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“Most elementary physics textbooks describe a world that seems filled with very simple, regular and

symmetrical systems. A student might get the impression [. . .] that regular crystalline solids are

‘typical’ materials. [. . .] If our hypothetical students look at the world with an unbiased eye, they

will see a richness quite unlike anything described in physics texts. In the real world, simplicity is a

rare exception.”

Leo P. Kadanoff - On complexity. Physics Today 40, 3 (1987), 7-9.

“Thus, the theorist is required to abandon tried and true procedures and to exercise taste and judge-

ment; he is driven out of his comfortable, well troden ways, and is forced to be creative, a skill which

is neither taught in courses, nor rewarded, very reliably, by the NSF and other funding agencies.”

Phillip W. Anderson - Brainwashed by Feynman? Physics Today 53, 2 (2000), 11-12.
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Resumen
Structural, Electronic and Thermodynamic Properties of Complex Materials.

Simulation of the Binary Alloys AuAg, CuBi, and BN.

por M. en C. David Hinojosa Romero

La presente tesis consta de dos partes. En la primer parte se estudian tres diferentes aleaciones bi-
narias desde un enfoque ab initio: i) la aleación sustitucionalmente desordenada AuxAg100−x (x =

0, 4, 13, 20, 30, 40, 50, 75, 90, y 100) en las que se calculó la contribución electrónica al calor especí-
fico, obteniendo una comparación cualitativa favorable con los resultados experimentales reportados
en la literatura; ii) la aleación amorfa Cu61Bi39 en la que se calculó su temperatura crítica supercon-
ductora, Tc, como 4.2K; y iii) el sistema amorfo BN equiatómico en el que se calculó la contribución
fonónica a la energía interna y al calor específico. Estos cálculos contribuyen al desarrollo de un
método eficiente de simulación de aleaciones en el que se considere el ambiente atómico local en
cada sistema desde un enfoque ab initio. En la segunda parte se investigan los cambios en la Tc
del bismuto puro debidos a modificaciones de su estructura electrónica y fonónica al encontrarse en
tres estados: i) bajo presión externa manteniendo las simetrías de la estructura Wyckoff (estable bajo
condiciones estándar), encontrando una disminución en la Tc al aumentar la presión externa; ii) en
bicapas, utilizando un slab model con 5Å, 10Å, y 20Å de separación intercapa de la superficie (111)

de la estuctura Wyckoff, encontrando Tc = 0.08K, 2.61K, y 2.42K respectivamente para cada sepa-
ración intercapa; y iii) en las cuatro fases cristalinas bajo presión, calculando Tc = 3.9K para Bi-II,
Tc = 7K para Bi-III, y Tc = 6.8K para Bi-V, de acuerdo con los valores reportados experimental-
mente, y prediciendo una Tc de 4.25K para la fase Bi-IV. Con esta extensión al estudio de las fases
superconductoras del bismuto, el método utilizado para determinar las Tc (originalmente publicado
en 2016 para Bi-I) muestra su potencial para ser aplicado a otros sistemas metálicos con la capacidad
de predecir un estado superconductor. De esta manera se demuestra que el estudio de los sistemas
complejos a través de simulaciones computacionales es tratable mediante nuestros enfoques.
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Abstract
Structural, Electronic and Thermodynamic Properties of Complex Materials.

Simulation of the Binary Alloys AuAg, CuBi, and BN.

by M.Sc. David Hinojosa Romero

This thesis is divided into two parts. In the first part, the study of three different alloys from an ab

initio approach is reported: i) the substitutionally disordered AuxAg100−x alloy for x = 0, 4, 13, 20,
30, 40, 50, 75, 90, and 100 in which the electronic contribution to the specific heat was calculated,
finding a good qualitative comparison with experiments; ii) the Cu61Bi39 amorphous alloy, whose
critical superconducting temperature, Tc, was calculated to be 4.2K; and iii) the amorphous BN sys-
tem for the equiatomic concentration for which the phonon contribution to the internal energy and
constant-volume specific heat were obtained. These calculations contribute to the development of an
efficient method for the simulation of alloys that incorporates the local atomic environment from an
ab initio approach. In the second part, changes in the Tc of pure bismuth are reported due to variations
in its electronic structure and phonon frequency spectrum when being in three states: i) under exter-
nal pressure conserving the symmetries of the Wyckoff structure (the stable structure under ambient
conditions), finding lower Tcs for higher external pressures; ii) in the bilayered structure, using a slab
model of the (111) surface of the Wyckoff structure and 5Å, 10Å, and 20Å of interlayer separation,
obtaining Tc =0.08K, 2.61K, and 2.42K for each separation, respectively; and iii) the four crystalline
under-pressure phases, calculating Tc = 3.9K for Bi-II, Tc = 7K for Bi-III, and Tc = 6.8K for Bi-V,
in agreement with the measured values, and predicting a Tc of 4.25K for Bi-IV. With this extension to
the study of the superconducting phases of bismuth, the followed method to compute the Tc (originally
published in 2016 for Bi-I), shows its potential to be applied to other metallic systems and to predict
a superconducting behavior. Thereby, it is shown that the study of complex systems by computational
simulations is feasible through our approaches.
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ABSTRACT 
 

INTRODUCTION 

 

Bismuth (Bi) is an interesting material for besides having a very high thermal conductivity, 

this semimetal displays puzzling superconducting properties. In its crystalline equilibrium phase 

it does not seem to display superconductivity at low temperatures. However, in the amorphous 

phase it displays superconductivity at ~ 6 K [1]. Under pressure bismuth has been found to 

superconduct at 2.55 GPa (Bi-II monoclinic crystalline phase), 2.7 GPa (Bi-III tetragonal phase) 

and 7.7 GPa (Bi-V body centered cubic phase), having superconducting transition temperatures 

of Tc = 3.9 K, 7.2 K and 8.5 K, respectively [2]. Therefore, it is desirable to investigate what 

changes in the electronic or vibrational properties occur that may explain this radical 

transformation in the conducting behavior of this material. In a recent publication [3] we argue 

that changes in the density of electronic and vibrational states may account for the behavior in 

the amorphous phase. That is why we have carried out an ab initio computational study of the 

effects of structural changes when crystalline Bi is subjected to pressure. In order to see the 

effect of pressure alone we maintain the original crystalline structure and computationally 

compress our sample, a 64–atom supercell with periodic boundary conditions, between 0 and 15 

66
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Downloaded from https:/www.cambridge.org/core. UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO, on 23 Jan 2017 at 18:22:49, subject to the Cambridge Core terms of use, available at

Bismuth displays puzzling superconducting properties. In its crystalline equilibrium phase, it 

does not seem to superconduct at accessible low temperatures. However, in the amorphous phase 

it displays superconductivity at ~ 6 K. Under pressure bismuth has been found to superconduct at 

Tcs that go from 3.9 K to 8.5 K depending on the phase obtained. So the question is: what 

electronic or vibrational changes occur that explains this radical transformation in the conducting 

behavior of this material? In a recent publication we argue that changes in the density of 

electronic and vibrational states may account for the behavior observed in the amorphous phase 

with respect to the crystal. We have now undertaken an ab initio computational study of the 

effects of pressure alone maintaining the original crystalline structure and compressing our 

supercell computationally. From the results obtained we infer that if the crystal structure remains 

the same (except for the contraction), no superconductivity will appear. 
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Possible superconductivity in Bismuth (111)
bilayers. Their electronic and vibrational properties
from first principles
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ABSTRACT

Using a 72-atom supercell we report ab initio calculations of the electronic and vibrational
densities of states for the bismuth (111) bilayers (bismuthene) with periodic boundary
conditions and a vacuum of 5 Å, 10 Å and 20 Å. We find that the electronic density of states
shows a metallic character at the Fermi level and that the vibrational density of states
manifests the expected gap due to the layers. Our results indicate that a vacuum down to 5 Å
does not affect the electronic and vibrational structures noticeably. A comparison of present
results with those obtained for the Wyckoff structure is displayed. Assuming that the Cooper
pairing potential is similar for all phases and structures of bismuth, an estimate of the
superconducting transition temperature gives 2.61 K for the bismuth bilayers.

INTRODUCTION

Bulk bismuth is known to be a semimetal, a metal or a superconductor, with
peculiar electronic and vibrational properties depending on whether it is crystalline or
amorphous or depending on the pressure applied on it. At ambient pressure and
temperature, it crystallizes in the Wyckoff structure, Bi-I, [1] with rhombohedral
symmetry in which each atom has three equidistant nearest-neighbor atoms and three
equidistant next-nearest neighbors slightly further away, resulting in a buckled 2D
honeycomb bilayer lying perpendicular to the [111] crystallographic direction.

Bismuthene, or the bilayers (111) of bismuth, Bi (111), recently has been the
subject of much interest and investigation as an example of non-carbon low-dimensional
materials and the influence of this low dimensionality on its electronic and transport
properties. It has been argued that in this layered form, bismuth has properties of
topological insulators [2-4] which are bulk insulators with protected boundary states [5].
This state of matter appears when there is an inversion in the electronic bands of 2D
materials caused by perturbations [6]. Among the perturbing agents the following are
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Possible superconductivity in 
the Bismuth IV solid phase under 
pressure
Ariel A. Valladares1, Isaías Rodríguez2, David Hinojosa-Romero  1, Alexander Valladares2 & 
Renela M. Valladares2

The first successful theory of superconductivity was the one proposed by Bardeen, Cooper and 
Schrieffer in 1957. This breakthrough fostered a remarkable growth of the field that propitiated 
progress and questionings, generating alternative theories to explain specific phenomena. For 
example, it has been argued that Bismuth, being a semimetal with a low number of carriers, does 
not comply with the basic hypotheses underlying BCS and therefore a different approach should be 
considered. Nevertheless, in 2016 based on BCS we put forth a prediction that Bi at ambient pressure 
becomes a superconductor at 1.3 mK. A year later an experimental group corroborated that in fact Bi 
is a superconductor with a transition temperature of 0.53 mK, a result that eluded previous work. So, 
since Bi is superconductive in almost all the different structures and phases, the question is why Bi-IV 
has been elusive and has not been found yet to superconduct? Here we present a study of the electronic 
and vibrational properties of Bi-IV and infer its possible superconductivity using a BCS approach. We 
predict that if the Bi-IV phase structure were cooled down to liquid helium temperatures it would also 
superconduct at a Tc of 4.25 K.

Bardeen, Cooper and Schrieffer (BCS) explained superconductivity by invoking two important concepts: The 
phonon-mediated electron Cooper pairing that occurs due to the vibrations in the material, giving rise to the 
transition to the superconducting state, and the coherent motion of the paired electrons that gives them the 
inertia to sustain electrical currents for a long time without dissipation. Simple but revolutionary. Several varia-
tions of these ideas have appeared in the course of time and even different concepts that pretend to substitute the 
original ones. Since vibrations are invoked to be the main factor leading to a bound electron pair, some manifes-
tation of such interaction should appear in the phenomenon, and it does: the isotope effect. The Meissner effect 
is also duly accounted for and then the two main aspects of superconductivity are borne out by the BCS theory. 
Superconducting-like phenomena have been invoked in other realms of physics like nuclear and elementary par-
ticles where the pairing mechanism should be adequately chosen. It has also been ventured that in principle all 
materials may become superconductors if cooled down to low enough temperatures. We here show that invoking 
the corresponding electron and vibrational densities of states we can predict superconductivity, provided the 
Cooper attraction sets in. This elemental approach, if proven correct, would indicate that superconductivity in 
bismuth can be understood in a simple manner without invoking eccentric mechanisms.

In a very recent work1 we computationally generated an amorphous structure of bismuth (a-Bi), characterized 
its topology, showed that it agreed remarkably well with experiment and then proceeded to calculate its elec-
tronic, N(E), and vibrational, F(ω), densities of states to study their effect on the superconducting properties of 
this amorphous Bi phase. By comparing these results with the corresponding ones for the crystalline (Wyckoff) 
structure at atmospheric pressure we predicted that the crystalline material should become a superconductor at 
a temperature Tc ≤ 1.3 mK1. A year later an experimental group reported that, in fact, the Wyckoff phase is super-
conductive with a transition temperature of 0.53 mK2, in agreement with our prediction. Encouraged by this suc-
cess we decided to undertake a systematic study of the superconductivity of the solid phases of Bi under pressure 
and, in this paper, we put forth another prediction: the solid phase of bismuth known as Bi-IV, hitherto consid-
ered non-superconducting, should become a superconductor with a transition temperature close to the boiling 

1Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 
Ciudad Universitaria, CDMX, 04510, México. 2Facultad de Ciencias, Universidad Nacional Autónoma de México, 
Apartado Postal 70-542, Ciudad Universitaria, CDMX, 04510, México. Correspondence and requests for materials 
should be addressed to A.A.V. (email: valladar@unam.mx)
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Ab initio Study of the Amorphous Cu-Bi System
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ABSTRACT

As a pure element, bismuth is a semimetal which possesses several interesting physical
properties, not all of them well understood. The recent discovery of superconductivity, as
predicted by our group, and the increasing superconducting transition temperature as the
pressure applied increases, are some examples of its particularities. Also, the fact that the
amorphous phase is superconductive with a transition temperature several orders of magnitude
larger than the crystalline at ambient pressure is unusual. These phenomena have also
motivated our predictions for the transition temperatures of Bi-bilayers and the Bi-IV phase.
When mixed with other elements, bismuth seems to contribute to the superconducting character
of the resulting material. Here we study the binary copper-bismuth amorphous system which is
known to superconduct in diverse compositions. Using ab initio molecular dynamics and the
undermelt-quench method, we generate an amorphous structure for a 144-atom supercell
corresponding to the Cu Bi system. We calculate the electronic and vibrational densities of
states for the amorphous system and estimate a superconducting critical temperature of 4.2 K
for the amorphous state.

INTRODUCTION

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
9.

83
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

id
ad

 N
ac

io
na

l d
e 

M
ex

ic
o 

(U
N

AM
), 

on
 0

5 
M

ay
 2

01
9 

at
 0

5:
38

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

xviii



1Scientific RepoRts |          (2019) 9:5256  | https://doi.org/10.1038/s41598-019-41401-z

www.nature.com/scientificreports

A facile approach to calculating 
superconducting transition 
temperatures in the bismuth solid 
phases
Isaías Rodríguez1, David Hinojosa-Romero  2, Alexander Valladares1, Renela M. Valladares1 & 
Ariel A. Valladares2

All solid phases of bismuth under pressure, but one, have been experimentally found to superconduct. 
From Bi-I to Bi-V, avoiding Bi-IV, they become superconductors and perhaps Bi-IV may also become 
superconductive. To investigate the influence of the electronic properties N(E) and the vibrational 
properties F(ω) on their superconductivity we have ab initio calculated them for the corresponding 
experimental crystalline structures, and using a BCs approach have been able to determine their critical 
temperatures Tc obtaining results close to experiment: For Bi-I (The Wyckoff Phase) we predicted a 
transition temperature of less than 1.3 mK and a year later a Tc of 0.5 mK was measured; for Bi-II Tc is 
3.9 K measured and 3.6 K calculated; Bi-III has a measured Tc of 7 K and 6.5 K calculated for the structure 
reported by Chen et al., and for Bi-V Tc ~ 8 K measured and 6.8 K calculated. Bi-IV has not been found to 
be a superconductor, but we have recently predicted a Tc of 4.25 K.

When superconductivity was discovered by Kamerlingh Onnes in mercury in 1911 (Tc ~ 4.2 K)1 after he pro-
duced liquid helium for the first time in 1908 (boiling point of 4.2 K at atmospheric pressure) this phenomenon 
was assumed only to consist of a vanishing electrical resistance for some metallic materials. It was not until 
the Meissner effect (the expulsion of magnetic fields) was observed that this discovery became a puzzle. Now 
superconductivity is displayed by many and sundry materials and is characterized by exhibiting zero electrical 
resistance and the above-mentioned Meissner effect below a characteristic temperature Tc, the superconducting 
transition temperature.

In 1957 Bardeen, Cooper and Schrieffer (BCS)2 developed the first successful theory of superconductivity 
based on two simple but revolutionary and decisive concepts. They proposed that electrons pair through the 
atomic vibrations in the material due to the now known Cooper pairing potential, and that this pairing gives 
rise to the transition to the superconducting state; also, that the coherent motion of the paired electrons gives 
them the inertia to sustain electrical currents without dissipation2. Alternative ideas have appeared since then 
and even different concepts to substitute the initial ones but BCS has withstood the passing of time. Since pho-
nons are invoked to be responsible for the electron pairing, a manifestation of this interaction should appear in 
superconductivity, and it does: the so-called isotope effect which is the dependence of Tc on the isotopic mass, 
Tc√M = const. The Meissner effect is also borne out; hence the two main aspects of superconductivity are duly 
accounted for by the BCS theory.

Due to the variety and abundance of materials that superconduct, it has also been ventured that in principle all 
materials may become superconductors if cooled down to low enough temperatures. In what follows we demon-
strate that invoking the corresponding electronic densities of states, N(E), and the vibrational densities of states, 
F(ω), for the various solid phases of bismuth under pressure, the superconducting transition temperatures can be 
calculated if the Cooper attraction sets in with a strength comparable for all phases. This facile approach, if proven 
correct, can be generalized to study phases of other materials similarly related.

1Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, 
México City, CDMX, 04510, Mexico. 2instituto de investigaciones en Materiales, Universidad nacional Autónoma 
de México, Apartado Postal 70-360, Ciudad Universitaria, México City, CDMX, 04510, Mexico. Correspondence and 
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Objectives
The general objective for this work is the accurate quantum-mechanical calculation of electronic and
thermodynamic properties of complex materials using first-principles simulation methods that ade-
quately incorporate the local atomic environment in these materials. The properties of interest are the
electronic and phononic contributions to the specific heat, the critical superconducting transition tem-
perature, and the lattice contribution to the internal energy. The materials for which these properties
are to be investigated are substitutionally and topologically disordered binary alloys, and pure crys-
talline materials under external pressures; these materials are chosen to investigate if the developed
simulation methods adequately describe both metallic and insulating systems.

The specific objectives are:

• The calculation of the electronic specific heat of the AuxAg100−x system and its comparison
with published results.

• The successful generation of an amorphous structure of the Cu61Bi39 alloy and calculation of its
superconducting critical temperature.

• The successful generation of an amorphous structure of the equiatomic BN system and determi-
nation of the phonon contribution to some thermodynamic properties.

• The determination of the superconducting critical temperatures of pure, crystalline bismuth in
different conditions, such as under pressure and in the bilayered form.
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1

Preface

Materials Science is a multidisciplinary area of knowledge in which scientists, both theorists and
experimentalists, merge their particular knowledge to enhance and create new devices that can be used
for the well being of mankind. The fundamental idea is to understand the relation structure-properties

for materials and this can be traced back, within the condensed matter realm [1], to the knowledge of
how their atoms interact with each other and how they arrange themselves in the structure.

Advances in science, specifically in Physics with the development of quantum mechanics at the be-
ginning of the 20th century, allowed us to understand some phenomena that occur on the atomic scale
and in this way to be able to explain some of the macroscopic properties observed in Nature. However,
the detailed study of complex systems was only possible until the development of computers and the
creation of codes based on empirical methods and on first principles (ab initio), in such a way that
it was possible to use quantum theory to understand the origin of the properties of practically any
system.

Thus, thanks to computational experiments, it is now possible to predict the characteristics that a
material would have in a large number of situations, from the change in its structure or atomic compo-
sition to when it is subjected to conditions difficult to achieve in a laboratory, such as high pressures
or very low temperatures. In this way, numerical simulation can be considered as a link between the
theoretical description and the experimental measurement of natural phenomena, in particular of the
physical properties of materials. This fundamental and powerful tool may be applied to explore the
properties from monoatomic crystals to DNA molecules; being the level of theory and the power for
the computation two of the most difficult obstacles to overcome.

Starting from the basics, monoatomic crystals have been the subject of study of solid-state science
since the application of quantum theory to their study. The reason for this is that those solids are
assumed to be arranged in a perfect periodic lattice and the mathematical theory needed for their
description was already well understood and ready to be applied in the solution of technological prob-
lems. Despite that solid-state theory fundamentally deals with perfect solids, rarely found in nature,
its success is undeniable: the electronic devices mankind has created are examples of the successfully
structure-properties knowledge acquired from simple models.
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Realizing that real materials do not present the perfect crystalline structure that the majority of solid-
state textbooks describe, the next step in increasing complexity for the study of condensed systems
may be given in any direction, but always with the aim, perhaps impossible to reach, to construct
a theory that fully describes their macroscopic physical and chemical properties. In this sense, two
appealing and interesting fields of research are to be studied: binary disordered alloys and the effects
of external pressure on the physical properties of materials; thereby, the present work explores these
two topics from a quantum-mechanical simulation approach within the Density Functional Theory
framework.

The first part of this thesis addresses the study of three binary alloys: AuxAg100−x, Cu61Bi39, and BN,
each one with specific characteristics that provide them a disordered character. Within this part, the
electronic contribution to the specific heat is studied for the substitutionally disordered AuxAg100−x al-
loy for gold atomic percentage concentrations x = 0, 4, 13, 20, 30, 40, 50, 75, 90, and 100. Also, amor-
phous structures and their characterization by pair correlation functions are reported for the metallic
alloy Cu61Bi39 and the semiconductor BN in equiatomic concentration; the superconducting transition
temperature is reported for the Cu61Bi39 alloy and the phonon contribution to the internal energy and
to the specific heat are reported for BN. The motivation to study those three alloys is to prove that our
approaches for first-principles simulation methods can be applied to metallic as well as to insulating
systems.

The second part of this thesis revolves around superconductivity in pure crystalline bismuth. Here, the
electronic and phononic energy spectra that lead to the estimation (within the BCS theory of super-
conductivity formalism) of the superconducting transition temperature (Tc) for the pure metal under
three different conditions are reported. Changes in the Tc due to the application of external pres-
sures up to 14.5GPa on the stable structure at ambient conditions (known as the Wyckoff structure,
corresponding to the Bi-I phase), are studied by analyzing compressed supercells that have the same
symmetries of the Wyckoff structure. Also, the possibility of superconducting behavior in bismuth
bilayers (which correspond to the (111) surface in the Wyckoff structure) is explored and a critical
temperature is predicted for this two-dimensional structure of bismuth. Finally, the stable structures
under pressure according to the bismuth phase diagram are considered. Specifically, critical temper-
atures for the Bi-II, the controversial Bi-III, and the Bi-V phases are calculated and compared with
measured values reported in literature; for the Bi-IV phase, our predicted Tc awaits experimental veri-
fication. Our interest in the superconducting behavior of bismuth arises from the fact that it is a metal
that maintains this state under several conditions.
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Part I

Alloys
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1 Introduction

The study of alloys from a theoretical perspective is of great relevance since, from the fundamental
knowledge of their physical and chemical properties, one can design useful materials with applications
in several other fields of science. However, a fundamental theory of alloys has not yet seen the light
due to the greater mathematical and computational challenges this represents compared to the theory
of perfect, crystalline solids.

Emphasis is made on in the concept of a perfect solid, which is understood as a material whose atoms
are assumed to occupy periodic positions according to a crystalline lattice that spans the whole space.
The regularities in the spatial distribution of atoms make it possible to define a primitive cell that,
while preserving the geometric symmetries of the bulk, contains the minimum number of entities such
that the entire three-dimensional perfect solid is reproduced when the cell is repeated along three non-
coplanar axes (or two non-colinear axes for two-dimensional materials) [2]. Since the mathematical
methods for periodic functions were already developed, it is not surprising that perfect solids were
the first systems to be studied under the quantum mechanics framework, giving rise to the so called
solid-state theory [3].

Along with the successful technological advances that solid-state theory fostered since the middle
of the 20th century, interests began to arise in non-perfect, disordered materials (e.g. alloys and
amorphous solids) for which a primitive cell construction cannot be made due to the lack of periodicity.
In this sense, the disordered concept emerges to label those materials which deviate from the periodic
description of the ordered, crystalline solids [4], giving as consequences emerging challenges in their
mathematical formulation which have prevented the development of a general theory of disordered
media.

The degree and type of disorder present in a system are not trivial to define or measure, and different
paths can be made [4–6]. To begin with, one must compare the disordered system with the perfect
crystal. In this sense, substitutional alloys present “the weakest type of disorder" [4] since it is possible,
following a certain probability distribution, to occupy lattice sites with each atomic specie the alloy
is formed of, with little disturbance of the crystal lattice. An alloy is labeled as disordered if the
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substituted sites do not form a periodic lattice by themselves, in contrast to an ordered alloy in which
two or more crystalline sublattices, each containing only one type of atom, can be defined [4].

The lattice’s little-disturbance feature is frequently found in substitutionally disordered binary alloys,
allowing the use of tweaked crystalline models as a starting point to tackle those systems. The first
attempt to build such a model was the Virtual Crystal Approximation, VCA, in which the underlying
crystalline structure is maintained and the lattice sites are occupied by “virtual" atoms whose prop-
erties, described by their respective potentials, are an average between those of the pure compounds
[4, 7–9]. Regardless of being a crude approximation, VCA model has proven to accurately calculate
properties in some semiconductors [10] and ferromagnets [11] but fails in the accurate description for
semiconducting nitride systems [12, 13].

A better approach than the averaged local potentials from the VCA is the consideration of the local
atomic properties through averaging the site scattering matrix (t-matrix) of each pure constituent; this
approach is known as the Averaged t-matrix Approximation (ATA) [4, 14, 15]. Although the ATA
represents an improvement over the VCA, it implicitly generates an “effective atom” when averaging
the t-matrices, not considering explicitly the local atomic environment and incorrectly describing the
electronic structure of some alloys for which an spurious band gap appears [4, 16, 17].

The next step in the description of the electrons [17] and phonons [18] in random substitutional alloys
was taken with the Coherent Potential Approximation (CPA). In this approach the t-matrix method
is applied to the alloy’s constituents embedded in an effective potential placed on every lattice site.
This effective potential is constructed in the spirit that the local atomic environment mimics that
of the macroscopic real alloy, leading to a successful description for the electronic and phononic
energy spectra due to its emphasis in long-range order [19], but failing in considering the atomic local
environment around each type of atom [4, 20].

The use of the VCA, ATA, or CPA greatly simplifies the calculation of some alloy properties that do
not depend importantly on the atomic local environment. If we wish to include in someway this short-
range interactions into a binary alloy model structure containing N atoms, the number of possible
different configurations that must be analyzed is 2N , making the process computationally prohibiting
even for the actual computational power. This calculation problem has given rise to two independent
approaches: the first one consists of averaging several small structures that contain a tractable number
of atoms, and the second one consists of constructing a single structure with sufficient number of
atoms that can be considered as a representative structure of the bulk. In the idea of bringing a model
that incorporates the best features of the two approaches, the Special Quasirandom Structures (SQS’s)
approach [21, 22] emerged as a solution to describe the properties of random alloys using the least
possible number of atoms.
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The SQS’s are constructed by a selective occupation of N atomic sites “guided by the principle of
close reproduction of the perfectly random network for the first coordination shells around a given
site, deferring spurious atomic correlations to more distant neighbors” [22]. Thus, although the SQS’s
approach seek to include the atomic local environment of the alloy, they do so by explicitly comparing
with its perfectly random-version, a hypothesis not always valid for some systems. Nevertheless, the
SQS’s approach has provided considerably good results in modeling metallic, semiconducting and
high entropy alloys [23–26] through optimized algorithms [27, 28].

Thus when dealing with disordered alloys, the problem to solve is that of the correct short and long-
range order description of the electronic and phononic energy states in the disordered system’s model.
In the spirit of improving the VCA, ATA, CPA, and SQS models, results of Part I of this work are
a contribution to the study of alloys with the perspective that a simple and elegant approach to the
simulation of these complex systems may arise in the future. Specifically, electronic and phononic
specific heats and critical temperature are the analyzed properties through our simulation approaches
for the study of alloys in Part I; the justifications for choosing gold-silver, copper-bismuth, and boron-
nitrogen as testing alloy models are explained in Sections 1.1, 1.2, and 1.3 where it corresponds.

1.1 Specific Heat

Every physical system, being solid, liquid or gas, absorbs energy from its surroundings in different
rates according to their internal degrees of freedom. In this sense, one useful quantity that relates the
internal degrees of freedom with the energy needed to excite them, is the specific heat. Formally, the
molar specific heat c is defined as an intensive magnitude that measures the required energy dE an
N -particle system needs to rise its temperature dT :

c =
1

N

dE

dT
(1.1)

Specifically for solids, those degrees of freedom are distributed into two main contributions (see Sec-
tion 2.3): from the electrons and from the nuclei. Since the lighter mass of the electrons make them
extremely mobile in comparison to the heavier-mass nuclei, the energy absorption at low tempera-
tures will be predominantly done by the more mobile and energetic valence electrons of the material,
whereas at high temperatures it will be principally done by the oscillating nuclei. Thus, the tools
needed to accurately probe the electrons and nuclei vibrations energy spectra distributions are rooted
in the quantum theory of materials though the calculation of the electronic (eDoS or N(E)) and the
vibrational (vDoS or g(ω)) Density of States (see subsections 3.3.4 and 3.3.5).
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Both the eDoS and vDoS, being a bridge between theoretical calculations and experimental mea-
surements, are fundamental concepts to understand the physics of ordered and disordered materials.
Focusing on the electronic properties of ordered solids, the free and the quasi-free electron theories as
well as the Friedel’s model for transition metals have been employed to study this kind of materials
with tremendous success [2, 29–32]. However, as mentioned in the Introduction, the disorder present
in the alloy introduces several complications that are not fully understood nor yet solved. Thereby,
one must start from the simplest possible disordered system to study the effects disorder produces in
it. One such system is the substitutionally disordered gold-silver alloy.

1.1.1 The Gold-Silver System

Gold and silver are two elements known as noble-metals due to their almost lack of reactivity in the
bulk with other elements. According to the Hume-Rothery rules [33, 34], the similar characteris-
tics between gold and silver, such as their metallic radii, crystalline structure, lattice parameter, and
valence electron concentration per atom (see Table 1.1) [33], have the consequence that gold-silver
alloys are metallic and can form a solid solution for all concentrations, thereby being a simple binary
metallic system to analyze and take as a starting point to understand the more complex mechanisms
that occur in other types of alloys [35–37]. Besides their similarities, it is important to mention that
the differences between gold and silver make it possible to manufacture nanoporous gold through the
chemical process known as dealloying [38–40], having multiple successful applications as a catalyst
[41] or for biological sensors [42, 43].

TABLE 1.1. Some characteristics of atomic Ag and Au.
From: Gersten and Smith [34]

Element Z
Electronic Metallic Densityb Melting Crystalline Lattice

Configuration Radiusa[Å ] [g/cm3 ] Temperature [K] structureb parameterb[Å ]

Ag 47 [Kr ] 4d105s1 1.45 10.51 1234.93 FCC 4.09

Au 79 [Xe ] 4f145d106s1 1.44 19.29 1337.33 FCC 4.09

a Determined from the FCC structure.
b Values are given at room temperature.
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Seeking to study the effect of disorder in the electronic states of gold-silver alloys, in 1966 Green and
Valladares [35] measured their specific heat at low temperatures (between 2K and 4K). It would be
expected that the coefficient (γ) of the electronic contribution to specific heat (cel= γT , see Section
2.3) changed linearly with the concentration of one specimen “either because of the effect of scatter-
ing or because the averaging of the potentials” [35] (recall the above discussion on CPA and VCA).
However, they found a parabolic dependency, shown in Figure 1.1, a result later confirmed by Martin
[44] in 1968 and by Davis and Rayne [45] in 1972.

FIGURE 1.1. γ coefficient of the Electronic Specific Heat (cel) for the AuxAg100−x alloy
measured by Green and Valladares [35]. The predicted behavior due to scattering theory
(broken (a) line) or the linear interpolation between the pure values (broken (b) line) does

not agree with their parabolic adjustment (dashed line) to their measurements.

With the motivation of trying to explain these results, an ab initio study of the electronic structure of
the AuxAg100−x system was carried out for the atomic gold concentrations x = 0, 4, 13, 20, 30, 40,
50, 75, 90, and 100 in order to determine the electronic specific heat coefficient γ through the eDoS at
the Fermi level (see Section 2.3 for the explicit relation among them).

1.1.2 State of the art

Green and Valladares, 1966 [35].

As a collection of studies of the specific heat at low temperatures for different binary alloys [46–49],
they studied the AuxAg100−xalloy for gold concentrations x = 0, 3.97, 12.90, 20.00, 30.00, 40.00. An
unexpected parabolic behavior as a function of gold concentration was found.
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Stern, 1966 [50].

First attempt to explain the parabolic behavior of γ for this alloy. Stern considered the electron-
impurity interaction and assumed that the electronic properties for the alloy can be determined from
an average potential and then applied perturbation theory to a model which consists of a perfect lattice
occupied by two different constituents randomly distributed.

Haga, 1967 [51].

Another attempt to explain the measurements of γ done by Green and Valladares. Haga considered
the electron-phonon interactions in the alloy using perturbation theory while neglecting the electron-
electron interaction. The calculation of the electronic properties of the alloy is assumed to be possible
by the determination of an average potential that varies linearly from pure silver to pure gold (recall
the VCA for alloys).

Martin, 1968 [44].

A second measure of γ for the concentrations x = 0, 10.13, 25.57, 49.76, 100. Martin suggested that
the assumption that the electronic structure of the alloy can be determined from averaged potentials, a
central hypothesis in the theories of Stern and Haga, may not be true.

Davis and Rayne, 1972 [45].

Measurements of electronic specific heat of the binary alloy, which were performed for the concentra-
tions x = 0, 10.0, 20.0, 30.0, 50.0, 75.0, 82.5, 90.0, 95.0, 100, confirmed the previous results of Green
and Valladares, and Martin. Their de Haas-van Alphen measurements on the dilute Ag-Au binary
alloys suggest that the pure constituent averaged potential may not be justified, They also did the mea-
surements for the Cu-Ag-Au alloy and extended the theories of Stern and Haga to the ternary system,
maintaining their basic assumption of a perfect lattice with an averaged potential at each lattice point
in the alloy (recall the VCA for alloys).

Kokko, Ojala, and Mansikka, 1989 [52].

A Linear Muffin-Tin Orbital (LMTO) calculation was performed to study the electronic structure of the
ordered alloy which corresponds to gold concentrations of: x = 0, 25, 33.3, 50, 66.7, 75, 100, finding
a nonlinear behavior with a minimum value for γ around 25 at% gold and qualitatively similar to
those measured by Green and Valladares, Martin, Davis and Rayne. Although they are aware that real

Ag-Au alloys are disordered structures, they believe that “it is possible to explain many phenomena,
at least qualitatively, in real Ag-Au alloys by investigating these kinds of model systems because the
[electronic] DOS is a rather smooth function of energy around the Fermi level and disorder smearing
should not appreciably affect the results”.
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1.2 Superconductivity in bismuth-based materials

Superconductivity is a quantum-originated phenomena that can be macroscopically observed in some
materials below certain critical temperature Tc and magnetic field Hc; the two principal measurable
physical characteristics being the disappearance of the material’s electrical resistance and the manifes-
tation of the Meissner-Ochsenfeld effect, i.e. the total or partial expulsion of the magnetic flux density
from the bulk of the material when placed inside a magnetic field lower than Hc) [34, 53]. Since their
discovery in 1911 [54], superconductors have attracted attention from both theorists and experimental
scientists, leading to a classification of Type I and Type II superconductors according to their response
to temperature and external magnetic fields [2, 34, 53]

Along with new discoveries of superconducting materials, several theories trying to explain this phe-
nomenon emerged, being the one by J. Bardeen, L. N. Cooper, and J. R. Schrieffer (BCS) [55] the first
successful microscopic theory for superconductivity. Among several other features, BCS theory accu-
rately relates the material’s Tc to its electronic and phononic intrinsic properties [34, 53]. The majority
of pure metals and some alloys [56–59] are correctly described by the BCS theory and therefore are
given the surname of conventional superconductors.

Focusing on elemental bismuth, it is one of the few elements that maintains its superconducting prop-
erties under varied circumstances at atmospheric pressure, whether in the amorphous phase with a
measured Tc of ≈ 6K [60–62], or in the crystalline phase with a Tc predicted by our group to be
below 1.3mK [63], later confirmed to be 0.53mK [64]. Moreover, three high-pressure crystalline
phases are also superconducting [65]: Bi-II with Tc = 3.9K, Bi-III with Tc = 7K, and Bi-V with
Tc = 8K. An in-depth study of superconductivity in pure bismuth has also been carried out and the
results are presented in Part II of this thesis.

With respect to the alloyed forms of bismuth, it is known that it forms superconducting compounds
with almost every element in the periodic table (excepting those of the halogen and noble-gas groups),
having superconducting critical temperatures ranging from 0.3K for Bi3Mo to 5.7K for BiRu [66]. An
interesting feature of bismuth binary alloys is that they rarely form solid solutions, having a tendency
for segregation of the constituents and needing high-pressure-synthesis processes to be formed in
metastable crystalline structures [67, 68].

1.2.1 The Copper-Bismuth System

The Cu-Bi system is one example of a bismuth alloy that does not make a solid solution for any
concentration, presenting instead segregation of copper and bismuth [67–69]. Published studies [66,
69] have reported this alloy having an amorphous structure which is superconducting with Tcs ranging
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from 1K to 6K depending on the composition. It is worth noting that the critical temperature for pure
amorphous bismuth is close to 6K [60–62]. On the other side, in 2017 it was possible to synthesize
two crystalline structures of copper-bismuth by means of high-pressure processes: Cu61Bi39 [67] and
Cu50Bi50 [68], both being superconductors with Tcs of 1.36K and 1.3K, respectively.

Our interest in determining the effects of structural disorder on the Tc for the copper-bismuth system,
led us to calculate the electronic and phononic energy spectra for the reported 39-at%Bi crystalline
structure (x-Cu61Bi39) and compare them to those of our model for the amorphous structure with the
same concentration (a-Cu61Bi39).

1.2.2 State of the art

Alekseevskii, Bondar, and Polukarov, 1960 [69].

They reported the first measurement of superconductivity in unannealed Cu-Bi alloys for ≈ 20 at.%
Cu, finding a Tc around 2K. Annealing their samples at 120C causes phase decomposition and
dissapearing of superconductivity, whereas annealing them at 80C does not produce a drop in the
resistance measurements; concluding from these data that the amorphous phase is the one that can
maintain a superconducting state.

Matthias et al., 1966 [66].

They studied several bismuth alloys with transition metals and reported general features of supercon-
ductivity in those systems, without determining the crystal structure (if any) or the precise atomic
compositions. For the case of CuBi, a Tc around 1.4K was measured and hypothesized the possibility
of determining the structure of the metastable phase through the x-ray data. The also reported the lost
of the superconducting signal after annealing their sample at 200C.

Averback et al., 1985 [70].

They demonstrated that low-temperature ion-beam mixing in copper-bismuth bilayered samples pro-
duces an amorphous phase that seems very similar to the Bi phase obtained by vapor quenching of
pure Bi onto cold (4.2K) substrates. Incidentally, they found that “irradiation of pure bismuth does
not appear to produce an amorphous phase whereas vapor quenching does”. Since the amorphous
alloyed samples begin to recrystallize at 150K, which is a higher crystallization temperature than that
for pure bismuth (10K to 20K), they conclude that impurities are necessary to retard recrystallization
in amorphous Bi. The measured Tc is around 5K to 6K depending on deposition conditions, and these
critical temperatures significantly decrease after annealing the samples at ≈ 150K. After annealing at
330K, no indication of superconductivity was detected upon cooling to ≈ 1K.
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Clarke et al., 2016 [71].

They synthesized the first crystalline alloy for the Cu-Bi system (39 at% Bi) through high-pressure
processes. This material is metastable at ambient pressure and temperature, and has a measured su-
perconducting critical temperature of 1.36K. They also calculated a value of 1.4K for the Tc using
the Allan-Dynes modified McMillan’s approximation of the Eliashberg equation.

1.3 Amorphous semiconductors

1.3.1 The Boron Nitride System

When boron and nitrogen are mixed in an equiatomic concentration B50N50, or simply BN, is formed.
Due to the electronic configurations of boron ([He]2s22p1) and nitrogen ([He]2s22p3), BN is isoelec-
tronic to carbon and from this fact it is possible for BN to crystallize in structures analogous to those of
carbon, namely: two-dimensional low-density and three-dimensional high-density structures. Specifi-
cally, the two-dimensional layered structures of BN are: the hexagonal structure (h-BN) shown in Fig-
ures 1.2, and the rhombohedral structure (r-BN) shown in Figures 1.3; whereas the three-dimensional
structures are the wurtzite structure (w-BN) shown in Figures 1.4 and the cubic zincblende structure
(c-BN) shown in Figure 1.5.

(A) Two different monolayers, stacked one above
the other, are shown. N atoms in the top layer are
located above B atoms in the bottom layer and

vice versa.

(B) Top view of the h-BN structure of Fig. 1.2a.
The depicted hexagons lie on the same plane and
the coordination number for each B and N is

three.

FIGURE 1.2. Two views for the sphere-and-stick representation for the structure of
hexagonal boron nitride, h-BN. Pink spheres are boron atoms and blue spheres are nitro-
gen atoms. The unit cell, delimited by dashed lines, is replicated 3 × 3 × 1 times along

the cell axes.
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(A) 3 × 3 × 1 replica of the unit cell for r-BN.
Three different monolayers are shown.

(B) Top view of the r-BN structure. The formed
hexagons lie on a plane and the coordination

number for each B and N is three.

FIGURE 1.3. Sphere and stick representation of the structure of rhombohedral boron
nitride (r-BN). Pink spheres are boron atoms and blue spheres are nitrogen atoms.

(A) 2× 2× 2 unit cell repetition.

(B) Top view of the w-BN structure from a unit
cell repeated 3 × 3 times. The hexagonal struc-
ture does not lie on a plane and the coordination

number for each atom is four.

FIGURE 1.4. Sphere and stick representation of the structure of boron nitride in its
wurtzite structure (w-BN). Pink spheres are boron atoms and blue spheres are nitrogen

atoms.
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FIGURE 1.5. c-BN structure. The coordination number for each atom is four, leading to
a diamond-like structure.

Continuing with the carbon analogy, h-BN (Figs. 1.2) and c-BN (Fig. 1.5) are expected to have physi-
cal properties analogous to graphite and diamond, respectively, this is why the first phase diagrams for
BN [72] reported h-BN as the stable phase at ambient pressure and temperature conditions. However,
later investigations [73, 74] reported c-BN as the stable phase. This dilemma has prevailed over the
years but it has not stopped the experimental and theoretical research for these two modifications of
BN, since it is a promising material for industrial applications [75–80].

With respect to the amorphous BN, a-BN, not much has been experimentally explored. The first
attempts, back in 1968, reported vitreous films reminiscent of disordered materials [81–83]. Only
recently, some papers analyzed the possible use of amorphous BN as an ultralow-dielectric-constant
material which can be used as dielectric diffusion barriers in low-scale electronics [78, 84, 85]. More-
over, a-BN has been used as a precursor material to synthesize one crystalline BN modification [86–
88].

In the context of practical applications, it is necessary to study the relation between the macroscopic
properties and the hybridization of the electronic states so that BN can be effectively employed as the
promising material it is claimed to be. So, several theoretical simulations have centered on studying
the electronic structure of crystalline, amorphous and liquid BN [89–92]. Nevertheless, the lattice
vibrational problem has not received much of attention either theoretical or experimental.
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1.3.2 State of the art

Rand and Roberts, 1968 [81].

They produced vitreous films of boron nitride up to 6000Å thick by chemical vapour deposition
(CVD) and performed a complete physico-chemical characterization of their samples. Among other
features, they reported observation of crystallites near the surface of the film with estimated sizes from
1000Å to 6000Å, depending on the deposition temperature (600C to 950C). Also, they estimated a
band gap of 3.8 eV and measured a dielectric constant κ of 3.7 for a 800Å-1800Å film.

Hirayama and Shohno, 1975 [82].

They studied amorphous and polycrystalline boron nitride films deposited on Si substrates. The poly-
crystalline films, having hexagonal structure, were obtained at temperatures near 1000 °C, maintaining
stable up to temperatures of 1250 °C in a hydrogen and nitrogen atmosphere. The amorphous films
were produced when deposited below 1000 °C and are unstable and decomposed after a heat treatment
in nitrogen and hydrogen atmospheres.

Arya and D’Amico, 1988 [83].

They reviewed the collected experimental data concerning boron nitride thin films to look for better
experimental techniques to obtain them. They concluded that “the structure of BN thin films is amor-
phous or polycrystalline (hexagonal or cubic)) depending on the experimental technique” and reported
that the density for BN films ranges from 1.7 g cm−3 to 2.1 g cm−3.

Zedlitz, Heintze, and Schubert, 1996 [93].

They prepared boron nitride thin films, measuring a band gap of 5 eV and determining that the amor-
phous phase consists almost entirely of sp2 bonding. However, the formation of a crystalline phase in
some samples, with sp3 bonding, was also observed.

Sekkal et al., 1998 [89].

They employed classical molecular dynamics within the NVT ensemble to investigate the thermal
expansion coefficient and heat capacity of c-BN, simulating 216 atoms interacting via the Tersoff
potential. Also, they studied structural features of liquid BN at various densities.

McCulloch, McKenzie, and Goringe, 2000 [90].

They performed plane-wave ab initio calculations to study structural and elastic properties for BN,
AlN, and AlBN2 amorphous alloys by means of the liquid quench method. They simulated BN at two
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densities (2 g cm−3 and 3 g cm−3) using a 64-atom model, predicting that tetrahedral bonding (sp3) of
amorphous BN does not form under the liquid quench method.

Durandurdu, 2016 [91].

He studied, by means of ab initio calculations, the hexagonal-to-wurtzite and amorphous-to-amorphous
pressure-induced phase transformation of BN. He proposed that a-BN might be a candidate to be a
precursor to synthesize an intermediate structure from h-BN to w-BN.

Durandurdu, 2020 [92].

He generated a tetrahedrally coordinated amorphous BN sample by ab initio calculations and reported
its mechanical and electrical properties, finding a it can serve as a hard material with a band gap of
2.0 eV.
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2 Theoretical Framework

The theoretical framework which supports the calculations and results reported in Part I is explained
in this chapter. First, Hohenberg and Kohn’s Density Functional Theory (DFT) formulation and Kohn
and Sham’s approach for the problem are described in Section 2.1. Also, the application of the DFT
framework on the description of nuclei dynamics at finite temperatures and the implementation of DFT
into the DMol3 code is discussed within this section. Then, a description of the pair correlation func-
tions employed in Part I of this thesis is presented in Section 2.2. Finally, the calculated properties for
the reported systems in Part I (namely, the electronic specific heat (Section 2.3), the lattice-vibrations’
contributions to some thermodynamics quantities (Section 2.4), and the BCS theory of superconduc-
tivity (Section 2.5)), are briefly discussed. The contents in Sections 2.1 and 2.5 are also employed in
Part II of this thesis.

2.1 Density Functional Theory

The physical description of materials using quantum-mechanical calculations is known as a first-
principles or ab initio approach, in which the many-body hamiltonian Ĥ for i = 1, . . . , N electrons of
mass m located at ri, and I = 1, . . . ,M nuclei of mass MI and charge ZI located at RI , is given by:

Ĥ =−
∑
i
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(2.1)

where k = 1/(4πϵ0), is employed to solve the time-independent Schrödinger equation:

ĤΨj({r} ; {R)} = EjΨj({r} ; {R}), (2.2)

for the many-body wavefunction that describes the state j of the system:

Ψj({r} ; {R}) = Ψj(r1, · · · , rN ;R1, · · · ,RM) (2.3)



20 Part I. Chapter 2 Theoretical Framework

In particular, the ground-state wavefunction is labeled with j = 0: Ψ0({r} ; {R)}.

The importance of finding the solution of the Schrödinger equation (2.2) relies on the fact that by
knowing the full wavefunction (2.3) one can understand from first-principles the macroscopic prop-
erties of materials such as electronic, thermodynamic, optical, and transport phenomena. Also, these
calculations serve as a basis to the construction of interatomic potentials which can be used to effi-
ciently perform simulations on large complex systems. However, since the number of variables for the
wavefunction (2.3) ranges up to the order of 1023 for condensed systems, the task to find it becomes
nowadays impossible since the computing power needed exceeds the most powerful supercomputer.

In order to circumvent the problem of the explicit determination of the 3(N +M)-variable wavefunc-
tion (eq. (2.3)) while keeping the accurate and predictive power of Schrödinger equation (eq. (2.2)), a
theory which relies on the 3-variable ground-state electronic density function:

n0(r) = N

∫
|Ψ0(r, r2, · · · , rN ;R1, · · · ,RM)|2dr2 · · · drNdR1 · · · dRM , (2.4)

has been the method of choice to find material’s properties from an ab initio approach. This theory,
known as Density Functional Theory (DFT), postulates that any property of a system of interacting
particles is determined from a functional of the ground-state density function n0, and is based in two
theorems postulated and proved by Hohenberg and Kohn in 1964 [94]. Following Martin [96], the two
theorems are stated next:

• Theorem I. For any system of interacting particles in an external potential Vext(r), the potential
Vext(r) is determined uniquely, except for a constant, by the ground state particle density n0(r).

• Theorem II. A universal functional for the energy E[n] in terms of the density n0(r) can be
defined, valid for any external potential Vext(r). For any particular Vext(r) the exact ground state
energy of the system is the global minimum value of this functional, and the density n(r) that
minimizes the functional is the exact ground state density n0(r).

The schematic representation of the first theorem is depicted in Figure 2.1 where single arrows (⇒)
represent the solution of the many-body Schrödinger equation within the Born-Oppenheimer approx-
imation [2, 97] (dropping out the explicit dependence on the set {R} of nuclei coordinates). Starting
from the external potential Vext(r) that acts upon the electrons, the eigenfunctions Ψj({r}) for the
system’s j state are in principle obtained by solving the Schrödinger equation (2.2) (a task impossible
to do in practice); in particular, from the ground-state solution Ψ0({r}), n0(r) is constructed. The
Hohenberg-Kohn’s Theorem I (indicated as H-K⇐==⇒ in Fig. 2.1) guarantee the relation between Vext(r)

and n0(r).
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H-K⇐==⇒Vext(r)

⇓
Ψj({r}) ⇒

n0(r)

⇑
Ψ0({r})

FIGURE 2.1. Scheme for the Hohenberg and Kohn Theorem I. From the external poten-
tial for the interacting electrons Vext(r), the set Ψj({r}) correspond to the eigenfunctions
of the Schrödinger equation, impossible to obtain by practical means. The ground-state
density n0(r) is constructed from the ground-state wavefunction of the system Ψ0({r}).
The relation between Vext(r) and n0(r) is supported by Theorem I. Adapted from Martin

[96].

Although very powerful, Hohenberg and Kohn formulation of DFT as an exact theory of many-body
particles does not provide an explicit expression for the functional of the density needed to determine
the properties of interest. However, the 1965 approach of Kohn and Sham [95, 98] to DFT revolution-
ized its application to diverse systems with remarkable success, currently making DFT the principal
method for calculating the electronic structure of materials.

Loosely outlined and depicted in Figure 2.2, the Kohn-Sham approach reformulates the DFT problem
of finding the ground state density by assuming that n0(r) for the interacting system, described by
the many-body wavefunction Ψ0({r}), is equivalent to the density produced by the N lowest-energy
occupied single-particle states: ψi=1,N(r). These lowest-energy wavefunctions are chosen from the set
of wavefunctions ψi(r) which is the solution to Schrödinger-like equations for some non-interacting
system described by the potential VKS(r).

K-S⇐==⇒
H-K⇐==⇒Vext(r)

⇓
Ψj({r}) ⇒ Ψ0({r})

n0(r)

⇑

H-K0⇐==⇒n0(r)

⇑
ψi=1,N(r)⇐ ψi(r)

VKS(r)

⇓

FIGURE 2.2. Schematic representation of the Kohn and Sham approach. The
Hohenberg-Kohn theorem (see Fig. 2.1) applied to an interacting system of particles
is depicted at the left side of the K-S arrow ( K-S⇐==⇒), whereas its application to a non-
interacting system described by an effective potential VKS(r) (eq. (2.11)) is depicted at
the right side (notice the notation H-K0). The Kohn-Sham approach postulates that n0(r)
of the system can be obtained from the independent-particle wavefunctions ψi obtained
from Schrödinger-like single-particle equations (eq. (2.8)). Adapted from Martin [96]



22 Part I. Chapter 2 Theoretical Framework

Specifically, in the Kohn-Sham approach the energy functional E [n] stated in Hohenberg-Kohn’s
Theorem II is expressed as [96, 99]:

EKS [n] =

Energy in the non-correlated-particle scheme︷ ︸︸ ︷
Ts [n]︸ ︷︷ ︸

Kinetic energy

+

∫
drVext(r)n(r)︸ ︷︷ ︸

External potential energy

+
1

2

∫∫
drdr′n(r)n(r

′)

|r − r′|︸ ︷︷ ︸
Hartree energy

+EXC[n]︸ ︷︷ ︸
XC energy

. (2.5)

The first three terms describe the total energy in the non-correlated-particle scheme whereas the
difficult-to-calculate many-body interactions are incorporated into the exchange-correlation energy
functional: EXC[n].

Also following Hohenberg-Kohn’s Theorem II, the density n(r) that yields the ground-state energy
of the system and consequently the minimum value of the Kohn-Sham functional (eq. (2.5)) is the
ground-state density. Thus, the functional derivative of EKS [n] must vanish for n0(r):

δEKS

δn

∣∣∣∣
n0

= 0. (2.6)

Then, from equations (2.5) and (2.6), and requiring that the single-particle wavefunctions ψi(r) be
orthonormal: ∫

drψ∗
i (r)ψj(r) = δij, (2.7)

the celebrated Kohn-Sham equations [95, 96, 98] are obtained:

ĤKS ψi(r) = εiψi(r). (2.8)

These are a set of Schrödinger-like equations for the single-particle eigenfunctions ψi(r) of a non-
interacting system described by the Kohn-Sham hamiltonian ĤKS:

ĤKS = − ℏ2

2m
∇2 + VKS(r) (2.9)

and where the ground-state electronic density was postulated by Kohn-Sham to be calculated through
the N lowest-energy occupied states (recall Fig. 2.2):

n0(r) =
N∑
i=1

|ψi(r)|2 (2.10)
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In equation (2.9), the Kohn-Sham potential VKS(r) is defined as:

VKS(r) = Vext(r) + VH(r) + VXC(r), (2.11)

where Vext(r) is the external potential produced by the fixed-position nuclei:

Vext(r) = −
∑
I

k
ZIe

2

|r −RI |
, (2.12)

VH(r) is the potential produced by the electronic density n(r) and is known as the Hartree potential:

VH(r) =

∫
dr′ n(r′)

|r − r′|
, (2.13)

and VXC(r), known as the exchange-correlation potential, is derived from the exchange-correlation
energy of equation (2.5) as:

VXC(r) =
δEXC

δn(r)
. (2.14)

So far, two issues have emerged in the Kohn-Sham approach:

1. To calculate VH(r), the knowledge of n(r) is needed (see eq. (2.13)). However, the Kohn-Sham
equations which depend on VH(r), must be solved to determine ψi(r) and consequently n(r)
(see eqs. (2.8) and (2.10)); thus involving a circular argument.

2. The many-body interactions collected in EXC (eq. (2.5)) are still needed to solve Kohn-Sham
equations (see eqs. (2.8), (2.9), (2.11), and (2.14)). However, the Kohn-Sham approach does
not provide an explicit expression for it nor a manner to find it.

To solve issue 1, a self-consistent calculation is performed [96, 99]. Here, an initial guess for n0(r)

is made through skillfully chosen ψi(r) into what is known as the basis set, and its types include
localized atomic-like or extended plane-wave functions [96]. Then, from the chosen basis set, VKS(r)

(eq. (2.11)) is calculated and the Kohn-Sham equations (eqs. (2.8)) are solved to find a new set of
functions ψi(r) that yield a new electron density nnew

0 (r). If nnew
0 (r) is equal to the initial guess,

the self-consistent cycle stops and properties such as total energy, forces, and eigenvalues can be
calculated from it. If it is not equal, a mixing scheme for the two densities is applied, generating a
mixed density that is used as a new guess and the cycle is repeated until convergence is achieved and
calculation of properties can be done. By far, this cyclical calculations are the most time-consuming
process when implementing DFT into computational codes.
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The solution for issue 2 is more complicated and is one of the major research topics in the development
and the implementation of DFT. Since the explicit form of EXC is not known, it is useful to express it
in the form [96]:

EXC [n] =

∫
dr n(r)ϵXC([n] , r) (2.15)

where ϵXC([n] , r) is an exchange-correlation energy density per electron at point r that depends on
the density n at some neighborhood of point r and for which several approximations have arisen with
remarkable success; two of the most relevant being the Local Density Approximation (LDA) and the
Generalized-Gradient Approximation (GGA) [96, 99–101].

In the LDA, a homogeneous electron gas, in which the nuclei are replaced by a uniform positively
charged background, is taken as a model to produce a calculation for ϵXC([n] , r) of eq. (2.15) that
solely depends on n:

ELDA
XC [n] =

∫
dr n(r) ϵLDA

XC (n(r)), (2.16)

whereas in the GGA, ϵXC([n] , r) of eq. (2.15) depends on n and on the magnitude of the gradients of
the density |∇n|:

EGGA
XC [n] =

∫
dr n(r) ϵGGA

XC (n(r), |∇n|). (2.17)

Several different parametrizations for ϵLDA
XC and ϵGGA

XC have led to successful applications of DFT to a
wide range of insulating, semiconducting, and metallic materials, whether pure or alloyed [99, 100].
And when the LDA or GGA have failed in correctly describing the electronic structure of a particular
material, more complex approximations to EXC [n] such as meta-GGA, hybrid, or non-local function-
als have appeared to improve the calculation’s accuracy [96, 101]. However, it is important to be
aware that there exists a broad class of materials for which their strongly-correlated electrons are not
yet well described by DFT, requiring to go beyond the independent-particle scheme [102].

Pseudopotentials

Recalling the above discussion about the self-consistent calculation within the Kohn-Sham approach,
it was stated that one must guess an initial density through some chosen basis set of functions ψi(r)

in order to solve equations (2.8). In principle, one must include wavefunctions for all the electrons
of each atom to obtain a good initial guess; nevertheless, for must purposes the outermost valence

electrons are solely responsible for the interactions among atoms, thereby not requiring to explicitly
include the innermost core electronic states into the calculations. However, if the core electronic
states are simply ignored, the valence electronic states would not be correctly described since valence



Part I. 2.1 Density Functional Theory 25

wavefunctions heavy oscillate near the atomic nucleus due to the orthogonality requirement for the
eigenfunctions of the atomic hamiltonian.

The solution to this problem is brought by the construction of a pseudo-wavefunction that, given
certain radial cutoff rc from the nucleus, identically behaves as the real valence state for r > rc and is
a smooth and nodeless function that yields the same electronic density of the real valence wavefunction
for r < rc. The procedure to construct the pseudo-wavefunctions is done by replacing the true nuclear
and core-electrons potential for an effective interaction, known as pseudopotential, which is defined
up to a specific radial cutoff and acts on the valence electrons yielding the correct electronic density
for the atom [96].

The usefulness of the pseudopotential cannot be overemphasized. Since it effectively represent the
core electronic states, the pseudopotential can readily be employed for the description of the atomic
core electronic density when the atom is placed under any environment, property known as transfer-

ability. Moreover, the relativistic effects that some heavy-element’s core electrons experience can be
included in the pseudopotential, giving an accurate description of the full electronic density [96, 99].

Ab initio Molecular Dynamics (AIMD)

Molecular Dynamics (MD) is a well known classical simulation method for describing the movement
of particles subjected to external forces through the solution of Newton’s equations of motion [103].
In this sense, the adequate election for the timestep of the simulation is of great relevance for the
success of the simulation. The MD extension to the quantum regime was done by Car and Parrinello
[104]. In this method, the external forces responsible to move the ions are determined by the on-the-fly
calculated ground-state electronic density by means of a DFT calculation [96, 99, 105], giving rise to
the method known as Ab initio Molecular Dynamics (AIMD), which nowadays is a very important tool
to study complex molecules, solids, and liquids at temperatures and pressures not easily achievable
due to laboratory physical conditions.

When performing MD simulations, several ensembles may be employed according to the specific
situation we need to describe [96, 103, 106–108]. Two of the most common are: the microcanonical
ensemble (NV E), in which the total energy E, the volume of the system V , and the number of
particles N remain constant throughout the whole simulation; and the canonical ensemble (NV T )
in which V , N , and the temperature T are the constants of the simulation. When performing MD
simulations within the NV T ensemble, a method to control the desired temperature is needed [103,
105]. This method was devised by Nosé [109, 110] and Hoover [111] by means of an extended
Lagrangian function [103, 105].
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DMol3. Materials Studio ab initio code

DMol3 [112–115], is an ab initio code developed by B. Delley and is included in the Dassault Sys-
tèmes BIOVIA - Materials Studio suite of codes. In this code, the basis functions are the independent-
electron wavefunctions ψi(r) which are numerically calculated for each atom-centered orbital. Never-
theless the code includes LDA, GGA, and meta-GGA exchange-correlation functionals, in the present
work two of the most common will be used: the Vosko, Wilk, and Nusair [116] (VWN) LDA func-
tional and the Perdew, Burke, and Ernzerhof [117] (PBE) GGA functional. Relativistic corrections
for the core electronic states [118] are also included through the pseudopotentials vpsr [119] and dspp

[120].

Ab initio MD calculations are readily done within the NV E and the NV T ensembles. For the lat-
ter, the temperature control can be made by a single Nosé-Hoover thermostat with the possibility of
performing heating and cooling ramps of several simulation steps.

2.2 Correlation Functions

It is common to describe the spatial distribution of atoms within the material with the pair correlation
functions [4, 121–123]. These can be obtained through diffraction experiments and are one of the
fundamental tools for the structural characterization of condensed matter, since with them, one may
identify several phases of the material, or whether it has an amorphous or crystalline structure.

The so called Correlation Function of Atomic Pairs, ρ(r), reaches maximum values for distances r in
which it is more possible to find one atom given the position of another one. Moreover, in a structurally
disordered solid, for large interatomic distances ρ(r) tends to its numerical density: ρ0 = N/V , with
N the number of atoms within the volume V .

One of the most common functions to structurally describe disordered solids is the Pair Distribution
Function (PDF), g(r), which is related to ρ(r) by:

g(r) =
ρ(r)

ρ0
(2.18)

As a visual reference of g(r), this function for an amorphous material is schematically shown in Figure
2.3 [4, 121–123].
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FIGURE 2.3. Scheme of the PDF, g(r), for a hypothetical amorphous material. Notice
the tendency to a constant value 1. Adapted from Ziman [4].

Another common correlation function is the Radial Distribution Function (RDF), J(r), which is de-
fined in terms of g(r) as follows [121]:

J(r) = 4πρ0r
2g(r) (2.19)

The importance of the RDF lies on the fact that it is used to calculate the average coordination num-
ber, Nn-n (that is the number of nearest-neighbors, n-n, around a specific atom), for the material by
integrating it over the first coordination shell, defined within the interval [r1, r2], where r1 is the lowest
value for which g(r) ̸= 0, and r2 is the first minimum of g(r) after the first peak (see Figure 2.3) [121]:

Nn-n =

∫ r2

r1

drJ(r) (2.20)

Finally, another useful correlation function is the reduced Pair Distribution Function (rPDF), G(r)
[34], which is frequently obtained from x-ray diffraction studies and is defined by:

G(r) = 4πrρ0 [g(r)− 1] . (2.21)

These correlation functions, among others, can be calculated with the Correlation code, which was
developed in our group by Rodríguez et al. [124] and is used throughout this investigation.
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2.3 Electronic Specific Heat

From a thermodynamic point of view [125], the second derivatives of a system’s thermodynamic
potential, such as the Helmoltz or Gibbs energies, describe its macroscopic properties such as the
specific heat (eq. (1.1)). These quantities are frequently measured in experiments and give insight into
the manner the atoms that constitute the material interact with each other and with their surroundings.

A fact of classical theory of atomic vibrations in solids is that the specific heat at high temperatures
approximates a constant value of 3NAkB, where NA is Avogadro’s number and kB is the Boltzmann
constant, a result known as the Dulong-Petit Law [2]. Whereas for low to intermediate temperatures,
where the quantum-mechanical effects are not negligible, the specific heat consists of two contribu-
tions: one linear and another cubic with temperature [2]:

c = γT + αT 3 (2.22)

The γ and α coefficients correspond, respectively, to the electronic and vibrational contributions to the
specific heat in the range of low to intermediate temperatures, and both can be expressed in terms of
intrinsic properties of the material: the eDoS at the Fermi level, N(EF ), and the Debye temperature,
ΘD.

γ =
π2

3
k2BN(EF ) (2.23)

α =
12π4kB
5Θ3

D

(2.24)

where kB is the Boltzmann constant.

Both quantities, N(EF ) and ΘD respectively emerge from the quantum-mechanical description of the
electrons and nuclei vibrations within a solid. N(EF ) is a measure of the number of the highest-
energy electrons which are prone to be excited by external influences and ΘD is “a measure of the
temperature above which all [vibrational] modes begin to be excited, and below which modes begin to
be ‘frozen out’ ” [2]. Fortunately, N(EF ) and ΘD are two quantities that can be obtained through DFT
calculations (subsections 3.3.4 and 3.3.5). Once more, the predictive power of quantum-mechanical
calculations cannot be underestimated.
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2.4 Phonons and Thermodynamic Functions

As was stated in Section 2.3, the measurement of thermodynamic functions give an insight into the
physics of the condensed matter. The vibrational, or phonon, contributions to the energy of the system
at any temperature are of great relevance besides the calculation of the low temperature specific heat
stated in the previous section. Thus, one of the principal applications of the vibrational energy spectra
(g(ω) or F (ω), subsection 3.3.5), is the determination of several thermodynamic functions that provide
information about the local environment of the nuclei within the material [126].

Considering the total energy Enj
of a collection of quantum harmonic oscillators in the state nj which

oscillate with frequency ωj:

Enj
=

∑
j

(
nj +

1

2

)
ℏωj (2.25)

where ℏ is Planck’s constant divided by 2π, the partition function Z of the system can be constructed:

Z =
∑
j

exp
(
−βEnj

)
(2.26)

where β = 1/kBT . And from Z, the Helmoltz energy F is obtained [106, 126, 127]:

F = −kBT lnZ = kBT
∑
j

ln

{
2 sinh

ℏωj

2kBT

}
(2.27)

Now, when considering a model consisting of N unit cells, each one containing n atoms, that has an
energy spectrum g(ω) with ωL the highest phonon frequency, equation (2.27) becomes [126]:

F = 3nNkBT

∫ ωL

0

ln

{
2 sinh

ℏω
2kBT

}
g(ω) dω, (2.28)

Then, from equation (2.28) one can derive two important thermodynamic functions for the internal
energy [126]:

∆E = 3nN
ℏ
2

∫ ωL

0

ω coth
ℏω

2kBT
g(ω) dω, (2.29)

and the constant volume specific heat [126]:

Cv = 3nNkB

∫ ωL

0

[
ℏω

2kBT

]2
csch2 ℏω

2kBT
g(ω) dω, (2.30)
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2.5 BCS Theory of Superconductivity

The phenomenon of superconductivity, in which electrical currents flow without resistance and mag-
netic fields are excluded from entering the superconductor, has attracted much attention from scientists
since its discovery in 1911 by H. Kamerling Onnes [54]. Back in 1935, constitutive relations among
the superconducting current and the electromagnetic fields inside a superconductor where proposed
[128]. Later in 1950, a phenomenological model that characterizes the superconducting state by an
order parameter was put forth [129]. However, it was not until 1957 that a satisfying microscopic
theory of superconductivity was created: the Bardeen-Cooper-Schrieffer (BCS) theory [55], in which
an attractive interaction between electrons mediated by phonons is responsible of the superconducting
state.

One of the greatest achievements of the BCS theory is the prediction of a critical temperature Tc such
that the metallic solid behave as a normal metal when above that temperature, and superconducts
below it.

Tc = 1.13ΘD exp

(
−1

N(EF ) V0

)
(2.31)

where V0 is the electron-electron phonon-mediated attractive potential and, again, ΘD is the Debye
temperature and N(EF ) is the eDoS at the Fermi level.

The importance of this result is that the critical temperature can be calculated from intrinsic material
properties determined by N(E), ΘD and V0. In principle, all three can be obtained from DFT cal-
culations: N(E) and ΘD are readily obtained for ordered and disordered systems, however a higher
computational cost is involved in the calculation from first-principles of V0; even though there exist
some codes and software which claim to calculate it, as far as we know, they do so only for crystalline
perfect systems and on supercells containing low number of atoms, not applicable to our amorphous
structures. In this manner, assumptions regarding V0 will be done and explained in the corresponding
section for this work.
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3 Methods

This chapter is divided into three sections which describe the methodology followed in this Part I
of the thesis. In section 3.1, the software and codes employed in the investigation are reported; in
section 3.2, the processes followed to construct the samples for each ordered and disordered alloy
are detailed; and in section 3.3, features needed to describe some physical properties of the studied
systems are briefly discussed.

Contents from subsections (s.s.) that addressed the Materials studio software (s.s 3.1.1), the electronic
parameters for the DMol3 code (s.s. 3.3.1), the electronic (s.s. 3.3.4) and phononic (s.s. 3.3.5) energy
spectra, and the à la Mata-Pinzón et al. approach (s.s. 3.3.6), are also employed in Part II of this thesis.

3.1 Software and codes

3.1.1 Materials Studio

The software used was Materials Studio 2016, a suite of codes provided by Biovia Dassault Systèmes
[130] which incorporates several modules oriented to materials research. Specifically, the modules
utilized for this investigation were DMol3 [112–114] and Forcite.

DMol3 is an ab initio code which employs numerical atomic orbitals as the basis set to find the ground-
state electronic density through the Density Functional Theory framework [131]. In this work, DMol3

was employed to perform the entire DFT-based calculations, including the ab initio Molecular Dy-
namics (AIMD) and Geometry Optimization (GO) procedures, and the determination of the electronic
(eDoS) and vibrational Densities of States (vDoS).

Forcite is a module that “allows you to perform a wide range of molecular mechanics calcula-
tions on both molecular and periodic systems using classical forcefield-based simulation techniques”
[132]. However, since the present investigation is based on a first-principles approach, the majority
of Forcite’s simulation features were not exploited and only the structural characterization tool which
calculates the Pair Distribution Functions (PDFs) was employed.



32 Part I. Chapter 3 Methods

3.1.2 Correlation Code by Rodríguez et al.

As a complement and an improvement to not only calculate the Pair Distribution Functions but several
other correlation functions such as the Reduced Distribution Function (G(r)) and the Plane Angle
Distribution Function (PAD), the code Correlation [124], published by Rodríguez et al. in 2021,
was employed to analyze the amorphous structure of the BN alloy.

3.2 Processes

Disordered substitutional alloy

Substitutional disorder in binary alloys is the simplest type of disorder studied [4, 6]. As was previ-
ously explained, the most common theoretical approaches to the study of these materials (e.g. CPA or
SQS) lack the local atomic description which may be responsible of the peculiar macroscopic behavior
of the alloy. Recognizing that the local environment needs to be incorporated in the simulation of al-
loys in order to improve the existing models, our approach begins with the construction of a supercell
in which the atoms randomly occupy lattice sites which either

1. yield a stable atomic spatial distribution such that it is possible to observe the real alloy with
that underlying periodic structure regardless the atomic species occupying each site, or

2. yield an unstable structure, impossible to observe in the real alloy.

The atomic arrangement of case 1 is chosen when studying solid solutions that need to be modeled
by periodic supercells, constructing several of them by changing the atomic arrangement but not the
underlying structure aiming to average their calculated properties. The atomic arrangement of case 2 is
chosen when studying structurally disordered alloys, in which our amorphization procedure, detailed
below these lines, is performed.

Amorphization process: the Undermelt-quench method

The amorphization process developed in our workgroup is known as the undermelt-quench method
[133] and it has been employed to simulate amorphous and porous semiconductors [134–136] and
amorphous alloys [40, 137–140]. This computational method has given good results in obtaining
disordered structural atomic arrangements when compared to experimentally-obtained PDFs as well
as to other theoretical calculations found in the literature. The agreement has given us the certainty that
the disordered structures obtained in this manner are representative of a bulk macroscopic amorphous
sample, allowing us to study their electronic and vibrational properties so that macroscopic features
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like the optical behavior [141] and superconducting transition temperatures [63] can be adequately
studied, compared and validated, and on this ground, even try to predict new interesting behaviors for
the amorphous system.

The undermelt-quench method considers an initial unstable supercell in order to propitiate the amor-
phization process. This instability can be achieved in two manners: 1) changing the mass density
by expanding the volume of the supercell whereas conserving the crystalline stable structure, or 2)
maintaining the same mass density but using a different periodic structure which is unstable for the
crystalline system. Both approaches have been proven to give structurally appropriate amorphous
structures.

By means of AIMD, the unstable supercell is linearly heated in 100 steps from 300K up to a tem-
perature below the solidus temperature for multiatomic systems (or the melting temperature for pure
systems) followed immediately by a cooling ramp which takes the system down to a temperature near
0K, diminishing the temperature in each step at the same rate as the heating ramp. In Figure 3.1 the
entire undermelt-quench process is depicted.

FIGURE 3.1. Scheme of the undermelt-quench process. This version of the process
depicts the heating, constant, and cooling ramps. In other versions, the constant ramp
is omitted and the cooling ramp immediately follows the heating ramp. The horizontal

dashed line represents the solidus/melting temperature.
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Since after the undermelt-quench process the atoms within the supercell may not be in a local mini-
mum energy configuration according to an amorphous metastable structure (the global energy mini-
mum corresponds to a perfectly ordered crystalline state), a Geometry Optimization (GO) procedure
is performed. In this sense, in each step of the GO process the total energy of the system and the
forces acting upon each atom are calculated, then an energy minimization algorithm leads the system
into a metastable one which corresponds to a local energy minimum in which the internal forces are
practically null. Finally, the amorphous supercell obtained after the GO is structurally described by its
correlation functions and compared to experiments if any.

It is important to state that the amorphization process followed here does not try to mimic the actual
experimental quenching procedures to generate amorphous samples; typical MD simulation times are
of the order of picoseconds, giving quenching rates of the order of 1015 K/s, whereas experiments
concerning metallic amorphous alloys require quenching rates anywhere from 103K/s to 109K/s, de-
pending on the system [34, 142, 143]. So the objective of this approach is to find, with our supercells,
an amorphous structure which can be taken as a representative one of the bulk amorphous material.

3.3 Parameters, properties and characterizations

3.3.1 Electronic parameters for DFT calculations

The electronic problem treated by DFT in DMol3 requires the specification of some parameters.

Unless otherwise stated,

• all the ab initio calculations were done with DMol3 code [112–115] employing unrestricted spin-
polarized wavefunctions;

• the chosen wavefunctions basis set consisted in double-numerical plus d-polarization functions
(DND basis) atom-centered orbitals [131];

• the wavefunctions’ real-space cutoffs were set to 4.5Å;

• LDA was the chosen approximation for the exchange-correlation functional (see Section 2.1 and
Ref. [96]), in the Vosko, Wilk, and Nusair [116] parametrization.

• the employed pseudopotentials were the norm-conserving [96] Density functional Semi-core
PseudoPotentials (DSPPs) [120], which are generated by fitting the pseudo-wavefunctions to
all-electron relativistic DFT results and are specifically designed to reproduce accurate DMol3

calculations [131];
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• an electronic density convergence threshold of 1 × 10−6 was employed for the self-consistent
Kohn-Sham calculations (see Section 2.1 and Refs. [96, 131]); and

• a linear mixing scheme (see Section 2.1 and Refs. [96, 131]) was used to update the electronic
charge and spin densities in the self-consistent calculation. For the charge mixing a value of 0.1
was chosen, for the spin mixing a value of 0.5 was chosen.

3.3.2 AIMD and GO parameters

The undermelt-quench processes by AIMD and the GOs that followed them were done with the DMol3

code.

Unless otherwise stated, for the AIMD:

• the chosen timestep, ts, was the triple of the default one, td:

ts = 3td = 3

(
Ms

5

)1/2

fs

where Ms is the mass of the lightest element in the supercell;

• the ensemble used was NV T with the Simple Nosé-Hoover thermostat with a Q parameter of
0.5 (see Section 2.1 and Refs. [109–111, 131]; and

• the initial atomic velocities were randomly assigned to each atom such that the velocities fol-
lowed a Maxwell-Boltzmann distribution at a temperature of 300K;

and for the GO, the threshold values were:

• 1× 10−5 Ha for the energy criterion of convergence,

• 2× 10−3 HaÅ
−1

for the gradient criterion of convergence, and

• 5× 10−3 Å for the displacement criterion for convergence.

3.3.3 Structural Description

The structural information concerning the spatial distribution of the atoms is described by means of
the correlation functions discussed in Section 2.2.

Unless otherwise stated,

• histograms of 0.5Å width were employed to determine the correlation functions g(r), J(r), and
G(r), regardless of the used software (Forcite or Correlation), and
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• a 3-point Fast Fourier Transform (FFT) algorithm was employed to smooth the histograms and
report the corresponding correlation functions.

3.3.4 Electronic Structure

When the perfect periodicity of a material is lost (e.g. when trying to simulate complex materi-
als such as disordered alloys or amorphous solids), some mathematical constructions which rely on
these assumptions, such as the band structure or Brillouin zones, become hard to give a satisfactory
interpretation within the theory of disordered systems. However, a concept that maintains its valid
interpretation whether analyzing ordered or disordered materials, is the electronic Density of States
(eDoS or N(E)), defined to be the sum over all electronic states labeled by k with energy Ek within
an energy interval (E,E + dE) that are present in the supercell model [32, 144]:

N(E) =
∑
allEk

δ (E − Ek) . (3.1)

Therefore, the eDoS is the tool we shall employ throughout this work to study the electronic structure
of all our ordered and disordered samples.

Unless otherwise stated,

• the δ functions in equation (3.1) are smeared by Gaussian functions of 0.2 eV width,

• the smeared eDoS functions are normalized by the total number of atoms present in the corre-
sponding supercell, such that their units are electrons/(eV atom).

3.3.5 Phononic Structure

To study the vibrational or phononic energy spectra, the eigenvalues of the dynamical matrix (3N×3N

square matrix formed by the second-order partial derivatives of the N -atom supercell’s energy with
respect to atomic coordinates) [2] were calculated by finite differences. The square root of the 3N

calculated eigenvalues, labeled by k, correspond to the vibrational modes of frequency ωk and energy
ℏωk, and these are used to determine the phonon or vibrational Density of States (vDoS, F (ω), or
g(ω)).

Unless otherwise stated,

• a step size of 0.005Å was used for the finite-differences algorithm,

• histograms of width 1.5meV were employed to count the number of vibrational modes within
that interval for the whole energy spectrum and
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• those histograms were smoothed by a 3-point FFT algorithm to find the corresponding vDoS.

• The smoothed vDoS functions are normalized such that the area under the curve es equal to
one, allowing the direct comparison of the vibrational spectra among supercells with different
number of atoms.

3.3.6 Superconducting Critical Temperature, Tc, à la Mata-Pinzón et al.

In order to estimate the superconducting transition temperatures (Tc, equation (2.31)) within the BCS
framework, values for the eDoS at the Fermi level (N(EF ), subsection 3.3.4) and the Debye tempera-
ture (ΘD) are required; N(EF ) is determined from DFT calculations, whereas ΘD is calculated from
the vDoS (s.s. 3.3.5) as follows [145]:

ΘD =
ℏ
kB

exp

[
1

3
+

∫ ωmax

0
ln(ω)g(ω)dω∫ ωmax

0
g(ω)dω

]
(3.2)

where ℏ is Planck’s constant divided by 2π, kB is the Boltzmann constant, and ωmax is the maximum
vibration frequency from the vDoS.

Back in 2016, Mata-Pinzón et al. [63] developed a method to predict an upper limit for the Tc of
crystalline bismuth (Wyckoff structure) based on the already measured Tc for the amorphous phase and
the eDoS and vDoS calculations. Their predicted limit of 1.3mK was experimentally validated one
year later: Prakash et al. [64] measured a Tc of 0.53mK for crystalline bismuth at ambient pressure.
In this work, the Mata-Pinzón et al. approach is adapted to study superconductivity in other structures
and phases of bismuth such as the layered and the under-pressure pure-bismuth crystalline structures,
as well as the copper-bismuth amorphous structure as an example of a bismuth-based binary alloy. The
á la Mata-Pinzón et al. method is described next for two arbitrary systems labeled as Q and R; when
analyzing a specific phase or structure, these labels will change accordingly and will be specified in
the corresponding section.

Let R be a material which is a superconductor below the critical temperature TR
c and has an electronic

density of states at the Fermi level ofNR(EF ) and a Debye temperature of ΘR
D. LetQ be a material for

which we want to calculate its critical superconducting temperature TQ
c , provided we know its eDoS

at the Fermi level: NQ(EF ), and its Debye temperature: ΘQ
D. We postulate one can get system Q by

doping, alloying, or applying external pressure to system R.
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Two suppositions are of central importance for the method to be applied in our cases:

• The superconducting materials Q and R can be described by the BCS equation for the super-
conducting transition temperature Tc (same as equation (2.31)):

Tc = 1.13 ΘD exp

(
−1

N(EF ) V0

)
(3.3)

• The Cooper pairing potential V0 is the same for both Q and R systems no matter the phase or
structure studied.

From these suppositions, the critical temperature (3.3) for material R is given by:

TR
c = 1.13 ΘR

D exp

(
−1

NR(EF ) V0

)
(3.4)

whereas for material Q is:

TQ
c = 1.13 ΘQ

D exp

(
−1

NQ(EF ) V0

)
(3.5)

Now, NQ(EF ) and NR(EF ) are related themselves by the proportionality factor η:

NQ(EF ) = η NR(EF ) (3.6)

while ΘQ
D is related to ΘR

D by the factor µ:

ΘQ
D = µ ΘR

D, (3.7)

From equations (3.4), (3.5), (3.6), and (3.7) and taking the ratio
TQ
c

TR
c

, one can solve for TQ
c to finally

obtain:
TQ
c = µ

[
TR
c

]1/η [
1.13 ΘR

D

](η−1)/η
(3.8)

Equation (3.8) shall be used in what follows.
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3.3.7 Thermodynamic Functions

The thermodynamic functions studied in this work are the lattice contributions to the internal energy
(eq. (2.29)) and to the constant volume specific heat (eq. (2.30)); to determine both functions the
knowledge of g(ω) is required. For clarity, those equations are reproduced next:

Internal Energy:

∆E = 3nN
ℏ
2

∫ ωL

0

ω coth
ℏω

2kBT
g(ω)dω, (3.9)

Constant Volume Specific Heat:

Cv = 3nNkB

∫ ωL

0

(
ℏω

2kBT

)2

csch2 ℏω
2kBT

g(ω)dω, (3.10)
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4 Results

As was mentioned throughout the text, the principal objective of this work is the theoretical study of
binary alloys by their simulation and modeling. This chapter is divided into three sections correspond-
ing to each studied alloy. The first section is about the substitutionally disordered AuxAg100−x alloys
and their electronic specific heats as a function of the atomic concentration, the second section reports
the calculated superconducting transition temperature for the amorphous CuBi amorphous Cu61Bi39
alloy, and thermodynamic functions of the amorphous BN system are reported in the third section.

4.1 AuxAg100−x (Hinojosa-Romero et al. To be published)

4.1.1 Construction

Recalling the discussion of Chapter 1 on alloy models, without invoking symmetry arguments, the
number of different substitutionally disordered supercells that can be constructed containing N atoms
is 2N . For N = 108, this number is higher than 3.2 × 1032, making it impossible to analyze all of
them from an ab initio approach. Even if symmetries are considered, that number does not reduce
considerably for doing practical calculations.

Therefore, our approach for the simulation of the substitutionally disordered AuxAg100−x alloys con-
sists of constructing four different 108-atom supercell models for each of the atomic concentrations:
x = 0, 4, 13, 20, 30, 40, 50, 75, 90 and 100 and then averaging the calculated eDoS over the four con-
figurations, in the understanding that the local atomic environment is well described by the ab initio

calculations. The 108 atoms within our supercell models randomly occupied fixed positions located at
FCC-lattice sites and the densities of the samples were adjusted to that reported in the literature [146]
by changing the size of the supercells edges while preserving the fractional coordinates.

In order to determine the adequate exchange-correlation functional (Section 2.1) for these calculations,
a sample structure of Au50Ag50 was chosen to perform total energy calculations as a function of
the lattice parameter with two functionals: LDA-VWN, and GGA-PBE. Then, the binding energy
(difference between the energy of the alloyed system and the energy of all the atoms considered
isolated from each other [32]) for each supercell was employed to compare both functionals. The
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results for these calculations are shown in Figure 4.1, where quadratic fits are depicted as the solid
black and red curves for the LDA-VWN and GGA-PBE functionals, respectively.

FIGURE 4.1. Calculated Binding Energy per atom as a function of the lattice parameter
for a Au50Ag50 sample structure. Calculations were done using the LDA-VWN func-
tional (black squares) and GGA-PBE functional (red squares). The black and red solid
curves are quadratic adjustments for the calculated data of both functionals. The hori-

zontal axis is extended to explicitly shown the minimum values of our adjustments.

The parameters of the quadratic adjustment y = y0 + B1x + B2x
2 for the LDA-VWN-functional

curve are presented in the top row of Table 4.1, whereas those for the GGA-functional curve are
presented in the middle row. In this way, the lattice parameter (last column of Table 4.1) that yields
a minimum binding energy is estimated by locating the point at which the binding energy curve is
minimum. The adequate exchange-correlation functional for the AuxAg100−x alloy is chosen such that
the minimum value done as the one whose binding energy curve has a minimum for the extrapolated-
to-0K measurement of the lattice parameter.
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TABLE 4.1. Fitting parameters for the quadratic adjustments, y = y0 + B1x + B2x
2,

of LDA-VWN (black solid) and GGA-PBE (red solid) curves of Figure 4.1, and the
measured lattice parameter (green solid) curve of Au50Ag50 of Figure 4.2.

yo B1 B2 R2 Lattice parameter Å

LDA-VWN 70.50361 −9.16317 0.28236 0.99924 4.0565

GGA-PBE 83.36361 −10.33611 0.31043 0.99999 4.1620

Measured [147] 4.057 5.780× 10−5 1.385× 10−8 0.99979 4.057

Now, the measured lattice parameter for Ag50Au50 as a function of temperature [147] is shown in
Figure 4.2. The parameters for our quadratic fit (y = y0+B1x+B2x

2), shown as the green solid line,
give a value of 4.057Å for the lattice parameter at T = 0K. Then, from Figure 4.2 and the functional
comparison in Table 4.1, we conclude that the adequate functional to study the AuxAg100−x system is
the LDA-VWN.

FIGURE 4.2. Ag50Au50 Lattice parameter dependence on temperature as reported by
Okamoto and Massalski [147] (green squares). Green solid curve is our quadratic fit to

experimental data; the fitting parameters are reported in Table 4.1.
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4.1.2 eDoS

The eDoS functions were calculated for our four different substitutionally disordered AuxAg100−x

supercells for each of our ten analyzed concentrations (x = 0, 4, 13, 20, 30, 40, 50, 75, 90 and 100).
The four N(EF )-per-atom curves obtained for each concentration were point-by-point summed and
then divided by four (the number of curves) to obtained the averaged curves shown in Figure 4.3.

FIGURE 4.3. Averaged eDoS for our four AuxAg100−x supercells for each studied con-
centration. The inset shows a zoomed-in view around the Fermi level which is indicated

with a black vertical dashed line.

The zoomed-in view for N(E) around the Fermi level, N(EF ) is shown in the inset of Figure 4.3.
Its variation with the alloy’s gold concentration is shown in Figure 4.4, where the averaged N(EF )

are represented by black squares. Error bars of Figure 4.4 represent the standard deviation from the
calculated average value and the parabolic solid line is the quadratic fit to our calculated values; the
parameters of the fit are reported in Table 4.2.
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FIGURE 4.4. The averaged values for N(EF ) depicted in the inset of Fig 4.3 are shown
as a function of the gold atomic concentration. Error bars are the standard deviations
from the calculated average for the four supercells analyzed. The parameters for the

quadratic fit are reported in Table 4.2

4.1.3 Specific Heat

By the estimation of an averaged N(EF ) value for the four constructed supercells for all the studied
concentrations, the coefficient γ of the electronic specific heat as a function of concentration is readily
obtained by equation (2.23):

γ =
π2

3
k2BN(EF ) (2.23)

The results of this work, the experimental measurements due to Green and Valladares [35], Martin
[44], and Davis and Rayne [45]; and the theoretical calculations of Stern [50], Haga [51], and Kokko,
Ojala, and Mansikka [52], are reported in Figure 4.5.
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FIGURE 4.5. Measured and calculated γ coefficient of the electronic specific heat for
the AuxAg100−x alloy. The results of the present work are indicated by black squares
and dotted black curve. The reported fitting curves of the experimental measurements
are shown by dotted red, blue, and green curves. The parameters for all the fitted curves

are reported in Table 4.2

The parameters of the fitted curves of this work and the reported in Refs. [35, 44, 45], shown in Figure
4.5, are replicated in Table 4.2

TABLE 4.2. Parameters to the cubic equation that fits the measured and our calculated
values for γ shown in Figure 4.5.

Reference
y = B0 +B1x+B2x

2 +B3x
3

B0 B1 (10
−4) B2 (10

−5) B3 (10
−8)

Green & Valladares 0.6540 −21 5.0 0

Martin 0.6423 −5.2558 1.0195 0

Davis & Rayne 0.6477 −6.2882 1.4018 −2.3005

This work 0.6269 −8.4199 1.2112 0
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4.1.4 Discussion

The agreement of the qualitative parabolic behavior of our curve with that of the experimental results
is remarkable given the relative low number of atoms (108) within the supercells employed in these
calculations. A possible explanation for the discrepancies with experiments is that the specific heat,
according to equation (2.22), depends from the lattice vibrations through ΘD, moreover, the elec-
tron and phonon dynamics in AuxAg100−x alloys may be related by a non-negligible electron-phonon
interaction. This characteristic was not considered in our calculations.

However, modifications due to electron-phonon interactions were considered in the Haga’s description
of the alloy through a modified N(EF ):

N(EF ) = N0 {1 + λep G(y)} (4.1)

where λep is the coupling parameter for electrons and phonons, G(y) is a function that measures the
electron scattering due to phonons, and N0 is the eDoS at the Fermi level of the system with no
electron-phonon interactions. A more detailed study that incorporates the phonon contributions in our
AuxAg100−x disordered alloys is underway.
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4.2 Cu61Bi39 (Hinojosa-Romero et al. [148])

4.2.1 Amorphization Process and Correlation Functions

For the study of the crystalline Cu61Bi39 alloy, x-Cu61Bi39, a 144-atom supercell was constructed with
the same crystalline structure reported by Clarke et al. [67] for their representative ordered structure
at ambient pressure and temperature. So our supercell, which is shown in Figure 4.6a, consists of 88
copper atoms and 56 bismuth atoms arranged in a monoclinic structure with the space group C2/m
and a density of 10.29 g cm−3.

The structures shown in Figure 4.6b and Figures 4.7 evidence that the x-Cu61Bi39 structure of Figure
4.6a contains two sublattices: one sublattice is formed by copper atoms distributed in chained elon-
gated triangular bipyramids in which tree copper atoms, appearing halfway every other bipyramid in
the chain (drawn as unlinked orange spheres in Fig 4.7b), alternate their location with a single bismuth
atom (drawn as a purple sphere in Fig 4.7b); the other sublattice is formed by bismuth atoms arranged
in a pseudo-hexagonal chained structure (see Fig. 4.7c).

(A) x-Cu61Bi39 sphere-and-stick model struc-
ture constructed form data of ref. [67]. Sticks
between atoms are a guide to independently vi-

sualize the copper and bismuth networks.

(B) Visualization of the triangular copper (or-
ange spheres) and the pseudo-hexagonal bismuth
(purple spheres) sublattices. The remaining cop-
per and bismuth atoms are indicated by orange

and purple crosses, respectively.

FIGURE 4.6. Top view of a 2 × 2 × 2 multiplication of our 144-atom x-Cu61Bi39 su-
percell. Copper atoms are represented by orange spheres and orange crosses, bismuth
atoms are represented by purple spheres and purple crosses. Lattice edges are indicated

by dashed black lines. The spatial orientation is the same for both figures.
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(A) Lateral view of our constructed x-Cu61Bi39 supercell. Emphasis is done in the
copper and bismuth sublattices through element-colored linked spheres.

(B) The Copper sublattice within the x-Cu61Bi39
structure is indicated by orange spheres. Links
between copper atoms are drawn as a guide
to visualize the elongated-triangular-bipyramid
chained structure. The bismuth sublattice is in-

dicated with purple lines.

(C) The Bismuth sublattice within the x-
Cu61Bi39 structure is indicated by purple
spheres. Links between bismuth atoms are drawn
as a guide to visualize the pseudo-hexagonal
chained structure. The copper sublattice is in-

dicated with orange lines.

FIGURE 4.7. Lateral view of a 3×1×3 replication of our 144-atom x-Cu61Bi39 supercell,
emphasizing the copper and the bismuth sublattices. Copper atoms are represented by
orange spheres and orange crosses; bismuth atoms are represented by purple spheres and
purple crosses. Sticks between atoms are drawn as a guide to the eye. Lattice edges are
indicated by dashed black lines. The spatial orientation is the same for the three figures.

For the generation of the amorphous structure, a-Cu61Bi39, a 144-atom supercell underwent an un-

dermelt-quench AIMD calculation (see section 3.2 and subsection 3.3.2). The supercell contains 88

copper atoms and 56 bismuth atoms randomly occupying positions that yield an FCC structure with
the same density and composition of x-Cu61Bi39. The AIMD calculation consisted in a 100-step
heating ramp that takes the FCC supercell from 300K to 1080K at a rate of 7.8K/step, followed
by a 138-step cooling-ramp from 1080K to ≈8K at the same rate. The AIMD timestep was 10.7 fs,
producing a total simulation time of 2.547 ps. The resulting structure was then optimized so that
the atoms accommodate in their metastable equilibrium position, leading to the optimized structures
shown in Figures 4.8). Finally, to determine the amorphous character of the generated supercells, the
PDF of the structure was calculated and is shown in Figure 4.9.
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(A) Lateral view. (B) Top side view.

FIGURE 4.8. 2× 2× 2 multiplication of the geometry-optimized 144-atom a-Cu61Bi39
supercell obtained after the AIMD undermelt-quench process. Orange spheres represent

copper atoms and purple spheres represent bismuth atoms.

FIGURE 4.9. PDF of the a-Cu61Bi39 alloy. The total PDF (black line with shaded area)
is obtained from the sum of the Cu-Cu (green line), Cu-Bi (red line), and Bi-Bi (blue

line) partial PDFs.
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As can be seen in Figure 4.9, several features of the obtained structure’s PDF are consistent with an
amorphous structure for the Cu61Bi39 alloy: the global form of the total PDF, which tends to a constant
value for large distances, corresponds to an structure with no long-range-order; the characteristic
second-peak bimodality of the great majority of amorphous metallic systems is visible on the Cu-
Cu partial PDF around 4 to 5Å; and the peculiar liquid-like form of the PDF for some amorphous
metals [63, 149, 150] manifests in the Bi-Bi partial PDF. These facts validate, at least qualitatively,
the applicability of the undermelt-quench method for the construction of an amorphous structure for
this alloy.

On the other side, remnants of the short-range-order, which are inherent in the crystalline structures of
the pure constituents, are also present in the obtained amorphous structure. The first peak’s position
(2.53Å) of the Cu-Cu partial PDF in a-Cu61Bi39 compares satisfactorily with the nearest-neighbor
distance in pure crystalline copper (2.56Å [34]). Although not very well defined, there are two peaks
(≈3.28Å and ≈3.53Å) located within the first coordination shell in the Bi-Bi partial PDF for a-
Cu61Bi39; the observed broadening around 3Å and 4Å is a consequence of the coalescence of the first
(3.11Å) and second (3.45Å) crystalline peaks , as was shown by Mata-Pinzón et al. [63] for pure
amorphous bismuth (see also Section 6.1).

4.2.2 Electronic Density of States, eDoS

The comparison between the calculated a-Cu61Bi39 and x-Cu61Bi39 eDoS is shown in Figure 4.10. It
is remarkable that despite the different atomic arrangement between them, the general shape for the
eDoS is almost the same for both systems, being the softening of the peaks for the amorphous structure
the most appreciable difference. This could mean that the electronic structure is not very sensitive to
the structural arrangement, in the sense that our amorphous model, just as for the crystalline structure,
is composed of two independent amorphous “sub-lattices” originated by the known segregation of the
constituents.

Another feature of interest is the fact that theN(EF ) is higher for the amorphous structure (Na(EF ) =

0.38) than for the crystalline structure (Nx(EF ) = 0.30), a behavior that is also present in pure
bismuth [63].
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FIGURE 4.10. Comparison between the a-Cu61Bi39 (black curve) and x-Cu61Bi39 (red
curve) eDoS per atom. The vertical solid black line at E = 0 eV indicates the Fermi
level. The inset shows a zoomed view around the Fermi level in which N(EF ) is higher

for the amorphous structure than for the crystalline structure.

4.2.3 Vibrational Density of States, vDoS

The comparison between the vibrational spectra of the amorphous and crystalline structures is shown
in Figure 4.11. Since imaginary frequencies did not appear in our calculations, the vDoS does not
present negative vibrational energies, indicating that the obtained amorphous structure as well as the
crystalline constructed supercell are in a local energy minimum. Also, the x-Cu61Bi39 spectrum is
more localized than the a-Cu61Bi39 spectrum; the broadening of vibrational spectra and specially the
increment of low-frequency vibrational modes, is a common feature in amorphous solids that provide
them some interesting transport and conducting properties.
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FIGURE 4.11. Comparison between the a-Cu61Bi39 (black curve) and x-Cu61Bi39 (red
curve) vDoS per atom. Vibrational energies are more localized for the crystalline than

for the amorphous structure, leading to a lower Debye temperature for x-Cu61Bi39.

From the calculated vDoS, the Debye temperatures can be obtained for both structures by means of
equation (3.2) with the corresponding g(ω) for a-Cu61Bi39 and x-Cu61Bi39, this gives ΘaD = 182.62K

and ΘxD = 170.07K for the amorphous and crystalline structures, respectively.

4.2.4 Superconducting Critical Temperature, Tc

Following the method of Mata-Pinzón et al. [63] described in subsection 3.3.6, we identify the material
R as the x-Cu61Bi39 alloy, and the material Q as the a-Cu61Bi39. Thus, the identifications: R → x and
Q→ a in equations (3.4) to (3.8) produce:

η =
Na(EF )

Nx(EF )
= 1.27 (4.2)

from equation (3.6), for an amorphous-to-crystalline ratio of N(EF ), and

µ =
Θa

D

Θx
D

= 1.07 (4.3)

from equation (3.7) for an amorphous-to-crystalline ratio of ΘD.
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Taking the reference value of TR
c → T x

c = 1.36K as measured by Clarke et al. [67], the supercon-
ducting critical temperature for the amorphous phase TQ

c → T a
c is determined by equation (3.8),

TQ
c = µ

[
TR
c

]1/η [
1.13 ΘR

D

](η−1)/η
, (3.8)

obtaining a critical temperature of:
T a
c = 4.2K (4.4)

4.2.5 Discussion

The rough features of the calculated PDF are those expected for an amorphous material, showing
that the undermelt-quench method is adequate to generate amorphous structures for binary systems
that do not form solid solutions, besides the so-far studied metallic and semiconduting systems. By
exclusively analyzing the partial PDFs at the end of the GO process it cannot be determined if atomic
segregation or clustering happened during our simulation procedures. Moreover, the almost identical
eDoS for both structures subsumes for this segregation question. The investigations for the structure
evolution during the AIMD and GO processes in Cu61Bi39 and other concentrations is underway.

The fact that the eDoS at the Fermi level is higher for the amorphous than for the crystalline alloys
reflects the importance of bismuth’s contribution to the electronic structure of the alloy since this be-
havior is also seen in its pure form. The calculated superconducting temperature of 4.2K satisfactory
compares within the range of the measured values for bismuth-based alloys.
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4.3 BN (Hinojosa-Romero et al. Under review)

4.3.1 Amorphization Process and Correlation Functions

As happens with other semiconductors, their macroscopic properties may be a direct consequence of
the hybridization of the atomic states of its constituents, and this highly depends on the density of the
material. Since we do not want to impose a specific hybridization a priori, we decided to explore three
different densities under an ab initio scheme. The chosen densities were 2.04, 2.80, and 3.48 g cm−3,
which are within the crystalline’s systems reported ranges [83].

Since the c-BN and w-BN systems, both having an approximate density of 3.6 g cm−3 [83], crystallize
in diamond-like structures, it was necessary to use different starting supercells for the generation of
our amorphous structures via the undermelt-quench method. In this manner, the starting supercells for
the 2.04 and the 2.80 g cm−3 systems contained 108 boron atoms and 108 nitrogen atoms randomly
occupying the lattice sites of a diamond-like structure with edges lengths of 12.96Å and 11.67Å for
both densities, respectively. The starting supercell for the 3.48 g cm−3 system was a 256-atom FCC
supercell with an edge length of 11.48Å.

In order to compare our undermelt-quench (U-Q) method with the commonly used melt-quench (M-Q)
method, both amorphization processes were performed and the resulting PDFs were compared. The
AIMD calculations (see section 3.2 and subsection 3.3.2) consisted in a heating ramp from 300K to a
temperature below 2000K for the U-Q method, and to a temperature of 4000K for the M-Q method.
Cooling ramps immediately followed until a temperature as close to 0K as possible was reached. The
usual geometry optimization processes were carried out after both MD calculations. It is important to
stress out that the M-Q method frequently produces structures which maintain structural information
of the liquid phase [133]; this is why the reduced PDFs’ analysis is done exclusively for the U-Q
method.

The total PDFs for the three densities and both U-Q and M-Q processes were calculated by the
Correlation code are shown in Figures 4.12. The almost equal position for the first peaks around
1.5Å for the three densities, regardless the U-Q or the M-Q method, is a clear evidence of the con-
servation of the short-range order throughout both simulation processes. This method-independent
feature is extrapolated to the long-range order but only for the 2.80 g cm−3-density supercell (Figure
4.12 b)), for which there are almost no variations between U-Q and M-Q beyond 4Å.
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FIGURE 4.12. PDF for a-BN corresponding to the densities a) 2.04 g cm−3, b)
2.80 g cm−3, and c) 3.48 g cm−3 studied. The insets depict the amorphous structures ob-
tained through the undermelt-quench (U-Q) and the melt-quench (M-Q) methods. Crys-
talline PDFs for c-BN and h-BN are also shown as the green and orange histograms,

respectively.

Discrepancies among U-Q and M-Q are only noticeable for the 2.04 g cm−3 and the 3.48 g cm−3 sys-
tems from 4Å and beyond. Of these two, the lower-density system (Figure 4.12 a)) seems to have
a more liquid-like PDF for the M-Q process than for the U-Q process, contrary to the PDF for the
higher-density system (Figure 4.12 c)) which seems to be more liquid like for the U-Q proces. A
detailed study of liquid-like structures for boron nitride is beyond the scope of this work since our
particular interest resides in the determination of thermodynamic functions for the amorphous state.
Therefore, we shall stick with our U-Q approach to simulate the boron-nitrogen system.
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In order to compare our obtained supercells with those reported by the experimental works of Hong
et al. [78] and Grigoriew and Leciejewicz [151] and the simulation results of McCulloch, McKenzie,
and Goringe [90], the reduced Pair Distribution Function (rPDF or G(r)) was calculated and is shown
in Figures 4.13. It is important to stress out that density determination of the samples is not reported in
neither experimental works of Figure 4.13a and this may be one possible reason for the discrepancies
between our G(r)’s and theirs.

Moreover, Grigoriew and Leciejewicz [151] reported there existed crystalline admixtures in their sam-
ples, making the G(r)’s comparison even harder to interpret. The reported rPDF for the amorphous
structure of McCulloch, McKenzie, and Goringe [90] is shown Figures 4.13b; the discrepancies be-
tween our simulation and theirs are possibly due to their M-Q approach and a relatively small sized
supercell (64 total number of atoms).

(A) rPDF for our three samples of a-BN compared to
the reported by the experiments of Hong et al. [78] and
Grigoriew and Leciejewicz [151]. Crystalline admix-
tures were reported to be contained in the samples of
Ref. [151]. The experimental densities are not reported

in neither work.

(B) rPDF for a-BN compared to the one reported by the
simulations due to McCulloch, McKenzie, and Goringe
[90]. Their M-Q method does not produce significant
changes between their two studied densities. Our U-Q
method does reflect structural differences for distances

beyond 2Å.

FIGURE 4.13. Reduced Pair Distribution Function, rPDF for our three amorphous BN
densities studied and those reported a) experimentally in Refs. [78, 151] and b) simula-

tionally in Ref. [90]
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The partial PDFs of Durandurdu [92, 152] are shown respectively in Figures 4.14. Comparing Duran-
durdu’s results for the N-N and B-B partial PDFs of his samples, it can be noted that in his simulated
structures there are less N-N and B-B bonds than in ours. One possible explanation of this is that he
performed molecular dynamics up to temperatures ranging from 5500K [152] to 8500K [92], reduc-
ing the possibility for the formation of these bonds due to the extremely high reached temperatures
that caused the breaking of the diatomic molecules.

Moreover, traces of ordered phases are presented as sharp peaks beyond 3Å in Durandurdu’s results.
One possible explanation is that he used a crystalline stable atomic arrangement as the beginning
structure for his simulation, leading to a deficient production of a fully amorphous phase throughout
the sample, even the high temperatures reached. This is why we believe our U-Q method produces
better amorphous structures than the traditional M-Q methods.

FIGURE 4.14. a) N-N, b) B-N, and c) B-B partial PDFs for a-BN compared to the ones
reported by Durandurdu [92, 152]. The tall first peaks and the general sharply form of his
partial PDFs indicate that the initial structure for his MD process may not be the adequate

to generate amorphous samples.
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4.3.2 Vibrational Density of States

The next step was to determine the vDoS for the three amorphous samples, these results are shown in
Figure 4.15.

FIGURE 4.15. vDoS for generated a-BN for the three densities and a comparison to
those calculated for the crystalline structures h-BN [153] and c-BN [154]. The inset
shows a zoomed-in vision of the interval 200meV to 300meV; in such range vibrational
modes for the crystalline structures are absent, whereas there are some high-frequency

modes for the three amorphous structures.

The vDoS of the three amorphous samples develop a larger concentration of low-frequency modes
whereas the high frequency modes almost disappear. Those low frequency modes are located around
80meV with a timid attempt to rescue some of the high frequency modes of the material at about
140meV; nowadays it is believed that this is a common occurrence in the transition from crystalline
to amorphous. The frequency modes above 240meV are present for the 2.04 g cm−3 but absent for
the 2.80 g cm−3 and 3.48 g cm−3 densities (see inset of Figure 4.15). This is a consequence of the
difference in the interatomic N-N and B-B distances (see Figures 4.14 a) and c)), shorter for the
2.04 g cm−3 system than for the 3.48 g cm−3 system; the shorter the distance the higher the vibration
energy.
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4.3.3 Thermodynamic functions

Once the vDoS is calculated, the thermodynamic functions of internal energy (eq. (3.9)) and constant
volume specific heat (eq. (3.10)) may be determined. Both thermodynamic functions are shown in
Figure 4.16. Because of the extensive nature of these properties, an intensive alternative was used in
order to compare the three samples: the internal energy was divided by the number of atoms, n, in
each cell (216 atoms for 2.04 g cm−3 and 2.80 g cm−3, and 256 atoms for 3.48 g cm−3); and the specific
heat was divided by the Dulong-Petit law (3NAkB). As is shown in the inset of Figure 4.16(b), the cv
behavior of our amorphous samples at low-intermediate temperatures does not follow the Debye T 3

law, just as expected for an amorphous material.

FIGURE 4.16. a) Calculated ∆E and b) Cv for the three a-BN samples. The results in
b) for the Cv are scaled by the Dulong-Petit law (3NAkB) such that CD = Cv/3NAkB .
The inset shows the (0K, 300K) interval in both a) and b). As expected, the non-Debye

T 3 behavior for the amorphous samples is shown in the inset in b)
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4.3.4 Discussion

According to the PDFs, the amorphous samples constructed by the U-Q approach yield similar local
distributions for the first coordination shell compared to our M-Q method, discrepancies however
begin to occur from the second coordination shell at about 2.5Å. Moreover, our U-Q simulations show
important discrepancies in the atomic arrangement of the generated structures by M-Q approaches
followed by other authors. Both theoretical and experimental studies are required to elucidate the
existence for liquid-like features in the structure of amorphous boron nitride systems.

Nevertheless the vibrational spectra for the amorphous phase of the three samples are localized almost
entirely within the same energy range as two of the crystalline phases, the existing high-energy modes
for the amorphous structures are indicative for the intrinsically different local atomic arrangements
and therefore different types of hybridization of boron and nitrogen. On the other side, the increment
in the low-frequency modes for the lowest-density (2.04 g cm−3) amorphous structure produces an
increment in the intermediate-temperature-range specific heat. A more detailed study of the electronic
structure of these amorphous systems that helps elucidate the density-hybridization-properties relation
is underway.
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5 Conclusions to Part I and Future work

In this work, a metallic solid solution (gold-silver), a metallic compound (copper-bismuth), and a
semiconducting alloy (boron-nitrogen) were studied by means of first-principles calculations and some
important properties were determined for each one. As was mentioned in the introduction, the three
alloys do not have anything in common, however the main objective of this work was to explore
different methods in the simulation of alloys in the quest to find one method which incorporates the
atomic local environment within the material, bearing the supposition that this plays an important role
in determining the macroscopic properties of condensed matter.

In particular, for the AuxAg100−x alloy, our approach to simulate alloyed supercells produced a very
good approximation to the description of a thermodynamic property such as the electronic contribution
to the specific heat without the necessity of invoking new concepts; our results may be improved by
taking into account phononic contributions, however this gives hope that a simple but efficient method
for the simulation of alloys is plausible. For the CuBi alloy, the increase of the electronic density of
states at the Fermi level for the amorphous system with respect to the crystalline one has the conse-
quence of the increment of the critical superconducting temperature, this phenomenon is also observed
in pure bismuth but more work is needed for the study of superconducting amorphous materials from
first-principles. Finally, for the BN system it was shown that the structural arrangement for the amor-
phous structure strongly depends on the maximum reached temperature in the simulation processes
to obtain those disordered systems, although more simulations are needed, our amorphization method
correctly describes the well-known deviations for the lattice specific heat of crystalline systems.

The quest for the proposal of a better methodology to simulate alloys is far from being completed.
However, the knowledge acquired during this work by including intrinsically different systems has set
some bases in which a new methodology may be formulated in the future.
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Part II

Bismuth
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6 Introduction

It was already stated in Section 1.2 that bismuth has intriguing superconducting properties, whether
alloyed or in its elemental form. Following the brief discussion of that Section, Part II of this thesis re-
ports our ab initio investigations of superconductivity in pure crystalline bismuth under three different
circumstances: i) the compressed Bi-I structure, ii) the bilayered structure, and iii) the under-pressure
phases.

The work reported in this Part II was carried out within the DFT framework (Section 2.1) using the
DMol3 code from the Materials Studio software (subsection 3.1.1). Superconductivity in pure bismuth
is studied under the BCS theory (Section 2.5) by means of the à la Mata-Pinzón et al. approach
(subsection 3.3.6) and our calculated eDoS (subsection 3.3.4) and vDoS (subsection 3.3.5).

6.1 Bismuth

Bismuth is a semimetal with the electronic configuration [Xe ] 4f145d106s26p3 that crystallizes in a
rhombohedral structure which is known as the Bi-I or the Wyckoff structure [155], (named after R. W.
G. Wyckoff who first determined the currently accepted lattice parameters). The Wyckoff structure,
stable at ambient temperature and pressure, almost has a simple cubic symmetry but ends up having bi-
layered structures, stacked in a ABCABC. . . pattern lying perpendicular to the [1 1 1] crystallographic
direction and hold together by van der Waals forces (see Figure 6.1a).

Superconductivity is present in a vast number of bismuth-based alloys (Section 1.2) and it has been
hypothesized that “the electron configuration around the Bi atom itself is of prime importance” [66],
becoming necessary to study Bi in its pure form in order to also understand the superconducting
mechanisms bismuth contribute into the alloys. Since Bi was first predicted to be a superconductor
below 1.3mK in its pure crystalline form [63] and was later verified to be 0.53mK [64], the necessity
and relevance of including crystalline Bi in our investigation in Part II of this thesis is evident.
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(A) Sphere representation of the Wyckoff structure in
which a 4× 1× 2 replication of the unit cell is shown.
The sticks between some spheres are drawn to empha-

size the bilayered structure.

(B) PDF for crystalline Bismuth in the Wyckoff
phase. The first two peaks are located at 3.11Å
and 3.45Å, which correspond to intra and interlayer

nearest-neighbor distances.

FIGURE 6.1. a) Bismuth Wyckoff structure and b) its corresponding PDF.

6.1.1 Phase diagram

The temperature-pressure phase diagram of bismuth has changed since the first studies of Bridgman
[156–158]. The current accepted version is that shown in Figure 6.2, which was obtained from linear
and quadratic fits to the reported experiments of Klement, Jayaraman, and Kennedy [159].

FIGURE 6.2. Bismuth Phase Diagram reported in Ref. [160], adapted from Ref. [159]
for which broken lines were obtained by linear and quadratic fits to their experimental
data. The measured [64, 65] and predicted [63] critical superconducting temperatures are

shown for the phases known to be superconducting.
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There has been a lot of controversy around the validity of this phase diagram since some authors [161–
163] reported the existence of other phases within the Bi-III region, whereas other authors disproved
their existence [159, 164, 165]. Nevertheless, hereinafter we shall consider the phase diagram of
Figure 6.2 as valid and use it for our bismuth study.

The difficulties involving an accurate determination for the Bi-III structure rely on its complexity. In
the early and mid 1990’s, using then unprecedented-quality x-ray diffraction methods on Sb-II and
Bi-III [165, 166], Chen, Iwasaki, and Kikegawa proposed a primitive tetragonal cell with 10 atoms
and space group P4/n with a = b = 8.659Å and c = 4.238Å for Bi-III at 3.8GPa. Although this
structure provided a good fit to the x-ray positions, it would require an “unphysical” volume increase
of approximately 2% at the Bi-II → Bi-III transition, suggesting the need for the structure to be more
complex [167, 168].

In the late 1990’s, a new crystal structure type was discovered for Ba-IV at room temperature and
12.1GPa by Nelmes et al. [169]. These structures are composed of two interpenetrating cells: a “host”
tetragonal structure containing “guest” chains that extend along one axis of the host structure; the host
and the guest structures are incommensurate with each other [169]. This type of incommensurate host-
guest complex structure [170] was also found in Sr, phase V, above 45GPa [171]. In this manner,
based on the incommensurate-structure hypothesis, McMahon, Degtyareva, and Nelmes [167] and
Degtyareva, McMahon, and Nelmes [168] proposed that Bi-III also present this kind of structure.
Since then, several investigations have considered the incommensurate structure a reality for the Bi-
III phase [167, 168, 172, 173].

Going back to the under-pressure phases of bismuth, it is seen that at room temperature, Bi manifests a
“high-pressure transition sequence” of structural changes [65, 174]: Bi-I → Bi-II (monoclinic, C2/m)
at about 2.5GPa, Bi-II → Bi-III (host-guest structure, P1) at about 2.7GPa, and Bi-III → Bi-V
(bcc, Im3m) at about 7.7GPa. There also exist Bi-IV (orthorhombic, Cmca), a high-pressure, high-
temperature phase which is above 450K and in the (2.5GPa, 5GPa) pressure interval. It is important
to notice that this transition sequence also is presented for Sb and As at different pressures [174].
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7 Methods and Results

In this chapter, the electronic and phononic energy spectra calculated for compressed, bilayered, and
under-pressure strucures of pure bismuth are employed to infer changes its superconducting critical
temperature Tc, which is determined via the á la Mata-Pinzón et al. approach (subsection 3.3.6) and
the calculation of the eDoS (s.s. 3.3.4) and vDoS (s.s. 3.3.5) for the three mentioned cases. The
BCS Theory of Superconductivity (Section 2.5) and the Density Functional Theory (Section 2.1),
as implemented in the DMol3 code (s.s. 3.3.1) of the Materials Studio software (s.s. 3.1.1), are the
frameworks in which all the calculations of Part II of this thesis are founded.

Electronic treatment for Bi on DMol3

The electronic parameters for the ab initio calculations on bismuth are the same as those stated in
subsection 3.3.1, with the exception that the real-space atomic cutoff radius is 6.0Å for this Part II
of the thesis. The parameters and processes for the eDoS and VDoS functions are the same as those
stated in subsections 3.3.4 and 3.3.5, respectively.

7.1 Compressed structures (Hinojosa-Romero et al. [175])

In this part of the work, the effects of compressed bismuth in its electronic and vibrational densities
of states are studied. The important characteristic from this analysis is that the Wyckoff structure was
conserved during the compression of the supercell, i.e. our study did not involve phase changes as in
Figure 6.2. The procedure was as follows: The original crystalline structure (Fig. 6.1a) is represented
in this part of the study by a supercell containing 64 atoms with density 9.81 g cm−3 and interatomic
distances equal to those of Bi-I (Fig. 6.1a). The supercells needed for this work were obtained by
modifying the size of the lattice edges keeping constant the fractional atomic positions; this process
was followed to construct 18 different supercells: 14 compressed, 3 expanded, and 1 unaltered. Single-
point energies were calculated for all the modified supercells so the pressure at which these structures
are simulated can be estimated; the details for these calculations are given below and reported in Table
7.1.
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7.1.1 Pressure determination

From the calculated single-point energies, one can determine the binding energy (BE) [32, 100] of
each supercell as a function of the volume. These results are shown in Figure 7.1 where a fourth-order
polynomial fit to the data points was used:

BE(V ) = A0 + A1V + A2V
2 + A3V

3 + A4V
4

where A0 = 2879.507 78, A1 = −4.990 92, A2 = 3.076 80 × 10−3, A3 = −8.566 60 × 10−7, and
A4 = 9.1181× 10−11; units for BE are eV and for V , Å

3
.

The negative of the slope of the adjusted curve forBE at a given volume V corresponds to the pressure
at which the structure with that volume would be [96, 100]:

P = −∂(BE)
∂V

FIGURE 7.1. Binding energy as a function of volume of the 18 supercells constructed
(black dots). Solid blue line represents the fourth-order polynomial fit to our results. The

percentage values of compression and expansion are shown in the top axis.
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It is seen from the fourth-order adjustment that the original supercell with lattice parameter of the
Wyckoff structure (labeled as 100%) corresponds to a simulated pressure of −0.07GPa. This means
that, within the DFT calculation accuracy, the atomic positions do not yield the lowest-energy config-
uration supercell. However, the supercell’s energy is close enough to the minimum-minimorum value
such that the 100% Bi structure can be chosen as our stable and representative structure for the Bi-I
phase.

TABLE 7.1. Binding energy as function of pressure and percentage of volume. The
pressure was determined as the tangent to the curve depicted in Figure 7.1.

Volume
[
Å

3
]

Volume [%] Binding Energy [eV] Pressure [GPa]

2423.38 107 -193.23047 -3.11
2378.08 105 -193.93686 -2.23
2332.79 103 -194.44684 -1.38
2264.84 100 -194.79269 -0.07
2239.02 99 -194.77677 0.45
2196.89 97 -194.55493 1.37
2174.23 96 -194.32712 1.90
2151.60 95 -194.01702 2.46
2128.95 94 -193.61881 3.06
2061.00 91 -191.84727 5.11
2038.35 90 -191.04612 5.89
1993.06 88 -189.08644 7.62
1970.42 87 -188.12609 8.58
1947.76 86 -186.81098 9.61
1925.11 85 -185.35005 10.71
1902.46 84 -183.73161 11.89
1879.81 83 -181.94591 13.15
1857.17 82 -179.98491 14.49

Herein after we shall only focus in the Wyckoff and the 15 compressed structures for the calculation
of their eDoS and vDoS.
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7.1.2 eDoS

The electronic density of states, represented in Figures 7.2 is calculated from the determination of the
energies in the DFT calculations. It is observed that the number of states at the Fermi level decreases
noticeably in going from a pressure of 7.62GPa to a value of 8.58GPa; this is plotted in Figure 7.3.
Since this pressure is close to 7.7GPa associated to the observed experimental phase change Bi-III →
Bi-V at room temperature (see subsection 6.1.1), we believe that the change in eDoS may be associated
to the need of the Wyckoff-like structure to relax to a different, more stable phase.

FIGURE 7.2. eDoS for the Wyckoff and 9 selected compressed supercells. Curves for
pressures up to 3.06GPa are shown in a), whereas curves for pressures from 5.89GPa

to 9.61GPa are shown in b).

FIGURE 7.3. eDoS at Fermi level as a function of the calculated pressure for the Wyckoff
and the 14 compressed supercells.
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7.1.3 vDoS

Two interesting and subtle features appear in the vDoS curves (Figures 7.4). The first feature appears
around 9meV, in which the shoulder-like form evolves into a peaked structure when going from
the structure at 1.9GPa to that at 2.46GPa (see inset of Figure 7.4 a)). The second feature appears
between 4.0meV and 5.5meV, in which the peaked structure evolves into a bimodal-form when going
from the structure at 5.89GPa to that at 7.62GPa (see inset of Figure 7.4 b)).

Recalling the bismuth phase diagram at ambient temperature (Section 6.1.1 and Ref. [159]), the high-
pressure Tcs are: 3.9K for Bi-II (at 2.5GPa), 7.2K for Bi-III (at 2.7GPa), and 8.5K for Bi-V (at
7.7GPa). So, as in the eDoS case, the observed subtle changes in the vDoS at the above-mentioned
pressures may be an indication for the need of the Wyckoff structure to change its atomic arrangement
and produce a more stable structure.

FIGURE 7.4. vDoS for the Wyckoff and 9 selected compressed supercells. Curves for
pressures up to 3.06GPa are shown in a), whereas curves for pressures from 5.89GPa
to 9.61GPa are shown in b). The curve for the Wyckoff structure is shown as reference

in both a) and b). The insets show interesting-feature zones (see text)

7.1.4 Discussion

Our calculations seem to indicate that, for pressures in the vicinity of possible phase transitions,
changes in the eDoS and the vDoS may indicate the tendency of the Wyckoff structure to relax into
different more stable structures. However, the evidence is not definite since there is no unequivocal
way to correlate these changes to structures that may be unstable. Also, the diminishing eDoS at the
Fermi level as pressure increases is an indication that the superconducting critical temperature should
decrease as well if the Wyckoff structure remained unchanged. This is in clear contradiction with the
measured values shown in Figure 6.2; thus the next step is to study the under-pressure phases, as will
be done in Section 7.3.
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7.2 Bilayers (Hinojosa-Romero et al. [176])

As was mentioned in Chapter 6, the bilayers in the Wyckoff structure lie perpendicular to the [1 1 1]

crystallographic direction, thus the usually reported names of Bi(111) surface, Bi bilayers, or bis-
muthene (in analogy to graphene, the individual layers of carbon). These low-dimensional material
has been the subject of recent investigation [177–181] as they are an example of non-carbon low-
dimensional material predicted to be a topological insulator [182–185]. However, based on the fact
that superconductivity is observed in several bismuth alloys (ref. [66] and Sections 1.2 and 4.2) and
phases (Section 7.3), for this investigation it is proposed that Bi(111) bilayers may also display super-
conductivity.

7.2.1 Supercell construction

The procedure for the construction of the bismuthene supercell is sketched in Figure 7.5. Given a
240-Bi-atom supercell with the Wyckoff structure (Fig. 6.1a), three supercells exclusively formed by
the A-labeled bilayers were constructed. The interlayer distance d between these isolated Bi(111)
structures in our slab model was set to 5Å, 10Å, and 20Å, one interlayer distance per constructed
supercell, each one henceforth respectively named as Bilayer (5), Bilayer (10), and Bilayer (20).

FIGURE 7.5. Wyckoff structure showing the bilayers of bismuth. Notice the ABCA. . .
stacking order. The construction of the supercell for this study is depicted in the image

on the right. The distance d corresponds to interlayers’ vacuum.
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7.2.2 eDoS and vDoS

The calculated eDoS (subsection 3.3.4) for the three bilayers are shown in Figures 7.6 along with the
comparison of the eDoS for the bulk Wyckoff phase depicted as the shaded-area curve. The eDoS at
the Fermi level values for the Bilayer (10) system: 0.48, and the Bilayer (20) system: 0.47 are almost
identical; moreover the general form of the entire eDoS does not shown appreciable changes between
both models. This is an expected result since the bilayers are sufficiently far apart for the electronic
density of the bottom layer interacts with the top layer. An interesting case is the Bilayer (5) system
since, for an interlayer vacuum separation of 5Å, both bilayers within the supercell interact through
their electronic density.

FIGURE 7.6. Comparison between the Wyckoff structure (shaded area) and our slab
model with (a) d = 10Å (solid black line) and 20Å (solid red line), and (b) d = 5Å
(solid red line) of interlayer vacuum. The Fermi level is shown as the vertical dotted
black line and horizontal solid lines are a guide to the eye for the eDoS at the Fermi

level.

The calculated vDoS (subsection 3.3.5) for the three bilayers are shown in Figures 7.7 along with the
comparison with the bulk Wyckoff structure. The energy pseudo-gap at 10meV for the bulk structure
becomes, for the three bilayers, a real gap of about 6meV that separates low-frequency form high-
frequency modes. This bimodality in F (ω) is typical of bilayered structures and the fact that it is
almost observed in bulk Wyckoff shows its essential layered structure. An interesting feature of the
vDoS for Bilayer (10) and Bilayer (20) structures is the appearance of a shoulder-like form at about
16meV that is absent in the Bilayer (5) and the bulk Wyckoff structures; thus, the high-frequency
peaks can be identified with principally intralayer atomic vibrations.
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FIGURE 7.7. Comparison between the Wyckoff structure (shaded area) and our slab
model with (a) d = 10Å (solid black line) and 20Å (solid red line), and (b) d = 5Å

(solid red line) of interlayer vacuum.

The eDoS at the Fermi level N(EF ) and ΘD obtained for the Wyckoff structure and our slabs models
are reported in Table 7.2.

TABLE 7.2. N(EF ), ΘD, η, µ, and Tc (in K) for the Wyckoff and bilayered structures
obtained from our constructed # atoms supercells and their calculated eDoS and vDoS.

Structure # atoms N(EF )
a ΘD

b η c µ d Tc
e

Wyckoff 240 0.15 134.2 1.00 1.00 0.0013

Bilayer (5) 72 0.27 104.3 1.80 0.78 0.08

Bilayer (10) 72 0.48 104.3 3.20 0.78 2.61

Bilayer (20) 72 0.47 104.3 3.13 0.78 2.42

a Notation: NW (EF ) for Wyckoff and NL(EF ) for bilayers.
b Notation: ΘW

D for Wyckoff and ΘL
D for bilayers.

c From eq. (7.1)
d From eq. (7.2)
e From eq. (7.3). Notation: TW

c for Wyckoff and TL
c for bilayers.
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7.2.3 Calculation of the Tc

Following the method of Mata-Pinzón et al. [63] described in subsection 3.3.6, we identify the ma-
terial R as the bulk Wyckoff structure W , and the material Q as one bilayered form L. Thus, the
identifications: R → W and Q→ L in equations (3.4) to (3.8) produce:

η =
NL(EF )

NW (EF )
(7.1)

from equation (3.6) for a bilayered-to-Wyckoff ratio of N(EF ), and

µ =
ΘL

D

ΘW
D

(7.2)

from equation (3.7) for a bilayered-to-Wyckoff ratio of ΘD.

Taking the reference value of TR
c → TW

c = 1.3mK, as determined from the calculations of Mata-
Pinzón et al. [63], the superconducting critical temperature for each one of the bilayered structures is
determined by equation (3.8) by changing TQ

c → TL
c as:

TQ
c = TL

c = µ
[
TW
c

]1/η [
1.13 ΘW

D

](η−1)/η
, (7.3)

obtaining the critical temperatures for each Bilayer shown in Table 7.2.

7.2.4 Discussion

The bilayers of bismuth, being the basic structure of bulk bismuth, may display interesting properties
when isolated. Here, it is proposed that this form of bismuth may present superconductivity and with
the critical temperatures ranging from 0.08K to 2K, depending on the interlayer separation. We find
that for interlayer distances higher than d = 5Å, the properties of the layers are practically identical,
which means that the interaction between them is practically negligible. Assuming that the Cooper
pairing potential remains essentially unchanged in going from the bulk structure to the layer structure
is a strong supposition; experiments shall prove us rigth or wrong.
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7.3 The phases (Rodríguez et al. [160] and Valladares et al. [186])

Crystallographic data of the lattice parameters of the Bismuth phases considered in the present work
are shown in Table 7.3 [160, 186]. For the approximation of McMahon et al. to the incommensurate
structure of Bi-III, the host structure is indicated by “H”, whereas the guest structure by “G”.

TABLE 7.3. Lattice parameters for the five bismuth phases. The Bi-III structure, the
incommensurate one, is reported from the work of Chen, Iwasaki, and Kikegawa [165],
as well from the work of McMahon, Degtyareva, and Nelmes [167] and their proposed

host(H)-guest(G) structure.

Phase
Unit Cell Parameters Space Group

a Å b Å c Å α ◦ β ◦ γ ◦ No. Name

Bi-I a 4.55 4.55 11.86 90.00 90.00 120.00 166 R3m

Bi-II b 6.65 6.09 3.29 90.00 110.37 90.00 12 C2/m

Bi-III c 8.66 8.66 4.24 90.00 90.00 90.00 90 P4/m

Bi-III d 8.52 8.52 4.16(H), 3.18(G) 90.00 90.00 90.00 1 P1

Bi-IV e 11.19 6.62 6.61 90.00 90.00 90.00 64 Cmca

Bi-V f 3.80 3.80 3.80 90.00 90.00 90.00 229 Im3m

a Ambient temperature and pressure [174].
b Ambient temperature, pressure of 2.7GPa, Ref. [174].
c Ambient temperature, pressure of 3.8GPa, Ref. [165].
d Ambient temperature, pressure of 4.2GPa, Ref. [167].
e Temperature of 465K, pressure of 3.2GPa, Ref. [187].
f Ambient temperature, pressure of 8.5GPa, Ref. [174].

Bi-I

For the Wyckoff structure, Bi-I, we used a 6-atom crystalline cell that we multiply by 5 × 4 × 2 to
obtain a supercell with 240 atoms for the calculations of N(E) and of F (ω). Thus, the supercell has
the following lattice parameters: a = b = 4.55Å and c = 11.86Å and with α = β = 90◦ and
γ = 120◦, and the space group is R3̂m, as reported in Table 7.3. Figure 7.8 is a representation where
the bilayers are clearly indicated by white and black spheres.
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FIGURE 7.8. Spheres and sticks representation of the Wyckoff structure of bismuth as
reported in Ref. [160]. Spheres are colored black and white just to show more clearly
the bilayered structure. The bonds, represented by the sticks, correspond to a default

distance of 3.45Å.

Bi-II

The supercell used for our calculations of N(E) and F (ω) has 240 atoms ordered in a C2/m space
group with lattice parameters of a = 6.65Å, b = 6.09Å and c = 3.29Å, with α = 90◦, β = 110.37◦

and γ = 90◦, consequence of a 4×3×5 multiplication of the 4-atom unit cell. These data are registered
in Table 7.3. The corresponding pressure for Bi-II structure is 2.7GPa [174]. A representation of the
corresponding cell is shown in Fig. 7.9 where the monoclinic structure can be observed, together with
two (dark and light) distinct monoatomic layers displayed.

FIGURE 7.9. Spheres and sticks representation of the Bi-II structure as reported in Ref.
[160] according to the data in Ref. [174]. Two different monoatomic layers (black and

white spheres) can be observed.
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Bi-III

Bismuth III is a low temperature phase that extends to pressures higher than 7 GPa, Fig. 6.2. Along
with the controversies of the phase diagram in this region (subsection 6.1.1); this phase in particular
has also been controversial since it was described first as a regular periodic cell [165], and nowadays it
is considered as a host-guest incommensurate structure (see s.s. 6.1.1 and Refs. [167, 174]). Since an
incommensurate structure is impossible to represent within a supercell approach, there have been at-
tempts to propose representative commensurate periodic crystalline structures that supposedly would
reflect, with some precision, the real structure [188]. This gave rise to two structures, one due to Chen
and coworkers [165] (Fig. 7.10), the other due to McMahon and coworkers [167] (Fig 7.11). Later,
Häussermann, Söderberg, and Norrestam proposed a commensurate approximation of a 3:4 host-guest
ratio [172]. In this work we consider Chen’s representation and, based on the 3:4 Häussermann ap-
proximation, we construct a commensurate one from McMahon’s data and calculate its eDoS, vDoS
and superconducting transition temperature. As we shall see, the structure proposed by Chen, Iwasaki,
and Kikegawa leads to a Tc closer to experiment than ours.

The Chen supercell has 120 atoms, consequence of a 2 × 2 × 3 multiplication of the 10-atom repre-
sentative cell. Figure 7.10 is a representation where the tetragonal structure is illustrated. The lattice
parameters at a pressure of 3.8GPa were: a = b = 8.66Å, c = 4.24Å; α = β = γ = 90◦ and the
space group is P4/n21 (see Table 7.3, row: Bi-III c).

FIGURE 7.10. Spheres and sticks representation of the Bi-III structure as reported in
Ref. [160] according to the data reported in Ref. Chen, Iwasaki, and Kikegawa [165].
a) The x-y plane of the structure. b) The horizontal in-the-plane axis is the z-axis of the

structure.

Our proposed supercell has 128 atoms, consequence of a 2×2×1 multiplication of our 32-atom repre-
sentative cell shown in Fig. 7.11, resulting in the following lattice parameters: a = b = 8.52Å, cH =

4.2Å and cG = 3.1Å for the host and guest structures, respectively; α = β = γ = 90◦ and the space
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group is P1, at a pressure of 4.2GPa. The host structure is tetragonal with 8 atoms in its own unit cell
(white spheres), whereas the guest structure is body centered tetragonal with two atoms in its own unit
cell (black spheres) (see row Bi-III d of Table 7.3). Our basic 32-atom cell was then obtained from
interpenetrating three host unit cells with four guest unit cell along the z-axis.

FIGURE 7.11. Our commensurate Bi-III 3:4 host-guest structure as reported in Ref.
[160]. It is based on the incommensurate structure reported at 4.2GPa in Ref. [167].
Host-structure spheres are colored white, whereas guest-structure spheres are black. a)
The x-y plane of the structure. b) The horizontal in-the-plane axis is the z-axis of the

structure.

Bi-IV

To construct the Bi-IV supercell, we use the experimental results by Chaimayo et al. [187]. They
reported that, at 3.2 GPa and 465 K, the structure is orthorhombic (pseudo-tetragonal) with the Cmce
space group and the following lattice parameters: a = 11.19Å, b = 6.62Å and c = 6.61Å (see
Table 7.3). Figure 7.12 represents this 16-atom structure with bilayers (white spheres) intercalated by
gray and black monolayers. We constructed supercells by multiplying this 16-atom cell by the factor
4× 2× 2 (256 atoms) to calculate N(E) and 2× 2× 2 (128 atoms) to calculate F (ω).

FIGURE 7.12. Crystalline 16-atom cell of Bi-IV as reported in Ref. [160] according to
the data reported in Ref. [187]



84 Part II. Chapter 7 Methods and Results

Bi-V

The structure of Bi-V at 8.5GPa is given by lattice parameters: a = b = c = 3.80Å;α = β = γ =

90◦ and, as depicted in Figure 7.13, the structure is a body-centered cubic (white spheres) with the
space group Im3m. The supercells used have 250 atoms, consequence of a 5 × 5 × 5 multiplication
of the 2-atom unit cell (see Table 7.3).

FIGURE 7.13. The body centered cubic structure of the Bi V phase as reported in Ref.
[160] according to the data of Ref. [174]. The BCC can be seen with the aid the of white

spheres.

Table 7.4 contains a summary of the parameters of the supercells employed for the bismuth phases.

TABLE 7.4. Parameters of the supercells employed for the simulation of the five bismuth
phases.

Phase
Pressure Density Supercell

# atoms
N(EF )

a ΘD
b

[GPa] [g/cm3] Multiplier
[

electron states
eV * atom

]
[K]

Bi-I 0.0 9.80 5× 4× 2 240 0.15 134.2

Bi-II 2.7 11.6 4× 3× 5 240 0.50 115.5

Bi-III c 3.8 10.92 2× 2× 3 120 0.62 96.9

Bi-III d 4.2 12.25 2× 2× 1 128 0.45 144.4

Bi-IV 3.2 11.33 4(2)× 2× 2 256 (128) 0.53 102.1

Bi-V 8.5 12.64 5× 5× 5 250 0.56 137.8

a Notation: NW (EF ) for Wyckoff and NL(EF ) for bilayers.
b Notation: ΘW

D for Wyckoff and ΘL
D for bilayers.

c Chen, Iwasaki, and Kikegawa [165].
d McMahon, Degtyareva, and Nelmes [167].
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7.3.1 eDoS and vDoS

Once the supercells were constructed, the calculations of their eDoS (subsection 3.3.4) and vDoS (s.s.
3.3.5) were done. Our results for each phase studied are presented next.

Bi-I

Since the Bi-I phase is taken as the reference phase, the N(E) and F (ω) graphs for this phase will be
constantly reproduced in the figures where comparisons with the other phases are made. N(EF ) for
this phase is 0.15 electrons per atom and the Debye temperature is 134.2K.

Bi-II

The results obtained for the eDoS are given in Figure 7.14 a) where comparison is made with the
results obtained for the Wyckoff phase. N(EF ) is 0.50 electrons per atom. In Figure 7.14 b), a
comparison between F (ω) for Bi-I and Bi-II phases is presented. The calculation for the Debye
temperature resulted in 115.5K for this phase.

FIGURE 7.14. a) N(E) and b) F (ω) for Bi-II (black solid line) compared to the results
for the Wyckoff structure (grey). Reported in Ref. [160].
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Bi-III

The eDoS for the Chen, Iwasaki, and Kikegawa [165] structure is shown in Figure 7.15 a) compared
to the Wyckoff phase. N(EF ) is 0.62 electrons per atom. In Figure 7.15 b) comparison for the vDoS
is given. The Debye temperature is 96.4K.

FIGURE 7.15. a)N(E) and b) F (ω) for Bi-III of Chen et al. (black solid line) compared
to the results for the Wyckoff structure (grey). Reported in Ref. [160].

Figures 7.16 are comparisons between our structure, á la Häussermann (based on the data reported by
McMahon et al.), compared to Wyckoff’s. N(EF ) is 0.45 electrons per atom. The calculated Debye
temperature is 144.4K.

FIGURE 7.16. a) N(E) and b) F (ω) for our commensurate representation of McMahon
results (black solid line) compared to the results for the Wyckoff structure (grey). Re-

ported in Ref. [160].
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Bi-IV

The results obtained for the eDoS and the vDoS of the Bi-IV phase are given in Figure 7.17. Figure
7.17 a) shows that N(EF ) is 0.53 electrons per atom for Bi-IV. Figure 7.17 b) presents a comparison
of the two vibrational densities of states. The calculation for the Debye temperature leads to 102.1K.

FIGURE 7.17. a) N(E) and b) F (ω) for Bi-IV (black solid line) compared to the results
for the Wyckoff structure (grey). Reported in Ref. [160].

Bi-V

The results for N(E) and F (ω) for Bi-V and the Wyckoff structure are depicted in Figure 7.18 a) and
b), respectively. The calculations give 0.56 electrons per atom for N(EF ). From Figure 7.18 b), the
calculated Debye temperature is 137.8K.

FIGURE 7.18. a) N(E) and b) F (ω) for Bi-V (black solid line) compared to the results
for the Wyckoff structure (grey). Reported in Ref. [160].
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7.3.2 Calculation of the Tc

As has became usual in this investigation, in order to estimate the Tc from equation (3.8) in the á la

Mata-Pinzón et al. approach, it is required to knownN(EF ) and the ΘD for each phase. In is important
to mention that all but the Bi-IV phase have been experimentally found to superconduct; thus our Tc
calculation for the Bi-IV phase is of predictive character.

Thus, following the method in subsection 3.3.6, we identify the materialR as the Bi-I (Wyckoff) phase
and the material Q as the Bi-II, Bi-III, Bi-IV and Bi-V phases. Thus, the identifications: R → W and
Q→ Q in equations (3.4) to (3.8) lead to:

η =
NQ(EF )

NW (EF )
(7.4)

from equation (3.6), for a phase-to-Wyckoff ratio of N(EF ), and

µ =
ΘQ

D

ΘW
D

(7.5)

from equation (3.7) for a phase-to-Wyckoff ratio of ΘD.

Taking the reference value of TR
c → TW

c = 1.3mK as determined from the calculations of Mata-
Pinzón et al. [63], the superconducting critical temperature for each phase TQ

c is determined by equa-
tion (3.8) as follows:

TQ
c = µ

[
TW
c

]1/η [
1.13 ΘW

D

](η−1)/η
. (7.6)

From the reported data for N(EF ) and ΘD in Table 7.4 and equations (7.4) and (7.5), the critical
temperatures for each phase can be calculated by means or equation (7.6). These results are shown in
Table 7.5, where the predicted, the calculated, and the measured Tcs are specified by the notation T p

c ,
T c
c , and Tm

c , respectively.
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TABLE 7.5. Values for the parameters η and µ defined in equations (7.4) and (7.5) for the
bismuth phases (see Table 7.4 also). The predicted (T p

c ) and the calculated (T c
c ) critical

temperatures were obtained by equation (7.6). The measured critical temperature (Tm
c )

are also reported for comparison.

Phase η a µ b T p
c [K] T c

c [K] Tm
c [K]

Bi-I 1.00 1.00 0.0013 - 0.00053

Bi-II 3.33 0.86 - 3.9 3.9

Bi-III c 4.13 0.72 - 6.5 7

Bi-III d 3.00 1.8 - 3.5 7

Bi-IV 3.53 0.76 4.25 - -
Bi-V 3.73 1.03 - 6.8 8

a From eq. (7.4)
b From eq. (7.5)
c Chen, Iwasaki, and Kikegawa [165].
d McMahon, Degtyareva, and Nelmes [167].

7.3.3 Discussion

The á la Mata-Pinzón et al. approach, originally devised to predict a then-unknown superconduct-
ing state in the Bi-I phase, shows to also give good results in determining critical superconducting
temperatures of its under-pressure phases. Even though the constant-Cooper-piring-potential assump-
tion may be bold, especially because we are dealing with under-pressure caused phase-changes, it
is rewarding that our calculations for the critical temperatures agree very well with the experimental
measurements.

The Bi-III phase requires a more extended study to determine if a better commensurate representative
supercell can be constructed, such that it gives the correct properties observed on experiments. Or
even better, to conceive an ab initio method to study incommensurate structures. Meanwhile, our
contribution to the study of superconductivity in the several phases and structures of bismuth relies
on the Mata-Pinzón et al. approach and it is encouraging that from the calculation of the material’s
electronic and vibrational energy spectra, this facile approach may be applied to other phases and
alloys of bismuth, as well as to other systems.



This page intentionally left blank



91

8 Conclusions to Part II and Future work

From this work, we can seek to understand the superconducting features present in this versatile and
fascinating material that bismuth is. The fact that Mata-Pinzón et al. [63] could predict the supercon-
ducting transition temperature of Bi-I, already corroborated by experiment, and the fact that we have
predictions for the Tc in bismuth bilayers and for the phase Bi-IV, not experimentally studied yet, gives
us confidence that, at least for bismuth, our approach is sound since the calculated superconducting
transition temperatures are all very close to experiment, where they exist.

Calculating the pairing potential remains a challenge. However, computational simulations based on
current state-of the-art codes are helping to accomplish this. With the present approach one can obtain
reasonable approximations to the superconducting transition temperatures if one deals with the same
material in different phases. Also, computational simulations based on DFT have evolved favorably
such that the calculations for the electronic and vibrational densities of states give us confidence so
one can infer meaningful conclusions. More tests and predictions on superconductivity awaits for
exploration in different materials, pure and alloyed.
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