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Summary

In this thesis, I study the Geometric Quantization and the Symplectic Reduction of C",n =
8,4 under a suitable action of SU(2),U(1) respectively. This action is suggested by the
Kustaanheimo-Stiefel regularization of the Kepler problem. I show that the “first quantize
and then reduce” process gives a geometric description of a Hilbert space &,, of holomorphic
functions on a null quadric Q,, C C™*!,m = 5,3. The space &,, was introduced by Bargmann
and Todorov [5] in the setting of symmetric tensor representations of SO(m+1). This geometric
description provides an example that Quantization does not commute with Reduction in a case
of non-compact Kéhler manifolds. I construct a Guillemin-Sternberg map including half-form
between the “first quantize and then reduce” space and the “first reduce and then quantize”
space, which is asymptotically unitary. On the other hand, Diaz-Ortiz E. and Villegas-Blas
C. [11] introduced a Segal-Bargmann Transform Bgm from the Hilbert space L?(S™,d{gm)
onto &, in a setting of coherent states and semiclassical analysis on the sphere S™. From the
pairing map between the vertical and holomorphic polarizations on C™ and through the “first
quantize and then reduce” process, I construct for each non-negative integer ¢ a Segal-Bargman
Transform By,, for the vector space of spherical harmonics of degree ¢ on S™. I show that
Bgm can be regarded as the linear extension of Eam.
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Introduction

The Schrodinger representation of Quantum Mechanics on R" is realized in the Hilbert space
L?(R", du), where du = duidus . . . duy, is the volume form (Lebesgue measure) on R”. The oper-
ators of position u; and momentum v; are given by Uy, = uy (multiplication by the wy coordinate)

and v; = —zha%j, j,k = 1,...n. In this representation the operators of creation Ziz and anni-

hilation a; are given by aL = % (U — wy) and @; = % (uj +w;), which satisfy the canonical
commutation relations (CCR). Namely,

[@;,aL] = hoj 1.

V. Fock in 1928 proposed an alternative solution of CCR. The operators of creation and an-
nihilation could be written as z; = zj (multiplication by the coordinate zj) and Ej = ha%j re-
spectively. In [4] V. Bargmann introduced a Hilbert space B,, of holomorphic square-integrable
functions on C™ with respect to a Gaussian measure dl/,’z(z) such that the operators 3/.3,% are
adjoint to each other in B,. Moreover, V. Bargmann introduced a unitary transformation
Bgn : L*(R™, du) — B,, which intertwines the operators EL,Ej and /z\k,gj respectively.

The spaces L?(R", du) and B, as well as the transformation Bgn can be obtained via
geometric arguments. Consider the symplectic manifold (T*R",w, = dv A du), where w, =
dv A du denotes the symplectic form. Geometric Quantization including half-form can be
applied to T*R" in order to construct the Hilbert space of quantum states. The space of

polarized sections with respect to the vertical polarization V = {8%1, 8%2, cees %} is identified

with the space of functions L(R", du). Moreover, Geometric Quantization gives a way to assign
an operator @ 7 to each function f on T*R". If the commutator of X (Hamﬂtonian vector field
of f) with a vector field X € V' is an element of V, then the operator Q # preserves the space
of polarized sections. The operators Quk, Qv assigned to f = uy, f = v; preserve the space of
polarized sections and are identified with the operators U = uy and v; = —zh% respectively.
For details of the facts discussed above see [17), [43].

The cotangent space T*R" can be endowed with a complex structure via a map 7, : T*R" >
(u,v) — z € C™ so that the symplectic manifold (T*R", w, = dv A du) is identified with the
Kéahler manifold ((C”, Wy = %df A dz). Geometric quantization can be applied to the symplectic
(Kéhler) manifold C™. Whether the half-form is included or not, the space of polarized sections
with respect to the holomorphic polarization P = {8%1’ 8%2’ ceey %} is identified with the
space By,. As in the real case, if the commutator of Xy with a vector field Y € P is an element

of P, then the operator @ ¢ preserves the space of polarized sections. The operators assigned
to f = 21, f = Z;j preserve the space of polarized sections and are identified with the operators

]
vii



viii Introduction

Zr = 2z and /z’\j = ha%]_ respectively. On the other hand, there is a pairing between polarized
sections (including half forms) with respect to the polarizations V' and P. The pairing gives
rise to a linear map (pairing map) between the spaces L?(R", du) and B,, which turns out to
be the Segal-Bargmann transform Bgn. The above facts are discussed in [33], [43].

When the configuration space of a physical system is a manifold @), the quantum states
are elements of the space L?(Q,du) with du a volume form on Q. The case Q = S™ is
relevant for this work, so let me focus on it. A holomorphic representation of Quantum Me-
chanics on spheres S™ requires to define a unitary transformation (Segal-Bargmann trans-
form) from L?(S™, dQgm) into a Hilbert space of holomorphic functions which should be de-
fined on a Kahler manifold that endows 7*S5™ with a complex structure. Regarding this
point, consider the null quadric Q,, which is defined as the set of « € C™*! with the prop-
erty that the sum of the squares of its components is equal to zero. The cotangent space
TtS8™ = T*S™ — {zero section} can be endowed with a complex structure via the map
o :TtS™ — Q= Qun — {0} so that the symplectic manifold (T S™, @ = dp A dg|r+gm) can
be identified with the Ké&hler manifold (Qm,@ = —zﬂé@]a\), and hence that the tangents

of type (0,1) on Qy form a holomorphic polarization. So a Hilbert space H’ of holomorphic
functions on @, can be obtained by performing the Geometric Quantization (including half-

form) of (Qm,@ = —z\/§58|a|> with respect to this holomorphic polarization. The space of

polarized sections (including half-form) with respect to the vertical polarization of TTS™ is
identified with the space L?(S™,d2sm). The pairing map (including half-form) between po-
larized sections with respect to the vertical polarization and holomorphic polarization can be
regarded as a map from L?(S™,dQgm) into H', but the pairing map is not unitary. See [33]
for details.

On the other hand, L. Tomas and S. Wassell in [38] introduced a Segal-Bargmann transform
Bg» from L?(S?,dQg) onto a closed subspace in By generated by the monomials of even
degree. Villegas-Blas in [40} [41] introduced a Segal-Bargmann transform from L?(S™, dQgm),
m = 3,5 onto a closed subspace F,, C By, n = 4,8 of invariant functions under an action
of U(1),SU(2) respectively. For the pairs (n,m) = (2,2),(4,3) the transformation Bgm was
defined as the linear extension between basis of irreducible representations of SO(3,R) in
L?(S?,dQg2), SO(4,R) in L2(S3,d2gs) and of SU(2) in Bz, SU(2) x SU(2) in By respectively.
Moreover, in [41] it is shown that Bgm,m = 2,3 can be written as an integral operator whose
integral kernel is an infinite power series in the function (p(, m)(2) - ¢) with ¢ € S™, and p(, ;)
is a map from C",n = 2,4 to the null quadric @Q,,,m = 2,3. For the pair (n,m) = (8,5)
it is quite complicated to implement the idea of linear extension between basis of irreducible
representations in the domain and range. So the transformation Bgs was defined as an integral
operator whose integral kernel is an infinite power series in the function (p(ss)(2) - ¢) with
q € S°,and P(s,5)(#) is a map from C8 to the null quadric Q5. The map P(s,5)(?) was constructed
following the procedure of p( 3)(z) in [27].

From the mathematical side, the pairs (n,m) = (4,3),(8,5) come from the fact that in
these dimensions there are Hopf maps between spheres S”~! and S™~! with fiber S' = U(1),
SU(2) = S3 respectively. From the physical side, the pairs (n,m) = (2,2), (4,3), (8,5) come
from the fact that in these dimensions there is a correspondence between an isotropic harmonic
oscillator in dimension n and the Kepler problem in dimension m. Indeed, the map p(, ) (2)
has the property to relate the regularizations of Moser and Kustaanheimo-Stiefel of the Kepler
problem in dimensions m = 2,3,5. The map p(, ,)(2) has another property which is related
to the unitary transformation Bgm. The function (p(,m)(2) - q) is a generating function of
a canonical transformation between C" = C* — {0} and TTS™ 2 @Q,,. In other words, the
restriction of p(y, ) (2) to a submanifold of C" is a canonical transformation between C" and
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T+8™ = Q,,, so that the Segal-Bargmann transform Bgm can regarded as the quantization of
the map p(,, ) (2). See [41] for details.

In [17] Villegas-Blas and Diaz-Ortiz introduced a Segal-Bargmann transform Bgm for any
dimension m from L?(S™, dQgm) onto a Hilbert space &,, of holomorphic functions on the null
quadric @Q,,. The space &,, was previously considered by Bargmann and Todorov in [5] in the
setting of symmetric tensor representations of the orthogonal group SO(m + 1,R). Let me
remark that the spaces F,, can be related to the space &,,, m =, 3,5 respectively, via a unitary
map b, ,, which is defined in terms of the map p(,, ,,,)(2). See [35] for details. Motivated by the
particular dimensions m = 2, 3, 5, the authors write Bgm as an integral operator whose integral
kernel is an infinite power series in the function (« - ¢q) with o € @y, and ¢ € S™. Namely, the
kernel of Bgm is given by Kgm(a,q) = > 2 ¢ (%)6, where the coefficients ¢, are determined
so that Bgm is an isometry between L?(S™, dQgm) and &,,. The space L?(S™, dQ2gm) is a direct
sum of the spaces V; of spherical harmonics of degree ¢, and the space &, is a direct sum of
the spaces Wy of homogeneous polynomials of degree £ on ),. So the transformation Bgm can
be defined as the liner extension of the unitary maps Bgm. : Vo — Wj.

Since the spaces L?(R"™, du), B, as well as the transformation Bg» can be described in a
geometric setting as it is mentioned above, then it is natural to search a geometric description
for both the space &, and transformation Bgm. One of the main results of this thesis is that I
obtain the space &, as well as the transformation Bgm via a process of Geometric Quantization
and Symplectic Reduction for the particular dimensions m = 3,5. I briefly describe such a
process in the next paragraphs.

I first perform the Symplectic Reduction of C™,n = 4, 8. I define a free action of a compact
matrix Lie group G, on C", see Chap. Sect.. Since the action of G, preserves the
symplectic form w, = %dé A dz, then there is a moment map J, : C* — g;. Here g} denotes
the dual of the Lie algebra g, of G,, with G4 = U(1) and Gg = SU(2). I then consider the
symplectic quotient J.,1(0)/G,, where J,1(0) denotes the inverse image of the regular value
0 € g&. I follow the structural ideas of [14}, (18] in order to endow J,'(0)/G,, with a complex
structure (complex coordinates). The action of G,, is continued to an action of the complexified
group (Gy)c on C™. Let M, s denote the stable set in Cn. Namely, M, is the set of points in cn
that can be moved into J,,1(0) by the action of (Gy,)c. From the general theory in [14} 18],
the symplectic quotient J,,1(0)/G,, is identified as a complex manifold with M;/(Gy)c. I prove
that the null quadric Q,,,m = 3,5 can be realized as the complex quotient M,/(Gp)c. In
other words, I show that every a € Q,, is associated with an element in M, /(Gy)c. Under
the identifications of M, /(Gy)c with @, and of TTS™ with Q,,, I prove that the symplectic
manifold (J,%(0)/Gy, 1) can be identified as a Kéhler manifold with <Qm,@ = —2x/§58\04\).
See propositions [3], [7}

Next, the Geometric Quantization of T*R"™ = C™ is considered with and without half forms,
and I then perform Quantum Reduction. That is, I determine the set of polarized sections that
are invariant under the action of GG,,. In the real case the set of G, -invariant polarized sections
including half form is identified with the set of functions in L?(R", du) that are invariant under
the action of G,, on R” = R"™ — {0}. This set of functions is denoted by L?(R™, du)%". In the
complex case the set of G,-invariant polarized sections is identified with the set of functions
in B, that are invariant under the action of G, on C,. This set of holomorphic functions
is denoted by BS". I show that functions f(z) € B are also invariant under the action of
(Gn)c on €™ and that f(z) can be written as f(z) = ¢(a(z)) with ¢ a function on the quotient
M/ (Gp)c = Qum, see Chap. Sect.. Hence, the space BS™ is actually the set of function
in B,, that are invariant under the action of (Gy)c on C”. This set of holomorphic functions

is denoted by B,(IG")C. For both the real and complex polarization the “first quantize and then
reduce” process yields the Hilbert space L?(R", du)G” and B,SG")C respectively.
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I adapt the ideas of [18) Sect. 4] in order to compute the squared norm of a G,,-invariant
holomorphic section on C" as an integral on the quotient J;(0)/G,, = Qm. This calculation
shows that the squared norm of f € B%G")C can be expressed as the squared norm of ¢ on
3:1(0)/Gp = Q,n in terms of the inner product of the space &,. See theorem [3| In the case of
C™ the inclusion of half-forms does not change the inner product of the space of holomorphic
sections. This is reflected in the fact that the squared norm of ¢ on J;'(0)/Gn = Q,, can
be expressed in terms of the inner product of &, whether half-forms are included or not. See
theorem 4l Let me emphasize that I obtain the measure on Q,, considered by Bargmann and
Todorov from the Gaussian measure dv/’(z) through a reduction process and that my approach
is different from the one of them. They obtained the measure in &,, by requiring the adjoint of
multiplication operator @j,j =1,...,m+1 on @, to be a differential operator that transforms
gG")C with a space of holomorphic functions
on Qum, I prove that f(z) = ¢(a(z)) € Bl regarded as a function ¢ over Q,, is an element
of the space of polynomial functions on Qm. So the space B%G”)C,n = 4,8 is identified with the
space &, of holomorphic functions on @Q,,, m=3,5 respectively. See Chap. Sect. .

In the real side I show that functions in L?(R", du)®" can be written as p(u) = ¢(x(u))
with ¢(x) a function on R™ and that the “first quantize and then reduce” space L?(R™, du)%»

is identified with space L? (]Rm, C—mdaz) with C,, a real constant. See Chap. Sect. .

|z

as an m—+ 1-vector. In order to identify the space B

The geometric description of Bgm is as follows. The pairing map between the polarizations
V and P gives a Segal-Bargmann transform B, : L?(R",du) — B,. The integral kernel
Ay (u, z) of By, is equivariant with respect to the actions of G,, on R™ and C". See lemmas EL
The equivariant property of A, (u, z) is due to I consider a particular complexification of T*R™
so that the action of G, preserves the holomorphic polarization of T*R™ = C". I prove that the
restriction of By, to L?(R", du)%" gives a unitary transformation By, : L?(R", du)%" —s BSn.
See propositions Let me recall that functions f € BS" are also invariant under the
action of (Gy,)c on C". I write By, in a G-invariant form in order to show that By, is

actually a map from L?(R", du)®" onto B See theorems From the identification of
L?*(R™, du)%" with L? (Rm, C—md:c) and of l’)’q(%G")C with &, the map By, can be regarded as a

||

Segal-Bargmann transform 95, : L? (Rm, C—’”d:ﬁ) — Em- See corollaries

|z
The Lie algebra so(m+ 1) of the orthogonal group SO(m+ 1,R) plays an important role in
the construction of a Segal-Bargmann transform for spheres S™. I can realize a representation

of the Lie algebra so(m + 1) in both spaces L? (Rm, %d:p) and &,,. For dimension m = 3
the operators that generate the representation of so(4) are identified with the restriction of
the components of the angular-momentum and Runge-Lenz vector operators in the eigenspace

of energy F = —% of the hydrogen atom. See proposition This construction relies on to
intertwine the representations of so(m+1) in V; C L?(S™, d0gm ), L? (]Rm, C—”daz) and &,,. The

|z]
representation of so(m+1) in V; C L?(S™, dQ2gm) is carried into the representation of so(m+1)
on the eigenspaces Ey of K, = %|x| (=h?Agm +1) in L? (]Rm C—mdfn) through the Fock map

]
Ugm- This fact is commented in [10], but here I prove it with my own calculations for the
particular dimensions m = 3, 5. See propositions {2 and [44] I then consider the composition of
B, with the map Uy ,,. That is, B,0U;,, : V; C L2(S™, dQgm) — Wy C &, which intertwines
the representations of so(m + 1) in the corresponding spaces. The transformation B,, o Uy, is
identified with the transformation Bgm ¢ by using the Schur lemma. This is B, 0 Uy, = Bgm ¢
on V;. Since the Segal-Bargmann transform Bgm can be defined as the linear extension of
Bgm g, then equality B, o Uy,, = Bgm indicates that Bgm can be regarded as the linear
extension of the maps B, o Uy, and that Bgm can be understood as the composition of B,
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with the Fock map Uj,,. In this way I can give the geometric description of Bgm for the
dimensions m = 3, 5.

The approach discussed above to obtain the space &, is based on first quantizing C™ and
then reducing by Gy, which amounts to looking at the set of GG,,-invariant holomorphic sections.
Alternatively, I may first consider Symplectic Reduction of C"” by G, and then quantize the
Kihler manifold J,,1(0)/G, = Q. This yields a Hilbert space #' on @Q,, which is not the
space E,.

The “first quantize and then reduce” and “first reduce and then quantize” processes are
known not to commute in general. That is, there is a Guillemin-Sternberg (GS) map (with
and without half-forms) between G-invariant holomorphic sections on the unreduced manifold
and holomorphic sections on the reduced manifold, but the GS map is not unitary regarding
the inner product of the corresponding Hilbert spaces. See [18] for details. The second main
contribution of this thesis is related to this point. I study both processes described above and
construct a GS map. That is, I first define a GS map A, without half-forms between G-
invariant holomorphic sections on C™ and holomorphic sections on Qm, and I then extend the
map A, to a GS map S, including half-forms. Although the GS maps A,, and S, are defined
following the ideas of the case of compact Kéahler manifolds studied in [18], the maps A,, and S,
have not been studied before since these maps are defined over non-compact Kahler manifolds.
Nevertheless, the maps A, S, have the same asymptotic properties as in the compact case. 1
show that a function related to the volume of the G,,-orbits in J,,1(0) is the reason so that the
map A, does not become unitary in the limit # — 0. Unlike the case without half-forms, the
map S, becomes unitary in the semiclassical limit. See Chap. Sect. . Let me remark
that the inclusion of half forms is the key ingredient so that the GS map S,, becomes unitary.

I finish the introduction with two remarks. (i) In reference [29] it is introduced a Hilbert
space of holomorphic functions on ()3, but the measure and reproducing kernel of such a space
are different from corresponding ones in &s. (ii) In [16] it is considered a unitary transformation
from L2(S™,dQsn) onto a space of holomorphic functions on a non-null quadric Sc. Let me
comment that Sc can be considered as another complex structure of TTS™. Furthermore, this
non-null quadric plays a central role in that case, and so the approach in [16] is different from
mine.

For the convenience of readers I explain how this work is organized.

The first chapter contains aspects of Classical and Quantum Mechanics. On the classical
side three systems are relevant in this work, the geodesic flow on T*S™, the Kepler problem
on T*(R™ — {0}) and the harmonic oscillator on T*R"™. I briefly review the Hamiltonian
formulation of Classical Mechanics in general and then give the Hamiltonian formulation of
these systems. I also describe the regularizations of Moser and Kustaanheimo-Stiefel of the
Kepler problem.

On the Quantum side I give a brief exposition of the Schrédinger representation in L2(R", du).
I also give a short description of the spaces B, on C" and &,, on @, as well as of the unitary
transformations Brr and Bgm.

The second chapter contains more topics on Classical and Quantum Mechanics. The Sym-
plectic Reduction of C™ as well as the Geometric Quantization of T*R™ = C" is performed. At
the end of the chapter, I consider Quantum Reduction. Namely, I determine the G,-invariant
polarized sections for both the vertical polarization and holomorphic polarization.

The third chapter contains the calculations to construct the GS maps with and without
half forms, to express the squared norm of a Gy-invariant holomorphic section as an integral
on the quotient J;,(0)/Gp = Q. and to identify the space BEWE with &,,.

In the fourth chapter I expose in some detail the pairing between polarized sections with
respect to the polarizations V and P. The unitary transformation B, : L?(R", du) — B,
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is realized as the paring map between these polarized sections. Moreover, I obtain the Segal-
Bargmann transform 9B, : L? <Rm, %dm) — &n from the one B, : L*(R",du) — B,
through the “first quantize and then reduce” process.

The fifth chapter contains the calculations involving the construction of the unitary trans-
formation 9B, o U, ,, and the identification of B,, o U, ,, with Bgm .

Additionally, I include two appendices. The appendix A contains the construction of the
maps p(n,m)(z), and let me comment that my approach is different from those given in [27] [41].

The geometric quantization of the null quadric Q,, is exposed in the appendix B.



Introduccion

La presentacién de Schrodinger de la Mecdnica Cudntica en R™ se realiza en el espacio de
Hilbert L2(R", du), donde du = dujdus . ..du, es la forma de volumen (medida de Lebesgue)
en R™. Los operadores de posicién %y y momento v; estan dados por uy = u (multiplicacion
por la coordenada uy y v; = —zh%, j,k=1,...n. En esta representacion los operadores de

il T_

LG o) v 6 = (M 405
creacién @, y aniquilacién @; estdn dados por @, ﬁ(uk — W)y a5 = \/i(uﬂ +10;), los cuales

satisfacen las relaciones canénicas de conmutacién (CCR). Es decir,
(@, af] = hoj.l.

V. Fock en 1928 propuso una solucion alternativa de CCR. Los operaores de cra01on y aniquilacién
podrian escribirse como z = z;, (multiplicacién por la coordenada zi) y zJ = ﬁ 9z respecti-
camente. En [4] V. Bargmann introdujo un espacio de Hilbert B,, de funciones holomorfas de
cuadrado integrable en C™ con respecto a una medida Gausiana dv!’(z) tal que los operadores
2k, Ej son adjuntos entre si en B,,. Ademads, V. Bargmann introdujo una transformacién unitaria
Bgn : L*(R", du) — B, la cual entrelaza los operadores aL,aj y Ek,% respectivamente.

Los espacios L?(R",du) y B, asi como la transformacién Bgrn se pueden obtener a través
de argumentos geométricos. Considere la variedad simpléctica (T*R"™,w, = dv A du), donde
wn, = dv A du denota la forma simpléctica. Cuantizacién Geométrica incluyendo half-form
puede aplicarse a T*R™ para construir el espacio de Hilbert de estados cuanticos. El espacio
de secciones polarizadas con respecto a la polarizacién vertical V' = {6%1’ 6%27 ey %} se

identifica con el espacio de funciones L?(R", du). Ademds, Cuantizacién Geométrica nos da
una manera de asignar un operador @ 7 a cada funcién f on T¥R™. Si el conmutador de Xy
(campo vectorial Hamiltoniano de f) con un campo vectorial X € V es un elemento de V
entonces el operador Q 7 preserva el espacio de secciones polarizadas. Los operadores Quk, QUJ
asignados a f = ug, f = vj preservan el espacio de secciones polarizadas y se identifican con los
operadores Uy, = uy and v; = —zh% respectivamente. Para detalles de los hechos discutidos
arriba ver [17, [43].

El espacio cotangente T*R"™ se puede dotar de una estructura compleja a través del mapa
Tn : T*R™ 3 (u,v) — z € C" de modo que la variedad simpléctica (T*R", w,, = dv A du) se
identifica con la variedad de Kéahler (C“, S %di A dz). Cuantizacién Geométrica puede apli-

carse a la variedad simplectica (Kéhler) C™. Se incluya o no la half-form, el espacio de secciones
polarizadas con respecto a la polarizacién holomorfa P = {%, 3%2, ceey %} se identifica con
el espacio B,,. Como en el caso real, si el conmutador de Xy con un campo vectorial Y € P

es un elemento de P, entonces el operador () preserva el espacio de secciones polarizadas.

—
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Los operadores asignados a f = z, f = Z; preservan el espacio de secciones polarizadas y se
identifican con los operadores zj, = z;, and iz_\j = haizj respectivamente. Por otro lado, hay un
emparejamiento entre secciones polarizadas (incluyendo half-forms) con respecto a las polar-
izaciones V' y P. El emparejamiento da lugar a un map lineal (mapa de emparejamiento) entre
los espacios L2(R", du) y B, el cual resulta ser la transformada de Segal-Bargmann Bgn. Los
hechos anteriores se discuten en [33), [43].

Cuando el espacio de configuracién de un sistema fisico es una variedad @, los estados
cuénticos son elementos del espacio L?(Q,du) con du una forma de volumen en Q. El caso
Q = S™ es relevante para este trabajo, por lo que me concentrare en el. Una representacion
holomorfa de la Mecéanica Cuédntica en esferas S™ requiere definir una transformacién unitaria
de L?(S™,d)sm) en un espacio de Hilbert de funciones holomorfas el cual debe definirse sobre
una variedad de Kéhler que dota a 7" S™ con una estructura compleja. En relacion a este punto,
considere la cuadrica nula @, la cual se define como el conjunto de a € C™*! con la propiedad
de que la suma de los cuadrados de sus componentes es igual a cero. El espacio cotangente
T+TS8™ = T*S™ — {seccién-zero} se puede dotar de una estructura compleja a traves del mapa
o:Tt8™ — Q= Qm— {0} de modo que la variedad simpléctica (T S™, @ = dp Adg|p+gm)
puede identificarse con la variedad Kéahler (Qm, w= —zﬂé@\ao, y por la tanto los tangentes

del tipo (0,1) en Q. forman una polarizacién holomorfa. Asi que un espacio de Hilbert #' de
funciones holomorfas en @, se puede obtener al realizar la cuantizacién geométrica ( incluyendo

half-form) de (Qm, W= —zﬂé@]a\) con respecto a esta polarizacién holomorfa. El espacio de

secciones polarizadas (incluyendo half-forms) con respecto a la polarizacién vertical of T S™
se identifica con el espacio L?(S™, d2sm). El mapa de emparejamiento (incluyendo half-forms)
entre las secciones polarizadas con respecto a la polarizacién vertical y la polarizacion holomorfa
se puede considerar un map de L2(S™,dQ0gm) a H', pero este mapa de emparejamiento no es
unitario. Ver [33] para los detalles.

Por otro lado, L. Tomas y S. Wassell en [38] introdujeron una transformada de Segal-
Bargmann Bg» de L?(S?,dfg2) a un subespacio cerrado de Bs generado por los monomios
de grado par. Villegas-Blas en [40, 41] introdujo una transformada de Segal-Bargmann de
L2(S™ dQgm), m = 3,5 a un subespacio cerrado F,, C B,, n = 4,8 de funciones invariantes
bajo la accién of U(1), SU(2) respectivamente. Para los pares (n,m) = (2, 2), (4, 3) la transfor-
macién Bgm fue definida como la extension lineal entre bases de representaciones irreducibles
de SO(3,R) en L%(S?,dQg2), SO(4,R) en L%(S3,dQgs) y de SU(2) en By, SU(2) x SU(2) en By
respectivamente. Ademads, en [41] se muestra que Bgm, m = 2,3 se puede escribir como un op-
erador integral cuyo niicleo integral es una serie infinita de potencias en la funcién (p(, m)(2)-q)
con ¢ € S™, 'y p(n,m) €s un mapa de C",n = 2,4 a la cuddrica nula @, m = 2,3. Para los
pares (n,m) = (8,5) es complicado implementar la idea de extension lineal entre bases de
representaciones irreducibles en el dominio y rango. Asi que la transformacién Bgs se definié
como un operador integral cuyo nicleo integral es una serie infinita de potencias en la funciéon
(p@s,5)(2) - q) con g € S5,y p(3,5)(2) es un mapa de C8 a la cuddrica nula Q5. El map P35 (2)
se construyo siguiendo el procedimiento de p(43y(2) en [27].

Del lado matematico, los pares (n,m) = (4,3),(8,5) vienen del hecho de que en estas
dimensiones hay mapeos de Hopf entre esferas S"~! y §™~! con fibra S' = U(1), SU(2) = S
respectivamente. Del lado fisico, los pares (n,m) = (2,2), (4,3), (8,5) vienen del hecho de que
en estas dimensiones hay una correspondencia entre un oscilador arménico in dimension n y
el problema de Kepler en dimension m. De hecho, el mapa map p(, )(2) tiene la propiedad
de relacionar las regularizaciones de Moser y Kustaanheimo-Stiefel del problema de Kepler
en dimensiones m = 2,3,5. El mapa p(, ,)(2) tiene otra propiedad la cual esta relacionada
con la transformacién unitaria Bgm. La funcién (p(,my(2) - q) es una funcién generadora de

~

una transformacién canénica entre C" = C" — {0} y T+S™ = Q,,. En otras palabras, la
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restriccién de p, m)(2) a una subvariedad de C" es una transformacién canénica entre C" y

TT8™ = (Q,,, de modo que la transformada de Segal-Bargmann Bgm se puede considerar como
la quantizacién del mapa p(, ,)(2). Ver [41] para los detalles.

En [11] Villegas-Blas y Diaz-Ortiz introdujeron una transformada de Segal-Bargmann Bgm
para cualquier dimension m de L?(S™,d2sm) a un espacio de Hilbert &,, de funciones holo-
morfas en la cuddrica nula Q,,. El espacio &,, fue previamente introducido por Bargmann and
Todorov en [5] en el escenario de representaciones tensoriales simétricas del grupo orthogonal
SO(m + 1,R). Permitanme comentar que los espacios F,, se pueden relacionar a los espacios
Em, m =,3,5 respectivamente, a traves de un mapa unitario i, ,, el cual se define en termi-
nos del mapa p(, m)(2). Ver [35] para los detalles. Motivado por las dimensiones particulares
m = 2,3,5, los autores escriben Bgm como un operador integral cuyo ntcleo integral es una
serie infinita de potencias en la funcién (a-q) con a € @, vy g € S™. Es decir, el kernel de Bgm

es dado por Kgm(av,q) = > o ¢ (%)é, donde los coeficientes ¢y se determinan de modo que
Bgm es una isometria entre L?(S™, dQgm) y Em. El espacio L2(S™, d)gm) es una suma directa
de los espacios V; de armonicos esféricos de grado ¢, y el espacio &, es una suma directa de los
espacios W, de polinomios homogéneos de grado £ on Q,,,. Asi que la transformaciéon Bgm se
puede identificar con la extension lineal de los mapas unitarios Bgm. : Vo — Wj.

Ya que los espacios L?(R",du), B, asi como la transformacién Bg» se pueden describir
en escenario geométrico como se menciono anteriormente, entonces es natural buscar una de-
scripcién geométrica tanto para el espacio &, y la transformacion Bgm. Uno de los resultados
principales de esta tesis es que obtengo el espacio &,, asi como la transformacion Bgm medi-
ante un proceso de Cuantizacion Geométrica y Reduccién Simpléctica para las dimensiones
particulares m = 3,5. Describo brevemente tal proceso en los siguientes parrafos.

Primero realizo la Reduccién Simpléctica de C",n = 4,8. Defino una accién libre de
un grupo de Lie compacto de matrices G,, en C", ver Cap. Sect.. Ya que la accién
de G, preserva la forma simpléctica w, = %dz A dz, entonces hay una mapa de momento
Jp 1 C* — gr. Aqui g’ denota el dual del algebra de Lie g,, of G,, con G4 = U(1) and
Gs = SU(2). Luego considero el cociente simpléctico J;,1(0)/G,, donde J;'(0) denota la
imagen inversa del valor regular 0 € g¥. Sigo las ideas estructurales de [14, 18] con el fin de
dotar a J,,1(0)/G,, con una estructura compleja (coordenadas complejas). La accién de G, se
continua a una accién del grupo complexificado (G,)c en C". Sea M, ¢l conjunto estable en
C". Es decir, M es el conjunto de puntos en Ccn que se pueden mover a J,,1(0) por la accién
de (Gp)c. De la teoria general en [14, 18], el cociente simpléctico J,;1(0)/G,, se identifica
como variedad compleja con M,/(Gy)c. Pruebo que la cuddrica nula Q,,,m = 3,5 se puede
realizar como el cociente complejo M;/(G,)c. En otras palabras, muestro que cada o € Om
esta asociada con un elemento en M;/(Gy)c. Bajo las identificaciones de M/(G,)c con Om
y de TtS™ con Q,, pruebo que la variedad simpléctica (GT_L L)/ Gn,ﬁ) se puede identificar

como una variedad de Kéhler con (Qm,@ = —Z\@58|a|). Ver proposiciones

A continuacion, se considera la Cuantizacién Geométrica de T*R™ = C" con y sin half-
forms. Luego realizo Reduccién Cuéantica. Es decir, determino el conjunto de secciones que
son invariantes bajo la accién de G,. En el caso real el conjunto de secciones polarizadas
incluyendo half-form G,-invariantes se identifica con el conjunto de funciones en L?(R™, du)
que son invariantes bajo la accién de G,, en R = R™—{0}. Este conjunto de funciones se denota
por L2(R™, du)%". En el lado complejo el conjunto de secciones polarizadas G,-invariantes se
identifica con el conjunto de funciones en B, que son invariantes bajo la accién de G,, en Cp.
Este conjunto de funciones se denota por BS™. Muestro que funciones f(z) € BS» también son
invariantes bajo la accién de (Gp)c en C" y que f(z) se puede escribir como f(z) = ¢(a(z))
con ¢ una funcién en el cociente M/(Gy,)c = Qum, ver Cap. Sec. 1| Por lo tanto, el espacio
B&n es realmente el conjunto de funciones en B, que son invariantes bajo la accién de (Gy)c
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on C". Este conjunto de funciones holomorfas se denota por BgG")C. Para la polarizacion

real y compleja el proceso “primero cuantizar y luego reducir” produce el espacio de Hilbert
L*(R", du)% y B pespectivamente.

Adapto las ideas de [18], Sect. 4] con el fin de calcular la norma al cuadrado de una
seccién holomorfa Gj,-invariante en C" como una integral en el cociente J,1(0)/Gpn = Qum.
Este calculo muestra que la norma al cuadrado de f € BSLG")‘C se puede expresar como la norma
al cuadrado de ¢ on J,,1(0)/G,, = Qm en términos del producto interno del espacio &,,. Ver
teorema [3| En el caso de C" la inclusién de half-forms no cambia el producto interno en el
espacio de secciones holomorfas. Esto se refleja en el hecho que la norma al cuadrado de ¢ en
3,10)/G, = Qm se puede expresar en términos del producto interno de &, se incluyan o no
las half-forms. Ver teorema Permitanme enfatizar que obtengo la medida en Q. considerada
por Bargmann and Todorov a partir de la medida Gaussiana dv/’(z) a traves de un proceso de
reducciéon y que mi enfoque es diferente al de ellos. Obtuvieron la medida en &,, al requerir

que el adjunto del operador de multiplicaciéon @;,j = 1,...,m + 1 en @, sea un operador

diferencial que se transforme como un m + 1-vector. Para identificar BgG")C

de funciones holomorfas en Q,,, pruebo que f(z) = ¢(a(z)) € B¢ considerado como una
funciéon ¢ sobre @, es un elemento del espacio de funciones polinomiales en Q,, Asi que el
espacio BSLG”)C, n = 4, 8 se identifica con el espacio &, de funciones holomorfas en @,,, m=3,5

respectivamente. Ver Cap. Sec. .

En el lado real muestro que funciones en L?(R",du)%" se pueden escribir como ¢(u) =
d(x(u)) con ¢(x) una funcién en R™ y that el espacio “primero cuantizar y luego reducir”

L*(R™, du)Gn se identifica con el espacio L? (]Rm, C—*”da:) con Cy, una constante real. Ver Cap.

|z|
Sec. .

La descripciéon gemétrica de Bgm es como sigue. El mapa de emparejamiento entre las
polarizaciones V' y P da una transformada de Segal-Bargmann B,, : L?(R", du) — B,. El
nucleo integral A, (u,z) of B, es equivariante con respecto a las acciones de G,, en R™ y
C™. Ver lemas |§|, La propiedad equivariante de A, (u,z) es debido a que considero una
complexificacion particular de T*R"™ para que la acciéon de G, preserve la la polarizaciéon holo-
morfa de T*R" 22 C". Pruebo que la restriccién de B, a L*(R",du)®" da una transformacién
unitaria By, : L*(R", du)®» — BSn. Ver proposiciones Permitame recordar que
funciones f € BS™ también son invariantes bajo la accién de (G, )c en C™. Escribo By, es una
forma G,-invariante con el fin de mostrar que By, es en realidad un mapa de L*(R™, du)G"

a BgG")C. Ver teoremas De la identificacién de L?(R™, du)%" con L2 (Rm C—mdaj) y de

*

con un espacio

B,(LG")‘C con &y, el mapa By, se puede considerar como una transformada de Segal-Bargmann
B,, : L? (Rm C—mdac) — &,,. Ver corolarios

e
El algebra de Lie so(m + 1) del grupo ortogonal SO(m + 1,R) juega un role importante
en la construcciéon de una transformada de Segal-Bargmann para esferas S™. Puedo realizar

una representacion del algebra de Lie so(m -+ 1) en ambos espacios L? (Rm, %Td:c) y Em. Para
la dimension m = 3 los operaores que generan la representacién de so(4) se identifican con
la restriccion de las componentes de los operadores de momento-angular y Runge-Lenz en el

eigenespacio de energfa E = —2 del 4tomo de hidrégeno. Ver proposicién [39] Esta construcién
g g 3 g

se basa en entrelazar las representaciones de so(m+1) in Vy C L2(S™, dQgm), L* (Rm C—’”da:) y

]
En. Larepresentacién so(m-+1) en V, C L2(S™, ddgm) se lleva a la representacién de so(m+1)
en los eigenespaces Fy of K, = %|x| (—h2ARm + 1) en L? (Rm, C—mdfn) a traves del mapa de

||
Fock Uy . Este hecho se comenta en [10], pero aqui lo pruebo con mis propios célculos para las
dimensiones particulares m = 3,5. Ver proposiciones 42y {4l Luego considero la composicién
de B, con el mapa Uy ,,,. Es decir, B,,0U;, : Vi C L2(S™, dQgm) — Wy C &, el cual entrelaza
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las representaciones de so(m+1) en los espacios correspondientes. La transformacién 9B,,0 Uy,
se identifica con la transformacién Bgm ¢ usando el lema de Schur. Es decir, B,,0Uy,, = Bgm ¢
en V;. Ya que la transformada de Segal-Bargmann Bgm se puede definir como la extensién lineal
de Bgm ¢, entonces la igualdad 8, o U, = Bgm ¢ indica que Bgm se puede considerar como la
extension lineal de los mapas 95, o Uy, y que Bgm se puede entender como la composicién de
B,, con el mapa de Fock Uy ,,. De esta manera puedo dar la descripcién geométrica de Bgm
para las dimensiones m = 3, 5.

El enfoque discutido arriba para obtener el espacio &,, se basa en primero cuantizar C"
y luego reducir por G,, lo cual equivale a fijarse en el conjunto de secciones holomorfas G,,-
invariantes. Alternativamente, puedo considerar primero la Reducién Simpléctica de C™ por
G, v luego cuantizar la variedad Kahler J,(0)/Gyn = Q. Esto nos produce un espacio de
Hilbert 7' en Q el cual no es el espacio &,.

Se sabe que los procesos “primero cuantizar y luego reducir” y “primero reducir y luego
cuantizar” no conmutan en general. Es decir, hay un mapa de Guillemin-Sternberg (GS) (con y
sin half-forms) entre el espacio de secciones holomorfas G-invariantes en la variedad no reducida
y secciones holomorfas en la variedad reducida, pero el mapa GS no es unitario con respecto
al producto interno de los espacios de Hilbert correspondientes. Ver [18] para los detalles.
La segunda contribucién principal de la tesis esta relacionada con este punto. Estudio ambos
procesos descritos arriba y construyo un mapa GS. Esto es, primero defino un mapa GS A,, sin
half-forms entre las secciones holomorfas G,-invariantes en C" y secciones holomorfas en Qum,
luego extiendo el mapa A, a un mapa GS S, incluyendo half-forms. Aunque los mapas A, y
Sy, se definen siguiendo las ideas del caso de variedades compactas de Kéhler en [18], los mapas
A, and S, no se han estudiado antes ya que estos mapas se definen sobre variedades de Kéhler
no compactas. Sin embargo, los mapas A,,, S, tienen las mismas propiedades asintéticas como
en el caso compacto. Muestro que una funcién relacionada con el volumen de la G,-orbita en
J31(0) es la razén para que el mapa A, no llegue a ser unitario en el limite 4 — 0. A diferencia
del caso sin half-forms, el mapa S,, llega a ser unitario en el limite semicldsico. Ver Cap. (3]
Sec. ({)). Permitanme remarcar que la inclusién de half-forms es el ingrediente clave para que
el mapa S, llegue a ser unitario.

Termino la introduccién con dos comentarios. (i) En la referencia [29] se introduce un
espacio de Hilbert de funciones holomorfas en @3, pero la medida y el nicleo reproductor de tal
espacio son diferentes a los correspondientes en &. (ii) En [16] se considera una transformacién
unitaria de L?(S™,df0gm) a un espacio de funciones holomorfas en una cuddrica no nula Sc.
Déjenme comentar que Sc se puede considerarse como otra estructura compleja de TTS™.
Ademas, esta cuddrica no-nula juega un papel central en ese caso, asi que el enfoque en [16]
es diferente al mio.

Para conveniencia de los lectores, explico cémo esta organizado este trabajo.

El primer capitulo contiene aspectos de Mecédnica Clasica y Cuantica. En el lado clasico tres
sistemas son relevantes en este trabajo, el flujo geodésico en T*S™, el problema de Kepler en
T*(R™ —{0}) vy el oscilador arménico en T*R™. Reviso brevemente la formulacién Hamiltonia
de la Mecdnica Clasica en general y luego doy la formulacion Hamiltoniana de estos sistemas.
También describo las regularizaciones de Moser y Kustaanheimo-Stiefel del problema de Kepler.

Del lado cudntico doy una breve exposicién de la representacién de Schrédinger en L2(R™, du).
También doy una descripcién breve de los espacios B,, en C" y &, en Q;,, asi como de las trans-
formaciones unitarias Brrn y Bgm.

El segundo capitulo contiene mas tépicos de Mecanica Clasica y Cuantica. La Reduccién
Simpléctica asi como la Cuantizaciéon Geométrica de T*R™ = C™ se llevan a cabo. Al final
del capitulo considero la Reduccién Cuéantica. Esto es, determino las secciones polarizadas
G,-invariantes para ambos la polarizacién vertical y holomorfa.
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El tercer capitulo contiene los cdlculos para construir los mapas GS con y sin half-forms,
expresar la norma al cuadrado de una seccién holomorfa G,-invariante como una integral en

el cociente J;,1(0)/Gp = Q. e identificar el espacio B con &,

En el capitulo cuarto expongo con cierto detalle el emparejamiento entre las secciones polar-
izadas con respecto a las polarizaciones V' y P. La transformacién unitaria B,, : L?(R", du) —
B, se realiza como el mapa de emparejamiento entre estas secciones polarizadas. Adem4s,
obtengo la transformada de Segal-Bargmann 9B, : L? <Rm, %dm) — &n a partir de esta
By, : L*(R", du) — B, a traves del proceso “primero cuantizar y luego reducir”.

El capitulo quinto contiene los calculos que involucran la construccion de la transformacion
unitaria B, o Uy, y la identificacién de B, o Uy, con Bgm .

Adicionalmente, incluyo dos apéndices. El apéndice A contiene la construccién de los mapas
P(n,m)(2), ¥ permitanme comentar que mi enfoque es diferente de los dados en [27, [41]. La

cuantizacién geométrica de la cuddrica nula @, se expone en el apéndice B.



Chapter 1

Classical and Quantum
Mechanics

This chapter is devoted to presenting previous results whose set-up involves aspects of Classical
and Quantum Mechanics. 1 give a brief exposition of the Hamiltonian formulation of Classical
Mechanics on a symplectic manifold. The classical systems given by the harmonic oscillator on
T*R"™, the Kepler problem on T*R™ and the geodesic flow on T*S5™ are relevant for this work,
so I give a short exposition of the Hamiltonian formulation of these systems.

Moreover, I give a brief exposition of the Moser regularization for the Kepler problem.
Namely, when the geodesic flow and the Kepler problem are restricted to a fixed energy hyper-
surface, the Hamilton equations of the geodesic flow can be carried into the Hamilton equations
of the Kepler problem after a time reparametrization via a canonical transformation which is
called the Moser map.

On the quantum side I describe two representations of the harmonic oscillator, which are the
Schrédinger representation in the Hilbert space L?(R™, du) and the Segal-Bargmann represen-
tation in a Hilbert space B,, of holomorphic functions on C™. In addition, I describe the unitary
transformation Bgn : L?(R", du) — B,, which intertwines the representations of Schrédinger
and Segal-Bargmann. The operator Bgrn is the so-called Segal-Bargmann Transform (SBT).

On the other hand, it is interesting to consider the quantum counterpart of the relationship
between the geodesic flow and the Hamiltonian flow of the Kepler problem. Namely, it might be
constructed an SBT for space L?(S™, df2sm) into a Hilbert space of holomorphic functions, so
that a holomorphic representation of the Kepler problem could be realized. Regarding the last
point, the cotangent bundle 7%S5™ minus its zero section is endowed with a complex structure
by identifying it with the null quadric Qu, = Qum — {0}, see equation 1) I then describe a
Hilbert space &,, of holomorphic functions on @, which was introduced in [5]. I describe the
SBT Bgm : L?(S™,d2sm) — & at the end of the chapter. The unitary transformation Bgm
was introduced in [11] in a setting of coherent states and semiclassical analysis on S™.

1. Hamiltonian Formulation of Classical Mechanics

The main ingredient in the Hamiltonian description of Classical Mechanics is a symplectic
manifold which is a pair (M,w), where M is a 2m-dimensional manifold and w (symplectic
form) is a closed non-degenerate two-form on M. The Darboux theorem indicates that there
are local coordinates (canonical coordinates) (x,y) = (1,22, ., Tm,Y1,Y2, -, Ym) o0 M
such that w can be written as w = dy A dz = Y ;" dy; A dx;. See [1] for details. When
M = T*Q is the cotangent bundle of an m-dimensional manifold @, the points x € R are

1
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local coordinates on ), and the points y € R™ are the corresponding local coordinates for T/Q
with ¢ the associated point to z € R™ on ). The coordinates x,y € R™ are called the position
and generalized momentum.

The set of smooth real-valued functions on M is denoted by F(M). The elements of F (M)

will be called physical observables. Given f € F(M), I can associate to f a vector field X
which is determined by the symplectic form w = dy A dx as follows

(1) tx,;w(-) = df(-) in local coordinates Xy = ; <(§)y];8axk - gﬁaczk)

A curve v in M is a map 7 : (a,b) C R — M which can be written in local coordinates

(z,y) € R*™ as y(t) = (x(t),y(t)). The integral curves of X in are determined by the

following differential equations

o) do _0f dy__Of
dt Oy’ dt Ooxy,’

The equations in are called the Hamilton equations, and the vector field X in is called

the Hamiltonian vector field associated to f.

k=1,...,m.

Consider a classical system with phase space the symplectic manifold M = T*Q. The
function H € F(T*Q) given by

_ P
2m

(3) H:T'Q — R, H(x,y) + V(x)

2
is called the energy (Hamiltonian) function of the classical system. The term % is the
kinetic energy, where m is the mass of the system. The function V' : @ — R is the potential

energy. The Hamilton equations of H(x,y) in are given by
" do. _OH dn __OH

dt 8yk ’ dt ox k
The solution of the equations in determines the time evolution of the system.

Definition 1. The Poisson bracket of f,g € F(M) is an element in F(M) that is denoted
by {f,g}. The function {f, g} is determined by the symplectic form w and can be written in
local coordinates as follows

"~ 0f dg  Of Og

) Lhghom) = (X Xp)(m) = 3 (Bor B~ Bye g ) ) with m=(z.y) € M.

The Poisson bracket has the following properties
Proposition 1. The following equalities hold for smooth functions f,g,h on M.
(i) {f,g+ch} ={f, g} +c{f h} forallceR
(i) {f.9} = {9, f}
(iii) {f,gh} = {f, gth + g{f, h}
(i) {{f, 9}, h} +{{h, f}, 9} +{{g,n}, f} = 0.

The following elementary result will provide a helpful analogy to the canonical commutation
relations (CCR) in Quantum Mechanics.

Proposition 2. The position and momentum coordinates satisfy the following Poisson bracket
relations:

{zj,z}= 0
{ijyk} = 0
(6) {zju6} = g -
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Let f be a function in F(M). The time evolution of f is determined as follows.

Proposition 3. Consider v(t) = (z(t),y(t)) a solution of the Hamilton equations in ({]), and
let f be a function in F(M). The time evolution of f with respect to H is given by

d
(7) 5 @), y(0) = {f, H}(z(t),y(t)
The proposition |3]is written in a more concrete form as

i
a_{f’H})

where it is understood that the time derivative is calculated along the solutions of the Hamilton
equations for H.

Proof. Equation is a consequence of the chain rule and Hamilton equations in . I have

<6fda:k deyk):i<8fBH of 8H>

d m
@) yt) =) orr dt T ou dt

k=1

={/, H} @) we) -
O

Note that Proposition |3 includes the Hamilton equations as a special case by choosing
f(z,y) = xp and f(z,y) = yk. A function f € F(M) that satisfies {f, H} = 0 is called a
conserved quantity. In particular the Hamiltonian H itself is a conserved quantity.

1.1. The Kepler Problem and The Harmonic Oscillator. Consider the physical system
formed by the sun and a planet, which interact through a force whose magnitude varies as the
inverse of the square of the distance between them. Since the sun is much more massive than
any of the planets, then the position of the sun can be considered fixed at the origin of our
coordinate system. The sun exerts a force on the planet given by

- x
8 F=—-k— zeR™-{0}.
(3) o 0}
The vector x in denotes the position of the planet. The constant k is equal to k = GmM,
where m is the mass of the planet, M is the mass of the sun, and G is the universal gravitational
constant. The force F' in can be written as F' = —VV, where the potential energy V is
given by

k
x
The Hamiltonian function of this system is given by
1 9 k
10 H = — - —.
(10) (z,y) = 5 -1yl z]

The m-dimensional Kepler problem is a classical system with phase space (T *R™—{0}),w=
dy N\ dw) and Hamiltonian function H given in |D The Hamilton equations of the Kepler

problem in dimension m are given by

dxy, dyy Tk
11 — = — =—k—=, k=1,... .
( ) dt yk Y dt |$’3 ) 9 7m

For dimension m = 3 the Kepler problem has seven conserved quantities which are the
Hamiltonian function H, the angular momentum J and the Runge-Lenz vector A. The func-
tions J and A are given by

- N 1 - X
12 J=xy, A= —yxJ——.
(12) Xy p—e 2]
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The functions ff, J and H are not independent. It is not difficult to see that Aand J satisfy
the following equations
2| J]?

13 A.-J=0 and |A2=1
(13) and |A] +

E,

where ¥ = H is the energy of the system. Moreover, the conserved quantities H, J and A can
be used to study the trajectories of the Kepler problem. See [17, Sect. 2.6] for details.

The harmonic oscillator is another relevant physical system for this work. Let me first
describe the one-dimensional harmonic oscillator. This system consists of a particle of mass
M tied to a spring of constant x. As the particle moves from its equilibrium position, it
feels a spring restoring force F' = —ku proportional to the displacement u € R. The force F
can be written as F(u) = —%—‘u/, where the potential energy V' is given by V(u) = /@%. The
Hamiltonian function of the one-dimensional harmonic oscillator is given by

1
H(u,v) = mv2+gu2, (u,v) € T*R.

The n-dimensional isotropic harmonic oscillator is a system consisting of n one-dimensional
harmonic oscillators with phase space (T*R",w = dv A du), and the Hamiltonian function is
given by

1
(14) H(u,v) = WMQ + g|ul2, (u,v) € T*R".
The Hamilton equations of H(u,v) in are given by
duy, 1 dvy,

—_ —_— = — k' = 1 P .

dt M Uk, dt Rug, ) y

1.2. The Geodesic Flow on the m-sphere and The Kepler Problem. Consider the
symplectic manifold T*R™*! = R™*+! x R™*! with coordinates (q,p) € R™! x R™*+! and
symplectic form w = dp A dq. The cotangent bundle of the m-sphere S™ is denoted by T™S™.
The symplectic manifold (7*S™, @) is defined as follows

(15) T58™ = {(q,p) e R™M x R™|¢| =1 (¢,p) = 0} and W = dp A dq|p=gm .

Consider the function ' € F (T*R™*1) given by F(q,p) = 3|¢|?|p|*>. The Hamiltonian vector
field Xg of F is given by

m+1
0

0
16 Xp =Y lalpi5——IpPg-—-
(16) F j:1!| iag, P ig,,

The integral curves of Xp in are determined by the following differential equations

dg; 2 dp; 2 ,
= = A =1,... 1.
dS ’ ‘ p]7 ClS |p‘ qja J ’ am+

Let v(s) = (¢q(s),p(s)) be an integral curve of Xp. A straightforward calculation shows that
the following equalities hold

(17)

(18) d%lql2 = 2|q| (g(s) - p(s)) , d% (q(s)-p(s)) =0.

Equations in indicate that the integral curves of X preserve the cotangent bundle 7*S5™.
That is, if the initial condition (go,pp) belongs to T*S™, then the integral curves ~y(s) =

(q(s),p(s)) of Xp will remain on 7*S™ for all s in the domain of ~(s). Moreover, if the
equations in are restricted to T*S5™, then they can be written as follows

dgj _ ~ dp;

1 — .
(19) ds P T4s

:_’p|2Qj> j=1....m+1.
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Let v(s) = (q(s),p(s)) be a solution of equations in (L9). A straightforward calculation shows
that the curve g(s) € S™ satisfies the following differential equation

d*q |dq|?
Sl ~0.
ds? + ds a(s)

A geodesic on S™ is a curve g(s) € S™ that satisfies equation (20). The geodesic flow is the
set of integral curves of the equations in ((19)).

(20)

The equations of the geodesic flow in can be carried into the Hamilton equations of the
Kepler problem in on a fixed hypersurface of negative energy through the stereographic
projection. This relationship between the geodesic flow and the Kepler problem is known
as the Moser regularization of the Kepler problem. The Moser regularization includes the
collision-orbits, which are defined when J=0. In the next paragraphs I briefly expose the
Moser regularization.

The stereographic projection is a diffecomorphism from S™ — {north pole} = S™ — {N} to
R™ and is written in coordinates as follows
4dk

Sm"—{N}>5q—zeR", zp=—"—, k=1,...,m.
1_Qm+1
The inverse of the stereographic projection is given by
2z z?—1
R">x—qeS™—{N}, =—-"F, ==, k=1,....,m.
z q {N}, @ Tr g2 1= oy m

The stereographic projection can be lifted to a symplectomorphism between the corresponding
cotangent spaces by requiring y - dv = p - dgq. This symplectomorphism can be written in
coordinates as follows

(21) (8™ = {N}) > (¢,p) — (x,y) € T"R™,
_ di

1= gmn
The inverse of the map in (21)) is given by

Tk o Yk =Pkl = Pmt1) +F Pmvrae, kE=1,...,m.

(22) T*R™ > (z,y) — (q,p) € T*(S™ — {N}),
2, 2?2 —1 1, 5
Qk:m, Qm+1:x27+17 pk:§($ +1)yk_(x'y)xk’v Pm+1=2Y.

Definition 2. The Moser map @y : T*R™ — T*(S™ — {N}) is a symplectomorphism which
is defined as the composition of the map (x,y) — (y, —x) (Geometric Fourier transform,) with
the map in (@ The map Py is written in coordinates as follows

2yy, y* -1 1
2+ 1 m+1 = 21 Pk = =5y + Dag + @9y, Pt = —(2 - y),

(23) gk = D)

k=1,....,m.

The restriction of F(q,p) = 5|p|*|q|*> to T*S™ is denoted by F(q,p) = |p|?. The function
F(q,p) = |p|? is carried into the function F(z,y) = Lz2(Jy|* + 1) on T*R™ through the
map ®,,. The equations in are carried into the Hamilton equations for F(x, y). Namely,
dey _ OF dy, _ _OF
ds Oy, ds Oz
More explicitly, the Hamilton equations for F(z,y) are given by

T Pl 4 D = Ly 4 P, E=1m
Note that the time variable s of equations in is the same time variable of equations in

(19)-

(24)
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Consider the energy hypersurface F(q,p) = %Az on T* (8™ — {N}) which can be written
as F(x,y) = 322 on T*R™. Now let me define the following function

(25) G(x,y) = \/2\2F (2, y) — A\2.

A straightforward calculation shows that the following equalities hold

oG _ 1 2 OF — @

oxy, \/2/\2F(a:,y) Oy, F:%)\z oz,

oG - OF
26 _ :+)\267F = g k:]_,..., .
( ) 8yk m Iy, F:%)\z 3yk "

Note that if the function F(v,y) is restricted to F(z,y) = 22, then the function G(z,y)
satisfies G(x,y) = 0. The equalities in indicate that the Hamilton equations in can
be written as the Hamilton equations for G(z,y) restricted to the hypersurface G(x,y) = 0.
Namely,

oy _ 0G
ds Oy G0

The function G(z,y) is given by G(z,y) = AK(z,y) — A* with K = J|z|(|y|> +1). A short
calculation shows that

oG oG oK
— ) — =A— .
oxy, K=\ Ok | g—o WYk | re=x

Let me denote by 7 the time evolution of the Hamilton equations for K (xz,y). Equality
indicates that if 7 is written as 7 = As, then the solution of the Hamilton equations for K (z,y)

corresponds to the solution of the Hamilton equations for G(z,y). So let me write the Hamilton
equations of the geodesic flow as the Hamilton equations for the function K(z,y)

d oK d 0K
(29) 4Te _ 98 Yk _ _
dr 8yk K=\

I write the Hamilton equations of the geodesic flow as the Hamilton equations for K(x,y)
because the canonical quantization of K (z,y) is an operator that plays an important role in

the construction of a Segal-Bargmann transform for spheres S™, see chapter [5| for details.

dyr _ _0G

(27)

’ _a7
G=0 ds oz

_ L\ OK

28 = A—
(28) =

, I
K=\ dr axk

The Hamilton equations for K (x,y) in (29) can be carried into the Hamilton equations of
the Kepler problem as follows. Let me introduce a new time parameter ¢ via the following
equation

(30) dr = (N|z|) " tdt
The equations in (29)) can be written regarding the new time ¢ as follows
dxy, 2 y-19K dyp, 2 -19K
31 — = (A — — = —(A —.
(31) = RDTE = et
Consider the following function
_ 1

(32) He,y) = OPal) ™ (K (29) = V) = 55
A straightforward calculation shows that

OH 10K OH 10K
(3)  o—| =T o =0T

T H__zT2 61’k K=\ 6yk H__W 0yk K=\

It follows from equality that equations in can be written in terms of the function
H(z,y) as follows

dry, OH dyr. ~ OH

dt N 8yk H:—Q/\LQ7 dt N axk H=—-1 "~

2)2

(34)
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The equations in are the Hamilton equations of the Kepler problem. Let me first show that
the function H(z,y) can be identified with the Hamiltonian function of the Kepler problem.
Taking K (z,y) = 3|z|(Jy|> + 1) a short calculation shows that

(35) e =5 (%) - 5

Let me consider the following transformation X = Az,Y = {. The function H(z,y) in terms
of the variable X,Y can be written as follows

1 1
36 H(X,Y)=-|Y]? - —.
(36) () =3P - 5
The function H(X,Y) is the Hamiltonian function of the Kepler problem. A short calculation
shows that dY A dX = dy A dx, so the equations in can be written as the Hamilton
equations for the function H(X,Y) on the energy hypersurface H = —51;. Namely

— b
dX, OH dYy oOH

dt oY’ dt 00X,
More explicitly, the above equations are given by
dXp dYy, X
37 — = —=——=, k=1,...,n.

The equations in are the Hamiltonian equations of the Kepler problem. Therefore the
equations of the geodesic flow in on the energy hypersurface F' = %/\2 can be carried into
the Hamilton equations of the Kepler problem on the energy hypersurface H = —ﬁ via the
Moser map after a time reparametrization.

1.3. Kustaanheimo-Stiefel Transformation. There is a duality between the m-dimensional
Kepler problem and the n-dimensional harmonic oscillator with fixed energy. This duality oc-
curs for the particular dimensions (n,m) = (8,5), (4, 3), (2,2). From the mathematical point of
view the roots of this duality come from the Hopf fibrations between spheres. Let me explain
the physical case (4, 3). The other two cases are similar. Consider the following transformation

(38)

x1 us  Ug ui U2 (51
X9 Uqg —U —Uug (31 (5
I :R*>u — 2 € R3, 2 = Ay(u)u, where = 3
I3 Ul u9 —us —uU4 us
0 Uz —UuUl Uy —us U4
As(u)

A straightforward calculation shows that the rows and columns of A4(u) are orthogonal among
themselves. It follows from this orthogonal property that Ay (u)T‘A4(u) = |u|?T which implies
|z| = |u|?. Let me consider the action of S* = U(1) = SO(2) on R* = R* — {0} given by

. ) u u ) cost) —sinf
dp, :RY — RY Op, (u) = (Re <u;> , Ry <ui> ) with ffo = <sin0 cos @ ) '

A calculation shows that the map II; is invariant under the action ®p,. That is, I} (®g, (u)) =
I;(u). Moreover, equality |z| = |u|? implies that when u € S3, z € R3 is an element in S2.
The map II;|gs is the Hopf map S3 — S? with fiber S1.

The action of U(1) on R* can be lifted to an action on T*R* which is given by

Bp, : T*(RY—{0}) — T*(R*—{0}), ®, (u,v) = (Rg <Z;> Ry (Zj) Ry (Z;) Ry <zz> )
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The map II; can be extended to a map between the cotangent spaces. Let me consider (u,v) €
T*R* which satisfy the equation Jy(u,v) = ujve — ugvy + ugvy — uqvs = 0 and define the
following map

- . . 1 1
. w14 *Tp 3 _ —
(39) II; : T"R 0 5 (u,v) — (x,y) € T*R°, x = §A4(u)u, y = —’u|2A4(u)v,

where the matrix A4(u) is given in (38). The map II; turns out to be a symplectomorphism
between T*R* and T*R3. Namely, the following equality holds

(40) 1T (dy A dzx) = o5(dv A du),

where 19 : J; 1(0) — T *R* denotes the inclusion map.
Let me compose the function H(z,y) in with the map II;. Namely,

Fi(1,0) = H(a().y(u0) = oo (z;w - i) |

The Hamilton equations for H (u,v) are given by

duiafi dv OH

dt— ov’ dt du’

More explicitly, the Hamilton equations for H (u,v) can be written as follows

du 1 dv 2 [(|v]? 2

— = == —=— |5 —=)u

dt  N|ul2’ dt  |ul* \ 222 A
The Hamilton equations for H (u,v) on the energy surface H (u,v) = —ﬁ can be written as
follows

du 1 dv 1

41 du_ - o1
(41) at A dt . A[u”

Let me reparameterize the time ¢ as d¢t = A?|z|dt’ with |z| = 3|u[>. The Hamilton equations in
can be written regarding the new time ¢’ as follows
du 1 dv 1

42 a_ w_ 1,

(42) a — 20 a2

The equations in correspond to the Hamilton equations for H(u,v) = 1 (Jv[? + |ul?).
Therefore the Hamilton equations of the Kepler problem in on the energy surface H(x,y) =
—ﬁ can be carried into the Hamilton equations of a harmonic oscillator in on the energy
surface H (u,v) = X via the map II; after a time reparametrization. In this sense the three-

dimensional Kepler problem is dual to the four-dimensional harmonic oscillator.

2. From Classical Mechanics to Quantum Mechanics

Consider a mechanical system whose phase space is the symplectic manifold (T*R", w = dv A du).
The classical states are identified with points (v,u) € T*R", and functions f : T*R"™ — R are
called observables. The transition from a classical to a quantum system requires considering
a Hilbert space H. The quantum states are elements of H, and the observables are operators
from H to H. A specific choice of H is called a representation. For example, the Schrédinger
representation is realized in the Hilbert space H = L2(R",du). In this representation the
position and momentum operators are given by

(43)

~ e . N 0 .
uj — Uj = u; (multiplication by the coordinate), vy — U = —th L k=1,...,n.
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The coordinates (v,u) € T*R"™ satisfy the Poisson bracket relations indicated in equation (@
The operators uj, vy with j,k = 1,...,n analogously satisfy the following CCR,

(44) [ﬂj, ﬁk] = O, [ﬁ],@\k] = O, [iL\j, 6]4] = zhéjkL

where T is the identity operator. The CCR can be equivalently written as follows

(45) @y a] =0, [alal] =0, [a,af] = o,

where aj,aL are the annihilation and creation operators which are given by
1 1
46 G5 = —=(U +10;) @ = —= (U — ) -
(46) J \/5( J J) k ﬂ( k k)
Consider the Hamiltonian function H : T*R"® — R given by H(u,v) = $v* + V(u). In the
Schrodinger representation the following operator is assigned to the function H (u,v)
~ h2 noH2

47 H=——Arm+V(u ith Agn = —,
(47) 5 Arn + V(W) w R ; o2
where V' (u) is the multiplication operator by the function V' (u).

Let me specify the relevant quantum systems for this work. The n-dimensional quantum
isotropic harmonic oscillator whose Hamiltonian operator is given by H = %( — B2 Agn + u? ),
and the quantum states are elements of the Hilbert space % = L?(R", du). The m-dimensional

quantum Kepler problem whose Hamiltonian operator is given by H = —%ARm — ﬁ with
Agm = > 88723’ and the quantum estates are elements of the Hilbert space L?(R™, dz).

3. The Segal-Bargmann Space

Fock in (1928) proposed an alternative solution to the equations in . The operators Zij,/d};
could be written as follows
e e . ~ 0

(48) a}; = zj, (multiplication by the coordinate), a; = ha—zj .

In [4] V. Bargmann introduced a representation space where the action of the operators in
is well-defined. He considered a space B,, of holomorphic functions on C™ with an inner product
such that the operators aj,az in are adjoint to each other. He proposed the inner product
to be like the usual inner product on R?"(regarding C" as R?") but with a weight function.
The requirement that EL is the adjoint operator of @; implies that the weight function must be

Gaussian. In this way he found that the inner product in B, is given by
1 1

(49) F.9€Bu, (f.9) = | F(2)g9(2)dvhi(2) with dvfi(z) = —— e 1" dzdz,
cn (mh)™

where dzdZ is the Lesbegue measure on C" = R??,

The Segal-Bargmann space B, enjoys the property of having a reproducing kernel K, (z, w) =
e%Z@, where z - w = Z?Zl zjw; denotes the usual inner product in C". Namely, for all f € B,
the following equality holds

f(z)=(f(), Kn(-,2)) = ; F(w) K (2, w)dv)y(w) .
Moreover, under the requirement that the solution of CCR in should be intertwined with

the one in , V. Bargmann determined a unitary transformation Bgn : L*(R", du) — B,
which is given by

(50)  (Bred) (2) = /R An(u,2)p(u)du with Ay (u,2) = We—z¥a<z2+u2—2ﬁm .
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The unitary transformation Bgr in is known as the Segal-Bargmann Transform (SBT).

The operators in are intertwined with the operators in . Namely,

aj + Zi)\j aj — Z@\j
V2 V2

Let me regard C" as the phase space of a particle moving in R” and define for each z € C" a
state in L?(R™, du) as follows

> 1.9 B BRn<

6Zj ) Z] R

(51) Ban (

(52) \I/z,ﬁ(u) = An(“a Z) :

The set of functions & = {\I/ 2 ‘z € (C”} is known as a system of coherent states for the quantum

n-dimensional harmonic oscillator H = py aLak. The system S has the following properties.
(i) S provides a resolution of the identity for L?(R", dx), that is, for f € L?*(R",du), f =
limg , j“z|§o_<§[]z’ﬁ, fIrn ¥, d"vp(2). (ii) Concentration in both configuration and momentum
space for /i small. (iii) Temporal stability (the coherent states follow the Hamiltonian flow of the
classical harmonic oscillator). (iv) The coherent states are eigenfunctions of the annihilation
operator ay and satisfy the Heisenberg uncertainty inequality in a sharp way. (v) The SBT
Brr of U, 1, is equal to the reproducing kernel Brn V. j(w) = Ky (w, 2).

4. The Bargmann-Todorov Space

Let me assume that the configuration space of a classical system is a manifold Q). The quantum
states are elements of the Hilbert space L?(Q, du), where du is a volume form on ). The SBT
for L?(R", du) mentioned above suggests considering a possible SBT for L?(Q,du). 1 will
consider the case Q = S™ in this work. This case is important not only due to mathematical
reasons but also because it is related to the hydrogen atom in R™. See [3, 10] for details. I
will focus on the dimensions m = 3, 5.

For a positive integer number m > 2, the null quadric @, is defined as follows
(53) Qm={aeC"Ma’>=0af+...+0a2, =0}.

From now on I denote Q,, = Qy — {0}. The vector a € C™*! can be decomposed in terms
of its real and imaginary parts a = R(a) +23(a). Note that a € C™*! belongs to @, if and
only if R(a) and () satisfy the equalities R(a) - S(a) = 0 and |R()| = [S ().

Let me denote by T+S™ the cotangent bundle of S™ minus the zero section, which is
defined as follows

(54) TTS™ = {(q,p) e R™ x R™||g| =1, (q,p) =0, p#0} and @ = dp A dg|r+gm .

On the other hand, the symplectic manifold T7S™ can be identified with the null quadric Q,,
through the following map

(55) O TTS™ — Qmy,  om(q,p) = p+1lplg.

The map o, endows the symplectic manifold 7'+ S™ with a complex structure. Namely, it is not
difficult to see that & can be written in complex coordinates a = p + 1|p|q as & = —11/200|a,

o~

see [33] for details. So the symplectic manifold (T*Sm, w=dpA dq‘ T+ Sm) is identified as a
Kahler manifold with (Qm, w= —zﬁé&]a!) through the map o,.

For ¢/ € N* with N* the set of non-negative integer numbers, let me denote by W, the
space of all homogeneous polynomials of degree £ on @;,. Consider the set P = ©72 W, of all
polynomial functions on the null quadric @,,. In [5] V. Bargmann and I. Todorov considered
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the following inner product on the set P
(56) (F9)= [ f@a@dna(e).  VigeP.
with dmpi(a) = F(laP)5@2)d" D (a), (1) = (2)" [(W)] Kos(2V4), t = |af?,

2
and a € C" M |af? = | >+ +|ampa > o =+ +a2, 1, 6(a?) denotes the Dirac delta
distribution at the null quadric Q,, (see [13] for definition of §(a?)), and d?™+1)(a) denotes
the Lebesgue measure on C™*1,

The inner product in was obtained by requiring the adjoint of the multiplication
operator &j = «; to have the following expression

m+1 m+1 2
~ -1 0 0 0
D;=|—— A with A = .
(57) J ( 2 + P k@ak> Oaj 2% W Z Oay,

The completion of P with respect to the inner product in is a Hilbert space which is called
the Bargmann-Todorov space Ep,.

The operator l/jj,j =1,...,m+ 1 is called an annihilation operator. The action of ﬁj on
a homogeneous polynomial of degree ¢ gives a homogeneous polynomial of degree £ — 1. The
operators Q;j, ﬁk and their commutators generate a unitary representation of the Lie algebra
s0(m + 1,2) of the conformal group SO(m + 1,2). These commutation relations are given by

(58) [ﬁk,@g} = Xoy + Xpj, [Xu,@n = oDj — 0nDp, jik,A = 1, m + L
The operators X}; are the anti-Hermitian generators of rotations of SO(m+1,R) and are given
by

0 0

59 X = v —
( ) kj ajaak akaaj

The operator X is the Hermitian generator that represents rotations in the plane (m+2, m+3)
and is given by

m+1

(60) X:m—i—l Zaja

Moreover, the operator X plays the role of the physical dilatation generator in the a-space.

In [11] E. Diaz-Ortiz and C. Villegas-Blas were interested in semiclassical aspects of the
space &,. They rescaled the measure dmy,+1(«) in (56| by the factor fr’ where h is the Plank

constant. The rescaled measure is denoted by dmZ@ _H(oz) and is given by

1 |04|2 2\ 72(m+1)
(61) () = s (‘g ) SEIE™H(a).
Now the operator lA?j is given by
m—+1 m+1 2
-1 0 0 0
62 D =on? = —R2a;A with A= .
(62) ( 2 + k@ak> Oaj A W Z Oay,

The Bargmann-Todorov space Sm also enjoys the property of having a reproducing Kernel
I'm = I'm(, 8). Namely, for all function f € &, the following equality holds

(63) f(oz)z(f(-),l“m(wa)):/ﬂeQ F(B)Tm(cv, B)dmy, 1(B) Vo € Qi
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where I'y, (o, 5) is given by

(64) Tm(a,3) =T <m2_ 1) <0"ﬂ>3_4m Tmes (m> .

2h2 2 h

The function I'm-3 in 1) denotes the Bessel function of the first kind of order k = mT_?’ (see
2

Secs. (8.4) and (8.5) of [2] for definitions and expressions for this function). The reproducing
kernel I'y, (o, B) can be written as an infinite sum as follows

(07 B 3 KO( EOZ — ! QB Z
(63 (09 = LT (08 To(09) = gy ()

where I‘mf(a, B) is the reproducing kernel of the space W, and for b > 0 the Pochhammer
symbol is defined by

where I' denotes the Gamma function.

For a € @y, fixed, the function I'y, (8, @) belongs to the space &,,. Let me associate to
I'm (B, @) the following probability density function

2
Tm(8,0) F (4)
- 2Ll Ty (-, )1
where F' is given in (56). The function Q, s has the semiclassical property that it concentrates

in @ € @ when i — 0. Namely, the following equality is fulfilled for any smooth function ¢
defined on @,

(66) lim Qa1 (B)3(B)3(8%)d> ™) (8) = ¢(av) .

h_)o ﬁeQTﬂ

Qun:Qm — R  with  Quu(B)

In order to evaluate the integral in , the authors in [11] wrote 5 € @y, in terms of polar
coordinates as follows

(67) B=r(0+wm) with r>0,§e ™, nesmt
and 6,7 satisfy § - = 0. They wrote the measure dm!, +1(B) in in terms of the variables
r,d,n as follows

©8) a3 = g (2) SIS drden 0)dgn 1 (1)

where dQ2gm (8), dQgm-1(n) denote the normalized surface measure on the spheres, and |S™|, |S™ !

denote the corresponding area.

On the other hand, according to [33], the Liouville volume form of 7" S™ can be written
in coordinates as follows
1

A=
202
qj

dqr Adga A+ ANdgi A Adgmit Adpy Adpy A+ Adpi A A dpmga
where d&j,d})j denote one-forms that are omitted. Let me write the volume form A as A =
A1 A A2, where the n-forms Aq, Ao are given by

1 - 1 .
gd%/\dqw\“'/\d%‘/\"'/\dqm+1, )\2:;dm/\dpz/\"'/\dpj/\"'/\dpmﬂ-
J J

According to equation (44 b) in [7], the n-form A; can be identified with the surface measure
on S™ and the n-form Ay can be identified with the surface measure on the cotangent space
TqJr S™. The vector p € T, q+ S™ can be regarded as an element of an m-dimensional vector space

(69) A\ =
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over ¢ € 8™, so it can be written as p = 1 with » > 0 and n € S™!. The Liouville volume
form of T7S™ can be written in terms of the variables r, ¢, n as follows

(70) A = dQgm (q)r™ 1 drdQgm-1(n) .
Let me write the measure dm!, () in as follows
1 2N\ —
dmy 1 (8) = Py <hz> 72 dQgm (8)r™ drdSQgm-1 ()

A

1 r2 —
= 72m+1h2(m_1)F <712> AN

Now taking 8 € @, as in @ a short calculation shows |3|/v/2 = r. Thus the measure
dml, . 1(B) can be written as

(71)

1 (1\"T  am 1 )
i) = g (3) Oy AT QKM(fwr)e@w)

2

Cm

o 1 ?“Tm m—2 @ ~
- thg,m?!ﬁ\ B2 K s ( - \5\) (8),

where €5(3) = X is the Liouville volume form of T+ S™ given in and Cp, a constant.

For dimension m = 3 the measure dm/}(j3) is given by

(72)
anl6) = 5 (3) wloe (fw) 20
c

= ClBlR (fw) o (5)

For dimension m = 5 the measure dm{(f3) is given by

(73
anl6) = 5 (3) O pg PR ({fw) e(5)

¢
1 V2
= Cﬁ\BFKl <h|5|> () -

Let me consider the Hilbert space L?(S™, dQ2gn) of square-integrable functions on S™. The
inner product in L?(S™, dQgn) is given by

(V1,2)gm = /Sm V1(q)h2(q) dQsm(q), 1,12 € L*(S™,dQgn).

In [11] E. Diaz- Ortiz and C. Villegas-Blas introduced an SBT for S™. This is a unitary map
Bgm : L2(8™,dQgn) — &, which is defined as follows

(74)  Bsmi(a / Ksn(q,0)(q)ds0(q), 1 € L(S™, dsn), & € Q

where the kernel Kgm is given by Kgm(q,a) = > ;2 “5“' (T'Lq)Z with a = % For ao € Qpy

fixed, the kernel Kgm(q, ) is an element in L?(S™,dQgm) .
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The space L2(S™,dQsm) is the direct sum of the spaces V; (the spherical harmonics of
degree £ on S™). That is, L?(S™, dQgm) = @72, Ve. The restriction of Bgm to V; is the SBT
Bgm g : Vi — W, which is defined as follows

(75) Bam ¥ (a) =L [ (2

Y(q) dQsm, Y(q) €Vy.

For n = 2 and A = 1, L. Thomas and S. Wassell introduced a related Bargmann type
transform B52 with range the subspace Fs of even functions in the space By. Let me de-
note by {Yz,,} with £ € N* and m = —/,...,¢ the orthogonal basis of L?(S? d{2g:) given
by the spherical harmonics Y, ,, determined as eigenfunctions of the square of the angular
momentum operator and its third component. Correspondingly, let me denote by {y.,} the
orthonormal basis of Fy with yg,,(2) = 227m257™/\ /(€ +m)! (€ —m)! and 2 = (21,2) € C2.
Then the Bargmann transform B’Sz is the linear extension of the assignment Y;,, — v¢m-

The transform B 52 can be written as an integral operator whose kernel is the sum K(q,z) =
e Ozm_ergm( )ye.m(2) with ¢ € S%2. Due to the properties of the Lie algebra of the
orthogonal group SO(3,R), see [40], the integral kernel K(q,z) is actually equal to a single
infinite sum K(q, z) = > 2, 2e'+ ( 2.2)(2) - q)z, where the map p(s ) : C? — @, is given by
p2,2)(2) = 2 (22— 2},1(23 + 2%),2212,). In [40] Villegas-Blas studied the case of the 3-sphere
5% with h = 1 and defined a Bargmann type transform Bgs in the analogous way to the
one introduced by Thomas and Wassell. Namely7 B g3 can be written as an integral operator
whose kernel is the infinite power series K(q,z) = Zz 0 e' ( P,3)(2) - )e with ¢ € S and

P4,3) 1 C* — Q3, see equatlon . The range of B g3 is a subspace in B4 which is equal to

the kernel of the operator J = 21 az + 29 822 — 23 82 — 247 6z . These two cases motivated the

authors of [11] to introduce the SBT Bgm1) as an integral operator whose integral kernel is a
power series in the function (« - ¢) with o € @y, and g € S™. The coefficients are determined
in such a way that Bgm1) is an isometry with domain L?(S™, dQ2gm). For each a € Q,, let me
define a state in L2(S™, dQgn) as follows

Pon(q) = Kgm(q, ).

The set of functions IC = {@a,h(q)}a € Qm} has analogous properties of the system S. (i)

IC provides a resolution of the identity for L?(S™, dQ0gn). That is, for all 1 € L?(S™, dQgm),
¥ (q) = lim,_,00 fEs (Y, P n)sm P (g )dmmH( «), where Fj is an increasing sequence of bounded

measurable sets on @, such that |, . Es = Q. (ii) Concentration in R(a) with a € Q,, for
h small. (iii) The system of coherent states KC is temporarily stable. Consider the Hamiltonian
operator N=hn (\/Agm — mT_l), where Agm is the Laplacian operator on S™ with spectrum
the integer numbers N*. The time evolution of the state ®, 5 with respect to the operator N is
another state ®, 5 whose dependence in ¢ is determined by the geodesic flow on Q= TTS™,
(iv) The states ®, j are eigenfunctions of an annihilation operator and satisfy the Heisenberg
uncertainty relation sharply. (v) The SBT Bgm of ®, is equal to the reproducing kernel
Bgm®q 1(8) = I't(B, ). The properties of the system IC are proved in [11], Thm. 4 and Thm.
14].

One of the main goals of this thesis is to obtain the Bargmann-Todorov spaces &, as well as
the SBT Bgm via geometric arguments in the particular dimensions m = 3,5. I do that using
Marsden-Weinstein Reduction, Geometric Quantization and Quantum Reduction. I base the
analysis on the relationship among the three classical systems mentioned above (the geodesic
flow on T*S™, the Kepler problem on T*R™ and the harmonic oscillator on T*R™, n = 8,4). I
also use the quantum counterpart of such a relationship via the Fock map and the quantization
of the Kustaanheimo-Stiefel transformation. See Section in chapter 3.



Chapter 2

Classical and Quantum
Reduction

The first section is about Symplectic Reduction, which is the geometric framework to de-
scribe the relationship between the regularizations of Moser and Kustaanheimo-Stiefel for the
particular dimensions m = 3,5. 1 will define a free action of a compact Lie group G, on
R” = R™ — {0}. This action is lifted to an action of Gy, on T*R™. Next, I consider a particular
complex sructure 7,, : T*R" — C" = C" — {0} so that the action of G, on C" is holomor-
phic. Since the action of G,, preserves the symplectic form on C", then there is a moment
map Jp : C" — g,,. Here g}, denotes the dual of the Lie algebra g, of G,. I then consider
the quotient J;,1(0)/G,, which according to [1] can be endowed with a symplectic structure, so
that the pair (3,; L0)/aG,, ZZ) is a symplectic manifold. I adapt the structural ideas of reference
[14}, 18, Sect. 2.2] in order to prove that (J,'(0)/Gn, i) can be identified as a Kéhler manifold
with (T+S’m > Qs O = —Z\@50|a|), where TTS™ denotes the cotangent bundle of S™ with
the zero section removed.

In the second section I give a brief exposition of Geometric Quantization with and without
half-forms in the setting of the symplectic (Kéhler) manifolds 7*R"™ = C". In the third section
I follow the structural ideas of reference [18, Sect. 2.3] to perform Quantum Reduction of the
action of G, on T*R"™ = C". That is, I determine the set of functions in L?(R", du) and B,
that are invariant under the action of G, on R and C" respectively.

1. Symplectic Reduction

Consider the symplectic manifold T*R™ with coordinates (u,v) € T*R", u = (uy,...,uy) and
v = (v1,...,0,). The almost complex structure J : T(T*R"™) — T(T*R™) and symplectic
form w, on T*R"™ are given by

) ) 9 B n
(76) J<%k>:%k’ J<%k):_67k’ wn:dv/\du:;dvk/\duk k=1,....n.

The set of functions and vector fields on T*R™ are denoted by F(T*R"™) and X (T*R"™) respec-
tively. The Hamiltonian vector field X of f € F(T*R") is given by

”<6f6 of 0 of 0 of 9

X = ——— ———]insh ion Xy =(-7-—2"--].
(77) f ; 90, 0w o (%j) in short notation X < 90 9u  Bu (%)
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Let me define R” = R™ — {0}. T will be particularly interested in the dimensions n = 4,8. 1
denote by G, a Lie group with G4 = U(1) and Gg = SU(2). The corresponding Lie algebra of
G, is denoted by g,, with g4 = u(1) =R and gg = su(2).

Consider a free action of U(1) on R* which is defined as follows

. R4 4 _ uy us3 _ (cosf) —sinf
(78) (I)RQ ° R — R 9 (bRe(u) - (RQ <U2) 7R0 <U4) ) 9 R9 - (Sin0 C080 ) .

The action ®p, of U(1) on R* is lifted to an action ®g, of U(1) on T*R* which is given by

- Yo ety u u v v
(79) P, : TR — T'RY, g, (u,v) = (Re <u;> , Ry (ui> » Fo (é) Ho (vi) )

where Ry is given in . A straightforward computation shows that ® R, DPreserves the sym-
plectic form wy = dv A du.

For the dimension n = 8 it will be useful to consider the action of SU(2) on R® in terms of
quaternions. The quaternion algebra H is a four-dimensional associative algebra over R. The
elements of H are spanned by 1(the identity element), 4,5, k with the following property

iZ=j72=k*>=ijk=—1.

The quaternion algebra H can be realized inside the 2 by 2 complex matrices My(C). That is,
the elements 1, 4,5, k are identified with the following matrices

()= ) () k=)

Let me assign to each u = (uy,...,...,us) € R® quaternion matrices (q1,q2) € H? = H x H,
where (g1, ¢2) are given by
(80) _furFug —u3 +uy _ fus —wug  —u7 —ug

N = us +g Ul — g ) 9= Uy —ug  uUs +ug )

Let me denote H = H — {0} and define a free action of SU(2) on RS = H x H which is given by
(81) Oy Hx H— Hx H, &g(u) = 04(q1,02) = (991,9%2)

where g € SU(2) has the following expression

(82) g = M _—>\2 ‘)\1,)\26@,‘)\1|2+|)\2|2:1 .
Ao N

Let me assign to each (u,v) € T*R® quaternions matrices (q1, g2, p1, p2) € H? x H2, where
(q1,q2) are given in and (p1,p2) are given by

vl + 1wy —v3 + 1y Us — Wg —U7 — W
v3 +wy V] — 109 U7 —wg U5 + g

The action @4 of SU(2) on RS = H x H is lifted to an action ®, of SU(2) on T*R® = H? x H?
which is given by
(84)

(I)g : H2 X H2 — H2 X H27 ég(u,v) = (i)g(QLQQaplva) = (QQLQQ%QPLQPQ) with g € SU(Q) )
where gqj,gp;j,7 = 1,2 denote the product of matrices. The action in preserves the
symplectic form wg = dv A du. See below an argument regarding this point.

A complex structure on T7*R™ is a map 7, : T*R" 5 (u,v) — z € C™ such that T*R" is
parametrized with complex coordinates. For instance, see equations in , (91) below. The
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symplectic form w,,, almost complex structure J and Riemanniann metric B are written in
complex coordinates as follows

(85)
1 1o 9 0 0 0
n=—dzZNdz= - dzZy Ndz, J|=— ) =17—, J|=—)=—1=—, B(-,:) =wn(-,J").
“ 1 =nas 1 ; h 1\ A2k <6zk> 182;c (8zk) Z@zk (o) =wn( J)
The tangent space at (u,v) € T*R" is denoted by T{, ) (T*R"), which is a 2n-dimensional real
vector space. The complexification of T{, ) (T*R") is denoted by (T(u,v) (T*R“))C, which is

a 2n-dimensional complex vector space whose elements Z € (T(u,v) (T*]R"))(C are given by the
formal linear combinations Z = X +1Y with X,Y € T, ,) (T*R"). The addition of vectors
and multiplication by a complex number are defined as follows

(X1+0) + (X2 +1Y2) = (X1+ X)) +u(Y1 +Y2)
(a4+ib)(X +1Y) = (aX —0bY)+1(bX +aY).
The space (T(y,) (T*IR"))(C can be decomposed as follows

X C X 1,0 . 0,1
(T (TR = (T (TRM) M @ (T (TR) ™Y
where the space (T(u,v) (T*R"))(l’o) is spanned by the vectors {6%1, %,...,%}, and the
space (T(W,) (T*R"))(O’l) is spanned by the vectors {%,...,%}. The cotangent space

C
(T(Z v) (T*]R”)) can be decomposed as follows
* *TN ¢ * *TD N (1,0) * KT (0,1)
(1,0)
where the space (T(’; ) (T*R”)) is spanned by the one-forms {dz1,...,dz,}, and the space

(0,1)
(T(*u ) (T*R")) is spanned by the one-forms {dz1,...,dz,}. For future use, I will consider
the following projections

(86) T ¢ Ty (TR)S — (Truwy (TRM) MY T (X) = % (X —J(X))

M+ (T (TRY)E — (T (TR) OV T (X) = (X +0I(X)) |

Let me consider a function f : T*R"™ =2 C" — C,R. The differential of f is given by
~ (of of .
daf = ——dzj + ——dz; | .
d ; <<92j Tz ZJ)

The one-form df can be written as df = 0f + 0f, where the one-forms df and Of are given by

n

Z dz], of = Z dz]

k=1

The operators 9,0 act non only on functions. These operators act also on diﬁferential forms.
For instance, the action of 0 on 9f gives a two-form 99 f, and the action of J on Jf gives a
two-form 90f. The two-forms 00 f and 0Jf are given by

n 2 n
(87) 00f = Y akéf dzp Nz, DOf = Z

k,j=1 k,j=1

dzp Ndz; .
0z k@z O
The operators 9, d can act on differential forms of degree higher than one, see [43] for details.

Under the identification of T*R™ with C" through the map 7, the pair ((C", Wy = %di A dz)
becomes a Kéahler manifold (i.e, a complex manifold with symplectic form and Riemanniann
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definition of 9f in (87) it follows that the symplectic form can be written as w, = 109|z|%.

)

metric defined as in (85)). Let me take f(z) = |z|? with |2|?> = |z1|> + ... + |za]?. From

The function |z|? is called the Kéhler potential.
Given f € F(T*R"), the Hamiltonian vector field X ; can be written in complex coordinates
z=(21,...,2,) € C" as follows

of 0 of 0 ) . of 0 of 0
Xy = A T A A h Xp=2 L —-—==].
(88) ¥ z(é 05 9o O 82;) in short notation F=1 < 5555 B2 55

Let me define C* = C" — {0}. T will be particularly interested in the complex dimensions
n = 4,8. The symplectic manifold T7*R* is identified with C* through the following map

Ti: TR — C*, Ta(u,v) = (21, 22, 23, 24) ,

where the complex coordinates z1, 29, 23, 24 are given by

(89) 21 = %[(ul +v2) —a(vr —u2)], 22 = &[(uz + va) — 2(v3 — ua)]
23 = %[(04 —ug) +o(us +v3)], 2a = 3[(v2 — 1) +o(uz +v1)]

Taking z;,7 = 1,2,3,4 in a short calculation shows that wy = dv A du = %di Adz. Under
the complex structure 73 the action of U(1) on C* is given by
(90) Do : CH— CH Duo(z) = ez = (21,67 29,07 23,670 2y) .
The action in can be thought of as a coordinate transformation of C*. A straightforward
calculation shows that the symplectic form wy = %di Adz is invariant under the action of U(1)
on C*.

The symplectic manifold T*R8 is identified with C8 through the following map

T : TFR® —s CS, Ts(u,v) = (21,...,28),

where the complex coordinates z1, zo, ..., zg are given by
(o1) a = 3l b o) el )], 2 = L [+ vs) + a(us + o)
z3= 5 [(—us —v3) +1(—uz +v1)], 2= % [(ug2 +v1) + 21(ug — v2)]
%5 = 3 l(us — v0) ~ (s +v5)] ;20 = g [(ur — vs) — a{us + vr)]
27 =1 [(—uy —vs) —a(ug —v7)] , 28 = % [(us + ve) — 1(vs — ug)] .

Taking zj,7 =1,...,8 in (91)) a straightforward calculation shows that
1

(92) wg =dvAdu=—dzANdz.
7

The equations in (91)) can be written in a short notation as

21 23\ _ 1 zZ5  Z7\ .
2 2 =D q1, 2% 28 =q2 D2,

where, q1, 2, p1,p2 are the quaternion matrices in , . Under the complex structure 7Tg
the action of SU(2) on C8 is given by

(93)  @y:CY—C% @y(z) = <g <j;) .9 (2) N <jz) g (Z)) g€ SUQ).

The action in can be thought of as a coordinate transformation of C®, and it is not difficult
to see that wg = 1dz Adz of C® is invariant under the action of SU(2) on C®. Hence, the action
of SU(2) on T*R® = H? x H? leaves invariant the symplectic form wg = du A du as well.
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The actions in and are free. Namely, the identity element of GG, is the unique
solution to the following condition

Dy2)=2 ¥V2eC", gecG,.
Since the actions in , leave invariant the symplectic form w, = %di A dz, then
these actions can be associated with a moment map J, : C* — g, where g;, denotes the dual

of the Lie algebra g,. The map J, is obtained as follows. For each { € g, let X, denote the
vector field describing the infinitesimal action of £ on C™. That is,

d| - .
(94) Xe(z) = aL:Oq%tg(z) VzeCn,

Moreover, for each { € g, there is a smooth function Jg : C* —s R such that X¢ is the
Hamiltonian vector field of J¢. Namely,

(95) g () = dIE().
Equality implies that the vector field X, satisfies the following equality
(96) Xe(2) =Xy (2) V2 € cr.

The function J¢ is unique up to a constant and can be obtained by integrating equation ,
where X, (2) is given in (88). The functions J¢ and J,, can be put together as follows

(97) Je(2) = (In(2),€),
where (-, -) denotes the pairing between g,, and g}, . For each £, € g the functions J¢, J, satisfy
the following equality

{Je: In} = Jig
where [+, -] denotes the bracket in g, so that the constants can be chosen equal to zero. See [28]
for details. Thus, the vector field X, is Hamiltonian associated to Jg.

For dimension n = 4, an element { € u(1l) can be written as { = 0 with 6 € R. The
infinitesimal generator is given by

d .

Xup(2) = - t:O‘I)eme(Z) =10(21, 22, —23, —24).
For 10 € u(1) the Hamiltonian function J,y : C* — R is given by
(98) Jo(2) = (|21 + [22]* — |23]* = |24]*)0 .

An element £ € u(1)* can be written as s with s € R. The pairing between u(1) and u(1)* is
defined as follows
(18,10) = (—18)(20) = s0.
The moment map J4 : C* — u(1)* that satisfies equation @) is given by
(99) Ja(2) = (|21 + 22l = |23 = |24 ).

Take the complex coordinates in and a straightforward calculation shows that the moment
map J4 can be written in coordinates (u,v) € T*R* as follows

(100) Ja(u,v) = 1(urv2 — ugvy + uzvy — Ugv3) .

For dimension n = 8, let me consider the following basis of the Lie algebra su(2)

(101) & = (é _OZ>7 §2 = <? _01>’ $3= (S é) '

The matrices &1, &2,&3 are the Pauli matrices, and each & € su(2) can be written as £ =
a1 + b&s + c€3 with a,b,c € R. That is, £ € su(2) is given by

_ X —b+c
(102) §= <b+zc —a ) '
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Any matrix Lie algebra is endowed with a positive-definite bilinear form (inner product). In
particular, for su(2) this inner product is given by

1
(103) (U, B) = itr[ﬂ*% + ‘B*U] , B € su(2).
The matrices 4* and B* denote the conjugate transpose. The elements of su(2)* can be
identified with the skew-symmetric 2 x 2 matrices in (102]) through the inner product given in

(1103)).
For ¢ € su(2) the infinitesimal generator X¢ in is given by

— d = . d Z1 z23 25 27
Xelz) = %‘t:()(betf(z) N %‘t:o (et5 <zz> o <Z4> o <26) et <28) >
z 2 2 2
() () <) <(2))

The corresponding Hamiltonian function J¢ : C® — R is given by

(104) Je = ade, +bJe, + gy,

where the Hamiltonian functions Jg, : C® —» R are associated to the basis &, =1,2,3. The
functions J¢; are given by

(105) Je,(z) = (la)* + 123> + z5)° + |27]*) = (Jz2]* + |2a]* + |26 + |2s]%)
J@ (Z) = 1 (2’221 — 2921 + 2324 — 2324 + Z526 — 2526 + 2728 — 2728)
Jes(2) = 2%+ Zizo + 23%4 + 2324 + 2576 + Z526 + 2778 + 2128 -

Take the complex coordinates z;,7 = 1,...,8in . A straightforward calculation shows that
the Hamiltonian functions Jg;, j = 1,2, 3 can be written in coordinates (u,v) € T*R® as follows

(106) ng (u,v) = wjvy — UV + ULV3 — U3V4 + UGU5 — U5V + U7V — USVT
Je,(u,v) = ugvp — w13 + Usv2 — U4 + UTVs — UsVT + USVE — UsVS
J§3 (u, v) = UIV4 — U4V1 + U3V2 — U2V3 + UgUT — UTVg + USVF — UKV .

The moment map Jg : C3 — su(2)* is given by

~ 1 ZJg —Jg + ZJ{
107 = — 1 2 3.
( ) Jg(z) 2 <J§2 + ZJ§3 —ZJ&

A straightforward computation shows that 0 € g7 is in the image and that it is a regular
value of J,,, so the zero-set J,,1(0) is a submanifold of Cn. Moreover, the action of GG, restricted
to J,1(0) is free, so that the quotient J,,1(0) /G, has a manifold structure. The quotient is called
the symplectic or Marsden-Weinstein quotient of C* by G,,, see [1] for details. The quotient
3.-1(0)/G,, inherits a symplectic structure from C" = T*R"™. There is a unique symplectic form
fi € 92(3,1(0)/Gr) such that v*w, = m}f, where v : J,1(0) — C" is the inclusion map and
Tn t 3, 1 (0) — J,,1(0) /Gy, is the quotient map.

Let me motivate the identification of J,,1(0)/G,, with a symplectic manifold by looking for
transformations that leave invariant the symplectic form 7i of J,,(0)/Gy. To do so, I consider
another natural action (coordinate transformation) of a Lie Group on C™ that preserves the
zero-set J,1(0), commutes with the action of G,, on C" and leaves invariant the symplectic
form w, = %dz A dz. This another natural action gives rise to a coordinate transformation
which leaves invariant the symplectic form j of J;,1(0)/G,,. The above points are explained in
more detail in the following paragraphs for both dimensions.
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Let me begin with the dimension n = 4. A natural action of SU(2) x SU(2) on C* can be
defined as follows
(108)  Wyp:C'—C W () = <g (?) ! <j3>> . g,heSU?2) x SU(2).

2 4

A short calculation shows that the action in (108]) leaves invariant the symplectic form wy =
1dz A dz. The moment map Js : C* — u(1)* satisfies J4 (¥gpn(2)) = Ja(2), so the action
of SU(2) x SU(2) on C* preserves the submanifold J;'(0). It is not difficult to see that the
actions of SU(2) x SU(2) and U(1) on C* commute. That is,

(109) U, (i»ew(z)) = B (Typ(z)) VzeCt.

Therefore equality implies that for z € J;(0) the group SU(2) x SU(2) has a well-defined
natural action on J; (0)/U(1). In addition, equality W4 p(2) = (—1)¥_g _x(2) implies that
actually the group SU(2) x SU(2)/Zs acts on J;*(0)/U(1). That is, 4, and ¥_, _p, give the
same action on J; 1(0)/U(1). Since the action of SU(2) x SU(2) on C* preserves the symplectic
form wy = 1dzAdz, then the action of SU(2) x SU(2)/Zs will preserve the symplectic form 7i of
3:1(0)/U(1) as well. Tt is known that there is a homomorphism between SU(2) x SU(2)/Zs and
SO(4,R), which can be realized as follows. Under the identification R* =2 H in a similar way as
in , the natural action of SO(4,R) on R* is obtained from the action of SU(2) x SU(2)/Zs
on H, see appendix A. Since the action of SO(4,R) can be lifted to an action on T*R*, then
the group SU(2) x SU(2)/Zs = SO(4,R) acts in a natural way on T*R*. So this fact suggests
that the symplectic manifold (3?(0) JU(1), 1) could be identified with a manifold inside T*R*
whose symplectic form is that of ambient space. Indeed, I will show in paragraphs below that
(37'(0)/U(1), 1) can be identified with (T+S%,& = dp A dg).

Let me study the case n = 8 following a similar analysis. I identify C® 2 C* x C* by writing
z = (21, 2z11) with zr = (21, 23, 25, 27), 211 = (22, 24, 26, 28). A natural action of SU(4) on C8 is
given by

(110) Ya:C8— C8 Ya(z)=(Azr,Azp), AeSU(M4).

A straightforward calculation shows that the action in (110) leaves invariant the symplectic

form wg = % = dZAdz on C®. The Hamiltonian functions Je; (z),7 = 1,2,3, are invariant under

the action of SU(4) on C®. Namely,
(111) Je, (Xa(2)) = Jg,(2) Vze CB.

It follows from definition of Jg in (107) and equality (111]) that Js satisfies Jg (X 4(2)) = Js(2),
so the action of SU(4) on C® preserves the zero-set Jg ' (0). It is not difficult to see that the
actions of SU(4) and SU(2) on C® commute. That is,

(112) Y4 (ég(z)) = B, (Yu(2)), g €SUER), AcSUM).

Therefore equality implies that for z € J5'(0) the group SU(4) has a well-defined natural
action on Jg'(0)/SU(2). In addition, equality Y a(z) = (—1)Y_a(z) implies that actually
the group SU(4)/Zy acts on Jg'(0)/SU(2). That is, Y4 and Y_4 give the same action on
35 1(0)/SU(2). Since the action of SU(4) on C? preserves the symplectic form wg = 1 =dzndz,
then the action of SU(4)/Zs will preserve the symplectic form fi of Jg*(0)/SU(2) as well. Tt is
known that there is a homomorphism between SU(4)/Zy and SO(6,R). Let me briefly describe
the construction of this homomorphism; the details are given in appendix A. There is a natural
action of SU(4)/Zs in the six dimensional space \? C* (exterior product of C*). Since elements
in A% C* can be identified with elements in C% 2 T*RE, then the action of SU(4)/Zs on A*C*
can be written as the natural action of SO(6,R) on C® = T*RS. So this fact suggests that
the symplectic manifold (3§1(0) /SU(2), 1) could be identified with a manifold inside T*R®
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whose symplectic form is that of ambient space. Indeed, I will show in paragraphs below that
(351(0)/SU(2), 1) can be identified with (T7S°,& = dp A dg).

So far, I have motivated the identification of J,,1(0) /G, n = 4,8 with a symplectic manifold
in T*R™, m = 4,6. I now explain how the complex structure on C" induces a complex structure
on J,1(0)/Gy. That is, J,,1(0)/G, can be identified with a complex manifold by realizing it
as the quotient of the stable set M, in C™ by (G,)c. Here (G,,)c denotes the complexification
of Gy,. The definition of the stable set M, is the following, see [14] for details.

Definition 3. The stable set M, is the set of points in C™ that can be moved into J;,'(0) by
the action of (Gy)c. That is

My ={z€C"\z=gc- 20, 2 €3I,"(0) and gc € (Gn)c }-

The stable set My has the following properties, see [14), 18]. (i) M is an open set of full
Lebesgue measure on C", (ii) (G, )c acts freely on M, (iii) Each (G, )c-orbit in Mj intersects
3,1(0) in only one G-orbit, which gives a bijective identification

3,10) /G = M,/ (Gn)c -

Since the action of (G,)c in Mj is free, proper and holomorphic, then the quotient My/(G,)c
has the structure of a complex manifold, see [18] for details.

Let me motivate the identification of M;/(G,)c with a complex manifold by looking at
transformations that preserve this complex quotient. To do that, I consider this another natural
action for the complexified group which does not preserve the zero-set J.1(0), commutes with
the action of (G,)c on C" and gives rise to a coordinate transformation that preserves the
complex quotient Ms/(Gy)c. The above ideas are explained in the next paragraphs for both
dimensions n = 4, 8.

Let me begin with the dimension n = 4. The group (G4)c = (U(1)) is identified with
C* = C — {0}. The action of C* on C* is given by

~ . . ~ 1 1
(113) Oy :C*—CY Dy(2)= Az = <)\zl, Az, G )\z4>, AeCr.
The zero-set J; *(0) is invariant under the action of SU(2) x SU(2), but this set is not preserved
under the action of the complex group (SU(2))¢ x (SU(2))¢e = SL(2,C) x SL(2,C) on C* which
is given by

(114) Typ: C*—CY, Tyu(z) = <g <Zl) Rt (z?’) ) (g,h) € SL(2,C) x SL(2,C).

<2 Z4

The actions of C* and SL(2,C) x SL(2,C) on C* commute. Namely,
(115) Yy (‘i)x(z)) = &, (‘i’g,h(z)) :

Since the stable set M, is a subset of C*, then the actions of C* and SL(2,C) x SL(2,C) also
commute on M. Therefore, equality implies that SL(2,C) x SL(2,C) has a well-defined
natural action on the complex quotient M,/C*. In addition, equality ¥, ;(2) = (—1)¥_, _5(2)
implies that actually the group SL(2,C) x SL(2,C)/Zsy acts on M/C*. That is, ¥, and
@_97_h give the same action on M,/C*. It is known that there is a homomorphism between
SL(2,C) x SL(2,C)/Zs and SO(4,C), see appendix A. The group SL(2,C) x SL(2,C)/Zy =
S0(4,C) acts on C* in a natural way, so this fact suggests that M,/C* could be identified
with a complex manifold inside C*. In order to make this identification, keeping in mind
that the coordinate transformation of SO(4,C) on M,/C* can be realized from the action of
SL(2,C) x SL(2,C)/Zs, I will construct a natural action of SO(4,C) on C* from the action of
SL(2,C) x SL(2,C) on C* defined in (114).
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In appendix A, the action of SO(4,C) on Z € C* is motivated from the action of (g,h) €
SL(2,C) x SL(2,C)/Zs on a 2 by 2 complex matrix gz which is written in terms of the
quaternion matrices as follows
(116) glazh ™t =Z1g"h Y + ZogTih Y + Z3 g7 jh~t + Zy gT kB 7Y,

where the complex numbers Z; are the components of Z = (21, Z», Z3, Z4) € C*. T adapt the
above construction to the action of SL(2,C) x SL(2,C) on C*. The key point is to consider
complex coordinates, so that the action in induces a transformation on {1,1, j,k} as that
one in . So let me consider the following complex coordinates «;(2),j = 1,2, 3,4

(117) ai(z) = (21, 22) ((1) (1)> Ci) az(2) = (21,2) <é E@) <Z)

as(2) = (1, 22) (_01 (1)> @) i) = (21, 22) <? 8) (Z) .

The matrix representation of {1,1,j,k} is used in (117)). The action in (114]) induces a trans-
formation on the functions a;(2),j = 1,2, 3,4 as follows

(118)

a1 (T41(2)) = (1 22)9" <(1) ?) h (Z) car (Ty(2)) = (21, 22)" (g EZ) pt @)
o (J009) =usa” (5 )7 (5) o () = o (0 ) (3).

Note that in the matrices {1,i,j,k} are transformed as in . The coordinates
aj(2),7 = 1,2,3,4 can be used to construct the action of SO(4,R) on C* from the action
of SU(2) x SU(2) on C*. The action of SU(2) x SU(2) on C* induces a transformation on
aj(z),j =1,2,3,4 as follows

(119)
01 (Fgn(2) = (20" (5 9) 07 (2) oyl = Grig” (i 0) 0 ()
s (W) = Grlg” () 0) 0 (2] e (ot = g™ () §) e (2).

Note that the actions defined in (118) and (119)) satisfy «; (\T/,g,,h(z) = a;j <\Tlg’h(z)> and
118) and (119)) can be

a; (¥_g_n(2)) = oj (¥gn(z)) respectively. The actions defined in (
written in vector notation as follows

(120) a (\i/fg,fh(z)) = a (xifg,h(z)) a(®_g_n(2) = a(Tgp(z)) .

The actions of U € SO(4,R) and R € SO(4,C) on a(z) € C* are obtained from the action in

(119) and in (118) respectively. Namely, the following equality holds

(121) a(¥_y n(2) =a(Tyn(2) =U-a(z), o (\if_g,_h(z)) = a (@gﬁh(z)) = R-alz).

The construction of the matrices U € SO(4,R) and R € SO(4,C) is given in appendix A.
The coordinates oj(z),j = 1,2...,4 in 1) are invariant under the action of C* on C%.

Namely,

(122) o (&)A(z)) = aj(z), A€ C*, j=1,2,3,4.

Equality 1D implies that o;(z) are functions of the C*-orbit through z € C4, so for z € M,
the functions o;(z) in (117)) can be regarded as complex coordinates on M/C*. Indeed, in a
paragraph below I show that each a(z) € C* is associated to an orbit ®)(z) € M;/C*. Keeping
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in mind that SL(2,C) x SL(2,C)/Zy = SO(4,C) acts on M,;/C* by coordinate transforma-
tion. That is, if a(z) € C* is identified with an element in M,/C*, then « (ﬁ/,g,,h(z)) =

o' <\T/g,h(z)> = R-a(z) must be an element in My/C* as well. In other words, the complex quo-

tient M/C* is invariant under the action of SO(4,C). Let me consider the three dimensional
complex sphere S(% which is defined as follows

(123) Séz{aéCﬂa%—i—a%—i—a%—i—ai:rQ, r e C}.

The transformation R -« of R € SO(4,C) on a € C* preserves S3. That is, if o belongs to
S(%, then so does R - a. Note that when r = 0, S(% corresponds to the null quadric Q3. Taking
the expressions of «a;(2),7 = 1,2,3,4 in a straightforward calculation shows that the
following equality holds

(124) A2(2) +a3(z) +a3(z) +al(z) =0 VzeCh.

Equality (124)) implies that a(z) in (117) belongs to the null quadric Q3. Hence, the following
map can be defined

(125) Pt C'— Qs,  prg)(z) = (a1(2), aa(2), as(2), 0u(2)) = .

It follows from equality (121)) that the map p 3) intertwines the actions of SU(2) x SU(2)
and SL(2,C) x SL(2,C) on C* with the actions of SO(4,R) and SO(4,C) on Q3 respectively .
That is, the following equalities hold

(126) P (Tgn(2) =U-a,  pug(Teu(z) = R-a.
Lemma 1. The restriction of p3) to M takes values in the null quadric Q3. Namely,

P(a3) : Ms — Qs

Proof. Since every point z € My can be moved into 34_1(0) by the action of C*, then there is
20 € 3, 7(0) such the equality zp = ®)(2) holds. Since P(4,3) is invariant under the action of
C*, then the following equalities hold

- 2
\0(4,3)(2’0)|2 = ’0(4,3)(%(2’))‘ = \0(4,3)(2’)\2 :

The point is to show that ‘ P(4,3) (20) > —0if and only if zg is the zero-vector which does not

belong to J; *(0). Hence, p(a3) (zo)‘2 = ‘p(473)(z)‘2 # 0 which implies that p(43)(2) # 0 for all

z € M.
Take aj,j =1,...,4 as in (117)) a short calculation shows that

(127) |p(a3)(20)|* = 2(|201% + |202]%) (|203]% + |204]?) -

It follows from equality that ‘p(473)(20)‘2 = 0 if and only if |201|> + |202/*> = 0 which
implies that 291 = 202 = 0 or |203/> + |2z04|> = 0 which implies that zg3 = 204 = 0. Both
cases 291 = zo2 = 0 and zp3 = 294 = 0 require that zp = 0 so that the equation J4(zp) =
’L(|2’01|2 + |Z()2|2 — |Z()3|2 — |Z[)4|2) = 0 is fulfilled. U

Now the complex quotient M,/C* is going to be identified with the null quadric Q5.

Proposition 4. The map p43) : Ms — Qs is the quotient map of the action of C* on M,
and gives the identification of M/C* with Q3 and of J;*(0)/U (1) with M/C*.

Proof. Let me show that p( 3 is injective. That is, the following is fulfilled

(128) pa3) (W) = puz(z) =a=> w=dx(2), AeC.
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Equality (128)) indicates that every a € Q3 can be identified with an orbit ®y(z) € M,/C*.
Equality p(43)(w) = p(s,3)(2) must be fulfilled component by component. Namely,

(129) 2123 + 2224 = WiW3 + Wows, 2124 — 2923 = W1W4 — WoW3

(2123 — 2224) = 1(wrws — wowy), 1(2124 + 2223) = 1(wiwy + wows) .

For a € Q3 some aj,j = 1,2,3,4 is different than zero. Let me consider the case j = 1, but
the following analysis works for other j as well. Note that from the definition of s in
it follows that as is different than zero as well. From the combination a1 — 1 the following
equality is obtained

Z1 w1
21253:'11)1’[1)3:>w7—7:0.
3 3

The above equality can be written as follows

1
det <le u?) = 0 which implies (2111> = <211) ,l.e wy = Azp, wy = G with A € C*.

z3 w3 w3 23

Now from the combinations ag — 1y and —a3 — 1y the following equalities are obtained
(130) 2124 = WiWy4, 2273 = WoWS3 .

I obtain wy = §Z4 and wy = Az by substituting w1 = Azp in the first equality and w3z = %23
in the second equality of (130)) respectively. Therefore equality (128) is fulfilled.

The map p4,3)(2) is surjective. The argument is as follows. In appendix A it is shown that
SO(4,C) acts transitively on Q3. Hence, any a € Q3 can be written as follows

(131) a=R-ap, ReSO4,C)and ap=(1,2,0,0).

Since the map p(43)(2) intertwines the action of SL(2,C) x SL(2,C) on My and SO(4,C) on
h

Q3, then equality (131)) can be written as follows

(132) a=R-puz(20) = pus (Pgn(z0)) with ps)(20) = ag and 2 = (1,0,1,0).
It follows from equality 1} that for all & € Q3 exists z = \ifg,h(zo) € M, such that equality
pa3)(2) = a is fulfilled.

Under the identification of o € Q3 with an orbit ®y(z), let me show that every o € Q3
contains an U(1)-orbit in J;(0). In other words, every C*-orbit ®,(z) intersects J;*(0) in an
U(1)-orbit, which provides the identification J;*(0)/U(1) = M,/C*. The group SO(4,R) acts
transitively on Q3 and since the map p(a,3) intertwines the action of SU(2) x SU(2) on C* and
SO(4,R) on Q3, then o € Q3 can be written as follows

(133) pusz)(2) =a=U- as=pugz) (Pgn(z0)), UE€SOM4R) and Py4p(20) € 321(0).

Since the map p(4 3) is invariant under the action of U(1), then it follows from equality ([128))
that the C*-orbit @, (2) intersects J;*(0) in the U(1)-orbit ® s (¥4 p(20))- O

It follows from the identifications of My/C* with Q3 and of M,/C* with J;*(0)/U(1)
that the null quadric Q3 is the complex structure of the symplectic quotient J;'(0)/U(1).
Keeping in mind that the symplectic form of J;*(0)/U(1) is invariant under the action of
SU((2)xSU(2)/Za = SO(4,R), let me equip Q3 with the symplectic form & = —21/200|a| which
is invariant under the transformation a (¥4 (2)) = U -a of SU(2) x SU(2)/Z2 = SO(4,R) on

a € Q3. That is, let me consider the K&hler manifold (Qg,@ = —zﬁ&?]a!). The symplectic

manifold (J;'(0)/U(1),7) is identified as a Kéhler manifold with (Qg7 W= —z\/§58|a]>. This
is the point of the following proposition.
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Proposition 5. Consider the Kdahler manifolds (C4,w4 = %dz A dz) and (Qg,@ = zﬂé@\a\)
as well as the map p(43) : Mg —> Q3. The following equalities hold
1

* . a _ -9 2 _ 1 =
(134) P Z\/§88|a|)‘3Z1(0) ~ ~90)2] ‘34‘1(0) = ~dz A d:

370

Proof. Proposition

Take the expressions of «; given in (117 and a calculation shows that
o = Jar(2)]? +|a2(2) + las(2)? K

o> = 2(l21” + [z2*) (|28 + [24]?).

+ leu(2)

For z € 3;1(0) the equality (|z1] + |22]? — |23]> — |24]>) = 0 holds, so a short calculation shows
that

(135) V2lal = 212 + [2f? + [zl + 2|1 ) = 2] 1) -
The computation of derivatives 9, 9 in (135]) gives equality (134]). U

On the other hand, under the identifications of M,/C* with J;*(0)/U(1) and of M,/C*
with Q3 = T 53 it follows from equality that the symplectic quotient (321(0) JU(1), ﬁ)
can be identified with (T+S3,@ =dp Adg T+SS) .

The map p(4,3) was constructed in [27], but the author followed a different approach from
this one here. He considered a coordinate transformation from C* to C* so that the symplectic
form in those new coordinates is invariant under a natural action of the group SU(2,2) on C*.
In that approach, the functions a;(2) in are written in terms of Hamiltonian functions of
a subset in s5u(2,2). Let me recall that the map p(4 3 relates the regularizations of Moser and
Kustaanheimo-Stiefel of the Kepler problem in dimension three. I briefly discuss this point at
the end of the section.

For dimension n = 8 the complex quotient M,/ (SU(2)) will be identified with a complex
manifold. The analysis is similar to the dimension n = 4. The action of (SU(2)). = SL(2,C)
on C8 is given by

jod . . jod V4 V4 Z z
(136) &g : C* — C®, Py (z) = <g<c <Z;> , gc <zi) , gc <ZZ> , gc (Z;> ) gc € SL(2,C).

The zero-set Jg *(0) is invariant under the action of SU(4), but this set is not preserved under
the action of the complex group (SU(4))c = SL(4,C) on C® which is given by

(137) T),:C® — C®, Tu(z)=(hzr, hzr1), heSL4,C).
The actions of SL(4,C) and SL(2,C) on C3 commute. That is,

(138) T (Bge(2)) = By (Ta(2)) -

Since the stable set M, is a subset in C®, then the actions of SL(2,C) and SL(4,C) also
commute on M. Therefore, equality implies that the group SL(4,C) has a well-defined
natural action on the complex quotient M/SL(2,C). In addition, equality Tj,(z) = =T _,(2)
indicates that actually the group SL(4,C)/Zy acts on M,/SL(2,C). That is, Ty and T_j,
give the same action on Ms/SL(2,C). It is known that there is a homomorphism between
SL(4,C)/Zs and SO(6,C), see appendix A. The group SL(4,C)/Zy acts in a natural way on
the six dimensional complex space /\2 C* (exterior product of C*), see equality (139) below.
This fact suggests that Mg/SL(2,C) can be identified with a complex manifold inside C°. In
order to make this identification, keeping in mind that the action of SO(6,C) on M,/SL(2,C)
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can be realized from the action of SL(4,C)/Zs, I will construct a natural action of SO(6,C)
on CY from the action of SL(4,C) on C® defined in (137).

The action of SO(6,C) is constructed as follows. An element in A*C* can be written as
zr A zr1, where neither z; nor zjy is the zero vector. The action of SL(4,C) on /\2 C*is given
by

(139) W,h(Z[AZ]]) Z\I/h(Z[/\Z[[) = hz; N\ hzyg, hGSL(4,C).
An orthogonal basis {71, 72,73, 74, 75,76} can be considered in /\2 C4, see equation 1) in
appendix A. Regarding this orthogonal basis an element z; A zj; can be identified with a
vector a(z) = (a1(2),...,a6(z)) € C® with z = (21, 2171) € C8. The functions a;(z),j =1,...6
are given by
(140) a1(2) = [(2124 — 2223) + (2528 — 2627)], «@a(z) =1[(2128 — 2227) — (2326 — 2425)]

as(z) =1[(z126 — 2225) + (2328 — z427)], «au(z) = [(z126 — 2225) — (2328 — 2427)]

a5(z) = [(z128 — 2227) + (2326 — 2425)], a6(2) = 1[(z124 — 2223) — (2528 — 2627)] -

Each action of A € SU(4) and h € SL(4,C) on z € C® induces a coordinate transformation of
U € SO(6,R) and R € SO(6,C) on a(z) € C° respectively. That is,
(141)  a(Y-a(2)) =a(Ya(2)) =U-a(z), a(T-u(2)) = a(Th(2)) = R-a(2).

The construction of the matrices U and R is given in appendix A. The coordinates a;(2),j =

1,2...,6 are invariant under the action of SL(2,C) on C8. That is, the following equality is
fulfilled

(142) o (égc(z)) =aj(z), j=1,...,6.

Equality indicates that a;(z) are functions of the SL(2,C)-orbit through z € C8. So for
z € My the functions a;(z) in can be regarded as complex coordinates on M;/SL(2,C). In
a paragraph below I show that each a(z) € CY is associated to an orbit ®,.(2) € M;/SL(2,C).
Keeping in mind that SL(4,C)/Zy = SO(6,C) acts on My/SL(2,C) by coordinate transfor-
mation. That is, if a(z) € CO is identified with an element in M,/SL(2,C), then a(T_p(z)) =
a(Th(2)) = R - a(z) must be an element in M,/SL(2,C) as well. In other words, the complex
quotient M;/SL(2,C) is invariant under the action of SL(4,C)/Zs = S(6,C). Let me consider
the five dimensional complex sphere S which is defined as follows

S{g:{aE(CGM%%—a%%—a%—i—aZ%—ag—{—a%:r2, reC}.

The transformation R+« of R € SO(6,C) on o € C® preserves S2. That is, if « € C5 belongs to
S2, then so does R - . Taking the expressions of a;j(z),7 =1,...,6 in (140) a straightforward
calculation shows that the following equality holds

(143) a1(2)? + az(2)? 4+ a3(2)? + au(2)? + a5(2)? + ag(2)2 =0 Vze CP.

Equality (143)) indicates that a(z) € C° in (140) is actually an element in Q5. Hence, the
following map can be defined

(144) pes)  CO = Qs s (2) = (a1(2), 02(2), a3(2), au(2), a5(2), a6(2)) = .

It follows from equality (141]) that the map p(s 5) intertwines the actions of SU(4) and SL(4,C)
on C® with the actions of SO(6,R) and SO(6,C) on Qs respectively. Namely,

(145) p5)(Ta(z) =U-a and pgs (Ta(z) = R-a.
Lemma 2. The restriction of pg 5y to M takes values in the null quadric Q5. That is,

Pss) t Ms — Qs



28 2. Classical and Quantum Reduction

The proof of lemma [2| follows a similar procedure to the proof of lemma |1}, so let me omit
it. Now the complex quotient M;/SL(2,C) is going to be identified with the null quadric Q5.

Proposition 6. The map pgs) : Ms — Qs is the quotient map of the action of SL(2,C) on
My and gives the identification of Ms/SL(2,C) with Qs and of 3g *(0)/SU(2) with Ms/SL(2,C).

Proof. It is not difficult to see that p(g5) is injective. That is, the following is fulfilled

(146) pi5)(2) = pies)(w) =a € Qs = w =Dy, (2), g1 € SL(2,C).
Equality indicates that each a € Q5 can be identified with an orbit @, (2) € M,/SL(2,C).
The calculations to prove equality are so long and are done in appendix A.

The map p(g5) is surjective. The argument is as follows. It is shown in appendix A that
SO(6,C) acts transitively on Q5. Hence, any a € Q5 can be written as

(147) a=R-ap, ReSO6,C), and ap=(1,0,0,0,0,2).

Since the map p(g5)(z) intertwines the action of SL(4,C) on M and SO(6,C) on Qs, then
equality in (147) can be written as follows

(148) a=R-ayg = pss)(Ta(20)) with ps5)(20) = ag, and 20 = (1,0,0,1,0,0,0,0).

It follows from equality that for all & € Qs exists z = Yh(zo) € M such that equality
Ps5)(2) = a is fulfilled.

Under the identification of a € Q5 with an orbit ®g, (2), let me show that every o € Qs
contains an SU(2)-orbit in Jg *(0). In other words, every SL(2,C)-orbit in Mj intersects Jg*(0)
in an SU(2)-orbit, which provides the identification M,/SL(2,C) = Jg'(0)/SU(2). The group
SO(6,R) acts transitively on Q5 and since the map p(s 5) intertwines the action of SU(4) on
Mg and SO(6,R) on @5, then the following equalities hold
(149)

P (2) =a=U-a0=prs)(Ta(z)), AcSUM), UeSO6,R) and Y a(z) € I3 (0).
Since p(g5) is invariant under the action of SU(2), then it follows from equality that the
SL(2,C)-orbit g, (2) intersects Jg ' (0) in the SU(2)-orbit ®,(Y a(20)). O

It follows from the identifications of M/SL(2,C) with Q5 and of M/SL(2,C) with J5(0)/SU(2)
that the null quadric Q5 is the complex structure of the symplectic quotient Js L0)/5U(2).
Keeping in mind that the symplectic form of Jg'(0)/SU(2) is invariant under the action of
SU(4)/Zy = SO(6,R), let me equip Q5 with the symplectic form & = —21/200|a/| which is
invariant under the transformation a(Y 4(z)) = U - a of SU(4)/Z2 = SO(6,R) on a € @s.
That is, let me consider the Kéhler manifold <Q5,@ = —zﬁ&?]a!). The symplectic manifold
(351(0)/SU(2),]I) is identified as a Ké&hler manifold with <Q5,CJ = —zﬁé@\ao. This is the
point of the following proposition.

Proposition 7. Let be the map p 5 : Ms — Q5. Consider the Kdhler manifolds (CS,WE; =
%dé/\ dz) and (Qg,,@ = 72\/§53|a\). The following equalities are fulfilled.

(150) s (—1V2000al)| | = %58|z[2 _ %dz Adz

3510 3510 3510
The proof of proposition [7| follows a similar procedure to the proof of proposition [5, so let
me omit it. As in dimension n = 4 under the identifications of Jg *(0)/SU(2) with M,/SL(2,C)
and of M/SL(2,C) with Q5 = TS it follows from equality (150) that the symplectic manifold
(351(0)/SU(2), [1) can be identified with the symplectic manifold (T75°,& = dp A dq{T+S5).
The map p(g 5) was constructed in [41], but the author followed a different approach from

this one here. He considered a coordinate transformation from C?® to C® so that the symplectic
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form in those new coordinates is invariant under a natural action of the group SU (4, 4) on C8.
In that approach the functions «(z);,7 =1,...,6 in (140) are written in terms of Hamiltonian
functions of a subset in su(4,4).

For completeness, I now briefly describe how the map p(mm)(z) relates the regularizations
of Moser and Kustaanheimo-Stiefel of the Kepler problem. See [27, 41] for details. Let me
consider a = p + 2|p|q € Qn with (¢,p) € TtS™ m = 5,3. The coordinates (¢,p) € T+S™
can be written in terms of a € Q,, as follows

2 .
(151) p= %(a(z))b;l(o), q= W%(a(z))’%l(o) with o € Q.

It follows from equations of the Moser map in that the coordinates (z,y) € T*R™ can be
written as

Y = G _ 23 (ak(2)) ’
T 1w 22 = 23 (mr1(2)) 15210y
= = o1 = ) + pmsiar] = — [%(auz» (121 — 2% (ams ())) +

%(am+1(z))2%(ak(z))} fork=1,2,...,m.

3.1(0)

For m = 5 let me take a;(z),7 = 1,...6 in (140) with Tg(u,v) = 2z € C® given in . For
m = 3 let me take a;(2) in (117) with T3(u,v) = 2z € C* given in . A straightforward long
computation shows that the following equalities hold

1
‘Z‘ ‘S(am-i-l(’z))‘j;l((]) ‘U| ) \s(ak(z)) 9 n(’LL)U 3;1(0) ’ n 87 ’
where A, (u) is given by
(152)
Uy U2 us3 Ug —Us —Ue —UT —US
us —Ug uy —us Ui —U2 us —Uq4
U7 ug  —Us —Us —U3 —Us W U2 uz - ug Uy U2
—us uy Ug —Uu5 —U4 us (5 —Uul Uqg —U3 —UQ ul
Ag(u) = , Ag(u) =
Ug us us uy u9 (5] Uy us (75} u9 —Uus —Uu4
—Uu2 ul U4 —us Ue —u5 —Uusg uy U2 —U1 U4 —us
—u3 —Uu4 (5% us —Uuy —usg us Ug
—U4 us —Uu2 ul us —uy Ug —Uus

The momentum coordinates y € R, m = 5,3 can be written in terms of (u,v) € T*R”, n=2_8,4
as follows

1
(153) y = WAn(U)U , n=4,8.

371(0)

For (u,v) € T*R" equality |z|? = $(Ju|? + [v[?) holds, so the position coordinate z € R™ can
be written as
1

b= o PR - 28 @)] | | k=L
Jn(0)
1 1 1
N [2‘“’24<An<v>v—An<u>U>—2<“'”>2An<“>”} =0)
— _¥1u2 U’U—U2 u)u) —(u-v u)v .
= e 3 (A~ WA — )|

(154)
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For any T,(u,v) = z € J,,1(0) a straightforward calculation shows that the following equality
holds

1
(155) 3 [[ul?An(v)v + [v]2An (w)u] = (u-v) Ay (u)v.
It follows from equality (155]) that
1 |u® + |U|2>
r = ————|[|-—————— | A(u)u+ (u-v)A,(u)v — (u-v)A,(u)v
ul® + [v]? [( 2 (1))
1

xr = §An(u)u
(156)
From equations (153)) and (156)) I can form a map IIxg which is defined by

1 1

iAn(u)ua y= WAn(u)Ua

where the matrix A, (u) is given in (152)). The map IIxg coincides with the Kustaanheimo-
Stiefel transformation and is a symplectomorphism, that is, I}, ¢ (dy Adx) = dv/\du| 31 0) Let

(157)  Mgs: TR > (u,v) — (z,y) € T*R™, =

3:(0)

me comment that the Kustaanheimo-Stiefel (KS) transformation was originally constructed in
a different approach. See [37] for details.

2. Geometric Quantization

In this section I give a brief description of geometric quantization in the setting of symplectic
(Kéhler) manifolds T*R™ = C". All the material in this section can be found in [17, [43].
Consider the symplectic manifold (T*R"™ = C", w,, = dv A du) as the phase space of a clas-
sical system. In the transition from a classical to a quantum system, the Geometric Quan-
tization is a mathematical procedure to construct a Hilbert space H of quantum states and
to assign to a class of physical observables an operator acting on H. Let me describe this

procedure. Consider a line bundle 7 : L“» — T*R"™ whose space of sections of is denoted by
I' (L¥*). The line bundle is endowed with a connection V, which is defined by

VXs:X(S)—%Q(X)S, X e X(T"R"), sel (L),

where 6 is the symplectic potential and is defined by 6 = %[v -du — u - dv]. The curvature
cur(V) is the two-form %wn. That is, the following equality holds

1
VX (VYS) - VY (VXS) — V[X,Y]S = %wn(X,Y)s, )(7 Y S X(T*Rn) .

The geometric quantization assigns to each function f on T*R"™ an operator ]?acting onI' (L¥n),
which is given by

(158) f=—hVx, +f,

where f represents the operation of multiplying a section by f. The definition of ]? in
corresponds to the canonical quantization of f. Namely, the Poisson bracket of two functions is
replaced by the commutator of the corresponding operators. This is the point of the following
proposition.

Proposition 8. The following equality holds for each f,g smooth functions (physical observ-
ables) defined on T*R™

(159) [£.3) = —hlf, g}

For the proof of proposition |8 see [17, Chap.22].
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2.1. Real Polarization. A polarization on T*R" is an n-dimensional subspace P, .) C
Tuwy (T*R™) at each (u,v) € T*R", which satisfies the following conditions. For all X,Y €
Pv) the commutator [X, Y], ) belongs to P, ) and the symplectic form w, = dv A du satis-
fies wy (X, Y) () = 0. In order to obtain a Hilbert space of quantum states from the geometric
quantization scheme, we must first choose a polarization P and then look at the set of sections
that are constant along the directions of P. That is, the sections s € I' (L“") that satisfy the
equation Vxs = 0 for all X € P. This set of sections is denoted by I'p (L“"), and elements in
I'p (L“") are also called polarized sections with respect to the polarization P.

The Hilbert space of the Schrédinger representation is obtained from the vertical polariza-
tion on T*R"™, which is spanned by the vectors

o 0 0
1 =TTy
(160) v {8@1’ vy’ ’(%n}

Consider X,Y € X(T*R") given by X = 377, fj(u,v)a%j and Y = Y}, gk(u,v)a%k. A

straightforward calculation shows that the commutator [X, Y] can be written in terms of the

vector fields in (|160)) and that the symplectic form w, = dv A du satisfies w, (a%j, B%k) =

0,7,k = 1,...n. The set I'y (L") of polarized sections with respect to the polarization V'

satisfies Vais = 0,7 = 1,...,n, and sections s € I'y (L¥") can be written as s(u,v) =
vj
o(u) e 28" with ¢(u) a smooth function on R™. The pointwise magnitude of s(u,v) is given
by
2 DY 2
[s(u, )" = s(u, v)s(u, v) = |@(u)|” .

A polarized section s(u,v) € I'y (L“?) has infinite norm with respect to the Liouville measure
€w, = duj...dundvy...dv,. This is because of the integration of \s(u,v)\2 in the directions
vj,j = 1,...,n is not finite. The half-form correction must be included in order to solve the

non-existence of a non-zero square-integrable section in I'yy (L“™). The last point is discussed
in a paragraph below.

Every operator f acting in T (L“") can be restricted to act in I'y (L“"), but the space

o~

'y (L) must be preserved by the action of f on sections s; € I'y (L“"). Namely, the section

~

f(s1) must belong to I'y (L“"). In those cases where f preserves the space I'y (L“"), the
function f satisfies the following.

Definition 4. Let f be a smooth function on T*R"™ and Xy its corresponding Hamiltonian
vector field. The function f preserves the vertical polarization V

0
(161) iff [Xf,]CV Vi=1,...,n.

8vj
Proposition 9. Let f be a smooth function on T*R"™ whose Hamiltonian vector field Xy
satisfies the condition . Then the corresponding operator [ defined in preserves the

space Ty (L“).
For the proof of proposition |§| see [17, Chap.23].

Taking the explicit expression of X given in a straightforward calculation shows that

0% f B

v,

(162) [Xf,a]cv iff 0, j,s,k=1,...,n.

87}]'

It follows from equation (162 that the function f must contain linear terms in the variable v
so that the operator f preserves the space I'y/(L“"). The Hamiltonian function of the harmonic
oscillator is given by

H(u,0) = 3 (jul? + [ol?).
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The function H(u,v) is quadratic in the variable v, so the operator H does not preserve the
space I'y/(L¥"). This drawback is solved by identifying T*R™ with C", and the Hamiltonian
function H (u,v) is written in complex coordinates so that the operator H preserves the space
of polarized sections with respect to the complex polarization. This last point is discussed in
the next subsection.

For the Cartesian coordinates ug, vg, k = 1,...,n a straightforward calculation shows that
the functions wug, vy satisfy the condition in equation 1’ From definition of f in |j the
corresponding operators uy, U are given by

1 0 1

uy, = th 0 + v h—+
U = th—— —Uk, V= —th— —Vk .
K avk 2 k k 8uk 2 k

Consider s(u,v) € Ty (L") with s(u,v) = p(u)e”2%?. A straightforward calculation shows
that
~ — U ~ 890 — U
(163) Ur(s) = (urp(u)) e 28" Tp(s) = | —th=—— | e 2"" .
Ouy,
Each s(u,v) € 'y (L¥") gives a function ¢(u) on R™. It follows from equations in (163]) that
the operators uy, v have the following expression in the space of functions ¢(u) on R"™
0
164 Ur=up, Op=—th—:H, k=1,....n.
(164) Ug = Uk Vk 2 D n
The operators in ((164)) are the Schrodinger representation of the canonical coordinates ug, v.
Now I will give a brief description of how the half-forms work to solve the non-existence of
a non-zero square-integrable section in I'y (L“™) .

Definition 5. The canonical bundle of the vertical polarization V is the real line bundle Ky
for which the sections are n-forms k that satisfy

to k=0, j=1,....,n with k=g(u,v)dus A...Adupy,
where g(u,v) is defined on T*R™. The polarized sections of Ky with respect to the polarization
V' are n-forms that satisfy t_o dk = 0. This set of polarized sections is denoted by I'y (Ky)
v
whose elements are n-forms f(u)dui A ... A duy, with f(u) a smooth function on R™.

In particular, the nowhere vanishing n-form kg = duj A ... Adu, is an element in T'y (Ky).
Since kg is a global section of Ky, then the canonical bundle Ky is trivializable. Hence,

1

there is a square root of Ky . That is, a line bundle K} over T*R" with the property that if
1

V1,V are two sections of K2, then v1 ® vo = v v9 is a non-negative function times kg =

1

duy A ... A du,. The half-form vg = v/dui A ... Adu, is a nowhere vanishing section of K

that satisfies 192 = ko. The space of polarized sections including the half-form correction is
1

denoted by T'y (L“" @ K2) whose elements can be written in coordinates as r(u,v) = s(u,v) ®

Vduip AN duy, = s(u,v)v/dug AN duy, with s(u,v) € Ty (L97). The pointwise magnitude

of r(u,v) is given by

(165) r(u,v)[* = [s(u, v)|* duy A ... Adup = |o(u)|* dug A ... Aduy, .

The term |r(u, v)[* in can be thought of as an n-form on R" rather than on T*R", so the
function |r(u,v)|? can be integrated on R™ . The squared norm of r(u,v) € 'y (L"J“ ® Ké)

is given by

(166) I (w, v) % = / ()| dus A .. A dun -
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1
If it is assumed that the integral in (166) is finite, then the space I'y (L¥" ® Ky)) is identified
with a dense subset of L? (R, du). For more details about half-forms for a real polarization on
a general symplectic manifold see [17), Chap. 23].

Let h be a function on T*R™ that preserves the vertical polarization V', and let me denote
by h the corresponding operator that preserves the space I'y (L“"). The operator @, acting in
1

the space 'y (L¥" ® K2) is given by
(167) Qn=hol—1h(I®Ly,).

The action of Q, on r1(u,v) = s1(u, v)vp is given by

@h (r1) (u,v) = /ﬁ(sl)(u, v) ®f(1/0) —h (ﬁ(sl)(u, V) ® EXhVO)

(168) = h(s1)(u,v)vg —h(s1(u,v)Lx,vo) .

The Lie derivative Lx, Vo satisfies 2(Lx, vo)vo = L XhVOQ, so it can be calculated from the
following equality

(169) 2 (»CX;LVO) Vo = »CXh (K,()) .

2.2. Complex Polarization. When T*R" is identified with C™ through some complexifica-
tion (for instance T*R* is identified with C* see equations , and T*R8 is identified with C®
see equations (91))), the holomorphic polarization is defined as the spanned by the vectors
0o 0 0
170 P=(—,—,...,— ).
( ) < 071 ’ 029 0z, >
The set of sections s € I (L“") that satisfy the equation V o s = 0,7 = 1,...,n are called
(’JZj

polarized sections with respect to the polarization P, and this set is denoted by I'p (L“"). The

sections s € I'p (L“") can be written as s(z) = f(z) e 27 with f(2) a holomorphic function
on C". The squared norm of s(z) is calculated as follows

e o O ) = e [ 1M e (2,

where €, (z) is the Liouville form which can be written in complex coordinates as €, (z) =
dzi...dzZpdz; ...dz,. Each s(z) € I'p(L¥") gives a holomorphic function f(z). So if it is
assumed that the integral in is finite, then the space I'p (L“") can be identified with the
following space of functions

(171) Is[l* =

(172) L (CL k(=) dvh(z) = e hE

Functions in L7 , ((C", dl/Z(Z)) are holomorphic and square-integrable with respect to the indi-
cated measure.

As in the real case, if the Hamiltonian vector field X of a physical observable f on C"
preserves the polarization P, then the operator f preserves the space of polarized sections
Ip (L*“"). The Hamiltonian vector field X in complex coordinates is given in (88), and a
straightforward calculation shows that

0 0% f

173 Xp—| CP iff

(173) { ! 8@-] Y 9507

The Hamiltonian function of the harmonic oscillator can be written in complex coordinates as
follows

=0 j,s,k=1,...n.

n

(174) H(z, %) = %szzj.

J=1
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A straightforward calculation shows that the function H(z,z) in (174]) satisfies the condition
in (} Hence, the corresponding operator H preserves the space I'p (L“").

The coordinates zg, Zx satisfy equation (173)). From definition of fin 1) the correspond-
ing operators 2, Z;, are given by

2 = hi + 1 - hi + 1*
k= 0z, QZk R 0z, 2Zk '
Taking s(z) € I'p (L") with s(z) = f(z) el o straightforward calculation shows that
(175) 2(s(2)) = (srf(2) e 3, 5(s(2)) = <hgf) oA
2k

Let me recall that the space I'p (L“") is identified with L?_,(C", dv!'(2)). It follows from equa-
tion (175) that the operators Z, Z have the following expression in the space L2 (C" dvi(2))
9

6Zk '

The operators Zj, zj in (176) are adjoint to each other in the space L%Ol(C”,deL‘(z)), so the
space I'p (L¥") is identified with the Segal-Bargmann space B5,.

=h

o

(176) = 21,

The inclusion of half-forms is not necessary in the complex case because the elements of
I'p (L¥") have finite norm on C". Moreover, the inclusion of half-forms does not change the
squared norm of s(z) in (I71). However, the inclusion of half-forms makes the complex case
parallel to the real case, and geometric quantization with half-forms gives better results than
without half-forms. The correct spectrum E, = h (n + %) of the harmonic oscillator as well as
symmetric operators are obtained by including the half-form correction.

In the following paragraphs I give a brief description of how the half-forms work in the case
of C™.

Definition 6. The canonical bundle of the polarization P is the complex line bundle K, for
which the sections are n-forms k = f(z,Z)dz1 A ... A dz, that satisfy

Lo k=0 j=1,...,n.

Q
N Q

j

The set of polarized sections of K, with respect to P are n-forms that satisfy ¢ o dx = 0. This
0z;

set of polarized sections is denoted by I'p(K,) whose elements are n-forms f(z)dz1 A ... Ndzy

with f(z) a holomorphic function on C".

In particular, the nowhere vanishing n-form ko9 = dz; A dzs A ... A dz, is an element of
I'p(K,). The square root of K, is a line bundle K,% with the property that if v; and v, are
two sections of Ké, then v; ® v = Vi1 is a section in I'(K,). That is, vjv, is an n-form on
C™. The space of polarized sections of Ké with respect to the holomorphic polarization P is
denoted by I'p (Ké) The sections vq,v0 € I'p (Ké) have the property that 11 ® vy = 110 is
a section in I'p(K,). That is, v112 is a holomorphic n-form on C" (a holomorphic function f

1

times kg). The half-form vy = \/dz; A ... A dz, is a nowhere vanishing polarized section of K,
with the property that Vg = Kg.

Let me give a brief description of how the Hermitian structure is defined in the space of

half-forms. Consider a complex (holomorphic) polarization G on a general symplectic (Kéhler)

manifold M of complex dimension m. Let me assume that the canonical bundle K,, of the

1
polarization G admits a square root which is denoted by K3. The pointwise magnitude of a
1

section v1 of K3 is defined by

(177) (i, m) = (W2, 03)?
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where (V%, 1/12> is a unique positive function that satisfies the following equality

(178) (1" (™R AR = (R D) e

The term €, in (178) is the Liouville volume form on M. The factor (—1)""(—2)™ is set so that

the function (v2, ) must be real, see [17, Chap.23]. Since the Liouville form e, is a nowhere

vanishing 2m-form on M, then 1/12 A V2 is a nowhere vanishing 2m-form on M. Hence, v is a
1

nowhere vanishing section of K}3,.

Let me determine the Hermitian structure in the space of half-forms for the null quadric
Q. and C". The canonical bundle KQm of the holomorphic polarization G on @,, admits

a square root I?Q%m See [33] for details. The nowhere vanishing section 7y of K %m satisfies
Ry = 1’)3 = Ko, where the m-form g is a polarized section of K Om and is given by

1 m—+1 ' 3
(179) ﬁo(a) = W ; (—1)764jda1 ANdag A ... A daj Ao ANdoy -

In a subset U; C Qm where a; # 0, Ko can be written as

N o1
Ho(a) = (—1)]7d061 VANA dOéj_l A daj+1 A A dogpg -

204j

A straightforward long calculation shows that
(180) (1) (=0)"Fo Ao = 27 |a|" 2e5(a),

where e5(a) is the Liouville volume of TFS™ 2 @,,. The proof of proposition 49| gives the
details of how equality is obtained, see appendix B. It follows from equality
that (D2,02) = 272
277 |af 5L

|o|™=2. Hence, the pointwise magnitude of 7y is given by (o, %) =

1

For the case of C" the Hermitian structure in the space of sections K, is a constant
function. Take the nowhere vanishing section vy = +/dzy A ... Adzs and a straightforward
calculation shows that

(181) WBAR=da .. deg Ndzi A ... Ndz, = €, (2).

Equality (181) implies that (vg,19) = 1. Hence, the pointwise magnitude of 1y is equal to
1

one. The space of polarized sections including half-form is denoted by I'p <L°"" ® Kﬁ) The

1
sections in I'p (L”” ® Kﬁ) can be written as r(z) = s(z) @ vy = s(2)vy with s(z) € I'p (L*").

1
The pointwise magnitude of r(z) € I'p <L‘”" ® Kﬁ) is given by

|7“(Z)|2 = IS(2)|2 (vo, 1) = |f(z)|2€*%|z\2
The squared norm of r(z) is calculated as follows

18 EI = g O = s [ @R ).

1
Every r(z) € I'p <Lw" ® Kﬁ) gives a holomorphic function f(z) on C". So if it is assumed

1
that the integral in (182)) is finite, then the space I'p (L“” ® Kﬁ) can be identified with the

space L7, (C",dv)(z)) as well.
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Let f be a function on C™ that preserves the polarization P, and fis the corresponding

1
operator that preserves the space I'p(L“"). The operator Q¢ acting in the space I'p(L“" ® K37 )
is given by

(183) Qr=Ffol—hI®Ly,).

The action of @f on ri(z) = s1(2)v is given by

~ ~

(184) Qs (r1) (2) = f(s1)(2) @ L(vo) — ohl(s1)(2) ® Lx, 10
= f(sl)(z)vo —h (sl(z)ﬁxfyo) .

The Lie derivative Lx, vy satisfies Z(EXfl/o)l/o = EXfyg, so it can be calculated from the
following equality

(185) 2(£Xfl/0)1/0 = ﬁXf (/i(]) .
For the functions zj, Zj, 7,k = 1,...,n a straightforward calculation show that £ x., k0 =0 and

L Xz, Ko = 0. Hence, it follows from equality (184)) that the sections (@zﬁ’) and (@gjr> are
given by

(@) )= Gis) (2o, (Qs7) (2= Gis)@m.
It follows from equality that

186 (Qur) ()= uSEe B, (@5r) ()= (n5L) e .

Equality 1’ implies that in the space L%OZ(C”,dVE) the operators @Zk, @gj can be written
A ~ 1
as Qz, = 2k, Qz = h%. Hence, the space I'p(L¥" ® K,?) is also identified with the space B,,.
J

The following proposition is fulfilled for both polarizations the complex P and vertical V.

Proposition 10. Consider f,g smooth functions (physical observables) on C™, which satisfy
equation . The operators Qy = f@I—1MI® Lx,) and Qg =g@ 1 — 1Ml ® Lx,) satisfy

(187) [Q7,Qq) = —1hQs4) -

The proof of proposition [10| can be seen in [17, Chap.23].

3. Quantum Reduction

In section [1] it was considered reduction at the classical level, which amounts to passing from
C™ to the symplectic quotient J,1(0)/G,,. Alternatively, I may first quantize T*R"™ = C" by
looking at the space of polarized sections with respect to the polarization either the vertical
or the complex and then perform reduction at the Quantum level. According to Dirac [31],
the classical constraint J,(z) = 0 must be enforced on the quantum states (space of polarized
sections). The Geometric Quantization provides an action of g, on the space of polarized
sections. That is, an element £ € g, is assigned the operator f£ = —1hVx s + J¢ which is the
quantization of the Hamiltonian function J¢(2) = (Jn(2),§). The classical constraint J,(z) =0
is enforced on the polarized sections by defining that the admissible quantum states are the
polarized sections that satisfy the following equation.

(188) Je(s) =0, VE€gn.

The Quantum Reduced Space HC" is the set of polarized sections s including half-form
correction with s satisfying equation (188). In the next paragraphs the space H%" will be
obtained for each group G,.
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3.1. The Quantum Reduced Space HU(!). Let me construct the action of u(1) on the
space of polarized sections. Every element & € g4 = u(1) can be written as £ = 0 with 6 € R.
The Hamiltonian function Jyy is assigned the following operator

(189) Juy=—1hVx, +J.

The operator in will be denoted with the same symbol for both coordinates (u,v) € T*R*
and z € C*. A straightforward calculation shows that the function J,g(u, v) in satisfies the
condition in , so the operator J:(; preserves the space 'y (L“*). A short calculation shows
that the function Jy(2) in satisfies the condition in

the space I'p(L“*).

On the complex side let me take s1(z) = f1(2) = I'p(L**). The section (j;g 51)(2)
can be written as

), so the operator J,g preserves

~ ~ 1 2 8 a 8 8
(190) (Jups1)(2) = (Quf1)(z) e 2" with waﬁh(’(za*h+ af; ag aﬁ)

If @19 f1 = 0, then equality j\zg s1 = 0 holds. The space of admissible states is denoted by
1 -~
I'p (L“"*)U(l) whose elements are given by s(z) = f(z) e~ 27 where f satisfies Q0 f = 0.

The associated action of & = 0 on the half-form 1 is by the Lie derivative Lx oo and
satisfies

2(£XJl0VO)VO == LXJlgl{’O .
The Lie derivative Lx, , 50 can be calculated as Lx, o0 = d (ijgl‘io) +ux, edli(), see [43] for

details. The top-degree form kg satisfies dkg = 0, and it is not difficult to see that d (L X, mo) =
0 so that the equality Lx 1,0 = 0 holds, which in turn implies Lx 7,0 = 0.

Following [14], let me construct the action of (u(1))c on I'p(L**). Consider Ec=E&+me
(u(1))e with & = 0, = 1p € u(1). I can assign to &C the operator J&C = Jy + sz whose

action on the section s1(z) € I'p(L*¥*) is defined by chsl Jlgsl 41 stl The section J&Csl
can be written as

'ffcsl(z) = (@fcfl)( )e 2h|z‘ with Q\&cfl = @19 fi +Z@up fi,

where @w f1 can be written as Q\zgfl in 1) If s1(z) e'p (L‘”4)U(1), then equality jgcsl =0
holds.

The infinitesimal generator of 1 € (u(1))c is the vector field J(Xy,,), where J is the
complex structure defined in (85)). The associated action of v on the half-form vy is by the Lie
derivative L x ) and satisfies

2 (Lo ) = Laxs,, o

It is not difficult to see that £ x ) KO = 0 which in turn implies £ x L 0.

1

N\ U
The Quantum Reduced Space is denoted by I'p (L“"1 ® K 42) whose elements are sec-

1
tions r(z) = s(2)vdz1 Adza ANdzs Ndzg € Tp (LM1 ® Kf) with s(z) € I'p (L“’4)U(1). The

1 1\ V(@)
space I'p <L‘*’4 ® Kf) is identified with By, so I'p <L"J4 & Kf) can be identified with the

space B’"ed of functions in By that belong to the kernel of @29

Since the action of Jg and ch is displayed on the action of ng and Q&C on f which is

an element in By, then Q. and Q&c can be regarded an action of u(1) and (u(1))- on By
respectively. Let me exponentiate these actions.
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Let me denote by T 6,7\ with A € C* the action of U(1),C* on By respectively. The
groups U(1),C* are commutative, so instead of use the inverses let me define its action on B4
as follows

(191) (Teo f)(2) = f(@e(2),  (Dnf)(2) = f(Pa(2))
where @0 (2), ®(z) denote the action of U(1),C* on C* respectively.

Proposition 11. Functions f € BJ*? are invariant under the action of U(1) as well as of C*
on C*. Thus the Quantum Reduced space can be identified with the space

(192) plVWe — { f(2) € Bylf (@A(z)> - f(z)} with\ € C* .
Functions f € BSIU(D)C can be written as f(z) = ¢(a(z)) with ¢ defined on Q3.

Proof. Let me first show that functions f € BJ°? are invariant under the action of U(1) on
C*. The integral curves of the vector field X ,(z) are given by v(t) = ®uue(z) with ¢t € R,
and ®,us(2) is defined in . A calculation shows that equation Q,9f = 0 can be written as
follows

(193) Quf = —hXs,(f) = —h{ Jg, f} =0.
Equation (193]) implies that f is constant along the integral curves (t) = ®u0(z). Namely,
(194) f (cﬁene (z)) = f(2).

Equality indicates that functions f € BJ°? are invariant under the action of U(1) on C4,
i.e, Tuof = f. Functions in BJ¢¢ are also constant along the integral curves y(s) = ®4—s0(2)
of the vector field J(X,,)(z) which is the infinitesimal generator of 1) = 1(1). Since f(z) is
holomorphic, then a calculation shows that

d
Equality (195 implies that f satisfies
f(Bee() = £(2).
Above equality can be written as follows
(196) Te—sapf - f
Let me apply T..0 on equation ([196)), so that the following equality holds
Too (To-so f) (2) = | (Bo (Be-ae () ) = S(2).

Above equality follows from the U(1)-invariance of f and from definition of the action of U(1),
C* on C* can be written as

(197) Tooriso) [ = f(Rariorise) (2)) = f(2).
Equality 1’ indicates that f € B, ed ig invariant under the action ® A(2) of C* on C.

(195)

Since the orbits @, (z) are the fibers of the map pa3), then f € B&U(l))c is constant along
the fibers of p43)(2). Hence, under the identification of My/C* with Qs, f can be regarded
as a function on Q3. That is, functions in BflU(l))C can be written as f(z) = ¢(a(z)) with ¢ a

function on Q3 that satisfies 687?;_ =0,7=1,...,4 (holomorphic).

On the other hand I can compute the derivatives of f(z) = ¢(a(z)) € BiU(l))‘c with the
chain rule on the function p(43)(2) = a(z), so that a calculation shows that Q.9 f = 0.

O



3. Quantum Reduction 39

On the real side let me take s1(u,v) = ¢1(u) e 27 € Ty (L¥4). The section J,g s1 can be
written as

(198)

~ ~ — 2y . A 9
(Jze 81) (u,v) = (QJzG 901)(u,v)e Y with Q.91 = 1h0 <u2 aui — U

dp
ou

01 dp1 >

1
+ uq —us
2 8’&3 8U4

If @19 w1 = 0, then equality :]\Z@ s1 = 0 holds. The space of admissible quantum states is
clenoted by T'y (Lw4)U(1) whose elements are given by s(u,v) = ¢(u) e~ 2"V where ¢ satisfies
Quy=0.

The associated action of & =10 € u(1) on the half-form v is by the Lie derivative Lx oo
and satisfies

2(/.,‘)(‘]10 V())V() = ﬁXJze Ko .
A similar argument to the complex case shows that Lx 1,k0 = 0 which in turn implies
U1l

Lx 7,V0 = 0. The Quantum Reduced Space is denoted by I'y <Lw4 ® Ké () whose ele-

ments are given by 7(u,v) = s(u,v)v/duy A dug A dus A dug with s(u,v) € Ty (L“’4)U(1). Let
1 1\

me recall that T'y (L“’4 ® K&) is identified with L?(R*, du), so I'y (L“"1 ® K‘Q/> can be

identified with the space L?(R*, du)"? of functions in L?(R*, du) that belong to the kernel of

Q. defined in ((198)).

Proposition 12. Functions in L*(R*, du)™*? are invariant under the action of U(1) on R*.
Thus the Quantum Reduced Space can be identified with the space defined by

LY R, du)"V) = {p € L2(RY, du)| 0 (P, (1)) = o(u)} .

Proof. The integral curves of the vector field X, are given by (t) = ®g,, (u,v) with t € R,
and CiDRw (u,v) is defined in . A calculation shows that equation @,y ¢ = 0 can be written

as follows
(199) Q= —1hX 1, (p) = —h{ Jig, ¢} = 0.

Equality (199) implies that functions ¢ € L2(R*, du)"*? are constant along the integral curves
v(t) = ®r,,(u,v). That is, the function ¢(u) satisfies the following equality

@ (®ry (w,0)) = @ (@r,y (1) = p(u).

Above equality indicates that ¢ is invariant under the action of U(1) on R*. O

3.2. The Quantum Reduced Space #°V(?). Let me construct the action of su(2) on the
space of polarized sections. Every element & € su(2) can be written as £ = a&; + b&a + 3
with a,b, ¢, d real numbers, and §;,j = 1,2,3 is the basis of su(2) in . The Hamiltonian
function J¢ in is assigned the following operator

(200) Je = —hVx, + Je.

The operator in (200 will be denoted with the same symbol for both coordinates (u,v) €
T*R® and z € C®. A straightforward calculation shows that the function Jg(u,v) satisfies the
condition in , so the operator jg preserves the space 'y (L¥8). A short calculation shows
that the function Jg¢(z) satisfies the condition in , so the operator jg preserves the space
Ip (L*8).

On the complex side let me take s2(z) = fa(2) eall” e I'p(L¥#). The section j\552 can be
written as

Jesy = (@§f2) e 2l with Qcfo = aQg fo +bQg, fo + Qg fo,
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where @gjfg,j =1,2,3 are given by

5. f, — ofp  of, Of  Of  Ofh Ofh  Oh  Of
(201) Q§1f2 N h<2182’1 2282’2+Z382’3 Z4aZ4+Z5aZ5 2682’6+Z782’7 2882’8

@§2f2 _ m<z23f2 3f2+ 0fa 3f2+z 0fo 8f2+z Ofa 3f2)

o, T Rlg_ - T RA5T TR 65 — A5 8o~ T ATy
8z1 82’2 82’3 (92’4 82’5 82’6 (92’7 82’8

A df2 df2 df2 df2 df2 df2 df2 df2
= h{z1=— —= —= —= —= —= —= —=.

Q&’ f2 (Zl 82’2 + =2 82’1 + =3 824 + = 823 + % 826 + =6 825 + o 828 + 8 827
If égj f2 = 0, then equality 17552 = 0 is fulfilled. The space of admissible quantum states is
denoted by I'p (L“’S)SU@) whose elements are given by s(z) = f(2) e~ml’ e Tp (L*®), where
[ satisfies Q¢ f = 0.

The associated action of £ € su(2) on the half-form 1 is by the Lie derivative Lx Te and

satisfies

2 (EXng/O) vy = ﬁXngi().

It is not difficult to see that EXJ5 Ko = (aﬁXng Ko + bEXJé2 + c.CXJ%) ko. For the basis &;,j =
1,2,3 of su(2) a straightforward calculation shows that Lx Je, K0 = 0 which in turn implies
Lx 7e ko(z) = 0. Hence, equality Lx V0= 0 is fulfilled.

Following [14], let me construct the action of (su(2))s = sl(2,C) on I'p (L:"B). Consider
&c € (su(2))e with & = £+ m, §,m € su(2). I can assign to &c the operator Je. = Je + oJy,
whose action on s(z) = f(2) el eTp (L*8) is defined by j&c s = j\g s+ Zj; s. The section

j&c s can be written as
~ ~ _ 1 2 . ~ ~ ~
Jee 5= (Q&cf) o 2l with Qe f = Qef +1Qy f,

where @nf can be written in terms of the operators Q\gj defined in 1} Ifs(z) eTp (L“’s)SU(Q),
then equality j&c s = 0 holds.

The infinitesimal generator of 17 € (su(2))c is the vector field J(X}, ), where J denotes the
complex structure defined in . The associated action of 1 on the half-form 14 is by the Lie
derivative Ly x ) and satisfies

2 (‘CJ(XJW)VO) vo = Lj(x,,)ko-

A calculation shows L x )0 = 0 which in turn implies £ x V0 = 0.

1

1\ SU2)
The Quantum Reduced Space is denoted by I'p <L‘*’8 ® K¢ > whose elements are sec-

1
tions r(z) = s(z)v/dz Adza A ... Adzs with s(z) € Tp (L5)5Y®) " Since Pp(L*s ® KZ) is
1

SU(2)
identified with Bg, then I'p <st ® K, 82> is identified with the space Bg ed of function in

Bs that belong to the kernel of @gj,j =1,2,3.

Since the action of both jg and féc on sections s(z) = f(2) el is displayed on the
action of Q¢ and Q¢. on f which is an element in Bg, then Q¢, Q¢. can be regarded an action
of su(2) and (su(2))c on Bg respectively. Let me exponentiate these actions.

Let me denote by T, Ty the action of g € SU(2), gc € SL(2,C) on f € Bg which is defined
by

(202) (Tyf)(2) = f(@4-1(2)),  (Tyef)(2) = f(@,1(2)),
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where ég—l, @961 denote the action of SU(2),SL(2,C) on C¥ respectively. The inverses Tt
~1 —1 _ —1 _
and T, " are defined by 7,;" =T~ and T, " = Tg(gl.

Proposition 13. Functions in B are invariant under the action of SU(2) as well as of

SL(2,C) on CB. Thus the Quantum Reduced space can be identified with the space

(203) B L 1(2) € Bolf (84c(2)) = f(2)} . gc € SL2,C).
: (SU(2)) , , :
Functions f € By © can be written as f(z) = ¢(a(z)) with ¢ defined on Qs.

Proof. Let me first show that functions in Bg? are invariant under the action of SU(2) on

C8. The integral curves of X, are given by v(t) = D¢ (z) with t € R, and ® e (z) is defined
in . Since f(z) is holomorphic, then equation @5 f =0 can be written as follows

(204) Qcf = —h (Xy.(f)) = —h{Je, f} = 0.

Equation (204) implies that f(z) € B5e? is constant along the integral curves ®(z). That is,

(205) f(q)etg (Z)) == f(Z), i.e, T(etg)—lf = f

Thus f is invariant under the action of SU(2) on C®. Functions f € Bged are also constant
along the integral curves y(t) = ®qun(z) of the vector fiel J(X}, ), which is the infinitesimal
generator of ). Since f(z) is holomorphic, then a calculation shows that

d

(206) hs|  F o) = hI(X5,)() = 0.

Equation (206) implies that f € By°? satisfies the following equality

(207) f (&)etm(z)) = f(2), i€, Timf=Ff.

It follows from equations (205), (207) and properties of the inverses T{etn)-1,Ty-1,9 € SU(2)
that the following equalities hold

(208) Tiotmy-1 (Ty-1f) = Tgetmy—1f = f, i, f(@gem(2)) = f(z).

Equality (208) indicates that f € By°? is invariant under the action ®,.(z) of SL(2,C) on C¥.
BéSU (2)

€ is constant along
SU(2))

Since the orbits i)gc(z) are the fibers of the map ps 5), then f €
the fibers of p(g5). Hence, under the identification of M;/SL(2,C) with Qs, f € Bé
be regarded as a function on Q5. That is, f € BéSU(Q))C can be written as f(z) = ¢(a(z)) with

€ can

¢ a function on Qs that satisfies %@ =0,7=1,...,6 (holomorphic).
On the other hand I can compute the derivatives of f(z) = ¢(a(z)) € BéSU@))C with the
chain rule on the function p(s 5)(2) = a(z), so that a calculation shows that Q¢, f = 0. O

On the real side let me take sa(u,v) = po(u)e 287 € T'y(L*s). The section jgsz can be
written as

jgsz = (625902) e 2" with @5902 = a@gl w2 + 5@52902 + 6@53<P2>
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where @gjgog,j =1,2,3 are given by
(209)

N 0 o) 0 0 0 0 o) 0
Qe 2 = lh(m P2 T s ua S s — g us e — us 902)

8u1 8u2 8U4 8U3 au(; 8U5 8U7 (9U7

Q w2 = h ul&m —u O +u O —u Op +u 0o —u O +u O —u 00
£¥2 8U3 3 8u1 2 8U4 4 8’&2 > aU7 7 aU5 6 3u8 8 8u6

O.00 = th(u O¢2 a%f92+u 02 5802+u Op2 3¢2+u Opa 02
€72 +ouy L ouy 2 Jus 3 g " oug % oy ® Jug Sous )’

If Qéj wo = 0,7 = 1,2,3, then equality jfsz = 0 is fulfilled. The space of admissible quan-
tum states is denoted by F‘L(LWS)SU@) whose elements are given by s(u,v) = p(u)e 2% €
I'y (L*¥®), where ¢ satisfies Q¢ ¢ = 0.

The associated action of £ € su(2) on the half-form v is by the Lie derivative £x s and
satisfies

2 <£XJ§I/0> Vg = EXJEKDO .

A similar argument to the complex case shows that Lx s ko = 0 which implies Lx V0 = 0.

1\ SU@2)
The Quantum Reduced Space I'y, <ng ® K 5) is the set of polarized sections r(u, v) =

1\ SU@)
s(u,v)V/duy ANdug A ... A dug with s(u,v) € Ty (LwS)SU(Z). Moreover, I'y/ (L“8 ® K@) is
identified with the space L%(R®, du)"*? of functions in L?(R®, du) that belong to the kernel of
ng,j =1,2,3 defined in 1'

Proposition 14. Functions in L*(R® du)™? are invariant under the action ®,(u) of SU(2)
on R® =2 H. Thus the Quantum Reduced Space can be identified with the space

(210) LA(RS,du)Y® = {p(u) € LA(RE, du)|p (@4(u)) = p(u)} .

Proof. Under the identification T*R® = H? x H? the integral curves of the vector fields X Je
can be written in quaternion coordinates as follows

D1 (u,v) = Pure (q1, g2, p1,P2) = (etﬁ q1,e' go, e’ pl,etgpz) :

Equation @54,0 = 0 can be written as follows

(211) Qcp = —thX 0= —h{Je, 0} =0, j=1,2,3.

Equation (211)) indicates that ¢ is constant along the integral curves of X ;.. That is, o satisfies
the following equality

(212) o (Burc(1,0)) = 0 (Be () = p(w),

where ® ¢ (u) denotes the action of SU(2) on R® = H? in . It follows from equality (212))
that functions ¢ € L?(R®, du)"*? are invariant under the action of g € SU(2) on R® = H2. O

For the following chapters I will denote the Quantum Reduced space on the real and complex

side by L2(R", du)%" and BlEne respectively. Functions ¢ € L2(R™, du)®" are invariant under

the action of G, on R”, and functions f € B%G")C

cn.

are invariant under the action of (G,,)c on
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3.3. Reproducing kernel of B(G")(C

)c

The following calculations are done in order to get
the reproducing kernel in BSL "
equality holds

. From the reproducing kernel property in B, the following

(213) / f(w) Kp(z,w)dv(w) YV feB,.
It follows from equation (213) that f(®,(z)) can be written as
(214) f (<i>9<z>) = [, F@)En (8g(2),w) dviw),

where ég(z) denotes the action of G,, on (C”, n = 8,4 in , (mj respectively. A straight-
forward calculation shows that the kernel K, (z,w) satisfies K, (®4(2), ) =K (z D e (w )),

where g* denotes the conjugate transpose of g 6 Gy. Let me consider the change of variable
w' = By (w) = w = &y(w'). The integral in can be written under this change of variable
as follows

(215) £(802) = [ 7 (Bo(w) Kalesw!) @k (8y(0))
The Gaussian measure is invariant under the action of G, on C", that is, dv!! (i)g(w’ )) =

dvli(w'). If f € B, satisfies f (@g(w’)) = f(w'), then equality (215]) can be written as

(216) FE) = [ @)Kz w) Vi) = [ fw)Kn (8y(2),w) dvi(w).
Ccn Cn

Functions in B,, invariant under the action of G,, on C™ are also invariant under the action
of (Gp)c on C". But the Gaussian measure dv/’ is not invariant under the action of (Gy)c,
so that I cannot write a similar equality to (216|) involving the action of (G, )c. I write the

equality 1' in a Gp-invariant form in order to obtain the reproducing kernel of BéG")C.

Proposition 15. The reproducing kernel in the space B&G")C is given by K (z,w) = Ky (a(z), B(w)),
where B(w), a(z) are elements in Qp,. The function &, (a(z), B(w)) is given by

3—

m — alz) - B(w) e 20(2) - B(w)
ﬁﬂ(a(z),ﬂ(w)):r< 1>< () - B( )) 1, [ V2)-B@)

2 2h2 2 h
Here Im—3 is the Bessel-function and n = 8,4, m = 5,3 respectively.
2
I will use the following definition of the I-Bessel function for the proof of proposition

(217) /S i) gu = 2 (5)1” Lo ,(r).

Proof. The groups G,, are compact and are endowed with a non-normalized volume form
dVol(G,,) which is the wedge product of the components of the Maurer-Cartan form Q = g~dg.
Equality (216) is integrated over G,, to remove the dependence of g. Namely,

/G n[@f(w)ffn (@y(2),w) dvi(w >} dvol(G / F)AVol(G)

I can interchange the integration order in the above integral. The following is obtained

(215) L1 i | K (B (2).) avol(Gy)| ) = ).

Consider the following integral

(219) Volan) / K (By(2).w) dVol(Gr) = Kn(w, 2)
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For computing the integral I identify S* k = 1,3 with G,,,n = 4,8 rather than give a
parametrization of G, in order to use the integral definition of the I-Bessel function in .
In chapter 3, I consider a parametrization of G, and dVol(Gy) can be identified with the
area form of the corresponding sphere. I make the computations for n = 8 because the group
Gg = SU(2) is not commutative and take dVol(Gg) = df2gs. The sphere S? is identified with
SU(2) through the following map

330 — ’L$3 —.152 — 1T

1
(220) xr = ($0,$17$2,x3) S 83 — g = <{1§‘2 . ’LLUI J,’O +Z$3 > € SU(Q) .

The kernel Kg(®,(z),w) is given by Kg(®,(2),w) = e ®o(D)W with g given in 1) From
definition of the action of SU(2) on C® in a straightforward calculation shows that

<i>g(z) SW = x001 + 1‘102 + .%‘203 + 1'304 ,
where the functions C},j = 1,2, 3,4 are given by

C1 = 2W1 + 2Ws + 23W3 + 24W4 + 25W5 + 26We + 27W7 + 28W8

Cy = (—Z)(Zg@l + 21W9 + 24W3 + 23W4 + 2Ws5 + 25We + 27WR + 28@7)
C3; = (—1) (22@1 — Z1W2 + 24W3 — 23W4 + 2eWs5 — Z5We + 28W7 — Z7@8)
Cy = (1)(20W2 — 21W1 + 24Wy4 — 23W3 + 26We — 25W5 — 27W7 + 23Wg) -

Let me define the following vector
1
T /T I+ CE CE
The term e7®9®T can be written as er29() T — o7 VOIHCIHCI+CEan e integral in
with respect to the variable z € S? is given by
1

Area(S3) Jgs
Taking r = %\/012 + C2 + C3 + C? and Area(S®) = 272 it follows from equality li that

n (C1,C,C3,Cy) .

1 2 2 2 2 ...
oh Cl+CQ+CS+C4ZT]dQS3(£U).

(221)

[ OHGRCEECE en dQgs (z) = 2h L <1 \/012 +C2+C2 + Cf) -
Area(S3) Jgs VC?+C3+C2+C3 h ’

From definition of the functions Cj,j = 1,...,4 a straightforward computation shows that
\/012 + C35 + C3 + C% = 2y/b1by — ajaz, where aj,bj, j = 1,2 are given by

(222) b1 = z0wW9 + 24Wy + zgWe + 28Wg, by = z1W1 + 23W3 + 25Ws + 27W7

a1 = 2W1 + 24W3 + 2gWs + 28W7, A2 = 21W2 + 23W4 + 25We + 27WS -
Equality (221)) can be written as follows

1 1 2 2 2 2 h 2
223) ——— erVOTTOHEHCITn 4O () = ——— T <\/b by — aia > .
( ) Area(S3) 53 g3 ( ) m 1 7 102 102

Let me denote by fj(w),j =1,...,6 the conjugate of a;(z) in the variable w. Take «o;(2),j =
1,...,6 as in (140) a straightforward computation shows that

2a(z) - B(w) = 24/b1by — ajaz.
Hence, equality (223]) can be written as

WOTRGI O G en gy gy () = —— 2, (1 20(2) ,@(w>> |
Blw)

1
224) —— [ o
Area(S3) /53 20(2) -
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Equality Kg(w, z) = Rs(a(z)), f(w) holds from above calculations. For dimension n =4 I can
consider the action ®..s(2) on C* and identify § € S!, so that a similar procedure can be done

to show that K4(z, w) = Ru(a(z), B(w)) = Iy <;L\/2a(z) ,6’(w)> .

Functions in B¢ can be written as f(z) = ¢(a(z)), so that equality 1' in a G,
invariant form is given by

p(a(2) = | ¢(B(w))Rn(alz), B(w))dvi(w) ¥ f e BEne,

Cnrn






Chapter 3

Geometric Description
of The Space &, and
Quantization Does Not

Commute With
Symplectic Reduction

In this chapter I present one of my main results. I show that the Bargmann-Todorov spaces
Em,m = 5,3 can be obtained from the spaces B,EG”)C, n = 8,4 by using tools of Geometric Quan-
tization either with or without half-form correction and along with Symplectic Reduction. In
the situation without including half-form correction, Geometric Quantization and Symplectic
Reduction do not commute. However, the inclusion of half-forms makes that Symplectic Re-
duction and Geometric Quantization commute asymptotically in the semiclassical limit & — 0.
The chapter presentation follows the structural ideas of reference [18].

1. A Map of Guillemin-Sternberg in the Presence of Half-Form Correction

In the next two sections I show that the inner product in the space &, m = 5,3 can be

obtained from the corresponding one in B;lG")C, n = 8,4 respectively. Let me recall that each

1

Gn
r(z) € Tp (LW" ®KT§> gives a function f(z) = ¢(a(z)) € B{¥C which descends to a

function ¢(«) on Qm The squared norm of r(z) will be expressed as the squared norm of
d(a) on J,;1(0)/G, = @y in terms of the inner product in &, see theorem [3| below. To do
that, the pointwise magnitude \r(z)\z of r(z) is computed on the stable set M, see proposition
in the next section. The integration of ]r(z)]Q on M, is decomposed into integrals on g,
and J;1(0). From the integration on g, I obtain an integral on J;1(0) that involves |r(z)[%.
In passing from the integration on J;,(0) to the integration on J,(0)/Gp = Qm, I have to

S|
relate |r(2)|? to the pointwise magnitude |[F(a)|? of the section 7(a) € T'g <L"J ®K? > that

Q'IYL

1

Gn
is assigned to r(z) € I'p <L°J" ® Kﬁ) through the Guillemin-Sternberg (GS) map S, see

> of holomorphic sections including half-form

-l

equation (228)) below. The space I'g <L‘3 ® K

m

47
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on Q,, is obtained from geometric quantization of the Kahler manifold <Qm, W= —zﬂé@\a\),
which is described in the appendix B.

From the theory of compact Kéhler manifolds, the complex structure over the upstairs
manifold descends to the downstairs manifold so that the canonical bundle of the complex
polarization over the upstairs manifold is identified with the canonical bundle of the complex
polarization over the downstairs manifold, and this identification gives rise to a map between
half-forms. See [18, Thm 3.1] for details. Indeed, this theorem establishes a GS map including
half-form correction between the “first quantize and then reduce” space and the “first reduce
and then quantize” space and does not make use of the compactness of the manifolds. Even
though C™ and Qm are non-compact Kihler manifolds, the descent of the complex structure
on C" to Q,, is carried out in such a way that I can adapt the procedure of the compact case
to construct a GS map including half-form correction.

Let me first describe the GS map without half-form correction. V. Guillemin and S. Stern-
berg introduced in [14] a linear map between the “first quantize and then reduce” space and
the “first reduce and then quantize” space. This map is bijective but non-unitary with respect
to the inner product of geometric quantization. See [18] for details. In my case the GS map
without half-form correction is given by

(225) An :Tp(Lom) " —Ta(L7).

Following the remark of B. Hall and W. Kirwin in [18] for the non-compact case, the definition
of A, is as follows. The section s(z) € I'p (Lw")G" is restricted to J,1(0), and then from the

identification of (J;,*(0)/Gn,&) with (Qm,(& = —Z\/§58|a|) let it descend to a holomorphic

section 5(«) € T (L“A’) The map A, is not unitary as it occurs in the compact case, see section
of this chapter. Although the GS map is not unitary, the authors of [18] showed that it can
be extended to an asymptotically unitary map in the semiclassical regime & — 0 by including
the half-form correction. In this section, the map A, will be extended to a map including the
half-form correction. Namely,

1\ Gn 1
(226) S, :Tp (L“”@Kﬁ) s Te <L“’®KQ? )

The map S, is asymptotically unitary, which is discussed in section [3] of this chapter. The
definition of S, is more involved than that of A, due to the fact that the map .S, must include
a mechanism for changing the degree of half-forms, which is described in the next subsection.

There is an important difference between the maps A,, and S,. The pointwise magnitude
of a section s € T'p (L*)%" on J;1(0) is the same pointwise magnitude of the corresponding
section A, (s) € I (L*). That is, for each zg € J,,*(0) the following equality holds

(227) [5(20)* = | 4n(s)[* ([20]) -

In contrast to A,(s), the pointwise magnitude of S,(r) does not agree with the pointwise
magnitude of the original section 7. I will show (Theorem [2) in a later on subsection that for
20 € 3., 1(0) the following equality is fulfilled

(228) [Sa(r)[* ([20]) = 272Vl (G - 20) | (20)

with d the dimension of the group G,,, and Vol (G, - z0) is the volume of the G,-orbit through
29. See lemma [5 below for the expression of Vol (G, - z9) in terms of the Riemannian metric
B. The same equality (228]) holds in the compact case, see equation (3.6) in [18]. The volume
factor Vol (G, - z9) in is not a constant function on J;!(0). That is, the G,-orbits in
J3,1(0) do not all have the same volume. Furthermore, the term Vol (G,, - 29) in will
cancel the volume factor in passing the integration on J1(0) to J,,1(0)/Gp = Qpm, allowing S,,
to be an asymptotically unitary map.
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The calculations of the following subsection provide an explicit example of the theory de-
veloped in [18), Sect. 3, Sect. 4], but I adapt those to the case of C™.

1\ Gn 1
1.1. Construction of the map S, : I'p <L“’” ® Kﬁ) — T (L“’ RK? ) This
gives the proof of the following

Theorem 1.

(Gn)C

1 1
(i) There is a linear map Sy, : I'p <Kﬁ> ‘ sv—velg <K? ) unique up to a constant

with the property that

for n=4,m=3 tx (V?) = zpa’g)/y\2
for n=8,m=5 Lpi Xog) (V%) = zpz‘&g’)i/\? .

1 Nt
(ii) There is a linear map Sy, : Tp(L* @ K2)% 3 5(2) vy — 5(a) Dy € Tg(L¥ ®K5 ) unique
up to a constant, which is defined by

Su(s(2)0) = An(s(:)) ) Vs € Ta(L)%, € T (K3 )

1

This map takes holomorphic sections in T'p(L¥" ® Kﬁ)G" on My to holomorphic sections in
.ol .

Fg(Lw®K5 ) on Q, .

1.1.1. A. Here I construct the GS map including half-forms for dimensions n = 4,m = 3.
Before considering half-forms, I have to first work with holomorphic four-forms on M, which
are given by

(229)  o(z) = f(2)ko(z) with ko(z) =dz Adzog Adzs ANdzgy and f holomorphic.
The action of 0 € u(1) on forms o(z) is by the Lie derivative (EXJ90> (z) with X, the

Hamiltonian vector field of J, in . The U(1)-invariant holomorphic forms on M, are
those for which (L',XJ“9 0') (2) = 0. From definition of the Lie derivative <£XJ19 cr) (2) =

d (LX o O’) () + (LX e da) (z) it is not difficult to see that the U(1)-invariant holomorphic

forms on M; are given as in (229)) with f a U(1)-invariant function, i.e, f (@ele(z)> = f(z).

Let me recall that every U(1)-invariant holomorphic function f is also C*-invariant. The set of
holomorphic four-forms on M, invariant under the action of C* is denoted by Q40) (M 5) (U)e
whose elements are given by o (z) = f(z)ko(z) with f(z) = ¢(a(z)), where ¢ is a function on
Q3 that satisfies a%bj =0,5=1,...,4.

U)e to a holomor-

Now I will descend an element in o(z) = f(2)ko(z) € Q40 (Ms)(
phic three-form on Q3. I cannot restrict o(z) to J;'(0) and then from the identification
3210)/U(1) 2 Q3 let it descend to @3, as I did for sections in T'p (L‘“‘*)U(l) because the degree
of o(z) is higher than three. The process is to first contract o (z) with the infinitesimal gener-
ator associated to a basis of u(1) and then use the map p(43) : Ms — Q3 to push the result
down to Q3.

The Hamiltonian vector field X, of J, in with 6§ = 1 is the infinitesimal generator
associated to the basis of u(4) and is given by

0 0 0 0 9 _ 90 _ 0 _ 0
(230) X = z[(zla—zl —i—zza—zQ —zga—zs - z4a—z4> - (zla—gl —i—zQa—ZQ —238—23 —2’48724)} .
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The contraction of o(z) with X gives the following three-form on M;
B(=) = ex (f(2)ro(2)) = F()excrol2)
A calculation shows that 8(z) can be written as follows
(231) B(2) = f(2)1((z1dze — z2dz1) A dzg A dzg — (23dzg — z4dz3) Ndzy A dzg) .

Thinking of the action @, of C* on C* as a coordinate transformation a short calculation shows
that txro(Px(2)) = txko(z). Namely, txro(z) in is invariant under the action of C* on
C*. Hence, B(2) = f(2)txro(2) is invariant under the action of C* on C*.

The descent of B(2) = f(z)txko(2) to a three-form on Q3 trough the map p(a,3) is as follows.
It is clear that f(z) = ¢(a(z)) descends to ¢(ar) on Q3. To identify ¢txko(z) with a three-form
on Q3 I use that txkg(z) is invariant under the action \ilg,h of SL(2,C) x SL(2,C) defined
in . That is, thinking of the action \ilg,h as a coordinate transformation a calculation
shows that (exko) (¥, n(2)) = txko(z). Since the map p4,3)(2) intertwines the action of
SL(2,C) x SL(2,C) on M, and SO(4,C) on Qs3, then ¢xrg(z) must descend to a three-form
invariant under the action of SO(4,C) on Q3. Following [33], let me consider the nowhere
vanishing three-form Ro(a) on Q3 which is given by

4
1 . .
(232) 743\0(0[) = W E (—1)J6¢jda1 ANdas N ... N dOzj Ao AN damg,
Jj=1

where da; means that this one-form is omitted. The three-form %o (a) in is invariant under
the action of SO(4,C) on Q3, see appendix B for details. Now let me take aj(z),j=1,2,3,4in
, compute the differentials doj(z), j = 1,2, 3,4 and its wedge product so that the pull-back
p>("473)ﬁo is given by

(233) p?473)7£\0 = (ZleQ — ZQle) Ndzz Ndzy — (23d24 — Z4d2:3) ANdzy Ndzy.
It follows from equality (233]) that
(234) (v) pz‘473)7<30 =1xko Vze M.

Equality (234) indicates that txko(2) is identified with (i) Kg(cr) on Q3, where ko(«) is given
in (232). The above calculations show that 8(2) = f(2)txro(2) on M is identified with the
following three-form on Q3
(235) () p(e) Ko () -
In the other direction, let me consider the following three-form on Qs

o(a) = ¢p(a)ko(a), where ¢ satisfies g—fb =0,5=1,...,4

Qj
)(U W)

(4,3

as follows. Let me consider the frame {X ) Wi, Wy, W3} on Mg, which descends to the frame

{dp4.3 (W), dpa,3)(Wa), dp(473)(W3)} on @3 through the map p(43)(2). It follows from equal-
ity (234) that n(z) = ¢(a(z))dz1 A dza A dzg A dzy on My is the unique four-form that satisfies
the following equality

(236)  (1)@p()Ro(e) (dpa,zy (W), dpeazy(Wa), dpeazy(Wa)) =
d)(a(z))dzl ANdzog Ndzg N\ dzy (X, Wi, Wa, Wg) .

The pull-back p7? )6' is a three-form on M which can be extended to an element of (4:0) (M s

Then m(z) can be defined in any other frame by GL(4,C)-equivariance because the tangent
space at a point in the stable set My is a direct sum of the tangent space to the C*-orbit
through that point and the transverse directions, see equation in the next section. So
every frame is GL(4, C)-equivalent to one of the form {Y;, W7, Wa, W3} with Y1 = X or J (X),
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and I can define tx ko = —(2)t (x)ko. Equality (236) indicates that contracting and extending
are clearly inverse processes to each other. They therefore define a bijective map

&1 : Q4O (M) Y 5 0(2) = f(2)ro(2) — dla)Ro(a) € QB0 (Qs)
where Ro(a) is the unique form on Q3 such that equality tx o = (2) Pl 3)20 is fulfilled.

To finish the identification of forms o(z) = f(2)ko(z) € Q*0) (M&,)(U(l))‘c with elements
in QG0 (Qg) let me note that the contraction of o(z) = f(2)ko(z) with X is the same as
contracting it with (—:)J(X). The projection of X to the space T(%1)(C*) is given by

M, (X) = %(XHJ(X)).

A straightforward calculation shows that the contraction of o(z) = f(z)ko(z) with I1{(X) is
equal to zero. That is,

(237) i, (x) f(2)ko(2) = 0.

It follows from equality (237) that f(z)txro(2) = —f(2)(2)t s x)ko(2). The vector J(X) spans
the orthogonal bundle of J;'(0). That is, for z € J;'(0) and v € T,J;'(0) the following
equalities are fulfilled

B(v,JX) = ws(v, J(JX)) = —ws(v, X) = —dJy9=1(v) = —v(Jyp=1) = 0.

Thus the contraction of o(z) = f(2)ko(z) with X can be understood as contracting with the
direction normal to the zero-set 321(0). This is perhaps the natural way to restrict a top
dimensional form on C* to J;*(0). The GS map A, is defined as “restrict to J;'(0) and then
descend to J;'/U(1) = Q3”, so under the identification J;(0)/U(1) = Q3 the map &, can
be interpreted as first contracting, then restricting the result to Jll(O), and finally descending
the result to the quotient Qs.

()

Let me turn to the descent map for half-forms. Since elements of Q(*:0) (M S) © belong

to the space I'p (Ky) ‘E\I/ﬁl))c of (U(1))c-invariant polarized sections and elements of Q(3:0) (Q3)

belong to the space Fg(ff Qs) of polarized sections of the canonical bundle on Q3 (see appendix
~ 1
B), then the map &, identifies K4‘<iu(z) with KaEQg' Sections v € I'p | K} ‘gg(l))c have the

property that v? = f(z)dz1 A dzo A dz3 A dzy belong to T'p (K4) ‘5\3(1))@. Evaluate 2 on the
frame { X, Wy, Wy, W3} on M,. That is,

(238) (V(X W1, Wa, W3))? = f(2)dz1 Adzy A dzg Adzy (X, W1, Wa, W) .

Using the map &4 equality can be written as follows

(239) (X, W1, Wa, W3))? = (i)p(a)Ro(e) (dp(az)(W1), dp(az) (W), dpeaz)(W3)) -

The three-form xKo(a) in is a nowhere vanishing section of K 0, According to [33], the
1

~1 ~ ~1
square root K¢223 of K Os exists, and a section v € ' <K53> has the property that its square

2 eTlg (I?Qs) The three-form ¢(a)ko(a) is an element in I'g (IA(Q?)), so there is a section

1
velg Ké such that 72 = ¢(a)ko(a) . Therefore equality (239) indicates that &4 induces
3

a map between half-forms as follows

L\ ((U(MW)e ~ 2 2
Sy:Tp (K} )M Sv—velg such that (Sy(v))” = 64(v?).

~1
2
Qs
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1.1.2. B. Here I construct the GS including half-forms for dimensions n = 8, m = 5. The
calculations are more involved because there are more variables and infinitesimal generators, but
the procedure is similar to dimension n = 4. A calculation shows that the set Q(8:0) (M S) (SU@)e
of holomorphic eight-forms on M, invariant under the action of (SU(2))c = SL(2,C) consists
of elements ¢(z) = g(2)ko(z) with ko(z) = dz1 Adza Adzg A ... Ndzg and g(z) = ¢(a(z)), where
¢ is a function on Qs that satisfies %}Z =0,7=1,...,6.

Now I descend ¢ € Q&0 (MS)(SU(Q))

polyvector ( /\j X Je, ), j=1,2,3, where X J, are the Hamiltonian vector fields of the functions

¢ to a holomorphic five-form on Q5. Consider the

Je; in ([105)) associated to the basis of su(2). The contraction of ¢(z) with ( N X J§j> gives the

following five-form
(240)
B(z) = Lpi Xy, s(z) = LX g, O X O s(z) =g(2) LX e, OLX g O (dzy Ndza A ... Ndzg) .

Since ¢(z) is holomorphic, then contracting ¢(z) with ( N X J5j> is the same as contracting it
with the polyvector A? TI_ (X JE_). Hence, the five-form $3(z) can be written as follows

J
(241) B(Z) = LH_(XJég) e} LH_(XJ§2) e} LH_(X‘]€1)§(Z) .

The five-form 8(z) is invariant under the action of SL(2,C) defined in (136]). To prove this,
I calculate the Lie derivative of (z) regarding the infinitesimal generator of the action of
SL(2,C). Namely,

(242) £x,B(2) with Xgo =X, +JXy, j,l=1,2,3.
The following identity in [43, A.1.12] is used to calculate the Lie derivative in ([242])
(243) Lxtyo—ty o £x0=1t[xy]0;

where X, Y are vector fields and p is a k-form. From definition of 8(z) in (241) and equality
(243) the Lie derivative £x, 8(2) can be calculated as follows

(244)
ExocB2) = e () OU1- (X0 O (X ) £ S(2)H X0 T (X IOV (X )OI (X, ) (2)

U (X, ) © e T (X, )] O 4T (X, )S(2) (X, ) © b (X)) © Lo T (3, ]S (2)

Now let me calculate the commutators [Xg.,II_(Xy, )] in (244). I assume in the follow-

gc
ing computations that the vector fields X Je, JX Je, preserve the polarization P. That is,

[ngj, %} C P and [Jngj, %] CP. Fork=1,...,8, j =1,2,3 the following equalities are
fulfilled

(245) [JXJ%,JXJSJ - —[ngj,ngl}, [ngl,JXJgj] - J[XJEZ,XJgJ, j1=1,2,3.
Let me calculate the following commutator
1
[XQC,H_(XJ%)} - [ngj X 5 (X, — ZJXJ%)} :
1 1 1 1
|:XQC7H—(XJ§k)j| = §|:XJ‘Sj7XJ§ki| + §|:JXJEZ7XJ5k:| - §|:XJ§j7JXJ5k] - §|:JXJ£Z7JXJ§k:| .

The following is obtained from equations in (245)

[XQC,H_(XJ%)} - ;([XJ%,XJ&J —zJ[XJEj,XJEkD +;<[XJ£Z,XJEJ —zJ[XJEZ,XJng .



1. A Map of Guillemin-Sternberg in the Presence of Half-Form Correction 53

gc»

Since the vector fields X'jgj , ngl satisfy |:XJ£J_ , XJEJ = XJ[E_ . then the commutator | X, H_<XJ§k>
i
can be written as
[ch, H,(XJ%)} =T (X o)+ (X )
Now from the commutation relations of the Lie algebra su(2) and the fact that for any k-
form p equality ¢x o txo = 0 is fulfilled, the terms in (244)) that involve contraction with

[XEC,H,(XJEIC)} are equal to zero. Hence, the Lie derivative £x, 8(z) can be written as

follows

SX%B(Z) = LH,(XJ£3) © I’H,(XJEZ) o LH,(XJ&)EXBCC(Z)'
Since ¢(z) satisfies Lx,.s(2) = 0, then equality £x, 8(2) = 0 is fulfilled. Hence, 8(z) is
invariant under the action of SL(2,C) on C8.

The descent of B(2) to a five-form on Qs through the map pi5) - Ms — Qs is as follows.
Let me write B(z) = g(2)Bo(z) with By(z) = LX) OLX,, ©UlX, (dz1 Ndza N ... Ndzg). Tt is
3 2 1

clear that g(z) = ¢(a(z)) descends to ¢(a) on Qs. To identify By(z) with a five-form on Q5 I
use that 8y(z) is invariant under the action Y, of h € SL(4,C) defined in (137). To prove this,
the following result is used.

Lemma 3. The infinitesimal generators X, , j = 1,2,3 of the action of SU(2) on C8 are
J
invariant under the action of SL(4,C) defined in . Namely,

(246) (Tesn)*x s, (2) = Xy (Yen(2)), 5=1,2,3, n€sl(4,C).

Proof. The following fact will be used. A straightforward calculation shows that the actions
of SU(2) and SL(4,C) on C® commute. Namely,

(247) b, (frh(z)) _ (&)g(z)) ., g€ SU(2), heSL4,C).

Since the tangent vector of the curve 7, (t) = i)etgj (z) at t = 0 is the infinitesimal generator
X Te then the push-forward of X Je, can be calculated as follows

- d d - -
(Te), Xie, () = | _ Temorelt) = | Ten (Bes(2)) -

It follows from equality (247)) that

(Tesn)*x% (2) = %L:Oéetfj (Tes,,(z)) = X, (Tesn(z)> .
O

Lemma 4. The five-form By(z) = LX), OLX,, OLX, (dz1 ANdzo A ... Ndzg) is invariant under
3 2 1

the action of SL(4,C) defined in ( Namely, £x,8B0(z) =0, where X, (z) = %|t:0’fetn (2))
is the infinitesimal generator of the action of SL(4,C).

Proof. From equality (243]) the Lie derivative of 8y(z) with respect to X (z) can be calculated
as follows

anﬁo(z) = L[Xn,XJ£3]OLXJ§2 OLXJ51 (d2’1/\d2’2/\. . ./\d28)+LXJ§3 OL[XW’XJQ}OLXJQ (dzl/\dZQ/\. . ./\ng)
—i—LXJ§3 OLXJ§2 OL[XmXJ{l](dzl/\dZQ/\. . ./\ng;)—i—l,XJ'53 OI,XJ52 Ot,)(J§1 (‘CXW (dZ1 ANdzog N... A dzg)) .

The commutators [X,, X Jéj] = £Lx,X Je, 7 =1,,2,3 can be calculated as follows

<£XnXJgj> (2) = }g% [XJg]- (Tetn(2)) _t<Tetn>* ngj (2)] |
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It follows from equality (246| that X T, (Tetn(2)) — <Tetn> X Je, (z) = 0 for all ¢, which implies
that £x, X, = 0. Hence, the Lie derivative £x, 0(z) can be written as

anﬁo(z) = LXJ53 o I,XJ52 o] LXJ€1 (SXn (le ANdzo N ... N ng)) .

Thinking of the action T}, as a coordinate transformation on C?a straightforward calculation
shows that ko(z) = dz1 Adza A ... Adzg is invariant under Yj,. That is, k(Y (2)) = K(z) which

implies that £x, ko(2) = % o (Tem)*no(z) = 0. Thus £x,Bo(z) = 0. O

Since the map p(s 5) intertwines the action of SL(4,C) on M; and SO(6,C) on Qs, then the
five-form Bo(z) must descend to a five-form invariant under the action of SO(6, C). Following
[33], let me consider the nowhere vanishing five-form Ko(a) on @5 which is given by

(248)

M@

2| ’ ]ajdal/\dag/\.../\dsz/\.../\damH,
(0%

where da; means that this one-form is omitted. The five-form Ko () in (248) is invariant under
the action of SO(6,C) on Qs, see appendix B for details. The five-form 8¢(z) is identified with
ko(a). This is the point of the following proposition.

Proposition 16. Consider the five-forms Ko(a) in and By(z) = LX), OLX;, OLX,, (dz1 N
3 2 1
dzog N ... Ndzg). The following equality holds

(249) LX g, © Xy O Xy, (dzy Ndzg A ... Ndzg) = sz‘875)R0 Vze M.
Therefore B(z) in on M, is identified with the five-form 1¢(a)Ro(a) on Qs .

Proof. To prove equality (249) I use that SO(6,C) acts transitively on (5. That is, every
a € @5 can be written as follows

(250) a = R-ag, ag=(e1+1), ReSO6,C)
— R-p@s)(20), 20 =(1,0,0,1,0,0,0,0)
= PEp) (Th(zo)) , he SL(4,C) .

Let me evaluate equality (249) at z = Th(zo). Namely,

(251) Bo)v, (z) = (”<&5>“°)mzo>

Recall that p(s5) intertwines the action of SL(4,C) on Mg and SO(6,C) on Qs, so from the
SL(4,C)-invariance of 8y(z) and SO(6,C)-invariance of Ko(«) it is enough to verify equality

(249) at 2o with g = p(g5)(20)-

The (1,0)-part of the Hamiltonian vector fields X Je,» j =1,2,3 at the point zg is given by
0 0 0 0 0 0
90y e (L )
(82’1 82'4) e (2) Ozy Oz3 Jes () =2 0z + Oz3
The five-form B¢ (z) at zp is given by

Xy, (2) =1

(252)
LXJ§ OLXJE OLX] (dzl/\dz'g/\ /\d?:g) =-2 (d24 ANdzs ANdzg Ndzy Ndzg + dzy Adzs Adzg N dzr A dZS) .

On the other hand, the five-form kg in (248) at «yq is given by

(253) Ko = (—dOég ANdag N day A das A dag — 1dag A dag N dag A doag A dOé5) .

A~ =
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Now let me take the expressions of aj,j = 2,...,6 in (140) and calculate the differentials
daj(z) at zg. The following one-forms are obtained

day(z0) = (dz1 + dzg), day(z0) = (dzg + dz7)

das(zo) = 1(dzg + dzs), das(z0) = (dzg — dzs)
(254) das(z0) = 1(dze¢ — dz7), dag(z0) = 1(dzg +dz1) .

I then compute the wedge product in 1’ so that the pull-back pf8,5)ﬁ0 at zg is given by
(255) pz‘&@’f%o = 2u(dzg Ndzs Ndzg Ndzg Ndzg + dzy Adzs A dzg A dzg A dzg) .
It follows from equalities (252)) and (255) that the following equality holds

[LXJ53 o LXJ£2 oLy (dzl ANdzg AN... A ng)] . =1 (pzk875)//%0)20 .

Jey

In the other direction, let me consider the following holomorphic five-form on Q5

2() = ela)fo(a).

The pull-back pZ‘S 5)3 is a five-form on M which can be extended to an element of (8:0) (Ms) (SU@)e

as follows. Let me consider the frame {X Je, X Jey X Jeg Wi, ... W5} on Mg which descends to

a frame {dp(875) (Y1),... ,dp(875)(Y5)} on Qs through the map Ps,5)(2). Tt follows from equality
(249) that v(z) = ¢(a(z))dz1 Adza A ... ANdzg on Mj is the unique eight-form that satisfies the
following equality

(256)

©$5(a) (dps,5 (Y1) -, dpss)(Ys)) = p(a(2))(dziAdzaN. . . Adzs) (XJ§17XJ§2aXJ§3aW17 . Ws) :

Then v(z) can be defined in any other frame by GL(8, C)-equivariance because the tangent
space at a point in the stable set M, is a direct sum of the tangent space to the SL(2,C)-
orbit through that point and the transverse directions, see equality in the next section.
So every frame is GL(8, C)-equivalent to one of the form {Y1,Y5,Y3, Wy,..., W5} with Y; =
XJéjor J(ngj), and I can define LX) ko(z) = —(Z)LJ(ngj)/ﬁo(z),j = 1,2,3. Equality (256

indicates that contracting and extending are clearly inverse processes to each other. They
therefore define a bijective map

&5+ 280 (11,) PV 5 ¢(2) = g(2)r0(2) — B(a)Ro(a) € QOO (Qs),

where Ko () is the unique form on Q5 such that equality LX . OLX,, OLX, K0 =1 ,0’("8 5)7%0 Vz €
3 1 ’

M; holds. T can do a similar procedure to dimension n = 4 to show that the contraction

of ¢(z) = g(z)ko(z) with the infinitesimal generators X Je, can be understood as contract-

ing with the directions normal to the zero-set Jg 1(0). Moreover, under the identification
35 1(0)/SU(2) = Q5 the map Gg can be interpreted as first contracting, then restricting the
result to Jg 1(0)7 and finally descending the result to the quotient Qs.

Let me turn to the descent map for half-forms. Since elements of Q(8:0) (M S) (SU@)e belong

to the space I'p (Kg) ESU(Q))C

belong to the space I'g (I? Qs) of polarized sections of the canonical bundle on Q5 (see apppendix

~

B), then the map &g identifies Kg’&)g () with K p._. So I can make a similar argument to
C

of (SU(2))c-invariant polarized sections and elements Q9 (Q5)

dimension n = 4 to show that &g induces a map between half-forms

1\ ((SU@)e R 1 ) )
Sg:I'p | K¢ ’M sv—velg Kc2'25 such that (Sg(v))” = Gs(v?).
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1.2. The map S, and pointwise magnitude on J~'(0), and J~1(0),,/Gp = Q,,. Having

1\ Gn NP
the map S, : I'p (L‘*’" ® Kﬁ) — g <L"’ ® Ké ) the following will be proved.

m

1
Theorem 2. Take r € T'p(L¥" ® K,%)G". Then for zy € 3,1(0),
(257) [Su(r)* ([20]) = 27*Vol (Gy, - 20) |r(20)

Before proving theorem [2f let me explain how the volume Vol (G, - z9) is calculated. The
orbit through z € C™ is defined by

Orb(z) = {w € (C”} w=,(2),9€ Gn} )

where <i)g denotes the action of G,, on C". The orbit through z € C™ can be thought of as a
map from G,, into C". The groups G4 = U(1),Gg = SU(2) are identified with spheres S!, 3
respectively. Every z € C" comes from real coordinates (u,v) € T*R™. The action of Gy,
preserves the inner product of T*R”, so the orbit through (u,v) € T *R™ can be thought of as
a sphere of radius 7 = /|ul2 + [v|?2 = v/2|z|. For these particular cases the volume of Orb(z)
is the area of the corresponding sphere. In a general case when a compact Lie group G acts
on a compact Khaler manifold M and the action of G preserves the symplectic form of M,
the volume of an orbit through m € M can be calculated using the Riemannian structure in
M. See lemma 3.1 in [I18]. For completeness, I shall calculate the volume of Orb(z) using the
Riemannian metric B which is defined in . The explicit calculations are done for the group
Gg = SU(2), but the same procedure works for the group G4 = U(1).

Lemma 5. Let X¢;, X¢, denote the infinitesimal generators of the action of Gy, on C". The
function \/det[B(ng,ng)] is constant along i)g(z) . That is, the following equality holds

(258) det [ B(Xe,, X, )5, )| = det [B(Xe;, Xe,)-] -

Moreover, the volume of Orb(z) is given by Vol(Gy - z) = Vol(Gn)\/det [B(ngngk)z} =
Vol(Gn)Q%Md with d the dimension of Gy,.

Proof. Let me take the basis &;,j = 1,2,3 of su(2) in . Each ¢; is assigned the infinites-
imal generator X¢; (2). The matrices &; can be thought as tangent vectors at the identity of
SU(2), so the vectors &; can be moved over SU(2) through the left action in SU(2). That is,
the tangent vector X¢,(g) at g € SU(2) is given by

d
X, (9) = ool 9):
The vector X¢,(g) is associated to the vector X, <<i>g(z)> at ®,(z). Namely,

Xe, (®4(2)) = %Lzo‘i%tﬁj (2.

Note that when the vector X¢,(g) moves over the whole group SU(2 ) the vector Xg (@ (z ))
moves over the whole orbit Orb(z). Let me form with the vectors { X¢, (®4(2)), X 6 (Dy(2)) , Xe, (O

a parallelepiped whose volume is given by \/det [B(ng , ng)&)g(z)} . The term B(X¢;, ng)ég(z)
can be written as follows
(259)

B(Xg;, X ), () = Ws (ij(‘i’g(Z)),J(ng(‘i’g(z)))) = (‘iietgj (g)ws> (Xe;(2), J(Xe, (2))) -

a(2)}
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The symplectic form wyg is invariant under the action of SU(2), that is (i)*L e (W8 = s Hence,
j

equality (259) above can be written as
B(Xﬁj’Xﬁk)cig(z) = ws (Xﬁj (Z)v J(ka (Z))) = B((ijaX§k)Z .

Thus equality (258) is fulfilled. The points in Orb(z) are parametrized by elements g € SU(2),
so that the volume element dVol(Gs - z) can be written as

(260) dVol(Gg-z):\/det [B(ng,ng)~( }dvoz (Gy) = \/det [B(Xe,, Xe, )] dVol(Gs),

where dVol(Gg) is a three-form on SU(2) which can be obtained as follows. The one-form
Q) = g ldg is the Maurer Cartan form on SU(2) with values in su(2). Let me write  in
coordinates of SU(2). An element g € SU(2) can be parametrized as follows

[ cos(f)e™ sin() e ™
N <— sin(@) e cos() ew‘) » € [O’ 5} @B € [-mml.

A straightforward calculation shows that

(261)

| . ZQl —QQ + ZQg
=g dg= <QQ+ZQ3 -1 ) ’

where the one-forms €2;, 7 = 1,2, 3 are given by
Q1 = cos’(f)da —sin?(6)ds
Qy = sin(a — ) cos(0) sin(0)(da + df) — cos(a — 3)db
Q3 = cos(B — «)cos(f)sin(0)(da + df) + sin(5 — «)db .

The three-form dVol(Gg) is given by Q1 A Q2 A Q3. Hence, equality (260 can be written as
follows

\det [B(Xe,. Xe,):]dVol(Gs) = \/det [B(Xe,, Xe, -] A2 A0

= \/det [B(X¢,, X¢,).] sin(0) cos(0)d0 A doe A df3 .

The following is obtained by integrating the previous equality

Vol(Gs - z) = 27T2\/d€t [B(ng,ng)z] .
For the group U(1) = S* the same procedure works. The volume form on U(1) is df, and a

short calculation shows that Vol(Gy - z) = 2my/det [B(X, X).].

Now, I will calculate the term det [B(Xe,, X, )] for the group SU(2). The infinitesimal
generators X¢, = X, ,j =1,2,3 are given by
J

X :z[(za—i-za—i—z 0 4. 8) < iJrziJrz o .. 8>
Je, Y9r " P02 " 0z L 02 2020 " 0z " POz POz
<Eli+23 9 + Z5— 9 + Z7— 9 >+< 4 + Z4— 9 + Zg— 9 + zZg— 9 ):|

821 823 625 82’7 aZQ 624 326 82’8

Y, - <zi_z o . ,9 Zi+zi_zi+zi_zi)_
Joo T I\ 02 0z POz 0z 0z 0z | 0z 0z
( ) ) o a9 a9 0 d a)}

25— — 21— T s R — 21—

07 9m,  Hem  Pom  %am Poz | *om oz
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N 9 9 9 9 9 9 9 9
Jes = (ZQaT”laT”‘*a T80 0 T P B0 +Z7828>

0% 0% 0zr 073

Taking the explicit expression of X, ~a straightforward calculation shows that the coefficients
J

( 8+za+za+za+z8+z8+za+za>
(91 182 483 384 6 5 8 7

Bji,j,k =1,2,3 are given by
Bi1 = ws(Xg,, JXe,) = 2|2>, Bz = ws(Xg,, JXe,) =0
By = ws(Xg,, JXe,) = 2|2[*, Big=ws(Xe,, JXg,) =0
Bss = ws(Xg,, JXe,) = 2|2[*, Bog = ws(Xe,, JXg,) = 0.

Since the components satisfy Bj, = By, then the explicit expression of the matrix B is given
by

2122 0 0 ,
B=| 0 2&z2 0 |, det(B)=2%2° and Vol(Gs-z)=2n222]23, 2z € C5.
0 0 222

For the group G4 = U(1), X¢; = X¢, = X, where the expression of X is given in (230]). A short
calculation shows that \/det [B(X,X).] = V2|z| and Vol(Gy - z) = 2mV/2|z]|. I can normalize
the volume form dVol(Gy) on G,, such that the equality fG dVol(G,) = 1 holds. With this
normalization the volume of an orbit Orb(z) is given by Vol(G \/ det [B(Xe,, Xe,):]. O

Let me back to the proof of theorem [2] which uses the following lemma. I make the proof of
this lemma for SU(2) in detail because the calculations are more involved than those for U(1),

but the same procedure works for both groups. I will use Vol(G \/ det B(X¢;, Xg,) Z]
for rest of the calculations.

Lemma 6. Take the infinitesimal generators X¢; of the action of SU(2) on C8. Consider
the vector fields Z; = 5(Xe, —1J(X,)) and Zy, = §(Xe, +1J(Xg,)) with j.k = 1,2,3. The
following equality is fulfilled for zy € 3§1(0)

A5
. ] — 93 C2))? 5
(262) Lp g, O L Zkews(zo)‘:jgl(o) =27 (VollGs - 20))” 5|
where the Liouville volume €, (2) is written as follows
1 1
€ws(2) = v wh® = =3 (wg A... Aws) .
8—times

Proof. I use the following identities for the next calculations. For any I-form «, k-form 8 and
a vector field V', the following equalities hold

(263) w(aAB) =wanp+ (-DanwpB, anp=(D)*Bra.

The following contraction is calculated

1
/\ Zk[gl(MS/\ /\wg)]:§L210L220L23(w8/\.../\w8).

A short calculation shows that the symplectic form wg satisfies (,Ug(Zj, Zy) = ws(Zj, Zr) = 0.
The first equation in (263) is used to calculate the contraction of €,,(2) with the vector fields
Z1, 25, Z3. The following is obtained

(264) L8(7)(6) (wsls Z1) A (-, Z) A ws (-, Zg) A el)

tz, 0tz 0tz (wgN...Nws) = S

1
8!
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Using again the first equation in (263]) the contraction ¢z, o tz, o tz, with the form in (264])
gives the following

1
8‘1,21OLZQOLZSOLzloLZQOLzs(wSA A wg) =

k A5

%[/\wg(zj, A News( Z) A wh?] + det[ws(Z5, Z)] 50

A computation shows that
ws(Zj, Zr) = WS(%(X@ — 1/ Xg,), %(Xsk +1JXg,))
= %[WS(XﬁyX&k)+ZW8(X€]-’JXE;C)}
= {J5J7J£k}}~ o) + 5w (X TXe)
= §B(X£j7X5k).
The moment map is constant on Jg ' (0). Hence
ws (- %(ij :FZJX&')”:,;(O) = { dJe; F 2“’8( JXﬁj)}‘:ng(o)
= :Fi(,ds(-,JXéj)‘JS—l(O),
and so

J k
/\ws(', Zj) A /\w8<Zk7 ')‘351(0) =0.

Thus the following is obtained

NS
= 273 (Vol(Gs - z0))" =2

Lpiy Olpk ewg(z())‘ B
N Z; AR 381(0)

The same procedure can be done for the infinitesimal generator X of the action of U (1) on
C*. That is, consider the vector fields Z = (X —1J(X)) and Z = (X +J(X)) and a
straightforward computation shows that the following equality holds

3510

1 3 9 O.)/\3
(265) Lz 0 LZI(QM ANwg ANwg Awy) =2 1(Vol(G4 . zo)) ﬁ‘ﬁl(o) )

O

1
Proof. (Theorem @)} Take r(z) € Tp(L*r @ K32)% with r(z) = s(z)rg. The pointwise
~ 1
magnitude of S, (r) € Tg(L® @ K2 ) is given by

[Su(r)|* ([z0]) = (An(s), An(s)) (Sa(t0), Su(0))([20]) -

Recall that for zg € J,,1(0) the following equality holds

[An(s)([20])* = Is(20)I” .

Now let me calculate the following

(Sulv0). Sulwo)Peallzo]) = px, WA inex, A

(266) = v, AT, R no‘ )
J k
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Since the n-form ro(z) = dz1 Ad2a A ... dzy satisfies L1z, Ko = vz, ko =0, then equality 1)
can be written as follows

Lpd X, Ko A Lpk Xoe, Ko = tpig,© L/\kék(lﬁlo A Ko) 3=1(0)
2
= Lpiz OlAE T, (v0,10) €w, =10
1
2 n
= (Z/(), Vo) L/\j Z; ¢} L/\kzk Ew,/l\ 3;1(0) .
Thus the following equality is fulfilled
1 n
(267) (Sn(wo), Sn(Vo))QEQ([Zo]) = (v, 1/0)21,/\]- 2, O AR 7, Ew;\ =)
For n = 8 it follows from lemma |§| that equality (267]) can be written as
2 293 2 wg®
(Sg(Vo),Sg(Vo)) 6@([20]) = (1/0, Vo) 2 (VOI(Gg . Zo)) ? 3_1(0) .
° 8

Since the equality p’(k8 5)@ = wg‘ 3=1(0) holds, then it follows from taking the square root that
) 8

(Ss(10), Ss(10)) ([z0]) = (vo,10)27 2 (VOl(Gs - 0))

310
Thus the following equalities hold

1Ss(r) 2 ([0]) = |s(20)|* (0, 10)2~2 VOl(Gs - z0) = |r(20)[*27% Vol(Gs - 2)

~—1 ~—1 '
Jg ( Jg 7 (0)
For n = 4 it follows from ([265]) that equality (267) can be written as

(Sa(v0), Sa(v0)) e ([20]) = (v0, 10)?27* (VOl(Gy - 20))” u;?'g

o

Since the equality pz‘4 3)@ = w4‘ 3710) holds, then it follows from taking the square root that
) 4

(S1(0), S1(0))([20]) = (v0,10)2 72 Vol(Gy - z9)

30

Thus the following equalities hold

1S4(r) [ ([20]) = |5(20) | (v, 1/0)27%\/01((}4 - 20) = |r(z0)|? 2*%V01(G4 - 20)

310 3:1(0)

O
Remark: The effect of including the half-form correction in the GS-map S, is displayed in
1\ G
the factor Vol(Gy,-z9) multiplying the pointwise magnitude of the section r(z) € I'p (L“’" ® K ,§> ,

see equality (257). In passing the integration on J;(0) to J,,1(0)/G, = Q. gives a volume
factor Vol(G,, - zg) which is canceled with the volume factor of theorem [2| This is the reason
why S, is an asymptotically unitary map when A goes to zero. See section for details.

2. Norm Decomposition

G
1\ “n
The goal of this section is to compute the squared norm of a section in either I'p (L”” & Kﬁ)

or I'p (L)% as an integral on the quotient J1(0)/Gy = Q. This expression on J;(0)/Gp =
@ will be used to study the unitarity properties of the maps S,, and A,, in the limit A — 0.
This limit will be studied in the next section.
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Since the stable set M is a set of full measure on C", then the squared norm of a section
1\ Gn

r(z) e Tp (L“’" ® Kﬁ) can be calculated on M. The integration over M, will be decom-

posed into integrals over g, and J,1(0), see equality (271]) below. The integral over J,1(0) is
decomposed into integrals on J,,1(0)/G,, and along the orbits Gy, - 29, see equality (272)) below.
The main result of this section is the following theorem.

G
l n
Theorem 3. Let r(z) = f(z) el /e A Adzy be an element in Tp <L“’" ® Kﬁ) .

The squared norm of r(z) can be computed as follows

(268)

()2 = — .

3—m 2
e L, )Pz = Cugi [ 10(0) P ol 5 ol 2K (‘/;L'“') c5(@),

m

where ¢(a) is the projection to Qu, from f(z) = ¢ (a(z)) € BSLG")C, w 1S a constant, and the
Macdonald-Bessel function Kg(@) of order ¢ is given by

(269) Ko(s) = (”);(%f) / h et genh(t)dt .
F(E + 5) 0
In general, it is not true that the pointwise magnitudes of the sections with and without
half-form are equal, but for the case of C" the pointwise magnitudes of r(z) € I'p <Lw" ® Ké )
and s(z) € I'p (L“") are equal. That is, [r(z)|?> = |s(2)|>. Hence, the following holds

Theorem 4. Let s(z) = f(z) e 217 be an element in T'p (L“m)C" . The squared norm of s(z)
can be computed as follows

(270)
I = g [ 18P (e) = Gy [ 10(0) ol o™~ 2Kn s (@’“’) alo).

m

Let me explain how the integration on M, is decomposed. According to theorem 2.1 in
[18], any point in the stable set M, can be expressed as follows
At gn X 371(0) — My, A(€,20) = Die(20) = € 20
The Liouville volume ¢,,, (z) (which is the same as the Riemannian volume) is decomposed as

A* (€wn) (6.20) = Tn(&, 20)dgn A dVOU(J,1(0))

where dg,, is the volume form on g, = R? dVol(J;(0)) is the Riemannian volume on J;,1(0)
and 7, (&, zo) is the Jacobian of the map A. See lemmabelow for details. For every f € L'(Mj)
one has

(271) / fdVol(M,) = / / £(€" 20) (&, 20)dgy dV ol (3, 1(0)) .
M, 3:21(0) Jan
The volume form on the quotient J,,1(0)/G,, is given by dVol (3, (0)/Gr) = &= /(n—d)!
with d the dimension of G,,. Since 7, : J3,,1(0) — J,,1(0)/G,, is a Riemannian submersion, then
the volume on J,,1(0) can be decomposed as [18] Sect. 4]

(me" =)

dVol(3,,1(0)) = dVol(G,, - z) A T dr

The two-form 7w = 2*w,, satisfies the following

Lx T = tx, (Vwn) = Lngn‘:;;l(o) = de‘JEI(O) =0.



62 3. Quantization Does Not Commute With Reduction

This proves the following

Lemma 7. Let m, : J3,%(0) — J,1(0)/G, denote the canonical projection. For every G-

invariant function £ € LY(J,,1(0)) one has

2 ol (31 = Z ol(Gy, - 2 ol(J,° n) s
em) [ GV E o) = [ VoG -0aVol (3 0)/G)

where [29] denotes the Gy,-orbit through zy € J,,(0) .

1\ &n
Let be f = |r|? in equality (271)), so that the squared norm of r(z) € I'p <L"J" ® Kﬁ)

on M, can be computed as follows
[ [ e coPrae zo)dan dvel(a, o).
321(0) Jon

In the following proposition I give the explicit expression of ‘7‘(61£ -20) ‘2 on M;.

G
l n
Proposition 17. Let s(z) be an element in T p(L")% and r(z) an element in T p (L“’" ® Kﬁ) :

Let z be a point in J,1(0) and & € g,,. The magnitudes of the sections at e -z are related to
the magnitudes at z as follows:

(273) (1) ‘7«(616 2= |s(e 2)|?2 =

(ii) (e )2 = |s(e™?-2)[2 =

S(Z)|2 e—%|z\2(cosh(26)—1) n=4.

9

|
|
Proof.

1\ SU)
(i) Consider ¢ € su(2) and r(z) € I'p <Lw" ®K82> with r(z) = s(2)vy and s(z) =

fi(z) e~ 24" The pointwise magnitude of 7(2) at €€ -z is given by |r(e* -2)|> = |s(e*€ -2)|*(vo, vy) =

| f1(e® -z)‘Qe_%W§ #I* | Since fi(z) € BéSU(Q))C satisfies fi(e’ -z) = f(z), then |r(e¥ -2)|? can
1.2

be written as |r(e® -2)|2 = |fi(2)|2e"7l® 2" The term | e -2|2 can be calculated as follows.

An element £ € su(2) can be written as £ = ||£||€g, where the matrix &y is given by

i 1T —xo + 123 2 2 2 _

(274) & = <x2 +1zs T ) and 7 + 23 + 23 =1.

Since the matrix ¢||£[|p has trace equals to zero, then the exponentiation of 1|¢||&g is given by
e'lEllée — cosh(]|€])T + 2sinh(||€]|)¢ with T the identity matrix,

and so
e .y = eliElige ., — cosh(||€||)z + ¢sinh(]|£]])&p - =,

where &y - z is given as in . The term ‘ eli€lige -2}2 can be written as
2 _ . T .
| eleli$e 27 = [cosh([|¢]))2" — esinh([|¢])(€p - 2) ] - [cosh([|€]])z + wsinh(]|¢]) - 2] -
The matrix & satisfies {369 = I and £ = —&p, so the above equality can be written as

| el€lige 2| = |22 (cosh?(||€]) + sinh?(||€]1)) + o2 sinh(]|€]]) cosh([|€[) [T - (& - 2)] -
Using expression of & in (274) a straightforward computation shows that
2 sinh (€] cosh([€]) [ - (€9 - 2)] = sinh([I€]) cosh(€]) [21Je, (=) — w2y (2) + 3 (3]
For z € J5'(0) the equalities Je;(2) = 0,5 =1,2,3 are fulfilled, and so the following holds

| eEléo 212 = |22 (cosh?(||€]]) + sinh?(||]))) = || cosh(2]|€])) -
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1\ SU(2)
Therefore the pointwise magnitude of r(z) € I'p (LWS ® K 82)

by

at €.z = e!lélléo . is given

2
r(et .Z)‘ 1 (2) 2 e RIF cosh@El) — |52 ¢~ Al coshlel)-1)

(ii) For dimension n = 4 an element £ € u(1) can be written as £ = 10 Wlth 0 € R and € = —

The action ®,-o(z) is given by ®,-o(2) = (e7? 21,670 29,¢” 23,¢? 24) = =% -2. Consider T(Z) €

U1
I'p (L‘“4 ® Kf) with r(z) = s(2)rp and s(z) = fa(z) e 2il?*. The pointwise magnitude

—0 ~z\2

of r(z) at e7? -z is given by lr(e™0-2)|> = |s(e” z)]Q(yo,l/g) = | fo(e™? -z)|2e_%|e . Since

® =
fa € BﬁU(l))C satisfies fa(e™?-2) = f(2), then |r(e™?-2)|? can be written as

9‘2

(e 2)? = |fa(z)Pemnle "2

A short calculation shows that |e™% 2|2 = e720(|21 |2 + |22]?) + % (|23]? + |24]?), and z € J; (0)
satisfies |21|? + |22|? — |23|% — |24|> = 0. Hence, the following equalities hold

le™0 212 = (|21)? + |22]?) (€72 + %) = 2(|z1|? + |22|?) cosh(26) = |z|? cosh(26) .
1\ V(M)
Therefore the pointwise magnitude r(z) € I'p <Lw4 ® K, j) at e7? .z is given by

’T(679 'Z)|2 — |f(Z)|2 ef%|z\2t:osh(29) _ |S(Z>‘2ef%\z|2(cosh(29)fl) )
(]

Now the Liouville volume will be decomposed in terms of coordinates on g,, and J;,1(0).

Lemma 8. Volume Decomposition

Consider the transformation A : g, x J71(0) — M, A€, 20) = Pue(20) = €% -29. The
Liouville volume €, (z) =dz1 A ... Ndzp, Ndzy A ... NdZ, on C",n = 4,8 (which is the same
as the Riemannian volume) can be decomposed as

(275) A (ewn) (¢ ) = Tn(€ 20)dgin A dVol(3,,1(0)),
where the Gy -invariant Jacobian 7, € C*(g, x J,,1(0)) is given by

senh(2][¢][)

2
2|i€]l > Vol(Gs-z0) n=8, and m4(§ 20)=Vol(Gs-20) n=4

(276) 75(&,20) = (

Proof. I proceed to prove lemma [§ in both cases n=8,4. The differential of A at (¢, 2p) can

be written as follows
dA (g o) Tetn X Tog 37 (0) — Toe ., M.

&,20 e’ .zg

Since T¢gy, is identified with the Lie algebra g,, then dA ., can be thought of as a map
dA(Eyzo) “Bn X TZosgl(O) —> Tere g M .

Consider a curve zg(s) on J,1(0) such that z(0) = 29 and %9(0) € T.,J,'(0). Let me take
N € g, and calculate the following

: d (A S
(277) dA (¢ 20y (1, 20(0)) = s e!E+sm) 24 (s)
s=0
d
- £ v(§+sm) ) . U
I SO(e ) zp + €' -2p(0) .
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The derivative in (277) is calculated in each case. For n=4 the elements &,n € g4 = u(1) satisfy
e(6+sm) — 1€ 151 g the derivative is calculated as follows

d

(279) g al0) = €| 5

= o [JXn(z:g) + 20(0)} .

The vectors JX,(z9) and Z0(0) in are B-orthogonal. Namely, B(JX,(z20),2(0)) =
wa (JXy(20), J2(0)) = wa (Xy(20), 2(0)) = dJy(20) = 0.

Let me identify M = C* = R® with real coordinates (x,y) € R®. The Riemannian volume
can be written as

ez + 20(0):|
s=0

AV ol(M)(zy) = y/det(By))daz' A Ada* Ady' AL A dy*

where the Riemannian metric By, ) is evaluated on a frame in M .

The coordinates (x,y) on M can be chosen such that z! is in the direction of the vector
JX,(20), and the other (x%,... 2% y',... ,y*) are directions of the tangent space T,J; ' (0).
In these coordinates the matrix B, , is block diagonal, and det (B(m y)) is given by

det (B(r,y)) = det(B(x,y))
The Riemannian volume can be written as follows

(279)
AV ol(M)(y ) = \/det(B(s )

The Riemannian volume dV ol (~*1(0)) is given by

det(B

zy)|3

e€ .z

1 2 4 1 4
e"f-zodﬂg /\\/det(B(m’y))’El(o)da: Ao Nz ANdy AL Ay

dvol (3 \/det @)y 1oy Ao Adat Adyt AL A dy
Now I calculate the term det(B(m,y)) . The tangent vector in the direction z! is given by
0 d v
BT~ A5l 20 = T Knl20)
The term det(By )| .c 0 = det(B (811’ 8‘91 ) is given by
o 0

= det(B(X,, X,))
= Vol(Gy-20)?.

Let me identify u(1) = 'R with R so that the one form dg, is given by dgy = dz'. The
Riemannian volume in (279)) can be written as follows

dVol(M )z, = Vol(Gy - z9)dga A dVol (J;(0)) .
Therefore the Liouville volume of C* can be decomposed as follows
A (€w1) (¢ o) = VUG - 20)dga A dV ol (377(0)) -
For dimension n = 8 the following facts will be used to calculate the derivative in (277]).

Consider the basis &1, &2, &3 of su(2) in - Let me take & = (£1,&2,&3) and x = (21, 22, 23) €
R? | so that any element ¢ € su(2) can be written as follows

11 —xz9 + m3>

(280) E=2-§ =118 + 2262 + 1383 = (xg N o

The adjoint action of A € SU(2) on £ is given by
(281) AEATL.
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Taking & as in (280]) a straightforward calculation shows that A¢A~! = 2/ - € with 2’ = R -
R € SO(3,R), see [28] Chap. 9]. Namely,

(282) (R-x)- &€= A(x-£A™L.

An element ¢ € su(2) can be written as £ = ||£||€p, where & is defined in (274]). The entries
of & are elements in S2. Since SO(3,R) acts transitively on S2,then it follows from equality
(282) that & € su(2) can be written as & = [|£||A&3A7L.

Let me use the following result to calculate the derivative in (277)), see theorem 3.5 in [21].
For any two n x n complex matrices X,Y the following equality holds

(263) %SZOGMY X {Y - [Xé!Y] L Ix [g,Yn L Ix [X,4 [!X,Ym . }

Let me take X = 1£ with & = ||¢[|A& A and Y = ) with n = b1&1 + bo&a + b3&s. Tt is not
difficult to see that [X,Y] = —||¢[|A ([&5, A nA]) A~ Tt follows from equality (282) that
A71InA can be written as A7InA = bl & + by + byés with ' = R™1 - b and b = (b, ba, b3) .

Let me define p1 = &1 + &2 and ps = &2 + 1£1. A short calculation shows that
(€3, p1] = 2011, [€3, 2] = =202

Element A~'nA € su(2) can be written in terms of y1, 2, &3 as A=nA = %(Nl —p) + %(uz -
ye1) + b5€s . A straightforward calculation shows that the commutators in (283]) are given by

Y] = (€l (B — ) + By (aaa — ) A~
D6Y]) = a2l A (Bt — apa) + By — ) A
(X, [X, (X Y]] = 22l A (8 (2 — ) + by apsz — ) A
(X, (X (XX Y]] = 2Pl A (B (i — apz) + By (2 — o)) A1

After long calculations the higher order commutators of [X, Y] with the vector X are given by

(XXX Y]] = 22 PR A (b (i — vpan) + B (2 — o)) AT
2n—times
XX LY = 2P A (8 (a2 — opn) + Byagsz — ) AL
2n+1—times

The derivative in (277]) can be written as follows

(284) &+ 2 (s) =

S 1s=0

, 9 f 2 23 { 4 2n71 6 2n B
es{m.m( H3!|| . \5!“ +-,,+(2nll|1!)! A (B — aa) + by a(jan — 1)) A1 2

2 3 4 5 2n 2n+1
%_<(H£H)*_2 1€11” | 27[I<]] 25 |lgf ™

+ 4.+

5] Al 6! 0l )A (b (12 — vpa1) + by (v — 1) A_1~zo+73(0)} .

By identifying

senh(2]|¢]]) _ o 20kEl® 2%l v 13
<2Héw|_'1) - 31 + 51 +’...+"(§Ei;fiﬁ*

1
2
1 (cosh(2)&]) =1\ &l . 22)1€)® 2*)€)® 221|¢||2ntD)
2< 2] o T e Tt o
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the derivative in (284]) can be written as

d
i &+ o (s) =
1 [ senh(2 _
et {“7 ot g <2‘(|£H€H) - 1) A (Bhe(pn — op2) + by a(pg —yun)) A7 - 20+
1 (cosh(2]|&]|) — 1 _ .
3 (D= 4 5 = )+ = ) A7 20420}
Let me identify 3(u1 —wp2) = &, 5(ue —yn) = &, 52 — m) = —& and write n =

A(ATInA) AT = A(B) & + bhéa + bsE3) AL so that the above equality can be written as follows

(285) % B &M 20(s) =
h h —
e () 0 (3= -t}
Let me show that the following equality holds
(286)
A [ gzﬁg + (sen?y(é”{”)) (b’l €1 + b’z 2{2):| A_l-zo = [bngg + (sen?y(é”f”)) (b11&1 + by zfg)] -20 -

From equality (280]) the left-hand side of equality (286)) can be written as

senh(2[[])) senh(2[|€])
207208l

Z(yg) Wlth y= < 71> ) é: (élaéZaéS) and é] = Ab;é']A_lv ]: 17273'

It follows from equality that the vector é regarded as an element 5 € su(2) can be written
as &= AV -€)A™ = A(A71b-£A)A~! = b- ¢, which implies that € = (b1&1, ba&o, b3€3). Hence,
equality o(y - £) = y11b1€1 + yzibata + yzibsés holds. Therefore equality is fulfilled .

The vectors 1§; - zg are identified with J (ng (zo)) , 7 = 1,2,3 which are orthogonal to the
tangent vector v at -zg € Jg ' (0). Namely,

B(JXgv), = ws(J(Xg), Jv)
= w8 (ng,v)
= dej(”)‘
= 0.

20
20

20€35 1 (0)

Now let me identify M = C® = R!® with real coordinates (z,y) € R!S. The Riemannian
volume can be written as

(287) dVol(M) 4 ) = \/det B yyda' A ... Ada® Ady' Ao Ady®,

where the Riemannian metric B(, ) is evaluated on a frame of M. The coordinates (z,y)
on M can be chosen such that ', 2%, 2% are in the direction of the vectors JXe, J Xey, J X,
and the other (z%,...,2% 4! ... 4®) are directions of the tangent space TZOng(O). In these
coordinates the matrix B, ) is block diagonal, and det (B(x’y)) is given by

detB(x’y) = det (B(%y) )

det(B(;,y)) |3g1(0) :

e zg
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Consider the frame in ([286] so that the vector fields in the direction of 7, j = 1,2,3 are given
by

0 snh(@El) d| e  semh(2[el)
288 _— = — el oy = — P T X, (2
(288) o el ), S T e e
o senh(2¢]) d| e, semh(2]e])
— = ———"— "= —" "X (2
s el ), T e e
9 €3
T G = X (20) -
s = dil=0® 0 = TXe ()

The matrix (B,,y))

i€ .2 is diagonal and its entries are given by

9 0\ _ (senh(2[[€])))2
B(a:cj’axj) = <W> B(JX¢,, JXe,)

_ (senh(2[|€]]) 2 -
— <W> B(Xe,, Xe,), j = 1,2

and

o 0
B <8aj’ax) — B(JX§3,JX§3) — B(X&,’,XE?)) .

Hence, the term \/det (@) et 20 (Sen;”z”ﬂl ) Vol(Gs - z) .

The Riemannian volume dV ol (48 ) is given by

dvol (35(0)) = /(B dr* Ao AdRS Adyt A LA dyE

(x,y)) ‘3;1(0)

From equations (288) the differentials dxj;,j = 1,2,3 can be thought of as differentials along
the directions of §; so that the three form dz' A dx? A dz? can be regarded as a volume form
on su(2), that is, dgs = do' A dx? Adz® = d¢. The Riemannian volume in (287)) can be written
as follows

dVol(M) ., = \/det(B(W))|ez5 sodat A da? A da3 A \/det(B(%y))bs_l odat Nyt AL A dyP

senh(2e)\ -
< 2”5” > 174 Z(Gg o)dgg/\dv l(‘jg (0))

Therefore the Liouville volume on C® can be decomposed as

A*(Ews)(f,zo) = (Sen;(é”g")>2vol(G8 . Zo)dgg A dVol (3;1(0)) .

Proof. (Theorem|3)
1\ Gn
The squared norm of r € I'p (L“’” ® Kn?) on Mg can be computed as follows

(289) 20))[*1u(€; 20)dgn dVol (3,(0)) -

gn

For n = 8 consider £ € 5u(2) and 29 € J5'(0). Take the pointwise magnitude in :273# and

volume decomposition A*(eug) ¢ z,) S0 that the integral in (289) for r € T'p (L“® @ Kg)SU@) is
given by

(290)

e / i / [r(20) [ el (1=cosh(2lél) (Senh@’5”))QVoz(Gg-zo)dggdvoz(:s1(0)).
(Th)*2 Jaugz) (7h)13/2 J3210) 2i€ll ®
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The integration over su(2) can be carried out in spherical coordinates by identifying su(2) with
R3. That is, the volume on su(2) can be written as dgs = r2dr da, with ||| = r. Let me

recall that Vol(Gg - z9) = 2%\z0|3. The integral on su(2) can be written as follows

1 N senh(2/£]]) 2
- (1—cosh(2][¢[) _
e n Vol(Gs - zp)dgs =
(mh)3/2 /5u(2) ( 2/j¢ll ) (Gs + 20)dgs

1 P > _lz 12 cosh(2r
(Wh)3/223/2§252\z0]eﬁ‘ of? (]20|2/0 e hoosh(2 )senh2(2r)dr> .

It follows from definition of the Macdonald-Bessel function in (269) that

1
(7‘('77,)3/2

o0 | ‘2
23/2952]20|e%1|z0|2 (|zo\2/ e o cosh(2r) senh2(27")d7") =
0

1/2 2
(2) / Qsz|zo‘e%|zO‘2 1 Kl <|ZO‘ > '
™

Hence, the integral over ng(O) is given by

(201)
) 5 1,2 2o
\/57?52 (7T7:313/2 /~—1(0) |7(20)[*In([20])dV ol (351 (0))  with In([z0)) = \/;—h|20’ enl! K1<‘%’> '

The integrand in is SU(2)-invariant, so it follows from equality - that the integral
over J3'(0) can be pushed down to an integral on J3*(0)/SU(2) = Q5. Namely,
(292)

~ 2Qge T
ﬂSSQ (ﬂh;13/2 /31(0) r(20)|*1n([20]) dV ol (J5(0)) = ¥ SS (7T7i)113/2/Q 1S5 (1) (a) In(@)ez(e) .

Equality (292) is obtained from the relationship between |r(z)|* and |Ss(r)|? ([20]) in (257).
Namely,

22V ol(Gs - 20) ' Ss(r) P ([z0]) = Ir(20)*, 20 € 357(0).
Let me recall that in theorem (1| the map Sy takes a section r € I'p (st ®K8% )SU(Q) to a section
Ss(r)(a) = 7(a) € I'g(L® ® I?Qi) with 7(a) = ¢(a) o~ Vol 7. The pointwise magnitude
|Ss(r)[* ([z0]) = |Ss(r)[*(a) is given by
1S5 (0) = |$(a) 2= P13y, Bo) = |() 2o~ el 23/ /2
The term Ij,([zg]) in regarded as a density () on Qs is given by

. 1 Vi, V2
(293) In(a) = ﬁ21/4|a|1/2e 2lal i <h|a,> .
Hence, the integral over Q5 can be written as follows
22Qg 1 9, \ = 23Q0g2 1 _— V2 |al
—_— In(a)ey, (o) = Ky | —— | eala).
i, 1S @) = 5 [ jot)ati (YN ) eoten

The following equality holds from the above calculations

3 o
| dzdz = <2WQSSZ) ;7/% |¢>(a)|2]a\2K1 <\/§h||> ex(a).

For dimension n = 4 an element £ € u(1l) can be written as £ = 0 with § € R. The
Lie algebra u(1) is identified with R so that its volume form is dgs = df. Take the pointwise

(294) |Ir(2) ||2—
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magnitude in (273)) and the volume decomposition A* (ew4) ) of the previous lemma so that

(&20

1
the integral in (289) for r € I'p (L‘”8 ® KQ)U(D is given by

1 1 ‘Z ‘ cos ~—
(wh)1/2 /R (mh)7/2 l‘l(o) [r(z0)P e n - mehC) Vol (Gl - 20)do dVol(3;(0)).
Jgq

Let me recall that Vol(Gy - 20) = 21/?|z9|. The integral over u(1) is given by

3/2
(7:3)1/2/ el FLI (1—cosh(26)) VOl(G4 ZQ) 2 |Zoeh|z0|/ \zo|gcosh(29) do .
i u(1)

It follows from definition of the Macdonald-Bessel function in ) that

R 1 1,02 1
93/2|, 1 oIl / o Hlzol2 cosh(20) gp _ 91/2 ol oblzol? g (7 . 2)_
|20 ; \/ﬁ’ ol o{ 7120l

Hence, the integral over 321(0) is given by
(295)

Wﬁxz / o TG PTG Vol (0 with Ti(eo)) =

1 1
Vrh |20] el K (;ﬁof) '

s

The integrand in (295)) is U(1)-invariant, so it follows from equality (272)) that the integral over
371(0) can be pushed down to an integral on J; *(0)/U(1) = Q3. Namely,

V2 : k 2 :
20 o | g PP T VOl 0) = s [ 1S @h@ea(@).

Equality (296]) is obtained from the relationship between |r(z)|> and |S4(r)|?([20]) in (257).
Namely,

22V 0l(Gy - z0) ! |S4(r) P ([z0]) = Ir(0)%, 20 € 35(0).
Let me recall that in theorem |1{ the map S4 takes a section r € I'p (L“J4 ® Kf)U(l) to a section
Sa(r)(a) = 7(a) € T'g(L¥ ® I?és) with 7(a) = ¢(«) o~ valel 7. The pointwise magnitude
|Sa(r)*([z0]) = |Sa(r)[*(a) is given by
1S4(r) (@) = |p(a) > e 712Dy, 7o) = [$(a) > e 71 2/ 4]af1/2
The term I;([z0]) in regarded as a density I(a) on Qs is given by

1 Vol o (V2
E21/4‘041/2e 2ol ¢, (?"”) ,

Therefore the integral over Q3 can be written as

2
i, SO @ )zs(0) = V2 (f) g [, 1@ lalFo (5 v3lel) <o)

The following equality holds from the above calculations

2
2)dzdz = ﬁ(f) }34/@3 |6(c)|? |l Ko <711\/§\04|> es(a).

Equalities (294)) and (297) correspond to equality in (268)) for n = 8,4 respectively . O

In(a) =

(207) Ir]* =

Proof. (Theorem The squared norm of s(z) € I'p (L)%" on M, can be computed as
(298)

e e T LG

‘QTn(g,zo)dngOZ( 10)).

n 3;1(0)
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I can follow a similar procedure to the proof of theorem The integration on g, leaves an
integral on J,,(0) which is given by

(299)

(2)1/2952 1 27 ~—1 V21 27 ~—1
S [ Vel (610 g [ sl Pl avol G 0).

The difference with the proof of theorem (3] is that I use the map A, instead of S,,. The map
A, takes a section s(z) € T'p (L“*)%" to a section A,(s) = 5(a) € T'g (L¥) with S(a) =
1

() e vzl and satisfies the following equality
(300) [An(s)(@)]* = [An(s)([z0])* = [s(z0)]*  for 20 € 3;,'(0).
For n = 8 it follows from equality (272) that the integral on Jg '(0)/SU(2) = Q5 is given by
(2)20g 1

™ (mh)13/2

(301) / g 1G0TVl (3370)) =

(220 1 20 \F o No3/203/4) 13/2
S G [, A @) 22 o e ).
The term 23/223/4|a|3/2 is the volume Vol(Gg - [20]). Substituting in (301) the pointwise mag-
nitude |As(s)(@)2 = |¢(a)2eFlol and Tn(a) = —-21/1|a[1/? o2l ¢, (%04) gives the
right-hand side of equality (294)).
For n = 4 it follows from equality 1} that the integral on 3;1 JU(1) = Q3 is given by

(302)
e o PG PT G avalaT o) = [, 1A @ (@212 ol 5(0).

The term 2/22Y/4|a|'/2 is the volume Vol (G4 - [20]). Substituting in (302) the pointwise mag-
nitude |A4(s)(@)* = [¢(0) e~ %ol and Ti(a) = L= 2V/4aV2e 7o K (%04) gives the
right-hand side of equality (297)).

1
Let me make the following remark: Since the pointwise magnitude of vy € I'p (K,%) is
a constant (vp,19) = 1, then it follows from equality (267)) that the pointwise magnitude of

~1
v € I'g (K(f2 ) is given by (7p,1p) = 2d/2V0l(Gn - z0). This is the reason why the squared
norm of a section with or without half-form on C™ computed as an integral on the quotient

~

31(0)/Gp = Q,n is given by the same expression.

In the above calculations would seem that the inclusion of half-forms does not make any
difference in the computation of the squared norm of a section on C” as an integral on the
quotient 3 *(0)/Gpn = Q. Nevertheless, the inclusion of half-forms is the key ingredient so
that the map S, becomes asymptotically unitary in the limit 2 — 0. This last point is studied
in the following section.

3. Asymptotics of the Guillemin-Sternberg Maps
The following map was constructed in the first section of this chapter
n 3 Gn w =5
Sh Tp(Lw ® Kﬁ) — Tg(L‘” ® Kém) :
1
The space Tp (L"J" ® Kﬁ)G" is obtained by first quantizing and then performing reduction at

P |
the quantum level, while the space I'g (L“J ® Ké ) is obtained by first performing symplectic
reduction and then quantizing the symplectic quotient J*(0)/Gpn = Q.
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1
The space Tp (L”“ ® Kﬁ)G” is identified with the Hilbert space szG")‘c and the space
P | .
I'a (L"J ® Ké ) is identified with the Hilbert space L? (Qm,dmzlﬂ(oz)), see appendix B.

Hence, S,, can be regarded as a map that identifies the space B,(LG")C with space L%L ol (Qm, dmfn 41 (a)) .

—

In Quantum Mechanics the Hilbert space structure of the spaces is more important than the
vector space structure. For instance, the expectation value of an operator in a state involves
the inner product of the Hilbert space H. Before studying the unitarity properties of the GS
maps with and without half-forms, let me first show that these maps are bijective.

Theorem 5. The GS-maps

~ ~

1 1 ~
S Tp(L @ K2)Y" — To(LP @ KE ), An: Tp(L) %" — T (L7)

are bijective.

Proof. Let me do the calculations for the map 5,,, but the same procedure works for the map

1
A, as well. It is clear that for two different sections r1,79 € Tp (L“J" ® Kﬁ)G", the sections

I |
Sy (r1), Sn(r2) are two different elements of T (L¥ ® KZ? ). Now I will show that a section

r(a) € Tg (L@ ® I?ém) can be lifted to a section of Tp (L“” ® KE)G" on the whole space C".
To do that, I adapt the procedure of the compact case in [18, 14] to our case of C". The
section 7(a) can be written as 7¥(a) = s(a)vy with s(a) = ¢(«) e 2vi®! and ¢(a) satisfies
%Z =0,7=1,...,m+ 1. The section 7¥(«) can be lifted to a section of Tp (L”” ® Ké)G" on
3-1(0) in the following way. Since every a € Q,, can be written as follows
(303) m=>5 U-ag=pgs(Ta(z0)), Ya(z)e€Iz'(0), UeSO®6,R)
m=3 U-ao=pus (Pgn(20)), ¥gn(z0) €I (0), Ue IO4,R)

then it follows from equality that
(304)

r(YTa(z) =7 (p(875) (TA(zo))) n=38 and 7(¥gpn(20)) =7 (,0(473)(\Ifg,h(z0))) n=4

define a section of Tp (L*" ® K,%)G" on the zero set J,,1(0). Now, since every z € Mj is send to
Pnm)(2) = a € Qmn which intersects J;1(0),n = 8,4 in the SU(2)-orbit through Y 4(z) and
U(1)-orbit through Wy p(29) respectively, then there are g € SL(2,C) and A € C* such that
2 =®,(Ya(20)) and z = ®5(¥, p(20)) are elements of the stable set M,. Hence, the sections
in ) can be extended to Mg by defining

(305)  n=8 r(z)=r(@(Tatz0)), =4 r(z) =7 (B Ten(0))) -

The section r(z) is given by r(z) = f(2) e 2’ \/dz ANdza A A dzy with f(z) = ¢(a(2)).
1

Let me recall that every section in Tp (L“’" ® KE)G" gives a function in B&G")C. In the next

section I show that every function in BﬁLG”)C can be written as a convergent infinity sum of

homogeneous polynomials in the variable a(z) = (a1(2), a2(2),...,@m+1(z)), which in turn
implies that f(z) = ¢(a(z)) can be regarded a holomorphic function on the whole space C".

1
Hence, the lifted section r(z) € Tp (L“’" ® Kﬁ)G" can be extended to the whole space C™.
Therefore the maps A,, S, are bijective. O

Now let me turn to the asymptotic properties. If the map S,, could be unitary or hopefully
a constant multiple of a unitary map, then the following equality would be fulfilled

1
W /(C" |T(Z)|2€w" (Z) = (;”rn/c\2 ‘Sn(r)‘Q(O‘)Ea ) Cm a constant .
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Gn

1
Equations (292|) and (296|) indicate that the squared norm of r(z) € I'p (L“’" ® Kﬁ) can be

written as an integral over Q,, as follows

(306) — / Ir(2)Pew, (2) = Cr—ries / 1S (M) 2(a) In(@)ea(a), Cn s a constant .
(wh)™ Jen e Jom

In equality , the term I, n() is an obstruction so that S,, becomes a constant multiple of a

unitary map. Since I deal with non-compact Kéahler manifolds, the tools of [18, Sect. 5] cannot

be used to determine the asymptotic of I([zp]). So let me state the asymptotic of Iy([z]) in

a formal sense as follows.

Proposition 18. For each zy € J;,1(0) the function Iy([z]) = ﬁ]zo\ erl®ol” K, (+]20/?) satis-

fies

(307) lim Fo([z]) = 5+ O(h).

Proof. The asymptotic of Ij([z]) is obtained by taking the asymptotic of the MacDonald-
Bessel function, which is given by

. N K
(308) lim Ki(s) =y /5-e [1 + 0(71)} .
See equation (5.2.26) in [6] for details. For each zg € J,1(0), the argument of the function
Ky (3]20[%) is large in the limit 2 — 0. Hence, the asymptotic of K (|z0|?) is given as in (308)
with s = 1]z9|2.
h

. 1 2\ hm -1 —l\z0|2 [ }
(309) %l_rf[l)Kg (h‘ZO| > = ?|Zo| e h 1+ O(h) .
I get equality (307) by substituting (309) into the expression of Ij([zo]). O

Theorem 6. The map S, is asymptotically a multiple of a unitary map (in a formal sense).
Namely, the main asymptotic of the right-hand side of s given by

C, 1 / 9 2 _ Cr
310 — Sn(r)|*(@)eg(a) = Cp||r(a with Cp, = —.
(310) /3 7 le n(r) " (@)eg (@) = Cn[[F(@)|| m=
Proof. Equality lj is obtained by taking the asymptotic of I, given in 1' ([

For the case without half-forms it follows from equalities (301)) and (302) that the squared
norm of s(z) € ['p (L¥»)" .
(311)

1 1 - m—
/ 15(2) en (2) = cnm/ An(5) (@) In(@)]a] “2en(a), Chis a constant .
(h)™ Jen h Qm

2

expressed as an integral over (), is given by

Equality 1) indicates that the term fﬁ(a)\a|m7_2 is an obstruction so that the map A,
becomes a constant times a unitary map. It follows from proposition [1§| that in the limit & — 0
the main asymptotic of the right-hand side of equality (311]) is given by

Vs [, 1A @lal ¥ es(o).

In the term |a|2 ~! is related to the volume Vol(G,, - z9) which is not a constant function
on J,1(0). This fact is the reason why the map A,, is not a constant times a unitary map
in the limit A — 0. The term Vol(G,, - zp) is present in because the volume on J,1(0)
is decomposed in terms of the volume on J,1(0)/G, = Q,, multiplied by Vol(G, - z9), see
equality (272). Meanwhile, the term Vol(G,, - 29) fails to arise in bacause it is canceled
by the volume factor from the half-form of theorem [2

(312)
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4. Quantum Reduction and The Bargmann-Todorov Space &,

In this section I identify the Hilbert space B&Gn)c with the Bargmann-Todorov space &,
n = 8,4, m = 5, 3 respectively. I will first show that f(z) € B with f(z) = ¢(a(z)) regarded
as a function ¢ on @, belongs to the completion of P = ©72,W, regarding the inner product
considered by Bargmann and Todorov. Let me begin with the dimensions n = 4,m = 3. In
the subsection 1) I have shown that elements f € BiU(l))C are functions in B, that belong
to the kernel of the operator Q¢ given in 1) For the following computations it is enough
to consider this operator with § = 1 which is given by Q = h (218%1 + 228%2 — zg% - 24%).
A function f € B4 can be written as follows

B 21 25? 25° Zyt

f N Z A[nl,ng,ng,n4] \/hnlnll \/h”2n2! \/hn3n3! \/h”4n4! ’

ni,m2,n3,n4

(313)

The series in (313)) is a pointwise convergent series, so the derivatives of f can be calculated
term by term. The following is obtained

ni no ns T4
21 29 <3 24

VR VR /Rrsng! \/Rrang! .

@f =h Z A[n17n27n3,n4] (77,1 +ng —ng — n4)

ni,n2,m3,n4

The function f defined in l} belongs to the kernel of @ if and only if the exponents
ni,no, ng, Ny satisfy the following equation

(314) ni+no —ng—ng = 0.

The set of functions f € By whose series satisfies equation (314)) is a closed subspace of By, see
[36] for details. Moreover, this series can be written as a direct sum of elements in the spaces
defined by

ni no ns N4
21 Z2 <3 24
VEMng! Erzng! /Rsng! /Rtang!

where 7 is a positive integer number. A calculation shows that elements of H,., are homogeneous
of degree 2r. It follows from proposition that elements of H,, are invariant under both
actions To.o, Ty of U(1),C* on By defined in and can be expressed as a function with
argument a(z) = (a1(2), a2(2), as(z), as(z)), which is identified with a holomorphic function
on Q3. That is, any element of H, , can be expressed as a function h(z), which can be written
as

(315) H,, = span { iny+ne=r=n3g+ n4} ,

h(z) = g(a(z)) with g defined on Q3.

I claim that g is homogeneous of degree r. Using the homogeneity of h, the following equalities
hold

h(az) = g(a(az)) here az = (az1.aze,azs3,az4), a€R
a*h(z) = g(a’a(z))
(316) a*g(a(z)) = g(a’a(2).

If T define 1 = a?, then equality p"g(a) = g(pa) holds. Thus g is homogeneous of degree 7.
So the series defining f consists of homogeneous terms, which each one can be identified with
a homogeneous, holomorphic function on Q3 of degree 7.

For n = 8, let me make a similar analysis in order to show that the series defining f €

BéSU(z))C consists of homogeneous terms, which each one can be identified with a homogeneous,

holomorphic function on Q5 of degree . Functions in BSU(Q)) € are elements in Bg that belong

to the kernel of the operators @gj ,j =1,2,3 defined in 1’ A function f € Bg can be written
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as

a P 228
317 = AH a RN .
(317) = Y Aol ey it Ve

a1,a2,...,a,

The derivative @51 f of the series in 1} can be calculated term by term. The following is
obtained

(318) Q¢ f =

2y 238
h Z A[al,ag,...,ag}(al +asz+as+ay—as —aq4—ag — ) ......

2 _ 8
a1,a2,...,a8 \/W\/W V% ag!

The function f defined in lb belongs to the kernel of @51 if and only if the exponents
ai,a9,as, a4, as, ag, a7, ag satisfy the following equation

(319) a1 +as+as+ar—as —ag —ag —ag = 0.

The set of functions f € Bg whose series satisfies equation (319) is a closed subspace of Bg, see
[36] for details. Moreover, this series can be written as a direct sum of elements in the spaces
defined by
(320)
P 252 238
H,, =span 1 2 e 8
nr P { \/halall \/ha2a2! \/ha8a8!

where 7 is a positive integer number. Note that elements in H,., are homogeneous of degree 2r.

:a1—|—a3+a5+a7:r:a2+a4—|—a6+a8},

Since f must belong to the kernels of @52, @53, the homogeneous terms of the series defining f
must be written in terms of a subset of H, ,. It follows from proposition (13| that elements of
this subset are invariant under both actions T}, T, of SU(2),SL(2,C) on By defined in
and can be expressed as a function with argument «o(z) = (a1(2), a2(2), ..., as(z)), which is
identified with a holomorphic function on Q5. That is, any element of this subset of H,, can
expressed as a function h(z), which can be written as

h(z) = g(a(z)) with ¢ defined on Qs.

Using the homogeneity of h(z), I can do similar calculations as in (316 and show that ¢ is
homogeneous of degree r. Thus each homogeneous piece of the series defining f € BéSU@))C

can be identified with a homogeneous, holomorphic function on Q5 of degree 7.

I could write each term of the series defining f € BSLG”)C using the condition in 1) 1)
respectively and show that g is the restriction to @), of a homogeneous polynomial of degree
r on C™*!. These calculations can be done by hand, but they are very involved and long. I

rather present a short and structural argument, which was suggested to me by professor Brian
Hall.

Proposition 19. If g is a holomorphic, homogeneous function on Qum of degree r. Then g is
the restriction to the quadric Qy, of a homogeneous polynomial of degree r on C™1.

Proof. We use that g can be written as g = g1 + g2 with g1 an even function and g5 an odd
function with respect to the last component «,+1. Namely,

(321) gi(at, .oy my—mt1) = gi(a1, ..., Qm, Qnt1)
(322) g2(a1, oy —mt1) = —ga(a1, -y Gy Qunt1) -

where ¢; and go are holomorphic, homogeneous functions on Q,, of degree r. We are going to
show that each one g1, go is the restriction to @), of a homogeneous polynomial of degree r on
C™*! 5o that the result holds.
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We first consider g;. Note that if (aq,...,Qm,@my1) is in the quadric Qm, then so is
(1, ...,y —am+1). Then let us consider a function p on C™ — {0} defined by

(323)
plat,...,am) = q¢1 (al,...,am,z a%—l—...—i—oz?n) for (a1,...,au,) with ad+...4...a2%, #0
plat,...,am) = gi(ag,...,am,0) for (aq,...,an) with af 4+ ... +...a2, = 0.

For (o, ..., ) with a?+...+...a2, # 0 by (321)), the value of p is independent of the choice
of a branch of the square root. Note for (aq, ..., Qm, @mi+1) In @, we have

Qmt1 = F1y/a2 + ...+ a2,

and therefore

(324) i, ..oy amy ami1) = g, ooy Gy —umg1) = plad, - .oy Q).

Our goal is to show that p is a polynomial. If we can do that, then (324) will show that ¢;
is the restriction to the quadric Q,, of a polynomial. Now, if a% + ...+ a2, is nonzero near a
point 8 € C™, then we can choose a holomorphic branch of the square root function defined
near this value, which means that \/af + ...+ a2, can be computed holomorphically near 3.

We conclude thus p is holomorphic on C™ — {0}, except at points in the quadric Q,,—1 =

{(a1,...,am) € (Cm|a% +...+a2, = 0}. Now, if (a1, ..., ) is nonzero and in Q,,_1, then at
least one of the partial derivatives
9 2 2y _9
J

will be nonzero. Thus, if we take out the origin, then Qm—1 = Qm_1 — {0} is a holomorphic
submanifold of C™ — {0}, by the holomorphic version of the implicit function theorem (or the
rank theorem). See Thm. 1.1.11 in [22] for details. Now, using the continuity of both g and
the absolute value of the square root, it is not difficult to see that p is continuous. Then the
Riemann extension theorem, see Prop. 1.1.7 in [22], implies that since p is locally bounded and
holomorphic off the submanifold @Q,,_1, it must actually be holomorphic on all of C™ — {0}.
But then p must extend holomorphically to all C™, since a holomorphic function in higher
dimensions cannot have an isolated singularity. We conclude that p is holomorphic on all C™
and homogeneous of degree r, hence a polynomial of degree r.

Now we consider the odd part go. Let UcC Qm be a subset where a1 = 0 and define §
on Qn, — U by

~ _ g?(ala"'aaWhOém+1)
glat, ..., Qm, Q1) = .
Am+1
Now, if we are at a point in @, where a,,+1 = 0, then one of a,...,ay, is nonzero and let

us assume without loss of generality that it is ;. Then —(a3 + ...+ a2, + a2, ) :‘a% # 0.
Thus we can take «a,...,m,am+1 as a local holomorphic coordinate system on @), with

o) = z\/a% +...4+a2 + O‘?n+1~ Then the condition (322) means that when we expand go in
this coordinate system, each term in the Taylor expansion has to have a1 to an odd power.
Thus, when we divide by a;,,+1, we still have a holomorphic function. This analysis can be
done in another local holomorphic coordinate system on Qm for aq,...,q;, nonzero since we
can relate the functions on each coordinate system via a transition map, which is holomorphic.
We conclude, then, that g is actually holomorphic on all Qm, even at points where am+1 = 0.
But g satisfies , so § is the restriction to @, of a polynomial p. Then gy = Qm+19 is the
restriction to @, of the polynomial 1Aty ey Q). O
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B,S,G")C

Since each homogeneous term of the series defining f € descends to a homogeneous
polynomial g, of degree r restricted to @, the function ¢ on @Q,, can be written as follows

o= Z gr with g, € W, (homogeneous polynomial of degree r).
r=0

Thus f(z) = ¢(a(z)) € BlEnle regarded as a function ¢ on @, is an element in P = © W, .

1\ Gp
Let me recall that the space I'p (L“’" ® Kﬁ) is identified with B%G")C. That is, every
G

1\ Gn
section r(z) € I'p (L“’” ® Kﬁ) gives a function f(z) = ¢(a(z)) € Be, Equality (268
indicates that the squared norm of f(z) = ¢(a(z)) can be calculated as the squared norm of ¢
on Q. Namely,

(325) L erake) = [ o).

where the measure dm/, | («) is given by

1 3—m _ \/504
iy (@) = cte—rlo]“Fa]” Km< ! |>€a(04)-

Note that the measure dm/ _, (a) is the Bargmann-Todorov measure dm/, , | («) in up to a
constant. Let me consider the polarization identity for f(z) = ¢(a(z)), 9(z) = p(a(z)) € BiEme

(326) (,9) = 3 17 +61P ~llg = FIP = o (I =gl = 1 +291P)].

It follows from equality (325) that the right-hand side in (326) calculated on Q,, gives the inner
product of ¢, p € P. Namely,

(327) (f.0)= | J@9E)dn(z) = | dlejpla)dm) (@) = (@¢)

Equality 1} implies that BﬁlG")C regarded as a space of functions on Q,, is the completion of
P with respect to the inner product considered by V. Bargmann and I. Todorov. Hence, BflG")C

can be identified as a Hilbert space on @, with the Bargmann-Todorov space &,,. Indeed, the

reproducing kernel of BgG”)C regarded as a function of a, 8 € Q,, is the reproduction kernel of
Em. See proposition [15] in Chapter 2.

Now I will show that the differential operators in can be deduced from operators acting

B%Gn)c

in B,, that preserve the space . Let me consider the map pp m(z),n = 8,4, m = 5,3

whose components «(z);,j = 1,...,m + 1 are given in (140]), (117 respectively. Let oz(z)j be

the complex conjugate of o;(z). The functions a(z) ; cannot be quantized with respect to the
holomorphic polarization P because they do not satisfy the condition in . Let me assign
to a(z) and wj an operator acting in B,, by following the Segal-Bargmann representation
which is given by

~ 0
Zs =25y, 2p=h—1) sk=1,...,n.
0z,
Let me begin with the dimensions n = 4, m = 3. The components «;(2),j = 1,2, 3,4 of ps3(2)
are given in ((117)). The corresponding operators a;(z) are given by
(328) a1(z) = (z123 + 2224), Q2(2) = 1(z123 — 2224)

as(z) = (z124 — 2223), Qa(z) =1(z124 + 2223) .
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For a(z)j,j = 1,2, 3,4 the corresponding operators 5]- = 75]- are the following

0 0 o 0 ~
D 2 I D _.p2( 0.0 _ 0 o0
(329) 1=h (821 Ozz Oz 824) ’ 2= —th (821 Oz3 0z 8Z4)

Ds = hz(azl 824 ;zz;z:;) - Di= _ZHQ(% 921+ o 323> '

The operators ﬁj, j = 1,2,3,4 can be realized from the Metaplectic representation in the
space By. Let me recall that the symplectic group Sp(4,R) leaves invariant the symplectic
form wy = dv A du. The group Sp(4,R) has a covering group which is called the metaplectic
group Mp(4,R). The construction of the metaplectic representation at the Lie algebra level is
carried out in [36] for any dimension n. Let me give a brief description of this construction
for the particular dimension n = 4. The symplectic form wy = dv A du is associated to an
antisymmetric bilinear form {-,-} on T*R* that is defined by

(XY} =xT3v wich J=( % M)
Iy O

where I is the identity matrix of 4 x 4, and X,Y are vectors in T*R*. Let me denote by
(€uys-s€uy)s (Enyy-- -, €,) the canonical basis in the directions (u, v) respectively. The vectors
(Euss- - Cusr€ups -, €u,) define a basis of T*R? with the property that {ey,,e,,} = ;. Let
me consider a basis &, uy» Eva,vy> Sua,v, Of the Lie algebra sp(4,R) of Sp(4,R). The elements of
this basis are defined through its action on vectors X in T*R? as follows

1
fua,ub(X) = 5 ({euzﬂX}eub + {euva}eua) ) a, b = 1) 27374— .

The other elements &, v, , &uq,v, are defined similarly as above equality. The metaplectic repre-
sentation is denoted by du(&u, ), Ait(Evauy)s Apt(Eva,)- See equality (4.9) in [36] for expression
of the assigned operator to dit(§u, up)s A(Eva,usy)s A(Eva,v,)- The elements &, v, — Euauy > Eveuy +
&vy,ua belong to the Lie algebra of a subgroup of Sp(4,R) that is isomorphic to U(2,2) and are
assigned the following operators

(330) Ao, — ) = —1 (5255 +20%) 1<a<2and3<b<4
Aiony + o) = (5205 —2a%) 1<a<2and3<b<d.

The operators in (329) can be written in terms of the operators in (330]) as follows

5, =EQW@Wﬁ@wnﬂw%m+mmwwW@w;@wnﬂwmm—mmm
Dy :—%W@wr@WJﬂw%m—mmwwW@wﬁ@wnﬂwmm+mmm
By =§QW@WH@MJcw%w+%mwwW@mf@Mnﬂwmm—%mm
Dy = hj {dp(€oos — Suaun) + Abi(§va,vs — Sugyua) — Udp(Evrus + Evayun) + A(vaus + Evgua)} -

The operators Zij,ﬁj in 1 , ) are adjoint to each other in the space By, so they

are also adjoint to each other in the space B, va . Moreover, the operators aJ,D in ,
(1329) commute with the operator ng given in . That is, [ng,oz]] [ng, il =0, Wthh

implies that for f(z) € BELU( )< the functions (ajf) (z) and (Djf)( ) belong to BiU(l))C.

Hence, (a; f) (#) and (ﬁ]f) (z) can be identified with elements in €. This is the point of the
following proposition.
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Proposition 20. Consider f(z) = ¢(a(z )),g ola(z)) € B(U( Ve and the operators @j,ﬁj
given in (328), (329). The functions (a;f) ( (23 ) are identified with the following

elements of &3

a;6 =06 and (ngé) (@), j=1,2,3,4,

where ﬁj is the adjoint second order differential operator to a;. The expression of ﬁj s given

in@form:?).

Proof. Since a; and ﬁj are adjoint to each other in BiU(l))C, then the following equality holds

(331) (@f.9) = (f.Djg).
It follows from lj that equality |i calculated on Qs is given by
(332) (@;d,¢) = (&, Dj ).

Equality 1) indicates that &; and ﬁj are adjoint to each other in &5 .
Equality aj¢ = «a;¢ is obtained from the identification of a;(z) with «; and of ¢(a(z))
with ¢(a)). The explicit expression of D; can be obtained by calculating the derivatives with

the chain rule. It is enough to make these calculations for 51. The same procedure works for
the other operators D;. Let me calculate the following

0? 0? )

N _ 32
le(z) =h <8Z182:3 + 82’282’4 ¢

((2))

09(a(z)) <8¢(a(z)) day n do(a(z)) Oaa n 0¢(a(z)) Oas n 0o(a(z)) 8044)

823 6@1 823 (9042 823 (9053 (923 8054 823
9¢(a(z)) 0¢(al2)) _ 9¢(a(z)) 9¢(a(z))
A1 Oo (05} tea (90&2 B 8@3 Ttz 8064 '

The second derivative of the first term is given by

(333)
0%o(a(z do(a(z 0 0 0 0 /0¢(a(z
;,52(1823)) - ¢((9a(1 : ¢((9a(2 ))—i—{z 82’1( gbf%i ))) 8zl< ¢éa(2 ))> 228721< ¢((304(3 )))
9¢(a(2))
T 6zl< Oas ﬂ '

The first derivative of the second term is given by

O¢(alz)) _ 0la(z) O O¢(alz)) Doy | O¢(alz)) Oas | 9d(a(z)) Daa

82’4 8@1 82’4 8042 82’4 80[3 824 8a4 824
_ L o00az) | 09az) | 09(az)) | Od(alz)
8041 8042 8043 8044 ’

The second derivative can be written as follows

(334)
Poa(z))  9¢la(z) ,99(a(2)) I¢(a(2)) 9¢(a(2)) 9 (9¢(a(z))
02900z4  Oay Oy +{Z 822( Oo ) = 8z2< Oas >+2187( oo )

+ 121 =—

029 <6¢((9ai ))ﬂ '
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After calculating all the derivatives in (333), (334) and puting all the terms together, the
following is obtained

D) ! alz 192 alz
335)  (Dio)a(2) = h2[2(1+zaka‘zk)w_alzw}
k=1

= 94
:@@Mm

The right-hand side of equality (335|) regarded as a function on Qg corresponds to (lA)ltb) ().
O

For n = 8, m = 5 let me consider the map p(g5)(z) whose components a(z);,j = 1,...6
are given in (140). The corresponding operators &;(z) are the following
(336) @1(2) = (2124 — 2223) + (2528 — 2627), @Qa2(z) =1[(z128 — 2227) — (2326 — 2425)]
as(z) =1[(z126 — 2225) + (2328 — z427)],  Qu(z) = (2126 — z225) — (2328 — 2427)

a5(z) = (2128 — z227) + (2326 — 2425), Qe(z) =1[(z124 — 2223) — (2528 — 2627)] -

For the functions W, 7 =1,...,6 the corresponding operators 5]- = 73]- are given by
Dy = - [<5621 az8 02y 3Z7> <8z3 26 624025”
P = | (G 88) (aa )

~ 9 0 0 o 0
Dy = h —_——— —_———
821 82’6 822 825 823 82’8 82’4 827
P — p2|(2 0 22N (99 09
0z1 0zg  Oz9 077 0z3 0z 0z4 0z5
~ 9 o0 0 o 0 o 0 o 0
Ds = —ih —_— | - = ]| .
821 824 822 82’3 82’5 628 626 8Z7
The operators ﬁj, j=1,...,6 can be realized from the Metaplectic representation in Bg. By
doing a similar construction to dimension n = 4 I can define a basis &y, u,, {va,0 > Sua,v, Of the Lie
algebra sp(8,R) of Sp(8,R). See equality (4.9) in [36] for expression of the assigned operator
to dp(&uguy)s A (Evauy)s Ab(Evavy ), Which define the metaplectic representation in Bg. The

elements &, v, — ua,uys Svaus + Evpua Delong to the Lie algebra of a subgroup of Sp(8,R) that
is isomorphic to U(4,4) and are assigned the following operators

2
dlu’(é.vaﬂ)b - fua,ub) = -1 (%3% + zazb>
(338)  dpa(€vaiy, + Evpua) = (*a;?é,% - Za%) with a =1,3,5,7, b=2,4,6,8.

For instance, the operators ﬁl, D, in li can be written in terms of the operators in 1)
as follows

~

h2
Dl = ?{dﬂ(évl,wx + 5”4#1) - dﬂ(fvs,m + §v2,u3) + dﬂ(§v5,u8 + gvs,%) - d/‘(&m% -+ §v6,u7)_
Z[d/‘(gm,m - ’SU4,U1) - dﬂ(éva,vz - guz,ug) + dﬂ(gvsms - gus,us) - dﬂ(‘fv?,vos - 5%#7)]}

~ h2
D2 = ?{d/‘(&n,vs - 5“87’“«1) - d:u(gvmvz - ‘SU2,U7) + dlUJ(E’USﬂJG - 5”67“3) - dﬂ(£v5,v4 - §U4,U5)_
Z[dﬂ(fvl,w + fvs,ul) - d#(fw,uz + fvz,w) - d#(fvs,ue + fva,us) + dﬂ(gvs,m + §v4,u5)] }
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The other operators in 1) can be written similarly to 731, 732 as above.

The operators &j,ﬁj,j =1,...,6 in 1' || are adjoint to each other in the space
Bg, so they are also adjoint to each other in the space BE(;SU(Q))‘C. Moreover, the operators

@g,j = 1,2,3, in (201) commute with the operators aj,ﬁj in || 1} which implies
that for f(z) € BéSU(Q))C the functions (@, f) (z) and (ﬁ]f) (z) belong to BéSU(Q))C. Hence,

(@;f) (2) and (ﬁﬂ‘) (z) can be identified with elements in &. I can do a similar procedure to

the dimension n = 4 to prove the following.

Proposition 21. Consider f(z) = ¢(a(z)) € BéSU(z))C and the operators a;, ﬁj,j =1,...,6
gwen in (336), (337). The functions (&;f) (z) and (72]”) (z) are identified with the following
elements of &s.

(339) a;6 = aj¢(a) and Dj¢(a),j=1,...,6,

where ﬁj is the adjoint second order differential operator to &;. The expression of ﬁj s given

in@form:’é.

5. Quantum Reduction and The Kustaanheimo-Stiefel Transformation

In section it was considered the geometric quantization of (T*R", w, = dv A du) with respect
to the vertical polarization V. In that case the Quantum Reduced Hilbert space HE" is the
space L?(R™, du)%". T will show in the next paragraphs that L?(R™, du)%" can be identified

with space L? (]Rm, %dw), where C), is a real constant that depends on the dimension of G,,.

Let me consider the Kustaanheimo-Stiefel transformation in equation (157]), which is defined
as follows
- . . 1
(340) Iy m:R">u — 2z eR™, xziAn(u)u, n=238,4, m=25,3,
where the matrix A, (u) is given in ((152]).

Let me consider the dimensions n = 8, m = 5 and identify RS = H2, R ~ R x H. The
map Ilg 5 can be written in quaternion coordinates as follows

5 ) 1 . ..
(341) IIg 5 H2 3 (q1,q2) — (2[det(q1) — det(qg)],q2q1> eR x H.

A straightforward computation shows that the map ﬁ875 is invariant under the action of SU(2)
on R® = H2 defined in . That is, 1:1875 satisfies l:[875(<I>g(q1,qQ)) = l:[875(q1,q2). Indeed, the
map ﬁ875 is the projection map of a principal bundle with total space R®, fiber Gg = SU(2)
and base space R, see [23] for details. The map IIg 5 can be written in Cartesian coordinates
as follows

(342) Mgs : R¥su—zeRS
T = %[(u%+u%+u§+ui)—(u§+u§~l—u$+u§)]
T2 = UlUs — UUg + UIUT — ULUS
T3 = UrUy + UUg — UIU5 — U4Ug
T4 = —ULUS t+ U2UT + U3UG — U4U5
T5 = ULUg + U2Us + UUS + UUT .

Functions ¢ € L*(R8, du)5U®?) are invariant under the action of SU(2) on R® = H2. That is,
o satisfies ¢ (®y(q1,¢2)) = ¢ (Pg(u)) = ¢(u). Since the orbits ®,(u) are the fibers of the map
IIg 5, then functions ¢ € L?(R®, du)SY (2) are constant along the fibers of the map IIg 5. Hence
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¢ € L*(R®, du)Y?) can be written as @(u) = ¢(x(u)) with ¢(z) a function on R®, and z(u) is
defined in equations (342)) .

Let me consider the dimensions n = 4, m = 3. The map 1:1473 is given by

(343)
2 2

1
5(“%"‘“%—“3—“4) .

The map 1:[473 is invariant under the action of U(1) on R4 given in . That is, l:I4,3 satisfies
M43 (Pr,(u)) = Ty3(u). Moreover, Iy 3 is the projection map of a principal bundle with
total space R*, fiber G4 = S' and base space R3, see [24] for details. A similar argument
to the case of ¢ € L*(R®, du)3Y® shows that functions ¢ € L*(R%,du)V® can be written as
¢(u) = ¢(z(u)) with ¢(z) a function on R?, and x(u) is defined in equations (343)).

Now I will show that the volume form du = duq A ... A du,, on R™ can be decomposed in
terms of a volume form on G,, and the volume form dx = dx1 A ... Adx,, on R™, see equations
([359), below. The following fact is used to calculate the volume form on G,. For any
matrix Lie group G the one-form Q = g~'dg on G is left-invariant with values on the Lie
algebra g. For g € SU(2) in . the one-form Q = g'dg is given by

H4,3 : R4 DU — T E R?’, T1 = UTU3+UUL, T2 = UTUL—UU3, T3 =

Q- 1 —o + 1283
T\ Qg +103 -1 ’
where the one-forms €2;,7 = 1,2,3 are given by
(344) Q1 = cos?*(f)da — sin*(0)dj

Qy = sin(f — «a)cos(F) sin(f)(da + df) — cos(a — 3)do
Q3 = cos(f — a)cos(f)sin(f)(da + df) + sin(B — a)db .
The volume form on SU(2) can be written as
(345) d(Vol(SU(2)) = Q1 A Qo A Q3 = sin(6) cos(8)df dadp .

Hence, the volume is given by

(346) Vol(SU(2 / / / sin(#) cos(0)dd da df = 27>

According to [23], the one-form connection V of the principal bundle H&g, : R® — R can be

written as follows .

V= IE [(dgrqi — q1dgy) + (dg2q5 — q2dg3)] -
The one-form V is defined on R® with values on su(2). That is, the one-form V can be written
with respect to the basis of su(2) in (101]) as follows

v 0 0 -1 0 2

where the one-forms v;,j = 1,2, 3 are given by

1
(348) v1 = " ’2 [(urdug + ugdus + ugdus + urdug) — (uaduy + usduyg + usdug + ugdur)]
1
Yo = » ’2 [(urdus + uodug + usdur + ugdug) — (usduy + usdug + urdus + ugdug)]
1
vy = » ’2 [(u1dug + ugdug + ugdur + ugdus) — (uedus + ugdug + ugdug + urdug)] .

The one-forms in (348) are the parametrizations of the one-forms Q;,j = 1,2,3 in (344]) re-
garding the variable u € R, so the three-form 7 A 2 A 43 can be thought of as the volume
form of SU(2) in (345]) parametrized in terms of the variable u € R®.
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I can consider for each element &; of the basis of su(2) in (101) its infinitesimal generator
on R® 22 H? which is given by

_ 1€, t€; _ .
Xe; = %‘t:O (e Y qp,e® QQ) ;= (§a1,89), §=1,2,3.
The vector fields X¢; can be written in terms of the canonical basis {6%1, ceey 8%8} as follows
0 0 0 0 0 0 0 0
349) X¢, = — — —uz3— — — U5 =—— — U= —
(849) Xe, 25w T " T Mou Boun  ous “ous 0w " dus
Xe, = —ui—ui—i-ua(‘)u —Fui—ui—ui—kui—l—ui
7 00 w0 T Pous Ous COug | COur | Oug
Xey = —ui—l—u 0 ui+ui+u£— 0 U 0 —ui
& 48U1 38UQ 2(9U3 18U4 86u5 78u6 68U7 56u8

The relation between the one forms v,k = 1,2,3 in (348) and the vector fields X, 1s the
following

’Yk(XEJ) = 05k » J)k: 15273'

Now I calculate the one form Q = g~ 'dg for € U(1) using the following parametrization

(350) 9= <cos€ —sin9>

sinf  cosf
The one-form Q = g~'dg defined on U(1) with values in u(1) is given by
cosf  sinf\ (—sinfdf — cos6dl 0 -1
(351) €= (— sinf cos 9) ( cosfdf  —sin 9d0> =9 (1 0) ’
where df is an one-form defined on S! with values in R. According to [24], the one-form
connection of H4 3: : R* — R3 is the one-form df written in terms of u € R4 Namely,
1
(352) df = W [(ulduz — quul) + (U3d’u,4 — U4dU3)] .

The infinitesimal generator Xy of the action of U(1) on R* is given by
(353)

X _i‘ cos@ —sinf\ [(uq cos —sinf\ [us — Xy = (= _ )
O~ 40lo=o \ \sin cosé ug ) ' \sinf cosf ug) )~ 0T 12, T, )

0 0 0 o)

The vector field Xy in terms of the canonical basis {871’ Fuz’ Dz’ Dus

} can be written as

0 0 0

0
(354) Xog=—us—+u +uz—

oul " " ouy  ous

A straightforward calculation shows that df(Xy) = 1, where Xy is given in (354). For the
following proposition, let me first consider the dimensions n = 4, m = 3 due to the calculations
are shorter than those for dimensions n = 8,m = 5.

871,4

Proposition 22. The volume form duj A dus A dug A duy of RY can be decomposed in terms of
the volume forms dx1 A dxo A dxs and df as follows

1
——dx1 Ndro A drs A\ db .

Proof. It follows from equation (343|) that the differentials of x1, x9, x3, x4 are given by
(356) dx1 = widus + usduy + usduy + ugdus
dres = wuiduy + ugduy — usdug — ugdus

drs = wujdui + uadug — usdusz — ugduy .
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The wedge product of dz;,j = 1,2, 3 gives the following three form
(357) dxy Adxo A dxs = |u]2 [uldul A dus A dug+

uzduq A dus A dug + ugdug A dug A dug + usdug A dug A dU4] .
Taking df as in (352) a straightforward computation shows that

(358) dzy Adzo Adxs AdO = |ul?(duy A dug A dug A duy) .
Using that |z| = S|u|? it follows from equality (358) that

1

2‘$|dm1 ANdxo Adrg AdO = duy A dug A dug A duy .

O

Proposition 23. The volume form dui A dug A ... Adug of R® can be decomposed in terms of
the volume forms dxi A dxa A dxs A dxa A dxs and d(Vol(SU(2)) as follows

1
(359) mdaﬁ Ndxo A ... Ndxs ANd(Vol(SU(2)) = duy ANdug A ... A dug.

Proof. It follows from equation in (342)) that the differentials of x1, x9, 3, x4, x5 are given by

(360) dxq [(urduy + ugdug + usdus + ugduy) — (usdus + ugdug + urduy + ugdusg)]
dry = [(urdus + usduy + ugduy + urdus) — (uedug + ugdus + ugdug + ugduy)]
drs = [(urdur + urduy + ugdug + ugdus) — (usdus + usdus + ugdug + ugduy)]
dry = |uadur + urdug + ugdug + ugdus) — (urdug + ugduy + ugdus + usduy)]
drs = |urdug + ugduy + usdus + usdus + usdug + ugdus + ugdur + urduy) .

Now let me consider the one-forms ~;,j =1,2,3 in (348)). A long calculation shows that
(361) dxy AdzoNdxs AdrgNdrs Ay Aya Ays = |u|2(du1du2 Ndug Adug A dus Adug Aduy Adug) .
Using that |z| = 3|u|? equality (361) can be written as follows

1

(362) el

dxy Adxo Adxs Adxy ANdxs Ay Aya Ays = duy Adug Adug Adug Adus Adug Adur Adusg .

Since the three form 1 A 2 A 43 can be regarded as the volume form of SU(2), then equality
(362]) can be written as follows

1

ol dxy Ndxo Ndzs Ndzy Ndzs Nd(Vol(SU(2)) = duy Adug Adug Adug Adus Adug Adur Adug .

U
Proposition 24. For any function 1(u) € L*(R*, du)V® the following equality holds

(363) / I (w) [2duy dus dus dug = / 16(2) 2 day das das .
R4 R3 ||

Proof. Since every ¢(u) € L*(R*, du)”(") can be written as ¢(u) = ¢(z(u)), then the function
¥(u) descends to a function ¢(x) on R? through the map Il 3. It follows from equality 1)
that the integration on v € R* can be decomposed as an integration over # € S' and z € R*.
Namely,

ldﬂfl dxg d:Eg .

27 1
/ () Py iz du dug — / 16(2)|2 = day das davs dB) = / ()2
R4 0o Jr3 R3

2| ||

O
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Proposition 25. For any function ¢ € L2(R8, du)SU(Q) the following equality holds
2
(364) / () Pus dusp . dug = / 6(2)2 " day dos ... s
RS R5 |z

Proof. Since every ¢ € L*(R8,du)3Y® can be written as p(u) = ¢(z(u)), then the function
(u) descends to a function ¢(x) on R through the map Ilg5. It follows from equality (3
that the integration on u € R® can be decomposed as an integration over SU(2) and R
Namely,

/ () duy dus . . dug = / / —dml das d(Vol(SU(2))
R8 SU(2) JR3

Vol(SU(2)) /R i ]¢(m)]2’1|d:c1 dxy ... dxs

2
T
= /R5 |¢($)|2 mdﬁl drs ...dzs .

O

Equalities (363) and (364) mdlcate that L2(R", du)G” regarded as a Hilbert space on R™
can be identified with L? (R™, & d:n)

i
The space L? (Rm, (‘j"ll d:c) can be regarded in a set-up that is related with the quantization

of the Kepler problem. For any dimension m the symplectic manifold 77 S™ can be identified
with a coadjoint orbit in so(2,m+1)* (the dual of the Lie algebra of SO(2,m+1)), see [30] for
details. In [10], Chap. 9] Coordani constructs a representation of the generators of s0(2, m+1) in
the space L2(S™, dQ2sm) by using tools of multiplier representations. In addition, he constructs

a unitary representation of the generators of s0(2,m + 1) in the space L? (]Rm, Il\ da:) from the

corresponding one in L?(S™, dQgm) through a process which involves the quantum counterpart
of the procedure that carries the geodesic flow on T+S™ to the Hamiltonian flow of the Kepler
problem on T*R™ on a fixed negative energy hypersurface respectively.

On the other hand, let me recall that the operators &j,ﬁj,j =1,...,m+ 1 and their
commutators generate a unitary representation of s0(2,m + 1) in the space &,,, see equation
I have shown for the particular dimensions m = 5,3 that the operators a;, D; can

(Gn)(c .

be obtained from the operators aJ,D acting in By, In the next chapter I will obtain

a representation of aj,Dj in the space L? (Rm, ﬁdw) via a reduction process of a Segal-

(Gn)

Bargmann transform from L2(R™, du)®" onto By,
different from the one of Coordani.

©. Let me emphasize that my approach is



Chapter /

Pairing Map and The
Segal-Bargmann
Transform

The original contribution of this chapter is the construction of a Segal-Bargmann Transform
(SBT) B, : L? <Rm C—mdx) — & through the “first quantize and then reduce” process.

[E
Namely, I consider the| gairing between the vertical polarization V' and complex polarization
P, which gives an SBT B, : L?(R",du) — Bp,,n = 8,4 that is different from the standard
one Bgn defined in Chapter 1. Actually B, and Bgrn are related via a unitary map
T\Un : B, — B, that is assigned to a suitable matrix U,, € SU(n). That is, B, = T\Un o Brn
which in turn shows the unitarity of B,,. I show that the restriction of B, to L?(R™, du)%" gives

an SBT By, : L*(R", du)%" — B,(LG")C, and thereafter from the identification of L2 (R™, du)“"

with L2 <Rm, C—’”dw) and of BﬁlG”)C with &,, I obtain B,, from the one By ,.

||

1. Pairing Maps

In Geometric Quantization, the pairing of polarizations is a way to relate the results of quan-
tizing with respect to two different polarizations. In the literature, it is mainly considered
the pairing of two transverse polarizations. Following the exposition of [17), [43], I will do the
pairing of the vertical polarization V' and holomorphic polarization P, which is an example of
pairing of transverse polarizations (the nowhere vanishing sections kg = duj A dus . .. A duy, of
Ky and kg = dz1 AdzaA. . . Ndz, of K, satisfy koAko = duj Adug .. .Adup Advy AdvgA. . . Advy,).

1
Let me consider sections r1(z) € I'p (Lw" ® Kﬁ) with r1(2) = ¢(2) el o A A den

1 .
and ro(u,v) € 'y | LY ® K@) with ro(u,v) = p(u)e 28" \/duy A ... A du,. The pairing of
r1(z) and 7ro(u,v) is defined by

(365) (ri,m) = cte /T*Rn o(2)p(w) e () e, (u,v)

with €, (u,v) = duidusy . ..du,dvidvs .. .dv, and ctc a constant suitably chosen. The right-
hand side of equality (365]) is well-defined (finite) because the functions ¢(u), ¢(z) are square-
integrable regarding the indicated measure.

85
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1 1
Now let me identify I'y, (L“’” ® K;) with L2 (R™, du) and I'p <L"J" ® Kﬁ) with B,,. That

is, each section r2(u, v) and r1(2) gives a function p(u) € L? (R", du) and ¢(z) € B,, respectively.
Because the pairing of r1(z), r2(u, v) is bounded, there is a pairing map Ay, p : L* (R", du) —
B, satisfying the following equality

(366) (r1,72) = (r1, Av,pra)p .

The right-hand side of equality (366 is the inner product in the space B, .

In [43] it is exposed the procedure to obtain the pairing map Ay p. I implement this
procedure in the following calculations for the complexifications given in equations and
. From the reproducing kernel property the following equality holds for all ¢ € B,

z) = w) eR*? duh (1w v (w) = e~ 7l e (w).
(367) o) = [ syl anlw). dw) = et e ()

The function ¢(z) in (367) is substituted into equality (365]). The following is obtained
(368) <r1’ fr2> = ctc / |: (UJ) e%zﬂl dyg(w)] QD(U) e—%(‘ﬂ?—zu'v) dvdu .
T*Rn Cn

I can interchange the integration order in (368|) by the theorem of Fubini. That is, the pairing
of r1(2) and 7r2(u,v) can be written as follows

9 )= [ o [ e b ol vy ).
n T*Rn

Let me look at the following integral
(370) / o(u) e~ (7 —10) o720 gy gy,
T*R"

In the integral the variable z € C" comes from a complexification of (u,v) € T*R"™. So
by performing an integration with respect to v € R™ it leaves an integral whose integrand
involves the function ¢(u) and a function that depends on u € R™ and w € C". Let me do this
integration. For n = 4 the complex coordinates z € C* are given in (89)), and the integral with
respect to the variable v € R?* is given by

(371) /4 e—4—1h{v2_2zu-v—2[w1(1?)4—1I/1)+v2(1?)1+1D4)+wg(@3—@2)4—1}4(@24-@3)]} dvy dva d’l)g dvy .
R

For n = 8 the complex coordinates are given in , and the integral with respect to the
variable v € R® is given by

(372) / o~ an [V~ 2 v—2x(u)] dvrdvs . . . dvs ,
R8
where the term x(u,w) has the following expression

X(u, W) = (v1 + w2) W1 + (v3 + 1w4) W + (—v3 + 1w4)W3 + (V1 — W2)Wa+
(—vg — ws5)ws + (—vs — wr)we + (—vs + w7)w7 + (vg — 1w5)Ws .

The integrals in (371 and (372)) can be done separately on each variable v;,j = 1,...,n in
both cases respectively, and the same procedure can be used to compute these integrals. For
example in (371)), the integrals with respect to v;,j = 1,2,3,4 are given by

(373) / e—i{v%—2v1[zu1+2(i}4—w1)}} dvy, fR e—ﬁ{v%—%g[wz—k(wl—i—i@)]} dvo
R

/ o 37 V3 —2v3 [z +1(w3 —~w2)]} dvz, [y e~ @ (vi—2valwa+ (@24 @3)]} gy
R
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The following is obtained from integrals in (373])

(374) ezf*h[z(u1+ﬂ14—w1)]2 / e—ﬁ{v1—[z(u1+(w4—w1)]}2 d’U1 — 2(}:”.[.)1/2 eﬁ[z(u1+w4—w1)]2

R
e41n[w2+(w1+w4)]2/e—&{v2—[w2(w1+w4)]}2 dvy = 2(h7r)1/2€ﬁ[w2+(w1+w4)]2
R
ezﬁn[l(u3+w3w2)}2/e${03[l(u3+w3w2)]}2 dvg = 2(hﬂ)1/2eﬁ[z(u3+w37w2)]2
R
1 — —.\12 1 — — 2 1 — — \12
o1k w4t (W2+w3)] /e—M{v4—[zU4+(w2+w3)]} dvy = 2(hﬂ)1/265[W4+(w2+w3)] )
R

For n = 4 let me take ctc = m. It follows from above calculations that equality l} can
be written as

(375) (ri,Av.pra)p = /(C4 o(w) [/R4 o(u) Ag(u, w) du dvf{(w),

where the kernel A4(u,w) has the following expression

(376) A4(u,w) _ i efg—h{u272[w1(u171u2)+w2(U371U4)+w3(7w4fU3)+w4(72u27u1)+(w1w4+w2w3)}} )
T

It follows from equality 1| that the pairing map Ay p : L? (]R4, du) — By is given by

(377) (Av.pp) (w) = / o(u)Ay(u, w)du, ¥V € L*(RY, du) .

R4

For n = 8 doing the integrals in l} and choosing ctc = W, the equality li can be
written as

(378) (r1, Av,pra)p = /
(CS

o(w) [/ngo(u)Ag(u, w) du] dvs(w).
The kernel Ag(u,w) is given by

1
(mh)?

where x(u,w) has the following expression

e~ ﬁuQ—l—%x(u,w)—&— % [(w1wg—waw3)—(wswg —wewr)]
)

(379) Ag(u,w) =

(380) x(u,w) = 1wi(—uy + 1ug) + 1w (—ug + r1uyg) + 1ws(us + 1ug) + 1w (—uy — 1u2)

+ w5 (us + wug) + wg(ur + 1ug) + wr(—uy + rug) + ws(us — wg) -

It follows from equality 1| that the pairing map Ay p : L? (]Rs, du) — Bg is given by

(381) (Av.pp) (w) = / o(u)Ag(u, w)du, Vo € L*(R®, du) .

R8
From now on, the pairing map Apy : L? (R", du) — By, is denoted as B, : L? (R, du) — B,
and is written as

(382) (Bry)(w) = / o(u)Ap(u,w)du, Yo e L2(R", du) with n = 8,4,

where (Byy)(w) is given in (377) and (Bgy)(w) is given in (381)) . The map B, defined in (382))
is the Segal-Bargmann Transform (SBT).

When T*R" is identified with C™ in the standard way by writing z € C" as z = u + w, the
pairing map Apy : L? (R™, du) — B, is the Segal-Bargmann transform Bgn defined in .
See [43] for details.

I will show in the following paragraphs that the SBT B, in (382) can be written as the
composition of two unitary operators. Let me recall that the elements U € SU(n) are complex
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matrices with the property that UU* = I, where U* denotes the conjugate transpose. I can
assign to each U € SU(n) an operator Ty : B, — B,, which is defined as follows

(383) (Tor) (=) =r(@U™2),

where U~! - 2z denotes the action of a matrix on a vector. The measure dv/'(z) is invariant
under the coordinate transformation 2’ = U~! - 2, that is, dv/'(2') = dv'(2). A straightforward
calculation shows that Ty preserves the inner product in B, . Namely,

<fo’ fU9> =(f.9), Vf.g€By.

Hence, Ty is a unitary operator. See [4] for details. The SBT Bj, : L2 (R", du) —» B, can be
written as the composition of Bgn : L? (R", du) — B,, defined in with a unitary operator
Ty . Let me begin with the dimension n = 4. Consider the matrix Uy € SU(4) given by

1 7
s v 90
0 0o i =
Uy = V2 V2
4 0 0 -—-L =
V2 V2
% os 00

From (383) the action of Ty, on Bgaty € By is given by (fU4BR41/)> (2) = (Bpat) (U7' - 2). Tt
follows from definition of Bgat) that the function (Bga)) (U; ' - 2) can be written as

(Bet) (U7 -2) = [ As(u.U7" - 2)(u)du.

A straightforward calculation shows that A4(u,U; ! - 2) = Ay(u,2). Hence, the following
equality holds

(Bu) (2) = (T 0 Bast) (2).

A similar procedure can be done for dimension n = 8. Namely, the SBT Bg : L?(R8, du) — Bs
can be written as follows

(Bst) (2) = (T  Bas) (2),

where the operator st : Bs — Bg is assigned to the matrix Ug € SU(8) which is given by
1

5~ 0 0 0 0 0 0
0 0 %—%0 0 0 0
0 (1) —ﬁ—%o 0 0 0
S N A
0 0 0 0 \65 oﬁi—i
0 0 0 0 0 0 R,
0 0 0 o L = oﬁ 02
V2 V2

2. Properties of the Segal-Bargmann Transform

I show in this section that the SBT B, : L?(R", du) — B,,n = 8, 4 intertwines the operators
of creation and annihilation between the representations of Schrédinger in L2(R™, du) and
Segal-Bargmann in B, .

Proposition 26. Consider the SBT By : L?>(R*, du) — By given by
(384) (Bsp)(2) = / o(u)Ag(u, 2)du, Vo € L*(R*, du),
R4

where As(u,z) is given in (376).
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(i) Note that for z € C* fized, the kernel A4(u,2) belongs to L*(R*,du). The SBT of 1y, (u) =
Ay(u,w) € L2(R*, du) gives the reproducing kernel in By. Namely,

(355) (Bitu) (2) = [ ul)da(u ) = o

(ii) In L*(R%,du) consider the operators G; and /d;- given by

(386) ajz\}é(uﬁhaij), a;:\}i(uj—haij),jzl,l?),él.

The creation and annihilation operators in the Segal-Bargmann space By are given by
2 = zj, Zj:héij,j:1,...4.

The SBT By intertwines the creation and annihilation operators in By with the following op-
erators in L2(R*, du)

(387) 2By = By [;2 (a{ + zam haale4 ~ B, \2 (@1 — zaz)}
2By = By [ & (a) +af)] . ha(ZQB4 B, \}i (G5 — 154)}
zﬁwﬂdk&@+@ﬂ,%&&—&}%@%%@ﬂ
2By = By [% (—ai + zag)} : h;;434 — By \}i (=@ — zag)] .

(iii) The equations in suggest that the following operators can be considered as annihila-
tion operators

(388)

A N | .1

dy = — (ay —1a3) , dy = ——= (@3 —10a4) , d3 = —= (—d3 —104) , ds4 = —
1 \/5(1 2) 2 \/5(3 4) 3 \/E( 3 4) 4 \/i

For z € C* fized, the kernel A4(u,z) is an eigenfunction of the operators (jj,j =1,2,3,4.
Namely,

(—al — Zag) .

J1A4(u,z) = —24A4(u, 2), §2A4(u, z) = —z3A4(u, 2)
d3Ay(u, z) = —20A4(u, 2), dyAs(u,z) = —21A4(u, 2).

(iii) The SBT By is a unitary map from L*(R*, du) onto By .

Proof.

(i) The Segal-Bargmann transform of v, (u) = A4(u,w) is given by

(389) (Buvw) (= [ dulw)Astu,2)du = [ Talurw) A, )du.
R R
The integrand in (389|) can be written as

(@ @) Aa(t, 2) = s H0) ) 4 (12 2053)

(wh)?

e~ % {U2 —[u1 (21 —244+W1 —Wa)+ruz (W1 +Wa—21 —24) +u3 (W2 —wW3+22—23) +rus (Wa+wW3—22—23)] } .

The term to be integrated with respect to the variable u € R?* is given by

(390) / e—%{Ug—[ul(Zl—Z4+w1—w4)+w2(w1+w4—21—24)+U3(1172—11734-22—z3)+m4(u’}2+u’}3—zg—23)}} du.
R4
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The integration in (390) can be done separately on each variable uj,j = 1,2,3,4. These
integrals are given by

(391)
eleh[(zl 24)+ (W1 —04))2 / (z1 z4)+(w1 w4>}} duy — (hﬂ.)l/2eﬁ[(Z1—Z4)+(1D1—1E4)}2
e mll@to) ()l [ flup[ERATEEI2 g (hr)V/2 o~ rl@1+e0)— 1+
R4
ezilh[('z?_z3)+(w2_w3)}2/e_%{%_;[(32—23)'*‘152—@3)}}2 dus = (hﬂ-)l/z o ar(z2—23)+(W2—w3)]?
R
e_zlln[(w2+w3)—(22+z3)]2/e—%{ur%[(w2+w3)—(zz+23)}}2 duy = (fm)l/Qe—%ﬁ[(wﬁws)—(@%—zs)? )
R

The following is obtained from equalities in (391))
/ o {0 —[u1 (21 —24+®1 4 ) Foun (01 +@s—21 —2a)+us (D2~ W3 +22—23)+rua (D2+03—22—23)]} 7, —
R4

e 3 [(DoD3 41 Wa+2223+2124) — 21D)]

Hence, equality (385)) is fulfilled

(ii) Let me assume that By acts on functions that are smooth and decay rapidly at infinity,
so that I may integrate by parts and differentiate under the integral sign. The following is
calculated

81<B4¢)(Z) = / ()6821144(11 z)du

= /R4 o(u)[(ur — wg) + z4] Ag(u, z)du

1 . . 1
= 3 [(Bai9)(2) = o(Baiizg) (2)] + 724(Bagp) (2)
The previous equation can be written as follows
0 1 1
392 —By=-B 7 —z4By .
(392) P (1 — 2ti2) + 72481

Now the following is calculated

dp Oy
<B4 (8u2 + Z@m)) (8uz 81&1) Ayq(u, z)du .

The integration by parts gives the followmg

(0382} - - oo ()]

1 . R 1
= 3 [( B4u2<p) (z) +1 (B4u1g0) (z)] + ﬁ2224 (Bap) (2) .
The previous equation can be written as follows
(393) B (<2 022 = L By(an + vitr) + 2024 B4]
N\ ouy " ou, ) T p sl 1 4Dy .

The term z4 B, can be solved from equation (393). Namely,

1 0 1 0
abs = [—2 ( - haul) T3 < - haﬂ
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Substituting z4 B, into equation (392)), I obtain the following

0 1 1 0 0
h—DBy = By|=(t1 — — | —th— + h—
821 4 4 [2(u1 ’LUQ) + 2 < ! 8UQ + aul):|
. ~
= B4 |:\/§ (a1 — ZCLQ):| .
The rest of equalities in (387)) can be obtained by doing a similar procedure to the previous
calculations with suitable combinations of the operators u; = u;, v; = —zh%, ji=1,2,3,4.

(iii) It follows from a straightforward calculation of the derivatives.

(iv) It follows from the fact that By : L?(R* du) — By is the composition of two unitary
operators. 0O

Proposition 27. Consider the SBT By : L?>(R8, du) — Bg given by

(394) (Bgv) (2) = /R 8¢(u)A8(u,z)du, Vip € L3RS, du) .

The kernel Ag(u, z) is given in .

(i) Note that for z € C® fized, the kernel Ag(u, z) belongs to L?>(R®,du) . The SBT of ¥, (u) =
Ay(u,w) € L*(R8, du) gives the reproducing kernel in Bg. Namely,

(BsWUy) (2) = Ag(u, z)du = er® ™
R3

(ii) In L*(R8,du) consider the operators @; and a} given by

1 0 1 0
395 -~ i+ h—, ot = = i—h—1»),7=1,...,8.
(395) YR <uj i 3%‘) TR <u] 5%’) ’
The operators of creation z; and annihilation gj in the Segal-Bargmann space Bg are given by
~ 0
zZi=z2iy, zi=h—,7=1,...8
J J J 0z

The following equalities hold

Loy )] o B

(396) z1Bs = Bg [\/i (—CL2 + 2a,q | , haleBg = Bg V2 (—CLQ — ZCLl)_
_ L o v op _p i _ =

ZQBg = Bg |:\/§ (—a4 + ag ] s h%Bg = Bg _ﬁ (—CL4 — Z(lg)_
[1 ~ 4\ | 9 [ ~ ~

23Bg = Bg 5 (—a]; — mg; , ha—%Bg = By % (—ag + mg)_

Z4B8 B Bg — (@

1
2538 = BS — (a}; - Zag

26Bg = Bg | —=

Z7Bg = Bg |: (—&i — ’LZL\;;

1 g, o
Zng = Bg |: (a!-) + ’Laé
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(iii) Consider the following annihilation operators

(397) 31:\2[—62—@61], 4y = 2 [~ — )
33_12[—a4+zag], 4y = % [ — i)
6752\}5[55+za6], 6?62%[@71%38]
87:\}5[—21\7“@8], ds = & [a5 — 1de)

For z € C® fived, the kernel Ag(u,z) is an eigenfunction of the operators c?j,j =1,...,8.
Namely,

(398) diAs(u, z) = —24As(u, 2),  daAs(u, 2) = z3As(u, 2)
dgAg(u, z) = z9Ag(u, 2), d4A8(u z) = —z1Ag(u, 2)
dsAg(u, z) = 25 As(u, 2), d(,‘Ag(u z) = —z7As(u, z)
d7A8(u, z) = —z6As(u, 2), dgAg(u z) = z5A8(u, 2) .
(iv) The SBT Bs is a unitary map from L?(R®, du) onto Bs

I omit the proof of proposition because it follows a similar procedure to the proof of
proposition [26]

3. A Segal-Bargmann Transform G,-Invariant

In this section I will show that the integral kernel A, (u,z) has an equivariant property. That
is, the kernel A, (u, z) intertwines the action of G,, on R™ with the action of G,, on C". See
lemmas |§| and (10| below. The equivariant property of A, (u,z) is the key point to prove that
the restriction of SBT B,, to L?(R", du)%" gives an SBT By, : L2(R", du)%" — BS". Let me
remind that functions ¢ € L2(R™, du)%" satisfy ¢ (®,(u)) = ¢(u). The invariance property of
functions in L?(R™, du)®" is used to show that the integral kernel of By, can be written as the

average of Ay (u, z) over the orbits of the group G,. In other words, the SBT By, is written in
(Gn)c

a Gp-invariant form in order to show that By, is a bijection from L?(R"™, du)G” onto By,
See theorems [7] and [ below.

The following definition of the I-Bessel function will be used in some calculations of this
section

rTon a (T 17%
(399) " 4O () ga 1 = 21 (7> Li_,(r).
gd—1 2 2
3.1. A Segal-Bargmann Transform U (1)-Invariant. I carry out the described calculations
in the introduction of this section for n = 4. The following result will be used in the proposition
and theorem [7

Lemma 9. The kernel Ay(u,z) intertwines the action of U(1) on R* given in (@ with the
action of U(1) on C* given in . Namely,

(400) Ay(Pr_y(u),2) =

Proof. Let me write the kernel A4(u, z) as follows
1

= e mrlulPpxa(u) 4 (2121 t+2223)
mh

A4(u, (i)eze (Z)) .

Ag(u, z) =

)
where x1(u, z) is given by

(401) X1(u, 2) = z1(ur — w2) + 22(ug — rug) + 23(—1ug — uz) + z4(—ru2 —u1) .
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The term A4(Pr_,(u),2) can be written as follows

Ay(®g ,(u),2) = ie—%ﬁ\‘bR,g(U)|Q+%X1(¢R,9(U)vz)+%(21Z4+Z2Z3)
) )

mh

The action ®r_,(u) in coordinates is given by

(402) Ppr_,(u) = (u1 cos @ + ugsinf, us cos§ — ug sinb, us cos @ + ug sin @, ug cos § — ussin ) .

The term |u|? is invariant under the action of U(1) on R* that is, |[u|?> = |®x_,(u)[>. The
expression in (402 is substituted in (401)), and then the term x1(®r_,(u),2) is factorized in
terms of the variables variables u;,j = 1...,4. The following is obtained

X1(Pr_,(u),2) = (ur —wug)e? 2 4+ +(uz —wug) € 20 + (—ruy —uz) e 23 + (—wug —up) e ™™ 24

= xa(u, Peo (2)).

A straightforward computation shows that (2124 + 2223) is invariant under the action ®.(2)
of U(1) on C*. Thus the above calculations show that equality 1) is fulfilled. [l

Proposition 28. Equivariant Property-I Let me consider the SBT By : L*>(R*, du) — By
given in and denote by By4 the restriction of By to L2(R*, du)V D). The map By :
L2(R*, du)V() —; BU(I) given by

(403) (Boa®) ( / Y(u)Ag(u, 2)du  Vip € LAH(RY, du)V D)
s a bijection .

Proof. 1 will first verify that the function By 41 satisfies (Bot))(®uo(2)) = (Boat)(2). That
is, Bo 41 belongs to B4U(1). The function (B 41)(®ee(2)) is given by

(BO 4'1,[) ez@ / @Z) A4 ez@( ))d
It follows from equality (400) that (Bg41)(®ue(2)) can be written as follows
(Bo.at)) (P o (2 / PY(u)As(Pr_,(u), 2)du.

Let me do the change of variable u = ®r_,(u), where ®_, (u) denotes the action of U(1) on R4,
The coordinate transformation u = ®r_,(u) leaves invariant the volume form du = du; . . . duy,
that is, du = du. Hence, the above integral can be written with respect to the variable u as
follows

(Boat)(@oo() = [ 0(@n, () As(u,2)du

Since 1 € L2(R*, du)U () satisfies 1(®r, (u)) = ¥(u), then the following equality is fulfiled
(Bo,at))(@en (2)) = ” P(u)Ag(u, z)du = (Boay)(2) -

Hence, By 41 belongs to Bg(l).

PN TN
Let me take (TU4) =Ty and Bﬂgj as is given in [4, Eq. 2.15]. It is not difficult to see

from the definition of By = fU4 o Bga that B s given by
(404)

(ByMf)(u) = lim Ay(u, Ut 2) f(2)dvi(2) = lim Ag(u, 2)f(2)dvi(z) YV feBy.

T—r00 ||<0_ g—00 ‘ZlSO'
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Since By 4 is the restriction of By to L2(R4, du)U(l), then Bo_, i can be calculated from equation
(404). The inverse SBT of f € BZ(I) is given by

(Bo_i f) - (u) = lim Ag(u, 2) f(2)dvi(z) Vfe Bg(l) .

g—00 |Z‘SO’

Equality 1) is used in the following calculation. I will verify that B i f e L*(R*, du)V™ |

(Byi )(®Ry(u) = lim Ay(Pg,(u), 2) f(2)dvli(z) = lim Ag(u, Do (2)) f(2)dvli(2) .

g—00 |Z|§O’ ag—00 ‘Z|SO’

Let me do the change of variable w = ®,—.0(z), where ®,—.s(2) denotes the action of U(1) on
C*. The coordinate transformation w = ®,_.0(z) leaves invariant the Gaussian measure dvl,
that is, dv}(w) = dv(z). Hence, the above integral can be written with respect to the variable
w as follows

(B £)(®R,(w)) = lim Ag(u, 0) [ (Rero (w))dr (w) .

aT—00 \z|§a

Since f € Bg(l) satisfies f(®u0(w)) = f(w), then the following equality holds

(B £)(®R,(w)) = lim Aa(u, ) f (w)dvi(w) = (By 4 f)(u) .

T—00 ‘w‘SO'

Hence, Boii f belongs to L*(R*, du)V™) . Therefore the SBT By : L2(R*, du)V) — Bf(l)
is bijective and is unitary because it is the restriction to L?(R%* du)U(M) of the map By :
LQ(R4, du) — By. U

Recall that functions in Bg(l) are elements in BEIU(I)) © as well. That is, every U(1)-invariant
function in By is also invariant under the action of C* on C*. Further, every function f €
BiU(l))C is identified with a function ¢ € &3 on Qg. The C*-invariance of By 41 cannot be
proved by following the U(1)-invariance procedure because there is not an equivariant property
of A4(u, z) for the complex group C* neither there is an action of C* on R*. In order to see that
By € BEIU(I))C I will show that the SBT By 4 can be written in a U(1)-invariant form, see
below point (7ii) theorem |7l The U(1)-invariant form of By 4 gives the identification of By 41
with a function in &3, see below point () corollary For z € C* fixed, the U(1)-invariant
kernel of By 4 is an eigenfunction of the operators Dy, k = 1,,...,4 in written in the
Schrodinger representation, see point (v) theorem So before showing the C*-invariance of
B4t let me write the operators @, Dy, in the space representation L2(R*, du).



3. A Segal-Bargmann Transform G, -Invariant 95

Proposition 29. The operators & in and 73k,j, k=1,,...,41n have the following
expression in the Schridinger representation

(405)

—1( + )—h uiJruiJru—Jrui
2 ui1u3 U2U4 1aU3 38u1 2 4

(09, 0 0
Ouy Ous  Oug Ouy

1
— [(uw;; + uguy) + A (u1

e o 0 + 2 0o 0
6u1 8U3 81@ 8U4

1 0
5 -(UQ'LLS — U1U4) —h <U3u
a 0 o 0
2( ¥ ¥ Y ¥
h <8U2 Ouz  Owuy 8u4) ]

U s — ) 1 (w02 g 2 D0
2| UQU3 — U1Ug u26 " Uz — 9y 18U4 48u1

(20 0 0
8u2 8U3 8u1 8U4

22— -2 NN <
4[(“3”4 ui ) F 20 wg i sy g

Y N R ol
8u% ﬁug 8u§ 8u42l
1

0 0 0 0
L1 9 2 .2 v ¢ 9
1 [(u3 +uj — uj u2) + 2h <u33 " + uy s Uy o U9 8uz)

Y N i ol
C{M% 3u§ 8u§ 8u42l

0 0 0 0
4[(u1+u2+u3+u4)—2h<2+u18 —i—uQa +u3(9 +u48u4>

+h? 82+82+8—2+8—2
ou?  ou3  Oui  Oul

0 3} 0 0
{(u1+u2+u3+u4)+2h<2+u1 +upg—+us=— + us— >+

4 ouq Ous Ous Oouy

h? 82+82+a—2+8—2
ou?  oud  Ooui  Oui) |

The proof of proposition [29] follows from a straightforward calculation using the equalities

in .

Theorem 7.

(U(1))c-Invariant form of Bg y

(i) The SBT By 4 : L*(R*, du)V() —; Bg(l) can be written as follows

(406)

(Boav) (

27
/ () A (u, 2)du Vo € L2(RY, du)’ D and Ay(u, 2) = % / Ay(@n_(u), 2)d6 .
0
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(i) The kernel A4(u,z) is U(1)-invariant and can be written as A4(u,z) = Ay(z(u), a(2)),
where the the function Ay(x(u), a(z)) is given by

(407)  RAy(x(u), a(2)) =

L et |Io< Vi@ = (mwa (2)+x2(u)a2(2)+:c3(u)a3(z))> et

s

(iii) The SBT of ¢ € L*(R*, du)V ™ can be computed as follows

(108) (Baat) (2) = [ d(@s(e(w).a(:)du.

The function B 4 is invariant under the action of C* on C*. Thus the SBT By.4 is actually
a map Bog : L*(R*, du)/® — BiU(l))C.

(iv) For w € C* fized, let vy,(u) = Ag(u,w) € L2(R*, du)V . The SBT of 1, (u) gives the
UMW)

reproducing kernel in B, . Namely,

(409) (Boutho) (2) = | Aa(w, w)Au(u, 2)du = I (711 20(2) -ﬁ(w)) .

R4

(v) The kernel A4(u,z) is an eigenfunction of the annihilation operators 13]- ,j =1,2,3,4 in

.

Proof.
(i) The SBT of ¢ € L*(R*, du)V™ can be computed as follows
(410) (Boat) (= / Y(u)Ag(u, z)du = » Y(Pr_,(uw)As(Pr_,(u), 2)d(Pr_,(u)) .

The volume form du = dujdusdusduy is U(1)-invariant, that is, d(®r_,(u)) = du. Moreover,
the function v satisfies 1/(®r_,(u)) = ¥(u). The integral in (410)) can be written as

(411) (Boa) (= / vl s = [ 6() A (). ).

Let me do an integration with respect to 6 to remove its dependence in equality (411]).

/Ozw[ R4¢(U)A4(u,z)du] d /027’ [ R4¢(U)A4(¢R_9(u),z)du} 9

B 1 2m
vt = [ o |3 [T A@a )20 du.
R4 R4 _27T
Hence, the following equality holds
M 1 2
(Bo4¢ / w A4 u z)du = ¢( ) ? A4(<I)R ( ) Z)d9:| du .
R4 ™
(ii) It follows from equality (400|) that the integral with respect to 6 can be written as
1 [ . 1
(412) o i Ag(u, ® o (2))do = ﬁe%(mm-&-zgzs)e—%ﬁﬁ

—0 —10

z3(—wua—us)+te

2
1 e%[ele 21 (’U/1—2u2)+619 22 (ug—1ug)+te

27
The term that depends on 6 in (412)) can be written as

1 1 2w
(413) = / eh [cos 0C (u,z)+sin 0 B(u,z) do
mh 0

z4(—wa—u1)] do .
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where C(u, z) and B(u, z) are given by
Cu,z) = [z1(ur —wg) + za(us — wug) + z3(—rug — uz) + z4(—ru2 — uy)]
B(u,z) = {tfz1(u1 —wa) + zo(usz — rug) — z3(—1ug — ug) — z4(—1ug — uy)|} .

Let me define the vector n = ﬁ(a B). The integral in |D can be written as follows

1
- eiVOFBRn 4o with 1z = (cos(6), sin(0)).
0
Taking r = %\/ C? + B2 it follows from definition of the Bessel function in 1) that
QL mxndg_jo(h\/m>
m

From definition of C(u, z) and B(u, z) a straightforward calculation shows that
1
C?*(u, 2) + B*(u,z) = 4 [za4(z)2]u\2 — (z1(u)ar(z) + za(u)aa(z) + xg(u)ag(z))] ,

where z;(u) and o;(z),j = 1,2,3 are given in (343) and (117)) respectively. The Ip-Bessel
function can be written as

Io(%\/m) = Iy (2\/@@4(2);U|Q — (z1(uw)ar(z) + z2(u)aa(z) + 953(“)043(2))> :

A short calculation shows that (2124 + 2223) = —tou(z), and the functions z;(u),j = 1,2,3
satisfy |z(u)| = 3|ul?>. The above calculations show that equality (407) is fulfilled.

(iii) Using the expression of 4(z(u), a(z)) in ([07)), the SBT of ¢ can be computed as in
Let me evaluate By 41 along the C*- orblt ®y(z) in CL. Namely,

(Buat) (32(2)) = [ vt (w0, a(@s) du = [ otz a))du= (Boaw)(o)

Hence, By 41 is invariant under the action of C* on Cc.

(iv) The SBT of the state 1, (u) = A4(u, w) is calculated as follows

(414) (Boatw)(z / VY (u) Asg(u, 2)du = Ag(u, w)Ayg(u, z)du .

R4
The integral in (414) can be written as

(415) » Ag(u, w)Ag(u, z)du =

[ [1 02” A4(®n, (0, w)dGl} [21 " A, (1), ZWQ] "

27 T Jo

It follows from equality (400 that the integral in (415)) can be written as
(416)

1 2m 1 2m _ _
Ag(u,w)Ayg(u, z)du = / [/ — Ayg(u, @0, (w))As(u, oo, (Z))d01d02:| du.
R4 R4 2w 0 2w 0

The integration order in equality (416)) can be interchanged. The integration with respect
to the variable u € R* is first done, and after it is done the integration with respect to the
variables 01, 65. The integral with respect to the variable u € R* is given by

/]12{4 Ag(u, @0, (w)) Ay (1, D6, (2))du .
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Let me define w = ® g, (w), z = P, (w). The integral with respect to the variable u € R*
can be written as

(417) / Ay(u,w)Ay(u,z)du .
R4
It follows from the point (i) of proposition [26 that the integral in (417)) gives the following

Ay(u, w)Ay(u, z)du = er= W
R4

The expressions z = ® .4, (2), w = CI:)ezel (w) are substituted in e#?%. The following is obtained

e%Z-W — e% et(01—-02) (21@1 +Zz@2)+e_z(61 —92) (23@3+Z4ﬁ4)

Now, the variable 65 is fixed and using that e=(01—02) — cos(01 —02) £1sin(0; — 02) the integral
with respect to #; is given by

1

2
- e%{cos(el —02)c1 (u,@)+sin(f1 —sin O2)ca (z,w) do
2 0

where ¢;(z,w) and ca(z,w) are given by

g

c1 (Z, ) = [(Zlﬂ)l + 2’2@2) + (2’3@3 + 2411)4)]

02(27

g

) = (2101 + 2ow2) — (23W3 + 241W4)] .

Let me define the vector
_ 1
g \/cl(z, )2 + co(z,w)?

The integral with respect to the variable ; can be written as

(c1(z,w),ca(z,W)) .

1 27

St

(418) enVeaEoPteEZone 4o withz = (cos(6) — 0s),sin(6; — 6s)) .

2 Jo

Taking r = %\/ c1(z,0)?% + c2(z,w)? it follows from equality 1D that

vy
o e% c1(z,w)%2+c2(z,w)2 n-x do; = I 1\/61(2,@)24-62(2,@)2 )

2 0 h
Note that the integration regarding the variable 6; gives a function that does not depend on
the variable f3. A straightforward calculation shows that c;(z,w)? + c2(z,w)? = 4(z1w; +
2’271)2)(2311)3 + Z4ﬂ)4) . Hence

1 27

- - 1
- enVatwitatnine g, — g <ﬁ2\/(21w1 + 22W2)(23Ws3 + Z4w4)) '

27T0

The above calculations show that the following equality holds

- 2
Ay (u, w)Ayg(u, z)du = Iy <h \/(zlu_Jl + 29w3)(z3ws + 24614)) .
]R4

Let me take a;(2),B(w);,j = 1,...,4 as in (117)), where 3;(w) is written in terms of the
variable w. A straightforward calculation shows that the following equality holds

QCM(Z) . B(w) = 2\/(211171 + ZQ?IJQ)(ZgiD;}, + Z4'lf)4) .

Hence

(419) Ay (u, w) Ay (u, z)du = Iy <71”l 20(z) B(w)> .

R4
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(iv) In order to show that the kernel A4(u, ) is an eigenfunction of the annihilation operators
D;, j =1,2,3,4, it is enough to check that the following equation holds

13]-.,44(u, z) = aj(2)As(u, 2).
Let me take the operator Dy in 1’ The following is calculated

e%(z1z4+2223)ﬁ1 e~ 55U IO 1/C'2_|_BQ
(mh) h

A straightforward calculation shows that

-~ 1,2 2 2
Dy (e_%“ Iy <;\/C2+B2>> —e—zflhu ( h > ( o 9 +33) I (71:&,/02_’_32) )

ﬁl.A(u, z) =

ouq au;:, Oug Ouy

To calculate the derivatives on the function Iy let me use the following identity given in [2]

(420) Iy(u) = s (u) = -1, (),

where v is the order of the Bessel function. In particular for v = 0 computing the derivatives
with the chain rule shows that

h? 1
- ii+ii Iy =vC? 4+ B2 (2123+ZQZ4)IQ \/Cg—i-B2
2 \Ouj Ous Oug Ouy h
Hence
(421) 731.,44(u, z) = (2123 + 2224) Aa(u, z) = a1(2)As(u, 2) .
A similar procedure can be done to show that the following equalities hold
ﬁ2A4(uv Z) = O‘Z(z)All(u’ Z)a §3A4(u7 Z) = Oé3(Z)A4(U, Z)> Zﬁ4-/44(’“’ Z) = a4(z)A4(u, Z) .
O

In section |5| of the previous chapter I have shown that the space L2(R*, du)Y™ can be

identified with space L? (R3, |“|dx> . Let me take the operators &j,@j,j =1,2,3,4 in (405),

and let @j,ﬁj act on a U(1)-invariant function ¢ (u) = ¢(z(u)). The operators a;,D; in

405|) are identified with operators acting on L2 (R?’, ﬁd:ﬁ) This is the point of the following

proposition.
Proposition 30. The operators a; and Zsj m have the following expression in the space
12 (R, {5 dx)

? Jal

1 1
(422) a; = x]+h|x|——h2 <1+Zxk ) — 5%j0Rs
~ 1 0 o\ o 1
= —Zgi—hlel— —R2 (1 — | = — Zz;A i =1,2,3.
D 9% |x|8xj ( +kz_:oxk8xk> Ox; PR 23

k=3
—~ 1 a o 2
k=0
k=3 P
T 2
|z| + 2h (kzzgxkaxk + 11) + 12?|z| Ags

Proof. Consider a function ¢(u) = ¢(x(u)) € L*(R%, du)V® with ¢(z) a function defined on
R3, and zj(u),j = 1,2, 3 are given by

1
2

423 — _ A R R S
(423) T1 = ULU3 + UsUyg, To = UU4 — UoU3, T3 = 2(u1 + u5 — uj — uj) .
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Take & as in (405)) and let a; act on ¥ (u) = ¢(z(u)). Namely,

ap L % 00 00, 00
(424) aqy = 2[(u1U3—|—uQU4)¢ h<u163—|— 381+ 284+u 6u2>

0? 0?
+ 1 o, 90 :
8u18U3 6UQ8U4
The derivatives in (424]) are calculated using the chain rule. The right-hand side of equality
(424]) can be written after a long calculation as follows

96 1

ar¢ = ﬂxmb + h|33|7 —

The rest of operators a; and D j in 1) can be obtained by doing a similar procedure. O
Corollary 1. (U(1))--Reduction of By4.

(i) Since the space L? (R4,du)U(1) is identified with L? (Rg, lﬁdm) and BiU(l))C is identified
with &3, then the SBT By : L? (R4,du)U(1) — B(U( Ve can be regarded as an SBT By :

L? (]RS, |7r|dx> — &3 which is defined as follows

(425) (Bao) ( / o(z) Ag(z, o) z ’dx, Vo e L? (R?’,'”x'dx) .

The kernel Ay4(x, «) is given by

1 2 .
(426) Ag(x, ) = Ee*%m Iy (h\/za4|x] — (101 + 2002 + x3a3)> e n

]
(427) (Baog) ( / op(x Ql4xa)‘ ’d x = I <;\/2a-ﬁ>.

(111). The integral kernel Ay(z, ) is an eigenfunction of the annihilation operators ®;,j =

1,2,3 and 154 given in .

(i) The SBT of ¢s(x) = Ay(x, B) € L? (]R3 z dx) gives the reproducing kernel in &3

Proof.
(i) The SBT of ¢ (u) = ¢(z(u)) € L? (R?*, du) Y@ can be computed as follows
(428) (Boat) ( / () As(u, 2)du = / ()2 (2(u), a(2))du

The functions ¢(u) = p(z(w)), As(u, z) = As(z(uv), a(z)) € L* (R*, du) UM are identified with
the functions ¢(z),A4(x, o) € L? <R3, |”|dx) and the right-hand side of equality (428) can be
calculated as an integral on R® as follows

2m
/]12{4 o(x(u)Ag(z(u),a(z))du = / /R3 x)2Ay(z, @) o |d9dx
(429) = /RS o(z)Ag(z, oz)‘x|dx.

The right-hand side of equality 1D defines By 41 € BiU(l))‘C regarded as a function of a € Q3

which is an element in &. Hence, the SBT By 4 : L? (R4, du)U(l) o BiU(l))C can be regarded
as the SBT B4 defined in (425).
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(i) It follows from point (i) that the SBT of ¢g((z(u)) = As(x(u), B(w)) € L3R, du)V™)
can be calculated as an integral on R? as follows

(430) Ay (2(u), B(w))Aa(2(u), afz))du = /RB%@)%(%OZ)

de

R4 ||

= /R3 Wy (z, B)Ay(z, a)ida:.

It follows from point (iv) in theorem [7|that the right-hand side of equality (430]) regarded as a
function of o € Q3 corresponds to the reproducing kernel I (% V2 - B) in £3. Hence, equality

(27) is fulfilled.
(lll) The operators ﬁ]?] = 17 27 31 4 in " Satisfy the fOHOWil’lg equations

(431) (ﬁj/u) (u,2) = aj(2)Aa(u, 2), j=1,2,3, and (154,44) (u,z) = au(2)As(u, 2) .

||

The kernel A4(u, z) is given in a U(1)-invariant form by A4(u,z) = A4(z(u), a(z)). It follows
from the proposition 30| that the left-hand side of equalities in (431 can be written as

3
0 0 1

k=3
9 -~
2h E: — +1 h2|z|A
|| + <k20$k8$k+ )—i— |x| Ags

The right-hand side of equalities in (431) is identified to a;A4(z, ). The above calculations
show that the following equalities hold

(@j%;) (,0) = a;Uy(z,0), forj=1,2,3, <1354Ql4) (z,a) = Ay (z, ) .

~ 1 0 .
<©]Ql4> (x,oz): {_2’x‘ —h|l"£—h2 }QM(%‘,O[), J :17273
J

<154Ql4) (r,a) = —% Wy (z, @) .

O

3.2. A Segal-Bargmann Transform SU(2)-Invariant. I carry out the described calcula-
tions in the introduction of this section for n = 8. Let me first show the equivariant property
of the kernel Ag(u, z).

Lemma 10. The kernel As(u, z) intertwines the action of SU(2) on R® = H? defined in
with the action of SU(2) on C® defined in (@) Namely,

(432)  Ag(Py(u),z) = As(u, <i>g:r(z)) or  Ag(®yr(u),2) = As(u, d,(2)), Vg€ SU(?2).

Proof. In the following calculations the variable u € R® of Ag(u, z) is identified with entries
of the matrices —qi, @2 € H which are given by

_ —Uj + us + 1 _ us + g —ur +u
(433) — = ( 1 2 3 4 ) , Go = < 5 6 7 8> )
—u3 + 1y —uUl — W2 U7 +1ug Uy — g

The following expression for g € SU(2) is used

g= <)\1 _)\2> . A, A2 € C such that [A\ |2 + Ao = 1.

A2 A\
The kernel Ag(u, z) has the following expression
1
Ag(u, 2) = EhE o~ 2w x(w,2) (2122 —2223) — (2528 —2627)] 7

where x(u, z) is given by

(434)  x(u,z) = 1z1(—u1 + wa) + 122(—ug + 1ua) + vz3(us + 1) + 124 (—u1 — 1u2)

+ 25(us + 1ug) + 26(ur + 1ug) + 27(—ur + wg) + zs(us — wg) -
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Note that x(u,z) can be written in terms of entries of the matrices in (433)) and |u|> can be
written as |u|? = det(—q) + det(g2). Let me write Ag(u, 2) = As(—q1, 2, 2). Namely,
1

AB(_(jla 92, Z) = (Wh)
The function Ag (®4(u),2) = Ag (P4(—q1,G), 2) is given by

As (g(=q1, 32), 2) = As (—971, 932, 2) =

1

(2R)?

The term det(—g) + det(q) is invariant under the action of SU(2) on R® = H?2, that is,

det(—gq1) + det(gg2) = det(—qG1) + det(g2). The term x(—gqi, gge, z) is calculated as follows.
The product of matrices —gq1, ggo gives the following

—oq = )\1( ug + ) — 5\2(—U3 +oug)  Ap(ug 4 rug) — 5:2(—u1 — 2ug)
! uy + ZUQ) + )\1(—U3 + ZU4) )\Q(U3 + Z’LL4) + )\1(—u1 — U9

Az (=
A1 (us + 1ug) — Ag(ur 4+ 1ug)  Ai(—uy 4 wug) — Ao (us — tug)
Ao (us + 2ug) + A (w7 +1ug)  Aa(—ur + wus) + A1 (us — 1ug)

It follows from equality - ) that the term x(—g¢q1,9G2) can be written as

e Qh[det( ‘jl)+det(‘72)]+%>((*(ﬁ@272)+%[(21Z47Z223)7(Z5z8726z7)} .

e 2h[det( 9‘?1)+det(9§2)]+X(*g§17962,Z)+%[(21z4fZQZ3)f(Z5ZSfZGZ7)] ‘

(435)

992

(436)  x(Pg(u),2) = X(—91, 92, 2) = 121 [M1(—u1 +w2) — Ao (—uz + vua)]+
129[Aa(—ug + 2uz) + A (—u3 + 1ug)] + 123[A1 (us 4 2ug) — Ao(—ug — 2ug)]+
124X (uz + 1ug) + A (—uy — w2)] + 251 (us + 1ug) — Ao (ur + 1ug)]+
z6[A2(us + 1ug) + M (u7 + wg)] + 27[A(—ur + 1ug) — Aa(us — wug)]+
28[Aa(—u7 + 1ug) + A1 (us — wug)] .
The term x(®4(u), z) in is factorized in terms of the variables u;,j =1,...,8, so that it
can be written as follows
(437)  x(Py(u),2) =1(—u1 +ru2)(A121 + Aoz2) + o(—u3 + wg) (A1 22 — Aaz1)+
1(uz + 1ug)(A123 + Aoza) + o(—ug — wug)(A1za — A223) + (us + wug) (M125 + Aazg)+
(u7 4 1ug)(A126 — Aazs) + (—ur + wug)(A127 + Aazg) + (us — 1ug)(A128 — Aoz7) .
It follows from equality that
(438) X(Pg(u), 2) = X(—=941, 92, 2) = X(=@1, @2, D47 (2)) = x(u, D47 (2)) -
A straightforward calculation shows that the term [(2124—2223) — (2528 —2627)] is invariant under
the action ®4(2) of SU(2) on C®. The above calculations show that equality As(®,(u),z) =

Ag(u, <i>g:r(z)) is fulfilled. A similar procedure can be done as above calculations to show that

equality Ag(®gr(u),z) = As(u, ®,(2)) holds. O

Proposition 31. Equivariant Property-II Let me consider the Segal-Bargmann trans-
form Bg : L*(R8 du) — Bs given in and denote by Bog the restriction of Bg to
L2(R®, du)U @), The map Bog : L*(R®, du)SV(?) — BSU(2) given by

(439) (Bogy)(z / Y(u)Ag(u, 2)du Vo € L*(RS, du)3V?)
s a bijection .

Proof. Let me first verify that the function By gy belongs to BSU(Q) That is, Bog satisfies
(Bog®) (Pg(2)) = (Bogt) (2). The function (Bog1)) (Py(z)) is given by

(Bogy) ( /¢ )As(u, ©g(2))du.
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It follows from equality (432) that the function (Bggt) (~ (z)) can be written as

(440) (Bogst) ( / Y(u gr(u), 2) du.

Let me recall that Ag(u, z) = Ag(—q1, 2, 2), so the kernel A8(<I>gT (u), 2) is given by Ag(® 7 (u), 2) =
Ag (@QT(—@, d2), z) Now let me define the following change of variable

= Uy —wUy —Us— U, Uy — Wy —uU3z — W
T . . 1 2 3 4\ _ 7 (uwm 2 3 4
(441) @1 =g @1 and in matrix form <U3 U, Uy Uy ) =g <u3 iy g 4 v >

A I — . . [J +ZZJ —Z'JZ‘i‘Zl/ Uu +Zu —U7+ZU
5 6 8 | 5 6 8

2 = ) t f == .
Q g q and 1IN Matrix 1orm <U ’LU U ZU ) (’LL - u w )

The following equalities are obtained from equations in (441

(442) ¢ = gQ1 and in matrix form <u1 toug —uz+ w4> _ <U1 41Uy —Us + ZU4>

U3 + g U — WU Us+1Uy U; +1Us
Us —We —U7 — WS\ Us —1Ug —U; —1Ug
ur —wug  us +wg ) \Up—iUs Us+1Ug

Note that the quaternion matrices in (442) correspond to the identification R® = H? in .
The equalities in (442|) can be written in cartesian coordinates u, U € R® as follows

u=oy(U),
where ®,(U) denotes the action of SU(2) on R® = H2. The transformation u = ®,(U) leaves

invariant the volume form du = du; . ..dug, that is, du = d®4(U) = dU = dU ...dUs. Hence,
equality (440)) can be written with respect to the variable U € R® as follows

q2 = gQ2 and in matrix form <

(Bosv) ( / »(®,(U))As(U, z)dU .
Since ¢ € L*(R8, du)U @) satisfies 1)(®,(U)) = 4(U), then the following equality holds
(443) (Bost) (8y(2)) = [ oW)ASU.2)AU = (Busi) ().

Hence, By gy belongs to BSSU(Q).

PN

Let me take (TUB) =Ty and Bﬂgsl as is given in [4, Eq. 2.15]. It is not difficult to see
from definition of Bg = fUS o Bgs that Bg 1 can be written as follows
(444)

(Bg'f) (u) = lim Ag(u,Ugt - 2) f(2)dvf(z) = lim Ag(u, 2) f(2)dvi(z) Vf € Bg.

T—00 | ‘<O’ T—00 |Z|SO’

Since the map By g is the restriction of Bg to BgU(Q)

1} The inverse SBT of F' € BSU(Q) is given by

; then B é can be calculated from equality

(445) (B&é F)(u) = lim Ag(u, 2)F(2)dvi(z) .

g—00 ‘Z|§O’

I will now verify that BO_éF € L*(R®, du)SU®?). The function BO_,éF(ng(u)) is given by

(446) (B(;gF) (®y(u)) = lim As(®y(w), 2)F(2)dvi(2), g€ SU2).

g—00 \z|§a

It follows from equality (432) that the function (Bo_, oF ) (®y(u)) can be written as follows

(447) (Bojgp) (By(u)) = lim Ag(u, @7 (2))F(2)dv(2), g€ SU(2).

g—00 ‘ZlSO’
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Let me now define the following change of variable
(448) w = i’gT(z) = 2 = Oy (w),

where g* denotes the conjugate of g € SU(2), and @, (w) denotes the action of SU(2) on
C8. The transformation in |j leaves invariant the Gaussian measure dl/g, that is dl/g(z) =
dl/%(w). Hence, the integral in (447) can be written with respect to the variable w € C® as
follows

(Bojgp) (®y(u)) = lim As(w, ) F (e (w))dvd (w) .

T—00 |w|SU

Since F' € BgsU(Q) satisfies F' (i)g* (w)) = F(w), then the following equality holds

(Bg§F> (y(u)) = lim As (w0, ) F(w)dvd (w) = (Bg;F) (u).
’ 770 fw|<o ’
Hence, BaéF belongs to L?(R®, du)SY(?). Therefore the SBT By g : L*(R®, du)Y(?) — BSU(Z)
is a bijection and is unitary because it is the restriction to L?(RS, du)SU(2) of the map By :
L?(R®, du) — Bs.

O

Recall that functions in ng U@ are elements of BéSU(Q))C as well. That is, every SU(2)-
invariant function in Bg is also invariant under the action of SL(2,C) on C8. Further, every
function f € BéSU@))C is identified with a function ¢ € & on Q5. I could define an action of
SL(2,C) on R® =2 H? as that one of SU(2) given in and write an equivariant property
of Ag(u, z) for the action of SL(2,C) as that one given in (432)), nevertheless, the SL(2,C)-
invariance of By g1 cannot be proved by following the SU(2)-invariance procedure because the
functions ¢ € L*(R®, du)SY(?) are not invariant under the action SL(2,C). In order to see that
By gy € BéSU(Z))C I will show that the SBT By g can be written in a SU(2)-invariant form, see
below point (7i¢) theorem |8 The SU(2)-invariant form of By g gives the identification of By g
with a function in &, see below point (7) corollaryl For » € C ﬁxed the SU(2)-invariant kernel
of By g is an eigenfunction of the operators Dy, k =1,...,8in written in the Schrodinger
representation, see point (v) theorem [8] So before shovvlng the SL(2,C)-invariance of Bj gy
let me write the operators aJ,Dk in the space representation L?(R®, du).

Proposition 32. The operators o in and Dk, Jk=1,...,61in have the following

expression in the Schrodinger representation

(449) a; = 1 (u5+u6—|—u7+u8 u2—u%—u§—ui)
LR R R R R R}
uz | Bouz | Mous Cous Sous oug Dus
I R i A A o
ou 2 8% 8u$ 3u§ 8u% 8u§ aug 8u?1
~ 1
2)1:Z (u%—i—u%%—u%—i—u%—u%—u%—u%—ui)
+2h | u 0 +u 0 +u 0 —i—ui—uﬂ— i—uﬂ— 9
“Ous | COug | Our | COus  Our  Cous  COug Ous
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- 1
Qg = 5 [(UQUG — ULU5 + Ugug — U3U7)
+ A u a—i—u 8+u +u 0 ui—ui—ui—ui
Yous T COur | COur | Ous  COug  COupy  Ous  COus
N hQ 82 B 82 N 82 B 82
8u28u6 aU18U5 8U48u8 3U3aZL7
~ 1
Dy = 3 (ugug — uus + ugug — uzuy)
20us | Cous  Mous T Pous Mous  Cowm Cour U ous
N hQ 82 B 82 N 82 B 82
6u28u6 aU18U5 8u48u8 8U38U7
- 1
a3 = 5 [(U3U5 + Uqgug — UrU7 — UQUS)
+hua+ua+ua+ua ui—ui—ui—ui
Qur ' Ouy | COus | COuy  COus  COuz  Oug  °Oug
N hQ 62 N 82 B 82 B 62
BU38U5 8U48u6 8U18U7 BUQ(?Ug
~ 1
D3 = 5 [(U3U5 + U — UrU7 — u2U8)
+hAlu i—i—u 9 +u 9 + u i—u i—u i—u i—u i
Sous | COuz | Oug | COus T Our  Owy  COug S Oug
N hQ 82 N 82 B 82 B 62
8U38U5 8U48u6 8U16U7 8u28u8
- 1
Q4 =5 [(U4u5 + uug — uzug — Uzty)
+hua+ua+ua+ua ui—ui—ui—ui
Soug | COuz | Couy | Oug  Ous  COus  Ous  ow
N hQ 82 N 82 B 82 B 62
8U48U5 8u16u8 6u38u6 8UQ(9U7
~ 1
Dy = 5 [(U4U5 + ujug — uzug — uu7)
+hua+ua+ua+ua ui—ui—ui—ui
Yous | COus | ous | Cow Coug  Cous  Cour  Oug
N hQ 62 N 62 B 82 B 62
a’LL4(9U5 8u13u8 6u38u6 8’&28U7
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- 1
a5 =3 [— (ugus + urup + ugur + usus)
+h ui—i-ui—kui—l—ui—i-ui—kui—i-u 0 —i—ui
“ous | COup | Oug | COur | ‘Our | Ous | COug | COus
0? 02 02 0?
—R? + + +
8UQaU5 8u18u6 8U48U7 3U3au8
~ 1
D5 = 5 [— (UQU5 + uiug + uquy + U3u8)
—h a—l—u8—|—u8+ua—i-ua~|—u8+ui+ui
“ous T Pous T Moug | Cour | our | Tous | Pous | ous
02 0? 0? 0?
— I? + + +
OugOus  Oui10ug  Osaugduy  OugOug
Qg :i - (u%—l—u%—f—u%+ui+u§+ug+u$+u§)

87i—i—2hua—i—u8+ua—i—ua—i-ua—kua—i-ua—i-u8
Your " Cous | Cous | tous | Cous | Coug | Our | Coug

_hQ 824_32_'_824_824_872_’_872_’_672_’_672
ou? " ud  dul ' dud | oul ' oul | Oui | Oul

136:2 (uf + uj +uj +uj + ud + uf +uF +ud) +
8h + 2h ui+ui+ui+ui+u 0 —I—ui+ui+ui
Your T POuy | Cus | tOug | COus | COug | Our | Ous
L[ 9 9 92 9t R o2
Rlost o o 2 & 2 ).
* (a§+ag+au§+au§+aug+aug+au$ au§>

The proof of proposition follows from a straightforward calculation using equalities in
(1396)).
In the following proposition the sphere S? is identified with SU(2) as follows
o_,..3 _.,2_ .1
(450) x= (202" 2% 23) € §® = g = <$2 ml ’ Z§ > e SU(2).

7 —x 20 4z
Theorem 8. (SU(2)).-Invariant form of Bp g

(i) The SBT Bog : L*(R8, du)SV?) — BSU(Q) can be written as
(451) (Bogy) ( / Y(u)Ag(u, z)du, Vip € L*(RE, du)SU?),

where the kernel Ag(u, z) is given by

1

(452) As(u, z) = m .

Ag(Pg(u), 2)dQgs .
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(ii) The SU(2)-invariant kernel Ag(u,z) can be written as Ag(u,z) = Ag(z(u), a(z)), where
the function Ag(z(u), a(z)) has the following expression

1 1 i
(453) RAg(z(u), a(z)) = e~ nlr(w)]
8 S Voo Ml — (@1 (w)ar(2) + .. + 75 (s ()

I (Z\/ w06(2) g ul? — (@1 (w)aa(2) + ..+ x5<u>a5<z>>) e~ hesls)

(iii) The SBT of ¢ € L? (RS du) U@ con be computed as follows

(454) (Bos) ( / (w)s (), a(2))du

The function By gt is invariant under the action of SL(2,C) on C8. Thus the SBT By g is
actually a map Bog : L*(R®, du)SV(?) — BéSU(Q))(C.

(iv) For w € C8 fized, let 1 (u) = Ag(u,w) € L*(R3,du) Y@ . The SBT of ¢, (u) gives the

(SU2))c

reproducing kernel in Bg . Namely,

2h

2a(z)-ﬂ(w)h (}11 20(2) 5(w)> .

(455) (Bos¥w) ( / Vo (u) Ag(u, 2)du =

(v) The kernel Ag(u, z) is an eigenfunction of the annihilation operators ﬁj ,j=1,...6 defined

m .

Proof.
(i) The SBT of ¥ € L*(R®, du)*Y®?) can be calculated as follows
(456 (Bosw) ()= [ vlwAs(u2)du = [ (0,0)A5(8,(0). (2 (w).

The volume form du = duj Adug A ... A dug is invariant under the action of SU(2) on RS’ that
is, d(®y4(u)) = du. Moreover, the function 1 (u) satisfies ¢(®4(u)) = ¥(u). Hence, the equality

can be written as
(457) (Bo,s¥) ( / ¥(u)As(u, z)du = . P(u)Ag(Py(u), z)du .

Let me do an integration with respect to g € SU(2) = S2 to remove the dependence of g in
equality (457)). Namely,

L[ vwaaa]as = [ [] v,z ao.

1
A = _ Ag(P Q .
[ vwas i = [ v [Area(s3) [, As@y(u). ) Sg] du
Therefore By g can be written as in (451]).

(ii) The kernel Ag(u, z) can be written as follows

o~ 3 W+ Ex(w,2)+ (2124 —2223) — (2528 —2627)] ’

Ag(u, z) =

(wh)?
where x(u, z) is given by
(458)  x(u,z) =1[z1(—u1 + wwg) + z2(—us + 1uq) + 23(us + 1ug)
+ 24(—u1 — w2)] + z5(us + ) + 26(ur + 1ug) + 27(—u7 + ws) + zs(us — 1) .



108 4. Pairing Map and The Segal-Bargmann Transform

The term Ag(®,4(u), 2) is given by

1
Ag(‘bg(u), Z) - (ﬁﬂ')Q efﬁu2+%X(¢g(u)7Z)+%[(21Z472’223)7(Z5z8—z6z7)] )
The integral over S® can be written as follows
1
(459) ———= [ As(Py(u),2)dQgs(z) =

Area(S3) /g3

1 o~ Rt 1 o X(®a(1).2) 4) o | o [(z124—2223) (2528 —2627)]
(h)? 212 [gs o

Let me recall that x(u, z) is given in terms of entries of the matrices (—g1,q2) in (433). The
term x(®4(u), z) is calculated as follows. The product of matrices —gqi, g2 with g € SU(2)

as in (450 gives the following
(460) —gq =
(2% —12®) (—ug +2uz) + (=22 —wl)(—uz +mg) (20 —223) (ug + wug) + (=22 — 2z (—ug — 1u2)
(2% —axt) (—uy + 1ug) + (20 +123) (—us + 1ug) (2% — 1) (ug + wa) + (2° +023) (—ug — 2wz
992 =

<(x0 —123) (us + 1) + (—2% — ) (uy +wg) (20 — 12®) (—ur + wg) + (=22 — ) (us — zu6)>
(22 — V) (us + 2ug) + (20 4+ 123) (ur +2ug) (2% — 1) (—ur + wug) + (2° 4+ 123) (us — ) )

The entries of —gq1, gge in are substituted into . The following is obtained
X(®y(u), 2) = 2" Ay + 2t Ag + 22 A3 + 2344, (2% 2", 2% 2%) =2 € S7.
The components A;,j = 1,2, 3,4 can be written as
(461) Ay =2(a1 +aq) + (b + ba), Az = (a2 +az) — (b2 + b3)
As =1(az —as) + (ba — b3), Ag= (a1 —aq) +2(bg — b1),
where the functions a;,b;,j = 1,2,3,4 are given by

(462) a1 = z1(—uy + ) + z3(us +wy), az = za(—ug +we) + z4(us + 1uy)

(—
az = z1(—us + wq) + 23(—uy —wg), ag = zo(—us + 1wg) + z4(—uy — 1u2)
b1 = z5(us + wug) + 2z7(—ur +wg), be = z6(us + wug) + zs(—uy + wug)
by = z5(u7 +wus) + z7(us —wg), by = z(ur + 1ug) + z8(us — wug) .
Let me define the following vector
1
n =
VAL + A2+ A2+ A2

The integral at the right-hand side of equality (459)) can be written as
1
e%x(cbg(u),z) dQSd (33) _ ﬁ /S3 e%\/A%+A%+A§+Aix-n dQS3 (1’) )

(Ab A2> A3> A4) .

4 S
( 63) 2’7’[’2 93

Taking r = %\/ AT+ A3 + A3 + A7 it follows from definition of the Bessel function in 1)
that

1 1 A21A21 A210 A2, 2h 1
— [ VAR A g0y (1) = (/A2 + A3+ A3+ 43) .
212 g3 \/A%‘i'A%—FA%—FAi h 1 2 3 4

The above calculations show that the following equality holds

1
s

e—;fhlu\Q-i-% [(2124—2223)— (2528 —2627)]

Ag(u, Z) =

2h
VAT + A3+ A3+ A7

1
I (h\/A% LA+ A +A§> |
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From definition of A;,7 = 1,...,4 in (461) and taking the expressions of a;,b; in (462)) a
straightforward calculation shows that

VAT AR AR A2 =

2\/1046(2);!142 — (z1(u)ar(2) + z202(2) + w3(w)as(2) + za(u)au(2) + x5 (u)as(2)),

where xj(u),j =1,...,5 are given in , and ai(z),k =1,...,6 are given in . A short
calculation shows that [(z124 — 2223) — (2528 — 2627)] = —ta6(2) and that the functions x;(u)
in satisfy |z(u)| = %|u|?. Thus the above calculations show that the kernel As(u, z) can
be written as A(u, z) = Ag(z(u), a(z)) with As(z(u), a(z)) given as in ([453).

(iii) Using the expression of ™g(z(u), a(z)) in (453) the SBT of ¢ can be computed as in (454)).
Let me evaluate By gy along the SL(2,C)-orbit 4, (2) in C3. Namely,

(Bost) (29:(2) = [ 9()As(w(w). a(@gy (2))du= | w(w)As(r(u),a())du = (Bosi)(=)

Hence, By gt is invariant under the action of SL(2,C) on C¥.
(iv) The SBT of the state 1), (u) = Ag(u, w) is calculated as follows

(464) (Bogtw) (2) = /RS Yw(w)Ag(u, z)du = [ Asg(u, w)Asg(u, z)du .

R8
The integral in (464) can be written in the following form

(465) » Ag(u, w)Ag(u, z)du =
1 —_— 1
/Rs [Area(S?’) 53 As(®g, (u),w)dﬂgs(y)} |:AT€CL(S?’) 93 As(®g, (u),z)dQS:a(x)] du,

where g1, g2 € SU(2) are given by

0 _ .3 2 _ .1
3 - 0 1 2 3 [T = —XrT — 1T

(466) S 9x(x,x,:c,x)—>91<x2_m1 x0+zx3)
0 _ 03 — o2 — oL

539:0’1’273_>Zy vy b=
y=WLy v y) 2@ =2 1 0,8

It follows from equality (432)) that the right-hand side of equality (465]) can be written as follows

(467) . Ag(u, w)Ag(u, z)du =
1 - 1
/R8 [A?“ea(S?’) . Ag(u,‘bg;p(w))dQSs (y)] [Area(S?’) . Asg(u, @ng(z))dQS:s(az)] du .

Let me define w = (i)gg“ (w) and z = i)ng (z). The integration order in equality 1) can be
interchanged. That is, the integration with respect to the variable v € R® is first done, and

after it is done the integration with respect to the variables z,y € S3. The integral with respect
to the variable u € R® gives the following

Ag(u, w)Ag(u,z)du = er=¥
R8
The integral with respect to « € S3 is given by

(468) W/‘Ssef g; dQSS(ﬂf)
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The integral in (468) can be calculated by doing a similar procedure to the integral in (219)).
The following is obtained

1 %&’g?(z)W _ 2h 1 T
A7‘ea(53)/ e dQgs(r) = —————=—=5 (h 2a(z) 5(w)> .

5 V 20(2) - B(w)

Since B(w) satisfies B(w) = B(®,r(w)) = B(w), then the following equality holds

(469) Arei(sg) / T OV 0 @) = —— 2 p <i11 fza(z)-ﬁ(w)> .

5 2a(2) - B(w)

Note that the Bessel function in (469) does not depend on the variable y € S3. The above
calculations show that the following equality is fulfilled

Ag(u, w)Ag(u, z)du = Lh (;i 2a(2) B(w)> :

- 2a(2) - B(w)

(v) Let me take the operator D; in (449)). A calculation shows that

efﬁ lu|? e% [(z124—2223)— (2528 —2627)]

(470) D1 Ag(u, z) =

1

(wh)?

Plo 9 9 9 9 9 92 9 2h 1 /A2 2 2 2
C(Gat gt oathy da v oe o) yemmmeh (WA T AT A)

The identity of Bessel function derivatives in (420)) is used to compute the derivatives in (470)).
Using the chain rule a very long calculation shows that

(e L9 4 9 9 2 9 9 9 2h 1 2 2 2 2\ ) —
4 (Bug + 8u§ + 6u$ + 8u§ Bu% Bu% Bug 6ui> ( /A%+A§+A§+Aill <h\/A1+A2+A3+A4)> -

i (2) <¢m L (3VAT+ B+ A3+ A§)>
Hence, the following equality holds
D1 As(u, 2) = a1 (2) As(u, 2) .
I can make a similar procedure as above calculations to show that the following equalities hold
DjAs(u,z) = a;(2)As(u, z), j=1,3,4,5,6.

O

In sectionof the previous chapter I have shown that the space L?(IR®, du)S U(2) ig identified
with space L? (R5 ﬁdaz). Let me take the operators o, Zsj,j =1,...,61n (449), and let a, ﬁj

el

act on a function 9 (u) = ¢(x(u)). The operators a;, ﬁj are identified with operators acting in
L? (]R5 ﬁdx). This is the point of the following proposition.

el
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Proposition 33. The operators aj,ﬁj,j =1,...,6 in have the following expression in

the space L? <R5 dea:)
} ?j:17"'757

}

(4t a; =

N =

0

.9\ 0
2 (2 + Zxkc‘)%) oz, — T Ags
.9
T 2
k=1
L9
T 2

~ 1 0

Q

>
I
\

1
@6 - 5

Proof. Consider ¢(u) = ¢(z(u)) € L*(R3,du)5Y? with ¢(z) defined on R®, and x;(u),j =
1,2...5 are given by

(472) r= gl el - - —ud =)
T2 = UlUs — Uz + U3U7 — U4US
T3 = Uy + Ugug — U3U5 — U4Ug
T4 = UU7 — UIUR + UUE — U4U5
Ts = UlUg + u2us + uzug + uguy .

Let D; act on ¥(u) = ¢(z(u)). Namely,

~ 1
(473) Dﬂ/](u)zz (U +ug +u3 +uj —ui —u3 —uj —uj)
+2hua+ua+u8+ua—ua— 0 2 .2
"Ous | COug | Our | COus Oup  COup  COuz  Ous

The derivatives in (473]) are calculated using the chain rule. The right-hand side of equality
(473)) can be written after a long calculation as follows
P

'L 9\ 9
2 (2+Z$kaxk> 87_1‘1_$1AR5
k=1

The rest of the operators a;, D j» in (i can be obtained by doing a similar procedure. ([

1 0
S SR F Py
D¢ 5 { x1 71|:13|0361

Corollary 2. (SU(2))c-Reduction of By g

i) Since the space L*>(R®, du)Y?) is identified with L? (R5, = 4z) and BSY®)
[2] 8

with &, then the SBT DByg : LQ(R8,du)SU(2) — BéSU( Ve can be regarded as an SBT Bg :
L? ( ) mdw) — &5 which is defined as follows

€ is identified

2
(474) (Bso) (o / o(2)As(x, ) " ‘dx, Vo € L2 <R5,’7;‘dx> :
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where the kernel Ag(x, «) is given by

—1la| 2h

475) AUg(z,a) =
(475) As(z, ) (mh)? Vaiaglr| — (T10q + 2900 + T3003 + T4004 + TH05)

2 o
I (h Viag|z] — (z1aq + xaan + 1303 + T400s + $5065)> e e

(ii) The SBT of ¢p(z) = Ag(x,a) € L? (R5, ‘%daj) gives the reproducing kernel in Es

2h 1 —
(476) (Bsobs) / b5 ()N (2, ) e 2 g (\/20[ : 5) .
’ e ™ " V2a- B \h
(iii) The kernel Ag(x, ) is an eigenfunction of the operators ﬁj ,j7=1,...,6 given in )

Proof.
(i) The SBT of ¢(u) = ¢(z(u)) € L* (R?*, du) SV can be calculated as follows

(477) (Bogv)(z / P(u)Asg(u, z)du = » d(x(u)Ag(z(u), a(z))du .

The functions ¥ (u) = ¢(z(u)), As(u, 2) = As(z(u), a(z)) € L* (R?, du) SUG) are identified with
the functions ¢(x),Ag(z, a) € L? (R5 z dac) and the right-hand side of equality (477) can be

 Jaf

calculated as an integral on R® as follows

d(z(u)Ag(z(u), a(z))du = /SU - o(z)As(x, a)ﬂddeol(SU()

R8
2
(478) = o(x)As(z, o) —dx .
R5 ||
The right-hand side of equality 1D defines By g1 € BéSU(Q))C regarded as a function of & € Qs

which is an element in . Hence, the SBT By : L?(R, du)SU(Q) — BéSU(z))C can be regarded
as the SBT By defined in (474]).

(ii) Tt follows from point (i) that the SBT of ¢g(z(u)) = As(z(u), B(w)) € L*(RE, du)V?) can
be calculated as an integral on R® as follows

. 2
(479) Ag(x(u), B(w))As(x(u),a(z))du = / Ag(x, B)As(z oz)ﬂ dz

RS |z|

7T2
— [ st ) s
R5 |z

It follows from point (iv) in theorem 8| that the right-hand side of equality (479)) regarded as a
function of a € Qs corresponds to the reproducing kernel 2h 1, <%\/ 2ac- B) of &. Hence,

V2a 8
equality (476)) is fulfilled.

(iii) The operators Dj,j = 1,...,6 given in (449)) satisfy the following equations

(480) DjAs(u, 2) = aj(2)As(u,z), j=1,...,6.
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The kernel Ag(u, z) is given in a SU(2)-invariant form by Ag(u, z) = Ag(z(u), a(2)). It follows
from proposition 33| that the left-hand side of equality (480)) can be written as follows

(Bi%s) (@), a=)) =

o . 9\ o

J

} Asg(z, o),

N

for j=1,...,5, and

Dels ) (x(u), a(2)) = = As(z, ).
(Po2ts) )

5
~ o
2h | 4T § — 22| A
|z| + h( +k:1xk8xk>+h|xl RS

The right-hand side of equality (480) is identified to a;g(x, ). The above calculations show
that the following equality holds

63-918(:6,04) =a;Asg(x,a), j=1,...,6.

4. Time Evolution of a Coherent State

In this section I study the time evolution of the integral kernels A, (u, w), A, (u, w) and A, (x, 5)
n = 8,4 from the point of view of Quantum Mechanics. That is, the time evolution of a
quantum state is determined by the Hamiltonian operator of the quantum system. Here the
relevant quantum system is the harmonic oscillator in both representations L?(R", du) and B,
whose Hamiltonian operator is denoted by ﬁfd‘ and f[n respectively. I first study the time

evolution of K, (z,w) = e in the space B, and then determine the time evolution of the

kernel A, (u,w) in the space L?(R", du) via the SBT B,. I show that the time evolution of
Ap(u, w) follows the Hamiltonian flow of the harmonic oscillator on T*R™ = C™. The operator
H5¢M is invariant under the action (coordinate transformation) of G, on R™. This invariance
property of fI;?Ch is used to show that the time evolution of the G,-invariant kernel A, (u,w)
follows the Hamiltonian flow of the harmonic oscillator on T*R"™ = C" as well.

On the other hand, for w € C™ fixed the kernel A, (u,w) = Ay, (x(u), f(w) corresponds to

A (z, ) € L? (Rm, C—’”dm) with 8 € TtS8™ =~ (,,, and the operator ITI;fCh is identified with

|]

an operator K acting in L? (Rm C—md‘r) so that the time evolution of 2, (z, 8) is determined

]
by K,,. I first study the time evolution of I'y,(a, 8) in the space &, and then determine the
time evolution of 2, (z, 3) in L? (]Rm C—’”dm) via the SBT 9B,,. I show that the time evolution

E]
of 2, (x, 8) follows the geodesic flow on T+ S™ = Qpm, see proposition [36| below.

Let me write the explicit expression of the operators .FAI;?C’Z and ﬁn
2 n 92 2 n
ﬁsah:_zjlai?—kz, H,=h ;Z;Zj884+z n=_8,4.

To determine the time evolution of A, (u,w) I need the following result.
Lemma 11.
(i) The SBT By, : L2(R", du) —> By, intertwines the operators HS" and H,. Namely,
(481) H, (Bytp(2)) = (BoHy"p)(2) Vb € L*(R", du).
(i) Moreover, the following is fulfilled

147y Sch 2 77Sch p—1 LIy
(482) B entHn™ Bl — ent Boln ™ Bu — ojitHn n=284.
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Proof.

(i) Using the equalities in (387) and (396]) a straightforward calculation shows that equality
(481) is fulfilled.

(i) Let me note that H5 self-adjoint can realized from the self-adjointness of H,. Sec [4]
for a description of .FAIn in B,. Let me consider .FAIn with domain Dom(ﬁn) such that .FAIn is
self-adjoint in B,,. For g € Dom(fl;’;) and f € Dom(ﬁn) there is x € B,, such that the following
equality holds

(9: Hnf)B, = (X; [)B., -
The above equality can be written in L?(R", du) via B, ! as follows

(483) (B lg, HI™ B f) romn auy = (B X, By ' f)r2(gn awy  with Byl f € dom(HJ).

Equality (483) indicates that dom((H35¢")*) = Bngom(ﬁ;). Now using that Dom(fIT*L) =
dom(H,) I can conclude that dom((H>")*) = Dom(H>"). Hence, H>" is self-adjoint as
well.

In the following calculations I assume that ﬁf‘:h is a self-adjoint operator so that the

ltﬁSCh
n

operator en is a strongly continuous one-parameter unitary group, see proposition 10.14

n [1I7]. The operator ertHi" ig defined by functional calculus. For each ¢t € R let me consider
the unitary operator U(t) : B,, — B,, which is given by

U(t) = By e#tA" -1,

Using the property of the exponential function and inserting the identity operator B, !B, a
straightforward calculation shows that the following equality holds

Ut +s) = Ut)U(s) .

Hence, U(t) is a one-parameter unitary group on B,. Let me check that U(t) is strongly
continuous. Namely,

(484) lim [U(1)f — U(s)flls, =0 ¥/ € 5o

Using that f = B,y with ¢ € L?*(R",du) the norm ||U(t)f — U(s)f| 5, can be written as

follows

1By et i gy — B, o751 )5, = || R 4 — R TR )| L2 mn -

Since e A2 is a strongly continuous one-parameter unitary group, then the right-hand side of

above equality tends to 0 in the limit ¢ — s. Hence, equality (484 holds. It follows from Stone

theorem that U(t) can be written as U(t) = ¢4, where the operator A is the infinitesimal
generator and is defined by
. Ut)f — .
Af = lim vws=f Vf € Dom(H,) C B,,
t—0 t

~

where the limit is in the norm topology of B,. Let me take f € Dom(H) as f = Bpy with
¢ € Dom(HZ") ¢ L*(R", du) and estimate the following

1U(t)f — 1 1B, ety — By 1 -
- ( )f f _Bn*HnSCthlf _ - n € 1/1 n¢ N 7BnH§Ch1/J
1 t h B, 1 t h 3
LeRtHR™ oy — gy 1 g,
= T TR
L2(R™,du)
Again ertHa™ s a strongly continuous one-parameter unitary group, so the right-hand side of

above equality tends to zero in the limit ¢ — 0. Hence, the infinitesimal generator of U(t) is
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given by A = %BnﬁsCthl. Now it follows from 1| that H, = BnﬁsCthl. Thus the
equality (482) is fulfilled. O

Proposition 34. The time evolution of An(u,w) after a time t regarding the Hamiltonian
HS5M s the state et A, (u, w(t)) whose dependence in t is determined by the Hamiltonian flow
of the harmonic oscillator. Namely,

(485) erti" Ap(u,w) =i Ay (u,w(t)) with w= et w.

Proof. For w € C" fixed let ¢,,(u) = Ap(u, w). The time evolution of (Byty) (2) = en®® in

B, is determined by the following equation
k=00 —k
—Lfnt lz-w) Sy 1 (Z : w)
e # (eh ' (Z KM\ h
k
e L (z : w>k

|
o

k n

The function(z - w)" is an eigenfunction of I;Tn with eiegenvalue h (% + Z)? so the equality
e it (7. @)k = e_’t(§+%)(z -)"* holds by functional calculus. Hence, the time evolution of

1.0 - oo
en* in B, is given by

i) = o S L)
k=0
- —\ k
= e_ZTkZOO;‘(Z'%Ut)) with w(t):e%w
k=0
The following equality holds from above calculations
(486) o~ #Hnt <e%z-w> — o erru(®)
Using equality it follows from that
e_%tﬁﬁ% Y = s B;l enzw(®)

_,nt
= e Py -

Since H Sch is a Hermitian operator, then it follows from above equality that the time evolution
of Ay (u,w) is given as in (485]). O

Let me now consider the time evolution of A, (u,w), which can be determined from the
time evolution of A,(u,w). Recall that A, (u,w) is given as the average of A,(u,w) over
the orbits of the action of G,, on R". Taking the average is actually the projector operator
Pg, : L>(R™, du) — L*(R™, du)®" which is given by
_ 1
- Area(S9) Jga

where ®4(u) denotes the action of G,, = 5S4 on R" with n = 8,4 and d = 3, 1 respectively. Let

(Pa,¥)(w) P (Py(u)) dS2ga

_—Sch ~
me denote by v’ = ®,(u) a new variable and write H’ nc regarding u’. The operator H5" is

. ~ —Sch
invariant under the action of G,, on R™, that is, H>" = H’ nc . We can interchange the action
of H" with the integration on S¢ and use the Gy,-invariance of H5" so that a straightforward
calculation shows that

(487) H (P, ) = Pa, (H5™) .
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Equality 1) indicates that Effdl and Pg, commute. This allows to determine the time
evolution of A, (u,w) from the time evolution of A, (u,w).

Proposition 35. The time evolution of the Kernel A, (u,w) after a time t regarding the Hamil-
tonian HS" is the state e A, (u, w(t)) whose dependence in t is determined by the Hamiltonian
flow of the harmonic oscillator. Namely,

(488) et Ap(u,w) = !t Ap(u,w(t))  with w(t) = e w.

Proof. It follows from the spectral theorem that Pg, commutes with the function e%tHSCh,

so the time evolution of A, (u,w) can be determined by first computing Rt A, (u,w) and
then taking the average of €™ A, (u, w(t)). Namely,

4 FfSch nt 1 nt
ent ™ A, (u,w) = e (Amz(Sd) /Sd An(@g(u),w(t))dﬁsnd) =e"1 A, (u,w(t)).

On the other hand, let me avoid domain issues and assume that there is a self-adjoint
realization of H, in B,(F")C so that the self-adjointness of H" in L?(R", du)“" can be inherited
from H,, via the SBT By ,. This allows to determine the time evolution of A, (u, w) with the
same procedure of the case of A, (u,w). That is, I first study the time evolution of ,,(u, w) =

R (a(z), f(w)) in B and then determine the time evolution of Ay, (u, w) via the SBT By .

—_ 3=m —
Let me recall that &, (a(z), B(w)) =T (Z21) (%) Y Tmes (W) and take
2
the series definition of I m=3 in each case m = 5,3, see [2], which is given in terms of (G, )c-

invariant eigenfunctions of H, with eigenvalues h (k + %) Using the functional calculus of

et g straightforward calculation shows that

—\k
147, - _nt 1 1 a(z) - Blw(t
I fula(a), flw) = e ;zmw(nz()gm)
(489) = e'% R, a(z), B(w(t))) with w(t):e%w and v =0,1.

t ;?'ch

Using the equality By, e By, 711 = e~ it follows from (489) that

efﬁtﬁf‘:h ww — eil%t B()_’,rll ,Cn(z7 w(t))
= Ty with ) = Au(u, (D).

The operator ﬁfCh is Hermitian, so it follows from above equality that the time evolution of

Ay (u, w) is given as in (485).
O
To determine the time evolution of 2, (z, 8),n = 8,4 I need the following result
Lemma 12.
(i) The SBT B, : L? <Rm, %dm) — &En intertwines the Hamiltonian operators I?m =

|z |[Arm + 1] and Hyeg=h (Z;”Zl ak% + %) with m = 5,3. Namely,

(490) HyoaBnod = BpKmd Vb€ L2 (Rm, %’(m) :

(i) Moreover, the following equality holds

_ o _
(491) B, entlm Bl — oitBnkmBu’ _ ojithred
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Proof.

(i) The operator H5¢" preserves the G,-invariant functions. That is, for cach ¢ € L2(R™, du)Cn
the function HI) belongs to L?(R™, du)®" as well. Equality l) can be written in a G-
invariant form. Namely,

(492) HpBon ) = BonH3" ¢ Vo € L2(R", du)C" .

Let me recall that every element ¢ € L*(R",du)®" is identified with ¢ € L? (Rm, %L dm).
That is, every ¢ can be written as ¥ (u) = ¢(z(u)) with ¢ defined on R™ and z(u) is given
by the KS map ﬁmm in . Let act fAI;?Ch on ¢ € L*(R", du)%" and H, on f € B,(ALG”)C
with f(2) = ¢(a(z)). The derivatives are calculated with the chain rule, so that the following
equalities hold

(493)
(ff,fch w) (u) = (f(m ¢>) ((u)), (ﬁfn f) (2) = (flmd ¢) (a(z)) with n=8,4, m=5,3.

The above equalities indicate that ITIECh and f[md are identified with [?m and ITITed respectively.
So it follows from point (i) in corollary [1| and [2| that equality (490)) is fulfilled.

(ii) Let me assume that there is a self-adjoint realization of ﬁmd in &, so that the self-
adjointness of K, can be inherited from H,.q by doing a similar argument to the case of H>¢".
Equality (491)) can be proved by performing a similar procedure to the lemma

O

Proposition 36. The time evolution of the kernel A, (x, 5) after a time t regarding the Hamil-
tonian K, = i|z| (—h*Agm + 1) is the state e A, (z, B(t)) whose dependence in t is deter-
mined by the geodesic flow on TTS™ under the identification TTS™ 2 Q,,. Namely,

ltl? 1t (2m—2) i ot
(494) et 20z, B) = " o, B(1))  with B(t) = " 5.
Proof. The proof is similar to the cases of A, (u,w) and A, (u,w), so let me sketch the cal-
culations. For A € Qs fixed let pp(x) = Ay (z,B) € L? (]Rm, c—’”da:), the time evolution of

|z

_\ 3=m —
(Bnop) (@) =T (mT_l) (a'6> ! ImTf?) ( Y 2,?”8> in &, is determined by

2hZ
. 3—m =
g " m — 1 o - /8 4 m
o HtHred Bpop(a) =e ptHrea (2> <2h2> ILQ_3 <h> '

I can use the series definition of the Bessel function Im-s, see [2] which is is given in terms of

2m—2

2
i ) so that the following equality holds

eigenfuctions of IT[red with eigenvalue h (k +

(495) e ktHrea p (m=1) (a'ﬂ>3_“m In_s <\/2‘Tﬁ> =

2 2h2 h

3—m —
_it(2m—2) m— - - : (2
e 2 T (Tl) (%g)) R < 2 hﬁ(t)> with 8(t) = e Lg.

Using equality (491)) it follows from (495)) that
_it(2m—2)

e i Km gy —em T gy

Since IA(m is a Hermitian operator, then it follows from above equality that the evolution of
A, (z, ) is given as in (494)) . O

The Hamiltonian operators IA(m, m = 5,3 will play an important role in the construction of
a Segal-Bargmann Transform for spheres S™, m = 5,3. The key point of this construction is
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to assign to each spherical harmonic of degree ¢ on S™ an eigenfunction ¢(x) of Ko through
the Fock map Up,,. I expose the details of this construction in the next chapter.



Chapter 5

A Segal-Bargmann
Transform For Spheres

In this chapter I give a geometric description of the SBT Bgm ¢ introduced in [11]. I make this
description for the dimensions m = 5, 3 based on the relationship on a fixed energy hypersurface
among the classical systems, the Kepler problem on 7T*R™, the geodesic flow on T%S™ and
the harmonic oscillator on T*R™ n = &8,4. I construct an SBT Bg,m with domain V; (the
space of spherical harmonics of degree ¢ on S™) and range W, (the space of homogeneous
polynomials of degree ¢ in &,,). The main ingredient of this construction is the Fock map

Ug,m which sends Y (q) € V; to an eigenfunction ¢(z) in L? <Rm, le dac) of the operator I?m =

l|33] (—hQA]Rm + 1), see Eq. 1) The SBT B&m is defined as the composition of Uy, with

the SBT B, : L2 (Rm, Ca dw) 5 &, that is, By = By 0 Upm. 1 show that the SBT By,
intertwines the representations of so(m + 1) in V; and W,. The main result of this chapter is

to show that Bgm ¢ can be identified with the SBT B&m.

1. An SBT for S

1.1. Representation of s0(4). Let me begin with the case of S for physical reasons. The
Lie algebra so(4) is a symmetry of the Hamiltonian operator of the hydrogen atom (Quantum
Kepler problem) with Hilbert space_ L?(R3,dx). This symmetry of the hydrogen atom is gen-
erated by the angular momentum J and Runge- Lenz A vector operators. The expressions of

components J and AJ, j =1,2,,3 are given in and (505)) respectively, see below. Here
the approach to generate the representation of 50( ) is not from the physical side. Rather,

I consider the commutators [ﬁj, Ok, j # k which generate the reprebentatlon of s0(4) inside
50(4,2). But I show that the restriction of Jj, A to energy £ = —3 of the hydrogen atom is

identified with the operators that generate the representation of 50( ) in L? <R3, ﬁ, dw), see

119
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proposition [39| below. The representation of so(4) in By is given by

(496) pr=[Bris] = W (aipe + g — g — i)
Py = [D1,a3] = ﬁ2(21822 — 88 —|-Z4863 23;;4)
Py = Do) = (a1 +z — a1 — )
P[P = <21662 T 821 + z4883 T 8(24)

s D a] = 129 9 o0 0
Ps = [DZ’(M] = (Z48z3+22821 21822 23824)

~ 0 0 0 0
~ ~ _ 2 _ _
Pe = [Dg,a4] = 1k <21 7621 + 24—(924 zg—azz zg—az?))
Consider f(z) = ¢(a(z)) € BEIU(D) and let p;, j = ,6 act on f(z) = ¢(«a(z)). For instance,
d d 0 0
~ 2 Y L Y
(497) p1o(a(z)) =k (zla + v - — 22 925 24 8Z4)¢(a(z)) .

The derivatives in are calculated using the chain rule. Taking o;(z),j = 1,2,3,4 as
n a straightforward calculation shows that the right-hand side of equality can be
written as follows

9¢

(R516) (a(2)) = 20 (225 — 1 22 ) a(2)).

I can do a similar procedure with the rest of the operators in (496). The operators ﬁj, j =
.,6 in (496]) have the following expression in the space &3

0 0

(498) 7/'l\'E1 = [ﬁl,ag] = 2h2(a28ﬁ&1 — alﬂ), ﬁ'E2 = [ﬁl,&g] = 2ﬁ2 (ag%‘q - Oq%)
~ 0 0 ~
TE, = [DQ,O[g] = 2h? (aga—2 — Qo 60&3)’ TE, = [Dl,oz4] = K2 <a4aa1 al%)
~ 0 0 ~ ~
TEs = [DQ,O(4] = 2h2 <a4@ — 87044> y TEs = [Dg,a4] = 2h2 <O‘48%43 — a3%> .

The operators in (498) can be identified with a representation of so(4) in space £ which
is obtained from the action of SO(4,R) on @3, see equations (512) below. The following
proposition gives a representation of s0(4) in the space L?(R*, du).

Proposition 37. The operators in have the following expression in the Schridinger
representation

(499) p1 = [D1,dn] = h_h<ulfw_w£1+u4;%_u3£1)]
p2 = [D1,as] = h_h<ulai3_u3le+u2£l_u4aiz>]
ps = [Dy,as] = h:h<ulai4_uszw,+“3a?@_“4;m)]
R SR )
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I omit the proof of proposition because it follows from a straightforward calculation

using equations in (387]).

Proposition 38. The operators in

(500) g, = Dy, aa]
7p, = [D1,as)
TEy = [52@3]

%\E4 = [ﬁla a4]

= [Dy, au]

TEs

7ps = |Ds, du]

0 0
2h2 <ﬂ72 - $1ax2>

zh{xg — K2

zh{xg — K

_ 3 9
_2(1 + ;xk&rk)

2

j
I}
j

have the following expression in the space L? (

Proof. Take the operator py in (499), and let ps act on the function ¢(u)

L*(R*, du)’ (V) with ¢(z) € L?

(501)

<R3 de)

el

pap(u) =1 l:(ulu?) + upuy) — h? (

. Namely,
N
8U1 8U3

0 8)} Bl ().

8711/2 aU4

R3, T dx

e

p(z(u)) €

The derivatives in (501)) are calculated with the chain rule. Using equations in (423)) a long

calculation shows that the right-hand side of equality (501) can be written as follows

09
211+ Tp——

(Rrd) (2(w)) = m{m e

batu.

I can do a similar procedure to the above calculations to obtain the rest of the operators in

(1500).

The canonical operators acting on the Hilbert space L?(R3, dz) are given by

(502)

Lj

= ajj)

)
9 = —th—

Ox;

The angular-momentum operator is defined by

J=

The components of J are given by

(503) Jy =

The operators 7g;,j =

1h <x38 — Tog—
x

a>7j\2:

Ox3

momentum operator in (503). Namely,

(PN

2h

TE,

J3)

R
2n " P

TX7Y.

(PN

:J27 %ﬂ-

j=1,2,3.

~

B, = J1.

0
,J3:zh<xga—x

I

O

9
18562 '

1,,2,3 in (500 are identified with the components of the angular

The Runge-Lenz vector operator can be written in the following form, see [17] for details

(504)

~

A=gx J—ahj— 2

x|

)
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The components of A can be written in terms of the canonical operators in 1) as follows

-, ’“223 o\ 0 v
_ J

Proposition 39. The operators 7g.,j = 4,5,6 in can be identified wzth the restriction

of the operators Aj,j =1,2,3 in on the ezgenspace of energy £ = —3 of the hydrogen
atom. Namely,

7 -~ 7 -~ 7 -~
—Tg, =A1|._ 1, —TE, =A2,_ 1, —=TEs=A3|._ 1.
2K 4 ‘E—_E’ 2K 75 |E__§’ 2K 6 ‘E—_ﬁ

Before proving the proposition 39| let me make a remark regarding why the energy E = —%

is considered without include the Plank constant A. It is known that the discrete spectrum

of the Hamiltonian operator of the hydrogen atom H = —%ARs — |71‘ is given by FEy(h) =
{—m le N}. Let me regard h as a parameter taking values in the sequence h = k%rl
with k& € N. Next, consider the family of Hamiltonian operators £9 = {ﬁ(ﬁ) ‘h = k+1’ ke N}
Note that F = —% is an eigenvalue of each member of the family £q. This idea of considering A

taking values in a sequence together with the family £y is considered in [39] in order to study
clusters of eigenvalues.

Proof. Take v in the eigenspace £ = —3, and let A1 act on . Namely,

ke
1 A
( +Zxk8xk) 0 — 11 AR3y

Now consider the eigenvalue equation

Aytp = B2

h? 1 1
—A - — =—=
5 Bast(@) — () = ~ (@)
The eigenvalue equation is multiplied by x1 so that it can be written as follows

1
(506) l’lARsﬂ} - 51‘11/}

.%'1 FLQ
¥ T2

It follows from equation ((506]) that

~ 5111 1
A = 1 2A _ =
1 ( +Z$kaxk> 0, 2 R3¢] 2$1¢
7
= oprE
I can do a similar procedure to the above calculations for the components 21\2, A\g, and a
straightforward calculation shows that the equalities 57 g, = A2, 5F7TEs = A3 hold. O

The following result will be used to construct an SBT for S3.

Proposition 40. The SBT B, : L? (RS s dac) — &3 intertwines the operators in (500) and

ol
. Namely,

(507) By (Tp,¢) =g, (Bag), j=1,...,6 and p € L* <R3, Qm) .

Proof. I have shown that the SBT By : L?(R*, du) — B, preserves the space of U (1)-invariant
functions. That is, the SBT Byt of ¢ € L?(R*, du)U(l) is a function in BYM. In addition, the
SBT B, intertwines the operators in (499) and (496]). That is,

(508) (B1pj)(2) = B, (Ba)) (2), j=1,...,6, and ¢ € L*(R*, du)’™.
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Since p;v is a function in L*(R?, du)U(l), then equality 1} can be written in a U(1)-invariant
form as in (408). Namely,

(509) (Boapj)) (2) = p; (Boa) (2) Vo(u) = ¢(x(u)) € L*(RY, du)’™).

The function pj¢ is identified with the function ;¢ € L? (}R3, %dw), and the operator p;

is identified with g, acting in &. It follows from point (i) of corollary 1| that equality (509))
corresponds to equality (507)). O

On the other hand, a representation of s0(4) in & can be defined from the action of SO(4, R)
on @3 as follows. Consider a basis of s0(4) given by the following matrices

0 100 0 010 0 0 00

1000 0 000 0 0 10

(510) Ei=to oo0oo0l" =100 0|l B |0 -1 00
0 000 0 000 0 0 00

0 00 1 0 0 00 00 0 0

0 000 0 0 0 1 00 0 0

Es=10o 000" ®=|o 0o ool B=loo o 1|
1000 0 -1 0 0 00 -1 0

I can assign to each matrix Ej,j = 1,...,6 in 1’ an operator T E; acting in &3, which is
defined as follows

~ d
(511) T, fa) = %‘ f <e—ﬁtEj a), j=1,...6, with f(a)€&.
t=
The operators T E;»J =1,...,6 have the following expressions in coordinates
(512)

~ 0 0 ~ 0 d -~ 0 0
Tp, =h (04180[2 - 042&“1> » Tpy, =h (alaag - a38a1> , Tpy,=nh (a28a3 - a38a2>
. d 0 ~ d 0 ~ 0 0
Tp,=h <a18a4 - O44&.[1> , Tps =h <a28a4 - a48a2> , Tpg =" <a38a4 — 054(%“3> .

The operators TEj can be related to operators ﬁE].,j = 1,...,6. That is, a straightforward
calculation shows that the following equality holds

7ip, = —20Tg, j=1,...,6.

The operators T E; In 1) restricted to act in W, (homogeneous polynomials of degree /)
define an irreducible representation of so(4) in Wy, see [5].

Consider the Hilbert space L? (53, dQ2 53) of square-integrable functions endowed with the
following inner product

(W, Ug) g = /Sg U1 () Ta(@)d0(q), Ty, Uy € L? (S, dQ%s) -

I can assign to each matrix E; in 1) an operator ij acting in L? (53, ds2 53), which is defined
as follows

- d - ,
(513) TEj\Il(q):EL:O\IJ(e MEj gy, j=1,...,6.
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The operators in (513) have the following expression in coordinates
(514)

~ 0 0 ~ 0 0 ~ 0 0
T, =h — —qp— |, T, =h ——q3— |, Tg, =h — — (3——
Eq (Q1 £y q2 8q1> Es <Q1 943 qs3 6q1> Es <Q2 943 q3 8q2>

~ 0 0 ~ 0 0 ~ 0 0
Te, =h — —qu— |, Tg. =h — —q4— |, Tg, =h — — gy .
E, (ql D q4 8q1> Es (Q2 o qa 8qz> Eg <Q3 E q4 8q3>

The operators ij restricted to act on V; (spherical harmonics of degree ¢) define an irreducible
representation of so(4) in V.

The operators in (i will be obtained from the operators ij in || through the Fock
map Up 3. This is done in the next section.

1.2. Fock Map. The presentation of this subsection follows reference [10} Sect. 4,3]. Let me
begin with the eigenvalue equation of the harmonic oscillator in the Schrédinger representation.
Namely,

1

(515) 1 [—h*Apn + 2] Y(u) = Ey(u) with ¢ € L*(R™, du).

The eigenvalue equation in (515 can be restricted to L*(R", du)®" by considering v (u) =
é(x(u)) with ¢(z) € L? <]Rm C—mdaﬁ) . The derivatives in (515) are calculated using the chain

REd

rule so that the eigenvalue equation for the function ¢(z) is given by
1 Cm
(516) 51l (=h*Agm + 1) ¢(z) = E¢(x) with ¢(z) € L? <Rm, mdm) .

Consider a function ¢(x) in the configuration space R™. The Fourier transform of ¢(z) is
defined as follows

~ 1 .
Fi = =—— TRPT g,
1(0) = 90) = g [ 90) e H " da
The eigenvalue equation in (516|) can be written as follows
1

The Fourier transform is taken in both sides of equation (517|), which gives the following
equation in the momentum space

L 9 N ET (m2_1) (Z(p/) /
- ] d,

where the right-hand side in (518]) is obtained from the convolution formula for the Fourier
transform of a product of functions. Namely, Fj (M> = W&’:ﬁ(gb(z)) * Fp (\%l) with

|$‘
m=1l
F (—‘;|> =om 1=l |p| (m=1),

The eigenvalue equation in (518) will be carried into an eigenvalue equation on S™. Con-
sider the stereographic projection from S —{N} to R™, that is, the coordinates (p1,p2, . .., Pm)

of R™ are written in terms of ¢ = (¢1,42,...,G¢m+1) € S™ as follows
q1 q2 a3 m
519 p(q) = < , , e > .
(519) @ I—gmyr 1 =gmi1 1 —agmsr I —gmn

The inverse of the stereographic projection is a map from R™ to S™ — {N}, that is, the
coordinates (q1,G2,q3, - -,qm+1) € S™ are written in terms of p € R™ as follows

(p) = ( 2p1 2py 2p3 20 p*— 1>

520
( ) p2+1>p2+1>p2+1> 7p2+17p2+1
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The following equalities will be used in a later on paragraph. Using the transformation defined
in (520)) it is not difficult to show that the following equalities hold

(521)
2 \" lp—p/'?
dQgm(q) = dp, —¢?P=4 . q¢,q €8™ andp,p € R™.
sm(q) <p2+1> p, lg—¢| P DpEr) L nd p, p
Now let me define a function on S™ as follows
m—+1
Chm, 241\ 2 -
(522) a(g) =/ <p(q)2+) 30(0)). Cm a constant,

where gg(p) satisfies the eigenvalue equation in , and p(q) denotes the transformation in
. Note that the transformation in is not global, that is, it depends on the energy level
E. The factor (p22+ 1)% is the inverse of the square root of the Jacobian of the stereographic
projection. This factor times the function a(p) must be multiplied by (p? + 1)/2 in order
to preserve the norms of ® € L?(S™,dQgn) and .Fh_l(quS) = ¢ c L? (Rm, %wa) See below
proposition (41]).

The eigenvalue equation in can be carried into the following eigenvalue equation for
®(q) through the stereographic projection

r(m-1) d(q') h
523 2 1 / dQ m ! - *@ .

In [3, 0] it is shown that the spherical harmonics of degree ¢ on S™ satisfy the following
equation

I (%) Ye(d) 2
524 2 / dQsm(d) = —=—Yi(q). YieVi.
(524) pr ) R e T L (¢) oY) q), YieV

Hence, the solutions of (523 are the spherical harmonics Yy € V;, and the energy must take
the values Ey = h ()
For every Yy € V; the equation in (522]) can be written as

2 mE
(525) Yi(q) = %"(W) be(p(q)) -

The solution gy (p) of equation in (518) can be obtained from equality (525). That is, if ¢ € S™

is written according to equation ((520)), then the function quSg(p) is given by

m—+1
~ E (pP+1\ 2
=4/ = Yy .
o) =1/ ¢ ( 5 ) o(a(p))
The inverse Fourier transform 7, 1(52) = ¢y(x) satisfies the eigenvalue equation
1 m—142¢
(526) 3ol (<128 + 1) 00) =1 ("5 6o,

The above calculations describe how the Fock map Uy, : Vi 3 Yi(q) — ¢e(x) € L2 <Rm, %dm)
is defined .

The Fock map is originally defined from V;, C L?(S™,d2sm) into eigenfunctions of the
hydrogen atom in momentum space and is unitary due to the virial theorem (see below equality

529)). See [3] for details. Let me show that the inner product of L? <Rm, C—*”dx) can be related

|zl

with the corresponding one of the Hilbert space of the hydrogen atom. The consequence of this
fact is that the map Uy, is unitary as well. Firstly, | have to carry the eigenvalue equation
(526)) into an eigenvalue equation of the hydrogen atom. To do so, I define the variable @ = Eyz
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with x € R™ and then calculate the derivatives with chain rule, so that the eigenvalue equation
(526) can be written regarding the variable x as follows

1 || 2 2
527 — —hE;Agm +1| ¢ =F
(527) o [ {Arp +1] ¢ = Ego,
where Agm denotes the second derivatives with respect to x;,j = 1,...,m. A calculation

shows that equation (527 can be written as the eigenvalue equation of the hydrogen atom.
Namely,

2 1 1
——Apm — — | ¢ = H, ith Hy=——.

Eigenvalue equation of the hydrogen atom in the momentum space p € R™ is given by
—1 -
r (m2 ) / o(p’)
R

1 ~
528 — [p? —2H,| ¢(p) = 2
(528) 2[ | #(p) o Jom Ip— P

Equality 1D is multiplied by (;AS(p)* and then is integrated in the momentum space. The
following is obtained

1o - 2 F(mgl 5(1") A BVIRY
- |p°—2H P dp:/ = dp | ¢(p)” dp.
/m 3 | ol lete)| oo | 2 oo o — 1 P | OP)
Let me use the virial theorem
1 o ~ ~
(529) [ 5#tow)Pip =~ [ (ow)Fap.

Hence the following equality holds

m—1 oD ~
5300 [ P =5y [ [F( 2 [ 2 dp’] Jp) dp.

/

dp' .

2H, ohr™s Jrm [p— P/t

Let me introduce the dilation operator ﬁt, telR
o~ A _m p
(Di6) ) =36 () .

Let act 13_2 H, act on 5, so that equality |i can be written as follows

o~

5 () (") -
2d — 2 dn" *du .
/m 6(y)|” dy / lmm = /R P o) dy

It follows from the Parseval identity that the above equality relates the inner products of
L? (Rm Crp da:) and the Hilbert space of the hydrogen atom. Let me state this point quite

e
formally as follows

Lemma 13. An eigenfunction ¢ off( = %|ZL‘H—FL2ARm + 1] with eigenvalue E; is an eigen-
function of the Hamiltonian operator of hydrogen atom with eigenvalue Hy = . Further,
the following equality is fulfilled

(531) | el@lie = [ jo@)P i,

Let me now show that the map Uy, : Vi 3 Yi(q) — ¢y(z) € L2 (Rm, C—mdx) is unitary

||

1
2
2E2

Proposition 41. The map Uy, preserves the inner product between V, and the eigenfunctions
oe(x) of K, = slz| (—h?Agm + 1) in L? (Rm, %de) Namely,
Cm

™ dx
]

(552) | WP dosn@ = [ o)l
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Proof. The squared norm of Y;(q) can be calculated on R™ through the stereographic projec-
tion as follows

2 m—i—lA — m
(533) Yi(q)Ye(q)dagm (@) = % - <p ;1> Ge(P)oe(p) (p22+1> P

) - L[ (B5) awdw.

The first equality in 1' is used to get equality 1’ Since the function $g(p) satisfies
equation in (518]), then the right-hand side of equality in (533]) can be written as

_ r (mT_l) Q/b\(p/) 2N
(534) Yi(q)Ye(q)dagm (q) = Cm e o—dp' | ¢u(p)dp .
sm re | 2872 Jre [P — P
It follows from the Parseval identity and lemma [13|that the right-hand side of equality in (534))
is the right-hand side of equality in (532]). O
Equality ((525) for S3 is given by
us 241 2 .
(535) Vi =[5 (M) Ge) win viev,

and the Fock map is denoted as Upg : V; 3 Y(q) — ¢u(z) € L? (]R3, |”|d:z:>

The representation of s0(4) in V; C L*(S3,d{gs) in (514) can be carried into the operators
in (500). This is the point of the following proposition.

Proposition 42. The Fock map Uy 3 intertwines the operators fE]., j=1,...,61n with
the operators T, j =1,...,6 in . Namely,

Ups (ijYe(Q)> = —LWE be()

2h
where Yy(q) is defined in ([535).
Proof. It is not difficult to see that the function Yy(¢q) in (535)) can be written as

Yi(q) = \/g(l — 1) 2 de(p(q)) -

Take Tg, = h (qlai% — ¢ a%1> and let T, act on Y;(¢). Namely,

T ila) =[50 =00 [1 (0 — ) Beola))]

It follows from a straightforward calculation of the derivatives using the chain rule that

T — T a2 il @_ 92 @
TeYele) = \[(1 @) [h<1—q48pz 1—q40p1

_2 e Oy
(1_‘]4) [h< %— 28p1>]

The function A <p1 gﬁg D2 gﬁé) is the Fourier transform of A (1‘1% — 9 gfg) . Thus, the

following equality holds

&

(536)

%

Upis (T Yela)) = 5 7 ()

I can do a similar procedure to the above calculations to show that the following equalities

hold
1

" 2h

1

Urs (T, Yel0)) = o

5 7E,¢e(x), Upgs (fE43’£(Q)) B Ge(T) .
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Consider the operator fE4 =h <q18%4 — q48%1> and let fE3 act on Yy(q). Namely,

551 Tevie) =\ 20— a0 ([ 2Bt + (0 — i )m(())]}.

The derivatives in (537)) are calculated using the chain rule. From equations in (520|) for m = 3
a straightforward calculation shows that the right-hand side of equation in 1} can be written
as follows

2 2 . N N
\/E(p ;1) {ﬁ [2P1¢Z(P) + 1 (mgq5 + 2(225 + 32?2) + %(1 —Pz)ng]} .

The term given by

- N R 2,001
h|2 + SO +o(1 - )2
[ p1de(p) + P1 (Pl o 28p2 38p3> 2( P )apl

is the Fourier transform of the following term in configuration space

o221 ) S - mdwa

Hence, the following equality holds
1
7TE4 Qbf( )

Uz (Tr,Ye(q)) = 5

I can do a similar procedure to the above calculations to show that the following equalities

hold
1

" 2h

1

Uss (fE5Y£(Q>> = o

—Tps0e(x), Uz (fEGYAQ)) = ——Tppe(x).

O

1.3. The Segal-Bargmann Transform Bg73. In this subsection I construct an SBT from
V, € L*(S3,d2gs) onto W, C &£3. Every homogeneous polynomial f(a) € W, satisfies the
following equalities

Zakaizﬁf(a) and so ( 1nedf> (Zak+1> flo) =h(L+1)f(a).

Thus, the homogeneous polynomials of degree £ in £3 are eigenfunctions of ﬁred . On the other
hand, the Fock map Uy 3 sends Y;(q) € V4 to an eigenfunction ¢,(x) of Ky = $lz| (=h?Ags +1)
in L2 <R3, ﬁdm) with eigenvalue Ey = h(¢ + 1). Let me recall that in lemma I show that
the SBT B, intertwines the operators I?3 and ﬁred' Namely,

(B4K30) (0) = Hyeq (Bad(@) -
It follows from Ebove equality that B4¢, is an eigenfunction of ﬁred' Hence, B4¢, belongs to
Wy. The SBT Byg:V, C L*(S3,dQgs) — W, C & is defined by
(538) Eg,gy(a) = (ByoUpsY)(a), Y eV,.
The right-hand side of equality (538) is calculated as follows. The map Uy 3 is applied to Y to

obtain a function ¢ € L? (R3, |7r|dac and then the SBT 93, is applied to ¢. Namely,

(B4 0 UpsY) (a) = (Bso)(a / Bz, 0) ‘d é(z) € L? <]R3,|Z|dx> :

Proposition 43.
(i) The SBT Eg,g is a unitary map.
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(ii) The SBT Egyg relates the representations of s0(4) in Vy; C L*(S3,dQgs), L (R3, |”|d%d
Wy C &. That is, Ee}g intertwines the operators ij n and ’TEJ.,j =1,...,6 in
Proof.

(i) It follows from the fact that Egyg is the composition of unitary operators.

(ii) A straightforward calculation shows that

(539) By (fE]YK> (@) = By <—21h7TE ¢£> (c)
1

= _ﬁﬂ'E (Bage())

= Tp,Bad(a)
= ’—T’Ej BysYi(a).
O
In the following paragraphs I show that the SBT §g73 :Vy € L2(S3,dQ0gs) — Wy C &3 can
be identified with the SBT Bgs ,: Vy C L2(S?,dQgs) — Wy C & in which is given by

/ \/Z—I— q Q
5‘3

Bgs Yy (a ) Yi(q) dgs, Ye € V.

h
The map Bgs, and its adjoint (Bgss)" intertwine the operators ij and ’_/I\’Ej, see [11] for
details. The following equalities are fulfilled

(540) BgsTr,Yi(a) = Tg,BssYy(a), T, (Bss)® = (Bga)* T, -

Let me follow the argument of [11] for the particular dimension m = 3 to prove that Bgs, is
a unitary operator. Consider the operator (Bgs)® Bgs g : W — V4. It follows from equality
that (Bgsy)* Bgs, commutes with all the operators TE].. The operators ij restricted
to act on V; define an irreducible representation of s0(4), so the Schur lemma implies that
the operator (Bgsy)" Bgs ¢ must be a multiple of the identity operator on V. The operator
(Bgsg)" Bgs g is actually the identity operator. This is shown by evaluating (Bgsy)* Bgs ¢ on
a particular state Yy 5(q) € V; which is given by Y 5(q) = (¢ - 8) with 8 € Q3. The SBT of
Y, 5(q) gives the following

Béﬂy[Yfﬁ(CM) =

\/ZT/SS - B)dQgs

HN 1 fap
V1 (2 \ 2m2
4 r®
Vit1?

(541) =

On the other hand, since for all Y € V,
VEi+1

't
(542) = (Bgs,gY, (., 5))

= (Y, (Bss,) TS (B)) g

then the equality (Bss’g)*rég)(',ﬁ) = 7%;{41Y475(') is fulfilled. It follows from equality (541

that (Bss’g)* Bgs ¢Y¢3 = Yy 3. Hence, (35375)* Bgs ¢ is the identity operator T on Vi.

(Y, Yyp)gs = Bgs,Y(B)
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For an explicit expression of the map (BSm)_l W = Bglk , = (Bgm)”" see theorem 3 in
é k)
[11]. The main result of the section is the following.
Theorem 9. Consider the maps §g73 : Vo € L%(S3,dg3) — Wy C &3 and Bgsy : Vi C
L?(S3,dQgs) — Wy C E3. The following equality holds

(543) BysY(a) = Bgs,Y(a) VY €V,

Proof. Note that equality 1) holds if and only if the operator (Bss,g)* ) Eg,g :Vp C
L3(S3,dQgs) — V, C L?(S3,dS2gs) is the identity operator. It follows from equations (539)),
1} that the operator (35374)* o By commutes with the operators T;. Namely,

(BS3,Z)* (¢] Eéﬁij == ij (BS37E)* (¢} Eg’g.

The operators T\Ej restricted to act in V; define an irreducible representation of so(4), so it
follows from the Schur lemma that the operator (BS3,€)* o By 3 is a multiple of the identity

operator on V. If it happens that (Bsi;’é)* 0Bz = M with A # 1 a real constant, then the
following equalities hold

(544) ((Bsgyg)* o Em) o ((Bsgyﬁ)* o gm)* _
((353,e)* o Ee,:a) o ((55,3)* o 35375) = AT,

It follows from equality 1) that (Bsf’)’g)* o Bgs, = )\Zf, which is a contradiction. Thus
(35375)* o E&g must be the identity operator T on V,. Hence, equality 1) is fulfilled. O

Equality (543)) allows to give a geometric description of the SBT Bgs. To do so, the SBT
Bgs is identified with the linear extension Bgs : L?(S®,df2gs) — &3 of the operators Bgs 4,

which is defined as follows. Given U € L?(S3 dQgs) written as ¥ = limy_,oo ZIZ:()YK with
Yy € V let me consider the partial sums Sy (V) = Z];:O Bgs Yy and then

BgsW = lim S, (V).
k—o0

It is shown in [11], Sect. 2] that equality BgsW¥ = Ess\ll holds almost everywhere on &,,. Let
me now use By3Y (o) = Bgs Y (a) for all Y € V so that the following equality is fulfilled

k
545 BaesWU = i ByaY;.
( ) 53 kglolog 0,3y

Equality indicates that the SBT Bgs can be understood as the composition of Uy 3 with
B, and that Bgs can be regarded as the linear extension of E&g. The geometric description of
Bgs is displayed on the fact that the SBT B, is obtained from the pairing map of the geometric
quantization via a reduction process, that is, the “first quantize and then reduce” process. In
the next section I will construct an SBT By : V; C L%(S%,d2gs) — Wy C &5 following the
same structural ideas to the case of S3.

2. An SBT for S°

2.1. Representation of s0(6). The calculations involving the construction of the SBT Bg75
will be sketched because of these calculations are the same as in the case of By 3 but with

more variables. Let me take the operators &j,ﬁj ,j=1,...6 given in 1) and 1) The
representation of s0(6) in Bg can be obtained from the following commutators

(546) i = [@,ak} withj £k, and j,k=1,...,6.
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The operators of angular momentum type are obtained from the following commutators
(547) i = [ﬁj,ak} withj #k, and jk=1,...,5.
For instance, the following operators can be obtained from (547))

- 2 0 0 ) 9 0 9 0 9
(548) P12 = th [283724 +z5aiz1 +Z787,23 +Z6822 +Z18z5 +Z48z8 +z3827 +226z6:|

~ o) o) o) o) o) o) e} 0
p13= 1h [26374—27371+25373—283%224-/23375—22378+24726—z1@}
~ 2 0 o) el o) o) o) o) o)
pra= h [ZGTM_2487%_’_27%_2167”""25873_’2387%4_28%_ZQTZS] .

The Runge-Lenz like operators are obtained from the commutators p, ¢ = [Dj,ag), j = 1,...,5,
-~ _ 2 o) o o) o) 0 o

(549) prg= 1h <z13fm+228722+zsafzg+24@—253*z5 ~ 267, — 27&7 8328>
Pog= R (2152 — 2555 + 2072 — 2650 + 2350 — 2750 + 245 — 25
p276 - 1825 5821 2826 6(922 382’7 78,23 4828 8824
-~ _ 2 o o) le) 0 0 le)
pP3g= N <24376 — %69, T T9, T Ao — #Baz 253Z3 + 28322 - 2’2378)
~ 2
Pi6 = h (Z4 0z6 + 2652, 6Z4 + Z7821 +21 8Z7 + 235, 625 + 255, 823 + 2852, azz + 22 328>

5 — 2 0 _ 0 _ 0 _ 9 _
P56 = h <Z48z Z5le +Z3827 ZﬁazQ +z7823 22826 +286Z4 ZlaZ5) :

The operators in (546|) can be written in the Schrédinger representation by using equations
in (396)). These operators are denoted by pjr,j,k = 1,2...,6. For example, the operators in
(b48|) are given by

o= B2 0 _ 0 O 0 O a0 O a0
(550) p172 - h <U5 8u1 'LLl 8’LL5 + u2 6u6 'LL6 Bug + u7 6u3 U3 8U7 + U4 aug u8 aU4>

~ 2 o o) o o) o o) o g

pr3= I (twf,ul Ul gor F USGyy — U2ges T USTy: — Uspy; + Ueg,, — U4 —8%)

~ 32 0 _ .0 0 _ .0 0 0 0 .0
’0174_ h <u78u2 u28u7 +U6BU3 u38u6 +u48u5 u58U4 +u18u8 u88u1) .

The operators in (549) have the following expression in the Schrédinger representation

~ 2, .2 ,.2,,2 2 2 9 9 2(0%2 | 92 | 92 | 9% _
(551)P1,6— z{(u1+u2+u3+u4 u5 u6 u7 U8)+h <8u% 8u% Bug +8ui

Ps6 = [(u2u5 ot + wgur + ugus) — (8%26%5 = Bur g T B B T B3 aigﬂ '

The operators p, ;. in 1’ can be restricted to act in BE(;SU@))C so that they are identified with
the following operators acting in the space &5

_ o 0 9 , .
(552) njkz[Dj,ak]=2h2<ak%—ajm>, jk=1,....6, andj#k.

The following can be proved with a similar procedure to the proof of proposition
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Proposition 44. The operators pjj acting on functions in L? (]RB, du) SUD e identified with

,%de). The operators of angular momentum type are given by

0 0
Z. — 9K? — pi— | ,k=1,...,5.
(553) Tk h <£L’k oz, x; 8xk> ., JE£k 3k N

The operators in are identified with the following operators

.9\ 0 ,
2 1—1—21’]@87% %j—.xjARS s j:l,’5
k=1

Now I define a representation of the Lie algebra so(6) in & from the action of SO(6,R) on
Qs as follows. Consider a basis of s0(6) given by the following skew-symmetric matrices

operators T, acting in L? (]R5

(554) %j’ﬁ =1h {ZL’j - fLQ

0 ... ... 0
: P

(555) Ej, = 0... =1 ... 0|, 4,k=1,...,6, andj#k.
0 ... ... 0

For example, the matrices E12, E5¢ are given by

0 10000 0000 0 O
-1 00 0 0 0 0000 O O
0 00O0O00O 0000 0 O
=109 0000 0|"®=|oo0oo0oo0 0 o
0 0000 0 0000 0 1
0 0000 0 0000 -1 0

The other matrices Ej, are written in this form. I can assign to each matrix Ej; in (555) an
operator Tg, acting in &, which is defined as follows

(556) TEjk fla) = %LZO f (e—ﬁtEjk .a) , fE€&.

The operators T Ej, have the following expression in coordinates

0 0

557 Tp, =h|aj— — ap——o
( ) Eijt (O(] 80ék A 804]'

) and - QHTEjk = %jk'

I can assign to each matrix Ej; in || an operator T B, acting in L?(S%,dQgs), which is
defined as follows

5 d —htE; 2 (a5
(558) To,f(@) = 2| F(c7q), fla) €L (5, d0%) .
The operator ijk is given in coordinates by
(559) To =nfe-2 —2) jik=1.....6, and i £k

Ejr — QJaqk Qkaq] sk =1,...,0, J .

Equality in (525] for S° is given by
3
T (p(g)®+ 1)

560 Y, = )
(560) ) = 7= (P05 outota)

2

and the Fock map is denoted as Uy : Vy 2 Yy — ¢p(x) € L? <R5, Lda:). A similar procedure

]

to the proof of proposition [42] can be done to prove the following
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Proposition 45. The Fock map U, 5 intertwines the operators fE].k with the operators Tjy.
Namely,

~ 1 .
Urs (TEjkW(Q)) = —ﬁﬂj,k@(ﬂ?), Jk=1,...6,
where Yy(q) is given in (560).

The following result will be used to construct an SBT for S°.

Proposition 46. The SBT Bg : L? (Ri%dm) — &5 intertwines the operators in (559),
and ([553). Namely,

2
(561) (Baind) (0) = T (Bao)(@) Voe 12 (RS, T )

Proof. I have shown that the SBT Bg : L?(R® du) — Bg preserves the space of SU(2)-

invariant functions. That is, the SBT Bgt of ¥ € L*(RS, du)%Y®) is a function in BgU(Q). In

addition, the SBT Bg intertwines the operators ﬁM defined in (546|) and their corresponding
operators pj i, in the Schrodinger representation. Namely,

(562) (Bs prat) (2) = By (Bot) (2) 0 € L2(RS, du)*V .
Since p; 4t is a function in L2(R®, du)%V?), then equality (562|) can be written in a SU(2)-
invariant form as in (454)). Namely,

(563)  (BosDjwt) (2) = By (Bost) (2)  Veb(u) = d(a(u)) € L*(R®, du)*U'®).

The function pj 1 € L*(RS, du)3Y?) is identified with Tk € L? <R5
P is identified with 7, acting in &. It follows from point (i) of corollary [2[ that equality
O

(563) corresponds to equality (561]).

The Hamiltonian operator of the harmonic oscillator in the space Bg is given by ﬁg =
h (% 22:1 Zka%k + 2). Let me recall that the restrictions of Efquh = i(—hQARs +u2) to
L?(R8, du)SY®?) and Hg to BéSU(Q))C are identified with the Hamiltonian operators K; =
. 2 = .
%|x! (—EQARs + 1) acting in L? (Ri%dm) and H..q = h(22:1 ak% +2> acting in &
respectively. See equality (493). Further, I show in lemma that the SBT Bg intertwines the
operators K5 and H,,q. Namely,

(564) <%8f?5¢) (a) = ﬁred (Bso) (o) .

, ‘ﬁdx), and the operator
x|

Every homogeneous polynomial f(a) € W, C &; is an eigenfunction of PAIred, that is,

ﬁredf(a) = (¢ +2)f(e). On the other hand, the Fock map Uy sends Yy € Vp to an eigen-
function ¢y of 1?5 in L? (]R5, %dl‘) with eigenvalue Fy = h(¢ + 2). It follows from equality

1} that (Bgeoy)(a) is an eigenfunction of ﬁred' Hence, (Bgoy)(a) belongs to Wy. The SBT
Bys:Vy C L2(S%,dQgs) — Wy C &5 is defined by

(565) BisYi(a) = (BsoUrsYr) (), Yie Vi,

The right-hand side of (565) is calculated as follows. The map U5 is applied to Y7 to obtain
a function ¢, € L? (]R5 ﬁdm), and then the SBT By is applied to ¢y. Namely,

e

~ 2
BysYi(a) = Bgoe(a) = /R5 do(x)Ag(z, o) —dx .

]

The following can be proved as in the previous case of Eg}g.
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Proposition 47.
(i) The SBT 5475 is a unitary operator.
(i) The SBT §g75 relates the representations of 50(6) in Vy, C L?(S®,dQgs), L? (R5, %dﬂ:) and
Wy C E. Namely,
(566) Bys (Tg,,Ye) (@) = T, BesYe(a).

In the following paragraphs I identify the SBT By : V; C L2(S%, dS0gs) — Wy C & with
the SBT Bgs ,: Vi C L?(S%,dQgs) — Wy C &5 in 1) which is given by

VIi+21 a- g\’
Bgs Ye(a) = 5 f!/s5 (T) Yi(q)dQgs(q) -

The operator Bgs y and its adjoint (B Ss’g)* intertwine the operators T E;p i 1) and T Ej, In
(557), see [11] for details. The following equalities are fulfilled

(567) Bgs /I, = Tp, Bssy, and (Bgs,) Ty, = Th, (Bsss)" -

The following result can be proved with a similar argument to the proof of theorem |§| for S3.

Theorem 10. Consider the maps §g75 : Vp € L?(S%,dQgs) — Wy C & and Bgsy: Vy C
L?(S%,dQgs) — Wy C Es. The following equality holds

(568) BysYi(a) = Bgs (Yy(a), VY€ V.

Equality allows to give a geometric description of the SBT Bgs. Again Bgs is identified
with the linear extension Bgs : L?(S°,dQdgs) — &5 of the operators Bgs,. Given ¥ €
L?(S%,dQgs) written as U = limy_,oo ZIZ:() Y, with Y, € V; let me consider the partial sums
Sk(¥) = S5, Bgs /Y7 and then

BgsW = lim Sj (V).
k—o00

It is shown in [11] Sect. 2] that equality Bgs¥ = B 55V holds almost everywhere on &. Let
me now use By Y (a) = Bgs oY () for all Y € V so that the following equality is fulfilled

k
569 BgsU = i BusY.
(569) 550 = lim ez_% 05Y7
Equality (569)) indicates that the SBT Bgs can be understood as the composition of Uy s with
Bg and that Bgs can be regarded as the linear extension of By 5. The geometric description of
Bgs is displayed on the fact that the SBT Bg is obtained from the pairing map of the geometric
quantization via a reduction process.



Appendix A

Construction of the
Map ()

In this appendix I construct the maps p(, ) : C" — Qum, n = 8,4, m = 5, 3 respectively. Let
me recall that the null quadric @), is defined as follows

(570) Qm={2€C™ 2 +. .. +22,,=0}.

For dimensions n = 4, m = 3, the construction of the map p(43) : C* — Q3 comes from the
explicit realization of the action of SO(4,C) on C* from the action of SL(2,C) x SL(2,C)
on C*. Furthermore, this realization allows us to define the homomorphism of groups P43 :
SL(2,C) x SL(2,C)/Zy — SO(4,C).

For dimension n = 8, m =5, the map p(g 5) : C® — Q5 comes from the explicit realization
of the action of SO(6,C) on C® from the action of SL(4,C) on C®. This realization allows us
to define the homomorphism of groups pgs : SL(4,C)/Zy — SO(6,C).

On the other hand, in reference [26] it is proved that SO(m + 1,R) acts transitively on
Qm. In order to have a self-contained appendix, let me adapt the proof of [26] to the case of
SO(m +1,C) and show that SO(m + 1,C) acts transitively on Q.

Lemma 14. The group SO(m + 1,C) acts transitively on the null quadric Om.

Proof. To prove that SO(m + 1,C) acts transitively on the quadric Qm, it is enough to see
that for any point z € Q,, with z = 2 + 1y and x,y € R™"! there is M € SO(m + 1,C) such
that the following equality holds

M(ey +1e2) =z, with e =(1,0,...,0), e2 =(0,1,0,...,0).

First, I will look for a matrix B € S O(m + 1,C) such that the following equality holds

Bley +1e2) = f\|(61 +1e9), with A=+v241, and |z]=|R(2)|.

An element in B € SO(2,C) can be written as follows

cos(f) —sin(6)

(571) B:<sin(0) cos(@)) with 0 =a+1:b, and a,beR.

135
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Let me consider the matrix B given by

cos(f) —sin(0) 0

sin(f)  cos(6) 0

B= 0 0 1 0
0 1

A straightforward computation shows that

Bley +1e9) = eﬂe(el +1e2) with @ =a+1 and a,beR.
Taking a = 0 and b = log (lx‘) with A = v/2 + 1, the following equality is fulfilled

by
- _ =l
Bley +1e9) = 5% (e1 + 1e2) .

Let me take Z, W € C™! with 2 = X +4Y, w = U +V and X,Y,U,V vectors in R™*!.

Consider the following bilinear form on C™*! defined as follows

(572) ():C™lx ™t —C, (Z,W)=(X,U)—(Y,V)+1((X,V) + (Y, U)).

The terms (X, U), (Y, V), (X,V),(Y,V) denote the inner product in R™*!. That is,
(X,u)=X-U, (y,y2W)=Y -V, (X, V=XV, (Y,/U)=Y-U.

Note that z # 0 implies that |z|? # 0 as well. Consider Z,w € C™*! given by

2:\/§i+zi, w:—zi—kﬁi, x=NR(2) and y = F(2) .
I || ]

The vectors Z,w satisfy (Z,w) = 0 and (Z,2) = (w,w) = 1. The pair @, Z can be completed
in order to have an orthogonal set with respect to the bilinear form in (572)). This set of

orthogonal vectors can be taken as {Z,w, 23, 24, .. ., Zm+1}, where Z;,j = 3,...,m+1 are given
by
N - - - €3
és =e3 — (e3,2)z — (e3, w)w, Z3 = —
(€3,¢€3)
. T\~ - “\s - €4
€y =eq4— (e4,2)Z — (4, W)W — (e4, 23)Z23, Z4 = ——
(€4, €4)
_ . - s SNs = €5
€5 = e5 — (e5,2)Z — (e5, W)W — (e5,23)23 — (€5, 22) 24, 25 = ——e=
(65, 65)
Em+1 = emt1 — (em+1,2)Z — (emt1, V)W — (em+1,23)%3 — - .. — (em+1, Zm) Zm
- Em+1
Zm+1 == — m+~ )
(em—i—la 6m—&—l)
and {e; };":ng is the set of canonical basis of C™*1.
Consider a matrix A € SO(m + 1,C) whose columns are the vectors of this orthonormal
set. That is, A = [Z,W, 23,...,2Zm+1], or A = [Z,W, Z3,...,—Zn+1] to guarantee that A €

SO(m + 1,C). Now I consider a matrix M € SO(m + 1,C), which is defined as M = AB. A
straightforward computation shows that the following equality holds
M(ey +1e2) = 2.

Therefore SO(m + 1,C) acts transitively on Q,,. A similar procedure can be done as above
calculations in order to show that any z € @, can be obtained from the action of SO(m+1,C)
on (e;+1es5),l,s=1,...,m+1. O
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In the next paragraphs, I will construct the action of SO(4,C) on C* from the action of
SL(2,C)xSL(2,C) on C*. Before, let me make some calculations to motivate this construction.

Let me consider coordinates U,V € R* U = (Uy,Us, U3, Uy),V = (V1,Va,V3,Vy). I can
assign to each U,V € R* elements ¢, ¢y € H, which are given by

(573) qU:U11+U2i+U3j—|—U4k: < U1+ZU2 U3+’LU4>

—Us+1Uy Up — Uy

Vi +Va V3+ZV4>

qy = Vi1 + Wi+ Vaj+ Vik = <—V3+ZV4 Vi — Vs

Where the quaternion matrices {1,1,j,k} are given by

N R S EE G RS

A bilinear form on H x H can be defined as follows

1 . : .
(574) lu,av) = Str (uay),  with g = (@v)"
From definition of g, gy in (573]) a straightforward calculation shows that
(575) (qu.av) =UiVi+UaVa+UsVs + UyVy =U - V.

Note that the right-hand side in (575]) is invariant under the natural action of SO(4,R) on
U,V € R%. The group SU(2) x SU(2) acts on H as follows. Let me take (g, h) € SU(2)x SU(2);
the pair (g, h) acts on each ¢ and gy as follows

(576) (g,h) qu=gquh ™ =Uy1g"h ™t + Us gTih ™' + Us gTjh™' + Uy g"kh ™!
(g,h) qv =gavh ™ =Vig"h™ + VagTin ™' + VagTjh™t + Vag"kn'.

Note that (g, h) and (—g, —h) give the same action in (576|). That is, the group (SU(2) x SU(2)) /Za
actually acts in H. A straightforward calculation shows that

_ _ 1 oy
(gavh™ ', gqvh™t) = 5tr(g(awai)g .

Since the trace is invariant under a similarity transformation, then the following equality is
fulfilled

(577) (gavh "t gqvh™) = (qu,qv) =U -V .

Equality (577)) suggests that the natural action of SO(4,R) on U,V € R* can be realized from
the action of SU(2) x SU(2)/Zz on H.

Let me take Z, W € C*, Z = (Z1, Zo, 73, Z4), W = (W1, Wy, W3, Wy) and assign to each
Z,W a 2 by 2 complex matrix as follows

(578) Gz = 71 + Zoi+ Zsj+ Zuk, ie qg — ( Stz Zyt ZZ4>

—Zg + ZZ4 Zl — ZZQ

Wi+ Wy Wi+ ZW4)

qw = Wil + Wai+ Wsj+ Wsk, ie qw = <—W3 +ozg Wi =

A quadric form can be defined as follows

1 T -1 . 0 -1
(579) gz, qw) = Ftrace (gzw gy w™')  with “’:(1 0)‘

From definition of gz, qw in (578)) a straightforward calculation shows that
(580) (az,qw) = Z1Wh + ZoWa + Z3W3 + ZyWy .
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Note that the right-hand side of (580]) is invariant under the natural action of SO(4,C) on
Z,W € C* Let me take (g,h) € SL(2,C) x SL(2,C); the action of (g, h) on each gz and qu
is given as follows
(581)  (9,h)-qz =9 qzh™" = Z1g"h™" + Zog"ih T + Zyg"hT 4+ Zag kR
(9:h)-aw =g awh™ = Wig'h™ ' + Wag"ih™" + Wy g"jh™" + Wig"kn™".
Note that (—g, —h) and (g, h) give the same action in (581)). That is, the group (SL(2,C) x SL(2,C)) /Z

acts on gz, qw. A straightforward calculation shows that the following equality is fulfilled

_ _ 1 _ _
(gTazh™ ', g qwh ™) = itrace (QT (92 Wiy w 1) (g") 1)

The trace is invariant under a similarity transformation, hence

_ _ 1 _
(582) (9"azh™" g awh™") = Strace (qz wapw™") = (aw, 4z)

The equality (582)) suggests that the natural action of SO(4,C) on Z,W € C* can be realized
from the action of SL(2,C) x SL(2,C)/Zy on the matrices qz, qw -

Let me adapt the above construction to the case of the action of SL(2,C) x SL(2,C) on
C*. This action is given by

(583) Typ:C—CY W u(2) = (g <Zl) B (2'3) ) g,h € SL(2,C).

22 24

The goal is to define an action of SO(4, C) on C* coming from the action in . The key point
is to realize the action of SL(2,C) x SL(2,C) on each matrix {1,i,j,k} as in from the
action in . This can be done by considering the following coordinates «;(z),j = 1,2,3,4
which are given by

s =) (g 1) (2) e =G (p ) (2)
a3(2) = (21, 22) <_01 é) <Z) , au(z) = (21, 22) (? é) <Z> ;

The action in (583)) induces a transformation on the functions o;(z) as follows

(585)

o () = Groaa® (5 V) () 02 (F0a) = Grozang” (5 ) ()
0 (Tg(2)) = (21, 22)" <_01 é) ht (2) 0 (Fya(2)) = (a1, 22)0" <? é) = @) .

Note that in (585]) the matrices {1,1, j, k} are transformed as in equation (581)). A computation
shows that the following equality holds

a; (\if_g,_h(z)> =« (\I/gvh(z)) =rjrog(2), jk=1,...,4, rjpeC.

Now the coefficients 7, will be determined. The matrices (g,h) € SL(2,C) x SL(2,C) are
given by

g1 92 hi ho
586 - . h= .
(586) g (93 94) <h3 h4>
For a;(z) the following is obtained

o1 <‘1’g,h(2)> = 11100 + ri2ao + ri3a3 + r1404,
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where the coefficients r11, 712,713,714 are given by

1 1
(587) 1= [(g1ha — g3h3) + (gah1 — gah2)], 112 = % [(91ha — g3h3) — (gah1 — gah2)]
1 1
"3 =g [(g3h1 — g1h2) — (g2ha — gahs3)], r1a = % [(g3h1 — g1h2) + (g92h4 — gahs)] .

For ay(z) the following is obtained

g <\Ifg,h(z)> =710 + 7220 + 233 + 2404,

where the coefficients 191, 199, 123, 794 are given by

(588) rop = %[(g1h4 + g3hs) — (g2h2 + gsh1)], ro2 = %[(gﬂu + g3h3) + (g2ha + gah1))

~ 1
2 2
For a3(z) the following is obtained

ro3 = —-[(g1ha + g3h1) + (924 + gahs)], 24 = 5 [(g2ha + gahs) — (91h2 + g3h1)] .

a3 (‘I/g,h(z)) = 13101 + r320 + r3303 + 13404 ,

where the coefficients 731, 32,733, 734 are given by

1 1
(589) 131 = 3 [(g2h1 + gaho) — (g1hs + g3ha)], r32 = % [(g2h1 + gaha) + (g1hs + g3ha)]
1

1
3= g [(g1h1 + gsha) + (g2hs + gaha)], r3a = % [(g1h1 + g3h2) — (g2hs + gaha)] .
For ay(z) the following is obtained
oy (ﬁ!g,h(z)> = 14100 + r42002 + r43003 + T44004 ,

and the coefficients r41, 742, 743, 744 are given by

1
(590) 141 = 3 [(g3ha — g1h3) + (g2h1 — g1h2)], a2 = = [(g3ha — g1h3) — (9271 — gaho)]

S Rl I

1
a3 =5 [g1h1 — gsha) — (gaha — g2h3)], Taa = = [(g1h1 — gsha) + (gaha — g2h3)] .

From above calculations the action in (583)) induces a transformation on the vector a(z) € (o
as follows

(591)
11 T12 7T13 T14 041(2)
= = o1 T2 T3 To4 ao(z .
« <\I!,gy,h(z)> =« <\I/g7h(z)> = Ra(z) = rai Tas Tas Ty 043EZ§ with R € Myx4(C).
T4 rap T4z Taa) \ou(z)

Taking the explicit expressions of ry; in (587), (588), (589), (F90) and using that det(g) =
det(h) = 1, a straightforward calculation shows that the matrix R € Myx4(C) in satisfies
equality RRT = I. Hence, R belongs to SO(4,C). Moreover, the equality indicates that
the action of SO(4,C) on a(z) € C* is realized from the action of SL(2,C) x SL(2,C) on C*.

The following map can be defined from above calculations
(592) pss : SL(2,C) x SL(2,C)/Z* — SO(4,(C))
(9,h) — -pa3(—g,—h) = pas(g,h) = R,

where the matrix R is defined in equation (591)). The map p43 gives the identification of
SL(2,C) x SL(2,C)/Zy with SO(4,C). In subsequent paragraphs, I show that ps3) is a ho-
momorphism of groups.
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Let me consider the action of SU(2) x SU(2) on C* given by

(593)  Wyp:Cl—CY Tyu(z) = (g (zl> R <Z3>> . g.heSU?2) x SU(2).

Z9 zZ4

By doing a similar procedure as above calculations, the action of SO(4,R) on C* is obtained
from the action of SU(2) x SU(2) on C*. The action in (593) induces a transformation on the
functions «;(2),j =1,2,3,4 in (584)) as follows

(594)

o1 () = Groalg” (5 V) (2 o (B0n2) = Grozmna” (5 0 )0 (2)
0 (Tgn(2)) = (21, 22)9" <_01 (1)) ho! (Z) s (Tgn(2)) = (o1, 22)9" (? é) B! Ci) .

A computation shows that
(595) 0 (Vg () = a5 (Ugn(2) = Ujor(2), j.k=1,2,3,4, Uy €R.

Now the coefficients U}; will be determined. The matrices g, h in SU(2) x SU(2) are written
as

_ (M (1 e . 9 5 ) ,
g_<)\2 5\1>’ h_<72 1 ,with [A\]* +|Xe|* =1 and |y1|* + || =1.

For a;(z) the following is obtained
o (‘ifg,h(z)> =Unoar +Upaz +Uzaz +Uygoy,

where the coefficients U11,U12,U13,U14 are given by

_ _ 1 _ _
(596) Ui = 5 [(M71 +Aim) — Aoz + Aeye)], Ure = % (71 = Mim1) + (A2 — Aae)]

DN |

Uiz = —% [(Ao¥1 + Aem1) + (M2 + Mi2)], Ura = % (M2 — A172) + (Aoy1 — Aer)] -
For ap(z) the following is obtained

a2 (‘i’g,h(z)> =Uga; + Upas + Ugzas + Uy,
where the coefficients Usy, U9, Uos, Uoy are given by

1

7 _ _ _ _
(597) U2 = 3 (71— Aim) + M2z — Ae¥2)] 5 Uazz = = [(Mar2 + Ae¥2) + (v + M)

2
1 - _
5 [(r2A1 4+ Mi%2) — (Ao + o)) -

7 _ _
Uz =5 (A2 — M) 4+ (2d — M), Uss =
For as(z) the following is obtained,

as (@g7h(z)> = U31041 + U320£2 + U330é3 + U340é4 ,

and the coefficients U3y, Ugs, Uss, Ugy are given by
1, - - 1 - -
(598) Usi = —3 [(Aav1 + Xo1) + (M2 + Mi72)], Use = % (7122 = A1) + (MiF2 — Aiy2)]

1 - - 1 - _
Usz = 3 [(A2¥2 + A272) — (A1 + A1), Uss = % (A1 = A7) 4+ oz — Aa2)] -
For a4(z) the following is obtained

Qg (‘i’g,h(Z)> =Ugpar +Ugpaz +Uygszas + Uygay,
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and the coefficients Uy1, U 42, U 43, U 44 are given by

(599) U =z [(Aoy1 — Aem1) + (A2 — Aiy2)], Uz = = [(MoT1 + Aom1) + (A2 + A12)]

Ll Y

Ugz = 5 [(M71 — dim) + oz — Xo%2)] s Uaa = = [y + Mim) + (Aar2 + Aoy2)] -

N | = IS

2
The action defined in 1) induces a transformation on « = (o, ag, a3, ay) € C* as follows

Ui Ui Uiz Unpy ai(z)

- - o _ | U2 Uz Uz Uz | | a2(2)

(600)  « (\ijg’*h(z)> @ <\Pg’h<z)> =U-alz) = Usi Usx Uss Usa | | as(z)
Un Ugp Uz Uy ay(z)

Note that all the entries of matrix U in are real numbers. Taking the explicit expression of
Ujr,j,k=1,...,4in m[), (]m, m, (]@[), a straightforward long calculation shows that
UTU =1. Hence, an element U € O(4,R) can be associated to each g, h € SU(2) x SU(2).
The group SU(2) x SU(2) is connected. The connected component of O(4,R) is SO(4,R), so
the matrix U is actually an element in SO(4,R). From above calculations the following map
can be defined

(601) Pz SU(2) x SU(2)/Zy — SO(4,R),  pyz(—g,—h) = ps3(g.h) = U,
where the matrix U is defined in . The map p, 3 gives the identification SU(2) x SU(2)/Zs
with SO(4,R).

On the other hand, taking the explicit expressions of oj(2),j = 1,2, 3,4 in (584)) a straight-
forward calculation shows that the following equality holds

A2(2)+a2(z) +a2(z)+al(z) =0, iea(z)eQs VzeCt
Thus from equalities in (584))) the following map can be defined
(602) pas) s C— Qs pus)(2) = (a1(2), a2(2), a3(2), au(2)) = @,

where the functions a;(2),j = 1,2,3,4 are given by

a1(2) = (2123 + 2224), 2(2) = 1(z123 — 2224)
(603) as(z) = (2124 — 2223), au(z) =1(z124 + 2223) .

It follows from equalities (591)) and that the map p(4 3y intertwines the actions of SL(2, C) x
SL(2,C) and SU(2) x SU(2) on C* with the actions of SO(4,C) and SO(4,R) on Q3 respec-
tively. That is,

P13 (Tgn(z)) =R-a, (g,h) € SL(2,C) x SL(2,C), R € SO(4,C)
P13 (Ygn(2)) =U - a, (g,h) € SUQ2) x SU2), U e SO4,R).

The equalities , indicate that the null quadric ()3 is the space where the natural
actions of SL(2,C) x SL(2,C)/Zs = SO(4,C) and SU(2) x SU(2)/Zo = SO(4,R) can be
realized from the actions in and respectively.

Now I will show that the map ps3 : SL(2,C) x SL(2,C)/Z* — SO(4,(C)) is a ho-
momorphism of groups. The identity element in SL(2,C) is denoted as I = e. Consider a
curve y(t) = (g(t),h(t)) € SL(2,C) x SL(2,C) such that v(0) = (g(0),h(0)) = (e,e) and

4(0) = <g(0),h(0)> € s51(2,C) x sl(2,C). That is,

oy — g (91(0) 2000\ _ - 0) —
o) = (200 2O~ 510+ () =0
(604) tr h(0) = tr <Z;E8§ Zig) = 11(0) + hg(0) = 0.
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Let me consider the following map

d .
T(e,e)ﬁ4,3 : 5[(27 (C)XE[(Q, C)u — 50(4’ C) given by &‘t70ﬁ4,3(g(t)7 h’(t)) - 7 R(t) = R(O)
I will show that T, c)pa,3 is an isomorphism of Lie algebras.

If the matrix R(0) belongs to so(4,C), then the matrix R(0) is skew-symmetric. That is,
7j5(0) = —7;(0), and the diagonal elements satisfy r;;(0) =0 for j,k =1,...,4.

The expressions for 711, ra, 733,744 in (587), (638)), (589) (F90) are given by

(605) = % [(g1(D)ha(t) — g3(t)hs(t)) + (ga(t)ha(t) — g2(t)ha(t))]
r22 = %[(91 (H)ha(t) + g3(t)h3(t)) + (g2(£)ha(t) + ga(t)ha (1))]
r33 = %[(91 (H)h1(t) + g3(t)ha(t)) + (g2(t)hs(t) + ga(t)ha(t))]
rag = % [(91()ha(t) — g3(t)ha(t)) + (ga(t)ha(t) — g2(t)hs(t))] -

The derivative at t = 0 is calculated in equation ((605)). The following is obtained
1 .
7;(0) = 5[mfg(O) +trh(0)] =0, forj=1,...,4.

Consider elements out of the diagonal, for instance

ra(t) = %[(92(t)h4(t)+94(t)h3(t)) — (g1 ()ha(t) + gs(t)ha ()]

rag(t) = %[(93@)}14('5) — g1(t)hs(t)) — (g2(t)ha(t) — ga(t)ha(t))] -

The derivative at ¢t = 0 is calculated for ro4(t), r42(¢). The following is obtained

. L . ; ; .
724(0) = 5[(92(0) +13(0)) — (h2(0) + §3(0))]
i Lo . ; ; .
r42(0) = 5[(93(0) +h2(0)) — (h3(0) + g2(0))] -
Clearly 794(0) = —742(0). For the rest of elements out of diagonal, take their explicit expression

in (587)), (588]), (589)), (590) and calculate the derivative at ¢ = 0. The following equality holds
7iu(0) = —73;(0), for j,k=1,...,4.
Therefore, R(0) belongs to so(4, C).
The kernel of map T .)p4,3 is defined as follows,

Ker T(. ¢)p13 = {(§(0),h(0)) € sl(2,C) x s1(2,C)| R(0) =0}

Equation R(O) = 0 means that elements out of the diagonal must be equal to zero. That is

(606) #12(0) = [(§1(0) + 24a(0) ) — (94(0) + h1(0))] =0
714(0) = [(g3(0) — 72(0) ) + (92(0) — h3(0))] =0
724(0) = [(§2(0) + h3(0) ) — (43(0) + h2(0))] =0
713(0) = [(93(0) = h2(0)) — (2(0) — h3(0) )] = 0
723(0) = [(h2(0) + §3(0) ) — (42(0) + h3(0))] = 0
731(0) = [(1(0) + 711(0) ) — (94(0) + ha(0) )] = 0.

The equations in must hold simultaneously. Consider the following equations
713(0) + 723(0) = §3(0) + h3(0) =0
(607) 714(0) — 724(0) = g3(0) — h3(0) =0.
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713(0) — 723(0) = §2(0) + h2(0) =0
(608) 714(0) +724(0) = §2(0) — h2(0) =0
The systems in (607)) and (608]) can be written in matrix form as follows

) () )= @) G4 (E6) - 6)

Since the matrix of the system in has determinant different than zero, then the only
solution of these systems is given by

93(0)\ _ (0 92(0)\ _ (0
(o) = (o) = ()= (6)
Now the following equations are considered

712(0) +734(0) = 91(0) — 94(0) = 0 along with §1(0) + g4(0) =0

712(0) — 734(0) = hg(0) — h1(0) =0 along with Ay (0) 4 ha(0) = 0.

These equations can be written in matrix form as follows

o1 (2 Ge) -0 G4 G- @)

Since the determinant of the matrix in (610]) is different than zero, then the only solution of
these systems is the trivial solution. That is,

(o) = (o) = (o) = ()
The above computations show that Ker T(, c)p(4,3) is only the matrix 0 € sl(2,C). Therefore
the map

Tie,e)P(a,3) * 51(4,C) x 51(4,C) — s50(4,C)
is an isomorphism of Lie algebras. Since SL(2,C) x SL(2,C) is simply connected, then it

follows from theorem 3.7 in [21] that p43 is the unique homomorphism relating T ¢)f(4,3)
and p4 3 in the following way

(611) P4 3)(eh(0),eg(0)) — oTle.e)Pa,) (1(0),4(0)

The equation (611]) implies that Kerp, 3) is a discrete normal subgroup of SL(2,C) x SL(2,C),
but a discrete normal subgroup of a connected group is automatically central, and the center
of SL(2,C) x SL(2,C) is {I, =I}. Thus, Kerp(y 3y = {I, —1}.

The map p4,3) is bijective. It follows from the fact that SO(4,C) is a connected group and
each element R € SO(4,C) can be written as

R=¢e"e". . "™, withrjeso4,C), j=1,...,N.
Since T ¢)f(a,3) is surjective, then R € SO(4,C) can be written as
R= eT(e,e>ﬁ(4,3>(91(0)7hl(0)) eLle,e)P(4,3)(92 (0),h2(0)) o ellee)Pia) (9n5(0),in (0)) )
Hence p4,3 maps onto SO(4,C).

It can be proved that p, 5 : SU(2) x SU(2)/Zy — SO(4,R) is a homomorphism of groups
by doing a similar procedure as in the case of ps 3 : SL(2,C) x SL(2,C)/Z? — SO(4, (C)).

In the next paragraphs, I will construct the action of SO(6,C) on C® from the action of
SL(4,C) on C8.
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The exterior product /\2 C* is a six-complex dimensional space. Elements of /\2 C* are
written as x Ay with © = (21,23, 25,27), y = (22, 24, 26, 23). Consider the standard basis
{e1,e2,e3,e4} of C* so that an element z A y can be written in coordinates as follows
(612) x Ay = (2124 — 2223)e1 N ea + (2126 — 2225)e1 A eg + (2128 — z227)e1 A ea+

(2326 — Z42’5)62 Nes+ (2’32’8 — Z4Z7)62 Neq+ (Z5Zg — Z6Z7)€3 Ney.

Consider z,y,u,v € C* and z Ay, u Av € /\2 C*. A bilinear form in /\2 C* can be defined as
follows

2 2
() + ANC'x Ac*—cC
(613) : ((@Ay),(vAw) — Ay, v Aw) =z AyAvAw.
The vectors u,v € C* are given by
(614) U = wiel + wies + wsez + wreq, V= woel + Waes + Weez + weey .
The term z Ay A v A w in coordinates is given by
rTAyANuAv=(z,y,u,v)e; Nea Aeg ey,

where (z,y,u,v) is a homogeneous function given by

(2,9, u,v) = 2[(2122 — 2223) (wsws — wewr) — (2126 — 2226) (Waws — wauz)+
(2326 - Z4Z5)(1U1’wg — w2w7)] .

The bilinear form defined in (613) is non-degenerate. Let me consider the canonical basis
{e1,e2,e3,e4} and calculate the following
(615) (e1 Neg,es Neq) =1, (e1 Nes,ea ANeg) = —1,(e1 Neg,ea Neg) = 1.
The equalities in (615 imply that for all v A w the bilinear form in (613]) is equal to zero if
only if x Ay = 0. That is, z = Ay, with A € C*.

If {i,7} N{k,1} # 0, then the following equation holds (e; A e;, e; A €;) = 0. This equation

implies that an orthogonal basis can be taken in /\2 C* regarding the bilinear form defined in
(613). This orthogonal basis is given by

(616) v = \2 [(e1 Nea) + (es Aes)], 2= % [(e1 Aes) — (e2 Aeg)]
v3 = \}5 [(61 Aes) + (e2 A 64)], Y4 = % [(61 Nes) — (e2 A 64)]
v5 = \}5 [(61 Neg)+ (e2 A 63)], Y6 = % [(61 Aeg) — (es A 64)].

The set {71, v2,73,74,75, 76} satisfies the following equalities

(71.2,7,2) = £1, (13,4, 734) = F1, (15,6, 75.6) = £1.
Regarding the basis {v1,v2,v3, 74,75, 76}, the term = A y can be written as follows

(617) x/\y:%[vlfl(z)%—...—kq/@;fg(z)] )

where the functions f;(z),j =1,...,6 are given by

f1(2) = [(z124 — 2223) + (2528 — 2627)],  f2(2) = [(2128 — 2227) — (2326 — 2425)]

f3(2) = [(2126 — 2225) + (2328 — 2a27)],  fa(2) = [(2126 — 2225) — (2328 — 2427)]

f5(2) = [(z128 — 2227) + (2326 — 2425)],  fe(z) = [(2124 — 2223) — (2528 — 2627)] -
(618)
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The term © A v can be written as follows

(619) vAw= =l + . e(w)].

where the functios g;(u),j =1,...,6 are given by

(620)
g1(w) = [(wiws — wows) + (wsws — wewr)],  g2(2) = [(w1ws — wawr) — (W3we — wWaws )]
93(2) = [(w1we — wows) + (wzws — wawr)], ga(2) = [(Wi1we — waws) — (wWaws — wawr)]
95(2) = [(wiws — wawr) + (wswg — waws)], ge(z) = [(wiws — wows) — (wsws — wewr)].

I can associate to each x Ay € /\2 C* a vector a = (aq,...,ag) € C5 where the components

aj,j=1,2,...,6 are given by

(621) (

a1(2) = fi(z), a2 =1fa(2), asz(z) =1f3(2)
as(2) = fa(z), as= fs5(2), ae(z) =1f6(2).
)

The vector B = (B1,...,8s) € C° is associated to u A v € AC?* where the components
Bj,j=1,...,6 are given by

(622) Bi(u) = g1(w), B2(u) =1g92(w), Bs(u) =1g93(w)
Ba(u) = ga(w), Bs(u) = gs(w), Po(u) = 1gs(w).
Taking 8 = (B1,...,836) € C® and a = (a1,...,aq) € C% as in , a straightforward

computation shows that the following equality holds

B1
(623) (x,y,u,v) = (a1,...,06)L | ¢ | withI the identity inMgxs(C).

Be
The action of SL(4,C) on A% C* is defined as follows

2 2
(624) U, AC'— ACY, Wp(@Ay)=haAhy, heSL4,C).
Lemma 15. The bilinear form defined by
2 2
() + ANC'x Ac*—c
(z Ay, vAw) — (T Ay, vAw) =z AyAvAw,
1s tnvariant under the action defined in .

Proof. A straightforward computation shows

(hx A hy,hv AN hw) = hx A hy A hv A hw
(hx A hy,hv AN hw) = det(h)(z Ay AvAw)
(hx Nhy,hv Nhw) = zAyAvAw.

O

The action in (624]) induces a transformation on the vectors o, 3 € C8. Take x,y,u,v € C*
and h € SL(4,C). Consider 2/ Ay',u' A v in /\2 C* with 2/ = ha,y = hy, v = hu,v' = hv,
which can be written as

1
g Ny = = [nfi(z) e fa(2) F s f5(2) +vafi(2) + s f5(2) + 6 fe(2)]

S-S

(191 (W) + Y295 (w) + Y3g5(w) 4+ vags(w) + 595(w) + Y6g6(w)] -
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From equation (621)) the vector o = (o), o, o4, o), af, af) is associated to ' Ay, and from
equation (622) the vector 5" = (81, 85, 85, B, B, B, B;) is associated to u' Av'. It follows from
equality (623]) and lemma |15 that the following equality holds
(625)
51 B
|l =(aa,...,a6)l | ¢ | withI the identity inMgxg(C).
Bs Bs
Equality (625]) implies that o/, 8’ € C® can be written as o/ = R-a(z) and 8 = R- B(w) with
R an element in SO(6,C).

An action of SU(4) on A% C* can be defined as follows

(@ u/ ) = (o, ..., o)l

2 2
(626) Ua: NCH— ACY Ta(zny) =AznAy, AcSUM4).

The bilinear form in (613) is invariant under the action of SU(4) in (626)). This can be proved
by doing the same procedure of the proof of lemma [15|.
(627) (Az N Ay, Au N Av) = (z,y,u,v), AecSU4).

The action of SU(4) on /\2 C* defined in (626) induces a transformation on the vectors a, 8 €
CS. That is, consider z,y,u,v € C* and let & = Az, § = Ay, 4 = Au,? = Av with A € SU(4).

The vectors £ Ay and 4 AU are associated to & = (&, ..., &g) and B = (Bl, ... ,ﬁ~6) respectively.
It follows from equality (627]) that

By B
(628) ((f), Y, U, TN)) = (541, e d@)]l . = (051, - 7046)H with T the identity inMﬁxﬁ(C) .

Be Bs
Equality (627) implies that &, 3 can be written as & = U - a(z) and § = U - B(w) with
U € SO(6,R). I will construct the matrices R € SO(6,C) and U € SO(6,R) in the following
paragraphs.

Let me identify C8 = C* x C* by writing z = (z,y) with 2 = (z1,23,25,27), ¥y =
(22, 24, 26, 28). A mnatural action of SL(4,C) on C8 is defined as follows

(629) Ty, :C® — C®  7Yu(2) = (ha,hy), h € SL(4,C).

A natural action of SU(4) on C8 is defined as follows

(630) Ta:C®—C8 Talz)=(Az, Ay), Ac SU4).

The functions a;(2),j =1,...,6 in can be written as follows
22

(631) a(z)j = (21, 23, 25, 27) M Z , Mj e Myxu(C), j=1,...6.
z8

The explicit form of each matrix M is given by

0 1 0 0 0 i 0 0 0 0 i 0
10 0 0 i 0 0 0 0 0 0 i
Mi=1lqg 0 0 1| M={g 00 =i|" ™M= 0 0o
0 0 —1 0 0 0 i O 0 —i 00

0 01 0 0 0 0 1 0 0 0 i

0 00 —1 0 0 1 0 0 0 —i 0
Mi=1 300 of M=o 1 00| M=o i 0 o0
0 1.0 0 -1 0 0 0 —i 0 0 0
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In the space of matrices M it can be defined a inner product as follows
1
(632) (Mj, My,) = Ztr(MijT + MpM]), and  (Mj, M) = 6l
The action in (629)) induces a transformation on the function «;(z) as follows
22
z .
(633) o) = a; (Y_p(2)) = a; (Th(2)) = (21, 23, 25, 27) W M;h Z‘ﬁ* . j=1,...,6.

28

Since the matrix b M jh is antisymmetric, then it can be written in terms of the matrices M;.
Namely,

(634) W' M;h = RjpMy,, with R;, €C, jk=1,...6.
Equation in (633]) can be written as follows

z2
Z.
aj (Th(z)) = Rjr(21,23, 25, 27) My zg
28
of = Rjop(z), jk=1,...,6.

The matrix h € SL(4,C) is given by

hir hi2 hiz hig
hor  hoa  haz  hog
hs1 hsa hsz hag
har haz haz hag

h =

Let me now compute the coefficients R in 1D The matrix A7 Mih can be written as

hi1 ho1 h31 ha hor  haa  hag  hoy
hia hay h3a hgs —hi1 —hi2 —hiz —hu
hiz hes h3z has hyr  hag hag hy
hi4 hoy h3s haa) \—h3z1r —hsa —h3z —hs

The coefficients Ri1, Ri2, R13, R14, R15, R1g are given by

hTMlh: =RuMi+...+ RigMg.

1
(635) Ry = 3 [(h11ho2 — hi2ho1 + h31hag — haithag) + (hishos — hiahos + hazhas — haahas)]

Rig = 2% [(h11h2g — hi2ho1 + h31has — harhs2) — (hishoa — hishas + hashas — hashas)]
Ri3 = % [(h11hag — hisho1 + h3ihag — harhss) + (hi2haa — hishaa + haohas — haghss)]
Ry = % [(h11h2s — hizho1 + ha1has — haihss) — (hi2has — hishoa + haohas — hashsa)]
Ry5 = % [(h11h24 — ho1hi4 + harhas — haghar) + (hi2hoz — hazhiz + haahas — haohss)]

1
Rig = % [((h11h2a — ha1hia + hsihas — hgahar) — (hi2hog — haohig + hgohaz — haohss)] .

The matrix AT Myh can be written as

hi1 ho1 hs1t ha hor  hss  haz  hoy
hia hos hza hgo —h11 —hia —hiz —hi
hi3  haz hsz has —h41 —hgs —hy3 —hag
his hos h3g hag h3r  hs2  h3z  h3g

KT Myh =1 = Ry M + ...+ RgMoyg .
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The coefficients Ra1, Roo, Ra3, Ro4, Ras, Rog are given by

(636) Ro1 = % [(h11hoa — ho1hia — hathas 4 hathas) + (h1zhos — highos — hazhay + hazhas)]
Rgy = % [(h11h2a — ho1hi2 — h3ihag + harhs2) — (hishas — hishos — hashas + hazhsa)]
Ro3 = % [(h11h23 — hisha1 — hagha1 + haihss) + (hi2haa — hishaz — haghas + hashaa)]
Roy = % [(h11h2s — hisha1 — haghsr + haihss) — (hi2has — hishoa — haohas + hashyo)]
Rgs = % [(h11h24 — h1ahor — haahs1 + haihas) + (haghi2 — hishae — hashsa + h3zhao)]
Ros = % [(h11h2a — hisho1r — haahs1 + harhga) — (hashi2 — highaa — hazhsa + haghag)] -

The matrix AT M3h can be written as

hi1 ho1 h31 hag hsr  hsz  h3z  h3
hia hay h3a has har  hae hag hag
hi3  haz hsz has —hi1 —hi2 —hiz —hu
his hos hza has —ho1 —hoy —haz —h

hTMgh:Z = R31My + ...+ RgsMg .

The coefficients Rs1, R3o, R33, R34, R35, R3g are given by

(637) R31 = % [(h11h32 + ha1haa — hioh31 — haghar) + (h13hsa + hozhas — h1shgs — haghys)]
R3o = % [(h11hsg + horhaz — hi2hsy — haoha1) — (hashaa + hoshaa — hiahss — hoshys)]
R33 = % [(h11h33 + ha1has — hishsr — hasha1) + (hsahia + hoohaa — hiahsa — hoshyo)]
R3y = % [(h11h3s + ho1hag — hizhai — hosha1) — (h3ahia + hoshas — hiahsa — haahao))
Rgs = % [(h11h34 + ho1haa — h1gh31 + harhag) + (h12hsz + hashaz — haahiz — haohas)]
R3¢ = ! [(h11h34 + ho1hag — highg1 + harhoa) — (hi2hss + hoohas — hgahiz — hahas)] .

2

The matrix AT Myh can be written as

hi1 hor h3t ha h3g1  hs2  hsz  h3
hi2  hoo h3a has —hg1 —hao —haz —has
his hoz hsz hgs —h11 —hi2 —hiz —his
hia hos hss hag hao1  hoa  hog  hoy

T Myh = = RyuMj + ...+ RysMs .

The coefficients Ry1, R4, R43, R44, R45, R46 are given by

(638) Ra1 = % [(h11hsa — horhaz — ha1hig + harho2) + (hishsa — hoshas — hazhia + haghag)]
Ryp = 2% [(h11h32 — ha1haz — harhia + hathaa) — (h1zhsa — hozhaa — hazhig + haghag)]
Ry3 = % [(h11h3g — ho1haz — h31hiz + haihas) + (hi2has — haohas — haohia + haghoy)]
Ry = % [(h11hss — horhas — h3ihig + haihas) — (hi2has — hoohaa — haohis + hashos)]
Rys = % [(h11h34 — ho1hag — harhig + harhag) + (hszhi2 — hazhoz — hi3hsa + haohas)]
Ry = L [(h11h3s — h21hag — h31his + harhas) — (hazhiz — haghaa — hizhsa + haghas)] .

[\~

1
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The matrix AT Msh can be written as

hi1 h21 hs1 ha har  has  hgz  hy
hia hay h3a has hsr  hs2  hsz  ha
hi3 haz hsz has —hia —hoy —haz —hao
his hos h3s has —hi1 —hia —h31 —hu

The coefficients Rs1, R52, R53, R54, Rs5, Rs56 are given by

hTM5h: =Rs1Mi +...+ Re1 Mg .

1
(639) Rs = 3 [(h11ha2 + ho1hsa — hathoa — hizhar) + (hishas + hsahos — hoghss — hiahas)]

1
Rso = % [(h11ha2 + ha1hsa — haihoe — hizhar) — (hishaa + hsahos — hoshss — hiahag)]

1
Rss = 3 [(h11haa + ho1hsa — hathog — haithia) + (hi2has + hoohss — haohas — hizhag)]

1
Rs6 = % [(h11haa + ho1hss — h31hog — harhia) — (highas + hoohss — hsahasz — hizhaz)] .

The matrix h” Mgh can be written as

hi1 ho1 hs1 ha hat hao haz  has
hia hoa h3a  hao —h31 —h3a —h3z —h3a
hiz hog h3z has ha1 haa  hoz  hos
hia hos hss has —hi1 —hia —hiz —his

The coeflicients Rﬁl, RGQ, R63, R64, R65, R66 are given by

KT Mgh =1 = Re1 M + ...+ RegMs .

(640) Re1 = % [(h11ha2 — ha1hg2 + haoha1 — highar) + (hizhaa — hazhssa + hazhay — haghis)]
Rgo = % [(h11hag — ho1hsa + hoghsr — hi2ha1) — (hishas — hashsa + haszhos — hazhia)]
Re3 = % [(h11haz — ho1h3s + haihes — hathia) + (hi2hasa — hoshsa + haahog — haohis)]
Rgq = % [(h11ha3 — ho1hss + h31hag — harhia) — (hi2has — haohsa + hazhog — haghia)]
Rgs = % [(h11haa — ho1hsza + harhay — highar) + (hi2haz — hazhss + haahos — hizha)]
Ree = ! [(h11has — h21h3a + h3ihog — hishar) — (hi2has — haghss + haahos — hizhag)] -

2
The action in (629) induces a transformation on the vector a(z) = (a1(2),...,as(2)) € C8 as
follows

R1 1 ceeeen R16 (03] (Z)

(641) o =a(Tp(z)) =R-a(z)= | : : :
R61 ...... R66 046(2)

Taking the explicit expression of Rj;,j,k = 1,...,6in (635), (636), (637)), (638]), (639), (640) a
straightforward long calculations show that the matrix R in (641)) satisfies equality RT R = L.
Hence, a matrix R € O(6,C) can be associated to each h € SL(4,C). The group SL(4,C)
is connected, so by continuity the matrix R is actually an element of SO(6,C). Besides, the
equality (641)) indicates that the action of SO(6,C) on C is realized from the action of SL(4,C)
on C®. From above calculations the following map can be defined

(642) ;58,5 : SL(4, (C)/ZQ — 50(6, (C) s ﬁ&g,(—h) = ﬁ875(h) = R,

where the matrix R is defined in (641). The map pg 5 gives the identification of SL(4,C)/Z
with S(6,C). I show in a later on paragraph that the map pg 5 is a homomorphism of groups.

Consider the action of SU(4) on C® given by
(643) Ta:C8—C8 7Tu(z) = (Az, Ay), Ac SU(4).
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The action of SO(6,R) on C° can be constructed by doing a similar procedure as in the previous
case. The action in (643) induces a transformation on «;(z),j =1,...,6 as follows

22
24
26
z8

(644) aj = o (T_A(z)) = (TA(Z)) = (21,23, 25, 21) AT M; A

Since the matrix ATM;A is antisymmetric, then it can be written in terms of the matrices
M;,j=1,...,6. Namely,

(645) ATMA=UjMy, jk=1,...,6, Uj€R.
Equation in (644)) can be written as
a; <TA(2)) = Ujrar(z), jk=1,...,6.
The matrix A € SU(4) can be written as
—p 5 0y
_ o B v O
A= 0 =y p o[
-y 0 40 —n

where 0, , u € C satisfy [0]2 + |y]? + |p/> = 1.
Let me now compute the coefficients Uy, in l) The matrix AT M; A can be written as

- 0 0 -5 N 0
0 o —~ —0 —
ATMlA: " " Q 'U: Q Y =U My +...+UgMg.
0 v w 0 -y 0 & —n
vy 0 4§ -—nk 0 5 —p =9
The coefficients U1, U1s, Ui, U14, Urs, Urg are given by
1 _ _
(646) U = 3 [72‘1‘724‘2(‘#‘2‘*“5’2)] ) Uiz = % (v —7%)
1 _ _ o _
Urs = o [(Gu =) + (A =), Ura = 3 [(vi + ) + (0 + )]
1 . = = ~ _
U15 = 5 [(’75+’)’5) — (754—’75)] s U16 = % [(75 —’75) — (’75 — ’)’5)] .

The matrix AT M5 A can be written as

—p 0 0 -5 Wl vy 0

o g -y 0 w —w0 0 —2
T _ i -y 0 1 -y
ATMzA = 0 v wu o w0 =8 i

v 0 & —n 0 —uvy w20

= Aoy My + ... tAyMs.

The coefficients Usa1, Uss, Uss, Uay, Uss, Usg are given by

(647) Uz = % (=7, Un=5[(*+7%) —2(uf+10)]

Uns = 3 (v +78) + Gt vi)] . Usa = 3 [(3 — 310) + (3 712

Ups = % (46 — 70) + (36 —10)], Uss = =3 [(76 +30) + (36 +9)] -
The matrix AT M3A can be written as
5 0

—5 0 —vy w26
0 —y 0 10—l
5 _
—H

=
=2l

ATMgA = = A1 My + ...+ AseMg .

w =6 0 —uy
-0 —ip —1y 0

2 O o
O =2 T
o=



A. Construction of the Map p(y m) 151

The coefficients Usy, Uss, Uss, Usy, Uss, Usg are given by

(648) %F%WVVWHﬂ W), Usz = § (7 +7E) + (37 + )
Uss = 5 [2 (61 + b?) — (12 + )] Vs = 3 (1% — 12)
%y:%mﬁ—ﬂ®+QM u8)], Uss = —3% [(ud + 6) + (6 + u6)] .

The matrix ATMA can be written as

- 0 0 -5 0 =y w 9o
[ ¥y 0 y 0 =0 [
ATM4A: 0 1 v < v < H =UpM+ ...+ UsgMg .
0 ~v wu 0 p =0 0 —v
y 06 -/ \o p ~v O

The coefficients Uyy, Uys, Uss, Usg, Uss, Usg are given by

(649) Ui = 3 [+ + (o4 3], Ui = & (03 — i) + (o — 78]
Uss = % (6 = ?), Usa=—35 [(1n* +7%) + 2 (10 + |ul?)]
Uy = % [(16 + fi6) — (ud + 1i6)] . Use = 2 [(16 — p) + (d — pé)] -

- 6 0 =4\ (-7 0 & —p[
6 o - 0 0 -5 0
T _ u 0 J YoM _
A" MzA = 0 ~ u 5 5 @ -y 0 UsiMy + ...+ Use Mg
vy 0 & —p@ poo—o 0 —v

The coefficients Usy, Usa, Uss, Usq, Uss, Usg are given by

(650) Um—%[(’véﬂ@ (¥ +19)], Use = 5 [(v6 —59) + (30 —79)]
Uss = o [(15— ) + (35 — )], Usa =} [(5 + ) — (1 + 19)]
Uss =5 [+ @) 42 (P + 1P, U=k (8- 8).

—p 6 0 -5 -y 0 W0 i
T o0 g -y 0 0 vy =y —1d
A" MgA = < _ =UgiMy+ ...+ UgMg .
0 v u 6 Wy 0
v 0 & —n w —w 0 —wy

The coefficients Ug1, Ugsa, Ugs, Usa, Ugs, Uge are given by
(%6 =~8) + (67— 67)],  Us2 =3 [(¥6 +76) + (67 + 67)]

[(16 + pd) + (u6 + fd)],  Usa = % [(a0 — p8) + (a6 — pd)]
(0° =), Uss = 5 [2(Inf + 1) = (5 + )] -
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Note that all entries Ujk,j,k = 1,...6 are real numbers. The action of SU(4) induces a
transformation on the vector o € C8 as follows

Ui Uip Uiz Uwis Uis Uss E i

3 Usi Uz Usz Uy Uszs Usg as(2)

(651) =a(YTa(z)=U a(z)= U1 Usx Uss Uss Uss Usg )
(2)

jo))

Unn Uy Uiz Uss Uss Uge
Usi Usz Uss Usy Uss Uss

Taking the explicit expressions of Uji,j,k = 1,...,6 in (646, (]6T7[), (]@[), (]@D, (]m[) a
straightforward long calculation shows that UTU = I. Hence, a matrix U € O(6,R) can be
associated to each A € SU(4). The group SU(4) is connected, so by continuity the matrix U
is actually an element in SO(6,R). The equality indicates that the action of SO(6,R)
on C® can be realized from the action of SU(4) on C¥ in . From above calculations the
following map can be defined

(652) pgs: SU(4)/Zy — SO(6,R),  pgs(—h) =pgs(h) =U,

where the matrix U is defined in (651). The map pg 5 gives the identification of SU(4)/Zz with
SO(6,R).

On the other hand, taking the expression of oj(z),j = 1,...,6 given in (621) a straightfor-
ward calculation shows that

o1 (2)2 4 a2(2)? 4 a3(2)? + a4(2)? + a5(2)? + ag(2)? = 0, ie, a € Qs, Yz € C8.
Hence, the following map can be defined

P(s,5) - Cc® — Qs, p(8,5)(2) = (a1(2), a2(2), a3(2), aa(z), a5(2), a6(2)) = «,

where the functions «;(2),j =1,...,6 are given by

a1(2) = [(z124 — 2223) + (2528 — 2627)], «@2(2) =1 [(z128 — 2227) — (2326 — 2425)]
as(z) = 1[(z126 — 2225) + (2328 — z427)], au(z) = [(z126 — 2225) — (2328 — 2427)]
)+

as(z) = [(z128 — 2227 (2326 — 2425)], (2) =1[(2124 — 2223) — (2528 — 2627)] -

It follows from equalities (641), (651) that p(s 5) intertwines the actions of SL(4,C) and SU(4)
on C? with the actions of SO(6,C) and SO(6,R) on Q5 respectively. That is

pie5) (Th(z) = R-a(z), he SL4,C), Re SO(6,C)
p(&g,)(YA(Z)) =U-a(z), AeSU4), Ue SO(6,R).

In the equalities 1) 1 a(z) € Q5 which suggests that the null quadric Qs is the space
where the natural actions of SL(4,C)/Zy = SO(6,C) and SU(4)/Zy = SO(6,R) can be realized

from the actions in (629)), (643) respectively.

The following calculations give the proof that pgs) : Ms — Qs is injective. Namely, if
equality holds pgs5)(w) = pgs)(2) = «, then equality w = ®,.(2) is fulfilled. Hence, each
o € Q5 can be identified with an orbit ®,.(2) € M,/SL(2,C). Since a € Qs, then some a;(2)
is different than zero. The following analysis can be done for any «; # 0. Let me consider the
case a; # 0. That is, either (2124 — 2223) or (2528 — 2627) is different than zero. Let me consider
the case (2124 — 2223) # 0 and (2528 — z627) = 0. This implies that if zs5, z are different than
zero, then z7 = Azs, 28 = Azg; another possibility is z5 = 0,27 = 0. Let me analyze the first
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case. The functions a;(z),j =1,...6 can be written as follows

B 21 23 _ Z1 Azs _ 23 25
(653) ai(z) = det (Z2 24)  a(z) =2 {det (ZQ )\z(;) det <Z4 26>}
B z 25\ 23 Azs . Z2  z5\ 23 Azs
{2 ) sz ) rmae(s ) a3 2
a5(2) = det (Zl AZ5>+det (’““3 zf”), tg(2) = tdet <Zl Z3>~
z9  Azg 24 26 72 %4

The expression of aj(w),j = 1,...6 can be written as in (653) but in terms of the variable
w = (wy,ws, w3, Wy, Ws, We, W7, wg) With wy = Aws, ws = Awg. The equality a(z) = a(w) is
fulfilled component by component, so a;(z) = ag(w) implies that

det <Z1 23> = det (w1 w3> .
29 z4 w2 W4
Since ay # 0, then the above equality can be written as follows
-1
(654) det (“” w3> det <zl Z3> = 1.
W W4 Z92  Z4

Now using that the determinant of a product of matrices is the product of its determinants,
equality (654]) implies that there is g1 € SL(2,C) such that the following equality holds

oo ()= )@ D) e () (@) ()0 ()
2 W4 921 g22 22 Z4 w2 29 Wy 24
—_———
g1

Combining ag and a4 as a4 — 13 and using equalities in (655)), the following can be obtained
(656)

z Z. z w .
det = [( 1> , < 5)] = det [91 ( 1) , ( 5)] s i.e, z2126—2225 = (g1121+91222)we—(g2121+92222) W -
2 Z6 %) We

Combining ae and a5 as as + 1y and using equalities in (655)), the following can be obtained
(657)

z z z w )

det = [( 3) ; < 5)] = det {91 < 3) , ( 5)] , b6 z326—2425 = (G1123+01224)We—(g2123+92224) W5 .
24 26 24 We

Equalities in (656)), (656) can be written in matrix form as follows

(658) ()= (o o) ()

with A1 = 2126 — 2225, Ao = 2326 — 2425,a1 = g1121 + g1222,02 = g2121 + g2222,b1 = g1123 +
91224, b2 = g2123 + g2224. The determinant of the matrix in (658)) is given by 2124 — 2923 which
is different than zero. Hence, taking the inverse of this matrix a calculation shows that

(i) =0 (2):

It follows from equalities z7 = Azs, 28 = Azg and wy = Az5, wg = Awg that
Aws\ Az5 . wr\ 27
<A’w6> - ()\Z@) y 2€ <w8 -9 z8 '

Therefore the following is fulfilled
(659) a(z) = a(w) € Qs = w = By, (2), g1 € SL(2,C).
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Let me analyze the second case, that is, z52z8 — 2627 = 0 with z5 = 27 = 0. In this case the
coordinates «;(2),j = 2,3,4,5 are given by

@2(2)=z{det<zl 0)—det<z3 0)}, a3(2):z{det<zl 0>+det(23 0)}
22 Z8 24 Z6 20 26 2 2

(660) 044:det<z1 0>—det<z3 0), a5(z)=det(z1 0>+det(z3 0).
22 Z6 24 28 29 28 24 2

The functions «oj(w),j = 2,3,4,5 can be written as in but in terms of the variable
w = (wy, wa, ws, wy, 0, ws, 0, ws). From the combinations ay — 13, as + 12 and equalities in
(655)), the following can be obtained

[ (O] =l () ()] s [(2)- ()= () (2]

The above equalities can be written as follows
(661) z126 = (91121 + g1222)we, 2326 = (G123 + G1224)we -

Equalities in (661]) impose a condition in the entry gij2. The first equality is multiplied by z3
and the second is multiplied by z1, and the difference of these equalities is taken

weg12 (Z124 — 2223) =0 = wegi12 = 0.

From the combinations —iag — a4 and a5 — 1ag, equalities in (655) and following an analogous
procedure as before, the following equalities can be obtained

2128 = (1121 + giez2)ws, 2328 = (g1123 + g1224)wg, wggi2 (2124 — 2223) =0 = wggi2 =0.

The non-trivial cases is wg # 0 and wg # 0, which impose g12 = 0 in this case. From the

condition detgy = 1 it follows that gos = ——. Hence, the following equality holds

g1’

wr) 21 w3\ 23 0\ 0 0y 0 . =
() =2 (2) () =0 (2) ()= (8) (0) = (2) v =t
Therefore equality in (146 is fulfilled.

Now, let me study the case that both terms 2124 — 2023 and 2523 — z¢27 are different than
zero. The functions «o(z),j =1,...,6 can be written as follows

(662) a1(z) = det LAY et (A7 , o(z) =14 det LOAT) et (B
zZ9  Z4 Z6 <8 zZ2 Z8 Z4 26
as(z) = z{det <Zl Z5> + det <Z3 Z7> , } ) ay(z) = det (Zl Z5> — det <Z3 Z7>
zZ9 26 zZ4 28 29 Z6 Z4 R8
as(z) = det AT et (BOF ag(z) =14 det B) et (P T L
Z2 Z8 Z4 26 ’ Z2 Z4 Z6 <8

The corresponding a;(w) can be written as in 1’ in terms of the variable w € C8. From the
combinations a1 — 2a¢ and aq + 1a¢ the following equalities are obtained

det <Zl 23> = det (wl w3> , det <Z5 Z7> = det <w5 w7> .
Z92  Z4 W2 W4 Z6 <8 We WS
Since aq(z) is different than zero, then the above equalities can be written as follows
-1 -1
(663) det (wl w3> det (Zl Z3> =1,  det (“’5 “’7> det <Z5 Z7> =1.
W2 W4 zZ9  Z4 We WS Z6 <8
Now using that the determinant of a product of matrices is the product of its determinants,
equalities in (663) can be written as follows

-1 —1
(664) det{(wl w3> <Z1 Z3> }zl, det{<w5 w7> <Z5 Z7> }:1.
Wy Wy 29 Z4 we Ws 26 <8
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The equalities in (664) implies that there is g, g, € SL(2,C) with
At by (a2 bo
g1 = 1 dl y 92 = o d2
such that the following equalities hold
w1 wWs ay bl Z1 Z3 ws Wy a b2 zZ5 27
(665) = ) = .
w9y W4y C1 d1 zZ9  Z4 We WS (&) dQ Z6 <8
It follows from equalities in (665)) that
wr) 21 w3\ 23 ws\ 25 wr) 27
o0 () =0 (3) () =0 (2) (%)= (2) () = (2)-

Using equations in the equalities o;(2) = aj(w),j = 2,3,4,5 can be written term by
term as follows

j[(z:) )]l () (D] 90 [(2) ()] - [ () (2
a2 ()] = fo (2) 0 ()] e [ () ()] =0 (2) 2 (2)]-

Now I will form a linear system of equations in terms of the entries of g1, go in order to show
that g1 must be equal to go. The first equality in (667)) is given by

2128 — 2227 = Q1C22127+21d221 28 +b1Coza 27 +b1dozo 28 — Cragz1 27— diagzoz7 —c1baz 1 28 —dibazo 2g
which can be written as follows
A12128 + Aozoz7 + A3z127 + Agzozs =0,
where the variables \;, 7 = 1,2,3,4 are given by
A =aido —c1by — 1, Ay =bico —dias+1, A3 =aica — cias, Ay = bidy — dq1bs.

The following system can be formed using the other equality in ([667)) and the equalities in
(1668)

Z3Z6 R4Z5 R3Z5 Z4%6 )\1 0
(669) Z3Z8 ZART R3R7T  Z4ARS )\2 _ 0
Z1Z8 ZoZ7 Z1R7 Z2Z8 )\3 0
Z126 k225 Z1k5 Z2%¢ )\4 0

A straightforward calculation shows that the determinant of the matrix in is given by

—(z923 — z124)2(2627 — Z5Z8)2 T (rap(z) — al(z))2 (a1(2) + 2046(2))2

which is different than zero. Hence, the unique solution of the system in isAj=0,7=
1,2, 3,3, which in turn implies that
(670) a1d2 — Cle = 1, blCQ — d1a2 =—1

b1d2 — dle = 0, a1Cy — Ci1ag = 0,

The equalities in (670)) can be written in matrix form as follows

o ) ()6 ) -0)

Taking the inverse matrix in (671)) a short calculation shows that

do . dy a2\ (a1 . _
bQ - bl ) o — 1 y 2.6, g1 =9>-
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Hence, equality in can be written as follows

@) — 9 <2> ’ (ﬁ) — 9 (Z) ! @Z) -9 CZ) ’ <zwu;> — 0 <Z> e, w=dg ().

Therefore equality (146 is fulfilled.

The following calculations show that the map pgs : SL(4,C)/Zy — SO(6,C) is a homo-
morphism of groups. The identity element in SL(4,C) is denoted as e = I. Consider a curve

~(t) = h(t) € SL(4,C) such that v(0) = e and 4(0) = h(0) € sl(4,C). That is,

hi(0 ..., h14(0)
tr (h(())) =tr : : = h11(0) + ha22(0) + h33(0) 4+ h4a(0) = 0.
hg1(0) ...... h44(0)
Let me consider the following map
(672)  Tupss:sl(4,C) — 50(6,C), given by Topss(h(0) = 5| _ R(A(D) = R(0).

I will show that T,pg 5 is an isomorphism of Lie algebras.

If R(0) belongs to 50(6,C), then the matrix R(0) is skew-symmetric. That is, R;(0) =
—Ry;(0), besides the diagonal elements satisfy R;;(0) = 0, for j,k = 1,...,6. Take the
expressions of Rj; in (635]), (636), (637),..., (638) and calculate the derivative at ¢ = 0. The
following equality holds

R;5(0) = tr ((0)) = 0.

Consider the elements Rjj;, out of the diagonal given in (635)), (636), (637)), (638)). The derivative
at t = 0 is calculated, and the following is obtained

Rjr(0) = —Ry;(0) .

Therefore R(0) € s0(6,C).
The kernel of the map T¢pg 5 is calculated. Namely,

(673) ker (T, ps5) = {h(()) € sl(4,C)| R(0) = 0} .

Equation R(0) = 0 means that all entries satisfy Rjk =0,j,k=1,...,6. Taking the expressions
of Rjk = 0 and using that tr (h(O)) = 0 these equations can be written as linear systems, which
are given by

1 1 1 1 ﬁ11 0
1 1 =1 =1 |he| [0
(674) 1 -1 -1 1) |hsg| |0
1 -1 1 =1/ \jiy 0
1 -1 -1 1 }:ng 0
1 =1 1 —=1||ha| [0
(675) 1 1 =1 =1 |Ays] O
11 1 1) \ha 0
1 1 1 1 i}34 0
1 1 =1 1| |ha| [0
(676) 1 =1 1 —=1|/|hAn] O
1 =1 =1 1) \jug 0
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1 -1 =1\ [ho
1 1 1| [hAn
—1 =1 1| |hys
1 1 =1/ \jip 0

The associated matrix in (674), (675), (676), (676) has determinant different than zero, which
implies that the matrix 0 € s[(4,C) is the only solution of these systems. Hence, the kernel
of Tepgs is only 0 € sl(4,C). Moreover, dimsl(4,C) = dimso(6,C), thus the map T,.pg5 :
sl(4,C) — s0(6,C) is an isomorphism of Lie algebras. Since the group SL(4,C) is simply
connected, then it follows from theorem 3.7in [21] that the map pg5 : SL(4,C) — SO(6,C)
is the unique homomorphism relating pg 5 and 7. ps 5 in the following way

o O O

(677)

= =
|

(678) ps(e©) = eTess(h@) vy f(0) € 51(4,C).

Equation in (678) indicates that Kerpgs is a discrete normal subgroup of SL(4,C), but a
discrete normal subgroup of a connected group is automatically central. The center of SL(4,C)
is {I, —I,0, —I}. Entries Rj,j,k = 1,...,6 of R € SO(6,C) are defined in equation (634)).
Taking h = 44l it follows from equation (634]) that

(679) ()M (dal) = —M; = Rjj, = 1.

Equation (679)) indicates that the matrices {I, —:I} do not belong to the kernel of pg5. Thus
Kerpg 5 = {I, —I}. Let me show that pg 5 maps onto SO(6,C), which follows from the fact that
the groups SO(6,C) and SL(4,C) are connected. Every element h € SL(4,C) can be written
as h = e" ...e" with h; € sl(4,C), and R € SO(6,C) can be written as R = e e’ ... e
with 7; € s0(6,C),j = 1,...,n. Since Tepg 5 is surjective, then R € SO(6,C) can be written as

R = eTeﬁ8,5(h1) B 'eTeﬁ8,5(hn) )

Hence, pg 5 maps onto SO(6,C).

It can be proved that pg 5 : SU(4)/Za — SO(6,R) is a homomorphism of groups by doing
a similar procedure to the case of pg5 : SL(4,C)/Zy — SO(6,C).






Appendixz B

Geometric

Quantization of the
Null Quadric )y,

In this appendix, I describe the geometric quantization of the Kahler manifold (Qm, W= —Z\@58|a|)

following the ideas of reference [34]. Let me recall that @y, = {a € C" a2 +ad+...+a2 | =
0, a # 0}. A parametrization of @, is a map

E:UCC™3 (51,52, y8m) — (81,82, ..., 5m) € Qum.

Definition 7. Let F be a function on Q. A holomorphic function on Q, is a function such
that FoZ : U C C™ — C is holomorphic for any parametrization.

More explicitly, let be the function ® = F o = which can be written in coordinates as

D(s1,82,...,8m) = F(a(si,s2,...,8m,)). Calculate the derivative é%_ with the chain rule.
Namely,

0d  Oap OF  Oay OF
(680) =k O

d5;  0s; Oay, 055 Oy,

The parametrization = satisfies % = 0. It follows from ([680]) that

0P . oay, OF

ds; 05 0ay,
Hence, F oZ is holomphic if and only if F regarded as a function of o € C™*! satisfies (%i =0,
i.e, holomorphic.

A polarization G on Q,, can be obtained from the push-forward of the vectors %, j=

1,2,...,m via the map =. The elements of G are denoted by X ; and can be written as follows
- oay 0
X; = 2k

631 =5 Jj=1....m, k=12, m+1,
(681) =y m m+

Now consider the line bundle 7 : L¥ — Qm whose connection is defined as follows
Vx :D(L°) — I(L¥), Vx§ = X(8) — %g(X)A, X € X(Qn), 8§ eT(L¥),

159
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where the one-form 0 is given by h= 12\/1§|a| (a-da — a-da). The space of polarized sections
regarding the polarization G is denoted by Fg(LUAJ ) whose elements are defined by the equation
(682) VXj§:0, ji=1,....m

__1
The solutions of equation (682]) are given by s(a) = ¢(a) e Wﬁla‘, and ¢ satisfies %ﬁk =0,k =
1,...,m + 1 (holomorphic function). The space I'g(L¥) is endowed with the following inner

product

(81,82) = T e s1(a)s2(a)eg (@), V§1,§2€F0(L®)

with e5(a) the Liouville volume form of T+S™ = @,,. The squared norm of 5 € I'g(L%) is
given by

~ 1 = 1 _3p,
(683) il = /Qm Si(0)Ri@)ea(0) = o /Qm 161(0) 2 e~ Rl e5(a)

If it is assumed that the integral in (683) is finite, then the space I'¢(L%) is identified with the
space

(684) L (s s Pl eaa)

of square-integrable holomorphic functions defined on Q,, regarding the indicated measure.
Let me denote by K Om the canonical bundle of the polarization G for which the sections

are m-forms R(a) on Q,, that satisfy

vy k(a) =0.

Let me make the following argument in order to determine a nowhere vanishing m-form on
Qm. The null quadric Q,, can be reahzed as the subset on C™*! of non-trivial solutions of
equation f(a) =0 with f(a) = of + a3 + ...+ a2, ;. Consider the one form df = 2(a1da1 +

.+ amt1da,41). It is not difficult to see that the vector field Y = 5o |2 Zmﬁl Q; 6 - satisfies
df (Y) =1. Now let me consider the m+1-form of the ambient space daj A dag A . /\ Ao 11
and then its contraction with the vector Y, which gives the following nowhere Vanishing m-form
on Qm

m—+1

(685) Ko Oé Z jOédeél ANdag A ... /\dVOéj AN domyt,

2|a\2

where ddj means that this one-form is omitted. The factor (—1)7 is included so that the
equality Ko(a) Adf = day Adag A ... A dou,y1 holds. Moreover, the m-form Ko(«) satisfies
dko(ar) = 0. Note that the contraction of Ko(a) with vectors of G is equal to zero. So the
sections of K 0,, can be written as

(686) k(o) = F(a,a)Ro(a).
The set of polarized sections of IA(Qm regarding the polarization G are m-forms that satisfy

Lx; dr = 0. This set is denoted by I'g <IA{ Qm> whose elements are given by

F
k(a) = F(a)Ro(a) and F satisfies ga = 0 (holomorphic).
k

The m-form Ko(«) in (685) is a nowhere vanishing section of I'g (I? Qm> .
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The group SO(m + 1,C) acts in a natural way (coordinate transformation) on Q,,. That
is, the action of R € SO(m + 1,C) on « € @ is given by R - a. The m-form Ko(«) is invariant
under the action of SO(m + 1,C) on @,,. This is the point of the following proposition .

Proposition 48. The m-form Ro(a) € Fg(I?Qm) in satisfies the following equations
(i) dRo@) = 0

(i) £x Fo(a) = 0, where the infinitesimal generator X¢ of ¢ € so(m + 1,C) is given by
X¢= %‘t:O e’ -a.

Proof.

i) Consider the holomorphic function f(a) = o? + a2+ a2 + ... +a? ;. A straightforward
1 2 3 m+1
calculation shows that Ko(«) satisfies the following equation

(687) Ro(la) Ndf = dog Ndag Adag A ... A\ do,y -
The exterior differential is calculated. Namely,
d(ko(a) Ndf) = d(doq Ndaa Ndas A ... A\ dogms1)
dio(a) Ndf —Rola) ANd®f = 0
dip(a) Ndf = 0.

The differential df is a one-form df # 0 for all @ # 0, which implies that dr(«) must to be
equal to zero so that the equation dkg(a) A df = 0 fulfilled.

(ii) It follows from equality (687]) that
2)(( (da1 Adoag ANdag A ... N\ dam+1) = SXC (k\o(a) VAN df)
ng(dal Adoag Ndasg A ... /\dam+1) = SXC(R()(OL)) /\df+%0(oz) /\SXC(df).

A straightforward computation shows that the (m+1)-form dag A das A das ... A dapy+1 and
f(a) are invariant under the natural action of SO(m + 1,C) on o € C™*!. This implies that

Sxﬁ(dal/\dag/\dag/\.../\damH):0 and SXg(df):(),

from which it follows that £x, (ko) A df = 0. The differential df is a one-form df # 0 for all
a # 0, so £x,(Ko) must be equal to zero. O

Since Ko(«r) is a nowhere vanishing section of I'g (IA(Qm), then there is a square root of

~ 1 1
Ky, - That is, a line bundle Ké with the property that if 7;, 75 are two sections of K5

9
m

then the product 7y ® 7o = D175 is a section of KQm' In other words, V17s is an m-form as

~1
given in (686)). The space of polarized sections of K2 with respect to the polarization G is

1 ~1
denoted by I'g < 5 ) The sections v1,vs € T (Ké > have the property that 1 ® Uy =
viUs € g (I? Qm>‘ Moreover, there is a nowhere vanishing section p(a) € I'g (I? Qm) with the
=%

1
o(a). The following proposition gives the Hermitian structure in Fg(KQ? ).

m

property 74 ()
Proposition 49. Let U3 = %o be the m-form in . The pointwise magnitude of Vy €
1
F(;(K5 ) is given by
o~ PRGNt
(M0, 70) = ((Ko, Ko))?
where the (Ko, Ro) is the unique function that makes the equality holds

(688) (—1)™Fo A Ro = ()™ (Ro, Ro)es(a) with (Ro,Ro) = 2% |a|™2.
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Proof. Let me first write the Liouville volume e () in suitable coordinates. Under the iden-
tification Q,, & T+ S™ consider « € Q,, with a = p +1|p|q and (¢,p) € TTS™. On an open
set U; C R™*1! such that ¢; # 0 the Liouville volume £5(c) can be written as follows

1

689 eslq,p) =
(639) @0 = 57

dgy N ... N\ dqj,1 VAN dqu ANdpt A... A dpjfl A dpj+1 A dpm+1 -
Now consider o = p + 1|p|qg as a vector in C™*!. Using that ¢ -p = 0 a straightforward

calculation shows that

(690)
dog A Adogpi Adag A Adayr = (20)™ T p™dgy A Adgmy i Adpr A dppy -

ItU; c Qm is a subset where gj # 0, then o # 0 and

.1 .
(691) k\o(a)}Uj = (*1)era1/\.../\dOéj/\...Adam+1.
@j

I carry out the following calculations using Ro(«) in (691)). A calculation shows that

(692) dag A...ANdogmyr Adag A ... ANdamy1 = Ro Adf ANRg Adf
= (=1)™kKo A Ro A 2ada; A 20 da;

(2)™(Ro, Ro)ea (@) A 2a5doy A 2ada .
Using (689) and 7 equality (692)) can be written as follows

(693)  (2)™ L) p|™ dgy A .. Adgumiy Adpy A dppt =

(1)™ (Ro, Ro)ea (g, p) A ajday A ajda; .

From the complex two-form a;da; Aa;de;, the two-form 21 p|3qj2-dqj Adpj is the only term that
satisfies 5(q, p) A ojdaj A@jda; = (one function ) times dgi A... Adgmi1 Adpi A .. Adpm1-
The following is obtained from equality (693))

(694) ()™ 2[p|*(Ro, Ro)ea(q, p) A gidar A dp1 =
(2™ @)™ p| ™ dgy A Adgmar Adpr A A dpmga

It follows from equality (694) that (Ro,Ro) = 2™ 2|p|™ 2. Now using that a € Qy with
a = p+1|p|q a calculation shows that |p| = (2)_%]04]. Hence, (Ko, ko) = 2mT72|a|m_2. O

PO,
Consider the line bundle L* ® Ké whose space of polarized sections with respect to the

1 G|
polarization G is denoted by I'¢(L¥ ® Ké ). Elements of I'¢(L“ ® Ké ) are given by

7a) = 8(e) @D = 3(a)Dy  with 3(a) € To(L).

It follows from equality (688) that the pointwise magnitude (7p,7p) is given by (vo,7) =
m—2
4

m a1
277 |2 7' . Let me take 7i(a),T2(e) € Tg(L® ® Ké ). The inner product in the space

~ ~1
Fa(l®® 5 ) is given by
PN 1 N = P
PR = / 31(0) (@) (%0, Po)ea (@)
(h’ﬂ') Qm
1
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a1
The squared norm of 71 (a) € T (LY ® Ké ) is given by

Rl = Gy [, @@ Roes(o)
1 V2| am=2,  m_
(695) = g, @R 2 ) ey a),

.1 A
Each 7 (o) € Tg(L¥® Kg? ) gives a holomorphic function ¢y on Q,,. If it is assumed that the

a1
integral in (695|) is finite, then the space I'¢(L¥ ® Ké ) is identified with the space

m—2
o bl o
T

of square-integrable holomorphic functions on Q,, regarding the indicated measure.

(696) M = L3y (Quidml (@), dml (@) = e5(a)

The symplectic quotient (ﬁfb L)/ Gn,ﬁ) with n = 4,8 is identified as a complex mani-
fold with the K&hler manifold (Qm,@ = —zﬁé@]a\) with m = 3,5 respectively. The space

PRt
of quantum states is the space of polarized sections I' (LY@ K 5 ) which is obtained by first per-

forming symplectic reduction and then quantizing the symplectic quotient <Qm, w= —2\/558\04) :
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