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Abstract 

 

Metaheuristic optimization techniques have been used extensively in the fuel reload design of light 

water and heavy water reactors. However, to date, there are no studies conducted on the 

implementation of these methods to fuel loading pattern optimization in advanced fourth-

generation gas-cooled fast reactors. The main reason for the lack of studies on this topic could be 

that it is a developing concept, and therefore research has focused on neutronics and materials 

science. 

 

This doctoral dissertation focuses on the development of a computer code based on metaheuristics 

techniques to optimize the fuel loading pattern of the ALLEGRO fast reactor. The early stage 

covers the modeling of the reactor core. Firstly, a three-dimensional heterogeneous model is set 

up using the Monte Carlo Serpent reactor physics code. Since there are no available studies 

assuming advanced ceramic fuel configuration, this model in Serpent is adopted as a benchmark. 

Subsequently, the deterministic ERANOS reactor physics code is used as an alternative to reduce 

the computational cost of core calculations. It is well known that in optimization calculations, a 

significant number of evaluations of a given objective function are required, so reducing the 

execution time of the simulation code is crucial to find an optimal solution in a reasonable 

computation time. Several case studies are investigated using different calculation options and 

energy groups structure. Among the core parameters calculated at the beginning of the cycle are 

the effective neutron multiplication factor, the neutron spectrum, the neutron flux and power 

distributions, the Doppler constant, the effect of helium density on reactivity and the effective 

delayed neutron fraction. The evolution of the main fuel isotopes and the k-eff value, over the 

operating time, are also analyzed. A fuel cycle study is carried out in ERANOS by using several 

built-in modules for in-core fuel management. The methodology applied to determine the core 

equilibrium conditions is presented and the results for the proposed reloading and reshuffling 

scheme are discussed. 

 

In the next stage, the genetic algorithm and tabu search techniques are applied to the fuel loading 

pattern optimization in the ALLEGRO reactor core. The objective is to maximize the k-eff value 

at the end of the cycle by satisfying the constraints on the power peaking factor over the cycle, the 
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excess reactivity at the beginning of the cycle, and the linear heat generation rate. The basic 

methodology used to program the interface between the ERANOS code and the optimizer to 

compute the objective function is presented. The practical implementation of each technique is 

discussed. Among the highlights of the programmed optimization code based on genetic 

algorithms is the incorporation of the partially mapped crossover and order crossover operators, 

commonly used for permutation-based problems. Other code improvements that reduce running 

time are also presented. An improved version of the tabu search algorithm is also successfully 

implemented. This technique was selected to overcome some of the inherent shortcomings of the 

previous method. By applying the concepts of variable tabu list and aspiration criterion, cycling 

was avoided, resulting in search diversification. The technique proves to be a powerful tool 

compared to genetic algorithms, where it is common to get trapped in local optima. 
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Resumen 

 

Las técnicas metaheurísticas de optimización han sido ampliamente utilizadas en el diseño de 

recargas de combustible en reactores de agua ligera y reactores de agua pesada. Sin embargo, hasta 

la fecha, no existen estudios sobre la aplicación de estos métodos en la optimización de patrones 

de recarga en reactores rápidos enfriados por gas de cuarta generación. La principal razón de la 

falta de estudios sobre este tema podría ser que se trata de un concepto en desarrollo y, por tanto, 

la investigación se ha centrado en la neutrónica y la ciencia de los materiales. 

 

Esta tesis doctoral se enfoca en el desarrollo de un código basado en técnicas metaheurísticas para 

optimizar la recarga de combustible en el reactor rápido ALLEGRO. La etapa inicial de la 

investigación abarca el modelado del núcleo del reactor. Primero, se establece un modelo 

tridimensional heterogéneo usando el código de simulación Monte Carlo Serpent. Debido a que 

no existen estudios disponibles donde se considere la configuración del núcleo con combustible 

cerámico avanzado, este modelo es tomado como referencia. Posteriormente, el código 

determinista ERANOS es usado como alternativa para reducir el costo computacional de la 

simulación del núcleo del reactor. Como bien se conoce, en los cálculos de optimización se 

requieren un elevado número de evaluaciones de una función objetivo dada, por lo que reducir el 

tiempo de ejecución por parte del código de simulación es crucial para encontrar una solución 

óptima en un tiempo de cómputo razonable. Se experimenta estableciendo diferentes opciones de 

cálculo y estructura de grupos de energía. Entre los parámetros calculados a inicio de la vida del 

reactor se encuentran el factor efectivo de multiplicación de neutrones, el espectro de neutrones, 

las distribuciones de flujo neutrónico y de potencia, la constante Doppler, el efecto de la densidad 

del helio sobre la reactividad y la fracción efectiva de neutrones diferidos. También se analiza la 

evolución de la concentración de los principales isótopos de combustible en función del tiempo de 

operación. Se lleva a cabo un estudio del ciclo de combustible usando varios módulos incorporados 

en ERANOS para la gestión del combustible dentro del núcleo. Se presenta la metodología 

implementada para determinar las condiciones de equilibrio del reactor y se discuten los resultados 

aplicando el esquema de recarga y reacomodo propuesto. 
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En la segunda etapa, se aplican las técnicas metaheurísticas, algoritmo genético y búsqueda tabú, 

a la optimización del patrón de recarga de combustible del reactor ALLEGRO. El objetivo es 

maximizar el valor del factor efectivo de multiplicación de neutrones al final del ciclo satisfaciendo 

las restricciones operativas y de seguridad, como el factor de pico de potencia, el exceso de 

reactividad al inicio del ciclo y la tasa de generación de calor lineal. Se presenta la metodología 

usada para programar la interfaz entre el código de simulación ERANOS y el código de 

optimización, usada para el cálculo de la función objetivo. Se cubre en detalle la implementación 

práctica de cada técnica. Entre los aspectos más destacados del código programado, basado en 

algoritmos genéticos, se encuentra la incorporación de los operadores de cruce basado en 

correspondencia parcial y de cruce basado en el orden. También se presentan otras mejoras 

introducidas al código para reducir el tiempo de ejecución total. Finalmente, se implementó 

satisfactoriamente una versión de la técnica de búsqueda tabú. Esta técnica se seleccionó para 

solventar algunas de las deficiencias inherentes del método previo. Aplicando los conceptos de 

lista tabú variable y criterio de aspiración se evita el ciclado, lo que resulta en una diversificación 

de la búsqueda. La técnica demuestra ser una herramienta poderosa comparada con los algoritmos 

genéticos, en los que es habitual quedar atrapado en regiones de óptimos locales. 
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Chapter 1 

 

 

1. Introduction 

 

This chapter presents an overview of the fourth-generation gas-cooled fast reactor, focusing on the 

ALLEGRO experimental reactor selected for the present study. It also briefly introduces the topic 

of in-core fuel management. Finally, it discusses the purpose of the research and outlines the main 

activities undertaken to achieve the objectives. 

 

 

1.1. The Gas-cooled Fast Reactor 

 

The gas-cooled fast reactor (GFR) is a promising advanced nuclear energy system selected and 

supported worldwide by the Generation-IV International Forum (GIF) for further research and 

development. GIF was established in 2000 as an international collaboration to research, develop 

and demonstrate the feasibility and performance of Generation-IV (Gen-IV) nuclear reactors. The 

Gen-IV goals were originally defined in 2002 and comprise four broad areas: sustainability, safety 

and reliability, economic competitiveness, and proliferation resistance and physical protection. 

The following six technologies, including the GFR, were identified as the most promising to meet 

these goals (U.S. DOE, 2002): 

 

1. Sodium-cooled Fast Reactor (SFR); 

2. Very High Temperature Reactor (VHTR); 

3. Gas-cooled Fast Reactor (GFR); 

4. Molten Salt Reactor (MSR); 

5. Lead-cooled Fast Reactor (LFR); 

6. SuperCritical Water-cooled Reactor (SCWR). 
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The latest GIF reports and roadmaps provide detailed information on the research and development 

efforts, the current technology status, and the timeline for the viability, performance, and 

demonstration phases for each Gen-IV system. 

 

The GFR system is a high-temperature helium-cooled fast-spectrum reactor with a closed fuel 

cycle (GIF, 2018). It combines the advantages of fast spectrum systems for the long-term 

sustainability of uranium resources and waste minimization (through fuel multiple reprocessing 

and fission of long-lived actinides) with those of high-temperature systems (high thermal cycle 

efficiency and industrial use of the generated heat). This type of innovative nuclear system has 

several attractive features: the helium coolant is a single-phase coolant that is chemically inert, 

which does not dissociate or become activated, is transparent and while the coolant void coefficient 

is still positive, it is small and dominated by the Doppler feedback. The high outlet temperature 

places onerous demands on the capability of the fuel to operate continuously with the high-power 

density necessary for good neutron economics. The introduction, testing, and qualification of a 

suitable fuel and cladding material that can endure the harsh conditions of high temperatures and 

doses over long periods, while maintaining safe and stable reactor operation, is a crucial stage in 

the GFR technology development. (GIF, 2021).  

 

Several GFR concepts have been under development considering different fuel forms such as 

coated fuel particles, silicon carbide blocks with dispersed microparticle fuel inside, silicon carbide 

plates with fuel pellets arranged in honeycomb structure, and the current design of hexagonal fuel 

assemblies composed of cylindrical rods of fuel pellets, arranged in a hexagonal array and 

surrounded with a hexagonal SiC wrapper (Perkó et al., 2015). The favored fuel material is the 

advanced carbide (ceramic) fuel, while for the pin clad it is silicon carbide fiber reinforced silicon 

carbide (SiC-fib/SiC). The reference concept for the GFR currently corresponds to the large-scale 

reactor, with 2400 MWth of thermal power (GFR2400), proposed by the French CEA (French 

Alternative Energies and Atomic Energy Commission) (Perkó, 2012; Perkó et al., 2015; Stainsby 

et al., 2011). 
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The European 75 MWth ALLEGRO gas-cooled fast reactor is the proposed concept to test the 

basic features of the GFR2400 reference reactor (GIF, 2021). The objectives of the ALLEGRO 

project are to demonstrate the GFR feasibility and to qualify specific technologies such as fuel, 

helium-related technologies, and safety systems (e.g., decay heat removal system). It will also 

demonstrate that these features can be integrated successfully into a representative system. The 

reactor will operate with two different cores: the starting core will consist of already well qualified 

fuel assemblies, with uranium oxide (UOX) or mixed oxide (MOX) fuel in stainless steel claddings 

will serve as a driving core for six experimental fuel assemblies containing the advanced ceramic 

fuel. The second core will consist entirely of ceramic fuel, enabling ALLEGRO to operate at the 

high temperature (GIF, 2021). 

 

The development of ALLEGRO is governed by a consortium named V4G4 Centre of Excellence, 

established in 2012 in Slovakia by its four founding members: EK from Hungary, NCBJ from 

Poland, UJV Rez from the Czech Republic, VUJE from Slovakia, and two associated members, 

CEA from France, and CVR from Czechia (GIF, 2021). If the project is successful, ALLEGRO 

would be the first demonstration of a GFR built to date. 

 

 

1.1. In-core Nuclear Fuel Management 

 

Nuclear fuel management has traditionally been divided into two categories: out-of-core and in-

core fuel management. In turn, the out-of-core is divided into the activities and decisions 

associated with the front-end and the back-end of the fuel cycle. Related to the front-end stage, 

decisions are typically made during the initial design phase of the reactor core and are relatively 

fixed. The back-end comprises all activities that ensure the safe separation of spent fuel and 

radioactive waste from the environment. Two main strategies are considered in the back-end stage: 

open cycle and closed cycle. In the former, the spent fuel is stored long-term and then disposed of 

in a deep geological repository, and in the latter, the nuclear fuel is reprocessed (the useful fuel 

material is extracted and reused to manufacture new fuel) and only the waste is disposed of. Out-

of-core fuel management involves, among others, decisions related to the fresh fuel fabrication 
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and the partially burnt fuel to reinsert into the core for additional energy production. The questions 

to be addressed are: What to manufacture? and What to reinsert? (Jayalal et al., 2014; Turinsky, 

2005). Concerning the fresh fuel to be loaded, it includes lattice design decisions such as pin-wise 

enrichment and the type and configuration of reactivity control materials. It also encompasses the 

axial placement of lattice designs and the number of each assembly for a specific reload cycle. 

Now, for the partially burnt fuel assemblies to be reinserted into the core, the decision-making can 

be associated to the selection of spent fuel assemblies (e.g., from eligible assemblies in the previous 

cycle and spent-fuel pool) and the determination of appropriate cycle lengths. 

 

In-core fuel management involves the arrangement of fresh and partially burnt fuel assemblies 

(i.e., loading pattern) and reactivity control mechanisms (i.e., control rod pattern and burnable 

poison material placement) within the core to optimize reactor performance during the next 

operating cycle, while ensuring that operating constraints are always met. It will answer the 

question “Where to position?” In-core decisions are made both during the initial core loading and 

at regular refueling intervals and are therefore more frequent. Out-of-core and in-core problems 

are closely related. For example, out-of-core decisions, such as number of fresh fuel assemblies to 

load will serve for in-core optimization problem. 

 

The objective of in-core fuel management is to minimize the cost of electrical energy generation 

subject to operational and safety constraints. These constraints include cycle energy requirements, 

discharge burnup limits, thermal limits (e.g., limitation on the radial power peaking factors and the 

linear heat generation rate), reactivity limits (e.g., hot excess and shutdown margin), radial power 

imbalance, etc. (Turinsky, 2005). 

 

This research will focus on the loading pattern optimization task as part of in-core fuel 

management decision making problem. The following features make this problem quite difficult 

to solve (Turinsky, 2005): 

 

1. NP-hard combinatorial problem (the loading pattern defines combination of individual fuel 

and loading position in the core).  
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2. Nonlinear objectives and constraints (multiples local optima in the solution space), 

3. Lack of derivative information. 

4. Multi-objective optimization problem. 

5. Large decision space. 

6. Numerous constraints due to safety concerns in the design process. 

 

In addition, due to the nonlinear nature there are many local optima in the solution space which 

makes it easy to get trapped in local optima. The nonlinearity also implies that the objective value 

cannot be obtained by the superposition of the other objective values, which makes it necessary to 

perform core calculations for each candidate design. This makes it computationally demanding. 

 

Given the characteristics summarized above, the loading pattern optimization is considered as a 

complex global multi-objective combinatorial optimization problem. It has taken decades of 

significant effort to develop automated computational capability to assist the reload core nuclear 

design engineer in making nuclear fuel management decisions. This development has ranged from 

heuristic rules to utilization of mathematical optimization approaches (Turinsky, 2005). A well-

organized historical review of the loading pattern optimization is provided by (Nissan, 2019). Early 

techniques to address this optimization problem were based on manual methods, in which experts 

used their knowledge and experience to find optimal solutions. Expert systems based on heuristic 

rulesets proved useful when introduced to the in-core optimization decision-making problem. 

These methods were limited in scope and prone to errors and inaccuracies. Evolving complexity 

of the design features and constraints often invalidated expert rules based on past design 

experiences. Later approaches developed were gradient based (e.g., linear programming) or hill 

climbing like methods (e.g., direct search). These methods have inherent disadvantages that are 

difficult to overcome in practical applications. They tend to get trapped in local optima and cannot 

treat multi-modality which is essential in the loading pattern optimization design (Yamamoto, 

1998). 

 

In the 1970s and 1980s, the invention of metaheuristic techniques such as genetic algorithms 

(Holland, 1975), simulated annealing (Kirkpatrick et al., 1983), tabu search (Glover, 1986), etc., 
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represented a significant milestone in the optimization research field. These techniques introduced 

innovative approaches to address optimization problems. In-core fuel management immediately 

benefited from the emergence of these global optimization methods, especially to solve fuel load 

pattern optimization problems. They have been improved over the years and several new methods 

and approaches have been developed. One approach that has been particularly successful is the 

development of hybrid methods, which combine several existing methods to create more powerful 

and efficient algorithms. 

 

Metaheuristic techniques have been successfully applied to solve the loading pattern optimization 

problem, mainly in light water reactors (boiling water reactors and pressurized water reactors) and 

pressurized heavy water reactors (Canada Deuterium Uranium), technologies that are currently in 

operation (IAEA, 2023). Since research in this field has been extensive, the following are just a 

few examples of published studies categorized by technique: 

 

1. Genetic Algorithms – (DeChaine & Feltus, 1995; Martín-del-Campo et al., 2009; Ortiz et 

al., 2007; Ortiz & Requena, 2004; So et al., 2021; Toshinsky et al., 1999). 

2. Tabu Search – (Castillo et al., 2004, 2005, 2007; François et al., 2013; Hill & Parks, 2015; 

Jagawa et al., 2001). 

3. Simulated Annealing – (Kropaczek & Turinsky, 1991; Park et al., 2009; Stevens et al., 

1995; Tran et al., 2021). 

4. Particle Swarm Optimization – (Domingos et al., 2006; Khoshahval et al., 2010; Meneses 

et al., 2009, 2010; Yadav & Gupta, 2011). 

5. Ant Colony Optimization – (de Lima et al., 2008; M Dorigo et al., 1996; M Dorigo & 

Gambardella, 1997; Esquivel-Estrada et al., 2011). 

 

A key component in optimization calculations is the core simulation code to evaluate the loading 

patterns and compute objectives and constraints (note that the code will be interfaced with the 

optimizer.). The reactor physics code must provide reliable calculations for complex lattice, 

assembly, and core designs. The optimization process is iterative, so many evaluations are 

required, particularly when metaheuristic techniques are used. Therefore, a trade-off between the 
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level of modeling detail and computational cost is needed. Commonly, deterministic transport 

codes are selected for three-dimensional core calculations. In addition, the code must include 

appropriate modules or calculation options for in-core fuel management, i.e., integrated routines 

to perform reloading and reshuffling, fuel cycle simulations, and core follow-up. 

 

 

1.2. Purpose and Evolution of the Research 

 

The main objective of this research is to develop a computer code for the fuel loading pattern 

optimization of the ALLEGRO fast reactor using metaheuristic techniques. The work was 

conducted as part of the Nuclear Reactors and Fuel Cycles project and was motivated by several 

factors. Firstly, a literature review on in-core fuel management showed a lack of studies on fuel 

loading pattern optimization in advanced GFR systems since most of the literature focused on 

light-water reactors. Secondly, there was extensive experience in fast neutron systems simulation 

from a previous analysis of the GFR2400 reactor. Thirdly, the team had expertise (since the 1990s) 

on fuel loading pattern optimization in BWR nuclear reactors (Laguna Verde Nuclear Power Plant) 

with several published papers. The reactor selected for the study is the ALLEGRO experimental 

reactor, proposed as an initial step for the Gen-IV GFR development. Figure 1.1 shows the 

schedule of the main activities carried out per semester to achieve the objectives. 

 

The first stage of the research was a literature review to define the design parameters of the 

ALLEGRO reactor core corresponding to the ceramic fuel configuration. Based on these 

specifications, a reference model was developed using the Monte Carlo Serpent code, followed by 

a second model using the deterministic ERANOS 2.0 code to reduce the calculation time. Some 

discrepancies were found in the deterministic model compared to the reference model, mainly 

because several isotopes were missing from the cross-section libraries. This problem was solved 

using the latest available version of ERANOS (version 2.3N). In the next phase, a fuel cycle 

analysis was performed using the ERANOS built-in modules for in-core fuel management. This 

included defining the procedures to implement the reloading and reshuffling scheme proposed for 
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the equilibrium cycle calculation. Subsequently, the LP optimization problem to be solved by 

metaheuristics was formulated. 

 

Figure 1.1: Timeline diagram showing the main activities carried out by semester. 

 

The genetic algorithms technique was selected as the first solution method. The interface required 

to evaluate the LPs in ERANOS and compute the objective function was programmed. The 

develop of the genetic algorithms-based optimization system evolved from using DAKOTA 

software (Adams et al., 2022) and MATLAB Optimization toolbox (The MathWorks Inc., 2019) 

to programming an improved GA algorithm from scratch. MATLAB® software was used with an 

Academic License provided through the National Autonomous University of Mexico (UNAM). In 

the final stage, an improved tabu search technique for LP optimization was also implemented. 

 

 

1.3. Structure of the Thesis 

 

The document is organized into four main chapters. The introductory chapter provides an overview 

of the gas-cooled fast reactor, in-core nuclear fuel management, and the purpose and evolution of 

the research. Chapter 2 presents the neutron characterization of the ALLEGRO reactor core. 

Section 2.1 provides a detailed description of the core design and fuel composition. Section 2.2 
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contains the methodology for the core calculation in the Serpent and ERANOS simulation codes. 

Section 2.3 summarizes the results for different models, including important reactor core 

parameters such as the effective neutron multiplication factor, neutron spectrum, neutron flux and 

power distributions, Doppler effect, the effect of helium density on reactivity, the effective delayed 

neutron fraction, burnup calculation and equilibrium cycle calculation. The latter provides a 

comprehensive description of the procedures implemented in ERANOS to apply the proposed 

reloading and reshuffling scheme. 

 

Chapter 3 focuses on the fuel loading pattern optimization of the ALLEGRO reactor using 

metaheuristics. This chapter starts with a brief overview of optimization fundamentals. Section 3.2 

describes the objective function formulated for the optimization problem. Sections 3.3 and 3.4 

provide a detailed description of the genetic algorithms and tabu search implementation for the 

ALLEGRO fuel loading pattern optimization. 

 

Finally, Chapter 4 provides a summary and conclusions of the research presented in the previous 

chapters, highlighting the key findings, contributions, and limitations of the study. The thesis 

concludes with a list of References used throughout the study. 
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Chapter 2 

 

 

2. Core Neutronic Characterization of the ALLEGRO 

Gas-cooled Fast Reactor 

 

This chapter provides a detailed description of the ALLEGRO reactor core design specifications. 

The methodology for core simulation using the Monte Carlo Serpent code and the deterministic 

ERANOS code is discussed. Different calculation options are evaluated, and the results of core 

parameters such as k-eff, Doppler constant, neutron flux and power distributions, and beta-eff, are 

discussed. In addition, a fuel cycle study is carried out, including the equilibrium cycle calculation. 

 

 

2.1. ALLEGRO Reactor Core Design 

 

The present work considers the ALLEGRO reactor configuration corresponding to ceramic fuel 

assemblies with similar fuel composition to the GFR2400 reference design (Lima-Reinaldo & 

François, 2021). The current GFR design consists of a hexagonal fuel assembly consisting of 

cylindrical rods (pins) with fuel pellets, arranged in a hexagonal arrangement surrounded with a 

hexagonal SiC wrapper (Perkó et al., 2015). 

 

A schematic view of the ALLEGRO reactor fuel pin is depicted in Figure 2.1, while Table 2.1 

summarizes the geometrical properties at room temperature. This description for the fuel pin 

corresponds to the GFR2400 reactor (GFR reference design) described by (Perkó et al., 2015). The 

cladding (Clad) is made of SiC covered from the inside with thin metallic liners (rhenium, Re and 

tungsten-rhenium alloy, W14Re), which are metals with high melting temperature to improve the 

confinement of fission products. The gap between the pellets and the metallic liners is filled with 

helium at 1 MPa. The addition of SiC fiber (SiC-fib) to the SiC cladding material aims to improve 

its mechanical strength and at the same time its tightness, preventing gas diffusion to the coolant 

through porosities in the ceramic material. The total height of the fuel pin is 135 cm including the 
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active height of 86 cm and the fission gas plenum at the top (9 cm high) and at the bottom (40 cm 

high). Each fuel assembly (FA) contains 90 fuel pins and a center pin of SiC structural material 

arranged in a hexagonal array with a hexagonal SiC wrapper (Čerba et al., 2014). Figure 2.2 shows 

a cross sectional view of the fuel assembly. The 30 cm high axial reflectors, above and below the 

plenums, are made up of zirconium carbide (ZrC). The axial shielding at the top and bottom of the 

axial reflector is made of natural boron carbide (𝑁𝐴𝑇𝐵4𝐶) with an axial length of 50 cm. 

 

The ceramic fuel material used is composed of a mixture of uranium and plutonium carbide, 

(𝑈, 𝑃𝑢)𝐶, where the isotopic composition of the fertile fuel, uranium, corresponds to natural 

uranium; while that of the fissile fuel, plutonium, is characteristic of twice-recycled MOX fuel. 

The assumed volume fraction of PuC in the core is 27.5%, according to (Čerba et al., 2014) (MOX 

and ceramic fuel assemblies comparative study). The porosity of the ceramic fuel is 20% (Perkó 

et al., 2015). The fuel material parameters are presented in Table 2.2. 

 

Table 2.1: Geometrical properties of the ALLEGRO reactor core. 

Pin Fuel assembly Core 

Region Radius (cm) Region Radius (cm) Parameter Value 

Fuel pellet 0.3355 Wrapper (in) 5.3117 No. of FAs 87 

Gap 0.350 Wrapper (out) 5.5117 No. of CSDs 6 

W14Re liner 0.354 Coolant (out FA) 5.6617 No. of DSDs 4 

Re liner 0.355 Active height 86 No. of RRs 174 

Clad 0.455 No. of pins 91a No. of BRs 198 

SiC-fib 0.458     

Lattice pitch 1.1     
a- The number of pins corresponds to 90 fuel pins plus a SiC center pin. 
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Figure 2.1: Cross sectional view of the fuel pin of the ALLEGRO reactor. 

 

Figure 2.2: Cross sectional view of the fuel assembly of the ALLEGRO reactor. 
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Table 2.2: Fuel isotopic composition of the ALLEGRO reactor core. 

Pu vector 𝑃𝑢𝑓𝑟,𝑖 (%) U vector 𝑈𝑓𝑟,𝑖(%) 

𝑃𝑢238  2.7 235U 0.72 

𝑃𝑢239  56.0 238U 99.28 

𝑃𝑢240  25.9   

𝑃𝑢241  7.4   

𝑃𝑢242  7.3   

𝐴𝑚241  0.7   

PuC molar mass (𝑔/𝑚𝑜𝑙) 251.677 UC molar mass (𝑔/𝑚𝑜𝑙) 250.039 

PuC density (𝑔/𝑐𝑚3) 10.880a UC density (𝑔/𝑐𝑚3) 10.904a 

PuC volume fraction (%) 27.5   

UC volume fraction (%) 72.5   
a- The density includes 20% porosity of the ceramic fuel. 

 

Figure 2.3 and Figure 2.4 show the cross sectional and axial view of the reactor core, respectively. 

The active core consists of only one zone with 87 hexagonal fuel assemblies arranged in a 

hexagonal array. The 174 radial reflectors, like the lower and upper reflectors, are made up of ZrC. 

The 198 𝑁𝐴𝑇𝐵4𝐶 assemblies surrounding the core make up the radial shielding. For these core 

structural elements, the homogeneous mixture with the composition given in Table 2.3 is 

considered and the axial layout is shown in Figure 2.4. 

 

The reactivity is controlled by two systems of control rods: 6 CSDs (Control System Devices or 

control rods) and 4 DSDs (Diverse Safety Devices or safety rods) (Pónya & Czifrus, 2017). The 

control rods are fully withdrawn and located above the active core. The rod follower (RFOL) fills 

the region between the top of the lower reflector and the bottom of the control rod. 
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Figure 2.3: Cross sectional view of the ALLEGRO reactor core (xy plane). Note that the 

fuel pins are not represented. 

 

Figure 2.4: Axial view of the ALLEGRO reactor core (yz plane). 
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Table 2.3: Axial layout and structural elements composition of the ALLEGRO core. 

Axial region Height (cm) Material Volume fraction (%) 

Upper shielding (US) 50 

𝑁𝐴𝑇𝐵4𝐶 50 

AIM1 10 

He at 7 MPa 40 

Upper reflector (UR) 30 
Zr 75 

He at 7 MPa 25 

Upper plenum (UP) 9 

He 1 MPa 31.19 

He 7MPa 39.24 

Re 0.18 

W14Re 0.72 

SiC 28.67 

Fuel 86 – – 

Lower plenum (LWP) 40 

He at 1 MPa 31.19 

He at 7MPa 39.24 

Re 0.18 

W14Re 0.72 

SiC 28.67 

Lower reflector (LR) 30 
ZrC 75 

He at 7 MPa 25 

Lower shielding (LS) 50 

𝑁𝐴𝑇𝐵4𝐶 50 

AIM1 10 

He at 7 MPa 40 

Total height 295 – – 

Radial reflector (RR) 195 
ZrC 80 

He at 7 MPa 20 

Radial shielding (RS) 195 

𝑁𝐴𝑇𝐵4𝐶 70 

AIM1 10 

He at 7 MPa 20 

Control and shutdown rods 

(CSD and DSD) 
89 

𝐵4𝐶  30.26 

AIM1 11.22 

SiC 10.85 

He at 7 MPa 47.67 

Rod follower (RFOL) 206 

AIM1 1.2 

SiC 10.85 

He at 7 MPa 87.95 
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2.1.1. Fuel material densities 

 

To determine the mass fraction, the atomic density (𝑁𝑖  in 𝑐𝑚−3), and the mass (𝑚𝑖 in kg) of the 

individual heavy metal isotopes in the active core, were calculated. These fractions will be used to 

define the fuel material in both Serpent and ECCO/ERANOS codes. The isotopic composition is 

given in Table 2.1. The formulas described by (Perkó, 2012) for the GFR2400 fast reactor were 

adopted. Then, the atomic densities of Pu isotopes 𝑁𝑖
𝑃𝑢 (including 𝐴𝑚241 ) are calculated as 

follows: 

 

𝑁𝑖
𝑃𝑢 =

𝑉𝑃𝑢𝐶
𝑉𝑓𝑢𝑒𝑙

×
𝜌𝑃𝑢𝐶
𝑀𝑃𝑢𝐶

×
𝑃𝑢𝑓𝑟,𝑖

100
× 𝑁𝐴    [𝑐𝑚

−3] (2.1) 

 

Where 𝑉𝑃𝑢𝐶 and 𝑉𝑓𝑢𝑒𝑙 are the volume of 𝑃𝑢𝐶 and the total fuel volume, respectively. The volume 

fraction of 𝑃𝑢𝐶 𝑣 =
𝑉𝑃𝑢𝐶

𝑉𝑓𝑢𝑒𝑙
 (in %), the density 𝜌𝑃𝑢𝐶 (in 𝑔. 𝑐𝑚−3), the plutonium fraction 𝑃𝑢𝑓𝑟,𝑖 (in 

%), and the molar mass 𝑀𝑃𝑢𝐶 (in 𝑔.𝑚𝑜𝑙−1), are given in Table 2.2. Likewise, for the U isotopes, 

we get that 𝑁𝑖
𝑈 is equal to: 

 

𝑁𝑖
𝑈 = (1 −

𝑉𝑃𝑢𝐶
𝑉𝑓𝑢𝑒𝑙

) ×
𝜌𝑈𝐶
𝑀𝑈𝐶

×
𝑈𝑓𝑟,𝑖

100
× 𝑁𝐴    [𝑐𝑚

−3] (2.2) 

 

For the natural carbon, 𝑁𝑖
𝐶  is: 

 

𝑁𝑖
𝐶 = [

𝑉𝑃𝑢𝐶
𝑉𝑓𝑢𝑒𝑙

×
𝜌𝑃𝑢𝐶
𝑀𝑃𝑢𝐶

+ (1 −
𝑉𝑃𝑢𝐶
𝑉𝑓𝑢𝑒𝑙

) ×
𝜌𝑈𝐶
𝑀𝑈𝐶

] × 𝑁𝐴    [𝑐𝑚
−3] (2.3) 

 

Finally, the masses of the individual isotopes (𝑚𝑖) are calculated as: 

 

𝑚𝑖 = 𝑁𝑖 ×
𝑉𝑓𝑢𝑒𝑙

𝑁𝐴
×𝑀𝑖    [𝑔] (2.4) 
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where, 𝑁𝑖 are the previously calculated atomic densities for each isotope, 𝑉𝑓𝑢𝑒𝑙 is the total fuel 

volume, 𝑀𝑖 is the molar mass of the isotopes, and 𝑁𝐴 = 6.02214 × 10
23 𝑚𝑜𝑙−1 is the Avogadro 

number. Given these, the atomic densities and masses of each isotope calculated are summarized 

in Table 2.4. 

As additional data, the total volume of fuel material is calculated as: 

 

𝑉𝑓𝑢𝑒𝑙 = 𝜋 × 𝑟𝑝𝑒𝑙𝑙𝑒𝑡
2 × 𝑛𝐹𝐴 × 𝑛𝑝𝑖𝑛𝑠 × ℎ𝑎𝑐𝑡𝑖𝑣𝑒 = 238.12 × 10

3 𝑐𝑚3 (2.5) 

 

Table 2.4: Fuel inventory in the ALLEGRO reactor core. 

Isotopes 𝑁𝑖 (𝑏𝑎𝑟𝑛
−1𝑐𝑚−1) Mass (kg) 

𝑃𝑢238  1.933E-04 18.195 

𝑃𝑢239  4.009E-03 378.960 

𝑃𝑢240  1.854E-03 176.003 

𝑃𝑢241  5.298E-04 50.497 

𝑃𝑢242  5.226E-04 50.021 

𝐴𝑚241  5.011E-05 4.777 

Pu – 673.676 

𝑈235  1.890E-02 1779.265 

𝑈238  1.371E-04 12.741 

U – 1792.006 

C 2.620E-02 124.426 

Total – 2594.884 

 

 

2.2. ALLEGRO Reactor Design in ERANOS and Serpent Codes 

 

The neutron population in a nuclear reactor is governed by the transport equation, also called the 

Boltzmann equation. In practice, there are two main classes of codes for solving the transport 

equation. First, deterministic transport codes, which use a computational numerical resolution of 

the transport equation or its simplified version, diffusion equation, to determine the neutron flux 

(Parisot, 2015). They generally require the discretization of space, energy, and time variables. And 

secondly, the Monte Carlo neutron transport codes, where the life of each neutron is simulated 

individually and the events of interest are the interactions which they induce with the different 
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nuclei of the atoms that constitute the environment gone through (scattering, capture, fission, etc.) 

(Parisot, 2015). This series of events is called a history and simulating enough neutron histories 

results in a detailed simulation of the transport process. Its main advantage is the capability to 

model the geometry and interaction physics without major approximations. Monte Carlo codes can 

use neutron interaction data in a tabular point-wise form, the opposite of deterministic codes that 

require data preprocessing into a group-wise format (Leppänen, 2007). This is the reason why they 

are often qualified as continuous energy Monte Carlo transport codes, and they have got the status 

of reference transport codes (Parisot, 2015). The disadvantage is that the modelling of complicated 

systems requires high computational cost. Monte Carlo codes are widely used in various reactor 

physics applications, including criticality calculations, spatial homogenization, fuel cycle studies, 

radiation shielding problems, research reactor modeling and validation of deterministic transport 

codes, etc. 

 

In this study, for the ALLEGRO reactor core simulation, the Monte Carlo Serpent code was used 

for reference calculations. The deterministic ERANOS code was also employed to reduce the 

computational time. Subsection 2.2.1 and 2.2.2 describe the reactor core modeling using the 

ERANOS and Serpent codes, respectively. 

 

 

2.2.1. ERANOS deterministic code 

 

ERANOS (European Reactor Analysis Optimized calculation System) is a deterministic neutronic 

calculation code system for fast reactors analysis. ERANOS has been developed and validated 

with the aim of providing an adequate basis for reliable neutron calculations, as well as the ability 

to treat fuel assemblies of advanced reactors (Ruggieri et al., 2006). The latest ERANOS release 

(version 2.3N) is used in this study. The software package was obtained through computer program 

service of the OECD/NEA Data Bank. 

 

ERANOS adopts a complex and extensive modular structure. LU (User Language) is the script 

language used as the interface between the user and the calculation code. This language has its 

own syntax with a few specific features, as the manipulation of basic data types. The LU interpreter 
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controls the execution of the modules (or functions) and saves the results and data. A structured 

dataset is represented as a SET (Structured ERANOS Tree). A SET can be created or used by the 

modules themselves or by the user via the LU. It could be a geometry, cross-sections, flux, isotopic 

concentrations, etc. 

 

ERANOS provides a full core calculation through a sequence of many complex steps. The 

simulation is mainly separated into two parts: cell and core calculations. First, the cell (or lattice) 

calculation is performed using the ECCO module to prepare the cross sections and matrices for a 

given number of energy groups and for an equivalent medium corresponding to the cell. These 

group cross sections are then used in the core calculation to determine the reactor characteristics. 

The flowcharts in Figure 2.5 and Figure 2.6 show the core calculation scheme. 

 

Figure 2.5: Core calculation scheme in the ERANOS/ECCO code. 

 

    
                

                
          

                
                 

           

              
          

           
                   

      
           

            

                    
                       

                   
                   
                 

             
       



 
 

Chapter 2 

 
 

 

 

37 

 

For cell calculations, the European Cell Code (ECCO) provides cross sections and matrices for 

use in reactor core calculations performed by other modules available within ERANOS. ECCO 

has a resonance self-shielding solution algorithm based on the sub-group method combined with 

a fine group transport calculation in complex heterogeneous structures based on collision 

probabilities (Ruggieri et al., 2006). The ECCO/ERANOS code package contains four neutron 

cross section libraries derived from the JEFF-3.1 evaluated nuclear data files 

(ECCOLIB_JEFF_31.𝑥; 𝑥: 1968, 33, 172 and 175 energy groups libraries). For core calculations, 

the ERANOS package includes several modules for solving the neutron transport equation. For 

example, the BISTRO module uses the discrete ordinates method (𝑆𝑁 method) and the finite 

difference method, while the TGV/VARIANT module uses the spherical harmonics method (𝑃𝑛 

method) and the variational nodal method, for angular and spatial discretization, respectively. 

 

The simulation starts using the ECCO module. First, the media (homogeneous regions) that make 

up the core are created. In this step the concentrations of the different isotopes that make up the 

medium are given. The composition used for the fuel and other elements is given in Table 2.2 and 

Table 2.3 respectively. Second, the geometrical description of the cell, the basic element to build 

a core, is defined. ERANOS allows defining cells with complex geometries such as 2D hexagonal 

lattices with pins arranged in a hexagonal array surrounded by a hexagonal wrapper. This 

geometry, shown in Figure 2.2, was used to define the cell corresponding to the fuel assembly.  
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Figure 2.6: Core calculation procedure in ERANOS. 

 

A homogeneous composition was defined for the other structural components of the core. Then 

ECCO generates the appropriate cross sections for each specified cell and the nuclear libraries by 

means of the collision probability method. These cells defined in the ECCO correspond to the fuel 

assembly, plenums, reflectors and shielding. 

 

A full ECCO calculation may consist of several steps in which different geometrical models 

(heterogeneous or homogeneous), group structures, processing of the flux or the balance, and 

resonance shielding treatments are used. To perform the ECCO calculation for the fuel cell, the 

reference route represented in the diagram in Figure 2.7 was used. The calculation is performed in 

a sequence of 5 steps. Firstly, for a homogeneous geometry, the fission source is calculated and 

then the axial buckling value is searched to obtain a critical cell. In this step, the 33 energy groups 

library (or broad group cross section library for fast spectrum applications) is used. The resonance 

self-shielding effect is treated for all elements. Second, the calculation is performed for a 

heterogeneous geometry, the buckling found in the previous step and the broad group library. In 

the third step the calculation is refined using 1968 energy groups (or fine group library), the 
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heterogeneous geometry, and specifying the nuclides to be treated. At the end, the calculated cross 

sections are condensed to 33 energy groups. The energy boundaries for condensation were defined 

from the 1968-group structure. Table 2.5 shows the 33-group structure used. Then, in the fourth 

step, the critical buckling is searched for this energy group structure. Finally, these self-shielded 

cross sections and matrices are condensed and smeared to provide effective cross sections and 

matrices for the whole in the required broad group scheme. 

 

Step 1 Step 2 Step 3 

Geometry: Homogeneous 

Group scheme: Broad group 

Elements: All 

Buckling: Search 

Geometry: Heterogeneous 

Group scheme: Broad group 

library 

Elements: All 

Buckling: From STEP 1 

Geometry: Heterogeneous 

Group scheme: Fine group 

Elements: from the fine lib 

Buckling: from STEP 1 

Condensation to 33 groups 

Step 4 Step 5 Step 6 

Geometry: Heterogeneous 

Group scheme: 33 group 

Elements: All 

Buckling: Search 

Geometry: Homogeneous 

Homogenization 

Group scheme: Broad group 

Elements: All 

Buckling: from STEP 4 

Output library: XS and Flux 

Geometry: Homogeneous 

Homogenization 

Group scheme: Broad group 

Elements: All 

Buckling: from STEP 5 

Condense to 7 groups 

Output library: XS and Flux 

Figure 2.7: Reference calculation route used in ECCO. 

 

Table 2.5: ECCO 33-group energy structure. 

Group Energy (MeV) Group Energy (MeV) Group Energy (MeV) 

1 1.96403E+01 12 6.73795E-02 23 3.04325E-04 

2 1.00000E+01 13 4.08677E-02 24 1.48625E-04 

3 6.06531E+00 14 2.47875E-02 25 9.16609E-05 

4 3.67879E+00 15 1.50344E-02 26 6.79041E-05 

5 2.23130E+00 16 9.11882E-03 27 4.01690E-05 

6 1.35335E+00 17 5.53084E-03 28 2.26033E-05 

7 8.20850E-01 18 3.35463E-03 29 1.37096E-05 

8 4.97871E-01 19 2.03468E-03 30 8.31529E-06 

9 3.01974E-01 20 1.23410E-03 31 4.00000E-06 

10 1.83156E-01 21 7.48518E-04 32 5.40000E-07 

11 1.11090E-01 22 4.53999E-04 33 1.00000E-07 

 

These self-shielded macroscopic cross sections are saved to a file for use in subsequent full core 

calculations. The sixth step is added to condense the cross sections to 7 energy groups shown in 
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Table 2.6. This structure, proposed by (Palmiotti et al., 2011) covers the entire spectrum and could 

be used for studies of fast, epithermal, and thermal reactors. 

 

 

 

 

Table 2.6: 7-group energy structure. 

Group Energy (MeV) Group Energy (MeV) 

1 1.96403E+01 5 2.03468E-03 

2 2.23130E+00 6 2.26033E-05 

3 4.97871E-01 7 5.40000E-07 

4 6.73795E-02   

 

For the subcritical assemblies, the procedure is different, the source is taken from the fuel cell, 

already calculated (fifth step) and the semi-empirical buckling value given by the following 

Equation (2.6) is used (Rimpault, 1997): 

 

𝐵2 =
5

8
(
𝜋

𝐻
)
2

 (2.6) 

 

Where 𝐻 is the thickness of the subcritical medium. 

 

After the cross sections processing in ECCO, the core model with a 3D hexagonal configuration 

(Hex-Z) shown in Figure 2.3 and Figure 2.4 was generated. To build the core, the 𝑐𝑜𝑟𝑒_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 

and 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 modules, were used. Firstly, the 𝑐𝑜𝑟𝑒_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 module generates the 

hexagonal lattice by defining the central position, the concentric rings corresponding to each radial 

zone (fuel, reflector and shielding), and the lattice pitch. Starting from a central position (30/30) 

and using the shifting rule shown in the diagram in Figure 2.8, the core map is generated (two 

integers represent the coordinates of a hexagon). 
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Figure 2.8: Rule used in ERANOS to generate the hexagonal lattice. 

 

The control rods positions are specified according to their individual coordinates. Secondly, a 

coarse axial mesh of 58 bins (approximately 5 cm width each bin) was defined. The axial layout 

of the zones can be seen in Figure 2.9, which is a combination of Figure 2.4 and the Table 2.3 

where the composition is given. To complete the core creation, the individual hexagonal 

assemblies are defined. The corresponding axial medium is associated with the previously 

generated axial mesh. Then, the assemblies are assigned to their corresponding zone in the core.  
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Figure 2.9: Axial layout of the ALLEGRO reactor core defined in ERANOS. LS/US: lower 

and upper shielding, LR/UR: lower and upper reflector, LWP/UP: lower and upper 

plenum, RR: radial reflector and RS: radial shielding, CSD/DSD: control and safety rods, 

RFOL: control rod follower. Dimensions are given in cm. 

 

Finally, using the 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 module, the geometry is defined by using the previously 

generated core configuration. In this step, the boundary conditions and symmetry options can be 

set. 

 

For core calculations the TGV/VARIANT ERANOS module was used. VARIANT (VARIational 

Anisotropic Neutron Transport) solves the multigroup steady-state neutron diffusion and transport 

equations in two and three dimensional cartesian and hexagonal geometries using variational nodal 

LWP 
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methods with one mesh cell (node) per hexagonal assembly (Palmiotti et al., 1995). Angular 

variables are expanded with complete (𝑃𝑛) or simplified spherical harmonics (𝑆𝑃𝑛) approximations 

(𝑛 = 1, 3, 5) with full anisotropic scattering capability. In the mathematical formulation of the 

spherical harmonics expansions, 𝑃𝑛 are the associated Legendre polynomials where 𝑛 represents 

the expansion order. The 𝑃1 corresponds to the diffusion approximation. The spatial dependence 

of the flux variables is represented by complete polynomials within coarse mesh nodes, and along 

internode interfaces. Polynomials as high as fourth order for cartesian and sixth order for 

hexagonal geometries are implemented. 

 

The proper execution of the TGV module depends on the input options set by the user. The 

macroscopic cross-sections and the core geometry sets are mandatory. These data were previously 

calculated and saved to a binary data file by the ECCO and geometry modules. In addition, the 𝑃𝑛 

transport (𝑆𝑃𝑛 or diffusion) calculation options for flux and leakages, and the spatial 

approximations orders, i.e., source and fluxes, within the node and leakages on the surfaces of the 

nodes, must be specified. For the latter values, two calculation routes are recommended based on 

the CPU time, one for reference calculations (detailed calculation but high consumption) and the 

other for design calculations (less consumption by reducing the spatial expansion orders). In this 

work, to validate this model using the one designed in the Serpent Monte Carlo code, the reference 

route was used. The order of spatial approximations, flux and leakage expansion used are specified 

in Table 2.7. To reduce the calculation time at a reduced penalty in the precision of the results, the 

transport 𝑆𝑃3 and diffusion solutions are analyzed. 

 

The core evolution in ERANOS is treated by solving the Bateman equations using a constant 

average flux per region for a given depletion time. The calculation procedure used starts by 

computing the change in isotope concentration, then the macroscopic cross sections are 

recalculated and the initial reactor concentrations are updated at each time step. The recalculation 

of the flux at each step is performed using the TGV/VARIANT module.  

 

Besides the described modules related to core calculation procedure a variety of modules computes 

or extracts specific information from the code output. Among the results that can be processed are: 
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radial and axial neutron flux, reaction rates, material balance (mass and atoms), neutron balance, 

effective delayed neutron fraction, etc. 

 

Table 2.7: Calculation parameters in the TGV/VARIANT module. 

Calculation option 

Angular Expansion Spatial Expansion 

Flux expansion 
Leakage 

expansion 
Interior Interface Source 

Diffusion 𝑃1 𝑃1 6 1 3 

Transport 𝑃3 𝑃3 6 1 3 

Simplified 

Transport 
𝑆𝑃3 𝑆𝑃3 6 1 3 

Note: Interior, Interface and Source are the orders of the polynomial approximation of the fluxes within the node, 

the leakages on the surfaces of the nodes and the source within the node, respectively. 

 

 

2.2.2. Serpent Monte Carlo code 

 

To design a 3D heterogeneous reference model of the ALLEGRO core, Serpent, a three-

dimensional continuous-energy Monte Carlo reactor physics burnup calculation code developed 

at the VTT Technical Research Center of Finland, Ltd. was used (Leppänen et al., 2015). The code 

version used in this work is Serpent 2.1.29. 

 

Serpent is a powerful and user-friendly code, widely used for benchmark calculations. Unlike 

ERANOS, which is characterized by its modular structure, a full core simulation is more 

straightforward in Serpent. The input parameters can be set in a single text file without the need to 

call external modules. The user can execute complex routines by declaring cards that define the 

calculation options. 

 

The geometry description in Serpent is based on a universe-based constructive solid geometry 

model, which allows the description of practically any two or three-dimensional fuel or reactor 

configuration (Leppänen et al., 2015). This means that the geometry is divided into levels. For the 

3D heterogeneous active core, the top level corresponds to the fuel pin, where the pellets are 

surrounded by the cladding and coolant. The next level is the fuel assembly cell, in which the pin 
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universes are arranged in a hexagonal lattice. Figure 2.2 shows the pin-based heterogeneous 

geometry corresponding to the built fuel assembly. For the structural elements, a homogeneous 

description was defined. At the last level, these assemblies are arranged in a hexagonal lattice to 

build the tree-dimensional active core, surrounded by the reflectors, and shielding, both with a 

homogeneous composition (see Figure 2.3). Each defined cell consists of homogeneous material 

regions, each of which have their own macroscopic total cross-sections. Serpent reads continuous-

energy cross-sections from ACE format data libraries based on JEFF-3.1 evaluated nuclear data 

files (other libraries are available). The simulation is carried out in generations or cycles, where 

neutron tracking is performed for the defined geometry, based on the combination of conventional 

surface-tracking and the Woodcock delta-tracking method (Leppänen et al., 2015). By defining 

detectors, which are based on the collision flux estimator, integral flux and reaction rates in 

materials, cells or universes are calculated. The default calculation mode is the k-eigenvalue 

criticality source method for calculating an estimate of the effective neutron multiplication factor, 

k-eff, which determines the criticality of the system (Kaltiaisenaho, 2014). 

 

The burnup calculation in Serpent is performed using built-in calculation routines and without 

coupling to external solvers which simplifies the use of this capability. Available burnup 

algorithms include the conventional Euler and predictor-corrector method with linear interpolation 

for the corrector calculation and the Bateman equations are solved by default using the Chebyshev 

Rational Approximation Method (CRAM), an advanced matrix exponential solution (Leppänen, 

2015). The second available option is the Transmutation Trajectory Analysis (TTA) method, an 

advanced version of the linear chain method (Cetnar et al., 2021; Oettingen, 2021; Stanisz et al., 

2016).  

 

 

2.3. ALLEGRO Reactor Core Simulation Results 

 

This section presents the ALLEGRO core modeling results for different case studies. Most of the 

discussion presented was published by the author in (Lima-Reinaldo & François, 2021). 
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2.3.1. Effective neutron multiplication factor (k-eff) 

 

The following ALLEGRO reactor core models were simulated according to geometry, calculation 

method and energy groups: 

 

• Model 1: 3D heterogeneous reference model using the Serpent code. 

• Model 2 and Model 3: 3D homogeneous using the TGV/VARIANT module of the 

ERANOS code for diffusion calculation with 7 and 33 energy groups, respectively. 

• Model 4 and Model 5: 3D homogeneous using the TGV/VARIANT module of the 

ERANOS code for transport calculation (with a 𝑃3 angular expansion) with 7 and 33 energy 

groups, respectively. 

• Model 6 and Model 7: 3D homogeneous using the TGV/VARIANT module of the 

ERANOS code for transport calculation (with simplified spherical harmonic 

approximation) with 7 and 33 energy groups, respectively. 

 

The k-eff values obtained are shown in Table 2.8. For Monte Carlo calculations, 105 neutrons per 

generation and 600 generations, 500 active and 100 inactive, were used to ensure good accuracy 

of the results (relative standard error in the order of 10 pcm). The simulation was performed in hot 

condition, considering a nominal temperature of 1200 K and 900 K for the fuel and core structural 

materials, respectively. Both reactor physics codes were run on a multi-core workstation (Intel® 

Xeon® CPU E5-2623 v4 - 2.60GHz x 15) with 64 GB of RAM. Serpent was executed in OpenMP 

mode using 10 parallel threads, while ERANOS using a single core. 

 

The discrepancies in the results are given by the geometry and the calculation method. The best 

agreement with respect to the reference case was obtained with the transport calculations using the 

7-group structure. The relative difference between the models does not exceed 0.2% (0.68% with 

the 33-group structure). For the diffusion calculations lower k-eff values were obtained with 

respect to the Monte Carlo calculations (for both energy group structures). The worst value was 

obtained using the 33-group energy structure, with a relative difference of -2.8%. Large differences 

were also found for simplified transport calculations (Lima-Reinaldo & François, 2021). 
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Table 2.8: k-eff results. 

Model 
Geometry 

Calculation 

method 

Energy 

groups 
k-eff value 

Relative 

difference 

(%) 

Running 

time 

Fuel Structure      

1 Hetero. Homo. Serpent MC – 
1.06548 ± 

1.17E-04 
– 3.2 h 

2 Homo. Homo. Diffusion 7 1.04590 -1.84 11.0 s 

3 Homo. Homo. Diffusion 33 1.03541 -2.82 46.0 s 

4 Homo. Homo. 𝑃3 7 1.06759 0.20 2.8 min 

5 Homo. Homo. 𝑃3 33 1.05819 -0.68 20.4 min 

6 Homo. Homo. 𝑆𝑃3 7 1.05313 -1.16 49.0 s 

7 Homo. Homo. 𝑆𝑃3 33 1.04373 -2.04 7.6 min 
Notes: 1-The JEFF-3.1 cross section library was used in both codes. 2- The core calculations in ERANOS were 

performed with the TGV/VARIANT module. 3- All calculations were performed at hot conditions, 1200 K and 900 

K for the fuel and core structural materials, respectively. 4- The relative difference (in %) is defined as: 

(𝑘𝑒𝑓𝑓
𝑐𝑎𝑙𝑐/𝑘𝑒𝑓𝑓

𝑟𝑒𝑓
− 1), where the calculated value corresponds to the ERANOS models and the reference value, to the 

Serpent model. 
 

As is known, problems arise in diffusion calculations when the spatial dependence of the neutron 

flux is too strong, near highly absorbing materials and regions with low density material, such as 

control rod followers. Leakage tends to be overestimated resulting in an underestimation of k-eff. 

In addition, there is a considerable impact on the determination of leakage-dependent reactivity 

effects such as the void reactivity coefficient (Lima-Reinaldo & François, 2021). The ALLEGRO 

reactor core, which is small and has a hard neutron spectrum, contains large helium regions, so the 

use of the diffusion method could have a negative effect on the precision of the results. On the 

other hand, in GFR reactors, due to the low density of helium, there is an effect known as neutron 

streaming, or neutron leakage in certain preferential directions due to the heterogeneities of the 

reactor core (Parisot, 2015). The large helium channels present in the core design, specifically the 

control rod followers and plenums, constitute preferential leak paths for neutrons whose direction 

is close to that of the gas flow, since neutrons can easily travel in helium. The treatment of these 

leakages in the core calculations is a challenge for the simulation of GFR reactors, especially when 

using the diffusion approximation. The use of transport theory or Monte Carlo techniques more 

adequately accounts for neutron streaming in the low density regions (Waltar et al., 2012). 
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Analyzing the influence of the energy structure, using 7 and 33 energy groups, the relative 

difference between the results remains around 1% for the calculation methods used. A comparison 

was also made between the execution times for each calculation method. In the diffusion 

calculation and the 7-group structure, the shortest times were obtained, in the order of seconds. In 

the transport calculations, a significant reduction (7 times shorter) of the execution time was 

achieved using the 7-group structure and obtaining k-eff values close to the reference model. In 

Serpent, the simulation took much longer, in the order of 3 hours considering that the computations 

were performed in parallel. 

 

 

2.3.2. Neutron spectrum 

 

The neutron spectrum for models 1, 5 and 7 are compared in Figure 2.10 as flux per unit lethargy 

(in cm-2 s-1) in the neutron energy range from 1E-7 to 19.64 MeV. The spectrum is calculated at 

the center and midplane of the active core. In Serpent a fine energy grid (500 energy bins) was 

defined, while in ERANOS the 33-group energy structure was used. The calculated spectrum is 

characteristic of (𝑈, 𝑃𝑢)𝐶 fuel and is comparable to that obtained by (Perkó et al., 2015) for the 

GFR2400 reference design. A good agreement was obtained between the models mainly above 

100 eV, for lower energies the difference is given by the energy structure used. The resonances 

corresponding to the 𝑈238  capture cross section at energies 6.67 eV, 20.87 eV and 36.68 eV can 

be clearly identified in the fine energy grid, as well as the 𝑃𝑢240  and 𝑃𝑢242  resonances at 1.05 eV 

and 2.67 eV, respectively. 
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Figure 2.10: Neutron spectrum at the center and midplane of the active core. 

 

 

2.3.3. Neutron flux and power distributions 

 

Figure 2.11 shows the axial neutron flux distribution (in 𝑐𝑚−2𝑠−1) at the center of the reactor core 

for all simulated models. The plot represents the flux values for the 58 bins (number of axial mesh 

intervals) defined axially from the bottom to the top of the core (295 cm). Good agreement was 

obtained between both simulation codes, mainly for transport calculations. The values obtained in 

the center of the active core with the diffusion and simplified transport calculations are slightly 

lower than those obtained for the reference model. The distribution is not symmetrical, due to the 

axial non-symmetry of the core, since the upper and lower fission gas plenums have a different 

thickness (see axial layout of the core in Figure 2.9). This causes a hardening of the distribution at 

the top because the distance traveled by the scattered neutron from the reflector to the active core 

is shorter (Lima-Reinaldo & François, 2021). 
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Figure 2.12 shows the change of the neutron flux (in 𝑐𝑚−2𝑠−1) along the radial direction at the 

active core midplane. In general, there is good agreement between the results using both simulation 

codes, mainly between the reference model in Serpent and those obtained for the transport 

calculations in ERANOS. Although in the diffusion and simplified transport calculations the flux 

values in the center of the core are slightly lower (like the axial flux distribution). In the center of 

the core there is a depression of the neutron flux due to the central control rod position; a similar 

behavior occurs in the next position (see the core layout in Figure 2.3). 

 

The reactor core power distribution was also determined; Figure 2.13 shows the power peaking 

per assembly for the reference model and model 5. As can be seen, there is good agreement 

between the distributions obtained and the peak does not exceed the value of 1.25 in both models. 

 

Figure 2.11: Axial neutron flux distribution in the center of the reactor core. 
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Figure 2.12: Radial change of neutron flux distribution at the active core midplane. 

 

Figure 2.13: Power peaking per assembly for the reference model and model 5. 
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2.3.4. Doppler effect 

 

An increase in fuel temperature produces a broadening of the effective resonance absorption (and 

fission) cross section, generally leading to an increase in neutron absorption and a corresponding 

reduction in reactivity (Lima-Reinaldo & François, 2021). Figure 2.14 shows the Doppler 

broadening of a radiative capture resonance of 𝑃𝑢240  at 300, 900 and 1200 K simulated in Serpent. 

This effect, known as the Doppler effect, provides prompt negative reactivity feedback in fast 

reactors given mainly to the parasitic capture of low energy neutrons in the fertile isotope ( 𝑈238 ) 

(Stacey, 2018; Waltar et al., 2012). For a uniform change in fuel temperature from the 𝑇1 to 𝑇2, 

the Doppler reactivity effect in fast reactors is characterized by the Doppler constant (𝐾𝐷) defined 

by Equation (2.7) (Waltar et al., 2012): 

 

𝐾𝐷 =
Δ𝜌

ln (
𝑇2
𝑇1
)
 

(2.7) 

 

where Δ𝜌 (and 𝜌 = 1 − 1/𝑘𝑒𝑓𝑓) is the reactivity change corresponding to this temperature 

variation. The 𝐾𝐷 value was obtained from two successive calculations with effective cross 

sections at temperatures 𝑇1 and 𝑇2. In the case of the Serpent code, it uses a built-in Doppler 

broadening processor routine to adjust the nuclide temperatures (Leppänen et al., 2015). First, an 

increase in fuel temperature by 100 K from the nominal temperature of 1200 K to 1300 K was 

assumed. Considering 2200 K as the maximum temperature that prevents cladding failure (Čerba 

et al., 2017), in a second calculation the fuel temperature was increased from 1200 K to 2200 K.  

Table 2.9 summarizes the 𝐾𝐷 results obtained for the assumed changes in fuel temperature. 

 

  



 
 

Chapter 2 

 
 

 

 

53 

 

 

Figure 2.14: Doppler broadening of a radiative capture resonance of 240Pu. 

 

Table 2.9: Doppler constant KD results. 

Model 
+100 K +1000 K 

Δk-eff (pcm) 𝐾𝐷 (pcm) Δk-eff (pcm) 𝐾𝐷 (pcm) 

1 -57.0 -627.6 -355.0 -517.6 

2 -47.1 -538.3 -361.5 -547.1 

3 -50.0 -583.0 -380.4 -587.6 

4 -47.1 -516.3 -360.4 -523.5 

5 -50.0 -557.8 -379.6 -561.3 

6 -46.9 -528.5 -359.4 -536.5 

7 -49.8 -571.1 -378.5 -575.3 

 

In general, good agreement was obtained between the results, the maximum difference was -111 

pcm for the 100 K variation. This difference is mainly due to the Doppler broadening treatment in 

both codes (Lima-Reinaldo & François, 2021). 
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2.3.5. Effect of helium density on reactivity 

 

To investigate the influence of helium density on reactivity, the pressure was varied from its 

nominal value (7 MPa) to atmospheric conditions (0.1 MPa), assuming total depressurization of 

the core. Figure 2.15 shows the change in reactivity as a function of helium pressure (in MPa). In 

Serpent, for a total depressurization of the core, an increase in reactivity of 88.8 pcm was obtained, 

while for the transport and simplified transport calculations, 71.8 pcm and 5.5 pcm, respectively. 

With simplified transport, although the effect is positive, it is much smaller than in the reference 

model. In the diffusion calculations, due to the decrease in helium density with decreasing 

pressure, the effect on reactivity is negative (Lima-Reinaldo & François, 2021). This is because to 

what was discussed in Subsection 2.3.1 about the limitations of the diffusion approximation in low 

density regions (overestimation of leakage and neuron streaming effect). 

 

Figure 2.15: Reactivity variation as a function of helium pressure. 

 

Also, to quantify the effect of the control rod followers which are filled with helium, a calculation 

was performed without control rods. The positions are replaced by the assembly corresponding to 

the core region. Table 2.10 summarizes the results obtained and shows that the relative difference 
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between the calculation methods is smaller than those shown in Table 2.8. This better agreement 

in the results is because the diffusion and transport calculations are not affected by the large helium 

gas channels corresponding to the control rods and rod followers. 

 

Table 2.10: k-eff results for the reactor core model without control rods. 

Model 
Geometry 

Calculation 

method 

Energy  

groups 
k-eff value 

Relative  

difference (%) 

Fuel Structure     

1 Hetero. Homo. Serpent – 
1.10428 ±  

1.03E-04 
– 

2 Homo. Homo. Diffusion 7 1.10503 -1.84 

3 Homo. Homo. Diffusion 33 1.09365 -2.82 

4 Homo. Homo. 𝑃3 7 1.11212 0.20 

5 Homo. Homo. 𝑃3 33 1.10185 -0.68 

6 Homo. Homo. 𝑆𝑃3 7 1.11085 -1.16 

7 Homo. Homo. 𝑆𝑃3 33 1.10041 -2.04 

 

 

2.3.6. Effective delayed neutron fraction (β-eff) 

 

In Serpent, β-eff is calculated using the iterated fission probability (IFP) method (Leppänen et al., 

2015), while in ERANOS an available procedure was used to compute this parameter. In this 

procedure provided with the software package, the flux calculation can only be performed through 

diffusion method. As can be seen, a good agreement was obtained between the results with both 

codes despite the different calculation methods. 

 

Table 2.11: β-eff results. 

Model β-eff value (pcm) 

1 362.7 

2 364.4 

3 360.9 
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2.3.7. Burnup calculation 

 

The core evolution in ERANOS is treated by solving the Bateman equations using a constant 

average flux per region for a given depletion time. The calculation procedure used starts by 

computing the change in isotope concentration, then the macroscopic cross sections are 

recalculated and the initial reactor concentrations are updated at each time step. The recalculation 

of the flux at each step is performed using the TGV/VARIANT module (Lima-Reinaldo & 

François, 2021). 

 

The burnup calculation in Serpent is performed using built-in calculation routines and without 

coupling to external solvers which simplifies the use of this capability. Available burnup 

algorithms include the conventional Euler and predictor-corrector method with linear interpolation 

for the corrector calculation and the Bateman equations are solved by default using the Chebyshev 

Rational Approximation Method (CRAM), an advanced matrix exponential solution (Leppänen, 

2015). The second available option is the Transmutation Trajectory Analysis (TTA) method, an 

advanced version of the linear chain method (Cetnar et al., 2021; Oettingen, 2021; Stanisz et al., 

2016). 

 

To calculate the k-eff and fuel isotope mass evolution, an operating time of 365 effective full 

power days (EFPD) was assumed. Initially, small time steps were defined during the beginning of 

cycle: steps 1 and 2 of 5 days, steps 3 and 4 of 10 days, step 5 of 43 days and from 6 to 9 larger 

steps of 73 days. The results were compared with those obtained using only 5 steps at 73-day 

intervals (Lima-Reinaldo & François, 2021). 

 

Figure 2.16 shows the k-eff evolution for models 1 and 4 using the two time step distributions and 

as can be seen there are no significant differences throughout the cycle. From this analysis, 5 steps 

of 73 days were defined, which allowed to reduce the calculation time considerably at a reduced 

penalty in the precision of the results, mainly in the Serpent calculations. 

 



 
 

Chapter 2 

 
 

 

 

57 

 

Figure 2.17 shows the evolution of k-eff as a function of operating time for all models (refer to 

Subsection 2.3 for model specifications). The best agreement with the reference model was 

obtained for the transport calculations and the 7-group structure as discussed in Section 2. There 

is a decrease in reactivity by about 2200 pcm in all cases, but the system remains supercritical at 

the end of cycle. This decrease is due to fuel depletion and accumulation of fission products. 

 

Figure 2.16: k-eff evolution using small time steps at the beginning of cycle. 

 

The running time for each model is summarized in Table 2.12 and, as shown, using the 7-group 

structure the computational cost is considerably reduced compared to Serpent and the transport 

calculations with the 33-group structure. 
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Figure 2.17: k-eff evolution. 

 

Figure 2.18 shows the mass evolution (in kg) of the main fuel isotopes ( 𝑈238 , 𝑃𝑢239 , 𝑃𝑢241 , 

𝐴𝑚241 ) as a function of operating time. The results obtained show an excellent agreement between 

the cases simulated with both codes considering the different burnup calculation methods. The 

consumption of the fertile material, 𝑈238 , and at the same time of fissile isotopes of 𝑃𝑢239  and 

𝑃𝑢241  can be observed. The production of minor actinides is dominated by 𝐴𝑚241  produced from 

the β-decay of 𝑃𝑢241  and is also present in the initial fuel composition. 
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Table 2.12: Running time in the burnup calculation. 

Model Running time 

1 13.4 h 

2 1.0 min 

3 4.3 min 

4 17.7 min 

5 2.0 h 

6 4.6 min 

7 44.8 min 

 

Figure 2.18: Mass evolution of the main fuel isotopes. 

 

Table 2.13 summarizes the fuel inventory relative to the beginning of cycle (BOC) and end of 

cycle (EOC) for models 1, 4 and 5 (Serpent and transport calculations). The total 𝑃𝑢 mass shows 
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a decrease of 0.6% in all cases, dominated by the change in the mass of 𝑃𝑢239 , since it represents 

56% of the initial 𝑃𝑢 vector. At the end of cycle, the mass of 𝑃𝑢239  shows a decrease of 0.43%. 

In addition, the breeding ratio (BR), calculated as the ratio between the total mass of fissile material 

( 𝑈235 , 𝑃𝑢239  and 𝑃𝑢241  masses) at the end and at the beginning of cycle, is presented. This value 

of 𝐵𝑅 < 1 confirms that the system is a burner reactor. The average fuel burnup reached 

11.08 𝑀𝑊𝑑/𝑘𝑔𝐻𝑀 at the end of the cycle. 

 

Table 2.13: Relative fuel inventory. 

Element 

Serpent (Model 1) ERANOS (Model 4) ERANOS (Model 5) 

Loaded 

(m/m%) 

Discharged 

(m/m%) 

Loaded 

(m/m%) 

Discharged 

(m/m%) 

Loaded 

(m/m%) 

Discharged 

(m/m%) 

U total 72.54 71.91 72.54 71.92 72.54 71.91 
234U 0.00 0.01 0.00 0.01 0.00 0.01 
235U 0.52 0.48 0.52 0.48 0.52 0.48 
236U 0.00 0.01 0.00 0.01 0.00 0.01 
238U 72.02 71.41 72.02 71.42 72.02 71.41 

Pu total 27.26 26.66 27.26 26.64 27.26 26.66 
238Pu 0.74 0.70 0.74 0.7 0.74 0.70 
239Pu 15.34 14.91 15.34 14.91 15.34 14.91 
240Pu 7.12 7.15 7.12 7.14 7.12 7.15 
241Pu 2.04 1.89 2.04 1.89 2.04 1.89 
242Pu 2.02 2.01 2.02 2.00 2.02 2.01 

MA total 0.19 0.31 0.19 0.30 0.19 0.30 
237Np 0.00 0.01 0.00 0.00 0.00 0.00 
239Np 0.00 0.00 0.00 0.00 0.00 0.00 
241Am 0.19 0.27 0.19 0.27 0.19 0.27 
243Am 0.00 0.03 0.00 0.03 0.00 0.03 
242Cm 0.00 0.00 0.00 0.00 0.00 0.00 
244Cm 0.00 0.00 0.00 0.00 0.00 0.00 

FP 0.00 1.13 0.00 1.12 0.00 1.12 

Total 100.00 100.00 100.00 100.00 100.00 100.00 

k-eff 1.065480 1.041160 1.067585 1.041530 1.058196 1.034117 

BR – 0.9654 – 0.9653 – 0.9655 

Burnup 

(MWd/kgHM) 
0 11.081 0 11.082 0 11.082 

Notes: 1- Values equal to zero are less than 1E-3 %. 2- m/m% represents the mass percentage. 
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2.3.8. Equilibrium cycle calculation 

 

Since there are no studies on the ALLEGRO reactor fuel cycle, some features presented in the 

study by (Krepel et al., 2010) were adopted to design the refueling and reshuffling schema. This 

is an advanced benchmark study of the GFR2400 reactor fuel cycle using an ERANOS-based in-

house developed procedure for fast reactor equilibrium cycle analysis. 

 

The equilibrium can be obtained by applying a fixed in-core fuel management throughout several 

consecutive operating cycles until the reactor core characteristics (k-eff, power distribution, 

materials composition, etc.) converge and remain constant cycle-by-cycle. Then, this reactor core 

composition will be used later in the optimization calculations. 

 

An open fuel cycle was simulated, resulting from a periodic operation with a fixed reloading and 

reshuffling scheme without any recycling until the equilibrium state was reached. Unlike a close 

cycle, which involves the recycling of spent nuclear fuel, in an open fuel cycle, recycling is not 

considered in the implemented fuel management scheme. 

 

The developed procedure starts by defining the number of fresh assemblies, their location in the 

core and isotopic composition. The methodology used in (Krepel et al., 2010) corresponding to a 

mixed one-batch scheme to determine the fresh fuel positions and design the refueling scheme was 

employed. A constant reloading fuel pattern is established in which the fresh fuel is always placed 

in selected positions based on our expertise. Due to the 120° symmetry, it was decided to replace 

1/3 of the fuel assemblies with fresh fuel at the beginning of each cycle. The positions will then 

rotate in a 120° symmetrical triangular layout at the end of cycle and the spent fuel is removed 

from the core, i.e., the inserted fuel will remain in the core for three cycles. This procedure is 

simulated over 11 consecutives cycles, with a cycle length of 365 days (11 × 365 days). 

 

Figure 2.19 illustrates the defined scheme. The red color represents fresh fuel, while the purple 

and green colors represent the first and second positions for reshuffling. The assemblies are labeled 
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to represent their ordered number and position according to the ERANOS coordinate system. Note 

that the control rods are not included in the count. The core is divided into 5 concentric rings and 

3 sections with 120° symmetry. In each ring, 1/3 of the positions correspond to the fresh fuel (in 

red) to be inserted. It was considered not to place more than two assemblies contiguously to avoid 

high power peaks and to preserve the uniformity of the power distribution. The other 2/3 of the 

assemblies correspond to the next two positions (in purple and green) for the following two cycles. 

The reshuffling is nothing more than a 120° rotation of the positions between sections. For 

example, if fresh fuel is inserted in section 1, in the next cycle it will be rotated to the defined 

position in section 2 or 3. The direction of rotation is represented by arrows in Figure 2.19, i.e., 

𝑟𝑒𝑑 → 𝑝𝑢𝑟𝑝𝑙𝑒 → 𝑔𝑟𝑒𝑒𝑛 → 𝑟𝑒𝑑. 

 

Figure 2.19: Reloading and reshuffling schema. The arrows in the center indicate the 

direction of the 120-degree rotational movement. The X/Y coordinate and the 

corresponding assembly number are specified. 
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In practice, the described procedure, although simplified, is quite complex to carry out in 

ERANOS. The latest version, ERANOS 2.3, has modules and in-built subroutines to perform a 

detailed core follow-up, where each assembly can be tracked throughout its lifetime. The proper 

use of these modules is complicated due to the number of input options and the limited 

documentation. The following modules were employed: 

 

1. 𝑛𝑒𝑤_𝑠𝑢𝑏_𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 

2. 𝑟𝑒𝑎𝑐𝑡𝑜𝑟_𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

3. 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑒𝑡_𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑓𝑜𝑟_𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑑𝑟𝑎𝑤𝑖𝑛𝑔 

 

Taking advantage of the modular structure of ERANOS and these modules, the procedure shown 

in the flowchart in Figure 2.20 was designed. The algorithm starts by defining and storing all 

ERANOS calculation procedures that will be used in the simulation. Those procedures include the 

nodal flux calculation using VARIANT, burnup, flux and power extraction, material balance and 

the reloading and reshuffling procedure. The latter was generated by combining the three modules 

listed above. First, with module 1, the new individual assembly composition is defined. 

Subsequently, with module 2 and using the new assembly composition vector, the reloading is 

procedure is generated. The reloading is nothing more than exchanging the compositions in the 

defined positions. Finally, using module 3, the reshuffling procedure or the rotation between 

compositions (according to the defined positions in Figure 2.19) is generated. 
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Figure 2.20: Flow diagram corresponding to the procedure developed in ERANOS for the 

cycle-by-cycle reactor evolution. 

 

Once the first step has been executed, all calculation procedures are stored in the 𝐷𝑎𝑡𝑎 file. The 

algorithm can simulate as many cycles as defined. At the end of each cycle, the results (from 

running the calculation procedures) are stored in a separate binary file (𝐶𝑛). The results are loaded 

in the subsequent cycle execution, and so on, until the defined number of cycles is reached. Finally, 

the results are extracted and processed to obtain the reactor parameters evolution throughout the 𝑛 

cycles. The algorithm was developed in MATLAB programming environment, along with bash 

scripting to deal with the ERANOS output files. 

 

The fresh fuel composition (in kg) given in Table 2.14 was calculated using the Equation (2.4) and 

the isotopic composition summarized in Table 2.2. 
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Table 2.14: Fresh fuel composition. 

Element Mass (kg) 
235U 0.147 
238U 20.536 

238Pu 0.207 
239Pu 4.309 
240Pu 2.001 
241Pu 0.574 
242Pu 0.569 

241Am 0.054 

 

In summary, the following assumptions are made: 

 

• 11 cycles are considered, each with a length of 365 days (4015 days) and 6 burnup steps; 

• Diffusion calculations and 7 energy groups are used. 

 

The evolution of k-eff, burnup, mass of the main isotopes and power are reported. As shown in 

Figure 2.21, k-eff converges approximately after the 5th cycle. The zigzag behavior is a result of 

the addition of fresh fuel as external feed at the beginning of each new cycle. The same behavior 

is present in the plotted average burnup (in 𝑀𝑊𝑑/𝑘𝑔𝐻𝑀). 

 

 

Figure 2.21: k-eff and average burnup values evolution cycle-by-cycle. 
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Figure 2.22 shows the 𝑈238  mass evolution (in kg). The value at BOC remains constant at 1770.9 

kg from cycle 4 onwards. In addition, Figure 2.22 shows the plutonium vector evolution ( 𝑃𝑢238 , 

𝑃𝑢239 , 𝑃𝑢240 , 𝑃𝑢241 , and 𝑃𝑢242 ). 𝑃𝑢239  predominates, which converges from 5th cycle (~ 355kg 

at BOC). The mass of the other Pu isotopes practically remains constant throughout the reactor 

operation. 

 

Figure 2.22: Evolution of the masses of 238U and Pu vector cycle-by-cycle. 

 

Figure 2.23 shows the 𝐴𝑚241  and total minor actinides (MA: Am + Np + Cm) evolution cycle-by-

cycle. The MA evolution in the core is driven by the 𝐴𝑚241  production from the radioactive decay 

(𝛽−) of 𝑃𝑢241 . It is also present in the fissile fuel vector. A smaller amount of 𝐴𝑚243  is produced 

from the radioactive decay (𝛽−) of 𝑃𝑢243  which is produced by radiative capture of 𝑃𝑢242 . The 

total mass of MA, 10.2 kg, remains constant throughout reactor operation. The evolution of other 

MA ( 𝑁𝑝237 , 𝑁𝑝239 , 𝐶𝑚242 , and 𝐶𝑚244 ) was also plotted. Among the latter, the mass increase of 

𝑁𝑝237  is predominant due to the 𝑈235  in the fresh fuel (generated by successive reactions of 

radiative capture of 𝑈235  and radioactive decay (𝛽−) of 𝑈237 ). 
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Figure 2.23: Evolution of the masses of Am, total MA, Np, Cm cycle-by-cycle. 

 

Table 2.15 compares the fuel inventories at the BOC and EOC for the first and the equilibrium 

cycles. The values are reported as a percentage of the total fuel mass in the core. The equilibrium 

state is reached at cycle 5, since the concentrations, k-eff value, and power distribution do not 

change from cycle to cycle. At the BOC of the equilibrium cycle the core composition is 

characterized by a 26.39% Pu content. Since the volume fraction of PuC in the fresh fuel is lower 

than in the first cycle, the Pu content in the core decreases by 0.88%. The total mass of MA at the 

equilibrium cycle BOC (characterized by 𝐴𝑚241 ) shows an increase of 0.11% with respect to the 

first cycle. The fission products (FP) fraction was also calculated, and there is a 1.1% increase at 

the EOC of the equilibrium cycle due to the FPs accumulation over the operating time. 
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Table 2.15: Relative fuel inventory for the first and equilibrium cycles. 

Element 
First cycle Equilibrium cycle 

BOC EOC BOC EOC 

U total 72.54 71.89 72.18 71.52 

Pu total 27.27 26.67 26.39 25.83 
238Pu 0.74 0.70 0.70 0.66 
239Pu 15.34 14.91 14.75 14.35 
240Pu 7.12 7.14 7.07 7.08 
241Pu 2.04 1.90 1.89 1.77 
242Pu 2.02 2.01 1.99 1.97 

MA total 0.19 0.31 0.30 0.41 
241Am 0.19 0.27 0.27 0.33 

242mAm 0.00 1.75E-03 1.96E-03 4.05E-03 
243Am 0.00 2.49E-02 2.50E-02 4.93E-02 
237Np 0.00 4.67E-03 4.53E-03 9.22E-03 
239Np 0.00 4.79E-03 3.31E-03 4.96E-03 
242Cm 0.00 4.64E-03 4.05E-03 6.86E-03 
243Cm 0.00 3.22E-05 4.81E-05 1.12E-04 
244Cm 0.00 5.31E-04 9.03E-04 2.44E-03 
245Cm 0.00 4.82E-06 1.46E-05 5.32E-05 

FP 0.00 1.122 1.119 2.239 

 

Figure 2.24 shows the power distribution for the initial four cycles, and it was noticed that the 

distribution uniformity deteriorates near the control rods when the reloading procedure begins. The 

primary reason for this is that the arrangement of fresh fuel is not symmetrical (see Figure 2.19). 
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Figure 2.24: Radial power distribution. From left to right, cycle 1, 2, 3, and 4. 
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Chapter 3 

 

 

3. Fuel Loading Pattern Optimization of ALLEGRO 

Reactor by Metaheuristics 

 

This chapter briefly introduces the fundamentals of optimization focusing on metaheuristic 

techniques. The main advantages of these techniques over traditional methods in solving complex 

combinatorial optimization problems are presented. Finally, the implementation of genetic 

algorithm and tabu search techniques for the ALLEGRO fuel load pattern optimization is 

discussed. 

 

 

3.1. Fundamentals of Optimization 

 

Optimization is a branch of applied mathematics and numerical analysis. It refers to the process of 

finding the optimal or near-optimal solution among a set of feasible solutions. Any problem in 

engineering, science, economics, and life where certain parameters must be determined to satisfy 

constraints can be formulated as an optimization or search problem (Du & Swamy, 2016). 

Mathematically, optimization algorithms minimize an objective function 𝑓(𝑥) subject to 

constraints on design variables and responses (or maximize which is equivalent to minimize 

−𝑓(𝑥)). Constraints can be classified as linear or nonlinear and as inequalities or equalities. A 

design is considered feasible if it meets with all constraints, and infeasible if it does not meet at 

least one of the constraints. 

  



 
 

Chapter 3 

 
 

 

 

72 

 

 

A general optimization problem can be formulated as follows (Adams et al., 2022): 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑋) 

𝑋 ∈ ℜ𝑛 

(3.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 

𝑔𝐿 ≤ 𝑔(𝑋) ≤ 𝑔𝑈 

ℎ(𝑋) = ℎ𝑡 

𝑎𝐿 ≤ 𝐴𝑖𝑋 ≤ 𝑎𝑈 

𝐴𝑒𝑋 = 𝑎𝑡 

 

 

Where: 

 

1. 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] is an n-dimensional vector of real-valued design variables. 

2. 𝑋𝐿and 𝑋𝑈 are the lower and upper bounds, respectively, on the design variables. These 

limits define the allowable values for the 𝑋 elements. 

3. 𝑔𝐿 ≤ 𝑔(𝑋) ≤ 𝑔𝑈 are the nonlinear inequality constraints have both lower and upper 

bounds, 𝑔𝐿 and 𝑔𝑈, respectively. 

4. ℎ(𝑋) = ℎ𝑡 are the nonlinear equality constraints that have target values specified by ℎ𝑡. 

5. 𝑎𝐿 ≤ 𝐴𝑖𝑋 ≤ 𝑎𝑈 are the linear inequality constraints. 𝐴𝑖𝑋 is a linear system where 𝐴𝑖 is the 

coefficient matrix for the system. 𝑎𝐿 and 𝑎𝑢 are the lower and upper bound, respectively. 

6. 𝐴𝑒𝑋 = 𝑎𝑡 are the linear equality. 𝐴𝑒𝑋 is a linear system where 𝐴𝑒 is the coefficient matrix 

for the system and 𝑎𝑡 are the target values. 

 

There are multiple methods for solving that optimization problem that involve iterating over 𝑋 in 

some way. The process begins by choosing an initial value for each parameter 𝑋, and through a 

simulation, the response quantities 𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) are computed. Subsequently, using an 

algorithm, new 𝑋 values will be generated that will reduce the 𝑓(𝑥), the number of infeasibilities, 

or both. 

 

There are several ways to categorize an optimization problem. The most comprehensive way is the 

one provided by (Adams et al., 2022), where it is divided into three categories, depending on the 



 
 

Chapter 3 

 
 

 

 

73 

 

type of constraints, the search goal, and the solution method. We could add another category 

according to the type of design variable, although it is implicit in the search method (Haupt & 

Haupt, 2004). In summary, we can classify an optimization problem according to: 

 

1. Type of constraints and linearity of the objective and constraint functions: 

• Unconstrained problem; 

• bound-constrained problem: lower and upper bounds on the design variables; 

• linearly constrained problem: linear and bound constraints. It is also called a linear 

programming (𝐿𝑃) problem. On the other hand, when a quadratic objective function 

is subject to linear constraints, it is called a quadratic programming (𝑄𝑃) problem; 

• nonlinearly constrained problem: may contain nonlinear, linear, and bound 

constraints. Also known as nonlinear programming problems (𝑁𝐿𝑃), they are more 

complex to solve and are predominant in engineering applications; 

• equality constrained problem: all linear and nonlinear constraints are equality 

constraints; 

• inequality constrained problem: all the linear and nonlinear constraints are 

inequality constraints. 

2. Search goal: 

• local optimization problems: they focus on finding a local minimum/maximum of 

the objective function in a restricted region or neighborhood of the feasible solution 

space; 

• global optimization problems: they aim to find the global minimum/maximum of a 

given objective function over the entire feasible solution space. They are typically 

non-convex, meaning that the objective function may have multiple local 

minima/maxima, but only one global minimum/maximum. In general, global 

optimization will be more computationally expensive than local optimization. 

3. Solution method: 

• gradient-based methods: the gradients of the objective functions are calculated to 

find the direction of improvement. This algorithm is used in many efficient local 

optimization methods; 
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• non-gradient based methods: they are useful when function gradients are 

computationally expensive, inaccurate or do not exist. 

4. Type of design variable: 

• continuous: infinite number of possible values; 

• discrete: finite number of possible values. It is also known as combinatorial 

optimization because the optimal solution consists of a particular combination of 

variables from the finite set of all possible variables. 

 

A typical engineering design optimization process is shown in Figure 3.1 (Kochenderfer & 

Wheeler, 2019). The role of the designer is to provide a problem specification that details the 

parameters, initial design, objectives, and constraints that are to be achieved. An optimization 

algorithm will be used to automate the process and progressively improve design performance. 

This optimization process will provide a systematic, logical design procedure. 

 

The final optimal design depends on a proper formulation of the design optimization problem. This 

process for practical problems is iterative. The following six-step procedure can be defined to 

formulate a general optimization problem, which will help us to formulate ours (J. S. Arora, 2017): 

 

1. Problem description. 

2. Data and information collection. 

3. Definition of design variables. 

4. Optimization criterion. 

5. Formulation of constraints. 

6. Solution and model evaluation. 

 

The formulation process begins with the development of a descriptive problem statement that 

describes the objective and the requirements to be met. The next step is to gather data to define a 

mathematical model for the problem. In addition, procedures and tools required for design analysis 

(e.g., simulation code) should be identified at this stage. The next step in the formulation process 

is to identify a set of variables that describe the system or design variables (see Equation (3.1)). 
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Figure 3.1: Design optimization process. 

 

Different values for the variables produce different designs. The number of independent design 

variables, also known as design degrees of freedom, gives the number of variables that can be 

optimized to find the best solution to the problem. It is important to note that optimization becomes 

increasingly complex as the number of dimensions increases. In the next step a merit of a given 

design is specified. It is nothing more than a criterion that assigns a number to each design, and it 

is a function of the design variable vector 𝑋. This merit is the objective function 𝑓(𝑋), which will 

be maximized or minimized depending on the problem. Situations where two or more objective 

functions are identified are called multi-objective optimization problems. For some design 

problems, it may not be immediately clear what the objective function should be or how it should 

be expressed in terms of the design variables, and it is often necessary to use some insight and 

experience to identify an appropriate objective function. Often, to evaluate the objective function 

a black-box simulation approach is used, where the objective function and constraints are treated 

as a “black box”, and the optimization algorithm only has access to the inputs and outputs, but not 

the internal workings of the function (J. S. Arora, 2017). This approach is used in cases where the 

function is too complex to be represented mathematically, or it must be evaluated by an external 

simulation code. The next step in the formulation procedure is to identify the constraints and 

develop an expression for them. Note that these constraints will depend on the design variables. 

The last step is to solve and evaluate the model by selecting a suitable optimization method. The 

selection may depend, for example, on the type of design variable (continuous, discrete or integer), 

whether the function is continuous and differentiable, and whether the derivatives of the function 

are available. The categorization described above will help in choosing the appropriate technique. 
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Practical applications of an extensive list of optimization techniques to solve real-world problems 

or test functions, in programming languages such as MATLAB, Python, Julia, etc. can be consulted 

in up-to-date references such as: (Adams et al., 2022; J. S. Arora, 2017; R. K. Arora, 2015; Haupt 

& Haupt, 2004; Kochenderfer & Wheeler, 2019) 

 

3.1.1. Metaheuristics 

 

In real-world optimization scenarios, multiples complexities such as nonconvexity, nonlinearities, 

discontinuities, high dimensionality, multiple objectives, etc. often render traditional algorithms 

ineffective, impractical, or inapplicable. To overcome these challenges, heuristic-based search and 

optimization techniques are a popular choice to find an approximate solution in a reasonable 

computational time (J. S. Arora, 2017; R. K. Arora, 2015; Bandaru & Deb, 2016; Bianchi et al., 

2009; Dréo et al., 2006; Du & Swamy, 2016; Kochenderfer & Wheeler, 2019). 

 

In optimization, a heuristic (it derives from the Greek verb heuriskein that means “to find”) is an 

approximate technique for finding an optimal solution to a complex optimization problem by using 

an intuitive, trial-and-error approach (Bianchi et al., 2009). It involves making a sequence of 

choices or decisions based on a set of rules or guidelines, rather than using an exact, systematic 

method to find the optimal solution. The goal of a heuristic is to produce a feasible solution that is 

good enough to be useful, even though it may not be the best possible solution. In addition, it is 

computationally efficient since it does not explore all possible solutions in the search space and 

usually does not have a rigorous proof of convergence to the optimal solution.  

 

Metaheuristics (the Greek suffix “meta” means “beyond, in an upper level”) are self-learning 

optimization techniques that provide a general and flexible framework for solving hard 

optimization problems (Bianchi et al., 2009; Du & Swamy, 2016). They are characterized by a 

high level of generality and versatility, allowing them to be applied to a wide range of problem 

domains. They typically use a combination of heuristics, probabilistic approaches, and other 

mathematical techniques to search for optimal solutions in large or complex problem spaces. 

Because they use heuristics as part of the search strategy, they inherit the characteristics described 
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above. They do not guarantee finding the exact optimal solution but can lead to a near-optimal 

solution in a computationally efficient way. 

 

Most metaheuristic methods are stochastic in nature and mimic a natural, physical, ethology or 

biological principle that resembles a search or optimization process. Exploration (or 

diversification) and exploitation (or intensification) are two important concepts in metaheuristics. 

Exploration helps to find new and diverse solutions in the search space, while exploitation focuses 

on refining and improving the existing solutions to intensify the search. The balance between 

exploration and exploitation is crucial in determining the performance of a metaheuristic, and it 

can be tuned to achieve a trade-off between global search and local refinement, depending on the 

specific requirements of the problem. 

 

Metaheuristics are usually classified into two main categories (although there are several ways) 

based on the number of initial solutions: single-solution and population-based (Bandaru & Deb, 

2016). The single-solution approach focuses on iteratively modifying and improving a single 

candidate solution. Population-based metaheuristics maintain and improve (via operators) multiple 

candidate solutions over iterations. In this case, the size of the population is set by the user. 

 

Among the advantages of these techniques over classical mathematical optimization methods, and 

why they have become increasingly popular, are the following: (J. S. Arora, 2017; Bandaru & Deb, 

2016; Dréo et al., 2006): 

 

1. They do not require gradient information and can therefore be used with non-analytical, 

black-box or simulation-based objective functions. This feature makes them a flexible tool, 

relatively easy to use and program for solving a wide range of optimization problems. 

2. Most metaheuristics can recover from local optima due to inherent stochasticity or by using 

heuristics, making them well-suited for global optimization. 

3. They are versatile, as many of them can be combined with other optimization algorithms 

to create even more effective hybrid approaches to solve complex optimization problems. 

4. They can find good enough solutions for NP-hard problems (there is no known exact 

algorithm that can solve them in a reasonable computation time). 
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5. They can handle problems with multiple objectives and mixed design variables. 

6. They are often robust to the presence of noisy or uncertain data, making them ideal for 

applications where the optimization problem is subject to uncertainty. 

 

However, it is important to acknowledge some of the drawbacks associated with these techniques, 

including (J. S. Arora, 2017; Bandaru & Deb, 2016): 

 

1. Non-mathematical nature and lack of a proof of convergence. There is no absolute 

guarantee that a global solution has been obtained due to its stochasticity. It can be 

overcome to some extent by running the algorithm several times or by increasing the 

number of iterations. 

2. Non-reproducibility of the results. Uniformly seeded pseudo-random number generators 

are commonly used to ensure reproducibility between different runs. 

3. It can be difficult to fine-tune the parameters of the method. 

4. High computation time because it requires a large number of evaluations of the objective 

function. It can be overcome, for example, by using parallelization. 

 

In recent years, the use of metaheuristics in optimization has seen a significant increase in 

popularity, leading to the proposal of numerous new techniques. This growing number of 

techniques, which share similar basic principles but differ in the specific metaphorical models or 

biological systems they are inspired by, has also been criticized. 

 

The following is a brief list of the most popular metaheuristic techniques; for more details on their 

implementation, please refer to the references provided: 

 

1. Evolutionary Programming (EP) – (Fogel et al., 1966). 

2. Evolutionary Strategies (ES) – (Rechenberg, 1973) (Rudolph, 2012). 

3. Genetic Algorithms (GA) – (Holland, 1975). 

4. Simulated Annealing (SA) – (Kirkpatrick et al., 1983). 

5. Tabu Search (TS) – (Glover, 1986). 

6. Ant Colony Optimization (ACO) – (Dorigo, 1992) (Marco Dorigo et al., 2006). 
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7. Particle Swarm Optimization (PSO) – (Kennedy & Eberhart, 1995). 

8. Artificial Bee Colony (ABC) – (Karaboga & Basturk, 2007). 

9. Firefly Algorithm (FA) – (Yang, 2009). 

10. Cuckoo Search (CS) – (Yang & Deb, 2009). 

 

Among the many practical applications of these techniques is the fuel loading pattern optimization 

in nuclear reactors. This task is recognized as a complex combinatorial optimization problem. The 

Introduction chapter of this thesis presents an overview of in-core fuel management decisions in 

nuclear engineering. Despite the continuous emergence of new techniques, tabu search and genetic 

algorithms have been widely used in this field, either in their basic form or as part of hybrid 

approaches. The following sections will provide a detailed description of the implementation of 

these two techniques to the ALLEGRO reactor fuel loading pattern optimization. 
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3.2. The Objective Function 

 

The constrained optimization with penalty function approach was used, where the multi-objective 

problem is transformed into a single-objective optimization problem. Since this method is easier 

to implement, it has been widely used in LP optimization problems. Throughout the research, the 

objective function (𝑂𝐹) formulation evolved from a single constraint on power peaking factor 

(𝑃𝑃𝐹) to a more complex one considering other reactor parameters. The final proposed objective 

function maximizes the k-eff value at the EOC while satisfying the power peaking factor (𝑃𝑃𝐹), 

the excess reactivity at BOC (𝐻𝐸𝑅𝐵𝑂𝐶) and the maximum linear heat generation rate (𝑀𝐿𝐻𝐺𝑅) 

constraints. 

 

The rationale behind this formulation is to find LPs with as high excess reactivity as possible at 

EOC as to extract more energy to the cycle, meanwhile thermal limits are not exceeded and that 

the reactor can be controlled at the point of the highest reactivity, which in this case is at BOC. 

Then, the first optimization problem to be solved can be written as (Lima-Reinaldo & François, 

2022): 

 

𝑂𝐹(𝑥) = 𝑘𝑒𝑓𝑓
𝐸𝑂𝐶(𝑥) − 𝑤ℎ ×𝑚𝑎𝑥(0, Δ𝐻𝐸𝑅(𝑥)) − 𝑤𝑝 ×𝑚𝑎𝑥(0, Δ𝑃𝑃𝐹(𝑥)) 

− 𝑤𝑙 ×𝑚𝑎𝑥(0, Δ𝑀𝐿𝐻𝐺𝑅(𝑥)) 

(3.2) 

 

Where: 

 

1. 𝑥 is a vector corresponding to a particular LP configuration. 

2. 𝑘𝑒𝑓𝑓
𝐸𝑂𝐶(𝑥) is the k-eff value at the EOC. From now on, this term will be referred to as k-eff. 

3. Δ𝐻𝐸𝑅(𝑥) =  𝐻𝐸𝑅𝐵𝑂𝐶(𝑥) − 𝐻𝐸𝑅𝑚𝑎𝑥; where 𝐻𝐸𝑅𝐵𝑂𝐶 = (𝑘𝑒𝑓𝑓
𝐵𝑂𝐶 − 1) × 100 and the 

𝐻𝐸𝑅𝑚𝑎𝑥 = 4.5%. This is a conservative value related to the shutdown capability of the 

control rods. The worth of the control rods was calculated at the beginning of life and 

compared with the value obtained in a previous study of the GFR2400 reactor (Lima-

Reinaldo et al., 2019).S 
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4. Δ𝑃𝑃𝐹(𝑥) =  𝑃𝑃𝐹(𝑥) − 𝑃𝑃𝐹𝑚𝑎𝑥. The PPF value is taken over the cycle and 𝑃𝑃𝐹𝑚𝑎𝑥 = 1.3 

is the maximum value allowed. This is a conservative value related to 1.4 which is used as 

a rule of thumb in core design. 

5. Δ𝑀𝐿𝐻𝐺𝑅(𝑥) =  𝑀𝐿𝐻𝐺𝑅(𝑥)–  𝑀𝐿𝐻𝐺𝑅𝑚𝑎𝑥; where 𝐿𝐻𝐺𝑅 is calculated as the linear heat 

generation rate per unit length of fuel rod over the cycle given in 𝑊/𝑐𝑚. The maximum 

value assumed is 330 𝑊/𝑐𝑚 (Grasso et al., 2013). This is a conservative value used for 

MOX fuel from the ELSY project. Compared with mixed oxide fuels, mixed carbide fuels 

have higher thermal conductivity and higher linear heat rate capability as well. 

6. 𝑤ℎ = 0.02; 𝑤𝑝 = 0.06; 𝑤𝑙 = 0.05 are the weighting factors. These are positive penalty 

coefficients or weight factors considered as a measure of the importance associated to 

𝐻𝐸𝑅, 𝑃𝑃𝐹 and 𝑀𝐿𝐻𝐺𝑅, respectively. They were chosen by evaluating several patterns 

and computing the objective function. In the experiment, the values were set to zero 

initially and adjusted to scale the objective function, that is, if one of the constraints was 

violated, not to get negative values of the objective function. With these factors obtained, 

if the constraint is violated, a positive value will be introduced and the value of k-eff will 

be penalized. On the other hand, if the constraint is not violated the weight factor will be 

zero so no penalty will occur. The latter can be deduced from the formulation given in 

Equation (3.2), if Δ is less than zero, the 𝑚𝑎𝑥() function will return zero. 

 

During the GA code development, we decided to experiment with other 𝑂𝐹 formulation to validate 

the proposed method and investigate its behavior. Since the maximum peak power is in the center 

of the core, it was considered to add the 𝑈(𝑥) term that represents the flatness of the 𝑃𝑃𝐹 

distribution at the BOC to obtain a uniform power distribution. It will also be useful to evaluate 

the code performance in the search for a feasible solution. This term has been included in several 

PWR LP optimization studies (Khoshahval et al., 2010; Poursalehi et al., 2013; Tran et al., 2021). 

Then, the second proposed OF is (Lima-Reinaldo & François, 2021): 

 

𝑂𝐹2(𝑥) = 𝑤𝑘 × 𝑘𝑒𝑓𝑓
𝐸𝑂𝐶(𝑥) − 𝑤ℎ ×𝑚𝑎𝑥(0, Δ𝐻𝐸𝑅(𝑥)) − 𝑤𝑝 ×𝑚𝑎𝑥(0, Δ𝑃𝑃𝐹(𝑥)) 

− 𝑤𝑙 ×𝑚𝑎𝑥(0, Δ𝑀𝐿𝐻𝐺𝑅(𝑥)) − 𝑤𝑓 × 𝑈(𝑥) 
(3.3) 
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Where: 

 

𝑈(𝑥) =∑|𝑃𝑃𝐹𝑖
𝐵𝑂𝐶(𝑥) − 1|

𝑁

𝑖=1

 (3.4) 

 

And: 

 

1. 𝑁 = 87 is the number of fuel assemblies. 

2. 𝑃𝑃𝐹𝑖
𝐵𝑂𝐶(𝑥) corresponds to the PPF at the BOC of the i-th fuel assembly. 

3. 𝑤𝑘 = 10; 𝑤ℎ = 0.2; 𝑤𝑝 = 0.6; 𝑤𝑙 = 0.5;𝑤𝑓 = 0.3. These factors were chosen using the 

same rationale described above in Equation (3.2). 

 

To evaluate the LPs and compute the corresponding 𝑂𝐹 value, the interface shown in the diagram 

in Figure 3.2 was implemented. The input and output values of the interface will depend on the 

algorithm to which it is embedded. In principle, it will allow communication between the optimizer 

and the external ERANOS simulation code. The data flow is handled by reading and writing text 

files. First, the output LP vector is read and checked for no more than two contiguous fresh 

assemblies. According to the formulation described by Equation (3.5), if this condition is false, 

𝐼(𝑥) = 0 is returned, otherwise, the LP vector is converted to the ERANOS coordinate system for 

the 𝑂𝐹 evaluation. 

 

𝐼(𝑥) = {
0, 𝑖𝑓 (𝑛𝑢𝑚_𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑠 > 2)

𝑂𝐹(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.5) 

 

Next, the ERANOS input file is written, and the core calculation is executed. Finally, the 

parameters are passed to the GA optimization code for the 𝑂𝐹 calculation. 
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Figure 3.2: Flowchart of the interface between the optimization algorithm and the 

ERANOS simulation code. 
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3.3. Genetic Algorithms applied to the ALLEGRO Fuel Loading Pattern 

Optimization 

 

A genetic algorithm is a derivative-free stochastic global search technique based on biological 

evolutionary processes proposed by (Holland, 1975) and later described by (Goldberg, 1989). GA 

is the most popular form of evolutionary algorithm (EA). The basic idea of a GA is to generate a 

new set of designs, or population, from the current set such that the average 𝑂𝐹 value of the 

population is improved. For this purpose, the so-called genetic operators, reproduction, crossover, 

and mutation, are used. The iterative process will continue until a stopping criterion is met or the 

number of iterations exceeds a specified limit. There is an extensive list of references on practical 

applications of genetic algorithms, from basic implementations to advanced variants. The 

following can offer significant guidance and knowledge for implementing GAs in real-world 

scenarios (J. S. Arora, 2017; R. K. Arora, 2015; Haupt & Haupt, 2004; Kochenderfer & Wheeler, 

2019). 

 

As described in Section 1.1 of Chapter 1, LP optimization is a complicated task considered as a 

multi-objective combinatorial optimization problem. It has been demonstrated that GA is an 

efficient metaheuristic technique for dealing with this type of problem, since it does not require 

any derivative information and covers the search space relatively fast. Although it cannot be 

guaranteed that they will find an optimal solution, if properly applied, an acceptable solution close 

to the true optimal solution will be found (Lima-Reinaldo & François, 2022). More advantages 

were discussed in Subsection 3.1.1. The GA technique has been widely used and accepted in this 

field, even with the rise of new computational techniques. 

 

For the implementation of GA, the question is where to place the fresh fuel satisfying the 

operational and safety constraints imposed (see the arrangement in Figure 3.3). Each LP is 

represented as a vector of 29 non-repeating integers (number of fresh fuel assemblies), where the 

values correspond to the decision variables or fresh fuel positions 𝑝𝑛 in the reactor core, which can 

take values from 1 to 87 (total number of fuel assemblies). Then, a LP vector can be denoted as: 
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𝐿𝑃 = (𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛);  𝑛 = 29; 𝑝 ∈ [1,  87] (3.6) 

 

This encoding will be used in the optimization algorithm for its simplicity but is transformed into 

the ERANOS coordinate system for the reactor calculation. Figure 3.4 shows an example of three 

different configurations considering two rings of the hexagonal lattice supposing that one third of 

the positions will be loaded. Note that the order does not matter, i.e., a vector 𝐿𝑃 =

(16, 4, 14, 12, 1, 2) = (1, 2, 4, 12, 14, 16). Moreover, as can be seen, the constraint imposed on 

the number of contiguous fresh assemblies is met. 

 

Figure 3.3: Arrangement of fuel assemblies in the core. The blank spaces are the control 

rods positions. The X/Y coordinate and the corresponding assembly number are specified. 

 

The flow-chart in Figure 3.5 and the pseudocode in Figure 3.6 summarize how the developed GA 

code works. The process begins by defining the GA parameters such as the number of variables, 

population size, crossover rate, mutation rate, and the number of generations. The integer encoding 

scheme, described in Equation (3.6), was used to represent the 29 positions or variables of each 

𝐿𝑃. Subsequently, the initial population of size 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 is generated from a feasible 𝐿𝑃 to 

accelerate the exploration of the design space. 
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 Figure 3.4: Schematic representation of three different LPs vectors (in red) in a two-ring 

hexagonal lattice example. 

 

The next step is to evaluate the initial population in ERANOS to compute the core parameters and 

the 𝑂𝐹 value (see Equation (3.5)). For this purpose, an interface between ERANOS and the GA 

algorithm was developed, which transforms the 𝐿𝑃 vector to the ERANOS coordinate system and 

executes the core calculation. Next, the reproduction phase begins where the selection criteria and 

the crossover and mutation operators are applied to produce the offspring. First, pairs of different 

parents are selected by tournament selection. Then, using the crossover operator, the offspring 

population of size 𝐶 = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑟𝑎𝑡𝑒 × 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 is produced, and the mutation operator is 

applied. Subsequently, the population is evaluated, and the next generation is formed by inserting 

the offspring into the previous population and selecting the best 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 individuals. 
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Figure 3.5: Flowchart of a GA. 

 

The algorithm stops when the maximum number of generations is reached. The output is the best 

solutions over generations, including LPs, 𝑂𝐹 values and core parameters. The code has additional 

interesting features. First, an algorithm was developed to detect repeated individuals in each 

generation or clones and avoid re-evaluations. Secondly, each population is stored, and in case an 

LP reappears, the already calculated 𝑂𝐹 value is taken, without executing the ERANOS code. 

With these two improvements the computational cost is considerably reduced. Third, in the 

interface module each pattern is checked to ensure that it meets the constraint on the maximum 

number of contiguous fresh assemblies, if true it is evaluated, otherwise, the 𝑂𝐹 will be zero (see 

Equation (3.5)). 
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Initialize GA params (num_vars, pop_size, crossover_rate, mutation_rate, num_gens) 1 

Generate initial population (array dimensions: pop_size × num_vars) 2 
Evaluate initial population (call the interface and objective function): 3 

pop = evaluate(pop); 4 
pop = sort(pop); 5 

Set best_sol: 6 
best_sol = pop(1); 7 

Main loop: 8 
for g = 1:num_gens 9 

C = crossover_rate × pop_size; 10 
for i = 1:C/2 11 

Perform selection: 12 
P1 = tournament(pop, tournament_size); 13 
P2 = tournament(pop, tournament_size); 14 

Perform crossover: 15 
[O1, O2] = PMX(P1, P2); 16 
offspring(i, 1) = O1; 17 
offspring(i, 2) = O2; 18 

end 19 
Perform mutation: 20 

offspring = random_mutation(offspring, mutation_rate); 21 
Evaluate offspring population: 22 

offspring = evaluate(offspring); 23 
Insert offspring into the population and choose best pop_size members 24 

pop = sort([pop; offspring]); 25 
pop = pop(1:pop_size); 26 

Update best solution: 27 
best_sol(g) = pop(1); 28 

end 29 
Print results (best_sol) 30 

 

Figure 3.6: Pseudocode of the developed GA code. 

 

 

3.3.1. GA operators 

 

In GA, the population of best individuals evolves in successive generations using selection, 

crossover, and mutation. The GA algorithm procedure is shown in Figure 3.6. In the selection 

phase, pairs of parents are selected for reproduction based on their OFs values. For the LP 

optimization, the commonly used selection operators are roulette wheel selection and tournament 

selection. 
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It has been shown that tournament selection has better, or equivalent, convergence properties and 

computational time when compared to any other selection operator (Deep et al., 2009). Therefore, 

the tournament selection operator was used. In this method, 𝑘 individuals are randomly chosen 

from the population and participate in a tournament where the best individual from this set is 

selected as the parent. A tournament size value of 4 was used. In addition, a procedure was 

developed to ensure that the pairs of parents to be crossed were different. After selection, applying 

the crossover and mutation operators, offspring are produced and added to the next generation. 

 

The crossover operator combines the genetic information between individuals to explore the search 

space. The classical crossover operators, one- and two-point crossover, do not work for the defined 

optimization problem. The offspring resulting from applying these operators does not represent a 

valid pattern since they may have repeated fuel assembly positions. Considers a simple GA that 

uses a binary encoding. The n-dimensional solution vector 𝑋 = [𝑥1, 𝑥2, 𝑥3… , 𝑥𝑛] (or LP), where 

𝑥𝑛 is the position value in our problem, is encoded in the form: 

 

𝑋 = 01…00⏟    
𝑥1

 11…10⏟    
𝑥2

 10…00⏟    
𝑥3

 …10…00⏟    
      𝑥𝑛

 
(3.7) 

 

If the chromosome is l-bit long, it has 2𝑙 possible values. If the variable 𝑥𝑛 is in the range [𝑥𝑖
−, 𝑥𝑖

+] 

with a coding (𝑠𝑙𝑖 . . . 𝑠2𝑠1), where 𝑙𝑖 is its bit-length in the chromosome and 𝑠𝑖 ∈ {0, 1}, then the 

encoding/decoding function is given by (Du & Swamy, 2016): 

 

𝑥𝑖 = 𝑥𝑖
− +

(𝑥𝑖
+ − 𝑥𝑖

−) × 𝐷𝑉(𝑠𝑙𝑖)

2𝑙 − 1
 (3.8) 

 

Where 𝐷𝑉(𝑠𝑙𝑖) =  ∑ 𝑠𝑗2
𝑗𝑙𝑖−1

𝑗=0  is the decoded value of the string. Now if we apply the single-point 

crossover by randomly selecting a crossover point along the string we obtain the following 

offspring: 
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𝑃1 ●●●●●●●●●●●●●●|●●●●●●●●●●● (3.9) 

𝑃2 ●●●●●●●●●●●●●●|●●●●●●●●●●●  

𝑂1 ●●●●●●●●●●●●●●|●●●●●●●●●●●  

 

Due to the 𝑂1 is formed by the first portion of 𝑃1 and the latter portion of 𝑃2, and decoded by 

Equation (3.8), some positions will be repeated. Even if we apply other commonly used operators 

such as multi-point crossover the problem will persist. Another example is to consider the integer 

vectors 𝑃1 and 𝑃2, and applying the single-point operator generates the child 𝑂1, which is not valid 

because the position 2 is repeated. 

 

𝑃1 = (7  3  8  2 | 1  4  5  6) 
𝑃2 = (1  3  5  6 | 4  8  7  2) 
𝑂1 = (7  3  8  2 | 4  8  7  2) 

(3.10) 

 

The initial intention to apply genetic algorithms was to use validated optimization codes such as 

MATLAB Optimization Toolbox (ga solver) and DAKOTA software (SOGA optimizer). After 

developing several models that tested different types of crossover operators, it became clear that 

the same problem described above was occurring. 

 

To address this problem, the partially mapped crossover (PMX) and the order crossover operator 

(OX), commonly used to solve permutation-based problems such as the traveling salesman 

problem (TSP), were selected (Hussain et al., 2017; Larrañaga et al., 1999). The results with both 

operators will be compared to check the algorithm behavior. 

 

The PMX operator works by randomly selecting two crossover points on the parents’ strings, 

which determine the segments of genetic material that will be exchanged between the parents to 

create the offspring. The genetic material between the two crossover points is mapped from one 

parent to the other, such that the offspring inherits some genetic material from each parent. 

Consider, for example the following two parents 𝑃1 and 𝑃2 (or LP vectors): 
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𝑃1 = (7  3  8  2  1  4  5  6) 
𝑃2 = (1  3  5  6  4  8  7  2) 

(3.11) 

 

The offspring is built using the following procedure. First, two cut points along the strings are 

randomly selected. Suppose that the first cut point is selected between the third and the fourth 

string element, and the second one between the sixth and seventh string element. For example: 

 

𝑃1 = (7  3  8 | 2  1  4 | 5  6) 
𝑃2 = (1  3  5 | 6  4  8 | 7  2) 

(3.12) 

 

The substrings between those cut points are called the mapping sections. The mappings will be 

2 ↔ 6, 1 ↔ 4 and 4 ↔ 8. Next, the mapping section of the first parent is copied into the second 

offspring 𝑂2, and the mapping section of the second parent is copied into the first offspring 𝑂1: 

 

𝑂1 = (− − − | 6  4  8 | −  −) 
𝑂2 = (− − − | 2  1  4 | −  −) 

(3.13) 

 

Then offspring 𝑖 (𝑖 = 1, 2) is filled up by copying the elements of the i-th parent. If an element is 

already present in the offspring, it is replaced according to the mappings. Then we can fill in the 

elements, from the original parent, for those which have no conflict as follows: 

 

𝑂1 = ( 7  3 − | 6  4  8 | 5  −) 
𝑂2 = (−  3  5  | 2  1  4 | 7  −) 

(3.14) 

 

Hence, the first slot (−) in 𝑂1 is 8 which comes from first parent but 8 is already in this offspring, 

so we check the mapping 4 ↔ 8 and see again 4 existing in this offspring, again check the mapping 

1 ↔ 4, so 1 occupies at first (−). Similarly, the second (−) in first offspring is 6 which comes from 

first parent but 6 exists in this offspring; we check the mapping 2 ↔ 6 as well, so 2 occupies at 

second (−). Analogously, we can find 𝑂2. Thus, 𝑂1 and 𝑂2 are: 

 

𝑂1 = (7  3  1 | 6  4  8 | 5  2) 
𝑂2 = (8  3  5 | 2  1  4 | 7  6) 

(3.15) 
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The OX operator produces offspring by choosing a section of one parent and preserving the relative 

order of the other parent. For example, consider the parents 𝑃1 and 𝑃2 given in Equation (3.11) and 

the same two random cut points. The offspring 𝑂1 and 𝑂2 are built as follows. First, the segments 

between the cut point are copied into the offspring, which gives: 

 

𝑂1 = (− − − | 2  1  4 | −  −) 
𝑂2 = (− − − | 6  4  8 | −  −) 

(3.16) 

 

Unlike the PMX operator, the OX operator does not perform a mapping of genetic material 

between the parents’ string. Next, starting from the second cut point of one parent, the rest of the 

bits are copied in the order in which they appear in the other parent, also starting from the second 

cut point and omitting the position that are already present. When the end of the parent string is 

reached, we continue from its first position. In our example the sequence in the 𝑃2, starting from 

the second cut point is 7 → 2 → 1 → 3 → 5 → 6 → 4 → 8. After removing 2, 1, and 4, which are 

already in 𝑂1, the sequence is 7→ 3 → 5 → 6 → 8. This sequence is placed in 𝑂1 starting from the 

second cut point. Analogously, we can find 𝑂2. Then, the following offspring 𝑂1 and 𝑂2 are 

generated: 

 

𝑂1 = (5  6  8 | 2  1  4 | 7  3) 
𝑂2 = (3  2  1 | 6  4  8 | 5  7) 

(3.17) 

 

The probability of a crossover operation being performed to generate new offspring is specified 

by the crossover rate. The number of crossovers in one generation is calculated as the crossover 

rate multiplied by the 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒. 

 

The mutation operator is used to maintain adequate diversity in the population and avoid premature 

convergence. The random mutation was used, which introduces random variation by first randomly 

choosing a position from a randomly selected pattern and reassigning a randomly valid value for 

that position. The operator works similarly to the mutation operator proposed by (Eddy & Lewis, 

2001) with the modification that the replacement value must be different from the other pattern 

positions, thus ensuring that there are no repeated positions. The number of mutations per 

generation is calculated as the product of the mutation rate and the 𝑝𝑜𝑝𝑠_𝑠𝑖𝑧𝑒. 
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The diagram in the Figure 3.7 shows how the mutation operator works. An example of an array 

[𝑚, 𝑛], where 𝑚 =  3 is the population size and 𝑛 =  6 is the number of variables or positions, is 

considered. To modify the population, the position [2, 4] is randomly chosen and the random value 

𝑟 =  10 is assigned to that position. This process is repeated until the defined number of mutations 

is reached. 

 

22 71 35 67 24 4 

→ 

22 71 35 67 24 4 

56 16 43 84 27 58 56 16 43 10 27 58 

78 1 19 3 11 18 78 1 19 3 11 18 

Figure 3.7: Example of how the proposed mutation operator works. An array of 

dimensions [3, 6] is shown in which a modification is applied at position [2, 4] (shaded). 

 

 

3.3.2. Genetic Algorithms Implementation Results 

 

Two strategies were used to evaluate the performance of the optimization code. In the first case, 

the results were compared using the PMX and OX crossover operators and the 𝑂𝐹 function (see 

Equation (3.2)). Then, another case was analyzed using the PMX operator and the 𝑂𝐹2 function 

that includes the flatness term. The defined GA parameters are shown in Table 3.1. The code was 

executed on a multi-core processor Ubuntu workstation (Intel® Xeon® CPU E5-2623 v4 – 2.60 

GHz x 15) with 64 GB of RAM, but single-core calculations were performed due to the limitation 

of the ERANOS simulation code. 

 

To encourage the exploration of the design space, known feasible LPs were inserted into the initial 

population and the rest were filled with random solutions. Feasible LP means that there are no 

more than two contiguous positions. This allows to increase the convergence speed and the quality 

of the solution. A population size of 150 and a maximum number of generations of 300 were 

defined. A crossover rate of 1.0 and a mutation rate of 0.1 were defined. The crossover rate equal 

to 1.0 implies that 100% of the individuals in the population are crossed, which accelerates the 
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search. The low mutation rate is used to generate random changes that give rise to new offspring 

different from the parents, which encourages diversity in the population of LPs. During the choice 

of GA parameters, it was found that a high mutation rate affected the performance of the algorithm 

since mutations produce infeasible patterns. 

 

For the first case, 10 independent runs were performed using the 𝑂𝐹 function and both crossover 

operators. Table 3.2 summarizes the best 𝑂𝐹value and the PPF for each run and the average value. 

In addition, Figure 3.8 and Figure 3.9 show the evolution of the best 𝑂𝐹 over the generations for 

each run for the PMX and OX operators, respectively. 

 

Table 3.1: GA parameters. 

Parameter Value 

Population size 150 

Number of generations 300 

Selection operator Tournament (𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒 = 4) 

Crossover operators OX/PMX 

Crossover rate 1.0 

Mutation operator Random mutation 

Mutation rate 0.1 

 

It can be seen how the algorithm explores better solutions in the search process, which means that 

the crossover operators work correctly. The algorithm shows good convergence (on average from 

the 200th generation onwards) although the worst solutions are given by premature convergence. 

This is one of the major drawbacks associated with GAs and is the trend to converge to local 

optima of the 𝑂𝐹 being the cause of a decrease in the quality of the solutions found. 

 

As shown in Table 3.2, the best solution on average was found with the PMX operator and twice 

as fast as using the OX operator. Note that the execution time depends on the calculation time in 

the simulation of the patterns in ERANOS, which takes on average 30 seconds. The calculation 

time will be governed by Equation (3.5), i.e., the patterns that meet the condition are evaluated in 

ERANOS. 
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Table 3.2: Optimization results. Best OF and PPF for 10 independent runs using the PMX 

and OX crossover operators. 

Run number 
PMX OX 

Best 𝑂𝐹 PPF1 Best 𝑂𝐹 PPF 

1 1.011991 1.1726 1.012032 1.1729 

2 1.012087 1.1746 1.011973 1.1723 

3 1.012082 1.1739 1.012087 1.1743 

4 1.012090 1.1743 1.012063 1.1752 

5 1.012032 1.1729 1.012021 1.1729 

6 1.012081 1.1735 1.012068 1.1747 

7 1.012114 1.1745 1.011993 1.1746 

8 1.012073 1.1743 1.012026 1.1747 

9 1.012021 1.1721 1.012066 1.1735 

10 1.012082 1.1739 1.012114 1.1745 

Average 1.012065 1.1737 1.012044 1.1740 

Maximum 1.012090 1.1743 1.012087 1.1743 

Running time2 30.9 h – 57.5 h – 

LP evaluation time in 

ERANOS3 30 s  30 s  

1. PPF value over the cycle. 

2. Average GA code execution time per case study. 

3. This calculation time corresponds to the simulation of the operating cycle 

of each LP in the ERANOS code (365 days and diffusion 7-groups 

approach). 

 

Figure 3.11 and Figure 3.12 show the average 𝑃𝑃𝐹 value and the 𝐻𝐸𝑅𝐵𝑂𝐶 and MLHGR values 

over the generations, respectively. As can be seen, the 𝐻𝐸𝑅𝐵𝑂𝐶   increases because the 

𝑘𝑒𝑓𝑓
𝐸𝑂𝐶  increases since the typical curve of k-eff vs operation time (see Figure 2.17 in Subsection 

2.2.7). In addition, the MLHGR has similar behavior to 𝑃𝑃𝐹 and remains below the limit value. 

This was expected, since the power is proportional to the energy released (then, the heat produced) 

by fissions. 
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Figure 3.13 shows the best LP in the first generation and the best LP found for the PMX operator. 

OX tends to produce offspring that resemble both parents so it may have difficulty exploring the 

search space more efficiently than PMX. It can be seen how the constraint of two contiguous fresh 

assemblies is satisfied. Over the generations, the algorithm places pairs of assemblies since higher 

OF values are obtained. If the constraint did not exist, the 29 assemblies would be stacked towards 

the center of the core. Figure 3.14 shows the PPF distribution at the BOC for the best LP where 

the maximum value does not exceed the value of 1.25. 

 

Figure 3.8: Best OF value evolution for 10 independents runs using the PMX operator. 
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Figure 3.9: Best OF value evolution for 10 independents runs using the OX operator. 

 

Figure 3.10: Average OF value evolution for 10 runs using the PMX and OX operators. 
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Figure 3.11: Average PPF value evolution for 10 runs using OF and the PMX and OX 

operators. 

 

Figure 3.12: Evolution of the average values of HERBOC and MLHGR for 10 runs using OF 

and the PMX and OX operators. 
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Figure 3.13: The best LP in the 1st generation and the best LP found using OF and the 

PMX operator. 

 

Figure 3.14: PPF distribution at the BOC corresponding to the best LP found using OF and 

the PMX operator. 
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Figure 3.15 depicts the k-eff value over the operating cycle corresponding to the initial LP and the 

best LP. Note that the k-eff at the EOC increases 187.7 𝑝𝑐𝑚, leading to an increase in cycle length. 

 

Figure 3.15: Evolution of the k-eff value over the operating cycle for the initial LP and the 

best LP found. 

 

As a second test of the algorithm performance, the 𝑂𝐹2 function and the PMX operator were used. 

The GA parameters defined were given in Table 3.1. Figure 3.16 shows the evolution of the best 

𝑂𝐹2 value, while Figure 3.17 and Figure 3.18 show the evolution of the k-eff at the EOC, 𝐻𝐸𝑅𝐵𝑂𝐶, 

𝑀𝐿𝐻𝐺𝑅 and 𝑃𝑃𝐹 parameters. The 𝑂𝐹2 behavior is as expected, the population of LPs evolves 

towards a better solution and the convergence starts at the 200th generation. 
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Figure 3.16: Best OF2 value evolution. 

 

Figure 3.17: k-eff and PPF parameters evolution of the OF2 function. 
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Figure 3.18: HERBOC and MLHGR parameters evolution of the OF2 function. 

 

The impact of the 𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 term can be verified in the decrease of the k-eff since with this penalty 

the algorithm is forced to place the assemblies towards the periphery of the core. Figure 3.19 shows 

the initial LP and best LP found while the 𝑃𝑃𝐹 distribution at the BOC is presented in Figure 3.20. 

The k-eff at the EOC is maximized, but now the best patterns are those that result in a more uniform 

distribution. The 𝑃𝑃𝐹 maximum is reduced from 1.17 to 1.14 but also the k-eff value and the cycle 

length decrease with respect to the first case using 𝑂𝐹. 

 

The algorithm performs as expected using both objective functions. In the first case by maximizing 

the k-eff at EOC without considering the power distribution uniformity, and subsequently, by 

penalizing with the 𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 term, in both cases meeting the imposed constraints. 

 



 
 

Chapter 3 

 
 

 

 

103 

 

 

Figure 3.19: The best LP in the 1st generation and the best LP found using OF2 and the 

PMX operator. 

 

Figure 3.20: PPF distribution at the BOC corresponding to the best LP found using OF2 

and the PMX operator. 
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3.4. Tabu Search applied to the ALLEGRO Fuel Loading Pattern 

Optimization 

 

Tabu search (TS) is a popular metaheuristic proposed by (Glover, 1986) and since then TS has 

been successfully widely applied to combinatorial optimization problems in different areas of 

engineering and research. A comprehensive introduction to TS can be found in the book by 

(Glover, 1989, 1990; Glover & Laguna, 1997). In nuclear engineering Tabu search technique has 

been successfully used in several works (Castillo et al., 2005, 2007; François et al., 2003; Hill & 

Parks, 2015; Jagawa et al., 2001; Wu et al., 2016), especially in optimization of nuclear fuel 

management.  

 

In a first approximation, the TS could be seen as a simple local search method, that is, starting 

from a solution 𝑠0 obtained randomly, a neighborhood 𝑁(𝑠0) is generated by some known 

procedure. From the generated neighborhood, the best neighbor 𝑠𝑏𝑒𝑠𝑡 is found. The best neighbor 

is defined as the one with the best value of an objective function. A new neighborhood is generated 

from the previously found best neighbor 𝑁(𝑠𝑏𝑒𝑠𝑡) and the process is repeated until a stopping 

criterion is reached. At the end of the process, we have a succession of points (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛) 

which are the best neighbors of each step. An important point in many problems where the Tabu 

search is applied, is the fact that the obtaining of the different solutions is done from a movement, 

that is, if we have the solution 𝑠 and this is a vector, in many cases the obtaining of other solutions 

will be realizing a movement between two elements of this vector. Up to this point, TS does not 

differ in any way from a simple local search method, however, the concept that characterizes this 

technique and makes it different from the simple local search, is the forbidden movement or tabu 

movement, which we will explain below. 

 

Starting from the previous explanation, with the first neighborhood generated and with the choice 

of the best neighbor, TS technique uses a list that can be of fixed or variable size, known as tabu 

list. This list indicates the number of iterations that a move is forbidden. It means, that movement 

has the status tabu. At the beginning the tabu list is empty and is dynamically updated as the 
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iterative process progresses. To clarify the ideas, let us suppose that the tabu list has a size equal 

to 5. At the beginning of the process, the best neighbor (𝑠𝑏𝑒𝑠𝑡) enters to the tabu list in the first 

place. In the second iteration, the previous best neighbor moves to the second position in the tabu 

list, and the second-best neighbor takes the first place. Note that the best neighbor (𝑠𝑏𝑒𝑠𝑡) will 

remain with the tabu status for 5 iterations (see Figure 3.21). The tabu list has two columns 

indicating the movement from one solution 𝑠1 to another 𝑠2. 

 

 1 2 3 4 5 

1 𝑠𝑏𝑒𝑠𝑡
1  𝑠𝑏𝑒𝑠𝑡

2  𝑠𝑏𝑒𝑠𝑡
3  𝑠𝑏𝑒𝑠𝑡

4  𝑠𝑏𝑒𝑠𝑡
5  

2  𝑠𝑏𝑒𝑠𝑡
1  𝑠𝑏𝑒𝑠𝑡

2  𝑠𝑏𝑒𝑠𝑡
3  𝑠𝑏𝑒𝑠𝑡

4  

3   𝑠𝑏𝑒𝑠𝑡
1  𝑠𝑏𝑒𝑠𝑡

2  𝑠𝑏𝑒𝑠𝑡
3  

4    𝑠𝑏𝑒𝑠𝑡
1  𝑠𝑏𝑒𝑠𝑡

2  

5     𝑠𝑏𝑒𝑠𝑡
1  

Figure 3.21: Tabu list update. 

 

An important point of the tabu status is that, as long as a solution remains in the tabu list during 

the defined number of iterations, this solution cannot be chosen as the best neighbor, even if it is 

the best value of the neighborhood in any of the iterations of the tabu status. This tells us that in a 

maximization problem (the minimization problem is equivalent) the following condition is not 

always satisfied: 

 

𝑂𝐹(𝑠1) > 𝑂𝐹(𝑠2) > 𝑂𝐹(𝑠3) > 𝑂𝐹(𝑠4)… > 𝑂𝐹(𝑠𝑛) (3.18) 
 

So, it may happen that at some times that 𝑂𝐹(𝑠𝑛+1) < 𝑂𝐹(𝑠𝑛). This condition, far from being 

detrimental, produces that during the iterative process it is possible to get out of a local optimum, 

which makes Tabu search technique an extremely powerful tool compared to traditional 

optimization methods. 

 

The above explanation corresponds to tabu search in its most basic form, however, over time 

modifications have been made to this technique to improve its performance. Three of the most 

important modifications are the following: the aspiration criterion, the review of only a part of the 

neighborhood and the variable list size. Let us see what each of these consists of. 
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The first of the options is the so-called aspiration criterion, which consists of eliminating the tabu 

status of a solution or move, as long as this solution or move leads to the best value obtained with 

the objective function, of all the solutions obtained so far. This criterion allows considering 

solutions with which the best result is obtained in all iterations of the process. 

 

With respect to the revision of only a part of the neighborhood, it is convenient to apply it when 

the cost of the evaluation of the objective function is too high, in computational terms. In such case 

it is recommended to revise only a percentage of the neighborhood. For example, if 𝑁_𝑠𝑖𝑧𝑒  it is 

size of the neighborhood 𝑁(𝑠), then it is recommended to check only 𝑁_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑁_𝑠𝑖𝑧𝑒, 

where 𝑁_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is a number between 0 and 1, which will depend on the problem. 

 

Finally, in the early days of tabu search it was thought that working with a fixed tabu list size was 

sufficient. Later studies indicated that handling a variable list size helped to avoid cycling during 

the iterative process, which results in search diversification. For this reason, it is suggested to use 

a variable list size. In the same vein, small list sizes were initially considered sufficient, around 5 

or 7, and again later studies indicated that variable sizes between 15 and 21 for the tabu list are 

much better. 

 

We will now explain the details of the implementation for our problem. In the proposed reloading 

scheme, 29 fresh fuel assemblies (1/3 of the total assemblies) are loaded at BOC; the other 2/3 of 

the fuel assemblies are burnt assemblies (described in Subsection 2.2.8). Accordingly, the isotopic 

composition corresponding to each assembly is different, i.e., there are fresh and burnt fuel 

assemblies in the equilibrium core. Therefore, the problem will be to find the optimal configuration 

satisfying the operational and safety constraints imposed. The active core layout can be seen in 

Figure 2.19. Each LP (or solution 𝑠) is represented as a vector of 87 non-repeating integers. Starting 

from the center of the reactor and counter-clockwise, the following vector 𝑠 is contructed: 

 

𝑠 =  (𝑝1, 𝑝2, 𝑝3, … , 𝑝87) (3.19) 
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This array corresponds to a particular configuration of the reactor and therefore a solution to our 

problem. The iterative process starts from a randomly generated solution, with the restriction that 

there cannot be more than two fresh fuel assemblies together. Starting from this solution and 

without loss of generality, let us assume that this solution is a vector 𝑠0 = 𝑠. To obtain the elements 

of a neighborhood, the movements depicted in Figure 3.22 are performed. For example, the 

interchange between two entries (𝑝2 ↔ 𝑝40) in the vector 𝑠0, will give us a new solution 𝑠1: 

 

𝑠0  =  (𝑝1, 𝑝2, 𝑝3, … , 𝑝87) → 𝑠1  =  (𝑝1, 𝑝40, 𝑝3, … 𝑝2, 𝑝87) (3.20) 

 

Figure 3.22: Representation of the movements made in the vector s to generate the 

neighborhood. 

 

Figure 3.23 shows an example assuming a vector of size 6 where the total number of swaps will 

be 𝑠𝑤𝑎𝑝𝑠 = 6 × (6 − 1) 2⁄ = 15. Under this procedure and if there were no restrictions, a 

neighborhood has 𝑠𝑤𝑎𝑝𝑠 = (87 × (87 − 1))/2 =  3741 different solutions. 

 

 2 3 4 5 6 

1      

 2     

  3    

   4   

    5  

Figure 3.23: Swaps performed assuming a vector of size 6 (swaps = 15). The array m×n 

represents the positions to be swapped. 
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For our implementation the aspiration criterion was applied and a variable tabu list was used. For 

this purpose, we define 𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒, an array representing the moves performed corresponding to 

the best solutions found over the iterations. Note that 𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒 will be a two-dimensional array 

of size 87 × 87 (or a 𝑚-by-𝑛 matrix). The array is updated throughout the iterations with the value 

computed using the following equation: 

 

𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒(𝑚, 𝑛) = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑎𝑏𝑢_𝑡𝑒𝑛𝑢𝑟𝑒 (3.21) 

 

Where the 𝑡𝑎𝑏𝑢_𝑡𝑒𝑛𝑢𝑟𝑒 term is defined as a random integer between 7 and 21 that defines the 

tabu list size; 𝑚 and 𝑛 are the indexes of the swapped positions; 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the number of the 

current iteration. Therefore, Equation (3.21) can be written as:  

 

𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒(𝑚, 𝑛) = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑎𝑛𝑑𝑖([7 21]) (3.22) 

 

Due to the computational cost of evaluating a solution is too high, only 5% of the entire 

neighborhood is checked; this is equivalent to evaluate about 50 solutions of each neighborhood.  

 

 

3.4.1. Neighbor search procedure 

 

In this section, the procedure to perform the interchange between two positions in ERANOS will 

be briefly discussed. Specific ERANOS modules and appropriate complex subroutines are 

available to perform a detailed core follow-up. Each individual assembly can be followed through 

its entire life. 

 

Several modules for in-core fuel management were used. It is important to correctly define each 

procedure since the solution to the problem will depend on it. In fact, in the procedure developed, 

the positions are not interchanged, since the coordinates X/Y are fixed, but the isotopic 

composition. First, an array 𝐶0 containing the isotopic composition of each fuel assembly at the 

beginning of the equilibrium cycle was generated. This array 𝐶0 will have dimensions 
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(𝑛𝑢𝑚_𝑖𝑠𝑜, 𝑛𝑢𝑚_𝐹𝐴) where 𝑛𝑢𝑚_𝑖𝑠𝑜 is the number of isotopes and 𝑛𝑢𝑚_𝐹𝐴 is the number of 

fuel assemblies. Then, using this array, the procedures to generate the movements are created. With 

these procedures and making use of the modular structure of ERANOS, the swaps for the neighbor 

search phase of the Tabu Search technique can be performed. Both the generation and execution 

of the ERANOS input files are automated using MATLAB scripts. 

 

The solution 𝑠 is a vector of non-repeating integers of length 87. The swaps between entries for 

the neighbor search will be performed. The entries are positions of fuel assemblies linked to the 

𝐶0 array which contains the isotopic composition at each position. This linkage between 𝑠 and 𝐶0 

is required because the state of each assembly will be tracked throughout the iterations. The state 

of an assembly refers to whether it is fresh or burnt (𝐹 or 𝐵). 

 

The vector 𝑠 (or 𝐿𝑃) is linked to a fixed 𝑐𝑜𝑟𝑒_𝑥𝑦 array that contains the X/Y coordinates of each 

position in the reactor core. Swapping two entries in 𝑠 will produce the same effect on the 𝑐𝑜𝑟𝑒_𝑥𝑦 

array. This procedure is incorporated in the interface developed between ERANOS and the TS 

algorithm, which is shown in Figure 3.2. This interface allows the communication between the TS 

algorithm and the external ERANOS simulation code. The interface transforms the 𝐿𝑃 vector and 

executes its evaluation in the ERANOS code. Once the simulation is completed, the core 

parameters required to calculate the 𝑂𝐹 value (𝑘𝑒𝑓𝑓
𝐸𝑂𝐶, 𝑃𝑃𝐹, 𝐻𝐸𝑅 and 𝑀𝐿𝐻𝐺𝑅) are retrieved. 

 

To generate a neighbor 𝑠1 from the solution 𝑠, two entries are swapped, but the following 

conditions must be met: 

 

1. 𝑝1 = 𝐵, 𝑝2 = 𝐵. Both fuel assemblies are burnt (state BB). 

2. 𝑝1 = 𝐹, 𝑝2 = 𝐵. The fuel assemblies have different states, fresh or burnt (state FB). 

 

According to these constraints, swapping 𝑝1 = 𝐹 and 𝑝2 = 𝐹 (both are fresh fuel) is not allowed. 

In addition, a maximum value of two contiguous fresh fuel assemblies was considered to avoid 

high power peaks in the core. By applying these set of rules, the neighborhood will be considerably 

reduced. 
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Figure 3.24 shows the flowchart of the developed algorithm and the following steps summarize 

how it works: 

 

1. Initialization. In this phase the TS parameters are defined: number of iterations 

(𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑠), number of modifications to the initial solution (𝑛𝑢𝑚_𝑚𝑜𝑑) and the subset 

of the neighborhood to be explored (𝑁_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∈ [0, 1]). 

2. Generate the initial solution. A random solution 𝑠0 and the corresponding 𝐶0array are 

generated. For this purpose, random exchanges in the arrays, 𝑠 and 𝐶, are performed. The 

number of modifications is set by the variable 𝑛𝑢𝑚_𝑚𝑜𝑑. 

3. Main loop. The iterative process begins. 

4. Generate the list of movements to be performed. A random list of size 𝑁_𝑠𝑖𝑧𝑒 =

𝑁_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 𝑠𝑤𝑎𝑝𝑠 is generated. 

5. Neighbor search. In this phase, the vector 𝑠 is modified by performing swaps between 

positions according to the imposed constraints. Each swap will produce a neighbor 𝑠𝑛 that 

will be evaluated in ERANOS to calculate the corresponding 𝑂𝐹 value. Figure 3.24 shows 

how the interface between the optimization algorithm and the simulation code works. At 

the end of the search process the best neighbor 𝑠𝑏𝑒𝑠𝑡 is stored. In addition, a file is exported 

that contains the patterns evaluated throughout the iterations, 𝑠𝑛, and the computed 𝑂𝐹 

value. 

6. Update solution. At this stage the aspiration criterion (global solution) and 𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒 

values are updated with the best neighbor of the current iteration. The 𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒 array 

update is performed by assigning to each cell the value calculated by Equation (3.22). 

7. Return to step 3. The best neighbor 𝑠𝑏𝑒𝑠𝑡(𝑖) at the iteration 𝑖 will be the initial solution for 

the next iteration (𝑖 + 1). The algorithm stops when the maximum number of iterations is 

reached. 

8. Print results. 

 

Figure 3.25 shows an example of how the search evolves over two iterations and considering a 

vector of length 6. 
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Figure 3.24: Flowchart of the implemented tabu search algorithm. 
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vector 1 2 3 4 5 6 
Concentration array C c1 c2 c3 c4 c5 c6 
state B F F B F B 

Initialization (random solution) 
𝑠0 2 4 5 3 6 1 
𝐶0 c2 c4 c5 c3 c6 c1 
state F B F F B B 
set s =  s0 

Iter. #1 
𝑠1 – (2, 4) 4 2 5 3 6 1 
𝑠2 – (3, 5) 2 4 3 5 6 1 
𝑠3 – (1, 6) - best 2 4 5 3 1 6 
set s = s3 

Iter. #2 
𝑠1 – (2, 5) 5 4 2 3 1 6 
𝑠2 – (4, 5) - best 2 5 4 3 1 6 
𝑠3 – (3, 4) 2 3 5 4 1 6 
set s =  s2 

Figure 3.25: Evolution of the neighbor search over 2 iterations. The swapped positions are 

highlighted in color. 

 

 

3.4.2. Tabu search implementation results 

 

Due to the random nature of the TS technique, ten independent runs were executed, and the mean 

and maximum 𝑂𝐹 values were reported. The study was carried out by defining 200 iterations 

(𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 = 200), 1500 modifications to the initial solution (𝑛𝑢𝑚_𝑚𝑜𝑑 = 1500) and the 5% of 

the neighbourhood were checked (𝑁_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.05). The code was executed on a multi-core 

processor workstation (Intel® Xeon® CPU E5-2623 v4 - 2.60 GHz x 15) with 64 GB of RAM, with 

the Ubuntu operating system. Table 3.3 summarizes the best, maximum, and average 𝑂𝐹 values 

for each run, and the 𝑃𝑃𝐹, 𝐻𝐸𝑅𝐵𝑂𝐶 and 𝑀𝐿𝐻𝐺𝑅 parameters, are also reported. 
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Table 3.3: Optimization results. Best OF, PPF, HERBOC and MLHGR for 10 independent 

runs. 

Run number Best 𝑂𝐹 value 𝑃𝑃𝐹 𝐻𝐸𝑅𝐵𝑂𝐶 𝑀𝐿𝐻𝐺𝑅 

1 1.013036 1.186 3.612 145.79 

2 1.013058 1.186 3.614 145.76 

3 1.012990 1.185 3.608 145.62 

4 1.013033 1.186 3.611 145.71 

5 1.013042 1.187 3.612 145.90 

6 1.012999 1.185 3.608 145.66 

7 1.013036 1.186 3.613 145.76 

8 1.013066 1.186 3.615 145.72 

9 1.013069 1.186 3.614 145.78 

10 1.013036 1.186 3.613 145.76 

Average 1.013036 1.186 3.612 145.74 

Best 𝑂𝐹 1.013069 1.187 3.615 145.90 

Running time1 45 h – – – 

LP evaluation time 

in ERANOS2 35 s – – – 

1- Execution time for each case 

2- This calculation time corresponds to the simulation of the operating cycle of 

each LP in the ERANOS code (365 days and diffusion 7-groups 

approximation) 
 

Figure 3.26 shows the evolution of the best 𝑂𝐹 value throughout the iterations. The algorithm 

works very well, and the expected behavior of the Tabu search technique is obtained. The inset 

shows how poor solutions during the iterative process are accepted. This is the advantage of 

implementing this metaheuristic technique, which allows escaping from local optima and 

encourages the exploration of the search space. The algorithm demonstrated to be a powerful tool 

compared to other metaheuristics methods (genetic algorithms, simulated annealing, etc.) where it 

is common to get trapped in local optimums for many iterations. 

 

The main drawback found of the implemented TS algorithm is its dependence on the neighborhood 

size (number of moves evaluated in each iteration). However, as shown in Table 3.3, the high 

running time (45 h) is given by the simulation of the patterns in the ERANOS code. 
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Figure 3.26: Evolution of the OF value for 10 independent runs. The inset is a zoom to the 

first 10 iterations. 

 

To better understand the algorithm behavior over the iterations, the evolution of the average values 

of 𝑂𝐹 and 𝑃𝑃𝐹 is shown in Figure 3.27. In addition, the plot in Figure 3.28 depicts the evolution 

of the 𝐻𝐸𝑅𝐵𝑂𝐶 and 𝑀𝐿𝐻𝐺𝑅 terms. The algorithm convergence starts from iteration number 150. 

Note that, from this value on, the algorithm does not get stuck, but the difference between the best 

solutions found (∆ = 𝑂𝐹𝑖+1 − 𝑂𝐹𝑖) in two successive iterations decreases. 
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Figure 3.27: Evolution of the average value of OF and PPF. 

 

Figure 3.28: Evolution of the average value of HERBOC and MLHGR. 
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The case with the highest 𝑂𝐹 value was selected to plot the best pattern and its corresponding 

power distribution. Figure 3.29 shows both graphs. Figure 3.30 represents the 𝑡𝑎𝑏𝑢_𝑡𝑖𝑚𝑒 array. 

This (87 × 87) array is the result of the implementation of the variable tabu list. Note that it has 

the shape of the example given in Figure 3.23. It contains the log of the moves performed for the 

best solutions found in each iteration. The value of each cell is computed using Equation (3.22). 

This structure is useful for testing the performance of the algorithm. The dispersion of the values 

reflects the diversity of the solutions found, so the implemented strategy works adequately in terms 

of exploring the search space. 

 

Figure 3.29: Best LP found (left) and the corresponding PPF distribution (right). Fresh fuel 

positions are shown in red. The PPF distribution shows the maximum values over the cycle. 

 

Finally, Figure 3.31 depicts the k-eff value over the operating cycle corresponding to the initial LP 

and the best LP. Note that the k-eff at the EOC increases 283.2 𝑝𝑐𝑚, leading to an increase in 

cycle length. 
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Figure 3.30: Tabu time array corresponding to the highest OF value. This is an 87×87 

matrix where the cell values are the maximum tabu_time values assigned in each of the 200 

iterations. 
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Figure 3.31: Evolution of the k-eff value over the operating cycle for the initial LP and the 

best LP found. 

 



4. Conclusions and Recommendations 

 

In the first stage of the research, the ALLEGRO reactor core was modeled using the Serpent and 

ERANOS reactor physics codes. Given the lack of available literature for the core configuration 

based on advanced ceramic fuel, the geometrical and material composition description provided 

may be helpful for future research. A three-dimensional heterogeneous design was developed in 

Serpent as a benchmark model. However, for optimization calculations, for which a large number 

of evaluations need to be performed, Serpent is not suitable (one of the drawbacks of the Monte 

Carlo method is its high computational cost). Therefore, the deterministic ERANOS code was 

selected. Core calculations in ERANOS can also be computationally expensive and depend on the 

calculation options set. Several case studies were analyzed, depending on the neutron flux 

calculation approximation using the TGV/VARIANT module and the energy group structure. 

Transport, simplified transport, and diffusion calculations were performed for 33 and 7 neutron 

energy groups. The neutron cross section library used in both codes is based on the JEFF-3.1 

evaluated nuclear data file. The results obtained were compared with those obtained with Serpent.  

 

Several important core parameters were calculated, such as k-eff value, neutron spectrum, neutron 

flux and power distributions, Doppler constant, the effect of helium density on reactivity, the β-

eff, burnup, and the equilibrium cycle. The best agreement with the Serpent results was achieved 

by using the 𝑃3 transport approximation and 7-group structure. The low density of helium caused 

large differences between the results for the diffusion and simplified transport calculations 

compared to the transport calculations. On the other hand, with the 7-group structure, the running 

time was considerably reduced compared to the 33-group structure and the Monte Carlo 

calculations. As expected, the shortest running time was obtained for diffusion calculations and a 

7-group structure. 

 

The neutron spectrum, flux and power distributions were calculated for all models and showed 

similar behavior. The Doppler constant was calculated for fuel temperature changes of +100 K and 

+1000 K, where similar results were obtained in the order of 𝐾𝐷 = -550 pcm. The effect of helium 

density on core reactivity was analyzed by varying the helium pressure from nominal to 
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atmospheric conditions. The major differences compared to the Serpent reference model, were 

found in the diffusion and simplified transport calculations. The β-eff value was also calculated, 

obtaining results with good agreement between both simulation codes. The k-eff evolution was 

determined over an operating time of 365 days. It was found that there is no significant difference 

between the results by varying the time steps in the burnup calculations. By using 5 steps at 73-

day intervals in the burnup calculation, we were able to reduce the running time. The evolution of 

the main fuel isotopes was also analyzed, the relative fuel composition at the beginning and end 

of cycle, the BR and the average burnup in the core were calculated. In all these parameters, an 

excellent agreement was obtained between all the models. A fuel cycle study was carried out in 

ERANOS using several built-in modules for in-core fuel management. The core equilibrium 

conditions were determined through a designed reloading and reshuffling scheme. From the 

simulation of the core evolution over 11 cycles, it was found that equilibrium is reached after the 

5th cycle. The diffusion approximation and 7 neutron energy groups were the calculation options 

used. They were selected to reduce the running time of the core simulation for subsequent 

optimization calculations. Although these options result in discrepancies compared to the reference 

model, it is the model that consumes the least computational resources. The potential causes of 

these differences in the results were identified and analyzed. 

 

The genetic algorithms and tabu search techniques were applied to optimize the fuel loading 

pattern of the ALLEGRO reactor. The constrained optimization with penalty function 

approximation was used to transform this multi-objective problem into a single-objective problem. 

With the formulated objective function, the k-eff value at EOC was maximized, while satisfying 

the constraints on the power peaking factor over the cycle, the excess reactivity at the BOC, and 

the linear heat generation rate. To evaluate the objective function and constraints, the black-box 

approach was used. An interface was developed to allow communication between the optimizer 

and the ERANOS reactor physics code to simulate loading patterns. 

 

The developed GA code works as a classical one adapted to the proposed combinatorial 

optimization problem. Two crossover operators, PMX and OX, combined with the random 

mutation operator, were used to explore the solution search space. To reduce the computational 

cost, additional features were incorporated into the code. A procedure is used to detect duplicate 
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solutions in the population to avoid re-evaluations and to encourage exploration. In addition, each 

population is stored so that if a loading pattern reappears, its evaluation can be avoided. As there 

are no benchmark studies to compare with, an additional objective function was formulated. Thus, 

by comparing the results using two different objective functions, the performance of the algorithm 

could be assessed. In the first case, the results were compared using the 𝑂𝐹 (k-eff at the EOC is 

maximized) and both crossover operators. Overall, the code performed well, converging towards 

a good solution in a reasonable computation time. It was found that the algorithm tends to place 

the assemblies in pairs since a higher k-eff value is obtained. The best result corresponds to the 

PMX operator, and the running time was twice as short compared to the OX operator. In the second 

case study, the 𝑂𝐹2 function and the PMX operator were used. The addition of the power 

distribution flatness term resulted in a decrease in the k-eff value. This behavior occurs because 

the algorithm tends to place the assemblies towards the periphery of the core to obtain a more 

uniform power distribution. 

 

Some drawbacks of this technique were also identified. First, the performance of a genetic 

algorithm was highly dependent on the choice of its parameters, such as the population size, 

number of generations, crossover and mutation rates, and appropriate selection, crossover, and 

mutation methods. Setting these parameters was a difficult and time-consuming process. Second, 

it was noted that the algorithm tends to get stuck in local optima. These are also known as optimum 

traps, which are essentially valleys or plateaus, observed in the evolution of the best 𝑂𝐹 value over 

generations. This disadvantage is highlighted in the literature, especially if the function landscape 

is complex and, therefore, there are multiple local optima. Small mutations introduced using the 

mutation operator attempt to prevent falling into these traps in the search for global optima, but 

sometimes it is not enough. Third, the technique proved to be computationally expensive. 

Although the high running time is mainly due to the execution of the ERANOS simulation code, 

the genetic operators also contribute, especially the mutation operator. The mutation is unguided, 

i.e., random variations are introduced to individuals in the population resulting in slow 

convergence of the algorithm. 

 

The TS metaheuristic technique was selected to overcome some of the inherent shortcomings of 

GAs discussed above. An improved version of this technique was successfully implemented. The 
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developed code performed as expected throughout the iterative process. The strength of the TS 

with respect to GA, and other local search methods, is that current solution is always replaced by 

its best neighbor, even if it is worse than the current solution. This is the way of not getting stuck 

in local optima. Additionally, by applying the concepts of the variable tabu list and the aspiration 

criterion, cycling was avoided, which results in a diversification of the search. The characteristic 

behavior of this technique was clearly observed in the evolution of the best 𝑂𝐹 value which is not 

strictly increasing since worse solutions are allowed. As a result, a better solution was found using 

this technique with respect to the GA in a reasonable computation time. 

 

The main drawback of the TS was its dependence on the neighborhood size to be explored. 

Although a small fraction was explored in each iteration, the execution time was high. 

Furthermore, it should be noted that the running time in both codes depends on the LPs evaluation 

in the ERANOS. 

 

 

Recomendations 

 

Although the primary objective of the research was met, the following recommendations are 

offered based on the work accomplished: 

 

1. The ALLEGRO reactor core model could be improved if more information on the latest 

design specifications were available. For example, more precise details on the geometry of 

the core structural elements and control rods. In addition, specifications on reactor 

operation and fuel cycle would considerably enhance the study. 

2. Parallelization of metaheuristic techniques could have considerably reduced the execution 

time. Both techniques, GA and TS, are suitable for parallel computation. Each candidate 

solution can be evaluated independently. 

3. A more advanced study would be to solve the true multi-objective problem without using 

the constraint optimization with penalty function approach. Although this method is widely 

used, it is a simplification of the problem. Both metaheuristic techniques can handle multi-

objective problems (e.g. Multi-Objective Genetic Aalgorithm). 
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4. It would be interesting to implement hybridization, which is a trend in the field of 

metaheuristics. Not only by combining these techniques with other available 

metaheuristics, but also by integrating classical optimization methods. The latter are 

efficient in the local search, so they could reinforce the intensification process. 
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