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Introduccion

Una transformacion por partes en un espacio esta definida por respectivas transformaciones
restringidas a componentes pertenecientes a una particién finita de dicho espacio. El estudio de
la dinamica de transformaciones por partes se realiza en una variedad de contextos, tales como
las transformaciones de intercambio de intervalos (véase por ejemplo [Via2006, GutEtAl2008,
BreEtAl2010]), las isometrias por partes en el plano (véase [Goel998, Goe2000, Buz2001,
AshFu2002, BosGoe2003, BrePog2005, GoeQua2009]) y las contracciones por partes en R”
(véase [BruDea2009, CatEtAl2015]), ademas de tener aplicaciones en ingenieria y relaciones con

otras areas de las matematicas (véase [Goe2003, Cru2005]).

El objeto de estudio en este trabajo de investigacion es la dindmica de los automorfismos confor-
mes por partes de la esfera de Riemann (llamadas en este texto como transformaciones conformes
por partes, abreviado por sus siglas como T'CPs), que es un tépico poco estudiado, como se infiere de
la escasa literatura matematica publicada sobre este tema (véase [Cru2005, Rom2005, Ler2005,
Ler2016, LerSie2019]). Quiza el vinculo més interesante de otras areas de las matematicas con
las TCPs, es que éstas surgen como las funciones de monodromia de campos vectoriales polinomia-
les complejos, siendo estos una manera de abordar el problema 16 de Hilbert (abierto aun), que
versa sobre el numero y localizacion de ciclos limite de campos vectoriales polinomiales reales (véase
[Cru2005]). Dicho vinculo no se aborda en el presente trabajo, pero se espera que los resultados

aqui presentados sean de utilidad para la investigacién en aquél problema.

En este trabajo se realiza un estudio general de la dindmica de las TCPs, pero se toma princi-
palmente el punto de vista de la dindmica holomorfa. De esta manera, una motivacién importante
de la investigacion fue extender el asi llamado diccionario de Sullivan a la dindmica de TCPs. En
dicho diccionario se establece un paralelismo entre conceptos, teoremas y técnicas de la dinamica
discreta de funciones holomorfas y aquellos de la dindmica y geometria de grupos discretos de au-
tomorfismos, ambas en la esfera de Riemann. Por ejemplo, en ambas dinamicas existe una dualidad
en el comportamiento de las 6rbitas de puntos: el ser conservativo o disipativo. Los conjuntos de
puntos con cada comportamiento sin invariantes bajo la dindmica, determinando dos partes ajenas

en la esfera de Riemann. La parte conservativa, llamada conjunto de Julia en dindmica holomorfa
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y conjunto limite en grupos de autormorfismos, es donde la dindmica es “méas interesante” (de he-
cho cadtica en casi todos los casos), mientras que la parte disipativa, llamada conjunto de Fatou
en dindmica holomorfa y conjunto ordinario en grupos de automorfismos, es donde la dindmica es
“regular”. Como se detalla posteriormente, esta particiéon por los comportamientos conservativos y

disipativos también ocurre en la dinamica de TCPs.

En el Capitulo 1 se presenta el contexto de la investigaciéon. Primero, en la Seccién 1.1, se hace
una revisiéon de conceptos y resultados del area de la dindmica discreta de funciones holomorfas, que
serd 1util como comparacion y guia para la teoria desarrollada. Posteriormente, se realiza una breve
recopilacién de teoremas y ejemplos sobre transformaciones por partes en distintos espacios en la
Seccion 1.2, algunos de los cuales son casos particulares de la teoria de dindmica de TCPs. Para
completar el capitulo, en la Seccién 1.3 se presentan los resultados més importantes con respecto a

la dindmica de TCPs publicados por autores distintos a los de este texto.

En el Capitulo 2 se concentran los resultados principales sobre dindamica general de TCPs y
la extension del diccionario de Sullivan. La Seccion 2.1 comienza con las definiciones basicas y el
estudio de las caracteristicas esenciales de las TCPs. Se hace notar el hecho de que estas transforma-
ciones son discontinuas en las fronteras de las piezas de la particién, por lo que la transformacion se
deja indefinida en dichas frontera, siendo asi éstas una especie de singularidades no removibles. Asi,
se definen dos importantes conjuntos determinados por la dindmica: el de pre-discontinuidad que
es la cerradura de la uniéon de las n-ésimas preimégenes de las fronteras de las piezas, y el regular,
que es el complemento del anterior. Notese que el conjunto de pre-discontinuidad esta formado por
puntos para los que cualquier vecindad contiene puntos donde la dindmica no estaréd definida. El
Teorema 2.1 establece que el conjunto regular también se puede caracterizar como el interior de la
interseccion de las iteraciones de las piezas de la particién. El Teorema 2.3 nos dice que el conjunto

de pre-discontinuidad es invariante hacia atras y el conjunto regular es invariante hacia adelante.

Otros conjuntos importantes para comprender la dindmica de TCPs son el a-limite y el
w-limite, siendo éstos los conjuntos de acumulaciéon de o6rbitas de puntos hacia atras y hacia ade-
lante, respectivamente. La Proposicién 2.2 establece que el a-limite estd contenido en el limite de
convergencia de Hausdorff de las iteraciones hacia atras de las fronteras de las piezas, y el Teorema
2.4 indica su invariancia. Después, observamos que los puntos peridédicos de las TCPs se pueden
clasificar en atractores, repulsores, pardbolicos, elipticos e idénticos, y el Teorema 2.5 nos dice que
el a-limite contiene a los repulsores y parabdlicos y el w-limite contiene a los atractores, elipticos,

idénticos y parabolicos.
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Finalmente, se hace notar que en las TCPs puede existir un comportamiento asintéticamente pe-
riédico a puntos pertenecientes al conjunto pre-singular, por lo que estos puntos no pueden ser
periédicos ya que en ellos la dindmica no estd completamente definida; por estas caracteristicas

dichos puntos son llamados periddicos fantasma.

En las consiguientes secciones se estudian dos topicos naturalmente relacionados a las TCPs.
En la Seccién 2.2 es analizada la dindmica simbodlica inducida por la funcién itinerario sobre las
particion, siendo los resultados principales concernientes a la caracterizacion de los conjuntos de
pre-discontinuidad y regular de acuerdo a conjuntos de codificacion (Teorema 2.7, Proposicion 2.8,
Corolario 2.9 y Corolario 2.10). Por otro lado, en la Seccion 2.3 se relacionan las TCPs con el grupo
de automorfismos generado por sus transformaciones componentes, donde los resultados presen-
tados indican cuando los conjuntos a-limite y w-limite estan contenidos en el conjunto limite del

grupo asociado (Teorema 2.11, Corolario 2.12 y Teorema 2.13).

Para cerrar el segundo capitulo, en la Seccién 2.4 se recopilan los resultados y ejemplos relativos
a la extension del diccionario de Sullivan. En el Teorema 2.14 y el Corolario 2.15 se establece la
correspondencia principal: los conjuntos de pre-discontinuidad y regularidad son los conjuntos de
no normalidad y normalidad, respectivamente, de la familia de iteradas, siendo esta la misma carac-
terizacién para los conjuntos de Julia y Fatou en dindmica de funciones holomorfas. Sin embargo,
no todas las propiedades los conjuntos de pre-discontinuidad son las mismas que los conjuntos de
Julia, por ejemplo, el conjunto de pre-discontinuidad es perfecto (Teorema 2.16), pero los puntos
periddicos repulsores no son necesariamente densos en él (ni siquiera en el a-limite). Otro impor-
tante paralelismo ocurre en la clasificacién de componentes regulares periddicas (Teorema 2.17):
estas s6lo pueden ser cuenca de atraccion, cuenca parabolica, cuenca parabolica con puntos periodi-
cos fantasma (anéalogo a un dominio de Baker), dominio de rotacidn o dominio neutro (estos dos
ultimos anélogos a un disco de Siegel o a un anillo de Herman). Finalmente, se construyen multiples
ejemplos de TCPs con diversas propiedades y se comparan con aquellos de dindmica holomorfa:
con componentes regulares con cualquier conectividad, con cualquier cantidad de componentes re-
gulares, con y sin componentes regulares errantes y con conjuntos de pre-discontinuidad de area
positiva o que llenan la esfera de Riemann. Por otro lado, en relacién con los tultimos ejemplos, el

Teorema 2.20 establece que el a-limite siempre tiene interior vacio.

En el Capitulo 3 se trata con el tema de estabilidad, una prominente propiedad de transforma-
ciones en la teoria de sistemas dindmicos, ya que funciones suficientemente cercanas a aquellas con
esta cualidad tienen el mismo comportamiento dinamico. En la Seccion 3.1 se revisan los conceptos
de familia holomorfa, movimiento holomorfo, J-estabilidad, hiperbolicidad y estabilidad estructural

para transformaciones racionales en la esfera de Riemann, siendo estas las mejor estudiadas entre
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las funciones meromorfas. Para comenzar el estudio de la estabilidad en TCPs, primero se establece
su espacio de pardmetros en la Seccion 3.2. En la Seccion 3.3 se analiza el caso de deformaciones
continuas de la frontera de las piezas pero fijando las funciones componentes, donde se obtienen
resultados acerca de la continuidad de la deformacion del conjunto de pre-discontinuidad (Teorema
3.12 y Teorema 3.13), pero no necesariamente de estabilidad de la transformacion. En la Seccion
3.4 se investiga el caso de perturbaciones de las funciones componentes pero fijando las fronteras de
las piezas, donde se asegura la estabilidad estructural de la transformacién cuando esta asociada a
un grupo de Schottky o a un grupo kleiniano estructuralmente estable y las fronteras de las piezas
estan contenidas en una region fundamental (Teorema 3.14 y Teorema 3.15), y cuando se cumplen
ciertas condiciones que permiten una configuraciéon del conjunto de pre-discontinuidad equivalente

a los casos anteriores (Teorema 3.16).

En las consecuentes secciones se estudian las adaptaciones a TCPs de conceptos relacionados a
la estabilidad en transformaciones racionales. En la Section 3.5 se crean las definiciones anélogas de
familias holomorfas, movimientos holomorfos, J-estabilidad y J-estabilidad estructural para TCPs.
En la Seccion 3.6 se estudian los conceptos de TCP hiperbdlica y expansiva, que resultan ser no
equivalentes y no relacionados directamente con la estabilidad estructural, a diferencia de lo que
ocurre en transformaciones racionales. En la Secciéon 3.7 se desarrollan teoremas relevantes sobre
la estabilidad estructural de TCPs: si una TCP es estructuralmente estable, entonces es estable
en su conjunto de pre-discontinuidad (Teorema 3.19); si una TCP es es estructuralmente estable y
no tiene componentes regulares errantes, entonces es hiperbélica (Teorema 3.20); si una TCP solo
tiene transformaciones componentes loxodrémicas como componentes, es hiperbélica, es expansiva
y es estable en su conjunto de pre-discontinuidad, entonces es estructuralmente estable (Teorema
3.21). Adicionalmente, se enuncian algunas conjeturas relacionadas con la estabilidad estructural
de TCPs. Finalmente, en la Seccion 3.8 se aplican los conceptos y resultados desarrollados en el

capitulo a la familia de las funciones tienda complejificadas.

En el capitulo final de la investigacion (Capitulo 4), se estudia otro concepto importante en la
teoria de sistemas dindmicos: la medida de su complejidad dinamica, formalmente llamada entropia.
Una revision de definiciones, teoremas y ejemplos relativos a la entropia topoldgica de funciones
continuas se incluye en la Seccion 4.1. En la Seccion 4.2 se presentan varias adaptaciones del con-
cepto de entropia a transformaciones por partes y algunos resultados para los casos de isometrias y
contracciones afines por partes. Para concluir, se presentan algunas conjeturas acerca de las adap-
taciones de entropia para transformaciones por partes para el caso las TCPs (Seccion 4.3).
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Es importante aclarar que todos los teoremas, proposiciones y lemas con demostracion, asi co-
mo conjeturas, ejemplos y contra-ejemplos presentados en los Capitulos 2, 3 y 4 (y mencionados en
esta introduccion), son fruto de la investigacion de los autores de este trabajo. Con excepcion, claro,
de lo presentado en las Secciones 3.1, 4.1 y 4.2, que tratan sobre revisién de teoria ya conocida o

desarrollada por otros autores.

Antes de terminar la introduccién, es pertinente hacer algunas acotaciones sobre el presente
texto. Para hacer mas facil y digerible la lectura, las demostraciones de todas las proposiciones
y teoremas derivados de la investigacién enunciados a lo largo de los capitulos, junto con lemas
técnicos, son concentrados en el Capitulo 5. Asimismo, varios tépicos especializados son separados
del cuerpo principal del texto y colocados en apéndices (Capitulo 6) para ser consultados cuando
sea necesario: topologia y dinamica topologica (Appendix: Topological dynamics), espacios de com-
pactos y métrica de Hausdorff (Appendix: Space of compact sets and Hausdorff metric), geometria
y analisis complejo (Appendix: Complex geometry and analysis), y grupos kleinianos (Appendix:

Kleinian groups).



Introduction

A piecewise map on a space is defined by respective transformations restricted to components
belonging to a finite partition of the space. The study of dynamics of piecewise maps comes from
a variety of contexts, such as the interval exchange transformations (see for instance [Via2006,
GutEtA12008, BreEtA12010]), the piecewise plane isometries (see [Goel1998, Goe2000, Buz2001,
AshFu2002, BosGoe2003, BrePog2005, GoeQua2009]) and the piecewise contractions on R"
(see [BruDea2009, CatEtAl12015]), in addition to having applications in engineering and rela-
tions with other areas of mathematics (see [Goe2003, Cru2005]).

The object of study in this research work is the dynamics of piecewise conformal automorphisms
of the Riemann sphere (named in this text as piecewise conformal maps, abbreviated by its acronym
as PCMs), which is a barely inquired topic, as it is inferred from the scarce mathematical literature
published about it (see [Cru2005, Rom2005, Ler2005, Ler2016, LerSie2019]). Perhaps the
most exciting link from other areas of mathematics with PCMs, is that they arise as the monodromy
maps of complex polynomial vector fields, these being a way of approaching Hilbert’s problem 16
(still open), which deals with the number and localization of limit cycles of real polynomial vector
fields (see [Cru2005]). This link is not addressed in this paper, but it is expected that the results

presented here will be helpful for research on that problem.

In this work, a study about the general dynamics of PCMs is carried out, but the holomorphic
dynamics point of view is mainly taken. Thus, an important research motivation was to extend the
so called Sullivan dictionary to PCMs dynamics. In such a dictionary, parallelism is established
between concepts, theorems, and techniques of discrete dynamics of holomorphic maps and those of
the dynamics and geometry of discrete groups of automorphisms, both on the Riemann sphere. For
example, in both dynamics, there is a duality in the behavior of the orbits of points: to be conser-
vative or dissipative. The sets of points with each behavior are dynamically invariant, determining
two disjoint parts of the Riemann sphere. The conservative part, called Julia set in holomorphic
dynamics and limit set in groups of automorphisms, is where the dynamic is “most interesting” (in

fact chaotic, in almost all cases), while de dissipative part, called Fatou set in holomorphic dynamics
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and ordinary set in groups of automorphisms, is where the dynamic is “regular”. As detailed posteri-

orly, such partition by conservative and dissipative behaviors also occurs for the dynamics of PCMs.

In Chapter 1, the context of the research is presented. First, in Section 1.1, concepts and results
in the field of discrete holomorphic dynamics are reviewed, which will be useful as a comparison
and guide for the developed theory. After, a short compilation of theorems and examples about
piecewise maps for different spaces is presented in Section 1.2, where some of those are particular
cases in the PCMs dynamics theory. To complete the background, in Section 1.3 are presented
highlights of what was published about dynamic of PCMs by authors other than that of this text.

In Chapter 2, the main results about the general dynamics of PCMs and the Sullivan dictionary
extension are concentrated. Section 2.1 begins with basic definitions and the study of the essential
features of PCMs. Is noted that those transformations are discontinuous in the boundary of the
partition pieces, so the transformation is left undefined in such boundaries, being then a kind of
unmovable singularities. Therefore, are defined two important sets determined dynamically: the
pre-discontinuity set which is the closure of the union of n-th preimages of the boundary of the
pieces, and the regular set, the complement of the former. Note that the pre-discontinuity set is
formed by points such that every neighborhood contains points where the dynamics will not be
defined. Theorem 2.1 states that the regular set can be also characterized as the interior of the
iteration of the pieces of the partition. Theorem 2.3 say that the pre-discontinuity set is backward

invariant and the regular set is forward invariant.

Another important sets for the understanding of the PCMs dynamics are the «-limit and the
w-limit, being these the accumulation sets of backward and forward orbits of points, respectively.
Proposition 2.2 establishes that the a-limit is contained in the Hausdorff convergence limit of back-
ward iterations of the boundaries of the pieces , and Theorem 2.4 shows its invariance. After we
see that the periodic points of PCMs can be classified in attracting, repelling, parabolic, elliptic, and
tdentical. Theorem 2.5 says that the a-limit contains the repelling and parabolic points and the
w-limit contains the attracting, elliptic, identical, and parabolic points. Finally, it is shown that
in PCMs can exist asymptotically periodic behavior toward points belonging to pre-singular sets,
therefore such points can not be periodic because in them the dynamic is not completely defined;

based on these features, those points are called ghost-periodic.

In the consecutive sections, two topics naturally related to PCMs are studied. In Section 2.2,
the symbolic dynamic induced by the itinerary function over the partition is analyzed, being the
main results concerning the characterization of pre-discontinuity and regular sets according to the

coding sets (Theorem 2.7, Proposition 2.8, Corollary 2.9 and Corollary 2.10). On the other hand,
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in Section 2.3 the PCMs are related to the group of automorphisms generated by their compo-
nent transformations, where the presented theorems indicate when the a-limit and w-limit sets are

contained in the limit set of the associated group (Theorem 2.11, Corollary 2.12 and Theorem 2.13).

To close the second chapter, Section 2.4 compiles the results and examples related to the ex-
tension of the Sulllivan dictionary. In Theorem 2.14 and Corollary 2.15 the main correspondence
is established: the pre-discontinuity and regular sets are the non-normality and normality sets,
respectively, of the family of iterates, being this the same characterization for Julia and Fatou sets
in holomorphic dynamics. However, not all properties of pre-discontinuity sets remain the same as
for Julia sets, for example, the pre-discontinuity set is perfect (Theorem 2.16), but repelling peri-
odic points are not necessarily dense in it (not even in the o-limit). Another important parallelism
occurs in the classification of periodic regular components (Theorem 2.17): these can only be a
basin of attraction, parabolic basin, ghost-periodic parabolic basin (analogous to a Baker domain),
rotation domain or neutral domain (these last two are analogous to Siegel’s disc or Herman’s ring).
Finally, multiple examples of PCMs with various properties are constructed and compared with
those of holomorphic dynamics: with regular components of any connectivity, with any number of
regular components, with and without wandering regular components, and with pre-discontinuity
of a positive area or that fill the Riemann sphere. On the other hand, relative to the last examples,
Theorem 2.20 states that the a-limit set always has an empty interior.

The Chapter 3 deals with stability, a prominent property for maps in dynamical systems the-
ory, since functions close enough to those with this quality have the same dynamical behavior.
In Section 3.1 the concepts of holomorphic family, holomorphic motion, J-stability, hyperbolicity,
and structural stability for rational maps in the Riemann sphere are reviewed, being these the
best studied among the meromorphic functions. To begin the study of stability on PCMs, we first
set their parameter space in Section 3.2. In Section 3.3 the case of continuous deformations of the
boundaries of the pieces is analyzed, but fixing the component functions, where results are obtained
about the continuity of the deformation of the pre-discontinuity set (Theorem 3.12 and Theorem
3.13), but not necessarily stability of the transformation. In Section 3.4 the case of perturbations
of the component functions is investigated, but fixing the boundaries of the pieces, where the struc-
tural stability of the transformation is ensured when it is associated with a Schottky group or a
structurally stable Kleinian group and the boundaries of the pieces are contained in a fundamental
region (Theorem 3.14 and Theorem 3.15), and when certain conditions are met that allow a con-
figuration of the pre-discontinuity set equivalent to the previous cases (Theorem 3.16).

In the consequent sections, the adaptations to PCMs of concepts related to stability in rational

maps are studied. Analogous definitions of holomorphic families, holomorphic motions, J-stability,
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and J-structural stability for PCMs are created in Section 3.5. In Section 3.6 the concepts of hyper-
bolic and expansive PCM are studied, which turn out to be non-equivalent and not directly related
to structural stability, unlike what occurs in rational maps. In Section 3.7 relevant theorems on the
structural stability of PCMs are developed: if a PCM is structurally stable, then it is stable in its
pre-discontinuity set (Theorem 3.19); if a PCM is structurally stable and has no wandering regular
components, then is hyperbolic (Theorem 3.20); if a PCM has only loxodromic transformations as
components, is hyperbolic, is expansive, and is stable in its pre-discontinuity set, then it is struc-
turally stable (Theorem 3.21). Additionally, some conjectures related to the structural stability
of PCMs are stated. Finally, in Section 3.8 the concepts and results developed in the chapter are
applied to the family of complex tent maps.

In the final chapter of the investigation (Chapter 4), another important concept in dynami-
cal systems theory is studied: the measure of its dynamical complexity formally called entropy.
A review of definitions, theorems, and examples related to the topological entropy of continuous
functions is included in Section 4.1. In Section 4.2 several adaptations of the concept of entropy
to piecewise maps and some results for the cases of piecewise isometries and affine contractions are
presented. To conclude, some conjectures are presented about the entropy adaptations for piecewise
maps for the case of PCMs (Section 4.3).

It is important to clarify that all theorems, propositions, and lemmas with proof, as well as
conjectures, examples, and counter-examples presented in Chapters 2, 3 and 4 (and mentioned in
this introduction) are the result of the research of the authors of this work. With the exception,
of course, of what is presented in Sections 3.1, 4.1 and 4.2, which deal with the revision of theory

already known or developed by other authors.

Before finishing the introduction, it is pertinent to make some remarks about the present
text. To make reading easier and more digestible, the proofs of all the propositions and theorems
derived from the research enunciated throughout the chapters, together with the technical lemmas,
are concentrated in Chapter 5. Likewise, several specialized topics are separated from the main
body of the text and placed in appendixes (Chapter 6) to be consulted when necessary: topology
and topological dynamics (Appendix: Topological dynamics), space of compact sets and Hausdorff
metric (Appendix: Space of compact sets and Hausdorfl metric), complex geometry and analysis

(Appendix: Complex geometry and analysis), and kleinian groups (Appendix: Kleinian groups).
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C,=C(z,F)
D = D(F)
deg(f)
de(z,w)
ds(z,w)
dx(s,t)
d},(z,y)
diam(A)

Nomenclature

Natural numbers set: N=1{0,1,2,...}.

Integer numbers set.

Rational numbers set.

Real numbers set, the real line.

Complex numbers set, the complex plane.

Riemann sphere, compactification C U {oc}.

Open disc in C, centered in 0 with radius 1.

Real part of the complex number z.

Imaginary part of the complex number z.

Modulus the complex number z.

Interior of the set A.

Closure of the set A.

Boundary of the set A.

The set of elements in A and in the complement of B.
Cardinality of the set A.

a-limit set of a PCM F.

Pre-discontinuity set of a PCM F.

Nth pre-discontinuity set of a PCM F.

Boundary set, discontinuity set or singular set of a PCM F.
(e,n, f)-covering number of a compact set.

Set of critical points of the holomorphic map f.
Ttinerary cell of z, from the symbolic dynamics associated to a PCM F.
Dynamics domain of a PCM F.

Degree of a polynomal or a rational function f.
Chordal distance between z,w € C.

Spherical distance between z,w € C.

Distance between sequences of symbols s,t € Y.
f"-distance in a compact metric space.

Diameter of the set A in a metric space.

10
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Graph(f)
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O(z, f) = 0% (2, f)
0~ (2, [)

On(z, f)

w(F)

w(z, f)
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NOMENCLATURE 11

df-diameter of the set A in a compact metric space.

Open disc centred in z with radius r.

The complement of the closure of the disc D, ;.

Half-plane {z € C|Im(z) > r}.

Half-plane {z € C|Im(z) < r}.

Half-plane {z € C| Re(z) > r}.

Half-plane {z € C| Re(z) < r}.

Function f: X — X.

[+ XO is topologically conjugated with g : YO by the homeomorphism
h: X =Y.

f : XO is topologically semi-conjugated with g : YO by the continuous

z

z

surjective function h: X — Y.

Restriction of a function f: X - Y on A C X.

n-th iterate of a function f : X O.

Fatou set of a meromorphic function f.

Set of fixed points of f.

Ititnerary function associated to a PCM F.

Orbit of z under the group I'.

Group of automorphisms of C associated to a PCM F.
Graph of a function f: X = Y: {(z,y) e X xY |y = f(2)}.
Space of compact sets of the metric space X.
Multiplicity entropy of a piecewise function F'.
Singularity entropy of a piecewise function F.
Topological entropy of a function f.

Topological entropy of the lifting of a piecewise function F'.
Irrational itineraries set of a PCM F.

Julia set of a meromorphic function f.

Limit set of the Kleinian group T'.

Associated limit set of a PCM F.

Multiplier of the periodic point z under f.
Neighbourhood of z.

(Forward) orbit of z under f.

Backward orbit of z under f.

Orbit segment of length n of the point x under f.
Omega limit set of a PCM F.

w-limit set of x under f.

Ordinary set of the Kleinian group I'.



QrF = Q(TF)
PCM
PCrit(f)
Per(f)
Per,,(f)
Peratr(f)
Peryep(f)
Peryeu(f)
Perrat (f)
Perirr(f)
Perpar (F)
Perq (F)
Perid(F)
(

Perghost F )

~

Pk (C)
PSL(2,C)

Teich(S)
v(r)
Xhyp
Xstable
Xtopo

XpoMm,K

Associated ordinary set of a PCM F.

Abbreviation of Piecewise Conformal Map.

Postcritical set of the holomorphic map f.

Set of periodic points of f.

Set of periodic points of period n of f.

Set of atractive periodic points of f.

Set of repelling periodic points of f.

Set of neutral periodic points of f.

Set of rationally indifferent periodic points of f.

Set of irrationally indifferent periodic points of f.

Set of parabolic periodic points of a PCM F'.

Set of elliptic periodic points of a PCM F.

Set of identical periodic points of a PCM F'.

Set of ghost-periodic points of a PCM F.

Space of prediscontinuity sets of PCMs with K parts.

Proyective special linear group in C2.

Regular set of a PCM F.

Nth conformality partition of a PCM F.

Region of conformality of a PCM F.

Set of rational functions on C.

Set of rational functions on C of degree d.

Representation of T', as abastract group, in PSL(2,C).
(Unilateral) shift function on Y.

Set of infinite sequences of K symbols, X = {1,2,..., K},

Set, of words of length n of K symbols.

Spiderweb of a PCM F'. Deprecated, equivalent to B(F).

The unitary circle in C.

The unitary bidimensional sphere in R3.

Structurally stable space for T', the interior set of discrete and faithful rep-
resentations of I'.

The Teichmiiller space of a Riemann surface S.

Algebraic variety of irreducible representations of I' modulo conjugacy.
The hyperbolic parameters set of a holomorphic family {fx},cy-
The stable regime of a holomorphic family {f},cx-

The structurally stable parameters set of a holomorphic family {f1},cx-
Parameters space of PCMs with K parts.

Symbol to indicate the finish of an example section.



CHAPTER 1

Background

Being the main objective of this work to investigate the discrete dynamics of piecewise confor-
mal maps in the Riemann sphere, first, it is necessary to do a review of the discrete dynamics on
the complex plane and the Riemann sphere with meromorphic maps, in order to give a context of

the field of general and complex discrete dynamics and compare both theories.

After, we collect some relevant results about the discrete dynamics of piecewise isometries and
contractions in euclidean spaces, whose theory is closely related to which we are dealing in this
text. Finally, we present a summary of the work realized on the dynamics of piecewise conformal

maps by different authors and relations with other areas of mathematics.

1.1. Holomorphic discrete dynamical systems

In this section, we will recall basic concepts and well-known results from the theory of holo-
morphic discrete dynamical systems. See [Beal990, CarGam1993, McM1994, McM2018,

Mil2000] for an extensive treatment of these topics.

As usual, C denote the plane of complex numbers and C=Cu {oo} the Riemann sphere,
one-point compactification of C.

A function f: U — C is holomorphic in U C C if the derivative f' is defined for all z € U.
f:U— Cis meromorphic if is holomorphic except in a discrete set of singularities, all of which
are poles, that is, points z such that f(z) = co. If f is not holomorphic in the pole z, then f can
not be extended continuously in oo, in other words, f is undefined in co.

On forwards we consider f : COa meromorphic function.

The n-th iterate of f is f* = fo f*~1, with f° the identity in C.

13
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The discrete dynamical system determined by f is the action of the discrete semi-group (®, o)

on C (or an adequate subset of @), where

(I>:{f07f7f27f3?"'}:{fn}n20

The basic subject of study of discrete dynamics are the sets of all iterates applied to points,

because in them we can observe time based behaviors such as periodicity or asymptotic limits.

Thus, is defined the (forward) orbit of z € C under f as
Oz, f) = 0" (2, ) = {2z f(2), F*(2), .- } = {/"(®)}0

and the backward orbit of = € C under f as

0 (= Fr"e

n>0

A point z € Cis periodic of period n for f if n is the smallest positive integer such that f™(z) = z.
A periodic point z of period 1 (that is, f(z) = 2) is called fized point. A point z is pre-periodic if
exists an integer m > 0 such that f™(z) is periodic but f7(z) is not periodic for all j > 0 and j < m.

The set of periodic points of period n for f is denoted as Per,,(f). The set of fized points is de-
noted as Fix(f). The set of all periodic points for f is denoted as Per(f) (note that

Per(f) = U, > Pern(f))-

Let 2 a periodic point of period n for f. The multiplier of =z is
A= Xz f) = (f*)" (2) . Then z is defined as

o Attracting if |\| < 1. Particularly is
o Super-attracting if A = 0.
e Repelling if |\ > 1.
e Neutral or indifferent if |\| = 1. Particularly is
o Rationally indifferent or parabolic if X is root of the unity (that is, A™ = 1 for some
integer m > 0).
o Irrationally indifferent if X is not root of the unity.

Also are defined

e Perni (f), the set of attracting periodic points of f.
o Perye,(f), the set of repelling periodic points of f.
e Perpen(f), the set of neutral periodic points of f.
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e Per..i(f), the set of rationally indifferent periodic points of f.
o Per;, (f), the set of irrationally indifferent periodic points of f.

The notion of a normal family of meromorphic functions is fundamental for the theory of holo-

morphic dynamical systems. A family of meromorphic functions { fo:U— ((AI} o is normal at
«

z € U if exists a neighborhood N, C U such that every sequence {fan N, — @} 4 contains
neN,a, €

a subsequence that converges uniformly on compact subsets of A, with some spherical metric

on C.

Using the concept of a normal family, two iconic and fundamental sets in the theory of holo-
morphic dynamics are defined (see [Jul1918, Fat1919]) and named after Pierre Fatou and Gaston

Julia, the pioneering researchers in this theory.

DEFINITION. The Fatou set of f is

F(f)= {Z € (E| {fn}nZO isnormal at z}

DEFINITION. The Julia set of f is the complement of the Fatou set, that is

J(f) =C - F(f)

Note that, directly from its definition, the Fatou set is an open set and the Julia set is a

closed set.

The Fatou and Julia sets define a partition over C in two sets, the first of them with regular
or predictable dynamics and the second with irregular or chaotic dynamics. This affirmations are

supported by the following theorems.
THEOREM 1.1. J(f) and F(f) are totally invariant.

THEOREM 1.2. f is chaotic in J(f).

Other well known results about the Julia set are the following.
THEOREM 1.3. J(f) is a perfect set (closed and without isolated points).
THEOREM 1.4. J(f) = Peryep(f)-

THEOREM 1.5. J(f) D Perpat(f).
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THEOREM 1.6. Let zo € J(f), then J(f) = O~ (2o, f).

~

THEOREM 1.7. J(f) =0 or J(f) = C.

Is also useful to analyze the dynamic behaviors of clusters of points. Particularly, is well known
the regularity of components of the Fatou set. Specifying, a Fatou component is a maximal con-

nected open subset of the Fatou set.

For the next definitions, let U a Fatou component of f.

DEFINITION. U is periodic of period n if n is the smallest positive integer such that f™*(U) C U.
U is fized if f(U)CU.

DEFINITION. U is pre-periodic if exists an integer m > 0 such that f™(U) is contained in a
periodic Fatou component and f7(U) is not contained in a periodic Fatou component for all j > 0

and j < m.

DEFINITION. U is wandering if there is no integer m > 0 such that f™(U) is contained in a

periodic Fatou component.

Exists only five well determined types of periodic Fatou components in relation to its dynamics.

THEOREM 1.8. Let U a periodic Fatou component of period n. Then U is one and only one
of the following.

o Immediate basin of attraction. Exists an attracting periodic point zy € U such that for all
zeU
k
(f")"(z) = 20
k—o0
o Immediate parabolic basin. Exists a parabolic periodic point zg € OU such that for all
zeU
k
(/") (z) — 20
k—o0
o Siegel disc. Exists an irrationally indifferent periodic point zy € U and a homeomorphism
h:U — D such that
f1G ~n glo
that means f"|y is topologically conjugated with where ¢g : DO is an irrational
( fro pologically conjug 9lp g

rotation, that is, g(z) = e?®z where « is an irrational number.
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e Herman ring. Exists a homeomorphism h : U — A, where
A ={z|0 <ry <|z|] <ry} (an annulus centered in 0), such that

flo ~n gla

where g : AO is an irrational rotation.

e Baker domain. Exists a point zo € QU such that for all z € U

(M) = 20

k— o0

but f™(zp) is undefined.

About the connectivity of the periodic Fatou components, there are only three cases.

THEOREM 1.9. Let U a periodic Fatou component. Then the connectivity of U

is 1, 2 or oco.

A very special case of meromorphic functions is the rational maps on (E, which turn out to be

the surjective and holomorphic functions on the whole Riemann sphere.

A rational map R : CO has the form R(z) = ggz; where P and () are polynomials with

complex coefficients and without common roots. The degree of a rational map R is deg(R) =
max {deg(P), deg(Q)}. The set of rational maps on C of degree d is denoted as Raty(C). The set
of rational maps on C of any degree is denoted as Rat(C).

~

For the following theorems, let R € Rat(C).
THEOREM 1.10. If deg(R) > 2, then J(R) # 0.

THEOREM 1.11. If deg(R) > 2, then F(R) has 0, 1, 2 or co components.

Rational maps on C have a finite number of critical points (that is, points z such that R'(z) =0
or equivalently where R is not one-to-one in every neighborhood A,). Even more, the number of
critical points counting multiplicity can be exactly calculated in relation with the degree of R.
Recall that a critical point z has multiplicity m if R is (m + 1)-to-one in N, — {z}, where N, is a
sufficiently small neighborhood of z.

THEOREM 1.12. The number of critical points of R, counted with multiplicity, is 2 deg(R) — 2.



1.2. DYNAMICS OF PIECEWISE MAPS 18

Interestingly, the number of distinct non-repelling periodic orbits (also called non repelling
cycles) is related ti the number of critical points, since each orbit of immediate basins of attraction
and parabolic basins contains a critical point. In general, rational maps with other kinds of
indifferent cycles can be quasi-conformally deformed into a map with only attracting cycles and
with the same number of critical points (see [Shil987]).

THEOREM 1.13 (Shishikura). If deg(R) > 2, then the number of distinct non repelling peri-
odic orbits is bounded by 2 deg(R) — 2.

Classification of periodic Fatou components of rational maps is simpler since they have not
Baker domains (see [ManEtAl1983]) as is stated below.

THEOREM 1.14. Let U a periodic Fatou component of R. Then U can only be an imme-

diate basin of attraction, an immediate parabolic basin, a Siegel disc or a Herman ring.

An outstanding result in the theory of iteration of rational maps is the “theorem of no-wandering
domains” of Sullivan (see [Sul1985al).

THEOREM 1.15 (Sullivan). R has no wandering Fatou components.

In the other hand, transcendental meromorphic functions on C with singularities can have
wandering Fatou components and numerous examples are known (see for example [Bak1976,
Bak1987, Ber1993, DomEtA12017]).

1.2. Dynamics of piecewise maps

Let be X a metric space, P = {Xk}szl a finite partition of X, and F : XO defined by compo-
nent functions F| X, = fx- Such piecewise maps F has been studied for domains given as compact
metric spaces or subsets of R” and C, and component functions f; given by isometries, affinities

or contractions. Here we collect some relevant theorems about the dynamics of those piecewise maps.

The most studied piecewise maps are the interval exchange transformations (see [Via2006]).
Such transformations arise naturally as Poincaré’s first return maps of measured foliations and
geodesic flows on translation surfaces. But at the same time, they are studied for their own sake

because of their rich dynamics although their simple definition.

An interval exchange transformation (abbr. IET) is a real bijective function F : [a, b)O where

is given a partition of subintervals {Ij, = [zx_1, zx) C [a, b]}kK:1 (wherea =z <1 < ... <z, =)



1.2. DYNAMICS OF PIECEWISE MAPS 19

and each restriction F|j, is a translation, that is, F|r, () =  + Bx. A more general kind of map
is the affine interval exchange transformation (abbr. AIET) where each component function is an
affine transformation, F|, () = agyz + B where oy # 0, and it is said to have flips if a < 0 for

some k.

Even though the IETs and AIETs have been extensively investigated, we will not develop this
topic further because they are 1-real dimensional maps and then is not directly related to the object

of our research which is piecewise maps in C.

However, we will present some interesting results of a generalization of IETs to R?, the bi-
dimensional piecewise isometries. A bi-dimensional piecewise isometry is a piecewise map in
a space X C R? where each component function is a euclidean isometry. Bi-dimensional piece-
wise isometries appear in a variety of contexts and have been extensively studied as extensions
of interval exchanges ([AshEtAl2018]), as polygonal exchanges ([AshFu2002, BrePog2005]),
and as systems of rotations ([AshGoe2005, BosGoe2003, Goel998, Goel999, Goe2001,
GoeQua2009]). Also, the bi-dimensional piecewise isometries appear naturally in billiards, dual
billiards, theory of foliations, and tilings ([Goe2003]). In applied mathematics, systems of bi-
dimensional piecewise isometries have been linked to the dynamics of electronic components called
digital filters ([Dea2002, Dea2006]).

Let us review some results about the dynamics of bi-dimensional piecewise isometries (see
[Goel996, Goel998, Goe2000]). For the following, let F' : XO a bi-dimensional piecewise
isometry in X C R2.

PrRoOPOSITION 1.16 (Goetz). If X has finite Lebesque measure, then every cell of positive mea-

sure has rational coding.

COROLLARY 1.17 (Goetz). If X has finite Lebesgue measure, then cells with irrational coding

has zero measure.

REMARK. Since coding cells of positive measure are regular (Fatou) components (as
will be explained in Chapter 2, in the general fixture of the present text), the Proposition 1.16
implies that there are not wandering domains in such case. Note the similarity with Sullivan’s

non-wandering domains theorem (theorem Theorem 1.15).

Additionally to the previous results, in [Goel1998, Goel999] it is shown that exists families of
two piece rotations in the whole plane with at least one rational rotation, such that every coding

cell has rational coding, and then there are not wandering domains.
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An interesting phenomenon occurs in the case of certain piecewise translations on a compact
set (see [Goe2000]).

PROPOSITION 1.18 (Goetz). If X is compact and the component functions of F are translations

with rationally independent translation vectors, then every point in X has irrational coding.

REMARK. Vectors vy, va, . .., v, € R? are rationally independent if does not exist 71,72, ...,r, €
Q such that > rgvr = 0. The Proposition 1.18 implies that F' has not periodic points. This
behavior has not parallel in holomorphic dynamics theory, since all holomorphic functions has pe-

riodic points.

In relation to families of piecewise rotations on the whole plane, it is worth mentioning the
following results (see [GoeQua2009]).

THEOREM 1.19 (Goetz, Quas). Let Ty , : CO given by

62w0i(z_|_p+ 1) ifze {z|Im(z) >0}

Typ(2) = .
P e27r01(z+p—]_) 1fz€{Z|Im(Z)<O}

where 6 € (0,1) and p € R. Then

o Ty , is bijective and discontinuous in R C C, for all 6 and p.

e Every neighborhood of oo, contains periodic coding cells.

o If 0 € Q, every orbit is bounded.

e If 0 ¢ Q, for every set A of positive measure in the plane, Lebesgue-almost every point of
A visits A infinitely often.

REMARK. Note that the second affirmation implies the existence of an infinite number of non-
repelling periodic cycles, all of them of indifferent type. This fact contrasts with the existence of a

finite number of no-repelling cycles for rational maps (Theorem 1.13).

COROLLARY 1.20. T ,(2) has no wandering domains, for all 8 and p.

To finalize the review of results about piecewise isometries let us see those that deal with
stability (see [Goe2001, MenNic2004]).

THEOREM 1.21 (Goetz). Let F' a piecewise isometry in the plane, compact sets with the same
coding change Hausdorff continuously under perturbations (of the partition or the component

isometries) of F.

THEOREM 1.22 (Mendes, Nicol). Let F' a piecewise isometry in R™ withn > 2, and p a periodic

point with coding t, then p is stable under perturbations of the component isometries of I, that is,
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every piecewise isometry F. sufficiently close to F' have a periodic point p. close to p with the same

coding t.

Other studied piecewise maps are the piecewise contractions (see [BruDea2009, CatEtAl2015]).

THEOREM 1.23 (Bruin, Dean). Let Fy ., with (A\,w) € DX x CX a family of piecewise affine
contractions z — \pz + wy on R? over K parts, then for almost every pair (\,w), exists a finite

number of attracting periodic orbits, and every point in R? is attracted to them.

REMARK. The case when not every orbit of points under F} ,, is asymptotically periodic, occurs
when exists orbits (periodic or not) through the boundary of the parts.

THEOREM 1.24 (Catsigeras et al.). Let F a piecewise contraction with K parts on a compact
metric space X, fi. the component contractions of F' and A =, Utg...tneE(I;” Jto 0 -0 fi, (X)
(the attractor of F'). If the boundary of the partition does not contain A, then A is a finite union

of periodic orbits.

REMARK. This last theorem is, in some way, a generalization of those with affine contractions,

but on a compact metric space.

THEOREM 1.25 (Catsigeras et al.). Let F' a piecewise contraction on a compact metric space
X, over a partition P = {Xk},f:1 and with component contractions fi, such that fr, : X — fr(Xk)
is a homeomorphism. Then (<, F’"(Ui{zl)fk) is open and dense in X.

REMARK. This theorem implies that always exists a set where the dynamics of F' are well-

defined (orbits do not land in the discontinuity set U?ZlaX k), and then, regular in some sense.

Analogous and extended concepts, results, and examples exposed in this section will be studied

in detail in Chapter 2 and Chapter 3, in the context of the piecewise conformal automorphisms of C.

1.3. Dynamics of piecewise conformal automorphisms of the Riemann Sphere

Definitions and results about piecewise conformal maps will be extensively treated in the next

chapters, but in this section, we summarize some published work about those maps.

In [Cru2005, Rom2005], is studied the family of piecewise conformal automorphisms of C:

Foo(2) az ifz¢ D
a,0\%) = . .
a(ez+2(1—¢") ifzeD
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where « € D, 0 < 0 < 27 and D = Dy = {z||z — 2| < 1} (the open disc centered in 2 of radius 1).

The transformations of this family (and other similar ones) arise from certain monodromy maps.
The Hilbert’s problem 16 asks about the number and localization of limit cycles for polynomial
vectorial fields of degree n. A way to approach the problem is to complexify the fields, giving a
differential equation

ow  P(z,w)

9z Qlz,w)
with z,w € C, and P and @ polynomials with max {deg(P),deg(®@)} < n. Then, taking z in a
closed path v C C without singular points (those that P = @ = 0), it can be constructed a solution
w of the differential equation, over the lifting of 7. The referred monodromy map is defined by the

solutions w over the lifting of ~.

In relation to maps of the family Fi, g, we have the following results.

THEOREM 1.26 (Cruz). For all o € D, the function 6 — ,~ F, 4(9D) is Hausdorff uni-

formly continuous.

THEOREM 1.27 (Cruz). Let {z,},cy o sequence such that z, € F_ ;(0D), then lim z, = oo,
’ n— oo
for all (a,0) € D x [0, 27).

THEOREM 1.28 (Cruz). Let (a,0) € D x [0,27), then every z € C is asymptotically periodic.

REMARK. This result is a particular case of Theorem 1.23, since all maps F, ¢ are affine

contractions on C.

PROPOSITION 1.29 (Romero). Let («,0) € Dx|0,27), then F, ¢ have a finite number of periodic

cycles.

REMARK. Because the Theorem 1.28, every periodic cycle is attracting, thus being a result
analogous to that of rational maps (Theorem 1.13), but totally different to that of piecewise isome-
tries (Theorem 1.19).

Despite the relevant mentioned link between Hilbert’s problem 16 and piecewise conformal
automorphisms of @, this relationship is not further developed in this work. But it is expected that
the results obtained on the general dynamics and stability of these piecewise maps will be useful

for such research.



CHAPTER 2

Main definitions and basic dynamics

Since the study dynamics of piecewise conformal maps are not broadly known in the mathe-
matics community, we make a detailed description of the main concepts and dynamic constructions
related to those maps. In parallel, we show some properties of invariance about the dynamics con-

structions and relations between periodic points and limit sets.

From the elements of the definition of piecewise conformal maps and their dynamic construc-
tions, we found direct, interesting, and useful relations with symbolic dynamics and subgroups of
PSL(2,C).

Finally, we stated theorems and show examples in a comparative way between dynamics of
piecewise conformal maps and dynamics of rational functions on ((AI, thus establishing a Sullivan

dictionary extension.

This review of main concepts and result about discrete dynamics of piecewise conformal maps
was published in [LerSie2019], with a few exceptions.

2.1. Main concepts of piecewise conformal maps and its dynamic

First of all, we need to define the subject of our study.

DEFINITION. A piecewise conformal map (abbr. PCM) is a pair (P, F') where

K
o« P= {Rk C (C} is a set of regions such that:

o Each Ry is a:non—ernpty open and connected set.
o Each dRy, is the union of piecewise smooth simple closed curves.
o ReNRj =01if k #j.
o UE R, =C.
o [': @O, where each component function F|r, = fi is the restriction of a conformal
automorphism of C and F is undefined in Ule ORy,.

e Pisminimal in relation to F, that is, if RyNR; # () and is a segment of curves, then fi # f;.

23
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REMARK. A more suitable name for these transformations is piecewise Mobius transforma-
tions. Indeed, the name piecewise conformal automorphisms of the Riemann sphere was
used in the first published work about these transformations (see [Cru2005]). But since the name
piecewise conformal map was used in the previously published work of the author of this work (see
[LerSie2019]), that name will be kept for the present writing.

A simpler definition of PCM could be: a pair (P, F) which

WK ~ o

o« P= {P;c C (C} is a finite partition of C, where for each k, Py # () and 0Py is the union
of piecewise smooth simple closed curves.

o F: @O, where each F|p, = fj is the restriction of a conformal automorphism of C.

e P is minimal in relation to F'.
But that entails some issues:

e Despite F' being defined in the whole @, F is discontinuous in UkK:1 0Py, then the definition
of F' in such boundaries could be “unnatural”.
o Piecewise transformations with the same component functions and different definitions in

U?Zl 0P, can produce dissimilar dynamic behaviors on maps that are the same in Ule P.

The presented definition of PCM avoids these issues leaving undefined F' in B = Uszl ORy and
then the dynamic behaviors being uniquely determined by the open regions Rj, and the component

functions f.

Throughout this text, a PCM can be represented as F', (P, F), ({Rk}szl , F) or
({Rk}szl , {fk}szl), depending on which elements it wants to be highlighted.

As is established in the definition of PCM, these maps have a region where they are well

defined and a set where they remain undefined.

DEFINITION. The region of conformality of a PCM ({Rk},le , F)is

K
R=R(F)= | Rk
k=1

DEFINITION. The discontinuity set, boundary set or singularity set of a PCM ({Rk}szl, F)
is

K
B=DB(F)=0R= | 0R,
k=1
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Throughout this text, almost all examples deal with PCMs with only two parts, for the sake
of simplicity and clarity. Furthermore, such parts are taken as open discs or open half-planes, and

their corresponding complement interiors. In the case of discs, the following notations are used:

Dy,={2€C||lz—w|<r}

~

Dw,r =C- Dw,r~

For half-planes, the notations are
Im} ={ze€C|Im(z) >r}
Im; ={ze€C|Im(z) <r}
Re) = {z € C|Re(z) > r}
Re; ={z€ C|Re(z) <r}.

EXAMPLE. Let F : CO the PCM given by
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The image of R z) = is D

\ -

i :
R
.

~}

N

early, F is discontinuous in B(F) (colored in black), non-injective, and no-surjective
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The image of the region of conformality R(F) under F is:

Z V %
7 7
s
232
532
B2
8
SR

fo%s

g

5

L

5

5

<5

&
b0

30
0%

s
IR
s

%
S
S

X
5

355
55
ool

\ A

R; and F(R;) are colored in red, and Ry and F'(Rsz) in blue.

~o

REMARK. It should be noted that in PCMs are no such things as critical points, because every
component function is univalent in its domain. On the other hand, the discontinuity set could
be considered a set of essential singularities, since the map remains undefined there because the

discontinuity is not removable.

A central construction to understand the dynamics of PCMs is the pre-singularities set, as is

it for meromorphic functions.

DEFINITION. The pre-discontinuity set, pre-boundary set or pre-singularity set of a PCM F is

B(F) = J F(B)

n>0

REMARK. B(F) is the set of points that eventually lands in B under F', or accumulation of
those points. Then, if z € B(F), exists N € N such that FV(z) is undefined, or is an accumulation
point of such pre-singularities.

The set B(F') is alternatively called spiderweb of F' and denoted Spid(F) (see [Cru2005,
Rom2005]), because of its resemblance with the spider’s constructions in some cases. The analo-
gous of this set is called exceptional set or simply discontinuity set in the theory of bi-dimensional

piecewise isometries (see [Goel996, Goe2003]).
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EXAMPLE.
The pre-discontinuity set for

1
e1™y z € Ry

Flz)=4 ,
ei™(l—z) z€ Ry

where R = D%& and Ry = ﬁ%,%, from one
of the previous examples. Image generated
with the software Imagi (see [Ler2017]).

EXAMPLE.

The pre-discontinuity set for

1, —1ng

se 1Ty z€R
P()=42" 1
2ei™'z+1 z€ Ry

where Ry = Im{ and Ry = Img , from one
of the previous examples. Image generated
with the software Imagi (see [Ler2017]).

28
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EXAMPLE.
The pre-discontinuity set for

Az z€R
F(z) = 1
)\(1 — Z) z € Ry
where B = D_,3, Ry = D_,3, and
A =1.25¢3™, Image generated with the soft-
ware Imagi (see [Ler2017]).

Is useful to note that the preimages of the discontinuity set B (and actually of any set)
under a PCM F = ({Rk}le , {fk}le) can be expressed using the partition and the component

functions: .
F~(B) U=y f5 '(B) N Ry,

F2B) = Ui fi ' (F-Y(B)NERy

FMB) = Ui, fit (F"Y(B)) N Ry

EXAMPLE. Let us build the pre-discontinuity set step-by-step for a relatively simple P CIM.

Let
A €ER
Fz)=1"" sEm
/\(1 — Z) z € Ry

=D 1, and A =e3™. Also are defined f1(2) = Az and fo(z) = A(1 — 2).

474

where R1 = D%)%, Rg
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1. The discontinuity set

B=0D. 1, colored in black.

™

Q

3. Colored in red F~2(B).

C

2. Colored in red F~1(B) =
(fi'(B)NR1) U (f3(B) N Ry).

L

4. Colored in red F~3(B).

Je

30
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5. Colored in red F~4(B), is only a single small 6. Finally, the pre-discontinuity set is

arc.

because F~5(B) = () and then F~"(B) = () for
all n > 5.

A

Images generated with the software Imagi (see [Ler2017]).

~o

Analogously as in holomorphic dynamics, it can be defined the set with regular dynamics from

the pre-discontinuity set.

DEFINITION. The regular set of a PCM F is

R(F) =C — B(F)

REMARK. If z € R(F), by definition F™(z) ¢ B for all n € N. In other words, F™(z) is defined
for all n € N.

A characterization of R(F’) is given in the next

THEOREM 2.1. Let F a PCM, then R(F) = A, where A = No—o F~™(R) and R is the region
of conformality. (See the proof at page 104).

Analogously to the Fatou components of meromorphic maps, there are regular components of
PCMs.

DEFINITION. A regular component of a PCM F is a maximal open connected subset of R(F).
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In the study of dynamics of PCMs, will be useful to define level-finite subsets of B(F') and

R(F), as well as certain limit sets.

DEFINITION. The Nth pre-discontinuity set of a PCM F is

By(F)=J F7(B)

REMARK. The pre-discontinuity set of F' has a natural stratification by the subsets B =
Bo(F) C Bl(F) C BQ(F) C...C BN(F) C ...C B(F)

DEFINITION. The Nth conformality partition of a PCM F is

N
Ru(F) = () F(R)
n=0

REMARK. The region of conformality of F' also has a natural stratification by the subsets
R(F)C..CRN(F)C..CRaF) CRi(F) C Ro(F)=R.

An important set in the study of the dynamics of PCMs, is the a-limit set.
DEFINITION. The a-limit set of a PCM F is

a(F) =B(F) - | J F(B)

About the a-limit set, we show in the next proposition that is contained in the set of the
limit points of backward iterations of the discontinuity set in 7—[(@) (the space of compacts of
C with the Hausdorff metric), hence its name, in contraposition to the w-limit sets.

[ — ~

PROPOSITION 2.2. «(F) C lim F~7(B) in H(C).
n oo
(See the proof at page 10/ and see [LerSie2019]).

EXAMPLE. Let
Az z€ Ry

F(z)=
) AMl—-2) z€Ry

Ry, Ry and X will be specified later in the figures.
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In such figures, an approximation to the a-limit set is colored in red. Indeed, is used the
following coloring map: ( " N, that is, the black color represents
B = F°(B), the red color F~¥(B) where N is the maximum of the iterations (given to the drawing
program Imagi, see [Ler2017]), and the other colors in the gradient represent the corresponding
F~"(B) with 0 <n < N.

WithR1=D%’%,R2:ﬁi’i and With Ry =D
A= es™ 4 0.02. A= 1.05e3m,

With R, = Reir, Ry = Re; and
2 2
A=es™ +0.01.

As is noted from the figures, the a-limit set can have very diverse forms: from a finite set of

points to a dense set of points in 1 or 2 dimensional sets.

~o
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ExaMPLE. For the family (studied in [Cru2005, Rom2005])

Foo(2) az ifze ﬁg,l
a,0\Z) = ) )
ae?z+2(1—e?)) ifz€ Dy

where v € D and 0 < 6 < 27, Theorem 1.27 implies that «(Fy 9) = {oc0}.

In the following images, it is drawn the pre-discontinuity set B(Fy ¢), where it is observed

that lim F ;(0Ds1) = {oo} in the Hausdorff topology.
n—oo &

With o = 0.99¢5™ and 6 = 1. With @ = 0.99¢3™ and § = 2.
2N S g@; 9 \\\ i L NSO\
S S N Py AN AN

PR P NS SN NS 7 A%

RN VIRZREINSES

vgi @il ANy
SAL2G 0 A
RS S
VAN AN AN L S

VISR s *'\%\‘

AP AN S 1

i"ig\ > { .

Images generated with the software Imagi (see [Ler2017]).

~o

Another useful limit set for PCMs, is the grouping of w-limit sets of points where F' is defined,

but not in the a-limit set.

DEFINITION. The w-limit set of a PCM F is

wF)= |J wF)

2ER(F)

REMARK. Here w(z, F') denotes the usual w-limit set of z under F.

Different kinds of invariance are found for the previously defined associated sets. For the
following theorems, let F' a PCIMI.



2.1. MAIN CONCEPTS OF PIECEWISE CONFORMAL MAPS AND ITS DYNAMIC 35

THEOREM 2.3.

o B(F) is backward invariant, and
o R(F) is forward invariant.

(See the proof at page 105 and a different demonstration can be consulted at [LerSie2019]).

THEOREM 2.4. a(F) is strictly backward invariant and forward invariant.
(See the proof at page 10]) .

EXAMPLE. Let us calculate a simple a-limit set and apply F and F~!, to have a better un-
derstanding of PCMs behavior.

Let

2z ifze D
F(z) = I
iz+3 if z € Do71

also f1(z) =2z and f3(z) = iz + 3. The a-limit set is easily calculated:
a(F) = {0, 3i, 3+ 3i, 3}

because 0 is the repelling fixed point of the hyperbolic M&bius transformation f; and center of
Dy.1. In the other hand, f;'(2) = —iz+3i, then f;'(0) = 3¢, f5 ' (3i) = 3+3i and f, ' (3+3i) = 3,
all this points in 13071.

Therefore o
\
F(a(F)) / \
={/1(0), f2(3i), f2(3+ 3i), f2(3)} { ]
. . \ /
= {0, 3i, 3+ 3i} C o(F) \_ //
because f1(0) = f2(37) = 0. S
At right, it is drawn B(F) with «(F) in red.
Image generated with the software Imagi (see K
[Ler2017]). / \ (@
K\y -

The most interesting is to calculate F~!(a(F))
({0} = (A7 ({0 N Do) U (f7(10}) 1 Do )
= ({0} N Dy1) U ({3¢} n ﬁo,l) = {0} U {3i}
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In the case of the w-limit set, this is not always forward invariant nor is always backward
invariant, since can occur w(F) N By (F) # 0, as will be shown at the end of this section defining

such special kind of points.

As we saw, if z € F~V(B) for some N, the orbit of z is limited by the indefiniteness on B.

On other hand, exists a set where is possible to analyze every orbit O(z, F') completely.

DEFINITION. The dynamics domain of a PCM F is

D =D(F) = R(F)U a(F)

REMARK. By definition, D(F’) is contained in the region of conformality of F'. By Theorems
2.3 and 2.4, D(F) is a forward invariant set and then F|% is defined for all n € N.

Periodic points of a PCM can be classified using the well-known properties of the component
functions, which are Mobius transformations. For every n € N, the map F™ : D — Cis a
composition of Mébius transformations by definition (D is the dynamics domain). Then
each periodic point of F' is a fixed point of a Mébius transformation. Recall that non-identity
Moébius transformations are classified as loxodromic (with two fixed points, one attracting and
the other repelling), parabolic (with one parabolic fixed point), and elliptic (with two neutral
fixed points).

For hyperbolic periodic points, we have an analogous classification to those of holomorphic

dynamics. A periodic point z of period n of F' is

o Attracting if F™ is loxodromic in some N, and z is attracting for F™.

o Repelling if F™ is loxodromic in some N}, and z is repelling for F™.
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For neutral periodic points a different classification can be done. A neutral periodic point
z of period n of F is
e Parabolic if F™ is parabolic in some N. Perp,,(F), is the set of parabolic periodic points
of F.
e FElliptic if F™ is elliptic in some N,. Perey(F), is the set of elliptic periodic points of F.
o Identical if F™ is the identity in some N,. Perjq(F), is the set of identical periodic points
of F.

Clearly, periodic points are contained in the dynamics domain
(Per(F') C D(F)). But even more, they can be associated with the a-limit set or the w-limit set

according to their quality of attracting, repelling, parabolic, elliptic or identical.

THEOREM 2.5.
o Perye, (F) UPerp,, (F) C a(F), and
o Per,; (F) UPerpa (F) UPeren(F) UPerig(F) C w(F).
(See the proof at page 108).

REMARK. Note that if F  has  parabolic periodic points, then
a(F)Nw(F) # 0.

Since PCMs has a set of singularities, regular components also can exhibit certain Baker

domain phenomena.

DEFINITION. A point zg is a ghost-periodic point of period n of a PCM F if zo € F~~(B) for
some N > 0 and exists a periodic regular component U of period n such that zy € OU and for
all z e U

(")) =z

k—o0

REMARK. By  definition of ghost-periodic point, F is undefined in
FN(z) € B. But since additionally there exists a periodic regular component U with z, € 9U,

such component behaves like a Baker domain of transcendental meromorphic functions.
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EXAMPLE.

Let

1 .

sz ifzeD

F(z)=14" T

iz ifze Dy

For all z € Dy; lim F*(z) = 0 but
n—oo

0 € B=0Di1:1. So, 0is a ghost-periodic
point. 7
In the figure at right, it is shown a drawing of 5/ '
B(F), and the orbit of a point z € Dy (little \ ]
circles in white color). Image generated with \ /
the software Imagi (see [Ler2017]). \ /

DEFINITION. The set of ghost-periodic points of a PCM F is denoted as Perghost (F').

REMARK. By definition, ghost-periodic points of a PCM are contained in its pre-discontinuity

set and w-limit set.

2.2. Symbolic dynamics on PCMs

First we recall some basic notions about symbolic dynamics.

Yk = {1,2,...,K}N = {sos182... |sn €{1,2,..., K}, n € N} is the space of sequences of K

symbols.

Let s = s¢s182..., t =totitey -+ € Y,
o~ s — tal
ds(s,t) =D =t
n=0

is a distance function for ¥ . Then, (Xk,ds) is a metric space.

The function o : X O is given by o(sgs182...) = s18283 .. .. is the (unilateral) shift. Another
way of writing this function is o(s),, = sp41 for all n > 0, where s = 598182+ € k.

The very definition of PCM naturally induces a symbolic dynamical system.
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DEFINITION. The itinerary function associated to a PCM ({Rk}szl , F)is

©F : D — EK
where

REMARK. The sequence ¢r(z) for a point z € D(F) is called itinerary since is a record of visits

to the sets Ry of z under iteration. Such a sequence is also called coding because is a codification
of the orbit of z to a sequence of symbols.

EXAMPLE. Let
iz 2z € Ry
%z z € Ry

where Ry = Rey, Ry = Reg.

Let us calculate some itineraries.

o If z € Ry, then F(z) = 21nz € Ry for all n € N. Therefore the itinerary of z is
or(2) =2222.. ..

e —14+i€ Ry, F(-141i)=—-1—4i € Ry, F(—1—14) = 1—1i € Ry, then its itinerary is
op(—1+1)=1122....

As can be easily seen, the itinerary associated with a PCM provides a topological semi-
conjugation with the shift function.

PROPOSITION 2.6. Let F a PCM. F|p is topologically semi-conjugated to the shift func-

tion o|,(py by means of the associated itinerary ¢ = pr. (See the proof at page 105 and also in
[LerSie2019]).

The itinerary induces a partition of the dynamics domain in cells.

DEFINITION. The itinerary cell or coding cell of z under a PCM F' is

C. =C(z,F) ={w e D(F) | pr(w) = ¢r(2)}
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REMARK. Using the Proposition 2.6, if the itinerary of z € D(F) is periodic of period n
under the shift function, then F™(C,) C C.. Therefore, periodic points and periodic regular

components are contained in the itinerary cells constructed over shift-periodic itineraries.

EXAMPLE.

Let
Az z € Ry

A1—-2) z€R 2111222...

222...

¢ )

~ 1
where Ry = D%)%, Ry =D 1,and A = e3™,

Sl

1
1

In the figure at right, the itineraries for all the

cells are indicated. 222,
1222... ’
Image generated with the software Imagi (see 111227...
oy 112R2..
[Ler2017]), except for the itinerary sequences. 1222

A sequence s € Yk is irrational if is not periodic or pre-periodic under the shift function.

DEFINITION. The irrational set of a PCM F is

I(F)={z € D(F)| ¢r(z)isirrational}

REMARK. If U is a wandering regular component of a PCM F, then U C Z(F).

There are interesting characterizations of the pre-discontinuity and regular sets using itinerary
cells. A demonstration of the following theorem can be found in [Rom2005], but an alternative

proof is also presented in this text (see Chapter 5 Proofs).

THEOREM 2.7.
B(F) = | ac.
z€D
and
R(F) = | C.
z2€D
(See the proof at page 107).
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REMARK. Points in every regular component have the same itineraries, whether periodic,

pre-periodic, or wandering.

The combinatorial construction of B(F') (and consequently of R(F')) leads to another symbolic

dynamics application.

First, Let us denote zﬁ? ={w=us182...8,|8m €{1,...,K} form € {1,...,n}} the set of
words of length n of K symbols. A more detailed construction of F~"(B) and F~"(R) can be done

using words of length n as indexes, giving at the same time a useful notation.

For the following proposition, corollaries and remarks, let F' = ({Rk}szl , {fk}szl) a PCM.

ProrosiTION 2.8. Let n > 0.
FB)= J ¢
WGEXL)
where Cy, = B if w is the empty word when n =0 and Cywy, = f; '(Cw) N Ry, with w € Eg?) and
wk € Zggﬂ) for each k € {1,..., K} whenn > 0.

And
F"R)= |J Aw
WEEE,?JFI)
where A, = Ry, whenn =0 and Ay = f,;l(Aw)ﬁRk with w € Z%) and wk € E(I?'H) when n > 0,
for each k € {1,... K}.
(See the proof at page 106 and also in [LerSie2019]).

From these constructions, we note several properties. Let w = kiky...k, € E%) and
ked{l,...,K}.

e Cy and Ay, can be empty sets.

e Since Cywi C Ry we have
F(ka) = fk(ka) = fk (f]?l(cw) mRk) C Cw

Analogously F(Awk) C Aw-

e Let wi,wy distinct words of any length. Obviously Cw,k, Cw,e C Ry,
but Cw,x N Cwox = O because w; # wy and then exist m > 0 such that
F"™(Cyw,k) CC.. .k, C Ry, and F™(Cw,x) C C.. k, C Rk, with ky # ko.
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e Developing Ay, its nested conformation is revealed
Aw = Aky .k,

Fi(Aky k) N Ry,
= Fot (ot (Agy k) O Ry, )N Ry,

= S G (Rey) N Ry, - ) N Ry, ) N Ry,

e From such nested conformation, Ay, can be stratified

Aw = Aklmkn C Ak‘zu.kn cC---C Akn—lkn C Akn = Rkn
The next corollaries are a direct consequence of the Proposition 2.8 and the remarks about
associated properties.

COROLLARY 2.9.

By =J| U ow

n=0 W€E<;)
and

N
7?'N(F‘) = ﬂ U Aw = U Aw
=0 \ wex {2+ wen (VD
COROLLARY 2.10.

s = U ¢w

WEE(;)
and

REO=] U Aw

n>0 WEE&?JA)

2.3. Kleinian groups and PCMs

Since the component functions f; = F|g, of a PCMs F are Mdobius transformations, that

is, fr € PSL(2,C), then is natural to associate to F' subgroups of PSL(2,C) generated by the
component functions.

DEFINITION. The associated group of a PCM F = ({Rk}kK:1 , {fk}szl) is the group generated
by the component functions f; = F|g,:

I'r = <f1, ey fK> < PSL(?,C)
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For subgroups of PSL(2,C) we have the limit and ordinary sets, then can also be associated
with a PCM.

DEFINITION. The associated limit set of a PCM F is Ap = A(T'r), the limit set of I'p.

DEFINITION. The associated ordinary set of a PCM Fis Qp = Q('r), the ordinary set of I'p.

For a PCM F with associated group I'p, the limit behavior observed at the a-limit set

and the w-limit set is encompassed by Ap.

THEOREM 2.11. Let z € D(F) but non-elliptic neither identical periodic, then w(z,F) C Ap.
(See the proof at page 109 and also in [LerSie2019]).

COROLLARY 2.12. w(F) — (Pere(F) UPeriq(F)) C Ap.

THEOREM 2.13. If Ap N B = (where B is the boundary set of F), then
. a(F) C Ap,

« o(F) = lim F7(B) in #H(C), and

° Perghost (F) = (Z]
(See the proof at page 109 and see [LerSie2019] for the first two claims).

REMARK. If Ap N B # 0, then points of Ar are distributed along B(F). Therefore, the set

a(F) does not concentrate every dynamic limit behavior and can appear ghost-periodic points.

Very special groups with important links with geometry and dynamics (see [Beal983, McM1991,
McM2018]), are the discrete subgroups of PSL(2,C) called kleinian groups (see Appendix:
Kleinian groups for a review about them). Especially, the discontinuous kleinian groups (with

non-empty ordinary sets), can provide useful information regarding the dynamics.

If the associated group I'r of a PCM F is a discontinuous kleinian group, by definition
Ap # C. In such case, by theorems 2.11, 2.12 and 2.13, the limit dynamic behaviors of F' (defined
with «(F) and w(F) sets) are strained by the relatively small set Ar and the discontinuity of T'p.

Other relations between kleinian groups and PCMs concerning stability, will be studied in
the Chapter 3 Stability.
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2.4. Sullivan dictionary extension

The Sullivan dictionary is formed by a list of correspondences of concepts and theorems between
theories of discrete dynamics of rational maps on C and kleinian groups (see [Sul1985a, Sul1985b,
McMSul1998, McM1991, McM2018]). The dictionary does not provide a translation formula,
but connections are given by very similar proofs in related results. Furthermore, analogies between

concepts provide ideas to research from one to another field.

Comparatives between discrete dynamics of PCMs and rational maps on C are direct because
both of them are function iteration theories. However, in some cases very dissimilar phenomena

occur by the existence of the discontinuity set in PCMs and the lack of this in rational maps.
For all the following theorems, remarks, and examples, let F' a PCIM.
The concept of normal families can be applied to PCMs and we found that this is related to

already defined sets.

THEOREM 2.14.
B(F) = {z eC| {F"},> isnot normal at z}
(See the proof at page 102 and also in [LerSie2019]).

Since the regular set is the complement of the pre-discontinuity set, we have directly the

next corollary.

COROLLARY 2.15.
R(F) = {z eC| {F"}, 50 isnormal at z}

REMARK. Here we have a direct association of sets: the pre-discontinuity set and regular
set of PCMs dynamics corresponds to the Julia set and Fatou set from holomorphic dynamics,

and to the limit set and ordinary set from kleinian groups.

The pre-discontinuity set is a compact set without isolated points, as can be inferred from

its definition.
THEOREM 2.16. B(F) is a perfect set. (See the proof at page 102).

REMARK. Here the correspondence is also exact, since the Julia sets of meromorphic maps

and the limit sets of non-elementary kleinian groups are perfect sets.
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As seen in some examples of Section 1.3, a(F') is not necessarily a perfect set, since can be only

a finite set of points. Also in these cases, the PCMs can not be chaotic in «(F).

Theorem 1.4 state that repelling periodic points of holomorphic maps are dense in its Ju-
lia set. In the case of PCMs, it can not be for the pre-discontinuity set, since only contains
periodic points in the a-limit set. Furthermore, the repelling periodic points are not always

dense in the a-limit set, as will be shown in later examples.

The backward orbits of points in the pre-discontinuity set can not be dense, because the
definition and backward invariance of the a-limit set (Theorem 2.4). Likewise, exists examples
of PCMs such that backward orbits of points in the a-limit set that are not dense. These
behaviors of PCMs contrast with those of holomorphic maps (see Theorem 1.6).

EXAMPLE. Let

2z ifze D
F(z) = ot
iz+3 ifze D071

Has already been calculated a(F') = {0, 37,3 + 3i,3}. Obviously, a(F') is not perfect.

The only repelling periodic point of F is 0, then Perye, (F) = {0} # a(F). Also has been shown
that F~1({3}) =0, then O—(3) = {3} # a(F).

EXAMPLE. Let

Fz) = 2z if z € Rey .
z+1 ifz € Ref
Then B = {z|Re(z)=1} and F™(B) = {z|Re(z)=(3)"}. Therefore,
a(F) = 1R — {oo}, since co € B.
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The only repelling periodic point of F'is 0, then
Perrap (F) = {0} # a(F).

Since 0 is a fixed point and F' is injective in
Re; C Rey, we have O~(0) = {0} # a(F).
For z € iR—{0,00}, 0~ (2) = {2,532, %2,... } #
a(F).

Image generated with the software Imagi (see
[Ler2017]).

Theorem 1.13 establish that, for rational maps f : ((AIO, the number of non-repelling periodic
cycles is bounded superiorly by 2deg(f) — 2. In the case of PCMs, although there are families of
maps with a finite number of attracting periodic cycles (see Theorem 1.24), there are also examples

with an infinite number of non-repelling periodic cycles.
ExAMPLE. Let Ty , : CO given by B(F), with § = £ and p = 1. The white sets
20054 p1) ifz € Imd are the periodic (or pre-periodic) coding cells.
e z+p if z € Im
Ty,p(2) = )

ez +p—1) ifzeImgy

where 6 € (0,1) and p € R.

Theorem 1.19 says that for this maps every
neighborhood of oo has periodic coding cells,

implying that exists an infinite number of

non-repelling cycles.

Image generated with the software Imagi (see
[Ler2017]).
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EXAMPLE. Let

Flo) = {fl(z) ?fz e Ry
fa(z) ifz € Ry

where f1(2) =iz, fo(2) = —iz+ 1+, Ry =Im_, and Ry = Im™

Bl
Bl

Calculating the orbits of n € N — {0} C Rs.

e (1) = f2(1) = 1. Then 1 is fixed point of F.

F2) = f2(2) = 1—i€Ry,
F2(2) = fi(l—i) = 1+i€ Ry,
FS2) = fo1+1) 2
Then 2 € Pers(F).
) F(S) = f2(3) = 1-—2i€ Ry,
F2(3) = f1(1—2i) = 241 € Ry,
F3(3) = f2(2+%) = 1—1i€ Ry,
Fi3) = fil—i) = 1+2i€ Ry,
F5(3) = fa(1+2i) = 3.
Then 3 € Pers(F).
F(n) = fa(n) = 1—(n—1)i € Ry,
FQ(’/Z) = f1(1—ni) = (n—1)+i€R2,
F2(n) = faln+1) = 2+ (2—n)i € Ry,
Fti(n) = (fao fi)" o fa(n) = (I4+m)+(m+1-n)ie Ry,
F"ln) = (f20/1)" "o faln) = n.

Then n € Pery,_1(F). Notice that fao fi(z) = z+ 1 +1.

With similar calculations, defining

1 1 1 1
Dn{zz#n,n4<Re(z)<n+4, 4<Im(z)<},

can be proven that for all z € (J,, with n € N and n > 0, F®"4(2) = 2z and F?"~!(2) € O, but
F?=1(2) # 2. Then, O,, C Perg,,_4(F) for all n > 0.
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In any case, we have an infinite number of non-repelling periodic cycles of F.

The orbit of 4 € Per;(F'), is indicated with  The orbit of 4.2 + 0.2 € Peryg(F), is indicated
white circles linked by black line segments. The  with white circles linked by black line segments.
squares in red are [0, and the orbit of (4.

[
Images generated with the software Imagi (see [Ler2017]).

Periodic regular components can be classified according to their dynamic behavior, as can

be done for meromorphic maps (Theorem 1.8).

THEOREM 2.17. Let U be a periodic regular component of period n. Then U is one and
only one of the following:

o Immediate basin of attraction. Ezxists an attracting periodic point zg € U such that for all
zeU

(F")*(2) = =

k—o0

o Immediate parabolic basin. Ezists a parabolic point zo € OU Na(F) such that for all z € U

(F")*(2) = =

k—o0
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o Immediate ghost-parabolic basin. Ezists a ghost-periodic point zg € OU such that for all
zeU
(FMF(2) = 2

k—o0

e Rotation domain. Ewists a homeomorphism h : U — V such that
Flf ~n glv

where g : V'O is a rotation and V = h(U).

e Neutral domain. F|}; is the identity in U.

(See the proof at page 108 and also in [LerSie2019]).

REMARK. Comparing with the classification of periodic Fatou component of meromorphic
maps, we can observe:

e The immediate basin of attraction and immediate parabolic basin of PCMs cor-
responds directly with those of meromorphic maps.

e The immediate ghost-parabolic basin for PCMs correspond with the Baker domain
of meromorphic maps, rather than immediate parabolic basin, because the discontinu-
ities (singularities) in PCMs.

e The rotation domain of PCMs correspond with both Siegel disc and Herman ring
of meromorphic maps.

e The neutral domain of PCMs do not correspond with any periodic Fatou component
of meromorphic maps, but can be considered as a limit case of Siegel disc or Herman

ring.

Recall that for a periodic regular component U, the map F|; : UO is a Mdbius trans-
formation. About elliptic transformations in a rotation domain U, we can do a more detailed
analysis. First, if F| is conjugated with g(z) = ¢?™z we have two cases:

o If 6 = g € Q, with p,q € Z relative primes, then every point in U is a periodic point of
period ¢ of F|;, and of period ng of F' (U C Per,(F™) and then U C Per,4(F)). Similarly,
if U is a neutral domain, then U C Fix(F") and U C Per,,(F)

o If 6 is irrational (6 ¢ Q), then orbits of points of U under F'|; are quasi-periodic.

Second, in relation to the belonging of the fixed points of the elliptic F| to U:

e U can contain only one fixed point, and no further information is obtained.
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e Suppose that U contains two fixed points and let v = F|}, the corresponding Md&bius

transformation.

o If U is simply connected then V = C — U is simply connected and y(V) = V. Let C
an invariant circle under v that goes through U and V. Such circle C' exists because
U and V are non-empty and different from C. Then (VN C) c VNC by invariance
of V and C. But 7 is a rotation on C, then ~ is the identity in V N C. Hence = fixes
three points and therefore v = Id, that is, U is a neutral domain.

o If U is not simply connected but n-connected, V = C — U is disconnected with n
components and then v permutes cyclically the components of V. Therefore, v must
be a rotation with rational angle.

o If U does not contain either of the two fixed points, then such component is not simply
connected. That is because U must contain one invariant simple closed curve C sepa-
rating the fixed points in ((A:, C — C is disconnected and therefore C — U c C — C has

at least two separated components containing the fixed points.

In the following figures, examples of periodic regular components are shown. The meaning

of the coloring is as follows:

The pre-discontinuity set B(F') is colored in black.

Given a period N > 1, the periodic points with a period divider of N are colored in red.
The regular components are colored using  the coloring map
0 - mmm N. If there are attracting, parabolic or ghost-periodic
points zg of period M divider of N, then points z far enough from z; such that
(fM(2))* T %0 are colored in white, and fM¥(z) is colored with the corresponding
gradient of color. Also, pre-periodic points are colored using this method.

The dynamic behavior of orbits of periodic regular components (or orbits of points

inside them) are indicated with gray arrows.

All figures was generated with the software Imagi (see [Ler2017]), except for the gray arrows.
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ExaMPLE. Immediate basin of attraction.

Let

Az ifze D_
AN1—z) ifzeD_

ol
=

F(z) =

[VE
-

with A = 0.95¢37¢.

There are four immediate basins of attraction:
two fixed, U and V, and two of period 2, W; and
W2. Note that F(Wl) g W2 and F(Wz) g Wl.

EXAMPLE. Immediate parabolic basin.

Let
z—1 ifzeD_;1
F(z) = ok

z 3 N
z_+1 le (S D—l,%

There is only one immediate parabolic basin U.
The only periodic point for F' is 0, and is fixed

and parabolic.

51
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EXaAMPLE. Immediate ghost-parabolic basin.
Let

%z ifze D

1.1e3™(1—2) ifzeD

1
’2

|
—~
N
~—
I
N

N
N

)

There is only one immediate ghost-parabolic
basin U. The ghost-periodic point is 0. Note
that 0 is an attracting fixed point of the hyper-

bolic component function z — %z.

Let

with A\ = 37,

There are five rotation domains: three fixed, U,
V, and E, and two of period 2, W, and F(W).
Note that F2(W) =W.
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EXAMPLE. Simply connected rotation domains with irrational angle.

Let
Az ifz € D_i,

F(z) = L
AMl—2) ifzeD_

1
31

. —3 i
with A = e1+vis™",

There are at least five rotation domains: three
fixed, U, V, and F, and two of period 2, W, and
F(W). Note that F?(W) = W. Possibly there

are more small rotation domains.

EXAMPLE. Rotation domain with two fixed points.

Let

l .
Pz) = 2(2 +1) ifze ?271 .
12 ifze Dg’l

There is one fixed rotation domain
4-connected FE.  The fixed points (cen-
ters of rotation) are 0 and oo, both belongs to
E.
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EXAMPLE. Rotation domains without fixed points.

Let
L

es™z ifze D

F(z) = o1

NIRRT

1 . . ~ *
es™z ifz€ Do,

There are two rotation domains 2-connected
U and F(U). These domains are of period 2
since F2(U) = U. The fixed points (centers of
rotation) are 0 and oo, both belong to a(F).

EXAMPLE. Neutral domains.
Let

F(z):{/\z iszD_%v1

)\(1 —Z) ifz e D—%,l

with A\ = 37,

There are six neutral domains, the orbit of U.
Note that FS(U) = U.

54
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In the dynamics of rational maps, it is known that the connectivity of the Periodic Fatou
components is one, two or infinity (see Theorem 1.9). Here we show that for piecewise conformal

dynamics the connectivity of the regular set can be any natural number or infinity.

ExAMPLE. For m a positive natural number, let R; = D, the disc with center at 1 and small
radius, say r < 1sin(Z7), Ry = ﬁl,r and B = R, = ORy. Define fi(z) = 2z if z € R; and

fa(z) = ew ™z if z € Ry. Note that the map f»(z) is a rational rotation. Let F the PCM formed
by f1: Ri — C and fo: Ry — C.

. m
Observe that the set {fz_j (B)} of m disjoint circles is contained in B(F) and in fact

B(F) c Uj~, fo?(R1). That means that the complement of the m discs {f;](R_l)} X is a pe-

riodic regular component with 0 and co as elliptic fixed points. The such component has

connectivity m. The result does not depend on the choice for f; because f; '(B) N R, C R;.

With m = 4, a rotation domain With m = 5 a rotation domain

4-connected. 5-connected.

All figures was generated with the software Imagi (see [Ler2017]).

~o

It is left to show that there is a Periodic regular component with infinity connectivity.

ExAMPLE. Consider Ry = Dl’%. Choose f; any Mdbius transformation if 2 € R; and
fo(z) =2z if zisin Ry = 131’%. Let F the PCM formed by f; : Ry — C and fo: Ry — C.
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is a disjoint

Notice that the set {fQ_J (R_l)} ‘

set of discs converging to 0 and of radius tend-
ing to 0. It is clear that B(F) C UjZ, 157 (Ry).
The complement of such a sequence of discs is
a fixed regular component with infinite con-

nectivity.

A PCM with the same feature can be defined
with Ry = Dy, where r < %sin(?w@) and 6 €
(0,), f1 any Mébius transformation in Ry

and fo(z) = %62”(%2 in Ry = ﬁl’,,.

O,
‘O

)
~

D

All figures was generated with the software Imagi (see [Ler2017]).

~o

Similarly to meromorphic transcendental maps, PCMs can present wandering components.

Rational maps have not wandering components (see Theorem 1.15), being this a big difference

with PCMs by the presence of the discontinuity set.

EXAMPLE. Here, our construction relies on Theorem A from [GutEtA12008], which proves

the existence of a wandering interval components for an ATET with flips. We will explain
the basic facts and extend the construction to PCMs.
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Consider an AIET with flips T defined in I = [0,1) C R and with a partition determined
by 0 =9 < 71 < 22 < x3 < x4 = 1. Component functions T, _, +,)(z) = axz + B from the
Theorem A in [GutEtAl2008] are constructed with the z;, depending on the slopes «aj, which in

turn depend on a certain Perron-Frobenius matrix.

To construct our example consider the following piecewise dynamical system. Fix xj, oy and
B with k € {0,1,2,3} as in Theorem A from [GutEtA12008]. Let the set of discontinuity be
the union of the lines Ly = {z € C| Re(z) = x1}, with k € {0,1,2,3}. Let F' a PCM be such that
F(z) =z if Re(z) < 0or Re(z) > 1 and F(z) = apz+ Bk if 2, < Re(z) < xg41. Observe that since
each line Ly, is orthogonal to the real line then each line in B(F’) is orthogonal to the real line (since
F~"(Ly) are orthogonal lines to the real line) and its complement R(F’) is a union of vertical strips.
Then the restriction of the regular set of F' to the real line contains the wandering interval of

T, therefore F' has a wandering strip.

We can construct a similar PCM using discs instead of strips as follow: For consecutive xj_1
and x, consider the disc Ry = D, ,, with radius rj, = %=1 and center z, = % Let F
such that F(z) = agz + B in each disc Ry, and F(z) = z outside of all discs. Then the associated
pre-discontinuity set is an infinite union of arcs of circles. As in the previous case, the restriction
to the real line must contain the wandering interval inherited from the ATET with flips and

then F' has a wandering regular component.

Other ATET with wandering intervals but different properties than those in [GutEtA12008],
can be found in [BreEtA12010].

EXAMPLE. Here, we show that there exists a PCM with all of the regular components being

wandering.

Let
filz) ifze R

fQ(Z) if z € Ry

where f1(2) =iz, fa(z) = —iz + 1 +1i, Ry = Imy and Ry = Im{. Notice that f; and f» are both
euclidean rotations. The rotation center of fs is 1.

F(z) =

First, Let us analyze the action of F. Is clear that f;(Img ) = Regd and fo(Im{) = Rel C Ref.
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N

Using the plane quadrants

Qr =
Q11
Qi1 =
Qrv =

»
(s
R
R
%
e
e

(s
G

(—00,0) x

SRS
KIS
R

o5
oot
ot

..

5

R
%

%
55
3%
SEEL
K%
88K
R

(0,00) x (0,00) C Ra,
(0,00) X (—=00,0) C Ry,
(—0,0) x (—00,0) C Ry,

(07 OO) - R27

58

we have F(Qrrr) = Qrr, F(Qrr) = Qr, F(Qr) = (1,00) x (1,-00) C Qr U Qpy, and

F(Qrv) = (1,00) x (1,00) C Q1. Then, eventually, every orbit of points in R(F) lands in Q.

Now, let

X ={z|Re(z) € ZorIm(z) € Z} .

By the previous analysis and because f; and fo are euclidean rotations, every orbit of points in
(QrrUQrrrUQry)N X lands in @1 N X.

Let

with n € Z. Note that with x,y > 0 and n > 0, LY

v
Yy

= {z| Re(z) = n, Im(z) >y}, and
£t = (2| Re(2) > o, Im(z) = n}

n,y?

E’;m cQinNX.

Let us analyze certain images of £;, , and Ll under F.

o First, let us take the vertical rays E}’L’y with n > 1.

o With n =1:

then L7, C B(F).

F(LY o) = fa(L7 o) = ﬁ}f,o C B(F)
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o With n 2 2:
F(Lo) = f2(L5 ) = L}f,—n-u C i
FZ(EZ,O) = fl(c?,—nﬂ) = Ly 41 CR
FQn(LZ,o) = fl(EZ—l 1) Tno1 C LY

Therefore, using the the incise above, £,  C B(F) for all n > 2.

e Now, we define the horizontal line segments

a,n’

L?mb)’n ={z]a < Re(z) <b, Im(z) =n} C L"

with n € Z and n > 0. Vertical line segments L7 (a,p) A€ defined analogously.

° Fﬁl(Un21 Ly o) NQr = Un21 L?O,l),n’ then Un21 0,1),n < B(F).
o Let m>1and n > 1. Then

L?m m+1),n C Ry

F(L ? I fa(L{, (mmt+D)m) = Loyt (cma—m) © B1
F*(L ?m m+1) n) = fio 2(L(m m+1) n) = L(m—l,m),n+1 C Ry
F3(L{, (mom41)m) = Jao fio 2(L(m ma1)n) = Lngoq—ma—m) C B
FH (L my1).n) = frofao fro folLimminyn) = Lim-am-1)ns2 C Ro

F2 N L mi1yn) = (f20 f1)™ " o foLimmetym) = Ly ymi1,01) € Ba
FQW(L(m m+1),n )= fio(fao f1)m_1 o fQ(LéLm,m+1),n) = L?O,l),n+m+1

Therefore, because the previous incise, L(m 1)

In conclusion, because of the previous analysis, Q1 N X C B(F).

Additionally, it is easy to see that
F({z| Re(z) =0, Im(z) < 0}) C B(F)

and
F{{z|Re(z) =0, Im(z) >0}) C Q1 N X.
Therefore iR C B(F').

C B(F) for all m > 1 and n > 1.
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Finally, because B(F) C X and for all the

above, we have that the pre-discontonuity

set B(F) is exactly X, and the regular set

R(F) is formed by open squares with sides of

length 1, which interior points do have no inte-

ger coordinates. See the figure at right.

Let us see the orbits of the regular components. First, a square regular component in (7 and
adjacent to iR it is denoted as O, = (0,1) X (n,n+ 1) and Let us take some point ¢, = a+bi € O,,
where n € N. Calculating the orbit of ¢, we obtain:

Cp = a+bi € Ry
F(en) = fa(en) = b+1+(1—a)ieR,
F2(cn) = fa0 falen) = 2—a—bieR
F3(cy) = Jfio fao falcn) = b+ (2—a)i€ Ry

F23(c,) = (fiofa)" ™ ofalecn) = b—n+(n+2—a)i € Ops1 C Ro

because 0 < a < landn <b<n-+1impliesthat n+1<n+2—-a<n+2and0<bdb—n<1.
Then, the itinerary of ¢, is

n+1 times n—+2 times n—+3 times
2, 2,1, 2, 2,1, 2, 2,1, ...,
clearly an irrational sequence and in consequence, as we saw in Section 2.2, the square compo-

nent 0, containing ¢, is wandering.

It is better for understanding, to see graphically the orbits of those squares [J,, . The newest

elements in the orbit are indicated and colored in red.
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Dn . Dn . Dn .
B
F(@,)
2
F(Ch) g
Dn . Dn .
F@C)
F(Ch)
&
2n+3 Dn
|:|n . Dn ( )
2n+241 )
T (=17

The transformation fio fs is the translation z — z—14-4, which is applied to points z € Q1 with
Re(z) > 1 and Im(z) > 0, whose orbit must reach a wandering square 0O, = (0,1) x (n,n+1) C
Q7. Then, all regular components in Q; are wandering. As seen, points in the quadrants Q;;,

Q11 and Qv eventually lands in the quadrant )7, then we can conclude that all components of

the regular set are wandering.

All figures in this example was generated with the software Imagi (see [Ler2017]).

~o
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The well-known theorem of Sullivan establishes that components in the Fatou set of rational
functions in the Riemann sphere are not wandering (see Theorem 1.15). About piecewise maps
exist some results in this direction. When X C R? has finite Lebesgue measure and F : XD is a
piecewise isometry, then every component in the regular set is periodic or pre-periodic (see

Proposition 1.16). From this result, we have the following

PRroOPOSITION 2.18. If ({Rk}szl ,F) is a PCM where B(F) is bounded, co € Ry, F|g, is a
euclidean rotation, and F|g, is a euclidean isometry in C for k > 1, then every regular component

is periodic or pre-periodic. (See the proof at page 111 and also in [LerSie2019]).

EXAMPLE. Let
Fls) — Az ifze Di&
A1—2z) ifze D
with A = ™ € S'. The component maps z — Az and z — A(1 — z) are euclidean isometries on C,
in particular, are rotations. Clearly, B(F) = aDié is bounded, and then, because the Proposition

2.18 every regular component is periodic or pre-periodic. That is, there are no wandering

components.

B(F), with §# = 1, an irrational rotation.

]

Figures generated with the software Imagi (see [Ler2017]).

~o

In relation to the pre-discontinuity set, we establish the next

PROPOSITION 2.19. If F is a PCM such that B(F) = By (F) for some N > 0, then each regu-
lar component is periodic or pre-periodic. (See the proof at page 111 and also in [LerSie2019]).
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For rational maps on C the number of components in the Fatou set can only be 0, 1, 2, or co
(see 1.11). In PCMs with a partition in K regions, the number of regular components can be

0 or any natural number greater or equal to K.

ExampLE. Let ({Ri )iy, {fx}iy) a PCM. If f71(B) N Ry = 0, then B(F) = B by definition
and R(F) = R has exactly K regular components.

A concrete example of such a map is

iz if z € Qr = {z| Re(z) > 0, Im(z) > 0}

z—1 ifze Qr ={z|Re(z) <0, Im(z) >0}
—iz  ifz€ Qi ={z|Re(z) <0, Im(z) <0}
z+1 ifze Qv ={z|Re(z) >0, Im(z) <0}

F(z) =

where B(F) = B =R U R and R(F) has four components: Qr, Qrr, Qrrr and Qrv.

~o

ExaMpLE. PCMs with an infinite number of regular components are, for instance, those

with components with co-connectivity.

In another extreme, we show a case with 0 regular components, or equivalently, with the

pre-discontinuity set being the whole Riemann sphere.

EXAMPLE. Let be Ry = Dy 1, Ry = f)o,l and F' the PCM defined with f;(z) = 2z in Ry and
f2(z) = 22z in Ry. We claim that B(F) = C.

First, we can notice that F can not have periodic points z # 0,00. Otherwise, if
F"(z) = z # 0,00 with n > 1, then F"(z) = 2/(2)Jz = z and 277 = 37 with ¢ > 1 or j > 1,

clearly a contradiction.

Second, we will show that (U,eyF "(B)) N [0,00) = U,eyAn, where
Ay ={, 2,35} Let ¢ = 3 with 0 <m < n (that is, ¢ € A,).

We easily check the following statements:
1. If g =1, then m =n =0 and ¢ € B = OR;. Also note that Ag = {1}.
2. If ¢ > 1, then F(q) = 2q = 3;:—:11 and clearly F(q) € A,—1 U{1}.
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3. If g < 1then F(q) =2¢ = 2:2—7:
a) If m <n—1then F(q) € Ap—1 U{1}.
b) If m > n — 1 then n = m , but this is impossible because in this case 3—: > 1, and by
hypothesis ¢ < 1.
4. Statements (2) and (3) imply that for all n > 0, F(A,,) C 4,_1 U{1}.

Since ¢q can not be periodic, exists N > 0 such that FN(¢q) =1 € B, that is, ¢ € By (F).

Third, F|jz 5 is an AIET:
F([3,1)) = [3,2) and F([1,2)) = [3, 3)-
An ATET f:]0,1)O with

Graphical Analysis

flo.ey(@) = Az +a,

Legend
flieny (@) = pz +b y -

W Orbits

and f(c) =0, is conjugated to the rotation 7y :
S1 O of angle
_ log A
log A — log i
(see [Lio2004]). X

0

In our case, F|[z 5 is conjugated to f : [0,1)O with f[jg 1)(2) = 22+ 3 and f|14)(z) = F2—,
and then conjugated to the rotation of angle

log 2 log 2

B log 2 —log(2/3) - log 3

¢Q

in consequence every orbit of = € [2,2) is dense in such interval. In the figure above, the orbit of a

2 4

point z € [3, 3) under F|2 4 it is shown.

In the figure at left, the orbit of a point = > %
under F'.

Graphical Analysis

In general, if € (0,00), then exists N > 0 such

" Legend ) .
= _fs)en that FN(z) € [2,2), because F is expansive if < 2
mid

= Orbits and contractive if x > 2.
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Since the orbit of FN(z)
FNTM () € (1 — 61,1+ 83), where §; =
2itJ

Let FNTM (z) = 2/(2)iz = 25

£
1 r+te
xT
z+e
1
x+e

xr+e€

AVRVANRVANAN

x

+e

is

€

2iti

dense

and 6, =

VANVANRVAN

>

65

in exists M  such that

S
Tr—e

3.2,
for a given £ > 0.

= 2z, where i+ j = N + M. Then

£ —
]‘+m—s

x s
—€

1 S
T—€

r— €

T

That is, for a given £ > 0 exists y € |J,,cy An such that y € (z — ¢,z +¢).

Then B(F)N[0,00) = [0, 00).

Since F' behaves the same in each ray from the

origin, we have B(F) = C.

In the figure at right, it is shown the drawing

of an approximation of B(F'). Image generated

with the software Imagi (see [Ler2017]).

=
//ﬁ&
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In the previous example, the pre-discontinuity set has full measure in the Riemann sphere.
In the following example, we construct a PCM with pre-discontinuity set having full measure

but being different from the Riemann sphere.

EXAMPLE. Let be Ry =D, , Ry = D, and
F the PCM defined with f;(z) = %z in R;and
f2(z) = 2z in Ry. Analogously to the previous
example, it can be shown that Area(B(F)) > 0

and is clear that B(F) # C.

In the figure at right, it is shown the drawing —

of an approximation of B(F'). Image generated
with the software Imagi (see [Ler2017]).

From previous examples, we have cases of pre-discontinuity sets with non-empty interiors.
However, the a-limit sets always has an empty interior.

THEOREM 2.20. Let F' a PCM, then a(QF) = (. (See the proof at page 105).

REMARK. Since the a-limit set concentrates the conservative but repelling dynamics of PCMs,
this result is analogous to those about dynamics of holomorphic rational maps (see Theorem 1.10)
and kleinian groups (Theorem 6.6). The sets where such conservative and repelling behavior is

present, always have empty interior, when it is not the entire Riemann sphere.

In the following tables, we resume the results presented in the current section and its corre-
sponding analogies with discrete holomorphic dynamics and kleinian groups theories, to build the

extended Sullivan dictionary.
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CHAPTER 3
Stability

Stability is a central topic in dynamical systems related to families and spaces of transforma-
tions, ranging from the preservation of some properties under perturbation of family parameters to
topological conjugacy (and then dynamical equivalency) between neighboring elements of a trans-

formation.

First, we review the notions of J-stability and structural stability for rational maps on the
Riemann sphere and its relation with the properties of being expanding or hyperbolic. Also recall
the important definition of holomorphic motion and its quasi-conformal extension, to create conju-

gations between rational maps.

After we explore stability in PCMs, beginning with continuous deformation of the discontinuity
set but fixing the component functions and after perturbation at special sets of component functions
but fixing the boundary set. We show results at both fixtures. Posteriorly we develop the theory

heading to the structural stability of PCMs and we present theorems and some conjectures about it.

3.1. Stability in rational maps

In this section, we make a short review of the stability of rational maps on the Riemann sphere
and its relation with the concept of hyperbolicity, which head us to the most wanted conjecture in
the area of discrete holomorphic dynamics. For a complete survey on the stability of rational maps
is very recommended [McM1994, McM1996, McM2018].

First, Let us define a kind of stability in families of rational maps. For the rest of this section,

let be X a connected complex manifold.

~

A family of maps {fA : ((AZO})\ . (parametrized by A € X) with f\ € Rat(C) and the map
€

XxC—=C given by (A, z) — fi(z) holomorphic, is a holomorphic family of rational maps on

the Riemann Sphere. The stability that we are looking for rest on the next definition and theorem.

70
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DEFINITION. Let A C C and Ao € X. A holomorphic motion of the set A parametrized by
(X, o) is a family of injections {cpA A — (E})\ 0 such that A — @y (a) is holomorphic on A for
€

each a € A and ), is the identity on A.

THEOREM 3.1  (The A-Lemma, Slodkowski). A holomorphic — motion  of
A C C has a unique extension to a holomorphic motion of A. The extended holomorphic mo-
tion gives a continuous map ¢ : X x A — C. For each \ € X, the map z — ¢(\,z) on A extends

to a quasiconformal homeomorphism on C.

See [McM1994, McM2018, Sul1985b, SulThu1986] for a detailed treatment of this topics.

In relation to holomorphic families of rational maps and its Julia sets, we have the next

DEFINITION. Given a holomorphic family of rational maps {f,\ : ((AIO} , the Julia sets
reX

J(fr) moves holomorphically if there are a holomorphic motion

{e2:9(h) = T} such that o3 (7 (f,)) = T (/3) and

AeX
©x 0 faolg(frg) = froen

The Julia sets J(fx) moves holomorphically at Ao if they moves holomorphically at some neigh-
borhood N, C X.

The property of Julia sets moving holomorphically at A\g has several characterizations, as
is established in the following

THEOREM 3.2. Let {fA : ((A:O})\ . a holomorphic family of rational maps and Ny € X.
€

Then the following conditions are equivalent:

1. The number of attracting cycles of fx is locally constant at \g.

2. The mazimum period of an attracting cycle of fx is locally bounded at \g.

3. For all X\ in a small neighborhood N, , every periodic point of fx is attracting, repelling or
persistently indifferent.

4. The Julia sets J(fx) depends continuously on A, in the Hausdorff topology, in a neigh-
borhood Ny, .

5. The Julia sets J(f\) moves holomorphically at \o.

REMARK. A periodic point z of fy, of period n is persistently indifferent if there is a neighbor-
hood N, C X and a holomorphic map w : N, — C such that w(Ao) = 2, f{(w(N)) = w(N) and
[(f3) (w(N)] =1, for all X € Ny, .

REMARK. The proof of Theorem 3.2 is based on extending (using Theorem 3.1) the holomor-
phic motion of repelling periodic points to the corresponding Julia set, because the repelling
periodic points are dense in the Julia set (Theorem 1.4). See [McM1994] for detailed proof.
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From previous definitions and results, we can establish the following

DEFINITION. A rational map fy, of a holomorphic family of rational maps {f,\ : @O} is
rex
J-stable if any of the conditions in Theorem 3.2 hold. The set of parameters A € X where f) is

J-stable is called the stable regime of the family, and denoted Xstable,

REMARK. The notion of J-stability basically is the preservation of dynamics along Xstable

through topological conjugacy of maps f\ only on the corresponding Julia sets, because of the
very definition of J(f) moving holomorphically.

The J-stability property is practically ubiquitous in the parameters set X, as is inferred from

the next

THEOREM 3.3. The set X*%*P1° of any holomorphic family of rational maps is open and dense
mn X.

For the preservation of dynamics along X between maps in the whole @, is established the
following

DEFINITION. A rational map fy, of a holomorphic family of rational maps {fA : @O})\ is

€ex
structurally stable if exists a neighborhood Ny, C X such that every map f\ from A\ € N, is
topologically conjugated with f,,. The set of parameters A € X where f) is structurally stable

is called the topologically stable parameters set, and denoted X*°P°.

A structurally stable map is J-stable, as is stated in this
THEOREM 3.4. XtopPo ¢ Xstable g1 any holomorphic family of rational maps.

REMARK. J-stability and structural stability are not equivalents: for example, the map
go(z) = 2? is J-stable but is not structurally stable.

However, structurally stability is also open and dense in its parameter space.

THEOREM 3.5. The set X*°P° of any holomorphic family of rational maps is open and dense
m X.

~

Since Raty(C) is a complex manifold, we have the next

COROLLARY 3.6. The set of structurally stable rational maps of degree d is open and dense

~

in Ratq(C).
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A very important set to understand the dynamics and stability of a rational map f, is the
post-critical set, defined as
PCrit(f) = | £ (Crit(f))
n>0
where Crit(f) is the set of critical points of f. The set PCrit(f) results to be the smallest closed

set containing the critical values of f™ for every n > 0. The post-critical set is completely tied to

attracting and indifferent dynamics, as described in the following

~

THEOREM 3.7. Let f € Rat(C), then the post-critical set PCrit(f) contains all attracting cycles,
all indifferent cycles laying in the Julia set, and the boundaries (always contained in the Julia

set) of all Siegel discs and Herman rings.

Other notions closely related to stability are those of hyperbolic and expanding rational maps.

First, Let us enunciate a result about critical points and the post-critical set.

~

THEOREM 3.8. Let f € Raty(C) with d > 2. Then the following conditions are equivalent:
o The post-critical set PCrit(f) is disjoint from the Julia set J(f).

e There are no critical points or indifferent cycles in the Julia set J(f).

e Every critical point tends to an attracting cycle under the iterates of f.
DEFINITION. A rational map f is hyperbolic if any of the conditions in Theorem 3.8 hold.

REMARK. The dynamic of a hyperbolic rational map f is completely dominated by the re-
pelling periodic points in the Julia set J(f) and the attracting periodic points in the Fatou set
F(f), since f has no indifferent periodic points because the Theorem 3.8 and Theorem 3.7.

Expanding maps, as the name implies, presents an expansive behavior in its Julia sets (where

the repelling periodic points are concentrated).

DEFINITION. A rational map [ is expanding if exists N > 0 such that
[(fV)(2)]s > 1 (where | - |5 is the spherical norm) for all z € J(f).

Hyperbolic and expanding adjectives are interchangeable for rational maps because the following

THEOREM 3.9. A rational map is hyperbolic if and only if is expanding.

For families of rational maps, analogous to the stable regime and topologically stable parameters

set, a hyperbolic parameter set can be established.

DEFINITION. Let {fA : @O} a holomorphic family of rational maps. The set of pa-
reXx

rameters A € X where fy is hyperbolic is called the hyperbolic parameters set and denoted XPP.
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Hyperbolicity is related to stability by means of the following
THEOREM 3.10. Hyperbolic rational maps are structurally stable (and then also J-stable).

COROLLARY 3.11. For a holomorphic family of rational maps {f,\:(/(\fO}

thp C Xtopo C Xstable'

rex’

Finally, we state the most wanted conjecture in discrete holomorphic dynamics.

CONJECTURE. Structurally stable rational maps are hyperbolic.

As corollaries, it can be established the next

CONJECTURE.
e Hyperbolic rational maps are dense in the parameter space of any holomorphic family of
rational maps.

~

o Hyperbolic rational maps of degree d are dense in Ratq(C).

~

e Hyperbolic rational maps are dense in Rat(C).

3.2. parameter space of PCMs

The parameter space of PCMs F = ({R;.c}ii1 , {fk}le) depends on the maps
F|r, = fr € PSL(2,C) and the elements Ry of the partition in C. For the partition, it is enough
to consider the space of discontinuity sets B = Uszl ORj; as compact subsets of C. So, we can

establish the following

DEFINITION. The parameter space of PCMs over a partition of Cin K >1 parts is

K times

~

XPCM,K = PSL(Q,(C) X X PSL(Q,(C) XPK(C)

with the product topology, where PK(@) is the space of discontinuity sets which associated

partitions of C has K parts.

REMARK. Pg(C) C H(C) for all K > 1. Recall that H(C) is the space of non-empty com-
pact subsets of C with the Hausdorff topology.

In the following sections, we explore the stability of PCMs through different fixtures of defor-

mations in the parameter space Xpcw, k-



3.3. CONTINUOUS DEFORMATIONS OF THE DISCONTINUITY SET OF PCMS 75

3.3. Continuous deformations of the discontinuity set of PCMs

In order to be clear, along this section we consider the PCM F' to be defined in only two
simply connected regions R; and R, being the discontinuity set B = B(F) = 0R; = OR» one
simple closed curve. Let f; = F|g, and fo = F|g,. To begin, let us fix f; and fo, and perturb B
continuously to obtain B’. Now, B’ bounds two regions homeomorphic to discs R} and R/ and we
define F' by F'|p: = f1, F'|r, = fo. Notice that the associated groups I'r = T'p: = (f1, f2),
because f1 and fo have been fixed.

In this case, the restricted space of parameters is

P2(C) 2 {f1} x {f2} x P2(C) C Xpcm,z-

Note that Ps (@) is the subspace of ’H(@) consisting of all compact subsets of the sphere homeo-

morphic to a circle.

Observe that for fixed fi, fo,..., fx € PSL(2,C), and each N € N, there are natural maps
Upn PK((E) — ’H(@) that assign to B the Nth pre-discontinuity set By(F), and

~ ~

Ur : Pg(C) — H(C) the mapping from B to the pre-discontinuity set B(F).

Continuous deformations of the discontinuity set B carry continuous deformations of By (F'),

as is stated in this

~

THEOREM 3.12. For a fized pair f1, fo in PSL(2,C), the map Y n is continuous in H(C), for
each N € N. (See the proof at page 112 and see [Ler2005, LerSie2019].)

EXAMPLE. Let
iz ifze R
F(z) = '
i(l—2) ifz€ Ry
where Ry = Dy, and Ry = ﬁw,r. The discontinuity set B = Ry = ORy will be continuously
deformed simply by modifying the centers w or the radius r. In the following figures (generated
with the software Imagi, see [Ler2017]) it is drawn the 5th pre-discontinuity sets of F.
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w=—045,r=1. w = —0.540.05¢, r = 1. w = —0.55, r =1.

~ C ~

~

As expected, all this sets B5(F) are very close in 7(C), by continuity of the map ¥g5. In the
other hand, each map ({R1, R2}, {z — iz, z — i(1 — 2)}) has very dissimilar dynamics, because the
appearing (or disappearing) and merging (or fragmenting) of components in the 5-conformality

partition.

Additionally, if the discontinuity set B the is not intersected by the limit set of the associated
group I'r = (f1, f2), then continuous deformations of B carry continuous deformations of B(F).

THEOREM 3.13. For a fized pair fi,fo in PSL(2,C), if Ap # C and

~

BN Ar = 0, then the map ¥ is continuous in H(C). (See the proof at page 113 and see
[Ler2005, LerSie2019].)

REMARK. Note that Ap # C if and only if I' is a discontinuous group.
EXAMPLE. Let

fi(z) ifze Ry

fo(z) ifz€ Ry

where f1(z) = _(Zl;l—m and fo(z) = %

F(z) =
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The associated group I'r = <f1, f2> is fuchsian and Ap = S*.

Ry =D_q,. In the present figures, it is drawn the pre-

discontinuity sets in black and Ap in white.

Notice that small perturbations on the discon-
tinuity set B = 0R; = OR, produce big dif-
ferences in the dynamics of the corresponding
PCM, because of the lack of continuity of the
function ¥ caused by BN Ag # 0.

Ri=D_y5 ., with0<e< 1. Ri=D_15.., with0<e< 1.

Images generated with the software Imagi (see [Ler2017]).

~

The hypothesis BN Ar = () in Theorem 3.13 prevents the propagation of the instability of Ap
carried by F~"(B) along B(F), and then the continuity of deformations of B(F') under deformations
of B allows certain stability of F'. However, structural stability is not guaranteed as will be shown

in the following example.



3.3. CONTINUOUS DEFORMATIONS OF THE DISCONTINUITY SET OF PCMS 78

EXAMPLE. Let us use the PCM of the previous example:

(144)z+i .

Fz) = g )| if z€ Ry
14i)z—1 .
G ffzeR,

with fuchsian associated group I'r and Ap = S*.

In the following figures, it is drawn the pre-discontinuity sets in black and Ag in white.
Notice that small perturbations on the discontinuity set B = 0R; = 0Ro produce differences in
the dynamics of the corresponding PCM by the emergence of new regular components, even

~

though BN Ap = 0 and then the function ¥ is continuous in H(C).

Ri =Dy, with 0 <e < 1.
| i

Images generated with the software Imagi (see [Ler2017]).

~
Previous theorems can be generalized to discontinuity set spaces ’PK(@) with K > 2. But
the deformations in this space must be restricted to relative classes of compatible discontinuity sets.

Such compatibility can be determined by the following rules:

o Each part Ry of the partition must preserve the same connectivity under deformations.

e The corresponding relation by boundaries between parts Rj; must be preserved under de-
formations.

o And of course, can not be created new parts or destroyed parts Ry, because the deformations

~

are restricted to space Pg (C).

In this way, classes of compatible discontinuity sets that determine K parts in C correspond to

~

disjoint components in the space Pg (C).
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ExAMPLE. With K = 3, we have three classes of discontinuity sets. In the figures are colored
R; in blue, R, in red, and Rj3 in yellow.

o All the parts R;, Ry and Rjs are sim-
ply connected and they have curves as

boundaries with each other.

e Parts R; and R, are simply connected
and their boundaries intersect at only
one point. Rj is simply connected and
has a “boundary with itself” in the same
boundary point.

e Parts R; and R, are simply connected
and do not share boundaries. R3 is 2-

connected.

3.4. Perturbations of component transformations of PCMs

In this section, we will investigate the stability of all PCMs fixing the discontinuity set B
and perturbing the component functions. Then, the corresponding parameter space in this fixture
is PSL(2,C)K =~ PSL(2,C)X x {B} C Xpom k-

Now, we can establish the next

DerINITION. A PCM F = {{Rk}kK:1 , {fk}le} is  structurally stable in
PSL(2,C)X if exists a neighborhood Ntsronfi) C PSL(2,C)X such that for every element
(915 --19K) € Nisy,.... 1) €xists a homeomorphism A : C — C such that ho F' = Goh in the confor-
mality region R(F), and the discontinuity set is h-invariant (that is
B(G) = h(B(F)) ), where G is the corresponding PCM {{Rk}szl , {gk}le}.
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Since the parameter space is PSL(2,C)¥, it is natural to expect that the corresponding PCM
is structurally stable if its associated group is structurally stable and if the discontinuity

set avoids the corresponding limit set, by the results of the previous Section 3.3.

The following result can ensure structural stability on the particular class of PCMs which
have a Schottky group as associated group, which are well known to be structurally stable.

See Appendix: Kleinian groups for more details about these groups.

THEOREM 3.14. Let F' a PCM such that T'r is a Schottky group and B(F) C R, where R
is a fundamental region of T, then F is structurally stable in PSL(2,C)X. (See the proof
at page 116 and see [Ler2005, LerSie2019] for a demonstration in the case K = 2.)

EXAMPLE. Let

filz) ifzeD;y

fa(z) ifze Dy

where fi(z) = f;fl, fa(z) = _Z)\;j‘_l and |A| € (0,1). The associated group I'r, = (f1, f2) is a
Schottky group. The parameters A can be taken in such a way that a fundamental region of

Fy(z) =

I'r, always contains B = 8Di7%.

In the following images, it is drawn in color approximations of the pre-discontinuity sets of
F with different, but close, A. The a-limit sets are highlighted in red. Notice that a(F)\) C Ap,
because BNAp, = 0 (see Theorem 2.13), and recall that A, is a Cantor set since I'g, is a Schottky
group.

With A = 2. With A= 2 —ei, 0 <e < 1.

(HICh P s

@
1
i G

Images generated with the software Imagi (see [Ler2017]).

~o
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The previous theorem is actually a corollary of the following

THEOREM 3.15. Let F' a PCM such that T'r is a structurally stable kleinian group

and B(F) C R, where R is a fundamental region of I'r, then F is structurally stable in
PSL(2,C)X. (See the proof at page 115.)

REMARK. The Schottky groups are structurally stable groups. See Appendix: Kleinian
groups for a brief review of these groups.

Indeed, the structural stability of PCMs can be obtained using several strong hypotheses,

but without any additional requirement over the associated group.

Turorey 316, Let F = {{R}[", (/iy} o POM such that

1. each component transformation fi is loxodromic,
2. each periodic regular component is a timmediate basin of attraction,
3. for each k
W) £ (BF) O Ry = §7 (B(F)),
b) £ "(B(F))N Ry = f;,"(B;) for some connected component B; of B(F), or
&) f7 (B(F) N Re = 0.
4. for all m > 0 and for each connected component C; of F~™(B(F)),
F™(C;) = ~(C;) = By for some connected component B; of B(F) and v a Mébius trans-

formation,

then F is structurally stable in PSL(2,C)X. (See the proof at page 117.)

EXAMPLE. Let
fiz) ifz € Dy

fa(z) ifze Bo,

[S[¥)

F(z) =

[S[%)

where f1(z) = % and f(z) = gi?l:; f1 and fs are parabolic transformations, but they

can be slightly perturbed to become loxodromic transformations.

In the following images, are drawn in black approximations of the pre-discontinuity sets of
perturbations of F'. The perturbations are made in such a way that the hypotheses of the Theorem
3.16 are fulfilled. All these PCMs have the following dynamic characteristics:

o B(F) is formed by the union of an infinite number of disjoint circles.
e They have a single attracting fixed point and a single repelling fixed point, both colored in
red.
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e They have a unique immediate basin of attraction: the exterior of the discs which
boundaries form B(F).

e The regular components which are interior of the disc forming B(F'), are pre-periodic.

. _ (1+1)2+1.02i . _(14i)2+0.0140.99i
With f1(z) = “Tosia+(ip and With fi(z) = ~(0.0170.09)z1(1—p and

folz) = 51(;;?;—(1133; falz) = LHi)z=0.0140.90;

= (0.01+0.99)iz+(1—0)

With fl(z) = L0 and With f (2) = LS and
_ (0.84i)z—i _(1.144)240.1—i
= Tz (1—0) ¢ = (50.1+9)2+(0.9—%)

Of-¢

Images generated with the software Imagi (see [Ler2017]).
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3.5. B-Stability

Before the study of general structural stability of PCMs, Let us define and analyze a kind

of stability analogous to the J-stability of rational maps.

First, Let us define holomorphic families of PCMs, where the corresponding parameter space

necessarily is a complex manifold.

DEFINITION. A family of PCMs {FH’)\ : @O} parametrized by

(LA)EY x X
(1, A) €Y x X where Y and X € PSL(2,C)¥ are complex manifolds, is a holomorphic family if

o Exists a holomorphic motion of the discontinuity set

B(F),,») € Pk(C), parametrized by (Y, j19) over the discontinuity sets of F},
e The map Y x X x R(F, x) = R(Fy,), given by (i, A, z) — F}, z(2) is holomorphic.

REMARK. Recall that R(F), ) is the region of conformality of F), x, where the PCM is
defined.

In an analogous way to how the holomorphic motion of Julia sets was defined, it can be defined
to the pre-discontinuity sets of PCMs.

DEFINITION. Given a holomorphic family of PCMs {FH,)\:@O}( Y xx’ the
HA)EY X

pre-discontinuity sets B(F), x) moves holomorphically if there are a holomorphic motion

{@u,A tB(Fugn,) — (/C\}

(N EY XX
such that
Pux (B(Fugng)) = B(Fpux),
Pux © Fruo 20l B(Fug xg) = B(Fuging) = Fitd © Pul By ag)~B(Fug rg)
and

Pua(B(Fugne)) = B(Fpun).
The pre-discontinuity sets B(F), ») moves holomorphically at (110, Ao) if they move holomorphi-
cally at some neighborhood Muo,Ao) cCY x X.

REMARK. Note that the holomorphic motion ¢, x can not respect the dynamics in the entire
set B(F}, ), because of the undefinition of F),  on B(F), »).

Now, it can be defined the concept of B-stability.

DEFINITION. A PCMs F' is B-stable if exists a holomorphic motion of B(F').
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A PCM can be B-stable but not be structurally stable, as shown below.
EXAMPLE. Let
filz) ifze Ry
fo(z) ifze Ry

where f1(z) = SIS, folz) = S5, Ry = D,y and Ry = D, 1, with (,\) € Dy 2 x D; 1

. Clearly F), ) is a holomorphic family of PCMs.

FM,A(Z) =

Approximations of the pre-discontinuity sets of F}, \ are drawn in black in the following
images. B(F},;) moves holomorphically, but Fy,; and F), » are not conjugated, for (x, \) as close
as it like to (0,14).

With = 0 and A = 4, Fy; has a unique fixed With p~ 0and A = 4, F}, x has two fixed points,
point z = 1, which is parabolic. one attracting and the other repelling.

Images generated with the software Imagi (see [Ler2017]).
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A consequence of the previous definitions is the next
THEOREM 3.17. If a PCM F is B-stable, then ezists a holomorphic motion
{our:aF) - €}

such that o, \ ((F)) = a(Fy ) and

(LA ENCY x X

©ux© Flary = Fux o 0uala(r)
(See the proof at page 118.)
REMARK. This theorem can be interpreted in the following way: B-stability implies structural

stability in the a-limit set, because the corresponding holomorphic motion respects the dynamics

on the a-limit set.
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As usual, the concept of B-stability in the whole parameter space of PCMs is the B-structural
stability.

DEFINITION. A PCM F is B-structurally stable if exists a holomorphic motion of B(F),
parametrized by elements of a neighborhood Nr C Xpconr k-

REMARK. Let us see that the components of Px are complex manifolds. For K = 2, there
is a unique component and Py C Teich(D) x Teich(D), where each element B € Py is given
by the corresponding pair (D, E), where D is homeomorphic to an open disc, E = C - D, and
B = 0D = 0FE. In general, Px C Teich(S1) x Teich(S3) X --+ x Teich(Sk), where Sy are the
Riemann surfaces corresponding to the parts Ry such that | JORy € Pk.

Recall that Teich(S) is the Teichmiiller space of the Riemann surface S, that results be, in
the case of hyperbolic surfaces, a complex manifold. In this way, Xpon g = Pr x PSL(2,C)X is
a complex manifold, because the surfaces determined by Py are hyperbolic since they are domains

in C simply or multiplely connected.

It can be conjectured the corresponding result for PCMs analogous to Theorem 3.2.

CONJECTURE. Let {F#A:@O} a holomorphic family of PCMs and
(1 A)EY X X

(o, Ao) € Y x X. If Fj, \ has not ghost-periodic points and the pre-discontinuity sets B(F), )
move holomorphically at (po, Ao), then

1. The number of attracting cycles of F, x is locally constant at (f10, Xo)-

2. The mazimum period of an attracting cycle of F, x is locally bounded at (10, \o)-

3. For all (u, \) in a small neighborhood J\/(M’)\o), every periodic point of F), x s altracting,
repelling or persistently indifferent.

4. The pre-discontinuity sets B(F), x) depends continuously on (u, ), in the Hausdorff
topology, in a neighborhood N, »)-

REMARK. Note that this conjecture does not establish equivalences (unlike the Theorem 3.2).

The reasons are the following:

e Incises (1) and (2) do not imply a holomorphic motion of B(F, ). For example, in
picewise rotations, (1) and (2) hold because there are non attracting periodic points,
but B(F), ») can not move holomorphically since a(F), ») = ) for rational rotations and
a(F), ») # 0 for irrational rotations.

o Holomorphic families F, x may have the feature from incise (3), but at the same time, under
variation of (p, A), the corresponding regular sets R(F), ) can present the appearance or

disappearance of components, and then B(F), ») does not moving holomorphically.
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o Incise (4) also does not imply the holomorphic motion of B(F), »), as is shown in an example

in Section 3.3, because of the appearance or disappearance of components in R(F}, ).

REMARK. The hypothesis about avoiding the existence of ghost-periodic points is inevitable

since ghosts-periodic points can be converted to attracting or parabolic periodic points.

3.6. Hyperbolic and expanding PCMs

Hyperbolic and structurally stable maps are closely related in the case of rational maps, as
reviewed in Section 3.1. In this section, we define and investigate the notions of hyperbolic and

expanding PCMs, in order to find relations with structural stability.

Hyperbolic rational maps on C has non indifferent periodic points (see Theorem 3.8 and
Theorem 3.7). The equivalent notion for PCMs can be defined.

DEFINITION. A PCM F is hyperbolic if Per(F) # 0,
Per(F) = Pery (F') U Peryep (F') and Perghost (F) = 0.

REMARK. The condition Per(F) # () is needed because exists PCMs without periodic points.
For example, the map in which every regular component is wandering examined in Section 2.4.
In such cases, Per(F') = Pery, (F) U Peryep (F) but indeed Per(F) = 0.

For hyperbolic rational maps on @, the dynamic behavior can be linked with some conditions
over the post-critical set. PCMs has no critical points, however, the dynamic behavior can be

related with the w-limit set.

THEOREM 3.18. Let F a PCM. Then the following conditions are equivalent:
1. F is hyperbolic.
2. w(F) = Pery, (F) and Per(F) # 0.
(See the proof at page 109.)

REMARK. Note that if F' is a hyperbolic PCM, because the Theorem 3.18 incise (2), then
each periodic regular component is an immediate basin of attraction. Also w(F)NB(F) = 0,

because there are not parabolic and ghost-periodic points.

Contrary to the conjectured equivalence between being hyperbolic and structurally stable in ra-
tional maps on the Riemann sphere, for PCMs can be constructed hyperbolic but no structurally

stable maps.
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EXAMPLE. Let
fl(Z) le S Dl,l

fQ(Z) ifze 3171

where fi1(z) = Az + A and fa(z) = 6’:—1‘25\1. f1 and f, are both loxodromic when 0 < |A| < 1.

F)\(Z) =

Let \p = % Then, exists a neighborhood N, C C such that f; and fo are loxodromic. The
fixed points of f; are z, = ﬁ (attracting) and oo (repelling), and the fixed points of f5 are always
i (attracting) and —: (repelling). Then, it can be adjusted the neighborhood N, in such a way
that z) € Dy for all A € NV,,. Therefore, D; ; must contain an immediate basin of attraction
for the fixed point zx. Even more, for all A € N, we have i, —i € ﬁm, causing that 13171 contain

an immediate basin of attraction for the fixed point ¢ and that —i € a(F).

For each all A € NV, let Ay the immediate basin of attraction of zy, Uy = UnZO F~™(A))
and V), = R(F) — Ux. Then, F"(2) Y for all z € Uy and F™(z2) = i for all z € V.
Therefore, F\ has only three periodic points, all of them fixed: z), i and —i. Furthermore, these

fixed points are attracting or repelling, so F) is hyperbolic.

On the other hand, varying A inside N, it can be found maps such that the immediate
basin of attraction of z, is exactly D 1, and maps such that D; ; contains several regular com-
ponents. Obviously, these maps can not be conjugated. Then, exists parameters X' € N, where

the mentioned bifurcation occurs and therefore F is not structurally stable in Ny, C N, .

In the following figures are drawn in black approximations of the pre-discontinuity sets of
F), and in red the attracting fixed points z) € D; 1 and 4, and the repelling fixed point —i € a(F).
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With A = § —0.223i. D;; is the immediate With A = § — (0223 +€)i, 0 < ¢ < 1. D1

basin of attraction of z). contains several regular components.

[t

Images generated with the software Imagi (see [Ler2017]).
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For PCM s there is an analogous definition to expanding rational maps, but using points in

the pre-discontinuity set where iterations of the map are always defined and also differentiable.

DEFINITION. A PCM F is ezpanding if exists N > 1 such that [(FV)'(2)|s > 1 (where | - |4 is
the spherical norm) for all z € o(F).

In contraposition to rational maps on the Riemann sphere, the characteristics of being hyper-

bolic and expanding are not equivalent for PCMs, as it is shown in the following examples.

ExaMmpLE. Exists hyperbolic but non-expanding PCMs, because there is no incompatibil-
ity between being hyperbolic and the existence of forward invariant subsets A C «(F) such that

F| 4 is conjugated with an irrational rotation.

For the PCM

2z ifze D071
Flo=1{

3% if z € DO,l

has been proven that F|[ 2 9) is topologically conjugated with an irrational rotation in S' and F

behaves the same in all rays from 0 to oo (see this example in Section 2.4).
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Therefore, for all z € {z € C| 2 < |z| <2} Na(F) can not exist N > 0 such that [FY(z)|, > 1

since F|o(.,r) is conjugated with an irrational rotation on an orbit subset of St.

On the other hand, Per(F) = Fix(F) = {0,00} and both fixed points are repelling, then F' is
hyperbolic.

ExaMPLE. Exists expanding but no-hyperbolic PCMs, because there is no incompatibility

between being expanding and having elliptic, identical, and ghost-periodic points.

Let

e3miy ifze Dy
’2

F(z) = , R
%e%m(l —z) ifze€ Dy

Dy1 is a rotation domain where 0 is an
12

elliptic fixed point, and zy = where

A
10,275 s ; .
A = e3™ is a repelling fixed point. Indeed,

a(F) = {z0}-
Clearly F' is expanding but no hyperbolic.

Image generated with the software Imagi (see
[Ler2017]).

As has been exposed, there is an inequivalence between hyperbolic and expanding notions for
PCMs, then can not be studied as a single concept. The possibility of generating drastic changes
in the regular set by perturbations of hyperbolic maps, makes impossible an equivalence of
this notion with structural stability. Finally, the compatibility between the existence of elliptic,
identical, and ghost-periodic points and the property of being expanding, implies that such maps

are not necessarily structurally stable.
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3.7. Structural stability of PCMs

Let us analyze in detail what implies the topological conjugation between PCMs. Obviously,
such transformations must be conjugated in their corresponding dynamics domains, but also a re-

lation between the discontinuity sets, where the transformations are undefined, is needed.

Let F = ({Rk}szl ,{fk}le) and G = ({R;g}szl,{gk}szl) PCMs topologically conjugated,
that is, exists a homeomorphism A in C such that ho F = Goh in the region of conformality
R(F), that is, the following diagram commutes:

rR(F) 5 C
Lh Lh
RG) % C

And clearly, the discontinuity sets must be related by h(B(F)) = B(G).
If z € Ry then ho F(z) = ho fy(2) = G o h(z), that is h(z) € R}, for some k' and then
ho fi|lr, = g © h|g,- On the other hand, if h=!(z) € R}, then
ho F(h™'(2)) = ho fi(h™'(2)) = Go h(h™'(2)) = G(2),
that is z € R}, for some k’. It can be concluded that the corresponding regions are associated

directly: R}, = h(Ry) (possibly re-indexing).

Easily can be calculated

G (B(@Q) = G- (W(B(F

|
C
e
=
&
3

Il
=
—
B!
L

Applying this identity recursively and the definitions of pre-discontinuity set and regular
set, we have B(G) = h(B(F')) and R(G) = h(R(F)).

Thus, the definition of structural stability for PCMs remains unmodified: A PCM F =
({Rk}szl , {fk},iil) is structurally stable if exists a neighborhood N C Xpcoar k such that for all
G € Ny, F is topologically conjugated with G.
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As is expected, the analogous result for rational maps is also true for PCMs.

THEOREM 3.19. Let F a structurally stable PCM, then is B-structurally stable. (See the
proof at page 119.)

For rational maps, hyperbolic (or expanding) maps are structurally stable (see Theorem

3.10). For PCMs, this is not the case as it has been reviewed in the previous Section 3.6.

On the other hand, we have the following
CONJECTURE. Let I a structurally stable PCM , then is hyperbolic and expanding.

REMARK. Clearly, a structurally stable PCM can not have parabolic, elliptic, or identical
periodic points, neither ghost-periodic points, because under perturbations can be converted to
attracting or repelling points. The difficulty to prove the previous conjecture is the case of PCMs
without periodic points, where every regular component is wandering, the pre-discontinuity set is
dense in the sphere, or with wandering components and which pre-discontinuity set is dense in some

region with positive area.

In the direction of the previous conjecture, it can be proven the next

THEOREM 3.20. Let F' a structurally stable PCM without wandering domains, then is hy-
perbolic. (See the proof at page 119.)

Finally, to be guaranteed structural stability, several conditions are needed.

THEOREM 3.21. Let F a PCM. If

1. each component transformation fi is loxodromic,
2. F is hyperbolic and expanding, and
3. F is B-structurally stable,

then is structurally stable. (See the proof at page 120.)

Based in experimental evidence, the equivalence between structural stability and the condi-

tions of the previous theorem seems true.

CONJECTURE. F' is a structurally stable PCM then each component transformation fj is

loxodromic, F is hyperbolic, F is expanding and F is B-structurally stable.
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3.8. The complex tent maps family

To finalize the analysis of the stability of PCMs, applications of previous results to the complex

version of the well-known family of tent maps in R will be shown.

DEFINITION. The family of complex tent maps

{TB)\ : @O}
BePy, \eC—{0}

is defined by
fi(z) ifze Ry
fa(z) ifz € Ry,
where fi(2) = Az, fo(2) = A — Az, B=0R; = OR; and € B.

TB’)\(Z) =

REMARK. The condition % € B is required to have similar behavior to the real case:
f1(3) = f2(3) = AL. Nevertheless, T\ can not be extended to a continuous function in every

neighborhood Ny.

Let us list several facts about this family of maps.

e Clearly, is a holomorphic family of PCMs.

e The fixed points fo f; are 0 and co. The fixed points of fy are z\ = %H and oco. Then,
Fix(Tp,x) = ({0,00} N R1) U ({zx, 00} N Ry).

o If [A\] < 1, then f; and f, are affine contractions in C. Therefore for almost every A € D, all
points in R(F) tend to an attracting or a ghost periodic orbit (see Theorem 1.23). Also,
it can be shown that if B C C, a(Tp,») = {00} (see [Ler2016]).

o If |A| =1, then f; and fo are euclidean isometries. If B C C, then every point in R(F') is
periodic or pre-periodic (see Proposition 2.18).

e If A\ =1, then f; = Id|g, and f5 is a euclidean rotation. If A = —1, then f; is a euclidean
rotation and f> is a translation. In any case, every point in R(F’) is periodic or pre-periodic
(see [Ler2016]).

o If [\| > 1 and B C C, then oo is an attracting fixed point of T ».
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The global behavior of the orbits can be determined with parameters such that |A| # 1 (see
[Ler2016]).
THEOREM 3.22.

o If |\| < 1, Tpx is globally attracting, that is, exists r € (0,00) such that if
z € D(T'p,\) — {oc}, then exists N € N such that T y(2) € Do, for allmn > N.
o If|A| > 1, T x is globally repelling, that is, exists r € (0,00) such that if z ¢ Do, ND(Tp.»),

then nl;n;OTB’A(z) = 00.

Notice that for parameters such that |A\] # 1, f; and f, are loxodromic and
Fix(f1) NFix(f2) = {oo}, then, by Proposition 6.5, the associated group I'r, | = <f1, f2> is not

discrete. Likewise, when \ = 27

with 6 an irrational number, by Proposition 6.4, I'r, , = <f1, f2>
is not discrete. In any case, we have Ar, , = C and can not be applied the results about stability

related to discontinuous groups or structurally stable kleinian groups.

However, it can be found structural stability in the family with the following conditions:

1. Parameter |A| # 1.

2. Bounded discontinuity set, that is B C C.

3. Finite fixed points (0 and z)) of f; and f5 such that they are not in B.

4. Pre-discontinuity set formed exclusively by homeomorphic copies of B and the corre-
sponding a-limit set. This can be achieved by taking A\ with a sufficiently big or small

modulus.

Then, we have

e By (1), f1 and f5 are loxodromic.

e Tz » has no ghost-fixed points, because 00,0, z) ¢ B by incises (2) and (3).

e 00 is an attracting or repelling fixed point of Tz x, by (1) and (2).

e By (1) and (4), T A(R1) C Ry and T A (R2) D Re or Tp x(R1) D Ry and T A (R2) C Ro.
Then, every point in «(7'p,)) is repelling periodic or pre-periodic. Also, every point in
R(Tp,») is attracted to oo (when |A| > 1), or to 0 or z) (when |A| < 1). Therefore, T ) is
hyperbolic and expanding.

Using Theorem 3.16, a PCM T}, fulfilling (1), (2), (3), and (4) is structurally stable in
PSL(2,C)%, and then is also a stable family for such parameters. Clearly, it can be constructed
a holomorphic motion for each B(Tz, ), and then, by Theorem 3.21, all these T 5 are struc-

turally stable.
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ExXAMPLE. The pre-discontinuity sets of Tp y with Ry = D7%’1 are drawn in black in
the following figures. The gradient of color indicates the proximity of repelling periodic points in
OZ(TB)\).

With A = Z. With A = 2 + 2i.

-

With A = 214, With X = —2 4 2i.

Images generated with the software Imagi (see [Ler2017]).
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To finalize this analysis of the complex tent maps family, let us enunciate the former Ingram
conjecture about the real tent maps family (see [BarEtAl2012]), and a conjecture with examples

for the complex tent map family.

THEOREM (Barge, Bruin & Stimac). Let {T : [0,1]D}, (g o) the real tent map family. Then,
for distinct a,b € [1,2] T, and Ty, are not topologically conjugated.

By the previous theorem and the inherent discontinuity of PCMs propagated along the pre-
discontinuity sets, we have the next
CONJECTURE. Let {TB’A : (EO} the complex tent map family, then exists a closed
BePy, AeC—{0}
subset A C C with positive area such that [1,2] C A, and for all a,b € A withb#7a, T, and T
are not topologically conjugated.

EXAMPLE. The a-limit sets of Tg \ with Ry = Do,% are drawn in red in the following figures.

The gradient of color indicates the levels of construction of B(Tg ).

With A = 2. With A = 2 + L.

ey

With \ =
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With A = £, With A = ¢ + %i.

With A = 1. With A =1+ 4.

-
N

Images generated with the software Imagi (see [Ler2017]).
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CHAPTER 4

Entropy

Entropy is a measure of the complexity of a discrete dynamical system. First, we make a
reviewing about the classical definition of topological entropy of continuous functions on compact
metric spaces, showing some results and examples. After, are presented several adaptations of en-
tropy for piecewise transformations, with theorems about them in the case of piecewise isometries

and affine maps. Finally, we conjectured properties and values of entropy for PCMs.

4.1. Topological entropy

In this section, are reviewed the definitions related to topological entropy and it is shown some
examples and results. First, let us recall that topological entropy is the exponential growth rate
of the number of essentially different orbit segments of length n, it is a topological invariant that

measures the complexity of the orbit structure of a discrete dynamical system.
For this section, let (X, d) be a compact metric space and f : XO continuous.
DEFINITION. For each n € N is defined the f"-distance as
f — k k
dn(x7y) - Ogrlglgaszl {d(f (x)v f (y))}

DEFINITION. The df-diameter of a A C X is

diamfl(A) = sup {dfl(x,y)}
z,y€EA

DEFINITION. The (g, n, f)-covering number, denoted cov(e,n, f) , is the minimum cardinality

of an open covering of X by sets of df-diameter less than e.

DEFINITION. An orbit segment of length n of a point x € X is

On(xaf) = {1,7.]1-(1,)"”7.](%71(56)} .

REMARK. Since X is compact, cov(e,n, f) € N. The quantity cov(e,n, f) counts the number

of orbit segments of length n that are distinguishable at scale ¢.

97
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Because of the previous remark, is justified the next

DEFINITION. The topological entropy of f is

hiop(f) = gim (hmsup1 log cov(s,n,f))

=0\ nooo N

Exists well-known examples of topological entropy values.

ExAMPLE. Let T : [0,1]O the classical tent map: T(z) = 2z if z < 1 and T(z) = 2 — 2z if
x> 1. It can be calculated that hop(T) = log 2.

EXAMPLE. Let 0 : ¥ O the shift map on the space of sequences of K symbols. It can
be calculated that hyop (o) = log K.

EXAMPLE. Let o : [[7[0,1]O given by o(zo, z1,22,...) = (21, z2,23,...), the shift function
in the Hilbert’s cube. It can be calculated that hiop(0) = oo,

To finalize this section, let us show a few results about topological entropy.

THEOREM 4.1. If X is finite, then hyp(f) = 0.

THEOREM 4.2. If f is an isometry, then hyp(f) = 0.

THEOREM 4.3. Forn > 1, then hiop(f™) = n hiop(f).

THEOREM 4.4. IfY C X is invariant under f, then hiop(fly) < hiop(f).

Topological entropy measures the "chaoticity" of a function.

THEOREM 4.5. If f is chaotic in some invariant subset A C X, then
hiop(f) > 0.

Topological entropy is a topological invariant.

THEOREM 4.6. If f: XO and g : YO are topologically conjugated, then

htop(f) = htop(g)'
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4.2. Entropy on piecewise transformations

The definition of topogical entropy can not be applied to piecewise maps because they are
discontinuous. Furthermore, if such maps are restricted to the subset where they are continuous,

the resulting restricted space is not compact.

For this section, let us denote as F' a piecewise map with K parts X on a compact metric
space X C R™ where {X}} is a partition of X such that X = UkK:1 X} and the interior of each
Xk is non-empty.

To define the topogical entropy of a piecewise function F' on a compact X C R™, is needed a
small adaptation. Let R, = [j_, F~3(Ur_, X&) and Recov(e, n, F) the smallest number of open
sets in R™ of df -diameter less than ¢ covering R,,. Then, it is defined

1
hiop(F') = lim (hm sup— log Reov(e, n, F))

—0 n—oo T

Since we have naturally the itinerary function ¢p : X — X for F: XO with K parts,

and ¢ topologically semi-conjugate F' with the shift map o on ¢r(X), it can be defined the

singularity entropy of F' as
hsing (F) = htop (0| 15y)-

where htop(ﬂm) is the usual topological entropy of o : ¢p(X)O. Note that, by Theorem 4.4
and the example in the previous Section, we have hging(F') < log K. Equivalently, defining C,, as
the set of components of R,,, we have
hsing (F') = lim supl log #C,,,
n—ooo M
because each component in C), corresponds with the itinerary cells of sequences with the same

initial n symbols.

As the itinerary function does not proportionate (in general) a topological conjugation, the
previous definition could seem inadequate. A better definition of entropy for piecewise maps can
be achieved using a lifting of F' (see [Goel1996, Goe2000]).

First, Let us take the graphic of the itinerary function ¢, that is,

Graph(eor) = {(z,s) € X x Zk |pr(x) = s}.

Now, define the lifting of F as F : Graph(pr)O and ﬁ(x,s) = (F(x), o(s)), where F is applied

according to the component for which (z, s) belongs.
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F is a continuous function on the disconnected compact set Graph(¢r). So, the topological
entropy of the lifting is defined as

/h\top(F) = htop(ﬁ)
where htop(ﬁ) is the usual topological entropy of F.

For piecewise isometries, we have the following results (see [Goe1996, Goe2000, Buz2001]).

THEOREM 4.7 (Goetz). Let F a bi-dimensional piecewise isometry on a compact set
X C R?, then

htop(F) = hsing(F) = /};top(F)'

Let I a piecewise isometry on a compact set X C R™, then
hiop(F') = 0.

REMARK. This result establishes that the property of being isometry is stronger than discon-

tinuities since the zero entropy holds for isometries (Theorem 4.2).

Another class of piecewise maps well studied, are the piecewise affine maps (see [KruRyp2006]).
THEOREM 4.8 (Rypdal). Let F' and piecewise affine map on a compact X C R™.
o If F is non-expanding, then hyop(F) < hging (F).
o If F|x, (x) # F|x,(x) for all x € 0Xy NOX; with k # j, then
hsing (F) < hyop(F).

One more type of entropy for piecewise maps can be defined, the multiplicity entropy:

1
B (F') = lim sup— log mult(Cy,),

n—oo T

where
mult(Cy,) = sup# {C € C, |z € C} .
zeX
Using this entropy, we have

THEOREM 4.9 (Kruglikov, Rypdal). If F' is a piecewise conformal affine map on a compact
X C R™, then hypu(F) = 0.

THEOREM 4.10 (Kruglikov, Rypdal). If F' is a piecewise non-expanding conformal affine map
on a compact X C R™, then hiop(F) = 0.

On the other hand, exists piecewise contracting affine maps with positive topological en-
tropy (see [KruRyp2006]).
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4.3. Entropy on PCMs
In this section are presented several conjectures about topological, singularity, and multiplicity
entropies for PCMs.

Let F' a PCM.

As PCMs are conformal, using procedures in the proof of Theorem 4.9, is expected
CONJECTURE.
hmult (F) =0.
Again, using the conformality of PCMs, the topological entropy must be determined by its
symbolic dynamics, that is, be equal to the singularity entropy, analogously to Theorem 4.7.
CONJECTURE.
htOP(F) = hsing(F) = htop(F)-
Finally, is conjectured that the dynamic complexity of a PCM is concentrated in its

a-limit set.

CONJECTURE.
htop(F) = htop (Fla(r))-

REMARK. Even if F has wandering domains or B(F') has positive area, experimental observa-
tions justify this conjecture, since in any case, the number of essentially distinct orbits (determined

by its itineraries) does not seem to grow exponentially in D(F') (the dynamic domain).

As a corollary of the previous conjecture, using Theorem 4.1, we have the analogous result to
Theorem 4.7 and Theorem 4.10.

CONJECTURE. If o(F) is finite, then hyop(F') = 0.



CHAPTER 5

Proofs

In this chapter, are collected the proofs of results obtained in our research. Theorems and
propositions are, in some cases, presented in a different order than those of the body of text, with
the purpose of organizing it in a constructive manner. Lemmas are stated and proven to be used

in several results and clarify later proofs.

Let F = (P, F) = ({Ri}—y, {fa}r,) be a PCM.

THEOREM. 2.1/. B(F) = {z € @| {F"},>0 isnot normal at z}

PROOF. Let z € B(F).
o If z € By(F) for some N > 0, then FV(z) € B (the discontinuity set) where F is
undefined. Clearly, {F""}, -, can not be normal at z.
o If =z €  afF), for all neighborhood N, exists N > 0 such that
N.NF~N(B) # 0. Then, {F"} ., can not be normal at z.
On the other hand, let z € R(F). Clearly, {F"}, ., is normal at z because can be taken N, (a
neighborhood of z) such that each F"™ is the corresp(;nding restriction of a conformal automorphism
of C. 0

THEOREM. 2.16. B(F) is a perfect set.

PROOF. By definition, the pre-discontinuity set is a closed set in the compact set ((A:, then
is compact itself. Let z € B(F). If z € F'~™(B) for some n then z belongs to a curve segment (or
union of curve segments), and if z € a(F) then is an accumulation point of F~™(B). In any case,

z is not an isolated point. O

102



5. PROOFS 103

The following Lemma is true for any function but is illustrative to see the corresponding con-
structions for PCMs.

LEMMA 5.1. Let be A, B C C any sets, then F~*(AUB) = F~1(A) U F~1(B).

PROOF.
F7Y(AuB) = U, f; (AUB) N R
= Ui (A (A) U7 (B) N Ry)
= Ut (1 (A) nRe) VUL, (7 1(B) N Ry)
F~1(A)UF~Y(B)

LEMMA 5.2. For all N € N,
. BN(F) =B UF_I(BNfl(F)), and
e Ry(F)=RUF~Y(Ry_1(F)).

PRroOF. Directly from the definitions and Lemma 5.1 (1)

By(F) = Uno F(B)

n=0

- BU(UL F(B)
BU(UNS, FH(F(B))
= BUP (U FB))
= BUF~Y(By_1(F))
For Ry(F) = RUF~Y(Ry_1(F)) the demonstration is analogous. O

—~
—

LEMMA 5.3. By (F) =C — Ry (F) for all N € N.
PROOF.

o n = 0. By definition, By(F) = B=C —
e Induction. Hypothesis (H): By_1(F) =
By Lemma 5.2 (1)
By(F) = BUF~Y(Bn_1(F))
2 (E-R)UFIC - Ry-a(F))
= C— (RNFRy-1(F)))
= C - Ry(F)
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THEOREM. 2.1. R(F) = A, where A= ", F"(R).

ProoF. Clearly, by definitions of Nth conformality partition (1) and Nth pre-discontinuity

set (2), and Lemma 5.3 (3) we have

4 ﬁ Ry (F) 2 ﬁ (€-Bv(F) =C- G Bu(F) 2T - G F~(B)
N=0 N=0 N=0 n=0
Then A =C -2, F-"*(B) = C — B(F) = R(F). O

PROPOSITION. 2.2. a(F) C lim F—"(B) in H(C).

n—oo

~

PROOF. Let z € a(F). Let us use the convergence criterion on H(C) over F—"(B)
e By definition of closure, every neighborhood N, intersects |, ~, F~"(B) C U,,»o F"(B),
because B(F) = U, >, F " (OR). B B
e Suppose that exists a neighborhood N/ such that intersects finitely many F~"(9R). Then

exists N such that for all n > N every neighborhood A C N does not intersects F'~"(9R)
but By(F)NN", # 0. Since By(F) is a closed set, z € By(F) and contradicts the

hypothesis. Therefore, every neighborhood A, must intersect infinitely many F'—"(9R).
O

THEOREM. 2./. a(F) is strictly backward invariant and forward invariant.

PROOF. Let z € a(F).
1. Suppose that F~1(z) # 0 and F~1(2) € a(F).
o F7Y2)N B(F) = 0 for all z, since F is undefined in B(F).
o If F71(2) N By (F) # () for some N > 0, then z € Bx_1(F), a contradiction.
e If F7Yz2) N R(F) # 0, then {F"} ., is normal in some
zp € F71(2) and also in z, a contradiction. B
From above F~1(z) C a(F), and then F~(a(F)) C o(F).
2. Suppose that F(z) ¢ a(F).
o If F(2) € By(F) for some N > 0, then z € By41(F), a contradiction.
o If F(2) € R(F), then {F"}, ., is not normal in F'(z) because neither is it in z, a
contradiction. -
From above F(z) € a(F), and then F(a(F)) C a(F).
3. Also can occur that F~!(z) = () and then F(a(F)) € «(F). But always a(F) C F~Y(a(F))
by definition, and then, using incise (1), F~*(a(F)) = a(F) .
O
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o

THEOREM. 2.20. o(F) = 0.

PROOF. Suppose a(QF) £ 0. Then exists an open set U such that
U C a(F). Let z € U, then exists N > 0 such that F~~(B)NU # 0. Therefore, BNFN (U) # 0, a

contradiction since «(F) is forward invariant (Theorem 2.4) and «(F)N B = {) by definition. O

THEOREM. 2.53. B(F) is backward invariant, and R(F) is forward invariant.

PROOF.

e Using Lemma 5.1 (1) and Theorem 2.4 (2) we have
FB(F)=F"|aF)ulJF™B) Y p-1(a(F)UF! UJr®
n>0 n>0

e Let z € R(F'). Then
o F(z) ¢ By(F) for any N € N because F"(z) is defined for all n € N.
o F(z) ¢ a(F) because of the Theorem 2.4.
Therefore, F (R(F)) C R(F).

PROPOSITION. 2.6. F|p is topologically semi-conjugated to the shift function by means of

the associated itinerary ¢r.

PROOF. Let z € D.

o If (ppoF(z)), = k then F"(F(z)) = F""'(2) € Ry, in other words
er(2)ns1 =k = (or o F(2)),,.
e By definition of shift (o 0 pr(2)),, = ¢r(2)n+1-

In conclusion, g o F|p = 0 o ¢F.

As a consequence of the last equation is that o (¢r(D)) C ¢r(D), then the following diagram

commutes

p L

1 or 1 or
or(D) - ¢op(D)
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PROPOSITION. 2.8. Let n > 0.

FB)= J C

WEZ;?)

where Cy, = B if w is the empty word when n = 0 and Cyyj = fk_l(C'w) N Ry with w € Eg?) and
wk € E%H) for each k € {1,...,K} whenn > 0. And

WEEE,?JA)

where A, = R, whenn =0 and Awy, = fk_l(Aw)ﬁRk with w € E%) and wk € Z(I?H) when n > 0,
for each k € {1,...,K}.

PROOF.

e Case n =0. F'(B) = B = Cy, with w the empty word.

e Case n = 1.

K
F'B)=JK'B)nRy=Ciu---uCk= |J Cw
k=1

WGX](};)
where Cy, = f,/'(B) N Ry, for each k € {1,...,K}.
e Applying this construction recursively
_ K - _
F Q(B) = Uk:1 fkl(F 1(3))0Rk
K _
= Upi /! (Uweggp Cw) N Ry,
K Z
= Uk Uwezgy fi {(Cw) N Ry,
K
= Ur=1 Unex Cwi

= UWEEﬁ) CW

F(B) = U fit (FH(B) N Ry
K _

Uk:l fk; ! (Uwezgfl) CW) N Rk

Urzs Uwes—o fr H(Cw) N Ry

= Ures Uwezgm Cwk

= UWGEQ) Cw

where Cy = f,;l(Cw) N Ry with w € Eg?) and wk € Z%H).

For F™(R) = Uwez<n+1> Ay the demonstration is analogous, but using
K

FO(R) = Uszl Ry = Uw62<1) Ay, since Ap = Ry, for each k € {17 . ,K}. O
K
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THEOREM. 2.7. B(F) =J,cp 9C. and R(F) =, cp C,.
PROOF. Let z € D(F). We define
€™ = {w e D(F) | p(w)m = @(2)m form € {1,...,n}}
Then F~"(R) = U,cp C" Y for all n € N, since
« R=U" Ri=U.epC,
o FHCM) = Uiy £71C) N Ry = Upep1() €Y, and
o F U ) = Ueep FHC) = Usep Unerin O = Unen 7.
Clearly C. € --- c ¢ c ... cc? c ¢ for all n € N— {0} and C. = N°%, €™, then
A=Nr"®)=NUYc"= Nc"=c
n=0 n=1zeD z€Dn=1 z€D

Finally for the second claim, using Theorem 2.20 we have that if z € a(F") then C. =0, there-
fore |J,cp C. = A = R(F), because of the Theorem 2.1.

For the first claim,

N N N+1
By(F)=C-Ry(F)=C-(F"®)=C- Jc"=J | ac™
n=0 n=0z&D z€D n=1

Then, B(F) = Unso By (F) = Uys0 Uzen U act™ = U.cp 0C. = U.ep 9C-, because C, are
closed sets and 9C, C B(F) for all z € D. Additionally, if z € a(F') then 9C, is formed by limit
points of F~"(B). O

THEOREM. 2.17. Let U be a periodic regular component of period n. Then U is one and
only one of the following:

e Immediate basin of attraction. FExists an attracting periodic point zog € U such that for all
zeU
(F") (2) =20
k—o0

o Immediate parabolic basin. Ezists a parabolic point zy € OU Na(F') such that for all z € U

(F")*(2) = =

k—oco



5. PROOFS 108

o Immediate ghost-parabolic basin. Ezists a ghost-periodic point zg € OU such that for all
zeU
(FM*(2) = 2

k—o0

¢ Rotation domain. Ezxists a homeomorphism h : U — V such that
FI ~n glv

where g : V'O is a rotation and V = h(U).

e Neutral domain. F|}, is the identity in U.

PrOOF. The map F|} : UO is a Mébius transformation. Recall that Mobius transfor-
mation are classified in loxodromic, parabolic and elliptic. First, let us assume that F'|}; is not

the identity map.

e Case loxodromic. Forward invariant open sets (that is F™(U) C U) of loxodromic
transformations must contain the attracting fixed point zg or have it on its boundary,
from here we have that U is an immediate basin of attaction or ghost-parabolic basin.
z0 ¢ a(F) because is attracting and then can not be an accumulation point of sets F'~"(B).

e Case parabolic. For a parabolic transformation its fixed point zg is in the boundary of
the domain U, since the boundary of a regular component is contained in B(F'). Then U
is an immediate parabolic basin or ghost-parabolic basin, depending on the belonging
of zp to a(F) or not, respectively.

e Case elliptic. If the transformation is elliptic has two fixed points zy and 21, and exists
a Mobius transformation h : U — V such that h(z) = 0 and h(z1) = oco. Then,

g=hoF"oh™!is arotation on V = h(U) and we have a rotation domain.

In cases loxodromic and parabolic, since F™(U) C U, we have (F")* () 20 where z is the
—00
attracting or parabolic fixed point of F|}.

If F|; is the identity map then we have a neutral domain. O

THEOREM. 2.5.
o Perpep (F) UPerpar(F) C a(F), and
e Per, (F) UPerpa (F) UPere(F) UPerig(F) C w(F).

ProoF. By Theorem 2.17, the regular set R(F') only can contain attracting, elliptic, and

identical periodic points (1).
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e Then, repelling and parabolic periodic points of F' can not be contained in the regu-
lar set. In another hand, all periodic points are contained in the dynamics domain
D(F) = R(F)Ua(F). The result for the first statement follows.

e Putting (1) in other words, Per,,(F) UPerq (F)UPer;q(F) C R(F). As the periodic points

are contained in its own w-limit sets and by definition of w(F"), then
Per,, (F) U Perey (F) U Perig (F) C w(F).

Additionally, points in parabolic basins U C R(F) tend to parabolic points, then also
we have Perp., (F') C w(F).
O

THEOREM. 5.18.Let F a PCM. Then the following conditions are equivalent:

1. F is hyperbolic.
2. w(F) = Pery;(F) and Per(F) # 0.

Proor. F a PCM.
1. Let F hyperbolic. By definition, Per(F') = Pera, (F') UPeryep (F) # 0 and Pergnost () = 0.
Using Theorem 2.5 and definition of ghost-periodic point, we have w(F') = Perat, (F).
2. Suppose that w(F) = Pera, (F) and Per(F) # (. By Theorem 2.5 and definition of
ghost-periodic point, Perp,(F) = Peren(F) = Periq(F) = Pergnost(F) = 0. Then
Per(F) = Perut, (F) U Peryep (F) # 0, that is, F is hyperbolic.
(]

THEOREM. 2.11. Let I'p the associated group and z € D(F') but non-elliptic neither identical
periodic, then w(z, F) C Ap.

PROOF. w(z, F) is the set of accumulation points of the orbit {F™(z)}. But F" =+, € I'p,
then {F"(2)} C I'rz. Additionally, F™ = =, are distinct transformations because they are not
elliptic or the identity.

On the other hand, Ar contains the limit points of distinct v € I'r applied to z, then
w(z, F) C Ap. O

THEOREM. 2.153. If T'r is the associated group and Ap N B(F) =0, then

° a(F) C Ap,
« o(F) = lim F"(B) in #H(C), and

. Perghost (F) = @

ProoF. Let L = lim F~"(B). If L = (), then o(F) = () by Proposition 2.2.

n—oo

Suppose L # () and let z € L.
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Let us recall the constructions in Proposition 2.8 for a PCM F = ({Rk}i‘;l ,{fk}szl):

K
FrE=Ust( U nke= U &
k=1 WEE?—U WEESCTL)
where Cy = fi7'(B) N Ry, and then F~'(B) = Us_, C). Note that each Cy is a finite union of
curve segments (or an empty set).

At least one Cy, is not empty for each n level, because we assumed L # (). Let us denote
Cyw, such non-empty sets. We can take then z, € Cy, C F—"(B) such that z, — z, be-
cause every neighborhood of z intersects infinitely many F—"(B). Even more, we can choose
2y, € Cy,, such that F(2,) = z,_1, because Cy,, = Crw, , = f. (Cw,,_,) N Ry, for some k and then
F(Cw,) C Cw, ,. By this construction, z, = f];nl o -0 f,;l(zo) = n(z20), with
20 € NF*(Cw,) C B, yn = fr oo fit €Tp and wy, = ky .. k1.

Suppose that 7; = ~; for some ¢ < j. By construction

—1 —1 —1 —1 —1 —1
’yj:fkj o...ofkiJrlofki o...ofkl :fk'j o...ofk‘ oY

Let Co = (1 FI(Cyw; ), then
Cw, = Ck;..ky = 75(Co) = 7i(Co) = Ch,..ky = C,
In consequence f,;_ im = Iz, }rm for all m > 1. Therefore, the sequence z,, does not converge since
{en} ={20,21, 20, 0 221,02 = Ziy oo 251,25 = Ziy. . )

contradicting the hypothesis.

In conclusion, the sequence -, (z¢) converging to z € L is constructed with distinct elements
Yn € I'r applied to zp € (,,> m C B C Qp. Since A is characterized as the set of points
of convergence of sequences of distinct elements of T r applied to any point of Qp, we have L C Ap.
Notice that (), >, F"(Cw,) # 0 because F"(Cy,,) is a sequence of nested closed sets, then the exists
the point 2y € BcC Qp base for the sequence. Finally, using Proposition 2.2, «(F) C L C Ap and
we have proved the first statement.

Now let z € L but z ¢ a(F). Then z € F~7(B) C B,(F) for some n. In consequence,
F"(z) = v(z) € B for some v € I'p. Therefore 0 # (y(Ar)) N B C Ar N B by invariance of Ap,
contradicting the hypothesis. That implies the second statement a(F') = L.

For the third statement, suppose that there a ghost-periodic point zy. Then exists a regular

component U such that F"¥(z) k—) 20 C OU. Let z1 € U N Qp, then z is limit point of the
— 00

sequence F*(z1) and therefore z9 € Ar. Since OU C By(F) for some N > 0, FN(z9) € BN Ap,
again contradicting the hypothesis and concluding Pergpost (F') = 0. O
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PROPOSITION. 2.18. If B(F') is bounded, co € Ry, F|g, is a rotation, and F|g, is a euclidean

isometry in C for k > 1, then every regular component is pre-periodic.

PRrooOF. Since B(F) is a bounded set, exists a disc D C C centered in the finite fixed point of
F|g, such that B C C— R, C D and F"(R; N D) C D for each k and for all n. Then F|p is a
piecewise (euclidean) isometry on a finite Lebesgue measure set, and the result follows using
Proposition 1.16. (]

PROPOSITION. 2.19. If B(F) = Bn(F) for some N > 0, then each regular component is

periodic or pre-periodic.

ProoF. B(F) = By(F) means that the pre-discontinuity set is constructed in a finite
number of steps. In consequence the regular set is composited by a finite number of interiors of
itinerary cells. Therefore, for each regular component U, its orbit {F™(U)} in contained in a

finite number of components and then must be periodic or pre-periodic. O

For the following lemmas, let be A,, -+ A and B,, — B convergent sequences in the space of
compact sets H(C) with the Hausdorff topology.

LEMMA 5.4. A, UB, - AUB.

PROOF. Let z € AUB. Then every neighborhood W, intersects infinitely many A,, or infinitely
many B,,, that is, intersects infinitely many A,, U B,,.

On the other hand, if every neighborhood A, intersects infinitely many A, U B,,, then z € A
or z € B. O

Lemma 55. A, N B, —- AN B —-Y and Y <C O0(A N B), where
Y = {# € An B : 3N, thatintersects finitely many A, N B,} is the set of isolated points cor-
responding to the sequence A, N B,,.

PROOF. Let z € AN B — Y. Then every neighborhood N, intersects infinitely many A,, and
infinitely many B, but z ¢ Y, that is, intersects infinitely many A, N B,.

On the other hand, if every neighborhood N, intersects infinitely many A, N B, then z € A
and z € B,but z ¢ Y.

If 2 € Y C ANB, then exists A/, such that intersects finitely many A, N B,,. Then N, intersects
infinitely many (A, N B,)¢. Since (A, N B,)¢ = AS U BS C A5 U BS, N, intersects infinitely many

A¢ U B¢ and, because the Lemma 5.4, z € AU B¢ = (AN B)c. Finally,

z€ (ANB)N(ANB)c=9(AN B).
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LEMMA 5.6. If f: C — C is continuous and bijective, then f(A,) — f(A).

PRrROOF. Let w € f(A). Then exists z € A such that f(z) = w. We can construct a sequence
zn — z with z,, € A,, because A,, — A. As f is continuous, we have f(z,) — f(z) = w, then every
neighborhood N, intersects infinitely many f(A,,).

On the other hand, if every neighborhood N, intersects infinitely many f(A,), then we can
take a sequence w, = f(z,) € f(A,) such that w, — w. As f is continuous and bijective,
Y wy) = 2z, = f~Y(w). Let 2z = f~(w), then every neighborhood N, intersects infinitely many
A, and, by the hypothesis, z € A. Finally, w = f(z) € f(A). O

LEemMmA 5.7. If C,, — C, where each C, and C are compact subsets of C homeomorphic to
circles, then D, — D and E, — E,, where D, and D are the closure of the interior sets of C),

and C, respectively, and E, and E are the closure of the exterior sets of C,, and C, respectively.

PROOF. Let z € D. If z € C, then every neighborhood N, intersects infinitely many D,
because C,, C D,. If z € int(D) and if exists one neighborhood N, C int(D) such that intersects
finitely many D,,, then intersects infinitely many FE,, because D¢ C FE,. That is, z is in the
exterior of C}, for almost all n but z is in the interior of C. In consequence C,, - C, leading us to
a contradiction. Therefore, every neighborhood W, intersects infinitely many D,,.

Analogously, if z € E then every neighborhood N, intersects infinitely many E,,.

Let be z such that every neighborhood N, intersects infinitely many D,. If A, intersects
infinitely many C,,, then z € C C D. If N, intersects finitely many C,,, then N, must intersects
infinitely many int(D,,) and finitely many E,. Then z ¢ E, that is, z € E€ C D.

Analogously, if z is such that every neighborhood N, intersects infinitely many E,,

then z € E. (]
THEOREM. J.12. For a fixed pair f1,fo in PSL(2,C) and a PCM
F = {{fi, 2}, {R1,Ra}}, the map VYpy : P2(C) —  H(C), given by

B(F) = ORy = ORy — Bn(F), is continuous, for each N € N.

PROOF. This proof was originally given in [Ler2005] with small inaccuracies, but now it is
presented here with the respective corrections.

~

We will prove the continuity of ¥y using the sequence convergence criterion in #(C). Let
Cy € 732(@) be a sequence of curves homeomorphic to the circle convergent to B = Ry = ORs.
Let be D and D the closure of interior sets of Cy and B, respectively, and Ej and E the closure
of exterior sets of C} and B, respectively. Particularly, we have D = R; and E = Ry. Because the

Lemma 5.7, D, —» D and E}, — E.
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Using the Lemma 5.6, we have f~1(Cx) — f~1(B) and g~ *(Ck) — g~ (B), because f; and fo
are Mdbius transformations.

Because the Lemma 5.5
ffC)NDy — ff'B)ND -1
and
LN C NE, = [ (B)NE-Y,

where Y; and Y> are the respective isolated points sets.
Using the Lemma 5.4 we have

(ffl(Ck) n Dk) U (f{l(Ck) M Ek) U Cy, —
(ff'B)ND-V)u (' (B)NE - Y:) UB

Let be F} piecewise transformations such that Fy| p, =1 and Fy| 5, = J2- Then
(ffl(Ck) N Dk) U (f{l(Ck) n Ek) uc, =
(i (Ce)NDR) U (f51(C) NER) UCK = F; ' (Cy)UCy = Bi(Fy)

because (f; ' (Ck) N Dy) U (f5'(Cr) N Ex) C Ci.
On the other hand

(fi'(B )mD Yl)U(leB NE-Y;)UB
(7 >u<f;1 BINE)UB =
F~Y(B)UB =
BI(F)7

because Y7, Yo C B.
Finally, we have shown that B (F)) — By (F).
Now suppose that By_1(Fx) = By-1(F). Then, with an analogous argument to the previous

one using the Lemmas 5.6, 5.5 and 5.4, but with B,,_1(F}) instead of C}, we can demonstrate that

F ' (Byo1(Fy)) UCy = FH(By_1(F)) UB

But, by Lemma 5.2, we have that F~'(By_1(Fr)) U Cp = By(Fr) and
F_l(BN_l(F))UB:BN(F). U

THEOREM. 5.15. For a fized pair fi,fo in PSL(2,C) and ao PCM
F = {{fi,f2},{R1,Ra}} such that Ap # C and B(F) n Ap = 0, the map

7 : P2(C) = H(C), given by B(F) = OR, = ORy + B(F), is continuous.

Proor. This proof was originally given in [Ler2005], but here is presented with a better logical

structure and some corrections.
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As in the previous proof, let be Cj € ”Pg(((A:) a sequence convergent to B = R, Dy, the closure
of the interior of Cf, Ej the closure of the exterior of C, and Fj the piecewise conformal map
defined by f; on Dy and fo on Ejy. Also we assume that Cy, N A(Tx) = 0 for all k.

Let z € B(F). If z € By (F) for some N, then every neighborhood of z, denoted N, intersects
infinitely many B(Fy) because By (Fy) — By (F') by Theorem 3.12.

If z € a(F), every neighborhood N, intersects infinitely many F~"(B). For each w € F~"(B)
every neighborhood N,, C N, intersects infinitely many B,,(F)). Then, N, intersects infinitely
many B(F}).

Now let z € C such that every neighborhood N, intersects infinitely many B(Fy). If z € Q(T'p),
N, intersects infinitely many B, (Fy) for some fixed n, because B, (Fy) C Q(I'r) for all n and
nlgr;oFT(B) = «a(F) C A(Tr) by Theorem 2.13. Then, z € B, (F) C B(F).

If 2 € A(TF), NV, can not intersect infinitely many B, (F}) for some fixed n, because that implies
z € By(F) C QI'p). Then, N, must intersect sets F, "*(B) C B(F}) with an increasing sequence
ng. As By, (Fi) — B, (F) for each ng, N, intersects infinitely many F—mx(B), and we conclude that

z € li_>m F~—(B) = «(F) C B(F), using Theorem 2.13. O
n (o)
The following lemmas will be useful to construct holomorphic families of PCMs.
LEMMA 5.8. Let ¢ : GL(2,C)N x C — C given by

ar b ay by
- 2| =Tyo 0T

where T, (z) = ﬁfﬁﬁiis,’;- Then the function A — (), 2) is holomorphic for all z € C.

PROOF. Let us see the case N = 2.

b b
0 aq 1 7 as 2 .z _ T) o TQ(Z)
by dy by do

azz+b2 (I2Z+b2
(al coz+ds + bl) / (cl coz+do + dl)

a1(azz+ba)+bi(caz+ds)
c1(azz+b2)+di(caz+d2)

z(araz+bica)taiba+bids
z(craz+dica)+ciba+dids

Fixing z, the function A = (a1, b1, ¢1,d1, az,be, ca,d2) — @(A, z) is rational for each number in
A, and then is holomorphic on .
For N > 2, the argument is analogous. O
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LEMMA 5.9. Let ¢ : GL(2,C) x C — C given by

(5 2) )=

where T'(z) = %_ts and N > 1. Then the function X — (), z) is holomorphic for all z € C.

PROOF. The case N =1 is trivial. Let us see the case N = 2.

Ae)) =

z(a2+bc)+ab+bd
z(ca+dc)+cb+d?

Fixing z, the function A = (a,b,c,d) — ¢(A, z) is rational for each number in A, and then is
holomorphic on .
For N > 2, the argument is analogous. (]

LEMMA 5.10. Let ¢ : PSL(2,C)N x C->C given by
e(Th,..., Ty, 2) =T o--- 0 T (2)

where T,,(z) is the corresponding Mdébius transformation from elements of PSL(2,C) and n; € Z.
Then the function A — @(\, 2) is holomorphic for all z € C.

Proor. Elements of PSL(2,C) can be represented with (A1, A2, A3), and it can be associated

241 A1z+A2
Aoz+A3 z+A3

5.9), the result follows. O

with the Mobius transformations z +— or z — Using the above lemmas (5.8 and

THEOREM. 3.15. Let F' = {{fk}szl ,{Rk}szl} a PCM such that T'p is structurally stable
and B(F) C R, where R is a fundamental region of T'r, then F is structurally stable in
PSL(2,C)K.

PROOF. Since I'p is structurally stable, the inverse image of every neighborhood of
g = (f1,..., fx)in SS(T'r), of the projection PSL(2,C)®¥ — SS(I'r), is a domain in PSL(2,C)¥.

Recall that SS(I'r) is the space of structurally stable representations of kleinian groups
related to I'p. In this way, we can choose a neighborhood Nr = Ny, . r.) in PSL(2,C)¥ such
that for all (g1,...,9x) € N defining G = {{gk}szl , {Rk}szl}, the group I'c = (¢1,...,9K) 1S
structurally stable and B is into the fundamental region Rg of TI'q.

All sets v(B) with v € T, are distinct and do not intersect each other because
B C Rg C Q) and gx(Rg) N Rg = 0 for each k, since R¢ is a fundamental region of T'g.
Then, g, ' (B)N Ry = g;, " (B) or g, ' (B)N Ry, = 0, for each k. In consequence, for all G € N, B(G)
is the union of separated sets homeomorphic to B, plus the associated limit set a(G) C A(Tg).
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We construct ¢ : N x E — C, a holomorphic motion of E = Unso F~"(B) C B(F) as follows.
For A = (g1,...,9Kx) € NF with associated PCM G and z € E, define
G "o F"(z) ifze F7™"(B),n>0
P\ 2) =
z ifze B
Observe that if z € F~"(B), then F"(z) € B and G™" o F"(2) € G "(B) C B(G). Each
function ¢y = ¢(\, ) is an injection on C because ©» is defined by one Md&bius transformation in
each set homeomorphic to B forming F~"(B). The function A — ¢(A, z) is given by the compo-
sition of the Mdbius transformations g7 !, ... ,g]_(l, fi,---, fK, then using Lemma 5.10, p(\, z0) is
a holomorphic function on A for each fixed zy. If Ay is the element associated to F', is clear that
w(No, 2) = 2.
Using the A-lemma (see Theorem 3.1), the holomorphic motion ¢ has an extension to a holo-
morphic motion ¢ of E = B(F). Even more, for each A\ € N, ¢, extends to a quasiconformal
homeomorphism hj : C > C. By construction, hy conjugates F' with G:

e If z € B, then F and G are undefined on z. As hy|p = Id|p, then hy o F and G o h) are
undefined on z.

o If 2 € F~"(B) for some n > 1, then F(z) € F~"*1(B). By definition of h) by means of ¢:

o hyoF(2) =G "o F" Y (F(2)) = G o F(2).
o Gohy(2) =GoG "o F"(2) = G o Fn(2).

o If 2 € D(F) = R(F)Ua(F), then z € Ry, for some k. Since hy, = Id|z (where Ay €
PSL(2,C) is the parameter associated to F'), hy|p = Id|p, and ¢ is a holomorphic motion,
then hy(Ry) = Ry for each k, because B = |JORg. Then, hy o F(z) = hy o fi(z) and
Gohy(z) = gpoha(z). If hyo fi # gr o hy at some domain Ry, hy can be deformed
to a new quasiconformal homeomorphism l~1)\ on C such that iL)\ ofx = gro iL)\ in the
corresponding Ry and fzk = hy in C-— Ry.

O

COROLLARY. 3.14. Let F = {{fk}szl ,{Rk}szl} a PCM such that T'r is a Schottky group
and B(F) C R, where R is a fundamental region of T'r, then F is structurally stable in
PSL(2,C)K.

ProOF. This proof is unnecessary since the result is direct from Theorem 3.15, but here is pre-
sented a generalized version of the proof published in [LerSie2019] and enhanced from [Ler2005].

Being I'r = (f1,..., fK) a Schottky group and B(F) C R a fundamental region of I'r, exists
Ci,...,Ck,C1,C% Jordan curves such that f; maps Cj onto Cj reversing orientation for each
k, that is, the domain interior of Cj is mapped to the domain exterior of C) for each k, and
OR =JCrUC.
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Marked Schottky groups with K generators are a domain in C*# =3, then the inverse image from
the projection of PSL(2,C)¥ to marked Schottky groups is a domain in PSL(2,C)X. In this way,
we can choose a neighborhood Np = Ny, . 1,y in PSL(2,C)* such that for all (g1,...,9x) € NF
defining G = {{gk}szl , {Rk}szl}, the group I'¢ = (g1, ..., 9K ) is a Schottky group and B is into
the fundamental region Rq of T'¢.

All sets v(B) with v € T are distinct and do not intersect each other, because
B C Rg € QTg), gr(Rg) NRg = 0 for each k, and R¢ is a fundamental region of I'g. Then
for all G € N, B(G) is the union of distinct non-intersecting sets homeomorphic to B, plus the
associated limit set a(G) C A(T'g).

We construct ¢ : Np x E — C, a holomorphic motion of E = U,so F~"(B) C B(F'), as follows.
For A = (A1,..., A3k associated to G € N and z € F~"(B) C E,;:'leﬁne PN, z) =G "o F™(z).
Observe that F(z) € B and G~ o F'"(z) € G~™(B). Each function ¢y = (), _) is an injection
on C because ) is defined by a Mdbius transformation in each set homeomorphic to B contained
in F~™(B). G~" is composition of Mobius transformations g, ..., gx, being rational functions of
A1y A2, Az, ...y A3k, then (A, z0) is a holomorphic function of A for each fixed zy (Lemma 5.10). If
Ao is the element associated to F, is clear that ¢(Ag, 2) = z.

Using the A-lemma (see Theorem 3.1), the holomorphic motion ¢ has an extension to a holo-
morphic motion ¢ of E = B(F). Even more, for each A\ € N, $) extends to a quasiconformal
homeomorphism h) : C — C. By construction, hy conjugates F' with G (see the 5 for a detailed
justification of this affirmation). O

THEOREM. 8.16. Let F = {{Rk}szl ,{fk}szl} be a PCM such that

1. each fi is loxodromic,

2. each periodic regular component is an immediate basin of attraction,

3. fi "(B(F))N Ry, = f, "(B(F)), fi "(B(F))N Ry, = f, '(B;) for some connected component
B; of B(F) or f;,"(B(F)) N Ry = 0 for each k, and

4. for all n > 0 and for each connected component C; of F~"(B(F)), F"(C;) = v(C;) = B;

for some connected component B; of B(F') and v a Mdbius transformation,

then F is structurally stable in PSL(2,C)¥.

Proor. Hypotheses (1), (2), (3) and (4), allow us to take a neighborhood
Nr = Niyoop) © PSL(2,C)¥ such that for all (g1,...,9x) € N, the defined PCM
G= {{gk}ff:l , {Rk}szl} also fulfill hypotheses (1), (2), (3), and (4).
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We construct ¢ : N x E — C, a holomorphic motion of E = Unso F"(B) C B(F), as follows.
For A = (g1,...,9Kx) € NF with associated PCM G and z € E, define
G "o F"(z) ifze F7™(B),n>0
P\ 2) =
z ifze B
Observe that if z € F~"(B), then F"(z) € B and G™" o F"(2) € G "(B) C B(G). Each
function ¢y = ¢(\, ) is an injection on C because, using hypotheses (3) and (4), @, is defined by
one Mobius transformation in each set homeomorphic to B or to B; (component of B), forming
F~"(B). The function A — (), z) is a composition of the Mobius transformations g; ;... ,g;(l,
fi,..., Kk, then using Lemma 5.10, ¢(A, 29) is a holomorphic function on A for each fixed zo. If Ag
is the element associated to F, is clear that ¢(\g, z) = 2.
Using the A-lemma (see Theorem 3.1), the holomorphic motion ¢ has an extension to a holo-
morphic motion ¢ of E = B(F). Even more, for each A\ € N, ¢, extends to a quasiconformal
homeomorphism h) : C — C. By construction, hy conjugates F' with G (see the 5 for a detailed

justification of this affirmation). O

THEOREM. 3.17. If a PCM F is B-stable, then exists a holomorphic motion
{(p“,A ca(F) — @}

such that ¢, » (a(F)) = a(F, ») and

(1, N)ENCY x X

Yux© Flary = Fux o 0uala(r)

PROOF. Let { :B(F) — ((Aj} the holomorphic motion corresponding to the
Punx: B(F) (N Y XX P P g

B-stability of F. Then, by definition, ¢, x (a(F)) C B(Fyx).

Suppose that ¢, » (a(F)) # a(F), »), then exists z € a(F') such that ¢, A(z) € Fl:f\v (B(Fu))
for some N € N. As ¢, 5 respects the dynamics in B(F) — B(F), then ¢, (F¥(2)) € B(F,,.»), a
contradiction because «(F) is forward invariant and then F'V(z) is defined for all z € o(F) and for
all N. Then we have ¢, » (a(F)) = a(F), z).

By the same argument as before and because ¢,,  respects the dynamics on B(F') — B(F'), we

have 0,z 0 Flo(r) = Fux © 0uala(r)- O
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THEOREM. 3.19. If F is a PCM structurally stable, then is B-structurally stable.

PROOF. Suppose that F' is not B-structurally stable. Then, given a holomorphic family
Fox: co parametrized on Np C Xpc, i, does not exist a holomorphic motion ¢, \ : B(F) — C
such that ¢, » respects the dynamics in B(F) — B(F), or ¢, x(B(F)) # B(F}, ), for parameters
close to F. In any case, F' and F}, » can not be topologically conjugated, and then, F' is not

structurally stable. O

THEOREM. 3.20. Let F a structurally stable PCM without wandering domains, then is
hyperbolic.

PROOF. Suppose that F' is not hyperbolic but without wandering domains. Then occurs at

least one of the following:

1. F has a parabolic, elliptic, or identical periodic z. Under perturbation of the component
functions fj of F, z can be converted to an attracting or repelling periodic point for the
corresponding perturbed PCM F.

2. F has a ghost-periodic point z. Under perturbation of the discontinuity set B, z can be
converted to a periodic point of F, for the corresponding perturbed PCM Fr.

3. B(F') contains a region U of positive area and Per(F) = {).

a) If exists a point z € IR;NOR,; NU C BNU, then for every neighborhood N, C U exists
w € F~M(B)N N, for some M > 0, because of the density of (UN>0 F*N(B)) NU in
U. Additionally, it can be supposed w € F~M(B) NN, C R;. Then a perturbation of
B around FM (w) (and possibly also a perturbation of the component functions f; and
fj), can cause that F-M(B.)NN,NR; # 0, where F. is the corresponding perturbed
PCM with B(F.) = B..
b) If exists a point z € F~N(B)NU with N > 0 and z € Ry for some k, then for
every neighborhood NV, C U N Ry, exists w € F~M(B) NN, for some M > 0. Let
L =min{N, M}, 2o = FX(z2) and wy = F(w). Then, 29 € B or wy € B and are close
to each other. Hence, we have sub-case (a).
In each of the three cases, F' can not be topologically conjugated with its corresponding perturbed
F..
The “without wandering domains” hypothesis guarantees that the only case of F such that
Per(F) = ) is the incise (3) of the previous list. O
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THEOREM. 3.21. Let F a PCM. If

1. each component transformation fi is lorodromic,
2. F is hyperbolic and expanding, and
3. F is B-structurally stable,

then is structurally stable.

ProOF. By hypothesis (3), exists a holomorphic family Fj, : CO parametrized on
Nr C Xpcum, i, and a holomorphic motion ¢,  : B(F) — C such that Yu,x Tespects the dy-
namics in B(F') — B(F) and ¢, A(B(F)) = B(F), »).

Because of hypotheses (1) and (2), a neighborhood Ny can be taken in such a way that each
G € Nf also meets hypotheses (1) and (2). Note that such PCMs G are constructed with
discontinuity set B(G) = ¢, x(B(F')) and the component transformations (g1, ...,gx) determined
by .

Using the A-lemma (see Theorem 3.1), the holomorphic motion ¢, » has an extension to a
quasiconformal homeomorphism £, » : C — C for each pair (u, A). By construction, h, x conjugates
F with G. O



CHAPTER 6

Appendixes

Appendix: Topological dynamics

Let X be a topological space.

First, let us recall some definitions and notation about the basic topological features of a set
AcCX.

o A denotes the interior of A (the maximal open set B such that B C A)

o A denotes the closure of A (the minimal closed set B such that B O A).

o OA is the boundary of A (in this text defined as 94 = AN (X — A)).

e A set A is perfect if is closed and has no isolated points. A point = € A is isolated if exists
a neighborhood N, of z such that A NN, = {z}.

Also, let us review various concepts about connectivity. A set A C X is

o Connected if the unique simultaneously open and close subsets of A are () and A, at the
relative topology of A.

e Disconnected if is not connected.

e Path connected if for each pair of points in the set there is a path, contained in the set,
that unites them.

e n-connected if for each pair of points in the set there are n distinct non-homotopic paths,
contained in the set, that unites them.

o Simply connected if is 1-connected, that is, for each pair of points in the set, every pair of
paths that unites them are homotopic.

Consider f : XO a continuous function. As we saw in Chapter 1 Section 1.1, a discrete dynam-

ical system can be defined with the iterates f".

Discrete dynamical systems, broadly speaking, study the behavior of orbits of points. The final

behavior of an orbit up to infinite time is displayed in the omega limit set.

121
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DEFINITION. Let zg € X. The omega limit set of xg under f is

W(.’Eo,f) = ﬂ O(fn(z0)7 f)

n>0

Is useful to identify invariant sets under the dynamical system, and also to study the dynamical

features of a system restricted to such a set. A subset A C X is
DEFINITION. (Forward) invariant if f(A) C A.
DEFINITION. Strictly forward invariant if f(A) = A.
DEFINITION. Backward invariant if f=1(A) C A.
DEFINITION. Strictly backward invariant if f~1(A) = A.

DEFINITION. Totally (or fully or completely) invariant if f(A) = f~1(A) = A.

A very important concept in dynamical systems is chaos, the formalization of the idea of

“unpredictability” in deterministic systems (see [Dev1989]).

DEFINITION. f is chaotic in an invariant subset A C X if

. Per(f\A) = A.
o f is topologically mizing in A, that is, for all U,V C A non-empty open sets of A exists
N > 0 such that fN(U)NV # 0.

REMARK. “Unpredictability” is better understood from sensitivity to initial conditions. But
indeed, if a function f is chaotic in a metric space (X,d), is also sensitive to initial conditions.
Formally, f is sensitive to initial conditions in a metric space (X,d) if exists a constant rg > 0
such that for all z € X and all neighborhoods N, exists y € N, — {z} and N > 0 such that

d(fN (), [N (y)) = ro.

An essential tool in dynamical systems is topological conjugation, which allows knowing when

two systems are dynamically equivalent. Let g : YO a continuous function in a topological space Y.

DEFINITION. f and g are topologically conjugated if exists a homeomorphism h : X — Y such
that h o f = g o h, and we denote this by

[ ~nyg

DEFINITION. f and g are topologically semi-conjugated if exists a continuous surjective function
h: X — Y such that ho f = go h, and we denote this by

semi

f ~hnyg
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Appendix: Space of compact sets and Hausdorff metric

Let (X,d) a complete metric space.

DEFINITION. A subset A C X is compact if every open covering U = {Uqs},c 4 (Us open in X
and A C {J,c 4 Ua) has a finite sub-covering {Ua,”}g:1 cu.

DEFINITION. The space of compact sets of X is
H(X)={A C X|Aiscompact and A # 0}
DEFINITION. The Hausdorff metric in H(X) is given by
dy (A, B) = max{d(A, B), d(B, A)}
where d(A, B) = max {d(z, B) |« € A} and d(z, B) = min {d(z,y) |y € B}.

REMARK. H(X) has a topology induced by the metric dy;, usually called Hausdorff topology.

An important fact is that #(X) is a complete metric space since X is a complete metric space.
Then, convergence in H(X) is well-behaved. We recall a useful characterization of the convergence
on H(X) (see [Nad1978]).

DEFINITION. A sequence of compacts K, coverge to K in H(X) if

1. Every neighborhood N, of a point z € K intersects infinitely many K.
2. If every neighborhood N, of z intersects infinitely many K, then z € K.

And we denote this as K, — K.

Appendix: Complex geometry and analysis

The Riemann sphere C = C U {00} can be identified with the unit 2-sphere S? C R? using the
stereographic projection S : C — S2 defined as

S(z) =

if 2 # 0o and S(co) = (0,0,1). From here, we can define metrics in C.
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Let z,w € C.
DEFINITION. The chordal metric is given by

2zl pgy £ o
do(zw) = 4 VOFEROAT0T)

2

Vit

ifw=o00

REMARK. The chordal metric between z and w is calculated from the euclidean distance be-
tween the points S(z) and S(w) in S? C R3.

DEFINITION. The spherical metric is given by ds(z,w) = 6, where 6 is the positive angle
subtended by the arc of the maximal circle joining S(z) and S(w).

REMARK. Chordal and spherical metrics are equivalent (that is, both induce the same topol-
ogy), because d.(z,w) = 2sin(%) and then 2d,(z,w) < de(z,w) < ds(z,w).

REMARK. The chordal and spherical norms are defined from chordal and spherical metrics.
For z € C we define
|zle = d.(2,0),
lzls = ds(2,0)

A very important kind of maps on C are the Mébius transformations.

DEFINITION. A Mébius transformation is a function T : Co given by

T(z) = az+b

cz+d

where a,b,c,d € C and ad — be # 0.
Values are naturally defined at and for the point at infinity of C:
e If c#0,T(—d/c) =00 and T(c0) = a/c.
o If ¢ =0, T(c0) = 0.

REMARK. Mobius transformations are precisely the conformal automorphisms of C. The
Mobius transformations form a group isomorphic to PSL(2,C) (the projective special linear group

of matrices of 2 X 2 of complex numbers).

az+b
cz+d

The inverse function of a given M&bius transformation T'(z) = is easily calculated:

dz—1b

T_l(z) - —cz+a
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Moébius transformations (distinct from identity) has only one or two fixed points. That is

because calculating fixed points is solving the equation

T(z) = az+b

cz+d ¥
and then finding the roots of a quadratic polynomial. Formulas for fixed points are
® 212 = (a—d)+ > ;(a:,fd)2+4bc’ if ¢ # 0.

. zlzﬁandzgzoo,ifc:o.

Moébius transformations (distinct from identity) can be classified according to its dynamics.

o Lozodromic. Are conjugated with a transformation z — Az where |A| < 1, and then has
two fixed points, one attracting and other repelling.

e Hyperbolic. Are conjugated with a transformation z +— Az where A € R and 0 < A < 1,
and then has two fixed points, one attracting and other repelling. Is an especial case of
loxodromic transformation.

e Parabolic. Are conjugated with a transformation z — z + 8 where 8 # 0, and then has
only one neutral (rationally indifferent) fixed point with multiplier A = 1.

e Elliptic. Are conjugated with a transformation z + Az where A = ¢2™% and 6 € (0,1),

and then has two neutral fixed points.

The conjugations for the classification are not only given by homeomorphisms, but by Mdbius

transformations.

Moébius transformations presents diverse geometric features.

o Exist a unique Mobius transformation mapping a set of three distinct points to another
set of three distinct points. As consequence, the Mdbius transformation fixing three
points is the identity.

e Circles in C maps to circles in C under Mébius transformations. A circle in C is either
a circle or a line in C.

e Each M6bius transformation T can be associated with two infinite invariant families A
and B of curves, such that T'(v) = v for all v € A and T'(y) € B for all v € B.

o For parabolic transformations, the family A is formed by certain reciprocally tan-
gent, circles through the fixed point and the the family B is formed by circles perpen-
dicular to all circles in A.

o For elliptic transformations, the family B is formed by all the circles through the

fixed points and the family A is formed by circles perpendicular to all circles in B.
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o For hyperbolic transformations, the family A is formed by all the circles through
the fixed points and the family B is formed by circles perpendicular to all circles in A.
o For loxodromic transformations, the family A is formed by certain spiral curves
through the fixed points and the family B is formed by circles cutting on a certain

constant angle all curves in A.

A central class of maps in complex analysis (and in holomorphic dynamics) are the quasiconformal

maps.

DEFINTTION. A diffeomorphism f : U — V, where U,V C C are open and connected, is
quasiconformal if exists kK € R such that 0 < x < 1 and

of| - .|9f
0z| ~ |0z

in U. A quasiconformal map f is also called K-quasiconformal, where K = if—z > 1.

REMARK. Recall that the differential operators are

of _ 1(of _,;of
0z 2\ o0z oy
of _ 1(of 4 ;of
oz — 3 \ar Tlay

REMARK. If f is a K-quasiconformal map, then the Jacobian Df maps circles to ellipses
with oblateness bounded by K.

REMARK. For conformal maps f we have g—é = 0 and they are the 1-quasiconformal maps.

For completeness, let us recall the concepts of complex manifold and holomorphic function

between complex manifolds.

DEFINITION. A n-dimensional complex manifold X is a set with charts
{®a : Uy — X} 4 such that

e Each U, C C™ is open and each ¢, : Uy — ¢ (Uy) is a homeomorphism.

) UaG.A (pa(Ua) = X
o If ©o(Us) Np(Ug) = V # 0, then <p§1 ° Yo : W V) — @El(V) and
Palops @y (V) = g (V) are holomorphic.

REMARK. Intuitively, an n-dimensional complex manifold is a set such that is C™ locally.

DEFINITION. A Riemann surface is a 2-dimensional complex manifold.
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DEFINITION. A function f : X — Y between complex manifolds is holomorphic if for all
z € X exists a neighborhood N, such that the function 1/%1 ofowa: pat(Ng) — wgl o f(Ng)
is holomorphic, where ¢, : Uy — X and 93 : Vg — Y are charts such that N, C ¢o(U,) and
fNz) Chp(Va).

An important space for the study of the geometry of Riemann surfaces and dynamic on
them, is the Teichmiiller space. This space, informally, is the set of different complex structures of

a Riemann surface up to equivalence under isotopy.

DEFINITION. Let S a Riemann surface. The Teichmiiller space of S, denoted Teich(S), is
the space of pairs (51, f1), where S is a Riemann surface and f; : S — 51 is a diffeomorphism, up
to the equivalence (S, f1) = (Sa, f2) if and only if foo f{* : Sy — S, is isotopic to a holomorphic

diffeomorphism.

REMARK. Recall that a diffeomorphism f : S1 — S5 is isotopic to a diffeomorphism g : S; — So
if exists an injective continuous function 7 : Sy x[0, 1] — Sy such that z — (¢, z) is a diffeomorphism
for each ¢, (0, z) = f(z), and (1, 2) = g().

REMARK. A relevant fact is that the Teichmiiller space of a Riemann surface S covered
by D (that is, with hyperbolic geometry), is a complex manifold.

Appendix: Kleinian groups

In the theory of kleinian groups converges the areas of algebra, geometry, and dynamical sys-
tems. In relation to the last mentioned field, there are studied orbits, invariant sets, asymptotic
behaviors, and other dynamical concepts about the group action on C. See [Beal983, McM2018|

for a complete review of this theory.
First, let be I' a subgroup of PSL(2,C).

Analogously as at discrete dynamical systems, is defined the orbit of points through the action
of .

DEFINITION. Let z € C. The orbit of z under T is

rz=J (=)

yel’

The Riemann sphere is partitioned into two invariant sets related to the group I' dynamics (and

geometry).



APPENDIX: KLEINIAN GROUPS 128

DEFINITION. A point z € C is a limit point of T if exists w € C and a sequence of distinct
~n € I' such that v,(w) — =z.

n—oo

DEFINITION. The limit set of T is the set of limit points of T, and is denoted as A(T").

REMARK. Note that for all z € (E, the accumulation points of distinct sequences determined
by I'z are contained in A(T").

DEFINITION. The ordinary or regular set of T is Q(T') = C — A(T).

Directly from definitions, we have
THEOREM 6.1. A(T") is a closed set and UT") an open set.
THEOREM 6.2. The Limit and ordinary sets of I' are invariant under T

REMARK. Recall that a subset A C C is invariant under T if DA = U.eaTz = A

As mentioned, a special case of subgroups of PSL(2,C) are the kleinian groups.
DEFINITION. A kleinian group is a discrete subgroup of PSL(2,C).

REMARK. A set A C PSL(2,C) is discrete if each point v € A is isolated, that is, exists a
neighborhood N, C PSL(2,C) such that N, N A = {}.

REMARK. In the “classic” theory of kleinian groups, the ordinary set is defined as the set
where the group acts properly discontinuously and can not be empty (see for example [Beal983,
Mas1988]). In the “modern” theory using discrete groups as definition, the ordinary set can be

empty, since exists discrete groups such that their limit set is C.

Is difficult to determine when a group is discrete (or equivalently kleinian). However, exists

some useful results in such direction.

PROPOSITION 6.3. Let f € PSL(2,C). If it is loxodromic, parabolic, or elliptic such that

2701

is conjugated with a rotation z — e“™"*z where 0 is a rational number, then I’ = <f> 1s discrete.

PROPOSITION 6.4. Let ' < PSL(2,C). If exists f € T elliptic such that is conjugated with a

2701

rotation z — €™’z where 0 is an irrational number, then I' is not discrete.

PRrROPOSITION 6.5. Let f and g be Mdbius transformations and f loxodromic.  If
#Fix(f) NFix(g) = 1, then (f,g) is not discrete.
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REMARK. Recall that a group T is finitely generated if it can be generated with a finite number
of generators v, € PSL(2,C) , that is,

I'= {’Ynlo"'or}/n]|'7nj € {’71a"'77K7’71_17"'77}_{1}5jGN}a

and it is written I' = (y1,...,vKk).

The limit and ordinary sets share some similar features to the Julia and Fatou sets from

discrete holomorphic dynamics.

THEOREM 6.6. Let I' a kleinian group.

o A(T") is the set where the family T' is not normal and Q(T") where is normal.

¢« AM)=0 or AT)=C.
Groups with simple behaviors are the so-called elementary groups.
DEFINITION. T is elementary if #A(T) < 2.

REMARK. Note that discrete cyclic groups are elementary (see 6.3).

Let us show some results about non-elementary kleinian groups.

THEOREM 6.7. The limit set for non-elementary kleinian groups can be characterized as

follows:

MDY= |J Fix(y)

v€I loxodromic

e A(T) is the minimal invariant closed subset of@ with at least three points.

THEOREM 6.8. The limit set for non-elementary kleinian groups are perfect.

A very important notion in the kleinian group’s theory is discontinuity, since that is why can
be constructed fundamental regions useful for the study of the action of the groups on C and for

defining associated quotient surfaces or orbifolds.

DEFINITION. T is discontinuous if Q(T") # 0.
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DEFINITION. A fundamental region or domain for I discontinuous, is a non-empty connected
open set R C C such that
o Every two distinct points 21, z2 € R are not T'-equivalents (that is, T'z; N Tz = 0).
e For all w € Q(I), exists z € R T-equivalent (that is w € I'z).

e OR has bidimensional Lebesgue measure equal to 0.

REMARK. Using a fundamental region R of a discontinuous group I', the associated quo-
tient surface or orbifold is
R/r = {Fz|z6ﬁ}
If such quotient surface has no singularities, is a Riemann surface: a 1-complex (or 2-real) dimen-

sional complex manifold.

Discontinuous groups are essential the theory of kleinian groups because the following

ProposiTION. IfT' < PSL(2,C) is discontinuous, then is discrete.

Groups with very special characteristics are the Schottky groups.

DEFINITION. Let Cy,...,Ck, Cf, ..., C) C C 2K disjoint Jordan curves, surrounding a
single connected region R C @, and ~, Mobius transformations mapping Cj to Cj, inverting
orientation. A Schottky group is the one generated by that type of transformations: {v1,...,vk).

REMARK. Recall that a Jordan curve separates C in two disjoint pieces. Then the property of
the curves surrounding a single connected region R, means that for each curve, one of the disjoint
pieces does not contain other curves. Also, OR = Uszl Cy UC},. Such region R is a fundamental

region for the Schottky group.

REMARK. -y, mapping Cj, to C}, inverting orientations implies that 7, maps the exterior of Cj,

to the interior of C}, and also that maps the interior of Cj, to the exterior of Cj.

Schottky groups are well characterized (see [Mas1967, Ber1975]).

THEOREM 6.9. A Kleinian group I is a Schottky group if and only if is finitely generated,

free, discontinuous, and all non-trivial elements are loxodromic.

THEOREM 6.10. The space of sets of K elements of PSL(2,C) that generate Schottky groups

with K generators, up to equivalence, is an open subset of C35—3,

REMARK. Two finitely generated kleinian groups I' = (y1,...,yx) and IV = (v, ..., %)

are equivalent if exists a Mobius transformation ¢ such that v, = ¢ o7, o ¢! for each k.
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Anther important characteristic of Schottky groups is that all of them with the same number

of generators are equivalent in a broader way (see [Chul968, Ber1975]).

THEOREM 6.11. Schottky groups with the same number of generators are quasiconformally

conjugated.

REMARK. Two kleinian groups I' and I are quasiconformally conjugated if exists a quasi-
conformal map ¢ on C such that IV = pLp~! = {povop~lyeT}.

Exists other important and well-studied types of kleinian groups.
DEFINITION. T'is fuchsian if exists a disc in C invariant under T.

PROPOSITION. The limit set of a fuchsian group is contained in an invariant circle in C,

the boundary of the disc tnvariant under the group.

For fuchsian groups, discreteness and discontinuity are equivalent.

ProposiTION. IfT" < PSL(2,C) is fuchsian and discrete, then is discontinuous.

DEFINITION. T'is quasi-fuchsian if its limit set is contained in an invariant Jordan curve.

REMARK. Note that fuchsians groups are a special case of quasi-fuchsian groups.

As in dynamics, can be defined the notion of structural stability for kleinian groups. First,
it is required to build an adequate space for kleinian groups. See [Sul1985b, McM2018].

DEFINITION. A representation of I as an abstract group on PSL(2,C), is a group homomor-
phism p: T' = PSL(2,C). V(T) is the algebraic variety of irreducible representations of T' modulo
conjugacy, that is, the space of kleinian groups with the same abstract group structure that I" and

identifying equivalent groups under conjugation.

DEFINITION. T is structurally stable if exists a neighborhood Nt C V(T') such that for all IV €
Nr exists a quasiconformal map © on C such that

I'" = @l'p~? (that is, I and IV are quasiconformally conjugated).

REMARK. Equivalently, I' is structurally stable if is non-elementary and all representa-
tions p : ' = PSL(2,C) sufficiently close to the identity are faithful (that is, injective). If T' is
structurally stable, the space of structurally stable representations of I';, SS(I') C V(T'), is the
interior of the set of discrete and faithful representations of I'. See [McM2018].
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REMARK. Theorems 6.10 and 6.11 imply that Schottky groups are structurally stable,
since the complex dimension of the space of equivalent finitely generated kleinian groups with K

generators is precisely 3K — 3.

To finalize this appendix, Let us recall the famous Ahlfors finiteness theorem (see [Ahl1964]).

THEOREM 6.12 (Ahlfors). Let ' a finitely generated discontinuous kleinian group, the quo-
tient surface Q(T')/r has a finite number of components, each of which is a compact Riemann surface

with a finite number of points removed.
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