

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

ON THE GEOMETRY OF A SEGAL-BARGMANN TRANSFORM FOR SPHERES AND THE BARGMANN-TODOROV SPACES

TESIS
QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS

PRESENTA:
OSCAR CHÁVEZ MOLINA

DIRECTOR DE LA TESIS:

DR. CARLOS VILLEGAS BLAS
UNIDAD CUERNAVACA DEL INSTITUTO DE MATEMÁTICAS, UNAM

MIEMBROS DEL COMITE TUTOR
DR. CARLOS VILLEGAS-BLAS, DR. GREGOR WEINGRAT, UNIDAD CUERNAVACA DEL INSTITUTO DE MATEMATICAS, UNAM, DR. ANTONIO HERNÁNDEZ GARDUÑO, UAM IZTAPALAPA

UNAM - Dirección General de Bibliotecas
Tesis Digitales
Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Acknowledgments

I want to thank my adviser Dr. Carlos Villegas-Blas for his patience, constant encouragement, and suggestions to improve the research presentation. Thanks to him, I had the chance to make a research stay at the mathematics department of Notre Dame University with Professor Brian Hall. I would like to express my special thanks of gratitude to Professor Brian Hall for giving me part of his time in many conversations, from which I received suggestions to make the constructions to obtain the original results of my thesis. Also, I thank CONACYT for the fellowship and the support of the FORDECYT project 26556667. Thanks to the National University of Mexico.

Dedicado a mis padres.

Maria, Andres y Cecilia.

Por su cariño y apoyo incondicional a lo largo de estos años A mi familia por el soporte en todos estos años

Summary

In this thesis, I study the Geometric Quantization and the Symplectic Reduction of $\mathbb{C}^{n}, n=$ 8,4 under a suitable action of $S U(2), U(1)$ respectively. This action is suggested by the Kustaanheimo-Stiefel regularization of the Kepler problem. I show that the "first quantize and then reduce" process gives a geometric description of a Hilbert space \mathcal{E}_{m} of holomorphic functions on a null quadric $Q_{m} \subset \mathbb{C}^{m+1}, m=5,3$. The space \mathcal{E}_{m} was introduced by Bargmann and Todorov [5] in the setting of symmetric tensor representations of $S O(m+1)$. This geometric description provides an example that Quantization does not commute with Reduction in a case of non-compact Kähler manifolds. I construct a Guillemin-Sternberg map including half-form between the "first quantize and then reduce" space and the "first reduce and then quantize" space, which is asymptotically unitary. On the other hand, Diaz-Ortiz E. and Villegas-Blas C. 11 introduced a Segal-Bargmann Transform $B_{S^{m}}$ from the Hilbert space $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ onto \mathcal{E}_{m} in a setting of coherent states and semiclassical analysis on the sphere S^{m}. From the pairing map between the vertical and holomorphic polarizations on \mathbb{C}^{n} and through the "first quantize and then reduce" process, I construct for each non-negative integer ℓ a Segal-Bargman Transform $\widetilde{B}_{\ell, m}$ for the vector space of spherical harmonics of degree ℓ on S^{m}. I show that $B_{S^{m}}$ can be regarded as the linear extension of $\widetilde{B}_{\ell, m}$.

Contents

Acknowledgments [1]
Summary iii
Introduction vii
Introducción xiii
Chapter 1. Classical and Quantum Mechanics (1)
§1. Hamiltonian Formulation of Classical Mechanics 1
§2. From Classical Mechanics to Quantum Mechanics 8
§3. The Segal-Bargmann Space 9
§4. The Bargmann-Todorov Space 10
Chapter 2. Classical and Quantum Reduction 15
§1. Symplectic Reduction 15
§2. Geometric Quantization 30
§3. Quantum Reduction 36
Chapter 3. Geometric Description of The Space \mathcal{E}_{m} and Quantization Does Not Commute With Symplectic Reduction 47
§1. A Map of Guillemin-Sternberg in the Presence of Half-Form Correction 47
§2. Norm Decomposition 60
§3. Asymptotics of the Guillemin-Sternberg Maps 70
§4. Quantum Reduction and The Bargmann-Todorov Space \mathcal{E}_{m} 73
§5. Quantum Reduction and The Kustaanheimo-Stiefel Transformation 80
Chapter 4. Pairing Map and The Segal-Bargmann Transform 85
§1. Pairing Maps 85
§2. Properties of the Segal-Bargmann Transform 88
§3. A Segal-Bargmann Transform G_{n}-Invariant 92
§4. Time Evolution of a Coherent State 113
Chapter 5. A Segal-Bargmann Transform For Spheres 119
§1. An SBT for S^{3} 119
§2. An SBT for S^{5} 130
Appendix A. Construction of the Map $\rho_{(n, m)}$ 135
Appendix B. Geometric Quantization of the Null Quadric \dot{Q}_{m} 159
Bibliography 165

Introduction

The Schrödinger representation of Quantum Mechanics on \mathbb{R}^{n} is realized in the Hilbert space $L^{2}\left(\mathbb{R}^{n}, d u\right)$, where $d u=d u_{1} d u_{2} \ldots d u_{n}$ is the volume form (Lebesgue measure) on \mathbb{R}^{n}. The operators of position \widehat{u}_{k} and momentum \widehat{v}_{j} are given by $\widehat{u}_{k}=u_{k}$ (multiplication by the u_{k} coordinate) and $\widehat{v}_{j}=-\imath \hbar \frac{\partial}{\partial u_{j}}, j, k=1, \ldots n$. In this representation the operators of creation $\widehat{a}_{k}^{\dagger}$ and annihilation \widehat{a}_{j} are given by $\widehat{a}_{k}^{\dagger}=\frac{1}{\sqrt{2}}\left(\widehat{u}_{k}-\imath \widehat{v}_{k}\right)$ and $\widehat{a}_{j}=\frac{1}{\sqrt{2}}\left(\widehat{u}_{j}+\imath \widehat{v}_{j}\right)$, which satisfy the canonical commutation relations (CCR). Namely,

$$
\left[\widehat{a}_{j}, \widehat{a}_{k}^{\dagger}\right]=\hbar \delta_{j, k} \widehat{\mathbb{I}}
$$

V. Fock in 1928 proposed an alternative solution of CCR. The operators of creation and annihilation could be written as $\widehat{z}_{k}=z_{k}$ (multiplication by the coordinate z_{k}) and $\hat{\bar{z}}_{j}=\hbar \frac{\partial}{\partial z_{j}}$ respectively. In [4] V. Bargmann introduced a Hilbert space \mathcal{B}_{n} of holomorphic square-integrable functions on \mathbb{C}^{n} with respect to a Gaussian measure $d \nu_{n}^{\hbar}(z)$ such that the operators $\widehat{z}_{k}, \widehat{\bar{z}}_{j}$ are adjoint to each other in \mathcal{B}_{n}. Moreover, V. Bargmann introduced a unitary transformation $B_{\mathbb{R}^{n}}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ which intertwines the operators $\widehat{a}_{k}^{\dagger}, \widehat{a}_{j}$ and $\widehat{z}_{k}, \widehat{\bar{z}}_{j}$ respectively.

The spaces $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and \mathcal{B}_{n} as well as the transformation $B_{\mathbb{R}^{n}}$ can be obtained via geometric arguments. Consider the symplectic manifold $\left(T^{*} \mathbb{R}^{n}, \omega_{n}=d v \wedge d u\right)$, where $\omega_{n}=$ $d v \wedge d u$ denotes the symplectic form. Geometric Quantization including half-form can be applied to $T^{*} \mathbb{R}^{n}$ in order to construct the Hilbert space of quantum states. The space of polarized sections with respect to the vertical polarization $V=\left\{\frac{\partial}{\partial v_{1}}, \frac{\partial}{\partial v_{2}}, \ldots, \frac{\partial}{\partial v_{n}}\right\}$ is identified with the space of functions $L^{2}\left(\mathbb{R}^{n}, d u\right)$. Moreover, Geometric Quantization gives a way to assign an operator \widehat{Q}_{f} to each function f on $T^{*} \mathbb{R}^{n}$. If the commutator of X_{f} (Hamiltonian vector field of f) with a vector field $X \in V$ is an element of V, then the operator \widehat{Q}_{f} preserves the space of polarized sections. The operators $\widehat{Q}_{u_{k}}, \widehat{Q}_{v_{j}}$ assigned to $f=u_{k}, f=v_{j}$ preserve the space of polarized sections and are identified with the operators $\widehat{u}_{k}=u_{k}$ and $\widehat{v}_{j}=-\imath \hbar \frac{\partial}{\partial u_{j}}$ respectively. For details of the facts discussed above see $[17,43]$.

The cotangent space $T^{*} \mathbb{R}^{n}$ can be endowed with a complex structure via a map $\mathcal{T}_{n}: T^{*} \mathbb{R}^{n} \ni$ $(u, v) \longrightarrow z \in \mathbb{C}^{n}$ so that the symplectic manifold $\left(T^{*} \mathbb{R}^{n}, \omega_{n}=d v \wedge d u\right)$ is identified with the Kähler manifold ($\left.\mathbb{C}^{n}, \omega_{n}=\frac{1}{\imath} d \bar{z} \wedge d z\right)$. Geometric quantization can be applied to the symplectic (Kähler) manifold \mathbb{C}^{n}. Whether the half-form is included or not, the space of polarized sections with respect to the holomorphic polarization $P=\left\{\frac{\partial}{\partial \bar{z}_{1}}, \frac{\partial}{\partial \bar{z}_{2}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\}$ is identified with the space \mathcal{B}_{n}. As in the real case, if the commutator of X_{f} with a vector field $Y \in P$ is an element of P, then the operator \widehat{Q}_{f} preserves the space of polarized sections. The operators assigned to $f=z_{k}, f=\bar{z}_{j}$ preserve the space of polarized sections and are identified with the operators
$\widehat{z}_{k}=z_{k}$ and $\widehat{\bar{z}}_{j}=\hbar \frac{\partial}{\partial z_{j}}$ respectively. On the other hand, there is a pairing between polarized sections (including half forms) with respect to the polarizations V and P. The pairing gives rise to a linear map (pairing map) between the spaces $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and \mathcal{B}_{n} which turns out to be the Segal-Bargmann transform $B_{\mathbb{R}^{n}}$. The above facts are discussed in [33, 43].

When the configuration space of a physical system is a manifold Q, the quantum states are elements of the space $L^{2}(Q, d \mu)$ with $d \mu$ a volume form on Q. The case $Q=S^{m}$ is relevant for this work, so let me focus on it. A holomorphic representation of Quantum Mechanics on spheres S^{m} requires to define a unitary transformation (Segal-Bargmann transform) from $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ into a Hilbert space of holomorphic functions which should be defined on a Kähler manifold that endows $T^{*} S^{m}$ with a complex structure. Regarding this point, consider the null quadric Q_{m} which is defined as the set of $\alpha \in \mathbb{C}^{m+1}$ with the property that the sum of the squares of its components is equal to zero. The cotangent space $T^{+} S^{m}=T^{*} S^{m}-\{$ zero section $\}$ can be endowed with a complex structure via the map $\sigma: T^{+} S^{m} \longrightarrow \dot{Q}_{m}=Q_{m}-\{0\}$ so that the symplectic manifold $\left(T^{+} S^{m}, \widehat{w}=\left.d p \wedge d q\right|_{T^{+} S^{m}}\right)$ can be identified with the Kähler manifold $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$, and hence that the tangents of type $(0,1)$ on \dot{Q}_{m} form a holomorphic polarization. So a Hilbert space \mathcal{H}^{\prime} of holomorphic functions on \dot{Q}_{m} can be obtained by performing the Geometric Quantization (including halfform) of $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ with respect to this holomorphic polarization. The space of polarized sections (including half-form) with respect to the vertical polarization of $T^{+} S^{m}$ is identified with the space $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$. The pairing map (including half-form) between polarized sections with respect to the vertical polarization and holomorphic polarization can be regarded as a map from $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ into \mathcal{H}^{\prime}, but the pairing map is not unitary. See [33] for details.

On the other hand, L. Tomas and S. Wassell in [38] introduced a Segal-Bargmann transform $B_{S^{2}}$ from $L^{2}\left(S^{2}, d \Omega_{S^{2}}\right)$ onto a closed subspace in \mathcal{B}_{2} generated by the monomials of even degree. Villegas-Blas in [40, 41 introduced a Segal-Bargmann transform from $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$, $m=3,5$ onto a closed subspace $\mathcal{F}_{n} \subset \mathcal{B}_{n}, n=4,8$ of invariant functions under an action of $U(1), S U(2)$ respectively. For the pairs $(n, m)=(2,2),(4,3)$ the transformation $\boldsymbol{B}_{S^{m}}$ was defined as the linear extension between basis of irreducible representations of $S O(3, \mathbb{R})$ in $L^{2}\left(S^{2}, d \Omega_{S^{2}}\right), S O(4, \mathbb{R})$ in $L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ and of $S U(2)$ in $\mathcal{B}_{2}, S U(2) \times S U(2)$ in \mathcal{B}_{4} respectively. Moreover, in 41 it is shown that $\boldsymbol{B}_{S^{m}}, m=2,3$ can be written as an integral operator whose integral kernel is an infinite power series in the function $\left(\rho_{(n, m)}(z) \cdot q\right)$ with $q \in S^{m}$, and $\rho_{(n, m)}$ is a map from $\mathbb{C}^{n}, n=2,4$ to the null quadric $Q_{m}, m=2,3$. For the pair $(n, m)=(8,5)$ it is quite complicated to implement the idea of linear extension between basis of irreducible representations in the domain and range. So the transformation $B_{S^{5}}$ was defined as an integral operator whose integral kernel is an infinite power series in the function $\left(\rho_{(8,5)}(z) \cdot q\right)$ with $q \in S^{5}$, and $\rho_{(8,5)}(z)$ is a map from \mathbb{C}^{8} to the null quadric Q_{5}. The map $\rho_{(8,5)}(z)$ was constructed following the procedure of $\rho_{(4,3)}(z)$ in [27].

From the mathematical side, the pairs $(n, m)=(4,3),(8,5)$ come from the fact that in these dimensions there are Hopf maps between spheres S^{n-1} and S^{m-1} with fiber $S^{1}=U(1)$, $S U(2)=S^{3}$ respectively. From the physical side, the pairs $(n, m)=(2,2),(4,3),(8,5)$ come from the fact that in these dimensions there is a correspondence between an isotropic harmonic oscillator in dimension n and the Kepler problem in dimension m. Indeed, the map $\rho_{(n, m)}(z)$ has the property to relate the regularizations of Moser and Kustaanheimo-Stiefel of the Kepler problem in dimensions $m=2,3,5$. The map $\rho_{(n, m)}(z)$ has another property which is related to the unitary transformation $B_{S^{m}}$. The function $\left(\rho_{(n, m)}(z) \cdot q\right)$ is a generating function of a canonical transformation between $\dot{C}^{n}=\mathbb{C}^{n}-\{0\}$ and $T^{+} S^{m} \cong \dot{Q}_{m}$. In other words, the restriction of $\rho_{(n, m)}(z)$ to a submanifold of $\dot{\mathbb{C}}^{n}$ is a canonical transformation between $\dot{\mathbb{C}}^{n}$ and
$T^{+} S^{m} \cong \dot{Q}_{m}$, so that the Segal-Bargmann transform $B_{S^{m}}$ can regarded as the quantization of the map $\rho_{(n, m)}(z)$. See 41 for details.

In 11 Villegas-Blas and Diaz-Ortiz introduced a Segal-Bargmann transform $B_{S^{m}}$ for any dimension m from $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ onto a Hilbert space \mathcal{E}_{m} of holomorphic functions on the null quadric Q_{m}. The space \mathcal{E}_{m} was previously considered by Bargmann and Todorov in [5] in the setting of symmetric tensor representations of the orthogonal group $S O(m+1, \mathbb{R})$. Let me remark that the spaces \mathcal{F}_{n} can be related to the space $\mathcal{E}_{m}, m=, 3,5$ respectively, via a unitary map $\mathfrak{U}_{n, m}$ which is defined in terms of the map $\rho_{(n, m)}(z)$. See 35 for details. Motivated by the particular dimensions $m=2,3,5$, the authors write $B_{S^{m}}$ as an integral operator whose integral kernel is an infinite power series in the function $(\alpha \cdot q)$ with $\alpha \in Q_{m}$ and $q \in S^{m}$. Namely, the kernel of $B_{S^{m}}$ is given by $K_{S^{m}}(\alpha, q)=\sum_{\ell=0}^{\infty} c_{\ell}\left(\frac{\alpha \cdot q}{\hbar}\right)^{\ell}$, where the coefficients c_{ℓ} are determined so that $B_{S^{m}}$ is an isometry between $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ and \mathcal{E}_{m}. The space $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ is a direct sum of the spaces V_{ℓ} of spherical harmonics of degree ℓ, and the space \mathcal{E}_{m} is a direct sum of the spaces W_{ℓ} of homogeneous polynomials of degree ℓ on Q_{m}. So the transformation $B_{S^{m}}$ can be defined as the liner extension of the unitary maps $B_{S^{m}, \ell}: V_{\ell} \longrightarrow W_{\ell}$.

Since the spaces $L^{2}\left(\mathbb{R}^{n}, d u\right), \mathcal{B}_{n}$ as well as the transformation $B_{\mathbb{R}^{n}}$ can be described in a geometric setting as it is mentioned above, then it is natural to search a geometric description for both the space \mathcal{E}_{m} and transformation $B_{S^{m}}$. One of the main results of this thesis is that I obtain the space \mathcal{E}_{m} as well as the transformation $B_{S^{m}}$ via a process of Geometric Quantization and Symplectic Reduction for the particular dimensions $m=3,5$. I briefly describe such a process in the next paragraphs.

I first perform the Symplectic Reduction of $\mathbb{C}^{n}, n=4,8$. I define a free action of a compact matrix Lie group G_{n} on \mathbb{C}^{n}, see Chap.(2) Sect.(1). Since the action of G_{n} preserves the symplectic form $\omega_{n}=\frac{1}{2} d \bar{z} \wedge d z$, then there is a moment map $\mathfrak{J}_{n}: \dot{\mathbb{C}}^{n} \longrightarrow \mathfrak{g}_{n}^{*}$. Here \mathfrak{g}_{n}^{*} denotes the dual of the Lie algebra \mathfrak{g}_{n} of G_{n} with $G_{4}=U(1)$ and $G_{8}=S U(2)$. I then consider the symplectic quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$, where $\mathfrak{J}_{n}^{-1}(0)$ denotes the inverse image of the regular value $0 \in \mathfrak{g}_{n}^{*}$. I follow the structural ideas of [14, $\left.\mathbf{1 8}\right]$ in order to endow $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ with a complex structure (complex coordinates). The action of G_{n} is continued to an action of the complexified group $\left(G_{n}\right)_{\mathbb{C}}$ on $\dot{\mathbb{C}}^{n}$. Let M_{s} denote the stable set in $\dot{\mathbb{C}}^{n}$. Namely, M_{s} is the set of points in $\dot{\mathbb{C}}^{n}$ that can be moved into $\mathfrak{J}_{n}^{-1}(0)$ by the action of $\left(G_{n}\right)_{\mathbb{C}}$. From the general theory in [14, 18], the symplectic quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ is identified as a complex manifold with $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$. I prove that the null quadric $\dot{Q}_{m}, m=3,5$ can be realized as the complex quotient $M_{s} /\left(G_{n}\right) \mathbb{C}$. In other words, I show that every $\alpha \in \dot{Q}_{m}$ is associated with an element in $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$. Under the identifications of $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$ with \dot{Q}_{m} and of $T^{+} S^{m}$ with \dot{Q}_{m}, I prove that the symplectic manifold $\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}, \widehat{\mu}\right)$ can be identified as a Kähler manifold with $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. See propositions 5.7

Next, the Geometric Quantization of $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$ is considered with and without half forms, and I then perform Quantum Reduction. That is, I determine the set of polarized sections that are invariant under the action of G_{n}. In the real case the set of G_{n}-invariant polarized sections including half form is identified with the set of functions in $L^{2}\left(\mathbb{R}^{n}, d u\right)$ that are invariant under the action of G_{n} on $\mathbb{R}^{n}=\mathbb{R}^{n}-\{0\}$. This set of functions is denoted by $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$. In the complex case the set of G_{n}-invariant polarized sections is identified with the set of functions in \mathcal{B}_{n} that are invariant under the action of G_{n} on $\dot{\mathbb{C}}_{n}$. This set of holomorphic functions is denoted by $\mathcal{B}_{n}^{G_{n}}$. I show that functions $f(z) \in \mathcal{B}_{n}^{G_{n}}$ are also invariant under the action of $\left(G_{n}\right)_{\mathbb{C}}$ on $\dot{\mathbb{C}}^{n}$ and that $f(z)$ can be written as $f(z)=\phi(\alpha(z))$ with ϕ a function on the quotient $M_{s} /\left(G_{n}\right)_{\mathbb{C}} \cong \dot{Q}_{m}$, see Chap. (2) Sect. (1). Hence, the space $\mathcal{B}_{n}^{G_{n}}$ is actually the set of function in \mathcal{B}_{n} that are invariant under the action of $\left(G_{n}\right)_{\mathbb{C}}$ on $\dot{\mathbb{C}}^{n}$. This set of holomorphic functions is denoted by $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$. For both the real and complex polarization the "first quantize and then reduce" process yields the Hilbert space $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ and $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ respectively.

I adapt the ideas of [18, Sect. 4] in order to compute the squared norm of a G_{n}-invariant holomorphic section on \mathbb{C}^{n} as an integral on the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$. This calculation shows that the squared norm of $f \in \mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ can be expressed as the squared norm of ϕ on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ in terms of the inner product of the space \mathcal{E}_{m}. See theorem 3. In the case of \mathbb{C}^{n} the inclusion of half-forms does not change the inner product of the space of holomorphic sections. This is reflected in the fact that the squared norm of ϕ on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ can be expressed in terms of the inner product of \mathcal{E}_{m} whether half-forms are included or not. See theorem 4. Let me emphasize that I obtain the measure on \dot{Q}_{m} considered by Bargmann and Todorov from the Gaussian measure $d \nu_{n}^{\hbar}(z)$ through a reduction process and that my approach is different from the one of them. They obtained the measure in \mathcal{E}_{m} by requiring the adjoint of multiplication operator $\widehat{\alpha}_{j}, j=1, \ldots, m+1$ on Q_{m} to be a differential operator that transforms as an $m+1$-vector. In order to identify the space $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ with a space of holomorphic functions on \dot{Q}_{m}, I prove that $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ regarded as a function ϕ over \dot{Q}_{m} is an element of the space of polynomial functions on \dot{Q}_{m}. So the space $\mathcal{B}_{n}^{\left(G_{n}\right) \mathrm{c}}, n=4,8$ is identified with the space \mathcal{E}_{m} of holomorphic functions on $Q_{m}, \mathrm{~m}=3,5$ respectively. See Chap. (3) Sect. (4).

In the real side I show that functions in $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ can be written as $\varphi(u)=\phi(x(u))$ with $\phi(x)$ a function on \mathbb{R}^{m} and that the "first quantize and then reduce" space $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ is identified with space $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ with C_{m} a real constant. See Chap. (3) Sect. (5).

The geometric description of $B_{S^{m}}$ is as follows. The pairing map between the polarizations V and P gives a Segal-Bargmann transform $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$. The integral kernel $A_{n}(u, z)$ of B_{n} is equivariant with respect to the actions of G_{n} on $\dot{\mathbb{R}}^{n}$ and $\dot{\mathbb{C}}^{n}$. See lemmas 9 , 10 . The equivariant property of $A_{n}(u, z)$ is due to I consider a particular complexification of $T^{*} \mathbb{R}^{n}$ so that the action of G_{n} preserves the holomorphic polarization of $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$. I prove that the restriction of B_{n} to $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ gives a unitary transformation $B_{0, n}: L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}} \longrightarrow \mathcal{B}_{n}^{G_{n}}$. See propositions 28, 31. Let me recall that functions $f \in \mathcal{B}_{n}^{G_{n}}$ are also invariant under the action of $\left(G_{n}\right)_{\mathbb{C}}$ on \mathbb{C}^{n}. I write $B_{0, n}$ in a G_{n}-invariant form in order to show that $B_{0, n}$ is actually a map from $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ onto $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$. See theorems 7. 8. From the identification of $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ with $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ and of $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ with \mathcal{E}_{m}, the map $B_{0, n}$ can be regarded as a Segal-Bargmann transform $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$. See corollaries 1,2 .

The Lie algebra $\mathfrak{s o}(m+1)$ of the orthogonal group $S O(m+1, \mathbb{R})$ plays an important role in the construction of a Segal-Bargmann transform for spheres S^{m}. I can realize a representation of the Lie algebra $\mathfrak{s o}(m+1)$ in both spaces $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ and \mathcal{E}_{m}. For dimension $m=3$ the operators that generate the representation of $\mathfrak{s o}(4)$ are identified with the restriction of the components of the angular-momentum and Runge-Lenz vector operators in the eigenspace of energy $E=-\frac{1}{2}$ of the hydrogen atom. See proposition 39. This construction relies on to intertwine the representations of $\mathfrak{s o}(m+1)$ in $V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right), L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ and \mathcal{E}_{m}. The representation of $\mathfrak{s o}(m+1)$ in $V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ is carried into the representation of $\mathfrak{s o}(m+1)$ on the eigenspaces E_{ℓ} of $\widehat{K}_{m}=\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right)$ in $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ through the Fock map $U_{\ell, m}$. This fact is commented in [10], but here I prove it with my own calculations for the particular dimensions $m=3,5$. See propositions 42 and 44. I then consider the composition of \mathfrak{B}_{n} with the map $U_{\ell, m}$. That is, $\mathfrak{B}_{n} \circ U_{\ell, m}: V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{m}$ which intertwines the representations of $\mathfrak{s o}(m+1)$ in the corresponding spaces. The transformation $\mathfrak{B}_{n} \circ U_{\ell, m}$ is identified with the transformation $B_{S^{m}, \ell}$ by using the Schur lemma. This is $\mathfrak{B}_{n} \circ U_{\ell, m}=B_{S^{m}, \ell}$ on V_{ℓ}. Since the Segal-Bargmann transform $B_{S^{m}}$ can be defined as the linear extension of $B_{S^{m}, \ell}$, then equality $\mathfrak{B}_{n} \circ U_{\ell, m}=B_{S^{m}, \ell}$ indicates that $B_{S^{m}}$ can be regarded as the linear extension of the maps $\mathfrak{B}_{n} \circ U_{\ell, m}$ and that $B_{S^{m}}$ can be understood as the composition of \mathfrak{B}_{n}
with the Fock map $U_{\ell, m}$. In this way I can give the geometric description of $B_{S^{m}}$ for the dimensions $m=3,5$.

The approach discussed above to obtain the space \mathcal{E}_{m} is based on first quantizing \mathbb{C}^{n} and then reducing by G_{n}, which amounts to looking at the set of G_{n}-invariant holomorphic sections. Alternatively, I may first consider Symplectic Reduction of \mathbb{C}^{n} by G_{n} and then quantize the Kähler manifold $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$. This yields a Hilbert space \mathcal{H}^{\prime} on \dot{Q}_{m} which is not the space \mathcal{E}_{m}.

The "first quantize and then reduce" and "first reduce and then quantize" processes are known not to commute in general. That is, there is a Guillemin-Sternberg (GS) map (with and without half-forms) between G-invariant holomorphic sections on the unreduced manifold and holomorphic sections on the reduced manifold, but the GS map is not unitary regarding the inner product of the corresponding Hilbert spaces. See [18] for details. The second main contribution of this thesis is related to this point. I study both processes described above and construct a GS map. That is, I first define a GS map A_{n} without half-forms between $G_{n^{-}}$ invariant holomorphic sections on \mathbb{C}^{n} and holomorphic sections on \dot{Q}_{m}, and I then extend the $\operatorname{map} A_{n}$ to a GS map S_{n} including half-forms. Although the GS maps A_{n} and S_{n} are defined following the ideas of the case of compact Kähler manifolds studied in [18], the maps A_{n} and S_{n} have not been studied before since these maps are defined over non-compact Kähler manifolds. Nevertheless, the maps A_{n}, S_{n} have the same asymptotic properties as in the compact case. I show that a function related to the volume of the G_{n}-orbits in $\mathfrak{J}_{n}^{-1}(0)$ is the reason so that the $\operatorname{map} A_{n}$ does not become unitary in the limit $\hbar \rightarrow 0$. Unlike the case without half-forms, the $\operatorname{map} S_{n}$ becomes unitary in the semiclassical limit. See Chap. (3) Sect. (4). Let me remark that the inclusion of half forms is the key ingredient so that the GS map S_{n} becomes unitary.

I finish the introduction with two remarks. (i) In reference [29] it is introduced a Hilbert space of holomorphic functions on Q_{3}, but the measure and reproducing kernel of such a space are different from corresponding ones in \mathcal{E}_{3}. (ii) In [16] it is considered a unitary transformation from $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ onto a space of holomorphic functions on a non-null quadric $S_{\mathbb{C}}$. Let me comment that $S_{\mathbb{C}}$ can be considered as another complex structure of $T^{+} S^{m}$. Furthermore, this non-null quadric plays a central role in that case, and so the approach in [16] is different from mine.

For the convenience of readers I explain how this work is organized.
The first chapter contains aspects of Classical and Quantum Mechanics. On the classical side three systems are relevant in this work, the geodesic flow on $T^{*} S^{m}$, the Kepler problem on $T^{*}\left(\mathbb{R}^{m}-\{0\}\right)$ and the harmonic oscillator on $T^{*} \mathbb{R}^{n}$. I briefly review the Hamiltonian formulation of Classical Mechanics in general and then give the Hamiltonian formulation of these systems. I also describe the regularizations of Moser and Kustaanheimo-Stiefel of the Kepler problem.

On the Quantum side I give a brief exposition of the Schrödinger representation in $L^{2}\left(\mathbb{R}^{n}, d u\right)$. I also give a short description of the spaces \mathcal{B}_{n} on \mathbb{C}^{n} and \mathcal{E}_{m} on Q_{m} as well as of the unitary transformations $B_{\mathbb{R}^{n}}$ and $B_{S^{m}}$.

The second chapter contains more topics on Classical and Quantum Mechanics. The Symplectic Reduction of \mathbb{C}^{n} as well as the Geometric Quantization of $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$ is performed. At the end of the chapter, I consider Quantum Reduction. Namely, I determine the G_{n}-invariant polarized sections for both the vertical polarization and holomorphic polarization.

The third chapter contains the calculations to construct the GS maps with and without half forms, to express the squared norm of a G_{n}-invariant holomorphic section as an integral on the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ and to identify the space $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ with \mathcal{E}_{m}.

In the fourth chapter I expose in some detail the pairing between polarized sections with respect to the polarizations V and P. The unitary transformation $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$
is realized as the paring map between these polarized sections. Moreover, I obtain the SegalBargmann transform $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$ from the one $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ through the "first quantize and then reduce" process.

The fifth chapter contains the calculations involving the construction of the unitary transformation $\mathfrak{B}_{n} \circ U_{\mu, m}$ and the identification of $\mathfrak{B}_{n} \circ U_{\mu, m}$ with $B_{S^{m}, \ell}$.

Additionally, I include two appendices. The appendix A contains the construction of the maps $\rho_{(n, m)}(z)$, and let me comment that my approach is different from those given in [27, 41]. The geometric quantization of the null quadric \dot{Q}_{m} is exposed in the appendix B.

Introducción

La presentación de Schrödinger de la Mecánica Cuántica en \mathbb{R}^{n} se realiza en el espacio de Hilbert $L^{2}\left(\mathbb{R}^{n}, d u\right)$, donde $d u=d u_{1} d u_{2} \ldots d u_{n}$ es la forma de volumen (medida de Lebesgue) en \mathbb{R}^{n}. Los operadores de posición \widehat{u}_{k} y momento \widehat{v}_{j} están dados por $\widehat{u}_{k}=u_{k}$ (multiplicación por la coordenada u_{k} y $\widehat{v}_{j}=-\imath \hbar \frac{\partial}{\partial u_{j}}, j, k=1, \ldots n$. En esta representación los operadores de creación $\widehat{a}_{k}^{\dagger}$ y aniquilación \widehat{a}_{j} están dados por $\widehat{a}_{k}^{\dagger}=\frac{1}{\sqrt{2}}\left(\widehat{u}_{k}-\imath \widehat{v}_{k}\right)$ y $\widehat{a}_{j}=\frac{1}{\sqrt{2}}\left(\widehat{u}_{j}+\imath \widehat{v}_{j}\right)$, los cuales satisfacen las relaciones canónicas de conmutación (CCR). Es decir,

$$
\left[\widehat{a}_{j}, \widehat{a}_{k}^{\dagger}\right]=\hbar \delta_{j, k} \widehat{\mathbb{I}} .
$$

V. Fock en 1928 propuso una solución alternativa de CCR. Los operaores de cración y aniquilación podrian escribirse como $\widehat{z}_{k}=z_{k}$ (multiplicación por la coordenada z_{k}) y $\widehat{\bar{z}}_{j}=\hbar \frac{\partial}{\partial z_{j}}$ respecticamente. En [4] V. Bargmann introdujo un espacio de Hilbert \mathcal{B}_{n} de funciones holomorfas de cuadrado integrable en \mathbb{C}^{n} con respecto a una medida Gausiana $d \nu_{n}^{\hbar}(z)$ tal que los operadores $\widehat{z}_{k}, \widehat{\bar{z}}_{j}$ son adjuntos entre si en \mathcal{B}_{n}. Además, V. Bargmann introdujo una transformación unitaria $B_{\mathbb{R}^{n}}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ la cual entrelaza los operadores $\widehat{a}_{k}^{\dagger}, \widehat{a}_{j}$ y $\widehat{z}_{k}, \widehat{\bar{z}}_{j}$ respectivamente.

Los espacios $L^{2}\left(\mathbb{R}^{n}, d u\right)$ y \mathcal{B}_{n} así como la transformación $B_{\mathbb{R}^{n}}$ se pueden obtener a través de argumentos geométricos. Considere la variedad simpléctica $\left(T^{*} \mathbb{R}^{n}, \omega_{n}=d v \wedge d u\right)$, donde $\omega_{n}=d v \wedge d u$ denota la forma simpléctica. Cuantización Geométrica incluyendo half-form puede aplicarse a $T^{*} \mathbb{R}^{n}$ para construir el espacio de Hilbert de estados cuánticos. El espacio de secciones polarizadas con respecto a la polarización vertical $V=\left\{\frac{\partial}{\partial v_{1}}, \frac{\partial}{\partial v_{2}}, \ldots, \frac{\partial}{\partial v_{n}}\right\}$ se identifica con el espacio de funciones $L^{2}\left(\mathbb{R}^{n}, d u\right)$. Además, Cuantización Geométrica nos da una manera de asignar un operador \widehat{Q}_{f} a cada función f on $T^{*} \mathbb{R}^{n}$. Si el conmutador de X_{f} (campo vectorial Hamiltoniano de f) con un campo vectorial $X \in V$ es un elemento de V, entonces el operador \widehat{Q}_{f} preserva el espacio de secciones polarizadas. Los operadores $\widehat{Q}_{u_{k}}, \widehat{Q}_{v_{j}}$ asignados a $f=u_{k}, f=v_{j}$ preservan el espacio de secciones polarizadas y se identifican con los operadores $\widehat{u}_{k}=u_{k}$ and $\widehat{v}_{j}=-\imath \hbar \frac{\partial}{\partial u_{j}}$ respectivamente. Para detalles de los hechos discutidos arriba ver [17, 43].

El espacio cotangente $T^{*} \mathbb{R}^{n}$ se puede dotar de una estructura compleja a través del mapa $\mathcal{T}_{n}: T^{*} \mathbb{R}^{n} \ni(u, v) \longrightarrow z \in \mathbb{C}^{n}$ de modo que la variedad simpléctica $\left(T^{*} \mathbb{R}^{n}, \omega_{n}=d v \wedge d u\right)$ se identifica con la variedad de Kähler ($\mathbb{C}^{n}, \omega_{n}=\frac{1}{2} d \bar{z} \wedge d z$). Cuantización Geométrica puede aplicarse a la variedad simplectica (Kähler) \mathbb{C}^{n}. Se incluya o no la half-form, el espacio de secciones polarizadas con respecto a la polarización holomorfa $P=\left\{\frac{\partial}{\partial \bar{z}_{1}}, \frac{\partial}{\partial \bar{z}_{2}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\}$ se identifica con el espacio \mathcal{B}_{n}. Como en el caso real, si el conmutador de X_{f} con un campo vectorial $Y \in P$ es un elemento de P, entonces el operador \widehat{Q}_{f} preserva el espacio de secciones polarizadas.

Los operadores asignados a $f=z_{k}, f=\bar{z}_{j}$ preservan el espacio de secciones polarizadas y se identifican con los operadores $\widehat{z}_{k}=z_{k}$ and $\widehat{\bar{z}}_{j}=\hbar \frac{\partial}{\partial z_{j}}$ respectivamente. Por otro lado, hay un emparejamiento entre secciones polarizadas (incluyendo half-forms) con respecto a las polarizaciones V y P. El emparejamiento da lugar a un map lineal (mapa de emparejamiento) entre los espacios $L^{2}\left(\mathbb{R}^{n}, d u\right)$ y \mathcal{B}_{n} el cual resulta ser la transformada de Segal-Bargmann $B_{\mathbb{R}^{n}}$. Los hechos anteriores se discuten en [33, 43].

Cuando el espacio de configuración de un sistema físico es una variedad Q, los estados cuánticos son elementos del espacio $L^{2}(Q, d \mu)$ con $d \mu$ una forma de volumen en Q. El caso $Q=S^{m}$ es relevante para este trabajo, por lo que me concentrare en el. Una representación holomorfa de la Mecánica Cuántica en esferas S^{m} requiere definir una transformación unitaria de $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ en un espacio de Hilbert de funciones holomorfas el cual debe definirse sobre una variedad de Kähler que dota a $T^{*} S^{m}$ con una estructura compleja. En relación a este punto, considere la cuádrica nula Q_{m} la cual se define como el conjunto de $\alpha \in \mathbb{C}^{m+1}$ con la propiedad de que la suma de los cuadrados de sus componentes es igual a cero. El espacio cotangente $T^{+} S^{m}=T^{*} S^{m}$ - \{sección-zero\} se puede dotar de una estructura compleja a traves del mapa $\sigma: T^{+} S^{m} \longrightarrow \dot{Q}_{m}=Q_{m}-\{0\}$ de modo que la variedad simpléctica $\left(T^{+} S^{m}, \widehat{w}=\left.d p \wedge d q\right|_{T^{+} S^{m}}\right)$ puede identificarse con la variedad Kähler $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$, y por la tanto los tangentes del tipo $(0,1)$ en \dot{Q}_{m} forman una polarización holomorfa. Así que un espacio de Hilbert \mathcal{H}^{\prime} de funciones holomorfas en \dot{Q}_{m} se puede obtener al realizar la cuantización geométrica (incluyendo half-form) de $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ con respecto a esta polarización holomorfa. El espacio de secciones polarizadas (incluyendo half-forms) con respecto a la polarización vertical of $T^{+} S^{m}$ se identifica con el espacio $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$. El mapa de emparejamiento (incluyendo half-forms) entre las secciones polarizadas con respecto a la polarización vertical y la polarización holomorfa se puede considerar un map de $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ a \mathcal{H}^{\prime}, pero este mapa de emparejamiento no es unitario. Ver [33] para los detalles.

Por otro lado, L. Tomas y S. Wassell en [38] introdujeron una transformada de SegalBargmann $B_{S^{2}}$ de $L^{2}\left(S^{2}, d \Omega_{S^{2}}\right)$ a un subespacio cerrado de \mathcal{B}_{2} generado por los monomios de grado par. Villegas-Blas en [40, 41 introdujo una transformada de Segal-Bargmann de $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right), m=3,5$ a un subespacio cerrado $\mathcal{F}_{n} \subset \mathcal{B}_{n}, n=4,8$ de funciones invariantes bajo la acción of $U(1), S U(2)$ respectivamente. Para los pares $(n, m)=(2,2),(4,3)$ la transformación $\boldsymbol{B}_{S^{m}}$ fue definida como la extensión lineal entre bases de representaciones irreducibles de $S O(3, \mathbb{R})$ en $L^{2}\left(S^{2}, d \Omega_{S^{2}}\right), S O(4, \mathbb{R})$ en $L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ y de $S U(2)$ en $\mathcal{B}_{2}, S U(2) \times S U(2)$ en \mathcal{B}_{4} respectivamente. Además, en [41] se muestra que $\boldsymbol{B}_{S^{m}}, m=2,3$ se puede escribir como un operador integral cuyo núcleo integral es una serie infinita de potencias en la función $\left(\rho_{(n, m)}(z) \cdot q\right)$ con $q \in S^{m}$, y $\rho_{(n, m)}$ es un mapa de $\mathbb{C}^{n}, n=2,4$ a la cuádrica nula $Q_{m}, m=2,3$. Para los pares $(n, m)=(8,5)$ es complicado implementar la idea de extension lineal entre bases de representaciones irreducibles en el dominio y rango. Así que la transformación $B_{S^{5}}$ se definió como un operador integral cuyo núcleo integral es una serie infinita de potencias en la función $\left(\rho_{(8,5)}(z) \cdot q\right)$ con $q \in S^{5}$, y $\rho_{(8,5)}(z)$ es un mapa de \mathbb{C}^{8} a la cuádrica nula Q_{5}. El map $\rho_{(8,5)}(z)$ se construyo siguiendo el procedimiento de $\rho_{(4,3)}(z)$ en [27].

Del lado matemático, los pares $(n, m)=(4,3),(8,5)$ vienen del hecho de que en estas dimensiones hay mapeos de Hopf entre esferas S^{n-1} y S^{m-1} con fibra $S^{1}=U(1), S U(2)=S^{3}$ respectivamente. Del lado físico, los pares $(n, m)=(2,2),(4,3),(8,5)$ vienen del hecho de que en estas dimensiones hay una correspondencia entre un oscilador armónico in dimension n y el problema de Kepler en dimension m. De hecho, el mapa map $\rho_{(n, m)}(z)$ tiene la propiedad de relacionar las regularizaciones de Moser y Kustaanheimo-Stiefel del problema de Kepler en dimensiones $m=2,3,5$. El mapa $\rho_{(n, m)}(z)$ tiene otra propiedad la cual esta relacionada con la transformación unitaria $B_{S^{m}}$. La función $\left(\rho_{(n, m)}(z) \cdot q\right)$ es una función generadora de una transformación canónica entre $\dot{C}^{n}=\mathbb{C}^{n}-\{0\}$ y $T^{+} S^{m} \cong \dot{Q}_{m}$. En otras palabras, la
restricción de $\rho_{(n, m)}(z)$ a una subvariedad de $\dot{\mathbb{C}}^{n}$ es una transformación canónica entre $\dot{\mathbb{C}}^{n}$ y $T^{+} S^{m} \cong \dot{Q}_{m}$, de modo que la transformada de Segal-Bargmann $B_{S^{m}}$ se puede considerar como la quantización del mapa $\rho_{(n, m)}(z)$. Ver 41 para los detalles.

En 11 Villegas-Blas y Diaz-Ortiz introdujeron una transformada de Segal-Bargmann $B_{S^{m}}$ para cualquier dimension m de $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ a un espacio de Hilbert \mathcal{E}_{m} de funciones holomorfas en la cuádrica nula Q_{m}. El espacio \mathcal{E}_{m} fue previamente introducido por Bargmann and Todorov en [5] en el escenario de representaciones tensoriales simétricas del grupo orthogonal $S O(m+1, \mathbb{R})$. Permitanme comentar que los espacios \mathcal{F}_{n} se pueden relacionar a los espacios $\mathcal{E}_{m}, m=, 3,5$ respectivamente, a traves de un mapa unitario $\mathfrak{U}_{n, m}$ el cual se define en terminos del mapa $\rho_{(n, m)}(z)$. Ver [35] para los detalles. Motivado por las dimensiones particulares $m=2,3,5$, los autores escriben $B_{S^{m}}$ como un operador integral cuyo núcleo integral es una serie infinita de potencias en la función $(\alpha \cdot q)$ con $\alpha \in Q_{m}$ y $q \in S^{m}$. Es decir, el kernel de $B_{S^{m}}$ es dado por $K_{S^{m}}(\alpha, q)=\sum_{\ell=0}^{\infty} c_{\ell}\left(\frac{\alpha \cdot q}{\hbar}\right)^{\ell}$, donde los coeficientes c_{ℓ} se determinan de modo que $B_{S^{m}}$ es una isometría entre $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ y \mathcal{E}_{m}. El espacio $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ es una suma directa de los espacios V_{ℓ} de armónicos esféricos de grado ℓ, y el espacio \mathcal{E}_{m} es una suma directa de los espacios W_{ℓ} de polinomios homogéneos de grado ℓ on Q_{m}. Así que la transformación $B_{S^{m}}$ se puede identificar con la extension lineal de los mapas unitarios $B_{S^{m, \ell}}: V_{\ell} \longrightarrow W_{\ell}$.

Ya que los espacios $L^{2}\left(\mathbb{R}^{n}, d u\right), \mathcal{B}_{n}$ así como la transformación $B_{\mathbb{R}^{n}}$ se pueden describir en escenario geométrico como se menciono anteriormente, entonces es natural buscar una descripción geométrica tanto para el espacio \mathcal{E}_{m} y la transformacion $B_{S^{m}}$. Uno de los resultados principales de esta tesis es que obtengo el espacio \mathcal{E}_{m} así como la transformación $B_{S^{m}}$ mediante un proceso de Cuantización Geométrica y Reducción Simpléctica para las dimensiones particulares $m=3,5$. Describo brevemente tal proceso en los siguientes parrafos.

Primero realizo la Reducción Simpléctica de $\mathbb{C}^{n}, n=4,8$. Defino una acción libre de un grupo de Lie compacto de matrices G_{n} en $\dot{\mathbb{C}}^{n}$, ver Cap.(2) Sect.(1). Ya que la acción de G_{n} preserva la forma simpléctica $\omega_{n}=\frac{1}{2} d \bar{z} \wedge d z$, entonces hay una mapa de momento $\mathfrak{J}_{n}: \dot{\mathbb{C}}^{n} \longrightarrow \mathfrak{g}_{n}^{*}$. Aquí \mathfrak{g}_{n}^{*} denota el dual del algebra de Lie \mathfrak{g}_{n} of G_{n} con $G_{4}=U(1)$ and $G_{8}=S U(2)$. Luego considero el cociente simpléctico $\mathfrak{J}_{n}^{-1}(0) / G_{n}$, donde $\mathfrak{J}_{n}^{-1}(0)$ denota la imagen inversa del valor regular $0 \in \mathfrak{g}_{n}^{*}$. Sigo las ideas estructurales de [14, 18] con el fin de dotar a $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ con una estructura compleja (coordenadas complejas). La acción de G_{n} se continua a una acción del grupo complexificado $\left(G_{n}\right)_{\mathbb{C}}$ en $\dot{\mathbb{C}}^{n}$. Sea M_{s} el conjunto estable en $\dot{\mathbb{C}}^{n}$. Es decir, M_{s} es el conjunto de puntos en $\dot{\mathbb{C}}^{n}$ que se pueden mover a $\mathfrak{J}_{n}^{-1}(0)$ por la acción de $\left(G_{n}\right)_{\mathbb{C}}$. De la teoria general en [14, 18], el cociente simpléctico $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ se identifica como variedad compleja con $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$. Pruebo que la cuádrica nula $\dot{Q}_{m}, m=3,5$ se puede realizar como el cociente complejo $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$. En otras palabras, muestro que cada $\alpha \in \dot{Q}_{m}$ esta asociada con un elemento en $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$. Bajo las identificaciones de $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$ con \dot{Q}_{m} y de $T^{+} S^{m}$ con \dot{Q}_{m}, pruebo que la variedad simpléctica $\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}, \widehat{\mu}\right)$ se puede identificar como una variedad de Kähler con $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. Ver proposiciones 5,7 .

A continuación, se considera la Cuantización Geométrica de $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$ con y sin halfforms. Luego realizo Reducción Cuántica. Es decir, determino el conjunto de secciones que son invariantes bajo la acción de G_{n}. En el caso real el conjunto de secciones polarizadas incluyendo half-form G_{n}-invariantes se identifica con el conjunto de funciones en $L^{2}\left(\mathbb{R}^{n}, d u\right)$ que son invariantes bajo la acción de G_{n} en $\mathbb{R}^{n}=\mathbb{R}^{n}-\{0\}$. Este conjunto de funciones se denota por $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$. En el lado complejo el conjunto de secciones polarizadas G_{n}-invariantes se identifica con el conjunto de funciones en \mathcal{B}_{n} que son invariantes bajo la acción de G_{n} en $\dot{\mathbb{C}}_{n}$. Este conjunto de funciones se denota por $\mathcal{B}_{n}^{G_{n}}$. Muestro que funciones $f(z) \in \mathcal{B}_{n}^{G_{n}}$ también son invariantes bajo la acción de $\left(G_{n}\right)_{\mathbb{C}}$ en $\dot{\mathbb{C}}^{n}$ y que $f(z)$ se puede escribir como $f(z)=\phi(\alpha(z))$ con ϕ una función en el cociente $M_{s} /\left(G_{n}\right)_{\mathbb{C}} \cong \dot{Q}_{m}$, ver Cap. (2) Sec. (1). Por lo tanto, el espacio $\mathcal{B}_{n}^{G_{n}}$ es realmente el conjunto de funciones en \mathcal{B}_{n} que son invariantes bajo la acción de $\left(G_{n}\right)_{\mathbb{C}}$
on $\dot{\mathbb{C}}^{n}$. Este conjunto de funciones holomorfas se denota por $\mathcal{B}_{n}^{\left(G_{n}\right)}{ }_{\mathbb{C}}$. Para la polarización real y compleja el proceso "primero cuantizar y luego reducir" produce el espacio de Hilbert $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ y $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ respectivamente.

Adapto las ideas de [18, Sect. 4] con el fin de calcular la norma al cuadrado de una sección holomorfa G_{n}-invariante en \mathbb{C}^{n} como una integral en el cociente $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$. Este calculo muestra que la norma al cuadrado de $f \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ se puede expresar como la norma al cuadrado de ϕ on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ en términos del producto interno del espacio \mathcal{E}_{m}. Ver teorema 3. En el caso de \mathbb{C}^{n} la inclusión de half-forms no cambia el producto interno en el espacio de secciones holomorfas. Esto se refleja en el hecho que la norma al cuadrado de ϕ en $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ se puede expresar en términos del producto interno de \mathcal{E}_{m} se incluyan o no las half-forms. Ver teorema 4. Permítanme enfatizar que obtengo la medida en \dot{Q}_{m} considerada por Bargmann and Todorov a partir de la medida Gaussiana $d \nu_{n}^{\hbar}(z)$ a traves de un proceso de reducción y que mi enfoque es diferente al de ellos. Obtuvieron la medida en \mathcal{E}_{m} al requerir que el adjunto del operador de multiplicación $\widehat{\alpha}_{j}, j=1, \ldots, m+1$ en Q_{m} sea un operador diferencial que se transforme como un $m+1$-vector. Para identificar $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ con un espacio de funciones holomorfas en \dot{Q}_{m}, pruebo que $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ considerado como una función ϕ sobre \dot{Q}_{m} es un elemento del espacio de funciones polinomiales en \dot{Q}_{m} Así que el espacio $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}, n=4,8$ se identifica con el espacio \mathcal{E}_{m} de funciones holomorfas en $Q_{m}, \mathrm{~m}=3,5$ respectivamente. Ver Cap. (3) Sec. (4).

En el lado real muestro que funciones en $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ se pueden escribir como $\varphi(u)=$ $\phi(x(u))$ con $\phi(x)$ una función en \mathbb{R}^{m} y that el espacio "primero cuantizar y luego reducir" $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ se identifica con el espacio $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ con C_{m} una constante real. Ver Cap. (3) Sec. (5).

La descripción gemétrica de $B_{S^{m}}$ es como sigue. El mapa de emparejamiento entre las polarizaciones V y P da una transformada de Segal-Bargmann $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$. El nucleo integral $A_{n}(u, z)$ of B_{n} es equivariante con respecto a las acciones de G_{n} en $\dot{\mathbb{R}}^{n}$ y $\dot{\mathbb{C}}^{n}$. Ver lemas 9, 10. La propiedad equivariante de $A_{n}(u, z)$ es debido a que considero una complexificación particular de $T^{*} \mathbb{R}^{n}$ para que la acción de G_{n} preserve la la polarización holomorfa de $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$. Pruebo que la restricción de B_{n} a $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ da una transformación unitaria $B_{0, n}: L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}} \longrightarrow \mathcal{B}_{n}^{G_{n}}$. Ver proposiciones 28,31 . Permítame recordar que funciones $f \in \mathcal{B}_{n}^{G_{n}}$ también son invariantes bajo la acción de $\left(G_{n}\right)_{\mathbb{C}}$ en $\dot{\mathbb{C}}^{n}$. Escribo $B_{0, n}$ es una forma G_{n}-invariante con el fin de mostrar que $B_{0, n}$ es en realidad un mapa de $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ a $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$. Ver teoremas 7, 8. De la identificación de $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ con $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ y de $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ con \mathcal{E}_{m}, el mapa $B_{0, n}$ se puede considerar como una transformada de Segal-Bargmann $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$. Ver corolarios 1,2 ,

El algebra de Lie $\mathfrak{s o}(m+1)$ del grupo ortogonal $S O(m+1, \mathbb{R})$ juega un role importante en la construcción de una transformada de Segal-Bargmann para esferas S^{m}. Puedo realizar una representación del algebra de Lie $\mathfrak{s o}(m+1)$ en ambos espacios $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ y \mathcal{E}_{m}. Para la dimension $m=3$ los operaores que generan la representación de $\mathfrak{s o}(4)$ se identifican con la restricción de las componentes de los operadores de momento-angular y Runge-Lenz en el eigenespacio de energía $E=-\frac{1}{2}$ del átomo de hidrógeno. Ver proposición 39. Esta construción se basa en entrelazar las representaciones de $\mathfrak{s o}(m+1)$ in $V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right), L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ y \mathcal{E}_{m}. La representación $\mathfrak{s o}(m+1)$ en $V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ se lleva a la representación de $\mathfrak{s o}(m+1)$ en los eigenespaces E_{ℓ} of $\widehat{K}_{m}=\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right)$ en $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ a traves del mapa de Fock $U_{\ell, m}$. Este hecho se comenta en [10], pero aqui lo pruebo con mis propios cálculos para las dimensiones particulares $m=3,5$. Ver proposiciones 42 y 44 . Luego considero la composición de \mathfrak{B}_{n} con el mapa $U_{\ell, m}$. Es decir, $\mathfrak{B}_{n} \circ U_{\ell, m}: V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{m}$ el cual entrelaza
las representaciones de $\mathfrak{s o}(m+1)$ en los espacios correspondientes. La transformación $\mathfrak{B}_{n} \circ U_{\ell, m}$ se identifica con la transformación $B_{S^{m}, \ell}$ usando el lema de Schur. Es decir, $\mathfrak{B}_{n} \circ U_{\ell, m}=B_{S^{m}, \ell}$ en V_{ℓ}. Ya que la transformada de Segal-Bargmann $B_{S^{m}}$ se puede definir como la extensión lineal de $B_{S^{m}, \ell}$, entonces la igualdad $\mathfrak{B}_{n} \circ U_{\ell, m}=B_{S^{m}, \ell}$ indica que $B_{S^{m}}$ se puede considerar como la extension lineal de los mapas $\mathfrak{B}_{n} \circ U_{\ell, m}$ y que $B_{S^{m}}$ se puede entender como la composición de \mathfrak{B}_{n} con el mapa de Fock $U_{\ell, m}$. De esta manera puedo dar la descripción geométrica de $B_{S^{m}}$ para las dimensiones $m=3,5$.

El enfoque discutido arriba para obtener el espacio \mathcal{E}_{m} se basa en primero cuantizar \mathbb{C}^{n} y luego reducir por G_{n}, lo cual equivale a fijarse en el conjunto de secciones holomorfas $G_{n^{-}}$ invariantes. Alternativamente, puedo considerar primero la Redución Simpléctica de \mathbb{C}^{n} por G_{n} y luego cuantizar la variedad Kähler $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$. Esto nos produce un espacio de Hilbert \mathcal{H}^{\prime} en \dot{Q}_{m} el cual no es el espacio \mathcal{E}_{m}.

Se sabe que los procesos "primero cuantizar y luego reducir" y "primero reducir y luego cuantizar" no conmutan en general. Es decir, hay un mapa de Guillemin-Sternberg (GS) (con y sin half-forms) entre el espacio de secciones holomorfas G-invariantes en la variedad no reducida y secciones holomorfas en la variedad reducida, pero el mapa GS no es unitario con respecto al producto interno de los espacios de Hilbert correspondientes. Ver [18 para los detalles. La segunda contribución principal de la tesis esta relacionada con este punto. Estudio ambos procesos descritos arriba y construyo un mapa GS. Esto es, primero defino un mapa GS A_{n} sin half-forms entre las secciones holomorfas G_{n}-invariantes en \mathbb{C}^{n} y secciones holomorfas en \dot{Q}_{m}, luego extiendo el mapa A_{n} a un mapa GS S_{n} incluyendo half-forms. Aunque los mapas A_{n} y S_{n} se definen siguiendo las ideas del caso de variedades compactas de Kähler en [18], los mapas A_{n} and S_{n} no se han estudiado antes ya que estos mapas se definen sobre variedades de Kähler no compactas. Sin embargo, los mapas A_{n}, S_{n} tienen las mismas propiedades asintóticas como en el caso compacto. Muestro que una función relacionada con el volumen de la G_{n}-orbita en $\mathfrak{J}_{n}^{-1}(0)$ es la razón para que el mapa A_{n} no llegue a ser unitario en el limite $\hbar \rightarrow 0$. A diferencia del caso sin half-forms, el mapa S_{n} llega a ser unitario en el limite semiclásico. Ver Cap. (3) Sec. (4). Permítanme remarcar que la inclusión de half-forms es el ingrediente clave para que el mapa S_{n} llegue a ser unitario.

Termino la introducción con dos comentarios. (i) En la referencia [29] se introduce un espacio de Hilbert de funciones holomorfas en Q_{3}, pero la medida y el núcleo reproductor de tal espacio son diferentes a los correspondientes en \mathcal{E}_{3}. (ii) En [16] se considera una transformación unitaria de $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ a un espacio de funciones holomorfas en una cuádrica no nula $S_{\mathbb{C}}$. Déjenme comentar que $S_{\mathbb{C}}$ se puede considerarse como otra estructura compleja de $T^{+} S^{m}$. Además, esta cuádrica no-nula juega un papel central en ese caso, así que el enfoque en [16] es diferente al mío.

Para conveniencia de los lectores, explico cómo esta organizado este trabajo.
El primer capitulo contiene aspectos de Mecánica Clásica y Cuántica. En el lado clásico tres sistemas son relevantes en este trabajo, el flujo geodésico en $T^{*} S^{m}$, el problema de Kepler en $T^{*}\left(\mathbb{R}^{m}-\{0\}\right)$ y el oscilador armónico en $T^{*} \mathbb{R}^{n}$. Reviso brevemente la formulación Hamiltonia de la Mecánica Clásica en general y luego doy la formulación Hamiltoniana de estos sistemas. También describo las regularizaciones de Moser y Kustaanheimo-Stiefel del problema de Kepler.

Del lado cuántico doy una breve exposición de la representación de Schrödinger en $L^{2}\left(\mathbb{R}^{n}, d u\right)$. También doy una descripción breve de los espacios \mathcal{B}_{n} en \mathbb{C}^{n} y \mathcal{E}_{m} en Q_{m} asi como de las transformaciones unitarias $B_{\mathbb{R}^{n}}$ y $B_{S^{m}}$.

El segundo capitulo contiene mas tópicos de Mecánica Clásica y Cuántica. La Reducción Simpléctica asi como la Cuantización Geométrica de $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$ se llevan a cabo. Al final del capitulo considero la Reducción Cuántica. Esto es, determino las secciones polarizadas G_{n}-invariantes para ambos la polarización vertical y holomorfa.

El tercer capitulo contiene los cálculos para construir los mapas GS con y sin half-forms, expresar la norma al cuadrado de una sección holomorfa G_{n}-invariante como una integral en el cociente $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ e identificar el espacio $\mathcal{B}_{n}^{\left(G_{n}\right) \mathrm{C}}$ con \mathcal{E}_{m}.

En el capitulo cuarto expongo con cierto detalle el emparejamiento entre las secciones polarizadas con respecto a las polarizaciones V y P. La transformación unitaria $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow$ \mathcal{B}_{n} se realiza como el mapa de emparejamiento entre estas secciones polarizadas. Además, obtengo la transformada de Segal-Bargmann $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$ a partir de está $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ a traves del proceso "primero cuantizar y luego reducir".

El capitulo quinto contiene los cálculos que involucran la construcción de la transformación unitaria $\mathfrak{B}_{n} \circ U_{\mu, m}$ y la identificación de $\mathfrak{B}_{n} \circ U_{\mu, m}$ con $B_{S^{m}, \ell}$.

Adicionalmente, incluyo dos apéndices. El apéndice A contiene la construcción de los mapas $\rho_{(n, m)}(z)$, y permítanme comentar que mi enfoque es diferente de los dados en [27, 41]. La cuantización geométrica de la cuádrica nula \dot{Q}_{m} se expone en el apéndice B.

Classical and Quantum Mechanics

This chapter is devoted to presenting previous results whose set-up involves aspects of Classical and Quantum Mechanics. I give a brief exposition of the Hamiltonian formulation of Classical Mechanics on a symplectic manifold. The classical systems given by the harmonic oscillator on $T^{*} \mathbb{R}^{n}$, the Kepler problem on $T^{*} \mathbb{R}^{m}$ and the geodesic flow on $T^{*} S^{m}$ are relevant for this work, so I give a short exposition of the Hamiltonian formulation of these systems.

Moreover, I give a brief exposition of the Moser regularization for the Kepler problem. Namely, when the geodesic flow and the Kepler problem are restricted to a fixed energy hypersurface, the Hamilton equations of the geodesic flow can be carried into the Hamilton equations of the Kepler problem after a time reparametrization via a canonical transformation which is called the Moser map.

On the quantum side I describe two representations of the harmonic oscillator, which are the Schrödinger representation in the Hilbert space $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and the Segal-Bargmann representation in a Hilbert space \mathcal{B}_{n} of holomorphic functions on \mathbb{C}^{n}. In addition, I describe the unitary transformation $B_{\mathbb{R}^{n}}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ which intertwines the representations of Schrödinger and Segal-Bargmann. The operator $B_{\mathbb{R}^{n}}$ is the so-called Segal-Bargmann Transform (SBT).

On the other hand, it is interesting to consider the quantum counterpart of the relationship between the geodesic flow and the Hamiltonian flow of the Kepler problem. Namely, it might be constructed an SBT for space $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ into a Hilbert space of holomorphic functions, so that a holomorphic representation of the Kepler problem could be realized. Regarding the last point, the cotangent bundle $T^{*} S^{m}$ minus its zero section is endowed with a complex structure by identifying it with the null quadric $\dot{Q}_{m}=Q_{m}-\{0\}$, see equation 55 . I then describe a Hilbert space \mathcal{E}_{m} of holomorphic functions on Q_{m}, which was introduced in [5]. I describe the SBT $B_{S^{m}}: L^{2}\left(S^{m}, d \Omega_{S^{m}}\right) \longrightarrow \mathcal{E}_{m}$ at the end of the chapter. The unitary transformation $B_{S^{m}}$ was introduced in [1] in a setting of coherent states and semiclassical analysis on S^{m}.

1. Hamiltonian Formulation of Classical Mechanics

The main ingredient in the Hamiltonian description of Classical Mechanics is a symplectic manifold which is a pair (M, ω), where M is a $2 m$-dimensional manifold and ω (symplectic form) is a closed non-degenerate two-form on M. The Darboux theorem indicates that there are local coordinates (canonical coordinates) $(x, y)=\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{m}\right)$ on M such that ω can be written as $\omega=d y \wedge d x=\sum_{i=1}^{m} d y_{i} \wedge d x_{i}$. See [1] for details. When $M=T^{*} Q$ is the cotangent bundle of an m-dimensional manifold Q , the points $x \in \mathbb{R}^{m}$ are
local coordinates on Q, and the points $y \in \mathbb{R}^{m}$ are the corresponding local coordinates for $T_{q}^{*} Q$ with q the associated point to $x \in \mathbb{R}^{m}$ on Q. The coordinates $x, y \in \mathbb{R}^{m}$ are called the position and generalized momentum.

The set of smooth real-valued functions on M is denoted by $\mathcal{F}(M)$. The elements of $\mathcal{F}(M)$ will be called physical observables. Given $f \in \mathcal{F}(M)$, I can associate to f a vector field X_{f} which is determined by the symplectic form $\omega=d y \wedge d x$ as follows

$$
\begin{equation*}
\iota_{X_{f}} \omega(\cdot)=d f(\cdot) \text { in local coordinates } X_{f}=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial y_{k}} \frac{\partial}{\partial x_{k}}-\frac{\partial f}{\partial x_{k}} \frac{\partial}{\partial y_{k}}\right) \tag{1}
\end{equation*}
$$

A curve γ in M is a map $\gamma:(a, b) \subset \mathbb{R} \longrightarrow M$ which can be written in local coordinates $(x, y) \in \mathbb{R}^{2 n}$ as $\gamma(t)=(x(t), y(t))$. The integral curves of X_{f} in (1) are determined by the following differential equations

$$
\begin{equation*}
\frac{d x_{k}}{d t}=\frac{\partial f}{\partial y_{k}}, \quad \frac{d y_{k}}{d t}=-\frac{\partial f}{\partial x_{k}}, \quad k=1, \ldots, m \tag{2}
\end{equation*}
$$

The equations in (2) are called the Hamilton equations, and the vector field X_{f} in (1) is called the Hamiltonian vector field associated to f.

Consider a classical system with phase space the symplectic manifold $M=T^{*} Q$. The function $H \in \mathcal{F}\left(T^{*} Q\right)$ given by

$$
\begin{equation*}
H: T^{*} Q \longrightarrow \mathbb{R}, \quad H(x, y)=\frac{|y|^{2}}{2 m}+V(x) \tag{3}
\end{equation*}
$$

is called the energy (Hamiltonian) function of the classical system. The term $\frac{|y|^{2}}{2 m}$ is the kinetic energy, where m is the mass of the system. The function $V: Q \longrightarrow \mathbb{R}$ is the potential energy. The Hamilton equations of $H(x, y)$ in (3) are given by

$$
\begin{equation*}
\frac{d x_{k}}{d t}=\frac{\partial H}{\partial y_{k}}, \quad \frac{d y_{k}}{d t}=-\frac{\partial H}{\partial x_{k}} \tag{4}
\end{equation*}
$$

The solution of the equations in (4) determines the time evolution of the system.
Definition 1. The Poisson bracket of $f, g \in \mathcal{F}(M)$ is an element in $\mathcal{F}(M)$ that is denoted by $\{f, g\}$. The function $\{f, g\}$ is determined by the symplectic form ω and can be written in local coordinates as follows

$$
\begin{equation*}
\{f, g\}(m)=\omega\left(X_{g}, X_{f}\right)(m)=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial x_{k}} \frac{\partial g}{\partial y_{k}}-\frac{\partial f}{\partial y_{k}} \frac{\partial g}{\partial x_{k}}\right)(m) \quad \text { with } \quad m=(x, y) \in M \tag{5}
\end{equation*}
$$

The Poisson bracket has the following properties
Proposition 1. The following equalities hold for smooth functions f, g, h on M.
(i) $\{f, g+c h\}=\{f, g\}+c\{f, h\}$ for all $c \in \mathbb{R}$
(ii) $\{f, g\}=-\{g, f\}$
(iii) $\{f, g h\}=\{f, g\} h+g\{f, h\}$
(iv) $\{\{f, g\}, h\}+\{\{h, f\}, g\}+\{\{g, h\}, f\}=0$.

The following elementary result will provide a helpful analogy to the canonical commutation relations (CCR) in Quantum Mechanics.
Proposition 2. The position and momentum coordinates satisfy the following Poisson bracket relations:

$$
\begin{align*}
\left\{x_{j}, x_{k}\right\} & =0 \\
\left\{y_{j}, y_{k}\right\} & =0 \\
\left\{x_{j}, y_{k}\right\} & =\delta_{j k} . \tag{6}
\end{align*}
$$

Let f be a function in $\mathcal{F}(M)$. The time evolution of f is determined as follows.
Proposition 3. Consider $\gamma(t)=(x(t), y(t))$ a solution of the Hamilton equations in (4), and let f be a function in $\mathcal{F}(M)$. The time evolution of f with respect to H is given by

$$
\begin{equation*}
\frac{d}{d t} f(x(t), y(t))=\{f, H\}(x(t), y(t)) \tag{7}
\end{equation*}
$$

The proposition 3 is written in a more concrete form as

$$
\frac{d f}{d t}=\{f, H\}
$$

where it is understood that the time derivative is calculated along the solutions of the Hamilton equations for H.

Proof. Equation (7) is a consequence of the chain rule and Hamilton equations in (4). I have

$$
\frac{d}{d t} f(x(t), y(t))=\sum_{k=1}^{m}\left(\frac{\partial f}{\partial x_{k}} \frac{d x_{k}}{d t}+\frac{\partial f}{\partial y_{k}} \frac{d y_{k}}{d t}\right)=\sum_{k=1}^{m}\left(\frac{\partial f}{\partial x_{k}} \frac{\partial H}{\partial y_{k}}-\frac{\partial f}{\partial y_{k}} \frac{\partial H}{\partial x_{k}}\right)=\{f, H\}_{(x(t), y(t))}
$$

Note that Proposition 3 includes the Hamilton equations as a special case by choosing $f(x, y)=x_{k}$ and $f(x, y)=y_{k}$. A function $f \in \mathcal{F}(M)$ that satisfies $\{f, H\}=0$ is called a conserved quantity. In particular the Hamiltonian H itself is a conserved quantity.
1.1. The Kepler Problem and The Harmonic Oscillator. Consider the physical system formed by the sun and a planet, which interact through a force whose magnitude varies as the inverse of the square of the distance between them. Since the sun is much more massive than any of the planets, then the position of the sun can be considered fixed at the origin of our coordinate system. The sun exerts a force on the planet given by

$$
\begin{equation*}
\vec{F}=-k \frac{x}{|x|^{3}}, \quad x \in \mathbb{R}^{m}-\{0\} \tag{8}
\end{equation*}
$$

The vector x in (8) denotes the position of the planet. The constant k is equal to $k=G m M$, where m is the mass of the planet, M is the mass of the sun, and G is the universal gravitational constant. The force \vec{F} in (8) can be written as $\vec{F}=-\nabla V$, where the potential energy V is given by

$$
\begin{equation*}
V(x)=-\frac{k}{|x|}, \quad x \in \mathbb{R}^{m}-\{0\} \tag{9}
\end{equation*}
$$

The Hamiltonian function of this system is given by

$$
\begin{equation*}
H(x, y)=\frac{1}{2 m}|y|^{2}-\frac{k}{|x|} \tag{10}
\end{equation*}
$$

The m-dimensional Kepler problem is a classical system with phase space $\left(T^{*}\left(\mathbb{R}^{m}-\{0\}\right), \omega=\right.$ $d y \wedge d x$) and Hamiltonian function H given in 10 . The Hamilton equations of the Kepler problem in dimension m are given by

$$
\begin{equation*}
\frac{d x_{k}}{d t}=y_{k}, \quad \frac{d y_{k}}{d t}=-k \frac{x_{k}}{|x|^{3}}, \quad k=1, \ldots, m \tag{11}
\end{equation*}
$$

For dimension $m=3$ the Kepler problem has seven conserved quantities which are the Hamiltonian function H, the angular momentum \vec{J} and the Runge-Lenz vector \vec{A}. The functions \vec{J} and \vec{A} are given by

$$
\begin{equation*}
\vec{J}=\vec{x} \times \vec{y}, \quad \vec{A}=\frac{1}{m k} \vec{y} \times \vec{J}-\frac{\vec{x}}{|x|} . \tag{12}
\end{equation*}
$$

The functions \vec{A}, \vec{J} and H are not independent. It is not difficult to see that \vec{A} and \vec{J} satisfy the following equations

$$
\begin{equation*}
\vec{A} \cdot \vec{J}=0 \quad \text { and } \quad|\vec{A}|^{2}=1+\frac{2|\vec{J}|^{2}}{m k} E \tag{13}
\end{equation*}
$$

where $E=H$ is the energy of the system. Moreover, the conserved quantities H, \vec{J} and \vec{A} can be used to study the trajectories of the Kepler problem. See [17, Sect. 2.6] for details.

The harmonic oscillator is another relevant physical system for this work. Let me first describe the one-dimensional harmonic oscillator. This system consists of a particle of mass M tied to a spring of constant κ. As the particle moves from its equilibrium position, it feels a spring restoring force $F=-\kappa u$ proportional to the displacement $u \in \mathbb{R}$. The force F can be written as $F(u)=-\frac{\partial V}{\partial u}$, where the potential energy V is given by $V(u)=\kappa \frac{u^{2}}{2}$. The Hamiltonian function of the one-dimensional harmonic oscillator is given by

$$
H(u, v)=\frac{1}{2 M} v^{2}+\frac{\kappa}{2} u^{2}, \quad(u, v) \in T^{*} \mathbb{R}
$$

The n-dimensional isotropic harmonic oscillator is a system consisting of n one-dimensional harmonic oscillators with phase space $\left(T^{*} \mathbb{R}^{n}, \omega=d v \wedge d u\right)$, and the Hamiltonian function is given by

$$
\begin{equation*}
H(u, v)=\frac{1}{2 M}|v|^{2}+\frac{\kappa}{2}|u|^{2}, \quad(u, v) \in T^{*} \mathbb{R}^{n} \tag{14}
\end{equation*}
$$

The Hamilton equations of $H(u, v)$ in (14) are given by

$$
\frac{d u_{k}}{d t}=\frac{1}{M} v_{k}, \quad \frac{d v_{k}}{d t}=-\kappa u_{k}, \quad k=1, \ldots, n
$$

1.2. The Geodesic Flow on the m-sphere and The Kepler Problem. Consider the symplectic manifold $T^{*} \mathbb{R}^{m+1} \cong \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}$ with coordinates $(q, p) \in \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}$ and symplectic form $\omega=d p \wedge d q$. The cotangent bundle of the m-sphere S^{m} is denoted by $T^{*} S^{m}$. The symplectic manifold $\left(T^{*} S^{m}, \widehat{\omega}\right)$ is defined as follows

$$
\begin{equation*}
T^{*} S^{m}=\left\{(q, p) \in \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}| | q \mid=1\langle q, p\rangle=0\right\} \text { and } \widehat{w}=\left.d p \wedge d q\right|_{T^{*} S^{m}} \tag{15}
\end{equation*}
$$

Consider the function $F \in \mathcal{F}\left(T^{*} \mathbb{R}^{m+1}\right)$ given by $F(q, p)=\frac{1}{2}|q|^{2}|p|^{2}$. The Hamiltonian vector field X_{F} of F is given by

$$
\begin{equation*}
X_{F}=\sum_{j=1}^{m+1}|q|^{2} p_{j} \frac{\partial}{\partial q_{j}}-|p|^{2} q_{j} \frac{\partial}{\partial p_{j}} \tag{16}
\end{equation*}
$$

The integral curves of X_{F} in (16) are determined by the following differential equations

$$
\begin{equation*}
\frac{d q_{j}}{d s}=|q|^{2} p_{j}, \quad \frac{d p_{j}}{d s}=-|p|^{2} q_{j}, \quad j=1, \ldots, m+1 \tag{17}
\end{equation*}
$$

Let $\gamma(s)=(q(s), p(s))$ be an integral curve of X_{F}. A straightforward calculation shows that the following equalities hold

$$
\begin{equation*}
\frac{d}{d s}|q|^{2}=2|q|(q(s) \cdot p(s)), \quad \frac{d}{d s}(q(s) \cdot p(s))=0 \tag{18}
\end{equation*}
$$

Equations in (18) indicate that the integral curves of X_{F} preserve the cotangent bundle $T^{*} S^{m}$. That is, if the initial condition $\left(q_{0}, p_{0}\right)$ belongs to $T^{*} S^{m}$, then the integral curves $\gamma(s)=$ $(q(s), p(s))$ of X_{F} will remain on $T^{*} S^{m}$ for all s in the domain of $\gamma(s)$. Moreover, if the equations in 17 are restricted to $T^{*} S^{m}$, then they can be written as follows

$$
\begin{equation*}
\frac{d q_{j}}{d s}=p_{j}, \quad \frac{d p_{j}}{d s}=-|p|^{2} q_{j}, \quad j=1, \ldots, m+1 \tag{19}
\end{equation*}
$$

Let $\gamma(s)=(q(s), p(s))$ be a solution of equations in 19). A straightforward calculation shows that the curve $q(s) \in S^{m}$ satisfies the following differential equation

$$
\begin{equation*}
\frac{d^{2} q}{d s^{2}}+\left|\frac{d q}{d s}\right|^{2} q(s)=0 \tag{20}
\end{equation*}
$$

A geodesic on S^{m} is a curve $q(s) \in S^{m}$ that satisfies equation 20). The geodesic flow is the set of integral curves of the equations in 19 .

The equations of the geodesic flow in (19) can be carried into the Hamilton equations of the Kepler problem in 11 on a fixed hypersurface of negative energy through the stereographic projection. This relationship between the geodesic flow and the Kepler problem is known as the Moser regularization of the Kepler problem. The Moser regularization includes the collision-orbits, which are defined when $J=0$. In the next paragraphs I briefly expose the Moser regularization.

The stereographic projection is a diffeomorphism from $S^{m}-\{$ north pole $\}=S^{m}-\{N\}$ to \mathbb{R}^{m} and is written in coordinates as follows

$$
S^{m}-\{N\} \ni q \longrightarrow x \in \mathbb{R}^{m}, \quad x_{k}=\frac{q_{k}}{1-q_{m+1}}, \quad k=1, \ldots, m
$$

The inverse of the stereographic projection is given by

$$
\mathbb{R}^{m} \ni x \longrightarrow q \in S^{m}-\{N\}, \quad q_{k}=\frac{2 x_{k}}{1+x^{2}}, \quad q_{n+1}=\frac{x^{2}-1}{x^{2}+1}, \quad k=1, \ldots, m
$$

The stereographic projection can be lifted to a symplectomorphism between the corresponding cotangent spaces by requiring $y \cdot d x=p \cdot d q$. This symplectomorphism can be written in coordinates as follows

$$
\begin{align*}
& T^{*}\left(S^{m}-\{N\}\right) \ni(q, p) \longrightarrow(x, y) \in T^{*} \mathbb{R}^{m} \tag{21}\\
x_{k}= & \frac{q_{k}}{1-q_{m+1}}, \quad y_{k}=p_{k}\left(1-p_{m+1}\right)+p_{m+1} q_{k}, \quad k=1, \ldots, m
\end{align*}
$$

The inverse of the map in 21 is given by

$$
\begin{align*}
& T^{*} \mathbb{R}^{m} \ni(x, y) \longrightarrow(q, p) \in T^{*}\left(S^{m}-\{N\}\right) \tag{22}\\
q_{k} & =\frac{2 x_{k}}{1+x^{2}}, \quad q_{m+1}=\frac{x^{2}-1}{x^{2}+1}, \quad p_{k}=\frac{1}{2}\left(x^{2}+1\right) y_{k}-(x \cdot y) x_{k}, \quad p_{m+1}=x \cdot y
\end{align*}
$$

Definition 2. The Moser map $\Phi_{M}: T^{*} \mathbb{R}^{m} \longrightarrow T^{*}\left(S^{m}-\{N\}\right)$ is a symplectomorphism which is defined as the composition of the $\operatorname{map}(x, y) \longrightarrow(y,-x)$ (Geometric Fourier transform) with the map in (22). The map Φ_{M} is written in coordinates as follows

$$
\begin{align*}
q_{k}=\frac{2 y_{k}}{y^{2}+1}, q_{m+1}=\frac{y^{2}-1}{y^{2}+1}, p_{k}=-\frac{1}{2}\left(y^{2}+1\right) x_{k}+(x . y) y_{k}, \quad p_{m+1}=- & (x \cdot y) \tag{23}\\
& k=1, \ldots, m
\end{align*}
$$

The restriction of $F(q, p)=\frac{1}{2}|p|^{2}|q|^{2}$ to $T^{*} S^{m}$ is denoted by $\tilde{F}(q, p)=\frac{1}{2}|p|^{2}$. The function $\tilde{F}(q, p)=\frac{1}{2}|p|^{2}$ is carried into the function $\tilde{F}(x, y)=\frac{1}{8}|x|^{2}\left(|y|^{2}+1\right)^{2}$ on $T^{*} \mathbb{R}^{m}$ through the map Φ_{M}. The equations in 19 are carried into the Hamilton equations for $\tilde{F}(x, y)$. Namely,

$$
\begin{equation*}
\frac{d x_{k}}{d s}=\frac{\partial \tilde{F}}{\partial y_{k}}, \frac{d y_{k}}{d s}=-\frac{\partial \tilde{F}}{\partial x_{k}} \tag{24}
\end{equation*}
$$

More explicitly, the Hamilton equations for $\tilde{F}(x, y)$ are given by

$$
\frac{d x_{k}}{d s}=\frac{1}{2}|x|^{2}\left(|y|^{2}+1\right) y_{k}, \quad \frac{d y_{k}}{d s}=-\frac{1}{4}\left(|y|^{2}+1\right)^{2} x_{k}, \quad k=1, \ldots, m
$$

Note that the time variable s of equations in (24) is the same time variable of equations in (19).

Consider the energy hypersurface $\tilde{F}(q, p)=\frac{1}{2} \lambda^{2}$ on $T^{*}\left(S^{m}-\{N\}\right)$ which can be written as $\tilde{F}(x, y)=\frac{1}{2} \lambda^{2}$ on $T^{*} \mathbb{R}^{m}$. Now let me define the following function

$$
\begin{equation*}
G(x, y)=\sqrt{2 \lambda^{2} \tilde{F}(x, y)}-\lambda^{2} \tag{25}
\end{equation*}
$$

A straightforward calculation shows that the following equalities hold

$$
\begin{align*}
\frac{\partial G}{\partial x_{k}} & =\left.\frac{1}{\sqrt{2 \lambda^{2} \tilde{F}(x, y)}} \lambda^{2} \frac{\partial \tilde{F}}{\partial x_{k}}\right|_{\tilde{F}=\frac{1}{2} \lambda^{2}}=\frac{\partial \tilde{F}}{\partial x_{k}} \\
\frac{\partial G}{\partial y_{k}} & =\left.\frac{1}{\sqrt{2 \lambda^{2} \tilde{F}(x, y)}} \lambda^{2} \frac{\partial \tilde{F}}{\partial y_{k}}\right|_{\tilde{F}=\frac{1}{2} \lambda^{2}}=\frac{\partial \tilde{F}}{\partial y_{k}}, \quad k=1, \ldots, m \tag{26}
\end{align*}
$$

Note that if the function $\tilde{F}(x, y)$ is restricted to $\tilde{F}(x, y)=\frac{1}{2} \lambda^{2}$, then the function $G(x, y)$ satisfies $G(x, y)=0$. The equalities in (26) indicate that the Hamilton equations in 19) can be written as the Hamilton equations for $G(x, y)$ restricted to the hypersurface $G(x, y)=0$. Namely,

$$
\begin{equation*}
\frac{d x_{k}}{d s}=\left.\frac{\partial G}{\partial y_{k}}\right|_{G=0}, \quad \frac{d y_{k}}{d s}=-\left.\frac{\partial G}{\partial x_{k}}\right|_{G=0} \tag{27}
\end{equation*}
$$

The function $G(x, y)$ is given by $G(x, y)=\lambda K(x, y)-\lambda^{2}$ with $K=\frac{1}{2}|x|\left(|y|^{2}+1\right)$. A short calculation shows that

$$
\begin{equation*}
\left.\frac{\partial G}{\partial x_{k}}\right|_{G=0}=\left.\lambda \frac{\partial K}{\partial x_{k}}\right|_{K=\lambda},\left.\quad \frac{\partial G}{\partial y_{k}}\right|_{G=0}=\left.\lambda \frac{\partial K}{\partial y_{k}}\right|_{K=\lambda} \tag{28}
\end{equation*}
$$

Let me denote by τ the time evolution of the Hamilton equations for $K(x, y)$. Equality (28) indicates that if τ is written as $\tau=\lambda s$, then the solution of the Hamilton equations for $K(x, y)$ corresponds to the solution of the Hamilton equations for $G(x, y)$. So let me write the Hamilton equations of the geodesic flow as the Hamilton equations for the function $K(x, y)$

$$
\begin{equation*}
\frac{d x_{k}}{d \tau}=\left.\frac{\partial K}{\partial y_{k}}\right|_{K=\lambda}, \quad \frac{d y_{k}}{d \tau}=-\left.\frac{\partial K}{\partial x_{k}}\right|_{K=\lambda} \tag{29}
\end{equation*}
$$

I write the Hamilton equations of the geodesic flow as the Hamilton equations for $K(x, y)$ because the canonical quantization of $K(x, y)$ is an operator that plays an important role in the construction of a Segal-Bargmann transform for spheres S^{m}, see chapter 5 for details.

The Hamilton equations for $K(x, y)$ in (29) can be carried into the Hamilton equations of the Kepler problem as follows. Let me introduce a new time parameter t via the following equation

$$
\begin{equation*}
d \tau=\left(\lambda^{2}|x|\right)^{-1} d t \tag{30}
\end{equation*}
$$

The equations in (29) can be written regarding the new time t as follows

$$
\begin{equation*}
\frac{d x_{k}}{d t}=\left(\lambda^{2}|x|\right)^{-1} \frac{\partial K}{\partial y_{k}}, \quad \frac{d y_{k}}{d t}=-\left(\lambda^{2}|x|\right)^{-1} \frac{\partial K}{\partial x_{k}} \tag{31}
\end{equation*}
$$

Consider the following function

$$
\begin{equation*}
H(x, y)=\left(\lambda^{2}|x|\right)^{-1}(K(x, y)-\lambda)-\frac{1}{2 \lambda^{2}} \tag{32}
\end{equation*}
$$

A straightforward calculation shows that

$$
\begin{equation*}
\left.\frac{\partial H}{\partial x_{k}}\right|_{H=-\frac{1}{2 \lambda^{2}}}=\left.\left(\lambda^{2}|x|\right)^{-1} \frac{\partial K}{\partial x_{k}}\right|_{K=\lambda},\left.\quad \frac{\partial H}{\partial y_{k}}\right|_{H=-\frac{1}{2 \lambda^{2}}}=\left.\left(\lambda^{2}|x|\right)^{-1} \frac{\partial K}{\partial y_{k}}\right|_{K=\lambda} \tag{33}
\end{equation*}
$$

It follows from equality (33) that equations in (31) can be written in terms of the function $H(x, y)$ as follows

$$
\begin{equation*}
\frac{d x_{k}}{d t}=\left.\frac{\partial H}{\partial y_{k}}\right|_{H=-\frac{1}{2 \lambda^{2}}}, \quad \frac{d y_{k}}{d t}=-\left.\frac{\partial H}{\partial x_{k}}\right|_{H=-\frac{1}{2 \lambda^{2}}} \tag{34}
\end{equation*}
$$

The equations in (34) are the Hamilton equations of the Kepler problem. Let me first show that the function $H(x, y)$ can be identified with the Hamiltonian function of the Kepler problem. Taking $K(x, y)=\frac{1}{2}|x|\left(|y|^{2}+1\right)$ a short calculation shows that

$$
\begin{equation*}
H(x, y)=\frac{1}{2}\left(\frac{|y|^{2}}{\lambda^{2}}\right)-\frac{1}{\lambda|x|} \tag{35}
\end{equation*}
$$

Let me consider the following transformation $X=\lambda x, Y=\frac{y}{\lambda}$. The function $H(x, y)$ in terms of the variable X, Y can be written as follows

$$
\begin{equation*}
\boldsymbol{H}(X, Y)=\frac{1}{2}|Y|^{2}-\frac{1}{|X|} \tag{36}
\end{equation*}
$$

The function $\boldsymbol{H}(X, Y)$ is the Hamiltonian function of the Kepler problem. A short calculation shows that $d Y \wedge d X=d y \wedge d x$, so the equations in (34) can be written as the Hamilton equations for the function $\boldsymbol{H}(X, Y)$ on the energy hypersurface $\boldsymbol{H}=-\frac{1}{2 \lambda^{2}}$. Namely

$$
\frac{d X_{k}}{d t}=\frac{\partial \boldsymbol{H}}{\partial Y_{k}}, \quad \frac{d Y_{k}}{d t}=-\frac{\partial \boldsymbol{H}}{\partial X_{k}}
$$

More explicitly, the above equations are given by

$$
\begin{equation*}
\frac{d X_{k}}{d t}=Y_{k}, \quad \frac{d Y_{k}}{d t}=-\frac{X_{k}}{|X|^{3}}, \quad k=1, \ldots, n \tag{37}
\end{equation*}
$$

The equations in (37) are the Hamiltonian equations of the Kepler problem. Therefore the equations of the geodesic flow in 19 on the energy hypersurface $\tilde{F}=\frac{1}{2} \lambda^{2}$ can be carried into the Hamilton equations of the Kepler problem on the energy hypersurface $\boldsymbol{H}=-\frac{1}{2 \lambda^{2}}$ via the Moser map after a time reparametrization.
1.3. Kustaanheimo-Stiefel Transformation. There is a duality between the m-dimensional Kepler problem and the n-dimensional harmonic oscillator with fixed energy. This duality occurs for the particular dimensions $(n, m)=(8,5),(4,3),(2,2)$. From the mathematical point of view the roots of this duality come from the Hopf fibrations between spheres. Let me explain the physical case $(4,3)$. The other two cases are similar. Consider the following transformation
$\Pi_{I}: \mathbb{R}^{4} \ni u \longrightarrow x \in \mathbb{R}^{3}, x=A_{4}(u) u$, where $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ 0\end{array}\right)=\underbrace{\left(\begin{array}{cccc}u_{3} & u_{4} & u_{1} & u_{2} \\ u_{4} & -u_{3} & -u_{2} & u_{1} \\ u_{1} & u_{2} & -u_{3} & -u_{4} \\ u_{2} & -u_{1} & u_{4} & -u_{3}\end{array}\right)}_{A_{4}(u)}\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right)$.

A straightforward calculation shows that the rows and columns of $A_{4}(u)$ are orthogonal among themselves. It follows from this orthogonal property that $A_{4}(u)^{T} A_{4}(u)=|u|^{2} \mathbb{I}$ which implies $|x|=|u|^{2}$. Let me consider the action of $S^{1}=U(1)=S O(2)$ on $\dot{\mathbb{R}}^{4}=\mathbb{R}^{4}-\{0\}$ given by

$$
\Phi_{R_{\theta}}: \dot{\mathbb{R}^{4}} \longrightarrow \dot{\mathbb{R}^{4}}, \quad \Phi_{R_{\theta}}(u)=\left(R_{\theta}\binom{u_{1}}{u_{2}}, R_{\theta}\binom{u_{3}}{u_{4}}\right) \text { with } R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

A calculation shows that the map Π_{I} is invariant under the action $\Phi_{R_{\theta}}$. That is, $\Pi_{I}\left(\Phi_{R_{\theta}}(u)\right)=$ $\Pi_{I}(u)$. Moreover, equality $|x|=|u|^{2}$ implies that when $u \in S^{3}, x \in \mathbb{R}^{3}$ is an element in S^{2}. The map $\left.\Pi_{I}\right|_{S^{3}}$ is the Hopf map $S^{3} \longrightarrow S^{2}$ with fiber S^{1}.

The action of $U(1)$ on $\dot{\mathbb{R}}^{4}$ can be lifted to an action on $T^{*} \dot{\mathbb{R}}^{4}$ which is given by

$$
\tilde{\Phi}_{R_{\theta}}: T^{*}\left(\mathbb{R}^{4}-\{0\}\right) \longrightarrow T^{*}\left(\mathbb{R}^{4}-\{0\}\right), \tilde{\Phi}_{R_{\theta}}(u, v)=\left(R_{\theta}\binom{u_{1}}{u_{2}}, R_{\theta}\binom{u_{3}}{u_{4}}, R_{\theta}\binom{v_{1}}{v_{2}}, R_{\theta}\binom{v_{3}}{v_{4}}\right)
$$

The map Π_{I} can be extended to a map between the cotangent spaces. Let me consider $(u, v) \in$ $T^{*} \dot{\mathbb{R}}^{4}$ which satisfy the equation $J_{\theta}(u, v)=u_{1} v_{2}-u_{2} v_{1}+u_{3} v_{4}-u_{4} v_{3}=0$ and define the following map

$$
\begin{equation*}
\tilde{\Pi}_{I}:\left.T^{*} \dot{\mathbb{R}}^{4}\right|_{J_{\theta}^{-1}(0)} \ni(u, v) \longrightarrow(x, y) \in T^{*} \dot{\mathbb{R}}^{3}, x=\frac{1}{2} A_{4}(u) u, y=\frac{1}{|u|^{2}} A_{4}(u) v \tag{39}
\end{equation*}
$$

where the matrix $A_{4}(u)$ is given in (38). The map $\tilde{\Pi}_{I}$ turns out to be a symplectomorphism between $T^{*} \dot{\mathbb{R}}^{4}$ and $T^{*} \dot{\mathbb{R}}^{3}$. Namely, the following equality holds

$$
\begin{equation*}
\tilde{\Pi}_{I}^{*}(d y \wedge d x)=\imath_{\theta}^{*}(d v \wedge d u) \tag{40}
\end{equation*}
$$

where $\imath_{\theta}: J_{\theta}^{-1}(0) \longrightarrow T^{*} \dot{\mathbb{R}}^{4}$ denotes the inclusion map.
Let me compose the function $H(x, y)$ in 35 with the map $\tilde{\Pi}_{I}$. Namely,

$$
\tilde{\boldsymbol{H}}(u, v)=\boldsymbol{H}(x(u), y(u, v))=\frac{1}{|u|^{2}}\left(\frac{1}{2 \lambda^{2}}|v|^{2}-\frac{2}{\lambda}\right)
$$

The Hamilton equations for $\tilde{\boldsymbol{H}}(u, v)$ are given by

$$
\frac{d u}{d t}=\frac{\partial \tilde{\boldsymbol{H}}}{\partial v}, \quad \frac{d v}{d t}=-\frac{\partial \tilde{\boldsymbol{H}}}{\partial u}
$$

More explicitly, the Hamilton equations for $\tilde{\boldsymbol{H}}(u, v)$ can be written as follows

$$
\frac{d u}{d t}=\frac{1}{\lambda^{2}|u|^{2}} v, \quad \frac{d v}{d t}=\frac{2}{|u|^{4}}\left(\frac{|v|^{2}}{2 \lambda^{2}}-\frac{2}{\lambda}\right) u
$$

The Hamilton equations for $\tilde{\boldsymbol{H}}(u, v)$ on the energy surface $\tilde{\boldsymbol{H}}(u, v)=-\frac{1}{2 \lambda^{2}}$ can be written as follows

$$
\begin{equation*}
\frac{d u}{d t}=\frac{1}{\lambda^{2}|u|^{2}} v, \quad \frac{d v}{d t}=-\frac{1}{\lambda^{2}|u|^{2}} u \tag{41}
\end{equation*}
$$

Let me reparameterize the time t as $d t=\lambda^{2}|x| d t^{\prime}$ with $|x|=\frac{1}{2}|u|^{2}$. The Hamilton equations in (41) can be written regarding the new time t^{\prime} as follows

$$
\begin{equation*}
\frac{d u}{d t^{\prime}}=\frac{1}{2} v, \quad \frac{d v}{d t^{\prime}}=-\frac{1}{2} u \tag{42}
\end{equation*}
$$

The equations in 42 correspond to the Hamilton equations for $\tilde{\boldsymbol{H}}(u, v)=\frac{1}{4}\left(|v|^{2}+|u|^{2}\right)$. Therefore the Hamilton equations of the Kepler problem in (34) on the energy surface $H(x, y)=$ $-\frac{1}{2 \lambda^{2}}$ can be carried into the Hamilton equations of a harmonic oscillator in 42 on the energy surface $\tilde{\boldsymbol{H}}(u, v)=\lambda$ via the map $\tilde{\Pi}_{I}$ after a time reparametrization. In this sense the threedimensional Kepler problem is dual to the four-dimensional harmonic oscillator.

2. From Classical Mechanics to Quantum Mechanics

Consider a mechanical system whose phase space is the symplectic manifold $\left(T^{*} \mathbb{R}^{n}, \omega=d v \wedge d u\right)$. The classical states are identified with points $(v, u) \in T^{*} \mathbb{R}^{n}$, and functions $f: T^{*} \mathbb{R}^{n} \longrightarrow \mathbb{R}$ are called observables. The transition from a classical to a quantum system requires considering a Hilbert space \mathcal{H}. The quantum states are elements of \mathcal{H}, and the observables are operators from \mathcal{H} to \mathcal{H}. A specific choice of \mathcal{H} is called a representation. For example, the Schrödinger representation is realized in the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{n}, d u\right)$. In this representation the position and momentum operators are given by
$u_{j} \longrightarrow \widehat{u}_{j}=u_{j}$ (multiplication by the coordinate), $\quad v_{k} \longrightarrow \widehat{v}_{k}=-\imath \hbar \frac{\partial}{\partial u_{k}}, \quad j, k=1, \ldots, n$.

The coordinates $(v, u) \in T^{*} \mathbb{R}^{n}$ satisfy the Poisson bracket relations indicated in equation (6). The operators $\widehat{u}_{j}, \widehat{v}_{k}$ with $j, k=1, \ldots, n$ analogously satisfy the following CCR,

$$
\begin{equation*}
\left[\widehat{u}_{j}, \widehat{u}_{k}\right]=0, \quad\left[\widehat{v}_{j}, \widehat{v}_{k}\right]=0, \quad\left[\widehat{u}_{j}, \widehat{v}_{k}\right]=\imath \hbar \delta_{j k} \widehat{\mathbb{I}} \tag{44}
\end{equation*}
$$

where $\widehat{\mathbb{I}}$ is the identity operator. The CCR can be equivalently written as follows

$$
\begin{equation*}
\left[\widehat{a}_{j}, \widehat{a}_{k}\right]=0, \quad\left[\widehat{a}_{j}^{\dagger}, \widehat{a}_{k}^{\dagger}\right]=0, \quad\left[\widehat{a}_{j}, \widehat{a}_{k}^{\dagger}\right]=\delta_{j k} \hbar \widehat{\mathbb{I}} \tag{45}
\end{equation*}
$$

where $\widehat{a}_{j}, \widehat{a}_{k}^{\dagger}$ are the annihilation and creation operators which are given by

$$
\begin{equation*}
\widehat{a}_{j}=\frac{1}{\sqrt{2}}\left(\widehat{u}_{j}+\imath \widehat{v}_{j}\right) \quad \widehat{a}_{k}^{\dagger}=\frac{1}{\sqrt{2}}\left(\widehat{u}_{k}-\imath \widehat{v}_{k}\right) \tag{46}
\end{equation*}
$$

Consider the Hamiltonian function $H: T^{*} \mathbb{R}^{n} \longrightarrow \mathbb{R}$ given by $H(u, v)=\frac{1}{2} v^{2}+V(u)$. In the Schrödinger representation the following operator is assigned to the function $H(u, v)$

$$
\begin{equation*}
\widehat{H}=-\frac{\hbar^{2}}{2} \Delta_{\mathbb{R}^{n}}+V(\widehat{u}) \quad \text { with } \quad \Delta_{\mathbb{R}^{n}}=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial u_{k}^{2}} \tag{47}
\end{equation*}
$$

where $V(\widehat{u})$ is the multiplication operator by the function $V(u)$.
Let me specify the relevant quantum systems for this work. The n-dimensional quantum isotropic harmonic oscillator whose Hamiltonian operator is given by $\widehat{H}=\frac{1}{4}\left(-\hbar^{2} \Delta_{\mathbb{R}^{n}}+u^{2}\right)$, and the quantum states are elements of the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{n}, d u\right)$. The m-dimensional quantum Kepler problem whose Hamiltonian operator is given by $\widehat{H}=-\frac{\hbar^{2}}{2} \Delta_{\mathbb{R}^{m}}-\frac{1}{|x|}$ with $\Delta_{\mathbb{R}^{m}}=\sum_{s=1}^{m} \frac{\partial^{2}}{\partial x_{s}^{2}}$, and the quantum estates are elements of the Hilbert space $L^{2}\left(\mathbb{R}^{m}, d x\right)$.

3. The Segal-Bargmann Space

Fock in (1928) proposed an alternative solution to the equations in 45. The operators $\widehat{a}_{j}, \widehat{a}_{k}^{\dagger}$ could be written as follows

$$
\begin{equation*}
\widehat{a}_{k}^{\dagger}=z_{k}(\text { multiplication by the coordinate }), \quad \widehat{a}_{j}=\hbar \frac{\partial}{\partial z_{j}} . \tag{48}
\end{equation*}
$$

In 4] V. Bargmann introduced a representation space where the action of the operators in (48) is well-defined. He considered a space \mathcal{B}_{n} of holomorphic functions on \mathbb{C}^{n} with an inner product such that the operators $\widehat{a}_{j}, \widehat{a}_{k}^{\dagger}$ in 48 are adjoint to each other. He proposed the inner product to be like the usual inner product on $\mathbb{R}^{2 n}$ (regarding \mathbb{C}^{n} as $\mathbb{R}^{2 n}$) but with a weight function. The requirement that $\widehat{a}_{k}^{\dagger}$ is the adjoint operator of \widehat{a}_{j} implies that the weight function must be Gaussian. In this way he found that the inner product in \mathcal{B}_{n} is given by

$$
\begin{equation*}
f, g \in \mathcal{B}_{n},\langle f, g\rangle=\int_{\mathbb{C}^{n}} f(z) \overline{g(z)} d \nu_{n}^{\hbar}(z) \text { with } d \nu_{n}^{\hbar}(z)=\frac{1}{(\pi \hbar)^{n}} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}} d z d \bar{z} \tag{49}
\end{equation*}
$$

where $d z d \bar{z}$ is the Lesbegue measure on $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$.
The Segal-Bargmann space \mathcal{B}_{n} enjoys the property of having a reproducing kernel $K_{n}(z, w)=$ $\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}$, where $z \cdot \bar{w}=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ denotes the usual inner product in \mathbb{C}^{n}. Namely, for all $f \in \mathcal{B}_{n}$ the following equality holds

$$
f(z)=\left\langle f(\cdot), K_{n}(\cdot, z)\right\rangle=\int_{\mathbb{C}^{n}} f(w) K_{n}(z, w) d \nu_{n}^{\hbar}(w)
$$

Moreover, under the requirement that the solution of CCR in 48) should be intertwined with the one in (46), V. Bargmann determined a unitary transformation $B_{\mathbb{R}^{n}}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ which is given by

$$
\begin{equation*}
\left(B_{\mathbb{R}^{n}} \psi\right)(z)=\int_{\mathbb{R}^{n}} \boldsymbol{A}_{n}(u, z) \psi(u) d u \quad \text { with } \quad \boldsymbol{A}_{n}(u, z)=\frac{1}{(\hbar \pi)^{n / 4}} \mathrm{e}^{-\frac{1}{2 \hbar}\left(z^{2}+u^{2}-2 \sqrt{2} z \cdot u\right)} \tag{50}
\end{equation*}
$$

The unitary transformation $B_{\mathbb{R}^{n}}$ in (50) is known as the Segal-Bargmann Transform (SBT). The operators in (46) are intertwined with the operators in (48). Namely,

$$
\begin{equation*}
B_{\mathbb{R}^{n}}\left(\frac{\widehat{u}_{j}+\imath \widehat{v}_{j}}{\sqrt{2}}\right)=\hbar \frac{\partial}{\partial z_{j}} B_{\mathbb{R}^{n}}, B_{\mathbb{R}^{n}}\left(\frac{\widehat{u}_{j}-\imath \widehat{v}_{j}}{\sqrt{2}}\right)=z_{j} B_{\mathbb{R}^{n}} \tag{51}
\end{equation*}
$$

Let me regard \mathbb{C}^{n} as the phase space of a particle moving in \mathbb{R}^{n} and define for each $z \in \mathbb{C}^{n}$ a state in $L^{2}\left(\mathbb{R}^{n}, d u\right)$ as follows

$$
\begin{equation*}
\Psi_{z, \hbar}(u)=\overline{A_{n}(u, z)} \tag{52}
\end{equation*}
$$

The set of functions $\mathcal{S}=\left\{\Psi_{z, \hbar} \mid z \in \mathbb{C}^{n}\right\}$ is known as a system of coherent states for the quantum n-dimensional harmonic oscillator $\hat{H}=\sum_{k=1}^{n} \widehat{a}_{k}^{\dagger} \widehat{a}_{k}$. The system \mathcal{S} has the following properties. (i) \mathcal{S} provides a resolution of the identity for $L^{2}\left(\mathbb{R}^{n}, d x\right)$, that is, for $f \in L^{2}\left(\mathbb{R}^{n}, d u\right), f=$ $\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma}\left\langle\Psi_{z, \hbar}, f\right\rangle_{\mathbb{R}^{n}} \Psi_{z, \hbar} d^{\hbar} \nu_{n}(z)$. (ii) Concentration in both configuration and momentum space for \hbar small. (iii) Temporal stability (the coherent states follow the Hamiltonian flow of the classical harmonic oscillator). (iv) The coherent states are eigenfunctions of the annihilation operator \widehat{a}_{k} and satisfy the Heisenberg uncertainty inequality in a sharp way. (v) The SBT $B_{\mathbb{R}^{n}}$ of $\Psi_{w, \hbar}$ is equal to the reproducing kernel $B_{\mathbb{R}^{n}} \Psi_{z, \hbar}(w)=K_{n}(w, z)$.

4. The Bargmann-Todorov Space

Let me assume that the configuration space of a classical system is a manifold Q. The quantum states are elements of the Hilbert space $L^{2}(Q, d \mu)$, where $d \mu$ is a volume form on Q. The SBT for $L^{2}\left(\mathbb{R}^{n}, d u\right)$ mentioned above suggests considering a possible SBT for $L^{2}(Q, d \mu)$. I will consider the case $Q=S^{m}$ in this work. This case is important not only due to mathematical reasons but also because it is related to the hydrogen atom in \mathbb{R}^{m}. See [3, 10 for details. I will focus on the dimensions $m=3,5$.

For a positive integer number $m \geq 2$, the null quadric Q_{m} is defined as follows

$$
\begin{equation*}
Q_{m}=\left\{\alpha \in \mathbb{C}^{m+1} \mid \alpha^{2}=\alpha_{1}^{2}+\ldots+\alpha_{m+1}^{2}=0\right\} \tag{53}
\end{equation*}
$$

From now on I denote $\dot{Q}_{m}=Q_{m}-\{0\}$. The vector $\alpha \in \mathbb{C}^{m+1}$ can be decomposed in terms of its real and imaginary parts $\alpha=\Re(\alpha)+\imath \Im(\alpha)$. Note that $\alpha \in \mathbb{C}^{m+1}$ belongs to Q_{m} if and only if $\Re(\alpha)$ and $\Im(\alpha)$ satisfy the equalities $\Re(\alpha) \cdot \Im(\alpha)=0$ and $|\Re(\alpha)|=|\Im(\alpha)|$.

Let me denote by $T^{+} S^{m}$ the cotangent bundle of S^{m} minus the zero section, which is defined as follows

$$
\begin{equation*}
T^{+} S^{m}=\left\{(q, p) \in \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}| | q \mid=1,\langle q, p\rangle=0, p \neq 0\right\} \quad \text { and } \quad \widehat{\omega}=\left.d p \wedge d q\right|_{T^{+} S^{m}} \tag{54}
\end{equation*}
$$

On the other hand, the symplectic manifold $T^{+} S^{m}$ can be identified with the null quadric \dot{Q}_{m} through the following map

$$
\begin{equation*}
\sigma_{m}: T^{+} S^{m} \longrightarrow \dot{Q}_{m}, \quad \sigma_{m}(q, p)=p+\imath|p| q \tag{55}
\end{equation*}
$$

The map σ_{m} endows the symplectic manifold $T^{+} S^{m}$ with a complex structure. Namely, it is not difficult to see that $\widehat{\omega}$ can be written in complex coordinates $\alpha=p+\imath|p| q$ as $\widehat{\boldsymbol{\omega}}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|$, see [33] for details. So the symplectic manifold $\left(T^{+} S^{m}, \widehat{\omega}=\left.d p \wedge d q\right|_{T^{+} S^{m}}\right)$ is identified as a Kähler manifold with $\left(\dot{Q}_{m}, \widehat{\boldsymbol{\omega}}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ through the map σ_{m}.

For $\ell \in \mathbb{N}^{*}$ with \mathbb{N}^{*} the set of non-negative integer numbers, let me denote by W_{ℓ} the space of all homogeneous polynomials of degree ℓ on Q_{m}. Consider the set $\boldsymbol{P}=\oplus_{\ell=0}^{\infty} W_{\ell}$ of all polynomial functions on the null quadric Q_{m}. In 5] V. Bargmann and I. Todorov considered
the following inner product on the set \boldsymbol{P}

$$
\begin{equation*}
(f, g)=\int_{\mathbb{C}^{m+1}} f(\alpha) \overline{g(\alpha)} d m_{m+1}(\alpha), \quad \forall f, g \in \boldsymbol{P} \tag{56}
\end{equation*}
$$

with $d m_{m+1}(\alpha)=F\left(|\alpha|^{2}\right) \delta\left(\alpha^{2}\right) d^{2(m+1)}(\alpha), \quad F(t)=\left(\frac{2}{\pi}\right)^{m}\left[\frac{(16 t)^{\frac{3-m}{4}}}{\Gamma\left(\frac{m-1}{2}\right)}\right] K_{\frac{n-3}{2}}(2 \sqrt{t}), t=|\alpha|^{2}$,
and $\alpha \in \mathbb{C}^{m+1},|\alpha|^{2}=\left|\alpha_{1}\right|^{2}+\cdots+\left|\alpha_{m+1}\right|^{2}, \alpha^{2}=\alpha_{1}^{2}+\cdots+\alpha_{m+1}^{2}, \delta\left(\alpha^{2}\right)$ denotes the Dirac delta distribution at the null quadric Q_{m} (see $\mathbf{1 3}$ for definition of $\delta\left(\alpha^{2}\right)$), and $d^{2(m+1)}(\alpha)$ denotes the Lebesgue measure on \mathbb{C}^{m+1}.

The inner product in (56) was obtained by requiring the adjoint of the multiplication operator $\widehat{\alpha}_{j}=\alpha_{j}$ to have the following expression

$$
\begin{equation*}
\widehat{D}_{j}=\left(\frac{m-1}{2}+\sum_{k=1}^{m+1} \alpha_{k} \frac{\partial}{\partial \alpha_{k}}\right) \frac{\partial}{\partial \alpha_{j}}-\frac{1}{2} \alpha_{j} \Delta \text { with } \Delta=\sum_{k=1}^{m+1} \frac{\partial^{2}}{\partial \alpha_{k}} \tag{57}
\end{equation*}
$$

The completion of \boldsymbol{P} with respect to the inner product in (56) is a Hilbert space which is called the Bargmann-Todorov space $\mathcal{E}_{\mathbf{m}}$.

The operator $\widehat{D}_{j}, j=1, \ldots, m+1$ is called an annihilation operator. The action of \widehat{D}_{j} on a homogeneous polynomial of degree ℓ gives a homogeneous polynomial of degree $\ell-1$. The operators $\widehat{\alpha}_{j}, \widehat{D}_{k}$ and their commutators generate a unitary representation of the Lie algebra $\mathfrak{s o}(m+1,2)$ of the conformal group $S O(m+1,2)$. These commutation relations are given by

$$
\begin{equation*}
\left[\widehat{D}_{k}, \widehat{\alpha}_{j}\right]=X \delta_{k j}+X_{k j}, \quad\left[X_{k j}, \widehat{\alpha}_{\lambda}\right]=\delta_{k \lambda} \widehat{D}_{j}-\delta_{j \lambda} \widehat{D}_{k}, \quad j, k, \lambda=1, \cdots, m+1 \tag{58}
\end{equation*}
$$

The operators $X_{k j}$ are the anti-Hermitian generators of rotations of $S O(m+1, \mathbb{R})$ and are given by

$$
\begin{equation*}
X_{k j}=\alpha_{j} \frac{\partial}{\partial \alpha_{k}}-\alpha_{k} \frac{\partial}{\partial \alpha_{j}} \tag{59}
\end{equation*}
$$

The operator X is the Hermitian generator that represents rotations in the plane $(m+2, m+3)$ and is given by

$$
\begin{equation*}
X=\frac{m+1}{2}-1+\sum_{j=1}^{m+1} \alpha_{j} \frac{\partial}{\partial \alpha_{j}} \tag{60}
\end{equation*}
$$

Moreover, the operator X plays the role of the physical dilatation generator in the α-space.
In 11 E. Diaz-Ortiz and C. Villegas-Blas were interested in semiclassical aspects of the space \mathcal{E}_{m}. They rescaled the measure $d m_{m+1}(\alpha)$ in 56 by the factor $\frac{1}{\sqrt{2} \hbar}$, where \hbar is the Plank constant. The rescaled measure is denoted by $d m_{m+1}^{\hbar}(\alpha)$ and is given by

$$
\begin{equation*}
d m_{m+1}^{\hbar}(\alpha)=\frac{1}{2^{m-1} h^{2(m-1)}} F\left(\frac{|\alpha|^{2}}{2 \hbar^{2}}\right) \delta\left(\alpha^{2}\right) d^{2(m+1)}(\alpha) \tag{61}
\end{equation*}
$$

Now the operator \widehat{D}_{j} is given by

$$
\begin{equation*}
\widehat{D}_{j}=2 \hbar^{2}\left(\frac{m-1}{2}+\sum_{k=1}^{m+1} \alpha_{k} \frac{\partial}{\partial \alpha_{k}}\right) \frac{\partial}{\partial \alpha_{j}}-\hbar^{2} \alpha_{j} \Delta \quad \text { with } \quad \Delta=\sum_{k=1}^{m+1} \frac{\partial^{2}}{\partial \alpha_{k}} \tag{62}
\end{equation*}
$$

The Bargmann-Todorov space $\mathcal{E}_{\mathbf{m}}$ also enjoys the property of having a reproducing Kernel $\boldsymbol{\Gamma}_{\mathbf{m}}=\boldsymbol{\Gamma}_{\mathbf{m}}(\alpha, \beta)$. Namely, for all function $f \in \mathcal{E}_{\mathbf{m}}$ the following equality holds

$$
\begin{equation*}
f(\alpha)=\left(f(\cdot), \boldsymbol{\Gamma}_{\mathbf{m}}(\cdot, \alpha)\right)=\int_{\beta \in Q_{m}} f(\beta) \boldsymbol{\Gamma}_{\mathbf{m}}(\alpha, \beta) d m_{m+1}^{\hbar}(\beta) \quad \forall \alpha \in Q_{m} \tag{63}
\end{equation*}
$$

where $\boldsymbol{\Gamma}_{\mathbf{m}}(\alpha, \beta)$ is given by

$$
\begin{equation*}
\Gamma_{\mathrm{m}}(\alpha, \beta)=\Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha \cdot \bar{\beta}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha \cdot \bar{\beta}}}{\hbar}\right) \tag{64}
\end{equation*}
$$

The function $I_{\frac{m-3}{2}}$ in 64 denotes the Bessel function of the first kind of order $k=\frac{m-3}{2}$ (see Secs. (8.4) and (8.5) of [2] for definitions and expressions for this function). The reproducing kernel $\boldsymbol{\Gamma}_{\mathbf{m}}(\alpha, \beta)$ can be written as an infinite sum as follows

$$
\begin{equation*}
\boldsymbol{\Gamma}_{\mathbf{m}}(\alpha, \beta)=\sum_{\ell=0}^{\infty} \boldsymbol{\Gamma}_{\mathbf{m}}^{\ell}(\alpha, \beta), \quad \boldsymbol{\Gamma}_{\mathbf{m}}^{\ell}(\alpha, \beta)=\frac{1}{\ell!\left(\frac{m-1}{2}\right)_{\ell}}\left(\frac{\alpha \cdot \bar{\beta}}{2 \hbar^{2}}\right)^{\ell} \tag{65}
\end{equation*}
$$

where $\boldsymbol{\Gamma}_{\mathbf{m}}{ }^{\ell}(\alpha, \beta)$ is the reproducing kernel of the space W_{ℓ} and for $b>0$ the Pochhammer symbol is defined by

$$
(b)_{\ell}=\frac{\Gamma(b+\ell)}{\Gamma(b)}
$$

where Γ denotes the Gamma function.
For $\alpha \in Q_{m}$ fixed, the function $\boldsymbol{\Gamma}_{\mathbf{m}}(\beta, \alpha)$ belongs to the space \mathcal{E}_{m}. Let me associate to $\boldsymbol{\Gamma}_{\mathbf{m}}(\beta, \alpha)$ the following probability density function

$$
\mathbf{Q}_{\alpha, \hbar}: \dot{Q}_{m} \longrightarrow \mathbb{R} \quad \text { with } \quad \mathbf{Q}_{\alpha, \hbar}(\beta)=\frac{\left|\boldsymbol{\Gamma}_{\mathbf{m}}(\beta, \alpha)\right|^{2} F\left(\frac{|\beta|}{2 \hbar}\right)}{2^{m-1} \hbar^{2(m-1)}\left\|\boldsymbol{\Gamma}_{\mathbf{m}}(\cdot, \beta)\right\|^{2}}
$$

where F is given in (56). The function $\mathbf{Q}_{\alpha, \hbar}$ has the semiclassical property that it concentrates in $\alpha \in \dot{Q}_{m}$ when $\hbar \rightarrow 0$. Namely, the following equality is fulfilled for any smooth function ϕ defined on \dot{Q}_{m}

$$
\begin{equation*}
\lim _{\hbar \rightarrow o} \int_{\beta \in Q_{m}} \mathbf{Q}_{\alpha, \hbar}(\beta) \phi(\beta) \delta\left(\beta^{2}\right) d^{2(m+1)}(\beta)=\phi(\alpha) \tag{66}
\end{equation*}
$$

In order to evaluate the integral in (66), the authors in 11 wrote $\beta \in Q_{m}$ in terms of polar coordinates as follows

$$
\begin{equation*}
\beta=r(\delta+\imath \eta) \quad \text { with } \quad r>0, \delta \in S^{m}, \eta \in S^{m-1} \tag{67}
\end{equation*}
$$

and δ, η satisfy $\delta \cdot \eta=0$. They wrote the measure $d m_{m+1}^{\hbar}(\beta)$ in 61 in terms of the variables r, δ, η as follows

$$
\begin{equation*}
d m_{m+1}^{\hbar}(\beta)=\frac{1}{2^{m+1} \hbar^{2(m-1)}} F\left(\frac{r^{2}}{\hbar^{2}}\right) r^{2 m-3}\left|S^{m}\right|\left|S^{m-1}\right| d r d \Omega_{S^{m}}(\delta) d \Omega_{S^{m-1}}(\eta) \tag{68}
\end{equation*}
$$

where $d \Omega_{S^{m}}(\delta), d \Omega_{S^{m-1}}(\eta)$ denote the normalized surface measure on the spheres, and $\left|S^{m}\right|,\left|S^{m-1}\right|$ denote the corresponding area.

On the other hand, according to [33], the Liouville volume form of $T^{+} S^{m}$ can be written in coordinates as follows

$$
\lambda=\frac{1}{2 q_{j}^{2}} d q_{1} \wedge d q_{2} \wedge \cdots \wedge \check{d q}_{j} \wedge \cdots \wedge d q_{m+1} \wedge d p_{1} \wedge d p_{2} \wedge \cdots \wedge \check{p}_{j} \wedge \cdots \wedge d p_{m+1}
$$

where $\check{d q}_{j},{\check{d p_{j}}}_{j}$ denote one-forms that are omitted. Let me write the volume form λ as $\lambda=$ $\lambda_{1} \wedge \lambda_{2}$, where the n -forms λ_{1}, λ_{2} are given by
(69) $\lambda_{1}=\frac{1}{2 q_{j}} d q_{1} \wedge d q_{2} \wedge \cdots \wedge \check{d q}_{j} \wedge \cdots \wedge d q_{m+1}, \quad \lambda_{2}=\frac{1}{q_{j}} d p_{1} \wedge d p_{2} \wedge \cdots \wedge d \check{p}_{j} \wedge \cdots \wedge d p_{m+1}$.

According to equation (44 b) in [7], the n-form λ_{1} can be identified with the surface measure on S^{m} and the n-form λ_{2} can be identified with the surface measure on the cotangent space $T_{q}^{+} S^{m}$. The vector $p \in T_{q}^{+} S^{m}$ can be regarded as an element of an m-dimensional vector space
over $q \in S^{m}$, so it can be written as $p=r \eta$ with $r>0$ and $\eta \in S^{m-1}$. The Liouville volume form of $T^{+} S^{m}$ can be written in terms of the variables r, q, η as follows

$$
\begin{equation*}
\lambda=d \Omega_{S^{m}}(q) r^{m-1} d r d \Omega_{S^{m-1}}(\eta) \tag{70}
\end{equation*}
$$

Let me write the measure $d m_{m+1}^{\hbar}(\beta)$ in 68$)$ as follows

$$
\begin{aligned}
d m_{m+1}^{\hbar}(\beta) & =\frac{1}{2^{m+1} \hbar^{2(m-1)}} F\left(\frac{r^{2}}{\hbar^{2}}\right) r^{m-2} \underbrace{d \Omega_{S^{m}}(\delta) r^{m-1} d r d \Omega_{S^{m-1}}(\eta)}_{\lambda} \\
& =\frac{1}{2^{m+1} \hbar^{2(m-1)}} F\left(\frac{r^{2}}{\hbar^{2}}\right) r^{m-2} \lambda .
\end{aligned}
$$

Now taking $\beta \in Q_{m}$ as in 67) a short calculation shows $|\beta| / \sqrt{2}=r$. Thus the measure $d m_{m+1}^{\hbar}(\beta)$ can be written as

$$
\begin{align*}
d m_{m+1}^{\hbar}(\beta) & =\underbrace{\frac{1}{2^{m+1}}\left(\frac{1}{2}\right)^{\frac{m-2}{2}}(8)^{\frac{3-m}{4}} \frac{1}{\Gamma\left(\frac{m-1}{2}\right)}}_{C_{m}} \frac{1}{\hbar^{\frac{3 m-1}{2}}|\beta|^{\frac{3-m}{2}}|\beta|^{m-2} K_{\frac{m-3}{2}}\left(\frac{\sqrt{2}}{\hbar}|\beta|\right) \epsilon_{\hat{\omega}}(\beta)} \tag{71}\\
& =C_{m} \frac{1}{\hbar^{\frac{3 m-1}{2}}}|\beta|^{\frac{3-m}{2}}|\beta|^{m-2} K_{\frac{m-3}{2}}\left(\frac{\sqrt{2}}{\hbar}|\beta|\right) \epsilon_{\widehat{\omega}}(\beta)
\end{align*}
$$

where $\epsilon_{\hat{\omega}}(\beta)=\lambda$ is the Liouville volume form of $T^{+} S^{m}$ given in 70) and C_{m} a constant.
For dimension $m=3$ the measure $d m_{4}^{\hbar}(\beta)$ is given by

$$
\begin{align*}
d m_{4}^{\hbar}(\beta) & =\underbrace{\frac{1}{2^{4}}\left(\frac{1}{2}\right)^{\frac{1}{2}}}_{C} \frac{1}{\hbar^{4}}|\beta| K_{0}\left(\frac{\sqrt{2}}{\hbar}|\beta|\right) \epsilon_{\widehat{\omega}}(\beta) \tag{72}\\
& =C \frac{1}{\hbar^{4}}|\beta| K_{0}\left(\frac{\sqrt{2}}{\hbar}|\beta|\right) \epsilon_{\widehat{\omega}}(\beta)
\end{align*}
$$

For dimension $m=5$ the measure $d m_{6}^{\hbar}(\beta)$ is given by

$$
\begin{align*}
d m_{6}^{\hbar}(\beta) & =\underbrace{\frac{1}{2^{7}}\left(\frac{1}{2}\right)^{\frac{3}{2}}(8)^{-2} \frac{1}{\Gamma(2)}}_{C} \frac{1}{\hbar^{7}}|\beta|^{2} K_{1}\left(\frac{\sqrt{2}}{\hbar}|\beta|\right) \epsilon_{\widehat{\omega}}(\beta) \tag{73}\\
& =C \frac{1}{\hbar^{7}}|\beta|^{2} K_{1}\left(\frac{\sqrt{2}}{\hbar}|\beta|\right) \epsilon_{\widehat{\omega}}(\beta) .
\end{align*}
$$

Let me consider the Hilbert space $L^{2}\left(S^{m}, d \Omega_{S^{n}}\right)$ of square-integrable functions on S^{m}. The inner product in $L^{2}\left(S^{m}, d \Omega_{S^{n}}\right)$ is given by

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle_{S^{m}}=\int_{S^{m}} \psi_{1}(q) \overline{\psi_{2}(q)} d \Omega_{S^{m}}(q), \quad \psi_{1}, \psi_{2} \in L^{2}\left(S^{m}, d \Omega_{S^{n}}\right)
$$

In 11 E. Diaz-Ortiz and C. Villegas-Blas introduced an SBT for S^{m}. This is a unitary map $B_{S^{m}}: L^{2}\left(S^{m}, d \Omega_{S^{n}}\right) \longrightarrow \mathcal{E}_{m}$ which is defined as follows

$$
\begin{equation*}
B_{S^{m}} \psi(\alpha)=\int_{S^{m}} K_{S^{m}}(q, \alpha) \psi(q) d \Omega_{S^{m}}(q), \quad \psi \in L^{2}\left(S^{m}, d \Omega_{S^{m}}\right), \alpha \in Q_{m} \tag{74}
\end{equation*}
$$

where the kernel $K_{S^{m}}$ is given by $K_{S^{m}}(q, \alpha)=\sum_{\ell=0}^{\infty} \frac{\sqrt{a \ell+1}}{\ell!}\left(\frac{\alpha \cdot q}{\hbar}\right)^{\ell}$ with $a=\frac{2}{m-1}$. For $\alpha \in Q_{m}$ fixed, the kernel $K_{S^{m}}(q, \alpha)$ is an element in $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$.

The space $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ is the direct sum of the spaces V_{ℓ} (the spherical harmonics of degree ℓ on $\left.S^{m}\right)$. That is, $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)=\oplus_{\ell=0}^{\infty} V_{\ell}$. The restriction of $B_{S^{m}}$ to V_{ℓ} is the SBT $B_{S^{m}, \ell}: V_{\ell} \longrightarrow W_{\ell}$ which is defined as follows

$$
\begin{equation*}
B_{S^{m}, \ell} Y(\alpha)=\frac{\sqrt{a \ell+1}}{\ell!} \int_{S^{m}}\left(\frac{\alpha \cdot q}{\hbar}\right)^{\ell} Y(q) d \Omega_{S^{m}}, \quad Y(q) \in V_{\ell} \tag{75}
\end{equation*}
$$

For $n=2$ and $\hbar=1$, L. Thomas and S. Wassell introduced a related Bargmann type transform $\tilde{B}_{S^{2}}$ with range the subspace \mathcal{F}_{2} of even functions in the space \mathcal{B}_{2}. Let me denote by $\left\{Y_{\ell, m}\right\}$ with $\ell \in \mathbb{N}^{*}$ and $m=-\ell, \ldots, \ell$ the orthogonal basis of $L^{2}\left(S^{2}, d \Omega_{S^{2}}\right)$ given by the spherical harmonics $Y_{\ell, m}$ determined as eigenfunctions of the square of the angular momentum operator and its third component. Correspondingly, let me denote by $\left\{y_{\ell, m}\right\}$ the orthonormal basis of \mathcal{F}_{2} with $y_{\ell, m}(z)=z_{1}^{\ell+m} z_{2}^{\ell-m} / \sqrt{(\ell+m)!(\ell-m)!}$ and $z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$. Then the Bargmann transform $\tilde{B}_{S^{2}}$ is the linear extension of the assignment $Y_{\ell, m} \rightarrow y_{\ell, m}$. The transform $\tilde{B}_{S^{2}}$ can be written as an integral operator whose kernel is the sum $K(q, z)=$ $\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{m=\ell} \overline{Y_{\ell, m}(q)} y_{\ell, m}(z)$ with $q \in S^{2}$. Due to the properties of the Lie algebra of the orthogonal group $S O(3, \mathbb{R})$, see 40 , the integral kernel $K(q, z)$ is actually equal to a single infinite sum $K(q, z)=\sum_{\ell=0}^{\infty} \frac{\sqrt{2 \ell+1}}{\ell!}\left(\rho_{(2,2)}(z) \cdot q\right)^{\ell}$, where the map $\rho_{(2,2)}: \mathbb{C}^{2} \longrightarrow Q_{2}$ is given by $\rho_{(2,2)}(z)=\frac{1}{2}\left(z_{2}-z_{1}^{2}, \imath\left(z_{2}^{2}+z_{1}^{2}\right), 2 z_{1} z_{2}\right)$. In 40] Villegas-Blas studied the case of the 3 -sphere S^{3} with $\hbar=1$ and defined a Bargmann type transform $\tilde{B}_{S^{3}}$ in the analogous way to the one introduced by Thomas and Wassell. Namely, $\tilde{B}_{S^{3}}$ can be written as an integral operator whose kernel is the infinite power series $\tilde{K}(q, z)=\sum_{\ell=0}^{\infty} \frac{\sqrt{\ell+1}}{\ell!}\left(\rho_{(4,3)}(z) \cdot q\right)^{\ell}$ with $q \in S^{3}$ and $\rho_{(4,3)}: \mathbb{C}^{4} \longrightarrow Q_{3}$, see equation 125 . The range of $\tilde{B}_{S^{3}}$ is a subspace in \mathcal{B}_{4} which is equal to the kernel of the operator $\widehat{J}=z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}-z_{3} \frac{\partial}{\partial z_{3}}-z_{4} \frac{\partial}{\partial z_{4}}$. These two cases motivated the authors of 11 to introduce the SBT $B_{S^{m}} \psi$ as an integral operator whose integral kernel is a power series in the function $(\alpha \cdot q)$ with $\alpha \in Q_{m}$ and $q \in S^{m}$. The coefficients are determined in such a way that $B_{S^{m}} \psi$ is an isometry with domain $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$. For each $\alpha \in \dot{Q}_{m}$ let me define a state in $L^{2}\left(S^{m}, d \Omega_{S^{n}}\right)$ as follows

$$
\Phi_{\alpha, \hbar}(q)=\overline{K_{S^{m}}(q, \alpha)}
$$

The set of functions $\mathcal{K}=\left\{\Phi_{\alpha, \hbar}(q) \mid \alpha \in \dot{Q}_{m}\right\}$ has analogous properties of the system \mathcal{S}. (i) \mathcal{K} provides a resolution of the identity for $L^{2}\left(S^{n}, d \Omega_{S^{n}}\right)$. That is, for all $\boldsymbol{\psi} \in L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$, $\boldsymbol{\psi}(q)=\lim _{s \rightarrow \infty} \int_{E_{s}}\left\langle\boldsymbol{\psi}, \Phi_{\alpha, \hbar}\right\rangle_{S^{m}} \Phi_{\alpha, \hbar}(q) d m_{m+1}^{\hbar}(\alpha)$, where E_{s} is an increasing sequence of bounded measurable sets on Q_{m} such that $\bigcup_{s \in \mathbb{N}} E_{s}=Q_{m}$. (ii) Concentration in $\Re(\alpha)$ with $\alpha \in \dot{Q}_{m}$ for \hbar small. (iii) The system of coherent states \mathcal{K} is temporarily stable. Consider the Hamiltonian operator $\widehat{N}=\hbar\left(\sqrt{\Delta_{S^{m}}}-\frac{m-1}{2}\right)$, where $\Delta_{S^{m}}$ is the Laplacian operator on S^{m} with spectrum the integer numbers \mathbb{N}^{*}. The time evolution of the state $\Phi_{\alpha, \hbar}$ with respect to the operator \widehat{N} is another state $\Phi_{\alpha, \hbar}$ whose dependence in t is determined by the geodesic flow on $\dot{Q}_{m} \cong T^{+} S^{m}$. (iv) The states $\Phi_{\alpha, \hbar}$ are eigenfunctions of an annihilation operator and satisfy the Heisenberg uncertainty relation sharply. (v) The SBT $B_{S^{m}}$ of $\Phi_{\alpha, \hbar}$ is equal to the reproducing kernel $B_{S^{m}} \Phi_{\alpha, \hbar}(\beta)=\Gamma_{m}(\beta, \alpha)$. The properties of the system \mathcal{K} are proved in [11, Thm. 4 and Thm. 14].

One of the main goals of this thesis is to obtain the Bargmann-Todorov spaces \mathcal{E}_{m} as well as the SBT $B_{S^{m}}$ via geometric arguments in the particular dimensions $m=3,5$. I do that using Marsden-Weinstein Reduction, Geometric Quantization and Quantum Reduction. I base the analysis on the relationship among the three classical systems mentioned above (the geodesic flow on $T^{*} S^{m}$, the Kepler problem on $T^{*} \mathbb{R}^{m}$ and the harmonic oscillator on $T^{*} \mathbb{R}^{n}, n=8,4$). I also use the quantum counterpart of such a relationship via the Fock map and the quantization of the Kustaanheimo-Stiefel transformation. See Section (5) in chapter 3.

Classical and Quantum Reduction

The first section is about Symplectic Reduction, which is the geometric framework to describe the relationship between the regularizations of Moser and Kustaanheimo-Stiefel for the particular dimensions $m=3,5$. I will define a free action of a compact Lie group G_{n} on $\mathbb{R}^{n}=\mathbb{R}^{n}-\{0\}$. This action is lifted to an action of G_{n} on $T^{*} \mathbb{R}^{n}$. Next, I consider a particular complex sructure $\mathcal{T}_{n}: T^{*} \dot{\mathbb{R}}^{n} \longrightarrow \dot{\mathbb{C}}^{n}=\mathbb{C}^{n}-\{0\}$ so that the action of G_{n} on $\dot{\mathbb{C}}^{n}$ is holomorphic. Since the action of G_{n} preserves the symplectic form on \mathbb{C}^{n}, then there is a moment map $\mathfrak{J}_{n}: \dot{\mathbb{C}}^{n} \longrightarrow \mathfrak{g}_{n}^{*}$. Here \mathfrak{g}_{n}^{*} denotes the dual of the Lie algebra \mathfrak{g}_{n} of G_{n}. I then consider the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ which according to $[\mathbf{1}$ can be endowed with a symplectic structure, so that the pair $\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}, \widehat{\mu}\right)$ is a symplectic manifold. I adapt the structural ideas of reference [14, 18, Sect. 2.2] in order to prove that $\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}, \widehat{\mu}\right)$ can be identified as a Kähler manifold with $\left(T^{+} S^{m} \cong \dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$, where $T^{+} S^{m}$ denotes the cotangent bundle of S^{m} with the zero section removed.

In the second section I give a brief exposition of Geometric Quantization with and without half-forms in the setting of the symplectic (Kähler) manifolds $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$. In the third section I follow the structural ideas of reference [18, Sect. 2.3] to perform Quantum Reduction of the action of G_{n} on $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$. That is, I determine the set of functions in $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and \mathcal{B}_{n} that are invariant under the action of G_{n} on $\dot{\mathbb{R}}^{n}$ and $\dot{\mathbb{C}}^{n}$ respectively.

1. Symplectic Reduction

Consider the symplectic manifold $T^{*} \mathbb{R}^{n}$ with coordinates $(u, v) \in T^{*} \mathbb{R}^{n}, u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$. The almost complex structure $J: T\left(T^{*} \mathbb{R}^{n}\right) \longrightarrow T\left(T^{*} \mathbb{R}^{n}\right)$ and symplectic form ω_{n} on $T^{*} \mathbb{R}^{n}$ are given by

$$
\begin{equation*}
J\left(\frac{\partial}{\partial u_{k}}\right)=\frac{\partial}{\partial v_{k}}, \quad J\left(\frac{\partial}{\partial v}{ }_{k}\right)=-\frac{\partial}{\partial u_{k}}, \quad \omega_{n}=d v \wedge d u=\sum_{k=1}^{n} d v_{k} \wedge d u_{k} \quad k=1, \ldots, n . \tag{76}
\end{equation*}
$$

The set of functions and vector fields on $T^{*} \mathbb{R}^{n}$ are denoted by $\mathcal{F}\left(T^{*} \mathbb{R}^{n}\right)$ and $\mathcal{X}\left(T^{*} \mathbb{R}^{n}\right)$ respectively. The Hamiltonian vector field X_{f} of $f \in \mathcal{F}\left(T^{*} \mathbb{R}^{n}\right)$ is given by

$$
\begin{equation*}
X_{f}=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial v_{j}} \frac{\partial}{\partial u_{j}}-\frac{\partial f}{\partial u_{j}} \frac{\partial}{\partial v_{j}}\right) \text { in short notation } X_{f}=\left(\frac{\partial f}{\partial v} \frac{\partial}{\partial u}-\frac{\partial f}{\partial u} \frac{\partial}{\partial v}\right) . \tag{77}
\end{equation*}
$$

Let me define $\dot{\mathbb{R}}^{n}=\mathbb{R}^{n}-\{0\}$. I will be particularly interested in the dimensions $n=4,8$. I denote by G_{n} a Lie group with $G_{4}=U(1)$ and $G_{8}=S U(2)$. The corresponding Lie algebra of G_{n} is denoted by \mathfrak{g}_{n} with $\mathfrak{g}_{4}=\mathfrak{u}(1)=\imath \mathbb{R}$ and $\mathfrak{g}_{8}=\mathfrak{s u}(2)$.

Consider a free action of $U(1)$ on $\dot{\mathbb{R}}^{4}$ which is defined as follows

$$
\Phi_{R_{\theta}}: \dot{\mathbb{R}^{4}} \longrightarrow \dot{\mathbb{R}^{4}}, \Phi_{R_{\theta}}(u)=\left(R_{\theta}\binom{u_{1}}{u_{2}}, R_{\theta}\binom{u_{3}}{u_{4}}\right), \quad R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{78}\\
\sin \theta & \cos \theta
\end{array}\right) .
$$

The action $\Phi_{R_{\theta}}$ of $U(1)$ on $\dot{\mathbb{R}}^{4}$ is lifted to an action $\tilde{\Phi}_{R_{\theta}}$ of $U(1)$ on $T^{*} \mathbb{R}^{4}$ which is given by

$$
\begin{equation*}
\tilde{\Phi}_{R_{\theta}}: T^{*} \dot{\mathbb{R}}^{4} \longrightarrow T^{*} \dot{\mathbb{R}}^{4}, \quad \tilde{\Phi}_{R_{\theta}}(u, v)=\left(R_{\theta}\binom{u_{1}}{u_{2}}, R_{\theta}\binom{u_{3}}{u_{4}}, R_{\theta}\binom{v_{1}}{v_{2}}, R_{\theta}\binom{v_{3}}{v_{4}}\right) \tag{79}
\end{equation*}
$$

where R_{θ} is given in 78). A straightforward computation shows that $\tilde{\Phi}_{R_{\theta}}$ preserves the symplectic form $\omega_{4}=d v \wedge d u$.

For the dimension $n=8$ it will be useful to consider the action of $S U(2)$ on $\dot{\mathbb{R}}^{8}$ in terms of quaternions. The quaternion algebra \mathbb{H} is a four-dimensional associative algebra over \mathbb{R}. The elements of \mathbb{H} are spanned by 1 (the identity element), $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ with the following property

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j} \mathbf{k}=-1 .
$$

The quaternion algebra \mathbb{H} can be realized inside the 2 by 2 complex matrices $M_{2}(\mathbb{C})$. That is, the elements $1, i, j, k$ are identified with the following matrices

$$
1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{i}=\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right), \mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathbf{k}=\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right) .
$$

Let me assign to each $u=\left(u_{1}, \ldots, \ldots, u_{8}\right) \in \mathbb{R}^{8}$ quaternion matrices $\left(q_{1}, q_{2}\right) \in \mathbb{H}^{2}=\mathbb{H} \times \mathbb{H}$, where (q_{1}, q_{2}) are given by

$$
q_{1}=\left(\begin{array}{cc}
u_{1}+\imath u_{2} & -u_{3}+\imath u_{4} \tag{80}\\
u_{3}+\imath u_{4} & u_{1}-\imath u_{2}
\end{array}\right), \quad q_{2}=\left(\begin{array}{cc}
u_{5}-\imath u_{6} & -u_{7}-\imath u_{8} \\
u_{7}-\imath u_{8} & u_{5}+\imath u_{6}
\end{array}\right) .
$$

Let me denote $\dot{\mathbb{H}}=\mathbb{H}-\{0\}$ and define a free action of $S U(2)$ on $\mathbb{R}^{8} \cong \dot{\mathbb{H}} \times \dot{\mathbb{H}}$ which is given by

$$
\begin{equation*}
\Phi_{g}: \dot{\mathbb{H}} \times \dot{\mathbb{H}} \longrightarrow \dot{\mathbb{H}} \times \dot{\mathbb{H}}, \Phi_{g}(u)=\Phi_{g}\left(q_{1}, q_{2}\right)=\left(g q_{1}, g q_{2}\right), \tag{81}
\end{equation*}
$$

where $g \in S U(2)$ has the following expression

$$
g=\left\{\left(\begin{array}{cc}
\lambda_{1} & -\bar{\lambda}_{2} \tag{82}\\
\lambda_{2} & \bar{\lambda}_{1}
\end{array}\right)\left|\lambda_{1}, \lambda_{2} \in \mathbb{C},\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=1\right\}\right.
$$

Let me assign to each $(u, v) \in T^{*} \dot{\mathbb{R}}^{8}$ quaternions matrices $\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \in \dot{\mathbb{H}}^{2} \times \mathbb{H}^{2}$, where $\left(q_{1}, q_{2}\right)$ are given in (80) and $\left(p_{1}, p_{2}\right)$ are given by

$$
p_{1}=\left(\begin{array}{cc}
v_{1}+\imath v_{2} & -v_{3}+\imath v_{4} \tag{83}\\
v_{3}+i v_{4} & v_{1}-\imath v_{2}
\end{array}\right), \quad p_{2}=\left(\begin{array}{cc}
v_{5}-\imath v_{6} & -v_{7}-\imath v_{8} \\
v_{7}-\imath v_{8} & v_{5}+\imath v_{6}
\end{array}\right) .
$$

The action Φ_{g} of $S U(2)$ on $\dot{\mathbb{R}} \dot{B}^{\cong} \cong \dot{\mathbb{H}} \times \mathbb{H}$ is lifted to an action $\tilde{\Phi}_{g}$ of $S U(2)$ on $T^{*} \dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2} \times \mathbb{H}^{2}$ which is given by
$\tilde{\Phi}_{g}: \dot{\mathbb{H}}^{2} \times \mathbb{H}^{2} \longrightarrow \dot{\mathbb{H}}^{2} \times \mathbb{H}^{2}, \quad \tilde{\Phi}_{g}(u, v)=\tilde{\Phi}_{g}\left(q_{1}, q_{2}, p_{1}, p_{2}\right)=\left(g q_{1}, g q_{2}, g p_{1}, g p_{2}\right)$ with $g \in S U(2)$,
where $g q_{j}, g p_{j}, j=1,2$ denote the product of matrices. The action in (84) preserves the symplectic form $\omega_{8}=d v \wedge d u$. See below an argument regarding this point.

A complex structure on $T^{*} \mathbb{R}^{n}$ is a map $\mathcal{T}_{n}: T^{*} \mathbb{R}^{n} \ni(u, v) \longrightarrow z \in \mathbb{C}^{n}$ such that $T^{*} \mathbb{R}^{n}$ is parametrized with complex coordinates. For instance, see equations in (89), (91) below. The
symplectic form ω_{n}, almost complex structure J and Riemanniann metric B are written in complex coordinates as follows

$$
\begin{equation*}
\omega_{n}=\frac{1}{\imath} d \bar{z} \wedge d z=\frac{1}{\imath} \sum_{k=1}^{n} d \bar{z}_{k} \wedge d z_{k}, J\left(\frac{\partial}{\partial z_{k}}\right)=\imath \frac{\partial}{\partial z_{k}}, J\left(\frac{\partial}{\partial \bar{z}_{k}}\right)=-\imath \frac{\partial}{\partial \bar{z}_{k}}, B(\cdot, \cdot)=\omega_{n}(\cdot, J \cdot) . \tag{85}
\end{equation*}
$$

The tangent space at $(u, v) \in T^{*} \mathbb{R}^{n}$ is denoted by $T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)$, which is a $2 n$-dimensional real vector space. The complexification of $T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)$ is denoted by $\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}}$, which is a $2 n$-dimensional complex vector space whose elements $Z \in\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}}$ are given by the formal linear combinations $Z=X+\imath Y$ with $X, Y \in T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)$. The addition of vectors and multiplication by a complex number are defined as follows

$$
\begin{aligned}
\left(X_{1}+\imath Y_{1}\right)+\left(X_{2}+\imath Y_{2}\right) & =\left(X_{1}+X_{2}\right)+\imath\left(Y_{1}+Y_{2}\right) \\
(a+i b)(X+\imath Y) & =(a X-b Y)+\imath(b X+a Y) .
\end{aligned}
$$

The space $\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}}$ can be decomposed as follows

$$
\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}}=\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(1,0)} \oplus\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(0,1)}
$$

where the space $\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(1,0)}$ is spanned by the vectors $\left\{\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial z_{2}}, \ldots, \frac{\partial}{\partial z_{n}}\right\}$, and the space $\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(0,1)}$ is spanned by the vectors $\left\{\frac{\partial}{\partial \bar{z}_{1}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\}$. The cotangent space $\left(T_{(u, v)}^{*}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}}$ can be decomposed as follows

$$
\left(T_{(u, v)}^{*}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}}=\left(T_{(u, v)}^{*}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(1,0)} \oplus\left(T_{(u, v)}^{*}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(0,1)}
$$

where the space $\left(T_{(u, v)}^{*}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(1,0)}$ is spanned by the one-forms $\left\{d z_{1}, \ldots, d z_{n}\right\}$, and the space $\left(T_{(u, v)}^{*}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(0,1)}$ is spanned by the one-forms $\left\{d \bar{z}_{1}, \ldots, d \bar{z}_{n}\right\}$. For future use, I will consider the following projections

$$
\begin{align*}
& \Pi_{-}:\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}} \longrightarrow\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(1,0)}, \Pi_{-}(X)=\frac{1}{2}(X-\imath J(X)) \tag{86}\\
& \Pi_{+}:\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{\mathbb{C}} \longrightarrow\left(T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)\right)^{(0,1)}, \Pi_{+}(X)=\frac{1}{2}(X+\imath J(X))
\end{align*}
$$

Let me consider a function $f: T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n} \longrightarrow \mathbb{C}, \mathbb{R}$. The differential of f is given by

$$
d f=\sum_{k=1}^{n}\left(\frac{\partial f}{\partial z_{j}} d z_{j}+\frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j}\right) .
$$

The one-form $d f$ can be written as $d f=\partial f+\bar{\partial} f$, where the one-forms ∂f and $\bar{\partial} f$ are given by

$$
\partial f=\sum_{k=1}^{n} \frac{\partial f}{\partial z_{j}} d z_{j}, \quad \bar{\partial} f=\sum_{k=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j} .
$$

The operators $\partial, \bar{\partial}$ act non only on functions. These operators act also on differential forms. For instance, the action of ∂ on $\bar{\partial} f$ gives a two-form $\partial \bar{\partial} f$, and the action of $\bar{\partial}$ on ∂f gives a two-form $\bar{\partial} \partial f$. The two-forms $\partial \bar{\partial} f$ and $\bar{\partial} \partial f$ are given by

$$
\begin{equation*}
\partial \bar{\partial} f=\sum_{k, j=1}^{n} \frac{\partial^{2} f}{\partial z_{k} \partial \bar{z}_{j}} d z_{k} \wedge d \bar{z}_{j}, \quad \bar{\partial} \partial f=\sum_{k, j=1}^{n} \frac{\partial^{2} f}{\partial \bar{z}_{k} \partial z_{j}} d \bar{z}_{k} \wedge d z_{j} . \tag{87}
\end{equation*}
$$

The operators $\partial, \bar{\partial}$ can act on differential forms of degree higher than one, see 43 for details.
Under the identification of $T^{*} \mathbb{R}^{n}$ with \mathbb{C}^{n} through the map \mathcal{T}_{n}, the pair $\left(\mathbb{C}^{n}, \omega_{n}=\frac{1}{2} d \bar{z} \wedge d z\right)$ becomes a Kähler manifold (i.e, a complex manifold with symplectic form and Riemanniann
metric defined as in (85). Let me take $f(z)=|z|^{2}$ with $|z|^{2}=\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}$. From definition of $\bar{\partial} \partial f$ in 87 it follows that the symplectic form can be written as $\omega_{n}=\frac{1}{2} \bar{\partial} \partial|z|^{2}$. The function $|z|^{2}$ is called the Kähler potential.

Given $f \in \mathcal{F}\left(T^{*} \mathbb{R}^{n}\right)$, the Hamiltonian vector field X_{f} can be written in complex coordinates $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ as follows
(88) $\quad X_{f}=\imath\left(\sum_{k=1}^{k=n} \frac{\partial f}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{k}}-\frac{\partial f}{\partial z_{k}} \frac{\partial}{\partial \bar{z}_{k}}\right) \quad$ in short notation $\quad X_{f}=\imath\left(\frac{\partial f}{\partial \bar{z}} \frac{\partial}{\partial z}-\frac{\partial f}{\partial z} \frac{\partial}{\partial \bar{z}}\right)$.

Let me define $\mathbb{C}^{n}=\mathbb{C}^{n}-\{0\}$. I will be particularly interested in the complex dimensions $n=4,8$. The symplectic manifold $T^{*} \dot{\mathbb{R}}^{4}$ is identified with $\dot{\mathbb{C}}^{4}$ through the following map

$$
\mathcal{T}_{4}: T^{*} \dot{\mathbb{R}}^{4} \longrightarrow \dot{\mathbb{C}}^{4}, \quad \mathcal{T}_{4}(u, v)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)
$$

where the complex coordinates $z_{1}, z_{2}, z_{3}, z_{4}$ are given by

$$
\begin{array}{ll}
z_{1}=\frac{1}{2}\left[\left(u_{1}+v_{2}\right)-\imath\left(v_{1}-u_{2}\right)\right], & z_{2}=\frac{1}{2}\left[\left(u_{3}+v_{4}\right)-\imath\left(v_{3}-u_{4}\right)\right] \tag{89}\\
z_{3}=\frac{1}{2}\left[\left(v_{4}-u_{3}\right)+\imath\left(u_{4}+v_{3}\right)\right], & z_{4}=\frac{1}{2}\left[\left(v_{2}-u_{1}\right)+\imath\left(u_{2}+v_{1}\right)\right] .
\end{array}
$$

Taking $z_{j}, j=1,2,3,4$ in 89) a short calculation shows that $\omega_{4}=d v \wedge d u=\frac{1}{\imath} d \bar{z} \wedge d z$. Under the complex structure \mathcal{T}_{4} the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$ is given by

$$
\begin{equation*}
\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}: \dot{\mathbb{C}}^{4} \longrightarrow \dot{\mathbb{C}}^{4}, \quad \tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)=\mathrm{e}^{\imath \theta} \cdot z=\left(\mathrm{e}^{\imath \theta} z_{1}, \mathrm{e}^{\imath \theta} z_{2}, \mathrm{e}^{-\imath \theta} z_{3}, \mathrm{e}^{-\imath \theta} z_{4}\right) \tag{90}
\end{equation*}
$$

The action in 90 can be thought of as a coordinate transformation of \mathbb{C}^{4}. A straightforward calculation shows that the symplectic form $\omega_{4}=\frac{1}{2} d \bar{z} \wedge d z$ is invariant under the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$.

The symplectic manifold $T^{*} \dot{\mathbb{R}}^{8}$ is identified with $\dot{\mathbb{C}}^{8}$ through the following map

$$
\mathcal{T}_{8}: T^{*} \dot{\mathbb{R}}^{8} \longrightarrow \dot{\mathbb{C}}^{8}, \quad \tau_{8}(u, v)=\left(z_{1}, \ldots, z_{8}\right)
$$

where the complex coordinates $z_{1}, z_{2}, \ldots, z_{8}$ are given by

$$
\begin{align*}
z_{1}=\frac{1}{2}\left[\left(-u_{2}+v_{1}\right)+\imath\left(u_{1}+v_{2}\right)\right], & z_{2} & =\frac{1}{2}\left[\left(-u_{4}+v_{3}\right)+\imath\left(u_{3}+v_{4}\right)\right] \tag{91}\\
z_{3}=\frac{1}{2}\left[\left(-u_{4}-v_{3}\right)+\imath\left(-u_{3}+v_{4}\right)\right], & z_{4} & =\frac{1}{2}\left[\left(u_{2}+v_{1}\right)+\imath\left(u_{1}-v_{2}\right)\right] \\
z_{5}=\frac{1}{2}\left[\left(u_{5}-v_{6}\right)-\imath\left(u_{6}+v_{5}\right)\right], & z_{6} & =\frac{1}{2}\left[\left(u_{7}-v_{8}\right)-\imath\left(u_{8}+v_{7}\right)\right] \\
z_{7}=\frac{1}{2}\left[\left(-u_{7}-v_{8}\right)-\imath\left(u_{8}-v_{7}\right)\right], & z_{8} & =\frac{1}{2}\left[\left(u_{5}+v_{6}\right)-\imath\left(v_{5}-u_{6}\right)\right]
\end{align*}
$$

Taking $z_{j}, j=1, \ldots, 8$ in (91) a straightforward calculation shows that

$$
\begin{equation*}
\omega_{8}=d v \wedge d u=\frac{1}{\imath} d \bar{z} \wedge d z \tag{92}
\end{equation*}
$$

The equations in (91) can be written in a short notation as

$$
\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)=p_{1}+\imath q_{1}, \quad\left(\begin{array}{cc}
z_{5} & z_{7} \\
z_{6} & z_{8}
\end{array}\right)=q_{2}-\imath p_{2}
$$

where, $q_{1}, q_{2}, p_{1}, p_{2}$ are the quaternion matrices in (80), (83). Under the complex structure \mathcal{T}_{8} the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$ is given by

$$
\begin{equation*}
\tilde{\Phi}_{g}: \dot{\mathbb{C}}^{8} \longrightarrow \dot{\mathbb{C}}^{8}, \quad \tilde{\Phi}_{g}(z)=\left(g\binom{z_{1}}{z_{2}}, g\binom{z_{3}}{z_{4}}, g\binom{z_{5}}{z_{6}}, g\binom{z_{7}}{z_{8}}\right), \quad g \in S U(2) \tag{93}
\end{equation*}
$$

The action in (93) can be thought of as a coordinate transformation of \mathbb{C}^{8}, and it is not difficult to see that $\omega_{8}=\frac{1}{\imath} d \bar{z} \wedge d z$ of $\dot{\mathbb{C}}^{8}$ is invariant under the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$. Hence, the action of $S U(2)$ on $T^{*} \dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2} \times \mathbb{H}^{2}$ leaves invariant the symplectic form $\omega_{8}=d u \wedge d u$ as well.

The actions in 90 and (93) are free. Namely, the identity element of G_{n} is the unique solution to the following condition

$$
\tilde{\Phi}_{g}(z)=z \quad \forall z \in \dot{\mathbb{C}}^{n}, \quad g \in G_{n}
$$

Since the actions in 93 , 90 leave invariant the symplectic form $\omega_{n}=\frac{1}{2} d \bar{z} \wedge d z$, then these actions can be associated with a moment map $\mathfrak{J}_{n}: \dot{\mathbb{C}}^{n} \longrightarrow \mathfrak{g}_{n}^{*}$, where \mathfrak{g}_{n}^{*} denotes the dual of the Lie algebra \mathfrak{g}_{n}. The map \mathfrak{J}_{n} is obtained as follows. For each $\xi \in \mathfrak{g}_{n}$, let X_{ξ} denote the vector field describing the infinitesimal action of ξ on $\dot{\mathbb{C}}^{n}$. That is,

$$
\begin{equation*}
X_{\xi}(z)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Phi}_{\mathrm{e}^{t \xi}}(z) \quad \forall z \in \dot{\mathbb{C}}^{n} \tag{94}
\end{equation*}
$$

Moreover, for each $\xi \in \mathfrak{g}_{n}$ there is a smooth function $J_{\xi}: \dot{\mathbb{C}}^{n} \longrightarrow \mathbb{R}$ such that X_{ξ} is the Hamiltonian vector field of J_{ξ}. Namely,

$$
\begin{equation*}
\iota_{X_{\xi}} \omega_{n}(\cdot)=d J_{\xi}(\cdot) \tag{95}
\end{equation*}
$$

Equality (95) implies that the vector field $X_{J_{\xi}}$ satisfies the following equality

$$
\begin{equation*}
X_{\xi}(z)=X_{J_{\xi}}(z) \forall z \in \dot{\mathbb{C}}^{n} \tag{96}
\end{equation*}
$$

The function J_{ξ} is unique up to a constant and can be obtained by integrating equation (96), where $X_{J_{\xi}}(z)$ is given in (88). The functions J_{ξ} and \mathfrak{J}_{n} can be put together as follows

$$
\begin{equation*}
J_{\xi}(z)=\left\langle\mathfrak{J}_{n}(z), \xi\right\rangle \tag{97}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the pairing between \mathfrak{g}_{n} and \mathfrak{g}_{n}^{*}. For each $\xi, \eta \in \mathfrak{g}$ the functions J_{ξ}, J_{η} satisfy the following equality

$$
\left\{J_{\xi}, J_{\eta}\right\}=J_{[\xi, \eta]}
$$

where $[\cdot, \cdot]$ denotes the bracket in \mathfrak{g}, so that the constants can be chosen equal to zero. See [28] for details. Thus, the vector field X_{ξ} is Hamiltonian associated to J_{ξ}.

For dimension $n=4$, an element $\xi \in \mathfrak{u}(1)$ can be written as $\xi=\imath \theta$ with $\theta \in \mathbb{R}$. The infinitesimal generator is given by

$$
X_{\imath \theta}(z)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Phi}_{\mathrm{e}^{t \imath \theta}}(z)=\imath \theta\left(z_{1}, z_{2},-z_{3},-z_{4}\right)
$$

For $\imath \theta \in \mathfrak{u}(1)$ the Hamiltonian function $J_{\imath \theta}: \dot{\mathbb{C}}^{4} \longrightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
J_{\imath \theta}(z)=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-\left|z_{4}\right|^{2}\right) \theta \tag{98}
\end{equation*}
$$

An element $\xi \in \mathfrak{u}(1)^{*}$ can be written as $\imath s$ with $s \in \mathbb{R}$. The pairing between $\mathfrak{u}(1)$ and $\mathfrak{u}(1)^{*}$ is defined as follows

$$
\langle\imath s, \imath \theta\rangle=(-\imath s)(\imath \theta)=s \theta
$$

The moment map $\mathfrak{J}_{4}: \dot{\mathbb{C}}^{4} \longrightarrow \mathfrak{u}(1)^{*}$ that satisfies equation 97 is given by

$$
\begin{equation*}
\mathfrak{J}_{4}(z)=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-\left|z_{4}\right|^{2}\right) \imath \tag{99}
\end{equation*}
$$

Take the complex coordinates in (89) and a straightforward calculation shows that the moment map \mathfrak{J}_{4} can be written in coordinates $(u, v) \in T^{*} \mathbb{R}^{4}$ as follows

$$
\begin{equation*}
\mathfrak{J}_{4}(u, v)=\imath\left(u_{1} v_{2}-u_{2} v_{1}+u_{3} v_{4}-u_{4} v_{3}\right) \tag{100}
\end{equation*}
$$

For dimension $n=8$, let me consider the following basis of the Lie algebra $\mathfrak{s u}(2)$

$$
\xi_{1}=\left(\begin{array}{cc}
\imath & 0 \tag{101}\\
0 & -\imath
\end{array}\right), \xi_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \xi_{3}=\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right)
$$

The matrices $\xi_{1}, \xi_{2}, \xi_{3}$ are the Pauli matrices, and each $\xi \in \mathfrak{s u}(2)$ can be written as $\xi=$ $a \xi_{1}+b \xi_{2}+c \xi_{3}$ with $a, b, c \in \mathbb{R}$. That is, $\xi \in \mathfrak{s u}(2)$ is given by

$$
\xi=\left(\begin{array}{cc}
\imath a & -b+\imath c \tag{102}\\
b+\imath c & -\imath a
\end{array}\right)
$$

Any matrix Lie algebra is endowed with a positive-definite bilinear form (inner product). In particular, for $\mathfrak{s u}(2)$ this inner product is given by

$$
\begin{equation*}
\langle\mathfrak{U}, \mathfrak{B}\rangle=\frac{1}{2} \operatorname{tr}\left[\mathfrak{U}^{*} \mathfrak{B}+\mathfrak{B}^{*} \mathfrak{U}\right], \quad \mathfrak{U}, \mathfrak{B} \in \mathfrak{s u}(2) . \tag{103}
\end{equation*}
$$

The matrices \mathfrak{U}^{*} and \mathfrak{B}^{*} denote the conjugate transpose. The elements of $\mathfrak{s u}{ }^{(2)}$ * can be identified with the skew-symmetric 2×2 matrices in 102 through the inner product given in (103).

For $\xi \in \mathfrak{s u}(2)$ the infinitesimal generator X_{ξ} in (94) is given by

$$
\begin{aligned}
X_{\xi}(z) & =\left.\frac{d}{d t}\right|_{t=0} \tilde{\Phi}_{\mathrm{e}^{t \xi}}(z)=\left.\frac{d}{d t}\right|_{t=0}\left(\mathrm{e}^{t \xi}\binom{z_{1}}{z_{2}}, \mathrm{e}^{t \xi}\binom{z_{3}}{z_{4}}, \mathrm{e}^{t \xi}\binom{z_{5}}{z_{6}}, \mathrm{e}^{t \xi}\binom{z_{7}}{z_{8}}\right) \\
& =\left(\xi\binom{z_{1}}{z_{2}}, \xi\binom{z_{3}}{z_{4}}, \xi\binom{z_{5}}{z_{6}}, \xi\binom{z_{7}}{z_{8}}\right)
\end{aligned}
$$

The corresponding Hamiltonian function $J_{\xi}: \dot{\mathbb{C}}^{8} \longrightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
J_{\xi}=a J_{\xi_{1}}+b J_{\xi_{2}}+c J_{\xi_{3}} \tag{104}
\end{equation*}
$$

where the Hamiltonian functions $J_{\xi_{j}}: \dot{\mathbb{C}}^{8} \longrightarrow \mathbb{R}$ are associated to the basis $\xi_{j}, j=1,2,3$. The functions $J_{\xi_{j}}$ are given by

$$
\begin{align*}
J_{\xi_{1}}(z) & =\left(\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{5}\right|^{2}+\left|z_{7}\right|^{2}\right)-\left(\left|z_{2}\right|^{2}+\left|z_{4}\right|^{2}+\left|z_{6}\right|^{2}+\left|z_{8}\right|^{2}\right) \tag{105}\\
J_{\xi_{2}}(z) & =\imath\left(z_{2} \bar{z}_{1}-\bar{z}_{2} z_{1}+\bar{z}_{3} z_{4}-z_{3} \bar{z}_{4}+\bar{z}_{5} z_{6}-z_{5} \bar{z}_{6}+\bar{z}_{7} z_{8}-z_{7} \bar{z}_{8}\right) \\
J_{\xi_{3}}(z) & =z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}+z_{3} \bar{z}_{4}+\bar{z}_{3} z_{4}+z_{5} \bar{z}_{6}+\bar{z}_{5} z_{6}+z_{7} \bar{z}_{8}+\bar{z}_{7} z_{8}
\end{align*}
$$

Take the complex coordinates $z_{j}, j=1, \ldots, 8$ in (91). A straightforward calculation shows that the Hamiltonian functions $J_{\xi_{j}}, j=1,2,3$ can be written in coordinates $(u, v) \in T^{*} \mathbb{R}^{8}$ as follows

$$
\begin{align*}
J_{\xi_{1}}(u, v) & =u_{1} v_{2}-u_{2} v_{1}+u_{4} v_{3}-u_{3} v_{4}+u_{6} v_{5}-u_{5} v_{6}+u_{7} v_{8}-u_{8} v_{7} \tag{106}\\
J_{\xi_{2}}(u, v) & =u_{3} v_{1}-u_{1} v_{3}+u_{4} v_{2}-u_{2} v_{4}+u_{7} v_{5}-u_{5} v_{7}+u_{8} v_{6}-u_{6} v_{8} \\
J_{\xi_{3}}(u, v) & =u_{1} v_{4}-u_{4} v_{1}+u_{3} v_{2}-u_{2} v_{3}+u_{6} v_{7}-u_{7} v_{6}+u_{8} v_{5}-u_{5} v_{8}
\end{align*}
$$

The moment map $\mathfrak{J}_{8}: \dot{\mathbb{C}}^{8} \longrightarrow \mathfrak{s u}(2)^{*}$ is given by

$$
\mathfrak{J}_{8}(z)=\frac{1}{2}\left(\begin{array}{cc}
\imath J_{\xi_{1}} & -J_{\xi_{2}}+\imath J_{\xi_{3}} \tag{107}\\
J_{\xi_{2}}+\imath J_{\xi_{3}} & -\imath J_{\xi_{1}}
\end{array}\right)
$$

A straightforward computation shows that $0 \in \mathfrak{g}_{n}^{*}$ is in the image and that it is a regular value of \mathfrak{J}_{n}, so the zero-set $\mathfrak{J}_{n}^{-1}(0)$ is a submanifold of $\dot{\mathbb{C}}^{n}$. Moreover, the action of G_{n} restricted to $\mathfrak{J}_{n}^{-1}(0)$ is free, so that the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ has a manifold structure. The quotient is called the symplectic or Marsden-Weinstein quotient of $\dot{\mathbb{C}}^{n}$ by G_{n}, see 1 for details. The quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ inherits a symplectic structure from $\dot{\mathbb{C}}^{n} \cong T^{*} \dot{\mathbb{R}}^{n}$. There is a unique symplectic form $\hat{\mu} \in \Omega^{2}\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}\right)$ such that $\imath^{*} \omega_{n}=\pi_{n}^{*} \hat{\mu}$, where $\imath: \mathfrak{J}_{n}^{-1}(0) \longrightarrow \dot{\mathbb{C}}^{n}$ is the inclusion map and $\pi_{n}: \mathfrak{J}_{n}^{-1}(0) \longrightarrow \mathfrak{J}_{n}^{-1}(0) / G_{n}$ is the quotient map.

Let me motivate the identification of $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ with a symplectic manifold by looking for transformations that leave invariant the symplectic form $\widehat{\mu}$ of $\mathfrak{J}_{n}^{-1}(0) / G_{n}$. To do so, I consider another natural action (coordinate transformation) of a Lie Group on $\dot{\mathbb{C}}^{n}$ that preserves the zero-set $\mathfrak{J}_{n}^{-1}(0)$, commutes with the action of G_{n} on $\dot{\mathbb{C}}^{n}$ and leaves invariant the symplectic form $\omega_{n}=\frac{1}{l} d \bar{z} \wedge d z$. This another natural action gives rise to a coordinate transformation which leaves invariant the symplectic form $\hat{\mu}$ of $\mathfrak{J}_{n}^{-1}(0) / G_{n}$. The above points are explained in more detail in the following paragraphs for both dimensions.

Let me begin with the dimension $n=4$. A natural action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ can be defined as follows

$$
\begin{equation*}
\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}: \dot{\mathbb{C}}^{4} \longrightarrow \dot{\mathbb{C}}^{4}, \quad \boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)=\left(\boldsymbol{g}\binom{z_{1}}{z_{2}}, \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}}\right), \quad \boldsymbol{g}, \boldsymbol{h} \in S U(2) \times S U(2) . \tag{108}
\end{equation*}
$$

A short calculation shows that the action in (108) leaves invariant the symplectic form $\omega_{4}=$ $\frac{1}{\imath} d \bar{z} \wedge d z$. The moment map $\mathfrak{J}_{4}: \dot{\mathbb{C}}^{4} \longrightarrow \mathfrak{u}(1)^{*}$ satisfies $\mathfrak{J}_{4}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\mathfrak{J}_{4}(z)$, so the action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ preserves the submanifold $\mathfrak{J}_{4}^{-1}(0)$. It is not difficult to see that the actions of $S U(2) \times S U(2)$ and $U(1)$ on $\dot{\mathbb{C}}^{4}$ commute. That is,

$$
\begin{equation*}
\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(\tilde{\Phi}_{\mathrm{e}^{2} \theta}(z)\right)=\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right) \quad \forall z \in \dot{\mathbb{C}}^{4} \tag{109}
\end{equation*}
$$

Therefore equality 109 implies that for $z \in \mathfrak{J}_{4}^{-1}(0)$ the group $S U(2) \times S U(2)$ has a well-defined natural action on $\mathfrak{J}_{4}^{-1}(0) / U(1)$. In addition, equality $\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)=(-1) \boldsymbol{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}(z)$ implies that actually the group $S U(2) \times S U(2) / \mathbb{Z}_{2}$ acts on $\mathfrak{J}_{4}^{-1}(0) / U(1)$. That is, $\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}$ and $\boldsymbol{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}$ give the same action on $\mathfrak{J}_{4}^{-1}(0) / U(1)$. Since the action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ preserves the symplectic form $\omega_{4}=\frac{1}{2} d \bar{z} \wedge d z$, then the action of $S U(2) \times S U(2) / \mathbb{Z}_{2}$ will preserve the symplectic form $\widehat{\mu}$ of $\mathfrak{J}_{4}^{-1}(0) / U(1)$ as well. It is known that there is a homomorphism between $S U(2) \times S U(2) / \mathbb{Z}_{2}$ and $S O(4, \mathbb{R})$, which can be realized as follows. Under the identification $\mathbb{R}^{4} \cong \mathbb{H}$ in a similar way as in 80 , the natural action of $S O(4, \mathbb{R})$ on \mathbb{R}^{4} is obtained from the action of $S U(2) \times S U(2) / \mathbb{Z}_{2}$ on \mathbb{H}, see appendix A. Since the action of $S O(4, \mathbb{R})$ can be lifted to an action on $T^{*} \mathbb{R}^{4}$, then the group $S U(2) \times S U(2) / \mathbb{Z}_{2} \cong S O(4, \mathbb{R})$ acts in a natural way on $T^{*} \mathbb{R}^{4}$. So this fact suggests that the symplectic manifold $\left(\mathfrak{J}_{4}^{-1}(0) / U(1), \hat{\mu}\right)$ could be identified with a manifold inside $T^{*} \mathbb{R}^{4}$ whose symplectic form is that of ambient space. Indeed, I will show in paragraphs below that $\left(\mathfrak{J}_{4}^{-1}(0) / U(1), \hat{\mu}\right)$ can be identified with $\left(T^{+} S^{3}, \hat{\omega}=d p \wedge d q\right)$.

Let me study the case $n=8$ following a similar analysis. I identify $\mathbb{C}^{8} \cong \mathbb{C}^{4} \times \mathbb{C}^{4}$ by writing $z=\left(z_{I}, z_{I I}\right)$ with $z_{I}=\left(z_{1}, z_{3}, z_{5}, z_{7}\right), z_{I I}=\left(z_{2}, z_{4}, z_{6}, z_{8}\right)$. A natural action of $S U(4)$ on $\dot{\mathbb{C}}^{8}$ is given by

$$
\begin{equation*}
\mathbf{\Upsilon}_{A}: \dot{\mathbb{C}}^{8} \longrightarrow \dot{\mathbb{C}}^{8}, \quad \mathbf{\Upsilon}_{A}(z)=\left(A z_{I}, A z_{I I}\right), \quad A \in S U(4) \tag{110}
\end{equation*}
$$

A straightforward calculation shows that the action in 110 leaves invariant the symplectic form $\omega_{8}=\frac{1}{\imath}=d \bar{z} \wedge d z$ on \mathbb{C}^{8}. The Hamiltonian functions $J_{\xi_{j}}(z), j=1,2,3$, are invariant under the action of $S U(4)$ on $\dot{\mathbb{C}}^{8}$. Namely,

$$
\begin{equation*}
J_{\xi_{j}}\left(\mathbf{\Upsilon}_{A}(z)\right)=J_{\xi_{j}}(z) \quad \forall z \in \dot{\mathbb{C}}^{8} \tag{111}
\end{equation*}
$$

It follows from definition of \mathfrak{J}_{8} in (107) and equality (111) that \mathfrak{J}_{8} satisfies $\mathfrak{J}_{8}\left(\mathbf{\Upsilon}_{A}(z)\right)=\mathfrak{J}_{8}(z)$, so the action of $S U(4)$ on $\dot{\mathbb{C}}^{8}$ preserves the zero-set $\mathfrak{J}_{8}^{-1}(0)$. It is not difficult to see that the actions of $S U(4)$ and $S U(2)$ on $\dot{\mathbb{C}}^{8}$ commute. That is,

$$
\begin{equation*}
\mathbf{\Upsilon}_{A}\left(\tilde{\Phi}_{g}(z)\right)=\tilde{\Phi}_{g}\left(\mathbf{\Upsilon}_{A}(z)\right), \quad g \in S U(2), \quad A \in S U(4) \tag{112}
\end{equation*}
$$

Therefore equality $\sqrt{112}$ implies that for $z \in \mathfrak{J}_{8}^{-1}(0)$ the group $S U(4)$ has a well-defined natural action on $\mathfrak{J}_{8}^{-1}(0) / S U(2)$. In addition, equality $\boldsymbol{\Upsilon}_{A}(z)=(-1) \boldsymbol{\Upsilon}_{-A}(z)$ implies that actually the group $S U(4) / \mathbb{Z}_{2}$ acts on $\mathfrak{J}_{8}^{-1}(0) / S U(2)$. That is, $\mathbf{\Upsilon}_{A}$ and $\mathbf{\Upsilon}_{-A}$ give the same action on $\mathfrak{J}_{8}^{-1}(0) / S U(2)$. Since the action of $S U(4)$ on $\dot{\mathbb{C}}^{8}$ preserves the symplectic form $\omega_{8}=\frac{1}{2}=d \bar{z} \wedge d z$, then the action of $S U(4) / \mathbb{Z}_{2}$ will preserve the symplectic form $\widehat{\mu}$ of $\mathfrak{J}_{8}^{-1}(0) / S U(2)$ as well. It is known that there is a homomorphism between $S U(4) / \mathbb{Z}_{2}$ and $S O(6, \mathbb{R})$. Let me briefly describe the construction of this homomorphism; the details are given in appendix A. There is a natural action of $S U(4) / \mathbb{Z}_{2}$ in the six dimensional space $\bigwedge^{2} \mathbb{C}^{4}$ (exterior product of \mathbb{C}^{4}). Since elements in $\bigwedge^{2} \mathbb{C}^{4}$ can be identified with elements in $\mathbb{C}^{6} \cong T^{*} \mathbb{R}^{6}$, then the action of $S U(4) / \mathbb{Z}_{2}$ on $\bigwedge^{2} \mathbb{C}^{4}$ can be written as the natural action of $S O(6, \mathbb{R})$ on $\mathbb{C}^{6} \cong T^{*} \mathbb{R}^{6}$. So this fact suggests that the symplectic manifold $\left(\mathfrak{J}_{8}^{-1}(0) / S U(2), \hat{\mu}\right)$ could be identified with a manifold inside $T^{*} \mathbb{R}^{6}$
whose symplectic form is that of ambient space. Indeed, I will show in paragraphs below that $\left(\mathfrak{J}_{8}^{-1}(0) / S U(2), \hat{\mu}\right)$ can be identified with $\left(T^{+} S^{5}, \hat{\omega}=d p \wedge d q\right)$.

So far, I have motivated the identification of $\mathfrak{J}_{n}^{-1}(0) / G_{n}, n=4,8$ with a symplectic manifold in $T^{*} \mathbb{R}^{m}, m=4,6$. I now explain how the complex structure on \mathbb{C}^{n} induces a complex structure on $\mathfrak{J}_{n}^{-1}(0) / G_{n}$. That is, $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ can be identified with a complex manifold by realizing it as the quotient of the stable set M_{s} in $\dot{\mathbb{C}}^{n}$ by $\left(G_{n}\right)_{\mathbb{C}}$. Here $\left(G_{n}\right)_{\mathbb{C}}$ denotes the complexification of G_{n}. The definition of the stable set M_{s} is the following, see [14] for details.

Definition 3. The stable set M_{s} is the set of points in $\dot{\mathbb{C}}^{n}$ that can be moved into $\mathfrak{J}_{n}^{-1}(0)$ by the action of $\left(G_{n}\right)_{\mathbb{C}}$. That is

$$
M_{s}=\left\{z \in \dot{\mathbb{C}}^{n} \mid z=g_{\mathbb{C}} \cdot z_{0}, \quad z_{0} \in \mathfrak{J}_{n}^{-1}(0) \text { and } g_{\mathbb{C}} \in\left(G_{n}\right)_{\mathbb{C}}\right\}
$$

The stable set M_{s} has the following properties, see [14, 18]. (i) M_{s} is an open set of full Lebesgue measure on \mathbb{C}^{n}, (ii) $\left(G_{n}\right)_{\mathbb{C}}$ acts freely on M_{s}, (iii) Each $\left(G_{n}\right)_{\mathbb{C}^{\text {-orbit }}}$ in M_{s} intersects $\mathfrak{J}_{n}^{-1}(0)$ in only one G_{n}-orbit, which gives a bijective identification

$$
\mathfrak{J}_{n}^{-1}(0) / G_{n}=M_{s} /\left(G_{n}\right)_{\mathbb{C}}
$$

Since the action of $\left(G_{n}\right)_{\mathbb{C}}$ in M_{s} is free, proper and holomorphic, then the quotient $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$ has the structure of a complex manifold, see [18] for details.

Let me motivate the identification of $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$ with a complex manifold by looking at transformations that preserve this complex quotient. To do that, I consider this another natural action for the complexified group which does not preserve the zero-set $\mathfrak{J}_{n}^{-1}(0)$, commutes with the action of $\left(G_{n}\right)_{\mathbb{C}}$ on $\dot{\mathbb{C}}^{n}$ and gives rise to a coordinate transformation that preserves the complex quotient $M_{s} /\left(G_{n}\right)_{\mathbb{C}}$. The above ideas are explained in the next paragraphs for both dimensions $n=4,8$.

Let me begin with the dimension $n=4$. The group $\left(G_{4}\right)_{\mathbb{C}}=(U(1))_{\mathbb{C}}$ is identified with $\mathbb{C}^{*}=\mathbb{C}-\{0\}$. The action of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$ is given by

$$
\begin{equation*}
\tilde{\Phi}_{\lambda}: \dot{\mathbb{C}}^{4} \longrightarrow \dot{\mathbb{C}}^{4}, \quad \tilde{\Phi}_{\lambda}(z)=\lambda z=\left(\lambda z_{1}, \lambda z_{2}, \frac{1}{\lambda} z_{3}, \frac{1}{\lambda} z_{4}\right), \lambda \in \mathbb{C}^{*} \tag{113}
\end{equation*}
$$

The zero-set $\mathfrak{J}_{4}^{-1}(0)$ is invariant under the action of $S U(2) \times S U(2)$, but this set is not preserved under the action of the complex group $(S U(2))_{\mathbb{C}} \times(S U(2))_{\mathbb{C}}=S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$ which is given by

$$
\begin{equation*}
\tilde{\Psi}_{g, h}: \dot{\mathbb{C}}^{4} \longrightarrow \dot{\mathbb{C}}^{4}, \quad \tilde{\Psi}_{g, h}(z)=\left(g\binom{z_{1}}{z_{2}}, h^{-1}\binom{z_{3}}{z_{4}}\right), \quad(g, h) \in S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) \tag{114}
\end{equation*}
$$

The actions of \mathbb{C}^{*} and $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$ commute. Namely,

$$
\begin{equation*}
\tilde{\Psi}_{g, h}\left(\tilde{\Phi}_{\lambda}(z)\right)=\tilde{\Phi}_{\lambda}\left(\tilde{\Psi}_{g, h}(z)\right) \tag{115}
\end{equation*}
$$

Since the stable set M_{s} is a subset of $\dot{\mathbb{C}}^{4}$, then the actions of \mathbb{C}^{*} and $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ also commute on M_{s}. Therefore, equality 115 implies that $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ has a well-defined natural action on the complex quotient M_{s} / \mathbb{C}^{*}. In addition, equality $\tilde{\Psi}_{g, h}(z)=(-1) \tilde{\Psi}_{-g,-h}(z)$ implies that actually the group $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ acts on M_{s} / \mathbb{C}^{*}. That is, $\tilde{\Psi}_{g, h}$ and $\tilde{\Psi}_{-g,-h}$ give the same action on M_{s} / \mathbb{C}^{*}. It is known that there is a homomorphism between $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ and $S O(4, \mathbb{C})$, see appendix A. The group $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2} \cong$ $S O(4, \mathbb{C})$ acts on \mathbb{C}^{4} in a natural way, so this fact suggests that M_{s} / \mathbb{C}^{*} could be identified with a complex manifold inside \mathbb{C}^{4}. In order to make this identification, keeping in mind that the coordinate transformation of $S O(4, \mathbb{C})$ on M_{s} / \mathbb{C}^{*} can be realized from the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2}$, I will construct a natural action of $S O(4, \mathbb{C})$ on \mathbb{C}^{4} from the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$ defined in 114 .

In appendix A, the action of $S O(4, \mathbb{C})$ on $Z \in \mathbb{C}^{4}$ is motivated from the action of $(g, h) \in$ $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ on a 2 by 2 complex matrix q_{Z} which is written in terms of the quaternion matrices as follows

$$
\begin{equation*}
g^{T} q_{Z} h^{-1}=Z_{1} g^{T} h^{-1}+Z_{2} g^{T} \mathbf{i} h^{-1}+Z_{3} g^{T} \mathbf{j} h^{-1}+Z_{4} g^{T} \mathbf{k} h^{-1}, \tag{116}
\end{equation*}
$$

where the complex numbers Z_{j} are the components of $Z=\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right) \in \mathbb{C}^{4}$. I adapt the above construction to the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$. The key point is to consider complex coordinates, so that the action in (114) induces a transformation on $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ as that one in (116). So let me consider the following complex coordinates $\alpha_{j}(z), j=1,2,3,4$

$$
\begin{align*}
& \alpha_{1}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{z_{3}}{z_{4}}, \alpha_{2}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right)\binom{z_{3}}{z_{4}} \tag{117}\\
& \alpha_{3}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{z_{3}}{z_{4}}, \alpha_{4}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right)\binom{z_{3}}{z_{4}} .
\end{align*}
$$

The matrix representation of $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ is used in (117). The action in (114) induces a transformation on the functions $\alpha_{j}(z), j=1,2,3,4$ as follows

$$
\begin{align*}
& \alpha_{1}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}}, \alpha_{2}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}} \tag{118}\\
& \alpha_{3}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}}, \alpha_{4}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}} .
\end{align*}
$$

Note that in (118) the matrices $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ are transformed as in (116). The coordinates $\alpha_{j}(z), j=1,2,3,4$ can be used to construct the action of $S O(4, \mathbb{R})$ on \mathbb{C}^{4} from the action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$. The action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ induces a transformation on $\alpha_{j}(z), j=1,2,3,4$ as follows

$$
\begin{align*}
& \alpha_{1}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}}, \alpha_{2}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}} \tag{119}\\
& \alpha_{3}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}}, \alpha_{4}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}} .
\end{align*}
$$

Note that the actions defined in 118 and 119 satisfy $\alpha_{j}\left(\tilde{\Psi}_{-g,-h}(z)\right)=\alpha_{j}\left(\tilde{\Psi}_{g, h}(z)\right)$ and $\alpha_{j}\left(\boldsymbol{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}(z)\right)=\alpha_{j}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)$ respectively. The actions defined in 118) and 119) can be written in vector notation as follows

$$
\begin{equation*}
\alpha\left(\tilde{\Psi}_{-g,-h}(z)\right)=\alpha\left(\tilde{\Psi}_{g, h}(z)\right) \quad \alpha\left(\boldsymbol{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}(z)\right)=\alpha\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right) . \tag{120}
\end{equation*}
$$

The actions of $\boldsymbol{U} \in S O(4, \mathbb{R})$ and $R \in S O(4, \mathbb{C})$ on $\alpha(z) \in \mathbb{C}^{4}$ are obtained from the action in (119) and in (118) respectively. Namely, the following equality holds

$$
\begin{equation*}
\alpha\left(\boldsymbol{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}(z)\right)=\alpha\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U} \cdot \alpha(z), \quad \alpha\left(\tilde{\Psi}_{-g,-h}(z)\right)=\alpha\left(\tilde{\Psi}_{g, h}(z)\right)=R \cdot \alpha(z) . \tag{121}
\end{equation*}
$$

The construction of the matrices $\boldsymbol{U} \in S O(4, \mathbb{R})$ and $R \in S O(4, \mathbb{C})$ is given in appendix A.
The coordinates $\alpha_{j}(z), j=1,2 \ldots, 4$ in 117 are invariant under the action of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$. Namely,

$$
\begin{equation*}
\alpha_{j}\left(\tilde{\Phi}_{\lambda}(z)\right)=\alpha_{j}(z), \lambda \in \mathbb{C}^{*}, j=1,2,3,4 . \tag{122}
\end{equation*}
$$

Equality $\sqrt{122}$ implies that $\alpha_{j}(z)$ are functions of the \mathbb{C}^{*}-orbit through $z \in \dot{\mathbb{C}}^{4}$, so for $z \in M_{s}$ the functions $\alpha_{j}(z)$ in (117) can be regarded as complex coordinates on M_{s} / \mathbb{C}^{*}. Indeed, in a paragraph below I show that each $\alpha(z) \in \dot{\mathbb{C}}^{4}$ is associated to an orbit $\tilde{\Phi}_{\lambda}(z) \in M_{s} / \mathbb{C}^{*}$. Keeping
in mind that $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2} \cong S O(4, \mathbb{C})$ acts on M_{s} / \mathbb{C}^{*} by coordinate transformation. That is, if $\alpha(z) \in \dot{\mathbb{C}}^{4}$ is identified with an element in M_{s} / \mathbb{C}^{*}, then $\alpha\left(\tilde{\Psi}_{-g,-h}(z)\right)=$ $\alpha\left(\tilde{\Psi}_{g, h}(z)\right)=R \cdot \alpha(z)$ must be an element in M_{s} / \mathbb{C}^{*} as well. In other words, the complex quotient M_{s} / \mathbb{C}^{*} is invariant under the action of $S O(4, \mathbb{C})$. Let me consider the three dimensional complex sphere $S_{\mathbb{C}}^{3}$ which is defined as follows

$$
\begin{equation*}
S_{\mathbb{C}}^{3}=\left\{\alpha \in \mathbb{C}^{4} \mid \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\alpha_{4}^{2}=r^{2}, r \in \mathbb{C}\right\} . \tag{123}
\end{equation*}
$$

The transformation $R \cdot \alpha$ of $R \in S O(4, \mathbb{C})$ on $\alpha \in \mathbb{C}^{4}$ preserves $S_{\mathbb{C}}^{3}$. That is, if α belongs to $S_{\mathbb{C}}^{3}$, then so does $R \cdot \alpha$. Note that when $r=0, S_{\mathbb{C}}^{3}$ corresponds to the null quadric Q_{3}. Taking the expressions of $\alpha_{j}(z), j=1,2,3,4$ in (117) a straightforward calculation shows that the following equality holds

$$
\begin{equation*}
\alpha_{1}^{2}(z)+\alpha_{2}^{2}(z)+\alpha_{3}^{2}(z)+\alpha_{4}^{2}(z)=0 \quad \forall z \in \dot{\mathbb{C}}^{4} . \tag{124}
\end{equation*}
$$

Equality (124) implies that $\alpha(z)$ in (117) belongs to the null quadric Q_{3}. Hence, the following map can be defined

$$
\begin{equation*}
\rho_{(4,3)}: \dot{\mathbb{C}}^{4} \longrightarrow Q_{3}, \quad \rho_{(4,3)}(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \alpha_{3}(z), \alpha_{4}(z)\right)=\alpha . \tag{125}
\end{equation*}
$$

It follows from equality 121) that the map $\rho_{(4,3)}$ intertwines the actions of $S U(2) \times S U(2)$ and $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on \mathbb{C}^{4} with the actions of $S O(4, \mathbb{R})$ and $S O(4, \mathbb{C})$ on Q_{3} respectively . That is, the following equalities hold

$$
\begin{equation*}
\rho_{(4,3)}\left(\Psi_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U} \cdot \alpha, \quad \rho_{(4,3)}\left(\tilde{\Psi}_{g, h}(z)\right)=R \cdot \alpha . \tag{126}
\end{equation*}
$$

Lemma 1. The restriction of $\rho_{(4,3)}$ to M_{s} takes values in the null quadric \dot{Q}_{3}. Namely,

$$
\rho_{(4,3)}: M_{s} \longrightarrow \dot{Q}_{3}
$$

Proof. Since every point $z \in M_{s}$ can be moved into $\mathfrak{J}_{4}^{-1}(0)$ by the action of \mathbb{C}^{*}, then there is $z_{0} \in \mathfrak{J}_{4}^{-1}(0)$ such the equality $z_{0}=\tilde{\Phi}_{\lambda}(z)$ holds. Since $\rho_{(4,3)}$ is invariant under the action of \mathbb{C}^{*}, then the following equalities hold

$$
\left|\rho_{(4,3)}\left(z_{0}\right)\right|^{2}=\left|\rho_{(4,3)}\left(\tilde{\Phi}_{\lambda}(z)\right)\right|^{2}=\left|\rho_{(4,3)}(z)\right|^{2}
$$

The point is to show that $\left|\rho_{(4,3)}\left(z_{0}\right)\right|^{2}=0$ if and only if z_{0} is the zero-vector which does not belong to $\mathfrak{J}_{4}^{-1}(0)$. Hence, $\left|\rho_{(4,3)}\left(z_{0}\right)\right|^{2}=\left|\rho_{(4,3)}(z)\right|^{2} \neq 0$ which implies that $\rho_{(4,3)}(z) \neq 0$ for all $z \in M_{s}$.

Take $\alpha_{j}, j=1, \ldots, 4$ as in 117) a short calculation shows that

$$
\begin{equation*}
\left|\rho_{(4,3)}\left(z_{0}\right)\right|^{2}=2\left(\left|z_{01}\right|^{2}+\left|z_{02}\right|^{2}\right)\left(\left|z_{03}\right|^{2}+\left|z_{04}\right|^{2}\right) . \tag{127}
\end{equation*}
$$

It follows from equality 127 that $\left|\rho_{(4,3)}\left(z_{0}\right)\right|^{2}=0$ if and only if $\left|z_{01}\right|^{2}+\left|z_{02}\right|^{2}=0$ which implies that $z_{01}=z_{02}=0$ or $\left|z_{03}\right|^{2}+\left|z_{04}\right|^{2}=0$ which implies that $z_{03}=z_{04}=0$. Both cases $z_{01}=z_{02}=0$ and $z_{03}=z_{04}=0$ require that $z_{0}=0$ so that the equation $\mathfrak{J}_{4}\left(z_{0}\right)=$ $\imath\left(\left|z_{01}\right|^{2}+\left|z_{02}\right|^{2}-\left|z_{03}\right|^{2}-\left|z_{04}\right|^{2}\right)=0$ is fulfilled.

Now the complex quotient M_{s} / \mathbb{C}^{*} is going to be identified with the null quadric \dot{Q}_{3}.
Proposition 4. The map $\rho_{(4,3)}: M_{s} \longrightarrow \dot{Q}_{3}$ is the quotient map of the action of \mathbb{C}^{*} on M_{s} and gives the identification of M_{s} / \mathbb{C}^{*} with \dot{Q}_{3} and of $\mathfrak{J}_{4}^{-1}(0) / U(1)$ with M_{s} / \mathbb{C}^{*}.

Proof. Let me show that $\rho_{(4,3)}$ is injective. That is, the following is fulfilled

$$
\begin{equation*}
\rho_{(4,3)}(w)=\rho_{(4,3)}(z)=\alpha \Rightarrow w=\tilde{\Phi}_{\lambda}(z), \lambda \in \mathbb{C}^{*} \tag{128}
\end{equation*}
$$

Equality 128 indicates that every $\alpha \in \dot{Q}_{3}$ can be identified with an orbit $\tilde{\Phi}_{\lambda}(z) \in M_{s} / \mathbb{C}^{*}$. Equality $\rho_{(4,3)}(w)=\rho_{(4,3)}(z)$ must be fulfilled component by component. Namely,

$$
\begin{gather*}
z_{1} z_{3}+z_{2} z_{4}=w_{1} w_{3}+w_{2} w_{4}, \quad z_{1} z_{4}-z_{2} z_{3}=w_{1} w_{4}-w_{2} w_{3} \tag{129}\\
\imath\left(z_{1} z_{3}-z_{2} z_{4}\right)=\imath\left(w_{1} w_{3}-w_{2} w_{4}\right), \quad \imath\left(z_{1} z_{4}+z_{2} z_{3}\right)=\imath\left(w_{1} w_{4}+w_{2} w_{3}\right)
\end{gather*}
$$

For $\alpha \in \dot{Q}_{3}$ some $\alpha_{j}, j=1,2,3,4$ is different than zero. Let me consider the case $j=1$, but the following analysis works for other j as well. Note that from the definition of α_{2} in 117) it follows that α_{2} is different than zero as well. From the combination $\alpha_{1}-\imath \alpha_{2}$ the following equality is obtained

$$
z_{1} z_{3}=w_{1} w_{3} \Rightarrow \frac{z_{1}}{w_{3}}-\frac{w_{1}}{z_{3}}=0
$$

The above equality can be written as follows

$$
\operatorname{det}\left(\begin{array}{cc}
z_{1} & w_{1} \\
\frac{1}{z_{3}} & \frac{1}{w_{3}}
\end{array}\right)=0 \text { which implies }\binom{w_{1}}{\frac{1}{w_{3}}}=\lambda\binom{z_{1}}{\frac{1}{z_{3}}} \text {, i.e } w_{1}=\lambda z_{1}, w_{3}=\frac{1}{\lambda} z_{3} \text { with } \lambda \in \mathbb{C}^{*} \text {. }
$$

Now from the combinations $\alpha_{3}-\imath \alpha_{4}$ and $-\alpha_{3}-\imath \alpha_{4}$ the following equalities are obtained

$$
\begin{equation*}
z_{1} z_{4}=w_{1} w_{4}, \quad z_{2} z_{3}=w_{2} w_{3} \tag{130}
\end{equation*}
$$

I obtain $w_{4}=\frac{1}{\lambda} z_{4}$ and $w_{2}=\lambda z_{2}$ by substituting $w_{1}=\lambda z_{1}$ in the first equality and $w_{3}=\frac{1}{\lambda} z_{3}$ in the second equality of (130) respectively. Therefore equality 128 is fulfilled.

The map $\rho_{(4,3)}(z)$ is surjective. The argument is as follows. In appendix A it is shown that $S O(4, \mathbb{C})$ acts transitively on \dot{Q}_{3}. Hence, any $\alpha \in \dot{Q}_{3}$ can be written as follows

$$
\begin{equation*}
\alpha=R \cdot \alpha_{0}, \quad R \in S O(4, \mathbb{C}) \text { and } \alpha_{0}=(1, \imath, 0,0) \tag{131}
\end{equation*}
$$

Since the map $\rho_{(4,3)}(z)$ intertwines the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on M_{s} and $S O(4, \mathbb{C})$ on \dot{Q}_{3}, then equality 131 can be written as follows

$$
\begin{equation*}
\alpha=R \cdot \rho_{(4,3)}\left(z_{0}\right)=\rho_{(4,3)}\left(\tilde{\Psi}_{g, h}\left(z_{0}\right)\right) \quad \text { with } \rho_{(4,3)}\left(z_{0}\right)=\alpha_{0} \text { and } z_{0}=(1,0,1,0) \tag{132}
\end{equation*}
$$

It follows from equality $\sqrt{132}$ that for all $\alpha \in \dot{Q}_{3}$ exists $z=\tilde{\Psi}_{g, h}\left(z_{0}\right) \in M_{s}$ such that equality $\rho_{(4,3)}(z)=\alpha$ is fulfilled.

Under the identification of $\alpha \in \dot{Q}_{3}$ with an orbit $\tilde{\Phi}_{\lambda}(z)$, let me show that every $\alpha \in \dot{Q}_{3}$ contains an $U(1)$-orbit in $\mathfrak{J}_{4}^{-1}(0)$. In other words, every \mathbb{C}^{*}-orbit $\tilde{\Phi}_{\lambda}(z)$ intersects $\mathfrak{J}_{4}^{-1}(0)$ in an $U(1)$-orbit, which provides the identification $\mathfrak{J}_{4}^{-1}(0) / U(1)=M_{s} / \mathbb{C}^{*}$. The group $S O(4, \mathbb{R})$ acts transitively on \dot{Q}_{3} and since the map $\rho_{(4,3)}$ intertwines the action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ and $S O(4, \mathbb{R})$ on \dot{Q}_{3}, then $\alpha \in \dot{Q}_{3}$ can be written as follows

$$
\begin{equation*}
\rho_{(4,3)}(z)=\alpha=\boldsymbol{U} \cdot \alpha_{0}=\rho_{(4,3)}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right), \quad U \in S O(4, \mathbb{R}) \quad \text { and } \quad \boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right) \in \mathfrak{J}_{4}^{-1}(0) \tag{133}
\end{equation*}
$$

Since the map $\rho_{(4,3)}$ is invariant under the action of $U(1)$, then it follows from equality 128 that the \mathbb{C}^{*}-orbit $\tilde{\Phi}_{\lambda}(z)$ intersects $\mathfrak{J}_{4}^{-1}(0)$ in the $U(1)$-orbit $\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right)$.

It follows from the identifications of M_{s} / \mathbb{C}^{*} with \dot{Q}_{3} and of M_{s} / \mathbb{C}^{*} with $\mathfrak{J}_{4}^{-1}(0) / U(1)$ that the null quadric \dot{Q}_{3} is the complex structure of the symplectic quotient $\mathfrak{J}_{4}^{-1}(0) / U(1)$. Keeping in mind that the symplectic form of $\mathfrak{J}_{4}^{-1}(0) / U(1)$ is invariant under the action of $S U(2) \times S U(2) / \mathbb{Z}_{2} \cong S O(4, \mathbb{R})$, let me equip \dot{Q}_{3} with the symplectic form $\widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|$ which is invariant under the transformation $\alpha\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U} \cdot \alpha$ of $S U(2) \times S U(2) / \mathbb{Z}_{2} \cong S O(4, \mathbb{R})$ on $\alpha \in \dot{Q}_{3}$. That is, let me consider the Kähler manifold $\left(\dot{Q}_{3}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. The symplectic manifold $\left(\mathfrak{J}_{4}^{-1}(0) / U(1), \widehat{\mu}\right)$ is identified as a Kähler manifold with $\left(\dot{Q}_{3}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. This is the point of the following proposition.

Proposition 5. Consider the Kähler manifolds $\left(\mathbb{C}^{4}, \omega_{4}=\frac{1}{\imath} d \bar{z} \wedge d z\right)$ and $\left(\dot{Q}_{3}, \widehat{\omega}=\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ as well as the map $\rho_{(4,3)}: M_{s} \longrightarrow \dot{Q}_{3}$. The following equalities hold

$$
\begin{equation*}
\left.\rho_{(4,3)}^{*}(-\imath \sqrt{2} \bar{\partial} \partial|\alpha|)\right|_{\mathfrak{J}_{4}^{-1}(0)}=\left.\frac{1}{\imath} \bar{\partial} \partial|z|^{2}\right|_{\mathfrak{J}_{4}^{-1}(0)}=\left.\frac{1}{\imath} d \bar{z} \wedge d z\right|_{\mathfrak{J}_{4}^{-1}(0)} . \tag{134}
\end{equation*}
$$

Proof. Proposition (5)

Take the expressions of α_{j} given in (117) and a calculation shows that

$$
\begin{aligned}
|\alpha|^{2} & =\left|\alpha_{1}(z)\right|^{2}+\left|\alpha_{2}(z)\right|^{2}+\left|\alpha_{3}(z)\right|^{2}+\left|\alpha_{4}(z)\right|^{2} \\
|\alpha|^{2} & =2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}\right) .
\end{aligned}
$$

For $z \in \mathfrak{J}_{4}^{-1}(0)$ the equality $\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-\left|z_{4}\right|^{2}\right)=0$ holds, so a short calculation shows that

$$
\begin{equation*}
\sqrt{2}|\alpha|=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left.\left|z_{4}\right|^{2}\right|_{\mathfrak{N}_{4}^{-1}(0)}=\left.|z|^{2}\right|_{\mathfrak{N}_{4}^{-1}(0)} . \tag{135}
\end{equation*}
$$

The computation of derivatives $\bar{\partial}, \partial$ in 135) gives equality 134 .
On the other hand, under the identifications of M_{s} / \mathbb{C}^{*} with $\mathfrak{J}_{4}^{-1}(0) / U(1)$ and of M_{s} / \mathbb{C}^{*} with $\dot{Q}_{3} \cong T^{+} S^{3}$ it follows from equality 134 that the symplectic quotient $\left(\tilde{\mathcal{J}}_{4}^{-1}(0) / U(1), \widehat{\mu}\right)$ can be identified with $\left(T^{+} S^{3}, \widehat{\omega}=\left.d p \wedge d q\right|_{T^{+} S^{3}}\right)$.

The map $\rho_{(4,3)}$ was constructed in [27], but the author followed a different approach from this one here. He considered a coordinate transformation from \mathbb{C}^{4} to \mathbb{C}^{4} so that the symplectic form in those new coordinates is invariant under a natural action of the group $S U(2,2)$ on \mathbb{C}^{4}. In that approach, the functions $\alpha_{j}(z)$ in (117) are written in terms of Hamiltonian functions of a subset in $\mathfrak{s u}(2,2)$. Let me recall that the map $\rho_{(4,3)}$ relates the regularizations of Moser and Kustaanheimo-Stiefel of the Kepler problem in dimension three. I briefly discuss this point at the end of the section.

For dimension $n=8$ the complex quotient $M_{s} /(S U(2))_{\mathbb{C}}$ will be identified with a complex manifold. The analysis is similar to the dimension $n=4$. The action of $(S U(2))_{\mathbb{C}}=S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ is given by

$$
\begin{equation*}
\tilde{\Phi}_{g_{\mathrm{C}}}: \dot{\mathbb{C}}^{8} \longrightarrow \dot{\mathbb{C}}^{8}, \quad \tilde{\Phi}_{g_{\mathbb{C}}}(z)=\left(g_{\mathbb{C}}\binom{z_{1}}{z_{2}}, g_{\mathbb{C}}\binom{z_{3}}{z_{4}}, g_{\mathbb{C}}\binom{z_{5}}{z_{6}}, g_{\mathbb{C}}\binom{z_{7}}{z_{8}}\right), g_{\mathbb{C}} \in S L(2, \mathbb{C}) \tag{136}
\end{equation*}
$$

The zero-set $\mathfrak{J}_{8}^{-1}(0)$ is invariant under the action of $S U(4)$, but this set is not preserved under the action of the complex group $(S U(4))_{\mathbb{C}}=S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ which is given by

$$
\begin{equation*}
\tilde{\Upsilon}_{h}: \dot{\mathbb{C}}^{8} \longrightarrow \dot{\mathbb{C}}^{8}, \quad \tilde{\Upsilon}_{h}(z)=\left(h z_{I}, h z_{I I}\right), \quad h \in S L(4, \mathbb{C}) \tag{137}
\end{equation*}
$$

The actions of $S L(4, \mathbb{C})$ and $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ commute. That is,

$$
\begin{equation*}
\tilde{\Upsilon}_{h}\left(\tilde{\Phi}_{g_{\mathbb{C}}}(z)\right)=\tilde{\Phi}_{g_{\mathbb{C}}}\left(\tilde{\Upsilon}_{h}(z)\right) \tag{138}
\end{equation*}
$$

Since the stable set M_{s} is a subset in $\dot{\mathbb{C}}^{8}$, then the actions of $S L(2, \mathbb{C})$ and $S L(4, \mathbb{C})$ also commute on M_{s}. Therefore, equality (138) implies that the group $S L(4, \mathbb{C})$ has a well-defined natural action on the complex quotient $M_{s} / S L(2, \mathbb{C})$. In addition, equality $\tilde{\Upsilon}_{h}(z)=-\tilde{\Upsilon}_{-h}(z)$ indicates that actually the group $S L(4, \mathbb{C}) / \mathbb{Z}_{2}$ acts on $M_{s} / S L(2, \mathbb{C})$. That is, $\tilde{\Upsilon}_{h}$ and $\tilde{\Upsilon}_{-h}$ give the same action on $M_{s} / S L(2, \mathbb{C})$. It is known that there is a homomorphism between $S L(4, \mathbb{C}) / \mathbb{Z}_{2}$ and $S O(6, \mathbb{C})$, see appendix A. The group $S L(4, \mathbb{C}) / \mathbb{Z}_{2}$ acts in a natural way on the six dimensional complex space $\bigwedge^{2} \dot{\mathbb{C}}^{4}$ (exterior product of $\dot{\mathbb{C}}^{4}$), see equality 139) below. This fact suggests that $M_{s} / S L(2, \mathbb{C})$ can be identified with a complex manifold inside \mathbb{C}^{6}. In order to make this identification, keeping in mind that the action of $S O(6, \mathbb{C})$ on $M_{s} / S L(2, \mathbb{C})$
can be realized from the action of $S L(4, \mathbb{C}) / \mathbb{Z}_{2}$, I will construct a natural action of $S O(6, \mathbb{C})$ on \mathbb{C}^{6} from the action of $S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ defined in 137 .

The action of $S O(6, \mathbb{C})$ is constructed as follows. An element in $\bigwedge^{2} \dot{\mathbb{C}}^{4}$ can be written as $z_{I} \wedge z_{I I}$, where neither z_{I} nor $z_{I I}$ is the zero vector. The action of $S L(4, \mathbb{C})$ on $\bigwedge^{2} \dot{\mathbb{C}}^{4}$ is given by

$$
\begin{equation*}
\Psi_{-h}\left(z_{I} \wedge z_{I I}\right)=\Psi_{h}\left(z_{I} \wedge z_{I I}\right)=h z_{I} \wedge h z_{I I}, \quad h \in S L(4, \mathbb{C}) \tag{139}
\end{equation*}
$$

An orthogonal basis $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}$ can be considered in $\bigwedge^{2} \dot{\mathbb{C}}^{4}$, see equation 616 in appendix A. Regarding this orthogonal basis an element $z_{I} \wedge z_{I I}$ can be identified with a vector $\alpha(z)=\left(\alpha_{1}(z), \ldots, \alpha_{6}(z)\right) \in \mathbb{C}^{6}$ with $z=\left(z_{I}, z_{I I}\right) \in \dot{\mathbb{C}}^{8}$. The functions $\alpha_{j}(z), j=1, \ldots 6$ are given by

$$
\begin{array}{rc}
\text { (140) } \alpha_{1}(z)=\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)+\left(z_{5} z_{8}-z_{6} z_{7}\right)\right], & \alpha_{2}(z)=\imath\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)-\left(z_{3} z_{6}-z_{4} z_{5}\right)\right] \\
\alpha_{3}(z)=\imath\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)+\left(z_{3} z_{8}-z_{4} z_{7}\right)\right], & \alpha_{4}(z)=\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)-\left(z_{3} z_{8}-z_{4} z_{7}\right)\right] \\
\alpha_{5}(z)=\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)+\left(z_{3} z_{6}-z_{4} z_{5}\right)\right], & \alpha_{6}(z)=\imath\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]
\end{array}
$$

Each action of $A \in S U(4)$ and $h \in S L(4, \mathbb{C})$ on $z \in \dot{\mathbb{C}}^{8}$ induces a coordinate transformation of $U \in S O(6, \mathbb{R})$ and $R \in S O(6, \mathbb{C})$ on $\alpha(z) \in \mathbb{C}^{6}$ respectively. That is,

$$
\begin{equation*}
\alpha\left(\mathbf{\Upsilon}_{-A}(z)\right)=\alpha\left(\mathbf{\Upsilon}_{A}(z)\right)=U \cdot \alpha(z), \quad \alpha\left(\tilde{\Upsilon}_{-h}(z)\right)=\alpha\left(\tilde{\Upsilon}_{h}(z)\right)=R \cdot \alpha(z) \tag{141}
\end{equation*}
$$

The construction of the matrices U and R is given in appendix A. The coordinates $\alpha_{j}(z), j=$ $1,2 \ldots, 6$ are invariant under the action of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$. That is, the following equality is fulfilled

$$
\begin{equation*}
\alpha_{j}\left(\tilde{\Phi}_{g_{\mathbb{C}}}(z)\right)=\alpha_{j}(z), \quad j=1, \ldots, 6 \tag{142}
\end{equation*}
$$

Equality 142 indicates that $\alpha_{j}(z)$ are functions of the $S L(2, \mathbb{C})$-orbit through $z \in \dot{\mathbb{C}}^{8}$. So for $z \in M_{s}$ the functions $\alpha_{j}(z)$ in 140 can be regarded as complex coordinates on $M_{s} / S L(2, \mathbb{C})$. In a paragraph below I show that each $\alpha(z) \in \dot{\mathbb{C}}^{6}$ is associated to an orbit $\tilde{\Phi}_{g_{\mathbb{C}}}(z) \in M_{s} / S L(2, \mathbb{C})$. Keeping in mind that $S L(4, \mathbb{C}) / \mathbb{Z}_{2} \cong S O(6, \mathbb{C})$ acts on $M_{s} / S L(2, \mathbb{C})$ by coordinate transformation. That is, if $\alpha(z) \in \dot{\mathbb{C}}^{6}$ is identified with an element in $M_{s} / S L(2, \mathbb{C})$, then $\alpha\left(\tilde{\Upsilon}_{-h}(z)\right)=$ $\alpha\left(\tilde{\Upsilon}_{h}(z)\right)=R \cdot \alpha(z)$ must be an element in $M_{s} / S L(2, \mathbb{C})$ as well. In other words, the complex quotient $M_{s} / S L(2, \mathbb{C})$ is invariant under the action of $S L(4, \mathbb{C}) / \mathbb{Z}_{2} \cong S(6, \mathbb{C})$. Let me consider the five dimensional complex sphere $S_{\mathbb{C}}^{5}$ which is defined as follows

$$
S_{\mathbb{C}}^{5}=\left\{\alpha \in \mathbb{C}^{6} \mid \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\alpha_{4}^{2}+\alpha_{5}^{2}+\alpha_{6}^{2}=r^{2}, r \in \mathbb{C}\right\}
$$

The transformation $R \cdot \alpha$ of $R \in S O(6, \mathbb{C})$ on $\alpha \in \mathbb{C}^{6}$ preserves $S_{\mathbb{C}}^{5}$. That is, if $\alpha \in \mathbb{C}^{6}$ belongs to $S_{\mathbb{C}}^{5}$, then so does $R \cdot \alpha$. Taking the expressions of $\alpha_{j}(z), j=1, \ldots, 6$ in 140 a straightforward calculation shows that the following equality holds

$$
\begin{equation*}
\alpha_{1}(z)^{2}+\alpha_{2}(z)^{2}+\alpha_{3}(z)^{2}+\alpha_{4}(z)^{2}+\alpha_{5}(z)^{2}+\alpha_{6}(z)^{2}=0 \quad \forall z \in \dot{\mathbb{C}}^{8} \tag{143}
\end{equation*}
$$

Equality 143 indicates that $\alpha(z) \in \mathbb{C}^{6}$ in 140 is actually an element in Q_{5}. Hence, the following map can be defined

$$
\begin{equation*}
\rho_{(8,5)}: \dot{\mathbb{C}}^{8} \longrightarrow Q_{5}, \quad \rho_{(8,5)}(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \alpha_{3}(z), \alpha_{4}(z), \alpha_{5}(z), \alpha_{6}(z)\right)=\alpha \tag{144}
\end{equation*}
$$

It follows from equality (141) that the map $\rho_{(8,5)}$ intertwines the actions of $S U(4)$ and $S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ with the actions of $S O(6, \mathbb{R})$ and $S O(6, \mathbb{C})$ on Q_{5} respectively. Namely,

$$
\begin{equation*}
\rho_{(8,5)}\left(\mathbf{\Upsilon}_{A}(z)\right)=U \cdot \alpha \quad \text { and } \quad \rho_{(8,5)}\left(\tilde{\Upsilon}_{h}(z)\right)=R \cdot \alpha \tag{145}
\end{equation*}
$$

Lemma 2. The restriction of $\rho_{(8,5)}$ to M_{s} takes values in the null quadric \dot{Q}_{5}. That is,

$$
\rho_{(8,5)}: M_{s} \longrightarrow \dot{Q}_{5}
$$

The proof of lemma 2 follows a similar procedure to the proof of lemma 1, so let me omit it. Now the complex quotient $M_{s} / S L(2, \mathbb{C})$ is going to be identified with the null quadric \dot{Q}_{5}.
Proposition 6. The map $\rho_{(8,5)}: M_{s} \longrightarrow \dot{Q}_{5}$ is the quotient map of the action of $S L(2, \mathbb{C})$ on M_{s} and gives the identification of $M_{s} / S L(2, \mathbb{C})$ with \dot{Q}_{5} and of $\mathfrak{J}_{8}^{-1}(0) / S U(2)$ with $M_{s} / S L(2, \mathbb{C})$.

Proof. It is not difficult to see that $\rho_{(8,5)}$ is injective. That is, the following is fulfilled

$$
\begin{equation*}
\rho_{(8,5)}(z)=\rho_{(8,5)}(w)=\alpha \in \dot{Q}_{5} \Rightarrow w=\tilde{\Phi}_{\boldsymbol{g}_{1}}(z), \boldsymbol{g}_{\mathbf{1}} \in S L(2, \mathbb{C}) . \tag{146}
\end{equation*}
$$

Equality 146 indicates that each $\alpha \in \dot{Q}_{5}$ can be identified with an orbit $\tilde{\Phi}_{g_{1}}(z) \in M_{s} / S L(2, \mathbb{C})$. The calculations to prove equality (146) are so long and are done in appendix A.

The map $\rho_{(8,5)}$ is surjective. The argument is as follows. It is shown in appendix A that $S O(6, \mathbb{C})$ acts transitively on \dot{Q}_{5}. Hence, any $\alpha \in \dot{Q}_{5}$ can be written as

$$
\begin{equation*}
\alpha=R \cdot \alpha_{0}, \quad R \in S O(6, \mathbb{C}), \quad \text { and } \quad \alpha_{0}=(1,0,0,0,0, \imath) \tag{147}
\end{equation*}
$$

Since the map $\rho_{(8,5)}(z)$ intertwines the action of $S L(4, \mathbb{C})$ on M_{s} and $S O(6, \mathbb{C})$ on \dot{Q}_{5}, then equality in (147) can be written as follows

$$
\begin{equation*}
\alpha=R \cdot \alpha_{0}=\rho_{(8,5)}\left(\tilde{\Upsilon}_{h}\left(z_{0}\right)\right) \text { with } \rho_{(8,5)}\left(z_{0}\right)=\alpha_{0}, \text { and } z_{0}=(1,0,0,1,0,0,0,0) . \tag{148}
\end{equation*}
$$

It follows from equality (148) that for all $\alpha \in \dot{Q}_{5}$ exists $z=\tilde{\Upsilon}_{h}\left(z_{0}\right) \in M_{s}$ such that equality $\rho_{(8,5)}(z)=\alpha$ is fulfilled.

Under the identification of $\alpha \in \dot{Q}_{5}$ with an orbit $\tilde{\Phi}_{g_{1}}(z)$, let me show that every $\alpha \in \dot{Q}_{5}$ contains an $S U(2)$-orbit in $\mathfrak{J}_{8}^{-1}(0)$. In other words, every $S L(2, \mathbb{C})$-orbit in M_{s} intersects $\mathfrak{J}_{8}^{-1}(0)$ in an $S U(2)$-orbit, which provides the identification $M_{s} / S L(2, \mathbb{C})=\mathfrak{J}_{8}^{-1}(0) / S U(2)$. The group $S O(6, \mathbb{R})$ acts transitively on \dot{Q}_{5} and since the map $\rho_{(8,5)}$ intertwines the action of $S U(4)$ on M_{s} and $S O(6, \mathbb{R})$ on \dot{Q}_{5}, then the following equalities hold

$$
\begin{equation*}
\rho_{(8,5)}(z)=\alpha=U \cdot \alpha_{0}=\rho_{(8,5)}\left(\mathbf{\Upsilon}_{A}\left(z_{0}\right)\right), \quad A \in S U(4), \quad U \in S O(6, \mathbb{R}) \text { and } \mathbf{\Upsilon}_{A}\left(z_{0}\right) \in \mathfrak{J}_{8}^{-1}(0) \tag{149}
\end{equation*}
$$

Since $\rho_{(8,5)}$ is invariant under the action of $S U(2)$, then it follows from equality (146) that the $S L(2, \mathbb{C})$-orbit $\tilde{\Phi}_{\boldsymbol{g}_{1}}(z)$ intersects $\mathfrak{J}_{8}^{-1}(0)$ in the $S U(2)$-orbit $\tilde{\Phi}_{g}\left(\Upsilon_{A}\left(z_{0}\right)\right)$.

It follows from the identifications of $M_{s} / S L(2, \mathbb{C})$ with \dot{Q}_{5} and of $M_{s} / S L(2, \mathbb{C})$ with $\mathfrak{J}_{8}^{-1}(0) / S U(2)$ that the null quadric \dot{Q}_{5} is the complex structure of the symplectic quotient $\mathfrak{J}_{8}^{-1}(0) / S U(2)$. Keeping in mind that the symplectic form of $\mathfrak{J}_{8}^{-1}(0) / S U(2)$ is invariant under the action of $S U(4) / \mathbb{Z}_{2} \cong S O(6, \mathbb{R})$, let me equip \dot{Q}_{5} with the symplectic form $\widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|$ which is invariant under the transformation $\alpha\left(\Upsilon_{A}(z)\right)=U \cdot \alpha$ of $S U(4) / \mathbb{Z}_{2} \cong S O(6, \mathbb{R})$ on $\alpha \in \dot{Q}_{5}$. That is, let me consider the Kähler manifold $\left(\dot{Q}_{5}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. The symplectic manifold $\left(\mathfrak{J}_{8}^{-1}(0) / S U(2), \widehat{\mu}\right)$ is identified as a Kähler manifold with $\left(\dot{Q}_{5}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. This is the point of the following proposition.
Proposition 7. Let be the map $\rho_{(8,5)}: M_{s} \longrightarrow \dot{Q}_{5}$. Consider the Kähler manifolds $\left(\mathbb{C}^{8}, \omega_{8}=\right.$ $\left.\frac{1}{2} d \bar{z} \wedge d z\right)$ and $\left(\dot{Q}_{5}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$. The following equalities are fulfilled.

$$
\begin{equation*}
\left.\rho_{(8,5)}^{*}(-\imath \sqrt{2} \bar{\partial} \partial|\alpha|)\right|_{\mathfrak{J}_{8}^{-1}(0)}=\left.\frac{1}{\imath} \bar{\partial} \partial|z|^{2}\right|_{\tilde{J}_{8}^{-1}(0)}=\left.\frac{1}{\imath} d \bar{z} \wedge d z\right|_{\mathfrak{J}_{8}^{-1}(0)} . \tag{150}
\end{equation*}
$$

The proof of proposition 7 follows a similar procedure to the proof of proposition 5, so let me omit it. As in dimension $n=4$ under the identifications of $\mathfrak{J}_{8}^{-1}(0) / S U(2)$ with $M_{s} / S L(2, \mathbb{C})$ and of $M_{s} / S L(2, \mathbb{C})$ with $\dot{Q}_{5} \cong T^{+} S^{5}$ it follows from equality 150 that the symplectic manifold $\left(\mathfrak{J}_{8}^{-1}(0) / S U(2), \widehat{\mu}\right)$ can be identified with the symplectic manifold $\left(T^{+} S^{5}, \widehat{\omega}=\left.d p \wedge d q\right|_{T^{+} S^{5}}\right)$.

The map $\rho_{(8,5)}$ was constructed in [41], but the author followed a different approach from this one here. He considered a coordinate transformation from \mathbb{C}^{8} to \mathbb{C}^{8} so that the symplectic
form in those new coordinates is invariant under a natural action of the group $S U(4,4)$ on \mathbb{C}^{8}. In that approach the functions $\alpha(z)_{j}, j=1, \ldots, 6$ in 140 are written in terms of Hamiltonian functions of a subset in $\mathfrak{s u}(4,4)$.

For completeness, I now briefly describe how the map $\rho_{(n, m)}(z)$ relates the regularizations of Moser and Kustaanheimo-Stiefel of the Kepler problem. See [27, 41] for details. Let me consider $\alpha=p+\imath|p| q \in \dot{Q}_{m}$ with $(q, p) \in T^{+} S^{m}, m=5,3$. The coordinates $(q, p) \in T^{+} S^{m}$ can be written in terms of $\alpha \in \dot{Q}_{m}$ as follows

$$
\begin{equation*}
p=\left.\Re(\alpha(z))\right|_{\mathfrak{J}_{n}^{-1}(0)}, \quad q=\left.\frac{2}{|z|^{2}} \Im(\alpha(z))\right|_{\mathfrak{J}_{n}^{-1}(0)} \quad \text { with } \quad \alpha \in \dot{Q}_{m} \tag{151}
\end{equation*}
$$

It follows from equations of the Moser map in 23 that the coordinates $(x, y) \in T^{*} \dot{\mathbb{R}}^{m}$ can be written as

$$
\begin{aligned}
& y_{m}=\frac{q_{k}}{1-q_{m+1}}=\left.\frac{2 \Im\left(\alpha_{k}(z)\right)}{|z|^{2}-2 \Im\left(\alpha_{m+1}(z)\right)}\right|_{\mathfrak{J}_{n}^{-1}(0)} \\
& x_{m}=-\left[p_{k}\left(1-q_{m+1}\right)+p_{m+1} q_{k}\right]=-\frac{1}{|z|^{2}}\left[\Re\left(\alpha_{k}(z)\right)\left(|z|^{2}-2 \Im\left(\alpha_{m+1}(z)\right)\right)+\right. \\
& \left.\Re\left(\alpha_{m+1}(z)\right) 2 \Im\left(\alpha_{k}(z)\right)\right]\left.\right|_{\mathfrak{J}_{n}^{-1}(0)} \text { for } k=1,2, \ldots, m
\end{aligned}
$$

For $m=5$ let me take $\alpha_{j}(z), j=1, \ldots 6$ in 140 with $\mathcal{T}_{8}(u, v)=z \in \dot{\mathbb{C}}^{8}$ given in (91). For $m=3$ let me take $\alpha_{j}(z)$ in 117 with $\mathcal{T}_{4}(u, v)=z \in \dot{\mathbb{C}}^{4}$ given in 89). A straightforward long computation shows that the following equalities hold

$$
|z|^{2}-\left.2 \Im\left(\alpha_{m+1}(z)\right)\right|_{\mathfrak{J}_{n}^{-1}(0)}=|u|^{2}, \quad \Im\left(\alpha_{k}(z)\right)=\left.\frac{1}{2} A_{n}(u) v\right|_{\mathfrak{J}_{n}^{-1}(0)}, \quad n=8,4
$$

where $A_{n}(u)$ is given by

$$
A_{8}(u)=\left(\begin{array}{cccccccc}
u_{1} & u_{2} & u_{3} & u_{4} & -u_{5} & -u_{6} & -u_{7} & -u_{8} \tag{152}\\
u_{5} & -u_{6} & u_{7} & -u_{8} & u_{1} & -u_{2} & u_{3} & -u_{4} \\
u_{7} & u_{8} & -u_{5} & -u_{6} & -u_{3} & -u_{4} & u_{1} & u_{2} \\
-u_{8} & u_{7} & u_{6} & -u_{5} & -u_{4} & u_{3} & u_{2} & -u_{1} \\
u_{6} & u_{5} & u_{8} & u_{7} & u_{2} & u_{1} & u_{4} & u_{3} \\
-u_{2} & u_{1} & u_{4} & -u_{3} & u_{6} & -u_{5} & -u_{8} & u_{7} \\
-u_{3} & -u_{4} & u_{1} & u_{2} & -u_{7} & -u_{8} & u_{5} & u_{6} \\
-u_{4} & u_{3} & -u_{2} & u_{1} & u_{8} & -u_{7} & u_{6} & -u_{5}
\end{array}\right), A_{4}(u)=\left(\begin{array}{ccc}
u_{3} & u_{4} & u_{1} \\
u_{4} & -u_{3} & -u_{2} \\
u_{1} & u_{2} & -u_{3} \\
u_{2} & -u_{1} & u_{4} \\
-u_{4}
\end{array}\right)
$$

The momentum coordinates $y \in \mathbb{R}^{m}, m=5,3$ can be written in terms of $(u, v) \in T^{*} \dot{\mathbb{R}}^{n}, n=8,4$ as follows

$$
\begin{equation*}
y=\left.\frac{1}{|u|^{2}} A_{n}(u) v\right|_{\mathfrak{J}_{n}^{-1}(0)}, \quad n=4,8 \tag{153}
\end{equation*}
$$

For $(u, v) \in T^{*} \dot{\mathbb{R}}^{n}$ equality $|z|^{2}=\frac{1}{2}\left(|u|^{2}+|v|^{2}\right)$ holds, so the position coordinate $x \in \mathbb{R}^{m}$ can be written as

$$
\begin{align*}
x & =-\left.\frac{1}{|u|^{2}+|v|^{2}}\left[2|u|^{2} \Re\left(\alpha_{k}(z)\right)-2(u . v) \Im\left(\alpha_{k}(z)\right)\right]\right|_{\mathfrak{J}_{n}^{-1}(0)}, k=1, \ldots, m \\
& =-\left.\frac{1}{|u|^{2}+|v|^{2}}\left[2|u|^{2} \frac{1}{4}\left(A_{n}(v) v-A_{n}(u) u\right)-2(u \cdot v) \frac{1}{2} A_{n}(u) v\right]\right|_{\mathfrak{J}_{n}^{-1}(0)} \\
& =-\left.\frac{1}{|u|^{2}+|v|^{2}}\left[\frac{1}{2}\left(|u|^{2} A_{n}(v) v-|u|^{2} A_{n}(u) u\right)-(u \cdot v) A_{n}(u) v\right]\right|_{\mathfrak{J}_{n}^{-1}(0)} \tag{154}
\end{align*}
$$

For any $\mathcal{T}_{n}(u, v)=z \in \mathfrak{J}_{n}^{-1}(0)$ a straightforward calculation shows that the following equality holds

$$
\begin{equation*}
\frac{1}{2}\left[|u|^{2} A_{n}(v) v+|v|^{2} A_{n}(u) u\right]=(u \cdot v) A_{n}(u) v \tag{155}
\end{equation*}
$$

It follows from equality 155 that

$$
\begin{align*}
x & =-\left.\frac{1}{|u|^{2}+|v|^{2}}\left[\left(-\frac{|u|^{2}+|v|^{2}}{2}\right) A(u) u+(u \cdot v) A_{n}(u) v-(u \cdot v) A_{n}(u) v\right]\right|_{\mathfrak{J}_{n}^{-1}(0)} \\
x & =\frac{1}{2} A_{n}(u) u \tag{156}
\end{align*}
$$

From equations (153) and 156 I can form a map $\Pi_{K S}$ which is defined by

$$
\begin{equation*}
\Pi_{K S}:\left.T^{*} \dot{\mathbb{R}}^{n}\right|_{\mathfrak{J}_{n}^{-1}(0)} \ni(u, v) \longrightarrow(x, y) \in T^{*} \dot{\mathbb{R}}^{m}, \quad x=\frac{1}{2} A_{n}(u) u, \quad y=\frac{1}{|u|^{2}} A_{n}(u) v \tag{157}
\end{equation*}
$$

where the matrix $A_{n}(u)$ is given in 152 . The map $\Pi_{K S}$ coincides with the KustaanheimoStiefel transformation and is a symplectomorphism, that is, $\Pi_{K S}^{*}(d y \wedge d x)=\left.d v \wedge d u\right|_{\mathfrak{J}_{n}^{-1}(0)}$. Let me comment that the Kustaanheimo-Stiefel (KS) transformation was originally constructed in a different approach. See [37] for details.

2. Geometric Quantization

In this section I give a brief description of geometric quantization in the setting of symplectic (Kähler) manifolds $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$. All the material in this section can be found in [17, 43].

Consider the symplectic manifold $\left(T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}, \omega_{n}=d v \wedge d u\right)$ as the phase space of a classical system. In the transition from a classical to a quantum system, the Geometric Quantization is a mathematical procedure to construct a Hilbert space \mathcal{H} of quantum states and to assign to a class of physical observables an operator acting on \mathcal{H}. Let me describe this procedure. Consider a line bundle $\pi: L^{\omega_{n}} \longrightarrow T^{*} \mathbb{R}^{n}$ whose space of sections of is denoted by $\Gamma\left(L^{\omega_{n}}\right)$. The line bundle is endowed with a connection ∇, which is defined by

$$
\nabla_{X} s=X(s)-\frac{\imath}{\hbar} \theta(X) s, \quad X \in \mathcal{X}\left(T^{*} \mathbb{R}^{n}\right), \quad s \in \Gamma\left(L^{\omega_{n}}\right)
$$

where θ is the symplectic potential and is defined by $\theta=\frac{1}{2}[v \cdot d u-u \cdot d v]$. The curvature $\operatorname{cur}(\nabla)$ is the two-form $\frac{1}{\imath \hbar} \omega_{n}$. That is, the following equality holds

$$
\nabla_{X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{X} s\right)-\nabla_{[X, Y]} s=\frac{1}{\imath \hbar} \omega_{n}(X, Y) s, \quad X, Y \in \mathcal{X}\left(T^{*} \mathbb{R}^{n}\right)
$$

The geometric quantization assigns to each function f on $T^{*} \mathbb{R}^{n}$ an operator \widehat{f} acting on $\Gamma\left(L^{\omega_{n}}\right)$, which is given by

$$
\begin{equation*}
\widehat{f}=-\imath \hbar \nabla_{X_{f}}+f \tag{158}
\end{equation*}
$$

where f represents the operation of multiplying a section by f. The definition of \widehat{f} in 158 corresponds to the canonical quantization of f. Namely, the Poisson bracket of two functions is replaced by the commutator of the corresponding operators. This is the point of the following proposition.

Proposition 8. The following equality holds for each f, g smooth functions (physical observables) defined on $T^{*} \mathbb{R}^{n}$

$$
\begin{equation*}
[\widehat{f}, \widehat{g}]=-\imath \hbar \widehat{\{f, g\}} \tag{159}
\end{equation*}
$$

For the proof of proposition 8 see [17, Chap.22].
2.1. Real Polarization. A polarization on $T^{*} \mathbb{R}^{n}$ is an n-dimensional subspace $P_{(u, v)} \subset$ $T_{(u, v)}\left(T^{*} \mathbb{R}^{n}\right)$ at each $(u, v) \in T^{*} \mathbb{R}^{n}$, which satisfies the following conditions. For all $X, Y \in$ $P_{(u, v)}$ the commutator $[X, Y]_{(u, v)}$ belongs to $P_{(u, v)}$ and the symplectic form $\omega_{n}=d v \wedge d u$ satisfies $\omega_{n}(X, Y)_{(u, v)}=0$. In order to obtain a Hilbert space of quantum states from the geometric quantization scheme, we must first choose a polarization P and then look at the set of sections that are constant along the directions of P. That is, the sections $s \in \Gamma\left(L^{\omega_{n}}\right)$ that satisfy the equation $\nabla_{X} s=0$ for all $X \in P$. This set of sections is denoted by $\Gamma_{P}\left(L^{\omega_{n}}\right)$, and elements in $\Gamma_{P}\left(L^{\omega_{n}}\right)$ are also called polarized sections with respect to the polarization P.

The Hilbert space of the Schrödinger representation is obtained from the vertical polarization on $T^{*} \mathbb{R}^{n}$, which is spanned by the vectors

$$
\begin{equation*}
V=\left\{\frac{\partial}{\partial v_{1}}, \frac{\partial}{\partial v_{2}}, \ldots, \frac{\partial}{\partial v_{n}}\right\} \tag{160}
\end{equation*}
$$

Consider $X, Y \in \mathcal{X}\left(T^{*} \mathbb{R}^{n}\right)$ given by $X=\sum_{j=1}^{n} f_{j}(u, v) \frac{\partial}{\partial v_{j}}$ and $Y=\sum_{k=1}^{n} g_{k}(u, v) \frac{\partial}{\partial v_{k}}$. A straightforward calculation shows that the commutator $[X, Y]$ can be written in terms of the vector fields in 160 and that the symplectic form $\omega_{n}=d v \wedge d u$ satisfies $\omega_{n}\left(\frac{\partial}{\partial v_{j}}, \frac{\partial}{\partial v_{k}}\right)=$ $0, j, k=1, \ldots n$. The set $\Gamma_{V}\left(L^{\omega_{n}}\right)$ of polarized sections with respect to the polarization V satisfies $\nabla_{\frac{\partial}{\partial v_{j}}} s=0, j=1, \ldots, n$, and sections $s \in \Gamma_{V}\left(L^{\omega_{n}}\right)$ can be written as $s(u, v)=$ $\varphi(u) \mathrm{e}^{-\frac{\imath}{2 \hbar} u \cdot v}$ with $\varphi(u)$ a smooth function on \mathbb{R}^{n}. The pointwise magnitude of $s(u, v)$ is given by

$$
|s(u, v)|^{2}=s(u, v) \overline{s(u, v)}=|\varphi(u)|^{2}
$$

A polarized section $s(u, v) \in \Gamma_{V}\left(L^{\omega_{n}}\right)$ has infinite norm with respect to the Liouville measure $\epsilon_{\omega_{n}}=d u_{1} \ldots d u_{n} d v_{1} \ldots d v_{n}$. This is because of the integration of $|s(u, v)|^{2}$ in the directions $v_{j}, j=1, \ldots, n$ is not finite. The half-form correction must be included in order to solve the non-existence of a non-zero square-integrable section in $\Gamma_{V}\left(L^{\omega_{n}}\right)$. The last point is discussed in a paragraph below.

Every operator \widehat{f} acting in $\Gamma\left(L^{\omega_{n}}\right)$ can be restricted to act in $\Gamma_{V}\left(L^{\omega_{n}}\right)$, but the space $\Gamma_{V}\left(L^{\omega_{n}}\right)$ must be preserved by the action of \widehat{f} on sections $s_{1} \in \Gamma_{V}\left(L^{\omega_{n}}\right)$. Namely, the section $\widehat{f}\left(s_{1}\right)$ must belong to $\Gamma_{V}\left(L^{\omega_{n}}\right)$. In those cases where \widehat{f} preserves the space $\Gamma_{V}\left(L^{\omega_{n}}\right)$, the function f satisfies the following.

Definition 4. Let f be a smooth function on $T^{*} \mathbb{R}^{n}$ and X_{f} its corresponding Hamiltonian vector field. The function f preserves the vertical polarization V

$$
\begin{equation*}
i f f \quad\left[X_{f}, \frac{\partial}{\partial v_{j}}\right] \subset V \quad \forall j=1, \ldots, n \tag{161}
\end{equation*}
$$

Proposition 9. Let f be a smooth function on $T^{*} \mathbb{R}^{n}$ whose Hamiltonian vector field X_{f} satisfies the condition (161). Then the corresponding operator \widehat{f} defined in 158) preserves the space $\Gamma_{V}\left(L^{\omega_{n}}\right)$.

For the proof of proposition 9 see [17, Chap.23].
Taking the explicit expression of X_{f} given in (77) a straightforward calculation shows that

$$
\begin{equation*}
\left[X_{f}, \frac{\partial}{\partial v_{j}}\right] \subset V \quad \text { iff } \quad \frac{\partial^{2} f}{\partial v_{s} v_{k}}=0, \quad j, s, k=1, \ldots, n \tag{162}
\end{equation*}
$$

It follows from equation 162 that the function f must contain linear terms in the variable v so that the operator \widehat{f} preserves the space $\Gamma_{V}\left(L^{\omega_{n}}\right)$. The Hamiltonian function of the harmonic oscillator is given by

$$
H(u, v)=\frac{1}{4}\left(|u|^{2}+|v|^{2}\right)
$$

The function $H(u, v)$ is quadratic in the variable v, so the operator \widehat{H} does not preserve the space $\Gamma_{V}\left(L^{\omega_{n}}\right)$. This drawback is solved by identifying $T^{*} \mathbb{R}^{n}$ with \mathbb{C}^{n}, and the Hamiltonian function $H(u, v)$ is written in complex coordinates so that the operator \widehat{H} preserves the space of polarized sections with respect to the complex polarization. This last point is discussed in the next subsection.

For the Cartesian coordinates $u_{k}, v_{k}, k=1, \ldots, n$ a straightforward calculation shows that the functions u_{k}, v_{k} satisfy the condition in equation (162). From definition of \widehat{f} in 158), the corresponding operators $\widehat{u}_{k}, \widehat{v}_{k}$ are given by

$$
\widehat{u}_{k}=\imath \hbar \frac{\partial}{\partial v_{k}}+\frac{1}{2} u_{k}, \quad \widehat{v}_{k}=-\imath \hbar \frac{\partial}{\partial u_{k}}+\frac{1}{2} v_{k}
$$

Consider $s(u, v) \in \Gamma_{V}\left(L^{\omega_{n}}\right)$ with $s(u, v)=\varphi(u) \mathrm{e}^{-\frac{l}{2 \hbar} u \cdot v}$. A straightforward calculation shows that

$$
\begin{equation*}
\widehat{u}_{k}(s)=\left(u_{k} \varphi(u)\right) \mathrm{e}^{-\frac{2}{2 \hbar} u \cdot v}, \quad \widehat{v}_{k}(s)=\left(-\imath \hbar \frac{\partial \varphi}{\partial u_{k}}\right) \mathrm{e}^{-\frac{2}{2 \hbar} u \cdot v} \tag{163}
\end{equation*}
$$

Each $s(u, v) \in \Gamma_{V}\left(L^{\omega_{n}}\right)$ gives a function $\varphi(u)$ on \mathbb{R}^{n}. It follows from equations in (163) that the operators $\widehat{u}_{k}, \widehat{v}_{k}$ have the following expression in the space of functions $\varphi(u)$ on \mathbb{R}^{n}

$$
\begin{equation*}
\widehat{u}_{k}=u_{k}, \quad \widehat{v}_{k}=-\imath \hbar \frac{\partial}{\partial u_{k}}, \quad k=1, \ldots, n . \tag{164}
\end{equation*}
$$

The operators in 164 are the Schrödinger representation of the canonical coordinates u_{k}, v_{k}.
Now I will give a brief description of how the half-forms work to solve the non-existence of a non-zero square-integrable section in $\Gamma_{V}\left(L^{\omega_{n}}\right)$.

Definition 5. The canonical bundle of the vertical polarization V is the real line bundle K_{V} for which the sections are n-forms $\boldsymbol{\kappa}$ that satisfy

$$
\boldsymbol{\iota}_{\frac{\partial}{\partial v_{j}}} \boldsymbol{\kappa}=0, \quad j=1, \ldots, n \quad \text { with } \quad \boldsymbol{\kappa}=g(u, v) d u_{1} \wedge \ldots \wedge d u_{n}
$$

where $g(u, v)$ is defined on $T^{*} \mathbb{R}^{n}$. The polarized sections of K_{V} with respect to the polarization V are n-forms that satisfy $\iota_{\frac{\partial}{\partial v_{j}}} d \boldsymbol{\kappa}=0$. This set of polarized sections is denoted by $\Gamma_{V}\left(K_{V}\right)$ whose elements are n-forms $f(u) d u_{1} \wedge \ldots \wedge d u_{n}$ with $f(u)$ a smooth function on \mathbb{R}^{n}.

In particular, the nowhere vanishing n-form $\boldsymbol{\kappa}_{\mathbf{0}}=d u_{1} \wedge \ldots \wedge d u_{n}$ is an element in $\Gamma_{V}\left(K_{V}\right)$. Since κ_{0} is a global section of K_{V}, then the canonical bundle K_{V} is trivializable. Hence, there is a square root of K_{V}. That is, a line bundle $K_{V}^{\frac{1}{2}}$ over $T^{*} \mathbb{R}^{n}$ with the property that if $\boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}$ are two sections of $K_{V}^{\frac{1}{2}}$, then $\boldsymbol{\nu}_{1} \otimes \boldsymbol{\nu}_{2}=\boldsymbol{\nu}_{1} \boldsymbol{\nu}_{2}$ is a non-negative function times $\boldsymbol{\kappa}_{\mathbf{0}}=$ $d u_{1} \wedge \ldots \wedge d u_{n}$. The half-form $\nu_{0}=\sqrt{d u_{1} \wedge \ldots \wedge d u_{n}}$ is a nowhere vanishing section of $K_{V}^{\frac{1}{2}}$ that satisfies $\nu_{0}{ }^{2}=\boldsymbol{\kappa}_{0}$. The space of polarized sections including the half-form correction is denoted by $\Gamma_{V}\left(L^{\omega_{n}} \otimes K_{V}^{\frac{1}{2}}\right)$ whose elements can be written in coordinates as $r(u, v)=s(u, v) \otimes$ $\sqrt{d u_{1} \wedge \ldots \wedge d u_{n}}=s(u, v) \sqrt{d u_{1} \wedge \ldots \wedge d u_{n}}$ with $s(u, v) \in \Gamma_{V}\left(L^{\omega_{n}}\right)$. The pointwise magnitude of $r(u, v)$ is given by

$$
\begin{equation*}
|r(u, v)|^{2}=|s(u, v)|^{2} d u_{1} \wedge \ldots \wedge d u_{n}=|\varphi(u)|^{2} d u_{1} \wedge \ldots \wedge d u_{n} \tag{165}
\end{equation*}
$$

The term $|r(u, v)|^{2}$ in 165 can be thought of as an n-form on \mathbb{R}^{n} rather than on $T^{*} \mathbb{R}^{n}$, so the function $|r(u, v)|^{2}$ can be integrated on \mathbb{R}^{n}. The squared norm of $r(u, v) \in \Gamma_{V}\left(L^{\omega_{n}} \otimes K_{V}^{\frac{1}{2}}\right)$ is given by

$$
\begin{equation*}
\|r(u, v)\|^{2}=\int_{\mathbb{R}^{n}}|\varphi(u)|^{2} d u_{1} \wedge \ldots \wedge d u_{n} \tag{166}
\end{equation*}
$$

If it is assumed that the integral in 166) is finite, then the space $\Gamma_{V}\left(L^{\omega_{n}} \otimes K_{V}^{\frac{1}{2}}\right)$ is identified with a dense subset of $L^{2}\left(\mathbb{R}^{n}, d u\right)$. For more details about half-forms for a real polarization on a general symplectic manifold see [17, Chap. 23].

Let h be a function on $T^{*} \mathbb{R}^{n}$ that preserves the vertical polarization V, and let me denote by \widehat{h} the corresponding operator that preserves the space $\Gamma_{V}\left(L^{\omega_{n}}\right)$. The operator \widehat{Q}_{h} acting in the space $\Gamma_{V}\left(L^{\omega_{n}} \otimes K_{V}^{\frac{1}{2}}\right)$ is given by

$$
\begin{equation*}
\widehat{Q}_{h}=\widehat{h} \otimes \widehat{\mathbb{I}}-\imath \hbar\left(\widehat{\mathbb{I}} \otimes \mathcal{L}_{X_{h}}\right) \tag{167}
\end{equation*}
$$

The action of \widehat{Q}_{h} on $r_{1}(u, v)=s_{1}(u, v) \boldsymbol{\nu}_{0}$ is given by

$$
\begin{align*}
\widehat{Q}_{h}\left(r_{1}\right)(u, v) & =\widehat{h}\left(s_{1}\right)(u, v) \otimes \widehat{\mathbb{I}}\left(\boldsymbol{\nu}_{0}\right)-\imath \hbar\left(\widehat{\mathbb{I}}\left(s_{1}\right)(u, v) \otimes \mathcal{L}_{X_{h}} \boldsymbol{\nu}_{0}\right) \\
& =\widehat{h}\left(s_{1}\right)(u, v) \boldsymbol{\nu}_{0}-\imath \hbar\left(s_{1}(u, v) \mathcal{L}_{X_{h}} \boldsymbol{\nu}_{0}\right) \tag{168}
\end{align*}
$$

The Lie derivative $\mathcal{L}_{X_{h}} \boldsymbol{\nu}_{\mathbf{0}}$ satisfies $2\left(\mathcal{L}_{X_{h}} \boldsymbol{\nu}_{\mathbf{0}}\right) \boldsymbol{\nu}_{\mathbf{0}}=\mathcal{L}_{X_{h}} \boldsymbol{\nu}_{\mathbf{0}}{ }^{2}$, so it can be calculated from the following equality

$$
\begin{equation*}
2\left(\mathcal{L}_{X_{h}} \boldsymbol{\nu}_{\mathbf{0}}\right) \boldsymbol{\nu}_{\mathbf{0}}=\mathcal{L}_{X_{h}}\left(\boldsymbol{\kappa}_{\mathbf{0}}\right) \tag{169}
\end{equation*}
$$

2.2. Complex Polarization. When $T^{*} \mathbb{R}^{n}$ is identified with \mathbb{C}^{n} through some complexification (for instance $T^{*} \mathbb{R}^{4}$ is identified with \mathbb{C}^{4} see equations $\sqrt[89]{ }$, and $T^{*} \mathbb{R}^{8}$ is identified with \mathbb{C}^{8} see equations (91)), the holomorphic polarization is defined as the spanned by the vectors

$$
\begin{equation*}
P=\left\langle\frac{\partial}{\partial \bar{z}_{1}}, \frac{\partial}{\partial \bar{z}_{2}}, \ldots, \frac{\partial}{\partial \bar{z}_{n}}\right\rangle \tag{170}
\end{equation*}
$$

The set of sections $s \in \Gamma\left(L^{\omega_{n}}\right)$ that satisfy the equation $\nabla_{\frac{\partial}{\partial \bar{z}_{j}}} s=0, j=1, \ldots, n$ are called polarized sections with respect to the polarization P , and this set is denoted by $\Gamma_{P}\left(L^{\omega_{n}}\right)$. The sections $s \in \Gamma_{P}\left(L^{\omega_{n}}\right)$ can be written as $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$ with $f(z)$ a holomorphic function on \mathbb{C}^{n}. The squared norm of $s(z)$ is calculated as follows

$$
\begin{equation*}
\|s\|^{2}=\frac{1}{(\hbar \pi)^{n}} \int_{\mathbb{C}^{n}}|s(z)|^{2} \epsilon_{\omega_{n}}(z)=\frac{1}{(\hbar \pi)^{n}} \int_{\mathbb{C}^{n}}|f(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}} \epsilon_{\omega_{n}}(z) \tag{171}
\end{equation*}
$$

where $\epsilon_{\omega_{n}}(z)$ is the Liouville form which can be written in complex coordinates as $\epsilon_{\omega_{n}}(z)=$ $d \bar{z}_{1} \ldots d \bar{z}_{n} d z_{1} \ldots d z_{n}$. Each $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)$ gives a holomorphic function $f(z)$. So if it is assumed that the integral in (171) is finite, then the space $\Gamma_{P}\left(L^{\omega_{n}}\right)$ can be identified with the following space of functions

$$
\begin{equation*}
L_{h o l}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}(z)\right), \quad d \nu_{n}^{\hbar}(z)=\frac{1}{(\hbar \pi)^{n}} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}} \epsilon_{\omega_{n}}(z) \tag{172}
\end{equation*}
$$

Functions in $L_{h o l}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}(z)\right)$ are holomorphic and square-integrable with respect to the indicated measure.

As in the real case, if the Hamiltonian vector field X_{f} of a physical observable f on \mathbb{C}^{n} preserves the polarization P, then the operator \widehat{f} preserves the space of polarized sections $\Gamma_{P}\left(L^{\omega_{n}}\right)$. The Hamiltonian vector field X_{f} in complex coordinates is given in (88), and a straightforward calculation shows that

$$
\begin{equation*}
\left[X_{f}, \frac{\partial}{\partial \bar{z}_{j}}\right] \subset P, \quad \text { iff } \quad \frac{\partial^{2} f}{\partial \bar{z}_{s} \partial \bar{z}_{k}}=0 \quad j, s, k=1, \ldots n \tag{173}
\end{equation*}
$$

The Hamiltonian function of the harmonic oscillator can be written in complex coordinates as follows

$$
\begin{equation*}
H(z, \bar{z})=\frac{1}{2} \sum_{j=1}^{n} z_{j} \bar{z}_{j} \tag{174}
\end{equation*}
$$

A straightforward calculation shows that the function $H(z, \bar{z})$ in (174) satisfies the condition in 173. Hence, the corresponding operator \widehat{H} preserves the space $\Gamma_{P}\left(L^{\omega_{n}}\right)$.

The coordinates z_{k}, \bar{z}_{k} satisfy equation (173). From definition of \widehat{f} in 158), the corresponding operators $\widehat{z_{k}}, \widehat{\overline{z_{k}}}$ are given by

$$
\widehat{z}_{k}=-\hbar \frac{\partial}{\partial \bar{z}_{k}}+\frac{1}{2} z_{k}, \quad \widehat{\widehat{z_{k}}}=\hbar \frac{\partial}{\partial z_{k}}+\frac{1}{2} \bar{z}_{k} .
$$

Taking $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)$ with $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$ a straightforward calculation shows that

$$
\begin{equation*}
\widehat{z}_{k}(s(z))=\left(z_{k} f(z)\right) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}, \widehat{\widehat{z_{k}}}(s(z))=\left(\hbar \frac{\partial f}{\partial z_{k}}\right) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} . \tag{175}
\end{equation*}
$$

Let me recall that the space $\Gamma_{P}\left(L^{\omega_{n}}\right)$ is identified with $L_{h o l}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}(z)\right)$. It follows from equation (175) that the operators $\widehat{z}_{k}, \widehat{\overline{z_{k}}}$ have the following expression in the space $L_{h o l}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}(z)\right)$

$$
\begin{equation*}
\widehat{z}_{k}=z_{k}, \quad \widehat{z_{k}}=\hbar \frac{\partial}{\partial z_{k}} . \tag{176}
\end{equation*}
$$

The operators $\widehat{z_{k}}, \widehat{\overline{z_{k}}}$ in 176) are adjoint to each other in the space $L_{h o l}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}(z)\right)$, so the space $\Gamma_{P}\left(L^{\omega_{n}}\right)$ is identified with the Segal-Bargmann space \mathcal{B}_{n}.

The inclusion of half-forms is not necessary in the complex case because the elements of $\Gamma_{P}\left(L^{\omega_{n}}\right)$ have finite norm on \mathbb{C}^{n}. Moreover, the inclusion of half-forms does not change the squared norm of $s(z)$ in 171). However, the inclusion of half-forms makes the complex case parallel to the real case, and geometric quantization with half-forms gives better results than without half-forms. The correct spectrum $E_{n}=\hbar\left(n+\frac{1}{2}\right)$ of the harmonic oscillator as well as symmetric operators are obtained by including the half-form correction.

In the following paragraphs I give a brief description of how the half-forms work in the case of \mathbb{C}^{n}.

Definition 6. The canonical bundle of the polarization P is the complex line bundle K_{n} for which the sections are n-forms $\kappa=f(z, \bar{z}) d z_{1} \wedge \ldots \wedge d z_{n}$ that satisfy

$$
\iota_{\frac{\partial}{\partial \bar{z}_{j}}} \kappa=0, \quad j=1, \ldots, n .
$$

The set of polarized sections of K_{n} with respect to P are n-forms that satisfy $\iota_{\frac{\partial}{\partial z_{j}}} d \kappa=0$. This set of polarized sections is denoted by $\Gamma_{P}\left(K_{n}\right)$ whose elements are n-forms $f(z) d z_{1} \wedge \ldots \wedge d z_{n}$ with $f(z)$ a holomorphic function on \mathbb{C}^{n}.

In particular, the nowhere vanishing n-form $\kappa_{0}=d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{n}$ is an element of $\Gamma_{P}\left(K_{n}\right)$. The square root of K_{n} is a line bundle $K_{n}^{\frac{1}{2}}$ with the property that if ν_{1} and ν_{2} are two sections of $K_{n}^{\frac{1}{2}}$, then $\nu_{1} \otimes \nu_{2}=\nu_{1} \nu_{2}$ is a section in $\Gamma\left(K_{n}\right)$. That is, $\nu_{1} \nu_{2}$ is an n -form on \mathbb{C}^{n}. The space of polarized sections of $K_{n}^{\frac{1}{2}}$ with respect to the holomorphic polarization P is denoted by $\Gamma_{P}\left(K_{n}^{\frac{1}{2}}\right)$. The sections $\nu_{1}, \nu_{2} \in \Gamma_{P}\left(K_{n}^{\frac{1}{2}}\right)$ have the property that $\nu_{1} \otimes \nu_{2}=\nu_{1} \nu_{2}$ is a section in $\Gamma_{P}\left(K_{n}\right)$. That is, $\nu_{1} \nu_{2}$ is a holomorphic n-form on \mathbb{C}^{n} (a holomorphic function f times κ_{0}). The half-form $\nu_{0}=\sqrt{d z_{1} \wedge \ldots \wedge d z_{n}}$ is a nowhere vanishing polarized section of $K_{n}^{\frac{1}{2}}$ with the property that $\nu_{0}^{2}=\kappa_{0}$.

Let me give a brief description of how the Hermitian structure is defined in the space of half-forms. Consider a complex (holomorphic) polarization G on a general symplectic (Kähler) manifold M of complex dimension m. Let me assume that the canonical bundle K_{m} of the polarization G admits a square root which is denoted by $K_{m}^{\frac{1}{2}}$. The pointwise magnitude of a section ν_{1} of $K_{m}^{\frac{1}{2}}$ is defined by

$$
\begin{equation*}
\left(\nu_{1}, \nu_{1}\right)=\left(\left\langle\nu_{1}^{2}, \nu_{1}^{2}\right\rangle\right)^{\frac{1}{2}} \tag{177}
\end{equation*}
$$

where $\left\langle\nu_{1}^{2}, \nu_{1}^{2}\right\rangle$ is a unique positive function that satisfies the following equality

$$
\begin{equation*}
(-1)^{m}(-\imath)^{m} \nu_{1}^{2} \wedge \overline{\nu_{1}^{2}}=\left\langle\nu_{1}^{2}, \nu_{1}^{2}\right\rangle \epsilon_{\omega} \tag{178}
\end{equation*}
$$

The term ϵ_{ω} in (178) is the Liouville volume form on M. The factor $(-1)^{m}(-\imath)^{m}$ is set so that the function $\left\langle\nu_{1}^{2}, \nu_{1}^{2}\right\rangle$ must be real, see [17, Chap.23]. Since the Liouville form ϵ_{ω} is a nowhere vanishing $2 m$-form on M, then $\nu_{1}^{2} \wedge \overline{\nu_{1}^{2}}$ is a nowhere vanishing $2 m$-form on M. Hence, ν_{1} is a nowhere vanishing section of $K_{m}^{\frac{1}{2}}$.

Let me determine the Hermitian structure in the space of half-forms for the null quadric \dot{Q}_{m} and \mathbb{C}^{n}. The canonical bundle $\widehat{K}_{\dot{Q}_{m}}$ of the holomorphic polarization G on \dot{Q}_{m} admits a square root $\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}$. See [33] for details. The nowhere vanishing section $\widehat{\nu}_{0}$ of $\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}$ satisfies $\widehat{\nu}_{0} \otimes \widehat{\nu}_{0}=\widehat{\nu}_{0}^{2}=\widehat{\kappa}_{0}$, where the m-form $\widehat{\kappa}_{0}$ is a polarized section of $\widehat{K}_{\dot{Q}_{m}}$ and is given by

$$
\begin{equation*}
\widehat{\kappa}_{0}(\alpha)=\frac{1}{2|\alpha|^{2}} \sum_{j}^{m+1}(-1)^{j} \bar{\alpha}_{j} d \alpha_{1} \wedge d \alpha_{2} \wedge \ldots \wedge \check{d \alpha}_{j} \wedge \ldots \wedge d \alpha_{m+1} \tag{179}
\end{equation*}
$$

In a subset $U_{j} \subset \dot{Q}_{m}$ where $\alpha_{j} \neq 0, \widehat{\kappa}_{0}$ can be written as

$$
\widehat{\kappa}_{0}(\alpha)=(-1)^{j} \frac{1}{2 \alpha_{j}} d \alpha_{1} \wedge \ldots \wedge d \alpha_{j-1} \wedge d \alpha_{j+1} \wedge \ldots \wedge d \alpha_{m+1}
$$

A straightforward long calculation shows that

$$
\begin{equation*}
(-1)^{m}(-\imath)^{m} \widehat{\kappa}_{0} \wedge \bar{\kappa}_{0}=2^{\frac{m-2}{2}}|\alpha|^{m-2} \varepsilon_{\widehat{\omega}}(\alpha) \tag{180}
\end{equation*}
$$

where $\varepsilon_{\widehat{\omega}}(\alpha)$ is the Liouville volume of $T^{+} S^{m} \cong \dot{Q}_{m}$. The proof of proposition 49 gives the details of how equality 180 is obtained, see appendix B. It follows from equality (180) that $\left\langle\widehat{\nu}_{0}^{2}, \widehat{\nu}_{0}^{2}\right\rangle=2^{\frac{m-2}{2}}|\alpha|^{m-2}$. Hence, the pointwise magnitude of $\widehat{\nu}_{0}$ is given by $\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right)=$ $2^{\frac{m-2}{4}}|\alpha|^{\frac{m}{2}-1}$.

For the case of \mathbb{C}^{n} the Hermitian structure in the space of sections $K_{n}^{\frac{1}{2}}$ is a constant function. Take the nowhere vanishing section $\nu_{0}=\sqrt{d z_{1} \wedge \ldots \wedge d z_{4}}$ and a straightforward calculation shows that

$$
\begin{equation*}
\nu_{0}^{2} \wedge \overline{\nu_{0}^{2}}=d z_{1} \wedge \ldots d z_{n} \wedge d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{n}=\epsilon_{\omega_{n}}(z) \tag{181}
\end{equation*}
$$

Equality (181) implies that $\left(\nu_{0}, \nu_{0}\right)=1$. Hence, the pointwise magnitude of ν_{0} is equal to one. The space of polarized sections including half-form is denoted by $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$. The sections in $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ can be written as $r(z)=s(z) \otimes \nu_{0}=s(z) \nu_{0}$ with $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)$. The pointwise magnitude of $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ is given by

$$
|r(z)|^{2}=|s(z)|^{2}\left(\nu_{0}, \nu_{0}\right)=|f(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}}
$$

The squared norm of $r(z)$ is calculated as follows

$$
\begin{equation*}
\|r(z)\|^{2}=\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|r(z)|^{2} \epsilon_{\omega_{n}}(z)=\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|f(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}} \epsilon_{\omega_{n}}(z) \tag{182}
\end{equation*}
$$

Every $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ gives a holomorphic function $f(z)$ on \mathbb{C}^{n}. So if it is assumed that the integral in 182) is finite, then the space $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ can be identified with the space $L_{\text {hol }}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}(z)\right)$ as well.

Let f be a function on \mathbb{C}^{n} that preserves the polarization P, and \widehat{f} is the corresponding operator that preserves the space $\Gamma_{P}\left(L^{\omega_{n}}\right)$. The operator \widehat{Q}_{f} acting in the space $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ is given by

$$
\begin{equation*}
\widehat{Q}_{f}=\widehat{f} \otimes \widehat{\mathbb{I}}-\imath \hbar\left(\widehat{\mathbb{I}} \otimes \mathcal{L}_{X_{f}}\right) \tag{183}
\end{equation*}
$$

The action of \widehat{Q}_{f} on $r_{1}(z)=s_{1}(z) \nu_{0}$ is given by

$$
\begin{align*}
\widehat{Q}_{f}\left(r_{1}\right)(z) & =\widehat{f}\left(s_{1}\right)(z) \otimes \widehat{\mathbb{I}}\left(\nu_{0}\right)-\imath \hbar \widehat{\mathbb{I}}\left(s_{1}\right)(z) \otimes \mathcal{L}_{X_{f}} \nu_{0} \tag{184}\\
& =\widehat{f}\left(s_{1}\right)(z) \nu_{0}-\imath \hbar\left(s_{1}(z) \mathcal{L}_{X_{f}} \nu_{0}\right)
\end{align*}
$$

The Lie derivative $\mathcal{L}_{X_{f}} \nu_{0}$ satisfies $2\left(\mathcal{L}_{X_{f}} \nu_{0}\right) \nu_{0}=\mathcal{L}_{X_{f}} \nu_{0}^{2}$, so it can be calculated from the following equality

$$
\begin{equation*}
2\left(\mathcal{L}_{X_{f}} \nu_{0}\right) \nu_{0}=\mathcal{L}_{X_{f}}\left(\kappa_{0}\right) \tag{185}
\end{equation*}
$$

For the functions $z_{k}, \bar{z}_{j}, j, k=1, \ldots, n$ a straightforward calculation show that $\mathcal{L}_{X_{z_{k}}} \kappa_{0}=0$ and $\mathcal{L}_{X_{\bar{z}}^{j}} \kappa_{0}=0$. Hence, it follows from equality 184 that the sections $\left(\widehat{Q}_{z_{k}} r\right)$ and $\left(\widehat{Q}_{\bar{z}_{j}} r\right)$ are given by

$$
\left(\widehat{Q}_{z_{k}} r\right)(z)=\left(\widehat{z}_{k} s\right)(z) \nu_{0}, \quad\left(\widehat{Q}_{\bar{z}_{j}} r\right)(z)=\left(\widehat{\bar{z}}_{j} s\right)(z) \nu_{0}
$$

It follows from equality 175 that

$$
\begin{equation*}
\left(\widehat{Q}_{z_{k}} r\right)(z)=\left(z_{k} f(z)\right) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \nu_{0}, \quad\left(\widehat{Q}_{\bar{z}_{j}} r\right)(z)=\left(\hbar \frac{\partial f}{\partial z}\right) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \nu_{0} \tag{186}
\end{equation*}
$$

Equality 186 implies that in the space $L_{h o l}^{2}\left(\mathbb{C}^{n}, d \nu_{n}^{\hbar}\right)$ the operators $\widehat{Q}_{z_{k}}, \widehat{Q}_{\bar{z}_{j}}$ can be written as $\widehat{Q}_{z_{k}}=z_{k}, \widehat{Q}_{\bar{z}_{j}}=\hbar \frac{\partial}{\partial z_{j}}$. Hence, the space $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ is also identified with the space \mathcal{B}_{n}. The following proposition is fulfilled for both polarizations the complex P and vertical V.

Proposition 10. Consider f, g smooth functions (physical observables) on \mathbb{C}^{n}, which satisfy equation (173). The operators $\widehat{Q}_{f}=\widehat{f} \otimes \widehat{\mathbb{I}}-\imath \hbar\left(\widehat{\mathbb{I}} \otimes \mathcal{L}_{X_{f}}\right)$ and $\widehat{Q}_{g}=\widehat{g} \otimes \widehat{\mathbb{I}}-\imath \hbar\left(\widehat{\mathbb{I}} \otimes \mathcal{L}_{X_{g}}\right)$ satisfy

$$
\begin{equation*}
\left[\widehat{Q}_{f}, \widehat{Q}_{g}\right]=-\imath \hbar \widehat{Q}_{\{f, g\}} \tag{187}
\end{equation*}
$$

The proof of proposition 10 can be seen in [17, Chap.23].

3. Quantum Reduction

In section 1 it was considered reduction at the classical level, which amounts to passing from \mathbb{C}^{n} to the symplectic quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$. Alternatively, I may first quantize $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$ by looking at the space of polarized sections with respect to the polarization either the vertical or the complex and then perform reduction at the Quantum level. According to Dirac [31], the classical constraint $\mathfrak{J}_{n}(z)=0$ must be enforced on the quantum states (space of polarized sections). The Geometric Quantization provides an action of \mathfrak{g}_{n} on the space of polarized sections. That is, an element $\xi \in \mathfrak{g}_{n}$ is assigned the operator $\widehat{J}_{\xi}=-\imath \hbar \nabla_{X_{J_{\xi}}}+J_{\xi}$ which is the quantization of the Hamiltonian function $J_{\xi}(z)=\left\langle\mathfrak{J}_{n}(z), \xi\right\rangle$. The classical constraint $\mathfrak{J}_{n}(z)=0$ is enforced on the polarized sections by defining that the admissible quantum states are the polarized sections that satisfy the following equation.

$$
\begin{equation*}
\widehat{J}_{\xi}(s)=0, \quad \forall \xi \in \mathfrak{g}_{n} \tag{188}
\end{equation*}
$$

The Quantum Reduced Space $\mathcal{H}^{G_{n}}$ is the set of polarized sections s including half-form correction with s satisfying equation 188 . In the next paragraphs the space $\mathcal{H}^{G_{n}}$ will be obtained for each group G_{n}.
3.1. The Quantum Reduced Space $\mathcal{H}^{U(1)}$. Let me construct the action of $\mathfrak{u}(1)$ on the space of polarized sections. Every element $\xi \in \mathfrak{g}_{4}=\mathfrak{u}(1)$ can be written as $\xi=\imath \theta$ with $\theta \in \mathbb{R}$. The Hamiltonian function $J_{\imath \theta}$ is assigned the following operator

$$
\begin{equation*}
\widehat{J}_{\imath \theta}=-\imath \hbar \nabla_{X_{J_{\imath \theta}}}+J_{\imath \theta} \tag{189}
\end{equation*}
$$

The operator in 189 will be denoted with the same symbol for both coordinates $(u, v) \in T^{*} \mathbb{R}^{4}$ and $z \in \mathbb{C}^{4}$. A straightforward calculation shows that the function $J_{\imath \theta}(u, v)$ in 100 satisfies the condition in 162 , so the operator $\widehat{J}_{2 \theta}$ preserves the space $\Gamma_{V}\left(L^{\omega_{4}}\right)$. A short calculation shows that the function $J_{\imath \theta}(z)$ in 98 satisfies the condition in $\sqrt{173}$, so the operator $\widehat{J}_{\imath \theta}$ preserves the space $\Gamma_{P}\left(L^{\omega_{4}}\right)$.

On the complex side let me take $s_{1}(z)=f_{1}(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \in \Gamma_{P}\left(L^{\omega_{4}}\right)$. The section $\left(\widehat{J}_{2 \theta} s_{1}\right)(z)$ can be written as

$$
\begin{equation*}
\left(\widehat{J}_{\imath \theta} s_{1}\right)(z)=\left(\widehat{Q}_{\imath \theta} f_{1}\right)(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \quad \text { with } \quad \widehat{Q}_{\imath \theta} f_{1}=\hbar \theta\left(z_{1} \frac{\partial f_{1}}{\partial z_{1}}+z_{2} \frac{\partial f_{1}}{\partial z_{2}}-z_{3} \frac{\partial f_{1}}{\partial z_{3}}-z_{4} \frac{\partial f_{1}}{\partial z_{4}}\right) \tag{190}
\end{equation*}
$$

If $\widehat{Q}_{2 \theta} f_{1}=0$, then equality $\widehat{J}_{\imath \theta} s_{1}=0$ holds. The space of admissible states is denoted by $\Gamma_{P}\left(L^{\omega_{4}}\right)^{U(1)}$ whose elements are given by $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$, where f satisfies $\widehat{Q}_{\imath \theta} f=0$.

The associated action of $\xi=\imath \theta$ on the half-form ν_{0} is by the Lie derivative $\mathcal{L}_{X_{J_{\imath \theta}}}$ and satisfies

$$
2\left(\mathcal{L}_{X_{J_{2 \theta}}} \nu_{0}\right) \nu_{0}=\mathcal{L}_{X_{J_{2 \theta}}} \kappa_{0}
$$

The Lie derivative $\mathcal{L}_{X_{J_{2 \theta}}} \kappa_{0}$ can be calculated as $\mathcal{L}_{X_{J_{2 \theta}}} \kappa_{0}=d\left(\iota_{X_{J_{2 \theta}}} \kappa_{0}\right)+\iota_{X_{J_{2 \theta}}} d \kappa_{0}$, see [43] for details. The top-degree form κ_{0} satisfies $d \kappa_{0}=0$, and it is not difficult to see that $d\left(\iota_{X_{J_{2 \theta}}} \kappa_{0}\right)=$ 0 so that the equality $\mathcal{L}_{X_{J_{2 \theta}}} \kappa_{0}=0$ holds, which in turn implies $\mathcal{L}_{X_{J_{2 \theta}}} \nu_{0}=0$.

Following [14], let me construct the action of $(\mathfrak{u}(1))_{\mathbb{C}}$ on $\Gamma_{P}\left(L^{\omega_{4}}\right)$. Consider $\xi_{\mathbb{C}}=\xi+\imath \eta \in$ $(\mathfrak{u}(1))_{\mathbb{C}}$ with $\xi=\imath \theta, \eta=\imath \varphi \in \mathfrak{u}(1)$. I can assign to $\xi_{\mathbb{C}}$ the operator $\widehat{J}_{\xi_{\mathbb{C}}}=\widehat{J}_{\imath \theta}+\imath \widehat{J}_{\imath \varphi}$ whose action on the section $s_{1}(z) \in \Gamma_{P}\left(L^{\omega_{4}}\right)$ is defined by $\widehat{J}_{\xi_{\mathbb{C}}} s_{1}=\widehat{J}_{\imath \theta} s_{1}+\imath \widehat{J}_{\imath \varphi} s_{1}$. The section $\widehat{J}_{\xi_{\mathbb{C}}} s_{1}$ can be written as

$$
\widehat{J}_{\xi_{\mathbb{C}}} s_{1}(z)=\left(\widehat{Q}_{\xi_{\mathbb{C}}} f_{1}\right)(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \quad \text { with } \quad \widehat{Q}_{\xi_{\mathbb{C}}} f_{1}=\widehat{Q}_{\imath \theta} f_{1}+\imath \widehat{Q}_{\imath \varphi} f_{1}
$$

where $\widehat{Q}_{\imath \varphi} f_{1}$ can be written as $\widehat{Q}_{\imath \theta} f_{1}$ in 190 . If $s_{1}(z) \in \Gamma_{P}\left(L^{\omega_{4}}\right)^{U(1)}$, then equality $\widehat{J}_{\xi_{\mathbb{C}}} s_{1}=0$ holds.

The infinitesimal generator of $\imath \eta \in(\mathfrak{u}(1))_{\mathbb{C}}$ is the vector field $J\left(X_{J_{\imath \varphi}}\right)$, where J is the complex structure defined in 85). The associated action of $\imath \eta$ on the half-form ν_{0} is by the Lie derivative $\mathcal{L}_{J\left(X_{J_{\imath \varphi}}\right)}$ and satisfies

$$
2\left(\mathcal{L}_{J\left(X_{J_{\imath \varphi}}\right)} \nu_{0}\right)=\mathcal{L}_{J\left(X_{J_{2 \varphi}}\right)} \kappa_{0}
$$

It is not difficult to see that $\mathcal{L}_{J\left(X_{J_{\imath \varphi}}\right)} \kappa_{0}=0$ which in turn implies $\mathcal{L}_{J\left(X_{\left.J_{\imath \varphi}\right)}\right)} \nu_{0}=0$.
The Quantum Reduced Space is denoted by $\Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)^{U(1)}$ whose elements are sections $r(z)=s(z) \sqrt{d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d z_{4}} \in \Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)$ with $s(z) \in \Gamma_{P}\left(L^{\omega_{4}}\right)^{U(1)}$. The space $\Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)$ is identified with \mathcal{B}_{4}, so $\Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)^{U(1)}$ can be identified with the space $\mathcal{B}_{4}^{\text {red }}$ of functions in \mathcal{B}_{4} that belong to the kernel of $\widehat{Q}_{2 \theta}$.

Since the action of \widehat{J}_{ξ} and $\widehat{J}_{\xi_{\mathbb{C}}}$ is displayed on the action of $\widehat{Q}_{2 \theta}$ and $\widehat{Q}_{\xi_{\mathbb{C}}}$ on f which is an element in \mathcal{B}_{4}, then $\widehat{Q}_{\imath \theta}$ and $\widehat{Q}_{\xi_{\mathbb{C}}}$ can be regarded an action of $\mathfrak{u}(1)$ and $(\mathfrak{u}(1))_{\mathbb{C}}$ on \mathcal{B}_{4} respectively. Let me exponentiate these actions.

Let me denote by $T_{\mathrm{e}^{\imath \theta}}, T_{\lambda}$ with $\lambda \in \mathbb{C}^{*}$ the action of $U(1), \mathbb{C}^{*}$ on \mathcal{B}_{4} respectively. The groups $U(1), \mathbb{C}^{*}$ are commutative, so instead of use the inverses let me define its action on \mathcal{B}_{4} as follows

$$
\begin{equation*}
\left(T_{\mathrm{e}^{\imath \theta} \theta} f\right)(z)=f\left(\tilde{\Phi}_{\mathrm{e}^{\theta} \theta}(z)\right), \quad\left(T_{\lambda} f\right)(z)=f\left(\tilde{\Phi}_{\lambda}(z)\right), \tag{191}
\end{equation*}
$$

where $\tilde{\Phi}_{\mathrm{e}^{\theta} \theta}(z), \tilde{\Phi}_{\lambda}(z)$ denote the action of $U(1), \mathbb{C}^{*}$ on $\dot{\mathbb{C}}^{4}$ respectively.
Proposition 11. Functions $f \in \mathcal{B}_{4}^{\text {red }}$ are invariant under the action of $U(1)$ as well as of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$. Thus the Quantum Reduced space can be identified with the space

$$
\begin{equation*}
\mathcal{B}_{4}^{(U(1))_{\mathrm{C}}}=\left\{f(z) \in \mathcal{B}_{4} \mid f\left(\tilde{\Phi}_{\lambda}(z)\right)=f(z)\right\} \quad \text { with } \lambda \in \mathbb{C}^{*} \tag{192}
\end{equation*}
$$

Functions $f \in \mathcal{B}_{4}^{(U(1))_{C}}$ can be written as $f(z)=\phi(\alpha(z))$ with ϕ defined on \dot{Q}_{3}.
Proof. Let me first show that functions $f \in \mathcal{B}_{4}^{\text {red }}$ are invariant under the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$. The integral curves of the vector field $X_{J_{t \theta}}(z)$ are given by $\gamma(t)=\tilde{\Phi}_{\mathrm{e}^{t \imath \theta}}(z)$ with $t \in \mathbb{R}$, and $\tilde{\Phi}_{\mathrm{e}^{t r \theta}}(z)$ is defined in (90). A calculation shows that equation $\widehat{Q}_{\theta \theta} f=0$ can be written as follows

$$
\begin{equation*}
\widehat{Q}_{\imath \theta} f=-\imath \hbar X_{J_{2 \theta}}(f)=-\imath \hbar\left\{J_{\imath \theta}, f\right\}=0 . \tag{193}
\end{equation*}
$$

Equation 193) implies that f is constant along the integral curves $\gamma(t)=\tilde{\Phi}_{\mathrm{e}^{\text {t }} \boldsymbol{\theta}}(z)$. Namely,

$$
\begin{equation*}
f\left(\tilde{\Phi}_{\mathrm{e}^{2 t \theta}}(z)\right)=f(z) \tag{194}
\end{equation*}
$$

Equality (194) indicates that functions $f \in \mathcal{B}_{4}^{\text {red }}$ are invariant under the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$, i.e, $T_{\mathrm{e}^{\imath \theta}} f=f$. Functions in $\mathcal{B}_{4}^{\text {red }}$ are also constant along the integral curves $\gamma(s)=\tilde{\Phi}_{\mathrm{e}^{-s \varphi}}(z)$ of the vector field $J\left(X_{J_{\imath \varphi}}\right)(z)$ which is the infinitesimal generator of $\imath \eta=\imath(\imath \varphi)$. Since $f(z)$ is holomorphic, then a calculation shows that

$$
\begin{equation*}
\left.\hbar \frac{d}{d t}\right|_{s=0} f \circ \gamma(s)=\hbar J\left(X_{J_{\imath \varphi}}\right)(f)=0 \tag{195}
\end{equation*}
$$

Equality (195) implies that f satisfies

$$
f\left(\tilde{\Phi}_{\mathrm{e}^{-s \varphi}}(z)\right)=f(z) .
$$

Above equality can be written as follows

$$
\begin{equation*}
T_{\mathrm{e}^{-s \varphi}} f=f . \tag{196}
\end{equation*}
$$

Let me apply $T_{\mathrm{e}^{2 \theta}}$ on equation (196), so that the following equality holds

$$
T_{\mathrm{e}^{\imath \theta}}\left(T_{\mathrm{e}^{-s \varphi}} f\right)(z)=f\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}\left(\tilde{\Phi}_{\mathrm{e}^{-s \varphi}}(z)\right)\right)=f(z) .
$$

Above equality follows from the $U(1)$-invariance of f and from definition of the action of $U(1)$, \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$ can be written as

$$
\begin{equation*}
T_{\mathrm{e}^{2(\theta+2 s \varphi)}} f=f\left(\tilde{\Phi}_{\mathrm{e}^{2(\theta+\tau s \varphi)}}(z)\right)=f(z) . \tag{197}
\end{equation*}
$$

Equality (197) indicates that $f \in \mathcal{B}_{4}^{\text {red }}$ is invariant under the action $\tilde{\Phi}_{\lambda}(z)$ of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$.
Since the orbits $\tilde{\Phi}_{\lambda}(z)$ are the fibers of the map $\rho_{(4,3)}$, then $f \in \mathcal{B}_{4}^{(U(1))_{C}}$ is constant along the fibers of $\rho_{(4,3)}(z)$. Hence, under the identification of M_{s} / \mathbb{C}^{*} with \dot{Q}_{3}, f can be regarded as a function on \dot{Q}_{3}. That is, functions in $\mathcal{B}_{4}^{(U(1))_{C}}$ can be written as $f(z)=\phi(\alpha(z))$ with ϕ a function on \dot{Q}_{3} that satisfies $\frac{\partial \phi}{\partial \bar{\alpha}_{j}}=0, j=1, \ldots, 4$ (holomorphic).

On the other hand I can compute the derivatives of $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ with the chain rule on the function $\rho_{(4,3)}(z)=\alpha(z)$, so that a calculation shows that $\widehat{Q}_{2 \theta} f=0$.

On the real side let me take $s_{\mathbf{1}}(u, v)=\varphi_{1}(u) \mathrm{e}^{-\frac{\imath}{2 \hbar} u \cdot v} \in \Gamma_{V}\left(L^{\omega_{4}}\right)$. The section $\widehat{J}_{\theta \theta} s_{\mathbf{1}}$ can be written as
$\left(\widehat{J}_{2 \theta} s_{1}\right)(u, v)=\left(\widehat{\boldsymbol{Q}}_{J \imath \theta} \varphi_{1}\right)(u, v) \mathrm{e}^{-\frac{2}{2 \hbar} u \cdot v}$ with $\widehat{\boldsymbol{Q}}_{2 \theta} \varphi_{1}=\imath \hbar \theta\left(u_{2} \frac{\partial \varphi_{1}}{\partial u_{1}}-u_{1} \frac{\partial \varphi_{1}}{\partial u_{2}}+u_{4} \frac{\partial \varphi_{1}}{\partial u_{3}}-u_{3} \frac{\partial \varphi_{1}}{\partial u_{4}}\right)$.
If $\widehat{\boldsymbol{Q}}_{2 \theta} \varphi_{1}=0$, then equality $\widehat{J}_{2 \theta} s_{\mathbf{1}}=0$ holds. The space of admissible quantum states is denoted by $\Gamma_{V}\left(L^{\omega_{4}}\right)^{U(1)}$ whose elements are given by $\boldsymbol{s}(u, v)=\varphi(u) \mathrm{e}^{-\frac{2}{2 \hbar} u \cdot v}$, where φ satisfies $\widehat{\boldsymbol{Q}}_{\imath \theta} \varphi=0$.

The associated action of $\xi=\imath \theta \in \mathfrak{u}(1)$ on the half-form $\boldsymbol{\nu}_{0}$ is by the derivative $\mathcal{L}_{X_{J_{\imath \theta}}}$ and satisfies

$$
2\left(\mathcal{L}_{X_{J_{2}}} \boldsymbol{\nu}_{0}\right) \boldsymbol{\nu}_{0}=\mathcal{L}_{X_{J_{2 \theta}}} \boldsymbol{\kappa}_{0}
$$

A similar argument to the complex case shows that $\mathcal{L}_{X_{J_{\ell \theta}}} \boldsymbol{\kappa}_{0}=0$ which in turn implies $\mathcal{L}_{X_{J_{2 \theta}}} \boldsymbol{\nu}_{0}=0$. The Quantum Reduced Space is denoted by $\Gamma_{V}\left(L^{\omega_{4}} \otimes K_{V}^{\frac{1}{2}}\right)^{U(1)}$ whose elements are given by $\boldsymbol{r}(u, v)=s(u, v) \sqrt{d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4}}$ with $s(u, v) \in \Gamma_{V}\left(L^{\omega_{4}}\right)^{U(1)}$. Let me recall that $\Gamma_{V}\left(L^{\omega_{4}} \otimes K_{V}^{\frac{1}{2}}\right)$ is identified with $L^{2}\left(\mathbb{R}^{4}, d u\right)$, so $\Gamma_{V}\left(L^{\omega_{4}} \otimes K_{V}^{\frac{1}{2}}\right)^{U(1)}$ can be identified with the space $L^{2}\left(\mathbb{R}^{4}, d u\right)^{\text {red }}$ of functions in $L^{2}\left(\mathbb{R}^{4}, d u\right)$ that belong to the kernel of $\widehat{Q}_{2 \theta}$ defined in 198).
Proposition 12. Functions in $L^{2}\left(\mathbb{R}^{4}, d u\right)^{\text {red }}$ are invariant under the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$. Thus the Quantum Reduced Space can be identified with the space defined by

$$
L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}=\left\{\varphi \in L^{2}\left(\mathbb{R}^{4}, d u\right) \mid \varphi\left(\Phi_{R_{t \theta}}(u)\right)=\varphi(u)\right\}
$$

Proof. The integral curves of the vector field $X_{J_{\imath \theta}}$ are given by $\gamma(t)=\tilde{\Phi}_{R_{t \theta}}(u, v)$ with $t \in \mathbb{R}$, and $\tilde{\Phi}_{R_{t \theta}}(u, v)$ is defined in 79). A calculation shows that equation $\widehat{\boldsymbol{Q}}_{\imath \theta} \varphi=0$ can be written as follows

$$
\begin{equation*}
\widehat{\boldsymbol{Q}}_{J_{\imath \theta}} \varphi=-\imath \hbar X_{J_{\imath \theta}}(\varphi)=-\imath \hbar\left\{J_{\imath \theta}, \varphi\right\}=0 \tag{199}
\end{equation*}
$$

Equality 199 implies that functions $\varphi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{\text {red }}$ are constant along the integral curves $\gamma(t)=\tilde{\Phi}_{R_{t \theta}}(u, v)$. That is, the function $\varphi(u)$ satisfies the following equality

$$
\varphi\left(\tilde{\Phi}_{R_{t \theta}}(u, v)\right)=\varphi\left(\Phi_{R_{t \theta}}(u)\right)=\varphi(u) .
$$

Above equality indicates that φ is invariant under the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$.
3.2. The Quantum Reduced Space $\mathcal{H}^{S U(2)}$. Let me construct the action of $\mathfrak{s u}(2)$ on the space of polarized sections. Every element $\xi \in \mathfrak{s u}(2)$ can be written as $\xi=a \xi_{1}+b \xi_{2}+c \xi_{3}$ with a, b, c, d real numbers, and $\xi_{j}, j=1,2,3$ is the basis of $\mathfrak{s u}(2)$ in 101). The Hamiltonian function J_{ξ} in 104 is assigned the following operator

$$
\begin{equation*}
\widehat{J_{\xi}}=-\imath \hbar \nabla_{X_{J_{\xi}}}+J_{\xi} . \tag{200}
\end{equation*}
$$

The operator in (200) will be denoted with the same symbol for both coordinates $(u, v) \in$ $T^{*} \mathbb{R}^{8}$ and $z \in \mathbb{C}^{8}$. A straightforward calculation shows that the function $J_{\xi}(u, v)$ satisfies the condition in 162 , so the operator \widehat{J}_{ξ} preserves the space $\Gamma_{V}\left(L^{\omega_{8}}\right)$. A short calculation shows that the function $J_{\xi}(z)$ satisfies the condition in 173 , so the operator \widehat{J}_{ξ} preserves the space $\Gamma_{P}\left(L^{\omega 8}\right)$.

On the complex side let me take $s_{2}(z)=f_{2}(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \in \Gamma_{P}\left(L^{\omega_{8}}\right)$. The section $\widehat{J}_{\xi} s_{2}$ can be written as

$$
\widehat{J}_{\xi} s_{2}=\left(\widehat{Q}_{\xi} f_{2}\right) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \quad \text { with } \quad \widehat{Q}_{\xi} f_{2}=a \widehat{Q}_{\xi_{1}} f_{2}+b \widehat{Q}_{\xi_{2}} f_{2}+c \widehat{Q}_{\xi_{3}} f_{2}
$$

where $\widehat{Q}_{\xi_{j}} f_{2}, j=1,2,3$ are given by

$$
\begin{align*}
& \widehat{Q}_{\xi_{1}} f_{2}=\hbar\left(z_{1} \frac{\partial f_{2}}{\partial z_{1}}-z_{2} \frac{\partial f_{2}}{\partial z_{2}}+z_{3} \frac{\partial f_{2}}{\partial z_{3}}-z_{4} \frac{\partial f_{2}}{\partial z_{4}}+z_{5} \frac{\partial f_{2}}{\partial z_{5}}-z_{6} \frac{\partial f_{2}}{\partial z_{6}}+z_{7} \frac{\partial f_{2}}{\partial z_{7}}-z_{8} \frac{\partial f_{2}}{\partial z_{8}}\right) \tag{201}\\
& \widehat{Q}_{\xi_{2}} f_{2}=i \hbar\left(z_{2} \frac{\partial f_{2}}{\partial z_{1}}-z_{1} \frac{\partial f_{2}}{\partial z_{2}}+z_{4} \frac{\partial f_{2}}{\partial z_{3}}-z_{3} \frac{\partial f_{2}}{\partial z_{4}}+z_{6} \frac{\partial f_{2}}{\partial z_{5}}-z_{5} \frac{\partial f_{2}}{\partial z_{6}}+z_{8} \frac{\partial f_{2}}{\partial z_{7}}-z_{7} \frac{\partial f_{2}}{\partial z_{8}}\right) \\
& \widehat{Q}_{\xi_{3}} f_{2}=\hbar\left(z_{1} \frac{\partial f_{2}}{\partial z_{2}}+z_{2} \frac{\partial f_{2}}{\partial z_{1}}+z_{3} \frac{\partial f_{2}}{\partial z_{4}}+z_{4} \frac{\partial f_{2}}{\partial z_{3}}+z_{5} \frac{\partial f_{2}}{\partial z_{6}}+z_{6} \frac{\partial f_{2}}{\partial z_{5}}+z_{7} \frac{\partial f_{2}}{\partial z_{8}}+z_{8} \frac{\partial f_{2}}{\partial z_{7}}\right) .
\end{align*}
$$

If $\widehat{Q}_{\xi_{j}} f_{2}=0$, then equality $\widehat{J}_{\xi} s_{2}=0$ is fulfilled. The space of admissible quantum states is denoted by $\Gamma_{P}\left(L^{\omega_{8}}\right)^{S U(2)}$ whose elements are given by $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \in \Gamma_{P}\left(L^{\omega_{8}}\right)$, where f satisfies $\widehat{Q}_{\xi_{j}} f=0$.

The associated action of $\xi \in \mathfrak{s u}(2)$ on the half-form ν_{0} is by the Lie derivative $\mathcal{L}_{X_{J_{\xi}}}$ and satisfies

$$
2\left(\mathcal{L}_{X_{J_{\xi}}} \nu_{0}\right) \nu_{0}=\mathcal{L}_{X_{J_{\xi}}} \kappa_{0}
$$

It is not difficult to see that $\mathcal{L}_{X_{J_{\xi}}} \kappa_{0}=\left(a \mathcal{L}_{X_{\xi_{1}}} \kappa_{0}+b \mathcal{L}_{X_{\xi_{2}}}+c \mathcal{L}_{X_{J_{\xi_{3}}}}\right) \kappa_{0}$. For the basis $\xi_{j}, j=$ $1,2,3$ of $\mathfrak{s u}(2)$ a straightforward calculation shows that $\mathcal{L}_{X_{J_{j}}} \kappa_{0}=0$ which in turn implies $\mathcal{L}_{X_{J_{\xi}}} \kappa_{0}(z)=0$. Hence, equality $\mathcal{L}_{X_{J_{\xi}}} \nu_{0}=0$ is fulfilled.

Following [14, let me construct the action of $(\mathfrak{s u}(2))_{\mathbb{C}}=\mathfrak{s l}(2, \mathbb{C})$ on $\Gamma_{P}\left(L^{\omega_{8}}\right)$. Consider $\xi_{\mathbb{C}} \in(\mathfrak{s u}(2))_{\mathbb{C}}$ with $\xi_{\mathbb{C}}=\xi+\imath \eta, \xi, \eta \in \mathfrak{s u}(2)$. I can assign to $\xi_{\mathbb{C}}$ the operator $\widehat{J}_{\xi_{\mathbb{C}}}=\widehat{J}_{\xi}+\imath \widehat{J}_{\eta}$ whose action on $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \in \Gamma_{P}\left(L^{\omega_{8}}\right)$ is defined by $\widehat{J}_{\xi_{\mathbb{C}}} s=\widehat{J}_{\xi} s+\imath \widehat{J}_{\eta} s$. The section $\widehat{J}_{\xi_{\mathbb{C}}} s$ can be written as

$$
\widehat{J}_{\xi_{\mathbb{C}}} s=\left(\widehat{Q}_{\xi_{\mathbb{C}}} f\right) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \quad \text { with } \quad \widehat{Q}_{\xi_{\mathbb{C}}} f=\widehat{Q}_{\xi} f+\imath \widehat{Q}_{\eta} f
$$

where $\widehat{Q}_{\eta} f$ can be written in terms of the operators $\widehat{Q}_{\xi_{j}}$ defined in 201$)$. If $s(z) \in \Gamma_{P}\left(L^{\omega_{8}}\right)^{S U(2)}$, then equality $\widehat{J}_{\xi_{\mathbb{C}}} s=0$ holds.

The infinitesimal generator of $\imath \eta \in(\mathfrak{s u}(2))_{\mathbb{C}}$ is the vector field $J\left(X_{J_{\eta}}\right)$, where J denotes the complex structure defined in (85). The associated action of $\eta \eta$ on the half-form ν_{0} is by the Lie derivative $\mathcal{L}_{J\left(X_{J_{\eta}}\right)}$ and satisfies

$$
2\left(\mathcal{L}_{J\left(X_{J_{\eta}}\right)} \nu_{0}\right) \nu_{0}=\mathcal{L}_{J\left(X_{J_{\eta}}\right)} \kappa_{0}
$$

A calculation shows $\mathcal{L}_{J\left(X_{J_{\eta}}\right)} \kappa_{0}=0$ which in turn implies $\mathcal{L}_{J\left(X_{J_{\eta}}\right)} \nu_{0}=0$.
The Quantum Reduced Space is denoted by $\Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)^{S U(2)}$ whose elements are sections $r(z)=s(z) \sqrt{d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}}$ with $s(z) \in \Gamma_{P}\left(L^{\omega_{8}}\right)^{S U(2)}$. Since $\Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)$ is identified with \mathcal{B}_{8}, then $\Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)^{S U(2)}$ is identified with the space $\mathcal{B}_{8}^{\text {red }}$ of function in \mathcal{B}_{8} that belong to the kernel of $\widehat{Q}_{\xi_{j}}, j=1,2,3$.

Since the action of both \widehat{J}_{ξ} and $\widehat{J}_{\xi_{\mathbb{C}}}$ on sections $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$ is displayed on the action of \widehat{Q}_{ξ} and $\widehat{Q}_{\xi_{\mathbb{C}}}$ on f which is an element in \mathcal{B}_{8}, then $\widehat{Q}_{\xi}, \widehat{Q}_{\xi_{\mathbb{C}}}$ can be regarded an action of $\mathfrak{s u}(2)$ and $(\mathfrak{s u}(2))_{\mathbb{C}}$ on \mathcal{B}_{8} respectively. Let me exponentiate these actions.

Let me denote by $T_{g}, T_{g_{\mathbb{C}}}$ the action of $g \in S U(2), g_{\mathbb{C}} \in S L(2, C)$ on $f \in \mathcal{B}_{8}$ which is defined by

$$
\begin{equation*}
\left(T_{g} f\right)(z)=f\left(\tilde{\Phi}_{g^{-1}}(z)\right), \quad\left(T_{g_{\mathbb{C}}} f\right)(z)=f\left(\tilde{\Phi}_{g_{\mathbb{C}}^{-1}}(z)\right) \tag{202}
\end{equation*}
$$

where $\tilde{\Phi}_{g^{-1}}, \tilde{\Phi}_{g_{\mathbb{C}}^{-1}}$ denote the action of $S U(2), S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ respectively. The inverses T_{g}^{-1} and $T_{g_{\mathbb{C}}}^{-1}$ are defined by $T_{g}^{-1}=T_{g^{-1}}$ and $T_{g_{\mathbb{C}}}^{-1}=T_{g_{\mathbb{C}}^{-1}}$.

Proposition 13. Functions in $\mathcal{B}_{8}^{\text {red }}$ are invariant under the action of $S U(2)$ as well as of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$. Thus the Quantum Reduced space can be identified with the space

$$
\begin{equation*}
\mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}=\left\{f(z) \in \mathcal{B}_{8} \mid f\left(\tilde{\Phi}_{g_{\mathbb{C}}}(z)\right)=f(z)\right\}, g_{\mathbb{C}} \in S L(2, \mathbb{C}) \tag{203}
\end{equation*}
$$

Functions $f \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ can be written as $f(z)=\phi(\alpha(z))$ with ϕ defined on \dot{Q}_{5}.

Proof. Let me first show that functions in $\mathcal{B}_{8}^{\text {red }}$ are invariant under the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$. The integral curves of $X_{J_{\xi}}$ are given by $\gamma(t)=\tilde{\Phi}_{\mathrm{e}^{t \xi}}(z)$ with $t \in \mathbb{R}$, and $\tilde{\Phi}_{\mathrm{e}^{t \xi}}(z)$ is defined in (93). Since $f(z)$ is holomorphic, then equation $\widehat{Q}_{\xi} f=0$ can be written as follows

$$
\begin{equation*}
\widehat{Q}_{\xi} f=-\imath \hbar\left(X_{J_{\xi}}(f)\right)=-\imath \hbar\left\{J_{\xi}, f\right\}=0 \tag{204}
\end{equation*}
$$

Equation 204 implies that $f(z) \in \mathcal{B}_{8}^{\text {red }}$ is constant along the integral curves $\tilde{\Phi}_{\mathrm{e}^{t \xi}}(z)$. That is,

$$
\begin{equation*}
f\left(\tilde{\Phi}_{\mathrm{e}^{t \xi}}(z)\right)=f(z), \quad \text { i.e }, \quad T_{\left(\mathrm{e}^{t \xi}\right)^{-1}} f=f \tag{205}
\end{equation*}
$$

Thus f is invariant under the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$. Functions $f \in \mathcal{B}_{8}^{\text {red }}$ are also constant along the integral curves $\gamma(t)=\tilde{\Phi}_{\mathrm{e}^{t \imath \eta}}(z)$ of the vector fiel $J\left(X_{J_{\eta}}\right)$, which is the infinitesimal generator of $\imath \eta$. Since $f(z)$ is holomorphic, then a calculation shows that

$$
\begin{equation*}
\left.\hbar \frac{d}{d t}\right|_{t=0} f \circ \gamma(t)=\hbar J\left(X_{J_{\eta}}\right)(f)=0 \tag{206}
\end{equation*}
$$

Equation (206) implies that $f \in \mathcal{B}_{8}^{\text {red }}$ satisfies the following equality

$$
\begin{equation*}
f\left(\tilde{\Phi}_{\mathrm{e}^{t \imath \eta}}(z)\right)=f(z), \quad \text { i.e }, \quad T_{\left(\mathrm{e}^{t \imath \eta}\right)^{-1}} f=f \tag{207}
\end{equation*}
$$

It follows from equations $205,(207)$ and properties of the inverses $T_{\left(\mathrm{e}^{t \imath \eta}\right)^{-1}}, T_{g^{-1}}, g \in S U(2)$ that the following equalities hold

$$
\begin{equation*}
T_{\left(\mathrm{e}^{t \imath \eta}\right)^{-1}}\left(T_{g^{-1}} f\right)=T_{\left(g \mathrm{e}^{t \imath \eta}\right)^{-1}} f=f, \quad \text { i.e, } \quad f\left(\tilde{\Phi}_{g \mathrm{e}^{t \imath \eta}}(z)\right)=f(z) \tag{208}
\end{equation*}
$$

Equality 208 indicates that $f \in \mathcal{B}_{8}^{\text {red }}$ is invariant under the action $\tilde{\Phi}_{g_{\mathbb{C}}}(z)$ of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$.
Since the orbits $\tilde{\Phi}_{g_{\mathbb{C}}}(z)$ are the fibers of the map $\rho_{(8,5)}$, then $f \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ is constant along the fibers of $\rho_{(8,5)}$. Hence, under the identification of $M_{s} / S L(2, \mathbb{C})$ with $\dot{Q}_{5}, f \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ can be regarded as a function on \dot{Q}_{5}. That is, $f \in \mathcal{B}_{8}^{(S U(2))_{C}}$ can be written as $f(z)=\phi(\alpha(z))$ with ϕ a function on \dot{Q}_{5} that satisfies $\frac{\partial \phi}{\partial \bar{\alpha}_{j}}=0, j=1, \ldots, 6$ (holomorphic).

On the other hand I can compute the derivatives of $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ with the chain rule on the function $\rho_{(8,5)}(z)=\alpha(z)$, so that a calculation shows that $\widehat{Q}_{\xi_{j}} f=0$.

On the real side let me take $\boldsymbol{s}_{\mathbf{2}}(u, v)=\varphi_{2}(u) \mathrm{e}^{-\frac{2}{2 \hbar} u \cdot v} \in \Gamma_{V}\left(L^{\omega_{8}}\right)$. The section $\widehat{J}_{\xi} \boldsymbol{s}_{\mathbf{2}}$ can be written as

$$
\widehat{J}_{\xi} \boldsymbol{s}_{\mathbf{2}}=\left(\widehat{\boldsymbol{Q}}_{\xi} \varphi_{2}\right) \mathrm{e}^{-\frac{2}{2 \hbar} u \cdot v} \quad \text { with } \quad \widehat{\boldsymbol{Q}}_{\xi} \varphi_{2}=a \widehat{\boldsymbol{Q}}_{\xi_{1}} \varphi_{2}+b \widehat{\boldsymbol{Q}}_{\xi_{2}} \varphi_{2}+c \widehat{\boldsymbol{Q}}_{\xi_{3}} \varphi_{2}
$$

where $\widehat{\boldsymbol{Q}}_{\xi_{j}} \varphi_{2}, j=1,2,3$ are given by

$$
\begin{align*}
& \widehat{\boldsymbol{Q}}_{\xi_{1}} \varphi_{2}=\imath \hbar\left(u_{2} \frac{\partial \varphi_{2}}{\partial u_{1}}-u_{1} \frac{\partial \varphi_{2}}{\partial u_{2}}+u_{3} \frac{\partial \varphi_{2}}{\partial u_{4}}-u_{4} \frac{\partial \varphi_{2}}{\partial u_{3}}+u_{5} \frac{\partial \varphi_{2}}{\partial u_{6}}-u_{6} \frac{\partial \varphi_{2}}{\partial u_{5}}+u_{8} \frac{\partial \varphi_{2}}{\partial u_{7}}-u_{8} \frac{\partial \varphi_{2}}{\partial u_{7}}\right) \tag{209}\\
& \widehat{\boldsymbol{Q}}_{\xi_{2}} \varphi_{2}=\imath \hbar\left(u_{1} \frac{\partial \varphi_{2}}{\partial u_{3}}-u_{3} \frac{\partial \varphi_{2}}{\partial u_{1}}+u_{2} \frac{\partial \varphi_{2}}{\partial u_{4}}-u_{4} \frac{\partial \varphi_{2}}{\partial u_{2}}+u_{5} \frac{\partial \varphi_{2}}{\partial u_{7}}-u_{7} \frac{\partial \varphi_{2}}{\partial u_{5}}+u_{6} \frac{\partial \varphi_{2}}{\partial u_{8}}-u_{8} \frac{\partial \varphi_{2}}{\partial u_{6}}\right) \\
& \widehat{\boldsymbol{Q}}_{\xi_{3}} \varphi_{2}=\imath \hbar\left(u_{4} \frac{\partial \varphi_{2}}{\partial u_{1}}-u_{1} \frac{\partial \varphi_{2}}{\partial u_{4}}+u_{2} \frac{\partial \varphi_{2}}{\partial u_{3}}-u_{3} \frac{\partial \varphi_{2}}{\partial u_{2}}+u_{7} \frac{\partial \varphi_{2}}{\partial u_{6}}-u_{6} \frac{\partial \varphi_{2}}{\partial u_{7}}+u_{5} \frac{\partial \varphi_{2}}{\partial u_{8}}-u_{8} \frac{\partial \varphi_{2}}{\partial u_{5}}\right) .
\end{align*}
$$

If $\widehat{\boldsymbol{Q}}_{\xi_{j}} \varphi_{2}=0, j=1,2,3$, then equality $\widehat{J}_{\xi} \boldsymbol{s}_{\mathbf{2}}=0$ is fulfilled. The space of admissible quantum states is denoted by $\Gamma_{V}\left(L^{\omega_{8}}\right)^{S U(2)}$ whose elements are given by $\boldsymbol{s}(u, v)=\varphi(u) \mathrm{e}^{-\frac{\imath}{2 \hbar} u \cdot v} \in$ $\Gamma_{V}\left(L^{\omega_{8}}\right)$, where φ satisfies $\widehat{\boldsymbol{Q}}_{\xi_{j}} \varphi=0$.

The associated action of $\xi \in \mathfrak{s u}(2)$ on the half-form ν_{0} is by the Lie derivative $\mathcal{L}_{X_{J_{\xi}}}$ and satisfies

$$
2\left(\mathcal{L}_{X_{J_{\xi}}} \boldsymbol{\nu}_{0}\right) \boldsymbol{\nu}_{0}=\mathcal{L}_{X_{J_{\xi}}} \boldsymbol{\kappa}_{0}
$$

A similar argument to the complex case shows that $\mathcal{L}_{X_{J_{\xi}}} \boldsymbol{\kappa}_{0}=0$ which implies $\mathcal{L}_{X_{J_{\xi}}} \boldsymbol{\nu}_{\mathbf{0}}=0$.
The Quantum Reduced Space $\Gamma_{V}\left(L^{\omega_{8}} \otimes K_{V}^{\frac{1}{2}}\right)^{S U(2)}$ is the set of polarized sections $\boldsymbol{r}(u, v)=$ $\boldsymbol{s}(u, v) \sqrt{d u_{1} \wedge d u_{2} \wedge \ldots \wedge d u_{8}}$ with $\boldsymbol{s}(u, v) \in \Gamma_{V}\left(L^{\omega}\right)^{S U(2)}$. Moreover, $\Gamma_{V}\left(L^{\omega_{8}} \otimes K_{V}^{\frac{1}{2}}\right)^{S U(2)}$ is identified with the space $L^{2}\left(\mathbb{R}^{8}, d u\right)^{\text {red }}$ of functions in $L^{2}\left(\mathbb{R}^{8}, d u\right)$ that belong to the kernel of $\widehat{\boldsymbol{Q}}_{\xi_{j}}, j=1,2,3$ defined in 209 .

Proposition 14. Functions in $L^{2}\left(\mathbb{R}^{8}, d u\right)^{\text {red }}$ are invariant under the action $\Phi_{g}(u)$ of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}$. Thus the Quantum Reduced Space can be identified with the space

$$
\begin{equation*}
L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}=\left\{\varphi(u) \in L^{2}\left(\mathbb{R}^{8}, d u\right) \mid \varphi\left(\Phi_{g}(u)\right)=\varphi(u)\right\} \tag{210}
\end{equation*}
$$

Proof. Under the identification $T^{*} \dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2} \times \mathbb{H}^{2}$ the integral curves of the vector fields $X_{J_{\xi}}$ can be written in quaternion coordinates as follows

$$
\tilde{\Phi}_{\mathrm{e}^{t \xi}}(u, v)=\tilde{\Phi}_{\mathrm{e}^{t \xi}}\left(q_{1}, q_{2}, p_{1}, p_{2}\right)=\left(\mathrm{e}^{t \xi} q_{1}, \mathrm{e}^{t \xi} q_{2}, \mathrm{e}^{t \xi} p_{1}, \mathrm{e}^{t \xi} p_{2}\right)
$$

Equation $\widehat{\boldsymbol{Q}}_{\xi} \varphi=0$ can be written as follows

$$
\begin{equation*}
\widehat{\boldsymbol{Q}}_{\xi} \varphi=-\imath \hbar X_{J_{\xi}} \varphi=-\imath \hbar\left\{J_{\xi}, \varphi\right\}=0, \quad j=1,2,3 \tag{211}
\end{equation*}
$$

Equation (211) indicates that φ is constant along the integral curves of $X_{J_{\xi}}$. That is, φ satisfies the following equality

$$
\begin{equation*}
\varphi\left(\tilde{\Phi}_{\mathrm{e}^{t \xi}}(u, v)\right)=\varphi\left(\Phi_{\mathrm{e}^{t \xi}}(u)\right)=\varphi(u) \tag{212}
\end{equation*}
$$

where $\Phi_{\mathrm{e}^{t \xi}}(u)$ denotes the action of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$ in 81 . It follows from equality 212 . that functions $\varphi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{\text {red }}$ are invariant under the action of $g \in S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$.

For the following chapters I will denote the Quantum Reduced space on the real and complex side by $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ and $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ respectively. Functions $\varphi \in L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ are invariant under the action of G_{n} on $\dot{\mathbb{R}}^{n}$, and functions $f \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ are invariant under the action of $\left(G_{n}\right)_{\mathbb{C}}$ on $\dot{\mathbb{C}}^{n}$.
3.3. Reproducing kernel of $\mathcal{B}_{n}^{\left(G_{n}\right) c}$. The following calculations are done in order to get the reproducing kernel in $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$. From the reproducing kernel property in \mathcal{B}_{n} the following equality holds

$$
\begin{equation*}
f(z)=\int_{\mathbb{C}^{n}} f(w) K_{n}(z, w) d \nu_{n}^{\hbar}(w) \quad \forall f \in \mathcal{B}_{n} \tag{213}
\end{equation*}
$$

It follows from equation 213 that $f\left(\tilde{\Phi}_{g}(z)\right)$ can be written as

$$
\begin{equation*}
f\left(\tilde{\Phi}_{g}(z)\right)=\int_{\mathbb{C}^{n}} f(w) K_{n}\left(\tilde{\Phi}_{g}(z), w\right) d \nu_{n}^{\hbar}(w) \tag{214}
\end{equation*}
$$

where $\tilde{\Phi}_{g}(z)$ denotes the action of G_{n} on $\dot{\mathbb{C}}^{n}, n=8,4$ in 93 , 90 respectively. A straightforward calculation shows that the kernel $K_{n}(z, w)$ satisfies $K_{n}\left(\tilde{\Phi}_{g}(z), w\right)=K\left(z, \tilde{\Phi}_{g^{*}}(w)\right)$, where g^{*} denotes the conjugate transpose of $g \in G_{n}$. Let me consider the change of variable $w^{\prime}=\tilde{\Phi}_{g^{*}}(w) \Rightarrow w=\tilde{\Phi}_{g}\left(w^{\prime}\right)$. The integral in 214 can be written under this change of variable as follows

$$
\begin{equation*}
f\left(\tilde{\Phi}_{g}(z)\right)=\int_{\mathbb{C}^{n}} f\left(\tilde{\Phi}_{g}\left(w^{\prime}\right)\right) K_{n}\left(z, w^{\prime}\right) d \nu_{n}^{\hbar}\left(\tilde{\Phi}_{g}\left(w^{\prime}\right)\right) \tag{215}
\end{equation*}
$$

The Gaussian measure is invariant under the action of G_{n} on $\dot{\mathbb{C}}^{n}$, that is, $d \nu_{n}^{\hbar}\left(\tilde{\Phi}_{g}\left(w^{\prime}\right)\right)=$ $d \nu_{n}^{\hbar}\left(w^{\prime}\right)$. If $f \in \mathcal{B}_{n}$ satisfies $f\left(\tilde{\Phi}_{g}\left(w^{\prime}\right)\right)=f\left(w^{\prime}\right)$, then equality 215 can be written as

$$
\begin{equation*}
f(z)=\int_{\mathbb{C}^{n}} f\left(w^{\prime}\right) K_{n}\left(z, w^{\prime}\right) d \nu_{n}^{\hbar}\left(w^{\prime}\right)=\int_{\mathbb{C}^{n}} f(w) K_{n}\left(\tilde{\Phi}_{g}(z), w\right) d \nu_{n}^{\hbar}(w) \tag{216}
\end{equation*}
$$

Functions in \mathcal{B}_{n} invariant under the action of G_{n} on $\dot{\mathbb{C}}^{n}$ are also invariant under the action of $\left(G_{n}\right)_{\mathbb{C}}$ on $\dot{\mathbb{C}}^{n}$. But the Gaussian measure $d \nu_{n}^{\hbar}$ is not invariant under the action of $\left(G_{n}\right)_{\mathbb{C}}$, so that I cannot write a similar equality to (216) involving the action of $\left(G_{n}\right)_{\mathbb{C}}$. I write the equality 216 in a G_{n}-invariant form in order to obtain the reproducing kernel of $\mathcal{B}_{n}^{\left(G_{n}\right) \mathrm{c}}$.
Proposition 15. The reproducing kernel in the space $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ is given by $\mathcal{K}_{n}(z, w)=\mathfrak{K}_{n}(\alpha(z), \beta(w))$, where $\beta(w), \alpha(z)$ are elements in \dot{Q}_{m}. The function $\mathfrak{K}_{n}(\alpha(z), \beta(w))$ is given by

$$
\mathfrak{K}_{n}(\alpha(z), \beta(w))=\Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha(z) \cdot \overline{\beta(w)}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}}{\hbar}\right) .
$$

Here $I_{\frac{m-3}{2}}$ is the Bessel-function and $n=8,4, m=5,3$ respectively.
I will use the following definition of the I-Bessel function for the proof of proposition 15 .

$$
\begin{equation*}
\int_{S^{d-1}} \mathrm{e}^{r x \cdot n} d \Omega(x)_{S^{d-1}}=2 \pi^{\frac{d}{2}}\left(\frac{r}{2}\right)^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(r) \tag{217}
\end{equation*}
$$

Proof. The groups G_{n} are compact and are endowed with a non-normalized volume form $d \operatorname{Vol}\left(G_{n}\right)$ which is the wedge product of the components of the Maurer-Cartan form $\Omega=g^{-1} d g$. Equality (216) is integrated over G_{n} to remove the dependence of g. Namely,

$$
\int_{G_{n}}\left[\int_{\mathbb{C}^{n}} f(w) K_{n}\left(\tilde{\Phi}_{g}(z), w\right) d \nu_{n}^{\hbar}(w)\right] d \operatorname{Vol}\left(G_{n}\right)=\int_{G_{n}} f(z) d \operatorname{Vol}\left(G_{n}\right) .
$$

I can interchange the integration order in the above integral. The following is obtained

$$
\begin{equation*}
\int_{\mathbb{C}^{n}} f(w)\left[\frac{1}{\operatorname{Vol}\left(G_{n}\right)} \int_{G_{n}} K_{n}\left(\tilde{\Phi}_{g}(z), w\right) d \operatorname{Vol}\left(G_{n}\right)\right] d \nu_{n}^{\hbar}(w)=f(z) . \tag{218}
\end{equation*}
$$

Consider the following integral

$$
\begin{equation*}
\frac{1}{\operatorname{Vol}\left(G_{n}\right)} \int_{G_{n}} K_{n}\left(\tilde{\Phi}_{g}(z), w\right) d \operatorname{Vol}\left(G_{n}\right)=\mathcal{K}_{n}(w, z) . \tag{219}
\end{equation*}
$$

For computing the integral 219 I identify $S^{k}, k=1,3$ with $G_{n}, n=4,8$ rather than give a parametrization of G_{n} in order to use the integral definition of the I-Bessel function in (217). In chapter 3 , I consider a parametrization of G_{n}, and $d \operatorname{Vol}\left(G_{n}\right)$ can be identified with the area form of the corresponding sphere. I make the computations for $n=8$ because the group $G_{8}=S U(2)$ is not commutative and take $d V o l\left(G_{8}\right)=d \Omega_{S^{3}}$. The sphere S^{3} is identified with $S U(2)$ through the following map

$$
x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \in S^{3} \rightarrow g=\left(\begin{array}{cc}
x^{0}-\imath x^{3} & -x^{2}-\imath x^{1} \tag{220}\\
x^{2}-\imath x^{1} & x^{0}+\imath x^{3}
\end{array}\right) \in S U(2) .
$$

The kernel $K_{8}\left(\tilde{\Phi}_{g}(z), w\right)$ is given by $K_{8}\left(\tilde{\Phi}_{g}(z), w\right)=\mathrm{e}^{\frac{1}{\hbar} \tilde{\Phi}_{g}(z) \cdot \bar{w}}$ with g given in 220. From definition of the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$ in 93$)$ a straightforward calculation shows that

$$
\tilde{\Phi}_{g}(z) \cdot \bar{w}=x^{0} C_{1}+x^{1} C_{2}+x^{2} C_{3}+x^{3} C_{4},
$$

where the functions $C_{j}, j=1,2,3,4$ are given by

$$
\begin{aligned}
& C_{1}=z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}+z_{5} \bar{w}_{5}+z_{6} \bar{w}_{6}+z_{7} \bar{w}_{7}+z_{8} \bar{w}_{8} \\
& C_{2}=(-\imath)\left(z_{2} \bar{w}_{1}+z_{1} \bar{w}_{2}+z_{4} \bar{w}_{3}+z_{3} \bar{w}_{4}+z_{6} \bar{w}_{5}+z_{5} \bar{w}_{6}+z_{7} \bar{w}_{8}+z_{8} \bar{w}_{7}\right) \\
& C_{3}=(-1)\left(z_{2} \bar{w}_{1}-z_{1} \bar{w}_{2}+z_{4} \bar{w}_{3}-z_{3} \bar{w}_{4}+z_{6} \bar{w}_{5}-z_{5} \bar{w}_{6}+z_{8} \bar{w}_{7}-z_{7} \bar{w}_{8}\right) \\
& C_{4}=(\imath)\left(z_{2} \bar{w}_{2}-z_{1} \bar{w}_{1}+z_{4} \bar{w}_{4}-z_{3} \bar{w}_{3}+z_{6} \bar{w}_{6}-z_{5} \bar{w}_{5}-z_{7} \bar{w}_{7}+z_{8} \bar{w}_{8}\right) .
\end{aligned}
$$

Let me define the following vector

$$
\eta=\frac{1}{\sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}}}\left(C_{1}, C_{2}, C_{3}, C_{4}\right) .
$$

The term $\mathrm{e}^{\frac{1}{\hbar} \tilde{\Phi}_{g}(z) \cdot \bar{w}}$ can be written as $\mathrm{e}^{\frac{1}{\hbar} \tilde{\Phi}_{g}(z) \cdot \bar{w}}=\mathrm{e}^{\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}} x \cdot \eta}$. The integral in 219) with respect to the variable $x \in S^{3}$ is given by

$$
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}} x \cdot \eta} d \Omega_{S^{3}}(x) .
$$

Taking $r=\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}}$ and $\operatorname{Area}\left(S^{3}\right)=2 \pi^{2}$ it follows from equality (217) that

$$
\begin{equation*}
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}} x \cdot \eta} d \Omega_{S^{3}}(x)=\frac{2 \hbar}{\sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}}} I_{1}\left(\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}}\right) . \tag{221}
\end{equation*}
$$

From definition of the functions $C_{j}, j=1, \ldots, 4$ a straightforward computation shows that $\sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}}=2 \sqrt{b_{1} b_{2}-a_{1} a_{2}}$, where $a_{j}, b_{j}, j=1,2$ are given by

$$
\begin{array}{rr}
b_{1}=z_{2} \bar{w}_{2}+z_{4} \bar{w}_{4}+z_{6} \bar{w}_{6}+z_{8} \bar{w}_{8}, & b_{2}=z_{1} \bar{w}_{1}+z_{3} \bar{w}_{3}+z_{5} \bar{w}_{5}+z_{7} \bar{w}_{7} \tag{222}\\
a_{1}=z_{2} \bar{w}_{1}+z_{4} \bar{w}_{3}+z_{6} \bar{w}_{5}+z_{8} \bar{w}_{7}, & a_{2}=z_{1} \bar{w}_{2}+z_{3} \bar{w}_{4}+z_{5} \bar{w}_{6}+z_{7} \bar{w}_{8} .
\end{array}
$$

Equality (221) can be written as follows

$$
\begin{equation*}
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}} x \cdot \eta} d \Omega_{S^{3}}(x)=\frac{\hbar}{\sqrt{b_{1} b_{2}-a_{1} a_{2}}} I_{1}\left(\frac{2}{\hbar} \sqrt{b_{1} b_{2}-a_{1} a_{2}}\right) . \tag{223}
\end{equation*}
$$

Let me denote by $\overline{\beta_{j}(w)}, j=1, \ldots, 6$ the conjugate of $\alpha_{j}(z)$ in the variable w. Take $\alpha_{j}(z), j=$ $1, \ldots, 6$ as in (140) a straightforward computation shows that

$$
\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}=2 \sqrt{b_{1} b_{2}-a_{1} a_{2}} .
$$

Hence, equality (223) can be written as

$$
\begin{equation*}
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \sqrt{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+C_{4}^{2}} x \cdot \eta} d \Omega_{S^{3}}(x)=\frac{2 \hbar}{\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right) . \tag{224}
\end{equation*}
$$

Equality $\mathcal{K}_{8}(w, z)=\mathfrak{K}_{8}(\alpha(z)), \beta(w)$ holds from above calculations. For dimension $n=4$ I can consider the action $\tilde{\Phi}_{\mathrm{e}^{2 \theta}}(z)$ on $\dot{\mathbb{C}}^{4}$ and identify $\theta \in S^{1}$, so that a similar procedure can be done to show that $\mathcal{K}_{4}(z, w)=\mathfrak{K}_{4}(\alpha(z), \beta(w))=I_{0}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right)$.

Functions in $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ can be written as $f(z)=\phi(\alpha(z))$, so that equality 216 in a G_{n} invariant form is given by

$$
\phi(\alpha(z))=\int_{\mathbb{C}^{n}} \phi(\beta(w)) \mathfrak{K}_{n}(\alpha(z), \beta(w)) d \nu_{n}^{\hbar}(w) \quad \forall f \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}
$$

Geometric Description of The Space \mathcal{E}_{m} and Quantization Does Not Commute With Symplectic Reduction

In this chapter I present one of my main results. I show that the Bargmann-Todorov spaces $\mathcal{E}_{m}, m=5,3$ can be obtained from the spaces $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}, n=8,4$ by using tools of Geometric Quantization either with or without half-form correction and along with Symplectic Reduction. In the situation without including half-form correction, Geometric Quantization and Symplectic Reduction do not commute. However, the inclusion of half-forms makes that Symplectic Reduction and Geometric Quantization commute asymptotically in the semiclassical limit $\hbar \rightarrow 0$. The chapter presentation follows the structural ideas of reference [18.

1. A Map of Guillemin-Sternberg in the Presence of Half-Form Correction

In the next two sections I show that the inner product in the space $\mathcal{E}_{m}, m=5,3$ can be obtained from the corresponding one in $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}, n=8,4$ respectively. Let me recall that each $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ gives a function $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ which descends to a function $\phi(\alpha)$ on \dot{Q}_{m}. The squared norm of $r(z)$ will be expressed as the squared norm of $\phi(\alpha)$ on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ in terms of the inner product in \mathcal{E}_{m}, see theorem 3 below. To do that, the pointwise magnitude $|r(z)|^{2}$ of $r(z)$ is computed on the stable set M_{s}, see proposition 17 in the next section. The integration of $|r(z)|^{2}$ on M_{s} is decomposed into integrals on \mathfrak{g}_{n} and $\mathfrak{J}_{n}^{-1}(0)$. From the integration on \mathfrak{g}_{n} I obtain an integral on $\mathfrak{J}_{n}^{-1}(0)$ that involves $|r(z)|^{2}$. In passing from the integration on $\mathfrak{J}_{n}^{-1}(0)$ to the integration on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$, I have to relate $|r(z)|^{2}$ to the pointwise magnitude $|\widehat{r}(\alpha)|^{2}$ of the section $\widehat{r}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ that is assigned to $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ through the Guillemin-Sternberg (GS) map S_{n}, see equation 228 below. The space $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ of holomorphic sections including half-form
on \dot{Q}_{m} is obtained from geometric quantization of the Kähler manifold $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$, which is described in the appendix B.

From the theory of compact Kähler manifolds, the complex structure over the upstairs manifold descends to the downstairs manifold so that the canonical bundle of the complex polarization over the upstairs manifold is identified with the canonical bundle of the complex polarization over the downstairs manifold, and this identification gives rise to a map between half-forms. See [18, Thm 3.1] for details. Indeed, this theorem establishes a GS map including half-form correction between the "first quantize and then reduce" space and the "first reduce and then quantize" space and does not make use of the compactness of the manifolds. Even though \mathbb{C}^{n} and \dot{Q}_{m} are non-compact Kähler manifolds, the descent of the complex structure on \mathbb{C}^{n} to \dot{Q}_{m} is carried out in such a way that I can adapt the procedure of the compact case to construct a GS map including half-form correction.

Let me first describe the GS map without half-form correction. V. Guillemin and S. Sternberg introduced in [14] a linear map between the "first quantize and then reduce" space and the "first reduce and then quantize" space. This map is bijective but non-unitary with respect to the inner product of geometric quantization. See [18] for details. In my case the GS map without half-form correction is given by

$$
\begin{equation*}
A_{n}: \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}} \longrightarrow \Gamma_{G}\left(L^{\widehat{\omega}}\right) \tag{225}
\end{equation*}
$$

Following the remark of B. Hall and W. Kirwin in $\mathbf{1 8}$ for the non-compact case, the definition of A_{n} is as follows. The section $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ is restricted to $\mathfrak{J}_{n}^{-1}(0)$, and then from the identification of $\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}, \widehat{\omega}\right)$ with $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ let it descend to a holomorphic section $\widehat{s}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}}\right)$. The map A_{n} is not unitary as it occurs in the compact case, see section 3 of this chapter. Although the GS map is not unitary, the authors of [18] showed that it can be extended to an asymptotically unitary map in the semiclassical regime $\hbar \rightarrow 0$ by including the half-form correction. In this section, the map A_{n} will be extended to a map including the half-form correction. Namely,

$$
\begin{equation*}
S_{n}: \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}} \longrightarrow \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right) \tag{226}
\end{equation*}
$$

The map S_{n} is asymptotically unitary, which is discussed in section 3 of this chapter. The definition of S_{n} is more involved than that of A_{n} due to the fact that the map S_{n} must include a mechanism for changing the degree of half-forms, which is described in the next subsection.

There is an important difference between the maps A_{n} and S_{n}. The pointwise magnitude of a section $s \in \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ on $\mathfrak{J}_{n}^{-1}(0)$ is the same pointwise magnitude of the corresponding section $A_{n}(s) \in \Gamma_{G}\left(L^{\widehat{\omega}}\right)$. That is, for each $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$ the following equality holds

$$
\begin{equation*}
\left|s\left(z_{0}\right)\right|^{2}=\left|A_{n}(s)\right|^{2}\left(\left[z_{0}\right]\right) \tag{227}
\end{equation*}
$$

In contrast to $A_{n}(s)$, the pointwise magnitude of $S_{n}(r)$ does not agree with the pointwise magnitude of the original section r. I will show (Theorem 2) in a later on subsection that for $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$ the following equality is fulfilled

$$
\begin{equation*}
\left|S_{n}(r)\right|^{2}\left(\left[z_{0}\right]\right)=2^{-d / 2} \operatorname{Vol}\left(G_{n} \cdot z_{0}\right)\left|r\left(z_{0}\right)\right|^{2} \tag{228}
\end{equation*}
$$

with d the dimension of the group G_{n}, and $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ is the volume of the G_{n}-orbit through z_{0}. See lemma 5 below for the expression of $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ in terms of the Riemannian metric B. The same equality (228) holds in the compact case, see equation (3.6) in $\mathbf{1 8}$. The volume factor $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ in 228 is not a constant function on $\mathfrak{J}_{n}^{-1}(0)$. That is, the G_{n}-orbits in $\mathfrak{J}_{n}^{-1}(0)$ do not all have the same volume. Furthermore, the term $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ in (228) will cancel the volume factor in passing the integration on $\mathfrak{J}_{n}^{-1}(0)$ to $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$, allowing S_{n} to be an asymptotically unitary map.

The calculations of the following subsection provide an explicit example of the theory developed in [18, Sect. 3, Sect. 4], but I adapt those to the case of \mathbb{C}^{n}.
1.1. Construction of the map $S_{n}: \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}} \longrightarrow \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{\boldsymbol{K}}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$. This gives the proof of the following

Theorem 1.

(i) There is a linear map $\mathcal{S}_{n}:\left.\Gamma_{P}\left(K_{n}^{\frac{1}{2}}\right)\right|_{M_{s}} ^{\left(G_{n}\right) \mathbb{C}} \ni \nu \longrightarrow \widehat{\nu} \in \Gamma_{G}\left(\hat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ unique up to a constant with the property that

$$
\begin{array}{ll}
\text { for } & n=4, m=3
\end{array} \quad \begin{gathered}
\iota_{\boldsymbol{X}}\left(\nu^{2}\right)=\imath \rho_{(4,3)}^{*} \widehat{\nu}^{2} \\
\text { for }
\end{gathered} \quad n=8, m=5 \quad \iota^{\iota} \wedge^{j} X_{J_{\xi_{j}}}\left(\nu^{2}\right)=\imath \rho_{(8,5)}^{*} \widehat{\nu}^{2} .
$$

(ii) There is a linear map $S_{n}: \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}} \ni s(z) \nu_{0} \longrightarrow \widehat{s}(\alpha) \widehat{\nu}_{0} \in \Gamma_{G}\left(L^{\hat{\omega}} \otimes \hat{K}_{\hat{Q}_{m}}^{\frac{1}{2}}\right)$ unique up to a constant, which is defined by

$$
S_{n}\left(s(z) \nu_{0}\right)=A_{n}(s(z)) \mathcal{S}_{n}\left(\nu_{0}\right) \quad \forall s \in \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}, \nu_{0} \in \Gamma_{P}\left(K_{n}^{\frac{1}{2}}\right) .
$$

This map takes holomorphic sections in $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ on M_{s} to holomorphic sections in $\Gamma_{G}\left(L^{\hat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ on \dot{Q}_{m}.
1.1.1. A. Here I construct the GS map including half-forms for dimensions $n=4, m=3$. Before considering half-forms, I have to first work with holomorphic four-forms on M_{s} which are given by

$$
\begin{equation*}
\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z) \quad \text { with } \quad \kappa_{0}(z)=d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d z_{4} \quad \text { and } \quad f \quad \text { holomorphic. } \tag{229}
\end{equation*}
$$

The action of $\imath \theta \in \mathfrak{u}(1)$ on forms $\boldsymbol{\sigma}(z)$ is by the Lie derivative $\left(\mathcal{L}_{X_{J_{z} \theta}} \boldsymbol{\sigma}\right)(z)$ with $X_{J_{z \theta}}$ the Hamiltonian vector field of $J_{\imath \theta}$ in (98). The $U(1)$-invariant holomorphic forms on M_{s} are those for which $\left(\mathcal{L}_{X_{J_{\ell}}} \sigma\right)(z)=0$. From definition of the Lie derivative $\left(\mathcal{L}_{X_{J_{\imath \theta}}} \sigma\right)(z)=$ $d\left(\iota_{X_{2 \theta}} \sigma\right)(z)+\left(\iota_{J_{J_{2 \theta}}} d \sigma\right)(z)$ it is not difficult to see that the $U(1)$-invariant holomorphic forms on M_{s} are given as in 229 with f a $U(1)$-invariant function, i.e, $f\left(\tilde{\Phi}_{\mathrm{e}^{2} \theta}(z)\right)=f(z)$. Let me recall that every $U(1)$-invariant holomorphic function f is also \mathbb{C}^{*}-invariant. The set of holomorphic four-forms on M_{s} invariant under the action of \mathbb{C}^{*} is denoted by $\Omega^{(4,0)}\left(M_{s}\right)^{(U(1)) \mathbb{C}}$ whose elements are given by $\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z)$ with $f(z)=\phi(\alpha(z))$, where ϕ is a function on \dot{Q}_{3} that satisfies $\frac{\partial \phi}{\partial \bar{\alpha}_{j}}=0, j=1, \ldots, 4$.

Now I will descend an element in $\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z) \in \Omega^{(4,0)}\left(M_{s}\right)^{(U(1)) \mathbb{C}}$ to a holomorphic three-form on \dot{Q}_{3}. I cannot restrict $\boldsymbol{\sigma}(z)$ to $\mathfrak{J}_{4}^{-1}(0)$ and then from the identification $\mathfrak{J}_{4}^{-1}(0) / U(1) \cong \dot{Q}_{3}$ let it descend to \dot{Q}_{3}, as I did for sections in $\Gamma_{P}\left(L^{\omega_{4}}\right)^{U(1)}$ because the degree of $\boldsymbol{\sigma}(z)$ is higher than three. The process is to first contract $\boldsymbol{\sigma}(z)$ with the infinitesimal generator associated to a basis of $\mathfrak{u}(1)$ and then use the map $\rho_{(4,3)}: M_{s} \longrightarrow \dot{Q}_{3}$ to push the result down to \dot{Q}_{3}.

The Hamiltonian vector field $X_{J_{2 \theta}}$ of $J_{\imath \theta}$ in with $\theta=1$ is the infinitesimal generator associated to the basis of $\mathfrak{u}(4)$ and is given by

$$
\begin{equation*}
\boldsymbol{X}=\imath\left[\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}-z_{3} \frac{\partial}{\partial z_{3}}-z_{4} \frac{\partial}{\partial z_{4}}\right)-\left(\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}-\bar{z}_{3} \frac{\partial}{\partial \bar{z}_{3}}-\bar{z}_{4} \frac{\partial}{\partial \bar{z}_{4}}\right)\right] . \tag{230}
\end{equation*}
$$

The contraction of $\boldsymbol{\sigma}(z)$ with \boldsymbol{X} gives the following three-form on M_{s}

$$
\boldsymbol{\beta}(z)=\boldsymbol{\iota}_{\boldsymbol{X}}\left(f(z) \kappa_{0}(z)\right)=f(z) \iota_{\boldsymbol{X}} \kappa_{0}(z)
$$

A calculation shows that $\boldsymbol{B}(z)$ can be written as follows

$$
\begin{equation*}
\boldsymbol{\beta}(z)=f(z) \imath\left(\left(z_{1} d z_{2}-z_{2} d z_{1}\right) \wedge d z_{3} \wedge d z_{4}-\left(z_{3} d z_{4}-z_{4} d z_{3}\right) \wedge d z_{1} \wedge d z_{2}\right) \tag{231}
\end{equation*}
$$

Thinking of the action $\tilde{\Phi}_{\lambda}$ of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$ as a coordinate transformation a short calculation shows that $\iota_{\boldsymbol{X}} \kappa_{0}\left(\tilde{\Phi}_{\lambda}(z)\right)=\iota_{\boldsymbol{X}} \kappa_{0}(z)$. Namely, $\iota_{\boldsymbol{X}} \kappa_{0}(z)$ in 231$)$ is invariant under the action of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$. Hence, $\boldsymbol{\beta}(z)=f(z) \iota_{\boldsymbol{X}} \kappa_{0}(z)$ is invariant under the action of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$.

The descent of $\boldsymbol{\beta}(z)=f(z) \iota_{\boldsymbol{X}} \kappa_{0}(z)$ to a three-form on \dot{Q}_{3} trough the map $\rho_{(4,3)}$ is as follows. It is clear that $f(z)=\phi(\alpha(z))$ descends to $\phi(\alpha)$ on \dot{Q}_{3}. To identify $\iota_{\boldsymbol{X}} \kappa_{0}(z)$ with a three-form on \dot{Q}_{3} I use that $\iota_{\boldsymbol{X}} \kappa_{0}(z)$ is invariant under the action $\tilde{\Psi}_{g, h}$ of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ defined in (114). That is, thinking of the action $\tilde{\Psi}_{g, h}$ as a coordinate transformation a calculation shows that $\left(\boldsymbol{\iota}_{\boldsymbol{X}} \kappa_{0}\right)\left(\tilde{\Psi}_{g, h}(z)\right)=\boldsymbol{\iota}_{\boldsymbol{X}} \kappa_{0}(z)$. Since the map $\rho_{(4,3)}(z)$ intertwines the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on M_{s} and $S O(4, \mathbb{C})$ on \dot{Q}_{3}, then $\iota_{\boldsymbol{X}} \kappa_{0}(z)$ must descend to a three-form invariant under the action of $S O(4, \mathbb{C})$ on \dot{Q}_{3}. Following [33], let me consider the nowhere vanishing three-form $\widehat{\kappa}_{0}(\alpha)$ on \dot{Q}_{3} which is given by

$$
\begin{equation*}
\widehat{\kappa}_{0}(\alpha)=\frac{1}{2|\alpha|^{2}} \sum_{j=1}^{4}(-1)^{j} \bar{\alpha}_{j} d \alpha_{1} \wedge d \alpha_{2} \wedge \ldots \wedge \check{d \alpha_{j}} \wedge \ldots \wedge d \alpha_{m+1} \tag{232}
\end{equation*}
$$

where $\check{d \alpha_{j}}$ means that this one-form is omitted. The three-form $\widehat{\kappa}_{0}(\alpha)$ in 232 is invariant under the action of $S O(4, \mathbb{C})$ on \dot{Q}_{3}, see appendix B for details. Now let me take $\alpha_{j}(z), j=1,2,3,4$ in (117), compute the differentials $d \alpha_{j}(z), j=1,2,3,4$ and its wedge product so that the pull-back $\rho_{(4,3)}^{*} \widehat{\kappa}_{0}$ is given by

$$
\begin{equation*}
\rho_{(4,3)}^{*} \widehat{\kappa}_{0}=\left(z_{1} d z_{2}-z_{2} d z_{1}\right) \wedge d z_{3} \wedge d z_{4}-\left(z_{3} d z_{4}-z_{4} d z_{3}\right) \wedge d z_{1} \wedge d z_{2} \tag{233}
\end{equation*}
$$

It follows from equality 233 that

$$
\begin{equation*}
(\imath) \rho_{(4,3)}^{*} \widehat{\kappa}_{0}=\iota_{\boldsymbol{X}} \kappa_{0} \quad \forall z \in M_{s} \tag{234}
\end{equation*}
$$

Equality 234 indicates that $\boldsymbol{\iota}_{\boldsymbol{X}} \kappa_{0}(z)$ is identified with $(i) \widehat{\kappa}_{0}(\alpha)$ on \dot{Q}_{3}, where $\widehat{\kappa}_{0}(\alpha)$ is given in 232). The above calculations show that $\boldsymbol{\beta}(z)=f(z) \iota_{\boldsymbol{X}} \kappa_{0}(z)$ on M_{s} is identified with the following three-form on \dot{Q}_{3}

$$
\begin{equation*}
(\imath) \phi(\alpha) \widehat{\kappa}_{0}(\alpha) . \tag{235}
\end{equation*}
$$

In the other direction, let me consider the following three-form on \dot{Q}_{3}

$$
\widehat{\boldsymbol{\sigma}}(\alpha)=\phi(\alpha) \widehat{\kappa}_{0}(\alpha), \text { where } \phi \quad \text { satisfies } \frac{\partial \phi}{\partial \bar{\alpha}_{j}}=0, j=1, \ldots, 4
$$

The pull-back $\rho_{(4,3)}^{*} \widehat{\boldsymbol{\sigma}}$ is a three-form on M_{s} which can be extended to an element of $\Omega^{(4,0)}\left(M_{s}\right)^{(U(1)) \mathbb{C}}$ as follows. Let me consider the frame $\left\{\boldsymbol{X}, W_{1}, W_{2}, W_{3}\right\}$ on M_{s}, which descends to the frame $\left\{d \rho_{(4,3)}\left(W_{1}\right), d \rho_{(4,3)}\left(W_{2}\right), d \rho_{(4,3)}\left(W_{3}\right)\right\}$ on \dot{Q}_{3} through the map $\rho_{(4,3)}(z)$. It follows from equality (234) that $\boldsymbol{\eta}(z)=\boldsymbol{\phi}(\alpha(z)) d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d z_{4}$ on M_{s} is the unique four-form that satisfies the following equality

$$
\begin{align*}
&(\imath) \boldsymbol{\phi}(\alpha) \widehat{\kappa}_{0}(\alpha)\left(d \rho_{(4,3)}\left(W_{1}\right), d \rho_{(4,3)}\left(W_{2}\right),\right.\left.d \rho_{(4,3)}\left(W_{3}\right)\right)= \tag{236}\\
& \boldsymbol{\phi}(\alpha(z)) d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d z_{4}\left(\boldsymbol{X}, W_{1}, W_{2}, W_{3}\right)
\end{align*}
$$

Then $\boldsymbol{\eta}(z)$ can be defined in any other frame by $G L(4, \mathbb{C})$-equivariance because the tangent space at a point in the stable set M_{s} is a direct sum of the tangent space to the \mathbb{C}^{*}-orbit through that point and the transverse directions, see equation $\sqrt{278}$) in the next section. So every frame is $G L(4, \mathbb{C})$-equivalent to one of the form $\left\{Y_{1}, W_{1}, W_{2}, W_{3}\right\}$ with $Y_{1}=\boldsymbol{X}$ or $J(\boldsymbol{X})$,
and I can define $\left.\boldsymbol{\iota}_{\boldsymbol{X}} \kappa_{0}=-(\imath) \iota_{J(\boldsymbol{X}}\right) \kappa_{0}$. Equality 236 indicates that contracting and extending are clearly inverse processes to each other. They therefore define a bijective map

$$
\mathfrak{S}_{4}: \Omega^{(4,0)}\left(M_{s}\right)^{(U(1)) \mathbb{C}} \ni \boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z) \longrightarrow \phi(\alpha) \widehat{\kappa}_{0}(\alpha) \in \Omega^{(3,0)}\left(\dot{Q}_{3}\right)
$$

where $\widehat{\kappa}_{0}(\alpha)$ is the unique form on \dot{Q}_{3} such that equality $\iota_{\boldsymbol{X}} \kappa_{0}=(\imath) \rho_{(4,3)}^{*} \widehat{\kappa}_{0}$ is fulfilled.
To finish the identification of forms $\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z) \in \Omega^{(4,0)}\left(M_{s}\right)^{(U(1)) \mathbb{C}}$ with elements in $\Omega^{(3,0)}\left(\dot{Q}_{3}\right)$ let me note that the contraction of $\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z)$ with \boldsymbol{X} is the same as contracting it with $(-\imath) J(\boldsymbol{X})$. The projection of \boldsymbol{X} to the space $T^{(0,1)}\left(\dot{\mathbb{C}}^{4}\right)$ is given by

$$
\Pi_{+}(\boldsymbol{X})=\frac{1}{2}(\boldsymbol{X}+\imath J(\boldsymbol{X}))
$$

A straightforward calculation shows that the contraction of $\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z)$ with $\Pi_{+}(\boldsymbol{X})$ is equal to zero. That is,

$$
\begin{equation*}
\boldsymbol{\iota}_{\Pi_{+}(\boldsymbol{X})} f(z) \kappa_{0}(z)=0 \tag{237}
\end{equation*}
$$

It follows from equality 237 that $f(z) \iota_{\boldsymbol{X}} \kappa_{0}(z)=-f(z)(\imath) \iota_{J(\boldsymbol{X})} \kappa_{0}(z)$. The vector $J(\boldsymbol{X})$ spans the orthogonal bundle of $\mathfrak{J}_{4}^{-1}(0)$. That is, for $z \in \mathfrak{J}_{4}^{-1}(0)$ and $v \in T_{z} \mathfrak{J}_{4}^{-1}(0)$ the following equalities are fulfilled

$$
B(v, J \boldsymbol{X})=\omega_{4}(v, J(J \boldsymbol{X}))=-\omega_{4}(v, \boldsymbol{X})=-d J_{2 \theta=1}(v)=-v\left(J_{2 \theta=1}\right)=0
$$

Thus the contraction of $\boldsymbol{\sigma}(z)=f(z) \kappa_{0}(z)$ with \boldsymbol{X} can be understood as contracting with the direction normal to the zero-set $\mathfrak{J}_{4}^{-1}(0)$. This is perhaps the natural way to restrict a top dimensional form on \mathbb{C}^{4} to $\mathfrak{J}_{4}^{-1}(0)$. The GS map A_{n} is defined as "restrict to $\mathfrak{J}_{4}^{-1}(0)$ and then descend to $\mathfrak{J}_{4}^{-1} / U(1) \cong \dot{Q}_{3}$ ", so under the identification $\mathfrak{J}_{4}^{-1}(0) / U(1) \cong \dot{Q}_{3}$ the map \mathfrak{S}_{4} can be interpreted as first contracting, then restricting the result to $\mathfrak{J}_{4}^{-1}(0)$, and finally descending the result to the quotient \dot{Q}_{3}.

Let me turn to the descent map for half-forms. Since elements of $\Omega^{(4,0)}\left(M_{s}\right)^{(U(1)) \mathbb{C}}$ belong to the space $\left.\Gamma_{P}\left(K_{4}\right)\right|_{M_{s}} ^{(U(1))_{\mathbb{C}}}$ of $(U(1))_{\mathbb{C}^{-} \text {-invariant polarized sections and elements of } \Omega^{(3,0)}\left(\dot{Q}_{3}\right) .}^{\text {a }}$ belong to the space $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{3}}\right)$ of polarized sections of the canonical bundle on \dot{Q}_{3} (see appendix $B)$, then the map \mathfrak{S}_{4} identifies $\left.K_{4}\right|_{\tilde{\Phi}_{\lambda}(z)}$ with $\widehat{K}_{\alpha \in \dot{Q}_{3}}$. Sections $\left.\nu \in \Gamma_{P}\left(K_{4}^{\frac{1}{2}}\right)\right|_{M_{s}} ^{(U(1)) \mathbb{C}}$ have the property that $\nu^{2}=f(z) d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d z_{4}$ belong to $\left.\Gamma_{P}\left(K_{4}\right)\right|_{M_{s}} ^{(U(1))_{\mathbb{C}}}$. Evaluate ν^{2} on the frame $\left\{\boldsymbol{X}, W_{1}, W_{2}, W_{3}\right\}$ on M_{s}. That is,

$$
\begin{equation*}
\left(\nu\left(\boldsymbol{X}, W_{1}, W_{2}, W_{3}\right)\right)^{2}=f(z) d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d z_{4}\left(\boldsymbol{X}, W_{1}, W_{2}, W_{3}\right) \tag{238}
\end{equation*}
$$

Using the map \mathfrak{S}_{4} equality 238 can be written as follows

$$
\begin{equation*}
\left(\nu\left(\boldsymbol{X}, W_{1}, W_{2}, W_{3}\right)\right)^{2}=(i) \phi(\alpha) \widehat{\kappa}_{0}(\alpha)\left(d \rho_{(4,3)}\left(W_{1}\right), d \rho_{(4,3)}\left(W_{2}\right), d \rho_{(4,3)}\left(W_{3}\right)\right) \tag{239}
\end{equation*}
$$

The three-form $\widehat{\kappa}_{0}(\alpha)$ in 232 is a nowhere vanishing section of $\widehat{K}_{\dot{Q}_{3}}$. According to [33], the square root $\widehat{K}_{\dot{Q}_{3}}^{\frac{1}{2}}$ of $\widehat{K}_{\dot{Q}_{3}}$ exists, and a section $\widehat{\nu} \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{3}}^{\frac{1}{2}}\right)$ has the property that its square $\widehat{\nu}^{2} \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{3}}\right)$. The three-form $\phi(\alpha) \widehat{\kappa}_{0}(\alpha)$ is an element in $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{3}}\right)$, so there is a section $\widehat{\nu} \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{3}}^{\frac{1}{2}}\right)$ such that $\widehat{\nu}^{2}=\phi(\alpha) \widehat{\kappa}_{0}(\alpha)$. Therefore equality 239 indicates that \mathfrak{S}_{4} induces a map between half-forms as follows

$$
\mathcal{S}_{4}:\left.\Gamma_{P}\left(K_{4}^{\frac{1}{2}}\right)\right|_{M_{s}} ^{(U(1))_{\mathbb{C}}} \ni \nu \longrightarrow \widehat{\nu} \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{3}}^{\frac{1}{2}}\right) \text { such that }\left(\mathcal{S}_{4}(\nu)\right)^{2}=\mathfrak{S}_{4}\left(\nu^{2}\right)
$$

1.1.2. B. Here I construct the GS including half-forms for dimensions $n=8, m=5$. The calculations are more involved because there are more variables and infinitesimal generators, but the procedure is similar to dimension $n=4$. A calculation shows that the set $\Omega^{(8,0)}\left(M_{s}\right)^{(S U(2)) \mathrm{C}}$ of holomorphic eight-forms on M_{s} invariant under the action of $(S U(2))_{\mathbb{C}}=S L(2, \mathbb{C})$ consists of elements $\boldsymbol{\varsigma}(z)=g(z) \kappa_{0}(z)$ with $\kappa_{0}(z)=d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge \ldots \wedge d z_{8}$ and $g(z)=\phi(\alpha(z))$, where ϕ is a function on \dot{Q}_{5} that satisfies $\frac{\partial \phi}{\partial \bar{\alpha}_{j}}=0, j=1, \ldots, 6$.

Now I descend $\varsigma \in \Omega^{(8,0)}\left(M_{s}\right)^{(S U(2)) \mathrm{c}}$ to a holomorphic five-form on \dot{Q}_{5}. Consider the polyvector $\left(\bigwedge^{j} X_{J_{\xi_{j}}}\right), j=1,2,3$, where $X_{J_{\xi_{j}}}$ are the Hamiltonian vector fields of the functions $J_{\xi_{j}}$ in 105 associated to the basis of $\mathfrak{s u}(2)$. The contraction of $\boldsymbol{\varsigma}(z)$ with $\left(\Lambda^{j} X_{J_{\xi_{j}}}\right)$ gives the following five-form
(240)
$\boldsymbol{B}(z)=\boldsymbol{\iota}^{j} \wedge^{j} X_{\xi_{\xi_{j}}} \boldsymbol{\varsigma}(z)=\boldsymbol{\iota}_{X_{J_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{\xi_{\xi_{2}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{1}}}} \boldsymbol{\varsigma}(z)=g(z) \boldsymbol{\iota}_{X_{J_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{2}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{1}}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)$.
Since $\boldsymbol{\varsigma}(z)$ is holomorphic, then contracting $\boldsymbol{\varsigma}(z)$ with $\left(\bigwedge^{j} X_{J_{\xi_{j}}}\right)$ is the same as contracting it with the polyvector $\wedge^{j} \Pi_{-}\left(X_{\xi_{j}}\right)$. Hence, the five-form $\boldsymbol{B}(z)$ can be written as follows

$$
\begin{equation*}
\left.\boldsymbol{\beta}(z)=\boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{3}}}\right.}\right) \circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{2}}}\right)} \circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{1}}}\right.} \varsigma(z) \tag{241}
\end{equation*}
$$

The five-form $\boldsymbol{\beta}(z)$ is invariant under the action of $S L(2, \mathbb{C})$ defined in (136). To prove this, I calculate the Lie derivative of $\beta(z)$ regarding the infinitesimal generator of the action of $S L(2, \mathbb{C})$. Namely,

$$
\begin{equation*}
\mathfrak{L}_{X_{\mathfrak{g}_{\mathrm{C}}}} \mathrm{~B}(z) \quad \text { with } \quad X_{\mathfrak{g}_{\mathrm{C}}}=X_{J_{\xi_{j}}}+J X_{J_{\xi_{l}}}, j, l=1,2,3 \tag{242}
\end{equation*}
$$

The following identity in [43, A.1.12] is used to calculate the Lie derivative in (242)

$$
\begin{equation*}
\mathfrak{L}_{X} \iota_{Y} \varrho-\iota_{Y} \circ \mathfrak{L}_{X} \varrho=\iota_{[X, Y]} \varrho, \tag{243}
\end{equation*}
$$

where X, Y are vector fields and ϱ is a k-form. From definition of $\boldsymbol{\beta}(z)$ in (241) and equality (243) the Lie derivative $\mathfrak{L}_{X_{\mathfrak{g C}}} \mathrm{B}(z)$ can be calculated as follows

$$
\begin{align*}
& \left.\left.\mathfrak{L}_{X_{\mathfrak{g}_{\mathrm{C}}}} \boldsymbol{\beta}(z)=\boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{3}}}\right.}\right) \boldsymbol{\iota}_{\boldsymbol{\iota}_{-}\left(X_{J_{\xi_{2}}}\right)} \boldsymbol{\iota}_{\boldsymbol{\iota}_{-}\left(X_{J_{\xi_{1}}}\right.} \mathcal{L}_{X_{\mathfrak{g}_{\mathrm{C}}}} \boldsymbol{\varsigma}(z)+\boldsymbol{\iota}_{\left[X_{\mathfrak{g}_{\mathrm{C}}}, \Pi_{-}\left(X_{J_{\xi_{3}}}\right)\right.}\right]^{\left.\circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{2}}}\right.}\right)^{\circ} \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{1}}}\right.} \boldsymbol{\varsigma}(z)} \tag{244}\\
& +\boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{3}}}\right)} \circ \boldsymbol{\iota}_{\left[X_{\mathfrak{g}_{C}}, \Pi_{-}\left(X_{J_{\xi_{2}}}\right)\right]} \circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{1}}}\right)} \boldsymbol{\varsigma}(z)+\boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{3}}}\right)} \circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{2}}}\right)} \circ \boldsymbol{\iota}_{\left[X_{\mathfrak{g}_{C}}, \Pi_{-}\left(X_{J_{\xi_{1}}}\right)\right]} \boldsymbol{\varsigma}(z) .
\end{align*}
$$

Now let me calculate the commutators $\left[X_{\mathfrak{g}_{\mathrm{C}}}, \Pi_{-}\left(X_{J_{\xi_{k}}}\right)\right]$ in (244). I assume in the following computations that the vector fields $X_{\xi_{j}}, J X_{J_{\xi_{j}}}$ preserve the polarization P. That is, $\left[X_{J_{\xi_{j}}}, \frac{\partial}{\partial \bar{z}_{k}}\right] \subset P$ and $\left[J X_{J_{\xi_{j}}}, \frac{\partial}{\partial \bar{z}_{k}}\right] \subset P$. For $k=1, \ldots, 8, j=1,2,3$ the following equalities are fulfilled

$$
\begin{equation*}
\left[J X_{J_{\xi_{j}}}, J X_{J_{\xi_{l}}}\right]=-\left[X_{J_{\xi_{j}}}, X_{J_{\xi_{l}}}\right],\left[X_{J_{\xi_{l}}}, J X_{J_{\xi_{j}}}\right]=J\left[X_{J_{\xi_{l}}}, X_{J_{\xi_{j}}}\right], j, l=1,2,3 . \tag{245}
\end{equation*}
$$

Let me calculate the following commutator

$$
\left.\begin{array}{rl}
{\left[X_{\mathfrak{g}_{\mathrm{C}}}\right.}
\end{array}, \Pi_{-}\left(X_{J_{\xi_{k}}}\right)\right]=\left[X_{J_{\xi_{j}}}+J X_{J_{\xi_{l}}}, \frac{1}{2}\left(X_{J_{\xi_{k}}}-\imath J X_{J_{\xi_{k}}}\right)\right], \begin{aligned}
& {\left[X_{\mathfrak{g}_{\mathrm{C}}}, \Pi_{-}\left(X_{J_{\xi_{k}}}\right)\right]=\frac{1}{2}\left[X_{J_{\xi_{j}}}, X_{J_{\xi_{k}}}\right]+\frac{1}{2}\left[J X_{J_{\xi_{l}}}, X_{J_{\xi_{k}}}\right]-\frac{\imath}{2}\left[X_{J_{\xi_{j}}}, J X_{J_{\xi_{k}}}\right]-\frac{\imath}{2}\left[J X_{J_{\xi_{l}}}, J X_{J_{\xi_{k}}}\right] .}
\end{aligned}
$$

The following is obtained from equations in (245)

$$
\left[X_{\mathfrak{g C}_{\mathrm{C}}}, \Pi_{-}\left(X_{J_{\xi_{k}}}\right)\right]=\frac{1}{2}\left(\left[X_{J_{\xi_{j}}}, X_{J_{\xi_{k}}}\right]-\imath J\left[X_{J_{\xi_{j}}}, X_{J_{\xi_{k}}}\right]\right)+\frac{\imath}{2}\left(\left[X_{{\xi_{\xi}}_{l}}, X_{J_{\xi_{k}}}\right]-\imath J\left[X_{J_{\xi_{l}}}, X_{J_{\xi_{k}}}\right]\right)
$$

Since the vector fields $X_{J_{\xi_{j}}}, X_{J_{\xi_{l}}}$ satisfy $\left[X_{J_{\xi_{j}}}, X_{J_{\xi_{l}}}\right]=X_{J_{\left[\xi_{j}, \xi_{l}\right]}}$, then the commutator $\left[X_{\mathfrak{g C}}, \Pi_{-}\left(X_{J_{\xi_{k}}}\right)\right]$ can be written as

$$
\left[X_{\mathfrak{g c}}, \Pi_{-}\left(X_{J_{\xi_{k}}}\right)\right]=\Pi_{-}\left(X_{J_{\left[\xi_{j}, \xi_{k}\right]}}\right)+\imath \Pi_{-}\left(X_{\left.J_{\left[\xi_{l}, \xi_{k}\right]}\right]}\right)
$$

Now from the commutation relations of the Lie algebra $\mathfrak{s u}(2)$ and the fact that for any k form ϱ equality $\iota_{X} \circ \boldsymbol{\iota}_{X} \varrho=0$ is fulfilled, the terms in (244) that involve contraction with $\left[X_{\mathfrak{g}_{\mathrm{C}}}, \Pi_{-}\left(X_{\xi_{\xi_{k}}}\right)\right]$ are equal to zero. Hence, the Lie derivative $\mathfrak{L}_{X_{\mathfrak{g}_{\mathrm{C}}}} \boldsymbol{\beta}(z)$ can be written as follows

$$
\left.\mathfrak{L}_{X_{\mathfrak{g}_{C}}} \boldsymbol{\beta}(z)=\boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{3}}}\right.}\right) \circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{2}}}\right)} \circ \boldsymbol{\iota}_{\Pi_{-}\left(X_{J_{\xi_{1}}}\right.} \mathcal{L}_{X_{\mathfrak{g}_{C}}} \boldsymbol{\varsigma}(z) .
$$

Since $\boldsymbol{\varsigma}(z)$ satisfies $\mathcal{L}_{X_{\mathfrak{g}}} \boldsymbol{\varsigma}(z)=0$, then equality $\mathfrak{L}_{X_{\mathfrak{C}}} \boldsymbol{\beta}(z)=0$ is fulfilled. Hence, $\mathfrak{B}(z)$ is invariant under the action of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$.

The descent of $\boldsymbol{\beta}(z)$ to a five-form on \dot{Q}_{5} through the map $\rho_{(8,5)}: M_{s} \longrightarrow \dot{Q}_{5}$ is as follows. Let me write $\boldsymbol{\beta}(z)=g(z) \boldsymbol{\beta}_{0}(z)$ with $\boldsymbol{\beta}_{0}(z)=\boldsymbol{\iota}_{X_{\xi_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{\xi_{\xi_{2}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{1}}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)$. It is clear that $g(z)=\phi(\alpha(z))$ descends to $\phi(\alpha)$ on \dot{Q}_{5}. To identify $\boldsymbol{\beta}_{0}(z)$ with a five-form on \dot{Q}_{5} I use that $\mathbb{B}_{0}(z)$ is invariant under the action $\tilde{\Upsilon}_{h}$ of $h \in S L(4, \mathbb{C})$ defined in 137). To prove this, the following result is used.
Lemma 3. The infinitesimal generators $X_{J_{\xi_{j}}}, j=1,2,3$ of the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$ are invariant under the action of $\operatorname{SL}(4, \mathbb{C})$ defined in 137). Namely,

$$
\begin{equation*}
\left(\tilde{\Upsilon}_{e^{s \eta}}\right)_{*} X_{J_{\xi_{j}}}(z)=X_{J_{\xi_{j}}}\left(\tilde{\Upsilon}_{e^{s \eta}}(z)\right), j=1,2,3, \quad \eta \in \mathfrak{s l}(4, \mathbb{C}) . \tag{246}
\end{equation*}
$$

Proof. The following fact will be used. A straightforward calculation shows that the actions of $S U(2)$ and $S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$ commute. Namely,

$$
\begin{equation*}
\tilde{\Phi}_{g}\left(\tilde{\Upsilon}_{h}(z)\right)=\tilde{\Upsilon}_{h}\left(\tilde{\Phi}_{g}(z)\right), \quad g \in S U(2), h \in S L(4, \mathbb{C}) \tag{247}
\end{equation*}
$$

Since the tangent vector of the curve $\gamma_{\xi_{j}}(t)=\tilde{\Phi}_{e^{t \xi_{j}}}(z)$ at $t=0$ is the infinitesimal generator $X_{J_{\xi_{j}}}$, then the push-forward of $X_{J_{\xi_{j}}}$ can be calculated as follows

$$
\left(\tilde{\Upsilon}_{\mathrm{e}^{s \eta}}\right)_{*} X_{J_{\xi_{j}}}(z)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Upsilon}_{\mathrm{e}^{s \eta} \circ} \gamma_{\xi}(t)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Upsilon}_{\mathrm{e}^{s \eta}}\left(\tilde{\Phi}_{\mathrm{e}^{\xi_{j}}}(z)\right) .
$$

It follows from equality (247) that

$$
\left(\tilde{\Upsilon}_{\mathrm{e}^{s \eta}}\right)_{*} X_{J_{\xi_{j}}}(z)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Phi}_{\mathrm{e}^{t \xi_{j}}}\left(\tilde{\Upsilon}_{\mathrm{e}^{s \eta}}(z)\right)=X_{J_{\xi_{j}}}\left(\tilde{\Upsilon}_{\mathrm{e}^{s \eta}}(z)\right) .
$$

Lemma 4. The five-form $\mathbf{B}_{0}(z)=\boldsymbol{\iota}_{J_{J_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{\xi_{\xi_{2}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{1}}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)$ is invariant under the action of $S L(4, \mathbb{C})$ defined in $\left(\{137)\right.$. Namely, $\mathfrak{L}_{X_{\eta}} \mathbf{\beta}_{0}(z)=0$, where $X_{\eta}(z)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Upsilon}_{e^{t \eta}}(z)$) is the infinitesimal generator of the action of $\operatorname{SL}(4, \mathbb{C})$.

Proof. From equality (243) the Lie derivative of $\boldsymbol{\beta}_{0}(z)$ with respect to $X_{\eta}(z)$ can be calculated as follows

$$
\begin{aligned}
& \mathfrak{L}_{X_{\eta}} \boldsymbol{\beta}_{0}(z)=\boldsymbol{\iota}_{\left[X_{\eta}, X_{J_{\xi_{3}}}\right.} \circ \boldsymbol{\iota}_{X_{J_{\xi_{2}}}} \circ \boldsymbol{\iota}_{J_{\xi_{1}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)+\boldsymbol{\iota}_{X_{J_{\xi_{3}}}} \circ_{\left[X_{n}, X_{\xi_{2}}\right]} \circ \boldsymbol{\iota}_{X_{J_{1}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right) \\
& +\boldsymbol{\iota}_{X_{\xi_{3}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{2}}}} \boldsymbol{\iota}_{\left[X_{\eta}, X_{\xi_{\xi_{1}}}\right]}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)+\boldsymbol{\iota}_{X_{J_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{2}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{1}}}}\left(\mathcal{L}_{X_{\eta}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)\right) .
\end{aligned}
$$

The commutators $\left[X_{\eta}, X_{J_{\xi_{j}}}\right.$] $=\mathfrak{L}_{X_{\eta}} X_{J_{\xi_{j}}}, j=1,, 2,3$ can be calculated as follows

$$
\left(\mathfrak{L}_{X_{\eta}} X_{J_{\xi_{j}}}\right)(z)=\lim _{t \rightarrow 0} \frac{\left[X_{J_{\xi_{j}}}\left(\tilde{\Upsilon}_{\mathrm{e}^{t \eta}}(z)\right)-\left(\tilde{\Upsilon}_{\mathrm{e}^{t \eta}}\right)_{*} X_{J_{\xi_{j}}}(z)\right]}{t}
$$

It follows from equality 246 that $X_{J_{\xi_{j}}}\left(\tilde{\Upsilon}_{\mathrm{e}^{t \eta}}(z)\right)-\left(\tilde{\Upsilon}_{\mathrm{e}^{t \eta}}\right){ }_{*} X_{J_{\xi_{j}}}(z)=0$ for all t, which implies that $\mathfrak{L}_{X_{\eta}} X_{J_{\xi_{j}}}=0$. Hence, the Lie derivative $\mathfrak{L}_{X_{\eta}} \mathfrak{\beta}_{0}(z)$ can be written as

$$
\mathfrak{L}_{X_{\eta}} \boldsymbol{\beta}_{0}(z)=\boldsymbol{\iota}_{X_{\xi_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{2}}}} \circ \boldsymbol{\iota}_{X_{J_{\xi_{1}}}}\left(\mathfrak{L}_{X_{\eta}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)\right) .
$$

Thinking of the action $\tilde{\Upsilon}_{h}$ as a coordinate transformation on $\dot{\mathbb{C}}^{8}$ a straightforward calculation shows that $\kappa_{0}(z)=d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}$ is invariant under $\tilde{\Upsilon}_{h}$. That is, $\kappa_{0}\left(\tilde{\Upsilon}_{h}(z)\right)=\kappa(z)$ which implies that $\mathfrak{L}_{X_{\eta}} \kappa_{0}(z)=\left.\frac{d}{d t}\right|_{t=0}\left(\tilde{\Upsilon}_{\mathrm{e}^{t \eta}}\right)^{*} \kappa_{0}(z)=0$. Thus $\mathfrak{L}_{X_{\eta}} \mathfrak{\beta}_{0}(z)=0$.

Since the map $\rho_{(8,5)}$ intertwines the action of $S L(4, \mathbb{C})$ on M_{s} and $S O(6, \mathbb{C})$ on \dot{Q}_{5}, then the five-form $\boldsymbol{\beta}_{0}(z)$ must descend to a five-form invariant under the action of $S O(6, \mathbb{C})$. Following [33], let me consider the nowhere vanishing five-form $\widehat{\kappa}_{0}(\alpha)$ on \dot{Q}_{5} which is given by

$$
\begin{equation*}
\widehat{\kappa}_{0}(\alpha)=\frac{1}{2|\alpha|^{2}} \sum_{j=1}^{6}(-1)^{j} \bar{\alpha}_{j} d \alpha_{1} \wedge d \alpha_{2} \wedge \ldots \wedge \check{d \alpha_{j}} \wedge \ldots \wedge d \alpha_{m+1}, \tag{248}
\end{equation*}
$$

where $\check{d \alpha_{j}}$ means that this one-form is omitted. The five-form $\widehat{\kappa}_{0}(\alpha)$ in 248 is invariant under the action of $S O(6, \mathbb{C})$ on \dot{Q}_{5}, see appendix B for details. The five-form $\boldsymbol{\beta}_{0}(z)$ is identified with $\widehat{\kappa}_{0}(\alpha)$. This is the point of the following proposition.
Proposition 16. Consider the five-forms $\widehat{\kappa}_{0}(\alpha)$ in 248) and $\boldsymbol{B}_{0}(z)=\boldsymbol{\iota}_{X_{J_{\xi_{3}}}} \circ \boldsymbol{\iota}_{X_{\xi_{2}}} \circ \boldsymbol{\iota}_{X_{\xi_{\xi_{1}}}}\left(d z_{1} \wedge\right.$ $\left.d z_{2} \wedge \ldots \wedge d z_{8}\right)$. The following equality holds

$$
\begin{equation*}
\iota_{X_{J_{\xi_{3}}}} \circ \iota_{X_{J_{\xi_{2}}}} \circ \iota_{X_{J_{\xi_{1}}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)=\imath \rho_{(8,5)}^{*} \widehat{\kappa}_{0} \quad \forall z \in M_{s} . \tag{249}
\end{equation*}
$$

Therefore $\boldsymbol{B}(z)$ in (240) on M_{s} is identified with the five-form $\imath \phi(\alpha) \widehat{\kappa}_{0}(\alpha)$ on \dot{Q}_{5}.
Proof. To prove equality 249 I use that $S O(6, \mathbb{C})$ acts transitively on \dot{Q}_{5}. That is, every $\alpha \in \dot{Q}_{5}$ can be written as follows

$$
\begin{align*}
\alpha & =R \cdot \alpha_{0}, \quad \alpha_{0}=\left(e_{1}+\imath e_{6}\right), \quad R \in S O(6, \mathbb{C}) \tag{250}\\
& =R \cdot \rho_{(8,5)}\left(z_{0}\right), \quad z_{0}=(1,0,0,1,0,0,0,0) \\
& =\rho_{(8,5)}\left(\tilde{\Upsilon}_{h}\left(z_{0}\right)\right), h \in S L(4, \mathbb{C}) .
\end{align*}
$$

Let me evaluate equality 249) at $z=\tilde{\Upsilon}_{h}\left(z_{0}\right)$. Namely,

$$
\begin{equation*}
\left(\mathbf{B}_{0}\right)_{\tilde{\Upsilon}_{h}\left(z_{0}\right)}=\imath\left(\rho_{(8,5)}^{*} \widehat{\kappa}_{0}\right)_{\tilde{\Upsilon}_{h}\left(z_{0}\right)} \tag{251}
\end{equation*}
$$

Recall that $\rho_{(8,5)}$ intertwines the action of $S L(4, \mathbb{C})$ on M_{s} and $S O(6, \mathbb{C})$ on \dot{Q}_{5}, so from the $S L(4, \mathbb{C})$-invariance of $\mathbb{B}_{0}(z)$ and $S O(6, \mathbb{C})$-invariance of $\widehat{\kappa}_{0}(\alpha)$ it is enough to verify equality 249) at z_{0} with $\alpha_{0}=\rho_{(8,5)}\left(z_{0}\right)$.

The (1,0)-part of the Hamiltonian vector fields $X_{J_{\xi_{j}}}, j=1,2,3$ at the point z_{0} is given by

$$
X_{J_{\xi_{1}}}(z)=\imath\left(\frac{\partial}{\partial z_{1}}-\frac{\partial}{\partial z_{4}}\right), X_{J_{\xi_{2}}}(z)=\frac{\partial}{\partial z_{2}}-\frac{\partial}{\partial z_{3}}, X_{J_{\xi_{3}}}(z)=\imath\left(\frac{\partial}{\partial z_{2}}+\frac{\partial}{\partial z_{3}}\right) .
$$

The five-form $\boldsymbol{\beta}_{0}(z)$ at z_{0} is given by

$$
\begin{equation*}
\boldsymbol{\iota}_{X_{\xi_{3}}} \circ \iota_{X_{J_{\xi_{2}}}} \circ \iota_{X_{\xi_{\xi_{1}}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)=-2\left(d z_{4} \wedge d z_{5} \wedge d z_{6} \wedge d z_{7} \wedge d z_{8}+d z_{1} \wedge d z_{5} \wedge d z_{6} \wedge d z_{7} \wedge d z_{8}\right) . \tag{252}
\end{equation*}
$$

On the other hand, the five-form $\widehat{\kappa}_{0}$ in at α_{0} is given by

$$
\begin{equation*}
\widehat{\kappa}_{0}=\frac{1}{4}\left(-d \alpha_{2} \wedge d \alpha_{3} \wedge d \alpha_{4} \wedge d \alpha_{5} \wedge d \alpha_{6}-\imath d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \wedge d \alpha_{4} \wedge d \alpha_{5}\right) . \tag{253}
\end{equation*}
$$

Now let me take the expressions of $\alpha_{j}, j=2, \ldots, 6$ in 140 and calculate the differentials $d \alpha_{j}(z)$ at z_{0}. The following one-forms are obtained

$$
\begin{array}{cc}
d \alpha_{1}\left(z_{0}\right)=\left(d z_{1}+d z_{4}\right), & d \alpha_{4}\left(z_{0}\right)=\left(d z_{6}+d z_{7}\right) \\
d \alpha_{2}\left(z_{0}\right)=\imath\left(d z_{8}+d z_{5}\right), & d \alpha_{5}\left(z_{0}\right)=\left(d z_{8}-d z_{5}\right) \\
d \alpha_{3}\left(z_{0}\right)=\imath\left(d z_{6}-d z_{7}\right), & d \alpha_{6}\left(z_{0}\right)=\imath\left(d z_{4}+d z_{1}\right) . \tag{254}
\end{array}
$$

I then compute the wedge product in (253) so that the pull-back $\rho_{(8,5)}^{*} \widehat{\kappa}_{0}$ at z_{0} is given by

$$
\begin{equation*}
\rho_{(8,5)}^{*} \widehat{\kappa}_{0}=2 \imath\left(d z_{4} \wedge d z_{5} \wedge d z_{6} \wedge d z_{7} \wedge d z_{8}+d z_{1} \wedge d z_{5} \wedge d z_{6} \wedge d z_{7} \wedge d z_{8}\right) . \tag{255}
\end{equation*}
$$

It follows from equalities (252) and (255) that the following equality holds

$$
\left[\iota_{X_{J_{\xi_{3}}}} \circ \iota_{X_{J_{\xi_{2}}}} \circ \iota_{X_{J_{\xi_{1}}}}\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)\right]_{z_{0}}=\imath\left(\rho_{(8,5)}^{*} \widehat{\kappa}_{0}\right)_{z_{0}}
$$

In the other direction, let me consider the following holomorphic five-form on \dot{Q}_{5}

$$
\widehat{\boldsymbol{\varsigma}}(\alpha)=\varphi(\alpha) \widehat{\kappa}_{0}(\alpha) .
$$

The pull-back $\rho_{(8,5)}^{*} \widehat{\widehat{\varsigma}}$ is a five-form on M_{s} which can be extended to an element of $\Omega^{(8,0)}\left(M_{s}\right){ }^{(S U(2)) \mathbb{C}}$ as follows. Let me consider the frame $\left\{X_{J_{\xi_{1}}}, X_{J_{\xi_{2}}}, X_{J_{\xi_{3}}}, W_{1}, \ldots W_{5}\right\}$ on M_{s} which descends to a frame $\left\{d \rho_{(8,5)}\left(Y_{1}\right), \ldots, d \rho_{(8,5)}\left(Y_{5}\right)\right\}$ on \dot{Q}_{5} through the map $\rho_{(8,5)}(z)$. It follows from equality (249) that $\boldsymbol{\nu}(z)=\boldsymbol{\varphi}(\alpha(z)) d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}$ on M_{s} is the unique eight-form that satisfies the following equality
$\imath \widehat{\boldsymbol{\varsigma}}(\alpha)\left(d \rho_{(8,5)}\left(Y_{1}\right), \ldots, d \rho_{(8,5)}\left(Y_{5}\right)\right)=\boldsymbol{\varphi}(\alpha(z))\left(d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{8}\right)\left(X_{J_{\xi_{1}}}, X_{J_{\xi_{2}}}, X_{J_{\xi_{3}}}, W_{1}, \ldots W_{5}\right)$.
Then $\boldsymbol{\nu}(z)$ can be defined in any other frame by $G L(8, \mathbb{C})$-equivariance because the tangent space at a point in the stable set M_{s} is a direct sum of the tangent space to the $S L(2, \mathbb{C})$ orbit through that point and the transverse directions, see equality (285) in the next section. So every frame is $G L(8, \mathbb{C})$-equivalent to one of the form $\left\{Y_{1}, Y_{2}, Y_{3}, W_{1}, \ldots, W_{5}\right\}$ with $Y_{j}=$ $X_{J_{\xi_{j}}}$ or $J\left(X_{J_{\xi_{j}}}\right)$, and I can define $\iota_{X_{J_{\xi_{j}}}} \kappa_{0}(z)=-(\imath) \iota_{J\left(X_{J_{\xi_{j}}}\right.} \kappa_{0}(z), j=1,2,3$. Equality 256 indicates that contracting and extending are clearly inverse processes to each other. They therefore define a bijective map

$$
\mathfrak{S}_{8}: \Omega^{(8,0)}\left(M_{s}\right)^{(S U(2)) \mathbb{C}} \ni \varsigma(z)=g(z) \kappa_{0}(z) \longrightarrow \phi(\alpha) \widehat{\kappa}_{0}(\alpha) \in \Omega^{(5,0)}\left(\dot{Q}_{5}\right)
$$

where $\widehat{\kappa}_{0}(\alpha)$ is the unique form on \dot{Q}_{5} such that equality $\boldsymbol{\iota}_{X_{J_{\xi_{3}}}} \circ \iota_{X_{J_{\xi_{2}}}} \iota_{X_{J_{\xi_{1}}}} \kappa_{0}=\imath \rho_{(8,5)}^{*} \widehat{\kappa}_{0} \quad \forall z \in$ M_{s} holds. I can do a similar procedure to dimension $n=4$ to show that the contraction of $\varsigma(z)=g(z) \kappa_{0}(z)$ with the infinitesimal generators $X_{\xi_{\xi_{j}}}$ can be understood as contracting with the directions normal to the zero-set $\mathfrak{J}_{8}^{-1}(0)$. Moreover, under the identification $\mathfrak{J}_{8}^{-1}(0) / S U(2) \cong \dot{Q}_{5}$ the map \mathfrak{S}_{8} can be interpreted as first contracting, then restricting the result to $\mathfrak{J}_{8}^{-1}(0)$, and finally descending the result to the quotient \dot{Q}_{5}.

Let me turn to the descent map for half-forms. Since elements of $\Omega^{(8,0)}\left(M_{s}\right)^{(S U(2)) \mathrm{c}}$ belong to the space $\left.\Gamma_{P}\left(K_{8}\right)\right|_{M_{s}} ^{(S U(2))_{\mathbb{C}}}$ of $(S U(2))_{\mathbb{C}}$-invariant polarized sections and elements $\Omega^{(5,0)}\left(\dot{Q}_{5}\right)$ belong to the space $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{5}}\right)$ of polarized sections of the canonical bundle on \dot{Q}_{5} (see apppendix B), then the map \mathfrak{S}_{8} identifies $\left.K_{8}\right|_{\tilde{\Phi}_{g \mathrm{C}}(z)}$ with $\widehat{K}_{\alpha \in \dot{Q}_{5}}$. So I can make a similar argument to dimension $n=4$ to show that \mathfrak{S}_{8} induces a map between half-forms

$$
\mathcal{S}_{8}:\left.\Gamma_{P}\left(K_{8}^{\frac{1}{2}}\right)\right|_{M_{s}} ^{(S U(2)) \mathrm{C}} \ni \nu \longrightarrow \widehat{\nu} \in \Gamma_{G}\left(\widehat{K}_{\hat{Q}_{5}}^{\frac{1}{2}}\right) \text { such that }\left(\mathcal{S}_{8}(\nu)\right)^{2}=\mathfrak{S}_{8}\left(\nu^{2}\right)
$$

1.2. The map S_{n} and pointwise magnitude on $\mathfrak{J}^{-1}(0)_{n}$ and $\mathfrak{J}^{-1}(0)_{n} / G_{n} \cong \dot{Q}_{m}$. Having the map $S_{n}: \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}} \longrightarrow \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ the following will be proved.
Theorem 2. Take $r \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$. Then for $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$,

$$
\begin{equation*}
\left|S_{n}(r)\right|^{2}\left(\left[z_{0}\right]\right)=2^{-d / 2} \operatorname{Vol}\left(G_{n} \cdot z_{0}\right)\left|r\left(z_{0}\right)\right|^{2} . \tag{257}
\end{equation*}
$$

Before proving theorem 2 let me explain how the volume $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ is calculated. The orbit through $z \in \dot{\mathbb{C}}^{n}$ is defined by

$$
\operatorname{Or} b(z)=\left\{w \in \dot{\mathbb{C}}^{n} \mid w=\tilde{\Phi}_{g}(z), g \in G_{n}\right\},
$$

where $\tilde{\Phi}_{g}$ denotes the action of G_{n} on $\dot{\mathbb{C}}^{n}$. The orbit through $z \in \dot{\mathbb{C}}^{n}$ can be thought of as a map from G_{n} into $\dot{\mathbb{C}}^{n}$. The groups $G_{4}=U(1), G_{8}=S U(2)$ are identified with spheres S^{1}, S^{3} respectively. Every $z \in \dot{\mathbb{C}}^{n}$ comes from real coordinates $(u, v) \in T^{*} \dot{\mathbb{R}}^{n}$. The action of G_{n} preserves the inner product of $T^{*} \dot{R}^{n}$, so the orbit through $(u, v) \in T^{*} \dot{R}^{n}$ can be thought of as a sphere of radius $r=\sqrt{|u|^{2}+|v|^{2}}=\sqrt{2}|z|$. For these particular cases the volume of $\operatorname{Orb}(z)$ is the area of the corresponding sphere. In a general case when a compact Lie group G acts on a compact Kḧaler manifold M and the action of G preserves the symplectic form of M, the volume of an orbit through $m \in M$ can be calculated using the Riemannian structure in M. See lemma 3.1 in [18]. For completeness, I shall calculate the volume of $\operatorname{Orb}(z)$ using the Riemannian metric B which is defined in (85). The explicit calculations are done for the group $G_{8}=S U(2)$, but the same procedure works for the group $G_{4}=U(1)$.
Lemma 5. Let $X_{\xi_{j}}, X_{\xi_{k}}$ denote the infinitesimal generators of the action of G_{n} on $\dot{\mathbb{C}}^{n}$. The function $\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)\right]}$ is constant along $\tilde{\Phi}_{g}(z)$. That is, the following equality holds

$$
\begin{equation*}
\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{\tilde{\Phi}_{g}(z)}\right]=\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right] \tag{258}
\end{equation*}
$$

Moreover, the volume of $\operatorname{Orb}(z)$ is given by $\operatorname{Vol}\left(G_{n} \cdot z\right)=\operatorname{Vol}\left(G_{n}\right) \sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]}=$ $\operatorname{Vol}\left(G_{n}\right) 2^{\frac{d}{2}}|z|^{d}$ with d the dimension of G_{n}.

Proof. Let me take the basis $\xi_{j}, j=1,2,3$ of $\mathfrak{s u}(2)$ in 101). Each ξ_{j} is assigned the infinitesimal generator $X_{\xi_{j}}(z)$. The matrices ξ_{j} can be thought as tangent vectors at the identity of $S U(2)$, so the vectors ξ_{j} can be moved over $S U(2)$ through the left action in $S U(2)$. That is, the tangent vector $\boldsymbol{X}_{\xi_{j}}(g)$ at $g \in S U(2)$ is given by

$$
\boldsymbol{X}_{\xi_{j}}(g)=\left.\frac{d}{d t}\right|_{t=0} L_{\mathrm{e}^{t \xi_{j}}}(g)
$$

The vector $\boldsymbol{X}_{\xi_{j}}(g)$ is associated to the vector $X_{\xi_{j}}\left(\tilde{\Phi}_{g}(z)\right)$ at $\tilde{\Phi}_{g}(z)$. Namely,

$$
X_{\xi_{j}}\left(\tilde{\Phi}_{g}(z)\right)=\left.\frac{d}{d t}\right|_{t=0} \tilde{\Phi}_{L_{\mathrm{e}}+\xi_{j}(g)}(z) .
$$

Note that when the vector $\boldsymbol{X}_{\xi_{j}}(g)$ moves over the whole group $S U(2)$, the vector $X_{\xi_{j}}\left(\tilde{\Phi}_{g}(z)\right)$ moves over the whole orbit $\operatorname{Orb}(z)$. Let me form with the vectors $\left\{X_{\xi_{1}}\left(\tilde{\Phi}_{g}(z)\right), X_{\xi_{2}}\left(\tilde{\Phi}_{g}(z)\right), X_{\xi_{3}}\left(\tilde{\Phi}_{g}(z)\right)\right\}$ a parallelepiped whose volume is given by $\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right) \tilde{\Phi}_{g}(z)\right]}$. The term $B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{\tilde{\Phi}_{g}(z)}$ can be written as follows

$$
\begin{equation*}
B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{\tilde{\Phi}_{g}(z)}=\omega_{8}\left(X_{\xi_{j}}\left(\tilde{\Phi}_{g}(z)\right), J\left(X_{\xi_{k}}\left(\tilde{\Phi}_{g}(z)\right)\right)\right)=\left(\tilde{\Phi}_{L_{\mathrm{e}} \xi_{j}(g)}^{*} \omega_{8}\right)\left(X_{\xi_{j}}(z), J\left(X_{\xi_{k}}(z)\right)\right) \tag{259}
\end{equation*}
$$

The symplectic form ω_{8} is invariant under the action of $S U(2)$, that is $\tilde{\Phi}_{L_{e} t \xi_{j}(g)}^{*} \omega_{8}=\omega_{8}$. Hence, equality (259) above can be written as

$$
B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{\tilde{\Phi}_{g}(z)}=\omega_{8}\left(X_{\xi_{j}}(z), J\left(X_{\xi_{k}}(z)\right)\right)=B\left(\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right.
$$

Thus equality (258) is fulfilled. The points in $\operatorname{Orb}(z)$ are parametrized by elements $g \in S U(2)$, so that the volume element $d \operatorname{Vol}\left(G_{8} \cdot z\right)$ can be written as

$$
\begin{equation*}
d \operatorname{Vol}\left(G_{8} \cdot z\right)=\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{\tilde{\Phi}_{g}(z)}\right]} d \operatorname{Vol}\left(G_{8}\right)=\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]} d \operatorname{Vol}\left(G_{8}\right) \tag{260}
\end{equation*}
$$

where $d V o l\left(G_{8}\right)$ is a three-form on $S U(2)$ which can be obtained as follows. The one-form $\Omega=g^{-1} d g$ is the Maurer Cartan form on $S U(2)$ with values in $\mathfrak{s u}(2)$. Let me write Ω in coordinates of $S U(2)$. An element $g \in S U(2)$ can be parametrized as follows

$$
g=\left(\begin{array}{cc}
\cos (\theta) \mathrm{e}^{2 \alpha} & \sin (\theta) \mathrm{e}^{\imath \beta} \tag{261}\\
-\sin (\theta) \mathrm{e}^{-\imath \beta} & \cos (\theta) \mathrm{e}^{-\imath \alpha}
\end{array}\right), \quad \theta \in\left[0, \frac{\pi}{2}\right], \quad \alpha, \beta \in[-\pi, \pi] .
$$

A straightforward calculation shows that

$$
\Omega=g^{-1} d g=\left(\begin{array}{cc}
\imath \Omega_{1} & -\Omega_{2}+\imath \Omega_{3} \\
\Omega_{2}+\imath \Omega_{3} & -\imath \Omega_{1}
\end{array}\right)
$$

where the one-forms $\Omega_{j}, j=1,2,3$ are given by

$$
\begin{aligned}
\Omega_{1} & =\cos ^{2}(\theta) d \alpha-\sin ^{2}(\theta) d \beta \\
\Omega_{2} & =\sin (\alpha-\beta) \cos (\theta) \sin (\theta)(d \alpha+d \beta)-\cos (\alpha-\beta) d \theta \\
\Omega_{3} & =\cos (\beta-\alpha) \cos (\theta) \sin (\theta)(d \alpha+d \beta)+\sin (\beta-\alpha) d \theta
\end{aligned}
$$

The three-form $d \operatorname{Vol}\left(G_{8}\right)$ is given by $\Omega_{1} \wedge \Omega_{2} \wedge \Omega_{3}$. Hence, equality (260) can be written as follows

$$
\begin{aligned}
\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]} d V o l\left(G_{8}\right) & =\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]} \Omega_{1} \wedge \Omega_{2} \wedge \Omega_{3} \\
& =\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]} \sin (\theta) \cos (\theta) d \theta \wedge d \alpha \wedge d \beta
\end{aligned}
$$

The following is obtained by integrating the previous equality

$$
\operatorname{Vol}\left(G_{8} \cdot z\right)=2 \pi^{2} \sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]} .
$$

For the group $U(1)=S^{1}$ the same procedure works. The volume form on $U(1)$ is $d \theta$, and a short calculation shows that $\operatorname{Vol}\left(G_{4} \cdot z\right)=2 \pi \sqrt{\operatorname{det}\left[B(\boldsymbol{X}, \boldsymbol{X})_{z}\right]}$.

Now, I will calculate the term $\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]$ for the group $S U(2)$. The infinitesimal generators $X_{\xi_{j}}=X_{\xi_{j}}, j=1,2,3$ are given by

$$
\begin{aligned}
& X_{J_{\xi_{1}}}= \imath\left[\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{3} \frac{\partial}{\partial z_{3}}+z_{5} \frac{\partial}{\partial z_{5}}+z_{7} \frac{\partial}{\partial z_{7}}\right)-\left(z_{2} \frac{\partial}{\partial z_{2}}+z_{4} \frac{\partial}{\partial z_{4}}+z_{6} \frac{\partial}{\partial z_{6}}+z_{8} \frac{\partial}{\partial z_{8}}\right)-\right. \\
&\left.\left(\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+\bar{z}_{3} \frac{\partial}{\partial \bar{z}_{3}}+\bar{z}_{5} \frac{\partial}{\partial \bar{z}_{5}}+\bar{z}_{7} \frac{\partial}{\partial \bar{z}_{7}}\right)+\left(\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}+\bar{z}_{4} \frac{\partial}{\partial \bar{z}_{4}}+\bar{z}_{6} \frac{\partial}{\partial \bar{z}_{6}}+\bar{z}_{8} \frac{\partial}{\partial \bar{z}_{8}}\right)\right] \\
& X_{J_{\xi_{2}}=}=\left[\left(z_{1} \frac{\partial}{\partial z_{2}}-z_{2} \frac{\partial}{\partial z_{1}}+z_{3} \frac{\partial}{\partial z_{4}}-z_{4} \frac{\partial}{\partial z_{3}}+z_{5} \frac{\partial}{\partial z_{6}}-z_{6} \frac{\partial}{\partial z_{5}}+z_{7} \frac{\partial}{\partial z_{8}}-z_{8} \frac{\partial}{\partial z_{7}}\right)-\right. \\
&\left.\left(\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{1}}-\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{2}}+\bar{z}_{4} \frac{\partial}{\partial \bar{z}_{3}}-\bar{z}_{3} \frac{\partial}{\partial \bar{z}_{4}}+\bar{z}_{6} \frac{\partial}{\partial \bar{z}_{5}}-\bar{z}_{5} \frac{\partial}{\partial \bar{z}_{6}}+\bar{z}_{8} \frac{\partial}{\partial \bar{z}_{7}}-\bar{z}_{7} \frac{\partial}{\partial \bar{z}_{8}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& X_{J_{\xi_{3}}}=\imath\left[\left(z_{2} \frac{\partial}{\partial z_{1}}+z_{1} \frac{\partial}{\partial z_{2}}+z_{4} \frac{\partial}{\partial z_{3}}+z_{3} \frac{\partial}{\partial z_{4}}+z_{6} \frac{\partial}{\partial z_{5}}+z_{5} \frac{\partial}{\partial z_{6}}+z_{8} \frac{\partial}{\partial z_{7}}+z_{7} \frac{\partial}{\partial z_{8}}\right)-\right. \\
&\left.\left(\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{1}}+\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{2}}+\bar{z}_{4} \frac{\partial}{\partial \bar{z}_{3}}+\bar{z}_{3} \frac{\partial}{\partial \bar{z}_{4}}+\bar{z}_{6} \frac{\partial}{\partial \bar{z}_{5}}+\bar{z}_{5} \frac{\partial}{\partial \bar{z}_{6}}+\bar{z}_{8} \frac{\partial}{\partial \bar{z}_{7}}+\bar{z}_{7} \frac{\partial}{\partial \bar{z}_{8}}\right)\right] .
\end{aligned}
$$

Taking the explicit expression of $X_{J_{j}}$ a straightforward calculation shows that the coefficients $B_{j k}, j, k=1,2,3$ are given by

$$
\begin{array}{ll}
B_{11}=\omega_{8}\left(X_{\xi_{1}}, J X_{\xi_{1}}\right)=2|z|^{2}, & B_{12}=\omega_{8}\left(X_{\xi_{1}}, J X_{\xi_{2}}\right)=0 \\
B_{22}=\omega_{8}\left(X_{\xi_{2}}, J X_{\xi_{2}}\right)=2|z|^{2}, & B_{13}=\omega_{8}\left(X_{\xi_{1}}, J X_{\xi_{3}}\right)=0 \\
B_{33}=\omega_{8}\left(X_{\xi_{3}}, J X_{\xi_{3}}\right)=2|z|^{2}, & B_{23}=\omega_{8}\left(X_{\xi_{2}}, J X_{\xi_{3}}\right)=0
\end{array}
$$

Since the components satisfy $B_{j k}=B_{k j}$, then the explicit expression of the matrix B is given by

$$
B=\left(\begin{array}{ccc}
2|z|^{2} & 0 & 0 \\
0 & 2|z|^{2} & 0 \\
0 & 0 & 2|z|^{2}
\end{array}\right), \quad \operatorname{det}(B)=2^{3}|z|^{6} \quad \text { and } \quad \operatorname{Vol}\left(G_{8} \cdot z\right)=2 \pi^{2} 2^{\frac{3}{2}}|z|^{3}, \quad z \in \mathbb{C}^{8}
$$

For the group $G_{4}=U(1), X_{\xi_{j}}=X_{\xi_{k}}=\boldsymbol{X}$, where the expression of \boldsymbol{X} is given in 230 . A short calculation shows that $\sqrt{\operatorname{det}\left[B(\boldsymbol{X}, \boldsymbol{X})_{z}\right]}=\sqrt{2}|z|$ and $\operatorname{Vol}\left(G_{4} \cdot z\right)=2 \pi \sqrt{2}|z|$. I can normalize the volume form $d \operatorname{Vol}\left(G_{n}\right)$ on G_{n} such that the equality $\int_{G_{n}} d \operatorname{Vol}\left(G_{n}\right)=1$ holds. With this normalization the volume of an orbit $\operatorname{Orb}(z)$ is given by $\operatorname{Vol}\left(G_{n} \cdot z\right)=\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]}$.

Let me back to the proof of theorem 2 which uses the following lemma. I make the proof of this lemma for $S U(2)$ in detail because the calculations are more involved than those for $U(1)$, but the same procedure works for both groups. I will use $\operatorname{Vol}\left(G_{n} \cdot z\right)=\sqrt{\operatorname{det}\left[B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)_{z}\right]}$ for rest of the calculations.

Lemma 6. Take the infinitesimal generators $X_{\xi_{j}}$ of the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$. Consider the vector fields $Z_{j}=\frac{1}{2}\left(X_{\xi_{j}}-\imath J\left(X_{\xi_{j}}\right)\right)$ and $\bar{Z}_{k}=\frac{1}{2}\left(X_{\xi_{k}}+\imath J\left(X_{\xi_{k}}\right)\right)$ with $j, k=1,2,3$. The following equality is fulfilled for $z_{0} \in \mathfrak{J}_{8}^{-1}(0)$

$$
\begin{equation*}
\left.\iota^{\wedge^{j} Z_{j}} \circ^{\iota} \wedge^{k} \bar{Z}_{k} \epsilon_{\omega_{8}}\left(z_{0}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}=\left.2^{-3}\left(\operatorname{Vol}\left(G_{8} \cdot z_{0}\right)\right)^{2} \frac{\omega_{8}^{\wedge 5}}{5!}\right|_{\mathfrak{J}_{8}^{-1}(0)} \tag{262}
\end{equation*}
$$

where the Liouville volume $\epsilon_{\omega_{8}}(z)$ is written as follows

$$
\epsilon_{\omega_{8}}(z)=\frac{1}{8!} \omega_{8}^{\wedge 8}=\frac{1}{8!} \underbrace{\left(\omega_{8} \wedge \ldots \wedge \omega_{8}\right)}_{8-\text { times }} .
$$

Proof. I use the following identities for the next calculations. For any l-form α, k-form β and a vector field V, the following equalities hold

$$
\begin{equation*}
\imath_{V}(\alpha \wedge \beta)=\imath_{V} \alpha \wedge \beta+(-1)^{l} \alpha \wedge \imath_{V} \beta, \quad \alpha \wedge \beta=(-1)^{l k} \beta \wedge \alpha \tag{263}
\end{equation*}
$$

The following contraction is calculated

$$
\boldsymbol{\iota}^{\wedge^{k} \bar{Z}_{k}}\left[\frac{1}{8!}\left(\omega_{8} \wedge \ldots \wedge \omega_{8}\right)\right]=\frac{1}{8!} \boldsymbol{\iota}_{\bar{Z}_{1}} \circ \boldsymbol{\iota}_{\bar{Z}_{2}} \circ \boldsymbol{\iota}_{\bar{Z}_{3}}\left(\omega_{8} \wedge \ldots \wedge \omega_{8}\right) .
$$

A short calculation shows that the symplectic form ω_{8} satisfies $\omega_{8}\left(\bar{Z}_{j}, \bar{Z}_{k}\right)=\omega_{8}\left(Z_{j}, Z_{k}\right)=0$. The first equation in (263) is used to calculate the contraction of $\epsilon_{\omega_{8}}(z)$ with the vector fields $\bar{Z}_{1}, \bar{Z}_{2}, \bar{Z}_{3}$. The following is obtained

$$
\begin{equation*}
\frac{1}{8!} \boldsymbol{\iota}_{\bar{Z}_{1}} \circ \boldsymbol{\iota}_{\bar{Z}_{2}} \circ \boldsymbol{\iota}_{\bar{Z}_{3}}\left(\omega_{8} \wedge \ldots \wedge \omega_{8}\right)=\frac{1}{8!} 8(7)(6)\left(\omega_{8}\left(\cdot, \bar{Z}_{1}\right) \wedge \omega_{8}\left(\cdot, \bar{Z}_{2}\right) \wedge \omega_{8}\left(\cdot, \bar{Z}_{3}\right) \wedge \omega_{8}^{\wedge 5}\right) . \tag{264}
\end{equation*}
$$

Using again the first equation in (263) the contraction $\iota_{Z_{1}} \circ \iota_{Z_{2}} \circ \iota_{Z_{3}}$ with the form in (264) gives the following

$$
\begin{aligned}
& \frac{1}{8!} \boldsymbol{\iota}_{Z_{1}} \circ \boldsymbol{\iota}_{Z_{2}} \circ \boldsymbol{\iota}_{Z_{3}} \circ \boldsymbol{\iota}_{\bar{Z}_{1}} \circ \boldsymbol{\iota}_{\bar{Z}_{2}} \circ \boldsymbol{\iota}_{\bar{Z}_{3}}\left(\omega_{8} \wedge \ldots \wedge \omega_{8}\right)= \\
& \frac{1}{2}\left[\bigwedge^{j} \omega_{8}\left(Z_{j}, \cdot\right) \wedge \bigwedge^{k} \omega_{8}\left(\cdot, \bar{Z}_{k}\right) \wedge \omega_{8}^{\wedge 2}\right]+\operatorname{det}\left[\omega_{8}\left(Z_{j}, \bar{Z}_{k}\right)\right] \frac{\omega_{8}^{\wedge 5}}{5!}
\end{aligned}
$$

A computation shows that

$$
\begin{aligned}
\omega_{8}\left(Z_{j}, \bar{Z}_{k}\right) & =\omega_{8}\left(\frac{1}{2}\left(X_{\xi_{j}}-\imath J X_{\xi_{k}}\right), \frac{1}{2}\left(X_{\xi_{k}}+\imath J X_{\xi_{k}}\right)\right) \\
& =\frac{1}{2}\left[\omega_{8}\left(X_{\xi_{j}}, X_{\xi_{k}}\right)+\imath \omega_{8}\left(X_{\xi_{j}}, J X_{\xi_{k}}\right)\right] \\
& =\left.\frac{1}{2}\left\{J_{\xi_{j}}, J_{\xi_{k}}\right\}\right|_{\mathfrak{J}_{8}^{-1}(0)}+\frac{\imath}{2} \omega_{8}\left(X_{\xi_{j}}, J X_{\xi_{k}}\right) \\
& =\frac{i}{2} B\left(X_{\xi_{j}}, X_{\xi_{k}}\right)
\end{aligned}
$$

The moment map is constant on $\mathfrak{J}_{8}^{-1}(0)$. Hence

$$
\begin{aligned}
\left.\omega_{8}\left(\cdot, \frac{1}{2}\left(X_{\xi_{j}} \mp \imath J X_{\xi_{j}}\right)\right)\right|_{\mathfrak{J}_{8}^{-1}(0)} & =\left.\left\{\frac{1}{2} d J_{\xi_{j}} \mp \frac{\imath}{2} \omega_{8}\left(\cdot, J X_{\xi_{j}}\right)\right\}\right|_{\mathfrak{J}_{8}^{-1}(0)} \\
& =\left.\mp \frac{\imath}{2} \omega_{8}\left(\cdot, J X_{\xi_{j}}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}
\end{aligned}
$$

and so

$$
\left.\bigwedge^{j} \omega_{8}\left(\cdot, Z_{j}\right) \wedge \bigwedge^{k} \omega_{8}\left(\bar{Z}_{k}, \cdot\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}=0
$$

Thus the following is obtained

$$
\left.\iota^{\iota} \bigwedge^{j} Z_{j} \circ \iota^{\iota} \wedge^{k} \bar{Z}_{k} \epsilon_{\omega_{8}}\left(z_{0}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}=\left.2^{-3}\left(\operatorname{Vol}\left(G_{8} \cdot z_{0}\right)\right)^{2} \frac{\omega_{8}^{\wedge 5}}{5!}\right|_{\mathfrak{J}_{8}^{-1}(0)}
$$

The same procedure can be done for the infinitesimal generator \boldsymbol{X} of the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$. That is, consider the vector fields $Z=\frac{1}{2}(\boldsymbol{X}-\imath J(\boldsymbol{X}))$ and $\bar{Z}=\frac{1}{2}(\boldsymbol{X}+\imath J(\boldsymbol{X}))$ and a straightforward computation shows that the following equality holds

$$
\begin{equation*}
\boldsymbol{\iota}_{Z} \circ \boldsymbol{\iota}_{\bar{Z}} \frac{1}{4!}\left(\omega_{4} \wedge \omega_{4} \wedge \omega_{4} \wedge \omega_{4}\right)=\left.2^{-1}\left(\operatorname{Vol}\left(G_{4} \cdot z_{0}\right)\right)^{2} \frac{\omega_{4}^{\wedge 3}}{3!}\right|_{\mathfrak{J}_{4}^{-1}(0)} \tag{265}
\end{equation*}
$$

Proof. (Theorem (2)). Take $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ with $r(z)=s(z) \nu_{0}$. The pointwise magnitude of $S_{n}(r) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ is given by

$$
\left|S_{n}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left(A_{n}(s), A_{n}(s)\right)\left(\mathcal{S}_{n}\left(\nu_{0}\right), \mathcal{S}_{n}\left(\nu_{0}\right)\right)\left(\left[z_{0}\right]\right)
$$

Recall that for $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$ the following equality holds

$$
\left|A_{n}(s)\left(\left[z_{0}\right]\right)\right|^{2}=\left|s\left(z_{0}\right)\right|^{2}
$$

Now let me calculate the following

$$
\begin{align*}
\left(\mathcal{S}_{n}\left(\nu_{0}\right), \mathcal{S}_{n}\left(\nu_{0}\right)\right)^{2} \varepsilon_{\widehat{\omega}}\left(\left[z_{0}\right]\right) & =\left.\iota_{\wedge^{j} X_{J_{\xi_{j}}}} \nu_{0}^{2} \wedge \overline{\iota_{\Lambda} \bigwedge^{k} X_{J_{\xi_{k}}} \nu_{0}^{2}}\right|_{\mathfrak{J}_{n}^{-1}(0)} \\
& =\left.\iota_{\wedge^{j} X_{J_{\xi_{j}}}} \kappa_{0} \wedge \overline{\iota^{\kappa} X_{J_{\xi_{k}}} \kappa_{0}}\right|_{\mathfrak{J}_{n}^{-1}(0)} \tag{266}
\end{align*}
$$

Since the n-form $\kappa_{0}(z)=d z_{1} \wedge d z_{2} \wedge \ldots d z_{n}$ satisfies $\iota_{Z_{j}} \bar{\kappa}_{0}=\iota_{\bar{Z}_{k}} \kappa_{0}=0$, then equality 266 can be written as follows

$$
\begin{aligned}
\iota^{\iota} \bigwedge^{j} X_{J_{\xi_{j}}} \kappa_{0} \wedge \overline{\boldsymbol{\iota}_{\wedge^{k} X_{J_{\xi_{k}}}} \kappa_{0}} & =\left.{ }^{\iota} \bigwedge^{j} Z_{j} \circ \iota^{\iota} \wedge^{k} \bar{Z}_{k}\left(\kappa_{0} \wedge \overline{\kappa_{0}}\right)\right|_{\mathfrak{J}_{n}^{-1}(0)} \\
& =\left.{ }^{\iota} \bigwedge^{j} Z_{j} \circ \iota^{\iota} \wedge^{k} \bar{Z}_{k}\left(\nu_{0}, \nu_{0}\right)^{2} \epsilon_{\omega_{n}}\right|_{\mathfrak{J}_{n}^{-1}(0)} \\
& =\left.\left(\nu_{0}, \nu_{0}\right)^{2} \iota_{\wedge^{j} Z_{j}} \circ \iota_{\Lambda^{k} \bar{Z}_{k}} \frac{1}{n!} \omega_{n}^{\wedge n}\right|_{\mathfrak{J}_{n}^{-1}(0)}
\end{aligned}
$$

Thus the following equality is fulfilled

$$
\begin{equation*}
\left(\mathcal{S}_{n}\left(\nu_{0}\right), \mathcal{S}_{n}\left(\nu_{0}\right)\right)^{2} \varepsilon_{\widehat{\omega}}\left(\left[z_{0}\right]\right)=\left.\left(\nu_{0}, \nu_{0}\right)^{2} \iota_{\wedge^{j} Z_{j}} \circ \iota^{\iota} \bigwedge^{k} \bar{Z}_{k} \frac{1}{n!} \omega_{n}^{\wedge n}\right|_{\mathfrak{J}_{n}^{-1}(0)} \tag{267}
\end{equation*}
$$

For $n=8$ it follows from lemma 6 that equality (267) can be written as

$$
\left(\mathcal{S}_{8}\left(\nu_{0}\right), \mathcal{S}_{8}\left(\nu_{0}\right)\right)^{2} \varepsilon_{\widehat{\omega}}\left(\left[z_{0}\right]\right)=\left.\left(\nu_{0}, \nu_{0}\right)^{2} 2^{-3}\left(\operatorname{Vol}\left(G_{8} \cdot z_{0}\right)\right)^{2} \frac{\omega_{8}^{\wedge 5}}{5!}\right|_{\mathfrak{J}_{8}^{-1}(0)}
$$

Since the equality $\rho_{(8,5)}^{*} \widehat{\omega}=\left.\omega_{8}\right|_{\mathfrak{J}_{8}^{-1}(0)}$ holds, then it follows from taking the square root that

$$
\left(\mathcal{S}_{8}\left(\nu_{0}\right), \mathcal{S}_{8}\left(\nu_{0}\right)\right)\left(\left[z_{0}\right]\right)=\left.\left(\nu_{0}, \nu_{0}\right) 2^{-\frac{3}{2}}\left(\operatorname{Vol}\left(G_{8} \cdot z_{0}\right)\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}
$$

Thus the following equalities hold

$$
\left|S_{8}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left.\left|s\left(z_{0}\right)\right|^{2}\left(\nu_{0}, \nu_{0}\right) 2^{-\frac{3}{2}} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}=\left.\left|r\left(z_{0}\right)\right|^{2} 2^{-\frac{3}{2}} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}
$$

For $n=4$ it follows from 265 that equality 267 can be written as

$$
\left(\mathcal{S}_{4}\left(\nu_{0}\right), \mathcal{S}_{4}\left(\nu_{0}\right)\right)^{2} \varepsilon_{\widehat{\omega}}\left(\left[z_{0}\right]\right)=\left.\left(\nu_{0}, \nu_{0}\right)^{2} 2^{-1}\left(\operatorname{Vol}\left(G_{4} \cdot z_{0}\right)\right)^{2} \frac{\omega_{4}^{\wedge 3}}{3!}\right|_{\mathfrak{J}_{4}^{-1}(0)}
$$

Since the equality $\rho_{(4,3)}^{*} \widehat{\omega}=\left.\omega_{4}\right|_{\mathfrak{J}_{4}^{-1}(0)}$ holds, then it follows from taking the square root that

$$
\left(\mathcal{S}_{4}\left(\nu_{0}\right), \mathcal{S}_{4}\left(\nu_{0}\right)\right)\left(\left[z_{0}\right]\right)=\left.\left(\nu_{0}, \nu_{0}\right) 2^{-\frac{1}{2}} \operatorname{Vol}\left(G_{4} \cdot z_{0}\right)\right|_{\mathfrak{J}_{4}^{-1}(0)}
$$

Thus the following equalities hold

$$
\left|S_{4}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left.\left|s\left(z_{0}\right)\right|^{2}\left(\nu_{0}, \nu_{0}\right) 2^{-\frac{1}{2}} \operatorname{Vol}\left(G_{4} \cdot z_{0}\right)\right|_{\mathfrak{J}_{4}^{-1}(0)}=\left.\left|r\left(z_{0}\right)\right|^{2} 2^{-\frac{1}{2}} \operatorname{Vol}\left(G_{4} \cdot z_{0}\right)\right|_{\mathfrak{J}_{4}^{-1}(0)}
$$

Remark: The effect of including the half-form correction in the GS-map S_{n} is displayed in the factor $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ multiplying the pointwise magnitude of the section $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$, see equality 257 . In passing the integration on $\mathfrak{J}_{n}^{-1}(0)$ to $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ gives a volume factor $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ which is canceled with the volume factor of theorem 2 . This is the reason why S_{n} is an asymptotically unitary map when \hbar goes to zero. See section (3) for details.

2. Norm Decomposition

The goal of this section is to compute the squared norm of a section in either $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ or $\Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ as an integral on the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$. This expression on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong$ \dot{Q}_{m} will be used to study the unitarity properties of the maps S_{n} and A_{n} in the limit $\hbar \rightarrow 0$. This limit will be studied in the next section.

Since the stable set M_{s} is a set of full measure on \mathbb{C}^{n}, then the squared norm of a section $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ can be calculated on M_{s}. The integration over M_{s} will be decomposed into integrals over \mathfrak{g}_{n} and $\mathfrak{J}_{n}^{-1}(0)$, see equality 271 below. The integral over $\mathfrak{J}_{n}^{-1}(0)$ is decomposed into integrals on $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ and along the orbits $G_{n} \cdot z_{0}$, see equality 272 below. The main result of this section is the following theorem.
Theorem 3. Let $r(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \sqrt{d z_{1} \wedge \ldots \wedge d z_{n}}$ be an element in $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$. The squared norm of $r(z)$ can be computed as follows

$$
\begin{equation*}
\|r(z)\|^{2}=\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|r(z)|^{2} d z d \bar{z}=C_{n} \frac{1}{\hbar^{\frac{3 m-1}{2}}} \int_{\dot{Q}_{m}}|\phi(\alpha)|^{2}|\alpha|^{\frac{3-m}{2}}|\alpha|^{m-2} K_{\frac{m-3}{2}}\left(\frac{\sqrt{2}|\alpha|}{\hbar}\right) \varepsilon_{\widehat{\omega}}(\alpha) \tag{268}
\end{equation*}
$$

where $\phi(\alpha)$ is the projection to \dot{Q}_{m} from $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}, C_{n}$ is a constant, and the Macdonald-Bessel function $K_{\ell}\left(\frac{\sqrt{2}|\alpha|}{\hbar}\right)$ of order ℓ is given by

$$
\begin{equation*}
K_{\ell}(s)=\frac{(\pi)^{\frac{1}{2}}\left(\frac{1}{2} s\right)^{\ell}}{\Gamma\left(\ell+\frac{1}{2}\right)} \int_{0}^{\infty} \mathrm{e}^{-s \cosh t} \operatorname{senh}^{2 \ell}(t) d t \tag{269}
\end{equation*}
$$

In general, it is not true that the pointwise magnitudes of the sections with and without half-form are equal, but for the case of \mathbb{C}^{n} the pointwise magnitudes of $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ and $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)$ are equal. That is, $|r(z)|^{2}=|s(z)|^{2}$. Hence, the following holds

Theorem 4. Let $s(z)=f(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$ be an element in $\Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$. The squared norm of $s(z)$ can be computed as follows

$$
\begin{equation*}
\|s(z)\|^{2}=\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|s(z)|^{2} \epsilon_{\omega_{n}}(z)=C_{n} \frac{1}{\hbar^{\frac{3 m-1}{2}}} \int_{\dot{Q}_{m}}|\phi(\alpha)|^{2}|\alpha|^{\frac{3-m}{2}}|\alpha|^{m-2} K_{\frac{m-3}{2}}\left(\frac{\sqrt{2}|\alpha|}{\hbar}\right) \varepsilon_{\widehat{\omega}}(\alpha) \tag{270}
\end{equation*}
$$

Let me explain how the integration on M_{s} is decomposed. According to theorem 2.1 in [18], any point in the stable set M_{s} can be expressed as follows

$$
\Lambda: \mathfrak{g}_{n} \times \mathfrak{J}_{n}^{-1}(0) \longrightarrow M_{s}, \quad \Lambda\left(\xi, z_{0}\right)=\tilde{\Phi}_{\mathrm{e}^{\imath \xi}}\left(z_{0}\right)=\mathrm{e}^{\imath \xi} \cdot z_{0}
$$

The Liouville volume $\epsilon_{\omega_{n}}(z)$ (which is the same as the Riemannian volume) is decomposed as

$$
\Lambda^{*}\left(\epsilon_{\omega_{n}}\right)_{\left(\xi, z_{0}\right)}=\tau_{n}\left(\xi, z_{0}\right) d \mathfrak{g}_{n} \wedge d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right)
$$

where $d \mathfrak{g}_{n}$ is the volume form on $\mathfrak{g}_{n} \cong \mathbb{R}^{d}, d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right)$ is the Riemannian volume on $\mathfrak{J}_{n}^{-1}(0)$ and $\tau_{n}\left(\xi, z_{0}\right)$ is the Jacobian of the map Λ. See lemma 8 below for details. For every $f \in L^{1}\left(M_{s}\right)$ one has

$$
\begin{equation*}
\int_{M_{s}} f d V o l\left(M_{s}\right)=\int_{\mathfrak{J}_{n}^{-1}(0)} \int_{\mathfrak{g}_{n}} f\left(\mathrm{e}^{\imath \xi} \cdot z_{0}\right) \tau_{n}\left(\xi, z_{0}\right) d \mathfrak{g}_{n} d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right) \tag{271}
\end{equation*}
$$

The volume form on the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n}$ is given by $d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}\right)=\widehat{\omega}^{(n-d)} /(n-d)$! with d the dimension of G_{n}. Since $\pi_{n}: \mathfrak{J}_{n}^{-1}(0) \rightarrow \mathfrak{J}_{n}^{-1}(0) / G_{n}$ is a Riemannian submersion, then the volume on $\mathfrak{J}_{n}^{-1}(0)$ can be decomposed as $[\mathbf{1 8}$, Sect. 4]

$$
d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right)=d \operatorname{Vol}\left(G_{n} \cdot z_{0}\right) \wedge \frac{\left(\pi_{n}^{*} \widehat{\omega}^{(n-d)}\right)}{(n-d)!}
$$

The two-form $\pi_{n}^{*} \widehat{\omega}=\imath^{*} \omega_{n}$ satisfies the following

$$
\iota_{X_{\xi}} \pi_{n}^{*} \widehat{\omega}=\iota_{X_{\xi}}\left(\imath^{*} \omega_{n}\right)=\left.\boldsymbol{\iota}_{X_{\xi}} \omega_{n}\right|_{\mathfrak{J}_{n}^{-1}(0)}=\left.d J_{\xi}\right|_{\mathfrak{J}_{n}^{-1}(0)}=0
$$

This proves the following
Lemma 7. Let $\pi_{n}: \mathfrak{J}_{n}^{-1}(0) \rightarrow \mathfrak{J}_{n}^{-1}(0) / G_{n}$ denote the canonical projection. For every G_{n} invariant function $\mathbf{f} \in L^{1}\left(\mathfrak{J}_{n}^{-1}(0)\right)$ one has

$$
\begin{equation*}
\int_{\mathfrak{J}_{n}^{-1}(0)} \mathbf{f}\left(z_{0}\right) d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right)=\int_{\mathfrak{J}_{n}^{-1}(0) / G_{n}} \mathbf{f}\left(\left[z_{0}\right]\right) \operatorname{Vol}\left(G_{n} \cdot z_{0}\right) d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}\right), \tag{272}
\end{equation*}
$$

where $\left[z_{0}\right]$ denotes the G_{n}-orbit through $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$.
Let be $f=|r|^{2}$ in equality 271 , so that the squared norm of $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ on M_{s} can be computed as follows

$$
\int_{\mathfrak{J}_{n}^{-1}(0)} \int_{\mathfrak{g}_{n}}\left|r\left(\mathrm{e}^{\imath \xi} \cdot z_{0}\right)\right|^{2} \tau_{n}\left(\xi, z_{0}\right) d \mathfrak{g}_{n} d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right) .
$$

In the following proposition I give the explicit expression of $\left|r\left(\mathrm{e}^{\imath \xi} \cdot z_{0}\right)\right|^{2}$ on M_{s}.
Proposition 17. Let $s(z)$ be an element in $\Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ and $r(z)$ an element in $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$. Let z be a point in $\mathfrak{J}_{n}^{-1}(0)$ and $\xi \in \mathfrak{g}_{n}$. The magnitudes of the sections at $\mathrm{e}^{\imath \xi} \cdot z$ are related to the magnitudes at z as follows:

$$
\begin{align*}
(i)\left|r\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2} & =\left|s\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2}=|s(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}(\cosh (2\|\xi\|)-1)}, \quad n=8 \tag{273}\\
(i i)\left|r\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2} & =\left|s\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2}=|s(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}(\cosh (2 \theta)-1)}, \quad n=4 .
\end{align*}
$$

Proof.

(i) Consider $\xi \in \mathfrak{s u}(2)$ and $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{8}^{\frac{1}{2}}\right)^{S U(2)}$ with $r(z)=s(z) \nu_{0}$ and $s(z)=$ $f_{1}(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$. The pointwise magnitude of $r(z)$ at $\mathrm{e}^{\imath \xi} \cdot z$ is given by $\left|r\left(\mathrm{e}{ }^{\imath \xi} \cdot z\right)\right|^{2}=\left|s\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2}\left(\nu_{0}, \nu_{0}\right)=$ $\left|f_{1}\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2} \mathrm{e}^{-\frac{1}{\hbar}\left|\mathrm{e}^{\imath \xi} \cdot z\right|^{2}}$. Since $f_{1}(z) \in \mathcal{B}_{8}^{(S U(2)) \mathrm{c}}$ satisfies $f_{1}\left(\mathrm{e}^{\mathrm{e} \xi} \cdot z\right)=f(z)$, then $\left|r\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2}$ can be written as $\left|r\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2}=\left|f_{1}(z)\right|^{2} \mathrm{e}^{-\frac{1}{\hbar}\left|\mathrm{e}^{\imath \xi} \cdot z\right|^{2}}$. The term $\left|\mathrm{e}^{\imath \xi} \cdot z\right|^{2}$ can be calculated as follows. An element $\xi \in \mathfrak{s u}(2)$ can be written as $\xi=\|\xi\| \xi_{\theta}$, where the matrix ξ_{θ} is given by

$$
\xi_{\theta}=\left(\begin{array}{cc}
\imath x_{1} & -x_{2}+\imath x_{3} \tag{274}\\
x_{2}+\imath x_{3} & -\imath x_{1}
\end{array}\right) \quad \text { and } x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 .
$$

Since the matrix $\imath\|\xi\| \xi_{\theta}$ has trace equals to zero, then the exponentiation of $\imath\|\xi\| \xi_{\theta}$ is given by

$$
\mathrm{e}^{\imath\|\xi\| \xi_{\theta}}=\cosh (\|\xi\|) \mathbb{I}+\imath \sinh (\|\xi\|) \xi_{\theta} \quad \text { with } \quad \mathbb{I} \text { the identity matrix },
$$

and so

$$
\mathrm{e}^{\imath \xi} \cdot z=\mathrm{e}^{\imath\|\xi\| \xi_{\theta}} \cdot z=\cosh (\|\xi\|) z+\imath \sinh (\|\xi\|) \xi_{\theta} \cdot z,
$$

where $\xi_{\theta} \cdot z$ is given as in 93 . The term $\mid \mathrm{e}^{\imath\|\xi\| \|\left.\xi_{\theta} \cdot z\right|^{2}}$ can be written as

$$
\left|\mathrm{e}^{\imath\|\xi\| \xi_{\theta}} \cdot z\right|^{2}=\left[\cosh (\|\xi\|) \bar{z}^{T}-\imath \sinh (\|\xi\|) \overline{\left(\xi_{\theta} \cdot z\right)^{T}}\right] \cdot\left[\cosh (\|\xi\|) z+\imath \sinh (\|\xi\|) \xi_{\theta} \cdot z\right] .
$$

The matrix ξ_{θ} satisfies $\xi_{\theta}^{*} \xi_{\theta}=\mathbb{I}$ and $\xi_{\theta}^{*}=-\xi_{\theta}$, so the above equality can be written as

$$
\left|\mathrm{e}^{\imath\|\xi\| \xi_{\theta}} \cdot z\right|^{2}=|z|^{2}\left(\cosh ^{2}(\|\xi\|)+\sinh ^{2}(\|\xi\|)\right)+\imath 2 \sinh (\|\xi\|) \cosh (\|\xi\|)\left[\bar{z}^{T} \cdot\left(\xi_{\theta} \cdot z\right)\right] .
$$

Using expression of ξ_{θ} in (274) a straightforward computation shows that

$$
\imath 2 \sinh (\|\xi\|) \cosh (\|\xi\|)\left[\bar{z}^{T} \cdot\left(\xi_{\theta} \cdot z\right)\right]=\sinh (\|\xi\|) \cosh (\|\xi\|)\left[x_{1} J_{\xi_{1}}(z)-x_{2} J_{\xi_{2}}(z)+x_{3} J_{\xi_{3}}(z)\right] .
$$

For $z \in \mathfrak{J}_{8}^{-1}(0)$ the equalities $J_{\xi_{j}}(z)=0, j=1,2,3$ are fulfilled, and so the following holds

$$
\left|\mathrm{e}^{\imath\|\xi\| \xi_{\theta}} \cdot z\right|^{2}=|z|^{2}\left(\cosh ^{2}(\|\xi\|)+\sinh ^{2}(\|\xi\|)\right)=|z|^{2} \cosh (2\|\xi\|) .
$$

Therefore the pointwise magnitude of $r(z) \in \Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)^{S U(2)}$ at $\mathrm{e}^{\imath \xi} \cdot z=\mathrm{e}^{\imath\|\xi\| \xi_{\theta}} \cdot z$ is given by

$$
\left|r\left(\mathrm{e}^{\imath \xi} \cdot z\right)\right|^{2}=\left|f_{1}(z)\right|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2} \cosh (2\|\xi\|)}=|s(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}(\cosh (2\|\xi\|)-1)}
$$

(ii) For dimension $n=4$ an element $\xi \in \mathfrak{u}(1)$ can be written as $\xi=\imath \theta$ with $\theta \in \mathbb{R}$ and $\imath \xi=-\theta$. The action $\tilde{\Phi}_{\mathrm{e}^{-\theta}}(z)$ is given by $\tilde{\Phi}_{\mathrm{e}^{-\theta}}(z)=\left(\mathrm{e}^{-\theta} z_{1}, \mathrm{e}^{-\theta} z_{2}, \mathrm{e}^{\theta} z_{3}, \mathrm{e}^{\theta} z_{4}\right)=\mathrm{e}^{-\theta} \cdot z$. Consider $r(z) \in$ $\Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)^{U(1)}$ with $r(z)=s(z) \nu_{0}$ and $s(z)=f_{2}(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}}$. The pointwise magnitude of $r(z)$ at $\mathrm{e}^{-\theta} \cdot z$ is given by $\left|r\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2}=\left|s\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2}\left(\nu_{0}, \nu_{0}\right)=\left|f_{2}\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2} \mathrm{e}^{-\frac{1}{\hbar}\left|\mathrm{e}^{-\theta} \cdot z\right|^{2}}$. Since $f_{2} \in \mathcal{B}_{4}^{(U(1)) \mathbb{C}}$ satisfies $f_{2}\left(\mathrm{e}^{-\theta} \cdot z\right)=f(z)$, then $\left|r\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2}$ can be written as

$$
\left|r\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2}=\left|f_{2}(z)\right|^{2} \mathrm{e}^{-\frac{1}{\hbar}\left|\mathrm{e}^{-\theta} \cdot z\right|^{2}}
$$

A short calculation shows that $\left|\mathrm{e}^{-\theta} \cdot z\right|^{2}=\mathrm{e}^{-2 \theta}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)+\mathrm{e}^{2 \theta}\left(\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}\right)$, and $z \in \mathfrak{J}_{4}^{-1}(0)$ satisfies $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-\left|z_{4}\right|^{2}=0$. Hence, the following equalities hold

$$
\left|\mathrm{e}^{-\theta} \cdot z\right|^{2}=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\left(\mathrm{e}^{-2 \theta}+\mathrm{e}^{2 \theta}\right)=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) \cosh (2 \theta)=|z|^{2} \cosh (2 \theta)
$$

Therefore the pointwise magnitude $r(z) \in \Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)^{U(1)}$ at $\mathrm{e}^{-\theta} \cdot z$ is given by

$$
\left|r\left(\mathrm{e}^{-\theta} \cdot z\right)\right|^{2}=|f(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2} \cosh (2 \theta)}=|s(z)|^{2} \mathrm{e}^{-\frac{1}{\hbar}|z|^{2}(\cosh (2 \theta)-1)}
$$

Now the Liouville volume will be decomposed in terms of coordinates on \mathfrak{g}_{n} and $\mathfrak{J}_{n}^{-1}(0)$.

Lemma 8. Volume Decomposition

Consider the transformation $\Lambda: \mathfrak{g}_{n} \times \mathfrak{J}_{n}^{-1}(0) \longrightarrow M_{s}, \Lambda\left(\xi, z_{0}\right)=\tilde{\Phi}_{\mathrm{e}^{\imath} \xi}\left(z_{0}\right)=\mathrm{e}^{\imath \xi} \cdot z_{0}$. The Liouville volume $\epsilon_{\omega_{n}}(z)=d z_{1} \wedge \ldots \wedge d z_{n} \wedge d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{n}$ on $\mathbb{C}^{n}, n=4,8$ (which is the same as the Riemannian volume) can be decomposed as

$$
\begin{equation*}
\Lambda^{*}\left(\epsilon_{\omega_{n}}\right)_{\left(\xi, z_{0}\right)}=\tau_{n}\left(\xi, z_{0}\right) d \mathfrak{g}_{n} \wedge d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right) \tag{275}
\end{equation*}
$$

where the G_{n}-invariant Jacobian $\tau_{n} \in C^{\infty}\left(\mathfrak{g}_{n} \times \mathfrak{J}_{n}^{-1}(0)\right)$ is given by

$$
\begin{equation*}
\tau_{8}\left(\xi, z_{0}\right)=\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right) \quad n=8, \quad \text { and } \quad \tau_{4}\left(\xi, z_{0}\right)=\operatorname{Vol}\left(G_{4} \cdot z_{0}\right) \quad n=4 \tag{276}
\end{equation*}
$$

Proof. I proceed to prove lemma 8 in both cases $n=8,4$. The differential of Λ at $\left(\xi, z_{0}\right)$ can be written as follows

$$
d \Lambda_{\left(\xi, z_{0}\right)}: T_{\xi} \mathfrak{g}_{n} \times T_{z_{0}} \mathfrak{J}_{n}^{-1}(0) \longrightarrow T_{\mathrm{e}^{\imath \xi} \cdot z_{0}} M_{s}
$$

Since $T_{\xi} \mathfrak{g}_{n}$ is identified with the Lie algebra \mathfrak{g}_{n}, then $d \Lambda_{\left(\xi, z_{0}\right)}$ can be thought of as a map

$$
d \Lambda_{\left(\xi, z_{0}\right)}: \mathfrak{g}_{n} \times T_{z_{0}} \mathfrak{J}_{n}^{-1}(0) \longrightarrow T_{\mathrm{e}^{\imath \varepsilon} \cdot z_{0}} M_{s}
$$

Consider a curve $z_{0}(s)$ on $\mathfrak{J}_{n}^{-1}(0)$ such that $z_{0}(0)=z_{0}$ and $\dot{z}_{0}(0) \in T_{z_{0}} \mathfrak{J}_{n}^{-1}(0)$. Let me take $\eta \in \mathfrak{g}_{n}$ and calculate the following

$$
\begin{align*}
d \Lambda_{\left(\xi, z_{0}\right)}\left(\eta, \dot{z}_{0}(0)\right) & =\left.\frac{d}{d s}\right|_{s=0} \mathrm{e}^{\imath(\xi+s \eta)} \cdot z_{0}(s) \tag{277}\\
& =\left.\frac{d}{d s}\right|_{s=0}\left(\mathrm{e}^{\imath(\xi+s \eta)}\right) \cdot z_{0}+\mathrm{e}^{\imath \xi} \cdot \dot{z}_{0}(0)
\end{align*}
$$

The derivative in (277) is calculated in each case. For $\mathrm{n}=4$ the elements $\xi, \eta \in \mathfrak{g}_{4}=\mathfrak{u}(1)$ satisfy $\mathrm{e}^{\imath(\xi+s \eta)}=\mathrm{e}^{\imath \xi} \mathrm{e}^{\imath s \eta}$, so the derivative is calculated as follows

$$
\begin{align*}
d \Lambda_{\left(\xi, z_{0}\right)}\left(\eta, \dot{z}_{0}(0)\right) & =\mathrm{e}^{\imath \xi}\left[\left.\frac{d}{d s}\right|_{s=0} \mathrm{e}^{\imath s \eta} \cdot z_{0}+\dot{z}_{0}(0)\right] \tag{278}\\
& =\mathrm{e}^{\imath \xi}\left[J X_{\eta}\left(z_{0}\right)+\dot{z}_{0}(0)\right]
\end{align*}
$$

The vectors $J X_{\eta}\left(z_{0}\right)$ and $\dot{z}_{0}(0)$ in (278) are B-orthogonal. Namely, $B\left(J X_{\eta}\left(z_{0}\right), \dot{z}(0)\right)=$ $\omega_{4}\left(J X_{\eta}\left(z_{0}\right), J \dot{z}(0)\right)=\omega_{4}\left(X_{\eta}\left(z_{0}\right), \dot{z}(0)\right)=d J_{\eta}\left(z_{0}\right)=0$.

Let me identify $M=\mathbb{C}^{4} \cong \mathbb{R}^{8}$ with real coordinates $(x, y) \in \mathbb{R}^{8}$. The Riemannian volume can be written as

$$
d \operatorname{Vol}(M)_{(x, y)}=\sqrt{\operatorname{det}\left(B_{(x, y)}\right)} d x^{1} \wedge \ldots \wedge d x^{4} \wedge d y^{1} \wedge \ldots \wedge d y^{4}
$$

where the Riemannian metric $B_{(x, y)}$ is evaluated on a frame in M.
The coordinates (x, y) on M can be chosen such that x^{1} is in the direction of the vector $J X_{\eta}\left(z_{0}\right)$, and the other $\left(x^{2}, \ldots, x^{4}, y^{1}, \ldots, y^{4}\right)$ are directions of the tangent space $T_{z_{0}} \mathfrak{J}_{4}^{-1}(0)$. In these coordinates the matrix $B_{(x, y)}$ is block diagonal, and $\operatorname{det}\left(B_{(x, y)}\right)$ is given by

$$
\operatorname{det}\left(B_{(x, y)}\right)=\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi \cdot z_{0}}} \operatorname{det}\left(\left.B_{(x, y)}\right|_{\mathfrak{J}_{4}^{-1}(0)}\right.
$$

The Riemannian volume can be written as follows

$$
\begin{equation*}
d V o l(M)_{(x, y)}=\sqrt{\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi} \cdot z_{0}}} d x^{1} \wedge \sqrt{\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathfrak{J}_{4}^{-1}(0)}} d x^{2} \wedge \ldots \wedge d x^{4} \wedge d y^{1} \wedge \ldots \wedge d y^{4} \tag{279}
\end{equation*}
$$

The Riemannian volume $d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)$ is given by

$$
d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)=\sqrt{\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathfrak{J}_{4}^{-1}(0)}} d x^{2} \wedge \ldots \wedge d x^{4} \wedge d y^{1} \wedge \ldots \wedge d y^{4}
$$

Now I calculate the term $\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi \cdot z_{0}}}$. The tangent vector in the direction x^{1} is given by

$$
\frac{\partial}{\partial x^{1}}=\left.\frac{d}{d s}\right|_{s=0} \mathrm{e}^{\imath s \eta} \cdot z_{0}=J X_{\eta}\left(z_{0}\right)
$$

The term $\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi \cdot z_{0}}}=\operatorname{det}\left(B\left(\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{1}}\right)\right)$ is given by

$$
\begin{aligned}
\operatorname{det}\left(B\left(\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{1}}\right)\right) & =\operatorname{det}\left(B\left(J X_{\eta}, J X_{\eta}\right)\right) \\
& =\operatorname{det}\left(B\left(X_{\eta}, X_{\eta}\right)\right) \\
& =\operatorname{Vol}\left(G_{4} \cdot z_{0}\right)^{2}
\end{aligned}
$$

Let me identify $\mathfrak{u}(1)=\imath \mathbb{R}$ with \mathbb{R} so that the one form $d \mathfrak{g}_{4}$ is given by $d \mathfrak{g}_{4}=d x^{1}$. The Riemannian volume in 279 can be written as follows

$$
d \operatorname{Vol}(M)_{(x, y)}=\operatorname{Vol}\left(G_{4} \cdot z_{0}\right) d \mathfrak{g}_{4} \wedge d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)
$$

Therefore the Liouville volume of \mathbb{C}^{4} can be decomposed as follows

$$
\Lambda^{*}\left(\epsilon_{\omega_{4}}\right)_{\left(\xi, z_{0}\right)}=\operatorname{Vol}\left(G_{4} \cdot z_{0}\right) d \mathfrak{g}_{4} \wedge d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)
$$

For dimension $n=8$ the following facts will be used to calculate the derivative in (277). Consider the basis $\xi_{1}, \xi_{2}, \xi_{3}$ of $\mathfrak{s u}(2)$ in (101). Let me take $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and $x=\left(x_{1}, x_{2}, x_{3}\right) \in$ \mathbb{R}^{3}, so that any element $\xi \in \mathfrak{s u}(2)$ can be written as follows

$$
\xi=x \cdot \boldsymbol{\xi}=x_{1} \xi_{1}+x_{2} \xi_{2}+x_{3} \xi_{3}=\left(\begin{array}{cc}
\imath x_{1} & -x_{2}+\imath x_{3} \tag{280}\\
x_{2}+\imath x_{3} & -\imath x_{1}
\end{array}\right)
$$

The adjoint action of $A \in S U(2)$ on ξ is given by

$$
\begin{equation*}
A \xi A^{-1} \tag{281}
\end{equation*}
$$

Taking ξ as in 280) a straightforward calculation shows that $A \xi A^{-1}=x^{\prime} \cdot \boldsymbol{\xi}$ with $x^{\prime}=R \cdot x$, $R \in S O(3, \mathbb{R})$, see [28, Chap. 9]. Namely,

$$
\begin{equation*}
(R \cdot x) \cdot \boldsymbol{\xi}=A(x \cdot \boldsymbol{\xi}) A^{-1} \tag{282}
\end{equation*}
$$

An element $\xi \in \mathfrak{s u}(2)$ can be written as $\xi=\|\xi\| \xi_{\theta}$, where ξ_{θ} is defined in (274). The entries of ξ_{θ} are elements in S^{2}. Since $S O(3, \mathbb{R})$ acts transitively on S^{2}, then it follows from equality 282 that $\xi \in \mathfrak{s u}(2)$ can be written as $\xi=\|\xi\| A \xi_{3} A^{-1}$.

Let me use the following result to calculate the derivative in (277), see theorem 3.5 in [21]. For any two $n \times n$ complex matrices X, Y the following equality holds

$$
\begin{equation*}
\left.\frac{d}{d s}\right|_{s=0} \mathrm{e}^{X+s Y}=\mathrm{e}^{X}\left\{Y-\frac{[X, Y]}{2!}+\frac{[X,[X, Y]]}{3!}-\frac{[X,[X,[X, Y]]]}{4!}+\ldots\right\} \tag{283}
\end{equation*}
$$

Let me take $X=\imath \xi$ with $\xi=\|\xi\| A \xi_{3} A^{-1}$ and $Y=\imath \eta$ with $\eta=b_{1} \xi_{1}+b_{2} \xi_{2}+b_{3} \xi_{3}$. It is not difficult to see that $[X, Y]=-\|\xi\| A\left(\left[\xi_{3}, A^{-1} \eta A\right]\right) A^{-1}$. It follows from equality (282) that $A^{-1} \eta A$ can be written as $A^{-1} \eta A=b_{1}^{\prime} \xi_{1}+b_{2}^{\prime} \xi_{2}+b_{3}^{\prime} \xi_{3}$ with $b^{\prime}=R^{-1} \cdot b$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$.

Let me define $\mu_{1}=\xi_{1}+\imath \xi_{2}$ and $\mu_{2}=\xi_{2}+\imath \xi_{1}$. A short calculation shows that

$$
\left[\xi_{3}, \mu_{1}\right]=2 \imath \mu_{1}, \quad\left[\xi_{3}, \mu_{2}\right]=-2 \imath \mu_{2}
$$

Element $A^{-1} \eta A \in \mathfrak{s u}(2)$ can be written in terms of $\mu_{1}, \mu_{2}, \xi_{3}$ as $A^{-1} \eta A=\frac{b_{1}^{\prime}}{2}\left(\mu_{1}-\imath \mu_{2}\right)+\frac{b_{2}^{\prime}}{2}\left(\mu_{2}-\right.$ $\left.\imath \mu_{1}\right)+b_{3}^{\prime} \xi_{3}$. A straightforward calculation shows that the commutators in (283) are given by

$$
\begin{aligned}
{[X, Y] } & =\|\xi\| A\left(b_{1}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)+b_{2}^{\prime}\left(\imath \mu_{2}-\mu_{1}\right)\right) A^{-1} \\
{[X,[X, Y]] } & =\imath(2\|\xi\|)^{2} A\left(b_{1}^{\prime}\left(\mu_{1}-\imath \mu_{2}\right)+b_{2}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)\right) A^{-1} \\
{[X,[X,[X, Y]]] } & =2^{2}\|\xi\|^{3} A\left(b_{1}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)+b_{2}^{\prime}\left(\imath \mu_{2}-\mu_{1}\right)\right) A^{-1} \\
{[X,[X,[X,[X, Y]]]] } & =\imath 2^{3}\|\xi\|^{4} A\left(b_{1}^{\prime}\left(\mu_{1}-\imath \mu_{2}\right)+b_{2}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)\right) A^{-1} .
\end{aligned}
$$

After long calculations the higher order commutators of $[X, Y]$ with the vector X are given by

$$
\begin{aligned}
& \underbrace{[X,[X \ldots[X, Y]] \ldots]}_{2 n \text {-times }}=\imath 2^{2 n-1}\|\xi\|^{2 n} A\left(b_{1}^{\prime}\left(\mu_{1}-\imath \mu_{2}\right)+b_{2}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)\right) A^{-1} \\
& \underbrace{[X,[X \ldots[X, Y]] \ldots]}_{2 n+1 \text {-times }}=2^{n}\|\xi\|^{2 n+1} A\left(b_{1}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)+b_{2}^{\prime}\left(\imath \mu_{2}-\mu_{1}\right)\right) A^{-1} .
\end{aligned}
$$

The derivative in (277) can be written as follows
(284) $\left.\quad \frac{d}{d s}\right|_{s=0} \mathrm{e}^{\imath(\xi+s \eta)} \cdot z_{0}(s)=$
$\mathrm{e}^{\imath \xi}\left\{\imath \eta \cdot z_{0}+\left(\frac{2\|\xi\|^{2}}{3!}+\frac{2^{3}\|\xi\|^{4}}{5!}+\ldots+\frac{2^{n-1}\|\xi\|^{2 n}}{(2 n+1)!}\right) A\left(b_{1}^{\prime} \imath\left(\mu_{1}-\imath \mu_{2}\right)+b_{2}^{\prime} \imath\left(\mu_{2}-\imath \mu_{1}\right)\right) A^{-1} \cdot z_{0}\right.$
$\left.+\left(\frac{(\|\xi\|)}{2!}+\frac{2^{2}\|\xi\|^{3}}{4!}+\frac{2^{4}\|\xi\|^{5}}{6!}+\ldots+\frac{2^{2 n}\|\xi\|^{2 n+1}}{2 n!}\right) A\left(b_{1}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)+b_{2}^{\prime}\left(\imath \mu_{2}-\mu_{1}\right)\right) A^{-1} \cdot z_{0}+\dot{z}(0)\right\}$.
By identifying

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}-1\right)=\frac{2\|\xi\|^{2}}{3!}+\frac{2^{3}\|\xi\|^{4}}{5!}+\ldots+\frac{2^{2 n-1}\|\xi\|^{2 n}}{(2 n+1)!} \\
& \frac{1}{2}\left(\frac{\cosh (2\|\xi\|)-1}{2\|\xi\|}\right)=\frac{\|\xi\|}{2!}+\frac{2^{2}\|\xi\|^{3}}{4!}+\frac{2^{4}\|\xi\|^{5}}{6!}+\ldots+\frac{2^{2 n}\|\xi\|^{(2 n+1)}}{2 n!}
\end{aligned}
$$

the derivative in 284 can be written as

$$
\begin{aligned}
\left.\frac{d}{d s}\right|_{s=0} \mathrm{e}^{\imath(\xi+s \eta)} \cdot z_{0}(s) & = \\
\mathrm{e}^{\imath \xi}\left\{\imath \eta \cdot z_{0}+\right. & \frac{1}{2}\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}-1\right) A\left(b_{1}^{\prime} \imath\left(\mu_{1}-\imath \mu_{2}\right)+b_{2}^{\prime} \imath\left(\mu_{2}-\imath \mu_{1}\right)\right) A^{-1} \cdot z_{0}+ \\
& \left.\frac{1}{2}\left(\frac{\cosh (2\|\xi\|)-1}{2\|\xi\|}\right) A\left(b_{1}^{\prime}\left(\mu_{2}-\imath \mu_{1}\right)+b_{2}^{\prime}\left(\imath \mu_{2}-\mu_{1}\right)\right) A^{-1} \cdot z_{0}+\dot{z}(0)\right\} .
\end{aligned}
$$

Let me identify $\frac{1}{2}\left(\mu_{1}-\imath \mu_{2}\right)=\xi_{1}, \frac{1}{2}\left(\mu_{2}-\imath \mu_{1}\right)=\xi_{2}, \frac{1}{2}\left(\imath \mu_{2}-\mu_{1}\right)=-\xi_{1}$ and write $\eta=$ $A\left(A^{-1} \eta A\right) A^{-1}=A\left(b_{1}^{\prime} \xi_{1}+b_{2}^{\prime} \xi_{2}+b_{3}^{\prime} \xi_{3}\right) A^{-1}$ so that the above equality can be written as follows
(285) $\left.\quad \frac{d}{d s}\right|_{s=0} \mathrm{e}^{\imath(\xi+s \eta)} \cdot z_{0}(s)=$
$\mathrm{e}^{\imath \xi}\left\{A\left[b_{3}^{\prime} \imath \xi_{3}+\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)\left(b_{1}^{\prime} \imath \xi_{1}+b_{2}^{\prime} \imath \xi_{2}\right)+\left(\frac{\cosh (2\|\xi\|)-1}{2\|\xi\|}\right)\left(b_{1}^{\prime} \xi_{2}-b_{2}^{\prime} \xi_{1}\right)\right] A^{-1} \cdot z_{0}+\dot{z}(0)\right\}$.
Let me show that the following equality holds
$A\left[b_{3}^{\prime} \imath \xi_{3}+\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)\left(b_{1}^{\prime} \imath \xi_{1}+b_{2}^{\prime} \imath \xi_{2}\right)\right] A^{-1} \cdot z_{0}=\left[b_{3} \imath \xi_{3}+\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)\left(b_{1} \imath \xi_{1}+b_{2} \imath \xi_{2}\right)\right] \cdot z_{0}$.
From equality (280) the left-hand side of equality (286) can be written as
$\imath(y \cdot \tilde{\boldsymbol{\xi}})$ with $y=\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}, \frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}, 1\right), \quad \tilde{\boldsymbol{\xi}}=\left(\tilde{\boldsymbol{\xi}}_{1}, \tilde{\boldsymbol{\xi}}_{2}, \tilde{\boldsymbol{\xi}}_{3}\right)$ and $\tilde{\boldsymbol{\xi}}_{j}=A b_{j}^{\prime} \xi_{j} A^{-1}, j=1,2,3$.
It follows from equality 282 that the vector $\tilde{\boldsymbol{\xi}}$ regarded as an element $\tilde{\xi} \in \mathfrak{s u}(2)$ can be written as $\tilde{\xi}=A\left(b^{\prime} \cdot \boldsymbol{\xi}\right) A^{-1}=A\left(A^{-1} b \cdot \boldsymbol{\xi} A\right) A^{-1}=b \cdot \boldsymbol{\xi}$, which implies that $\tilde{\boldsymbol{\xi}}=\left(b_{1} \xi_{1}, b_{2} \xi_{2}, b_{3} \xi_{3}\right)$. Hence, equality $\imath(y \cdot \tilde{\boldsymbol{\xi}})=y_{1} \imath b_{1} \xi_{1}+y_{3} \imath b_{2} \xi_{2}+y_{3} \imath b_{3} \xi_{3}$ holds. Therefore equality 286) is fulfilled.

The vectors $\imath \xi_{j} \cdot z_{0}$ are identified with $J\left(X_{\xi_{j}}\left(z_{0}\right)\right), j=1,2,3$ which are orthogonal to the tangent vector v at $\cdot z_{0} \in \mathfrak{J}_{8}^{-1}(0)$. Namely,

$$
\begin{aligned}
B\left(J X_{\xi_{j}}, v\right)_{z_{0}} & =\omega_{8}\left(J\left(X_{\xi_{j}}\right), J v\right)_{z_{0}} \\
& =\omega_{8}\left(X_{\xi_{j}}, v\right)_{z_{0}} \\
& =\left.d J_{\xi_{j}}(v)\right|_{z_{0} \in \mathfrak{J}_{8}^{-1}(0)} \\
& =0
\end{aligned}
$$

Now let me identify $\boldsymbol{M}=\mathbb{C}^{8} \cong \mathbb{R}^{16}$ with real coordinates $(x, y) \in \mathbb{R}^{16}$. The Riemannian volume can be written as

$$
\begin{equation*}
d \operatorname{Vol}(\boldsymbol{M})_{(x, y)}=\sqrt{\operatorname{det} B_{(x, y)}} d x^{1} \wedge \ldots \wedge d x^{8} \wedge d y^{1} \wedge \ldots \wedge d y^{8} \tag{287}
\end{equation*}
$$

where the Riemannian metric $B_{(x, y)}$ is evaluated on a frame of \boldsymbol{M}. The coordinates (x, y) on \boldsymbol{M} can be chosen such that x^{1}, x^{2}, x^{3} are in the direction of the vectors $J X_{\xi_{1}}, J X_{\xi_{2}}, J X_{\xi_{3}}$, and the other $\left(x^{4}, \ldots, x^{8}, y^{1}, \ldots, y^{8}\right)$ are directions of the tangent space $T_{z_{0}} \mathfrak{J}_{8}^{-1}(0)$. In these coordinates the matrix $B_{(x, y)}$ is block diagonal, and $\operatorname{det}\left(B_{(x, y)}\right)$ is given by

$$
\operatorname{det} B_{(x, y)}=\left.\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi \cdot} \cdot z_{0}} \operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}
$$

Consider the frame in 286 so that the vector fields in the direction of $x^{j}, j=1,2,3$ are given by

$$
\begin{align*}
\frac{\partial}{\partial x_{1}} & =\left.\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|} \frac{d}{d t}\right|_{t=0} \mathrm{e}^{\imath t \xi_{1}} \cdot z_{0}=\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|} J X_{\xi_{1}}\left(z_{0}\right) \tag{288}\\
\frac{\partial}{\partial x_{2}} & =\left.\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|} \frac{d}{d t}\right|_{t=0} \mathrm{e}^{\imath t \xi_{2}} \cdot z_{0}=\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|} J X_{\xi_{2}}\left(z_{0}\right) \\
\frac{\partial}{\partial x_{3}} & =\left.\frac{d}{d t}\right|_{t=0} \mathrm{e}^{\imath t \xi_{3}} \cdot z_{0}=J X_{\xi_{3}}\left(z_{0}\right)
\end{align*}
$$

The matrix $\left.\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{i \xi \cdot z_{0}}}$ is diagonal and its entries are given by

$$
\begin{aligned}
B\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{j}}\right) & =\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} B\left(J X_{\xi_{j}}, J X_{\xi_{j}}\right) \\
& =\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} B\left(X_{\xi_{j}}, X_{\xi_{j}}\right), j=1,2
\end{aligned}
$$

and

$$
B\left(\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{3}}\right)=B\left(J X_{\xi_{3}}, J X_{\xi_{3}}\right)=B\left(X_{\xi_{3}}, X_{\xi_{3}}\right)
$$

Hence, the term $\sqrt{\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi} \cdot z_{0}}}=\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right)$.
The Riemannian volume $d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right)$ is given by

$$
d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right)=\sqrt{\left.\left(B_{(x, y)}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}} d x^{4} \wedge \ldots \wedge d x^{8} \wedge d y^{1} \wedge \ldots \wedge d y^{8}
$$

From equations (288) the differentials $d x_{j}, j=1,2,3$ can be thought of as differentials along the directions of ξ_{j} so that the three form $d x^{1} \wedge d x^{2} \wedge d x^{3}$ can be regarded as a volume form on $\mathfrak{s u}(2)$, that is, $d \mathfrak{g}_{8}=d x^{1} \wedge d x^{2} \wedge d x^{3}=d \xi$. The Riemannian volume in 287 can be written as follows

$$
\begin{aligned}
d \operatorname{Vol}(\boldsymbol{M})_{(x, y)} & =\sqrt{\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathrm{e}^{\imath \xi} z_{0}}} d x^{1} \wedge d x^{2} \wedge d x 3 \wedge \sqrt{\left.\operatorname{det}\left(B_{(x, y)}\right)\right|_{\mathfrak{J}_{8}^{-1}(0)}} d x^{4} \wedge d y^{1} \wedge \ldots \wedge d y^{8} \\
& =\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right) d \mathfrak{g}_{8} \wedge d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right)
\end{aligned}
$$

Therefore the Liouville volume on \mathbb{C}^{8} can be decomposed as

$$
\Lambda^{*}\left(\epsilon_{\omega_{8}}\right)_{\left(\xi, z_{0}\right)}=\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right) d \mathfrak{g}_{8} \wedge d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right)
$$

Proof. (Theorem 3)
The squared norm of $r \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ on M_{s} can be computed as follows

$$
\begin{equation*}
\left.\left.\frac{1}{(\pi \hbar)^{n}} \int_{\mathfrak{g}_{n}} \int_{\mathfrak{J}_{n}^{-1}(0)} \right\rvert\, r\left(\mathrm{e}^{\imath \xi} \cdot z_{0}\right)\right)\left.\right|^{2} \tau_{n}\left(\xi, z_{0}\right) d \mathfrak{g}_{n} d \operatorname{Vol}\left(\mathfrak{J}_{n}^{-1}(0)\right) \tag{289}
\end{equation*}
$$

For $n=8$ consider $\xi \in \mathfrak{s u}(2)$ and $z_{0} \in \mathfrak{J}_{8}^{-1}(0)$. Take the pointwise magnitude in (273) and volume decomposition $\Lambda^{*}\left(\epsilon_{\omega_{8}}\right)_{\left(\xi, z_{0}\right)}$ so that the integral in 289 for $r \in \Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)^{S U(2)}$ is given by

$$
\begin{equation*}
\frac{1}{(\pi \hbar)^{3 / 2}} \int_{\mathfrak{s u}(2)} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\mathfrak{J}_{8}^{-1}(0)}\left|r\left(z_{0}\right)\right|^{2} \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}(1-\cosh (2\|\xi\|)}\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right) d \mathfrak{g}_{8} d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right) . \tag{290}
\end{equation*}
$$

The integration over $\mathfrak{s u}(2)$ can be carried out in spherical coordinates by identifying $\mathfrak{s u}(2)$ with \mathbb{R}^{3}. That is, the volume on $\mathfrak{s u}(2)$ can be written as $d \mathfrak{g}_{8}=r^{2} d r d_{\Omega_{S^{2}}}$ with $\|\xi\|=r$. Let me recall that $\operatorname{Vol}\left(G_{8} \cdot z_{0}\right)=2^{\frac{3}{2}}\left|z_{0}\right|^{3}$. The integral on $\mathfrak{s u}(2)$ can be written as follows

$$
\begin{aligned}
\frac{1}{(\pi \hbar)^{3 / 2}} \int_{\mathfrak{s u}(2)} \mathrm{e}^{\frac{\left|z_{0}\right|^{2}}{\hbar}(1-\cosh (2\|\xi\|)}\left(\frac{\operatorname{senh}(2\|\xi\|)}{2\|\xi\|}\right)^{2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right) d \mathfrak{g}_{8}= \\
\frac{1}{(\pi \hbar)^{3 / 2}} 2^{3 / 2} \Omega_{S^{2}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}}\left(\left|z_{0}\right|^{2} \int_{0}^{\infty} \mathrm{e}^{-\frac{\left|z_{0}\right|^{2}}{\hbar} \cosh (2 r)} \operatorname{senh}^{2}(2 r) d r\right) .
\end{aligned}
$$

It follows from definition of the Macdonald-Bessel function in (269) that

$$
\begin{aligned}
& \frac{1}{(\pi \hbar)^{3 / 2}} 2^{3 / 2} \Omega_{S^{2}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}}\left(\left|z_{0}\right|^{2} \int_{0}^{\infty} \mathrm{e}^{-\frac{\left|z_{0}\right|^{2}}{\hbar} \cosh (2 r)} \operatorname{senh}^{2}(2 r) d r\right)= \\
& \quad \frac{(2)^{1 / 2} \Omega_{S^{2}}}{\pi}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}} \frac{1}{\sqrt{\pi \hbar}} K_{1}\left(\frac{\left|z_{0}\right|^{2}}{\hbar}\right)
\end{aligned}
$$

Hence, the integral over $\mathfrak{J}_{8}^{-1}(0)$ is given by
(291)
$\frac{\sqrt{2} \Omega_{S^{2}}}{\pi} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\mathfrak{J}_{8}^{-1}(0)}\left|r\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d V o l\left(\mathfrak{J}_{8}^{-1}(0)\right) \quad$ with $\quad \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)=\frac{1}{\sqrt{\pi \hbar}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}} K_{1}\left(\frac{\left|z_{0}\right|^{2}}{\hbar}\right)$.
The integrand in (291) is $S U(2)$-invariant, so it follows from equality 272 that the integral over $\mathfrak{J}_{8}^{-1}(0)$ can be pushed down to an integral on $\mathfrak{J}_{8}^{-1}(0) / S U(2) \cong \dot{Q}_{5}$. Namely,
$\frac{\sqrt{2} \Omega_{S^{2}}}{\pi} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\tilde{J}_{8}^{-1}(0)}\left|r\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right)=\frac{2^{2} \Omega_{S^{2}}}{\pi} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\dot{Q}_{5}}\left|S_{8}(r)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) \varepsilon_{\widehat{\omega}}(\alpha)$.
Equality 229 is obtained from the relationship between $\left|r\left(z_{0}\right)\right|^{2}$ and $\left|S_{8}(r)\right|^{2}\left(\left[z_{0}\right]\right)$ in 257 . Namely,

$$
2^{3 / 2} \operatorname{Vol}\left(G_{8} \cdot z_{0}\right)^{-1}\left|S_{8}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left|r\left(z_{0}\right)\right|^{2}, \quad z_{0} \in \mathfrak{J}_{8}^{-1}(0) .
$$

Let me recall that in theorem 1 the map S_{8} takes a section $r \in \Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)^{S U(2)}$ to a section $S_{8}(r)(\alpha)=\widehat{r}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{5}}^{\frac{1}{2}}\right)$ with $\widehat{r}(\alpha)=\phi(\alpha) \mathrm{e}^{-\frac{1}{\sqrt{2} \hbar}|\alpha|} \widehat{\nu}_{0}$. The pointwise magnitude $\left|S_{8}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left|S_{8}(r)\right|^{2}(\alpha)$ is given by

$$
\left|S_{8}(r)\right|^{2}(\alpha)=|\phi(\alpha)|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|}\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right)=|\phi(\alpha)|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|} 2^{3 / 4}|\alpha|^{3 / 2}
$$

The term $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)$ in 291$)$ regarded as a density $\tilde{I}_{\hbar}(\alpha)$ on \dot{Q}_{5} is given by

$$
\begin{equation*}
\tilde{I}_{\hbar}(\alpha)=\frac{1}{\sqrt{\pi \hbar}} 2^{1 / 4}|\alpha|^{1 / 2} \mathrm{e}^{\frac{\sqrt{2}}{\hbar}|\alpha|} K_{1}\left(\frac{\sqrt{2}}{\hbar}|\alpha|\right) \tag{293}
\end{equation*}
$$

Hence, the integral over \dot{Q}_{5} can be written as follows

$$
\frac{2^{2} \Omega_{S^{2}}}{\pi} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\dot{Q}_{5}}\left|S_{8}(r)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) \varepsilon_{\omega}(\alpha)=\frac{2^{3} \Omega_{S^{2}}}{\pi^{8}} \frac{1}{\hbar^{7}} \int_{\dot{Q}_{5}}|\phi(\alpha)|^{2}|\alpha|^{2} K_{1}\left(\frac{\sqrt{2}|\alpha|}{\hbar}\right) \varepsilon_{\widehat{\omega}}(\alpha)
$$

The following equality holds from the above calculations

$$
\begin{equation*}
\|r(z)\|^{2}=\frac{1}{(\pi \hbar)^{8}} \int_{\mathbb{C}^{8}}|r(z)|^{2} d \bar{z} d z=\left(\frac{2^{3} \Omega_{S^{2}}}{\pi^{8}}\right) \frac{1}{\hbar^{7}} \int_{\dot{Q}_{5}}|\phi(\alpha)|^{2}|\alpha|^{2} K_{1}\left(\frac{\sqrt{2}|\alpha|}{\hbar}\right) \varepsilon_{\widehat{\omega}}(\alpha) \tag{294}
\end{equation*}
$$

For dimension $n=4$ an element $\xi \in \mathfrak{u}(1)$ can be written as $\xi=\imath \theta$ with $\theta \in \mathbb{R}$. The Lie algebra $\mathfrak{u}(1)$ is identified with \mathbb{R} so that its volume form is $d \mathfrak{g}_{4}=d \theta$. Take the pointwise
magnitude in 273 and the volume decomposition $\Lambda^{*}\left(\epsilon_{\omega_{4}}\right)_{\left(\xi, z_{0}\right)}$ of the previous lemma so that the integral in 289 for $r \in \Gamma_{P}\left(L^{\omega_{8}} \otimes K_{8}^{\frac{1}{2}}\right)^{U(1)}$ is given by

$$
\frac{1}{(\pi \hbar)^{1 / 2}} \int_{\mathbb{R}} \frac{1}{(\pi \hbar)^{7 / 2}} \int_{\mathfrak{J}_{4}^{-1}(0)}\left|r\left(z_{0}\right)\right|^{2} \mathrm{e}^{\frac{\left|z_{0}\right|^{2}}{\hbar}(1-\cosh (2 \theta))} \operatorname{Vol}\left(G_{4} \cdot z_{0}\right) d \theta d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)
$$

Let me recall that $\operatorname{Vol}\left(G_{4} \cdot z_{0}\right)=2^{1 / 2}\left|z_{0}\right|$. The integral over $\mathfrak{u}(1)$ is given by

$$
\frac{1}{(\pi \hbar)^{1 / 2}} \int_{\mathfrak{u}(1)} \mathrm{e}^{\frac{\left|z_{0}\right|^{2}}{\hbar}(1-\cosh (2 \theta))} \operatorname{Vol}\left(G_{4} \cdot z_{0}\right) d \xi=\frac{2^{3 / 2}}{\sqrt{\pi \hbar}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|} \int_{0}^{\infty} \mathrm{e}^{-\frac{1}{\hbar}\left|z_{0}\right|^{2} \cosh (2 \theta)} d \theta
$$

It follows from definition of the Macdonald-Bessel function in 269 that

$$
2^{3 / 2}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|} \int_{0}^{\infty} \mathrm{e}^{-\frac{1}{\hbar}\left|z_{0}\right|^{2} \cosh (2 \theta)} d \theta=2^{1 / 2} \frac{1}{\sqrt{\pi \hbar}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}} K_{0}\left(\frac{1}{\hbar}\left|z_{0}\right|^{2}\right) .
$$

Hence, the integral over $\mathfrak{J}_{4}^{-1}(0)$ is given by

$$
\begin{equation*}
\frac{\sqrt{2}}{(\pi \hbar)^{7 / 2}} \int_{\mathfrak{J}_{4}^{-1}(0)}\left|r\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right) \quad \text { with } \quad \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)=\frac{1}{\sqrt{\pi \hbar}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}} K_{0}\left(\frac{1}{\hbar}\left|z_{0}\right|^{2}\right) \tag{295}
\end{equation*}
$$

The integrand in 295 is $U(1)$-invariant, so it follows from equality (272) that the integral over $\mathfrak{J}_{4}^{-1}(0)$ can be pushed down to an integral on $\mathfrak{J}_{4}^{-1}(0) / U(1) \cong \dot{Q}_{3}$. Namely,

$$
\begin{equation*}
\frac{\sqrt{2}}{(\pi \hbar)^{7 / 2}} \int_{\mathfrak{J}_{4}^{-1}(0)}\left|r\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)=\frac{2}{(\pi \hbar)^{7 / 2}} \int_{Q_{3}}\left|S_{4}(r)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) \varepsilon_{\widehat{\omega}}(\alpha) \tag{296}
\end{equation*}
$$

Equality 296 is obtained from the relationship between $|r(z)|^{2}$ and $\left|S_{4}(r)\right|^{2}\left(\left[z_{0}\right]\right)$ in 257 . Namely,

$$
2^{1 / 2} \operatorname{Vol}\left(G_{4} \cdot z_{0}\right)^{-1}\left|S_{4}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left|r\left(z_{0}\right)\right|^{2}, \quad z_{0} \in \mathfrak{J}_{4}^{-1}(0)
$$

Let me recall that in theorem 1 the map S_{4} takes a section $r \in \Gamma_{P}\left(L^{\omega_{4}} \otimes K_{4}^{\frac{1}{2}}\right)^{U(1)}$ to a section $S_{4}(r)(\alpha)=\widehat{r}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{3}}^{\frac{1}{2}}\right)$ with $\widehat{r}(\alpha)=\phi(\alpha) \mathrm{e}^{-\frac{1}{\sqrt{2} \hbar}|\alpha|} \widehat{\nu}_{0}$. The pointwise magnitude $\left|S_{4}(r)\right|^{2}\left(\left[z_{0}\right]\right)=\left|S_{4}(r)\right|^{2}(\alpha)$ is given by

$$
\left|S_{4}(r)\right|^{2}(\alpha)=|\phi(\alpha)|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|}\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right)=|\phi(\alpha)|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|} 2^{1 / 4}|\alpha|^{1 / 2}
$$

The term $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)$ in 295 regarded as a density $\tilde{I}_{\hbar}(\alpha)$ on \dot{Q}_{3} is given by

$$
\tilde{I}_{\hbar}(\alpha)=\frac{1}{\sqrt{\pi \hbar}} 2^{1 / 4}|\alpha|^{1 / 2} \mathrm{e}^{\frac{\sqrt{2}}{\hbar}|\alpha|} K_{0}\left(\frac{\sqrt{2}}{\hbar}|\alpha|\right)
$$

Therefore the integral over \dot{Q}_{3} can be written as

$$
\frac{2}{(\pi \hbar)^{7 / 2}} \int_{\dot{Q}_{3}}\left|S_{4}(r)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) \varepsilon_{\widehat{\omega}}(\alpha)=\sqrt{2}\left(\frac{\sqrt{2}}{\pi^{2}}\right)^{2} \frac{1}{\hbar^{4}} \int_{\dot{Q}_{3}}|\phi(\alpha)|^{2}|\alpha| K_{0}\left(\frac{1}{\hbar} \sqrt{2}|\alpha|\right) \varepsilon_{\widehat{\omega}}(\alpha)
$$

The following equality holds from the above calculations

$$
\begin{equation*}
\|r\|^{2}=\frac{1}{(\hbar \pi)^{4}} \int_{\mathbb{C}^{4}}|r(z)|^{2} d \bar{z} d z=\sqrt{2}\left(\frac{\sqrt{2}}{\pi^{2}}\right)^{2} \frac{1}{\hbar^{4}} \int_{\dot{Q}_{3}}|\phi(\alpha)|^{2}|\alpha| K_{0}\left(\frac{1}{\hbar} \sqrt{2}|\alpha|\right) \varepsilon_{\widehat{\omega}}(\alpha) \tag{297}
\end{equation*}
$$

Equalities (294) and 297) correspond to equality in (268) for $n=8,4$ respectively .
Proof. (Theorem4) The squared norm of $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ on M_{s} can be computed as (298)

$$
\|s(z)\|^{2}=\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|s(z)|^{2} \epsilon_{\omega_{n}}(z)=\frac{1}{(\pi \hbar)^{n}} \int_{\mathfrak{g}_{n}} \int_{\mathfrak{J}_{n}^{-1}(0)}\left|s\left(\mathrm{e}^{\imath \xi} \cdot z_{0}\right)\right|^{2} \tau_{n}\left(\xi, z_{0}\right) d \xi d V o l\left(\mathfrak{J}_{n}^{-1}(0)\right)
$$

I can follow a similar procedure to the proof of theorem 3. The integration on \mathfrak{g}_{n} leaves an integral on $\mathfrak{J}_{n}^{-1}(0)$ which is given by
$\frac{(2)^{1 / 2} \Omega_{S^{2}}}{\pi^{8}} \frac{1}{\hbar^{7}} \int_{\tilde{\mathfrak{J}}_{8}^{-1}(0)}\left|s\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right), \frac{\sqrt{2}}{\pi^{4}} \frac{1}{\hbar^{4}} \int_{\mathfrak{J}_{4}^{-1}(0)}\left|s\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d \operatorname{Vol}\left(\mathfrak{J}_{4}^{-1}(0)\right)$.
The difference with the proof of theorem 3 is that I use the map A_{n} instead of S_{n}. The map A_{n} takes a section $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ to a section $A_{n}(s)=\widehat{s}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}}\right)$ with $\widehat{s}(\alpha)=$ $\phi(\alpha) \mathrm{e}^{-\frac{1}{\sqrt{2} \hbar}|\alpha|}$ and satisfies the following equality

$$
\begin{equation*}
\left|A_{n}(s)(\alpha)\right|^{2}=\left|A_{n}(s)\left(\left[z_{0}\right]\right)\right|^{2}=\left|s\left(z_{0}\right)\right|^{2} \quad \text { for } \quad z_{0} \in \mathfrak{J}_{n}^{-1}(0) . \tag{300}
\end{equation*}
$$

For $n=8$ it follows from equality 272 that the integral on $\mathfrak{J}_{8}^{-1}(0) / S U(2) \cong \dot{Q}_{5}$ is given by

$$
\begin{align*}
& \frac{(2)^{1 / 2} \Omega_{S^{2}}}{\pi} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\tilde{\mathfrak{J}}_{8}^{-1}(0)}\left|s\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(z_{0}\right) d \operatorname{Vol}\left(\mathfrak{J}_{8}^{-1}(0)\right)= \tag{301}\\
& \quad \frac{(2)^{1 / 2} \Omega_{S^{2}}}{\pi} \frac{1}{(\pi \hbar)^{13 / 2}} \int_{\dot{Q}_{5}}\left|A_{8}(s)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) 2^{3 / 2} 2^{3 / 4}|\alpha|^{3 / 2} \varepsilon_{\widetilde{\omega}}(\alpha)
\end{align*}
$$

The term $2^{3 / 2} 2^{3 / 4}|\alpha|^{3 / 2}$ is the volume $\operatorname{Vol}\left(G_{8} \cdot\left[z_{0}\right]\right)$. Substituting in (301) the pointwise magnitude $\left|A_{8}(s)(\alpha)\right|^{2}=|\phi(\alpha)|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|}$ and $\tilde{I}_{\hbar}(\alpha)=\frac{1}{\sqrt{\pi \hbar}} 2^{1 / 4}|\alpha|^{1 / 2} \mathrm{e}^{\frac{\sqrt{2}}{\hbar}}|\alpha| K_{1}\left(\frac{\sqrt{2}}{\hbar}|\alpha|\right)$ gives the right-hand side of equality (294).

For $n=4$ it follows from equality 272 that the integral on $\mathfrak{J}_{4}^{-1} / U(1) \cong \dot{Q}_{3}$ is given by (302)
$\frac{\sqrt{2}}{(\pi \hbar)^{7 / 2}} \int_{\mathfrak{J}_{4}^{-1}(0)}\left|s\left(z_{0}\right)\right|^{2} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right) d \operatorname{Vol}\left(\tilde{\mathfrak{J}}_{4}^{-1}(0)\right)=\frac{\sqrt{2}}{(\pi \hbar)^{7 / 2}} \int_{\dot{Q}_{3}}\left|A_{4}(s)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) 2^{1 / 2} 2^{1 / 4}|\alpha|^{1 / 2} \varepsilon_{\widehat{\omega}}(\alpha)$.
The term $2^{1 / 2} 2^{1 / 4}|\alpha|^{1 / 2}$ is the volume $\operatorname{Vol}\left(G_{4} \cdot\left[z_{0}\right]\right)$. Substituting in (302) the pointwise magnitude $\left|A_{4}(s)(\alpha)\right|^{2}=|\phi(\alpha)|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|}$ and $\tilde{I}_{\hbar}(\alpha)=\frac{1}{\sqrt{\pi \hbar}} 2^{1 / 4}|\alpha|^{1 / 2} \mathrm{e}^{\frac{\sqrt{2}}{\hbar}|\alpha|} K_{0}\left(\frac{\sqrt{2}}{\hbar}|\alpha|\right)$ gives the right-hand side of equality (297).

Let me make the following remark: Since the pointwise magnitude of $\nu_{0} \in \Gamma_{P}\left(K_{n}^{\frac{1}{2}}\right)$ is a constant $\left(\nu_{0}, \nu_{0}\right)=1$, then it follows from equality (267) that the pointwise magnitude of $\widehat{\nu}_{0} \in \Gamma_{G}\left(\widehat{K}_{\hat{Q}_{m}}^{\frac{1}{2}}\right)$ is given by $\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right)=2^{d / 2} \operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$. This is the reason why the squared norm of a section with or without half-form on \mathbb{C}^{n} computed as an integral on the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$ is given by the same expression.

In the above calculations would seem that the inclusion of half-forms does not make any difference in the computation of the squared norm of a section on \mathbb{C}^{n} as an integral on the quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$. Nevertheless, the inclusion of half-forms is the key ingredient so that the map S_{n} becomes asymptotically unitary in the limit $\hbar \rightarrow 0$. This last point is studied in the following section.

3. Asymptotics of the Guillemin-Sternberg Maps

The following map was constructed in the first section of this chapter

$$
S_{n}: T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}} \longrightarrow T_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)
$$

The space $T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ is obtained by first quantizing and then performing reduction at the quantum level, while the space $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ is obtained by first performing symplectic reduction and then quantizing the symplectic quotient $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \dot{Q}_{m}$.

The space $T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ is identified with the Hilbert space $\mathcal{B}_{n}^{\left(G_{n}\right) \mathrm{C}}$ and the space $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ is identified with the Hilbert space $L_{h o l}^{2}\left(\dot{Q}_{m}, \widehat{d m_{m+1}^{\hbar}}(\alpha)\right)$, see appendix B. Hence, S_{n} can be regarded as a map that identifies the space $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ with space $L_{h o l}^{2}\left(\dot{Q}_{m}, \widehat{d m_{m+1}^{\hbar}}(\alpha)\right)$. In Quantum Mechanics the Hilbert space structure of the spaces is more important than the vector space structure. For instance, the expectation value of an operator in a state involves the inner product of the Hilbert space \mathcal{H}. Before studying the unitarity properties of the GS maps with and without half-forms, let me first show that these maps are bijective.
Theorem 5. The GS-maps

$$
S_{n}: T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}} \longrightarrow T_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right), \quad A_{n}: T_{P}\left(L^{\omega_{n}}\right)^{G_{n}} \longrightarrow T_{G}\left(L^{\widehat{\omega}}\right)
$$

are bijective.
Proof. Let me do the calculations for the map S_{n}, but the same procedure works for the map A_{n} as well. It is clear that for two different sections $r_{1}, r_{2} \in T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$, the sections $S_{n}\left(r_{1}\right), S_{n}\left(r_{2}\right)$ are two different elements of $T_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$. Now I will show that a section $\widehat{\boldsymbol{r}}(\alpha) \in T_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ can be lifted to a section of $T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ on the whole space \mathbb{C}^{n}. To do that, I adapt the procedure of the compact case in [18, 14] to our case of \mathbb{C}^{n}. The section $\widehat{\boldsymbol{r}}(\alpha)$ can be written as $\widehat{\boldsymbol{r}}(\alpha)=\widehat{\boldsymbol{s}}(\alpha) \widehat{\nu}_{0}$ with $\widehat{\boldsymbol{s}}(\alpha)=\boldsymbol{\phi}(\alpha) \mathrm{e}^{-\frac{1}{h 2 \sqrt{2}}|\alpha|}$ and $\boldsymbol{\phi}(\alpha)$ satisfies $\frac{\partial \phi}{\partial \bar{\alpha}_{j}}=0, j=1, \ldots, m+1$. The section $\widehat{\boldsymbol{r}}(\alpha)$ can be lifted to a section of $T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ on $\mathfrak{J}_{n}^{-1}(0)$ in the following way. Since every $\alpha \in \dot{Q}_{m}$ can be written as follows

$$
\begin{array}{lcl}
m=5 & U \cdot \alpha_{0}=\rho_{(8,5)}\left(\mathbf{\Upsilon}_{A}\left(z_{0}\right)\right), & \mathbf{\Upsilon}_{A}\left(z_{0}\right) \in \mathfrak{J}_{8}^{-1}(0), \quad U \in S O(6, \mathbb{R}) \tag{303}\\
m=3 & \boldsymbol{U} \cdot \alpha_{0}=\rho_{(4,3)}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right), & \boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right) \in \mathfrak{J}_{4}^{-1}(0), \quad \boldsymbol{U} \in S O(4, \mathbb{R})
\end{array}
$$

then it follows from equality (303) that
(304)

$$
r\left(\boldsymbol{\Upsilon}_{A}\left(z_{0}\right)\right)=\widehat{\boldsymbol{r}}\left(\rho_{(8,5)}\left(\mathbf{\Upsilon}_{A}\left(z_{0}\right)\right)\right) \quad n=8 \quad \text { and } \quad r\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right)=\widehat{\boldsymbol{r}}\left(\rho_{(4,3)}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right)\right) \quad n=4
$$

define a section of $T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ on the zero set $\mathfrak{J}_{n}^{-1}(0)$. Now, since every $z \in M_{s}$ is send to $\rho_{(n, m)}(z)=\alpha \in \dot{Q}_{m}$ which intersects $\mathfrak{J}_{n}^{-1}(0), n=8,4$ in the $S U(2)$-orbit through $\Upsilon_{A}\left(z_{0}\right)$ and $U(1)$-orbit through $\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)$ respectively, then there are $g \in S L(2, \mathbb{C})$ and $\lambda \in \mathbb{C}^{*}$ such that $z=\tilde{\Phi}_{g}\left(\mathbf{\Upsilon}_{A}\left(z_{0}\right)\right)$ and $z=\tilde{\Phi}_{\lambda}\left(\boldsymbol{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right)$ are elements of the stable set M_{s}. Hence, the sections in (304) can be extended to M_{s} by defining

$$
\begin{equation*}
n=8 \quad r(z)=r\left(\tilde{\Phi}_{g}\left(\mathbf{\Upsilon}_{A}\left(z_{0}\right)\right)\right), \quad n=4 \quad r(z)=r\left(\tilde{\Phi}_{\lambda}\left(\mathbf{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}\left(z_{0}\right)\right)\right) . \tag{305}
\end{equation*}
$$

The section $r(z)$ is given by $r(z)=\boldsymbol{f}(z) \mathrm{e}^{-\frac{1}{2 h}|z|^{2}} \sqrt{d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{n}}$ with $\boldsymbol{f}(z)=\phi(\alpha(z))$. Let me recall that every section in $T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ gives a function in $\mathcal{B}_{n}^{\left(G_{n}\right) \mathrm{c}}$. In the next section I show that every function in $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ can be written as a convergent infinity sum of homogeneous polynomials in the variable $\alpha(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \ldots, \alpha_{m+1}(z)\right.$), which in turn implies that $\boldsymbol{f}(z)=\phi(\alpha(z))$ can be regarded a holomorphic function on the whole space \mathbb{C}^{n}. Hence, the lifted section $r(z) \in T_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ can be extended to the whole space \mathbb{C}^{n}. Therefore the maps A_{n}, S_{n} are bijective.

Now let me turn to the asymptotic properties. If the map S_{n} could be unitary or hopefully a constant multiple of a unitary map, then the following equality would be fulfilled

$$
\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|r(z)|^{2} \epsilon_{\omega_{n}}(z)=\boldsymbol{C}_{m} \int_{\dot{Q}_{m}}\left|S_{n}(r)\right|^{2}(\alpha) \epsilon_{\widehat{\omega}}, \quad \boldsymbol{C}_{m} \text { a constant }
$$

Equations 292 and 296 indicate that the squared norm of $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ can be written as an integral over \dot{Q}_{m} as follows

$$
\begin{equation*}
\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|r(z)|^{2} \epsilon_{\omega_{n}}(z)=C_{n} \frac{1}{\hbar^{\frac{3 m-2}{2}}} \int_{\dot{Q}_{m}}\left|S_{n}(r)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha) \varepsilon_{\widehat{\omega}}(\alpha), \quad C_{n} \quad \text { is a constant } . \tag{306}
\end{equation*}
$$

In equality 306, the term $\tilde{I}_{\hbar}(\alpha)$ is an obstruction so that S_{n} becomes a constant multiple of a unitary map. Since I deal with non-compact Kähler manifolds, the tools of [18, Sect. 5] cannot be used to determine the asymptotic of $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)$. So let me state the asymptotic of $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)$ in a formal sense as follows.
Proposition 18. For each $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$ the function $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)=\frac{1}{\sqrt{\pi \hbar}}\left|z_{0}\right| \mathrm{e}^{\frac{1}{\hbar}\left|z_{0}\right|^{2}} K_{\ell}\left(\frac{1}{\hbar}\left|z_{0}\right|^{2}\right)$ satisfies

$$
\begin{equation*}
\lim _{\hbar \rightarrow 0} \tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)=\frac{1}{\sqrt{2}}+O(\hbar) \tag{307}
\end{equation*}
$$

Proof. The asymptotic of $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)$ is obtained by taking the asymptotic of the MacDonaldBessel function, which is given by

$$
\begin{equation*}
\lim _{s \rightarrow \infty} K_{\ell}(s)=\sqrt{\frac{\pi}{2 s}} \mathrm{e}^{-s}[1+O(\hbar)] \tag{308}
\end{equation*}
$$

See equation (5.2.26) in [6] for details. For each $z_{0} \in \mathfrak{J}_{n}^{-1}(0)$, the argument of the function $K_{\ell}\left(\frac{1}{\hbar}\left|z_{0}\right|^{2}\right)$ is large in the limit $\hbar \rightarrow 0$. Hence, the asymptotic of $K_{\ell}\left(\frac{1}{\hbar}\left|z_{0}\right|^{2}\right)$ is given as in (308) with $s=\frac{1}{\hbar}\left|z_{0}\right|^{2}$.

$$
\begin{equation*}
\lim _{\hbar \rightarrow 0} K_{\ell}\left(\frac{1}{\hbar}\left|z_{0}\right|^{2}\right)=\sqrt{\frac{\hbar \pi}{2}}\left|z_{0}\right|^{-1} \mathrm{e}^{-\frac{1}{\hbar}\left|z_{0}\right|^{2}}[1+O(\hbar)] \tag{309}
\end{equation*}
$$

I get equality 307) by substituting 309) into the expression of $\tilde{I}_{\hbar}\left(\left[z_{0}\right]\right)$.
Theorem 6. The map S_{n} is asymptotically a multiple of a unitary map (in a formal sense). Namely, the main asymptotic of the right-hand side of (306) is given by

$$
\begin{equation*}
\frac{C_{n}}{\sqrt{2}} \frac{1}{\hbar^{\frac{3 m-1}{2}}} \int_{\dot{Q}_{m}}\left|S_{n}(r)\right|^{2}(\alpha) \varepsilon_{\widehat{\omega}}(\alpha)=C_{m}\|\widehat{r}(\alpha)\|^{2} \quad \text { with } \quad C_{m}=\frac{C_{n}}{\sqrt{2}} . \tag{310}
\end{equation*}
$$

Proof. Equality 310 is obtained by taking the asymptotic of \tilde{I}_{\hbar} given in 307).
For the case without half-forms it follows from equalities (301) and (302) that the squared norm of $s(z) \in \Gamma_{P}\left(L^{\omega_{n}}\right)^{G_{n}}$ expressed as an integral over \dot{Q}_{m} is given by

$$
\begin{equation*}
\frac{1}{(\pi \hbar)^{n}} \int_{\mathbb{C}^{n}}|s(z)|^{2} \epsilon_{\omega_{n}}(z)=C_{n} \frac{1}{\hbar^{\frac{3 m-2}{2}}} \int_{\dot{Q}_{m}}\left|A_{n}(s)\right|^{2}(\alpha) \tilde{I}_{\hbar}(\alpha)|\alpha|^{\frac{m-2}{2}} \varepsilon_{\widehat{\omega}}(\alpha), \quad C_{n} \text { is a constant } . \tag{311}
\end{equation*}
$$

Equality (311) indicates that the term $\tilde{I}_{\hbar}(\alpha)|\alpha|^{\frac{m-2}{2}}$ is an obstruction so that the map A_{n} becomes a constant times a unitary map. It follows from proposition 18 that in the limit $\hbar \rightarrow 0$ the main asymptotic of the right-hand side of equality (311) is given by

$$
\begin{equation*}
\frac{C_{n}}{\sqrt{2}} \frac{1}{\hbar^{\frac{3 m-2}{2}}} \int_{\dot{Q}_{m}}\left|A_{n}(s)\right|^{2}(\alpha)|\alpha|^{\frac{m}{2}-1} \varepsilon_{\widehat{\omega}}(\alpha) . \tag{312}
\end{equation*}
$$

In (312) the term $|\alpha|^{\frac{m}{2}-1}$ is related to the volume $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ which is not a constant function on $\mathfrak{J}_{n}^{-1}(0)$. This fact is the reason why the map A_{n} is not a constant times a unitary map in the limit $\hbar \rightarrow 0$. The term $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ is present in (312) because the volume on $\mathfrak{J}_{n}^{-1}(0)$ is decomposed in terms of the volume on $\mathfrak{J}_{n}^{-1}(0) / G_{n} \cong \widetilde{Q}_{m}$ multiplied by $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$, see equality (272). Meanwhile, the term $\operatorname{Vol}\left(G_{n} \cdot z_{0}\right)$ fails to arise in (306) bacause it is canceled by the volume factor from the half-form of theorem 2 .

4. Quantum Reduction and The Bargmann-Todorov Space \mathcal{E}_{m}

In this section I identify the Hilbert space $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathrm{C}}}$ with the Bargmann-Todorov space \mathcal{E}_{m}, $n=8,4, m=5,3$ respectively. I will first show that $f(z) \in \mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$ with $f(z)=\phi(\alpha(z))$ regarded as a function ϕ on \dot{Q}_{m} belongs to the completion of $\boldsymbol{P}=\oplus_{\ell=0}^{\infty} W_{\ell}$ regarding the inner product considered by Bargmann and Todorov. Let me begin with the dimensions $n=4, m=3$. In the subsection 3.1, I have shown that elements $f \in \mathcal{B}_{4}^{(U(1))} \mathbb{C}$ are functions in \mathcal{B}_{4} that belong to the kernel of the operator $\widehat{Q}_{\theta \theta}$ given in 190. For the following computations it is enough to consider this operator with $\theta=1$ which is given by $\widehat{Q}=\hbar\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}-z_{3} \frac{\partial}{\partial z_{3}}-z_{4} \frac{\partial}{\partial z_{4}}\right)$. A function $f \in \mathcal{B}_{4}$ can be written as follows

$$
\begin{equation*}
f=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} A_{\left[n_{1}, n_{2}, n_{3}, n_{4}\right]} \frac{z_{1}^{n_{1}}}{\sqrt{\hbar^{n_{1}} n_{1}!}} \frac{z_{2}^{n_{2}}}{\sqrt{\hbar^{n_{2}} n_{2}}!} \frac{z_{3}^{n_{3}}}{\sqrt{\hbar^{n_{3}} n_{3}!}} \frac{z_{4}^{n_{4}}}{\sqrt{\hbar^{n_{4}} n_{4}!}} . \tag{313}
\end{equation*}
$$

The series in (313) is a pointwise convergent series, so the derivatives of f can be calculated term by term. The following is obtained

$$
\widehat{Q} f=\hbar \sum_{n_{1}, n_{2}, n_{3}, n_{4}} A_{\left[n_{1}, n_{2}, n_{3}, n_{4}\right]}\left(n_{1}+n_{2}-n_{3}-n_{4}\right) \frac{z_{1}^{n_{1}}}{\sqrt{\hbar^{n_{1}} n_{1}!}} \frac{z_{2}^{n_{2}}}{\sqrt{\hbar^{n_{2}} n_{2}!}} \frac{z_{3}^{n_{3}}}{\sqrt{\hbar^{n_{3}} n_{3}!}} \frac{z_{4}^{n_{4}}}{\sqrt{\hbar^{n_{4}} n_{4}!}} .
$$

The function f defined in 313 belongs to the kernel of \widehat{Q} if and only if the exponents $n_{1}, n_{2}, n_{3}, n_{4}$ satisfy the following equation

$$
\begin{equation*}
n_{1}+n_{2}-n_{3}-n_{4}=0 \tag{314}
\end{equation*}
$$

The set of functions $f \in \mathcal{B}_{4}$ whose series satisfies equation (314) is a closed subspace of \mathcal{B}_{4}, see [36] for details. Moreover, this series can be written as a direct sum of elements in the spaces defined by

$$
\begin{equation*}
H_{r, r}=\operatorname{span}\left\{\frac{z_{1}^{n_{1}}}{\sqrt{\hbar^{n_{1}} n_{1}!}} \frac{z_{2}^{n_{2}}}{\sqrt{\hbar^{n_{2}} n_{2}}!} \frac{z_{3}^{n_{3}}}{\sqrt{\hbar^{n_{3}} n_{3}!}} \frac{z_{4}^{n_{4}}}{\sqrt{\hbar^{n_{4}} n_{4}!}}: n_{1}+n_{2}=r=n_{3}+n_{4}\right\}, \tag{315}
\end{equation*}
$$

where r is a positive integer number. A calculation shows that elements of $H_{r, r}$ are homogeneous of degree $2 r$. It follows from proposition 11 that elements of $H_{r, r}$ are invariant under both actions $T_{\mathrm{e}^{2 \theta}}, T_{\lambda}$ of $U(1), \mathbb{C}^{*}$ on \mathcal{B}_{4} defined in (191) and can be expressed as a function with argument $\alpha(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \alpha_{3}(z), \alpha_{4}(z)\right)$, which is identified with a holomorphic function on \dot{Q}_{3}. That is, any element of $H_{r, r}$ can be expressed as a function $\boldsymbol{h}(z)$, which can be written as

$$
\boldsymbol{h}(z)=\boldsymbol{g}(\alpha(z)) \quad \text { with } \quad \boldsymbol{g} \quad \text { defined on } \dot{Q}_{3} .
$$

I claim that \boldsymbol{g} is homogeneous of degree r. Using the homogeneity of \boldsymbol{h}, the following equalities hold

$$
\begin{align*}
\boldsymbol{h}(a z) & =\boldsymbol{g}(\alpha(a z)) \quad \text { here } \quad a z=\left(a z_{1} \cdot a z_{2}, a z_{3}, a z_{4}\right), \quad a \in \mathbb{R} \\
a^{2 r} \boldsymbol{h}(z) & =\boldsymbol{g}\left(a^{2} \alpha(z)\right) \\
a^{2 r} \boldsymbol{g}(\alpha(z)) & =\boldsymbol{g}\left(a^{2} \alpha(z) .\right. \tag{316}
\end{align*}
$$

If I define $\mu=a^{2}$, then equality $\mu^{r} \boldsymbol{g}(\alpha)=\boldsymbol{g}(\mu \alpha)$ holds. Thus \boldsymbol{g} is homogeneous of degree r. So the series defining f consists of homogeneous terms, which each one can be identified with a homogeneous, holomorphic function on \dot{Q}_{3} of degree r.

For $n=8$, let me make a similar analysis in order to show that the series defining $f \in$ $\mathcal{B}_{8}^{(S U(2))_{C}}$ consists of homogeneous terms, which each one can be identified with a homogeneous, holomorphic function on \dot{Q}_{5} of degree r. Functions in $\mathcal{B}_{8}^{(S U(2))_{\mathrm{C}}}$ are elements in \mathcal{B}_{8} that belong to the kernel of the operators $\widehat{Q}_{\xi_{j}}, j=1,2,3$ defined in 201. A function $f \in \mathcal{B}_{8}$ can be written
as

$$
\begin{equation*}
f=\sum_{a_{1}, a_{2}, \ldots, a_{8}} A_{\left[a_{1}, a_{2}, \ldots, a_{8}\right]} \frac{z_{1}^{a_{1}}}{\sqrt{\hbar^{a_{1}} a_{1}!}} \frac{z_{2}^{a_{2}}}{\sqrt{\hbar^{n_{2}} a_{2}!}} \ldots \ldots \frac{z_{8}^{a_{8}}}{\sqrt{\hbar^{a_{8}} a_{8}!}} \tag{317}
\end{equation*}
$$

The derivative $\widehat{Q}_{\xi_{1}} f$ of the series in 317 can be calculated term by term. The following is obtained

$$
\begin{equation*}
\widehat{Q}_{\xi_{1}} f= \tag{318}
\end{equation*}
$$

$\hbar \sum_{a_{1}, a_{2}, \ldots, a_{8}} A_{\left[a_{1}, a_{2}, \ldots, a_{8}\right]}\left(a_{1}+a_{3}+a_{5}+a_{7}-a_{2}-a_{4}-a_{6}-a_{8}\right) \frac{z_{1}^{a_{1}}}{\sqrt{\hbar^{a_{1}} a_{1}!}} \frac{z_{2}^{a_{2}}}{\sqrt{\hbar^{n_{2}} a_{2}!}} \cdots \cdots \frac{z_{8}^{a_{8}}}{\sqrt{\hbar^{a_{8}} a_{8}!}}$.
The function f defined in 317 belongs to the kernel of $\widehat{Q}_{\xi_{1}}$ if and only if the exponents $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}$ satisfy the following equation

$$
\begin{equation*}
a_{1}+a_{3}+a_{5}+a_{7}-a_{2}-a_{4}-a_{6}-a_{8}=0 \tag{319}
\end{equation*}
$$

The set of functions $f \in \mathcal{B}_{8}$ whose series satisfies equation 319 is a closed subspace of \mathcal{B}_{8}, see [36] for details. Moreover, this series can be written as a direct sum of elements in the spaces defined by

$$
\begin{equation*}
\boldsymbol{H}_{r, r}=\operatorname{span}\left\{\frac{z_{1}^{a_{1}}}{\sqrt{\hbar^{a_{1}} a_{1}!}} \frac{z_{2}^{a_{2}}}{\sqrt{\hbar^{a_{2}} a_{2}!}} \cdots \frac{z_{8}^{a_{3}}}{\sqrt{\hbar^{a_{8}} a_{8}!}}: a_{1}+a_{3}+a_{5}+a_{7}=r=a_{2}+a_{4}+a_{6}+a_{8}\right\} \tag{320}
\end{equation*}
$$

where r is a positive integer number. Note that elements in $\boldsymbol{H}_{r, r}$ are homogeneous of degree $2 r$. Since f must belong to the kernels of $\widehat{Q}_{\xi_{2}}, \widehat{Q}_{\xi_{3}}$, the homogeneous terms of the series defining f must be written in terms of a subset of $H_{r, r}$. It follows from proposition 13 that elements of this subset are invariant under both actions $T_{g}, T_{g_{\mathbb{C}}}$ of $S U(2), S L(2, \mathbb{C})$ on \mathcal{B}_{8} defined in (202) and can be expressed as a function with argument $\alpha(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \ldots, \alpha_{6}(z)\right)$, which is identified with a holomorphic function on \dot{Q}_{5}. That is, any element of this subset of $H_{r, r}$ can expressed as a function $h(z)$, which can be written as

$$
h(z)=g(\alpha(z)) \quad \text { with } \quad g \quad \text { defined on } \dot{Q}_{5}
$$

Using the homogeneity of $h(z)$, I can do similar calculations as in (316) and show that g is homogeneous of degree r. Thus each homogeneous piece of the series defining $f \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ can be identified with a homogeneous, holomorphic function on \dot{Q}_{5} of degree r.

I could write each term of the series defining $f \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ using the condition in 315), 320, respectively and show that g is the restriction to \dot{Q}_{m} of a homogeneous polynomial of degree r on \mathbb{C}^{m+1}. These calculations can be done by hand, but they are very involved and long. I rather present a short and structural argument, which was suggested to me by professor Brian Hall.

Proposition 19. If g is a holomorphic, homogeneous function on \dot{Q}_{m} of degree r. Then g is the restriction to the quadric \dot{Q}_{m} of a homogeneous polynomial of degree r on \mathbb{C}^{m+1}.

Proof. We use that g can be written as $g=g_{1}+g_{2}$ with g_{1} an even function and g_{2} an odd function with respect to the last component α_{m+1}. Namely,

$$
\begin{align*}
g_{1}\left(\alpha_{1}, \ldots, \alpha_{m},-\alpha_{m+1}\right) & =g_{1}\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right) \tag{321}\\
g_{2}\left(\alpha_{1}, \ldots, \alpha_{m},-\alpha_{m+1}\right) & =-g_{2}\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right) \tag{322}
\end{align*}
$$

where g_{1} and g_{2} are holomorphic, homogeneous functions on \dot{Q}_{m} of degree r. We are going to show that each one g_{1}, g_{2} is the restriction to \dot{Q}_{m} of a homogeneous polynomial of degree r on \mathbb{C}^{m+1} so that the result holds.

We first consider g_{1}. Note that if $\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right)$ is in the quadric \dot{Q}_{m}, then so is $\left(\alpha_{1}, \ldots, \alpha_{m},-\alpha_{m+1}\right)$. Then let us consider a function p on $\mathbb{C}^{m}-\{0\}$ defined by

$$
\begin{align*}
& p\left(\alpha_{1}, \ldots, \alpha_{m}\right)=g_{1}\left(\alpha_{1}, \ldots, \alpha_{m}, 2 \sqrt{\alpha_{1}^{2}+\ldots+\alpha_{m}^{2}}\right) \text { for }\left(\alpha_{1}, \ldots, \alpha_{m}\right) \text { with } \alpha_{1}^{2}+\ldots+\ldots \alpha_{m}^{2} \neq 0 \tag{323}\\
& p\left(\alpha_{1}, \ldots, \alpha_{m}\right)=g_{1}\left(\alpha_{1}, \ldots, \alpha_{m}, 0\right) \text { for }\left(\alpha_{1}, \ldots, \alpha_{m}\right) \text { with } \alpha_{1}^{2}+\ldots+\ldots \alpha_{m}^{2}=0
\end{align*}
$$

For $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ with $\alpha_{1}^{2}+\ldots+\ldots \alpha_{m}^{2} \neq 0$ by 321 , the value of p is independent of the choice of a branch of the square root. Note for $\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right)$ in \dot{Q}_{m}, we have

$$
\alpha_{m+1}= \pm \imath \sqrt{\alpha_{1}^{2}+\ldots+\alpha_{m}^{2}}
$$

and therefore

$$
\begin{equation*}
g_{1}\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right)=g_{1}\left(\alpha_{1}, \ldots, \alpha_{m},-\alpha_{m+1}\right)=p\left(\alpha_{1}, \ldots, \alpha_{m}\right) . \tag{324}
\end{equation*}
$$

Our goal is to show that p is a polynomial. If we can do that, then (324) will show that g_{1} is the restriction to the quadric \dot{Q}_{m} of a polynomial. Now, if $\alpha_{1}^{2}+\ldots+\alpha_{m}^{2}$ is nonzero near a point $\beta \in \mathbb{C}^{m}$, then we can choose a holomorphic branch of the square root function defined near this value, which means that $\sqrt{\alpha_{1}^{2}+\ldots+\alpha_{m}^{2}}$ can be computed holomorphically near β.

We conclude thus p is holomorphic on $\mathbb{C}^{m}-\{0\}$, except at points in the quadric $Q_{m-1}=$ $\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{C}^{m} \mid \alpha_{1}^{2}+\ldots+\alpha_{m}^{2}=0\right\}$. Now, if $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is nonzero and in Q_{m-1}, then at least one of the partial derivatives

$$
\frac{\partial}{\partial \alpha_{j}}\left(\alpha_{1}^{2}+\ldots+\alpha_{j}^{2}+\ldots+\alpha_{m}^{2}\right)=2 \alpha_{j}
$$

will be nonzero. Thus, if we take out the origin, then $\dot{Q}_{m-1}=Q_{m-1}-\{0\}$ is a holomorphic submanifold of $\mathbb{C}^{m}-\{0\}$, by the holomorphic version of the implicit function theorem (or the rank theorem). See Thm. 1.1.11 in [22] for details. Now, using the continuity of both g and the absolute value of the square root, it is not difficult to see that p is continuous. Then the Riemann extension theorem, see Prop. 1.1.7 in [22], implies that since p is locally bounded and holomorphic off the submanifold \dot{Q}_{m-1}, it must actually be holomorphic on all of $\mathbb{C}^{m}-\{0\}$. But then p must extend holomorphically to all \mathbb{C}^{m}, since a holomorphic function in higher dimensions cannot have an isolated singularity. We conclude that p is holomorphic on all \mathbb{C}^{m} and homogeneous of degree r, hence a polynomial of degree r.

Now we consider the odd part g_{2}. Let $\tilde{U} \subset \dot{Q}_{m}$ be a subset where $\alpha_{m+1}=0$ and define \tilde{g} on $\dot{Q}_{m}-\tilde{U}$ by

$$
\tilde{g}\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right)=\frac{g_{2}\left(\alpha_{1}, \ldots, \alpha_{m}, \alpha_{m+1}\right)}{\alpha_{m+1}} .
$$

Now, if we are at a point in \dot{Q}_{m} where $\alpha_{m+1}=0$, then one of $\alpha_{1}, \ldots, \alpha_{m}$ is nonzero and let us assume without loss of generality that it is α_{1}. Then $-\left(\alpha_{2}^{2}+\ldots+\alpha_{m}^{2}+\alpha_{m+1}^{2}\right)=\alpha_{1}^{2} \neq 0$. Thus we can take $\alpha_{2}, \ldots, \alpha_{m}, \alpha_{m+1}$ as a local holomorphic coordinate system on \dot{Q}_{m} with $\alpha_{1}=\imath \sqrt{\alpha_{2}^{2}+\ldots+\alpha_{m}^{2}+\alpha_{m+1}^{2}}$. Then the condition (322) means that when we expand g_{2} in this coordinate system, each term in the Taylor expansion has to have α_{m+1} to an odd power. Thus, when we divide by α_{m+1}, we still have a holomorphic function. This analysis can be done in another local holomorphic coordinate system on \dot{Q}_{m} for $\alpha_{1}, \ldots, \alpha_{m}$ nonzero since we can relate the functions on each coordinate system via a transition map, which is holomorphic. We conclude, then, that \tilde{g} is actually holomorphic on all \dot{Q}_{m}, even at points where $\alpha_{m+1}=0$. But \tilde{g} satisfies (321), so \tilde{g} is the restriction to \dot{Q}_{m} of a polynomial p. Then $g_{2}=\alpha_{m+1} \tilde{g}$ is the restriction to \dot{Q}_{m} of the polynomial $\alpha_{m+1} p\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

Since each homogeneous term of the series defining $f \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ descends to a homogeneous polynomial g_{r} of degree r restricted to \dot{Q}_{m}, the function ϕ on \dot{Q}_{m} can be written as follows

$$
\left.\phi=\sum_{r=0} g_{r} \quad \text { with } \quad g_{r} \in W_{r} \text { (homogeneous polynomial of degree } \mathrm{r}\right)
$$

Thus $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ regarded as a function ϕ on \dot{Q}_{m} is an element in $\boldsymbol{P}=\oplus_{\ell=0}^{\infty} W_{\ell}$.
Let me recall that the space $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ is identified with $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$. That is, every section $r(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)^{G_{n}}$ gives a function $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$. Equality 268 , indicates that the squared norm of $f(z)=\phi(\alpha(z))$ can be calculated as the squared norm of ϕ on \dot{Q}_{m}. Namely,

$$
\begin{equation*}
\int_{\mathbb{C}^{n}}|f(z)|^{2} d \nu_{n}^{\hbar}(z)=\int_{\dot{Q}_{m}}|\phi(\alpha)|^{2} \widetilde{d m_{m+1}^{\hbar}}(\alpha), \tag{325}
\end{equation*}
$$

where the measure $\widetilde{d m_{m+1}^{\hbar}}(\alpha)$ is given by

$$
\widetilde{d m_{m+1}^{\hbar}}(\alpha)=\operatorname{ctc} \frac{1}{\hbar^{\frac{3 m-1}{2}}}|\alpha|^{\frac{3-m}{2}}|\alpha|^{m-2} K_{\frac{m-3}{2}}\left(\frac{\sqrt{2}|\alpha|}{\hbar}\right) \epsilon_{\widehat{\omega}}(\alpha)
$$

Note that the measure $\widetilde{d m_{m+1}^{\hbar}}(\alpha)$ is the Bargmann-Todorov measure $d m_{m+1}^{\hbar}(\alpha)$ in 71 up to a constant. Let me consider the polarization identity for $f(z)=\phi(\alpha(z)), g(z)=\varphi(\alpha(z)) \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$

$$
\begin{equation*}
\langle f, g\rangle=\frac{1}{4}\left[\|f+g\|^{2}-\|g-f\|^{2}-\imath\left(\|f-\imath g\|^{2}-\|f+\imath g\|^{2}\right)\right] \tag{326}
\end{equation*}
$$

It follows from equality 325 that the right-hand side in 326 calculated on \dot{Q}_{m} gives the inner product of $\phi, \varphi \in \boldsymbol{P}$. Namely,

$$
\begin{equation*}
\langle f, g\rangle=\int_{\mathbb{C}^{n}} f(z) \overline{g(z)} d \nu_{n}^{\hbar}(z)=\int_{\dot{Q}_{m}} \phi(\alpha) \overline{\varphi(\alpha)} \widetilde{d m_{m+1}^{\hbar}}(\alpha)=(\phi, \varphi) \tag{327}
\end{equation*}
$$

Equality 327 implies that $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ regarded as a space of functions on \dot{Q}_{m} is the completion of \boldsymbol{P} with respect to the inner product considered by V. Bargmann and I. Todorov. Hence, $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ can be identified as a Hilbert space on \dot{Q}_{m} with the Bargmann-Todorov space \mathcal{E}_{m}. Indeed, the reproducing kernel of $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ regarded as a function of $\alpha, \beta \in \dot{Q}_{m}$ is the reproduction kernel of \mathcal{E}_{m}. See proposition 15 in Chapter 2.

Now I will show that the differential operators in (62) can be deduced from operators acting in \mathcal{B}_{n} that preserve the space $\mathcal{B}_{n}^{\left(G_{n}\right) \mathbb{C}}$. Let me consider the map $\rho_{n, m}(z), n=8,4, m=5,3$ whose components $\alpha(z)_{j}, j=1, \ldots, m+1$ are given in 140,117 respectively. Let $\overline{\alpha(z)}_{j}$ be the complex conjugate of $\alpha_{j}(z)$. The functions $\overline{\alpha(z)}{ }_{j}$ cannot be quantized with respect to the holomorphic polarization P because they do not satisfy the condition in (173). Let me assign to $\alpha_{j}(z)$ and $\overline{\alpha(z)}_{j}$ an operator acting in \mathcal{B}_{n} by following the Segal-Bargmann representation which is given by

$$
\widehat{z}_{s}=z_{s}, \quad \hat{\bar{z}}_{k}=\hbar \frac{\partial}{\partial z_{k}}, \quad s, k=1, \ldots, n
$$

Let me begin with the dimensions $n=4, m=3$. The components $\alpha_{j}(z), j=1,2,3,4$ of $\rho_{4,3}(z)$ are given in 117). The corresponding operators $\widehat{\alpha}_{j}(z)$ are given by

$$
\begin{array}{ll}
\widehat{\alpha}_{1}(z)=\left(z_{1} z_{3}+z_{2} z_{4}\right), & \widehat{\alpha}_{2}(z)=\imath\left(z_{1} z_{3}-z_{2} z_{4}\right) \tag{328}\\
\widehat{\alpha}_{3}(z)=\left(z_{1} z_{4}-z_{2} z_{3}\right), \quad \widehat{\alpha}_{4}(z)=\imath\left(z_{1} z_{4}+z_{2} z_{3}\right) .
\end{array}
$$

For $\overline{\alpha(z)}_{j}, j=1,2,3,4$ the corresponding operators $\widehat{\bar{\alpha}}_{j}=\widehat{\mathcal{D}}_{j}$ are the following

$$
\begin{array}{ll}
\widehat{\mathcal{D}}_{1}=\hbar^{2}\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{3}}+\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{4}}\right), & \widehat{\mathcal{D}}_{2}=-\imath \hbar^{2}\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{3}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{4}}\right) \tag{329}\\
\widehat{\mathcal{D}}_{3}=\hbar^{2}\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{4}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{3}}\right), & \widehat{\mathcal{D}}_{4}=-\imath \hbar^{2}\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{4}}+\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{3}}\right)
\end{array}
$$

The operators $\widehat{\mathcal{D}}_{j}, j=1,2,3,4$ can be realized from the Metaplectic representation in the space \mathcal{B}_{4}. Let me recall that the symplectic group $S p(4, \mathbb{R})$ leaves invariant the symplectic form $\omega_{4}=d v \wedge d u$. The group $S p(4, \mathbb{R})$ has a covering group which is called the metaplectic group $M p(4, \mathbb{R})$. The construction of the metaplectic representation at the Lie algebra level is carried out in [36] for any dimension n. Let me give a brief description of this construction for the particular dimension $n=4$. The symplectic form $\omega_{4}=d v \wedge d u$ is associated to an antisymmetric bilinear form $\{\cdot, \cdot\}$ on $T^{*} \mathbb{R}^{4}$ that is defined by

$$
\{X, Y\}=X^{T} \mathbb{J} Y \quad \text { with } \quad \mathbb{J}=\left(\begin{array}{cc}
0 & \mathbb{I}_{4} \\
-\mathbb{I}_{4} & 0
\end{array}\right)
$$

where \mathbb{I}_{4} is the identity matrix of 4×4, and X, Y are vectors in $T^{*} \mathbb{R}^{4}$. Let me denote by $\left(e_{u_{1}}, \ldots, e_{u_{4}}\right),\left(e_{v_{1}}, \ldots, e_{v_{4}}\right)$ the canonical basis in the directions (u, v) respectively. The vectors $\left(e_{u_{1}}, \ldots, e_{u_{4}}, e_{v_{1}}, \ldots, e_{v_{4}}\right)$ define a basis of $T^{*} \mathbb{R}^{4}$ with the property that $\left\{e_{u_{i}}, e_{v_{j}}\right\}=\delta_{i j}$. Let me consider a basis $\xi_{u_{a}, u_{b}}, \xi_{v_{a}, v_{b}}, \xi_{u_{a}, v_{b}}$ of the Lie algebra $\mathfrak{s p}(4, \mathbb{R})$ of $S p(4, \mathbb{R})$. The elements of this basis are defined through its action on vectors X in $T^{*} \mathbb{R}^{4}$ as follows

$$
\xi_{u_{a}, u_{b}}(X)=\frac{1}{2}\left(\left\{e_{u_{a}}, X\right\} e_{u_{b}}+\left\{e_{u_{b}}, X\right\} e_{u_{a}}\right), \quad a, b=1,2,3,4
$$

The other elements $\xi_{v_{a}, v_{b}}, \xi_{u_{a}, v_{a}}$ are defined similarly as above equality. The metaplectic representation is denoted by $d \mu\left(\xi_{u_{a}, u_{b}}\right), d \mu\left(\xi_{v_{a}, u_{b}}\right), d \mu\left(\xi_{v_{a}, v_{b}}\right)$. See equality (4.9) in [36] for expression of the assigned operator to $d \mu\left(\xi_{u_{a}, u_{b}}\right), d \mu\left(\xi_{v_{a}, u_{b}}\right), d \mu\left(\xi_{v_{a}, v_{b}}\right)$. The elements $\xi_{v_{a}, v_{b}}-\xi_{u_{a}, u_{b}}, \xi_{v_{a}, u_{b}}+$ $\xi_{v_{b}, u_{a}}$ belong to the Lie algebra of a subgroup of $S p(4, \mathbb{R})$ that is isomorphic to $U(2,2)$ and are assigned the following operators

$$
\begin{align*}
d \mu\left(\xi_{v_{a}, v_{b}}-\xi_{u_{b}, u_{a}}\right)=-\imath\left(\frac{\partial^{2}}{\partial z_{a} \partial z_{b}}+z_{a} z_{b}\right) & 1 \leq a \leq 2 \text { and } 3 \leq b \leq 4 \tag{330}\\
d \mu\left(\xi_{v_{a}, u_{b}}+\xi_{v_{b}, u_{a}}\right)=\left(\frac{\partial^{2}}{\partial z_{a} \partial z_{b}}-z_{a} z_{b}\right) & 1 \leq a \leq 2 \text { and } 3 \leq b \leq 4
\end{align*}
$$

The operators in (329) can be written in terms of the operators in 330 as follows
$\widehat{\mathcal{D}}_{1}=\frac{\hbar^{2}}{2}\left\{d \mu\left(\xi_{v_{1}, u_{3}}+\xi_{v_{3}, u_{1}}\right)+d \mu\left(\xi_{v_{2}, u_{4}}+\xi_{v_{4}, u_{2}}\right)+\imath\left[d \mu\left(\xi_{v_{1}, v_{3}}-\xi_{u_{3}, u_{1}}\right)+d \mu\left(\xi_{v_{2}, v_{4}}-\xi_{u_{4}, u_{2}}\right)\right]\right\}$
$\widehat{\mathcal{D}}_{2}=\frac{\hbar^{2}}{2}\left\{d \mu\left(\xi_{v_{1}, v_{3}}-\xi_{u_{3}, u_{1}}\right)-d \mu\left(\xi_{v_{2}, v_{4}}-\xi_{u_{4}, u_{2}}\right)-\imath\left[d \mu\left(\xi_{v_{1}, u_{3}}+\xi_{v_{3}, u_{1}}\right)-d \mu\left(\xi_{v_{2}, u_{4}}+\xi_{v_{4}, u_{2}}\right)\right]\right\}$
$\widehat{\mathcal{D}}_{3}=\frac{\hbar^{2}}{2}\left\{d \mu\left(\xi_{v_{1}, u_{4}}+\xi_{v_{4}, u_{1}}\right)-d \mu\left(\xi_{v_{2}, u_{3}}+\xi_{v_{3}, u_{2}}\right)+\imath\left[d \mu\left(\xi_{v_{1}, v_{4}}-\xi_{u_{4}, u_{1}}\right)-d \mu\left(\xi_{v_{2}, v_{3}}-\xi_{u_{3}, u_{2}}\right)\right]\right\}$
$\widehat{\mathcal{D}}_{4}=\frac{\hbar^{2}}{2}\left\{d \mu\left(\xi_{v_{1}, v_{4}}-\xi_{u_{4}, u_{1}}\right)+d \mu\left(\xi_{v_{2}, v_{3}}-\xi_{u_{3}, u_{2}}\right)-\imath\left[d \mu\left(\xi_{v_{1}, u_{4}}+\xi_{v_{4}, u_{1}}\right)+d \mu\left(\xi_{v_{2}, u_{3}}+\xi_{v_{3}, u_{2}}\right)\right]\right\}$.
The operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ in 328, 329 are adjoint to each other in the space \mathcal{B}_{4}, so they are also adjoint to each other in the space $\mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$. Moreover, the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ in 328, 329. commute with the operator $\widehat{Q}_{2 \theta}$ given in 190 . That is, $\left[\widehat{Q}_{2 \theta}, \widehat{\alpha}_{j}\right]=\left[\widehat{Q}_{2 \theta}, \widehat{\mathcal{D}}_{j}\right]=0$, which implies that for $f(z) \in \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ the functions $\left(\widehat{\alpha}_{j} f\right)(z)$ and $\left(\widehat{\mathcal{D}}_{j} f\right)(z)$ belong to $\mathcal{B}_{4}^{(U(1))_{\mathrm{C}}}$. Hence, $\left(\widehat{\alpha}_{j} f\right)(z)$ and $\left(\widehat{\mathcal{D}}_{j} f\right)(z)$ can be identified with elements in \mathcal{E}_{3}. This is the point of the following proposition.

Proposition 20. Consider $f(z)=\phi(\alpha(z)), g(z)=\varphi(\alpha(z)) \in \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ and the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ given in (328), (329). The functions $\left(\widehat{\alpha}_{j} f\right)(z)$ and $\left(\widehat{\mathcal{D}}_{j} f\right)(z)$ are identified with the following elements of \mathcal{E}_{3}

$$
\widehat{\alpha}_{j} \phi=\alpha_{j} \phi \quad \text { and } \quad\left(\widehat{D}_{j} \phi\right)(\alpha), j=1,2,3,4
$$

where \widehat{D}_{j} is the adjoint second order differential operator to $\widehat{\alpha}_{j}$. The expression of \widehat{D}_{j} is given in (62) for $m=3$.

Proof. Since $\widehat{\alpha}_{j}$ and $\widehat{\mathcal{D}}_{j}$ are adjoint to each other in $\mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$, then the following equality holds

$$
\begin{equation*}
\left\langle\widehat{\alpha}_{j} f, g\right\rangle=\left\langle f, \widehat{\mathcal{D}}_{j} g\right\rangle \tag{331}
\end{equation*}
$$

It follows from 327 that equality 331 calculated on \dot{Q}_{3} is given by

$$
\begin{equation*}
\left(\widehat{\alpha}_{j} \phi, \varphi\right)=\left(\phi, \widehat{D}_{j} \varphi\right) \tag{332}
\end{equation*}
$$

Equality 332 indicates that $\widehat{\alpha}_{j}$ and \widehat{D}_{j} are adjoint to each other in \mathcal{E}_{3}.
Equality $\widehat{\alpha}_{j} \phi=\alpha_{j} \phi$ is obtained from the identification of $\alpha_{j}(z)$ with α_{j} and of $\phi(\alpha(z))$ with $\phi(\alpha)$. The explicit expression of \widehat{D}_{j} can be obtained by calculating the derivatives with the chain rule. It is enough to make these calculations for $\widehat{\mathcal{D}}_{1}$. The same procedure works for the other operators $\widehat{\mathcal{D}}_{j}$. Let me calculate the following

$$
\widehat{\mathcal{D}}_{1} f(z)=\hbar^{2}\left(\frac{\partial^{2}}{\partial z_{1} \partial z_{3}}+\frac{\partial^{2}}{\partial z_{2} \partial z_{4}}\right) \phi(\alpha(z))
$$

$$
\begin{aligned}
\frac{\partial \phi(\alpha(z))}{\partial z_{3}} & =\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}} \frac{\partial \alpha_{1}}{\partial z_{3}}+\frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}} \frac{\partial \alpha_{2}}{\partial z_{3}}+\frac{\partial \phi(\alpha(z))}{\partial \alpha_{3}} \frac{\partial \alpha_{3}}{\partial z_{3}}+\frac{\partial \phi(\alpha(z))}{\partial \alpha_{4}} \frac{\partial \alpha_{4}}{\partial z_{3}}\right) \\
& =z_{1} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}}+\imath z_{1} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}}-z_{2} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{3}}+\imath z_{2} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{4}}
\end{aligned}
$$

The second derivative of the first term is given by

$$
\begin{array}{r}
\frac{\partial^{2} \phi(\alpha(z))}{\partial z_{1} \partial z_{3}}=\frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}}+\imath \frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}}+\left[z_{1} \frac{\partial}{\partial z_{1}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}}\right)-\imath z_{1} \frac{\partial}{\partial z_{1}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}}\right)-z_{2} \frac{\partial}{\partial z_{1}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{3}}\right)\right. \tag{333}\\
\left.+\imath z_{2} \frac{\partial}{\partial z_{1}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{3}}\right)\right]
\end{array}
$$

The first derivative of the second term is given by

$$
\begin{aligned}
\frac{\partial \phi(\alpha(z))}{\partial z_{4}} & =\frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}} \frac{\partial \alpha_{1}}{\partial z_{4}}+\frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}} \frac{\partial \alpha_{2}}{\partial z_{4}}+\frac{\partial \phi(\alpha(z))}{\partial \alpha_{3}} \frac{\partial \alpha_{3}}{\partial z_{4}}+\frac{\partial \phi(\alpha(z))}{\partial \alpha_{4}} \frac{\partial \alpha_{4}}{\partial z_{4}} \\
& =z_{2} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}}-\imath z_{2} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}}+z_{1} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{3}}+\imath z_{1} \frac{\partial \phi(\alpha(z))}{\partial \alpha_{4}}
\end{aligned}
$$

The second derivative can be written as follows

$$
\begin{array}{r}
\frac{\partial^{2} \phi(\alpha(z))}{\partial z_{2} \partial z_{4}}=\frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}}-\imath \frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}}+\left[z_{2} \frac{\partial}{\partial z_{2}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{1}}\right)-\imath z_{2} \frac{\partial}{\partial z_{2}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{2}}\right)+z_{1} \frac{\partial}{\partial z_{2}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha}\right)\right. \tag{334}\\
\left.+\imath z_{1} \frac{\partial}{\partial z_{2}}\left(\frac{\partial \phi(\alpha(z))}{\partial \alpha_{4}}\right)\right]
\end{array}
$$

After calculating all the derivatives in (333), (334) and puting all the terms together, the following is obtained

$$
\begin{align*}
\left(\widehat{\mathcal{D}}_{1} \phi\right)(\alpha(z)) & =\hbar^{2}\left[2\left(1+\sum_{k=1}^{4} \alpha_{k} \frac{\partial}{\partial \alpha_{k}}\right) \frac{\partial \phi(\alpha(z))}{\alpha_{1}}-\alpha_{1} \sum_{k=1}^{4} \frac{\partial^{2} \phi(\alpha(z))}{\partial \alpha_{k}^{2}}\right] \tag{335}\\
& =\left(\widehat{D}_{1} \phi\right)(\alpha(z))
\end{align*}
$$

The right-hand side of equality 335 regarded as a function on \dot{Q}_{3} corresponds to $\left(\widehat{D}_{1} \phi\right)(\alpha)$.

For $n=8, m=5$ let me consider the map $\rho_{(8,5)}(z)$ whose components $\alpha(z)_{j}, j=1, \ldots 6$ are given in 140 . The corresponding operators $\widehat{\alpha}_{j}(z)$ are the following

$$
\begin{gather*}
\widehat{\alpha}_{1}(z)=\left(z_{1} z_{4}-z_{2} z_{3}\right)+\left(z_{5} z_{8}-z_{6} z_{7}\right), \quad \widehat{\alpha}_{2}(z)=\imath\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)-\left(z_{3} z_{6}-z_{4} z_{5}\right)\right] \tag{336}\\
\widehat{\alpha}_{3}(z)=\imath\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)+\left(z_{3} z_{8}-z_{4} z_{7}\right)\right], \quad \widehat{\alpha}_{4}(z)=\left(z_{1} z_{6}-z_{2} z_{5}\right)-\left(z_{3} z_{8}-z_{4} z_{7}\right) \\
\widehat{\alpha}_{5}(z)=\left(z_{1} z_{8}-z_{2} z_{7}\right)+\left(z_{3} z_{6}-z_{4} z_{5}\right), \quad \widehat{\alpha}_{6}(z)=\imath\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right] .
\end{gather*}
$$

For the functions $\overline{\alpha_{j}(z)}, j=1, \ldots, 6$ the corresponding operators $\widehat{\bar{\alpha}}_{j}=\widehat{\mathcal{D}}_{j}$ are given by

$$
\begin{align*}
& \widehat{\mathcal{D}}_{1}=\hbar^{2}\left[\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{4}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{3}}\right)+\left(\frac{\partial}{\partial z_{5}} \frac{\partial}{\partial z_{8}}-\frac{\partial}{\partial z_{6}} \frac{\partial}{\partial z_{7}}\right)\right] \tag{337}\\
& \widehat{\mathcal{D}}_{2}=-\imath \hbar^{2}\left[\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{8}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{7}}\right)-\left(\frac{\partial}{\partial z_{3}} \frac{\partial}{\partial z_{6}}-\frac{\partial}{\partial z_{4}} \frac{\partial}{\partial z_{5}}\right)\right] \\
& \widehat{\mathcal{D}}_{3}=-\imath \hbar^{2}\left[\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{6}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{5}}\right)+\left(\frac{\partial}{\partial z_{3}} \frac{\partial}{\partial z_{8}}-\frac{\partial}{\partial z_{4}} \frac{\partial}{\partial z_{7}}\right)\right] \\
& \widehat{\mathcal{D}}_{4}=\hbar^{2}\left[\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{6}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{5}}\right)-\left(\frac{\partial}{\partial z_{3}} \frac{\partial}{\partial z_{8}}-\frac{\partial}{\partial z_{4}} \frac{\partial}{\partial z_{7}}\right)\right] \\
& \widehat{\mathcal{D}}_{5}=\hbar^{2}\left[\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{8}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{7}}\right)+\left(\frac{\partial}{\partial z_{3}} \frac{\partial}{\partial z_{6}}-\frac{\partial}{\partial z_{4}} \frac{\partial}{\partial z_{5}}\right)\right] \\
& \widehat{\mathcal{D}}_{6}=-\imath \hbar^{2}\left[\left(\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{4}}-\frac{\partial}{\partial z_{2}} \frac{\partial}{\partial z_{3}}\right)-\left(\frac{\partial}{\partial z_{5}} \frac{\partial}{\partial z_{8}}-\frac{\partial}{\partial z_{6}} \frac{\partial}{\partial z_{7}}\right)\right] .
\end{align*}
$$

The operators $\widehat{\mathcal{D}}_{j}, j=1, \ldots, 6$ can be realized from the Metaplectic representation in \mathcal{B}_{8}. By doing a similar construction to dimension $n=4 \mathrm{I}$ can define a basis $\xi_{u_{a}, u_{b}}, \xi_{v_{a}, v_{b}}, \xi_{u_{a}, v_{b}}$ of the Lie algebra $\mathfrak{s p}(8, \mathbb{R})$ of $S p(8, \mathbb{R})$. See equality (4.9) in [36] for expression of the assigned operator to $d \mu\left(\xi_{u_{a}, u_{b}}\right), d \mu\left(\xi_{v_{a}, u_{b}}\right), d \mu\left(\xi_{v_{a}, v_{b}}\right)$, which define the metaplectic representation in \mathcal{B}_{8}. The elements $\xi_{v_{a}, v_{b}}-\xi_{u_{a}, u_{b}}, \xi_{v_{a}, u_{b}}+\xi_{v_{b}, u_{a}}$ belong to the Lie algebra of a subgroup of $\operatorname{Sp}(8, \mathbb{R})$ that is isomorphic to $U(4,4)$ and are assigned the following operators

$$
\begin{align*}
d \mu\left(\xi_{v_{a}, v_{b}}-\xi_{u_{a}, u_{b}}\right) & =-\imath\left(\frac{\partial^{2}}{\partial z_{a} \partial z_{b}}+z_{a} z_{b}\right) \\
d \mu\left(\xi_{v_{a}, u_{b}}+\xi_{v_{b}, u_{a}}\right) & =\left(\frac{\partial^{2}}{\partial z_{a} \partial z_{b}}-z_{a} z_{b}\right) \quad \text { with } a=1,3,5,7, b=2,4,6,8 \tag{338}
\end{align*}
$$

For instance, the operators $\widehat{\mathcal{D}}_{1}, \widehat{\mathcal{D}}_{2}$ in (337) can be written in terms of the operators in 338) as follows

$$
\begin{aligned}
\widehat{\mathcal{D}}_{1}= & \frac{\hbar^{2}}{2}\left\{d \mu\left(\xi_{v_{1}, u_{4}}+\xi_{v_{4}, u_{1}}\right)-d \mu\left(\xi_{v_{3}, u_{2}}+\xi_{v_{2}, u_{3}}\right)+d \mu\left(\xi_{v_{5}, u_{8}}+\xi_{v_{8}, u_{5}}\right)-d \mu\left(\xi_{v_{7}, u_{6}}+\xi_{v_{6}, u_{7}}\right)-\right. \\
& \left.\imath\left[d \mu\left(\xi_{v_{1}, v_{4}}-\xi_{u_{4}, u_{1}}\right)-d \mu\left(\xi_{v_{3}, v_{2}}-\xi_{u_{2}, u_{3}}\right)+d \mu\left(\xi_{v_{5}, v_{8}}-\xi_{u_{8}, u_{5}}\right)-d \mu\left(\xi_{v_{7}, v_{6}}-\xi_{u_{6}, u_{7}}\right)\right]\right\} \\
\widehat{\mathcal{D}}_{2}= & \frac{\hbar^{2}}{2}\left\{d \mu\left(\xi_{v_{1}, v_{8}}-\xi_{u_{8}, u_{1}}\right)-d \mu\left(\xi_{v_{7}, v_{2}}-\xi_{u_{2}, u_{7}}\right)+d \mu\left(\xi_{v_{3}, v_{6}}-\xi_{u_{6}, u_{3}}\right)-d \mu\left(\xi_{v_{5}, v_{4}}-\xi_{u_{4}, u_{5}}\right)-\right. \\
& \left.\imath\left[d \mu\left(\xi_{v_{1}, u_{8}}+\xi_{v_{8}, u_{1}}\right)-d \mu\left(\xi_{v_{7}, u_{2}}+\xi_{v_{2}, u_{7}}\right)-d \mu\left(\xi_{v_{3}, u_{6}}+\xi_{v_{6}, u_{3}}\right)+d \mu\left(\xi_{v_{5}, u_{4}}+\xi_{v_{4}, u_{5}}\right)\right]\right\} .
\end{aligned}
$$

The other operators in 337 can be written similarly to $\widehat{\mathcal{D}}_{1}, \widehat{\mathcal{D}}_{2}$ as above.
The operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}, j=1, \ldots, 6$ in (336), 337) are adjoint to each other in the space \mathcal{B}_{8}, so they are also adjoint to each other in the space $\mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$. Moreover, the operators $\widehat{Q}_{\xi_{j}}, j=1,2,3$, in 201 commute with the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ in 336, 337, which implies that for $f(z) \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ the functions $\left(\widehat{\alpha}_{j} f\right)(z)$ and $\left(\widehat{\mathcal{D}}_{j} f\right)(z)$ belong to $\mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$. Hence, $\left(\widehat{\alpha}_{j} f\right)(z)$ and $\left(\widehat{\mathcal{D}}_{j} f\right)(z)$ can be identified with elements in \mathcal{E}_{5}. I can do a similar procedure to the dimension $n=4$ to prove the following.
Proposition 21. Consider $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ and the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}, j=1, \ldots, 6$ given in 336 , 337 . The functions $\left(\widehat{\alpha}_{j} f\right)(z)$ and $\left(\widehat{\mathcal{D}}_{j} f\right)(z)$ are identified with the following elements of \mathcal{E}_{5}.

$$
\begin{equation*}
\widehat{\alpha}_{j} \phi=\alpha_{j} \phi(\alpha) \quad \text { and } \quad \widehat{D}_{j} \phi(\alpha), j=1, \ldots, 6, \tag{339}
\end{equation*}
$$

where \widehat{D}_{j} is the adjoint second order differential operator to $\widehat{\alpha}_{j}$. The expression of \widehat{D}_{j} is given in (62) for $m=5$.

5. Quantum Reduction and The Kustaanheimo-Stiefel Transformation

In section 2 it was considered the geometric quantization of $\left(T^{*} \mathbb{R}^{n}, \omega_{n}=d v \wedge d u\right)$ with respect to the vertical polarization V. In that case the Quantum Reduced Hilbert space $\mathcal{H}^{G_{n}}$ is the space $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$. I will show in the next paragraphs that $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ can be identified with space $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$, where C_{m} is a real constant that depends on the dimension of G_{n}.

Let me consider the Kustaanheimo-Stiefel transformation in equation (157), which is defined as follows

$$
\begin{equation*}
\tilde{\Pi}_{n, m}: \dot{\mathbb{R}}^{n} \ni u \longrightarrow x \in \dot{\mathbb{R}}^{m}, \quad x=\frac{1}{2} A_{n}(u) u, \quad n=8,4, \quad m=5,3 \tag{340}
\end{equation*}
$$

where the matrix $A_{n}(u)$ is given in 152 .
Let me consider the dimensions $n=8, m=5$ and identify $\dot{R}^{8} \cong \dot{H}^{2}, \mathbb{R}^{5} \cong \dot{\mathbb{R}} \times \dot{\mathbb{H}}$. The map $\tilde{\Pi}_{8,5}$ can be written in quaternion coordinates as follows

$$
\begin{equation*}
\tilde{\Pi}_{8,5}: \dot{\mathbb{H}}^{2} \ni\left(q_{1}, q_{2}\right) \longrightarrow\left(\frac{1}{2}\left[\operatorname{det}\left(q_{1}\right)-\operatorname{det}\left(q_{2}\right)\right], q_{2}^{*} q_{1}\right) \in \dot{\mathbb{R}} \times \dot{\mathbb{H}} \tag{341}
\end{equation*}
$$

A straightforward computation shows that the map $\tilde{\Pi}_{8,5}$ is invariant under the action of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$ defined in 81. That is, $\tilde{\Pi}_{8,5}$ satisfies $\tilde{\Pi}_{8,5}\left(\Phi_{g}\left(q_{1}, q_{2}\right)\right)=\tilde{\Pi}_{8,5}\left(q_{1}, q_{2}\right)$. Indeed, the map $\tilde{\Pi}_{8,5}$ is the projection map of a principal bundle with total space \mathbb{R}^{8}, fiber $G_{8}=S U(2)$ and base space \mathbb{R}^{5}, see $[\mathbf{2 3}]$ for details. The map $\tilde{\Pi}_{8,5}$ can be written in Cartesian coordinates as follows

$$
\begin{align*}
\tilde{\Pi}_{8,5} & : \dot{\mathbb{R}}^{8} \ni u \longrightarrow x \in \dot{\mathbb{R}}^{5} \tag{342}\\
x_{1} & =\frac{1}{2}\left[\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}\right)-\left(u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}\right)\right] \\
x_{2} & =u_{1} u_{5}-u_{2} u_{6}+u_{3} u_{7}-u_{4} u_{8} \\
x_{3} & =u_{1} u_{7}+u_{2} u_{8}-u_{3} u_{5}-u_{4} u_{6} \\
x_{4} & =-u_{1} u_{8}+u_{2} u_{7}+u_{3} u_{6}-u_{4} u_{5} \\
x_{5} & =u_{1} u_{6}+u_{2} u_{5}+u_{3} u_{8}+u_{4} u_{7}
\end{align*}
$$

Functions $\varphi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ are invariant under the action of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$. That is, φ satisfies $\varphi\left(\Phi_{g}\left(q_{1}, q_{2}\right)\right)=\varphi\left(\Phi_{g}(u)\right)=\varphi(u)$. Since the orbits $\Phi_{g}(u)$ are the fibers of the map $\tilde{\Pi}_{8,5}$, then functions $\varphi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ are constant along the fibers of the map $\tilde{\Pi}_{8,5}$. Hence
$\varphi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ can be written as $\varphi(u)=\phi(x(u))$ with $\phi(x)$ a function on \mathbb{R}^{5}, and $x(u)$ is defined in equations 342.

Let me consider the dimensions $n=4, m=3$. The map $\tilde{\Pi}_{4,3}$ is given by

$$
\begin{equation*}
\tilde{\Pi}_{4,3}: \dot{\mathbb{R}}^{4} \ni u \longrightarrow x \in \dot{\mathbb{R}^{3}}, \quad x_{1}=u_{1} u_{3}+u_{2} u_{4}, x_{2}=u_{1} u_{4}-u_{2} u_{3}, x_{3}=\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}-u_{3}^{2}-u_{4}^{2}\right) \tag{343}
\end{equation*}
$$

The map $\tilde{\Pi}_{4,3}$ is invariant under the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$ given in 78 . That is, $\tilde{\Pi}_{4,3}$ satisfies $\tilde{\Pi}_{4,3}\left(\Phi_{R_{\theta}}(u)\right)=\tilde{\Pi}_{4,3}(u)$. Moreover, $\tilde{\Pi}_{4,3}$ is the projection map of a principal bundle with total space \mathbb{R}^{4}, fiber $G_{4}=S^{1}$ and base space \mathbb{R}^{3}, see $[\mathbf{2 4}]$ for details. A similar argument to the case of $\varphi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ shows that functions $\varphi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be written as $\varphi(u)=\phi(x(u))$ with $\phi(x)$ a function on \mathbb{R}^{3}, and $x(u)$ is defined in equations (343).

Now I will show that the volume form $d u=d u_{1} \wedge \ldots \wedge d u_{n}$ on \mathbb{R}^{n} can be decomposed in terms of a volume form on G_{n} and the volume form $d x=d x_{1} \wedge \ldots \wedge d x_{m}$ on \mathbb{R}^{m}, see equations (355), (359) below. The following fact is used to calculate the volume form on G_{n}. For any matrix Lie group G the one-form $\Omega=g^{-1} d g$ on G is left-invariant with values on the Lie algebra \mathfrak{g}. For $g \in S U(2)$ in 261 the one-form $\Omega=g^{1} d g$ is given by

$$
\Omega=\left(\begin{array}{cc}
\imath \Omega_{1} & -\Omega_{2}+\imath \Omega_{3} \\
\Omega_{2}+\imath \Omega_{3} & -\imath \Omega_{1}
\end{array}\right)
$$

where the one-forms $\Omega_{j}, j=1,2,3$ are given by

$$
\begin{align*}
\Omega_{1} & =\cos ^{2}(\theta) d \alpha-\sin ^{2}(\theta) d \beta \tag{344}\\
\Omega_{2} & =\sin (\beta-\alpha) \cos (\theta) \sin (\theta)(d \alpha+d \beta)-\cos (\alpha-\beta) d \theta \\
\Omega_{3} & =\cos (\beta-\alpha) \cos (\theta) \sin (\theta)(d \alpha+d \beta)+\sin (\beta-\alpha) d \theta
\end{align*}
$$

The volume form on $S U(2)$ can be written as

$$
\begin{equation*}
d\left(\operatorname{Vol}(S U(2))=\Omega_{1} \wedge \Omega_{2} \wedge \Omega_{3}=\sin (\theta) \cos (\theta) d \theta d \alpha d \beta\right. \tag{345}
\end{equation*}
$$

Hence, the volume is given by

$$
\begin{equation*}
\operatorname{Vol}(S U(2))=\int_{0}^{\frac{\pi}{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sin (\theta) \cos (\theta) d \theta d \alpha d \beta=2 \pi^{2} \tag{346}
\end{equation*}
$$

According to [23], the one-form connection \mathcal{V} of the principal bundle $\tilde{\Pi}_{8,5}: \dot{\mathbb{R}}^{8} \longrightarrow \dot{\mathbb{R}}^{5}$ can be written as follows

$$
\mathcal{V}=\frac{1}{2|u|^{2}}\left[\left(d q_{1} q_{1}^{*}-q_{1} d q_{1}^{*}\right)+\left(d q_{2} q_{2}^{*}-q_{2} d q_{2}^{*}\right)\right]
$$

The one-form \mathcal{V} is defined on $\dot{\mathbb{R}}^{8}$ with values on $\mathfrak{s u}(2)$. That is, the one-form \mathcal{V} can be written with respect to the basis of $\mathfrak{s u}(2)$ in (101) as follows

$$
\mathcal{V}=\gamma_{1}\left(\begin{array}{cc}
\imath & 0 \tag{347}\\
0 & -\imath
\end{array}\right)+\gamma_{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+\gamma_{3}\left(\begin{array}{ll}
0 & \imath \\
\imath & 0
\end{array}\right)
$$

where the one-forms $\gamma_{j}, j=1,2,3$ are given by

$$
\begin{aligned}
(348) \gamma_{1} & =\frac{1}{|u|^{2}}\left[\left(u_{1} d u_{2}+u_{4} d u_{3}+u_{6} d u_{5}+u_{7} d u_{8}\right)-\left(u_{2} d u_{1}+u_{3} d u_{4}+u_{5} d u_{6}+u_{8} d u_{7}\right)\right] \\
\gamma_{2} & =\frac{1}{|u|^{2}}\left[\left(u_{1} d u_{3}+u_{2} d u_{4}+u_{5} d u_{7}+u_{6} d u_{8}\right)-\left(u_{3} d u_{1}+u_{4} d u_{2}+u_{7} d u_{5}+u_{8} d u_{6}\right)\right] \\
\gamma_{3} & =\frac{1}{|u|^{2}}\left[\left(u_{1} d u_{4}+u_{3} d u_{2}+u_{6} d u_{7}+u_{8} d u_{5}\right)-\left(u_{2} d u_{3}+u_{4} d u_{1}+u_{6} d u_{8}+u_{7} d u_{6}\right)\right]
\end{aligned}
$$

The one-forms in (348) are the parametrizations of the one-forms $\Omega_{j}, j=1,2,3$ in (344) regarding the variable $u \in \dot{\mathbb{R}}^{8}$, so the three-form $\gamma_{1} \wedge \gamma_{2} \wedge \gamma_{3}$ can be thought of as the volume form of $S U(2)$ in 345 parametrized in terms of the variable $u \in \mathbb{R}^{8}$.

I can consider for each element ξ_{j} of the basis of $\mathfrak{s u}(2)$ in 101$)$ its infinitesimal generator on $\mathbb{R}^{8} \cong \mathbb{H}^{2}$ which is given by

$$
X_{\xi_{j}}=\left.\frac{d}{d t}\right|_{t=0}\left(\mathrm{e}^{t \xi_{j}} q_{1}, \mathrm{e}^{t \xi_{j}} q_{2}\right),=\left(\xi_{j} q_{1}, \xi_{j} q_{2}\right), \quad j=1,2,3
$$

The vector fields $X_{\xi_{j}}$ can be written in terms of the canonical basis $\left\{\frac{\partial}{\partial u_{1}}, \ldots, \frac{\partial}{\partial u_{8}}\right\}$ as follows

$$
\begin{align*}
X_{\xi_{1}} & =-u_{2} \frac{\partial}{\partial u_{1}}+u_{1} \frac{\partial}{\partial u_{2}}+u_{4} \frac{\partial}{\partial u_{3}}-u_{3} \frac{\partial}{\partial u_{4}}+u_{6} \frac{\partial}{\partial u_{5}}-u_{5} \frac{\partial}{\partial u_{6}}-u_{8} \frac{\partial}{\partial u_{7}}+u_{7} \frac{\partial}{\partial u_{8}} \tag{349}\\
X_{\xi_{2}} & =-u_{3} \frac{\partial}{\partial u_{1}}-u_{4} \frac{\partial}{\partial u_{2}}+u_{1} \frac{\partial}{\partial} \partial u_{3}+u_{2} \frac{\partial}{\partial u_{4}}-u_{7} \frac{\partial}{\partial u_{5}}-u_{8} \frac{\partial}{\partial u_{6}}+u_{5} \frac{\partial}{\partial u_{7}}+u_{6} \frac{\partial}{\partial u_{8}} \\
X_{\xi_{3}} & =-u_{4} \frac{\partial}{\partial u_{1}}+u_{3} \frac{\partial}{\partial u_{2}}-u_{2} \frac{\partial}{\partial u_{3}}+u_{1} \frac{\partial}{\partial u_{4}}+u_{8} \frac{\partial}{\partial u_{5}}-u_{7} \frac{\partial}{\partial u_{6}}+u_{6} \frac{\partial}{\partial u_{7}}-u_{5} \frac{\partial}{\partial u_{8}}
\end{align*}
$$

The relation between the one forms $\gamma_{k}, k=1,2,3$ in 348 and the vector fields $X_{\xi_{j}}$ is the following

$$
\gamma_{k}\left(X_{\xi_{j}}\right)=\delta_{j k}, \quad j, k=1,2,3
$$

Now I calculate the one form $\Omega=g^{-1} d g$ for $\in U(1)$ using the following parametrization

$$
g=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{350}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

The one-form $\Omega=g^{-1} d g$ defined on $U(1)$ with values in $\mathfrak{u}(1)$ is given by

$$
\Omega=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{351}\\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
-\sin \theta d \theta & -\cos \theta d \theta \\
\cos \theta d \theta & -\sin \theta d \theta
\end{array}\right)=d \theta\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

where $d \theta$ is an one-form defined on S^{1} with values in \mathbb{R}. According to [24], the one-form connection of $\tilde{\Pi}_{4,3}: \dot{\mathbb{R}}^{4} \longrightarrow \dot{\mathbb{R}}^{3}$ is the one-form $d \theta$ written in terms of $u \in \dot{\mathbb{R}}^{4}$. Namely,

$$
\begin{equation*}
d \theta=\frac{1}{|u|^{2}}\left[\left(u_{1} d u_{2}-u_{2} d u_{1}\right)+\left(u_{3} d u_{4}-u_{4} d u_{3}\right)\right] \tag{352}
\end{equation*}
$$

The infinitesimal generator X_{θ} of the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$ is given by

$$
X_{\theta}=\left.\frac{d}{d \theta}\right|_{\theta=0}\left(\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{353}\\
\sin \theta & \cos \theta
\end{array}\right)\binom{u_{1}}{u_{2}},\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{u_{3}}{u_{4}}\right)=X_{\theta}=\left(-u_{2}, u_{1},-u_{4}, u_{3}\right)
$$

The vector field X_{θ} in terms of the canonical basis $\left\{\frac{\partial}{\partial u_{1}}, \frac{\partial}{\partial u_{2}}, \frac{\partial}{\partial u_{3}}, \frac{\partial}{\partial u_{4}}\right\}$ can be written as

$$
\begin{equation*}
X_{\theta}=-u_{2} \frac{\partial}{\partial u 1}+u_{1} \frac{\partial}{\partial u_{2}}-u_{4} \frac{\partial}{\partial u_{3}}+u_{3} \frac{\partial}{\partial u_{4}} \tag{354}
\end{equation*}
$$

A straightforward calculation shows that $d \theta\left(X_{\theta}\right)=1$, where X_{θ} is given in (354). For the following proposition, let me first consider the dimensions $n=4, m=3$ due to the calculations are shorter than those for dimensions $n=8, m=5$.

Proposition 22. The volume form $d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4}$ of \mathbb{R}^{4} can be decomposed in terms of the volume forms $d x_{1} \wedge d x_{2} \wedge d x_{3}$ and $d \theta$ as follows

$$
\begin{equation*}
d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4}=\frac{1}{2|x|} d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d \theta \tag{355}
\end{equation*}
$$

Proof. It follows from equation (343) that the differentials of $x_{1}, x_{2}, x_{3}, x_{4}$ are given by

$$
\begin{align*}
d x_{1} & =u_{1} d u_{3}+u_{3} d u_{1}+u_{2} d u_{4}+u_{4} d u_{2} \tag{356}\\
d x_{2} & =u_{1} d u_{4}+u_{4} d u_{1}-u_{2} d u_{3}-u_{3} d u_{2} \\
d x_{3} & =u_{1} d u_{1}+u_{2} d u_{2}-u_{3} d u_{3}-u_{4} d u_{4}
\end{align*}
$$

The wedge product of $d x_{j}, j=1,2,3$ gives the following three form

$$
\left.\begin{array}{rl}
d x_{1} \wedge d x_{2} \wedge d x_{3}=|u|^{2}[& u_{1} d u_{1} \tag{357}\\
\wedge d u_{3} & \wedge d u_{4}+ \\
u_{3} d u_{1} & \wedge d u_{2}
\end{array} \wedge d u_{3}+u_{4} d u_{1} \wedge d u_{2} \wedge d u_{4}+u_{2} d u_{2} \wedge d u_{3} \wedge d u_{4}\right] .
$$

Taking $d \theta$ as in 352 a straightforward computation shows that

$$
\begin{equation*}
d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d \theta=|u|^{2}\left(d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4}\right) \tag{358}
\end{equation*}
$$

Using that $|x|=\frac{1}{2}|u|^{2}$ it follows from equality (358) that

$$
\frac{1}{2|x|} d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d \theta=d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4}
$$

Proposition 23. The volume form $d u_{1} \wedge d u_{2} \wedge \ldots \wedge d u_{8}$ of \mathbb{R}^{8} can be decomposed in terms of the volume forms $d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4} \wedge d x_{5}$ and $d(\operatorname{Vol}(S U(2))$ as follows

$$
\begin{equation*}
\frac{1}{2|x|} d x_{1} \wedge d x_{2} \wedge \ldots \wedge d x_{5} \wedge d\left(\operatorname{Vol}(S U(2))=d u_{1} \wedge d u_{2} \wedge \ldots \wedge d u_{8}\right. \tag{359}
\end{equation*}
$$

Proof. It follows from equation in (342) that the differentials of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are given by

$$
\begin{align*}
d x_{1} & =\left[\left(u_{1} d u_{1}+u_{2} d u_{2}+u_{3} d u_{3}+u_{4} d u_{4}\right)-\left(u_{5} d u_{5}+u_{6} d u_{6}+u_{7} d u_{7}+u_{8} d u_{8}\right)\right] \tag{360}\\
d x_{2} & =\left[\left(u_{1} d u_{5}+u_{5} d u_{1}+u_{3} d u_{7}+u_{7} d u_{3}\right)-\left(u_{2} d u_{6}+u_{6} d u_{2}+u_{4} d u_{8}+u_{8} d u_{4}\right)\right] \\
d x_{3} & =\left[\left(u_{1} d u_{7}+u_{7} d u_{1}+u_{2} d u_{8}+u_{8} d u_{2}\right)-\left(u_{3} d u_{5}+u_{5} d u_{3}+u_{4} d u_{6}+u_{6} d u_{4}\right)\right] \\
d x_{4} & \left.=\left[u_{2} d u_{7}+u_{7} d u_{2}+u_{3} d u_{6}+u_{6} d u_{3}\right)-\left(u_{1} d u_{8}+u_{8} d u_{1}+u_{4} d u_{5}+u_{5} d u_{4}\right)\right] \\
d x_{5} & =\left[u_{1} d u_{6}+u_{6} d u_{1}+u_{2} d u_{5}+u_{5} d u_{2}+u_{3} d u_{8}+u_{8} d u_{3}+u_{4} d u_{7}+u_{7} d u_{4}\right] .
\end{align*}
$$

Now let me consider the one-forms $\gamma_{j}, j=1,2,3$ in 348. A long calculation shows that (361) $d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4} \wedge d x_{5} \wedge \gamma_{1} \wedge \gamma_{2} \wedge \gamma_{3}=|u|^{2}\left(d u_{1} d u_{2} \wedge d u_{3} \wedge d u_{4} \wedge d u_{5} \wedge d u_{6} \wedge d u_{7} \wedge d u_{8}\right)$.

Using that $|x|=\frac{1}{2}|u|^{2}$ equality 361 can be written as follows

$$
\begin{equation*}
\frac{1}{2|x|} d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4} \wedge d x_{5} \wedge \gamma_{1} \wedge \gamma_{2} \wedge \gamma_{3}=d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4} \wedge d u_{5} \wedge d u_{6} \wedge d u_{7} \wedge d u_{8} \tag{362}
\end{equation*}
$$

Since the three form $\gamma_{1} \wedge \gamma_{2} \wedge \gamma_{3}$ can be regarded as the volume form of $S U(2)$, then equality (362) can be written as follows

$$
\frac{1}{2|x|} d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4} \wedge d x_{5} \wedge d\left(\operatorname{Vol}(S U(2))=d u_{1} \wedge d u_{2} \wedge d u_{3} \wedge d u_{4} \wedge d u_{5} \wedge d u_{6} \wedge d u_{7} \wedge d u_{8}\right.
$$

Proposition 24. For any function $\psi(u) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ the following equality holds

$$
\begin{equation*}
\int_{\mathbb{R}^{4}}|\psi(u)|^{2} d u_{1} d u_{2} d u_{3} d u_{4}=\int_{\mathbb{R}^{3}}|\phi(x)|^{2} \frac{\pi}{|x|} d x_{1} d x_{2} d x_{3} \tag{363}
\end{equation*}
$$

Proof. Since every $\psi(u) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be written as $\psi(u)=\phi(x(u))$, then the function $\psi(u)$ descends to a function $\phi(x)$ on \mathbb{R}^{3} through the map $\tilde{\Pi}_{4,3}$. It follows from equality (355) that the integration on $u \in \mathbb{R}^{4}$ can be decomposed as an integration over $\theta \in S^{1}$ and $x \in \mathbb{R}^{3}$. Namely,

$$
\int_{\mathbb{R}^{4}}|\psi(u)|^{2} d u_{1} d u_{2} d u_{3} d u_{4}=\int_{0}^{2 \pi} \int_{\mathbb{R}^{3}}|\phi(x)|^{2} \frac{1}{2|x|} d x_{1} d x_{2} d x_{3} d \theta=\int_{\mathbb{R}^{3}}|\phi(x)|^{2} \frac{\pi}{|x|} d x_{1} d x_{2} d x_{3}
$$

Proposition 25. For any function $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ the following equality holds

$$
\begin{equation*}
\int_{\mathbb{R}^{8}}|\psi(u)|^{2} d u_{1} d u_{2} \ldots d u_{8}=\int_{\mathbb{R}^{5}}|\phi(x)|^{2} \frac{\pi^{2}}{|x|} d x_{1} d x_{2} \ldots d x_{5} \tag{364}
\end{equation*}
$$

Proof. Since every $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ can be written as $\varphi(u)=\phi(x(u))$, then the function $\psi(u)$ descends to a function $\phi(x)$ on $\dot{\mathbb{R}}^{5}$ through the map $\tilde{\Pi}_{8,5}$. It follows from equality $\sqrt{359}$) that the integration on $u \in \mathbb{R}^{8}$ can be decomposed as an integration over $S U(2)$ and \mathbb{R}^{5}. Namely,

$$
\begin{aligned}
\int_{\mathbb{R}^{8}}|\psi(u)|^{2} d u_{1} d u_{2} \ldots d u_{8} & =\int_{S U(2)} \int_{\mathbb{R}^{3}}|\phi(x)|^{2} \frac{1}{2|x|} d x_{1} \ldots d x_{5} d(\operatorname{Vol}(S U(2)) \\
& =\operatorname{Vol}(S U(2)) \int_{\mathbb{R}^{5}}|\phi(x)|^{2} \frac{1}{2|x|} d x_{1} d x_{2} \ldots d x_{5} \\
& =\int_{\mathbb{R}^{5}}|\phi(x)|^{2} \frac{\pi^{2}}{|x|} d x_{1} d x_{2} \ldots d x_{5}
\end{aligned}
$$

Equalities (363) and (364) indicate that $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ regarded as a Hilbert space on \mathbb{R}^{m} can be identified with $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$.

The space $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ can be regarded in a set-up that is related with the quantization of the Kepler problem. For any dimension m the symplectic manifold $T^{+} S^{m}$ can be identified with a coadjoint orbit in $\mathfrak{s o}(2, m+1)^{*}$ (the dual of the Lie algebra of $S O(2, m+1)$), see [30 for details. In [10, Chap. 9] Coordani constructs a representation of the generators of $\mathfrak{s o}(2, m+1)$ in the space $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ by using tools of multiplier representations. In addition, he constructs a unitary representation of the generators of $\mathfrak{s o}(2, m+1)$ in the space $L^{2}\left(\mathbb{R}^{m}, \frac{1}{|x|} d x\right)$ from the corresponding one in $L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ through a process which involves the quantum counterpart of the procedure that carries the geodesic flow on $T^{+} S^{m}$ to the Hamiltonian flow of the Kepler problem on $T^{*} \dot{\mathbb{R}}^{m}$ on a fixed negative energy hypersurface respectively.

On the other hand, let me recall that the operators $\widehat{\alpha}_{j}, \widehat{D}_{j}, j=1, \ldots, m+1$ and their commutators generate a unitary representation of $\mathfrak{s o}(2, m+1)$ in the space \mathcal{E}_{m}, see equation (58). I have shown for the particular dimensions $m=5,3$ that the operators $\widehat{\alpha}_{j}, \widehat{D}_{j}$ can be obtained from the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ acting in $\mathcal{B}_{n}^{\left(G_{n}\right) c}$. In the next chapter I will obtain a representation of $\widehat{\alpha}_{j}, \widehat{D}_{j}$ in the space $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ via a reduction process of a SegalBargmann transform from $L^{2}\left(\mathbb{R}^{m}, d u\right)^{G_{n}}$ onto $\mathcal{B}_{n}^{\left(G_{n}\right) c}$. Let me emphasize that my approach is different from the one of Coordani.

Pairing Map and The Segal-Bargmann Transform

The original contribution of this chapter is the construction of a Segal-Bargmann Transform (SBT) $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$ through the "first quantize and then reduce" process. Namely, I consider the pairing between the vertical polarization V and complex polarization P, which gives an $\operatorname{SBT} B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}, n=8,4$ that is different from the standard one $B_{\mathbb{R}^{n}}$ defined in 50 Chapter 1. Actually B_{n} and $B_{\mathbb{R}^{n}}$ are related via a unitary map $\widehat{T}_{U_{n}}: \mathcal{B}_{n} \longrightarrow \mathcal{B}_{n}$ that is assigned to a suitable matrix $U_{n} \in S U(n)$. That is, $B_{n}=\widehat{T}_{U_{n}} \circ B_{\mathbb{R}^{n}}$ which in turn shows the unitarity of B_{n}. I show that the restriction of B_{n} to $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ gives an SBT $B_{0, n}: L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}} \longrightarrow \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$, and thereafter from the identification of $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ with $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ and of $\mathcal{B}_{n}^{\left(G_{n}\right)} \mathbb{C}$ with \mathcal{E}_{m} I obtain \mathfrak{B}_{n} from the one $B_{0, n}$.

1. Pairing Maps

In Geometric Quantization, the pairing of polarizations is a way to relate the results of quantizing with respect to two different polarizations. In the literature, it is mainly considered the pairing of two transverse polarizations. Following the exposition of $[\mathbf{1 7}, \mathbf{4 3}$, I will do the pairing of the vertical polarization V and holomorphic polarization P, which is an example of pairing of transverse polarizations (the nowhere vanishing sections $\boldsymbol{\kappa}_{\mathbf{0}}=d u_{1} \wedge d u_{2} \ldots \wedge d u_{n}$ of K_{V} and $\kappa_{0}=d z_{1} \wedge d z_{2} \wedge \ldots \wedge d z_{n}$ of K_{n} satisfy $\left.\boldsymbol{\kappa}_{\mathbf{0}} \wedge \kappa_{0}=d u_{1} \wedge d u_{2} \ldots \wedge d u_{n} \wedge d v_{1} \wedge d v_{2} \wedge \ldots \wedge d v_{n}\right)$.

Let me consider sections $r_{1}(z) \in \Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ with $r_{1}(z)=\phi(z) \mathrm{e}^{-\frac{1}{2 \hbar}|z|^{2}} \sqrt{d z_{1} \wedge \ldots \wedge d z_{n}}$ and $\boldsymbol{r}_{2}(u, v) \in \Gamma_{V}\left(L^{\omega_{n}} \otimes K_{V}^{\frac{1}{2}}\right)$ with $\boldsymbol{r}_{2}(u, v)=\varphi(u) \mathrm{e}^{-\frac{i}{2 \hbar} u \cdot v} \sqrt{d u_{1} \wedge \ldots \wedge d u_{n}}$. The pairing of $r_{1}(z)$ and $\boldsymbol{r}_{2}(u, v)$ is defined by

$$
\begin{equation*}
\left\langle r_{1}, \boldsymbol{r}_{2}\right\rangle=c t c \int_{T^{*} \mathbb{R}^{n}} \phi(z) \overline{\varphi(u)} \mathrm{e}^{-\frac{1}{2 \hbar}\left(|z|^{2}-\imath u \cdot v\right)} \epsilon_{\omega_{n}}(u, v) \tag{365}
\end{equation*}
$$

with $\epsilon_{\omega_{n}}(u, v)=d u_{1} d u_{2} \ldots d u_{n} d v_{1} d v_{2} \ldots d v_{n}$ and ctc a constant suitably chosen. The righthand side of equality (365) is well-defined (finite) because the functions $\varphi(u), \phi(z)$ are squareintegrable regarding the indicated measure.

Now let me identify $\Gamma_{V}\left(L^{\omega_{n}} \otimes K_{V}^{\frac{1}{2}}\right)$ with $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and $\Gamma_{P}\left(L^{\omega_{n}} \otimes K_{n}^{\frac{1}{2}}\right)$ with \mathcal{B}_{n}. That is, each section $r_{2}(u, v)$ and $r_{1}(z)$ gives a function $\varphi(u) \in L^{2}\left(\mathbb{R}^{n}, d u\right)$ and $\phi(z) \in \mathcal{B}_{n}$ respectively. Because the pairing of $r_{1}(z), \boldsymbol{r}_{2}(u, v)$ is bounded, there is a pairing $\operatorname{map} \Lambda_{V, P}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow$ \mathcal{B}_{n} satisfying the following equality

$$
\begin{equation*}
\left\langle r_{1}, \boldsymbol{r}_{2}\right\rangle=\left\langle r_{1}, \Lambda_{V, P} \boldsymbol{r}_{2}\right\rangle_{P} \tag{366}
\end{equation*}
$$

The right-hand side of equality (366) is the inner product in the space \mathcal{B}_{n}.
In 43 it is exposed the procedure to obtain the pairing map $\Lambda_{V, P}$. I implement this procedure in the following calculations for the complexifications given in equations (89) and (91). From the reproducing kernel property the following equality holds for all $\phi \in \mathcal{B}_{n}$

$$
\begin{equation*}
\phi(z)=\int_{\mathbb{C}^{n}} \phi(w) \mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}} d \nu_{n}^{\hbar}(w), \quad d \nu_{\hbar}^{n}(w)=\frac{1}{(\hbar \pi)^{n}} \mathrm{e}^{-\frac{1}{\hbar}|w|^{2}} \epsilon_{\omega_{n}}(w) \tag{367}
\end{equation*}
$$

The function $\phi(z)$ in (367) is substituted into equality (365). The following is obtained

$$
\begin{equation*}
\left\langle r_{1}, \boldsymbol{r}_{2}\right\rangle=c t c \int_{T^{*} \mathbb{R}^{n}}\left[\int_{\mathbb{C}^{n}} \phi(w) \mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}} d \nu_{\hbar}^{n}(w)\right] \overline{\varphi(u)} \mathrm{e}^{-\frac{1}{2 \hbar}\left(|z|^{2}-\imath u \cdot v\right)} d v d u \tag{368}
\end{equation*}
$$

I can interchange the integration order in 368 by the theorem of Fubini. That is, the pairing of $r_{1}(z)$ and $\boldsymbol{r}_{2}(u, v)$ can be written as follows

$$
\begin{equation*}
\left\langle r_{1}, \boldsymbol{r}_{2}\right\rangle=\int_{\mathbb{C}^{n}} \phi(w)\left[c t c \int_{T^{*} \mathbb{R}^{n}} \overline{\varphi(u)} \mathrm{e}^{-\frac{1}{2 \hbar}\left(|z|^{2}-\imath u \cdot v\right)} \mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}} d v d u\right] d \nu_{\hbar}^{n}(w) \tag{369}
\end{equation*}
$$

Let me look at the following integral

$$
\begin{equation*}
\int_{T^{*} \mathbb{R}^{n}} \overline{\varphi(u)} \mathrm{e}^{-\frac{1}{2 \hbar}\left(|z|^{2}-\imath u \cdot v\right)} \mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}} d v d u \tag{370}
\end{equation*}
$$

In the integral 370 the variable $z \in \mathbb{C}^{n}$ comes from a complexification of $(u, v) \in T^{*} \mathbb{R}^{n}$. So by performing an integration with respect to $v \in \mathbb{R}^{n}$ it leaves an integral whose integrand involves the function $\overline{\varphi(u)}$ and a function that depends on $u \in \mathbb{R}^{n}$ and $w \in \mathbb{C}^{n}$. Let me do this integration. For $n=4$ the complex coordinates $z \in \mathbb{C}^{4}$ are given in 89), and the integral with respect to the variable $v \in \mathbb{R}^{4}$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v^{2}-2 \imath u \cdot v-2\left[\imath v_{1}\left(\bar{w}_{4}-\bar{w}_{1}\right)+v_{2}\left(\bar{w}_{1}+\bar{w}_{4}\right)+\imath v_{3}\left(\bar{w}_{3}-\bar{w}_{2}\right)+v_{4}\left(\bar{w}_{2}+\bar{w}_{3}\right)\right]\right\}} d v_{1} d v_{2} d v_{3} d v_{4} \tag{371}
\end{equation*}
$$

For $n=8$ the complex coordinates are given in (91), and the integral with respect to the variable $v \in \mathbb{R}^{8}$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}^{8}} \mathrm{e}^{-\frac{1}{4 \hbar}\left[v^{2}-2 \imath u \cdot v-2 \chi(u, \bar{w})\right]} d v_{1} d v_{2} \ldots d v_{8} \tag{372}
\end{equation*}
$$

where the term $\chi(u, \bar{w})$ has the following expression

$$
\begin{aligned}
& \chi(u, \bar{w})=\left(v_{1}+\imath v_{2}\right) \bar{w}_{1}+\left(v_{3}+\imath v_{4}\right) \bar{w}_{2}+\left(-v_{3}+\imath v_{4}\right) \bar{w}_{3}+\left(v_{1}-\imath v_{2}\right) \bar{w}_{4}+ \\
&\left(-v_{6}-\imath v_{5}\right) \bar{w}_{5}+\left(-v_{8}-\imath v_{7}\right) \bar{w}_{6}+\left(-v_{8}+\imath v_{7}\right) \bar{w}_{7}+\left(v_{6}-\imath v_{5}\right) \bar{w}_{8} .
\end{aligned}
$$

The integrals in (371) and (372) can be done separately on each variable $v_{j}, j=1, \ldots, n$ in both cases respectively, and the same procedure can be used to compute these integrals. For example in (371), the integrals with respect to $v_{j}, j=1,2,3,4$ are given by

$$
\begin{array}{ll}
\int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{1}^{2}-2 v_{1}\left[\imath u_{1}+\imath\left(\bar{w}_{4}-\bar{w}_{1}\right)\right]\right\}} d v_{1}, & \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{2}^{2}-2 v_{2}\left[\imath u_{2}+\left(\bar{w}_{1}+\bar{w}_{4}\right)\right]\right\}} d v_{2} \tag{373}\\
\int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{3}^{2}-2 v_{3}\left[\imath u_{3}+\imath\left(\bar{w}_{3}-\bar{w}_{2}\right)\right]\right\}} d v_{3}, & \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{4}^{2}-2 v_{4}\left[\imath u_{4}+\left(\bar{w}_{2}+\bar{w}_{3}\right)\right]\right\}} d v_{4}
\end{array}
$$

The following is obtained from integrals in (373)

$$
\begin{align*}
& \mathrm{e}^{\frac{1}{4 \hbar}\left[l\left(u_{1}+\bar{w}_{4}-\bar{w}_{1}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{1}-\left[\imath\left(u_{1}+\left(\bar{w}_{4}-\bar{w}_{1}\right)\right]\right\}^{2}\right.} d v_{1}=2(\hbar \pi)^{1 / 2} \mathrm{e}^{\frac{1}{4 \hbar}\left[l\left(u_{1}+\bar{w}_{4}-\bar{w}_{1}\right)\right]^{2}} \tag{374}\\
& \mathrm{e}^{\frac{1}{4 \hbar}\left[u_{2}+\left(\bar{w}_{1}+\bar{w}_{4}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{2}-\left[u_{2}\left(\bar{w}_{1}+\bar{w}_{4}\right)\right]\right\}^{2}} d v_{2}=2(\hbar \pi)^{1 / 2} \mathrm{e}^{\frac{1}{4 \hbar}\left[r u_{2}+\left(\bar{w}_{1}+\bar{w}_{4}\right)\right]^{2}} \\
& \mathrm{e}^{\frac{1}{4 \hbar}\left[l\left(u_{3}+\bar{w}_{3}-\bar{w}_{2}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{3}-\left[l\left(u_{3}+\bar{w}_{3}-\bar{w}_{2}\right)\right]\right\}^{2}} d v_{3}=2(\hbar \pi)^{1 / 2} \mathrm{e}^{\frac{1}{4 \hbar}\left[\imath\left(u_{3}+\bar{w}_{3}-\bar{w}_{2}\right)\right]^{2}} \\
& \mathrm{e}^{\frac{1}{4 \hbar}\left[u u_{4}+\left(\bar{w}_{2}+\bar{w}_{3}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{4 \hbar}\left\{v_{4}-\left[i u_{4}+\left(\bar{w}_{2}+\bar{w}_{3}\right)\right]\right\}^{2}} d v_{4}=2(\hbar \pi)^{1 / 2} \mathrm{e}^{\frac{1}{4 \hbar}\left[u u_{4}+\left(\bar{w}_{2}+\bar{w}_{3}\right)\right]^{2}} .
\end{align*}
$$

For $n=4$ let me take $c t c=\frac{1}{2^{4}(\pi \hbar)^{3}}$. It follows from above calculations that equality (366) can be written as

$$
\begin{equation*}
\left\langle r_{1}, \Lambda_{V, P} \boldsymbol{r}_{2}\right\rangle_{P}=\int_{\mathbb{C}^{4}} \phi(w)\left[\int_{\mathbb{R}^{4}} \overline{\varphi(u)} \overline{A_{4}(u, w)} d u\right] d \nu_{\hbar}^{4}(w), \tag{375}
\end{equation*}
$$

where the kernel $A_{4}(u, w)$ has the following expression

$$
\begin{equation*}
A_{4}(u, w)=\frac{1}{\pi \hbar} \mathrm{e}^{-\frac{1}{2 \hbar}\left\{u^{2}-2\left[w_{1}\left(u_{1}-\imath u_{2}\right)+w_{2}\left(u_{3}-\imath u_{4}\right)+w_{3}\left(-\imath u_{4}-u_{3}\right)+w_{4}\left(-\imath u_{2}-u_{1}\right)+\left(w_{1} w_{4}+w_{2} w_{3}\right)\right]\right\}} . \tag{376}
\end{equation*}
$$

It follows from equality 375 that the pairing map $\Lambda_{V, P}: L^{2}\left(\mathbb{R}^{4}, d u\right) \longrightarrow \mathcal{B}_{4}$ is given by

$$
\begin{equation*}
\left(\Lambda_{V, P} \varphi\right)(w)=\int_{\mathbb{R}^{4}} \varphi(u) A_{4}(u, w) d u, \forall \varphi \in L^{2}\left(\mathbb{R}^{4}, d u\right) \tag{377}
\end{equation*}
$$

For $n=8$ doing the integrals in $\left(372\right.$ and choosing $c t c=\frac{1}{2^{8}(\pi \hbar)^{6}}$, the equality 366 can be written as

$$
\begin{equation*}
\left\langle r_{1}, \Lambda_{V, P} \boldsymbol{r}_{2}\right\rangle_{P}=\int_{\mathbb{C}^{8}} \phi(w)\left[\int_{\mathbb{R}^{8}} \overline{\varphi(u)} \overline{A_{8}(u, w)} d u\right] d \nu_{\hbar}^{8}(w) \tag{378}
\end{equation*}
$$

The kernel $A_{8}(u, w)$ is given by

$$
\begin{equation*}
A_{8}(u, w)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar} u^{2}+\frac{1}{\hbar} \chi(u, w)+\frac{1}{\hbar}\left[\left(w_{1} w_{4}-w_{2} w_{3}\right)-\left(w_{5} w_{8}-w_{6} w_{7}\right)\right]} \tag{379}
\end{equation*}
$$

where $\boldsymbol{\chi}(u, w)$ has the following expression

$$
\begin{align*}
\chi(u, w)=\imath w_{1}\left(-u_{1}\right. & \left.+\imath u_{2}\right)+\imath w_{2}\left(-u_{3}+\imath u_{4}\right)+\imath w_{3}\left(u_{3}+\imath u_{4}\right)+\imath w_{4}\left(-u_{1}-\imath u_{2}\right) \tag{380}\\
& +w_{5}\left(u_{5}+\imath u_{6}\right)+w_{6}\left(u_{7}+\imath u_{8}\right)+w_{7}\left(-u_{7}+\imath u_{8}\right)+w_{8}\left(u_{5}-\imath u_{6}\right) .
\end{align*}
$$

It follows from equality 378 that the pairing map $\Lambda_{V, P}: L^{2}\left(\mathbb{R}^{8}, d u\right) \longrightarrow \mathcal{B}_{8}$ is given by

$$
\begin{equation*}
\left(\Lambda_{V, P} \varphi\right)(w)=\int_{\mathbb{R}^{8}} \varphi(u) A_{8}(u, w) d u, \forall \varphi \in L^{2}\left(\mathbb{R}^{8}, d u\right) . \tag{381}
\end{equation*}
$$

From now on, the pairing map $\Lambda_{P, V}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ is denoted as $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ and is written as

$$
\begin{equation*}
\left(B_{n} \varphi\right)(w)=\int_{\mathbb{R}^{n}} \varphi(u) A_{n}(u, w) d u, \quad \forall \varphi \in L^{2}\left(\mathbb{R}^{n}, d u\right) \text { with } n=8,4 \tag{382}
\end{equation*}
$$

where $\left(B_{4} \varphi\right)(w)$ is given in (377) and $\left(B_{8} \varphi\right)(w)$ is given in (381). The map B_{n} defined in (382) is the Segal-Bargmann Transform (SBT).

When $T^{*} \mathbb{R}^{n}$ is identified with \mathbb{C}^{n} in the standard way by writing $z \in \mathbb{C}^{n}$ as $z=u+\imath v$, the pairing map $\Lambda_{P, V}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ is the Segal-Bargmann transform $B_{\mathbb{R}^{n}}$ defined in 50 . See 43 for details.

I will show in the following paragraphs that the $\mathrm{SBT} B_{n}$ in (382) can be written as the composition of two unitary operators. Let me recall that the elements $U \in S U(n)$ are complex
matrices with the property that $U U^{*}=\mathbb{I}$, where U^{*} denotes the conjugate transpose. I can assign to each $U \in S U(n)$ an operator $\widehat{T}_{U}: \mathcal{B}_{n} \longrightarrow \mathcal{B}_{n}$ which is defined as follows

$$
\begin{equation*}
\left(\widehat{T}_{U} f\right)(z)=f\left(U^{-1} \cdot z\right) \tag{383}
\end{equation*}
$$

where $U^{-1} \cdot z$ denotes the action of a matrix on a vector. The measure $d \nu_{n}^{\hbar}(z)$ is invariant under the coordinate transformation $z^{\prime}=U^{-1} \cdot z$, that is, $d \nu_{n}^{\hbar}\left(z^{\prime}\right)=d \nu_{n}^{\hbar}(z)$. A straightforward calculation shows that \widehat{T}_{U} preserves the inner product in \mathcal{B}_{n}. Namely,

$$
\left\langle\widehat{T}_{U} f, \widehat{T}_{U} g\right\rangle=\langle f, g\rangle, \quad \forall f, g \in \mathcal{B}_{n}
$$

Hence, \widehat{T}_{U} is a unitary operator. See [4] for details. The SBT $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ can be written as the composition of $B_{\mathbb{R}^{n}}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ defined in 50 with a unitary operator \widehat{T}_{U}. Let me begin with the dimension $n=4$. Consider the matrix $U_{4} \in S U(4)$ given by

$$
U_{4}=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} & \frac{\imath}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{\imath}{\sqrt{2}} \\
0 & 0 & -\frac{1}{\sqrt{2}} & \frac{\imath}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 & 0
\end{array}\right)
$$

From $\sqrt[383]{ }$ the action of $\widehat{T}_{U_{4}}$ on $B_{\mathbb{R}^{4}} \psi \in \mathcal{B}_{4}$ is given by $\left(\widehat{T}_{U_{4}} B_{\mathbb{R}^{4}} \psi\right)(z)=\left(B_{\mathbb{R}^{4}} \psi\right)\left(U_{4}^{-1} \cdot z\right)$. It follows from definition of $B_{\mathbb{R}^{4}} \psi$ that the function $\left(B_{\mathbb{R}^{4}} \psi\right)\left(U_{4}^{-1} \cdot z\right)$ can be written as

$$
\left(B_{\mathbb{R}^{4}} \psi\right)\left(U_{4}^{-1} \cdot z\right)=\int_{\mathbb{R}^{4}} \boldsymbol{A}_{4}\left(u, U_{4}^{-1} \cdot z\right) \psi(u) d u
$$

A straightforward calculation shows that $\boldsymbol{A}_{4}\left(u, U_{4}^{-1} \cdot z\right)=A_{4}(u, z)$. Hence, the following equality holds

$$
\left(B_{4} \psi\right)(z)=\left(\widehat{T}_{U_{4}} \circ B_{\mathbb{R}^{4}} \psi\right)(z)
$$

A similar procedure can be done for dimension $n=8$. Namely, the $\operatorname{SBT} B_{8}: L^{2}\left(\mathbb{R}^{8}, d u\right) \longrightarrow \mathcal{B}_{8}$ can be written as follows

$$
\left(B_{8} \psi\right)(z)=\left(\widehat{T}_{U_{8}} \circ B_{\mathbb{R}^{8}} \psi\right)(z)
$$

where the operator $\widehat{T}_{U_{8}}: \mathcal{B}_{8} \longrightarrow \mathcal{B}_{8}$ is assigned to the matrix $U_{8} \in S U(8)$ which is given by

$$
U_{8}=\left(\begin{array}{cccccccc}
\frac{\imath}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{\imath}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{\imath}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
\frac{\imath}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{\imath}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{\imath}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}} & -\frac{\imath}{\sqrt{2}} \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{\imath}{\sqrt{2}} & 0 & 0
\end{array}\right) .
$$

2. Properties of the Segal-Bargmann Transform

I show in this section that the $\operatorname{SBT} B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}, n=8,4$ intertwines the operators of creation and annihilation between the representations of Schrödinger in $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and Segal-Bargmann in \mathcal{B}_{n}.

Proposition 26. Consider the $S B T B_{4}: L^{2}\left(\mathbb{R}^{4}, d u\right) \longrightarrow \mathcal{B}_{4}$ given by

$$
\begin{equation*}
\left(B_{4} \varphi\right)(z)=\int_{\mathbb{R}^{4}} \varphi(u) A_{4}(u, z) d u, \quad \forall \varphi \in L^{2}\left(\mathbb{R}^{4}, d u\right) \tag{384}
\end{equation*}
$$

where $A_{4}(u, z)$ is given in 376).
(i) Note that for $z \in \mathbb{C}^{4}$ fixed, the kernel $A_{4}(u, z)$ belongs to $L^{2}\left(\mathbb{R}^{4}, d u\right)$. The SBT of $\psi_{w}(u)=$ $\overline{A_{4}(u, w)} \in L^{2}\left(\mathbb{R}^{4}, d u\right)$ gives the reproducing kernel in \mathcal{B}_{4}. Namely,

$$
\begin{equation*}
\left(B_{4} \psi_{w}\right)(z)=\int_{\mathbb{R}^{4}} \psi_{w}(u) A_{4}(u, z) d u=\mathrm{e}^{\frac{1}{\hbar} \cdot \cdot \bar{w}} . \tag{385}
\end{equation*}
$$

(ii) In $L^{2}\left(\mathbb{R}^{4}, d u\right)$ consider the operators \widehat{a}_{j} and $\widehat{a}_{j}^{\dagger}$ given by

$$
\begin{equation*}
\widehat{a}_{j}=\frac{1}{\sqrt{2}}\left(u_{j}+\hbar \frac{\partial}{\partial u_{j}}\right), \quad \widehat{a}_{j}^{\dagger}=\frac{1}{\sqrt{2}}\left(u_{j}-\hbar \frac{\partial}{\partial u_{j}}\right), j=1,2,3,4 . \tag{386}
\end{equation*}
$$

The creation and annihilation operators in the Segal-Bargmann space \mathcal{B}_{4} are given by

$$
\widehat{z}_{j}=z_{j}, \quad \widehat{\bar{z}}_{j}=\hbar \frac{\partial}{\partial z_{j}}, j=1, \ldots 4
$$

The SBT B_{4} intertwines the creation and annihilation operators in \mathcal{B}_{4} with the following operators in $L^{2}\left(\mathbb{R}^{4}, d u\right)$

$$
\begin{array}{rlrl}
z_{1} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{1}^{\dagger}+\imath \widehat{a}_{2}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{1}} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{1}-\imath \widehat{a}_{2}\right)\right] \tag{387}\\
z_{2} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{3}^{\dagger}+\imath \widehat{a}_{4}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{2}} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{3}-\imath \widehat{a}_{4}\right)\right] \\
z_{3} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{3}^{\dagger}+\imath \widehat{a}_{4}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{3}} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{3}-\imath \widehat{a}_{4}\right)\right] \\
z_{4} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{1}^{\dagger}+\imath \widehat{a}_{2}^{\dagger}\right)\right], & & \frac{\partial}{\partial z_{4}} B_{4}=B_{4}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{1}-\imath \widehat{a}_{2}\right)\right] .
\end{array}
$$

(iii) The equations in (387) suggest that the following operators can be considered as annihilation operators
(388)

$$
\hat{d}_{1}=\frac{1}{\sqrt{2}}\left(\widehat{a}_{1}-\imath \widehat{a}_{2}\right), \quad \hat{d}_{2}=\frac{1}{\sqrt{2}}\left(\widehat{a}_{3}-\imath \widehat{a}_{4}\right), \quad \hat{d}_{3}=\frac{1}{\sqrt{2}}\left(-\widehat{a}_{3}-\imath \widehat{a}_{4}\right), \quad \hat{d}_{4}=\frac{1}{\sqrt{2}}\left(-\widehat{a}_{1}-\imath \widehat{a}_{2}\right) .
$$

For $z \in \mathbb{C}^{4}$ fixed, the kernel $A_{4}(u, z)$ is an eigenfunction of the operators $\widehat{d}_{j}, j=1,2,3,4$. Namely,

$$
\begin{array}{ll}
\hat{d}_{1} A_{4}(u, z)=-z_{4} A_{4}(u, z), & \hat{d}_{2} A_{4}(u, z)=-z_{3} A_{4}(u, z) \\
\hat{d}_{3} A_{4}(u, z)=-z_{2} A_{4}(u, z), & \hat{d}_{4} A_{4}(u, z)=-z_{1} A_{4}(u, z) .
\end{array}
$$

(iii) The $S B T B_{4}$ is a unitary map from $L^{2}\left(\mathbb{R}^{4}, d u\right)$ onto \mathcal{B}_{4}.

Proof.

(i) The Segal-Bargmann transform of $\psi_{w}(u)=\overline{A_{4}(u, w)}$ is given by

$$
\begin{equation*}
\left(B_{4} \psi_{w}\right)\left(z=\int_{\mathbb{R}^{4}} \psi_{w}(u) A_{4}(u, z) d u=\int_{\mathbb{R}^{4}} \overline{A_{4}(u, w)} A_{4}(u, z) d u .\right. \tag{389}
\end{equation*}
$$

The integrand in (389) can be written as

$$
\begin{aligned}
& \overline{A_{4}(u, w)} A_{4}(u, z)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{\left.\frac{1}{\hbar}\left[\left(\bar{w}_{1} \bar{w}_{4}\right)+\bar{w}_{2} \bar{w}_{3}\right)+\left(z_{1} z_{4}+z_{2} z_{3}\right)\right]} \\
& \quad \mathrm{e}^{-\frac{1}{\hbar}\left\{u^{2}-\left[u_{1}\left(z_{1}-z_{4}+\bar{w}_{1}-\bar{w}_{4}\right)+r u_{2}\left(\bar{w}_{1}+\bar{w}_{4}-z_{1}-z_{4}\right)+u_{3}\left(\bar{w}_{2}-\bar{w}_{3}+z_{2}-z_{3}\right)+r u_{4}\left(\bar{w}_{2}+\bar{w}_{3}-z_{2}-z_{3}\right)\right]\right\}} .
\end{aligned}
$$

The term to be integrated with respect to the variable $u \in \mathbb{R}^{4}$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \mathrm{e}^{-\frac{1}{\hbar}\left\{u^{2}-\left[u_{1}\left(z_{1}-z_{4}+\bar{w}_{1}-\bar{w}_{4}\right)+u u_{2}\left(\bar{w}_{1}+\bar{w}_{4}-z_{1}-z_{4}\right)+u_{3}\left(\bar{w}_{2}-\bar{w}_{3}+z_{2}-z_{3}\right)+r u_{4}\left(\bar{w}_{2}+\bar{w}_{3}-z_{2}-z_{3}\right)\right]\right\}} d u \tag{390}
\end{equation*}
$$

The integration in 390 can be done separately on each variable $u_{j}, j=1,2,3,4$. These integrals are given by

$$
\begin{align*}
\mathrm{e}^{\frac{1}{4 \hbar}\left[\left(z_{1}-z_{4}\right)+\left(\bar{w}_{1}-\bar{w}_{4}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{\hbar}\left\{u_{1}-\left[\frac{\left(z_{1}-z_{4}\right)+\left(\bar{w}_{1}-\bar{w}_{4}\right)}{2}\right]\right\}^{2}} d u_{1}=(\hbar \pi)^{1 / 2} \mathrm{e}^{\frac{1}{4 \hbar}\left[\left(z_{1}-z_{4}\right)+\left(\bar{w}_{1}-\bar{w}_{4}\right)\right]^{2}} \tag{391}\\
\mathrm{e}^{-\frac{1}{4 \hbar}\left[\left(\bar{w}_{1}+\bar{w}_{4}\right)-\left(z_{1}+z_{4}\right)\right]^{2}} \int_{\mathbb{R}^{4}} \mathrm{e}^{-\frac{1}{\hbar}\left\{u_{2}-\imath\left[\frac{\left(\bar{w}_{1}+\bar{w}_{4}\right)-\left(z_{1}+z_{4}\right)}{2}\right]\right\}^{2}} d u_{2}=(\hbar \pi)^{1 / 2} \mathrm{e}^{-\frac{1}{4 \hbar}\left[\left(\bar{w}_{1}+\bar{w}_{4}\right)-\left(z_{1}+z_{4}\right)\right]^{2}} \\
\mathrm{e}^{\frac{1}{4 \hbar}\left[\left(z_{2}-z_{3}\right)+\left(\bar{w}_{2}-\bar{w}_{3}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{\left.-\frac{1}{\hbar}\left\{u_{3}-\frac{1}{2}\left[\left(z_{2}-z_{3}\right)+\bar{w}_{2}-\bar{w}_{3}\right)\right]\right\}^{2}} d u_{3}=(\hbar \pi)^{1 / 2} \mathrm{e}^{\frac{1}{4 \hbar}\left[\left(z_{2}-z_{3}\right)+\left(\bar{w}_{2}-\bar{w}_{3}\right)\right]^{2}} \\
\mathrm{e}^{-\frac{1}{4 \hbar}\left[\left(\bar{w}_{2}+\bar{w}_{3}\right)-\left(z_{2}+z_{3}\right)\right]^{2}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{\hbar}\left\{u_{4}-\frac{2}{2}\left[\left(\bar{w}_{2}+\bar{w}_{3}\right)-\left(z_{2}+z_{3}\right)\right]\right\}^{2}} d u_{4}=(\hbar \pi)^{1 / 2} \mathrm{e}^{-\frac{1}{4 \hbar}\left[\left(\bar{w}_{2}+\bar{w}_{3}\right)-\left(z_{2}+z_{3}\right)\right]^{2}} .
\end{align*}
$$

The following is obtained from equalities in 391

$$
\begin{array}{r}
\int_{\mathbb{R}^{4}} \mathrm{e}^{\frac{1}{\hbar}\left\{u^{2}-\left[u_{1}\left(z_{1}-z_{4}+\bar{w}_{1}-\bar{w}_{4}\right)+\imath u_{2}\left(\bar{w}_{1}+\bar{w}_{4}-z_{1}-z_{4}\right)+u_{3}\left(\bar{w}_{2}-\bar{w}_{3}+z_{2}-z_{3}\right)+\imath u_{4}\left(\bar{w}_{2}+\bar{w}_{3}-z_{2}-z_{3}\right)\right]\right\}} d u= \\
\mathrm{e}^{-\frac{1}{\hbar}\left[\left(\bar{w}_{2} \bar{w}_{3}+\bar{w}_{1} \bar{w}_{4}+z_{2} z_{3}+z_{1} z_{4}\right)-z \cdot \bar{w}\right]} .
\end{array}
$$

Hence, equality (385) is fulfilled
(ii) Let me assume that B_{4} acts on functions that are smooth and decay rapidly at infinity, so that I may integrate by parts and differentiate under the integral sign. The following is calculated

$$
\begin{aligned}
\frac{\partial}{\partial z_{1}}\left(B_{4} \varphi\right)(z) & =\int_{\mathbb{R}^{4}} \varphi(u) \frac{\partial}{\partial z_{1}} A_{4}(u, z) d u \\
& =\int_{\mathbb{R}^{4}} \varphi(u)\left[\left(u_{1}-\imath u_{2}\right)+z_{4}\right] A_{4}(u, z) d u \\
& =\frac{1}{\hbar}\left[\left(B_{4} \widehat{u}_{1} \varphi\right)(z)-\imath\left(B_{4} \hat{u}_{2} \varphi\right)(z)\right]+\frac{1}{\hbar} z_{4}\left(B_{4} \varphi\right)(z)
\end{aligned}
$$

The previous equation can be written as follows

$$
\begin{equation*}
\frac{\partial}{\partial z_{1}} B_{4}=\frac{1}{\hbar} B_{4}\left(\hat{u}_{1}-\imath \hat{u}_{2}\right)+\frac{1}{\hbar} z_{4} B_{4} . \tag{392}
\end{equation*}
$$

Now the following is calculated

$$
\left(B_{4}\left(\frac{\partial \varphi}{\partial u_{2}}+\imath \frac{\partial \varphi}{\partial u_{1}}\right)\right)(z)=\int_{\mathbb{R}^{4}}\left(\frac{\partial \varphi}{\partial u_{2}}+\imath \frac{\partial \varphi}{\partial u_{1}}\right) A_{4}(u, z) d u
$$

The integration by parts gives the following

$$
\begin{aligned}
\left(B_{4}\left(\frac{\partial \varphi}{\partial u_{2}}+\imath \frac{\partial \varphi}{\partial u_{1}}\right)\right)(z) & =-\int_{\mathbb{R}^{4}} \varphi(u)\left[\left(\frac{\partial}{\partial u_{2}}+\imath \frac{\partial}{\partial u_{1}}\right) A_{4}(u, z)\right] d u \\
& =\frac{1}{\hbar}\left[\left(B_{4} \hat{u}_{2} \varphi\right)(z)+\imath\left(B_{4} \hat{u}_{1} \varphi\right)(z)\right]+\frac{1}{\hbar} 2 \imath z_{4}\left(B_{4} \varphi\right)(z)
\end{aligned}
$$

The previous equation can be written as follows

$$
\begin{equation*}
B_{4}\left(\frac{\partial}{\partial u_{2}}+\imath \frac{\partial}{\partial u_{1}}\right)=\frac{1}{\hbar}\left[B_{4}\left(\hat{u}_{2}+\imath \hat{u}_{1}\right)+2 \imath z_{4} B_{4}\right] . \tag{393}
\end{equation*}
$$

The term $z_{4} B_{4}$ can be solved from equation (393). Namely,

$$
\begin{aligned}
z_{4} B_{4} & =B_{4}\left[-\frac{1}{2}\left(u_{1}-\hbar \frac{\partial}{\partial u_{1}}\right)+\frac{\imath}{2}\left(u_{2}-\hbar \frac{\partial}{\partial u_{2}}\right)\right] \\
& =B_{4}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{1}^{\dagger}+\imath \widehat{a}_{2}^{\dagger}\right)\right] .
\end{aligned}
$$

Substituting $z_{4} B_{4}$ into equation (392), I obtain the following

$$
\begin{aligned}
\hbar \frac{\partial}{\partial z_{1}} B_{4} & =B_{4}\left[\frac{1}{2}\left(\hat{u}_{1}-\imath \hat{u}_{2}\right)+\frac{1}{2}\left(-\imath \hbar \frac{\partial}{\partial u_{2}}+\hbar \frac{\partial}{\partial u_{1}}\right)\right] \\
& =B_{4}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{1}-\imath \widehat{a}_{2}\right)\right]
\end{aligned}
$$

The rest of equalities in (387) can be obtained by doing a similar procedure to the previous calculations with suitable combinations of the operators $\widehat{u}_{j}=u_{j}, \widehat{v}_{j}=-\imath \hbar \frac{\partial}{\partial u_{j}}, j=1,2,3,4$.
(iii) It follows from a straightforward calculation of the derivatives.
(iv) It follows from the fact that $B_{4}: L^{2}\left(\mathbb{R}^{4}, d u\right) \longrightarrow \mathcal{B}_{4}$ is the composition of two unitary operators.

Proposition 27. Consider the $S B T B_{8}: L^{2}\left(\mathbb{R}^{8}, d u\right) \longrightarrow \mathcal{B}_{8}$ given by

$$
\begin{equation*}
\left(B_{8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) A_{8}(u, z) d u, \quad \forall \psi \in L^{2}\left(\mathbb{R}^{8}, d u\right) \tag{394}
\end{equation*}
$$

The kernel $A_{8}(u, z)$ is given in (379).
(i) Note that for $z \in \mathbb{C}^{8}$ fixed, the kernel $A_{8}(u, z)$ belongs to $L^{2}\left(\mathbb{R}^{8}, d u\right)$. The $S B T$ of $\Psi_{w}(u)=$ $\overline{A_{4}(u, w)} \in L^{2}\left(\mathbb{R}^{8}, d u\right)$ gives the reproducing kernel in \mathcal{B}_{8}. Namely,

$$
\left(B_{8} \Psi_{w}\right)(z)=\int_{\mathbb{R}^{8}} A_{8}(u, z) d u=\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}
$$

(ii) In $L^{2}\left(\mathbb{R}^{8}, d u\right)$ consider the operators \widehat{a}_{j} and $\widehat{a}_{j}^{\dagger}$ given by

$$
\begin{equation*}
\widehat{a}_{j}=\frac{1}{\sqrt{2}}\left(u_{j}+\hbar \frac{\partial}{\partial u_{j}}\right), \quad \widehat{a}_{j}^{\dagger}=\frac{1}{\sqrt{2}}\left(u_{j}-\hbar \frac{\partial}{\partial u_{j}}\right), j=1, \ldots, 8 \tag{395}
\end{equation*}
$$

The operators of creation \widehat{z}_{j} and annihilation $\widehat{\bar{z}}_{j}$ in the Segal-Bargmann space \mathcal{B}_{8} are given by

$$
\widehat{z}_{j}=z_{j}, \quad \widehat{\bar{z}}_{j}=\hbar \frac{\partial}{\partial z_{j}}, j=1, \ldots 8
$$

The following equalities hold

$$
\begin{array}{cc}
z_{1} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{2}^{\dagger}+\imath \widehat{a}_{1}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{1}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{2}-\imath \widehat{a}_{1}\right)\right] \tag{396}\\
z_{2} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{4}^{\dagger}+\imath \widehat{a}_{3}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{2}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{4}-\imath \widehat{a}_{3}\right)\right] \\
z_{3} B_{8}=B_{8}\left[\frac{1}{2}\left(-\widehat{a}_{4}^{\dagger}-\imath \widehat{a}_{3}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{3}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{4}+\imath \widehat{a}_{3}\right)\right] \\
z_{4} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{2}^{\dagger}+\imath \widehat{a}_{1}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{4}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{2}-\imath \widehat{a}_{1}\right)\right] \\
z_{5} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{5}^{\dagger}-\imath \widehat{a}_{6}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{5}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{5}+\imath \widehat{a}_{6}\right)\right] \\
z_{6} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{7}^{\dagger}-\imath \widehat{a}_{8}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{6}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{7}+\imath \widehat{a}_{8}\right)\right] \\
z_{7} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{7}^{\dagger}-\imath \widehat{a}_{8}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{7}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(-\widehat{a}_{7}+\imath \widehat{a}_{8}\right)\right] \\
z_{8} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{5}^{\dagger}+\imath \widehat{a}_{6}^{\dagger}\right)\right], & \hbar \frac{\partial}{\partial z_{8}} B_{8}=B_{8}\left[\frac{1}{\sqrt{2}}\left(\widehat{a}_{5}-\imath \widehat{a}_{6}\right)\right] .
\end{array}
$$

(iii) Consider the following annihilation operators

$$
\begin{gather*}
\widehat{d}_{1}=\frac{1}{\sqrt{2}}\left[-\widehat{a}_{2}-\imath \widehat{a}_{1}\right], \quad \widehat{d}_{2}=\frac{1}{\sqrt{2}}\left[-\widehat{a}_{4}-\imath \widehat{a}_{3}\right] \tag{397}\\
\widehat{d}_{3}=\frac{1}{\sqrt{2}}\left[-\widehat{a}_{4}+\imath \widehat{a}_{3}\right], \quad \widehat{d}_{4}=\frac{1}{\sqrt{2}}\left[\widehat{a}_{2}-\imath \widehat{a}_{1}\right] \\
\widehat{d}_{5}=\frac{1}{\sqrt{2}}\left[\widehat{a}_{5}+\imath \widehat{a}_{6}\right], \quad \widehat{d}_{6}=\frac{1}{\sqrt{2}}\left[\widehat{a}_{7}+\imath \widehat{a}_{8}\right] \\
\widehat{d}_{7}=\frac{1}{\sqrt{2}}\left[-\widehat{a}_{7}+\imath \widehat{a}_{8}\right], \quad \widehat{d}_{8}=\frac{1}{\sqrt{2}}\left[\widehat{a}_{5}-\imath \widehat{a}_{6}\right] .
\end{gather*}
$$

For $z \in \mathbb{C}^{8}$ fixed, the kernel $A_{8}(u, z)$ is an eigenfunction of the operators $\widehat{d}_{j}, j=1, \ldots, 8$. Namely,

$$
\begin{array}{r}
\widehat{d}_{1} A_{8}(u, z)=-z_{4} A_{8}(u, z), \tag{398}\\
\widehat{d}_{3} A_{8}(u, z)=z_{2} A_{8}(u, z), \\
\widehat{d_{4}} A_{8}(u, z)=z_{3} A_{8}(u, z)=-z_{1} A_{8}(u, z) \\
\widehat{d_{5}} A_{8}(u, z)=z_{8} A_{8}(u, z), \\
\widehat{d_{6}} A_{8}(u, z)=-z_{7} A_{8}(u, z) \\
\widehat{d}_{7} A_{8}(u, z)=-z_{6} A_{8}(u, z), \\
\widehat{d}_{8} A_{8}(u, z)=z_{5} A_{8}(u, z)
\end{array}
$$

(iv) The $S B T B_{8}$ is a unitary map from $L^{2}\left(\mathbb{R}^{8}, d u\right)$ onto \mathcal{B}_{8}

I omit the proof of proposition 27 because it follows a similar procedure to the proof of proposition 26

3. A Segal-Bargmann Transform G_{n}-Invariant

In this section I will show that the integral kernel $A_{n}(u, z)$ has an equivariant property. That is, the kernel $A_{n}(u, z)$ intertwines the action of G_{n} on $\dot{\mathbb{R}}^{n}$ with the action of G_{n} on $\dot{\mathbb{C}}^{n}$. See lemmas 9 and 10 below. The equivariant property of $A_{n}(u, z)$ is the key point to prove that the restriction of SBT B_{n} to $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ gives an SBT $B_{0, n}: L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}} \longrightarrow \mathcal{B}_{n}^{G_{n}}$. Let me remind that functions $\varphi \in L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ satisfy $\varphi\left(\Phi_{g}(u)\right)=\varphi(u)$. The invariance property of functions in $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ is used to show that the integral kernel of $B_{0, n}$ can be written as the average of $A_{n}(u, z)$ over the orbits of the group G_{n}. In other words, the SBT $B_{0, n}$ is written in a G_{n}-invariant form in order to show that $B_{0, n}$ is a bijection from $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ onto $\mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$. See theorems 7 and 8 below.

The following definition of the I-Bessel function will be used in some calculations of this section

$$
\begin{equation*}
\int_{S^{d-1}} \mathrm{e}^{r x \cdot n} d \Omega(x)_{S^{d-1}}=2 \pi^{\frac{d}{2}}\left(\frac{r}{2}\right)^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(r) \tag{399}
\end{equation*}
$$

3.1. A Segal-Bargmann Transform $U(1)$-Invariant. I carry out the described calculations in the introduction of this section for $n=4$. The following result will be used in the proposition 28 and theorem 7
Lemma 9. The kernel $A_{4}(u, z)$ intertwines the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$ given in (78) with the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$ given in 90 . Namely,

$$
\begin{equation*}
A_{4}\left(\Phi_{R_{-\theta}}(u), z\right)=A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right) \tag{400}
\end{equation*}
$$

Proof. Let me write the kernel $A_{4}(u, z)$ as follows

$$
A_{4}(u, z)=\frac{1}{\pi \hbar} \mathrm{e}^{-\frac{1}{2 \hbar}|u|^{2}+\frac{1}{\hbar} \chi_{1}(u, z)+\frac{1}{\hbar}\left(z_{1} z_{4}+z_{2} z_{3}\right)}
$$

where $\chi_{1}(u, z)$ is given by

$$
\begin{equation*}
\chi_{1}(u, z)=z_{1}\left(u_{1}-\imath u_{2}\right)+z_{2}\left(u_{3}-\imath u_{4}\right)+z_{3}\left(-\imath u_{4}-u_{3}\right)+z_{4}\left(-\imath u_{2}-u_{1}\right) . \tag{401}
\end{equation*}
$$

The term $A_{4}\left(\Phi_{R_{-\theta}}(u), z\right)$ can be written as follows

$$
A_{4}\left(\Phi_{R_{-\theta}}(u), z\right)=\frac{1}{\pi \hbar} \mathrm{e}^{-\frac{1}{2 \hbar}\left|\Phi_{R_{-\theta}}(u)\right|^{2}+\frac{1}{\hbar} \chi_{1}\left(\Phi_{R_{-\theta}}(u), z\right)+\frac{1}{\hbar}\left(z_{1} z_{4}+z_{2} z_{3}\right)}
$$

The action $\Phi_{R_{-\theta}}(u)$ in coordinates is given by
(402) $\Phi_{R_{-\theta}}(u)=\left(u_{1} \cos \theta+u_{2} \sin \theta, u_{2} \cos \theta-u_{1} \sin \theta, u_{3} \cos \theta+u_{4} \sin \theta, u_{4} \cos \theta-u_{3} \sin \theta\right)$.

The term $|u|^{2}$ is invariant under the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$, that is, $|u|^{2}=\left|\Phi_{R_{-\theta}}(u)\right|^{2}$. The expression in (402) is substituted in (401), and then the term $\chi_{1}\left(\Phi_{R_{-\theta}}(u), z\right)$ is factorized in terms of the variables variables $u_{j}, j=1 \ldots, 4$. The following is obtained

$$
\begin{aligned}
\chi_{1}\left(\Phi_{R_{-\theta}}(u), z\right) & =\left(u_{1}-\imath u_{2}\right) \mathrm{e}^{\imath \theta} z_{1}++\left(u_{3}-\imath u_{4}\right) \mathrm{e}^{\imath \theta} z_{2}+\left(-\imath u_{4}-u_{3}\right) \mathrm{e}^{-\imath \theta} z_{3}+\left(-\imath u_{2}-u_{1}\right) \mathrm{e}^{-\imath \theta} z_{4} \\
& =\chi_{1}\left(u, \tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right)
\end{aligned}
$$

A straightforward computation shows that $\left(z_{1} z_{4}+z_{2} z_{3}\right)$ is invariant under the action $\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)$ of $U(1)$ on $\dot{\mathbb{C}}^{4}$. Thus the above calculations show that equality 400 is fulfilled.

Proposition 28. Equivariant Property-I Let me consider the $S B T B_{4}: L^{2}\left(\mathbb{R}^{4}, d u\right) \longrightarrow \mathcal{B}_{4}$ given in 384) and denote by $B_{0,4}$ the restriction of B_{4} to $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$. The map $B_{0,4}$: $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \longrightarrow \mathcal{B}_{4}^{U(1)}$ given by

$$
\begin{equation*}
\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) A_{4}(u, z) d u \quad \forall \psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \tag{403}
\end{equation*}
$$

is a bijection.
Proof. I will first verify that the function $B_{0,4} \psi$ satisfies $\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right)=\left(B_{0,4} \psi\right)(z)$. That is, $B_{0,4} \psi$ belongs to $\mathcal{B}_{4}^{U(1)}$. The function $\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{2 \theta}}(z)\right)$ is given by

$$
\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{2 \theta}}(z)\right)=\int_{\mathbb{R}^{4}} \psi(u) A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right) d u
$$

It follows from equality 400 that $\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right)$ can be written as follows

$$
\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right)=\int_{\mathbb{R}^{4}} \psi(u) A_{4}\left(\Phi_{R_{-\theta}}(u), z\right) d u
$$

Let me do the change of variable $\boldsymbol{u}=\Phi_{R_{-\theta}}(u)$, where $\Phi_{R_{-\theta}}(u)$ denotes the action of $U(1)$ on $\dot{\mathbb{R}}^{4}$. The coordinate transformation $\boldsymbol{u}=\Phi_{R_{-\theta}}(u)$ leaves invariant the volume form $d u=d u_{1} \ldots d u_{4}$, that is, $d u=d \boldsymbol{u}$. Hence, the above integral can be written with respect to the variable \boldsymbol{u} as follows

$$
\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{2 \theta}}(z)\right)=\int_{\mathbb{R}^{4}} \psi\left(\Phi_{R_{\theta}}(\boldsymbol{u})\right) A_{4}(\boldsymbol{u}, z) d \boldsymbol{u}
$$

Since $\psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ satisfies $\psi\left(\Phi_{R_{\theta}}(\boldsymbol{u})\right)=\psi(\boldsymbol{u})$, then the following equality is fulfiled

$$
\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(z)\right)=\int_{\mathbb{R}^{4}} \psi(\boldsymbol{u}) A_{4}(\boldsymbol{u}, z) d \boldsymbol{u}=\left(B_{0,4} \psi\right)(z)
$$

Hence, $B_{0,4} \psi$ belongs to $\mathcal{B}_{4}^{U(1)}$.
Let me take $\left(\widehat{T}_{U_{4}}\right)^{-1}=\widehat{T}_{U_{4}^{-1}}$ and $B_{\mathbb{R}^{4}}^{-1}$ as is given in [4, Eq. 2.15]. It is not difficult to see from the definition of $B_{4}=\widehat{T}_{U_{4}} \circ B_{\mathbb{R}^{4}}$ that B_{4}^{-1} is given by

$$
\begin{equation*}
\left(B_{4}^{-1} f\right)(u)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{4}\left(u, U_{4}^{-1} \cdot z\right)} f(z) d \nu_{4}^{\hbar}(z)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{4}(u, z)} f(z) d \nu_{4}^{\hbar}(z) \quad \forall f \in \mathcal{B}_{4} \tag{404}
\end{equation*}
$$

Since $B_{0,4}$ is the restriction of B_{4} to $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$, then $B_{0,4}^{-1}$ can be calculated from equation 404. The inverse SBT of $f \in \mathcal{B}_{4}^{U(1)}$ is given by

$$
\left(B_{0,4}^{-1} f\right)^{-1}(u)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{4}(u, z)} f(z) d \nu_{4}^{\hbar}(z) \quad \forall f \in \mathcal{B}_{4}^{U(1)}
$$

Equality 400 is used in the following calculation. I will verify that $B_{0,4}^{-1} f \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$,

$$
\left(B_{0,4}^{-1} f\right)\left(\Phi_{R_{\theta}}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{4}\left(\Phi_{R_{\theta}}(u), z\right)} f(z) d \nu_{4}^{\hbar}(z)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{-\imath \theta}}(z)\right)} f(z) d \nu_{4}^{\hbar}(z)
$$

Let me do the change of variable $w=\tilde{\Phi}_{\mathrm{e}^{-\imath \theta}}(z)$, where $\tilde{\Phi}_{\mathrm{e}^{-\imath \theta}}(z)$ denotes the action of $U(1)$ on $\dot{\mathbb{C}}^{4}$. The coordinate transformation $w=\tilde{\Phi}_{\mathrm{e}^{-\imath \theta}}(z)$ leaves invariant the Gaussian measure $d \nu_{4}^{\hbar}$, that is, $d \nu_{4}^{\hbar}(w)=d \nu_{4}^{\hbar}(z)$. Hence, the above integral can be written with respect to the variable w as follows

$$
\left(B_{0,4}^{-1} f\right)\left(\Phi_{R_{\theta}}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{4}(u, w)} f\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(w)\right) d \nu_{4}^{\hbar}(w)
$$

Since $f \in \mathcal{B}_{4}^{U(1)}$ satisfies $f\left(\tilde{\Phi}_{\mathrm{e}^{\imath \theta}}(w)\right)=f(w)$, then the following equality holds

$$
\left(B_{0,4}^{-1} f\right)\left(\Phi_{R_{\theta}}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|w| \leq \sigma} \overline{A_{4}(u, w)} f(w) d \nu_{4}^{\hbar}(w)=\left(B_{0,4}^{-1} f\right)(u)
$$

Hence, $B_{0,4}^{-1} f$ belongs to $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$. Therefore the $\operatorname{SBT} B_{0,4}: L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \longrightarrow \mathcal{B}_{4}^{U(1)}$ is bijective and is unitary because it is the restriction to $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ of the map B_{4} : $L^{2}\left(\mathbb{R}^{4}, d u\right) \longrightarrow \mathcal{B}_{4}$.

Recall that functions in $\mathcal{B}_{4}^{U(1)}$ are elements in $\mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ as well. That is, every $U(1)$-invariant function in \mathcal{B}_{4} is also invariant under the action of \mathbb{C}^{*} on \dot{C}^{4}. Further, every function $f \in$ $\mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ is identified with a function $\phi \in \mathcal{E}_{3}$ on \dot{Q}_{3}. The \mathbb{C}^{*}-invariance of $B_{0,4} \psi$ cannot be proved by following the $U(1)$-invariance procedure because there is not an equivariant property of $A_{4}(u, z)$ for the complex group \mathbb{C}^{*} neither there is an action of \mathbb{C}^{*} on \mathbb{R}^{4}. In order to see that $B_{0,4} \psi \in \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ I will show that the $\operatorname{SBT} B_{0,4}$ can be written in a $U(1)$-invariant form, see below point (iii) theorem 7. The $U(1)$-invariant form of $B_{0,4}$ gives the identification of $B_{0,4} \psi$ with a function in \mathcal{E}_{3}, see below point (i) corollary 1 . For $z \in \mathbb{C}^{4}$ fixed, the $U(1)$-invariant kernel of $B_{0,4}$ is an eigenfunction of the operators $\mathcal{D}_{k}, k=1, \ldots, 4$ in (329) written in the Schrödinger representation, see point (v) theorem 7 . So before showing the \mathbb{C}^{*}-invariance of $B_{04} \psi$ let me write the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{k}$ in the space representation $L^{2}\left(\mathbb{R}^{4}, d u\right)$.

Proposition 29. The operators $\widehat{\alpha}_{j}$ in (328) and $\widehat{\mathcal{D}}_{k}, j, k=1, \ldots, 4$ in (329) have the following expression in the Schrödinger representation

$$
\begin{align*}
\widehat{\alpha}_{1}= & -\frac{1}{2}\left[\left(u_{1} u_{3}+u_{2} u_{4}\right)-\hbar\left(u_{1} \frac{\partial}{\partial u_{3}}+u_{3} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{4}}+u_{4} \frac{\partial}{\partial u_{2}}\right)\right. \tag{405}\\
& \left.+\hbar^{2}\left(\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{3}}+\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{4}}\right)\right] \\
\widehat{\mathcal{D}}_{1}= & -\frac{1}{2}\left[\left(u_{1} u_{3}+u_{2} u_{4}\right)+\hbar\left(u_{1} \frac{\partial}{\partial u_{3}}+u_{3} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{4}}+u_{4} \frac{\partial}{\partial u_{2}}\right)\right. \\
& \left.+\hbar^{2}\left(\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{3}}+\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{4}}\right)\right] \\
\widehat{\alpha}_{2}= & \frac{1}{2}\left[\left(u_{2} u_{3}-u_{1} u_{4}\right)-\hbar\left(u_{3} \frac{\partial}{\partial u_{2}}+u_{2} \frac{\partial}{\partial u_{3}}-u_{1} \frac{\partial}{\partial u_{4}}-u_{4} \frac{\partial}{\partial u_{1}}\right)\right. \\
& \left.+\hbar^{2}\left(\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{3}}-\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{4}}\right)\right] \\
\widehat{\mathcal{D}}_{2}= & \frac{1}{2}\left[\left(u_{2} u_{3}-u_{1} u_{4}\right)+\hbar\left(u_{2} \frac{\partial}{\partial u_{3}}+u_{3} \frac{\partial}{\partial u_{2}}-u_{1} \frac{\partial}{\partial u_{4}}-u_{4} \frac{\partial}{\partial u_{1}}\right)\right. \\
& \left.+\hbar^{2}\left(\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{3}}-\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{4}}\right)\right] \\
\widehat{\alpha}_{3}= & \frac{1}{4}\left[\left(u_{3}^{2}+u_{4}^{2}-u_{1}^{2}-u_{2}^{2}\right)+2 \hbar\left(u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}-u_{3} \frac{\partial}{\partial u_{3}}-u_{4} \frac{\partial}{\partial u_{4}}\right)\right. \\
& \left.-\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right] \\
\widehat{\mathcal{D}}_{3}= & \frac{1}{4}\left[\left(u_{3}^{2}+u_{4}^{2}-u_{1}^{2}-u_{2}^{2}\right)+2 \hbar\left(u_{3} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{4}}-u_{1} \frac{\partial}{\partial u_{1}}-u_{2} \frac{\partial}{\partial u_{2}}\right)\right. \\
& \left.-\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right] \\
\widehat{\alpha}_{4}= & -\frac{\imath}{4}\left[\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}\right)-2 \hbar\left(2+u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}+u_{3} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{4}}\right)\right. \\
& \left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}+\frac{\partial^{2}}{\partial u_{3}^{2}}+\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right] \\
\widehat{\mathcal{D}}_{4}= & \frac{2}{4}\left[\left(u_{1}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}\right)+2 \hbar\left(2+u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}+u_{3} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{4}}\right)+\right. \\
& \left.\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}+\frac{\partial^{2}}{\partial u_{3}^{2}}+\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right] .
\end{align*}
$$

The proof of proposition 29 follows from a straightforward calculation using the equalities in 387).

Theorem 7. $(U(1))_{\mathbb{C}}$-Invariant form of $B_{0,4}$
(i) The $\operatorname{SBT} B_{0,4}: L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \longrightarrow \mathcal{B}_{4}^{U(1)}$ can be written as follows (406)
$\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) \mathcal{A}_{4}(u, z) d u \forall \psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ and $\mathcal{A}_{4}(u, z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} A_{4}\left(\Phi_{R_{-\theta}}(u), z\right) d \theta$.
(ii) The kernel $\mathcal{A}_{4}(u, z)$ is $U(1)$-invariant and can be written as $\mathcal{A}_{4}(u, z)=\mathfrak{A}_{4}(x(u), \alpha(z))$, where the the function $\mathfrak{A}_{4}(x(u), \alpha(z))$ is given by
(407) $\mathfrak{A}_{4}(x(u), \alpha(z))=$

$$
\frac{1}{\pi \hbar} \mathrm{e}^{-\frac{1}{\hbar}|x(u)|} I_{0}\left(\frac{2}{\hbar} \sqrt{\imath \alpha_{4}(z)|x(u)|-\left(x_{1}(u) \alpha_{1}(z)+x_{2}(u) \alpha_{2}(z)+x_{3}(u) \alpha_{3}(z)\right)}\right) \mathrm{e}^{-\frac{2}{\hbar} \alpha_{4}(z)} .
$$

(iii) The $S B T$ of $\psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be computed as follows

$$
\begin{equation*}
\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) \mathfrak{A}_{4}(x(u), \alpha(z)) d u . \tag{408}
\end{equation*}
$$

The function $B_{0,4} \psi$ is invariant under the action of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$. Thus the SBT $B_{0,4}$ is actually a map $B_{0,4}: L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \longrightarrow \mathcal{B}_{4}^{(U(1))} \mathrm{c}$.
(iv) For $w \in \mathbb{C}^{4}$ fixed, let $\psi_{w}(u)=\overline{\mathcal{A}_{4}(u, w)} \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$. The SBT of $\psi_{w}(u)$ gives the reproducing kernel in $\mathcal{B}_{4}^{(U(1))} \mathfrak{c}$. Namely,

$$
\begin{equation*}
\left(B_{0,4} \psi_{w}\right)(z)=\int_{\mathbb{R}^{4}} \overline{\mathcal{A}_{4}(u, w)} \mathcal{A}_{4}(u, z) d u=I_{0}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right) . \tag{409}
\end{equation*}
$$

(v) The kernel $\mathcal{A}_{4}(u, z)$ is an eigenfunction of the annihilation operators $\widehat{\mathcal{D}}_{j}, j=1,2,3,4$ in (405).

Proof.

(i) The SBT of $\psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be computed as follows

$$
\begin{equation*}
\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) A_{4}(u, z) d u=\int_{\mathbb{R}^{4}} \psi\left(\Phi_{R_{-\theta}}(u)\right) A_{4}\left(\Phi_{R_{-\theta}}(u), z\right) d\left(\Phi_{R_{-\theta}}(u)\right) . \tag{410}
\end{equation*}
$$

The volume form $d u=d u_{1} d u_{2} d u_{3} d u_{4}$ is $U(1)$-invariant, that is, $d\left(\Phi_{R_{-\theta}}(u)\right)=d u$. Moreover, the function ψ satisfies $\psi\left(\Phi_{R_{-\theta}}(u)\right)=\psi(u)$. The integral in (410) can be written as

$$
\begin{equation*}
\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) A_{4}(u, z) d u=\int_{\mathbb{R}^{4}} \psi(u) A_{4}\left(\Phi_{R_{-\theta}}(u), z\right) d u . \tag{411}
\end{equation*}
$$

Let me do an integration with respect to θ to remove its dependence in equality (411).

$$
\begin{aligned}
\int_{0}^{2 \pi}\left[\int_{\mathbb{R}^{4}} \psi(u) A_{4}(u, z) d u\right] d \theta & =\int_{0}^{2 \pi}\left[\int_{\mathbb{R}^{4}} \psi(u) A_{4}\left(\Phi_{R_{-\theta}}(u), z\right) d u\right] d \theta \\
\int_{\mathbb{R}^{4}} \psi(u) A_{4}(u, z) d u & =\int_{\mathbb{R}^{4}} \psi(u)\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} A\left(\Phi_{R_{-\theta}}(u), z\right) d \theta\right] d u .
\end{aligned}
$$

Hence, the following equality holds

$$
\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) A_{4}(u, z) d u=\int_{\mathbb{R}^{4}} \psi(u)\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} A_{4}\left(\Phi_{R_{-\theta}}(u), z\right) d \theta\right] d u
$$

(ii) It follows from equality (400) that the integral with respect to θ can be written as

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{\theta} \theta}(z)\right) d \theta=\frac{1}{\pi \hbar} \mathrm{e}^{\frac{1}{\hbar}\left(z_{1} z_{4}+z_{2} z_{3}\right)} \mathrm{e}^{-\frac{1}{2 \hbar} u^{2}} \tag{412}\\
& \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\left.\frac{1}{\hbar} \mathrm{e}^{\ell \theta} z_{1}\left(u_{1}-\imath u_{2}\right)+\mathrm{e}^{\imath \theta} z_{2}\left(u_{3}-u u_{4}\right)+\mathrm{e}^{-\imath \theta} z_{3}\left(-\imath u_{4}-u_{3}\right)+\mathrm{e}^{-\imath \theta} z_{4}\left(-\imath u_{2}-u_{1}\right)\right]} d \theta .
\end{align*}
$$

The term that depends on θ in (412) can be written as

$$
\begin{equation*}
\frac{1}{\pi \hbar}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar}[\cos \theta C(u, z)+\sin \theta B(u, z)} d \theta\right], \tag{413}
\end{equation*}
$$

where $C(u, z)$ and $B(u, z)$ are given by

$$
\begin{aligned}
& C(u, z)=\left[z_{1}\left(u_{1}-\imath u_{2}\right)+z_{2}\left(u_{3}-\imath u_{4}\right)+z_{3}\left(-\imath u_{4}-u_{3}\right)+z_{4}\left(-\imath u_{2}-u_{1}\right)\right] \\
& B(u, z)=\left\{\imath\left[z_{1}\left(u_{1}-\imath u_{2}\right)+z_{2}\left(u_{3}-\imath u_{4}\right)-z_{3}\left(-\imath u_{4}-u_{3}\right)-z_{4}\left(-\imath u_{2}-u_{1}\right)\right]\right\} .
\end{aligned}
$$

Let me define the vector $\eta=\frac{1}{\sqrt{C^{2}+B^{2}}}(C, B)$. The integral in 413 can be written as follows

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar} \sqrt{C^{2}+B^{2}} x \cdot \eta} d \theta \quad \text { with } \quad x=(\cos (\theta), \sin (\theta))
$$

Taking $r=\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}$ it follows from definition of the Bessel function in 399p that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar} \sqrt{C^{2}+B^{2}} x \cdot \eta} d \theta=I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)
$$

From definition of $C(u, z)$ and $B(u, z)$ a straightforward calculation shows that

$$
C^{2}(u, z)+B^{2}(u, z)=4\left[\imath \alpha_{4}(z) \frac{1}{2}|u|^{2}-\left(x_{1}(u) \alpha_{1}(z)+x_{2}(u) \alpha_{2}(z)+x_{3}(u) \alpha_{3}(z)\right)\right],
$$

where $x_{j}(u)$ and $\alpha_{j}(z), j=1,2,3$ are given in (343) and (117) respectively. The I_{0}-Bessel function can be written as

$$
I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)=I_{0}\left(\frac{2}{\hbar} \sqrt{\imath \alpha_{4}(z) \frac{1}{2}|u|^{2}-\left(x_{1}(u) \alpha_{1}(z)+x_{2}(u) \alpha_{2}(z)+x_{3}(u) \alpha_{3}(z)\right)}\right) .
$$

A short calculation shows that $\left(z_{1} z_{4}+z_{2} z_{3}\right)=-\imath \alpha_{4}(z)$, and the functions $x_{j}(u), j=1,2,3$ satisfy $|x(u)|=\frac{1}{2}|u|^{2}$. The above calculations show that equality 407) is fulfilled.
(iii) Using the expression of $\mathfrak{A}_{4}(x(u), \alpha(z))$ in (407), the SBT of ψ can be computed as in (408).

Let me evaluate $B_{0,4} \psi$ along the \mathbb{C}^{*}-orbit $\tilde{\Phi}_{\lambda}(z)$ in $\dot{\mathbb{C}}^{4}$. Namely,

$$
\left(B_{0,4} \psi\right)\left(\tilde{\Phi}_{\lambda}(z)\right)=\int_{\mathbb{R}^{4}} \psi(u) \mathfrak{A}_{4}\left(x(u), \alpha\left(\tilde{\Phi}_{\lambda}(z)\right)\right) d u=\int_{\mathbb{R}^{4}} \psi(u) \mathfrak{A}_{4}(x(u), \alpha(z)) d u=\left(B_{0,4} \psi\right)(z) .
$$

Hence, $B_{0,4} \psi$ is invariant under the action of \mathbb{C}^{*} on $\dot{\mathbb{C}}^{4}$.
(iv) The SBT of the state $\psi_{w}(u)=\overline{\mathcal{A}_{4}(u, w)}$ is calculated as follows

$$
\begin{equation*}
\left(B_{0,4} \psi_{w}\right)(z)=\int_{\mathbb{R}^{4}} \psi_{w}(u) \mathcal{A}_{4}(u, z) d u=\int_{\mathbb{R}^{4}} \overline{\mathcal{A}_{4}(u, w)} \mathcal{A}_{4}(u, z) d u . \tag{414}
\end{equation*}
$$

The integral in (414) can be written as

$$
\begin{align*}
& \int_{\mathbb{R}^{4}} \overline{\mathcal{A}_{4}(u, w)} \mathcal{A}_{4}(u, z) d u= \tag{415}\\
& \qquad \int_{\mathbb{R}^{4}}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{A_{4}\left(\Phi_{R_{-\theta_{1}}}(u), w\right)} d \theta_{1}\right]\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} A_{4}\left(\Phi_{R_{-\theta_{2}}}(u), z\right) d \theta_{2}\right] d u .
\end{align*}
$$

It follows from equality (400) that the integral in (415) can be written as

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \overline{\mathcal{A}_{4}(u, w)} \mathcal{A}_{4}(u, z) d u=\int_{\mathbb{R}^{4}}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{\imath \theta_{1}}}(w)\right)} A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{\imath \theta_{2}}}(z)\right) d \theta_{1} d \theta_{2}\right] d u \tag{416}
\end{equation*}
$$

The integration order in equality (416) can be interchanged. The integration with respect to the variable $u \in \mathbb{R}^{4}$ is first done, and after it is done the integration with respect to the variables θ_{1}, θ_{2}. The integral with respect to the variable $u \in \mathbb{R}^{4}$ is given by

$$
\int_{\mathbb{R}^{4}} \overline{A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{\theta_{1}}}(w)\right)} A_{4}\left(u, \tilde{\Phi}_{\mathrm{e}^{{ }^{\theta} Q_{2}}}(z)\right) d u
$$

Let me define $\mathbf{w}=\tilde{\Phi}_{\mathrm{e}^{2 \theta_{1}}}(w), \mathbf{z}=\tilde{\Phi}_{\mathrm{e}^{\imath \theta_{2}}}(w)$. The integral with respect to the variable $u \in \mathbb{R}^{4}$ can be written as

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \overline{A_{4}(u, \mathbf{w})} A_{4}(u, \mathbf{z}) d u \tag{417}
\end{equation*}
$$

It follows from the point (i) of proposition 26 that the integral in (417) gives the following

$$
\int_{\mathbb{R}^{4}} \overline{A_{4}(u, \mathbf{w})} A_{4}(u, \mathbf{z}) d u=\mathrm{e}^{\frac{1}{\hbar} \cdot \mathbf{z} \cdot \overline{\mathbf{w}}}
$$

The expressions $\mathbf{z}=\tilde{\Phi}_{\mathrm{e}^{\imath \theta_{2}}}(z), \mathbf{w}=\tilde{\Phi}_{\mathrm{e}^{\imath \theta_{1}}}(w)$ are substituted in $\mathrm{e}^{\frac{1}{\hbar} \mathbf{z} \cdot \overline{\mathbf{w}}}$. The following is obtained

Now, the variable θ_{2} is fixed and using that $\mathrm{e}^{ \pm \imath\left(\theta_{1}-\theta_{2}\right)}=\cos \left(\theta_{1}-\theta_{2}\right) \pm \imath \sin \left(\theta_{1}-\theta_{2}\right)$ the integral with respect to θ_{1} is given by

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar}\left\{\cos \left(\theta_{1}-\theta_{2}\right) c_{1}(u, \bar{w})+\sin \left(\theta_{1}-\sin \theta_{2}\right) c_{2}(z, \bar{w})\right.} d \theta_{1}
$$

where $c_{1}(z, \bar{w})$ and $c_{2}(z, \bar{w})$ are given by

$$
\begin{aligned}
& c_{1}(z, \bar{w})=\left[\left(z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}\right)+\left(z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}\right)\right] \\
& c_{2}(z, \bar{w})=\imath\left[\left(z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}\right)-\left(z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}\right)\right] .
\end{aligned}
$$

Let me define the vector

$$
\eta=\frac{1}{\sqrt{c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}}}\left(c_{1}(z, \bar{w}), c_{2}(z, \bar{w})\right) .
$$

The integral with respect to the variable θ_{1} can be written as

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar} \sqrt{c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}} \eta \cdot x} d \theta_{1} \quad \text { with } x=\left(\cos \left(\theta_{1}-\theta_{2}\right), \sin \left(\theta_{1}-\theta_{2}\right)\right) . \tag{418}
\end{equation*}
$$

Taking $r=\frac{1}{\hbar} \sqrt{c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}}$ it follows from equality (399) that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar} \sqrt{c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}} \eta \cdot x} d \theta_{1}=I_{0}\left(\frac{1}{\hbar} \sqrt{c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}}\right) .
$$

Note that the integration regarding the variable θ_{1} gives a function that does not depend on the variable θ_{2}. A straightforward calculation shows that $c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}=4\left(z_{1} \bar{w}_{1}+\right.$ $\left.z_{2} \bar{w}_{2}\right)\left(z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}\right)$. Hence

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\frac{1}{\hbar} \sqrt{c_{1}(z, \bar{w})^{2}+c_{2}(z, \bar{w})^{2}} \eta \cdot x} d \theta_{1}=I_{0}\left(\frac{1}{\hbar} 2 \sqrt{\left(z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}\right)\left(z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}\right)}\right)
$$

The above calculations show that the following equality holds

$$
\int_{\mathbb{R}^{4}} \overline{\mathcal{A}_{4}(u, w)} \mathcal{A}_{4}(u, z) d u=I_{0}\left(\frac{2}{\hbar} \sqrt{\left(z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}\right)\left(z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}\right)}\right) .
$$

Let me take $\alpha_{j}(z), \beta(w)_{j}, j=1, \ldots, 4$ as in 117), where $\beta_{j}(w)$ is written in terms of the variable w. A straightforward calculation shows that the following equality holds

$$
\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}=2 \sqrt{\left(z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}\right)\left(z_{3} \bar{w}_{3}+z_{4} \bar{w}_{4}\right)} .
$$

Hence

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \overline{\mathcal{A}_{4}(u, w)} \mathcal{A}_{4}(u, z) d u=I_{0}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right) . \tag{419}
\end{equation*}
$$

(iv) In order to show that the kernel $\mathcal{A}_{4}(u, z)$ is an eigenfunction of the annihilation operators $\widehat{\mathcal{D}}_{j}, j=1,2,3,4$, it is enough to check that the following equation holds

$$
\widehat{\mathcal{D}}_{j} \mathcal{A}_{4}(u, z)=\alpha_{j}(z) \mathcal{A}_{4}(u, z)
$$

Let me take the operator $\widehat{\mathcal{D}}_{1}$ in 405 . The following is calculated

$$
\widehat{\mathcal{D}}_{1} \mathcal{A}(u, z)=\frac{1}{(\pi \hbar)} \mathrm{e}^{\frac{1}{\hbar}\left(z_{1} z_{4}+z_{2} z_{3}\right)} \widehat{\mathcal{D}}_{1}\left(\mathrm{e}^{-\frac{1}{2 \hbar} u^{2}} I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)\right)
$$

A straightforward calculation shows that

$$
\widehat{\mathcal{D}}_{1}\left(\mathrm{e}^{-\frac{1}{2 \hbar} u^{2}} I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)\right)=\mathrm{e}^{-\frac{1}{2 \hbar} u^{2}}\left(-\frac{\hbar^{2}}{2}\right)\left(\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{3}}+\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{4}}\right) I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)
$$

To calculate the derivatives on the function I_{0} let me use the following identity given in [2]

$$
\begin{equation*}
I_{\nu}^{\prime}(u)=I_{\nu-1}(u)-\frac{\nu}{u} I_{\nu}(u) \tag{420}
\end{equation*}
$$

where ν is the order of the Bessel function. In particular for $\nu=0$ computing the derivatives with the chain rule shows that

$$
-\frac{\hbar^{2}}{2}\left(\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{3}}+\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{4}}\right) I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)=\left(z_{1} z_{3}+z_{2} z_{4}\right) I_{0}\left(\frac{1}{\hbar} \sqrt{C^{2}+B^{2}}\right)
$$

Hence

$$
\begin{equation*}
\widehat{\mathcal{D}}_{1} \mathcal{A}_{4}(u, z)=\left(z_{1} z_{3}+z_{2} z_{4}\right) \mathcal{A}_{4}(u, z)=\alpha_{1}(z) \mathcal{A}_{4}(u, z) \tag{421}
\end{equation*}
$$

A similar procedure can be done to show that the following equalities hold

$$
\widehat{\mathcal{D}}_{2} \mathcal{A}_{4}(u, z)=\alpha_{2}(z) \mathcal{A}_{4}(u, z), \quad \widehat{\mathcal{D}}_{3} \mathcal{A}_{4}(u, z)=\alpha_{3}(z) \mathcal{A}_{4}(u, z), \imath \widehat{\mathcal{D}}_{4} \mathcal{A}_{4}(u, z)=\alpha_{4}(z) \mathcal{A}_{4}(u, z)
$$

In section 5 of the previous chapter I have shown that the space $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be identified with space $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$. Let me take the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}, j=1,2,3,4$ in 405, and let $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ act on a $U(1)$-invariant function $\psi(u)=\phi(x(u))$. The operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ in 405 are identified with operators acting on $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$. This is the point of the following proposition.
Proposition 30. The operators $\widehat{\alpha}_{j}$ and $\widehat{\mathcal{D}}_{j}$ in 405) have the following expression in the space $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$

$$
\begin{align*}
\widehat{\alpha}_{j} & =-\frac{1}{2} x_{j}+\hbar|x| \frac{\partial}{\partial x_{j}}-\hbar^{2}\left[\left(1+\sum_{k=0}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-\frac{1}{2} x_{j} \Delta_{\mathbb{R}^{3}}\right] \tag{422}\\
\widehat{\mathfrak{D}}_{j} & =-\frac{1}{2} x_{j}-\hbar|x| \frac{\partial}{\partial x_{j}}-\hbar^{2}\left[\left(1+\sum_{k=0}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-\frac{1}{2} x_{j} \Delta_{\mathbb{R}^{3}}\right], j=1,2,3 \\
\widehat{\alpha}_{4} & =-\frac{\imath}{2}\left[|x|-2 \hbar\left(\sum_{k=0}^{k=3} x_{k} \frac{\partial}{\partial x_{k}}+\widehat{\mathbb{I}}\right)+\hbar^{2}|x| \Delta_{\mathbb{R}^{3}}\right] \\
\widehat{\mathfrak{D}}_{4} & =\frac{\imath}{2}\left[|x|+2 \hbar\left(\sum_{k=0}^{k=3} x_{k} \frac{\partial}{\partial x_{k}}+\widehat{\mathbb{I}}\right)+\hbar^{2}|x| \Delta_{\mathbb{R}^{3}}\right] .
\end{align*}
$$

Proof. Consider a function $\psi(u)=\phi(x(u)) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ with $\phi(x)$ a function defined on \mathbb{R}^{3}, and $x_{j}(u), j=1,2,3$ are given by

$$
\begin{equation*}
x_{1}=u_{1} u_{3}+u_{2} u_{4}, x_{2}=u_{1} u_{4}-u_{2} u_{3}, x_{3}=\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}-u_{3}^{2}-u_{4}^{2}\right) \tag{423}
\end{equation*}
$$

Take $\widehat{\alpha}_{1}$ as in 405) and let $\widehat{\alpha}_{1}$ act on $\psi(u)=\phi(x(u))$. Namely,

$$
\begin{align*}
& \widehat{\alpha}_{1} \psi=-\frac{1}{2}\left[\left(u_{1} u_{3}+u_{2} u_{4}\right) \phi-\hbar\left(u_{1} \frac{\partial \phi}{\partial u_{3}}+u_{3} \frac{\partial \phi}{\partial u_{1}}+u_{2} \frac{\partial \phi}{\partial u_{4}}+u_{4} \frac{\partial \phi}{\partial u_{2}}\right)\right. \tag{424}\\
&\left.+\hbar^{2}\left(\frac{\partial^{2} \phi}{\partial u_{1} \partial u_{3}}+\frac{\partial^{2} \phi}{\partial u_{2} \partial u_{4}}\right)\right]
\end{align*}
$$

The derivatives in (424) are calculated using the chain rule. The right-hand side of equality (424) can be written after a long calculation as follows

$$
\widehat{\alpha}_{1} \phi=-\frac{1}{2} x_{1} \phi+\hbar|x| \frac{\partial \phi}{\partial x_{1}}-\hbar^{2}\left[\left(1+\sum_{k=0}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial \phi}{\partial x_{1}}-\frac{1}{2} x_{1} \Delta_{\mathbb{R}^{3}} \phi\right]
$$

The rest of operators $\widehat{\alpha}_{j}$ and $\widehat{\mathfrak{D}}_{j}$ in $\sqrt[422]{ }$ can be obtained by doing a similar procedure.
Corollary 1. $(U(1))_{\mathbb{C}}$-Reduction of $B_{0,4}$.
(i) Since the space $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ is identified with $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$ and $\mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ is identified with \mathcal{E}_{3}, then the $S B T B_{0,4}: L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \longrightarrow \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ can be regarded as an SBT \mathfrak{B}_{4} : $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right) \longrightarrow \mathcal{E}_{3}$ which is defined as follows

$$
\begin{equation*}
\left(\mathfrak{B}_{4} \phi\right)(\alpha)=\int_{\mathbb{R}^{3}} \phi(x) \mathfrak{A}_{4}(x, \alpha) \frac{\pi}{|x|} d x, \quad \forall \phi \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right) \tag{425}
\end{equation*}
$$

The kernel $\mathfrak{A}_{4}(x, \alpha)$ is given by

$$
\begin{equation*}
\mathfrak{A}_{4}(x, \alpha)=\frac{1}{\pi \hbar} \mathrm{e}^{-\frac{1}{\hbar}|x|} I_{0}\left(\frac{2}{\hbar} \sqrt{\imath \alpha_{4}|x|-\left(x_{1} \alpha_{1}+x_{2} \alpha_{2}+x_{3} \alpha_{3}\right)}\right) \mathrm{e}^{-\frac{2}{\hbar} \alpha_{4}} . \tag{426}
\end{equation*}
$$

(ii) The SBT of $\phi_{\beta}(x)=\overline{\mathfrak{A}_{4}(x, \beta)} \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$ gives the reproducing kernel in \mathcal{E}_{3}

$$
\begin{equation*}
\left(\mathfrak{B}_{4} \phi_{\beta}\right)(\alpha)=\int_{\mathbb{R}^{3}} \phi_{\beta}(x) \mathfrak{A}_{4}(x, \alpha) \frac{\pi}{|x|} d x=I_{0}\left(\frac{1}{\hbar} \sqrt{2 \alpha \cdot \bar{\beta}}\right) \tag{427}
\end{equation*}
$$

(iii). The integral kernel $\mathfrak{A}_{4}(x, \alpha)$ is an eigenfunction of the annihilation operators $\widehat{\mathfrak{D}}_{j}, j=$ $1,2,3$ and $\imath \widehat{\mathfrak{D}}_{4}$ given in (422).

Proof.

(i) The SBT of $\psi(u)=\varphi(x(u)) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be computed as follows

$$
\begin{equation*}
\left(B_{0,4} \psi\right)(z)=\int_{\mathbb{R}^{4}} \psi(u) \mathcal{A}_{4}(u, z) d u=\int_{\mathbb{R}^{4}} \varphi(x(u)) \mathfrak{A}_{4}(x(u), \alpha(z)) d u \tag{428}
\end{equation*}
$$

The functions $\psi(u)=\varphi(x(u)), \mathcal{A}_{4}(u, z)=\mathfrak{A}_{4}(x(u), \alpha(z)) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ are identified with the functions $\varphi(x), \mathfrak{A}_{4}(x, \alpha) \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$, and the right-hand side of equality 428 can be calculated as an integral on \mathbb{R}^{3} as follows

$$
\begin{align*}
\int_{\mathbb{R}^{4}} \varphi(x(u)) \mathfrak{A}_{4}(x(u), \alpha(z)) d u & =\int_{0}^{2 \pi} \int_{\mathbb{R}^{3}} \varphi(x) \mathfrak{A}_{4}(x, \alpha) \frac{1}{2|x|} d \theta d x \\
& =\int_{\mathbb{R}^{3}} \varphi(x) \mathfrak{A}_{4}(x, \alpha) \frac{\pi}{|x|} d x \tag{429}
\end{align*}
$$

The right-hand side of equality 429 defines $B_{0,4} \psi \in \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ regarded as a function of $\alpha \in \dot{Q}_{3}$ which is an element in \mathcal{E}_{3}. Hence, the $\operatorname{SBT} B_{0,4}: L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \longrightarrow \mathcal{B}_{4}^{(U(1))_{\mathbb{C}}}$ can be regarded as the SBT \mathfrak{B}_{4} defined in 425).
(ii) It follows from point (i) that the SBT of $\phi_{\beta(w)}(x(u))=\overline{\mathfrak{A}_{4}(x(u), \beta(w))} \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ can be calculated as an integral on \mathbb{R}^{3} as follows

$$
\begin{align*}
\int_{\mathbb{R}^{4}} \overline{\mathfrak{A}_{4}(x(u), \beta(w))} \mathfrak{A}_{4}(x(u), \alpha(z)) d u & =\int_{\mathbb{R}^{3}} \phi_{\beta}(x) \mathfrak{A}_{4}(x, \alpha) \frac{\pi}{|x|} d x \tag{430}\\
& =\int_{\mathbb{R}^{3}} \overline{\mathfrak{A}_{4}(x, \beta)} \mathfrak{A}_{4}(x, \alpha) \frac{\pi}{|x|} d x
\end{align*}
$$

It follows from point (iv) in theorem 7 that the right-hand side of equality 430 regarded as a function of $\alpha \in \dot{Q}_{3}$ corresponds to the reproducing kernel $I_{0}\left(\frac{1}{\hbar} \sqrt{2 \alpha \cdot \bar{\beta}}\right)$ in \mathcal{E}_{3}. Hence, equality (427) is fulfilled.
(iii) The operators $\widehat{\mathcal{D}}_{j}, j=1,2,3,4$ in 405 satisfy the following equations

$$
\begin{equation*}
\left(\widehat{\mathcal{D}}_{j} \mathcal{A}_{4}\right)(u, z)=\alpha_{j}(z) \mathcal{A}_{4}(u, z), j=1,2,3, \quad \text { and } \quad\left(\imath \widehat{\mathcal{D}}_{4} \mathcal{A}_{4}\right)(u, z)=\alpha_{4}(z) \mathcal{A}_{4}(u, z) \tag{431}
\end{equation*}
$$

The kernel $\mathcal{A}_{4}(u, z)$ is given in a $U(1)$-invariant form by $\mathcal{A}_{4}(u, z)=\mathfrak{A}_{4}(x(u), \alpha(z))$. It follows from the proposition 30 that the left-hand side of equalities in 431) can be written as

$$
\begin{aligned}
& \left(\widehat{\mathfrak{D}}_{j} \mathfrak{A}_{4}\right)(x, \alpha)=\left\{-\frac{1}{2}|x|-\hbar|x| \frac{\partial}{\partial x_{j}}-\hbar^{2}\left[\left(1+\sum_{k=1}^{3} x_{x} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-\frac{1}{2} x_{j} \Delta_{\mathbb{R}^{3}}\right]\right\} \mathfrak{A}_{4}(x, \alpha), j=1,2,3 \\
& \left(\imath \widehat{\mathfrak{D}}_{4} \mathfrak{A}_{4}\right)(x, \alpha)=-\frac{1}{2}\left[|x|+2 \hbar\left(\sum_{k=0}^{k=3} x_{k} \frac{\partial}{\partial x_{k}}+\widehat{\mathbb{I}}\right)+\hbar^{2}|x| \Delta_{\mathbb{R}^{3}}\right] \mathfrak{A}_{4}(x, \alpha) .
\end{aligned}
$$

The right-hand side of equalities in 431 is identified to $\alpha_{j} \mathfrak{A}_{4}(x, \alpha)$. The above calculations show that the following equalities hold

$$
\left(\widehat{\mathfrak{D}}_{j} \mathfrak{A}_{4}\right)(x, \alpha)=\alpha_{j} \mathfrak{A}_{4}(x, \alpha), \quad \text { for } j=1,2,3, \quad\left(\imath \widehat{\mathfrak{D}}_{4} \mathfrak{A}_{4}\right)(x, \alpha)=\alpha_{4} \mathfrak{A}_{4}(x, \alpha) .
$$

3.2. A Segal-Bargmann Transform $S U(2)$-Invariant. I carry out the described calculations in the introduction of this section for $n=8$. Let me first show the equivariant property of the kernel $A_{8}(u, z)$.
Lemma 10. The kernel $A_{8}(u, z)$ intertwines the action of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$ defined in (81) with the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$ defined in (93). Namely,

$$
\begin{equation*}
A_{8}\left(\Phi_{g}(u), z\right)=A_{8}\left(u, \tilde{\Phi}_{g^{T}}(z)\right) \quad \text { or } \quad A_{8}\left(\Phi_{g^{T}}(u), z\right)=A_{8}\left(u, \tilde{\Phi}_{g}(z)\right), \quad \forall g \in S U(2) \tag{432}
\end{equation*}
$$

Proof. In the following calculations the variable $u \in \mathbb{R}^{8}$ of $A_{8}(u, z)$ is identified with entries of the matrices $-\bar{q}_{1}, \bar{q}_{2} \in \mathbb{H}$ which are given by

$$
-\bar{q}_{1}=\left(\begin{array}{cc}
-u_{1}+\imath u_{2} & u_{3}+\imath u_{4} \tag{433}\\
-u_{3}+\imath u_{4} & -u_{1}-\imath u_{2}
\end{array}\right), \quad \bar{q}_{2}=\left(\begin{array}{cc}
u_{5}+\imath u_{6} & -u_{7}+\imath u_{8} \\
u_{7}+\imath u_{8} & u_{5}-\imath u_{6}
\end{array}\right)
$$

The following expression for $g \in S U(2)$ is used

$$
g=\left(\begin{array}{cc}
\lambda_{1} & -\bar{\lambda}_{2} \\
\lambda_{2} & \bar{\lambda}_{1}
\end{array}\right), \lambda_{1}, \lambda_{2} \in \mathbb{C} \quad \text { such that }\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=1
$$

The kernel $A_{8}(u, z)$ has the following expression

$$
A_{8}(u, z)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar} u^{2}+\frac{1}{\hbar} \chi(u, z)+\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]}
$$

where $\boldsymbol{\chi}(u, z)$ is given by

$$
\begin{align*}
\chi(u, z)=\imath z_{1}\left(-u_{1}+\imath u_{2}\right) & +\imath z_{2}\left(-u_{3}+\imath u_{4}\right)+\imath z_{3}\left(u_{3}+\imath u_{4}\right)+\imath z_{4}\left(-u_{1}-\imath u_{2}\right) \tag{434}\\
& +z_{5}\left(u_{5}+\imath u_{6}\right)+z_{6}\left(u_{7}+\imath u_{8}\right)+z_{7}\left(-u_{7}+\imath u_{8}\right)+z_{8}\left(u_{5}-\imath u_{6}\right) .
\end{align*}
$$

Note that $\chi(u, z)$ can be written in terms of entries of the matrices in 433 and $|u|^{2}$ can be written as $|u|^{2}=\operatorname{det}\left(-\bar{q}_{1}\right)+\operatorname{det}\left(\bar{q}_{2}\right)$. Let me write $A_{8}(u, z)=A_{8}\left(-\bar{q}_{1}, \bar{q}_{2}, z\right)$. Namely,

$$
A_{8}\left(-\bar{q}_{1}, \bar{q}_{2}, z\right)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar}\left[\operatorname{det}\left(-\bar{q}_{1}\right)+\operatorname{det}\left(\bar{q}_{2}\right)\right]+\frac{1}{\hbar} \chi\left(-\bar{q}_{1}, \bar{q}_{2}, z\right)+\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]}
$$

The function $A_{8}\left(\Phi_{g}(u), z\right)=A_{8}\left(\Phi_{g}\left(-\bar{q}_{1}, \bar{q}_{2}\right), z\right)$ is given by

$$
\begin{aligned}
A_{8}\left(\Phi_{g}\left(-\bar{q}_{1}, \bar{q}_{2}\right), z\right)= & A_{8}\left(-g \bar{q}_{1}, g \bar{q}_{2}, z\right)= \\
& \frac{1}{(2 \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar}\left[\operatorname{det}\left(-g \bar{q}_{1}\right)+\operatorname{det}\left(g \bar{q}_{2}\right)\right]+\boldsymbol{\chi}\left(-g \bar{q}_{1}, g \bar{q}_{2}, z\right)+\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]} .
\end{aligned}
$$

The term $\operatorname{det}\left(-\bar{q}_{1}\right)+\operatorname{det}\left(\bar{q}_{2}\right)$ is invariant under the action of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$, that is, $\operatorname{det}\left(-g \bar{q}_{1}\right)+\operatorname{det}\left(g \bar{q}_{2}\right)=\operatorname{det}\left(-\bar{q}_{1}\right)+\operatorname{det}\left(\bar{q}_{2}\right)$. The term $\chi\left(-g \bar{q}_{1}, g \bar{q}_{2}, z\right)$ is calculated as follows. The product of matrices $-g \bar{q}_{1}, g \bar{q}_{2}$ gives the following

$$
\begin{align*}
-g \bar{q}_{1} & =\left(\begin{array}{ll}
\lambda_{1}\left(-u_{1}+\imath u_{2}\right)-\bar{\lambda}_{2}\left(-u_{3}+\imath u_{4}\right) & \lambda_{1}\left(u_{3}+\imath u_{4}\right)-\bar{\lambda}_{2}\left(-u_{1}-\imath u_{2}\right) \\
\lambda_{2}\left(-u_{1}+\imath u_{2}\right)+\bar{\lambda}_{1}\left(-u_{3}+\imath u_{4}\right) & \lambda_{2}\left(u_{3}+\imath u_{4}\right)+\bar{\lambda}_{1}\left(-u_{1}-\imath u_{2}\right.
\end{array}\right) \tag{435}\\
g \bar{q}_{2} & =\left(\begin{array}{ll}
\lambda_{1}\left(u_{5}+\imath u_{6}\right)-\bar{\lambda}_{2}\left(u_{7}+\imath u_{8}\right) & \lambda_{1}\left(-u_{7}+\imath u_{8}\right)-\bar{\lambda}_{2}\left(u_{5}-\imath u_{6}\right) \\
\lambda_{2}\left(u_{5}+\imath u_{6}\right)+\bar{\lambda}_{1}\left(u_{7}+\imath u_{8}\right) & \lambda_{2}\left(-u_{7}+\imath u_{8}\right)+\bar{\lambda}_{1}\left(u_{5}-\imath u_{6}\right)
\end{array}\right) .
\end{align*}
$$

It follows from equality 435 that the term $\chi\left(-g \bar{q}_{1}, g \bar{q}_{2}\right)$ can be written as

$$
\begin{align*}
& \chi\left(\Phi_{g}(u), z\right)=\chi\left(-g \bar{q}_{1}, g \bar{q}_{2}, z\right)=\imath z_{1}\left[\lambda_{1}\left(-u_{1}+\imath u_{2}\right)-\bar{\lambda}_{2}\left(-u_{3}+\imath u_{4}\right)\right]+ \tag{436}\\
& \imath z_{2}\left[\lambda_{2}\left(-u_{1}+\imath u_{2}\right)+\bar{\lambda}_{1}\left(-u_{3}+\imath u_{4}\right)\right]+\imath z_{3}\left[\lambda_{1}\left(u_{3}+\imath u_{4}\right)-\bar{\lambda}_{2}\left(-u_{1}-\imath u_{2}\right)\right]+ \\
& \imath z_{4}\left[\lambda_{2}\left(u_{3}+\imath u_{4}\right)+\bar{\lambda}_{1}\left(-u_{1}-\imath u_{2}\right)\right]+z_{5}\left[\lambda_{1}\left(u_{5}+\imath u_{6}\right)-\bar{\lambda}_{2}\left(u_{7}+\imath u_{8}\right)\right]+ \\
& z_{6}\left[\lambda_{2}\left(u_{5}+\imath u_{6}\right)+\bar{\lambda}_{1}\left(u_{7}+\imath u_{8}\right)\right]+z_{7}\left[\lambda_{1}\left(-u_{7}+\imath u_{8}\right)-\bar{\lambda}_{2}\left(u_{5}-\imath u_{6}\right)\right]+ \\
& z_{8}\left[\lambda_{2}\left(-u_{7}+\imath u_{8}\right)+\bar{\lambda}_{1}\left(u_{5}-\imath u_{6}\right)\right] .
\end{align*}
$$

The term $\chi\left(\Phi_{g}(u), z\right)$ in 436) is factorized in terms of the variables $u_{j}, j=1, \ldots, 8$, so that it can be written as follows

$$
\begin{align*}
& \boldsymbol{\chi}\left(\Phi_{g}(u), z\right)=\imath\left(-u_{1}+\imath u_{2}\right)\left(\lambda_{1} z_{1}+\lambda_{2} z_{2}\right)+\imath\left(-u_{3}+\imath u_{4}\right)\left(\bar{\lambda}_{1} z_{2}-\bar{\lambda}_{2} z_{1}\right)+ \tag{437}\\
& \imath\left(u_{3}+\imath u_{4}\right)\left(\lambda_{1} z_{3}+\lambda_{2} z_{4}\right)+\imath\left(-u_{1}-\imath u_{2}\right)\left(\bar{\lambda}_{1} z_{4}-\bar{\lambda}_{2} z_{3}\right)+\left(u_{5}+\imath u_{6}\right)\left(\lambda_{1} z_{5}+\lambda_{2} z_{6}\right)+ \\
& \quad\left(u_{7}+\imath u_{8}\right)\left(\bar{\lambda}_{1} z_{6}-\bar{\lambda}_{2} z_{5}\right)+\left(-u_{7}+\imath u_{8}\right)\left(\lambda_{1} z_{7}+\lambda_{2} z_{8}\right)+\left(u_{5}-\imath u_{6}\right)\left(\bar{\lambda}_{1} z_{8}-\bar{\lambda}_{2} z_{7}\right) .
\end{align*}
$$

It follows from equality (437) that

$$
\begin{equation*}
\chi\left(\Phi_{g}(u), z\right)=\chi\left(-g \bar{q}_{1}, g \bar{q}_{2}, z\right)=\chi\left(-\bar{q}_{1}, \bar{q}_{2}, \tilde{\Phi}_{g^{T}}(z)\right)=\chi\left(u, \tilde{\Phi}_{g^{T}}(z)\right) \tag{438}
\end{equation*}
$$

A straightforward calculation shows that the term $\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]$ is invariant under the action $\tilde{\Phi}_{g}(z)$ of $S U(2)$ on $\dot{\mathbb{C}}^{8}$. The above calculations show that equality $A_{8}\left(\Phi_{g}(u), z\right)=$ $A_{8}\left(u, \tilde{\Phi}_{g^{T}}(z)\right)$ is fulfilled. A similar procedure can be done as above calculations to show that equality $A_{8}\left(\Phi_{g^{T}}(u), z\right)=A_{8}\left(u, \tilde{\Phi}_{g}(z)\right)$ holds.
Proposition 31. Equivariant Property-II Let me consider the Segal-Bargmann transform $B_{8}: L^{2}\left(\mathbb{R}^{8}, d u\right) \longrightarrow \mathcal{B}_{8}$ given in (394) and denote by $B_{0,8}$ the restriction of B_{8} to $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$. The map $B_{0,8}: L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \longrightarrow \mathcal{B}_{8}^{S U(2)}$ given by

$$
\begin{equation*}
\left(B_{0,8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) A_{8}(u, z) d u \quad \forall \psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \tag{439}
\end{equation*}
$$

is a bijection.
Proof. Let me first verify that the function $B_{0,8} \psi$ belongs to $\mathcal{B}_{8}^{S U(2)}$. That is, $B_{0,8} \psi$ satisfies $\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)=\left(B_{0,8} \psi\right)(z)$. The function $\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)$ is given by

$$
\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)=\int_{\mathbb{R}^{8}} \psi(u) A_{8}\left(u, \tilde{\Phi}_{g}(z)\right) d u
$$

It follows from equality 432 that the function $\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)$ can be written as

$$
\begin{equation*}
\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)=\int_{\mathbb{R}^{8}} \psi(u) A_{8}\left(\Phi_{g^{T}}(u), z\right) d u \tag{440}
\end{equation*}
$$

Let me recall that $A_{8}(u, z)=A_{8}\left(-\bar{q}_{1}, \bar{q}_{2}, z\right)$, so the kernel $A_{8}\left(\Phi_{g^{T}}(u), z\right)$ is given by $A_{8}\left(\Phi_{g^{T}}(u), z\right)=$ $A_{8}\left(\Phi_{g^{T}}\left(-\bar{q}_{1}, \bar{q}_{2}\right), z\right)$. Now let me define the following change of variable
(441) $\bar{Q}_{1}=g^{T} \bar{q}_{1}$ and in matrix form $\left(\begin{array}{cc}U_{1}-\imath U_{2} & -U_{3}-\imath U_{4} \\ U_{3}-\imath U_{4} & U_{1}+\imath U_{2}\end{array}\right)=g^{T}\left(\begin{array}{cc}u_{1}-\imath u_{2} & -u_{3}-\imath u_{4} \\ u_{3}-\imath u_{4} & u_{1}+\imath u_{2}\end{array}\right)$

$$
\bar{Q}_{2}=g^{T} \bar{q}_{2} \text { and in matrix form }\left(\begin{array}{cc}
U_{5}+\imath U_{6} & -U_{7}+\imath U_{8} \\
U_{7}+\imath U_{8} & U_{5}-\imath U_{6}
\end{array}\right)=g^{T}\left(\begin{array}{cc}
u_{5}+\imath u_{6} & -u_{7}+\imath u_{8} \\
u_{7}+\imath u_{8} & u_{5}-\imath u_{6}
\end{array}\right) .
$$

The following equalities are obtained from equations in (441)
(442) $q_{1}=g Q_{1}$ and in matrix form $\left(\begin{array}{cc}u_{1}+\imath u_{2} & -u_{3}+\imath u_{4} \\ u_{3}+\imath u_{4} & u_{1}-\imath u_{2}\end{array}\right)=g\left(\begin{array}{cc}U_{1}+\imath U_{2} & -U_{3}+\imath U_{4} \\ U_{3}+\imath U_{4} & U_{1}+\imath U_{2}\end{array}\right)$

$$
q_{2}=g Q_{2} \text { and in matrix form }\left(\begin{array}{cc}
u_{5}-\imath u_{6} & -u_{7}-\imath u_{8} \\
u_{7}-\imath u_{8} & u_{5}+\imath u_{6}
\end{array}\right)=g\left(\begin{array}{cc}
U_{5}-\imath U_{6} & -U_{7}-\imath U_{8} \\
U_{7}-\imath U_{8} & U_{5}+\imath U_{6}
\end{array}\right) .
$$

Note that the quaternion matrices in (442) correspond to the identification $\mathbb{R}^{8} \cong \mathbb{H}^{2}$ in (80). The equalities in (442) can be written in cartesian coordinates $u, U \in \mathbb{R}^{8}$ as follows

$$
u=\Phi_{g}(U),
$$

where $\Phi_{g}(U)$ denotes the action of $S U(2)$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$. The transformation $u=\Phi_{g}(U)$ leaves invariant the volume form $d u=d u_{1} \ldots d u_{8}$, that is, $d u=d \Phi_{g}(U)=d U=d U_{1} \ldots d U_{8}$. Hence, equality (440) can be written with respect to the variable $U \in \mathbb{R}^{8}$ as follows

$$
\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)=\int_{\mathbb{R}^{8}} \psi\left(\Phi_{g}(U)\right) A_{8}(U, z) d U
$$

Since $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ satisfies $\psi\left(\Phi_{g}(U)\right)=\psi(U)$, then the following equality holds

$$
\begin{equation*}
\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g}(z)\right)=\int_{\mathbb{R}^{8}} \psi(U) A_{8}(U, z) d U=\left(B_{0,8} \psi\right)(z) \tag{443}
\end{equation*}
$$

Hence, $B_{0,8} \psi$ belongs to $\mathcal{B}_{8}^{S U(2)}$.
Let me take $\left(\widehat{T}_{U_{8}}\right)^{-1}=\widehat{T}_{U_{8}^{-1}}$ and $B_{\mathbb{R}^{8}}^{-1}$ as is given in [4. Eq. 2.15]. It is not difficult to see from definition of $B_{8}=\widehat{T}_{U_{8}} \circ B_{\mathbb{R}^{8}}$ that B_{8}^{-1} can be written as follows

$$
\begin{equation*}
\left(B_{8}^{-1} f\right)(u)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{\boldsymbol{A}_{8}\left(u, U_{8}^{-1} \cdot z\right)} f(z) d \nu_{8}^{\hbar}(z)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{8}(u, z)} f(z) d \nu_{8}^{\hbar}(z) \quad \forall f \in \mathcal{B}_{8} . \tag{444}
\end{equation*}
$$

Since the map $B_{0,8}$ is the restriction of B_{8} to $\mathcal{B}_{8}^{S U(2)}$, then $B_{0,8}^{-1}$ can be calculated from equality 444. The inverse SBT of $F \in B_{8}^{S U(2)}$ is given by

$$
\begin{equation*}
\left(B_{0,8}^{-1} F\right)(u)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{8}(u, z)} F(z) d \nu_{8}^{\hbar}(z) . \tag{445}
\end{equation*}
$$

I will now verify that $B_{0,8}^{-1} F \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$. The function $B_{0,8}^{-1} F\left(\Phi_{g}(u)\right)$ is given by

$$
\begin{equation*}
\left(B_{0,8}^{-1} F\right)\left(\Phi_{g}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{8}\left(\Phi_{g}(u), z\right)} F(z) d \nu_{\hbar}^{8}(z), \quad g \in S U(2) . \tag{446}
\end{equation*}
$$

It follows from equality 432 that the function $\left(B_{0,8}^{-1} F\right)\left(\Phi_{g}(u)\right)$ can be written as follows

$$
\begin{equation*}
\left(B_{0,8}^{-1} F\right)\left(\Phi_{g}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|z| \leq \sigma} \overline{A_{8}\left(u, \tilde{\Phi}_{g^{T}}(z)\right)} F(z) d \nu_{\hbar}^{8}(z), \quad g \in S U(2) . \tag{447}
\end{equation*}
$$

Let me now define the following change of variable

$$
\begin{equation*}
w=\tilde{\Phi}_{g^{T}}(z) \Rightarrow z=\tilde{\Phi}_{g^{*}}(w) \tag{448}
\end{equation*}
$$

where g^{*} denotes the conjugate of $g \in S U(2)$, and $\tilde{\Phi}_{g^{*}}(w)$ denotes the action of $S U(2)$ on $\dot{\mathbb{C}}^{8}$. The transformation in 448 leaves invariant the Gaussian measure $d \nu_{\hbar}^{8}$, that is $d \nu_{\hbar}^{8}(z)=$ $d \nu_{\hbar}^{8}(w)$. Hence, the integral in 447 can be written with respect to the variable $w \in \mathbb{C}^{8}$ as follows

$$
\left(B_{0,8}^{-1} F\right)\left(\Phi_{g}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|w| \leq \sigma} \overline{A_{8}(u, w)} F\left(\tilde{\Phi}_{g^{*}}(w)\right) d \nu_{\hbar}^{8}(w)
$$

Since $F \in B_{8}^{S U(2)}$ satisfies $F\left(\tilde{\Phi}_{g^{*}}(w)\right)=F(w)$, then the following equality holds

$$
\left(B_{0,8}^{-1} F\right)\left(\Phi_{g}(u)\right)=\lim _{\sigma \rightarrow \infty} \int_{|w| \leq \sigma} \overline{A_{8}(u, w)} F(w) d \nu_{\hbar}^{8}(w)=\left(B_{0,8}^{-1} F\right)(u)
$$

Hence, $B_{0,8}^{-1} F$ belongs to $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$. Therefore the SBT $B_{0,8}: L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \longrightarrow \mathcal{B}_{8}^{S U(2)}$ is a bijection and is unitary because it is the restriction to $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ of the map B_{8} : $L^{2}\left(\mathbb{R}^{8}, d u\right) \longrightarrow \mathcal{B}_{8}$.

Recall that functions in $\mathcal{B}_{8}^{S U(2)}$ are elements of $\mathcal{B}_{8}^{(S U(2))_{\mathrm{C}}}$ as well. That is, every $S U(2)$ invariant function in \mathcal{B}_{8} is also invariant under the action of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$. Further, every function $f \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ is identified with a function $\phi \in \mathcal{E}_{5}$ on \dot{Q}_{5}. I could define an action of $S L(2, \mathbb{C})$ on $\dot{\mathbb{R}}^{8} \cong \dot{\mathbb{H}}^{2}$ as that one of $S U(2)$ given in 81 and write an equivariant property of $A_{8}(u, z)$ for the action of $S L(2, \mathbb{C})$ as that one given in 432 , nevertheless, the $S L(2, \mathbb{C})$ invariance of $B_{0,8} \psi$ cannot be proved by following the $S U(2)$-invariance procedure because the functions $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ are not invariant under the action $S L(2, \mathbb{C})$. In order to see that $B_{0,8} \psi \in \mathcal{B}_{8}^{(S U(2))_{\mathrm{C}}}$ I will show that the SBT $B_{0,8}$ can be written in a $S U(2)$-invariant form, see below point (iii) theorem 8 . The $S U(2)$-invariant form of $B_{0,8}$ gives the identification of $B_{0,8} \psi$ with a function in \mathcal{E}_{5}, see below point (i) corollary 2 , For $z \in \mathbb{C}^{8}$ fixed the $S U(2)$-invariant kernel of $B_{0,8}$ is an eigenfunction of the operators $\widehat{\mathcal{D}}_{k}, k=1, \ldots, 8$ in (337) written in the Schrödinger representation, see point (v) theorem 8 . So before showing the $S L(2, \mathbb{C})$-invariance of $B_{0,8} \psi$ let me write the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{k}$ in the space representation $L^{2}\left(\mathbb{R}^{8}, d u\right)$.
Proposition 32. The operators $\widehat{\alpha}_{j}$ in (336) and $\widehat{\mathcal{D}}_{k}, j, k=1, \ldots, 6$ in (337) have the following expression in the Schrödinger representation

$$
\begin{align*}
& \widehat{\alpha}_{1}=\frac{1}{4}\left[\left(u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}-u_{1}^{2}-u_{2}^{2}-u_{3}^{2}-u_{4}^{2}\right)\right. \tag{449}\\
& +2 \hbar\left(u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}+u_{3} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{4}}-u_{5} \frac{\partial}{\partial u_{5}}-u_{6} \frac{\partial}{\partial u_{6}}-u_{7} \frac{\partial}{\partial u_{7}}-u_{8} \frac{\partial}{\partial u_{8}}\right) \\
& \left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}-\frac{\partial^{2}}{\partial u_{1}^{2}}-\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right]
\end{align*}
$$

$$
\widehat{\mathcal{D}}_{1}=\frac{1}{4}\left[\left(u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}-u_{1}^{2}-u_{2}^{2}-u_{3}^{2}-u_{4}^{2}\right)\right.
$$

$$
+2 \hbar\left(u_{5} \frac{\partial}{\partial u_{5}}+u_{6} \frac{\partial}{\partial u_{6}}+u_{7} \frac{\partial}{\partial u_{7}}+u_{8} \frac{\partial}{\partial u_{8}}-u_{1} \frac{\partial}{\partial u_{1}}-u_{2} \frac{\partial}{\partial u_{2}}-u_{3} \frac{\partial}{\partial u_{3}}-u_{4} \frac{\partial}{\partial u_{4}}\right)
$$

$$
\left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}-\frac{\partial^{2}}{\partial u_{1}^{2}}-\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right]
$$

$$
\begin{aligned}
\widehat{\alpha}_{2}= & \frac{1}{2}\left[\left(u_{2} u_{6}-u_{1} u_{5}+u_{4} u_{8}-u_{3} u_{7}\right)\right. \\
& +\hbar\left(u_{1} \frac{\partial}{\partial u_{5}}+u_{5} \frac{\partial}{\partial u_{1}}+u_{3} \frac{\partial}{\partial u_{7}}+\right.
\end{aligned} \begin{aligned}
& \left.u_{7} \frac{\partial}{\partial u_{3}}-u_{2} \frac{\partial}{\partial u_{6}}-u_{6} \frac{\partial}{\partial u_{2}}-u_{4} \frac{\partial}{\partial u_{8}}-u_{8} \frac{\partial}{\partial u_{4}}\right) \\
& \left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{2} \partial u_{6}}-\frac{\partial^{2}}{\partial u_{1} \partial u_{5}}+\frac{\partial^{2}}{\partial u_{4} \partial u_{8}}-\frac{\partial^{2}}{\partial u_{3} \partial u_{7}}\right)\right] \\
\widehat{\mathcal{D}}_{2}= & \frac{1}{2}\left[\left(u_{2} u_{6}-u_{1} u_{5}+u_{4} u_{8}-u_{3} u_{7}\right)\right.
\end{aligned} \quad \begin{aligned}
& +\left(u_{2} \frac{\partial}{\partial u_{6}}+u_{6} \frac{\partial}{\partial u_{2}}+u_{4} \frac{\partial}{\partial u_{8}}+u_{8} \frac{\partial}{\partial u_{4}}-u_{1} \frac{\partial}{\partial u_{5}}-u_{5} \frac{\partial}{\partial u_{1}}-u_{3} \frac{\partial}{\partial u_{7}}-u_{7} \frac{\partial}{\partial u_{3}}\right) \\
& \left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{2} \partial u_{6}}-\frac{\partial^{2}}{\partial u_{1} \partial u_{5}}+\frac{\partial^{2}}{\partial u_{4} \partial u_{8}}-\frac{\partial^{2}}{\partial u_{3} \partial u_{7}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\alpha}_{3}= & \frac{1}{2}\left[\left(u_{3} u_{5}+u_{4} u_{6}-u_{1} u_{7}-u_{2} u_{8}\right)\right. \\
& +\hbar\left(u_{1} \frac{\partial}{\partial u_{7}}+u_{7} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{8}}+\right.
\end{aligned} \begin{aligned}
&\left.u_{8} \frac{\partial}{\partial u_{2}}-u_{3} \frac{\partial}{\partial u_{5}}-u_{5} \frac{\partial}{\partial u_{3}}-u_{4} \frac{\partial}{\partial u_{6}}-u_{6} \frac{\partial}{\partial u_{4}}\right) \\
&\left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{3} \partial u_{5}}+\frac{\partial^{2}}{\partial u_{4} \partial u_{6}}-\frac{\partial^{2}}{\partial u_{1} \partial u_{7}}-\frac{\partial^{2}}{\partial u_{2} \partial u_{8}}\right)\right]
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\widehat{\mathcal{D}}_{3}= & \frac{1}{2}\left[\left(u_{3} u_{5}+u_{4} u_{6}-u_{1} u_{7}-u_{2} u_{8}\right)\right. \\
& +\hbar\left(u_{3} \frac{\partial}{\partial u_{5}}+u_{5} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{6}}+\right.
\end{array} u_{6} \frac{\partial}{\partial u_{4}}-u_{1} \frac{\partial}{\partial u_{7}}-u_{7} \frac{\partial}{\partial u_{1}}-u_{2} \frac{\partial}{\partial u_{8}}-u_{8} \frac{\partial}{\partial u_{2}}\right)\right] .
$$

$$
\left.\left.\begin{array}{rl}
\widehat{\alpha}_{4}= & \frac{1}{2}\left[\left(u_{4} u_{5}+u_{1} u_{8}-u_{3} u_{6}-u_{2} u_{7}\right)\right. \\
& +\hbar\left(u_{3} \frac{\partial}{\partial u_{6}}+u_{6} \frac{\partial}{\partial u_{3}}+u_{2} \frac{\partial}{\partial u_{7}}+\right.
\end{array} u_{7} \frac{\partial}{\partial u_{2}}-u_{4} \frac{\partial}{\partial u_{5}}-u_{5} \frac{\partial}{\partial u_{4}}-u_{1} \frac{\partial}{\partial u_{8}}-u_{8} \frac{\partial}{\partial u_{1}}\right)\right] .
$$

$$
\widehat{\mathcal{D}}_{4}=\frac{1}{2}\left[\left(u_{4} u_{5}+u_{1} u_{8}-u_{3} u_{6}-u_{2} u_{7}\right)\right.
$$

$$
+\hbar\left(u_{4} \frac{\partial}{\partial u_{5}}+u_{5} \frac{\partial}{\partial u_{4}}+u_{1} \frac{\partial}{\partial u_{8}}+u_{8} \frac{\partial}{\partial u_{1}}-u_{3} \frac{\partial}{\partial u_{6}}-u_{6} \frac{\partial}{\partial u_{3}}-u_{2} \frac{\partial}{\partial u_{7}}-u_{7} \frac{\partial}{\partial u_{2}}\right)
$$

$$
\left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{4} \partial u_{5}}+\frac{\partial^{2}}{\partial u_{1} \partial u_{8}}-\frac{\partial^{2}}{\partial u_{3} \partial u_{6}}-\frac{\partial^{2}}{\partial u_{2} \partial u_{7}}\right)\right]
$$

$$
\begin{aligned}
\widehat{\alpha}_{5}= & \frac{1}{2}\left[-\left(u_{2} u_{5}+u_{1} u_{6}+u_{4} u_{7}+u_{3} u_{8}\right)\right. \\
& +\hbar\left(u_{2} \frac{\partial}{\partial u_{5}}+u_{5} \frac{\partial}{\partial u_{2}}+u_{1} \frac{\partial}{\partial u_{6}}+u_{6} \frac{\partial}{\partial u_{1}}+u_{4} \frac{\partial}{\partial u_{7}}+u_{7} \frac{\partial}{\partial u_{4}}+u_{3} \frac{\partial}{\partial u_{8}}+u_{8} \frac{\partial}{\partial u_{3}}\right) \\
& \left.-\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{2} \partial u_{5}}+\frac{\partial^{2}}{\partial u_{1} \partial u_{6}}+\frac{\partial^{2}}{\partial u_{4} \partial u_{7}}+\frac{\partial^{2}}{\partial u_{3} \partial u_{8}}\right)\right] \\
\widehat{\mathcal{D}}_{5}= & \frac{1}{2}\left[-\left(u_{2} u_{5}+u_{1} u_{6}+u_{4} u_{7}+u_{3} u_{8}\right)\right. \\
& -\hbar\left(u_{2} \frac{\partial}{\partial u_{5}}+u_{5} \frac{\partial}{\partial u_{2}}+u_{1} \frac{\partial}{\partial u_{6}}+u_{6} \frac{\partial}{\partial u_{1}}+u_{4} \frac{\partial}{\partial u_{7}}+u_{7} \frac{\partial}{\partial u_{4}}+u_{3} \frac{\partial}{\partial u_{8}}+u_{8} \frac{\partial}{\partial u_{3}}\right) \\
& \left.-\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{2} \partial u_{5}}+\frac{\partial^{2}}{\partial u_{1} \partial u_{6}}+\frac{\partial^{2}}{\partial s a u_{4} \partial u_{7}}+\frac{\partial^{2}}{\partial u_{3} \partial u_{8}}\right)\right] \\
\widehat{\alpha}_{6}= & \frac{\imath}{4}\left[-\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}+u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}\right)\right. \\
8 \hbar & +2 \hbar\left(u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}+u_{3} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{4}}+u_{5} \frac{\partial}{\partial u_{5}}+u_{6} \frac{\partial}{\partial u_{6}}+u_{7} \frac{\partial}{\partial u_{7}}+u_{8} \frac{\partial}{\partial u_{8}}\right) \\
& \left.-\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}+\frac{\partial^{2}}{\partial u_{3}^{2}}+\frac{\partial^{2}}{\partial u_{4}^{2}}+\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}\right)\right]
\end{aligned} \quad \begin{aligned}
& \widehat{\mathcal{D}}_{6}= \frac{\imath}{4}\left[\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}+u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}\right)+\right. \\
&\left.8 \hbar+2 \hbar\left(u_{1} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{2}}+u_{3} \frac{\partial}{\partial u_{3}}+u_{4} \frac{\partial}{\partial u_{4}}+u_{5} \frac{\partial}{\partial u_{5}}+u_{6} \frac{\partial}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}+\frac{\partial^{2}}{\partial u_{3}^{2}}+\frac{\partial^{2}}{\partial u_{4}^{2}}+\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}\right)\right] . \\
&
\end{aligned}
$$

The proof of proposition 32 follows from a straightforward calculation using equalities in (396).

In the following proposition the sphere S^{3} is identified with $S U(2)$ as follows

$$
x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \in S^{3} \rightarrow g=\left(\begin{array}{cc}
x^{0}-\imath x^{3} & -x^{2}-\imath x^{1} \tag{450}\\
x^{2}-\imath x^{1} & x^{0}+\imath x^{3}
\end{array}\right) \in S U(2) .
$$

Theorem 8. $\quad(S U(2))_{\mathbb{C}}$-Invariant form of $B_{0,8}$
(i) The SBT $B_{0,8}: L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \longrightarrow \mathcal{B}_{8}^{S U(2)}$ can be written as

$$
\begin{equation*}
\left(B_{0,8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) \mathcal{A}_{8}(u, z) d u, \quad \forall \psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}, \tag{451}
\end{equation*}
$$

where the kernel $\mathcal{A}_{8}(u, z)$ is given by

$$
\begin{equation*}
\mathcal{A}_{8}(u, z)=\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} A_{8}\left(\Phi_{g}(u), z\right) d \Omega_{S^{3}} . \tag{452}
\end{equation*}
$$

(ii) The $S U(2)$-invariant kernel $\mathcal{A}_{8}(u, z)$ can be written as $\mathcal{A}_{8}(u, z)=\mathfrak{A}_{8}(x(u), \alpha(z))$, where the function $\mathfrak{A}_{8}(x(u), \alpha(z))$ has the following expression

$$
\begin{align*}
\mathfrak{A}_{8}(x(u), \alpha(z))= & \frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{\hbar}|x(u)|} \frac{\hbar}{\sqrt{\imath \alpha_{6}(z) \frac{1}{2}|u|^{2}-\left(x_{1}(u) \alpha_{1}(z)+\ldots+x_{5}(u) \alpha_{5}(z)\right)}} \tag{453}\\
& I_{1}\left(\frac{2}{\hbar} \sqrt{\imath \alpha_{6}(z) \frac{1}{2}|u|^{2}-\left(x_{1}(u) \alpha_{1}(z)+\ldots+x_{5}(u) \alpha_{5}(z)\right)}\right) \mathrm{e}^{-\frac{1}{\hbar} \imath \alpha_{6}(z)}
\end{align*}
$$

(iii) The $S B T$ of $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ can be computed as follows

$$
\begin{equation*}
\left(B_{0,8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) \mathfrak{A}_{8}(x(u), \alpha(z)) d u \tag{454}
\end{equation*}
$$

The function $B_{0,8} \psi$ is invariant under the action of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$. Thus the SBT $B_{0,8}$ is actually a $\operatorname{map} B_{0,8}: L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \longrightarrow \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$.
(iv) For $w \in \mathbb{C}^{8}$ fixed, let $\psi_{w}(u)=\overline{\mathcal{A}_{8}(u, w)} \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$. The SBT of $\psi_{w}(u)$ gives the reproducing kernel in $\mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$. Namely,

$$
\begin{equation*}
\left(B_{0,8} \psi_{w}\right)(z)=\int_{\mathbb{R}^{8}} \psi_{w}(u) \mathcal{A}_{8}(u, z) d u=\frac{2 \hbar}{\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right) \tag{455}
\end{equation*}
$$

(v) The kernel $\mathcal{A}_{8}(u, z)$ is an eigenfunction of the annihilation operators $\widehat{\mathcal{D}}_{j}, j=1, \ldots 6$ defined in 449.

Proof.

(i) The SBT of $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ can be calculated as follows

$$
\begin{equation*}
\left(B_{0,8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) A_{8}(u, z) d u=\int_{\mathbb{R}^{8}} \psi\left(\Phi_{g}(u)\right) A_{8}\left(\Phi_{g}(u), z\right) d\left(\Phi_{g}(u)\right) \tag{456}
\end{equation*}
$$

The volume form $d u=d u_{1} \wedge d u_{2} \wedge \ldots \wedge d u_{8}$ is invariant under the action of $S U(2)$ on $\dot{\mathbb{R}}^{8}$, that is, $d\left(\Phi_{g}(u)\right)=d u$. Moreover, the function $\psi(u)$ satisfies $\psi\left(\Phi_{g}(u)\right)=\psi(u)$. Hence, the equality (456) can be written as

$$
\begin{equation*}
\left(B_{0,8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) A_{8}(u, z) d u=\int_{\mathbb{R}^{8}} \psi(u) A_{8}\left(\Phi_{g}(u), z\right) d u \tag{457}
\end{equation*}
$$

Let me do an integration with respect to $g \in S U(2) \cong S^{3}$ to remove the dependence of g in equality (457). Namely,

$$
\begin{aligned}
\int_{S^{3}}\left[\int_{\mathbb{R}^{8}} \psi(u) A_{8}(u, z) d u\right] d \Omega_{S^{3}} & =\int_{S^{3}}\left[\int_{\mathbb{R}^{8}} \psi(u) A_{8}\left(\Phi_{g}(u), z\right) d u\right] d \Omega_{S^{3}} \\
\int_{\mathbb{R}^{8}} \psi(u) A_{8}(u, z) d u & =\int_{\mathbb{R}^{8}} \psi(u)\left[\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} A_{8}\left(\Phi_{g}(u), z\right) d \Omega_{S^{3}}\right] d u
\end{aligned}
$$

Therefore $B_{0,8}$ can be written as in 451).
(ii) The kernel $A_{8}(u, z)$ can be written as follows

$$
A_{8}(u, z)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar} u^{2}+\frac{1}{\hbar} \chi(u, z)+\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]}
$$

where $\chi(u, z)$ is given by

$$
\begin{align*}
& \chi(u, z)=\imath\left[z_{1}\left(-u_{1}+\imath u_{2}\right)+z_{2}\left(-u_{3}+\imath u_{4}\right)+z_{3}\left(u_{3}+\imath u_{4}\right)\right. \tag{458}\\
& \left.\quad+z_{4}\left(-u_{1}-\imath u_{2}\right)\right]+z_{5}\left(u_{5}+\imath u_{6}\right)+z_{6}\left(u_{7}+\imath u_{8}\right)+z_{7}\left(-u_{7}+\imath u_{8}\right)+z_{8}\left(u_{5}-\imath u_{6}\right)
\end{align*}
$$

The term $A_{8}\left(\Phi_{g}(u), z\right)$ is given by

$$
A_{8}\left(\Phi_{g}(u), z\right)=\frac{1}{(\hbar \pi)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar} u^{2}+\frac{1}{\hbar} \chi\left(\Phi_{g}(u), z\right)+\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]} .
$$

The integral over S^{3} can be written as follows

$$
\begin{align*}
& \frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} A_{8}\left(\Phi_{g}(u), z\right) d \Omega_{S^{3}}(x)= \tag{459}\\
& \quad \frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar} u^{2}}\left[\frac{1}{2 \pi^{2}} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \chi\left(\Phi_{g}(u), z\right)} d \Omega_{S^{3}}\right] \mathrm{e}^{\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]} .
\end{align*}
$$

Let me recall that $\boldsymbol{\chi}(u, z)$ is given in terms of entries of the matrices $\left(-\bar{q}_{1}, \bar{q}_{2}\right)$ in 433). The term $\chi\left(\Phi_{g}(u), z\right)$ is calculated as follows. The product of matrices $-g \bar{q}_{1}, g \bar{q}_{2}$ with $g \in S U(2)$ as in (450) gives the following

$$
\begin{equation*}
-g \bar{q}_{1}= \tag{460}
\end{equation*}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left(x^{0}-\imath x^{3}\right)\left(-u_{1}+\imath u_{2}\right)+\left(-x^{2}-\imath x^{1}\right)\left(-u_{3}+\imath u_{4}\right) & \left(x^{0}-\imath x^{3}\right)\left(u_{3}+\imath u_{4}\right)+\left(-x^{2}-\imath x^{1}\right)\left(-u_{1}-\imath u_{2}\right) \\
\left(x^{2}-\imath x^{1}\right)\left(-u_{1}+\imath u_{2}\right)+\left(x^{0}+\imath x^{3}\right)\left(-u_{3}+\imath u_{4}\right) & \left(x^{2}-\imath x^{1}\right)\left(u_{3}+\imath u_{4}\right)+\left(x^{0}+\imath x^{3}\right)\left(-u_{1}-\imath u_{2}\right.
\end{array}\right) \\
& g q_{2}= \\
& \left(\begin{array}{cc}
\left(x^{0}-\imath x^{3}\right)\left(u_{5}+\imath u_{6}\right)+\left(-x^{2}-\imath x^{1}\right)\left(u_{7}+\imath u_{8}\right) & \left(x^{0}-\imath x^{3}\right)\left(-u_{7}+\imath u_{8}\right)+\left(-x^{2}-\imath x^{1}\right)\left(u_{5}-\imath u_{6}\right) \\
\left(x^{2}-\imath x^{1}\right)\left(u_{5}+\imath u_{6}\right)+\left(x^{0}+\imath x^{3}\right)\left(u_{7}+\imath u_{8}\right) & \left(x^{2}-\imath x^{1}\right)\left(-u_{7}+\imath u_{8}\right)+\left(x^{0}+\imath x^{3}\right)\left(u_{5}-\imath u_{6}\right)
\end{array}\right) .
\end{aligned}
$$

The entries of $-g \bar{q}_{1}, g \bar{q}_{2}$ in 460) are substituted into (458). The following is obtained

$$
\chi\left(\Phi_{g}(u), z\right)=x^{0} A_{1}+x^{1} A_{2}+x^{2} A_{3}+x^{3} A_{4}, \quad\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=x \in S^{3} .
$$

The components $A_{j}, j=1,2,3,4$ can be written as

$$
\begin{array}{ll}
A_{1}=\imath\left(a_{1}+a_{4}\right)+\left(b_{1}+b_{4}\right), & A_{2}=\left(a_{2}+a_{3}\right)-\imath\left(b_{2}+b_{3}\right) \tag{461}\\
A_{3}=\imath\left(a_{2}-a_{3}\right)+\left(b_{2}-b_{3}\right), & A_{4}=\left(a_{1}-a_{4}\right)+\imath\left(b_{4}-b_{1}\right),
\end{array}
$$

where the functions $a_{j}, b_{j}, j=1,2,3,4$ are given by

$$
\begin{array}{cl}
a_{1}=z_{1}\left(-u_{1}+\imath u_{2}\right)+z_{3}\left(u_{3}+\imath u_{4}\right), & a_{2}=z_{2}\left(-u_{1}+\imath u_{2}\right)+z_{4}\left(u_{3}+\imath u_{4}\right) \tag{462}\\
a_{3}=z_{1}\left(-u_{3}+\imath u_{4}\right)+z_{3}\left(-u_{1}-\imath u_{2}\right), & a_{4}=z_{2}\left(-u_{3}+\imath u_{4}\right)+z_{4}\left(-u_{1}-\imath u_{2}\right) \\
b_{1}=z_{5}\left(u_{5}+\imath u_{6}\right)+z_{7}\left(-u_{7}+\imath u_{8}\right), & b_{2}=z_{6}\left(u_{5}+\imath u_{6}\right)+z_{8}\left(-u_{7}+\imath u_{8}\right) \\
b_{3}=z_{5}\left(u_{7}+\imath u_{8}\right)+z_{7}\left(u_{5}-\imath u_{6}\right), & b_{4}=z_{6}\left(u_{7}+\imath u_{8}\right)+z_{8}\left(u_{5}-\imath u_{6}\right) .
\end{array}
$$

Let me define the following vector

$$
n=\frac{1}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) .
$$

The integral at the right-hand side of equality 459) can be written as

$$
\begin{equation*}
\frac{1}{2 \pi^{2}} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \chi\left(\Phi_{g}(u), z\right)} d \Omega_{S^{3}}(x)=\frac{1}{2 \pi^{2}} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}} x \cdot n} d \Omega_{S^{3}}(x) . \tag{463}
\end{equation*}
$$

Taking $r=\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}$ it follows from definition of the Bessel function in 399) that

$$
\frac{1}{2 \pi^{2}} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2} x \cdot n} d \Omega_{S^{3}}(x)=\frac{2 \hbar}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}} I_{1}\left(\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}\right)}
$$

The above calculations show that the following equality holds

$$
\begin{aligned}
\mathcal{A}_{8}(u, z)= & \frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar}|u|^{2}+\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]} \\
& \frac{2 \hbar}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}} I_{1}\left(\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}\right) .
\end{aligned}
$$

From definition of $A_{j}, j=1, \ldots, 4$ in (461) and taking the expressions of a_{j}, b_{j} in 462) a straightforward calculation shows that

$$
\begin{aligned}
& \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}= \\
& \quad 2 \sqrt{\imath \alpha_{6}(z) \frac{1}{2}|u|^{2}-\left(x_{1}(u) \alpha_{1}(z)+x_{2} \alpha_{2}(z)+x_{3}(u) \alpha_{3}(z)+x_{4}(u) \alpha_{4}(z)+x_{5}(u) \alpha_{5}(z)\right)},
\end{aligned}
$$

where $x_{j}(u), j=1, \ldots, 5$ are given in (342), and $\alpha_{k}(z), k=1, \ldots, 6$ are given in (140). A short calculation shows that $\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]=-\imath \alpha_{6}(z)$ and that the functions $x_{j}(u)$ in (472) satisfy $|x(u)|=\frac{1}{2}|u|^{2}$. Thus the above calculations show that the kernel $\mathcal{A}_{8}(u, z)$ can be written as $\mathcal{A}(u, z)=\mathfrak{A}_{8}(x(u), \alpha(z))$ with $\mathfrak{A}_{8}(x(u), \alpha(z))$ given as in 453).
(iii) Using the expression of $\mathfrak{A}_{8}(x(u), \alpha(z))$ in (453) the SBT of ψ can be computed as in (454).

Let me evaluate $B_{0,8} \psi$ along the $S L(2, \mathbb{C})$-orbit $\Phi_{g_{1}}(z)$ in $\dot{\mathbb{C}}^{8}$. Namely,

$$
\left(B_{0,8} \psi\right)\left(\tilde{\Phi}_{g_{1}}(z)\right)=\int_{\mathbb{R}^{8}} \psi(u) \mathfrak{A}_{8}\left(x(u), \alpha\left(\tilde{\Phi}_{g_{1}}(z)\right) d u=\int_{\mathbb{R}^{8}} \psi(u) \mathfrak{A}_{8}(x(u), \alpha(z)) d u=\left(B_{0,8} \psi\right)(z) .\right.
$$

Hence, $B_{0,8} \psi$ is invariant under the action of $S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$.
(iv) The SBT of the state $\psi_{w}(u)=\overline{\mathcal{A}_{8}(u, w)}$ is calculated as follows

$$
\begin{equation*}
\left(B_{0,8} \psi_{w}\right)(z)=\int_{\mathbb{R}^{8}} \psi_{w}(u) \mathcal{A}_{8}(u, z) d u=\int_{\mathbb{R}^{8}} \overline{\mathcal{A}_{8}(u, w)} \mathcal{A}_{8}(u, z) d u \tag{464}
\end{equation*}
$$

The integral in 464) can be written in the following form

$$
\begin{align*}
& \int_{\mathbb{R}^{8}} \overline{\mathcal{A}_{8}(u, w)} \mathcal{A}_{8}(u, z) d u= \tag{465}\\
& \int_{\mathbb{R}^{8}}\left[\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \overline{A_{8}\left(\Phi_{g_{2}}(u), w\right)} d \Omega_{S^{3}}(y)\right]\left[\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} A_{8}\left(\Phi_{g_{1}}(u), z\right) d \Omega_{S^{3}}(x)\right] d u
\end{align*}
$$

where $g_{1}, g_{2} \in S U(2)$ are given by

$$
\begin{align*}
& S^{3} \ni x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \rightarrow g_{1}=\left(\begin{array}{cc}
x^{0}-\imath x^{3} & -x^{2}-\imath x^{1} \\
x^{2}-\imath x^{1} & x^{0}+\imath x^{3}
\end{array}\right) \tag{466}\\
& S^{3} \ni y=\left(y^{0}, y^{1}, y^{2}, y^{3}\right) \rightarrow g_{2}=\left(\begin{array}{cc}
y^{0}-\imath y^{3} & -y^{2}-\imath y^{1} \\
y^{2}-\imath y^{1} & y^{0}+\imath y^{3}
\end{array}\right) .
\end{align*}
$$

It follows from equality (432) that the right-hand side of equality 465) can be written as follows

$$
\begin{align*}
& \int_{R^{8}} \overline{\mathcal{A}_{8}(u, w)} \mathcal{A}_{8}(u, z) d u= \tag{467}\\
& \int_{\mathbb{R}^{8}}\left[\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \overline{A_{8}\left(u, \Phi_{g_{2}^{T}}(w)\right)} d \Omega_{S^{3}}(y)\right]\left[\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} A_{8}\left(u, \Phi_{g_{1}^{T}}(z)\right) d \Omega_{S^{3}}(x)\right] d u
\end{align*}
$$

Let me define $\mathbf{w}=\tilde{\Phi}_{g_{2}^{T}}(w)$ and $\mathbf{z}=\tilde{\Phi}_{g_{1}^{T}}(z)$. The integration order in equality 467 can be interchanged. That is, the integration with respect to the variable $u \in \mathbb{R}^{8}$ is first done, and after it is done the integration with respect to the variables $x, y \in S^{3}$. The integral with respect to the variable $u \in \mathbb{R}^{8}$ gives the following

$$
\int_{\mathbb{R}^{8}} \overline{A_{8}(u, \mathbf{w})} A_{8}(u, \mathbf{z}) d u=\mathrm{e}^{\frac{1}{\hbar^{2}} \cdot \overline{\mathbf{w}}}
$$

The integral with respect to $x \in S^{3}$ is given by

$$
\begin{equation*}
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \tilde{\Phi}_{g_{1}^{T}}(z) \cdot \overline{\mathbf{w}}} d \Omega_{S^{3}}(x) \tag{468}
\end{equation*}
$$

The integral in 468 can be calculated by doing a similar procedure to the integral in 219 . The following is obtained

$$
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \tilde{\Phi}_{g_{1}^{T}}(z) \cdot \overline{\mathbf{w}}} d \Omega_{S^{3}}(x)=\frac{2 \hbar}{\sqrt{2 \alpha(z) \cdot \overline{\beta(\mathbf{w})}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(\mathbf{w})}}\right)
$$

Since $\beta(\mathbf{w})$ satisfies $\beta(\mathbf{w})=\beta\left(\tilde{\Phi}_{g_{2}^{T}}(w)\right)=\beta(w)$, then the following equality holds

$$
\begin{equation*}
\frac{1}{\operatorname{Area}\left(S^{3}\right)} \int_{S^{3}} \mathrm{e}^{\frac{1}{\hbar} \tilde{\Phi}_{g_{1}^{T}}(z) \cdot \overline{\mathbf{w}}} d \Omega_{S^{3}}(x)=\frac{2 \hbar}{\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right) . \tag{469}
\end{equation*}
$$

Note that the Bessel function in 469 does not depend on the variable $y \in S^{3}$. The above calculations show that the following equality is fulfilled

$$
\int_{\mathbb{R}^{8}} \overline{\mathcal{A}_{8}(u, w)} \mathcal{A}_{8}(u, z) d u=\frac{2 \hbar}{\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}\right)
$$

(v) Let me take the operator \mathcal{D}_{1} in (449). A calculation shows that

$$
\begin{align*}
& \text { (470) } \mathcal{D}_{1} \mathcal{A}_{8}(u, z)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{2 \hbar}|u|^{2}} \mathrm{e}^{\frac{1}{\hbar}\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]} \tag{470}\\
& \frac{\hbar^{2}}{4}\left(\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}-\frac{\partial^{2}}{\partial u_{1}^{2}}-\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right) \frac{2 \hbar}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}} I_{1}\left(\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}\right)
\end{align*}
$$

The identity of Bessel function derivatives in 420) is used to compute the derivatives in (470).
Using the chain rule a very long calculation shows that

$$
\begin{array}{r}
\frac{\hbar^{2}}{4}\left(\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}-\frac{\partial^{2}}{\partial u_{1}^{2}}-\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\left(\frac{2 \hbar}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}} I_{1}\left(\frac{1}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}\right)\right)= \\
\\
\alpha_{1}(z)\left(\frac{\hbar}{\sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}} I_{1}\left(\frac{2}{\hbar} \sqrt{A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+A_{4}^{2}}\right)\right)
\end{array}
$$

Hence, the following equality holds

$$
\widehat{\mathcal{D}}_{1} \mathcal{A}_{8}(u, z)=\alpha_{1}(z) \mathcal{A}_{8}(u, z)
$$

I can make a similar procedure as above calculations to show that the following equalities hold

$$
\widehat{\mathcal{D}}_{j} \mathcal{A}_{8}(u, z)=\alpha_{j}(z) \mathcal{A}_{8}(u, z), \quad j=1,3,4,5,6
$$

In section 5 of the previous chapter I have shown that the space $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ is identified with space $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$. Let me take the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}, j=1, \ldots, 6$ in 449 , and let $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ act on a function $\psi(u)=\phi(x(u))$. The operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}$ are identified with operators acting in $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$. This is the point of the following proposition.

Proposition 33. The operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}, j=1, \ldots, 6$ in 449) have the following expression in the space $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$

$$
\begin{aligned}
(471) \widehat{\alpha}_{j} & =\frac{1}{2}\left\{-x_{j}+2 \hbar|x| \frac{\partial}{\partial x_{j}}+\hbar^{2}\left[2\left(2+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-x_{j} \Delta_{\mathbb{R}^{5}}\right]\right\}, j=1, \ldots, 5, \\
\widehat{\mathfrak{D}}_{j} & =\frac{1}{2}\left\{-x_{j}-2 \hbar|x| \frac{\partial}{\partial x_{j}}-\hbar^{2}\left[2\left(2+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-x_{j} \Delta_{\mathbb{R}^{5}}\right]\right\} \\
\widehat{\alpha}_{6} & =\frac{\imath}{2}\left[-|x|+2 \hbar\left(4 \widehat{\mathbb{I}}+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right)-\hbar^{2}|x| \Delta_{\mathbb{R}^{5}}\right] \\
\widehat{\mathfrak{D}}_{6} & =\frac{\imath}{2}\left[|x|+2 \hbar\left(4 \widehat{\mathbb{I}}+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right)+\hbar^{2}|x| \Delta_{\mathbb{R}^{5}}\right] .
\end{aligned}
$$

Proof. Consider $\psi(u)=\phi(x(u)) \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ with $\phi(x)$ defined on \mathbb{R}^{5}, and $x_{j}(u), j=$ $1,2 \ldots 5$ are given by

$$
\begin{align*}
x_{1} & =\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}-u_{5}^{2}-u_{6}^{2}-u_{7}^{2}-u_{8}^{2}\right) \tag{472}\\
x_{2} & =u_{1} u_{5}-u_{6} u_{2}+u_{3} u_{7}-u_{4} u_{8} \\
x_{3} & =u_{1} u_{7}+u_{2} u_{8}-u_{3} u_{5}-u_{4} u_{6} \\
x_{4} & =u_{2} u_{7}-u_{1} u_{8}+u_{3} u_{6}-u_{4} u_{5} \\
x_{5} & =u_{1} u_{6}+u_{2} u_{5}+u_{3} u_{8}+u_{4} u_{7} .
\end{align*}
$$

Let $\widehat{\mathcal{D}}_{1}$ act on $\psi(u)=\phi(x(u))$. Namely,

$$
\begin{align*}
\widehat{\mathcal{D}}_{1} \psi(u)= & \frac{1}{4}\left[\left(u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}-u_{1}^{2}-u_{2}^{2}-u_{3}^{2}-u_{4}^{2}\right)\right. \tag{473}\\
+2 \hbar\left(u_{5} \frac{\partial}{\partial u_{5}}\right. & \left.+u_{6} \frac{\partial}{\partial u_{6}}+u_{7} \frac{\partial}{\partial u_{7}}+u_{8} \frac{\partial}{\partial u_{8}}-u_{1} \frac{\partial}{\partial u_{1}}-u_{2} \frac{\partial}{\partial u_{2}}-u_{3} \frac{\partial}{\partial u_{3}}-u_{4} \frac{\partial}{\partial u_{4}}\right) \\
& \left.+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{5}^{2}}+\frac{\partial^{2}}{\partial u_{6}^{2}}+\frac{\partial^{2}}{\partial u_{7}^{2}}+\frac{\partial^{2}}{\partial u_{8}^{2}}-\frac{\partial^{2}}{\partial u_{1}^{2}}-\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right] \phi(x(u)) .
\end{align*}
$$

The derivatives in 473 are calculated using the chain rule. The right-hand side of equality (473) can be written after a long calculation as follows

$$
\widehat{\mathfrak{D}}_{1} \phi=\frac{1}{2}\left\{-x_{1}-2 \hbar|x| \frac{\partial}{\partial x_{1}}-\hbar^{2}\left[2\left(2+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{1}}-x_{1} \Delta_{\mathbb{R}^{5}}\right]\right\} \phi(x)
$$

The rest of the operators $\widehat{\alpha}_{j}, \widehat{\mathfrak{D}}_{j}$, in 471 can be obtained by doing a similar procedure.

Corollary 2. $(S U(\mathcal{Q}))_{\mathbb{C}}$-Reduction of $B_{0,8}$

(i) Since the space $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ is identified with $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$ and $\mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ is identified with \mathcal{E}_{5}, then the $S B T B_{0,8}: L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \longrightarrow \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ can be regarded as an SBT \mathfrak{B}_{8} : $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right) \longrightarrow \mathcal{E}_{5}$ which is defined as follows

$$
\begin{equation*}
\left(\mathfrak{B}_{8} \phi\right)(\alpha)=\int_{\mathbb{R}^{5}} \phi(x) \mathfrak{A}_{8}(x, \alpha) \frac{\pi^{2}}{|x|} d x, \quad \forall \phi \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right) \tag{474}
\end{equation*}
$$

where the kernel $\mathfrak{A}_{8}(x, \alpha)$ is given by

$$
\begin{align*}
\mathfrak{A}_{8}(x, \alpha)=\frac{1}{(\pi \hbar)^{2}} \mathrm{e}^{-\frac{1}{\hbar}|x|} & \frac{2 \hbar}{\sqrt{\imath \alpha_{6}|x|-\left(x_{1} \alpha_{1}+x_{2} \alpha_{2}+x_{3} \alpha_{3}+x_{4} \alpha_{4}+x_{5} \alpha_{5}\right)}} \tag{475}\\
& I_{1}\left(\frac{2}{\hbar} \sqrt{\imath \alpha_{6}|x|-\left(x_{1} \alpha_{1}+x_{2} \alpha_{2}+x_{3} \alpha_{3}+x_{4} \alpha_{4}+x_{5} \alpha_{5}\right)}\right) \mathrm{e}^{-\frac{2}{\hbar} \alpha_{6}} .
\end{align*}
$$

(ii) The $S B T$ of $\phi_{\beta}(x)=\overline{\mathfrak{A}_{8}(x, \alpha)} \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$ gives the reproducing kernel in \mathcal{E}_{5}

$$
\begin{equation*}
\left(\mathfrak{B}_{8} \phi_{\beta}\right)(\alpha)=\int_{\mathbb{R}^{5}} \phi_{\beta}(x) \mathfrak{A}_{8}(x, \alpha) \frac{\pi^{2}}{|x|} d x=\frac{2 \hbar}{\sqrt{2 \alpha \cdot \bar{\beta}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha \cdot \bar{\beta}}\right) . \tag{476}
\end{equation*}
$$

(iii) The kernel $\mathfrak{A}_{8}(x, \alpha)$ is an eigenfunction of the operators $\widehat{\mathfrak{D}}_{j}, j=1, \ldots, 6$ given in 471).

Proof.

(i) The SBT of $\psi(u)=\phi(x(u)) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{S U(2)}$ can be calculated as follows

$$
\begin{equation*}
\left(B_{0,8} \psi\right)(z)=\int_{\mathbb{R}^{8}} \psi(u) \mathcal{A}_{8}(u, z) d u=\int_{\mathbb{R}^{8}} \phi(x(u)) \mathfrak{A}_{8}(x(u), \alpha(z)) d u \tag{477}
\end{equation*}
$$

The functions $\psi(u)=\phi(x(u)), \mathcal{A}_{8}(u, z)=\mathfrak{A}_{8}(x(u), \alpha(z)) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{S U(2)}$ are identified with the functions $\phi(x), \mathfrak{A}_{8}(x, \alpha) \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$, and the right-hand side of equality 477 can be calculated as an integral on \mathbb{R}^{5} as follows

$$
\begin{align*}
\int_{\mathbb{R}^{8}} \phi(x(u)) \mathfrak{A}_{8}(x(u), \alpha(z)) d u & =\int_{S U(2)} \int_{\mathbb{R}^{5}} \phi(x) \mathfrak{A}_{8}(x, \alpha) \frac{1}{2|x|} d x d \operatorname{Vol}(S U(2) \\
& =\int_{\mathbb{R}^{5}} \phi(x) \mathfrak{A}_{8}(x, \alpha) \frac{\pi^{2}}{|x|} d x \tag{478}
\end{align*}
$$

The right-hand side of equality $\sqrt[478]{ }$ defines $B_{0,8} \psi \in \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ regarded as a function of $\alpha \in \dot{Q}_{5}$ which is an element in \mathcal{E}_{5}. Hence, the SBT $B_{0,8}: L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \longrightarrow \mathcal{B}_{8}^{(S U(2))_{\mathbb{C}}}$ can be regarded as the SBT \mathfrak{B}_{8} defined in (474).
(ii) It follows from point (i) that the SBT of $\phi_{\beta}(x(u))=\overline{\mathfrak{A}_{8}(x(u), \beta(w))} \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ can be calculated as an integral on \mathbb{R}^{5} as follows

$$
\begin{align*}
\int_{\mathbb{R}^{8}} \overline{\mathfrak{A}_{8}(x(u), \beta(w))} \mathfrak{A}_{8}(x(u), \alpha(z)) d u & =\int_{\mathbb{R}^{5}} \overline{\mathfrak{A}_{8}(x, \beta)} \mathfrak{A}_{8}(x, \alpha) \frac{\pi^{2}}{|x|} d x \tag{479}\\
& =\int_{\mathbb{R}^{5}} \phi_{\beta}(x) \mathfrak{A}_{8}(x, \alpha) \frac{\pi^{2}}{|x|} d x
\end{align*}
$$

It follows from point (iv) in theorem 8 that the right-hand side of equality 479 regarded as a function of $\alpha \in \dot{Q}_{5}$ corresponds to the reproducing kernel $\frac{2 \hbar}{\sqrt{2 \alpha \cdot \bar{\beta}}} I_{1}\left(\frac{1}{\hbar} \sqrt{2 \alpha \cdot \bar{\beta}}\right)$ of \mathcal{E}_{5}. Hence, equality (476) is fulfilled.
(iii) The operators $\mathcal{D}_{j}, j=1, \ldots, 6$ given in (449) satisfy the following equations

$$
\begin{equation*}
\widehat{\mathcal{D}}_{j} \mathcal{A}_{8}(u, z)=\alpha_{j}(z) \mathcal{A}_{8}(u, z), \quad j=1, \ldots, 6 . \tag{480}
\end{equation*}
$$

The kernel $\mathcal{A}_{8}(u, z)$ is given in a $S U(2)$-invariant form by $\mathcal{A}_{8}(u, z)=\mathfrak{A}_{8}(x(u), \alpha(z))$. It follows from proposition 33 that the left-hand side of equality (480) can be written as follows

$$
\begin{aligned}
\left(\widehat{\mathcal{D}}_{j} \mathfrak{A}_{8}\right)(x(u), \alpha(z)) & = \\
& \frac{1}{2}\left\{-x_{j}-2 \hbar|x| \frac{\partial}{\partial x_{j}}-\hbar^{2}\left[2\left(2+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-x_{j} \Delta_{\mathbb{R}^{5}}\right]\right\} \mathfrak{A}_{8}(x, \alpha),
\end{aligned}
$$

for $j=1, \ldots, 5$, and

$$
\left(\widehat{\mathcal{D}}_{6} \mathfrak{A}_{8}\right)(x(u), \alpha(z))=\frac{\imath}{2}\left[|x|+2 \hbar\left(4 \widehat{\mathbb{I}}+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right)+\hbar^{2}|x| \Delta_{\mathbb{R}^{5}}\right] \mathfrak{A}_{8}(x, \alpha) .
$$

The right-hand side of equality 480 is identified to $\alpha_{j} \mathfrak{A}_{8}(x, \alpha)$. The above calculations show that the following equality holds

$$
\widehat{\mathfrak{D}}_{j} \mathfrak{A}_{8}(x, \alpha)=\alpha_{j} \mathfrak{A}_{8}(x, \alpha), j=1, \ldots, 6
$$

4. Time Evolution of a Coherent State

In this section I study the time evolution of the integral kernels $A_{n}(u, w), \mathcal{A}_{n}(u, w)$ and $\mathfrak{A}_{n}(x, \beta)$ $n=8,4$ from the point of view of Quantum Mechanics. That is, the time evolution of a quantum state is determined by the Hamiltonian operator of the quantum system. Here the relevant quantum system is the harmonic oscillator in both representations $L^{2}\left(\mathbb{R}^{n}, d u\right)$ and \mathcal{B}_{n} whose Hamiltonian operator is denoted by $\widehat{H}_{n}^{S c h}$ and \widehat{H}_{n} respectively. I first study the time evolution of $K_{n}(z, w)=\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}$ in the space \mathcal{B}_{n} and then determine the time evolution of the kernel $A_{n}(u, w)$ in the space $L^{2}\left(\mathbb{R}^{n}, d u\right)$ via the SBT B_{n}. I show that the time evolution of $A_{n}(u, w)$ follows the Hamiltonian flow of the harmonic oscillator on $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$. The operator $\widehat{H}_{n}^{S c h}$ is invariant under the action (coordinate transformation) of G_{n} on $\dot{\mathbb{R}}^{n}$. This invariance property of $\widehat{H}_{n}^{S c h}$ is used to show that the time evolution of the G_{n}-invariant kernel $\mathcal{A}_{n}(u, w)$ follows the Hamiltonian flow of the harmonic oscillator on $T^{*} \mathbb{R}^{n} \cong \mathbb{C}^{n}$ as well.

On the other hand, for $w \in \mathbb{C}^{n}$ fixed the kernel $\mathcal{A}_{n}(u, w)=\mathfrak{A}_{n}(x(u), \beta(w)$ corresponds to $\mathfrak{A}_{n}(x, \beta) \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ with $\beta \in T^{+} S^{m} \cong \dot{Q}_{m}$, and the operator $\widehat{H}_{n}^{S c h}$ is identified with an operator \widehat{K}_{m} acting in $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ so that the time evolution of $\mathfrak{A}_{n}(x, \beta)$ is determined by \widehat{K}_{m}. I first study the time evolution of $\Gamma_{m}(\alpha, \beta)$ in the space \mathcal{E}_{m} and then determine the time evolution of $\mathfrak{A}_{n}(x, \beta)$ in $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ via the $\mathrm{SBT} \mathfrak{B}_{n}$. I show that the time evolution of $\mathfrak{A}_{n}(x, \beta)$ follows the geodesic flow on $T^{+} S^{m} \cong \dot{Q}_{m}$, see proposition 36 below.

Let me write the explicit expression of the operators $\widehat{H}_{n}^{S c h}$ and \widehat{H}_{n}

$$
\widehat{H}_{n}^{S c h}=-\frac{\hbar^{2}}{4} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial u_{j}^{2}}+\frac{u^{2}}{4}, \quad \widehat{H}_{n}=\hbar\left(\frac{1}{2} \sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}}+\frac{n}{4}\right) \quad n=8,4
$$

To determine the time evolution of $A_{n}(u, w)$ I need the following result.

Lemma 11.

(i) The SBT $B_{n}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow \mathcal{B}_{n}$ intertwines the operators $\widehat{H}_{n}^{S c h}$ and \widehat{H}_{n}. Namely,

$$
\begin{equation*}
\widehat{H}_{n}\left(B_{n} \psi(z)\right)=\left(B_{n} \widehat{H}_{n}^{S c h} \psi\right)(z) \quad \forall \psi \in L^{2}\left(\mathbb{R}^{n}, d u\right) \tag{481}
\end{equation*}
$$

(ii) Moreover, the following is fulfilled

$$
\begin{equation*}
B_{n} \mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} B_{n}^{-1}=\mathrm{e}^{\frac{2}{\hbar} t B_{n} \widehat{H}_{n}^{S c h} B_{n}^{-1}}=\mathrm{e}^{\frac{\imath}{\hbar} t \widehat{H}_{n}}, \quad n=8,4 \tag{482}
\end{equation*}
$$

Proof.

(i) Using the equalities in (387) and (396) a straightforward calculation shows that equality (481) is fulfilled.
(ii) Let me note that $\widehat{H}_{n}^{S c h}$ self-adjoint can realized from the self-adjointness of \widehat{H}_{n}. See [4] for a description of \widehat{H}_{n} in \mathcal{B}_{n}. Let me consider \widehat{H}_{n} with domain $\operatorname{Dom}\left(\widehat{H}_{n}\right)$ such that \widehat{H}_{n} is self-adjoint in \mathcal{B}_{n}. For $g \in \operatorname{Dom}\left(\widehat{H}_{n}^{*}\right)$ and $f \in \operatorname{Dom}\left(\widehat{H}_{n}\right)$ there is $\chi \in \mathcal{B}_{n}$ such that the following equality holds

$$
\left\langle g, \widehat{H}_{n} f\right\rangle_{\mathcal{B}_{n}}=\langle\chi, f\rangle_{\mathcal{B}_{n}}
$$

The above equality can be written in $L^{2}\left(\mathbb{R}^{n}, d u\right)$ via B_{n}^{-1} as follows

$$
\begin{equation*}
\left\langle B_{n}^{-1} g, \widehat{H}_{n}^{S c h} B_{n}^{-1} f\right\rangle_{L^{2}\left(\mathbb{R}^{n}, d u\right)}=\left\langle B_{n}^{-1} \chi, B_{n}^{-1} f\right\rangle_{L^{2}\left(\mathbb{R}^{n}, d u\right)} \quad \text { with } \quad B_{n}^{-1} f \in \operatorname{dom}\left(\widehat{H}_{n}^{S c h}\right) \tag{483}
\end{equation*}
$$

Equality 483) indicates that $\operatorname{dom}\left(\left(\widehat{H}_{n}^{S c h}\right)^{*}\right)=B_{n}^{-1} \operatorname{Dom}\left(\widehat{H}_{n}^{*}\right)$. Now using that $\operatorname{Dom}\left(\widehat{H}_{n}^{*}\right)=$ $\operatorname{dom}\left(\widehat{H}_{n}\right)$ I can conclude that $\operatorname{dom}\left(\left(\widehat{H}_{n}^{S c h}\right)^{*}\right)=\operatorname{Dom}\left(\widehat{H}_{n}^{S c h}\right)$. Hence, $\widehat{H}_{n}^{S c h}$ is self-adjoint as well.

In the following calculations I assume that $\widehat{H}_{n}^{S c h}$ is a self-adjoint operator so that the operator $\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}}$ is a strongly continuous one-parameter unitary group, see proposition 10.14 in [17]. The operator $\mathrm{e}^{\frac{\imath}{\hbar}} t_{H_{n}^{\text {Sch }}}$ is defined by functional calculus. For each $t \in \mathbb{R}$ let me consider the unitary operator $U(t): \mathcal{B}_{n} \longrightarrow \mathcal{B}_{n}$ which is given by

$$
U(t)=B_{n} \mathrm{e}^{\frac{\imath}{\hbar} t \widehat{H}_{n}^{S c h}} B_{n}^{-1}
$$

Using the property of the exponential function and inserting the identity operator $B_{n}^{-1} B_{n}$ a straightforward calculation shows that the following equality holds

$$
U(t+s)=U(t) U(s)
$$

Hence, $U(t)$ is a one-parameter unitary group on \mathcal{B}_{n}. Let me check that $U(t)$ is strongly continuous. Namely,

$$
\begin{equation*}
\lim _{t \rightarrow s}\|U(t) f-U(s) f\|_{\mathcal{B}_{n}}=0 \quad \forall f \in \mathcal{B}_{n} \tag{484}
\end{equation*}
$$

Using that $f=B_{n} \psi$ with $\psi \in L^{2}\left(\mathbb{R}^{n}, d u\right)$ the norm $\|U(t) f-U(s) f\|_{\mathcal{B}_{n}}$ can be written as follows

$$
\left\|B_{n} \mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} \psi-B_{n} \mathrm{e}^{\frac{2}{\hbar} s \widehat{H}_{n}^{S c h}} \psi\right\|_{\mathcal{B}_{n}}=\left\|\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} \psi-\mathrm{e}^{\frac{2}{\hbar} s \widehat{H}_{n}^{S c h}} \psi\right\|_{L^{2}\left(\mathbb{R}^{n}, d u\right)}
$$

Since $\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}}$ is a strongly continuous one-parameter unitary group, then the right-hand side of above equality tends to 0 in the limit $t \rightarrow s$. Hence, equality (484) holds. It follows from Stone theorem that $U(t)$ can be written as $U(t)=\mathrm{e}^{\imath t \widehat{A}}$, where the operator \widehat{A} is the infinitesimal generator and is defined by

$$
\widehat{A} f=\lim _{t \rightarrow 0} \frac{U(t) f-f}{t} \quad \forall f \in \operatorname{Dom}\left(\widehat{H}_{n}\right) \subset \mathcal{B}_{n}
$$

where the limit is in the norm topology of \mathcal{B}_{n}. Let me take $f \in \operatorname{Dom}(\widehat{H})$ as $f=B_{n} \psi$ with $\psi \in \operatorname{Dom}\left(\widehat{H}_{n}^{S c h}\right) \subset L^{2}\left(\mathbb{R}^{n}, d u\right)$ and estimate the following

$$
\begin{aligned}
\left\|\frac{1}{\imath} \frac{U(t) f-f}{t}-B_{n} \frac{1}{\hbar} \widehat{H}_{n}^{S c h} B_{n}^{-1} f\right\|_{B_{n}} & =\left\|\frac{1}{\imath} \frac{B_{n} \mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} \psi-B_{n} \psi}{t}-\frac{1}{\hbar} B_{n} \widehat{H}_{n}^{S c h} \psi\right\|_{\mathcal{B}_{n}} \\
& =\left\|\frac{1}{\imath} \frac{\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} \psi-\psi}{t}-\frac{1}{\hbar} \widehat{H}_{n}^{S c h} \psi\right\|_{L^{2}\left(\mathbb{R}^{n}, d u\right)}
\end{aligned}
$$

Again $\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}}$ is a strongly continuous one-parameter unitary group, so the right-hand side of above equality tends to zero in the limit $t \rightarrow 0$. Hence, the infinitesimal generator of $U(t)$ is
given by $\widehat{A}=\frac{1}{\hbar} B_{n} \widehat{H}_{n}^{S c h} B_{n}^{-1}$. Now it follows from 481) that $\widehat{H}_{n}=B_{n} \widehat{H}_{n}^{S c h} B_{n}^{-1}$. Thus the equality 482 is fulfilled.

Proposition 34. The time evolution of $A_{n}(u, w)$ after a time t regarding the Hamiltonian $\widehat{H}_{n}^{S c h}$ is the state $\mathrm{e}^{\imath t \frac{n}{4}} A_{n}(u, w(t))$ whose dependence in t is determined by the Hamiltonian flow of the harmonic oscillator. Namely,

$$
\begin{equation*}
\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} A_{n}(u, w)=\mathrm{e}^{\imath t \frac{n}{4}} A_{n}(u, w(t)) \quad \text { with } \quad w=\mathrm{e}^{\frac{\imath t}{2}} w \tag{485}
\end{equation*}
$$

Proof. For $w \in \mathbb{C}^{n}$ fixed let $\psi_{w}(u)=\overline{A_{n}(u, w)}$. The time evolution of $\left(B_{n} \psi_{w}\right)(z)=\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}$ in \mathcal{B}_{n} is determined by the following equation

$$
\begin{aligned}
\mathrm{e}^{-\frac{\imath}{\hbar} \widehat{H}_{n} t}\left(\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}\right) & =\mathrm{e}^{-\frac{\imath}{\hbar} \widehat{H}_{n} t}\left(\sum_{k=0}^{k=\infty} \frac{1}{k!}\left(\frac{z \cdot \bar{w}}{\hbar}\right)^{k}\right) \\
& =\sum_{k=0}^{k=\infty} \mathrm{e}^{-\frac{\imath}{\hbar} \widehat{H}_{n} t} \frac{1}{k!}\left(\frac{z \cdot \bar{w}}{\hbar}\right)^{k}
\end{aligned}
$$

The function $(z \cdot \bar{w})^{k}$ is an eigenfunction of \widehat{H}_{n} with eiegenvalue $\hbar\left(\frac{k}{2}+\frac{n}{4}\right)$, so the equality $\mathrm{e}^{-\frac{\imath}{\hbar} t \widehat{H}_{n}}(z \cdot \bar{w})^{k}=\mathrm{e}^{-\imath t\left(\frac{k}{2}+\frac{n}{4}\right)}(z \cdot \bar{w})^{k}$ holds by functional calculus. Hence, the time evolution of $\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}$ in \mathcal{B}_{n} is given by

$$
\begin{aligned}
\mathrm{e}^{-\frac{\imath}{\hbar} \widehat{H}_{n} t}\left(\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}\right) & =\mathrm{e}^{-\imath \frac{n t}{4}} \sum_{k=0}^{k=\infty} \mathrm{e}^{-\imath \frac{k t}{2}} \frac{1}{k!}\left(\frac{z \cdot \bar{w}}{\hbar}\right)^{k} \\
& =\mathrm{e}^{-\imath \frac{n t}{4}} \sum_{k=0}^{k=\infty} \frac{1}{k!}\left(\frac{z \cdot \overline{w(t)}}{\hbar}\right)^{k} \quad \text { with } \quad w(t)=\mathrm{e}^{\frac{\imath t}{2}} w
\end{aligned}
$$

The following equality holds from above calculations

$$
\begin{equation*}
\mathrm{e}^{-\frac{\imath}{\hbar} \widehat{H}_{n} t}\left(\mathrm{e}^{\frac{1}{\hbar} z \cdot \bar{w}}\right)=\mathrm{e}^{-\imath \frac{n t}{4}} \mathrm{e}^{\frac{1}{\hbar} z \cdot \overline{w(t)}} \tag{486}
\end{equation*}
$$

Using equality (482) it follows from (486) that

$$
\begin{aligned}
\mathrm{e}^{-\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} \psi_{w} & =\mathrm{e}^{-\imath \frac{n t}{4}} B_{n}^{-1} \mathrm{e}^{\frac{1}{\hbar} z \cdot \overline{w(t)}} \\
& =\mathrm{e}^{-\imath \frac{n t}{4}} \psi_{w(t)}
\end{aligned}
$$

Since $\widehat{H}_{n}^{S c h}$ is a Hermitian operator, then it follows from above equality that the time evolution of $A_{n}(u, w)$ is given as in 485).

Let me now consider the time evolution of $\mathcal{A}_{n}(u, w)$, which can be determined from the time evolution of $A_{n}(u, w)$. Recall that $\mathcal{A}_{n}(u, w)$ is given as the average of $A_{n}(u, w)$ over the orbits of the action of G_{n} on $\dot{\mathbb{R}}^{n}$. Taking the average is actually the projector operator $P_{G_{n}}: L^{2}\left(\mathbb{R}^{n}, d u\right) \longrightarrow L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ which is given by

$$
\left(P_{G_{n}} \psi\right)(u)=\frac{1}{\operatorname{Area}\left(S^{d}\right)} \int_{S^{d}} \psi\left(\Phi_{g}(u)\right) d \Omega_{S^{d}}
$$

where $\Phi_{g}(u)$ denotes the action of $G_{n} \cong S^{d}$ on $\dot{\mathbb{R}}^{n}$ with $n=8,4$ and $d=3,1$ respectively. Let me denote by $u^{\prime}=\Phi_{g}(u)$ a new variable and write ${\widehat{H^{\prime}}}_{n}^{S c h}$ regarding u^{\prime}. The operator $\widehat{H}_{n}^{S c h}$ is invariant under the action of G_{n} on $\dot{\mathbb{R}}^{n}$, that is, $\widehat{H}_{n}^{S c h}={\widehat{H^{\prime}}}_{n}^{S c h}$. We can interchange the action of $\widehat{H}_{n}^{S c h}$ with the integration on S^{d} and use the G_{n}-invariance of $\widehat{H}_{n}^{S c h}$ so that a straightforward calculation shows that

$$
\begin{equation*}
\widehat{H}_{n}^{S c h}\left(P_{G_{n}} \psi\right)=P_{G_{n}}\left(\widehat{H}_{n}^{S c h} \psi\right) \tag{487}
\end{equation*}
$$

Equality 487) indicates that $\widehat{H}_{n}^{S c h}$ and $P_{G_{n}}$ commute. This allows to determine the time evolution of $\mathcal{A}_{n}(u, w)$ from the time evolution of $A_{n}(u, w)$.
Proposition 35. The time evolution of the Kernel $\mathcal{A}_{n}(u, w)$ after a time t regarding the Hamiltonian $\widehat{H}_{n}^{S c h}$ is the state $\mathrm{e}^{t t} \mathcal{A}_{n}(u, w(t))$ whose dependence in t is determined by the Hamiltonian flow of the harmonic oscillator. Namely,

$$
\begin{equation*}
\mathrm{e}^{\frac{2}{\hbar} t \hat{H}_{n}^{S c h}} \mathcal{A}_{n}(u, w)=\mathrm{e}^{\frac{n t}{4}} \mathcal{A}_{n}(u, w(t)) \quad \text { with } w(t)=\mathrm{e}^{\frac{2 t}{2}} w . \tag{488}
\end{equation*}
$$

Proof. It follows from the spectral theorem that $P_{G_{n}}$ commutes with the function $\mathrm{e}^{\frac{2}{\hbar} t \hat{H}_{n}^{S c h}}$, so the time evolution of $\mathcal{A}_{n}(u, w)$ can be determined by first computing $\mathrm{e}^{\frac{2}{\hbar} t \widehat{\Pi}_{n}^{S c h}} A_{n}(u, w)$ and then taking the average of $\mathrm{e}^{2 t \frac{n}{4}} A_{n}(u, w(t))$. Namely,

$$
\mathrm{e}^{\frac{2}{\hbar} t \widehat{H}_{n}^{S c h}} \mathcal{A}_{n}(u, w)=\mathrm{e}^{2^{\frac{n t}{4}}}\left(\frac{1}{\operatorname{Area}\left(S^{d}\right)} \int_{S^{d}} A_{n}\left(\Phi_{g}(u), w(t)\right) d \Omega_{S^{\prime} d}\right)=\mathrm{e}^{2^{\frac{n t}{4}}} \mathcal{A}_{n}(u, w(t)) .
$$

On the other hand, let me avoid domain issues and assume that there is a self-adjoint realization of \widehat{H}_{n} in $\mathcal{B}_{n}^{\left(G_{n}\right) \mathrm{c}}$ so that the self-adjointness of $\widehat{H}_{n}^{S c h}$ in $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ can be inherited from \widehat{H}_{n} via the SBT $B_{0, n}$. This allows to determine the time evolution of $\mathcal{A}_{n}(u, w)$ with the same procedure of the case of $A_{n}(u, w)$. That is, I first study the time evolution of $\mathcal{K}_{n}(u, w)=$ $\mathfrak{K}_{n}(\alpha(z), \beta(w))$ in $\mathcal{B}_{n}^{\left(G_{n}\right){ }_{C}}$ and then determine the time evolution of $\mathcal{A}_{n}(u, w)$ via the SBT $B_{0, n}$.

Let me recall that $\mathfrak{K}_{n}(\alpha(z), \beta(w))=\Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha(z) \cdot \overline{\beta(w)}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha(z) \cdot \overline{\beta(w)}}}{\hbar}\right)$ and take the series definition of $I_{\frac{m-3}{2}}$ in each case $m=5,3$, see [2], which is given in terms of $\left(G_{n}\right)_{\mathbb{C}^{-}}$ invariant eigenfunctions of \widehat{H}_{n} with eigenvalues $\hbar\left(k+\frac{n}{4}\right)$. Using the functional calculus of $\mathrm{e}^{-\frac{\imath}{\hbar} t \widehat{H}_{n}}$ a straightforward calculation shows that

$$
\begin{align*}
\mathrm{e}^{-\frac{2}{\hbar} t \widehat{H}_{n}} \mathfrak{K}_{n}(\alpha(z), \beta(w)) & =\mathrm{e}^{-\imath \frac{n t}{4}} \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(\nu+k+1)}\left(\frac{1}{\hbar^{2}} \frac{\alpha(z) \cdot \overline{\beta(w(t))}}{2}\right)^{k} \\
& =\mathrm{e}^{-\imath \frac{n t}{4}} \mathfrak{K}_{n}(\alpha(z), \beta(w(t))) \quad \text { with } \quad w(t)=\mathrm{e}^{\frac{z t}{2}} w \quad \text { and } \nu=0,1 . \tag{489}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{e}^{-\frac{\imath}{\hbar} t \widehat{H}_{n}^{S c h}} \psi_{w} & =\mathrm{e}^{-\imath \frac{n t}{4}} B_{0, n}^{-1} \mathcal{K}_{n}(z, w(t)) \\
& =\mathrm{e}^{-\imath \frac{n t}{4}} \psi_{w(t)} \quad \text { with } \quad \psi_{w(t)}=\overline{\mathcal{A}_{n}(u, w(t))} .
\end{aligned}
$$

The operator $\widehat{H}_{n}^{S c h}$ is Hermitian, so it follows from above equality that the time evolution of $\mathcal{A}_{n}(u, w)$ is given as in 485).

To determine the time evolution of $\mathfrak{A}_{n}(x, \beta), n=8,4 \mathrm{I}$ need the following result

Lemma 12.

(i) The SBT $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$ intertwines the Hamiltonian operators $\widehat{K}_{m}=$ $\frac{1}{2}|x|\left[\Delta_{\mathbb{R}^{m}}+1\right]$ and $\widehat{H}_{\text {red }}=\hbar\left(\sum_{k=1}^{m} \alpha_{k} \frac{\partial}{\partial \alpha_{k}}+\frac{2 m-2}{4}\right)$ with $m=5$, 3. Namely,

$$
\begin{equation*}
\widehat{H}_{r e d} \mathfrak{B}_{n} \phi=\mathfrak{B}_{n} \widehat{K}_{m} \phi \quad \forall \phi \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) . \tag{490}
\end{equation*}
$$

(ii) Moreover, the following equality holds

$$
\begin{equation*}
\mathfrak{B}_{n} \mathrm{e}^{\frac{\imath}{\hbar} t \widehat{K}_{m}} \mathfrak{B}_{n}^{-1}=\mathrm{e}^{\frac{\imath}{\hbar} t \mathfrak{B}_{n} \widehat{K}_{m} \mathfrak{B}_{n}^{-1}}=\mathrm{e}^{\frac{\imath}{\hbar} t \widehat{H}_{\text {red }}} . \tag{491}
\end{equation*}
$$

Proof.

(i) The operator $\widehat{H}_{n}^{S c h}$ preserves the G_{n}-invariant functions. That is, for each $\psi \in L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ the function $\widehat{H}_{n}^{S c h} \psi$ belongs to $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ as well. Equality 481 can be written in a $G_{n^{-}}$ invariant form. Namely,

$$
\begin{equation*}
\widehat{H}_{n} B_{0, n} \psi=B_{0, n} \widehat{H}_{n}^{S c h} \psi \quad \forall \psi \in L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}} \tag{492}
\end{equation*}
$$

Let me recall that every element $\psi \in L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ is identified with $\phi \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$. That is, every ψ can be written as $\psi(u)=\phi(x(u))$ with ϕ defined on \mathbb{R}^{m} and $x(u)$ is given by the KS map $\tilde{\Pi}_{n, m}$ in 340 . Let act $\widehat{H}_{n}^{S c h}$ on $\psi \in L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ and \widehat{H}_{n} on $f \in \mathcal{B}_{n}^{\left(G_{n}\right)_{\mathbb{C}}}$ with $f(z)=\phi(\alpha(z))$. The derivatives are calculated with the chain rule, so that the following equalities hold
$\left(\widehat{H}_{n}^{S c h} \psi\right)(u)=\left(\widehat{K}_{m} \phi\right)(x(u)), \quad\left(\widehat{H}_{n} f\right)(z)=\left(\widehat{H}_{r e d} \phi\right)(\alpha(z)) \quad$ with $\quad n=8,4, \quad m=5,3$.
The above equalities indicate that $\widehat{H}_{n}^{S c h}$ and $\widehat{H}_{r e d}$ are identified with \widehat{K}_{m} and $\widehat{H}_{r e d}$ respectively. So it follows from point (i) in corollary 1 and 2 that equality 490 is fulfilled.
(ii) Let me assume that there is a self-adjoint realization of $\widehat{H}_{r e d}$ in \mathcal{E}_{m} so that the selfadjointness of \widehat{K}_{m} can be inherited from $\widehat{H}_{r e d}$ by doing a similar argument to the case of $\widehat{H}_{n}^{S c h}$. Equality (491) can be proved by performing a similar procedure to the lemma 11 .

Proposition 36. The time evolution of the kernel $\mathfrak{A}_{n}(x, \beta)$ after a time t regarding the Hamiltonian $\widehat{K}_{m}=\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right)$ is the state $\mathrm{e}^{\imath t} \mathcal{A}_{n}(x, \beta(t))$ whose dependence in t is determined by the geodesic flow on $T^{+} S^{m}$ under the identification $T^{+} S^{m} \cong \dot{Q}_{m}$. Namely,

$$
\begin{equation*}
\mathrm{e}^{\frac{\imath}{\hbar} t \widehat{K}_{m}} \mathfrak{A}_{n}(x, \beta)=\mathrm{e}^{\imath t(2 m-2)} 4 \mathfrak{A}_{n}(x, \beta(t)) \quad \text { with } \beta(t)=\mathrm{e}^{\imath t} \beta \tag{494}
\end{equation*}
$$

Proof. The proof is similar to the cases of $A_{n}(u, w)$ and $\mathcal{A}_{n}(u, w)$, so let me sketch the calculations. For $\beta \in \dot{Q}_{3}$ fixed let $\phi_{\beta}(x)=\overline{\mathfrak{A}_{n}(x, \beta)} \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$, the time evolution of $\left(\mathfrak{B}_{n} \phi_{\beta}\right)(\alpha)=\Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha \cdot \bar{\beta}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha \cdot \bar{\beta}}}{\hbar}\right)$ in \mathcal{E}_{m} is determined by

$$
\mathrm{e}^{-\frac{2}{\hbar} t \widehat{H}_{\text {red }}} \mathfrak{B}_{n} \phi_{\beta}(\alpha)=\mathrm{e}^{-\frac{2}{\hbar} t \widehat{H}_{\text {red }}} \Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha \cdot \bar{\beta}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha \cdot \bar{\beta}}}{\hbar}\right)
$$

I can use the series definition of the Bessel function $I_{\frac{m-3}{2}}$, see [2] which is is given in terms of eigenfuctions of $\widehat{H}_{\text {red }}$ with eigenvalue $\hbar\left(k+\frac{2 m-2}{4}\right)$ so that the following equality holds

$$
\begin{align*}
\mathrm{e}^{-\frac{2}{\hbar} t \widehat{H}_{\text {red }}} \Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha \cdot \bar{\beta}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha \cdot \bar{\beta}}}{\hbar}\right)= \tag{495}\\
\mathrm{e}^{-\frac{2 t(2 m-2)}{4}} \Gamma\left(\frac{m-1}{2}\right)\left(\frac{\alpha \cdot \overline{\beta(t)}}{2 \hbar^{2}}\right)^{\frac{3-m}{4}} I_{\frac{m-3}{2}}\left(\frac{\sqrt{2 \alpha \cdot \overline{\beta(t)}}}{\hbar}\right) \quad \text { with } \beta(t)=\mathrm{e}^{\imath t} \beta .
\end{align*}
$$

Using equality (491) it follows from (495) that

$$
\mathrm{e}^{-\frac{\imath}{\hbar} t \widehat{K}_{m}} \phi_{\beta}=\mathrm{e}^{-\frac{\imath t(2 m-2)}{4}} \phi_{\beta(t)}
$$

Since \widehat{K}_{m} is a Hermitian operator, then it follows from above equality that the evolution of $\mathfrak{A}_{n}(x, \beta)$ is given as in 494).

The Hamiltonian operators $\widehat{K}_{m}, m=5,3$ will play an important role in the construction of a Segal-Bargmann Transform for spheres $S^{m}, m=5,3$. The key point of this construction is
to assign to each spherical harmonic of degree ℓ on S^{m} an eigenfunction $\phi(x)$ of \widehat{K}_{m} through the Fock map $U_{\ell, m}$. I expose the details of this construction in the next chapter.

A Segal-Bargmann Transform For Spheres

In this chapter I give a geometric description of the SBT $B_{S^{m}, \ell}$ introduced in 11]. I make this description for the dimensions $m=5,3$ based on the relationship on a fixed energy hypersurface among the classical systems, the Kepler problem on $T^{*} \mathbb{R}^{m}$, the geodesic flow on $T^{*} S^{m}$ and the harmonic oscillator on $T^{*} \mathbb{R}^{n} n=8,4$. I construct an SBT $\tilde{B}_{\ell, m}$ with domain V_{ℓ} (the space of spherical harmonics of degree ℓ on S^{m}) and range W_{ℓ} (the space of homogeneous polynomials of degree ℓ in \mathcal{E}_{m}). The main ingredient of this construction is the Fock map $U_{\ell, m}$ which sends $Y(q) \in V_{\ell}$ to an eigenfunction $\phi(x)$ in $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ of the operator $\widehat{K}_{m}=$ $\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right)$, see Eq. 525). The SBT $\tilde{B}_{\ell, m}$ is defined as the composition of $U_{\ell, m}$ with the SBT $\mathfrak{B}_{n}: L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \longrightarrow \mathcal{E}_{m}$, that is, $\tilde{B}_{\ell, m}=\mathfrak{B}_{n} \circ U_{\ell, m}$. I show that the SBT $\tilde{B}_{\ell, m}$ intertwines the representations of $\mathfrak{s o}(m+1)$ in V_{ℓ} and W_{ℓ}. The main result of this chapter is to show that $B_{S^{m}, \ell}$ can be identified with the SBT $\tilde{B}_{\ell, m}$.

1. An SBT for S^{3}

1.1. Representation of $\mathfrak{s o (4)}$. Let me begin with the case of S^{3} for physical reasons. The Lie algebra $\mathfrak{s o (4)}$ is a symmetry of the Hamiltonian operator of the hydrogen atom (Quantum Kepler problem) with Hilbert space $L^{2}\left(\mathbb{R}^{3}, d x\right)$. This symmetry of the hydrogen atom is generated by the angular momentum \widehat{J} and Runge-Lenz \widehat{A} vector operators. The expressions of components \widehat{J}_{j} and $\widehat{A}_{j}, j=1,2,3$ are given in (503) and (505) respectively, see below. Here the approach to generate the representation of $\mathfrak{s o (4)}$ is not from the physical side. Rather, I consider the commutators $\left[\widehat{\mathcal{D}}_{j}, \widehat{\alpha}_{k}\right], j \neq k$ which generate the representation of $\mathfrak{s o}(4)$ inside $\mathfrak{s o}(4,2)$. But I show that the restriction of $\widehat{J}_{j}, \widehat{A}_{j}$ to energy $E=-\frac{1}{2}$ of the hydrogen atom is identified with the operators that generate the representation of $\mathfrak{s o}(4)$ in $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|}, d x\right)$, see
proposition 39 below. The representation of $\mathfrak{s o}(4)$ in \mathcal{B}_{4} is given by

$$
\begin{align*}
& \widehat{\boldsymbol{\rho}}_{1}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{2}\right]=\imath \hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{3} \frac{\partial}{\partial z_{3}}-z_{2} \frac{\partial}{\partial z_{2}}-z_{4} \frac{\partial}{\partial z_{4}}\right) \tag{496}\\
& \widehat{\boldsymbol{\rho}}_{2}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{3}\right]=\hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{2}}-z_{2} \frac{\partial}{\partial z_{1}}+z_{4} \frac{\partial}{\partial z_{3}}-z_{3} \frac{\partial}{\partial z_{4}}\right) \\
& \widehat{\boldsymbol{\rho}}_{3}=\left[\widehat{\mathcal{D}}_{2}, \widehat{\alpha}_{3}\right]=-\imath \hbar^{2}\left(z_{4} \frac{\partial}{\partial z_{3}}+z_{3} \frac{\partial}{\partial z_{4}}-z_{1} \frac{\partial}{\partial z_{2}}-z_{2} \frac{\partial}{\partial z_{1}}\right) \\
& \widehat{\boldsymbol{\rho}}_{4}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{4}\right]=\imath \hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{2}}+z_{2} \frac{\partial}{\partial z_{1}}+z_{4} \frac{\partial}{\partial z_{3}}+z_{3} \frac{\partial}{\partial z_{4}}\right) \\
& \widehat{\boldsymbol{\rho}}_{5}=\left[\widehat{\mathcal{D}}_{2}, \widehat{\alpha}_{4}\right]=\hbar^{2}\left(z_{4} \frac{\partial}{\partial z_{3}}+z_{2} \frac{\partial}{\partial z_{1}}-z_{1} \frac{\partial}{\partial z_{2}}-z_{3} \frac{\partial}{\partial z_{4}}\right) \\
& \widehat{\boldsymbol{\rho}}_{6}=\left[\widehat{\mathcal{D}}_{3}, \widehat{\alpha}_{4}\right]=\imath \hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{4} \frac{\partial}{\partial z_{4}}-z_{2} \frac{\partial}{\partial z_{2}}-z_{3} \frac{\partial}{\partial z_{3}}\right) .
\end{align*}
$$

Consider $f(z)=\phi(\alpha(z)) \in \mathcal{B}_{4}^{(U(1)) \mathrm{c}}$ and let $\widehat{\boldsymbol{\rho}}_{j}, j=1, \ldots, 6$ act on $f(z)=\phi(\alpha(z))$. For instance,

$$
\begin{equation*}
\widehat{\boldsymbol{\rho}}_{1} \phi(\alpha(z))=\imath \hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{3} \frac{\partial}{\partial z_{3}}-z_{2} \frac{\partial}{\partial z_{2}}-z_{4} \frac{\partial}{\partial z_{4}}\right) \phi(\alpha(z)) . \tag{497}
\end{equation*}
$$

The derivatives in (497) are calculated using the chain rule. Taking $\alpha_{j}(z), j=1,2,3,4$ as in (603) a straightforward calculation shows that the right-hand side of equality 497) can be written as follows

$$
\left(\widehat{\boldsymbol{\pi}}_{E_{1}} \phi\right)(\alpha(z))=2 \hbar^{2}\left(\alpha_{2} \frac{\partial \phi}{\partial \alpha_{1}}-\alpha_{1} \frac{\partial \phi}{\partial \alpha_{2}}\right)(\alpha(z)) .
$$

I can do a similar procedure with the rest of the operators in 496). The operators $\widehat{\boldsymbol{\rho}}_{j}, j=$ $1, \ldots, 6$ in 496) have the following expression in the space \mathcal{E}_{3}
(498) $\widehat{\boldsymbol{\pi}}_{E_{1}}=\left[\widehat{D}_{1}, \widehat{\alpha}_{2}\right]=2 \hbar^{2}\left(\alpha_{2} \frac{\partial}{\partial \alpha_{1}}-\alpha_{1} \frac{\partial}{\partial \alpha_{2}}\right), \quad \widehat{\boldsymbol{\pi}}_{E_{2}}=\left[\widehat{D}_{1}, \widehat{\alpha}_{3}\right]=2 \hbar^{2}\left(\alpha_{3} \frac{\partial}{\partial \alpha_{1}}-\alpha_{1} \frac{\partial}{\partial \alpha_{3}}\right)$

$$
\begin{array}{ll}
\widehat{\boldsymbol{\pi}}_{E_{3}}=\left[\widehat{D}_{2}, \widehat{\alpha}_{3}\right]=2 \hbar^{2}\left(\alpha_{3} \frac{\partial}{\partial \alpha_{2}}-\alpha_{2} \frac{\partial}{\partial \alpha_{3}}\right), & \widehat{\boldsymbol{\pi}}_{E_{4}}=\left[\widehat{D}_{1}, \widehat{\alpha}_{4}\right]=2 \hbar^{2}\left(\alpha_{4} \frac{\partial}{\partial \alpha_{1}}-\alpha_{1} \frac{\partial}{\partial \alpha_{4}}\right) \\
\widehat{\boldsymbol{\pi}}_{E_{5}}=\left[\widehat{D}_{2}, \widehat{\alpha}_{4}\right]=2 \hbar^{2}\left(\alpha_{4} \frac{\partial}{\partial \alpha_{2}}-\alpha_{2} \frac{\partial}{\partial \alpha_{4}}\right), & \widehat{\boldsymbol{\pi}}_{E_{6}}=\left[\widehat{D}_{3}, \widehat{\alpha}_{4}\right]=2 \hbar^{2}\left(\alpha_{4} \frac{\partial}{\partial \alpha_{3}}-\alpha_{3} \frac{\partial}{\partial \alpha_{4}}\right) .
\end{array}
$$

The operators in (498) can be identified with a representation of $\mathfrak{s o}(4)$ in space \mathcal{E}_{3} which is obtained from the action of $S O(4, \mathbb{R})$ on \dot{Q}_{3}, see equations 512 below. The following proposition gives a representation of $\mathfrak{s o}(4)$ in the space $L^{2}\left(\mathbb{R}^{4}, d u\right)$.

Proposition 37. The operators in (496) have the following expression in the Schrödinger representation

$$
\begin{align*}
& \widehat{\rho}_{1}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{2}\right]=\hbar\left[\hbar\left(u_{1} \frac{\partial}{\partial u_{2}}-u_{2} \frac{\partial}{\partial u_{1}}+u_{4} \frac{\partial}{\partial u_{3}}-u_{3} \frac{\partial}{\partial u_{4}}\right)\right] \tag{499}\\
& \widehat{\rho}_{2}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{3}\right]=\hbar\left[\hbar\left(u_{1} \frac{\partial}{\partial u_{3}}-u_{3} \frac{\partial}{\partial u_{1}}+u_{2} \frac{\partial}{\partial u_{4}}-u_{4} \frac{\partial}{\partial u_{2}}\right)\right] \\
& \widehat{\rho}_{3}=\left[\widehat{\mathcal{D}}_{2}, \widehat{\alpha}_{3}\right]=\hbar\left[\hbar\left(u_{1} \frac{\partial}{\partial u_{4}}-u_{2} \frac{\partial}{\partial u_{3}}+u_{3} \frac{\partial}{\partial u_{2}}-u_{4} \frac{\partial}{\partial u_{1}}\right)\right] \\
& \widehat{\rho}_{4}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{4}\right]=\imath \hbar\left[\left(u_{1} u_{3}+u_{2} u_{4}\right)-\hbar^{2}\left(\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{3}}+\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{4}}\right)\right] \\
& \widehat{\rho}_{5}=\left[\widehat{\mathcal{D}}_{2}, \widehat{\alpha}_{4}\right]=\imath \hbar\left[\left(u_{1} u_{4}-u_{2} u_{3}\right)+\hbar^{2}\left(\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{3}}-\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{4}}\right)\right] \\
& \widehat{\rho}_{6}=\left[\widehat{\mathcal{D}}_{3}, \widehat{\alpha}_{4}\right]=\imath \hbar\left[\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}-u_{3}^{2}-u_{4}^{2}\right)-\frac{\hbar^{2}}{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}-\frac{\partial^{2}}{\partial u_{3}^{2}}-\frac{\partial^{2}}{\partial u_{4}^{2}}\right)\right] .
\end{align*}
$$

I omit the proof of proposition 37 because it follows from a straightforward calculation using equations in (387).
Proposition 38. The operators in 499 , have the following expression in the space $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$,

$$
\begin{align*}
& \widehat{\pi}_{E_{1}}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{2}\right]=2 \hbar^{2}\left(x_{2} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{2}}\right) \tag{500}\\
& \widehat{\pi}_{E_{2}}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{3}\right]=2 \hbar^{2}\left(x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}\right) \\
& \widehat{\pi}_{E_{3}}=\left[\widehat{\mathcal{D}}_{2}, \widehat{\alpha}_{3}\right]=2 \hbar^{2}\left(x_{3} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{3}}\right) \\
& \widehat{\pi}_{E_{4}}=\left[\widehat{\mathcal{D}}_{1}, \widehat{\alpha}_{4}\right]=\imath \hbar\left\{x_{1}-\hbar^{2}\left[2\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{1}}-x_{1} \Delta_{\mathbb{R}^{3}}\right]\right\} \\
& \widehat{\pi}_{E_{5}}=\left[\widehat{\mathcal{D}}_{2}, \widehat{\alpha}_{4}\right]=i \hbar\left\{x_{2}-\hbar^{2}\left[2\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{2}}-x_{2} \Delta_{\mathbb{R}^{3}}\right]\right\} \\
& \widehat{\pi}_{E_{6}}=\left[\widehat{\mathcal{D}}_{3}, \widehat{\alpha}_{4}\right]=i \hbar\left\{x_{3}-\hbar^{2}\left[2\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{3}}-x_{3} \Delta_{\mathbb{R}^{3}}\right]\right\} .
\end{align*}
$$

Proof. Take the operator $\widehat{\rho}_{4}$ in 499), and let $\widehat{\rho}_{4}$ act on the function $\varphi(u)=\phi(x(u)) \in$ $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ with $\phi(x) \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$. Namely,

$$
\begin{equation*}
\widehat{\rho}_{4} \varphi(u)=\imath\left[\left(u_{1} u_{3}+u_{2} u_{4}\right)-\hbar^{2}\left(\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{3}}+\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{4}}\right)\right] \phi(x(u)) . \tag{501}
\end{equation*}
$$

The derivatives in (501) are calculated with the chain rule. Using equations in (423) a long calculation shows that the right-hand side of equality (501) can be written as follows

$$
\left(\widehat{\pi}_{E_{4}} \phi\right)(x(u))=\imath \hbar\left\{x_{1} \phi-\hbar^{2}\left[2\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial \phi}{\partial x_{1}}-x_{1} \Delta_{\mathbb{R}^{3} \phi}\right]\right\}(x(u)) .
$$

I can do a similar procedure to the above calculations to obtain the rest of the operators in (500).

The canonical operators acting on the Hilbert space $L^{2}\left(\mathbb{R}^{3}, d x\right)$ are given by

$$
\begin{equation*}
\widehat{x}_{j}=x_{j}, \quad \widehat{y}_{j}=-\imath \hbar \frac{\partial}{\partial x_{j}}, j=1,2,3 . \tag{502}
\end{equation*}
$$

The angular-momentum operator is defined by

$$
\widehat{J}=\widehat{x} \times \widehat{y}
$$

The components of \widehat{J} are given by

$$
\begin{equation*}
\widehat{J}_{1}=\imath \hbar\left(x_{3} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{3}}\right), \widehat{J}_{2}=\imath \hbar\left(x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}\right), \widehat{J}_{3}=\imath \hbar\left(x_{2} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{2}}\right) . \tag{503}
\end{equation*}
$$

The operators $\widehat{\pi}_{E_{j}}, j=1,, 2,3$ in 500 are identified with the components of the angular momentum operator in 503). Namely,

$$
\frac{\imath}{2 \hbar} \widehat{\pi}_{E_{1}}=\widehat{J}_{3}, \quad \frac{\imath}{2 \hbar} \widehat{\pi}_{E_{2}}=\widehat{J}_{2}, \quad \frac{\imath}{2 \hbar} \widehat{\pi}_{E_{3}}=\widehat{J}_{1} .
$$

The Runge-Lenz vector operator can be written in the following form, see [17] for details

$$
\begin{equation*}
\widehat{A}=\widehat{y} \times \widehat{J}-\imath \hbar \widehat{y}-\frac{x}{|x|} \tag{504}
\end{equation*}
$$

The components of \widehat{A} can be written in terms of the canonical operators in 502 as follows

$$
\begin{equation*}
\widehat{A}_{j}=\hbar^{2}\left[\left(1+\sum_{k=1}^{k=3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-x_{j} \Delta_{\mathbb{R}^{3}}\right]-\frac{x_{j}}{|x|}, \quad j=1,2,3 \tag{505}
\end{equation*}
$$

Proposition 39. The operators $\widehat{\pi}_{E_{j}}, j=4,5,6$ in 500 can be identified with the restriction of the operators $\widehat{A}_{j}, j=1,2,3$ in (505) on the eigenspace of energy $E=-\frac{1}{2}$ of the hydrogen atom. Namely,

$$
\frac{\imath}{2 \hbar} \widehat{\pi}_{E_{4}}=\left.\widehat{A}_{1}\right|_{E=-\frac{1}{2}}, \quad \frac{\imath}{2 \hbar} \widehat{\pi}_{E_{5}}=\left.\widehat{A}_{2}\right|_{E=-\frac{1}{2}}, \quad \frac{\imath}{2 \hbar} \widehat{\pi}_{E_{6}}=\left.\widehat{A}_{3}\right|_{E=-\frac{1}{2}}
$$

Before proving the proposition 39 let me make a remark regarding why the energy $E=-\frac{1}{2}$ is considered without include the Plank constant \hbar. It is known that the discrete spectrum of the Hamiltonian operator of the hydrogen atom $\widehat{H}=-\frac{\hbar^{2}}{2} \Delta_{\mathbb{R}^{3}}-\frac{1}{|x|}$ is given by $E_{\ell}(\hbar)=$ $\left\{\left.-\frac{1}{2 \hbar^{2}(\ell+1)^{2}} \right\rvert\, \ell \in \mathbb{N}\right\}$. Let me regard \hbar as a parameter taking values in the sequence $\hbar=\frac{1}{k+1}$ with $k \in \mathbb{N}$. Next, consider the family of Hamiltonian operators $\mathfrak{L}_{0}=\left\{\widehat{H}(\hbar) \left\lvert\, \hbar=\frac{1}{k+1}\right., k \in \mathbb{N}\right\}$. Note that $E=-\frac{1}{2}$ is an eigenvalue of each member of the family \mathfrak{L}_{0}. This idea of considering \hbar taking values in a sequence together with the family \mathfrak{L}_{0} is considered in [39] in order to study clusters of eigenvalues.

Proof. Take ψ in the eigenspace $E=-\frac{1}{2}$, and let \widehat{A}_{1} act on ψ. Namely,

$$
\widehat{A}_{1} \psi=\hbar^{2}\left[\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial \psi}{\partial x_{1}}-x_{1} \Delta_{\mathbb{R}^{3}} \psi\right]-\frac{x_{1}}{|x|} \psi
$$

Now consider the eigenvalue equation

$$
-\frac{\hbar^{2}}{2} \Delta_{\mathbb{R}^{3}} \psi(x)-\frac{1}{|x|} \psi(x)=-\frac{1}{2} \psi(x)
$$

The eigenvalue equation is multiplied by x_{1} so that it can be written as follows

$$
\begin{equation*}
-\frac{x_{1}}{|x|} \psi=\frac{\hbar^{2}}{2} x_{1} \Delta_{\mathbb{R}^{3}} \psi-\frac{1}{2} x_{1} \psi \tag{506}
\end{equation*}
$$

It follows from equation (506) that

$$
\begin{aligned}
\widehat{A}_{1} \psi & =\hbar^{2}\left[\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial \psi}{\partial x_{1}}-\frac{x_{1}}{2} \Delta_{\mathbb{R}^{3}} \psi\right]-\frac{1}{2} x_{1} \psi \\
& =\frac{\imath}{2 \hbar} \widehat{\pi}_{E_{4}} \psi
\end{aligned}
$$

I can do a similar procedure to the above calculations for the components $\widehat{A}_{2}, \widehat{A}_{3}$, and a straightforward calculation shows that the equalities $\frac{i}{2 \hbar} \widehat{\pi}_{E_{5}}=\widehat{A}_{2}, \frac{i}{2 \hbar} \widehat{\pi}_{E_{6}}=\widehat{A}_{3}$ hold .

The following result will be used to construct an SBT for S^{3}.
Proposition 40. The $S B T \mathfrak{B}_{4}: L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right) \longrightarrow \mathcal{E}_{3}$ intertwines the operators in 500 and 498). Namely,

$$
\begin{equation*}
\mathfrak{B}_{4}\left(\widehat{\pi}_{E_{j}} \phi\right)=\widehat{\boldsymbol{\pi}}_{E_{j}}\left(\mathfrak{B}_{4} \phi\right), \quad j=1, \ldots, 6 \text { and } \phi \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right) \tag{507}
\end{equation*}
$$

Proof. I have shown that the $\operatorname{SBT} B_{4}: L^{2}\left(\mathbb{R}^{4}, d u\right) \longrightarrow \mathcal{B}_{4}$ preserves the space of $U(1)$-invariant functions. That is, the $\operatorname{SBT} B_{4} \psi$ of $\psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$ is a function in $\mathcal{B}^{U(1)}$. In addition, the SBT B_{4} intertwines the operators in (499) and 496). That is,

$$
\begin{equation*}
\left(B_{4} \widehat{\rho}_{j} \psi\right)(z)=\widehat{\boldsymbol{\rho}}_{j}\left(B_{4} \psi\right)(z), \quad j=1, \ldots, 6, \text { and } \psi \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} \tag{508}
\end{equation*}
$$

Since $\widehat{\rho}_{j} \psi$ is a function in $L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)}$, then equality 508 can be written in a $U(1)$-invariant form as in 408). Namely,

$$
\begin{equation*}
\left.\left(B_{0,4} \widehat{\rho}_{j} \psi\right)\right)(z)=\widehat{\boldsymbol{\rho}}_{j}\left(B_{0,4} \psi\right)(z) \quad \forall \psi(u)=\phi(x(u)) \in L^{2}\left(\mathbb{R}^{4}, d u\right)^{U(1)} . \tag{509}
\end{equation*}
$$

The function $\widehat{\rho}_{j} \psi$ is identified with the function $\widehat{\pi}_{E_{j}} \phi \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$, and the operator $\widehat{\boldsymbol{\rho}}_{j}$ is identified with $\widehat{\boldsymbol{\pi}}_{E_{j}}$ acting in \mathcal{E}_{3}. It follows from point (i) of corollary 1 that equality (509) corresponds to equality (507).

On the other hand, a representation of $\mathfrak{s o}(4)$ in \mathcal{E}_{3} can be defined from the action of $S O(4, \mathbb{R})$ on \dot{Q}_{3} as follows. Consider a basis of $\mathfrak{s o}(4)$ given by the following matrices

$$
\begin{align*}
& E_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{510}\\
& E_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), E_{5}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad E_{6}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) .
\end{align*}
$$

I can assign to each matrix $E_{j}, j=1, \ldots, 6$ in 510 an operator $\widehat{\boldsymbol{T}}_{E_{j}}$ acting in \mathcal{E}_{3}, which is defined as follows

$$
\begin{equation*}
\widehat{\boldsymbol{T}}_{E_{j}} f(\alpha)=\left.\frac{d}{d t}\right|_{t=0} f\left(\mathrm{e}^{-\hbar t E_{j}} \alpha\right), j=1, \ldots 6, \quad \text { with } \quad f(\alpha) \in \mathcal{E}_{3} . \tag{511}
\end{equation*}
$$

The operators $\widehat{\boldsymbol{T}}_{E_{j}}, j=1, \ldots, 6$ have the following expressions in coordinates

$$
\begin{align*}
& \widehat{\boldsymbol{T}}_{E_{1}}=\hbar\left(\alpha_{1} \frac{\partial}{\partial \alpha_{2}}-\alpha_{2} \frac{\partial}{\partial \alpha_{1}}\right), \widehat{\boldsymbol{T}}_{E_{2}}=\hbar\left(\alpha_{1} \frac{\partial}{\partial \alpha_{3}}-\alpha_{3} \frac{\partial}{\partial \alpha_{1}}\right), \widehat{\boldsymbol{T}}_{E_{3}}=\hbar\left(\alpha_{2} \frac{\partial}{\partial \alpha_{3}}-\alpha_{3} \frac{\partial}{\partial \alpha_{2}}\right) \tag{512}\\
& \widehat{\boldsymbol{T}}_{E_{4}}=\hbar\left(\alpha_{1} \frac{\partial}{\partial \alpha_{4}}-\alpha_{4} \frac{\partial}{\partial \alpha_{1}}\right), \widehat{\boldsymbol{T}}_{E_{5}}=\hbar\left(\alpha_{2} \frac{\partial}{\partial \alpha_{4}}-\alpha_{4} \frac{\partial}{\partial \alpha_{2}}\right), \widehat{\boldsymbol{T}}_{E_{6}}=\hbar\left(\alpha_{3} \frac{\partial}{\partial \alpha_{4}}-\alpha_{4} \frac{\partial}{\partial \alpha_{3}}\right) .
\end{align*}
$$

The operators $\widehat{\boldsymbol{T}}_{E_{j}}$ can be related to operators $\widehat{\boldsymbol{\pi}}_{E_{j}}, j=1, \ldots, 6$. That is, a straightforward calculation shows that the following equality holds

$$
\widehat{\boldsymbol{\pi}}_{E_{j}}=-2 \hbar \widehat{\boldsymbol{T}}_{E_{j}}, j=1, \ldots, 6 .
$$

The operators $\widehat{\boldsymbol{T}}_{E_{j}}$ in 511 restricted to act in W_{ℓ} (homogeneous polynomials of degree ℓ) define an irreducible representation of $\mathfrak{s o}(4)$ in W_{ℓ}, see [5].

Consider the Hilbert space $L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ of square-integrable functions endowed with the following inner product

$$
\left\langle\Psi_{1}, \Psi_{2}\right\rangle_{S^{3}}=\int_{S^{3}} \Psi_{1}(q) \overline{\Psi_{2}(q)} d \Omega_{S^{3}}(q), \quad \Psi_{1}, \Psi_{2} \in L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) .
$$

I can assign to each matrix E_{j} in 510 an operator $\widehat{T}_{E_{j}}$ acting in $L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$, which is defined as follows

$$
\begin{equation*}
\widehat{T}_{E_{j}} \Psi(q)=\left.\frac{d}{d t}\right|_{t=0} \Psi\left(\mathrm{e}^{-\hbar t E_{j}} q\right), \quad j=1, \ldots, 6 \tag{513}
\end{equation*}
$$

The operators in (513) have the following expression in coordinates

$$
\begin{align*}
& \widehat{T}_{E_{1}}=\hbar\left(q_{1} \frac{\partial}{\partial q_{2}}-q_{2} \frac{\partial}{\partial q_{1}}\right), \widehat{T}_{E_{2}}=\hbar\left(q_{1} \frac{\partial}{\partial q_{3}}-q_{3} \frac{\partial}{\partial q_{1}}\right), \widehat{T}_{E_{3}}=\hbar\left(q_{2} \frac{\partial}{\partial q_{3}}-q_{3} \frac{\partial}{\partial q_{2}}\right) \tag{514}\\
& \widehat{T}_{E_{4}}=\hbar\left(q_{1} \frac{\partial}{\partial q_{4}}-q_{4} \frac{\partial}{\partial q_{1}}\right), \widehat{T}_{E_{5}}=\hbar\left(q_{2} \frac{\partial}{\partial q_{4}}-q_{4} \frac{\partial}{\partial q_{2}}\right), \widehat{T}_{E_{6}}=\hbar\left(q_{3} \frac{\partial}{\partial q_{4}}-q_{4} \frac{\partial}{\partial q_{3}}\right)
\end{align*}
$$

The operators $\widehat{T}_{E_{j}}$ restricted to act on V_{ℓ} (spherical harmonics of degree ℓ) define an irreducible representation of $\mathfrak{s o}(4)$ in V_{ℓ}.

The operators in 500 will be obtained from the operators $\widehat{T}_{E_{j}}$ in 514 through the Fock $\operatorname{map} U_{\ell, 3}$. This is done in the next section.
1.2. Fock Map. The presentation of this subsection follows reference [10, Sect. 4,3]. Let me begin with the eigenvalue equation of the harmonic oscillator in the Schrödinger representation. Namely,

$$
\begin{equation*}
\frac{1}{4}\left[-\hbar^{2} \Delta_{\mathbb{R}^{n}}+u^{2}\right] \psi(u)=E \psi(u) \quad \text { with } \quad \psi \in L^{2}\left(\mathbb{R}^{n}, d u\right) \tag{515}
\end{equation*}
$$

The eigenvalue equation in 515 can be restricted to $L^{2}\left(\mathbb{R}^{n}, d u\right)^{G_{n}}$ by considering $\psi(u)=$ $\phi(x(u))$ with $\phi(x) \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$. The derivatives in 515 are calculated using the chain rule so that the eigenvalue equation for the function $\phi(x)$ is given by

$$
\begin{equation*}
\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right) \phi(x)=E \phi(x) \quad \text { with } \quad \phi(x) \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right) \tag{516}
\end{equation*}
$$

Consider a function $\phi(x)$ in the configuration space \mathbb{R}^{m}. The Fourier transform of $\phi(x)$ is defined as follows

$$
\mathcal{F}_{\hbar}(\phi)=\widehat{\phi}(p)=\frac{1}{(2 \pi \hbar)^{m / 2}} \int_{\mathbb{R}^{m}} \phi(x) \mathrm{e}^{-\frac{2}{\hbar} p \cdot x} d x
$$

The eigenvalue equation in (516) can be written as follows

$$
\begin{equation*}
\frac{1}{2}\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right) \phi(x)=E \frac{\phi(x)}{|x|}, \quad x \in \mathbb{R}^{m}-\{0\} \tag{517}
\end{equation*}
$$

The Fourier transform is taken in both sides of equation (517), which gives the following equation in the momentum space

$$
\begin{equation*}
\frac{1}{2}\left(p^{2}+1\right) \widehat{\phi}(p)=\frac{E}{\hbar} \frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \pi^{\frac{m+1}{2}}} \int_{\mathbb{R}^{m}} \frac{\widehat{\phi}\left(p^{\prime}\right)}{\left|p-p^{\prime}\right|^{m-1}} d p^{\prime} \tag{518}
\end{equation*}
$$

where the right-hand side in (518) is obtained from the convolution formula for the Fourier transform of a product of functions. Namely, $\mathcal{F}_{\hbar}\left(\frac{\phi(x)}{|x|}\right)=\frac{1}{(2 \pi)^{m}} \mathcal{F}_{\hbar}(\phi(x)) * \mathcal{F}_{\hbar}\left(\frac{1}{|x|}\right)$ with $\mathcal{F}_{\hbar}\left(\frac{1}{|x|}\right)=2^{m-1} \hbar^{-1} \pi^{\frac{m-1}{2}}|p|^{-(m-1)}$.

The eigenvalue equation in (518) will be carried into an eigenvalue equation on S^{m}. Consider the stereographic projection from $S^{m}-\{N\}$ to \mathbb{R}^{m}, that is, the coordinates $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ of \mathbb{R}^{m} are written in terms of $q=\left(q_{1}, q_{2}, \ldots, q_{m+1}\right) \in S^{m}$ as follows

$$
\begin{equation*}
p(q)=\left(\frac{q_{1}}{1-q_{m+1}}, \frac{q_{2}}{1-q_{m+1}}, \frac{q_{3}}{1-q_{m+1}}, \ldots, \frac{q_{m}}{1-q_{m+1}}\right) \tag{519}
\end{equation*}
$$

The inverse of the stereographic projection is a map from \mathbb{R}^{m} to $S^{m}-\{N\}$, that is, the coordinates $\left(q_{1}, q_{2}, q_{3}, \ldots, q_{m+1}\right) \in S^{m}$ are written in terms of $p \in \mathbb{R}^{m}$ as follows

$$
\begin{equation*}
q(p)=\left(\frac{2 p_{1}}{p^{2}+1}, \frac{2 p_{2}}{p^{2}+1}, \frac{2 p_{3}}{p^{2}+1}, \ldots, \frac{2 p_{m}}{p^{2}+1}, \frac{p^{2}-1}{p^{2}+1}\right) \tag{520}
\end{equation*}
$$

The following equalities will be used in a later on paragraph. Using the transformation defined in (520) it is not difficult to show that the following equalities hold

$$
\begin{equation*}
d \Omega_{S^{m}}(q)=\left(\frac{2}{p^{2}+1}\right)^{m} d p, \quad\left|q-q^{\prime}\right|^{2}=4 \frac{\left|p-p^{\prime}\right|^{2}}{\left(p^{2}+1\right)\left(p^{\prime 2}+1\right)}, \quad q, q^{\prime} \in S^{m}, \quad \text { and } p, p^{\prime} \in \mathbb{R}^{m} \tag{1}
\end{equation*}
$$

Now let me define a function on S^{m} as follows

$$
\begin{equation*}
\Phi(q)=\sqrt{\frac{C_{m}}{E}}\left(\frac{p(q)^{2}+1}{2}\right)^{\frac{m+1}{2}} \widehat{\phi}(p(q)), \quad C_{m} \quad \text { a constant }, \tag{522}
\end{equation*}
$$

where $\widehat{\phi}(p)$ satisfies the eigenvalue equation in 518, and $p(q)$ denotes the transformation in (519). Note that the transformation in (522) is not global, that is, it depends on the energy level E. The factor $\left(\frac{p^{2}+1}{2}\right)^{\frac{m}{2}}$ is the inverse of the square root of the Jacobian of the stereographic projection. This factor times the function $\widehat{\phi}(p)$ must be multiplied by $\left(p^{2}+1\right) / 2$ in order to preserve the norms of $\Phi \in L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ and $\mathcal{F}_{\hbar}^{-1}(\widehat{\phi})=\phi \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$. See below proposition (41).

The eigenvalue equation in (518) can be carried into the following eigenvalue equation for $\Phi(q)$ through the stereographic projection

$$
\begin{equation*}
\frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \pi^{\frac{m+1}{2}}} \int_{S^{m}} \frac{\Phi\left(q^{\prime}\right)}{\left|q-q^{\prime}\right|^{m-1}} d \Omega_{S^{m}}\left(q^{\prime}\right)=\frac{\hbar}{E} \Phi(q) . \tag{523}
\end{equation*}
$$

In [3, 10 it is shown that the spherical harmonics of degree ℓ on S^{m} satisfy the following equation

$$
\begin{equation*}
\frac{\Gamma\left(\frac{d-1}{2}\right)}{2 \pi^{\frac{m+1}{2}}} \int_{S^{m}} \frac{Y_{\ell}\left(q^{\prime}\right)}{\left|q-q^{\prime}\right|^{m-1}} d \Omega_{S^{m}}\left(q^{\prime}\right)=\frac{2}{m-1+2 \ell} Y_{\ell}(q), \quad Y_{\ell} \in V_{\ell} \tag{524}
\end{equation*}
$$

Hence, the solutions of (523) are the spherical harmonics $Y_{\ell} \in V_{\ell}$, and the energy must take the values $E_{\ell}=\hbar\left(\frac{m-1+2 \ell}{2}\right)$.

For every $Y_{\ell} \in V_{\ell}$ the equation in (522) can be written as

$$
\begin{equation*}
Y_{\ell}(q)=\sqrt{\frac{C_{m}}{E}}\left(\frac{p(q)^{2}+1}{2}\right)^{\frac{m+1}{2}} \widehat{\phi}_{\ell}(p(q)) \tag{525}
\end{equation*}
$$

The solution $\widehat{\phi}_{\ell}(p)$ of equation in 518 can be obtained from equality 525 . That is, if $q \in S^{m}$ is written according to equation 520 , then the function $\widehat{\phi}_{\ell}(p)$ is given by

$$
\widehat{\phi}_{\ell}(p)=\sqrt{\frac{E}{C_{m}}}\left(\frac{p^{2}+1}{2}\right)^{-\frac{m+1}{2}} Y_{\ell}(q(p)) .
$$

The inverse Fourier transform $\mathcal{F}_{\hbar}^{-1}\left(\widehat{\phi}_{\ell}\right)=\phi_{\ell}(x)$ satisfies the eigenvalue equation

$$
\begin{equation*}
\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right) \phi_{\ell}(x)=\hbar\left(\frac{m-1+2 \ell}{2}\right) \phi_{\ell}(x) \tag{526}
\end{equation*}
$$

The above calculations describe how the Fock map $U_{\ell, m}: V_{\ell} \ni Y_{\ell}(q) \longrightarrow \phi_{\ell}(x) \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ is defined.

The Fock map is originally defined from $V_{\ell} \subset L^{2}\left(S^{m}, d \Omega_{S^{m}}\right)$ into eigenfunctions of the hydrogen atom in momentum space and is unitary due to the virial theorem (see below equality 529p). See [3] for details. Let me show that the inner product of $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ can be related with the corresponding one of the Hilbert space of the hydrogen atom. The consequence of this fact is that the map $U_{\ell, m}$ is unitary as well. Firstly, l have to carry the eigenvalue equation (526) into an eigenvalue equation of the hydrogen atom. To do so, I define the variable $\boldsymbol{x}=E_{\ell} x$
with $x \in \mathbb{R}^{m}$ and then calculate the derivatives with chain rule, so that the eigenvalue equation (526) can be written regarding the variable \boldsymbol{x} as follows

$$
\begin{equation*}
\frac{1}{2} \frac{|\boldsymbol{x}|}{E_{\ell}}\left[-\hbar^{2} E_{\ell}^{2} \Delta_{\mathbb{R}_{x}^{m}}+1\right] \phi=E_{\ell} \phi \tag{527}
\end{equation*}
$$

where $\Delta_{\mathbb{R}_{\boldsymbol{x}}^{m}}$ denotes the second derivatives with respect to $\boldsymbol{x}_{j}, j=1, \ldots, m$. A calculation shows that equation (527) can be written as the eigenvalue equation of the hydrogen atom. Namely,

$$
\left[-\frac{\hbar^{2}}{2} \Delta_{\mathbb{R}_{\boldsymbol{x}}^{m}}-\frac{1}{|\boldsymbol{x}|}\right] \phi=H_{\ell} \phi \quad \text { with } \quad H_{\ell}=-\frac{1}{2 E_{\ell}^{2}}
$$

Eigenvalue equation of the hydrogen atom in the momentum space $\boldsymbol{p} \in \mathbb{R}^{m}$ is given by

$$
\begin{equation*}
\frac{1}{2}\left[\boldsymbol{p}^{2}-2 H_{\ell}\right] \widehat{\phi}(\boldsymbol{p})=\frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \hbar \pi^{\frac{m+1}{2}}} \int_{\mathbb{R}^{m}} \frac{\widehat{\phi}\left(\boldsymbol{p}^{\prime}\right)}{\left|\boldsymbol{p}-\boldsymbol{p}^{\prime}\right|^{m-1}} d \boldsymbol{p}^{\prime} \tag{528}
\end{equation*}
$$

Equality 528 is multiplied by $\widehat{\phi}(\boldsymbol{p})^{*}$ and then is integrated in the momentum space. The following is obtained

$$
\int_{\mathbb{R}^{m}} \frac{1}{2}\left[\boldsymbol{p}^{2}-2 H_{\ell}\right]|\widehat{\phi}(\boldsymbol{p})|^{2} d \boldsymbol{p}=\int_{\mathbb{R}^{m}}\left[\frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \hbar \pi^{\frac{m+1}{2}}} \int_{\mathbb{R}^{m}} \frac{\widehat{\phi}\left(\boldsymbol{p}^{\prime}\right)}{\left|\boldsymbol{p}-\boldsymbol{p}^{\prime}\right|^{m-1}} d \boldsymbol{p}^{\prime}\right] \widehat{\phi}(\boldsymbol{p})^{*} d \boldsymbol{p}
$$

Let me use the virial theorem

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \frac{1}{2} \boldsymbol{p}^{2}|\widehat{\phi}(\boldsymbol{p})|^{2} d \boldsymbol{p}=-H_{\ell} \int_{\mathbb{R}^{m}}|\widehat{\phi}(\boldsymbol{p})|^{2} d \boldsymbol{p} \tag{529}
\end{equation*}
$$

Hence the following equality holds

$$
\begin{equation*}
\int_{\mathbb{R}^{m}}|\widehat{\phi}(\boldsymbol{p})|^{2} d \boldsymbol{p}=-\frac{1}{2 H_{\ell}} \int_{\mathbb{R}^{m}}\left[\frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \hbar \pi^{\frac{m+1}{2}}} \int_{\mathbb{R}^{m}} \frac{\widehat{\phi}\left(\boldsymbol{p}^{\prime}\right)}{\left|\boldsymbol{p}-\boldsymbol{p}^{\prime}\right|^{m-1}} d \boldsymbol{p}^{\prime}\right] \widehat{\phi}(\boldsymbol{p})^{*} d \boldsymbol{p} \tag{530}
\end{equation*}
$$

Let me introduce the dilation operator $\widehat{D}_{t}, t \in \mathbb{R}$

$$
\left(\widehat{D}_{t} \widehat{\phi}\right)(\boldsymbol{p})=t^{-\frac{m}{2}} \widehat{\phi}\left(\frac{\boldsymbol{p}}{t}\right)
$$

Let act $\widehat{D}_{-2 H_{\ell}}$ act on $\widehat{\phi}$, so that equality 530 can be written as follows

$$
\int_{\mathbb{R}^{m}}|\widehat{\phi}(\boldsymbol{y})|^{2} d \boldsymbol{y}=\int_{\mathbb{R}^{m}}\left[\frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \hbar \pi^{\frac{m+1}{2}}} \int_{\mathbb{R}^{m}} \frac{\widehat{\phi}\left(\boldsymbol{p}^{\prime \prime}\right)}{\left|\boldsymbol{y}-\boldsymbol{p}^{\prime \prime}\right|^{m-1}} d \boldsymbol{p}^{\prime \prime}\right] \widehat{\phi}(\boldsymbol{y})^{*} d \boldsymbol{y}
$$

It follows from the Parseval identity that the above equality relates the inner products of $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ and the Hilbert space of the hydrogen atom. Let me state this point quite formally as follows

Lemma 13. An eigenfunction ϕ of $\widehat{K}_{m}=\frac{1}{2}|x|\left[-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right]$ with eigenvalue E_{ℓ} is an eigenfunction of the Hamiltonian operator of hydrogen atom with eigenvalue $H_{\ell}=-\frac{1}{2 E_{\ell}^{2}}$. Further, the following equality is fulfilled

$$
\begin{equation*}
\int_{\mathbb{R}^{m}}|\phi(\boldsymbol{x})|^{2} d \boldsymbol{x}=\int_{\mathbb{R}^{m}}|\phi(\boldsymbol{x})|^{2} \frac{1}{|\boldsymbol{x}|} d \boldsymbol{x} \tag{531}
\end{equation*}
$$

Let me now show that the map $U_{\ell, m}: V_{\ell} \ni Y_{\ell}(q) \longrightarrow \phi_{\ell}(x) \in L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$ is unitary
Proposition 41. The map $U_{\ell, m}$ preserves the inner product between V_{ℓ} and the eigenfunctions $\phi_{\ell}(x)$ of $\widehat{K}_{m}=\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{m}}+1\right)$ in $L^{2}\left(\mathbb{R}^{m}, \frac{C_{m}}{|x|} d x\right)$. Namely,

$$
\begin{equation*}
\int_{S^{m}}\left|Y_{\ell}(q)\right|^{2} d \Omega_{S^{m}}(q)=\int_{\mathbb{R}^{m}}\left|\phi_{\ell}(x)\right|^{2} \frac{C_{m}}{|x|} d x \tag{532}
\end{equation*}
$$

Proof. The squared norm of $Y_{\ell}(q)$ can be calculated on \mathbb{R}^{m} through the stereographic projection as follows

$$
\begin{align*}
\int_{S^{m}} Y_{\ell}(q) \overline{Y_{\ell}(q)} d_{\Omega_{S^{m}}}(q) & =\frac{C_{m}}{E} \int_{\mathbb{R}^{m}}\left(\frac{p^{2}+1}{2}\right)^{m+1} \widehat{\phi}_{\ell}(p) \overline{\hat{\phi}_{\ell}(p)}\left(\frac{2}{p^{2}+1}\right)^{m} d p \tag{533}\\
& =\frac{C_{m}}{E} \int_{\mathbb{R}^{m}}\left(\frac{p^{2}+1}{2}\right) \widehat{\phi}_{\ell}(p) \overline{\widehat{\phi}_{\ell}(p)} d p
\end{align*}
$$

The first equality in 521 is used to get equality 533). Since the function $\widehat{\phi}_{\ell}(p)$ satisfies equation in (518), then the right-hand side of equality in (533) can be written as

$$
\begin{equation*}
\int_{S^{m}} Y_{\ell}(q) \overline{Y_{\ell}(q)} d_{\Omega_{S^{m}}}(q)=C_{m} \int_{\mathbb{R}^{m}}\left[\frac{\Gamma\left(\frac{m-1}{2}\right)}{2 \hbar \pi^{\frac{m+1}{2}}} \int_{\mathbb{R}^{m}} \frac{\widehat{\phi}\left(p^{\prime}\right)}{\left|p-p^{\prime}\right|^{m-1}} d p^{\prime}\right] \overline{\hat{\phi}_{\ell}(p)} d p \tag{534}
\end{equation*}
$$

It follows from the Parseval identity and lemma 13 that the right-hand side of equality in (534) is the right-hand side of equality in 532 .

Equality (525) for S^{3} is given by

$$
\begin{equation*}
Y_{\ell}(q)=\sqrt{\frac{\pi}{E}}\left(\frac{p(q)^{2}+1}{2}\right)^{2} \widehat{\phi}_{\ell}(p(q)) \quad \text { with } \quad Y_{\ell} \in V_{\ell} \tag{535}
\end{equation*}
$$

and the Fock map is denoted as $U_{\ell, 3}: V_{\ell} \ni Y(q) \longrightarrow \phi_{\ell}(x) \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$.
The representation of $\mathfrak{s o}(4)$ in $V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ in (514) can be carried into the operators in (500). This is the point of the following proposition.
Proposition 42. The Fock map $U_{\ell, 3}$ intertwines the operators $\widehat{T}_{E_{j}}, j=1, \ldots, 6$ in 514) with the operators $\widehat{\pi}_{E_{j}}, j=1, \ldots, 6$ in (500). Namely,

$$
U_{\ell, 3}\left(\widehat{T}_{E_{j}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{j}} \phi_{\ell}(x),
$$

where $Y_{\ell}(q)$ is defined in (535).
Proof. It is not difficult to see that the function $Y_{\ell}(q)$ in (535) can be written as

$$
Y_{\ell}(q)=\sqrt{\frac{\pi}{E}}\left(1-q_{4}\right)^{-2} \widehat{\phi}_{\ell}(p(q))
$$

Take $\widehat{T}_{E_{1}}=\hbar\left(q_{1} \frac{\partial}{\partial q_{2}}-q_{2} \frac{\partial}{\partial q_{1}}\right)$ and let $\widehat{T}_{E_{1}}$ act on $Y_{\ell}(q)$. Namely,

$$
\widehat{T}_{E_{1}} Y_{\ell}(q)=\sqrt{\frac{\pi}{E}}\left(1-q_{4}\right)^{-2}\left[\hbar\left(q_{1} \frac{\partial}{\partial q_{2}}-q_{2} \frac{\partial}{\partial q_{1}}\right) \widehat{\phi}_{\ell}(p(q))\right] .
$$

It follows from a straightforward calculation of the derivatives using the chain rule that

$$
\begin{align*}
\widehat{T}_{E_{1}} Y_{\ell}(q) & =\sqrt{\frac{\pi}{E}}\left(1-q_{4}\right)^{-2}\left[\hbar\left(\frac{q_{1}}{1-q_{4}} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{2}}-\frac{q_{2}}{1-q_{4}} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}\right)\right] \\
& =\sqrt{\frac{\pi}{E}}\left(1-q_{4}\right)^{-2}\left[\hbar\left(p_{1} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{2}}-p_{2} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}\right)\right] \tag{536}
\end{align*}
$$

The function $\hbar\left(p_{1} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{2}}-p_{2} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}\right)$ is the Fourier transform of $\hbar\left(x_{1} \frac{\partial \phi_{\ell}}{\partial x_{2}}-x_{2} \frac{\partial \phi_{\ell}}{\partial x_{1}}\right)$. Thus, the following equality holds

$$
U_{\mu, 3}\left(\widehat{T}_{E_{1}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{1}} \phi_{\ell}(x) .
$$

I can do a similar procedure to the above calculations to show that the following equalities hold

$$
U_{\ell, 3}\left(\widehat{T}_{E_{2}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{2}} \phi_{\ell}(x), \quad U_{\ell, 3}\left(\widehat{T}_{E_{4}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{3}} \phi_{\ell}(x) .
$$

Consider the operator $\widehat{T}_{E_{4}}=\hbar\left(q_{1} \frac{\partial}{\partial q_{4}}-q_{4} \frac{\partial}{\partial q_{1}}\right)$ and let $\widehat{T}_{E_{3}}$ act on $Y_{\ell}(q)$. Namely,

$$
\begin{equation*}
\widehat{T}_{E_{4}} Y_{\ell}(q)=\sqrt{\frac{\pi}{E}}\left(1-q_{4}\right)^{-2}\left\{\hbar\left[\frac{2 q_{1}}{1-q_{4}} \widehat{\phi}_{\ell}(p(q))+\left(q_{1} \frac{\partial}{\partial q_{4}}-q_{4} \frac{\partial}{\partial q_{1}}\right) \widehat{\phi}_{\ell}(p(q))\right]\right\} . \tag{537}
\end{equation*}
$$

The derivatives in (537) are calculated using the chain rule. From equations in (520) for $m=3$ a straightforward calculation shows that the right-hand side of equation in (537) can be written as follows

$$
\sqrt{\frac{\pi}{E}}\left(\frac{p^{2}+1}{2}\right)^{2}\left\{\hbar\left[2 p_{1} \widehat{\phi}_{\ell}(p)+p_{1}\left(p_{1} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}+p_{2} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{2}}+p_{3} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{3}}\right)+\frac{1}{2}\left(1-p^{2}\right) \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}\right]\right\}
$$

The term given by

$$
\hbar\left[2 p_{1} \widehat{\phi}_{\ell}(p)+p_{1}\left(p_{1} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}+p_{2} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{2}}+p_{3} \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{3}}\right)+\frac{1}{2}\left(1-p^{2}\right) \frac{\partial \widehat{\phi}_{\ell}}{\partial p_{1}}\right]
$$

is the Fourier transform of the following term in configuration space

$$
-\frac{\imath}{2}\left\{x_{1} \phi_{\ell}-\hbar^{2}\left[2\left(1+\sum_{k=1}^{3} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial \phi_{\ell}}{\partial x_{1}}-x_{1} \Delta_{\mathbb{R}^{3}} \phi_{\ell}\right]\right\}
$$

Hence, the following equality holds

$$
U_{\ell, 3}\left(T_{E_{4}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{4}} \phi_{\ell}(x)
$$

I can do a similar procedure to the above calculations to show that the following equalities hold

$$
U_{\ell, 3}\left(\widehat{T}_{E_{5}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{5}} \phi_{\ell}(x), \quad U_{\ell, 3}\left(\widehat{T}_{E_{6}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{E_{6}} \phi_{\ell}(x)
$$

1.3. The Segal-Bargmann Transform $\tilde{B}_{\ell, 3}$. In this subsection I construct an SBT from $V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ onto $W_{\ell} \subset \mathcal{E}_{3}$. Every homogeneous polynomial $f(\alpha) \in W_{\ell}$ satisfies the following equalities

$$
\sum_{k=1}^{4} \alpha_{k} \frac{\partial f}{\partial \alpha_{k}}=\ell f(\alpha) \text { and so }\left(\widehat{H}_{\mathrm{red}} f\right)(\alpha)=\hbar\left(\sum_{k=1}^{4} \alpha_{k} \frac{\partial}{\partial \alpha_{k}}+1\right) f(\alpha)=\hbar(\ell+1) f(\alpha)
$$

Thus, the homogeneous polynomials of degree ℓ in \mathcal{E}_{3} are eigenfunctions of $\widehat{H}_{\text {red }}$. On the other hand, the Fock map $U_{\ell, 3}$ sends $Y_{\ell}(q) \in V_{\ell}$ to an eigenfunction $\phi_{\ell}(x)$ of $\widehat{K}_{3}=\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{3}}+1\right)$ in $L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$ with eigenvalue $E_{\ell}=\hbar(\ell+1)$. Let me recall that in lemma 12 I show that the $\mathrm{SBT} \mathfrak{B}_{4}$ intertwines the operators \widehat{K}_{3} and $\widehat{H}_{\text {red }}$. Namely,

$$
\left(\mathfrak{B}_{4} \widehat{K}_{3} \phi\right)(\alpha)=\widehat{H}_{\mathrm{red}}\left(\mathfrak{B}_{4} \phi(\alpha)\right) .
$$

It follows from above equality that $\mathfrak{B}_{4} \phi_{\ell}$ is an eigenfunction of $\widehat{H}_{\text {red }}$. Hence, $\mathfrak{B}_{4} \phi_{\ell}$ belongs to W_{ℓ}. The SBT $\widetilde{B}_{\ell, 3}: V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{3}$ is defined by

$$
\begin{equation*}
\widetilde{B}_{\ell, 3} Y(\alpha)=\left(\mathfrak{B}_{4} \circ U_{\ell, 3} Y\right)(\alpha), \quad Y \in V_{\ell} \tag{538}
\end{equation*}
$$

The right-hand side of equality (538) is calculated as follows. The map $U_{\ell, 3}$ is applied to Y to obtain a function $\phi \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$, and then the SBT \mathfrak{B}_{4} is applied to ϕ. Namely,

$$
\left(\mathfrak{B}_{4} \circ U_{\ell, 3} Y\right)(\alpha)=\left(\mathfrak{B}_{4} \phi\right)(\alpha)=\int_{\mathbb{R}^{3}} \phi(x) \mathfrak{A}_{4}(x, \alpha) \frac{\pi}{|x|} d x, \quad \phi(x) \in L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)
$$

Proposition 43.

(i) The $S B T \widetilde{B}_{\ell, 3}$ is a unitary map.
(ii) The SBT $\widetilde{B}_{\ell, 3}$ relates the representations of $\mathfrak{s o}(4)$ in $V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right), L^{2}\left(\mathbb{R}^{3}, \frac{\pi}{|x|} d x\right)$ and $W_{\ell} \subset \mathcal{E}_{3}$. That is, $\widetilde{B}_{\ell, 3}$ intertwines the operators $\widehat{T}_{E_{j}}$ in 514, and $\widehat{\boldsymbol{T}}_{E_{j}}, j=1, \ldots, 6$ in 512).

Proof.

(i) It follows from the fact that $\widetilde{B}_{\ell, 3}$ is the composition of unitary operators.
(ii) A straightforward calculation shows that

$$
\begin{align*}
\widetilde{B}_{\ell, 3}\left(\widehat{T}_{E_{j}} Y_{\ell}\right)(\alpha) & =\mathfrak{B}_{4}\left(-\frac{1}{2 \hbar} \widehat{\pi}_{E_{j}} \phi_{\ell}\right)(\alpha) \tag{539}\\
& =-\frac{1}{2 \hbar} \widehat{\boldsymbol{\pi}}_{E_{j}}\left(\mathfrak{B}_{4} \phi_{\ell}(\alpha)\right) \\
& =\widehat{\boldsymbol{T}}_{E_{j}} \mathfrak{B}_{4} \phi_{\ell}(\alpha) \\
& =\widehat{\boldsymbol{T}}_{E_{j}} \widetilde{B}_{\ell, 3} Y_{\ell}(\alpha) .
\end{align*}
$$

In the following paragraphs I show that the $\operatorname{SBT} \widetilde{B}_{\ell, 3}: V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{3}$ can be identified with the SBT $B_{S^{3}, \ell}: V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{3}$ in 75 which is given by

$$
B_{S^{3}, \ell} Y_{\ell}(\alpha)=\int_{S^{3}} \frac{\sqrt{\ell+1}}{\ell!}\left(\frac{q \cdot \alpha}{\hbar}\right)^{\ell} Y_{\ell}(q) d \Omega_{S^{3}}, \quad Y_{\ell} \in V_{\ell}
$$

The map $B_{S^{3}, \ell}$ and its adjoint $\left(B_{S^{3} \ell}\right)^{*}$ intertwine the operators $\widehat{T}_{E_{j}}$ and $\widehat{\boldsymbol{T}}_{E_{j}}$, see [11 for details. The following equalities are fulfilled

$$
\begin{equation*}
B_{S^{3} \ell} \widehat{T}_{E_{j}} Y_{\ell}(\alpha)=\widehat{\boldsymbol{T}}_{E_{j}} B_{S^{3} \ell} Y_{\ell}(\alpha), \quad \widehat{T}_{E_{j}}\left(B_{S^{3} \ell}\right)^{*}=\left(B_{S^{3} \ell}\right)^{*} \widehat{\boldsymbol{T}}_{E_{j}} \tag{540}
\end{equation*}
$$

Let me follow the argument of $\mathbf{1 1}$ for the particular dimension $m=3$ to prove that $B_{S^{3} \ell}$ is a unitary operator. Consider the operator $\left(B_{S^{3} \ell}\right)^{*} B_{S^{3}, \ell}: V_{\ell} \longrightarrow V_{\ell}$. It follows from equality (540) that $\left(B_{S^{3} \ell}\right)^{*} B_{S^{3}, \ell}$ commutes with all the operators $\widehat{T}_{E_{j}}$. The operators $\widehat{T}_{E_{j}}$ restricted to act on V_{ℓ} define an irreducible representation of $\mathfrak{s o (4)}$, so the Schur lemma implies that the operator $\left(B_{S^{3} \ell}\right)^{*} B_{S^{3}, \ell}$ must be a multiple of the identity operator on V_{ℓ}. The operator $\left(B_{S^{3} \ell}\right)^{*} B_{S^{3}, \ell}$ is actually the identity operator. This is shown by evaluating $\left(B_{S^{3} \ell}\right)^{*} B_{S^{3}, \ell}$ on a particular state $\mathbf{Y}_{\ell, \beta}(q) \in V_{\ell}$ which is given by $\mathbf{Y}_{\ell, \beta}(q)=(q \cdot \bar{\beta})$ with $\beta \in Q_{3}$. The SBT of $\mathbf{Y}_{\ell, \beta}(q)$ gives the following

$$
\begin{align*}
B_{S^{3}, \ell} \mathbf{Y}_{\ell, \beta}(\alpha) & =\frac{\sqrt{\ell+1}}{\ell!} \int_{S^{3}}\left(\frac{\alpha \cdot q}{\hbar}\right)(q \cdot \bar{\beta}) d \Omega_{S^{3}} \\
& =\frac{\hbar^{\ell} \ell!}{\sqrt{\ell+1}} \frac{1}{(\ell!)^{2}}\left(\frac{\alpha \cdot \bar{\beta}}{2 \hbar^{2}}\right)^{\ell} \\
& =\frac{\hbar^{\ell} \ell!}{\sqrt{\ell+1}} \Gamma_{3}^{(\ell)}(\alpha, \beta) . \tag{541}
\end{align*}
$$

On the other hand, since for all $Y \in V_{\ell}$

$$
\begin{align*}
\frac{\sqrt{\ell+1}}{\ell!\hbar^{\ell}}\left\langle Y, \mathbf{Y}_{\ell, \beta}\right\rangle_{S^{3}} & =B_{S^{3}, \ell} Y(\beta) \\
& =\left(B_{S^{3}, \ell} Y, \Gamma_{3}^{(\ell)}(\cdot, \beta)\right) \tag{542}\\
& =\left\langle Y,\left(B_{S^{3}, \ell}\right)^{*} \Gamma_{3}^{(\ell)}(\cdot, \beta)\right\rangle_{S^{3}}
\end{align*}
$$

then the equality $\left(B_{S^{3}, \ell}\right)^{*} \Gamma_{3}^{(\ell)}(\cdot, \beta)=\frac{\sqrt{l+1}}{\ell!\hbar^{\ell}} \mathbf{Y}_{\ell, \beta}(\cdot)$ is fulfilled. It follows from equality 541) that $\left(B_{S^{3}, \ell}\right)^{*} B_{S^{3}, \ell} \mathbf{Y}_{\ell, \beta}=\mathbf{Y}_{\ell, \beta}$. Hence, $\left(B_{S^{3}, \ell}\right)^{*} B_{S^{3}, \ell}$ is the identity operator $\widehat{\mathbb{I}}$ on V_{ℓ}.

For an explicit expression of the map $\left.\left(B_{S^{m}}\right)^{-1}\right|_{W_{\ell}}=B_{S^{m}, \ell}^{-1}=\left(B_{S^{m}, \ell}\right)^{*}$ see theorem 3 in [11. The main result of the section is the following.
Theorem 9. Consider the maps $\widetilde{B}_{\ell, 3}: V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{3}$ and $B_{S^{3}, \ell}: V_{\ell} \subset$ $L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{3}$. The following equality holds

$$
\begin{equation*}
\widetilde{B}_{\ell, 3} Y(\alpha)=B_{S^{3}, \ell} Y(\alpha) \quad \forall Y \in V_{\ell} . \tag{543}
\end{equation*}
$$

Proof. Note that equality 543 holds if and only if the operator $\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}: V_{\ell} \subset$ $L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow V_{\ell} \subset L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ is the identity operator. It follows from equations (539), 540) that the operator $\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}$ commutes with the operators $\widehat{T}_{E_{j}}$. Namely,

$$
\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3} \widehat{T}_{E_{j}}=\widehat{T}_{E_{j}}\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3} .
$$

The operators $\widehat{T}_{E_{j}}$ restricted to act in V_{ℓ} define an irreducible representation of $\mathfrak{s o}(4)$, so it follows from the Schur lemma that the operator $\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}$ is a multiple of the identity operator on V_{ℓ}. If it happens that $\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}=\lambda \widehat{\mathbb{I}}$ with $\lambda \neq 1$ a real constant, then the following equalities hold

$$
\begin{align*}
\left(\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}\right) \circ\left(\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}\right)^{*} & =\lambda^{2} \widehat{\mathbb{I}} \tag{544}\\
\left(\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}\right) \circ\left(\left(\widetilde{B}_{\ell, 3}\right)^{*} \circ B_{S^{3}, \ell}\right) & =\lambda^{2} \widehat{\mathbb{I}} .
\end{align*}
$$

It follows from equality th44 that $\left(B_{S^{3}, \ell}\right)^{*} \circ B_{S^{3}, \ell}=\lambda^{2} \widehat{\mathbb{I}}$, which is a contradiction. Thus $\left(B_{S^{3}, \ell}\right)^{*} \circ \widetilde{B}_{\ell, 3}$ must be the identity operator $\widehat{\mathbb{I}}$ on V_{ℓ}. Hence, equality 543 is fulfilled.

Equality (543) allows to give a geometric description of the SBT $B_{S^{3}}$. To do so, the SBT $B_{S^{3}}$ is identified with the linear extension $\widehat{B}_{S^{3}}: L^{2}\left(S^{3}, d \Omega_{S^{3}}\right) \longrightarrow \mathcal{E}_{3}$ of the operators $B_{S^{3}, \ell}$, which is defined as follows. Given $\Psi \in L^{2}\left(S^{3}, d \Omega_{S^{3}}\right)$ written as $\Psi=\lim _{k \rightarrow \infty} \sum_{\ell=0}^{k} Y_{\ell}$ with $Y_{\ell} \in V_{\ell}$ let me consider the partial sums $\boldsymbol{S}_{k}(\Psi)=\sum_{\ell=0}^{k} B_{S^{3}, \ell} Y_{\ell}$ and then

$$
\widehat{B}_{S^{3}} \Psi=\lim _{k \rightarrow \infty} \boldsymbol{S}_{k}(\Psi) .
$$

It is shown in [11, Sect. 2] that equality $B_{S^{3}} \Psi=\widehat{B}_{S^{3}} \Psi$ holds almost everywhere on \mathcal{E}_{m}. Let me now use $\widetilde{B}_{\ell, 3} Y(\alpha)=B_{S^{3}, \ell} Y(\alpha)$ for all $Y \in V_{\ell}$ so that the following equality is fulfilled

$$
\begin{equation*}
B_{S^{3}} \Psi=\lim _{k \rightarrow \infty} \sum_{\ell=0}^{k} \widetilde{B}_{\ell, 3} Y_{\ell} . \tag{545}
\end{equation*}
$$

Equality (545) indicates that the $\operatorname{SBT} B_{S^{3}}$ can be understood as the composition of $U_{\ell, 3}$ with \mathfrak{B}_{4} and that $B_{S^{3}}$ can be regarded as the linear extension of $\widetilde{B}_{\ell, 3}$. The geometric description of $B_{S^{3}}$ is displayed on the fact that the SBT \mathfrak{B}_{4} is obtained from the pairing map of the geometric quantization via a reduction process, that is, the "first quantize and then reduce" process. In the next section I will construct an SBT $\widetilde{B}_{\ell, 5}: V_{\ell} \subset L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{5}$ following the same structural ideas to the case of S^{3}.

2. An SBT for S^{5}

2.1. Representation of $\mathfrak{s o}(6)$. The calculations involving the construction of the $\operatorname{SBT} \tilde{B}_{\ell, 5}$ will be sketched because of these calculations are the same as in the case of $\tilde{B}_{\ell, 3}$ but with more variables. Let me take the operators $\widehat{\alpha}_{j}, \widehat{\mathcal{D}}_{j}, j=1, \ldots 6$ given in 337) and 336. The representation of $\mathfrak{s o}(6)$ in \mathcal{B}_{8} can be obtained from the following commutators

$$
\begin{equation*}
\widehat{\boldsymbol{\rho}}_{j, k}=\left[\widehat{\mathcal{D}}_{j}, \widehat{\alpha}_{k}\right] \quad \text { with } j \neq k, \quad \text { and } j, k=1, \ldots, 6 . \tag{546}
\end{equation*}
$$

The operators of angular momentum type are obtained from the following commutators

$$
\begin{equation*}
\widehat{\boldsymbol{\rho}}_{j, k}=\left[\widehat{\mathcal{D}}_{j}, \widehat{\alpha}_{k}\right] \quad \text { with } j \neq k, \quad \text { and } j, k=1, \ldots, 5 . \tag{547}
\end{equation*}
$$

For instance, the following operators can be obtained from (547)

$$
\begin{align*}
& \widehat{\boldsymbol{\rho}}_{1,2}=i \hbar^{2}\left[z_{8} \frac{\partial}{\partial z_{4}}+z_{5} \frac{\partial}{\partial z_{1}}+z_{7} \frac{\partial}{\partial z_{3}}+z_{6} \frac{\partial}{\partial z_{2}}+z_{1} \frac{\partial}{\partial z_{5}}+z_{4} \frac{\partial}{\partial z_{8}}+z_{3} \frac{\partial}{\partial z_{7}}+z_{2} \frac{\partial}{\partial z_{6}}\right] \tag{548}\\
& \widehat{\boldsymbol{\rho}}_{1,3}=i \hbar\left[z_{6} \frac{\partial}{\partial z_{4}}-z_{7} \frac{\partial}{\partial z_{1}}+z_{5} \frac{\partial}{\partial z_{3}}-z_{8} \frac{\partial}{\partial z_{2}}+z_{3} \frac{\partial}{\partial z_{5}}-z_{2} \frac{\partial}{\partial z_{8}}+z_{4} \frac{\partial}{\partial z_{6}}-z_{1} \frac{\partial}{\partial z_{7}}\right] \\
& \widehat{\boldsymbol{\rho}}_{1,4}=\hbar^{2}\left[z_{6} \frac{\partial}{\partial z_{4}}-z_{4} \frac{\partial}{\partial z_{6}}+z_{7} \frac{\partial}{\partial z_{1}}-z_{1} \frac{\partial}{\partial z_{7}}+z_{5} \frac{\partial}{\partial z_{3}}-z_{3} \frac{\partial}{\partial z_{5}}+z_{8} \frac{\partial}{\partial z_{2}}-z_{2} \frac{\partial}{\partial z_{8}}\right] .
\end{align*}
$$

The Runge-Lenz like operators are obtained from the commutators $\widehat{\boldsymbol{\rho}}_{j, 6}=\left[\widehat{\mathcal{D}}_{j}, \widehat{\alpha}_{6}\right], j=1, \ldots, 5$,

$$
\begin{align*}
& \widehat{\boldsymbol{\rho}}_{1,6}=i \hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}+z_{3} \frac{\partial}{\partial z_{3}}+z_{4} \frac{\partial}{\partial z_{4}}-z_{5} \frac{\partial}{\frac{\partial}{z_{5}}}-z_{6} \frac{\partial}{\partial z_{6}}-z_{7} \frac{\partial}{\partial z_{7}}-z_{8} \frac{\partial}{\partial z_{8}}\right) \tag{549}\\
& \widehat{\boldsymbol{\rho}}_{2,6}=\hbar^{2}\left(z_{1} \frac{\partial}{\partial z_{5}}-z_{5} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{6}}-z_{6} \frac{\partial}{\partial z_{2}}+z_{3} \frac{\partial}{\partial z_{7}}-z_{7} \frac{\partial}{\partial z_{3}}+z_{4} \frac{\partial}{\partial z_{8}}-z_{8} \frac{\partial}{\partial z_{4}}\right) \\
& \widehat{\boldsymbol{\rho}}_{3,6}=\hbar^{2}\left(z_{4} \frac{\partial}{\partial z_{6}}-z_{6} \frac{\partial}{\partial z_{4}}+z_{7} \frac{\partial}{\partial z_{1}}-z_{1} \frac{\partial}{\partial z_{7}}-z_{3} \frac{\partial}{\partial z_{5}}-z_{5} \frac{\partial}{\partial z_{3}}+z_{8} \frac{\partial}{\partial z_{2}}-z_{2} \frac{\partial}{\partial z_{8}}\right) \\
& \widehat{\boldsymbol{\rho}}_{4,6}=i \hbar^{2}\left(z_{4} \frac{\partial}{\partial z_{6}}+z_{6} \frac{\partial}{\partial z_{4}}+z_{7} \frac{\partial}{\partial z_{1}}+z_{1} \frac{\partial}{\partial z_{7}}+z_{3} \frac{\partial}{\partial z_{5}}+z_{5} \frac{\partial}{\partial z_{3}}+z_{8} \frac{\partial}{\partial z_{2}}+z_{2} \frac{\partial}{\partial z_{8}}\right) \\
& \widehat{\boldsymbol{\rho}}_{5,6}=i \hbar^{2}\left(z_{4} \frac{\partial}{\partial z_{8}}-z_{5} \frac{\partial}{\partial z_{1}}+z_{3} \frac{\partial}{\partial z_{7}}-z_{6} \frac{\partial}{\partial z_{2}}+z_{7} \frac{\partial}{\partial z_{3}}-z_{2} \frac{\partial}{\partial z_{6}}+z_{8} \frac{\partial}{\partial z_{4}}-z_{1} \frac{\partial}{\partial z_{5}}\right) .
\end{align*}
$$

The operators in (546) can be written in the Schrödinger representation by using equations in (396). These operators are denoted by $\widehat{\rho}_{j, k}, j, k=1,2 \ldots, 6$. For example, the operators in (548) are given by
(550) $\widehat{\rho}_{1,2}=\hbar^{2}\left(u_{5} \frac{\partial}{\partial u_{1}}-u_{1} \frac{\partial}{\partial u_{5}}+u_{2} \frac{\partial}{\partial u_{6}}-u_{6} \frac{\partial}{\partial u_{2}}+u_{7} \frac{\partial}{\partial u_{3}}-u_{3} \frac{\partial}{\partial u_{7}}+u_{4} \frac{\partial}{\partial u_{8}}-u_{8} \frac{\partial}{\partial u_{4}}\right)$

$$
\begin{aligned}
& \widehat{\rho}_{1,3}=\hbar^{2}\left(u_{7} \frac{\partial}{\partial u_{1}}-u_{1} \frac{\partial}{\partial u_{7}}+u_{8} \frac{\partial}{\partial u_{2}}-u_{2} \frac{\partial}{\partial u_{8}}+u_{3} \frac{\partial}{\partial u_{5}}-u_{5} \frac{\partial}{\partial u_{3}}+u_{6} \frac{\partial}{\partial u_{4}}-u_{4} \frac{\partial}{\partial u_{6}}\right) \\
& \widehat{\rho}_{1,4}=\hbar^{2}\left(u_{7} \frac{\partial}{\partial u_{2}}-u_{2} \frac{\partial}{\partial u_{7}}+u_{6} \frac{\partial}{\partial u_{3}}-u_{3} \frac{\partial}{\partial u_{6}}+u_{4} \frac{\partial}{\partial u_{5}}-u_{5} \frac{\partial}{\partial u_{4}}+u_{1} \frac{\partial}{\partial u_{8}}-u_{8} \frac{\partial}{\partial u_{1}}\right) .
\end{aligned}
$$

The operators in (549) have the following expression in the Schrödinger representation

$$
\begin{gather*}
\widehat{\rho}_{1,6}=\quad \imath\left[\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}-u_{5}^{2}-u_{6}^{2}-u_{7}^{2}-u_{8}^{2}\right)+\hbar^{2}\left(\frac{\partial^{2}}{\partial u_{1}^{2}}+\frac{\partial^{2}}{\partial u_{2}^{2}}+\frac{\partial^{2}}{\partial u_{3}^{2}}+\frac{\partial^{2}}{\partial u_{4}^{2}}-\right.\right. \tag{551}\\
\left.\left.\frac{\partial^{2}}{\partial u_{5}^{2}}-\frac{\partial^{2}}{\partial u_{6}^{2}}-\frac{\partial^{2}}{\partial u_{7}^{2}}-\frac{\partial^{2}}{\partial u_{8}^{2}}\right)\right], \\
\widehat{\rho}_{2,6}=\quad \imath\left[\left(u_{1} u_{5}+u_{3} u_{7}-u_{2} u_{6}-u_{4} u_{8}\right)+\hbar^{2}\left(\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{6}}+\frac{\partial}{\partial u_{4}} \frac{\partial}{\partial u_{8}}-\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{5}}-\frac{\partial}{\partial u_{3}} \frac{\partial}{\partial u_{7}}\right)\right] \\
\widehat{\rho}_{3,6}=\imath\left[\left(u_{1} u_{7}+u_{2} u_{8}-u_{4} u_{6}-u_{3} u_{5}\right)+\hbar^{2}\left(\frac{\partial}{\partial u_{4}} \frac{\partial}{\partial u_{6}}+\frac{\partial}{\partial u_{3}} \frac{\partial}{\partial u_{5}}-\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{7}}-\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{8}}\right)\right] \\
\widehat{\rho}_{4,6}=\quad \imath\left[\left(u_{2} u_{7}+u_{3} u_{6}-u_{1} u_{8}-u_{4} u_{5}\right)+\hbar^{2}\left(\frac{\partial}{\partial u_{4}} \frac{\partial}{\partial u_{5}}+\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{8}}-\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{7}}-\frac{\partial}{\partial u_{3}} \frac{\partial}{\partial u_{6}}\right)\right] \\
\widehat{\rho}_{5,6}=\imath\left[\left(u_{2} u_{5}+u_{1} u_{6}+u_{4} u_{7}+u_{3} u_{8}\right)-\hbar^{2}\left(\frac{\partial}{\partial u_{2}} \frac{\partial}{\partial u_{5}}-\frac{\partial}{\partial u_{1}} \frac{\partial}{\partial u_{6}}+\frac{\partial}{\partial u_{4}} \frac{\partial}{\partial u_{7}}+\frac{\partial}{\partial u_{3}} \frac{\partial}{\partial u_{8}}\right)\right] .
\end{gather*}
$$

The operators $\widehat{\boldsymbol{\rho}}_{j, k}$ in 546 can be restricted to act in $\mathcal{B}_{8}^{(S U(2)) \mathbb{C}}$ so that they are identified with the following operators acting in the space \mathcal{E}_{5}

$$
\begin{equation*}
\widehat{\boldsymbol{\pi}}_{j k}=\left[\widehat{D}_{j}, \widehat{\alpha}_{k}\right]=2 \hbar^{2}\left(\alpha_{k} \frac{\partial}{\partial \alpha_{j}}-\alpha_{j} \frac{\partial}{\partial \alpha_{k}}\right), \quad j, k=1, \ldots, 6, \quad \text { and } j \neq k . \tag{552}
\end{equation*}
$$

The following can be proved with a similar procedure to the proof of proposition 38.

Proposition 44. The operators $\widehat{\rho}_{j, k}$ acting on functions in $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ are identified with operators $\widehat{\pi}_{j, k}$ acting in $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$. The operators of angular momentum type are given by

$$
\begin{equation*}
\widehat{\pi}_{j, k}=2 \hbar^{2}\left(x_{k} \frac{\partial}{\partial x_{j}}-x_{j} \frac{\partial}{\partial x_{k}}\right), \quad j \neq k, \quad j, k=1, \ldots, 5 . \tag{553}
\end{equation*}
$$

The operators in 551) are identified with the following operators

$$
\begin{equation*}
\widehat{\pi}_{j, 6}=\imath \hbar\left\{x_{j}-\hbar^{2}\left[2\left(1+\sum_{k=1}^{5} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{\partial}{\partial x_{j}}-x_{j} \Delta_{\mathbb{R}^{5}}\right]\right\}, \quad j=1, \ldots, 5 \tag{554}
\end{equation*}
$$

Now I define a representation of the Lie algebra $\mathfrak{s o}(6)$ in \mathcal{E}_{5} from the action of $S O(6, \mathbb{R})$ on \dot{Q}_{5} as follows. Consider a basis of $\mathfrak{s o}(6)$ given by the following skew-symmetric matrices

$$
E_{j k}=\left(\begin{array}{cccc}
0 & \ldots & \ldots & 0 \tag{555}\\
\vdots & \ldots & 1 & \ldots \\
0 \ldots & -1 & \ldots & 0 \\
\vdots & & & \vdots \\
0 & \ldots & \ldots & 0
\end{array}\right), \quad j, k=1, \ldots, 6, \quad \text { and } j \neq k
$$

For example, the matrices E_{12}, E_{56} are given by

$$
E_{12}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), E_{56}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

The other matrices $E_{j k}$ are written in this form. I can assign to each matrix $E_{j k}$ in (555) an operator $\widehat{\mathbf{T}}_{E_{j k}}$ acting in \mathcal{E}_{5}, which is defined as follows

$$
\begin{equation*}
\widehat{\boldsymbol{T}}_{E_{j k}} f(\alpha)=\left.\frac{d}{d t}\right|_{t=0} f\left(\mathrm{e}^{-\hbar t E_{j k}} \cdot \alpha\right), \quad f \in \mathcal{E}_{5} \tag{556}
\end{equation*}
$$

The operators $\widehat{\mathbf{T}}_{E_{j k}}$ have the following expression in coordinates

$$
\begin{equation*}
\widehat{\mathbf{T}}_{E_{j k}}=\hbar\left(\alpha_{j} \frac{\partial}{\partial \alpha_{k}}-\alpha_{k} \frac{\partial}{\partial \alpha_{j}}\right) \quad \text { and } \quad-2 \hbar \widehat{\mathbf{T}}_{E_{j k}}=\widehat{\boldsymbol{\pi}}_{j k} \tag{557}
\end{equation*}
$$

I can assign to each matrix $E_{j k}$ in 555 an operator $\widehat{T}_{E_{j k}}$ acting in $L^{2}\left(S^{5}, d \Omega_{S^{5}}\right)$, which is defined as follows

$$
\begin{equation*}
\widehat{T}_{E_{j k}} f(q)=\left.\frac{d}{d t}\right|_{t=0} f\left(\mathrm{e}^{-\hbar t E_{j k}} \cdot q\right), \quad f(q) \in L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \tag{558}
\end{equation*}
$$

The operator $\widehat{T}_{E_{j k}}$ is given in coordinates by

$$
\begin{equation*}
\widehat{T}_{E_{j k}}=\hbar\left(q_{j} \frac{\partial}{\partial q_{k}}-q_{k} \frac{\partial}{\partial q_{j}}\right), j, k=1, \ldots, 6, \quad \text { and } \quad j \neq k \tag{559}
\end{equation*}
$$

Equality in 525 for S^{5} is given by

$$
\begin{equation*}
Y_{\ell}(q)=\frac{\pi}{\sqrt{E}}\left(\frac{p(q)^{2}+1}{2}\right)^{3} \phi_{\ell}(p(q)) \tag{560}
\end{equation*}
$$

and the Fock map is denoted as $U_{\ell, 5}: V_{\ell} \ni Y_{\ell} \longrightarrow \phi_{\ell}(x) \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$. A similar procedure to the proof of proposition 42 can be done to prove the following

Proposition 45. The Fock map $U_{\ell, 5}$ intertwines the operators $\widehat{T}_{E_{j k}}$ with the operators $\widehat{\pi}_{j, k}$. Namely,

$$
U_{\ell, 5}\left(\widehat{T}_{E_{j k}} Y_{\ell}(q)\right)=-\frac{1}{2 \hbar} \widehat{\pi}_{j, k} \phi_{\ell}(x), \quad j, k=1, \ldots 6
$$

where $Y_{\ell}(q)$ is given in 560.
The following result will be used to construct an SBT for S^{5}.
Proposition 46. The $S B T \mathfrak{B}_{8}: L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right) \longrightarrow \mathcal{E}_{5}$ intertwines the operators in 5553 , (554) and (552). Namely,

$$
\begin{equation*}
\left.\left(\mathfrak{B}_{8} \widehat{\pi}_{j k} \phi\right)(\alpha)=\widehat{\boldsymbol{\pi}}_{j k}\left(\mathfrak{B}_{8} \phi\right)(\alpha)\right) \quad \forall \phi \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right) . \tag{561}
\end{equation*}
$$

Proof. I have shown that the SBT $B_{8}: L^{2}\left(\mathbb{R}^{8}, d u\right) \longrightarrow \mathcal{B}_{8}$ preserves the space of $S U(2)$ invariant functions. That is, the $\operatorname{SBT} B_{8} \psi$ of $\psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ is a function in $\mathcal{B}_{8}^{S U(2)}$. In addition, the SBT B_{8} intertwines the operators $\widehat{\boldsymbol{\rho}}_{j, k}$ defined in (546) and their corresponding operators $\widehat{\rho}_{j, k}$, in the Schrödinger representation. Namely,

$$
\begin{equation*}
\left(B_{8} \widehat{\rho}_{j, k} \psi\right)(z)=\widehat{\boldsymbol{\rho}}_{j, k}\left(B_{8} \psi\right)(z) \quad \psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} \tag{562}
\end{equation*}
$$

Since $\widehat{\rho}_{j, k} \psi$ is a function in $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$, then equality 562$)$ can be written in a $S U(2)$ invariant form as in (454). Namely,

$$
\begin{equation*}
\left(B_{0,8} \widehat{\rho}_{j, k} \psi\right)(z)=\widehat{\boldsymbol{\rho}}_{j, k}\left(B_{0,8} \psi\right)(z) \quad \forall \psi(u)=\phi(x(u)) \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)} . \tag{563}
\end{equation*}
$$

The function $\widehat{\rho}_{j, k} \psi \in L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ is identified with $\widehat{\pi}_{j k} \phi \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$, and the operator $\hat{\boldsymbol{\rho}}_{j, k}$ is identified with $\widehat{\boldsymbol{\pi}}_{j k}$ acting in \mathcal{E}_{5}. It follows from point (i) of corollary 2 that equality (563) corresponds to equality (561).

The Hamiltonian operator of the harmonic oscillator in the space \mathcal{B}_{8} is given by $\widehat{H}_{8}=$ $\hbar\left(\frac{1}{2} \sum_{k=1}^{8} z_{k} \frac{\partial}{\partial z_{k}}+2\right)$. Let me recall that the restrictions of $\widehat{H}_{8}^{S c h}=\frac{1}{4}\left(-\hbar^{2} \Delta_{\mathbb{R}^{8}}+u^{2}\right)$ to $L^{2}\left(\mathbb{R}^{8}, d u\right)^{S U(2)}$ and \widehat{H}_{8} to $\mathcal{B}_{8}^{(S U(2)) \mathrm{c}}$ are identified with the Hamiltonian operators $\widehat{K}_{5}=$ $\frac{1}{2}|x|\left(-\hbar^{2} \Delta_{\mathbb{R}^{5}}+1\right)$ acting in $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$ and $\widehat{H}_{\text {red }}=\hbar\left(\sum_{k=1}^{6} \alpha_{k} \frac{\partial}{\partial \alpha_{k}}+2\right)$ acting in \mathcal{E}_{5} respectively. See equality (493). Further, I show in lemma 12 that the SBT \mathfrak{B}_{8} intertwines the operators \widehat{K}_{5} and $\widehat{H}_{\text {red }}$. Namely,

$$
\begin{equation*}
\left(\mathfrak{B}_{8} \widehat{K}_{5} \phi\right)(\alpha)=\widehat{H}_{\text {red }}\left(\mathfrak{B}_{8} \phi\right)(\alpha) . \tag{564}
\end{equation*}
$$

Every homogeneous polynomial $f(\alpha) \in W_{\ell} \subset \mathcal{E}_{5}$ is an eigenfunction of $\widehat{H}_{\text {red }}$, that is, $\widehat{H}_{\text {red }} f(\alpha)=\hbar(\ell+2) f(\alpha)$. On the other hand, the Fock map $U_{\ell, 5}$ sends $Y_{\ell} \in V_{\ell}$ to an eigenfunction ϕ_{ℓ} of \widehat{K}_{5} in $L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$ with eigenvalue $E_{\ell}=\hbar(\ell+2)$. It follows from equality 5564) that $\left(\mathfrak{B}_{8} \phi_{\ell}\right)(\alpha)$ is an eigenfunction of $\widehat{H}_{\text {red }}$. Hence, $\left(\mathfrak{B}_{8} \phi_{\ell}\right)(\alpha)$ belongs to W_{ℓ}. The SBT $\widehat{B_{\ell, 5}}: V_{\ell} \subset L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{5}$ is defined by

$$
\begin{equation*}
\widetilde{B}_{\ell, 5} Y_{\ell}(\alpha)=\left(\mathfrak{B}_{8} \circ U_{\ell, 5} Y_{\ell}\right)(\alpha), \quad Y_{\ell} \in V_{\ell} . \tag{565}
\end{equation*}
$$

The right-hand side of (565) is calculated as follows. The map $U_{\ell, 5}$ is applied to Y_{ℓ} to obtain a function $\phi_{\ell} \in L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$, and then the SBT \mathfrak{B}_{8} is applied to ϕ_{ℓ}. Namely,

$$
\widetilde{B}_{\ell, 5} Y_{\ell}(\alpha)=\mathfrak{B}_{8} \phi_{\ell}(\alpha)=\int_{\mathbb{R}^{5}} \phi_{\ell}(x) \mathfrak{A}_{8}(x, \alpha) \frac{\pi^{2}}{|x|} d x .
$$

The following can be proved as in the previous case of $\widetilde{B}_{\ell, 3}$.

Proposition 47.

(i) The $S B T \widetilde{B}_{\ell, 5}$ is a unitary operator.
(ii) The SBT $\widetilde{B}_{\ell, 5}$ relates the representations of $\mathfrak{s o}(6)$ in $V_{\ell} \subset L^{2}\left(S^{5}, d \Omega_{S^{5}}\right), L^{2}\left(\mathbb{R}^{5}, \frac{\pi^{2}}{|x|} d x\right)$ and $W_{\ell} \subset \mathcal{E}_{5}$. Namely,

$$
\begin{equation*}
\widetilde{B}_{\ell, 5}\left(T_{E_{j k}} Y_{\ell}\right)(\alpha)=\widehat{\mathbf{T}}_{E_{j k}} \widetilde{B}_{\ell, 5} Y_{\ell}(\alpha) . \tag{566}
\end{equation*}
$$

In the following paragraphs I identify the SBT $\widetilde{B}_{\ell, 5}: V_{\ell} \subset L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{5}$ with the $\operatorname{SBT} B_{S^{5}, \ell}: V_{\ell} \subset L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{5}$ in 75 which is given by

$$
B_{S^{5}, \ell} Y_{\ell}(\alpha)=\frac{\sqrt{\ell+2}}{2} \frac{1}{\ell!} \int_{S^{5}}\left(\frac{\alpha \cdot q}{\hbar}\right)^{\ell} Y_{\ell}(q) d \Omega_{S^{5}}(q) .
$$

The operator $B_{S^{5}, \ell}$ and its adjoint $\left(B_{S^{5}, \ell}\right)^{*}$ intertwine the operators $\widehat{T}_{E_{j k}}$ in 559 and $\widehat{\boldsymbol{T}}_{E_{j k}}$ in (557), see [11] for details. The following equalities are fulfilled

$$
\begin{equation*}
B_{S^{5}, \ell} \widehat{T}_{E_{j k}}=\widehat{\boldsymbol{T}}_{E_{j k}} B_{S^{5}, \ell}, \quad \text { and } \quad\left(B_{S^{5}, \ell}\right)^{*} \widehat{\boldsymbol{T}}_{E_{j k}}=\widehat{T}_{E_{j k}}\left(B_{S^{5}, \ell}\right)^{*} . \tag{567}
\end{equation*}
$$

The following result can be proved with a similar argument to the proof of theorem 9 for S^{3}.
Theorem 10. Consider the maps $\widetilde{B}_{\ell, 5}: V_{\ell} \subset L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{5}$ and $B_{S^{5}, \ell}: V_{\ell} \subset$ $L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow W_{\ell} \subset \mathcal{E}_{5}$. The following equality holds

$$
\begin{equation*}
\widetilde{B}_{\ell, 5} Y_{\ell}(\alpha)=B_{S^{5}, \ell} Y_{\ell}(\alpha), \quad \forall Y_{\ell} \in V_{\ell} . \tag{568}
\end{equation*}
$$

Equality (568) allows to give a geometric description of the SBT $B_{S^{5}}$. Again $B_{S^{5}}$ is identified with the linear extension $\widehat{B}_{S^{5}}: L^{2}\left(S^{5}, d \Omega_{S^{5}}\right) \longrightarrow \mathcal{E}_{5}$ of the operators $B_{S^{5}, \ell}$. Given $\Psi \in$ $L^{2}\left(S^{5}, d \Omega_{S^{5}}\right)$ written as $\Psi=\lim _{k \rightarrow \infty} \sum_{\ell=0}^{k} Y_{\ell}$ with $Y_{\ell} \in V_{\ell}$ let me consider the partial sums $\boldsymbol{S}_{k}(\Psi)=\sum_{\ell=0}^{k} B_{S^{5}, \ell} Y_{\ell}$ and then

$$
\widehat{B}_{S^{5}} \Psi=\lim _{k \rightarrow \infty} \boldsymbol{S}_{k}(\Psi)
$$

It is shown in [11, Sect. 2] that equality $B_{S^{5}} \Psi=\widehat{B}_{S^{5}} \Psi$ holds almost everywhere on \mathcal{E}_{5}. Let me now use $\widetilde{B}_{\ell, 5} Y(\alpha)=B_{S^{5}, \ell} Y(\alpha)$ for all $Y \in V_{\ell}$ so that the following equality is fulfilled

$$
\begin{equation*}
B_{S^{5}} \Psi=\lim _{k \rightarrow \infty} \sum_{\ell=0}^{k} \widetilde{B}_{\ell, 5} Y_{\ell} . \tag{569}
\end{equation*}
$$

Equality (569) indicates that the SBT $B_{S^{5}}$ can be understood as the composition of $U_{\ell, 5}$ with \mathfrak{B}_{8} and that $B_{S^{5}}$ can be regarded as the linear extension of $\widetilde{B}_{\ell, 5}$. The geometric description of $B_{S^{5}}$ is displayed on the fact that the SBT \mathfrak{B}_{8} is obtained from the pairing map of the geometric quantization via a reduction process.

Construction of the
 Map $\rho_{(n, m)}$

In this appendix I construct the maps $\rho_{(n, m)}: \dot{\mathbb{C}}^{n} \longrightarrow Q_{m}, n=8,4, m=5,3$ respectively. Let me recall that the null quadric Q_{m} is defined as follows

$$
\begin{equation*}
Q_{m}=\left\{z \in \mathbb{C}^{m+1} \mid z_{1}^{2}+\ldots+z_{m+1}^{2}=0\right\} \tag{570}
\end{equation*}
$$

For dimensions $n=4, m=3$, the construction of the map $\rho_{(4,3)}: \dot{\mathbb{C}}^{4} \longrightarrow Q_{3}$ comes from the explicit realization of the action of $S O(4, \mathbb{C})$ on \mathbb{C}^{4} from the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$. Furthermore, this realization allows us to define the homomorphism of groups $\tilde{\rho}_{4,3}$: $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2} \longrightarrow S O(4, \mathbb{C})$.

For dimension $n=8, m=5$, the map $\rho_{(8,5)}: \dot{\mathbb{C}}^{8} \longrightarrow Q_{5}$ comes from the explicit realization of the action of $S O(6, \mathbb{C})$ on \mathbb{C}^{6} from the action of $S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$. This realization allows us to define the homomorphism of groups $\tilde{\rho}_{8,5}: S L(4, \mathbb{C}) / \mathbb{Z}_{2} \longrightarrow S O(6, \mathbb{C})$.

On the other hand, in reference [26] it is proved that $S O(m+1, \mathbb{R})$ acts transitively on \dot{Q}_{m}. In order to have a self-contained appendix, let me adapt the proof of [26] to the case of $S O(m+1, \mathbb{C})$ and show that $S O(m+1, \mathbb{C})$ acts transitively on \dot{Q}_{m}.

Lemma 14. The group $S O(m+1, \mathbb{C})$ acts transitively on the null quadric \dot{Q}_{m}.

Proof. To prove that $S O(m+1, \mathbb{C})$ acts transitively on the quadric \dot{Q}_{m}, it is enough to see that for any point $z \in \dot{Q}_{m}$ with $z=x+\imath y$ and $x, y \in \mathbb{R}^{m+1}$, there is $M \in S O(m+1, \mathbb{C})$ such that the following equality holds

$$
M\left(e_{1}+\imath e_{2}\right)=z, \quad \text { with } \quad e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0) .
$$

First, I will look for a matrix $\tilde{B} \in S O(m+1, \mathbb{C})$ such that the following equality holds

$$
\tilde{B}\left(e_{1}+\imath e_{2}\right)=\frac{|x|}{\lambda}\left(e_{1}+\imath e_{2}\right), \quad \text { with } \quad \lambda=\sqrt{2}+1, \quad \text { and } \quad|x|=|\Re(z)| .
$$

An element in $B \in S O(2, \mathbb{C})$ can be written as follows

$$
B=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \tag{571}\\
\sin (\theta) & \cos (\theta)
\end{array}\right) \quad \text { with } \quad \theta=a+\imath b, \quad \text { and } \quad a, b \in \mathbb{R} .
$$

Let me consider the matrix \tilde{B} given by

$$
\tilde{B}=\left(\begin{array}{ccccc}
\cos (\theta) & -\sin (\theta) & \ldots & \ldots & 0 \\
\sin (\theta) & \cos (\theta) & \ldots & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \\
0 & \ldots & \ldots & & 1
\end{array}\right)
$$

A straightforward computation shows that

$$
\tilde{B}\left(e_{1}+\imath e_{2}\right)=\mathrm{e}^{-\imath \theta}\left(e_{1}+\imath e_{2}\right) \quad \text { with } \theta=a+\imath b \text { and } a, b \in \mathbb{R}
$$

Taking $a=0$ and $b=\log \left(\frac{|x|}{\lambda}\right)$ with $\lambda=\sqrt{2}+1$, the following equality is fulfilled

$$
\tilde{B}\left(e_{1}+\imath e_{2}\right)=\frac{|x|}{\lambda}\left(e_{1}+\imath e_{2}\right)
$$

Let me take $Z, W \in \mathbb{C}^{m+1}$ with $z=X+\imath Y, w=U+\imath V$ and X, Y, U, V vectors in \mathbb{R}^{m+1}. Consider the following bilinear form on \mathbb{C}^{m+1} defined as follows

$$
\begin{equation*}
(,): \mathbb{C}^{m+1} \times \mathbb{C}^{m+1} \longrightarrow \mathbb{C}, \quad(Z, W)=\langle X, U\rangle-\langle Y, V\rangle+\imath(\langle X, V\rangle+\langle Y, U\rangle) \tag{572}
\end{equation*}
$$

The terms $\langle X, U\rangle,\langle Y, V\rangle,\langle X, V\rangle,\langle Y, V\rangle$ denote the inner product in \mathbb{R}^{m+1}. That is,

$$
\langle X, U\rangle=X \cdot U, \quad\langle Y, V\rangle=Y \cdot V, \quad\langle X, V\rangle=X \cdot V, \quad\langle Y, U\rangle=Y \cdot U
$$

Note that $z \neq 0$ implies that $|z|^{2} \neq 0$ as well. Consider $\tilde{z}, \tilde{w} \in \mathbb{C}^{m+1}$ given by

$$
\tilde{z}=\sqrt{2} \frac{x}{|x|}+\imath \frac{y}{|x|}, \quad \tilde{w}=-\imath \frac{x}{|x|}+\sqrt{2} \frac{y}{|x|}, \quad x=\Re(z) \text { and } y=\Im(z)
$$

The vectors \tilde{z}, \tilde{w} satisfy $(\tilde{z}, \tilde{w})=0$ and $(\tilde{z}, \tilde{z})=(\tilde{w}, \tilde{w})=1$. The pair \tilde{w}, \tilde{z} can be completed in order to have an orthogonal set with respect to the bilinear form in 572. This set of orthogonal vectors can be taken as $\left\{\tilde{z}, \tilde{w}, \tilde{z}_{3}, \tilde{z}_{4}, \ldots, \tilde{z}_{m+1}\right\}$, where $\tilde{z}_{j}, j=3, \ldots, m+1$ are given by

$$
\begin{array}{cc}
\tilde{e}_{3}=e_{3}-\left(e_{3}, \tilde{z}\right) \tilde{z}-\left(e_{3}, \tilde{w}\right) \tilde{w}, & \tilde{z}_{3}=\frac{\tilde{e}_{3}}{\sqrt{\left(\tilde{e}_{3}, \tilde{e}_{3}\right)}} \\
\tilde{e}_{4}=e_{4}-\left(e_{4}, \tilde{z}\right) \tilde{z}-\left(e_{4}, \tilde{w}\right) \tilde{w}-\left(e_{4}, \tilde{z}_{3}\right) \tilde{z}_{3}, & \tilde{z}_{4}=\frac{\tilde{e}_{4}}{\sqrt{\left(\tilde{e}_{4}, \tilde{e}_{4}\right)}} \\
\tilde{e}_{5}=e_{5}-\left(e_{5}, \tilde{z}\right) \tilde{z}-\left(e_{5}, \tilde{w}\right) \tilde{w}-\left(e_{5}, \tilde{z}_{3}\right) \tilde{z}_{3}-\left(e_{5}, \tilde{z}_{4}\right) \tilde{z}_{4}, & \tilde{z}_{5}=\frac{\tilde{e}_{5}}{\sqrt{\left(\tilde{e}_{5}, \tilde{e}_{5}\right)}} \\
\vdots \\
\tilde{e}_{m+1}=e_{m+1}-\left(e_{m+1}, \tilde{z}\right) \tilde{z}-\left(e_{m+1}, \tilde{w}\right) \tilde{w}-\left(e_{m+1}, \tilde{z}_{3}\right) \tilde{z}_{3}-\ldots-\left(e_{m+1}, \tilde{z}_{m}\right) \tilde{z}_{m} \\
\tilde{z}_{m+1}=\frac{\tilde{e}_{m+1}}{\sqrt{\left(\tilde{e}_{m+1}, \tilde{e}_{m+1}\right)}}
\end{array}
$$

and $\left\{e_{j}\right\}_{j=1}^{m+1}$ is the set of canonical basis of \mathbb{C}^{m+1}.
Consider a matrix $A \in S O(m+1, \mathbb{C})$ whose columns are the vectors of this orthonormal set. That is, $A=\left[\tilde{z}, \tilde{w}, \tilde{z}_{3}, \ldots, \tilde{z}_{m+1}\right]$, or $A=\left[\tilde{z}, \tilde{w}, \tilde{z}_{3}, \ldots,-\tilde{z}_{m+1}\right]$ to guarantee that $A \in$ $S O(m+1, \mathbb{C})$. Now I consider a matrix $M \in S O(m+1, \mathbb{C})$, which is defined as $M=A \tilde{B}$. A straightforward computation shows that the following equality holds

$$
M\left(e_{1}+\imath e_{2}\right)=z
$$

Therefore $S O(m+1, \mathbb{C})$ acts transitively on \dot{Q}_{m}. A similar procedure can be done as above calculations in order to show that any $z \in \dot{Q}_{m}$ can be obtained from the action of $S O(m+1, \mathbb{C})$ on $\left(e_{l}+\imath e_{s}\right), l, s=1, \ldots, m+1$.

In the next paragraphs, I will construct the action of $S O(4, \mathbb{C})$ on \mathbb{C}^{4} from the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$. Before, let me make some calculations to motivate this construction.

Let me consider coordinates $U, V \in \mathbb{R}^{4}, U=\left(U_{1}, U_{2}, U_{3}, U_{4}\right), V=\left(V_{1}, V_{2}, V_{3}, V_{4}\right)$. I can assign to each $U, V \in \mathbb{R}^{4}$ elements $q_{U}, q_{V} \in \mathbb{H}$, which are given by

$$
\begin{align*}
& q_{U}=U_{1} 1+U_{2} \mathbf{i}+U_{3} \mathbf{j}+U_{4} \mathbf{k}=\left(\begin{array}{cc}
U_{1}+\imath U_{2} & U_{3}+\imath U_{4} \\
-U_{3}+\imath U_{4} & U_{1}-\imath U_{2}
\end{array}\right) \tag{573}\\
& q_{V}=V_{1} 1+V_{2} \mathbf{i}+V_{3} \mathbf{j}+V_{4} \mathbf{k}=\left(\begin{array}{cc}
V_{1}+\imath V_{2} & V_{3}+\imath V_{4} \\
-V_{3}+\imath V_{4} & V_{1}-\imath V_{2}
\end{array}\right)
\end{align*}
$$

Where the quaternion matrices $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ are given by

$$
1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{i}=\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right), \mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathbf{k}=\left(\begin{array}{ll}
0 & \imath \\
\imath & 0
\end{array}\right)
$$

A bilinear form on $\mathbb{H} \times \mathbb{H}$ can be defined as follows

$$
\begin{equation*}
\left\langle q_{U}, q_{V}\right\rangle=\frac{1}{2} \operatorname{tr}\left(q_{U} q_{V}^{*}\right), \quad \text { with } \quad q_{V}^{*}=\left(\overline{q_{V}}\right)^{T} \tag{574}
\end{equation*}
$$

From definition of q_{U}, q_{V} in (573) a straightforward calculation shows that

$$
\begin{equation*}
\left\langle q_{U}, q_{V}\right\rangle=U_{1} V_{1}+U_{2} V_{2}+U_{3} V_{3}+U_{4} V_{4}=U \cdot V \tag{575}
\end{equation*}
$$

Note that the right-hand side in (575) is invariant under the natural action of $S O(4, \mathbb{R})$ on $U, V \in \mathbb{R}^{4}$. The group $S U(2) \times S U(2)$ acts on \mathbb{H} as follows. Let me take $(\boldsymbol{g}, \boldsymbol{h}) \in S U(2) \times S U(2)$; the pair $(\boldsymbol{g}, \boldsymbol{h})$ acts on each q_{U} and q_{V} as follows

$$
\begin{align*}
& (\boldsymbol{g}, \boldsymbol{h}) \cdot q_{U}=\boldsymbol{g} q_{U} \boldsymbol{h}^{-1}=U_{1} g^{T} h^{-1}+U_{2} g^{T} \mathbf{i} h^{-1}+U_{3} g^{T} \mathbf{j} h^{-1}+U_{4} g^{T} \mathbf{k} h^{-1} \tag{576}\\
& (\boldsymbol{g}, \boldsymbol{h}) \cdot q_{V}=\boldsymbol{g} q_{V} \boldsymbol{h}^{-1}=V_{1} g^{T} h^{-1}+V_{2} g^{T} \mathbf{i} h^{-1}+V_{3} g^{T} \mathbf{j} h^{-1}+V_{4} g^{T} \mathbf{k} h^{-1}
\end{align*}
$$

Note that (g, h) and $(-g,-h)$ give the same action in 576). That is, the group $(S U(2) \times S U(2)) / \mathbb{Z}_{2}$ actually acts in \mathbb{H}. A straightforward calculation shows that

$$
\left\langle\boldsymbol{g} q_{U} \boldsymbol{h}^{-1}, \boldsymbol{g} q_{V} \boldsymbol{h}^{-1}\right\rangle=\frac{1}{2} \operatorname{tr}\left(\boldsymbol{g}\left(q_{U} q_{V}^{*}\right) \boldsymbol{g}^{-1}\right)
$$

Since the trace is invariant under a similarity transformation, then the following equality is fulfilled

$$
\begin{equation*}
\left\langle\boldsymbol{g} q_{U} \boldsymbol{h}^{-1}, \boldsymbol{g} q_{V} \boldsymbol{h}^{-1}\right\rangle=\left\langle q_{U}, q_{V}\right\rangle=U \cdot V \tag{577}
\end{equation*}
$$

Equality (577) suggests that the natural action of $S O(4, \mathbb{R})$ on $U, V \in \mathbb{R}^{4}$ can be realized from the action of $S U(2) \times S U(2) / \mathbb{Z}_{2}$ on \mathbb{H}.

Let me take $Z, W \in \mathbb{C}^{4}, Z=\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right), W=\left(W_{1}, W_{2}, W_{3}, W_{4}\right)$ and assign to each Z, W a 2 by 2 complex matrix as follows

$$
\begin{gather*}
q_{Z}=Z_{1} 1+Z_{2} \mathbf{i}+Z_{3} \mathbf{j}+Z_{4} \mathbf{k}, \quad \text { i.e } \quad q_{Z}=\left(\begin{array}{cc}
Z_{1}+\imath Z_{2} & Z_{3}+\imath Z_{4} \\
-Z_{3}+\imath Z_{4} & Z_{1}-\imath Z_{2}
\end{array}\right) \tag{578}\\
q_{W}=W_{1} 1+W_{2} \mathbf{i}+W_{3} \mathbf{j}+W_{3} \mathbf{k}, \quad \text { i.e } \quad q_{W}=\left(\begin{array}{cc}
W_{1}+\imath W_{2} & W_{3}+\imath W_{4} \\
-W_{3}+\imath z_{4} & W_{1}-\imath W_{2}
\end{array}\right) .
\end{gather*}
$$

A quadric form can be defined as follows

$$
\left\langle q_{Z}, q_{W}\right\rangle=\frac{1}{2} \operatorname{trace}\left(q_{Z} \omega q_{W}^{T} \omega^{-1}\right) \quad \text { with } \quad \omega=\left(\begin{array}{cc}
0 & -1 \tag{579}\\
1 & 0
\end{array}\right)
$$

From definition of q_{Z}, q_{W} in (578) a straightforward calculation shows that

$$
\begin{equation*}
\left\langle q_{Z}, q_{W}\right\rangle=Z_{1} W_{1}+Z_{2} W_{2}+Z_{3} W_{3}+Z_{4} W_{4} \tag{580}
\end{equation*}
$$

Note that the right-hand side of 580 is invariant under the natural action of $S O(4, \mathbb{C})$ on $Z, W \in \mathbb{C}^{4}$. Let me take $(g, h) \in S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$; the action of (g, h) on each q_{Z} and q_{W} is given as follows

$$
\begin{align*}
(g, h) \cdot q_{Z} & =g^{T} q_{Z} h^{-1}=Z_{1} g^{T} h^{-1}+Z_{2} g^{T} \mathbf{i} h^{-1}+Z_{3} g^{T} \mathbf{j} h^{-1}+Z_{4} g^{T} \mathbf{k} h^{-1} \tag{581}\\
(g, h) \cdot q_{W} & =g^{T} q_{W} h^{-1}=W_{1} g^{T} h^{-1}+W_{2} g^{T} \mathbf{i} h^{-1}+W_{3} g^{T} \mathbf{j} h^{-1}+W_{4} g^{T} \mathbf{k} h^{-1}
\end{align*}
$$

Note that $(-g,-h)$ and (g, h) give the same action in (581). That is, the group $(S L(2, \mathbb{C}) \times S L(2, \mathbb{C})) / Z_{2}$ acts on q_{Z}, q_{W}. A straightforward calculation shows that the following equality is fulfilled

$$
\left\langle g^{T} q_{Z} h^{-1}, g^{T} q_{W} h^{-1}\right\rangle=\frac{1}{2} \operatorname{trace}\left(g^{T}\left(q_{Z} \omega q_{W}^{T} \omega^{-1}\right)\left(g^{T}\right)^{-1}\right)
$$

The trace is invariant under a similarity transformation, hence

$$
\begin{equation*}
\left\langle g^{T} q_{Z} h^{-1}, g^{T} q_{W} h^{-1}\right\rangle=\frac{1}{2} \operatorname{trace}\left(q_{Z} \omega q_{W}^{T} \omega^{-1}\right)=\left\langle q_{W}, q_{Z}\right\rangle \tag{582}
\end{equation*}
$$

The equality 582 suggests that the natural action of $S O(4, \mathbb{C})$ on $Z, W \in \mathbb{C}^{4}$ can be realized from the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ on the matrices q_{Z}, q_{W}.

Let me adapt the above construction to the case of the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$. This action is given by

$$
\begin{equation*}
\tilde{\Psi}_{g, h}: \dot{\mathbb{C}}^{4} \longrightarrow \dot{\mathbb{C}}^{4}, \quad \Psi_{g, h}(z)=\left(g\binom{z_{1}}{z_{2}}, h^{-1}\binom{z_{3}}{z_{4}}\right), \quad g, h \in S L(2, \mathbb{C}) \tag{583}
\end{equation*}
$$

The goal is to define an action of $S O(4, \mathbb{C})$ on \mathbb{C}^{4} coming from the action in $\sqrt[583]{ }$). The key point is to realize the action of $S L(2, C) \times S L(2, \mathbb{C})$ on each matrix $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ as in (581) from the action in 583 . This can be done by considering the following coordinates $\alpha_{j}(z), j=1,2,3,4$ which are given by

$$
\begin{align*}
& \alpha_{1}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{z_{3}}{z_{4}}, \alpha_{2}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right)\binom{z_{3}}{z_{4}} \tag{584}\\
& \alpha_{3}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{z_{3}}{z_{4}}, \alpha_{4}(z)=\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right)\binom{z_{3}}{z_{4}},
\end{align*}
$$

The action in 583 induces a transformation on the functions $\alpha_{j}(z)$ as follows

$$
\begin{gather*}
\alpha_{1}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}}, \alpha_{2}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}} \tag{585}\\
\alpha_{3}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}}, \alpha_{4}\left(\tilde{\Psi}_{g, h}(z)\right)=\left(z_{1}, z_{2}\right) g^{T}\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right) h^{-1}\binom{z_{3}}{z_{4}} .
\end{gather*}
$$

Note that in (585) the matrices $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ are transformed as in equation (581). A computation shows that the following equality holds

$$
\alpha_{j}\left(\tilde{\Psi}_{-g,-h}(z)\right)=\alpha_{j}\left(\tilde{\Psi}_{g, h}(z)\right)=r_{j k} \alpha_{k}(z), \quad j, k=1, \ldots, 4, \quad r_{j k} \in \mathbb{C}
$$

Now the coefficients $r_{j k}$ will be determined. The matrices $(g, h) \in S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ are given by

$$
g=\left(\begin{array}{ll}
g_{1} & g_{2} \tag{586}\\
g_{3} & g_{4}
\end{array}\right), \quad h=\left(\begin{array}{ll}
h_{1} & h_{2} \\
h_{3} & h_{4}
\end{array}\right) .
$$

For $\alpha_{1}(z)$ the following is obtained

$$
\alpha_{1}\left(\tilde{\Psi}_{g, h}(z)\right)=r_{11} \alpha_{1}+r_{12} \alpha_{2}+r_{13} \alpha_{3}+r_{14} \alpha_{4}
$$

where the coefficients $r_{11}, r_{12}, r_{13}, r_{14}$ are given by

$$
\begin{align*}
& r_{11}=\frac{1}{2}\left[\left(g_{1} h_{4}-g_{3} h_{3}\right)+\left(g_{4} h_{1}-g_{2} h_{2}\right)\right], r_{12}=\frac{1}{2 \imath}\left[\left(g_{1} h_{4}-g_{3} h_{3}\right)-\left(g_{4} h_{1}-g_{2} h_{2}\right)\right] \tag{587}\\
& r_{13}=\frac{1}{2}\left[\left(g_{3} h_{1}-g_{1} h_{2}\right)-\left(g_{2} h_{4}-g_{4} h_{3}\right)\right], r_{14}=\frac{1}{2 \imath}\left[\left(g_{3} h_{1}-g_{1} h_{2}\right)+\left(g_{2} h_{4}-g_{4} h_{3}\right)\right]
\end{align*}
$$

For $\alpha_{2}(z)$ the following is obtained

$$
\alpha_{2}\left(\tilde{\Psi}_{g, h}(z)\right)=r_{21} \alpha_{1}+r_{22} \alpha_{2}+r_{23} \alpha_{3}+r_{24} \alpha_{4}
$$

where the coefficients $r_{21}, r_{22}, r_{23}, r_{24}$ are given by

$$
\begin{align*}
r_{21} & =\frac{\imath}{2}\left[\left(g_{1} h_{4}+g_{3} h_{3}\right)-\left(g_{2} h_{2}+g_{4} h_{1}\right)\right], r_{22} \tag{588}
\end{align*}=\frac{1}{2}\left[\left(g_{1} h_{4}+g_{3} h_{3}\right)+\left(g_{2} h_{2}+g_{4} h_{1}\right)\right] .
$$

For $\alpha_{3}(z)$ the following is obtained

$$
\alpha_{3}\left(\tilde{\Psi}_{g, h}(z)\right)=r_{31} \alpha_{1}+r_{32} \alpha_{2}+r_{33} \alpha_{3}+r_{34} \alpha_{4}
$$

where the coefficients $r_{31}, r_{32}, r_{33}, r_{34}$ are given by

$$
\begin{align*}
r_{31} & =\frac{1}{2}\left[\left(g_{2} h_{1}+g_{4} h_{2}\right)-\left(g_{1} h_{3}+g_{3} h_{4}\right)\right], r_{32}=\frac{1}{2 \imath}\left[\left(g_{2} h_{1}+g_{4} h_{2}\right)+\left(g_{1} h_{3}+g_{3} h_{4}\right)\right] \tag{589}\\
r_{33} & =\frac{1}{2}\left[\left(g_{1} h_{1}+g_{3} h_{2}\right)+\left(g_{2} h_{3}+g_{4} h_{4}\right)\right], r_{34}=\frac{1}{2 \imath}\left[\left(g_{1} h_{1}+g_{3} h_{2}\right)-\left(g_{2} h_{3}+g_{4} h_{4}\right)\right] .
\end{align*}
$$

For $\alpha_{4}(z)$ the following is obtained

$$
\alpha_{4}\left(\tilde{\Psi}_{g, h}(z)\right)=r_{41} \alpha_{1}+r_{42} \alpha_{2}+r_{43} \alpha_{3}+r_{44} \alpha_{4}
$$

and the coefficients $r_{41}, r_{42}, r_{43}, r_{44}$ are given by

$$
\begin{align*}
& r_{41}=\frac{\imath}{2}\left[\left(g_{3} h_{4}-g_{1} h_{3}\right)+\left(g_{2} h_{1}-g_{4} h_{2}\right)\right], r_{42}=\frac{1}{2}\left[\left(g_{3} h_{4}-g_{1} h_{3}\right)-\left(g_{2} h_{1}-g_{4} h_{2}\right)\right] \tag{590}\\
& \left.r_{43}=\frac{\imath}{2}\left[g_{1} h_{1}-g_{3} h_{2}\right)-\left(g_{4} h_{4}-g_{2} h_{3}\right)\right], r_{44}=\frac{1}{2}\left[\left(g_{1} h_{1}-g_{3} h_{2}\right)+\left(g_{4} h_{4}-g_{2} h_{3}\right)\right]
\end{align*}
$$

From above calculations the action in (583) induces a transformation on the vector $\alpha(z) \in \dot{\mathbb{C}}^{4}$ as follows
(591)
$\alpha\left(\tilde{\Psi}_{-g,-h}(z)\right)=\alpha\left(\tilde{\Psi}_{g, h}(z)\right)=R \cdot \alpha(z)=\left(\begin{array}{llll}r_{11} & r_{12} & r_{13} & r_{14} \\ r_{21} & r_{22} & r_{23} & r_{24} \\ r_{31} & r_{32} & r_{33} & r_{43} \\ r_{41} & r_{42} & r_{43} & r_{44}\end{array}\right)\left(\begin{array}{l}\alpha_{1}(z) \\ \alpha_{2}(z) \\ \alpha_{3}(z) \\ \alpha_{4}(z)\end{array}\right) \quad$ with $R \in M_{4 \times 4}(\mathbb{C})$.
Taking the explicit expressions of $r_{k j}$ in (587), (588), 589, (590) and using that $\operatorname{det}(g)=$ $\operatorname{det}(h)=1$, a straightforward calculation shows that the matrix $R \in M_{4 \times 4}(\mathbb{C})$ in (591) satisfies equality $R R^{T}=\mathbb{I}$. Hence, R belongs to $S O(4, \mathbb{C})$. Moreover, the equality (591) indicates that the action of $S O(4, \mathbb{C})$ on $\alpha(z) \in \mathbb{C}^{4}$ is realized from the action of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ on $\dot{\mathbb{C}}^{4}$.

The following map can be defined from above calculations

$$
\begin{align*}
\tilde{\rho}_{4,3} & : S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}^{2} \longrightarrow S O(4,(\mathbb{C})) \tag{592}\\
& :(g, h) \longrightarrow . \tilde{\rho}_{4,3}(-g,-h)=\tilde{\rho}_{4,3}(g, h)=R
\end{align*}
$$

where the matrix R is defined in equation (591). The map $\tilde{\rho}_{4,3}$ gives the identification of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2}$ with $S O(4, \mathbb{C})$. In subsequent paragraphs, I show that $\left.\tilde{\rho}_{4,3}\right)$ is a homomorphism of groups.

Let me consider the action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ given by

$$
\begin{equation*}
\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}: \mathbb{C}^{4} \longrightarrow \mathbb{C}^{4}, \quad \tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)=\left(\boldsymbol{g}\binom{z_{1}}{z_{2}}, \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}}\right), \quad \boldsymbol{g}, \boldsymbol{h} \in S U(2) \times S U(2) . \tag{593}
\end{equation*}
$$

By doing a similar procedure as above calculations, the action of $S O(4, \mathbb{R})$ on $\dot{\mathbb{C}}^{4}$ is obtained from the action of $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$. The action in 593 induces a transformation on the functions $\alpha_{j}(z), j=1,2,3,4$ in (584) as follows

$$
\begin{align*}
& \alpha_{1}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}}, \alpha_{2}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}} \tag{594}\\
& \alpha_{3}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}}, \alpha_{4}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\left(z_{1}, z_{2}\right) \boldsymbol{g}^{T}\left(\begin{array}{cc}
0 & \imath \\
\imath & 0
\end{array}\right) \boldsymbol{h}^{-1}\binom{z_{3}}{z_{4}} .
\end{align*}
$$

A computation shows that

$$
\begin{equation*}
\alpha_{j}\left(\tilde{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}(z)\right)=\alpha_{j}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U}_{k j} \alpha_{k}(z), \quad j, k=1,2,3,4, \quad \boldsymbol{U}_{k j} \in \mathbb{R} . \tag{595}
\end{equation*}
$$

Now the coefficients $\boldsymbol{U}_{k j}$ will be determined. The matrices $\boldsymbol{g}, \boldsymbol{h}$ in $S U(2) \times S U(2)$ are written as

$$
\boldsymbol{g}=\left(\begin{array}{cc}
\lambda_{1} & -\bar{\lambda}_{2} \\
\lambda_{2} & \bar{\lambda}_{1}
\end{array}\right), \quad \boldsymbol{h}=\left(\begin{array}{cc}
\gamma_{1} & -\bar{\gamma}_{2} \\
\gamma_{2} & \bar{\gamma}_{1}
\end{array}\right), \text { with }\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=1 \text { and }\left|\gamma_{1}\right|^{2}+\left|\gamma_{2}\right|^{2}=1 .
$$

For $\alpha_{1}(z)$ the following is obtained

$$
\alpha_{1}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U}_{11} \alpha_{1}+\boldsymbol{U}_{12} \alpha_{2}+\boldsymbol{U}_{13} \alpha_{3}+\boldsymbol{U}_{14} \alpha_{4},
$$

where the coefficients $\boldsymbol{U}_{11}, \boldsymbol{U}_{12}, \boldsymbol{U}_{13}, \boldsymbol{U}_{14}$ are given by

$$
\begin{align*}
& \boldsymbol{U}_{11}=\frac{1}{2}\left[\left(\lambda_{1} \bar{\gamma}_{1}+\bar{\lambda}_{1} \gamma_{1}\right)-\left(\lambda_{2} \gamma_{2}+\bar{\lambda}_{2} \bar{\gamma}_{2}\right)\right], \boldsymbol{U}_{12}=\frac{1}{2 \imath}\left[\left(\lambda_{1} \bar{\gamma}_{1}-\bar{\lambda}_{1} \gamma_{1}\right)+\left(\lambda_{2} \gamma_{2}-\bar{\lambda}_{2} \bar{\gamma}_{2}\right)\right] \tag{596}\\
& \boldsymbol{U}_{13}=-\frac{1}{2}\left[\left(\bar{\lambda}_{2} \bar{\gamma}_{1}+\lambda_{2} \gamma_{1}\right)+\left(\bar{\lambda}_{1} \gamma_{2}+\lambda_{1} \bar{\gamma}_{2}\right)\right], \boldsymbol{U}_{14}=\frac{1}{2 \imath}\left[\left(\lambda_{1} \bar{\gamma}_{2}-\bar{\lambda}_{1} \gamma_{2}\right)+\left(\lambda_{2} \gamma_{1}-\bar{\lambda}_{2} \bar{\gamma}_{1}\right)\right] .
\end{align*}
$$

For $\alpha_{2}(z)$ the following is obtained

$$
\alpha_{2}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U}_{21} \alpha_{1}+\boldsymbol{U}_{22} \alpha_{2}+\boldsymbol{U}_{23} \alpha_{3}+\boldsymbol{U}_{24} \alpha_{4},
$$

where the coefficients $\boldsymbol{U}_{21}, \boldsymbol{U}_{22}, \boldsymbol{U}_{23}, \boldsymbol{U}_{24}$ are given by

$$
\begin{align*}
& \boldsymbol{U}_{21}=\frac{\imath}{2}\left[\left(\lambda_{1} \bar{\gamma}_{1}-\bar{\lambda}_{1} \gamma_{1}\right)+\left(\lambda_{2} \gamma_{2}-\bar{\lambda}_{2} \bar{\gamma}_{2}\right)\right], \boldsymbol{U}_{22}=\frac{1}{2}\left[\left(\lambda_{2} \gamma_{2}+\bar{\lambda}_{2} \bar{\gamma}_{2}\right)+\left(\bar{\lambda}_{1} \gamma_{1}+\lambda_{1} \bar{\gamma}_{1}\right)\right] \tag{597}\\
& \boldsymbol{U}_{23}=\frac{\imath}{2}\left[\left(\lambda_{2} \gamma_{1}-\bar{\lambda} \bar{\gamma}_{1}\right)+\left(\gamma_{2} \bar{\lambda}_{1}-\lambda_{1} \bar{\gamma}_{2}\right)\right], \boldsymbol{U}_{24}=\frac{1}{2}\left[\left(\gamma_{2} \bar{\lambda}_{1}+\lambda_{1} \bar{\gamma}_{2}\right)-\left(\lambda_{2} \gamma_{1}+\bar{\lambda}_{2} \bar{\gamma}_{1}\right)\right] .
\end{align*}
$$

For $\alpha_{3}(z)$ the following is obtained,

$$
\alpha_{3}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U}_{31} \alpha_{1}+\boldsymbol{U}_{32} \alpha_{2}+\boldsymbol{U}_{33} \alpha_{3}+\boldsymbol{U}_{34} \alpha_{4}
$$

and the coefficients $\boldsymbol{U}_{31}, \boldsymbol{U}_{32}, \boldsymbol{U}_{33}, \boldsymbol{U}_{24}$ are given by

$$
\begin{align*}
& \text { 98) } \boldsymbol{U}_{31}=-\frac{1}{2}\left[\left(\bar{\lambda}_{2} \gamma_{1}+\lambda_{2} \bar{\gamma}_{1}\right)+\left(\lambda_{1} \gamma_{2}+\bar{\lambda}_{1} \bar{\gamma}_{2}\right)\right], \boldsymbol{U}_{32}=\frac{1}{2 \imath}\left[\left(\gamma_{1} \bar{\lambda}_{2}-\lambda_{2} \bar{\gamma}_{1}\right)+\left(\bar{\lambda}_{1} \bar{\gamma}_{2}-\lambda_{1} \gamma_{2}\right)\right] \tag{598}\\
& \boldsymbol{U}_{33}=\frac{1}{2}\left[\left(\lambda_{2} \bar{\gamma}_{2}+\bar{\lambda}_{2} \gamma_{2}\right)-\left(\lambda_{1} \gamma_{1}+\bar{\lambda}_{1} \bar{\gamma}_{1}\right)\right], \boldsymbol{U}_{34}=\frac{1}{2 \imath}\left[\left(\lambda_{1} \gamma_{1}-\bar{\lambda}_{1} \bar{\gamma}_{1}\right)+\left(\bar{\lambda}_{2} \gamma_{2}-\lambda_{2} \bar{\gamma}_{2}\right)\right] .
\end{align*}
$$

For $\alpha_{4}(z)$ the following is obtained

$$
\alpha_{4}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U}_{41} \alpha_{1}+\boldsymbol{U}_{42} \alpha_{2}+\boldsymbol{U}_{43} \alpha_{3}+\boldsymbol{U}_{44} \alpha_{4},
$$

and the coefficients $\boldsymbol{U}_{41}, \boldsymbol{U}_{42}, \boldsymbol{U}_{43}, \boldsymbol{U}_{44}$ are given by

$$
\begin{align*}
\boldsymbol{U}_{41} & =\frac{\imath}{2}\left[\left(\lambda_{2} \bar{\gamma}_{1}-\bar{\lambda}_{2} \gamma_{1}\right)+\left(\bar{\lambda}_{1} \bar{\gamma}_{2}-\lambda_{1} \gamma_{2}\right)\right], \boldsymbol{U}_{42} \tag{599}
\end{align*}=\frac{1}{2}\left[\left(\lambda_{2} \bar{\gamma}_{1}+\bar{\lambda}_{2} \gamma_{1}\right)+\left(\bar{\lambda}_{1} \bar{\gamma}_{2}+\lambda_{1} \gamma_{2}\right)\right] .
$$

The action defined in 594 induces a transformation on $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \in \dot{\mathbb{C}}^{4}$ as follows

$$
\alpha\left(\tilde{\Psi}_{-\boldsymbol{g},-\boldsymbol{h}}(z)\right)=\alpha\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U} \cdot \alpha(z)=\left(\begin{array}{llll}
\boldsymbol{U}_{11} & \boldsymbol{U}_{12} & \boldsymbol{U}_{13} & \boldsymbol{U}_{14} \tag{600}\\
\boldsymbol{U}_{21} & \boldsymbol{U}_{22} & \boldsymbol{U}_{23} & \boldsymbol{U}_{24} \\
\boldsymbol{U}_{31} & \boldsymbol{U}_{32} & \boldsymbol{U}_{33} & \boldsymbol{U}_{34} \\
\boldsymbol{U}_{41} & \boldsymbol{U}_{42} & \boldsymbol{U}_{43} & \boldsymbol{U}_{44}
\end{array}\right)\left(\begin{array}{l}
\alpha_{1}(z) \\
\alpha_{2}(z) \\
\alpha_{3}(z) \\
\alpha_{4}(z)
\end{array}\right)
$$

Note that all the entries of matrix \boldsymbol{U} in $(\sqrt{600})$ are real numbers. Taking the explicit expression of $\boldsymbol{U}_{j k}, j, k=1, \ldots, 4$ in (596), (597), (598), (599), a straightforward long calculation shows that $\boldsymbol{U}^{T} \boldsymbol{U}=\mathbb{I}$. Hence, an element $\boldsymbol{U} \in O(4, \mathbb{R})$ can be associated to each $\boldsymbol{g}, \boldsymbol{h} \in S U(2) \times S U(2)$. The group $S U(2) \times S U(2)$ is connected. The connected component of $O(4, \mathbb{R})$ is $S O(4, \mathbb{R})$, so the matrix \boldsymbol{U} is actually an element in $S O(4, \mathbb{R})$. From above calculations the following map can be defined

$$
\begin{equation*}
\tilde{\boldsymbol{\rho}}_{4,3}: S U(2) \times S U(2) / \mathbb{Z}_{2} \longrightarrow S O(4, \mathbb{R}), \quad \tilde{\boldsymbol{\rho}}_{4,3}(-\boldsymbol{g},-\boldsymbol{h})=\tilde{\boldsymbol{\rho}}_{4,3}(\boldsymbol{g}, \boldsymbol{h})=\boldsymbol{U} \tag{601}
\end{equation*}
$$

where the matrix U is defined in 600 . The map $\tilde{\boldsymbol{\rho}}_{4,3}$ gives the identification $S U(2) \times S U(2) / \mathbb{Z}_{2}$ with $S O(4, \mathbb{R})$.

On the other hand, taking the explicit expressions of $\alpha_{j}(z), j=1,2,3,4$ in (584) a straightforward calculation shows that the following equality holds

$$
\alpha_{1}^{2}(z)+\alpha_{2}^{2}(z)+\alpha_{3}^{2}(z)+\alpha_{4}^{2}(z)=0, \quad \text { i.e } \alpha(z) \in Q_{3} \quad \forall z \in \dot{\mathbb{C}}^{4}
$$

Thus from equalities in (584) the following map can be defined

$$
\begin{equation*}
\rho_{(4,3)}: \dot{\mathbb{C}}^{4} \longrightarrow Q_{3}, \rho_{(4,3)}(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \alpha_{3}(z), \alpha_{4}(z)\right)=\alpha \tag{602}
\end{equation*}
$$

where the functions $\alpha_{j}(z), j=1,2,3,4$ are given by

$$
\begin{align*}
& \alpha_{1}(z)=\left(z_{1} z_{3}+z_{2} z_{4}\right), \quad \alpha_{2}(z)=\imath\left(z_{1} z_{3}-z_{2} z_{4}\right) \\
& \alpha_{3}(z)=\left(z_{1} z_{4}-z_{2} z_{3}\right), \quad \alpha_{4}(z)=\imath\left(z_{1} z_{4}+z_{2} z_{3}\right) \tag{603}
\end{align*}
$$

It follows from equalities (591) and 600 that the map $\rho_{(4,3)}$ intertwines the actions of $S L(2, \mathbb{C}) \times$ $S L(2, \mathbb{C})$ and $S U(2) \times S U(2)$ on $\dot{\mathbb{C}}^{4}$ with the actions of $S O(4, \mathbb{C})$ and $S O(4, \mathbb{R})$ on \dot{Q}_{3} respectively. That is,

$$
\begin{gathered}
\rho_{(4,3)}\left(\Psi_{g, h}(z)\right)=R \cdot \alpha, \quad(g, h) \in S L(2, \mathbb{C}) \times S L(2, \mathbb{C}), \quad R \in S O(4, \mathbb{C}) \\
\rho_{(4,3)}\left(\tilde{\Psi}_{\boldsymbol{g}, \boldsymbol{h}}(z)\right)=\boldsymbol{U} \cdot \alpha, \quad(\boldsymbol{g}, \boldsymbol{h}) \in S U(2) \times S U(2), \quad \boldsymbol{U} \in S O(4, \mathbb{R}) .
\end{gathered}
$$

The equalities 591, 600) indicate that the null quadric Q_{3} is the space where the natural actions of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}_{2} \cong S O(4, \mathbb{C})$ and $S U(2) \times S U(2) / \mathbb{Z}_{2} \cong S O(4, \mathbb{R})$ can be realized from the actions in (583) and (593) respectively.

Now I will show that the map $\tilde{\rho}_{4,3}: S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}^{2} \longrightarrow S O(4,(\mathbb{C}))$ is a homomorphism of groups. The identity element in $S L(2, \mathbb{C})$ is denoted as $\mathbb{I}=e$. Consider a curve $\gamma(t)=(g(t), h(t)) \in S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ such that $\gamma(0)=(g(0), h(0))=(e, e)$ and $\dot{\gamma}(0)=(\dot{g}(0), \dot{h}(0)) \in \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C})$. That is,

$$
\begin{align*}
& \operatorname{tr} \dot{g}(0)=\operatorname{tr}\left(\begin{array}{ll}
\dot{g}_{1}(0) & \dot{g}_{2}(0) \\
\dot{g}_{3}(0) & \dot{g}_{4}(0)
\end{array}\right)=\dot{g}_{1}(0)+\dot{g}_{4}(0)=0 \\
& \operatorname{tr} \dot{h}(0)=\operatorname{tr}\left(\begin{array}{ll}
\dot{h}_{1}(0) & \dot{h}_{2}(0) \\
\dot{h}_{3}(0) & \dot{h}_{4}(0)
\end{array}\right)=\dot{h}_{1}(0)+\dot{h}_{4}(0)=0 \tag{604}
\end{align*}
$$

Let me consider the following map
$T_{(e, e)} \tilde{\rho}_{4,3}: \mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C}), \longrightarrow \mathfrak{s o}(4, \mathbb{C})$ given by $\left.\frac{d}{d t}\right|_{t=0} \tilde{\rho}_{4,3}(g(t), h(t))=\left.\frac{d}{d t}\right|_{t=0} R(t)=\dot{R}(0)$.
I will show that $T_{(e, e)} \tilde{\rho}_{4,3}$ is an isomorphism of Lie algebras.
If the matrix $\dot{R}(0)$ belongs to $\mathfrak{s o}(4, \mathbb{C})$, then the matrix $\dot{R}(0)$ is skew-symmetric. That is, $\dot{r}_{j k}(0)=-\dot{r}_{k j}(0)$, and the diagonal elements satisfy $\dot{r}_{j j}(0)=0$ for $j, k=1, \ldots, 4$.

The expressions for $r_{11}, r_{22}, r_{33}, r_{44}$ in (587), (588), (589) (590) are given by

$$
\begin{align*}
r_{11} & =\frac{1}{2}\left[\left(g_{1}(t) h_{4}(t)-g_{3}(t) h_{3}(t)\right)+\left(g_{4}(t) h_{1}(t)-g_{2}(t) h_{2}(t)\right)\right] \tag{605}\\
r_{22} & =\frac{1}{2}\left[\left(g_{1}(t) h_{4}(t)+g_{3}(t) h_{3}(t)\right)+\left(g_{2}(t) h_{2}(t)+g_{4}(t) h_{1}(t)\right)\right] \\
r_{33} & =\frac{1}{2}\left[\left(g_{1}(t) h_{1}(t)+g_{3}(t) h_{2}(t)\right)+\left(g_{2}(t) h_{3}(t)+g_{4}(t) h_{4}(t)\right)\right] \\
r_{44} & =\frac{1}{2}\left[\left(g_{1}(t) h_{1}(t)-g_{3}(t) h_{2}(t)\right)+\left(g_{4}(t) h_{4}(t)-g_{2}(t) h_{3}(t)\right)\right] .
\end{align*}
$$

The derivative at $t=0$ is calculated in equation 605 . The following is obtained

$$
\dot{r}_{j j}(0)=\frac{1}{2}[\operatorname{tr} \dot{g}(0)+\operatorname{tr} \dot{h}(0)]=0, \quad \text { for } j=1, \ldots, 4
$$

Consider elements out of the diagonal, for instance

$$
\begin{aligned}
r_{24}(t) & =\frac{1}{2}\left[\left(g_{2}(t) h_{4}(t)+g_{4}(t) h_{3}(t)\right)-\left(g_{1}(t) h_{2}(t)+g_{3}(t) h_{1}(t)\right)\right] \\
r_{42}(t) & =\frac{1}{2}\left[\left(g_{3}(t) h_{4}(t)-g_{1}(t) h_{3}(t)\right)-\left(g_{2}(t) h_{1}(t)-g_{4}(t) h_{2}(t)\right)\right] .
\end{aligned}
$$

The derivative at $t=0$ is calculated for $r_{24}(t), r_{42}(t)$. The following is obtained

$$
\begin{aligned}
\dot{r}_{24}(0) & =\frac{1}{2}\left[\left(\dot{g}_{2}(0)+\dot{h}_{3}(0)\right)-\left(\dot{h}_{2}(0)+\dot{g}_{3}(0)\right)\right] \\
\dot{r}_{42}(0) & =\frac{1}{2}\left[\left(\dot{g}_{3}(0)+\dot{h}_{2}(0)\right)-\left(\dot{h}_{3}(0)+\dot{g}_{2}(0)\right)\right]
\end{aligned}
$$

Clearly $\dot{r}_{24}(0)=-\dot{r}_{42}(0)$. For the rest of elements out of diagonal, take their explicit expression in (587), 588, (589), 590) and calculate the derivative at $t=0$. The following equality holds

$$
\dot{r}_{j k}(0)=-\dot{r}_{k j}(0), \quad \text { for } j, k=1, \ldots, 4
$$

Therefore, $\dot{R}(0)$ belongs to $\mathfrak{s o}(4, \mathbb{C})$.
The kernel of map $T_{(e, e)} \tilde{\rho}_{4,3}$ is defined as follows,

$$
\operatorname{Ker} T_{(e, e)} \tilde{\rho}_{4,3}=\{(\dot{g}(0), \dot{h}(0)) \in \mathfrak{s l l}(2, \mathbb{C}) \times \mathfrak{s l l}(2, \mathbb{C}) \mid \dot{R}(0)=0\}
$$

Equation $\dot{R}(0)=0$ means that elements out of the diagonal must be equal to zero. That is

$$
\begin{align*}
& \dot{r}_{12}(0)=\left[\left(\dot{g}_{1}(0)+\dot{h}_{4}(0)\right)-\left(\dot{g}_{4}(0)+\dot{h}_{1}(0)\right)\right]=0 \tag{606}\\
& \dot{r}_{14}(0)=\left[\left(\dot{g}_{3}(0)-\dot{h}_{2}(0)\right)+\left(\dot{g}_{2}(0)-\dot{h}_{3}(0)\right)\right]=0 \\
& \dot{r}_{24}(0)=\left[\left(\dot{g}_{2}(0)+\dot{h}_{3}(0)\right)-\left(\dot{g}_{3}(0)+\dot{h}_{2}(0)\right)\right]=0 \\
& \dot{r}_{13}(0)=\left[\left(\dot{g}_{3}(0)-\dot{h}_{2}(0)\right)-\left(\dot{g}_{2}(0)-\dot{h}_{3}(0)\right)\right]=0 \\
& \dot{r}_{23}(0)=\left[\left(\dot{h}_{2}(0)+\dot{g}_{3}(0)\right)-\left(\dot{g}_{2}(0)+\dot{h}_{3}(0)\right)\right]=0 \\
& \dot{r}_{34}(0)=\left[\left(\dot{g}_{1}(0)+\dot{h}_{1}(0)\right)-\left(\dot{g}_{4}(0)+\dot{h}_{4}(0)\right)\right]=0 .
\end{align*}
$$

The equations in (606) must hold simultaneously. Consider the following equations

$$
\begin{align*}
\dot{r}_{13}(0)+\dot{r}_{23}(0) & =\dot{g}_{3}(0)+\dot{h}_{3}(0)
\end{align*}=0 .
$$

$$
\begin{align*}
& \dot{r}_{13}(0)-\dot{r}_{23}(0)=\dot{g}_{2}(0)+\dot{h}_{2}(0)=0 \\
& \dot{r}_{14}(0)+\dot{r}_{24}(0)=\dot{g}_{2}(0)-\dot{h}_{2}(0)=0 \tag{608}
\end{align*}
$$

The systems in (607) and 608 can be written in matrix form as follows

$$
\left(\begin{array}{cc}
1 & 1 \tag{609}\\
1 & -1
\end{array}\right)\binom{\dot{g}_{2}(0)}{\dot{h}_{2}(0)}=\binom{0}{0}, \quad\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\dot{g}_{3}(0)}{\dot{h}_{3}(0)}=\binom{0}{0} .
$$

Since the matrix of the system in 609) has determinant different than zero, then the only solution of these systems is given by

$$
\binom{\dot{g}_{3}(0)}{\dot{h}_{3}(0)}=\binom{0}{0}, \quad \text { and } \quad\binom{\dot{g}_{2}(0)}{\dot{h}_{2}(0)}=\binom{0}{0} .
$$

Now the following equations are considered

$$
\begin{array}{ccc}
\dot{r}_{12}(0)+\dot{r}_{34}(0)=\dot{g}_{1}(0)-\dot{g}_{4}(0)=0 & \text { along with } & \dot{g}_{1}(0)+\dot{g}_{4}(0)=0 \\
\dot{r}_{12}(0)-\dot{r}_{34}(0)=\dot{h}_{4}(0)-\dot{h}_{1}(0)=0 & \text { along with } & \dot{h}_{1}(0)+\dot{h}_{4}(0)=0
\end{array}
$$

These equations can be written in matrix form as follows

$$
\left(\begin{array}{cc}
1 & 1 \tag{610}\\
1 & -1
\end{array}\right)\binom{\dot{g}_{1}(0)}{\dot{g}_{1}(0)}=\binom{0}{0} \quad\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\dot{g}_{1}(0)}{\dot{g}_{4}(0)}=\binom{0}{0} .
$$

Since the determinant of the matrix in 610 is different than zero, then the only solution of these systems is the trivial solution. That is,

$$
\binom{\dot{g}_{1}(0)}{\dot{g}_{4}(0)}=\binom{0}{0}, \quad \text { and } \quad\binom{\dot{h}_{1}(0)}{\dot{h}_{4}(0)}=\binom{0}{0} .
$$

The above computations show that $\operatorname{Ker} T_{(e, e)} \tilde{\rho}_{(4,3)}$ is only the matrix $0 \in \mathfrak{s l}(2, \mathbb{C})$. Therefore the map

$$
T_{(e, e)} \tilde{\rho}_{(4,3)}: \mathfrak{s l}(4, \mathbb{C}) \times \mathfrak{s l}(4, \mathbb{C}) \longrightarrow \mathfrak{s o}(4, \mathbb{C})
$$

is an isomorphism of Lie algebras. Since $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ is simply connected, then it follows from theorem 3.7 in [21] that $\tilde{\rho}_{4,3}$ is the unique homomorphism relating $T_{(e, e)} \tilde{\rho}_{(4,3)}$ and $\tilde{\rho}_{4,3}$ in the following way

$$
\begin{equation*}
\tilde{\rho}_{(4,3)}\left(\mathrm{e}^{\dot{h}(0)}, \mathrm{e}^{\dot{g}(0)}\right)=\mathrm{e}^{T_{(e, e)} \tilde{\rho}_{(4,3)}(\dot{h}(0), \dot{g}(0))} \tag{611}
\end{equation*}
$$

The equation (611) implies that $\operatorname{Ker} \tilde{\rho}_{(4,3)}$ is a discrete normal subgroup of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$, but a discrete normal subgroup of a connected group is automatically central, and the center of $S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$ is $\{\mathbb{I},-\mathbb{I}\}$. Thus, $\operatorname{Ker} \tilde{\rho}_{(4,3)}=\{\mathbb{I},-\mathbb{I}\}$.

The map $\tilde{\rho}_{(4,3)}$ is bijective. It follows from the fact that $S O(4, \mathbb{C})$ is a connected group and each element $R \in S O(4, \mathbb{C})$ can be written as

$$
R=\mathrm{e}^{r_{1}} \mathrm{e}^{r_{2}} \ldots \mathrm{e}^{r_{N}}, \quad \text { with } r_{j} \in \mathfrak{s o}(4, \mathbb{C}), j=1, \ldots, N
$$

Since $T_{(e, e)} \tilde{\rho}_{(4,3)}$ is surjective, then $R \in S O(4, \mathbb{C})$ can be written as

$$
R=\mathrm{e}^{T_{(e, e)} \tilde{\rho}_{(4,3)}\left(\dot{g}_{1}(0), \dot{h}_{1}(0)\right)} \mathrm{e}^{T_{(e, e)} \tilde{\rho}_{(4,3)}\left(\dot{g}_{2}(0), \dot{h}_{2}(0)\right)} \ldots \mathrm{e}^{T_{(e, e)} \tilde{\rho}_{(4,3)}\left(\dot{g}_{N}(0), \dot{h}_{N}(0)\right)} .
$$

Hence $\tilde{\rho}_{4,3}$ maps onto $S O(4, \mathbb{C})$.
It can be proved that $\tilde{\boldsymbol{\rho}}_{4,3}: S U(2) \times S U(2) / \mathbb{Z}_{2} \longrightarrow S O(4, \mathbb{R})$ is a homomorphism of groups by doing a similar procedure as in the case of $\tilde{\rho}_{4,3}: S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) / \mathbb{Z}^{2} \longrightarrow S O(4,(\mathbb{C}))$.

In the next paragraphs, I will construct the action of $S O(6, \mathbb{C})$ on \mathbb{C}^{6} from the action of $S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$.

The exterior product $\bigwedge^{2} \mathbb{C}^{4}$ is a six-complex dimensional space. Elements of $\bigwedge^{2} \mathbb{C}^{4}$ are written as $x \wedge y$ with $x=\left(z_{1}, z_{3}, z_{5}, z_{7}\right), y=\left(z_{2}, z_{4}, z_{6}, z_{8}\right)$. Consider the standard basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of \mathbb{C}^{4} so that an element $x \wedge y$ can be written in coordinates as follows

$$
\begin{align*}
x \wedge y=\left(z_{1} z_{4}-z_{2} z_{3}\right) e_{1} \wedge e_{2}+\left(z_{1} z_{6}-z_{2} z_{5}\right) e_{1} \wedge e_{3}+\left(z_{1} z_{8}-z_{2} z_{7}\right) e_{1} \wedge e_{4}+ \tag{612}\\
\left(z_{3} z_{6}-z_{4} z_{5}\right) e_{2} \wedge e_{3}+\left(z_{3} z_{8}-z_{4} z_{7}\right) e_{2} \wedge e_{4}+\left(z_{5} z_{8}-z_{6} z_{7}\right) e_{3} \wedge e_{4}
\end{align*}
$$

Consider $x, y, u, v \in \mathbb{C}^{4}$ and $x \wedge y, u \wedge v \in \bigwedge^{2} \mathbb{C}^{4}$. A bilinear form in $\bigwedge^{2} \mathbb{C}^{4}$ can be defined as follows

$$
\begin{align*}
\langle,\rangle & : \bigwedge_{\wedge}^{2} \mathbb{C}^{4} \times \bigwedge^{2} \mathbb{C}^{4} \longrightarrow \mathbb{C} \\
& :((x \wedge y),(v \wedge w)) \longrightarrow\langle x \wedge y, v \wedge w\rangle=x \wedge y \wedge v \wedge w \tag{613}
\end{align*}
$$

The vectors $u, v \in \mathbb{C}^{4}$ are given by

$$
\begin{equation*}
u=w_{1} e_{1}+w_{3} e_{2}+w_{5} e_{3}+w_{7} e_{4}, \quad v=w_{2} e_{1}+w_{4} e_{2}+w_{6} e_{3}+w_{8} e_{4} \tag{614}
\end{equation*}
$$

The term $x \wedge y \wedge v \wedge w$ in coordinates is given by

$$
x \wedge y \wedge u \wedge v=(x, y, u, v) e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}
$$

where (x, y, u, v) is a homogeneous function given by

$$
\begin{aligned}
(x, y, u, v)=2\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)\left(w_{5} w_{8}-w_{6} w_{7}\right)-\left(z_{1} z_{6}-z_{2} z_{6}\right)(\right. & \left.w_{3} w_{8}-w_{4} u_{7}\right)+ \\
& \left.\left(z_{3} z_{6}-z_{4} z_{5}\right)\left(w_{1} w_{8}-w_{2} w_{7}\right)\right]
\end{aligned}
$$

The bilinear form defined in (613) is non-degenerate. Let me consider the canonical basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and calculate the following

$$
\begin{equation*}
\left\langle e_{1} \wedge e_{2}, e_{3} \wedge e_{4}\right\rangle=1,\left\langle e_{1} \wedge e_{3}, e_{2} \wedge e_{4}\right\rangle=-1,\left\langle e_{1} \wedge e_{4}, e_{2} \wedge e_{3}\right\rangle=1 \tag{615}
\end{equation*}
$$

The equalities in (615) imply that for all $v \wedge w$ the bilinear form in 613 is equal to zero if only if $x \wedge y=0$. That is, $x=\lambda y$, with $\lambda \in \mathbb{C}^{*}$.

If $\{i, j\} \cap\{k, l\} \neq \emptyset$, then the following equation holds $\left\langle e_{i} \wedge e_{j}, e_{k} \wedge e_{l}\right\rangle=0$. This equation implies that an orthogonal basis can be taken in $\bigwedge^{2} \mathbb{C}^{4}$ regarding the bilinear form defined in 613). This orthogonal basis is given by

$$
\begin{array}{ll}
\gamma_{1}=\frac{1}{\sqrt{2}}\left[\left(e_{1} \wedge e_{2}\right)+\left(e_{3} \wedge e_{4}\right)\right], & \gamma_{2}=\frac{1}{\sqrt{2}}\left[\left(e_{1} \wedge e_{4}\right)-\left(e_{2} \wedge e_{3}\right)\right] \tag{616}\\
\gamma_{3}=\frac{1}{\sqrt{2}}\left[\left(e_{1} \wedge e_{3}\right)+\left(e_{2} \wedge e_{4}\right)\right], & \gamma_{4}=\frac{1}{\sqrt{2}}\left[\left(e_{1} \wedge e_{3}\right)-\left(e_{2} \wedge e_{4}\right)\right] \\
\gamma_{5}=\frac{1}{\sqrt{2}}\left[\left(e_{1} \wedge e_{4}\right)+\left(e_{2} \wedge e_{3}\right)\right], & \gamma_{6}=\frac{1}{\sqrt{2}}\left[\left(e_{1} \wedge e_{2}\right)-\left(e_{3} \wedge e_{4}\right)\right] .
\end{array}
$$

The set $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}$ satisfies the following equalities

$$
\left\langle\gamma_{1,2}, \gamma_{1,2}\right\rangle= \pm 1,\left\langle\gamma_{3,4}, \gamma_{3,4}\right\rangle=\mp 1,\left\langle\gamma_{5,6}, \gamma_{5,6}\right\rangle= \pm 1
$$

Regarding the basis $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}$, the term $x \wedge y$ can be written as follows

$$
\begin{equation*}
x \wedge y=\frac{1}{\sqrt{2}}\left[\gamma_{1} f_{1}(z)+\ldots+\gamma_{6} f_{6}(z)\right] \tag{617}
\end{equation*}
$$

where the functions $f_{j}(z), j=1, \ldots, 6$ are given by

$$
\begin{align*}
& f_{1}(z)=\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)+\left(z_{5} z_{8}-z_{6} z_{7}\right)\right], \quad f_{2}(z)=\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)-\left(z_{3} z_{6}-z_{4} z_{5}\right)\right] \\
& f_{3}(z)=\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)+\left(z_{3} z_{8}-z_{4} z_{7}\right)\right], \quad f_{4}(z)=\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)-\left(z_{3} z_{8}-z_{4} z_{7}\right)\right] \\
& f_{5}(z)=\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)+\left(z_{3} z_{6}-z_{4} z_{5}\right)\right], \quad f_{6}(z)=\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right] \tag{618}
\end{align*}
$$

The term $u \wedge v$ can be written as follows

$$
\begin{equation*}
v \wedge w=\frac{1}{\sqrt{2}}\left[\gamma_{1} g_{1}(w)+\ldots \gamma_{6} g_{6}(w)\right] \tag{619}
\end{equation*}
$$

where the functios $g_{j}(u), j=1, \ldots, 6$ are given by

$$
\begin{align*}
& g_{1}(w)=\left[\left(w_{1} w_{4}-w_{2} w_{3}\right)+\left(w_{5} w_{8}-w_{6} w_{7}\right)\right], \tag{620}\\
& g_{3}(z)\left.\left.g_{2}(z)=\left[\left(w_{1} w_{6}-w_{2} w_{5}\right)+\left(w_{3} w_{8}-w_{4} w_{7}\right)\right], w_{2} w_{7}\right)-\left(w_{3} w_{6}-w_{4} w_{5}\right)\right] \\
& g_{5}(z)=\left[\left(w_{4}(z)=\left[\left(w_{1} w_{8}-w_{2} w_{7}\right)+\left(w_{3} w_{2} w_{5}\right)-\left(w_{3} w_{4} w_{5}\right)\right],\right.\right. \\
& g_{6}(z)=\left[\left(w_{1} w_{4}-w_{2} w_{3} w_{3}\right)-\left(w_{5} w_{8}-w_{6} w_{7}\right)\right] .
\end{align*}
$$

I can associate to each $x \wedge y \in \bigwedge^{2} \mathbb{C}^{4}$ a vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{6}\right) \in \mathbb{C}^{6}$, where the components $\alpha_{j}, j=1,2, \ldots, 6$ are given by

$$
\begin{array}{lll}
\alpha_{1}(z)=f_{1}(z), & \alpha_{2}=\imath f_{2}(z), & \alpha_{3}(z)=\imath f_{3}(z) \tag{621}\\
\alpha_{4}(z)=f_{4}(z), & \alpha_{5}=f_{5}(z), & \alpha_{6}(z)=\imath f_{6}(z) .
\end{array}
$$

The vector $\beta=\left(\beta_{1}, \ldots, \beta_{6}\right) \in \mathbb{C}^{6}$ is associated to $u \wedge v \in \Lambda \mathbb{C}^{4}$, where the components $\beta_{j}, j=1, \ldots, 6$ are given by

$$
\begin{array}{lll}
\beta_{1}(u)=g_{1}(w), & \beta_{2}(u)=\imath g_{2}(w), & \beta_{3}(u)=\imath g_{3}(w) \tag{622}\\
\beta_{4}(u)=g_{4}(w), & \beta_{5}(u)=g_{5}(w), & \beta_{6}(u)=\imath g_{6}(w) .
\end{array}
$$

Taking $\beta=\left(\beta_{1}, \ldots, \beta_{6}\right) \in \mathbb{C}^{6}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{6}\right) \in \mathbb{C}^{6}$ as in 621, (622) a straightforward computation shows that the following equality holds

$$
(x, y, u, v)=\left(\alpha_{1}, \ldots, \alpha_{6}\right) \mathbb{I}\left(\begin{array}{c}
\beta_{1} \tag{623}\\
\vdots \\
\beta_{6}
\end{array}\right) \text { with } \mathbb{I} \text { the identity in } M_{6 \times 6}(\mathbb{C}) .
$$

The action of $S L(4, \mathbb{C})$ on $\bigwedge^{2} \mathbb{C}^{4}$ is defined as follows

$$
\begin{equation*}
\Psi_{h}: \bigwedge^{2} \mathbb{C}^{4} \longrightarrow \bigwedge^{2} \mathbb{C}^{4}, \quad \Psi_{h}(x \wedge y)=h x \wedge h y, \quad h \in S L(4, \mathbb{C}) \tag{624}
\end{equation*}
$$

Lemma 15. The bilinear form defined by

$$
\begin{aligned}
\langle,\rangle & : \bigwedge^{2} \mathbb{C}^{4} \times \bigwedge^{2} \mathbb{C}^{4} \longrightarrow \mathbb{C} \\
& :(x \wedge y, v \wedge w) \longrightarrow\langle x \wedge y, v \wedge w\rangle=x \wedge y \wedge v \wedge w
\end{aligned}
$$

is invariant under the action defined in 624).
Proof. A straightforward computation shows

$$
\begin{aligned}
\langle h x \wedge h y, h v \wedge h w\rangle & =h x \wedge h y \wedge h v \wedge h w \\
\langle h x \wedge h y, h v \wedge h w\rangle & =\operatorname{det}(h)(x \wedge y \wedge v \wedge w) \\
\langle h x \wedge h y, h v \wedge h w\rangle & =x \wedge y \wedge v \wedge w .
\end{aligned}
$$

The action in (624) induces a transformation on the vectors $\alpha, \beta \in \mathbb{C}^{6}$. Take $x, y, u, v \in \mathbb{C}^{4}$ and $h \in S L(4, \mathbb{C})$. Consider $x^{\prime} \wedge y^{\prime}, u^{\prime} \wedge v^{\prime}$ in $\wedge^{2} \mathbb{C}^{4}$ with $x^{\prime}=h x, y^{\prime}=h y, u^{\prime}=h u, v^{\prime}=h v$, which can be written as

$$
\begin{aligned}
x^{\prime} \wedge y^{\prime} & =\frac{1}{\sqrt{2}}\left[\gamma_{1} f_{1}^{\prime}(z)+\gamma_{2} f_{2}^{\prime}(z)+\gamma_{3} f_{3}^{\prime}(z)+\gamma_{4} f_{4}^{\prime}(z)+\gamma_{5} f_{5}^{\prime}(z)+\gamma_{6} f_{6}^{\prime}(z)\right] \\
u^{\prime} \wedge v^{\prime} & =\frac{1}{\sqrt{2}}\left[\gamma_{1} g_{1}^{\prime}(w)+\gamma_{2} g_{2}^{\prime}(w)+\gamma_{3} g_{3}^{\prime}(w)+\gamma_{4} g_{4}^{\prime}(w)+\gamma_{5} g_{5}^{\prime}(w)+\gamma_{6} g_{6}^{\prime}(w)\right]
\end{aligned}
$$

From equation (621) the vector $\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}^{\prime}, \alpha_{5}^{\prime}, \alpha_{6}^{\prime}\right)$ is associated to $x^{\prime} \wedge y^{\prime}$, and from equation (622) the vector $\beta^{\prime}=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}, \beta_{4}^{\prime}, \beta_{4}^{\prime}, \beta_{5}^{\prime}, \beta_{6}^{\prime}\right)$ is associated to $u^{\prime} \wedge v^{\prime}$. It follows from equality 623 and lemma 15 that the following equality holds

$$
\left(x^{\prime}, y^{\prime}, u^{\prime}, v^{\prime}\right)=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{6}^{\prime}\right) \mathbb{I}\left(\begin{array}{c}
\beta_{1}^{\prime} \tag{625}\\
\vdots \\
\beta_{6}^{\prime}
\end{array}\right)=\left(\alpha_{1}, \ldots, \alpha_{6}\right) \mathbb{I}\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{6}
\end{array}\right) \text { with } \mathbb{I} \text { the identity in } M_{6 \times 6}(\mathbb{C})
$$

Equality 625 implies that $\alpha^{\prime}, \beta^{\prime} \in \mathbb{C}^{6}$ can be written as $\alpha^{\prime}=R \cdot \alpha(z)$ and $\beta^{\prime}=R \cdot \beta(w)$ with R an element in $S O(6, \mathbb{C})$.

An action of $S U(4)$ on $\bigwedge^{2} \mathbb{C}^{4}$ can be defined as follows

$$
\begin{equation*}
\tilde{\Psi}_{A}: \bigwedge^{2} \mathbb{C}^{4} \longrightarrow \bigwedge^{2} \mathbb{C}^{4}, \quad \tilde{\Psi}_{A}(x \wedge y)=A x \wedge A y, \quad A \in S U(4) \tag{626}
\end{equation*}
$$

The bilinear form in 613) is invariant under the action of $S U(4)$ in 626). This can be proved by doing the same procedure of the proof of lemma 15 .

$$
\begin{equation*}
\langle A x \wedge A y, A u \wedge A v\rangle=\langle x, y, u, v\rangle, \quad A \in S U(4) \tag{627}
\end{equation*}
$$

The action of $S U(4)$ on $\bigwedge^{2} \mathbb{C}^{4}$ defined in 626 induces a transformation on the vectors $\alpha, \beta \in$ \mathbb{C}^{6}. That is, consider $x, y, u, v \in \mathbb{C}^{4}$ and let $\tilde{x}=A x, \tilde{y}=A y, \tilde{u}=A \tilde{\sim}^{\sim} u, \tilde{v}=A v$ with $A \in S U(4)$. The vectors $\tilde{x} \wedge \tilde{y}$ and $\tilde{u} \wedge \tilde{v}$ are associated to $\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{6}\right)$ and $\tilde{\beta}=\left(\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{6}\right)$ respectively. It follows from equality (627) that

$$
(\tilde{x}, \tilde{y}, \tilde{u}, \tilde{v})=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{6}\right) \mathbb{I}\left(\begin{array}{c}
\tilde{\beta}_{1} \tag{628}\\
\vdots \\
\tilde{\beta}_{6}
\end{array}\right)=\left(\alpha_{1}, \ldots, \alpha_{6}\right) \mathbb{I}\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{6}
\end{array}\right) \text { with } \mathbb{I} \text { the identity in } M_{6 \times 6}(\mathbb{C})
$$

Equality 627 implies that $\tilde{\alpha}, \tilde{\beta}$ can be written as $\tilde{\alpha}=U \cdot \alpha(z)$ and $\tilde{\beta}=U \cdot \beta(w)$ with $U \in S O(6, \mathbb{R})$. I will construct the matrices $R \in S O(6, \mathbb{C})$ and $U \in S O(6, \mathbb{R})$ in the following paragraphs.

Let me identify $\mathbb{C}^{8}=\mathbb{C}^{4} \times \mathbb{C}^{4}$ by writing $z=(x, y)$ with $x=\left(z_{1}, z_{3}, z_{5}, z_{7}\right), y=$ $\left(z_{2}, z_{4}, z_{6}, z_{8}\right)$. A natural action of $S L(4, \mathbb{C})$ on \mathbb{C}^{8} is defined as follows

$$
\begin{equation*}
\Upsilon_{h}: \mathbb{C}^{8} \longrightarrow \mathbb{C}^{8}, \quad \Upsilon_{h}(z)=(h x, h y), h \in S L(4, \mathbb{C}) \tag{629}
\end{equation*}
$$

A natural action of $S U(4)$ on \mathbb{C}^{8} is defined as follows

$$
\begin{equation*}
\tilde{\Upsilon}_{A}: \mathbb{C}^{8} \longrightarrow \mathbb{C}^{8}, \quad \tilde{\Upsilon}_{A}(z)=(A x, A y), A \in S U(4) \tag{630}
\end{equation*}
$$

The functions $\alpha_{j}(z), j=1, \ldots, 6$ in (621) can be written as follows

$$
\alpha(z)_{j}=\left(z_{1}, z_{3}, z_{5}, z_{7}\right) M_{j}\left(\begin{array}{c}
z_{2} \tag{631}\\
z_{4} \\
z_{6} \\
z_{8}
\end{array}\right), \quad M_{j} \in M_{4 \times 4}(\mathbb{C}), j=1, \ldots 6
$$

The explicit form of each matrix M_{j} is given by

$$
\begin{array}{cl}
M_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), & M_{2}=\left(\begin{array}{cccc}
0 & i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right), \quad M_{3}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
i \\
-i & 0 & 0 \\
0 \\
0 & -i & 0
\end{array}\right) \\
M_{4}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), & M_{5}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \quad M_{6}=\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) .
\end{array}
$$

In the space of matrices M_{j} it can be defined a inner product as follows

$$
\begin{equation*}
\left\langle M_{j}, M_{k}\right\rangle=\frac{1}{4} \operatorname{tr}\left(M_{j} M_{k}^{T}+M_{k} M_{j}^{T}\right), \quad \text { and } \quad\left\langle M_{j}, M_{k}\right\rangle=\delta_{j k} \mathbb{I} \tag{632}
\end{equation*}
$$

The action in 629 induces a transformation on the function $\alpha_{j}(z)$ as follows

$$
\alpha_{j}^{\prime}=\alpha_{j}\left(\Upsilon_{-h}(z)\right)=\alpha_{j}\left(\Upsilon_{h}(z)\right)=\left(z_{1}, z_{3}, z_{5}, z_{7}\right) h^{T} M_{j} h\left(\begin{array}{c}
z_{2} \tag{633}\\
z_{4} \\
z_{6} \\
z_{8}
\end{array}\right), \quad j=1, \ldots, 6
$$

Since the matrix $h^{T} M_{j} h$ is antisymmetric, then it can be written in terms of the matrices M_{j}. Namely,

$$
\begin{equation*}
h^{T} M_{j} h=R_{j k} M_{k}, \quad \text { with } \quad R_{j k} \in \mathbb{C}, \quad j, k=1, \ldots 6 \tag{634}
\end{equation*}
$$

Equation in (633) can be written as follows

$$
\begin{aligned}
\alpha_{j}\left(\Upsilon_{h}(z)\right) & =R_{j k}\left(z_{1}, z_{3}, z_{5}, z_{7}\right) M_{k}\left(\begin{array}{l}
z_{2} \\
z_{4} \\
z_{6} \\
z_{8}
\end{array}\right) \\
\alpha_{j}^{\prime} & =R_{j k} \alpha_{k}(z), \quad j, k=1, \ldots, 6
\end{aligned}
$$

The matrix $h \in S L(4, \mathbb{C})$ is given by

$$
h=\left(\begin{array}{llll}
h_{11} & h_{12} & h_{13} & h_{14} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
h_{31} & h_{32} & h_{33} & h_{34} \\
h_{41} & h_{42} & h_{43} & h_{44}
\end{array}\right) .
$$

Let me now compute the coefficients $R_{j k}$ in 634. The matrix $h^{T} M_{1} h$ can be written as

$$
h^{T} M_{1} h=\left(\begin{array}{llll}
h_{11} & h_{21} & h_{31} & h_{41} \\
h_{12} & h_{22} & h_{32} & h_{42} \\
h_{13} & h_{23} & h_{33} & h_{43} \\
h_{14} & h_{24} & h_{34} & h_{44}
\end{array}\right)\left(\begin{array}{cccc}
h_{21} & h_{22} & h_{23} & h_{24} \\
-h_{11} & -h_{12} & -h_{13} & -h_{14} \\
h_{41} & h_{42} & h_{43} & h_{44} \\
-h_{31} & -h_{32} & -h_{33} & -h_{34}
\end{array}\right)=R_{11} M_{1}+\ldots+R_{16} M_{6}
$$

The coefficients $R_{11}, R_{12}, R_{13}, R_{14}, R_{15}, R_{16}$ are given by

$$
\begin{align*}
R_{11} & =\frac{1}{2}\left[\left(h_{11} h_{22}-h_{12} h_{21}+h_{31} h_{42}-h_{41} h_{32}\right)+\left(h_{13} h_{24}-h_{14} h_{23}+h_{33} h_{44}-h_{34} h_{43}\right)\right] \tag{635}\\
R_{12} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{22}-h_{12} h_{21}+h_{31} h_{42}-h_{41} h_{32}\right)-\left(h_{13} h_{24}-h_{14} h_{23}+h_{33} h_{44}-h_{34} h_{43}\right)\right] \\
R_{13} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{23}-h_{13} h_{21}+h_{31} h_{43}-h_{41} h_{33}\right)+\left(h_{12} h_{24}-h_{14} h_{22}+h_{32} h_{44}-h_{42} h_{34}\right)\right] \\
R_{14} & =\frac{1}{2}\left[\left(h_{11} h_{23}-h_{13} h_{21}+h_{31} h_{43}-h_{41} h_{33}\right)-\left(h_{12} h_{24}-h_{14} h_{22}+h_{32} h_{44}-h_{42} h_{34}\right)\right] \\
R_{15} & =\frac{1}{2}\left[\left(h_{11} h_{24}-h_{21} h_{14}+h_{31} h_{44}-h_{34} h_{41}\right)+\left(h_{12} h_{23}-h_{22} h_{13}+h_{32} h_{43}-h_{42} h_{33}\right)\right] \\
R_{16} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{24}-h_{21} h_{14}+h_{31} h_{44}-h_{34} h_{41}\right)-\left(h_{12} h_{23}-h_{22} h_{13}+h_{32} h_{43}-h_{42} h_{33}\right)\right] .
\end{align*}
$$

The matrix $h^{T} M_{2} h$ can be written as

$$
h^{T} M_{2} h=\imath\left(\begin{array}{llll}
h_{11} & h_{21} & h_{31} & h_{41} \\
h_{12} & h_{22} & h_{32} & h_{42} \\
h_{13} & h_{23} & h_{33} & h_{43} \\
h_{14} & h_{24} & h_{34} & h_{44}
\end{array}\right)\left(\begin{array}{cccc}
h_{21} & h_{22} & h_{23} & h_{24} \\
-h_{11} & -h_{12} & -h_{13} & -h_{14} \\
-h_{41} & -h_{42} & -h_{43} & -h_{44} \\
h_{31} & h_{32} & h_{33} & h_{34}
\end{array}\right)=R_{21} M_{1}+\ldots+R_{6} M_{26}
$$

The coefficients $R_{21}, R_{22}, R_{23}, R_{24}, R_{25}, R_{26}$ are given by

$$
\begin{align*}
R_{21} & =\frac{\imath}{2}\left[\left(h_{11} h_{22}-h_{21} h_{12}-h_{31} h_{42}+h_{41} h_{32}\right)+\left(h_{13} h_{24}-h_{14} h_{23}-h_{33} h_{44}+h_{43} h_{34}\right)\right] \tag{636}\\
R_{22} & =\frac{1}{2}\left[\left(h_{11} h_{22}-h_{21} h_{12}-h_{31} h_{42}+h_{41} h_{32}\right)-\left(h_{13} h_{24}-h_{14} h_{23}-h_{33} h_{44}+h_{43} h_{34}\right)\right] \\
R_{23} & =\frac{1}{2}\left[\left(h_{11} h_{23}-h_{13} h_{21}-h_{43} h_{31}+h_{41} h_{33}\right)+\left(h_{12} h_{24}-h_{14} h_{22}-h_{32} h_{44}+h_{34} h_{42}\right)\right] \\
R_{24} & =\frac{\imath}{2}\left[\left(h_{11} h_{23}-h_{13} h_{21}-h_{43} h_{31}+h_{41} h_{33}\right)-\left(h_{12} h_{24}-h_{14} h_{22}-h_{32} h_{44}+h_{34} h_{42}\right)\right] \\
R_{25} & =\frac{\imath}{2}\left[\left(h_{11} h_{24}-h_{14} h_{21}-h_{44} h_{31}+h_{41} h_{34}\right)+\left(h_{23} h_{12}-h_{13} h_{22}-h_{43} h_{32}+h_{33} h_{42}\right)\right] \\
R_{26} & =\frac{1}{2}\left[\left(h_{11} h_{24}-h_{14} h_{21}-h_{44} h_{31}+h_{41} h_{34}\right)-\left(h_{23} h_{12}-h_{13} h_{22}-h_{43} h_{32}+h_{33} h_{42}\right)\right] .
\end{align*}
$$

The matrix $h^{T} M_{3} h$ can be written as

$$
h^{T} M_{3} h=\imath\left(\begin{array}{cccc}
h_{11} & h_{21} & h_{31} & h_{41} \\
h_{12} & h_{22} & h_{32} & h_{42} \\
h_{13} & h_{23} & h_{33} & h_{43} \\
h_{14} & h_{24} & h_{34} & h_{44}
\end{array}\right)\left(\begin{array}{cccc}
h_{31} & h_{32} & h_{33} & h_{34} \\
h_{41} & h_{42} & h_{43} & h_{44} \\
-h_{11} & -h_{12} & -h_{13} & -h_{14} \\
-h_{21} & -h_{22} & -h_{23} & -h_{24}
\end{array}\right)=R_{31} M_{1}+\ldots+R_{63} M_{6}
$$

The coefficients $R_{31}, R_{32}, R_{33}, R_{34}, R_{35}, R_{36}$ are given by

$$
\begin{align*}
R_{31} & =\frac{\imath}{2}\left[\left(h_{11} h_{32}+h_{21} h_{42}-h_{12} h_{31}-h_{22} h_{41}\right)+\left(h_{13} h_{34}+h_{23} h_{44}-h_{14} h_{33}-h_{24} h_{43}\right)\right] \tag{637}\\
R_{32} & =\frac{1}{2}\left[\left(h_{11} h_{32}+h_{21} h_{42}-h_{12} h_{31}-h_{22} h_{41}\right)-\left(h_{13} h_{34}+h_{23} h_{44}-h_{14} h_{33}-h_{24} h_{43}\right)\right] \\
R_{33} & =\frac{1}{2}\left[\left(h_{11} h_{33}+h_{21} h_{43}-h_{13} h_{31}-h_{23} h_{41}\right)+\left(h_{34} h_{12}+h_{22} h_{44}-h_{14} h_{32}-h_{24} h_{42}\right)\right] \\
R_{34} & =\frac{\imath}{2}\left[\left(h_{11} h_{33}+h_{21} h_{43}-h_{13} h_{31}-h_{23} h_{41}\right)-\left(h_{34} h_{12}+h_{22} h_{44}-h_{14} h_{32}-h_{24} h_{42}\right)\right] \\
R_{35} & =\frac{\imath}{2}\left[\left(h_{11} h_{34}+h_{21} h_{44}-h_{14} h_{31}+h_{41} h_{24}\right)+\left(h_{12} h_{33}+h_{22} h_{43}-h_{32} h_{13}-h_{42} h_{23}\right)\right] \\
R_{36} & =\frac{1}{2}\left[\left(h_{11} h_{34}+h_{21} h_{44}-h_{14} h_{31}+h_{41} h_{24}\right)-\left(h_{12} h_{33}+h_{22} h_{43}-h_{32} h_{13}-h_{42} h_{23}\right)\right] .
\end{align*}
$$

The matrix $h^{T} M_{4} h$ can be written as

$$
h^{T} M_{4} h=\left(\begin{array}{cccc}
h_{11} & h_{21} & h_{31} & h_{41} \\
h_{12} & h_{22} & h_{32} & h_{42} \\
h_{13} & h_{23} & h_{33} & h_{43} \\
h_{14} & h_{24} & h_{34} & h_{44}
\end{array}\right)\left(\begin{array}{cccc}
h_{31} & h_{32} & h_{33} & h_{34} \\
-h_{41} & -h_{42} & -h_{43} & -h_{44} \\
-h_{11} & -h_{12} & -h_{13} & -h_{14} \\
h_{21} & h_{22} & h_{23} & h_{24}
\end{array}\right)=R_{41} M_{1}+\ldots+R_{46} M_{6}
$$

The coefficients $R_{41}, R_{42}, R_{43}, R_{44}, R_{45}, R_{46}$ are given by

$$
\begin{align*}
R_{41} & =\frac{1}{2}\left[\left(h_{11} h_{32}-h_{21} h_{42}-h_{31} h_{12}+h_{41} h_{22}\right)+\left(h_{13} h_{34}-h_{23} h_{44}-h_{33} h_{14}+h_{43} h_{24}\right)\right] \tag{638}\\
R_{42} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{32}-h_{21} h_{42}-h_{31} h_{12}+h_{41} h_{22}\right)-\left(h_{13} h_{34}-h_{23} h_{44}-h_{33} h_{14}+h_{43} h_{24}\right)\right] \\
R_{43} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{33}-h_{21} h_{43}-h_{31} h_{13}+h_{41} h_{23}\right)+\left(h_{12} h_{34}-h_{22} h_{44}-h_{32} h_{14}+h_{42} h_{24}\right)\right] \\
R_{44} & =\frac{1}{2}\left[\left(h_{11} h_{33}-h_{21} h_{43}-h_{31} h_{13}+h_{41} h_{23}\right)-\left(h_{12} h_{34}-h_{22} h_{44}-h_{32} h_{14}+h_{42} h_{24}\right)\right] \\
R_{45} & =\frac{1}{2}\left[\left(h_{11} h_{34}-h_{21} h_{44}-h_{31} h_{14}+h_{41} h_{24}\right)+\left(h_{33} h_{12}-h_{43} h_{22}-h_{13} h_{32}+h_{42} h_{23}\right)\right] \\
R_{46} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{34}-h_{21} h_{44}-h_{31} h_{14}+h_{41} h_{24}\right)-\left(h_{33} h_{12}-h_{43} h_{22}-h_{13} h_{32}+h_{42} h_{23}\right)\right] .
\end{align*}
$$

The matrix $h^{T} M_{5} h$ can be written as

$$
h^{T} M_{5} h=\left(\begin{array}{cccc}
h_{11} & h_{21} & h_{31} & h_{41} \\
h_{12} & h_{22} & h_{32} & h_{42} \\
h_{13} & h_{23} & h_{33} & h_{43} \\
h_{14} & h_{24} & h_{34} & h_{44}
\end{array}\right)\left(\begin{array}{cccc}
h_{41} & h_{42} & h_{43} & h_{44} \\
h_{31} & h_{32} & h_{33} & h_{34} \\
-h_{22} & -h_{22} & -h_{23} & -h_{42} \\
-h_{11} & -h_{12} & -h_{31} & -h_{14}
\end{array}\right)=R_{51} M_{1}+\ldots+R_{61} M_{6}
$$

The coefficients $R_{51}, R_{52}, R_{53}, R_{54}, R_{55}, R_{56}$ are given by

$$
\begin{align*}
R_{51} & =\frac{1}{2}\left[\left(h_{11} h_{42}+h_{21} h_{32}-h_{31} h_{22}-h_{13} h_{41}\right)+\left(h_{13} h_{44}+h_{34} h_{23}-h_{24} h_{33}-h_{14} h_{43}\right)\right] \tag{639}\\
R_{52} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{42}+h_{21} h_{32}-h_{31} h_{22}-h_{13} h_{41}\right)-\left(h_{13} h_{44}+h_{34} h_{23}-h_{24} h_{33}-h_{14} h_{43}\right)\right] \\
R_{55} & =\frac{1}{2}\left[\left(h_{11} h_{44}+h_{21} h_{34}-h_{31} h_{24}-h_{41} h_{14}\right)+\left(h_{12} h_{43}+h_{22} h_{33}-h_{32} h_{23}-h_{13} h_{42}\right)\right] \\
R_{56} & =\frac{1}{2 \imath}\left[\left(h_{11} h_{44}+h_{21} h_{34}-h_{31} h_{24}-h_{41} h_{14}\right)-\left(h_{12} h_{43}+h_{22} h_{33}-h_{32} h_{23}-h_{13} h_{42}\right)\right] .
\end{align*}
$$

The matrix $h^{T} M_{6} h$ can be written as

$$
h^{T} M_{6} h=\imath\left(\begin{array}{llll}
h_{11} & h_{21} & h_{31} & h_{41} \\
h_{12} & h_{22} & h_{32} & h_{42} \\
h_{13} & h_{23} & h_{33} & h_{43} \\
h_{14} & h_{24} & h_{34} & h_{44}
\end{array}\right)\left(\begin{array}{cccc}
h_{41} & h_{42} & h_{43} & h_{44} \\
-h_{31} & -h_{32} & -h_{33} & -h_{34} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
-h_{11} & -h_{12} & -h_{13} & -h_{14}
\end{array}\right)=R_{61} M_{1}+\ldots+R_{66} M_{6} .
$$

The coefficients $R_{61}, R_{62}, R_{63}, R_{64}, R_{65}, R_{66}$ are given by

$$
\begin{align*}
R_{61} & =\frac{\imath}{2}\left[\left(h_{11} h_{42}-h_{21} h_{32}+h_{22} h_{31}-h_{12} h_{41}\right)+\left(h_{13} h_{44}-h_{23} h_{34}+h_{33} h_{24}-h_{43} h_{14}\right)\right] \tag{640}\\
R_{62} & =\frac{1}{2}\left[\left(h_{11} h_{42}-h_{21} h_{32}+h_{22} h_{31}-h_{12} h_{41}\right)-\left(h_{13} h_{44}-h_{23} h_{34}+h_{33} h_{24}-h_{43} h_{14}\right)\right] \\
R_{63} & =\frac{1}{2}\left[\left(h_{11} h_{43}-h_{21} h_{33}+h_{31} h_{23}-h_{41} h_{14}\right)+\left(h_{12} h_{44}-h_{22} h_{34}+h_{32} h_{24}-h_{42} h_{14}\right)\right] \\
R_{64} & =\frac{\imath}{2}\left[\left(h_{11} h_{43}-h_{21} h_{33}+h_{31} h_{23}-h_{41} h_{14}\right)-\left(h_{12} h_{44}-h_{22} h_{34}+h_{32} h_{24}-h_{42} h_{14}\right)\right] \\
R_{65} & =\frac{\imath}{2}\left[\left(h_{11} h_{44}-h_{21} h_{34}+h_{31} h_{24}-h_{14} h_{41}\right)+\left(h_{12} h_{43}-h_{22} h_{33}+h_{32} h_{23}-h_{13} h_{42}\right)\right] \\
R_{66} & =\frac{1}{2}\left[\left(h_{11} h_{44}-h_{21} h_{34}+h_{31} h_{24}-h_{14} h_{41}\right)-\left(h_{12} h_{43}-h_{22} h_{33}+h_{32} h_{23}-h_{13} h_{42}\right)\right] .
\end{align*}
$$

The action in 629) induces a transformation on the vector $\alpha(z)=\left(\alpha_{1}(z), \ldots, \alpha_{6}(z)\right) \in \mathbb{C}^{6}$ as follows

$$
\alpha^{\prime}=\alpha\left(\Upsilon_{h}(z)\right)=R \cdot \alpha(z)=\left(\begin{array}{ccc}
R_{11} & \ldots \ldots & R_{16} \tag{641}\\
\vdots & & \vdots \\
R_{61} & \ldots \ldots & R_{66}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1}(z) \\
\vdots \\
\alpha_{6}(z)
\end{array}\right) .
$$

Taking the explicit expression of $R_{j k}, j, k=1, \ldots, 6$ in (635), (636), (637), (638), (639), (640) a straightforward long calculations show that the matrix R in (641) satisfies equality $R^{T} R=\mathbb{I}$. Hence, a matrix $R \in O(6, \mathbb{C})$ can be associated to each $h \in S L(4, \mathbb{C})$. The group $S L(4, \mathbb{C})$ is connected, so by continuity the matrix R is actually an element of $S O(6, \mathbb{C})$. Besides, the equality 641 indicates that the action of $S O(6, \mathbb{C})$ on $\dot{\mathbb{C}}^{6}$ is realized from the action of $S L(4, \mathbb{C})$ on $\dot{\mathbb{C}}^{8}$. From above calculations the following map can be defined

$$
\begin{equation*}
\tilde{\rho}_{8,5}: S L(4, \mathbb{C}) / \mathbb{Z}_{2} \longrightarrow S O(6, \mathbb{C}), \quad \tilde{\rho}_{8,5}(-h)=\tilde{\rho}_{8,5}(h)=R, \tag{642}
\end{equation*}
$$

where the matrix R is defined in (641). The map $\tilde{\rho}_{8,5}$ gives the identification of $S L(4, \mathbb{C}) / \mathbb{Z}_{2}$ with $S(6, \mathbb{C})$. I show in a later on paragraph that the map $\tilde{\rho}_{8,5}$ is a homomorphism of groups.

Consider the action of $S U(4)$ on $\dot{\mathbb{C}}^{8}$ given by

$$
\begin{equation*}
\tilde{\Upsilon}_{A}: \mathbb{C}^{8} \longrightarrow \mathbb{C}^{8}, \quad \tilde{\Upsilon}_{A}(z)=(A x, A y), A \in S U(4) \tag{643}
\end{equation*}
$$

The action of $S O(6, \mathbb{R})$ on \mathbb{C}^{6} can be constructed by doing a similar procedure as in the previous case. The action in (643) induces a transformation on $\alpha_{j}(z), j=1, \ldots, 6$ as follows

$$
\tilde{\alpha}_{j}=\alpha_{j}\left(\tilde{\Upsilon}_{-A}(z)\right)=\alpha_{j}\left(\tilde{\Upsilon}_{A}(z)\right)=\left(z_{1}, z_{3}, z_{5}, z_{7}\right) A^{T} M_{j} A\left(\begin{array}{l}
z_{2} \tag{644}\\
z_{4} \\
z_{6} \\
z_{8}
\end{array}\right)
$$

Since the matrix $A^{T} M_{j} A$ is antisymmetric, then it can be written in terms of the matrices $M_{j}, j=1, \ldots, 6$. Namely,

$$
\begin{equation*}
A^{T} M_{j} A=U_{j k} M_{k}, \quad j, k=1, \ldots, 6, \quad U_{j k} \in \mathbb{R} \tag{645}
\end{equation*}
$$

Equation in (644) can be written as

$$
\alpha_{j}\left(\tilde{\Upsilon}_{A}(z)\right)=U_{j k} \alpha_{k}(z), \quad j, k=1, \ldots, 6
$$

The matrix $A \in S U(4)$ can be written as

$$
A=\left(\begin{array}{cccc}
-\mu & \bar{\delta} & 0 & \gamma \\
\delta & \bar{\mu} & \gamma & 0 \\
0 & -\bar{\gamma} & \mu & \delta \\
-\bar{\gamma} & 0 & \bar{\delta} & -\bar{\mu}
\end{array}\right)
$$

where $\delta, \gamma, \mu \in \mathbb{C}$ satisfy $|\delta|^{2}+|\gamma|^{2}+|\mu|^{2}=1$.
Let me now compute the coefficients $U_{j k}$ in (645). The matrix $A^{T} M_{1} A$ can be written as

$$
A^{T} M_{1} A=\left(\begin{array}{cccc}
-\mu & \delta & 0 & -\bar{\gamma} \\
\bar{\delta} & \bar{\mu} & -\bar{\gamma} & 0 \\
0 & \gamma & \mu & \bar{\delta} \\
\gamma & 0 & \delta & -\bar{\mu}
\end{array}\right)\left(\begin{array}{cccc}
\delta & \bar{\mu} & \gamma & 0 \\
\mu & -\bar{\delta} & 0 & -\gamma \\
-\bar{\gamma} & 0 & \bar{\delta} & -\bar{\mu} \\
0 & \bar{\gamma} & -\mu & -\delta
\end{array}\right)=U_{11} M_{1}+\ldots+U_{16} M_{6}
$$

The coefficients $U_{11}, U_{12}, U_{13}, U_{14}, U_{15}, U_{16}$ are given by

$$
\begin{array}{rc}
U_{11}=-\frac{1}{2}\left[\gamma^{2}+\bar{\gamma}^{2}+2\left(|\mu|^{2}+|\delta|^{2}\right)\right], & U_{12}=\frac{1}{2 \imath}\left(\gamma^{2}-\bar{\gamma}^{2}\right) \tag{646}\\
U_{13}=\frac{1}{2 \imath}[(\bar{\gamma} \mu-\gamma \bar{\mu})+(\bar{\gamma} \bar{\mu}-\gamma \mu)], & U_{14}=\frac{1}{2}[(\gamma \bar{\mu}+\bar{\gamma} \mu)+(\bar{\gamma} \bar{\mu}+\gamma \mu)] \\
U_{15}=\frac{1}{2}[(\gamma \bar{\delta}+\bar{\gamma} \delta)-(\gamma \delta+\bar{\gamma} \bar{\delta})], & U_{16}=\frac{1}{2 \imath}[(\bar{\gamma} \bar{\delta}-\gamma \delta)-(\bar{\gamma} \delta-\gamma \bar{\delta})] .
\end{array}
$$

The matrix $A^{T} M_{2} A$ can be written as

$$
A^{T} M_{2} A=\left(\begin{array}{cccc}
-\mu & \delta & 0 & -\bar{\gamma} \\
\bar{\delta} & \bar{\mu} & -\bar{\gamma} & 0 \\
0 & \gamma & \mu & \bar{\delta} \\
\gamma & 0 & \delta & -\bar{\mu}
\end{array}\right)\left(\begin{array}{cccc}
\imath \delta & \imath \bar{\mu} & \imath \gamma & 0 \\
\imath \mu & -\imath \bar{\delta} & 0 & -\imath \gamma \\
\imath \bar{\gamma} & 0 & -\imath \bar{\delta} & \imath \bar{\mu} \\
0 & -\imath \bar{\gamma} & \imath \mu & \imath \delta
\end{array}\right)=A_{21} M_{1}+\ldots t A_{26} M_{6}
$$

The coefficients $U_{21}, U_{22}, U_{23}, U_{24}, U_{25}, U_{26}$ are given by

$$
\begin{array}{rr}
U_{21}=\frac{\imath}{2}\left(\bar{\gamma}^{2}-\gamma^{2}\right), & U_{22}=\frac{1}{2}\left[\left(\gamma^{2}+\bar{\gamma}^{2}\right)-2\left(|\mu|^{2}+|\delta|^{2}\right)\right] \tag{647}\\
U_{23}=-\frac{1}{2}[(\gamma \mu+\bar{\gamma} \bar{\mu})+(\bar{\gamma} \mu+\gamma \bar{\mu})], & U_{24}=\frac{\imath}{2}[(\gamma \bar{\mu}-\bar{\gamma} \mu)+(\bar{\gamma} \bar{\mu}-\gamma \mu)] \\
U_{25}=\frac{\imath}{2}[(\gamma \bar{\delta}-\bar{\gamma} \delta)+(\bar{\gamma} \bar{\delta}-\gamma \delta)], & U_{26}=-\frac{1}{2}[(\gamma \delta+\bar{\gamma} \bar{\delta})+(\bar{\gamma} \delta+\gamma \bar{\delta})]
\end{array}
$$

The matrix $A^{T} M_{3} A$ can be written as

$$
A^{T} M_{3} A=\left(\begin{array}{cccc}
-\mu & \delta & 0 & -\bar{\gamma} \\
\bar{\delta} & \bar{\mu} & -\bar{\gamma} & 0 \\
0 & \gamma & \mu & \bar{\delta} \\
\gamma & 0 & \delta & -\bar{\mu}
\end{array}\right)\left(\begin{array}{cccc}
0 & -\imath \bar{\gamma} & \imath \mu & \imath \delta \\
-\imath \bar{\gamma} & 0 & \imath \bar{\delta} & -\imath \bar{\mu} \\
\imath \mu & -\imath \bar{\delta} & 0 & -\imath \gamma \\
-\imath \delta & -\imath \bar{\mu} & -\imath \gamma & 0
\end{array}\right)=A_{31} M_{1}+\ldots+A_{36} M_{6}
$$

The coefficients $U_{31}, U_{32}, U_{33}, U_{34}, U_{35}, U_{36}$ are given by

$$
\begin{array}{rc}
U_{31}=\frac{\imath}{2}[(\mu \bar{\gamma}-\gamma \bar{\mu})+(\bar{\gamma} \bar{\mu}-\gamma \mu)], & U_{32}=\frac{1}{2}[(\mu \bar{\gamma}+\gamma \bar{\mu})+(\bar{\gamma} \bar{\mu}+\gamma \mu)] \tag{648}\\
U_{33}=\frac{1}{2}\left[2\left(|\delta|^{2}+|\gamma|^{2}\right)-\left(\mu^{2}+\bar{\mu}^{2}\right)\right], & U_{34}=\frac{\imath}{2}\left(\bar{\mu}^{2}-\mu^{2}\right) \\
U_{35}=\frac{\imath}{2}[(\mu \bar{\delta}-\bar{\mu} \delta)+(\bar{\mu} \bar{\delta}-\mu \delta)], & U_{36}=-\frac{1}{2}[(\mu \bar{\delta}+\bar{\mu} \delta)+(\bar{\mu} \bar{\delta}+\mu \delta)] .
\end{array}
$$

The matrix $A^{T} M_{4} A$ can be written as

$$
A^{T} M_{4} A=\left(\begin{array}{cccc}
-\mu & \delta & 0 & -\bar{\gamma} \\
\bar{\delta} & \bar{\mu} & -\bar{\gamma} & 0 \\
0 & \gamma & \mu & \bar{\delta} \\
\gamma & 0 & \delta & -\bar{\mu}
\end{array}\right)\left(\begin{array}{cccc}
0 & -\bar{\gamma} & \mu & \delta \\
\bar{\gamma} & 0 & -\bar{\delta} & \bar{\mu} \\
\mu & -\bar{\delta} & 0 & -\gamma \\
\delta & \bar{\mu} & \gamma & 0
\end{array}\right)=U_{41} M_{1}+\ldots+U_{46} M_{6}
$$

The coefficients $U_{41}, U_{42}, U_{43}, U_{44}, U_{45}, U_{46}$ are given by

$$
\begin{align*}
U_{41}=\frac{1}{2}[(\mu \bar{\gamma}+\gamma \bar{\mu})+(\gamma \mu+\bar{\gamma} \bar{\mu})], & U_{42}=\frac{1}{2 l}[(\mu \bar{\gamma}-\gamma \bar{\mu})+(\gamma \mu-\bar{\gamma} \bar{\mu})] \tag{649}\\
U_{43}=\frac{1}{2 \imath}\left(\bar{\mu}^{2}-\mu^{2}\right), & U_{44}=-\frac{1}{2}\left[\left(\mu^{2}+\bar{\mu}^{2}\right)+2\left(|\delta|^{2}+|\mu|^{2}\right)\right] \\
U_{45}=\frac{1}{2}[(\mu \bar{\delta}+\bar{\mu} \delta)-(\mu \delta+\bar{\mu} \bar{\delta})], & U_{46}=\frac{1}{2 \imath}[(\bar{\mu} \bar{\delta}-\mu \delta)+(\bar{\mu} \delta-\mu \bar{\delta})] .
\end{align*}
$$

The matrix $A^{T} M_{5} A$ can be written as

$$
A^{T} M_{5} A=\left(\begin{array}{cccc}
-\mu & \delta & 0 & -\bar{\gamma} \\
\bar{\delta} & \bar{\mu} & -\bar{\gamma} & 0 \\
0 & \gamma & \mu & \bar{\delta} \\
\gamma & 0 & \delta & -\bar{\mu}
\end{array}\right)\left(\begin{array}{cccc}
-\bar{\gamma} & 0 & \bar{\delta} & -\bar{\mu} \\
0 & -\bar{\gamma} & \mu & \delta \\
-\delta & -\bar{\mu} & -\gamma & 0 \\
\mu & -\bar{\delta} & 0 & -\gamma
\end{array}\right)=U_{51} M_{1}+\ldots+U_{56} M_{6}
$$

The coefficients $U_{51}, U_{52}, U_{53}, U_{54}, U_{55}, U_{56}$ are given by

$$
\begin{array}{cc}
U_{51}=\frac{1}{2}[(\gamma \delta+\bar{\gamma} \bar{\delta})-(\bar{\gamma} \delta+\gamma \bar{\delta})], & U_{52}=\frac{1}{2 \imath}[(\gamma \bar{\delta}-\bar{\gamma} \delta)+(\bar{\gamma} \bar{\delta}-\gamma \delta)] \tag{650}\\
U_{53}=\frac{1}{2 \imath}[(\mu \delta-\bar{\mu} \bar{\delta})+(\bar{\mu} \delta-\mu \bar{\delta})], & U_{54}=\frac{1}{2}[(\mu \delta+\bar{\mu} \bar{\delta})-(\mu \bar{\delta}+\bar{\mu} \delta)] \\
U_{55}=\frac{1}{2}\left[\left(\delta^{2}+\bar{\delta}^{2}\right)+2\left(|\mu|^{2}+|\gamma|^{2}\right)\right], & U_{56}=\frac{1}{2 \imath}\left(\delta^{2}-\bar{\delta}^{2}\right) .
\end{array}
$$

The matrix $A^{T} M_{6} A$ can be written as

$$
A^{T} M_{6} A=\left(\begin{array}{cccc}
-\mu & \delta & 0 & -\bar{\gamma} \\
\bar{\delta} & \bar{\mu} & -\bar{\gamma} & 0 \\
0 & \gamma & \mu & \bar{\delta} \\
\gamma & 0 & \delta & -\bar{\mu}
\end{array}\right)\left(\begin{array}{cccc}
-\imath \bar{\gamma} & 0 & \imath \bar{\delta} & -\imath \bar{\mu} \\
0 & \imath \bar{\gamma} & -\imath \mu & -\imath \delta \\
\imath \delta & \imath \bar{\mu} & \imath \gamma & 0 \\
\imath \mu & -\imath \bar{\delta} & 0 & -\imath \gamma
\end{array}\right)=U_{61} M_{1}+\ldots+U_{66} M_{6}
$$

The coefficients $U_{61}, U_{62}, U_{63}, U_{64}, U_{65}, U_{66}$ are given by

$$
\begin{array}{rc}
U_{61}=\frac{\imath}{2}[(\bar{\gamma} \bar{\delta}-\gamma \delta)+(\delta \bar{\gamma}-\bar{\delta} \gamma)], & U_{62}=\frac{1}{2}[(\bar{\gamma} \bar{\delta}+\gamma \delta)+(\delta \bar{\gamma}+\bar{\delta} \gamma)] \\
U_{63}=-\frac{1}{2}[(\mu \delta+\bar{\mu} \bar{\delta})+(\mu \bar{\delta}+\bar{\mu} \delta)], & U_{64}=\frac{2}{2}[(\bar{\mu} \bar{\delta}-\mu \delta)+(\bar{\mu} \delta-\mu \bar{\delta})] \\
U_{65}=\frac{\imath}{2}\left(\bar{\delta}^{2}-\delta^{2}\right), & U_{66}=\frac{1}{2}\left[2\left(|\mu|^{2}+|\gamma|^{2}\right)-\left(\delta^{2}+\bar{\delta}^{2}\right)\right] .
\end{array}
$$

Note that all entries $U j k, j, k=1, \ldots 6$ are real numbers. The action of $S U(4)$ induces a transformation on the vector $\alpha \in \mathbb{C}^{6}$ as follows

$$
\tilde{\alpha}=\alpha\left(\tilde{\Upsilon}_{A}(z)\right)=U \cdot \alpha(z)=\left(\begin{array}{llllll}
U_{11} & U_{12} & U_{13} & U_{14} & U_{15} & U_{16} \tag{651}\\
U_{21} & U_{22} & U_{23} & U_{24} & U_{25} & U_{26} \\
U_{31} & U_{32} & U_{33} & U_{34} & U_{35} & U_{36} \\
U_{41} & U_{42} & U_{43} & U_{44} & U_{45} & U_{46} \\
U_{51} & U_{52} & U_{53} & U_{54} & U_{55} & U_{56}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1}(z) \\
\alpha_{2}(z) \\
\alpha_{3}(z) \\
\alpha_{4}(z) \\
\alpha_{5}(z) \\
\alpha_{6}(z)
\end{array}\right) .
$$

Taking the explicit expressions of $U_{j k}, j, k=1, \ldots, 6$ in (646), 647), 648, (649), (650) a straightforward long calculation shows that $U^{T} U=\mathbb{I}$. Hence, a matrix $U \in O(6, \mathbb{R})$ can be associated to each $A \in S U(4)$. The group $S U(4)$ is connected, so by continuity the matrix U is actually an element in $S O(6, \mathbb{R})$. The equality 651 indicates that the action of $S O(6, \mathbb{R})$ on $\dot{\mathbb{C}}^{6}$ can be realized from the action of $S U(4)$ on \mathbb{C}^{8} in 643 . From above calculations the following map can be defined

$$
\begin{equation*}
\tilde{\boldsymbol{\rho}}_{8,5}: S U(4) / \mathbb{Z}_{2} \longrightarrow S O(6, \mathbb{R}), \quad \tilde{\boldsymbol{\rho}}_{8,5}(-h)=\tilde{\boldsymbol{\rho}}_{8,5}(h)=U \tag{652}
\end{equation*}
$$

where the matrix U is defined in 651 . The map $\tilde{\boldsymbol{\rho}}_{8,5}$ gives the identification of $S U(4) / \mathbb{Z}_{2}$ with $S O(6, \mathbb{R})$.

On the other hand, taking the expression of $\alpha_{j}(z), j=1, \ldots, 6$ given in (621) a straightforward calculation shows that

$$
\alpha_{1}(z)^{2}+\alpha_{2}(z)^{2}+\alpha_{3}(z)^{2}+\alpha_{4}(z)^{2}+\alpha_{5}(z)^{2}+\alpha_{6}(z)^{2}=0, \text { i.e, } \alpha \in Q_{5}, \forall z \in \dot{\mathbb{C}}^{8} .
$$

Hence, the following map can be defined

$$
\rho_{(8,5)}: \dot{\mathbb{C}}^{8} \longrightarrow Q_{5}, \quad \rho_{(8,5)}(z)=\left(\alpha_{1}(z), \alpha_{2}(z), \alpha_{3}(z), \alpha_{4}(z), \alpha_{5}(z), \alpha_{6}(z)\right)=\alpha
$$

where the functions $\alpha_{j}(z), j=1, \ldots, 6$ are given by

$$
\begin{array}{cc}
\alpha_{1}(z)=\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)+\left(z_{5} z_{8}-z_{6} z_{7}\right)\right], & \alpha_{2}(z)=\imath\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)-\left(z_{3} z_{6}-z_{4} z_{5}\right)\right] \\
\alpha_{3}(z)=\imath\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)+\left(z_{3} z_{8}-z_{4} z_{7}\right)\right], & \alpha_{4}(z)=\left[\left(z_{1} z_{6}-z_{2} z_{5}\right)-\left(z_{3} z_{8}-z_{4} z_{7}\right)\right] \\
\alpha_{5}(z)=\left[\left(z_{1} z_{8}-z_{2} z_{7}\right)+\left(z_{3} z_{6}-z_{4} z_{5}\right)\right], & \alpha_{6}(z)=\imath\left[\left(z_{1} z_{4}-z_{2} z_{3}\right)-\left(z_{5} z_{8}-z_{6} z_{7}\right)\right]
\end{array}
$$

It follows from equalities (641), 651) that $\rho_{(8,5)}$ intertwines the actions of $S L(4, \mathbb{C})$ and $S U(4)$ on $\dot{\mathbb{C}}^{8}$ with the actions of $S O(6, \mathbb{C})$ and $S O(6, \mathbb{R})$ on Q_{5} respectively. That is

$$
\begin{gathered}
\rho_{(8,5)}\left(\Upsilon_{h}(z)\right)=R \cdot \alpha(z), \quad h \in S L(4, \mathbb{C}), \quad R \in S O(6, \mathbb{C}) \\
\rho_{(8,5)}\left(\tilde{\Upsilon}_{A}(z)\right)=U \cdot \alpha(z), \quad A \in S U(4), \quad U \in S O(6, \mathbb{R})
\end{gathered}
$$

In the equalities (641), 651) $\alpha(z) \in Q_{5}$ which suggests that the null quadric \dot{Q}_{5} is the space where the natural actions of $S L(4, \mathbb{C}) / \mathbb{Z}_{2} \cong S O(6, \mathbb{C})$ and $S U(4) / \mathbb{Z}_{2} \cong S O(6, \mathbb{R})$ can be realized from the actions in 629), 643 respectively.

The following calculations give the proof that $\rho_{(8,5)}: M_{s} \longrightarrow \dot{Q}_{5}$ is injective. Namely, if equality holds $\rho_{(8,5)}(w)=\rho_{(8,5)}(z)=\alpha$, then equality $w=\tilde{\Phi}_{g_{\mathbb{C}}}(z)$ is fulfilled. Hence, each $\alpha \in \dot{Q}_{5}$ can be identified with an orbit $\tilde{\Phi}_{g_{\mathbb{C}}}(z) \in M_{s} / S L(2, \mathbb{C})$. Since $\alpha \in \dot{Q}_{5}$, then some $\alpha_{j}(z)$ is different than zero. The following analysis can be done for any $\alpha_{j} \neq 0$. Let me consider the case $\alpha_{1} \neq 0$. That is, either $\left(z_{1} z_{4}-z_{2} z_{3}\right)$ or $\left(z_{5} z_{8}-z_{6} z_{7}\right)$ is different than zero. Let me consider the case $\left(z_{1} z_{4}-z_{2} z_{3}\right) \neq 0$ and $\left(z_{5} z_{8}-z_{6} z_{7}\right)=0$. This implies that if z_{5}, z_{6} are different than zero, then $z_{7}=\lambda z_{5}, z_{8}=\lambda z_{6}$; another possibility is $z_{5}=0, z_{7}=0$. Let me analyze the first
case. The functions $\alpha_{j}(z), j=1, \ldots 6$ can be written as follows

$$
\alpha_{1}(z)=\operatorname{det}\left(\begin{array}{cc}
z_{1} & z_{3} \tag{653}\\
z_{2} & z_{4}
\end{array}\right), \quad \alpha_{2}(z)=\imath\left\{\operatorname{det}\left(\begin{array}{cc}
z_{1} & \lambda z_{5} \\
z_{2} & \lambda z_{6}
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
z_{3} & z_{5} \\
z_{4} & z_{6}
\end{array}\right)\right\}
$$

$$
\begin{array}{cc}
\alpha_{3}(z)=\imath\left\{\operatorname{det}\left(\begin{array}{ll}
z_{2} & z_{5} \\
z_{2} & z_{6}
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
z_{3} & \lambda z_{5} \\
z_{4} & \lambda z_{6}
\end{array}\right)\right\}, & \alpha_{4}(z)=\operatorname{det}\left(\begin{array}{cc}
z_{2} & z_{5} \\
z_{2} & z_{6}
\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}
z_{3} & \lambda z_{5} \\
z_{4} & \lambda z_{6}
\end{array}\right) \\
\alpha_{5}(z)=\operatorname{det}\left(\begin{array}{ll}
z_{1} & \lambda z_{5} \\
z_{2} & \lambda z_{6}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
z_{3} & z_{5} \\
z_{4} & z_{6}
\end{array}\right), & \alpha_{6}(z)=\imath \operatorname{det}\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right) .
\end{array}
$$

The expression of $\alpha_{j}(w), j=1, \ldots 6$ can be written as in (653) but in terms of the variable $w=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{8}\right)$ with $w_{7}=\lambda w_{5}, w_{8}=\lambda w_{6}$. The equality $\alpha(z)=\alpha(w)$ is fulfilled component by component, so $\alpha_{1}(z)=\alpha_{1}(w)$ implies that

$$
\operatorname{det}\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right) .
$$

Since $\alpha_{1} \neq 0$, then the above equality can be written as follows

$$
\operatorname{det}\left(\begin{array}{ll}
w_{1} & w_{3} \tag{654}\\
w_{2} & w_{4}
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)^{-1}=1
$$

Now using that the determinant of a product of matrices is the product of its determinants, equality (654) implies that there is $\boldsymbol{g}_{1} \in S L(2, \mathbb{C})$ such that the following equality holds

$$
\left(\begin{array}{ll}
w_{1} & w_{3} \tag{655}\\
w_{2} & w_{4}
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)}_{\boldsymbol{g}_{1}}\left(\begin{array}{cc}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right) \text {, i.e } \quad\binom{w_{1}}{w_{2}}=\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}},\binom{w_{3}}{w_{4}}=\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}} \text {. }
$$

Combining α_{3} and α_{4} as $\alpha_{4}-\imath \alpha_{3}$ and using equalities in (655), the following can be obtained
$\operatorname{det}=\left[\binom{z_{1}}{z_{2}},\binom{z_{5}}{z_{6}}\right]=\operatorname{det}\left[g_{1}\binom{z_{1}}{z_{2}},\binom{w_{5}}{w_{6}}\right]$, i.e, $z_{1} z_{6}-z_{2} z_{5}=\left(g_{11} z_{1}+g_{12} z_{2}\right) w_{6}-\left(g_{21} z_{1}+g_{22} z_{2}\right) w_{6}$.
Combining α_{2} and α_{5} as $\alpha_{5}+\imath \alpha_{2}$ and using equalities in (655), the following can be obtained (657)
$\operatorname{det}=\left[\binom{z_{3}}{z_{4}},\binom{z_{5}}{z_{6}}\right]=\operatorname{det}\left[g_{1}\binom{z_{3}}{z_{4}},\binom{w_{5}}{w_{6}}\right]$, i.e $z_{3} z_{6}-z_{4} z_{5}=\left(g_{11} z_{3}+g_{12} z_{4}\right) w_{6}-\left(g_{21} z_{3}+g_{22} z_{4}\right) w_{5}$.
Equalities in (656), 656) can be written in matrix form as follows

$$
\binom{\lambda_{1}}{\lambda_{2}}=\left(\begin{array}{ll}
-a_{2} & a_{1} \tag{658}\\
-b_{2} & b_{1}
\end{array}\right)\binom{w_{5}}{w_{6}}
$$

with $\lambda_{1}=z_{1} z_{6}-z_{2} z_{5}, \lambda_{2}=z_{3} z_{6}-z_{4} z_{5}, a_{1}=g_{11} z_{1}+g_{12} z_{2}, a_{2}=g_{21} z_{1}+g_{22} z_{2}, b_{1}=g_{11} z_{3}+$ $g_{12} z_{4}, b_{2}=g_{21} z_{3}+g_{22} z_{4}$. The determinant of the matrix in (658) is given by $z_{1} z_{4}-z_{2} z_{3}$ which is different than zero. Hence, taking the inverse of this matrix a calculation shows that

$$
\binom{w_{5}}{w_{6}}=g_{1}\binom{z_{5}}{z_{6}} .
$$

It follows from equalities $z_{7}=\lambda z_{5}, z_{8}=\lambda z_{6}$ and $w_{7}=\lambda z_{5}, w_{8}=\lambda w_{6}$ that

$$
\binom{\lambda w_{5}}{\lambda w_{6}}=\boldsymbol{g}_{\mathbf{1}}\binom{\lambda z_{5}}{\lambda z_{6}} \text {, i.e }\binom{w_{7}}{w_{8}}=\boldsymbol{g}_{1}\binom{z_{7}}{z_{8}} \text {. }
$$

Therefore the following is fulfilled

$$
\begin{equation*}
\alpha(z)=\alpha(w) \in \dot{Q}_{5} \Rightarrow w=\tilde{\Phi}_{\boldsymbol{g}_{\mathbf{1}}}(z), \boldsymbol{g}_{1} \in S L(2, \mathbb{C}) \tag{659}
\end{equation*}
$$

Let me analyze the second case, that is, $z_{5} z_{8}-z_{6} z_{7}=0$ with $z_{5}=z_{7}=0$. In this case the coordinates $\alpha_{j}(z), j=2,3,4,5$ are given by

$$
\begin{array}{ll}
\alpha_{2}(z)=\imath\left\{\operatorname{det}\left(\begin{array}{cc}
z_{1} & 0 \\
z_{2} & z_{8}
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
z_{3} & 0 \\
z_{4} & z_{6}
\end{array}\right)\right\}, & \alpha_{3}(z)=\imath\left\{\operatorname{det}\left(\begin{array}{cc}
z_{1} & 0 \\
z_{2} & z_{6}
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
z_{3} & 0 \\
z_{4} & z_{8}
\end{array}\right)\right\} \\
660) \quad \alpha_{4}=\operatorname{det}\left(\begin{array}{cc}
z_{1} & 0 \\
z_{2} & z_{6}
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
z_{3} & 0 \\
z_{4} & z_{8}
\end{array}\right), & \alpha_{5}(z)=\operatorname{det}\left(\begin{array}{cc}
z_{1} & 0 \\
z_{2} & z_{8}
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
z_{3} & 0 \\
z_{4} & z_{6}
\end{array}\right) . \tag{660}
\end{array}
$$

The functions $\alpha_{j}(w), j=2,3,4,5$ can be written as in but in terms of the variable $w=\left(w_{1}, w_{2}, w_{3}, w_{4}, 0, w_{6}, 0, w_{8}\right)$. From the combinations $\alpha_{4}-\imath \alpha_{3}, \alpha_{5}+\imath \alpha_{2}$ and equalities in (655), the following can be obtained

$$
\operatorname{det}\left[\binom{z_{1}}{z_{2}},\binom{0}{z_{6}}\right]=\operatorname{det}\left[\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}},\binom{0}{w_{6}}\right], \quad \operatorname{det}\left[\binom{z_{3}}{z_{4}},\binom{0}{z_{6}}\right]=\operatorname{det}\left[\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}},\binom{0}{w_{6}}\right] .
$$

The above equalities can be written as follows

$$
\begin{equation*}
z_{1} z_{6}=\left(g_{11} z_{1}+g_{12} z_{2}\right) w_{6}, \quad z_{3} z_{6}=\left(g_{11} z_{3}+g_{12} z_{4}\right) w_{6} \tag{661}
\end{equation*}
$$

Equalities in (661) impose a condition in the entry g_{12}. The first equality is multiplied by z_{3} and the second is multiplied by z_{1}, and the difference of these equalities is taken

$$
w_{6} g_{12}\left(z_{1} z_{4}-z_{2} z_{3}\right)=0 \Rightarrow w_{6} g_{12}=0 .
$$

From the combinations $-\imath \alpha_{3}-\alpha_{4}$ and $\alpha_{5}-\imath \alpha_{2}$, equalities in (655) and following an analogous procedure as before, the following equalities can be obtained
$z_{1} z_{8}=\left(g_{11} z_{1}+g_{12} z_{2}\right) w_{8}, \quad z_{3} z_{8}=\left(g_{11} z_{3}+g_{12} z_{4}\right) w_{8}, \quad w_{8} g_{12}\left(z_{1} z_{4}-z_{2} z_{3}\right)=0 \Rightarrow w_{8} g_{12}=0$.
The non-trivial cases is $w_{6} \neq 0$ and $w_{8} \neq 0$, which impose $g_{12}=0$ in this case. From the condition $\operatorname{det} \boldsymbol{g}_{\mathbf{1}}=1$ it follows that $g_{22}=\frac{1}{g_{11}}$. Hence, the following equality holds

$$
\binom{w_{1}}{w_{2}}=\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}},\binom{w_{3}}{w_{4}}=\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}},\binom{0}{w_{6}}=\boldsymbol{g}_{1}\binom{0}{z_{6}},\binom{0}{w_{8}}=\boldsymbol{g}_{1}\binom{0}{z_{8}} \text {, i.e } w=\tilde{\Phi}_{\boldsymbol{g}_{1}}(z) \text {. }
$$

Therefore equality in (146) is fulfilled.
Now, let me study the case that both terms $z_{1} z_{4}-z_{2} z_{3}$ and $z_{5} z_{8}-z_{6} z_{7}$ are different than zero. The functions $\alpha_{j}(z), j=1, \ldots, 6$ can be written as follows

$$
\begin{align*}
\text { 662) } & \alpha_{1}(z)=\operatorname{det}\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
z_{5} & z_{7} \\
z_{6} & z_{8}
\end{array}\right),
\end{align*} \alpha_{2}(z)=\imath\left\{\operatorname{det}\left(\begin{array}{ll}
z_{1} & z_{7} \tag{662}\\
z_{2} & z_{8}
\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}
z_{3} & z_{5} \\
z_{4} & z_{6}
\end{array}\right)\right\} .
$$

The corresponding $\alpha_{j}(w)$ can be written as in 662 in terms of the variable $w \in \dot{\mathbb{C}}^{8}$. From the combinations $\alpha_{1}-\imath \alpha_{6}$ and $\alpha_{1}+\imath \alpha_{6}$ the following equalities are obtained

$$
\operatorname{det}\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right), \quad \operatorname{det}\left(\begin{array}{ll}
z_{5} & z_{7} \\
z_{6} & z_{8}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
w_{5} & w_{7} \\
w_{6} & w_{8}
\end{array}\right) .
$$

Since $\alpha_{1}(z)$ is different than zero, then the above equalities can be written as follows

$$
\operatorname{det}\left(\begin{array}{ll}
w_{1} & w_{3} \tag{663}\\
w_{2} & w_{4}
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)^{-1}=1, \quad \operatorname{det}\left(\begin{array}{ll}
w_{5} & w_{7} \\
w_{6} & w_{8}
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
z_{5} & z_{7} \\
z_{6} & z_{8}
\end{array}\right)^{-1}=1 .
$$

Now using that the determinant of a product of matrices is the product of its determinants, equalities in (663) can be written as follows

$$
\operatorname{det}\left\{\left(\begin{array}{ll}
w_{1} & w_{3} \tag{664}\\
w_{2} & w_{4}
\end{array}\right)\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right)^{-1}\right\}=1, \quad \operatorname{det}\left\{\left(\begin{array}{cc}
w_{5} & w_{7} \\
w_{6} & w_{8}
\end{array}\right)\left(\begin{array}{ll}
z_{5} & z_{7} \\
z_{6} & z_{8}
\end{array}\right)^{-1}\right\}=1
$$

The equalities in (664) implies that there is $\boldsymbol{g}_{1}, \boldsymbol{g}_{2} \in S L(2, \mathbb{C})$ with

$$
\boldsymbol{g}_{1}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right), \quad \boldsymbol{g}_{2}=\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)
$$

such that the following equalities hold

$$
\left(\begin{array}{ll}
w_{1} & w_{3} \tag{665}\\
w_{2} & w_{4}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
z_{1} & z_{3} \\
z_{2} & z_{4}
\end{array}\right),\left(\begin{array}{ll}
w_{5} & w_{7} \\
w_{6} & w_{8}
\end{array}\right)=\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)\left(\begin{array}{ll}
z_{5} & z_{7} \\
z_{6} & z_{8}
\end{array}\right) .
$$

It follows from equalities in (665) that

$$
\begin{equation*}
\binom{w_{1}}{w_{2}}=\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}},\binom{w_{3}}{w_{4}}=\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}}, \quad\binom{w_{5}}{w_{6}}=\boldsymbol{g}_{2}\binom{z_{5}}{z_{6}},\binom{w_{7}}{w_{8}}=\boldsymbol{g}_{2}\binom{z_{7}}{z_{8}} . \tag{666}
\end{equation*}
$$

Using equations in (666) the equalities $\alpha_{j}(z)=\alpha_{j}(w), j=2,3,4,5$ can be written term by term as follows
$\operatorname{det}\left[\binom{z_{1}}{z_{2}},\binom{z_{7}}{z_{8}}\right]=\operatorname{det}\left[\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}}, \boldsymbol{g}_{2}\binom{z_{7}}{z_{8}}\right], \operatorname{det}\left[\binom{z_{3}}{z_{4}},\binom{z_{5}}{z_{6}}\right]=\operatorname{det}\left[\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}}, \boldsymbol{g}_{2}\binom{z_{5}}{z_{6}}\right]$
$\operatorname{det}\left[\binom{z_{1}}{z_{2}},\binom{z_{5}}{z_{6}}\right]=\operatorname{det}\left[\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}}, \boldsymbol{g}_{2}\binom{z_{5}}{z_{6}}\right], \operatorname{det}\left[\binom{z_{3}}{z_{4}},\binom{z_{7}}{z_{8}}\right]=\operatorname{det}\left[\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}}, \boldsymbol{g}_{2}\binom{z_{7}}{z_{8}}\right]$.
Now I will form a linear system of equations in terms of the entries of g_{1}, g_{2} in order to show that g_{1} must be equal to g_{2}. The first equality in (667) is given by
$z_{1} z_{8}-z_{2} z_{7}=a_{1} c_{2} z_{1} z_{7}+z_{1} d_{2} z_{1} z_{8}+b_{1} c_{2} z_{2} z_{7}+b_{1} d_{2} z_{2} z_{8}-c_{1} a_{2} z_{1} z_{7}-d_{1} a_{2} z_{2} z_{7}-c_{1} b_{2} z_{1} z_{8}-d_{1} b_{2} z_{2} z_{8}$, which can be written as follows

$$
\lambda_{1} z_{1} z_{8}+\lambda_{2} z_{2} z_{7}+\lambda_{3} z_{1} z_{7}+\lambda_{4} z_{2} z_{8}=0
$$

where the variables $\lambda_{j}, j=1,2,3,4$ are given by

$$
\lambda_{1}=a_{1} d_{2}-c_{1} b_{2}-1, \quad \lambda_{2}=b_{1} c_{2}-d_{1} a_{2}+1, \quad \lambda_{3}=a_{1} c_{2}-c_{1} a_{2}, \quad \lambda_{4}=b_{1} d_{2}-d_{1} b_{2} .
$$

The following system can be formed using the other equality in (667) and the equalities in (668)

$$
\left(\begin{array}{llll}
z_{3} z_{6} & z_{4} z_{5} & z_{3} z_{5} & z_{4} z_{6} \tag{669}\\
z_{3} z_{8} & z_{4} z_{7} & z_{3} z_{7} & z_{4} z_{8} \\
z_{1} z_{8} & z_{2} z_{7} & z_{1} z_{7} & z_{2} z_{8} \\
z_{1} z_{6} & z_{2} z_{5} & z_{1} z_{5} & z_{2} z_{6}
\end{array}\right)\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

A straightforward calculation shows that the determinant of the matrix in (669) is given by

$$
-\left(z_{2} z_{3}-z_{1} z_{4}\right)^{2}\left(z_{6} z_{7}-z_{5} z_{8}\right)^{2}=-\frac{1}{16}\left(\imath \alpha_{6}(z)-\alpha_{1}(z)\right)^{2}\left(\alpha_{1}(z)+\imath \alpha_{6}(z)\right)^{2}
$$

which is different than zero. Hence, the unique solution of the system in (669) is $\lambda_{j}=0, j=$ $1,2,3,3$, which in turn implies that

$$
\begin{array}{ll}
a_{1} d_{2}-c_{1} b_{2}=1, & b_{1} c_{2}-d_{1} a_{2}=-1 \tag{670}\\
b_{1} d_{2}-d_{1} b_{2}=0, & a_{1} c_{2}-c_{1} a_{2}=0,
\end{array}
$$

The equalities in (670) can be written in matrix form as follows

$$
\left(\begin{array}{ll}
a_{1} & -c_{1} \tag{671}\\
b_{1} & -d_{1}
\end{array}\right)\binom{d_{2}}{b_{2}}=\binom{1}{0}, \quad\left(\begin{array}{ll}
-d_{1} & b_{1} \\
-c_{1} & a_{1}
\end{array}\right)\binom{a_{2}}{c_{2}}=\binom{-1}{0} .
$$

Taking the inverse matrix in (671) a short calculation shows that

$$
\binom{d_{2}}{b_{2}}=\binom{d_{1}}{b_{1}}, \quad\binom{a_{2}}{c_{2}}=\binom{a_{1}}{c_{1}} \text {,i.e, } \quad \boldsymbol{g}_{1}=\boldsymbol{g}_{2} .
$$

Hence, equality in 666 can be written as follows

$$
\binom{w_{1}}{w_{2}}=\boldsymbol{g}_{1}\binom{z_{1}}{z_{2}},\binom{w_{3}}{w_{4}}=\boldsymbol{g}_{1}\binom{z_{3}}{z_{4}},\binom{w_{5}}{w_{6}}=\boldsymbol{g}_{1}\binom{z_{5}}{z_{6}},\binom{w_{7}}{w_{8}}=\boldsymbol{g}_{1}\binom{z_{7}}{z_{8}} \text {,i.e, } w=\tilde{\Phi}_{\boldsymbol{g}_{1}}(z) .
$$

Therefore equality (146) is fulfilled.
The following calculations show that the map $\tilde{\rho}_{8,5}: S L(4, \mathbb{C}) / \mathbb{Z}_{2} \longrightarrow S O(6, \mathbb{C})$ is a homomorphism of groups. The identity element in $S L(4, \mathbb{C})$ is denoted as $e=\mathbb{I}$. Consider a curve $\gamma(t)=h(t) \in S L(4, \mathbb{C})$ such that $\gamma(0)=e$ and $\dot{\gamma}(0)=\dot{h}(0) \in \mathfrak{s l}(4, \mathbb{C})$. That is,

$$
\operatorname{tr}(\dot{h}(0))=\operatorname{tr}\left(\begin{array}{ccc}
\dot{h}_{11}(0 & \ldots \ldots & \dot{h}_{14}(0) \\
\vdots & & \vdots \\
\dot{h}_{41}(0) & \ldots \ldots & \dot{h}_{44}(0)
\end{array}\right)=\dot{h}_{11}(0)+\dot{h}_{22}(0)+\dot{h}_{33}(0)+\dot{h}_{44}(0)=0
$$

Let me consider the following map

$$
\begin{equation*}
T_{e} \tilde{\rho}_{8,5}: \mathfrak{s l}(4, \mathbb{C}) \longrightarrow \mathfrak{s o}(6, \mathbb{C}), \text { given by } \quad T_{e} \tilde{\rho}_{8,5}(\dot{h}(0))=\left.\frac{d}{d t}\right|_{t=0} R(h(t))=\dot{R}(0) \tag{672}
\end{equation*}
$$

I will show that $T_{e} \tilde{\rho}_{8,5}$ is an isomorphism of Lie algebras.
If $\dot{R}(0)$ belongs to $\mathfrak{s o}(6, \mathbb{C})$, then the matrix $\dot{R}(0)$ is skew-symmetric. That is, $\dot{R}_{j k}(0)=$ $-\dot{R}_{k j}(0)$, besides the diagonal elements satisfy $\dot{R}_{j j}(0)=0$, for $j, k=1, \ldots, 6$. Take the expressions of $R_{j j}$ in (635), 636), 637, ..., 638) and calculate the derivative at $t=0$. The following equality holds

$$
\dot{R}_{j j}(0)=\operatorname{tr}(\dot{h}(0))=0
$$

Consider the elements $R_{j k}$ out of the diagonal given in (635), 636), 637), 638). The derivative at $t=0$ is calculated, and the following is obtained

$$
\dot{R}_{j k}(0)=-\dot{R}_{k j}(0)
$$

Therefore $\dot{R}(0) \in \mathfrak{s o}(6, \mathbb{C})$.
The kernel of the map $T_{e} \tilde{\rho}_{8,5}$ is calculated. Namely,

$$
\begin{equation*}
\operatorname{ker}\left(T_{e} \tilde{\rho}_{8,5}\right)=\{\dot{h}(0) \in \mathfrak{s l}(4, \mathbb{C}) \mid \dot{R}(0)=0\} \tag{673}
\end{equation*}
$$

Equation $\dot{R}(0)=0$ means that all entries satisfy $\dot{R}_{j k}=0, j, k=1, \ldots, 6$. Taking the expressions of $\dot{R}_{j k}=0$ and using that $\operatorname{tr}(\dot{h}(0))=0$ these equations can be written as linear systems, which are given by

$$
\begin{align*}
& \left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
\dot{h}_{11} \\
\dot{h}_{22} \\
\dot{h}_{33} \\
\dot{h}_{44}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \tag{674}\\
& \left(\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\dot{h}_{23} \\
\dot{h}_{41} \\
\dot{h}_{14} \\
\dot{h}_{32}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \tag{675}\\
& \left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\dot{h}_{34} \\
\dot{h}_{21} \\
\dot{h}_{12} \\
\dot{h}_{43}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \tag{676}
\end{align*}
$$

$$
\left(\begin{array}{rrrr}
1 & 1 & -1 & -1 \tag{677}\\
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
\dot{h}_{24} \\
\dot{h}_{31} \\
\dot{h}_{13} \\
\dot{h}_{42}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The associated matrix in (674), (675), (676), (676) has determinant different than zero, which implies that the matrix $0 \in \mathfrak{s l}(4, \mathbb{C})$ is the only solution of these systems. Hence, the kernel of $T_{e} \tilde{\rho}_{8,5}$ is only $0 \in \mathfrak{s l}(4, \mathbb{C})$. Moreover, $\operatorname{dim} \mathfrak{s l}(4, \mathbb{C})=\operatorname{dim} \mathfrak{s o}(6, \mathbb{C})$, thus the map $T_{e} \tilde{\rho}_{8,5}$: $\mathfrak{s l}(4, \mathbb{C}) \longrightarrow \mathfrak{s o}(6, \mathbb{C})$ is an isomorphism of Lie algebras. Since the group $S L(4, \mathbb{C})$ is simply connected, then it follows from theorem 3.7 in [21] that the map $\tilde{\rho}_{8,5}: S L(4, \mathbb{C}) \longrightarrow S O(6, \mathbb{C})$ is the unique homomorphism relating $\tilde{\rho}_{8,5}$ and $T_{e} \tilde{\rho}_{8,5}$ in the following way

$$
\begin{equation*}
\tilde{\rho}_{8,5}\left(\mathrm{e}^{\dot{h}(0)}\right)=\mathrm{e}^{T_{e} \tilde{\tilde{p}}_{8,5}(\dot{h}(0))}, \quad \forall \quad \dot{h}(0) \in \mathfrak{s l}(4, \mathbb{C}) . \tag{678}
\end{equation*}
$$

Equation in 678) indicates that $\operatorname{Ker} \tilde{\rho}_{8,5}$ is a discrete normal subgroup of $S L(4, \mathbb{C})$, but a discrete normal subgroup of a connected group is automatically central. The center of $S L(4, \mathbb{C})$ is $\{\mathbb{I},-\mathbb{I}, \imath \mathbb{I},-\imath \mathbb{I}\}$. Entries $R_{j k}, j, k=1, \ldots, 6$ of $R \in S O(6, \mathbb{C})$ are defined in equation (634). Taking $h= \pm \imath \mathbb{I}$ it follows from equation (634) that

$$
\begin{equation*}
(\pm \imath \mathbb{I}) M_{j}(\pm \mathbb{I})=-M_{j} \Rightarrow R_{j k}=-\mathbb{I} \tag{679}
\end{equation*}
$$

Equation (679) indicates that the matrices $\{\imath \mathbb{I},-\imath \mathbb{I}\}$ do not belong to the kernel of $\tilde{\rho}_{8,5}$. Thus $\operatorname{Ker} \tilde{\rho}_{8,5}=\{\mathbb{I},-\mathbb{I}\}$. Let me show that $\tilde{\rho}_{8,5}$ maps onto $S O(6, \mathbb{C})$, which follows from the fact that the groups $S O(6, \mathbb{C})$ and $S L(4, \mathbb{C})$ are connected. Every element $h \in S L(4, \mathbb{C})$ can be written as $h=\mathrm{e}^{\mathfrak{h}_{1}} \ldots \mathrm{e}^{\mathfrak{h}_{n}}$ with $\mathfrak{h}_{j} \in \mathfrak{s l}(4, \mathbb{C})$, and $R \in S O(6, \mathbb{C})$ can be written as $R=\mathrm{e}^{r_{1}} \mathrm{e}^{r_{2}} \ldots \mathrm{e}^{r_{n}}$ with $r_{j} \in \mathfrak{s o}(6, \mathbb{C}), j=1, \ldots, n$. Since $T_{e} \tilde{\rho}_{8,5}$ is surjective, then $R \in S O(6, \mathbb{C})$ can be written as

$$
R=\mathrm{e}^{T_{e} \tilde{\rho}_{8,5}\left(\mathfrak{h}_{1}\right)} \ldots \mathrm{e}^{T_{e} \tilde{\rho}_{8,5}\left(\mathfrak{h}_{n}\right)} .
$$

Hence, $\tilde{\rho}_{8,5}$ maps onto $S O(6, \mathbb{C})$.
It can be proved that $\tilde{\boldsymbol{\rho}}_{8,5}: S U(4) / \mathbb{Z}_{2} \longrightarrow S O(6, \mathbb{R})$ is a homomorphism of groups by doing a similar procedure to the case of $\tilde{\rho}_{8,5}: S L(4, \mathbb{C}) / \mathbb{Z}_{2} \longrightarrow S O(6, \mathbb{C})$.

Geometric

Quantization of the Null Quadric \dot{Q}_{m}

In this appendix, I describe the geometric quantization of the Kähler manifold $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ following the ideas of reference [34]. Let me recall that $\dot{Q}_{m}=\left\{\alpha \in \mathbb{C}^{m+1} \mid \alpha_{1}^{2}+\alpha_{2}^{2}+\ldots+\alpha_{m+1}^{2}=\right.$ $0, \alpha \neq 0\}$. A parametrization of \dot{Q}_{m} is a map

$$
\Xi: U \subset \mathbb{C}^{m} \ni\left(s_{1}, s_{2}, \ldots, s_{m}\right) \longrightarrow \alpha\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in \dot{Q}_{m}
$$

Definition 7. Let F be a function on \dot{Q}_{m}. A holomorphic function on \dot{Q}_{m} is a function such that $F \circ \Xi: U \subset \mathbb{C}^{m} \longrightarrow \mathbb{C}$ is holomorphic for any parametrization.

More explicitly, let be the function $\Phi=F \circ \Xi$ which can be written in coordinates as $\Phi\left(s_{1}, s_{2}, \ldots, s_{m}\right)=F\left(\alpha\left(s_{1}, s_{2}, \ldots, s_{m}\right)\right)$. Calculate the derivative $\frac{\partial \Phi}{\partial \overline{s_{j}}}$ with the chain rule. Namely,

$$
\begin{equation*}
\frac{\partial \Phi}{\partial \bar{s}_{j}}=\frac{\partial \alpha_{k}}{\partial \bar{s}_{j}} \frac{\partial F}{\partial \alpha_{k}}+\frac{\partial \bar{\alpha}_{k}}{\partial \bar{s}_{j}} \frac{\partial F}{\partial \bar{\alpha}_{k}} \tag{680}
\end{equation*}
$$

The parametrization Ξ satisfies $\frac{\partial \alpha_{k}}{\partial \bar{s}_{j}}=0$. It follows from 680 that

$$
\frac{\partial \Phi}{\partial \bar{s}_{j}}=\frac{\partial \bar{\alpha}_{k}}{\partial \bar{s}_{j}} \frac{\partial F}{\partial \bar{\alpha}_{k}} .
$$

Hence, $F \circ \Xi$ is holomphic if and only if F regarded as a function of $\alpha \in \mathbb{C}^{m+1}$ satisfies $\frac{\partial F}{\partial \bar{\alpha}_{k}}=0$, i.e, holomorphic.

A polarization G on \dot{Q}_{m} can be obtained from the push-forward of the vectors $\frac{\partial}{\partial \bar{s}_{j}}, j=$ $1,2, \ldots, m$ via the map Ξ. The elements of G are denoted by \bar{X}_{j} and can be written as follows

$$
\begin{equation*}
\bar{X}_{j}=\frac{\partial \bar{\alpha}_{k}}{\partial \bar{s}_{j}} \frac{\partial}{\partial \bar{\alpha}_{k}}, \quad j=1, \ldots, m, \quad k=1,2, \ldots, m+1 \tag{681}
\end{equation*}
$$

Now consider the line bundle $\pi: L^{\widehat{\omega}} \longrightarrow \dot{Q}_{m}$ whose connection is defined as follows

$$
\nabla_{X}: \Gamma\left(L^{\widehat{\omega}}\right) \longrightarrow \Gamma\left(L^{\widehat{\omega}}\right), \nabla_{X} \hat{s}=X(\hat{s})-\frac{i}{\hbar} \widehat{\theta}(X) \hat{s}, X \in \mathfrak{X}\left(\dot{Q}_{m}\right), \hat{s} \in \Gamma\left(L^{\widehat{\omega}}\right)
$$

where the one-form $\widehat{\theta}$ is given by $\widehat{\theta}=\frac{1}{22 \sqrt{2}|\alpha|}(\bar{\alpha} \cdot d \alpha-\alpha \cdot d \bar{\alpha})$. The space of polarized sections regarding the polarization G is denoted by $\Gamma_{G}\left(L^{\widehat{\omega}}\right)$ whose elements are defined by the equation

$$
\begin{equation*}
\nabla_{\bar{X}_{j}} \widehat{s}=0, \quad j=1, \ldots, m \tag{682}
\end{equation*}
$$

The solutions of equation 682 are given by $\widehat{s}(\alpha)=\phi(\alpha) \mathrm{e}^{-\frac{1}{h \sqrt{2}}|\alpha|}$, and ϕ satisfies $\frac{\partial \phi}{\partial \bar{\alpha}_{k}}=0, k=$ $1, \ldots, m+1$ (holomorphic function). The space $\Gamma_{G}\left(L^{\widehat{\omega}}\right)$ is endowed with the following inner product

$$
\begin{aligned}
\left\langle\widehat{s}_{1}, \widehat{s}_{2}\right\rangle & =\frac{1}{(\pi \hbar)^{m}} \int_{\dot{Q}_{m}} \widehat{s}_{1}(\alpha) \overline{\widehat{s}_{2}(\alpha)} \varepsilon_{\widehat{\omega}}(\alpha), \quad \forall \widehat{s}_{1}, \widehat{s}_{2} \in \Gamma_{G}\left(L^{\widehat{\omega}}\right) \\
& =\frac{1}{(\pi \hbar)^{m}} \int_{\dot{Q}_{m}} \phi_{1}(\alpha) \overline{\phi_{2}(\alpha)} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|} \varepsilon_{\widehat{\omega}}(\alpha)
\end{aligned}
$$

with $\varepsilon_{\widehat{\omega}}(\alpha)$ the Liouville volume form of $T^{+} S^{m} \cong \dot{Q}_{m}$. The squared norm of $\widehat{s}_{1} \in \Gamma_{G}\left(L^{\widehat{\omega}}\right)$ is given by

$$
\begin{equation*}
\left\|\widehat{s}_{1}\right\|^{2}=\frac{1}{(\pi \hbar)^{m}} \int_{\dot{Q}_{m}} \widehat{s}_{1}(\alpha) \overline{\widehat{s}_{1}(\alpha)} \varepsilon_{\widehat{\omega}}(\alpha)=\frac{1}{(\pi \hbar)^{m}} \int_{\dot{Q}_{m}}\left|\phi_{1}(\alpha)\right|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|} \varepsilon_{\widehat{\omega}}(\alpha) . \tag{683}
\end{equation*}
$$

If it is assumed that the integral in 683 is finite, then the space $\Gamma_{G}\left(L^{\widehat{\omega}}\right)$ is identified with the space

$$
\begin{equation*}
L_{h o l}^{2}\left(\dot{Q}_{m}, \frac{1}{(\hbar \pi)^{m}} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|} \varepsilon_{\widehat{\omega}}(\alpha)\right) \tag{684}
\end{equation*}
$$

of square-integrable holomorphic functions defined on \dot{Q}_{m} regarding the indicated measure.
Let me denote by $\widehat{K}_{\dot{Q}_{m}}$ the canonical bundle of the polarization G for which the sections are m-forms $\widehat{\kappa}(\alpha)$ on \dot{Q}_{m} that satisfy

$$
\iota_{\bar{X}_{j}} \widehat{\kappa}(\alpha)=0 .
$$

Let me make the following argument in order to determine a nowhere vanishing m-form on \dot{Q}_{m}. The null quadric \dot{Q}_{m} can be realized as the subset on \mathbb{C}^{m+1} of non-trivial solutions of equation $f(\alpha)=0$ with $f(\alpha)=\alpha_{1}^{2}+\alpha_{2}^{2}+\ldots+\alpha_{m+1}^{2}$. Consider the one form $d f=2\left(\alpha_{1} d \alpha_{1}+\right.$ $\left.\ldots+\alpha_{m+1} d \alpha_{m+1}\right)$. It is not difficult to see that the vector field $Y=\frac{1}{2|\alpha|^{2}} \sum_{j=1}^{m+1} \overline{\alpha_{j}} \frac{\partial}{\partial \alpha_{j}}$ satisfies $d f(Y)=1$. Now let me consider the $m+1$-form of the ambient space $d \alpha_{1} \wedge d \alpha_{2} \wedge \ldots \wedge d \alpha_{m+1}$ and then its contraction with the vector Y, which gives the following nowhere vanishing m -form on \dot{Q}_{m}

$$
\begin{equation*}
\widehat{\kappa}_{0}(\alpha)=\frac{1}{2|\alpha|^{2}} \sum_{j}^{m+1}(-1)^{j} \bar{\alpha}_{j} d \alpha_{1} \wedge d \alpha_{2} \wedge \ldots \wedge \check{d \alpha}_{j} \wedge \ldots \wedge d \alpha_{m+1}, \tag{685}
\end{equation*}
$$

where $\check{d \alpha_{j}}$ means that this one-form is omitted. The factor $(-1)^{j}$ is included so that the equality $\widehat{\kappa}_{0}(\alpha) \wedge d f=d \alpha_{1} \wedge d \alpha_{2} \wedge \ldots \wedge d \alpha_{m+1}$ holds. Moreover, the m-form $\widehat{\kappa}_{0}(\alpha)$ satisfies $d \widehat{\kappa}_{0}(\alpha)=0$. Note that the contraction of $\widehat{\kappa}_{0}(\alpha)$ with vectors of G is equal to zero. So the sections of $\widehat{K}_{\dot{Q}_{m}}$ can be written as

$$
\begin{equation*}
\widehat{\kappa}(\alpha)=F(\alpha, \bar{\alpha}) \widehat{\kappa}_{0}(\alpha) . \tag{686}
\end{equation*}
$$

The set of polarized sections of $\widehat{K}_{\dot{Q}_{m}}$ regarding the polarization G are m-forms that satisfy $\iota_{\bar{X}_{j}} d \widehat{\kappa}=0$. This set is denoted by $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}\right)$ whose elements are given by

$$
\widehat{\kappa}(\alpha)=F(\alpha) \widehat{\kappa}_{0}(\alpha) \text { and } F \text { satisfies } \frac{\partial F}{\partial \bar{\alpha}_{k}}=0 \text { (holomorphic). }
$$

The m-form $\widehat{\kappa}_{0}(\alpha)$ in 685 , is a nowhere vanishing section of $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}\right)$.

The group $S O(m+1, \mathbb{C})$ acts in a natural way (coordinate transformation) on \dot{Q}_{m}. That is, the action of $R \in S O(m+1, \mathbb{C})$ on $\alpha \in \dot{Q}$ is given by $R \cdot \alpha$. The m-form $\widehat{\kappa}_{0}(\alpha)$ is invariant under the action of $S O(m+1, \mathbb{C})$ on \dot{Q}_{m}. This is the point of the following proposition.
Proposition 48. The m-form $\widehat{\kappa}_{0}(\alpha) \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}\right)$ in 685) satisfies the following equations
(i) $d \widehat{\kappa}_{0}(\alpha)=0$
(ii) $\mathfrak{L}_{X_{\zeta}} \widehat{\kappa}_{0}(\alpha)=0$, where the infinitesimal generator X_{ζ} of $\zeta \in \mathfrak{s o}(m+1, \mathbb{C})$ is given by $X_{\zeta}=\left.\frac{d}{d t}\right|_{t=0} \mathrm{e}^{t \zeta} \cdot \alpha$.

Proof.

(i) Consider the holomorphic function $f(\alpha)=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\ldots+\alpha_{m+1}^{2}$. A straightforward calculation shows that $\widehat{\kappa}_{0}(\alpha)$ satisfies the following equation

$$
\begin{equation*}
\hat{\kappa}_{0}(\alpha) \wedge d f=d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \wedge \ldots \wedge d \alpha_{m+1} . \tag{687}
\end{equation*}
$$

The exterior differential is calculated. Namely,

$$
\begin{aligned}
d\left(\widehat{\kappa}_{0}(\alpha) \wedge d f\right) & =d\left(d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \wedge \ldots \wedge d \alpha_{m+1}\right) \\
d \widehat{\kappa}_{0}(\alpha) \wedge d f-\widehat{\kappa}_{0}(\alpha) \wedge d^{2} f & =0 \\
d \widehat{\kappa}_{0}(\alpha) \wedge d f & =0 .
\end{aligned}
$$

The differential $d f$ is a one-form $d f \neq 0$ for all $\alpha \neq 0$, which implies that $d \widehat{\kappa}_{0}(\alpha)$ must to be equal to zero so that the equation $d \widehat{\kappa}_{0}(\alpha) \wedge d f=0$ fulfilled.
(ii) It follows from equality (687) that

$$
\begin{aligned}
& \mathfrak{L}_{X_{\zeta}}\left(d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \wedge \ldots \wedge d \alpha_{m+1}\right)=\mathfrak{L}_{X_{\zeta}}\left(\widehat{\kappa}_{0}(\alpha) \wedge d f\right) \\
& \mathfrak{L}_{X_{\zeta}}\left(d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \wedge \ldots \wedge d \alpha_{m+1}\right)=\mathfrak{L}_{X_{\zeta}}\left(\widehat{\kappa}_{0}(\alpha)\right) \wedge d f+\widehat{\kappa}_{0}(\alpha) \wedge \mathfrak{L}_{X_{\zeta}}(d f) .
\end{aligned}
$$

A straightforward computation shows that the ($\mathrm{m}+1$)-form $d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \ldots \wedge d \alpha_{m+1}$ and $f(\alpha)$ are invariant under the natural action of $S O(m+1, \mathbb{C})$ on $\alpha \in \dot{\mathbb{C}}^{m+1}$. This implies that

$$
\mathfrak{L}_{X_{\bar{\eta}}}\left(d \alpha_{1} \wedge d \alpha_{2} \wedge d \alpha_{3} \wedge \ldots \wedge d \alpha_{m+1}\right)=0 \quad \text { and } \quad \mathfrak{L}_{X_{\zeta}}(d f)=0
$$

from which it follows that $\mathfrak{L}_{X_{\tilde{\eta}}}\left(\widehat{\kappa}_{0}\right) \wedge d f=0$. The differential $d f$ is a one-form $d f \neq 0$ for all $\alpha \neq 0$, so $\mathfrak{L}_{X_{\tilde{\eta}}}\left(\widehat{\kappa}_{0}\right)$ must be equal to zero.

Since $\widehat{\kappa}_{0}(\alpha)$ is a nowhere vanishing section of $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}\right)$, then there is a square root of $\widehat{K}_{\dot{Q}_{m}}$. That is, a line bundle $\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}$ with the property that if $\widehat{\nu}_{1}, \widehat{\nu}_{2}$ are two sections of $\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}$, then the product $\widehat{\nu}_{1} \otimes \widehat{\nu}_{2}=\widehat{\nu}_{1} \widehat{\nu}_{2}$ is a section of $\widehat{K}_{\dot{Q}_{m}}$. In other words, $\widehat{\nu}_{1} \widehat{\nu}_{2}$ is an m-form as given in 686 . The space of polarized sections of $\widehat{K}_{\hat{Q}_{m}}^{\frac{1}{2}}$ with respect to the polarization G is denoted by $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$. The sections $\widehat{\boldsymbol{\nu}}_{1}, \widehat{\boldsymbol{\nu}}_{2} \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ have the property that $\widehat{\boldsymbol{\nu}}_{1} \otimes \widehat{\boldsymbol{\nu}}_{2}=$ $\widehat{\boldsymbol{\nu}}_{1} \widehat{\boldsymbol{\nu}}_{2} \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}\right)$. Moreover, there is a nowhere vanishing section $\widehat{\nu}_{0}(\alpha) \in \Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}\right)$ with the property $\widehat{\nu}_{0}^{2}(\alpha)=\widehat{\kappa}_{0}(\alpha)$. The following proposition gives the Hermitian structure in $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$.
Proposition 49. Let $\widehat{\nu}_{0}^{2}=\widehat{\kappa}_{0}$ be the m-form in 685). The pointwise magnitude of $\widehat{\nu}_{0} \in$ $\Gamma_{G}\left(\widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ is given by

$$
\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right)=\left(\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle\right)^{\frac{1}{2}},
$$

where the $\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle$ is the unique function that makes the equality holds

$$
\begin{equation*}
(-1)^{m} \widehat{\kappa}_{0} \wedge \widehat{\kappa}_{0}=(\imath)^{m}\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle \varepsilon_{\widehat{\omega}}(\alpha) \text { with }\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle=2^{\frac{m-2}{2}}|\alpha|^{m-2} . \tag{688}
\end{equation*}
$$

Proof. Let me first write the Liouville volume $\varepsilon_{\widehat{\omega}}(\alpha)$ in suitable coordinates. Under the identification $\dot{Q}_{m} \cong T^{+} S^{m}$ consider $\alpha \in \dot{Q}_{m}$ with $\alpha=p+\imath|p| q$ and $(q, p) \in T^{+} S^{m}$. On an open set $U_{j} \subset \mathbb{R}^{m+1}$ such that $q_{j} \neq 0$ the Liouville volume $\varepsilon_{\widehat{\omega}}(\alpha)$ can be written as follows

$$
\begin{equation*}
\varepsilon_{\widehat{\omega}}(q, p)=\frac{1}{2 q_{j}^{2}} d q_{1} \wedge \ldots \wedge d q_{j-1} \wedge d q_{j+1} \wedge d p_{1} \wedge \ldots \wedge d p_{j-1} \wedge d p_{j+1} \wedge d p_{m+1} \tag{689}
\end{equation*}
$$

Now consider $\alpha=p+\imath|p| q$ as a vector in \mathbb{C}^{m+1}. Using that $q \cdot p=0$ a straightforward calculation shows that

$$
\begin{equation*}
d \alpha_{1} \wedge \ldots \wedge d \alpha_{m+1} \wedge d \bar{\alpha}_{1} \wedge \ldots \wedge d \bar{\alpha}_{m+1}=(2 \ell)^{m+1}|p|^{m+1} d q_{1} \wedge \ldots \wedge d q_{m+1} \wedge d p_{1} \wedge \ldots d p_{m+1} \tag{690}
\end{equation*}
$$

If $U_{j} \subset \dot{Q}_{m}$ is a subset where $q_{j} \neq 0$, then $\alpha_{j} \neq 0$ and

$$
\begin{equation*}
\left.\widehat{\kappa}_{0}(\alpha)\right|_{U_{j}}=(-1)^{j} \frac{1}{2 \alpha_{j}} d \alpha_{1} \wedge \ldots \wedge \check{d \alpha_{j}} \wedge \ldots \wedge d \alpha_{m+1} . \tag{691}
\end{equation*}
$$

I carry out the following calculations using $\widehat{\kappa}_{0}(\alpha)$ in (691). A calculation shows that

$$
\begin{align*}
d \alpha_{1} \wedge \ldots \wedge d \alpha_{m+1} \wedge d \bar{\alpha}_{1} \wedge \ldots \wedge d \bar{\alpha}_{m+1} & =\widehat{\kappa}_{0} \wedge d f \wedge \widehat{\kappa}_{0} \wedge \overline{d f} \tag{692}\\
& =(-1)^{m} \widehat{\kappa}_{0} \wedge \widehat{\kappa}_{\widehat{\kappa}_{0}} \wedge 2 \alpha_{j} d \alpha_{j} \wedge 2 \overline{\alpha_{j}} d \bar{\alpha}_{j} \\
& =(\imath)^{m}\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle \varepsilon_{\widehat{\omega}}(\alpha) \wedge 2 \alpha_{j} d \alpha_{j} \wedge 2 \overline{\alpha_{j}} d \bar{\alpha}_{j}
\end{align*}
$$

Using (689) and (690), equality (692) can be written as follows

$$
\begin{equation*}
(2)^{m-1}(\imath)^{m+1}|p|^{m+1} d q_{1} \wedge \ldots \wedge d q_{m+1} \wedge d p_{1} \wedge \ldots d p_{m+1}= \tag{693}
\end{equation*}
$$

$$
(\imath)^{m}\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle \varepsilon_{\widehat{\omega}}(q, p) \wedge \alpha_{j} d \alpha_{j} \wedge \overline{\alpha_{j}} d \bar{\alpha}_{j} .
$$

From the complex two-form $\alpha_{j} d \alpha_{j} \wedge \bar{\alpha}_{j} d \bar{\alpha}_{j}$, the two-form $2 \imath|p|^{3} q_{j}^{2} d q_{j} \wedge d p_{j}$ is the only term that satisfies $\varepsilon_{\widehat{\omega}}(q, p) \wedge \alpha_{j} d \alpha_{j} \wedge \bar{\alpha}_{j} d \bar{\alpha}_{j}=($ one function $)$ times $d q_{1} \wedge \ldots \wedge d q_{m+1} \wedge d p_{1} \wedge \ldots \wedge d p_{m+1}$. The following is obtained from equality (693)

$$
\begin{equation*}
(\imath)^{m} \imath 2|p|^{3}\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle \varepsilon_{\widehat{\omega}}(q, p) \wedge q_{1}^{2} d q_{1} \wedge d p_{1}= \tag{694}
\end{equation*}
$$

$$
(2)^{m-1}(\imath)^{m+1}|p|^{m+1} d q_{1} \wedge \ldots \wedge d q_{m+1} \wedge d p_{1} \wedge \ldots \wedge d p_{m+1}
$$

It follows from equality 694) that $\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle=2^{m-2}|p|^{m-2}$. Now using that $\alpha \in \dot{Q}_{m}$ with $\alpha=p+\imath|p| q$ a calculation shows that $|p|=(2)^{-\frac{1}{2}}|\alpha|$. Hence, $\left\langle\widehat{\kappa}_{0}, \widehat{\kappa}_{0}\right\rangle=2^{\frac{m-2}{2}}|\alpha|^{m-2}$.

Consider the line bundle $L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}$ whose space of polarized sections with respect to the polarization G is denoted by $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$. Elements of $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ are given by

$$
\widehat{r}(\alpha)=\widehat{s}(\alpha) \otimes \widehat{\nu}_{0}=\widehat{s}(\alpha) \widehat{\nu}_{0} \quad \text { with } \quad \widehat{s}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}}\right) .
$$

It follows from equality (688) that the pointwise magnitude ($\widehat{\nu}_{0}, \widehat{\nu}_{0}$) is given by ($\widehat{\nu}_{0}, \widehat{\nu}_{0}$) = $2^{\frac{m-2}{4}}|\alpha|^{\frac{m}{2}-1}$. Let me take $\widehat{r}_{1}(\alpha), \widehat{r}_{2}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$. The inner product in the space $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\hat{Q}_{m}}^{\frac{1}{2}}\right)$ is given by

$$
\begin{aligned}
\left\langle\widehat{r}_{1}, \widehat{r}_{2}\right\rangle & =\frac{1}{(\hbar \pi)^{m}} \int_{\dot{Q}_{m}} \widehat{s}_{1}(\alpha) \overline{\widehat{s}_{2}(\alpha)}\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right) \varepsilon_{\widehat{\omega}}(\alpha) \\
& =\frac{1}{(\hbar \pi)^{m}} \int_{\dot{Q}_{m}} \phi_{1}(\alpha) \overline{\phi_{2}(\alpha)} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}|\alpha|} 2^{\frac{m-2}{4}}|\alpha|^{\frac{m}{2}-1} \varepsilon_{\widehat{\omega}}(\alpha)
\end{aligned}
$$

The squared norm of $\widehat{r}_{1}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\hat{Q}_{m}}^{\frac{1}{2}}\right)$ is given by

$$
\begin{align*}
\left\|\widehat{r}_{1}\right\|^{2} & =\frac{1}{(\hbar \pi)^{m}} \int_{\dot{Q}_{m}} \widehat{s}_{1}(\alpha) \overline{\widehat{s}_{1}(\alpha)}\left(\widehat{\nu}_{0}, \widehat{\nu}_{0}\right) \varepsilon_{\widehat{\omega}}(\alpha) \\
& =\frac{1}{(\hbar \pi)^{m}} \int_{\dot{Q}_{m}}\left|\phi_{1}(\alpha)\right|^{2} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}}|\alpha| 2^{\frac{m-2}{4}}|\alpha|^{\frac{m}{2}-1} \varepsilon_{\widehat{\omega}}(\alpha) . \tag{695}
\end{align*}
$$

Each $\widehat{r}_{1}(\alpha) \in \Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ gives a holomorphic function ϕ_{1} on \dot{Q}_{m}. If it is assumed that the integral in 695 is finite, then the space $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\hat{Q}_{m}}^{\frac{1}{2}}\right)$ is identified with the space

$$
\begin{equation*}
\mathcal{H}^{\prime}=L_{h o l}^{2}\left(\dot{Q}_{m}, \widehat{d m_{m+1}^{\hbar}}(\alpha)\right), \quad \widehat{d m_{m+1}^{\hbar}}(\alpha)=\frac{2^{\frac{m-2}{4}}}{(\hbar \pi)^{m}} \mathrm{e}^{-\frac{\sqrt{2}}{\hbar}}|\alpha||\alpha|^{\frac{m}{2}-1} \varepsilon_{\widehat{\omega}}(\alpha) \tag{696}
\end{equation*}
$$

of square-integrable holomorphic functions on \dot{Q}_{m} regarding the indicated measure.
The symplectic quotient $\left(\mathfrak{J}_{n}^{-1}(0) / G_{n}, \widehat{\omega}\right)$ with $n=4,8$ is identified as a complex manifold with the Kähler manifold $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$ with $m=3,5$ respectively. The space of quantum states is the space of polarized sections $\Gamma_{G}\left(L^{\widehat{\omega}} \otimes \widehat{K}_{\dot{Q}_{m}}^{\frac{1}{2}}\right)$ which is obtained by first performing symplectic reduction and then quantizing the symplectic quotient $\left(\dot{Q}_{m}, \widehat{\omega}=-\imath \sqrt{2} \bar{\partial} \partial|\alpha|\right)$.

Bibliography

[1] Abraham, R. and Marsden, J. Foundations of Mechanics, 2nd ed. (Westview Press, Cambridge, MA, 1978).
[2] Abramowitz, M and Stegun. I. A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th ed. (Dover, New York, 1972) .
[3] Bander M. and Itzykson C. Group Theory and the Hydrogen Atom (I) . Reviews of Modern Physics. 38, 330, 1966.
[4] Bargmann, V. On a Hilbert space of Analytic functions and an Associated Integral transform Part I. Communications on Pure and Applied Mathematics XIV, 187-214 (1961) .
[5] Bargmann, V. and Todorov, I. T., Space of analytic functions on a complex cone as carriers for the symmetric tensor representations of $S O(n)$. J. Math. Phys. 18, 1141-1148 (1977).
[6] Bleistein, N., Handelsman, R., A.Asymtotic expansion of Integrals. New York. Dover Publications, Inc. 1975.
[7] Courant R. and Fritz J. Introduction to Calculus and Analysis Vol. 2. Springer.
[8] Chavel, I. Riemannian Geometry: A Modern Introduction, Second Edition, Vol. 98 Cambridge studies in advanced mathematics. New York Cambridge University Press, 2006 .
[9] Chruścinński D. and Jamiolkowski A. Geometric Phases un Classical and Quantum Mechanics, Birkhüser 2004.
[10] Coordani Bruno. The Kepler problem, Birkhäuser 2003.
[11] Diaz-Ortiz, E. and Villegas-Blas, C. On a Bargmann transform and coherent states for the n.sphere. J. Math. Phys. 53, 062103 (20012).
[12] Garret, P. Notes "Sporadic isogenies to orthogonal groups", 2015.
[13] Gel'fand, I. M. and Shilov, G. E. Generalized functions Functions: Properties and Operators. Academic, New York, 1964, Vol. 1.
[14] Guillemin, V. and Sternberg, S. Geometric Quantization and Multiplicities of Group Representations. Invent.math. 67,515-538 (1982).
[15] Guillemin, V. and Sternberg, S. Variations on a theme by kepler, AMS,Colloquium Publications, Vol. 42, 1990.
[16] Hall, B. and J. Mitchel. Coherent states on the sphere. J. Math. Phys. 43, 2002.
[17] Hall, B. Quantum Theory for Mathematicians, Springer, Graduate Text in Mathematics, 2013.
[18] Hall, B. and Kirwin D. " Unitarity in Quantization commutes with Reduction". Commun. Math. Phys. 275(2007), 401-442.
[19] Hall, B. Lie Groups, Lie Algebras, and Representations An Elementary Introduction, Springer 2004.
[20] Hall, B. The Segal-Bargman "coherent state" transform for compact Lie groups. J. Funct. Anal. 122(1994), 103-151.
[21] Hall, B. Anew form of the Segal-Bargman transform for Lie groups of compact type. Canad. J. Math. 51(1999), 816-834.
[22] Huybrechts D. Complex Geometry, Springer Universitext 2005
[23] Iwai, T, and Sunako, T. Dynamical symmetry groups of the $S U(2)$ Kepler problem. Journal of Geometry and Physics, 33(2000), 326-355.
[24] Iwai, T and Uwano, Y. The quantized Mic-Kepler problem and its symmetry group for negative energies. Journal of Physics A: Mathematical and General, Vol. 21, 1988.
[25] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton University press, Princeton 1955.
[26] Kobayashi and Nomizu. Foundations of Differential Geometry Volume II, Wiley Classic Library, 1996.
[27] Kummer, M. On the regularization of the Kepler problem. Commun. Math. Phys. 84, 133-152 (1982).
[28] Marsden J. and Ratiu T. Introduction to Mechanics and Symmetry, 2nd ed. Springer, 1999.
[29] A. Odzijewicz and M. Horowski. Geometry of the Kepler problem in coherent states approach. Ann. Inst. H. Poincare 59, 69-89, 1993.
[30] Onofri, E. Dynamical Quantization of the Kepler manifold. Journal of Math. 17, 401(1976).
[31] P.A.M Dirac, Lectures on Quantum Mechanics, Academic, New York 1964.
[32] P.A.M Dirac, The Principles of Quantum Mechanics, 3rd edition, Oxford, London, 1947.
[33] Rawsley, J. H. A Nonunitary Paring of Polarizations for the Kepler problem. Transactions of the America Mathematical Society, Vol 250, 1979.
[34] Rawnsley, J. H. Coherent states and Kähler manifolds. Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 112, 403-415.
[35] Rojas-Sandoval, D. and Villegas-Blas, C. Coherent states for spaces of holomorphic functions related to. the hydrogen atom problem in dimensions $m=2,3,5$ in Non commutative Geometry in Mathematics and Physics, Contemporary Mathematics Vol. 462, edited by G. Hito, H. Garcia-Compean, E. Lupercio and F. J. Turrubiates (American Mathematical Society, 2008).
[36] Sternberg S. and Wolf J. Hermitian Lie algebras and Metaplectic Representations I. Transactions of the America Mathematical Society, Vol 238, 1978.
[37] Stiefel, E. L. and Scheifele, G. Linear and Celestial Mechanics. Springer-Verlag, New York 1971.
[38] Tomas, L. and Wassell, "Semiclassical approximation for Scchrödinger operators on a 2 -sphere at high energy. J. Math. Phys. 36, 5480-5505(1995).
[39] Uribe, A. and Villegas-Blas, C. Asymptotics of Spectral Clusters for a Perturbation of the Hydrogen Atom. Commun. Math. Phys. 280(2008), 123-144.
[40] Villegas-Blas, C. The Bargmann transform and canonical transformations. J. Math. Phys. 43, 2249-2283 (2002).
[41] Villegas-Blas, C. The Bargmann transform and regularization of the 2,3,5-dimensional Kepler's problem. J. Math. Phys. 47, 062110 (2006).
[42] Weyl, H. The Theory of Groups and Quantum Mechanics, Dover, New York, 1931.
[43] Woodhouse, N. Geometric Quantization, Second Edition, Oxford Univ. Press, New York 1991.

