

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Maestría y Doctorado en Ciencias Bioquímicas

EFECTO TRANSCRIPTÓMICO DE LA PROLACTINA EN LÍNEAS CELULARES DE PULMÓN

TESIS

QUE PARA OPTAR POR EL GRADO DE:

Maestra en Ciencias

PRESENTA: Biól. Anaiza Rico Luna

TUTOR PRINCIPAL

Dr. Marco Antonio Cerbón Cervantes Facultad de Química

MIEMBROS DEL COMITÉ TUTOR

Dra. Leticia Rocha Zavaleta Instituto de Investigaciones Biomédicas

Dr. Edgar Ricardo Vázquez Martínez Facultad de Química

Ciudad de México, abril 2023

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Resumen	5
Abstract	6
Antecedentes	7
Cáncer	7
Cáncer Pulmonar	7
Clasificación del Cáncer Pulmonar	10
Prolactina	11
Receptor de Prolactina	13
Cascadas de señalización reguladas por PRL	14
Actividad biológica de la PRL	15
Prolactina en pulmón y en cáncer pulmonar	17
Modificaciones del transcriptoma por PRL	20
Justificación	22
Pregunta de investigación	22
Hipótesis	22
Objetivo	22
General	22
Particulares	22
Método	23
Diseño experimental	23
Cultivo celular	23
Curva dosis-respuesta	24
Translocación de STAT5a/b al núcleo celular	24
Extracción de RNA y secuenciación masiva de mRNA	25
Análisis bioinformático	26
Resultados	27
Fosforilación de STAT5a/b tras administración de oPRL	27
Extracción de RNA	28
Calidad de secuenciación	31
Calidad del Alineamiento	34
Genes diferencialmente expresados tras administración de oPRL	35
Enriquecimiento de vías	40
GDE en adenocarcinoma pulmonar	40
Discusión	50
Conclusión	54
Perspectivas	54
Referencias	55
Anexos	63
GSEA SK-LU-1	63
Publicaciones	72
Abreviaturas	82
Índice de tablas	85
Índice de figuras	85

A mi mamá y a mi papá, por su apoyo incondicional.

Agradecimientos

Agradezco profundamente a la Universidad Nacional Autónoma de México y al programa de Maestría en Ciencias Bioquímicas por brindarme una educación integral y de calidad. Gracias infinitas a todos mis profesores, compañeros y compañeras que me acompañaron en este camino e hicieron más liviano el camino. De igual manera agradezco al CONACyT por el apoyo económico otorgado mediante el programa de Becas Nacionales para Estudios de Posgrado 2021 que me permitió dedicarme de lleno a mis estudios de maestría. Este trabajo fue realizado con el apoyo y financiamiento del proyecto PAPIIT IN228420 y PAPIIT IN201422.

Agradezco a mi comité tutor y a mi jurado de tesis por tomarse el tiempo de valorar mi trabajo y por sus valiosas aportaciones. Gracias al Dr. Marco Cerbón por su confianza y guianza incondicional.

Agradezco ampliamente al Dr. Ignacio González y al Dr. José Pedraza por su constante apoyo técnico, así como a mis compañeras de laboratorio, quienes compartieron conmigo su conocimiento y nunca dudaron en apoyarme: a Carla, Irene, Aracelli, Mariana, Val, Gladys, Wendy y Daniel. Gracias especiales a Karol y a Natalia. Siempre me llenan de inspiración y fortaleza para seguir por este camino tan difícil. Espero que la vida me conceda el privilegio de tenerlas siempre conmigo para seguir haciendo juntas ciencia. ¡Son grandiosas científicas y grandiosas hermanas!

Gracias a mis amigas de toda la vida, por su amistad que no caduca y por recibirme siempre de regreso: Denisse, Araciell, Arisbeth, y Alondra. Que nunca nos separe ni el tiempo ni la distancia.

Nunca terminaría de agradecerle a mi familia por su apoyo constante, su compañía tan reconfortante y su amor incondicional. A mis tías, ejemplos totales de fortaleza. A mis abuelos, por su amor absoluto. A mis hermanos Mily, Gregorio y Andrea, que tanto admiro y amo. A mi sobrina, Ana. Y a mis padres, Gregorio y Claudia, por darme alas para volar y siempre apoyarme en este inesperado viaje. Espero en algún momento ser capaz de retribuirles un poco de lo mucho que me han dado.

Resumen

El cáncer de pulmón (CP) es un problema de salud pública relevante en México y en el mundo. El factor etiológico principal para su desarrollo es el consumo de tabaco. Sin embargo, en los últimos años se ha presentado un aumento en los casos de CP independientes del hábito tabáquico, por lo que se ha estudiado la contribución de otros factores como el sexo y el estadio hormonal. Dichas investigaciones se han centrado principalmente en el papel de hormonas esteroideas dejando fuera a la prolactina (PRL), una hormona polipeptídica implicada en la progresión de diversas neoplasias malignas como el cáncer de mama y de próstata. Con el fin de obtener un panorama general sobre los efectos de la prolactina en una línea celular de pulmón derivada de adenocarcinoma pulmonar (SK-LU-1) y en una línea celular no neoplásica (BEAS-2B), se llevó a cabo un análisis transcriptómico tras el tratamiento con una dosis única del PRL ovina (oPRL). Tras la administración de oPRL (125 ng/mL, 2h) a la línea celular BEAS-2B, se modificaron los niveles de 13 transcritos mientras que en SK-LU-1 se modificaron 85 transcritos (genes diferencialmente expresados, GDE). Los procesos celulares enriquecidos en las líneas celulares tratadas con oPRL se encuentran relacionados con la traducción, componentes ribosomales, reparación del DNA, procesos mitocondriales como la replicación del DNA mitocondrial, la fosforilación oxidativa, matriz mitocondrial, proteínas mitocondriales y reprogramación metabólica en cáncer. Los GDE (SSBP1, LDHB, RPL22L1 en BEAS-2B y SYNE2, KTN1, APC en SK-LU-1) han sido reportados desregulados en adenocarcinoma pulmonar (ADCP) y algunos se correlacionan con una baja supervivencia de pacientes con ADCP. Los resultados de esta investigación apuntan a que la prolactina podría participar en la fisiología pulmonar tanto en condiciones normales como patológicas, no obstante, se requiere llevar a cabo la validación de los resultados obtenidos en diferentes modelos biológicos para esclarecer los mecanismos moleculares por los cuales la PRL podría estar modulando dichas respuestas.

Abstract

Lung cancer (LC) is a relevant public health problem in Mexico and the world. The main etiological factor for its development is tobacco use. However, recently there has been an increase in LC cases independent of smoking, so the contribution of factors such as sex and hormonal status is under study. Such investigations have mainly focused on the role of steroid hormones excluding prolactin (PRL), a polypeptide hormone involved in the progression of various malignancies such as breast and prostate cancer. To obtain an overview of the effects of prolactin in a lung cell line derived from lung adenocarcinoma (SK-LU-1) and in a non-neoplastic cell line (BEAS-2B), a trasncriptomic analysis was carried out after treatment with a single dose of ovine PRL (oPRL). After the administration of oPRL (125 ng/mL, 2 h), the levels of 13 and 85 transcripts were modified in BEAS-2B, and in SK-LU-1, respectively (differentially expressed genes, GDE). Cellular processes enriched in oPRL-treated cell lines are related to translation, ribosomal components, DNA repair, and mitochondrial proces such as mitochondrial DNA replication, oxidative phosphorylation, mitochondrial matrix, mitochondrial proteins, and metabolic reprogramming in cancer. The GDEs (SSBP1, LDHB, RPL22L1 in BEAS-2B and SYNE2, KTN1, APC in SK-LU-1) are deregulated in lung adenocarcinoma (LUAD) and some correlate with poor survival of patients with LUAD. This research suggests that prolactin could participate in pulmonary physiology in both healthy and pathological conditions; however, it is necessary to validate these results in different biological models to clarify the molecular mechanisms by which the PRL modulates these responses.

Antecedentes

Cáncer

De acuerdo a la Organización Mundial de la Salud,¹ el cáncer es un término genérico para un conjunto de enfermedades que pueden presentarse en cualquier tejido del cuerpo y que se caracterizan principalmente por el crecimiento no controlado de células anormales que pueden adquirir la capacidad de invadir otros tejidos. Hanahan y Weinberg ^{2,3} proponen que estas enfermedades comparten rasgos moleculares, bioquímicos y celulares que se agrupan en 14 características denominadas "*Hallmarks* del cáncer". Éstas son: señal proliferativa sostenida, evasión de supresores del crecimiento, evasión de apoptosis, activación de la invasión y metástasis, inmortalidad replicativa, inducción de angiogénesis, desregulación del metabolismo celular, evasión del sistema inmune, inestabilidad genética, un estado de inflamación promovida por el tumor, desbloqueo de la plasticidad fenotípica, reprogramación epigenética no mutacional, microbioma polimórfico y senescencia celular.

Cáncer Pulmonar

De acuerdo con el informe de GLOBOCAN,⁴ en el 2020, el cáncer pulmonar (CP) ocupó los primeros lugares tanto de incidencia como de mortalidad en México y en el mundo. Los estados mexicanos con mayor tasa de mortalidad a causa de CP son los del norte del país.⁵ En México, entre el 98 y 99% de los pacientes con cáncer pulmonar son diagnosticados en los estadios III y IV⁶ (Tabla 1) lo cual se relaciona con una alta tasa de mortalidad y con un costo terapéutico elevado.⁷ En las últimas décadas ha ocurrido un decremento de la mortalidad por CP en México;⁵ Rascón-Pacheco⁷ y colaboradores describieron que en los últimos 18 años ocurrió una disminución de la mortalidad por CP de aproximadamente el 50 %, para ambos sexos, en la población afiliada al Instituto Mexicano del Seguro Social. No obstante, este cambio fue preponderante en el sexo masculino.⁵ Entre los años 2000 y 2015, la mortalidad para ambos sexos tuvo un decremento del 11%, sin embargo, cuando se separa por sexo, el sexo femenino presenta un aumento constante en el número de casos y en la tasa de mortalidad. En otros reportes, Aldaco-Servile y colaboradores⁸ señalan que en el sexo masculino hubo un incremento del 1.2% entre 1998 y 2015 mientras que en el sexo femenino un incremento del 30% en el mismo periodo.

El factor de riesgo más importante para el desarrollo de CP es el tabaquismo.⁵ En México, otro factor etiológico importante en el 41% de los pacientes (principalmente del sexo femenino) es la exposición a humo de leña.⁹ Otros factores de riesgo son el ser fumador pasivo, la exposición ocupacional a asbestos y la exposición a radiación. Pacientes con historia familiar de CP tienen un riesgo incrementado de CP a una edad temprana y las mutaciones en *KRAS* son marcadores de un mal pronóstico; en poblaciones latinoamericanas, mutaciones en *EGFR* están asociadas a una mayor supervivencia.⁹ Las mutaciones encontradas más comúnmente en el adenocarcinoma pulmonar (ADCP), consecuencia de predisposición genética o por exposición a carcinógenos, son mutaciones activadoras del *EGFR* (14%), *KRAS* (33%), *MET* (7%), *BRAF* (10%), *PIK3CA* (7%), mutaciones en supresores de tumores *TP53* (46%), *STK11* (17%) y translocaciones en *ALK* (3-7%) y *ROS1* (2%).¹⁰

Estadificación		Características, Tamaño (cm)						
	А	Se ubica solo en el pulmón	< 3					
Ι	В	 Sin diseminación a nódulos linfáticos y una o más de las siguientes condiciones: Diseminación a bronquio principal Diseminación a pleura visceral Parte del pulmón colapsado o con pneumonitis 	3 - 4					
	A	 Sin diseminación a nódulos linfáticos y una o más de las siguientes condiciones: Diseminación a bronquio principal Diseminación a pleura visceral Parte del pulmón colapsado o con pneumonitis 	4 - 5					
Π	B1	 Diseminación a nódulos linfáticos del mismo lado del tórax en dónde se encuentra el tumor primario y que se encuentran en el pulmón o cercanos al bronquio. Una o más de las siguientes características: Diseminación a bronquio principal Diseminación a pleura visceral Parte del pulmón colapsado o con pneumonitis 	< 5					
	B2	 Sin diseminación a nódulos linfáticos y una o más de las siguientes condiciones: Uno o más tumores separados en el mismo lóbulo que el tumor primario Diseminación a: pleura parietal, caja torácica, nervio frénico, pericardio 	5 - 7					
III	A1	Diseminación a nódulos linfáticos en el mismo lado del tórax en el que se encuentra el tumor primario. Los nódulos linfáticos con cáncer se encuentran alrededor de la tráquea, aorta o carina. Una o más de las siguientes condiciones: - Diseminación a bronquio principal pero no a la carina - Diseminación a pleura visceral - Parte del pulmón colapsado o con pneumonitis	< 5					
111	A2	 Diseminación a nódulos linfáticos en el mismo lado del tórax en el que se encuentra el tumor primario. Los nódulos linfáticos con cáncer se encuentran en el pulmón o cerca del bronquio. Una o más de las siguientes condiciones: Uno o más tumores separados en el mismo lóbulo que el tumor primario Diseminación a: pleura parietal, caja torácica, nervio frénico, pericardio 	5 -7					

Tabla 1. Sistema de estadificación del Comité Conjunto Estadounidense sobre el Cáncer para cáncer pulmonar. NA: cualquier tamaño.¹¹⁻¹³

Estadificación		Características, Tamaño (cm)						
	A3	 Diseminación a nódulos linfáticos en el mismo lado del tórax en el que se encuentra el tumor primario. Los nódulos linfáticos con cáncer se encuentran en el pulmón o cerca del bronquio. Una o más de las siguientes condiciones: Uno o más tumores separados en el mismo lóbulo que el tumor primario Diseminación a: tráquea, carina, esófago, esternón o columna vertebral, corazón, aorta, vena cava, nervio vago 	> 7					
Ш	B1	 Diseminación a nódulos linfáticos superiores a la clavícula. Una o más de las siguientes condiciones: Diseminación a bronquio pero no a la carina Diseminación a pleura visceral Parte del pulmón colapsado o con pneumonitis 	< 5					
	B2	 Diseminación a nódulos linfáticos en el mismo lado del tórax en el que se encuentra el tumor primario. Los nódulos linfáticos con cáncer se encuentran en la tráquea, aorta o carina. Una o más de las siguientes condiciones: Uno o más tumores separados en cualquiera de los lóbulos. Diseminación a: pleura parietal, caja torácica, nervio frénico, pericardio, tráquea, carina, esófago, esternón o columna vertebral, diafragma, corazón, aorta o vena cava, nervio vago 	NA					
	С	 Diseminación a nódulos linfáticos superiores a la clavícula en cualquier lado del tórax. Una o más de las siguientes condiciones: Uno o más tumores separados en cualquiera de los lóbulos. Diseminación a: pleura parietal, caja torácica, nervio frénico, pericardio, tráquea, carina, esófago, esternón o columna vertebral, diafragma, corazón, aorta o vena cava, nervio 	NA					
IV	А	 Puede existir diseminación a nódulos linfáticos. Una o más de las siguientes condiciones: Uno o más tumores en el pulmón en el que no se encuentra el tumor primario. Diseminación a pleura o pericardio Diseminación en fluidos alrededor de los pulmones o del corazón. Diseminación a un órgano alejado del pulmón: cerebro, hígado, glándula adrenal, riñon, hueso o nódulos linfáticos 	NA					
	В	Diseminación a múltiples órganos.						

Clasificación del Cáncer Pulmonar

El cáncer pulmonar se clasifica en dos grandes grupos con base en características histológicas: carcinoma pulmonar de células pequeñas (CPCP) y carcinoma pulmonar de células no pequeñas (CPCNP). El CPCNP abarca aproximadamente 85% de los casos de cáncer pulmonar y a la vez se divide en carcinoma de células escamosas, carcinoma de células grandes y adenocarcinoma pulmonar. El subtipo prevalente del CPCNP es el ADCP,¹⁴ que se cree se origina de células epiteliales alveolares tipo II (también llamados neumocitos tipo II) o de células ubicadas dentro de las uniones bronquioalveolares.¹⁵

Figura 1. Clasificación del Cáncer Pulmonar. A) Clasificación del cáncer pulmonar de acuerdo al origen. Modificado de Sánchez-Ortega *et* al. (2021)¹⁶ **B)** Anatomía pulmonar y componentes celulares. Modificado de EuroStem Cell (2023).¹⁷

A pesar de que la inflamación crónica del pulmón está asociada con el tabaquismo y fuertemente implicada en el desarrollo de ADC, se ha sugerido un aumento en la prevalencia de ADCP independiente del hábito tabáquico.^{10,18}

Por otro lado, se ha observado que la prevalencia de subtipos histológicos de CP se encuentra relacionada al sexo del paciente. Por ejemplo, en el sexo femenino se diagnostica más comúnmente ADCP que carcinoma de células escamosas o carcinoma de células grandes mientras que en el sexo masculino el subtipo más común es el carcinoma de células

escamosas. Aunado a lo anterior, cuando se comparan a individuos del sexo femenino con individuos del sexo masculino con hábitos tabáquicos similares, los primeros presentan mayor riesgo de desarrollar CP. En el caso de carcinoma de células escamosas hay un aumento del 70% del riesgo y para adenocarcinoma un aumento del 50%. El ADC representa tres cuartos de los cánceres primarios de pulmón en el sexo femenino; además, es el subtipo histológico más común en no fumadores e individuos jóvenes (Figura 2). No solo se observa una diferencia entre sexos de la prevalencia de subtipos de CP, sino también en el riesgo general de desarrollar esta enfermedad.¹⁴

Figura 2. Proporción de hombres y mujeres con ADCP en relación con el hábito tabáquico. Gráfica generada en el servidor UCSC XENA (https://xenabrowser.net/) con datos del proyecto TCGA Lung Adenocarcinoma (LUAD) (n = 211). Se filtraron los datos por género (gender), historia de hábito tabáquico (tobacco_smoking_history_indicator) y tipo de muestra (sample_type = Primary Tumor). Se removieron las muestras sin datos para cualquiera de los tres criterios mencionados anteriormente.

En los últimos años se ha sugerido diferencias en el desarrollo de CP, que se relacionan al sexo del paciente, y diversas investigaciones han aportado evidencias que apoyan esta noción Dichos estudios se han concentrado en el estudio del efecto de hormonas esteroideas, dejando fuera a la prolactina (PRL), hormona importante en el desarrollo de malignidades como el cáncer de mama,¹⁹ próstata,²⁰ colorectal,^{21,22} ovárico, endometrio y hepatocarcinoma celular.²³

Prolactina

La PRL es una hormona polipeptídica perteneciente a la familia de citocinas hematopoyéticas. Presenta homología estructura con la hormona del crecimiento y el lactógeno placentario.^{24–26} El gen de la PRL se encuentra en el cromosoma seis en humanos ²⁷ y su transcripción es regulada por dopamina, estrógenos, progesterona, neuropéptidos, entre otros.²⁸ La pro-hormona consta de 227 aminoácidos, con un péptido de señal de 28 aminoácidos y madura hacia una proteína de 199 aminoácidos. Presenta tres enlaces disulfuro

y se encuentra organizada en un 50 % en cuatro alfa hélices antiparalelas, el resto de la molécula forma horquillas.^{24,26,29} (Figura 3)

Figura 3. Estructura terciaria de la PRL y su receptor (PRLR) A) Estructura terciaria de la PRL. Se observan cuatro alfa hélices antiparalelas.³⁰ **B)** Estructura terciaria del PRLR. En rosa, fragmento de la estructura obtenida por difracción de rayos X del dominio extracelular ligado a PRL (PDB:3NPZ, 3.35 Å). En amarillo, estructura obtenida por resonancia magnética nuclear del dominio transmembranal del PRLR (PDB:2N7I). C) Interacción PRL-PRLR. Se muestra a la PRL en complejo con los dominios extracelulares del PRLR. Cada color corresponde a una cadena polipeptídica independiente: azul: PRL, rojo y blanco: PRLR.³¹

La PRL puede ser modificada por *splicing* alternativo del transcrito primario y proteólisis, fosforilación, glicosilación, sulfonación y desaminiación de la proteína. También se puede encontrar de forma dimérica o polimérica. Todo lo anterior impacta su estabilidad, vida media, unión a receptor y actividad.^{24,28} En la glándula pituitaria se encuentra principalmente a la isoforma de 23 kDa y en otros tejidos se encuentran variantes de 14 y 16 kDa.^{25,26}

La PRL se produce principalmente en la glándula pituitaria anterior, donde el gen se transcribe a partir de un promotor tejido-específico.²⁸ La PRL también se expresa en tejido reproductivo (ovario, decidua, placenta, glándula mamaria, testículos, próstata y células germinales), del sistema inmune (leucocitos, médula ósea, timo, bazo, anginas, nódulos linfáticos), neuronal (cerebro y médula espinal), integumentario (piel, glándulas sudoríparas,

glándulas sebáceas, folículos pilosos) y en otros tejidos (glándulas lacrimales, riñones y en células adiposas y endoteliales). ^{24,26,28,32} La PRL puede unirse a proteínas de unión a heparina lo cual favorece su retención y el aumento en la concentración local de la proteína en los tejidos. ²⁸

En condiciones normales, la concentración de PRL en mujeres se encuentra entre los 4 y los 20 ng/mL mientras que en hombres se encuentra entre 1 y 4 ng/mL. Diversos sucesos fisiológicos pueden aumentar la concentración de la PRL, por ejemplo, cuando se duerme, después de la ingesta de alimentos y frente a situaciones de estrés.^{24,27,33,34} En neonatos se encuentra una concentración elevada de PRL (diez veces), la cual disminuye a los tres meses de edad, encontrándose los niveles más bajos entre los tres meses y nueve años y aumenta gradualmente en la pubertad hasta alcanzar niveles normales en adultos. En condiciones de embarazo, se alcanzan los 200 ng/mL y entre las primeras cuatro y seis semanas post-parto, los niveles basales de PRL se mantienen elevados en mujeres en lactancia, aumentando entre tres y cinco veces en respuesta a un estímulo de succión en la glándula mamaria.^{27,33}

Receptor de Prolactina

El receptor de prolactina (PRLR) es una proteína de la superfamilia de receptores de citocinas y se ubica generalmente en la membrana celular.²⁶ En humanos se han reportado más de siete isoformas que pueden ser resultado de *splicing alternativo* o de modificaciones post-traduccionales como la proteólisis. Hasta la fecha, la isoforma más larga reportada, considerada como la isoforma canónica, es una proteína de 598 aminoácidos con un péptido señal de 24 aminoácidos.³⁵ (Figura 3)

El receptor se encuentra organizado en un dominio extracelular, que participa en la unión al ligando, un dominio transmembranal, que ancla a la proteína a la membrana y un dominio citoplasmático, encargado de las cascadas de señalización.²⁵ El dominio extracelular se presenta dos subdominios, S1 y S2, con dominios tipo fibronectina III. Dichos subdominios están formados por láminas beta y tienen diferente afinidad hacia su ligando. El dominio transmembranal está organizado en una alfa hélice y el dominio intracelular se ha reportado como una región intrínsecamente desordenada. El extremo amino terminal del subdominio S1 contiene dos sitios de N-glicosilación y dos pares de puentes disulfuro.³⁶

En humano, se han reportado más de siete isoformas del PRLR, resultados de modificaciones del transcrito y de la proteína. (Figura 4) Estas modificaciones tienen una consecuencia directa sobre los eventos celulares desencadenados tras su activación.^{24,25,36}

Figura 4. Isoformas del PRLR. En humanos se han reportado más de siete isoformas del PRLr que ocurren de manera natural, resultantes de *splicing* alternativo y modificaciones postraduccionales. Modificado de Bernard et al. (2015) ^{24,25,36}

Cascadas de señalización reguladas por PRL

Cada molécula de PRL presenta dos sitios de unión al receptor: el sitio uno, que comprende las alfa hélices uno y cuatro, y el sitio dos, que corresponde a las hélices dos y tres. El sitio uno interactúa con una molécula del PRLR y posteriormente el sitio dos se relaciona con una segunda molécula del PRLR. Esto provoca la dimerización del PRLR y activa la posterior cascada de señalización. ^{25,26} Se ha descrito que dicha dimerización también puede ocurrir de manera independiente a la unión de la PRL. ^{24,37–39}

El dominio intracelular, sin actividad enzimática *per se*, cuenta con los subdominios Box 1, proximal a la membrana, y Box 2, localizado en el extremo carboxilo terminal. La región proximal a la membrana se encuentra asociada constitutivamente con la tirosina cinasa Janus 2 (Jak2) la cual se transfosforila después de la dimerización del PRLR. Jak2 está involucrado en la fosforilación de residuos de tirosina (Tyr) en los receptores de PRL (excepto en la isoforma corta). Las tirosinas fosforiladas del PRLR resultan sitios potenciales de unión para moléculas transductoras de señales con dominios SH2: la familia STAT. Relacionadas con la cascada de señalización del PRLR se encuentran STAT1, STAT3, STAT5a y STAT5b.^{24–26,40}

Posterior a la interacción del dominio SH2 de STAT con un residuo fosforilado del PRLR, Jak2 fosforila residuos de Tyr de la proteína STAT interactuante lo que ocasiona su disociación y su hetero u homodimerización con otra molécula STAT. Este dímero se transloca al núcleo y reconoce motivos GAS de unión al DNA en un gen blanco. Se sugiere que las respuestas citocina-específica mediadas por STAT podrían deberse a la interacción de la misma con otros transductores de señales. STAT5 es el transductor de señales más importante en las isoformas largas e intermedias de PRLR.^{24,26}

Además de la vía JAK-STAT, se reconocen entre las cascadas de señalización desencadenadas por la activación del PRLR, las vías de MAPK (Ras/Raf/MAPK), c-src y PI3K/AKT mediado por Fyn. También se reportan cambios iónicos dependientes del PRLR como el inducido por Box1, a través de la activación de canales de K⁺ dependientes de tirosina cinasas, y por el extremo carboxilo terminal, involucrado en la producción de mensajero intracelulares que abren canales de Ca²⁺ dependientes de voltaje.²⁶ La activación de estas cascadas de señalización promueven la diferenciación celular, proliferación y supervivencia celular.⁴⁰ En la Figura 5 se muestra un esquema elaborado por Radhakrishnan *et al.* (2012)⁴¹ donde se recopilan las vías de señalización que se reportan activadas por PRL.

Actividad biológica de la PRL

La PRL es principalmente reconocida por su capacidad de estimular la producción de leche durante la lactancia, sin embargo, es un una hormona pleiotrópica de la cual se han descrito, en diferentes especies, más de 300 funciones biológicas. Entre éstas se encuentran funciones reproductivas, como la función lútea y el comportamiento reproductivo, homeostáticas, la respuesta inmune, la osmorregulación y la angiogénesis.^{24,26,42}

Por otro lado, se ha sugerido que la PRL participa en enfermedades relacionadas al sistema inmune, a patologías de la piel y pelo, desregulaciones metabólicas²⁸ y obesidad.⁴³ Además, podría interferir en el desarrollo de cáncer de mama, próstata, colorrectal, ginecológico y hepatocelular.⁴³⁻⁴⁵ La PRL activa vías de señalización relacionadas a procesos de regulación del citoesqueleto, motilidad celular,⁴⁶ sobrevivencia, inmunoregulación, apoptosis, proliferación celular y angiogénesis.^{41,47-49}. En líneas celulares de cáncer de mama se ha reportado que el tratamiento con PRL (50 y 100 ng/mL, 48 h) estimula la motilidad celular a través de la inducción de cambios estructurales del citoesqueleto. Dichos cambios están mediados por la señalización de c-Src, moesina y FAK.⁵⁰ Por otro lado, la PRL es capaz de activar a la quinasa NEK3 que puede promover la migración de células de cáncer de mama, invasión y reorganización del citoesqueleto.^{44,51 24}

Respecto a la regulación del sistema inmune por PRL, se ha descrito que la misma es producida por linfocitos T y B periféricos, los cuales también expresan al PRLR, y células dendríticas.^{52–54} Carreño *et* al. (2005) ⁵² demuestran en un modelo in vitro que la PRL es un factor importante para la sobrevivencia y proliferación de precursores tempranos de LT y favorece su maduración en el timo. Asimismo, anticuerpos monoclonales contra PRL y PRLR impiden el desarrollo de LT lo cual lleva a la acumulación de células doble negativas en el timo. Además, hay evidencia de que la PRL modula la apoptosis inducida por glucocorticoides en timocitos.⁵³ Por otro lado, la PRL es capaz de estimular o inhibir procesos relacionados a la angiogénesis como la proliferación, dilatación, permeabilización, y regresión de los vasos sanguíneos.⁴⁸ La PRL de 23 kDa es capaz de promover la angiogénesis, tanto en el desarrollo embrionario como en tejido adulto (cuerpo lúteo y testículo),^{29,48} mientras que las isoformas cortas (14-18 kDa), denominadas como vasoinhibinas,⁴⁸ tienen el efecto contrario.^{24,25}

Figura 5. Cascadas de señalización de PRL. Recopilación de las cascadas de señalización activadas por PRL. Tomada de Radhakrishnan *et al* (2012).⁴¹

Prolactina en pulmón y en cáncer pulmonar

A finales del siglo pasado se propuso que la PRL participa en la maduración pulmonar fetal regulando la producción del surfactante pulmonar,^{55,56} sin embargo los resultados no fueron concluyentes. El surfactante pulmonar es una mezcla de lípidos (fosfatidilcolina (PC) y dipalmitoilfosfatidilcolina (DPPC) se encuentran en mayor proporción) y proteínas (proteínas surfactante A, B, C, y D), sintetizadas por células epiteliales alveolares tipo II, que forma una capa en los alvéolos pulmonares, en la interfase aire-líquido, que reduce la tensión superficial del revestimiento de los pulmones. Esto mantiene la estabilidad alveolar, evitando el riesgo del colapso alveolar, el edema pulmonar y reduciendo el trabajo respiratorio. Además, el sistema surfactante está involucrado en la protección contra patógenos.^{57,58}

Entre las evidencias que sugieren a la prolactina como un regulador importante de la maduración fetal pulmonar se encontró que:^{55,59}

- Niveles de PRL en cordones umbilicales humanos aumentan con la edad gestacional, lo cual precede al incremento en la proporción de lecitina/esfingomielina (L/S, índice de maduración pulmonar) en fluido amniótico.
- Niveles bajos de PRL en sangre se correlacionan con incidencia de síndrome de dificultad respiratoria neonatal.
- Administración de PRL ovina (oPRL) a fetos de conejos se relaciona con un aumento en los niveles de fosfolípidos totales, PC y DPPC.
- En la línea celular de ADCP, A549, la administración de PRL promueve la síntesis de fosfatidilglicerol y PC.
- El PRLR se expresa en pulmones fetales de monos.
- En ovejas se observa una sinergia entre el cortisol, triyodotironina y PRL en la distensibilidad pulmonar.
- En el macaco rhesus las concentraciones de PRL en fluido amniótico se correlacionan con la razón L/S, concentración de PC y estabilidad pulmonar.
- En explantes de pulmones fetales humanos la síntesis de surfactante en medio libre de hormonas está regulada por prolactina, cortisol e insulina. Además, la PRL (25 ng/mL), en combinación con cortisol, aumenta la síntesis de PC y de DPPC.

De manera contrastante, también se reportó que el tratamiento con PRL no modifica la síntesis de PC en un modelo *in vitro* de pulmón fetal humano; en el proceso de maduración fetal de pulmones de corderos y conejos no se observan cambios en los fosfolípidos totales o PC y en la tasa de incorporación de colina en PC.^{55,59}

En un estudio reciente se demostró el aumento de la expresión de STAT5a, elemento importante en la cascada de señalización de la PRL, durante la lactancia en tejido pulmonar de ratones. Además, Hennighausen & Lee (2020), reportan la expresión y secreción de la proteína surfactante D tanto en tejido mamario como en pulmonar, durante el embarazo y la lactancia en ratones.⁶⁰ Otro grupo de investigación sugiere que la administración de PRL humana recombinante (8 µg/mL) en la línea celular de ADCP A549, aumenta los niveles de mRNA de la proteína surfactante pulmonar D y reportan la expresión de un receptor de PRL de más de 90 kDa en un modelo murino de CP;⁶¹ esto último concuerda con lo reportado

recientemente por nuestro grupo de trabajo ²⁴ donde se evidencia la expresión de diferentes isoformas del PRLR en las líneas celulares de ADCP A549, SK-LU-1 y la línea bronquial no neoplásica BEAS-2B.

Durante la última década se ha propuesto el uso de la PRL como biomarcador sérico en CP. Nolen y colaboradores⁶² propusieron un panel diagnóstico de biomarcadores compuesto de PRL, MIF, v THSP. Dicho panel les permitió clasificar entre pacientes control con nódulos pulmonares y pacientes con CP en estadio I. La esperanza de vida a cinco años para pacientes con CP es del 15%, sin embargo, cuando son diagnosticados en estadios tempranos supera el 60%.⁶² Bigbee y colaboradores⁶³ proponen añadir 7 biomarcadores para crear un panel diagnóstico de 10 biomarcadores con PRL, MIF, THBS1, TTR, E-selectina, CCL5, PAI-1, RTK, erb-2, CYFRA 21.1 y proteínas SAA. Dicho panel les permitió distinguir entre individuos control y pacientes con CP con una precisión estimada balanceada del $76.0 \pm 3.8\%$. Por otro lado, Seder y colaboradores⁶⁴ propusieron un panel pronóstico del riesgo de recurrencia de CPCNP, en pacientes con ganglios negativos y tumores de menos de 4 cm después de la resección pulmonar, con 7 biomarcadores compuesto de PRL, HE4, IGFBP-1, b-HCG, FS, ANG-2 y HGF. Dicho panel presentó una especificidad de 91%, una sensibilidad 22% y una precisión del 78%.64 Finalmente, Caponnetto y colaboradores65 sugieren que la hiperprolactinemia en pacientes con CPCNP metastásico tratados con el fármaco NIVO podría ser un factor temprano predictivo de resultados clínicos negativos, con lo cual se podría predecir una enfermedad progresiva.

A pesar del potencial uso de la PRL como biomarcador de diagnóstico, de prognosis y predictivo, las investigaciones enfocadas en el papel de la PRL en el desarrollo de CP son escasas y con resultados contradictorios. Abdelbaset-Ismail y colaboradores⁴⁹ reportan la transcripción del *PRLR* tanto en líneas celulares de CP como en biopsias de pacientes. Los autores observaron que en líneas celulares de CPCNP la administración de PRL provoca una respuesta quimiotáctica, mientras que en líneas celulares de CPCP, además de la respuesta quimiotáctica, se describe un aumento en la proliferación. Aunado a esto, reportan un aumento en la adhesión a placas con fibronectina, una mayor eficiencia de siembra en médula ósea, hígado y pulmón en ratones NOD/SCID inmunodeficientes y en la línea celular de ADCP A549 reportan la fosforilación de MAPK y AKT tras la administración de PRL.

En un trabajo reciente de nuestro grupo de investigación, se identificaron tres isoformas del PRLR en las líneas celulares de pulmón BEAS-2B (no neoplásica), SK-LU-1 y A549 (ADCP). Además, se reportó una posible localización del PRLR en diferentes compartimentos celulares (Figura 6) y un aumento de la viabilidad celular tras la administración de altas concentraciones de PRL.²⁴

Chou y colaboradores⁶⁶ correlacionaron altos niveles de PRL en tejido tumoral con una baja supervivencia de pacientes de CP, sin embargo, no encontraron el transcrito ni la proteína del PRLR en líneas celulares. No obstante, se detectó PRL en el citoplasma y en el medio de cultivo de líneas celulares de CPCNP donde además describen un aumento en la transcripción de *VEGF* tras la administración de PRL. En A549, el tratamiento con PRL promovió la proliferación celular y la fosforilación de JAK2-STAT3 a través del receptor de la hormona de crecimiento.

Figura 6. Expresión del PRLR en SK-LU-1 v A549. Sobreposición de las señales de DAPI (azul) y PRLr (rojo). A y B). Monocapa celular de la línea celular SK-LU-1. C y D) Monocapa celular de la línea celular A549. Las cabezas de flecha señalan regiones con mayor intensidad de fluorescencia. Fotomicrografías capturadas a 40X.²⁴

Por otro lado, Le Bescont y colaboradores⁶⁷ reportan que el PRLR no se encuentra normalmente expresado en tejido pulmonar y que la transcripción del mismo en pulmón no se asocia con una mayor agresividad tumoral. Sin embargo, la expresión de PRL en pacientes se correlaciona con una baja supervivencia. Al explorar los efectos de PRL independientes del PRLR encontraron que en líneas celulares de CPCP se transcribía un transcrito trunco de PRL que no era traducido. Dicha expresión se relacionó con un aumento en la supervivencia celular tras un estímulo citotóxico. El *knockdown* de los transcritos truncos resultó en la modificación de los genes transcritos (Tabla 2) y los transcritos que se vieron disminuidos después del *knockdown* de PRL corresponden a transcritos aumentados en tumores de CPCNP. Los autores además sugieren que en CP positivo a PRL, la PRL regula procesos celulares involucrados en la actividad transcripcional dependiente de acetilación y desacetilación de histonas.⁶⁷

Por último, utilizando datos del proyecto TCGA Lung Adenocarcinoma*, se observa una disminución en la probabilidad de supervivencia de los pacientes con alta expresión del PRLR. (Figura 7)

*El Atlas del Genoma del Cáncer (TCGA), es un programa de genómica del cáncer que se ha encargado de caracterizar molecularmente más de 20 000 cánceres primarios y comparar muestras normales que abarcan 33 tipos de cáncer. Este esfuerzo conjunto entre el Instituto Nacional del Cáncer de Estados Unidos de América y el Instituto Nacional de Investigación del Genoma Humano comenzó en 2006, reuniendo a investigadores de diversas disciplinas y múltiples instituciones. TCGA ha generado más de 2,5 petabytes de datos genómicos, epigenómicos, transcriptómicos y proteómicos. Los datos son de dominio público y han contribuido enormemente en el diagnóstico, tratamiento y prevención del cáncer.⁶⁸

Figura 7. Gráfico de Kaplan-Meir de la probabilidad de supervivencia con respecto a la expresión del PRLR. Gráfica generada en el servidor UCSC XENA (https://xenabrowser.net/heatmap/) con datos del consorcio The Cancer Genome Atlas Program TCGA Lung Adenocarcinoma (LUAD) (n = 211). El filtrado de datos fue el siguiente: 1) Phenotypic (expression_subtype) 2) Gene expressión PRLR 3) Remove samples with nulls 4)Bronchioid keep samples. Alta expresión en rojo, expresión media/baja en azul. p<0.05

Modificaciones del transcriptoma por PRL

Holloran *et* al. (2020) analizaron los cambios transcroptómicos en la línea celular de cáncer de mama T47D tras la administración de PRL lo cual les permitió caracterizar una retroalimentación y regulación fina entre los programas transcripcionales desencadenados por progestina y PRL de manera independiente y en combinación.⁶⁹ (Tabla 2)

En otro modelo de cáncer de mama, se reporta que la PRL induce 535 genes e inhibe la expresión de 372. En dicha investigación analizaron el efecto del fármaco NIM811 como inhibidor de CypA, proteína que contribuye a la cascada de señalización desencadenada por el PRLR a través de JAK2. NIM811 inhibió la transcripción de los genes blanco del PRLR, *CCND1* y *CEBPB*, y antagonizó los cambios de expresión estimulados por PRL en una escala global. NIM811 inhibió el 57% de los top 100 genes inducidos por PRL e indujo 62% de los top 100 genes inhibidos por PRL. Además, el 52% de los genes blancos de STAT5 inducidos por PRL, se inhibieron por NIM811, mientras que el 62% fueron inducidos por NIM811. Dado lo anterior, los autores proponen el uso del fármaco como agente terapéutico en cáncer de mama ya que es capaz de inhibir cascadas de señalización mediadas por el receptor de PRL.⁷⁰

Experimento	Procesos enriquecidos	Procesos disminuidos	Referencia
<i>Knockdown</i> de transcritos truncos de PRL en líneas celulares de CPCP	Procesamiento de RNA y constituyentes ribosomales, factores nucleares, reparación y replicación del DNA, ciclo celular	Actina, organización y biogénesis del citoesqueleto, transporte mediado por aparato de Golgi y vesículas, procesos metabólicos de aminas y carbohidratos	Le Bescont et al. 2015
Administración de PRL humana recombinante (100 ng/mL) a la líne celular T47D	Diferenciación celular mesenquimal, establecimiento de la polaridad celular Vía de señalización: insulina, IFN I, factor de crecimiento de fibroblastos, receptor del morfogénesis y ramificación del epitelio, PRL Regulación positiva: quimiotaxis de leucocitos, IL-6, JUN, IL-1beta, adhesiones célula-célula mediadas por cadherina, procesos biosintéticos de citocinas, proliferación de fibroblastos, regulación negativa: Wnt	No reportado	Holloran et al. 2020

Tabla 2. Cambios transcriptómicos mediados por PRL en modelos in vitro.

Otálora-Otálora y colaboradores⁷¹ compararon los cambios en la expresión génica en diferentes patologías y reportan que el CP es la enfermedad pulmonar con mayor número de genes desregulados, siendo preponderante el aumento de la expresión génica y no la disminución. El grupo de investigación denota la importancia de describir la desregulación génica en cáncer ya que esto permite la disección de todos los grupos génicos transcripcionalmente desregulados involucrados en la modulación de funciones biológicas y vías de señalización, describiendo patrones de expresión asociados con el grado del tumor, diferenciación, potencial metastásico y la supervivencia del paciente cuando se compara el tejido tumoral contra tejido sano.⁷¹

Justificación

El cáncer de pulmón es un problema de salud pública relevante en México y en el mundo. La disminución del tabaquismo ha dejado entrever la contribución de otros factores en el desarrollo de CP. En los últimos años, se ha descrito la influencia de las hormonas esteroideas, progesterona y estrógenos, en el desarrollo de éste. Por otro lado, se ha sugerido el uso de la PRL, como un biomarcador diagnóstico de CP, predictivo de resultados clínicos negativos y pronóstico de recurrencia en CP, sin embargo, las investigaciones en torno a la misma son escasas y contradictorias, por lo que se sigue desconociendo la posible implicación de la PRL en CP y en la fisiología normal del pulmón. Por otra parte la PRL, a través de su receptor, es capaz de desencadenar numerosas respuestas biológicas dependiendo del tipo celular y las isoformas de la PRL y del PRLR presentes. Por lo tanto, el análisis global de las modificaciones al transcriptoma mediadas por PRL, en líneas celulares de pulmón, contribuirá al entendimiento de las funciones regulatorias de la PRL en pulmón en condiciones normales y patológicas.

Pregunta de investigación

¿La administración de PRL induce cambios en el transcriptoma en las línea celulares de adenocarcinoma pulmonar SK-LU-1 y no neoplásica BEAS-2B?

Hipótesis

La administración de PRL modificará los niveles transcripcionales de genes que participan en eventos celulares relacionados con el proceso carcinogénico como la regulación del sistema inmune, proliferación celular, migración, entre otros, en las líneas celulares de pulmón SK-LU-1 y BEAS-2B.

Objetivo

General

Evaluar el cambio en los niveles globales de transcritos tras la administración de la PRL en la línea celular de ADCP SK-LU-1 y en la línea celular de bronquio no neoplásica BEAS-2B.

Particulares

- 1. Evaluar la señalización del PRLR tras la administración de PRL a través de la medición de la fosforilación de STAT5a/b por WB y su translocación al núcleo celular por inmunofluorescencia.
- 2. Estudiar los cambios transcripcionales inducidos por PRL en las líneas celulares de pulmón SK-LU-1 y BEAS-2B por RNAseq.
- 3. Realizar un análisis de enriquecimiento funcional de los cambios en el transcriptoma tras la administración de PRL en las líneas celulares de pulmón SK-LU-1 y BEAS-2B.

Método

Diseño experimental

Como modelo de estudio para esta investigación se utilizaron las líneas celulares de pulmón BEAS-2B (no neoplásica) y SK-LU-1 (ADCP). Para determinar la dosis de oPRL a utilizar para los estudios transcriptómicos, primero se elaboró una curva dosis-respuesta, en donde se siguió la fosforilación de STAT5a/b, uno de los principales señalizadores de la PRL. Como paso inicial, se administró oPRL por 15 y 30 minutos para determinar el tiempo de estimulación en el cual se observa una mayor fosforilación de STAT5a/b por Western Blot y la translocación de STAT fosforilado al núcleo por inmunofluorescencia. La dosis de oPRL utilizada en este primer ensavo (250 ng/mL) se eligió con base a lo reportado en un modelo de estudio de cáncer de mama.⁷⁰ Se procedió a elaborar una curva dosis respuesta con la administración única de oPRL de las siguientes dosis por 15 minutos: 1, 5, 25, 125, 625, 1225 o 2500 ng/mL de oPRL. La concentración utilizada para los estudios transcriptómicos fue de 125 ng/mL de oPRL (dosis única, 2h). Tras la extracción del RNA y la evaluación de su calidad, las muestras fueron enviadas a la unidad de secuenciación para la generación de las librerías y la secuenciación del mRNA. Los análisis bioinformáticos incluyeron el análisis de calidad de la secuenciación y alineamiento de las lecturas, la identificación de los genes diferencialmente expresados, el análisis de enriquecimiento de vías y la evaluación de los niveles de expresión de los genes diferencialmente expresados en ADCP utilizando la base de datos pública del TCGA-LUAD.

Figura 8. Diseño experimental.

Cultivo celular

Las líneas celulares adherentes humanas de morfología epitelial BEAS-2B y SK-LU-1, fueron utilizadas para este estudio. La línea celular SK-LU-1 proviene de un paciente con adenocarcinoma pulmonar, mientras que BEAS-2B es una línea celular no neoplásica de tejido bronquial. Los cultivos celulares se incubaron a 37 °C, en una atmósfera de 5 % de CO_2 . La línea celular SK-LU-1 se cultivó en medio DMEM (Biowest[®]) mientras que BEAS-2B se cultivó en medio DMEM-F12 (Gibco[®]). Ambos medios fueron suplementados

con piruvato (Biowest[®], 1 %), una mezcla de antibiótico y antimicótico (Biowest[®], 1 %), aminoácidos no esenciales (Biowest[®], 1 %) y suero fetal bovino (SFB, Biowest[®]) al 10 %.

Curva dosis-respuesta

Con la finalidad de establecer el tiempo de estimulación con PRL ovina (oPRL) para la elaboración de la curva dosis-respuesta, se sembraron 3×10^5 células de la línea celular SK-LU-1 en cajas Petri de 60 mm y 4.5 x 10^5 células BEAS-2B en cajas Petri de 10 mm. Transcurridas 24 h, se cambió el medio de cultivo a medio suplementado con SFB tratado con carbón activado para la deprivación de hormonas esteroideas. Transcurridas 24 h, las células fueron deprivadas de SFB por 17 h y se administró una única dosis de oPRL por 15 y 30 min. La dosis utilizada se escogió con base en reportes en la literatura⁷⁰ para un modelo de cáncer de mama y su respuesta a PRL. Tras definir el tiempo para la elaboración de la curva dosis-respuesta a PRL se administró una dosis única de 1, 5, 25, 125, 625, 1225 o 2500 ng/mL de oPRL.

Transcurridos 15 minutos, los cultivos celulares se colocaron sobre una cama de hielo y se lavaron tres veces con PBS pH 7.4 a 4 °C. A cada caja se le añadieron 50 µL de buffer de lisis (RIPA) suplementado con inhibidor de proteasas (cOmplete Tablets, Roche[®], Cat. No. 04 693 124 001) e inhibidor de fosfatasas y con un scrapper se desprendieron mecánicamente las células de la caja. La suspensión celular se centrifugó a 26,000 xg a 4 °C durante 20 min y se recuperó el sobrenadante. Posteriormente se cuantificó la concentración de proteínas por el método de Lowry (Bio-Rad®). Las muestras de proteína fueron separadas mediante electroforesis en un gel de poliacrilamida al 10% y transferidas en cámara húmeda a una membrana de nitrocelulosa. Al terminar la transferencia, las membranas fueron bloqueadas con leche al 10% en TBS-Tween 20 por 2 h a temperatura ambiente. La membrana se incubó de la noche a la mañana a 4 °C con los anticuerpos primarios correspondientes (1:1000) STAT5b (G-2) (Santa Cruz Biotechnology[®], sc-1656, monoclonal de ratón), p-STAT5a/b (5G4) (Santa Cruz Biotechnology[®], sc-8152, monoclonal de ratón), o b-actina (Santa Cruz Biotechnology[®], sc-47778, monoclona de ratón). Posteriormente, la membrana se lavó tres veces con TBS-Tween 20 para ser incubada con los anticuerpos secundarios IRDye[®] 800CW (Goat anti-Mouse, 925-32210) e IRDye® 680RD (Donkey anti-Rabbit). Finalmente se hicieron 4 lavados con TBS-Tween 20 y uno con PBS durante 10 minutos cada uno. Finalmente, las membranas se visualizaron en el sistema de imágenes Odyssey® Sa (LI-COR[®]).

Para el análisis densitométrico se utilizó el *software* ImageStudio[®]. En breve, se hicieron rectángulos de las mismas dimensiones para medir la señal de cada banda detectada y se tomó el promedio alrededor de dicho rectángulo para restar la señal de fondo. Posteriormente la señal de p-STAT o STAT se dividió entre la señal del control de carga para cada carril. La razón de p-STAT/β-actina o p-AKT/β-actina del tratamiento control se tomó como el 1.

Translocación de STAT5a/b al núcleo celular

Con la finalidad de observar la localizaciónde STAT5a/b en el núcleo tras el tratamiento con PRL se llevaron a cabo ensayos de inmunofluorescencia. Se colocaron cubreobjetos estériles circulares de 18 mm, previamente tratados con alcohol etílico al 70 % en una caja de 6 cm.

En éstos se sembraron 8×10⁴ células por pozo (SK-LU-1) y se incubaron a 37 °C con CO² al 5 % con SFB al 10 %. A las 24 h de haber sembrado las células se dió el tratamiento con oPRL y a los 15 minutos la caja fue colocada en una cama de hielo y se retiró el medio de cultivo. Los pozos fueron lavados tres veces con PBS frío y se les añadió 0.5 mL. de paraformaldehído al 4 %. Transcurridos 40 min se retiró el paraformaldehído de las cajas y se realizaron tres lavados con PBS. Para la permeabilización de la membrana celular se añadió a cada pozo 0.5 mL de una disolución 1:1 de SDS al 0.5 % y Tritón X-100 al 0.5 % en PBS la cual se retiró a los 15 min. de incubación a temperatura ambiente. Posteriormente las células se lavaron tres veces con PBS. Las muestras se bloquearon con una disolución de BSA al 3 % durante una h a temperatura ambiente y después se lavaron tres veces con PBS y agua Milli-Q. Posteriormente, las muestras se incubaron en cámara húmeda toda la noche a 4 °C con 20 µl de los anticuerpos primarios p-STAT5a/b (5G4) (Santa Cruz Biotechnology[®], sc-8152, monoclonal de ratón) y GAPDH (FL-335) (Santa Cruz Biotechnology[®], sc-25778, policional de conejo) en una dilución 1:500. Después se realizaron tres lavados con PBS y uno con agua destilada y se depositaron 20 µl del anticuerpo secundario Alexa Fluor 546 en una dilución 1:500 (invitrogen[®], anti conejo) y Alexa Fluor 488 en una dilución 1:250 (Invitrogen[®], anti ratón). Transcurridas dos h de incubación en oscuridad, se hicieron tres lavados con PBS y uno con agua desionizada. Finalmente se incubó por 10 min con DAPI en una dilución 1:10 000. Cada cubreobjetos se montó sobre un portaobjetos con 20 µl de medio para montaje fluorescente (Dako[®]) y las preparaciones se observaron al microscopio. Se tomaron fotos con el objetivo 40X y las imágenes fueron procesadas en el software ImageJ (NIH[®]).

Extracción de RNA y secuenciación masiva de mRNA

Para la evaluación de los cambios en el transcriptoma inducidos por PRL, se llevaron a cabo tres repeticiones biolológicas (pases consecutivos) para cada condición (control y 125 ng/mL de oPRL) en cada línea celular. En cada repetición biológica se elabroraron tres replicados técnicos. Se sembraron 3×10^5 células SK-LU-1 en cajas Petri de 6 cm y 4.5 x 10^5 células BEAS-2B en cajas Petri de 10 cm y se cultivaron como descrito previamente. Se administró una dosis única de PRL ovina (oPRL) (125 ng/mL) y transcurridas 2 h se retiró el sobrenadante. Los cultivos celulares se lavaron con PBS frío por triplicado; posteriormente, las células fueron desprendidas mecánicamente, y se depositaron en un tubo falcon con 250 uL de TRIzol (Invitrogen[™]) y se almacenaron a -70 °C. Para la extracción de RNA, las muestras se descongelaron a temperatura ambiente y se homogeneizaron por vortex por 15 segundos. Se agregaron 200 uL de cloroformo por cada 1 mL de TRIzol y tras homogeneizarlas por 15 segundos, se incubaron por 3 min a temperatura ambiente. Posteriormente, las muestras fueron centrifugadas a 19,000 xg durante 10 minutos a 4 °C. De cada replicado técnico se tomo un pool de la fase acuosa del mismo volumen para la conformación del replicado biológico. La fase acuosa fue recuperada en un tubo falcon y mantenida en hielo. Se añadieron tres volúmenes de etanol absoluto por cada volumen de fase acuosa recuperada y se dejó incubando por dos días a -20 °C. Las muestras fueron centrifugadas a 19,000 xg por 30 min a 4 °C y se descartó el sobrenadante. Se realizaron tres lavados a los pellets recuperados con alcohol etílico al 75% (1) y al 70% (2) y se centrifugaron a 17,800 xg por 15 min a 4 °C. Al finalizar los lavados, los tubos fueron decantados y centrifugados por 10 s a 17,800 xg para concentrar el etanol remanente en las paredes del tubo y retirar el mayor volumen posible con una micropipeta. Los pellets se desecaron boca abajo sobre una sanita con inhibidores de RNasas entre 10 y 15 minutos. Finalmente se resuspendieron los *pellets* en 60 uL de agua libre de nucleasas.

Las muestras de RNA fueron cuantificadas en un espectrofotómetro NanoDrop[™] 2000/2000c (Thermo Scientific[™]) y se evaluó la integridad del RNA en geles de agarosa al 1% con GelRed[®] (Biotium, 41003). Los geles fueron visualizados en el equipo EC3 Imaging System, UVP[™]. Se enviaron 5 µg de RNA total a la Unidad Universitaria de Secuenciación Masiva y Bioinformática (Instituto de Biotecnología, UNAM). En la unidad de secuenciación se cuantificó y evaluó la integridad y pureza del RNA mediante la medición de la absorbancia a 260 nm (A260) y a 280 nm (A280), por medio de un NanoDrop (modelo ND-1000), geles de integridad de Agarosa al 1% y mediante un Bioanalizador Agilent 2100. Las bibliotecas se prepararon de acuerdo con el manual del TruSeq HT Stranded mRNA Library Prep Kit (Illumina, 20020595) y se generaron fragmentos de 76 pb, para secuenciarlas en la plataforma NextSeq 500 de Illumina.

Análisis bioinformático

Los análisis bioinformáticos se llevaron a cabo en la plataforma Galaxy (<u>https://usegalaxy.eu/</u>). Se generaron reportes individuales de la calidad de la secuenciación partiendo de los archivos de secuenciación cruda (fastq.gz) con el módulo FastQC ⁷² los cuales fueron integrados a un solo reporte con el módulo MultiQC.⁷³Los criterios evaluados para la calidad de secuenciación fueron: contenido de GC, contenido de duplicados, contaminación de adaptadores, llamado de bases (Phred score) y longitud de secuencias.

Posteriormente, se mapearon las lecturas usando el genoma de referencia Human Dec.2013 (GRCh38/hg38) con el módulo HISAT2⁷⁴ y la calidad del alineamiento se analizó con los módulos Gene Body Coverage (BAM), Infer Experiment y Read Distribution del paquete RSeQC.⁷⁵ Nuevamente los resultados se integraron con el módulo MultiQC.⁷³

El conteo de lecturas se llevó a cabo con el módulo featureCounts ⁷⁶ y el análisis de expresión diferencial con DESeq2.⁷⁷ El enriquecimiento de vías se llevó a cabo con Enrichr ^{78–80} y GSEA,^{81,82} que determina cambios acumulativos en la expresión de un conjunto de genes definido *a priori* relacionado con un fenotipo en particular entre condiciones biológicas. El análisis con GSEA proporciona el estadístico *enrichment score* (ES) que indica el nivel en que los genes del conjunto analizado están sobrerrepresentados en las condiciones analizadas.

Con la plataforma UALCAN^{83,84} se analizó la expresión de los genes identificados como diferencialmente (GDE) expresados en las líneas celulares tratadas con PRL. Las bases de datos uitilizadas para dicho análisis proviene del proyecto TCGA-LUAD y del consorcio CPTAC (*Clinical Proteomic Tumor Analysis Consortium*) que incluyen a pacientes con adenocarcinoma pulmonar. Con la misma plataforma se generaron mapas de calor para la representación gráfica de la expresión de los genes en condiciones tumorales y en condiciones normales. Para los seis genes seleccionados (*SSBP1, LDHB, RPL22L1, SYNE2, KTN1* y *APC*), se analizó el nivel de transcripción y traducción en tejido normal y tumoral. Finalmente se generaron gráficas de supervivencia para cada uno de estos genes.

Resultados

Fosforilación de STAT5a/b tras administración de oPRL

Con la finalidad de establecer el tiempo de estimulación para la elaboración de la curva dosis-respuesta, se administró oPRL (250 ng/mL) por 15 y 30 min a la línea celular SK-LU-1. Transcurridos 15 min, se observó un aumento de más del 50% en la detección de p-STAT5a/b (Figura 9A-B) y la translocación al núcleo (Figura 9C) por lo que las curvas posteriores se elaboraron bajo dichos criterios. A los 30 min no se encontraron diferencias significativas.

DAPI

p-STAT5a/b

С

Figura 9. Fosforilación y translocación de STAT tras tratamiento con PRL. A) Densitometría de la fosforilación de p-STAT en SK-LU-1 **B)** Imagen representativa de los resultados de *western blot* obtenidos. Las barras de error indican la desviación estándar para cada medida (n = 3). * p < 0.05 (ANOVA unidireccional) **C)** Microfotografías representativas de la detección de pSTAT en SK-LU-1 por inmunofluorescencia. 0": 0 minutos, 15": 15 minutos, 30": 30 minutos. En la fila "DAPI" se presenta el empalme de las señales de DAPI y pSTAT.

Tras la elaboración de la curva dosis-respuesta (Figura 7) se decidió utilizar la dosis de 125 ng/mL de oPRL puesto que hay un aumento progresivo y significativo de la fosforilación de STAT5a/b hasta esta dosis.

Figura 10. Curva dosis respuesta a PRL. A y B) Aumento relativo de la fosforilación de p-STAT en SK-LU-1 y C y D) BEAS-2B. Las barras de error indican la desviación estándar para cada medida (n = 2).*Diferencia con respecto al control al menos dos veces más grandes que el coeficiente de variación para dicha condición.

Extracción de RNA

En la Figura 11 y en la Tabla 3 se muestran los controles de calidad de la extracción de RNA. En los geles de agarosa (Figura 11) no se observa contaminación por DNA genómico, y se puede apreciar la integridad del RNA extraído. Las muestras para secuenciación masiva se eligieron con base en los índices 260/280 y 260/230 (Tabla 3): B2B CTRL1, B2B CTR2, B2B CTR3, B2B PRL2, B2B PRL 3, B2B PRL 4, SK-LU-1 CTRL_2, SK-LU-1 CTRL_3, SK-LU-1 CTRL_3, SK-LU-1 PRL_1, SK-LU-1 PRL_2, SK-LU-1 PRL_3. De dichas muestras se presenta el RIN (*RNA integrity number*) y el electroferograma obtenidos por la unidad de secuenciación (Tabla 3).

Figura 11. Integridad de RNA. A) Gel de agarosa para el RNA extraído de la línea celular BEAS-2B **B)** Gel de agarosa para el RNA extraído de la línea celular SK-LU-1.

Tab	la 3. Ai	nálisis de ca	lidad	de RNA. Valor	es de concentra	ación y abs	orbancia de los e	extract	os
de	RNA	obtenidos	con	NanoDrop™	2000/2000c	(Thermo	Scientific TM).	Rin	у
electroferograma procedentes de la unidad de secuenciación obtenidos de un Bioanalyzer.									

		Absorbancia						
Muestra	(ng/µl)	260/ 260/ 280 230	RIN	Electroferograma (Bionalayzer)				
B2B CTR1	383.8	1.93 2.39	8.10	MAC19				
B2B CTR2	883.1	2.02 2.37	8.40	MAC20				
B2B CTR3	1211.1	2.06 2.27	N/A	MAC21				
B2B CTR4	187.1	2.09 2.1	-					
B2B PRL1	200.4	2.06 2.49	-					
B2B PRL2	991.1	2.03 2.36	8.40	MAC22				

Muestra	Concentración (ng/µl)	260/ 280	260/ 230	RIN	Electroferograma (Bionalayzer)
B2B PRL3	978.5	2	2.38	N/A	MAC23
B2B PRL4	933.3	2.06	2.08	8.60	MAC24
SK-LU-1 CTRL_1	216.9	1.85	2.29	-	
SK-LU-1 CTRL_2	646.8	1.96	2.22	8.60	M13
SK-LU-1 CTRL_3	416.8	1.9	2.33	9	
SK-LU-1 CTRL_4	573.8	1.95	2.22	9	M15

Calidad de secuenciación

Las muestras secuenciadas tuvieron en promedio una profundidad de secuenciación de 9.6 millones de lecturas (*paired end*). El porcentaje de duplicados fue alto con un promedio de 52.9 % para todas las muestras lo que nos deja con un promedio de lecturas útiles de 5 millones. El contenido de GC promedio fue de 49.5 %. Todas las muestras tuvieron lecturas de 76 pares de bases y un Phred score (que indica la calidad en el llamado de bases) por encima de 30. (Tabla 4, Figura 12)

Muestra	Dups (%)	GC (%)	Longitud (bp)	M Seqs
BEAS_Ctrl1_R1_fastq_gz	58.8	4	76	11.8
BEAS_Ctrl1_R2_fastq_gz	55.5	50	76	11.8
BEAS_Ctrl2_R1_fastq_gz	51.1	51	76	8.6
BEAS_Ctrl2_R2_fastq_gz	50.7	52	76	8.6
BEAS_Ctrl3_R1_fastq_gz	46.8	52	76	8.7
BEAS_Ctrl3_R2_fastq_gz	45.0	53	76	8.7
BEAS_Trat1_R1_fastq_gz	50.2	53	76	8.8
BEAS_Trat1_R2_fastq_gz	48.2	54	76	8.8
BEAS_Trat2_R1_fastq_gz	50.0	52	76	9.4
BEAS_Trat2_R2_fastq_gz	44.5	53	76	9.4
BEAS_Trat3_R1_fastq_gz	52.7	52	76	11.2
BEAS_Trat3_R2_fastq_gz	50.7	54	76	11.2
Sklu_Ctrl1_R1_fastq_gz	52.7	52	76	8.8
Sklu_Ctrl1_R2_fastq_gz	53.2	52	76	8.8
Sklu_Ctrl2_R1_fastq_gz	54.8	49	76	10.3
Sklu_Ctrl2_R2_fastq_gz	56.5	50	76	10.3
Sklu_Ctrl3_R1_fastq_gz	50.8	50	76	9.0
Sklu_Ctrl3_R2_fastq_gz	54.1	51	76	9.0
Sklu_Trat1_R1_fastq_gz	54.0	50	76	8.9
Sklu_Trat1_R2_fastq_gz	56.0	50	76	8.9
Sklu_Trat2_R1_fastq_gz	54.0	51	76	9.3
Sklu_Trat2_R2_fastq_gz	56.4	51	76	9.3
Sklu_Trat3_R1_fastq_gz	60.1	50	76	9.9
Sklu_Trat3_R2_fastq_gz	61.1	51	76	9.9

Tabla 4. Análisis de calidad de secuenciación. Contenido de duplicados (Dups), GC, longitud de las lecturas y profundidad de la secuenciación (M Seqs).

FastQC: Status Checks

Figura 12. Análisis de calidad de secuenciación. A, B) Phred Score C, F) Porcentaje de duplicados D) Contenido de GC E) Porcentaje de llamado de bases G) Porcentaje de secuencias sobrerrepresentadas H) Contenido de Adaptadores I) Resumen de análisis de control de calidad de secuenciación

Calidad del Alineamiento

En promedio alinearon 95.3% de las secuencias obtenidas de las muestras (Tabla 5). Por otro lado, más del 60 % de las secuencias alineadas mapean a exones (Figura 13A), presentan una cobertura génica uniforme (Figura 13B), y cerca del 80 % fueron mapeadas una única vez (Figura 13D).

Tabla 5. Análisis de calidad de alineamiento.							
Muestra Alineadas (%)							
BEAS_Ctrl1	93.1						
BEAS_Ctrl2	94.9						
BEAS_Ctrl3	94.3						
BEAS_Trat1	94.7						
BEAS_Trat2	92.3						
BEAS_Trat3	95.5						
SKLU_Ctrl1	96.5						
SKLU_Ctrl2	95.7						
SKLU_Ctrl3	96.2						
SKLU_Trat1	96.4						
SKLU_Trat2	96.6						
SKLU_Trat3	97.5						

Figura 13. Análisis de calidad de alineamiento.

Genes diferencialmente expresados tras administración de oPRL

La administración de 125 ng/mL de oPRL por 2 horas a la línea celular BEAS-2B modificó los niveles de 13 transcritos, de los cuales 12 disminuyeron. Por otro lado, en SK-LU-1 se modificaron los niveles de 85 transcritos, de los cuales 5 tuvieron un aumento con el tratamiento. En ambos casos $p \le 0.05$, sin embargo, p-adj no fue menor a 0.05 por lo que se considera que no hay diferencias significativas.

Tabla	ı 6.	Genes	diferen	cialmente	expresados	s en E	BEAS-2B	tratadas	con	PRL
(125	ng/r	nL). Re	esultados	de expres	sión diferenc	ial ob	otenidos co	on DESeq	2. Va	lores
de co	rte:	$-1 \ge \log \theta$	$2(FC) \leq$	1; p-value	≤ 0.05			_		

Gene	Promedio Base	log ₂ (FC)	StdErr	Wald-Stats	P-adj
LSM5	508.50	-1.07	0.27	-3.98	0.10
SSBP1	257.59	-1.08	0.26	-4.16	0.10
LDHB	334.90	-1.02	0.25	-4.10	0.10
ACTR6	107.56	-1.17	0.28	-4.22	0.10
POMP	1050.28	-1.02	0.25	-4.06	0.10
RSL24D1	601.74	-1.11	0.26	-4.26	0.10
PCLAF	150.67	-1.05	0.27	-3.96	0.10
IER3IP1	113.74	-1.18	0.28	-4.23	0.10
MZT1	246.16	-1.02	0.26	-3.86	0.13
RPL22L1	161.75	-1.03	0.27	-3.79	0.16
RPL31P4	38.96	-1.05	0.28	-3.77	0.16
CETN3	133.37	-1.01	0.27	-3.70	0.18
ASMTL	19.82	1.01	0.28	3.63	0.21
Tabla 7. Genes diferencialmente expresados en SK-LU-1 tratadas con PRL (125
ng/mL). Resultados de expresión diferencial obtenidos con DESeq2. Valores de
corte: - $0.5 \ge \log 2(FC) \le 0.5$; p-value ≤ 0.05

Gen	Promedio Base	$\log_2(FC)$	StdErr	Wald-Stats	P-adj	
SYNE2	158.49	-0.74	0.17	-4.32	0.13	
CHML	248.66	-0.72	0.17	-4.17	0.15	
NIPBL	257.76	-0.71	0.16	-4.38	0.13	
KTN1	487.94	-0.71	0.17	-4.2	0.15	
RIF1	147.03	-0.7	0.17	-4.07	0.2	
PHF3	230.81	-0.67	0.18	-3.8	0.36	
APC	96.81	-0.64	0.18	-3.63	0.37	
RBBP6	467.47	-0.63	0.16	-3.85	0.36	
TPR	428.91	-0.63	0.16	-3.81	0.36	
DST	271.03	-0.63	0.17	-3.69	0.37	
ZNF644	187.02	-0.63	0.17	-3.69	0.37	
SREK1	213.77	-0.62	0.17	-3.6	0.38	
ANKRD11	500.52	-0.61	0.16	-3.72	0.37	
RANBP2	405.76	-0.61	0.17	-3.63	0.37	
EIF5B	599.65	-0.61	0.17	-3.62	0.37	
VPS13C	121.94	-0.61	0.17	-3.54	0.43	
PHIP	146.22	-0.61	0.17	-3.48	0.46	
REV3L	95.7	-0.61	0.17	-3.47	0.47	
ITGB8	159.09	-0.6	0.17	-3.64	0.37	
SMC4	310.76	-0.6	0.17	-3.57	0.41	
SMC3	270.14	-0.6	0.18	-3.4	0.51	
GOLGB1	338.53	-0.59	0.15	-3.89	0.36	
QSER1	203.39	-0.59	0.16	-3.63	0.37	
CPLANE1	145.65	-0.59	0.17	-3.5	0.45	
PIK3C2A	106.78	-0.59	0.17	-3.42	0.5	
RN7SL1	31.32	-0.59	0.18	-3.33	0.57	
AHCTF1	302.76	-0.58	0.16	-3.71	0.37	
KIF5B	697.08	-0.58	0.16	-3.54	0.43	
ROCK2	199.73	-0.58	0.17	-3.44	0.48	
BOD1L1	145.92	-0.58	0.17	-3.32	0.57	
KMT2C	140.94	-0.58	0.17	-3.3	0.58	

Gen	Promedio Base	log ₂ (FC)	StdErr	Wald-Stats	P-adj
MKI67	702.01	-0.57	0.15	-3.75	0.37
CDC42BPA	288.61	-0.57	0.16	-3.51	0.45
CLIP1	472.98	-0.57	0.17	-3.45	0.48
SMG1	225.22	-0.57	0.17	-3.4	0.51
CDK6	226.77	-0.57	0.17	-3.4	0.51
ATRX	117.38	-0.57	0.18	-3.21	0.65
GOLGA4	74.13	-0.57	0.18	-3.17	0.65
SMC5	49.12	-0.57	0.18	-3.11	0.7
CENPF	482.68	-0.56	0.16	-3.39	0.51
USP47	249.48	-0.56	0.17	-3.33	0.57
SLK	303.4	-0.56	0.17	-3.32	0.57
SMCHD1	212.12	-0.56	0.17	-3.22	0.65
RBAK	109.66	-0.56	0.18	-3.17	0.65
RMRP	34.49	-0.56	0.18	-3.1	0.71
ZNF292	31.37	-0.56	0.18	-3.08	0.72
RB1CC1	211.69	-0.55	0.17	-3.22	0.65
ENSG000002 79207	59.18	-0.55	0.18	-3.06	0.73
KIF14	64.13	-0.55	0.18	-3.01	0.79
PBRM1	160.26	-0.54	0.17	-3.24	0.65
CHD1	298.16	-0.54	0.17	-3.14	0.67
TET2	45.88	-0.54	0.18	-3	0.8
SMC6	64.88	-0.54	0.18	-2.98	0.81
SUZ12	185.62	-0.53	0.16	-3.3	0.58
ZFHX3	224.32	-0.53	0.17	-3.2	0.65
UTRN	184.55	-0.53	0.17	-3.17	0.65
REST	137.13	-0.53	0.17	-3.15	0.67
NIN	119.3	-0.53	0.17	-3.14	0.67
TTC3	274.05	-0.53	0.17	-3.13	0.67
MIS18BP1	84.55	-0.53	0.18	-2.99	0.8
LCOR	95.21	-0.53	0.18	-2.98	0.82
EIF3A	2311.62	-0.52	0.16	-3.28	0.61
SLTM	426.72	-0.52	0.16	-3.21	0.65

Gen	Promedio Base	log ₂ (FC)	StdErr	Wald-Stats	P-adj
RASSF8	271.69	-0.52	0.16	-3.16	0.65
TBC1D4	157.68	-0.52	0.17	-3.12	0.69
SACS	55.47	-0.52	0.18	-2.85	0.96
CRYBG3	41.22	-0.52	0.18	-2.82	0.98
DSP	2894.06	-0.51	0.16	-3.2	0.65
PHC3	139.34	-0.51	0.16	-3.18	0.65
NHS	177.94	-0.51	0.17	-3.05	0.73
TASOR2	333.2	-0.51	0.17	-3.02	0.79
EDEM3	132.04	-0.51	0.17	-2.99	0.8
MYO9A	92.52	-0.51	0.18	-2.9	0.93
AP4E1	67.87	-0.51	0.18	-2.88	0.96
KIAA1109	90.32	-0.51	0.18	-2.86	0.96
ZDBF2	30.99	-0.51	0.18	-2.85	0.96
PNN	423.74	-0.5	0.17	-3.01	0.79
KIF21A	128.17	-0.5	0.17	-2.93	0.9
CASP8AP2	58.14	-0.5	0.18	-2.78	1
SNAI1	478.06	0.5	0.16	3.21	0.65
GADD45B	378.32	0.53	0.17	3.08	0.73
PTDSS2	81.56	0.54	0.18	3.02	0.79
MT-RNR1	216172.77	0.56	0.12	4.55	0.13
RASD1	47.8	0.57	0.18	3.14	0.67

Figura 14. Análisis de expresión diferencial con DESeq2. Análisis de componentes principales para BEAS-2B A) y SK-LU-1 D). *MA plot* de la expresión diferencial en BEAS-2B B) y SK-LU-1 E). *Volcano plot* de expresión diferencial en BEAS-2B C) y SK-LU-1 F).

Enriquecimiento de vías

Partiendo de los GDE en BEAS-2B (Tabla 6) se hizo un análisis de enriquecimiento de vías con Enrichr y se encontraron vías relacionadas con la regulación de la apoptosis por prolactina, traducción, ribosoma, reparación del DNA, regulación de la matriz extracelular, replicación de DNA mitocondrial, reprogramación metabólica en cáncer, entre otras. (Figura 15, Tabla 8).

Entre los *gene sets* enriquecidos en SK-LU-1 (GSEA) se encuentran vías relacionadas con la traducción, componentes ribosomales y metabolismo; mientras que en la muestra control se encuentran enriquecidos *gene sets* relacionados al procesamiento de mRNA, reparación del DNA y la vía de p53 (Tabla 9). En la Tabla A1 se muestra el *score* de enriquecimiento normalizado para los *gene sets* enriquecidos.

Con base en su significancia estadística y a los procesos en los que participan, se seleccionaron a los genes *SSBP1*, *LDHB*, *RPL22L1* para BEAS-2B y *SYNE2*, *KTN1*, *APC* para SK-LU-1 para los análisis posteriores.

GDE en adenocarcinoma pulmonar

Los genes diferencialmente expresados en BEAS-2B y SK-LU-1 se encuentran desregulados en muestras de pacientes con ADCP. (Figura 16) De manera interesante, en el caso de los GDE tras el tratamiento con PRL en BEAS-2B (Figura 16A), vemos el efecto contrario al reportado en este trabajo. Por ejemplo, *LDHB* que fue regulado a la baja (Tabla 6) en BEAS-2B tras el tratamiento con PRL, se encuentra sobreexpresado en pacientes con ADC pulmonar. Para el caso de *ASMTL* (Tabla 6), en pacientes con ADC pulmonar se encuentra una expresión disminuída mientras que en la línea celular tratada con PRL se evidencia una sobreexpresión del transcrito. Por otro lado, en el caso de los GDE en SK-LU-1 podemos observar que existe una concordancia entre los niveles de expresión en pacientes con ADC pulmonar y el tratamiento con PRL. (Figura 16, Tabla 7).

Para los genes *SSBP1*, *LDHB*, *RPL22L1*, *SYNE2*, *KTN1* y *APC* se generaron gráficas de supervivencia y de niveles de expresión del transcrito y de la proteína y se observó que todos se encuentran diferencialmente expresados en ADCP en comparación con tejido sano, ya sea a nivel de transcrito o de proteína. (Figura 17 y Figura 18) En algunos de los casos el nivel de expresión del transcrito se correlaciona con el estadio tumoral del paciente. Por otro lado, la sobreexpresión de SSBP1, LDHB y KTN1 se correlaciona con una baja supervivencia.

Figura 15. Enriquecimiento de vías en BEAS-2B por Enrichr. A) BioPlanet 2019 **B)** KEGG 2021 Human **C)** GO Biological Process 2021 **D)** Elsevier Pathway Collection **E)** TRRUST Transcription Factors 2019

Tabla 8. Enriquecimiento de vías en BEAS-2B por Enrichr. *Gene-set libraries representativas para el enriquecimiento de vías en BEAS-2B con valores estadísticos y genes involucrados. * p-value ajustado < 0.05*

Gene-Set Library	Nombre	P-value	Odds Ratio	Combined Score	Genes
	Prolactin regulation of apoptosis	9.71E-03*	34.26	209.79	LDHB;SSBP1
	Translation	1.49E-02*	26.63	150.16	RPL22L1;RSL24D1
	Messenger RNA decay by 5' to 3' exoribonuclease	1.87E-02	129.70	611.46	LSM5
	Mismatch repair	2.13E-02	82.50	353.87	SSBP1
	Homologous recombination	2.19E-02	64.81	263.04	SSBP1
BioPlanet 2019	Propanoate metabolism	2.58E-03	56.69	222.85	LDHB
	Cysteine and methionine metabolism	2.57E-02	54.97	214.46	LDHB
	Pyruvate metabolism and citric acid (TCA) cycle	4.18E-03	46.50	173.93	LDHB
	Deadenylation-dependent mRNA decay	3.14E-02	37.77	133.69	LSM5
	Pyruvate metabolism	3.33E-02	35.54	123.72	LDHB
	Ribosome	4.57E-03*	25.43	141.12	RPL22L1;RSL24D1
	Coronavirus disease	9.61E-03*	17.18	82.55	RPL22L1;RSL24D1
	Mismatch repair	1.49E-02*	82.50	353.87	SSBP1
KEGG 2021	Propanoate metabolism	2.19E-02	54.97	214.46	LDHB
	DNA replication	2.32E-02	51.83	199.25	SSBP1
	Homologous recombination	2.63E-02	45.34	168.47	SSBP1
	Proteasome	2.95E-02	40.29	145.13	POMP

Gene-Set Library	Nombre	P-value	Odds Ratio	Combined Score	Genes
	microtubule nucleation by microtubule organizing center (GO:0051418)	3.25E-03*	454.18	2638.91	MZT1
	positive regulation of helicase activity (GO:0051096)	4.54E-03*	302.76	1657.40	SSBP1
	regulation of extracellular matrix constituent secretion (GO:0003330)	5.19E-03*	259.49	1385.98	IER3IP1
	mitochondrial DNA replication (GO:0006264)	5.19E-03*	259.49	1385.98	SSBP1
GO Biological	regulation of fibroblast apoptotic process (GO:2000269)	5.84E-03*	227.05	1185.99	IER3IP1
Process 2021	regulation of helicase activity (GO:0051095)	5.84E-03*	227.05	1185.99	SSBP1
	proteasome assembly (GO:0043248)	7.13E-03*	181.62	912.35	POMP
	positive regulation of DNA-dependent DNA replication (GO:2000105)	7.13E-03*	181.62	912.35	SSBP1
	translation (GO:0006412)	8.22E-03*	18.66	92.55	RPL22L1;RSL24D1
	DNA unwinding involved in DNA replication (GO:0006268)	1.04E-02	121.05	562.89	SSBP1
	SRCAP in Chromatin Remodeling	9.06E-03*	139.69	668.13	ACTR6
Elsovior	Mitochondrial DNA Replication and Transcription	1.16E-02*	106.80	484.10	SSBP1
Pathway	Lactate as a Signaling Molecule in Cancer Cells	1.55E-02*	78.91	335.13	LDHB
Collection	mRNA Degradation	1.68E-02*	72.59	302.52	LSM5
	Metabolic Reprogramming in Cancer: Overview	4.02E-02*	29.22	96.20	LDHB

Gene-Set Library	Nombre	P-value	Odds Ratio	Combined Score	Genes
	E2F6 human	4.54E-03*	277.51	1497.03	PCLAF
TRRUST Transcription	CITED2 mouse	7.13E-03*	166.48	822.99	LDHB
Factors 2019	ATF3 human	1.04E-02*	110.96	507.12	PCLAF
	E2F4 human	1.49E-02*	75.63	318.35	PCLAF

Tabla 9. Enriquecimiento de vías en SK-LU-1 por GSEA.

0.35 0.30 0.25 0.20 0.20 0.15 0.15

GOBP_REGULATION_OF_MRNA_PROCESSING

GOBP_OXIDATIVE_PHOSPHORYLATION GOBP_AEROBIC_RESPIRATION

Cáncer

10,000 15,000 Rank in Ordered Datase

> HALLMARK_UV_RESPONSE_DN HALLMARK_TNFA_SIGNALING_VIA_NFKB HALLMARK_P53_PATHWAY HALLMARK_MTORC1_SIGNALING HALLMARK_DNA_REPAIR

Figura 16. Patrón de expresión en CPCNP de los genes diferencialmente expresados. A) BEAS-2B **B)** SK-LU-1. Heatmaps creados con servidor UALCAN.^{83,84}

Figura 17. Genes diferencialmente expresados en BEAS-2B en ADC. A) SSBP1 **B)** LDHB **C)** RPL22L1. De izquierda a derecha: transcritos por millón normal vs. tumoral, expresión normal vs. tumoral, transcritos por millón por estadio del cáncer, supervivencia. Gráficos generados con la plataforma UALCAN. ^{83,84}

Figura 18. Genes diferencialmente expresados en SK-LU-1 en ADC. A) SYNE2 **B)** KTN1 **C)** APC. De izquierda a derecha: transcritos por millón normal vs. tumoral, expresión normal vs. tumoral, transcritos por millón por estadio del cáncer, supervivencia. Gráficos generados con la plataforma UALCAN.^{83,84}

Discusión

La administración de PRL (125 ng/mL, 2h) modificó el transcriptoma de las líneas celulares de pulmón BEAS-2B y SK-LU-1, donde se destaca una regulación negativa de los genes diferencialmente expresados. Dentro de las vías enriquecidas para ambas líneas celulares se encuentran procesos relacionados a la traducción, componentes ribosomales, reparación del DNA, procesos mitocondriales y metabolismo. Los genes de interés seleccionados (*SSBP1*, *LDHB*, *RPL22L1* para BEAS-2B y *SYNE2*, *KTN1*, *APC* para SK-LU-1) han sido reportados desregulados en adenocarcinoma pulmonar y algunos se correlacionan con una baja supervivencia de pacientes con ADC.

La curva de fosforilación de STAT5a/b presentada en este trabajo podría indicar que la vía JAK/STAT es relevante en los efectos mediados por PRL en las líneas celulares BEAS-2B y SK-LU-1. STAT5a/b pertenece a una de las principales vías de señalización reguladas por PRL y se ha reportado su sobreexpresión de manera frecuente en cáncer.⁸⁵ Los miembros de la familia STAT son importantes en la regulación de la diferenciación celular, proliferación, supervivencia y función inmune, que normalmente se encuentran desreguladas en cáncer y que contribuyen a las alteraciones celulares.⁸⁶

Los análisis de enriquecimiento de vías, en las líneas celulares tratadas con PRL BEAS-2B y SK-LU-1, destacan procesos mitocondriales como la replicación del DNA mitocondrial, la fosforilación oxidativa, matriz mitocondrial, proteínas mitocondriales y reprogramación metabólica en cáncer. De manera interesante, se ha descrito que los señalizadores de la familia STAT son capaces de translocar a la mitocondria donde regulan el metabolismo celular y la expresión génica en mitocondria. Gough y colaboradores⁸⁶ describieron la localización mitocondrial de STAT3 (entre 5 y 10% del STAT total) en las líneas celulares T24, MCF10A y en tejido hepático. El grupo de investigación sugirió que STAT3 mitocondrial contribuye a la transformación celular dependiente de RAS al reprogramar metabólicamente a la célula, aumentando la actividad de la cadena transportadora de electrones, particularmente en los complejos II y IV. Finalmente, sugirieron que la localización mitocondrial de STAT3 podría tener consecuencias metabólicas, en el desarrollo de cáncer y en la respuesta a estrés celular.⁸⁷

Chueh y colaboradores,⁸⁸ demostraron que STAT5 se localizó en mitocondria tras un estímulo con IL-2 mientras que en ensayos de co-precipitación se encontró a STAT5 en complejo con el complejo de la piruvato deshidrogenasa (PDC) La STAT5a mitocondrial actúa como un inhibidor de la actividad de PDC, promoviendo la remodelación metabólica lo cual fomenta el crecimiento tumoral.⁸⁵ En estudios posteriores se describió la unión directa de STAT5a a la región de control transcripcional mitocondrial D-Loop lo cual genera la represión de la expresión del DNA mitocondrial. Los autores sugieren que STAT5a, en conjunto con Lck, podría disminuir los niveles de transcripción y traducción del DNA mitocondrial y promover una reprogramación metabólica. Lo anterior contrasta con lo reportado para STAT3, que, al unirse al DNA mitocondrial, promueve la expresión del mismo y los procesos de respiración celular.⁸⁹ En los resultados de la presente investigación reportamos que en células SK-LU-1 tratadas con PRL (125 ng/mL) se presenta un aumento en la expresión de MT-RNR1. En cultivos primarios de neuronas hipocampales se observó que la PRL evita la disfunción

mitocondrial inducida por glutamato al disminuir los niveles de productos de peroxidación de lípidos. ⁹⁰

Los genes *SSBP1*, *LDHB1* y *RPL22L1*, que disminuyeron sus niveles de transcritos en BEAS-2B tras la administración de PRL, se encuentran sobreexpresados en ADCP tanto a nivel de transcrito como a nivel proteico. A pesar de que no se ha estudiado el papel de estos genes en la fisiología normal de pulmón, se ha destacado su probable influencia en ADCP.

SSBP1 (Single-stranded DNA-bindin protein 1) juega un papel importante en el proceso de reparación del DNA, mantenimiento de la estabilidad genómica, regulación del ciclo celular y protección de los telómeros.⁹¹ Fang y colaboradores⁹² evaluaron las modificaciones del transcriptoma por PRL (100 ng/mL, 2h) en la línea celular de cáncer de mama T47D y observaron que el transcrito de SSBP1 se encontraba disminuído. Por otro lado, Huang y colaboradores⁹³ proponen a SSBP1 como un biomarcador de ADCP ya que encuentran una correlación entre su expresión, la edad del paciente, el estadio del cáncer y la metástasis a nódulos linfáticos. Además, observaron que la alta expresión de SSBP1 se correlaciona con una peor supervivencia en comparación con grupos de expresión media y baja. En concordancia con lo que reportamos en esta investigación, los autores señalan que los genes que se correlacionan positivamente con la expresión de SSBP1 se encuentran involucrados a procesos biológicos como biogénesis de la subunidad larga ribosomal, biogénesis ribosomal, procesos metabólicos de tRNA, procesamiento de tRNA, biogénesis del complejo ribonucleoproteico, proceso biosintético de amidas, proceso celular metabólico de amidas, procesamiento de RNA, desensamblaje de componentes celular y proceso biosintético de compuestos organonitrogenados. La comparación de los mismos genes con las vías en KEGG reveló procesos enriquecidos relacionados a proteasoma, ribosoma, replicación de DNA, fosforilación oxidativa, ciclo celular, transporte de RNA y vías metabólicas. Los genes que se relacionan negativamente con la expresión de SSBP1 se encuentran enriquecidos en procesos como la regulación de la transducción de señales mediada por GTPasas pequeñas, regulación positiva de la actividad de GTPasas, interrelación MEC-receptor, síntesis y secreción de aldosterona, contracción de músculo liso vascular, señalización por calcio, adhesiones focales, vías de señalización por cAMP, proteoglicanos en cáncer y vías en cáncer. SSBP1 también ha sido propuesto como biomarcador en cáncer de próstata.⁹⁴ Lo anterior sugiere que se deben realizar más estudios para determinar sus funciones en cáncer de pulmón y en la fisiología pulmonar normal.

Por otro lado, la enzima lactato deshidrogenasa (LDH) es una enzima tetrámerica, compuesta de subunidades LDHA y LDHB, que cataliza la interconversión entre piruvato y lactato. LDHB tiene una mayor afinidad hacia lactato y se correlaciona con una supervivencia favorable en pacientes con carcinoma hepatocelular, carcinoma urotelial y cáncer de próstata. En un estudio en pacientes con CPCNP no se encontró una asociación entre la expresión de LDHB, los niveles séricos de LDH y el resultado clínico de ADC.⁹⁵ De manera contrastante, también se ha reportado la sobreexpresión de LDHB como predictor de una baja probabilidad de supervivencia en ADC pulmonar.⁹⁶

LDHB se encuentra sobreexpresada en líneas celulares de cáncer de pulmón caracterizadas por la activación de la vía de RAS y es necesaria para el crecimiento de tumores de pulmón

con mutaciones de KRAS en modelos *in vivo*. En modelos *in vitro* e *in vivo* el silenciamiento de LDHB abate la proliferación celular.⁹⁷ Aunado a lo anterior, se ha observado que el silenciamiento de LDHB disminuye la iniciación de tumores, el crecimiento de tumores xenógrafos, la actividad del complejo respiratorio mitocondrial, la fosforilación oxidativa e induce daño persistente al DNA mitocondrial, lo cual resulta en niveles reducidos de metabolitos dependientes de la mitocondria (intermediarios del ciclo tricarboxílico, aminoácidos y nucleótidos). La inhibición de LDHB redujo dramáticamente la supervivencia de células iniciadoras de tumores y la formación de esferas *in vitro* mientras que, la deleción homóloga de LDHB disminuye significativamente la tumorogénesis pulmonar en un modelo con pérdida de TP53 y expresión de KRAS. ⁹⁸

RPL22L1 (Ribosomal Protein L22 Like 1) es un componente de la subunidad 60s ribosomal que ha sido asociado con diferentes tipos de cáncer como neuroblastoma⁹⁹, cáncer renal^{100,101}, cáncer ovárico ^{102,103}, cáncer de próSTATa^{104,105}, carcinoma hepatocelular¹⁰⁶ y cáncer colorectal. ¹⁰⁷ Se ha descrito la regulación a la alta del transcrito de RPL22L1 en tejido renal tumoral y en líneas celulares renales tumorales. (786-O, OSRC). Esta proteína ha sido propuesta como un marcador de riesgo para cáncer renal y como un marcador pronóstico en cáncer de próstata y colorrectal. Por otro lado, en cáncer de ovario, se ha descrito que puede promover la transición epitelio-mesénquima al disminuir la expresión de vimentina y N-caderina y su silenciamiento por el miRNA miR-361-5p inhibe la progresión epitelio-mesenquimal en cáncer epitelial del ovario por la vía de señalización c-Met/Akt/mTOR.¹⁰²

En APC y SYNE2, que se encontraron regulados a la baja en las células SK-LU-1 tratadas con PRL, también se encuentra con una expresión disminuida en ADC pulmonar, mientras que KTN1 presenta una sobreexpresión. El gen *APC* (Adenomatous polyposis coli) se ha descrito como un gen supresor de tumores que participa en ciclo celular, diferenciación, polaridad celular, proliferación, migración, adhesión celular, activación transcripcional y apoptosis al regular la vía Wnt. En el cáncer pulmonar se ha sugerido el uso de la APC como un biomarcador diagnóstico; ^{108,109} sin embargo, Zeybek y colaboradores compararon los niveles de transcripción en tejidos pulmonar no neoplásico y no encontraron diferencias significativas para la expresión de APC.¹⁰⁹ De manera similar, no se encontraron mutaciones en APC en tejidos de CPCNP (n = 32).¹¹⁰ De manera interesante, se ha propuesto el uso de APC2, que se encuentra estrechamente relacionada a APC y que tiene funciones de supresor de tumores similares, como un marcador pronóstico para la supervivencia de pacientes con CPCNP.¹¹¹

En muestras de ADC pulmonar de pacientes no fumadores negativas a EGFR/KRAS/ALK, se describieron mutaciones somáticas no sinónimas en SYNE2 (Spectrin Repeat Containing Nuclear Envelope Protein 2) en el 4% de los casos (3 de 70). SYNE2 juega un papel importante en las adhesiones célula-célula mediadas por cadherina y es un regulador importante de la vía Wnt.¹¹² Las nesprinas (nuclear envelope spectrin repeat containing proteins) son proteínas integrales de la membrana nuclear que participan en el mantenimiento de la integridad de la envoltura nuclear, el posicionamiento nuclear y el anclaje al citoesqueleto y al centrosoma. SYNE2 interactúa con catenina para mediar la adhesión

célula-célula. Los autores proponen que SYNE2, catenina y emerina asociadas en la envoltura nuclear, regulan los niveles de catenina y la transcripción dependiente de la señalización por Wnt.¹¹³

Finalmente, la kinectina (KTN1) interactúa con la kinesina participando en procesos como la motilidad de organelos, adhesiones focales, crecimiento de lamelas celulares, citoesqueleto, morfología celular y migración celular. En cáncer de mama triple negativo, se observó la regulación haciaa la alta de KTN1 en tejidos y en líneas celulares. Esta sobreexpresión se relacionó positivamente con un pronóstico poco favorables en los pacientes y se identificaron mutaciones tanto de ganancia como pérdida de función que promovían el crecimiento y la invasión en modelos in vivo y en vitro.¹¹⁴

Los resultados de este proyecto de investigación sugieren que la PRL podría participar en la fisiología del pulmón, donde podría tener un efecto dual dependiendo del estado de salud o enfermedad. Esto es, en condiciones normales regularía el metabolismo celular normal mientras que en condiciones de cáncer pulmonar participaría como un factor que promueve los procesos carcinogénicos como la reprogramación metabólica y la remodelación del citoesqueleto que es clave para procesos de migración celular.

Dentro de las limitaciones de este proyecto se encuentra un alto contenido de secuencias duplicadas, lo que disminuye la cantidad de lecturas efictivas, de igual manera, al aumentar el número de repeticiones biológicas podría tenerse una mayor significancia estadística. Para la continuación del proyecto es necesaria la validación técnica y funcional de los genes diferencialmente expresados lo que permitirá explicar con mayor precisión los procesos biológicos regulados por PRL en las líneas celulares de pulmón. Además, es fundamental analizar los efectos transcripcionales tardíos para tener una perspectiva más amplia de dichos procesos.

Conclusión

Tras la administración de PRL ovina (125 ng/mL) a las líneas celulares de pulmón BEAS-2B y SK-LU-1 se observó un pico de fosforilación para STAT5a/b evidenciado por *Western blot*. El mismo tratamiento provocó la expresión diferencial de *SSBP1*, *LDHB* y *RPL22L1* en BEAS-2B y *APC*, *KTN1* y *SYNE2* en SK-LU-1, que se encuentran desreguladas a nivel de transcrito y de proteína en ADC pulmonar. Los análisis de enriquecimiento de vías señalan que la PRL podría tener un papel fundamental en el metabolismo celular a través de la modulación directa de la actividad mitocondrial tanto en condiciones fisiológicas normales como en ADC pulmonar.

Perspectivas

Los resultados de esta investigación apuntan a que la prolactina participa en la fisiología pulmonar tanto en condiciones normales como patológicas. Los siguientes pasos de este proyecto de investigación son la validación técnica y funcional de los resultados obtenidos. De manera particular se propone evaluar por RT-qPCR la expresión diferencial de *LDHB*, *SSBP1* y *RPL22L1* en BEAS-2B y de *SYNE2*, *KTN1* y *APC* en SK-LU-1 a 2 horas tras el tratamiento con PRL (125 ng/mL). Además, se sugiere realizar una curva temporal con la misma dosis de oPRL para monitorear el cambio en el tiempo de los niveles de estos transcritos tras la administración de PRL. Finalmente se propone evaluar la translocación de p-STAT5a/b a la mitocondria por inmunofluorescencia y funciones mitocondriales como la capacidad metabólica por MTT.

Referencias

- 1. Cáncer https://www.who.int/es/health-topics/cancer.
- 2. Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discov. *12*, 31–46. 10.1158/2159-8290.CD-21-1059.
- 3. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell *144*, 646–674. 10.1016/j.cell.2011.02.013.
- 4. Trachea, bronchus and lung (C33-34) (2020). The Global Cancer Observatory. https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf.
- Guerrero-López, C.M., Serván-Mori, E., Rodríguez-Franco, R., Montañez-Hernández, J.C., and Gómez-Dantés, H. (2019). Lung cancer in Mexico: findings from the Global Burden of Disease Study, 1990-2016. Salud Publica Mex. *61*, 240–248. 10.21149/9932.
- Arrieta, O., Zatarain-Barrón, Z.L., Aldaco, F., Barrón, F., Báez-Saldaña, R., Campos-Gómez, S., Trejo, R., and De la Garza, J. (2019). Lung Cancer in Mexico. J. Thorac. Oncol. 14, 1695–1700. 10.1016/j.jtho.2019.05.018.
- Rascón-Pacheco, R.A., González-León, M., Arroyave-Loaiza, M.G., and Borja-Aburto, V.H. (2019). Incidence, mortality and associated costs of lung cancer in the Mexican Institute of Social Security. Salud Publica Mex. 61, 257–264. 10.21149/9808.
- Aldaco-Sarvide, F., Pérez-Pérez, P., Cervantes-Sánchez, G., Torrecillas-Torres, L., Erazo-Valle-Solís, A.A., Cabrera-Galeana, P., Motola-Kuba, D., Anaya, P., Rivera-Rivera, S., and Cárdenas-Cárdenas, E. (2019). Mortalidad por Cáncer en México: actualización 2015. Gac. Mex. Oncol. 17. 10.24875/j.gamo.m18000105.
- 9. Arrieta, O., López-Mejía, M., Macedo-Pérez, E.O., and Corona-Cruz, J.F. (2016). Proposals for the prevention of lung cancer in the health system of Mexico. Salud Publica Mex. *58*, 274–278. 10.21149/spm.v58i2.7796.
- 10. Spella, M., and Stathopoulos, G.T. (2021). Immune Resistance in Lung Adenocarcinoma. Cancers *13*. 10.3390/cancers13030384.
- 11. Non-small cell lung cancer treatment (PDQ®)–patient version (2023). National Cancer Institute. https://www.cancer.gov/types/lung/patient/non-small-cell-lung-treatment-pdq.
- 12. Non-small cell lung cancer treatment (PDQ®)-health professional version (2023). National Cancer Institute. https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq.
- Amin, M.B., Greene, F.L., Edge, S.B., Compton, C.C., Gershenwald, J.E., Brookland, R.K., Meyer, L., Gress, D.M., Byrd, D.R., and Winchester, D.P. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 67, 93–99. 10.3322/caac.21388.
- 14. Stapelfeld, C., Dammann, C., and Maser, E. (2020). Sex-specificity in lung cancer risk. Int. J. Cancer *146*, 2376–2382. 10.1002/ijc.32716.
- 15. Hynds, R.E., Frese, K.K., Pearce, D.R., Grönroos, E., Dive, C., and Swanton, C. (2021). Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol. *11*, 200247. 10.1098/rsob.200247.
- 16. Sánchez-Ortega, M., Carrera, A.C., and Garrido, A. (2021). Role of NRF2 in Lung Cancer. Cells *10*. 10.3390/cells10081879.
- 17. Lung stem cells in health, repair and disease (2016).

https://www.eurostemcell.org/lung-stem-cells-health-repair-and-disease.

- 18. Rivera, G.A., and Wakelee, H. (2016). Lung Cancer in Never Smokers. Lung Cancer and Personalized Medicine, 43–57. 10.1007/978-3-319-24223-1_3.
- Atıcı, Ö.K., Govindrajan, N., Lopetegui-González, I., and Shemanko, C.S. (2020). Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Seminars in Cell & Developmental Biology. 10.1016/j.semcdb.2020.10.005.
- 20. Goffin, V. (2017). Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol. Ther. *179*, 111–126. 10.1016/j.pharmthera.2017.05.009.
- Harbaum, L., Pollheimer, M.J., Bauernhofer, T., Kornprat, P., Lindtner, R.A., Schlemmer, A., Rehak, P., and Langner, C. (2010). Clinicopathological significance of prolactin receptor expression in colorectal carcinoma and corresponding metastases. Mod. Pathol. 23, 961–971. 10.1038/modpathol.2010.83.
- 22. Neradugomma, N.K., Subramaniam, D., Tawfik, O.W., Goffin, V., Kumar, T.R., Jensen, R.A., and Anant, S. (2014). Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis *35*, 795–806. 10.1093/carcin/bgt379.
- Kong, X., Wu, W., Yuan, Y., Pandey, V., Wu, Z., Lu, X., Zhang, W., Chen, Y., Wu, M., Zhang, M., et al. (2016). Human growth hormone and human prolactin function as autocrine/paracrine promoters of progression of hepatocellular carcinoma. Oncotarget 7, 29465–29479. 10.18632/oncotarget.8781.
- 24. Rico-Luna, A. (2021). Papel de la prolactina y su receptor en la viabilidad de las líneas celulares de pulmón A549, SK-LU-1 y BEAS-2B.
- 25. Bernard, V., Young, J., Chanson, P., and Binart, N. (2015). New insights in prolactin: pathological implications. Nat. Rev. Endocrinol. *11*, 265–275. 10.1038/nrendo.2015.36.
- 26. Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G. (2000). Prolactin: structure, function, and regulation of secretion. Physiol. Rev. *80*, 1523–1631. 10.1152/physrev.2000.80.4.1523.
- 27. Gillam, M.P., and Molitch, M.E. (2011). Prolactin. In The pituitary (Elsevier), pp. 119–166.
- 28. Ben-Jonathan, N., and Hugo, E. (2015). Prolactin (PRL) in adipose tissue: regulation and functions. Adv. Exp. Med. Biol. 846, 1–35. 10.1007/978-3-319-12114-7_1.
- 29. Corbacho, A.M., Martínez De La Escalera, G., and Clapp, C. (2002). Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J. Endocrinol. *173*, 219–238. 10.1677/joe.0.1730219.
- 30. Teilum, K., Hoch, J.C., Goffin, V., Kinet, S., Martial, J.A., and Kragelund, B.B. (2005). Solution structure of human prolactin. J. Mol. Biol. *351*, 810–823. 10.1016/j.jmb.2005.06.042.
- van Agthoven, J., Zhang, C., Tallet, E., Raynal, B., Hoos, S., Baron, B., England, P., Goffin, V., and Broutin, I. (2010). Structural Characterization of the Stem–Stem Dimerization Interface between Prolactin Receptor Chains Complexed with the Natural Hormone. J. Mol. Biol. 404, 112–126. 10.1016/j.jmb.2010.09.036.
- 32. Harvey, S., Martínez-Moreno, C.G., Luna, M., and Arámburo, C. (2015). Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview. Gen. Comp. Endocrinol. *220*, 103–111. 10.1016/j.ygcen.2014.11.004.
- Goodman, H.M. (2009). Chapter 14 Hormonal Control of Pregnancy and Lactation. In Basic Medical Endocrinology (Fourth Edition), H. M. Goodman, ed. (Academic Press), pp. 277–301. 10.1016/B978-0-12-373975-9.00014-8.

- 34. Murray, J.F., and Le Tissier, P.R. (2020). Chapter 9 Anterior Pituitary: Somatotrophs (GH) and Lactotrophs (PRL). In Hormonal Signaling in Biology and Medicine, G. Litwack, ed. (Academic Press), pp. 171–201. 10.1016/B978-0-12-813814-4.00009-2.
- 35. Bernard, V., Young, J., and Binart, N. (2019). Prolactin a pleiotropic factor in health and disease. Nat. Rev. Endocrinol. *15*, 356–365. 10.1038/s41574-019-0194-6.
- 36. Clevenger, C.V., Furth, P.A., Hankinson, S.E., and Schuler, L.A. (2003). The role of prolactin in mammary carcinoma. Endocr. Rev. 24, 1–27. 10.1210/er.2001-0036.
- Bugge, K., Papaleo, E., Haxholm, G.W., Hopper, J.T.S., Robinson, C.V., Olsen, J.G., Lindorff-Larsen, K., and Kragelund, B.B. (2016). A combined computational and structural model of the full-length human prolactin receptor. Nat. Commun. 7, 11578. 10.1038/ncomms11578.
- 38. Clevenger, C.V., Gadd, S.L., and Zheng, J. (2009). New mechanisms for PRLr action in breast cancer. Trends Endocrinol. Metab. *20*, 223–229. 10.1016/j.tem.2009.03.001.
- Gadd, S.L., and Clevenger, C.V. (2006). Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol. Endocrinol. 20, 2734–2746. 10.1210/me.2006-0114.
- Abramicheva, P.A., and Smirnova, O.V. (2019). Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. Biochemistry 84, 329–345. 10.1134/S0006297919040011.
- 41. Radhakrishnan, A., Raju, R., Tuladhar, N., Subbannayya, T., Thomas, J.K., Goel, R., Telikicherla, D., Palapetta, S.M., Rahiman, B.A., Venkatesh, D.D., et al. (2012). A pathway map of prolactin signaling. J. Cell Commun. Signal. *6*, 169–173. 10.1007/s12079-012-0168-0.
- 42. Leehy, K.A., Truong, T.H., Mauro, L.J., and Lange, C.A. (2018). Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J. Steroid Biochem. Mol. Biol. *176*, 88–93. 10.1016/j.jsbmb.2017.04.011.
- 43. Marano, R.J., and Ben-Jonathan, N. (2014). Minireview: Extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol. Endocrinol. *28*, 622–633. 10.1210/me.2013-1349.
- 44. Fang, R., Zhu, Y., Khadka, V.S., Zhang, F., Jiang, B., and Deng, Y. (2018). The Evaluation of Serum Biomarkers for Non-small Cell Lung Cancer (NSCLC) Diagnosis. Front. Physiol. *9*, 1710. 10.3389/fphys.2018.01710.
- 45. Levina, V.V., Nolen, B., Su, Y., Godwin, A.K., Fishman, D., Liu, J., Mor, G., Maxwell, L.G., Herberman, R.B., Szczepanski, M.J., et al. (2009). Biological significance of prolactin in gynecologic cancers. Cancer Res. *69*, 5226–5233. 10.1158/0008-5472.CAN-08-4652.
- Rider, L., and Diakonova, M. (2011). Adapter protein SH2B1beta binds filamin A to regulate prolactin-dependent cytoskeletal reorganization and cell motility. Mol. Endocrinol. 25, 1231–1243. 10.1210/me.2011-0056.
- 47. Asad, A.S., Nicola Candia, A.J., Gonzalez, N., Zuccato, C.F., Abt, A., Orrillo, S.J., Lastra, Y., De Simone, E., Boutillon, F., Goffin, V., et al. (2019). Prolactin and its receptor as therapeutic targets in glioblastoma multiforme. Sci. Rep. *9*, 19578. 10.1038/s41598-019-55860-x.
- 48. Clapp, C., Thebault, S., Macotela, Y., Moreno-Carranza, B., Triebel, J., and Martínez de la Escalera, G. (2015). Regulation of blood vessels by prolactin and vasoinhibins. Adv. Exp. Med. Biol. *846*, 83–95. 10.1007/978-3-319-12114-7_4.
- 49. Abdelbaset-Ismail, A., Pedziwiatr, D., Schneider, G., Niklinski, J., Charkiewicz, R., Moniuszko,

M., Kucia, M., and Ratajczak, M.Z. (2017). Pituitary sex hormones enhance the pro-metastatic potential of human lung cancer cells by downregulating the intracellular expression of heme oxygenase-1. Int. J. Oncol. *50*, 317–328. 10.3892/ijo.2016.3787.

- 50. da Silva, P.L., do Amaral, V.C., Gabrielli, V., Montt Guevara, M.M., Mannella, P., Baracat, E.C., Soares, J.M., Jr, and Simoncini, T. (2015). Prolactin Promotes Breast Cancer Cell Migration through Actin Cytoskeleton Remodeling. Front. Endocrinol. *6*, 186. 10.3389/fendo.2015.00186.
- 51. Harrington, K.M., and Clevenger, C.V. (2016). Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J. Biol. Chem. *291*, 21388–21406. 10.1074/jbc.M116.726190.
- Carreño, P.C., Sacedón, R., Jiménez, E., Vicente, A., and Zapata, A.G. (2005). Prolactin affects both survival and differentiation of T-cell progenitors. J. Neuroimmunol. *160*, 135–145. 10.1016/j.jneuroim.2004.11.008.
- Savino, W., Mendes-da-Cruz, D.A., Lepletier, A., and Dardenne, M. (2016). Hormonal control of T-cell development in health and disease. Nat. Rev. Endocrinol. 12, 77–89. 10.1038/nrendo.2015.168.
- 54. Savino, W. (2017). Prolactin: An Immunomodulator in Health and Disease. Front. Horm. Res. 48, 69–75. 10.1159/000452906.
- 55. Rooney, S.A. (1984). Lung surfactant. Environ. Health Perspect. *55*, 205–226. 10.1289/ehp.8455205.
- 56. Archer, D.F. (1980). Physiology of prolactin. Clin. Obstet. Gynecol. 23, 325–335. 10.1097/00003081-198006000-00005.
- Han, S., and Mallampalli, R.K. (2015). The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann. Am. Thorac. Soc. 12, 765–774. 10.1513/AnnalsATS.201411-507FR.
- Orgeig, S., Morrison, J.L., Sullivan, L.C., and Daniels, C.B. (2014). The development of the pulmonary surfactant system. In The Lung (Elsevier), pp. 183–209. 10.1016/b978-0-12-799941-8.00009-2.
- 59. Handwerger, S., and Freemark, M. (1987). Role of placental lactogen and prolactin in human pregnancy. Adv. Exp. Med. Biol. *219*, 399–420. 10.1007/978-1-4684-5395-9_19.
- Hennighausen, L., and Lee, H.K. (2020). Activation of the SARS-CoV-2 Receptor Ace2 through JAK/STAT-Dependent Enhancers during Pregnancy. Cell Rep. 32, 108199. 10.1016/j.celrep.2020.108199.
- 61. Gabriel, Q.B. (2021). Expresión de prolactina en modelos experimentales y en neoplasias malignas, de origen pulmonar.
- 62. Nolen, B.M., Langmead, C.J., Choi, S., Lomakin, A., Marrangoni, A., Bigbee, W.L., Weissfeld, J.L., Wilson, D.O., Dacic, S., Siegfried, J.M., et al. (2011). Serum biomarker profiles as diagnostic tools in lung cancer. Cancer Biomark. *10*, 3–12. 10.3233/CBM-2012-0229.
- 63. Bigbee, W.L., Gopalakrishnan, V., Weissfeld, J.L., Wilson, D.O., Dacic, S., Lokshin, A.E., and Siegfried, J.M. (2012). A multiplexed serum biomarker immunoassay panel discriminates clinical lung cancer patients from high-risk individuals found to be cancer-free by CT screening. J. Thorac. Oncol. *7*, 698–708. 10.1097/JTO.0b013e31824ab6b0.
- 64. Seder, C.W., Arndt, A.T., Jordano, L., Basu, S., Fhied, C.L., Sayidine, S., Chmielewski, G.W., Gallo, K., Liptay, M.J., and Borgia, J.A. (2017). Serum Biomarkers May Prognosticate Recurrence in Node-Negative, Non-Small Cell Lung Cancers Less Than 4 Centimeters. Ann.

Thorac. Surg. 104, 1637–1643. 10.1016/j.athoracsur.2017.06.036.

- 65. Caponnetto, S., Iannantuono, G.M., Barchiesi, G., Magri, V., Gelibter, A., and Cortesi, E. (2017). Prolactin as a Potential Early Predictive Factor in Metastatic Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Oncology *93*, 62–66. 10.1159/000464328.
- Chou, J.-C., Lieu, F.-K., Ho, D.M.-T., Shen, H.-Y., Lin, P.-H., Hu, S., Wang, S.-W., Lin, H., and Wang, P.S. (2021). Regulation of extracellular and intracellular prolactin on cell proliferation and survival rate through GHR/JAK2/STAT3 pathway in NSCLC. Chemosphere 264, 128604. 10.1016/j.chemosphere.2020.128604.
- 67. Le Bescont, A., Vitte, A.-L., Debernardi, A., Curtet, S., Buchou, T., Vayr, J., de Reyniès, A., Ito, A., Guardiola, P., Brambilla, C., et al. (2015). Receptor-Independent Ectopic Activity of Prolactin Predicts Aggressive Lung Tumors and Indicates HDACi-Based Therapeutic Strategies. Antioxid. Redox Signal. *23*, 1–14. 10.1089/ars.2013.5581.
- 68. The Cancer Genome Atlas Program (TCGA) (2022). ccg National Cancer Institute. https://www.cancer.gov/ccg/research/genome-sequencing/tcga.
- Holloran, S.M., Nosirov, B., Walter, K.R., Trinca, G.M., Lai, Z., Jin, V.X., and Hagan, C.R. (2020). Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells. Mol. Cell. Endocrinol. *511*, 110859. 10.1016/j.mce.2020.110859.
- Hakim, S., Craig, J.M., Koblinski, J.E., and Clevenger, C.V. (2020). Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 23, 101581. 10.1016/j.isci.2020.101581.
- Otálora-Otálora, B.A., Florez, M., López-Kleine, L., Canas Arboleda, A., Grajales Urrego, D.M., and Rojas, A. (2019). Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front. Genet. 10, 1260. 10.3389/fgene.2019.01260.
- 72. Website Andrews, S. (n.d.). FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- 73. Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics *32*, 3047–3048. 10.1093/bioinformatics/btw354.
- 74. Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods *12*, 357–360. 10.1038/nmeth.3317.
- 75. Wang, L., Wang, S., and Li, W. (2012). RSeQC: quality control of RNA-seq experiments. Bioinformatics *28*, 2184–2185. 10.1093/bioinformatics/bts356.
- Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics *30*, 923–930. 10.1093/bioinformatics/btt656.
- 77. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. *15*, 550. 10.1186/s13059-014-0550-8.
- Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128. 10.1186/1471-2105-14-128.
- Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–7. 10.1093/nar/gkw377.

- Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jenkins, S.L., Lachmann, A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., et al. (2021). Gene Set Knowledge Discovery with Enrichr. Curr Protoc *1*, e90. 10.1002/cpz1.90.
- Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. *102*, 15545–15550. 10.1073/pnas.0506580102.
- Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. *34*, 267–273. 10.1038/ng1180.
- 83. Chandrashekar, D.S., Karthikeyan, S.K., Korla, P.K., Patel, H., Shovon, A.R., Athar, M., Netto, G.J., Qin, Z.S., Kumar, S., Manne, U., et al. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia *25*, 18–27. 10.1016/j.neo.2022.01.001.
- Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B.V.S.K., and Varambally, S. (2017). UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 19, 649–658. 10.1016/j.neo.2017.05.002.
- Zhang, L., Zhang, J., Liu, Y., Zhang, P., Nie, J., Zhao, R., Shi, Q., Sun, H., Jiao, D., Chen, Y., et al. (2021). Mitochondrial STAT5A promotes metabolic remodeling and the Warburg effect by inactivating the pyruvate dehydrogenase complex. Cell Death Dis. *12*, 634. 10.1038/s41419-021-03908-0.
- Gough, D.J., Corlett, A., Schlessinger, K., Wegrzyn, J., Larner, A.C., and Levy, D.E. (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716. 10.1126/science.1171721.
- 87. Meier, J.A., and Larner, A.C. (2014). Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. *26*, 20–28. 10.1016/j.smim.2013.12.005.
- 88. Chueh, F.-Y., Leong, K.-F., and Yu, C.-L. (2010). Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem. Biophys. Res. Commun. *402*, 778–783. 10.1016/j.bbrc.2010.10.112.
- Chueh, F.-Y., Chang, Y.-L., Wu, S.-Y., and Yu, C.-L. (2020). Signal transducer and activator of transcription 5a (STAT5a) represses mitochondrial gene expression through direct binding to mitochondrial DNA. Biochem. Biophys. Res. Commun. *527*, 974–978. 10.1016/j.bbrc.2020.04.152.
- Rivero-Segura, N.A., Coronado-Mares, M.I., Rincón-Heredia, R., Pérez-Torres, I., Montiel, T., Pavón, N., Cabrera-Reyes, E.A., Massieu, L., and Cerbón, M. (2019). Prolactin prevents mitochondrial dysfunction induced by glutamate excitotoxicity in hippocampal neurons. Neurosci. Lett. 701, 58–64. 10.1016/j.neulet.2019.02.027.
- Richard, D.J., Bolderson, E., Cubeddu, L., Wadsworth, R.I.M., Savage, K., Sharma, G.G., Nicolette, M.L., Tsvetanov, S., McIlwraith, M.J., Pandita, R.K., et al. (2008). Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453, 677–681. 10.1038/nature06883.
- Fang, F., Zheng, J., Galbaugh, T.L., Fiorillo, A.A., Hjort, E.E., Zeng, X., and Clevenger, C.V. (2010). Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells. J. Mol. Endocrinol. 44, 319–329. 10.1677/JME-09-0140.
- 93. Huang, J., and Xie, Z.-F. (2022). Identification of SSBP1 as a prognostic marker in human lung

adenocarcinoma using bioinformatics approaches. Math. Biosci. Eng. 19, 3022–3035. 10.3934/mbe.2022139.

- Acosta, N., Varela, R., Mesa, J.A., López, M.L.S., Cómbita, A.L., and Sanabria-Salas, M.C. (2017). Biomarcadores de pronóstico en pacientes con cáncer de próstata localizado. Revista Colombiana de Cancerología 21, 113–125. 10.1016/j.rccan.2016.07.004.
- 95. Koh, Y.W., Lee, S.J., and Park, S.Y. (2017). Prognostic significance of lactate dehydrogenase B according to histologic type of non-small-cell lung cancer and its association with serum lactate dehydrogenase. Pathol. Res. Pract. *213*, 1134–1138. 10.1016/j.prp.2017.07.006.
- 96. Urbańska, K., and Orzechowski, A. (2019). Unappreciated Role of LDHA and LDHB to Control Apoptosis and Autophagy in Tumor Cells. Int. J. Mol. Sci. 20. 10.3390/ijms20092085.
- McCleland, M.L., Adler, A.S., Deming, L., Cosino, E., Lee, L., Blackwood, E.M., Solon, M., Tao, J., Li, L., Shames, D., et al. (2013). Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin. Cancer Res. 19, 773–784. 10.1158/1078-0432.CCR-12-2638.
- Deng, H., Gao, Y., Trappetti, V., Hertig, D., Karatkevich, D., Losmanova, T., Urzi, C., Ge, H., Geest, G.A., Bruggmann, R., et al. (2022). Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage. Cellular and Molecular Life Sciences 79. 10.1007/s00018-022-04453-5.
- 99. Bell, J.L., Hagemann, S., Holien, J.K., Liu, T., Nagy, Z., Schulte, J.H., Misiak, D., and Hüttelmaier, S. (2020). Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. Int. J. Mol. Sci. *21*. 10.3390/ijms21145098.
- 100. Xiang, Y., Zhou, S., Hao, J., Zhong, C., Ma, Q., Sun, Z., and Wei, C. (2020). Development and validation of a prognostic model for kidney renal clear cell carcinoma based on RNA binding protein expression. Aging *12*, 25356–25372. 10.18632/aging.104137.
- 101. Chen, Q., Li, Z.-L., Fu, S.-Q., Wang, S.-Y., Liu, Y.-T., Ma, M., Yang, X.-R., Xie, W.-J., Gong, B.-B., and Sun, T. (2021). Development of prognostic signature based on RNA binding proteins related genes analysis in clear cell renal cell carcinoma. Aging *13*, 3926–3944. 10.18632/aging.202360.
- 102. Ma, J., Jing, X., Chen, Z., Duan, Z., and Zhang, Y. (2018). MiR-361-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting at RPL22L1 and c-Met signaling. Int. J. Clin. Exp. Pathol. 11, 2588–2596.
- 103. Wu, N., Wei, J., Wang, Y., Yan, J., Qin, Y., Tong, D., Pang, B., Sun, D., Sun, H., Yu, Y., et al. (2015). Ribosomal L22-like1 (RPL22L1) Promotes Ovarian Cancer Metastasis by Inducing Epithelial-to-Mesenchymal Transition. PLoS One *10*, e0143659. 10.1371/journal.pone.0143659.
- 104. Fan, S., Liang, Z., Gao, Z., Pan, Z., Han, S., Liu, X., Zhao, C., Yang, W., Pan, Z., and Feng, W. (2018). Identification of the key genes and pathways in prostate cancer. Oncology Letters. 10.3892/ol.2018.9491.
- 105. Liang, Z., Mou, Q., Pan, Z., Zhang, Q., Gao, G., Cao, Y., Gao, Z., Pan, Z., and Feng, W. (2019). Identification of candidate diagnostic and prognostic biomarkers for human prostate cancer: RPL22L1 and RPS21. Med. Oncol. 36, 56. 10.1007/s12032-019-1283-z.
- 106. Zhang, D., Zhou, Y., Ma, Y., Jiang, P., Lv, H., Liu, S., Mu, Y., Zhou, C., Xiao, S., Ji, G., et al. (2022). Ribosomal protein L22-like1 (RPL22L1) mediates sorafenib sensitivity via ERK in hepatocellular carcinoma. Cell Death Discov 8, 365. 10.1038/s41420-022-01153-8.
- 107. Rao, S., Peri, S., Hoffmann, J., Cai, K.Q., Harris, B., Rhodes, M., Connolly, D.C., Testa, J.R.,

and Wiest, D.L. (2019). RPL22L1 induction in colorectal cancer is associated with poor prognosis and 5-FU resistance. PLoS One *14*, e0222392. 10.1371/journal.pone.0222392.

- 108. Liu, F., Lu, X., Zhou, X., and Huang, H. (2021). APC gene promoter methylation as a potential biomarker for lung cancer diagnosis: A meta-analysis. Thorac. Cancer 12, 2907–2913. 10.1111/1759-7714.14151.
- 109. Zeybek, A., Öz, N., Kalemci, S., Tosun, K., Edgünlü, T.G., Kızıltuğ, M.T., Tekin, L., and Erdal, M.E. (2022). The role of Wnt pathway antagonists in early-stage lung adenocarcinoma. Mol. Biol. Rep. 49, 9–17. 10.1007/s11033-021-06759-2.
- 110. Mazieres, J., He, B., You, L., Xu, Z., and Jablons, D.M. (2005). Wnt signaling in lung cancer. Cancer Lett. 222, 1–10. 10.1016/j.canlet.2004.08.040.
- 111. Dong, Y., Wu, B., Wang, X., Lu, F., Li, Q., and Zhao, Q. (2022). High miR-3648 expression and low APC2 expression are associated with shorter survival and tumor progression in NSCLC. Histol. Histopathol. 37, 355–364. 10.14670/HH-18-411.
- 112. Ahn, J., Kim, H., Yoon, J.-K., Jang, H., Han, S., Eun, S., Shim, H., Kim, H.-J., Kim, D., Lee, J., et al. (2014). Identification of somatic mutations in EGFR/KRAS/ALK-negative lung adenocarcinoma in never-smokers. Genome Medicine *6*, 18. 10.1186/gm535.
- 113. Neumann, S., Schneider, M., Daugherty, R.L., Gottardi, C.J., Eming, S.A., Beijer, A., Noegel, A.A., and Karakesisoglou, I. (2010). Nesprin-2 interacts with {alpha}-catenin and regulates Wnt signaling at the nuclear envelope. J. Biol. Chem. 285, 34932–34938. 10.1074/jbc.M110.119651.
- 114. Gao, L., Chen, S., Hong, M., Zhou, W., Wang, B., Qiu, J., Xia, J., Zhao, P., Fu, L., Wang, J., et al. (2021). Kinectin 1 promotes the growth of triple-negative breast cancer via directly co-activating NF-kappaB/p65 and enhancing its transcriptional activity. Signal Transduct Target Ther 6, 250. 10.1038/s41392-021-00652-x.

Anexos

c2.all.v2022.1.H	s.symbo	ls.gmt						
					RANK	LE	ADING E	DGE
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)
DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN	449	-0.35	-8.36	0.00	9855	73	39	118
GABRIELY_MIR21_TARGETS	272	-0.37	-7.11	0.00	11464	82	46	149
DAZARD_RESPONSE_TO_UV_NHEK_DN	292	-0.31	-6.26	0.00	10556	73	42	124
DAZARD_UV_RESPONSE_CLUSTER_G6	141	-0.35	-4.90	0.00	10170	75	40	125
SENESE_HDAC3_TARGETS_UP	447	-0.19	-4.63	0.00	11016	62	44	109
PYEON_CANCER_HEAD_AND_NECK_VS_CERVICAL_UP	188	-0.29	-4.57	0.00	3968	44	16	52
SHEN_SMARCA2_TARGETS_UP	422	-0.18	-4.44	0.00	12497	68	50	132
MARTORIATI_MDM4_TARGETS_FETAL_LIVER_DN	469	-0.17	-4.22	0.00	12355	66	49	126
DACOSTA_UV_RESPONSE_VIA_ERCC3_TTD_DN	78	-0.40	-4.15	0.00	10005	79	40	131
CHEN_HOXA5_TARGETS_9HR_UP	216	-0.25	-4.14	0.00	12540	74	50	146
MOOTHA_HUMAN_MITODB_6_2002	411	0.25	5.84	0.00	14205	81	56	183
REACTOME_EUKARYOTIC_TRANSLATION_INITIATION	117	0.46	5.96	0.00	9047	82	36	127
WP_CYTOPLASMIC_RIBOSOMAL_PROTEINS	86	0.55	5.96	0.00	7329	84	29	118
REACTOME_RESPONSE_OF_EIF2AK4_GCN2_TO_AMINO_ACID_DEI	99	0.52	6.01	0.00	7329	81	29	114

Tabla A1. Enriquecimiento de vías en SK-LU-1 por GSEA.NOM p-val < 0.05; FDR q-val < 0.05</th>

c2.all.v2022.1.H	s.symbo	ls.gmt						
				EW/ER	RANK	LE/	ADING E	DGE
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARG ETING_TO_MEMBRANE	110	0.50	6.10	0.00	8340	83	33	123
MOOTHA_MITOCHONDRIA	429	0.26	6.27	0.00	14900	85	59	204
KEGG_RIBOSOME	85	0.59	6.33	0.00	7329	88	29	124
HSIAO_HOUSEKEEPING_GENES	382	0.28	6.39	0.00	10873	71	43	123
REACTOME_EUKARYOTIC_TRANSLATION_ELONGATION	90	0.58	6.45	0.00	7329	87	29	122
REACTOME_TRANSLATION	288	0.34	6.62	0.00	10470	75	42	127
c3.all.v2022.1.H	s.symbc	ols.gmt						
MIR186_5P	486	-0.25	-6.42	0.00	12081	73	48	137
MIR10527_5P	489	-0.25	-6.32	0.00	12059	72	48	136
MIR4666A_3P	481	-0.25	-6.13	0.00	10541	66	42	111
MIR181A_5P_MIR181B_5P	495	-0.24	-6.12	0.00	9930	63	39	101
MIR181C_5P	496	-0.24	-6.08	0.00	9930	63	39	101
MIR181D_5P	494	-0.24	-6.07	0.00	9930	63	39	102
MIR101_3P	401	-0.25	-5.91	0.00	10771	68	43	116
MIR32_5P	406	-0.26	-5.89	0.00	12421	75	49	145

c3.all.v2022.1.H	s.symbo	ls.gmt						
					RANK	LE/	ADING E	DGE
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)
MIR92B_3P	403	-0.25	-5.81	0.00	12421	74	49	144
MIR92A_3P	406	-0.25	-5.81	0.00	12421	74	49	144
PITX1_TARGET_GENES	337	0.14	2.92	0.01	15159	74	60	182
KLF14_TARGET_GENES	239	0.16	2.96	0.01	17919	87	71	299
ZNF250_TARGET_GENES	489	0.12	3.11	0.00	16132	76	64	206
MIR4492	369	0.14	3.14	0.00	16797	80	67	238
NCOA2_TARGET_GENES	441	0.13	3.35	0.00	17723	83	70	277
ALKBH3_TARGET_GENES	414	0.15	3.41	0.00	14841	73	59	176
ACTAYRNNNCCCR_UNKNOWN	441	0.14	3.46	0.00	16917	81	67	243
FOXR2_TARGET_GENES	224	0.20	3.46	0.00	14708	78	58	186
GTF2A2_TARGET_GENES	469	0.15	3.77	0.00	16166	79	64	216
ZNF260_TARGET_GENES	468	0.15	3.82	0.00	16611	81	66	232
c4.all.v2022.1.H	ls.symbc	ols.gmt						
GCM_ZNF198	115	-0.28	-3.51	0.00	13224	80	52	168
GCM_RAB10	174	-0.21	-3.28	0.00	16108	85	64	234
GCM_MYST2	172	-0.21	-3.24	0.00	12539	71	50	140
GCM_UBE2N	151	-0.21	-2.93	0.00	12539	70	50	139

c4.all.v2022.1.H	ls.symbo	ols.gmt						
				EWER	RANK	LE/	ADING E	DGE
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)
GCM_DFFA	129	-0.21	-2.84	0.01	12089	69	48	132
MODULE_277	52	-0.33	-2.83	0.01	11057	77	44	137
GCM_ERBB2IP	65	-0.30	-2.80	0.01	15987	94	63	256
MODULE_182	90	-0.24	-2.73	0.01	16009	88	64	240
GCM_NCAM1	116	-0.21	-2.72	0.01	14403	78	57	182
GCM_MAP4K4	163	-0.18	-2.67	0.02	12338	67	49	130
MORF_CSNK2B	286	0.28	5.60	0.00	13598	82	54	176
MORF_TPT1	101	0.48	5.61	0.00	9184	84	36	132
MORF_AP2M1	215	0.34	5.76	0.00	14170	90	56	203
MORF_ACTG1	137	0.44	5.93	0.00	10852	87	43	152
MORF_RAN	264	0.32	5.98	0.00	10902	75	43	131
MORF_NPM1	161	0.41	6.20	0.00	10902	84	43	148
MORF_NME2	152	0.46	6.66	0.00	10319	87	41	146
MODULE_83	310	0.34	6.96	0.00	10462	75	42	126
MODULE_114	325	0.35	7.30	0.00	10467	76	42	129
MODULE_151	304	0.36	7.36	0.00	10467	77	42	131

c5.all.v2022.1.H	ls.symbc	ols.gmt						
				EW/EB	RANK	LE/	ADING E	DGE
ΝΑΜΕ	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)
GOBP_CELL_MORPHOGENESIS_INVOLVED_IN_NEURON_DIFFERENTIATION	443	-0.14	-3.47	0.00	17639	84	70	275
HP_ABNORMALITY_OF_UPPER_LIP_VERMILLION	336	-0.16	-3.41	0.00	16669	82	66	240
GOMF_ATP_DEPENDENT_ACTIVITY	491	-0.13	-3.24	0.00	3847	28	15	32
HP_DOWNSLANTED_PALPEBRAL_FISSURES	435	-0.13	-3.16	0.00	19321	89	77	377
HP_CONGENITAL_MALFORMATION_OF_THE_GREAT_ARTERIES	398	-0.13	-3.12	0.00	16862	80	67	239
HP_BRACHYDACTYLY	299	-0.15	-3.11	0.00	3554	29	14	33
GOBP_AXON_DEVELOPMENT	375	-0.14	-3.11	0.00	17639	83	70	274
GOBP_REGULATION_OF_MRNA_PROCESSING	125	-0.24	-3.11	0.00	15672	86	62	225
HP_ABNORMAL_SIZE_OF_THE_PALPEBRAL_FISSURES	286	-0.16	-3.11	0.00	12546	65	50	129
GOBP_AEROBIC_RESPIRATION	182	0.32	5.07	0.00	13209	85	52	177
GOBP_OXIDATIVE_PHOSPHORYLATION	137	0.38	5.10	0.00	13916	93	55	206
GOCC_CYTOSOLIC_LARGE_RIBOSOMAL_SUBUNIT	58	0.60	5.34	0.00	8746	95	35	145
GOCC_LARGE_RIBOSOMAL_SUBUNIT	113	0.48	5.75	0.00	8746	82	35	126
GOCC_MITOCHONDRIAL_MATRIX	457	0.26	6.17	0.00	14352	82	57	187
GOCC_CYTOSOLIC_RIBOSOME	100	0.53	6.21	0.00	9047	89	36	138
GOCC_RIBOSOME	211	0.38	6.38	0.00	10342	79	41	132

				FW/FR	RANK	LEADING EDGE			
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)	
GOMF_STRUCTURAL_CONSTITUENT_OF_RIBOSOME	162	0.48	6.96	0.00	9047	83	36	129	
GOCC_RIBOSOMAL_SUBUNIT	183	0.45	7.24	0.00	10470	86	42	147	
c6.all.v2022.1.Hs.symbols.gmt									
TBK1.DF_DN	279	-0.24	-4.60	0.00	3518	37	14	43	
PGF_UP.V1_UP	169	-0.29	-4.39	0.00	3400	42	13	48	
EIF4E_DN	95	-0.32	-3.65	0.00	3982	47	16	56	
ERBB2_UP.V1_DN	181	-0.24	-3.65	0.00	4463	41	18	50	
JAK2_DN.V1_DN	123	-0.25	-3.22	0.00	11356	70	45	127	
CSR_EARLY_UP.V1_UP	145	-0.21	-2.82	0.00	17750	91	70	306	
BCAT_BILD_ET_AL_DN	43	-0.32	-2.42	0.02	4364	49	17	59	
STK33_SKM_UP	232	-0.13	-2.35	0.04	3542	27	14	31	
VEGF_A_UP.V1_DN	173	-0.15	-2.23	0.11	19088	90	76	370	
E2F1_UP.V1_UP	179	-0.14	-2.18	0.14	19719	92	78	421	
AKT_UP_MTOR_DN.V1_UP	154	0.15	2.17	0.14	14345	71	57	165	
TBK1.DN.48HRS_DN	47	0.27	2.24	0.09	13474	81	53	174	
RB_P107_DN.V1_DN	117	0.18	2.30	0.06	16827	85	67	254	
ERBB2_UP.V1_UP	162	0.15	2.31	0.06	14203	72	56	163	
CAMP_UP.V1_UP	191	0.15	2.44	0.02	16338	80	65	226	

					RANK	LEADING EDGE			
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)	
CSR_LATE_UP.V1_UP	147	0.18	2.49	0.01	17761	88	71	298	
CYCLIN_D1_UP.V1_UP	149	0.18	2.55	0.01	15935	81	63	220	
RB_P130_DN.V1_UP	104	0.23	2.87	0.00	14980	83	59	203	
EIF4E_UP	88	0.31	3.27	0.00	13521	84	54	181	
c8.all.v2022.1.H	s.symbc	ols.gmt							
LAKE_ADULT_KIDNEY_C2_PODOCYTES	177	-0.31	-4.78	0.00	3685	46	15	53	
LAKE_ADULT_KIDNEY_C4_PROXIMAL_TUBULE_EPITHELIAL_CELLS_ S2	143	-0.30	-4.19	0.00	9938	69	39	114	
LAKE_ADULT_KIDNEY_C22_ENDOTHELIAL_CELLS_GLOMERULAR_C APILLARIES	119	-0.32	-4.17	0.00	11365	77	45	140	
LAKE_ADULT_KIDNEY_C11_THIN_ASCENDING_LIMB	151	-0.29	-4.16	0.00	4517	47	18	57	
LAKE_ADULT_KIDNEY_C14_DISTAL_CONVOLUTED_TUBULE	177	-0.26	-4.14	0.00	9938	66	39	107	
LAKE_ADULT_KIDNEY_C17_COLLECTING_SYSTEM_PCS_STRESSED_ DISSOC_SUBSET	224	-0.24	-4.10	0.00	4538	42	18	50	
LAKE_ADULT_KIDNEY_C20_COLLECTING_DUCT_INTERCALATED_CE LLS_TYPE_A_CORTEX	126	-0.31	-4.05	0.00	9932	71	39	116	
LAKE_ADULT_KIDNEY_C27_VASCULAR_SMOOTH_MUSCLE_CELLS_ AND_PERICYTES	133	-0.29	-3.94	0.00	10641	71	42	123	
LAKE_ADULT_KIDNEY_C26_MESANGIAL_CELLS	159	-0.27	-3.89	0.00	3814	42	15	49	

				FWFR	RANK				
NAME	SIZE	ES	NES	p-val	AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)	
LAKE_ADULT_KIDNEY_C28_INTERSTITIUM	79	-0.36	-3.81	0.00	3978	52	16	61	
RUBENSTEIN_SKELETAL_MUSCLE_MYELOID_CELLS	310	0.22	4.63	0.00	13892	77	55	170	
MENON_FETAL_KIDNEY_1_EMBRYONIC_RED_BLOOD_CELLS	120	0.39	5.16	0.00	11257	83	45	150	
RUBENSTEIN_SKELETAL_MUSCLE_SMOOTH_MUSCLE_CELLS	410	0.23	5.29	0.00	10902	66	43	114	
TRAVAGLINI_LUNG_TREM2_DENDRITIC_CELL	489	0.21	5.33	0.00	14083	76	56	170	
RUBENSTEIN_SKELETAL_MUSCLE_T_CELLS	166	0.36	5.36	0.00	9138	72	36	113	
BUSSLINGER_DUODENAL_DIFFERENTIATING_STEM_CELLS	291	0.30	5.93	0.00	10886	73	43	126	
LAKE_ADULT_KIDNEY_C12_THICK_ASCENDING_LIMB	340	0.29	6.14	0.00	10353	69	41	116	
BUSSLINGER_DUODENAL_TRANSIT_AMPLIFYING_CELLS	185	0.42	6.51	0.00	10429	83	41	140	
RUBENSTEIN_SKELETAL_MUSCLE_SATELLITE_CELLS	290	0.34	6.63	0.00	10902	77	43	133	
FAN_OVARY_CL10_PUTATIVE_EARLY_ATRESIA_GRANULOSA_CELL	264	0.38	7.36	0.00	10472	80	42	135	

h.all.v2022.1.Hs.symbols.gmt									
HALLMARK_MITOTIC_SPINDLE	196	-0.22	-3.60	0.00	3457	36	14	41	
HALLMARK_UV_RESPONSE_DN	130	-0.17	-2.24	0.03	13403	70	53	149	
HALLMARK_TNFA_SIGNALING_VIA_NFKB	186	-0.13	-2.05	0.10	17536	82	70	269	
HALLMARK_MYOGENESIS	165	0.12	1.78	0.36	10781	55	43	95	
HALLMARK_BILE_ACID_METABOLISM	92	0.16	1.83	0.30	10479	58	42	98	

NAME		ES	NES	FWER p-val	RANK	LEADING EDGE		
	SIZE				AT MAX	TAGS (%)	LIST (%)	SEÑAL (%)
HALLMARK_ESTROGEN_RESPONSE_LATE	170	0.13	1.91	0.19	17734	83	70	278
HALLMARK_MYC_TARGETS_V2	58	0.21	1.91	0.19	17213	90	68	282
HALLMARK_CHOLESTEROL_HOMEOSTASIS	70	0.20	1.97	0.15	13663	74	54	162
HALLMARK_E2F_TARGETS	200	0.12	1.98	0.14	13261	65	53	135
HALLMARK_GLYCOLYSIS	184	0.14	2.27	0.02	13673	68	54	149
HALLMARK_XENOBIOTIC_METABOLISM	165	0.15	2.28	0.02	13801	70	55	153
HALLMARK_P53_PATHWAY	190	0.17	2.83	0.00	10900	61	43	106
HALLMARK_MTORC1_SIGNALING	197	0.18	2.92	0.00	15114	78	60	193
HALLMARK_ADIPOGENESIS	185	0.18	2.98	0.00	15401	79	61	203
HALLMARK_DNA_REPAIR	147	0.26	3.73	0.00	14922	85	59	207
HALLMARK_MYC_TARGETS_V1	199	0.23	3.76	0.00	16810	89	67	267
HALLMARK_FATTY_ACID_METABOLISM	135	0.28	3.89	0.00	15255	88	61	222
HALLMARK_OXIDATIVE_PHOSPHORYLATION	197	0.36	5.84	0.00	13091	87	52	180
Review Article

Edgar Ramos-Martínez*, Ivan Ramos-Martínez, Jorge Valencia, Juan Carlos Ramos-Martínez, Luis Hernández-Zimbrón, Anaiza Rico-Luna, Eduardo Pérez-Campos, Laura Pérez-Campos Mayoral and Marco Cerbón*

Modulatory role of prolactin in type 1 diabetes

https://doi.org/10.1515/hmbci-2022-0008 Received January 16, 2022; accepted June 30, 2022; published online July 19, 2022

Abstract

Objectives: Patients with type 1 diabetes mellitus have been reported to have elevated prolactin levels and a possible relationship between prolactin levels and the development of the disease has been proposed. However, some studies show that prolactin mediates beneficial functions in beta cells. Therefore, we review information on the roles of prolactin in type 1 diabetes mellitus.

Content: Here we summarize the functions of prolactin in the immune system and in pancreatic beta cells, in

Edgar Ramos-Martínez and Marco Cerbón have contributed equally to this work and share senior authorship.

*Corresponding authors: Edgar Ramos-Martínez, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, Ciudad de México, Mexico; and Cd. Universitaria, Circuito Exterior S/ N, Coyoacán, 04510 CDMX, Ciudad de México, Mexico, phone: +52 951 259 39 42, E-mail: edgargus2@gmail.com. https://orcid.org/0000-0003-3985-3628; and Marco Cerbón, Unidad de Investigación en Reproducción Humana. Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México, E-mail: mcerbon85@yahoo.com.mx Ivan Ramos-Martínez, Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México Jorge Valencia, Endocrine Research Unit, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Ciudad de México, México

Juan Carlos Ramos-Martínez, Cardiology Department, Hospital General Regional Lic Ignacio Garcia Tellez IMSS, Mérida, Yucatán, México

Luis Hernández-Zimbrón, Escuela Nacional de Estudios Superiores, Licenciatura en Optometría, Unidad León, Universidad Nacional Autónoma de México, Ciudad de México, México

Anaiza Rico-Luna, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México

Eduardo Pérez-Campos, Tecnológico Nacional de México/ ITOaxaca, Oaxaca, México

Laura Pérez-Campos Mayoral, Research Centre Medicine UNAM-UABJO. Facultad de Medicina, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, México addition, we describe studies related to PRL levels, its regulation and alterations of secretion in patients with type 1 diabetes mellitus.

Summary: Studies in murine models have shown that prolactin protects beta cells from apoptosis, stimulates their proliferation and promotes pancreatic islet revascularization. In addition, some studies in patients with type 1 diabetes mellitus have shown that elevated prolactin levels correlate with better disease control.

Outlook: Prolactin treatment appears to be a promising strategy to improve beta-cell vascularization and proliferation in transplantation and immunotherapies.

Keywords: Autoimmunity; beta-cells; prolactin; prolactin receptor; Type 1 diabetes mellitus.

Introduction

Prolactin (PRL) is a hormone that at high concentrations stimulates proinflammatory immune responses [1]. Since increased PRL has been reported in several autoimmune diseases, this hormone has been proposed to be involved in the development of autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis among others [2, 3]. However, the relationship of PRL levels with other autoimmune diseases such as type 1 diabetes mellitus (T1DM) is unclear.

Several reviews on the role of prolactin and autoimmune diseases have repeatedly cited that patients with T1DM have hyperprolactinemia [4–9], which coupled with the functions of prolactin in the immune system, has led to posit a possible relationship between prolactin levels and T1DM [1]. However, reports evaluating prolactin levels in patients with T1DM are heterogeneous and the results are not consistent [10–12].

Prolactin has also shown beneficial effects on pancreatic cells, such as stimulating their proliferation, protecting against apoptosis, favoring angiogenesis in pancreatic islet transplants and increasing insulin production [13–15]. Conversely, the detrimental role that had been associated with PRL in T1DM could be misunderstood. Therefore, in this

3 Open Access. © 2022 the author(s), published by De Gruyter. 🐨 This work is licensed under the Creative Commons Attribution 4.0 International License.

review the PRL functions on the immune system and pancreatic beta cells, besides, the evidence showing the role of prolactin in murine models and patients with T1DM are summarized, in order to contribute to clarified PRL dual effects.

Biology of prolactin and its receptor

PRL is a lactogenic hormone produced mainly by the lactotrophs cells of the anterior pituitary gland [16]. Its release is stimulated by serotonin, thyrotropin-releasing hormone and vasoactive intestinal peptide, and it is inhibited by dopamine and opioids [16, 17]. More than 300 functions have been described for PRL hormone, which fall into six main categories 1) water and electrolyte balance, 2) growth and development, 3) endocrinology and metabolism, 4) brain and behavior, 5) reproduction, and 6) immunoregulation and protection [18]. In humans, it has been shown that the synthesis and secretion of this hormone is not restricted to the pituitary gland, but is synthesized extrapituitarily by other body tissues such as the decidua, brain, adipose tissue, skin follicles, endothelial cells, and immune cells [19].

Both pituitary and extrapituitary PRL are single-chain globular proteins with 199 amino acids and have a molecular mass of 23 kDa [16]. However, several isoforms resulting from posttranslational modifications have been described that have different molecular weights. These modifications can be phosphorylation, glycosylation and proteolytic cleavage, in addition, PRL can polymerize (macroprolactin) or interact with antibodies (bigbig PRL) [17, 20].

The PRL receptor (PRL-R) is a transmembrane protein belonging to the class-1 cytokine receptor superfamily [18]. Its gene is located on chromosome five in humans and on chromosome 15 in murine, this gene encodes different isoforms by the process of alternative splicing [21]. The different isoforms exhibit an identical extracellular domain, but differ in length and composition of the intracellular portion. Depending on the size of the intracellular region, the three main receptors are the long (PRLR-L, 85–90 kDa), intermediate (PRLR-I, 65 kDa) and short (PRLR-S, 42 kDa) isoforms. A soluble receptor for PRL has also been described in humans [21, 22]. Expression of PRL-R has been demonstrated in cells of the brain, retina, cartilage, skin, lung, heart, pancreas, liver, spleen, thymus, intestinal tract, kidney, reproductive system, and cells of the immune system such as B cells, T cells and macrophages [18, 21].

Prolactin and its effect on the immune system

In 1930, the first evidence suggesting the involvement of PRL in the immune system was reported by Smith and cols. They observed that hypophysectomy in rats caused atrophy of the thymus [23]. In 1978, Nagy and Berci reported that hypophysectomized rats developed immunodeficiencies and these were restored by administration of PRL, growth hormone and placental lactogen [24]. In later studies, treatment of rats with the dopaminergic agonist bromocriptine, which inhibits pituitary PRL secretion, was observed to decrease the cellular and humoral immune response; the immune response was restored upon discontinuation of bromocriptine treatment [25]. Thereafter, multiple roles of PRL in the immune system have been reported. Early studies suggested a proinflammatory role of PRL, but subsequent work has shown that PRL also has anti-inflammatory and repair functions [18, 26]. In the following, we will describe the main functions of this hormone in the immune system.

Apart from the dopaminergic and hormonal control of PRL, cytokines are able to regulate PRL secretion [27]. Interleukin (IL)-1, IL-2, IL-6 and tumor necrosis factoralpha (TNF- α) can act as paracrine or endocrine regulators in PRL release, whereas endothelin 3, transforming growth factor-beta (TGF- β) and interferon gamma (IFN- γ) inhibit its secretion [1, 28, 29]. In addition, several cells of the immune system such as thymocytes and mononuclear cells are able to synthesize PRL, and its synthesis in these cells can be regulated by cytokines and hormones [30–32].

Immune system cells such as T cells, B cells and Natural Killer (NK) cells express PRL receptor [21, 33], through which this hormone is able to mediate many functions in the immune system, such as inducing proliferation and differentiation of T cell precursors [34], increase the adhesion of mononuclear cells with epithelial cells, participate in the expression of the chemokine receptor CXCR3 and inhibit the suppressive capacity of regulatory T cells [35, 36]. In addition, PRL is involved in the expression of activation-related molecules CD69 and CD154 on CD4+ T cells [37] and of CD69 and CD25 on CD8+ T cells [38]. Thus, PRL acts as a co-mitogen and coactivator in T cells. In the case of B cells, prolactin increases the maturation of these cells and the production of autoantibodies [39].

PRL also regulates cytokine secretion. For example, in whole blood cells PRL is able to stimulate the secretion of IFN-y, IL-12 and IL-10 [40], in dendritic cells PRL increases

IL-12, TNF- α and IL1- β secretion [41], in mononuclear cells it increases the secretion of IL-12 and TNF- α [42] and in activated T cells it favors the expression of IL-2 and IFN- γ [37]. In these cases, PRL alone does not stimulate the secretion of inflammatory cytokines; the effect is only observed when the cells are stimulated with another molecule such as lipopolysaccharide, phytohemagglutinin or Phorbol 12-myristate 13-acetate (PMA). For a broader review of the functions of prolactin on the immune system we recommend the following articles [1, 26, 33].

PRL also has anti-inflammatory functions. For example, PRL reduces TNF- α and IL-1 β expression in chorioamniotic membrane explants in human term gestation [43] and decreases TNF- α , IL-1 β and IL-6 secretion in lipopolysaccharide (LPS)-stimulated human placentas [44]. In the nervous system, PRL decreases glia activation [45, 46] and in lung fibroblasts, PRL inhibits the expression of the enzyme inducible nitric oxide synthase thereby blocking the production of oxygen free radicals [47].

The dual function of PRL in the immune system has been related to several factors such as: 1) the concentration of PRL, 2) the time of stimulation, 3) the isoform of PRL, 4) the isoform of its receptor and 5) the presence of cytokines and pathogen-associated molecular patterns (PAMPs) in the medium [26]. For example, PRL induces the production of TNF- α , IL-1 β and nitric oxide (NO) in bovine mammary gland epithelial cells, but when these cells are stimulated with PRL in the presence of Staphylococcus aureus the production of IL-1β, nitric oxide and β -defensin decreases [48], furthermore, in the monocyte cell line (THP1), PRL decreases IL1-B, TNF-a and IL-12 secretion, and increases IL-10 secretion when coadministered with PAMPs from Micobaterium bovis, in contrast when PRL acts alone in THP1 cells it has no effect on cytokine secretion [49].

Prolactin effects in beta cells

PRL has functions related to glycemic control and homeostasis in pancreatic beta cells. For example, PRL stimulates beta cell proliferation, increases insulin synthesis, islet vascularization and has anti-apoptotic effects (Figure 1) [13–15]. Mice with reduced PRL receptor expression (Prlr ±) have elevated blood glucose levels, decreased β-cell mass and decreased glucose-stimulated insulin secretion compared to mice expressing normal levels of PRL receptor (Prlr +/+) [50].

In the streptozotocin-treated mouse model, it has been reported that mice lacking the PRL receptor show higher glucose levels and a higher rate of cases compared to mice that do express the PRL receptor, in addition, mice lacking the PRL receptor have a lower number of beta cells, lower levels of surrounding insulin and increased pancreatic inflammation [51]. Thus, PRL is a hormone involved in pancreatic beta-cell homeostasis and ample evidence supports its protective role in diabetes. Below, we describe some of the functions mediated by PRL on beta cells.

Anti-apoptotic effect

In rat pancreatic islet cultures, PRL prevents beta cell death induced by inflammatory cytokines such as IFNy, TNF α and IL-1 β . This antiapoptotic effect was mediated through the activation of signal transducer and activator of transcription 3 (STAT3) and inhibition of the expression of proapoptotic genes such as Bim small (BimS) and p53 upregulated modulator of apoptosis (PUMA) [15]. Other studies in both rat and human pancreatic islets reported that PRL also increases the expression of the anti-apoptotic genes BCLxl (B-cell lymphoma-extra large) [15] and BCL2/ BAX (B-cell lymphoma two/BCL2 Associated X) [52], in addition to inhibiting caspases -3, -8 and -9 [53].

Another mechanism by which PRL indirectly protects against apoptosis is by increasing the expression of HSPB1 (heat shock protein B1), which is involved in the protection against endoplasmic reticulum stress and apoptosis in mouse beta-cell cultures. HSPB1 participates in the augmented degradation of proapoptotic proteins [54, 55]. In addition, HSPB1 also restores mitochondrial dysfunction in mouse insulinoma-derived MIN6 cells exposed to inflammatory cytokines [56].

Proliferative effect

PRL has been shown to promote proliferation, growth and insulin production in pancreatic beta cells by activating the transcriptional factor signal transducer and activator of transcription 5 (STAT5). Mice deficient in functional STAT5 show reduced beta-cell proliferation and are more susceptible to develop diabetes upon treatment with low-dose streptozotocin [57]. In mouse islets during pregnancy, signaling through the STAT5, Akt and ERK(Extracellular signal-regulated kinase) pathway induces expression of survivin; a protein involved in apoptosis inhibition and cell cycle regulation, and which is required to mediate the proliferative effect of PRL [58].

Figure 1: Modular effect of prolactin in type 1 diabetes mellitus. Prolactin participates in the control of inflammation by stimulating immune system cells such as T cells and B cells, in addition, it reduces the suppressive capacity of regulatory T cells (T reg). Mediators released by immune system cells induce apoptosis in pancreatic beta cells. In turn, prolactin is converted to vasoinhibins by the action of proteases; these vasoinhibins have apoptotic, anti-angiogenic and vasoconstrictive effects. On the other hand, prolactin has positive effects on beta cells such as reducing apoptosis by regulating the expression of apoptotic and anti-apoptotic genes (see text) and inducing the expression of heat shock protein B1 (HSPB1). In addition, prolactin stimulates beta-cell proliferation by inducing survivin and serotonin expression, inducing angiogenesis.

In the INS-1 beta cell line it was observed that PRL stimulates proliferation in a glucose concentration-dependent manner, at low glucose concentrations phosphorylation of phosphatidylinositol-3'-kinase (PIK-3) occurs through Insulin Receptor Substrate (IRS)-2, at physiological concentrations through IRS-4 and at high concentrations through IRS-1 [59]. This dependence on glucose concentration to induce proliferation has also been reported for growth hormone and hepatocyte growth factor in the INS-1 beta cell line [60, 61].

Some indirect mechanisms through which PRL induces beta-cell proliferation is by inducing serotonin expression through STAT5 activation [62]. In C57BL/6J mice, serotonin induces beta-cell proliferation in an autocrine and paracrine manner through interaction with serotonin receptor 2B (HTR2B), in addition, intracellular serotonin has antioxidant functions that mitigate oxidative stress and increase survival in mice treated with alloxan, a diabetogenic toxin [63, 64]. During pregnancy, beta-cell proliferation increases as a mechanism of adaptation to new physiological demands [65, 66], and since PRL secretion is increased during pregnancy, it has been proposed that this hormone has a fundamental role in homeostatic control in this period [67].

Angiogenic effect

PRL stimulates angiogenesis in pancreatic islets and has been shown to be effective in promoting transplantation vascularization in murine models [68]. In C57BL/6 mice, it was observed that if pancreatic islets were treated with PRL before transplantation, there was a 50% increase in vascular density compared to mice that received pancreatic islet transplants not treated with PRL [68]. In this study, an increase in blood perfusion, oxygen tension and graft volume was also observed in PRL-treated transplants [68]. This angiogenic effect of PRL is mediated by activation of STAT5, whose activation is required to induce migration, invasion and formation of tubular structures by endothelial cell lines [69, 70]. The angiogenic functions of PRL have been extensively reviewed by Clapp et al. (2008 and 2009), and Yang and Friedl (2015) [69, 71, 72].

The angiogenic effect of PRL dependent on its conversion to vasoinhibins, which are fragments of PRL with antiangiogenic, proapoptotic and vasoconstrictive properties [73]. This conversion is performed by proteases such as cathepsin D and matrix metalloproteases [73]. The conversion of PRL to vasoinhibins takes place in the anterior pituitary gland, but they can also be generated in target tissues [74]. In streptozotocin-treated rats, hyperprolactinemia has been proposed to protect against diabetic retinopathy -despite the fact that PRL has an angiogenic function-due to the conversion of PRL to vasoinhibins in the eye [75].

Type 1 diabetes

T1DM is a chronic autoimmune disease in which there is selective destruction of the β -cells of the pancreas. It can occur at any age, but its highest incidence is seen in children under 15 years of age, most often in preschool and especially prepubertal age (DiMeglio et al., 2018). It is not known what triggers the immune response against β -cells or whether it is a stochastic event. Several factors have been linked to the development of T1DM such as diet, vitamin D insufficiency, decreased gut-microbial diversity, obesity, genetic load and infections [76, 77].

T1DM has long been associated with a T cell-mediated immune response [78], this is due to the association of T1DM with human leukocyte antigens (HLA) genes [79, 80], the presence of autoreactive CD4+ and CD8+ T cells against pancreatic islet antigens [81], and decreased suppressive capacity of regulatory T cells [82], in addition, B cells are involved in antigen presentation to T cells and autoantibody production, and B cell depletion delays disease progression [83–85].

Prolactin and its relationship to type 1 diabetes

High levels of PRL have been associated with various autoimmune diseases, probably due to increased bidirectional communication between the immune and endocrine systems and the inflammatory functions of PRL. Hyperprolactinemia has been described in some autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and T1DM [1, 8]. In the following sections we discuss the evidence supporting the involvement of PRL in the etiopathogenesis of T1DM in both murine models and humans.

Studies in murine models

Early approaches to the effect of PRL on glycemia in diabetes were addressed with the use of D2-dopaminergic agonists such as bromocriptine. These agonists inhibit the pituitary release of PRL and treatment with them has shown a beneficial effect in autoimmune diseases such as arthritis, uveitis and systemic lupus erythematosus [86, 87]. However, in the case of T1DM, the results of bromocriptine treatment have not been consistent.

A study in NOD mice, a murine model of T1DM, showed that when hypoprolactinemia was caused by subcutaneous injection of CB-154 (2-bromo-alpha-ergocryptine) there was a decrease in the incidence of diabetes in female mice [88]. However, another study in NOD mice, a spontaneous model of autoimmune type 1 diabetes, reported that intraperitoneal bromocriptine treatment accelerated the development of diabetes in male mice and increased the number of islets with perinsulitis [89]. Subsequently, it was determined that the difference in these results is related to the route of administration of bromocriptine, since intraperitoneal administration favors hyperglycemia [90].

The difficulty in analyzing the results obtained with bromocriptine is due to the fact that it does not inhibit extrapituitary PRL synthesis [91, 92], furthermore, it has been described that bromocriptine induces hyperglycemia through D2-dopaminergic receptor-dependent signals in NOD mice [90] and this hyperglycemic effect may mask the immunomodulatory effect of PRL.

Another method of addressing the question was the administration of PRL in several murine models of diabetes, where a beneficial effect of PRL has been shown. For example, mice treated with streptozotocin plus PRL had less insulitis and lower elevation of glucose levels than mice treated with streptozotocin alone [93]. This protective effect was related to a shift of the inflammatory response profile towards a Th2 type by PRL, as it induced an increase in the percentage of IL-10 positive spleen cells and reduced the expression of IL-1 β and TNF α mRNA [94].

The beneficial effect of PRL administration has not only been related to its immunomodulatory capacity, but also to its ability to protect from apoptosis and induce betacell proliferation. Therefore, PRL has been applied as a complementary treatment in transplantation and immunotherapies. For example, PRL treatment improves beta cell function in mice that have received fetal pancreas transplantation, in which an improvement in revascularization, blood perfusion and oxygen tension is observed [95], this improvement in transplantation was also observed when human islets were transplanted in syngeneic mice [68].

As for T-cell depletion therapy with anti-CD3, cotreatment with PRL has shown extra benefits. For example, in a study in NOD mice, co-treatment with anti-CD3 plus PRL was observed to normalize glycemia levels and improve the remission rate compared to treatment with anti-CD3 alone, furthermore, co-treatment increased the rate of beta-cell proliferation, pancreatic insulin content and glucose-stimulated insulin release [96].

Studies in animal models seem to support a beneficial effect of PRL in T1DM, and not something detrimental as expected due to its proinflammatory effects. However, PRL can mediate different functions depending on its concentration and the inflammatory mediators present in the medium as discussed above [26]. This concentration-dependent effect of PRL has also been observed in glycemic control. Treatment of rats with high doses of PRL (250 μ g/kg bw/12 h) has been reported to cause glucose intolerance, hyperinsulinemia and insulin resistance, but lower PRL concentrations (25 μ g/kg bw/12 h) improvement of insulin secretion and sensitivity [97]. Therefore, the concentration and route of admiration should be considered in future studies.

Clinical studies

Hyperprolactinemia has been reported in patients with T1DM. For example, in a study of 58 male patients with T1DM, it has been reported that patients have high PRL levels compared to healthy patients [10]. Another study in 181 patients with type 1 and 2 diabetes mellitus found that diabetic subjects had higher plasma PRL levels compared to healthy subjects (32.8 ± 4 ng/mL vs. 16.3 ± 1.7 ng/mL) [75].

This increase in PRL levels in patients with T1DM has not been consistent, as other studies report a decrease in PRL in T1DM. For example, in a study of 11 patients with poorly controlled T1DM, the serum PRL concentration was found to be $5.5 \pm 0.42 \mu g/L$, which was significantly lower than the PRL concentrationin healthy individuals $(9.3 \pm 0.86 \mu g/L)$ [11]. In addition, other studies have found no difference in PRL concentration between patients with T1DM and healthy individuals [12, 98–100]. Treatment seems not to affect PRL concentration in patients with T1DM, as neither insulin, nor metformin affects its concentration [98, 101].

Some authors propose that alterations in PRL homeostasis, in patients with T1DM, are related to the control of secretion, so that the PRL level depends on the time at which the sample is taken. A study in 14 children with newly diagnosed T1DM found no difference in serum PRL levels compared with healthy individuals; however, when PRL release was stimulated with thyrotropin-releasing hormone (TRH), an increased response was observed [102]. In patients with T1DM it has been reported that hypoglycemia-stimulated PRL secretion is impaired, since the plasma glucose levels required to stimulate PRL release are lower in patients with well-controlled T1DM compared to patients with uncontrolled T1DM and healthy individuals [103].

Studies on PRL secretion have also been inconsistent, as a study of pulsatile and circadian PRL release patterns indicates a decrease in secreted PRL or rapid metabolic clearance in patients with diabetes, rather than an increase [11]. On the other hand, a study in 30 patients with T1DM found no change in PRL secretion upon stimulation with TRH compared to patients with type 2 diabetes mellitus and healthy individuals [104]. The heterogeneity in results is a consequence of the multiple factors that can affect PLR homeostasis such as hormones, neurotransmitters, cytokines and circadian rhythm [16, 19, 26].

The concentration of PRL in patients has also been related to the clinical manifestations of the disease. For example, diabetic patients without retinopathy have higher serum PRL levels compared to patients with retinopathy (diabetics with severe retinopathy: 26.7 ± 2.7 ng/mL and diabetics without retinopathy: $34.1 \pm 3.6 \text{ ng/mL}$ [75]. This protective effect of PRL in retinopathy has been related to its ability to convert to vasoinhibins [75]. In addition, the serum PRL level in women with T1DM with ketoacidosis or severe ketonuria was lower compared to women with DM1 without ketoacidosis [105]. Another study in women of childbearing age with a diagnosis of T1DM showed that PRL concentration correlated negatively with HbA1c (glycosylated hemoglobin) and daily insulin dose, indicating better glycemic control in patients with higher PRL levels [106]. Thus, observational studies in patients seem to indicate that prolactin has a beneficial effect in T1DM.

Conclusions

Although several autoimmune diseases have been associated to hyperprolactinemia; howver, the studies related to

PRL levels and T1DM are inconclusive, due to those results are observational and heterogenous. Conversely, studies in murine models have shown that PRL have beneficial effects on maintaining beta-cell function and protecting them from apoptosis. In addition, some studies in T1DM patients have shown that high levels of PRL correlate with better disease control. Prolactin treatment seems to be a promising strategy to improve beta-cell vascularization and proliferation in transplantation and immunotherapies. Thus, the hypothesis that high levels of PRL are detrimental in T1DM should be reconsidered. Finally, in future studies evaluating the clinical potential of PRL in T1DM it is important to consider the doses and route of administration.

Highlights

- Prolactin is involved in several processes related to the etiology of type 1 diabetes mellitus, such as activation of the immune system, angiogenesis, and beta-cell survival and proliferation.
- Observational studies evaluating prolactin levels in patients with type 1 diabetes mellitus are not consistent.
- Studies in murine models have shown that prolactin enhances vascularization and proliferation in pancreatic islets.
- Further studies are required to assess the positive and negative aspects of prolactin-based therapies.

Acknowledgments: Edgar Ramos-Martínez and Ivan Ramos-Martínez receive a postdoctoral fellowship from DGAPA, UNAM, México and are grateful for the funding. **Research funding:** None declared.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflict of interest. **Informed consent:** not applicable.

Ethical approval: not applicable.

References

- 1. Borba VV, Zandman-Goddard G, Shoenfeld Y. Prolactin and autoimmunity: the hormone as an inflammatory cytokine. Best Pract Res Clin Endocrinol Metabol 2019;33:101324.
- Jara LJ, Medina G, Saavedra MA, Vera-Lastra O, Torres-Aguilar H, Navarro C, et al. Prolactin has a pathogenic role in systemic lupus erythematosus. Immunol Res 2017;65:512–23.
- Tang MW, Garcia S, Gerlag DM, Tak PP, Reedquist KA. Insight into the endocrine system and the immune system: a review of the inflammatory role of prolactin in rheumatoid arthritis and psoriatic arthritis. Front Immunol 2017;8:720.

- 4. Orbach H, Shoenfeld Y. Hyperprolactinemia and autoimmune diseases. Autoimmun Rev 2007;6:537-42.
- Jara LJ, Medina G, Saavedra MA, Vera-Lastra O, Navarro C. Prolactin and autoimmunity. Clin Rev Allergy Immunol [Internet] 2011;40:50–9.
- Shelly S, Boaz M, Orbach H. Prolactin and autoimmunity. Autoimmun Rev 2012;11:A465–70.
- 7. Solis AMP, Rodríguez GG, Vega MME. Prolactin and skin autoimmunity. DermatologíaCMQ 2013;11:148–54.
- 8. De Bellis A, Bizzarro A, Pivonello R, Lombardi G, Bellastella A. Prolactin and autoimmunity. Pituitary 2005;8:25–30.
- Cejkova P, Fojtikova M, Cerna M. Immunomodulatory role of prolactin in diabetes development. Autoimmun Rev 2009;9: 23–7.
- Hylmarova S, Stechova K, Pavlinkova G, Peknicova J, Macek M, Kvapil M. The impact of type 1 diabetes mellitus on male sexual functions and sex hormone levels. Endocr J 2020;67:59–71.
- Iranmanesh A, Veldhuis JD, Carlsen EC, Vaccaro VA, Booth RAJ, Lizarralde G, et al. Attenuated pulsatile release of prolactin in men with insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1990;71:73–8.
- Alexopoulou O, Jamart J, Maiter D, Hermans MP, De Hertogh R, De Nayer P, et al. Erectile dysfunction and lower androgenicity in type 1 diabetic patients. Diabetes Metab 2001;27:329-36.
- Cao Y, Feng Z, He X, Zhang X, Xing B, Wu Y, et al. Prolactinregulated Pbk is involved in pregnancy-induced β cell proliferation in mice. J Endocrinol 2021;252:107-23.
- Baeyens L, Hindi S, Sorenson RL, German MS. β-Cell adaptation in pregnancy. Diabetes Obes Metab 2016;18:63-70.
- Nardelli TR, Vanzela EC, Benedicto KC, Brozzi F, Fujita A, Cardozo AK, et al. Prolactin protects against cytokine-induced beta-cell death by NFKB and JNK inhibition. J Mol Endocrinol 2018;61:25–36.
- 16. Bernard V, Young J, Binart N. Prolactin a pleiotropic factor in health and disease. Nat Rev Endocrinol 2019;15:356–65.
- Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80: 1523–631.
- Costanza M, Binart N, Steinman L, Pedotti R. Prolactin: a versatile regulator of inflammation and autoimmune pathology. Autoimmun Rev 2015;14:223–30.
- Marano RJ, Ben-Jonathan N. Minireview: extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol Endocrinol 2014;28:622–33.
- Fahie-Wilson M, Smith TP. Determination of prolactin: the macroprolactin problem. Best Pract Res Clin Endocrinol Metabol 2013;27:725–42.
- 21. Abramicheva PA, Smirnova OV. Prolactin receptor isoforms as the basis of tissue-specific action of prolactin in the norm and pathology. Biochem 2019;84:329–45.
- 22. Trott JF, Hovey RC, Koduri S, Vonderhaar BK. Multiple new isoforms of the human prolactin receptor gene. Adv Exp Med Biol 2004;554: 495–9.
- Smith PE. The effect of hypophysectomy upon the involution of the thymus in the rat. Anat Rec 1930;47:119–29. [Internet].
- Nagy E, Berczi I. Immunodeficiency in hypophysectomized rats. Acta Endocrinol 1978;89:530–7.
- Nagy E, Berczi I, Wren GE, Asa SL, Kovacs K. Immunomodulation by bromocriptine. Immunopharmacology 1983;6:231–43.

- Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci 2021;32:323–40.
- 27. Matera L. Action of pituitary and lymphocyte prolactin. Neuroimmunomodulation 1997;4:171-80.
- Theas MS, De Laurentis A, Lasaga M, Pisera D, Duvilanski BH, Seilcovich A. Effect of lipopolysaccharide on tumor necrosis factor and prolactin release from rat anterior pituitary cells. Endocrine 1998;8:241–5.
- 29. Chikanza IC. Prolactin and neuroimmunomodulation: in vitro and in vivo observations. Ann N Y Acad Sci 1999;876:119-30.
- Pellegrini I, Lebrun JJ, Ali S, Kelly PA. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol 1992;6:1023–31.
- Gerlo S, Verdood P, Hooghe-Peters EL, Kooijman R. Modulation of prolactin expression in human T lymphocytes by cytokines. J Neuroimmunol 2005;162:190–3.
- Díaz L, Martínez-Reza I, García-Becerra R, González L, Larrea F, Méndez I. Calcitriol stimulates prolactin expression in nonactivated human peripheral blood mononuclear cells: breaking paradigms. Cytokine 2011;55:188–94.
- 33. Savino W. Prolactin: an immunomodulator in health and disease. Front Horm Res 2017;48:69–75.
- Carreño PC, Sacedón R, Jiménez E, Vicente A, Zapata AG. Prolactin affects both survival and differentiation of T-cell progenitors. J Neuroimmunol 2005;160:135–45.
- Montes de Oca P, Macotela Y, Nava G, López-Barrera F, de la Escalera GM, Clapp C. Prolactin stimulates integrinmediated adhesion of circulating mononuclear cells to endothelial cells. Lab Invest 2005;85:633–42.
- Legorreta-Haquet MV, Chávez-Rueda K, Montoya-Díaz E, Arriaga-Pizano L, Silva-García R, Chávez-Sánchez L, et al. Prolactin down-regulates CD4+CD25hiCD127low/- regulatory T cell function in humans. J Mol Endocrinol 2012;48:77–85.
- Chavez-Rueda K, Hérnández J, Zenteno E, Leaños-Miranda A, Legorreta-Haquet MV, Blanco-Favela F. Identification of prolactin as a novel immunomodulator on the expression of costimulatory molecules and cytokine secretions on T and B human lymphocytes. Clin Immunol 2005;116:182–91.
- Takizawa K, Kitani S, Takeuchi F, Yamamoto K. Enhanced expression of CD69 and CD25 antigen on human peripheral blood mononuclear cells by prolactin. Endocr J 2005;52:635–41.
- Legorreta-Herrera M. The influence of prolactin on the immune response to parasitic diseases. Adv Neuroimmune Biol 2018;7: 107–14.
- Matalka KZ. Prolactin enhances production of interferongamma, interleukin-12, and interleukin-10, but not of tumor necrosis factor-alpha, in a stimulus-specific manner. Cytokine 2003;21:187–94.
- Carreño PC, Jiménez E, Sacedón R, Vicente A, Zapata AG. Prolactin stimulates maturation and function of rat thymic dendritic cells. J Neuroimmunol 2004;153:83–90.
- Brand JM, Frohn C, Cziupka K, Brockmann C, Kirchner H, Luhm J. Prolactin triggers pro-inflammatory immune responses in peripheral immune cells. Eur Cytokine Netw 2004;15:99–104.
- Zaga-Clavellina V, Parra-Covarrubias A, Ramirez-Peredo J, Vega-Sanchez R, Vadillo-Ortega F. The potential role of prolactin as a modulator of the secretion of proinflammatory mediators in chorioamniotic membranes in term human gestation. Am J Obstet Gynecol 2014;211:48.e1–6.

- Olmos-Ortiz A, Déciga-García M, Preciado-Martínez E, Bermejo-Martínez L, Flores-Espinosa P, Mancilla-Herrera I, et al. Prolactin decreases LPS-induced inflammatory cytokines by inhibiting TLR-4/NFkB signaling in the human placenta. Mol Hum Reprod 2019;25:660–7.
- 45. Arnold E, Thebault S, Baeza-Cruz G, Arredondo Zamarripa D, Adán N, Quintanar-Stéphano A, et al. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration. J Neurosci 2014;34:1868–78.
- 46. Cabrera-Reyes EA, Vanoye-Carlo A, Rodríguez-Dorantes M, Vázquez-Martínez ER, Rivero-Segura NA, Collazo-Navarrete O, et al. Transcriptomic analysis reveals new hippocampal gene networks induced by prolactin. Sci Rep 2019;9:13765.
- 47. Corbacho AM, Macotela Y, Nava G, Eiserich JP, Cross CE, Martínez de la Escalera G, et al. Cytokine induction of prolactin receptors mediates prolactin inhibition of nitric oxide synthesis in pulmonary fibroblasts. FEBS Lett 2003;544:171–5.
- 48. Gutiérrez-Barroso A, Anaya-López JL, Lara-Zárate L, Loeza-Lara PD, López-Meza JE, Ochoa-Zarzosa A. Prolactin stimulates the internalization of Staphylococcus aureus and modulates the expression of inflammatory response genes in bovine mammary epithelial cells. Vet Immunol Immunopathol 2008;121:113–22.
- Martínez-Neri PA, López-Rincón G, Mancilla-Jiménez R, del Toro-Arreola S, Muñoz-Valle JF, Fafutis-Morris M, et al. Prolactin modulates cytokine production induced by culture filtrate proteins of M. bovis through different signaling mechanisms in THP1 cells. Cytokine 2015;71:38–44.
- Shrivastava V, Lee M, Lee D, Pretorius M, Radford B, Makkar G, et al. Beta cell adaptation to pregnancy requires prolactin action on both beta and non-beta cells. Sci Rep 2021;11:10372.
- Ramirez-Hernandez G, Adan-Castro E, Diaz-Lezama N, Ruiz-Herrera X, Martinez de la Escalera G, Macotela Y, et al. Global deletion of the prolactin receptor aggravates streptozotocininduced diabetes in mice. Front Endocrinol 2021;12:619696.
- Raisova M, Hossini AM, Eberle J, Riebeling C, Orfanos CE, Geilen CC, et al. The bax/bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/fas-mediated apoptosis. J Invest Dermatol 2001;117:333–40.
- Terra LF, Garay-Malpartida MH, Wailemann RAM, Sogayar MC, Labriola L. Recombinant human prolactin promotes human beta cell survival via inhibition of extrinsic and intrinsic apoptosis pathways. Diabetologia 2011;54:1388–97.
- 54. Terra LF, Wailemann RAM, Dos Santos AF, Gomes VM, Silva RP, Laporte A, et al. Heat shock protein B1 is a key mediator of prolactin-induced beta-cell cytoprotection against oxidative stress. Free Radic Biol Med 2019;134:394–405.
- Gomes VM, Wailemann RAM, Arini GS, Oliveira TC, Almeida DRQ, Dos Santos AF, et al. HSPB1 is essential for inducing resistance to proteotoxic stress in beta-cells. Cells 2021;10:2178.
- Mule SN, Gomes VDM, Wailemann RAM, Macedo-da-Silva J, Rosa-Fernandes L, Larsen MR, et al. HSPB1 influences mitochondrial respiration in ER-stressed beta cells. Biochim Biophys Acta, Proteins Proteomics 2021;1869:140680.
- 57. Jackerott M, Møldrup A, Thams P, Galsgaard ED, Knudsen J, Lee YC, et al. STAT5 activity in pancreatic beta-cells influences the severity of diabetes in animal models of type 1 and 2 diabetes. Diabetes 2006;55:2705–12.
- 58. Xu Y, Wang X, Gao L, Zhu J, Zhang H, Shi H, et al. Prolactinstimulated survivin induction is required for beta cell mass

expansion during pregnancy in mice. Diabetologia 2015;58: 2064–73.

- Hügl SR, Merger M. Prolactin stimulates proliferation of the glucose-dependent beta-cell line INS-1 via different IRS-proteins. JOP 2007;8:739–52.
- Gahr S, Merger M, Bollheimer LC, Hammerschmied CG, Schölmerich J, Hügl SR. Hepatocyte growth factor stimulates proliferation of pancreatic beta-cells particularly in the presence of subphysiological glucose concentrations. J Mol Endocrinol 2002;28:99–110.
- 61. Cousin SP, Hügl SR, Myers MGJ, White MF, Reifel-Miller A, Rhodes CJ. Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochem J 1999;344 Pt 3:649–58.
- Goyvaerts L, Schraenen A, Schuit F. Serotonin competence of mouse beta cells during pregnancy. Diabetologia 2016;59: 1356–63.
- Moon JH, Kim H, Kim H, Park J, Choi W, Choi W, et al. Lactation improves pancreatic β cell mass and function through serotonin production. Sci Transl Med 2020;12:eaay0455.
- Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 2010;16:804–8.
- 65. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab 1997;29:301–7.
- 66. Strutt B, Szlapinski S, Gnaneswaran T, Donegan S, Hill J, Bennett J, et al. Ontology of the apelinergic system in mouse pancreas during pregnancy and relationship with β-cell mass. Sci Rep 2021;11:15475.
- Huang C, Snider F, Cross JC. Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology 2009;150:1618–26.
- Johansson M, Olerud J, Jansson L, Carlsson PO. Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology 2009;150:1646–53.
- Yang X, Friedl A. A positive feedback loop between prolactin and STAT5 promotes angiogenesis. Adv Exp Med Biol 2015;846:265–80.
- Yang X, Meyer K, Friedl A. STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 2013;288:21184–96.
- Clapp C, Thebault S, Martínez de la Escalera G. Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia 2008;13: 55–67.
- Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177–215.
- Clapp C, Thebault S, Macotela Y, Moreno-Carranza B, Triebel J, Martínez de la Escalera G. Regulation of blood vessels by prolactin and vasoinhibins. Adv Exp Med Biol 2015;846:83–95.
- 74. Triebel J, Bertsch T, Bollheimer C, Rios-Barrera D, Pearce CF, Hüfner M, et al. Principles of the prolactin/vasoinhibin axis. Am J Physiol Regul Integr Comp Physiol 2015;309:R1193–203.
- 75. Arnold E, Rivera JC, Thebault S, Moreno-Páramo D, Quiroz-Mercado H, Quintanar-Stéphano A, et al. High levels of serum

prolactin protect against diabetic retinopathy by increasing ocular vasoinhibins. Diabetes 2010;59:3192-7.

- 76. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet (London, England) 2016;387:2340-8.
- Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol 2020;8:226–38.
- Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021;17:150–61.
- Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and metaanalysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009;41:703–7.
- van Lummel M, van Veelen PA, de Ru AH, Pool J, Nikolic T, Laban S, et al. Discovery of a selective islet peptidome presented by the highest-risk HLA-DQ8trans molecule. Diabetes 2016;65:732–41.
- Michels AW, Landry LG, McDaniel KA, Yu L, Campbell-Thompson M, Kwok WW, et al. Islet-derived CD4 T cells targeting proinsulin in human autoimmune diabetes. Diabetes 2017;66: 722–34.
- Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TIM. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005;54:92–9.
- Smith MJ, Simmons KM, Cambier JC. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat Rev Nephrol 2017;13: 712–20.
- 84. Hinman RM, Cambier JC. Role of B lymphocytes in the pathogenesis of type 1 diabetes. Curr Diabetes Rep 2014;14:543.
- Hu C, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 2007;117: 3857–67.
- McMurray RW. Bromocriptine in rheumatic and autoimmune diseases. Semin Arthritis Rheum 2001;31:21–32.
- 87. Walker SE. Treatment of systemic lupus erythematosus with bromocriptine. Lupus 2001;10:197–202.
- Hawkins TA, Gala RR, Dunbar JC. Prolactin modulates the incidence of diabetes in male and female NOD mice. Autoimmunity 1994;18:155–62.
- Durant S, Alves V, Coulaud J, El Hasnaoui A, Dardenne M, Homo-Delarche F. Attempts to pharmacologically modulate prolactin levels and type 1 autoimmune diabetes in the non-obese diabetic (NOD) mouse. J Autoimmun 1995;8:875–85.
- Durant S, Coulaud J, Homo-Delarche F. Bromocriptine-induced hyperglycemia in nonobese diabetic mice: kinetics and mechanisms of action. Rev Diabet Stud 2007;4:185–94.
- 91. Lehtovirta P, Ranta T. Effect of short-term bromocriptine treatment on amniotic fluid prolactin concentration in the first half of pregnancy. Acta Endocrinol 1981;97:559–61.
- Golander A, Barrett J, Hurley T, Barry S, Handwerger S. Failure of bromocriptine, dopamine, and thyrotropin-releasing hormone to affect prolactin secretion by human decidual tissue in vitro. J Clin Endocrinol Metab 1979;49:787–9.
- Holstad M, Sandler S. Prolactin protects against diabetes induced by multiple low doses of streptozotocin in mice. J Endocrinol 1999;163:229–34.
- 94. Lau J, Börjesson A, Holstad M, Sandler S. Prolactin regulation of the expression of TNF-alpha, IFN-gamma and IL-10 by

splenocytes in murine multiple low dose streptozotocin diabetes. Immunol Lett 2006;102:25-30.

- 95. Fourcade G, Colombo BM, Grégoire S, Baeyens A, Rachdi L, Guez F, et al. Fetal pancreas transplants are dependent on prolactin for their development and prevent type 1 diabetes in syngeneic but not allogeneic mice. Diabetes 2013;62: 1646–55.
- Hyslop CM, Tsai S, Shrivastava V, Santamaria P, Huang C. Prolactin as an adjunct for type 1 diabetes immunotherapy. Endocrinology 2016;157:150-65.
- Park S, Kim DS, Daily JW, Kim SH. Serum prolactin concentrations determine whether they improve or impair β-cell function and insulin sensitivity in diabetic rats. Diabetes Metab Res Rev 2011;27:564–74.
- Frier BM, Fisher BM, Gray CE, Beastall GH. Counterregulatory hormonal responses to hypoglycaemia in type 1 (insulindependent) diabetes: evidence for diminished hypothalamicpituitary hormonal secretion. Diabetologia 1988;31:421–9.
- Ostrom KM, Ferris AM. Prolactin concentrations in serum and milk of mothers with and without insulin-dependent diabetes mellitus. Am J Clin Nutr 1993;58:49–53.
- Zukowska-Szczechowska E, Moczulski D, Grzeszczak W, Gumprecht J. [Prolactin secretion in diabetic nephropathy of patients with diabetes mellitus type I (IDDM)]. Pol Arch Med Wewn 1996;95:125–34.

- 101. Hafez M, Musa N, Elbehairy S, Atty SA, Elbarbary M, Amin M. Effect of metformin on clinical and biochemical hyperandrogenism in adolescent girls with type 1 diabetes. J Pediatr Endocrinol Metab 2019;32:461–70.
- 102. Abe K, Matsuura N, Fukushima N, Nohara Y, Fujita H, Fujieda K, et al. Plasma prolactin response to thyrotropin releasing hormone in children with newly diagnosed insulin dependent diabetes. Tohoku J Exp Med 1983;140:29–34.
- Kinsley BT, Levy CJ, Simonson DC. Prolactin and betaendorphin responses to hypoglycemia are reduced in wellcontrolled insulin-dependent diabetes mellitus. Metabolism 1996;45:1434–40.
- 104. Orlická E, Vondra K, Hill M, Skibová J, Sterzl I, Zamrazil V. TRH test in patients with diabetes mellitus type 1 and/or autoimmune thyroiditis. Changes in the pituitary-thyroid axis, reverse T3, prolactin and growth hormone levels. Physiol Res 2008;57(1 Suppl):S109–17.
- 105. Välimäki M, Liewendahl K, Nikkanen P, Pelkonen R. Hormonal changes in severely uncontrolled type 1 (insulindependent) diabetes mellitus. Scand J Clin Lab Invest 1991; 51:385–93.
- 106. Kvasnickova H, Hampl R, Vondra K. DHEA, DHEAS and prolactin correlate with glucose control parameters in women of fertile age with type-1 diabetes mellitus. Physiol Res 2015;64(2 Suppl): S255–8.

Abreviaturas

Abreviatura	Definición
ADC	adenocarcinoma
AJCC	American Joint Committee on Cancer
AKT	proteína cinasa B
ALK	cinasa del linfoma anaplásico
ANG-2	angiopoyetina-2
APC	poliposis adenomatosa coli
b-HCG	gonadotropina coriónica humana beta
BSA	albúmina de suero bovino
c-src	cinasa de sarcoma celular
cAMP	monofosfato de adenosina cíclico
CCL5	ligando 5 de quimiocina (motivo C-C)
CCND1	ciclina D1
CEPB	proteína potenciadora de unión a CCAAT
СР	cáncer pulmonar
CPCNP	cáncer pulmonar de células no pequeñas
СРСР	cáncer pulmonar de células pequeñas
СурА	ciclofilina A
DAPI	4',6-diamidino-2-fenilindol
DMEM	Dulbecco's Modified Eagle Medium
DNA	ácido desoxirribonucleico
DPPC	dipalmitoilfosfatidilcolina
EGFR	receptor del factor de crecimiento epidérmico
FS	folistatina
GAPDH	gliceraldehído-3-fosfato deshidrogenasa
GLOBOCAN	Global Cáncer Observatory
GTP	trifosfato de guanosina
HE4	proteína epididimal humana 4
HGF	factor de crecimiento hepatocitario
IFN I	interferon tipo I
IGFBP-1	proteína de unión a la hormona del crecimiento tipo 1
IL-1	interleucina 1

Abreviatura	Definición
IL-2	interleucina 2
IL-6	interleucina 6
JAK	cinasas de la familia Janus
KEGG	Kyoto Encyclopedia of Genes and Genomes
KRAS	oncogén homólogo al virus Kirsten de sarcoma de rata
KTN1	Proteína 1 asociada al cinetocoro
LDHB	lactato deshidrogenasa B
LUAD	lung adenocarcinoma
МАРК	proteína cinasa activada por mitógeno
MEC	célula epitelial mamaria
MET	receptor del factor de crecimiento de hepatocitos
MIF	factor inhibidor de la migración de macrófagos
MT-RNR1	ARN 12S codificado mitocondrialmente
NIM811	N-metil-4-isoleucina ciclosporina
NIVO	nivolumab
oPRL	prolactina ovina
PAI-1	inhibidor del activador del plasminógeno-1
PBS	solución salina tamponada con fosfato
PC	fosfatidilcolina
PDC-E2	subunidad E2 del complejo piruvato deshidrogenasa
PIK3CA	fosfatidilinositol-4,5-bisfosfato 3-cinasa
PRL	prolactina
PRLR	receptor de prolactina
Raf	protooncogén serina/treonina-proteína cinasa
RAS	protooncogén GTPasa
RIN	número de integridad del ARN
RIPA	tampón de ensayo de radioinmunoprecipitación
RNA	ácidoribonucleico
ROS1	protooncogén ROS 1
RPL22L1	proteína ribosómica L22
RTK	receptor tirosina cinasa
SAA	proteína amiloide A sérica
SFB	suero Fetal Bovino

Abreviatura	Definición
SSBP1	proteína de unión a DNA monocatenario 1
STAT	transductor de señal y activador de la transcripción
STK11	serina/treonina cinasa 11
SYNE2	proteína de envoltura nuclear con repeticiones de espectrina 2
TBS	solución salina tamponada con Tris
THBS1	Trombospondina 1
TP53	proteína tumoral p53
THSP	trombospondina
TTR	transtiterina
UCSC XENA	University of California, Santa Cruz Xena
VEGF	factor de crecimiento vascular endotelial
Wnt	sin alas/integrado

Índice de tablas

Tabla 1. Sistema de estadificación del Comité Conjunto Estadounidense sobre el Cáncer para cáncer pulmonar.		
Tabla 2. Cambios transcriptómicos mediados por PRL en modelos in vitro.		
Tabla 3. Análisis de calidad de RNA.	29	
Tabla 4. Análisis de calidad de secuenciación	32	
Tabla 5. Análisis de calidad de alineamiento.	34	
Tabla 6. Genes diferencialmente expresados en BEAS-2B tratadas con PRL (125ng/mL).	35	
Tabla 7. Genes diferencialmente expresados en SK-LU-1 tratadas con PRL (125 ng/mL).	36	
Tabla 8. Enriquecimiento de vías en BEAS-2B por Enrichr.	42	
Tabla 9. Enriquecimiento de vías en SK-LU-1 por GSEA.	45	
Tabla A1. Enriquecimiento de vías en SK-LU-1.	63	
Tabla A2. Lista de abreviaturas.	82	
Índice de figuras		
Figura 1. Clasificación del Cáncer Pulmonar.	10	
Figura 2. Proporción de hombres y mujeres con ADCP en relación con el hábito tabáquico.	11	
Figura 3. Estructura terciaria de la PRL y su receptor (PRLR) A) Estructura terciaria de la PRL.	12	
Figura 4. Isoformas del PRLR.	14	
Figura 5. Cascadas de señalización de PRL.	16	
Figura 6. Expresión del PRLR en SK-LU-1 y A549.	19	
Figura 7. Gráfico de Kaplan-Meir de la probabilidad de supervivencia con respecto a la expresión del PRLR.	20	
Figura 8. Diseño experimental.	23	
Figura 9. Fosforilación y translocación de STAT tras tratamiento con PRL.	27	
Figura 10. Curva dosis respuesta a PRL.	28	
Figura 11. Integridad de RNA.	28	
Figura 12. Análisis de calidad de secuenciación.	33	
Figura 13. Análisis de calidad de alineamiento.	34	
Figura 14. Análisis de expresión diferencial con DESeq2.	39	
Figura 15. Enriquecimiento de vías en BEAS-2B por Enrichr.	41	
Figura 16. Patrón de expresión en CPCNP de los genes diferencialmente expresados.	47	
Figura 17. Genes diferencialmente expresados en BEAS-2B en ADC.	48	
Figura 18. Genes diferencialmente expresados en SK-LU-1 en ADC.	49	