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Resumen34

Este trabajo gira en torno a las dos preguntas siguientes: Dado un cuerpo convexo35

C ⊂ Rd, un entero positivo k y un conjunto finito S ⊂ Rd (o una medida finita de36

Borel µ en Rd), cuántos homotetos de C se requieren para cubrir S si no se permite37

que ningún homoteto cubra más de k puntos de S (o tenga medida mayor que k)?38

¿Cuántos homotetos de C se pueden empaquetar si cada uno de ellos debe cubrir al39

menos k puntos de S (o tener medida al menos k)? Probaremos que, siempre que S40

no sea demasiado degenerado, la respuesta a ambas preguntas es Θd(
|S|
k
), donde la41

constante oculta es independiente de d. Resultados análogos se cumplen en el caso42

de medidas. Se introduce una generalización de las densidades estándar de cubierta43

y empaquetamiento de un cuerpo convexo C a espacios de medida de Borel en Rd
44

y, utilizando las cotas antes mencionadas, mostramos que están acotadas por arriba45

y por debajo, respectivamente, por funciones de d. Como un resultado intermedio,46

damos una demostración simple de la existencia de ϵ-redes débiles de tamaño O(1
ϵ
)47

para homotetos de C. Siguiendo algunos trabajos recientes en geometría discreta, se48

investigará el caso d = k = 2 con mayor detalle. Luego proporcionamos algoritmos49

de tiempo polinomial que construyen un empaquetado/cubierta que exhibe la cota50

de Θd(
|S|
k
) mencionada anteriormente en caso de que C sea una bola Euclideana.51

Finalmente, mostraremos que si C es un cuadrado, entonces decidir si S puede ser52

cubierto por |S|
4

cuadrados que contienen 4 puntos cada uno es NP-difícil. A lo largo53

de este texto se obtienen otros resultados menores.54
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Abstract55

This work revolves around the two following questions: Given a convex body C ⊂ Rd,56

a positive integer k and a finite set S ⊂ Rd (or a finite Borel measure µ on Rd), how57

many homothets of C are required to cover S if no homothet is allowed to cover more58

than k points of S (or have measure larger than k)? How many homothets of C can59

be packed if each of them must cover at least k points of S (or have measure at least60

k)? We prove that, so long as S is not too degenerate, the answer to both questions61

is Θd(
|S|
k
), where the hidden constant is independent of d. This is optimal up to a62

multiplicative constant. Analogous results hold in the case of measures. Then we63

introduce a generalization of the standard covering and packing densities of a convex64

body C to Borel measure spaces in Rd and, using the aforementioned bounds, we65

show that they are bounded from above and below, respectively, by functions of d.66

As an intermediate result, we give a simple proof the existence of weak ϵ-nets of size67

O(1
ϵ
) for the range space induced by all homothets of C. Following some recent work68

in discrete geometry, we investigate the case d = k = 2 in greater detail. We also69

provide polynomial time algorithms for constructing a packing/covering exhibiting70

the Θd(
|S|
k
) bound mentioned above in the case that C is an Euclidean ball. Finally,71

it is shown that if C is a square then it is NP-hard to decide whether S can be covered72

using |S|
4

squares containing 4 points each.73
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Chapter 195

Introduction96

Packings and coverings in Euclidean spaces play a central role in discrete and compu-97

tational geometry, and they have countless applications to other areas, such as anal-98

ysis, topology and crystallography. Perhaps the most famous (and oldest) problem99

in the subject is the three dimensional sphere packing problem (or Kepler’s conjec-100

ture), which, informally, asks for the densest packing of congruent spheres in three101

dimensional space. Despite extensive efforts, it was not until 1998 that Thomas Hales102

claimed to have a complete proof which would widely be regarded as correct; he pre-103

sented the final version of this proof in a joint paper with Ferguson [20].104

Beyond Euclidean balls, determination of the most "efficient" packing and covering105

in Rd with congruent copies of a convex body C has received a lot of attention;106

the packings and covering densities of C provide a formal way of measuring said107

efficiency. It is well known that these quantities are bounded from below and from108

above, respectively, by a function of d (independent of C), and even stronger bounds109

have been derived for centrally symmetric convex bodies. The translational packing110

and covering densities, where we are only allowed to use translates of C, have also111

been studied in depth. We refer the reader to [41] for a survey on packings and112

coverings and a detailed history of Kepler’s conjecture, and to [12] for many open113

problems and interesting questions.114

Tessellations (which are both packings and coverings) have piqued the interest115

of people both in and out of the field and have inspired artists since ancient times.116

Packings and coverings in other spaces and, particularly, in graphs and hypergraphs,117

are fundamental to several areas of mathematics and computer sciences.118

Our work revolves around the two following natural questions: Given a convex119

body C, a finite set of points S ⊂ Rd, and a positive integer k, how many homothets120

of C are required in order to cover S if each homothet is allowed to cover at most k121

points? (covering question). How many homothets can be packed if each of them must122

cover at least k points? (packing question). We shall denote these two quantities by123

f(C, k, S) and g(C, k, S), respectively. Analogous functions can be defined if, instead124

of S, we consider a finite Borel measure µ in Rd. As far as we know, these questions125

1



CHAPTER 1. INTRODUCTION 2

have not been studied before in such generality.126

Clearly, f(C, k, S) ≥ |S|
k

and g(C, k, S) ≤ |S|
k

, and it is easy to construct, for127

any C and k, arbitrarily large sets S for which equality holds (take, for example,128

any set formed by some clusters which lie far away from each other and contain k129

points each). Perhaps surprisingly, under some mild assumptions on S (or µ) f and130

g will also be bounded from above and below, respectively, by linear functions of |S|
k

131

(or µ(Rd)
k

), that is, f(C, k, S) = Od(
|S|
k
) and f(C, k, S) = Ωd(

|S|
k
), where the hidden132

constant depends only on d. For Euclidean balls, both of these bounds follow from133

the Besicovitch covering theorem, first shown by Besicovitch [7] in the planar case134

and later extended to higher dimensions and more general objects by Morse [26] and135

Bliedtner and Loeb [11], this is discussed in further detail in the following section. We136

give a proof of the desired bounds for f and g that does not rely on the Besicovitch137

covering theorem.138

The classical packing and covering densities depend implicitly on the Lebesgue139

measure. We introduce a generalization of covering and packing densities to Borel140

measure spaces in Rd. Then, using the aforementioned bounds on f and g, we show141

that for every C and every nice enough measure, these covering and packing densities142

are bounded from above and below, respectively, by two constants that depend only143

on d. When restricted to the Lebesgue measure, this is equivalent to the relatively144

simple fact, mentioned earlier, that the standard covering and packing densities are145

accordingly bounded by a function of d.146

For squares, disks and triangles in the plane, the case k = 2 has received some147

attention in discrete geometry ([14, 1, 5, 34, 4, 10]). Continuing this trend, we sepa-148

rately study the case d = k = 2 for more general convex bodies.149

We discuss algorithms for efficiently packing and covering with homothets that150

contain at least k and at most k points, respectively. Bereg et al. [5] showed that, even151

for k = 2, finding an optimal packing with such homothets of a square is NP-hard,152

we complement this result by showing that the covering problem is also NP-hard in153

the case of squares [5].154

At some point in this work, we require some basic tools from the study of Delaunay155

triangulations and ϵ-nets.156



Chapter 2157

Preliminaries158

2.1 Basic notation and definitions159

A set C ⊂ Rd is a convex body if it is convex, compact and its interior is nonempty.160

Furthermore, if the boundary of a convex body contains no segment of positive length,161

then we say that it is a strictly convex body. Given any set C ⊂ Rd, an homothetic copy162

of C (or, briefly, an homothet of C) is any set of the form λC+x = {λc+x : c ∈ C} for163

some x ∈ Rd and λ > 01; the number λ is said to be the coefficient of the homothety2.164

From here on, C will stand for a convex body in Rd.165

We say that a set of points S ⊂ Rd is non-t/C-degenerate if it is finite and the166

boundary of any homothet of C contains at most t elements of S. We say that S is167

in C-general position if it is non-(d+ 2)/C-degenerate.168

All measures we consider in this work are Borel measures in Rd which take finite169

values on all compact sets. A measure µ is finite if µ(Rd) < ∞. We say that a170

measure is non-C-degenerate if it vanishes on the boundary of every homothet of C.171

Notice that, in particular, any absolutely continuous measure (with respect to the172

Lebesgue measure) is non-C-denegerate. Finally, a measure µ is said to be C-nice if173

it is finite, non-C-degenerate, and there is a ball K ⊂ Rd such that µ(K) = µ(Rd).174

Given a set of points S ⊂ Rd (resp. a measure µ) and a positive number k, an175

homothet will be called a k+/S-homothet (k+/µ-homothet) if it contains at least k176

elements of S (if µ(C ′) ≥ k). Similarly, k−/S-homothets and k−/µ-homothets are177

homothets that contain at most k points and have measure at most k, respectively.178

For any finite set S and any positive integer k, define f(C, k, S) as the least179

number of k−/S-homothets of C that can be used to cover S, and g(C, k, S) as the180

maximum number of interior disjoint k+/S-homothets of C that can be arranged in181

Rd. Similarly, for any C-nice measure µ and any real number k > 0, define f(C, k, µ)182

as the the minimum number number of k−/µ-homothets that cover K, where K183

1Some texts ask only that λ ̸= 0. We consider only positive homothets.
2An homothety maps every point p ⊂ Rd to λp+ x, for some x ∈ Rd, λ ̸= 0.

3



CHAPTER 2. PRELIMINARIES 4

denotes the ball such that µ(K) = µ(Rd)3, and define g(C, k, µ) as the maximum184

number of interior disjoint k+/µ-homothets that can be arranged in Rd. It is not185

hard to see that, since S is finite and µ is C-nice, f and g are well defined and take186

only non-negative integer values.187

Next, we introduce α-fat convex objects. For any point x ∈ Rd and any positive188

r, let B(x, r) denote the open ball with center x and radius r (with the Euclidean189

metric). We write Bd for B(O, 1), where O denotes the origin (this way, rBd denotes190

the ball of radius r centered at the origin). Given α ∈ (0, 1], a convex body C will191

be said to be α-fat if B(x, αr) ⊆ C ⊆ B(x, r) for some x and r. The following well192

known fact (e.g. [24, 2]) will play a key role in ensuring that the hidden constants in193

the bounds of f and g are independent of C.194

Lemma 2.1.1. Given a convex body C ⊂ Rd, there exists a non-singular affine195

transformation T such that T (C) is 1/d-fat. More precisely, Bd ⊆ T (C) ⊆ dBd.196

By a planar embedded graph we mean a planar graph drawn in the plane so that197

the vertices correspond to points, the edges are represented by line segments, no edge198

contains a vertex other than its endpoints, and no two edges intersect, except possibly199

at a common endpoint.200

As usual, Sd−1 stands for the unit sphere in Rd centered at the origin. We denote201

the Euclidean norm of a point x ∈ Rd by |x|. Throughout this text we use the202

standard O and Ω notations for asymptotic upper and lower bounds, respectively.203

The precise definitions can be found, for example, in any introductory textbook on204

algorithm design and analysis.205

2.2 Packing and covering densities206

A family of sets in Rd forms a packing if their interiors are disjoint, and it forms a207

covering if their union is the entire space. The volume of a measurable set A ⊂ Rd
208

is simply its Lebesgue measure, which we denote by Vol(A). The precise definitions209

of packing and covering densities vary slightly from text to text; for reasons that will210

become apparent later, we follow [41].211

Let A be a family of sets, each having finite volume, and D a set with finite
volume, all of them in Rd. The inner density dinn(A|D) and outer density dout(A|D)
are given by

dinn(A|D) =
1

Vol(D)

∑
A∈A,A⊂D

Vol(A),

dout(A|D) =
1

Vol(D)

∑
A∈A,A∩D ̸=∅

Vol(A).

3Strictly speaking, f is a function of C, k, µ and K. This will not cause any trouble, however,
since all the properties that we derive for f will hold independently of the choice of K.
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We remark that these densities may be infinite.212

The lower density and upper density of A are defined as

dlow(A) = lim inf
r→∞

dinn(A|rBd),

dupp(A) = lim sup
r→∞

dout(A|rBd).

It is not hard to see that these values are independent of the choice of O.213

The packing density and covering density of a convex body C are given by

δ(C) = sup{dupp(P) : P is a packing of Rd with congruent copies of C},

Θ(C) = inf{dlow(C) : C is a covering of Rd with congruent copies of C}.

The translational packing density δH(C) and the translational covering density214

ΘH(C) are defined by taking the supremum and infimum over all packings and cov-215

erings with translates of C, instead of congruent copies. See [41] for a summary of216

the known bounds for the packing and covering densities.217

Notice that the definitions of upper and lower density of A with respect to D218

are directly tied to the Lebesgue measure, but could be readily extended to other219

measures. Similarly, the translates of C can be interpreted as homothets of C that220

have the same Lebesgue measure as C. These observations motivate the following221

generalization of the previous definitions.222

Let µ be a measure on Rd. For a family A of sets of finite measure and a set D,
also of finite measure, we define the inner density with respect to µ dinn(µ,A|D) and
the outer density with respect to µ dout(µ,A|D) as

dinn(µ,A|D) =
1

µ(D)

∑
A∈A,A⊂D

µ(A),

dout(µ,A|D) =
1

µ(D)

∑
A∈A,A∩D ̸=∅

µ(A).

The lower density with respect to µ and upper density with respect to µ of A are
now given by

dlow(µ,A) = lim inf
r→∞

dinn(µ,A|rBd),

dupp(µ,A) = lim sup
r→∞

dout(µ,A|rBd).

If µ is non-C-degenerate and µ(C) > 0, then we define the homothety packing
density with respect to µ and the homothety covering density with respect to µ as

δH(µ,C) = sup{dupp(µ,P) : P is a packing of Rd with homothets of C of measure µ(C)},
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ΘH(µ,C) = inf{dlow(µ, C) : C is a covering of Rd with homothets of C of measure µ(C)}.

Given the properties of µ, it is not hard to see that the sets over which we take223

the infimum and the supremum are nonempty.224

The packing and covering density can also be generalized in a natural way by225

considering packings and coverings with sets that are similar4 to C and have fixed226

measure µ(C). However, all lower bounds on δH(µ,C) and all upper bounds on227

ΘH(µ,C), which are one of the main focus points of this work, are obviously true228

for the (non-translational) packing and covering densities as well. Just as in the229

Lebesgue measure case, the packings and covering densities with respect to µ measure,230

in a sense, the efficiency of the best possible packing/covering of the measure space231

induced by µ.232

See [41] for a review of the existing literature on packings and coverings and [12]233

for further open problems and interesting questions.234

2.3 The Besicovitch covering theorem235

The Besicovitch covering theorem extends an older result by Vitali [42]. The result236

was first shown by Besicovitch in the planar case, and then generalized to higher237

dimensions by Morse [26], it can be stated as follows238

Theorem 2.3.1. There is a constant cd (which depends only on d) with the following
property: Given a bounded subset A of Rd and a collection F of Euclidean balls such
that each point of A is the center of at least one of these balls, it is possible to find
subcollections F1,F2, . . . ,Fcd of F such that each Fi consists of disjoint balls and

A ⊂
cd⋃
i=1

⋃
B∈Fi

B.

In fact, Morse [26] and Bliedtner and Loeb [11] extended the result to more general239

objects and normed vector spaces. Füredi and Loeb [18] have studied the optimal240

value of cd. Later, Füredi and Loeb [18] studied the least value of cd for which the241

result holds.242

Assume that a finite set S ⊂ Rd is such that for each point p ∈ S there is a ball243

with center p that covers exactly k elements of S, then the collection of all these |S|244

balls covers S. By the Besicovitch covering theorem, we can find cd subcollections,245

each composed of disjoint balls, whose union covers S. Each subcollection clearly246

contains at most |S|
k

balls and, thus, their union forms a covering of S formed by247

at most cd
|S|
k

k−/S-homothets of Bd. Since the union of the subcollections covers248

S, it contains at least |S|
k

balls, and we can find a subcollection with at least 1
cd

|S|
k

249

4Two sets A and B in Rd are similar if there exists a λ > 0 such that λA and B are congruent.
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balls, which is actually a packing formed by k+/S-homothets of Bd. This shows that250

f(Bd, k, S) = Od(
|S|
k
) and g(Bd, k, S) = Ωd(

|S|
k
). A careful analysis of the proof by251

Bliedtner and Loeb [11] (combined with some other geometric results), reveals that252

this can be extended to general convex bodies.253

The Besicovitch covering theorem has applications in analysis, geometric measure254

theory and probability.255

2.4 VC-dimension and ϵ-nets256

A set system is a pair Σ = (X,R), where X is a set of base elements and R is a257

collection of subsets of X. Given a set system Σ = (X,R) and a subset Y ⊂ X, let258

R|Y = {Y ∩R : R ∈ R}. The VC-dimension of the set system is the maximum integer259

d for which there is a subset Y ⊂ X with |Y | = d such that R|Y consists of all 2d260

subsets of Y , the VC-dimension may be infinite. In a way, the VC-dimension measures261

the complexity of a set system, and it plays a very important role in multiple areas,262

such as computational geometry, statistical learning theory, and discrete geometry.263

Let Σ = (X,R) be a set system with X finite. An ϵ-net for Σ is a set N ⊆ X264

such that N ∩ R ̸= ∅ for all R ∈ R with |R| ≥ ϵ|X|. A landmark result of Haussler265

and Welzl [23] tells us that range spaces with VC-dimension at most d admit ϵ-nets266

whose size depends only on d and 1
ϵ
; in fact, any random subset of X of adequate size267

will be such an ϵ-net with high probability. The precise bounds were later improved268

by Pach and Tardos [33].269

Given a point set X and a family R of sets (which are not necessarily subsets270

of X), the primal set system (X,R|X) induced by X and R is the set system with271

base set X and R|X = {R ∩ X | R ∈ R}. If X is finite, a weak ϵ-net for the range272

space (X,R|X) is a set of elements W ⊂
⋃

R∈R R such that W ∩R ̸= ∅ for all R ∈ R273

with |R|X | ≥ ϵ|X|. Weak ϵ-nets have been particularly studied in geometric settings,274

where X is a set of points and the elements of R are geometric objects; and this is also275

the setting that we care about here. The most famous result in the subject asserts276

the existence of a weak ϵ-net whose size depends only on d and ϵ for any primal set277

system induced by a finite set of points and the convex subsets of Rd, the best known278

upper bounds on the size of such a net are due to Rubin [38, 37]. Weak epsilon nets279

can also be defined for finite measures: if µ is finite and R is a family of sets in Rd,280

a weak ϵ-net for the pair (µ,R) consists of a collection W of points in Rd such that281

W ∩R ̸= ∅ for all R ∈ R with µ(R) ≥ ϵµ(Rd).282

We refer the reader to [29] for a survey on ϵ-nets and other similar concepts.283

2.5 Delaunay triangulations284

Given a finite point set S ⊂ R2, the Delaunay graph D(S) is the embedded planar285

graph with vertex set S in which two vertices are adjacent if an only if there is an286
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Euclidean ball that contains those two points but no other point of S. It is not hard287

to check that D(S) is indeed planar and that, as long as no four points lie on a circle288

and no three belong to the same line, D(S) will actually be a triangulation5.289

Delaunay graphs have a natural generalization which arises from considering gen-290

eral convex bodies instead of balls. The Delaunay graph of S with respect to C, which291

we denote by DC(S), is the embedded planar graph with vertex set S and an edge292

between two vertices if an only if there is an homothet of C that covers those two293

points but no other point of S. If C is strictly convex and has smooth boundary, and294

S is in C-general position and does not contain three points on the same line, then295

DC(S) will again be a triangulation. The edges of DC(S) encode the pairs of points296

of S that can be covered using a 2−/S-homothet of C and, thus, finding an optimal297

cover with 2−/S-homothets is equivalent to finding the largest possible matching in298

DC(S).299

It is good to keep in mind that Delaunay graphs can be defined analogously in300

higher dimensions, even if we will only really need them in the planar case.301

Many properties of generalized Delaunay triangulations can by found in Cano’s302

PhD dissertation [13].303

2.6 Previous related work304

The functions f and g have been indirectly studied in some particular cases. The first305

instance of this that we know of appeared in a paper by Szemerédi and Trotter [39],306

who obtained a lemma that implies a bound of g(C, k, S) = Ω( |S|
k
) in the case that C307

is a square in the plane; they applied this result to a point-line incidence problem.308

Dillencourt [14] studied the largest matching that can be obtained in a point set309

using disks; in our setting, this is actually equivalent to the k = 2 case of the covering310

problem. Dillencourt showed that all planar Delaunay triangulations (with respect to311

disks) are 1-tough6 and thus, by Tutte’s matching theorem, contain a matching of size312

⌊ |S|
2
⌋. Ábrego et al. [1] obtained a similar result for squares; they essentially proved313

that, as long as no two points lie on the same vertical or horizontal line, the Delaunay314

triangulation with respect to an axis aligned square contains a Hamiltonian path and,315

as a consequence, a matching of size ⌊ |S|
2
⌋. These results immediately translate to316

f(C, 2, S) ≤ ⌈ |S|
2
⌉ whenever C is a disk or a square (and S has the required properties),317

this bound is obviously optimal. Panahi et al. [34] and Babu et al. [4] studied the318

problem for equilateral triangles (their results actually hold for any triangle, as can319

be seen by applying an adequate affine transformation), it was shown in the second320

of these papers that as long as S is in general position the corresponding Delaunay321

graph must admit a matching of size at least ⌈ |S|−1
3

⌉ and that this is tight. Ábrego322

5An embedded planar graph with vertex set S is a triangulation if all its bounded faces are
triangles and their union is the convex hull of S.

6Given a positive real number t, a graph G is t-tough if in order to split it into any number k ≥ 1
of connected components, we need to remove at least tk vertices.
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et al. [1] also studied strong matchings for disks and squares, which are interior323

disjoint collections of homothets, each of which covers exactly two points of the set,324

their results imply that g(C, 2, S) ≥ ⌈ |S|−1
8

⌉ if C is a disk and g(C, 2, S) ≥ ⌈ |S|
5
⌉ if C325

is a square, again under some mild assumptions on S. The bound for squares was326

improved to g(C, 2, S) ≥ ⌈ |S|−1
4

⌉ by Biniaz et al. in [10], where they also showed that327

g(C, 2, S) ≥ ⌈n−1
9
⌉ in the case that C is an equilateral triangle and presented various328

algorithms for computing large strong matchings of various types. In a similar vein,329

large matchings in Gabriel graphs7 and strong matchings with upward and downward330

equilateral triangles are treated in [9, 10].331

Bereg et al. [5] considered matchings and strong matchings of points using axis332

aligned rectangles and squares. They provided various algorithms for finding large333

such matchings and showed that deciding if a point set has a strong perfect matching334

using squares (i.e. deciding if g(C, 2, S) = |S|
2

in the case that C is a square) is335

NP -hard.336

7The Gabriel graph of a planar point set S is the graph in which two points p, q ∈ S are joined
by an edge if an only if the disk whose diameter is the segment from p to q contains no other point
of S.



Chapter 3337

Results338

3.1 Overview of Chapter 4339

In Section 4.1 we use a simple technique by Kulkarni and Govindarajan [25] to con-340

struct a weak ϵ-net of size Od(
1
ϵ
) for any primal range space (on a finite base set341

of points S) induced by the family HC of all homothets of a convex body C. This342

result follows too from the known bounds on the Hadwiger-Debrunner (p, q)-problem343

for homothets (see [15]), but our proof is short and elementary, and it also yields344

an analogous result for finite measures. We remark that Naszódi and Taschuk [31]345

showed that (Rd,HC) may have infinite VC-dimension for d ≥ 3, so there might be346

no small (strong) ϵ-net for (S,HC |S). For d = 2, however, any range space induced347

by pseudo-disks, and thus (S,HC |S), admits an ϵ-net of size O(1
ϵ
) [35, 28].348

In Section 4.2, we use the result on weak ϵ-nets to show that, under some mild349

assumptions, f(C, k, S) = Od(
|S|
k
), f(C, k, µ) = Od(

µ(Rd)
k

). The proof does not make350

use of the Besicovitch covering theorem (see Section 2.3).351

The bound for measures is then applied in Section 4.3 to prove that if µ is non-352

C-degenerate, µ(C) > 0 and µ(Rd) = ∞, then the translational covering density353

ΘH(µ,C) is bounded from above by a function of d. It is easy to see that ΘH(µ,C)354

is infinite for finite measures, so the µ(Rd) = ∞ condition is essential.355

3.2 Overview of Chapter 5356

In Section 5.1 we prove that, under the same conditions that allowed us to obtained357

an upper bound for f , g(C, k, S) = Ωd(
|S|
k
), g(C, k, µ) = Ωd(

µ(Rd)
k

). The (again, self358

contained) proof relies on some properties of collections of homothets which intersect359

a common homothet; this resembles the study of τ -satellite configurations in the proof360

of the Besicovitch covering theorem in [11, 26].361

Similar to the covering case, the bound on g is then utilized in Section 5.2 to prove362

that if µ is non-C-degenerate and µ(Rd) > µ(C) > 0, then the translational packing363

10
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density ΘH(µ,C) is bounded from below by a function of d. The µ(Rd) > µ(C)364

condition is clearly necessary.365

3.3 Overview of Chapter 6366

Given C ⊂ Rd and a positive integer k, let C-k-COVER denote the optimization367

problem that consists of determining, given an instance point set S ⊂ Rd, the least368

integer m such that S can be covered by m k−/S-homothets of C. Similarly, the369

problem C-k-PACK consists of finding the largest m such that there is a packing370

composed of m k+/S-homothets of C.371

Section 6.1 is devoted to the description of polynomial time algorithms for ap-372

proximating C-k-COVER and C-k-PACK up to a multiplicative constant in the case373

that C is a disk. The proofs are based on the ideas developed in sections 4.1, 4.2 and374

5.1.375

There has been extensive research regarding the complexity of geometric set cover376

problems, and a variety of these have been shown to be NP-complete, see [17] for377

one of the first works in this direction. As mentioned in Section 2.6, Bereg et al. [5]378

proved that when C is a square it is NP-hard to decide if g(C, 2, S) = |S|
2

; this implies,379

in particular, that C-2-COVER is NP-hard for squares. As long as we are capable380

of computing DC(S) in polynomial time (which is the case for hypercubes, balls and381

any other convex body which can be described by a bounded number of algebraic382

inequalities), f(C, 2, S) can be computed, also in polynomial time, by applying any383

of the known algorithms for finding the largest possible matching in a given graph.384

However, in Section 6.2 we show that if C is a square and k is a multiple of 4, then385

deciding if f(C, k, S) = |S|
k

is NP-hard. Unfortunately, our proof is not very robust386

in the sense that it depends heavily on the fact that C is a square and that S is not387

required to be in general position.388

3.4 Overview of Chapter 7389

As mentioned in Section 2.6, Dillencourt [14] showed that the Delaunay triangulation390

(with respect to disks) of a point set S ⊂ R2 with no three points on the same line391

and no four points on the same circle is 1-tough. Biniaz [8] later gave a simpler proof392

of this result.393

In Section 7.1 we extend the technique of Biniaz to show that, under some as-394

sumptions on C and S, DC(S) is almost t-tough, where t depends on how fat C is (or,395

rather, how fat it can be made by means of an affine transformation). This result is396

then applied, again in similar fashion to [8], in Section 7.2 to bound f(C, 2, S). Using397

a well known result by Nishizeki and Baybars [32] on the size of the largest matchings398

in planar graphs, we also obtain a weaker bound that holds in greater generality.399



Chapter 4400

Covering401

4.1 Small weak ϵ-nets for homothets402

The purpose of this section is to prove the following result about weak ϵ-nets.403

Theorem 4.1.1. Let C ⊂ Rd be a convex body and denote the family of all homothets404

of C by HC. Then, for any finite set S ⊂ Rd and any ϵ > 0, (S,HC |S) admits a weak405

ϵ-net of size Od(
1
ϵ
), where the hidden constant depends only on d. Similarly, for any406

C-nice measure µ, (µ,HC) admits weak ϵ-net of size Od(
1
ϵ
).407

The simple lemma below will provide us with the basic building blocks for con-408

structing the weak ϵ-net.409

Lemma 4.1.2. There is a constant c1 = c1(d) with the following property: Given a410

convex body C ⊂ Rd, there is a finite set PC ⊂ Rd of size at most c1 that hits every411

homothet C ′ of C with C ′ ∩ C ̸= ∅ and homothety coefficient at least 1.412

Proof. Let T be an affine transformation as in Lemma 2.1.1. We begin by showing413

the result for CT = T (C). Every homothet C ′
T with C ′

T ∩ CT ̸= ∅ and coefficient414

at least 1 contains a translate C ′′
T of CT with C ′′

T ∩ CT ̸= ∅; this translate satisfies415

C ′′
T ⊆ dBd + 2dBd ⊂ [−3d, 3d]d. On the other hand, Bd ⊂ CT , so C ′′

T must contain416

a translate of an axis parallel d-hypercube of side 2√
d
. Now it is clear that we may417

take PCT
to be the set of points from a 2√

d
grid1 that lie in the interior of [−3d, 3d]d,418

and this grid may be chosen so that |PCT
| ≤ (3d3/2)d. Setting c1(d) = (3d3/2)d and419

PC = T−1(PCT
) yields the result.420

Notice that the value 1 plays no special role in the proof, the result still holds421

(with a posssibly larger c1) if we wish for PC to hit every homothet whose coefficient422

is bounded from below by a positive constant. The construction used in the proof423

1By a 2
1
√
d

grid we mean an axis parallel d-dimensional grid with separation 1
2
√
d

between adjacent
points.

12
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has the added benefit that it allows us to compute PC in constant time (for fixed d),424

so long as we know T .425

Using some known results, it is possible to obtain better bounds for c1. In fact,426

a probabilistic approach by Erdős and Rogers [16] (see also [36]) shows that we can427

take428

c1(d) ≤ 3d+12d
d

d+ 1
d(log d+ log log d+ 4)

for all large enough d. See [19] for some earlier bounds on c1(d).429

Next, we prove Theorem 4.1.1.430

Proof. We show that (S,HC |S) admits a small weak ϵ-net, the proof for (µ,HC) is431

analogous. The weak ϵ-net W is constructed by steps. Consider the smallest homothet432

C ′ of C which contains at least ϵ|S| points of S and add the elements of the set PC′ ,433

given by Lemma 4.1.2, to W . Now, we forget about the points covered by C ′ and434

repeat this procedure with the ones that remain until there are less than ϵ|S| points435

left. Since we pick at most c1 points at each step, |W | ⩽ c1
1
ϵ
, so all that is left to do436

is show that W is a weak ϵ-net for (S,HC |S).437

Let C1 be an homothet with C1 ∩ S ⩾ ϵ|S| and consider, along the process of438

constructing W , the first step at which the taken homothet contains at least one439

element of S∩C1, this homothet will be called C2. Clearly, C1 and C2 have nonempty440

intersection and, since none of the points in C1 had yet been erased when PC2 was441

added to W , C1 is not smaller than C2. It follows that C1 contains at least one point442

of PC2 ⊂ W , as desired.443

As mentioned in the introduction, the technique from the last paragraph was first444

used by Kulkarni and Govindarajan [25] to show that primal set systems induced by445

hypercubes and disks admit weak ϵ-nets of size O(1
ϵ
).446

We remark that if c is a constant then it suffices to take, at each step, an homothet447

C ′ that contains at least ϵ|S| points and its coefficient is at most c times larger than448

the coefficient of the smallest homothet with that property, and then add to W the449

set given by Lemma 4.1.2 when 1 is substituted by 1/c. This observation will be450

important in Chapter 6.451

4.2 Covering finite sets and measures452

At last, we state the main result about the asymptotic behavior of the function f453

defined in Section 2.2.454

Theorem 4.2.1. Let C ⊂ Rd be a convex body. Then, for any positive integer k455

and any non-k
2
/C-degenerate set of points S ⊂ Rd, we have that f(C, k, S) = O( |S|

k
),456

where the hidden constant depends only on d. Similarly, for any positive real number457

k and any C-nice measure, f(C, k, µ) = O(µ(R
d)

k
).458
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Again, we start by proving the result for point sets and then discuss the minor459

adaptations that must be made when working with measures.460

As was essentially done in the proof of Lemma 4.1.2, we may and will assume that461

Bd ⊆ C ⊆ dBd. The two simple geometric results below will allow us to construct462

the desired covering.463

Observation 4.2.2. For any d and any positive real r, there is a constant c(d, r)464

with the following property: every set of points on Sd−1 which contains no two distinct465

points at distance less than r has at most c(d, r) elements.466

Proof. Obvious. A straightforward (d− 1)-volume counting argument yields

c(d, r) <
vold−1(Sd−1)

vold−1(Bd−1)rd−1
.

467

Determination of the optimal values of c(d, r) is often referred to as the Tammes468

problem. Exact solutions are only known in some particular cases, see [27] for some469

recent progress and further references.470

Lemma 4.2.3. Let P ⊂ Rd be a (possibly infinite) bounded set and consider a col-471

lection of homothets {Cp}p∈P such that Cp is of the form p + λC and
⋂

p∈P Cp ̸= ∅.472

Then there is a subset P ′ of P of size at most c2 = c2(d) such that the collection of473

homothets {Cp}p∈P ′ covers P .474

Proof. Take c2(d) = c(d, t) (as in the claim above) for some sufficiently small t = t(d)475

to be chosen later. After translating, we may assume that O ∈
⋂

p∈P Cp. We construct476

P ′ by steps, starting from an empty set. At each step, denote by N the supremum477

of the Euclidean norms of the elements of P that are yet to be covered by {Cp}p∈P ′ ,478

and add to P ′ an uncovered point with norm at least (1 − 1
10d

)N . The process ends479

as soon as P ⊂
⋃

p∈P ′ Cp, we show that this takes no more than c2 steps. Suppose,480

for the sake of contradiction, that after some number of steps we have |P ′| > c2481

and let P ′
unit = { p

|p| | p ∈ P ′}. By Observation 4.2.2 there are two distinct points482

p1
|p1| ,

p2
|p2| ∈ P ′

unit (with p1, p2 ∈ P ′) at distance less than t from each other. Say,483

w.l.o.g., that p1 was added to P ′ prior to p2; it follows from the construction that484

|p1| > (1− 1
10d

)|p2|. Since Cp1 is 1/d-fat and contains O, the ball with center p1 and485

radius |p1|
d

lies completely within said homothet. Now, by convexity, Cp must contain486

a bounded cone with vertex O, base going trough p1/(1 − 1
10d

), and whose angular487

width depends only on d. It follows that if t is small enough then p2 lies within this488

cone and is thus contained in Cp1 (see figure 4.1). This contradicts the assumption489

that p2 was added after p1, and the result follows.490

We remark that the above result can easily be derived from the work of Naszódi491

et al. [30] (see also [18, 40]).492
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p1

p2

O

  p2

|p |2

  p1

|p |1

Figure 4.1: The point p2 is contained in a cone which lies completely inside Cp1 .

Now we present the proof of Theorem 4.2.1.493

Proof. We assume that |S|
k

≥ 1. For every p ∈ S, let Cp be the smallest homothet of494

the form λC + p which covers more than k
2

points of S (it exists, since C is closed495

and for any sufficiently large λ the homothet λC + p covers |S| > k
2

points). Since496

the boundary of Cp contains at most k
2

points, a slightly smaller homothet, also of497

the form λC + p, will cover at least |Cp ∩S| − k
2

but at most k
2

points. It follows that498

|Cp ∩ S| ⩽ k, that is, Cp is a k−/S-homothet. Let CS = {Cp | p ∈ S} and consider499

a weak k
2|S| -net W for (S,HC |S) of size O( |S|

k/2
) = O( |S|

k
), as given by Theorem 4.1.1.500

W hits every homothet of C which covers at least k
2

elements of S so, in particular,501

it hits all homothets in CS. We will use Lemma 4.2.3 to construct the desired cover502

using elements of CS. For each w ∈ W let Sw = {s ∈ S | w ∈ Cs}. The point503

set Sw and the homothets {Cp}p∈Sw satisfy the properties required in the statement504

of Lemma 4.2.3, so there is a subset S ′
w ⊂ Sw of size at most c2 such that the505

collection of homothets {Cp}p∈S′
w

covers Sw. Let SC =
⋃

w∈W S ′
w, we claim that the506

collection of k−/S-homothets {Cp}p∈SC
covers S. Indeed, for every s ∈ S, Cs is hit507

by some element of w, whence s ∈ Sw and s ∈
⋃

p∈S′
w
Cp ⊂

⋃
s∈SC

Cp. Furthermore,508

|SC | ⩽ c2|W | = Od(
|S|
k
), as desired.509

We move on to the proof of the measure theoretic version of our result. Suppose510

that µ is C-nice and K is a ball with µ(K) = µ(Rd) ≥ k. For every p ∈ K, let Cp511

be an homothet of the form λC + p which has measure k (again, it exists, since µ is512

not-C-degenerate and µ(K) ≥ k). Let Cµ = {Cp | p ∈ K} and consider a weak k
µ(Rd)

-513

net for (µ,HC) of size O(µ(R
d)

k
). From here, we can follow the argument in the above514
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paragraph to find a collection of Od(
µ(Rd)

k
) k−/µ-homothets (in fact, of homothets of515

measure exactly k) which cover K. This concludes the proof.516

We remark that the result still holds if, instead of being non-k
2
/C-degenerate, S is517

non-tk/C-degenerate for some fixed t ∈ (0, 1). In fact, this condition can be dropped518

altogether in the case that C is strictly convex. The implicit requirement that µ be519

non-C-degenerate could also be weakened, all that is needed is for no boundary of an520

homothet to have measure larger than tk (again, for fixed t ∈ (0, 1)).521

The proof of Theorem 4.2.1 (as well as Theorem 4.1.1) extends almost verbatim522

to weighted point sets. In the weighted case, the homothets are allowed to cover a523

collection of points with total weight at most k, and the result tells us that, as long524

as no boundary of an homothet contains points with total weight larger than k
2
, S525

can be covered using Od(
w(S)
k

) such homothets, where w(S) denotes the total weight526

of the points in S.527

4.3 Generalized covering density528

Theorem 4.3.1. Let C ⊂ Rd be a convex body and µ a non-C-degenerate measure529

such that µ(C) > 0 and µ(R) = ∞. Then ΘH(µ,C) is bounded from above by a530

function of d.531

Proof. For any Borel set K ⊂ Rd the restriction of µ to K, µ|K , is defined by532

µ|K(X) = µ(X ∩K). Notice that if K is bounded then µ|K is C-nice.533

At a high level, our strategy consists of choosing an infinite sequence of positive534

reals, λ0 < λ1 < λ2 < . . . , and constructing covers with homothets of measure µ(C) of535

each of the bounded regions λ0B
d, λ1B

d\λ0B
d, λ2B

d\λ1B
d, . . . using Theorem 4.2.1536

so that the union of these covers has bounded lower density with respect to µ. To537

be entirely precise, λi+1 will not be chosen until after the cover of λiB
d\λi−1B

d, . . .538

has been constructed. The main difficulty that arises is that, after applying Theorem539

4.2.1 to the restriction of µ to a bounded set, some of the homothets in the resulting540

cover may have measure (with respect to µ) larger than µ(C). Below, we describe a541

process that allows us to circumvent this issue. Here, the importance of defining dlow542

as we did (back in Section 2.2) will be clear.543

Choose λ0 > 0 such that µ(λ0B
d) ≥ µ(C) and set λ0B

d = λ0B
d. Theorem 4.2.1544

tells us that f(C, µ(C)
2

, µ|λ0Bd) ≤ cf,d
µ(λ0Bd)
µ(C)

, so λ0B
d can be covered using no more545

than cf,d
µ(λ0Bd)
µ(C)

homothets of C which have measure at most µ(C)
2

with respect to546

µ|λ0Bd . In fact, if all of them were µ(C)−/µ-homothets we could apply a dilation to547

each so that every one had measure µ(C) with respect to µ. The following lemma548

shows that any homothet of the cover whose measure is too large with respect to µ can549

be substituted by a finite number of µ(C)−/µ-homothets which are not completely550

contained in λ0B
d.551
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Lemma 4.3.2. Let B ⊂ Rd be a ball with µ(B) ≥ µ(C) and C ′ be an homothet of552

C such that µ|B(C ′) < µ(C) but C ′ ̸⊂ B. Then C ′ ∩ B can be covered by a finite553

collection of µ(C)−/µ-homothets of C, none of which is fully contained in B.554

Proof. Of course, we may assume that C ′ ∩ B ̸= ∅ and µ(C ′) > µ(C). Let C ′′ be an555

homothet with µ|B(C ′) < µ|B(C ′′) < µ(C) that results from applying dilation to C ′
556

with center in its interior; clearly, C ′ ⊊ C ′′ and µ(C ′′) > µ(C). Now, let B denote the557

closure of B and, for each p ∈ C ′ ∩ B, consider an homothet Cp with µ(Cp) = µ(C)558

that is obtained by applying a dilation to C ′′ with center p. Since µ(C ′′) > µ(C) and559

p lies in the interior of C ′′, Cp ⊊ C ′′ and p belongs to the interior of Cp (see figure560

4.2). We claim that Cp is not fully contained in B. Indeed, if it were, we would have561

Cp ⊂ B ∩ C ′′, but µ(B ∩ C ′′) = µ|B(C ′′) < µ(C), which contradicts the choice of Cp.562

Thus, for each point p ∈ C ′ ∩ B, Cp has measure µ(C) with respect to µ, it is not563

completely contained in B, and it covers an open neighborhood of p. The result now564

follows from the fact that C ′ ∩B is compact.565

B

p

C''

Cp

Figure 4.2: Configuration in the proof of Lemma 4.3.2.

Apply Lemma 4.3.2 (with B = λ0B
d) to each of the aforementioned homothets566

and then enlarge each homothet in the cover until its measure with respect to µ is567

µ(C). This way, we obtain a finite cover F0 of λ0B
d by homothets of measure µ(C)568

with respect to µ, of which at most cf,d
µ(λ0Bd)
µ(C)

are fully contained in λ0B
d.569

Now, suppose that λ0 < λ1 < · · · < λt have already been chosen so that there is a570

finite family Ft of homothets of measure µ(C) with respect to µ that covers λiB
d and571

has the following property: at most 2cf,d
µ(λiB

d)
µ(C)

of the homothets are fully contained572

in λiB
d for every i ∈ {0, 1, . . . , t}.573

Chose λt+1 so that 2λt < λt+1 and µ(λi+1B
d) ≥ µ(C)|Ft|

cf,d
(the condition µ(Rd) =574

∞ is crucial here). By Theorem 4.2.1, f(C, µ(C)
2

, µ|λt+1Bd) ≤ cf,d
µ(λt+1Bd)

µ(C)
; consider575

a cover that achieves this bound. Again by Lemma 4.3.2, each homothet in the576
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cover with measure larger than µ(C) with respect to µ can be substituted by a finite577

collection of homothets of measure at most µ(C) which are not fully contained in578

λt+1B
d, so that the homothets still cover λt+1B

d. After having carried out these579

substitutions, we enlarge each homothet in the cover so that it has measure µ(C)580

with respect to µ and then remove all homothets which are fully contained in λtB
d.581

The resulting family of homothets, which we denote by Ft+1,outer, covers λt+1B
d\λtB

d
582

and contains at most cf,d
µ(λt+1Bd)

µ(C)
homothets that lie completely inside λt+1B

d. Let583

Ft+1 = Ft ∪ Ft+1,outer. Ft+1 is a cover of λtB
d ∪ λt+1B

d\λtB
d = λt+1B

d that consists584

of homothets of measure µ(C) with respect to µ. Since no element of Ft+1,outer is585

a subset of λtB
d, there are no more than 2cf,d

µ(λiB
d)

µ(C)
homothets fully contained in586

λiB
d for every i ∈ {0, 1, . . . , t} and there are also no more than |Ft|+ cf,d

µ(λt+1Bd)
µ(C)

≤587

2cf,d
µ(λt+1Bd)

µ(C)
homothets contained in λt+dB

d.588

Repeating this process, we obtain a sequence λ0 < λ1 < . . . that goes to infinity589

and a sequence F0 ⊂ F1 ⊂ . . . of collections of homothets of measure µ(C) with590

respect to µ. Set F = ∪∞
i=0Fi, then F is a cover of Rd with homothets of measure591

µ(C) and, for i = 0, 1, . . . , we have that592

dinn(µ,F|λiB
d) =

1

µ(λiBd)

∑
C′∈F ,C′⊂λiBd

µ(C ′) ≤ 1

µ(λiBd)

2cf,dµ(λiB
d)

µ(C)
µ(C) = 2cf,d,

hence593

dlow(µ,F) = lim inf
r→∞

dinn(µ,F|rBd) ≤ 2cf,d,

and the result follows.594

Just as in the previous section, the result still holds as long as no boundary of an595

homothet has measure larger than tk for some fixed t ∈ (0, 1). Our argument can596

also be slightly modified to yield a cover with lower density at most (1 + ϵ)cf,d for597

any ϵ > 0, this implies that ΘH(µ,C) ≤ cf,d (recall that cf,d is the hidden constant598

in Theorem 4.2.1).599
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Packing601

5.1 Packing in finite sets and measures602

Theorem 5.1.1. Let C ⊂ Rd be a convex body. Then, for any positive integer k603

and any non-k
2
/C-degenerate set of points S ⊂ Rd, we have that g(C, k, S) = Ωd(

|S|
k
),604

where the hidden constant depends only on d. Similarly, for any positive real number605

k and any C-nice measure, g(C, k, µ) = Ω(µ(R
d)

k
).606

Again, we assume that Bd ⊆ C ⊆ dBd and |S| ≥ k, and we begin by proving the607

result for point sets.608

For each p ∈ S, denote by Cp the smallest homothet of the form λC + p which609

contains at least k points of S. All of the Cp’s are k+/S-homothets of C and, by610

the assumption that S is non-k
2
/C-degenerate, each of them contains less than 3k

2
611

elements of S. For any subset S ′ ⊆ S, let CS′ = {Cp | p ∈ S ′}. We require the612

following preliminary result.613

Claim 5.1.2. There is a constant c3 = c3(d) with the following property: If S ′ ⊂ S614

and p0 ∈ S ′ is such that Cp0 is of minimal size amongst the elements of CS′, then Cp0615

has nonempty intersection with at most c3k other elements of CS′.616

Proof. After translating, we may assume that Bd ⊆ Cp0 ⊆ dBd. For any r ∈ R, the617

number of translates of 1
2
Bd required to cover rdBd depends only on d and r and, by618

the choice of p0, every one of these balls of radius 1
2

contains less than k points of S ′.619

Hence, |rdBd ∩ S ′| ≤ cd,rk.620

Assume, w.l.o.g., that p0 = O and let c(d, t′) be as in Observation 4.2.2 for some621

small t′ = t′(d) to be specified later. For each r, denote by S ′
r ⊂ S ′ the set that622

consists of those points p ∈ S ′ such that p /∈ rdBd and Cp intersects Cp0 . Since C623

is 1/d-fat, it is not hard to see that for some large enough rd (which depends only624

on d) the following holds: if p1, p2 ∈ S ′
rd

are such that |p1| ≥ |p2| and p1
|p1| ,

p2
|p2| are at625

distance less than t′, then p2 ∈ Cp1 . We can then proceed along the lines of the proof626

19
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of Lemma 4.2.3 to show that S ′
rd

can be covered by no more than c(d, t′) elements627

of CS′ , which yields |S ′
rd
| ≤ 3

2
c(d, t′)k. Hence, there are at most (cd,rd +

3
2
c(d, t′))k628

elements of CS′ which have nonempty intersection with Cp0 , and the result follows by629

setting c3 = cd,rd +
3
2
c(d, t′).630

We can now prove Theorem 5.1.1.631

Proof. Let S ′ ⊆ S. We show by induction on |S ′| that there is a packing formed by632

at least ⌊ |S′|
c3k

⌋ elements from CS′ (if |S| < k, set CS′ = ∅); since CS consists only of633

k+/S homothets of C, the result will follow immediately.634

Our claim is trivially true if |S ′| < c3k. Let S ′ ⊆ S with |S ′| ≥ c3k and assume that635

the result holds for all subsets with less than |S ′| elements. Choose p0 ∈ S ′ so that Cp0636

is of minimal size amongst the elements of CS′ . Let Sp0 = {p ∈ S ′ | Cp∩Cp0 ̸= ∅} and637

set S ′′ = S ′−Sp0 . Since |S ′′| < |S ′|, the inductive hypothesis tells us that it is possible638

to choose t ≥ ⌊ |S′′|
c3k

⌋ points p1, p2, . . . , pt ∈ S ′′ so that the homothets Cp1 , Cp2 , . . . , Cpt639

are pairwise disjoint. By the definition of S ′′, these homothets do not intersect Cs0 ,640

this shows that we can choose t + 1 disjoint homothets from CS′ . By Claim 5.1.2,641

|S ′′| ≥ |S ′| − c3k and hence t ≥ ⌊ |S′|
c3k

⌋ − 1, which yields the result.642

Now, suppose that µ is C-nice and K is a ball with µ(K) = µ(Rd) > k. For each643

p ∈ K, define Cp as the smallest homothet of the form λC + p which has measure k644

and, for K ′ ⊆ K, let CK′µ = {Cp | p ∈ K ′}. Claim 5.1.2 can be easily adapted to645

measures, which then allows us to proceed as in the previous paragraph (except we646

now induct on µ(K ′)) to prove the measure theoretic version of Theorem 5.1.1.647

Similarly to Theorem 4.2.1, the non-k
2
-degeneracy condition on S can be relaxed648

to non-tk-degeneracy for some fixed t > 0, and the non-C-degeneracy of µ can be649

substituted for the weaker requirement that no boundary of an homothet has measure650

larger than tk. Again, the proof extends to suitable weighted points sets.651

In similar fashion to the proof of the Besicovitch covering theorem, it is also652

possible to derive Theorem 4.2.1 by adapting the technique above. Indeed, we could653

have defined Cp to be the smallest homothet of the form λC + p that contains at654

least k
2

points of S. The proof of 5.1.2 would then yield a collection of c3 k−/S-655

homothets of C that covers the set Sp0 = {p ∈ S | Cp ∩ Cp0 ̸= ∅}. We add these656

Od(1) homothets to the cover and add all the elements of Cp0 ∩ S to an initially657

empty set P . Now, consider p1 ∈ S − Sp0 such that the size of Cp1 is minimal and go658

through the same steps as before. This process is then repeated as long as S is not659

yet fully covered. At least k
2

new elements are added to P with each iteration, so the660

number of homothets in the final cover is no more than 2n
k
Od(1) = Od(

n
k
), as desired.661

The proof presented in Chapter 4, however, will lead to a randomized algorithm for662

approximating C-k-COVER in Section 6.1.663
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5.2 Generalized packing density664

Theorem 5.2.1. Let C ⊂ Rd be a convex body and µ a non-C-degenerate measure665

with µ(C) > 0 and µ(Rd) > µ(C). Then δH(µ,C) is bounded from below by a function666

of d.667

Proof. If µ(Rd) < ∞, the result follows readily by applying Theorem 5.1.1 to the668

restriction of µ to sufficiently large balls and then shrinking some homothets if nec-669

essary, so we assume that µ(Rd) = ∞. The strategy that we follow is similar to the670

one used for Theorem 4.3.1.671

Choose λ0 > 0 so that µ(λ0B
d) ≥ µ(C). By Theorem 5.1.1, g(C, µ(C), µ|λ0Bd) ≥672

cg,d
µ(λ0Bd)
µ(C)

, so there is a collection of at least cg,d µ(λ0Bd)
µ(C)

interior disjoint µ(C)+/µ|λ0Bd-673

homothets of C. Each homothet in this collection contains another homothet that674

has nonempty intersection with λ0B
d and whose measure with respect to µ is exactly675

µ(C). These smaller homothets form a finite packing, which we denote by F0.676

Assume that we have already chosen λ0 < λ1 < · · · < λt so that there is a finite677

packing Ft composed by homothets of measure µ(C) and at least cg,d
µ(λiB

d)
2µ(C)

of them678

have nonempty intersection with λiB
d for every i ∈ {0, 1, . . . , t}.679

Let λFt > λt be such that all homothets of Ft are fully contained in λFtB
d. Denote680

the region (λFt +1)Bd\λFtB
d by R and, for each l > 0, let µl be the measure defined681

by682

µl(X) = µ(X\(λFt + 1)Bd) + l vol(X ∩R).

Claim 5.2.2. If l is large enough, then any homothet that intersects both λFtSd−1
683

and (λFt + 1)Sd−1 has measure larger than 3
2
µ(C) with respect to µl.684

Proof. The claim follows from the fact that the volume of any homothet as in the685

statement is bounded away from 0. This last observation can be proven by a simple686

compactness argument.687

Let l be such that the property in Claim 5.2.2 holds and choose λt+1 so that688

2λt < λt+1, λFt < λt+1 and689

µl(λt+1B
d) ≥ 3µ(λt+1B

d)

4cg,d
+

3vol(R)

cg,dl

(this is possible, since we assumed that µ(Rd) = ∞). Theorem 5.1.1 tells us that690

g(C, 3
2
µ(C), µl|λt+1Bd) ≥ cg,d

2µl(λt+1Bd)
3µ(C)

; consider a packing by 3
2
µ(C)+/µl-homothets691

which has at least this many elements. This packing contains at most 2vol(R)
l µ(C)

ho-692

mothets C ′ with vol(C ′ ∩ R) l ≥ 1
2
µ(C), which we remove from the collection. By693

the choice of l, none of the remaining homothets intersects λtB
d and each of them694

has measure at least µ(C) with respect to µ. Shrinking each homothet we obtain a695
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packing Ft+1,outer formed by homothets of measure µ(C) with respect to µ, and it has696

at least697

2cg,d
3µ(C)

(
3µ(λt+1B

d)

4cg,d
+

3vol(R)

cg,dl

)
− 2vol(R)

l µ(C)
=

cg,d
2

µ(λt+1B
d)

µ(C)

elements. Let Ft+1 = Ft∪Ft+1outer, this is a packing with homothets of measure µ(C)698

with respect to µ, and it contains at least cg,d
2

µ(λiB
d)

µ(C)
elements which have nonempty699

intersection with λiB
d for each i ∈ {0, 1, . . . , t+ 1}.700

Repeating this process, we obtain a sequence λ0 < λ1 < . . . that goes to infinity701

and a sequence F0 ⊂ F1 ⊂ . . . of packings with homothets of measure µ(C) with702

respect to µ. Set F = ∪∞
i=0Fi, then F is a packing with homothets of measure µ(C)703

and, for i = 0, 1, . . . , we have that704

dout(µ,F|λiB
d) =

1

µ(λiBd)

∑
C′∈F ,C′∩λiBd ̸=∅

µ(C ′) ≥ 1

µ(λiBd)

cg,dµ(λiB
d)

2µ(C)
µ(C) =

cg,d
2

,

thus705

dupp(µ,F) = lim sup
r→∞

dout(µ,F|rBd) ≥ cg,d
2

,

as desired.706

Again, the result holds as long as no boundary of an homothet has measure larger707

than tk for some fixed t ∈ (0, 1). As in the proof of Theorem 4.3.1, our argument can708

be slightly modified to show that δH(µ,C) ≥ cg,d (where cg,d is the hidden constant709

in Theorem 5.1.1).710
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Algorithms and complexity712

6.1 Algorithms713

In this section we describe algorithms for approximating Bd-k-COVER and Bd-k-714

PACK (defined in Section 3.3) up to a multiplicative constant that depends on d.715

The algorithms also provide either a covering with k−/S balls or a packing with716

k+/S balls with that number of elements. The algorithms essentially recreate the717

constructive proofs of theorems 5.1.1 and 4.2.1.718

We first present a randomized algorithm for approximating Bd-k-COVER. Given719

a finite point set P ⊂ Rd, denote by ropt(P, k) the radius of the smallest ball that720

contains at least k points of P . The following result of Har-Peled and Mazumdar [22]721

(see also Chapter 1 in [21]) will be key.722

Theorem 6.1.1. Given a set P ⊂ Rd of n points and an integer parameter k, we723

can find, in expected Od(n) time, a (d-dimensional) ball of radius at most 2ropt(P, k)724

which contains at least k points of P .725

Theorem 6.1.2. Let S ⊂ Rd be a set of n points. There is an algorithm that finds a726

covering of S formed by Od(
n
k
) k−/S-homothets of Bd in expected Od(

n2

k
) time.727

Proof. By repeated applications of Theorem 6.1.1 we can find, in expected O(n
k
· n)728

time, a sequence B1, B2, . . . , Bt of balls and a sequence S = S1 ⊃ S2 ⊃ · · · ⊃ St+1 = ∅729

(with t ≤ ⌈2n
k
⌉) such that each Bi has radius at most 2ropt(Si, k/2), contains at least730

k/2 points of Si and satisfies Si ∩Bi = Si − Si+1.731

For each Bi, we can construct a set PBi
as in Lemma 4.1.2 in Od(1) time. The732

union W of these t sets forms a weak ϵ-net for (S,HB|S) (see Theorem 4.1.1). As in733

the proof of Theorem 4.2.1, for each p ∈ S let Bp be the smallest ball of the form734

λBd + p which covers at least than k
2

points of S (if S is not in k
2
/S-general position,735

we might have to perturb Bp slightly so that it contains no more than k points); we736

do not compute any of these balls at this point in time. Each Bp contains at least one737

23
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element of W , and we can find one such wp ∈ W in Od(W ) = Od(
n
k
) time by simply738

choosing from W a point that minimizes the distance to p. This is repeated for every739

p ∈ S.740

For every w ∈ W , let Sw = {p ∈ S | wp = w}. Select from Sw the point p that is741

the furthest away from w and compute the ball Bp. This can be done in Od(n) time,742

even in the case that a small perturbation is required, by looking at the distances743

from p to each other element of S. Add Bp to the final cover, remove the points in744

Bp from Sw, and repeat until Sw is empty. As can be seen from the proof of Lemma745

4.2.3, the process ends after Od(1) iterations.746

Repeat the scheme above for every w ∈ W to obtain a cover with the desired747

properties. This takes Od(
n
k
· n) time and, thus, the expected running time of the748

whole algorithm is precisely Od(
n
k
· n). See Section 4.2 for some omitted details.749

Theorem 6.1.3. Let S ⊂ Rd be a set of n points. There is an algorithm that computes750

a packing formed by Od(
n
k
) k+/S-homothets of Bd in Od(n

2) time.751

Proof. Following the proof of Theorem 5.1.1, for each p ∈ S let Bp be the smallest752

homothet of the form λBd+p which contains at least k points of S (as in the previous753

algorithm, we might have to perturb it slightly so that it contains no more than 3k
2

754

points) and, for S ′ ⊆ S, set BS′ = {Bp | p ∈ S ′}. Compute all the elements of BS in755

total Od(n
2) time and find a point p0 ∈ S such that Bp0 is of minimal radius. Add756

Bp0 to the packing. By Claim 5.1.2, there are at most c3k points p ∈ S such that Bp757

intersects Bp0 and, given the radius of each Bp, we can compute in linear time the758

set Sp0 ⊂ S formed by all of these points. Now, we find a point p1 ∈ S − Sp0 such759

that Bp1 is of minimal radius, add it to the packing, and repeat the process above760

for as long as possible. At the end, we get a packing composed of Ωd(
n
k
) balls which761

contain at least k points of S. Each of the (at most) n
k

iterations takes Od(n) time,762

so the running time of the algorithm is dominated by the Od(n
2) time that it takes763

to compute the elements of BS.764

In the same way that the proof of Theorem 5.1.1 can be adapted to obtain an765

upper bound for f (see the last paragraph of Section 4.2), we can also modify the766

algorithm above to get the following result.767

Theorem 6.1.4. Let S ⊂ Rd be a set of n points. There is an algorithm that com-768

putes, in Od(n
2) time, a cover of S formed by Od(

n
k
) k−/S-homothets of Bd.769

6.2 Complexity770

As mentioned in Section 2.6, Bereg et al. [5] showed if C is a square then deciding771

whether g(C, 2, S) = |S|
2

is NP-hard. We prove a similar result for C-k-COVER.772
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Theorem 6.2.1. Let C be a square and k a positive multiple of 4. Then C-k-COVER773

is NP-hard. In fact, it is NP-hard to determine whether f(C, k, S) = |S|
k

or not.774

Proof. Suppose that C is a square. We provide a polynomial time reduction from775

3-SAT1 to C-4-COVER. The construction can easily be adapted to work for any k776

multiple of 4.777

Suppose we are given an instance of 3-SAT. To each variable we will assign a778

collection of points with integer coordinates which form a sort of loop; the number779

of points in each of these loops will be a multiple of 4. For each clause, there will780

be a couple of smaller loops formed too by integer points; the number of points in781

each of these two loops will be even, but not a multiple of 4. The total number of782

points will thus be a multiple of 4, say, 4m. We will call a square good if it covers783

exactly 4 points. The goal is to construct the loops in such a way that the Boolean784

formula is satisfiable if and only if the points can be covered by m good squares. Such785

a collection of squares will be referred to as a good cover. Note that in a good cover786

each point is covered by exactly one square. For an overview of the construction, see787

figure 6.1.788

.
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clause 1 loops clause 2 loops

Figure 6.1: Overview the layout of the variable loops (black) and clause loops (red).

At each crossing between two variable loops the points are arranged as in figure789

13-SAT consists of determining the satisfability of a Boolean formula in conjunctive normal form
where each clause has three variables. 3-SAT is well known to be NP-complete.
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6.2. By spacing the loops appropriately and constructing their topmost sections at790

slightly different heights, we ensure that any square covering points from two different791

variable loops covers either more than 4 points or covers a crossing between those two792

loops. The configuration of the points at each crossing makes it so that every good793

square which contains points from two variable loops covers exactly two points from794

each of those loops.795

Figure 6.2: Top left: placement of the points around a crossing between two variable
loops. The other pictures depict all the essentially different ways in which a good
square can cover the crossing.

Figure 6.3 depicts the gadget used to simulate each clause. The configuration796

inside each of the 6 red circles is designed so that any good square (inside the circle)797

which covers points from both the clause loop and the corresponding variable loop798

covers precisely two points from each. This way, any good square will cover an even799

number of points from each variable loop. The points of each variable loop are labeled800

(in order) from 1 to 4t (for some t that depends on the loop). We say that a good801

cover assigns the value true (resp. false) to a variable if any two points labeled 2s and802

2s+ 1 (resp. 2s+ 1 and 2s+ 2) in the corresponding loop are contained in the same803

square, where the indices are taken modulo the total number of points in the loop.804

Clearly, a good cover assigns exactly one Boolean value to each variable. The points805

inside cx,1 can be arranged so that if a good square that is contained in cx,1 covers806

points from both the clause loop and the variable loop that corresponds to variable807

x, then it contains the points labeled with 4s and 4s + 1 if x is not negated in the808

clause, or it contains the points labeled with 4s+1 and 4s+2 if x appears in negated809

form (¬x). Similarly, the points in cx,2 are placed so that a good square which covers810

points from both the variable and the clause loops covers the points labeled as 4s+2811

and 4s + 3 if x is not negated, or the points 4s + 3 and 4s + 4 if x is negated. The812
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points in cy,1, cy,2, cz,1 and cz,2 are arranged analogously.813

cx,1 cz,2

cx,2

cy,1 cy,2

cz,1

Figure 6.3: Placement of the points around each clause loop. Up to reflection and
rotation, the points inside each of the six blue circles are arranged as shown on the
right. There is essentially a unique way of placing a good square that covers points
from both the clause loop and the corresponding variable loop.

Since the number of points of the clause loop is even but not a multiple of 4, in any814

good cover there must be a square that contains two points from said loop and two815

points from one of the three corresponding variable loops. The construction described816

in the last paragraph makes it so that this is only possible if the cover assigns to one817

of the three variables the value that makes the clause true. Since this holds for all818

clause loops simultaneously, this shows that in order for a good cover to exist the819

formula must be satisfiable. We prove that the converse is true as well. Suppose that820

the formula is satisfiable and consider an assignment of Boolean values that satisfies821

it. For every clause choose a variable that has been assigned the correct value (with822

respect to the clause). Each variable loop can be covered by good squares which823

assign to it the correct value and such that one of these squares covers two points824

from each clause loop for which the variable was chosen (again, this is possible by the825

construction described above). The only thing that could go wrong when covering826

the variable loops is for the number of squares that cover two points from the variable827

loop to be odd, but this will not happen, since each variable corresponds to two loops828

and the number of crossings between any two variable loops is even. Since exactly829

two points from each variable loop have been covered, the number of points that still830

need to be covered in each variable loop is a multiple of four, so we can easily extend831

this collection of good squares to a good cover with ease. We have shown that the832

initial formula is satisfiable if and only if the point set admits a good cover.833
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Each clause gadget can be constructed in a region of constant height and width.834

Furthermore, the spacing between variable loops is can also be made constant. This835

way, the reduction can be carried out in a region whose height is linear in the number836

of variables, and whose width is linear in the number of clauses. The construction837

can also be realized in polynomial time. This concludes the proof.838
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Matching points with homothets840

7.1 Toughness of Delaunay triangulations841

Theorem 7.1.1. Let C ⊂ R2 an α-fat strictly convex body with smooth boundary and842

S ⊂ R2 a finite point set in C-general position such that no three points of S lie on843

the same line. If U ⊂ S, then DC(S)− U has less than844

450° − 4 arcsinα

arcsinα
|U |+ 2arcsinα− 90°

arcsinα

connected components.845

Of course, the result holds as long as C can be made α-fat by an affine transfor-846

mation.847

Note that as α goes to 1 we get that DC(S) is 1-tough, as was shown in [8] for848

Delaunay triangulations with respect to disks. We will need the following geomet-849

ric lemma, which generalizes a well-known angular property of standard Delaunay850

triangulations.851

Lemma 7.1.2. Let C ⊂ R2 an α-fat convex body and S ⊂ R2 a finite point set.852

Suppose that abc and cda are two adjacent bounded faces of DC(S). We have that853

∡abc+ ∡cda ≤ 360° − 2 arcsinα.

Proof. The points b and d lie on different sides of the line that goes through a and c.854

Also, since (a, c) is an edge of DC(S), there is an homothet C ′ of C that contains a855

and c but contains neither b nor d, we can actually choose C ′ so that a and c lie on856

its boundary. This is all the information that we need in order to deduce the result.857

By translating and rescaling, we may assume that αB2 ⊂ C ′ ⊂ B2. The points a858

and c are not contained in αB2, since they lie on the boundary of C. The fact that859

C is convex implies that the convex hull conv(αB2 ∪ {a, c}) does not contain b and860

d (see figure 7.1 a). It is possible to slide b and d until they lie on the boundary of861

29
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conv(αB2 ∪ {a, c}) without decreasing the values of ∡abc and ∡cda, so we may and862

will assume that they lie on said boundary. By a similar argument, it suffices to prove863

the inequality under the assumption that a and c lie on the boundary of B (see figure864

7.1 b).865

2
B c

b d

a

2aB

2B
c

b

d

a

2
aB

(a) (b)

Figure 7.1: Configuration in the proof of Lemma 7.1.2

It is not hard to see that ∡abc grows larger as b gets closer to either a or c.866

Similarly, ∡cda grows larger as d gets closer to either a or c. Thus, ∡abc + ∡cda ≤867

360°−Θ, where Θ is the measure of the angle at a (or, equivalently, c) of conv(αB2∪868

{a, c}). A simple calculation shows that Θ ≥ 2 arcsinα, with equality if an only if869

the segment joining a to c goes through the closure of αB.870

Instead of trying to prove Theorem 7.1.1 directly, we first bound the size of an871

independent set1 in DC(S).872

We return to the proof of873

Theorem 7.1.3. Let C and S be as in the statement of Theorem 7.1.1 and I ⊂ S874

an independent set of vertices of DC(S). Then875

|I| < 450° − 4 arcsinα

450° − 3 arcsinα
|S|+ 90° − 2 arcsinα

450° − 3 arcsinα
.

Proof. Let S ′ = S\I and notice that at least one vertex u of the outer face of DC(S)876

must belong to S ′. For each edge of DC(S) consider an homothet of C that contains877

its endpoints and no other element of S, and take two points v, w /∈ S which are878

not contained in any of those homothets and such that the triangle with vertices u, v879

and w contains all points of S. By the choice of v and w, the Delaunay triangulation880

DC(S∪{v, w}) contains DC(S) as a subgraph (see figure 7.2). Let D′ the subgraph of881

DC(S∪{v, w}) induced by S ′∪{v, w}. Since I is an independent set of DC(S∪{v, w})882

and contains no vertex of the outer face, each point in I corresponds to a bounded face883

of D′ which is bounded by a cycle and is not a face of DC(S ∪ {v, w}). The previous884

observation shows, in particular, that D′ is connected. Following the terminology885

in [8], we classify the bounded faces of D′ as good faces if they are also faces of886

1A set of vertices of a graph forms an independent set if no two of them are adjacent.
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DC(S ∪ {v, w}), and as bad faces if they contain one point of I; note that each887

bounded face falls in exactly one of these two categories. Let g and b = |I| be the888

number of good and bad faces, respectively.889

We will asign some distinguished angles to each edge of D′. If (p, q) is an interior890

edge of D′ then it is incident to two bounded faces pqr and qps of DC(S ∪ {v, w});891

we assign the edge (p, q) to the angles ∠qrp and ∠psq. Each exterior edge (p, q) is892

incident to a single such face pqr; we assign (p, q) to ∠qrp (see figure 7.2). On one893

hand, all three angles of any good face are distinguished and add up to 180°. On the894

other hand, every bad face contains a point of I and all angles of DC(S ∪ {v, w})895

which are anchored at that point are distinguished and add up to 360°. The total896

measure of the distinguished angles is thus897

T = g · 180° + b · 360°.

This quantity can also be bounded using Lemma 7.1.2, as follows. Each edge of898

D′ is assigned to at most two distinguished angles, which have total measure at most899

360° − 2 arcsinα (indeed, this is trivial if there is only one such angle, and it follows900

from the lemma if there are two). By Euler’s formula, the number of edges of D′ is901

|S ′ ∪{v, w}|+ (b+ g+1)− 2 = |S|+ g+1. Each of the three edges on the outer face902

is assigned to only one angle, so summing over all edges we get903

T < (360° − 2 arcsinα)(|S|+ g − 2) + 3 · 180°,

whence904

g · 180° + b · 360° < (360° − 2 arcsinα)(|S|+ g − 2) + 540°.

Since each element of I is incident to at least three faces of the triangulation DC(S ∪905

{v, w}) we get, again by Euler’s formula, that906

3(|S|+ 2)− 6 ≥ g + 3b,

so g ≤ 3(|S| − b). We momentarily set β = 2arcsinα, then the two inequalities yield907

b · 360° < (360° − β)|S|+ (180° − β)(3|S| − 3b)− 2(360° − β) + 540°,
908

(900° − 3β)b < (900° − 4β)|S| − (180° − 2β),
909

|I| = b <
900° − 4β

900° − 3β
|S| − 180° − 2β

900° − 3β
,

and the result follows.910

The following simple lemma extends a result used in [8].911

Lemma 7.1.4. Let C ⊂ R2 a strictly convex body and S ⊂ R2 a finite point set in912

C-general position. Consider an homothet C ′ of C whose boundary contains exactly913

two points, p and q say, of S. Then p and q are connected by a path in DC(S) that914

lies in C ′.915
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u

wv

Figure 7.2: An example of how the Delaunay triangulation DC(S ∪ {u,w})
might look. All distinguished angles are marked in red. This figure, which

appeared in [8], was provided to us by Ahmad Biniaz.

Proof. The proof is by induction on the number of points t contained in the interior916

of C ′. If t = 0, then p, q are adjacent in DC(S) and we are done. Otherwise, let r917

be a point in the interior of C ′ and apply a dilation with center p until the image of918

C ′ has r on its boundary, we call this homothet C1, repeat this process but now with919

center q and call the resulting homothet C2. This way, p and r lie on the boundary of920

C1, while q and r lie on the boundary of C2; notice also that C1, C2 ⊂ C ′. Since C is921

strictly convex, we can ensure that the boundaries of C1 and C2 contain no point of S922

other than p, r and q, r, respectively, by taking a small perturbation of the homothets923

if necessary. Notice that the interiors of each of C1, C2 contain at most t − 1 points924

of S. Thus, by the inductive hypothesis, we can find two paths joining p to r and q925

to r inside C1 and C2, respectively. The union of the two paths we just mentioned926

contains a path from p to q that lies completely in C ′, as desired. See figure 7.3.927

C'

C1

C2

p

q

r

Figure 7.3: Configuration in the proof of Lemma 7.1.4.

Theorem 7.1.1 is an easy consequence of Theorem 7.1.3 and Lemma 7.1.4. Indeed,928

consider an arbitrary set of vertices U ⊂ S and choose a representative vertex from929
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each component of DC(S) − U . Let V be the set of all representative vertices and930

consider the Delaunay triangulation DC(U ∪ V ). Suppose that there is an edge in931

this graph between two vertices p and q of V , then there is an homothet C ′ such that932

C ′ ∩ (U ∪ V ) = {p, q}. Furthermore, by applying a slight perturbation if necessary,933

we may assume that C ′ contains no other point of S on its boundary. Lemma 7.1.4934

now tells us that there is a path in DC(S) joining p and q which lies in C ′. Since p935

and q lie in different components of DC(S)− U , this path must contain at least one936

vertex from U , which must therefore lie in C ′. This contradiction shows that V is an937

independent set of DC(U ∪ V ). By Lemma 7.1.3,938

|V | < 450° − 4 arcsinα

450° − 3 arcsinα
|(V ∪ U)| − 90° − 2 arcsinα

450° − 3 arcsinα
,

939

|V | < 450° − 4 arcsinα

arcsinα
|U | − 90° − 2 arcsinα

arcsinα
,

but |V | is just the number of components of DC(S)− U , so we are done.940

7.2 Large matchings in DC(S)941

For any graph G, let o(G) denote the number of connected components of G which942

have an odd number of vertices. The Tutte-Berge formula [6] tells us that the size of943

the maximum matching in a graph G with vertex set V equals944

1

2

(
|V | −max

U⊂V
{o(G− U)− |U |}

)
.

Combining Theorem 7.1.1 and the Tutte-Berge formula yields the main result of945

this chapter.946

Theorem 7.2.1. Let C ⊂ R2 an α-fat strictly convex body with smooth boundary and947

S ⊂ R2 a finite point set in C-general position such that no three points of S lie on948

the same line. Then DC(S) contains a matching of size at least949 (
1

2
− 450° − 5 arcsinα

900° − 6 arcsinα

)
|S|+ 45° − arcsinα

450° − 4 arcsinα

(
1 +

450° − 5 arcsinα

450° − 3 arcsinα

)
.

Again, the result also holds if C can be made α-fat by an affine transformation.950

Proof. Let U ⊂ S and notice that o(DC(S)−U) is at most the number of connected951

components of DC(S)− U . Whence, Theorem 7.1.1 implies that952

o(DC(S)− U) <
450° − 4 arcsinα

arcsinα
|U | − 90° − 2 arcsinα

arcsinα
,

953

|U | > arcsinα

450° − 4 arcsinα
o(DC(S)− U) +

90° − 2 arcsinα

450° − 4 arcsinα
.
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Since o(DC(S)− U) + |U | ≤ |S|, we have954 (
arcsinα

450° − 4 arcsinα
+ 1

)
o(DC(S)− U) +

90° − 2 arcsinα

450° − 4 arcsinα
< |S|,

955

o(DC(S)− U) <

(
450° − 4 arcsinα

450° − 3 arcsinα

)
|S| − 90° − 2 arcsinα

450° − 3 arcsinα
.

By the second equation,956

o(DC(S)− U)− |U | <
(
1− arcsinα

450° − 4 arcsinα

)
o(DC(S)− U)− 90° − 2 arcsinα

450° − 4 arcsinα
,

and so o(DC(S)− U)− |U | is less than957

450° − 5 arcsinα

450° − 4 arcsinα

(
450° − 4 arcsinα

450° − 3 arcsinα
|S| − 90° − 2 arcsinα

450° − 3 arcsinα

)
− 90° − 2 arcsinα

450° − 4 arcsinα

958

=
450° − 5 arcsinα

450° − 3 arcsinα
|S| − 90° − 2 arcsinα

450° − 4 arcsinα

(
450° − 5 arcsinα

450° − 3 arcsinα
+ 1

)
.

We get that |S| − (o(DC(S)− U)− |U |) must be larger than959 (
1− 450° − 5 arcsinα

450° − 3 arcsinα

)
|S|+ 90° − 2 arcsinα

450° − 4 arcsinα

(
450° − 5 arcsinα

450° − 3 arcsinα
+ 1

)
,

and the result follows.960

To conclude this chapter, we obtain a weaker bound that holds under more general961

conditions.962

Theorem 7.2.2. Let C ⊂ R2 be a strictly convex body. Then, for every finite set963

S ⊂ R2 we have that f(C, 2, S) ≤ |S| − ⌈1
3
(|S| − 8)⌉.964

Proof. We will essentially show that DC(S) (which is planar, but not necessarily a965

triangulations) can be turned into a planar graph of minimum degree at least three966

by adding a constant number of vertices, the theorem then follows from a result of967

Nishizeki and Baybars [32].968

For every x (not necessarily in S) on the boundary of C, let Ax be the smallest969

closed angular region which has x as its vertex and contains C, and αx ≤ 180° be970

the measure of the angle that defines Ax. Let ax = (Ax − x) ∩ S2, ax is an arc of S2
971

determined by an angle of measure αx. See figure 7.4.972

Lemma 7.2.3. There are five points in S2 such that, for every x on the boundary of973

C, ax contains at least one of these points in its interior.974
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x

Ax

ax x

Ax

ax

x

Ax
ax

O

A -xx

2S

(a) (b)

(c) (d)

Figure 7.4: (a),(b): two examples of Ax and αx. (c),(d): how Ax, Ax − x and ax
might look.
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Proof. Let x1, x2, ..., xr be distinct points on the boundary of C. The intersection975

∩r
i=1Axi

is a closed and convex polygonal region and a quick calculation shows that976 ∑r
i=1 αxi

≥ (r − 2)180°, where the equality occurs if and only if C is an r-agon with977

vertices x1, ..., xr. Since the result is easily seen to be true if C is either a triangle978

or a quadrilateral, we can assume that, for any distinct points x, y, z and w on the979

boundary of C, αx + αy + αz > 180° and αx + αy + αz + αw > 360°.980

Let A90° be the set that consists of all points x on the boundary of C such that981

αx ≤ 90°, then |A90°| ≤ 3. If |A90°| ≤ 2, we take four points in S2 such that they are982

the vertices of a square and that one of them is contained in the arc ax determined983

by one of the elements of A90°. This set of four points hits the interiors of all but984

at most one of the arcs ax, so it is possible to find five points in S2 which hit the985

interiors of all arcs. If |A90°| = 3, then
∑

x∈A90°
αx > 180°. By choosing a square Q986

with vertices in S2 uniformly at random, with positive probability Q will be such that987

v is contained in the interior of ax for more than two pairs (v, x) where v is a vertex988

of Q and x ∈ A90°. Since no arc ax with x ∈ A90° may contain more than one vertex989

of Q, every arc appears in at most one of the pairs. This implies that, with positive990

probability, the vertices of Q hit the interior of every arc ax for x ∈ A90°, but they991

clearly also hit the interior of every other ax and, thus, there is a set of four points (to992

which we can add any other point of S2 so that it has five elements) with the desired993

property.994

Let x1, x2, x3, x4, x5 be five points as in Lemma 7.2.3. Consider a very large positive995

real number γ to be specified later and let S ′ = S ∪ {γx1, γx2, . . . , γx5}.996

Claim 7.2.4. If γ is large enough then every point of S has degree at least 3 in997

DC(S
′).998

Proof. Let s ∈ S and consider an arbitrary line ℓ with ℓ ∩ S = {s} and an open999

halfplane H determined by ℓ, we show that if γ is large enough then s is adjacent to1000

a point in H. Assume, w.l.o.g, that ℓ is vertical and that H is the right half-plane1001

determined by ℓ and let xH be the leftmost point of C. Observe that, by Lemma 7.2.3,1002

for any large enough γ the angular region AxH
− xH + s contains at least one of the1003

points γx1, γx2, . . . , γx5. Now, consider the smallest λ > 0 such that the homothet1004

Cλ = λ(C − xH)+ s contains at least two points of S ′ (it exists, since Cλ will contain1005

s and at least one of γx1, γx2, . . . , γx5 if λ is very large). If necessary, perturb C ′
1006

slightly so that it contains s and exactly one other element of S ′, then this element1007

lies in H and is adjacent to s, as desired. This implies that, for large enough γ, the1008

neighbours of s are not contained in a closed halfplane determined by a line through1009

s, which is only possible if s has degree at least 3 in DC(S
′). Any large enough γ will1010

ensure that this holds simultaneously for every s ∈ S.1011

The result clearly holds for |S| ≤ 8, so we assume that |S| > 8. Let X ⊂1012

{γx1, γx2, . . . , γx5} be the set of γxi’s which are adjacent to at least one point of S1013

and delete the rest of the γxi’s from DC(S
′). It is not hard to see that |X| ≥ 2.1014
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If |X| = 2, join these two points of by an edge (skip this step if they are already1015

adjacent) and add a vertex v in the outer face of DC(S
′), then connect v to both1016

element of X and to some point in S while keeping the graph planar. Otherwise,1017

if |X| ≥ 2, we can add edges between the elements of X so that there is a cycle of1018

length |X| going through all of them and the graph remains planar. In any case, the1019

resulting graph is simple, planar, connected, and it has at least |S|+3 > 10 vertices,1020

all of degree at least three. Nishizeki and Baybars [32] showed that any graph with1021

these properties contains a matching of size at least ⌈1
3
(n+ 2)⌉, where n is the total1022

number of vertices. Let t ≤ 5 denote the number of vertices that do not belong to1023

S. Deleting all vertices not in S from the graph, we get a matching in DC(S) of size1024

at least ⌈1
3
(|S| + 2 + t)⌉ − t = ⌈1

3
(|S| − 8)⌉. This matching translates into a way of1025

covering S using no more than |S| − ⌈1
3
(|S| − 8)⌉ 2+/S-homothets of C.1026



Chapter 81027

Further research and concluding1028

remarks1029

A drawback of the lower and upper densities1030

Unlike the standard upper and lower densities of an arrangement, the measure theo-1031

retic versions introduced in Section 2.2 are in general not independent of the choice1032

of the origin. The reason for this is that, for any two points O1 and O2, the measures1033

of the balls B(O1, r) and B(O2, r) may differ in an arbitrarily large multiplicative1034

constant for every r. Although this can be avoided by adding the requirement that1035

µ(X) ≤ c · vol(X) for any compact X and some constant c, this defect begs the ques-1036

tion: is there a better way of extending the standard definitions to arbitrary Borel1037

measures?1038

Bounds in the other direction1039

The hidden constants cf,d and cg,d obtained in the proofs of theorems 4.2.1 and 5.1.11040

increase and decrease exponentially in d, respectively. We showed in Sections 4.3 and1041

5.2 that, under the right conditions, ΘH(µ,C) ≤ cf,d and δH(µ,C) ≥ cg,d (in the1042

case of measures). This yields, in particular, that cf,d ≥ ΘH(C) and cg,d ≤ δH(C)1043

for any C (we remark that this can also be obtained by considering the restriction of1044

the Lebesgue measure to large boxes). Both of these bounds also hold for the hidden1045

constants in the case of point sets, as can be shown by taking a sufficiently large1046

section of a grid.1047

Theorem 8.1. Let C ⊂ Rd be a convex body and ϵ any positive real number.1048

Then, for any sufficiently large k, there is an integer N(C, ϵ, k) such that for each1049

N with N > N(C, ϵ, k) the set [N ]d = {(x1, x2, ..., xd) ∈ Rd | xi ∈ [N ]}1 of integer1050

points inside a d-hypercube of side N satisfies f(C, k, [N ]d) > (ΘH(C) − ϵ)N
d

k
and1051

g(C, k, [N ]d) < (δH(C) + ϵ)N
d

k
.1052

1For each positive integer n, [n] denotes the set {1, 2, . . . , n}.

38
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Since the proof is quite straightforward, we give only a sketch of the bound for f .1053

Proof. Let δ > 0. For any sufficiently large k, there is an homothet C ′ of C of volume1054

less than (1 + δ)k which has the following property: Every homothet C1 of C that1055

covers at most k points of the lattice Zd is contained in a translate C2 of C ′ such that1056

every point covered by C1 has distance at least
√
d from the boundary of C2. Also,1057

for any sufficiently large N , the set [1, N ]d = {(x1, x2, ..., xd) | 1 ≤ xi ≤ N} cannot1058

be covered by less than (ΘH(C)− δ) Nd

(1+δ)k
translates of C ′.1059

Now, consider a cover of [N ]d by k−/[N ]d-homothets of C and for each of these1060

homothets take a translate of C ′ with the described properties. This way, we get a1061

cover of [1, N ]d with translates of C ′, and the result follows by taking a small enough1062

δ. This is not entirely correct, since the kd/[N ]d-homothets which are not completely1063

contained in [1, N ]d may not fit inside a translate of C ′ in the desired way, but these1064

become insignificant if we choose N(C, ϵ, k) to be large enough.1065

While this shows that the exponential growth of cf,d and exponential decay of cg,d1066

are necessary, we believe that these bounds are still far from optimal. It might be an1067

interesting problem to try and find point sets or measures for which f is large (or g1068

is small) with respect to |S|
k

(or µRd

µ(C)
).1069

Problem 1. What are the optimal values of cf,d and cg,d?1070

Given that determination of packing and covering densities tends to be a very1071

difficult problem, one should expect an exact solution to the problem above to be out1072

of reach (for now). Similar questions can be asked for the results in Section 7.2.1073

Problem 2. Can theorems 7.2.1 and 7.2.2 be improved?1074

Higher order Voronoi diagrams1075

In their point set versions, theorems 4.2.1 and 5.1.1 can be interpreted as a kind1076

of structural property of the order-k Voronoi diagram of S with respect to the (not1077

necessarily symmetric) distance function induced by C. The cells in this diagram1078

encode the k-element subsets of S that can be covered by an homothet of C which1079

contains exactly k points of S. See [3] for more on Voronoi diagrams.1080

Beyond convex bodies1081

While the assumptions that C is bounded and has nonempty interior can both easily1082

be seen to be essential to the results obtained in chapters 4 and 5, the convexity1083

hypothesis can be somewhat relaxed:1084

The kernel of a compact connected set C ⊂ Rd, denoted by ker(C), is the set1085

of points p ∈ C such that for every other q ∈ C the segment with endpoints p and1086

q is completely contained in C. We say that C is star-shaped if ker(C) ̸= ∅. Our1087
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results in Chapters 4 and 5 remain true as long as C is star-shaped and there is an1088

affine transformation T such that Bd ⊂ ker(C) ⊂ C ⊂ αBd for some α = α(d) that1089

depends only on d.1090

A sufficiently large grid (as in Theorem 8.1) or the restriction of the Lebesgue1091

measure to a large box show that we cannot hope to extend theorems 4.2.1 and1092

5.1.1 to non-convex bodies while keeping the hidden constant independent of C.1093

Complexity1094

Even though the reduction to 3-SAT given in Section 6.2 and the proof of NP-hardness1095

in [5] work only in some very particular cases, we conjecture the following.1096

Conjecture 3. Let C be a convex body and k ≥ 3 an integer, then C-k-COVER is1097

NP-hard. Similarly, for all k ≥ 2, C-k-PACK is NP-hard.1098

Covering with disjoint homothets1099

It is natural to ask whether a result along the lines of Theorem 4.2.1 holds if we require1100

that the k−/S-homothets in the cover have disjoint interiors. A sufficiently fine grid1101

(in the case of point sets) and the restriction of Lebesgue measure to a bounded1102

box (in the measure case) show that, in general, this is not the case, indeed, unless1103

θ(C) = 1, the number of interior-disjoint k−/S-homothets required in these cases will1104

not be bounded from above by a function of |S|
k

(µ(R
d)

µ(C)
, respectively). Perhaps the1105

most annoying unanswered questions are the following.1106

Problem 4. Let S be a finite set of at least k points in the plane and C a square. Is1107

the number of disjoint homothets required to cover S bounded from above by a function1108

of |S|
k

? Is it O( |S|
k
)? What is the answer if we add the restriction that no two points1109

of S lie on the same horizontal or vertical line?1110

We believe the answer to all the previous questions to be no. In fact, we suspect1111

that a family of examples which exhibit this can be constructed along the following1112

lines:1113

Set k to be very large and start by taking a uniformly distributed set of about k1114

points inside the unit square. Choose m points (with m much smaller than k) inside1115

the square such that the set of their 2m x and y coordinates is independent over Q1116

and place k points around a very small neighborhood of each of these m points. It is1117

not hard to see that this would work directly (even for m = 1) if all the squares in1118

the cover were required to lie inside the unit square. This example can be adapted1119

to measures as well.1120

For k = 2, this problem is equivalent to the study of strong matchings; see Section1121

2.6 for details.1122
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Weak nets for zonotopes1123

A centrally symmetric convex polytope is a zonotope if all its faces are centrally1124

symmetric2. Notice that each face of a zonotope is a zonotope itself. Examples of1125

zonotopes include hypercubes, parallelepipeds and centrally symmetric convex poly-1126

gons.1127

For zonotopes with few vertices, the following geometric lemma can act as a sub-1128

stitute of 4.1.2, allowing us to construct even smaller weak ϵ-nets.1129

Lemma 8.2. Let Z ⊂ Rd be a zonotope and consider two homothets Z1 and Z2 of Z1130

with non-empty intersection. If Z1 is at least as large as Z2, then it contains at least1131

one vertex of Z2.1132

Proof. We proceed by induction on d. The result is trivial for d = 1 (here, Z ⊂ R is1133

simply an interval). Let p1 and p2 be the centers of Z1 and Z2, respectively, and Z ′
21134

be the result of translating Z2 along the direction of −−→p1p2 so that Z1 and Z ′
2 intersect1135

only at their boundaries; p′2 will denote the center of Z ′
2 (see 8.1 a). Now, let t11136

and t2 be the intersection points of the segment p1p
′
2 with the boundaries of Z1 and1137

Z ′
2, respectively. Consider a facet f1 of Z1 which contains t1, since Z is centrally1138

symmetric, there is a negative homothety from Z1 to Z ′
2, and this homothety maps1139

f1 into a facet f2 of Z ′
2 which contains t2 and is parallel to f1. Let h1 and h2 be the1140

parallel hyperplanes that support f1 and f2, respectively, then Z1 is contained in the1141

halfspace determined by h1 that contains p1, while Z2 is contained in the halfspace1142

determined by h2 that contains p2. Suppose that t1 ̸= t2, then p1, t1, t2, p2 must lie1143

on the segment p1p2 in that order and, by our previous observation, Z1 and Z2 would1144

not intersect (see 8.1 2b), it follows that t1 = t2 and, thus, f1 ∩ f2 ̸= ∅. Now, since f11145

and f2 are homothetic d− 1 dimensional zonotopes and f2 is not larger than f1, the1146

induction hypothesis implies the existence of a vertex v of f2 contained in f1.1147

Let w be the vertex of Z2 which is mapped to v by the translation from Z2 to1148

Z ′
2, we claim that w is contained in Z1. The positive homothety from Z2 to Z1 maps1149

w to a vertex w′ of Z1. The points p1, p2, v, w and w′ all lie on the same plane and,1150

since Z2 is not larger than Z1, w′ is contained in the closed region determined by the1151

lines wp1 and wv which is opposite to p2. This way, w belongs to the convex hull of1152

the points p1, v and w′; since these three points belong to the convex set Z1, so does1153

w (see 8.1 c). This concludes the proof.1154

Proceeding as in the proof of Theorem 4.1.1, we get the following corollary, which1155

generalizes a result for hypercubes by Kulkarni and Govindarajan [25].1156

Corollary 8.3. Let Z ⊂ Rd be a zonotope with V vertices and denote by HZ the1157

family of all homothets of C. Then, for any finite set S ⊂ Rd and any ϵ > 0, (S,HZ |S)1158

2A zonotope is commonly defined as the set of all points which are linear combinations with
coefficients in [0, 1] of a finite set of vectors, but the alternative definition given here, which is widely
known to be equivalent, serves our purpose much better.
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Figure 8.1: (a): Z1, Z2 and Z ′
2 (b): How the configuration would look if t1 ̸= t2 (c):

Region where w′ lies highlighted in grey and triangle w′vp1 in red.

admits a weak ϵ-net of size V
ϵ
.1159

We also have the following variant of Lemma 4.2.3.1160

Lemma 8.4. Let Z ⊂ Rd be a zonotope and denote by I the number of pairs (f, v)1161

where f is a facet of Z and v is a vertex of f . Let P ⊂ Rd be a finite set and1162

consider a collection of homothets {Zp}p∈P of Z such that Zp is of the form p + λZ1163

and
⋂

p∈P Zp ̸= ∅. Then there is a subset P ′ of P of size at most I such that {Zp}p∈P ′1164

covers P .1165

Proof. Assume that and O ∈
⋂

p∈P Zp and that O is the center of Z. Let (f, v) be1166

a pair as in the statement of the lemma and consider the homothet Z ′ that results1167

from applying a dilation to Z with center v and ratio 1
2
, the intersection of f with1168

this homothet will be denoted by fv. Repeating this for every pair (f, v), we obtain1169

a decomposition of the facets of Z into I interior disjoint regions.1170

Now, for every pair (f, v), let Pf,v consist of all the points p ∈ P with the property1171

that the ray
−→
Op has non-empty intersection with fv. Note that each element of P1172

belongs to at least one the aforementioned sets. From every Pf,v, choose an element1173

which is maximal with respect to the norm with unit ball Z and add it to P ′; it is1174

not hard to see that any homothet of Z that is centered at this point and contains1175
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O must cover every point in Pf,v. This way, P ′ ≤ I and {Zp}p∈P ′ covers the union of1176

all sets of the form Pf,v, which is P .1177

Plugging the bounds given by Corollary 8.3 and Lemma 8.4 into the proof of1178

Theorem 4.2.1 we obtain the following: If Z ⊂ Rd is a zonotope with V vertices1179

and I is as in the statement of lemma 8.4 then, for any positive integer k and any1180

non-k
2
/C-degenerate finite set of points S ⊂ Rd, f(Z, k, S) = 2V I|S|

k
.1181
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