which allows to calculate
the probability of going from an initial to a final state of the system, and that will further
let us compute the probability for producing a given number of modes. The Hamiltonian
can be written as

H = H0 −
∫

d3yj(t,y)Φ(t,y) (10.79)

The field Φ(x) in the Schrödinger picture is

ΦS(x) ≡ Φ(t = 0,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
αS(k)νS(x,k) + α†

S(k)ν
∗
S(x,k)

]
. (10.80)

In the interaction picture,

ΦI ≡ eiH0,stΦSe
−iH0,St. (10.81)
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Using Eq. (6.139), it is easy to compute the following commutator:

[H0,S,ΦS] =
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
Ek√
2E ′

k

×
[
α†
S(k)αS(k), αS′(k′)νS′(x,k′) + α†

S′(k
′)ν∗

S′(x,k′)
]

(10.82)

=
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
Ek√
2E ′

k

×
([

α†
S(k)αS(k), αS′(k′)

]
νS′(x,k′) +

[
α†
S(k)αS(k), α

†
S′(k

′)
]
ν∗
S′(x,k′)

)
(10.83)

=
∑

S,S′∈{L,R}

∫
k3,k′3>0

d3k

(2π)3
d3k′

(2π)3
Ek√
2E ′

k

(2π)3δ(3)(k − k′)δSS′

×
(
−αS(k)νS′(x,k′) + α†

S(k)ν
∗
S′(x,k′)

)
(10.84)

=
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3

√
Ek

2

(
−αS(k)νS(x,k) + α†

S(k)ν
∗
S(x,k)

)
= −iΦ̇S. (10.85)

In general,

i
[
H0,S,Φ

(n)
S

]
= Φ

(n+1)
S , (10.86)

where the superscript in Φ
(n)
S denotes the n-th time derivative. By using the BCH formula

we get

ΦI(t,x) = eiH0,stΦSe
−iH0,St = ΦS + ti [H0,S,ΦS] +

t2

2
i [H0,S, i [H0,S,ΦS]] + ... (10.87)

= ΦS + tΦ
(1)
S +

t2

2
Φ

(2)
S + ... =

∞∑
n=0

Φ
(n)
S

n!
tn (10.88)

=
∞∑
n=0

Φ(n)(t = 0,x)

n!
tn = Φ(t,x). (10.89)

Thus,

ΦI(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
αS(k)e

−iEktνS(x,k) + α†
S(k)e

iEktν∗
S(x,k)

]
= Φ(x),

(10.90)
which allows us to drop the subscript I .

The time evolution operator is defined as

U(t, t′) ≡ T
{
exp

[
−i
∫ t

t′
dt′′H ′′

I (t
′′)

]}
, (10.91)

where HI is the interaction Hamiltonian in the interaction picture and T is the time order-
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ing operator. We take t′ = 0 as our reference time:

HI(t) = eiH0,St

(
−
∫

d3xj(x)ΦS(x)

)
e−iH0,St (10.92)

= −
∫

d3xj(x)
(
eiH0,StΦS(x)e

−iH0,St
)
= −

∫
d3xj(x)Φ(x). (10.93)

In this case,

U(t, 0) = T
{
exp

[
i

∫ t

0

dt′
∫

d3xj(x)Φ(x)

]}
= T

{
exp

[
i

∫
d4xj(x)Φ(x)

]}
. (10.94)

10.6 Mode creation
Our goal is to show that the source has a non-zero probability of producing a finite number
of modes. Moreover, we will see that such probability is governed by a Poisson distribu-
tion.

Probability of producing no modes.
To become familiar with the calculations, we first obtain the probability that the source

does not create modes. That is,

P (0) =

∣∣∣∣ ⟨0|U(t, 0) |0⟩
∣∣∣∣2 = ∣∣∣∣ ⟨0| T {exp [i ∫ d4xj(x)Φ(x)

]}
|0⟩
∣∣∣∣2. (10.95)

To order O(j2),

P (0) ≈
∣∣∣∣ ⟨0| T {1 + i

∫
d4xj(x)Φ(x)− 1

2

(∫
d4xj(x)Φ(x)

)}
|0⟩
∣∣∣∣2 (10.96)

=

∣∣∣∣1− 1

2

∫
d4xd4yj(x)j(y) ⟨0| T {Φ(x)Φ(y)} |0⟩

∣∣∣∣2. (10.97)

The linear term vanishes because it involves the vacuum expectation value of one annihi-
lation (creation) operator.

We will now prove that the quantity ⟨0| T {Φ(x)Φ(y)} |0⟩ corresponds to the Feynman
propagator. For two fields, Wick’s theorem acquires the form (see Appendix A)

T {Φ(x)Φ(y)} =: Φ(x)Φ(y) : +Φ(x)Φ(y), (10.98)

where : Φ(x)Φ(y) : is the normal ordered product of the fields Φ(x) and Φ(y), and by which
every annihilation operator is placed to the right of every creation operator. This property
implies that ⟨0| : Φ(x)Φ(y) : |0⟩ = 0, since the annihilation (creation) operators acting

on the vacuum on the right (left) side give zero. Moreover, ⟨0|Φ(x)Φ(y) |0⟩ = Φ(x)Φ(y),
because the contraction between two fields is a scalar —it corresponds to the Feynman
propagator, as shown in Eq. (9.33). Thus,

⟨0| T {Φ(x)Φ(y)} |0⟩ = Φ(x)Φ(y) = ∆̃F (x, y). (10.99)
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Hence, we write

P (0) ≈

∣∣∣∣∣1− 1

2

∫
d4xd4yj(x)j(y)

×

 ∑
S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)νS(x,k)ν

∗
S(y,k)

 ∣∣∣∣∣
2

(10.100)

=

∣∣∣∣∣1− 1

2

∑
S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ

×
(∫

d4xe−ik0x0

νS(x,k)j(x)

)(∫
d4yeik

0y0ν∗
S(y,k)j(y)

) ∣∣∣∣∣
2

(10.101)

=

∣∣∣∣∣1− 1

2

∑
S∈{L,R}

∫
k3>0

d4k

(2π)4
i

k2 −m2 + iϵ
|j̃S(k)|2

∣∣∣∣∣
2

(10.102)

=

∣∣∣∣∣1− 1

2

∫
k3>0

d3k

(2π)3

∫
dk0

(2π)

 ∑
S∈{L,R}

|j̃S(k)|2
 i

k2 −m2 + iϵ

∣∣∣∣∣
2

(10.103)

=

∣∣∣∣∣1− 1

2

∫
k3>0

d3k

(2π)3

∫ dk0

(2π)

 ∑
S∈{L,R}

|j̃S(k)|2
 i

(k0 − Ek)(k0 + Ek)

∣∣∣∣∣
2

.(10.104)

The integral over the time component has a pole at k0 = −Ek with residue

−i
∑

S∈{L,R} |j̃S(k)|2

2Ek

. (10.105)

Therefore,∫
dk0

 ∑
S∈{L,R}

|j̃S(k)|2
 i

(k0 − Ek)(k0 + Ek)
= 2πi

(
−i
∑

S∈{L,R} |j̃S(k)|2

2Ek

)
(10.106)

= 2π
1

2Ek

∑
S∈{L,R}

|j̃S(k)|2. (10.107)

Thus,

P (0) ≈

∣∣∣∣∣1− 1

2

∫
k3>0

d3k

(2π)3
1

2Ek

∑
S∈{L,R}

|j̃S(k)|2
∣∣∣∣∣
2

(10.108)

=

∣∣∣∣∣1− 1

2
⟨N⟩

∣∣∣∣∣
2

≈ 1− ⟨N⟩+O(⟨N⟩2) = 1− ⟨NL⟩ − ⟨NR⟩+O(j4). (10.109)

This result is quite intuitive: to second order in j, the probability that the source does not
produce modes is 1 minus the expected value of modes generated in the vacuum. Now
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we will calculate P (0) exactly. The term O(j2n) is

i2n

(2n)!

∫ 2n∏
i=1

d4xij(xi) ⟨0| T

{
2n∏
j=1

Φ(xj)

}
|0⟩ . (10.110)

By Wick’s theorem, the quantity ⟨0| T
{∏2n

j=1Φ(xj)
}
|0⟩ corresponds to the contraction of

all the fields Φ(xj) by pairs:

⟨0| T

{
2n∏
j=1

Φ(xj)

}
|0⟩ =

∑
pairs

Φ(xi1)Φ(xj1)...Φ(xin)Φ(xjn) =
∑
pairs

∆̃F (xi1 , xji)...∆̃F (xin , xjn).

(10.111)
This is why we are only interested in the terms of order 2n; odd orders cancel since there
will always be uncontracted fields that annihilate the vacuum to the right or to the left.
We can write

O(j2n) =
i2n

(2n)!

∫ 2n∏
i=1

d4xij(xi) ⟨0| T

{
2n∏
j=1

Φ(xj)

}
|0⟩ (10.112)

=
i2n

(2n)!

∫ [ 2n∏
i=1

d4xij(xi)

]∑
pairs

∆̃F (xi1 , xji)...∆̃F (xin , xjn)

 . (10.113)

Since the integration is performed over all variables, i.e. they are dummy, this must be
equal to

O(j2n) = M(2n)
i2n

(2n)!

∫
d4x1...d

4x2nj(x1)...j(x2n)∆̃F (x1, x2)...∆̃F (x2n−1, x2n), (10.114)

where M(2n) is a multiplicity factor. To calculate it, we look at the quantity

χ(x1, ..., x2n) = ∆̃F (x1, x2)...∆̃F (x2n−1, x2n). (10.115)

We start from the set of 2n variables {x1, ..., x2n}. For the first pair of arguments of χ

there are a total of (2n)(2n−1)
2

= n(2n − 1) possibilities, where the factor of 1/2 arises from
the symmetry of ∆̃F (x, y) under the exchange x ↔ y. Similarly, for the second pair of
arguments there are (2n−2)(2n−3)

2
= (n− 1)(2n− 3) possibilities. Repeating this logic for the

n pairs of arguments gives the quantity

[n(2n− 1)][(n− 1)(2n− 3)]...[(2)(3)][(1)(1)] = (2n− 1)(2n− 3)...(3)(1) · n! (10.116)

On the other hand, we can change the order of the n Green’s functions ∆̃F (xi, xi+1) without
affecting the result. This is equivalent to dividing the obtained factor by n!, that is, by the
total number of permutations of ∆̃F functions. Thus, the possibilities of ordering the set
of 2n arguments of the function χ in such a way that the same result is obtained after the
integration of the xi variables is equal to

M(2n) = (2n− 1)(2n− 3)...(3)(1) = (2n− 1)!!. (10.117)
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Therefore, we have

O(j2n) =(2n− 1)!!
i2n

(2n)!

∫
d4x1...d

4x2nj(x1)...j(x2n)∆̃F (x1, x2)...∆̃F (x2n−1, x2n)

=
(i2)n

(2n)(2n− 2)...(2)

∫
d4x1...d

4x2nj(x1)...j(x2n)∆̃F (x1, x2)...∆̃F (x2n−1, x2n)

=
(−1)n

2nn!

∫
d4x1...d

4x2nj(x1)...j(x2n)∆̃F (x1, x2)...∆̃F (x2n−1, x2n).

(10.118)

Note that∫
d4x1d

4x2j(x1)j(x2)∆̃F (x1, x2) =

∫
k3>0

d3k

(2π)3
1

2Ek

∑
S∈{L,R}

|j̃S(k)|2 = ⟨N⟩ , (10.119)

as already calculated by obtaining P (0) to second order in j. Ergo,

O(j2n) = (−1)n

2nn!
(⟨N⟩)n =

(−⟨N⟩ /2)n

n!
, (10.120)

giving

P (0) = |O(j0) +O(j2) + ...+O(j2n) + ...|2 =
∣∣∣∣ ∞∑
n=0

(−⟨N⟩ /2)n

n!

∣∣∣∣2 = |e−⟨N⟩/2|2. (10.121)

The probability that the source does not produce modes is

P (0) = exp
(
−
〈
N
〉)

= exp
(
−
〈
NL

〉)
exp
(
−
〈
NR

〉)
. (10.122)

Probability of producing 1 mode.
Now we will calculate the probability that the source creates a mode S with momentum

k:

P (1kS
) =

∣∣∣∣ ⟨kS| T
{
exp

[
i

∫
d4xj(x)Φ(x)

]}
|0⟩
∣∣∣∣2. (10.123)

We know that

⟨kS|Φ(x) = eiEkx
0

ν∗
S(x,k), (10.124)

so, in order to avoid uncontracted fields left to cancel the vacuum, only terms of the form
O(j2n+1) are of interest. Taking advantage of the symmetry of the integrand, and noting
that the expression is very similar to the one obtained for P (0), we can write

O(j2n+1) = M(2n+ 1)
i2n+1

(2n+ 1)!

∫
d4x1...d

4x2n+1j(x1)...j(x2n+1)

× ∆̃F (x1, x2)...∆̃F (x2n−1, x2n)e
iEkx

0
2n+1ν∗

S(x2n+1,k).

(10.125)
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This can be integrated directly. First over d4x2n+1:

O(j2n+1) = M(2n+ 1)
i2n+1

(2n+ 1)!

∫
d4x1...d

4x2nj(x1)...j(x2n+1)

× ∆̃F (x1, x2)...∆̃F (x2n−1, x2n)j̃S(k),

(10.126)

and then over the rest of the variables:

O(j2n+1) = M(2n+ 1)
i2n+1

(2n+ 1)!
⟨N⟩n j̃S(k), (10.127)

The multiplicity is calculated analogously. Initially, we have the set of 2n + 1 variables
{x1, ..., x2n+1}. There are 2n + 1 possibilities for the factor eiEkx

0
ν∗
S(x,k), which leaves us

with a set of 2n variables for the arguments of χ, as in the case of P (0). The multiplicity is

M(2n+ 1) = (2n+ 1)M(2n) = (2n+ 1)!! (10.128)

(Also, M(2n) = M(2n− 1).) Thus,

O(j2n+1) = (2n+ 1)!!
i(−1)n

(2n+ 1)!
⟨N⟩n j̃S(k) =

i(−1)n

(2n)(2n− 2)...(2)
⟨N⟩n j̃S(k) (10.129)

=
i(−1)n

2nn!
⟨N⟩n j̃S(k) = i

(−⟨N⟩ /2)n

n!
j̃S(k). (10.130)

Therefore,

P (1kS
) =

∣∣∣∣i ∞∑
n=0

(−⟨N⟩ /2)n

n!
j̃S(k)

∣∣∣∣2 = exp
(
−
〈
N
〉)
|j̃S(k)|2. (10.131)

To get the overall probability of producing a mode, we integrate over all momenta and
add over all modes:

P (1) = exp
(
−
〈
N
〉) ∫

k3>0

d3k

(2π)3
1

2Ek

∑
S∈{L,R}

|j̃S(k)|2 = ⟨N⟩ exp
(
−
〈
N
〉)
. (10.132)

Probability of producing m modes.
In the same way, the probability that the source produces m modes Si with momenta ki

is

P (mk1S1
...kmSm

) =

∣∣∣∣ ⟨k1S1 , ...,kmSm | T
{
exp

[
i

∫
d4xj(x)Φ(x)

]}
|0⟩
∣∣∣∣2. (10.133)

Let m be odd. Only the terms of order 2p+ 1 ≥ m with p ∈ N are non-zero. If 2p+ 1 < m,
then we can only contract some of the final state modes with these fields, which leaves free
annihilation operators that act on the vacuum. After pairing final state modes with fields,
we are left with 2p + 1−m fields to contract with each other. This number must be even,
i.e., 2p+1−m = 2n for n ∈ N. If it is not even, then there are free fields that annihilate the
vacuum. We have

O(j2p+1) = M(2p+ 1)
i2p+1

(2p+ 1)!

∫
d4x1...d

4x2nj(x1)...j(x2n+1)

× ∆̃F (x1, x2)...∆̃F (x2n−1, x2n)
m∏
i=1

j̃Si
(ki),

(10.134)
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where the new multiplicity M(2p + 1) must now consider the ways of contracting the m
free modes with m fields. We start from the set of variables {x1, ..., x2p+1}. From this set,
m variables are contracted with fields, and the possible ways to do this are

(2p+ 1)(2p+ 1− 1)...(2p+ 1−m) =
(2p+ 1)!

(2p+ 1−m)!
=

(2p+ 1)!

(2n)!
. (10.135)

—Since the modes are distinguishable, we do not divide (yet) by the possible ways of
contracting the fields with final states, namely m!—. This leaves a total of 2p+1−m = 2n
variables within the initial set, which must be ordered as arguments of the χ function.
This gives a factor of (2n− 1)!!, as we have already calculated. Therefore,

M(2p+ 1) =
(2p+ 1)!(2n− 1)!!

(2n)!
=

(2p+ 1)!

(2n)(2n− 2)...2
=

(2p+ 1)!

2nn!
. (10.136)

With this,

O(j2p+1)

=
i2p+1

2nn!

∫
d4x1...d

4x2nj(x1)...j(x2n+1∆̃F (x1, x2)...∆̃F (x2n−1, x2n)
m∏
i=1

j̃Si
(ki)(10.137)

= im
(−1)n

2nn!
⟨N⟩n

m∏
i=1

j̃Si
(ki) = im

(−
〈
N
〉
/2)n

n!

m∏
i=1

j̃Si
(ki), (10.138)

where we have used that i2p+1 = i2n+m = im(−1)n. The only difference from the calculation
of P (0) is the factor im

∏m
i=1 j̃Si

(ki), which does not affect the addition over n to obtain the
exact result. From this,

P (mk1S1
...kmSm

) = exp
(
−
〈
N
〉) m∏

i=1

|j̃Si
(ki)|2. (10.139)

If we add over the two modes and integrate over the possible momenta, then we must
consider that there are m final identical modes, and m! ways of ordering them. We get

P (m) = exp
(
−
〈
N
〉) 1

m!

m∏
i=1

∫
k3i>0

d3ki
(2π)3

1

2Eki

∑
Si∈{L,R}

|j̃Si
(ki)|2 (10.140)

= exp
(
−
〈
N
〉) 1

m!

m∏
i=1

⟨N⟩ = exp
(
−
〈
N
〉)⟨N⟩m

m!
. (10.141)

If m is even, we require terms of order 2p ≥ m. The calculation is analogous, leading to

O(j2p) = im
(−
〈
N
〉
/2)n

n!

m∏
i=1

j̃Si
(ki), (10.142)

where now 2p = 2n + m. After integrating over momenta and adding over modes, the
same result is obtained as for the odd case. We assert that the probability that the source
produces m modes is given by

P (m) = exp
(
−
〈
N
〉)⟨N⟩m

m!
. (10.143)
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This is a Poisson distribution, satisfying

∞∑
m=0

P (m) = exp
(
−
〈
N
〉) ∞∑

m=0

⟨N⟩m

m!
= exp

(
−
〈
N
〉)

exp
(〈
N
〉)

= 1, (10.144)

such that the P (m) are properly normalized (the source always produces a finite number
of modes). On the other hand,

∞∑
m=0

mP (m) = exp
(
−
〈
N
〉) ∞∑

m=0

m
⟨N⟩m

m!
(10.145)

= exp
(
−
〈
N
〉) ∞∑

m=1

m
⟨N⟩m

m!
(10.146)

= exp
(
−
〈
N
〉)
⟨N⟩

∞∑
m=1

⟨N⟩m−1

(m− 1)!
(10.147)

= exp
(
−
〈
N
〉)
⟨N⟩

∞∑
m=0

⟨N⟩m

m!
= ⟨N⟩ , (10.148)

as expected. We now compute the mean square fluctuation, given by〈
(N − ⟨N⟩)2

〉
=
〈
N2 − 2N ⟨N⟩+ ⟨N⟩2

〉
=
〈
N2
〉
− 2 ⟨N⟩2 + ⟨N⟩2 =

〈
N2
〉
− ⟨N⟩2 . (10.149)

This follows directly from
〈
N2
〉
:

〈
N2
〉

=
∞∑

m=0

m2P (m) = exp
(
−
〈
N
〉) ∞∑

m=0

m2

〈
N
〉m

m!
(10.150)

= exp
(
−
〈
N
〉) ∞∑

m=1

m2

〈
N
〉m

m!
=
〈
N
〉
exp
(
−
〈
N
〉) ∞∑

m=1

m

〈
N
〉m−1

(m− 1)!
(10.151)

=
〈
N
〉
exp
(
−
〈
N
〉) ∞∑

m=1

(m− 1 + 1)

〈
N
〉m−1

(m− 1)!
(10.152)

=
〈
N
〉
exp
(
−
〈
N
〉) [ ∞∑

m=1

(m− 1)

〈
N
〉m−1

(m− 1)!
+

∞∑
m=1

〈
N
〉m−1

(m− 1)!

]
(10.153)

=
〈
N
〉
exp
(
−
〈
N
〉) [ ∞∑

m=2

(m− 1)

〈
N
〉m−1

(m− 1)!
+

∞∑
m=0

〈
N
〉m

m!

]
(10.154)

=
〈
N
〉
exp
(
−
〈
N
〉) [〈

N
〉 ∞∑
m=2

〈
N
〉m−2

(m− 2)!
+ exp

(〈
N
〉)]

(10.155)

=
〈
N
〉
exp
(
−
〈
N
〉) [〈

N
〉
exp
(〈
N
〉)

+ exp
(〈
N
〉)]

=
〈
N
〉2

+
〈
N
〉
. (10.156)

We conclude that 〈
(N − ⟨N⟩)2

〉
=
〈
N
〉
. (10.157)



11 θ̃ term as a perturbation

11.1 First order correction to the free propagator
Up to this point, we have worked with the exact Lagrangian

L =
1

2
∂µΦ∂

µΦ− m2

2
Φ2 +

θ̃

2
δ(x3)Φ2 (11.1)

and have found, for instance, the Green’s function of the resulting equation of motion:

∆̃F (x, y) =

∫
d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)

[
eik

3(x3−y3) + Pk3e
ik3(|x3|+|y3|)

]
= ∆F (x− y) +

θ̃

2
i

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2 i)

e−ik0(x0−y0)+ik⊥·(x−y)⊥eik
3(|x3|+|y3|).

(11.2)

One way to verify the consistency of what we have obtained is to consider the usual
Klein-Gordon Lagrangian, that is,

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2, (11.3)

where ϕ is given by

ϕ(x) =

∫
d3p

(2π)3
1√
2Ep

(
a(p)e−ip·x + h.c.

)
, (11.4)

and apply perturbation theory using an interaction Hamiltonian of the form

HI = −
θ̃

2
δ(x3)ϕ2. (11.5)

To first order in θ̃, the Green’s function suffers the correction

⟨0| T

{
ϕ(x)ϕ(y)(−i)

∫
d4z
−θ̃
2
δ(z3)ϕ2(z)

}
|0⟩ . (11.6)

The only possible contraction that does not correspond to a vacuum diagram has a multi-
plicity of M(1) = 2, and is given by

G(1) ≡M(1)i
θ̃

2

∫
d4zδ(z3)∆F (x− z)∆F (z − y). (11.7)

Explicitly, this is

G(1) = iθ̃

∫
d4zδ(z3)

∫
d4k′

(2π)4
d4k

(2π)4
ieik

′·(x−z)

k′2 −m2 + iϵ

ieik·(z−y)

k2 −m2 + iϵ
(11.8)

= −iθ̃
∫

d4zδ(z3)

∫
d4k′

(2π)4
d4k

(2π)4
ei(k−k′)·z eik

′·xe−ik·y

(k′2 −m2 + iϵ)(k2 −m2 + iϵ)
. (11.9)
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Integrating z and then k0, k1 and k2 gives

G(1) = −iθ̃
∫

d4k′

(2π)4
d4k

(2π)4
(2π)3δ(k0 − k′0)δ(2)(k⊥ − k′

⊥)
eik

′·xe−ik·y

(k′2 −m2 + iϵ)(k2 −m2 + iϵ)

= iθ̃

∫
d4k′

(2π)4
dk3

(2π)

eik
′0(x0−y0)e−ik′

⊥·(x−y)⊥e−ik′3x3
eik

3y3

(k′2 −m2 + iϵ)((k3)2 − α2 − iϵ)
, (11.10)

where we have defined α2 = (k′0)2 − (k′
⊥)

2 −m2. The expression is separated as

G(1) = iθ̃

∫
d4k′

(2π)4
eik

′0(x0−y0)e−ik′
⊥·(x−y)⊥e−ik′3x3

k′2 −m2 + iϵ

∫
dk3

(2π)

eik
3y3

(k3)2 − α2 − iϵ
. (11.11)

To solve the integral we note the poles are ±(α + iϵ). If y3 > 0, we must choose a semi-
circular contour that encloses the upper half of the complex plane. The opposite applies
when y3 < 0. In the first case, the direction of the contour is counter-clockwise and the
enclosed pole is α + iϵ, so∫

dk′3

(2π)

eik
′3y3

(k′3)2 − α2 − iϵ
=

∫
dk′3

(2π)

eik
′3y3

[(k′3)− (α + iϵ)][(k′3) + (α + iϵ)]
(11.12)

=
2πi

2π

eiαy
3

2α
= i

eiαy
3

2α
. (11.13)

In the second case, the direction of the contour is clockwise and the enclosed pole is −α−
iϵ, which leads to∫

dk′3

(2π)

eik
′3y3

(k′3)2 − α2 − iϵ
=

∫
dk′3

(2π)

eik
′3y3

[(k′3)− (α + iϵ)][(k′3) + (α + iϵ)]
(11.14)

=
−2πi
2π

e−iαy3

−2α
= i

e−iαy3

2α
. (11.15)

Both cases can be summarized in a single expression:∫
dk′3

(2π)

eik
′3y3

(k′3)2 − α2 − iϵ
= i

eiα|y
3|

2α
. (11.16)

Therefore,

G(1) = iθ̃

∫
d4k′

(2π)4
eik

′0(x0−y0)e−ik′
⊥·(x−y)⊥e−ik′3x3

k′2 −m2 + iϵ

[
ieiα|y

3|

2α

]
. (11.17)

We now isolate the function that depends on k′3, which gives a contribution equal to that
of Eq. (11.16):

G(1) = −iθ̃
∫

d3k′

(2π)3
eik

′0(x0−y0)e−ik′
⊥·(x−y)⊥

∫
dk′3

(2π)

eik
′3x3

(k3)2 − α2 − iϵ

[
ieiα|y

3|

2α

]
(11.18)

= −iθ̃
∫

d3k′

(2π)3
eik

′0(x0−y0)e−ik′
⊥·(x−y)⊥

[
ieiα|x

3|

2α

][
ieiα|y

3|

2α

]
. (11.19)
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To first order, the correction to the propagator is given by

G(1) = iθ̃

∫
d3k′

(2π)3
eik

′0(x0−y0)e−ik′
⊥·(x−y)⊥

eiα(|x
3|+|y3|)

(2α)2
. (11.20)

11.2 First order expansion of the exact θ̃ propagator
Let us define

δ∆̃F ≡ ∆̃F (x, y)−∆F (x, y) (11.21)

=
θ̃

2
i

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2
i)
e−ik0(x0−y0)+ik⊥·(x−y)⊥eik

3(|x3|+|y3|). (11.22)

The poles of the integrand are given by k3 = α + iϵ, k3 = −α − iϵ and k3 = i θ̃
2
. Since

|x3|+ |y3| is always positive, the semicircular contour is invariably closed along the upper
half of the complex plane. Such contour contains only the pole k3 = α + iϵ, since we are
restricted to θ̃ < 0. With this in mind, we calculate

δ∆̃F =
θ̃

2
i

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2
i)
e−ik0(x0−y0)+ik⊥·(x−y)⊥eik

3(|x3|+|y3|) (11.23)

=
θ̃

2

∫
d3k

(2π)3
e−ik0(x0−y0)+ik⊥·(x−y)⊥

∫
dk3

(2π)

eik
3(|x3|+|y3|)

((k3)2 − α2 − iϵ)(k3 − θ̃
2
i)

(11.24)

=
θ̃

2
i

∫
d3k

(2π)3
e−ik0(x0−y0)+ik⊥·(x−y)⊥

eiα(|x
3|+|y3|)

2α(α− θ̃
2
i)
. (11.25)

We use the geometric series
θ̃
2
i

α− θ̃
2
i
=

∞∑
n=1

(
iθ̃

2α

)n

(11.26)

to obtain δ∆̃F to first order in θ̃:

δ∆̃
(1)
F = iθ̃

∫
d3k

(2π)3
e−ik0(x0−y0)+ik⊥·(x−y)⊥

eiα(|x
3|+|y3|)

(2α)2
. (11.27)

This expression coincides with that obtained in Eq. (11.20).

11.3 Higher orders

To order n in θ̃, the connected diagram in

⟨0| T

{
ϕ(x)ϕ(y)(−i)

∫
d4z1
−θ̃
2
δ(z31)ϕ

2(z1)...(−i)
∫

d4zn
−θ̃
2
δ(z3n)ϕ

2(zn)

}
|0⟩

= ⟨0| T

{
ϕ(x)ϕ(y)

n∏
i=1

(−i)−θ̃
2

∫
d4ziδ(z

3
i )ϕ

2(zi)

}
|0⟩

(11.28)
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is of the form

G(n) ≡ M(n)

(
iθ̃

2

)n ∫
d4z1δ(z

3
1)...d

4znδ(z
3
n)∆F (x− z1)...∆F (zi − zi+1)...∆F (zn − y)

= M(n)

(
iθ̃

2

)n ∫
d4z1δ(z

3
1)...d

4znδ(z
3
n)

∫
d4k1
(2π)4

iek1·(x−z1)

(k1)2 −m2 + iϵ

×...
∫

d4ki+1

(2π)4
ieki+1·(zi−zi+1)

(ki+1)2 −m2 + iϵ
...

∫
d4kn+1

(2π)4
iekn+1·(zn−y)

(kn+1)2 −m2 + iϵ
. (11.29)

We match exponentials that share the same space-time dependence zi:

G(n) = M(n)

(
iθ̃

2

)n ∫
d4z1δ(z

3
1)...d

4znδ(z
3
n)

∫ n+1∏
i=1

(
d4ki
(2π)4

i

(ki)2 −m2 + iϵ

)
×eik1·xe−ikn+1·yei(k2−k1)·z1 ...ei(ki+1−ki)·zi ...ei(kn+1−kn)zn (11.30)

= M(n)

(
iθ̃

2

)n ∫ n+1∏
i=1

(
d4ki
(2π)4

i

(ki)2 −m2 + iϵ

)
eik1·xe−ikn+1·y

×
∫

d4z1δ(z
3
1)...d

4znδ(z
3
n)e

i(k2−k1)·z1 ...ei(ki+1−ki)·zi ...ei(kn+1−kn)zn . (11.31)

It is more convenient to write this as

G(n) =M(n)

(
iθ̃

2

)n ∫ n+1∏
i=1

(
d4ki
(2π)4

i

(ki)2 −m2 + iϵ

)
eik1·xe−ikn+1·y

×
n∏

i=1

(∫
d4ziδ(z

3
i )e

i(ki+1−ki)·zi
)
.

(11.32)

The presence of the delta function reduces the integration over z3i to a factor of 1. In
addition, the integral over the remaining components of zi is readily calculated

G(n) =M(n)

(
iθ̃

2

)n ∫ n+1∏
i=1

(
d4ki
(2π)4

i

(ki)2 −m2 + iϵ

)
eik1·xe−ikn+1·y

×
n∏

i=1

[
(2π)3δ(k0

i+1 − k0
i )δ

(2)(ki+1,⊥ − ki,⊥)
]
.

(11.33)

The Dirac deltas imply k0
1 = k0

i+1 and ki+1,⊥ = ki,⊥ for all i = 1, ..., n. In particular,
k0
n+1 = k0

1 and kn+1,⊥ = k1,⊥. Thus, changing k1 → k and defining α2 = (k0)2 − (k⊥)
2 −m2



θ̃ term as a perturbation 89

we get

G(n) = M(n)

(
iθ̃

2

)n ∫
d4k

(2π)4
i

k2 −m2 + iϵ

×
∫ n+1∏

i=2

(
dk3

i

(2π)

(−i)
(k3

i )
2 − α2 − iϵ

)
eik

0(x0−y0)e−ik⊥·(x−y)⊥e−ik3x3

e−ik3n+1y
3

(11.34)

= M(n)

(
iθ̃

2

)n ∫
d4k

(2π)4
i

k2 −m2 + iϵ
eik

0(x0−y0)e−ik⊥·(x−y)⊥e−ik3x3

×
∫ n∏

i=2

(
dk3

i

(2π)

(−i)
(k3

i )
2 − α2 − iϵ

)(∫
dk3

n+1

2π

(−i)e−ik3n+1y
3

(k3
n+1)

2 − α2 − iϵ

)
. (11.35)

Once again, Eq. (11.16) gives the answer to the last integral. On the other hand, since
d
dy

arctanh(y) = 1
1−y2

, by defining y = x
a

we have∫
dx

x2 − a2
= −1

a

∫
dy

1− y2
= −1

a
arctanh(y) + c = −1

a
arctanh

(x
a

)
+ c, (11.36)

and so, when ϵ→ 0,∫ ∞

−∞

dk3
i

(2π)

(−i)
(k3

i )
2 − α2 − iϵ

=
i

2π

1

α
lim

M→∞

[
arctanh

(
M

α

)
− arctanh

(
−M
α

)]
=

1

2α
. (11.37)

Therefore,

G(n) =M(n)

(
iθ̃

2

)n ∫
d4k

(2π)4
i

k2 −m2 + iϵ
eik

0(x0−y0)e−ik⊥·(x−y)⊥e−ik3x3

r

×
(

1

2α

)n−1
eiα|y

3|

2α
.

(11.38)

Separating the integral over k3 results in

G(n) = −iM(n)

(
iθ̃

2

)n ∫
d3k

(2π)3
eik

0(x0−y0)e−ik⊥·(x−y)⊥

∫
dk3

(2π)

e−ik3x3

(k3)2 − α2 − iϵ

×
(

1

2α

)n−1
eiα|y

3|

2α
(11.39)

= M(n)

(
iθ̃

2

)n ∫
d3k

(2π)3
eik

0(x0−y0)e−ik⊥·(x−y)⊥

(
1

2α

)n−1
eiα(|x

3|+|y3|)

(2α)2
. (11.40)

Since M(n) = 2n are all the possible contractions that give rise to the same diagram, we
arrive at

G(n) =
∫

d3k

(2π)3

(
iθ̃

2α

)n

eik
0(x0−y0)e−ik⊥·(x−y)⊥

eiα(|x
3|+|y3|)

2α
. (11.41)
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We now return to the exact correction of the Feynman propagator

δ∆̃F =
θ̃

2
i

∫
d3k

(2π)3
e−ik0(x0−y0)+ik⊥·(x−y)⊥

eiα(|x
3|+|y3|)

2α(α− θ̃
2
i)

(11.42)

=
∞∑
n=1

∫
d3k

(2π)3

(
iθ̃

2α

)n

e−ik0(x0−y0)+ik⊥·(x−y)⊥
eiα(|x

3|+|y3|)

2α
. (11.43)

From this,

δ∆̃
(n)
F = G(n) (11.44)

for all n. We conclude that the propagator obtained from perturbation theory and the
exact θ̃ propagator are consistent.

11.4 Propagation of a single particle

As stated and shown in Appendix B, the LSZ reduction formula is an expression that allows
to compute S-matrix elements in an interacting theory. By construction, the LSZ formula
excludes every case where there is direct propagation (without interaction) from one parti-
cle to another. Therefore, in the case of a single particle in the initial state with momentum
k and a single particle in the final state with momentum k′, the amplitude ⟨k|k′⟩ vanishes
in the free theory. We will calculate ⟨k′|k⟩ by considering the θ̃ contribution as an interac-
tion (using perturbation theory), and the corresponding modification to the propagator.
In principle, perturbation theory can be applied when θ̃ is sufficiently small, which gives
precise results even when considering few terms in the series expansion. Nonetheless, as
we have seen in Eq. (11.44), by taking all orders of the correction to the free propagator,
the exact propagator ∆̃F (x, y) is recovered. In this sense, according to the LSZ formula,
the expression for the amplitude ⟨k′|k⟩ is given by

⟨k′|k⟩ = i2
∫

d4xe−ik·x(∂2
x +m2)

∫
d4yeik

′·y(∂2
y +m2)∆̃F (x, y). (11.45)

By definition, ∆̃F (x, y) is the Greeen’s function of the Klein-Gordon-θ̃ equation, i.e.,

(∂2 +m2 − θ̃δ(x3))∆̃F (x, y) = −iδ(4)(x− y). (11.46)

From this,

⟨k′|k⟩ = i2
∫

d4xe−ik·x(∂2
x +m2)

∫
d4yeik

′·y
[
θ̃δ(y3)∆̃F (x, y)− iδ(4)(x− y)

]
. (11.47)

Note that∫
d4xe−ik·x(∂2

x +m2)

∫
d4yeik

′·yδ(4)(x− y) =

∫
d4xe−ik·x(∂2

x +m2)eik
′·x = 0, (11.48)

since eik
′·x is an eigenfunction of the free Klein-Gordon equation. Thus,

⟨k′|k⟩ = −θ̃
∫

d4xe−ik·x(∂2
x +m2)

∫
d4yeik

′·yδ(y3)∆̃F (x, y). (11.49)
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The operator (∂2
x +m2) only affects the function ∆̃F (x, y), so that

⟨k′|k⟩ = −θ̃
∫

d4xe−ik·x
∫

d4yeik
′·yδ(y3)

[
θ̃δ(x3)∆̃F (x, y)− iδ(4)(x− y)

]
(11.50)

= iθ̃

∫
d4xe−ik·x

∫
d4yeik

′·yδ(y3)δ(4)(x− y)

−θ̃2
∫

d4xe−ik·x
∫

d4yeik
′·yδ(y3)δ(x3)∆̃F (x, y). (11.51)

The first term is easily calculated by integrating y and then x:

⟨k′|k⟩1 ≡ iθ̃

∫
d4xe−ik·xeik

′·xδ(x3) = iθ̃(2π)3δ(k′0 − k0)δ(2)(k′
⊥ − k⊥). (11.52)

To obtain the second term, we recall the explicit form of the θ̃ propagator,

∆̃F (x, y) =

∫
d4q

(2π)4
i

q2 −m2 + iϵ
e−iq0(x0−y0)+iq1(x1−y1)+iq2(x2−y2)

[
eiq

3(x3−y3) + Pq3e
iq3(|x3|+|y3|)

]
.

(11.53)
It is clear that

δ(x3)δ(y3)∆̃F (x, y) = δ(x3)δ(y3)

∫
d4q

(2π)4
i

q2 −m2 + iϵ
e−iq0(x0−y0)+iq⊥·(x−y)⊥

[
1 + Pq3

]
= δ(x3)δ(y3)

∫
d4q

(2π)4
i

q2 −m2 + iϵ

q3

q3 − θ̃
2 i
e−iq0(x0−y0)+iq⊥·(x−y)⊥ .

Therefore,

⟨k′|k⟩2 ≡ −θ̃2
∫

d4xe−ik·x
∫

d4yeik
′·yδ(y3)δ(x3)∆̃F (x, y) (11.54)

= −θ̃2
∫

d4xe−ik·x
∫

d4yeik
′·yδ(x3)δ(y3)

×
∫

d4q

(2π)4
i

q2 −m2 + iϵ

q3

q3 − θ̃
2
i
e−iq0(x0−y0)+iq⊥·(x−y)⊥ . (11.55)

By grouping the terms that depend on x and y, and then integrating we obtain

⟨k′|k⟩2 = −θ̃2
∫

d4q

(2π)4
i

q2 −m2 + iϵ

q3

q3 − θ̃
2
i

(11.56)

×
∫

d4x

∫
d4yδ(x3)δ(y3)e−i(q0+k0)x0+i(q⊥+k⊥)·x⊥ei(q

0+k′0)y0−i(q⊥+k′
⊥)·y⊥

= −θ̃2
∫

d4q

(2π)4
i

q2 −m2 + iϵ

q3

q3 − θ̃
2
i

(11.57)

×(2π)3δ(q0 + k0)δ(2)(q⊥ + k⊥)(2π)
3δ(q0 + k′0)δ(2)(q⊥ + k′

⊥).

We can now integrate the variables q0 and q⊥, which gives

⟨k′|k⟩2 = θ̃2
∫

dq3

(2π)

i

(q3)2 − α2 − iϵ

q3

q3 − θ̃
2
i
(2π)3δ(k′0 − k0)δ(2)(k′

⊥ − k⊥), (11.58)
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where α2 = (k0)2 − (k⊥)
2 − m2 is a positive quantity, since it is evaluated on shell. This

results in*

∫ ∞

−∞

dx

(2π)

i

x2 − α2 − iϵ

x

x− θ̃
2
i
=

i

(
− 2√

− 1
α2

− θ̃

)
4α2 + θ̃2

=
i
(
−2
√
−α2 − θ̃

)
4α2 + θ̃2

=
i
(
2iα− θ̃

)
4α2 + θ̃2

,

(11.59)
such that

⟨k′|k⟩2 = θ̃2

[
−2α− iθ̃

4α2 + θ̃2

]
(2π)3δ(k′0 − k0)δ(2)(k′

⊥ − k⊥) (11.60)

=
θ̃2

−2α + iθ̃
(2π)3δ(k′0 − k0)δ(2)(k′

⊥ − k⊥). (11.61)

Thus,

⟨k′|k⟩ = ⟨k′|k⟩1 + ⟨k
′|k⟩2 =

[
iθ̃ +

θ̃2

−2α + iθ̃

]
(2π)3δ(k′0 − k0)δ(2)(k′

⊥ − k⊥). (11.62)

Or else,

⟨k′|k⟩ = iθ̃

(
2α

2α− iθ̃

)
(2π)3δ(k′0 − k0)δ(2)(k′

⊥ − k⊥). (11.63)

We now use that

iθ̃

(
2α

2α± iθ̃

)
= iθ̃

(
1

1± iθ̃
2α

)
= ∓2α

(
∓ iθ̃

2α

)
∞∑
n=0

(
∓ iθ̃

2α

)n

= ∓2α
∞∑
n=1

(
∓ iθ̃

2α

)n

, (11.64)

which implies

⟨k′|k⟩ = 2α
∞∑
n=1

(
iθ̃

2α

)n

(2π)3δ(k′0 − k0)δ(2)(k′
⊥ − k⊥). (11.65)

This expression does not depend explicitly on k3 or k′3. However, the condition k′
⊥ = k⊥

results in

k′0 = k0 → (k⊥)
2+(k3)2+m2 = (k′

⊥)
2+(k′3)2+m2 = (k⊥)

2+(k′3)2+m2, (11.66)

from where we see that (k3)2 = (k′3)2. That is,

δ(k′0 − k0)δ(2)(k′
⊥ − k⊥) → k′3 = ±k3. (11.67)

Since α is on shell,
α =

√
(k0)2 − (k⊥)2 −m2 = |k3|. (11.68)

*Note that the substitution α→ −α also gives a valid solution.
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Hence, since

δ(k′0 − k0) = δ
(√

(k⊥)2 + (k3)2 +m2 −
√

(k⊥)2 + (k′3)2 +m2
)

(11.69)

and

f(k′3) =
√
(k⊥)2 + (k3)2 +m2 −

√
(k⊥)2 + (k′3)2 +m2 → |f ′(k3)| = |k

3|
k0

, (11.70)

we obtain

αδ(k′0 − k0) = |k3|

(
δ(k3 + k′3) + δ(k3 − k′3)

|k3|
k0

)
= k0

(
δ(k3 + k′3) + δ(k3 − k′3)

)
. (11.71)

By substituting this,

⟨k′|k⟩ = 2|k3|
∞∑
n=1

(
iθ̃

2|k3|

)n

(2π)3δ(k′0 − k0)δ(2)(k′
⊥ − k⊥) (11.72)

= 2k0

∞∑
n=1

(
iθ̃

2|k3|

)n

(2π)3
(
δ(k3 + k′3) + δ(k3 − k′3)

)
δ(2)(k′

⊥ − k⊥). (11.73)

This is valid when
∣∣ θ̃
2
i
∣∣ < |k3|. In a more general fashion,

⟨k′|k⟩ = 2k0

(
θ̃
2
i

|k3| − θ̃
2
i

)
(2π)3

(
δ(k3 + k′3) + δ(k3 − k′3)

)
δ(2)(k′

⊥ − k⊥). (11.74)

Let us remember that the normalization of the free states is given by

⟨k′|k⟩0 = 2k0(2π)3δ(k3 − k′3)δ(2)(k′
⊥ − k⊥). (11.75)

In such a way,

⟨k′|k⟩ =
θ̃
2
i

|k3| − θ̃
2
i

(〈
(k′

⊥, k
′3)
∣∣k〉

0
+
〈
(k′

⊥,−k′3)
∣∣k〉

0

)
. (11.76)

By effect of the interface (as a perturbation), the amplitude of a state with initial momen-
tum k and final momentum k′ has two contributions with the same statistical weight: one
in which k′3 = k3 (the particle crosses the interface) and one in which k′3 = −k3 (the parti-
cle is reflected by the interface). This behavior is independent of θ̃. The total amplitude is
weighted by the factor

θ̃
2
i

|k3| − θ̃
2
i
, (11.77)

which is small if |k3| is large with respect to
∣∣ θ̃
2

∣∣ (in which case the interaction amplitude is
small, and consequently closer to that of the free case). On the other hand, if |k3| is small
with respect to

∣∣ θ̃
2

∣∣, this factor can be written as

−
∞∑
n=0

(
2|k3|
iθ̃

)n

. (11.78)
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We want to calculate the scattering of two particles that do not see the interface (which
we have denoted by Ψ) mediated by a Φ. We will label initial momenta as pi and final
momenta as p′

i. Thus, to second order in the interaction g we have

T = ⟨p′
1,p

′
2| T

{
(−ig)

∫
d4xΨΨΦ(−ig)

∫
d4yΨΨΦ

}
|p1,p2⟩ . (12.1)

There are only two possible contractions, given by

T = (−ig)2
∫

d4xd4y∆̃F (x, y)e
ip′2·xe−ip2·xeip

′
1·ye−ip1·y + (p′

1 ↔ p′
2) . (12.2)

In the usual case the integration is trivial, since the space-time dependence of the propa-
gator is encoded in exponential functions that result in Dirac deltas. In this case,

∆̃F (x, y) =

∫
d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)

[
eik

3(x3−y3) + Pk3e
ik3(|x3|+|y3|)

]
= ∆F (x− y) +

θ̃

2
i

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2 i)

e−ik0(x0−y0)+ik⊥·(x−y)⊥eik
3(|x3|+|y3|).

(12.3)

We will focus on Tθ̃ where Tθ̃ ≡ T−T0, being T0 the result without interfaces. Explicitly,

Tθ̃ = (−ig)2
∫

d4xd4y
θ̃

2
i

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2
i)
e−ik0(x0−y0)+ik⊥·(x−y)⊥eik

3(|x3|+|y3|)

×eip′2·xe−ip2·xeip
′
1·ye−ip1·y + (p′

1 ↔ p′
2) (12.4)

=
θ̃

2
i(−ig)2

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2
i)

×
∫

d4xd4ye−ik0(x0−y0)+ik⊥·(x−y)⊥eik
3(|x3|+|y3|)ei(p

′
2−p2)·xei(p

′
1−p1)·y + (p′

1 ↔ p′
2) . (12.5)

Integrating x0, x1, x2, y0, y1 and y2 results in

Tθ̃ =
θ̃

2
i(−ig)2

∫
d4k

(2π)4
i

(k2 −m2 + iϵ)(k3 − θ̃
2
i)

∫
dx3dy3eik

3(|x3|+|y3|)e−i(p′32 −p32)x
3

e−i(p′31 −p31)y
3

× (2π)6δ(p′02 − p02 − k0)δ(2)([p′
2 − p2]⊥ − k⊥)δ(p

′0
1 − p01 + k0)δ(2)([p′

1 − p1]⊥ + k⊥)

+ (p′
1 ↔ p′

2) .

(12.6)

We now define qi ≡ p′i − pi to simplify the expression and integrate k0, k1 and k2:

Tθ̃ =
θ̃

2
i(−ig)2

∫
dk3

(2π)

i

((q01)
2 − (q1,⊥)2 − (k3)2 −m2 + iϵ)(k3 − θ̃

2
i)

×(2π)3δ(q01 + q02)δ
(2)(q1,⊥ + q2⊥)

∫
dx3dy3eik

3(|x3|+|y3|)e−iq32x
3

e−iq31y
3

+ (p′
1 ↔ p′

2) .
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We see that α2 = (q01)
2 − (q1,⊥)

2 −m2 = (q02)
2 − (q2,⊥)

2 −m2 has a fixed value:

Tθ̃ =−
θ̃

2
i(−ig)2

∫
dx3dy3

∫
dk3

(2π)

ieik
3(|x3|+|y3|)

((k3)2 − α2 − iϵ)(k3 − θ̃
2
i)

× (2π)3δ(q01 + q02)δ
(2)(q1,⊥ + q2,⊥)e

−iq32x
3

e−iq31y
3

+ (p′
1 ↔ p′

2) .

(12.7)

Furthermore, the integral over k3 has already been calculated in Eq. (11.25).

Tθ̃ =
θ̃

2
i(−ig)2

∫
dx3dy3

eiα(|x
3|+|y3|)

2α(α− θ̃
2
i)
(2π)3δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)e
−iq32x

3

e−iq31y
3

+(p′
1 ↔ p′

2) (12.8)

= (−ig)2
θ̃
2
i

2α(α− θ̃
2
i)
(2π)3δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)

×
(∫

dx3eiα|x
3|e−iq32x

3

)(∫
dy3eiα|y

3|e−iq31y
3

)
+ (p′

1 ↔ p′
2) . (12.9)

To solve the integrals in parentheses, we recall the following representation of the Heavi-
side function shown in Eq. (C.20) of Appendix C

H(±x3) = ±i
∫ ∞

−∞

dω

2π

e−iωx3

ω ± iϵ
, (12.10)

where ϵ > 0 In this way,

I(q3, α) ≡
∫ ∞

−∞
dx3e−iq3x3

eiα|x
3| (12.11)

=

∫ ∞

0

dx3e−iq3x3

eiαx
3

+

∫ 0

−∞
dx3e−iq3x3

e−iαx3

(12.12)

=

∫ ∞

−∞
dx3H(x3)ei(α−q3)x3

+

∫ ∞

−∞
dx3H(−x3)e−i(α+q3)x3

(12.13)

= i

∫ ∞

−∞
dx3

∫ ∞

−∞

dω

2π

(
ei(−ω+α−q3)x3

ω + iϵ
− e−i(ω+α+q3)x3

ω − iϵ

)
. (12.14)

Integrating x3 first and then ω results in

I(q3, α) = i

∫ ∞

−∞
dω

(
δ(−ω + α− q3)

ω + iϵ
− δ(ω + α + q3)

ω − iϵ

)
(12.15)

= i

(
1

(α− q3) + iϵ
+

1

(α + q3) + iϵ

)
= 2i

α + iϵ

(q3 + iϵ)2 − α2
(12.16)

= 2i
α + iϵ

(q3)2 − α2 + iϵ
. (12.17)

Notice that
iϵ

(q3)2 − α2 + iϵ
=

iϵ

(q3)2 − α2 + iϵ

(
(q3)2 − α2 − iϵ

(q3)2 − α2 − iϵ

)
(12.18)

=
(
(q3)2 − α2

) iϵ

[(q3)2 − α2]2 − ϵ2
. (12.19)
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We are neglecting ϵ2 in the numerator. In the limit ϵ → 0, the factor that multiplies
((q3)2 − α2) is proportional to δ((q3)2 − α2). Thus, the term is null and we have

I(q3, α) = 2i
α

(q3)2 − α2 + iϵ
. (12.20)

Inserting the previous result in Tθ̃ gives

Tθ̃ = (−ig)2
θ̃
2
i

2α(α− θ̃
2
i)
(2π)3δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)(2i)
2 α2

[(q32)
2 − α2 + iϵ] [(q31)

2 − α2 + iϵ]

+ (p′
1 ↔ p′

2) .

(12.21)

That is,

Tθ̃ =
θ̃
2
i

α(α− θ̃
2
i)
2g2(2π)3δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)
α2

[(q32)
2 − α2 + iϵ] [(q31)

2 − α2 + iϵ]

+ (p′
1 ↔ p′

2) .

(12.22)

12.1 The cross section quotient

In the case without interfaces, as stated in Appendix A, the differential cross section of
a process where there are two particles in the initial state and an arbitrary number of
particles in the final state is given by

dσ =
1

2EA2EB|vA − vB|

(∏
f

d3pf
(2π)3

1

2Ef

)
|M|2(2π)4δ(4)

(
kA + kB −

∑
pf

)
, (12.23)

where {vA,B, EA,B} are the velocities and energies of the particles in the initial state. The
properties associated with particles in the final state are denoted by a subindex f . This
expression relies heavily on momentum conservation. Nonetheless, we can write a more
general one, considering that

| ⟨i| iT |f⟩ |2 = V T (2π)4δ(4)
(
kA + kB −

∑
pf

)
|M|2, (12.24)

since (δ(x))2 = L
2π
δ(x). The differential cross section is proportional to | ⟨i| iT |f⟩ |2:

dσ =
1

2EA2EB|vA − vB|

(∏
f

d3pf
(2π)3

1

2Ef

)
| ⟨i| iT |f⟩ |2

V T
. (12.25)

In our case (a scattering 2→ 2), where momentum is not conserved in the direction of the
z-axis, the cross section (after integrating over all possible final momenta) is of the form

σ ∝ 1

2E12E2|v1 − v2|

(∫
d3p′1
(2π)3

1

2E ′
1

∫
d3p′2
(2π)3

1

2E ′
2

)
| ⟨f | iT |i⟩ |2

L2T
, (12.26)
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where the factor of proportionality of the right hand side has units of length−1 and is
constant. We will adopt the nomenclature we had before; that is, pi for initial momenta,
and p′

i for final momenta. We have seen from Eq. (12.22) that

Tθ̃ = ⟨f | iT |i⟩ = (2π)3δ(q01 + q02)δ
(2)(q1,⊥ + q2,⊥)M̃+ (p′

1 ↔ p′
2) , (12.27)

where qi = p′i− pi, as before. Since due to the exchange (p′
1 ↔ p′

2) the Delta factors remain
the same, we can extract the value of the invariant matrix element:

M̃ = iθ̃g2
α

(α− θ̃
2
i)

1

[(q32)
2 − α2 + iϵ] [(q31)

2 − α2 + iϵ]
+ (p′

1 ↔ p′
2) . (12.28)

This implies
| ⟨f | iT |i⟩ |2 = (2π)3L2Tδ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)|M̃|2, (12.29)

From this, we arrive at

σ ∝ 1

2E12E2|v1 − v2|

(∫
d3p′1
(2π)3

1

2E ′
1

∫
d3p′2
(2π)3

1

2E ′
2

)
(2π)3δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)|M̃|2.
(12.30)

It is not trivial to obtain the factor of proportionality. Nonetheless, we can make predic-
tions for an adimensional differential cross section:

dσ

σ
=

d3p′1
E′

1

d3p′2
E′

2
δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)|M̃|2(∫ d3p′1
E′

1

∫ d3p′2
E′

2

)
δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)|M̃|2
. (12.31)

There are two relevant Dirac delta factors. We will simplify the denominator of Eq.
(12.31) by choosing a center of mass reference frame for the initial momenta, i.e., p ≡
p1 = −p2. We must bear in mind that, due to the non-conservation of momentum, this
frame does not coincide with the center of mass reference frame for the final momenta.
We introduce the following variables that correspond to the total initial momentum and
energy:

P = p1 + p2 = 0, E = E1 + E2 = 2
√
m2 + p2. (12.32)

This way,

I ≡ d3p′1d
3p′2δ

(2)(q1,⊥ + q2,⊥)δ(q
0
1 + q02) = d3p′1d

3p′2δ
(2)(p′

1,⊥ + p′
2,⊥)δ(E

′
1 + E ′

2 − E). (12.33)

We can make a further simplification by defining the x axis as the projection of p1 on the
x− y plane. We also define θ as the angle between p1 and the z axis, as seen in Fig. 8, such
that

p1 = (p sin θ, 0, p cos θ), p2 = (−p sin θ, 0,−p cos θ). (12.34)

Conservation of momentum is still satisfied in both directions parallel to the interface, i.e.
p′
1,⊥ = −p′

2,⊥. We parametrize the outgoing momenta in polar coordinates such that

p′
1 = (p′ cosϕ, p′ sinϕ, k1), p′

2 = (−p′ cosϕ,−p′ sinϕ, k2). (12.35)
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Figure 8: Coordinate system for the scattering of two particles mediated by a Φ.

Here, we have p′ ≡
√
p2
i,⊥ and ki ≡ p′i,3 to avoid cumbersome notation. Due to the non-

conservation of momentum in the z direction, the values of k1 and k2 are undetermined.
We see that, with this new notation,

E ′
i =

√
(p′

i,⊥)
2 + k2

i +m2 =
√

p′2 + k2
i +m2, (12.36)

for i ∈ {1, 2}. By integrating d2p′1,⊥ in Eq. (12.33), we are left with

I = dk1d
3p′2δ(E

′
1 + E ′

2 − E). (12.37)

Furthermore, d2p′2,⊥ = p′dp′dϕ, so that

I = dk1dk2p
′dp′dϕδ

(√
p′2 + k2

1 +m2 +
√

p′2 + k2
2 +m2 − E

)
. (12.38)

We will now work the argument of the Dirac delta function. The value P for which the
function is not null is given by the solution of√

P2 + k2
1 +m2 +

√
P2 + k2

2 +m2 − E = 0. (12.39)

This is rewritten as √
P2 + k2

1 +m2 = E −
√
P2 + k2

2 +m2. (12.40)

Squaring both sides of the equation gives

P2 + k2
1 +m2 = E2 − 2E

√
P2 + k2

2 +m2 + P2 + k2
2 +m2 (12.41)

2E
√
P2 + k2

2 +m2 = E2 + k2
2 − k2

1. (12.42)

Squaring once again allows to solve for P2:

P2 =
(E2 + k2

2 − k2
1)

2

4E2
− (k2

2 +m2). (12.43)
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This can be expressed in a symmetric form for k1 and k2 as

P2 =
1

4E2

[(
E2 − (k2

2 + k2
1)
)2 − 4

(
E2m2 + k2

2k
2
1

)]
. (12.44)

This is a restriction for the possible non conserved momenta k1 and k2, since P2 is positive.
For the outgoing energies, this implies

E ′
1 =

√
P2 + k2

1 +m2 =
E2 + k2

1 − k2
2

2E
, (12.45)

E ′
2 =

√
P2 + k2

2 +m2 =
E2 + k2

2 − k2
1

2E
. (12.46)

It is direct to verify that this solution satisfies energy conservation:

E ′
1 + E ′

2 =
√
P2 + k2

1 +m2 +
√
P2 + k2

2 +m2 (12.47)

=
E2 + k2

2 − k2
2

2E
+

E2 + k2
2 − k2

1

2E
=

E2

E
= E. (12.48)

Now, to perform the integration of the Dirac delta we define

F (p′) =
√

p′2 + k2
1 +m2 +

√
p′2 + k2

2 +m2 − E. (12.49)

We need to calculate the derivative of this function:

dF

dp′
=

p′√
p′2 + k2

1 +m2
+

p′√
p′2 + k2

2 +m2
(12.50)

=
p′
(√

p′2 + k2
1 +m2 +

√
p′2 + k2

2 +m2
)

√
(p′2 + k2

1 +m2)(p′2 + k2
2 +m2)

=
p′(E ′

1 + E ′
2)

E ′
1E

′
2

, (12.51)

so that we can write

δ

(√
p′2 + k2

1 +m2 +
√

p′2 + k2
2 +m2 − E

)
=

E ′
1E

′
2

p′(E ′
1 + E ′

2)
δ(p′ − P). (12.52)

As we have seen, when p′ = P is equivalent to conservation of energy, so

δ

(√
p′2 + k2

1 +m2 +
√
p′2 + k2

2 +m2 − E

)
=

E ′
1E

′
2

p′E
δ(p′ − P). (12.53)

Inserting this in the expression for I , we are left with

I = dk2dk1p
′dp′dϕ

E ′
1E

′
2

p′E
δ(p′ − P) = dk2dk1dϕ

E ′
1E

′
2

E
. (12.54)

This results in
d3σ

dk1dk2dϕ
∝ 1

16(2π)3E1E2|v1 − v2|
1

E
|M̃|2, (12.55)
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where the following relations are satisfied:

p′
1 = (P cosϕ,P sinϕ, k1), p′

2 = (−P cosϕ,−P sinϕ, k2), (12.56)

P =
1

2E

√
(E2 − (k2

1 + k2
2))

2 − 4(E2 + k2
2k

2
1), (12.57)

E ′
1 =

E2 + k2
1 − k2

2

2E
, E ′

2 =
E2 − k2

1 + k2
2

2E
. (12.58)

Now, to be consistent, we need to express all quantities that depend on the final momenta
in terms of the variables k1, k2 and ϕ. It suffices to see that

q21 =

(
k2
1 − k2

2

2E

)2

−
(
P2 − 2Pp cosϕ sin θ + p2 sin2 θ

)
− (k1 − p cos θ)2, (12.59)

q22 =

(
k2
1 − k2

2

2E

)2

−
(
P2 − 2Pp cosϕ sin θ + p2 sin2 θ

)
− (k2 + p cos θ)2, (12.60)

α2 =

(
k2
1 − k2

2

2E

)2

−
(
P2 − 2Pp cosϕ sin θ + p2 sin2 θ

)
−m2, (12.61)

where, as recalled, P is also a function of the final momenta:

P =
1

2E

√
(E2 − (k2

2 + k2
1))

2 − 4 (E2m2 + k2
2k

2
1). (12.62)



13 Conclusions

In 1970, Carniglia and Mandel [1] developed a novel quantization scheme for a system
with a planar dielectric-vacuum interface. For that purpose, they included the presence of
the dielectric in the equations of motion and then found the normal modes, which were
used to quantize the field, as they form an orthogonal and complete set. In this work, we
were able to perform the same quantization scheme for a system with a planar θ interface.
This quantity is the analogous of the magnetoelectric susceptibility in electrodynamics,
and it is coupled to the field by means of the extra term Lθ = θΦ∂3Φ in the Lagrangian.
We emphasize that this term is not analyzed by means of perturbation theory; instead, it
is included in the modes so that our calculations give exact results.

The equation that describes our system is called the Klein-Gordon-θ equation:

∂2Φ +m2Φ− θ̃δ(z)Φ = 0.

The L and R modes (incident from the left and from the right) are triplet waves formed
by an incident, a reflected and a transmitted wave, and are given by

Φk3

L (x3) = H(−x3)(eik
3x3

+ P−ik3x3

k3 ) +H(x3)Qk3e
ik3x3

,

Φk3

R (x3) = H(−x3)Qk3e
−ik3x3

+H(x3)(e−ik3x3

+ Pk3e
ik3x3

),
(13.1)

where

Pk3 = −
θ̃

2ik3 + θ̃
, Qk3 =

2ik3

2ik3 + θ̃
(13.2)

are reflection and transmission coefficients, and therefore satisfy |Pk3|2 + |Qk3|2 = 1.
We showed that the functions Φk3

S (z), where S ∈ {L,R}, form an orthogonal set. This
can be seen from the products〈

Φk3

S

∣∣∣Φk′3

S′

〉
= 2πδ(k3 − k′3)δSS′ ,

〈
Φk3∗

S

∣∣∣Φk′3

S′

〉
= [Qk3 − δSS′ ]2πδ(k3 − k′3),

where the coefficients Qk3 and Pk3 are given by Eq. (13.2). Although the calculations are
cumbersome, we proved that the modes also form a complete set if θ̃ < 0:∫ ∞

0

dk
(
Φk

L(z)Φ
k∗
L (z′) + Φk

R(z)Φ
k∗
R (z′)

)
= 2πδ(z − z′). (13.3)

(The condition θ̃ < 0 also makes the Hamiltonian positive-definite, as it should be.) This
allowed us to express the field Φ in terms of such basis as

Φ(t,x) =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
1√
2Ek

[
aS(k)νS(x,k)e

−iEkt + c.c.
]
, (13.4)

where aS(k) (a†S(k)) correspond to the annihilation (creation) operators associated to the
triplet wave basis after the quantization is performed. We also introduced the functions
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νS(x,k) = Φk3

S (x3)ei(k
1x2+k2x2) that account for the whole dependence on the position vec-

tor. The commutation relations of aS(k) and a†S(k) are[
aS(k), a

†
S′(k

′)
]
= (2π)3δ(3)(k − k′)δSS′ , [aS(k), aS′(k′)] = 0 =

[
a†S(k), a

†
S′(k

′)
]
. (13.5)

An important property of our system is the non-conservation of momentum along the
z-axis due to the presence of the θ interface. This is manifested in various parts of this
work. For instance, since the modes are conformed by three waves traveling in differ-
ent directions, it is clear that the label k3 of these functions does not correspond to the
z component of the linear momentum vector. Another instance where we encounter the
non-conservation of linear momentum is in the linear momentum operator P 3 =

∫
d3xT 03,

where T µν is the energy-momentum tensor of the field. The operator P 3 has a complicated
form that shows no signs of having a diagonal form. Due to this, we defined a pseudo-
momentum operator Q3 to be able to characterize states of the triplet wave basis. Finally,
the non-conservation of momentum affects physical processes such as the decay involv-
ing triplet modes: since the final momentum must not necessarily be equal to the initial
momentum, the possible outcome has less constraints, and so additional decay channels
arise that make the total decay rate larger than its equivalent in the vacuum.

We calculated the energy-momentum tensor of the system and showed that energy
and momenta in the x and y direction are conserved. We then defined the 4-momentum
operator and obtained the Hamiltonian, which has a simple form given by

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Eka

†
S(k)aS(k). (13.6)

Moreover, we introduced the detector basis, or basis of outgoing modes, which is re-
lated to the ingoing basis by means of the transformation k3 → −k3, and that is essential to
describe particle sinks such as detectors. It is notable that the detector modes are simply
the complex conjugate of the Carniglia-Mandel modes, i.e., Φk3∗

S (x3), where S ∈ {L,R}.
We have denoted the elements of the detector basis as νS(x,k). Both bases are related
linearly by means of the coefficients Pk3 and Qk3 . For instance, the annihilation operators
αS(k) of the outgoing basis are related to the operators of the ingoing basis by

αL(k) ≡ Pk3aL(k) +Qk3aR(k), αR(k) ≡ Pk3aR(k) +Qk3aL(k). (13.7)

In order to apply our quantization technique to physical processes, we calculated the
decay of a field Ψ that is not affected by the presence of the interface into two fields Φ. We
showed that the total decay rate is

Γ̃ =
λ2

8πM2

|θ̃| sin−1

 1√
1 + θ̃2

M2−4m2

+
√
M2 − 4m2

 , (13.8)

and that it is related to the total decay rate of the equivalent process in vacuum, denoted
as Γ, by

Γ ≤ Γ̃ < 2Γ. (13.9)
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Since the mean life is simply the inverse of the decay rate, a similar relation can be ob-
tained for such quantity.

In addition, we calculated the Feynman’s propagator in coordinate space. It has a
relatively simple form:

∆̃F (x, y) =

∫
d4k

(2π)4
i

k2 −m2 + iϵ
e−ik0(x0−y0)+ik1(x1−y1)+ik2(x2−y2)ηk

3

(x3, y3), (13.10)

where k3 ∈ R and ηk
3
(x3, y3) =

∑
S∈{L,R}Φ

k3

S (x3)Φk3∗
S (y3). From this, we defined a reduced

Green’s function g̃(x3, y3; k0,k⊥), that accounts for the z dependence of the propagator,
such that

∆̃F (x, y) =

∫
dk0d2k⊥
(2π)3

e−ik0(x0−y0)+ik⊥·(x−y)⊥ g̃(x3, y3; k0,k⊥). (13.11)

We then computed the Feynman propagator in momentum space and demonstrated that
the non-homogeneity of the system implies that such function cannot depend only on the
4-vector k, but that it must also contain information of the third coordinate of the position
vector, i.e., the position relative to the interface in the perpendicular direction.

After this, we studied how a classical source may produce Φ modes. We introduced
the θ̃-transform as

j̃S(k) ≡
∫

d4yeik
0y0ν∗

S(y,k)j(y) =

∫
d4yei(k

0y0−k⊥·y⊥)Φk3

S (y3)j(y). (13.12)

This resulted in a modified Hamiltonian that includes the contribution of the source,

H =
∑

S∈{L,R}

∫
k3>0

d3k

(2π)3
Ek

(
α†
S(k)−

i√
2Ek

j̃∗S(k)

)(
αS(k) +

i√
2Ek

j̃S(k)

)
. (13.13)

By comparing the vacuum expectation values of the Hamiltonian for θ̃ ̸= 0 and θ̃ = 0, we
arrived at an expression for the energy due to the θ̃ interface:

Eθ̃ =
1

2

∫
d3k

(2π)3

(
|Pk3|

1 + |Pk3|

)
|j̃L(k)j̃R(k)|. (13.14)

We then found the probability that the classical source produces m modes, which turns
out to be ruled by a Poisson distribution.

To check the consistency of our results, we treated the θ̃ term as a perturbation and
showed that this gives the same results as the exact treatment if we consider all orders in
perturbation theory. Explicitly, we have that δ∆̃(n)

F = G(n), where δ∆̃
(n)
F is the n-th term of

the Taylor expansion of the exact Feynman propagator, and G(n) is the correction to the
two-point correlation function when the θ̃ term is treated as a perturbation. We also com-
puted the amplitude of having a particle with initial momentum k and final momentum
k′. By effect of the interface (as a perturbation), the amplitude has two contributions with
the same statistical weight: one in which k′3 = k3 (the particle crosses the interface) and
one in which k′3 = −k3 (the particle is reflected by the interface).
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Finally, we studied the scattering of two scalar particles that are not affected by the
interface, mediated by a Φ. Although the calculation gets involved easily, we were able to
overcome several problems by defining an adimensional differential cross section as

dσ

σ
=

d3p′1
E′

1

d3p′2
E′

2
δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)|M̃|2(∫ d3p′1
E′

1

∫ d3p′2
E′

2

)
δ(q01 + q02)δ

(2)(q1,⊥ + q2,⊥)|M̃|2
, (13.15)

where M̃ is the so called invariant matrix element, and qi ≡ p′i − pi is the transferred mo-
mentum. Quantities with apostrophe (E ′

i,p
′
i) indicate outgoing particles, while quantities

without it (Ei,pi) indicate ingoing particles.
In this way, we conclude that the quantization scheme proposed by Carniglia and Man-

del can be applied to our model, giving consistent results and establishing the theoretical
bases for further studies of quantization schemes in the presence of interfaces, and in
particular for investigating the magnetoelectric effect from the scope of quantum electro-
dynamics.



Appendix

A Basics of Quantum Field Theory
Quantum Field Theory (QFT)* is a conceptual framework for describing the world of par-
ticle physics. It is an extension of quantum mechanics, whose aim is to predict the dynamics
of microscopic systems where the so called observables (measurable quantities like energy
and momentum) are quantized. It also encompasses the principles of special relativity: (i)
the laws of physics are independent of the frame of reference and (ii) the speed of light in
the vacuum is the same for every observer. In QFT, particles are understood as excitations
of fundamental fields, which explains why every particle of certain type possesses exactly
the same basic properties as the others: because they arise from the same field.

In the scope of field theories, physicals systems are described by a Lagrangian L, which
is a function of all the fields ϕi involved and their first derivatives (higher derivatives com-
promise Lorentz invariance, which embodies the principles of special relativity). Thus,
L = L(ϕi, ∂µϕi), where ∂µ are the components of the 4-gradient vector. As in classical
mechanics, the equations of motion arise from a principle of least action, that is, from
demanding δS = 0, where S =

∫
d4xL is called the action. This condition leads to the

Euler-Lagrange equations:

∂µ

(
∂L

∂(∂µϕi)

)
− ∂L

∂ϕi

= 0. (A.1)

The simplest Lagrangian for a single real scalar field, and whose basic properties we
shall present to understand the general scope of the theory, is given by

L =
1

2
ηµν∂µϕ∂νϕ−

1

2
m2ϕ2. (A.2)

where we adopt the Einstein summation convention, by which repeated indices are assumed
to be summed, and the metric tensor is defined as

(ηµν) ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.3)

The Euler-Lagrange equations that emerge from Eq. (A.2) give rise to the so called Klein-
Gordon equation:

∂µ∂
µϕ+m2ϕ = 0. (A.4)

Our goal is to find the most general solution of this equation. One approach to do this
is by means of a Fourier expansion; that is, we find particular solutions for given values
of the linear momentum (normal modes), such that any linear combination of the normal
modes is also a solution of the differential equation. For this objective, we propose the
ansatz a(p)e−ipµxµ , where (pµ) = (Ep,p) is the 4-momentum vector. We insert this in the
previous equation, obtaining

−pµpµa(p)e−ipµxµ

+m2a(p)e−ipµxµ

= 0 → E2
p = p2 +m2, (A.5)

*This Appendix is loosely based on Ref. [46].
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so that the functions a(p)e−ipµxµ are solutions of the Klein-Gordon equation when the con-
dition E2

p = p2 +m2 is satisfied. The general solution is expressed as

ϕ(t,x) =

∫
d3p

(2π)3
1√
2Ep

(
a(p)e−ip·x + a∗(p)eip·x

)
, (A.6)

where p · x = pµxµ. Here, we include the complex conjugate a∗(p)eip·x to ensure that
ϕ(t,x) is a real function, as required*. Note that the normal modes correspond to waves
oscillating harmonically with frequency Ep =

√
p2 +m2. Thus, ϕ(t,x) is an infinite sum

of harmonic oscillators.
To quantize the dynamics, the coefficients of the normal modes are promoted to anni-

hilation and creation operators (a(p)→ a(p) and a∗(p)→ a†(p)), in a fashion analogous to
that of ladder operators in quantum mechanics, with the distinction that in QFT there is
one set of such operators for each value of the momentum. Actually, the analogy is quite
complete, which can be seen in the commutation relations[

a(p), a†(p′)
]
= (2π)3δ(3)(p− p′), [a(p), a(p′)] =

[
a†(p), a†(p′)

]
= 0, (A.7)

that are equivalent to that of the quantum harmonic oscillator (QHO). Moreover, the
canonical momentum of the field, defined as π(t,x) ≡ ∂L

∂ϕ̇
= ϕ̇(t,x), is the analog of the

linear momentum operator of the QHO, whereas ϕ itself is analog to the position operator.
One can prove, from the commutation relations of the creation and annihilation operators,
that the field and its canonical momentum satisfy the following relations:

[ϕ(t,x), π(t,x′)] = iδ(3)(x− x′), [ϕ(t,x), ϕ(t,x′)] = [π(t,x), π(t,x′)] = 0, (A.8)

which, once again, are the field theory equivalents of the QHO relations.
Just as the ladder operators act on elements of the Hilbert space of the QHO, the cre-

ation and annihilation operators act on elements of the Fock space. The creation operator
is called that way because when acting on the vacuum it “creates” a 1-particle state, i.e.,√
2Epa

†(p) |0⟩ = |p⟩. Extending this idea, one can generate a basis for the Fock space by
applying creation operators to the vacuum:√

2Ep1 ...
√

2Epna
†(p1)...a

†(pn) |0⟩ = |p1, ...,pn⟩ . (A.9)

Since the creation operators commute with one another for any value of the momentum,
the n-particle state is symmetric under exchange of any two particles†:

|p1,p2, ...,pn⟩ = |p2,p1, ...,pn⟩ . (A.10)

The field ϕ(t,x) itself also acts on elements of the Fock space.

*These functions, that will further be quantized, may also be complex and possess various different
properties related to their spin or intrinsic angular momentum. Although there are various differential
equations governing distinct kinds of free fields, all of them are linear and thus allow a Fourier expansion.

†The field ϕ that we have quantized describes bosons, which explains the symmetric property of the Fock
space basis. In contrast, a field describing fermions produces antisymmetric states under the exchange of any
two particles.
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Up to this point, we have presented an appropriate mathematical framework for de-
scribing free particles. However, nature is overflowing of interacting particles, and it be-
comes important to introduce a structure that allows us to explore the consequences of
that simple fact. Perturbation theory provides us with such a tool. We will study the λϕ4

interaction*, which gives a basic understanding of the general procedure. The Lagrangian
is now given by

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4. (A.11)

This is a system that involves a self-interaction (nonetheless, fields can also, and in general
do, interact with one another). The new term hinders our previous analysis, since now
the equation of motion is not linear and therefore does not accept a Fourier expansion.
Nonetheless, under the condition that λ is sufficiently small, we can assume that the field
remains unchanged even if the energy spectrum does not. As in quantum mechanics, we
write the Hamiltonian of the system as

H =

∫
d3x(πϕ̇− L) = H0 +

∫
d3x

λ

4!
ϕ4(t,x) = H0 +Hint, (A.12)

where H0 is the free Klein-Gordon Hamiltonian. We introduce the interaction Hamilto-
nian in the interaction picture:

HI(t) ≡ eiH0tHinte
−iH0t =

∫
d3x

λ

4!
ϕ4, (A.13)

and define the time evolution operator

U(t, t′) ≡ T
{
exp

[
−i
∫ t

t′
dt′′H ′′

I (t
′′)

]}
, (A.14)

which satisfies the differential equation i ∂
∂t
U(t, t′) = HI(t)U(t, t′) and, as its name sug-

gests, describes the evolution of a system given an interaction Hamiltonian. T is the time
ordering operator. Specifically, the amplitude of an initial state |i⟩ evolving into a final
state |f⟩ by means of an interaction HI(t) is given by

⟨f |S |i⟩ ≡ lim
t±→±∞

⟨f |U(t+, t−) |i⟩ , (A.15)

where we have introduced the S-matrix. Expanding the expression as a power series in λ,
the S-matrix element describing the evolution of the system is

⟨f |S |i⟩ = ⟨f | T
{
−i λ

4!

∫
d4xϕ4(x)

}
|i⟩+ ⟨f | T

{(
−i λ

4!

)2 ∫
d4xd4yϕ4(x)ϕ4(y)

}
|i⟩+ ...

(A.16)
To compute this braketed time ordered products, we need a couple more tools. First, we
enunciate Wick’s theorem: the time ordered product of n fields is equal to the normally

*Since in nature we only see causality-preserving interactions, no additional terms of the form ϕ(x)ϕ(y)
will be considered.
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ordered product of such fields (denoted by : ϕ1...ϕn :, and by which every annihilation
operator is placed to the right of every creation operator) plus every possible pairwise
contraction:

T {ϕ1...ϕn} =: ϕ1...ϕn : +(all possible contractions). (A.17)

The contraction is also called the time ordered or Feynman propagator ∆F (x, y):

∆F (x, y) ≡ ϕ(x)ϕ(y) ≡

{
[ϕ+(x), ϕ−(y)], x0 > y0,

[ϕ+(y), ϕ−(x)], y0 > x0.
(A.18)

= H(x0 − y0)[ϕ+(x), ϕ−(y)] +H(y0 − x0)[ϕ+(y), ϕ−(x)]. (A.19)

For this particular field, the Feynman propagator is given by

∆F (x− y) =

∫
d4p

(2π)4
ie−ik·(x−y)

p2 −m2 + iϵ
, (A.20)

although in general it corresponds to the Green’s function of the differential equation
governing the dynamics of the field, which in this case is the Klein-Gordon equation.
Now, we separate the field in positive and negative energy contributions:

ϕ(x) = ϕ+(x) + ϕ−(x),

ϕ+(x) =

∫
d3p

(2π)3
1√
2Ep

a(p)e−ip·x, ϕ−(x) =

∫
d3p

(2π)3
1√
2Ep

a†(p)eip·x.
(A.21)

From this definition,

ϕ+(x) |p1⟩ =

∫
d3p

(2π)3
1√
2Ep

a(p)e−ip·x√2Ep1a
†(p1) |0⟩ (A.22)

=

∫
d3p

(2π)3
1√
2Ep

e−ip·x√2Ep1(2π)
3δ(3)(p− p1) |0⟩ = e−ip1·x |0⟩ . (A.23)

If this is done for every single particle in the initial and final states then, as seen in Eq.
(A.23), we will end up with a quantity multiplied by the normalized product ⟨0|0⟩ = 1.
Thus, it is natural to define the contraction

ϕ(x) |p1⟩ = e−ip1·x. (A.24)

Previously, we stated that λ is small (i.e., λ ≪ 1), so that we can consider only the
first few terms of Eq. (A.16). For example, let us consider the scattering of two particles
in the λϕ4 theory. The initial and final states in that case are given by |i⟩ = |p1,p2⟩ =√

2Ep1

√
2Ep2a

†(p1)a
†(p2) and |f⟩ = |p′

1,p
′
2⟩ =

√
2Ep′1

√
2Ep′2

a†(p′
1)a

†(p′
2). It suffices to

take the linear term of the expansion (although this might not be true in other cases):

⟨f |S |i⟩ ≈ −i λ
4!
⟨p′

1,p
′
2| T

{∫
d4xϕ4(x)

}
|p1,p2⟩ . (A.25)
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There are numerous contractions that come out of this expression. Nonetheless, we actu-
ally care about processes where every particle is involved and does not merely propagate
without interacting. Thus, if we want to isolate the relevant part of the S-matrix, we define
another matrix (the T-matrix) as iT ≡ S − 1. This gives, after contracting the four ϕ fields
with the two initial and the two final particles,

⟨f | iT |i⟩ ≈ −(4!)i λ
4!

∫
d4xe−i(p1+p2−p′1−p′2)·x = −iλ(2π)4δ(4)(p1 + p2 − p′1 − p′2). (A.26)

The factor of 4! comes from all the possible contractions between initial and final states and
fields ϕ(x). Notice that this particular process does not involve the Feynman propagator;
however, contractions between fields can, and usually do, appear in the matrix elements
of iT .

This formalism allows us to calculate amplitudes of several physical processes, such as
scattering, annihilation and creation of particles, not only for scalar fields experimenting
self-interactions, but any kinds of fields (fermionic and bosonic) interacting in the various
ways permitted by a given theory.

The matrix element of iT in a process which involves two particles in the initial state
(A and B) and an arbitrary number of particles in the final state, is written as

⟨i| iT |f⟩ = (2π)4δ(4)
(
kA + kB −

∑
pf

)
iM, (A.27)

where {kA,B, pf} are the momenta of the initial and final particles, respectively. Defining
the quantityM allows to factorize the momentum conserving delta. From this, the cross
section can be calculated by means of

dσ =
1

2EA2EB|vA − vB|

(∏
f

d3pf
(2π)3

1

2Ef

)
|M|2(2π)4δ(4)

(
kA + kB −

∑
pf

)
, (A.28)

where {vA,B, EA,B} are the velocities and energies of the particles in the initial state. Once
again, the properties associated with particles in the final states are denoted by a subindex
f .

B LSZ reduction formula
Based on Ref. [45], we will derive an expression for the LSZ reduction formula, that allows
to calculate S-matrix elements in an interacting theory. Although we will focus partic-
ularly on the Klein-Gordon-θ̃ equation and its normal modes, the results deduced here
are valid for any scalar theory up to slight modifications. We start by recalling that, as is
shown in Section 4, the creation operator a†σ(k) can be written as

a†σ(k) =
1√
2Ek

∫
d3xνσ(x,k)e

−iEkt(−iΦ̇(x, t) + EkΦ(x, t)). (B.1)

We define the bidirectional derivative:

f
←→
∂0 g ≡ f(∂0g)− (∂0f)g, (B.2)
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which allows us to write

a†S(k) =
−i√
2Ek

∫
d3xνS(x,k)e

−iEkt
←→
∂0Φ(x, t). (B.3)

According to the conventions we have adopted throughout the course of this work,

aS(k) |0⟩ = 0 ∀k, S, ⟨0|0⟩ = 1,

⟨k, S|k′, S ′⟩ = (⟨0|
√

2EkaS(k))(
√

2Ek′a
†
S′(k) |0⟩) = 2Ek(2π)

3δ3(k − k′)δSS′ ,
(B.4)

i.e., the states are normalized in a covariant fashion.
We define a function f1(k) such that

a†1S ≡
∫
k3>0

d3kf1(k)a
†
S(k) (B.5)

is an operator that creates a wave packet in momentum space near k1, and which is local-
ized in configuration space near the origin. By evolving the state a†1S |0⟩, the initial wave
packet propagates and expands. In this way, for sufficiently large times, the particle has an
indefinite momentum and a specific position. If we consider a state of the form a†1S1

a†2S2
|0⟩

where k1 ̸= k2, the two particles are separated in the distant past. This is what we want
since we care about asymptotic states. Let us define

|i⟩ =
√
2Ek1

√
2Ek2 lim

t→−∞
a†1S1

(t)a†2S2
(t) |0⟩ , |f⟩ =

√
2Ek′1

√
2Ek′2

lim
t→∞

a†1′S′
1
(t)a†2′S′

2
(t) |0⟩ ,

(B.6)
where |i⟩ and |f⟩ are both normalized. The probability amplitude of the system evolving
from |i⟩ to |f⟩ is given by ⟨f |i⟩. We have

a†1S(+∞)− a†1S(−∞) =

∫ ∞

−∞
dt∂0a

†
1S(t)

= −i
∫
k3>0

d3k
f1(k)√
2Ek

∫ ∞

−∞
dt

∫
d3x∂0

(
νS(x,k)e

−iEkt
←→
∂0Φ(x, t)

)
=

∫
k3>0

d3k
f1(k)√
2Ek

∫
d4x∂0

(
νS(x,k)e

−iEkt(−iΦ̇(x, t) + EkΦ(x, t))

)
=

∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xνS(x,k)e

−iEkt

×
(
− iEkΦ(x, t)(−iΦ̇(x, t) + EkΦ(x, t)) + (−iΦ̈(x, t) + EkΦ̇(x, t))

)
= −i

∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xνS(x,k)e

−iEkt

(
Φ̈(x, t) + E2

kΦ(x, t)

)
= −i

∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xνS(x,k)e

−iEkt

(
∂2
0 + k2 +m2

)
Φ(x, t).

Now we can use that the normal modes satisfy the equation

−∇2νS(x,k) = (k2 + θ̃δ(x3))νS(x,k) (B.7)
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to write

a†1S(+∞)− a†1S(−∞) = −i
∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xνS(x,k)e

−iEkt

(
∂2
0 −
←−
∇2 − θ̃δ(x3) +m2

)
Φ(x, t).

(B.8)
Note that the derivative is applied to the left side. Let us examine the term

T =

∫
d4xνS(x,k)e

−iEkt

(
−
←−
∇2

)
Φ(x, t) (B.9)

= −
∫

d4xΦ(x, t)∇2νS(x,k)e
−iEkt (B.10)

= −
∫

d4x

[
∇ ·
(
Φ(x, t)∇νS(x,k)e−iEkt

)
−∇

(
νS(x,k)e

−iEkt

)
·
(
∇Φ(x, t)

)]
(B.11)

=

∫
d4x∇

(
νS(x,k)e

−iEkt

)
· ∇
(
Φ(x, t)

)
(B.12)

=

∫
d4x

[
∇ ·
(
νS(x,k)e

−iEkt∇Φ(x, t)
)
− νS(x,k)e

−iEkt∇2Φ(x, t)

]
(B.13)

= −
∫

d4xνS(x,k)e
−iEkt∇2Φ(x, t) (B.14)

=

∫
d4xνS(x,k)e

−iEkt

(
−∇2

)
Φ(x, t). (B.15)

Thus,

a†1S(+∞)− a†1S(−∞) = −i
∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xνS(x,k)e

−iEkt

(
∂2 +m2 − θ̃δ(x3)

)
Φ(x, t).

(B.16)

In the free theory,
(
∂2+m2− θ̃δ(x3)

)
Φ(x, t) = 0, and so the resulting amplitude is always

null. We will study what happens in an interacting theory. We have

a†1S(−∞) = a†1S(+∞) + i

∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xνS(x,k)e

−iEkt

(
∂2 +m2 − θ̃δ(x3)

)
Φ(x, t),

a1S(+∞) = a1S(−∞) + i

∫
k3>0

d3k
f1(k)√
2Ek

∫
d4xν∗

S(x,k)e
iEkt

(
∂2 +m2 − θ̃δ(x3)

)
Φ(x, t).

(B.17)

By definition,

⟨f |i⟩ =
√

2Ek1

√
2Ek2

√
2Ek′1

√
2Ek′2

⟨0| T {a1′S′
1
(+∞)a2′S′

2
(+∞)a†1S1

(−∞)a†2S2
(−∞)} |0⟩ .

(B.18)
Inserting Eq. (B.17) in this expression, the presence of the time ordering operator T results
in the operator a†iSi

(+∞) acting on the vacuum on the left side, and the operators aiSi
(−∞)

acting on the vacuum on the right side, such that none of these terms affect the expectation
value. On the other hand, we can impose f1(k) = δ3(k − k1), since the wave packets no
longer play a role in the expression. From this, for an initial state of n particles and a final
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state of n′ particles,

⟨f |i⟩ = in+n′
∫

d4x1νS1(x1,k1)e
−iEk1

t1

(
∂2
1 +m2 − θ̃δ(x1,3)

)
...

d4x′
1ν

∗
S′
1
(x′

1,k
′
1)e

iEk′1
t′1

(
∂2
1′ +m2 − θ̃δ(x′

1,3)

)
...

× ⟨0| T {Φ(x1, t1)...Φ(x
′
1, t

′
1)...} |0⟩ .

(B.19)

For a usual scalar field Ψ(x, t) that is not affected by the interface, and thus satisfies the
usual Klein-Gordon equation, the LSZ reduction formula is simply

⟨f |i⟩ = in+n′
∫

d4x1e−ik1·x1

(
∂2
1 +m2

)
...d4x′1e

ik′1·x′
1

(
∂2
1′ +m2

)
... ⟨0| T {Ψ(x1, t1)...Ψ(x′

1, t
′
1)...} |0⟩ .

(B.20)

C Heaviside function: integral representation and Fourier transform

We can express any complex number ω in polar form as ω = peiϕ, where p = |ω| and
ϕ = arg(ω) = arctan

(
Im(ω)
Re(ω)

)
. In particular,

ω + iϵ = |ω + iϵ|ei arg(ω+iϵ) (ϵ > 0), (C.1)

where arg(ω + iϵ) = arctan
(

Im(ω+iϵ)
Re(ω+iϵ)

)
. We write Re(ω + iϵ) = Re(peiϕ + iϵ) = p cos(ϕ) and

Im(ω + iϵ) = (peiϕ + iϵ) = p sin(ϕ) + ϵ, from which we obtain

arg(ω + iϵ) = arctan

(
p sinϕ+ ϵ

p cosϕ

)
. (C.2)

p is the module of ω, and hence it is a positive quantity. Nonetheless, we extend its domain,
allowing it to be negative by modifying the argument as [47]

arg(ω + iϵ) = arctan

(
p sinϕ+ ϵ

p cosϕ

)
+ πH(−p), (C.3)

To check the consistency of this redefinition, we take the limit ϵ → 0, which gives rise to
p sinϕ+ϵ
p cosϕ

→ tanϕ:
ω = lim

ϵ→0
(ω + iϵ) = pei(ϕ+πH(−p)) = pe+iπH(−p)eiϕ. (C.4)

If p is negative, then

ω = lim
ϵ→0

(ω + iϵ) = pe+iπeiϕ = −peiϕ = |p|eiϕ. (C.5)

On the other hand, if p is positive

ω = lim
ϵ→0

ω + iϵ = peiϕ = |p|eiϕ. (C.6)
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The advantage of defining the argument as in Eq. (C.3) is that it becomes a continuous
function. Without the inclusion of the Heaviside function, the arctangent has a leap from
π/2 to −π/2 when p changes sign:

lim
p→0+

arctan

(
p sinϕ+ ϵ

p cosϕ

)
= π/2 ⇐⇒ ϵ > 0,

lim
p→0−

arctan

(
p sinϕ+ ϵ

p cosϕ

)
= −π/2 ⇐⇒ ϵ > 0.

(C.7)

We have
ω + iϵ = |ω + iϵ|ei[arctan(

p sinϕ+ϵ
p cosϕ )+πH(−p)]. (C.8)

The logarithm of this function is

ln (ω + iϵ) = ln |ω + iϵ|+ i

[
arctan

(
p sinϕ+ ϵ

p cosϕ

)
+ πH(−p)

]
. (C.9)

Now we can differentiate with respect to ω:

1

ω + iϵ
=

d

dω
ln |ω + iϵ|+ i

d

dω
arg(ω + iϵ) (C.10)

Considering that ω = peiϕ implies d
dω

= e−iϕ d
dp

and taking the limit ϵ→ 0, we get

1

ω + i0
= e−iϕ1

p
+ iπe−iϕ d

dp
H(−p) = 1

ω
− iπδ(p) =

1

ω
+

π

i
δ(p). (C.11)

There are two aspects to consider. We are treating distributions and not functions, so
actually 1

ω
→ P

(
1
ω

)
, where P denotes the Cauchy principal value. On the other hand,

δ(p) = δ(ω) since ω = 0 ⇐⇒ p = 0. The limit from the right is given by

1

ω + i0
= P

(
1

ω

)
+

π

i
δ(ω). (C.12)

The limit from the left can be obtained if we adhere to the convention ϵ > 0 but change iϵ
into −iϵ. The argument is thus redefined as

arg(ω − iϵ) = arctan

(
p sinϕ− ϵ

p cosϕ

)
− πH(−p), (C.13)

since

lim
p→0+

arctan

(
p sinϕ− ϵ

p cosϕ

)
= −π/2 ⇐⇒ ϵ > 0,

lim
p→0−

arctan

(
p sinϕ− ϵ

p cosϕ

)
= π/2 ⇐⇒ ϵ > 0,

(C.14)

that is, to compensate the discontinuity of the arctangent funtion we must add −π (and
not π) whenever p is negative. This is still consistent since eiπ = e−iπ = −1. Consequently,

1

ω − i0
= e−iϕ1

p
− iπe−iϕ d

dp
H(−p) = 1

ω
+ iπδ(p) =

1

ω
− π

i
δ(p). (C.15)
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With this, we have
1

ω − i0
= P

(
1

ω

)
− π

i
δ(ω). (C.16)

Both results are condensed in the relation

1

ω ± iϵ
= P

(
1

ω

)
± π

i
δ(ω), (C.17)

where ϵ→ 0, and in most practical applications is kept to first order.
We will now introduce an integral representation of the Heaviside function:

H(z) = i

∫ ∞

−∞

dω

2π

e−iωz

ω + iϵ
, (C.18)

where ϵ > 0. To prove this, note that if z > 0, then we choose a semicircular contour that
encloses the lower half of the complex plane, and thus includes the pole−iϵ, which results
in i

2π
(−2πi) = 1, due to the integration being clockwise. On the other hand, if z < 0, the

appropriate contour encloses the upper half of the complex plane, which includes no poles
and hence gives zero. Analogously, by a mere change of variables, we have

H(−z) = −i
∫ ∞

−∞

dω

2π

e−iωz

ω − iϵ
. (C.19)

In other words, H(±z) is the Fourier transform of ± i
ω±iϵ

:

H(±z) = ±i
∫ ∞

−∞

dω

2π

e−iωz

ω ± iϵ
. (C.20)

If this relation is inverted, we arrive at∫ ∞

−∞
dzH(±z)eiωz = ± i

ω ± iϵ
= ±iP

(
1

ω

)
+ πδ(ω). (C.21)

By applying the properties P
(
− 1

ω

)
= −P

(
1
ω

)
and δ(ω) = δ(−ω), we obtain∫ ∞

−∞
dzH(z)e±iωz = ±iP

(
1

ω

)
+ πδ(ω),

∫ ∞

−∞
dzH(−z)e±iωz = ∓iP

(
1

ω

)
+ πδ(ω).

(C.22)
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