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Muchos geometras han buscado durante mucho tiempo (como otros persiguen a las ballenas
blancas) curvas "generales”, vagamente miticas, que serian, en cada esquema de Hilbert, mds
bellas que las demds.

-M. Martin-Deschamps

-D. Perrin
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Introduccion

Dos curvas en espacio proyectivo de dimension 3 estdn geométricamente enlazadas si su union
como esquemas es igual a la interseccion de dos superficies (ver Definicion 1.1.1). Esta defini-
cion puede ser extendida para definir una relacion de equivalencia sobre el conjunto de todas las
curvas localmente Cohen-Macauay en P2, y es conocida como equivalencia de enlaces. Prab-
hakar Rao prob6 que dada una curva C en P2, su clase de enlace estd determinada por la
clase de isomorfismo, salvo traslacion, del médulo de Hartshorne-Rao (H-R) de la curva (ver
Definicion 1.1.2), [Rao78|. Por otro lado, Federico Gaeta prob6 que la propiedad de ser una
curva aritméticamente Cohen-Macaulay (ACM) se preserva bajo enlaces, [Gae48|. La clase de
enlace de las curvas ACM esté determinada por el médulo trivial. Una pregunta natural es:

Pregunta. ;Cdmo se comporta el modulo de Hartshorne-Rao en familias de curvas? En par-
ticular, ;como se comporta en la cerradura de las curvas ACM?

El proposito de esta tesis es estudiar esta pregunta en algunos casos en particular. Nosotros
consideramos la cerradura de la familia de curvas localmente Cohen-Macaulay (lem) en el
esquema, de Hilbert de curvas de grado d, = @ y género aritmético g, = T(TH)G& +1en
el espacio proyectivo IP3, denotado por #%.. En estos casos existe una tinica componente que
contiene curvas ACM. Denotamos a esta componente por 6, C JZ.

Dada una curva C, € 7., sea C,_1 € J._1 una curva enlazada a C, por la intersecciéon
completa de dos superficies X, X' de grado r. Si X es suave y m > r — 3 calculamos la siguiente

ecuacion:

(%, S, (m)) = hH(P?, Ie, (m)) — hO(P?, S, (2r — m — 4))
r(r—m-—2)(r—m—1) m—r+3 (%)
" ) (")

Esta ecuacion nos fue util, ya que nos permitio calcular el grado minimo de una superficie que
contiene una curva en términos del grado minimo de una superficie que contiene a una curva
directamente enlazada a esta.

Por otro lado, si nos enfocamos en el caso r = 3, es decir, curvas de grado 6 y género 3
entonces podemos considerar dos familias especiales dentro de la componente %: la familia
de curvas hiperelipticas de grado 6 denotada por €” y la familia que parametriza curvas que
son la unién de una cuartica plana y dos lineas alabeadas que la intersectan, esta familia es
denotada por 7. La cerradura de estas familias son divisores de %3 y los elementos en estas
dos familias tienen médulo H-R de rango uno. Més atn, son los tnicos divisores con esta
propiedad, [Amr98|. Sin embargo, con las tecnicas usuales no es posible demostrar que la
componente es normal. Por lo que tomamos una subvariedad de %3, denotada por % , que
contiene a todas las curvas localmente Cohen-Macaulay de €3, en particular las familias €% y
/. En este caso, si denotamos por N'(%) al espacio de divisores en % moédulo equivalencia
ntmerica, demostramos el siguiente resultado:
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Teorema A (Teorema 4.0.5). Las clases de o/ y €" en N'(AB) son linealmente independientes
y cada uno genera un rayo extremal del cono efectivo

Ef(8) C N'().

El Teorema A responde a la pregunta (en el mundo de las curvas localmente Cohen-
Macaulay) para %5, donde al incrementar el rango del modulo de H-R aparece un divisor.
Nosotros esperamos que ocurra un comportamiento similiar para cualquier r. En particular,
esperamos que la subvariedad de %, que parametriza curvas con modulo H-R de rango uno
defina un divisor reducible.

Siendo maés especificos, siguiendo la notacién de la Definicion 1.1.5, consideramos familias
Lr3€" vy L7349 en S en la misma clase de enlace que las familias 6" v & respectivamente,
los elementos de estas familias tienen médulo H-R de rango uno. Més atn, estas familias tienen
la dimension correcta para ser divisores en la componente €,. El principal obstaculo es probar
que estas familias efectivamente estan contenidas en la componente %,. En el siguiente teorema
presentamos los casos en los que obtuvimos resultados concretos:

Teorema B (Corolario 2.4.4). Si r es un numéro impar, entonces la familia £ 3o estd
contenida en 6,. Sir es un numéro par, entonces la familia L™ 36" estd contenida en E,.

El teorema anterior responde, en particular, la pregunta en estos esquemas, es decir:

Corolario 1. La condicion de tener modulo H-R de rango uno, siempre produce un divisor de
%,

Esta tesis se organiza de la siguiente manera:

Empezamos con el Capitulo 1 donde presentamos los preliminares de la teoria de Enlaces
y definiciones de los objetos que estudiaremos a lo largo de todo este trabajo. El principal
resultado de este capitulo es el siguiente:

Teorema C (Teorema 1.2.3). El esquema de Hilbert J¢. tiene una unica componente cuyo
elemento genérico es una curva ACM.

Mas atn, dado que las curvas ACM son puntos suaves en su esquema de Hilbert (Corolario
8.10 en [Harl0]), esta componente es genéricamente suave. Con frecuencia, nos enfocamos en
describir familias dentro de esta componente. En los capitulos posteriores calcularemos la di-
mension de una familia en la misma clase de enlace. Para esto deducimos una formula nos
permite comparar las secciones globales de la gavilla de ideales de una curva con las secciones
globales de la gavilla de ideales de una curva ligada a esta.

En el Capitulo 2 nos enfocamos en la componente de curvas ACM. En este capitulo daremos
algunas propiedades de las familias " y 7. Probamos que, en algunos casos, las correspondi-
entes familias en .77, estan contendidas en la componente principal.

El resultado principal en este capitulo es el Teorema B, el cual probamos dando una de-
scripciéon cohomologica conveniente de algunas de estas familias. En los casos especiales que
consideramos podemos verificar que estan contenidos en la cerradura de las curas ACM usando
la geometria de las superficies en las que estdn contenidas. En general, el obstaculo es encontrar
un criterio que no dependa de la descripciéon de la familia.

El Capitulo 3 esta enfocado en curvas de grado 6 y género 3. Se sabe que 743 es un esquema
reducible y conexo por [Amr00]. Para describir las componentes de este esquema construimos
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varias familias parametrizadas por la uniéon de curvas suaves e irreducibles de grado estricta-
mente menor y con intersecciones transversales. Con ayuda de Macaulay2, [M2], calculamos
ideales iniciales, tablas de Betti y mo6dulos H-R de elementos genéricos de cada una de estas
familias. Esta informacion nos permite identificar a que componente corresponde cada familia.
En general, la informaciéon que obtuvimos de estas familias nos permite tener una imagen par-
cial del esquema de Hilbert de curvas de grado 6 y género 3 en el espacio proyectivo. El cédigo
que usamos en todo este capitulo puede ser consultado en los apéndices de este trabajo.

El Capitulo 4 estd dedicado a la tnica componente irreducible de curvas de grado 6 y
género 3 con elementos suaves, a menudo llamada componente principal, que coincide con la
componente de las curvas ACM, es decir, la variedad @5. Nos interesa estudiar el espacio
de clases de divisores N! (?3) Dado que no conocemos el comportamiento de &5 fuera de la
familia de curvas localmente Cohen-Macaulay, no podemos afirmar que la dimensién de N 1(?3)

es finita. Sin embargo, consideramos el esquema normal Z = (63 — 63)'“™ U €3 como una
compactificacion parcial de 63. En este caso N'(4) tiene dimension finita por lo que podemos
demostrar el Teorema A y, como consecuencia, obtuvimos el siguiente resultado:

Corolario 2 (Corolario 4.0.7). La dimension del espacio vectorial N'(2) es 3.



Introduction

Two curves in projective space of dimension 3 are geometrically directly linked if their union
(scheme theoretically) is equal to the complete intersection of two surfaces (see Definition 1.1.1).
This definition can be extended to define an equivalence relation, called linkage equivalence.
Prabhakar Rao proved that given a curve C' in P3, its linkage class is determinate by the
isomorphism class, up to shifting of degrees, the Harthsorne-Rao module (H-R) of the curve
(see Definition 1.1.2), [Rao78]. On the other hand, Federico Gaeta proved that the property of
being arithmetically Cohen-Macaulay (ACM) is preserved by links, [Gae48|. Since the linkage
class of the ACM curves is labeled by the trivial module, a natural question is:

Question 1. How does the Hartshorne-Rao module behave in families of curves? In particular,
in the closure of the locus of ACM curves?

The purpose of this thesis is to study this question in some particular cases. We consider
the closure of the family of curves locally Cohen-Macaulay (lem) in the Hilbert scheme of curves

of degree d, = r+D) and genus g, = w + 1 in the projective space, denoted by 7. In

2
these cases, there is a unique component that contains ACM curves. We denote this component

by €, C .

Given a curve C, € 7, let C,_; € F._1 be a curve linked to C, by the complete intersection
of two surfaces X, X’ of degree r. If X is smooth and m > r — 3 we compute the following
formula:

WO (P2, Ie, (m)) = h'(P?, Ic, (m)) — B(P%, S, , (2r — m — 4))
+r(7’—m—2)(r—m—1)+(m—?"+3). (%)

2 3

This formula is useful. If we know the minimal degree of the surfaces that contain a curve.
Then, this equality gives us the minimal degree of a surface that contains a curve directly linked
to it.

On the other hand, we focus on the case r = 3, i.e., curves of degree 6 and genus 3, then
we get two families inside %: the family of hyperelliptic curves of degree 6, denoted by %",
and the family of curves that parameterize the union of a plane quartic with two incident skew
lines denoted by 7. The closure of these two families are divisors of €3 and the elements in
these two families have H-R module of rank one. Moreover, these are the only divisors with
this property. Nevertheless, with the information that we have, is not possible to prove that
the main component is normal, thus, we have to take a normal subvariety of @3, denoted by 2,
that contains all the locally Cohen-Macaulay curves, in particular, the families 4” and 7. In
this case, if N'(%) is the space of divisors of # modulo numerical equivalence, then we prove:

Theorem A (Theorem 4.0.5). The classes of &/ and Eh in NY(B) are linearly independent
and each of them spans an extremal ray of the effective cone

Ef(8) C N'().

8
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Theorem A answers Question 1 for €5 where appears a subvariety of codimension 1 when
the rank of the H-R modulo increase by one. We expect that similar behavior occurs for every r.
In particular, we expect that the subvariety of €, that parameterizes curves with H-R module
of rank one defines a reducible divisor. Let us elaborate on this.

Following the notation of the Definition 1.1.5, we consider families " 3¢" and £ 3./
in 7, in the same linkage class of the families " and 27 respectively, the elements in these
families have H-R module of rank one. Furthermore, we verify that these families have the
correct dimension to be divisors of the component €,. The main obstacle in showing they are
indeed divisors is to prove that these families are contained in the component %,. Here is what
we prove:

Theorem B (Corollary 2.4.4). If r is an odd number then the family Lo/ is contained in
C.. If r is an even number, then the family L™ 3€" is contained in EC,.

Consequently, we can give an answer to question 1, in these cases, with the following corol-
lary:

Corollary 1. The condition of having H-R of rank one induces a divisor on €, for every r.

The organization of the thesis is as follows.

We start in Chapter 1 with preliminaries of Liaison Theory and the definitions of the objects
that we study throughout. The main result of this Chapter is the following:

Theorem C (Theorem 1.2.3). The Hilbert scheme 7, has only one component whose generic
element is an ACM curve.

Furthermore, since the curves ACM are smooth points in Hilbert scheme (Corollary 8.10
in [Har10]), this component is generically smooth. Frequently, we focus on describing families
inside of this component. At the end of this Chapter, in order to compute the dimension of a
family in the same linkage class, we compute a formula that allows us to compare the global sec-
tions of the ideal sheaf of a curve and the global sections of the ideal sheaf of a curve linked to it.

In Chapter 2 we focus on the component of ACM curves. We give properties of the families
¢" and «7. We prove that, in some cases, the corresponding linked families in J#, are contained
in the main component. The main result of this chapter is Theorem B.

We prove this Theorem by giving a convenient cohomological description of these families.
In some particular cases, we can verify the contention using the special geometry of the family,
but in general, the obstacle is to find criteria that do not depend on the description of the family.

Chapter 3 focuses on curves of degree 6 and genus 3. It is known that this Hilbert scheme
is reducible and connected by [Amr00]. In order to understand the components of this scheme,
we construct several families. Each family parametrizes curves that are the union of smooth ir-
reducible curves of strictly minor degree, intersecting transversely. For each of these families we
compute, using the software Macaulay2, the initial ideal, the Betti table and the Hartshorne-
Rao module of the generic element of each in these families. This information helps us to
organize these families in the three components of this Hilbert scheme. In general, the informa-
tion that we obtain from these families gives us a partial image of the Hilbert scheme of curves
of degree 6 and genus 3. The code that we use is in the Appendix.

Chapter 4 is devoted to the unique irreducible component of curves of degree 6 and genus
3 with smooth elements, often called the main component. This component coincides with the
component of ACM curves, that is, the variety 3. We are interested in studying the space of



10 CONTENTS

classes of divisors N'(%3). Nevertheless, with the information that we have, we do not know
the behavior of % outside of the family of locally Cohen-Macaulay curves, thus we can not
claim that the dimension of N'(%3) is finite. For this reason we consider the normal scheme
B = (€3 — €3)l“m U €3 as a partial compactification of %5. In this case N'(Z) has finite
dimension. For this subvariety we proved Theorem A and as a consequence, we are able to
prove the following result:

Corollary 2 (Corollary 4.0.7). The dimension of the vector space N'(2) is 3.



Chapter 1

Preliminaries

This chapter contains the background needed for the following chapters. We review prerequisites
from Liaison Theory (for more details see [Mig98|) that we frequently use and establish the
notation.

In this thesis, k always denotes an algebraically closed field of characteristic zero. All vari-
eties and subschemes will be assumed to be projective. We shall denote by S the homogeneous
polynomial ring k[z,y, z, w] and we let P? := P} = Proj(S) stand for the projective 3-space. In
this work, by curve we mean a one-dimensional closed subscheme of P? that is locally Cohen-
Macaulay (lem). These are closed subschemes of dimension one that may be reducible and
non-reduced but that have no isolated or embedded points.

N
/

Figure 1.1: In the picture we represent curves of degree 3 and genus 0 (twisted cubic, conic
union line, and triple line) all of them are locally Cohen-Macaulay curves.

1.1 Liaison Theory preliminaries

Liaison theory began with Apery and Gaeta in the 1940’s (cf. [Apé45| and [Gaed8]). They show
that a smooth curve C in IP3 is in the linkage class of a complete intersection if and only if it is
arithmetically Cohen-Macaulay (ACM). This result was extended to arbitrary codimension two
subschemes of projective space by Peskine and Szpiro [Pes74]|, and they put the whole theory
of liaison into the framework of modern scheme theory. The next major contribution to the
theory of liaison was made by Rao in [Rao78|. Rao finds a necessary and sufficient condition
for two curves of projective 3-space to be linked.

Definition 1.1.1. Two curves C' and C” in P? without components in common are directly
geometrically linked (or simply directly linked) by the complete intersection of two surfaces X
and X' if CUC" = XN X' scheme theoretically; that is /-N I = Ix + Fx/. The curves C,C’
are linked if there exist a finite number of curves C1,...,C,, in P? such that C; are directly
linked to C;, for all ¢, with C' = Cy and C' = C,,,.

Example 1. If X is the union of two general planes in P? and X’ is a transversal plane to X,
then X N X’ is the union of two lines C' and C”’ that intersect at a point (see figure 1.2).

11
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cuc’

N =%

Figure 1.2: Two lines linked by the complete intersection of X and X’

The previous definition induces an equivalence relation called linkage equivalence. The
linkage classes can be labeled via the Hartshorne-Rao module.

Definition 1.1.2. Let C be a closed subscheme in P3. The Hartshorne-Rao module (H-R
module) of C' is defined by:
M(C) =@ H'(P?, 7z (n)).

neZ

If C is a curve, in particular lem, this module is a graded S-module of finite length. For
example, the H-R module of two skew lines is isomorphic to k.

Definition 1.1.3. A curve C' is arithmetically Cohen-Macaulay (ACM) if its coordinate ring
is a Cohen-Macaulay ring.

A necessary and sufficient condition to be an ACM curve is to have a trivial H-R module.
Example 2.

e A curve C of bidegree (a,b) on a nonsingular quadric surface in P? is ACM if and only if
la —b < 1.

e A curve C on a nonsingular cubic surface in P? is ACM if and only if it is linearly
equivalent to B + mH, where H is a hyperplane section, m > 0 is an integer, and B is
either a line, a conic, a twisted cubic, or a hyperplane section.

Figure 1.3: An ACM curve of bidegree (2, 3)

Two curves in the projective space lie in the same linkage class if and only if their H-R
modules are isomorphic. Here is the precise statement of this claim.

Theorem 1.1.4. [Rao78, Thm. 2.6]

o Two curves C' and C" are in the same linkage class if and only if their Hartshorne-Rao-
modules are isomorphic (except for a degree translation).

e For every S-module of finite length M, there exists a non singular irreducible curve C' C
P? with Hartshorne-Rao module isomorphic to M (except for a degree translation).
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In order to extend Theorem A to other families of curves in the same linkage class, we are
interested in studying families of curves linked to a fixed family 4. For this reason, we set
notation to refer to this type of families.

Definition 1.1.5. Given a family % in a Hilbert scheme of curves in P? we denote by .%,% the
family of curves linked to elements of % by the complete intersection of two surfaces of degree

s, we called to the family .Z% a family linked to the family %". In many cases, we iterate this
construction and write Z"% instead of Z, (L™ | F).

Remark 1.1.6. Observe that, if a curve C' in the family CK has degree d and genus g, then the

curves C’ in the family .Z,% linked to C have degree d’ = s?> —d and genus ¢’ = w +g.
Furthermore, we have that H'(P?, .#x(n)) is isomorphic to the dual of H*(IP?, JC(QS —4—n))
for each n. This implies that M(C") =0 if M(C) = 0.

1.2 Triangular curves

In this section, we present the Hilbert schemes we will be working on, and prove that each of
such schemes has only one component whose generic element is an ACM curve.

Let us start with the most simple curve in P3, the line. Given two different quadrics that
contain a fixed line, their intersection is the union of the line with a curve C'. We know the
degree and genus of the line. Since C' is linked to it by the complete intersection of two surfaces
of degree 2, we can use Remark 1.1.6 to conclude that C' has degree 3 and genus 0. That means,
C' is a twisted cubic. If we take two different cubic surfaces that contain this twisted cubic and
intersect them, one obtains a residual curve of degree 6 and genus 3. We can continue iterating
this process to produce an infinite family of curves and all these curves are linked to the line.
By the previous observation, we have that for every r, we obtain a curve of degree d, = @
and genus g, = %6(27"_5) + 1. We are interested in studying the Hilbert scheme of each of
these curves. Thus, for any positive integer r, we set the numbers:
r(r+1) r(r+1)(2r —5)

d ¢ = 1.
5 an g +

d, =
6

Let us consider the Hilbert scheme Hilb, ()3 of one-dimensional closed subschemes with
Hilbert polynomial p,.(t) = d,t + (1 — g,) in ]P3 The set of locally Cohen-Macaulay curves of
degree d, and arithmetic genus g, is denoted by ™.

Definition 1.2.1. Let % be the closure of 7™ in Hilb,, ) 3. We refer to the curves in 7™
as triangular curves.

Triangular curves satisfy:

1. Their degrees are triangular numbers,

2. We have that ., 2™ C A7 for all r.
Example 3.

a) The Hilbert scheme 7 is the Grassmannian of lines in P?, it is smooth and irreducible
of dimension 4.

b) The scheme .74 is the component of the Hilbert scheme of curves of degree 3 and genus
0 whose generic element is a twisted cubic. This scheme is smooth and irreducible of
dimension 12 (cf. [Che08|, [HSS21]| and [PS85]).
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c) The Hilbert scheme 73 is reducible and connected [Amr00, Thm.2|. In order to better
understand the geometry of the curves in 743, we give a description of many families
inside of the components of .773 in Chapter 3.

On the other hand, there exists a family in .7 that parametrizes curves C' with minimal
free resolution:

0—— Ops(—(r + 1)) 22s Ops (=) —= o —=0 (1.1)

where ¢ is the ideal sheaf of C'. It follows from this resolution that the degree of an element
in this family is d,. and the genus is g,.

Definition 1.2.2. We denote by %, the family of curves in 7. with minimal free resolution as
(1.1).

In fact, observe that the elements in €, are lines in IP?, the elements in %5 are twisted cubics,
etc. In particular, from the previous discussion we have that .£,.,1%, C 6,.1.

For curves C' € %,, the H-R module M(C) is trivial, which means that the curves in %,
are ACM curves. We also know that these curves are smooth points in JZ. by a result of

[Har10, Cor.8.10]. We claim that these families form the unique component of ACM curves in
S, for each r > 0.

Theorem 1.2.3. The family €, is the only irreducible component in . of ACM curves.

Proof. By the Ellingsrud-Hilbert-Bursch Theorem the associated ideal of an ACM curve C' in
IP? is minimally generated by the r x r-minors of an r x (r+1) matrix of homogeneous elements
of k[x,y, z, w]. Therefore the minimal free resolution of the ideal .- of an ACM curve C has

the following form:
r+1

0— @ O]ps(—bz) — @ (’)]ps(—a,») — jc — 0.
=1 =1

In the case of the curves in %,, we have that b = r + 1 and a; = r for all . The h-vector of
this family is {(1,2,...,r)}, which corresponds with an open set of an irreducible component of
.. We verify that this is the only possible h-vector in .7 of ACM curves. Then, by [Mig98|,
%, is the only irreducible component in 57, of ACM curves.

O

Remark 1.2.4. For r > 0, we can consider the incidence variety W, defined by:

W, = {(C;,Cry1) € 6 X €oa|CrUC 1 = X N X'}

G Coir

r

If C, € 6,, then C,,; denotes a curve linked to C,. by the complete intersection of two surfaces
X and X’ of degree r + 1; that means, C,1 € Z1{C,.}. A consequence of Theorem 1.2.3 is
that €,,1 = £.11%, and therefore, using the incidence correspondence W,., we can compute
the dimension of the family %, in terms of the family %,_; and conclude that:

Lemma 1.2.5. For all v > 1 we have that dim 6, = 4d, = 2r(r + 1).

Observe that if » > 3 the Hilbert scheme 7% is reducible. These Hilbert schemes have
two different components: the generically smooth component &, of ACM curves and a gener-
ically nonreduced component of dimension %dr(dr —3) +9 — 2g, whose general element is an
extremal curve, [MDP96, Thm.4.3|. That means, curves with H-R module of maximal rank.
The existence of more than one component complicates verifying the contention .2 C €, for
a family 4 in the component €,_;. An important part of this work is to verify these contentions.
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1.3 A Formula relating linked curves

In this section, we investigate the relation between the ideal sheaves of two linked curves in
order to compute the dimension of a linked family 2% in terms of the dimension of the family
%. For this, we start with a curve C, in ., and suppose that there exists a curve C,_; in
H._1 and surfaces X and X’ of degree r such that C, and C,_; are linked by the complete
intersection of X and X’. Assume that X is smooth. Then, we can consider C, as a divisor in
X with class X N X' — C,_; =rL — C,_1, where L is a hyperplane section of X.

Lemma 1.3.1. Under the above hypotheses, the following equation is satisfied:

(X, Ox(=C;)(m)) — h' (X, Ox (=C;)(m))

= —hO(X, OX(—Crfl)(27’ —-—m — 4)) + 7"<7" —m — 2;(7" —m — 1) . (12)

Proof. Since X is a smooth surface in P? of degree r, we have that y(Ox) = %{Hl) and

Kx = (r—4)L. On the other hand, since C, is a curve of degree d, and genus g, in X, we have
that C? = w and C, - Kx = %. Thus, the formula follows from Riemann-Roch

and Serre duality on the surface X.
]

We want to compute the cohomology of the ideal of the curve over the projective space,
thus let us write the cohomology of the sheaf Ox(—C,)(m) = Ox(mL — A)), over the surface
X, in terms of the cohomology of the sheaf .7 (m) over P3.

Using the exact sequence of the surface X of degree r in P?

0— Ops(m —1) — Ops(m) - Ox(m) — 0,

we have that

HY(X,0x(m)) = H'(P?, Ops(m)) =0 for all m, (1.3)

and
RO(X, Ox(m)) = h°(P?, Ops(m)) — h°(P?, Ops(m — 7)) forallm>r—3  (1.4)
- (m;—iﬂ) — (m—;’+3> forallm>r—3. (1.5

Using the exact sequence of a curve C' C P3,
0 — Fo(m) = Ops(m) = Oc(m) = 0
we have the next exact sequence for all m:
0 — HO(P?, F0(m)) — HO(P?, Ops(m)) — HO(C, Oc(m)) — H (P, So(m)) — H(P?, Opa(m)) = 0
This gives us the next equation:
R2(C, Oc(m)) = —h°(P3, Fo(m)) + h°(P?, Ops(m)) + h*(P?, Fo(m)) for all m.  (1.6)
For any curve C' C X, we can consider the structure exact sequence of C' in X:

0= Ox(—C)—= Ox - Oc—0



16 CHAPTER 1. PRELIMINARIES

and from isomorphism (1.3), we obtain the next exact sequence in cohomology for all m:

0— H°(X,0x(=C)(m)) — H°(X,O0x(m)) = H°(C,0c(m)) = H'(X,Ox(—=C)(m)) = H'(X,0x(m)) = 0.

That implies the next equation:
h2(C,Oc(m)) = —h°(X, Ox(=C)(m)) + h°(X, Ox(m)) +h' (X, Ox(—=C)(m)) for all m. (1.7)
Thus, we can use equations (1.6) and (1.7) and combine them with equation (1.5) to obtain:

W(X, Ox(=C)(m)) — h'(X, Ox(=C)(m))
_ (m —r+3
3

(1.8)
) + hP(P?, Fo(m)) — h' (P?, Zo(m)) for all m > r — 3.

Lemma 1.3.2. Let C be a curve contained in a surface X of degree r in P3, then:
(X, Ox(mL — C)) = h°(P?, Zo(m)) — h°(P?, Ops(m — 1)).
Proof. From the last resolutions we have the following inclusions:
u: HY(X,Ox(mL — C)) — H°(X,O0x(mL))
and
v: HY(P?, Zo(m)) — H°(P?, Ops(m)).

On the other hand, we can consider the restriction morphism:
f:H(P?, #o(m)) — H*(X,Ox(mL — O)).

Furthermore, if T is the equation that defines the surface X, then we have a morphism
g: HY(P? Ops(m —r)) = H'(P?, Zo(m))

which maps a section s in HY(IP?, Ops(m — 7)) to the element T - s that vanishes on C. These
morphisms, and the short exact sequence in cohomology induced by the inclusion of the surface

X in P3, imply the next commutative diagram:
0 T
HO(P3, Ops(m — 1)) —2= H(P?, Jo(m)) —— H(X, Ox(mL — C))
0 —= HO(P3, Ops(m — 1)) —<= HO(P3, Ops(m)) —— H(X, Ox(mL)) 0

From the last commutative diagram is enough to prove that f is a surjective morphism and
g is injective.

Let a € HY(X,Ox(mL — C)) then u(a) € H*(X,Ox(mL)). Since F is a surjective mor-
phism, there exists an element b € H°(P?, Ops(m)) such that F(b) = u(a). The last equation
implies that b is a section that vanishes on C', which implies that b € H°(PP3, #-(m)) Since the
diagram is commutative, f(b) = a and f is surjective.

If g(a) = g(b) then G(a) = v(g(a)) = v(g(b)) = G(b). Since G is injective, a = b and g is

injective.

]
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We find a formula that allows us to compare the global sections of the ideal sheaf of a curve
to those of a curve linked to it. This formula is useful since it allows us to know the minimal
degree of a surface that contains a fixed curve if we know the minimal degree of the surfaces
that contain a curve directly linked to it.

Proposition 1.3.3. Let C, € 57, be a curve and C,_1 € F,_1 be a curve linked to C, by the
complete intersection of two surfaces X, X' of degree r. Suppose that X is smooth and m > r—3
then:

hO(IPga fcr(m)) = hl(IP37 jcr(m)) - hO(IP37 ‘ﬂCr71(2r -m- 4))

+r(r—m—2;(r—m—1)+<m—;+3>' (%)

Proof. 1t follows from 1.2, 1.8 and Lemma 1.3.2.
O

Remark 1.3.4. The preliminaries and more details of liaison theory that we present in this
section can be found in [Mig98]. To my knowledge, the novelty is the uniqueness of the ACM
component in .77, and the Proposition 1.3.3.



Chapter 2

Families in the closure of ACM curves

The goal of this Chapter is to construct families in 7. from known families using Liaison
Theory. The purpose is to verify that the property of being a divisor can be preserved by
liaison. In particular, we consider two families on % of curves with H-R module of rank one
that are divisors of €3 and conjecture that the linked families are divisors in their respective
spaces €,. In the end of this chapter, we prove that this conjecture is true for an infinite of
cases.

2.1 Hyperelliptic curves

In this section, we consider families of curves linked to hyperelliptic curves of degree 6 and
genus 3 and give some properties of such families.

Since a generic ACM curve C on % has h'(P3, #-(2)) = 0, then it is not hyperelliptic. In
fact, the hyperelliptic curves C” satisfy h'(P3, #c(2)) = 1 and in consequence are contained in
a quadric surface [Har10, Ex.8.8, pp. 70-71]. Thus, let ¢” be the family of curves of bidegree
(2,4) in a smooth quadric surface, see figure 2.1, the elements in this family are hyperelliptic
curves of degree 6 and genus 3. This means that € is a subset of % — %3. The dimension
of the family ¢” is 23 ([Har10, Ex.1.2 a)]) and the ideal of a generic element in it has minimal
free resolution:

0——s OIPS(—6) E— O]P3<—5)4 E—— OIP3(_4>3 @ O]P3<—2) _— j:))h —0.

Figure 2.1: A curve of bidegree (2,4) in a quadric.

Definition 2.1.1. Let Z%" be the family of curves in %, that are linked to the elements of
¢" by the complete intersection of two surfaces of degree 4. We define recursively for all r > 4,
the family .Z" 3¢ in S, as the curves linked to curves in the family .£"~4%" by the complete
intersection of two surfaces of degree r.

18
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Given an element in 6™, one can link it by a complete intersection of surfaces of degree 2
and 4 to a curve of degree 2 and genus —1 according to Remark 1.1.6. This must be the union
of two skew lines or a double line of genus —1. In any case, its H-R module has rank one. In
fact, we know that their H-R module is isomorphic to k£ in degree 2 and 0 in all other degrees.
This allows us to know the H-R modules for all r.

Lemma 2.1.2. Let C be a curve in L7 36" then:
o Ifrisodd, H'(P? Io(r — 1)) 2k and H'(P?, 95(n)) =0 foralln #r—1.
o Ifr s even, H'(P3 Fo(r —2)) 2k and H' (P3, #c(n)) =0 for alln #r — 2.

Proof. By definition, the curve C is linked to a curve ¢! € ZU+t)=3%" by the complete
intersection of two surfaces of degree r + 1. By [Harl0, Ex. 8.4 c¢)| we have that:

HY(P?, Zoi(n)) = HY (P?, Zo(2r — 2 —n))". (2.1)

We know the H-R modulo of an element in 4. Thus inductively with the equation 2.1 we have
the result.
0

We used [M2] to compute the minimal free resolution of curves in .£"~3¢" for small values
of r. We conjecture the following:

Conjecture 2.1.3. The truncated minimal free resolution of the ideal of a generic element C'

in £ 3€" is:
for r an odd number,

0 — Ops(—(r+3)) = Ops(—(r +2))* ® Ops(—(r + 1)) = Ops(—r)"> @® Ops(—(r — 1)) and
for r an even number,
0 — Ops(—(r+2)) = Ops(—(r +2)) @ Ops(—(r + 1)) = Ops(—r)".

Using the Proposition 1.3.3 we are able to compute the global sections of the sheaf .#-(m)
for all positive m and all » > 3 for a generic element C' of £"~3¢". This provides evidence
that conjecture 2.1.3 may hold.

Corollary 2.1.4. Let C a generic curve in £ 3€", then we have that:
a) h°(P3, Zo(r—3)) =0

0 if r is even
0/P3 _ =
b) h(P°, Lo(r 1>)_{ 1 if risodd
c) hD(IPg,jC<T)):T+1

d) hO(P3, Zc(r + 1)) = 3r + 4; in general we have:

BO(P®, Jo(r + a)) — (a+ 1)2(a+2)r+ (a—i—l)(a—gQ)(a—i—S) foralla> 1.
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Proof.  a) We use induction over r: for the case r = 3 we know that h°(P?, 7, (0)) = 0.
Suppose that is it true for all s < r» — 1. Let C, € £"3¢". By definition there exists
a curve C,_; € Lr=D=3¢" linked to C. by the complete intersection of two surfaces of
degree r. Applying the formula (%) we have that:

hO(P3, I, (r — 3)) = B (P?, I, (r — 3)) — BO(P®, I, (r — 1)) + 1.

Now, we know that h'(P3, I (r — 3)) = h'(P3, ., _,(r — 1)) = 0 and we can use the
formula (*) with C,_; and other curve C,_, € £"273%€" linked to C,_; to obtain:

WO(B3, I, (r=3)) = —(h' (B, S, , (r=1)—hO(B3, Jg, _, (r—1))4r)+r = KO(P3, J5,_, (r—1)).
The last term is zero by induction.

¢),d) Follow from a) and Proposition 1.3.3.

b) Let C,. € £"3%". We consider a curve C,_; € £~ D73¢" linked to C, as before. From
(%) we have that:

RY(P3, Zc, (r — 1)) = W' (P?, ¢, (r — 1)) — h°(P?, S, (r — 3)) + 0.

From a), we have that h®(P3, %, (r — 3)) = 0 for all r and h'(P3, Z¢, (r — 1)) is one if
r is odd and zero if r is even by Lemma 2.1.2.

O
Now we can prove that the families .Z"3%" are irreducible and compute their dimension.
Proposition 2.1.5. Letr > 3, then the family £73€™" is irreducible of dimension 2r(r+1)—1.

Proof. We use induction over r. For the case r = 3, we know that €™ is irreducible of dimension
23. Suppose that £ 3" is an irreducible family of dimension 2r(r + 1) — 1.
For every r > 3 we consider the incidence variety

Wh = {(C,,Cryy) € L73€" x LTHI3EMC. UC, = X NX'}

with X and X’ surfaces of degree r + 1. That is, the elements of W/ are pairs of curves in
Lr3Eh x LUHD=3€h that are linked by the complete intersection of two surfaces of degree
r 4+ 1. This subvariety comes with projection morphisms to each factor:

s Wh — g3t and 7 W prHD=sgh
Using these projection morphisms, we have that:

dim LU TV3Eh = dim W — dim (7}) 1
=dim L"3C" + dim (7))~ — dim (7).

For a generic element C, in £"3¢™" the fibre of 7} is the Grassmannian of planes in the vector
space h’(P?, #% (r 4+ 1)) and Corollary 2.1.4 implies:

dim (75)™' = dim G(2,h°(F(r +1))) = dim G(2,3r +4) = 6r + 6.

The fibre of 77 for a generic element C,,; in ZUTV73%" is the Grassmannian of 2-planes in
the vector space h°(P?, .#}  (r 4 1)) and again Corollary 2.1.4 implies:

dim (77) ™" = dim G(2,h°(I(r +1))) = dim G(2,7 +2) = 2r + 2.
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Thus, we obtain:

dim LUV = dim LT3 4+ dim (7))~ — dim (7))
=2r(r+1)—1+(6r+6)— (2r+2)
=2r? +6r +3
=2(r+1)(r+2)—1.

On the other hand, the family % is irreducible and the Grassmannian is irreducible. Therefore,
the fibres of 7§ and 7} are irreducible, in particular that implies that £%™" is irreducible and

inductively is follows that all families .Z"~3%" are irreducible.
O

2.2 Reducible curves in %;

This section has a similar structure to the previous section. In this case, we study the family
that parametrizes reducible curves in .73. Indeed, we consider curves defined by a plane quartic
union two incident skew lines.

Let us start with a geometric description of a generic element in this family. Consider a
plane H and two skew lines L, L, in P? that intersect H in two different points p; and ps
respectively. If () is a plane quartic on H that passes through the points p; and p,, then the
curve C'= L1 U Ly U @ (see Figure 2.2) has degree 6 and genus 3, thus C' € 4. Let o be the
family of these curves.

Figure 2.2: C' = L1 U Ly U @ is a generic element of o7

Proposition 2.2.1. The family <7 is irreducible of dimension 23. Furthermore, it is contained
in the closure of 63.

Proof. The dimension and irreducibility follows from the previous construction. On the other
hand, by [Nai02, Thm.1| the only smooth curves in J# are ACM curves or a generic element in
€. By [HHO06, Cor.4.3], the generic element of .7 is smoothable. This implies that the family
o/ is contained in the closure of €3 or the closure of €™, but the latter case is not possible
because both families have the same dimension. Therefore, <7 is contained in %;.

O]
The minimal free resolution of the ideal of an element C of & is:
0——s OIPB (—5) E— OIPIS(—5) @ OIPIS(—4)4 — OIP3 (—4) @ OIP3 (—3)4 ——— jC —0.

We define families in .77, as before:
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Definition 2.2.2. Let Z.</ be the family of curves in 77} that are linked to the elements of
</ by the complete intersection of two surfaces of degree 4. Similarly, the family .#" 3.4 in
. parametrizes curves linked to curves in the family .#"~*& by the complete intersection of
two surfaces of degree r.

The curves in &7 are linked to the union of two skew lines, hence their H-R modules have
rank one. In fact, it is isomorphic to k in degree 1 and 0 in all other degree. Therefore, they
are in the same linkage class as the elements of ¢". Furthermore, the same arguments that go
into the proof of the Lemma 2.1.2 can be used in this case.

Lemma 2.2.3. Let C be a curve in L34 then:
o Ifr s even, H'(P? Jo(r —2)) 2k and H'(P3, #c(n)) =0 for alln #r — 2.
o Ifr isodd, H'(P? So(r —1)) 2k and H'(P3, #c(n)) =0 foralln#r —1.

Proof. The proof is similar that Lemma 2.1.2.
m

In order to compare the families .Z"3€" and #7347, we reproduce the proof of Corollary
2.1.4 and Lemma 2.1.5 and obtain the following;:

Corollary 2.2.4. 1. Let C be a generic curve in L 34, then:

a) h°(P3, Zo(r —3)) =0

0 if ris odd
b) RO, Je(r —1)) = { 1 if ris even

c) WO(P3, Jo(r) =r+1
d) h°(P?, Zo(r + 1)) = 3r +4; in general we have:

BO(P®, Jo(r + a)) = (a+1)2(a+2)r+ (a+ 1)(a—é—2)(a+3) foralla> 1.

2. The family L34 is irreducible of dimension 2r(r +1) — 1.

As in the case of the families #"3%" we used [M2| to compute the minimal free resolution of
elements on " 3.7 in low cases and expect that the resolution of their elements are

Conjecture 2.2.5. The truncated minimal free resolution of the ideal of a generic element in
L34 is:

for r an even number,

0 — Ops(—(r+3)) = Ops(—(r +2))* ® Ops(—(r + 1)) % = Ops(—1)"> @ Ops(—(r — 1)) and
for » an odd number,

0— (9]1:3(—(7‘ + 2)) — O]ps(—(T + 2)) D O]PS(—<T + 1))r — OPS(—T)T—H.
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2.3 The first cases

The families ¥" and &/ have many similarities. Indeed, both are irreducible families of di-
mension 23, and the generic element in both families is linked to the union of two skew lines.
By Proposition 2.2.1 we know that the family .7 lies in the closure of the family %3 of ACM
curves. One of the purposes of this section is to verify that the family ¢ lies in the closure

of the family 4;. Thus, both families " and &7 are different divisors of %3. The second goal
of this section is to prove that the closure of the linked families %" and ..« are divisors in €.

Showing that a family lies along the closure of another family is in general difficult. Thus,
let us start with a useful proposition that helps us to prove that the families Z%€" and Z.o/
are contained in the closure of €.

Proposition 2.3.1. Let r < 9. If {Ci}ier is a family of curves in P3 such that:
o deg(Cy) = L;D and g(Cy) = w +1 forallteT.
o Cy is contained in a surface of degree r — 1
o (P3¢, (n)) =0 foralln#r—1
e The generic element Cy is not contained in a surface of degree r — 1,
then the generic element of Cy is ACM.
Proof. For all n > 0 and ¢ generic we have by semi-continuity that:
0 < h'(P?, #c,(n)) < W (P?, Zo,(n)).

Since 1! (Cy, F,(n)) = 0 for all n # r—1 then h'(Cy, ¢, (n)) = 0 for all n # r—1 and ¢ generic.
By hypothesis h°(P3, Z¢,(r — 1)) = 0 thus:

We have that H?(P3 %o, (r — 1)) & HY(C;, Oc,(r — 1)) and the last cohomology group is
isomorphic to H°(Cy, K¢, — (r — 1)Hy) here H; is the hyperplane section of Cj. Since r < 9,
then 2¢(C;) — 2 < (r — 1)deg(C}). Then the degree of the divisor K¢, — (r — 1) H; is negative
which implies H°(Cy, K¢, — (r — 1)H;) = 0 and therefore H*(P?, ¢, (r — 1)) = 0.

We conclude that h'(Cy, Zo,(r — 1)) = 0 for generic t; then the Hartshorne-Rao module of

a generic element of the family C; is the trivial module. This is equivalent to being ACM.
O

In the proof of the previous proposition, we can see that when r» > 9 the degree of the
divisor K¢, — (r — 1) H, is positive. However, the degree of this divisor is less than the genus of
the curve C; thus there exists the possibility that it does not have sections.

Lemma 2.3.2. The family €" is contained in €s.
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Proof. This result is an exercise of [Har10, Ex. 8.8 d)| and follows from the Proposition 2.3.1.
Indeed, since €" is irreducible, this family must be contained in only one component or in the
intersection of two o more components of 7. On the other hand, using the program [M2]| we
obtain explicit examples of elements of € that are smooth curves and are smooth points in
;. Their tangent spaces have dimension 24. Then the family €" has to be contained in a
component of dimension 24. Suppose that & ¢ 5. Then there exists another component U
of dimension 24 that contains ¢, since the generic element of U cannot be an ACM curve, the
Proposition 2.3.1 implies that the generic element of U is contained in a quadric surface. This
implies that €* = U, hence U has dimension 23 that is a contradiction thus " is contained

in the closure of %3.
]

Now we are going to study the Hilbert scheme 77;. We will focus on the linked families
L€ and Lo/ of dimension 39 contained in the Hilbert scheme .7 by Proposition 2.1.5 and
Corollary 2.2.4. We have to verify that they are contained in the component €, that has
dimension 40 to prove that these families are divisors on it. This is not obvious since the
Hilbert scheme 77 is reducible and the next Theorem describes three components in it.

Theorem 2.3.3. The Hilbert scheme of curves of degree 10 and genus 11 s reducible and has
at least the following three components:

1. The component of ACM curves, denoted by €,, has dimension 40.
2. The component of extremal curves, denoted by &, has dimension 92.

3. A component Z of dimension at least 46 that contains a family that parametrizes the
union of two disjoint plane quintic curves.

Proof. The family of ACM curves is a component of dimension 40 by Theorem 1.2.3. The
existence of the component &} is a result from [MDP96, Thm.4.3].

Set () the family that parametrizes the union of two disjoint plane quintic curves. This
family is irreducible of dimension 46.

The family @Q is not contained in % since the dimension of €, is 40. On the other hand,
the H-R module of an element of () has rank 25 and the H-R module of an extremal curve has
rank 425. Thus, by semi-continuity, ) cannot be contained in the component &}.

Therefore, there exists a component Z different from €, and &, that contains Q.

We are now going to prove that the linked family 2.7 is in the closure of €.

Proposition 2.3.4. The closure of the family of curves linked to a plane quartic union two
skew lines incident to it are contained in the closure of the ACM curves, that means

Lo CE,.

Proof. First, we prove that the family of curves in 77 that are contained in a cubic surface has
dimension 39. Let X C P? be a smooth surface of degree 3. We use the notation of [Har77, Not.
4.7.3, pag. 401]|. If C is a curve in X of degree 10 and genus 11, then its class is one of the
following:

8l —361 - 362 - 263 —264 - 265 —266 = B1

9] — 461 - 362 - 363 - 364 - 265 - 266 = B2
101 — 4E1 - 462 - 463 - 364 - 365 - 266 = B3
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101 — 5E1 — 362 — 363 — 364 — 365 — 366 = B4
111 — 5E1 - 462 - 463 - 464 - 365 - 366 = B5
121 — 5E1 — 562 — 463 — 464 — 465 — 466 = BG

Let U; be the family of all curves of degree 10 and genus 11 that are contained in a linear
system | B;| of a smooth cubic surface X. Cubic surfaces form an irreducible family of dimension
19. Thus U; is irreducible. Since Pic(X) is discrete, the maximal families of curves inside X
are complete linear systems. Therefore, the dimension of U; is 19+ dim|B;|. On the other hand,
there exists a smooth irreducible curve in |B;| for each ¢ by [Har77, Cor. 4.13, pag. 406], thus
U; # (0. We compute the dimension for the case Uy, but a similar arguments holds for all cases.
Let C' € |By| be a smooth irreducible curve. Since the degree of C' is 10, there exist a unique
surface of degree 3 that contains C'. From the exact sequence

0—= Ox = Ox(C) — Oc(C)—0
in cohomology we have that:
0— H°(X,0x) = H(X,0x(C)) = H°(X,0c(C)) — H'(X,0x) = 0.
Thus
R (X, 0c(0)) = h°(X, 0x(C)) — h*(X,Ox) = h*(X, Ox(C)) — 1 = dim|C].

The sheaf Oc(C) has degree C? = 30 which implies that the linear system is not special. By
the Riemann-Roch Theorem, we have that:

h°(C, Oc(C)) = 30 — 10 = 20.

Therefore, the dimension of U; is 19 + 20 = 39 as we expected.

Now, by Corollary 2.2.4 the family .Z.o/ is irreducible, thus it must be contained in only
one component or in the intersection of two or more components of ;. Using [M2| we obtain
explicit examples of elements in .Z.«7 that are smooth curves and are smooth points in 7%, with
tangent space of dimension 40. Thus -Z.<7 has to be contained in a component of dimension
40. If #.<f is not contained in %; then Proposition 2.3.1 implies that .Z.<7 is contained in a
component of curves that are contained in a cubic surface. But as we saw, such component has
dimension 39. That is a contradiction. O

Observe that in the proof of Lemma 2.3.2 and Proposition 2.3.4 we used the geometry of
the surfaces in which the curves are contained, thus we can not generalize the proof for other
cases.

In the next section, we prove that the linked families to 6" and &/ are contained in their
respective %,. In particular, the family . €™ is contained in the closure %,. Since the compo-
nent %; has two divisors € and <7, then we prove that the linked component Z%; = €, has
two divisors that correspond to the closure of the linked families £%€" and £« .

We expected that the previous behavior is true in general; that means, the families £7—3¢"
and Z7—3.4/ are divisors of the component %,. We have proved that the families £ —3%" and
2734/ have dimension dim%, — 1. Nevertheless, since the spaces . are reducible for all
r > 3 it is not obvious that these families are contained in the closure of €,.. We are able to
prove the last claim in many cases; which is what follows.
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2.4 Almost canonical curves in €.

In this section, we will describe two families in each .77, that allow us to verify that the families
LT3€" and #7734/ have the same geometric description when they have different parity.
That means, the families " 2% and #" 2%/ have the same description for all 7. One of such
families has a geometric description and the other a cohomological one. The cohomological
description helps us to prove that infinitely many of families .#"3%" and £ 3./ are contained
in the component of ACM curves.

Definition 2.4.1. We denote the open set of all smooth curves on % by J#me°th,

e Let Z,_1 be the closure of the set of all smooth curves in .77, that lie in a surface of degree
r — 1. That means:

Dy_1 1= {C € Ao 0(P?, Jo(r — 1)) = 1} C .

e Let ., be the closure in 7, of the set of all smooth curves such that the canonical divisor
minus r — 2 times the hyperplane section H has one section and the rank of their H-R
module is 1. That means:

M, = {C € Hsmooth|WO(C, K — (r—2)H)=1 and rkM(C)=1} C 7.

The relation between these two families and the families £ 3%" and £ 3.4 defined in
2.1.1 and 2.2.2 is stated in the next Theorem:

Theorem 2.4.2.

1. Ifr is an odd number, then the closure of the family £ —3€" is equal to the family D,_,
and the closure of the family £"347 is an irreducible component of the family ..

2. If r is an even number, then the closure of the family L34 is equal to the family 2,_,
and the closure of the family L™ —3€" is an irreducible component of the family .

Proof. Suppose that r is an odd number.

First we prove that £7—3¢" = 9,_,. The set L3¢ N ™" is dense in L7 3¢" and by
Corollary 2.1.4 we have that £"3¢" N s5moh C 9, ;. To prove the other containment we
use induction over s, with » = 2s+4 1. The base case holds by definition. Let us assume it holds
forr—2=2(s—1)+1.

Let C' € s5mo°th 0 g, | that means, h°(P3, #o(r —1)) = 1. We can then find two surfaces
without common components X and Y of degree r that contains C'. By Bertini’s Theorem we
can assume that X is smooth. Then we have a curve C’ € . _; linked to C' by the complete
intersection of X and Y and by the Proposition 1.3.3 we have that:

RO(P3 2L (r — 1)) = K (PP I (r — 3)) — h°(P3, Ao (r — 3)) + 1.
Since h%(P3, Zo(r — 1)) = 1, we have that h°(P?, S (r —3)) = 0, thus h°(P3, £ (r—1)) >

r — 1. Then we can link C’ to a curve C” € J#,_5 by the complete intersection of two surfaces
without common components X’ and Y’ of degree r — 1.
Again by Proposition 1.3.3, we have that:

(P2, Io(r — 1)) = h'(P?, Io(r — 1)) — h°(P?, Ior (1 — 3)) + hO(P?, I (r — 3)).
By construction C' and C” are linked by the complete intersection of surfaces of degree
r, which implies H'(P?, Yo (r — 3)) & HY(P3, #o(r — 1))¥. Therefore h°(P3, Zou(r — 3)) =
hO(P3, Zc(r — 1)) = 1. Then, by induction C” € Z,_9)_1 = L3¢ and the definition of
our families it follows that ¢’ € £~V =3¢" and thus C € £ 3¢™".
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Now we prove that £" 3.4/ is a component of .#,. Let us start with a generic element C' in
L34/ Tt follows that h'(P3, Zo(r — 2)) = 1 and h'(P3?, F(n)) = 0 for all n # r — 2 by
Lemma 2.2.3. Hence the H-R module of C' has rank one. On the other hand, by the exact
sequence:

0= Fo(r—2) = Ops(r —2) = Oc(r —2) — 0,

we have the next exact sequence in cohomology:

0—— HO(P?, Fo(r — 2)) —— HO(P?, Ops(r — 2)) — H(C, Oc(r — 2)) (2.2)

e

HYP3, Io(r — 2)) —= HY(P3, Ops(r — 2)) —= H(C, Oc(r — 2))
H*(P3, Zo(r — 2)) —= H*(P3, Ops(r — 2)) —= H*(C, Oc(r — 2)) — . ..
By Serre duality H'(C, O¢(r —2)) = H*(C,we @ (Oc(r —2)Y)), thus using Riemann-Roch

we have that:

3

On the other hand, h°(P3, Z¢(r — 2)) = 0 by Corollary 2.2.4, thus from the sequence 2.2 it
follows that:

X(OC(T—Q))+1:(r—2)dr+1—gr+1:(r—i_l)—l-l (2.3)

Y1 (24)

h0<C, Oc(’f’ — 2)) — hO(IPg, O]pS(T i 2)) + hl(IP3, fc(’f’ _ 2)) _ (7" — 2+ 3)

3

Then the equations (2.3) and (2.4) imply that h'(C, Oc(r — 2)) = 1; therefore C' € A,.
Since #7347 is irreducible, there exists an irreducible component of .# that contains it.
We denote this component by .#Z’. Let C' be a generic element of .#’. Observe that we have

an exact sequence as 2.2 for the ideal of C. By Serre duality we have that h'(C, Oc(r — 2)) =
h*(C,Kc — (r —2)H) = 1. Thus

R(C, Oc(r —2)) — 1 = h*(C,Oc(r — 2)) — h*(C, Oc(r — 2)) = xOc(r — 2)
= h%(P3?, Ops(r — 2)) = h°(C, Oc(r — 2)) — K1 (P?, Zo(r — 2)).
Therefore h'(P3, Z¢(r —2)) = 1 but rkM(C) = 1 implies that C' € £ 3.«

The proof in which r is even is analogous.
O

We denote by .# the component ., that is equal to .Z" 36" in the odd case and to £ 3o/
in the even case. In particular, Theorem 2.4.2 tells us that 9, = £, .14 and M| = £, 19,1
for all » > 4.

The next Proposition is inspired in Proposition 2.3.1 and the proof follows from similar
arguments.

Lemma 2.4.3. If {C, }ier is a family of curves in P? such that:
e C, is smooth for a generic element.
° d@g(ct) — 7‘(7‘;—1) and g(ct) — T(T+1)6(27'—5) + 1

o Cy is a smooth element of M, and
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e the sheaf we, ® (Oc,(r — 2)Y) has not global sections for t generic,
then the generic element of {C}}ier is ACM.

Proof. For all n > 0 and t generic we have by semi-continuity that:
0 < h'(P?, Zc,(n)) < W (PP, Zo,(n)).

Since Cy € 4, by Theorem 2.4.2, Cy is contained in £ 3% if r is even or in L3/ if r is
odd. In both cases we have that h'(Cy, Z¢,(n)) = 0 for all n # r —2. Then ' (C}, I, (n)) =0
for all n # r — 2 and t generic.

By hypothesis h°(C}, we, @ (Oc,(r —2)V)) = h1(P3,O¢,(r — 2)) = 0 and we have an exact
sequence as (2.2). Therefore

hY(P3, Fo(r — 2)) = BO(P3, Oc, (1 — 2)) — h°(P?, O, (r — 2))
= hO(P3, Ops(r — 2)) — (xOc, — KX (P, O, (r — 2))) = 0.

We conclude that h'(Cy, Z¢,(r — 2)) = 0 for ¢ generic. Then the Hartshorne-Rao module of a
generic element of the family C; is the trivial module. That is equivalent to being ACM.
[

A consequence of this Lemma, Theorem 2.4.2 and Theorem 1.2.3 is the following Corollary
that is the Theorem B of the introduction:

Corollary 2.4.4. If r is an odd number, then the family L3 is_contained in the closure
%,.. If r is an even number, then the family L 36" is contained in €,.

Proof. By Theorem 2.4.2 when r is an odd number, the family .#" 3. coincides with the
family .#! and if 7 is an even number, the family .Z"3%" is equal to .#’. Lemma 2.4.3 proves
that the family .#] is contained in an ACM component but by Theorem 1.2.3 the only ACM

component is E;..
m



Chapter 3

Curves of degree 6 and genus 3

This is a technical Chapter and it is completely dedicated to the case when r is equal to 3,
namely the Hilbert scheme of curves locally Cohen-Macaulay in P? of degree 6 and genus 3.
In [Amr98, Thm.7] it is proved that this scheme is reducible and has 3 components. Also, it
gives a description of modules that appear as H-R modules of locally Cohen-Macaulay curves
of degree 6 and genus 3. We use this work to describe some families in the components of this
scheme that we construct with [M2]. For this section, we denote by M (n) the graded module
M shifted by n.
The three components of the Hilbert scheme .73 are the following:

1. The main component: This component is the closure of the ACM curves whose di-
mension is 24 and coincides with the closure of the family of smooth curves of degree 6
and genus 3. The generic element has the following minimal free resolution:

0 —— Ops(—4)} —> Ops(—3)' — I — 0.

In this component, the generic element has trivial H-R module. Nevertheless, there exist
two families of codimension one with H-R module of rank one:

e Hyperelliptic curves: We denote this family ¢, as in the Chapter 2. The dimen-
sion of €" is 23, the elements in this family have H-R module isomorphic to k(—2)
and the ideal of a generic element in it has the following minimal free resolution:

0 — Ops(—6) — Ops(—5)* = Ops(—4)* © Ops(—2) — A — 0.

e "Antenitas" family: As in Chapter 2 this family is denoted by /. The dimension
of this family is 23, the elements in ./ have H-R module isomorphic to k(—1) and
the ideal of a generic element in it has minimal free resolution:

0 — Ops(—5) — Ops(—5) @ Ops(—4)* = Ops(—4) © Ops(—3)* — S — 0.

2. The component of reducible curves: We denote this component by %3, the generic
element is the union of a plane quartic with a conic that intersects it at a point. The
dimension of this component is 24 and the H-R module that appears for the elements of
this component is M = k[z,y, z,w|](—1)/{x,y, z,w?) by [Amr98, Thm.4|]. The minimal
free resolution of the ideal of an element in %5 is:

0— O]pS(—7) — OPS(—6)3 Q5] O]P3<—4) — OIP3(_5)2 S5 O]ps(—g) S5) O]pS(—Q) — fc — 0.

3. The extremal component: By [MDP96, Thm.4.3| there exists a component &3 gener-
ically non reduced of dimension 30, whose generic element is an extremal curve. The H-R

29
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module of a generic element in this component is M = k[x,y, z, w|(2)/{x,y, F, G) with
F, G polynomials of degree 3 and 7 respectively. The minimal free resolution of the ideal
of an element in &3 is:

0 — Ops(—10) = Ops(—9)* © Ops(—T7) — Ops(—8) ® Ops(—6) © Ops(—2)* — Fo — 0.

For any sum of positive integers y . ; a; equals to six, we construct curves C' in J; that are
the union C} U. ..U C, of smooth irreducible curves C; of degree deg(C;) = a; and considering
all possible arithmetic genus for every C;. The code in [M2] of all these families is found in
the Appendix. We separate all these families into four lists that correspond to the different
Betti tables that appear in J73. At the end of any list, we add a diagram that represents the
degeneration between these families.

Betti tables. Given a curve C' in P?, (which we assume non-degenerate) the Betti table of
C presents its graded Betti numbers. With this information is possible to recover the minimal
free resolution of the ideal associated to C'. If C' has the following Betti table:

0 1 2 n
1| i Big - B

2 61,2 62,2 e 677,,2

m 51,m ﬂ2,m e ﬂn,m
then the associated ideal of C has the next minimal free resolution:

0= @ 0ps(—(n—+14))’ = - = @ Ops(—(141))" — Jo =0

with f;; a natural number for all i € {1,...,n} and j € {1,...,m}. We write "—" instead
of 0 in a Betti table.

Example 4. The ACM curves of degree 6 and genus 3 have minimal free resolution:

0 — Ops(—4)° = Ops(—=3)* = Fo — 0.

—_

2
and the Betti table is:

\OR o )
S|
Lo I

3.1 The ACM component

We call the component %3 the main component since by [Nai02, Thm.1] this is the only com-
ponent where there are smooth curves.

We have found 3 different Betti tables corresponding to curves in %3 and for each table, we
have some families that we list below:

e Families Ai C %3 with ¢ € {0,...,14}; the elements in these families are smooth points
in the Hilbert scheme, have H-R module trivial, and the next Betti table:

o = O
ST (U
W 1N



3.1. THE ACM COMPONENT 31

A0

Al

A2

A3

A4

Ab

A6

AT

A8

A9

A10

All

A12

A13

Al4

The generic point of €3 is a smooth ACM curve. The family of all ACM smooth
curves is an open set of €3 (dimension 24).

Line + quintic of genus 2: Take a curve C' of bidegree (2, 3) in a smooth quadric and
a line L that intersect C' in two points (dimension 22).

Line + quintic of genus 1: The elements in this family are a quintic of genus one
union a trisecant line (dimension 21).

Twisted cubic + plane cubic: For three generic points in P? take a twisted cubic
through the points and in the plane defined by the points take a plane cubic through
to the points (dimension 21).

Conic + quartic of genus 1: For three points p,q, s in P? take two quadrics that
contain the points, the intersection of these quadrics is a quartic of genus one, and
add a conic through the three points (dimension 21).

Two lines + quartic of genus 1: For four points p, ¢, 7, s in IP? take two quadrics that
contain the points, the intersection of these quadrics is a quartic of genus one, and
add the line through the points p and ¢ and the line through the points r and s
(dimension 20).

Line + rational quintic: Let L a line in P? and choose two distinct points p, ¢ in L.
Take a curve Cy € %5 and link to a curve C} € €, by the complete intersection of two
quartics that contain the curve Cy and the points p,q. Now take two quartics that
contain the curve C; and the line L, the complete intersection of these quartics liked
C) with a curve C' € %3 that is the union of L with a rational quintic. (dimension
20).

Conic + rational quartic: Take a rational quartic and in the four points of the
intersection of a general plane with the quartic put a conic through the four points
(dimension 20).

Two twisted cubic: For four generic points in P? take two different twisted cubic that
passes through the four points. The union of these cubics is a curve in €3 (dimension
20).

Two lines + rational quartic: Take a rational quartic and put two lines over two
pairs of points in the intersection of the quartic with a general plane (dimension 19).

Line + conic + twisted cubic: For three generic points in P? take a twisted cubic
that passes through the three points and a conic in the plane determined by these
that through for the three points. Now take a line in the same plane and the union
of the twisted cubic, the conic and the line is a curve in €3 (dimension 19).

Three conics: The elements in this family are three conics in three different planes
that intersect two by two in two points (dimension 18).

Three lines + Twisted cubic: The elements in this family are twisted cubics union
three secant lines (dimension 18).

Four lines + conic: Let pq,...,ps four points in a plane H and p; ¢ H. Take @ a
conic in H through py, ..., ps, L1 the line between p; and ps and Ly the line between
pe and ps. Let pg € L1 — {p1,ps} and L3 the line between p3 and pg. Lastly take
a point p; € L3 — {ps,ps} and the line L, between p, and p;. The curves in this
family be QU Ly U Ly U Ly U Ly (dimension 17).

Six lines: Given four generic points py, ..., ps € IP? we call the tetrahedron T deter-
minate by pi,...,ps to the union of the six lines that contain pairs of these points.
The family of all tetrahedra is an irreducible subfamily of %3 (dimension 12).
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Remark 3.1.1. All these families have as generic initial ideal the ideal of the triple line
(2%, 2%y, zy®, 7).

In Figure 3.1 we add a diagram that describes the following:

The pointed lines separated the families by dimension.

We draw an arrow from a family A to a family B if there exists a flat limit from an
element in A to an element of B. The code of these limits is in Appendix C'.

In the shaded part is the families " and & that are not ACM but we include them
since there are some degenerations to some subfamilies of these that we will describe
later.

We do not write arrows where do not exist plane limits. The way to check that
do not exist a flat limit from an element C, in a family A to an element C} of a
family B is to assume that it exists and follows all components of the curve C, under
such limit and find a contradiction. For example, since a quartic of genus 1 cannot
degenerate to a rational quartic, there is not exist a flat limit from elements of the
family A4 to the family A;.

Of course there exist flat limits from a generic element in %3 to any family A; and
from any family, A; to the triple line (23 2%y, xy?, 4*). But we do not draw these
lines so as not to overload the diagram

e Families Bi C ¢" with i € {0,...,7}: the elements in this family are smooth points in
the Hilbert scheme, has H-R module k(—2) and the next Betti table:

BO

B1

B2

B3

B4

Bb5

B6

The generic element in €™ is a smooth irreducible curve of bidegree (2,4) in a smooth
quadric surface (dimension 23).

Two plane cubics: The elements in this family are two plane cubics in two different
planes that intersect at two points (dimension 22).

Line + quintic of genus 2: The elements in this family be a quintic of bidegree (2, 3)
and a line of bidegree (0, 1) in a smooth quadric surface (dimension 20).

Line + conic + plane cubic: The elements in this family be a line and a conic in the
same plane and a plane cubic in another plane that does not intersect with the line
and intersects with the conic in two points (dimension 20).

Conic + rational quartic: The elements in this family be a quartic of bidegree (3,1)
and a conic of bidegree (1,1) in a smooth quadric surface(dimension 19).

Line + rational quintic: It is the same construction that in the case ACM but now
take Cp € ¢ (dimension 18).

Two lines + two conics: In two different planes take a line and a conic so that the
conics intersect at two points (dimension 18).
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dimension

Figure 3.1: ACM curves

B7 Six lines: A triangle is a curve determined by the union of all lines between three
points in general position. The elements in this family are the union of two triangles
that intersect at two points (dimension 16).

Remark 3.1.2. All these families have as generic initial ideal the ideal (2%, xy3, y*, zy?2)
that decompose as (z?, zy?, y*) and (2%, 43, 2) (an embedding point of degree 6).

As before we include Figure 3.2 to represent the flat limits inside of €.

e Families Ci C o/ with i € {0,...,3}: the elements in this family are smooth points in
the Hilbert scheme, has H-R module k(—1) and the next Betti table:
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dimension

23

22

Figure 3.2: Hyperelliptic curves

CO The elements in &/ are a plane quartic with two skew lines that intersect the quartic
at two different points (dimension 23).

C1 Three lines + plane cubic: The family consists of two skew lines each of them
intersect a plane cubic in one point and other line in the plane of the cubic (dimension

20).

C2 Two lines + two conics: The family consists of two conics in the same plane H and
two lines outside of H and every line intersects with some conic (dimension 19).
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C3 Four lines + conic: In a plane H take a conic and two lines, the other two lines are
outside of H and through two different points of the conic (dimension 18).

Remark 3.1.3. All these families have as generic initial ideal the ideal (z3, 2%y, xy?, 722)
that decompose as (22, zy?,y*) and (z3,y, z) (an embedding point of degree 3).

In Figure 3.3 we represent the flat limits on 7.

dimension

Figure 3.3: Reducible curves in €

3.2 The component of reducible curves

In this component there are no smooth curves, the generic element is reducible and the H-
R module that appears for the elements of this component is M = k[z,y, z, w](—1)/{x,y, z, w3).
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Here there is only one Betti table and we list some families below:

(\]
w

1
1
1

—
1

2 31

H;C»DI\JI—“O

DO The elements in %5 as we saw before are the union of a plane quartic and a conic
that intersect in one point. The generic elements in this family are smooth points
in the Hilbert scheme (dimension 24).

D1 Two lines + plane quartic (I): The elements of this family are a plane quartic, a line
that intersects the conic in one point, and another line that does not intersect the
quartic and intersects the other line in one point (dimension 23).

D2 Three conics: Take two conics in the same plane and the third conic in another plane
that intersects with another conic at one point (dimension 23).

D3 Line + conic + plane cubic: In a plane take a cubic and a line and for one point in
the cubic (or the line) take a conic through the point in another plane (dimension
21).

D4 Two lines + two conics: Take two lines and a conic in the same plane and the second
conic in another plane that intersects the other conic (or some line) at one point
(dimension 19).

e In this component we find two special families whose elements have the same Betti table

but are singular points of the Hilbert scheme:

D5 Two lines + plane quartic (II): The elements of this family are a plane quartic and
two lines that intersects the conic in the same point (dimension 22).

D6 Four lines + conic: In a plane H takes a conic and two lines, the other two lines are
outside of H and through the same point in the intersection of the other lines with
the conic. (dimension 16).

Remark 3.2.1. All these families have as generic initial ideal the ideal (x?, zy?, y°, y*z)
that decompose as (22, zy?, y*) and (z,y°, z) (an embedding point of degree 5).

As in the previous section in Figure 3.4 we have a diagram with the flat limits in %j.

3.3 The extremal component

By [MDP96, Thm.4.3| there exists a component &3 generically non-reduced of dimension
30, whose generic element is an extremal curve. By [Amr00, Thm.4.3] the H-R module of
a generic element in this component is M = k[z,y, z,w|(2)/(z, y, F, G) with F, G polyno-
mials of degree 3 and 7 respectively.

We only identify a family in this component. This family consist of curves with ideal
associated I = (22, 2y, Y5, G — Fy°) with F, G € k[z,w| of degree 3 and 7 respectively.
The Betti table of an element in this family be:
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Figure 3.4: Curves in %3
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Chapter 4

The main component of curves of degree 6
and genus 3

In this chapter, we focus on the main component 3. Note that in the case when r is 2 we have
that % = %, and the only lem curves in this space are the ACM curves. This changes in the
case r = 3. As we saw in the last chapter, the closure of the ACM curves is only one of three
components of 773. Inside this component, there are exactly two families of codimension one
in (%3 — %3)'*™ as the following Lemma shows:

Lemma 4.0.1. The set of locally Cohen-Macaulay curves in Cs—C is equal to the set of locally
Cohen-Macaulay curves in the union o/ U€". In other words,

(?3 . cgg)lcm _ (Q U @)lcm.
Moreover, taking closure we have that
(G — Gy)lem = of UE. (4.1)

Proof. The union (& U €")'™ is contained in (€5 — €)' since the elements in 63 — 65 are
curves with non-trivial H-R-module. By [Amr00, Thm.1.9] any curve in ﬁgg)lcm with non-trivial
H-R-module is contained in (&)™ or (€)™, Then (63 — 63)™ C (o U €h)lem.

]

Let NJ(%3) be the quotient of the Cartier divisors on 3 modulo numerical equivalence and
N'(%3) be the tensor product of N (%3) with the field of the real numbers R. We do not know
the behavior of €; outside of the family of locally Cohen-Macaulay curves, thus we can not
claim that the dimension of N'(%3) is finite. But the equality (4.1) allows us to consider the

normal scheme % := (€3 — €)™ U 3 as a partial compactification of €. In this case N'(%)
has finite dimension.

Furthermore, we claim that the classes of the families €% and < are linearly independent
in N'(4%). To show this, we begin by defining a birational map: for a generic element in %3, its
ideal is generated by exactly 4 linearly independent cubics. These four cubics define a linear
subspace of dimension 3 in the space of cubics P*®. Thus we can define the map:

h:%-->G(3,19)
C——=P(H(P3, #:(3))) .

The map A is not a morphism: by [Amr00, Prop. 3.13 and 3.15], the intersection of &
with %3 is non-empty and the general element in this intersection has five linearly independent
cubics. Similarly, the intersection of €* and & with &3 is not empty and the ideals of elements
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in this intersection have 7 linearly independent cubics. In particular, h is not well defined even
in %. Nevertheless, this occurs outside of 63 U ¢" U &/ which implies that h is well defined
over 4 in codimension one.

On the other hand, observe that for a generic C' in %3, the four defining cubics determine
C' scheme-theoretically. This implies that the map A is birational.

We aim to show that this map contracts the divisors €* and 7. In order to prove this we
need the following two Lemmas:

Lemma 4.0.2. The map h contracts €" to a family of dimension 9.

3
[,y,2z,w
the space P'? of cubics in ]P:E’I _— by taking the subspace generated by the quadric multiplied

by the four variables x, ¥y, z,w. Thus we can define a morphism:

Proof. Given a quadric in P | We can obtain an element of the Grasmannian of 3-planes in

f:P(H(P? Ops(2))) — G(3,19)
qr—Vo={(q-2,q-y,q-2,q- w).

Set @ := I'm f. Observe that f is an embedding, thus @ is a subvariety of G(3, 19) of dimension
9.

The cubics that contain a curve C of " are multiples of the smooth quadric gy that contains
C. In particular, the elements qo - ,qo - ¥, qo - z and qg - w generate the space H(P?, .7(3)).
Thus, by the definition of h, we have that h(¢") C Q. Let us argue that in fact h is dominant
onto Q. Let ¢ be a smooth quadric in P(H®(P?, Ops(2))). Let L and L’ be two lines in the
same ruling of ¢ and p an irreducible quartic that contains them. The residual curve to L U L’

in the intersection of ¢ and p is a curve of bidegree (2,4) in q and therefore an element of €™,
thus f(q) € h(€"). That implies that h(¢") = Q.

Lemma 4.0.3. The map h contracts & to a family of dimension 11.

Proof. To prove this we give an auxiliary set-theoretic map that helps us understand the image
under h of the family 7: given two lines in general position L and L’ in P3, there exist exactly
four linearly independent quadric surfaces that contain them. Thus for any linear equation F
of P3 we can multiply F' by these quadrics and obtain a 3-space in the space of cubics in P3.
Therefore, we have the following map:

g: H°(P?, Ops(1)) x G(1,3) --» G(3,19)
(F,L,L') —s P(F - H'(P?, Z101,(2)))

where F' - H(P3, #1,,1/(2)) denotes the subspace generated by the four quadrics that contain
the lines L and L’ multiplied by the lineal equation F'. The map ¢ is generically injective, then
the subvariety U := I'm ¢ has dimension 11.

Since a generic curve C' in 7 is the union of a plane quartic ¢y and two skew lines, each of
them intersecting gy at a point, then the cubics in H°(P3, #¢(3)) must contain the plane F
that contains qg. Consequently, any of such cubics have to be F' - () for some ) of degree
2 that contains the two lines of C'. This implies h(</) C U. Additionally, given a generic
element g(F, L,L") € U, let ¢ be a general plane quartic in F' that passes through the points
of intersection of L and L' with F'. Then ¢ union the lines L and L’ is an element of .o7. That
implies g(«7) = U.

]
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Remark 4.0.4. A birational map ¢ : X— — Y between normal projective varieties is called
contracting if the inverse map ¢! does not contract any divisors. Let ex(p) be the subcone
of Eff(X) spanned by the y-exceptional effective divisors. By [Okal6, Lem.2.7| the extremal
rays of this cone are generated by the ¢-exceptional prime divisors, then by [HK00, Lem.1.6]
ex(p) is a extremal face of the effective cone and therefore the p-exceptional prime divisors are
extremal rays of Eff(X). On the other hand, since two different prime divisors have different
support, the second part of [Okal6, Lem.2.7| proved that any two y-exceptional prime divisors
are linearly independent.

Now we are able to prove the main result of this section:

Theorem 4.0.5. The classes of & and €" in NY(B) are linearly independent and each of
them spans an extremal ray of the effective cone

Eff(€) € N'(%).

Proof. Lemmas 4.0.2 and 4.0.3 prove that the birational map % is a divisorial contraction that
contracts the divisors &/ and ¢ onto the subscheme ) U U. This implies that the divisors .o/
and € are h-exceptionals and by remark 4.0.4 the theorem follows.

O

Observe that for each r > 3 we can define the map

he 26— -=G(r, ("}?))

3

Cr+——=P(H(P3, 75(r))) .

Nevertheless, we cannot repeat the argument of Theorem 4.0.5. In general, we do not know if
the map h, is well defined in codimension 2 and which divisors are contracted by h,..

The definition of % and Theorem 4.0.5 tell us that N'(2) is generated by the classes of
o, €h and generators of N'(%3). In order to compute the dimension of the space N'(%3), we
consider the incidence variety W, defined in remark 1.2.4. For a generic element C,. 1 in %1,
we can identify any element (C,,C,;1) of the fiber 7 *(C,,1) with the 2-plane of surfaces of
degree r + 1 in HY(P?, #¢, ., (r + 1)) that determines the union C, U C,4. Since the curves in
%,.1 are not contained in surfaces of degree r, these surfaces do not have common components.
Thus we have that

T (i) = G2, HYPY, S, (r + 1)),

hence dimp N'(6,11) + 1 = dimg N*(W,), |EH16, pag. 346].

On the other hand, for a generic element C,. of &, we can identify any element (C,., C\11)
of the fiber m;!(C,) with the 2-plane of surfaces of degree r + 1 in H°(P3, .#;, (r + 1)) that
determine the union C, U C,,;. However, there exist elements in G(2, H*(P?, ¢, (r + 1)))
whose surfaces have common components. Thus we can identify the fiber with an open set

of G(2,H(P?, 7, (r + 1))). Therefore, W, is an open set of an incidence correspondence
W, —==%, that has as fiber the Grasmannian G(2, H'(P?, .%¢, (r+1))) and such that 7|y, =

—~

mo. Then dimg N*(W,) < dimg NY(W,) = dimg N*(%,) + 1.
These inequalities allow us to write the following:

dimgN' (6,11) < dimg N (%,). (4.2)

Proposition 4.0.6. For all r we have that dimg N'(%,) = 1.
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Proof. We know that ¢, = 4, = G(1,3) and using the equation (4.2) we have that for all r

dimgN'(%,) < dimp N'(%,) = dimp N'(G(1,P?)) = 1.

With the previous Proposition, we can prove the following Corollary.
Corollary 4.0.7. The dimension of the vector space N' () is 3.

Proof. By Proposition 4.0.6 and Lemma 4.0.1 we have that dimgr N'(%) < 3. Therefore, it is
enough to find three linearly independent divisors in N'(2). Consider H the locus of all curves
in % that intersect a fixed-line. This is a divisor of %; we denote its class in N'(%) by [H].
Let [¢"] and [</] be the classes of the divisors €% and o7 in N'(%), respectively. We aim to

show that [H],[€¢"] and [</] are linearly independent.

Since [¢"] and [<7] are linearly independent in N'(%3) by Theorem 4.0.5, then they are linearly
independent in N'(Z), thus there exist two classes a and § in Ny(Z) such that [«/] - o # 0,

[€")-a=0,[«]-08=0and [¢"] -5 +#0.

We know that the curves in @3 are flexible curves, that means, for every twelve general points in
IP? there exists a curve in 63 passing through them [Per86, Prop. 5.6, Cor. 5.7, Prop. 5.11.bis|.
We use this property to construct a curve in 63. Let Z be a set of 11 points in general position
on P? and L such that Z N L = (). For every t € L we consider a curve §, on %3 that contains
the set of points Z U {t}. This construction gives us a curve ¢ in 3 which does not intersect
&/ U%". On the other hand, the intersection of § with [H] is positive. Let 7 be the class of
in Ni(4).

The following table summarizes the intersection numbers of curves and divisors we have dis-
cussed:

[7] [ [H]
al|l#0 0 7
Bl 0 #£0 7
vl 0 0 >0

Therefore, the classes [«7], [¢"] and [H| are linearly independents in N'(Z) and hence form a
base of this space.
0

Initially, we expect to compute the dimension of N 1(?3) but we do not know how big
@y — A is or even if €, is normal. We know that there exists a component G of the Hilbert
scheme Hilb, 3 of dimension 27 that intersects %5, but we can not prove that this is the only
component that intersects it. Thus we do not know how singular € is outside of 4.



Appendix A

Classes of curves in a smooth cubic
surface

Let X C IP? be a smooth surface of degree 3. Let us denote a line and the six (—1)-curves that
generate Pic(X) as follows [, E, ..., Eg. The following code in [M2] lists all possible classes of
a curve of degree d and genus g in X. The class C' = al —by E1 —byFo —b3F3—byFEy—bs Es — bg Eg
in [M2] is denoted by

{a,{b_{1},b_{2},b_{3},b_{4},b_{5},b_{6}}}

Example: All possible classes of curves of degree 10 and genus 11 as in the proof of Proposition
2.3.4 are:

L = classOnCubic(10, 11)
returns

{{8, {3, 3, 2, 2, 2, 2}}, {9, {4, 3, 3, 3, 2, 2}},
{10, {4) 4’ 4, 3, 3, 2}}, {103 {5, 37 3) 3) 3, 3}},
{11, {5, 4, 4, 4, 3, 3}},{12, {5, 5, 4, 4, 4, 4}}}

b b

b b b

classOnCubic = (d, g) ->
{
L :={};
aMax := floor( sqrt( ( 2xd~2+6%(2-2%g) )/3 ) + d );
for a in (ceiling( (d+1)/3 ) )..aMax do
for bl in (ceiling((3*a-d)/6))..(3*a-d) do
for b2 in (ceiling((3*a-d-b1)/5))..min(3*a-d-bl,bl) do
for b3 in (ceiling((3*a-d-b1l-b2)/4))..min(3*a-d-b1-b2,b2) do
for b4 in (ceiling((3*a-d-b1-b2-b3)/3))..min(3*a-d-bl-b2-b3,b3) do
for b5 in (ceiling((3*a-d-b1-b2-b3-b4)/2))..min(3*a-d-b1-b2-b3-b4,bd) do
{
b6 := 3*a-d-bl-b2-b3-b4-b5;
if(b6 < 0 or b6 > b5) then continue;
if (b1+b2+b3+b4+b5+b6 == 3*a-d and 2*g == 2+a~2-d-b1°2-b2°2-b3°2-b4"2-b5°2-b6°2) then
L = join(L, {{a, {bl, b2, b3, b4, b5, b6}}});
s
return L;

3
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Appendix B

Families of degree 6 and genus 3

In this appendix, we present code in [M2] to construct examples of the curves given in Chapter
3. All codes of the appendix B and C start with the following base code:

R=2Z/2011[x,y,z,w]
—————— R=QQ[x,y,z,w]
randomElement = (d, I) ->
{ randomElementR := I;
randomElementI := I;
if (toString class I == "PolynomialRing") then
{ randomElementR = I;
randomElementI = ideal vars randomElementR;

+
else if(toString class I == "Ideal") then
{
randomElementR = ring I;
randomElementI = I;
+;
randomElementF := sub(0, randomElementR) ;

for p in flatten entries gens randomElementI do

{

randomElementF = randomElementF + p * (random(randomElementR~{d- (degree p)_0},
randomElementR~{0}))_0_0;};

return randomElementF;

}

B.1 ACM curves

(Generic element Z=saturate(ideal(q)+L);
c=randomElement (3,saturate (Z*Lred));
M = random(R~{-3,-3,-3,-3}, R~{-4,-4,-4}); Q=saturate(ideal(c,q),Lred);
C=fittingIdeal(1l,coker M); A=saturate (Q*L);
C= radical A;
Al
A2
ml=randomElement (1,ideal(vars R));
m2=randomElement (1,ideal(vars R)); R=2Z/2011[x,y,z]
nl=randomElement (1,ideal (vars R)); mll=randomElement (1,ideal(vars R));
n2=randomElement (1,ideal (vars R)); m21=randomElement (1,ideal (vars R));
L=ideal (m1,m2); pl=saturate (ideal(m11l,m21));
Lred=ideal(n1,n2); mi2=randomElement (1,ideal (vars R));
g=randomElement (2,Lred) ; m22=randomElement (1,ideal(vars R));
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p2=saturate (ideal(m12,m22));
mil3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
p3=saturate (ideal(m13,m23));
ml4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal(vars R));
p4=saturate (ideal(m14,m24));
nll=randomElement (1,ideal (vars R))
n2l=randomElement (1,ideal (vars R))
gql=saturate (ideal(nl1,n21));
ni2=randomElement (1,ideal (vars R))
n22=randomElement (1,ideal (vars R))
q2=saturate (ideal(nl2,n22));
P=saturate (p1*p2*p3+*p4) ;

A=saturate (P*q1x*q2);
g=randomElement (3, P);
l=randomElement (1, saturate(ql*q2));
H=ideal(1);

Q=ideal(q);

d= #flatten entries gens image basis(3,A)
S$=2Z/2011[a_0 .. a_(d-1)]
k=map(R,S,flatten entries gens image basis(3,4));
Cl=preimage_k Q;

L=preimage_k H;

C=saturate(C1*L);

C=radical C;

A3

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
pl=saturate(ideal(mi1l,m21,m31));
ml2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
m32=randomElement (1,ideal(vars R));
p2=saturate(ideal (m12,m22,m32));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
m33=randomElement (1,ideal(vars R));
p3=saturate(ideal (m13,m23,m33));
ml4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal(vars R));
L=saturate(ideal (m14,m24));
all=randomElement (2,saturate (L*p2*pl*p3));
al2=randomElement (2,saturate (L¥p2*p1*p3)) ;
S=ideal(all,al2);

T=saturate(S,L);

h=randomElement (1,saturate (p2*p1*p3));
b=randomElement (3, saturate (p2*p1*p3));
a=ideal(b,h);

A=saturate (T*a);

C= radical trim A;

A4

mil=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
pl=saturate (ideal(ml1,m21,m31));
ml2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
p2=saturate (ideal(m12,m22,m31));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
p3=saturate (ideal(m13,m23,m31));
g=randomElement (2, saturate(pl*p2*p3));
T=ideal(q,m31);

ql=randomElement (2, saturate(pl*p2+*p3));
g2=randomElement (2, saturate(pl*p2*p3));
Q=ideal(ql,q2)

C=saturate (Q*T);

C=radical trim C;

A5

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
pl=saturate (ideal(mil,m21,m31));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal (vars R));
m32=randomElement (1,ideal(vars R));
p2=saturate (ideal(m12,m22,m32));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal (vars R));
m33=randomElement (1,ideal(vars R));
p3=saturate (ideal(m13,m23,m33));
mld4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal(vars R));
m34=randomElement (1,ideal (vars R));
p4=saturate (ideal(mi14,m24,m34));
1121=randomElement (1,saturate(p1*p2));
1122=randomElement (1,saturate(pl*p2));
1341=randomElement (1,saturate(p3*p4));
1342=randomElement (1, saturate (p3*p4)) ;
L12=ideal(1121,1122);
L34=ideal(1341,1342);
ql=randomElement (2, saturate(pl*p2*p3*p4d));
g2=randomElement (2, saturate(pl*p2*p3*p4d));
Q=ideal(ql,q2);

C= saturate(Q*L12*L34);

C=radical trim C;

A6

M = random(R~{-3,-3,-3,-3}, R~{-4,-4,-4})
C3=fittingIdeal(1,coker M);
mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31l=randomElement (1,ideal(vars R));
pl=saturate (ideal(mil,m21,m31));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal (vars R));
m32=randomElement (1,ideal(vars R));
p2=saturate (ideal(m12,m22,m32));
li=randomElement (1,saturate(p1*p2));
12=randomElement (1,saturate(p1*p2));
L=ideal(11,12);

al=randomElement (4,saturate(C3*pl*p2));
a2=randomElement (4,saturate (C3*pl*p2));
C4=saturate(ideal(al,a2),C3);
bl=randomElement (4,saturate((C4*L),C4+L));
b2=randomElement (4,saturate ((C4xL),C4+L));
C=saturate(ideal(b1,b2),C4);

A7

lil=randomElement (1, ideal vars R);
112=randomElement (1, ideal vars R);
121=randomElement (1, ideal vars R);
122=randomElement (1, ideal vars R);
Li=ideal(111,112);

L2=ideal(121,122);

g=randomElement (2, saturate(L1*L2));
c=randomElement (3, saturate(L1*L2));
C=saturate(ideal(q,c), saturate(L1x*L2));
h=randomElement (1, ideal vars R);
t=randomElement (2, saturate(ideal(h)+C));
A=saturate(C*ideal(t,h));

C=radical trim A;

A8

mil=randomElement(1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
m32=randomElement (1,ideal(vars R));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
m33=randomElement (1,ideal(vars R));
mi4=randomElement (1,ideal(vars R));
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b=randomElement (2, saturate (p2*p1*p3));
m24=randomElement (1,ideal(vars R)); l=ideal(hl,h);
m34=randomElement (1,ideal(vars R)); c=ideal(b,h);
nll=randomElement (1,ideal(vars R)); A=saturate (T*cx*l);
ni2=randomElement (1,ideal(vars R)); C= radical trim A;
n2l=randomElement (1,ideal(vars R)); All
n22=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m32));
p3=saturate (ideal(m13,m23,m33));
p4=saturate (ideal(mi13,m24,m34));
Li=saturate (ideal(n11,n12));
L2=saturate (ideal(n21,n22));
all=randomElement (2,saturate (L1*p2*pl*p3*p4)) ;
al2=randomElement (2,saturate (L1*p2*pl*p3*p4)) ;
bll=randomElement (2,saturate (L2*p2*pl*p3*p4)) ;
bil2=randomElement (2,saturate (L2*p2*pl*p3*p4)) ;

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal (vars R));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal (vars R));
m33=randomElement (1,ideal(vars R));
pl=saturate (ideal(mi11l,m21,m31));

p2=saturate (ideal(m12,m22,m31));

Si=ideal(all,al2);
S2=ideal(b11,b12);
Tl=saturate(S1,L1);
T2=saturate(S2,L2);
A=saturate (T1*T2);
C= radical trim A;

A9

mll=randomElement (1,ideal(vars R))
m21=randomElement (1,ideal (vars R))
m31=randomElement (1,ideal(vars R))
pl=saturate (ideal(m11,m21,m31))
ml2=randomElement (1,ideal (vars R))
m22=randomElement (1,ideal(vars R))
m32=randomElement (1,ideal (vars R))
p2=saturate (ideal(m12,m22,m32));
lii=randomElement (1, ideal vars R);
1l12=randomElement (1, ideal vars R);
121=randomElement (1, ideal vars R);
122=randomElement (1, ideal vars R);
Li=ideal(111,112);

L2=ideal(121,122);

g=randomElement (2, saturate(L1*L2*plxp2));
c=randomElement (3, saturate(L1*L2*pl*p2));
C=saturate(ideal(q,c), saturate(L1x*L2));
h=randomElement (1, saturate(pl*p2));
t=saturate(ideal (h)+C,saturate(pl*p2));
li=randomElement (1, saturate(pl*p2));
12=randomElement (1, saturate(pl*p2));
hi=randomElement (1, t);
h2=randomElement (1, t);

Hi=ideal(11,12);

H2=ideal(hl,h2);

A=saturate (CxH1*H2) ;

C=radical trim A;

A10

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
m32=randomElement (1,ideal (vars R));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal (vars R));
m33=randomElement (1,ideal(vars R));
mid4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal (vars R));
pl=saturate (ideal(m1l,m21,m31));
p2=saturate (ideal(m12,m22,m32));
p3=saturate (ideal(m13,m23,m33));
L=saturate (ideal(mi14,m24));
all=randomElement (2,saturate (L¥p2*p1*p3)) ;
al2=randomElement (2, saturate (L*p2*pl*p3)) ;
S=ideal(all,al2);

T=saturate(S,L);

hi=randomElement (1,ideal(vars R));
h=randomElement (1,saturate (p2*p1*p3));

p3=saturate (ideal(m13,m23,m31));
h2=randomElement (1,saturate(pl*p2));
nll=randomElement (1,ideal(vars R));
ni2=randomElement (1,ideal(vars R));
n21=randomElement (1,ideal(vars R));
n22=randomElement (1,ideal(vars R));
p4=saturate(ideal(h2,n11,n12));
pb=saturate(ideal(h2,n21,n22));
li=randomElement (1,saturate (p5*p3*p4)) ;
a=randomElement (2,saturate (p1*p2*p3));
b=randomElement (2, saturate (pl*p2*p4*p5)) ;
l=randomElement (2, saturate (p3*p4*p5)) ;
Qil=ideal (m31,a);

Q2=ideal (h2,b);

Q3=ideal (11,1);

A=saturate (Q1*Q2*Q3);

C= radical trim A;

Al2

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
ml2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal (vars R));
m32=randomElement (1,ideal(vars R));
mil3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
m33=randomElement (1,ideal(vars R));
mld4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal(vars R));
m34=randomElement (1,ideal(vars R));
mi5=randomElement (1,ideal(vars R));
m25=randomElement (1,ideal(vars R));
m35=randomElement (1,ideal(vars R));
ni=randomElement (1,ideal(vars R));
n2=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11l,m21,m31));
p2=saturate (ideal(m12,m22,m32));
p3=saturate (ideal(m13,m23,m33));
p4=saturate (ideal(m14,m24,m34));
pb=saturate (ideal(m15,m25,m35));
L=saturate (ideal(n1,n2));

all=randomElement (2, saturate (L¥p2*pl*p3*pd*p5)) ;
al2=randomElement (2,saturate (L¥p2*pl*p3*p4*p5)) ;

S=ideal(all,al2);
T=saturate(S,L);

s=randomElement (2, saturate (p2*pl*p3*p4*p5)) ;

Z=T+ideal(s);

p6=saturate(Z,saturate (p2*pl*p3*p4*p5)) ;
hi=randomElement (1,saturate(p2*p1));
bl=randomElement (1,saturate(p2*pl));
h2=randomElement (1, saturate (p3*p4)) ;
b2=randomElement (1,saturate (p3*p4));
h3=randomElement (1,saturate (p5*p6)) ;
b3=randomElement (1,saturate (p5*p6)) ;
1l1=ideal(b1,hl);

12=ideal (b2,h2);

13=ideal(b3,h3);

A=saturate (T*11*12x%13);

C= radical trim A;
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A13

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal (vars R));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
mld4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal(vars R));
pl=saturate (ideal(ml11,m21,m31));
p2=saturate (ideal(m12,m22,m31));
p3=saturate (ideal(m13,m23,m31));
p4=saturate (ideal(m14,m24,m31));
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Al4

mil=randomElement(1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
m32=randomElement (1,ideal (vars R));
mi3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
m33=randomElement (1,ideal(vars R));
mi4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal (vars R));
m34=randomElement (1,ideal(vars R));

g=randomElement (2, saturate (pl*p2*p3*p4) ) ;
Q=ideal(q,m31);

nll=randomElement (1,ideal(vars R));
n21=randomElement (1,ideal (vars R));
n31=randomElement (1,ideal(vars R));
pS=saturate (ideal(nl11,n21,n31));
bl=randomElement (1,saturate(pl*p5));
b2=randomElement (1,saturate(pl*p5));
Li=ideal(b2,bl);

ni2=randomElement (1,ideal(vars R));
p6=saturate (Li+ideal(ni2));
bl=randomElement (1,saturate(pl*p5));
b2=randomElement (1,saturate (pl*p5));
cl=randomElement (1,saturate (p2*p5));
c2=randomElement (1, saturate (p2*p5)) ;
dl=randomElement (1,saturate (p4*p6)) ;
d2=randomElement (1,saturate (p4*p6)) ;
Li=ideal(b2,bl);

L2=ideal(c1,c2);

L3=ideal(d1,d2);

s12=randomElement (1,ideal(vars R));
p7=saturate (L3+ideal(s12));
al=randomElement (1,saturate (p3*p7));
a2=randomElement (1,saturate (p3*p7));
L4=ideal(al,a2),

A=saturate (L1*L2*L3*L4xQ);

C= radical trim A;

pl=saturate (ideal(m11l,m21,m31));
p2=saturate (ideal(m12,m22,m32));
p3=saturate (ideal(m13,m23,m33));
p4=saturate (ideal(mi4,m24,m34));
hi12=randomElement (1,saturate(pl*p2));
h212=randomElement (1,saturate (pl*p2));
hi23=randomElement (1,saturate(p2*p3));
h223=randomElement (1,saturate (p2*p3));
hii13=randomElement (1,saturate(pl*p3));
h213=randomElement (1,saturate(p1*p3));
hii4=randomElement (1,saturate(pl*p4));
h214=randomElement (1,saturate(pl*p4));
hi24=randomElement (1,saturate (p4*p2));
h224=randomElement (1,saturate (p4*p2));
hi34=randomElement (1,saturate (p3*p4));
h234=randomElement (1,saturate (p3*p4)) ;
L12=ideal(h112,h212);

L23=ideal (h123,h223);
L13=ideal(h113,h213);
Li4=ideal(h114,h214);

L24=ideal (h124,h224);

L34=ideal (h134,h234) ;

L=saturate (L12*L23);
L=saturate(L*L13);

L=saturate(L*L14);

L=saturate (L*L24) ;

C=radical saturate(L*L34);

B.2 Family ¢”

Generic element pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m31));
ml=randomElement (1,saturate(pl*p2));
a=randomElement (3,saturate (pl*p2));
b=randomElement (3, saturate (pl*p2));
ql=ideal(m31,a);

g2=ideal(ml,b);

A=saturate (ql*q2);

C= radical trim A;

lil=randomElement (1,ideal(vars R));
112=randomElement (1,ideal (vars R));
Li=ideal(111,112);
121=randomElement (1,ideal (vars R));
122=randomElement (1,ideal(vars R));
L2=ideal(121,122);

M=saturate (L1*L2) ;
g=randomElement (2,M) ;

Q=ideal(q); B2
A=M+Q;

f= randomElement (4, A);
C=saturate(ideal (f)+Q,M);

nl=randomElement (1,ideal(vars R));
n2=randomElement (1,ideal(vars R));
Lred=ideal(n1,n2);

B1 g=randomElement (2,Lred) ;
c=randomElement (3,saturate(Lred)) ;
h=randomElement (1,Lred);
L=saturate(ideal(h,q),Lred);
Q=saturate(ideal(c,q) ,Lred);
A=saturate (Q*L);

C= radical A;

mill=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));
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B3

mll=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));
ml3=randomElement (1,ideal (vars R));
m23=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11l,m21,m31));
p2=saturate (ideal(m12,m22,m31));
p3=saturate (ideal(m13,m23,m31));
ml=randomElement (1,saturate(pl*p2));
m2=randomElement (1,saturate(p3));

a=randomElement (2, saturate (pl*p2+*p3)) ;

b=randomElement (3, saturate (pl*p2));
Qi1=ideal (m31,a);

Q2=ideal (m1,b);

L=ideal (m31,m2) ;

A=saturate (Q1%Q2+L);

C= radical trim A;

B4

lil=randomElement (1, ideal vars R);
l12=randomElement (1, ideal vars R);
121=randomElement (1, ideal vars R);
122=randomElement (1, ideal vars R);
Li=ideal(111,112);

L2=ideal(121,122);

g=randomElement (2, saturate(L1*L2));
c=randomElement (3, saturate(L1*L2));

Cl=saturate(ideal(q,c), saturate(L1xL2));

h=randomElement (1, ideal vars R);
T=ideal(q,h);

A=saturate(C1x*T);

C=radical trim A;

B5

lil=randomElement (1,ideal(vars R));
1l12=randomElement (1,ideal(vars R));
Li=ideal(111,112);
121=randomElement (1,ideal (vars R));
122=randomElement (1,ideal(vars R));
L2=ideal (121,122);

M=saturate (L1x*L2);
g=randomElement (2,M) ;

Q=ideal(q);

A=M+Q;

f= randomElement (4, A);
C3=saturate(ideal (f)+Q,M);
mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11l,m21,m31));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
m32=randomElement (1,ideal (vars R));
p2=saturate (ideal(m12,m22,m32));
li=randomElement (1,saturate(pl*p2));

12=randomElement (1,saturate(pl*p2));
L=ideal(11,12);

al=randomElement (4,saturate (C3*pl*p2));
a2=randomElement (4, saturate (C3*pl*p2));

C4=saturate(ideal(al,a2),C3);

bl=randomElement (4,saturate((C4xL),C4+L));
b2=randomElement (4,saturate ((C4x*L),C4+L));

C=saturate(ideal(bl,b2),C4);
B6

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal (vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11l,m21,m31));
p2=saturate (ideal(m12,m22,m31));
ql=randomElement (2, saturate(pl*p2));
g2=randomElement (2, saturate(pl*p2));
hil=randomElement (1,saturate(pl*p2));
h2=randomElement (1,saturate(pl*p2));
bl=randomElement (1,ideal(vars R));
b2=randomElement (1,ideal(vars R));
cl=ideal(ql,h1);

c2=ideal(q2,h2);

li=ideal(b1l,hl);

12=ideal (b2,h2);

A=saturate (cl1*x11*c2x%12);

C= radical trim A;

B7

mll=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));
m32=randomElement (1,ideal (vars R));
mil3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
m33=randomElement (1,ideal(vars R));
mld4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal (vars R));
m34=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m32));
p3=saturate (ideal(m13,m23,m33));
p8=saturate (ideal(m14,m24,m34));
all=randomElement (1,saturate(pl*p3));
al2=randomElement (1,saturate(pl*p3));
a21=randomElement (1,saturate(pl*p2));
a22=randomElement (1,saturate(pl*p2));
a31l=randomElement (1,saturate (p3*p2));
a32=randomElement (1,saturate (p3*p2)) ;
Li=ideal(all,al2);

L2=ideal(a21,a22);

L3=ideal(a31,a32);

ml5=randomElement (1,ideal(vars R));
ml6=randomElement (1,ideal (vars R));
p4=saturate (L3+ideal(m15));
pb=saturate (Ll+ideal(m16));
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a4l=randomElement (1, saturate (p8*p5)) ;
a42=randomElement (1, saturate (p8*p5)) ;
abl=randomElement (1,saturate (p4*p8)) ;
ab2=randomElement (1,saturate (p4*p8)) ;
L4=ideal (a41,a42);

L5=ideal (a51,a52);

mil7=randomElement (1,ideal(vars R));

B.3 Family o/

Generic element

ml=randomElement (1,ideal(vars R));
m2=randomElement (1,ideal (vars R));
m3=randomElement (1,ideal (vars R));
pl=ideal (m1,m2,m3) ;
sl=randomElement (1,ideal(vars R));
s2=randomElement (1,ideal (vars R));
s3=randomElement (1,ideal (vars R));
p2=ideal(s1,s2,s3);

h=randomElement (1,saturate(pl*p2));
c=randomElement (4,saturate(pl*p2));
nll=randomElement (1,pl);
nl2=randomElement (1,pl);
n21=randomElement (1,p2);
n22=randomElement (1,p2) ;
Li=ideal(nl1,n12);

L2=ideal (n21,n22);
Q=saturate(ideal(h,c)),

A=saturate (L1x*L2xQ);

C= radical trim A;

C1

lii=randomElement(1,ideal vars R);
1l12=randomElement (1,ideal vars R);
l13=randomElement (1,ideal vars R);
121=randomElement (1,ideal vars R);
122=randomElement (1,ideal vars R);
123=randomElement (1,ideal vars R);
pl=ideal(111,112,113);
p2=ideal(121,122,123);

H=ideal (randomElement (1,saturate(pl*p2)));
Q=H+ideal (randomElement (3, saturate(p1*p2)));
mll=randomElement (1,pl);

mil2=randomElement (1,pl);

m21=randomElement (1,p2);

m22=randomElement (1,p2);

Li=ideal (m11,m12);

L2=ideal (m21,m22) ;

L=H+ideal (randomElement (1,ideal vars R));
A=saturate (Q*L1*L2xL) ;

C=radical A;

C2

mll=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));

ml8=randomElement (1,ideal(vars R));
p6=saturate (L5+ideal(ml7));
p7=saturate (L4+ideal(m18));
a6l=randomElement (1,saturate(p7*p6)) ;
a62=randomElement (1,saturate(p7*p6)),
L6=ideal (a61,a62);

A=saturate (L1*L2*L3*L4*L5*L6) ;

C= radical trim A;

m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m31));
gql=randomElement (2,saturate(pl));
g2=randomElement (2, saturate(p2));
hi=randomElement (1,saturate(p2));
h2=randomElement (1, saturate(p2));
bl=randomElement (1,saturate(pl));
b2=randomElement (1,saturate(pl));
cl=ideal(ql,m31);

c2=ideal(q2,m31);

li=ideal(b1,b2);

12=ideal (h1,h2);

A=saturate (clx11*c2x*12);

C= radical trim A;

C3

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));
mil3=randomElement (1,ideal(vars R));
m23=randomElement (1,ideal(vars R));
mld4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m31));
p3=saturate (ideal(m13,m23,m31));
p4=saturate (ideal(m14,m24,m31));
g=randomElement (2, saturate (pl*p2*p3*p4)) ;
Q=ideal(q,m31);

bl=randomElement (1,saturate(pl));
b2=randomElement (1, saturate(p2));
cl=randomElement (1,saturate(p3));
c2=randomElement (1, saturate(p3));
dl=randomElement (1,saturate(p4));
d2=randomElement (1,saturate(p4));
Li=ideal (m31,bl);

L2=ideal (m31,b2);

L3=ideal(d1,d2);

L4=ideal(cl,c2);

A=saturate (L1*xL2*L3*L4x*Q) ;

C= radical trim A;
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B.3.1 A non-reduced family
Double conic union two skew lines

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(ml1l,m21,m31));

B.4 The component #

Generic element

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(ml1l,m21,m31));
ml=randomElement (1,p1);
a=randomElement (2,pl);
b=randomElement (4,p1);

ql=ideal (m31,a);

g2=ideal(ml,b);

A=saturate (ql1%*q2);

C= radical trim A;

D1 (I)

ml=randomElement (1,ideal(vars R));
m2=randomElement (1,ideal(vars R));
m3=randomElement (1,ideal (vars R));
pl=ideal (m1,m2,m3) ;

sl=randomElement (1,ideal(vars R));
s2=randomElement (1,ideal(vars R));
s3=randomElement (1,ideal (vars R));
p2=ideal(s1,s2,s3);

nll=randomElement (1,pl);
nl2=randomElement (1,pl);
n21=randomElement (1,saturate(pl*p2));
n22=randomElement (1,saturate(pl*p2));
Li=ideal (n11,n12);

L2=ideal (n21,n22);
h=randomElement (1,p2) ;
c=randomElement (4,p2) ;
Q=saturate(ideal(h,c));

A=saturate (L1xL2xQ);

C= radical trim A;

D2

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
hil=randomElement (1,ideal(vars R));
pl=saturate (ideal(ml11,m21,h1));
h2=randomElement (1,pl);
a=randomElement (2,pl);
b=randomElement (2,ideal(vars R));
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ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal (vars R));
m32=randomElement (1,ideal(vars R));
p2=saturate (ideal(m12,m22,m32));
P=saturate(pl#*p2);

Li=saturate (ideal(mi1,m21));
L2=saturate (ideal(m12,m22));
g=randomElement (2,P) ;
h=randomElement (1,P);
Q=saturate(ideal(h,q*q));
C=saturate (L1*L2x*Q,P);

l=randomElement (2,pl);
Qil=ideal(hl,a);
Q2=ideal(hil,b);
Q3=ideal (h2,1);
A=saturate (Q1*Q2*Q3);
C= radical trim A;

D3

mll=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));
hi=randomElement (1,ideal(vars R));
pl=saturate (ideal(mil,m21,h1));
h2=randomElement (1,p1);
a=randomElement (3,pl);
b=randomElement (2,p1);
l=randomElement (1,ideal(vars R));
Ql=ideal(h2,a);

Q2=ideal (h1,b);

L=ideal(h2,1);

A=saturate (Q1*Q2*L);

C= radical trim A;

D4

mll=randomElement(1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11,m21,m31));
gl=randomElement (2, saturate(pl));
g2=randomElement (2, saturate(pl));
hil=randomElement (1,saturate(pl));
h2=randomElement (1,saturate(pl));
bl=randomElement (1,ideal(vars R));
b2=randomElement (1,ideal(vars R));
cl=ideal(ql,hl);

c2=ideal(q2,h2);

l1i=ideal(bl,h1);

12=ideal (b2,h1);

A=saturate (cl*11*c2x12);

C= radical trim A;

D5 (II)

ml=randomElement (1,ideal(vars R));
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m2=randomElement (1,ideal (vars R));
m3=randomElement(1,ideal(vars R));
pl=ideal (m1,m2,m3) ;
h=randomElement (1,saturate(pl));
c=randomElement (4,saturate(pl));
nll=randomElement (1,pl);
nl2=randomElement (1,p1l);
n21=randomElement (1,p1);
n22=randomElement (1,p1);

Li=ideal (n11,n12);

L2=ideal (n21,n22);
Q=saturate(ideal(h,c));

A=saturate (L1x*xL2xQ),

C= radical trim A;

D6

mli=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));

ml3=randomElement (1,ideal (vars R));
m23=randomElement (1,ideal (vars R));
ml4=randomElement (1,ideal(vars R));
m24=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m31));
p3=saturate (ideal(m13,m23,m31));
p4=saturate (ideal(m14,m24,m31));
g=randomElement (2,saturate (pl*p2*p3+*p4)) ;
Q=ideal(q,m31);

bil=randomElement (1,saturate(pl));
b2=randomElement (1, saturate(p2));
cl=randomElement (1,saturate(p4));
c2=randomElement (1, saturate(p4));
dl=randomElement (1,saturate(p4));
d2=randomElement (1,saturate(p4));
Li=ideal (m31,b1);

L2=ideal (m31,b2);

L3=ideal(d1,d2);

L4=ideal(cl,c2);

A=saturate (L1*L2*L3*L4x*Q);

C= radical trim A;

B.5 The extremal component

F=randomElement (3,ideal(z,w));
G=randomElement (7,ideal(z,w));
C=ideal (x"2 ,x*y,y"6 ,x*G-F*y~5);



Appendix C

Flat limits

In this appendix are the codes in [M2] of the flat limits that we claim that there exist in chapter 3. All codes

of this appendix start with the following base code:

R=ZZ/2011[x,y,z,w]
—————— R=QQ[x,y,z,w]
randomElement = (d, I) ->
{randomElementR = ring I;

randomElementF = sub(0, randomElementR) ;
for p in flatten entries gens I do (randomElementF

randomElementF +

p * (random(randomElementR~{d- (degree p)_0}, randomElementR~{0}))_0_0);

return randomElementF}

C.1 Limits in "

e Flat limit from B1 to B3.

mli=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
mi2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal (vars R));
pl=saturate (ideal(mll,m21,m31));
p2=saturate (ideal(m12,m22,m31));
g=randomElement (3,saturate (pl*p2));
c=randomElement (2,saturate(pl*p2));
l=randomElement (1,ideal(vars R));
hi=randomElement (1,saturate(pl*p2));
Q=randomElement (3, saturate (pl*p2));

Rt=R[t]

Il=saturate(ideal (t*sub(q,Rt)+(1-t)*sub(c*1,Rt),sub(m31,Rt)));
I2=saturate(ideal (sub(Q,Rt),sub(hl,Rt)),sub(pl*p2,Rt));

I=saturate(I1*I2,sub(pl*p2,Rt));

At=saturate(I,t);
AO=sub(At,{t=>01});

Flat limit from B3 to B6.

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal(vars R));

51



52 APPENDIX C. FLAT LIMITS

pl=saturate (ideal(ml1l,m21,m31));
p2=saturate (ideal(m12,m22,m31));
g=randomElement (3,saturate(pl*p2));
c=randomElement (2,saturate(pl*p2));
li=randomElement(1,ideal(vars R));
hi=randomElement (1,saturate(pl*p2));
12=randomElement (1,ideal (vars R));
Q=randomElement (2, saturate(pl*p2));

Rt=R[t]

Il=saturate(ideal (t*sub(q,Rt)+(1-t)*sub(c*11,Rt),sub(m31,Rt)));
I2=saturate(ideal (sub(Q*12,Rt),sub(hl,Rt)),sub(pl*p2,Rt));
I=saturate(I1*I2,sub(pl*p2,Rt));

At=saturate(I,t);
AO=sub(At,{t=>0});

e Flat limit from B6 to B7.

mli=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
mil2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11,m21,m31));
p2=saturate (ideal(m12,m22,m31));
ql=randomElement (2, saturate(pl*p2));
liil=randomElement (1,ideal (vars R));
cl=randomElement (1,ideal vars R);
l12=randomElement (1,p1);
113=randomElement (1,p2) ;
g2=randomElement (2, saturate (pl*p2));
121=randomElement (1,saturate(pl*p2));
c2=randomElement (1,ideal vars R);
122=randomElement (1,p1);
123=randomElement (1,p2) ;
124=randomElement (1,ideal (vars R));

Rt=R[t]

Il=saturate(ideal (t*sub(ql*111,Rt)+(1-t)*sub(c1%¥112%113,Rt),sub(m31,Rt)));
I2=saturate(ideal (t*sub(q2*124,Rt)+(1-t)*sub(c2%122%x123,Rt),sub(121,Rt)));
I=saturate(I1*I2,sub(pl*p2,Rt));

At=saturate(I,t);
AO=sub(At,{t=>0});

C.2 Limits in &

e Flat limit from C1 to C3.

lii=randomElement(1,ideal vars R);
l12=randomElement (1,ideal vars R);
l13=randomElement (1,ideal vars R);
121=randomElement (1,ideal vars R);
122=randomElement (1,ideal vars R);
123=randomElement (1,ideal vars R);
pl=ideal(111,112,113);

p2=ideal(121,122,123);
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LIMITS IN of

h=randomElement (1,saturate(pl*p2));
H=ideal(h);

nll=randomElement(1,ideal vars R);
nl2=randomElement(1,ideal vars R);
ql=ideal(n11,n12,h);

n21=randomElement (1,ideal vars R);
n22=randomElement (1,ideal vars R);
g2=ideal(n21,n22,h);

Q=randomElement (3,saturate (pl*p2*ql*q2));
mll=randomElement (1,p1);
mi2=randomElement (1,pl);
m21=randomElement (1,p2);
m22=randomElement (1,p2) ;
Li=ideal(ml1l,m12);

L2=ideal (m21,m22) ;

L=H+ideal (randomElement (1,q1));
E=randomElement (2, saturate (pl*p2*ql*q2));
Le=randomElement(1,ql);

Rt=R[t]
I1=saturate(ideal (t*sub(Q,Rt)+(1-t)*sub(E*Le,Rt) ,sub(h,Rt)));
I=saturate(Il,saturate(sub(pl,Rt)*sub(p2,Rt)*sub(ql,Rt)*sub(q2,Rt)));

At=saturate(I,t)
AO=sub(At,{t=>0})
A=radical saturate(AO*L1*L2xL) ;

Flat limit from CO to C2.

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
mil2=randomElement (1,ideal(vars R));
m22=randomElement (1,ideal(vars R));
pl=saturate (ideal(m11l,m21,m31));
p2=saturate (ideal(m12,m22,m31));
gl=randomElement (2,ideal vars R);
g2=randomElement (2,saturate(pl*p2));
bl=randomElement (1,saturate(pl));
b2=randomElement (1,saturate(pl));
cl=randomElement (1,saturate(p2));
c2=randomElement (1,saturate(p2));
d=randomElement (4,saturate(pl*p2));

Rt=R[t]

Il=saturate(ideal (t*sub(d,Rt)+(1-t)*sub(ql*q2, Rt),sub(m31,Rt)));
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I2=saturate(ideal (sub(bl,Rt),sub(b2,Rt))*ideal(sub(cl,Rt),sub(c2,Rt)),sub(pl*p2,Rt));

I=saturate(I1*I2,sub(pl*p2,Rt));

At=saturate(I,t);
AO0=sub (At ,{t=>0});

Flat limit from C2 to C3.

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11l,m21,m31));
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p2=saturate (ideal(m12,m22,m31));
gl=randomElement (2,ideal vars R);
g2=randomElement (2,saturate(pl*p2));
bl=randomElement (1,saturate(pl));
b2=randomElement (1, saturate(pl));
cl=randomElement (1,saturate(p2));
c2=randomElement (1,saturate(p2));
dl=randomElement (1,ideal vars R);
d2=randomElement (1,ideal vars R);

Rt=R[t]

Il=saturate(ideal (t*sub(ql*q2,Rt)+(1-t)*sub(q2*d1*d2,Rt) ,sub(m31,Rt)));
I2=saturate(ideal (sub(bl,Rt),sub(b2,Rt))*ideal(sub(cl,Rt),sub(c2,Rt)),sub(pl*p2,Rt));
I=saturate(I1*I2,sub(pl*p2,Rt));

At=saturate(I,t);
AO0=sub (At ,{t=>0});

C.3 Limits in %5

e Flat limit from DO to D1.

mli=randomElement (1,ideal(vars R))
m21=randomElement (1,ideal(vars R))
m31=randomElement (1,ideal (vars R))
pl=saturate (ideal(m11l,m21,m31))
ml=randomElement (1,p1)
nl=randomElement(1,pl)
n2=randomElement (1,p1)
a=randomElement (2,p1)
b=randomElement (4,p1l)

Rt=R[t]

Il=saturate(ideal (t*sub(a,Rt)+(1-t)*sub(nl1*n2,Rt),sub(m31,Rt)))
I2=ideal(sub(b,Rt),sub(ml,Rt))

I=saturate(I1*I2,sub(pl,Rt))

At=saturate(I,t)
AO=sub(At,{t=>0})

e Flat limit from DO to D2.

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(mll,m21,m31));
ml=randomElement (1,p1);
nl=randomElement(1,ideal vars R);
n2=randomElement (1,ideal vars R);
a=randomElement (2,pl);
b=randomElement (2,p1) ;
c=randomElement (4,pl);

Rt=R[t]
Il=saturate(ideal (t*sub(c,Rt)+(1-t)*sub(ni*b*n2,Rt),sub(m31,Rt)));

I2=ideal(sub(a,Rt) ,sub(ml,Rt));
I=saturate(I1*I2,sub(pl,Rt));
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At=saturate(I,t);

AO=sub(At,{t=>0});
Flat limit from DO to D3.

mll=randomElement (1,ideal(vars R))
m21=randomElement (1,ideal (vars R))
m31=randomElement (1,ideal (vars R))
pl=saturate (ideal(m11l,m21,m31))
ml=randomElement (1,p1)
nl=randomElement (1,p1)
n2=randomElement (1,ideal (vars R))
a=randomElement (2,pl)
b=randomElement (4,p1)

Rt=R[t]

Il=saturate(ideal (t*sub(a,Rt)+(1-t)*sub(nl1*n2,Rt),sub(m31,Rt)))
I2=ideal (sub(b,Rt) ,sub(ml,Rt))
I=saturate(I1*I2,sub(pl,Rt))

At=saturate(I,t)
AO=sub (At,{t=>0})

Flat limit from D2 to D5.

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(mll,m21,m31));
ml=randomElement (1,p1);
c=randomElement (2,pl);
nl=randomElement (1,ideal vars R);
n2=randomElement (1,ideal vars R);
a=randomElement (2,pl);
bl=randomElement (2,pl);
b2=randomElement (2,ideal vars R);

Rt=R[t]

Il=saturate(ideal (t*sub(b1*b2,Rt)+(1-t)*sub(nl,Rt)*sub(a,Rt)*sub(n2,Rt),sub(m31,Rt)));
I2=saturate(ideal (sub(c,Rt),sub(ml,Rt)),sub(pl,Rt));
I=saturate(I1*I2,sub(pl,Rt));

At=saturate(I,t);
AO=sub(At,{t=>0});

Flat limit from D4 to D5.

mll=randomElement(1,ideal(vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(m11l,m21,m31));
ml=randomElement (1,p1);
c=randomElement (2,pl);
nl=randomElement (1,ideal vars R);
n2=randomElement (1,ideal vars R);
a=randomElement (2,p1);
bl=randomElement (1,pl);
b2=randomElement (3,ideal vars R);
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Rt=R[t]

Il=saturate(ideal (t*sub(b1*b2,Rt)+(1-t)*sub(nl,Rt)*sub(a,Rt)*sub(n2,Rt) ,sub(m31,Rt)));
I2=saturate(ideal(sub(c,Rt),sub(ml,Rt)),sub(pl,Rt));
I=saturate(I1*I2,sub(pl,Rt));

At=saturate(I,t);
AO=sub(At,{t=>0});

e Flat limit from D5 to D6.

mli=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal(vars R));
m31=randomElement (1,ideal (vars R));
pl=saturate (ideal(ml1l,m21,m31));
ml=randomElement (1,p1);
cl=randomElement (2,p1);
mll=randomElement (1, ideal vars R);
ml2=randomElement (1, ideal vars R);
bl=randomElement (2,pl);
nl=randomElement (1, pl);
n2=randomElement (1, pl);

Rt=R[t]

Il=saturate(ideal (t*sub(bl,Rt)+(1-t)*sub(nl,Rt)*sub(n2,Rt),sub(m31,Rt)));
I2=saturate(ideal (sub(c1*ml11*m12,Rt) ,sub(ml,Rt)),sub(pl,Rt));
I=saturate(I1*I2,sub(pl,Rt));

At=saturate(I,t);
AO=sub(At,{t=>0});

C.4 Families outside of &,

Taking plane limits we find two new families, one of them is outside of ™.

e Four lines union a conic with a embedded point

mll=randomElement (1,ideal (vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal (vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal (vars R));

pl=saturate (ideal(m11,m21,m31));

p2=saturate (ideal(m12,m22,m31));

g=randomElement (1,saturate(pl*p2));
c=randomElement (2, saturate (pl*p2));

li=randomElement (1,ideal(vars R));

13=randomElement (1,ideal (vars R));

hi=randomElement (1,saturate(p1*p2));

12=randomElement (1,ideal (vars R));
Q=randomElement (2, saturate(p1*p2));

Rt=R[t]

Il=saturate(ideal (t*sub(c*11,Rt)+(1-t)*sub(gq*x11*13,Rt),sub(m31,Rt)));
I2=saturate(ideal (sub(Q*12,Rt) ,sub(hl,Rt)),sub(pl*p2,Rt));
I=saturate(I1*I2,sub(pl*p2,Rt));

At=saturate(I,t);
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A0=sub (At,{t=>03});
e A double line union four lines

mll=randomElement (1,ideal(vars R));
m21=randomElement (1,ideal (vars R));
m31=randomElement (1,ideal(vars R));
ml2=randomElement (1,ideal (vars R));
m22=randomElement (1,ideal (vars R));
pl=saturate (ideal(ml11l,m21,m31));
p2=saturate (ideal(m12,m22,m31));
gl=randomElement (2, saturate(pl*p2));
lil=randomElement (1,ideal(vars R));
cl=randomElement (1,saturate(pl*p2));
l12=randomElement (1,ideal(vars R));
113=randomElement (1,ideal(vars R));
g2=randomElement (2,saturate(pl*p2));
121=randomElement (1,saturate(pl*p2));
c2=randomElement (1, saturate(pl*p2));
122=randomElement (1,ideal (vars R));
123=randomElement (1,ideal(vars R));
124=randomElement (1,ideal(vars R));
Rt=R[t]

Il=saturate(ideal (t*sub(ql1*111,Rt)+(1-t)*sub(c1%112%113,Rt),sub(m31,Rt)));
I2=saturate(ideal (t*sub(q2%124,Rt)+(1-t)*sub(c2*122%123,Rt) ,sub(121,Rt)));
I=saturate(I1*I2,sub(pl*p2,Rt));
At=saturate(I,t);

AO=sub(At,{t=>0});
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