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Abstract

In engineering, management, and finance it is common to have conflicting objectives that must
be jointly optimized. Recently, a promissory approach for modeling these complex problems is
through deep neural networks. However, due to their structure, they introduce high-dimensional
problems which typically cannot be addressed with current methods. This work develops a gradient-
based predictor-corrector method based on directed search to efficiently fine-tune a neural network
without retraining the entire network. The multi-objective problem is formulated by dividing the
neural network loss function into several objectives and selecting a subset of weights as the decision
space. After the neural network is trained with stochastic gradient descent, the proposed method,
i.e., stochastic directed search, efficiently finds sections of the Pareto front that are of interest to the
decision maker. The contributions include the use of Jacobian computation in batches to account
for GPU memory limitations, special routines for better approximating boundaries, and an early
stopping criterion that limits the search space. The effectiveness of the algorithm is demonstrated by
fine-tuning a Temporal Fusion Transformer model that generates multi-horizon quantile forecasts
of the S&P 500 Futures financial time series. Nevertheless, our algorithm is applicable to any
neural network whose training task can be divided into opposing objectives. Additionally, this work
evaluates the hyperparameters’ effect on the algorithm performance to provide guidance for the users
who want to implement it. Finally, the stochastic directed search method is compared with NSGA-II
and the results show that it performs competitively while offering several advantages, such as fewer
function evaluations, higher hypervolume of Pareto fronts and the ability to solve large problem
instances with sizes up to 240,000.
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Chapter 1

Introduction

1.1 Motivation

Decision-making based on multiple objective functions is ubiquitous in the industry. Conflicting
objectives that must be optimized concurrently are common in engineering, finance, and management
fields (see Tapia and Coello (2007)). Such decision-making scenarios can be modeled as a multi-
objective optimization problem (MOP) to solve them with computational tools. Evaluating a MOP
solution involves multiple criteria (objectives) that compete with each other and the trade-off among
them invalidates the existence of a single optimal solution for all the objectives. This gives rise to
the Pareto set, which consists of solutions with the optimal compromise between different objectives.

This work focuses on the particular set of problems derived from the optimization of neural
networks considering multiple objectives. The advancement of neural networks has brought about
numerous breakthroughs in various fields, including computer vision, natural language processing,
and speech recognition. However, designing and training neural networks is still a challenging task,
as it requires a considerable amount of computational resources and technical expertise.

The aim of this thesis is to develop a multi-objective optimization framework for neural networks
that addresses these challenges. Specifically, this framework will provide researchers and decision
makers with a methodology to fine-tune neural networks effectively and efficiently without the need
of retraining the models. Additionally, the framework will provide new insights into the Pareto front
of the loss function used to trained the neural network.

The rest of this section includes a brief overview of multi-objective optimization algorithms, the
formulation of the neural network optimization problem, related work and the specific contributions
of this work.

1.2 Multi-objective optimization

Multi-objective optimization (MOO) methods for finding the Pareto front or a subset of the latter,
fall into the following four broad categories:

1. Scalarization methods use parametrization to transform the original multi-objective problem
into a classical single-objective optimization problems (see Jahn (1986), Miettinen (1998) Eich-
felder (2008), and Marler and Arora (2010)). The most common scalarization method is the
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weighted sum, which lacks the capacity of finding non-convex Pareto fronts. This approach
has been used repeatedly when formulating multi-task neural networks (see Liao et al. (2016),
Wang et al. (2017) Cipolla et al. (2018)). Another popular scalarization method is the Nor-
mally Boundary Intersection (NBI) method by Das and Dennis (2006).

2. Population based stochastic methods include evolving strategies, bio-heuristics, and estimation
of distribution algorithms, among others. The most prominent and widely used type of bio-
inspired algorithms are referred to as multi-objective evolutionary algorithms (MOEAs) (see
Deb et al. (2000), Deb (2001), Zitzler et al. (2001), and Khare et al. (2003)). Other common
bio-inspired methods include multi-objective particle swarm optimization (MOPSO) and multi-
objective ant colony optimization (MOACO) (see Coello Coello and Lechuga (2002), Fieldsend
et al. (2002) and Mora et al. (2006), Arteta et al. (2007), respectively). These methods
are easy to implement, can find discontinuous Pareto fronts and no gradient information is
needed. However, their main drawbacks are their relatively slow convergence and the fact that
optimality cannot be guaranteed.

3. Descent direction methods focus on finding only one optimal point and in some cases, the
information on the gradient and hessian can be exploited to improve the convergence rate (see
Fliege and Svaiter (2000), Schäffler et al. (2002), and Fliege et al. (2009)). These methods are
the multi-objective versions of directed search algorithms.

4. Finally, the last category consists of continuation methods proposed by Schütze et al. (2005),
Lara et al. (2010), Wang (2012), Martin et al. (2013), and Wang et al. (2019). These methods
exploit the fact that given an optimal point and certain conditions, the neighboring Pareto
front can be found.

This work focuses on recovering Pareto sets in deep learning problems that can be expressed as
MOPs. Specifically, a time series quantile forecasting problem is formulated as bi-objective problem
(BOP) and solved using the directed search method, which belongs to the continuation methods
family. Improvements are proposed to the directed search method to enhance its performance when
solving deep learning problems MOPs. The integration of random data batches in the computation
of the Jacobian, give the name to the proposed algorithm: stochastic directed search, which for the
rest of this work will be abbreviated as SDS.

1.3 Financial forecasting using deep learning

Identifying and forecasting significant price movements using past observations has been a topic
of interest for obvious reasons. The purpose of forecasting models is to extract signals from past
observations that will continue in the future. Forecasting in computational finance has been starred
by neural networks and evolutionary computation, as expressed by Tsang and Martinez-Jaramillo
(2004). However, the use of artificial neural networks for forecasting tasks surged in the ’90s since
they can learn the non-linearities in time series (see Zhang et al. (1998) and Chakraborty et al.
(1992)). In this work, the neural network architecture based on transformers proposed by Lim et al.
(2021) is used to generate high-performance quantile predictions.

Quantile prediction forecast models generate lower and upper bound (quantiles) between which
the target is expected to lie. The quality assessment of predictions is measured with quantile coverage
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risk (QCR), and quantile estimation risk (QER). QCR quantifies if the forecast is outside the
quantile range, whereas QER measures the meaningfulness of the quantile forecast. Both measures
are conflicting in nature, since QCR increases if the forecast is outside the quantile range, and on
the contrary, QER increases if the quantile range is too broad.

The conflicting nature of QCR and QER makes it straightforward to formulate the quantile
forecast model as a multi-objective problem that can be solved using any of the MOO methods
previously mentioned. Establishing a multi-objective framework allows the decision-maker to fine-
tune the model without having to retrain the neural network. To the best of our knowledge, the
fine-tuning of a quantile forecast model has not been solved using a continuation method. The
overview of the proposed methodology is the following:

1. A Temporal Fusion Transformer (TFT) model proposed by Lim et al. (2021) was trained with
stochastic gradient descent (SGD) and using a quantile loss function (QL). The dataset for the
forecasting task consists of the S&P Futures (ES) and Nasdaq Futures (NQ) with a sampling
frequency of 1 hour from January 2015 to June 2021.

2. The optimization task is formulated as a dual bi-objective problem, where the weights of a
subset of the TFT model layers are optimized using the novel indicators QCR and QER.

3. Using the weights found in the previous step, the multi-objective optimization is done with
the proposed stochastic directed search method.

1.4 Related work

The precursor of quantile forecasts are prediction intervals (PIs), which also define upper and lower
bounds but cannot weight between the coverage and meaningfulness of the intervals. On the contraty,
quantiles can give more importance to coverage, e.g. (0.1, 0.9) or meaningfulness, e.g. (0.3, 0.7).
Prediction intervals are the special case where the quantiles are (0, 1) and the criteria used to
measure its quality are the prediction interval coverage probability (PICP) and prediction interval
width (PIW), with their normalized versions being PIEE and PINAW.

Several authors have addressed the conflicting nature of PICP /PIEE with PIW/PINAW, by
proposing single and multi-objective optimization machine learning problems. Shrivastava et al.
(2016) proposed support vector machines (SVM) to determine PIs and formulated the machine
learning process as a single-objective problem using scalarization where PICP and PIW are min-
imized concurrently and the decision space is conformed by SVM cost function and RBF kernel
function. Ak et al. (2015) used NN to forecast prediction intervals (PIs) and proposed the well-
known MOEA, NSGA-II to find the Pareto front. The optimization objectives used were the PICP
and PINAW, and the weights of a three layer NN dense architecture constitute the decision variables.
A radial basis function (RBF) neural network was proposed by Zhang et al. (2016) to compute PIs.
The centers of the RBF are determined via K-means clustering and the hidden-output weights of the
RBF are adjusted using the NSGA-II algorithm to minimize PINAW and maximize PICP. Zhou et al.
(2021) proposes a LSTM network to construct PIs in which the internal parameters are optimized
with the NSGA-II, INSGA-II, and MOPSO algorithms, and the PIEE and PINAW indicators are
used as optimization objectives. López et al. (2022) propose the fine-tuning of a quantile forecasting
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neural network using NSGA-II and NSGA-III with the objectives QCR and QER. In contrast to
global methods as MOEAs, this work implements a local search method to find the Pareto front.

Other multi-objective frameworks have been used to train multi-task learning (MTL) neural
networks, in which the objectives are related to the tasks. Sener and Koltun (2018) used the
multiple gradient descent algorithms proposed by Désidéri (2012) to optimization a MTL multi-
objective problem. Although applied to MTL problems, the methodology by Ma et al. (2020) is
the most related to this work. Ma et al. implemented a variant of the directed-search continuation
methods proposed by Schütze et al. (2005) and Lara et al. (2010) to train a MTL neural network.
Compared with Ma et al. (2020)’s proposal, this work does not require the Hessian-vector products,
and the whole Pareto front (PF) is obtained from a single solution belonging (or near) the PF.

1.5 Contribution

In this work, the loss function of the neural network is divided into multiple objectives and solved with
the proposed stochastic directed search (SDS) method that incorporates the following contributions:

• The computation of the Jacobian using batches of data.

• A stop criteria to obtain a subset of the Pareto front based on the increment of the sum of the
objectives.

• A bisection method for the predictor to get closer to the boundaries in objective space.

These modifications are designed to improve the solutions of MOPs derived from the optimization
of neural networks and the results show that the stochastic directed search method can efficiently
solve high dimensional problems.

The remainder of this work is organized as follows. Chapter 2 presents a theoretical background
overview of multi-objective optimization and describes the predictor-corrector method. Chapter
5 proposes the stochastic directed search continuation method. Chapter 3 formulates the multi-
objective optimization problem. Section 6 analyses the impact of hyperparameters on the stochastic
directed search performance. Chapter 7 presents the results and discusses our most relevant findings
compared with the traditional NSGA-II method. Chapter, Section 8 concludes.
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Chapter 2

Background

This section introduces the definition of multi-objective problems as well as the predictor-corrector
directed search method.

2.1 Multi-objective problems

A general continuous MOP is defined as:

min
𝑥∈R𝑛

𝐹 (𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑗 = 1, . . . ,𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, . . . , 𝑝 ,

(2.1)

where 𝐹 : R𝑛 → R𝑘 is the vector of objective functions 𝑓1, . . . , 𝑓𝑘, 𝑔 : R𝑛 → R𝑚 is the vector of
inequality constraints and ℎ : R𝑛 → R𝑝 is the vector of equality constraints. The feasible region in
decision space is defined as 𝒳 = {𝑥 ∈ R𝑛 | 𝑔(𝑥) ≤ 0 and ℎ(𝑥) = 0}.

Since generally, no solution can minimize all objectives simultaneously, the optimality concept
for MOPs is given by the notion of Pareto dominance.

Definition 1 For two given points 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒳 , point 𝑥 ∈ R𝑛 dominates 𝑦 ∈ R𝑛 (𝑥 ≺ 𝑦) with
respect to 𝐹 only if 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦) ∀ 𝑖 = 1, . . . , 𝑘 and ∃ 𝑖 s.t. 𝑓𝑖(𝑥) ̸= 𝑓𝑖(𝑦).

Definition 2 A feasible point 𝑥* ∈ 𝒳 is Pareto efficient if ̸ ∃ 𝑦 ∈ 𝒳 s.t. (𝑦 ≺ 𝑥).

Definition 3 A feasible point 𝑥* ∈ 𝒳 is weak Pareto efficient if ̸ ∃ 𝑦 ∈ 𝒳 s.t. 𝑓𝑖(𝑦) < 𝑓𝑖(𝑥) ∀ 𝑖 =
1, . . . , 𝑘.

The MOO methods are designed to find the Pareto front (or Pareto set), which is defined as:

Definition 4 The Pareto set of optimal points is defined by 𝒫𝒮 = {𝑥 ∈ 𝒳 | ̸ ∃ 𝑦 ∈ 𝒳 : 𝑦 ≺ 𝑥}.

Definition 5 The image 𝐹 (𝒫𝒮) of the Pareto set is called Pareto front 𝒫ℱ .

Local optimal solutions satisfy the Karush-Kuhn-Tucker (Kuhn, Harold, Tucker (1951)) condi-
tions, which are applicable when 𝐹 is continuous and twice differentiable and under certain condi-
tions, they form a (𝑘 − 1) dimensional manifold (see Hillermeier (2001)).
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With the gradient ∇𝑓(𝑥) ∈ R𝑛 of a multivariable function 𝑓 defined as:

∇𝑓(𝑥) =

⎛⎜⎜⎝
𝜕𝑓(𝑥)
𝜕𝑥1

...
𝜕𝑓(𝑥)
𝜕𝑥𝑛

⎞⎟⎟⎠ , (2.2)

slack variables 𝛼𝑖 ≥ 0, 𝜇𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 are introduced to define the necessary conditions for
Pareto optimality for 𝑚 equality constraints, 𝑝 inequality constraints, and 𝑘 objectives such that:

𝑘∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖(𝑥*) +
𝑚∑︁
𝑖=1

𝜇𝑖∇ℎ𝑖(𝑥*) +
𝑝∑︁

𝑖=1

𝛽𝑖∇𝑔𝑖(𝑥*) = 0

𝑘∑︁
𝑖=1

𝛼𝑖 = 1

ℎ𝑖(𝑥
*) = 0 ∀ 1, . . . ,𝑚

𝑔𝑖(𝑥
*) ≤ 0 ∀ 1, . . . , 𝑝

𝛽𝑖𝑔𝑖(𝑥
*) = 0 ∀ 1, . . . , 𝑝 .

(2.3)

For unconstrained MOPs (𝑚 = 𝑝 = 0) and Eqs. 2.3 are reduced to
∑︀𝑘

𝑖=1 𝛼𝑖∇𝑓𝑖(𝑥*) = 0, where
the vector 𝛼 is normal to the tangent surface of the Pareto front at 𝐹 (𝑥*).

The critical (non-dominated) points can be defined using the definition of a descent direction 𝑣.

Definition 6 A descent direction for function 𝑓 : R𝑛 → R at a point 𝑥 ∈ R𝑛 is defined by vector 𝑣,
such that:

∇𝑓(𝑥)𝑇 𝑣 < 0 .

Critical points for unconstrained MOPs are thus defined as 𝑥* ∈ R𝑛 such that for all possible
vectors 𝑣 ∈ R𝑛 there is at least one 𝑖 ∈ {1, . . . , 𝑘} that satisfies:

∇𝑓𝑖(𝑥*)𝑇 𝑣 ≥ 0 . (2.4)

Consequently, to improve one objective, at least another objective must worsen. Similarly, a
descent direction 𝑣 exists for noncritical points.

Additionally, a critical point 𝑥* can be determined using the Jacobian of 𝐹 (𝑥*). Specifically, 𝑥*

is a critical point of 𝐹 if
rank(𝐽(𝑥*)) < 𝑘 , (2.5)

where

𝐽(𝑥*) =

⎛⎜⎜⎝
𝜕𝑓1(𝑥

*)
𝜕𝑥1

. . . 𝜕𝑓1(𝑥
*)

𝜕𝑥𝑛

... . . . ...
𝜕𝑓𝑘(𝑥

*)
𝜕𝑥1

. . . 𝜕𝑓𝑘(𝑥
*)

𝜕𝑥𝑛

⎞⎟⎟⎠ ∈ R𝑘×𝑛 . (2.6)

Inversely, noncritical points of 𝐹 exhibit Jacobians with full rank.
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2.2 Predictor-directed search corrector method

Continuation methods exploit the optimality conditions to explore the (𝑘− 1) dimensional manifold
starting from one critical point. Continuation methods are part of the family of local search methods
and are susceptible to getting trapped in local optima or missing sections of the Pareto front if the
front is not continuous. On the downside, most continuation methods require gradients with few
exceptions such as the works of Lara et al. (2010) and Lara et al. (2013). This requirement reduces
the universe of applicable problems, but fortunately, computing gradients in neural networks is part
of their training process and does not implicate additional effort.

Figure 2-1: Predictor and corrector steps in
continuation method.

The most common continuation methods are
the Zig-zag method proposed by Wang (2012) and
the Predictor-Corrector (PC) methods explored by
Hillermeier (2001). This work is based on the di-
rected search method, which is a PC algorithm where
the corrector is guided by a direction in the objective
space. It was originally proposed by Schütze et al.
(2005) and further expanded by Schütze et al. (2016),
Martín and Schütze (2018), and Wang et al. (2019).
The main principle behind the algorithm is to com-
pute a predictor from a non-dominated solution 𝑥

with a direction as close as possible to the tangent
of the continuous front in that point 𝐹 (𝑥). If the
Pareto set is linear, the predictor 𝐹 (𝑥+ 𝑡𝑣) will also
lie in the front; however, more often than not, correctors are needed because of the nonlinearity of
the Pareto set. The correctors seek to find the front starting from the predictor solution and usually
several several steps are needed until the criterion for a critical point is met. Fig. 2-1 shows an
example of a sequence of predictors and correctors trying to approximate the Pareto front.

Hillermeier (2001) proposed a PC method that considered the KKT conditions (Eq. 2.3) and
introduced several concepts adopted in recent PC versions. The main drawback of his classical
approach was the requirement of computing Hessians. Nonetheless, the PC method presented in
this work is an adaptation from the algorithm described by Schütze et al. (2005), which is Hessian-
free and applicable to unconstrained MOPs. With the intention of keeping this work replicable and
self-contained, this section will explain the complete method and its details.

2.2.1 Predictor

The predictor explores promising directions from an existing Pareto solution. A typical choice is to
move in a tangent direction to the curve of interest at point 𝑥. Let 𝑥 ∈ R𝑛 be a KKT point and
𝛼 ∈ R𝑘 its associated Lagrange multiplier, such that:

𝑘∑︁
𝑖=1

𝛼𝑖∇𝑓𝑖(𝑥) = 𝐽(𝑥)𝑇𝛼 = 0 .

Motivated by the KKT conditions (Eq. 2.3), the following map is obtained:
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(︃
𝐽(𝑥)𝑇𝛼

(
∑︀𝑘

𝑖=1 𝛼𝑖)− 1

)︃
= 0 . (2.7)

This implies that 𝛼 is orthogonal to the linearized Pareto front at 𝐹 (𝑥) and directions 𝑑+, 𝑑−
orthogonal to 𝛼 are promising directions to obtain new predictors 𝑝+, 𝑝− as shown in Fig. 2-2 for
𝑘 = 2.

Figure 2-2: Visualization of normal vector 𝛼, tangent directions 𝑑 and predictors 𝐹 (𝑝).

Schäffler et al. (2002) suggested calculating vector 𝛼 by solving the following convex problem:

min
𝛼
||𝐽(𝑥)𝑇𝛼||22

s.t. 𝛼𝑖 ≥ 0∀ 1, . . . , 𝑘,

𝑘∑︁
𝑖

𝛼𝑖 = 1 .
(2.8)

Since typically the number of objectives 𝑘 is small compared to the number of variables 𝑛, solving
the single objective optimization problem takes little time.

Lara et al. (2013) presented the directed search method (DS) for continuous MOPs, which in-
corporates mapping directions in the image space of 𝐹 to the domain space. The same theoretical
considerations are relevant and applicable in the predictor and corrector steps.

Let 𝑥0 ∈ R𝑛 be a point in the solution space with rank(𝐽(𝑥0)) = 𝑘 and vector 𝑑 ∈ R𝑘 the desired
search direction in the image space. The task is to find a search direction 𝑣 ∈ R𝑛 in the domain
space, such that for 𝑦0 = 𝑥0 + 𝑡𝑣, it holds that:

lim
𝑡→0

𝑓𝑖(𝑦0)− 𝑓𝑖(𝑥0)
𝑡

= ⟨∇𝑓𝑖(𝑥0), 𝑣⟩ = 𝑑𝑖, ∀ 𝑖 = 1, . . . , 𝑘 , (2.9)

which can be written in matrix and vector form with the help of the Jacobian of 𝐹 , as follows:

𝐽(𝑥0)𝑣 = 𝑑 . (2.10)

The search direction 𝑣 can be computed by solving the system of linear equations 2.10. Typically
for MOPs, the system is under-determined since 𝑛 > 𝑘, which means there are multiple solutions
for 𝑣. One particular solution is:

𝑣+ = 𝐽(𝑥0)
+𝑑 , (2.11)

where 𝐽+ ∈ R𝑛×𝑘 is the pseudo inverse of 𝐽 defined as 𝐽+ = 𝐽𝑇 (𝐽𝐽𝑇 )−1.
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Eq. 2.11 presents a method for computing direction 𝑣 in domain space from a desired direction
𝑑 in image space for point 𝑥0. The next task is to obtain the directions 𝑑 from the vector 𝛼, which
is normal to the linearized Pareto front by doing a QR-factorization of 𝛼.

𝛼 = 𝑄𝑅 , (2.12)

where 𝑅 = (𝑟1, 0, . . . , 0)
𝑇 with 𝑟1 ̸= 0 and 𝑄 = (𝑞1, . . . , 𝑞𝑘) ∈ R𝑘×𝑘 is an orthogonal matrix. By

Eq. 2.12, 𝛼 = 𝑟1𝑞1 and the set of directions 𝑑 that form orthonormal bases of the tangent space to
the Pareto front at 𝐹 (𝑥) are chosen to be:

𝑑𝑖 = 𝑞𝑖+1 ∀ 𝑖 = 1, . . . , 𝑘 − 1 , (2.13)

where 𝑞𝑖 is the 𝑖th column vector of 𝑄 and live in the image of 𝐹 (𝑥). From Eqs. 2.11 and 2.13,
the predictor directions can be computed as:

𝑣𝑖 = 𝐽+(𝑥)𝑞𝑖+1 ∀ 𝑖 = 1, . . . , 𝑘 − 1 . (2.14)

The predictors’ directions are tangent to the Pareto front 𝒫ℱ but not necessarily tangent to
the Pareto set 𝒫𝒮. The predictors 𝑝 ∈ R𝑛 are expected to lie near the Pareto front to reduce the
number or correctors needed to get back to the front. The set of predictors is computed as follows:

𝑝𝑖 = 𝑥+ 𝜆𝑡
𝑣𝑖
||𝑣𝑖||

, (2.15)

where 𝑡 is the step size, and 𝜆 ∈ {1,−1} is the direction. Both directions are required to guarantee
the Pareto front is explored from all directions, and the selection of the step size 𝑡 impacts the
distance between solutions found and therefore the density of the Pareto front.

To obtain an evenly spaced solution set in the image of 𝐹 , the following condition is imposed for
consecutive solutions 𝑥𝑖+1 and 𝑥𝑖:

||𝐹 (𝑥𝑖+1)− 𝐹 (𝑥𝑖)|| ∼ 𝜏 ,

where 𝜏 > 0 is specified by the user. To guarantee equally spaced solutions, Hillermeier (2001)
suggested computing the step size as:

𝑡 =
𝜏

||𝐽(𝑥)𝑣||
. (2.16)

Alg. 1 shows the procedure to compute the predictors given a point 𝑥 in the Pareto front. The
first step is to decompose the orthogonal vector to the linearized front 𝛼 into 𝑄 and 𝑅. For each
column vector 𝑞 of 𝑄, search directions 𝑣, step size 𝑡, and the predictors 𝑝 are calculated. For
𝑘 > 2, both directions 𝜆 ∈ {1,−1} for Eq. 2.15 should be explored; however, for BOPs, using
both directions means that one of them leads exactly to where the previous solution was. To avoid
unnecessary computations, for BOPs a single direction is used when computing the predictor in line
7 of Alg. 1, where the direction is given by the parameter 𝜆. For 𝑘 > 2, many 𝑑 directions exist and
a complementary orientation method is needed to efficiently explore the Pareto front. Schütze et al.
(2005) proposed box-constrained regions to explore similar regions only once and at the same time,
obtain equally distanced solutions.
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The method GoodPredictor(𝑥) in line 9 discards a predictor 𝑥 if the following condition is
not met:

0 ≤ 𝑓𝑖(𝑥) ≤ 𝑏𝑖 ∀ 𝑖 = 1, . . . , 𝑘 , (2.17)

where 𝑏𝑖 is the upper bound in the objective space specified by the user. This condition guarantees
that the Pareto front will not exceed the given bounds in the objective space. Note that if the
condition is not fulfilled, the output set 𝑃 will remain empty.

Algorithm 1 Predictor Routine.

Input: Point 𝑥 ∈ R𝑛 in 𝒫ℱ , Jacobian 𝐽(𝑥), constant 𝜏 and normal vector 𝛼
Output: Set of predictors

1: Routine predictor(𝑥, 𝛼, 𝐽(𝑥), 𝜏, 𝜆)
2: 𝑞𝑖 ← QRdecomposition(𝛼) ◁ Eq. 2.12
3: 𝑃 ← ∅
4: for 𝑖 ∈ {1, . . . , 𝑘 − 1} do
5: 𝑣𝑖 ← 𝐽+(𝑥)𝑞𝑖+1 ◁ Eq. 2.14
6: 𝑡← 𝜏/||𝐽(𝑥)𝑣𝑖|| ◁ Eq. 2.16
7: 𝑥𝑝 ← 𝑥+ 𝜆𝑡𝑣𝑖/||𝑣𝑖|| ◁ Eq. 2.15
8: if GoodPredictor(𝐹 (𝑥𝑝)) then
9: 𝑃 ← 𝑃 ∪ {𝑥+ 𝑡𝑣𝑖/||𝑣𝑖||}

10: end if
11: end for
12: return 𝑃, 𝑡

13: end Routine

2.2.2 Directed search corrector

Figure 2-3: Visualization of normal vector
𝛼 at point 𝑥, predictor 𝐹 (𝑝), and corrector
𝐹 (𝑥𝑖+1).

Given the non-linearity of the Pareto set, the predic-
tor 𝐹 (𝑝) will not lie in the Pareto front and corrector
steps are needed to get back to the front. In this
work, the directed search (DS) method presented by
Lara et al. (2013) is implemented as the corrector
step. The same theoretical principles from the last
section are applicable for finding a direction 𝑣𝑐 ∈ R𝑛

in domain space given a direction 𝑑 in image space
of 𝐹 . Fig. 2-3 shows point 𝐹 (𝑥𝑖) before the pre-
dictor step was applied. Under the assumption that
𝐹 (𝑝) is close to 𝐹 (𝑥), a promising choice for the di-
rection is −𝛼, where 𝛼 is the orthonormal vector to
the linearized Pareto front in 𝐹 (𝑥).

The corrector can be computed similarly to the
predictor, as follows:

𝑐𝑖 = 𝑝𝑖 + 𝑡
𝑣𝑐
||𝑣𝑐||

, (2.18)

20



where 𝑡 is the step size and 𝑣𝑐 is the direction in domain space calculated using Eq. 2.11 but with
direction −𝛼 in image space of 𝐹 . Unlike the predictor step, several correctors might be needed to
get to the Pareto front, therefore to halt the cycle a stopping criterion determines if the corrector
lies in or close enough to the Pareto front. Two important tasks arise: how to calculate the step
size 𝑡 for the corrector in Eq. 2.18 and which stopping criterion to use. These tasks are key to the
performance of the continuation method, affecting the number of correctors needed in each step,
which in turn affects the number of function and gradient evaluations needed to approximate the
complete Pareto front.

2.2.3 Corrector step size

Figure 2-4: Visualization of the angle be-
tween the corrector and the desired direction
𝑑.

As stated in Eq. 2.9, a search direction 𝑑 ∈ R𝑘 in the
image of 𝐹 can be mapped to a direction 𝑣 ∈ R𝑛 in
domain space with the step 𝑥𝑖+1 = 𝑥𝑖+ 𝑡𝑣 only if 𝑡 is
sufficiently small. To determine the step size for the
corrector of Eq. 2.18, we restrict the maximum angle
allowed between the desired direction 𝑑 in objective
space and the corrector direction 𝑑 obtained from the
difference 𝑑 = 𝐹 (𝑥 + 𝑡𝑣) − 𝐹 (𝑥). Fig. 2-4 shows a
point in objective 𝐹 (𝑥) the corrector point 𝐹 (𝑥+𝑡𝑣),
the desired direction 𝑑, the obtained direction 𝑑 and
the angle 𝛽 between 𝑑 and 𝑑.

The angle is easily obtained with the formula:

𝛽 = cos−1

(︃
⟨𝑑, 𝑑⟩
||𝑑||||𝑑||

)︃
. (2.19)

Larger step sizes 𝑡 reduce the number of correctors needed, as long as the angle 𝛽 is within a
reasonable threshold. A feasible step size given a point 𝑥 and desired direction 𝑑 in objective space
is defined as:

max
𝑡∈R

||𝑑||

s.t. 𝑑 = 𝐹 (𝑥+ 𝑡𝑣)− 𝐹 (𝑥)

cos−1

(︃
⟨𝑑, 𝑑⟩
||𝑑||||𝑑||

)︃
< 𝛽max .

(2.20)

Where 𝛽max should be defined carefully by the user. Wang et al. (2019) additionally imposes the
restriction that min(𝑑) ≥ 0, which enforces 𝑑 to point to the third quadrant. However, in this work,
a more relaxed criterion is used since our gradients are calculated with a subset (batch) of the data
and might not always be precise. Therefore, the only condition is that the direction is 𝐵max-close
to the desired direction in objective space.

Given a point 𝑥 ∈ R𝑛 and an initial step size 𝑡0, Alg. 2 is a simplified version of the bisection
search algorithm used to calculate the time step 𝑡 that satisfies Eqs. 2.20. In practice, a maximum
number of iterations (𝑁𝑎) is also imposed.
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Algorithm 2 Next corrector routine.

Input: Point 𝑥 ∈ R𝑛, initial step size 𝑡0, domain direction 𝑣 ∈ R𝑛, search direction 𝑑 ∈ R𝑘,
threshold 𝛽max, and maximum iterations 𝑁𝑎.
Output: Next corrector in domain and objective space: 𝑥 and 𝐹 (𝑥).

1: Routine NextCorr(𝑥, 𝑣, 𝑑, 𝑡0, 𝛽max, 𝑁𝑎)
2: 𝑡← 𝑡0

3: 𝑛← 0

4: 𝑑← 𝐹 (𝑥+ 𝑡𝑣)− 𝐹 (𝑥)
5: 𝛽 ← cos−1(⟨𝑑, 𝑑⟩)/(||𝑑||||𝑑||) ◁ Eq. 2.19
6: while 𝛽 > 𝛽max or 𝑛 < 𝑁𝑎 do
7: 𝑡← 𝑡/2

8: 𝑑← 𝐹 (𝑥+ 𝑡𝑣)− 𝐹 (𝑥)
9: 𝛽 ← cos−1(⟨𝑑, 𝑑⟩)/(||𝑑||||𝑑||)

10: 𝑛← 𝑛+ 1

11: end while
12: return 𝑑, 𝐹 (𝑑)

13: end Routine

2.2.4 Stopping criteria

By putting the Alg. 2 in a loop, we obtain a sequence of correctors closer to the Pareto front at
each iteration and a stopping criterion is needed to end the loop when the last corrector is a critical
point. The stopping criterion is crucial for the overall method since it determines the compromise
between an efficient Pareto front and the computational cost of the corrector step. In this work,
three criteria for critical points are explored.

Delta

Pérez (2008) and Wang et al. (2019) proposed the following single-objective optimization problem to
compute the search direction 𝑣 and a scalar variable delta 𝛿 that serves as a criterion to determine
if 𝑥 is a critical point:

min
𝑣,𝛿

1
2 ||𝑣||

2
2 − 𝛿

s.t. 𝐽(𝑥)𝑣 = 𝛿𝑑 .

Two cases follow:

1. 𝑣 ̸= 0 ⇐⇒ 𝛿 > 0 ⇐⇒ ∃ 𝑣 ∈ R𝑛 : 𝑣 = 1
𝛿𝐽

+(𝑥)𝑑.

2. 𝑣 = 0 ⇐⇒ 𝛿 = 0, in which case 𝑥 is a critical point (see Eq. 2.4).

In practice, a small threshold 𝜖 is defined to determine if 𝑥 ∈ R𝑛 is a critical point, such that:

𝛿 < 𝜖 ⇐⇒ 𝑥 is a critical point. (2.21)

22



Matrix Rank

As shown in Eq. 2.5, 𝑥 is a critical point if the rank of 𝐽(𝑥) is less than 𝑘. In practice, the matrix
rank is computed with Single Value Decomposition (SVD), and a small threshold 𝜖 is specified below
which SVD values are considered zero, such that:

rank(𝐽(𝑥), 𝜖) < 𝑘 ⇐⇒ 𝑥 is a critical point. (2.22)

Projection

The final criteria implemented is the norm of the product between the Jacobian and the direction
𝑑 in the objective space. Intuitively, the projection of 𝑑 in the linearized Pareto front is being
computed and a small projection means that the direction 𝑑 is parallel to the Jacobian at point 𝑥.
In practice, a threshold 𝜖 is specified by the user to determine if 𝑥 is a critical point, as follows:

||𝐽(𝑥)𝑑||22 < 𝜖 ⇐⇒ 𝑥 is a critical point. (2.23)

Alg. 3 finds through a series of corrector steps a critical point 𝑥*, when given a point 𝑥 in domain
space.

Algorithm 3 Corrector step.

Input: Starting point 𝑥* ∈ R𝑛, search direction 𝑑, initial step size 𝑡0, and the maximum number
of iterations 𝑁𝑏

Output: Final critical point 𝑥* ∈ R𝑛

1: Routine Corr(𝑥, 𝑑, 𝑡0, 𝑁𝑏, 𝑁𝑎)
2: 𝑛← 0

3: while not IsCritPoint(𝑥, 𝐽(𝑥), 𝑑) or 𝑛 < 𝑁𝑏 do
4: 𝑣 ← 𝐽+(𝑥)𝑑

5: 𝑣 ← 𝑣/||𝑣||
6: {𝑥, 𝐹 (𝑥)} ← NextCorr(𝑥, 𝑣, 𝑑, 𝑡0, 𝛽max, 𝑁𝑎)

7: 𝑛← 𝑛+ 1

8: end while
9: return 𝑥, 𝐹 (𝑥)

10: end Routine

The subroutine IsCritPoint(𝑥, 𝐽(𝑥), 𝑑) in line 3 contains one stopping criteria specified by the
user from Eqs. 2.21, 2.22, or 2.23.

2.2.5 Continuation method

The complete method consists of a loop of predictor-corrector steps until the termination criterion
is met. Schütze et al. (2005) presented the notion of ’boxes’ as a data structure to save the solution
set for 𝑘 > 2. However, the MOP in this work is bi-objective and a simplified version adapted for
two objectives is used.
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Figure 2-5: A) Get to the Pareto front, B)
Explore the Pareto front with two subrou-
tines (𝒫ℱ+ and 𝒫ℱ−).

The first task is to obtain a critical point 𝑥* given
a noncritical point 𝑥 ∈ R𝑛 and the second task is to
obtain the Pareto set and Pareto front using that
initial critical point 𝑥*. Since 𝑘 = 2, the front explo-
ration can easily be divided into two routines, one
for positive predictors and another for negative pre-
dictors (see Eq. 2.15).

Fig. 2-5 shows the initial point 𝑥, the critical
point 𝑥* found given the initial point, and the two
subsets 𝒫ℱ+ = {𝐹 (𝑥1+), . . . , 𝐹 (𝑥𝑛+)} and 𝒫ℱ− =

{𝐹 (𝑥1−), . . . , 𝐹 (𝑥𝑛−)}, with 𝑛+ ̸= 𝑛−. The subset
𝒫ℱ+ is obtained using the positive predictors 𝑝𝑖+
from Eq. 2.15, whereas subset 𝒫ℱ− comes from the
negative predictors 𝑝𝑖−. It is clear that the complete
front is:

𝒫ℱ = 𝐹 (𝑥*) ∪ 𝒫ℱ+ ∪ 𝒫ℱ− .

Alg. 4 shows the routine involving the predictor and corrector steps, given a starting critical
point 𝑥* and a sign to use for the predictor. Although not completely necessary for 𝑘 = 2, a queue
method proposed by Schütze et al. (2005) and Wang et al. (2019) is implemented to keep a record
of the critical solutions found.

Alg. 5 shows the complete continuation method for BOPs that consists of an initial descent to
the Pareto front and the routines that obtain the Pareto fronts 𝒫ℱ+ and 𝒫ℱ+ by changing the sign
𝜆 of the predictors.

The subroutine Corrector in line 6 returns 𝑥*, which is a critical point according to the stop
criteria used and the initial point for the subroutine ExploreFront. Finally, the sets 𝒳 and ℱ
contain the Pareto set and Pareto front, respectively.
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Algorithm 4 Explore Pareto front.

Input: Starting critical point 𝑥* ∈ R𝑛, sign 𝜆 of predictor, desired space 𝜏 , number of iterations
𝑁𝑏, 𝑁𝑎

Output: Pareto set 𝒳 and Pareto front ℱ

1: Routine ExploreFront(𝑥*, 𝜆,𝑁𝑏, 𝑁𝑎, 𝜏)
2: 𝑀 ← ∅
3: Enqueue(ℳ, {𝑥, 𝐹 (𝑥), 𝐽(𝑥)})
4: while ℳ is not empty do
5: {𝑥, 𝐹 (𝑥), 𝐽(𝑥)} ← Dequeue(ℳ)

6: 𝛼← ConvexProblem() ◁ Eq. 2.8
7: {𝑋𝑝, 𝑡0} ← Predictor(𝑥, 𝛼, 𝐽(𝑥), 𝜏, 𝜆)
8: for 𝑥 ∈ 𝑋𝑝 do
9: {𝑥, 𝐹 (𝑥)} ← Corr(𝑥,−𝛼, 𝑡0, 𝑁𝑏, 𝑁𝑎)

10: Enqueu(ℳ, {𝑥, 𝐹 (𝑥), 𝐽(𝑥)})
11: 𝒳 ← 𝒳 ∪ {𝑥}
12: ℱ ← ℱ ∪ {𝐹 (𝑥)}
13: end for
14: end while
15: return 𝒳 ,ℱ
16: end Routine

Algorithm 5 Continuation complete method.

Input: Starting point 𝑥 ∈ R𝑛

Output: Pareto set 𝒳 and Pareto front ℱ

1: Routine Continuation(𝑥)
2: Compute 𝛼 from Problem 2.8
3: 𝑣 ← 𝐽+(𝑥)𝑎

4: 𝑣 ← 𝑣/||𝑣||
5: 𝑡0 ← 𝜏/||𝐽(𝑥)𝑣|| ◁ Eq. 2.16
6: {𝑥*, 𝐹 (𝑥)} ← Corrector(𝑥,−𝛼, 𝑡0)
7: 𝒳 ← {𝑥*}
8: ℱ ← {𝐹 (𝑥*)}
9: for 𝜆 ∈ {−1, 1} do

10: {𝒳𝑖,ℱ𝑖} ← ExploreFront(𝑥*, 𝜆)
11: 𝒳 ← 𝒳 ∪ 𝒳𝑖

12: ℱ ← ℱ ∪ ℱ𝑖

13: end for
14: return 𝒳 ,ℱ
15: end Routine
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2.2.6 MOP Example solved by directed search

This section shows the solution obtained when solving a classic MOP. Consider the bi-objective
(𝑘 = 2) problem with 𝑥 ∈ R2, i.e., 𝑛 = 2:

min
𝑥∈R2

𝐹 (𝑥1, 𝑥2) = (𝑓1(𝑥1, 𝑥2), 𝑓2(𝑥1, 𝑥2))

s.t. 𝑓1(𝑥1, 𝑥2) = (𝑥1 − 1)4 + (𝑥2 − 1)2

𝑓2(𝑥1, 𝑥2) = (𝑥1 + 1)4 + (𝑥2 + 1)2 .

Note that the point 𝑥 = (0, 0) selected as the initial point does not lie in the Pareto set and the
upper bounds are 𝑏1 = 𝑏2 = 7.

Table 2.1: Continuation method configuration for example.

Parameter Value Ref.

Predictor
Bounds (𝑏1, 𝑏2) [7, 7] Eq. 2.17
Step size (𝜏) 0.9 Eq. 2.16
Corrector
Max angle (𝛽max) 45∘ 2.20
Crit. point criteria Delta Eq. 2.21
Crit. point threshold (𝜖) 1× 10−4 Eq. 2.21
Step size max. iter. (𝑁𝑎) 20 Routine 2
Correctors max. iter. (𝑁𝑏) 20 Routine 3
General
Initial point (𝑥) (0, 0) Routine 5

Using the hyperparameters from Table 2.1, Figures 2-7 and 2-6 show the Pareto set and Pareto
front obtained, respectively. The theoretical efficient boundaries are shown in blue and are labeled
as ‘Pareto set’ or ‘Pareto front’. The initial descent to the front (line 6 of Alg. 5) is shown in light
blue and is labeled as ‘descent’. From Fig 2-7 it is clear that the initial point (shown with a black
X) does not lie in the Pareto set.

Several indicators can be used to measure the performance of the continuation method. How-
ever, in this section, only the function and Jacobian evaluations are shown in Table 2.2 and divided
into three categories: predictor, corrector, and descent steps. The difference between the descent
and corrector steps is that descent steps are those applied from the initial solution and the first
approximation to the Pareto front, whereas the corrector steps are used in every step of the contin-
uation method. The first column shows the number of steps for each category and the next columns
correspond to the function and Jacobian evaluations. As shown in Table 2.2, the predictors (Alg.
1) consume only one function evaluation per step (line 8 of Alg. 1), whereas the correctors use one
Jacobian evaluation per step (line 9 of Alg. 4) and several function evaluations to adjust the stepsize
in Alg. 2.

Fig. 2-6 shows that the space between the solutions in objective space remains more or less
constant because of Eq. 2.16. However, this is not the case in decision space as shown in Fig 2-7.
Additionally, it is worth noticing that the extremes of the Pareto front are not close to the defined
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Figure 2-6: Pareto front of example BOP. Figure 2-7: Pareto set of example BOP.

Table 2.2: Function and Jacobian evaluations in BOP example.

steps F evals J evals

predictor 13 13 0
corrector 37 74 37
descent 4 10 4

total 52 97 41

boundaries 𝑏1 = 𝑏2 = 7. This happens because Eq. 2.17 used in the subroutine GoodPredictor
discards the predictor if it is outside the limits and there is no mechanism to get closer to the
boundaries.
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Chapter 3

Multi-objective neural network
problem

This section will present the formulation of the MOP from a neural network (NN) task and the
adaptations to the directed search continuation method for efficiently finding its Pareto set and
front.

Multi-task networks can easily be transformed into a multi-objective problem, as proposed by
Ma et al. (2020) and Sener and Koltun (2018). However, the method used in this work divides the
loss function of the neural model into separate objectives, which can be reasoned as the opposite
of a scalarization method where multi-objective functions are merged into a single objective using
weights. Consequently, the decision space is defined by a subset of the neural network weights
and the Pareto front is obtained with the continuation method. The following methodology was
implemented:

1. Train the NN with its loss function and a stopping criterion, e.g. overfitting criteria, a fixed
number of epochs, etc. The training data subset is used for this step.

2. Select a subset of the weights of the neural network architecture as the starting point for the
continuation method.

3. Execute the continuation method and find the train Pareto front and set using the training
data subset.

4. Finally, the test Pareto front is computed from the train Pareto set obtained in the previous
step but this time using the test data subset.

Since neural networks are prone to overfitting, the test Pareto front is a degraded version of the
train Pareto front.

To formulate the MOP, consider the loss function used to train a neural network ℒ(Ω,𝑊 ), where
Ω is the domain of training data and 𝑊 represents its weights. In special cases, the loss function
can be expressed as:

ℒ(Ω,𝑊 ) = 𝑤1𝑙1(Ω,𝑊 ) + · · ·+ 𝑤𝑘𝑙𝑘(Ω,𝑊 ) , (3.1)
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where 𝑙𝑖 are contrary loss functions and 𝑤𝑖 is the weight associated with each function. The
individual loss functions 𝑙𝑖 have the property of decreasing at the expense of increasing another loss
function 𝑙𝑗 , where 𝑖 ̸= 𝑗.

The loss function of Eq. 3.1 can be expressed as a MOP where the domain space is a subset of
the weights 𝑊𝑠 ⊆𝑊 and the objective space is defined by the 𝑘 individual loss functions, as follows:

min
𝑊𝑠

𝐹 (𝑥) = (𝑤1𝑙1(Ω,𝑊𝑠), . . . , 𝑤𝑘𝑙𝑘(Ω,𝑊𝑠)) , (3.2)

Depending on the problem and as shown in Section 7, the weights of only a few layers can be
enough to obtain the Pareto front: |𝑊𝑠| << |𝑊 |. The starting point for the continuation method
of Alg. 5 is defined as:

𝑥 ∈ R𝑛 :=𝑊𝑠 ⊆𝑊trained , (3.3)

where 𝑊trained is the set of weights obtained after the training of the neural network.
As an example, consider the loss function

ℒ(Ω,𝑊 ) = 𝑙1(Ω,𝑊 ) + 𝑙2(Ω,𝑊 ) ,

and its respective BOP
min
𝑊

𝐹 (𝑥) = (𝑙1(Ω,𝑊 ), 𝑙2(Ω,𝑊 )) ,

whose Pareto front is shown in the left subfigure of Fig. 3-1. The right subfigure shows the total
loss ℒ(Ω,𝑊 ) in the 𝑦-axis and the first loss function in the 𝑥-axis. Consequently, each point in the
right subfigure is defined by:

(𝑥, 𝑦) := (𝑙1, 𝑙1 + 𝑙2) = (𝑙1,ℒ) ,

The initial individual corresponding to a subset of the neural network weights after training (see
Eq. 3.3) is shown as a black star in domain space 𝐹 (𝑥). Note that the initial point is near the local
minimum as shown in the right subfigure of Fig. 3-1.

As explained by Borovykh et al. (2019), the challenge when training a neural network lies in
finding the optimal tradeoff between the smoothness of the learned function and data overfit. By
selecting optimum hyperparameters generalization capability of the network can be improved and
the solution found might not be the best local minimum of the region. For these reasons the initial
point for the continuation method (shown with the black star) is not always nicely placed in the
local minimum of the loss function (see the right subfigure of Fig. 3-1 as an example).

3.1 Forecasting NN

Forecasting in computational finance has been starred by neural networks and evolutionary com-
putation, as expressed by Tsang and Martinez-Jaramillo (2004). The research of artificial neural
networks (ANN) for forecasting surged in the 90’s and Zhang et al. (1998) provided a survey of the
state of the art neural networks (NN) applications in forecasting with Chakraborty et al. (1992)
showing how neural networks are able to learn the non-linearities in time series. Neural networks
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Figure 3-1: Pareto front (left) and the sum of objectives (right) of an example BOP.

have been described as black boxes and some researchers turned to evolutionary computation in
an attempt to have more insight into the models. Iba et al. (1994), Kinnear et al. (1994), Neely
et al. (1997) and McConaghy et al. (2000) achieved encouraging results using genetic programming
in forecasting tasks.

In recent years, several NN architectures have been proposed for time-series forecasting, with
fully connected NN, CNN-LSTM, ConvLSTM, and WaveNet models yielding excellent results. Con-
volutional filters are applied in parallel to separate time series, and thus, correlation structures can
be extracted between the multivariate time series. The CNN-LSTM configuration is explored by
Xue et al. (2019) and they proposed meta-heuristics to find the optimal network architecture. Con-
vLSTM also has proven to be useful for time series forecasting and Lee and Kim (2020) used this
architecture for stock market forecasting, namely in the S&P500, KOSIPI200 and FTSE100 indexes.
On the other hand, long short-term memory (LSTM) networks are state-of-the-art techniques for
sequence learning, as handwriting recognition, speech recognition or time series prediction. Fischer
and Krauss (2018) proposed a LSTM architecture for predictions using the S&P 500 time series.
Salinas et al. (2020) and Rangapuram et al. (2018) explored a recurrent network for probabilistic
forecasting. Furthermore, other architectures have also been proposed, e.g. Borovykh et al. (2018)
proposed an adaptation of the recent deep convolutional WaveNet architecture for financial time
series forecasting. In this work, the authors evaluated what they believed one of the best neural net-
works configurations for time series forecasting: a Temporal Fusion Transformer (TFT) architecture
proposed by Lim et al. (2021).

This novel attention-based architecture generates high performance multi-horizon forecasting and
provides interpretable insights of the temporal dynamics. The TFT combines specialized components
to learn temporal relationships at different scales and select relevant features for the specific scenario.

Forecasting applications have a variety of data sources with little information about their inter-
actions. The model used in this work considers the following three types of variables as shown in
Figure 3-2.

1. Known inputs: they conform the known information about the future (e.g., hour, day of week,
upcoming holiday dates, etc.)
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Figure 3-2: Types of inputs and outputs used for multi-horizon forecasting. Source: Lim et al.
(2021).

2. Observed inputs: historical time series whose data can be measured at each time step, with
no access to future values.

3. Static covariates: general information that may give insight into the application behavior

Most neural networks architectures designed for forecasting tasks are ’black-box’ models where
forecasts are controlled by complex nonlinear interactions between many neurons. This makes it
possible to find complicated relationships between the output and input time-series; however, it is
difficult to explain how models arrive at their predictions. In turn, the users might distrust the
model and the developers can have trouble debugging it.

Lim et al. (2021) claim that their attention-based DNN architecture for multi-horizon forecasting
achieves high performance while enabling new forms of interpretability. Four novel modules are
implemented to reduce the common ’black-box’ problem of NN:

1. Generation of context vectors for use in other parts of the network

2. Variable selection blocks to minimize the contributions of irrelevant inputs

3. Sequence-to-sequence layer to locally process known and observed inputs

4. Temporal self-attention decoder to learn any long-term dependencies present within the dataset

3.2 Architecture

A brief description of the architecture will be explained in this section and for further understanding,
please refer to Lim et al. (2021)’s work.

A visual overview of the high level architecture is shown in Figure 3-3 and the major building
blocks of the model are:

1. Gating mechanisms to skip over any unused components of the architecture, allowing flexi-
bility to adapt depth and complexity depending on the dataset and scenario.
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2. Variable selection blocks that select relevant input variables depending on its relevance.

3. Temporal processing to learn both long- and short-term temporal relationships from both
observed and known time-varying inputs. A sequence-to-sequence layer is employed for local
processing, whereas long-term dependencies are captured using a novel interpretable multi-
head attention block.

4. Prediction intervals via quantile forecasts to determine the range of likely target values at
each prediction horizon.

Figure 3-3: Temporal Fusion Transformer high level architecture

The Gated Residual Network (GRN) is proposed as gating mechanisms for the architecture and
is shown in Figure 3-4. Its intent is to provide flexibility to suppress parts of the architecture that
are not required for a given task.

Another important building block is the variable selection network. Typically, multiple time
series are available, but their relevance and specific contribution to the output is unknown. Some
time series variables have less predictive content, thus variable selection can greatly help model
performance by suppressing the poor-content variables. Furthermore, this block generates entity
embeddings for categorical variables and linear transformations for continuous variables transforming
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Figure 3-4: Gated Residual Network

each input variable into a (𝑑model)-dimensional vector. This dimension is used throughout the model
in all subsequent layers. Figure 3-5 shows a diagram of the variable selection building block.

After the variable selection network, a LSTM encoder-decoder generates a set of uniform temporal
features which serve as inputs into the temporal fusion decoder. The self-attention layer’s purpose
is to learn long-range dependencies that may be challenging for RNN-based architectures.

The final forecast is obtained using a linear transformation of the output from the temporal
fusion decoder:

𝑦𝑖(𝑞, 𝑡, 𝜏) = W𝑞𝜓(𝑡, 𝜏) + 𝑏𝑞 (3.4)

where W𝑞 ∈ R1×𝑑model , 𝑏𝑞 ∈ R are the weights of the dense layer for the specified quantile 𝑞 and
𝑑model is the hidden state size, common across the TFT model. The model generates prediction
intervals on top of point forecasts by the simultaneous prediction of various percentiles (e.g. 10th,
50th and 90th) at each time step 𝑡.

The quantile forecast task of the model can be expressed as the following prediction equation:

𝑦𝑖(𝑞, 𝑡, 𝜏) = 𝑓𝑞(𝜏, 𝑦𝑖,𝑡−𝑘:𝑡, 𝑧𝑖,𝑡−𝑘:𝑡, 𝑥𝑖,𝑡−𝑘:𝑡+𝜏 , 𝑠𝑖) (3.5)

where 𝜏 ∈ {1, · · · 𝜏max}, 𝑞 is the quantile of the 𝜏 -step-ahead forecast, 𝑦 is the target variable, 𝑧 are
the known variables, 𝑥 are the observed inputs, 𝑠 the static covariates and 𝑓𝑞(·) is the prediction
model. The forecasts are computed simultaneously for the complete forecast horizon 𝑡 : 𝑡+ 𝜏max.

The model was trained by jointly minimizing the quantile loss, aggregated across all quantile
outputs:

QL(Ω,𝑊 ) =
∑︁
𝑦𝑡=Ω

∑︁
𝑞∈𝑄

𝜏max∑︁
𝜏=1

QL(𝑦𝑡, 𝑦(𝑞, 𝑡− 𝜏, 𝜏), 𝑞)
𝑀𝜏max

(3.6)

where Ω is the domain of the training data containing 𝑀 is the number of samples and 𝑊 represents
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Figure 3-5: Variable Selection Network

the model’s weights, 𝑄 is the set of output quantiles and the quantile loss (QL) for a single forecast
is expressed as:

QL(𝑦, 𝑦, 𝑞) = 𝑞(𝑦 − 𝑦)+ + (1− 𝑞)(𝑦 − 𝑦)+ (3.7)

where (·)+ = max(0, ·).
For out-of-sample testing, the model was evaluated using the normalized quantile losses proposed

by Lim et al. (2021).

q-Risk =

∑︀
𝑞∈Ω̃

∑︀𝜏max

𝜏=1 QL(𝑦𝑡, 𝑦(𝑞, 𝑡− 𝜏, 𝜏), 𝑞)∑︀
𝑦∈Ω̃

∑︀𝜏max

𝜏=1 |𝑦𝑡|
(3.8)

where Ω̃ is the domain of the test data. For convenience, the aggregation and normalization of
Equation 3.8 will be expressed as Φ(·), i.e.,

q-Risk = Φ(QL(𝑦𝑡, 𝑦(𝑞, 𝑡− 𝜏, 𝜏), 𝑞))

3.3 Multi-objective framework

Before adapting the training of the model into a multi-objective problem (MOP), a brief overview
of the prediction interval (PI) multi-objective evaluation indicators is presented.

As mentioned in the introduction, the PIs’ quality is traditionally measured using variants of
the prediction interval coverage probability (PICP) and prediction interval width (PIW). The PICP
represents the probability that the true target lies between the lower and upper bound, whereas the
PIW simply measures the difference of the estimated upper 𝑦𝑖,𝑢 and lower bound values 𝑦𝑖,𝑙.
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PICP =
1

𝑇

𝑇∑︁
𝑖=1

𝑎𝑖

where 𝑎𝑖 =

⎧⎨⎩1 𝑦𝑖 ∈ [𝑦𝑖,𝑙, 𝑦𝑖,𝑢]

0 𝑦𝑖 ̸∈ [𝑦𝑖,𝑙, 𝑦𝑖,𝑢]

The coverage probability can be extended to the PI estimation error (PIEE) to quantify the error
in case the target lies outside the PI. PIEE provides a measure of the quality of PIs.

𝐸𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑦𝑖 − 𝑦𝑖,𝑢) if 𝑦𝑖 ≥ 𝑦𝑖,𝑢
0 if 𝑦𝑖,𝑙 ≤ 𝑦𝑖 ≤ 𝑦𝑖,𝑢
(𝑦𝑖,𝑙 − 𝑦𝑖) if 𝑦𝑖 ≥ 𝑦𝑖,𝑢

the overall PIEE is computed as:

PIEE =

∑︀𝑇
𝑖=1𝐸𝑖

𝑇 × (𝑦max − 𝑦min)

Additionally, the PIW is expressed as:

PIW =

𝑇∑︁
𝑖=1

(𝑦𝑖,𝑙 − 𝑦𝑖,𝑢)

A useful modification of the PIW is the prediction interval normalized average width (PINAW),
which objectively compares PIs regardless of the magnitudes of the true targets.

PINAW =

∑︀𝑇
𝑖=1(𝑦𝑖,𝑙 − 𝑦𝑖,𝑢)

𝑇 × (𝑦max − 𝑦min)

where 𝑦min and 𝑦max represent the minimum and maximum values taken by the target, respectively.
It should be noted that PICP/PIEE and PIW/PINAW are conflicting in nature, as increasing

the coverage may come at the cost of increasing the width, and reducing the width may reduce the
possibilities of covering the desired targets.

Depending on the forecast application, the decision maker (DM) may need to fine-tune the per-
formance of the quantile prediction model. Suppose the forecast task is used as part of an investing
strategy in financial markets. The strategy analyst might need to fine-tune the quantile interval
predictions according to his/her specific needs without losing performance. A larger upper quantile
range and smaller lower quantile range can reduce the risk in a long strategy and simultaneously
show the potential upside. With this motivation in mind, the training of a quantile forecast neuronal
network is formulated as a multi-objective problem.

The quantile loss (QL) shown in Equation 3.7 can be divided into Quantile Coverage Error
(QCE) and Quantile Estimation Error (QEE) with the help of an auxiliary variable 𝛾.
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QCE(𝑦, 𝑦, 𝑞) = 𝛾𝑞(𝑦 − 𝑦)+ + (1− 𝛾)(1− 𝑞)(𝑦 − 𝑦)+
QEE(𝑦, 𝑦, 𝑞) = (1− 𝛾)𝑞(𝑦 − 𝑦)+ + 𝛾(1− 𝑞)(𝑦 − 𝑦)+

where 𝛾 =

⎧⎨⎩1 if 𝑞 ≥ 0.5

0 otherwise

(3.9)

QCE is analogous to the PIEE since it quantifies if the forecast is outside the quantile range,
whereas QEE is analogous to the PINAW and measures the meaningfulness of the quantile forecast.
The two measures are conflicting in nature, since QCE increases if the forecast is outside the quantile
range, and on the contrary, QEE increases if the quantile range is too broad.

Analogous to Equation 3.8, the risk indicators Quantile Coverage Risk (QCR) and Quantile
Estimation Risk (QER) are defined as:

QCR = Φ(QCE(𝑦𝑡, 𝑦(𝑞, 𝑡− 𝜏, 𝜏), 𝑞)) (3.10)

QER = Φ(QEE(𝑦𝑡, 𝑦(𝑞, 𝑡− 𝜏, 𝜏), 𝑞)) (3.11)

The multi-objective problem is defined y considering only one pair of quantiles: a lower bound
quantile, i.e., 𝑞𝑙 < 0.5 and an upper bound quantile, i.e. 𝑞𝑢 > 0.5, and their respective errors from
Equation 3.9 being: QCE𝑙, QEE𝑙, QCE𝑢, QEE𝑢.

Following Equations 3.10 and 3.11, four risk indicators are obtained: QCR𝑙, QER𝑙, QCR𝑢,
QER𝑢, by applying the function Φ(·) which aggregates and normalizes the risk through a given set
of data.

This setup gives rise to the formal definition of the dual MOP:

min
W𝑞,𝑏𝑞

(QCR(𝑞, 𝑦,W𝑞, 𝑏𝑞, 𝜏max, Ω̃),

QER(𝑞, 𝑦,W𝑞, 𝑏𝑞, 𝜏max, Ω̃))

∀ 𝑞 ∈ {𝑞𝑙, 𝑞𝑢}

(3.12)

subject to

𝑔(𝑊𝑞, 𝑏𝑞) ≤0

−1 ≤𝑤𝑞 ∈W𝑞 ≤ 1

−1 ≤𝑏𝑞 ≤ 1 ,

where Ω̃ is the domain of 𝑦 in the dataset, 𝑦 is the prediction of the model, 𝜏max is the number
of prediction steps in the future, W𝑞 ∈ R1×𝑑model , 𝑏𝑞 ∈ R are the weights of the dense layer for the
specified quantile 𝑞.

The two different MOP formulations that are solved in this work are the following:

1. Last layer remains unfrozen: All the model layers’ weights are frozen except for the last
dense layer. In this case, the lower quantile risks, i.e., QCR𝑙, QER𝑙, are not in conflicting
nature with the upper quantile risks. In fact, both risks are totally independent.1 Table 3.1

1the practical implementation consists in obtaining the output before the final layer and doing a simple matrix
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Table 3.1: Dual bi-objective problem

BOP Objectives

Lower quantile QCR𝑙, QER𝑙

Upper quantile QCR𝑢, QER𝑢

shows the dual BOP with the objectives involved. The chromosome of individuals has the
following structure:

ind = [𝑤1, 𝑤2, · · · , 𝑤𝑑model , 𝑏]

for each of the quantiles 𝑞 ∈ {𝑞𝑙, 𝑞𝑢}. This means that the size of the individuals is:

|ind| = 𝑑model + 1

where 𝑑model = 386 and |𝑖𝑛𝑑| coincides with the small BOP size of Table 3.2.

2. Subset of layer remains unfrozen: Several upstream layers are optimized, and unfrozen
shared layers affect both the upper and lower quantile forecasts. However, for the sake of
simplicity and evaluation of results, only one quantile2 is optimized to keep the MOP restricted
to two objectives, i.e. QCR and QER.

The chromosome of individuals, depends on the subset of unfrozen layers (see Eq. 3.3). We
propose two BOP cases, one using only the last layer and a medium size problem with the last
5 layers. The individual sizes are shown in Table 3.2.

Table 3.2: BOP sizes.

Name All weights (𝑊trained) Unfrozen weights (𝑊𝑠)

small 3,394,193 387
medium 3,394,193 240,515

Finally, Table 3.3 shows the dataset overview and neural network hyperparameters used. A total
of 24 input variables were used by the model to predict the 3-period exponential moving average of
the S&P futures 3.

3.4 Methodology

In this work, the methodology proposed by Ak et al. (2015), Zhou et al. (2021), and López et al.
(2022) is used, where a NN was trained and then the Pareto front was found using a MOO method.
The detailed steps of the solution algorithm are provided as follows.

1. Dataset preparation. The dataset used for the prediction task consists mainly of the price
of the S&P Futures, indicators derived from the price, and additional correlated price time

multiplication between the previous output and the weights to obtain the final predictions.
2the lower quantile is optimized
3the neural network architecture and dataset can be found in the repository: https://github.com/samlopezruiz/

TimeseriesQuantileForecast
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Table 3.3: Dataset information and TFT configuration.

1h-freq S&P

Dataset
Train samples 27,758
Validation samples 5,917
Test samples 5,917
Network Parameters
Input steps 48
Output steps 5
Dropout rate 0.3
State size 128
Number of heads 4
Training Parameters
Minibatch size 64
Learning rate 0.01
Max gradient norm 0.01

series. The dataset is defined from January 2015 to June 2021 with an hourly frequency and
was divided into groups of 8 consecutive weeks and each group is then split into 75% train,
15% validation and 15% test data. Figure 3-6 shows an example of the dataset subsets.

Figure 3-6: 1h freq. ES closing price subsets in color

2. Training. The NN model was trained with the original quantile loss function and using the
training subset (see López et al. (2022) for more details). The final set of weights is obtained
after training the NN model with stochastic gradient descent (SGD).

3. Multi-objective Pareto front. The multi-objective framework can be viewed as a special
case of knowledge transfer. Some weights are frozen and the unfrozen weights form the BOP. In
chapter 4, the the Pareto front is obtained using evolutionary multi-objective algorithms (i.e.
NSGA-II and NSGA-III), and in chapter 5 the BOP is solved using the proposed stochastic
directed search method (SDS).
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3.5 Train and test data subsets

It is common practice to train neural networks with a subset of the data and to evaluate its perfor-
mance with the validation data subset. In MOO for NN tasks, the data subsets play the following
roles:

1. The train Pareto set and front is obtained using the same data subset used to train the NN.

2. An additional test Pareto front is computed from the Pareto set obtained in the previous step,
but using the validation data subset.
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Chapter 4

MOEA results

This section shows the Pareto fronts obtained when using the NSGA-II and NSGA-III methods.
The data preparation and handling were entirely conducted in Python 3.9, relying on the packages
numpy, scipy, pandas and tensorflow. The multi-objective algorithms were implemented using the
powerful library pymoo explained by Blank and Deb (2020). The neural network models are trained
on a Nvidia GeForce RTX 3070 8Gb GPU and the multi-objective framework was executed using
an Intel(R) Core(TM) i7-11800H CPU @ 4.6 GHz.

Due to the training stochastic nature, the training was repeated 5 times independently for each
pair of lower and upper quantile in the following three configurations:

(𝑞𝑙, 𝑞𝑢) = {(0.1, 0.9), (0.2, 0.8), (0.3, 0.7)}

Additionally, the mean quantile 𝑞 = 0.5 was always computed, hence, the label given throughout
this work to the quantiles configuration is: ’q: 1-5-9’, ’q: 2-5-8’, ’q: 3-5-7’. Table 4.1 shows the
performance obtained, where the first column ’val loss’ corresponds to the quantile loss of Equation
3.6 applied to the validation subset, and the second and third column correspond to the quantile
risk of Equation 3.8 computed in the test subset.

It is worth noticing that the closer the lower and upper quantiles are to 0.5, the larger the
q-risk involved. These results indicate that smaller quantile ranges (𝑞𝑢 − 𝑞𝑙) are a more difficult
forecasting task than large quantile ranges, with 𝑞 = 0.5 being the most difficult task. Equation 3.9
is responsible for this behavior since the penalty is less if the prediction is within the quantile range
and vice versa.

Table 4.1: Model performance with 5 independent trainings

val loss lower q-risk upper q-risk

q: 1-5-9 0.524 (0.014) 0.548 (0.034) 0.475 (0.014)
q: 2-5-8 0.643 (0.006) 0.764 (0.018) 0.703 (0.007)
q: 3-5-7 0.719 (0.002) 0.893 (0.005) 0.848 (0.002)
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4.1 MOEA selection

As explained in section 3, the MOP consists of two bi-objective problems, one for each quantile.
But before exploring in detail the results obtained, 20 independent executions were performed on
each MOEA to determine the best one for this task. A normalized quantile risk above 1 indicates a
bad performance for that indicator, thus, it was considered appropriate to constraint the objective
search space to the square limited by

QCR(𝑥) ≤ 1 ∩QCE(𝑥) ≤ 1 (4.1)

where 𝑥 is the BOP individual. These restrictions are specified as constraints in the MOP formula-
tion in Equation 3.12. The MOEAs considered in this work are the commonly used Non Dominated
Sorting Genetic Algorithm versions II and III (NSGA-II and NSGA-III). Table 4.2 shows the pa-
rameters used in each independent execution.

Table 4.2: Parameters for MOEA selection

Method Value

Representation Real
Initial Population 100
Number of Generations 100
Crossover SBX: 𝜂 = 15, 𝑝 = 0.9

Mutation Polynomial: 𝜂 = 20, 𝑝 = 1/𝑛𝑣

Selection Tournament (5 ind)
Termination n generations
Repetitions 20

where 𝑛𝑣 is the size of the individual.
The mean hypervolume with its standard deviation obtained in 20 executions for the same model

(with frozen layers) and trained with 𝑞𝑙 = 0.1 and 𝑞𝑢 = 0.9 are shown in Table 4.3. The reference
point 𝑝𝑟 = (10, 10) was used to calculate the hypervolume. From Table 4.3, it is clear that NSGA-II
obtained a better mean hypervolume for both MOPs (lower and upper quantiles).

Table 4.3: Hypervolume of PF using different MOEAs

Hv lower quantile Hv upper quantile

NSGA-II 97.568 (0.017) 97.953 (0.012)
NSGA-III 97.530 (0.015) 97.900 (0.021)

To test the statistical significance of NSGA-II over NSGA-III for this task, the Wilcoxon rank
(WR) test is applied between the 20 hypervolumes obtained by each algorithm per problem. With a
p-value threshold of 𝑝−𝑣𝑎𝑙𝑢𝑒 ≤ 0.05 for the Wilcoxon rank, it can be concluded that the hypervolume
obtained with NSGA-II is significantly better than with NSGA-III.

To determine a Condorcet winner, comparisons are done in a pairwise fashion (algorithm X,
algorithm Y) for each problem, where victories are granted if the WR p-value is below the specified
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threshold. A Condorcet winner is determined if an algorithm wins all its individual encounters:
(algorithm X, algorithm Y) > (algorithm Y, algorithm X). Considering the two 20 hypervolumes
for each quantile, the NSGA-II wins its individual encounters vs NSGA-III and can be considered
the Condorcet winner. This can be confirmed with the hypervolume history average during all gen-
erations as shown in Figure 4-1.

4.2 Pareto fronts for different quantiles

Figure 4-1: Average hypervolume history across
the generations.

In this section, the Pareto fronts (PF) of models
trained with different quantiles will be analyzed.
The results shown in this section were obtained
with NSGA-II and the parameters shown in Ta-
ble 4.2, including the constraints of Equation
4.1.

The first column of Figure 4-2 shows the
Pareto front for the lower and upper quantile
for three models trained with different quantiles,
whereas the second column shows the quantile
total risk, QTR = QCR+QER, along the quan-
tile coverage risk (QCR) axis. Additionally, the
original solution found with the model’s training
using SGD is shown with a black star.

From the second row of Figure 4-2, it can be observed that the original solution found by the
SGD training is located near the local minimum. This behavior is expected since the model is
minimizing the quantile loss of Equation 3.6 which coincides with the aggregation of QCR + QER.

It is worth noticing that the geometric positions differ for the three PFs: the PF for ’q: 1-5-9’ is
closer to the ideal vector (0, 0), whereas the PF for ’q: 3-5-7’ is the farthest away. This result does
not mean that the model trained via SGD using quantiles ’q: 1-5-9’ exhibits better performance
than the model trained with quantiles ’q: 3-5-7’. It merely shows that the forecasting task is harder
for smaller quantile ranges as was previously discussed in Table 4.1.

Tolerance windows are shown in Figure 4-2 to exemplify the motivation behind finding the PF of
an already trained quantile model. By setting an increment threshold in the total error QTR (second
row), the decision maker (DM) can modify the extent of these windows which can be considered
as the ’sweet spot’ where the model is fined tuned. As an example, the increment was defined as
5% and the six windows in the PF are detailed in Table 4.4. The range of the QCR and QER
indicators within the tolerance window is large, with the upper extremes doubling sometimes the
lower extremes.

4.3 Different quantiles comparison

From the previous section, it is unclear how the PFs of models with different quantiles relate to
each other. To compare the PFs under a ’universal’ indicator, Equation 3.9 is modified using
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Figure 4-2: Pareto fronts for different quantiles.

equal penalties for over or undershooting predictions as shown in Equation 4.2. Their respective
aggregation (see Equations 3.10 and 3.11) is applied to obtain the equally weighted risks QCR𝑒𝑞 and
QER𝑒𝑞 respectively.

QCE𝑒𝑞(𝑦, 𝑦, 𝑞) = 0.5𝛾(𝑦 − 𝑦)+ + 0.5(1− 𝛾)(𝑦 − 𝑦)+
QEE𝑒𝑞(𝑦, 𝑦, 𝑞) = 0.5(1− 𝛾)(𝑦 − 𝑦)+ + 0.5𝛾(𝑦 − 𝑦)+

where 𝛾 =

⎧⎨⎩1 if 𝑞 ≥ 0.5

0 otherwise

(4.2)

Figure 4-3 shows the Pareto fronts obtained when measuring the solutions of the Pareto fronts
from Figure 4-2 but using the equally weighted indicators QCR𝑒𝑞 and QER𝑒𝑞. The first noticeable
result is that the three PFs lie in the same global PF, with the ’q: 1-5-9’ PF extending for low QCR
and the ’q: 3-5-7’ extending for low QER.

The tolerance windows and original solutions found during the model’s trainings also lie in the
global PF and their positions correspond to their original intent. The original solution for model
’q: 1-5-9’ reduces QCR𝑒𝑞 at the cost of increasing QER𝑒𝑞, whereas the model ’q: 3-5-7’ does the
opposite and the model ’q: 2-5-8’ solution lies between the other two configurations. This behavior
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Table 4.4: Tolerance windows with 5% variance in total error

quantiles QCR window QER window

𝑞𝑙

q: 1-5-9 0.12-0.29, 138% 0.24-0.41, 68%
q: 2-5-8 0.20-0.46, 127% 0.33-0.58, 78%
q: 3-5-7 0.27-0.58, 111% 0.34-0.64, 89%

𝑞𝑢

q: 1-5-9 0.08-0.21, 169% 0.25-0.39, 53%
q: 2-5-8 0.17-0.38, 128% 0.34-0.55, 62%
q: 3-5-7 0.20-0.51, 148% 0.38-0.68, 82%

is expected and reflects the original intent of the DM when selecting the quantiles to train the model.
Judging by the shape of the PFs in Figure 4-3, it is interesting to note that a slight decrease in

QCR will make the QER increase significantly when the coverage risk is relatively small, likewise,
a small decrease in QER will bring a significant increase in QCR when the QER is relatively small.
This behavior is also reported by Zhou et al. (2021) with prediction intervals (PIs).

Figure 4-3: Pareto fronts with equally weighted indicators.

4.4 Finding the global Pareto front

The last section raises the question of whether the global Pareto front can be found from any of the
models trained with different quantiles. To test this hypothesis, 5 models are trained for each of the
three different quantiles’ configurations. Due to the stochastic nature of MOEAs, the MOO is done
3 times for each of the previous results. This means that 3 MOO results are obtained for each of
the 5 models trained with the same quantile configuration, adding a total of 15 results.

The MOO is done using QCR𝑒𝑞 and QER𝑒𝑞 as objectives and the constraints are modified to:

QCR𝑒𝑞(𝑥) ≤ 1 ∩QCE𝑒𝑞(𝑥) ≤ 2.5 (4.3)

Table 4.5 shows the mean and standard deviation obtained for the hypervolume for 15 executions
using the reference point 𝑝𝑟 = (10, 10). The middle configuration ’q: 2-5-8’ seems to achieve a better
performance, but to test for statistical significance, the Wilcoxon rank (WR) test is applied between
the pair of 15 hypervolumes obtained in each quantile configuration.
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Table 4.5: PF Hypervolume for quantiles configuration

Hv lower quantile Hv upper quantile

q: 1-5-9 97.235 (0.146) 97.152 (0.129)
q: 2-5-8 97.287 (0.042) 97.172 (0.044)
q: 3-5-7 97.215 (0.034) 97.157 (0.039)

The p-values of the Wilcoxon rank test are shown in Table 4.6, where the two values per cell
represent each of the two MOPs: lower quantile and upper quantile. With a p-value threshold of
𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0.05, only the performance of the configuration ’q: 2-5-8’ is better than ’q: 3-5-7’ in
the lower quantile MOP. There is no Condorcet winner since no configuration wins its individual
encounters against the other two. The result suggests there exists no apparent difference in the
global PF obtained from models trained with different quantiles from the multi-objective point of
view.

The fact that the PFs are almost identical for the three cases, does not mean predictions are
the same since the frozen layers’ weights still play an important part in the final forecast. Other
indicators could be found to prefer one model over another; however, the risk indicators do not
suggest a preference between models trained with different quantiles.

Under the previous conclusions, the tuning of the quantile risk can be done completely a posteriori
and once the model is trained. Furthermore, the quantile risk tuning can cover the whole range of
quantiles configurations, e.g., 𝑞 = [0.1, 0.2, · · · , 0.9].

Table 4.6: Wilcoxon ranking test p-values

q: 1-5-9 q: 2-5-8 q: 3-5-7

q: 1-5-9 - 0.3937 0.1648
- 0.1648 0.0957

q: 2-5-8 0.6063 - 0.0000
0.8352 - 0.2738

q: 3-5-7 0.8352 1.0000 -
0.9043 0.7262 -

4.5 Forecasts visualization

This section shows visual examples of how the quantile forecasts can be modified by the DM using
the Pareto front. As an example, the PF for the model trained with quantiles ’q: 2-5-8’ is used
throughout this section. The training and multi-objective optimization are done using the parameters
from Tables 3.3 and 4.2 respectively, the constraints of Equation 4.3 are also applied.

Figure 4-4 shows the 1h-freq quantile forecast for the date range: 2019-09-26 12:00 to 2019-09-27
12:00. The forecast on the left is the original solution found by training the model using stochastic
descent, whereas the forecast on the right corresponds to the solutions selected by the DM when
minimizing QCR for both quantiles (within the tolerance window) as shown in Figure 4-5.
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Figure 4-4: Forecasts of original vs. selected solutions.

Figure 4-5: Selected solution inside window minimizing QCR.
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Chapter 5

Stochastic directed search
continuation method.

This work proposes the following contributions to the directed search method adapted for neural
networks optimization:

• The computation of the Jacobian using batches of data.

• A stop criteria to obtain a subset of the Pareto front based on an increment of the sum of the
objectives.

• A bisection method for the predictor to get closer to the boundaries in objective space.

5.1 Jacobian with batches

For neural networks MOPs, the Jacobian is the gradient of the 𝑘 objective functions with respect to
the weights of the layers (see Eq. 2.6). In practice, the gradients are computed through automatic
differentiation, which is a technique used in the training of neural networks with backpropagation.
Automatic differentiation evaluates derivatives at particular numeric values and does not construct
symbolic expressions for derivatives, which greatly simplifies the computation of gradients in complex
architectures.

Additionally, when training neural networks, the weights’ update is executed using the well-known
stochastic gradient descent (SGD) routine. The basic idea behind this technique is to update the
parameters with an approximation of the true gradient, which is calculated with a mini-batch of the
whole dataset. The advantages of SGD include smaller memory requirements and fast convergence
because of frequent parameter updates. However, the noisy gradient of the mini-batch can point
toward other directions which impacts convergence.

The continuation method presented in this work incorporates both techniques for neural network
training: automatic differentiation and stochastic mini-batch gradient. No change is needed in the
algorithms already presented since only the computation of the Jacobian is altered.

Consider the set of 𝑙 data batches {𝑏0, . . . , 𝑏𝑚}, where 𝑚 is defined with the hyperparameter
batch size (BS) as follows:
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𝑚 =

⌊︂
𝑁

BS

⌋︂
,

where 𝑁 is the total number of samples in the train data subset.
Every time the Jacobian 𝐽(𝑥) is needed, the gradient with the respect to the weights for the 𝑘

objective functions is computed using the next batch of data 𝑏𝑖+1, as shown in Class structure 6.
When 𝑖+ 1 > 𝑚, the count is reset to 𝑖 = 0.

Class 6 Jacobian with batches.
Routine Initialization({𝑏0, . . . , 𝑏𝑚})

𝐵 ← {𝑏0, . . . , 𝑏𝑚}
𝑖← 0

𝑚← |𝐵|
end Routine

Routine NoisyJacobian(𝑥)
𝑖← (𝑖+ 1) mod 𝑚

return 𝐽(𝑥,𝐵[𝑖])

end Routine

5.2 Stop criteria based on total increment

When finding the Pareto front where the original loss function of the neural network is divided into
𝑘 objectives, the decision maker might not be interested in areas where the total loss function ℒ
increases above a given threshold from the initial solution. The green rectangle in Fig. 3-1 shows an
example of the area of interest for a decision maker, where the total loss function remains below a
15% increment from the original solution. Under this approach, only a subset of the Pareto front is
of interest, and a stopping criterion is proposed to avoid additional and unnecessary computational
costs.

To account for the increment in the objectives total, subroutine GoodPredictor of Alg. 1 is
complemented with an additional condition. The subroutine is specified as a method of the Class
structure 7 that saves the initial solution 𝐹 (𝑥ini) and the boundaries of Eq. 2.17,
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Class 7 Routine to discard predictors.
Routine Initialization(𝑚,𝐹 (𝑥ini), {𝑏1, . . . , 𝑏𝑘})

𝐹max ← (1 +𝑚)
∑︀𝑘

𝑖 𝑓𝑖(𝑥ini)

𝐵 ← {𝑏1, . . . , 𝑏𝑘}
end Routine

Routine GoodPredictor(𝐹 (𝑥))
for 𝑖 ∈ {1, . . . , 𝑘} do

if 𝑓𝑖(𝑥) > 𝐵[𝑖] then
return False

end if
end for
if
∑︀𝑘

𝑖 𝑓𝑖(𝑥) > 𝐹max then
return False

end if
return True

end Routine

where {𝑏1, . . . , 𝑏𝑘} are the boundaries for each objective (see Eq. 2.17) and 𝑚 is the threshold of
increment in the total objectives specified by the user and it is measured with respect to the initial
solution 𝐹 (𝑥ini). This routine allows the decision maker to explore only a subset of the Pareto front
and save significant computational costs.

5.3 Boundary approximation

As shown in Fig. 2-6, the extremes of the Pareto front are not close to the boundaries 𝑏1 = 𝑏2 = 7.
This might not be a problem when using a small step size 𝜏 ; however, for larger step sizes, the
Pareto front extremes will fall far away from the boundaries. This happens because Eq. 2.17 used
in the subroutine GoodPredictor discards the predictor if it is outside the limits and there is no
mechanism to get closer to the boundaries.

Alg. 1 is modified to include a bisection routine to change the predictor step size 𝑡 and approxi-
mate as close as possible to the boundary specified by GoodPredictor. A step size threshold Ψ

is defined by the user as a stopping criterion to avoid excessive computation cycles.
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Algorithm 8 Predictor with boundary approximation.

Input: Point 𝑥 ∈ R𝑛 in 𝒫ℱ , Jacobian 𝐽(𝑥), constant 𝜏 , normal vector 𝛼, and step size threshold Ψ

Output: Set of predictors

1: Routine predictor(𝑥, 𝛼, 𝐽(𝑥), 𝜏, 𝜆)
2: 𝑞𝑖 ← QRdecomposition(𝛼) ◁ Eq. 2.12
3: 𝑃 ← ∅
4: for 𝑖 ∈ {1, . . . , 𝑘 − 1} do
5: 𝑣𝑖 ← 𝐽+(𝑥)𝑞𝑖+1 ◁ Eq. 2.14
6: 𝑡← 𝜏/||𝐽(𝑥)𝑣𝑖|| ◁ Eq. 2.16
7: 𝑥𝑝 ← 𝑥+ 𝜆𝑡𝑣𝑖/||𝑣𝑖|| ◁ Eq. 2.15
8: if GoodPredictor(𝐹 (𝑥𝑝)) then
9: 𝑃 ← 𝑃 ∪ {𝑥+ 𝑡𝑣𝑖/||𝑣𝑖||}

10: else
11: 𝑡ℎ ← 𝑡, 𝑡𝑙 ← 0

12: while True do
13: 𝑡← (𝑡ℎ + 𝑡𝑙)/2

14: 𝑥𝑝 ← 𝑥+ 𝜆𝑡𝑣𝑖/||𝑣𝑖||
15: if 𝑡ℎ − 𝑡𝑙 < Ψ then
16: if GoodPredictor(𝐹 (𝑥𝑝)) then
17: 𝑃 ← 𝑃 ∪ {𝑥+ 𝑡𝑣𝑖/||𝑣𝑖||}
18: else
19: 𝑃 ← 𝑃 ∪ {𝑥− 𝑡𝑙𝑣𝑖/||𝑣𝑖||}
20: end if
21: break
22: end if
23: if GoodPredictor(𝐹 (𝑥𝑝)) then
24: 𝑡𝑙 ← 𝑡

25: else
26: 𝑡ℎ ← 𝑡

27: end if
28: end while
29: end if
30: end for
31: return 𝑃, 𝑡

32: end Routine

Lines 16-19 from Alg. 8 guarantee 𝐹 (𝑥𝑝) is within the boundaries once the stopping condition
𝑡ℎ − 𝑡𝑙 < Ψ is met.
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Chapter 6

Hyperparameter impact on SDS’s
performance

In this section, the algorithm hyperparameters’ impact on the performance is explored. By no means
the intent is to optimize the hyperparameters, but instead to shed light on how the hyperparameters
affect the dynamics of the algorithm and the Pareto front quality.

Table 6.1: Experiments to evaluate hyperparameter impact.

Hyperparameter Reference Range

angle (𝛽max) Eq. 2.19 [50− 130]∘

stop criteria Sec. 2.2.4 [delta, rank, projection]
step size (𝜏) Eq. 2.16 [0.005, 0.015, . . . , 0.035]

batch size Sec. 5.1 [27, 28, . . . , 214]

model training Sec. 3.4 ×10 times
model size Table 3.2 [small, medium]

To facilitate the interpretation only one hyperparameter is changed per experiment as shown in
Table 6.1 and if otherwise specified, the hyperparameters used for the experiments are shown in Table
6.2. The hyperparameters’ ranges were chosen to show the impact in the Pareto front obtained, but
do not portrait special meaning. Due to the stochastic nature of the method proposed, each of the
experiments in Table 6.1 was repeated 10 times with the training data shuffled with a different seed
such that statistical tests can be applied to compared experiments.

6.1 Maximum angle experiments

The maximum angle allowed between the desired direction 𝑑 and the corrector 𝐹 (𝑥 + 𝑡𝑣) plays an
important role in the number of iterations to find the step size of the corrector and directly impacts
the number of function evaluations because of line 8 of Alg. 2. A small 𝛽max forces the corrector to
point closer to the desired search direction but at the cost of reducing the step size 𝑡 (line 7 of Alg.
2). In turn, a smaller corrector requires more steps to approximate the Pareto front.
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Table 6.2: Continuation method configuration for results.

Parameter Value Ref.

Predictor
Bounds (𝑏1, 𝑏2) [1, 1] Eq. 2.17
Step size (𝜏) 0.025 Eq. 2.16
Corrector
Max angle (𝛽max) 110∘ Eq. 2.20
Crit. point criteria Rank Eq. 2.22
Crit. point threshold (𝜖) 0.007 Eq. 2.22
Step size max. iter. (𝑁𝑎) 30 Routine 2
Correctors max. iter. (𝑁𝑏) 50 Routine 3
General
Problem size small Table 3.2
Batch size 1,024 Section 5.1

6.1.1 Corrector and descent steps varying 𝛽max

Table 6.3 shows the mean and standard deviation of the corrector and descent number of steps. The
descent steps are those required in the initial descent to the Pareto front in line 6 of Alg. 5, whereas
the corrector steps are those needed to approximate the Pareto front given the initial point from the
previous predictor step.

Table 6.3: Corrector and descent steps in terms of mean and standard deviation in parenthesis when
varying 𝛽max.

𝛽max corrector steps descent steps

50 17.81 (10.98) 12.0 (10.40)
60 14.21 (10.84) 14.9 ( 8.78)
70 7.69 ( 7.71) 5.7 ( 3.03)
80 4.36 ( 4.76) 8.9 ( 8.68)
90 3.63 ( 4.30) 4.0 ( 3.85)

100 3.95 ( 4.74) 9.7 ( 8.56)
110 2.99 ( 2.86) 8.4 ( 6.42)
120 3.13 ( 3.45) 11.6 ( 7.74)
130 3.30 ( 3.45) 17.5 (11.32)

Considering that each configuration is executed 10 times, the KruskalWallis H-test is applied to
asses if the samples originate from the same distribution. The null hypothesis is that the population
median of all of the groups is equal. The test, however, does not identify which samples come from
a different distribution. A footnote is added to the box plot to show if the results differ significantly
along the configurations.

If the samples come from different distributions, a Wilcoxon rank (WR) test is applied between
each pair of experiments to determine if the configuration results are significantly greater/less than
another configuration or if no relationship can be established. Table 6.4 shows the Wilcoxon victories
computed as follows:
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𝑀 [𝑖, 𝑗] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if WR(𝑅𝑖, 𝑅𝑗) : p-value < 0.05

−1 if WR(𝑅𝑗 , 𝑅𝑖) : p-value < 0.05 ,

0 otherwise

where 𝑀 is the victory matrix, 𝑅𝑖 are the results for experiment 𝑖, and the Wilcoxon rank
considers the alternative that the first input is larger than the second argument. The scope of this
section is not to find the best hyperparameter configuration and the victory matrix is only computed
to give a sense of how a configuration compares to other results considering statistical significance.

Table 6.4: Wilcoxon rank victories for corrector steps when varying 𝛽max.

𝛽max 50 60 70 80 90 100 110 120 130

50 0 0 0 0 1 0 0 0 0
60 0 0 1 1 1 0 1 0 0
70 0 -1 0 0 0 0 0 -1 -1
80 0 -1 0 0 0 0 0 0 -1
90 -1 -1 0 0 0 -1 0 -1 -1

100 0 0 0 0 1 0 0 0 0
110 0 -1 0 0 0 0 0 0 -1
120 0 0 1 0 1 0 0 0 0
130 0 0 1 1 1 0 1 0 0

Figure 6-1: Box plot of predictor and corrector
steps when varying 𝛽max.

Fig. 6-1 shows the box plot for the descent
and corrector number of steps as 𝛽max varies.
The score above the triangles is the sum of vic-
tories per configuration, divided by the num-
ber of configurations minus one. A black and
red triangle indicates a positive or negative ag-
gregate of victories respectively. Scores could
be misleading because positive victories cancel
out defeats, nevertheless, it shows the total least
amount of other configurations against which it
is greater/less.

As shown in Fig. 6-1 and Table 6.3, the
configuration 𝛽max = 90∘ requires the least
amount of initial descent steps, whereas the con-
figurations 𝛽max = {110∘, 120∘} have the best
Wilcoxon scores for the corrector steps. For
𝛽max ≥ 110∘ it is not completely clear that the
threshold relaxation improves the performance
since correctors pointing far from the desired di-
rection are allowed. It is worth noticing that the number of corrector steps has a greater impact on
performance than the number of initial descent steps.

In future analysis, the Wilcoxon Rank victories matrix (Table 6.4) and the means and standard
deviations (Table 6.3) will not be shown always, since the most relevant information is shown in the
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box plot.

6.1.2 Predictor and corrector norms varying 𝛽max

Fig. 6-2 shows the box plot of the norms (|| · ||) for the predictor (in blue) and the correctors (in
green). The corrector norms show a positive correlation with 𝛽max. A smaller 𝛽max reduces the
number of iterations of Alg. 3 and therefore the step size for the corrector (line 6 and 7 of Alg. 3).
Meanwhile, the predictor norms shows slight changes that are caused only by the initial position of
the predictor from the previous corrector step.

6.1.3 Train and validation hypervolume varying 𝛽max

Figure 6-2: Box plot of predictor and corrector
norms when varying 𝛽max.

Fig. 6-2 shows the box plot of the hypervolume
(HV) for the training dataset (in blue) and val-
idation dataset (in green). Given its easy inter-
pretation and good properties, the hypervolume
indicator is one of the most used quality indica-
tors for the performance evaluation of stochas-
tic multiobjective optimizers. The hypervolume
uses a reference point 𝑟 ∈ R𝑘 in objective space
to evaluate a solution set by simultaneously tak-
ing into account the proximity of the points to
the Pareto front, diversity, and spread. For a
thorough survey and more information on this
indicator, refer to Guerreiro et al. (2021) and Li
and Yao (2019), respectively.

Throughout this work, the reference point
used to compute the hypervolume is 𝑟 = (2, 2).
Fig. 6-3 shows that, as expected, the hypervol-
ume for the training dataset is better than the
hypervolume for the validation dataset. Addi-
tionally, the hypervolume for the training dataset presents statistically significant improvement for
𝛽max ≥ 100∘, whereas for the validation dataset, 𝛽max ≥ 80∘ derives the best performance. For 𝛽max

values less than 100∘ the solution is degraded due to the tighter bounds on the corrector direction.
This is especially relevant, given that the desired direction 𝛼 is noisy since it is computed with a
batch of the dataset (line 6 of Alg. 4).

6.1.4 General evaluation varying 𝛽max

The general evaluation framework will be defined in this section. When assessing algorithms, two
main evaluation categories are of relevance: (A) solution performance and (B) execution time. The
hypervolume with the validation dataset is used as the ultimate performance metric since it is
unbiased. To asses execution time, the simplest method is to measure CPU time. However, the
CPU is not always precise and behaves stochastically. For that reason, the function and Jacobian
evaluations denoted by 𝐸𝐹 (𝑥) and 𝐸𝐽(𝑥) respectively, are counted. The function evaluations are
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performed by the predictor 𝐸𝑃,𝐹 (𝑥) and the corrector 𝐸𝐶,𝐹 (𝑥), whereas the Jacobian evaluation
is performed only by the corrector routine (line 3 Alg. 3). In most cases, Jacobians are more
computationally intensive than function evaluations. Therefore, the factor 𝜌𝑡 is proposed as a proxy
factor to consolidate Jacobian evaluations into function evaluations. The factor is computed using
the mean CPU time needed to compute the function (𝑡𝐹 (𝑥)) divided by the mean CPU time required
to calculate the Jacobian (𝑡𝐽(𝑥)). The weighted function evaluations count is defined as:

𝐸𝑤 = 𝐸𝑃,𝐹 (𝑥) + 𝐸𝐶,𝐹 (𝑥) + 𝐸𝐽(𝑥) × 𝜌𝑡 . (6.1)

Figure 6-3: Box plot of hypervolume for training
and validation datasets when varying 𝛽max.

Table 6.5 shows the count and execution
times for the function and Jacobian evaluations.
Additionally, the complete continuation method
execution time 𝑡CPU is shown in the first col-
umn.

Since Table 6.5 can be hard to read, Fig.
6-4 shows the scatter plot of the results using
coordinates:

(𝑥, 𝑦) : (Norm. 𝐸𝑤,Norm. validation HV) .

To compare results among all experiments,
the performance metrics are normalized as fol-
lows: the weighted evaluations 𝐸𝑤 are normal-
ized using a maximum of 3,900 and the hy-
pervolume (HV) uses a min-max normalization
with a minimum of 3.35 and a maximum of 3.9.
Additionally, a 95% covariance confidence el-
lipse is plotted to show the distribution of the
solutions per configuration.

Fig. 6-4 shows a visible degrading in function evaluations for 𝛽max ≤ 80∘. For 𝛽max ≥ 100∘,
there are slight improvements in the function evaluations and no improvement in the HV (see also
Fig. 6-3). The hyperparameter 𝛽max = 100∘ is chosen for future experiments since it is the smallest
𝛽max from which no improvement in the hypervolume is observed. The complete results are shown
in Appendix Table A.1.
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Table 6.5: Count and execution times for the function and Jacobian evaluations in terms of mean
and standard deviation when varying 𝛽max.

𝛽max 𝑡CPU (s) 𝑡𝐹 (𝑥) (ms) 𝑡𝐽(𝑥) (ms) 𝜌𝑡 𝐸𝑃,𝐹 (𝑥) 𝐸𝐶,𝐹 (𝑥) 𝐸𝐽(𝑥) 𝐸𝑤

50 149.8 (31.4) 50.5 ( 9.7) 348.4 (45.9) 6.91 75.6 (0.5) 2965.6 (311.5) 83.1 (13.2) 3615.32
60 114.2 (16.0) 45.6 ( 3.3) 322.8 ( 9.5) 7.07 75.3 (0.6) 2528.8 (250.2) 66.9 ( 9.6) 3077.61
70 73.4 (15.0) 45.9 ( 3.4) 330.3 (31.4) 7.19 75.2 (0.6) 1551.0 (305.5) 37.8 ( 6.5) 1897.88
80 39.2 ( 8.3) 43.9 ( 1.1) 307.6 ( 3.7) 7.00 75.2 (0.4) 731.2 (222.8) 22.9 ( 4.6) 966.80
90 28.6 ( 5.8) 44.2 ( 1.7) 310.9 ( 7.0) 7.03 74.8 (0.4) 497.0 (151.5) 20.2 ( 2.8) 713.75

100 27.7 ( 7.0) 46.4 ( 5.6) 354.2 (61.0) 7.63 74.9 (0.3) 368.8 (169.5) 20.8 ( 4.7) 602.28
110 24.9 ( 3.6) 56.9 (17.1) 392.2 (93.3) 6.89 75.1 (0.3) 218.2 ( 48.5) 17.7 ( 1.9) 415.02
120 23.2 ( 2.8) 50.3 ( 3.0) 354.1 (37.3) 7.04 75.1 (0.3) 190.2 ( 30.5) 18.1 ( 2.3) 392.92
130 26.0 ( 3.4) 54.2 ( 3.3) 388.3 (28.2) 7.16 75.4 (0.8) 181.4 ( 49.5) 19.1 ( 2.2) 393.35

Figure 6-4: Scatter plot of performance metrics when varying 𝛽max.

6.2 Stopping criteria experiments

According to Table 6.1, the next experiment concerns the stopping corrector criteria explained in
Section 2.2.4. The stopping criteria (SC) determines if 𝑥 ∈ ℛ𝑛 is a critical point and halts the
corrector step. In practice, these criteria use thresholds to find almost critical points. As the results
will show, stopping criteria are a key element in the algorithm because it impacts directly in the
quality of the solution and the performance of the method. If relaxed criteria are used, the corrector
step will halt prematurely, resulting in a degraded Pareto front. On the contrary, strict criteria will
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overextend the correctors’ step, consuming additional computational resources.

6.2.1 Threshold selection for stopping criteria

The delta criterion is explained in Section 2.2.4 and consists of a single objective optimization where
a small threshold 𝜖 makes a stricter condition (Eq. 2.21). The second stopping criterion is the rank
criterion which computes the 𝜖−rank of the Jacobian 𝐽(𝑥) to determine if the 𝑥 is a critical point.
Likewise, a smaller threshold 𝜖 accounts for a stricter condition (see Section 2.2.4 and Eq. 2.22).
Finally, the projection criterion uses the norm of the product between 𝐽(𝑥) and the search direction
𝑑 to determine if 𝑥 is a critical point. As in the previous two cases, larger 𝜖 relaxes the stopping
condition (see Eq. 2.23).

For the experiments, five thresholds 𝜖’s were selected for each stopping criterion and since the
thresholds 𝜖 have different meanings, their ranges differ per experiment. The threshold values were
carefully selected to start with strict conditions and then cause similar degradation as the threshold
increases. Table 6.6 shows the selected threshold values.

Table 6.6: Thresholds 𝜖 for stopping criteria.

Criteria delta rank projection

strict 5e-05 0.005 0.0003
0.0001 0.007 0.0006
0.0002 0.009 0.0009
0.0005 0.016 0.0012

relaxed 0.0010 0.020 0.0015

6.2.2 Execution time varying stopping criteria

Table 6.7 shows experiment results by varying the stopping criteria (SC) and thresholds 𝜖. The
experiment nomenclature is <first letter of criteria>: <threshold value>, e.g. "d: 0.0001"
corresponds to the delta criteria with 𝜖 = 0.0001.

From most experiments, the number of function evaluations is the ideal way to determine the
method performance. However, by varying the stopping criteria, the CPU time might not be ex-
plained entirely by the function executions. Fig. 6-5 shows the scatter plot between the CPU time
and the number of function evaluations (first and second columns of Table 6.7 respectively). The
CPU time has a linear relationship with the function evaluations; however, the slope changes for
each of the stopping criteria. This finding shows that the single-objective optimization for the delta
criterion is more than twice as expensive as the rank and projection criteria. Similarly, the SVD
decomposition used to compute the rank of the Jacobian matrix in the rank criteria is 25% more
expensive than the projection criterion.

6.2.3 General evaluation varying the stopping criteria

Fig. 6-6 shows the box plots for the hypervolume along the different experiments varying the
stopping criteria and thresholds. The smallest threshold in the delta and rank criteria yield the
best hypervolume. However, no statistical relationship between the two best results can be obtained
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Table 6.7: General overview in terms of mean and standard deviation when varying the stopping
criteria.

SC 𝑡CPU (s) 𝐸𝑤 Validation HV

d: 5e-05 125.1 (14.3) 1156.99 3.383 (2.08e-04)
d: 0.0001 60.3 ( 7.1) 595.91 3.383 (3.10e-04)
d: 0.0002 35.6 ( 1.9) 351.84 3.382 (3.98e-04)
d: 0.0005 28.7 ( 0.4) 304.53 3.378 (3.83e-04)
d: 0.001 25.9 ( 0.3) 285.02 3.373 (5.47e-04)
r: 0.005 72.2 (17.5) 1440.57 3.383 (2.41e-04)
r: 0.007 29.0 ( 3.5) 555.42 3.383 (3.89e-04)
r: 0.009 21.5 ( 2.0) 452.91 3.382 (2.38e-04)
r: 0.016 14.1 ( 0.2) 313.02 3.379 (3.22e-04)
r: 0.020 13.3 ( 0.1) 303.36 3.378 (3.35e-04)
p: 0.0003 60.6 (13.7) 1412.02 3.382 (6.18e-04)
p: 0.0006 34.7 (11.5) 818.06 3.379 (1.29e-03)
p: 0.0009 17.2 ( 3.8) 417.68 3.376 (1.73e-03)
p: 0.0012 12.4 ( 1.0) 292.18 3.369 (1.29e-03)
p: 0.0015 12.1 ( 1.7) 297.95 3.364 (2.48e-03)

using the Wilcoxon rank test. Contrastingly, the results for the projection criterion are lower, as
shown by the box plot and the Wilcoxon score.

Figure 6-5: Scatter plot of function evaluations vs
CPU time when varying the stop criteria.

Additionally, the Pareto fronts are shown
in Fig. 6-7 (for clarity, only the results for
the rank criteria are shown). As explained in
Fig. 3-1, the left subfigure shows the Pareto
front, while the right subfigure consists of the
total loss function compared to one of the ob-
jectives. Although there is almost no difference
in the Pareto front, the total loss degrades vis-
ibly when the threshold increases.

Finally, Fig. 6-8 shows the general perfor-
mance overview and can be interpreted as a
Pareto front that considers the contrary metrics:
solution performance (HV indicator) and algo-
rithm execution time (evaluation counts). The
color represents the stopping criteria, whereas
the opacity indicates the threshold magnitude.
Almost all sets of solutions for the projection criterion are dominated by the other two criteria.
Consistently with Fig. 6-6, between the rank and delta solutions, there seems to be no clear win-
ner. However, considering the computational cost of the single-objective optimization for the delta
criteria, the rank criteria seems the more efficient option (see Fig. 6-5). The hyperparameter rank
criteria with 𝜖 = 0.007 is chosen for future experiments since the degradation in solution quality
is small and also the average function evaluations are less than half than the stricter threshold, i.e.
𝜖 = 0.0005. The complete numeric results are shown in Appendix Tables A.2 and A.3.
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Figure 6-7: Pareto front for rank-criterion and different 𝜖 thresholds.

6.3 Step size parameter experiments

Figure 6-6: Box plot of hypervolume when varying
the stop criteria.

This section explores the impact of the step size
parameter 𝜏 on the method’s performance. For
simplicity, this section mentions 𝜏 as the step
size, although according to Eq. 2.16 the step
size 𝑡 is a function of 𝜏 . Not only the predictor
size (norm) is a function of 𝜏 (see lines 6 and 9 of
Alg. 1), but also the corrector size is influenced
by the initial step size 𝑡0 computed from the
predictor (see lines 7 and 9 of Alg. 4).

The range for the step size parameter ex-
periments was selected to show a visible im-
pact on the algorithm’s performance, i.e. 𝜏 ∈
[0.005, 0.015, 0.025, 0.035].

As expected and shown in Fig. 6-9, the pre-
dictor and corrector norms increase as the step
size parameter 𝜏 increases. However, the vari-
ations are more clear for the predictor than for the corrector. This behavior occurs because the
predictor size is a direct function of the step size, whereas the corrector size is initially defined by
the step size 𝑡0 but is afterward adjusted with other criteria.

Fig. 6-10 shows the general evaluation when varying the step size parameter. The same Pareto
dominance behavior is exhibited when varying 𝜏 , since a smaller value improves the quality of the
solution and at the same time requires more function evaluations. The improvement in hypervolume
when varying the step size is small compared to the function evaluations required and unless there
is a need for a high-density Pareto front, larger step size values seem more efficient.

The hyperparameter 𝜏 = 0.025 is chosen for future experiments since the degradation in hyper-
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Figure 6-8: Scatter plot of performance metrics when varying the stop criteria.

volume is small and the saving in function evaluations is large. The complete numeric results are
shown in Appendix Tables A.4 and A.5.

6.4 Batch size experiments

Figure 6-9: Box plot of predictor and corrector
norms when varying the step size parameter.

This section explores the impact of the batch
size (BS) on the algorithm’s performance. The
batch size is used to define the data batches
when initializing the noisy Jacobian structure
shown in Alg. 6. Since GPUs are used to accel-
erate matrix operations, trying to compute the
Jacobian of large matrices can lead to GPU out-
of-memory errors. To the best of our knowledge,
this work is the first one to introduce Jacobians
computed from a subset of data in a Pareto con-
tinuation method and one of its objectives is to
determine how much the performance of the so-
lution degrades by lowering the batch size. The
Jacobian evaluations 𝐸𝐽(𝑥) are counted such
that the computation of one batch counts as
1/|𝐵| evaluations, where 𝐵 = {𝑏0, 𝑏1, . . . , 𝑏𝑚}
are the dataset batches.
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Figure 6-10: Scatter plot of performance metrics when varying the step size parameter.

6.4.1 Execution time varying batch
size

Table 6.8 shows the execution time, the weighted function evaluations, and the hypervolume obtained
when varying the batch size from 128 to 16,384. The total train dataset consists of 25,522 records,
which means a batch size of 16,384 is roughly 64% of the whole dataset. From the table, it is evident
that the batch size is inversely related to execution time and function evaluations. This relationship
occurs because smaller batch sizes account for noisy Jacobians, which in turn increases the number
of corrector steps needed to steer the solutions toward the Pareto front.

Table 6.8: General overview in terms of mean and standard deviation when varying the batch size.

BS 𝑡CPU (s) 𝐸𝑤 Validation HV

128 401.6 (99.2) 1102.73 3.380 (9.68e-04)
256 200.1 (38.0) 917.61 3.381 (6.82e-04)
512 74.6 ( 9.1) 580.33 3.382 (2.82e-04)

1,024 25.2 ( 3.2) 399.63 3.382 (3.06e-04)
2,048 12.6 ( 1.6) 337.59 3.382 (1.81e-04)
4,096 8.4 ( 0.8) 363.56 3.382 (2.74e-04)
8,192 7.0 ( 0.5) 368.80 3.381 (4.66e-04)

16,384 5.4 ( 0.3) 363.53 3.382 (1.82e-04)

6.4.2 Corrector steps varying batch size

From Table 6.8, it is visible that for batch sizes greater than 1,024, the function evaluations 𝐸𝑤 tend
to stabilize at ∼360. This behavior is explained because the number of corrector steps depends on
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the batch size used to compute the Jacobian. Fig. 6-11 shows how the number of corrector steps
needed decreases drastically before the batch size of 1,024, from then on, it stabilizes around 3.
Nonetheless, the Wilcoxon rank still shows that the reduction in the number of steps is significant
as the batch size increases. The number of steps for the initial descent (shown in green) does not
show an evident pattern since the total of descent steps is low.

6.4.3 Norms and distance varying batch size

Figure 6-11: Box plot of corrector and descent
steps when varying the batch size.

An additional metric introduced in this section
is the euclidean distance between the solutions
that compose the Pareto front. Fig. 6-12 shows
the distance distribution for the Pareto front for
the train and validation datasets and although
the Wilcoxon score shows that the smallest two
batch sizes are significantly larger, the rest of
the experiments exhibit similar means. How-
ever, the standard deviation decreases as the
batch size increases. The cause behind this is
that the computation of search directions 𝑣 de-
pends on the Jacobian at point 𝑥 (see Eq. 2.11)
and small batch sizes translate into noisy search
directions and variance in the predictors’ norms.

6.4.4 General evaluation varying
batch size

Fig. 6-13 shows the general evaluation of the al-
gorithm when varying the batch size. Note that
the normalized mean HV presents very small changes, i.e. from 93% to 94.2%. The range in function
evaluations is larger than the hypervolume’s range, but still small compared to other experiments
such as the stopping criteria and the maximum angle 𝛽max (Figs. 6-8 and 6-4 respectively). The
results show that batch sizes larger than 512 do not degrade significantly the solution quality and
only the function evaluations and execution time are impacted.

The hyperparameter BS = 1,024 is chosen for future experiments since the degradation in
hypervolume is small, the number of function evaluations is close to the 𝐸𝑤 for larger batch sizes
and the risk of GPU’s memory saturation is small. The complete numeric results are shown in
Appendix Tables A.6 and A.7.

6.5 Different training experiment

This section explores the method’s performance when the initial solution for the directed stochastic
search method varies. For this experiment, the NN model was trained 10 times with the same
hyperparameters and dataset, but given the stochastic nature of the training, the initial solution
obtained 𝑥 ∈ R𝑛 := 𝑊𝑠 ⊂ 𝑊trained is different for every experiment (see Eq. 3.3). In practice and
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Figure 6-13: Scatter plot of performance metrics when varying the batch size.

to guarantee replicability, a different random seed was selected for each NN training.

Figure 6-14: Pareto fronts when varying the NN training.

Fig. 6-14 shows a zoomed area of the Pareto fronts for the experiments and their respective
initial points. It is evident the Pareto fronts obtained greatly depend on the initial point shown with
a star. This behavior is confirmed by the general evaluation shown in Fig. 6-15, where the different
solutions for the same training, e.g. t:1, exhibit variance for the function evaluations, but very small
variance for the normalized HV. In conclusion, the NN training (i.e., initial point) completely defines
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the solutions’ HV range. Note that the range in the function evaluations is small compared to other
experiments.

Figure 6-15: Scatter plot of performance metrics when varying the NN training.

Figure 6-12: Box plot of corrector and predictor
distances when varying the batch size.

The conclusion from this experiment is two-
fold. First, the Pareto front obtained with the
stochastic continuation method is heavily influ-
enced by the initial solution, which in turn de-
pends on the NN model’s training. Secondly,
the continuation method is not able to find a
global Pareto front, but instead, it obtains local
Pareto fronts, which means that the Pareto so-
lutions are local optimum points. The complete
numeric results are shown in Appendix Tables
A.8 and A.9.

6.6 Different problem sizes.

In this section, the impact of the multi-objective
problem size is explored. The BOP size is de-
pendent on the subset of layers unfrozen. In
previous experiments, 387 weights were opti-
mized to find the Pareto front; however, for
the medium-size problem more than 240,000
weights are modified (see Table 3.2). Note that the same NN model training is used for both
configurations.
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Figure 6-16: Box plot of hypervolume when vary-
ing the problem size.

As shown in Table 6.9, the execution time
increases by a factor of ∼ 28, while the function
evaluations stay roughly the same. For the hy-
pervolume, a very small degradation is observed
for the medium problem size, i.e. 0.0295 %.
The Wilcoxon score in Fig. 6-16 shows that no
relationship (larger/smaller) can be established
for the results obtained in the training dataset;
however, for the validation dataset, the solution
for the small problem size is statistically signif-
icantly better than the medium problem size.

Fig. 6-17 shows the normalized hypervol-
ume vs the normalized function evaluations for
the two problem sizes. Compared to other experiments, very small variance is exhibited for both
variables.

Table 6.9: General overview in terms of mean and standard deviation when varying the problem
size.

Size 𝑡CPU (s) 𝐸𝑤 Validation HV

small 20.3 ( 3.8) 396.60 3.382 (3.46e-04)
medium 559.3 (48.5) 441.36 3.381 (2.45e-04)

Figure 6-17: Scatter plot of performance metrics when varying the problem size.

In conclusion, correlation exists between the problem size and solution quality. However, the
proportion of degradation in the solution is small compared to the increment in weights. The results
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demonstrate that the method is capable of finding high-quality Pareto fronts even when using large
amounts of weights and that only a subset of weights are enough to find the complete Pareto front.
The complete numeric results are shown in Appendix Tables A.10 and A.11.
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Chapter 7

SDS Results

This section shows the results obtained from the multi-objective optimization of the neural network
and using the hyperparameters chosen in the previous section. As explained in the introduction,
the neural network used is the Temporal Fusion Transformer and it generates multi-horizon quantile
forecasts (see Lim et al. (2021)). The objectives from the MOP are the quantile coverage risk
(QCR) which quantifies if the forecast is outside the quantile range and quantile estimation risk
(QER) which measures the meaningfulness of the quantile forecast, and increases if the quantile
range is too broad. If more meaningful forecasts are required, the decision maker has to decrease
QER at the cost of increasing the QCR, and vice versa.

The hyperparameters used are shown in Table 6.2 except for the step size parameter, where
a smaller parameter 𝜏 = 5 × 10−3 was chosen to obtain a higher-density front. Additionally, a
maximum degradation of 5% of the total loss function was imposed (see Section 5.2), since normally
the decision-makers are only interested in regions close to the local minimum found in the SGD
training.

As explained in Section 3.5, the function and Jacobian evaluations used in the stochastic directed
search method are computed with the train data subset. Once the solution set is obtained (where
each solution consists of the NN weights), the solution set is evaluated with the validation data
subset. Consequently, two Pareto fronts are obtained and Table 7.1 shows their execution time,
hypervolume, the euclidean distance between solutions, and their weighted function evaluations 𝐸𝑤.
It took only 19.87 s 1 to find the complete Pareto front defined by the boundary restrictions. As
shown in Table 7.1, the hypervolume is larger for the train data subset, and it is caused by overfitting.
Finally, the function evaluations for the validation subset correspond to the number of solutions in
the Pareto front (each solution is evaluated once).

Table 7.1: Results with maximum total loss of 5%.

data subset 𝑡CPU (s) HV distance 𝐸𝑤

train 29.87 3.0139 0.005 (6e-4) 410.76
valid - 2.9976 0.005 (6e-4) 78

1Since the MOP consists of the weights of a neural network, the GPU card is used to enhance the function and
Jacobian computation performance. This CPU time was obtained with a GPU Nvidia GeForce RTX 3070 8Gb and
CPU Intel Core i7-11800H CPU @ 4.6 GHz.
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The left subfigure of Fig. 7-1 shows the Pareto front obtained, whereas the right subfigure shows
the total loss ℒ(Ω,𝑊 ) in the 𝑦-axis and the first loss function in the 𝑥-axis. Consequently, each
point in the right subfigure is defined by:

(𝑥, 𝑦) := (QCR,QER + QCR) = (QCR,ℒ) .

Figure 7-1: Pareto front and total loss for train and test data subsets.

As expected, the Pareto front for the validation subset is a degraded version of the Pareto front
using the training subset. Additionally, it is evident that the initial solution (shown with a blue
star) for the training subset does not lie in its Pareto front, which means that a series of descent
steps were needed to first approximate the Pareto front. On the contrary, the initial solution for
the validation subset lies in its Pareto front. This behavior can be explained by the early stopping
condition used when training the NN. If during 10 epochs no improvement in the validation loss
function was observed, the training was stopped to avoid overfitting. The stochastic directed search
method was able to improve the initial solution with the training subset, but that did not translate
into better performance with the validation subset, which only confirms the fact that the SGD
training was effective in finding a local minimum with the validation subset.

From the left subfigure of Fig. 7-1 it can be observed that for the validation subset the QCR
range is approximately [0.2, 0.45] and [0.3, 0.6] for the QER. This implies that an increment of only
5% in the total loss can account for variations of ± ∼30% and ± ∼40% for the QCR and QER
objectives, respectively. The exact percentages may vary depending on the NN problem, the NN
training, and the hyperparameters used; however, the takeaway is that a small increment in the
total loss can allow the decision maker to fine-tune the NN using a large tolerance window.

68



7.1 Comparison with NSGA-II

In this section, the Stochastic Directed Search (SDS) method is compared with the NSGA-II. The
comparison is not completely fair, since the SDS is a local search method that uses the information
of the gradient, whereas the NSGA-II is a bio-inspired evolutionary algorithm that finds the global
Pareto front. Nevertheless, NSGA-II is commonly used in multi-objective optimization and it ob-
tained the best performance when optimizing the same TFT architecture in the work of López et al.
(2022). Because of the stochastic nature of both methods, a series of 10 experiments were executed
and the results are shown in Table 7.2. For the SDS method, the hyperparameters of Table 6.2 were
used, with a step size parameter 𝜏 = 5×10−3 and a maximum degradation of 5% of the total loss func-
tion. With the intention of a fair comparison, the NSGA-II search is limited in objective space by the
square with its two diagonally opposite points being [(0,0), (0.459, .583)], where (0.459, .583) is the
nadir point of the union of the Pareto fronts for the 10 executions of the SDS: nadir(

⋃︀10
𝑖=1 𝒫ℱ 𝑖,SDS).

Additionally, the NSGA-II population size equals the average number of solutions in the Pareto front
obtained with the SDS method:

∑︀10
𝑖=1 |𝒫ℱ 𝑖,SDS|/10 = 78. Finally, four experiments were performed

considering 14, 30, 100, and 200 generations to compare the performance as the generations and
function evaluations increase. The 14 generations were chosen to have the same number of function
evaluations as the SDS method with a 95% confidence: 675.73[𝐸𝑤]+178.8[𝐸𝑤]*1.96 = 1, 026.18[𝐸𝑤],
which means that 1, 026.18[𝐸𝑤]/78[individuals] = 13.15 generations are needed. Regarding the up-
per bound of generations, a total of 400 generations were chosen to keep the function evaluations
under two orders of magnitude from the SDS 675 function evaluation.

Table 7.2: Results for the small problem (Table 3.2) with stochastic directed search (SDS) and
NSGA-II methods in terms of mean and standard deviation.

method 𝑡CPU (s) HV distance 𝐸𝑤 generations

SDS 29.56 ( 5.05) 2.9991 (1.46×10−3) 4.93×10−3 (1.33×10−4) 675.73 (178.8) -
NSGA-II 55.32 ( 5.96) 2.9776 (8.98×10−3) 6.84×10−3 (4.66×10−3) 1,092.00 ( 0.00) 14
NSGA-II 100.58 ( 2.14) 2.9851 (5.31×10−3) 6.03×10−3 (4.05×10−3) 2,340.00 ( 0.00) 30
NSGA-II 423.70 (25.08) 2.9890 (7.11×10−3) 5.45×10−3 (3.56×10−3) 7,800.00 ( 0.00) 100
NSGA-II 766.01 (11.94) 2.9902 (5.68×10−3) 5.48×10−3 (3.68×10−3) 15,600.00 ( 0.00) 200
NSGA-II 1089.44 (30.27) 2.9907 (6.56×10−3) 5.38×10−3 (3.56×10−3) 23,400.00 ( 0.00) 300
NSGA-II 1270.37 (64.65) 2.9925 (5.54×10−3) 5.36×10−3 (3.46×10−3) 31,200.00 ( 0.00) 400

Table 7.3: Results for the medium problem (Table 3.2) with stochastic directed search (SDS) and
NSGA-II methods in terms of mean and standard deviation.

method 𝑡CPU (s) HV distance 𝐸𝑤 generations

SDS 702.90 ( 64.23) 3.3825 (3.78×10−4) 2.50×10−2 (7.67×10−4) 510.36 (85.94) -
NSGA-II 1,082.65 (123.98) 2.2866 (1.27×10−1) 7.91×10−2 (1.14×10−1) 840.00 ( 0.00) 14
NSGA-II 1,947.69 (207.23) 2.4823 (1.35×10−1) 4.29×10−2 (7.43×10−2) 1,500.00 ( 0.00) 25
NSGA-II 3,834.32 (238.92) 2.8391 (1.50×10−1) 3.45×10−2 (4.07×10−2) 3,000.00 ( 0.00) 50
NSGA-II 5,712.71 (282.95) 3.0939 (5.63×10−2) 2.91×10−2 (2.22×10−2) 4,500.00 ( 0.00) 75
NSGA-II 7,606.91 (317.35) 3.1689 (3.87×10−2) 2.51×10−2 (1.54×10−2) 6,000.00 ( 0.00) 100
NSGA-II 9,495.41 (359.73) 3.1888 (2.98×10−2) 2.47×10−2 (1.68×10−2) 7,500.00 ( 0.00) 125
NSGA-II 11,392.27 (396.44) 3.2107 (3.10×10−2) 2.42×10−2 (1.44×10−2) 9,000.00 ( 0.00) 150
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Table 7.2 shows the execution time, the hypervolume, the distance between the points of the
Pareto front, the function evaluations 𝐸𝑤 and the number of generations for the NSGA-II. The
SDS method exhibits better performance than the NSGA-II no matter the number of generations
given to the MOEA. As expected, as the number of generations for the NSGA-II increases, also the
hypervolume increase. However, in all cases 𝑛gen = [30, 100, 200, 300, 400], the Wilcoxon ranking test
still shows the hypervolume obtained with the SDS is significantly higher with a 95% confidence.
It is worth noticing that the standard deviation for the distance between the Pareto front points is
one order of magnitude smaller for the SDS method, which indicates that the solutions are more
equally distributed compared with the NSGA-II. Overall, the Pareto front obtained with the SDS
method exhibits higher quality in terms of the hypervolume, distance standard deviation, and fewer
function evaluations, which translates to smaller execution time.

Fig. 7-2 shows the Pareto fronts for the SDS and NSGA-II methods and using 200 generations
for the MOEA algorithm. Although the Pareto fronts from the left subfigure look very similar, the
right subfigure shows that the NSGA-II solutions are less equally distanced from each other and
some solutions are dominated and others are non-dominated with respect to the SDS Pareto front.

Figure 7-2: Small MOP size Pareto fronts with stochastic directed search (SDS) and NSGA-II
methods.

As a final comparison, the medium-size problem was solved with the SDS and NSGA-II methods.
Given the high dimensionality in the decision space, the NSGA-II was not able to effectively find the
Pareto front with the boundary conditions 𝑓1(𝑥) ≤ 0.45 and 𝑓2(𝑥) ≤ 0.6. Therefore, the more relaxed
boundary 𝑓1(𝑥) ≤ 1.0 and 𝑓2(𝑥) ≤ 1.0 was imposed. Additionally a larger step size 𝜏 = 2.5× 10−2

was selected for the SDS method. For a fair comparison, the NSGA-II used a population of 60,
which was the mean number of solutions in the Pareto front using the SDS method. Given the high
execution time, only one experiment was performed for the NSGA-II methods using 150 generations.
The additional rows shown in Table 7.3 are snapshots of the execution at the specific generations,
i.e., 14, 30, 100, etc. The experiment was executed 10 times using the SDS and NSGA-II methods
and the results shown in Table 7.3 show that the SDS is superior in all metrics. With a comparable
number of function executions, i.e. NSGA-II at 14 generations, the hypervolume is 32.4% smaller in
the NSGA-II, whereas with the maximum of 150 generations, the hypervolume is still 5.07% smaller
with the NSGA-II and the number of function evaluations is ∼17.63 larger.
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To evaluate the impact of the problem size in the NSGA-II performance compared with the SDS
method, the results for 100 generations from Tables 7.2 and 7.3 were chosen and compared in Table
7.4 based on the relative change between the SDS and NSGA-II hypervolume and their function
evaluations ratio. The comparison shows that for a similar ratio of function evaluations, i.e. ∼ 11.6,
the relative change in hypervolume with respect to the SDS method is larger for the medium MOP
size.

Table 7.4: NSGA-II vs SDS performance with different problem sizes.

MOP size Table gen HV change 𝐸𝑤 ratio

small 7.2 100 -0.33 % 11.54
medium 7.3 100 -6.31 % 11.75

Finally, when optimizing previously trained neural networks, the decision maker is interested in
the nearby region from the local minimum found by the SGD training. However, when the number
of decision variables is large, finding the Pareto front in the neighboring region of the initial solution
is an impossible task for the NSGA-II. The cause behind this is that no steering direction in decision
space is available in the NSGA-II and its random crossover and mutation in decision space map
to undesired regions in objective space. This justifies the use of a continuation method to find
high-quality Pareto fronts and in at the same time computational resources are optimized. The
results from Tables 7.2, 7.3, and 7.4 show that the SDS method scales better with the MOP size in
comparison with the NGSA-II.

7.2 Hyperparameters Cheat Sheet
In this section, an general recommendation concerning the hyperparameters of the SDS is given.
Note that this suggestion is based on the results obtained in this work and might not be optimal for
other types of problems.

• Bounds in objective space. The SDS method allows hard bounds for maximum values
in the objective space and also a maximum increase in the total loss function specified as
a percentage. A maximum increase in loss function is more intepretable and easy to define
without previous knowledge of the Pareto front’s shape. Both of these stopping conditions can
be applied and it is solely a choice of the decision maker.

• Step size The step size parameter (𝜏) impacts the Pareto front density and should be chosen
according to the requirement of solution granularity and the availability of computing resources.

• Max angle. The results show that the sweet spot for the maximum angle is 𝛽max ∈ [90∘, 120∘].
Lower values of 𝛽max will degrade the Pareto front quality and will require more function
evaluations, while higher values allow the corrector to point away from the desired search
direction.

• Critical point criteria. The results show that the rank stopping criteria yields the best
results since it is computationally efficient and guarantees the quality of the solutions obtained.
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It is also worth using the delta stopping criteria since its only downside is its computational
cost.

• Critical point threshold. The optimum threshold (𝜖) range is 𝜖 ∈ [0.001, 0.010], since higher
values of 𝜖 degrade the Pareto front quality and lower values require more function evaluations
with no significant improvement in the hypervolume.

• Batch size. The sweet spot for the batch size is from 512 to 4,096. Lower batch sizes decrease
the hypervolume of the solution while higher batch sizes require more GPU memory and no
significant quality improvement is obtained.
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Chapter 8

Conclusions and future work

This section summarizes the conclusions derived form this work and some future research paths to
improve the proposed stochastic directed search method and its methodology.

8.1 Conclusions

This work shows how a financial forecasting deep learning problem can be expressed as a multi-
objective problem to obtain the Pareto front with the proposed stochastic directed search method,
which leverages the Jacobian information to efficiently find the solution set. The multi-objective
framework not only allows the decision maker to fine-tune the model without having to retrain the
neural network and thus save computational resources but also gives insight into the shape of the
loss function with respect to the objectives.

For this specific task, NSGA-II outperformed NSGA-III in all experiments and by defining an
increment threshold of the total quantile risk, an optimum window can be defined for the decision
maker. Furthermore, the results show that a small increment in the total risk accounts for a signifi-
cant range of solutions and justifies further optimizing the deep model after the stochastic gradient
descent training. Remarkably, the global Pareto fronts are explored using models trained with dif-
ferent quantiles configurations. The results obtained support the hypothesis that the optimization of
the last layer is enough to find solutions across the complete Pareto front, no matter which quantiles
were chosen for the model’s training.

The SDS method proposed can efficiently find high-quality Pareto fronts using few function
evaluations, which in the context of neural networks are expensive. In comparison with NSGA-II,
the SDS saves more than 70% of function evaluations and finds a better and more evenly distributed
Pareto front. Furthermore, having hard bounds for maximum values in the objective space and a
maximum increase in the total loss function specified allows the decision maker to limit the search
space without previous knowledge of the Pareto front’s shape. Additionally, the decision maker
can obtain the desired solution granularity in the Pareto front by changing the get the step size
parameter.

This work also evaluated the hyperparameters’ effect on the algorithm performance and found
their optimum ranges. One example is the corrector maximum angle deviation, where the optimum
range was found to be around ninety degrees; where lower values will degrade the Pareto front quality
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and higher values allow the corrector to point away from the desired search direction. Another finding
worth mentioning is that the rank sotpping criteria for the corrector step is the most computationally
efficient and simultaneously guarantees the quality of the solutions obtained. Finally, the results
show that only small batch sizes decrease the hypervolume of the Pareto front; however, high batch
sizes require more GPU memory and no significant quality improvement is obtained.

8.2 Future work

For future work, it would be interesting to address the relationship between the Pareto fronts when
using the training and validation data subsets. Early stopping criteria could be implemented in the
corrector routine to take into account the improvement with the validation subset. This will avoid
the overfitting the corrector step could cause.

This work proposes that the optimization process occurs after the standard training of a neural
network using stochastic gradient descent. However, an interesting avenue of research is to couple
both process so as to compute intermediate Pareto fronts and find a global Pareto front whose
solutions do not overfit the training dataset.

Furthermore, it is worth pursuing the creation of heuristics to find optimum values of the SDS
method’s hyperparameters while taking into account the problem size, solution resolution required,
and available computational resources.

Finally, an important next step is to apply this methodology to a broader set of deep neural
network problems that contain multiple objectives, e.g. multi-task learning neural networks.
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Appendix A

Tables

Table A.1: Steps count, norm, and hypervolume results in terms of mean and standard deviation
when varying 𝛽max.

𝛽max 𝑆descent 𝑆corrector ||predictor|| ||corrector|| train HV valid HV

50 12.0 (10.4) 17.8 (11.0) 2.45e-02 (3.20e-03) 3.58e-05 (1.18e-04) 3.398 (1.19e-03) 3.379 (8.81e-04)
60 14.9 ( 8.8) 14.2 (10.8) 2.47e-02 (2.92e-03) 4.68e-05 (1.33e-04) 3.399 (1.09e-03) 3.380 (8.13e-04)
70 5.7 ( 3.0) 7.7 ( 7.7) 2.47e-02 (2.95e-03) 8.21e-05 (1.58e-04) 3.401 (3.04e-04) 3.381 (2.55e-04)
80 8.9 ( 8.7) 4.4 ( 4.8) 2.47e-02 (2.80e-03) 1.57e-04 (1.98e-04) 3.401 (2.66e-04) 3.381 (3.42e-04)
90 4.0 ( 3.8) 3.6 ( 4.3) 2.48e-02 (2.80e-03) 1.98e-04 (2.05e-04) 3.401 (2.78e-04) 3.381 (1.41e-04)

100 9.7 ( 8.6) 4.0 ( 4.7) 2.47e-02 (2.35e-03) 2.42e-04 (2.26e-04) 3.402 (4.49e-04) 3.382 (2.63e-04)
110 8.4 ( 6.4) 3.0 ( 2.9) 2.46e-02 (2.78e-03) 3.00e-04 (2.22e-04) 3.402 (3.04e-04) 3.382 (3.13e-04)
120 11.6 ( 7.7) 3.1 ( 3.4) 2.46e-02 (2.80e-03) 3.28e-04 (2.29e-04) 3.402 (2.76e-04) 3.382 (3.73e-04)
130 17.5 (11.3) 3.3 ( 3.5) 2.46e-02 (2.62e-03) 3.29e-04 (2.42e-04) 3.402 (3.37e-04) 3.382 (3.29e-04)

Table A.2: Time execution and evaluations count in terms of mean and standard deviation when
varying the stopping criteria.

SC 𝑡CPU (s) 𝑡𝐹 (𝑥) (ms) 𝑡𝐽(𝑥) (ms) 𝜌𝑡 𝐸𝑃,𝐹 (𝑥) 𝐸𝐶,𝐹 (𝑥) 𝐸𝐽(𝑥) 𝐸𝑤

d: 5e-05 125.1 (14.3) 49.9 (7.4) 337.0 (75.0) 6.76 87.4 (0.8) 764.2 (119.9) 45.2 ( 6.8) 1156.99
d: 0.0001 60.3 ( 7.1) 45.3 (1.4) 311.2 ( 6.3) 6.87 87.7 (0.9) 340.4 ( 82.8) 24.4 ( 2.7) 595.91
d: 0.0002 35.6 ( 1.9) 45.0 (1.7) 308.4 ( 4.8) 6.85 88.1 (0.5) 156.4 ( 25.3) 15.7 ( 0.7) 351.84
d: 0.0005 28.7 ( 0.4) 45.2 (1.5) 303.6 ( 2.7) 6.72 88.0 (0.4) 127.6 ( 4.6) 13.2 ( 0.2) 304.53
d: 0.001 25.9 ( 0.3) 44.7 (1.6) 306.1 ( 3.5) 6.85 87.5 (0.5) 116.2 ( 2.4) 11.9 ( 0.2) 285.02
r: 0.005 72.2 (17.5) 45.6 (1.9) 320.8 (11.7) 7.03 87.3 (0.9) 978.8 (319.0) 53.3 (12.1) 1440.57
r: 0.007 29.0 ( 3.5) 46.4 (3.0) 313.4 ( 2.5) 6.75 87.9 (0.5) 315.4 ( 81.9) 22.5 ( 2.8) 555.42
r: 0.009 21.5 ( 2.0) 46.4 (1.4) 318.3 (11.7) 6.86 87.9 (0.5) 239.2 ( 57.9) 18.4 ( 1.1) 452.91
r: 0.016 14.1 ( 0.2) 44.4 (1.6) 305.3 ( 7.3) 6.87 87.6 (0.5) 132.2 ( 4.6) 13.6 ( 0.2) 313.02
r: 0.02 13.3 ( 0.1) 44.1 (1.4) 302.5 ( 3.8) 6.86 87.7 (0.5) 126.8 ( 1.6) 13.0 ( 0.1) 303.36
p: 0.0003 60.6 (13.7) 44.1 (1.7) 296.6 ( 4.4) 6.73 86.7 (0.5) 986.8 (231.7) 50.3 (10.5) 1412.02
p: 0.0006 34.7 (11.5) 43.9 (1.1) 298.9 ( 3.5) 6.80 87.4 (0.5) 537.2 (271.1) 28.4 ( 8.3) 818.06
p: 0.0009 17.2 ( 3.8) 42.8 (1.3) 295.0 ( 4.2) 6.89 87.2 (0.7) 221.6 (109.8) 15.8 ( 3.5) 417.68
p: 0.0012 12.4 ( 1.0) 43.8 (1.2) 294.8 ( 3.8) 6.74 87.6 (0.5) 124.4 ( 35.5) 11.9 ( 0.7) 292.18
p: 0.0015 12.1 ( 1.7) 44.1 (1.5) 299.7 ( 4.9) 6.80 87.3 (0.6) 135.0 ( 53.5) 11.1 ( 1.1) 297.95
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Table A.3: Steps count, norm, and hypervolume results in terms of mean and standard deviation
when varying the stopping criteria.

SC 𝑆descent 𝑆corrector ||predictor|| ||corrector|| train HV valid HV

d: 5e-05 21.5 (9.2) 7.3 ( 8.2) 1.97e-02 (1.90e-03) 1.32e-04 (1.78e-04) 3.404 (2.75e-04) 3.383 (2.08e-04)
d: 0.0001 7.6 (6.4) 3.5 ( 4.2) 1.98e-02 (2.19e-03) 2.21e-04 (2.10e-04) 3.402 (3.45e-04) 3.383 (3.10e-04)
d: 0.0002 3.6 (3.1) 1.8 ( 1.7) 1.97e-02 (2.28e-03) 3.21e-04 (1.77e-04) 3.401 (3.68e-04) 3.382 (3.98e-04)
d: 0.0005 0.4 (0.9) 1.4 ( 1.5) 1.98e-02 (2.05e-03) 4.13e-04 (1.31e-04) 3.395 (6.61e-04) 3.378 (3.83e-04)
d: 0.001 0.0 (0.0) 1.1 ( 1.4) 1.99e-02 (2.05e-03) 5.04e-04 (1.33e-04) 3.388 (8.17e-04) 3.373 (5.47e-04)
r: 0.005 25.6 (6.9) 9.2 ( 8.8) 1.98e-02 (2.06e-03) 1.18e-04 (1.72e-04) 3.404 (3.66e-04) 3.383 (2.41e-04)
r: 0.007 9.3 (6.2) 3.1 ( 3.3) 1.98e-02 (2.04e-03) 2.11e-04 (1.80e-04) 3.403 (3.54e-04) 3.383 (3.89e-04)
r: 0.009 4.5 (3.5) 2.3 ( 2.7) 1.98e-02 (1.98e-03) 2.65e-04 (1.80e-04) 3.402 (3.89e-04) 3.382 (2.38e-04)
r: 0.016 0.1 (0.3) 1.4 ( 1.4) 1.99e-02 (1.76e-03) 4.21e-04 (1.60e-04) 3.397 (3.84e-04) 3.379 (3.22e-04)
r: 0.02 0.0 (0.0) 1.3 ( 1.3) 1.99e-02 (1.72e-03) 4.74e-04 (1.49e-04) 3.394 (3.69e-04) 3.378 (3.35e-04)
p: 0.0003 0.2 (0.6) 8.6 (10.2) 2.00e-02 (1.73e-03) 1.23e-04 (1.74e-04) 3.402 (6.99e-04) 3.382 (6.18e-04)
p: 0.0006 0.0 (0.0) 4.7 ( 7.4) 1.99e-02 (2.17e-03) 1.57e-04 (1.85e-04) 3.397 (1.82e-03) 3.379 (1.29e-03)
p: 0.0009 0.0 (0.0) 2.1 ( 4.0) 1.99e-02 (2.30e-03) 3.27e-04 (2.17e-04) 3.392 (2.57e-03) 3.376 (1.73e-03)
p: 0.0012 0.0 (0.0) 1.1 ( 1.9) 1.98e-02 (2.36e-03) 5.11e-04 (2.03e-04) 3.383 (1.90e-03) 3.369 (1.29e-03)
p: 0.0015 0.0 (0.0) 1.0 ( 1.9) 1.99e-02 (2.38e-03) 5.62e-04 (2.16e-04) 3.376 (3.23e-03) 3.364 (2.48e-03)

Table A.4: Time execution and evaluations count in terms of mean and standard deviation when
varying the step size.

𝜏 𝑡CPU (s) 𝑡𝐹 (𝑥) (ms) 𝑡𝐽(𝑥) (ms) 𝜌𝑡 𝐸𝑃,𝐹 (𝑥) 𝐸𝐶,𝐹 (𝑥) 𝐸𝐽(𝑥) 𝐸𝑤

50 149.8 (31.4) 50.5 ( 9.7) 348.4 (45.9) 6.91 75.6 (0.5) 2965.6 (311.5) 83.1 (13.2) 3615.32
60 114.2 (16.0) 45.6 ( 3.3) 322.8 ( 9.5) 7.07 75.3 (0.6) 2528.8 (250.2) 66.9 ( 9.6) 3077.61
70 73.4 (15.0) 45.9 ( 3.4) 330.3 (31.4) 7.19 75.2 (0.6) 1551.0 (305.5) 37.8 ( 6.5) 1897.88
80 39.2 ( 8.3) 43.9 ( 1.1) 307.6 ( 3.7) 7.00 75.2 (0.4) 731.2 (222.8) 22.9 ( 4.6) 966.80
90 28.6 ( 5.8) 44.2 ( 1.7) 310.9 ( 7.0) 7.03 74.8 (0.4) 497.0 (151.5) 20.2 ( 2.8) 713.75

100 27.7 ( 7.0) 46.4 ( 5.6) 354.2 (61.0) 7.63 74.9 (0.3) 368.8 (169.5) 20.8 ( 4.7) 602.28
110 24.9 ( 3.6) 56.9 (17.1) 392.2 (93.3) 6.89 75.1 (0.3) 218.2 ( 48.5) 17.7 ( 1.9) 415.02
120 23.2 ( 2.8) 50.3 ( 3.0) 354.1 (37.3) 7.04 75.1 (0.3) 190.2 ( 30.5) 18.1 ( 2.3) 392.92
130 26.0 ( 3.4) 54.2 ( 3.3) 388.3 (28.2) 7.16 75.4 (0.8) 181.4 ( 49.5) 19.1 ( 2.2) 393.35
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Table A.5: Steps count, norm, and hypervolume results in terms of mean and standard deviation
when varying the step size.

𝜏 𝑆descent 𝑆corrector ||predictor|| ||corrector|| train HV valid HV

50 12.0 (10.4) 17.8 (11.0) 2.45e-02 (3.20e-03) 3.58e-05 (1.18e-04) 3.398 (1.19e-03) 3.379 (8.81e-04)
60 14.9 ( 8.8) 14.2 (10.8) 2.47e-02 (2.92e-03) 4.68e-05 (1.33e-04) 3.399 (1.09e-03) 3.380 (8.13e-04)
70 5.7 ( 3.0) 7.7 ( 7.7) 2.47e-02 (2.95e-03) 8.21e-05 (1.58e-04) 3.401 (3.04e-04) 3.381 (2.55e-04)
80 8.9 ( 8.7) 4.4 ( 4.8) 2.47e-02 (2.80e-03) 1.57e-04 (1.98e-04) 3.401 (2.66e-04) 3.381 (3.42e-04)
90 4.0 ( 3.8) 3.6 ( 4.3) 2.48e-02 (2.80e-03) 1.98e-04 (2.05e-04) 3.401 (2.78e-04) 3.381 (1.41e-04)

100 9.7 ( 8.6) 4.0 ( 4.7) 2.47e-02 (2.35e-03) 2.42e-04 (2.26e-04) 3.402 (4.49e-04) 3.382 (2.63e-04)
110 8.4 ( 6.4) 3.0 ( 2.9) 2.46e-02 (2.78e-03) 3.00e-04 (2.22e-04) 3.402 (3.04e-04) 3.382 (3.13e-04)
120 11.6 ( 7.7) 3.1 ( 3.4) 2.46e-02 (2.80e-03) 3.28e-04 (2.29e-04) 3.402 (2.76e-04) 3.382 (3.73e-04)
130 17.5 (11.3) 3.3 ( 3.5) 2.46e-02 (2.62e-03) 3.29e-04 (2.42e-04) 3.402 (3.37e-04) 3.382 (3.29e-04)

Table A.6: Time execution and evaluations count in terms of mean and standard deviation when
varying the batch size.

BS 𝑡CPU (s) 𝑡𝐹 (𝑥) (ms) 𝑡𝐽(𝑥) (ms) 𝜌𝑡 𝐸𝑃,𝐹 (𝑥) 𝐸𝐶,𝐹 (𝑥) 𝐸𝐽(𝑥) 𝐸𝑤

128 401.6 (99.2) 317.0 (17.9) 2743.0 (215.4) 8.65 72.1 (2.1) 733.0 (371.8) 34.4 (7.6) 1102.73
256 200.1 (38.0) 178.4 (31.1) 1385.5 (151.6) 7.77 72.6 (1.6) 641.2 (250.7) 26.2 (3.1) 917.61
512 74.6 ( 9.1) 102.4 (11.3) 780.3 ( 48.0) 7.62 74.5 (0.7) 354.8 ( 56.6) 19.8 (2.3) 580.33

1024 25.2 ( 3.2) 51.4 ( 3.2) 366.1 ( 15.9) 7.12 74.9 (0.5) 197.0 ( 43.7) 17.9 (2.1) 399.63
2048 12.6 ( 1.6) 33.9 ( 3.1) 210.9 ( 24.1) 6.23 74.9 (0.3) 164.8 ( 28.9) 15.7 (1.4) 337.59
4096 8.4 ( 0.8) 22.0 ( 3.0) 110.8 ( 5.2) 5.04 75.1 (0.5) 162.0 ( 38.5) 25.1 (2.1) 363.56
8192 7.0 ( 0.5) 15.8 ( 1.8) 63.9 ( 4.1) 4.05 75.3 (0.5) 130.2 ( 32.3) 40.3 (2.6) 368.80

16384 5.4 ( 0.3) 12.5 ( 1.6) 32.9 ( 2.5) 2.64 75.2 (0.4) 100.2 ( 3.8) 71.3 (3.3) 363.53

Table A.7: Steps count, norm, and hypervolume results in terms of mean and standard deviation
when varying the batch size.

BS 𝑆descent 𝑆corrector ||predictor|| ||corrector|| train HV valid HV

128 22.5 ( 9.6) 12.6 (10.6) 2.47e-02 (3.27e-03) 3.99e-04 (5.66e-04) 3.400 (7.89e-04) 3.380 (9.68e-04)
256 22.0 ( 8.1) 9.0 ( 8.9) 2.46e-02 (3.07e-03) 3.28e-04 (4.73e-04) 3.401 (7.98e-04) 3.381 (6.82e-04)
512 21.0 ( 9.5) 5.0 ( 5.6) 2.46e-02 (2.86e-03) 3.33e-04 (3.54e-04) 3.402 (3.67e-04) 3.382 (2.82e-04)

1024 12.9 ( 7.2) 3.1 ( 3.1) 2.46e-02 (2.81e-03) 2.87e-04 (2.16e-04) 3.402 (2.28e-04) 3.382 (3.06e-04)
2048 5.6 ( 4.5) 2.7 ( 2.4) 2.47e-02 (2.56e-03) 2.57e-04 (1.58e-04) 3.402 (3.42e-04) 3.382 (1.81e-04)
4096 8.7 ( 7.4) 2.2 ( 1.8) 2.47e-02 (2.68e-03) 2.64e-04 (1.43e-04) 3.402 (3.74e-04) 3.382 (2.74e-04)
8192 12.3 (11.3) 1.9 ( 1.2) 2.47e-02 (2.99e-03) 2.39e-04 (9.98e-05) 3.402 (2.20e-04) 3.381 (4.66e-04)

16384 13.6 (11.4) 1.5 ( 1.1) 2.48e-02 (2.78e-03) 2.14e-04 (8.07e-05) 3.402 (2.48e-04) 3.382 (1.82e-04)
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Table A.8: Time execution and evaluations count in terms of mean and standard deviation when
varying the NN training.

Training 𝑡CPU (s) 𝑡𝐹 (𝑥) (ms) 𝑡𝐽(𝑥) (ms) 𝜌𝑡 𝐸𝑃,𝐹 (𝑥) 𝐸𝐶,𝐹 (𝑥) 𝐸𝐽(𝑥) 𝐸𝑤

t:1 19.5 (1.9) 44.4 (2.0) 310.9 ( 3.6) 7.00 74.5 (0.7) 235.4 (48.4) 16.4 (1.2) 424.66
t:2 20.6 (2.3) 43.8 (1.2) 304.1 ( 4.1) 6.95 75.0 (0.4) 210.8 (49.6) 18.1 (2.1) 411.23
t:3 17.2 (0.5) 45.0 (1.7) 313.9 ( 3.3) 6.97 75.0 (0.0) 159.6 ( 8.3) 16.6 (0.4) 350.59
t:4 19.9 (1.9) 48.0 (1.6) 338.0 ( 6.1) 7.05 74.5 (0.5) 196.4 (27.7) 16.5 (1.1) 387.07
t:5 20.3 (1.7) 49.6 (2.1) 343.5 ( 5.3) 6.93 75.2 (0.4) 195.2 (40.1) 16.9 (1.2) 387.41
t:6 24.6 (2.8) 45.8 (1.2) 315.2 ( 5.0) 6.88 74.6 (0.5) 270.0 (64.8) 20.4 (2.2) 485.08
t:7 18.5 (2.2) 45.8 (0.7) 323.8 ( 7.9) 7.07 74.8 (0.7) 183.2 (45.8) 15.4 (1.5) 366.96
t:8 19.1 (1.8) 45.2 (1.1) 319.7 ( 4.9) 7.08 74.7 (0.5) 193.2 (27.3) 16.5 (0.9) 384.37
t:9 22.4 (2.1) 48.8 (1.5) 343.0 ( 4.0) 7.03 75.3 (0.5) 182.4 (24.9) 18.1 (1.3) 385.16

t:10 27.7 (5.4) 50.9 (6.5) 345.8 (30.0) 6.79 75.0 (0.0) 243.8 (61.5) 21.3 (3.5) 463.49

Table A.9: Steps count, norm, and hypervolume results in terms of mean and standard deviation
when varying the NN training.

Training 𝑆descent 𝑆corrector ||predictor|| ||corrector|| train HV valid HV

t:1 7.6 (5.9) 2.7 (2.5) 2.47e-02 (2.59e-03) 3.14e-04 (2.35e-04) 3.402 (1.06e-04) 3.386 (1.91e-04)
t:2 10.2 (5.1) 3.1 (3.1) 2.46e-02 (2.79e-03) 3.20e-04 (2.35e-04) 3.402 (3.23e-04) 3.382 (3.46e-04)
t:3 2.0 (2.3) 2.7 (2.1) 2.47e-02 (2.43e-03) 2.66e-04 (1.17e-04) 3.393 (3.10e-04) 3.378 (3.84e-04)
t:4 8.1 (3.1) 2.7 (2.4) 2.47e-02 (2.60e-03) 2.67e-04 (1.62e-04) 3.396 (2.43e-04) 3.380 (2.01e-04)
t:5 6.4 (3.3) 2.8 (2.5) 2.46e-02 (3.23e-03) 2.77e-04 (1.70e-04) 3.397 (2.77e-04) 3.382 (3.93e-04)
t:6 9.4 (7.8) 3.7 (4.2) 2.47e-02 (2.96e-03) 2.84e-04 (2.45e-04) 3.405 (2.19e-04) 3.380 (5.10e-04)
t:7 1.8 (2.2) 2.5 (2.6) 2.47e-02 (3.01e-03) 3.14e-04 (2.16e-04) 3.391 (2.26e-04) 3.364 (1.85e-04)
t:8 4.9 (4.5) 2.7 (2.2) 2.47e-02 (2.71e-03) 2.85e-04 (1.65e-04) 3.390 (3.47e-04) 3.378 (2.58e-04)
t:9 6.9 (5.0) 3.1 (2.3) 2.46e-02 (2.97e-03) 2.91e-04 (1.71e-04) 3.399 (5.60e-04) 3.378 (2.58e-04)

t:10 11.1 (6.9) 3.9 (4.3) 2.47e-02 (2.44e-03) 2.50e-04 (2.02e-04) 3.404 (2.80e-04) 3.355 (3.48e-04)

Table A.10: Time execution and evaluations count in terms of mean and standard deviation when
varying the problem size.

Size 𝑡CPU (s) 𝑡𝐹 (𝑥) (ms) 𝑡𝐽(𝑥) (ms) 𝜌𝑡 𝐸𝑃,𝐹 (𝑥) 𝐸𝐶,𝐹 (𝑥) 𝐸𝐽(𝑥) 𝐸𝑤

small 20.3 ( 3.8) 45.3 ( 7.4) 286.6 (24.1) 6.32 75.0 (0.4) 207.4 (46.1) 18.1 (2.1) 396.60
medium 559.3 (48.5) 1121.9 (14.0) 3118.0 (32.1) 2.78 72.9 (0.3) 299.2 (69.4) 24.9 (2.1) 441.36

Table A.11: Steps count, norm, and hypervolume results in terms of mean and standard deviation
when varying the problem size.

Size 𝑆descent 𝑆corrector ||predictor|| ||corrector|| train HV valid HV

small 10.2 (5.1) 3.1 (3.1) 2.46e-02 (2.79e-03) 3.20e-04 (2.35e-04) 3.402 (3.23e-04) 3.382 (3.46e-04)
medium 10.5 (7.0) 4.6 (4.0) 2.47e-02 (2.93e-03) 2.03e-04 (1.49e-04) 3.402 (2.68e-04) 3.381 (2.45e-04)
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