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Resumen

Se asume que a través del llamado mecanismo de Kibble en el universo tem-

prano pudieron haberse formado defectos topológicos. En esta tesis dis-

cutimos un modelo más allá del Modelo Estándar que permite un tipo de

defectos topológicos llamado cuerda cósmica. Para estudiar soluciones de

cuerdas cósmicas, primero promovemos la simetŕıa global U(1)B−L a una si-

metŕıa local y agregamos un nuevo acoplamiento de norma. La cancelación

de las anomaĺıas de norma se logra agregando un neutrino derecho a cada

generación de leptones. Además, se agrega un nuevo campo de Higgs para

dar masa al neutrino derecho. Finalmente, estudiamos las ecuaciones de

movimiento de los dos campos de Higgs y el campo de norma, con el fin

de obtener los perfiles de las cuerdas cósmicas. Particularmente, descubri-

mos un tipo de soluciones a las que llamamos de cuerdas cósmicas coaxiales.

Adicionalmente, obtuvimos que la tensión de las cuerdas es del orden de

1019 GeV2 y su acoplamiento gravitacional ∼ 10−30 el cual está por debajo

de las constricciones obtenidas por la colaboración LIGO.
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Abstract

It is generally assumed that through the so-called Kibble mechanism objects

called topological defects could have formed in the early universe. In this

thesis we discuss a model beyond the Standard Model that permits a type

of topological defects called cosmic strings. In order to study cosmic string

solutions, we first promote the global symmetry U(1)B−L to a local symmetry

and add a new gauge coupling. The cancellation of gauge anomalies is

achieved by adding a right-handed neutrino to each lepton generation. More-

over, a new Higgs field is added in order to give mass to the right-handed

neutrino. Finally, we study the field equations of motion of the two Higgs

fields and the gauge field, in order to obtain the profiles of the cosmic strings.

We compute this profile numerically and discuss their physical meaning.

Particularly we found a type of solutions that we call coaxial cosmic strings.

In addition, we obtained the string tension which is of the order of 1019 GeV2

and its gravitational coupling ∼ 10−30 which is below from the constrictions

obtained by the LIGO collaboration.
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Chapter 1

Introduction

In recent years, the study of topological defects is becoming of great interest

in modern physics. In field theories, topological defects could be found as

solitonic stable solutions of the classical field equations.

In general, a topological defect can be defined as a discontinuity in the

order parameter space of the system. In condensed matter physics, there

are several examples of topological defects, but in the physics of the early

universe, they are still hypothetical. For instance, topological defects are a

generic prediction in Grand Unified Theories.

It is generally assumed that in the early universe several phase transitions

occurred, giving rise to topological defects by means of the Kibble mechanism

[1, 2]. If they exist, we expect on average at least one topological defect per

horizon volume.

An example of a topological defect forming in the early universe is the

vortex line or cosmic string. Cosmic strings are elongated concentrations of

energy that are very thin, and can be considered effectively as 1-dimensional.
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CHAPTER 1. INTRODUCTION

They can be closed or open and very large, of the order of a cosmic horizon.

If cosmic strings exist, they can be of various types. For instance, they

can be global strings, which emerge from a global symmetry, or local strings,

which originate from a local symmetry. Global strings have the property

that their tension is infinite. On the other hand, local strings have a finite

tension. U(1) local strings are also known as Nielsen-Olesen strings, and have

the property that their magnetic flux is quantized.

In addition, there is another type of string called the superconducting

string [3]. This type of string behaves like a superconducting wire, in which

current can be carried by bosons or fermions.

Intense research of cosmic strings is being performed recently, in particular,

some research like in Ref. [4] aims to detect their gravitational waves signals,

which set constraints to the tension of the string. Moreover, cosmic strings

have a characteristic discontinuity effect in the CMB (Cosmic Microwave

Background) temperature which could possibly be measured. Cosmic super-

strings, on the other hand can produce cosmic rays such as γ-rays.

Since they are very thin, of the order of 1 fm or even less, their dynamics

can be studied in the zero width limit as Nambu-Goto strings.

They were once believed to be the seed for large structures such as

galaxies, as reviewed in Ref. [5]. However, measurements of the CMB power

spectrum by COBE (COsmic Background Explorer) and WMAP (the Wil-

kinson Microwave Anisotropy Probe) discarded the possibility of cosmic

strings having an effect on the formation of large structures. These measure-

ments showed that the angular power spectrum has acoustic peaks that are

not explained by cosmic strings, see Ref. [6].

12



The importance of topological defects in the universe is that they would

be directly observables as relics of the primordial fields in the early universe.

The objective of this thesis is to study numerically the profile of cosmic

strings related to the local invariance of the symmetry U(1)B−L. We are

particularly interested in co-axial string solutions. Co-axial solutions are

negative at low r, pass the r axis, and then approach their positive boundary

value at r →∞.

Throughout this thesis, we will work with natural units where c = ~ =

kB = 1.

In Chapter 2, we present the mathematical background required, such as

concepts in topology and group theory, and also give examples of topological

defects in other branches of physics. In Chapter 3, we focus on cosmic strings,

we study the solutions to global and local U(1) strings, and give a review

of the research done to detect them. Chapter 4 is completely original, we

describe cosmic strings solutions enabled by a scenario “Beyond the Standard

Model” (BSM) where we promote the global U(1)B−L symmetry to a local

symmetry and we combine it with U(1)Y which leads to the group we call

U(1)Y ′ . In Chapter 5, we present solutions to the equations of motion for the

fields and discuss the profile of local U(1)Y ′ cosmic strings within this BSM

model.
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Chapter 2

Theoretical background

In physics there exist mathematical structures known as topological defects

that are singularities that cannot be removed without affecting the system

at large scales. Condensed matter systems provide many examples of the

existence of topological defects. A particular case are vortex-like structures:

at low temperatures, there are magnetic flux lines in type II superconductors

and quantized vortex lines in superfluid 3He and 4He [7, 8, 9, 10, 11, 12].

2.1 Topological defects

In order to define a topological defect, we first review some other definitions.

Generally speaking, an order parameter can be any quantity that is defined in

a physical system, in space or spacetime, that distinguishes between ordered

and disordered phases. It is zero when the system is in the disordered phase,

and non-zero when it is in the ordered phase. The set of values that the order

parameter can take is called the order parameter space or order parameter

15
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manifold.

A topological defect can be defined as a discontinuity in the order pa-

rameter space of a system. The definition suggests that an order parameter

is related to changes of phases, spontaneous symmetry breaking, etc. Topo-

logical defects have the feature that they are extremely stable, meaning that

no local rearrangement of the order parameter can remove them.

The study of topological defects rely on homotopy theory. Homotopy

theory deals with the use of continuous deformations that transform one

object into another thus establishing their topological equivalence. A partic-

ularly simple deformable object is a path and if the path is closed it is called

a loop. In the following we give some useful definitions in topology. Sections

2.1 and 2.2 are based on Ref. [13].

2.1.1 Review of topology

The study of topology in physics is important. In particular, the topology of

the vacuum manifold M defines what topological defect can arise.

Definition 2.1.1 (Topology). Let the set X 6= ∅. A collection of subsets τ

of X, called open sets, is said to be a topology if they satisfy the following

properties:

1. X, ∅ ∈ τ ,

2. U1, U2 ∈ τ ⇒ U1 ∩ U2 ∈ τ ,

3. Ui ∈ τ , ∀i ∈ I ⇒ ⋃
i∈I Ui ∈ τ , where I is a set of indices.

The pair (X, τ) is called a topological space.

16



2.1. TOPOLOGICAL DEFECTS

The appeal of a topological space is that it is the most general space one

can work with, in the sense that closeness can be defined by the definition

above. The definition of path connectedness and the idea of loops can be

used to describe the holes in a topological space.

Definition 2.1.2 (Path). Let x0, x1 ∈ X. A path γ in X from x0 to x1 is a

continuous map

γ : [0, 1]→ X, (2.1)

with

γ(0) = x0, γ(1) = x1. (2.2)

We say that a topological space X is path connected if there exists a path

connecting any two points x0, x1 ∈ X.

Definition 2.1.3 (Loop). A loop in a topological space X at the base point

x0 ∈ X is a continuous map

γ : [0, 1]→ X, (2.3)

with

γ(0) = γ(1) = x0. (2.4)

Equivalently we can write this map as

γ : S1 → X, (2.5)

where S1 is the 1-sphere. The space of all loops at x0 ∈ X or loop space at

the base point x0 ∈ X is denoted Cx0(X).

17
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The loops defined above are also called 1-dimensional loops and can be

generalized to higher dimensions. An n-th loop is a smooth map from the

n-sphere to the topological space γ : Sn → X.

Definition 2.1.4 (Constant loop). The constant loop e at x0 ∈ X is defined

as

e(t) = x0, 0 ≤ t ≤ 1. (2.6)

Definition 2.1.5 (Inverse loop). Consider the loop γ at x0 ∈ X. Its inverse

loop γ−1 is defined as

γ−1(t) = γ(1− t), 0 ≤ t ≤ 1. (2.7)

Definition 2.1.6 (Homotopic loops). Two loops γ and γ′ at x0 ∈ X are

homotopic loops denoted γ ∼ γ′, if there exists a continuous map

H : [0, 1]× [0, 1]→ X, (2.8)

such that

H(t, 0) = γ(t), 0 ≤ t ≤ 1,

H(t, 1) = γ′(t), 0 ≤ t ≤ 1,

H(0, s) = H(1, s) = x0, 0 ≤ s ≤ 1. (2.9)

The homotopy of loops, and more generally of paths, forms an equivalence

relation meaning that they satisfy the properties of symmetry, reflexivity and

transitivity. Reflexivity means that an element a of an equivalence relation is

equivalent to itself, that is, a ∼ a. If a and b are elements of the equivalence

18



2.1. TOPOLOGICAL DEFECTS

relation, symmetry implies a ∼ b if and only if b ∼ a. Transitivity means

that that if a ∼ b and b ∼ c then a ∼ c.

We denote an equivalence class as [γ] = {γ′|γ′ ∼ γ}. One important

feature of loops is that we can define a product between them by consecutively

following one after the other.

Definition 2.1.7 (Product of loops). The product of loops

? : Cx0(X)⊗ Cx0(X)→ Cx0(X). (2.10)

For any two loops at x0 ∈ X, γ, γ′ ∈ Cx0(X), the product loop ρ = γ ? γ′ ∈

Cx0(X) is given by

ρ(t) = (γ ? γ′)(t) =


γ(2t), 0 ≤ t ≤ 1/2,

γ′(2t− 1), 1/2 < t ≤ 1.
(2.11)

The most important feature of loops is that their set of homotopy classes

at a point x0 ∈ X forms a group under the product of loops, where the

identity is I = [e] and the inverse is [γ]−1 = [γ−1]. This group is called the

first homotopy group or fundamental group, and it is denoted as π1(X, x0).

If the space X is path connected, we can ignore the base point x0 ∈ X

because it can be shown that the first homotopy groups of X at any two

point x0, x1 ∈ X are isomorphic π1(X, x0) ' π1(X, x1). We then write π1(X)

to refer to the first homotopy group.

19
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2.1.2 Higher homotopy groups

We can define the n-th homotopy group of X denoted πn(X), where n is the

dimension of the loop. In particular, if we take the topological space X to

be an i-sphere, then the n-th homotopy group summarizes all the possible

ways a n-sphere wraps around a i-sphere.

For example, the first homotopy group of a 1-sphere, π1(S1), contains

information on how a circle can be mapped onto another circle. It can be

wrapped once, or several times, be wrapped in the opposite direction, or not

be wrapped at all. This defines the first homotopy group of the 1-sphere to

be isomorphic to the set of integers Z, so we write π1(S1) ' Z. In general,

πn(Sn) ' Z, in this case we define the winding number or topological charge

m ∈ Z, which is the number of times a n-loop is wrapped around a n-

sphere. We can use the winding number to classify different configurations

that fall into the same equivalence class. Two configurations are topologically

equivalent if they have the same winding number.

If the homotopy group of the order parameter manifoldM is non-trivial,

it enables topological defects. In particular, if the first homotopy group

is non-trivial, then vortex-like solutions appear. If the vortex-like solution

appears in 3 spatial dimensions, it is called a string. We list some topological

defects defined by the non-triviality of the homotopy group of the order

parameter manifold:

• π0(M) 6= I → Kinks or Domain Walls

• π1(M) 6= I → Vortex/Strings

• π2(M) 6= I → Monopoles

20



2.1. TOPOLOGICAL DEFECTS

• π3(M) 6= I → Textures or Instantons

In practice it is useful to describe the order parameter space/manifold as

a coset space/manifold. Before proceeding along these lines, we review some

useful concepts in group theory.

2.1.3 Review of group theory

In physics, symmetry is vital. In particular, gauge theories are based on local

symmetries. For example, electroweak theory, quantum chromodynamics,

and general relativity are all gauge theories. A symmetry refers to an in-

variance of a quantity (the Lagrangian, Hamiltonian, etc.) under a group

of transformations. We review some basic concepts and definitions of group

theory, following Refs. [14, 15].

Definition 2.1.8 (Group). A set of elements G is a group under some

operation “ · ” : G × G → G, often called the product, if it satisfies the

following:

1. Closure: If ∀ g1, g2 ∈ G, then also g1 · g2 ∈ G.

2. Associativity: If ∀ g1, g2, g3 ∈ G then it must be true that (g1·g2)·g3 =

g1 · (g2 · g3).

3. Identity: ∃ e ∈ G such that ∀g ∈ G, e · g = g · e = g.

4. Inverse: ∀g ∈ G, ∃ g−1 ∈ G such that g−1 · g = g · g−1 = e.

Definition 2.1.9 (Subgroup). If G is a group and H is a subset of G, denoted

H ⊂ G, such that the elements of H form a group, then we say that H forms

a subgroup of G.

21
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Examples of groups are:

• The orthogonal group O(n) can be represented by the set of all n× n

real matrices that preserve the inner product in Rn.

• The special orthogonal groups SO(n) can be represented by the subgroup

of matrices in O(n) that have determinant 1.

• The unitary group U(n) can be represented by the set of n×n complex

matrices that preserve the inner product in Cn.

• The special unitary group SU(n) can be represented by the subgroup

of matrices in U(n) that have determinant 1.

The groups listed above are submanifolds of their corresponding vector spaces

of n× n matrices. These kinds of groups are called Lie groups.

Definition 2.1.10 (Lie group). A Lie group is a group which is also a smooth

manifold.

The importance of a Lie group is that it is continuous, so that we can

study it with the tools of differential geometry.

Definition 2.1.11 (Homomorphism). Given two groups G and H, we say

that ρ : G→ H is an homomorphism if

ρ(g · h) = ρ(g)ρ(h), (2.12)

where g ∈ G and h ∈ H.

22



2.1. TOPOLOGICAL DEFECTS

Definition 2.1.12 (Representation of a group). Given a group G with

elements g1, g2, . . . , we call D(gi) the representation of the group which is

a homomorphism from the group G to the group of n × n matrices so that

the elements of G are D(e), D(g1), . . . . Each D(gi) is a matrix of dimension

n. We can then choose the product “·” to be the matrix multiplication, such

that, D(gi) ·D(gj) = D(gi · gj).

Definition 2.1.13 (Left and right cosets). Let G be a group and H ⊂ G a

subgroup of G and g ∈ G, then ∀g ∈ G

• The set gH = {g · h|h ∈ H} is called the left coset of H in G.

• The set Hg = {h · g|h ∈ H} is called the right coset of H in G.

Definition 2.1.14 (Normal subgroup). H is a normal subgroup of G if gH =

Hg, that is, if the left and right cosets are equal.

Definition 2.1.15 (Quotient group). If G is a group and H ⊂ G is normal,

then we define the factor group or quotient group or coset group, denoted as

G/H (read “G modulo H”), as the group with elements in the set

G/H ≡ {gH|g ∈ G}, (2.13)

that is, the set of all left cosets of H in G.

In practice we often call the left coset just the coset group.

It is important to note that we can form equivalence classes in the group

G related by operations in H. We say that g1, g2 ∈ G are equivalent if there

exists an element in h ∈ H such that g1 = g2 · h. Two elements in G are said

23



CHAPTER 2. THEORETICAL BACKGROUND

to be in the same equivalence class if they are equivalent. We can then define

the space or manifold by associating each equivalence class with a point. The

resulting manifold is known as the coset space or coset manifold G/H.

As an illustration, we study the coset space SO(3)/SO(2) and see that it

is isomorphic to the manifold S2. We take a point P in the 2-sphere S2 and

call û the unit vector pointing to P . Let ẑ be the unit vector pointing to

(0, 0, 1). Let g1 ∈ SO(3) such that ẑ = g1û. We could associate g1 to P in

order to form the manifold. However, the transformation that takes û to ẑ

is not unique. We call h ∈ SO(2) a rotation about the z-axis, and we relate

two transformations g1 and g2 in SO(3) if g1 = g2h, that is, if both take û to

ẑ. Therefore, we need to remove the redundant transformations. So, we do

not associate g1 to the point P but all the equivalence classes of g1, that is,

we associate P to an element of the group SO(3)/SO(2). In other words, the

manifold associated to SO(3)/SO(2) is indeed S2.

2.1.4 Order parameter spaces as coset spaces

As we discussed, the order parameter manifold is related to a reduction of

symmetry. For example, in an ordered medium, we only need to find the

fundamental representation of the group of symmetries of the physical space,

say G, and find the group of isometries H of the system, then the parameter

space is G/H. As an example, we take a vector field in the 3-dimensional

space with constant length as our order parameter. The physical space has

an SO(3) symmetry, and the vector field is invariant under SO(2) rotations

along its axis, therefore, the order parameter space is SO(3)/SO(2) ' S2 (as

we saw earlier).
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In field theory, if we want to describe the order parameter manifold of

a field after Spontaneous Symmetry Breaking (SSB), we first consider the

symmetry group G before SSB and then the symmetry group H after SSB.

Then, the order parameter space is G/H (as we will see in Section 2.3).

2.2 Examples of topological defects in physics

2.2.1 The planar spin model in 2-dimensions

Let us illustrate the idea of a topological defect with the XY model in two

dimensions. In this case, we take the order parameter as a vector quantity

called the classical spin ~s ∈ R2

~s(~r ) =

cosϕ

sinϕ

 , ϕ ≡ ϕ(~r), |~s | = 1, ~r ∈ R2. (2.14)

Physically, if the system that we study using this model is a ferromagnet, we

call the spin ~s the local magnetization.

Suppose ~s to be a continuous function of ~r except at a point P in the

plane, and that we know ~s on a circle of radius R around the point P . We

consider all the field vectors ~s that lie along the circle. Since the field is

continuous on the circle, the angle ϕ of the vector field ~s as we travel along

the circle will be an integer multiple of 2π, that is 2πn, where n ∈ Z is

the winding number or topological charge. This way we can classify different

singular configurations that fall into the same equivalence class given their

winding numbers.
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The spins create an order parameter space or order parameter manifold

which is the space formed by all the possible values of the order parameter. In

this case, the spins in two dimensions can take values along the circumference

of radius 1, therefore, the order parameter space is S1/I ' S1. The spin angle

ϕ in the plane can be mapped to the spin space and it is represented as a

point in the order parameter manifold. Generally speaking, the specification

of the order parameter along a curve in real space, as opposed to spin space,

determines a mapping of that curve in the order parameter manifold. If the

curve in real space is closed, the mapping also determines a closed curve in

the order parameter space. The number of times that the mapping wraps

around the closed curve in the order parameter space is the winding number.

It is easy to see that the only topological defects are vortices, since

π1(S1) ' Z and πm(S1) ' I, m > 1.

In Figure 2.1 we see different spin configurations with several winding

numbers n. When we stack vortices on top of each other we can create a

1-dimensional defect called a string, see Figure 2.2.

2.2.2 Nematics

Liquid crystals are substances that share properties from both liquids and

crystals. Liquid crystals possess phases such as the nematic phase, the

chollesteric phase, smectic phase, etc. Nematics are liquid crystals in the

nematic phase. Nematics are made of rod shaped molecules which tend to

align parallel to one another. Since the orientation of the molecules does

not matter, mathematically the order parameter is represented by a headless

vector, ~n ≡ −~n.
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Figure 2.1: Configurations of spins with different winding numbers.
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Figure 2.2: Two dimensional vortices stack on top of each other in the 3-
dimensional physical space forming a vortex string.
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In this case, the group of symmetries of the physical 3d space is G =

SO(3). The group of isometries H = D∞ are rotations along the molecular

axis and the rotations along the axis perpendicular to the molecular axis.

Then, the order parameter space is G/H = SO(3)/D∞, which is known to be

isomorphic to the real projective plane RP 2. The real projective plane RP 2

is the space formed by all lines that pass the origin in R3, and it is described

as a half-sphere with opposite points in the equator identified. Through a

direct application of the Seifert-van Kampen theorem, it can be shown that

π1(RP 2) ' Z2. A heuristic explanation of this fact can be described as

follows: the space RP 2 is an hemisphere and can be flatten out to become a

flat disk with the build only two types of loops, one type that is entirely inside

the disk, and another one connecting two opposite points in the boundary,

see Fig. 2.3. The one inside the disk is a trivial loop since it can be reduce to

a point, because RP 2 is simply connected within the disk. However, the one

that connects opposite points in the boundary cannot be reduce to a point

since the points in the boundary are fixed and cannot move. Only this class

of non-trivial loop exists, so we conclude that π1(RP 2) ' Z2. In conclusion,

nematics enable one type of vortices.

However, if we constrain the molecules to live in a plane, the order

parameter manifold is now a semicircle with the endpoints identified, denoted

as S1/Z2. The semicircle is mathematically described by x = eiϕ, ϕ ∈ [0, π)

and can be mapped to a complete circle by the function f(x) = x2. Thus,

the space S1/Z2 is isomorphic to S1. Therefore, its first homotopy group

is π1(S1/Z2 ' S1) ' Z. In some applications, it is convenient to take

π1(S1) ' 1
2Z, since Z ' 1

2Z, so the topological charge can be an integer or
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Figure 2.3: The projective plane RP 2 and two types of loops γ1 and γ2. The
loop γ1 is a trivial loop and can be contracted to a point. However, γ2 is a
loop that connects two opposite points on the boundary, and it is the only
type of loops which cannot be contracted to a point.

Figure 2.4: Vortices in a nematic represented as yellow dots with topological
charges 1/2 and −1/2, figure taken from Ref. [16].
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half-integer. In Figure 2.4, we see two types of vortices in a nematic with

topological charges of 1/2 and −1/2.

2.2.3 Quantum vortices in superfluid helium

Helium has two isotopes, 3He and 4He, and when they become superfluids,

they exhibit rotating vortex defects when stirred.

In the case of 4He, it becomes a superfluid only when it is cooled down

below 2.17 K, and since it is a boson, its superfluid phase is related to the

Bose-Einstein condensation.

In contrast, 3He, the lighter helium isotope, only becomes a superfluid

when its temperature drops below 0.0025 K. Since 3He is a fermion, its

superfluid phase has a different mechanism from 4He. 3He superfluid is

related to the creation of Cooper pairs (similar to superconductivity). 3He

has two superconductivity phases and when an external magnetic field is

applied to one of the phases it splits creating yet another superconducting

phase.

The order parameters for 3He and 4He are their multi-particle wave

functions, a complex scalar for 4He and a 3 × 3 complex matrix for 3He.

In 4He, we can define a Lagrangian which is symmetric under U(1) that

is related to global phase transformations of the wave function. However,

this U(1) can break since in a state like a superfluid there exists a non zero

superfluid condensate. This condensate has a definite phase, so it breaks

the U(1) symmetry down to I. So π1(U(1)/I ' S1) ' Z, therefore 4He has

vortices. In fact, these vortices have their circulation quantized, so they are

called quantum vortices. In order to see this, let us consider a system with
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N bosonic particles. The wave function of 4He superfluid takes the form

ψ = Aeiϕ(~r1,~r2,...,~rN ), (2.15)

where ϕ = ∑
i ~ps,i · ~ri/~ and ~ps,i = m~vs,i, where m and ~vs,i are the mass of

individual 4He atoms and the drift velocity, respectively. With this definition

of the phase ϕ, it is straightforward that

~vs = ~
m
∇ϕ. (2.16)

Since ϕ is continuous, that means that the integral along a closed path

surrounding the vortex core must be an integer multiple of 2π,

∮
dϕ = 2πn, n ∈ Z, (2.17)

similar to what we encountered in the planar spin model. Computing the

circulation of the vortex results in

Γ =
∮
~vs · d~l = nh

m
. (2.18)

Experimentally, quantum vortices appear when the vessel containing 4He

superfluid is rotated. At low angular velocities, the superfluid remains at rest

while the vessel is rotated. At higher velocities, vortices appear and rotate.

Ref. [11] reported the first experimental observation of vortices in superfluid
4He. In Figure 2.5 we see vortices formed in superfluid 4He droplets from

numerical simulations, image taken from Ref. [12].
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2.2. EXAMPLES OF TOPOLOGICAL DEFECTS IN PHYSICS

Figure 2.5: Quantum vortices in superfluid 4He droplets, generated by
numerical simulations. We see from top to bottom, 9, 7, 4 and 2 vortices.
Left panel: top view parallel to the angular momentum, z = 0. Right panel:
side view perpendicular to the angular momentum, x = 0. Image taken from
Ref. [12]

33



CHAPTER 2. THEORETICAL BACKGROUND

2.3 Quantum field theory

2.3.1 The vacuum as the order parameter manifold

Let us consider a theory with a scalar field φ, which transforms under a

representation of a Lie group of transformations G. Let the potential V =

V (φ) be a function of the fields invariant under transformations of G.

If the potential V acquires a non-zero vacuum expectation value (VEV)

φ0, then the symmetry group G will be spontaneously broken, so φ develops

a set M of degenerate vacua, this implies φ0 ∈ M. All the transformations

of φ0 by representations of G will be genuine VEVs of the scalar field, that

is, D(g)φ0 ∈M. Some of these transformations may lead to the same point.

We define the subgroup H ⊂ G as the group of elements of G which leave φ0

invariant, that is,

H = {g ∈ G|D(g)φ0 = φ0}. (2.19)

This implies that the set of all distinct transformations of φ0 is given by the

quotient group G/H, which means that the vacuum manifold isM = G/H.

In other words, the set of values of a scalar field that minimizes the

potential, in a theory where a group of symmetries G breaks spontaneously

down to a subgroup H ⊂ G, forms a manifold which we identify as the

coset space G/H. This way, we can take the vacuum manifold as the order

parameter manifold, and the order parameter as a state in the vacuum.
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2.3. QUANTUM FIELD THEORY

2.3.2 Vacuum topology

Let us consider a Lagrangian density of a complex scalar field φ(x) = φ(t, ~x) ∈

C as

L = 1
2∂

µφ∗∂µφ− V (φ). (2.20)

Then its energy density is

ε = 1
2 |∂tφ|

2 + 1
2 |∇φ|

2 + V (φ). (2.21)

For the total energy of the derivative terms to be finite, we require that

lim
|~x|→∞

φ(x) ∈M, (2.22)

which means that at spatial infinity the field configuration φ takes a value in

the vacuum manifold M. The value of the field can be different in different

directions at spatial infinity. Therefore, a field configuration defines a map

from Sd−1
∞ , the (d − 1)-sphere at the spatial infinity in Rd, to the vacuum

manifold M

φ∞ : Sd−1
∞ →M, (2.23)

which means that the map φ∞ defines a (d−1)-loop inM. As we saw earlier,

two field configurations φ and φ′ are homotopic, or topologically equivalent, if

their field configurations at infinity φ∞ and φ′∞ can be deformed continuously

into one another, that is, if they fall into the same equivalence class. This

suggests that the topological information of the field configurations is com-

pletely defined by the homotopy group of the vacuum manifold πd−1(M).
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2.3.3 The Kibble mechanism

Several phase transitions took place in the early universe due to the cooling

down of the universe as a consequence of its expansion. The fast expansion,

at the late stages of inflation, produced casually uncorrelated regions because

the correlation length ∼ H−1 was shorter than the size of the universe,

where H is Hubble’s parameter. These regions, in principle, could have

different configurations of vacuum states for some field. At some instant, the

correlation length grew faster than the expansion rate of the universe, so the

regions grew and became casually connected. In the interfaces between these

regions, topological defects could form. The mechanism of having topological

defects due to phase transitions in the early universe is known as the Kibble

mechanism [1, 2].

2.4 The Standard Model

In the Standard Model of particle physics, particles are classified as either

fermions or bosons, where fermions are particles with half-integer spin and

bosons with an integer spin.

A refined classification of fermions distinguishes between leptons and

quarks, where only the quarks posses color charge. Also, fermions in general

have left- or right-handed chirality. For massless fermions they are independ-

ent of each other.

Leptons possess a quantum number called the lepton number L. Each

particle in the lepton family is assigned a lepton number of L = 1. Similarly,

quarks posses a baryon number B, and each quark is given a baryon number
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of B = 1/3. Moreover, we assign L = −1 and B = −1/3 to the anti-leptons

and anti-quarks, respectively. In nature, only combinations of quarks that

give an integer baryon number are realized; they are called hadrons.

Bosons with a spin 1 in the Standard Model are called the force carriers,

such as the photon that is the electromagnetic force carrier, the gluons that

mediate the strong interaction and theW±, Z bosons which mediate the weak

interaction. Finally, the Higgs boson is the only elementary scalar particle,

with spin 0. Along with Yukawa couplings, it is responsible of giving mass

to other elementary particles.

There are two kinds of symmetries in physics: global symmetries and

local or gauge symmetries. Normally, global symmetries are approximate,

they arise from a hierarchy of energy scales and are manifest in the form of

multiplets of particles. For example, in QCD with massless quarks the only

dimensionful quantity is ΛQCD ∼ 300 MeV and since the masses of the up

and down quarks are far below this energy scale, there is an approximative

SU(2) symmetry known as the isospin symmetry. On the other hand, gauge

symmetries are redundancies in the formulation and are impossible to break.

However, there is no fundamental reason for a global symmetry not to break.

There are exceptions to the rule, one of them is Lorentz global symmetry

that is related to CPT invariance. In the Standard Model of particle physics,

there is another exact global symmetry: the difference between the baryon

and lepton number is conserved.
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2.4.1 The global U(1)B−L symmetry

It is known that by Noether’s theorem, both lepton and baryon vector

currents are conserved classically. For leptons and quarks, their corresponding

currents read

jµL =
∑

f∈lepton

[
f̄Lγ

µfL + f̄Rγ
µfR

]
jµB =

∑
q∈quarks

[q̄LγµqL + q̄Rγ
µqR] . (2.24)

As we mentioned, at the classical level these currents are conserved,

∂µjLµ = 0

∂µjBµ = 0, (2.25)

which implies both lepton and baryon number conservation. Upon quantiza-

tion, we do not expect any anomalies in these vector currents. We only

expect an anomaly in the axial current,

jµ5 =
∑

f∈lepton

[
f̄Lγ

5γµfL + f̄Rγ
5γµfR

]
. (2.26)

However, this is not the complete picture, in fact, the anomaly can be

moved from the axial current to the vector current through a gauge invariant

regularization, as reviewed in Ref. [17].

In fact, upon quantization the same divergence in the vector currents in
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both leptonic and baryonic sector arise

∂µjLµ = −Ngg
2

32π2 Tr[WµνW̃
µν ]

∂µjBµ = −Ngg
2

32π2 Tr[WµνW̃
µν ], (2.27)

where W µν is the SU(2)L field strength tensor in the Standard Model, W̃ µν =

εµνρσW
ρσ, g is the weak gauge coupling and Ng is the number of fermion

generations.

Theoretically, these anomalous currents allow for the baryon or lepton

number violation; however, no process that realizes such violation has ever

been observed experimentally. If violations of the baryon number exist, there

are several ways that a proton can decay while preserving the laws of energy

conservation, angular momentum conservation, and electric charge conserva-

tion. We list some examples of proton channel decays [18]

p→ e+ν̄eνe, p→ e+e+e−, p→ e+µ+µ−,

p→ e+γ, p→ µ+γ,

p→ e+π0, p→ ν̄eπ
+, p→ µ+K0, p→ ν̄µK

+. (2.28)

In all these processes, the charge B − L = 1 is conserved, where B ∈ {1, 0}

and L ∈ {0,−1}. In order to explain the conservation of the B − L charge

theoretically, we define a new current jB−Lµ = jBµ − jLµ , which satisfies

∂µ(jB−Lµ ) = 0. (2.29)

This implies the conservation of the B−L charge. Conservation of the B−L
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charge is associated with a global U(1) symmetry, which we call U(1)B−L.
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Chapter 3

Cosmic strings

The understanding of spontaneous symmetry breaking and cosmological phase

transitions has led us to think about the possible existence of topological

defects formed in the early universe. Topological defects are related to

spontaneous symmetry breaking since they give rise to a non-trivial vacuum

manifold. For instance, the spontaneous symmetry breaking of a global or

local U(1) symmetry can lead to 1-dimensional topological excitations known

as vortices, and when these vortices form lines in the 3-dimensional space they

are called vortex strings.

3.1 The creation of cosmic strings in the early

universe

Let us illustrate the formation of cosmic strings through the Kibble mechan-

ism. Suppose we have a field theory, with a complex order parameter scalar

field φ, with a U(1) symmetry and with a potential suitable for spontaneous
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Figure 3.1: The formation of a cosmic string. When different uncorrelated
points in the universe became casually connected, the different vacuum-values
the field took in these points gave rise to topological defects.

symmetry breaking to happen. Due to high temperatures in the early universe,

the field configurations initially remained in a state of unbroken symmetry.

When the temperature decreased as the universe expanded, spontaneous

symmetry breaking occurred and different regions of the universe remained

isolated from each other. In each isolated region, the field acquired a different

vacuum expectation value. The patches grew and became casually connected

giving rise to topological defects. If these uncorrelated regions formed a loop

around some line such that the field values along the loop completed n turns,

the topological defect is in fact a cosmic string with a winding number of n,

see Figure 3.1.
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3.2. GLOBAL COSMIC STRINGS

3.2 Global cosmic strings

We consider the simplest model where string-like solutions appear: a scalar

field φ(x) ∈ C with a global U(1) symmetry and a Lagrangian density given

by

L = 1
2∂

µφ∗∂µφ−
m2

2 |φ|
2 − λ

4 |φ|
4 − λ

4v
4︸ ︷︷ ︸

−V (φ)

, (3.1)

where m2 and λ refer to the renormalized values. We require λ > 0, in order

for the potential to be bounded from below. We find the potential minima

by differentiating with respect to |φ|

dV

d|φ|

∣∣∣∣∣
φ0∈M

= m2|φ0|+ λ|φ0|3 = 0⇒


|φ0|2 = −m2

λ
only if m2 < 0

|φ0| = 0 if m2 ≥ 0.
(3.2)

If m2 < 0, it leads to the spontaneous symmetry breaking of the U(1)

symmetry. Then the vacuum expectation value is

|φ0| = v ≡
√
−m2

λ
. (3.3)

We consider a cylindrically symmetric, static field configuration

φ = φ(r, ϕ, z) = φ(r, ϕ). (3.4)

At r → ∞, the field configuration φ must take its vacuum expectation

value v, lim
r→∞
|φ(r, ϕ)| = v. But the complex phase can be any differentiable
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function of ϕ. Therefore our ansatz takes the form

lim
r→∞

φ(r, ϕ) = φ∞(ϕ) = veiχ(ϕ). (3.5)

The function φ∞ maps S1 →M = S1 = U(1). Since π1[S1] = Z, the model

allows for vortex solutions and there is a winding number n ∈ Z. Global

strings are configurations with n 6= 0, which are topologically stable, i.e.,

stable under continuous deformations. We assume χ(ϕ) = nϕ with n 6= 0.

Our ansatz becomes

φ(r, ϕ) = f(r)einϕ, (3.6)

where

lim
r→∞

f(r) = v, f(0) = 0. (3.7)

The latter relation is due to the fact that the field φ must be single valued.

The field equation of motion reads

∂µ∂µφ = −m2φ− λ|φ|2φ, (3.8)

using cylindrical coordinates

1
r
∂r(r∂rφ) + n2

r2 ∂ϕφ = m2φ+ λ|φ|2φ

1
r
∂r(rf ′)eiϕ −

n2

r2 fe
iϕ = m2feiϕ + λf 3eiϕ

f ′′ + 1
r
f ′ − n2

r2 f = m2f + λf 3. (3.9)

We arrive at a non-linear second order differential equation. We can obtain

its asymptotic behavior at large r and near zero, with the constraints of eq.
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(3.7). If r ≈ 0, we only keep the linear powers of f , so eq. (3.9) simplifies to

f ′′ + 1
r
f ′ − n2

r2 f −m
2f ≈ 0. (3.10)

Inserting m2 = −v2λ, we obtain

f ′′ + 1
r
f ′ − n2

r2 f + v2λf ≈ 0. (3.11)

If we substitute u =
√
v2λr, then f(r) = f̃(u) and we obtain Bessel’s equation

for f̃
d2f̃

du2 + 1
u

df̃

du
+
(

1− n2

u2

)
f̃ ≈ 0 , (3.12)

with the solution

f̃(u) ≈ f0J|n|(u) + f̃1Y|n|(u), (3.13)

where J|n| and Y|n| are the Bessel functions of the first and second kind of

order n, respectively, and f0 and f̃1 are real constants. We set f̃1 = 0 since

Y|n| diverges at zero. Then the solution is

f̃(u) ≈ f0J|n|(u) = f0J|n|(
√
v2λr) . (3.14)

Therefore

f(r) ≈ f0J|n|(
√
v2λr) = f0

∞∑
m=0

(−1)m
m!Γ(m+ |n|+ 1)

(√
v2λr

2

)2m+|n|

(3.15)
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and to order n in r we have

f(r) ≈ f0
1
|n|!

(√
v2λr

2

)|n|
. (3.16)

At r → ∞, f(r) approaches its vacuum expectation value v. If we write in

this limit f(r) = v + δf(r), and ignoring O(δf 2) terms, eq. (3.9) turns into

an equation for δf

δf ′′ + 1
r
δf ′ − |n|

2

r2 δf − 2v2λδf ≈ 0 . (3.17)

When we perform the change of variable u =
√

2λvr the equation above

turns into the modified Bessel equation

d2

du2 δf + 1
u

d

du
δf −

(
1 + |n|

2

u2

)
δf ≈ 0 . (3.18)

This equation has the solution

δf ≈ f̃0I|n|(u) + f1K|n|(u) = f̃0I|n|(
√

2λvr) + f1K|n|(
√

2λvr) (3.19)

where I|n| and K|n| are the modified Bessel function of the first and second

kind, respectively, and f̃0 and f1 are real constants. Since I|n| diverges when

r →∞, we set f̃0 = 0. Hence, the solution for f at r →∞ takes the form

f(r) ≈ v + f1K|n|(
√

2λvr) . (3.20)
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In summary

f(r) ≈


f0

1
n!

(√
λvr

2

)|n|
r � 1

v + f1

√
π

2
√

2λv
r−1/2e−

√
2λvr r � 1 ,

(3.21)

where in the second line we used the asymptotic behavior of Kn.

3.2.1 Energy density

The expression for the energy density reads

ε(r) =
�
�
�
��>

0
1
2 |∂tφ|

2 + 1
2 |∂rφ|

2 + 1
2

∣∣∣∣1r∂ϕφ
∣∣∣∣2 + 1

2 |∂zφ|
2 + V (φ). (3.22)

The first term is zero since φ is a static configuration. Because of the angular

derivative term, the energy density is of O(1/r2) at large r. Thus the energy

per unit length along the z direction, inside a cylinder of external radius

R→∞ and internal radius δ → 0, diverges logarithmically, that is

E

z
∼
∫ 2π

0
dϕ
∫ R

δ
dr r

1
r2 ∝ lim

R→∞,δ→0
log R

δ
. (3.23)

Figure 3.2 shows the profile of a global string type solution of eq. (3.9),

obtained with numerical methods, which is in agreement with the asymptotic

behavior specified in eq. (3.21).
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Figure 3.2: Radial profile of a global string and its energy density.

3.3 Local cosmic strings

In order to promote U(1) to a local symmetry, we need to add a gauge field

Aµ. So the Lagrangian becomes

L = 1
2(Dµφ)∗Dµφ−

m2

2 |φ|
2 − λ

4 |φ|
4 − λ

4v
4 − 1

4F
µνFµν , (3.24)

where Dµφ = (∂µ + ihAµ)φ is the covariant derivative, h is a gauge coupling

and Fµν = ∂µAν − ∂νAµ is the field strength tensor. Now, the equations of

motion are

DµDµφ = −m2φ− λ|φ|2φ, (3.25)

DµFµν = −ih2 [(Dνφ)∗φ− φ∗Dνφ] . (3.26)
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We write the generic, static, cylindrical ansatz as

φ(r, ϕ) = f(r)einϕ, ~A(r, ϕ) = a(r)
r
ϕ̂, (3.27)

where we have chosen the radial gauge where Ar = 0. For the functions to

be continuous at the origin f(0) = 0 and a(0) = 0. Using the ansatzë for the

functions the equations for f and a take the form

f ′′ + 1
r
f ′ − 1

r2 (n+ ha)2 f −m2f − λf 3 = 0, (3.28)

a′′ − 1
r
a′ − h(n+ ha)f 2 = 0. (3.29)

From eq. (3.29) we obtain the asymptotic behavior of the function a(r). At

large r we expect the function to be constant, this is only achieved if the

term in parenthesis is zero, which implies limr→∞ a(r) = −n/h.

Again, the system is not analytically solvable, but we can derive its

asymptotic behavior.

When r → 0, eq. (3.28) is approximately (assuming f(r) = O(r))

f ′′ + 1
r
f ′ − n2

r2 f −m
2f ≈ 0, (3.30)

so again as in eq. (3.16) the approximate solution is

f(r) ≈ f0
1
|n|!

(√
v2λr

2

)|n|
. (3.31)
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In this limit, eq. (3.29) takes the form

a′′ − 1
r
a′ ≈ 0 (3.32)

and its solution is

a(r) ≈ a0

2 r
2, (3.33)

where a0 is a constant.

In order to study the limit r →∞, we use f = v + δf and a = −n
h

+ δa,

and ignore quadratic terms in δf and δa. Then eq. (3.28) takes the form

δf ′′(r) + 1
r
δf ′(r)− 2v2λδf(r) ≈ 0 . (3.34)

with the solution

δf(r) ≈ f1K0(
√

2λvr). (3.35)

Considering the limit of large r the function f is approximately

f(r) ≈ v + f1

√
π

2
√

2λv
r−1/2 exp

(
−
√

2λvr
)
, (3.36)

where f1 is a real constant, and we used the asymptotic behavior of K0.

Analogously, for eq. (3.29) we may write a(r) = −n
h
− δa(r). Then we

obtain an equation for δa,

δa′′ − 1
r
δa′ − h2v2δa ≈ 0, (3.37)

and its solution is

δa = a1hvrK1(hvr). (3.38)
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In this limit of large r, the function a behaves as

a ≈ −n
h
− a1

√
πhv

2 r1/2 exp (−hvr) . (3.39)

In summary, we have

f(r) ≈


f0

1
|n|!

(√
v2λr

2

)|n|
r � 1

v + f1

√
π

2
√

2v2λ
r−1/2e−

√
2v2λr r � 1 ,

(3.40)

and

a(r) ≈


a0

2 r
2 r � 1

−n
h
− a1

√
πhv

2 r1/2 exp (−hvr) r � 1 .
(3.41)

In Figure 3.3 we show an example of the radial profiles of the energy

density given by

ε(r) =
�
�
�
��>

0
1
2 |∂tφ|

2 + 1
2 |∂rφ|

2 + 1
2

∣∣∣∣∣1r∂ϕφ+ ih
a(r)
r
φ

∣∣∣∣∣
2

+ 1
2 |∂zφ|

2 + 1
4F

µνFµν +V (φ).

(3.42)

The energy, in this case, is not infinite since the angular covariant derivative

|1
r
Dϕφ|2 vanishes faster than in the global string case when r →∞.

For Sections 3.2 and 3.3 we follow mainly Refs. [19, 20].

3.4 The mass of a local U(1) string

By simple arguments, we can estimate the order of magnitude of the mass of

a local U(1) cosmic string. The only quantity with dimension is the vacuum
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Figure 3.3: Local string profile, for the scalar field φ and a and the energy
density ε, as a function of the distance from the core r.

expectation value v which has dimension of energy. The tension of the string

µ has dimensions of force, that is, energy squared, therefore

µ ∝ v2. (3.43)

In order to find the proportionality constant we first perform the following

substitution of φ, Aµ and xµ to dimensionless variables

φ = vφ̃

Aµ = vÃµ

xµ = 1
hv
x̃µ.
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This way, the tension of the string reads

µ = 2πv2
∫ ∞

0
r̃dr̃

(
1
2
(
Dµ̃φ̃

)∗
Dµ̃φ̃+ 1

4 F̃
µ̃ν̃F̃µ̃ν̃ + β

8 (1− φ̃∗φ̃)2
)
, (3.44)

where the tildes in the indices indicate derivatives with respect to x̃µ and

β = 2λ
h

. According to Ref. [21] the integral for β = 1 and n = 1 is 1/2. In

this case the tension of the string reads

µ = πv2. (3.45)

We expect at least one cosmic string per horizon volume. The length of

an horizon is ∼ H−1
0 , where H0 is Hubble’s constant today. So, a cosmic

string can have a length of at least

H−1
0 ∼ 1010 years

(
1 pc

3.26 years

)
∼ 1010 pc. (3.46)

The tension is of the order of

v2 = v2
(

1015

0.2 GeV m

)(
10−27 kg
1 GeV

)(
3× 1016 m

1 pc

)
∼ 105

(
v

1 GeV

)2 kg
pc .

(3.47)

The mass of a cosmic string, related to a local symmetry, is therefore of the

order of

Mstring ∼ v2H−1
0 ∼ 105

(
v

1 GeV

)2 kg
pc 1010 pc ∼ 1015

(
v

1 GeV

)2
kg. (3.48)

If we insert v = 246 GeV, then the string would have a mass of ∼ 1019 kg.

This is four orders of magnitude smaller than the mass of the Moon∼ 1023 kg,
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or eleven orders of magnitude times smaller than the mass of the Sun ∼

1030 kg. Because of its shape and small tension (compared to cosmic strings

originated from a GUT), gravitational detection of a electroweak cosmic

string would be difficult.

3.5 The search for cosmic strings

There exist several ways of searching for cosmic strings, such as their contri-

butions to the CMB power spectrum, gravitational lensing, their emission of

gravitational radiation, emission of particles, etc. We discuss briefly some of

the most popular ways of trying to detect cosmic strings. We refer to a very

useful dimensionless quantity

Gµ, (3.49)

where G = 1
(1.2×1019 GeV)2 is Newton’s gravitational constant and µ is the

tension of the string. It measures, for instance, the gravitational coupling of

the string.

3.5.1 CMB power spectrum measurements

In the early universe, a short time after the Big Bang, photons were coupled

to matter forming a hot plasma of baryons, leptons and photons. At this

stage, photons were not able to travel long distances. Approximately when

the universe was 300, 000 years young, the first atoms were formed. Since

atoms are neutral, photons decoupled from matter, a process known as

recombination. After that, photons were able to travel long distances without

being absorbed by a particle. This radiation is known as the Cosmic Micro-
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wave Background (CMB), and permeates the entire universe. The CMB

follows almost perfectly a thermal spectrum of black body radiation at a

temperature of 2.73 K. However, the thermal spectrum has temperature

fluctuations or anisotropies.

Several missions such as COBE, WMAP and PLANCK were design to

measure the CMB photons energy anisotropies. In Figure 3.4 we see the CMB

temperature distribution as captured by PLANCK. When several regions of

the CMB map are analyzed at different angular scales, we can observe how

the temperature fluctuations behave and we can plot its power spectrum, see

Figure 3.5.

If cosmic strings exist, they would have a distinct footprint in the CMB

power spectrum. In particular, photons passing near a cosmic string would

have a redshift which results in step-like discontinuities in the CMB. Accord-

ing to Ref. [22], the discontinuities in the CMB temperature deviation due

to cosmic strings is of the order of

∆T
T

= 8πGµβ, (3.50)

where β is the transverse velocity of the string and T is the temperature

and ∆T is the temperature fluctuations. In fact, measurements of the CMB

anisotropies can set constraints to the tension of cosmic strings. The con-

straint to the tension according to Ref. [23], using PLANCK’s data, is

Gµ . 1.49× 10−7. (3.51)

The excitement of cosmic strings in the early 80s, was that they could have
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Figure 3.4: CMB as captured by PLANCK. Figure taken from Ref. [24].

explained the formation of large structures [5]. However, for cosmic strings

to have an important impact for the formation of structures we need that

Gµ ∼ 10−6. This would have a great impact in the power spectrum: the

acoustic peaks at angle scales less than 1◦ would be smoothen out, but this

is not the case. That cosmic strings cannot explain the acoustic peaks in

the CMB power spectrum does not mean that they are rule out. But this

constrains the contribution of cosmic strings and other topological defects to

the CMB power spectrum. The observations indicate that the contribution

of topological defects to the CMB cannot be more than 10% [6].
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Figure 3.5: Cosmic Microwave Background power spectrum. Cosmic strings
as a seed for large structures is now ruled out, since they do not explain the
acoustic peaks at angular scales less than 1◦. Plot taken from [25].
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3.5.2 Gravitational lensing

Let us consider a static string along the z-axis. In the zero width limit its

energy-momentum tensor reads

T µν = µδ(x)δ(y) diag(1, 0, 0,−1). (3.52)

The metric tensor far outside a cosmic string is known to be locally flat, it

reads

ds2 = dt2 − dr′2 − r′2dϕ′2 − dz2, (3.53)

where r′ and ϕ′ are defined through the relations

(1− 8Gµ log(r/r0))r2 = (1− 8Gµ)r2, ϕ′ = (1− 4Gµ)ϕ. (3.54)

Here r ∈ [0,∞] and ϕ ∈ [0, 2π) are the usual variables in cylindrical coor-

dinates and r0 is a constant. This implies that there is an angular deficit,

which is defined as

∆ϕ = ϕmax − ϕ′max = 2π − 2π(1− 4Gµ) = 8πGµ. (3.55)

Physically, it means that a light source, such as a galaxy or a star, behind

the core of a string produces a double image separated by the angle

α = l1
l2

∆ϕ sin θ, (3.56)

assuming Gµ � 1, where l1 is the distance between the string and the

observer, l2 is the distance between the string and the object and θ is the angle
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Figure 3.6: Gravitational lensing by a massive cosmic string. An object is
behind the string core. The telescopes on Earth would observe two similar
close objects separated by the angle α.

that the string makes with the plane of the observer and and the object, see

Figure 3.6. That is, a non-zero angular deficit suggests that a cosmic string

would act as a gravitational lens.

For example, we consider an energy scale of v ∼ 1016 GeV, then Gµ ∼

10−6, typical of a Grand Unified Theory. A cosmic string, such as one formed

due to the spontaneous symmetry breaking of a GUT gauge group, would

be very massive and would have a dramatic effect on the lensing of objects

behind it. The angular defect of such a string would be ∆ϕ = 8πGµ ' 5.18′′

[20].
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In principle, an observational way to detect a cosmic string would be to

look for a line of double objects. If this is observed, we could conclude that

it was caused by a very massive object such as a cosmic string. In Figure

3.7 we see three examples of how a gravitational lens produced by a massive

cosmic string would look like, taken from Ref. [26].

In 2003, two close galaxies called CSL-1, see Figure 3.8, were thought

to be two copies of the same galaxy. That is, a gravitational lens produced

by a cosmic string, Ref. [27]. However, it was ruled out in 2006 by careful

measurements on the brightness of the galaxies, see Ref. [28].

Besides gravitational lensing, another gravitational observation would be

the detection of gravitational waves.

3.5.3 Gravitational waves

Since the first detection of gravitational waves [29], one of the most realistic

way of possible detection of cosmic string is by their emission of gravitational

radiation. According to General Relativity, an oscillating cosmic string loop

loose energy by emitting gravitational waves with a power of

P = ΓGµ2, (3.57)

where Γ is a constant.

The production of cosmic string loops can be of various ways, see Figure

3.9. When two strings collide, or when a single string backs on itself, they

could form either two new strings, or a new string and a loop. In fact,

oscillating loops have a characteristic emission of gravitational radiation
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Figure 3.7: Gravitational lensing by a massive cosmic string generated by
numerical simulations, illustration taken from Ref. [26].
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Figure 3.8: CLS-1 candidate for two copies of the same galaxy as a result of
the gravitational lensing of a cosmic string, illustration taken from [28].
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produced by kinks and cusps, through interactions with other strings or with

itself. Kinks are discontinuities in their worldsheet xµ or ẋµ. Cusps are

pointy regions on the string, see Figure 3.10. A cusp in a loop is formed by

two modes, one traveling to the left and the other to the right at the speed

of light. Cusps in a loop are short lived and produce a particular signal of

gravitational waves beamed in the direction of the cusp. On the other hand,

kinks travel along the string and produce a beam of gravitational waves in a

fan-like manner.

The Virgo/LIGO Collaboration put constraints on the tension of cosmic

strings [30]: it found that, referring to loop radiation, the constraint for the

tension is

Gµ . 4× 10−15. (3.58)

Unfortunately, this collaboration did not find any evidence of gravitational

waves produced by cosmic strings.
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Figure 3.9: Formation of loops. Above: two strings intersect and form two
new strings and a loop. Below: A string intersects with itself leaving a new
string and a loop. However, the interaction of strings will not always produce
loops.

Figure 3.10: A loop with a cusp. Near the cusp the speeds of the right and
left modes are the speed of light.
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Chapter 4

U(1)Y ′ local cosmic strings

4.1 An extension of the Standard Model

As we saw in Section 2.4.1, in the Standard Model U(1)B−L is an exact global

symmetry. However, this is strange since an exact symmetry is only natural

when it is local. If we promote U(1)B−L to be a local symmetry, we can

combine it with the symmetry U(1)Y of the Standard Model associated with

the weak hypercharge Y . We introduce an additional U(1) Abelian gauge

coupling, and we call it h′. We define the new charge as

Y ′ = 2hY + h′

2 (B − L), (4.1)

where h and h′ are coupling constants (the convention for the coefficients 2

and 1/2 will be convenient later). We call the gauge field of the new U(1)Y ′

symmetry Aµ, it couples to a linear combination of the charges Y and B−L.
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Aµ

f

Aν

f

f Aρ

Figure 4.1: Triangular diagram: f runs over all fermions involved. In each
vertex the quarks of one generation contribute with a total baryon number
B = 4, and the leptons with total lepton number L = 3. In order to have
U(1)B−L gauge invariance, we introduce a right-handed neutrino with L = 1
in each fermion generation.

Thus, the gauge group of the Standard Model is converted to

SU(3)c × SU(2)L × U(1)Y ′ . (4.2)

With the inclusion of the new gauge coupling to Aµ, a gauge anomaly

emerges, which can be seen in the triangular diagram in Figure 4.1. In the

Standard Model, we have three generations of quarks, each containing two

flavors. They can have one of three color charges and be left- or right-handed.

Since each quark has baryon number B = 1/3, each generation sums up to

B = 2×3×2×1/3 = 4. In the lepton sector, each generation has one lepton

with both chiralities but only a left-handed neutrino, all with L = 1. This

way, each generation contributes to the total lepton number with L = 3.

This way, the sum of the B − L charge of one set of SM fermions does

not vanish, since B − L = 4− 3 = 1 6= 0.
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In order to cancel the anomaly, which corresponds to the diagram in

Figure 4.1, we need the addition of a right-handed neutrino νR (L = 1).

Since a right-handed neutrino is sterile, except for the B −L charge, it does

not affect the cancellations of other gauge anomalies with respect to the

Standard Model gauge fields. It is known that we can give a Dirac mass

term to the neutrinos via a Yukawa coupling through νL and νR and the

standard Higgs field Φ of the form

fν

ν̄R (−Φ0 Φ+

)νL
eL

+
(
ν̄L ēL

)−Φ∗0
Φ∗+

 νR
 . (4.3)

When we set Φ =

0

v

 the mass term becomes fνv(ν̄RνL+ ν̄LνR) and we can

read directly the mass for the neutrino mν = fνv.

The Majorana term permitted normally to give mass to the right-handed

neutrino is of the form

Mν̄MνM , (4.4)

where νM = νR +Cν̄TR , with C the charge conjugation matrix. However, this

term is only possible if the right-handed neutrino is completely sterile. We

now have a B−L gauge field, and if we want to construct a mass term solely

for νR, we add a non-standard Higgs field. The weak and B − L charges of

the Higgs fields are summarize in Table 4.1.

Moreover, we can also give a Majorana-type mass term to νR, independ-

ently of νL through the Higgs mechanism

fνR
νTRχνR + c.c., (4.5)
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Charge χ Φ
Y 0 1

2
B − L 2 0

Table 4.1: The hypercharges of the Higgs fields χ and Φ.

where fνR
is a Yukawa coupling and in order to retain gauge invariance we

added the non-standard Higgs-type field χ ∈ C. The B − L charge of this

term must be zero. The neutrino fields together have B − L = −2, so the

field χ must have a charge B − L = 2.

4.2 Lagrangian and equations of motion for

U(1)Y ′ cosmic strings

The new Higgs field χ is introduced in the Lagrangian with a gauge invariant

potential

V ′ = m′2

2 χ∗χ+ λ′

4 (χ∗χ)2. (4.6)

Because of power-counting renormalizability we only include four powers in

the field χ. It can be applied to each lepton generation to give mass to all

right-handed neutrinos via the Higgs mechanism according to eq. (4.5). We

denote the vacuum expectation value of χ as v′.

It is also natural to include a mixed term ∝ κΦ†Φχ∗χ, between the

standard Higgs field and the new Higgs field. This term is natural because it

is gauge invariant under both U(1)′Y and SU(2)L. Again, by power counting

renormalizability we only include four powers in energy, giving the coupling

constant κ dimension zero.
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Furthermore, we assume the vacuum expectation value of the new Higgs

field v′ to be much greater than the vacuum expectation value of the standard

Higgs field v, that is, v′ � v. In addition, we assume fνR
' O(1) which

together gives a heavy mass to the right-handed neutrino, mνR
= fνR

v′. For

simplicity, we exclude the SU(2)L gauge field and the fermion fields, along

with the gluons. Therefore, the Lagrangian with these approximations reads

L = 1
2(DµΦ)†DµΦ− m2

2 Φ†Φ− λ

4 (Φ†Φ)2 − λ

4v
4

+1
2(Dµχ)∗Dµχ−

m′2

2 χ∗χ− λ′

4 (χ∗χ)2 − λ′

4 v
′4

−κ2 Φ†Φχ∗χ− κ

2v
2v′2 − 1

4F
µνFµν , (4.7)

where

DµΦ ≡ (∂µ + ihAµ)Φ,

Dµχ ≡ (∂µ + ih′Aµ)χ,

Fµν ≡ ∂µAν − ∂νAµ, (4.8)

and the gauge field Aµ is introduced to implement local U(1)Y ′ invariance.

The fields transform as

Φ(x)→ eihα(x)Φ(x),

χ(x)→ eih
′α(x)χ(x),

Aµ → Aµ + ∂µα(x), (4.9)

where α is any differentiable function of x. Expanding the covariant derivative
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terms of eq. (4.8) we obtain

(DµΦ)†DµΦ = ∂µΦ†∂µΦ + ih∂µΦ†AµΦ− ihAµΦ†∂µΦ + h2AµAµΦ†Φ,

(Dµχ)∗Dµχ = ∂µχ∗∂µχ+ ih′∂µχ∗Aµχ− ih′Aµχ∗∂µχ+ h′2AµAµχ∗χ.

We want to derive the Euler-Lagrange equations regarding the derivatives

with respect to Φ†

∂µ
∂L

∂(∂µΦ†) = ∂L
∂Φ† ,

∂L
∂(∂µΦ†) = 1

2∂µΦ + ih

2 AµΦ = 1
2DµΦ,

∂µ
∂L

∂(∂µΦ†) = 1
2∂

µ (∂µ + ihAµ) Φ = 1
2∂

µDµΦ, (4.10)

∂L
∂Φ† = 1

2
[
−ihAµ∂µΦ + h2AµAµΦ

]
− m2

2 Φ− λ

2 (Φ†Φ)Φ− κ

2 Φχ∗χ

= −1
2ihA

µDµΦ− m2

2 Φ− λ

2 (Φ†Φ)Φ− κ

2 Φχ∗χ . (4.11)

Equating (4.10) and (4.11) we obtain the equation of motion for Φ

DµDµΦ = −m2Φ− λ(Φ†Φ)Φ− κΦχ∗χ . (4.12)

Similarly, we obtain the equation of motion for the field χ

DµDµχ = −m′2χ− λ′(χ∗χ)χ− κχΦ†Φ . (4.13)

Regarding the equations of motion of the gauge field Aµ, we first take the
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derivate of the Lagrangian with respect to Aρ

∂L
∂Aρ

= ih

2 ∂
ρΦ†Φ− ih

2 Φ†∂ρΦ + h2AρΦ†Φ

+ih
′

2 ∂ρχ∗χ− ih′

2 χ∗∂ρχ+ h′2Aρχ∗χ

= ih

2
[
(DρΦ)†Φ− Φ†DρΦ

]
+ ih′

2 [(Dρχ)∗χ− χ∗Dρχ] . (4.14)

Then, we take the derivative of the Lagrangian with respect to ∂λAρ

∂L
∂(∂λAρ)

= ∂

∂(∂λAρ)

(
−1

4F
µνFµν

)
= −1

4
∂

∂(∂λAρ)
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ)

= −1
4

∂

∂(∂λAρ)
(2∂µAν∂µAν − 2∂µAν∂νAµ)

= −1
4 (2∂µAνδλµδρν − 2∂µAνδλνδρµ − 2∂νAµδλµδρν + 2∂νAµδλνδρµ)

= −1
4(4∂λAρ − 4∂ρAλ) = −∂λAρ + ∂ρAλ = −Fλρ = Fρλ. (4.15)

Differentiating the result of eq. (4.15) by xλ yields

∂λ

(
∂L

∂(∂λAρ)

)
= ∂λFρλ = ∂λ∂

ρAλ − ∂λ∂λAρ. (4.16)

Thus, we obtain the equations of motion for the gauge field Aµ

∂λFρλ = ih

2
[
(DρΦ)†Φ− Φ†(DρΦ)

]
+ ih′

2 [(Dρχ)∗χ− χ∗(Dρχ)] . (4.17)

Using cylindrical coordinates (r, ϕ, z), we make ansätze for the stationary
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solutions

Φ =

 0

φ(r)einϕ

 , χ = ξ(r)ein′ϕ, Aϕ = a(r)
r
. (4.18)

Then, the ϕ components of the covariant derivatives are

1
r
DϕΦ =

(1
r
∂ϕ + ihAϕ

)
Φ,

1
r
Dϕχ =

(1
r
∂ϕ + ih′Aϕ

)
χ, (4.19)

along with

DiDiΦ ≡
(
∂2
r + 1

r
∂r +

(1
r
∂ϕ + ihAϕ

)2
+ ∂2

z

)
Φ,

DiDiχ ≡
(
∂2
r + 1

r
∂r +

(1
r
∂ϕ + ih′Aϕ

)2
+ ∂2

z

)
χ . (4.20)

We now work out the left-hand side of eq. (4.17), for static configurations

∂νFµν = ∂ν∂
µAν − ∂ν∂νAµ = −∂j∂iAj + ∂j∂jAi

= − [∇(∇ · A)]i +
[
∇2A

]i
= − [∇×∇×A]i . (4.21)

In cylindrical coordinates, the curl of a vector function takes the form of the

determinant [31]

∇×~b = 1
r

∣∣∣∣∣∣∣∣∣∣∣
r̂ rϕ̂ ẑ

∂r ∂ϕ ∂z

br rbϕ bz

∣∣∣∣∣∣∣∣∣∣∣
. (4.22)
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Then

∇× ~A = ∇×
(
a(r)
r
ϕ̂

)
= 1

r

∣∣∣∣∣∣∣∣∣∣∣
r̂ rϕ̂ ẑ

∂r ∂ϕ ∂z

0 a 0

∣∣∣∣∣∣∣∣∣∣∣
= 1
r
∂ra ẑ,

∇×∇× ~A = ∇×
(1
r
∂ra ẑ

)
= 1

r

∣∣∣∣∣∣∣∣∣∣∣
r̂ rϕ̂ ẑ

∂r ∂ϕ ∂z

0 0 1
r
∂ra

∣∣∣∣∣∣∣∣∣∣∣
=

(
−1
r
∂2
ra+ 1

r2∂ra
)
ϕ̂ (4.23)

Eq. (4.21) is non-trivial only for the index j = ϕ, where we obtain from eq.

(4.23)

∂jFϕj = 1
r
∂2
ra−

1
r2∂ra. (4.24)

Now we treat the terms on the right-hand side of eq. (4.17),

ih

2

(1
r
∂ϕΦ

)†
Φ = ih

2
1
r
∂ϕ(φe−inϕ)φeinϕ = hn

2r φ
2

−ih2 Φ†
(1
r
∂ϕΦ

)
= −ih2

1
r
∂ϕ(φeinϕ)φe−inϕ = hn

2r φ
2

h2AϕΦ†Φ = h2a

r
φe−inϕφeinϕ = h2a

r
φ2

ih′

2

(1
r
∂ϕχ

)∗
χ = ih′

2
1
r
∂ϕ(ξe−in′ϕ)ξein′ϕ = h′

2 n
′1
r
ξ2

−ih
′

2 χ∗
(1
r
∂ϕχ

)
= −ih

′

2
1
r
∂ϕ(ξein′ϕ)ξe−in′ϕ = h′

2 n
′1
r
ξ2

h′2Aϕχ∗χ = h′2
a

r
ξe−in

′ϕξein
′ϕ = h′2

a

r
ξ2 . (4.25)
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From eq. (4.12) we infer the equation of motion for φ(r)

∂2
rφ+ 1

r
∂rφ−

1
r2 (n+ ha)2 φ−m2φ− λφ3 − κφξ2 = 0, (4.26)

and from eq. (4.13) we obtain

∂2
r ξ + 1

r
∂rξ −

1
r2 (n′ + h′a)2

ξ −m′2ξ − λ′ξ3 − κξφ2 = 0 . (4.27)

And finally from eqs. (4.24) and (4.25) we infer

∂2
ra−

1
r
∂ra− h(n+ ha)φ2 − h′(n′ + h′a)ξ2 = 0. (4.28)

4.2.1 Boundary conditions

In the limit r →∞, the radial profile functions φ and ξ take constant values

v and v′, respectively. In the same limit, eqs. (4.26) and (4.27) fix the values

for m2 and m′2. If we treat λ, λ′ and κ as free parameters, we fix the values

for m2 and m′2

−m2v − λv3 − κvv′2 = 0 ⇒ m2 = −κv′2 − λv2,

−m′2v′ − λ′v′3 − κv′v2 = 0 ⇒ m′2 = −κv2 − λ′v′2. (4.29)

Also the value a(r → ∞) is fixed using eq. (4.28). We are interested in

solutions that apply to any values of φ and ξ which is only possible when the

parentheses in eq. (4.28) are zero in the limit r →∞. We obtain the limit

lim
r→∞

a(r) ≡ a(∞) = −n
h

= −n
′

h′
. (4.30)
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In addition, there exists another limit of a at infinity

−hnv2−h2a(∞)v2−h′n′v′2−h′2a(∞)v′2 = 0 ⇒ a(∞) = −hnv
2 + h′n′v′2

h2v2 + h′2v′2
.

(4.31)

We reject the limit in eq. (4.31) because we demand the function a to be

independent of v and v′. In contrast, the limit of (4.30) is valid for any φ

and ξ which are constant at r →∞.

In summary, the boundary conditions for φ, ξ, a and for n, n′ > 0 are

φ(0) = 0, lim
r→∞

φ(r) = v

ξ(0) = 0, lim
r→∞

ξ(r) = v′

a(0) = 0, lim
r→∞

a(r) = −n
h

= −n
′

h′
. (4.32)

For n = 0 or n′ = 0, φ(0) 6= 0 or ξ(0) 6= 0 is possible, respectively.

4.2.2 Condition on κ

We know that for the potential to be bounded from below, the constants λ

and λ′ must be both positive.

We now study the conditions on the Higgs-Higgs coupling κ. The potential

term involving the Higgs fields is

V (Φ, χ) = m2

2 Φ†Φ + m′2

2 χ∗χ+ λ

4 (Φ†Φ)2 + λ′

4 (χ∗χ)2 + κ

2 Φ†Φχχ∗, (4.33)

where m2 < 0 and m′2 < 0.

To take a general perspective, it is convenient to study the concavity of
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the function

V (x, y) = ax2 + by2 + cx4 + dy4 + ex2y2 (4.34)

where a, b < 0 and c, d > 0. However, if we demand V to be bounded from

below it is not sufficient that c, d > 0; we need a condition for e. The Hessian

matrix of V (x, y) reads

H =

2a+ 12cx2 + 2ey2 4exy

4exy 2b+ 12dy2 + 2ex2

 ,
and the gradient is

∇V =

2ax+ 4cx3 + 2exy2

2by + 4dy3 + 2ex2y

 .

From the gradient we note that the point (0, 0) is a critical point of V . At

this point the Hessian takes the form

H(0, 0) =

2a 0

0 2b

 .

Since the eigenvalues of H at (0, 0) are both negative, we know that the

function V is concave, hence (0, 0) is a local maximum. There are other

critical points: those points must be local minima or saddle points for V

since we demand V to be bounded from below and we already found the

only local maximum. In order to study them, we perform the coordinate

transformation

X = x2, Y = y2. (4.35)
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The potential becomes

V (X, Y ) = aX + bY + cX2 + dY 2 + eXY. (4.36)

The gradient is zero when

2cX + eY = −a (4.37)

eX + 2dY = −b (4.38)

with the solution

Xc = −2ad+ be

4cd− e2 , (4.39)

Yc = −2bc+ ae

4cd− e2 . (4.40)

The Hessian matrix of V for this coordinate transformation, evaluated at

this critical point, is

H =

2c e

e 2d

 . (4.41)

Focusing on the local minima of the function, we know that in this case

detH > 0 and ∂2V
∂X2 = 2c > 0, see [32]. Due to eq. (4.35) both Xc and Yc

are positive quantities, and since the determinant is positive for the minima,

that means that the numerators are also positive, which implies

e <
2ad
b
, e <

2bc
a
, (4.42)
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and

detH = 4cd− e2 > 0 ⇒ e2 < 4cd. (4.43)

If we substitute

a = m2

2 , b = m′2

2 , c = λ

4 , d = λ′

4 , e = κ

2 ,

then we have conditions on κ

−
√
λλ′ < κ <

√
λλ′, (4.44)

and

κ <
m2λ′

m′2
, κ <

m′2λ

m2 . (4.45)

We combine all the conditions as follows

−
√
λλ′ < κ < min

(√
λλ′,

m′2λ

m2 ,
m2λ′

m′2

)
. (4.46)

However, the inequalities in eq. (4.45) are redundant. We take the values for

m2 and m′2 from eq. (4.29) and substitute them in one of the inequalities.

Working with the first one in eq. (4.45) and recalling that m2, m′2 < 0, we

obtain

κ <
−κv′2 − λv2

−κv2 − λ′v′2
λ′

= κv′2 + λv2

κv2 + λ′v′2
λ′

κ2v2 + κλ′v′2 < κλ′v′2 + λλ′v2

κ2 < λλ′. (4.47)
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Similarly, we obtain the same result when we work out the second inequality

in eq. (4.45). We are left with only one condition

κ2 < λλ′ . (4.48)
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Chapter 5

Profiles of U(1)Y ′ cosmic strings

In order to explore the profile of the string, we solve the non-linear system

of second order differential equations for the fields φ, ξ and a,

∂2
rφ+ 1

r
∂rφ−

1
r2

(
n2 + 2nha+ h2a2

)
φ−m2φ− λφ3 − κφξ2 = 0, (5.1)

∂2
r ξ + 1

r
∂rξ −

1
r2

(
n′2 + 2n′h′a+ h′2a2

)
ξ −m′2ξ − λ′ξ3 − κξφ2 = 0, (5.2)

∂2
ra−

1
r
∂ra− hnφ2 − h2aφ2 − h′n′ξ2 − h′2aξ2 = 0. (5.3)

When n, n′ 6= 0, they are subject to the boundary conditions, derived in

Chapter 3,

φ(0) = 0, lim
r→∞

φ(r) = v,

ξ(0) = 0, lim
r→∞

ξ(r) = v′,

a(0) = 0, lim
r→∞

a(r) = −n
h

= −n
′

h′
, (5.4)
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and

λ > 0, λ′ > 0, κ2 < λλ′,

m2 = −κv′2 − λv2 < 0, m′2 = −κv2 − λ′v′2 < 0. (5.5)

The solutions to the boundary value problem are obtained numerically by

the Python function scipy.integrate.solve bvp which applies the damped

Newton method. The Newton method is a procedure of solving systems

of ordinary differential equations where an initial guess is generated and

subsequent iterations of the method give, ideally, better approximations to

the solution.

Let us take a vector function ~f(~x) and let ~x∗ be a root, i.e. ~f(~x∗) = 0.

If we choose an initial guess ~x0 for the root, the method gives a sequence of

approximations ~x1, ~x2, . . . , ~xn+1 by solving the system of equations

J(~xn)~ξ = −~f(~xn), (5.6)

where J(~xn) is the Jacobian matrix and the Newton direction ~ξ is defined

through ~xn+1 = ~xn + ~ξ. An approximation is generated by the previous one

in the Newton direction. The length of the Newton direction is called the

step size. In some situations, the Newton step size is too large, so we require

it to be smaller. The idea of the damped Newton method is to modify the

length of the Newton step size in order to have better convergence in some

situations. Thus, we modify the solution by

~xn+1 = ~xn + λ~ξ, 0 < λ ≤ 1. (5.7)
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See Ref. [33] for a complete review on this topic.

A solution is uniquely defined by inputting the values for the Higgs

expectation values v, v′, the self-coupling constants λ, λ′, the Higgs fields

interaction term κ, the coupling constants h, h′ and finally the winding

numbers n and n′ subject to the constraints in eq. (5.5). We choose v′ > v

in order to have a heavier χ boson than the standard Higgs field Φ. Also,

v = 246 GeV is used to convert all quantities into physical units. For instance,

lengths are converted into physical units through

rphysical = rdimensionless
vdimensionless

246 GeV 0.197 GeV fm. (5.8)

Figure 5.1 shows the case n = n′ = h = h′ = λ = λ′ = 1, v = 0.5, v′ = 1

(in units where v = 246 GeV) and −1 < κ < 1. We see the typical profile

behavior of cosmic strings. Approximately at r & 7.5 which corresponds

to 0.003 fm, the field profiles attain their asymptotic vacuum expectation

values. Solutions for positive values of κ tend to stay closer to each other

under variation of κ than the ones with κ < 0, which spread out when κ

approaches its minimum κ→ −
√
λλ′.

Figure 5.2 shows the case where n = h = λ = λ′ = 1, n′ = h′ = 2,

v = 0.5, v′ = 1. We consider a higher winding number n′ than in the

previous case and we see interesting features. We observe that the standard

Higgs field exceeds, or overshoots, its vacuum expectation value at large r.

This is an interesting phenomenon not reported in the literature. Physically,

it means that a particle passing close to the string could temporarily acquire

a greater mass than far from it. The solutions to the function φ appear to

be spread out when κ2 → λλ′, and denser when κ → 0. The solutions to
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the function ξ overlap, suggesting that there exist at least two equal or very

similar solutions, one with κ > 0 and the other with a negative κ.

In Figure 5.3 we change the parameters to n = n′ = 1, λ = 0.5, λ′ = 1,

n′ = h′ = 0.5, v = 0.5, v′ = 1. We see a milder effect of the spreading of the

solutions of the functions φ and ξ and no overshooting.

In Figure 5.4 the parameters are n = h = λ = λ′ = 1, n′ = 2, h′ = 1,

v = 0.5, v′ = 1.5. We see again the overshoot of the function φ, which can

be associated to a greater winding number of the non-standard Higgs field,

n′ > n.

The opposite of the previous cases appears when n < n′ and h > h′. Now

the field that overshoots its vacuum expectation value is ξ. This means that

when a right-handed neutrino passes near the string core it will acquire a

greater mass than far from the string. In Figure 5.5 we see a mild overshoot

in the ξ function, and a overlap in the function φ, in addition, a mild overlap

of a is visible. We also see a plateau of φ around zero, this is because the

expansion of the function around the origin is proportional to r|n|, as we saw

in Chapter 2.

We can include our model into a larger gauge group. According to Ref.

[34], our model is embedded into the group SO(10), a Grand Unification

Theory, actually the most popular since SU(5) has been ruled out. Ref. [35]

investigates a gauge group embedded in SO(10), namely, the gauge group

SU(3)c×SU(2)L×U(1)Y ×U(1)Y ′ . The model is an extension of the Standard

Model where a neutral vector boson Z ′ is added. Here the non-standard
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hypercharge takes the form

Y ′ = Y − 5
4(B − L), (5.9)

in contrast to the form of our hypercharge Y ′

Y ′ = 2hY − h′

2 (B − L). (5.10)

Equation (5.9) constrains the values for the gauge couplings, so they become

h = 1/2 and h′ = −5/2. This also implies a condition on the winding

numbers, as anticipated in eq. (4.30),

n′ = −5n. (5.11)

We do not discuss at depth this model, we only give numerical solutions for

this particular case where the gauge couplings are held fixed.

In Figure 5.6 with n = 1, n′ = −5, h = 1/2, h′ = 5/2, λ = λ′ = 1,

v = 0.5, v′ = 1 and −1 < κ < 1, we see a dramatic overshoot of the field φ

when r ∼ 2.5, it reaches almost the double of its vacuum expectation value

at r → ∞. However, the behavior of the function a(r) does not change

significantly in comparison to the previous cases.

Figure 5.7 with n = −2, n′ = 10, h = 1/2, h′ = −5/2, λ = λ′ = 1,

v = 0.5, v′ = 1 is another example within the SO(10) model. Again, the

overshoot of φ is clearly visible. Here, the function ξ has a flat part around

zero, since the function is proportional to r|n|, as we saw in eq. (3.40). We

add that solutions with high winding numbers can hardly be stable.
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In Refs. [36] and [37] similar plots were reported, however they did not

observe the coaxial behavior of some solutions. In the limit v � v′ and

n < n′, we observed coaxial string solutions in the profile of φ. Figure 5.8

with n = −2, n′ = 10, h = 1/2, h′ = −5/2, λ = λ′ = 1, v = 0.01, v′ = 1, the

parameters are the same as in the previous case but with a different v. We

observe an overshoot when κ ' 0.25 and when κ is grater than this value,

the solution has a coaxial behavior. A coaxial solution is negative at low

r, passes the r-axis, and then approaches its positive vacuum expectation

value. According to Ref. [21], for only one Higgs field with |n| > 1 and

2λ/h2 > 1, the interpretation of the coaxial solution is that the cosmic string

is not stable.

We also plot the energy density of the function in Figure 5.9. In the case

v′ � v, we expect a tension of the string of the order of v′2. In this case v′ =

100v, and we expect a tension of the order of 109 GeV2. In fact, integrating

numerically the energy density, we obtain a tension µ near 1.2 × 1010 GeV2

for all κ-values. And its gravitational coupling is approximately

Gµ ≈ 8.3× 10−29. (5.12)

This type of cosmic string with the length of an horizon would have

a mass of ∼ 1025 kg, equivalent to the mass of the Earth, or five orders of

magnitude smaller that the mass of the Sun. The small gravitational coupling

makes it very difficult for gravitational detection, like gravitational waves or

gravitational lensing. However, they are not rule out by constraints in the

tension from current data.
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Figure 5.1: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 1, n = n′ = h = h′ = λ = λ′ = 1. Solutions with κ > 0 tend to stay
closer to each other, in contrast to solutions when κ < 0, that spread out κ
is varied.
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Figure 5.2: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 1, n = 1, n′ = 2, h = 1, h′ = 2, λ = λ′ = 1. A lump in the profile
of Φ is present. This behavior is not reported in the literature. Physically,
a particle passing near the string core could acquire a greater mass than far
from the string. Solution for ξ overlap, which suggests that there exist very
similar solutions, one with κ > 0 and one with κ < 0.

88



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 5.3: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 1, n = 1, n′ = 1, h = 0.5, h′ = 0.5, λ = 0.5, λ′ = 1. A modest effect of
the spreading in the solutions for φ is observed.
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Figure 5.4: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 1, n = 1, n′ = 2, h = 0.5, h′ = 1, λ = 0.5, λ′ = 1. A lump in the profile
of Φ is present. This behavior is not reported in the literature. Physically,
a particle passing near the string core could acquire temporarily a greater
mass than far from the string.
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Figure 5.5: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 2, n = −5, n′ = −1, h = 5, h′ = 1, λ = λ′ = 1. A lump in the profile
of χ is present. Physically, a right-handed neutrino passing near the string
core could acquire temporarily a greater mass than far from the string. This
is an example from the SO(10) model.
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Figure 5.6: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 1, n = 1, n′ = −5, h = 0.5, h′ = −2.5, λ = λ′ = 1. This represents
another example within the SO(10) GUT model. The overshoot of the field
φ is clearly visible. Around r = 0 the field ξ is flat since in this region the
solution is proportional to r|n′|.
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Figure 5.7: Solutions for the cosmic string profile functions with v = 0.5,
v′ = 1, n = −2, n′ = 10, h = 0.5, h′ = −2.5, λ = λ′ = 1. This is another
example within the SO(10) model. The overshoot of the field φ is clearly
visible. Around r = 0 the field ξ is flatter than the previous case since the
solution is proportional to r|n′|.

93



CHAPTER 5. PROFILES OF U(1)Y ′ COSMIC STRINGS

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10

r

0.03

0.02

0.01

0.00

0.01

Figure 5.8: Solutions for the cosmic string profile functions with v = 0.01,
v′ = 1, n = −2, n′ = 10, h = 0.5, h′ = −2.5, λ = λ′ = 1. Coaxial string
solutions are found in a range with κ > 0.
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Figure 5.9: Energy density of the solutions for the cosmic string profile
functions with v = 0.01, v′ = 1, n = −2, n′ = 10, h = 0.5, h′ = −2.5,
λ = λ′ = 1. The energy density is given in units of 4.79× 1019 GeV/fm3.
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Chapter 6

Summary and conclusions

In this thesis we have discussed an extension to the Standard Model by

promoting the global U(1)B−L invariance to a local symmetry. We form a

new hypercharge Y ′, by taking a linear combination of the weak hypercharge

Y , from the U(1)Y gauge symmetry, and the difference between the baryon

and lepton numbers B − L, from U(1)B−L. Therefore, we introduced a new

gauge coupling h′ that couples the Abelian gauge field to B − L. The new

charge Y ′ is defined as

Y ′ ≡ 2hY + h′

2 (B − L), (6.1)

where h is the coupling to the weak hypercharge. Therefore, the new gauge

group is U(1)Y ′ .

This way, we converted the Standard Model symmetry group to

SU(3)× SU(2)L × U(1)Y ′ . (6.2)
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The introduction of the new gauge coupling generates gauge anomalies,

as seen in the triangular diagram in Figure 4.1. In order to remove the

anomalies, we introduced a right-handed neutrino νR in each fermion genera-

tion. We give mass to the neutrinos via the Higgs mechanism. However, if

we want to give another mass to the right-handed neutrino, independently

from the left-handed neutrino, the standard Majorana term is not applicable,

so we introduce a new Higgs field χ ∈ C and its vacuum expectation value

v′. This new scalar field has a charge B−L = −2 in order to preserve gauge

invariance. We also introduced a coupling term between the two Higgs fields,

κΦ†Φχ∗χ, in the Lagrangian.

As a simplified model, we only considered the U(1)Y ′ as the gauge group.

This model allows for vortex-line solutions or cosmic strings.

We then studied the system of field equations for Φ, χ and Aµ. We made

cylindrical ansätze for these fields in order to study cosmic string solutions

and solved the system of equations with appropriate boundary conditions at

r = 0 and r →∞.

We used v = 246 GeV to convert all quantities into physical units. For

instance, in some plots of Chapter 5 we used v = 0.5. This way, the typical

length r = 1 is equal in physical units to r = 0.5
246 GeV0.197 GeV fm ≈

0.0004 fm.

We observed that the κ value has a modest effect on the solutions for a

and ξ, but a significant effect on φ, specially in the low r regime.

Our contribution to the literature is the finding of co-axial and overshoot

solutions. We found co-axial solutions for the field φ that are negative at

low r, pass the r axis, and then approach their positive vacuum expectation
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value. Surprisingly, we observed also the opposite effect: inside the string,

depending on the values of the winding numbers, the fields Φ or χ can

overshoot its vacuum expectation value. That is, the field can take a higher

value than its VEV. The overshoot is more visible when considering the

constraints form the SO(10) model, a Grand Unified Theory. Physically, we

can interpret the overshoot as a temporarily increase in the mass of a near

passing particle.

This modest but fully consistent extension of the Standard Model allows

for a non-standard type of cosmic strings. The tension of these kinds of

strings is of the order of 1010 MeV2, and have a gravitational coupling near

to 10−30.

The scenario of cosmic strings that we have studied seems realistic. The

proposals for an observational test are slim, unfortunately. However, this

also means that such cosmic strings are most likely not ruled out based on

existing data. A valid argument in its favor is the original motivation of

explaining why the B − L invariance is an exact symmetry.
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[37] W. Bietenholz, J. A. Garćıa-Hernández, and V. Muñoz-Vitelly. The
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