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Preface

Many problems in Graph Theory are about deciding whether the vertex set
of an input graph admits a partition satisfying some adjacency constraints
between the parts of the partition. Matrix partitions describe problems as above
when the adjacency constraints are either two parts are completely adjacent,
they are completely nonadjacent, or there is no restriction between the parts.

For each fixed matrix partition M , the class of graphs that admit an
M -partition can be characterized by the family of all minimal graphs with
the property of not admitting such partition, which are called its minimal
obstructions. This characterization is interesting since a certifying recognition
algorithm for the graphs with an M -partition can potentially use M -partitions
as yes-certificates and minimal M -obstructions as no-certificates.

Nevertheless, complete lists of minimal obstructions usually are difficult to
obtain for general graphs, so it is common to study these problems in restricted
graph classes. That is what we do in this thesis. For some well-behaved
graph classes, we study a kind of matrix partition problems called (s, k)-polar
partitions as well as other related vertex-partition problems encompassed under
the name of polarity. The selected graph classes that we study are divided in
two: graph classes that, in some sens, have just a few induced paths of length
three, and graph classes whose members have certain initial vertex-partition.
Additionally, just for some small matrix partitions we give complete lists of
minimal obstructions for general graphs.

It is worth mentioning that this work is a natural continuation of the thesis
that the author of this document wrote to obtain his master’s degree. In
such document was given a complete recursive characterization of minimal
(s, 1)-polar obstructions for graphs without induced paths on four vertices
(called cographs), as well as the complete family of four minimal obstructions
for (∞, 1)-polarity when restricted to cographs.

The present document is organized in four parts, each of them subdivided
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in two chapters. The first chapter contains the basic terminology needed to
read the rest of the document, including elementary concepts of Graph Theory
and Computational Complexity Theory, while the second chapter serves to
introduce graph classes with just a few induced P4s, as well as matrix partitions.

Both chapters in the second part are about characterizing properties related
to polarity when restricted to P4-free, P4-sparse, and P4-extendible graphs. The
main result of Chapter 3 is a partial recursive characterization for the minimal
(∞, k)-polar obstructions when restricted to cographs, and the complete lists
of cograph minimal (∞, k)-polar obstructions for the cases k = 2 and k = 3.
In Chapter 4, we generalize to P4-sparse and P4-extendible graphs almost all
known results about characterizations of polar properties in cographs, and we
develop linear time algorithms to decide whether a graph in the mentioned
classes has said properties. In that same chapter, it is proven that any hereditary
property, when restricted to either P4-sparse or P4-extendible graphs, has only
a finite number of minimal obstructions.

The third part of this document is also about polar properties, but this
time restricted to H-split graphs, which are families of graphs that generalize
the so-called split graphs. Due to their properties, we focus in two families
of H-split graphs, namely the pseudo-split graphs and the 2K2-split graphs.
Polarity on pseudo-split graphs is treated in Chapter 5, where we provided
finite lists of minimal obstructions for the main polar properties, and give
linear-time algorithms to recognize such properties on pseudo-split graphs from
their degree sequences; at the end of the chapter are studied the (k, ℓ)-colorings
of pseudo-split graphs. Results about polarity in 2K2-split graphs that are
analogous to those given in Chapter 5 for pseudo-split graphs are developed in
Chapter 6. We show that, among other differences, 2K2-split graphs that are
(s, k)-polar cannot be recognized from their degree sequence as pseudo-split
(s, k)-polar graphs do, but they are still efficiently recognizable. Since C4-split
graphs are the complements of 2K2-split graphs, analogous results are deduced
for these graphs.

Finally, in the fourth and last part, we give complete lists of minimal
obstructions for matrix partitions with three parts where every pair of different
parts are either completely adjacent or completely nonadjacent, except for at
most one of such pairs, which has no adjacency restriction. There are essentially
seven of such matrices; in Chapter 7 we characterize all of them but one, the
most difficult one, to which the final chapter is devoted.

Open problems and conjectures are provided throughout all the document,
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at the end of each chapter. Conclusions and future lines of work follows Chapter
8, as well as the bibliography, a glossary of symbols, and an alphabetical index
of concepts.
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Chapter 1

Elementary concepts

Throughout this chapter we set the necessary concepts to read the rest of
the document. In general, we follow the terminology of [2], although some
definitions may differ a bit.

1.1 Basics of Graph Theory
A graph G is an ordered pair (VG, EG) such that VG is a finite set whose
elements are called vertices, and EG is a set whose elements, called edges,
are 2-subsets of VG. The order and size of the graph G are ∣VG∣ and ∣EG∣,
respectively. The subscripts of the vertex and edge sets of a graph are usually
omitted when we work with a single graph or there is not risk of confusion. To
simplify the notation, we write uv to denote the edge {u, v}. Two vertices, u
and v, are said to be adjacent if uv is an edge; in such a case u and v are said
to be the ends of uv. Graphs are usually represented by drawing a small circle
for each of its vertices and joining any pair of adjacent vertices with a line.

The (open) neighborhood of a vertex u in a graph G, denoted by NG(u) ,
or simply N(u) when no confusion is possible, is the set of all vertices of G that
are adjacent to u; the closed neighborhood of u is the set N[u] = N(u)∪{u}.
Two vertices are called neighbors if one of them belongs to the neighborhood
of the other. The degree of a vertex u, denoted d(u), is the cardinality of
N(u). The non-increasing sequence of the vertex degrees of a graph G is called
the degree sequence of G.

Given two graphs, G and H, an isomorphism from G to H is a bijection
θ∶VG → VH such that, for any vertices u and v of G, uv ∈ EG if and only if
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θ(u)θ(v) ∈ EH . If there is an isomorphism from G to H, we say that G and
H are isomorphic, and we denoted it by G ≅ H.

A subgraph of a graph G is a graph H such that VH ⊆ VG and EH ⊆ EG.
An induced subgraph of G is a subgraph H of G such that two vertices are
adjacent in H if and only if they are adjacent in G. The induced subgraph of
G whose vertex set is V

′ is denoted by G[V ′]. The graph G[V \ V
′] is also

denoted by G − V
′ and, if V

′ is the single set {v}, we write G − v instead of
G − {v}. The graphs G − v are referred as the vertex-deleted subgraphs of
G. We use H ≤ G to indicate that G has an induced subgraph isomorphic to
H. We say that G is an H-free graph when H /≤ G; for a family of graphs H,
we say that G is H-free if it is H-free for every graph H ∈ H.

A class of graphs is hereditary if it is closed under induced subgraphs. A
property P of graphs is said to be hereditary if the class of graphs having
property P is hereditary. For a property of graphs P, a graph G is called a
P-obstruction if G does not have the property P. A P-obstruction such
that any proper induced subgraph of G has the property P is said to be a
minimal P-obstruction. Notice that, if P is a hereditary property of graphs,
then a P-obstruction G is minimal if and only if any vertex-deleted subgraph
of G has the property P. For a hereditary class of graphs G, G-obstructions
and minimal G-obstructions are respectively defined as the P-obstructions and
minimal P-obstructions, where P is the property of being a graph in G. The
following folklore characterization of hereditary properties implies that any
hereditary class of graphs is suitable to be characterized by its set of minimal
obstructions.

Theorem 1.1. Let P be a property of graphs, and let OP be the family of
all minimal P-obstructions. Then, P is hereditary if and only if the following
assertions are equivalent for any graph G.

1. G has the property P.

2. G is an OP-free graph.

A walk of length k in a graph G is a sequence of vertices W = (v0, v1, . . . , vk)
such that, for any i ∈ {1, . . . , k}, vi−1 is adjacent to vi; in this case v0 and vk

are called the ends of W . A path is a walk that does not repeat vertices; up
to isomorphisms, for each positive integer k, there exists one and only one path
of order k, which is denoted by Pk. A cycle is a walk W = (v0, v1, . . . , vk) of
length at least three such that, for any i and j with 0 ≤ i < j ≤ k, vi = vj if
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and only if i = 0 and j = k. Up to isomorphisms, for any integer k with k ≥ 3,
there is only one cycle of order k, which we denote by Ck. A hole is a cycle
of length at least 5. A cycle Ck is said to be odd or even accordingly to the
parity of k.

A graph G is connected if, for any two vertices u and v of G, there is
a path in G whose ends are u and v. A graph that is not connected is said
to be disconnected. The connected componets of a graph G, sometimes
simply called the components of G, are the induced subgraphs of G that are
maximum with the property of being connected.

The complement of a graph G, denoted G, is the graph with vertex set
VG such that two vertices are adjacent in G if and only if they are not adjacent
in G. A class of graphs F is called self-complementary if it is closed under
graph complements. A graph G is self-complementary if the family {G} is, i.e.
if G ≅ G. Given vertex disjoint graphs, G and H, we define the disjoint union
of G and H, denoted by G + H, as the graph with vertex set VG ∪ VH and
edge set EG ∪ EH . Congruently, we denote by nG the graph with n connected
components, each of them isomorphic to G. The graph G ⊕ H, called the join
of G and H, is the graph obtained from G + H by adding every edge with
one of its ends in VG and the other in VH . It is a simple observation that
G ⊕ H = G + H. We will use Wn to denote the wheel graph Cn ⊕ K1.

A complete graph is a graph such that any two of its vertices are adjacent;
up to isomorphisms, for each positive integer n, there exist only one complete
graph of order n, which is denoted by Kn. We say that a graph is trivial
if it is isomorphic to K1, and nontrivial otherwise. The complement of a
complete graph is an empty graph. A cluster is a graph whose connected
components are complete graphs. A k-cluster is a cluster with at most k
connected components. A graph whose complement is a cluster (respectively a
k-cluster) is called a complete multipartite graph (respectively, a complete
k-partite graph). It is easy to verify that clusters are characterized as the
P3-free graphs, while k-clusters are precisely the {P3, (k + 1)K1}-free graphs.
Complementarily, complete multipartite graphs are precisely the P3-free graphs,
and complete k-partite graphs are exactly the {P3, Kk+1}-free graphs.

Two no-necessarily distinct vertex subsets of a graph G, V1 and V2, are said
to be completely adjacent if every vertex u ∈ V1 is adjacent to any vertex of
V2 \ {u}. Similarly, V1 is completely nonadjacent to V2 if no vertex in V1 is
adjacent to a vertex in V2. A vertex subset V

′ of a graph G is called a clique if
it is completely adjacent to itself, or equivalently, if G[V ′] is a complete graph.
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The vertex subset V
′ is independent or stable if it is completely nonadjacent

to itself, i.e., if G[V ′] is an empty graph. A vertex subset U is said to be
homogeneous if V \ U admits a partition1 (A, B) such that U is completely
adjacent to A and completely nonadjacent to B.

The largest cardinality among all cliques of G is called the clique number
of G, and it is denoted by ω(G). Analogously, the largest cardinality among
all independent sets of G is called the independence number of G, and it
is denoted by α(G). Given nonnegative integers k and ℓ, a (k, ℓ)-coloring of
G is a partition (V1, V2, . . . , Vk+ℓ) of VG such that Vi is an independent set for
any i ∈ {1, . . . , k}, and Vj is a clique for each j ∈ {k + 1, . . . , k + ℓ}; a graph
G that admits a (k, ℓ)-coloring is said to be (k, ℓ)-colorable and sometimes
it is referred as a (k, ℓ)-graph. A (k, 0)-coloring of G is called a (proper)
k-coloring of G, and G is said to be k-colorable if it admits a k-coloring. The
2-colorable graphs receive the special name of bipartite graphs, and it is well
known that they can be characterized as the graphs that do not have odd-cycles
as induced subgraphs. The minimum integer k such that G admits a k-coloring
is the chromatic number of G, and it is denoted χ(G). The minimum integer
ℓ for which G has a (0, ℓ)-coloring is denoted by θ(G), and it is called the
clique covering number of G. A z-cocoloring of G is any (k, ℓ)-coloring of
G such that k + ℓ = z. We use χ

c(G) to denote the cochromatic number of
G, which is the minimum integer z for which G admits a z-cocoloring. A graph
G is said to be z-bicolorable if, for any integers k and ℓ such that k + ℓ = z,
G is (k, ℓ)-colorable. The bichromatic number of G, denoted χ

b(G), is the
minimum integer z such that G is z-bicolorable. Notice that, for any graph G,

χ
c(G) ≤ min{χ(G), θ(G)} ≤ max{χ(G), θ(G)} ≤ χ

b(G).
Clearly, the chromatic number of any graph is at least as big as its clique

number. A graph G is called perfect if, for each induced subgraph H of G,
χ(H) = ω(H). The Strong Perfect Graph Theorem establish that a graph G is
perfect if and only if neither G or its complement has induced odd holes [13].

1.2 Algorithms: complexity and certificates
In this section, we present some ways to measure the quality of an algorithm
and the difficulty of a problem. With that purpose, we give a brief explanation

1As is usual in graph theory and combinatorics, we do not require nonempty parts in a
partition.
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of the basic terminology of Complexity Theory, although some concepts such as
problem or algorithm are only treated in an informal way because an intuitive
idea of them is enough to understand the rest of the text. Most of the content
presented in this section was taken from [53].

By an instance of a problem, we refer to the input data for the problem
in a prescribed array; for example, in the problem of determining if a given
graph is connected, an instance of the problem is a fixed graph, as can be C4,
P3, or any other. Intuitively, an algorithm is a set of steps that can be used to
solve a problem for each of its instances. An algorithm is commonly described
as a set of rules that precisely define a sequence of operations in such a way
that it allows us to obtain an output answer from the specific data of an input
instance in a finite number of steps.

The time an algorithm takes to solve a given problem can be used to
compare different algorithms to solve the same problem. Concretely, the
time complexity of an algorithm A is the function f such that f(n) is the
maximum number of steps that A needs to solve any problem instance of size
n. Nevertheless, in most cases it is impossible to accurately calculate the
complexity of an algorithm if it is defined in this way, so we must settle for an
asymptotic estimate of how fast it grows. To establish such an estimate, we
introduce the so-called big O notation.

Let f and g be two functions from N to R+. We say that f has at most
the rate of growth of g if there is a positive constant c such that f(n) ≤ cg(n)
for all sufficiently large n. The class of all functions that has at most the
rate of growth of g(n) is denoted by O(g(n)). We say that an algorithm with
time complexity f has complexity O(g(n)) if f ∈ O(g(n)). If there is an
algorithm to solve a problem P whose complexity is O(f(n)), we say that P
has complexity at most O(f(n)).

The following sequence on growth rates is well known and can be found
in [11]; it indicates that a function with complexity O(n!) requires a longer
computation time than a function with complexity O(2n), that a function with
complexity O(2n) requires a longer computation time than a function with
complexity O(n3), and so on.

O(1) ⊊ O(log n) ⊊ O(n log n) ⊊ O(n2) ⊊ O(n3) ⊊ O(2n) ⊊ O(n!).

Algorithms of complexity O(nk), which are naturally called polynomial
algorithms, have demonstrated to be the most useful ones, for such a reason,
these algorithms are also called efficient or good. Problems for which a
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polynomial algorithm exists are called easy, whereas problems for which no
polynomial algorithm can exist are called intractable or hard.

1.2.1 NP-complete problems
In the restricted class of problems whose solution is either yes or no, which
are naturally called decision problems, we distinguish two subclasses of
great importance: the class of polynomial decision problems, denote by P
(for polynomial), and the class of decision problems such that each positive
answer can be verified in polynomial time, which is denoted by NP (for non-
deterministic polynomial).

Since the output of a polynomial algorithm can be verified in polynomial
time by running again the algorithm, it follows that P ⊆ NP, but it remains
unclear whether P ≠ NP [42]. A decision problem is said to be NP-hard if
the polynomial solvability of such problem imply that any problem in NP is
solvable in polynomial time, that is, P = NP. An NP-hard problem in NP is
called NP-complete.

In 1971, Stephen Cook [22] showed the existence of NP-problems by proving
that boolean satisfiability problem (SAT-problem) is one of them. Observe that,
once a problem P has been identified as NP-complete, to show that an NP
problem P

′ is NP-complete it is enough to prove that there is a polynomial-
time reduction from P to P

′, that is, a polynomial algorithm that assigns to
each instance of P an instance of P

′ in such a way that an instance of P has
solution “yes” if and only if its corresponding output also has solution “yes”.

It is worth mentioning that, although particular techniques were required
to prove that SAT-problem is NP-complete, just a year after Cook proved
the existence of NP-complete problems, Karp [54] published a list of 21 new
NP-complete problems by using the technique of polynomial-time reductions
and taking as base the result of Cook.

1.2.2 Certifying algorithms
When executing an algorithm, one of three things can happen: either it produces
a correct output (the desired case), or it is detected a bug in the algorithm
(which is undesired, of course, but is generally preferable to continue without
detecting the bug), or the algorithm fails in a way that masks bugs and prevents
it from being detected (which is completely undesired). To avoid the latter case
occur, it is desirable to have a certifying algorithm, which is an algorithm
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that outputs, together with the solution to the problem it solves, a certificate
that the given solution is correct. In this way, the implementation of a certifying
algorithm (including a checker for the certificates) may be considered to be
more reliable than non-certifying algorithms. Notice that the checkers for the
certifies produced by a certifying algorithm should be, in some sense, faster than
the algorithm itself, otherwise any algorithm could be considered certifying
(with its output being verified by running the algorithm again). Usually this is
formalized by requiring that a verification of the proof take less time than the
original algorithm.
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Chapter 2

Some graph classes

In this section we introduce some families of graphs that we will study in
the following chapters. We start describing some classes of graphs with the
property of having, in some sens, just a few induced paths on four vertices, and
we continue with graph families defined from partitions of their vertex sets.

2.1 Graphs with few induces P4s
Complement reducible graphs, or cographs for short, were introduced in 1981
based on the following recursive conditions: K1 is a cograph; if G is a cograph,
then its complement G is also a cograph; if G and H are cographs, so is G+H.
Additionally, in [23] was proved that some graph classes defined in a wide
variety of ways since the 1970s coincide with the class of cographs. In the next
theorem, we highlight some cograph characterizations that are particularly
interesting for this work.

Theorem 2.1 ([23]). Let G be a graph. The following statements are equivalent.

1. G is a cograph.

2. G is a P4-free graph.

3. G can be constructed from trivial graphs by means of join and disjoint
union operations.

4. For any nontrivial induced subgraph H of G, either H or H is discon-
nected.
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From the theorem above, it is clear that cographs constitute a hereditary
and self-complementary class of graphs. Additionally, each cograph G can be
uniquely represented by a rooted labeled tree taking as base Item 3 of the
previous theorem: the leaf vertices are associated with the vertices of G, and
each internal node is labeled 0 or 1 indicating the operation, join or disjoint
union, performed on the cographs associated with their children, respectively.
Such a tree is called the cotree associated with G. Remarkably, cographs can
be recognized and their cotree can be constructed in O(∣V ∣ + ∣E∣)-time by
a certifying LexBFS algorithm [10]. Also, it follows from the uniqueness of
the cotree representation that many algorithmic problems that are difficult for
general graphs can be efficiently solved on cographs using bottom-up algorithms
on their cotrees [23].

Cographs possess many desirable structural properties, and they are par-
ticularly interesting since some real-life applications involve graph models
where paths of length four are unlikely to appear [24]. From this point of
view, cographs are the most restrictive class (P4-free), so a natural question
is whether some cograph superclass with weaker restrictions on the amount
of induced P4s has similar properties, i.e., it allows us to develop efficient
algorithms for problems that are difficult in general graphs. For the above
reasons, the study of cographs was naturally followed by the introduction of
many cograph superclasses having both, few induced P4s and a unique tree
representation.

Below, we introduce some graph classes with few induced paths of length
three, which have the property of having a constructive characterization from
simple primitive graphs and using simple graph operations. Such characteri-
zations imply that these graph classes can be recognized in linear time and a
tree representation (similar to the cotree) can be efficiently computed. Before
introducing such graph families, we give some necessary definitions.

A split partition of a graph G is a partition (S, K) of VG such that
S and K are an independent set and a clique, respectively. The graphs
admitting a split partition are the split graphs and they are characterized
as the {2K2, C4, C5}-free graphs [41]. A graph with a split partition (S, K)
such that S is completely adjacent to K is called a complete split graph;
these graphs are characterized as the {C4, P3}-free graphs. The {2K2, C4}-free
graphs are known as pseudo-split graphs. A graph G of order at least four
is said to be a headless spider if there exists a split partition (S, K) of V
and a bijection f ∶S → K such that either N(s) = {f(s)} for any s ∈ S, or
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N(s) = K \ {f(s)} for every s ∈ S. Given a graph G and an induced path P
of length three, a partner of P is a vertex v of G such that VP ∪ {v} induces
some of C5, P5, P, F or its complements (see Figure 2.1). Now, we introduce
some cograph generalizations.

P F
net

Figure 2.1: P , F , and the net graph.

A graph G is said to be:

1. P4-reducible if any vertex belongs to at most one induced P4.

2. A (q, t)-graph if no set of at most q vertices induces more than t distinct
P4s. The (5, 1)-graphs are called P4-sparse graphs.

3. Extended P4-reducible if both, G and G, are {P5, F, P, net}-free graphs.

4. Extended P4-sparse if both, G and G, are {P5, F, P}-free graphs.

5. P4-lite if every induced subgraph of order at most six is either isomorphic
to a headless spider, or it contains at most two induced P4s.

6. P4-extendible if for any vertex subset W inducing a P4, there exists at
most one vertex v ∉ W that belongs to a P4 sharing vertices with W .

7. P4-tidy if any induced P4 has at most one partner.

8. P4-laden if any induced subgraph of G of order at most six either is a
split graph or it contains at most two induced P4s.

9. Extended P4-laden if any induced subgraph of G of order at most six
either is a pseudo-split graph or it contains at most two induced P4s.

It is worth emphasizing that we are not really interested in general (q, t)-
graphs, but in (q, q−4)-graphs. This is due to, for any fixed q, (q, q−4)-graphs
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are known to have simple enough tree representations, while it remains unknown
whether (q, t)-graphs have such representations for arbitrary values of q and t.

Giakoumakis and Vanherpe [43] observed that P4-reducible graphs are
the graphs that are both P4-sparse and P4-extendible graphs. Some other
relations between the graph classes introduced above can be established from
their definitions or using diverse characterizations for them. We represent the
containment relationships between these classes in Figure 2.2, where an arc
from a class G to a class H means that H ⊆ G. We remark that any graph
class represented in Figure 2.2 can be recognized, and a tree representation can
be obtained, in polynomial time. Moreover, in most cases this can be done in
linear time.

extended P4-laden

P4-laden
P4-tidy

P4-extendible extended P4-sparseP4-lite

(6, 2)-graphs
P4-sparse extended P4-reducible

P4-reducible

P4-free (cographs)

Figure 2.2: Relations between some graph classes with just a few induced paths
on four vertices.

From the graph classes defined above, in this work we mainly focus on
cographs and two of its proper superclasses, namely P4-sparse and P4-extendible
graphs, for which we give some useful characterizations in Section 4.1.

2.2 Matrix Partitions
Many graph problems are about deciding whether the vertex set of a graph
admits a partition with some constraints within and between the parts of the
partition. Moreover, in many of these problems the inner conditions are simply
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being an independent set or a clique, while the external conditions correspond
to some parts are completely adjacent or completely nonadjacent. Conveniently,
these partition problems can be easily described with the concept of matrix
partitions.

Given a symmetric matrix M of size n × n with entries on the set {0, 1,∗},
which we call a pattern (of size n) for simplicity, an M-partition of a graph
G is a partition (V1, V2, . . . , Vn) of VG such that, Vi is completely adjacent to Vj

whenever Mi,j = 1, and Vi is completely nonadjacent to Vj whenever Mi,j = 0.
Note that, if Mi,j = ∗, then there are not restrictions on the adjacencies between
vertices of Vi and Vj.

Given a pattern M , the M-partition problem is the problem of deciding
whether an input graph admits an M -partition. Observe that, if Mi,i = ∗ for
any i, then every graph G admits an M -partition, because we can simply make
Vi = VG. Thus, this simple version of the M -partition problem is studied only
for patterns without entries ∗ on the main diagonal. It is a straightforward
observation that these kind of patterns can always be transformed by means of
simultaneous row and column permutations into an equivalent pattern of the
form

( A C

C
T

B
) ,

where A is a block matrix with only entries 0 on its main diagonal and B
is a block matrix with only entries 1 on its main diagonal. For the rest of
this document we assume that any pattern has the form of (A, B, C)-blocks
described before. Given a, b, c ∈ {0, 1,∗} an (a, b, c)-constant pattern is a
pattern M such that its block A (respectively, B) has only entries a (resp. b)
off the main diagonal, and whose block C has only entries c.

Some well-studied partition problems of graphs are generalized by matrix
partitions. For instance, (k, ℓ)-colorings, and hence k-colorings, are particular
cases of M -partitions: a (k, ℓ)-coloring corresponds to a (∗,∗,∗)-constant
pattern whose blocks A and B have size k × k and ℓ × ℓ, respectively.

Another example of problems generalized by matrix partitions is provided by
graph homomorphisms. Given two graphs, G and H, a homomorphism from
G to H, also known as an H-homomorphism or an H-coloring of G, is a function
ϕ∶VG → VH that preserve adjacencies, that is to say, that ϕ(u)ϕ(v) ∈ EH

whenever uv ∈ EG. It is straightforward to verify that, for a fixed graph
H, the problem of determining whether a graph G admits an H-coloring is
precisely the M -partition problem associated to the pattern M obtained from
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the adjacency matrix of H by interchanging 1 entries by ∗ entries. Some other
matrix partitions that are particularly relevant in this work are going to be
introduced in Section 2.3.

Notice that, for any fixed pattern M , the graphs admitting an M -partition
constitute a hereditary class of graphs, GM . Hence, by Theorem 1.1, GM can
be characterized by the family of minimal GM -obstructions. For brevity, in this
context GM -obstructions and minimal GM -obstructions are simply going to be
called M-obstructions and minimal M-obstructions.

Observe that the set of all minimal obstructions of a hereditary class of
graphs is not necessarily finite, for instance, the class of all bipartite graphs is
hereditary but its set of minimal obstructions is the infinite family of all odd
cycles. Notice that, if a pattern M has a finite set of minimal obstructions,
then there exists a brute force algorithm that solves the M -partition problem
in polynomial time. Otherwise, if the family of minimal M -obstructions is not
finite, the M -partition problem can be NP-complete as in the well-known case
of 3-coloring, or it can be efficiently solved as in the case of bipartite graphs
that can be recognized in O(∣V ∣ + ∣E∣)-time.

Knowing the minimal obstructions of a hereditary class of graphs also
posses a great computational relevance, for example, by designing certifying
algorithms for the problem of deciding whether an arbitrary graph belongs to
such family. Going back to the example of bipartite graphs, a modified version
of the Breadth First Search algorithm can be used as a certifying algorithm
for the decision problem associated, deciding if a graph G is bipartite in time
O(∣V ∣ + ∣E∣), using 2-colorings as yes-certificates and returning odd cycles as
no-certificates. Observe that the yes-certificates can be checked in time O(∣E∣),
whilst the no-certificates take only O(∣V ∣)-time to be checked. As we observed
before, the relevance of certifying algorithms lies on the fact that, once the
algorithm has been implemented, we have a warranty that such implementation
is correct. From this point of view is of great computational interest to know
the minimal obstructions of a hereditary property P because, as we exemplify
with the bipartite graphs, such minimal obstructions are natural candidates to
be no-certificates in a certifying algorithm for the decision problem associated
to P .
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2.3 Polarity
Given two nonnegative integers, s and k, a graph G is called (s, k)-polar if
the vertex set of G admits a partition (A, B) such that A induces a complete
s-partite graph and B induces a k-cluster; such a partition is called an (s, k)-
polar partition of G. A (k, k)-polar partition is simply referred as a k-polar
partition, and a graph that admits such partition is a k-polar graph.

We use ∞ instead of s, k, or both, to indicate that the number of parts in the
multipartite graph, or the number of components in the cluster is unbounded.
Hence, we say that a graph G is an (s,∞)-polar graph if its vertex set admits a
partition (A, B) where A is a complete s-partite graph, and B is a cluster; such
partition is an (s,∞)-polar partition. The concepts of (∞, k)- and (∞,∞)-
polar graphs and partitions are analogously defined. The (∞,∞)-polar graphs
are commonly called polar graphs, whilst a (1,∞)-polar graph is referred as a
monopolar graph. A graph with a polar partition (A, B) such that A induces
a clique is called a unipolar graph. Unipolar and monopolar graphs are
particularly interesting because many recognition algorithms for polar graphs
on specific graph classes first check whether the input graph is either unipolar
or monopolar.

In [39] it was shown that, for any pattern M without ∗ entries in its blocks
A or B, but such that C has only ∗ entries, the set of minimal M -obstructions
is finite. Remarkably, for any nonnegative integers s and k, an (s, k)-polar
partition correspond to an M -partition with the (1, 0,∗)-constant pattern
whose blocks A and B have size s × s and k × k, respectively. Hence, for any
pair of fixed nonnegative integers, s and k, there is only a finite number of
minimal (s, k)-polar obstructions. Nevertheless, the complete lists of minimal
(s, k)-polar obstructions are known just for a few pairs of values of s and k. A
graph is (0, k)-polar if and only if it is a k-cluster, hence a {P3, (k + 1)K1}-free
graph; it is (s, 0)-polar if and only if it is a complete s-partite graph, hence
a {P3, Ks+1}-free graph; it is 1-polar if and only if it is a split graph, hence
a {2K2, C4, C5}-free graph [41]. In contrast, it is known that the families of
minimal obstructions for polarity, monopolarity, and unipolarity, are all of them
infinite, but structural descriptions of such families of forbidden subgraphs
remain unknown.

It is worth mentioning that polar graphs were introduced as a generalization
of split graphs, which are precisely the (1, 1)-polar graphs. In addition, split
graphs are not the only interesting subclass of polar graphs, for instance,
k-clusters and complete k-partite graphs are precisely the (0, k)- and (k, 0)-
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polar graphs, and, in consequence, clusters are the (0,∞)-polar graphs, while
complete multipartite graphs are the (∞, 0)-polar graphs. Moreover, for any
bipartite graph G[X, Y ], a polar partition for both G and G is given by
(X, Y ), so polar graphs also generalize bipartite graphs and co-bipartite graphs.
Nevertheless, although bipartite, co-bipartite, and split graphs can be recognized
in linear time [44, 52], polar graphs are not easy to recognize. In fact, the
problems of deciding whether an arbitrary graph is polar or monopolar are NP-
complete [12, 36]. In contrast, unipolar graphs was proven to be recognizable in
polynomial time [17, 35], and an explicit polynomial-time algorithm to solve the
problem of deciding whether an arbitrary input graph admits an (s, k)-polar
partition when s and k are fixed nonnegative integers was given in [38].

Since the problems of recognizing polar and monopolar graphs turned out
to be NP-complete, they have been studied in its restricted version to many
graph classes. Table 2.1 shows some results on complexity of polarity and
monopolarity recognition in specific graph classes. It does not pretend to be
an exhaustive compilation of all the known results, but rather to present the
most representative ones.

We want to point out some remarks on known results on polarity. The
polarity partition problem can be expressed in monadic second order logic
without edge quantification, where it follows from the results in [1, 25] and
[26] that polar graphs on bounded tree-width or bounded clique-width can be
recognized in polynomial time. In this sense, results about polarity on chordal
and permutation graphs are remarkable, since such graph families do not have
bounded tree-width or clique-width.

An interesting result relating polarity and monopolarity complexities is
given in [17], where the authors proved that, if it is known a polar partition
of a graph G, then it can be decided in O(∣V ∣2 ⋅ ∣E∣) time whether G is
monopolar. Then, if polarity recognition is polynomial when we restrict it to
a graph class, monopolarity will be too. Moreover, as we shown in Table 2.1,
there are examples of graph classes in which polarity remains NP-complete
while monopolarity recognition has an efficient algorithm. Related to above
discussion, in [55] was formulated the question whether there exists a graph
class for which polarity is easier than monopolarity. A partial result for this
question was given by Yolov [60], who proved that polarity is not easier than
monopolarity for graph classes closed under disjoint union.

The results above are all concerned to the complexity problem of polarity
and monopolarity. Additionally of them, for a few classes the problem of
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Graph class Monopolarity Polarity

general graphs NP-c [36] NP-c [12]
chordal O(n + m) [32] P [32]
line graphs O(n) [14] O(n) [14]
permutation O(nm) [31] O(nm

2) [31]
maximal planar O(n4) [56] P [56]
co-comparability P [17] NP-c [60]
P4-free (cographs) O(n) [34] O(n) [34]
claw-free O(n3) [16] NP-c [16, 56]
P5-free O(n4) [56] NP-c [56]
triangle-free planar NP-c [15, 56] NP-c [15, 56]
claw-free planar O(n3) [16] P [56]
3-colorable comparability NP-c [60] NP-c [60]
comparability co-comparability P [30] P [30]

Table 2.1: Parameters n and m stands for the order and the size of a graph,
respectively. P and NP-c means that the complexity status of the corresponding
problem is polynomial or NP-complete, respectively.
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determining the minimal polar obstructions was treated. In [32] was shown
that the family of minimal obstructions for polar and monopolar chordal graphs
has infinitely many elements; nevertheless in [59] was given a simple recursive
procedure to obtain all the chordal minimal monopolar obstructions. Also, in
[48] was proven a forbidden subgraph characterization of line-polar bipartite
graphs by several infinite families on minimal obstructions, which contrast
with the linear algorithm for recognizing general line-polar graphs given in
[14]. In the next section we will mention the work that has been done about
determining minimal obstructions for polarity partitions on cographs, which
will be important in the development of the results of Chapters 3 and 4.

2.3.1 Preliminary results on polar cographs
In [37] was demonstrated that, for any fixed nonnegative integers s and k,
every cograph minimal (s, k)-polar obstruction has at most (s + 1)(k + 1)
vertices. Ekim, Mahadev and de Werra were pioneers giving explicit lists
of cograph minimal (s, k)-polar obstructions; they exhibited the only eight
cograph minimal polar obstructions, as well as the complete list of cograph
minimal (s, k)-polar obstructions when min{s, k} = 1 [33, 34]. In the last
years, the study of cograph minimal (s, k) -polar obstructions has continued
with the following main results. The exhaustive list of nine cograph minimal
(2, 1)-polar obstructions was found by Bravo, Nogueira, Protti and Vianna
[9] in 2016. Then, in 2019, Hell, Hernández-Cruz and Linhares-Sales [46]
provided a full characterization of cograph minimal 2-polar obstructions and, in
2020, Contreras-Mendoza and Hernández-Cruz [19] proved a simple recursive
characterization for the cograph minimal (s, 1)-polar obstructions for any
arbitrary integer s, as well as the complete list of cograph minimal monopolar
obstructions.

In order to this document be self-contained, we quote below some of the
results referred in the previous paragraph concerning to cograph minimal
obstructions for polarity, monopolarity, and (1, s)-polarity for a fixed positive
integer s. Such results will be helpful in the development of some of the original
results in this document.

Theorem 2.2 ([19]). A graph G is a cograph minimal (1,∞)-polar obstruction
if and only if G is isomorphic to one of the graphs depicted in Figure 2.3.
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K1 ⊕ C4 K2 ⊕ 2K2 2P3 K1 ⊕ (K2 + P3)

Figure 2.3: Cograph minimal (1,∞)-polar obstructions.

Theorem 2.3 ([34]). A graph G is a cograph minimal polar obstruction if and
only if G or its complement is isomorphic to P3 + H, where H is any cograph
minimal (1,∞)-polar obstruction.

Theorem 2.4 ([19]). Let s be an integer, s ≥ 2.

1. The graph G is a connected cograph minimal (1, s)-polar obstruction if
and only if G is either a cograph minimal (1,∞)-polar obstruction or it
is isomorphic to Ks+1,s+1, K2 ⊕ (K2 + sK1), or K1 ⊕ (2K2 + (s − 1)K1).

2. The graph G is a disconnected cograph minimal (1, s)-polar obstruction
if and only there exists a positive integer t and nonnegative integers
s0, s1, . . . , st such that G = G0+⋅ ⋅ ⋅+Gt, where Gi is a connected cograph
minimal (1, si)-polar obstruction that is not a cograph minimal (1,∞)-
polar obstruction, and s = t +∑t

i=0 si.
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Part II

Polarity on cograph superclasses





Chapter 3

Cograph minimal (∞, k)-polar
obstructions

Exact lists of cograph minimal (∞, k)-polar obstructions are known only for
k ≤ 1. Throughout this section, we provide a partial recursive characterization
for cograph minimal (∞, k)-polar obstructions. Our results allow us to give
explicit lists for cograph minimal (∞, k)-polar obstructions for the cases k = 2
and k = 3. Notice that, by taking complements, analogous results can be
trivially obtained for cograph minimal (s,∞)-polar obstructions. All the
results on this chapter can be found published in [18].

We start with two propositions exhibiting remarkable properties of cograph
minimal (∞, k)-polar obstructions. Note that, if G is a cluster such that either
G has at most k + 1 components or G has at most k nontrivial components,
then G is an (∞, k)-polar graph. Hence, every cograph minimal (∞, k)-polar
obstruction that is a cluster, has at least k+ 2 components and at least k+ 1 of
them are nontrivial. In consequence, we have the following useful observation.

Remark 3.1. Let k be an integer. Up to isomorphism, the graph K1+(k+1)K2
is the only cograph minimal (∞, k)-polar obstruction that is a cluster.

The following lemma is a slight modification of Lemma 1 in [46]; the proof
is very similar, and thus it is omitted.

Lemma 3.2. Let k be a nonnegative integer, and let G be a cograph minimal
(∞, k)-polar obstruction. Then

1. G has at most k + 2 connected components,
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2. G has at least one nontrivial component,

3. G has at most k + 1 trivial components,

4. if G has at least one trivial component, then G has at most one non-
complete component,

5. every complete component of G has order one or two.

3.1 Connected obstructions
The (∞, 0)-polar cographs are precisely the complete multipartite graphs, and
it is well known that the only cograph minimal (∞, 0)-polar obstruction is P3.
Furthermore, from Theorem 2.2, each cograph minimal (∞, 1)-polar obstruc-
tion is disconnected. Thus, for k ≤ 1, there exist no connected cograph minimal
(∞, k)-polar obstructions. Next, we characterize the connected cograph mini-
mal (∞, k)-polar obstructions for every integer k such that k ≥ 2. In contrast
with the case k ≤ 1, it results that for k ≥ 2 there exist connected cograph
minimal (∞, k)-polar obstructions, and there is a fixed number of them as we
show below.

Theorem 3.3. Let k be an integer, k ≥ 2, and let G be a connected cograph.
Then, G is a minimal (∞, k)-polar obstruction if and only if G is a minimal
polar obstruction.

Proof. Let H be a disconnected cograph minimal (k,∞)-polar obstruction.
Note that, by the minimality of H, if K is a complete component of H, then
H − K is a (k,∞)-polar graph, and thus also is H, which is absurd. Hence,
every component of H is non-complete. Moreover, since H is not a (1,∞)-
polar graph, then H contains a cograph minimal (1,∞)-polar obstruction
H

′ as an induced subgraph. From Theorem 2.2, H
′ is connected, so it is

completely contained in a single component of H. Thus, since H has no
complete components, H contains H

′ + P3 as an induced subgraph, but by
Theorem 2.3, H

′ +P3 is a not (k,∞)-polar, so H = H
′ +P3, which proves that

H is a cograph minimal polar obstruction. The converse implication follows
easily from Theorem 2.2 and Theorem 2.3. The result follows since a graph
G is a connected cograph minimal (s, k)-polar obstruction if and only if its
complement, G, is a disconnected cograph minimal (k, s)-polar obstruction.
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3.2 Disconnected obstructions
Since we have already characterized the connected cograph minimal (∞, k)-
polar obstructions, we are now concerned only within the disconnected ob-
structions. We found useful the following notation to classify disconnected
cograph minimal (∞, k)-polar obstructions with similar properties. Let c and
i be integers such that 0 ≤ i < c. We say that a graph has type (c, i) if it
has exactly c connected components and precisely i of them are trivial. We
divide the study of cograph minimal (∞, k)-polar obstructions on three classes
depending on their type, as follows: type (c, 0), type (c, c − 1), and the rest of
the types.

3.2.1 Type (c, 0) obstructions
We begin our study of cograph minimal (∞, k)-polar obstructions without
isolated vertices by noticing some restrictions on their connected components.

Lemma 3.4. Let k be an integer, k ≥ 2, and let G be a disconnected cograph
minimal (∞, k)-polar obstruction without isolated vertices. Then, G has at
least two non-complete components.

Proof. Let G be as in the hypothesis. From Remark 3.1, we have that G is
not a cluster, so G has at least one non-complete component. Aiming for
a contradiction, suppose that G has precisely one non-complete component.
Then, by Lemma 3.2, for some integer j ∈ {1, . . . , k + 1}, G ≅ jK2 + H, where
H is a connected non-complete graph. Note that since G is not an (∞, k)-polar
graph, H is not an (∞, k − j)-polar graph.

Let v be a vertex of H, and suppose that H − v is not a cluster. Thus, for
every (∞, k)-polar partition (A, B) of G− v, A∩V (H − v) ≠ ∅, which implies
that (A ∩ V (H − v), B ∩ V (H − v)) is an (∞, k − j)-polar partition of H − v.
Hence, for each vertex v of H, H − v is either a cluster or an (∞, k − j)-polar
graph.

Since H is not an (∞, k − j)-polar graph, H contains a cograph minimal
(∞, k − j)-polar obstruction H

′ as an induced subgraph. Nevertheless, by
Theorem 3.3, if H

′ is connected, then it is a cograph minimal (∞, k)-polar
obstruction, in contradiction with the minimality of G. Thus H

′ is a discon-
nected induced subgraph of the connected cograph H. Let v be a vertex of
H −H

′. Since H
′ is an induced subgraph of H −v, we have that H −v is not an

(∞, k− j)-polar graph, which implies that H − v and H
′ are clusters. However,
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from Remark 3.1, H
′ is isomorphic to K1 + (k − j + 1)K2, but in such a case

G properly contains K1 + (k + 1)K2 as an induced subgraph, contradicting
its minimality. The contradiction arose from supposing that G has no more
than one non-complete component, so G must have at least two non-complete
components.

The following lemma characterizes a family of graphs with some properties
that are common to all cograph minimal (∞, k)-polar obstructions without
isolated vertices. It will be very useful to give recursive constructions of such
graphs.

Lemma 3.5. Let k be a positive integer, and let H be a cograph. Then, H is
such that

1. H is not a cluster,

2. H is (1, k)-polar, but not (1, k − 1)-polar, and

3. for each vertex v of H, the graph H − v is either a (1, k − 1)-polar graph
or a cluster,

if and only if exactly one of the following statements is satisfied:

a. H is a cograph minimal (1, k − 1)-polar obstruction, that is neither a
cograph minimal (1,∞)-polar obstruction nor isomorphic to kK2.

b. H ≅ P3 + (k − 1)K2.

c. k ≥ 2, and H ≅ (k − 2)K2 + (K1 ⊕ 2K2).
Proof. Let H be a cograph that satisfies Items 1 to 3. Since H is a cograph, we
have from Item 2 that H contains a cograph minimal (1, k−1)-polar obstruction
H

′. Observe that, since H is not a cluster but it is (1, k)-polar, if H = H
′ then

it satisfies item a.
Let K be a complete component of H (if any). We claim that K has order

two. From item 3, for every vertex w of K, H − w admits a (1, k − 1)-polar
partition (A, B). If K is a trivial graph, then (A∪ {w}, B) is a (1, k− 1)-polar
partition of H, which is impossible. Else, if K has order at least three, then
V (K−w)∩B ≠ ∅ (otherwise A = V (K−w) and B covers H−K, which cannot
occur since H −K is not a cluster), and then (A, B ∪ {w}) is a (1, k − 1)-polar
partition of H, a contradiction. Therefore, every complete component of H is
isomorphic to K2.
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Suppose that H properly contains a cograph minimal (1, k − 1)-polar
obstruction as an induced subgraph. It implies that there exists a vertex v of
H such that H − v is not a (1, k − 1)-polar graph, and from item 3, H − v is
a cluster. Note that from item 1, H has a subgraph P isomorphic to P3, and
that v is necessarily a vertex of P , or H − v would not be a cluster.

Let v and P be as described above, then we have two cases: either dP (v) = 1
or dP (v) = 2. Suppose first that dP (v) = 1. Since H is a cograph and dP (v) = 1,
v is adjacent to exactly one component of the cluster H − v, and therefore
H ≅ jK2 + (Ka ⊕ (v + Kb)) for some positive integers a and b and some
nonnegative integer j. Moreover, since H is not a (1, k − 1)-polar graph,
j ≥ k − 1, but if j > k − 1 then H contains (k + 1)K2 as a proper induced
subgraph, and then it is not a (1, k)-polar graph, contradicting our assumptions.
Thus, j = k−1, and H ≅ (k−1)K2+(Ka⊕(v+Kb)). Observe that H contains
H

′
≅ P3 + (k − 1)K2 as an induced subgraph, and H

′ is neither (1, k − 1)-polar
nor a cluster. Therefore, by item 3, H ≅ P3 + (k − 1)K2, that is, H satisfies
item b.

For the second case, suppose that dP (v) = 2. Note that since v is adjacent
to at least two components of the cluster H − v, then v is completely adjacent
or completely not-adjacent to each component of H − v, and therefore, it is
completely adjacent to at least two components of H−v. Let K be a component
of H − v that is completely adjacent to v, and suppose to reach a contradiction
that K has more than two vertices: if w is a vertex of K, then H − w is
not a cluster, so it admits a (1, k − 1)-polar partition (A, B) and therefore
(A, B ∪ {w}) is a (1, k)-polar partition of H, a contradiction. Hence, every
component of H − v that is completely adjacent to v has at most two vertices,
and in consequence H is isomorphic to qK2 + (v ⊕ (ℓK2 + mK1)) for some
nonnegative integers ℓ, m and q such that ℓ + m ≥ 2.

Observe that if ℓ + q ≥ k + 1 then H contains (k + 1)K2 as an induced
subgraph, and then H is not a (1, k)-polar cograph, contradicting our hypothesis.
Therefore, ℓ+q ≤ k. Furthermore, since H−v is a cluster that is not a (1, k−1)-
polar graph, it contains a cograph minimal (1, k − 1)-polar obstruction H

′ that
is a cluster as an induced subgraph. Nevertheless, the only cograph minimal
(1, k−1)-polar obstruction that is a cluster is H

′
≅ kK2. The above observation

implies that ℓ + q ≥ k, so we have that ℓ + q = k.
It is straightforward to show that if ℓ ≤ 1, then H has P3 + (k − 1)K2 as a

proper induced subgraph, which is impossible as we have noted when proving
the case dP (v) = 1. Thus, ℓ ≥ 2. Furthermore, note that the component of
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H that contains v is a (1, ℓ + m)-polar graph that is not a (1, ℓ + m − 1)-
polar graph, which implies that H is a (1, k + m)-polar graph that admits no
(1, k + m − 1)-polar partitions. However, by hypothesis H is a (1, k)-polar
graph that is not a (1, k − 1)-polar graph, so we have that m = 0, and then
H ≅ (k − ℓ)K2 + (v ⊕ ℓK2). Aiming for a contradiction, suppose that ℓ ≥ 3,
and let w be a vertex of H adjacent to v. Since H − w is not a cluster, it is a
(1, k − 1)-polar graph, and therefore the component of H − w that contains v
is (1, ℓ − 1)-polar, but this is impossible since such component is isomorphic to
K1 ⊕ ((ℓ − 1)K2 + K1), which contains the cograph minimal (1, ℓ − 1)-polar
obstruction K1 ⊕ (2K2 + (ℓ− 2)K1) as an induced subgraph. Hence, ℓ = 2 and
H ≅ (k − 2)K2 + (K1 ⊕ 2K2), so item c. is satisfied.

To prove that the graphs described in items b. and c. satisfy the statements
of items 1, 2, and 3 is a simple routine work. The analogous result for graphs
described in item a. follows from Theorem 2.4.

It also will be useful to know when do the graphs described in the above
lemma posses some specific properties. The following remark identifies some
interesting cases. The proof is straightforward and thus omitted.

Remark 3.6. Let k be an integer and, let H be a cograph.

1. Suppose that H is a cograph minimal (1, k − 1)-polar obstruction that is
neither a cograph minimal (1,∞)-polar obstruction nor isomorphic to
kK2. Then, H is an (∞, k− 1)-polar graph if and only if H has precisely
one component non-isomorphic to K2.

2. The graph H, with H ≅ P3 + (k − 1)K2 is a (2, k − 1)-polar graph, and
for each vertex v of H, H − v is either a (1, k − 1)-polar graph or it is
isomorphic to kK2.

3. The graph H, with H ≅ (k − 2)K2 + (K1 ⊕ 2K2) is a (3, k − 1)-polar
graph, and for each vertex v of H, H − v is either a (1, k − 1)-polar graph
or it is isomorphic to kK2.

It results convenient to divide the study of disconnected cograph minimal
(∞, k)-polar obstructions without isolated vertices into two cases, depending
on whether some component is isomorphic to P3. We start by treating the case
in which the graphs have not components isomorphic to P3.
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Lemma 3.7. Let k be a nonnegative integer, and let G be a graph without
components isomorphic to P3. Then, G is a disconnected cograph minimal
(∞, k)-polar obstruction without isolated vertices if and only if there exist
positive integers k1 and k2, and cographs H1 and H2 such that G = H1 + H2,
and for i ∈ {1, 2}, the following statements are satisfied:

1. Hi is not a cluster,

2. Hi is a (1, ki)-polar graph that admits no (1, ki − 1)-polar partitions,

3. for each vertex v of Hi, the graph Hi − v is either a (1, ki − 1)-polar graph
or a cluster,

4. for j ∈ {1, 2} such that j ≠ i, if Hi is not a cograph minimal (1, ki − 1)-
polar obstruction, then Hj is an (∞, kj − 1)-polar graph, and

5. k = k1 + k2 − 1.

Proof. Suppose that G is a disconnected cograph minimal (∞, k)-polar ob-
struction without isolated vertices. From Lemma 3.4, G has at least two
non-complete components, say G1 and G2. Let H1 = G1 and H2 = G − G1.
Clearly, G = H1 + H2 and both, H1 and H2, are cographs that are not clusters.

Let {i, j} = {1, 2}. Observe that, since Gj is a non-complete component
of G, and G has no components isomorphic to P3, there exists a vertex v of
Hj such that Hj − v is not a cluster. In addition, by the minimality of G,
G − v admits an (∞, k)-polar partition (A, B), but G − v = Hi + (Hj − v),
so G − v has at least two non-complete components, and therefore (A, B)
is a (1, k)-polar partition. Furthermore, since Hi contains P3 as an induced
subgraph, it is not a (1, 0)-polar graph. The above observations imply that
there exists an integer ki ∈ {1, . . . , k − 1} such that Hi is a (1, ki)-polar graph
that is not (1, ki − 1)-polar. Note that G is a (1, k1 + k2)-polar graph that is
not (∞, k)-polar, which implies that k ≤ k1 + k2 − 1.

Let v be a vertex of Hi, and let (A, B) be an (∞, k)-polar partition of
G − v. If Hi − v is not a cluster, and given that Hj is neither, (A, B) is
a (1, k)-polar partition, and since Hj is not a (1, kj − 1)-polar graph, then
(A ∩ V (Hi − v), B ∩ V (Hi − v)) is a (1, k − kj)-polar partition, which implies
that Hi − v is a (1, ki − 1)-polar graph, because k − kj ≤ ki − 1. Therefore, for
each vertex v of Hi, the graph Hi − v is either a cluster or a (1, ki − 1)-polar
graph.



32 3. Cograph minimal (∞, k)-polar obstructions

Suppose that Hi is not a cograph minimal (1, ki−1)-polar obstruction. Since
Hi is not a (1, ki − 1)-polar graph, it follows from Lemma 3.5 and Remark 3.6
that there exists a vertex v of Hi for which Hi − v ≅ kiK2. Let (A, B) be an
(∞, k)-polar partition of G − v. The graph Hj is not a cluster, so we have
that A ∩ V (Hj) ≠ ∅, and then (A ∩ V (Hj), B ∩ V (Hj)) is an (∞, k − ki)-
polar partition of Hj, and therefore Hj is an (∞, kj − 1)-polar graph, because
k−ki ≤ kj−1. Hence, if Hi is not a cograph minimal (1, ki−1)-polar obstruction,
then Hj is an (∞, kj − 1)-polar graph.

So far, we have only shown that k ≤ k1 + k2 − 1. To prove the equality,
we will show that G is not a cograph minimal (∞, j)-polar obstruction for
j ≤ k1 + k2 − 2, which implies that k ≥ k1 + k2 − 1.

It follows from Lemma 3.5 that ki ≥ 2, and by construction we have that
ki ≤ k − 1. The above observations imply that if k ≤ 2, then there exist no
(∞, k)-polar obstructions without isolated vertices or components isomorphic
to P3, so we can assume that k ≥ 3. Aiming for a contradiction, suppose that
k < k1 + k2 − 1, in which case at least one of k1 and k2 is greater than or equal
to three. Let us assume without loss of generality that k1 ≥ 3.

Since k1 ≥ 3 we have from Theorem 2.4 and Lemma 3.5 that H1 contains,
as a proper induced subgraph, a cograph H

′
1 which is not a cluster and such

that it is a (1, k1 − 1)-polar graph but it is not (1, k1 − 2)-polar. Observe that
the cograph G

′
= H

′
1 + H2 is not an (∞, k1 + k2 − 2)-polar graph, because

since neither H
′
1 nor H2 are clusters, every (∞, k1 + k2 − 2)-polar partition

of G
′ is a (1, k1 + k2 − 2)-polar partition, which is impossible since H

′
1 is not

(1, k1 − 2)-polar and H2 is not (1, k2 − 1)-polar. Therefore G has a cograph
(∞, k1 + k2 − 2)-polar obstruction as a proper induced subgraph, and then G
is not a cograph minimal (∞, j)-polar obstruction for j < k1 + k2 − 2. As we
have mentioned, it proves that k = k1 + k2 − 1, which is absurd since we are
supposing that k < k1 + k2 − 1. Thus, k = k1 + k2 − 1 as we intended. This
finalizes the proof of the first implication of the proposition.

For the converse implication let us suppose that G = H1 + H2 is a cograph
without components isomorphic to P3 such that, for some positive integers k1
and k2 and any election of i, j ∈ {1, 2}, i ≠ j, the graphs Hi and Hj satisfy the
enumerated items of this lemma’s statement.

Aiming for a contradiction, suppose that G admits an (∞, k)-polar partition
(A, B). Since H1 and H2 are not clusters and k = k1 + k2 − 1, (A, B) is a
(1, k1 + k2 − 1)-polar partition of G, but this is impossible since for hypothesis
Hi is not a (1, ki − 1)-polar cograph for any i ∈ {1, 2}. Thus G is not an
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(∞, k)-polar graph.
Let v be a vertex of G, let us suppose without loss of generality that

v ∈ V (H1). If H1 − v admits a (1, k1 − 1)-polar partition (A1, B1), then, for
any (1, k2)-polar partition (A2, B2) of H2, (A1 ∪ A2, B1 ∪ B2) is a (1, k)-polar
partition of G − v. Otherwise, if H1 − v is not a (1, k1 − 1)-polar graph, by
item 3 we have that H1 − v is a cluster, and by Lemma 3.5 and Remark 3.6 it
has exactly k1 components. In addition, by item 4, H2 is an (∞, k2 − 1)-polar
graph. Thus, if (A1, B1) is a (0, k1)-polar partition of H1−v and (A2, B2) is an
(∞, k2 − 1)-polar partition of H2, then (A1 ∪ A2, B1 ∪ B2) is an (∞, k)-polar
partition of G − v. Hence, G is a cograph minimal (∞, k)-polar obstruction.
Clearly, G is a disconnected graph, and it follows from Lemma 3.5 that G has
no isolated vertices.

Based on Lemmas 3.5 and 3.7 and Remark 3.6 it is straightforward to
deduce the following recursive construction of cograph minimal (∞, k)-polar
obstructions without isolated vertices nor components isomorphic to P3.

Theorem 3.8. Let k be a positive integer, and let G be a graph without
components isomorphic to P3. Then, G is a disconnected cograph minimal
(∞, k)-polar obstruction without isolated vertices if and only for some positive
integers k1 and k2, and some cographs H1 and H2,

1. G = H1 + H2,

2. k = k1 + k2 − 1,

3. for i ∈ {1, 2}, Hi is either a cograph minimal (1, ki − 1)-polar obstruction
that is neither a cograph minimal (1,∞)-polar obstruction nor isomorphic
to kiK2, or ki ≥ 2 and H ≅ (ki − 2)K2 + (K1 ⊕ 2K2), and

4. if Hi ≅ (ki − 2)K2 + (K1 ⊕ 2K2) and G − Hi is a cograph minimal
(1, ki − 1)-polar obstruction, then G − Hi has exactly one component
non-isomorphic to K2.

We now turn our attention to cograph minimal (∞, k)-polar obstructions
without isolated vertices that have some component isomorphic to P3. We
begin with a technical characterization of such family of graphs, followed by
two lemmas that treat with specific subcases, and finalize with a recursive
construction for these obstructions. It is worth noticing that, by Lemma 3.9,
any cograph minimal (∞, k)-polar obstruction with a component isomorphic
to P3 has no isolated vertices.
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Lemma 3.9. Let k be a positive integer, and let G be a graph with at least
one component isomorphic to P3. Then G is a cograph minimal (∞, k)-polar
obstruction if and only if G ≅ P3 + H, where H is a cograph that satisfies the
following statements:

1. H is not a (1, k − 1)-polar graph,

2. H is not a cluster,

3. H is an (∞, k − 1)-polar graph,

4. H is either a (1, k)-polar graph or an (∞, k − 2)-polar graph, and

5. for each vertex v of H, the graph H − v is either a (1, k − 1)-polar graph
or a k-cluster.

Proof. Suppose that G is a cograph minimal (∞, k)-polar obstruction with a
component isomorphic to P3, and let H be such that G ≅ P3 + H. Note that
H cannot be a (1, k − 1)-polar graph, because P3 is a (1, 1)-polar graph, and
then G would be a (1, k)-polar graph.

To prove that H is not a cluster we will first prove by means of a contradiction
that H has no isolated vertices. If H has at least one isolated vertex, we have
from Lemma 3.2 that for some positive integers p and q, G is isomorphic
to pK1 + qK2 + P3, but in such a case G is a (1, q + 1)-polar graph, which
implies that k ≤ q. Furthermore, for each integer j ∈ {2, . . . , q}, G contains the
cograph minimal (∞, j)-polar obstruction K1 + (j + 1)K2 as a proper induced
subgraph, which implies that k ≤ 1. But it is impossible, since the cograph
minimal (∞, k)-polar obstructions for k ≤ 1 have no components isomorphic
to P3. Hence, H has no isolated vertices, and if H is a cluster, then for some
positive integer q, G ≅ qK2 + P3. We have that q ≥ k + 1 because G is not an
(∞, k)-polar graph, but then G contains the cograph minimal (∞, k)-polar
obstruction K1 + (k + 1)K2 as a proper induced subgraph, in contradiction
with the minimality of G. This contradiction arose from supposing that H is a
cluster, so it is not.

Items 3 to 5 can be easily proved by considering (∞, k)-polar partitions
of G − v when v is either a vertex of G − H, or a vertex of H. We have used
similar arguments before, so the details of these arguments are omitted. Also,
the proof of the converse implication is very similar to the proof of the converse
of Lemma 3.7, so it will be also omitted.
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Lemma 3.10. Let k be a positive integer, and let G ≅ P3 + H be a cograph
minimal (∞, k)-polar obstruction. If H is not a (1, k)-polar graph, then H is
a connected non-complete graph.

Proof. Let k, G and H be as in the hypothesis. By Lemma 3.9, H is not a
cluster, so H has at least one non-complete component. Moreover, it also follows
from Lemma 3.9 that H is an (∞, k−1)-polar graph that is not (1, k−1)-polar,
which implies that H cannot have more than one non-complete component.
Therefore, H has precisely one non-complete component. In addition, since H is
an induced subgraph of G, it follows from Lemma 3.2 that every non-complete
component of H is isomorphic to K1 or K2. In addition, it also follows from
Lemma 3.2 that H has no isolated vertices, otherwise G would have at most one
non-complete component, which is not the case. Hence, for some nonnegative
integer ℓ, H ≅ ℓK2 + H

′, where H
′ is a connected non-complete graph.

Suppose that ℓ ≥ 1, and let v ∈ V (H − H
′). Note that since H

′
≤ H − v,

we have that H − v is not a cluster. Hence, by Lemma 3.9, we have that H − v
admits a (1, k − 1)-polar partition (A, B). But in such case, (A, B ∪ {v}) is a
(1, k)-polar partition of H, which is impossible from our original hypotheses.
The contradiction arose from supposing that ℓ ≥ 1, so ℓ = 0 and then H = H

′,
which proves that H is a connected non-complete graph.

The next trivial observation will be helpful in some of the following results.
It is immediate from the cotree representation of cographs.

Remark 3.11. Let H be a connected cograph, and let H
′ be a disconnected

induced subgraph of H. Then K1 ⊕ H
′ is also an induced subgraph of H.

Lemma 3.12. Let k be a positive integer, and let G be a graph with at least
one component isomorphic to P3.

1. If k = 2 then, G is a cograph minimal (∞, k)-polar obstruction of type
(2, 0) if and only if G ≅ P3 + C4 or G ≅ P3 + (K1 ⊕ 2K2).

2. If k ≥ 3 then, G is a cograph minimal (∞, k)-polar obstruction of type
(2, 0) if and only if G ≅ P3 + H, where H is any connected cograph
minimal (1, k − 1)-polar obstruction.

Proof. We prove only the second statement, the case k = 2 can be treated
in a very similar way. Suppose that H is any connected cograph minimal
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(1, k − 1)-polar obstruction. Since k ≥ 3, we have from Theorems 2.2 and 2.4
that H is isomorphic to some cograph in the set

{K1 ⊕ C4, K2 ⊕ 2K2, 2P3, K1 ⊕ (K2 + P3), Kk,k,

K2 ⊕ (K2 + (k − 1)K1), K1 ⊕ (2K2 + (k − 2)K1)}.

It is straightforward to check that, in any case, H satisfies the items
enumerated in Lemma 3.9, which implies that P3 + H is a cograph minimal
(∞, k)-polar obstruction of type (2, 0).

Conversely, let us suppose that G is a cograph minimal (∞, k)-polar ob-
struction of type (2, 0). From Lemma 3.9, G ≅ P3 +H where H is a connected
non-complete cograph that contains a cograph minimal (1, k− 1)-polar obstruc-
tion H

′ as an induced subgraph. As we just mentioned, if H
′ is connected, then

P3 + H
′ is a cograph minimal (∞, k)-polar obstruction, so H = H

′. Otherwise,
if H

′ is disconnected, it follows from Remark 3.11 that H contains K1 ⊕ H
′

as an induced subgraph. Nevertheless, from Theorem 2.4 and Lemma 3.9,
H

′
≅ kK2, but in this case H contains properly the connected cograph minimal

(1, k − 1)-polar obstruction K1 ⊕ (2K2 + (k − 2)K1) as an induced subgraph,
which contradicts the minimality of G.

Theorem 3.13. Let k be an integer, k ≥ 2, and let G be a graph with at least
one component isomorphic to P3. Then, G is a cograph minimal (∞, k)-polar
obstruction if and only if G ≅ P3 + H and one of the following statements is
satisfied:

1. H ≅ P3 + (k − 1)K2.

2. H ≅ (k − 2)K2 + (K1 ⊕ 2K2).

3. for some integer j ∈ {1, . . . , k − 1}, H ≅ (k − j − 1)K2 +Hj, where Hj is
a connected cograph minimal (1, j)-polar obstruction that is not a cograph
minimal (1,∞)-polar obstruction.

4. k ≥ 3, and H is any cograph minimal (1,∞)-polar obstruction.

Proof. Suppose that G ≅ P3+H is a cograph minimal (∞, k)-polar obstruction.
From Lemmas 3.5 and 3.9 and Remark 3.6, we have that if H is a (1, k)-polar
graph, then H satisfies one of the following statements:

a. H ≅ P3 + (k − 1)K2.
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b. k ≥ 2, and H ≅ (k − 2)K2 + (K1 ⊕ 2K2).

c. H is a cograph minimal (1, k − 1)-polar obstruction, that is neither a
cograph minimal (1,∞)-polar obstruction nor isomorphic to kK2, and
such that exactly one of its components is not isomorphic to K2.

Furthermore, from Theorem 2.4 we have that the graphs described in item
c are precisely the graphs H such that, for some integer j ∈ {1, . . . , k − 1},
H ≅ (k − j − 1)K2 +Hj , where Hj is a connected cograph minimal (1, j)-polar
obstruction that is not a cograph minimal (1,∞)-polar obstruction.

Suppose then that H is not a (1, k)-polar graph. It follows from Lemma 3.10
that H is a connected non-complete graph, and then G is a cograph minimal
(∞, k)-polar obstruction of type (2, 0), and then it follows from Lemma 3.12
that H satisfies item 3 or item 4 of the theorem statement.

The converse follows easily from Lemmas 3.5, 3.9 and 3.12 and Remark 3.6.

3.2.2 Obstructions of type (c, c − 1)
So far, we have obtained a recursive characterization of cograph minimal (∞, k)-
polar obstructions without isolated vertices. Next, we focus on the special case
of cograph minimal (∞, k)-polar obstructions such that all its components,
except one, are trivial. We begin giving a technical characterization of these
obstructions. The proof of this result is omitted since it is very similar to that
of Lemma 3.9.

Lemma 3.14. Let j and k be integers such that 0 ≤ j + 1 ≤ k. Then, G is
a cograph minimal (∞, k)-polar obstruction of type (k − j + 1, k − j) if and
only if G ≅ (k − j)K1 + H, where H is a connected non-complete cograph that
satisfies the following statements:

1. H is not a (1, k)-polar graph,

2. H is not an (∞, j)-polar graph,

3. H is an (∞, j + 1)-polar graph,

4. for each vertex v of H, H − v is either (1, k)-polar or (∞, j)-polar.

The following result provides a pleasant recursive characterization of cograph
minimal (∞, k)-polar obstructions of type (2, 1).
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Theorem 3.15. Let k be an integer, k ≥ 2, and let G be a graph with precisely
two connected components, one of them trivial. Then G is a cograph minimal
(∞, k)-polar obstruction if and only if G ≅ K1 + (K1 ⊕ H

′), where H
′ is a

disconnected cograph minimal (∞, k − 1)-polar obstruction that is (1, k)-polar.

Proof. Let H = K1⊕H
′, where H

′ is a disconnected cograph minimal (∞, k−1)-
polar obstruction that is (1, k)-polar, and let G = K1 + H. Observe that by
the election of H

′, H is an (∞, k)-polar graph that is not (1, k)-polar, and for
each vertex v of H, the graph H − v is either (1, k)- or (∞, k − 1)-polar.

Let us suppose, to reach a contradiction, that G admits an (∞, k)-polar
partition (A, B). Since H is not (1, k)-polar, G[A] must be a nontrivial
connected graph. Thus, since H is not complete, A ⊆ V (H) and H is an
(∞, k − 1)-polar graph, which is impossible. Therefore G is not an (∞, k)-
polar graph.

Let v be a vertex of G. If v is the only isolated vertex of G, then G− v = H,
and H is an (∞, k)-polar graph, so G − v is. Otherwise v ∈ V (H) and, as
we have noted above, H − v is is either (1, k)- or (∞, k − 1)-polar, so G − v
is an (∞, k)-polar graph. Hence, G ≅ K1 + (K1 ⊕ H

′) is a cograph minimal
(∞, k)-polar obstruction whenever H

′ is a cograph minimal (∞, k − 1)-polar
obstruction that is (1, k)-polar.

Conversely, suppose that G is a cograph minimal (∞, k)-polar obstruction
with precisely two connected components, one of them trivial. By Lemma 3.14,
G ≅ K1 + H for some connected cograph H that is not (∞, k − 1)-polar, and
such that for every vertex v of H, H − v is either (1, k)- or (∞, k − 1)-polar.
Note that H contains a cograph minimal (∞, k − 1)-polar obstruction H

′ as
an induced subgraph, but from Theorem 3.3, H

′ cannot be connected, or H
′

would be a proper induced subgraph of G that is not an (∞, k)-polar graph, an
absurd. Thus, H

′ must be disconnected, and from Remark 3.11, K1 ⊕ H
′
≤ H.

But in such a case G contains the cograph minimal (∞, k)-polar obstruction
K1 + (K1 ⊕ H

′) as an induced subgraph, so G ≅ K1 + (K1 ⊕ H
′).

Notice that, by Lemma 3.14, a graph G is a cograph minimal (∞, k)-polar
obstruction of type (k + 2, k + 1) if and only if G ≅ (k + 1)K1 +H, where H is
a connected non-complete cograph minimal (1, k)-polar obstruction that is a
complete multipartite graph. Moreover, from Theorem 2.4, for any integer k,
k ≥ 2, the only cograph minimal (1, k)-polar obstructions that are complete
multipartite graphs are Kk+1,k+1 and K1⊕C4. Thus, the following result follows
immediately from Lemma 3.14.
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Theorem 3.16. Let k be an integer, k ≥ 2. Thus, G is a cograph minimal
(∞, k)-polar obstruction of type (k+2, k+1) if and only of G ≅ (k+1)K1+H,
where H is isomorphic to Kk+1,k+1 or to K1 ⊕ C4.

Unfortunately, obtaining explicit lists of disconnected cograph minimal
(∞, k)-polar obstructions with precisely one nontrivial component is a very
difficult task. As we have shown above, a simple recursive construction of
(2, 1)- and (k + 2, k + 1)-type obstructions is possible, but as we show below,
it is not enough for covering the general case.

The following three lemmas are auxiliary results that will be the cornerstone
for obtaining explicit lists of cograph minimal (∞, k)-polar obstructions of
types (k + 1, k) and (k, k − 1). The three of them are based on the same proof
technique: we consider all the distinct ways in which a connected cograph
can be generated from another connected cograph whose cotree has specific
characteristics. For the sake of length, we only sketch the proof of the first
proposition, the other two are very similar.

Lemma 3.17. Let k be an integer, k ≥ 2, and let H be a complete multipartite
graph with at least two parts and such that each part has at least k + 1 vertices.
If H

′ is a connected cograph of order ∣V (H)∣+ 1 that contains H as an induced
subgraph, then exactly one of the following statements is satisfied:

1. H
′ is a complete multipartite graph with at least two parts and such that

each part has at least k + 1 vertices.

2. H
′ contains K2 ⊕ (K2 + kK1) or K1 ⊕ C4 as an induced subgraph.

Proof. Let k, H and H
′ be as in the hypothesis. Note that the cotree of H is

a rooted tree (T, r) of height two, such that r is labeled 1, r has at least two
children, and each of them is the parent of at least k + 1 leaves. Then, by the
properties of cotrees, the cotree of H

′ is a rooted tree (T ′
, r) with exactly one

more leaf than T , that contains T as an induced tree.
It can be verified that a tree T

′ as described above is necessarily the result
of one of the following modifications on T : (a) adding a new leaf x as a child
of r, (b) adding a new leaf x as a child of a child of r, (c) for a child c of r,
deleting a child ℓ of c, adding a child c

′ to c, and adding to c
′ the leave ℓ and a

new leaf x, (d) for a child c of r with t children, and s ∈ {2, . . . , t− 1}, deleting
the children ℓ1, . . . , ℓs of c, adding a child c

′ to c, adding a new leaf x as a child
of c

′, adding a child c
′′ to c

′, and adding the leaves ℓ1, . . . , ℓs as children of c
′′,

or (e) supposing r has t children, for an integer s ∈ {2, . . . , t − 1}, deleting
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the children c1, . . . , cs of r (each with its own children), adding a child c
′ to

r, adding a new leaf x to c
′, adding a child c

′′ to c, and adding the vertices
c1, . . . , cs (with their children) as children of c

′′.
It is straightforward to corroborate that such modifications on T correspond

to the following modifications on H:

a. Add a universal vertex to H.

b. Add a false twin to a vertex of H.

c. Add a true twin to a vertex of H.

d. Add a vertex v to H in such a way that v is completely adjacent to every
part of H, except for a part P , and v is adjacent to at least two vertices
in P but it is not adjacent to every vertex of P .

e. Add a vertex v to H in such a way that v is completely nonadjacent to
at least two parts of H, and it is completely adjacent to at least one part
of H.

Then, if H
′ corresponds to the operation described in c, then H has K2 ⊕

(K2 + kK1) as a proper induced subgraph, while if H corresponds to an
operation described in items a, d, or e, then H

′ contains K1 ⊕C4 as an induced
subgraph, and if H

′ is obtained from the operation described in item b, then
H is a complete multipartite graph with at least two parts and such that each
part contains at least k + 1 vertices.

Lemma 3.18. Let H be a complete multipartite graph with at least three parts
and such that at least two of them have more than one vertex. If H

′ is a
connected cograph obtained by adding a new vertex to H, then exactly one of
the following conditions is satisfied:

1. H
′ is a complete multipartite graph.

2. H
′ contains, as an induced subgraph, at least one of the following cographs:

K1 ⊕ (K1 + C4), K2 ⊕ (K1 + P3), or K1 ⊕ (P3 + K2).

Lemma 3.19. Let k be an integer, k ≥ 3, and let H be a connected (1, k)-polar
cograph that contains K1 ⊕ (2K2 + K1) as an induced subgraph. If H

′ is a
connected cograph obtained by adding a new vertex to H, then some of the
following statements is satisfied:
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1. H
′ is a (1, k)-polar cograph.

2. H
′ contains some of the following cographs as an induced subgraph: K1 ⊕

(2K2+(k−1)K1), K2⊕(2K2+K1), K1⊕(P3+P3), K1⊕(K2+K1 + P3),
or K1 ⊕ (K1 + (K1 ⊕ 2K2)).

Now, we are ready to give explicit lists of cograph minimal (∞, k)-polar
obstructions of types (k + 1, k) and (k, k − 1). As we have mentioned above,
these lists are directly based on the previous lemmas.

Corollary 3.20. Let k be an integer, k ≥ 2. Then, G is a cograph minimal
(∞, k)-polar obstruction of type (k + 1, k) if and only if G ≅ kK1 + H, where
H is isomorphic to some cograph of the set:

{2P3, (P3 + K2)⊕ K1, 2K2 ⊕ K2, K1 ⊕ (C4 + K1),
K1 ⊕ P3 + K2, K2 ⊕ (P3 + K1), K2 ⊕ (K2 + kK1)}.

Proof. By Lemma 3.14, it is routine to verify that, if H is isomorphic to
some of the listed graphs, then kK1 + H is a cograph minimal (∞, k)-polar
obstruction. For the converse, let us consider G, a cograph minimal (∞, k)-
polar obstruction of type (k + 1, k). By Lemma 3.14 we have that G ≅

kK1 + H, where H is a connected non-complete cograph that contains a
cograph minimal (1, k)-polar obstruction H

′ as an induced subgraph, and
such that for each vertex v ∈ V (H), H − v is either a (1, k)-polar graph
or a complete multipartite graph. In addition, by Theorem 2.4 we know
that every disconnected cograph minimal (1, k)-polar obstruction is not a
complete multipartite graph, which implies from Remark 3.11 that H

′ cannot
be disconnected. Then, since k ≥ 2, we have that H

′ is either isomorphic to
some graph of the set {Kk+1,k+1, K1 ⊕ (2K2 + (k − 1)K1), K2 ⊕ (K2 + kK1)},
or it is isomorphic to some (1,∞)-polar obstruction, that is, to some graph of
the set {K1 ⊕ C4, K2 ⊕ 2K2, 2P3, K1 ⊕ (P3 + K2)}.

We observed at the beginning of this proof that if H
′ is isomorphic to

K2 ⊕2K2, 2P3, K1 ⊕ (P3 +K2) or K2 ⊕ (K2 +kK1), then kK1 +H
′ is a cograph

minimal (∞, k)-polar obstruction, so in this cases H = H
′. Furthermore, since

k ≥ 2, Lemma 3.14 implies that G
′
≅ (k − 1)K1 + K1 ⊕ (2K2 + (k − 1)K1)

is a cograph minimal (∞, k)-polar obstruction. In consequence, H
′ /≅ K1 ⊕

(2K2 + (k − 1)K1), or G would contain G
′ as a proper induced subgraph, a

contradiction.
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Thus, we have only two remaining cases, H
′
≅ K1 ⊕ C4, or H

′
≅ Kk+1,k+1.

Note that, in both cases, H
′ is a complete multipartite graph, and by Lemma 3.14

H is not a complete multipartite graph, so H
′ must be a proper induced sub-

graph of H. Furthermore, by Theorem 3.16, in both cases, G
′
≅ (k+ 1)K1 +H

′

is a cograph minimal (∞, k)-polar obstruction, which implies that for each
vertex v ∈ V (H − H

′), v is adjacent to some vertex of H
′.

Suppose that H
′
≅ K1 ⊕ C4. As we have mentioned before, it is straight-

forward to show that kK1 + K1 ⊕ (C4 + K1), kK1 + K1 ⊕ P3 + K2 and
kK1 + K2 ⊕ (P3 + K1) are all cograph minimal (∞, k)-polar obstructions,
so, if H contains as an induced subgraph a graph H

∗ that is isomorphic to
either K1 ⊕ (C4 + K1), K1 ⊕ P3 + K2, or K2 ⊕ (P3 + K1), then kK1 + H

∗ is a
cograph minimal (∞, k)-polar obstruction contained as an induced subgraph
in G, and then G ≅ kK1 + H

∗ and H ≅ H
∗. Moreover, from Lemma 3.18, H

must contain as an induced subgraph a graph H
∗ as described before, or H

would be a complete multipartite graph, a contradiction.
For the last case, suppose that H

′
≅ Kk+1,k+1. Then, since H is not a

complete multipartite graph, we have from Lemma 3.17 that H either contains
K1 ⊕ C4 as an induced subgraph, or it contains K2 ⊕ (K2 + kK1) as a proper
induced subgraph. Since we have already treated both cases before, we conclude
that the only cograph minimal (∞, k)-polar obstructions of type (k + 1, k) are
the listed one in the statement of the corollary.

Corollary 3.21. Let k be an integer, k ≥ 3. The graph G is a cograph minimal
(∞, k)-polar obstruction of type (k, k − 1) if and only if G ≅ (k − 1)K1 + H,
where H is isomorphic to some cograph of the set

{K1 ⊕ (C4 + 2K1), K1 ⊕ 2P3, K1 ⊕ (K1 + P3 + K2),
K1 ⊕ (K2 + P3 + K1), K2 ⊕ (K1 + 2K2), K1 ⊕ (K1 + K2 + P3),

K1 ⊕ (K1 + (K1 ⊕ 2K2)), K1 ⊕ ((k − 1)K1 + 2K2)}

Proof. Based on Lemma 3.14, it is routine to verify that, if H is isomorphic to
some of the listed graphs, then (k−1)K1+H is a cograph minimal (∞, k)-polar
obstruction.

Conversely, let G be a cograph minimal (∞, k)-polar obstruction of type
(k, k − 1). By Lemma 3.14 we have that G ≅ (k − 1)K1 + H, where H is a
connected cograph that contains a cograph minimal (∞, 1)-polar obstruction
H

′ as an induced subgraph. Thus, from Theorem 2.2 and Remark 3.11, there



3.2. Disconnected obstructions 43

exists a cograph H
′ isomorphic to some graph in the set

{K1 ⊕ (K1 + 2K2), K1 ⊕ (2K1 + C4), K1 ⊕ 2P3, K1 ⊕ (K1 + K2 + P3)}

contained as an induced subgraph of H. As we have observed at the start
of this proof, if H

′ is isomorphic to either K1 ⊕ (2K1 + C4), K1 ⊕ 2P3 or
K1 ⊕ (K1 + K2 + P3), then (k − 1)K1 + H

′ is a cograph minimal (∞, k)-polar
obstruction, and then H = H

′. Suppose then that H
′
≅ K1 ⊕ (K1 + 2K2). It

follows from Lemma 3.14 that H is not a (1, k)-polar graph, which implies
from Lemma 3.19 that H contains a graph H

∗ in the set

{K1 ⊕ (2K2 + (k − 1)K1), K2 ⊕ (2K2 + K1), K1 ⊕ (P3 + P3),
K1 ⊕ (K2 + K1 + P3), K1 ⊕ (K1 + (K1 ⊕ 2K2))}

as an induced subgraph. Since we have proved that in every such case
(k − 1)K1 + H

∗ is a cograph minimal (∞, k)-polar obstruction, we have that
H = H

∗, which finishes the proof.

3.2.3 The remaining types
In contrast with the obstructions with precisely one nontrivial component,
we show in the following proposition that cograph minimal (∞, k)-polar ob-
structions that have at least one trivial component, and at least one com-
plete nontrivial component, can be nicely obtained from the cograph minimal
(∞, k − 1)-polar obstructions with at least one isolated vertex.

Theorem 3.22. Let j, k and p be nonnegative integers such that 1 ≤ p ≤ k − j.
The graph G is a cograph minimal (∞, k)-polar obstruction of type (k− j+2, p)
if and only if G ≅ K2 + G

′ where G
′ is a cograph minimal (∞, k − 1)-polar

obstruction of type (k − j + 1, p) that is a (1, k)-polar graph.

Proof. Suppose that G
′ is a cograph minimal (∞, k − 1)-polar obstruction

that is a (1, k)-polar graph, and let G = K2 + G
′. Note that since G

′ is not
an (∞, k − 1)-polar graph, G is not an (∞, k)-polar graph. Moreover, for
v ∈ V (G − G

′), since G
′ is a (1, k)-polar graph, G − v is also a (1, k)-polar

graph, while for w ∈ G
′, since G

′−w is an (∞, k−1)-polar graph, we have that
G − w is an (∞, k)-polar graph. Thus, G is a cograph minimal (∞, k)-polar
obstruction.
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Conversely, let G be a cograph minimal (∞, k)-polar obstruction of type
(k − j + 2, p), so G ≅ pK1 + (k − j − p + 1)K2 + H, where H is a connected
nontrivial graph. Thus, for G

′
= pK1 + (k − j − p)K2 + H, we have that

G ≅ K2 + G
′. Observe that, since G is not an (∞, k)-polar graph, G

′ is not an
(∞, k − 1)-polar graph.

Let v ∈ V (G−G
′), and let w be the only neighbor of v in G. Let (A, B) be

an (∞, k)-polar partition of G− v. Note that w must belong to A, or G would
be an (∞, k)-polar graph. Thus (A, B) is a (1, k)-polar partition of G− v, and
then G

′ is a (1, k)-polar graph. Hence, since G
′ is not (∞, k − 1)-polar but it

is (1, k)-polar, G
′ contains a cograph minimal (∞, k − 1)-polar obstruction G

∗

that is (1, k)-polar as an induced subgraph, but we have shown at the beginning
of the proof that in such a case K2 + G

∗ is a cograph minimal (∞, k)-polar
obstruction, so we have that G

′
= G

∗, which finishes the proof.

A somewhat surprising consequence of the previous results is that for
c ∈ {k, k + 1, k + 2} and i ∈ {1, . . . , c − 2}, there exists exactly one cograph
minimal (∞, k)-polar obstruction of type (c, i). In the following proposition
we specify the known cases.

Corollary 3.23. Let p and k be nonnegative integers.

1. If 1 ≤ p ≤ k + 1, then the graph pK1 + (k − p + 1)K2 + Kp,p is a
cograph minimal (∞, k)-polar obstruction. Moreover, for p ≤ k, up to
isomorphism, this is the only cograph minimal (∞, k)-polar obstruction
of type (k + 2, p).

2. If 1 ≤ p ≤ k, the graph pK1 + (k − p)K2 + (K2 ⊕ (K2 + pK1)) is a
cograph minimal (∞, k)-polar obstruction. Moreover, for p ≤ k − 1, up to
isomorphism, this is the only cograph minimal (∞, k)-polar obstruction
of type (k + 1, p).

3. If 1 ≤ p ≤ k − 1, the graph pK1 + (k − p− 1)K2 + (K1 ⊕ (2K2 + pK1) is a
cograph minimal (∞, k)-polar obstruction. Moreover, for p ≤ k − 2, up to
isomorphism, this is the only cograph minimal (∞, k)-polar obstruction
of type (k, p).

Proof. Let k and p be nonnegative integers such that 1 ≤ p ≤ k+1. It is routine
to show that pK1 + (k − p + 1)K2 + Kp,p is a cograph minimal (∞, k)-polar
obstruction that admits a (1, k + 1)-polar partition.
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Suppose that p ≤ k. We proceed by mathematical induction on k to show
that the only cograph minimal (∞, k)-polar obstruction of type (k + 2, p) is
isomorphic to pK1 + (k − p + 1)K2 + Kp,p.

The base case, k = 1, follows from Theorem 2.2. For the inductive step,
suppose that k ≥ 2, and let G be a cograph minimal (∞, k)-polar obstruction
of type (k + 2, p). Theorem 3.22 implies that G ≅ K2 + G

′, where G
′ is a

cograph minimal (∞, k − 1)-polar obstruction of type (k + 1, p) that admits
a (1, k)-polar partition. If p ≤ k − 1, the induction hypothesis implies that
G

′
≅ pK1 + (k− p)K2 +Kp,p, where the result is immediate. In a similar way, if

p = k, Theorem 3.16 implies that G
′
≅ pK1 + (k − p)K2 +Kp,p, which ends the

proof of the first item. The proof of items 2 and 3 are analogous to the proof
of item 1, but using Corollaries 3.20 and 3.21 instead of Theorem 3.16.

3.3 Cases k = 2 and k = 3
The exhaustive list of cograph minimal (∞, 1)-polar obstructions was given in
[19] (see Theorem 2.2). As the next two theorems show, the results exposed
along this section allow us to give complete lists of cograph minimal (∞, k)-
polar obstructions for the cases k = 2 and k = 3.

Theorem 3.24. Let G be a cograph minimal (∞, 2)-polar obstruction. Then

1. G is connected if and only if G is isomorphic to P3 + (K1 ⊕C4), P3 +2P3,
P3 + (K2 ⊕ 2K2), or P3 + (K1 ⊕ (K2 + P3)),

2. G is disconnected and has no isolated vertices if and only if G is isomor-
phic to P3 + C4, P3 + (K1 ⊕ 2K2), or 2P3 + K2,

3. G has exactly 4 connected components if and only if G is isomorphic to
3K1 + (K1 ⊕ C4), or pK1 + (3 − p)K2 + Kp,p for some integer p with
p ∈ {1, 2, 3},

4. G has exactly 3 connected components and at least one isolated vertex
if and only if G is isomorphic to K1 + 2P3, K1 + (K1 ⊕ (P3 + K2)),
K1 + (K2 ⊕ 2K2), K1 + (K1 ⊕ (C4 + K1)), K1 + (K1 ⊕ P3 + K2), K1 +
(K2 ⊕ (P3 + K1)), or pK1 + (2 − p)K2 + (2K1 ⊕ (K2 + pK1)) for some
integer p with p ∈ {1, 2},
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5. G has exactly 2 connected components and one isolated vertex if and only
if G is isomorphic to K1 + (K1 ⊕ (K1 + 2K2)), K1 + (K1 ⊕ (2K1 +C4)),
K1 + (K1 ⊕ 2P3), or K1 + (K1 ⊕ (K1 + K2 + P3)).

In consequence, a graph G is a cograph minimal (∞, 2)-polar obstruction if
and only if it is isomorphic to some of the 23 cographs listed before.

Proof. Item 1 follows from Theorems 2.3 and 3.3, item 2 follows from Theo-
rems 3.8 and 3.13, items 3 and 4 follow from Theorem 3.16 and Corollaries 3.20
and 3.23, and item 5 follows from Theorem 3.15.

By Lemma 3.2 we have that every cograph minimal (∞, 2)-polar obstruction
has at most 4 connected components, so the listed graphs are all the cograph
minimal (∞, 2)-polar obstructions.

Theorem 3.25. Let G be a cograph minimal (∞, 3)-polar obstruction. Then

1. G is connected if and only if G ≅ P3 + H, where H is isomorphic to
K1 ⊕ C4, 2P3, K2 ⊕ 2K2, or K1 ⊕ (K2 + P3),

2. G is disconnected and has neither isolated vertices nor components iso-
morphic to P3 if and only if G is isomorphic to 2C4, 2(K1 ⊕ 2K2), or
C4 + (K1 ⊕ 2K2),

3. G is disconnected and has at least one component isomorphic to P3 if and
only if G ≅ P3+H, where H is isomorphic to P3+2K2, K2+(K1⊕2K2),
K2 + C4, K3,3, 2K1 ⊕ (K2 + 2K1), K1 ⊕ (K1 + 2K2), K1 ⊕ C4, 2P3,
K2 ⊕ 2K2, or K1 ⊕ (K2 + P3),

4. G has exactly 5 connected components if and only if G is isomorphic to
4K1 + (K1 ⊕ C4), or pK1 + (4 − p)K2 + Kp,p for some integer p with
p ∈ {1, 2, 3, 4},

5. G has exactly 4 connected components and at least one isolated vertex
if and only if either G ≅ K1 + H, where H is isomorphic to 2P3, K1 ⊕
(P3 +K2), K2 ⊕ 2K2, K1 ⊕ (C4 +K1), K1 ⊕P3 + K2, or K2 ⊕ (P3 +K1),
or G is isomorphic to pK1 + (3 − p)K2 + (2K1 ⊕ (K2 + pK1)) for some
integer p with p ∈ {1, 2, 3},

6. G has exactly 3 connected components and at least one isolated vertex if
and only if either G ≅ 2K1+H, where H is isomorphic to K1⊕(C4+2K1),
K1 ⊕ 2P3, K1 ⊕ (K1 +P3 + K2), K1 ⊕ (K2 +P3 + K1), K2 ⊕ (K1 + 2K2),
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K1 ⊕ (K1 +K2 +P3), or K1 ⊕ (K1 + (K1 ⊕ 2K2)), or G is isomorphic to
pK1 + (2−p)K2 + (K1 ⊕ (2K1 +pK2)) for some integer p with p ∈ {1, 2},

7. G has exactly 2 connected components and one isolated vertex if and only
if G ≅ K1+(K1⊕H), where H is isomorphic to P3+C4, P3+(K1⊕2K2),
2P3+K2, K1+3K2, 2K1+K2+C4, 3K1+K3,3, K1+K2+(2K1⊕(K2+K1)),
2K1 + (2K1 ⊕ (K2 + 2K1)), or K1 + (K1 ⊕ (K1 + 2K2)).

In consequence, a graph G is a cograph minimal (∞, 3)-polar obstruction if
and only if it is isomorphic to some of the 49 cographs listed before.

Proof. Item 1 follows from Theorems 2.3 and 3.3, item 2 follows from The-
orem 3.8, item 3 follows from Theorem 3.13, items 4, 5 and 6 follow from
Theorem 3.16 and Corollaries 3.20, 3.21 and 3.23, and item 7 follows from
Theorem 3.15 and Corollary 3.21.

From Lemma 3.2 we have that every cograph minimal (∞, 3)-polar ob-
struction has at most 5 connected components, so the listed graphs are all the
cograph minimal (∞, 3)-polar obstructions.

3.4 Open problems and conjectures
Although the results given in this chapter are not enough to give exhaustive
lists of cograph minimal (∞, k)-polar obstructions for an arbitrary integer k,
we think it might be possible to have a general formula to describe them, so
we pose it as an open problem.

Problem 3.26. For a positive integer k, find a recursive characterization for
the cograph minimal (∞, k)-polar obstructions.

As we observed in Section 3.2.3, for some specific values of c and i it can be
proved that there exists exactly one cograph minimal (∞, k)-polar obstruction
of type (c, i). We conjecture that our result can be extended in the following
way.

Conjecture 3.27. Let k, c and i be integers such that 1 ≤ i ≤ c − 2 ≤ k. Then,
there exists exactly one cograph minimal (∞, k)-polar obstruction of type (c, i).

Additionally, results on exact lists of cograph minimal (∞, k)-polar obstruc-
tions, for k ∈ {1, 2, 3}, supports the following assertions.
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Conjecture 3.28. For every cograph minimal (∞, k)-polar obstruction G, the
order of G is at most 3(k + 1).

Conjecture 3.29. If G is a cograph minimal (∞, k)-polar obstruction, then G
is a cograph minimal (s, k)-polar obstruction for any integer s greater than k.

Finally, known characterizations of minimal (s, k)-polar obstructions [9, 19,
46] and Theorems 2.2, 3.24 and 3.25 support the following conjecture.

Conjecture 3.30. A cograph minimal (s, k)-polar obstruction that is not a
minimal (∞, k)-polar obstruction must admit an (s + 1, k)-polar partition.



Chapter 4

P4-sparse and P4-extendible
graphs

Throughout this section, we study polarity on two cograph superclasses, namely
P4-sparse and P4-extendible graphs. In Section 4.2 we prove that any hereditary
property has finitely many minimal obstructions in the mentioned graph classes.
Then, in Sections 4.3 to 4.6 we give complete lists of minimal obstructions for
the properties of being (s, 1)-polar, 2-polar, unipolar, monopolar, or polar, when
restricted to the P4-sparse and P4-extendible graphs. Finally, in Section 4.7 we
provide linear time algorithms to decide whether P4-sparse and P4-extendible
graphs are unipolar, monopolar or polar graphs. It is worth mentioning that
we recently submitted for publication the original results in this chapter in two
separate documents; extended verisons of the manuscripts submitted can be
found in [20, 21].

4.1 Structural characterizations
A graph was defined to be P4-sparse if any vertex subset with at most five
vertices induces at most one P4. Clearly, P4-sparse graphs are precisely the
{C5, P5, P5, P, P , F, F}-free graphs (see Figure 4.1). Additionally, Jamison and
Olariu [49] provided a connectedness characterization of P4-sparse graphs based
on some special graphs called spiders, which we now introduce.

A graph G is a spider if its vertex set admits a partition (S, K, R) such that
G[S ∪K] is a headless spider with partition (S, K), and R is both, completely
adjacent to K and completely nonadjacent to S. For a spider G = (S, K, R)
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we will say that S is its legs set, K is its body, and R is its head. A spider is
called thin (respectively thick) if d(s) = 1 (respectively d(s) = ∣K∣ − 1) for
any s ∈ S. Notice that the complement of a thin spider is a thick spider, and
vice versa, and that a headless spider is precisely a spider with an empty head.

Theorem 4.1 ([49]). A graph G is a P4-sparse graph if and only if for every
nontrivial induced subgraph H of G, exactly one of the following statements is
satisfied

1. H is disconnected.

2. H is disconnected.

3. H is an spider.

Given a graph G and a vertex subset W , we denote by S(W ) the set of
vertices x ∈ VG − W such that x belongs to a P4 sharing vertices with W . If a
vertex subset W inducing P4 is such that S(W ) has at most one vertex, we
say that W ∪ S(W ) is an extension set. In the above terms, P4-extendible
graphs were defined as the graphs such that, for every set W inducing a P4,
W ∪ S(W ) is an extension set. As Jamison and Olariu noticed in [50], any
extension set must induce one of the eight graphs depicted in Figure 4.1, namely
P4, C5, P5, P, F or their complements. We call these graphs extension graphs.

P4 C5 P5 P5 (house)

P (banner) P F (fork, chair) F (kite)

Figure 4.1: The eight extension graphs. Black vertices are the midpoints of
separable extension graphs.

An extension set D is separable if no vertex of D is both an endpoint of
some P4 and a midpoint of some P4 in G[D]. Observe that separable extension
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sets must induce one of P4, P, F or their complements; these graphs are called
separable extension graphs.

For a separable extension graph X with midpoints set K and endpoints
set S, a graph H is said to be an X-spider if H is an induced supergraph of
X such that VH \ VX , denoted R, is completely adjacent to K but completely
nonadjacent to S. If H is an X-spider, we say that (S, K, R) is an X-spider
partition of H, and we refer to S, K and R as the legs set, the body, and the
head of H, respectively. From now on, every time we use the term X-spider,
we are assuming that X is a separable extension graph.

Jamison and Olariu [50] gave the following connectedness characterization
for the class of P4-extendible graphs.

Theorem 4.2 ([50]). If G is a graph, then G is a P4-extendible graph if and
only if, for every nontrivial induced subgraph H of G, precisely one of the
following conditions is satisfied:

1. H is disconnected.

2. H is disconnected.

3. H is an extension graph.

4. There is a unique separable extension graph X such that H is an X-spider
with nonempty head.

Observe that every extension graph is trivially a P4-extendible graph but
the headless spiders on six vertices are examples of minimal P4-extendible
obstructions. Thus, since any headless spider is a P4-sparse graph and all the
forbidden P4-sparse graphs are P4-extendible, the classes of P4-sparse graphs
and P4-extendible graphs are incomparable.

In the next section, we prove that, for any hereditary property P of graphs,
there is only a finite number of minimal P-obstructions that are P4-sparse or
P4-extendible graphs.

4.2 Hereditary properties
We start this section with an easy observation that will often be used in the
rest of the text without any explicit mention.
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Remark 4.3. Let P be a hereditary property of graphs, and let H be a P-
obstruction. If G is a minimal P-obstruction such that H ≤ G, then G ≅ H.

Now, we introduce a definition of Order Theory that allow us to characterize
the classes of graphs for which any hereditary property has only a finite number
of minimal obstructions. A partially ordered set (M,≤) is called a well-quasi-
ordering (WQO) if any infinite sequence of elements {ai}i∈N from M contains
an increasing pair, that is to say, a pair ai ≤ aj such that i < j. Equivalently,
(M,≤) is a WQO if and only if M contains neither an infinite decreasing chain
nor an infinite antichain.

Let G be a graph class ordered by the induced subgraph relation, and let
P be a hereditary property on G. By Remark 4.3, the family of minimal
P-obstructions is an antichain. Moreover, any antichain in (G,≤) is the family
of minimal Q-obstructions for a hereditary property Q. Then, since graphs
ordered by the induced subgraph relation do not have infinite decreasing chains,
G is WQO by the induced subgraph relation if and only if it contains no infinite
antichain, or equivalently, if every hereditary property on G has only finitely
many minimal obstructions. Peter Damaschke [28] used the following theorem
to prove that cographs and P4-reducible graphs are WQO under the induced
subgraph relation.

Theorem 4.4 ([28]). Let G be a family of graphs, and let Σ and Π be sets of
unary and binary graph operations, respectively. Define partial orderings on Σ
and Π as follows:

σ ⪯ σ
′ if and only if σ(G) ≤ σ

′(G) for all graphs G, and

π ⪯ π
′ if and only if π(G, H) ≤ π

′(G, H) for all graphs G, H.

Suppose that the following assertions are satisfied:

1. G is WQO by the induced subgraph relation.

2. Any σ ∈ Σ is monotonous (that is, H ≤ G implies σ(H) ≤ σ(G)), and
extensive (that is, for any graph G, G ≤ σ(G)).

3. Any π ∈ Π is commutative, associative, and satisfies:

(a) if G ≤ G
′ and H ≤ H

′, then π(G, H) ≤ π(G′
, H

′), and
(b) G, H ≤ π(G, H).



4.2. Hereditary properties 53

4. (Σ,⪯) and (Π,⪯) are WQO.

Then, the class Γ(G, Σ, Π) of all graphs obtained by start graphs from G using
operations from Σ and Π, is WQO under the induced subgraph relation.

Next, we provide new characterizations for both, P4-sparse and P4-extendible
graphs, in order to show that Theorem 4.4 can be used to prove that such graph
families (which are P4-reducible superclasses), are WQO under the induced
subgraph relation.

4.2.1 Hereditary properties on P4-sparse graphs
Jamison and Olariu [49] gave a constructive characterization for P4-sparse
graphs starting with trivial graphs and using three binary operations. Never-
theless, the third operation used in such a characterization is not commutative,
so it does not satisfy the hypotheses of Theorem 4.4, and we cannot use that
characterization with Damaschke’s theorem to conclude that P4-sparse graphs
are WQO. But, not everything is lost. Next, we establish a different construc-
tive characterization for P4-sparse graphs that is more appropriate for said
purpose. Our characterization starts with trivial graphs and headless spiders,
and it involves two binary operations as well as two infinite families of unary
graph operations. We start with the following straightforward observation.

Remark 4.5. Disjoint union and join operations preserve P4-sparse graphs.

Let H be a graph, and let j be an integer, j ≥ 2. The graph σj(H) is the thin
spider G = (S, K, R) such that ∣S∣ = ∣K∣ = j and G[R] = H. Analogously,
the graph τj(G) is the thick spider G = (S, K, R) such that ∣S∣ = ∣K∣ = j
and G[R] = H. Notice that σ2(H) = τ2(H) for any graph H. The following
observation follows directly from the definition of P4-sparse graphs.

Remark 4.6. Let j be an integer, j ≥ 2. The graphs σj(H) and τj(H) are
P4-sparse graphs if and only if H is a P4-sparse graph. In addition, any headless
spider is a P4-sparse graph.

Let Π be the set of binary operations whose only elements are the disjoint
union and join graph operations, and let Σ = {σj}j≥2 ∪ {τj}j≥3. Let us define
the following partial order on Σ:

σ ⪯ σ
′ if and only if σ(H) ≤ σ

′(H) for all graphs H.
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It is straightforward to show that σ2 ⪯ σ3 ⪯ σ4 ⪯ ⋯ and σ2 ⪯ τ3 ⪯ τ4 ⪯

τ5 ⪯ ⋯, so it trivially follows that Σ is WQO by ⪯. Analogously, it is easy to
show that the family of graphs G whose only elements are the trivial graph and
all headless spiders is WQO under the induced subgraph relation. Now we give
our characterization of P4-sparse graphs.

Theorem 4.7. Let G be a graph. The following statements are equivalent.

1. G is a P4-sparse graph.

2. G is obtained from trivial graphs by a finite sequence of Σ- and Π-
operations.

Proof. We have from Theorem 4.1 and Remarks 4.5 and 4.6 that 2 implies 1.
The converse implication can be easily proved proceeding by induction on the
order of G and using Theorem 4.1.

The theorem above shows that Γ(G, Σ, Π) is precisely the class of P4-sparse
graphs. As we pointed before (G,≤) and (Σ,≤) are WQO and, since Π is a
finite set, (Π,≤) is too, so the following corollary is a simple application of
Theorem 4.4.

Corollary 4.8. The class of P4-sparse graphs is WQO under the induced
subgraph relation. Equivalently, any hereditary property on P4-sparse graphs
admits a finite forbidden induced subgraph characterization.

4.2.2 Hereditary properties on P4-extendible graphs
A constructive characterization for P4-extendible graphs starting with trivial
graphs and using four binary operations was given in [50]. As well as the
constructive characterization for P4-sparse graphs given in [49], this character-
ization for P4-extendible graphs does not fit the hypotheses of Theorem 4.4,
so we are unable to conclude that P4-extendible graphs are WQO in this way.
With this purpose in mind, we establish a new constructive characterization for
P4-extendible graphs, which starts from a set of nine basic graphs and involves
two binary operations as well as five unary operations.

Let G be the set of graphs whose elements are the trivial graph K1 and the
eight extension graphs, that is, G = {K1, P4, C5, P5, P5, P, P , F, F}. For each
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separable extension graph X (see Figure 4.1) and any graph G, we define the
graph σX(G) as the graph with vertex set VX ∪ VG and edge set

EX ∪ EG ∪ {xy ∶ x is a midpoint of X and y ∈ VG}.

For each separable extension graph X, the unary operation σX is its associated
separable!separable extension operation. Let Σ be the set of the five
separable extension operations σX , and let Π be the set of binary operations
whose only elements are the disjoint union and join operations.

Remark 4.9 ([50]). Let G be a graph whose vertex set admits a partition into
two nonempty disjoint sets V

′ and V
′′ such that no P4 in G contains vertices

from both V
′ and V

′′. Then G is P4-extendible if and only if the subgraphs of
G induced by V

′ and V
′′ are.

Observe that, from the remark above, P4-extendible graphs are clearly
closed under join and disjoint union operations. Now we use such remark for
proving that separable extension operations also preserve P4-extendible graphs.

Lemma 4.10. The class of P4-extendible graphs is closed under separable
extension operations, that is to say, for any P4-extendible graph G and any
separable extension graph X, σX(G) is a P4-extendible graph.

Proof. By definition of σX , the vertex set of σX(G) is partitioned into VX and
VG, and by hypothesis the graphs induced by these sets are P4-extendible. Now,
by Remark 4.9 we only need to prove that no P4 has vertices in both VX and
VG. Assume the contrary to obtain a contradiction.

Let M be the set of midpoints of X, and let W be a vertex set inducing
a P4 such that W ∩ VX ≠ ∅ ≠ W ∩ VG. It is an easy observation that, since
W induces a P4, ∣W ∩ VG∣ = 1, ∣W ∩ VX∣ = 3, and ∣W ∩ M∣ ≤ 2. So we have
only two possible cases, either ∣W ∩ M∣ = 1 or ∣W ∩ M∣ = 2. Let u be the
only vertex in W ∩ VG.

First, assume that W has only one endpoint x of X and that y and z are
both midpoints of X. Let E be the edge set of σX(G). By definition of σX we
have that uy, uz ∈ E and ux ∉ E. Moreover, since W induces a P4, we have
that yz ∉ E and x is adjacent to exactly one of y and z. But this is impossible,
because the only separable extension graph with two nonadjacent midpoints is
P , but no endpoint of P distinguishes between its nonadjacent midpoints.

Otherwise, W has two endpoints, y and z, and one endpoint, x, of X. By
definition of σX we have that ux ∈ E and uy, uz ∉ E. Moreover, since W
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induces a P4, we have that yz ∈ E and x is adjacent to exactly one of y and z.
Here we have a contradiction, because the only separable extension graph with
two adjacent endpoints is P , but no midpoint of P distinguishes between its
adjacent endpoints.

Theorem 4.11. Let G be a graph. The following statements are equivalent.

1. G is a P4-extendible graph.

2. G is obtained from G by a finite sequence of Σ- and Π-operations.

Proof. The fact that 2 implies 1 follows easily from Lemma 4.10, the observa-
tion after Remark 4.9, and since G is a subset of P4-extendible graphs. For
the converse implication we proceed by induction on the order of G. From
Theorem 4.2 we have that, if G is not trivial, one of the following cases is
satisfied:

1. G is disconnected.

2. G is disconnected.

3. G is an extension graph.

4. there is a unique separable extension graph X such that G = σX(H) for
some graph H.

In the first (second) case, G is the disjoint union (join) of two P4-extendible
graphs G1 and G2, which by induction hypothesis can be constructed from G
by a finite sequence of Σ- and Π-operations, so the result follows in this case.
The remaining cases are immediate.

The theorem above shows that Γ(G, Σ, Π) is precisely the class of P4-
extendible graphs. In addition, considering that G, Σ and Π are finite sets, it is
easy to justify the following consequence of Theorem 4.4.

Corollary 4.12. The class of P4-extendible graphs is WQO under the induced
subgraph relation. Equivalently, any hereditary property on P4-extendible graphs
admits a finite forbidden subgraph characterization.

The following sections are devoted to the characterizations by forbidden
induced subgraphs of properties associated with polarity on P4-sparse and
P4-extendible graphs. We start with the characterization of minimal unipolar
obstructions on the mentioned graph classes.
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4.3 Unipolarity
In this section we provide complete lists of minimal unipolar obstructions
that are P4-sparse or P4-extendible graphs. With that purpose in mind we
introduce some minimal unipolar obstructions that do not necessarily belong
to the mentioned graph classes.

Remember that a hole is a cycle of length at least 5. An antihole is the
complement of a hole, and it is said to be even or odd accordingly to its order.

Proposition 4.13. The graphs depicted in Figure 4.2 are minimal unipolar
obstructions.

2P3 K2,3 odd antiholes (C7)

Figure 4.2: Some minimal unipolar obstructions.

Proof. To prove that these graphs are not unipolar, it is enough to observe
that for any clique K, G − K has an induced P3, so G − K is not a cluster.
It is also easy to verify that any vertex-deleted subgraph of these graphs is a
unipolar graph, so the result follows.

The following two lemmas completely characterize minimal unipolar ob-
structions G (on general graphs) such that either G or G is disconnected. We
use such characterizations as the base to provide complete lists of minimal
unipolar obstructions for cographs, P4-sparse graphs and P4-extendible graphs.

Lemma 4.14. If G is a graph, then G is a disconnected minimal unipolar
obstruction if and only if G ≅ 2P3.

Proof. Let G be a disconnected minimal unipolar obstruction. By the mini-
mality of G, any of its components is a unipolar graph. In consequence, G has
at least two components that are not complete graphs, otherwise G would be
unipolar. Then, G has 2P3 as an induced subgraph, so G ≅ 2P3. The converse
implication follows from Proposition 4.13.
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Lemma 4.15. Let G be a graph. If G is disconnected, then G is a minimal
unipolar obstruction if and only if G ≅ K2,3.

Proof. First, suppose that G is a minimal unipolar obstruction. Notice that G
is not a bipartite graph, or G would admit a partition into two cliques, so it
would be a unipolar graph, which is impossible. Hence G contains an odd cycle
as an induced subgraph. Moreover, since odd antiholes are minimal unipolar
obstructions and G is disconnected, G does not contain odd cycles of length
greater than three as induced subgraphs. Thus, G contains a triangle. In
addition, since minimal unipolar obstructions do not have universal vertices, G
does not have isolated vertices, and any component of G has order at least two.
Therefore, since G has at least two connected components, it contains K2 +K3
as an induced subgraph, so G ≅ K2,3. The converse implication follows from
Proposition 4.13.

Since the complement of any nontrivial connected cograph is a disconnected
cograph we have the following direct consequence of Lemmas 4.14 and 4.15.

Corollary 4.16. If G is a cograph, then G is a minimal unipolar obstruction
if and only if G ≅ 2P3 or G ≅ K2,3.

Now, we use the characterization of P4-sparse graphs given in Theorem 4.1
to give the explicit list of P4-sparse minimal unipolar obstructions.

Lemma 4.17. If G = (S, K, R) is a spider, then G is a unipolar graph if and
only if R = ∅ or G[R] is unipolar.

Proof. Since unipolarity is a hereditary property, we have that G[R] is unipolar
whenever G is. Conversely, for any unipolar partition (A, B) of G[R], (K ∪
A, S ∪ B) is a unipolar partition of G.

Corollary 4.18. If G is a P4-sparse graph, then G is a minimal unipolar
obstruction if and only if G ≅ 2P3 or G ≅ K2,3. In consequence, any P4-sparse
minimal unipolar obstruction is a cograph.

Proof. The first statement follows from Lemmas 4.14, 4.15 and 4.17, since
we have by Theorem 4.1 that any connected P4-sparse graph with connected
complement is a spider. The second statement follows directly from Corol-
lary 4.16.
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We end this section by proving a result analogous to Corollary 4.18 for P4-
extendible graphs. Notice that, for any extension graph but P , its midpoints set
is a clique while its endpoints induce a cluster (see Figure 4.1). Then, the proof
of the following proposition is exactly the same as the proof of Lemma 4.17.
The case of P -spiders is covered in Lemma 4.20.

Lemma 4.19. Let H ∈ {P4, P , F, F}. If G = (S, K, R) is an H-spider, then
G is a unipolar graph if and only if R = ∅ or G[R] is unipolar.

Lemma 4.20. If G = (S, K, R) is a P -spider, then G is a unipolar graph if
and only if either R is an empty set or a clique. In consequence, if G is a
P -spider, then it is not a minimal unipolar obstruction.

Proof. Let w be the only vertex of G[S ∪ K] of degree 2 that is not adjacent
to a vertex of degree three, and let u and v be its neighbors. If R has two
nonadjacent vertices x and y, then G[{u, v, w, x, y}] is isomorphic to K2,3.
Therefore, if G is a unipolar graph, then R = ∅ or R is a clique. Conversely,
if R is a clique and z is the only vertex of G[S ∪ K] of degree three, then
(R ∪ {z, u}, (S ∪ K) \ {z, u}) is a unipolar partition of G. Hence, if G is not a
unipolar graph, R contains two nonadjacent vertices and G properly contains
K2,3, so G is not a minimal unipolar obstruction.

Corollary 4.21. Let G be a P4-extendible graph. Then, G is a minimal
unipolar obstruction if and only if G ∈ {2P3, K2,3, C5}.
Proof. We have from Theorem 4.2 that any connected P4-extendible graph
with connected complement is either an extension graph, or an X-spider for
some separable extension graph X. It is easy to verify that the only extension
graph that is a minimal unipolar obstruction is C5, so the result follows from
Lemmas 4.14, 4.15, 4.19 and 4.20.

In the next sections, we give complete lists of minimal (s, k)-polar obstruc-
tions for some specific values of s and k when restricted to either P4-sparse or
P4-extendible graphs, generalizing several results previously known for cographs.

4.4 (s, 1)-polarity
The following five lemmas completely characterize disconnected minimal (s, 1)-
polar obstructions for general graphs. They are simple generalizations of
Lemmas 2 to 5 from [19], so we will only sketch the proofs.
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E1 = K1 + 2K2 E2 = 2P3 E3 = C4 + 2K1 E7 = K1 + P3 + K2

E10 = K1 + C5 E11 = K1 + P E12 = K1 + P5

Figure 4.3: Some minimal (∞, 1)-polar obstructions.

Lemma 4.22. The seven graphs depicted in Figure 4.3 are minimal (s, 1)-
polar obstructions for every integer s, s ≥ 2. Hence, these graphs are minimal
(∞, 1)-polar obstructions.

Proof. It is routine to verify that, for each graph G in Figure 4.3, the following
assertions are satisfied: For any maximal clique K, G − K contains an induced
P3, and for any vertex v, G− v is a (2, 1)-polar graph. The result follows easily
from here.

In [19], a proof of the following two lemmas restricted to the family of
cographs was given. A minor change in such a proof brings us the more general
results that we state here.

Lemma 4.23. Let s be an integer, s ≥ 2. Every minimal (s, 1)-polar ob-
struction different from K1 + 2K2 and 2K1 + C4 has at most two connected
components.

Proof. Let G be a minimal (s, 1)-polar obstruction different from the graphs
depicted in Figure 4.3. Aiming for a contradiction, assume that G has at least
three connected components. Since s ≥ 2, we have that G is not a split graph,
so it contains 2K2, C4 or C5 as an induced subgraph. Having at least three
connected components, G contains some of K1 + 2K2, 2K1 + C4 or K1 + C5 as
an induced subgraph. This results in a contradiction, because these graphs are
minimal (s, 1)-polar obstructions. Thus, G has at most two components.
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Lemma 4.24 ([19]). Let s be an integer, s ≥ 2. If a minimal (s, 1)-polar
obstruction G distinct to the graphs depicted in Figure 4.3 has two connected
components and it is not 2Ks+1, then G ≅ Kr + H, where r ∈ {1, 2} and H is
a connected graph that is not a complete s-partite graph.

The proof of the following lemma has the same spirit than the proof of
Lemma 4 in [19], but it has been rewritten for the sake of clarity.

Ks

K2 + (2K1 ⊕ Ks)

Figure 4.4: The only minimal (s, 1)-polar obstruction different from 2Ks+1
with exactly two connected components one of them being isomorphic to K2.

Lemma 4.25. Let s be an integer, s ≥ 2. If H is a connected graph such that
G = K2 + H is a minimal (s, 1)-polar obstruction other than 2Ks+1, then H is
isomorphic to 2K1 ⊕ Ks.
Proof. It is routine to verify that K2 + (2K1 ⊕ Ks) is a minimal (s, 1)-polar
obstruction. From Lemma 4.24 we know that H is not a complete s-partite
graph, so H contains a copy of either P3 or Ks+1 as an induced subgraph.
Nevertheless, H is a P3-free graph, for otherwise G would contain K1 + 2K2
as a proper induced subgraph. Thus, H contains a copy of Ks+1 as a proper
induced subgraph. Let K be a maximum clique in H, and let v ∈ VH − K. As
we argued above, H is a P3-free graph, so v is adjacent to all but one vertex
w in K. Hence, for any s-subset V

′ of K ∩ N(v), the graph H[V ′ ∪ {v, w}] is
isomorphic to 2K1 ⊕ Ks, so G ≅ K2 + (2K1 ⊕ Ks).

The following lemma is a slight generalization of Lemma 5 in [19]. Since
the main ideas of the proof are very similar, we will only explain the significant
differences.
Lemma 4.26. Let s be an integer, s ≥ 2. If H is a connected graph such that
G = K1 + H is a minimal (s, 1)-polar obstruction isomorphic to none of the
graphs depicted in Figure 4.3, then G is isomorphic to K1 + (C4 ⊕ Ks−1).
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K2 + (2K1 ⊕ Ks)

Ks−1

K1 + (C4 ⊕ Ks−1)

Figure 4.5: The only minimal (s, 1)-polar obstruction different from those on
Figure 4.3 with exactly two connected components one of them being isomorphic
to K1.

Proof. The graph H cannot be a split graph, so it contains an induced copy
of either 2K2, C4 or C5. Nevertheless, by the minimality of G and since
G /≅ K1 + C5 we know that H is {2K2, C5}-free, so it contains an induced
cycle on four vertices, C = (c1, c2, c3, c4). Let v be a vertex in H − VC , which
must exist since H is not a complete bipartite graph. Observe that, since G
contains no graph depicted in Figure 4.3 as an induced subgraph, v only could
be adjacent to either two nonadjacent vertices of C or to every vertex of C.

Let V1, V2 and V3 be the subsets of vertices of H that are not in C and
that are adjacent to c1 and c3, to c2 and c4, and to ci for every i ∈ {1, 2, 3, 4},
respectively. Notice that since H contains no induced K2 + P3, V1 an V2 are
both independent sets, and V3 is completely adjacent to V1 ∪ V2. In addition,
since H is P -free, we have that V1 and V2 are completely adjacent. From here
is straightforward to notice that H − V3 is a complete bipartite graph.

Hence, H is the join of the complete bipartite graph H − V3 with H[V3],
which implies that H[V3] is not a complete (s − 2)-partite graph. One more
time, since K2 + P3 is not an induced subgraph of H we have that H is a
P3-free graph, so H[V3] is too. Therefore, H[V3] contains a copy of Ks−1 as
an induced subgraph, so the result follows.

So far, we have characterized all disconnected minimal (s, 1)-polar obstruc-
tions, which are a constant number for any choice of s. We summarize this
result as follows.

Theorem 4.27. Let s be an integer, s ≥ 2, and let G be a disconnected minimal
(s, 1)-polar obstruction. Then G satisfies one of the following assertions:

1. G is isomorphic to one of the graphs depicted in Figure 4.3.
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2. G ≅ 2Ks+1.

3. G ≅ K2 + (2K1 ⊕ Ks).

4. G ≅ K1 + (C4 ⊕ Ks−1).

For any nontrivial cograph G, either G or its complement is disconnected
[23], so the complement of any nontrivial connected cograph is disconnected.
This fact was used in [19] to give a recursive characterization of all cograph
minimal (s, 1)-polar obstructions. After giving a complete characterization
of the disconnected cograph minimal (s, 1)-polar obstructions, the authors
provided a recursive construction for the disconnected cograph minimal (1, s)-
polar obstructions (which are precisely the complements of connected cograph
minimal (s, 1)-polar obstructions).

Theorem 4.27 characterizes disconnected minimal (s, 1)-polar obstructions
for general graphs. Thus, to completely characterize minimal (s, 1)-polar
obstructions for a given class of graphs it suffices to characterize connected
minimal (s, 1)-polar obstructions. To this end, in order to follow the strategy
described in the previous paragraph for P4-sparse and P4-extendible graphs,
we notice that the following lemma, which was stated in [19] for the special
case of cographs, is also valid for general graphs.

Lemma 4.28 ([19]). Let t be an integer, t ≥ 2, and for each i ∈ {1, . . . , t}, let
Gi be a minimal (1, ki)-polar obstruction that is a (1, ki +1)-polar graph. Then,
for k = t − 1 +∑t

i=1 ki, the graph G = G1 + ⋅ ⋅ ⋅ + Gt is a minimal (1, k)-polar
obstruction that is a (1, k + 1)-polar graph.

In the following sections we show that the converse of Lemma 4.28 holds
for P4-sparse and P4-extendible graphs, that is to say, that any disconnected
minimal (1, k)-polar obstruction on such classes is the disjoint union of minimal
(1, ki)-polar obstructions for some integers ki < k.

4.4.1 P4-sparse minimal (s, 1)-polar obstructions
The induced path on three vertices is a minimal (0, k)-polar obstruction for
any integer k ≥ 2 so, if a graph G contains P3 as a proper induced subgraph,
then G is not a minimal (0, k)-polar obstruction. Similarly, if G contains P3 as
a proper induced subgraph, then G is not a minimal (s, 0)-polar obstruction.
From here, the following observation follows easily.
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Remark 4.29. Let G be a spider. If G is a headless spider or the head of
G induces a split graph, then G is a split graph that has both, P3 and its
complement, as proper induced subgraphs. Hence, G is not a minimal (s, k)-
polar obstruction for any choice of s and k.

The following two propositions provide the basis for showing that any
connected P4-sparse minimal (s, 1)-polar obstruction has a disconnected com-
plement.

Proposition 4.30. Let k be a positive integer, and let G = (S, K, R) be a
spider with nonempty head. Then, G is not a minimal (1, k)-polar obstruction.

Proof. Aiming for a contradiction, suppose that G is a minimal (1, k)-polar
obstruction, and let σ ∈ S be a leg of G. Let (A, B) be a (1, k)-polar partition
of G−σ. Notice that ∣K∩A∣ ≤ 1 because K is a clique and A is an independent
set. Therefore, since K has at least two vertices, K ∩ B ≠ ∅. Moreover, since
B induces a cluster, R is completely adjacent to K, and K ∩ B ≠ ∅, we have
that R ∩ B is a clique. Also notice that either K ∩ A = ∅ or R ∩ A = ∅.

Now, if K ∩ A ≠ ∅, then R is a clique, G is a split graph, and therefore
G is a (1, k)-polar graph, which is impossible. Otherwise, if K ⊆ B, then
(A ∪ {σ}, B) is a (1, k)-polar partition of G, a contradiction.

Since the complement of a spider is also a spider, and any minimal (∞, 1)-
polar obstruction is a minimal (s, 1)-polar obstruction for some positive integer
s, we have the following simple consequences of the previous proposition.

Corollary 4.31. Let s be a positive integer. If G is a spider, then G is neither
a minimal (s, 1)-polar obstruction nor a minimal (∞, 1)-polar obstruction.

Corollary 4.32. Let s be a positive integer. If G is a P4-sparse minimal
(s, 1)-polar obstruction, then G or its complement is disconnected.

Proof. Since G is a P4-sparse graph, if G and G are connected, we have from
Theorem 4.1 that G is a spider, but that is impossible by Corollary 4.31.
Therefore, either G or its complement is disconnected.

The next two results, together with Lemma 4.28, provide us with a complete
structural characterization for disconnected P4-sparse minimal (1, k)-polar
obstructions.
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Lemma 4.33. Let t be an integer, t ≥ 2, and for each i ∈ {1, . . . , t}, let Gi be a
connected P4-sparse minimal (1, ki)-polar obstruction that is a (1, ki + 1)-polar
graph. If G = G1 + ⋅ ⋅ ⋅ + Gt, then G is a minimal (1, k)-polar obstruction if
and only if k = t − 1 +∑t

i=1 ki.

Proof. Let k = t − 1 +∑t

i=1 ki. We have from Lemma 4.28 that G is a minimal
(1, k)-polar obstruction that is (1, k + 1)-polar, so we just need to show that
G is not a minimal (1, κ)-polar obstruction for any κ < k.

Let G be a connected P4-sparse minimal (1, ki)-polar obstruction that is
(1, ki + 1)-polar. By Corollary 4.32, G is a disconnected minimal (ki, 1)-polar
obstruction that is a (ki+1, 1)-polar graph. Then, it follows from Theorem 4.27
that, for any nonnegative integer κi such that κi < ki, G contains a proper
induced subgraph G

′ that is both, a P4-sparse minimal (κi, 1)-polar obstruction
and a (κi + 1, 1)-polar graph. From here on, the proof follows as the proof of
Lemma 8 in [19].

Lemma 4.34. Let k be a nonnegative integer. If G is a disconnected P4-
sparse minimal (1, k)-polar obstruction with components G1, . . . , Gt, then there
exist nonnegative integers k1, . . . , kt such that for each i ∈ {1, . . . , t}, Gi is a
connected minimal (1, ki)-polar obstruction that is a (1, ki + 1)-polar graph,
and ∑t

i=1 ki = k − t + 1. (Notice that ki < k for any i ∈ {1, . . . , t}, and G is a
(1, k + 1)-polar graph.)

Proof. This is a generalization of Lemma 9 in [19], which states the same result
for cographs. As in the original proof, it is easy to argue that each component
Gi is a minimal (1, ki)-polar obstruction that is (1, k)-polar, where ki is the
maximum integer such that any proper induced subgraph of Gi is (1, ki)-polar.

Then, by Corollary 4.32, Gi is a disconnected minimal (ki, 1)-polar ob-
struction that is (k, 1)-polar, and we have from Theorem 4.27 that Gi is a
(ki + 1, 1)-polar graph, so Gi is (1, ki + 1)-polar. Finally, the result follows
from Lemma 4.33.

The following result provides a complete recursive construction of P4-sparse
minimal (s, 1)-polar obstructions.

Theorem 4.35. Let s be an integer, s ≥ 2. If G is a P4-sparse graph, then G
is a minimal (s, 1)-polar obstruction if and only if G satisfies exactly one of
the following assertions:

1. G is isomorphic to one of the four cographs depicted in Figure 4.3.



66 4. P4-sparse and P4-extendible graphs

2. G is isomorphic to some of 2Ks+1, K2 + (Ks ⊕ 2K1) or K1 + (Ks−1 ⊕C4).

3. The complement of G is disconnected with components G1, . . . , Gt, each
Gi is a minimal (1, si)-polar obstruction whose complement is different
from the graphs in Figure 4.3, and s = t − 1 +∑t

i=1 si.

Proof. If G is disconnected, it follows from Theorem 4.27 that G is a minimal
(s, 1)-polar obstruction if and only if G is either a P4-sparse graph depicted in
Figure 4.3 (which can easily be checked to be a cograph), or it is isomorphic
to some of 2Ks+1, K2 + (Ks ⊕ 2K1) or K1 + (Ks−1 ⊕ C4). Otherwise, if G is
connected, Corollary 4.32 implies that G is a disconnected P4-sparse minimal
(1, s)-polar obstruction, and the result follows from Lemma 4.34.

A result analogous to Theorem 4.35 will be given for P4-extendible graphs
in the next section. As the reader will notice, the technique used to obtain the
results for both classes is the same, and the differences come only from the
connectedness characterization for each graph class.

Before developing the aforementioned result, we prove that any P4-sparse
minimal (s, 1)-polar obstruction is a cograph. In Corollary 4.18 was proved a
similar property for unipolarity, and analogous characteristics will be proven
later for (∞, 1)-, (∞,∞)-, and (2, 2)-polarity. In contrast, it will be evident
that none of these properties is satisfied when restricted to P4-extendible graphs
instead of P4-sparse graphs.

For any hereditary property P and any graph classes G and H such that
G ⊆ H, the set of minimal P-obstructions in G clearly is a (possibly proper)
subset of the set of minimal P-obstructions in H. The class of P4-sparse graphs
has been observed to have a behavior similar to cographs when computing
their minimal obstructions with respect to some hereditary properties. For
example, Hannnebauer [45] proved that every P4-sparse minimal obstruction
for (k, ℓ)-coloring is a cograph. Now, we prove that the same phenomenon
occurs for (s, 1)-polarity.

Theorem 4.36. Let s be a nonnegative integer. Any P4-sparse minimal (s, 1)-
polar obstruction is a cograph.

Proof. Let G be a P4-sparse minimal (s, 1)-polar obstruction. We proceed
by induction on s. The statement is clearly true for s ≤ 1. Let s ≥ 2. It
follows from Corollary 4.32 that G is not a spider, hence G or its complement
is disconnected.
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If G is disconnected, it follows from Theorem 4.27 that G is a cograph.
Otherwise, if G is disconnected, Lemma 4.34 implies that any component H
of G is a P4-sparse minimal (1, ki)-polar obstruction for a nonnegative integer
ki with ki < k. Thus, H is a P4-sparse minimal (ki, 1)-polar obstruction, and
by induction hypothesis H (hence H) is a cograph. Since the disjoint union of
cographs is also a cograph, G (hence G) is a cograph.

4.4.2 P4-extendible minimal (s, 1)-polar obstructions
We begin with some easily verifiable facts, stated without proof and bundled
to facilitate future references.

Remark 4.37. Let s, k be either in N or equal to ∞.

1. P4 and F are split graphs but they are neither (0,∞)- nor (∞, 0)-polar
graphs.

2. C5, P5, and P are (1, 2)- and (2, 1)-polar, but they are neither (1, 1)-,
(∞, 0)- nor (0,∞)-polar graphs.

3. An extension graph G is a minimal (s, k)-polar obstruction if and only if
G ≅ C5 and s = k = 1.

The following proposition allow us to show that any connected P4-extendible
minimal (1, k)-polar obstruction, other than C5, has a disconnected comple-
ment.

Lemma 4.38. Let k be a nonnegative integer, and let X be a separable extension
graph. If H = (S, K, R) is an X-spider with nonempty head, then H is not a
minimal (1, k)-polar obstruction.

Proof. The proof is divided in three cases, depending on X. If X is isomorphic
to P4, F or F then the midpoints set of X conform a clique with at least two
vertices, while its endpoints set is an independent set, in which case the proof
is the same as Proposition 4.30.

Now, assume that X ≅ P . Let v be the only vertex of X of degree one, and
let w be the support vertex of v; notice that w is a midpoint of X. Aiming
for a contradiction, suppose that H is a minimal (1, k)-polar obstruction, and
let (A, B) be a (1, k)-polar partition of H − v. If w ∈ A, then there are two
midpoints of X in B, but in such a case R∩A and R∩B are both empty sets,
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which is impossible. Then, w ∈ B and (A ∪ {v}, B) is a (1, k)-polar partition
of H, a contradiction. Hence, H is not a minimal (1, k)-polar obstruction.

Finally, assume that X ≅ P , and let v and w as in the previous paragraph.
Aiming for a contradiction, suppose that H is a minimal (1, k)-polar obstruction,
and let (A, B) be a (1, k)-polar partition of H−v. If w ∈ A, the other midpoint
of X, w

′, is in B and at least one of the endpoints of X that is adjacent to w
′

is also in B. Therefore, R ∩ B = ∅. But w ∈ A, so also R ∩ A = ∅, which is
impossible. Hence, w ∈ B and (A ∪ {v}, B) is a (1, k)-polar partition of H, a
contradiction. Then, H is not a minimal (1, k)-polar obstruction.

Corollary 4.39. Let k be a nonnegative integer, and let H be a P4-extendible
minimal (1, k)-polar obstruction. If H /≅ C5, then H or its complement is
disconnected.

Proof. Since H is a P4-extendible graph, we have from Theorem 4.2 that, if
H and H are connected, then H is either an extension graph or an X-spider
(with nonempty head) for some separable extension graph X. Nevertheless we
have from Item 3 of Remark 4.37 and Lemma 4.38 that this is not the case, so
either H or its complement is disconnected.

In the last two results of this section we provide a complete structural char-
acterization for disconnected P4-extendible minimal (1, k)-polar obstructions.
It is worth noticing that statements in Lemmas 4.40 and 4.41 are the same as
those in Lemmas 4.33 and 4.34, respectively, except by the obvious difference
of the graph class.

Lemma 4.40. Let t be an integer, t ≥ 2, and for each i ∈ {1, . . . , t}, let Gi be
a connected P4-extendible minimal (1, ki)-polar obstruction that is a (1, ki + 1)-
polar graph. If G = G1 + ⋅ ⋅ ⋅ +Gt, then G is a minimal (1, k)-polar obstruction
if and only if k = t − 1 +∑t

i=1 ki.

Proof. Let k = t − 1 +∑t

i=1 ki. We have from Lemma 4.28 that G is a minimal
(1, k)-polar obstruction that is (1, k + 1)-polar, so we just need to show that
G is not a minimal (1, κ)-polar obstruction for any κ < k.

Let Gi be a connected P4-extendible minimal (1, ki)-polar obstruction that
is (1, ki + 1)-polar. By Corollary 4.39, we have that either Gi ≅ C5 or Gi is a
disconnected minimal (ki, 1)-polar obstruction that is a (ki + 1, 1)-polar graph.
However, it follows from Theorem 4.27 that, for any nonnegative integer κi

such that κi < ki, Gi contains a proper induced subgraph G
′
i that is both, a
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P4-extendible minimal (1, κi)-polar obstruction and a (1, κi + 1)-polar graph.
From here on, the proof follows as the proof of Lemma 8 in [19].

Lemma 4.41. Let k be a nonnegative integer. If G is a disconnected P4-
extendible minimal (1, k)-polar obstruction with components G1, . . . , Gt, then
there exist nonnegative integers k1, . . . , kt such that for each i ∈ {1, . . . , t}, Gi

is a connected minimal (1, ki)-polar obstruction that is a (1, ki + 1)-polar graph,
and ∑t

i=1 ki = k − t + 1. (Notice that ki < k for any i ∈ {1, . . . , t}, and G is a
(1, k + 1)-polar graph.)

Proof. This is a generalization of Lemma 9 in [19], that states the same result
for cographs. As in the original proof, it is easy to argue that each component
Gi is a minimal (1, ki)-polar obstruction that is (1, k)-polar, where ki is the
maximum integer such that any proper induced subgraph of Gi is (1, ki)-polar.

Then, by Corollary 4.39, Gi is either C5 or a disconnected P4-extendible
minimal (ki, 1)-polar obstruction that is (k, 1)-polar. However, it follows from
Theorem 4.27 and Item 3 of Remark 4.37 that Gi is a (ki + 1, 1)-polar graph,
so Gi is a connected P4-extendible minimal (1, ki)-polar obstruction that is a
(1, ki)-polar graph. Finally, the result follows from Lemma 4.40.

The following result is analogous to Theorem 4.35; it provides a complete
recursive construction of P4-extendible minimal (s, 1)-polar obstructions. No-
tice that, since C5 is a P4-extendible minimal (1, 1)-polar obstruction, there
are P4-extendible minimal (s, 1)-polar obstructions that are not cographs for
each positive integer s.

Theorem 4.42. Let s be an integer, s ≥ 2. If G is a P4-extendible graph, then
G is a minimal (s, 1)-polar obstruction if and only if G satisfies exactly one of
the following assertions:

1. G is isomorphic to one of the seven graphs depicted in Figure 4.3.

2. G is isomorphic to some of 2Ks+1, K2 + (Ks ⊕ 2K1) or K1 + (Ks−1 ⊕C4).

3. The complement of G is disconnected with components G1, . . . , Gt, each
Gi is a minimal (1, si)-polar obstruction whose complement is different
from the graphs in Figure 4.3, and s = t − 1 +∑t

i=1 si.

Proof. If G is disconnected, it follows from Theorem 4.27 that G is a minimal
(s, 1)-polar obstruction if and only if G is either a graph depicted in Figure 4.3,
or it is isomorphic to some of 2Ks+1, K2 + (Ks ⊕ 2K1) or K1 + (Ks−1 ⊕ C4).
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Otherwise, if G is connected, Corollary 4.39 and Item 3 of Remark 4.37 imply
that G is a disconnected P4-extendible minimal (1, s)-polar obstruction, and
the result follows from Lemma 4.41.

4.5 Polarity and monopolarity
In order to analyze the minimal obstructions for polarity and monopolarity
on the classes of P4-sparse and P4-extendible graphs we need a final lemma.
Notice that it holds for general graphs.
Lemma 4.43. If G is a graph, then G is a disconnected minimal polar obstruc-
tion if and only if G ≅ P3 + H where H is a minimal monopolar obstruction
that is not a minimal polar obstruction.
Proof. First, assume that H is a minimal (1,∞)-polar obstruction that is not
a minimal polar obstruction, and let G = P3 + H. Aiming for a contradiction,
assume that G has a polar partition (A, B). Notice that G[A] is not an
empty graph because H is not a (1,∞)-polar graph. Then G[A] is completely
contained in a component of G. Moreover, since any component of G is either
P3 or a component of H, and G[B] is a P3-free graph, we have that A∩VH = ∅
so H is a cluster, a contradiction. Hence, G is not a polar graph.

Let v ∈ VG. If v ∈ VH , let (A, B) be a (1,∞)-polar partition of H − v, and
let w ∈ VG − VH be a vertex of degree 1. Then (A′

, VG − (A′ ∪ {v})), where
A

′
= A ∪ {w}, is a (1,∞)-polar partition of G − v. Now, let v ∈ VG − VH .

Then, since H is a polar graph and P3 − v is a cluster, G − v is a polar graph.
Therefore G is a disconnected minimal polar obstruction.

For the converse, assume that G is a disconnected minimal polar obstruction.
Notice that, if all the components of G are (1,∞)-polar graphs, then G is also a
(1,∞)-polar graph, so G has a component H

′ that contains a minimal (1,∞)-
polar obstruction H as an induced subgraph. Notice that by the minimality
of G, H is a polar graph. In addition, G has no complete components, so
any component of G contains an induced P3, and therefore G contains the
disjoint union of P3 with a minimal (1,∞)-obstruction that is a polar graph
(H). Together with the minimality of G, this implies that G ≅ P3 + H.

4.5.1 P4-sparse minimal polar obstructions
A graph G is a P4-sparse minimal monopolar obstruction if and only if G is a
P4-sparse minimal (∞, 1)-polar obstruction. Hence, the following consequence
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of Theorems 2.2 and 4.36 completely characterizes the minimal monopolar
obstructions in P4-sparse graphs.

Corollary 4.44. If G is a P4-sparse graph, then G is a minimal (∞, 1)-polar
obstruction if and only if G is one of the four cographs depicted in Figure 4.3.

Proof. Let G be P4-sparse minimal (∞, 1)-polar obstruction. Then G is a
minimal (s, 1)-polar obstruction for some nonnegative integer s. Moreover, by
Theorem 4.36 we have that G is a cograph minimal (∞, 1)-polar obstruction.
Then, from Theorem 2.2, we have that G is isomorphic to one of the cographs
depicted in Figure 4.3. The converse is proved in Lemma 4.22.

Next, we prove that, as well as P4-sparse minimal (s, 1)- and (∞, 1)-polar
obstructions, every P4-sparse minimal polar obstruction is a cograph.

Theorem 4.45. If G is a P4-sparse minimal polar obstruction, then G is a
cograph.

Proof. First, aiming for a contradiction, suppose that G is a spider, say G =

(S, K, R). Since headless spiders are split graphs, and thus polar graphs,
R is not an empty set. Moreover, by the minimality of G, G[R] admits a
polar partition (A, B), and then (A ∪ K, B ∪ S) would be a polar partition
of G, contradicting the choice of G. Therefore G is not a spider. Thus, by
Theorem 4.1, G or its complement is disconnected. However, in both cases
Lemma 4.43 and Corollary 4.44 imply that G is a cograph.

We obtain the complete list of P4-sparse minimal polar obstructions as an
immediate consequence of Theorem 2.3 and the previous proposition.

Corollary 4.46. A graph G is a P4-sparse minimal polar obstruction if and
only if G or its complement is isomorphic to P3 +H, where H is any P4-sparse
minimal (1,∞)-polar obstruction.

4.5.2 P4-extendible minimal polar obstructions
Unlike P4-sparse graphs, there are P4-extendible minimal monopolar and polar
obstructions that are not cographs. We give complete lists of such minimal
obstructions in the next results.

Corollary 4.47. If G is a P4-extendible graph, then G is a minimal (∞, 1)-
polar obstruction if and only if G is one of the graphs depicted in Figure 4.3.
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Proof. Let G be a P4-extendible minimal (∞, 1)-polar obstruction. Then G is
a minimal (s, 1)-polar obstruction for some integer s, s ≥ 2. By Lemma 4.41
and Theorem 4.42 we conclude that G is isomorphic to one of the seven graphs
depicted in Figure 4.3. The converse is proved in Lemma 4.22.

Theorem 4.48. If H is a P4-extendible minimal polar obstruction, then H or
its complement is the disjoint union of P3 with the complement of one of the
graphs depicted in Figure 4.3.

Proof. First, aiming for a contradiction, let us assume that H is a G-spider
for some separable extension G, say H = (S, K, R). By Items 1 and 2 of
Remark 4.37, we have that R ≠ ∅, and by the minimality of H, H[R] admits
a polar partition (A, B). But, no matter what separable extension G is, its
midpoints induce a complete multipartite graph while its endpoints induce a
cluster, so (A∪K, B∪S) is a polar partition of H, contradicting the assumption
that H was a G-spider. Thus, by Theorem 4.2, either H or its complement is
disconnected, and the result follows from Lemma 4.43 and Corollary 4.47.

The next section is devoted to provide complete characterizations of minimal
(2, 2)-polar obstructions on both, P4-sparse and P4-extendible graphs. As we
have pointed before, we will notice that P4-sparse minimal 2-polar obstructions
are cographs, but there are P4-extendible minimal 2-polar obstructions that
are not.

4.6 2-polarity
Throughout this section we generalize the characterization of cograph minimal
2-polar obstructions given in [46]. In fact, we base our results in the following
propositions, most of them taken from the aforementioned paper.

We start with two lemmas that provide us of some useful general structural
properties about minimal k-polar obstructions in general graphs.

Lemma 4.49 ([46]). Let H be a minimal k-polar obstruction. The following
statements are true

1. H has at most k + 2 components.

2. H has at least one nontrivial component.

3. H has at most k + 1 trivial components.
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4. If H has at least one trivial component, H has at most one noncomplete
component.

5. If H /≅ (k + 1)Kk+1, every complete component of H is isomorphic to K1
or K2.

Lemma 4.50 ([46]). Let H be a minimal 2-polar obstruction.

1. H has at least seven vertices.

2. If H has seven vertices and three connected components, then at least one
of them is an isolated vertex.

Next, we give a slight correction to Lemma 2 in [46], which characterize
the minimal k-polar obstructions with the maximum possible number of com-
ponents; it is worth noticing that it does not affect the main results in such
paper.

Lemma 4.51. Let k be an integer, k ≥ 2, and let G be graph. Then, G is a
minimal k-polar obstruction with exactly k+2 connected components if and only
if G ≅ ℓK1 + (k − ℓ + 1)K2 + G

′, where ℓ is an integer in the set {1, . . . , k + 1}
and G

′ is a connected complete k-partite graph that is a minimal (1, ℓ− 1)-polar
obstruction and such that, if ℓ ≤ k, G

′ is a (1, ℓ)-polar graph.

Proof. Suppose G ≅ ℓK1 + (k − ℓ + 1)K2 + G
′, where ℓ is an integer in the

set {1, . . . , k + 1} and G
′ is a connected complete k-partite graph that is a

minimal (1, ℓ − 1)-polar obstruction such that, if ℓ ≤ k, it is a (1, ℓ)-polar
graph. If G is a (1, k)-polar graph, then G

′ is a (1, ℓ − 1)-polar graph, but it is
not. Thus, since G is not (1, k)-polar, if its admits a k-polar partition (A, B),
the subgraph G[A] is a connected graph and hence it is completely contained
in some component of G. But then, G would have at most k + 1 connected
components, which is not the case. Hence, G is not a k-polar graph.

Let v be an isolated vertex of G. Then G − v is the disjoint union of
a k-cluster with G

′, and since G
′ is a complete k-partite graph, then G − v

is a k-polar graph. Now, since G
′ is a minimal (1, ℓ − 1)-polar obstruction,

for any vertex w of G
′, G

′ − w can be partitioned into an stable set and an
(ℓ − 1)-cluster, so G − w is a (1, k)-polar graph, and then a k-polar graph.
Finally, if at least one component of G is a copy of K2, then ℓ ≤ k and we have
that G

′ is a (1, ℓ)-polar graph. Thus, for any vertex u in a K2-component of
G, G − u is a (1, k)-polar graph. Hence, G is a minimal k-polar obstruction
that clearly has exactly k + 2 connected components.
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For the converse implication, assume that G is a minimal k-polar obstruction
with precisely k+2 components and ℓ isolated vertices. If ℓ = 0 then G properly
contains K1 + (k + 1)K2 as an induced subgraph, but that is impossible from
the first part of this proof. Then, G has at least one isolated vertex, and G
clearly is not an empty graph, so ℓ ≤ k + 1. We know by Lemma 4.49 that
G has at most one noncomplete connected component and that any complete
component of G has at most two vertices, so G ≅ ℓK1 + (k − ℓ + 1)K2 + G

′

where ℓ ∈ {1, . . . , k + 1} and G
′ is a connected graph.

Notice that G
′ is not a (1, ℓ − 1)-polar graph, otherwise G would be a

(1, k)-polar graph, and hence a k-polar graph. Let u be a vertex of G
′. By the

minimality of G, we have that G − u is a k-polar graph. Moreover, since G − u
has at least k + 2 connected components, any k-polar partition of G − u is
necessarily a (1, k)-polar partition, which implies that G

′−u is a (1, ℓ−1)-polar
graph. Then G

′ is a minimal (1, ℓ − 1)-polar obstruction. Now, let v be an
isolated vertex of G. By the minimality of G, G − u has a k-polar partition
(A, B), but it cannot be a (1, k)-polar partition or G would be a (1, k)-polar
graph. Thus, either G

′
≅ K2 and ℓ = 1, or A = V (G′) and hence G

′ is a
complete k-partite graph. Finally, if l ≤ k, G has at least one K2-component.
Let w be a vertex in one of such components. Then G−w is a k-polar graph with
k + 2 connected components, which implies that in fact G − w is a (1, k)-polar
graph, and hence G

′ is a (1, ℓ)-polar graph.

A partial complement of a graph H is either the usual complement of
H, or a graph H1 + H2, where H1 and H2 are subgraphs of H obtained by
splitting the components of H into two parts, H1 and H2. The next result
shows how partial complements preserves 2-polarity, which will be useful to give
compact lists of minimal 2-polar obstructions on P4-sparse and P4-extendible
graphs. Remarkably, this lemma was originally proven for the special class of
cographs, but the same proof works for any hereditary class of graphs closed
under complement and disjoint union operations, particularly, it works for the
classes of P4-sparse and P4-extendible graphs.

Lemma 4.52 ([46]). Let G be a hereditary class of graphs closed under com-
plement and disjoint union operations, and let G ∈ G be a 2-polar graph. Then,
any partial complement of G is a 2-polar graph belonging to G.

Based on the previous propositions, in the following sections we provide com-
plete lists of minimal 2-polar obstructions that are P4-sparse or P4-extendible
graphs.
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4.6.1 P4-sparse minimal 2-polar obstructions
Throughout this section we characterize P4-sparse graphs admitting a 2-polar
partition by means of its family of minimal obstructions. At the end of the
section we conclude that any P4-sparse minimal 2-polar obstruction is in fact a
cograph, which is interesting since any known P4-sparse minimal (s, k)-polar
obstruction is a cograph. We start by proving that the complement of any
connected P4-sparse minimal 2-polar obstruction is a disconnected graph.
Proposition 4.53. If G is a spider, then G is 2-polar if and only if G is a
split graph.
Proof. Let (S, K, R) be the spider partition of G. We only need to prove that
any 2-polar spider is, in fact, a split graph. Since k-polar graphs are closed
under complements, and headless spiders trivially are split graphs, we can
assume that G is a thin spider with nonempty head. Let (V1, V2, V3, V4) be a
2-polar partition of G, and for any i ∈ {1, 2, 3, 4}, let Ri = Vi ∩ R. Notice that,
since K is completely adjacent to R, Ri = ∅ for some i ∈ {1, . . . , 4}.

First, suppose that (R1, R3, R4) is a (1, 2)-polar partition of G[R]. Again,
some of R1, R3 and R4 must be empty because K and R are completely adjacent
and K has at least two vertices. Thus, either (R1, R3) is a split partition of
G[R], or (R3, R4) is a (0, 2)-polar partition of G[R]. But the second case is
not possible since then, S ∪ K ⊆ V1 ∪ V2, which is impossible since G[S ∪ K]
is not a complete multipartite graph. Hence, G[R] is a split graph and, by
Remark 4.29, also is G. The case in which (R1, R2, R3) is a (2, 1)-polar partition
of G[R] can be treated in a similar way.
Corollary 4.54. If G is a spider, then G is not a minimal 2-polar obstruction.
In consequence, for any P4-sparse minimal 2-polar obstruction H, either H or
its complement is disconnected.
Proof. Let (S, K, R) be the spider partition of G. As in the lemma above, we
can suppose that G is a thin spider. Aiming for a contradiction, assume that G
is a minimal 2-polar obstruction so, by the previous lemma and Remark 4.29,
we have that G[R] is not a split graph. Then, for any r ∈ R, G − r is a spider
that is 2-polar, so G[R]− r is a split graph. Thus G[R] is a P4-sparse minimal
split obstruction, that is to say, G is isomorphic to either 2K2 or C4. From
here is easy to prove that deleting either one leg or one vertex of the body of G
the resulting graph is not a 2-polar graph, contradicting the minimality of G.
Hence, a P4-sparse minimal 2-polar obstruction is not a spider, and the result
directly follows from Theorem 4.1.
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By Lemma 4.49, any P4-sparse minimal 2-polar obstruction has at most
four connected components. The following propositions show that there are
exactly three P4-sparse graphs attaining such bound.

Proposition 4.55. Let ℓ be a positive integer. If G is a connected P4-sparse
minimal (1, ℓ − 1)-polar obstruction that is a complete multipartite graph, then
G is isomorphic to either Kℓ,ℓ or K1 ⊕ C4.

Proof. Clearly, if ℓ = 1, G ≅ K2, while if ℓ = 2, G ≅ C4. For ℓ ≥ 3, we have from
Theorem 4.36 that G (hence G) is a cograph. Then, since G is connected, G is
a disconnected graph, and it follows from Theorem 4.27 that G is isomorphic
to either Kℓ,ℓ or K1 ⊕ C4.

Corollary 4.56. If G is a P4-sparse graph, then G is a minimal 2-polar
obstruction with exactly 4 connected components if and only if G ≅ ℓK1 + (3 −
ℓ)K2 + Kℓ,ℓ for some integer ℓ ∈ {1, 2, 3}.

Proof. Let G be a P4-sparse graph. By Lemma 4.51 we have that G is a
minimal 2-polar obstruction with precisely four connected components if and
only if G ≅ ℓK1 + (3 − ℓ)K2 + G

′, where ℓ ∈ {1, 2, 3}, and G
′ is a connected

complete bipartite graph that is a minimal (1, ℓ−1)-polar obstruction such that,
if ℓ ≠ 3, G

′ is a (1, ℓ)-polar graph. In addition, we have from Proposition 4.55
that the only connected P4-sparse minimal (1, ℓ − 1)-polar obstruction that is
a complete bipartite graph is Kℓ,ℓ. The result follows since Kℓ,ℓ trivially is a
(1, ℓ)-polar graph.

The following proposition is a direct consequence of Theorem 4.35 that will
be useful to give the complete list of P4-sparse minimal 2-polar obstructions.

Proposition 4.57. There are exactly nine P4-sparse minimal (2, 1)-polar
obstructions; they are the graphs E1, . . . , E9 depicted in Figures 4.3 and 4.6.

Hannnebauer [45] proved that, for any nonnegative integers s and k, any
P4-sparse minimal (s, k)-polar obstruction has at most (s + 1)(k + 1) vertices.
Thus, we have by Lemma 4.50 that any P4-sparse minimal 2-polar obstruction
has at least seven and at most nine vertices. The following three lemmas
completely characterize such minimal obstructions depending on their order;
the proofs are simple generalizations of the analogous proofs given in [46] for
cographs.
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E4 = 3K2 E5 = K2 + C4 E6 = K1 + W4

E8 = K2 + (K2 ⊕ 2K1) E9 = 2K3 E13 = K2 + C5

Figure 4.6: Some minimal (2, 1)-polar obstructions.

F1 F2 F3 F4 F5

Figure 4.7: P4-sparse minimal 2-polar obstructions on 7 vertices.

Lemma 4.58. The disconnected P4-sparse minimal 2-polar obstructions on 7
vertices are exactly the graphs F1, . . . , F5 depicted in Figure 4.7.

Proof. Let H be a disconnected P4-sparse minimal 2-polar obstruction on seven
vertices. If H has four connected components or it can be transformed by a
sequence of partial complementations into a graph with four components, it
follows from Corollary 4.56 and Lemma 4.52 that H is isomorphic to Fi for
some i ∈ {1, . . . , 5}. Thus, we can assume that any graph obtained from H
by partial complementations has at most three components; from here we can
replicate the argument in Lemma 7 of [46] to assume that H is a graph with
precisely two connected components, one of them being a trivial graph.

Since H is not a 2-polar graph, its nontrivial component must contain a
minimal (2, 1)-polar obstruction H

′ as an induced subgraph. Moreover, H
′
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cannot be a disconnected graph on six vertices, so we have from Proposition 4.57
that H ∈ {K1 + 2K2, 3K2, 2K2 ⊕ 2K1}. If H

′
≅ 3K2, H is the graph F5 in

Figure 4.7. If H
′
≅ 2K2 ⊕ 2K1, is straightforward to verify that H is a (1, 2)-

polar graph, which cannot occur. Otherwise, if H
′
≅ K1 + 2K2, we have that

H ≅ F3, because P4-sparse graphs are {P , P5}-free and H
′ is contained in a

connected component of H on six vertices.

Lemma 4.59. The disconnected P4-sparse minimal 2-polar obstructions on 9
vertices are exactly the graphs F21, . . . , F24 depicted in Figure 4.8.

F21 F22 F23 F24

Figure 4.8: P4-sparse minimal 2-polar obstructions on 9 vertices.

Proof. Almost all the arguments used in the proof of Lemma 8 in [46] are still
valid for P4-sparse graphs. We only have to care about the case when H is
a P4-sparse minimal 2-polar obstruction on 9 vertices with three connected
components and precisely two isolated vertices. In such a case the nontrivial
connected component of H, B3, is either a spider or the join of two smaller
P4-sparse graphs T1 and T2. In the former case, since the head of B3 has at
most three vertices, B3 is a split graph, so H is too. The latter case follows as
in the original proof.

Lemma 4.60. The disconnected P4-sparse minimal 2-polar obstructions on
8 vertices are exactly the graphs F6, . . . , F20 and F25, depicted in Figures 4.9
and 4.10.

Proof. The proof of Lemma 9 in [46] is still valid for P4-sparse graphs with the
only addition of the graph F25 as a partial complement of the graph F19, which
was omitted by mistake in [46]. The main arguments are similar to those used
in the proof of Lemma 4.59.

We summarize the results of this section as follows.
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F6 F7 F8 F9

F10 F11 F12

Figure 4.9: Family A of P4-sparse minimal 2-polar obstructions on 8 vertices.

F13 F14 F15 F16 F17

F18 F19 F20 F25

Figure 4.10: Family B of P4-sparse minimal 2-polar obstructions on 8 vertices.

Theorem 4.61. There are exactly 50 P4-sparse minimal 2-polar obstructions,
and each of them is a cograph. The disconnected P4-sparse minimal 2-polar
obstructions are the graphs F1, . . . , F25 depicted in Figures 4.7 to 4.10.
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4.6.2 P4-extendible minimal 2-polar obstructions
In Sections 4.4 and 4.5 it was observed that the set of cograph minimal
(s, k)-polar obstructions is a proper subset of the set of P4-extendible minimal
(s, k)-polar obstructions for the cases min{s, k} = 1 and s = k = ∞. In the
present section we give the complete family of P4-extendible minimal 2-polar
obstructions, and show that also in the case s = k = 2 there are P4-extendible
minimal (s, k)-polar obstructions that are not cographs. Indeed, each graph
depicted in Figures 4.11 to 4.14 is a P4-extendible minimal 2-polar obstruction
that is not a cograph.

We start by proving that there exists only one P4-extendible connected
minimal 2-polar obstruction whose complement is also a connected graph.

Lemma 4.62. Let G = (S, K, R) be a P -spider. If H = G[R], then G is a
minimal 2-polar obstruction if and only if H ≅ P3, that is, if G is isomorphic
to the graph F26 in Figure 4.11.

F26

Figure 4.11: A connected P4-extendible minimal 2-polar obstruction with
connected complement.

Proof. If H ≅ P3, then G ≅ F26, so G is a minimal 2-polar obstruction.
Aiming for a contradiction, suppose that G is another P -spider minimal 2-polar
obstruction. Being P3-free, H is a cluster. Moreover, if H is not a complete
multipartite graph, then G properly contains F3 as an induced subgraph, which
is impossible. Then, H is a cluster that is a complete multipartite graph, so it
is either a complete or an empty graph. However, it is easy to check that in
both cases G is a 2-polar graph, contradicting our original assumption.

The proofs of the next proposition and its corollaries are very similar to the
proofs of Proposition 4.53 and its corollaries, so we only sketch them without
going into details.
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Proposition 4.63. Let X ∈ {P4, F}. If G is an X-spider, then G is a 2-polar
graph if and only if R induces a split graph.

Proof. Let (S, K, R) be the spider partition of G. First, assume that (A, B)
is a split partition of G[R]. Then, (A ∪ S, B ∪ K) is a split partition of G,
so G is a split graph, and hence a 2-polar graph. Now, suppose that G has
a 2-polar partition (V1, V2, V3, V4), and let Ri = Vi ∩ R for each i ∈ {1, . . . , 4}.
Notice that, if R1 and R2 are both nonempty, then S ∪ K ⊆ V3 ∪ V4, which is
impossible since X is not a cluster. Analogously, since X is not a complete
multipartite graph, R3 and R4 cannot be both nonempty. Therefore G[R] is a
split graph.

Corollary 4.64. Let X ∈ {P4, F}. If G is an X-spider, then it is not a
minimal 2-polar obstruction.

Proof. Let (S, K, R) be the spider partition of G. In order to reach a contra-
diction, suppose that G is a minimal 2-polar obstruction. By Proposition 4.63,
G[R] is not a split graph, but for any vertex v ∈ R, G[R]− v is. Hence, G[R]
is a minimal split obstruction, i.e., G[R] is isomorphic to some of 2K2, C4
or C5. But then, G contains F3, F3 or F27, respectively, as a proper induced
subgraph, contradicting the minimality of G.

Corollary 4.65. If G is a P4-extendible minimal 2-polar obstruction different
from F26 and its complement, then G or its complement is disconnected.

Proof. It is a simple exercise to verify that any extension graph is a 2-polar
graph. In addition, by Lemma 4.62 and Proposition 4.63, the only X-spiders
that are minimal 2-polar obstructions are F26 and its complement. There-
fore, by Theorem 4.2, any other P4-extendible minimal 2-polar obstruction is
disconnected or has a disconnected complement.

Now, we characterize the P4-extendible minimal 2-polar obstructions with
the maximum possible number of connected components. As the reader will
notice, the proofs of the next proposition and its corollary are analogous to
those of Proposition 4.55 and Corollary 4.56.

Proposition 4.66. Let ℓ be a positive integer. If G is a connected P4-extendible
minimal (1, ℓ − 1)-polar obstruction that is a complete multipartite graph, then
G is isomorphic to either Kℓ,ℓ or K1 ⊕ C4.
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Proof. Clearly, if ℓ = 1, then G ≅ K2, while if ℓ = 2, we have G ≅ C4. By
Theorem 4.42, if ℓ ≥ 3, G is isomorphic to either Kℓ,ℓ or K1 ⊕ C4.

Corollary 4.67. If G is a P4-extendible graph, then G is a minimal 2-polar
obstruction with exactly 4 connected components if and only if G ≅ ℓK1 + (3 −
ℓ)K2 + Kℓ,ℓ for some integer ℓ ∈ {1, 2, 3}.

Proof. This result is to P4-extendible graphs as Corollary 4.56 is to P4-sparse
graphs. In fact, the proof of this result is basically the same as that of
Corollary 4.56, but using instead Proposition 4.66, which is to P4-extendible
graphs as Proposition 4.55 is to P4-sparse graphs.

The following proposition will be useful to give the complete list of P4-
extendible minimal 2-polar obstructions. It is a direct consequence of Theo-
rem 4.42.

Corollary 4.68. There are exactly 13 P4-extendible minimal (2, 1)-polar ob-
structions; they are the graphs E1, . . . , E13 depicted in Figures 4.3 and 4.6.

By Lemma 4.50, we have that no P4-extendible minimal 2-polar obstruction
has less than seven vertices. In the rest of this section we give the complete
list of such obstructions, obtaining as a consequence that they have at most 9
vertices, as in the case of P4-sparse graphs. We remark that these proofs are
very similar in flavor to the analogous proofs for P4-sparse graphs.

Lemma 4.69. The disconnected P4-extendible minimal 2-polar obstructions
on 7 vertices are exactly the graphs F1, . . . , F5 depicted in Figure 4.7.

Proof. Let H be a disconnected P4-extendible minimal 2-polar obstruction on
7 vertices. It follows from Corollary 4.67 that, if H has four components, or it
can be transformed into a graph with four components through a sequence of
partial complementations, then it is one of F1, . . . , F5.

So, assume that none of the graphs that can be obtained from H by means
of partial complements has more than three connected components. Notice
that any P4-extendible graph H on seven vertices with exactly two components,
can be transformed by partial complementation into a graph with at least three
components, one of which is an isolated vertex, except in the case that H is
the disjoint union of K1 with an X-spider on 6 vertices, in which case it can
be checked that H is a (1, 2)-polar graph. Taking a partial complementation
separating one isolated vertex of H from the rest of the graph, we obtain a
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graph with two components, one of them being an isolated vertex. Let us
suppose without loss of generality that H has this form.

Since H is not 2-polar, its non trivial component must contain a P4-
extendible minimal (2, 1)-polar obstruction H

′ as an induced subgraph. More-
over, H

′ cannot be a disconnected graph on six vertices so, by Corollary 4.68,
H ∈ {K1 + 2K2, 3K2, 2K2 ⊕ 2K1}. If H

′
≅ 3K2, then H is the graph F5 in

Figure 4.7. If H
′
≅ 2K2 ⊕ 2K1, it is straightforward to verify that H is a (1, 2)-

polar graph. Otherwise, H
′
≅ K1 + 2K2. But H

′ is contained in a connected
component of H on six vertices, which must be isomorphic to K1 ⊕ (K1 + 2K2)
because H is a P4-extendible graph. Then, H is isomorphic to F3.

The next technical lemma will be needed to give the complete list of P4-
extendible minimal 2-polar obstructions with at least eight vertices.

Lemma 4.70. Let H be a disconnected minimal 2-polar obstruction. If H
has a component H

′ that is not a cograph, then H − H
′ is a split graph. In

consequence, at most one component of H is not a cograph.

F27 F28 F29 F30 F31

Figure 4.12: Family C of P4-extendible minimal 2-polar obstructions on 8
vertices.

Proof. If H − H
′ is not a split graph it contains 2K2, C4 or C5 as an induced

subgraph, and H would contain F1, F2 or F29 as a proper induced subgraph,
respectively (see Figures 4.7 and 4.12). Now, aiming for a contradiction, suppose
that H has at least two components, H1 and H2, which are not cographs. By
the first part of this lemma, H − H1 and H − H2 (and hence H1) are split
graphs, so H is the disjoint union of two split graphs, which implies that it is a
(1, 2)-polar graph, contradicting that H is a 2-polar obstruction.

Lemma 4.71. The only disconnected P4-extendible minimal 2-polar obstruc-
tions with at least 8 vertices are the graphs F6, . . . , F41 depicted in Figures 4.8
to 4.14
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F32 F33 F34

F35
F36

Figure 4.13: Family D of P4-extendible minimal 2-polar obstructions on 8
vertices.

F37 F38 F39

F40 F41

Figure 4.14: Family E of P4-extendible minimal 2-polar obstructions on 8
vertices.

Proof. Let H be a P4-extendible disconnected minimal 2-polar obstruction
with at least eight vertices. If H can be transformed by means of partial
complementations into a graph with four connected components, we have by
Corollary 4.67 that H is one of F13, . . . , F25.

Now, assume that H can be transformed by partial complementations into
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a graph H
′ with three components, but it cannot be transformed into a graph

with four connected components. Notice that at least one component of H
′

is a cograph, otherwise 3P4 is an induced subgraph of H
′, but F1 is a proper

induced subgraph of 3P4, contradicting that H is a minimal 2-polar obstruction.
Having a cograph component, H

′ can be transformed by a finite sequence of
partial complementations into a graph H

′′ with three connected components
where at least one of them, B3, is a trivial component. Moreover, since H

′′ is
also a minimal 2-polar obstruction, H

′′ −B3 is 2-polar but it is neither a (2, 1)-
nor a (1, 2)-polar graph. Therefore, a component B2 of H

′′ − B3, is a complete
graph while its other component, B1, is a (2, 1)-polar graph that is neither a
split nor a complete bipartite graph. Without loss of generality we can assume
that B1, B2 and B3 are the components of H itself. Denote by m the order of
B2.

Suppose first that m ≥ 2. Since B1 is not a split graph, then it contains
some of 2K2, C5 or C4 as an induced subgraph. If 2K2 ≤ B1, then H properly
contains a copy of F1, while if C5 ≤ B1, then H must be isomorphic to F30.
Otherwise, B1 contains a copy C of C4. Observe that if B1 contains K1 + C4
as an induced subgraph, then H properly contains a copy of F13, which is
impossible. Hence, any vertex in B1 not in C is adjacent to some vertex of C.
Let u be a vertex in B1 not in C. If u is adjacent to exactly one vertex of C,
then H ≅ F32; if u is adjacent to two adjacent vertices of C, then H ≅ F37; if u
is adjacent to exactly three vertices of C, H ≅ F7; and if u is adjacent to all
vertices of C, then H properly contains a copy of F4. Thus, if H is none of
the graphs mentioned before, any vertex u in B1 not in C is adjacent to two
antipodal vertices in C. In addition, two vertices adjacent to the same pair
of antipodal vertices cannot be adjacent to each other, otherwise H contains
F7 as a proper induced subgraph. Furthermore, any two vertices adjacent to
distinct pairs of antipodal vertices in C must be adjacent to each other, or H
would contain F32 as a proper induced subgraph. It is easy to observe that
under such restrictions B1 is a complete bipartite graph, which is impossible.

Now let us consider the case m = 1. We have that B1 is a connected
P4-extendible graph with at least six vertices, so B1 is either an X-spider or the
join of two smaller P4-extendible graphs. Suppose first that B1 is an X-spider
and let R be its head. If R contains 2K2, C4 or C5 as an induced subgraph,
then H properly contains F3, F4 or F28, respectively, but this is impossible.
Then, R is a split graph, which implies that X ∉ {P4, F, F}, or H would be
a split graph. We can assume that S = P . If R contains an induced P3, then
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H properly contains an induced copy of F26, so R must be a cluster. Hence,
R is a split graph that is a cluster, so R = Ka + bK1 for some nonnegative
integers a and b. Observe that a ≥ 2 and b ≥ 1, otherwise H is a 2-polar
graph or it contains F9 as a proper induced subgraph. Then, R contains an
induced copy of P3, but this implies that H has a proper induced copy of F3.
Hence, B1 is not an X-spider, so B1 is the join of two smaller P4-extendible
graphs, T1 and T2, and hence H = T1 ⊕ T2 + B2 + B3. If the complement of
Ti is disconnected for some i ∈ {1, 2}, then B1 + B2 + B3 has four connected
components, a contradiction. Then each Ti has a connected complement, so
it is isomorphic to K1 or it contains P4 as an induced subgraph. Clearly, at
least one of T1 and T2 is a nontrivial graph. First assume, without loss of
generality, that T1 is an isolated vertex, then B1 +B2 + B3 has three connected
components, one of them isomorphic to K2, and other isomorphic to K1, so
we are in the case m = 2. Otherwise, each of T1 and T2 contain an induced
copy of P4, so B1 + B2 + B3 contains F1 as a proper induced subgraph, which
is impossible.

Finally, assume that H cannot be transformed by partial complementations
into a graph with at least three connected components. Notice that H has two
connected components and the complement of any of them is connected. Then,
by Lemma 4.70, H is the disjoint union of K1 and an X-spider, but exactly as
in the case m = 1, it can be proved that this is impossible for a P4-extendible
minimal 2-polar obstruction.

We summarize the results of this section in the following theorem.

Theorem 4.72. There are exactly 82 P4-extendible minimal 2-polar obstruc-
tions, corresponding to the graphs F1, . . . , F41 and their complements.

4.7 Largest polar subgraphs
In this section, we give algorithms to find maximum order induced subgraphs
with some given properties (related to polarity) in P4-sparse and P4-extendible
graphs using their tree representations. Ekim, Mahadev and de Werra [32]
previously obtained similar results for cographs using the cotree. Given a graph
G, we denote by MC(G), MI(G), and MS(G) a maximum subset of VG inducing
a complete graph, an empty graph, and a split graph, respectively. We use
MB(G) and McB(G) to denote a maximum subset of VG inducing a bipartite
and a co-bipartite graph, respectively. We also use MUC(G) and MJI(G) to
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denote maximum subsets of VG inducing a cluster and a complete multipartite
graph, respectively; MM(G), McM(G), and MP(G) stand for maximum subsets
of VG inducing a monopolar, a co-monopolar and a polar subgraph of G, while
MU(G) and McU(G) are used to denote maximum subsets of VG inducing a
unipolar or a co-unipolar graph, respectively. To simplify the notation, when
we are working with preset subgraphs Gi of G, we write MCi instead of MC(Gi)
and, if there is no possibility of confusion, we write MC instead of MC(G); we
use an analogous notation for all other maximal subgraphs. Given a family F
of subsets of VG, a witness of M = maxF∈F{∣F ∣} in F is an element F

′ of F
such that ∣F ′∣ = M .

The following proposition provides recursive characterizations for the afore-
mentioned maximum subgraphs in a disconnected graph.

Proposition 4.73. Let G = G0 + G1 be a graph, and let W be a subset of VG.
The following statements hold true.

1. W is a maximum clique of G if and only if W is a witness of

max{∣MC0∣, ∣MC1∣}.

2. W is a maximum independent set of G if and only if W is a witness of

max{∣MI0 ∪ MI1∣}.

3. W induces a maximum bipartite subgraph of G if and only if W is a
witness of

max{∣MB0 ∪ MB1∣}.

4. W induces a maximum co-bipartite subgraph of G if and only if W is a
witness of

max{∣McB0∣, ∣McB1∣, ∣MC0 ∪ MC1∣}.

5. W induces a maximum split subgraph of G if and only if W is a witness
of

max
i∈{0,1}

{∣MIi ∪ MS1−i∣}.

6. W induces a maximum cluster in G if and only if W is a witness of

max{∣MUC0 ∪ MUC1∣}.
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7. W induces a maximum complete multipartite subgraph of G if and only
if W is a witness of

max{∣MI∣, ∣MJI0∣, ∣MJI1∣}.

8. W induces a maximum monopolar subgraph of G if and only if W is a
witness of

max{∣MM0 ∪ MM1∣}.

9. W induces a maximum co-monopolar subgraph of G if and only if W is
a witness of

max
i∈{0,1}

{∣MSi ∪ MI1−i∣, ∣McMi∣, ∣MCi ∪ MJI1−i∣}.

10. W induces a maximum polar subgraph of G if and only if W is a witness
of

max{∣MM∣, ∣MP0 ∪ MUC1∣, ∣MP1 ∪ MUC0∣}.

11. W induces a maximum unipolar subgraph of G if and only if W is a
witness of

max
i∈{0,1}

{∣MUi ∪ MUC1−i∣, ∣MU1−i ∪ MUCi∣}.

12. W induces a maximum co-unipolar subgraph of G if and only if W is a
witness of

max{∣MB∣, ∣MI0 ∪ McU1∣, ∣MI1 ∪ McU0∣}.

Proof. 1. Let W be a maximum clique of G. Clearly, for some i ∈ {0, 1},
W ∩ VGi

= ∅ and W ∩ VG1−i
is a clique of G1−i. It follows that W is a

maximum clique for either G0 or G1 such that ∣W ∣ = max{∣MC0∣, ∣MC1∣}.

2. Let W be a maximum independent set of G. Clearly, W ∩ VGi
is an

independent set of Gi for each i ∈ {0, 1}. It follows that W is the union
of a maximum independent set of G0 with a maximum independent set
of G1.

3. Let W be a set inducing a maximum bipartite subgraph of G. For each
i ∈ {0, 1}, G[W ∩ VGi

] is a bipartite graph, and the disjoint union of two
bipartite graphs clearly is a bipartite graph, so the result follows.
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4. Let W be a set inducing a maximum co-bipartite subgraph of G, and let
(A, B) be a partition of W into two cliques. Clearly, each of A and B is
completely contained in one of VG1 or VG2 . If both A and B are contained
in VGi

for some i ∈ {0, 1}, then W induces a maximum co-bipartite
subgraph of Gi. Otherwise, A ⊆ VGi

and B ⊆ VG1−i
for some i ∈ {0, 1},

so G[A] is a maximum clique in Gi and G[B] is a maximum clique in
G1−i. The result easily follows from here.

5. Let W be a set inducing a maximum split subgraph of G, and let (A, B)
be a split partition of G[W ]. Since B is a clique, B is contained in either
VG0 or VG1 . Hence, for some i ∈ {0, 1}, W ∩ VGi

induces a split graph
while W ∩VG1−i

is an independent set. It follows that W = Vi∪V1−i, where
Vi is a subset of VGi

inducing a maximum split graph, V1−i is a maximum
independent subset of VG1−i

, and ∣W ∣ = maxi∈{0,1}{∣MIi ∪ MS1−i∣}.

6. Let W be a set inducing a maximum cluster of G. Clearly, for each
i ∈ {0, 1}, W ∩ VGi

induces a cluster. It follows that W is the union of a
set inducing a maximum cluster of G0 with a set inducing a maximum
cluster of G1.

7. Let W be a set inducing a maximum complete multipartite subgraph
of G. If W is an independent set, it clearly is a maximum independent
set of G. Otherwise, G[W ] is a connected graph, so W is completely
contained in VGi

for some i ∈ {0, 1}, and therefore, W induces a maximum
complete multipartite subgraph of Gi. In any case we have that ∣W ∣ =
max{∣MI∣, ∣MJI0∣, ∣MJI1∣}.

8. Let W be a set inducing a maximum monopolar subgraph of G. Clearly,
for any i ∈ {0, 1}, W ∩ VGi

induces a monopolar graph, so we have that
W is the union of a set inducing a maximum monopolar subgraph of G0
with a set inducing a maximum monopolar subgraph of G1.

9. Let W be a set inducing a maximum co-monopolar subgraph of G, and let
(A, B) be a partition of W such that A induces a complete multipartite
graph and B is a clique. Since B is a clique, it is completely contained in
either VG0 or VG1 . Now, if A is an independent set, then W = Vi ∪ V1−i

for some i ∈ {0, 1}, where Vi induces a maximum split subgraph of Gi

and V1−i induces a maximum independent set of G1−i. Otherwise, if A is
not an independent set, it induces a connected graph and is contained
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in either VG0 or VG1 ; hence, either W induces a maximum co-monopolar
subgraph of Gi for some i ∈ {0, 1}, or there exists i ∈ {0, 1} such that W
is the union of a maximum clique in Gi and a set inducing a maximum
complete multipartite subgraph of G1−i.

10. Let W be a set inducing a maximum polar subgraph of G, and let
(A, B) be a polar partition of G[W ]. If A is an independent set, then
W ∩ VGi

induces a monopolar subgraph of Gi for each i ∈ {0, 1}, so W
induces a maximum monopolar subgraph of G. Otherwise, if A is not an
independent set, G[A] is connected and A is completely contained in VGi

for some i ∈ {0, 1}; hence, W is the union of a set inducing a maximum
polar subgraph of Gi with a set inducing a maximum cluster of G1−i.

11. Let W be a set inducing a maximum unipolar subgraph of G, and
let (A, B) be a unipolar partition of G[W ]. Since A is a clique, it is
completely contained in VGi

for some i ∈ {0, 1}. Thus, W ∩ VG1−i
induces

a cluster and W ∩ VGi
induces a unipolar graph, so W is the union of a

set inducing a maximum unipolar subgraph of Gi with a set inducing a
maximum cluster in G1−i.

12. Let W be a set inducing a maximum co-unipolar subgraph of G, and
let (A, B) be a unipolar partition of G[W ]. Since G[B] is a complete
multipartite graph, if B∩VG1 ≠ ∅ and B∩VG2 ≠ ∅, B is an independent
set, so W induces a bipartite graph. Otherwise, B ∩ VGi

= ∅ for some
i ∈ {0, 1}, and we have that W ∩VGi

is an independent set and W ∩VG1−i

induces a co-unipolar graph. The result follows easily from here.

Since G ⊕ H = G + H for any pair of graphs G and H, the following
statement is an immediate consequence of the previous proposition, so we
omit the details of the proof. Notice that, by Theorem 2.1, Propositions 4.73
and 4.74 can be used together in a mutual recursive algorithm to determine
the maximum subgraphs listed in them for any cograph.

Proposition 4.74. Let G = G0 ⊕ G1 be a graph, and let W be a subset of VG.
The following statements hold true.

1. W is a maximum clique of G if and only if W is a witness of

max{∣MC0 ∪ MC1∣}.
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2. W is a maximum independent set of G if and only if W is a witness of

max{∣MI0∣, ∣MI1∣}.

3. W induces a maximum bipartite subgraph of G if and only if W is a
witness of

max{∣MB0∣, ∣MB1∣, ∣MI0 ∪ MI1∣}.

4. W induces a maximum co-bipartite subgraph of G if and only if W is a
witness of

max{∣McB0 ∪ McB1∣}.

5. W induces a maximum split subgraph of G if and only if, W is a witness
of

max
i∈{0,1}

{∣MCi ∪ MS1−i∣}.

6. W induces a maximum cluster in G if and only if W is a witness of

max{∣MC∣, ∣MUC0∣, ∣MUC1∣}.

7. W induces a maximum complete multipartite graph of G if and only if
W is a witness of

max{∣MUI0 ∪ MUI1∣}.

8. W induces a maximum monopolar subgraph of G if and only if W is a
witness of

max
i∈{0,1}

{∣MSi ∪ MC1−i∣, ∣MMi∣, ∣MIi ∪ MUC1−i∣}.

9. W induces a maximum co-monopolar subgraph of G if and only if W is
a witness of

max{∣McM0 ∪ McM1∣}.

10. W induces a maximum polar subgraph of G if and only if W is a witness
of

max{∣McM∣, ∣MP0 ∪ MJI1∣, ∣MP1 ∪ MJI0∣}.

11. W induces a maximum unipolar subgraph of G if and only if W is a
witness of

max{∣McB∣, ∣MU1 ∪ MC0∣, ∣MU0 ∪ MC1∣}.



92 4. P4-sparse and P4-extendible graphs

12. W induces a maximum co-unipolar subgraph of G if and only if W is a
witness of

max{∣McU0 ∪ MJI1∣, ∣McU1 ∪ MJI0∣}.

In the next sections, we characterize maximum subgraphs related to po-
larity properties in both P4-sparse and P4-extendible graphs, and we use such
characterizations to give linear time algorithms to find the largest subgraphs
with such properties in a given graph of the mentioned graph families.

4.7.1 Largest polar subgraph in P4-sparse graphs
We start by introducing a tree representation for P4-sparse graphs that is the
base for our algorithms. Let G1 = (V1,∅) and G2 = (V2, E2) be disjoint graphs
such that V2 = K ∪ R ∪ {s0}, where K is a clique completely adjacent to R,
∣K∣ = ∣V1∣ + 1 ≥ 2 and either NG2(s0) = {k0} or NG2(s0) = K \ {k0} for some
vertex k0 in K. Let f be a bijection from V1 to K \ {k0}. We define G1 G2
as the graph G with vertex set V1 ∪ V2 such that G[V1] ≅ G1, G[V2] ≅ G2
and, for each s ∈ V1, either NG(s) = {f(s)}, provided NG2(s0) = {k0}, or
NG(s) = K \ {f(s)} otherwise.

Proposition 4.75 ([49]). If G is a graph, then G is a spider if and only if
there exist graphs G1 and G2 such that G = G1 G2.

By Theorem 4.1, for any nontrivial P4-sparse graph G, either G is discon-
nected, or G is disconnected, or G is an spider. Hence, for each P4-sparse
graph G, a labeled tree T with G as its root and some subgraphs of G as each
node can be constructed in the following way. Let H be a node of T . If H
is a trivial graph, it is an unlabeled node in T with no children. If H is a
disconnected graph, it is labeled as a 0-node and its children are its connected
components. If H is disconnected, H is labeled as a 1-node and its children
are the complements of the connected components of H. Finally, if H is a
spider, let us say H = H1 H2, H is labeled as a 2-node and its children are
H1 and H2. The labeled tree constructed in this way is called the ps-tree of
G. The ps-tree of a P4-sparse graph was introduced by Jamison and Olariu
in [51], where they proved that such representation can be computed in linear
time. In what follow, we assume that if T is the ps-tree of G, and x is a node
of T , then c1x, c2x, . . . denote the children of x. We will use Gx to represent
the subgraph of G induced by the leaf descendants of x in T .



4.7. Largest polar subgraphs 93

The next proposition shows that the ps-tree of any P4-sparse graph of order
n has O(n) nodes. Particularly, it implies that we can compute the lists of
children for each node of a ps-tree T in linear time and provide each node with
such list preserving the linear space representation for T . Additionally, having
the lists of children for each node of a ps-tree, we can compute in O(n) time
the number of unlabeled children that each node has. This will be helpful later.

Proposition 4.76. Let G be a P4-sparse graph, and let T be its ps-tree. If G
has order n, then T has order at most 2n − 1 and height at most n.

Proof. The bound for the order of T follows by an easy induction argument on
n by noticing that for any vertex v of G, the ps-tree of G − v has order n − 1
if the parent of v in T has at least three children, and otherwise it has order
n − 2. The bound for the height of T follows by contradiction using the bound
for the order of T and the fact that any internal node of T has at least two
children.

The following proposition implies that, given a ps-tree, we can decide in
linear time whether the graphs associated to its nodes labeled 2 are thin spiders
or thick spiders.

Proposition 4.77. Let G = G1 G2 be a spider, and let T be its ps-tree. Let
w be the only child of G with label 1 in T . If w has two or more unlabeled
children, then G is a thick spider. Otherwise, G is a thin spider.

Proof. Let v be the only leg of G in G2. Observe that a vertex of G2 is a
universal vertex if and only if it is adjacent to v. Additionally, a vertex of G2
is universal if and only if it is an unlabeled child of w. Hence, if w has two or
more unlabeled children, the degree of v in G is at least two, so G is a thick
spider. Otherwise, if w has precisely one unlabeled child, dG(v) = 1 so that G
is a thin spider.

Some of the algorithms we give in this section require us to be able to
recognize the spider partition of any spider from its associated ps-tree. Never-
theless, this is not always possible, for instance, if we consider any thin spider
whose head complement is disconnected, there will be vertices for which it is
impossible to decide from the associated ps-tree if they belong to the body or
the head of the spider (see Figure 4.15).

However, it is clear that, given a ps-tree T , there is a unique P4-sparse
graph (up to isomorphism) associated with T , and it results that if we fix a
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Figure 4.15: The ps-tree associated to the thin spider with 2 legs whose head
is isomorphic to P3. The solid vertices are indistinguishable, but one of them
belong to the body of the spider, and the other one belongs to its head.

spider partition for any node labeled 2 in T , the graph is completely determined.
Next, we explain how to fix the spider partition for such nodes, and how to
save this data maintaining the linear space needed to store T .

Let G = G1 G2 be a thin spider, and let T be its associated ps-tree.
Let V1, V2, K, R, and s0 be like in the definition of G1 G2, and assume that
NG2(s0) = {k0}. Clearly, the root r of T is labeled 2, and it has precisely
two children in T , namely a child v labeled 1 such that Gv ≅ G2, and a child
u, which is unlabeled if ∣V1∣ = 1, or it is labeled 0 otherwise; we call v the
1-child of r. In addition, since G is a thin spider, G2 can be obtained from
G[R ∪ K \ {k0}] by adding first an isolated vertex s0 and then a universal
vertex k0. Thus, v has precisely two children, namely an unlabeled child (k0)
and a 0-labeled child w, which we will call the 0-child of v. Finally, if ∣K∣ > 2
or R ≠ ∅, w has exactly two children, one unlabeled (s0) and one child x
labeled 1 (G[R ∪ K \ {k0}]) called the 1-child of w. Otherwise, if ∣K∣ = 2 and
R = ∅ (in which case G ≅ P4), w has exactly two unlabeled children, namely
s0 and the only vertex x in the singleton K \ {k0} (see Figure 4.16).

As we mentioned before, if ∣K∣ = 2 and R = ∅, then w has precisely two
children, s0 and x, both of them unlabeled. Notice that in G, precisely one
child of w is adjacent to the 0-child of r, but we are not able to distinguish
from the ps-tree which child of w is such vertex, so we must choose arbitrarily
some of them to fix a spider partition (which will completely determine a
graph G

′ isomorphic to G, but possibly different from it, whose ps-tree is T
and has the fixed spider partition). Now, if R induces either a disconnected
graph or a spider, then x has precisely ∣K∣ − 1 unlabeled children, all of them
elements of K. Nevertheless, if the complement of R is disconnected, then
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Figure 4.16: General structure of the ps-tree of a thin spider.

there are potentially more than ∣K∣ − 1 unlabeled children of x, and they will
be indistinguishable, so we must choose arbitrarily ∣K∣ − 1 of them to fix a
spider partition.

Now, let G = G1 G2 be a thick spider that is not a thin spider, and let
T be its associated ps-tree. Let V1, V2, K, R, and s0 be like in the definition
of G1 G2, and assume that NG2(s0) = K \ {k0}. As before, the root r of T
is labeled 2, and it has a child v labeled 1, and a child u labeled 0. Since G
is a thick spider, Gv is the join of G[K] − k0 with the disjoint union of the
graph obtained from G[R ∪ {k0}] by adding an isolated vertex s0. Thus, v
has precisely ∣K∣ children, ∣K∣ − 1 unlabeled children and a 0-labeled child
w. Finally, since ∣K∣ ≥ 3 (because G is not a thin spider), w has exactly two
children, one unlabeled (s0) and one child x labeled 1 (G[R∪ {k0}]). Similarly
to the case of thin spiders, if R induces either a disconnected graph or a spider,
then x has precisely one unlabeled child, k0. Nevertheless, if the complement of
R is disconnected, then there are potentially more than one unlabeled children
of x, and they will be indistinguishable, so we must chose arbitrarily one
unlabeled child to fix a spider partition.

As we have seen, to fix the spider partition of a node labeled 2 it is enough to
select some unlabeled descendants of such node that will completely determine
the body of the associated spider, as well as the entire spider partition. Moreover,
we can simply mark the selected vertices for the body of any node labeled 2
and, since these marked vertices are considered only for the spider partition
of their great great grandfather (or great grandfather) in the ps-tree, we can
save and process the vertices of the bodies of each node labeled 2 in O(n)
space and time, in such a way that any time we need a spider partition of
such nodes we use the same fixed partition. It is worth noticing that we could
simultaneously mark the vertices of the spider bodies while constructing the
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ps-tree of a P4-sparse graph, avoiding the extra processing time and ensuring
that we can recover with precision the original graph from the ps-tree.

The following proposition is to thin spiders as Proposition 4.73 is to discon-
nected graphs. In it, we characterize maximum subgraphs of thin spiders with
some properties related to polarity.

Proposition 4.78. Let G = (S, K, R) be a thin spider and let f ∶S → K be
the bijection such that N(s) = {f(s)} for each s ∈ S. The following statements
hold for any subset W of VG. Let H be the subgraph of G induced by R.

1. W is a maximum clique of G if and only if W is a witness of

max
s∈S

{∣{s, f(s)}∣, ∣K ∪ MC(H)∣}.

2. W is a maximum independent set in G if and only if W is a witness of

max
s∈S

{∣{f(s)} ∪ S \ {s}∣, ∣S ∪ MI(H)∣}.

3. W induces a maximum bipartite subgraph of G if and only if W is a
witness of

max
k1,k2∈K

{∣S ∪ {k1, k2}∣, ∣MI(H) ∪ S ∪ {k1}∣, ∣MB(H) ∪ S∣}.

4. W induces a maximum co-bipartite subgraph of G if and only if W is a
witness of

max
s1,s2∈S

{∣{s1, s2, f(s1), f(s2)}∣, ∣MC(H) ∪ K ∪ {s1}∣, ∣McB(H) ∪ K∣}.

5. W induces a maximum split subgraph of G if and only if W is a witness
of

max{∣S ∪ K ∪ MS(H)∣}.

6. W induces a maximum cluster in G if and only if W is a witness of

max
k∈K

W
′
∈X

{∣S ∪ {k}∣, ∣S ∪ MUC(H)∣, ∣MC(H) ∪ W
′∣},

where X is the family of all ∣S∣-subsets W
′ of S∪K such that {s, f(s)} /⊆

W
′ for any s ∈ S.
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7. W induces a maximum complete multipartite subgraph of G if and only
W is a witness of

max
s1,s2∈S

{∣{s1, f(s1), f(s2)}∣, ∣{f(s1)} ∪ S \ {s1}∣,

∣{s1, f(s1)} ∪ MI(H)∣, ∣S ∪ MI(H)∣, ∣K ∪ MJI(H)∣}.

8. W induces a maximum monopolar subgraph of G if and only W is a
witness of

max
k∈K

{∣S ∪ K ∪ MS(H)∣, ∣S ∪ {k} ∪ MUC(H)∣, ∣S ∪ MM(H)∣}.

9. W induces a maximum co-monopolar subgraph of G if and only W is a
witness of

max
s∈S

{∣S ∪ K ∪ MS(H)∣, ∣K ∪ {s} ∪ MJI(H)∣, ∣K ∪ McM(H)∣}.

10. W induces a maximum polar subgraph of G if and only if W is a witness
of

max{∣S ∪ K ∪ MP(H)∣}.

11. W induces a maximum unipolar subgraph of G if and only if W is a
witness of

max{∣S ∪ K ∪ MU(H)∣}.

12. W induces a maximum co-unipolar subgraph of G if and only if W is a
witness of

max{∣S ∪ K ∪ McU(H)∣}.

Proof. 1. Let W be a maximum clique of G. If s ∈ W ∩S, then W ∩S = {s},
W ∩ K ⊆ {f(s)}, and W ∩ R = ∅, so in this case W = {s, f(s)}.
Otherwise, W ∩ S = ∅, and since the union of any clique of H with K is
a clique, we have that W is the union of K with a maximum clique of H.

2. Let W be a maximum stable set in G. If f(s) ∈ W ∩ K for some s ∈ S,
then W ∩ K = {f(s)}, s ∉ W ∩ S, and W ∩ R = ∅, so in this case
W = {f(s)} ∪ S \ {s}. Otherwise, W ∩ K = ∅, and since the union of
any independent set in H with S is an independent set, we have that W
is the union of S with a maximum independent set of H.
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3. Let W be a set inducing a maximum bipartite subgraph of G. If ∣W∩K∣ ≥
2, then W ∩ K = {k1, k2}, and W ∩ R = ∅. In addition, since the union
of S with any 2-subset of K induces a bipartite graph, we have that
W is the union of S with a 2-subset of K. Else, if W ∩ R is a non
empty independent set, ∣W ∩ K∣ ≤ 1. Moreover, since the union of
an independent subset of R with S ∪ {k} induces a bipartite graph for
any k ∈ K, in this case we have that W is the union of S ∪ {k} with a
maximum independent set of H. Otherwise, if W ∩R induces a nonempty
bipartite graph, then W ∩K = ∅ and W clearly is the union of S with a
maximum subset of R inducing a bipartite graph.

4. Let W be a set inducing a maximum co-bipartite subgraph of G. If ∣W ∩
S∣ ≥ 2, then W ∩S = {s1, s2}, W ∩R = ∅, and W ∩K ⊆ {f(s1), f(s2)}.
From here, it is clear that in this case W = {s1, s2, f(s1), f(s2)} for some
s1, s2 ∈ S. Else, if W ∩ R is a non empty clique, ∣W ∩ S∣ ≤ 1. Moreover,
since the union of a clique in H with K ∪ {s} induces co-bipartite graph
for any s ∈ S, in this case we have that W is the union of K ∪ {s} with a
maximum clique of H. Otherwise, if W ∩ R induces a co-bipartite graph
that is not a clique, then W ∩ S = ∅ and W clearly is the union of K
with the vertex set of a maximum co-bipartite subgraph of H.

5. For any subset W
′ of R inducing a graph with split partition (A, B), the

graph G[S ∪K ∪W
′] has (A∪S, K ∪B) as a split partition. Thus, if W

is a set inducing a maximum split subgraph of G, W ∩ R is a maximum
split subgraph of H, W \ R = S ∪ K, and the result follows.

6. Let W be a set inducing a maximum cluster of G. First, assume that
W ∩R = ∅. Since S ∪ {k} induces a cluster of G for any k ∈ K, we have
that ∣W ∣ ≥ ∣S∣ + 1, so {s, f(s)} ⊆ W for some s ∈ S. Moreover, since
clusters are P3-free graphs, if {s1, f(s1)} ⊆ W , W ∩ K = {f(s1)}. Thus,
in this case W = S∪{k} for some k ∈ K. Otherwise, if W∩R ≠ ∅, W∩R
induces a cluster and {s, f(s)} /⊆ W for every s ∈ S, so ∣W \R∣ ≤ ∣S∣. It
follows that, if W ∩ R is a clique, then W \ R is an ∣S∣-subset of K ∪ S
such that {s, f(s)} /⊆ W \ R for any s ∈ S, and W ∩ R is a maximum
clique of H. Otherwise, if W ∩R has at least two connected components,
then W ∩ K = ∅, W \ R = S, and W ∩ R induces a maximum cluster in
H.

7. Let W be a set inducing a maximum complete multipartite subgraph of
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G. Notice that, for any subset R
′ of R inducing a complete multipartite

graph, G[K ∪ R
′] is a complete multipartite graph. In consequence, if

W ∩ S = ∅, then W is the union of K with a maximum subset of R
inducing a complete multipartite graph. Also observe that, since complete
multipartite graphs are P3-free graphs, either W ∩ S = ∅ or W ∩R is an
independent set.
If ∣W ∩ K∣ ≥ 3, then W ∩ S = ∅, so we are done. Now, suppose that
W ∩ K = {f(s1), f(s2)} for some s1, s2 ∈ S. Observe that in this case
W∩S must be contained in either {s1} or {s2}. In addition, some of W∩S
or W ∩ R must be an empty set. As in the former case, if W ∩ S = ∅,
W is the union of K with a maximum subset of R inducing a complete
multipartite graph. Otherwise, if W ∩R = ∅, thus W = {s1, f(s1), f(s2)}
for some s1, s2 ∈ S.
Now, suppose that W ∩ K = {f(s1)} for some s1 ∈ S. Notice that either
s1 ∉ W or W ∩ S ⊆ {s1}. Also, W ∩ S ≠ ∅, otherwise K would be a
subset of W , but ∣K∣ ≥ 2 and we are assuming ∣W ∩ K∣ = 1. Thus, if
W ∩S ⊆ {s1}, then W ∩S = {s1} and W ∩R is a maximum independent
subset of R. Else, if W ∩ S /⊆ {s1}, then s1 ∉ W and there is a vertex
s2 ∈ W ∩ (S \ {s1}). Hence, W ∩ R = ∅ and W ∩ S = S \ {s1}.
Finally, if W ∩K = ∅, then W ∩ S ≠ ∅, and W is the union of S with a
maximum independent subset of R.

8. Let W be a set inducing a maximum monopolar subgraph of G, and let
W

′
= W ∩ R. If W

′ induces a graph with split partition (A, B), then
G[S∪K∪W

′] is a graph with monopolar partition (A∪S, B∪K). Thus,
if W

′ induces a split graph, W is the union of S ∪ K with a maximum
subset of R inducing a split graph.
Otherwise, if W

′ induces a cluster that is not a split graph, then W
′ has

a subset inducing a 2K2; from here, since K2 ⊕ 2K2 is not a monopolar
graph, we have that ∣W ∩ K∣ ≤ 1, and it follows that W = W

′ ∪ S ∪ {k}
for some k ∈ K.
Finally, if W

′ induces a monopolar graph that is neither a cluster or a
split graph, then any monopolar partition (A, B) of G[W ′] is such that
A ≠ ∅ and B has at least one pair of nonadjacent vertices; it follows
that W ∩ K = ∅, so W is the union of S with a maximum monopolar
subgraph of H.
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9. Let W be a set inducing a maximum co-monopolar subgraph of G, and
let W

′
= W ∩ R. If W

′ induces a graph with split partition (A, B), then
G[S ∪ K ∪ W

′] is a graph with co-monopolar partition (B ∪ K, A ∪ S).
Thus, if W

′ induces a split graph, W is the union of S ∪ K with a
maximum subset of R inducing a split graph.
Otherwise, if W

′ induces a complete multipartite graph that is not a split
graph, then W

′ has a subset inducing a C4; from here, since 2K1 + C4 is
not a co-monopolar graph, we have that ∣W ∩ S∣ ≤ 1, and it follows that
W = W

′ ∪ K ∪ {s} for some s ∈ S.
Finally, if W

′ induces a co-monopolar graph that is neither a complete
multipartite graph or a split graph, then any monopolar partition (A, B)
of G[W ′] is such that A ≠ ∅ and B has at least one pair adjacent vertices;
it follows that W ∩ S = ∅, so W is the union of K with a maximum
co-monopolar subgraph of H.

10. Let W be a set inducing a maximum polar subgraph of G. Notice that
the union of S ∪ K with any subset of R inducing a graph with polar
partition (A, B), is a graph with polar partition (A ∪ S, B ∪ K). Hence,
W is the union of S ∪ K with a maximum polar subgraph of H.

11. For any subset R
′ of R inducing a graph with unipolar partition (A, B),

the graph G[S ∪K ∪R
′] has unipolar partition (A∪K, B ∪S). Thus, if

W is a set inducing a maximum unipolar subgraph of G, W = S∪K ∪R
′,

for some subset R
′ of R inducing a maximum unipolar graph.

12. For any subset R
′ of R inducing a graph with co-unipolar partition (A, B),

the graph G[S∪K∪R
′] has co-unipolar partition (A∪S, B∪K). Thus, if

W is a set inducing a maximum co-unipolar subgraph of G, W = S∪K∪R
′,

for some subset R
′ of R inducing a maximum co-unipolar graph.

In the following propositions we strongly use the fact that a thin spider
is the complement of a thick spider and vice versa. Notice that by a simple
complementary argument, analogous results can be given for computing MI(Gx),
McB(Gx), MJI(Gx), McM(Gx), and McU(Gx).

Proposition 4.79. Let G be a P4-sparse graph, and let T be its ps-tree. For
any node x of T the following assertions hold true.
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1. MC(Gx) can be found in linear time.

2. MB(Gx) can be found in linear time.

3. MS(Gx) can be found in linear time.

4. MUC(Gx) can be found in linear time.

5. MM(Gx) can be found in linear time.

6. MP(Gx) can be found in linear time.

7. MU(Gx) can be found in linear time.

Proof. 1. The assertion is trivially satisfied if x is a leaf of T . If x has
type 0, we have by part 1 from Proposition 4.73 that MC(Gx) is a set
realizing maxi{MC(Gcix)}. If x has type 1, we have by part 1 from
Proposition 4.74 that MC(Gx) = ⋃i MC(Gcix). Finally, let us assume
that x has type 2, and let (S, K, R) be the spider partition of Gx. If Gx

is a thin spider, we have from item 1 of Proposition 4.78 that MC(Gx)
is a witness of maxs∈S{∣{s, f(s)}∣, ∣K ∪ MC(G[R])∣}, where f(s) is the
only neighbor of s in K for each s ∈ S. Otherwise, if Gx is a thick spider,
we have from item 2 of Proposition 4.78 that MC(Gx) is a witness of
maxs∈S{∣{s} ∪ K \ {f(s)}∣, ∣K ∪ MC(G[R])∣}, where, for each s ∈ S,
f(s) is the only vertex in K that is not a neighbor of s. The result follows
since Gx has O(n) descendants.

2. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have
by part 3 from Proposition 4.73 that MB(Gx) = ⋃i MB(Gcix). If x has
type 1, we have by part 3 from Proposition 4.74 that MB(Gx) is a set real-
izing maxi,j{MB(Gcix), MI(Gcix)∪MI(Gcjx)}. Finally, let us assume that
x has type 2, and let (S, K, R) be the spider partition of Gx. If Gx is a thin
spider, we have from item 3 of Proposition 4.78 that MB(Gx) is a witness
of maxk1,k2∈K{∣S∪{k1, k2}∣, ∣MI(H)∪S∪{k1}∣, ∣MB(G[R])∪S∣}. Oth-
erwise, if Gx is a thick spider, we have from item 4 of Proposition 4.78 that
MB(Gx) is a witness of maxs1,s2∈S{∣{f(s1), f(s2), s1, s2}∣, ∣MI(G[R]) ∪
S ∪ {f(s1)}∣, ∣MB(G[R]) ∪ S∣}, where f is the bijection from S to K
such that N(s) = K \ {f(s)} for each s ∈ S. The result follows since Gx

has O(n) descendants.



102 4. P4-sparse and P4-extendible graphs

3. The assertion is trivially satisfied if x is a leaf of T . If x has type 0,
we have by part 5 from Proposition 4.73 that MS(Gx) is a set realizing
maxi{MS(Gcix) ∪⋃j≠i MI(Gcjx)}. If x has type 1, we have by part 5
from Proposition 4.74 that MS(Gx) is a set realizing maxi{MS(Gcix) ∪
⋃j≠i MC(Gcjx)}. If x has type 2, we have from item 5 of Proposition 4.78
that MS(Gx) is the union of a maximum subset of R inducing a split
graph with S ∪ K. The result follows since Gx has O(n) descendants.

4. The assertion is trivially satisfied if x is a leaf of T . If x has type 0,
we have by part 6 of Proposition 4.73 that MUC(Gx) is a set realizing
⋃i MUC(Gcix). If x has type 1, we have by part 6 of Proposition 4.74
that MUC(Gx) is a set realizing maxi{MC(Gx), MUC(Gcix)}. Finally, let
us assume that x has type 2, and let (S, K, R) be the spider partition of
Gx. If Gx is a thin spider, we have from item 6 of Proposition 4.78 that
MUC(Gx) is a witness of

max
k∈K
X∈X

{∣S ∪ {k}∣, ∣S ∪ MUC(G[R])∣, ∣MC(G[R]) ∪ X∣},

where X is the family of all ∣S∣-subsets X of S∪K such that {s, f(s)} /⊆ X
for any s ∈ S, being f as usual. Otherwise, if Gx is a thick spider, we
have from item 7 of Proposition 4.78 that MUC(Gx) is a witness of

max
s1,s2∈S

{∣{f(s1), s1, s2}∣, ∣{s1}∪K\{f(s1)}∣, ∣{s1, f(s1)}∪MC(G[R])∣,

∣K ∪ MC(G[R])∣, ∣S ∪ MUC(G[R])∣},
where f is the bijection from S to K such that N(s) = K \ {f(s)} for
each s ∈ S. The result follows since Gx has O(n) descendants.

5. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we have
by part 8 of Proposition 4.73 that MM(Gx) is a set realizing ⋃i MM(Gcix).
If x has type 1, we have by part 8 from Proposition 4.74 that MM(Gx) is
a set realizing maxi,j{MM(Gcix), MS(Gcix) ∪⋃j≠i MC(Gcjx), MI(Gcix) ∪
⋃j≠i MUC(Gcjx)}. Finally, let us assume that x has type 2, and let
(S, K, R) be the spider partition of Gx. No matter if Gx is a thin or a
thick spider, we have from items 8 and 9 of Proposition 4.78 that MM(Gx)
is a witness of

max
k∈K

{∣S ∪K ∪MS(G[R])∣, ∣S ∪ {k}∪MUC(G[R])∣, ∣S ∪MM(G[R])∣}.

The result follows since Gx has O(n) descendants.
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6. The assertion is trivially satisfied if x is a leaf of T . If x has type
0, we have by part 10 from Proposition 4.73 that MP(Gx) is a set
realizing maxi{MM(Gx), MP(Gcix) ∪⋃j≠i MUC(Gcjx)}. If x has type 1,
we have by part 10 from Proposition 4.74 that MP(Gx) is a set realizing
maxi{McM(Gx), MP(Gcix)∪⋃j≠i MJI(Gcjx)}. Finally, let us assume that
x has type 2, and let (S, K, R) be the spider partition of Gx. No matter
if Gx is a thin or a thick spider, we have from item 10 of Proposition 4.78
that MP(Gx) is the union of S∪K with a maximum subset of R inducing
a polar graph. The result follows since Gx has O(n) descendants.

7. The assertion is trivially satisfied if x is a leaf of T . If x has type 0, we
have by part 11 from Proposition 4.73 that MU(Gx) is a set realizing
maxi{MU(Gcix)∪⋃j≠i MUC(Gcjx)}. If x has type 1, we have by part 11
from Proposition 4.74 that MU(Gx) is a set realizing

max
i

{McB(Gx), MU(Gcix) ∪⋃
j≠i

MC(Gcjx)}.

Finally, let us assume that x has type 2, and let (S, K, R) be the spider
partition of Gx. No matter if Gx is a thin or a thick spider, we have
from items 11 and 12 of Proposition 4.78 that MU(Gx) is the union of
S ∪ K with a maximum subset of R inducing a unipolar graph. The
result follows since Gx has O(n) descendants.The result follows since Gx

has O(n) descendants.

We obtain the main result of this section as a direct consequence of the
proposition above.

Theorem 4.80. The problems of deciding whether a P4-sparse graph is either
a complete multipartite graph, a monopolar graph, a unipolar graph, or a polar
graph are linear-time solvable.

Proof. From Proposition 4.79, MJI(Gx), MM(Gx), MU(Gx) and MP(Gx) can
be found in linear time for any node x of the ps-tree associated to a P4-sparse
graph. Particularly, it can be done for the root of the ps-tree, so the result
follows.
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4.7.2 Largest polar subgraph in P4-extendible graphs
Based on Theorem 4.2, it is possible to represent each P4-extendible graph G
by means of a labeled tree T with root G, which can be constructed in the
following way. Let H be a node of T . If H is a trivial graph, it is an unlabeled
node of T with no children. If H is a disconnected graph, it is labeled 0 and its
children are its connected components. If H is disconnected, then H is labeled
1 and its children are the components of H. If H is an extension graph, it is a
node labeled 2 with as many children as the order of H that has additional
information encoding the graph induced by its children. Finally, if H is an
X-spider with non empty head whose spider partition is (S, K, R), H is a node
labeled 3 and has exactly two children: its left child, H[S ∪ K], and its right
child, H[R]. We will call the tree constructed in this way the parse tree of
G. Hochstättler and Schindler [47] showed that P4-extendible graphs can be
recognized and the parse tree representation can be simultaneously computed
in linear time.1

The next proposition shows that the parse tree of a P4-extendible graph of
order n has O(n) nodes. It implies that it takes linear time to compute the lists
of children for all nodes of the parse tree. Since such lists can be considered
additional information for each node, this preserves the condition that the tree
uses only linear space. The proof is analogous to that of Proposition 4.76, so
we omit it for the sake of length.

Proposition 4.81. Let G be a P4-extendible graph, and let T be its associated
parse tree. If G has order n, then T has order at most 2n − 1.

Next, we provide characterizations for maximal substructures associated to
polarity on extension graphs and X-spiders. Propositions 4.82 and 4.83 are
really easy to check, so their proof is omitted.

Proposition 4.82. Let G be a 5-cycle, say G = (v0, v1, . . . , v4, v0). The
following statements hold true for any subset W of VG, where i is any integer
in {0, 1, 2, 3, 4} and the sums are considered modulo 5.

1. W is a maximum independent set of G if and only if W = {vi, vi+2}.
1Actually, the parse tree defined in [47] is slightly different than the one we introduce,

due to the fact that they assume by convention that the father of a node labeled 2 is always
a node labeled 3, that the root is always a node labeled 1, and that nodes labeled 1 and 3
may have only one child. Nevertheless, with some minor changes, the algorithm in [47] can
be adapted to construct our version of the parse tree.
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2. W is a maximum clique of G if and only if W = {vi, vi+1}.

3. W induces a maximum bipartite graph if and only if W = V \ {vi}.

4. W induces a maximum co-bipartite graph if and only if W = V \ {vi}.

5. W induces a maximum split graph in G if and only if W = V \ {vi}.

6. W induces a maximum cluster in G if and only if W = {vi, vi+2, vi+3}.

7. W induces a maximum complete multipartite graph in G if and only if
W = {vi, vi+1, vi+2}.

8. W induces a maximum unipolar graph in G if and only if W = V \ {vi}.

9. W induces a maximum co-unipolar graph in G if and only if W = V \{vi}.

Additionally, G is a monopolar graph, hence a co-monopolar and a polar
graph.

Proposition 4.83. Let G be a path of order five, let us say G = (v0, v1, v2, v3, v4).
The following statements hold true for any subset W of VG.

1. W is a maximum independent set of G if and only if W = {v0, v2, v4}.

2. W is a maximum clique of G if and only if W = {vi, vi+1} for some
i ∈ {0, 1, 2, 3}.

3. W induces a maximum co-bipartite graph if and only if W = V \ {vi} for
some i ∈ {0, 2, 4}.

4. W induces a maximum split graph in G if and only if W = V \ {vi} for
some i ∈ {0, 1, 3, 4}.

5. W induces a maximum cluster in G if and only if W = V \ {v2}.

6. W induces a maximum complete multipartite graph in G if and only if
either W = {v0, v2, v4} or W = {vi, vi+1, vi+2} for some i ∈ {0, 1, 2}.

In addition, G is a monopolar, a co-monopolar, a unipolar, a co-unipolar
and a polar graph, as well as a bipartite graph.

Since P4-spiders are special cases of thin (and thick) spiders, the following
lemma is a trivial consequence of Proposition 4.78.
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Lemma 4.84. Let G = (S, K, R) be a P4-spider, and let (a, b, c, d) be the P4
induced by S ∪ K. Let W be a subset of VG, and let H = G[R]. The following
statements hold true.

1. W is a maximum clique of G if and only if W is a witness of

max{∣MC(H) ∪ K∣, ∣{a, b}∣, ∣{c, d}∣}.

2. W is a maximum independent set of G if and only if W is a witness of

max{∣MI(H) ∪ S∣, ∣{a, c}∣, ∣{b, d}∣}.

3. W induces a maximum bipartite graph if and only if W is a witness of

max
k∈K

{∣S ∪ K∣, ∣MI(H) ∪ S ∪ {k}∣, ∣MB(H) ∪ S∣}.

4. W induces a maximum co-bipartite graph if and only if W is a witness of

max
s∈S

{∣S ∪ K∣, ∣MC(H) ∪ K ∪ {s}∣, ∣McB(H) ∪ K∣}.

5. W induces a maximum split graph in G if and only if W is the union of
S ∪ K with a set inducing a maximum split subgraph of H.

6. W induces a maximum cluster in G if and only if W is a witness of

max{∣MUC(H) ∪ S∣, ∣MC(H) ∪ K∣, ∣MC(H) ∪ {a, c}∣,
∣MC(H) ∪ {b, d}∣, ∣{a, c, d}∣, ∣{a, b, d}∣}.

7. W induces a maximum complete multipartite graph in G if and only if
W is a witness of

max{∣MJI(H) ∪ K∣, ∣MI(H) ∪ S∣, ∣MI(H) ∪ {a, b}∣,
∣MI(H) ∪ {c, d}∣, ∣{a, b, c}∣, ∣{b, c, d}∣}.

8. W induces a maximum monopolar graph in G if and only if W is a
witness of

max{∣MM(H) ∪ S∣, ∣MS(H) ∪ S ∪ K∣,
∣MUC(H) ∪ {a, b, d}∣, ∣MUC(H) ∪ {a, c, d}∣}.
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9. W induces a maximum co-monopolar graph in G if and only if W is a
witness of

max{∣McM(H) ∪ K∣, ∣MS(H) ∪ S ∪ K∣,
∣MJI(H) ∪ {a, b, c}∣, ∣MJI(H) ∪ {b, c, d}∣}.

10. W induces a maximum polar graph in G if and only if W is the union of
S ∪ K with a set inducing a maximum polar subgraph of H.

11. W induces a maximum unipolar graph in G if and only if W is the disjoint
union of S ∪ K with a set inducing a maximum unipolar subgraph of H.

12. W induces a maximum co-unipolar graph in G if and only if W is the
union of S ∪ K with a set inducing a maximum unipolar subgraph of H.

We continue with propositions characterizing maximal substructures associ-
ated to polarity on both P -spiders and F -spiders. As the reader can notice,
the proofs are very similar in nature to those of Proposition 4.78.

Lemma 4.85. Let G = (S, K, R) be a P -spider, where S = {a, a
′
, d}, K = {b, c}

and {a, a
′
, b} induces C3. Let W be a subset of VG, and let H = G[R]. The

following statements hold.

1. W is a maximum clique of G if and only it is a witness of

max{∣{a, a
′
, b}∣, ∣MC(H) ∪ K∣}.

2. W is a maximum independent set of G if and only if it is a witness of

max{∣{a, c}∣, ∣{a, d}∣, ∣{a′
, c}∣, ∣{a′

, d}∣,
∣{b, d}∣, ∣MI(H) ∪ {a, d}∣, ∣MI(H) ∪ {a′

, d}∣}.

3. W induces a maximum bipartite graph if and only if W is a witness of

max{∣S ∪K \{a}∣, ∣S ∪K \{a′}∣, ∣MI(H)∪S ∪K \{b}∣, ∣MB(H)∪S∣}.

4. W induces a maximum co-bipartite graph if and only if W is a witness of

max{∣S ∪ K∣, ∣MC(H) ∪ S ∪ (K \ {d})∣, ∣McB(H) ∪ {c, b}∣}.
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5. W induces a maximum split graph in G if and only it is a witness of

max{∣{a, a
′
, b, d}∣, ∣{a, a

′
, b, c}∣, ∣{a′

, b, c, d}∣,
∣{a, b, c, d}∣, ∣MI(H) ∪ {a, a

′
, b, d}∣,

∣MS(H) ∪ {a′
, b, c, d}∣, ∣MS(H) ∪ {a, b, c, d}∣}.

6. W induces a maximum cluster in G if and only if it is a witness of

max{∣{a, a
′
, b, d}∣, ∣{a, a

′
, c, d}∣, ∣MC(H) ∪ {a, a

′
, c}∣,

∣MC(H) ∪ S∣, ∣MUC(H) ∪ S∣}.

7. W induces a maximum complete multipartite graph in G if and only if it
is a witness of

max{∣{a, a
′
, b}∣, ∣{a, b, c}∣, ∣{a′

, b, c}∣, ∣{b, c, d}∣,
∣MI(H) ∪ {a, b}∣, ∣MI(H) ∪ {a′

, b}∣, ∣MI(H) ∪ {c, d}∣,
∣MI(H) ∪ {a, d}∣, ∣MI(H) ∪ {a′

, d}∣, ∣MJI(H) ∪ K∣}.

8. W induces a maximum monopolar graph in G if and only if it is a witness
of

max{∣MC(H) ∪ S ∪ K∣, ∣MUC(H) ∪ {a, a
′
, c, d}∣,

∣MUC(H) ∪ {a, a
′
, b, d}∣, ∣MS(H) ∪ {a, b, c, d}∣,

∣MS(H) ∪ {a′
, b, c, d}∣, ∣MS(H) ∪ {a, a

′
, c, d}∣,
∣MM(H) ∪ S∣}.

9. W induces a maximum co-monopolar graph in G if and only if it is a
witness of

max{∣MI(H) ∪ S ∪ K∣, ∣MS(H) ∪ {a, b, c, d}∣,
∣MS(H) ∪ {a′

, b, c, d}∣, ∣MJI(H) ∪ {a, a
′
, b, c}∣,
∣McM(H) ∪ K∣}.

10. W induces a maximum polar graph in G if and only if W is the union of
a maximum subset of R inducing a polar graph with S ∪ K.
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11. W induces a maximum unipolar graph in G if and only if W is the union
of a maximum subset of R inducing a unipolar graph with S ∪ K.

12. W induces a maximum co-unipolar graph in G if and only if and only if
W is a witness of

max{MI(H) ∪ S ∪ K, MB(H) ∪ S ∪ {b},
McU(H) ∪ K ∪ {a, d}, McU(H) ∪ K ∪ {a′

, d}}.

Proof. 1. Let W be a maximum clique of G. If W ∩ R = ∅, then W =

{a, a
′
, b}. Otherwise, if W ∩R ≠ ∅, then W ∩ S = ∅ and W is the union

of K with a maximum clique in H.

2. Let W be a maximum independent set of G. If W ∩ R = ∅, then W is a
maximum independent subset of S ∪ K, i.e.,

W ∈ {{a, c}, {a, d}, {a′
, c}, {a′

, d}, {b, d}}.

Otherwise, if W ∩ R ≠ ∅, then W ∩ K = ∅, and W is the union of a
maximum independent set in H with a maximum independent subset of
S.

3. Let W be a set inducing a maximum bipartite subgraph of G. Notice
that, since {a, a

′
, b} induces a triangle, ∣W ∩{a, a

′
, b}∣ ≤ 2. It follows from

the previous observation that, if W ∩ R = ∅, W is some of S ∪ K \ {a},
S ∪ K \ {a′}, or S ∪ K \ {b}. Else, if W ∩ R is a nonempty independent
set, ∣W ∩ K∣ ≤ 1. Moreover, it is a simple observation that the union of
any independent subset of R with S ∪ K \ {b} induces a bipartite graph,
but the union of an independent subset of R with any other 4-subset
of S ∪ K does not induce a bipartite graph. Thus, when W ∩ R is a
nonempty independent set, W is the union of a maximum independent
subset of R with S ∪ K \ {b}. Finally, if W ∩ R induces a nonempty
bipartite graph, then W ∩ K = ∅ and we trivially have that W \ R = S.

4. Let W be a set inducing a maximum co-bipartite subgraph of G. Since
P admits a partition in two cliques, if W ∩ R = ∅, W = S ∪ K. Else, if
W ∩ R induces a nonempty clique, neither {a, d} or {a′

, d} is a subset
of W . Moreover, the union of a clique contained in R with S ∪ K \ {d}
induces a co-bipartite graph, and the union of a nonempty subset of R
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with any other 4-subset of S ∪ K does not induce a co-bipartite graph.
Thus, if W ∩R induces a nonempty clique, W is the union of a maximum
clique in H with S ∪ K \ {d}. Otherwise, W ∩ R is a co-bipartite graph
that is not a clique, and then W ∩ S = ∅, so clearly W \ R = K; the
result follows.

5. Let W be a set inducing a split subgraph of G. If W ∩ R = ∅, W
is a maximum subset of S ∪ K inducing a split graph, so W is one
of {a, a

′
, b, d}, {a, a

′
, b, c}, {a′

, b, c, d}, or {a, b, c, d}. Now, assume that
W ∩ R ≠ ∅. Notice that in this case {a, a

′
, c} /⊆ W , otherwise {a, a

′
, c, r}

would induce 2K2 for any r ∈ W ∩ R. Thus, if W ∩ R is an independent
set, W \ R is any of {a, b, c, d}, {a′

, b, c, d}, or {a, a
′
, b, d}. Else, if W ∩ R

induces a split graph that is not empty, {a, a
′} could not be a subset

of W , because {a, a
′
, r, r

′} would induce 2K2 for any adjacent vertices
r, r

′
∈ W ∩ R. Thus, if W ∩ R is not an independent set, W \ R must be

one of {a, b, c, d}, or {a′
, b, c, d}, and the result follows.

6. Let W be a set inducing a maximum cluster of G. If W ∩ R = ∅, W is a
maximum subset of S ∪ K inducing a cluster, i.e.,

W ∈ {{a, a
′
, b, d}, {a, a

′
, c, d}}.

Now, assume that W ∩ R ≠ ∅. If W ∩ R is a clique, then W cannot
have simultaneously c and d, or b and any of a or a

′. Thus, in this case
W is the union of a maximum subset of R inducing a clique with one of
{a, a

′
, c} or {a, a

′
, d}. Otherwise, if W ∩ R induces a cluster that is not

a complete graph, then W ∩ K = ∅, and W is the union of S with a
maximum subset of R inducing a cluster.

7. Let W be a set inducing a maximum complete multipartite subgraph
of G. If W ∩ R = ∅, W is a maximum subset of S ∪ K inducing a
complete multipartite graph, i.e., W is one of {a, a

′
, b}, {a, b, c}, {a′

, b, c},
or {b, c, d}. Now, assume that W ∩ R ≠ ∅. Notice that in this case,
W ∩ S is completely adjacent to W ∩ K. In addition, W cannot have
both, a and a

′. It follows that, if W ∩ R is an independent set, then
W \ R is one of {a, b}, {a′

, b}, {c, d}, {a, d}, {a′
, d}, or K. Otherwise, if

W ∩ R induces a maximum complete multipartite graph of R that is not
empty, W ∩ S = ∅ and W \ R = K, so the result follows.
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8. Let W be a set inducing a maximum monopolar subgraph of G. If W ∩R
is a clique, then {a, a

′
, c}∪ (W ∩ R) induces a cluster and, since {b, d} is

an independent set, we have that W \R = S ∪K, so W is the union of a
maximum clique of H with S ∪ K.
When W ∩ R induces a non-complete graph that is simultaneously a
split graph and a cluster, since W ∩ R is not a clique, {a, a

′
, b, c} could

not be a subset of W or, for any nonadjacent vertices r, r
′
∈ W ∩ R,

{a, a
′
, b, c, r, r

′} would induce K1 ⊕ (K2 + P3), which is not a monopolar
graph. Moreover, some simple verifications show that W \ R is any of
{a, b, c, d}, {a′

, b, c, d}, {a, a
′
, c, d}, or {a, a

′
, b, d}.

Else, if W ∩ R induces a cluster that is not a split graph, then it has
a subset U inducing 2K2, so {b, c} /⊆ W , or G[{b, c} ∪ U] ≅ K2 ⊕ 2K2,
which is not a monopolar graph. From here, it is easy to verify that
W \ R is any of {a, a

′
, b, d}, or {a, a

′
, c, d}.

Now, assume that W ∩R induces a split graph that is not a cluster. Since
K1 ⊕ (K2 + P3) is not a monopolar graph and W ∩ R has a subset W

′

inducing P3, we have that {a, a
′
, b} is not a subset of W . From here, we

can easily check that W \R is any of {a, b, c, d}, {a′
, b, c, d}, or {a, a

′
, c, d}.

Finally, suppose that W ∩R induces a monopolar graph that is neither a
cluster or a split graph. Suppose that there exists k ∈ K ∩ W , and let
(A, B) be a monopolar partition of G[W ]. If k ∈ A, then W ∩ R ⊆ B,
implying that W ∩ R induce a cluster, which is not the case. Then, it
must be that k ∈ B, but then W ∩ R ∩ B would be a clique and, since
(W ∩ R) \ B ⊆ A, we have that W ∩ R would induce a split graph, but
we are assuming it does not. Therefore, K ∩ W = ∅, and it follows that
W is the union of S with a maximum subset of R inducing a monopolar
graph.

9. Let W be a set inducing a maximum co-monopolar subgraph of G. If
W ∩ R is an independent set, then ({a, a

′
, b}, {c, d} ∪ (W ∩ R)) is a

co-monopolar partition of G[(W ∩ R) ∪ S ∪ K]. Hence, if W ∩ R is an
independent set, W \ R = S ∪ K.
Notice that, if W ∩R is not an independent set, then S /⊆ W , otherwise W
would have a subset inducing K1+2K2, which is not a co-monopolar graph.
In addition, if W ∩ R induces a graph with split partition (A, B) and
W \R is any of {a, b, c, d}, or {a′

, b, c, d}, then W induces a graph with co-
monopolar partition (A∪{a, d}, B∪{b, c}) or (A∪{a′

, d}, B∪{b, c}). Also,
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if W ∩ R induces a complete multipartite graph and W \ R = {a, a
′
, b, c},

then G[W ] has the co-monopolar partition ({a, a
′}, (W ∩ R) ∪ {b, c}).

If W ∩ R induces a split graph that is not a complete multipartite
graph, then {a, a

′} /⊆ W or, for any subset {r1, r2, r3} of W inducing P3,
{a, a

′
, r1, r2, r3} would induce K1 + 2K2, which is not a co-monopolar

graph. In addition, since W ∩ R is a split graph, {a, b, c, d} ∪ (W ∩ R)
and {a′

, b, c, d} ∪ (W ∩ R) induce split graphs, and hence co-monopolar
graphs, so in this case W is the union of a maximum subset of R inducing
a split graph with one of {a, b, c, d} or {a′

, b, c, d}.
Else, if W ∩ R induces a complete multipartite graph that is not a
split graph, then W has a subset W

′ inducing C4. Therefore, neither
{a, d} ⊆ W or {a′

, d} ⊆ W , otherwise W would have a subset inducing
C4 + 2K1, which is not a co-monopolar graph. Moreover, the union of
any subset of R inducing a complete multipartite graph with {a, a

′
, b, c}

induces a co-monopolar graph, so in this case W is precisely the union
of a maximal subset of R inducing a complete multipartite graph with
{a, a

′
, b, c}.

Finally, assume that W ∩R induces a co-monopolar graph that is neither a
split graph or a complete multipartite graph. Aiming for a contradiction,
suppose that there exists a vertex s ∈ S ∩ W , and let (A, B) be a
co-monopolar partition of G[W ]. If s ∈ A, then W ∩ R ⊆ B, which
is impossible since G[W ∩ R] is not a complete multipartite graph.
Then, s ∈ B, but in such a case B ∩ W ∩ R is an independent set, and
(W∩R)\B ⊆ A, implying that W∩R induces a split graph, contradicting
our initial assumption. Hence S ∩ W = ∅. Additionally, for any subset
W

′ of R inducing a co-monopolar graph, W
′ ∪ K is also a co-monopolar

graph, so in this case W is the union of K with a maximum subset of R
inducing a co-monopolar graph.

10. Let W be a set inducing a maximum polar subgraph of G. If (A, B) is a
polar partition of G[W ∩ R], then (A ∪ K, B ∪ S) is a polar partition of
G[W ].

11. Let W be a set inducing a maximum unipolar subgraph of G. If (A, B)
is a unipolar partition of G[W ∩ R], then (A ∪ K, B ∪ S) is a polar
partition of G[W ].

12. Let W be a set inducing a maximum co-unipolar subgraph of G. Notice
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that, for any independent subset R
′ of R, ({a, d} ∪ R

′
, {a′} ∪ K) is a co-

unipolar partition of G[S∪K∪R
′]. Therefore, if W ∩R is an independent

subset of R, we have that W is the union of a maximum independent
subset of R with S ∪ K.
Observe that K2 + K3 is not a co-unipolar graph. Hence, if W ∩ R is
not an independent set, either {a, a

′} /⊆ W or c ∉ W . It easily follows
from the previous observation that, if W ∩ R induces a nonempty graph
with bipartition (A, B), then W is the union of a maximum subset of
R inducing a bipartite graph with some of K ∪ {a, d}, K ∪ {a′

, d}, or
S ∪ {b}.
Now, assume that W ∩ R induces co-unipolar graph that is a nonempty
bipartite graph. We claim that, in such case, {a, a

′} /⊆ W , and we prove
it by means of contradiction. Suppose that a, a

′
∈ W , and let (A, B) be

a co-unipolar partition of G[W ]. Since G[W ∩R] is not an empty graph,
W ∩ B ≠ ∅, and thus, either a ∈ A and a

′
∈ B, or vice versa. However,

due to B∩{a, a
′} ≠ ∅ we have that W ∩R∩B is an independent set, but

then W ∩ R induces a bipartite graph, reaching a contradiction. From
here, it is easy to conclude that, in this case, W is the union of a maximum
subset of R inducing a co-unipolar graph with some of K ∪ {a, d} or
K ∪ {a′

, d}.

Lemma 4.86. Let G = (S, K, R) be an F -spider, where S = {a, a
′
, d}, K =

{b, c} and {a, a
′
, b} induces P3. Let W be a subset of VG, and let H = G[R].

The following statements hold true.

1. W is a maximum clique of G if and only if W is a witness of

max{∣{a, b}∣, ∣{a′
, b}∣, ∣{b, c}∣, ∣{c, d}∣, ∣MC(H) ∪ K∣}.

2. W is a maximum independent set of G if and only if W is a witness of

max{∣{a, a
′
, c}∣, ∣MI(H) ∪ S∣}.

3. W is a set inducing a maximum bipartite subgraph of G if and only if W
is a witness of

max{∣S∪K∣, ∣MI(H)∪S∪K\{b}∣, ∣MI(H)∪S∪K\{c}∣, ∣MB(H)∪S∣}.
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4. W is a set inducing a maximum co-bipartite subgraph of G if and only if
W is a witness of

max{∣S ∪ K \ {a}∣, ∣S ∪ K \ {a′}∣, ∣MC(H) ∪ K ∪ {a}∣,
∣MC(H) ∪ K ∪ {a′}∣, ∣MC(H) ∪ K ∪ {d}∣, ∣McB(H) ∪ K∣}.

5. W induces a maximum split graph in G if and only if W is the union of
a maximum subset of R inducing a split graph with S ∪ K.

6. W induces a maximum cluster of G if and only if W is a witness of

max{∣{a, a
′
, c, d}∣, ∣MC(H) ∪ {a, a

′
, c}∣, ∣MUC(H) ∪ S∣}.

7. W induces a maximum complete multipartite graph in G if and only if
W is a witness of

max{∣{a, a
′
, b, c}∣, ∣MI(H) ∪ S∣, ∣MI(H) ∪ {a, a

′
, b}∣, ∣MIJ(H) ∪ K∣}.

8. W induces a maximum monopolar graph in G if and only if W is a
witness of

max{∣MS(H) ∪ S ∪ K∣, ∣MUC(H) ∪ {a, a
′
, b, d}∣,

∣MUC(H) ∪ {a, a
′
, c, d}∣, ∣MM(H) ∪ S∣}.

9. W induces a maximum co-monopolar graph in G if and only if W is a
witness of

max{∣MS(H) ∪ S ∪ K∣, ∣MJI(H) ∪ {a, b, c}∣,
∣MJI(H) ∪ {a′

, b, c}∣, ∣MJI(H) ∪ {b, c, d}∣, ∣McM(H) ∪ K∣}.

10. W induces a maximum polar graph in G if and only if W is the union of
a maximum subset of R inducing a polar graph with S ∪ K.

11. W induces a maximum unipolar graph in G if and only if W is the union
of a maximum subset of R inducing a unipolar graph with S ∪ K.

12. W induces a maximum co-unipolar graph in G if and only if W is the
union of a maximum subset of R inducing a co-unipolar graph with S∪K.
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Proof. 1. Let W be a maximum clique of G. If R = ∅, W clearly is one of
{a, b}, {a′

, b}, {b, c}, or {c, d}. Otherwise, if R ≠ ∅, R
′ ∪ K is a clique,

for any clique R
′ contained in R, so in this case W ∩ R is a nonempty

clique. It follows that W ∩ S = ∅ and W is the union of K a maximum
clique contained in R.

2. Let W be a maximum independent set of G. If R = ∅, W clearly is one
of {a, a

′
, c} or S. Otherwise, if R ≠ ∅, R

′ ∪ S is an independent set, for
any independent subset R

′ of R. Thus, if R ≠ ∅, W ∩ R is a nonempty
independent subset of R, so W ∩ K = ∅. Hence, in this case W is the
union of S with a maximum independent subset of R.

3. Let W be a set inducing a maximum bipartite subgraph of G. If W ∩R =

∅, then clearly W = S ∪ K. Else, if W ∩ R is a non empty independent
set, then ∣W ∩ K∣ ≤ 1. In addition, for any independent subset R

′ of R,
both R

′∪S ∪ {b} and R
′∪S ∪ {c} induce bipartite graphs, so in this case

W is the union of a maximum independent set of R with either S ∪ {b}
or S ∪ {c}. Otherwise, W ∩ R induces a nonempty bipartite graph and
W ∩ K = ∅, where it easily follows that W is the union of S with a
maximum bipartite subgraph of H.

4. Let W be a set inducing a maximum co-bipartite subgraph of G. It is
an easy observation that the only subsets of S ∪ K inducing a maximum
co-bipartite graph are S ∪K \ {a} and S ∪K \ {a′}; hence, if W ∩R = ∅,
W must be one of these sets. Notice that if W ∩R ≠ ∅ then ∣W ∩S∣ ≤ 1.
From here, it is easy to observe that if W ∩ R is a nonempty clique, then
W \ R is one of K ∪ {a}, K ∪ {a′}, or K ∪ {d}, so in this case W is the
union of one of these sets with a maximum clique of H. Finally, if W ∩R
induces a co-bipartite graph that is not a clique, then W ∩ S = ∅ and
W clearly is the union of K with a maximum set inducing a co-bipartite
subgraph of H.

5. Let W be a set inducing a maximum split subgraph of G. Just notice
that, for any subset R

′ of R inducing a graph with split partition (A, B),
(A ∪ S, B ∪ K) is a split partition of G[S ∪ K ∪ R

′].

6. Let W be a set inducing a maximum cluster of G. If R = ∅, then
W = {a, a

′
, c, d}. Otherwise, the union of S with any subset of R inducing

a cluster is also a cluster. Thus, we may assume that ∣W \ R∣ ≥ 3.
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Moreover, if W ≠ {a, a
′
, c, d}, then W ∩ R ≠ ∅ and then, none of {a, b},

{a′
, b}, or {c, d}, is a subset of W , or W would have a subset inducing

P3. From here, it is a easy to conclude that, if W ∩ R is a clique, then
W \ R ∈ {S, {a, a

′
, c}}, while, if W ∩ R induces a cluster that is not

complete graph, then W \ R = S.

7. Let W be a set inducing a maximum complete multipartite subgraph of
G. If W ∩ R = ∅, then W is a maximum subset of S ∪ K inducing a
complete multipartite graph, so W = {a, a

′
, b, c}. Otherwise, W ∩ R ≠ ∅,

and since G[W ] is P3-free, none of {c, a}, {c, a
′}, or {b, d}, could be a

subset of W . It follows that, in this case, ∣W \ R∣ ≤ 3. Notice that the
union S with any independent subset of R is an independent set, so it
induces a complete multipartite graph. Hence, if W ∩R is an independent
set, ∣W \ R∣ = 3 and a simple verification yields that W \ R can be any
of S or {a, a

′
, b}. Finally, if W ∩R induces a complete multipartite graph

that is not an empty graph, then W ∩ S = ∅, and W \ R = K.

8. Let W be a set inducing a maximum monopolar subgraph of G. If W ∩R
induces a graph with split partition (A, B), then (A ∪ S, B ∪ K) is a
split partition of G[S ∪ K ∪ (W ∩ R)]. Else, if W ∩ R induces a cluster
that is not a split graph, then W ∩ R has a subset inducing 2K2, so
K /⊆ W , because K2 ⊕ 2K2 is not a monopolar graph. In addition, it
is easy to corroborate that for any subset R

′ of R inducing a cluster,
R ∪ {a, a

′
, b, d} and R

′ ∪ {a, a
′
, c, d} induce monopolar graphs. Finally,

assume that W ∩ R induces a monopolar graph that is neither a split
graph or a cluster. Aiming for a contradiction, suppose that there exists
a vertex k ∈ K ∩ W , and let (A, B) be a monopolar partition of G[W ].
If k ∈ A, then W ∩ R ⊆ B, so W ∩ R induces a cluster, but we are
assuming this is not the case. Thus, k ∈ B, but then, B ∩ W ∩ R is a
clique, and (W ∩ R) \ B ⊆ A, so W ∩ R induces a split graph, which
is impossible. Therefore, K ∩ W = ∅. Moreover, if R

′ is a subset of R
inducing a graph with monopolar partition (A, B), then (A ∪ S, B) is a
monopolar partition of G[R′ ∪ S], where the result follows.

9. Let W be a set inducing a maximum co-monopolar subgraph of G.
If a subset R

′ of R induces a graph with split partition (A, B), then
(B ∪ K, A ∪ S) is a co-monopolar partition of G[R′ ∪ S ∪ K]. Thus, if
W ∩ R induces a split graph, then W \ R = S ∪ K.
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Now, if W ∩ R induces a complete multipartite graph that is not a split
graph, there exists a subset W

′ of W ∩R inducing a 4-cycle. Hence, since
C4 + 2K1 is not a co-monopolar graph, ∣W ∩ S∣ ≤ 1. Moreover, for any
subset R

′ of R inducing a complete multipartite graph and any s ∈ S,
({s}, R

′ ∪ K) is a co-monopolar partition of G[R′ ∪ K ∪ {s}]. Thus, if
W ∩ R induces a complete multipartite graph that is not a split graph,
then W \ R is one of {a, b, c}, {a′

, b, c}, {b, c, d}.
Finally, assume that W ∩R induces a co-monopolar graph that is neither a
complete multipartite graph or a split graph. Aiming for a contradiction,
suppose that there exists a vertex s ∈ S ∩ W , and let (A, B) be a
co-monopolar partition of G[W ]. If s ∈ A, then W ∩ R ∩ A = ∅, so
W ∩ R must induce a complete multipartite graph, which is not the case.
Thus, s ∈ B, so B ∩ W ∩ R is an independent set, because complete
multipartite graphs are P3-free graphs. But then, W ∩ R induces a split
graph, which is impossible. Therefore W ∩ S = ∅. In addition, if R

′ is
any subset of R inducing a graph with co-monopolar partition (A, B),
then (A ∪ K, B) is a co-monopolar partition of G[R′ ∪ K]. Hence, if
W ∩ R induces a co-monopolar graph that is neither a split graph or a
complete multipartite graph, then W \ R = K.

10. Let W be a set inducing a maximum polar subgraph of G. The result
follows since, for any subset R

′ of R inducing a graph with polar partition
(A, B), (A ∪ K, B ∪ S) is a polar partition of G[S ∪ K ∪ R

′].

11. Let W be a set inducing a maximum unipolar subgraph of G. It is enough
to notice that, for any subset R

′ of R inducing a graph with unipolar
partition (A, B), (A∪K, B∪S) is a unipolar partition of G[S ∪K ∪R

′].

12. Let W be a set inducing a maximum co-unipolar subgraph of G. The
result follows since, for any subset R

′ of R inducing a graph with co-
unipolar partition (A, B), we have that (A ∪ S, B ∪ K) is a co-unipolar
partition of G[S ∪ K ∪ R

′].

For the proof of the next proposition we strongly use, without explicit men-
tion, that the complements of P -spiders and the complements of F -spiders are,
respectively, P -spiders and F -spiders. Notice that by a simple complementary
argument, analogous results can be given for computing MI(Gx), McB(Gx),
MJI(Gx), McM(Gx), and McU(Gx).
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Proposition 4.87. Let G be a P4-extendible graph, and let T be its associated
parse tree. For any node x of T the followings assertions are satisfied.

1. MC(Gx) can be computed in linear time.

2. MB(Gx) can be computed in linear time.

3. MS(Gx) can be computed in linear time.

4. MUC(Gx) can be computed in linear time.

5. MM(Gx) can be computed in linear time.

6. MP(Gx) can be computed in linear time.

7. MU(Gx) can be computed in linear time.

Proof. The assertions trivially hold whenever x is a leaf of T . Also, if x is a
node labeled 0 or 1, the proof follows exactly as in Proposition 4.79. Thus,
we will assume for the rest of the proof that x has label either 2 or 3. Even
in these cases the proof is similar in flavor to Proposition 4.79, but we use
Propositions 4.82 and 4.83 and Lemmas 4.84 to 4.86 instead of Proposition 4.78.
Hence, we only write the proof for item 6.

6. If x is a node labeled 2, Propositions 4.82 and 4.83 implies that MP(Gx) =
Gx. Otherwise, x is a node labeled 3, so Gx is an X-spider. By Lem-
mas 4.84 to 4.85, if Gx is a graph with X-spider partition (S, K, R), then
MP(Gx) is the union of S ∪ K with a maximum subset of R inducing a
polar graph. The result follows since Gx has O(n) descendants.

The main results of this section are summarized in the next theorem, which
is a direct consequence of the proposition above.

Theorem 4.88. The problems of deciding whether a P4-extendible graph is
either a complete multipartite graph, a monopolar graph, a unipolar graph, or a
polar graph are linear-time solvable.

Proof. From Proposition 4.87, MJI(Gx), MM(Gx), MU(Gx) and MP(Gx) can
be found in linear time for any node x of the parse tree associated to a P4-
extendible graph. Particularly, it can be done for the root of the parse tree, so
the result follows.
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4.8 Open problems and conjectures
In this chapter we generalized some results related to hereditary properties
in cographs, providing similar results for two superclasses of P4-free graphs,
namely P4-sparse and P4-extendible graphs.

Particularly, we showed that any P4-sparse minimal obstruction for unipo-
larity, monopolarity, polarity, (s, 1)-polarity and 2-polarity, is a cograph.
Hannnebauer [45] showed the following interesting result that generalize its
analogue for cographs, which was previously proved in [37].

Theorem 4.89 ([45]). Let H be a P4-sparse minimal (s, k)-polar obstruction.
Then H has at most (s + 1)(k + 1) vertices.

The observations above make us pose the following question.

Problem 4.90. Can we establish an O(sk) upper bound for the order of the
P4-extendible minimal (s, k)-polar obstructions?

It was independently shown in [7] and [45] that any P4-sparse minimal
obstruction for (k, ℓ)-coloring is a cograph too, so we propose the following
problems.

Problem 4.91. Is every P4-sparse minimal (s, k)-polar obstruction a cograph,
for any positive integers s and k?

Problem 4.92. Which hereditary properties P satisfy that every P4-sparse
minimal P-obstruction is a cograph?

In Section 4.7, we presented linear time algorithms to find largest subgraphs
with properties related to polarity on any graph being either P4-sparse or P4-
extendible. Such algorithms can be easily adapted to give back yes-certificates,
so we wonder whether they can be adapted, preserving its time-complexity, to
return also no-certificates.

Problem 4.93. Can we adapt our algorithms to make them linear-time certi-
fying algorithms?

We also think it is possible to extend our algorithms to wider classes of
graphs having a simple enough tree representation. Specifically, we pose the
next problem.
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Problem 4.94. Give a linear time algorithm to find maximum monopolar,
maximum unipolar, and maximum polar subgraphs on P4-tidy or extended
P4-laden graphs.

In the context of matrix partitions was shown that, for any pair of fixed
nonnegative integers, s and k, there is only a finite number of minimal (s, k)-
polar obstructions [39], so that theoretically there is a polynomial-time brute
force algorithm to decide whether a given graph is an (s, k)-polar graph.
Moreover, in [38] an explicit polynomial-time algorithm to solve the problem
of deciding whether an input graph admits a fixed sparse-dense partition was
given. In particular, since both, complete s-partite graphs and k-clusters can be
recognized in quadratic time, we have that (s, k)-polar graphs can be recognized
in O(∣V ∣4+2 max{s,k})-time. The aforementioned results make us wonder if it is
possible to improve the time complexity of such algorithms by restricting the
input graph to some of the graph classes with relatively few induced paths on
four vertices.

Problem 4.95. Given arbitrary fixed nonnegative integers s and k, can we a
give linear-time algorithm to find a maximum order (s, k)-polar subgraph of a
cograph G?

We also propose to solve the next natural problem, which is closely related
to the previous question.

Problem 4.96. Give an efficient algorithm to compute the minimum value of
z = s + k such that an input cograph G is an (s, k)-polar graph.

Finally, we think that an approach similar to the one used in Section 4.6
can be helpful to find the complete family of minimal 2-polar obstructions for
general graphs, so we pose such problem as a future line of work.



Part III

Polarity on H-split graphs





Chapter 5

Pseudo-split graphs

Split graphs were defined in Section 1.1 as those graphs whose vertex set admits
a partition (S, K) where S is an independent set, and K is a clique. The
following marvelous characterizations of split graphs were provided by Foldes,
Hammer, and Simeone.

Theorem 5.1 ([41, 44]). Let G be a graph with vertex set {v1, v2, . . . , vn} and
degree sequence d1 ≥ d2 ≥ ⋅ ⋅ ⋅ ≥ dn, where di is the degree of vertex vi. Set
p = max{i ∶ di ≥ i − 1}. The following conditions are equivalent:

1. G is a split graph;

2. G is a {2K2, C4, C5}-free graph;

3. ∑p

i=1 di = p(p − 1) +∑n

i=p+1 di.

Additionally, if G is a split graph, then ({v1, . . . , vp}, {vp+1, . . . , vn}) is a split
partition of G, ω(G) = χ(G) = p, and α(G) = θ(G) = n − min{p, dp}.

Note that, once the degree sequence of a graph G is known, computing
the value of p, as well as verifying the condition in item 3, can be done in
O(∣V ∣)-time, so split graphs are recognizable and a split partition can be found
in linear time from their degree sequences.

Maffray and Preissmann introduced in [57] the following generalization of
split graphs. Given a fixed graph H, a graph G is said to be H-split if VG

admits a partition (C, S, I) such that C is a clique, I is an independent set,
either S = ∅ or G[S] ≅ H, C is completely adjacent to S, and I is completely
nonadjacent to S. A partition (C, S, I) as described above is called an H-split
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partition of G. Given a family of graphs H, we say that G is H-split if it
is H-split for some H ∈ H. The next theorem implies that, for a graph H
whose degree sequence is uniquely realizable, the class of H-split graphs is
recognizable and an H-split partition can be found in O(∣V ∣)-time from their
degree sequences.

Theorem 5.2 ([57]). Let d
∗
1 ≥ ⋅ ⋅ ⋅ ≥ d

∗
h be a realizable degree sequence and let

H be the class of all realizations of this sequence. Let G be any graph with n
vertices and degree sequence d1 ≥ ⋅ ⋅ ⋅ ≥ dn. Set q = max{i ∶ di ≥ i−1+h}∪{0}.
Then, G is an H-split graph if and only if G is split or

q

∑
i=1

di = q(q − 1) + qh +
n

∑
j=q+h+1

di

and dq+i = q + d
∗
i for each i ∈ {1, . . . , h}. Additionally, if the condition on

the degrees holds, then the sets C = {v1, . . . , vq}, S = {vq+1, . . . , vq+h} and I =

{vq+h+1, . . . , vn} conform an H-partition of G, the subgraph induced by S being
isomorphic to some graph H ∈ H. Moreover, if d

∗ is a uniquely realizable degree
sequence, then ω(G) = q + ω(H), χ(G) = q + χ(H), α(G) = α(H)+ n− q − h
and θ(G) = θ(H) + n − q − h.

Notice that H-split graphs conform a hereditary class of graphs if and
only if either H is a split graph, in which case H-split graphs coincide with
split graphs, or H is one of the three minimal split obstructions mentioned in
Theorem 5.1, i.e., if H ∈ {2K2, C4, C5}. Additionally, the class of H-split graphs
is self-complementary if and only if H is. From the above observations, it is not
strange that the most studied H-split graphs are the C5-split graphs, which,
as we will notice in Theorem 5.4, are the pseudo-split graphs introduced in
Section 2.1. Naturally, a C5-split partition of a graph is called a pseudo-split
partition.

The following remark will be frequently used without any explicit mention.

Remark 5.3. Let H be some of 2K2, C4, or C5, and let G = (C, S, I) be an
H-split graph. Then, the only induced copy of H in G is G[S] and, if S ≠ ∅,
the H-split partition of G is unique.

If H ∈ {2K2, C4, C5} and G = (C, S, I) is an H-split graph with S ≠ ∅,
we say that G is an strict H-split graph. Observe that a pseudo-split graph
G = (C, S, I) is perfect if and only if S = ∅, reason why strict pseudo-split
graphs are usually called imperfect.
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Additionally to the characterization of pseudo-split graphs by their degree
sequences provided by Theorem 5.2, Maffray and Preissmann also gave in
[57] the complete list of minimal pseudo-split obstructions, namely {2K2, C4}.
The following proposition summarize such characterizations to facilitate future
references.

Theorem 5.4 ([57]). Let G be a graph of order at least five with vertex set
{v1, v2, . . . , vn} and degree sequence d1 ≥ d2 ≥ ⋅ ⋅ ⋅ ≥ dn, where di is the degree
of vertex vi. Set q = max{i ∶ di ≥ i + 4} ∪ {0}. The following conditions are
equivalent:

1. G is an imperfect pseudo-split graph;

2. G is a {2K2, C4}-free graph that has an induced C5;

3. ∑q

i=1 di = q(q + 4)+∑n

i=q+6 di, and dj = q + 2 whenever q + 1 ≤ j ≤ q + 5.

Additionally, if G is an imperfect pseudo-split graph, then

({v1, v2, . . . , vq}, {vq+1, vq+2, vq+3, vq+4, vq+5}, {vq+6, vq+7, . . . , vn})

is the pseudo-split partition of G, ω(G) = q+2, χ(G) = q+3, α(G) = n− q−3
and θ(G) = n − q − 2.

5.1 Polarity on pseudo-split graphs
As we have observed before, split graphs are precisely the 1-polar graphs, so split
graphs trivially are polar, monopolar, unipolar, and (s, k)-polar for any positive
integers s and k. In the next sections we study polarity on pseudo-split graphs.
As our main results we give complete lists of pseudo-split minimal (s, k)-polar
obstructions for the cases min{s, k} ≤ 2, s = ∞, and k = ∞, we prove tight
upper bounds for the order of pseudo-split minimal (s, k)-polar obstruction,
and provide a O(∣V ∣)-time algorithm to decide whether a pseudo-split graph
is (s, k)-polar from its degree sequence.

5.1.1 Algorithms for polarity on pseudo-split graphs
The next observation is basic to obtain O(∣V ∣)-time recognition algorithms for
(s, k)-polarity on pseudo-split graphs; it follows directly from Theorem 5.4.
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Remark 5.5. Let G be an imperfect pseudo-split graph with pseudo-split
partition (C, S, I). A vertex u of G has degree ∣C∣ + 4 if and only if u is a
vertex in C that is completely nonadjacent to I. A vertex v of G has degree
∣C∣ if and only if v is a vertex in I that is completely adjacent to C.

In the following theorem we give a necessary and sufficient condition for
a pseudo-split graph to be (s,∞)-polar. Notice that such a condition can be
verified in O(∣V ∣)-time from the degree sequence of a graph. Additionally,
since the class of pseudo-split graphs is self-complementary, and a graph is
(s,∞)-polar if and only if its complement is (∞, s)-polar, we have that by a
simple argument of complements an analogous characterization can be given
for (∞, k)-polarity on pseudo-split graphs.

Theorem 5.6. Let s be a nonnegative integer, and let G be an imperfect
pseudo-split graph with pseudo-split partition (C, S, I). Then, G is an (s,∞)-
polar graph if and only either s > ∣C∣, or ∣C∣ ≥ s ≥ 2 and there are at least
∣C∣ − s + 2 vertices of G with degree exactly ∣C∣ + 4.

Proof. Let us denote ∣C∣ by c. Suppose that G is an (s,∞)-polar graph, with
polar partition (A, B), such that s ≤ c. Observe that, if the restriction of
(A, B) to S is a (1, 2)-polar partition, then C ∩ B = ∅, or G[B] has P3 as
an induced subgraph, but then C ⊆ A, which is impossible since G[A] would
have Kc+1 as an induced subgraph and s ≤ c. Thus, G[S] is covered by a
(2, 1)-polar partition, so s ≥ 2. Notice that I ⊆ B, otherwise P3 would be an
induced subgraph of G[A], which cannot occur.

Then, since A induces a complete s-partite graph, at most s − 2 vertices
of C belong to A. It implies that there is a subset C

′ of C ∩ B with at least
c − s + 2 vertices. Moreover, if there exist adjacent vertices c ∈ C

′ and i ∈ I,
then G[B] would have P3 as an induced subgraph, which is impossible, so C

′

is completely nonadjacent to I. Hence, by Remark 5.5, G has at least c − s + 2
vertices of degree c + 4.

For the converse implication, let A and B be a maximum independent set
and a maximum clique in G[S], respectively. If s > c, then (C ∪ A, I ∪ S \ A)
is an (s,∞)-polar partition of G. Otherwise, we have that c ≥ s and there are
at least c − s + 2 vertices of G with degree exactly c + 4. But then, if C

′ is the
subset of C consisting of the vertices of degree c + 4, we have by Remark 5.5
that ((S \B)∪ (C \C

′), I ∪C
′ ∪ S \B) is an (s,∞)-polar partition of G.

Now, we present a necessary and sufficient condition for a pseudo-split graph
to be (s, k)-polar. Once again, this condition can be verified in O(∣V ∣)-time
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from the degree sequence of a graph, so it implies that (s, k)-polarity can be
efficiently decided on pseudo-split graphs.

Theorem 5.7. Let G be an imperfect pseudo-split graph with pseudo-split
partition (C, S, I), and let c and i be the cardinalities of C and I, respectively.
Let MC be the number of vertices of G whose degree is exactly c+ 4, and MI be
the number of vertices of G whose degree is exactly c. Let s and k be nonnegative
integers such that s + k ≥ 1. Then, G is an (s, k)-polar graph if and only if
either

1. k ≥ i + 1 and s ≥ c − MC + 2, or

2. s ≥ c + 1 and k ≥ i − MI + 2.

Proof. First, let us suppose that G admits an (s, k)-polar partition (A, B).
There are two possible cases, either G[S] inherits a (2, 1)-polar partition from
(A, B), or it inherits a (1, 2)-polar partition (see Figure 5.1). We will show
that in the first case, k ≥ i + 1 and s ≥ c − MC − 2, while in the latter case
s ≥ c + 1 and k ≥ i − MI + 2.

Thus, suppose that G[S] inherits a (2, 1)-polar partition from (A, B). Note
that in such a case I ⊆ B, otherwise G[A] would have P3 as an induced
subgraph, which is impossible. Moreover, since G[B] is a P3-free graph, we
have that every vertex v ∈ C ∩ B is completely nonadjacent to I, and then, by
Remark 5.5, ∣C ∩ B∣ ≤ MC . Thus, it occurs that

∣C ∩ A∣ = ∣C∣ − ∣C ∩ B∣ ≥ c − MC ,

where we conclude that s ≥ c − MC + 2. Furthermore, in this case G[B] is a
cluster with exactly I + 1 components, so k ≥ i + 1. Hence, we have proved
that, if G[S] inherits a (2, 1)-polar partition from (A, B), then k ≥ i + 1
and s ≥ c − MC + 2. It can be proved in a similar way that s ≥ c + 1 and
k ≥ i − MI + 2 whenever G[S] inherits a (1, 2)-polar partition from (A, B).

Conversely, let us assume that k ≥ i + 1 and s ≥ c − MC + 2. By definition
of MC and Remark 5.5, there exists a subset C

′ of C of cardinality MC that
is completely nonadjacent to I. Let B1 be a set of two adjacent vertices of
G[S], and let A1 = S \ B1. Then, we have that (A1 ∪ C \ C

′
, B1 ∪ I ∪ C

′) is a
(c − MC + 2, i + 1)-polar partition of G, so G is an (s, k)-polar graph, as we
had to prove. The result follows analogously if we assume that s ≥ c + 1 and
k ≥ i−MI + 2, only taking a (1, 2)-polar partition (A1, B1) of G[S] instead of
a (2, 1)-polar partition.
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Now, we present some results about pseudo-split minimal (s, k)-polar ob-
structions, which include complete lists of minimal obstructions for some values
of s and k, upper and lower bounds for any values of s and k, as well as
a program that we designed to compute pseudo-split minimal (s, k)-polar
obstructions for small values of s and k.

5.1.2 Pseudo-split minimal (s, k)-polar obstructions
If G is a graph with pseudo-split partition (C, S, I), and u and v are two
adjacent vertices in G[S], then (C ∪ S \ {u, v}, I ∪ {u, v}) is a polar partition
of G. Hence, pseudo-split graphs are polar. In addition, since split graphs
are precisely the 1-polar graphs, for every pair of positive integers s and
k, any pseudo-split minimal (s, k)-polar obstruction is necessarily imperfect.
Moreover, since split graphs are monopolar and unipolar, every pseudo-split
minimal monopolar (unipolar) obstruction is also imperfect. Considering above
observations, it seems natural to ask about the polar partitions of C5.

Figure 5.1: The only two polar partitions of a 5-cycle. Shaded vertices induce
complete multipartite graphs, while white vertices induce clusters.

Notice that a 5-cycle admits only two essentially different polar partitions,
which are depicted in Figure 5.1. Observe that, if an imperfect pseudo-split
graph G = (C, S, I) has a polar partition (A, B), then (A, B) must inherit
either a (1, 2)- or a (2, 1)-polar partition to G[S]. In the first case, since G[B]
is a P3-free graph and C is completely adjacent to S, we have that C ∩B must
be an empty set, so C ⊆ A. Analogously, when G[S] inherits a (2, 1)-polar
partition from (A, B), we have that I ⊆ B, because I is completely nonadjacent
to S and A induces a P3-free graph. These observations are going to be used
without any explicit mention in most of the proofs of this section.

Monopolar an unipolar pseudo-split graphs admit a very simple characteri-
zation by forbidden induced subgraphs, which we summarize in the following
proposition.

Theorem 5.8. Let G be a pseudo-split graph. Then,
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1. G is a minimal monopolar obstruction if and only if G ≅ K1 ⊕ C5, and

2. G is a minimal unipolar obstruction if and only if G ≅ C5.

In consequence, the problems of deciding whether a pseudo-split graph is monopo-
lar or unipolar are solvable in O(∣V ∣)-time from its degree sequence.

Proof. It is a routine job to show that K1 ⊕ C5 is a minimal monopolar
obstruction. Moreover, if G has pseudo-split partition (C, S, I), and G does
not have K1 ⊕ C5 as an induced subgraph, then either G is a split graph, or G
is an imperfect pseudo-split graph with C = ∅. In the first case, G trivially is
a monopolar graph, while in the second case G is isomorphic to nK1 + C5 for
some nonnegative integer n, and therefore, it is a monopolar graph. The proof
of item 2 is similar and even simpler.

By item 1, a pseudo-split graph G = (C, S, I) is monopolar if and only
if either S = ∅ or C = ∅. Thus, it follows from Theorems 5.1 and 5.4 that
deciding whether a pseudo-split graph is monopolar can be done in O(∣V ∣)-
time from its degree sequence. Analogously, by item 2, a pseudo-split graph
is unipolar if and only if it is split, so in this case the result follows from
Theorem 5.1.

Minimal (s, k)-polar obstructions on general graphs are known only for the
cases min{s, k} = 0, and s = k = 1, which correspond to clusters, complete
multipartite graphs, and split graphs. In the following proposition we give
complete lists of pseudo-split minimal (s, k)-polar obstructions for the case
s ∈ {1, 2}, which can be extrapolated to case k ∈ {1, 2} by simple arguments of
complements. Before presenting such results, we introduce notation for some
particular graphs.

For each positive integer s, let us denote by G
0
s the imperfect pseudo-

split graph whose (C, S, I)-partition satisfies that ∣C∣ = s, I = 1, and C is
completely adjacent to I. We will also use G

1
s to denote the graph obtained

from G
0
s by deleting one edge incident with the only vertex of I. Notice that,

by Theorem 5.7, for any integers s, k ≥ 2, the graphs G
0
s and G

1
s are minimal

(s, k)-polar obstructions.
For positive integers s and k, with k ≥ s, let H

k
s = (C, S, I) be the imperfect

pseudo-split graph such that ∣C∣ = s − 1, ∣I∣ = k − 1 and, for an injection
f ∶C → I, a vertex v ∈ C is adjacent to a vertex u ∈ I if and only if u = f(v).
It follows from Theorem 5.7 that H

k
s is a minimal (s, k)-polar obstruction

provided k ≥ s ≥ 2.
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Theorem 5.9. Let k be an integer, k ≥ 2, and let G be a pseudo-split graph.
Then,

1. G is a minimal (1, k)-polar obstruction if and only if G ≅ K1 ⊕ C5.

2. G is a minimal (2, k)-polar obstruction if and only if G is isomorphic to
some of G

0
2, G

1
2, G0

k or H
k
1 .

Proof. It is a routine to verify that K1⊕C5 is a minimal (1, k)-polar obstruction.
In addition, G is K1 ⊕C5-free if and only if S = ∅ or C = ∅, but in both cases
G is a (1, 2)-polar graph, hence a (1, k)-polar graph.

Previously, we observed that the graphs G
0
2, G

1
2 and H

k
2 are all of them

(2, k)-polar obstructions. We also observed that G
0
k is a minimal (k, 2)-polar

obstruction, so G0
k is a minimal (2, k)-polar obstruction.

Now, to reach a contradiction, let us assume that G is a minimal (s, k)-polar
obstruction different to G

0
2, G

1
2, G0

k and H
k
1 . Let (C, S, I) be the pseudo-split

partition of G, and let us denote by c and i the cardinalities of C and I,
respectively. Notice that G is imperfect, otherwise it would be a 1-polar graph,
and hence a (2, k)-polar graph. Also observe that, if either i = 0, or both c ≤ 1
and i ≤ k − 1, then G would admit a (2, k)-polar partition, which is impossible.
From the previous observation we have that either c ≥ 2 and i ≥ 1, or c ≤ 1
and i ≥ k.

Suppose that c ≥ 2 and i ≥ 1. Since G is a {G0
2, G

1
2}-free graph, we have

that C is completely nonadjacent to I. Notice that i ≥ k, otherwise G would
be a (2, k)-polar graph. But then, G has G0

k as an induced subgraph, which
is impossible. Thus, it must be the case that c ≤ 1 and i ≥ k. Since G is
not a (2, k)-polar graph, c ≥ 1, so c = 1. Let v be the only vertex in C. If
∣N(v) ∩ I∣ ≤ k − 2, then G is a (2, k)-polar graph, which is not possible, so
that ∣N(v) ∩ I∣ ≥ k − 1, but then G contains an induced subgraph isomorphic
to either G0

k or H
k
1 , contradicting that G is not isomorphic to these graphs.

The contradiction arose from supposing the existence of a pseudo-split minimal
(2, k)-polar obstruction different to G

0
2, G

1
2, G0

k and H
k
1 , so it does not exist.

As we will notice, the following remark on general graphs is a key ingredient
to prove things about (s,∞)-polar graphs.

Remark 5.10. For any nonnegative integer s, a graph G is a minimal (s,∞)-
polar obstruction if and only if there is a nonnegative integer k0 such that, for
any integer k ≥ k0, G is a minimal (s, k)-polar obstruction.
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Since monopolar graphs are by definition the (1,∞)-polar graphs, item 1 of
Theorem 5.8 can be deduced as a consequence of the previous observation and
item 1 of Theorem 5.9. The following corollary also follows from Remark 5.10
and Theorem 5.9.

Corollary 5.11. There are only two pseudo-split minimal (2,∞)-polar ob-
structions, namely G

0
2 and G

1
2.

It seems that there is not an easy way to describe the complete lists of
pseudo-split minimal (s, k)-polar obstructions when s and k are arbitrary
nonnegative integers, but, as we observed at the start of Section 2.3, we known
there is just a finite number of them, so it becomes natural to ask about upper
bounds for their order. In the following propositions we use Theorem 5.7
to give tight upper bounds for the order of pseudo-split minimal (s, k)- and
(s,∞)-polar obstructions. We start with the following technical observation.

Lemma 5.12. Let G = (C, S, I) be an imperfect pseudo-split graph, and let c
and i be the cardinalities of C and I, respectively. Let s and k be nonnegative
integers such that s + k ≥ 1. The following assertions hold true.

1. If c > s, then G is not a minimal (s, k)-polar obstruction.

2. If i > k, then G is not a minimal (s, k)-polar obstruction.

Proof. We only prove item 1 because the proof of item 2 is analogous. Notice
that, if c > s and i ≥ k, it follows from Theorem 5.7 that, for every vertex
v ∈ C, G− v is not an (s, k)-polar graph, which clearly implies that G is not a
minimal (s, k)-polar obstruction. Thus, we can assume that i < k.

Aiming for a contradiction, let us assume that G is a minimal (s, k)-polar
obstruction. Observe that for every vertex v of C, G − v has pseudo-split
partition (C \ {v}, S, I), and ∣C \ {v}∣ = c − 1 ≥ s. Since G is a minimal
(s, k)-polar obstruction, we have that, for every vertex v of G, G − v admits
an (s, k)-polar partition. That is true in particular if v ∈ C. Then, we have
from Remark 5.5, Theorem 5.7, and our previous observations that, for any
vertex v of C, there are at least c− s+ 1 vertices of C \ {v} that are completely
nonadjacent to I; let C

′
v be the set of these vertices.

Notice that no vertex v of C is completely nonadjacent to I, otherwise
C

′
v∪{v} would be a subset of C of cardinality at least c−s+2 that is completely

nonadjacent to I, but then, by Remark 5.5 and Theorem 5.7, G would be an
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(s, k)-polar graph, and we are assuming it is not. Thus, we conclude that each
vertex of C is adjacent to at least one vertex of I.

Here is the desired contradiction. Let H be a graph obtained from G by
removing any c − s vertices of C. Thus, H is a proper induced subgraph of G
with a pseudo-split partition (C∗

, S, I) such that any vertex of C
∗ is adjacent

to at least one vertex of I. But then, we have from Theorem 5.7 that H is not
an (s, k)-polar graph, contradicting the minimality of G.

By itself, Lemma 5.12 implies that, for any nonnegative integers s and k,
a pseudo-split minimal (s, k)-polar obstruction has order at most s + k + 5.
Nevertheless, as we can corroborate in Theorem 5.9 and the observations that
precede it, if min{s, k} ≤ 2, each minimal (s, k)-polar obstruction has order
strictly lower than s + k + 5. In Lemma 5.13 and Theorem 5.14 we will prove
that this is true for general values of s and k, and not only when min{s, k} ≤ 2.

Lemma 5.13. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be a
pseudo-split minimal (s, k)-polar obstruction. Then, G is imperfect, ∣C∣ ≤ s,
∣I∣ ≤ k and ∣C∣ + ∣I∣ ≤ s + k − 1.

Consequently, any pseudo-split minimal (s, k)-polar obstruction has order
at most s + k + 4, and this bound is tight when min{s, k} = 2.

Proof. As we noticed at the beginning of this chapter, split graphs are 1-polar,
hence (s, k)-polar, so G is an imperfect pseudo-split graph. Let c = ∣C∣
and i = ∣I∣. Observe that Lemma 5.12 implies that s ≥ c and k ≥ i, so
∣VG∣ = ∣C∣ + ∣I∣ + ∣S∣ ≤ s + k + 5 and this bound is attained if and only if
c = s and i = k.

Aiming for a contradiction, assume that c = s and i = k, so G has order
s + k + 5. Let v ∈ C, and let us use C

′ to denote C \ {v} . Let (A, B) be
an (s, k)-polar partition of G − v. Observe that G[S] inherit a (1, 2)-polar
partition from (A, B), otherwise G[S] would inherit a (2, 1)-polar partition,
but then I ⊆ B implying that B has an independent subset of size k + 1,
which is impossible. Moreover, since G[B] is {(k + 1)K1, P3}-free, we have
that C

′
⊆ A and there is at least one vertex u of I in the part A. Notice that u

is completely adjacent to C
′, because G[A] does not have induced copies of P3.

Here we have the desired contradiction, because G[C∪S∪{u}] is isomorphic
to either G

0
s or G

1
s, depending on whether u is adjacent or not to v, but then G

has an (s, k)-polar obstruction as a proper induced subgraph, contradicting the
minimality of G. The contradiction arose from assuming that ∣VG∣ > s + k + 4,
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so it is not the case. Notice that G
0
s and G

1
s attain the bound when s = 2, so

the bound is tight.

Theorem 5.14. Let s and k be integers, s, k ≥ 3. Then, any pseudo-split
minimal (s, k)-polar obstruction has order at most s + k + 3, and the bound is
tight.

Proof. Let G be an (s, k)-polar obstruction with pseudo-split partition (C, S, I),
and let c and i be the cardinalities of C and I, respectively. By Lemma 5.13,
G is an imperfect pseudo-split graph with c ≤ s, i ≤ k and, either c ≤ s − 1 or
i ≤ k − 1. Notice that, if c < s− 1 or i < k − 1, then ∣VG∣ ≤ s+ k − 3, so we are
done. Thus we can assume that, either c = s − 1 or i = k − 1. Let us assume
that i = k − 1, the case c = s − 1 is analogous.

To obtain a contradiction, let us suppose that G has at least s + k + 4
vertices, which implies by the previous observations that c = s. Let v be a
vertex in C, and let (A, B) be an (s, k)-polar partition of G − v. We have two
cases: either G[S] inherits a (1, 2)- or a (2, 1)-polar partition from (A, B).

In the first case, since G[B] is {(k+1)K1, P3}-free, we have that C\{v} ⊆ A
and there exists a vertex u ∈ I ∩A. Moreover, G[A] is a P3-free graph, so u is
completely adjacent to C \ {v}. But then, G[C ∪ S ∪ {u}] is isomorphic to
either G

0
s or G

1
s, so G properly contains an (s, k)-polar obstruction, which is

impossible.
Hence, it must be the case that G[S] inherits a (2, 1)-polar partition (A′

, B
′)

from (A, B), in which case I ⊆ B and there exists a vertex u ∈ B ∩ (C \ {v}),
so that u is completely non adjacent to I. Additionally, repeating the argument,
but using u instead of v, we have that there exists a vertex w ∈ B ∩ (C \ {u}),
so that w is completely non adjacent to I. But then,

(A′
∪ C \ {u, w}, B

′
∪ I ∪ {u, w})

is an (s, k)-polar partition of G, a contradiction. The contradiction arose from
supposing that ∣VG∣ ≥ s + k + 4, so it must be the case that G has at most
s + k + 3 vertices.

To bound is tight since H
k
s is a pseudo-split minimal (s, k)-polar obstruction

whenever k ≥ s ≥ 3, and Hs
k is a pseudo-split minimal (s, k)-polar obstruction

provided s ≥ k ≥ 3.

In contrast with minimal (s, k)-polar obstructions when s and k are integers,
it is unknown whether the number of minimal (s,∞)-polar obstructions is
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finite. In the following propositions we prove that, restricted to the class
of pseudo-split graphs, minimal (s,∞)-polar obstructions are, all of them,
minimal (s, s + 1)-minimal obstructions, implying that there is only a finite
number of them. We start with some technical propositions.

Lemma 5.15. Let s and k be positive integers, and let G = (C, S, I) be an
imperfect pseudo-split graph such that ∣C∣ = s and 0 < ∣I∣ < k − 1. For
each vertex v ∈ I, let Cv = {w ∈ C ∶ w ∉ N(v)} and let C

′
v be the set of

all vertices in C that are completely nonadjacent to I \ {v}. Then, G is a
minimal (s, k)-polar obstruction if and only if for each v ∈ I, both ∣C ′

v∣ ≥ 2
and ∣Cv ∩ C

′
v∣ ≤ 1.

Proof. Suppose that G is a minimal (s, k)-polar obstruction. From the mini-
mality of G we have that, for each vertex v ∈ I, G − v is an (s, k)-polar graph.
Then, by Theorem 5.7, ∣C ′

v∣ ≥ 2. Moreover, from the same proposition we have
that, if ∣Cv ∩ C

′
v∣ ≥ 2 for some v ∈ I, then G is an (s, k)-polar graph, which is

impossible. Then it must be the case that, for each vertex v ∈ I, ∣Cv ∩C
′
v∣ ≤ 1.

For the converse, assume that ∣C ′
v∣ ≥ 2 and ∣Cv ∩ C

′
v∣ ≤ 1, for each v ∈ I.

For any vertex v ∈ C, G − v is a pseudo-split graph whose complete part has
s − 1 vertices and whose independent part has at most k − 2 vertices, so it
follows from Theorem 5.7 that G − v admits an (s, k)-polar partition. For
any vertex v ∈ I, the set C

′
v has at least two vertices, so it also follows from

Theorem 5.7 that G − v is an (s, k)-polar graph. For any vertex v ∈ S, G − v
is a split graph, so G− v is an (s, k)-polar graph. In summary, for every vertex
v of G, G − v is an (s, k)-polar graph. Furthermore, Theorem 5.7 implies that
G is an (s, k)-polar graph if and only if there are at least two vertices of C
that are completely nonadjacent to I. Nevertheless, if C

′ is any subset of C
that is completely nonadjacent to I, then C

′
⊆ Cv ∩ C

′
v for any vertex v ∈ I,

and therefore ∣C ′∣ ≤ 1. Hence, G is not an (s, k)-polar graph, and we conclude
that G is a minimal (s, k)-polar obstruction.

For each integer s ≥ 2, let Fs = (C, S, I) be the imperfect pseudo-split
graph such that ∣C∣ = s, ∣I∣ = s − 1 and, for an injection f ∶ I → C, a vertex
v ∈ I is adjacent to a vertex u ∈ C if and only if u = f(v). Notice that,
from Theorem 5.7, we have that for any nonnegative integer k, Fs is not an
(s, k)-polar graph. Moreover, Fs is a minimal (s, k)-polar obstruction if and
only if k > s.
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Lemma 5.16. Let s and k be integers, s, k ≥ 3, and let G = (C, S, I) be
a pseudo-split minimal (s, k)-polar obstruction such that ∣C∣ = s. Then,
∣I∣ ≤ s − 1. In addition, if ∣I∣ = s − 1, then s < k and G ≅ Fs.

Proof. Let c = ∣C∣ and i = ∣I∣. For each v ∈ I, G − v has an (s, k)-polar
partition (A, B). Moreover, since c = s, G[S] inherits a (2, 1)-polar partition
from (A, B), so we have that I ⊆ B. Additionally, at least two vertices of C
belong to B, and any vertex in C ∩ B is completely nonadjacent to I \ {v}.

Observe that, if two vertices in C ∩ B are nonadjacent to v, then G would
have an (s, k)-polar partition, but this is not the case. Hence, for each vertex
v ∈ I, there is a vertex u ∈ C whose only neighbor in I is v. Therefore, if
i ≥ s, G properly contains the (s, k)-polar obstruction Fs, contradicting the
minimality of G. Thus, we conclude that i ≤ s − 1.

Finally, if i = s − 1, G contains the (s, k)-polar obstruction Fs. But G
is a minimal (s, k)-polar obstruction, so G ≅ Fs, and then Fs is a minimal
(s, k)-polar obstruction, which implies that k > s.

Lemma 5.17. Let s and k be integers, k > s ≥ 3, and let G be a graph with
pseudo-split partition (C, S, I).

1. If G is a minimal (s, k)-polar obstruction such that ∣C∣ = s, then G is a
minimal (s, k

′)-polar obstruction for each integer k
′
≥ k.

Particularly, if G is a minimal (s, s + 1)-polar obstruction with ∣C∣ = s,
then it is a minimal (s,∞)-polar obstruction.

2. If G is a minimal (s, k)-polar obstruction such that ∣C∣ = s, then G is a
minimal (s, s + 1)-polar obstruction.
Consequently, if G is a minimal (s,∞)-polar obstruction, then it a mini-
mal (s, s + 1)-polar obstruction with ∣C∣ = s.

In consequence, G is a minimal (s,∞)-polar obstruction if and only if G is
an (s, s + 1)-polar obstruction with ∣C∣ = s.

Proof. Let k
′ be an integer, k

′
≥ k, and suppose that G is a minimal (s, k)-

polar obstruction such that ∣C∣ = s. Thus, we have from Lemma 5.16 that,
either ∣I∣ < s − 1, or k > s and G ≅ Fs. In the latter case the result follows
because Fs is a minimal (s, k

′)-polar obstruction. Otherwise, we have that
∣I∣ < s − 1 < k − 1 and, by Lemma 5.15 and the observation that precede it,
G is a minimal (s, k

′)-polar obstruction. From here, the rest of item 1 follows
from Remark 5.10.
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To prove item 2, assume again that G is a minimal (s, k)-polar obstruction
such that ∣C∣ = s. Thus, since s + 1 ≤ k, it is clear that G is not an (s, s + 1)-
polar graph. Let v be a vertex of G. Clearly, if v ∈ S, then G − v is a split
graph, hence a (s, s + 1)-polar graph. Additionally, we have from Lemma 5.16
that ∣I∣ ≤ s − 1, so it follows from Theorem 5.7 that G − v is (s, s + 1)-polar
whenever v ∈ C. Notice that, from Theorem 5.14, we have that ∣I∣ < k − 1.
Thus, it follows from Lemma 5.15 and Theorem 5.7 that, if v ∈ I, then G − v
also is an (s, s + 1)-polar graph. Therefore, G is not an (s, s + 1)-polar graph
but any vertex deleted subgraph of G is, so we have that G is a minimal
(s, s + 1)-polar obstruction. The rest of the proof for item 2 follows from
Remark 5.10.

The last statement is an immediate consequence of items 1 and 2.

Corollary 5.18. Let s be an integer, s ≥ 3. Any pseudo-split minimal (s,∞)-
polar obstruction has order at most 2s+4, and the bound is tight. In consequence,
there are finitely many minimal (s,∞)-polar obstructions.

Proof. Let G be a pseudo-split minimal (s,∞)-polar obstruction. We have
from Lemma 5.17 that G is a minimal (s, s + 1)-polar obstruction so, by
Theorem 5.14, the order of G is at most 2s + 4. The bound is tight because Fs

is a pseudo-split minimal (s,∞)-polar obstruction with 2s + 4 vertices.

When we started our study of (s, k)-polarity on pseudo-split graphs, one
goal was give characterizations of pseudo-split minimal (s, k)-polar obstructions,
so we looked up by hand for such obstructions for very small values of s and k.
Since we did not find a general pattern for arbitrary values of s and k, we decided
to implement a computer program to help us find the desired obstructions
for larger values of s and k. From the outputs obtained by running such a
program, we made the observations that raised some of the theoretical results
in this chapter. In the following small section, we present a brief explanation
of how the mentioned program works. Readers interested in having access to
the repository containing the program can contact the author of this text.

A program to compute minimal (s, k)-polar obstructions

The program was designed to compute pseudo-split minimal (s, k)-polar obstruc-
tions for integers s and k with s, k ≥ 2. The reason for the restriction “s, k ≥ 2”
is that in such a case said obstructions are imperfect, so its (C, S, I)-partition
is unique.
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Moreover, there is a natural bijection from the class of imperfect pseudo-
split graphs to the class of bipartite graphs with a prescribed bipartition
that distinguishes the order of the parts in the bipartition, which we will call
specified-bipartite graphs. An imperfect pseudo-split graph G = (C, S, I)
is completely determined by the specified-bipartite graph B = (C, I) obtained
from G[C ∪ I] by deleting the edges of G[C]. Conversely, a specified-bipartite
graph B = (X, Y ) can be associated to the imperfect pseudo-split graph
G = (X, S, Y ) such that G[X ∪ Y ] is the graph obtained from B by adding
edges between any pair of distinct vertices in X.

The advantage we took from the described relationship between imperfect
pseudo-split graphs and specified-bipartite graphs is that, in contrast with
pseudo-split graphs, bipartite graphs conform a widely studied class of graphs,
so there are open access algorithms to generate them. Particularly, we used
the software Nauty [58] to generate the complete lists of bipartite graphs of
order n, for each integer n ≤ 161.

The program starts with a three-phase preprocessing of the lists of bipartite
graphs, which we explain below. The first phase consists of taking the list of
bipartite graphs of order k, and use it to generate a list with all the specified-
bipartite graphs of order k. The list produced in the first phase possibly contains
repeated specified-bipartite graphs so, in the second phase, the program debugs
such list and returns the list of all specified-bipartite graphs of order k, without
repetitions. Phases 1 and 2 are carried out separately for each integer k. In
the third phase of preprocessing, the program considers the lists of specified-
bipartite graphs of order k and k + 1 generated in phase 2, and uses them
to identify the vertex-deleted subgraphs of each specified-bipartite graph of
order k + 1. Thus, at the end of the preprocessing, we have for each integer
k, a list Lk of all specified-bipartite graphs of order k, and a list L

s
k where the

vertex-deleted subgraphs of each graph in Lk have been identified.
Once the preprocessing has finished, we create lists L and L

s by concatenat-
ing the lists L1, L2, L3, etc., and the lists L

s
1, L

s
2, L

s
3, etc., respectively. At this

point, the program uses L and L
s to recursively identify pseudo-split minimal

(s, k)-polar obstructions in the following way. For each graph G in L, the
program check in L

s whether G has a vertex deleted subgraph marked as an
(s, k)-obstruction. If any, G is marked as an (s, k)-obstruction. Otherwise, it is

1We really used only bipartite graphs of order at most 14, because the files with the lists
of bipartite graphs of order 15 and 16 were really big (12 and 327 Gb, respectively).
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verified by a brute force algorithm2 whether G admits an (s, k)-polar partition.
If G does, it is an (s, k)-polar graph, but if G does not, it is identified as a
minimal (s, k)-polar obstruction. Notice that, in this step, it is a key point
that the graphs in L and L

s are ordered from the smallest to the largest order.
Once the program has identified all the minimal (s, k)-polar obstructions in

L, it is time to show them to the user by representing them in an understandable
format3. Then, the last step in the program execution is to draw the specified-
bipartite graphs associated to the minimal (s, k)-polar obstructions, returning
an output as the image depicted in Figure 5.2.

Figure 5.2: The output obtained from our program when computing minimal
(4, 5)-polar obstructions. Vertices on the left sides represent the clique parts of
the (C, S, I)-partitions, while vertices on the right sides represent the indepen-
dent parts.

2As we mentioned at the beginning of this section, this program was implemented before
many properties of (s, k)-polarity on pseudo-split graphs were known, included Theorem 5.7,
which provide us of an efficient way of verifying whether a pseudo-split graph is (s, k)-polar.

3The graphs in the lists provided by Nauty, as well as those in L and L
s, are represented

in the compact format g6 (see http://users.cecs.anu.edu.au/˜bdm/data/formats.html
for more on g6 coding). The program converts such representation into adjacency matrices
when some computation is necessary, but, for practical purposes, none of these graph codings
is considered as a truly understandable representation of graphs.

http://users.cecs.anu.edu.au/~bdm/data/formats.html
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5.2 Colorings of pseudo-split graphs
The (k, ℓ)-colorings were introduced in the 1990s by Brandstädt [3, 4, 5], who
proved that the problem of deciding whether a graph admits a (k, ℓ)-coloring
is polynomial time solvable if and only if k, ℓ ≤ 2.

The (k, ℓ)-coloring problem has been studied in graph classes with few
induced P4s. An efficient algorithm to solve (k, ℓ)-coloring problem in cographs,
as well as an algorithm to find a maximal (k, ℓ)-colorable induced subgraph
were given in [29]. In the same paper, the (2, 1)- and (2, 2)-colorable cographs
were characterized by means of its family of minimal obstructions4. At the same
time, finite forbidden subgraph characterizations of (k, ℓ)-colorable cographs
for arbitrary values of k and ℓ was given in [6]. Moreover, the results on [6]
was generalized some years later in [7], proving that the family of minimal
(k, ℓ)-obstructions for cographs equals the family of minimal (k, ℓ)-obstructions
for P4-sparse graphs. Apparently, it was unknown for the authors of [7] that
their result has been proven a little while before in [45]. The authors of [7]
also gave a linear time recognition algorithm for P4-sparse graphs that are
(k, ℓ)-colorable. The class of extended P4-laden graphs that admit a (k, ℓ)-
coloring was studied for Bravo et. al. in [8]; there, it was given a linear
time algorithm to decide (k, ℓ)-colorability, and as a consequence, it was also
exhibited polynomial time algorithms to determine the chromatic and split-
chromatic numbers; additionally, a polynomial time algorithm to find a maximal
induced (k, ℓ)-colorable subgraph on an extended P4-laden graph was given.
Since the class of extended P4-laden graphs extends both cographs and P4-
sparse graphs, the results in [8] generalize all known results of recognition
algorithms on graphs with few induced P4s. It is remarkable that the linear
(k, ℓ)-recognition algorithms for all, cographs, P4-sparse graphs, and extended
P4-laden graphs, are based on its respective tree representation and the fact
that such representations can be computed in linear time.

In this brief section we study some coloring parameters of pseudo-split
graphs, including (k, ℓ)-colorings, co-chromatic number, and bi-chromatic num-
ber.

Lemma 5.19. Let G be a pseudo-split graph, and let k be an integer, k ≥ 2.
Then, G is k-colorable if and only if G is a (Kk+1, C5 ⊕ Kk−2)-free graph.

4In [27], structural characterizations of (2, 1)- and (1, 2)-colorable cographs were proven
using its modular decomposition. A linear time recognition algorithm based on such charac-
terizations was given.
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Proof. It is easy to verify that both, Kk+1 and C5 ⊕ Kk−2, are not k-colorable
graphs. Thus, since being k-colorable is a hereditary property, it follows that
any k-colorable graph is (Kk+1, C5 ⊕ Kk−2)-free.

Conversely, suppose that G is a (Kk+1, C5 ⊕ Kk−2)-free pseudo-split graph,
and let (C, S, I) be a pseudo-split partition of G. Since split graphs are perfect,
if S = ∅, then G is a Kk+1-free perfect graph, hence a k-colorable graph.
Otherwise, G is an imperfect pseudo-split graph such that ∣C∣ ≤ k − 3, or G
would have C5 ⊕ Kk−2 as an induced subgraph; in this case a proper k-coloring
of G could be obtained assign colors 1, . . . , k − 3 to the vertices of C, coloring
S in a proper way with colors k − 2, k − 1 and k, and assigning color k to every
vertex of I.

Theorem 5.20. Let G be an imperfect pseudo-split graph with pseudo-split
partition (C, S, I), and let k and ℓ be nonnegative integers. The following
statements hold true.

1. G is a (k, 0)-graph if and only if ∣C∣ ≤ k − 3;

2. G is a (0, ℓ)-graph if and only if ∣I∣ ≤ ℓ − 3;

3. G is not a (1, 1)-graph;

4. If k and ℓ are positive integers, and k + ℓ ≥ 3, then G is a (k, ℓ)-graph.

Particularly, χ(G) = ∣C∣ + 3 and θ(G) = ∣I∣ + 3.

Proof. It follows from Lemma 5.19 that, for any integer k ≥ 2, an imperfect
pseudo-split graph is k-colorable if and only if it is a C5 ⊕ Kk−2-free graph.
Thus, G is a (k, 0)-graph if and only if ∣C∣ < k − 2.

The second item follows from the first one since a graph G is (0, ℓ)-colorable
if and only if G is (ℓ, 0)-colorable, and the complement of an imperfect pseudo-
split graph is also an imperfect pseudo-split graph. Item 3 is due to G has an
induced C5, and C5 is not a (1, 1)-graph.

Notice that for the last item it is enough to prove that G is a (1, 2)-graph, but
this is trivially true since, for any (1, 2)-coloring (A, B) of G[S], (A∪I, B∪C)
is a (1, 2)-coloring of G. The last statement is a direct consequence of the first
two items, although it is also a direct consequence of Theorem 5.4.

Corollary 5.21. If G is an imperfect pseudo-split graph, then χ
c(G) = 3.
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Proof. As we proved in Theorem 5.20, G is a (1, 2)-colorable graph, hence a
3-cocolorable graph. Thus χ

c(G) ≥ 3. In addition, C5 is an induced subgraph of
G, but it is not a 2-cocolorable graph, so χ

c(G) > 2, and the result follows.

Lemma 5.22. Let z be a positive integer, and let F b(z) be the set of minimal
z-bicolorable obstructions. Then,

F b(z) ⊆
z

⋃
i=0

F(i, z − i),

where F(k, ℓ) stands for the set of minimal (k, ℓ)-obstructions.

Proof. Notice that a graph H is a minimal z-bicolorable obstruction if and
only if there exists an integer i with 0 ≤ i ≤ z, such that H contains a graph
Fi ∈ F(i, z − i) as an induced subgraph and, for any vertex v of H and every
integer j ∈ {0, . . . , z}, H − v does not contain any graph of F(j, z − j) as an
induced subgraph. Particularly, for some integer i ∈ {0, . . . , z}, H is not an
(i, z − i)-graph, but every vertex-deleted subgraph of H is, so H is a minimal
(i, z − i)-obstruction.

Theorem 5.23. Let z be a positive integer, and let k and ℓ be nonnegative
integers. Let F b

ps(z) be the set of pseudo-split minimal z-bicolorable obstructions,
and let Fps(k, ℓ) be the set of pseudo-split minimal (k, ℓ)-obstructions. Then,

F b
ps(1) = {K2, K2}, F b

ps(2) = {K3, C5, K3},

and for any integer z with z ≥ 3,

F b
ps(z) = {Kz+1, C5 ⊕ Kz−2, Kz+1, C5 + Kz−2}.

Proof. It follows from Theorem 5.20 that Fps(1, 0) = {K2},Fps(1, 1) = {C5},
and Fps(k, 0) = {Kk+1, C5 ⊕ Kk−2} for any integer k ≥ 2. In addition, it also
follows from Theorem 5.20 that, for any positive integers k and ℓ with k+ ℓ ≥ 3,
Fps(k, ℓ) = ∅.

Then, since H ∈ Fps(k, ℓ) if and only if H ∈ Fps(ℓ, k), we have from
Lemma 5.22 and the observations in the above paragraph that, for any positive
integer z,

F b
ps(z) =

z

⋃
i=0

Fps(i, z − i),

where the result follows.
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Corollary 5.24. Let G be an imperfect pseudo-split graph with pseudo-split
partition (C, S, I). Then χ

b(G) = max{∣C∣ + 3, ∣I∣ + 3} = max{χ(G), θ(G)}.
Particularly, G is not a 2-bicolorable graph.

Corollary 5.25. Chromatic and bichromatic numbers can be determined in
O(∣V ∣)-time on imperfect pseudo-split graphs from their degree sequences.
Additionally, the cochromatic number of imperfect pseudo-split graphs can be
determined in constant time.

Proof. From Theorem 5.4, we have that χ(G) and θ(G) can be computed in
O(∣V ∣)-time from the degree sequence of an imperfect pseudo-split graph. Then,
we have from Corollary 5.24 that also the cochromatic number of imperfect
pseudo-split graphs can be computed in O(∣V ∣)-time. The last part of the
statement follows from Corollary 5.21.



Chapter 6

2K2- and C4-split graphs

Theorem 5.2 provide us of a characterization of 2K2-split graphs based on their
degree sequences. Next, we characterize 2K2-split graphs by their forbidden
induced subgraphs.

Theorem 6.1. If G is a graph, then G is a 2K2-split graph if and only if G
has not induced subgraphs isomorphic to the graphs depicted in Figure 6.1.

C4 C5 K2 + P3 K2 + K3 P5

co-banner 3K2

Figure 6.1: Minimal 2K2-split obstructions.

Proof. It is a routine job to check that any graph in Figure 6.1 is a minimal
2K2-split obstruction. To prove the necessary condition, let G be a graph
without induced subgraphs isomorphic to the graphs in Figure 6.1. If G is
2K2-free, then G is a split graph, and hence a 2K2-split graph, so let us assume
that G has an induced copy of 2K2 with vertex set S. Notice that any vertex
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in VG \ S is either completely adjacent to S or completely nonadjacent to it, or
G would have some of the forbidden induced subgraphs.

Since G is a 3K2-free graph, any two vertices u, v ∈ VG \ S that are
completely nonadjacent to S must be nonadjacent to each other. In addition, if
there exist two nonadjacent vertices u, v ∈ VG \ S that are completely adjacent
to S, then G has an induced C4, which is impossible.

Hence, if we set C the set of all vertices in VG\S that are completely adjacent
to S, and I the set of vertices in VG \ S that are completely nonadjacent to S,
then (C, S, I) is a 2K2-split partition of G.

In this chapter we study polarity on 2K2-split graphs. Observe that a
graph is 2K2-split if and only if its complement is C4-split. Thus, since the
complement of an (s, k)-polar graph is a (k, s)-polar graph, we have that by
simple arguments of complements any result about (s, k)-polarity on 2K2-split
graphs is equivalent to a dual result on C4-split graphs. As the reader will
notice, although some results are similar to those proved in Chapter 5 for
pseudo-split graphs, there are also remarkable differences.

6.1 Polarity on 2K2-split graphs
As in the case of pseudo-split graphs, any 2K2-split graph is polar. Moreover,
if G = (C, S, I) is a 2K2-split graph, then (C, S ∪ I) is a unipolar partition of
G, so G is unipolar, and hence polar. Additionally, it is clear that a 2K2-split
graph is 1-polar if and only if it is 2K2-free. In the next proposition we give the
complete sets of 2K2-split minimal (1, k)-polar obstructions for any positive
integer k and, as a consequence, we derive the complete list of 2K2-split minimal
monopolar obstructions.

Proposition 6.2. Let k be an integer k ≥ 2. A 2K2-split graph G is a minimal
(1, k)-polar obstruction if and only if G is isomorphic to either K2 ⊕ 2K2 or
K1 ⊕ (2K2 + (k − 1)K1).

In consequence, the only minimal monopolar obstruction is K2 ⊕ 2K2, and
monopolar 2K2-split graphs can be recognized in linear time from its degree
sequence.

Proof. It is a routine to prove that both, K2⊕2K2 and K1⊕(2K2+(k−1)K1)
are 2K2-split minimal (1, k)-polar obstructions. For the converse, let us assume
that G = (C, S, I) is a 2K2-split minimal (1, k)-polar obstruction; notice that
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S ≠ ∅, or G would be a 1-polar graph, and hence a (1, k)-polar graph. Also,
notice that G does not have isolated vertices, because if v was a vertex of degree
zero in G, and (A, B) is a (1, k)-polar partition of G−v, then (A∪{v}, B) would
be a (1, k)-polar partition of G, contradicting the election of G. Particularly,
each vertex in I has a neighbor in C.

Now, if ∣C∣ ≥ 2, then K2⊕2K2 is an induced subgraph of G, so G ≅ K2⊕2K2.
In addition, if C = ∅, then G clearly is a (1, 2)-polar graph, and hence a (1, k)-
polar graph, which is impossible. Thus, if G /≅ K2⊕2K2, ∣C∣ = 1. Additionally,
if ∣I∣ < k−1, then (C, S ∪ I) would be a (1, k)-polar partition of G, but that is
absurd, so it must be the case that ∣I∣ ≥ k − 1, and it follows from the previous
observations that G has K1 ⊕ (2K2 + (k − 1)K1) as an induced subgraph, so
G ≅ K1 ⊕ (2K2 + (k − 1)K1) by the minimality of G.

The second part of the statement follows from Remark 5.10 and Theorem 5.2.

Results about unipolarity and monopolarity on C4-split graphs cannot be
deduced from those on 2K2-split graphs, so we develop them separately. The
first thing we must observe is that any C4-split graph G = (C, S, I) has a
unipolar partition namely (C ∪ {u, v}, I ∪ (S \ {u, v})), where u and v are
two adjacent vertices of S. Thus, any C4-split graph is unipolar. The next
proposition characterize C4-split graphs that are monopolar.

Proposition 6.3. Let k be an integer, k ≥ 2. A C4-split graph G is a minimal
(1, k)-polar obstruction if and only if G ≅ C4 ⊕ K1.

Consequently, the only C4-split minimal monopolar obstruction is C4 ⊕ K1,
and monopolar C4-split graphs can be recognized in linear time from its degree
sequence.

Proof. It is a routine to prove that C4 ⊕ K1 is a (1,∞)-polar obstruction such
that any vertex-deleted subgraph is (1, 2)-polar, so we have that C4 ⊕ K1 is a
minimal (1, k)-polar obstruction for any integer k ≥ 2.

Now, let G = (C, S, I) be a C4-split graph. If C = ∅, for any two nonadja-
cent vertices u, v ∈ S, (I ∪ (S \ {u, v}), {u, v}) is a (1, 2)-polar partition of G,
so G is (1, k)-polar. Otherwise, we have that ∣C∣ ≥ 1, so C4 ⊕K1 is an induced
subgraph of G and G is not a (1, k)-polar graph. The rest of the proposition
follows easily from Remark 5.10 and Theorem 5.2.

Now, we give a complete characterization of 2K2-split graphs that admit
an (s, k)-polar partition.
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Theorem 6.4. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be an
strict 2K2-split graph. Let c and i be the cardinalities of C and I, respectively.
The following statements hold true.

1. If s ≥ c and k ≥ i + 2, then G is an (s, k)-polar graph.

2. If s ≥ c + 2 and k ≥ i + 1, then G is an (s, k)-polar graph.

3. If s ≤ c − 1 and k ≤ i, then G is not an (s, k)-polar graph.

4. If s ≤ c − 1 and k ≥ i + 1, then G is an (s, k)-polar graph if and only if
there is a subset C

′ of C with at least c − s + 2 vertices that is completely
nonadjacent to I.

5. If s ≥ c + 1 and k ≤ i, then G is an (s, k)-polar graph if and only if there
exists a subset I

′ of I with at least i− k + 2 vertices that satisfies some of
the following conditions:

(a) I
′ is completely adjacent to C.

(b) There exists a vertex v ∈ C such that I
′ is completely adjacent to

C \ {v} and v is completely nonadjacent to I
′.

6. If s = c and k ≤ i, then G is an (s, k)-polar graph if and only if there
exists a subset I

′ of I with at least i−k+2 vertices and a vertex v ∈ C such
that I

′ is completely adjacent to C \ {v} and v is completely nonadjacent
to I

′.

7. If s = c and k = i+ 1, then G is an (s, k)-polar graph if and only if some
of the following statements is satisfied:

(a) there exists a subset C
′ of C with at least c − s + 2 vertices that is

completely nonadjacent to I.
(b) there exists a nonempty subset I

′ of I and a vertex v ∈ C such that
I
′ is completely adjacent to C \ {v} and v is completely nonadjacent

to I
′.

8. If s = c + 1 and k = i + 1, then G is an (s, k)-polar graph if and only if
some of the following statements is satisfied:

(a) there exists a nonempty subset C
′ of C that is completely nonadjacent

to I.
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(b) there exists a nonempty subset I
′ of I such that satisfies some of the

following conditions:
i. I

′ is completely adjacent to C.
ii. There is a vertex v ∈ C that is completely nonadjacent to I

′ and
such that I

′ is completely adjacent to C \ {v}.

Proof. Let S = {u, v, x, y} and assume that uv, xy ∈ EG.

1. It is enough to notice that (C, S ∪ I) is a (c, i + 2)-polar partition of G.

2. It is enough to notice that (C ∪ {u, v}, I ∪ {x, y}) is a (c+ 2, i+ 1)-polar
partition of G.

3. Aiming for a contradiction, assume that G admits an (s, k)-polar partition
(A, B). Notice that C /⊆ A, so C ∩ B ≠ ∅, in which case the vertices of
one component of G[S] are in A. Suppose without loss of generality that
u, v ∈ A. Then I ∪ {x, y} ⊆ B, but in such a case G[B] has at least i+ 1
components, a contradiction.

4. For the necessary condition it is enough to notice that ({u, v} ∪ C \
C

′
, {x, y}∪ C

′ ∪ I) is an (s, i + 1)-polar partition of G. For the sufficient
condition, let us assume that (A, B) is a polar partition of G. Since
s ≤ c − 1, C ∩ B ≠ ∅. Thus, we can assume without loss of generality
that {u, v} ∈ A and {x, y} ∈ B, and we have that I ⊆ B. Let C

′
= C ∩B.

Hence, C
′ is completely nonadjacent to I and ∣C ′∣ ≥ c − s + 2, so the

result follows.

5. For the necessary condition, notice that (C ∪ I
′
, S ∪ I \ I

′) is an (c+1, k)-
polar partition of G. For the sufficient condition let (A, B) be an (s, k)-
polar partition of G. Since 2K2 is not a complete multipartite graph,
we have that B ∩ S ≠ ∅, which implies that I ∩ A ≠ ∅, and then both,
B∩{u, v} ≠ ∅ and B∩{x, y} ≠ ∅. In consequence C ⊆ A. Set I

′
= I∩A,

and notice that, since k ≤ i, then ∣I ′∣ ≥ i − k + 2. Moreover, since G[A]
is a complete s-partite graph and I

′ ∪ C ⊆ A we have that every vertex
of I

′ is either completely adjacent to C or it is adjacent to any vertex of
C except for a vertex v. In addition, if a vertex w ∈ C is adjacent to a
vertex z ∈ I

′, then w is completely adjacent to I
′. The statement easily

follows form the above observations.
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6. For the necessary condition, notice that (C∪I
′
, S∪I \I

′) is a (c, k)-polar
partition of G. For the sufficient condition let (A, B) be an (s, k)-
polar partition of G. Since 2K2 is not a complete multipartite graph,
B ∩ S ≠ ∅, which implies that I ∩ A ≠ ∅. But then, B ∩ {u, v} ≠ ∅
and B ∩ {x, y} ≠ ∅, implying that C ⊆ A. Set I

′
= I ∩ A. Since k ≤ i,

∣I ′∣ ≥ i − k + 2. Moreover, since G[A] is a complete c-partite graph and
I
′ ∪ C ⊆ A we have that every vertex of I

′ is adjacent to any vertex of
C except for a vertex v. In addition, if a vertex w ∈ C is adjacent to a
vertex z ∈ I

′, then w is completely adjacent to I
′. The conclusion follows

easily from here.

7. For the necessary condition we only have to notice that, in case of (a)
occurs, ({u, v} ∪ C \ C

′
, {x, y} ∪ C

′ ∪ I) is an (s, k)-polar partition of G
while, if (b) occurs, then (C ∪ I

′
, S ∪ I \ I

′) is an (s, k)-polar partition
of G. For the sufficient condition let (A, B) be an (s, k)-polar partition
of G. If A ∩ S ≠ ∅, then B ∩ C ≠ ∅, which implies, without loss of
generality, that {u, v} ⊆ A and {x, y} ⊆ B, and therefore I ⊆ B. Then, if
C

′
= C∩B, we have that ∣C ′∣ ≥ c−s+2 and C

′ is completely nonadjacent
to I. Otherwise, if A ∩ S = ∅, S ⊆ B, and therefore C ⊆ A. Notice that,
since k = i + 1, A ∩ I ≠ ∅. Let I

′
= A ∩ I. Since C ∪ I

′
⊆ A and A

induces a complete c-partite graph, there exist a vertex v ∈ C such that
I
′ is completely adjacent to C \ {v} but v is completely nonadjacent to I

′.

8. For the necessary condition, notice that in case that (a) occurs, ({u, v}∪
C \ C

′
, {x, y} ∪ C

′ ∪ I) is an (s, k)-polar partition of G while, if (b)
occurs, then (C ∪ I

′
, S ∪ I \ I

′) is an (s, k)-polar partition of G. For the
sufficient condition, let us consider an (s, k)-polar partition (A, B) of G.
If G[B ∩ S] is connected, then the vertex set of one of the connected
components of G[S] is completely contained in A, let us say, without
loss of generality, that {u, v} ⊆ A. Observe that, in this case, C /⊆ A, so
C

′
= C ∩ B is not empty. In addition, I ∩ A = ∅, so I ⊆ B. Thus, since

G[B] is a P3-free graph, C
′ is completely nonadjacent to I, and we have

the case (a) of the statement. Otherwise, G[B] is disconnected, which
implies that C ∩ B = ∅ and I /⊆ B. Then, we have that C ⊆ A and the
set I

′
= I ∩A is not empty. Hence, C ∪ I

′
⊆ A and, since G[A] is P3-free,

we have that either I
′ is completely adjacent to C, or there is a vertex

v ∈ C such that I
′ is completely adjacent to C \ {v} and v is completely

nonadjacent to I
′, so item (b) of the statement follows.
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6.1.1 2K2-split minimal (s, k)-polar obstructions
The following propositions are consequences of Theorem 6.4. They are di-
rected to prove an upper bound for the order of 2K2-split minimal (s, k)-polar
obstructions for arbitrary integers s and k.

Observe that, for a 2K2-split graph G = (C, S, I), if some of C, S or I is
an empty set, then G is a 2-polar graph. Hence, for any integers s and k with
s, k ≥ 2, any 2K2-split minimal (s, k)-polar obstruction G = (C, S, I) is such
that C, S and I are all of them nonempty sets. We will use this observation in
the following proofs without any explicit mention.

We start with a direct consequence of item 3 of Theorem 6.4.

Lemma 6.5. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be a strict
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. The following assertions hold.

1. If c ≥ s+ 2 and i ≥ k, for each vertex v ∈ C, G− v is not an (s, k)-polar
graph, so G is not a minimal (s, k)-polar obstruction.

2. If c ≥ s+1 and i ≥ k+1, for each vertex v ∈ I, G−v is not an (s, k)-polar
graph, so G is not a minimal (s, k)-polar obstruction.

Lemma 6.6. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be a
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. If c ≥ s + 2 and i ≤ k − 1, then G is
not a minimal (s, k)-polar obstruction.

Proof. Aiming for a contradiction, suppose that G is a minimal (s, k)-polar
obstruction. Notice that, for each vertex v ∈ C, (C \ {v}, S, I) is the 2K2-split
partition of G − v and ∣C \ {v}∣ = c − 1 ≥ s + 1.

Since G is a minimal (s, k)-polar obstruction, for each v ∈ C, the graph
G − v is an (s, k)-polar graph, which implies, by item 4 of Theorem 6.4, that
there is a subset C

′
v of C \ {v} with at least c− s+ 1 vertices that is completely

nonadjacent to I. In addition, also by item 4 of Theorem 6.4, since G is not an
(s, k)-polar graph, each vertex v ∈ C is adjacent to at least one vertex in I.

Let H be a graph obtained from G by deleting c− s− 1 vertices of C. Then
H has a 2K2-split partition (C∗

, S, I), with ∣C∗∣ = s + 1. Notice that each
v ∈ C

∗
⊆ C has at least one neighbor in I, which implies that the only subset

C
′ of C

∗ that is completely nonadjacent to I is the empty set. Thus, we have
from item 4 of Theorem 6.4 that H is nos an (s, k)-polar graph, but that is
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impossible since H is a proper induced subgraph of G, which is by assumption
a minimal (s, k)-polar obstruction.

In the next remark we identify some distinguished 2K2-split minimal (s, k)-
polar obstructions.

Remark 6.7. Let s and k be integers, s ≥ 2.

1. The strict 2K2-split graph G = (C, S, I) such that ∣C∣ = s, ∣I∣ = 1, and
C is completely adjacent to I, is a minimal (s, 2)-polar obstruction.

2. Let k ≥ 2, and let G = (C, S, I) be the strict 2K2-split graph such that
∣C∣ = s + 1, ∣I∣ = 1, and for two vertices u and v in C, C

′
= C \ {u, v}

is completely adjacent to I, and {u, v} is completely nonadjacent to I.
Then, G is a minimal (s, k)-polar obstruction.

3. Let k ≥ 3, and let G = (C, S, I) be the strict 2K2-split graph such that
∣C∣ = s + 1, ∣I∣ = 1, and for a vertex u ∈ C, C

′
= C \ {u} is completely

adjacent to I, and u is completely nonadjacent to I. Then, G is a minimal
(s, k)-polar obstruction.

Lemma 6.8. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be a
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. If c = s + 1 and i = k, then G is not
a minimal (s, k)-polar obstruction.

Proof. In order to reach a contradiction, let us assume that G is a minimal
(s, k)-polar obstruction, and for a vertex v ∈ C, let C

′
= C \ {v}. Let (A, B)

be an (s, k)-polar partition of G − v. Since i = k and 2K2 is not a complete
multipartite graph, we have that A∩ I ≠ ∅, which implies that B is present in
both components of 2K2, and therefore C

′
⊆ A.

Let u ∈ A ∩ I. Since C
′
⊆ A and ∣C ′∣ = s, we have that there is a vertex

w ∈ C
′ such that C

′ \ {w} is completely adjacent to u and wu ∉ E. Now, since
i = k ≥ 2, we have that G[C ∪S ∪ {v}] is a proper induced subgraph of G that
contains one of the minimal (s, k)-polar obstruction mentioned in Remark 6.7,
a contradiction.

Lemma 6.9. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be a
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. If c = s and i ≥ 2k − 1, then, G is
not a minimal (s, k)-polar obstruction.
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Proof. Aiming for a contradiction, assume that G is a minimal (s, k)-polar
obstruction, and let u ∈ I. Then, G− u is an (s, k)-polar graph and, by item 6
of Theorem 6.4, there is a subset I

′
u of I \ {u} with at least i − k + 1 vertices,

and a vertex vu ∈ C such that, I
′
u is completely adjacent to C \ {vu} and vu is

completely nonadjacent to I
′
u. Now, let x ∈ I

′
u. By the same argument of the

paragraph above, there is a subset I
′
x of I \ {x} with at least i − k + 1 vertices,

and a vertex vx ∈ C such that, I
′
x is completely adjacent to C \ {vx} and vx is

completely nonadjacent to I
′
x.

Observe that 2i − 2k + 2 ≥ i + 1, because i ≥ 2k − 1. Thus, we have that
I
′
x ∩ I

′
u ≠ ∅, otherwise

i = ∣I∣ ≥ ∣I ′
x ∪ I

′
u∣ ≥ 2(i − k + 1) ≥ i + 1,

which is absurd. Since x ∈ I
′
u \ I

′
x and I

′
x ∩ I

′
u ≠ ∅, we have that ∣I ′

x ∪ I
′
u∣ ≥

∣I ′
x∣ + 1 ≥ i − k + 2, vu = vx, I

′
x ∪ I

′
u is completely adjacent to C \ {vu}, and

vu is completely nonadjacent to I
′
x ∪ I

′
u. This is impossible, since item 6 of

Theorem 6.4 implies that in such a case G is an (s, k)-polar graph, contradicting
our initial assumption.

Lemma 6.10. Let s and k be integers, s, k ≥ 2, and let G = (C, S, I) be a
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. If c ≤ s− 1 and i ≥ 2k − 1, then G is
not a minimal (s, k)-polar obstruction.

Proof. Aiming for a contradiction, assume that G is a minimal (s, k)-polar
obstruction, and let u ∈ I. Then G − u is an (s, k)-polar graph and, by item
5 of Theorem 6.4, there exists a subset I

′
u of I \ {u} with at least i − k + 1

vertices and a vertex vu ∈ C such that I
′
u is completely adjacent to C \ {vu}

and, vu is either completely adjacent or completely nonadjacent to I
′
u.

We claim that vu is completely adjacent to I
′
u, and we prove it by means of

contradiction. Let x ∈ I
′
u. Then G − x is an (s, k)-polar graph and again, we

have from item 5 of Theorem 6.4 that there exists a subset I
′
x of I \ {x} with at

least i − k + 1 vertices and a vertex vx ∈ C such that I
′
x is completely adjacent

to C \ {vx} and, vx is either completely adjacent or completely nonadjacent to
I
′
x.

Observe that, as it occurred in Lemma 6.9, since i ≥ 2k−1, there is a vertex
w ∈ I

′
x ∩ I

′
u. Since we are assuming vu is completely nonadjacent to I

′
u, we have

that vu is not adjacent to w, and due to w ∈ I
′
x, we have that vu = vx. But

then, I
′
u ∪ I

′
x is completely adjacent to C \ vu and vu is completely nonadjacent

to I
′
u ∪ I

′
x. Moreover, since x ∉ I

′
x, the set I

′
u ∪ I

′
x has at least i− k + 2 vertices.
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But then, item 5 of Theorem 6.4 implies that G is an (s, k)-polar graph, a
contradiction. The contradiction arose from assuming that vu is completely
nonadjacent to I

′
u, so it must be the case that, for every vertex u ∈ I, there

exists a subset I
′
u of I with at least i− k + 1 vertices such that I

′
u is completely

adjacent to C.
But then, for any x ∈ I

′
u and any subset I

′
x of I \ {x} with i− k + 1 vertices

such that I
′
x is completely adjacent to C, we have that I

′
x ∪ I

′
u is a subset

of I with at least i − k + 2 vertices that is completely adjacent to C, which
implies by Theorem 6.4 that G is an (s, k)-polar graph, contradicting our initial
assumption.

Now, we are ready to give an upper bound for the order of the 2K2-split
minimal (s, k)-polar obstructions.

Theorem 6.11. Let s and k be integers, s, k ≥ 2. Any 2K2-split minimal
(s, k)-polar obstruction has order at most s + 2k + 2.

Proof. Let G = (C, S, I) be a 2K2-split minimal (s, k)-polar obstruction. It
follows from Lemmas 6.5, 6.6 and 6.8 that, if ∣C∣ ≥ s+ 1, then ∣VG∣ ≤ s+ k+ 4.
Additionally, we conclude from Lemmas 6.9 and 6.10 that ∣VG∣ ≤ s + 2k + 2
whenever ∣C∣ ≤ s. Hence, we have that ∣VG∣ ≤ max{s + k + 4, s + 2k + 2}.
However, since k ≥ 2, we have that s + 2k + 2 ≥ s + k + 4, so the result
follows.

We continue with a characterization for 2K2-split (s,∞)-polar graphs, and
then with an upper bound for the order of 2K2-split minimal (s,∞)-minimal
obstructions.

Lemma 6.12. Let s be an integer, s ≥ 2, and let G = (C, S, I) be an strict
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. Then, G is an (s,∞)-polar graph
if and only if either s ≥ c or there is a subset C

′ of C with at least c − s + 2
vertices that is completely nonadjacent to I.

Proof. Suppose that G has an (s,∞)-polar partition (A, B). If c > s, since
G[A] is Ks+1-free, then C /⊆ A, so C

′
= C ∩B ≠ ∅. Moreover, G[B] is P3-free

and A induces a P3-free graph, which implies, without loss of generality, that
{u, v} ∈ A and {x, y} ∈ B. Thus, I ∩A = ∅ because G[A] is P3-free, so I ⊆ B,
and ∣C ′∣ ≥ c − s + 2 because A induces a Ks+1-free graph. Additionally, since
C

′ ∪ I ⊆ B, we have that C
′ is completely nonadjacent to I, and we are done.
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For the converse implication, if s ≤ c, then (C, S ∪ I) is an (s, i + 2)-polar
partition of G. Otherwise, there is a set C

′ of C with at least c − s + 2 vertices
that is completely nonadjacent to I. In this case, ({u, v}∪C\C

′
, {x, y}∪C

′∪I)
is an (s, i + 1)-polar partition of G, and the result follows.

For each integer s ≥ 2, let Hs = (C, S, I) be the strict 2K2-split graph such
that ∣C∣ = s + 1, ∣I∣ = s − 1, and for an injection f ∶ I → C, a vertex v ∈ I is
adjacent to a vertex u ∈ C if and only if f(v) = u. Notice that, by Lemma 6.12,
Hs is a minimal (s,∞)-polar obstruction.

Theorem 6.13. Let s be an integer, s ≥ 2. Any 2K2-split minimal (s,∞)-polar
obstruction has order at most 2s + 4, and the bound is tight.

Consequently, there is only a finite number of 2K2-split minimal (s,∞)-
polar obstructions.

Proof. Let G = (C, S, I) be a 2K2-split minimal (s,∞)-polar obstruction, and
let c and i be the number of vertices in C and I, respectively. From Lemma 6.12,
we have that c > s. In addition, since G is a minimal (s, k)-polar obstruction
for some positive integer k, we have from Lemmas 6.5 and 6.6, that c ≤ s + 1,
so we conclude that c = s + 1.

By the minimality of G, we have from Lemma 6.12 that, for each u ∈ I,
there is a subset C

′
u of C, with at least three vertices, that is completely

nonadjacent to I \ {u}. Additionally, since G does not admit an (s, k)-polar
partition, Lemma 6.12 implies that at most two vertices of C are completely
nonadjacent to I, so each vertex u ∈ I is adjacent to at least one vertex of C

′
u.

Moreover, it follows from the previous observations that, for each u ∈ I, there
is at least one vertex in C

′
u that is not in C

′
v for any v ∈ I \ {u}. Therefore,

∣⋃u∈I C
′
u∣ ≥ i+2, so c ≥ i+2, and it follows that ∣VG∣ = ∣C∣+∣S∣+∣I∣ ≤ 2s+4.

The bound is tight since Hs is a K2-split minimal (s,∞)-polar obstruction
of order 2s + 4.

Unlike pseudo-split graphs, 2K2-split graphs does not constitute a self-
complementary class of graphs, so we cannot use simple arguments of com-
plements to conclude results for (∞, k)-polarity from those of (s,∞)-polarity
on this class. Next, we provide an upper bound for the order of 2K2-split
minimal (∞, k)-minimal obstructions by proving similar results to Lemma 6.12
and Theorem 6.13 for (∞, k)-polarity on 2K2-split graphs.

Lemma 6.14. Let k be an integer, k ≥ 2, and let G = (C, S, I) be an strict
2K2-split graph. Let c = ∣C∣ and i = ∣I∣. Then, G is an (∞, k)-polar graph if
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and only if either i ≤ k − 1 or there exists a subset I
′ of I with at least i− k + 2

vertices such that G[C ∪ I
′] is a complete multipartite graph.

Proof. Suppose that G has an (∞, k)-polar partition (A, B). Since G[S] is
not a complete multipartite graph, we have that S /⊆ A, so S ∩ B ≠ ∅. From
here, if i ≥ k, then I /⊆ A because G[B] is (k + 1)K1-free, so I

′
= I ∩ A ≠ ∅.

Hence, since G[A] is a P3-free graph, we have that A ∩ S is an independent
set, so B intersects the vertex sets of both of the connected components of
G[S]. But then, C ∩ B = ∅, because B induces a P3-free graph. Therefore
C ∪ I

′
⊆ A, and C ∪ I

′ induces a complete multipartite graph. Notice that, due
to G[B] is (k + 1)K1-free and B intersects the vertex sets of both components
of G[S], ∣I ′∣ ≥ i − k + 2.

For the converse implication, let S
′ be a maximum clique of G[S]. If

i ≤ k− 1, then (C ∪S
′
, I ∪S \S

′) is an (∞, k)-polar partition of G. Otherwise,
there is a subset I

′ of I with at least i− k + 2 vertices such that G[C ∪ I
′] is a

complete multipartite graph, so in this case (C∪I
′
, S∪I \I

′) is an (∞, k)-polar
partition of G.

Theorem 6.15. Let k be an integer, k ≥ 2. Any 2K2-split minimal (∞, k)-
polar obstruction has order at most 2 + 2k + 22k−1. In consequence, there is
only a finite number of 2K2-split minimal (∞, k)-polar obstructions.

Proof. Let G = (C, S, I) be a 2K2-split minimal (∞, k)-polar obstruction, and
let c and i be the number of vertices in C and I, respectively. From Lemma 6.14
we have that i ≥ k. Moreover, since G is a minimal (s, k)-polar obstruction for
some positive integer s, we have from Lemmas 6.5, 6.9 and 6.10, that i ≤ 2k−2.

By the minimality of G, for each vertex x ∈ C, G − x = (C \ {x}, S, I) is
an (∞, k)-polar graph with at least k vertices in its stable part, so it follows
from Lemma 6.14 that there is a subset I

′
x of I with at least i − k + 2 vertices

such that G[I ′
x ∪ C \ {x}] is a complete multipartite graph.

We claim that, for any two different vertices u, v ∈ C, if I
′
v is a subset of

I
′
u, then the neighborhood of each vertex in I

′
v is precisely C \ {u, v}. Notice

that this would imply that there are not three vertices u, v, w ∈ I such that
I
′
u = I

′
v = I

′
w.

To prove our claim, suppose that u and v are vertices in C such that I
′
v ⊆ I

′
u.

Since G[I ′
v ∪C \{v}] is a complete multipartite graph we have two possibilities,

either I
′
v is completely adjacent to C \ {v} or there is a vertex w ∈ C \ {v} such

that I
′
v is completely adjacent to C \ {v, w} and w is completely nonadjacent to

I
′
v. Notice that, regardless of the case, since v ∈ C \ {u} and G[I ′

u ∪ C \ {u}]
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is P3, v is either completely adjacent or completely nonadjacent to I
′
u, and

therefore, v is either completely adjacent or completely nonadjacent to I
′
v. But

we have from the previous observation that, if I
′
v is completely adjacent to

C \ {v}, then G[I ′
v ∪ C] is a complete multipartite graph, which implies by

Lemma 6.14 that G is an (∞, k)-polar graph, contradicting the election of G.
Thus, I

′
v is not completely adjacent to C\{v}, so there is a vertex w ∈ C\{v}

such that I
′
v is completely adjacent to C\{v, w} and w is completely nonadjacent

to I
′
v. Observe that we have two cases depending on whether w = u. Since

G[I ′
u ∪ C \ {u}] is a complete multipartite graph and I

′
v ⊆ I

′
u, we have that

G[I ′
v ∪C \ {u}] is also a complete multipartite graph. Then, if w ≠ u, we have

that v is adjacent to every vertex of I
′
v, but this would imply that G[I ′

v ∪C] is a
complete multipartite graph, and we previously noticed that this is impossible.
Hence w = u and, since G[I ′

v ∪ C \ {u}] is a complete multipartite graph but
G[I ′

v ∪C] is not, we have that v is completely nonadjacent to I
′
v, and it follows

that the neighborhood of each vertex in I
′
v equals C \ {u, v}.

By our previous arguments, there are at least ⌈c/2⌉ vertices of u ∈ C whose
associated sets I

′
u are pairwise different. Therefore, since I

′
u ⊆ I, we have that

⌈C/2⌉ ≤ ∣P(I)∣ = 2∣I∣
≤ 22k−2, from which we conclude that

∣VG∣ = ∣C∣ + ∣S∣ + ∣I∣ ≤ 2 + 2k + 22k−1
.

It is worth noticing that, unlike the upper bound for the order of 2K2-split
minimal (s,∞)-polar obstructions provided in Theorem 6.13, which is linear
on s, the bound given in Theorem 6.15 for the order of 2K2-split minimal
(∞, k)-polar obstructions is exponential on k. Moreover, we know that the
first of these bounds is tight, but we cannot guarantee the same for the second
one. We think that the next question can be answered in an affirmative way
by imitating the proof of Theorem 6.13, which is very different than the one
we used in Theorem 6.15.

Problem 6.16. Is the order of the 2K2-split minimal (∞, k)-polar obstructions
upper bounded by a function linear on k?

Some initial explorations allow us to pose the following conjecture.

Conjecture 6.17. Let k be an integer, k ≥ 3, and let G = (C, S, I) be a 2K2-
split minimal (∞, k)-polar obstruction. Then k ≤ i ≤ 2k − 2 and c ≤ 2k − i− 1,
where c and i stands for the number of vertices in C and I, respectively.
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We also pose the following question.

Problem 6.18. Can Lemmas 6.9 and 6.10 be improved by replacing the
condition i ≥ 2k − 1 for a stronger one like i ≥ k + c, for a constant c?

Notice that, from the proof used for Theorem 6.15, an affirmative answer
to Problem 6.18 would imply an improvement of the bound provided in the
mentioned theorem. Nevertheless, the next observation make us think the
answer to Problem 6.18 is in a negative way.

Remark 6.19. Let s and k be integers, s, k ≥ 2.

1. If G = (C, S, I) is the strict 2K2-split graph such that C = {w}, I =

{i1, . . . , i2k−2}, and wij ∈ E if and only if 1 ≤ j ≤ k − 1, then G is a
minimal (s, k)-polar obstruction, and hence it is a minimal (∞, k)-polar
obstruction.

2. If G = (C, S, I) is the strict 2K2-split graph such that C = {c1, . . . , ck−1},
I = {i1, . . . , ik} and, for each j ∈ {1, . . . , k − 1}, N(cj) ∩ I = I \ {ij},
then G is a minimal (∞, k)-polar obstruction.

6.1.2 Algorithms for polarity on 2K2-split graphs
We have observed before that 2K2-split graphs are unipolar and co-unipolar,
and hence polar graphs. Additionally, we proved that deciding monopolarity
and co-monopolarity on 2K2-split graphs can be done in linear time from its
degree sequence. In this section we prove that deciding whether a 2K2-split
graph is (s,∞)-, (∞, k)- or (s, k)-polar, also can be done efficiently.

The next observation follows directly from Theorem 5.2. It will be used
along this section without any explicit mention.

Remark 6.20. Let G = (C, S, I) be a strict 2K2-split graph, and let c and i
be the number of vertices in C and I, respectively. The following statements
hold true.

1. Every vertex v ∈ C has degree at least c + 3.

2. Every vertex v ∈ S has degree exactly c + 1.

3. Every vertex v ∈ I has degree at most c.
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4. A vertex v of G has degree c + 3 if and only if v ∈ C and it is completely
nonadjacent to I,

5. A vertex v of G has degree c if and only if v ∈ I and it is completely
adjacent to C.

We start proving that, for any positive integer s, the 2K2-split graphs that
admit an (s,∞)-polar partition can be recognized in linear time from their
degree sequence.

Proposition 6.21. Let s be an integer, s ≥ 2. The problem of deciding whether
a 2K2-split graph is (s,∞)-polar is linear-time solvable from its degree sequence.

Proof. Let G = (C, S, I) be a 2K2-split graph, and let c and i be the number
of vertices in C and I, respectively. If c ≤ s, then (C, S ∪ I) is an (s,∞)-polar
partition of G. Otherwise, we have from Lemma 6.12 that G is an (s,∞)-polar
graph if and only if there exist at least c − s + 2 vertices of G whose degree is
exactly c + 3. By Theorem 5.2, these verifications can be done in linear time
from the degree sequence of G.

We do not known whether (∞, k)-polarity can be decided in linear time for
2K2-split graphs, but in the next proposition we prove that this problem can
be solved in polynomial time.

Proposition 6.22. Let k be an integer, k ≥ 2. The problem of deciding whether
a 2K2-split graph is (∞, k)-polar is solvable in quadratic time.

Proof. Let G = (C, S, I) be a 2K2-split graph, and let c and i be the number of
vertices in C and I, respectively. If i ≤ k − 1 and {u, v} is a maximum clique of
G[S], then (C ∪ {u, v}, I ∪ S \ {u, v}) is an (∞, k)-polar partition of G. Else,
if the subset I

′ of all vertices of degree c in G has at least i − k + 2 elements,
then (C ∪ I

′
, S ∪ I \ I

′) is an (∞, k)-polar partition of G. Hence, if i ≤ k− 1 or
there are at most i − k + 2 vertices of degree c in G, then G is an (∞, k)-polar
graph. Now, let us assume that i ≥ k and there are at most i − k + 1 vertices
of G whose degree is c.

For each vertex v ∈ C, let I
∗
v be the set of all vertices whose neighborhood

is C \ {v}. It follows from Lemma 6.14 that G is an (∞, k)-polar graph if and
only if I

∗
v has at least i − k + 2 vertices for some v ∈ C. The result follows

since all the verifications can be performed in quadratic time.
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As a consequence of Remark 5.5 and Theorem 5.7, deciding whether a
pseudo-split graph admits an (s, k)-polar partition can be done in linear time
from its degree sequence. In contrast, it cannot be decided in general whether
a 2K2-split graph is (s, k)-polar only from its degree sequence. For instance,
in Figure 6.2 are depicted two strict 2K2-split graphs with the same degree
sequence such that the left one is (5, 4)-polar but the right one is not. Despite
of that, through the following propositions we will prove that the problem of
recognizing 2K2-polar graphs that admit an (s, k)-polar partition is solvable in
polynomial time.

S C I S C I

Figure 6.2: Two 2K2-split graphs with the same degree sequence such that the
one on the left side is (5, 4)-polar but the one on the right side is not.

Lemma 6.23. Let G = (S, K) be a split graph, and let k be a positive integer.
Let S

′ be the set of all vertices in S that are completely nonadjacent to K.
Then, G is a k-cluster if and only if the following statements hold true.

1. For each vertex w ∈ S, either N(w) = ∅ or N(w) = K.

2. ∣S \ S
′∣ ≤ 1.

3. If K ≠ ∅, then ∣S ′∣ ≤ k − 1. Otherwise ∣S ′∣ ≤ k.

Consequently, it can be decided whether a split graph is a k-cluster in linear
time from its degree sequence.

Proof. The proposition can be easily verified if K = ∅, so we will assume for
the proof that K ≠ ∅. Notice that K ∪ S \ S

′ induces a component of G and
the other components of G are trivial graphs induced by the singletons {w}
such that w ∈ S

′. In consequence, G has exactly 1 + ∣S ′∣ components.
Assume that G is a k-cluster. Since G is P3-free, any vertex w ∈ S is either

completely adjacent or completely nonadjacent to K, and there is at most one
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vertex of S that is not an isolated vertex. Moreover, since K ≠ ∅, it follows
from our initial observation about the components that ∣S ′∣ ≤ k − 1. Therefore,
if G is a k-cluster, the three listed conditions hold. The consverse implication
follows follows from the observations in the first paragraph of this proof and
the third statment.

For the last part, suppose that G has degree sequence d1 ≥ ⋅ ⋅ ⋅ ≥ dn,
and let p = max{i∶ di ≥ i − 1}. We have from Theorem 5.1 that (S, K) =

({vp+1, . . . , vn}, {v1, . . . , vp}) is a split partition of G such that K is a maximum
clique. Then, we have from the characterization above that G is a k-cluster if
and only if G has at most k components and S is completely nonadjacent to
K. For the first condition, notice that G has at most k connected components
if and only if either p = 1 and n ≤ k or p > 1 and n − p ≤ k − 1, and this
can be checked in linear time. The second condition is satisfied if and only if
d1 = ⋅ ⋅ ⋅ = dp = p − 1, which also can be verified in linear time.

Lemma 6.24. Let s and k be nonnegative integers such that s + k ≥ 1. It can
be decided whether a split graph is (s, k)-polar in linear time from its degree
sequence.

Proof. Let G be a split graph. Since split graphs are precisely the 1-polar
graphs, if s and k are both positive integers, then G is (s, k)-polar. Otherwise,
s = 0 or k = 0, and this case follows from Lemma 6.23.

Theorem 6.25. Let s and k be nonnegative integers such that s + k ≥ 1.
Deciding whether a 2K2-split graph is (s, k)-polar can be done in polynomial-
time.

Proof. Let G = (C, S, I) be a 2K2-split graph, and let c and i be the number
of vertices in C and I, respectively. Let us denote by I

∗ the set of all vertices
of G of degree c − 1 and, for each vertex v in C, let I

∗
v be the set of all vertices

w ∈ I such that N(w) = C \ {v}.
From Lemma 6.24 we have the result for the case in which S = ∅, so we can

assume that G is a strict 2K2-split graph. In addition we have the following
particular cases.

1. 2K2 is (0, 2)- and (2, 1)-polar but it is neither (1, 1)- nor (∞, 0)-polar.

2. K1 ⊕ 2K2 is (1, 2)- and (2, 1)-polar but it is not (∞, 0)-, (0,∞)-, or
(1, 1)-polar.
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3. For c ≥ 2, Kc ⊕ 2K2 is (2, 1)-polar but it is neither (1,∞)- nor (∞, 0)-
polar.

4. For c ≥ 1, iK1+2K2 is (0, i+2)- and (1, 2)-polar but it is neither (0, i+1)-
nor (∞, 1)-polar.

These cases correspond to the conditions C = ∅ or I = ∅, that can be checked
in linear time from the degree sequence of G from Theorem 5.2.

From the above observations, we can assume for the rest of the proof that
the sets C, S and I are all of them nonempty. We consider the following
particular cases.

• If s, k ≤ 1, then G is not (s, k)-polar, because 2K2 ≤ G.

• If k = 0, then G is not a (s, k)-polar, because 2K2 ≤ G.

• If s = 0 and k ≥ 2, then G is not (s, k)-polar, because K1 ⊕ 2K2 ≤ G.

• If k = 1 and s ≥ 2, then G is not (s, k)-polar, because 2K2 + K1 ≤ G.

• If s = 1 and k ≥ 2, we have from Proposition 6.2 that G is an (s, k)-polar
graph if and only if c = 1 and ∣{w ∈ I ∶ d(w) > 0}∣ ≤ k − 2. This
condition can be verified from the degree sequence of G in linear time.

Notice that, if none of the cases listed before occurs, then s, k ≥ 2, so we
can use the characterizations provided by Theorem 6.4. The following cases
are based on the that characterizations.

1. If c ≤ s and i ≤ k − 2, then G is an (s, k)-polar graph.

2. If c ≤ s − 2 and i ≤ k − 1, then G is an (s, k)-polar graph.

3. If c ≥ s + 1 and i ≥ k, then G is not an (s, k)-polar graph.

4. If c > s and i < k, then G is an (s, k)-polar graph if and only if there exist
at least c − s + 2 vertices whose degree is exactly c + 3. This condition
can be verified from the degree sequence of G in linear time.

5. If c < s and i ≥ k. We can verify from the degree sequence of G if there
exist at least i − k + 2 vertices of degree exactly c; if such vertices exist
G is an (s, k)-polar graph. Otherwise, if ∣I∗∣ < i − k + 2, G is not an
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(s, k)-polar graph, and if ∣I∗∣ ≥ i − k + 2 we can check, for each vertex
v ∈ C, whether the set I

∗
v has at least i − k + 2 vertices; in this point G

is an (s, k)-polar graph if and only if ∣I∗
v ∣ ≥ i − k + 2 for some v ∈ C.

These verifications can be done in polynomial time.

6. If c = s and i ≥ k. If ∣I∗∣ < i − k + 2, G is not an (s, k)-polar graph.
Otherwise, if ∣I∗∣ ≥ i−k+ 2, we can check for each vertex v ∈ C whether
the set I

∗
v has at least i− k + 2 vertices; G is an (s, k)-polar graph if and

only if ∣I∗
v ∣ ≥ i − k + 2 for some v ∈ C.

7. If c = s and i = k − 1. If there exist at least two vertices of degree exactly
c + 3, G is an (s, k)-polar graph. Otherwise, if I

∗
= ∅, G is not an

(s, k)-polar graph, and if I
∗
≠ ∅, we can check for each vertex v ∈ C

whether the set I
∗
v is empty; G is an (s, k)-polar graph if and only if

I
∗
v ≠ ∅ for some v ∈ C.

8. If c = s − 1 and i = k − 1. First, if there exists a vertex of degree c + 3 or
a vertex of degree c, G is an (s, k)-polar graph. Otherwise, if I

∗
= ∅, G

is not an (s, k)-polar graph, and if I
∗
≠ ∅, we can check for each vertex

v ∈ C whether the set I
∗
v is empty; G is an (s, k)-polar graph if and only

if I
∗
v ≠ ∅ for some v ∈ C.

The result follows since all verifications can be performed in polynomial-
time.



162 6. 2K2- and C4-split graphs



Part IV

General obstructions for small
patterns





Chapter 7

Some patterns of size at most 3

There are only two patterns of size one, namely (0) and (1), whose sets of
minimal obstructions clearly are {K2} and {K2}, respectively. It can be easily
checked that there are eight patterns of size two that cannot be reduced to a
pattern of size 1, namely

( 0 ∗
∗ 0 ) , ( 0 1

1 0 ) , ( 0 ∗
∗ 1 ) , ( 0 1

1 1 ) ,

and their complements. These patterns describe the class of bipartite graphs,
whose family of minimal obstructions is conformed by the odd length cycles,
the class of complete bipartite graphs with minimal obstruction set {K3, P3},
the class of split graphs, whose set of minimal obstructions is {2K2, C4, C5}
[41], the class of complete split graphs, which can be characterized as the
{C4, P3}-free graphs, and the complement of some of the previous classes.

Complete lists of minimal obstructions are not known for all patterns of size
three. Nevertheless, in [40] was given the complete list of minimal obstructions
for each of the 12 patterns of size three without ∗ entries that cannot be reduced
to a pattern of smaller size. We summarize these results in the following list by
writing 6 of the mentioned patterns together with their minimal obstructions;
the other six patterns are the complements of the listed ones, so their minimal
obstructions can be easily obtained by a simple argument of graph complements.

⎛
⎜⎜
⎝

0 1 0
1 0 0
0 0 0

⎞
⎟⎟
⎠

K3, P4, 2K2

⎛
⎜⎜
⎝

0 1 1
1 0 1
1 1 0

⎞
⎟⎟
⎠

K4, P3
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⎛
⎜⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎟
⎠

P4, K1 + 2K2, P3 + 2K1, 2K3, K1 + P3, K2 ⊕ K2

⎛
⎜⎜
⎝

0 0 0
0 0 1
0 1 1

⎞
⎟⎟
⎠

C4, P4, 2K2, K1 + P3

⎛
⎜⎜
⎝

0 1 1
1 0 1
1 1 1

⎞
⎟⎟
⎠

3K2, P3

⎛
⎜⎜
⎝

0 1 0
1 0 1
0 1 1

⎞
⎟⎟
⎠

2K2, K1 + P3, 2K1 + P3, K1 ⊕ C4, P4

In this part of the document, we make our contribution to the characteri-
zation of minimal obstructions for small patterns by giving complete lists of
minimal obstructions for the patterns of size three with a single ∗ off the main
diagonal.

Notice that, each pattern M of size k can be graphically represented with
a bicolored graph G on the vertex set {v1, . . . , vk} such that, for any distinct
integers i and j with i, j ∈ {1, . . . , k}, vi is a shaded vertex if and only if
Mi,i = 1, vi is adjacent to vj if Mi,j = 1, vi is not adjacent to vj if Mi,j = 0, and
vi is possibly adjacent to vj (represented with a dashed line) if Mi,j = ∗.

Thus, if we want to obtain a list of all patterns of size three with exactly
one ∗ off the main diagonal, we can look up for all bicolored graphs of order
three with exactly one dashed edge. It is easy to convince ourselves that there
are exactly 20 of these graphs, namely the 10 graphs depicted in Figures 7.1
and 7.2, and their complements1.

Figure 7.1: Some patterns of size three that can be reduced to patterns of size
two.

1The complement of a bicolored graph with dashed edges is computed as the usual graph
complement, but dashed edges remains unchanged, and vertices swap their colors.
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A0 A3 A4

A5 A6 A7

Figure 7.2: Patterns of size 3 with a single ∗ off the main diagonal that cannot
be reduced to smaller patterns.

As we observed before, the minimal obstructions of a pattern can be deduced
from the minimal obstructions of its complement so, for each pattern M in
Figures 7.1 and 7.2 we will give complete lists of minimal obstructions only for
one of M or M . Moreover, patterns in Figure 7.1 can be reduced to smaller
patterns by identifying both vertices in the bottom: the first two patterns
reduce to the pattern associated to bipartite graphs, while the last two reduce
to the pattern associated to split graphs. Thus, we only need to give the
complete lists of minimal obstructions for the patterns in Figure 7.2.

In the next section we provide complete lists of minimal obstructions for
patterns A0, A3, A4 and A5. Then, in Section 7.2, we prove the analogous result
for A6, which requires a more involved - but still short - proof. Finally, in
Chapter 8 we give the complete list of minimal A7-obstructions, for which a lot
of technical lemmas are needed.

Some small graphs receive special names because of their drawings. Graphs
in Figure 7.3 will appear frequently in this and the next chapter.

bull diamond paw

Figure 7.3: Some graphs with special names.
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7.1 Four easy patterns
We start considering the pattern A0:

A0 =

⎛
⎜⎜
⎝

0 1 1
1 0 ∗
1 ∗ 0

⎞
⎟⎟
⎠

Theorem 7.1. If G is a graph, then G admits an A0-partition if and only if
G is an F-free graph, where

F = {odd-hole, K4, K1 + K3, house, bull}.
Proof. Clearly, a graph G admits an A0-partition if and only if G has a
(possible empty) independent set S such that G − S is a bipartite graph and S
is completely adjacent to VG \S. It easily follows from the previous observation
that all graphs in F are minimal A0-obstructions. Now, we prove that each
F -free graph G admits an A0-partition.

If G is bipartite, it clearly has an A0-partition. Otherwise, since G is
odd-hole-free, G has a clique C = {v1, v2, v3}. Notice that any vertex of G
either is in C or is adjacent to some vertex in C, because G is K1 + K3-free.
Additionally, since G does not have cliques on four vertices, any vertex of G−C
is adjacent to at most two vertices of C. For each i ∈ {1, 2, 3}, let us denote
by Vi the subset of vertices of G whose only neighbor in C is vi, and by Vi the
subset of vertices x ∈ VG such that C \ N(x) = {vi}. Observe that, if Vi and
Vi+i are both nonempty sets, then G has either the house or the bull graph
as an induced subgraph, contrary to our assumptions. Thus, we can assume
without loss of generality that V2 = V3 = ∅, so VG = C ∪ V1 ∪ V1 ∪ V2 ∪ V3.
Additionally, notice that Vi is an independent set for any i ∈ {1, 2, 3} because
G is a K4-free graph.

First, let us assume V1 = ∅, so VG = C ∪ V1 ∪ V2 ∪ V3. Notice that,
C = ({v1} ∪ V1, {v2} ∪ V2, {v3} ∪ V3) is a 3-proper coloring of G. Moreover,
if Vi is completely adjacent to Vi+1 for each i ∈ {1, 2, 3}, where additions are
considered modulo 3, then G is a complete 3-partite graph with the same vertex
partition, so C is also an A0-partition of G. Thus, we can assume without loss
of generality that there are nonadjacent vertices u ∈ V2 and v ∈ V3. We claim
that in such a case C is still an A0-partition of G. To prove our claim we only
need to verify that V1 is completely adjacent to V2 ∪ V3. We start proving that
any vertex in V1 is completely adjacent to {u, v}.



7.1. Four easy patterns 169

Let w ∈ V1 and, aiming for a contradiction, assume that w is not completely
adjacent to {u, v}. Suppose without loss of generality that wu ∉ E. As can be
seen in the left part of Figure 7.4, if wv ∉ E, then G has an induced copy of
the bull graph, and otherwise G has an induced house graph,. Since both cases
are impossible, we have a contradiction. Thus, it must be the case that V1 is
completely adjacent to {u, v}.

v1

v2

v3

vu

w

v1

v2v3

v

v
′

u

w

Figure 7.4: Cases of Theorem 7.1.

Now, suppose for a moment that V1 is not completely adjacent to V2 ∪ V3.
Then, we can assume without loss of generality that there exist nonadjacent
vertices w ∈ V1 and v

′
∈ V3\{v}. Notice that we can assume v

′
u ∈ E, otherwise

we would be in the case of the previous paragraph. But then, as can be verified
in the right side of Figure 7.4, G would have the house graph as an induced
subgraph, but we are assuming this is not the case. Hence, V1 is completely
adjacent to V2 ∪ V3, so C is an A0-partition of G.

Since the case V1 = ∅ is impossible, it must occur that V1 ≠ ∅. We claim
that in this case there is a bipartition (X, Y ) of G − ({v1} ∪ V1) such that
({v1} ∪ V1, X, Y ) is an A0-partition of G. Clearly, {v1} ∪ V1 is an independent
set, and v1 is completely adjacent to VG \ ({v1}∪ V1) = {v2, v3}∪ V1 ∪ V2 ∪ V3.
We have that V1 is completely adjacent to V1 because G does not have any
induced K1 + K3. Additionally, since G is a {bull, house}-free graph, it follows
that V1 is completely adjacent to V2 ∪ V3. Thus, {v1} ∪ V1 is an independent
set of G that is completely adjacent to VG \ ({v1} ∪ V1), so we only need to
prove that G − ({v1} ∪ V1) is a bipartite graph. But, G is a K4-free graph
and v1 is completely adjacent to {v2, v3} ∪ V1 ∪ V2 ∪ V3, so it follows that
G− ({v1}∪ V1) is triangle-free. Since G is an odd-hole-free graph, we conclude
that G − ({v1} ∪ V1) is a bipartite graph.
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Now, let us consider the pattern A3:

A3 =

⎛
⎜⎜
⎝

0 ∗ 0
∗ 0 0
0 0 1

⎞
⎟⎟
⎠

Theorem 7.2. If G is a graph, then G admits an A3-partition if and only if
G is an F-free graph, where

F = {odd-hole, 2K3, diamond, paw}.

Proof. Clearly, a graph G is a minimal A3-obstruction if and only if

• G is not a complete graph,

• G is not a bipartite graph,

• G does not have a complete component K such that G−K is a bipartite
graph,

• Any vertex-deleted subgraph of G has an A3-partition.

From here, it is a routine exercise to verify that all the graphs in F are
minimal A3-obstructions. Now let us prove that these are all of them. Let G
be a minimal obstruction for A3. Since G is not a bipartite graph, it contains
an induced odd-cycle C. If C is a hole, then G = C, otherwise C is a triangle.
Notice that, if G has two components, each one having a triangle, then G ≅ 2K3.

Assume that G is neither an odd-hole nor a copy of 2K3. By our previous
observations, G has a non-complete component G1 with a triangle C. Let K
be the largest clique containing C. Since G1 is non-complete, there must be a
vertex v in G1 that is not in K, and is adjacent to some but not all the vertices
in K. If v is not adjacent to more than one vertex of K, then G is a paw. If v
is not adjacent to exactly one vertex of K, then G is a diamond graph.

We now turn our attention to the pattern A4:

A4 =

⎛
⎜⎜
⎝

0 ∗ 1
∗ 0 1
1 1 1

⎞
⎟⎟
⎠
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Theorem 7.3. If G is a graph, then G admits an A4-partition if and only if
G is an F-free graph, where

F = {odd-hole, K1 + K3, bull, house, K2 + P3, 3K2}.

Proof. The property of admitting an A4-partition is closed under addition and
deletion of universal vertices. Hence, a graph admits an A4-partition if and only
if the deletion of all its universal vertices results in a (possibly null) bipartite
graph. Also, it is clear that no minimal A4-obstruction has universal vertices.

From here, it is a simple exercise to show that every graph in F is a minimal
A4-obstruction, so we only prove the converse implication. Let G be a minimal
A4-obstruction. Since G is not a bipartite graph, it has an induced odd-cycle C.
If C is an odd-hole, then G = C. Otherwise, G contains a triangle with vertex
set {u, v, w}. Since there are no universal vertices in G, each of u, v and w has
a nonneighbor in G. Let x, y and z be nonneighbors of u, v and w, respectively.

If x = y = z, then {u, v, w, x} induces a K1 + K3. In the case that {x, y, z}
has cardinality 2, we can assume without loss of generality that y = z, and
to avoid falling in the previous case, we have uy ∈ EG. We again have two
cases, namely, both v and w are adjacent to x, or precisely one of them is
adjacent to x, since otherwise we may choose x = y = z. Assume first, without
loss of generality that vx ∈ EG and wx ∉ EG. Hence, {u, v, w, x, y} induces
either a bull or a house, depending on whether xy ∈ EG. If vx, wx ∈ EG, then
either xy ∈ EG and {u, v, w, x, y} induces a copy of K2 + P3, or xy ∉ EG and
{v, w, x, y} induces a copy of K1 + K3.

Finally, if {x, y, z} has cardinality 3, then we can assume that uy, uz, vx,
vz, wx, and wy, are edges of G. Depending on which of the edges from the
set {xy, yz, zx} are present, we have the following possibilities. If all af them
are present, then {u, v, w, x, y, z} induces a copy of 3K2. If none is present,
then {v, w, x, y, z} induces a copy of the bull graph. If only yz is present, then
{v, w, x, y, z} induces a copy of the house graph. If both xy and xz are present,
then {u, v, w, x, y} induces a copy of K2 + P3.

Since the causes are exhaustive, the family F is the complete list of A4-
minimal obstructions.

To finish this section, we consider the pattern A5, but we characterize the
minimal A5-obstructions instead of the minimal A5-obstructions.
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A5 =

⎛
⎜⎜
⎝

0 ∗ 0
∗ 1 0
0 0 1

⎞
⎟⎟
⎠

Theorem 7.4. If G is a graph, then G admits an A5-partition if and only if
G is an F-free graph, where

F = {C4, C5, 3K2, 2P3, P5, P , K1 ⊕ 2K2}.

Proof. A graph G admits an A5-partition if and only if G is the disjoint union
of a complete graph with a split graph. From here, it is a routine exercise to
verify that any graph in F is a minimal A5-obstruction. Now we prove that
any F -free graph admits an A5-partition.

Let G be an F -free graph. Since 3K2 ∈ F , then G has at most two nontrivial
components. Assume first that G has two nontrivial components, say G1 and
G2. Because 2P3 ∈ F , at most one of G1 and G2 is not a complete graph;
assume without loss of generality that G2 is a complete graph. Now, G2 has at
least one edge, so G1 must be 2K2-free, as otherwise G would contain a copy
of 3K2. Therefore, G1, and hence G − VG2 , is a split graph.

Suppose now that G has a unique nontrivial component, so we may actually
assume that G is connected. We will show that, if G is not complete, then it is
2K2-free, and thus, it is a split graph. Consider two edges xy and zw in EG,
and, aiming for a contradiction, suppose that they are neither adjacent nor
share an end. Let P be a shortest path from xy to zw, and assume without
loss of generality that y and z are its first and last vertices, respectively. Thus,
P = (y, v1, . . . , vk, z). If k ≥ 3, then the fist five vertices of P induce a copy
of P5, which is impossible. If k = 2, then {x, y, v1, v2, y} induces either a copy
of P or a copy of P5, depending on whether xv1 ∈ EG or not. Finally, if
k = 1, then, depending on the presence of the edges xv1 and wv1, we have that
{x, y, v1, z, w} induces a copy of P5 (if none is present), P (if exactly one is
present), or K1 ⊕ 2K2 (if both are present). Since in any case a contradiction
is reached, we conclude that xy and zw must be adjacent or share an end.
Therefore, G is 2K2-free, and hence it is a split graph.

7.2 Pattern A6

This section is devoted to the pattern A6. We will say that a partition (A, B, C)
of the vertex set V of a graph G is an A6-partition if and only if A and B
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are independent sets, C is a clique, A is completely adjacent to C and B is
completely nonadjacent to C.

A6 =

⎛
⎜⎜
⎝

0 ∗ 1
∗ 0 0
1 0 1

⎞
⎟⎟
⎠

Lemma 7.5. Any odd-hole and any graph in Figure 7.5 is a minimal A6-
obstruction.

K2 + K3 P bull butterfly house

dart gem W4 K2 ⊕ P3

Figure 7.5: Some minimal A6-obstructions.

Proof. Let G be either an odd-hole or a graph depicted in Figure 7.5. Since G
has an induced odd cycle, G is not a bipartite graph so, for any A6-partition
(A, B, C) of G, C is a nonempty set. In addition, it is clear that for any c ∈ C,
N[c] = C ∪ A, so N[c] induces a complete split graph, i.e., a {C4, P3}-free
graph, while VG \ N[c] is an independent set. It is a routine work to use the
previous observations to corroborate that G has no A6-partition. It is also an
straightforward exercise to check that any vertex-deleted subgraph G − v has
such a partition.

Along this section and the next chapter we will use the following notation.
Let G be a graph and let H be an induced subgraph of G on the vertex set
{v1, . . . , vk}. For each subset S of {1, . . . , k} we define VS to be the set of all
vertices in VG \ VH such that N(v) ∩ VH = {vj ∶ j ∈ S}, and VS to be the set
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of all vertices in VG \ VH such that N(v) ∩ VH = VH \ {vj ∶ j ∈ S}. If S is a
nonempty set, let us say S = {s1, . . . , st}, we will write Vs1,...,st

instead of VS.
Anytime, H will be an induced cycle or path, and it will be clear from the
context.

Lemma 7.6. Let G be a minimal A6-obstruction with a triangle C = (v1, v2, v3).
If G is not a graph mentioned in Lemma 7.5, then the following assertions hold
for any integer i ∈ {1, . . . , 4}:

1. V∅ is an independent set.

2. Vi is an independent set.

3. Vi is an independent set.

4. V∅ induces a complete split graph.

5. Vi is completely nonadjacent to V∅.

6. V∅ is completely nonadjacent to Vi.

7. Vi is completely adjacent to V∅.

Proof. We proceed by contradiction. The following assertions can be corrob-
orated in Figure 7.6: if V∅ is not an independent set, then G has a copy of
K2 + K3; if Vi is not an independent set, then G has the butterfly graph as
an induced subgraph; if Vi is not an independent set, then G has a copy of
K2 ⊕ P3; if V∅ does not induce a complete split graph, G has some of K2 ⊕ P3
or W4 as an induced subgraph.

Assertions below can be checked in Figure 7.7: if Vi is not completely
nonadjacent to V∅, then G has P as an induced subgraph; if V∅ is not completely
nonadjacent to Vi, then G has an induced subgraph isomorphic to K2 ⊕ P3; if
Vi is not completely adjacent to V∅, then G has a copy of K2 ⊕ P3.

Lemma 7.7. Let G be a minimal A6-obstruction with a triangle C = (v1, v2, v3).
If G is not a graph mentioned in Lemma 7.5 and V1 ≠ ∅, then:

1. V2 = V3 = ∅.

2. V2 = V3 = ∅.

3. V∅ is a clique.
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vi

vi+1 vi+2

K2 + K3

vi

vi+1 vi+2

butterfly

vi

vi+1 vi+2

K2 ⊕ P3
vi

vi+1 vi+2

K2 ⊕ P3

vi

vi+1 vi+2

W4

Figure 7.6: Cases 1 to 4 of Lemma 7.6.

vi

vi+1 vi+1

P

vi

vi+1 vi+1

K2 ⊕ P3

vi+2

vi vi+1

K2 ⊕ P3

Figure 7.7: Cases 5 to 7 of Lemma 7.6.

4. V∅ is completely nonadjacent to V∅.

5. (A, B, C) = ({v1} ∪ V1, V1 ∪ V∅, {v2, v3} ∪ V∅) is an A6-partition of G.

Proof. We proceed by contradiction. The following assertions can be corrob-
orated in Figure 7.8: if V2 ≠ ∅, then G has a copy of either the bull or the
house graph; if V2 ≠ ∅, G has either the dart or the gem graph as an induced
subgraph. By the symmetries of C3 we have that also V3 = V3 = ∅. If V∅

is not a clique, then G has a copy of the dart graph; if V∅ is not completely
nonadjacent to V∅, then G has a copy of either the bull or the house graph.

Item 5 follows from Lemma 7.6 an the first four items of this lemma.
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v1

v2

bull

v1

v2

house

v1

v2

dart

v1

v2

gem

v1

dart

v1

bull

v1

house

Figure 7.8: Cases of Lemma 7.7.

Lemma 7.8. Let G be a minimal A6-obstruction with a triangle C = (v1, v2, v3).
If G is not a graph mentioned in Lemma 7.5, V1 ≠ ∅ and Vi = ∅ for any
i ∈ {1, 2, 3}, then:

1. V2 = V3 = ∅.

2. V∅ is a clique.

3. V∅ is completely nonadjacent to V∅.

4. (A, B, C) = ({v1} ∪ V1, V∅, {v2, v3} ∪ V∅) is an A6-partition of G.

Proof. We proceed by contradiction. The following assertions can be corrobo-
rated in Figure 7.9. If V2 ≠ ∅, then G has a copy of either the gem graph or
W4, thus V2 = ∅ and by the symmetries of C3, V3 = ∅ too. If V∅ is not a clique,
then G has W4 as an induced subgraph; if V∅ is not completely nonadjacent
to V∅, then G has a copy of either the dart or the gem graph. Item 4 follows
from Lemma 7.6 and the first three items of this lemma.

Lemma 7.9. Let G be a complete split graph that is not complete graph, and
let M be the set of all vertices v of G such that there exists an induced path
(u, v, w) in G. Then, (K, S) = (M, VG \M) is the only complete split partition
of G.
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v1

v2
gem

v1

v2
W4

v1

W4

v1

dart

v1

gem

Figure 7.9: Cases of Lemma 7.8.

Proof. Let (K, S) be a complete split partition of G. Since G is not a complete
graph, G has at least two non-universal vertices u and w, which clearly belongs
to S. Therefore, for any v ∈ K, (u, v, w) is an induced path in G, so K ⊆ M .

Now, let v ∈ M , and let (u, v, w) be an induced path in G. Notice that
v is adjacent to any vertex x of G − v, otherwise G[{u, v, w, x}] would have
some of P3 or C4 as an induced subgraph, but that is impossible since G is
a complete split graph. Hence, v is a universal vertex of G, and therefore it
belongs to K because, due to G is not a complete graph, S has not universal
vertices of G. We conclude that M ⊆ K, and therefore K = M , so the result
follows.

Theorem 7.10. If G is a graph, then G admits an A6-partition if and only
if G is an F-free graph, where F is the family of all odd-holes and all graphs
depicted in Figure 7.5.

Proof. Let H be a minimal A6-obstruction. Notice that, by Lemma 7.5, it is
enough to prove that H belongs to F . Since H does not admit an A6-partition,
it is not a bipartite graph, so it has an odd-cycle as an induced subgraph. If
H has an induced odd-hole, we have finished, so let us assume that H has no
induced odd-hole, in which case H has a triangle C = (v1, v2, v3). Now, aiming
for a contradiction, suppose that H is not a graph in Figure 7.5. If V1 ≠ ∅,
we have from Lemma 7.7 that H has an A6-partition, which is impossible. By
the symmetries of C, the cases V2 ≠ ∅ and V3 ≠ ∅ are analogous, so we can
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assume that Vi = ∅ for any integer i, with i ∈ {1, 2, 3}. Now, if V1 ≠ ∅, if
follows form Lemma 7.8 that H has an A6-partition, what cannot occur. Again,
by the symmetries of C we can assume that Vi = ∅ for any i ∈ {1, 2, 3}.

At this point, we have that VH \ VC = V∅ ∪ V∅. Observe that, if V∅ is a
clique, each vertex of V∅ is adjacent to at most one vertex of V∅, otherwise H
has a copy of K2 ⊕P3 (see Figure 7.10). Moreover, there exists a vertex v ∈ V∅

such that V∅ is completely nonadjacent to V∅ \ {v}, or H would have the bull
graph as an induced subgraph as can be checked in Figure 7.10. But then, it is
clear that (A, B, C) = ({v}, V∅, VC ∪ V∅ \ {v}) is an A6-partition of H, which
is not possible by the election of H.

v1

v2 v3

K2 ⊕ P3

v1

v2 v3

bull

Figure 7.10: Some cases of Theorem 7.10.

v1

v2 v3

dart

v1

v2 v3

gem

v1

v2 v3

W4

Figure 7.11: Some cases of Theorem 7.10.

Thus, it must be the case that V∅ is not a clique. As can be verified in
Figure 7.11, V∅ is completely nonadjacent to the set M of all vertices v of
H[V∅] such that there exists an induced path (u, v, w) in H[V∅], otherwise H
would have a copy of the dart graph, the gem graph, or W4. But then, we have
from Lemma 7.9 that (A, B, C) = (V∅\M, V∅, VC ∪M) is an A6-partition of H,
which is absurd since H is an A6-obstruction by hypothesis. The contradiction
arose from assuming that H is not a graph in Figure 7.5, so it is.



Chapter 8

Pattern A7

This chapter is devoted to pattern A7 but, instead of characterizing the minimal
A7-obstructions, we will give the complete list of minimal A7-obstructions. We
will say that a partition (A, B, C) of the vertex set V of a graph G is an
A7-partition of G if and only if A is a stable set, B and C are cliques, A is
completely adjacent to B, and B is completely nonadjacent to C.

A7 =

⎛
⎜⎜
⎝

0 1 ∗
1 1 0
∗ 0 1

⎞
⎟⎟
⎠

The characterization of minimal A7-obstructions is much more difficult to
prove than any characterization given in Chapter 7, so we divided it in parts. We
prove that the next statements hold for a family F of minimal A7-obstructions,
concluding that F is the complete list of minimal A7-obstructions.

1. A minimal A7-obstruction with an induced C5 is in F .

2. A C5-free minimal A7-obstruction with an induced C4 is in F .

3. A {C4, C5}-free minimal A7-obstruction with an induced P5 is in F .

4. A {P5, C4, C5}-free minimal A7-obstruction with an induced P4 is in F .

5. A P4-free minimal A7-obstruction is in F .

Next lemma introduce the family F mentioned above.
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K1 + 2K2 K1 + C4 W4 2P3 W5 P6

C6 A X166 domino co-twin-house X170

X163 X58
K3,3 − e co-domino twin-house co-antenna

K1 ⊕ (K2 + P3) X170 X58 C6 K3,3 K2 + diamond

A K1 ⊕ P5 X166 W5 P6 K1 + P

2P3 K2 ⊕ 2K2 Y2 Y3

Figure 8.1: Minimal A7-obstructions.

Lemma 8.1. The graphs depicted in Figure 8.1 are minimal A7-obstructions.

Proof. It is a routine to verify that no graph G in Figure 8.1 admits an A7-
partition, but any vertex-deleted subgraph does. Now, we describe a way to
verify that G is an A7-obstruction. Clearly, G has a copy of 2K2, C4 or C5,
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so it is not a split graph. Therefore, if G has an A7-partition (A, B, C), B
cannot be an empty set. In addition, since B is a clique and it is completely
adjacent to A, for any b ∈ B, A ∪ B ⊆ N[b], so V \ N[b] ⊆ C and then
V \ N[b] must be a clique. Also, since B is completely nonadjacent to C, for
any b ∈ B, N[b]∩C = ∅, so N[b] ⊆ A∪B, in particular, since A∪B induces
a complete split graph, N[b] must induce a {P3, C4}-free graph. From the
previous observations, one can check that no vertex of G belongs to B, and
therefore G does not admit an A7-partition.

As we did in Section 7.2, for the rest of this chapter we use the following
notation. Given a graph G, a fixed induced subgraph H of G with vertex set
{v1, . . . , vk}, and a subset S of {1, . . . , k}, we denote by VS and VS the sets

{u ∈ VG \ VH ∶ N(v) ∩ VH = {vj ∶ j ∈ S}},

and
{u ∈ VG \ VH ∶ N(v) ∩ VH = {vj ∶ j ∈ {1, . . . , k} \ S}},

respectively. To lighten up the notation, if S = {s1, . . . , st} is not an empty set,
we write Vs1,...,st

instead of VS.

8.1 Obstructions with a C5

In this section we prove that any minimal A7-obstruction that has an induced
cycle of length five is a graph in Figure 8.1.

Lemma 8.2. Let G be a minimal A7-obstruction containing an induced 5-cycle,
C = (v1, v2, v3, v4, v5, v1). If G is not a graph in Figure 8.1 the following state-
ments are satisfied for any i ∈ {1, . . . , 5} (where the subscripts are considered
modulo 5):

1. Vi is an independent set.

2. Vi,i+1 is a clique.

3. Vi,i+2 is an independent set.

4. Vi,i+1 is a clique.

5. Vi,i+3 is an independent set.

6. Vi is a clique.

Proof. The following facts can be easily checked in Figure 8.2:

1. If Vi is not an independent set, then G contains a copy of K1 + 2K2.
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2. If Vi,i+1 is not a clique, then G contains a copy of X170.

3. If Vi,i+2 is not an independent set, then G contains a copy of K1 + 2K2.

4. If Vi,i+1 is not a clique, then G contains a copy of W4.

5. If Vi,i+3 is not an independent set, then G contains a copy of X170.

6. If Vi is not a clique, then G contains a copy of W4.

vi

K1 + 2K2

vi+1 vi

X170

vi

vi+2

K1 + 2K2

vi+1 vi

W4

vi+3 vi

X170

vi

W4

Figure 8.2: Cases for Lemma 8.2.

Lemma 8.3. Let G be a minimal A7-obstruction containing an induced 5-cycle,
C = (v1, v2, v3, v4, v5, v1). If G is not a graph in Figure 8.1, and i ∈ {1, . . . , 5},
the following pairs of sets are completely adjacent (where the subscripts are
considered modulo 5):

1. Vi with Vi+2,i+3.

2. Vi,i+1 with Vi+3,i+4.

3. Vi,i+1 with Vi+3.

4. Vi+1,i+2 with Vi,i+3.

5. Vi,i+1 with Vi+1,i+2.

6. Vi,i+1 with Vi.
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By symmetry, also the pairs (Vi,i+1, Vi+2,i+3) and (Vi,i+1, Vi+1) are completely
adjacent sets of vertices.

Proof. The following facts can be checked in Figure 8.3.

1. If Vi is not completely adjacent to Vi+2,i+3, then G contains a copy of W5.

2. If Vi,i+1 is not completely adjacent to Vi+3,i+4, then G contains a copy of
X58.

3. If Vi,i+1 is not completely adjacent to Vi+3, then G contains a copy of X58.

4. If Vi+1,i+2 is not completely adjacent to Vi,i+3, then G contains a copy of
the co-domino graph.

5. If Vi,i+1 is not completely adjacent to Vi+1,i+2, then G contains a copy of
X58.

6. If Vi,i+1 is not completely adjacent to Vi, then G contains a copy of W4.

vi

vi+3 vi+2

W5

vi

vi+4

vi+3

vi+1

X58

vi

vi+3

vi+1

X58

vivi+3

vi+2 vi+1

co-domino

vi

vi+2 vi+1

X58

vivi+1

W4

Figure 8.3: Cases for Lemma 8.3.
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Lemma 8.4. Let G be a minimal A7-obstruction containing an induced 5-cycle,
C = (v1, v2, v3, v4, v5, v1). If G is not a graph in Figure 8.1, and i ∈ {1, . . . , 5},
the following pairs of sets are completely nonadjacent (where the subscripts are
considered modulo 5):

1. Vi with Vi,i+2.

2. Vi with Vi+1,i+2.

3. Vi with Vi+1,i+4.

4. Vi,i+1 with Vi,i+1.

5. Vi,i+2 with Vi,i+3.

6. Vi,i+2 with Vi+1,i+4.

7. Vi+1,i+2 with Vi+1,i+4.

8. Vi,i+1 with Vi+3,i+4.

9. Vi,i+1 with Vi+3.

By symmetry, also the pairs (Vi, Vi,i+3), (Vi, Vi+3,i+4), (Vi,i+2, Vi+1,i+3), and
(Vi+1,i+2, Vi+2,i+4) are pairs of completely nonadjacent sets of vertices.

Proof. The following facts can be checked in Figure 8.4.

1. Vi is completely nonadjacent with Vi,i+2, otherwise G contains a copy of
K1 + 2K2.

2. Vi is completely nonadjacent with Vi+1,i+2, otherwise G contains a copy
of C6.

3. Vi is completely nonadjacent with Vi+1,i+4, otherwise G contains a copy
of the co-antenna graph.

4. Vi,i+1is completely nonadjacent with Vi,i+1, otherwise G contains a copy
of the co-domino graph.

5. Vi,i+2 is completely nonadjacent with Vi,i+3, otherwise G contains a copy
of A.

6. Vi,i+2 is completely nonadjacent with Vi+1,i+4, otherwise G contains a copy
of X58.

7. Vi+1,i+2 is completely nonadjacent with Vi+1,i+4, otherwise G contains a
copy of X58.

8. Vi,i+1 is completely nonadjacent with Vi+3,i+4, otherwise G contains a copy
of the co-domino graph.
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9. Vi,i+1 is completely nonadjacent with Vi+3, otherwise G contains a copy
of W4.

vi

vi+2
K1 + 2K2

vi

vi+2

vi+1

C6

vi

vi+4 vi+1

co-antenna

vi

vi+1

co-domino

vi

vi+3 vi+2
A

vi

vi+4

vi+2

vi+1

X58

vi+4

vi+2

vi+1

X58

vi

vi+4

vi+3

vi+1

co-domino

vi

vi+3

vi+1

W4

Figure 8.4: Cases for Lemma 8.4.

Lemma 8.5. Let G be a minimal A7-obstruction containing an induced 5-cycle,
C = (v1, v2, v3, v4, v5, v1). If G is not a graph in Figure 8.1, and i ∈ {1, . . . , 5},
the following statements are satisfied (where the subscripts are considered modulo
5):

1. If Vi ≠ ∅, then Vi+1 and Vi+2 are empty sets. By symmetry, Vi+3 and Vi+4
are empty sets too.

2. If Vi ≠ ∅, then Vi,i+1 and Vi+1,i+2 are empty sets. By symmetry, Vi,i+4
and Vi+3,i+4 are empty sets too.

3. If Vi ≠ ∅, then Vi+1,i+3 and Vi+1,i+4 are empty sets. By symmetry, Vi+2,i+4
is also an empty set.

4. If Vi ≠ ∅, then Vi+1,i+2 is an empty set. By symmetry, Vi+3,i+4 is also an
empty set.

5. If Vi ≠ ∅, then Vi,i+2 and Vi+1,i+3 are empty sets. By symmetry, Vi,i+3

and Vi+2,i+4 are empty sets too.
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6. If Vi ≠ ∅, then Vi+1 and Vi+2 are empty sets. By symmetry, Vi+4 and Vi+3
are empty sets too.

7. If Vi,i+1 ≠ ∅, then Vi+1,i+2 and Vi+2,i+3 are empty sets.

8. If Vi,i+1 ≠ ∅, then Vi+1,i+4 and Vi+2,i+4 are empty sets. By symmetry,
Vi,i+2 is also an empty set.

9. If Vi,i+1 ≠ ∅, then Vi,i+4 is an empty set. By symmetry, Vi+1,i+2 is also
an empty set.

10. If Vi,i+1 ≠ ∅, then Vi,i+3 and Vi+1,i+4 are empty sets. By symmetry, Vi+1,i+3

and Vi,i+2 are empty sets.

11. If Vi,i+1 ≠ ∅, then Vi and Vi+4 are empty sets. By symmetry, Vi+1 and
Vi+2 are empty sets.

12. If Vi,i+3 ≠ ∅, then Vi,i+2 and Vi,i+3 are empty sets. By symmetry, Vi+1,i+3
is also an empty set.

13. If Vi,i+3 ≠ ∅, then Vi,i+1 is an empty set. By symmetry, Vi+2,i+3 is an
empty set.

14. If Vi,i+3 ≠ ∅, then Vi+1,i+4 and Vi,i+2 are empty sets.

15. If Vi,i+3 ≠ ∅, then Vi and Vi+1 are empty sets. By symmetry, Vi+3 and
Vi+2 are empty sets too.

16. If Vi ≠ ∅, then Vi+1,i+3 and Vi+1,i+4 are empty sets. By symmetry, Vi+2,i+4
is also an empty set.

17. If Vi ≠ ∅, then Vi+1,i+2 is an empty set. By symmetry, Vi+3,i+4 is also an
empty set.

18. If Vi ≠ ∅ , then Vi+1 and Vi+2 are empty sets. By symmetry, Vi+4 and
Vi+3 are empty sets too.

19. If Vi,i+2 ≠ ∅, then Vi+1,i+3 is an empty set.

20. If Vi+1,i+2 ≠ ∅, then Vi,i+3 is an empty set.

21. If Vi,i+1 and Vi+1,i+2 are both nonempty sets, then Vi+2,i+3 = ∅.
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Proof. 1. If Vi+1 is not empty, then G contains a copy of either K1 + 2K2 or
P6; if Vi+2 is not empty, then G contains a copy of either P6 or C6 (see
Figure 8.5).

vi

vi+1

K1 + 2K2

vi

vi+1

P6

vi

vi+2

P6

vi

vi+2

C6

Figure 8.5: Cases for part 1 of Lemma 8.5.

2. If Vi,i+1 is not empty, then G contains a copy of either K1 + 2K2 or P6;
if Vi+1,i+2 is not empty, then G contains a copy of either P6 or C6 (see
Figure 8.6).

vi

vi+1

K1 + 2K2

vi

vi+1

P6

vi

vi+1

P6

vi

vi+1

C6

Figure 8.6: Cases for part 2 of Lemma 8.5.

3. If Vi+1,i+3 is not empty, then G contains a copy of either K1 + C4 or the
domino graph; if Vi+1,i+4 is not empty, then G contains a copy of either
W5 or K1 + C4 (see Figure 8.7).

4. If Vi+1,i+2 is not an empty set, then G contains a copy of either K1 + 2K2
or X166 (see Figure 8.8).

5. If Vi,i+2 is not an empty set, then G contains a copy of K1 +C4; if Vi+1,i+3
is not an empty set, then G contains a copy of either K1 + C4 or A (see
Figure 8.9).
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vi

vi+3

vi+1

K1 + C4

vi

vi+3

vi+1

domino

vi

vi+4 vi+1

W5

vi

vi+4 vi+1

K1 + C4

Figure 8.7: Cases for part 3 of Lemma 8.5.

vi

vi+2

vi+1

K1 + 2K2

vi

vi+2

vi+1

X166

Figure 8.8: Cases for part 4 of Lemma 8.5.

vi

vi+2

vi+1

K1 + C4

vi

vi+2

vi+1

K1 + C4

vi

vi+3

vi+1

K1 + C4

vi

vi+3

vi+1

A

Figure 8.9: Cases for Part 5 of Lemma 8.5.

6. If Vi+1 is not an empty set, then G contains a copy of either X58 or
K1 ⊕ P5; if Vi+2 is not an empty set, then G contains a copy of either
K1 + C4 or X58 (see Figure 8.10).

7. If Vi+1,i+2 is not empty, then G contains a copy of either P6 or C6; if
Vi+2,i+3 is not empty, then G contains a copy of either X166 or K1 + C4
(see Figure 8.11).

8. If Vi+1,i+4 is not an empty set, then G contains a copy of either X58 or
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vi

vi+1

X58

vi

vi+1

K1 ⊕ P5

vi

vi+2

K1 + C4

vi

vi+2

X58

Figure 8.10: Cases for part 6 of Lemma 8.5.

vi+2

vi+1 vi

P6

vi+2

vi+1 vi

C6

vi+3

vi+2

vi+1 vi

X166

vi+3

vi+2

vi+1 vi

K1 + C4

Figure 8.11: Cases for part 7 of Lemma 8.5.

K1 + C4; if Vi+2,i+4 is not an empty set, then G contains a copy of either
K1 + C4 or the domino graph (see Figure 8.12).

vi+1 vi

vi+4

X58

vi+1 vi

vi+4

K1 + C4

vi+2

vi+1 vi

vi+4

K1 + C4

vi+2

vi+1 vi

vi+4

domino

Figure 8.12: Cases for part 8 of Lemma 8.5.

9. If Vi,i+4 is not an empty set, then G contains a copy of either the co-twin-
house or X58 (see Figure 8.13).

10. If Vi,i+3 is not an empty set, then G contains a copy of either K1 + C4 or
X58; if Vi+1,i+4 is not an empty set, then G contains a copy of either the
co-domino graph or K1 + C4 (see Figure 8.14).
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vi+1 vi

vi+4

co-twin-house
vi+1 vi

vi+4

X58

Figure 8.13: Cases for part 9 of Lemma 8.5.

vi+3

vi+1 vi

K1 + C4

vi+3

vi+1 vi

X58

vi+1 vi

vi+4

co-domino
vi+1 vi

vi+4

K1 + C4

Figure 8.14: Cases for part 10 of Lemma 8.5.

11. If Vi is not an empty set, then G contains a copy of either X58 or K1 ⊕P5;
if Vi+4 is not an empty set, then G contains a copy of either the co-twin-
house or the co-antenna graph (see Figure 8.15).

vi+1 vi

X58

vi+1 vi

K1 ⊕ P5

vi+1 vi

vi+4

co-twin-house

vi+1 vi

vi+4

co-antenna

Figure 8.15: Cases for part 11 of Lemma 8.5.

12. If Vi,i+2 is not an empty set, then G contains a copy of either X58 or the
twin-house graph; if Vi,i+3 is not an empty set, then G contains a copy of
either the domino graph or K3,3 − e (see Figure 8.16).

13. If Vi,i+1 is not an empty set, then G contains a copy of either X163 or X58
(see Figure 8.17).
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vi+3

vi+2

vi

X58

vi+3

vi+2

vi

twin-house

vi+3 vi

domino

vi+3 vi

K3,3 − e

Figure 8.16: Cases for part 12 of Lemma 8.5.

vi+3

vi+1

vi

X163

vi+3

vi+1

vi

X58

Figure 8.17: Cases for part 13 of Lemma 8.5.

14. If Vi+1,i+4 is not an empty set, then G contains a copy of either the
co-antenna graph or K3,3−e; if Vi,i+2 is not an empty set, then G contains
a copy of either C6 or P6 (see Figure 8.18).

vi+4

vi+3

vi+1

vi

co-antenna

vi+4

vi+3

vi+1

vi

K3,3 − e

vi+3

vi+2

vi

C6

vi+3

vi+2

vi

P6

Figure 8.18: Cases for part 14 of Lemma 8.5.

15. If Vi is not an empty set, then G contains a copy of either P6 or X166; if
Vi+1 is not an empty set, then G contains a copy of either C6 or P6 (see
Figure 8.19).

16. If Vi+1,i+3 is not an empty set, then G contains a copy of either H or H;
if Vi+1,i+4 is not an empty set, then G contains a copy of either H or H
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vi+3 vi

P6

vi+3 vi

X166

vi+3

vi+1

vi

C6

vi+3

vi+1

vi

P6

Figure 8.19: Cases for part 15 of Lemma 8.5.

(see Figure 8.20).

vi

vi+3

vi+1

X58

vi

vi+3

vi+1

W4

vi

vi+4 vi+1

Y3

vi

vi+4 vi+1

W5

Figure 8.20: Cases for part 16 of Lemma 8.5.

17. If Vi+1,i+2 is not an empty set, then G contains a copy of either A or
K1 + P (see Figure 8.21).

vi

vi+2

vi+1

A

vi

vi+2

vi+1

K1 + P

Figure 8.21: Cases for part 17 of Lemma 8.5.

18. If Vi+1 is not empty, then G contains a copy of either W4 or P6; if Vi+2 is
not empty, then G contains a copy of either P6 or W4 (see Figure 8.22).
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vi

vi+1

W4

vi

vi+1

P6

vi

vi+2

P6

vi

vi+2

W4

Figure 8.22: Cases for part 18 of Lemma 8.5.

19. If Vi+1,i+3 is not empty, then G contains a copy of either A or K3,3 − e
(see Figure 8.23).

vi+3

vi+2 vi+1

vi

A

vi+3

vi+2 vi+1

vi

K3,3 − e

Figure 8.23: Cases for part 19 of Lemma 8.5.

20. If Vi,i+3 is not an empty set, then G contains a copy of either X170 or W4
(see Figure 8.24).

vi

vi+1

vi+2 vi+3

X170

vi

vi+1

vi+2 vi+3

W4

Figure 8.24: Cases for part 20 of Lemma 8.5.

21. Considering Lemma 8.3 and Lemma 8.4, we have that if Vi+2,i+3 is not
empty, then G contains a copy of K2 ⊕ 2K2 (see Figure 8.25).
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vi+3

vi+2 vi+1

vi

K2 ⊕ 2K2

Figure 8.25: Cases for part 21 of Lemma 8.5.

Lemma 8.6. Let G be a minimal A7-obstruction different from the graphs in
Figure 8.1 and such that it contains an induced 5-cycle, C = (v1, v2, v3, v4, v5, v1).
Suppose that some of the sets V1, V3,4, V2,5, or V1 is not empty. Then, the
following statements hold.

1. Any vertex of G − VC lies in some of V1, V3,4, V1,3, V1,4, V3,4, V1,2, V1,5, V2,5,
or V1.

2. V3,4 is completely adjacent to V1,3 ∪ V1,4.

Proof. Since G is a minimal A7-obstruction different from the graphs depicted
in Figure 8.1, G is a {W5, W5}-free graph, so V∅ = V∅ = ∅. First, suppose that
V1 ≠ ∅.

1. By Item 1 of Lemma 8.5, V2 = V3 = V4 = V5 = ∅.

2. By Item 2 of Lemma 8.5, V1,2 = V1,5 = V2,3 = V4,5 = ∅.

3. By Item 3 of Lemma 8.5, V2,4 = V2,5 = V3,5 = ∅.

4. By Item 4 of Lemma 8.5, V2,3 = V4,5 = ∅.

5. By Item 5 of Lemma 8.5, V1,3 = V2,4 = V3,5 = V1,4 = ∅.

6. By Item 6 of Lemma 8.5, V2 = V5 = V3 = V4 = ∅.

Thus, any vertex of G − VC lies in some of V1, V3,4, V1,3, V1,4, V3,4, V1,2, V1,5, V2,5,
or V1. In a similar way, Items 2 and 7 to 11 of Lemma 8.5 imply the same
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result when V3,4 ≠ ∅, Items 5, 10 and 12 to 15 do the same if V2,5 ≠ ∅, and
Items 6, 11 and 15 to 18 allow us to conclude the same in the case V1 ≠ ∅.

For the second statement we only need to check that V3,4 is completely
adjacent to V1,3, because from here it follows by symmetry that V3,4 is completely
adjacent to V1,4. This can be done using Lemmas 8.3 and 8.4 as follows (see
Figure 8.26). Aiming for a contradiction, suppose that there exist nonadjacent
vertices u ∈ V3,4 and v ∈ V1,4: if V1 ≠ ∅, G contains a copy of X170; if V3,4 ≠ ∅,
G contains a copy of either X166 or the co-domino graph; if V2,5 ≠ ∅, G contains
a copy of K1 + C4; if V1 ≠ ∅, G contains a copy of either K1 + C4 or X58.

v1

v2

v3 v4

v5

X170

v1

v2

v3 v4

v5

X166

v1

v2

v3 v4

v5

co-domino
v1

v2

v3 v4

v5

K1 + C4

v1

v2

v3 v4

v5

K1 + C4

v1

v2

v3 v4

v5

X58

Figure 8.26: Cases for Lemma 8.6.

The following useful observation follows directly from Lemmas 8.2 to 8.4

Remark 8.7. Let G be a minimal A7-obstruction having an induced 5-cycle,
C = (v1, v2, v3, v4, v5, v1). The following statements hold.

1. The set A = {v2, v5} ∪ V1 ∪ V1,3 ∪ V1,4 ∪ V2,5 is an independent set.

2. The set B = {v1} ∪ V3,4 is a clique.

3. The set C = {v3, v4} ∪ V3,4 ∪ V1,2 ∪ V1,5 ∪ V1 is a clique.

4. B is completely nonadjacent to C.
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5. A is completely adjacent to B \ V3,4.

6. A \ (V1,3 ∪ V1,4) is completely adjacent to B.

Therefore, in order for (A, B, C) to be an A7-partition of G[A ∪ B ∪ C], we
only need to check that V3,4 is completely adjacent to V1,3 ∪ V1,4.

Lemma 8.8. Let G be a minimal A7-obstruction. If G has an induced 5-cycle,
then G is isomorphic to some graph in Figure 8.1.

Proof. Aiming for a contradiction, assume that there exists a minimal A7-
obstruction G with an induced C5, C = (v1, v2, v3, v4, v5, v1), and different from
the graphs in Figure 8.1. Since G does not admit an A7-partition, we have that
VG \ VC ≠ ∅. Notice that V∅ = V∅ = ∅, otherwise G would contain a copy of
either W5 or its complement.

Case 1. Let us suppose that some of V1, V3,4, V2,5, or V1 is not an empty
set. By Lemma 8.6 we have that any vertex of G − VC lies in some of
V1, V3,4, V1,3, V1,4, V3,4, V1,2, V1,5, V2,5, or V1. But in such a case it follows from
Remark 8.7 and Lemma 8.6 that

(A, B, C) = ({v2, v5}∪V1∪V1,3∪V1,4∪V2,5, {v1}∪V3,4, {v3, v4}∪V3,4∪V1,2∪V1,5∪V1)

is an A7-partition of G, contradicting that G is an A7-obstruction.
Case 2. If Case 1 does not occur, then V1 = V3,4 = V2,5 = V1 = ∅. Moreover,

by the symmetries of C5, we can assume that any vertex of G − VC lies in a set
of the the form Vi,i+2 or Vi,i+1 for some i ∈ {1, . . . , 5}, where the subscripts are
considered modulo 5. Notice that, from Item 19 of Lemma 8.5, we have that
for some i ∈ {1, . . . , 5}, Vi+1,i+3 = Vi+2,i+4 = Vi+1,i+4 = ∅.

Now, if Vi,i+1 = ∅ for every integer i, 1 ≤ i ≤ 5, we can assume without loss
of generality that VG \ VC ⊆ V1,3 ∪ V1,4, but then it follows from Remark 8.7
that

(A, B, C) = ({v2, v5} ∪ V1,3 ∪ V1,4, {v1}, {v3, v4})

is an A7-partition of G, in contradiction with our hypotheses. Thus Vi,i+1 ≠ ∅
for some subscript i.

Case 2.1. Suppose that Vi,i+1 and Vi+2,i+3 are both nonempty sets for some
integer i, so by our previous observations Vi+1,i+2 = ∅; assume i = 1 without
loss of generality. By Item 20 of Lemma 8.5, V3,5 and V2,5 are both empty sets.
In addition, from Item 19 of Lemma 8.5, some of V2,4 or V1,3 is empty, and by
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symmetry we can assume without loss of generality that V2,4 = ∅. Notice that
V1,3 is completely adjacent to V3,4, otherwise G would contain either K1 + 2K2
or X170 as an induced subgraph as can be verified in Figure 8.27.

v1

v2

v3 v4

K1 + 2K2

v1

v2

v3 v4

X170

Figure 8.27: Cases for part 2.1 of Lemma 8.8.

Also notice that, by Item 20 of Lemma 8.5, V1,3 and V4,5 cannot be simulta-
neously nonempty sets, so we have the following cases.

Case 2.1.1. Assume that V1,3 ≠ ∅, so V4,5 = ∅. We claim that in this case
V1,4 is completely adjacent to V3,4, otherwise G would contain a copy of X170,
as can be verified in Figure 8.28.

v1

v3 v4

X170

Figure 8.28: Cases for part 2.1.1 of Lemma 8.8.

But then, we have from Remark 8.7 that

(A, B, C) = ({v2, v5} ∪ V1,3 ∪ V1,4, {v1} ∪ V3,4, {v3, v4} ∪ V1,2 ∪ V1,5)

is an A7-partition of G, which cannot be.
Case 2.1.2. We assume that V1,3 = ∅. Aiming for a contradiction, suppose

that V1,4 is completely adjacent to neither V3,4 or V1,2. If there are vertices
u ∈ V1,4, v ∈ V3,4 and w ∈ V1,2 such that uv, uw ∉ E, then G would have X166



198 8. Pattern A7

as an induced subgraph. Otherwise, there exist vertices u1, u2 ∈ V1,4, v ∈ V3,4

and w ∈ V1,2 such that u1w, u2v ∉ E and u1v, u2w ∈ E, but in such a case G
would contain a copy of the co-domino graph (see Figure 8.29). Therefore, we
have that V1,4 is completely adjacent to some of V3,4 or V1,2; by symmetry we
assume without loss of generality that V1,4 is completely adjacent to V3,4.

v1

v3 v4

X166

v1

v3 v4

co-domino

Figure 8.29: Cases for part 2.1.2 of Lemma 8.8.

Observe that it is impossible for V1,4 to be completely adjacent to V3,4 ∪V1,2:
in such a case, due to V1,2 ≠ ∅ and V3,4 ≠ ∅, we have from Item 21 of Lemma 8.5
that some of V1,5 or V4,5 is an empty set, and by symmetry we can suppose
that V4,5 = ∅, but then, by Remark 8.7,

(A, B, C) = ({v2, v5} ∪ V1,4, {v1} ∪ V3,4, {v3, v4} ∪ V1,2 ∪ V1,5)

is an A7-partition of G, an absurd.
Thus, we know that V1,4 is not completely adjacent to V3,4 ∪ V1,2, and V1,4

is completely adjacent to V3,4, so V1,4 is not completely adjacent to V1,2. Notice
that in such a case, V4,5 = ∅, otherwise G would contain a copy of either
K1 + 2K2 or the co-domino graph (see Figure 8.30). But then, again

(A, B, C) = ({v2, v5} ∪ V1,4, {v1} ∪ V3,4, {v3, v4} ∪ V1,2 ∪ V1,5)

is an A7-partition of G, which is impossible.
Case 2.2. In this case we assume that there is no integer i such that Vi,i+1

and Vi+2,i+3 are both nonempty sets. By Item 21 of Lemma 8.5 we have that
there is an integer i such that Vi+1,i+2 = Vi+2,i+3 = Vi+3,i+4 = ∅; assume i = 1. In
addition, we previously proved that, if Vi,i+1 = ∅ for every integer i, 1 ≤ i ≤ 5,
then G admits an A7-partition; then we assume without loss of generality that
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v1

v3 v4

v5

K1 + 2K2

v1

v3 v4

v5

co-domino

Figure 8.30: More cases for part 2.1.2 of Lemma 8.8.

V1,2 ≠ ∅. Observe that, by Item 20 of Lemma 8.5, V3,5 = ∅ and, either V1,5 = ∅
or V2,4 = ∅.

Let us assume first that V1,5 ≠ ∅, in which case V2,4 = ∅. Observe that
V2,5 = ∅, or G contains some of Y2, X170 or W4 as can be checked in Figure 8.31.
But then, by Remark 8.7,

(A, B, C) = ({v2, v5} ∪ V1,3 ∪ V1,4, {v1}, {v3, v4} ∪ V1,2 ∪ V1,5)

is an A7-partition of G.

v1

v2 v5

Y2

v1

v2 v5

X170

v1

v2 v5

W4

Figure 8.31: Cases for part 2.2 of Lemma 8.8.

Thus, we must suppose that V1,5 = ∅. Notice that by Item 19 of Lemma 8.5,
either V1,3 = ∅ or V2,5 ∪ V2,4 = ∅. If V1,3 ≠ ∅, it follows from Remark 8.7 that

(A, B, C) = ({v2, v5} ∪ V1,3 ∪ V1,4, {v1}, {v3, v4} ∪ V1,2)

is an A7-partition of G. Thus, V1,3 = ∅ and again, by Item 19 of Lemma 8.5,
some of V2,5 or V1,4 is an empty set. If V1,4 = ∅, by increasing in 1 the subscripts
of each set, Remark 8.7 yields

(A, B, C) = ({v1, v3} ∪ V2,5 ∪ V2,4, {v2}, {v4,5 } ∪ V1,2)
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is an A7-partition of G, so we can suppose that V1,4 ≠ ∅ and then, V2,5 = ∅.
If V2,4 = ∅, we have from Remark 8.7 that

(A, B, C) = ({v2, v5} ∪ V1,4, {v1}, {v3, v4} ∪ V1,2)

is an A7-partition of G, so we can suppose that V2,4 ≠ ∅. Nevertheless, in
such a case, we have that V1,2 is completely adjacent to V1,4 ∪ V2,4, or G would
contain either X58 or X170 as an induced subgraph (see Figure 8.32).

v1

v2

v4

X58

v1

v2

v4

X170

Figure 8.32: More cases for part 2.2 of Lemma 8.8.

But then, by increasing the subscripts by 3, Remark 8.7 implies that

(A, B, C) = ({v3, v5} ∪ V1,4 ∪ V2,4, {v4} ∪ V1,2, {v1, v2})

is an A7-partition of G.
Since we have made an exhaustive verification of cases, and we obtain in

each of them that G either contains an copy of a graph in Figure 8.1 or it has
an A7-partition, we conclude that the only minimal A7-obstructions with an
induced 5-cycle are those depicted in Figure 8.1.

8.2 C5-free obstructions with a C4

Now, we prove that any C5-free minimal A7-obstruction with an induced cycle
on four vertices is a graph in Figure 8.1.

Lemma 8.9. Let G be a minimal A7-obstruction containing an induced 4-cycle,
C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1 the following statements
are satisfied for any i ∈ {1, . . . , 4} (where the subscripts are considered modulo
4):
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1. Vi induces both, a cluster and a complete multipartite graph, and hence,
Vi is either an independent set or a clique.

2. Vi,i+1 is a clique.

3. Vi,i+2 is an independent set.

4. Vi is a clique.

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.33: if Vi is not a cluster or a complete multipartite graph, G contains
a copy of either 2P3 or K1 + 2K2, respectively; if Vi,i+1 is not a clique, G has
the twin-house graph as an induced subgraph; if Vi,i+2 is not an independent
set, G has an induced subgraph isomorphic to K2 + diamond; if Vi is not a
clique, G has W4 as an induced subgraph.

vi

2P3

vi

K1 + 2K2

vi vi+1

twin-house

vi

vi+2

K2 + diamond

vi

W4

Figure 8.33: Cases of Lemma 8.9.

Lemma 8.10. Let G be a minimal A7-obstruction containing an induced 4-cycle,
C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1, and i ∈ {1, . . . , 4},
the following pairs of sets are completely adjacent (where the subscripts are
considered modulo 4):

1. Vi+1 with Vi,i+1.

2. Vi with Vi+2.

3. Vi,i+1 with Vi+3.

By symmetry, also the following pairs of sets are completely adjacent: (Vi, Vi,i+1),
and (Vi,i+1, Vi+2).
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Proof. We proceed by contradiction.The following facts can be verified in
Figure 8.34: if Vi+1 is not completely adjacent to Vi,i+1, then G has a copy of
X58; if Vi is not completely adjacent to Vi+2, G has K1 + C4 as an induced
subgraph; if Vi,i+1 is not completely adjacent to Vi+3, G has an induced graph
isomorphic to X166.

vi vi+1

X58

vi

vi+2

K1 + C4

vi

vi+3

vi+1

X166

Figure 8.34: Cases of Lemma 8.10.

Lemma 8.11. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1, and i ∈

{1, . . . , 4}, the following pairs of sets are completely nonadjacent (where the
subscripts are considered modulo 4):

1. Vi,i+1 with Vi+1.

2. Vi with Vi+2.

3. Vi,i+1 with Vi+3.

4. Vi with Vi+2.

By symmetry, also the following pairs of sets are completely nonadjacent:
(Vi,i+1, Vi), and (Vi, Vi+2,i+3).

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.35: if there is an edge from Vi,i+1 to Vi+1, G has P6 as an induced
subgraph; if there is an edge from Vi to Vi+2, G has W4 as an induced subgraph;
if there is an edge from Vi,i+1 to Vi+3, or from Vi to Vi+2, then G has an induced
C5.

Lemma 8.12. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not any graph in Figure 8.1 the following
statements are satisfied:
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vi vi+1

P6
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vi+2

W4

vi

vi+3

vi+1

C5

vi

vi+2

C5

Figure 8.35: Cases of Lemma 8.11.

1. V1,3 is completely adjacent to either V3 or V1.

2. V1,3 is completely nonadjacent to either V1 or V3.

3. If V1,3 is not completely adjacent to V3, then V1,3 is completely nonadjacent
to V3.

4. If V3,4 is not completely adjacent to V1,3, then V3 is completely adjacent
to V1,3.

Proof. The following facts from Lemmas 8.9 and 8.11 are implicitly used in
this proof:

1. V1 is completely non adjacent to V3.

2. V1,3 is an independent set.

3. V1 is completely non adjacent to V3.

We proceed by contradiction. Assertions listed below can be verified in
Figure 8.36.

1. Assume that V1,3 is completely adjacent to neither V3 or V1. If there
exists a vertex u ∈ V1,3 that is completely adjacent to neither V3 or V1,
then G has a copy of K1 + C4, otherwise there exist vertices u, v ∈ V1,3,
x ∈ V1 and y ∈ V3 such that ux, vy ∉ E, u is completely adjacent to V3,
and v is completely adjacent to V1, but then G has the co-domino graph
as an induced subgraph.

2. Assume that there are edges from V1,3 to V1 and from V1,3 to V3. If there
exist vertices u ∈ V1,3, x ∈ V1, and y ∈ V3, such that ux, uy ∈ E, then
G has a copy of the co-antenna graph; otherwise, there exist vertices
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u, v ∈ V1,3, x ∈ V1, and y ∈ V3, such that ux, vy ∈ E, u is completely
nonadjacent to V3, and v is completely nonadjacent to V1, but in such a
case G has the co-domino graph as an induced subgraph.

3. Suppose that V1,3 is not completely adjacent to V3, and let u ∈ V1,3 and
v ∈ V3 be nonadjacent vertices. Assume that there is an edge from V1,3
to V3. If there is an edge from u to a vertex x ∈ V3, then G has a copy of
either the co-domino graph or C6, depending on whether v is adjacent to
x. Otherwise, u is completely nonadjacent to V3 and there exist adjacent
vertices x ∈ V3 and y ∈ V1,3; notice that we can assume that y is adjacent
to v, or we are in analogous case to the previous one. Nevertheless, in
this case G has a copy of the co-antenna graph, or X170, depending on
whether v is adjacent to x.

4. If we assume that V3,4 is not completely adjacent to V1,3, then V3 is
completely adjacent to V1,3, otherwise G has either X58 or X170 as an
induced subgraph.

v1

v3

K1 + C4

v1

v3

co-domino

v1

v3

co-antenna

v1

v3

co-domino

v1

v3

co-domino
v1

v3

C6

v1

v3

co-antenna

v1

v3

X170

v1

v4 v3

X58

v1

v4 v3

X170

Figure 8.36: Counterexamples.

Lemma 8.13. Let G be a minimal A7-obstruction containing an induced 4-
cycle, C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1 and V1 ≠ ∅,
then:
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1. V2 = ∅.

2. V2,4 = ∅.

3. V2 = ∅.

By symmetry also V4 = V4 = ∅.

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.37: if V2 ≠ ∅, then G has a copy of either A or the domino graph; if
V2,4 ≠ ∅, G has either K1 + C4 or K3,3 − e as an induced subgraph; if V2 ≠ ∅,
then G has a subgraph isomorphic to either X170 or X166.

v1 v2

A

v1 v2

domino

v1

v4

v2

K1 + C4

v1

v4

v2

K3,3 − e

v1 v2

X170

v1 v2

X166

Figure 8.37: Cases of Lemma 8.13.

Lemma 8.14. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1 and Vi,i+1 ≠ ∅,
the following statements are satisfied for any i ∈ {1, . . . , 4} (where the subscripts
are considered modulo 4):

1. Vi+2,i+3 = ∅.

2. Vi+1,i+2 = ∅.

3. Vi+3 is completely nonadjacent to Vi+1,i+3.

4. Vi+3 is an independent set.
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5. Vi+1 is a clique.

6. Vi+1,i+3 is completely adjacent to Vi+1.

7. Vi+1 is completely nonadjacent to Vi+1.

By symmetry, Vi+3,i = ∅.

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.38: if Vi+2,i+3 ≠ ∅, G contains either the co-domino graph or C6 as an
induced subgraph; if Vi+1,i+2 ≠ ∅, G has a copy or either the co-antenna graph
or C5; if there exists an edge from Vi+3 to Vi+1,i+3, G has an induced co-domino
or co-antenna graph; if Vi+3 is not an independent set, then G has an induced
subgraph isomorphic to K1 + 2K2; if Vi+1 is not a clique, G has a copy of X170;
if Vi+1,i+3 is not completely adjacent to Vi+1, then G has an induced co-domino
or co-antenna graph; if there exists an edge from Vi+1 to Vi+1, then G has a
copy of the co-domino graph.

Lemma 8.15. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1 and Vi is not
an independent set, the following statements are satisfied for any i ∈ {1, . . . , 4}
(where the subscripts are considered modulo 4):

1. Vi+2,i+3 = ∅.

2. Vi is completely nonadjacent to Vi.

3. Vi,i+2 is completely adjacent to Vi.

4. Vi+2 is completely nonadjacent to Vi,i+2.

5. Vi+2 is an independent set.

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.39. By Lemma 8.11, Vi+2,i+3 is completely non adjacent to Vi so, if
Vi+2,i+3 ≠ ∅, G has K1 + 2K2 as an induced subgraph; if there exists an edge
from Vi to Vi, G has a copy of either the co-domino graph or K2 + diamond; if
Vi,i+2 is not completely adjacent to Vi, then G has some of K1 + 2K2 or X170 as
an induced subgraph; if there exists an edge from Vi+2 to Vi,i+2, G has a copy
of either K1 + 2K2 or the co-antenna graph; if Vi+2 is not an independent set,
G has K1 + 2K2 as an induced subgraph.
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Figure 8.38: Cases of Lemma 8.14.

Lemma 8.16. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not a graph in Figure 8.1 and Vi is not
an clique, the following statements are satisfied:

1. Vi+2 is a clique.

2. Vi,i+2 is completely nonadjacent to Vi.

3. Vi,i+2 is completely adjacent to Vi+2

4. Vi+2 is completely nonadjacent to Vi+2

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.40: if Vi+2 is not a clique, G contains a copy of 2P3; if there exists an
edge from Vi,i+2 to Vi, G has a copy of either X58 or the twin-house graph; if
Vi,i+2 is not completely adjacent to Vi+2, G has some of X170, X58 or W4 as an
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Figure 8.39: Counterexamples.

induced subgraph; if there exists an edge from Vi+2 to Vi+2, G has an induced
subgraph isomorphic to some of X170, X58 or W4.
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v1
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Figure 8.40: Counterexamples.

Lemma 8.17. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not any graph in Figure 8.1 and there
exists an edge with ends in Vi and Vi, the following statements are satisfied:
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1. Vi+2 is completely nonadjacent to Vi+2.

2. Vi,i+2 is completely adjacent to Vi+2.

3. If Vi is a singleton, Vi,i+2 is completely nonadjacent to Vi.

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.41: if there exists an edge from Vi+2 to Vi+2, then G has the co-domino
graph as an induced subgraph; if Vi,i+2 is not completely adjacent to Vi+2, G has
a copy of some of C5, K1 + C4, the co-domino graph or P6; if Vi is a singleton,
but there exists an edge from Vi,i+2 to Vi, then G has either the twin-house
graph or P6 as an induced subgraph.

v1

v3

co-domino

v1

v3

C5

v1

v3

K1 + C4

v1

v3

co-domino
v1

v3

P6

v1

v3

twin-house

v1

v3

P6

Figure 8.41: Cases of Lemma 8.17.

Lemma 8.18. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not any graph in Figure 8.1, and there
exists an edge from V1 to V1,3, the following statements are satisfied:

1. V1,3 is completely adjacent to V3,4.

2. V1 is completely nonadjacent to V1.

3. V1,3 is completely adjacent to V1.
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Proof. The following facts from Lemmas 8.9 and 8.11 are implicitly used in
this proof:

1. V1 is completely nonadjacent to V3,4.

2. V1,3 is an independent set.

We proceed by contradiction. Assertions listed below can be verified in Fig-
ure 8.42. If V1,3 is not completely adjacent to V3,4, G has a copy of some of the
co-domino graph, the co-antenna graph, or K1 + 2K2; if there is an edge from
V1 to V1, G has an induced subgraph isomorphic to either the twin-house or
K2 + diamond; if V1,3 is not completely adjacent to V1; G has either X170 or
X58 as an induced subgraph.
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v4 v3

co-domino

v1

v4 v3

co-antenna
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v3
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v1

v3
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v1
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v3

X58

v1

v3
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Figure 8.42: Counterexamples.

Lemma 8.19. Let G be a C5-free minimal A7-obstruction containing an induced
4-cycle, C = (v1, v2, v3, v4, v1). If G is not any graph in Figure 8.1, and V1,3 ≠ ∅,
the following statements are satisfied:

1. V2,4 = ∅.

2. V2 = ∅.

By symmetry, also V4 = ∅.
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Proof. We proceed by contradiction. Assertions listed below can be verified in
Figure 8.43. If V2,4 ≠ ∅, G has either K3,3 − e or K3,3 as an induced subgraph;
if V2 ≠ ∅, G has a copy of either K2 + diamond or W4.

v1

v4 v3

v2

K3,3 − e

v1

v4 v3

v2

K3,3

v1

v4 v3

K2 + diamond

v1

v4 v3

W4

Figure 8.43: Counterexamples.

The following observations are simple consequences of Lemmas 8.9 to 8.11.

Remark 8.20. Let G be a minimal A7-obstruction having an induced 4-cycle,
C = (v1, v2, v3, v4, v1). Then,

(A, B, C) = ({v2, v4} ∪ V3 ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V1,4 ∪ V3)

is an A7-partition of G[A ∪ B ∪ C] provided that

1. V1 is a clique,

2. V3 is an independent set,

3. V1,3 is completely adjacent to V1,

4. V1 is completely nonadjacent to V1, and

5. V3 is completely nonadjacent to V1,3.

Proof. We have from Lemma 8.9 that V1,3 is an independent set, and V1, V1,4

and V3 are all of them cliques. In addition, by Lemma 8.10 we know that
the following pairs of vertex subsets are completely adjacent: (V1, V1,4 ∪ V3),
(V1,4, V3), and (V3, V1). Similarly, V1 is completely nonadjacent to V1,4 ∪ V3 by
Lemma 8.11.



212 8. Pattern A7

Remark 8.21. Let G be a minimal A7-obstruction having an induced 4-cycle,
C = (v1, v2, v3, v4, v1). Then,

(A, B, C) = ({v2, v4} ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3)

is an A7-partition of G[A ∪ B ∪ C] provided that

1. V1 is a clique,

2. V1 is completely adjacent to V1,3,

3. V1 is completely nonadjacent to V1.

Proof. We have from Lemma 8.9 that V1,3 is an independent set, and V1 and
V3 both cliques. In addition, by Lemma 8.10 we know that V1 is completely
adjacent to V3, and by Lemma 8.11 we have that V1 is completely nonadjacent
to V3.

Remark 8.22. Let G be a minimal A7-obstruction having an induced 4-cycle,
C = (v1, v2, v3, v4, v1). Then,

(A, B, C) = ({v2, v4} ∪ V1 ∪ V1,3, {v1} ∪ V3, {v3} ∪ V3,4 ∪ V1)

is an A7-partition of G[A ∪ B ∪ C] provided that

1. V1 is an independent set,

2. V1 is completely nonadjacent to V1,3,

3. V1,3 is completely adjacent to V3,

Proof. We have from Lemma 8.9 that V1,3 is an independent set, and V1, V3 and
V3,4 are cliques. In addition, by Lemma 8.10 we know that the following pairs
of vertex subsets are completely adjacent: (V3,4, V1) and (V1, V3). Similarly, V3

is completely nonadjacent to V1 ∪ V3,4 by Lemma 8.11.

Remark 8.23. Let G be a minimal A7-obstruction having an induced 4-cycle,
C = (v1, v2, v3, v4, v1). Then,

(A, B, C) = ({v2, v4} ∪ V1,3, {v3} ∪ V1, {v1} ∪ V3)

is an A7-partition of G[A ∪ B ∪ C] provided that V1,3 is completely adjacent to
V1.
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Proof. We have from Lemma 8.9 that V1,3 is an independent set and both V1

and V3 are cliques. In addition, by Lemma 8.10 we know that V1 is completely
nonadjacent to V3.

Lemma 8.24. Let G be a C5-free minimal A7-obstruction having an induced
4-cycle, C = (v1, v2, v3, v4, v1). Then, G is isomorphic to some graph in Fig-
ure 8.1.

Proof. Assume, to reach a contradiction, that G is different from any graph in
Figure 8.1. Notice that V∅, V∅ = ∅, otherwise G would have either K1 + C4 or
W4 as an induced subgraph. Now, we have the following cases.

Case 1. Assume that there exists an integer i ∈ {1, 2, 3, 4} such that Vi ≠ ∅;
we can suppose without loss of generality that i = 1. From Lemma 8.13 we
have that V2 = V4 = V2,4 = V2 = V4 = ∅. In addition, we have from Lemma 8.14
that there exists at most one i ∈ {1, 2, 3, 4} such that Vi,i+1 ≠ ∅. We identify
two subcases: either V2,3 ∪ V3,4 = ∅ (Case 1.a) or V1,4 ∪ V1,2 = ∅ (Case 1.b).

Case 1.a. Suppose that V2,3 ∪ V3,4 = ∅. Notice that, by symmetry, we
can assume without loss of generality that V1,2 is an empty set too, so VG =

VC ∪ V1 ∪ V3 ∪ V1,4 ∪ V1,3 ∪ V1 ∪ V3. Observe that, if V1,4 ≠ ∅, we have from
Lemma 8.14 and Remark 8.20 that

(A, B, C) = ({v2, v4} ∪ V3 ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V1,4 ∪ V3)

is an A7-partition of G, contradicting our the election of G. Thus, we can
assume that V1,4 = ∅, and then VG = VC ∪ V1 ∪ V3 ∪ V1,3 ∪ V1 ∪ V3.

Now, if V1 is not an independent set, it follows from Lemmas 8.9 and 8.15
and Remark 8.20 that

(A, B, C) = ({v2, v4} ∪ V3 ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V1,4 ∪ V3)

is an A7-partition of G, which is impossible. Analogously, if V3 is not an
independent set, then G is not an A7-obstruction, so it must be the case that
V1 and V3 are both independent sets.

Similarly, if V3 is not a clique, it is easy to corroborate from Lemmas 8.9
and 8.16 and Remark 8.20 that

(A, B, C) = ({v2, v4} ∪ V3 ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3)

conform an A7-partition of G, which cannot occur. Thus, V3 is a clique and, by
an analogous argument, V1 is too. Notice that, from the previous arguments,
each of V1 and V3 has at most one vertex.
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From here, we consider two distinct subcases, depending on whether V3 and
V3 are completely nonadjacent. If there is an edge with ends in V3 and V3, we
have from Remark 8.20 and Lemma 8.17 that

(A, B, C) = ({v2, v4} ∪ V3 ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3)

is an A7-partition of G, an absurd. The case in which there exists an edge
with ends in V1 and V1 is analogous, so we can assume that Vi is completely
nonadjacent to Vi for i ∈ {1, 3}.

If V1,3 is not completely adjacent to V3, we have by Lemma 8.12 that

(A, B, C) = ({v2, v4} ∪ V3 ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3)

is an A7-partition of G, which is absurd. The case in which V1,3 is not completely
adjacent to V1 is analogous, so we can assume that V1,3 is completely adjacent
to V1 ∪ V3. However, by Lemma 8.12 we can assume without loss of generality
that V1,3 is completely nonadjacent to V3, in which case (A, B, C) is still an
A7-partition of G.

Case 1.b. Suppose that V1,4 ∪ V1,2 = ∅. By Lemma 8.14, we can assume
without loss of generality that V2,3 = ∅. Notice that, if V3 ≠ ∅, we are
in a case analogous to the Case 1.a. Thus, we assume that V3 = ∅, so
VG = VC ∪ V1 ∪ V3,4 ∪ V1,3 ∪ V1 ∪ V3. We distinguish the following subcases.

If V1 is not an independent set, it follows from Lemmas 8.9 and 8.15
and Remark 8.21 that

(A, B, C) = ({v2, v4} ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3)

is an A7-partition of G, which is impossible. Similarly, if V1 is not an clique,
we have from Lemmas 8.9 and 8.16 and Remark 8.22 that

(A, B, C) = ({v2, v4} ∪ V1 ∪ V1,3, {v1} ∪ V3, {v3} ∪ V3,4 ∪ V1)

is an A7-partition of G, which cannot occur. Thus, V1 is both a clique and an
independent set, so V1 is a singleton.

Now, if there is an edge from V1 to V1,3, we have from Lemma 8.18 and Re-
mark 8.21 that

(A, B, C) = ({v2, v4} ∪ V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3)
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is an A7-partition of G, which is absurd. Hence, V1 is completely nonadjacent
to V1,3. Notice that, if V1,3 is completely adjacent to V3, then it follows from
Remark 8.22 that

(A, B, C) = ({v2, v4} ∪ V1 ∪ V1,3, {v1} ∪ V3, {v3} ∪ V3,4 ∪ V1)

is an A7-partition of G, which is impossible. Thus, we can assume that V1,3

is not completely adjacent to V3. This implies, from Lemma 8.12, that V1,3

is completely adjacent to V1 ∪ V3,4. Additionally, we have from Lemma 8.11
that V3,4 is completely nonadjacent to V3. The previous observations imply
that V3,4 = ∅, or G would have an induced copy of the co-domino graph, as is
shown in Figure 8.44.

v1

v4 v3

co-domino

Figure 8.44: Case 1b of Lemma 8.24.

Observe that when V1,3 is not completely adjacent to V3, we have that V1 is
completely nonadjacent to V1, otherwise G would have the co-domino as an
induced subgraph (see Figure 8.45).

v1

v4 v3

co-domino

Figure 8.45: Case 1b of Lemma 8.24.

From here, it follows from Remark 8.20 that (A, B, C) = ({v2, v4} ∪
V1,3, {v3} ∪ V1, {v1} ∪ V1 ∪ V3) is an A7-partition of G, which cannot occur.
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Case 2. We assume that Case 1 do not occur, so Vi = ∅ for every i ∈

{1, 2, 3, 4}. Notice that, by Lemma 8.14 and the symmetries of C4, we can
assume without loss of generality that V1,2 = V2,3 = V1,4 = ∅. We distinguish
two different cases, depending on whether V1,3 is an empty set.

Case 2.a. If V1,3 ≠ ∅, we have from Lemma 8.19 that V2,4 = V2 = V4 = ∅,
so VG = VC ∪ V1,3 ∪ V3,4 ∪ V1 ∪ V3.

First, suppose that V3,4 is completely adjacent to V1,3. If V1,3 is completely
adjacent to V3, we have from Remark 8.22 that

(A, B, C) = ({v2, v4} ∪ V1,3, {v1} ∪ V3, {v3} ∪ V3,4 ∪ V1)

is an A7-partition of G, an absurd. Thus, it must be the case that V1,3 is
not completely adjacent to V3, but then, we have by Lemma 8.12 that V1,3 is
completely adjacent to V1. Moreover, as we explained in Case 1.b, when V1,3 is
not completely adjacent to V3 we have that V3,4 = ∅, and then it follows from
Remark 8.23 that

(A, B, C) = ({v2, v4} ∪ V1,3, {v3} ∪ V1, {v1} ∪ V3)

is an A7-partition of G, which is impossible. Therefore, V3,4 is not completely
adjacent to V1,3. Nevertheless, in such a case we have from Lemma 8.12
and Remark 8.22 that

(A, B, C) = ({v2, v4} ∪ V1,3, {v1} ∪ V3, {v3} ∪ V3,4 ∪ V1)

is an A7-partition of G, contradicting the election of G. Hence, the case in
which V1,3 is not an empty set is impossible and, by the symmetries of the
4-cycle we can assume that V2,4 is empty too.

Case 2.b. Assume that V1,3 = V2,4 = ∅. Observe that Vi and Vi+1 cannot be
simultaneously nonempty sets, or G would have either P6 or 2P3 as an induced
subgraph as can be seen in Figure 8.46.

Thus, by the symmetries of C4, we can assume without loss of generality
that V2 = V4 = ∅. But in this case, it follows from Lemmas 8.9 and 8.11 that

(A, B, C) = ({v2, v4}, {v1} ∪ V3, {v3} ∪ V3,4 ∪ V1)

is an A7-partition of G, which is a contradiction.
Since we made an exhaustive consideration of cases and none of them is

possible, the result follows.
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vi vi+1

P6

vi vi+1

2P3

Figure 8.46: Counterexamples.

8.3 (C4, C5)-free obstructions with a P5

In this section, we prove that any {C4, C5}-free minimal A7-obstruction with
an induced path of length 4 is a graph in Figure 8.1.

Lemma 8.25. Let G be a (C4, C5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4, v5). If G is not a graph in Figure 8.1, any
vertex of G−VP lies in some of the following sets: V2, V4, V1,2, V4,5, V1,2, or V4,5.

Proof. We will prove that if a vertex v of G − VP is such that N(v) ∩ VP is
different from the listed sets, then G is not a (C4, C5)-free graph, or it has
a copy of some graph in Figure 8.1. The following statements can be easily
corroborated:

1. If some of the sets V1,4, V2,5, V2,3, or V3,4 is not empty, then G has an
induced 5-cycle.

2. If some of the sets V1,3, V2,4, V1,3, V1,4, V2,4, V2, and V3 is not an empty set,
then G has a copy of C4; by the symmetries of P5 we also have that
if some of the sets V3,5, V3,5, V2,5, and V4 is not empty, then G has an
induced 4-cycle.

3. If V1,5 ≠ ∅, G has a copy of C6; if there exist vertices completely adjacent
to P , G has K1 ⊕ P5 as an induced subgraph; if V1 (or V5) is not empty,
G has a copy of P6; if either V3 ≠ ∅ or there are vertices completely
nonadjacent to P , then G has K1 + 2K2 an an induced subgraph; if V2,3

(or V3,4) is not an empty-set, G has a copy of X166; if V1,5 ≠ ∅, then G

has a copy of the co-twin-house graph; if V1 (or V5) is not empty, G has
a copy of X58.
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Lemma 8.26. Let G be a (C4, C5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4, v5). If G is not a graph in Figure 8.1, then V2
is an independent set, while the sets V1,2 and V4,5 are cliques. Analogously, V4

is an independent set, and the sets V4,5 and V1,2 are cliques.

Proof. The following facts can be verified in Figure 8.47: if V2 is not an
independent set, G has K1 + 2K2 as an induced subgraph; if any of V1,2 or V4,5
is not a clique, G contains a copy of X170.

v2

K1 + 2K2

v1 v2

X170

v4 v5

X170

Figure 8.47: Counterexamples.

Lemma 8.27. Let G be a (C4, C5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4, v5). If G is not a graph in Figure 8.1, the
following statements hold.

1. V2 is completely adjacent to V4,5, and V1,2 is completely adjacent to V4,5.
By the symmetries of P5, also V4 is completely adjacent to V1,2, and V4,5

to V1,2.

2. V1,2 is completely nonadjacent to V1,2, and V1,2 is completely nonadjacent
to V4,5. By the symmetries of P5, also V4,5 is completely nonadjacent to
V4,5.

Proof. We proceed by contradiction. The following claims can be verified in
Figure 8.48: if V2 is not completely adjacent to V4,5, G has a copy of K1 + 2K2;
if V1,2 is not completely adjacent to V4,5, G has a copy of X58; if V1,2 is not
completely nonadjacent to V1,2, G has a copy of C4; if V1,2 is not completely
nonadjacent to V4,5, G has a copy of X58.

Lemma 8.28. Let G be a (C4, C5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4, v5). If G is not a graph in Figure 8.1, the
following statements are satisfied.
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v2

v4 v5

K1 + 2K2

v1

v2

v4 v5

X58

v1 v2

C4

v1 v2 v4 v5

X58

Figure 8.48: Counterexamples.

1. V2 = ∅ or V4 = ∅.

2. V1,2 = ∅ or V4,5 = ∅.

3. V2 = ∅ or V1,2 = ∅ (Symmetrically, V4 = ∅ or V4,5 = ∅).

Proof. We proceed by contradiction. The following statements can be corrobo-
rated in Figure 8.49: if both, V2 and V4, are not empty sets, then G contains a
copy of either copy of 2P3 or C5; if both, V1,2 and V4,5, are not empty sets, G
contains either K1 + 2K2 or C5 as an induced subgraph if both, V2 and V1,2,
are not empty sets, G contains a copy of either K1 + 2K2 or 2P3.

v2 v4

2P3

v2 v4

C5

v1 v2 v4 v5

K1 + 2K2

v1 v2 v4 v5

C5

v1 v2

K1 + 2K2

v1 v2

2P3

Figure 8.49: Counterexamples.
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Lemma 8.29. Let G be a (C4, C5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4, v5). Then, G is isomorphic to some graph in
Figure 8.1.

Proof. By Lemma 8.25 we have that any vertex of G−VP lies in V2∪V4∪V1,2∪
V4,5 ∪V1,2 ∪V4,5. First, let us assume that V2 ∪V4 ≠ ∅; we can suppose without
loss of generality that V4 ≠ ∅, so we have by Lemma 8.28 that V2 = V4,5 = ∅.
Therefore, any vertex of G − VP lies in V4 ∪ V1,2 ∪ V1,2 ∪ V4,5. Nevertheless, in
such a case it follows from Lemmas 8.26 and 8.27 that

(A, B, C) = ({v3, v5} ∪ V4, {v4} ∪ V1,2, {v1, v2} ∪ V1,2 ∪ V4,5)

is an A7-partition of G, which is impossible since G is an A7-obstruction.
Now assume that V2 ∪ V4 = ∅. By Lemma 8.27 we know that at most

one of V1,2 and V4,5 is not an empty set. Supposing without loss of generality
that V4,5 is empty, we have by the arguments in the paragraph before that
(A, B, C) = ({v3, v5}, {v4} ∪ V1,2, {v1, v2} ∪ V1,2 ∪ V4,5) is an A7-partition of G,
which is absurd.

8.4 (C4, C5, P5)-free obstructions with a P4

Now, we prove that any (C4, C5, P5)-free minimal A7-obstruction with an
induced path on four vertices is a graph in Figure 8.1.

Lemma 8.30. Let G be a (C4, C5, P5)-free minimal A7-obstruction having
an induced path P = (v1, v2, v3, v4). If G is not a graph in Figure 8.1, the
sets V1, V4, V1,3, V2,4, V1,4, V2, and V3 are empty. Additionally, either V3 = ∅ or
V3,4 = ∅.

Proof. The following facts can be easily corroborated: if V1 (or V4) is not an
empty set, then G has P5 as an induced subgraph; if some of V1,3 or V2 is not
an empty set, then G has C4 as an induced subgraph (symmetrically, V2,4 and
V3 are both empty sets); if V1,4 is not empty, then G a copy of C5; if V3 and
V3,4 are both nonempty sets, then G has either K1 + 2K2 or X170 as an induced
subgraph.

Lemma 8.31. Let G be a (C4, C5, P5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4). If G is not a graph in Figure 8.1 the following
affirmations hold.
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1. V∅ and V2 are independent sets. Analogously, V3 is also an independent
set.

2. V1,2, V1, and V∅ are cliques. By the symmetries of P4, also the sets V3,4

and V4 are cliques.

3. V2,3 induces a split graph.

Proof. We proceed by contradiction. The following claims can be verified in
Figure 8.50: if some of V∅ or V2 is not an independent set, G contains K1 +2K2
as an induced subgraph; if V1,2 is not a clique, G has a copy of X170; if some of
V1 or V∅ is not clique, G contains W4 as an induced subgraph.

v2

K1 + 2K2

v2

K1 + 2K2

v1 v2

X170

v1

W4

v1 v2 v3 v4

W4

Figure 8.50: Counterexamples.

Finally, if a subset V
′ of V2,3 induces 2K2, C4 or C5, then G[V ′ ∪ {v1}] is

isomorphic to K1 + 2K2, K1 + C4 or W5, respectively.

Lemma 8.32. Let G be a (C4, C5, P5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4). If G is not a graph in Figure 8.1 then:

1. Then following pairs of sets are completely adjacent:

(a) V1,2 with V4 (analogously, V3,4 with V1).
(b) V1 with V∅ (analogously, V4 with V∅).
(c) V1 with V4.

2. The following pairs of sets are completely nonadjacent:



222 8. Pattern A7

(d) V1,2 with V3,4.
(e) V1,2 with V1 (analogously, V3,4 with V4).
(f) V1,2 with V3 (symmetrically, V3,4 with V2).
(g) V2 with V3.
(h) V∅ with V2 (analogously, V∅ with V3).

Proof. We proceed by contradiction. The following facts can be corroborated
in Figure 8.51: if V1,2 is not completely adjacent to V4, G has X58 as an induced
subgraph; if V1 is not completely adjacent to V∅, G has a copy of W4; if V1 is
not completely adjacent to V4, A is an induced subgraph of G.

v1
v2

v4

X58

v1

W4

v1 v4

A

Figure 8.51: Counterexamples.

The following facts can be corroborated in Figure 8.52: since G is C4-free,
V1,2 is completely nonadjacent to V3,4; if V1,2 is not completely nonadjacent
to V1, G has a copy of A; if there is an edge with and end in V1,2 and the
other end in V3, then G has an induced C4; since G is C4-free, V2 is completely
nonadjacent to V3; if V∅ is not completely nonadjacent to V2, K1 + 2K2 is an
induced subgraph of G.

v1 v2 v3 v4

C4

v1 v2

A

v2 v3

C4

v2

K1 + 2K2

Figure 8.52: Counterexamples.

Lemma 8.33. Let G be a (C4, C5, P5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4). If G is not a graph in Figure 8.1 such that
V1,2 ≠ ∅:
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1. V2 = ∅.

2. V2,3 = ∅.

3. V∅ = ∅.

4. V∅ = ∅.

5. V1 = ∅ or V4 = ∅.

6. V3 is completely adjacent to V1.

7. Either V3 = ∅ or V4 = ∅.

Proof. We proceed by contradiction. The following facts can be verified in
Figure 8.53: if V2 ≠ ∅, G has a copy of either K1 + 2K2 or X170; if V2,3 ≠ ∅,
then G has some of X163 or X58 as an induced subgraph; if V∅ ≠ ∅, G has an
induced subgraph isomorphic to either K1 + 2K2 or X166; if V∅ ≠ ∅, then G
has a copy of A or K1 + P ; if V1 and V4 are simultaneously nonempty sets, it
follows from Lemma 8.32 that G has K2 ⊕ 2K2 as an induced subgraph.

v1 v2

K1 + 2K2

v1 v2

X170

v1 v2 v3

X163

v1 v2 v3

X58

v1 v2

K1 + 2K2

v1 v2

X166

v1

v2

A

v1

v2

K1 + P

v1
v2 v4

K2 ⊕ 2K2

Figure 8.53: Counterexamples.

If V3 is not completely adjacent to V1, then G has K1 + 2K2 as an induced
subgraph; if V3 and V4 are simultaneously nonempty sets, then G has either
Y2 or K1 + P as an induced subgraph. These assertions can ve verified in
Figure 8.54.
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v1 v2 v3 v4

K1 + 2K2

v1

v2

v3 v4

Y2

v1

v2

v3 v4

K1 + P

Figure 8.54: Cases of Lemma 8.33.

The following observation can be easily deduced from Lemmas 8.31 and 8.32.

Remark 8.34. Let G be a (C4, C5, P5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4). Then

(S, K) = ({v1, v4} ∪ V∅ ∪ V2 ∪ V3, {v2, v3} ∪ V1 ∪ V4 ∪ V∅)

is a split partition of G[VP ∪ V∅ ∪ V2 ∪ V3 ∪ V1 ∪ V4 ∪ V∅].

Lemma 8.35. Let G be a (C4, C5, P5)-free minimal A7-obstruction having
an induced path P = (v1, v2, v3, v4). If G is not a graph in Figure 8.1, either
V1,2 ∪ V3,4 ≠ ∅ or V2,3 = ∅.

Proof. We proceed by contradiction: assuming that V1,2 = V3,4 = ∅ and
V2,3 ≠ ∅ we will prove that G has a split partition, and hence that G is not
an A7-obstruction. Notice that, in order to prove that G is a split graph, it is
enough to show that G is a 2K2-free graph because we have by hypothesis that
G is a (C4, C5)-free graph.

So, aiming for a contradiction, suppose that V
′
= {u, v, x, y} is a subset

of VG inducing 2K2; let us say without loss of generality that uv, xy ∈ EG.
Observe that, from Lemma 8.30, VG \ VP = V∅ ∪ V2 ∪ V3 ∪ V2,3 ∪ V1 ∪ V4 ∪ V∅.
Moreover, it follows from Remark 8.34 that (S, K) = ({v1, v4} ∪ V∅ ∪ V2 ∪
V3, {v2, v3} ∪ V1 ∪ V4 ∪ V∅) is a split partition of G − V2,3, so V

′ ∩ V2,3 ≠ ∅.
Additionally, we have from Lemma 8.31 that G[V2,3] (and hence G[VP ∪ V2,3])
is a split graph, so V

′ /⊆ V2,3. Hence, 1 ≤ ∣V ′ ∩ V2,3∣ ≤ 3. We distinguish the
following cases.

Case 1. V
′∩V2,3 induces P3. Assume without loss of generality that u is the

only vertex of V
′ not in V2,3. Clearly, u ∈ V∅ ∪ V2 ∪ V3 ∪ V1 ∪ V4 ∪ V∅, and by

the symmetries of P4 we can suppose that u ∈ V∅ ∪ V3 ∪ V1 ∪ V∅. Nevertheless,
as can be checked in Figure 8.55, in any of such cases G contains a graph in
Figure 8.1, which cannot occur.
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v2 v3

K1 + 2K2

v2 v3

K1 + P

v2 v3

K2 ⊕ 2K2

Figure 8.55: Counterexamples.

Case 2. V
′ ∩ V2,3 induces K2. Assume without loss of generality that

V
′ \ V2,3 = {u, v}. As we have observed, {v1, v4} ∪ V∅ ∪ V2 ∪ V3 and {v2, v3} ∪

V1 ∪ V4 ∪ V∅ are an independent set and a clique, respectively. From the
previous observation, and due to the fact that {u, v} ∩ {v2, v3} = ∅, it follows
that at least one of u or v belongs to V1 ∪ V4 ∪ V∅. Let us assume without loss
of generality that u ∈ V1 ∪ V∅. As can be seen in Figure 8.56, since {u, v} is
completely nonadjacent to {x, y}, in this case G has a copy of K1 + P , which
is impossible.

v2 v3

K1 + P

Figure 8.56: Counterexamples.

Case 3. V
′ ∩ V2,3 induces K2. Assume without loss of generality that

V
′ \ V2,3 = {u, x}. We claim that some of u or x belongs to V∅ ∪ V2 ∪ V3,

otherwise either both vertices belong to V1 ∪ V4 ∪ V∅ (which cannot occur since
such a set is a clique), or one of them belongs to VP (which is absurd since
{u, v, x, y} induces a 2K2, and both u and x are neither completely adjacent
nor completely nonadjacent to V2,3). By the symmetries of P4 we can assume
without loss of generality that either u ∈ V∅ and x ∈ V∅ ∪ V2 ∪ V4 ∪ V∅, or
u ∈ V2 and x ∈ V2 ∪ V3 ∪ V1 ∪ V4 ∪ V∅. But, if u ∈ V∅ and x ∈ V∅ ∪ V2 ∪ V4,
G has a copy of K1 + 2K2; if u ∈ V∅ and x ∈ V∅, G has X170 as an induced
subgraph; if u ∈ V2 and x ∉ V2 ∪ V3, G has a subgraph isomorphic to K1 + P ;
if u ∈ V2 and x ∈ V3, G has a copy of A; and finally, if u, x ∈ V2, then G
has K1 ⊕ P5 as an induced subgraph. The previous claims can be verified in
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Figure 8.57.

v2 v3

v
y

u x

K1 + 2K2

v2 v3

X170

v2 v3

K1 + P

v2 v3

A

v2 v3

K1 ⊕ P5

Figure 8.57: Counterexamples.

Case 4. V
′ ∩ V2,3 induces K1. Assume without loss of generality that

V
′ \ V2,3 = {u, x, y}. First, since x is adjacent to y and {x, y} is completely non

adjacent to v, it is easy to notice that we can assume one of the following eleven
subcases (any other case violates some of the properties mentioned above or is
analogous by symmetry to one of the cases in this list):

1. x = v1 and y ∈ V4.

2. x = v1 and y ∈ V∅.

3. x ∈ V∅ and y ∈ V1.

4. x ∈ V∅ and y ∈ V∅.

5. x ∈ V2 and y ∈ V1.

6. x ∈ V2 and y ∈ V4.

7. x ∈ V2 and y ∈ V∅.

8. x, y ∈ V1.

9. x ∈ V1 and y ∈ V4.

10. x ∈ V1 and y ∈ V∅.

11. x, y ∈ V∅.

In addition, u must be adjacent to v and completely nonadjacent to {x, y}.
Using such an observation it is easy to notice that u necessarily belongs to
V∅ ∪ V2 ∪ V3, no matter the election of x and y. Nevertheless, we claim that
none of these 33 cases is possible:

a. Suppose that x = v1 and y ∈ V4. The following facts can be verified in
Figure 8.58: if u ∈ V∅, G contains a copy of X58; if u ∈ V2, G has K1 ⊕P5
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as an induced subgraph; if u ∈ V3, G contains a copy of A. The case in
which x = v1 and y ∈ V∅ follows in the same way.

v2 v3

X58

v2 v3

K1 ⊕ P5

v2 v3

A

Figure 8.58: Counterexamples.

b. Suppose that x ∈ V∅ and y ∈ V1. The following facts can be verified in
Figure 8.59: if u ∈ V∅, G contains a copy of X58; if u ∈ V2, G contains a
copy of A; if u ∈ V3, G has K1 ⊕ P5 as an induced subgraph. The cases
in which either x ∈ V∅ and y ∈ V∅, or x ∈ V2 and y ∈ V1 follow in the
same way.

v2 v3

X58

v2 v3

A

v2 v3

K1 ⊕ P5

Figure 8.59: Counterexamples.

c. Suppose that x ∈ V2 and y ∈ V4. The following facts can be verified in
Figure 8.60: if u ∈ V∅, G contains a copy of X58; if u ∈ V2, G has K1 ⊕P5
as an induced subgraph; if u ∈ V3, G contains a copy of A. The case in
which x ∈ V2 and y ∈ V∅ follows in the same way.

v2 v3

X58

v2 v3

K1 ⊕ P5

v2 v3

A

Figure 8.60: Counterexamples.
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d. Suppose that x, y ∈ V1. The following facts can be verified in Figure 8.61:
if u ∈ V∅, G contains a copy of X58; if u ∈ V2 ∪ V3, then G contains a
copy of K1 + P . The cases in which either x ∈ V1 and y ∈ V4, or x ∈ V1
and y ∈ V∅, or x, y ∈ V∅ follow in the same way.

v2 v3

X58

v2 v3

K1 + P

v2 v3

K1 + P

Figure 8.61: Counterexamples.

Lemma 8.36. Let G be a (C4, C5, P5)-free minimal A7-obstruction having an
induced path P = (v1, v2, v3, v4). Then, G is some of the graphs in Figure 8.1.

Proof. By Lemma 8.30 we have that VG = VP ∪V∅∪V2∪V3∪V1,2∪V3,4∪V2,3∪
V1 ∪ V4 ∪ V∅. Let us start supposing that V1,2 ∪ V3,4 ≠ ∅; we assume without
lose of generality that V1,2 ≠ ∅. In this case, it follows from Lemma 8.33 that
VG = VP ∪ V3 ∪ V1,2 ∪ V3,4 ∪ V1 ∪ V4, and V3 is completely adjacent to V1.

First, assume that V4 = ∅. If V3 = ∅, it follows from Lemmas 8.31 and 8.32
that

(A, B, C) = ({v2}, {v1} ∪ V1,2, {v3, v4} ∪ V3,4 ∪ V1)

is an A7-partition of G, which is impossible. Hence, V3 ≠ ∅, and we have from
Lemma 8.30 that V3,4 = ∅ but then, Lemmas 8.31 and 8.32 imply that

(A, B, C) = ({v2, v4} ∪ V3, {v3} ∪ V1, {v1} ∪ V1,2)

is an A7-partition of G, an absurd. Thus, it must be the case that V4 ≠ ∅, and
it follows from Lemma 8.33 that V1 = V3 = ∅, so

(A, B, C) = ({v3}, {v4} ∪ V3,4, {v1, v2} ∪ V1,2 ∪ V4)

is an A7-partition of G, what cannot occur.
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We conclude from the previous cases that it is impossible that V1,2∪V3,4 ≠ ∅,
and we have from Lemma 8.35 that V2,3 = ∅. Nevertheless, in such a case, it
follows from Remark 8.34 that

(A, B, C) = ({v1, v4} ∪ V∅ ∪ V2 ∪ V3,∅, {v2, v3} ∪ V1 ∪ V4 ∪ V∅)

is an A7-partition of G, contradicting that G is an A7-obstruction.

8.5 P4-free obstructions and main result
We start this section by proving that any cograph minimal A7-obstruction is
a graph in Figure 8.1. We finish the chapter proving that the set of minimal
A7-obstructions is precisely the set of graphs depicted in Figure 8.1.

Lemma 8.37. The only disconnected minimal A7-obstructions are K1 + 2C4,
W4, W5, and 2P3.

Proof. Let G be a disconnected minimal A7-obstruction. First, suppose that G
has at least three connected components. If at least two components of G are
nontrivial, then G ≅ K1 + 2K2. Otherwise, G = H + ℓK1 for some nontrivial
graph H and some integer l ≥ 2. Nevertheless, if H is a split graph, then G is
too, but if it is not, G properly contains K1 + 2K2, K1 + C4 or K1 + C5. Thus,
the only minimal A7-obstruction with at least three components is K1 + 2K2.

Now assume that G has exactly two components, G1 and G2. If neither
component is a complete graph, G ≅ 2P3, so let us suppose without loss of
generality that G1 is a complete component. In addition, if we assume that G
is different from K1 + 2K2, K1 + C4 and K1 + C5, we have that G2 is a split
graph, contradicting the choice of G. Thus, G1 has at least two vertices. Since
G does not have K1 + 2K2 as an induced subgraph, G2 is a P3-free graph.
Moreover, G2 is a complete split graph because it is a C4-free graph. This is a
contradiction, because in such a case G admits an A7-partition.

Lemma 8.38. The only minimal A7-obstructions whose complement is dis-
connected are W4, K2 ⊕ 2K2, 2P3, W5, K1 + P , K3,3, K2 + diamond, K1 ⊕ P5,
and K1 ⊕ (K2 + P3).

Proof. We will prove the following equivalent statement: The only disconnected
minimal A7-obstructions are K1 + 2K2, C4 + 2K1, 2P3, K1 + C5, K1 + P , 2K3,
K2 + diamond, K1 + house, and K1 + K2 + P3.
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Let G be a disconnected minimal A7-obstruction. Let us start assuming
that G has at least three connected components. Since G is not a split graph,
it contains a copy of 2K2, C4 or C5, and then G has K1 + 2K2, C4 + 2K1 or
K1 + C5 as an induced subgraph.

Now, let us assume that G has exactly two connected components, G1 and
G2. On one hand, if both components of G are complete graphs, each of them
has at least three vertices, otherwise G would be the disjoint union of a complete
graph with a complete bipartite graph, so G would have an A7-partition, that
is absurd; therefore, if both components of G are complete graphs, G ≅ 2K3.
On the other hand, if both components of G are non-complete graphs, then G
contains 2P3. So we can assume for the rest of the proof that G1 is a complete
graph, and G2 is neither a complete graph or a complete bipartite graph.

Aiming for a contradiction, assume that G1 has at least three vertices. Let
v ∈ VG1 and let (A, B, C) be an A7-partition of G − v. If A ∩ VG1−v ≠ ∅, then
(A ∪ {v}, B, C) is an A7-partition of G. Otherwise G1 − v has precisely two
vertices, one of them in B and the other in C, but then (A, B ∪ {v}, C) is
an A7-partition of G, and we have a contradiction. Thus, G1 has one or two
vertices.

First suppose that G1 ≅ K2. Observe that in this case G2 is a P3-free graph,
that is to say, a complete multipartite graph. Now, since G2 is a connected
non-complete graph, it has an induced P3 = (u, v, w) such that any other vertex
of G2 is at distance one from { u,v,w }. If there is a vertex that is completely
adjacent to P3, then G ≅ K2 + diamond, otherwise, since G2 is a complete
multipartite graph, any vertex in G2 − P3 is either adjacent to both ends of P3
but not to its center, or adjacent to only the center of P3. Once again, since
G2 is an P3-free graph, the set of vertices adjacent to the ends of P3, V1, and
the set of vertices adjacent to the center of P3, V2, are both independent sets.
Moreover, if there are nonadjacent vertices v1 ∈ V1 and v2 ∈ V2, then P ⪇ G2
so G properly contains K1 + P , an absurd. Hence, V1 and V2 are completely
adjacent. Here we have a contradiction, because then G2 is a complete bipartite
graph with bipartition (V1 ∪ {v}, V2 ∪ {u, w}).

The only remaining case is that G ≅ K1. If G2 is a split graph, G is too, so
this is not the case and G2 contains some of 2K2, C5 or C4. In the first cases G
contains K1 + 2K2 or K1 + C5, so we can assume that G contains an induced
C4 = (u, v, w, z, u) such that any other vertex is at distance 1 from { u,v,w,z }.
Unless G has some of K1 + P, K1 + house, K1 + K2 + P3 or W4 as an induced
subgraph (all of them minimal A7-obstructions), the vertices of G2 − C4 are
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all of them adjacent to precisely two antipodal vertices of C4. In addition, by
assuming that G2 does not have K2 + P3, we have that the set V1 of vertices of
G2 − C4 that are adjacent to u and w, is an independent set, as well as the set
V2 of the vertices of G2−C4 that are adjacent to the vertices v and z. Moreover,
if V1 and V2 are not completely adjacent, G properly contains K1 + P , so they
are. In this case it is easy to notice that G2 is a complete bipartite graph with
bipartition (V1 ∪ {v, z}, V2 ∪ {u, w}), which is impossible.

Lemma 8.39. The only P4-free minimal A7-obstructions are the cographs
mentioned in Lemmas 8.37 and 8.38.

Proof. The result follows from the well-known fact that, for any nontrivial
cograph G, either G or G is disconnected.

After all work developed in this chapter, we can finally state a complete
characterization of graphs admitting an A7-partition by means of their minimal
forbidden induced subgraphs.

Theorem 8.40. A graph G admits an A7-partition if and only if its is an
F-free graph, where F is the family of graphs depicted in Figure 8.1.

Proof. It is enough to prove that F is the set of minimal A7-obstructions. It
follows from Lemma 8.1 that any graph in F is a minimal A7-obstruction, so
we only need to prove that there are no more of such obstructions, but that
follows directly from Lemmas 8.8, 8.24, 8.29, 8.36 and 8.39.
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Conclusions

The study of polarity on cographs started in [34], were the complete list of
cograph minimal polar obstructions was given. In [9] and [46] were exposed
the complete lists of cograph minimal (2, 1)- and 2-polar obstructions, respec-
tively. Then, in [19] was developed a recursive characterization of minimal
(s, 1)-polar obstructions and, as a byproduct, the list of cograph minimal
(∞, 1)-obstructions was given. Additionally, in [28] was proved that any hered-
itary property has only finitely many minimal obstructions when restricted to
cographs. Part of this work is a natural continuation of these lines of research.

In Chapter 3, we studied the minimal obstructions for (∞, k)-polarity on
cographs, providing a partial recursive characterization for them (Theorems 3.3,
3.8, 3.13 and 3.22 and Lemma 3.14) and giving complete lists for the cases
k = 2 and k = 3 (Theorems 3.24 and 3.25). We started Chapter 4 proving
that any hereditary property has finitely many minimal obstructions when
restricted to two cograph superclasses, namely P4-sparse and P4-extendible
graphs (Corollaries 4.8 and 4.12). Then, we generalized almost all known
results on characterizations by minimal obstructions of cographs with prop-
erties related to polarity on both, P4-sparse graphs and P4-extendible graphs.
Specifically, we gave complete lists of minimal obstructions for P4-sparse and
P4-extendible graphs having some of the following partitions: unipolar (Corollar-
ies 4.18 and 4.21), monopolar (Corollaries 4.44 and 4.47), polar (Corollary 4.46
and Theorem 4.48), (s, 1)-polar (Theorems 4.35 and 4.42), and 2-polar (Theo-
rems 4.61 and 4.72). On these results, it is worth emphasizing that all P4-sparse
minimal obstructions for said properties are cographs, in contrast with the
case of P4-extendible graphs. In Chapter 4 we also gave linear time algorithms
to find maximum subgraphs with some given properties related to polarity
on P4-sparse and P4-extendible graphs, particularly, we proved that deciding
polarity, monopolarity and unipolarity can be done in linear time on this graph
classes (Theorems 4.80 and 4.88).
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As we mentioned in Section 2.3, the problems of deciding whether an
arbitrary graph is either polar or monopolar are NP-complete and, although
unipolarity and (s, k)-polarity can be solved in polynomial time, the sets of
minimal obstructions for most of these properties remain unknown in general
graphs. In Chapters 5 and 6 we considered the aforementioned problems on H-
split graphs, specifically, in pseudo-split graphs (C5-split graphs) and 2K2-split
graphs (from which we can easily deduce analogous results for C4-split graphs).

In Chapter 5, we developed linear time recognizing algorithms for pseudo-
split (s, k)-polar graphs, where s and k are arbitrary nonnegative integers
(Theorem 5.7) or some of them is ∞ (Theorem 5.6). Additionally, in the same
chapter we observed that any pseudo-split graph is polar, and gave complete
lists of pseudo-split minimal monopolar (unipolar) obstructions, from which we
derived linear time recognition algorithms for such graph families (Theorem 5.8).
In Theorem 5.9 we exhibited the pseudo-split minimal (s, k)-polar obstructions
for s ∈ {1, 2}, and we obtained as a byproduct the complete list of pseudo-split
minimal (2,∞)-polar obstructions (Corollary 5.11). In Theorem 5.14 we proved
that any pseudo-split minimal (s, k)-polar obstruction has at most s + k + 3
vertices, and this bound is tight. Moreover, we demonstrated that there is only a
finite number of pseudo-split minimal (s,∞)-polar obstructions by proving that
any of such obstructions has order at most 2s + 4, and this bound is also tight
(Corollary 5.18); it is worth noticing that by a simple argument of complements
an analogous result can be deduced for pseudo-split minimal (∞, k)-polar
obstructions. We finished our study of polarity on pseudo-split graphs by
describing a computer program we implemented for obtaining complete lists of
pseudo-split minimal (s, k)-polar obstructions from bipartite graphs. In the
small Section 5.2 we gave some results about (k, ℓ)-colorings on pseudo-split
graphs; we proved that for any pair of nonnegative integers k and ℓ, it can be
decided in linear time from its degree sequence whether a pseudo-split graph
is a (k, ℓ)-graph (Theorem 5.20), and we concluded that the cochromatic and
bichromatic numbers of a pseudo-split graph can de found in linear time too
(Corollary 5.25).

Chapter 6 was devoted to the study of polarity on 2K2-split graphs. In that
chapter we obtained analogous results to those we mentioned above for pseudo-
split graphs. We proved that 2K2-split graphs are unipolar and co-unipolar,
and hence polar graphs. We gave complete lists of 2K2-split minimal (1, k)-
and (s, 1)-polar obstructions, and we conclude that there is just one 2K2-split
minimal monopolar (co-monopolar) obstruction, and 2K2-split monopolar (co-
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monopolar) graphs can be recognized in linear time from its degree sequence
(Propositions 6.2 and 6.3). We provided a complete characterization of 2K2-
split graphs with an (s, k)-polar partition in Theorem 6.4, and we used this
result to demonstrate that any 2K2-split minimal (s, k)-polar obstruction has
order at most s + 2k + 2 (Theorem 6.11), 2K2-split minimal (s,∞)-polar
obstructions have order at most 2s + 4 (Theorem 6.13), and the order of the
2K2-split minimal (∞, k)-polar obstructions is upper-bounded by an O(2k)-
function (Theorem 6.15). In Section 6.1.2 we proved that the properties of
being (s,∞)-, (∞, k), and (s, k)-polar can be efficiently recognized in 2K2-split
graphs (Propositions 6.21 and 6.22 and Theorem 6.25), but this cannot always
be done from their degree sequences as in the case of pseudo-split graphs.

The last two chapters were devoted to give the lists of minimal obstructions
for some small patterns, namely, those patterns of size 3 × 3 with exactly
one entry ∗ off the main diagonal. In Chapter 7 we gave the mentioned
lists for patterns A0 (Theorem 7.1), A3 (Theorem 7.2), A4 (Theorem 7.3), A5
(Theorem 7.4), and A6 (Theorem 7.10). Due to the length of the proof needed
to demonstrate the characterization by minimal obstructions of the graphs
admitting an A7-partition, Chapter 8 is entirely devoted to that proof, which
culminates in Theorem 8.40. It is worth mentioning that, with these new results,
the only patterns of size at most three that remain pending to be characterized
by their sets of minimal obstructions are those patterns of size 3 × 3 with two
or three entries ∗ off the main diagonal, which include the patterns associated
to (1, 2)-polar graphs, (1, 2)-colorable graphs, and 3-colorings.
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[4] A. Brandstädt, Partitions of graphs into one or two independent sets and
cliques, Discrete Mathematics 152 (1996), 47–54.
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∩ Intersection

∪ Union

∈ Element of a set

∣X∣ Cardinality of the set X

\ Set-theoretic difference

⊆ Subset

⊊ Proper subset
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Fs A pseudo-split minimal (s, k)-polar obstruction . . . . . . 134

G + H Disjoint union of graphs . . . . . . . . . . . . . . . . . . . . . 5

G = (V, E) A graph with vertex set V and edge set E . . . . . . . . . . 3
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G ⊕ H Join of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 5

G − v Vertex deleted subgraph . . . . . . . . . . . . . . . . . . . . . 4

G − V
′ Subgraph of G induced by the vertex subset VG \ V
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G[V ′] Subgraph of G induced by the vertex subset V
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G
0
s A pseudo-split minimal (s, k)-polar obstruction . . . . . . 129

G
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H ≤ G Induced subgraph relationship . . . . . . . . . . . . . . . . . 4

Hs A 2K2-split minimal (s,∞)-polar obstruction . . . . . . . 153

H
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NG(u) Open neighborhood of u . . . . . . . . . . . . . . . . . . . . . 3

NG[u] Closed neighborhood of u . . . . . . . . . . . . . . . . . . . . 3

nG Disjoint union of n copies of G . . . . . . . . . . . . . . . . . 5

O(f(n)) Big O notation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Pk The path of order k . . . . . . . . . . . . . . . . . . . . . . . 4

VG Vertex set of the graph G . . . . . . . . . . . . . . . . . . . . 3

Wn The wheel graph of order n + 1 . . . . . . . . . . . . . . . . . 5
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coloring

(k, ℓ)-coloring, 6
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complement of a graph, 5
complete multipartite graph, 5

complete k-partite graph, 5
completely adjacent, 5
completely nonadjacent, 5

component
connected componet, 5

connected graph, 5
cotree, 12
cycle, 4
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diamond graph, 167
disjoint union, 5

edge, 3
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ends of an edge, 3
extension set, 50

free
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graph, 3
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z-bicolorable graph, 6
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specified-bipartite graph, 137
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extension graph, 50
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complete split graph, 12
imperfect pseudo-split graph,
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