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Nacional Autonóma de México (UNAM) under the supervision of Dr. Gustavo Ay-
ala. This research was possible thanks to the scholarship given by the Consejo Nacional
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Abstract

Historically, masonry has been one of the most used structural materials around the world.
It is well known that the mechanical behaviour of masonry is complex, despite its relatively
easy construction process. Nowadays, there are many strategies to address this problem
for both ancient and modern masonry constructions. Nevertheless, these strategies are
either computationally demanding or based on some simplifying hypothesis that are only
valid under certain conditions.

This dissertation presents a proposal for employing reduced numerical integration in the
formulation of the 4-node quadrilateral solid finite element to perform non-linear analysis
of structures. The proposed procedure allows the possibility of evaluating a given con-
stitutive model only at one integration point, achieving an attractive computational cost
reduction. A validation of the proposal is included and discussed throughout the docu-
ment.

To represent the non-linear mechanical behaviour of masonry a plastic-damage model is
implemented along with the proposed sub-integration scheme. Also, in order to have a full
and computationally e�cient strategy to determine the behaviour of masonry structures,
including its evolution to collapse, a homogenization technique with a macro-modelling
approach is used. Several validation and application examples of masonry structures are
studied using di↵erent constitutive models and comparing the computed results to the
ones obtained by a full integration scheme and, also, to experimental ones. These com-
parisons are discussed extensively all along this thesis.

In order to have an alternative, the sub-integration scheme is complemented with a se-
quentially linear analysis procedure. A computational tool to apply the resulting strategy
is presented, validated and discussed. Finally the conclusions of this work, derived from
the formulation of the method proposed and the analysis of the obtained results, are given.
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Resumen

Históricamente, la mamposteŕıa ha sido uno de los materiales estructurales más utilizados
en todo el mundo. Es bien sabido que el comportamiento mecánico de la mamposteŕıa es
complejo, a pesar de que su proceso constructivo es relativamente fácil. Hoy en d́ıa, existen
muchas estrategias para abordar este problema tanto en las construcciones de mamposteŕıa
antiguas como en las modernas. Sin embargo, estas estrategias son computacionalmente
exigentes o se basan en algunas hipótesis simplificadoras que solo son válidas bajo ciertas
condiciones.

En esta tesis se presenta una propuesta para emplear integración numérica reducida en la
formulación del elemento finito sólido cuadrilátero de 4 nodos para la ejecución de análisis
no lineales de estructuras. El procedimiento propuesto permite la posibilidad de evaluar
un determinado modelo constitutivo en un solo punto de integración, logrando una atrac-
tiva reducción del costo computacional. Se incluye una validación de la propuesta y se
discute a lo largo del documento.

Para representar el comportamiento mecánico no lineal de la mamposteŕıa se implementa
un modelo de daño plástico en conjunto el esquema de integración reducida propuesto.
Asimismo, para tener una estrategia completa y computacionalmente eficiente para deter-
minar el comportamiento de las estructuras de mamposteŕıa, involucrando su evolución
hasta el colapso, se emplea una técnica de homogeneización con un enfoque de macro-
modelado. Se estudian varios ejemplos de validación y aplicación de estructuras de mam-
posteŕıa utilizando diferentes modelos constitutivos y comparando los resultados calcula-
dos con los obtenidos por un esquema de integración completo y, además, con experimen-
tos. Estas comparaciones se discuten ampliamente a lo largo de esta tesis.

Para tener una alternativa, el esquema de integración reducida se complementa con un
procedimiento de análisis lineales secuenciales. Se presenta, valida y discute una her-
ramienta computacional para aplicar la estrategia resultante. Finalmente se establecen
las conclusiones de este trabajo, derivadas de la formulación del método propuesto y del
análisis de los resultados obtenidos.
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Chapter 1

Introduction

Humans tend to both create and solve problems. Naturally, creating a problem is an eas-
ier task than solving it. In fact, several problems were created involuntarily and for some
other problems its pure identification represent a problem itself. Whatever the reason,
and as illogical as it may sound, e↵orts have been concentrated on solving problems rather
than avoiding them.

Science and engineering are two useful tools to solve problems. Each of these tools has
their own objective. While science is focused in providing new knowledge for understand-
ing the problem, engineering is intended to apply this new knowledge to the solution of
problems. In other words, science is rational creativity aimed at identifying and under-
standing problems and engineering is the approximation of their solution by controlling
the error. Therefore, any problem that is attempted to be solved from an engineering
point of view is supported in science.

Focusing on a real problem well identified and understood by science, the procedure to be
followed by engineering in order to solve the problem is shown in fig. 1.1.

Real problem Mathematical model Approximation

Figure 1.1. Flow diagram for solving a problem from an engineering point of view

Here, two main activities of every engineer can be identified by the arrows in the diagram.
The first one corresponds to the translation of the problem to be solved into mathemat-
ical language, i.e., the construction of the mathematical model. The second arrow is the
approximation or, if possible, the solutions of the mathematical model.

For some well-studied problems, the mathematical model can be very close to reality.
Actually, the constant evolution of science give us the possibility to build increasingly
better mathematical models and, therefore, to recalculate its solution in order to obtain
results closer to reality. Nevertheless, the more realistic the mathematical model, the more
complex its solution or approximation. In fact, in some cases, even approximation is not
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possible.

One strategy for solving these problems regards on the establishment of hypothesis to
simplify the mathematical model. These simplifications allow the approximation of the
solution of such a model. Other strategy, is the use of high-capacity computers which can
achieve approximations of more mathematically complex problems. Both strategies have
advantages and disadvantages and need to be carefully implemented. For example, the
establishment of a not valid hypothesis implies that the problem that is actually solved
is not the same that the original one. Additionally, the use of a high-capacity computers
is related to the implementation of robust algorithms, capable of taking full advantage of it.

Thus, the flow diagram of fig. 1.1 is really an iterative process to find a close-enough
to reality mathematical model that can be approximated by the available and applicable
computational resources. Hence, higher computational resources and e�cient algorithms
allow the proposal of a mathematical model closer to the reality of the problem. The
objective of this dissertation is to e�cient the computational process of approximating
the solution of a mathematical model that leads on the construction of a better one.

1.1 Problem statement

Non-linear structural analysis has become one of the most common challenges faced by
structural engineers. Nowadays, it is implausible the accomplishment of the tasks involved
in its application without the use of high-end computers and advanced numerical meth-
ods that are becoming more robust and e�cient to improve the quality of the results.
Nevertheless, performing a non-linear analysis is a complicated task, generally due to the
mechanical characteristics of the composing materials and to the irregular geometry that
is commonly present in both new and ancient structures. Most of the available solution
strategies are based on the use of approximate numerical methods, such as the Finite
Element Method (FEM). This method idealizes the irregular geometry of the structure
as a discretized assemblage of elements of simpler geometry approximating the complex
mechanical behaviour of the material by ad hoc constitutive models. As expected, the
application of this solution strategy generally involves a high computational cost.

The use of computers in the execution of non-linear finite element analysis in all its stages,
i.e., pre-, actual- and post-processing, has encouraged the development of refined constitu-
tive models which guarantee a better approximation of the real behaviour of the materials
and, consequently, of the structures. However, the practical application of these models
is not always feasible, since, in spite of the fact that computers are increasingly powerful,
the computational cost of carrying out a non-linear analysis of a complex structure can
be inconveniently high. Hence, the development of improved numerical procedures and
solution strategies that reduce this computational cost is attractive to structural engineers
and researchers.

One path for reducing the computational cost required to perform a non-linear analysis
relies on the use of simplifying hypotheses regarding the overall behaviour of the problem,
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which derives in the formulation of very straightforward numerical procedures. Despite
the fact that in some applications the acceptance of such hypotheses is well or barely
justified, in several other ones, its use may drastically impact the accuracy and even the
usability of the obtained results.

Another approach to achieve a computational cost reduction, without compromising the
quality of the results, is the use of low-order numerical integration rules in FEM analysis,
i.e., reduced numerical integration. The use of such a strategy is naturally attractive since
the reduction in the number of calculations required in constructing the sti↵ness matrix.
Furthermore, as it has been demonstrated in the work of Belytschko and Bachrach (1986),
this type of procedures allows the possibility of using coarser meshes due to the inherited
enrichment of the approximated results.

Nevertheless, as suggested by other studies, the use of reduced integration produces rank-
deficient sti↵ness matrices which may lead to numerical instabilities and the appearance
of the hourglass e↵ect (Belytschko et al., 2013; Cook et al., 1989). Therefore, to avoid
numerical issues when performing linear and non-linear analysis these instabilities need
to be controlled. To illustrate this problem, an example of a notched beam subjected
to vertical displacement imposition in which the appearance and control of the hourglass
e↵ect may be observed, is icluded in fig. 1.2.

(a)

(b)

Figure 1.2. Notched beam subjected to vertical displacements: hourglass e↵ect (a) present
and (b) controlled

Despite this numerical instability, several researchers have focused their e↵orts on overcom-
ing this hourglass e↵ect to use reduced numerical integration in di↵erent FEM applications.
Due to the fact that the attractiveness of using a reduced number of integration points
outweighs the drawbacks. Therefore, the evolution of this research topic has developed
into many di↵erent applications. For example, several developments and formulations
have been published over the past decades on the so called solid-shell elements, i.e., an
element which combines both solid and shell formulations for 3D analyses of thin struc-
tures. These publications include both reduced-integration developments (Bettaieb et al.,
2015) along with enhanced assumed strains (EAS) or assumed natural strains (ANS) to
overcome shear locking problems (Bassa et al., 2012).
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Existing literature shows that the 4-node quadrilateral finite element is frequently used
in non-linear analysis formulations and applications of computational mechanics. Con-
sequentially, this element is often used as a starting point in the developments of many
reduced numerical integration stabilization schemes before being extrapolated to other
finite elements, such as hexahedrals for 3D analysis.

One of the most popular and e�cient schemes for controlling the hourglass e↵ect is the
proposed by Flanagan and Belytschko (1981) and, also, improved by Belytschko et al.
(1984), Belytschko and Bachrach (1986), and Belytschko and Bindeman (1991). This
scheme is based on the addition of a four-point numerically integrated stabilizer sti↵ness
matrix to the sub-integrated sti↵ness matrix. The construction of the stabilizer matrix
implies that the considered constitutive model needs to be evaluated at all four integration
points. The application of this method successfully recovers the rank of the sti↵ness matrix
and controls the numerical instabilities at the cost of the required additional computations.

In this dissertation an improvement to this method is presented. The proposed improve-
ment is based on the formulation and use of an analytical expression of the stabilizer
sti↵ness matrix instead of the numerically integrated one. Since the evaluation of a con-
stitutive model needs to be performed at each integration point, the use of this proposal
enables a one-point evaluation rather than the originally required four-point evaluation.
This feature is attractive because of the significant reduction computing-time assured due
to the substantial decrease of the computations at each step of a non-linear analysis. Ad-
ditionally, with this proposal the convergence needs to be achieved at only one integration
point instead of four, which is compelling for the use of computationally demanding con-
stitutive models.

All the application examples included in this work correspond to masonry structures. Ma-
sonry has been used as a structural material probably since a nomad decided to become
sedentary and built a shelter by laying pieces of stone together, approximately 10,000
years ago. One of the most attractive characteristics of masonry construction is its sim-
plicity, which is maybe the reason why masonry is the oldest material that still is widely
used nowadays (Lourenço, 1996). In fact, currently, masonry is one of the most popular
construction material, especially in low-rise buildings and in social interest housing.

Over time, masonry has evolved considerably in several aspects, including construction
techniques, manufacturing processes of bricks and the diversity of materials employed in
its composition. Additionally, due to a better understanding of the mechanical behaviour
of masonry, several techniques of reinforcement that are aimed at improving its structural
performance, have been proposed by researchers and widely applied by constructors.

Although the evolution of masonry is undeniable, many of the ancient masonry construc-
tions were built with poor quality materials and deficient constructions techniques, e.g.,
the use of low-strength mortar or even none of it. Furthermore, owing to the purely empir-
ical knowledge about the structural conception of constructions, many of these structures
are highly vulnerable to external events, such as earthquakes, that can induce lateral de-
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mands to the structure.

This vulnerability is not only a problem for ancient masonry constructions. Modern struc-
tures, including tall buildings, are structurally conceived by ductile frames of concrete or
steel with infill masonry walls. This structural conception is based in the hypothesis that
the masonry walls do not contribute to the structural performance of such a structure.
However, recent seismic events have shown that this hypothesis is not always valid and,
occasionally, these walls represent an additional sti↵ness to the structure, which can be
suddenly modified when they are damaged during the earthquake. Accordingly, these
walls can not be ignored as a structural elements in the stages of analysis and design.

Despite the simplicity of masonry construction, the non-linear structural analysis of such
constructions is not straightforward. In the past decades, several researchers around the
world have focused in the development of numerical tools that are aimed at assesing the
structural behaviour of masonry constructions. Even though their advances are remark-
able, the proposals in this topic are computationally demanding. The di�cultness of the
problem lays on the mechanical characterization of the masonry as a highly non-linear
heterogeneous material and, also, on the frequent irregular geometry of the constructions
built with this material. The complex mechanical behaviour of masonry as a quasi-fragile
material is characterized for its non-linearity, evident even at small demands, its low
tension strength and the presence of the softening e↵ect. Furthermore, due to the non-
homogeneous nature of its components, masonry often has orthotropic behaviour.

The proposal of this thesis is applied to the study of masonry constructions through
two di↵erent scopes. First, the plastic-damage model proposed by Oller et al. (1988) and
Lubliner et al. (1989) was implemented to apply the proposed reduced integration scheme.
This constitutive model is aimed to represent the complex non-linear behaviour of ma-
sonry with high precision.

In spite that these complex constitutive models have demonstrated to be able to simulate
the real behaviour of materials; their application is not generally e�cient for due to the fol-
lowing requirements: computer programs that include the implementations of the models
to be used; that these programs include robust and e�cient algorithms that allow ap-
proximating the solution of the non-linear mathematical problem; computers with enough
processing capacity and specialized engineer for the pre- and post-processing stages of the
analysis.

Therefore, it is convenient to have simplified and computationally e�cient alternatives
that achieves good-enough approximations according the problem to apply the proposal
of this dissertation. One of these strategies, originally proposed by Rots (2001b), consists
of the application of Sequentially Linear Analysis (SLA), which approximate the non-
linear behaviour of a structure through a series of linear analyses in which the mechanical
properties of the material of the more demanded elements are reduced, following a soften-
ing law. This strategy is computationally e�cient since, as it consists of a series of linear
analyses, it is not necessary an iterative process to reach the convergence of the solution
in each analysis.
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Due to the formulation of the SLA procedure, it is to be expected that the area under
the stress-strain curve of the material is underestimated. Therefore, the formulation was
improved by Rots and Invernizzi (2004), who proposed a mesh regularization procedure
to minimize the influence of the mesh on the performance of the analysis. This procedure
consists of the inclusion of a factor that modifies the tensile strength and the ultimate
strain of the material.

In the original proposal of Rots (2001b), a linear softening law of the material is proposed,
which is approximated with a saw.tooth diagram. Rots et al. (2008) proposed new soft-
ening models, including a non-linear one. Furthermore, DeJong et al. (2008), Eliáš et al.
(2010) andYu et al. (2018) proposed innovative algorithms that enable the consideration
of non-proportional loads in the application of SLA. This extends the scope of application
of the strategy to other loading patterns, e.g., pre-compression and lateral loading stages.

Regarding the fields of application of the strategy, Rots (2001b) and Rots (2001a) applied
it to the study of ancient masonry and reinforced concrete buildings. Later, Invernizzi et al.
(2011) and Slobbe et al. (2012) applied it to the study of concrete structural elements with
very brittle failure. Additionally,Pari et al. (2021) developed a robust model that allows
the use of SLA for the study of masonry structures in 2 and 3 dimensions, showing that
their proposal is able to reproduce the complex masonry mechanical behaviour.

There are even some algorithms to reduce the computational cost in the application of
SLA such as those of Pari et al. (2020), who propose two solution strategies to reuse some
decompositions of the sti↵ness matrix performed in previous linear analyses. In this way,
advantage is taken of the fact that the changes in the system of equations of the finite
element model are only local.

In this dissertation, the proposed stabilized reduced integration scheme is also applied
through the SLA procedure as an alternative to its application by the plastic-damage
constitutive model previously mentioned.The description of this application, its validation
with examples taken from the specialized literature on the subject and application exam-
ples are included to show the e�ciency achieved in comparison with other more robust
non-linear analysis proposals.

1.2 Objectives

The main objective of this work is to propose and validate a computationally e�cient
strategy to perform non-linear analysis of masonry structures considering a homogenized
constitutive model, based on the theories of plasticity and damage, implemented through
a numerical integration scheme for the 4-node quadrilateral finite element that allows a
one-point evaluation of it.

In order to achieve the main objective the following specific tasks were established:
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• Formulate, numerically implement in the FEAP environment and validate, for both
linear and non-linear analysis, a reduced numerical integration scheme for the 4-node
quadrilateral finite element with an stabilization procedure that allows a one-point
evaluation of a certain constitutive model.

• Study, numerically implement in the FEAP environment and validate a constitu-
tive model based on the theories of plasticity and damage, optimal to simulate the
mechanical behaviour of masonry.

• Study, numerically implement in the FEAP environment and validate an homoge-
nization technique for organized masonry to be applied within the reduced numerical
integration scheme and the plastic-damage constitutive model.

• Apply the complete strategy through the numerical approximation of the non-linear
behaviour of experimental models which represent masonry structures.

• Study and numerically implement in a programming language a computational tool
capable of performing a sequence of linear analysis with saw-tooth softening.

• Apply and validate through the reduced numerical integration scheme the imple-
mentation based on sequentially linear analysis with saw-tooth softening.

1.3 Outline of the thesis

In the following paragraphs, a general description of the content of each chapter is pre-
sented.

In the second chapter, a proposal for employing reduced numerical integration for the
4-node quadrilateral finite element is described. First, the problem of using reduced in-
tegration is widely discussed. Then, the formulation of the proposal is presented and
mathematically validated. Additionally, several validation examples are presented which
include comparisons with experimental results. The results are presented and discussed,
emphasizing in the computational cost reduction.

Chapter 3 includes an overview of some aspects of the computational modelling of ma-
sonry structures. The plastic-damage model proposed by Oller et al. (1988) and Lubliner
et al. (1989) is studied in this chapter. Furthermore, in this chapter, the numerical imple-
mentation of this model is widely discussed and validated through several debugging test.
Finally, some aspects of the numerical implementation of the homogenization technique
proposed by López et al. (1999) are also included and validated in this chapter.

The application of the complete strategy is included in chapter 4. For this purpose,
two specimen of masonry walls, with and without opening, selected from a set of experi-
ments, are analyzed through the complete strategy. The numerically obtained results are
compared to the ones reported in the experiments. A thorough discussion of the results
comparison is presented.
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In the fifth chapter an alternative for the application of the proposal of this thesis is
described and validated. First, the procedure based on sequentially linear analysis with
saw-tooth softening, proposed by Rots (2001b and 2004) is studied. Additionally, the
application of the procedure using the reduced integration scheme is discussed, applied
and validated through examples. The results are discussed.

Finally, in chapter 6, final remarks and conclusions are listed.
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Chapter 2

Reduced integration in the FEM

2.1 Introduction

In this chapter, a general discussion about the use of reduced numerical integration in the
FEM formulation of solid elements is included. Initially, the advantages and drawbacks of
using di↵erent quadrature orders in the numerical evaluation of the sti↵ness matrix of a
4-node quadrilateral finite element are discussed. Accordingly, a proposal for overcoming
the numerical issues generated for using reduced integration, such as the rank deficiency
of the sti↵ness matrix, is formulated and widely described.

Additionally, the numerical implementation in the FEAP (Taylor, 2017) program of the
above mentioned proposal is described in this chapter. In order to validate both the for-
mulation and the numerical implementation, several validation application examples are
included all along this chapter. These examples include mathematical validation, linear
and non-linear analysis with comparisons to canonical integration orders and experimental
data available in the reviewed literature. A special discussion of the achieved computa-
tional cost reduction and the quality of the approximation is included.

2.2 Numerical integration in the FEM

In the isoparametric formulation of a quadrilateral finite element, numerical integration
techniques are generally required to evaluate its sti↵ness matrix, K (eq. 2.1), and, there-
fore, if a non-linear material behaviour is considered, for the constitutive model evaluation
(Zienkiewicz and Taylor, 2013).

K = t

Z

A
BTCB| {z }
�(x,y)

dA ⇡ t

nX

i=1

nX

j=1

�(⇠i, ⌘j) |J|wiwj (2.1)

Here, t is the element thickness, B is the strain-displacement matrix and C is the constitu-
tive matrix for a plane-stress/strain, an EAS or an ANS behaviour. Also, x and y are the
coordinates of the real physical space, ⇠ and ⌘ are the ones from the reference parent space
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and |J| is the determinant of the Jacobian matrix. The terms ⇠i, ⌘j and wi, wj stand for
the sampling points and weights, respectively, of the selected Gauss-Legendre quadrature
order. As expected, the computational cost of this numerical procedure is proportional
to the number of integration points used. Nevertheless, the use of a low-order quadrature
can lead to numerical instabilities, such as that commonly referred as the hourglass e↵ect.
Therefore, the selection and implementation of an optimal integration scheme may rep-
resent a highly important task in the execution of finite element analysis, especially if a
non-linear material behaviour is considered.

In 4-node quadrilateral finite elements, such as the one shown in fig. 2.1, two numerical
integration schemes can be generally identified; the full integration scheme (FI), referred
to the use of a 2⇥ 2 quadrature, and the reduced integration scheme (RI), referred to the
use of 1 ⇥ 1 quadrature. To discuss the e↵ects of the numerical integration scheme used
in the sti↵ness matrix evaluation, the 4-node quadrilateral element of fig. 2.1 is studied
with both FI and RI scheme herein.

(0, 0)

y

x

(0, 1) (1, 1)

(1, 0)

Figure 2.1. 4-node quadrilateral finite element

2.2.1 Full integration (FI)

In a canonical formulation of a 4-node quadrilateral , eq. 2.1 is evaluated with a FI scheme.
Assuming an elasticity modulus of E = 2000 MPa, a Poisson’s ratio of ⌫ = 0.20 the sti↵-
ness matrix is approximated through a 2⇥ 2 quadrature, K(4) (eq. 2.2). Hereinafter, the
subscript in parentheses indicates the number of integration points used to compute the
corresponding matrix.

The deformation modes (eigenvectors) and its associated sti↵ness matrix (eigenvalues)
obtained by the solution of the characteristic equation for the four-point sti↵ness matrix
(eq. 2.3) are shown in figure 2.2. In this homogeneous linear equation, I8 is an eight-
order identity matrix, � is the eigenvalue and � its corresponding eigenvector for which
K(4)� = ��.
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K(4) =

2

66666666664

972.2 312.5 �555.6 �104.2 �486.1 �312.5 69.4 104.2
312.5 972.2 104.2 69.4 �312.5 �486.1 �104.2 �555.6

�555.6 104.2 972.2 �312.5 69.4 �104.2 �486.1 312.5
�104.2 69.4 �312.5 972.2 104.2 �555.6 312.5 �486.1
�486.1 �312.5 69.4 104.2 972.2 312.5 �555.6 �104.2
�312.5 �486.1 �104.2 �555.6 312.5 972.2 104.2 69.4

69.4 �104.2 �486.1 312.5 �555.6 104.2 972.2 �312.5
104.2 �555.6 312.5 �486.1 �104.2 69.4 �312.5 972.2

3

77777777775

(2.2)

(K(4) � �I8)� = 0 (2.3)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2. Sti↵ness matrix deformation modes obtained with FI

The first three are rigid-body modes (figs. 2.2a to 2.2c) for which the strain energy, Ue

is zero. Modes from figs. 2.2d and 2.2e are the known as linear-strain or bending modes
(Ue > 0). The last three are constant-strain modes (figs. 2.2f to 2.2h) with Ue > 0.
There are 5 eigenvectors associated to a non-zero eigenvalue, thus, the rank of the sti↵ness
matrix K(4) is 5.

2.2.2 Reduced integration (RI)

Evaluating eq. 2.1 through RI considering the same parameters employed before with FI,
a one-point sti↵ness matrix, K(1), is obtained (eq. 2.4).

11
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K(1) =

2

66666666664

729.2 312.5 �312.5 �104.2 �729.2 �312.5 312.5 104.2
312.5 729.2 104.2 312.5 �312.5 �729.2 �104.2 �312.5

�312.5 104.2 729.2 �312.5 312.5 �104.2 �729.2 312.5
�104.2 312.5 �312.5 729.2 104.2 �312.5 312.5 �729.2
�729.2 �312.5 312.5 104.2 729.2 312.5 �312.5 �104.2
�312.5 �729.2 �104.2 �312.5 312.5 729.2 104.2 312.5
312.5 �104.2 �729.2 312.5 �312.5 104.2 729.2 �312.5
104.2 �312.5 312.5 �729.2 �104.2 312.5 �312.5 729.2

3

77777777775

(2.4)

The characteristic equation, (K(1) � �I8)� = 0, is also solved in order to obtain the
deformation modes of the K(1) sti↵ness matrix. From fig. 2.3, it can be observed that
the last three modes correspond to the so called constant-strain modes (figs. 2.3f to
2.3h), for which the corresponding strain energy, Ue, is greater than zero, regardless of
the integration scheme employed in the numerical sti↵ness matrix evaluation. However,
for the first five modes (figs. 2.3a to 2.3e) Ue = 0, but they are not rigid-body modes.
These modes are called spurious or hourglass modes, due to because of their physical
configuration when the assemblage of elements is performed (see fig. 1.2a). Therefore, the
rank of the sub-integrated sti↵ness matrix is 3, in contrast to the fully integrated sti↵ness
matrix which is 5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3. Sti↵ness matrix deformation modes obtained with RI

In table 2.1 a comparison of the deformation modes for a 4-node quadrilateral finite el-
ement, computed with both FI and RI, are included. In this table, it can be seen that
the 5 spurious modes, that appeared when RI is used, replace the 3 constant deformation
modes and 2 linear deformation modes that are generated when using IC. Therefore, to
take advantage of the use of IR it is necessary to control this numerical inconsistency by
a stabilization procedure.

12



2.3 Stabilization procedure

In this dissertation, a stabilization procedure, mathematically based on the one-point
sti↵ness matrix rank recovery, was studied, validated and applied. This stabilized reduced
integration (SRI) scheme is described in the following sections.

Table 2.1. Comparison of a 4-node quadrilateral element deformation modes obtained with
both FI and RI

Integration Integration Sti↵ness matrix Deformation Strain energy,

scheme points, i rank, R(Ki) modes Ue

FI 4 R(K4) = 5

3 constant-strain modes Ue > 0

2 linear-strain modes Ue > 0

3 rigid-body modes Ue = 0

RI 1 R(K1) = 3 3 constant-strain modes Ue > 0

5 spurious modes Ue = 0

2.3 Stabilization procedure

The method for controlling the hourglass e↵ect developed by Belytschko et. al. (1986;
1991; 1984; 1981) is based on the addition of a stabilizer sti↵ness matrix, Kstab, to the
K(1) sti↵ness matrix. This method was selected as a starting point of the proposal of this
dissertation due to that the following advantages (Amezcua, 2016):

• The possibility of using coarser meshes because of the improvement of the strain-
energy representation of the linear-strain modes.

• The proved computational cost reduction in both linear and non-linear analysis.

• The successful control of the hourglass e↵ect.

• The computational e�ciency of the numerical implementation since no complex
numerical procedures are required in the stabilizer sti↵ness matrix computation.

2.3.1 Formulation

From a mathematical point of view, the Kstab matrix, for which R(Kstab) = 2, controls the
hourglass e↵ect due to the rank recovery from 3 to 5 of K(1) matrix, through the addition
of the neglected terms when RI is used (eq. 2.5). An important remark is that this Kstab

addition only a↵ects the hourglass modes, transforming them into rigid-body modes, with
Ue = 0, and linear-strain modes, with Ue > 0 (see table 2.1).

K = K(1) +Kstab = t ABT
(1)

CB(1)

| {z }
K(1)

+Kstab (2.5)

In this equation, A is the area of the quadrilateral element, B(1) is the strain-displacement
matrix evaluated in one integration point and, C is the constitutive matrix. Consequen-
tially, Kstab is computed through the eq. 2.6 in which Bstab stands for the stabilizer
strain-displacement matrix (eq. 2.7).

13



2. REDUCED INTEGRATION IN THE FEM

Kstab = t

Z

A
BT

stabCBstab dA (2.6)

Bstab =

2

4
h,x �1 0 h,x �2 0 h,x �3 0 h,x �4 0
0 h,y �1 0 h,y �2 0 h,y �3 0 h,y �4

h,x �1 h,x �1 h,x �2 h,x �2 h,x �3 h,x �3 h,x �4 h,x �4

3

5 (2.7)

In eq. 2.7, h is the product of the natural coordinates, h = ⇠ ⌘ and a comma preceding a
lower-case subscripts denotes partial di↵erentiation with respect to the global coordinate
system, x and y. Also, �1, �2, �3 and �4 are the components of the hourglass shape vector,
�, defined in the work of Flanagan and Belytschko (1981). By algebraic procedures applied
to the integral of eq. 2.6 and the definition of eq. 2.7, an expression for the computation
of the Kstab is obtained (eq. 2.8).

Kstab = t


k1 � �T

k3 � �T

k3 � �T
k2 � �T

�
(2.8)

where:

k1 = C11Hxx + C33Hyy (2.9a)

k2 = C11Hyy + C33Hxx (2.9b)

k3 = (C12 + C33)Hxy (2.9c)

Here, the Cij terms are elements of the plane-stress or plane-strain constitutive matrix, C,
or for a certain assumed material strain behaviour according to Belytschko and Bindeman
(1991). In the original procedure, Kstab is computed by means of numerical integration,
since the Hxx, Hyy and Hxy terms in eq. 2.8 are obtained by the eq. 2.10 (Belytschko and
Bachrach, 1986). Therefore, when a non-linear analysis is performed, the iterations for
the approximation of stresses are evaluated at the considered integration points, e.g., four
integration points if a FI scheme is used. In the above-mentioned papers, it is demonstrated
that this method successfully controls the hourglass e↵ect and also allows the possibility,
in some cases, of using coarser meshes (see Amezcua, 2016).

Hxx =

Z

A
h
2

,x dA (2.10a)

Hyy =

Z

A
h
2

,y dA (2.10b)

Hxy =

Z

A
h,x h,y dA (2.10c)

Therefore, when Kstab is computed through numerical integration, it is necessary to use
a 2 ⇥ 2 Gauss-Legendre quadrature in order to numerically evaluate the terms Hxx, Hyy

and Hxy of eqs. 2.10, otherwise, if RI is used, these become null terms. This implies that
the sti↵ness matrix and, consequently, the strains and stresses are approximated at all
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2.3 Stabilization procedure

four integration points corresponding to a 2 ⇥ 2 quadrature. However, in this work, an
analytical integration of the expressions of eq. 2.10 is performed, in order to obtain an
analytical expression for Kstab. Thus, the stabilized sti↵ness matrix and, consequently,
the strains and stresses are approximated in only integration point corresponding to a
1⇥ 1 quadrature. Changing the integration domain of the expressions in eqs. 2.10 to that
of the natural coordinate system, the following equations were obtained:

Hxx =

Z
+1

�1

Z
+1

�1

h
2

,x |J| d⇠ d⌘ (2.11a)

Hyy =

Z
+1

�1

Z
+1

�1

h
2

,y |J| d⇠ d⌘ (2.11b)

Hxy =

Z
+1

�1

Z
+1

�1

h,x h,y |J| d⇠ d⌘ (2.11c)

Through algebraic procedures, it may be demonstrated that h,x and h,y can be computed
using the following equations:

h,x = � 4

�
(y↵1 ⇠ � y↵3 ⌘) (2.12a)

h,y =
4

�
(x↵1 ⇠ � x↵3 ⌘) (2.12b)

where:

↵T
1 =

⇥
�1 1 1 �1

⇤
(2.13a)

↵T
2 =

⇥
1 �1 1 �1

⇤
(2.13b)

↵T
3 =

⇥
�1 �1 1 1

⇤
(2.13c)

Also, in eq. 2.12, � is a function of the natural coordinates and three constant terms
(�1, �2 and �3) that are dependent of the element geometry in global coordinates through
x = [x1 x2 x3 x4] and y = [y1 y2 y3 y4] vectors, (eqs. 2.14 and 2.15). It can be
inferred that the x and y vectors define the order of the expressions to be analytically
integrated, and therefore, the complexity of this task.

� = �1 + �2 ⇠ + �3 ⌘ (2.14)

�1 = (x↵1) (y↵3)� (x↵3) (y↵1) (2.15a)

�2 = (x↵1) (y↵2)� (x↵2) (y↵1) (2.15b)

�3 = (x↵2) (y↵3)� (x↵3) (y↵2) (2.15c)
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2. REDUCED INTEGRATION IN THE FEM

2.3.2 Mathematical validation

The formulation presented in section 2.3.1 was applied to the same 4-node quadrilateral
element, studied with FI and RI, and a stabilized sti↵ness matrix is computed (eq. 2.16).
Additionally, the deformation modes were obtained (fig. 2.4). From this figure, it can be
stated that the first three modes, such as those obtained when FI is used, correspond to
rigid body motions (figs. 2.4a to 2.4c), for which the corresponding strain energy is zero,
Ue = 0. The subsequent two are linear-strain or bending modes (figs 2.4d and 2.4e), with
Ue > 0. Finally, the last three modes are those of constant strain (figs. 2.4f to 2.4h), in
which Ue > 0. As this sti↵ness matrix, computed by SRI, is composed of five modes with
nonzero strain energy, i.e. linearly independents, the matrix rank is 5, as well as when the
sti↵ness matrix is obtained by means of FI.

K =

2

66666666664

972.2 312.5 �555.6 �104.2 �486.1 �312.5 69.4 104.2
312.5 972.2 104.2 69.4 �312.5 �486.1 �104.2 �555.6

�555.6 104.2 972.2 �312.5 69.4 �104.2 �486.1 312.5
�104.2 69.4 �312.5 972.2 104.2 �555.6 312.5 �486.1
�486.1 �312.5 69.4 104.2 972.2 312.5 �555.6 �104.2
�312.5 �486.1 �104.2 �555.6 312.5 972.2 104.2 69.4

69.4 �104.2 �486.1 312.5 �555.6 104.2 972.2 �312.5
104.2 �555.6 312.5 �486.1 �104.2 69.4 �312.5 972.2

3

77777777775

(2.16)

Accordingly, this SRI scheme correctly augments the rank of the one-point sti↵ness matrix
by the addition of an analytical expression of the Kstab matrix.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.4. Sti↵ness matrix deformation modes obtained with SRI
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2.3.3 Numerical implementation

To apply this SRI formulation to models representing structural engineering problems, it
is necessary to perform a numerical implementation in a computer environment. For this
purpose, the non-linear finite element program FEAP (Taylor, 2017) was selected. This
user routine implemented follows the algorithm of the flowchart in fig. 2.5. It should be
noted that the main di↵erences, compared to the original method, are the following:

• In this routine, no numerical integration procedure are required to calculate the
stabilizer sti↵ness matrix, Kstab. Instead, the analytically integrated expression of
Kstab is numerically evaluated. Therefore, the stabilized sti↵ness matrix is composed
of the contribution of one integration point and the contribution of the analytical
integration.

• After computing the displacements, d, the deformations are calculated with the eq.
2.17.

"(1) = Bd (2.17)

• For a linear problem, the stresses are calculated directly with the eq. 2.18.

�(1) = C "(1) (2.18)

• For non-linear problems, three di↵erent constitutive model are considered for both
validation and application purposes.

2.4 Validation examples

To validate the use of the SRI scheme, linear, eigen and non-linear analysis were performed
in order to validate and to discuss the performance of the SRI scheme. Also, a comparison
with experimental data is included in this section.

2.4.1 Linear analysis

First, the Cook’s Membrane problem was selected (Cook, 1974). This problem is widely
used by several authors to validate their developments due to the fact that its analyti-
cal solution for a linear analysis is known. For example, in the work of Fredriksson and
Ottosen (2004) this problem was used as a numerical example to show the e�ciency of
a reduced integration technique for the 4-node quadrilateral element and, in the work of
Flores (2016), was used to apply a proposal for the hexahedral solid-shell elements. In
fig. 2.6, the geometric characteristics and the boundary conditions of such membrane are
shown.

For analyzing the membrane, a Young’s modulus E = 1000 MPa, Poisson’s ratio ⌫ = 0.33
and an applied load P = 1000 N at the free end were considered. This P load has a
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Start

One-point sti↵ness matrix
K(1)

Analytical stabilizer sti↵ness matrix
Kstab

Stabilized sti↵ness matrix
K = K(1) +Kstab

Strains
"(1) = Bd

Constitutive model
(plasticity and plastic-damage)

Residual
R

R ⇡ 0
Stresses

�(1) = C "(1)

End

True False

Figure 2.5. User routine flowchart implemented in FEAP (Taylor, 2017)

parabolic distribution, as shown in fig. 2.6. Five meshes were built, with 2, 4, 8, 16 and 32
4-node quadrilateral elements at the end where the load is applied. A plane-stress problem
was analyzed with FI, RI and with the SRI schemes.

Convergence analysis to the analytical solution of the strain energy, for each mesh men-
tioned above, is included in figure 2.7. From this figure, it can be observed a change in
the convergence direction when using RI. Hence, it can be concluded that while in FI
the larger the number of elements, the more flexible is the membrane, in RI the opposite
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2.4 Validation examples

occurs. According to Cook et al. (1989), the use of reduced numerical integration tends to
soften the elements because the higher-order polynomial terms do not contribute to the
strain energy, i.e., some of the more complicated modes o↵er less resistance to deforma-
tion. Also, when applying the SRI scheme, the convergence direction is the same as in
FI. An acceptable solution is reached with SRI in comparison with FI. Additionally, it is
important to keep in mind that the SRI scheme is faster in computing-time terms for a
mesh-to-mesh comparison. Although the computing time reduction in this example is not
significantly attractive, it may be more attractive for non-linear cases, especially when the
problem involves large computational processes.

44.0mm

16.0mm

48.0mm

P

Figure 2.6. Cook’s membrane geometry and boundary conditions
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Figure 2.7. Cook’s membrane convergence to analytical solution in strain energy
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2. REDUCED INTEGRATION IN THE FEM

2.4.2 Algebraic eigen-value problem

Furthermore, an eigen-analysis of this membrane was carried out, the same mechanical
properties used in the linear analysis were considered. The characteristic equation of the
global sti↵ness matrix, (KG � �I)� = 0, was solved, employing FI, RI and SRI, in order
to compare the obtained deformation modes. The first and second deformation modes of
the 16-element mesh of the membrane are plotted in figs. 2.8 and 2.9, respectively.

For comparing these graphs, the same factor scale was used. Similarly to the original
stabilization scheme, the former figures show a notable resemblance in the deformed con-
figuration and an evident hourglass e↵ect control, which is more noticeable at the free end
of the membrane and at the vertical lines of the mesh.

(a) (b) (c)

Figure 2.8. Cook’s membrane first deformation mode obtained with (a) FI, (b) RI and (c)
SRI

(a) (b) (c)

Figure 2.9. Cook’s membrane second deformation mode obtained with (a) FI, (b) RI and
(c) SRI

2.4.3 Non-linear analysis

As previously mentioned, this SRI scheme is aimed to be applied in non-linear problems
in which the required computational cost is substantially high in comparison to a linear
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problem. Accordingly, it is essential to validate the proposal through its application in
non-linear analysis.

Four validation examples are included in this section. The examples were analyzed employ-
ing plasticity constitutive models with the Von Mises and Drucker and Prager yield criteria.
These constitutive models are used only for comparing the results obtained through both
FI and SRI numerical integration schemes.

2.4.3.1 Cook’s membrane

As well as in the last two analysis (linear an eigen-analysis), Cook’s membrane was used
to validate the performance of the SRI scheme for non-linear analysis. Displacements
were imposed at the free end to reduce convergence problems. Two meshes, A and B,
composed of 64 and 1024 4-node quadrilateral elements, respectively, were built to show
the advantages of the SRI scheme.

(a) (b)

Figure 2.10. Cook’s membrane: (a) mesh A and (b) mesh B

When analyzing the plane-stress problem, the mechanical properties of table 2.2 were
considered. The non-linear material behaviour was simulated employing the algorithm
proposed by Simo and Taylor (1986). In this elastoplastic constituve model for plane
stress, a non-linear isotropic hardening and the Von Mises yield criterion are considered.
The non-linear mathematical problem was approximated through the application of the
modified Newton-Raphson method, imposing a 10 mm displacement at all the free-end
nodes. Both meshes, A and B, were analyzed with the previously described FI and SRI
scheme. Von Mises stress distributions at the end of the analysis for both schemes and
meshes are displayed in fig. 2.11. Here, it can be noted that the stress distribution is
similar in both integration schemes, especially in the zones where the considered yield
stress was reached.

Table 2.2. Mechanical parameters considered in the analysis of the Cook’s membrane

Elasticity modulus Poisson’s ratio Yield strength

E = 2000 MPa ⌫ = 0.20 Y0 = 0.50 MPa

In fig. 2.12 it is included the resulting reaction-displacement diagrams and are highlighted
some intermediate states of the analysis for which its Von Mises stress distributions can
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1.1880E+01
1.5345E+01
1.8811E+01
2.2276E+01
2.5742E+01
2.9207E+01
3.2673E+01
3.6138E+01
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5.0000E+01

8.4146E+00

(a)

1.2528E+01
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(b)
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5.0000E+01

1.0422E+00

(c)

5.0158E+00
9.1052E+00
1.3195E+01
1.7284E+01
2.1373E+01
2.5463E+01
2.9552E+01
3.3641E+01
3.7731E+01
4.1820E+01
4.5909E+01
4.9999E+01

9.2647E-01

(d)

Figure 2.11. Von Mises stress distribution at the end of the analysis for mesh A with (a)
SRI and (b) FI; and for the mesh B with (c) SRI and (d) FI

be seen in fig. 2.13. Based on this figures certain remarks can be addressed. First, the
results from the SRI scheme are similar to those from FI. Nevertheless, the computing time
employed with SRI decreased considerably, due to the evaluation at a unique integration
point. Second, when comparing a specific mesh, the greater the number of elements, the
better the concordance of results from both schemes. Third, the approximated behaviour
of the mesh A through SRI are closer than those obtained by FI for the mesh B. Fourth,
the approximation reached with SRI for mesh A represents an 86.03 % decrease of the
computational cost with respect to that of the FI scheme applied to mesh B, i.e., approx-
imately 7.16 times faster (fig. 2.14).

The latter observation is the most attractive advantage of the implementation of SRI
approach to non-linear problems. As the computational cost required for analyzing this
type of problems is proportional to the number of elements, and the number of integration
points thereof, within the mesh, the analysis is faster. The main impact of the reduction
of the computational cost is the possibility of using sophisticated constitutive models,
such as those involving plastic-damage (Oller et al., 1988), which are of great interest for
practical engineering applications and not just for research purposes. Even though, the
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Figure 2.12. Reaction-displacement diagram of the Cook’s Membrane

(a) (b) (c)

(d) (e) (f)

Figure 2.13. Six intermediate analysis states of Von Mises stress distribution for mesh B

with SRI at displacement of (a) 0.3 mm, (b) 2 mm, (c) 3 mm, (d) 4 mm,(e) 5 mm and (f) 7
mm
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Figure 2.14. Computing time comparison for the non-linear analysis of the Cook’s
membrane

real solution of a non-linear problem may be generally unknown, such as that from fig.
2.12, a finite element approximation of it closely approaches to what may be considered
as a real solution when su�ciently fine meshes are used. Hence, a comparison between
both numerical integration schemes should be su�cient for validating the approximation
proposed.

2.4.3.2 Shear wall with openings

This masonry wall was tested by Bono et al. (1998) and studied with Rigid Block Models
by Orduña (2003). The wall is 5800 mm long and 3600 mm high. It has two door open-
ings of 1000 ⇥ 2200 mm2. For the masonry, the mechanical properties of table 2.3 were
assumed. These mechanical properties were proposed according to the Complementary
Technical Standards of the Mexico City Building Regulations (GDF, 2004). A consti-
tutive model based on the Von Mises yield criterion was used (Simo and Taylor, 1986).
Two meshes, named A and B, were built with 1,284 and 5,140 4-node quadrilateral finite
elements, respectively (fig. 2.15). A 50 mm displacement was imposed on all nodes at the
top of the wall.

The reaction-displacement diagrams for each mesh analyzed with FI and SRI are included
in fig. 2.16 and, in the figs. 2.17a to 2.17f, the evolution of the Von Mises Stress distribution
is showed. In this example, observations analogous to those pointed out in the Cook’s
membrane validation example with non-linear behaviour can be stated. In this case, the
maximum di↵erence between the approximated results using SRI (mesh A) and FI (mesh
B) is 1.05% and the computing time reduction is 86.44%, which is 7.4 times faster (fig.
2.18).

Table 2.3. Mechanical parameters considered in the analysis of the shear wall

Elasticity modulus Poisson’s ratio Yield strength

E = 1750 MPa ⌫ = 0.20 Y0 = 3.50 MPa

In the fig. 2.19 the approximated distribution of the Von Mises stresses by FI and SRI
with the meshes A and B are compared. A clear similarity can be seen in all of them.
However, as mentioned above, the computational cost using SRI is significantly lower than
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(a) (b)

Figure 2.15. Shear wall with openings: (a) mesh A and (b) mesh B
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Figure 2.16. Reaction-displacement diagram of the shear wall with openings

(a) (b) (c)

(d) (e) (f)

Figure 2.17. Six intermediate analysis states of Von Mises stress distribution for mesh B

with SRI at displacement of (a) 5 mm, (b) 10 mm, (c) 15 mm, (d) 20 mm,(e) 25 mm and
(f) 35 mm
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Figure 2.18. Computing time comparison for the non-linear analysis of the shear wall with
openings

that of FI. It is known that the Von Mises yield criterion is not suitable for modelling the
mechanical behaviour of materials such as masonry since these materials have di↵erent
compressive and tensile strengths. Nevertheless, the objective of this example is to com-
pare the computing time of FI and SRI integration schemes and not to compare with
experimental tests. In the section 2.4.4 and in chapter 4 a comparison with experimental
results is performed and widely discussed.
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Figure 2.19. Von Mises stress distribution for mesh A with (a) SRI and (b) FI; and for the
mesh B with (c) SRI and (d) FI
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2.4.3.3 Monastery of São Vicente de Fora

This monastery, founded in 1147 by D. Alfonso Henriques, was built on one of the east
hills of the city of Lisbon, in Portugal. The Lisbon earthquake of 1755 caused serious
damage to the church and the monastery (Correia et al., 2007). Because of the history
behind this building and its architectural beauty, there is a high interest in guaranteeing
its structural safety, especially when subjected to future seismic events.

The monastery is mainly structured by columns and arches of stone blocks joined with
mortar. In the European Laboratory for Structural Assessment (ELSA), located at Ispra,
Italy, many experiments were performed on a full-scale model of a monastery section that
includes three columns, two arches and two semi-arches (Pegon et al., 2001). A photograph
of the experimental model is included in fig. 2.20.

Figure 2.20. Full-scale model at the ELSA Laboratory (Pegon et al., 2001)

Several researchers have used the results of these experiments in order to validate or to
apply numerical models, that were proposed for simulating the masonry behaviour as a
structural material, for example Orduña et al. (2007) and Giordano et al. (2002). In this
work, these results were also used, comparing them to those obtained using the SRI scheme
in the next section. In this section, only comparisons between FI and SRI schemes are
discussed. The geometry used for the finite element mesh was consistent with the full-scale
model (fig. 2.20). The model was 7450 mm high and 10800 mm long. The three columns
were spaced 3600 mm to each other with a rectangular section 800 mm wide and 910 mm
deep. The arches were 1250 mm high.

Two meshes were built, while the mesh A is made up of 1,323 elements, the mesh B has
5,352 elements (fig. 2.21). The constitutive model based on the Von Mises yield criterion
propsed by Simo and Taylor (1986) was used. The mechanical parameters for the material
are summarized in table 2.4.

Table 2.4. Mechanical parameters considered in the analysis of the arcade

Elasticity modulus Poisson’s ratio Yield strength

E = 1000 MPa ⌫ = 0.20 Y0 = 0.10 MPa

Displacements of 50 mm were imposed on all the top nodes of the arcade. The reaction-
displacement diagrams are shown in fig. 2.22 for both meshes analyzed with both FI and
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(a) (b)

Figure 2.21. Arcade of the Monastery of São Vicente de Fora: (a) mesh A and (b) mesh B

SRI. In this example, observations can be made analogous to those pointed out in the
previous examples (Cook’s membrane and shear wall with openings). In this case, the
maximum di↵erence between the approximated results by SRI (mesh A) and by FI (mesh
B) is 1.42% and the reduction in computing time is 85.90% which is 7.1 times faster (2.23).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Horizontal displacement (mm)

B
a
s
e
r
e
a
c
t
io
n
(
k
N
)

FEM-FI (mesh A)

FEM-SRI (mesh B)

FEM-FI (mesh A)

FEM-SRI (mesh B)

Figure 2.22. Reaction-displacement diagram of the arcade
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Figure 2.23. Computing time comparison for the non-linear analysis of the arcade

In fig. 2.24 can be seen the distribution of Von Mises stresses obtained for the four analyzed
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cases. A clear similarity between the stress states for both cases can be observed, especially
in the areas where the yield stress is reached.
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Figure 2.24. Von Mises stress distribution for mesh A with (a) SRI and (b) FI; and for the
mesh B with (c) SRI and (d) FI

2.4.3.4 Typical colonial church of Puebla, Mexico

Additionally, a typical facade of a colonial church of Puebla, Mexico, was selected as
another validation example. The purpose of this example is to compare the results numer-
ically approximated by both FI and SRI. This facade is part of the scaled model tested by
Chávez (2010) at the Institute of Engineering of the National Autonomous University of
Mexico. The model was built using the construction techniques and materials accordingly
to the period of time in which this kind of churches were built. A photograph of the
experimental set-up of the model is shown in fig. 2.25.

As in the validation examples analyzed in the preceding subsections, the finite element
method within SRI scheme was employed to numerically approximate the behaviour of the
church facade. Following a macro-modelling approach, the mesh was proposed according
to the geometry of the experimental model, shown in fig. 2.25. As in the previous exam-
ples, a strain-energy convergence test was carried out to select a good enough mesh density,
and only 4-node quadrilateral elements were used so that the SRI scheme could be applied.

In this example, a plasticity constitutive model, based in the yield criterion developed
by Drucker and Prager, was used. This model accurately describes pressure-sensitive
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Figure 2.25. Experimental model of a typical colonial church of Puebla, Mexico (Chávez,
2010)

materials like concrete, masonry and soils. The mechanical parameters of the masonry,
as homogenized material, were selected from the experimental test results reported in the
work of Chávez (2010) (Table 2.5). In a first step, an eigenvalue analysis was performed
in order to obtain the modal shapes of the facade. The first modal shape was used to
create a displacement pattern that was imposed in the second step of the analysis, so that
a possible deformed shape of the structure was simulated. The first three modal shapes
of the facade are included in fig. 2.26.

Table 2.5. Mechanical parameters considered in the analysis of the church’s facade

Elasticity modulus Poisson’s ratio Tensile strength Compressive strength

E = 471 MPa ⌫ = 0.20 �t = 0.49 MPa �c = 3.9 MPa

(a) (b) (c)

Figure 2.26. First three modal shapes of the facade

Here, three classical deformation modes of church facades can be identified. The main
objective of this example is to demonstrate the e�ciency of the numerical method proposed
and how the solution for the aimed problems can be correctly computed using this proposal.
Even though the lack of experimental results of this model to compare with the numerically
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calculated using the SRI scheme, from the results shown in the reaction-displacement curve
obtained from this analysis, fig. 2.27, it can be stated that the behaviour of the facade was
coherent with the observations of the experiment. As a reference this figure also shows the
results of the FI approximation. As it may be observed there is a high similarity of both
curves for this mesh density; however, the computing time required by the SRI scheme is
lower than that of the FI scheme (fig. 2.28).

0 0.5 1 1.5 2 2.5 3 3.5
0

25

50

75

100

125

150

Displacement (mm)

B
as
e
re
ac
ti
on

(k
N
)

FEM-SRI
FEM-FI

Figure 2.27. Reaction-displacement numerically approximated curves
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Figure 2.28. Computing time comparison for the non-linear analysis of the church’s facade

2.4.4 Experimental data

In order to validate the SRI scheme, through a comparison against experimental data, this
section includes two non-linear validation examples of masonry specimens which include
a comparison with experimental data.
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2.4.4.1 Wall panel

The test results of four single-leaf masonry wall panels, tested in the Heavy Structures
Laboratory (Sarhosis, 2011), were used in this example. These wall panels, named as S1,
S2, S3 and S4, were built to represent an external wall containing window openings. All
panels were built with a row of bricks disposed vertically above the aperture, as shown in
fig. 2.29 (Giamundo et al., 2014). According to the test description, each wall panel was
subjected to a single vertical incremental load applied to a steel spreader plate placed in
the upper central part of the wall (see fig. 2.29). This load was applied monotonically,
and the central deflection was recorded at each load increment, so that the results could
be compared to a numerical approximation.

665 mm 665 mm2025 mm

450 mm

225 mm

450 mm

Applied Load

Figure 2.29. Wall panel tested in Heavy Structures Laboratory (Giamundo et al., 2014)

Following a macro-modelling approach, the mesh was proposed according to the geometry
of the experimental model. Only 4-node quadrilateral elements were used so that the
SRI scheme can be applied. A strain-energy convergence test was carried out to select a
good enough mesh density (fig. 2.30). A plasticity constitutive model, based in the yield
criterion developed by Drucker and Prager, was used. The mechanical parameters of the
masonry component materials were selected from the experimental test report (Sarhosis,
2011) (table 2.6).

Figure 2.30. Mesh employed in the analysis of the wall panel

Table 2.6. Mechanical parameters considered in the analysis of the wall panel

Elasticity modulus Poisson’s ratio Tensile strength Compressive strength

E = 111 MPa ⌫ = 0.15 �t = 0.05 MPa �c = 0.60 MPa

Both SRI and FI were used to analyze the non-linear problem. In fig. 2.31 the numeri-
cally approximated and experimental reaction-displacement curves are shown. From this
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figure, it can be noted that the behaviour approximated by both integration schemes are
similar to the results of three of the four tested specimens as the results of the specimen
S1 were discarded due to construction issues (Sarhosis, 2011). This similarity is especially
noticeable in the approximation of the load and displacement in which the yield state was
started. Additionally, in fig. 2.32 a comparison in the computing-time required in the
analysis for each integration scheme is included.

In fig. 2.33 are included six intermediate states of principal stresses of the analysis. These
states are also indicated in fig. 2.31. The contours included in fig. 2.33b, corresponding
to a 0.144 mm of deflection, where selected since is the displacement when the plastic
deformation started to appear. This result is comparable with the reported by Giamundo
et al. (2014) as the first crack deflection in the experiments which are included in table
2.7.
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Figure 2.31. Reaction-displacement experimental and approximated curves
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Figure 2.32. Computing times for the non-linear analyses of the wall panel

In fig. 2.34 a comparison of the FEM-SRI analysis against the numerical approximation
obtained by Giamundo et al. (2014) through a micro-modelling approach is included. Here,
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(a) (b) (c)

(d) (e) (f)

Figure 2.33. Six intermediate analysis states of principal stresses with SRI at displacement
of (a) 0.112 mm, (b) 0.144 mm, (c) 0.240 mm, (d) 0.512 mm,(e) 0.704 mm and (f) 1.08 mm

Table 2.7. Experimental results for first cracking (Giamundo et al., 2014)

Panel ID First crack load First crack deflection

S1 1.60 kN 0.15 mm

S2 1.60 kN 0.10 mm

S3 1.71 kN 0.12 mm

S4 0.72 kN 0.08 mm

it can be seen that the zones where the principal stresses are high (fig. 2.34a) coincide
with the smeared crack patterns (fig. 2.34b). Additionally, the damage observed un the
wall panels at the end of the experiments are included in fig. 2.35.

(a) (b)

Figure 2.34. Comparison between (a) the principal stresses distribution obtained with SRI
and (b) smeared crack patterns numerically approximated by Giamundo et al. (2014)

(a) (b)

Figure 2.35. Damage observed in the experiment (Giamundo et al., 2014)
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2.4.4.2 Arcade of São Vicente de Fora

The experimental results of the full-scale model of an arcade of the monastery (fig. 2.20),
numerically analyzed en section 2.4.3.3, were used in this section. According to Pegon
et al. (2001), the test model was built using materials and constructions techniques simi-
lar to the original structure. The test set-up is shown schematically in fig. 2.36. In order to

Post-tensioning bars

Actuator C

Actuator H

Actuator L

Actuator R

Loading Frame

Figure 2.36. Test set-up of the model (Ambrosetti, 2000)

simulate the complete structure interaction, post-tensioning bars were confining the upper
part of the specimen. Also, seven constant loads were imposed in the top of the model,
simulating the presence of the upper levels. Furthermore, these vertical loads were useful
to guarantee the stability of both experimental and numerical procedures. The seismic
excitations were simulated by means of the imposition of incremental lateral loads, equally
distributed to all the upper part of the full-scale model, through a loading frame. The test-
ing program consists on several experiments such as the initial dynamic characterization,
pseudo-dynamic and cyclic tests (Pinto et al., 1998). Therefore, the ultimate displacement
of the experimental results, used in this work, was selected in order to guarantee that the
specimen, after retrofitting, is still capable to complete such testing program. Accordingly,
the numerical simulation was carried out with this ultimate displacement imposition. Two
meshes were built, mesh A and mesh B, composed by 2161 and 7446 4-node quadrilateral
finite elements, respectively (fig. 2.37). The numerical analysis was divided into two steps

(a) (b)

Figure 2.37. Meshes employed in the analysis: (a) mesh A and (b) mesh B

(figs. 2.38). In the first one, the e↵ects of the vertical loads, such as the self-weight of the
arcade and the columns from upper levels, were computed (fig. 2.38a). In a second step,
lateral displacements were imposed all along the top-arcade elements in order to simu-
late the post-tensioning bars of the full-scale model (fig. 2.38b). A plasticity constitutive
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model, based in the yield criterion developed by Drucker and Prager, was used. The me-
chanical parameters of the masonry were selected from the experimental test report (Table
2.8). Figure 2.39 shows the reaction-displacement curves of the experimental results and
its numerical approximation employing both SRI scheme for mesh A and the FI scheme
for mesh B.

50 kN 400 kN 100 kN 400 kN 100 kN400 kN 50 kN

(a)

30mm

(b)

Figure 2.38. Analysis steps: (a) vertical loads and (b) lateral displacements

Table 2.8. Mechanical parameters considered in the analysis of the arcade

Elasticity modulus Poisson’s ratio Tensile strength Compressive strength

E = 10500 MPa ⌫ = 0.20 �t = 2.65 MPa �c = 30.75 MPa
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Figure 2.39. Experimental and numerical displacement-reaction curves

The curves of fig. 2.39 depict the evolution of the base shear forces with the lateral
displacements imposed to the numerical model. From this figure, some remarks can be
stated: (i) experimental and numerical curves, show similar behaviour, regardless the
integration scheme employed, (ii) the results aproximated through SRI and mesh A are
closer to the reported in the experiment than the ones computed through FI and the
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mesh B, and (iii) the yield displacement and the ultimate base reaction approximated
with the SRI scheme have 5% of di↵erence when compared to the experiment. These
results obtained show the e�ciency of the proposed SRI scheme for solving non-linear
structural problems. The approximation reached with SRI for mesh A represents an 84.65
% decrease of the computational cost with respect to that of the FI scheme applied to
mesh B, i.e., approximately 6.51 times faster (fig. 2.40). The adopted constitutive model,
used to reproduce the masonry behaviour, could be the cause of some di↵erences between
both curves, such as those on the total energy related to each one. Furthermore, the local
hardening shown by the experimental results at 4 mm and 13 mm of lateral displacement
was not reproduced by the numerical model. Six di↵erent intermediate analysis states of
the maximum principal stresses distribution at several displacements are included in figs.
2.41a to 2.41f.
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Figure 2.40. Computing times for the non-linear analyses of the Arcade of São Vicente de
Fora

(a) (b) (c)

(d) (e) (f)

Figure 2.41. Six intermediate analysis states of principal stresses distribution with SRI at
displacement of (a) 0.3 mm, (b) 3 mm, (c) 4 mm, (d) 6 mm,(e) 15 mm and (f) 22.5 mm
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In fig. 2.42a the final state of the analysis can be observed and compared to the reported
in experiments (fig. 2.42b). In this figures, it can be seen that the the regions where the
highest principal stresses are numerical approximated match with the cracks reported in
the experiment (Ambrosetti, 2000).

(a) (b)

Figure 2.42. Comparison between (a) the principal stresses distribution obtained with SRI
and (b) damage observed in experiment at displacement of 30 mm (Ambrosetti, 2000)
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Chapter 3

Non-linear behaviour of masonry

3.1 Introduction

In this chapter, computational aspects for modelling the non-linear mechanical behaviour
of masonry are widely discussed. This discussion starts with discretization strategies of the
masonry and, also, with a general description of the constitutive modelling for masonry
as a structural material.

Moreover, the formulation of a constitutive model, based on the theories of plasticity and
damage, suitable for cohesive-frictional materials, such as masonry and concrete, is studied
and numerically implemented within the program FEAP (Taylor, 2017). Several debug-
ging and validation tests were included along this chapter. These examples were analyzed
employing the SRI scheme studied in the chapter 2.

In order to apply a complete and computationally e�cient strategy for analyzing ma-
sonry structures, a homogenization strategy is described and numerically implemented.
As well as in the numerical implementation of the constitutive model some debugging and
validation examples were included in this section.

3.2 Numerical analysis of masonry by FEM

As mentioned in the introduction of this dissertation, the structural analysis of masonry
constructions is a complicated task due to their irregular geometry and to the complex
mechanical behaviour of masonry as a structural material. Nowadays, there are strategies
for analyzing this type of problems, for example the Rigid Block Models, which consists on
the modelling a structure as a set of rigid blocks interacting through their plane interfaces
(Orduña, 2017). Also, the FEM, which solves the issue of an irregular geometry through
the discretization of the structure into an ensemble of elements of simpler geometry. As
this method requires the implementation of constitutive models to simulate the mechanical
behaviour of masonry, its application involves a high computational cost in order to have
a good enough approximation of the global performance of complex structures. Hence,
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3. NON-LINEAR BEHAVIOUR OF MASONRY

any strategy that reduces this computational cost is attractive to structural engineers.

3.2.1 Modelling strategies

The behaviour of masonry is highly dependent of the mechanical properties of its com-
posing materials and, also, of the geometrical arrangement of them. For this reason, is
important to know the behaviour of the units and the mortar by testing them separately
and arranged as masonry. Consequently, masonry can be numerically modeled through
two di↵erent approaches: micro- and macro-modelling. Whilst in the micro-models the
units, the mortar, and the unit/mortar interface are discretized separately, in the macro-
models masonry is treated as a unique composite material (Lourenço, 1996).

According to Lourenço (1996), micro-models are, probably, the best tool available to un-
derstand the behaviour of masonry. This is especially obvious when the main interest lays
in the study of the local behavior of a masonry specimen, since all the di↵erent failure
mechanisms are captured in this type of models. Moreover, since the units and the mortar
are discretized separately, the behaviour of each material can be approximated through
di↵erent constitutive models ad hoc to each one. Therefore, in micro-models is essential
to know the mechanical properties of the units and the mortar independently.

In spite of the high sophistication level of the micro-models, they can be classified in
detailed and simplified. In the detailed micro-models, the units and mortar in the joints
are represented by continuum elements whereas the unit-mortar interface is represented
by discontinuous elements (fig. 3.1); and in the simplified micro-models, expanded units
are represented by continuum elements whereas the behaviour of the mortar joints and
unit-mortar interface is lumped in discontinuous elements (Lourenço, 1996).

Element (mortar)

Discontinous

element (interface)

Element (mortar)

Discontinous

element (interface)

Unit

Mortar

Element (unit)

Figure 3.1. Detailed micro-modelling strategy for masonry

The main drawbacks of the micro-models is the high computational cost required for car-
rying out an analysis, and for building the mesh, avoiding all the compatibility issues,
e.g., pre-process stage. This is specially inconvenient when the structure to be analyzed
is considerably large in size, which is common in the massive masonry structures.

As mentioned above, in the macro-models, the masonry is idealized as an unique homo-
geneous material in spite of its heterogeneous nature (fig. 3.2). Thus, the application of
macro-models usually relies on the use of homogenization techniques. These techniques
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are formulated to capture the behaviour of an isolated portion of the masonry, as an het-
erogeneous material, in the constitutive formulation of a new homogenized material. Some
techniques for the homogenization process of masonry existing in the literature are those
presented by Page (1978), Pietruszczak and Niu (1992), Anthoine (1995), Lourenço (1996)
and López et al. (1998).

Unit

Mortar Element (composite)

Figure 3.2. Macro-modelling strategy for masonry

Accordingly, the pre-process in macro-models is much more easier than in micro-models.
Additionally, regarding the possibility of using macro-elements, i.e., big portions of the
structure which contains both mortar and units indistinctly, this strategy is computation-
ally optimal for analyzing large-sized structures. Nevertheless, it should be taken into
consideration that its application is focused for those analysis in which the objective is to
study the global behaviour of the specimen and, for local behaviour analysis, micro-models,
as mentioned above, are the best tool.

3.2.2 Mechanical behaviour

It is well known that the compressive strength of masonry is high in comparison to its
tensile strength. Accordingly, the cracking is commonly caused by tensile stresses that
are produced for di↵erent patterns of lateral loads, such as the ones generated for seismic
movements (López et al., 1998). Therefore, those constitutive models based on yield cri-
teria that consider a di↵erent strength for tension and for compression are ideal to model
the masonry, e.g., Mohr-Coulomb and Drucker-Prager yield criteria.

According to Oller (2001), a constitutive model is a mathematical formulation capable of
describing the macroscopic physical behaviour of an ideal solid, which results from apply-
ing simplifying hypotheses to a real solid. Hence, the formulation of constitutive models
only represents a reality conditioned by certain simplifying hypotheses and consequentely
their use must be carried out accordingly.

In the academic literature, the constitutive models are classified depending on the theories
in which are based. Thus, generally, there are constitutive models based on the elastic-
ity, plasticity or damage theory. The suitability of the application of each type of model
depends on the material and/or the considered loading conditions of the analysis. Nev-
ertheless, as stated above, these models are aimed to idealized materials, e.g, materials
that can be perfectly modeled with certain constitutive model, but not to real materi-
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als. Therefore, in order to have a good enough approximation of the behaviour of real
materials, constitutive models which combine more than one theory become attractive.

3.3 Plastic-damage constitutive model

In the case of masonry, as a cohesive-frictional material, i.e., those whose behaviour de-
pends on the angle of internal friction and exhibit the phenomenon of dilatancy (Oller,
2001), a constitutive model, which combines both plasticity and damage theories is op-
timal. Accordingly, in this research, the plastic-damage constitutive model proposed by
Oller et al. (1988) and Lubliner et al. (1989) is used. Initially, this constitutive model was
formulated for concrete (Oller, 1991), but in the work of López et al. (1998) was partic-
ularized for masonry. This particularization is essentially based on adjusting the domain
of the yield function so that it adequately represents the values of the angle of internal
friction and the ratio of tensile and compressive strengths for a given material.

3.3.1 Formulation

For describing a certain constitutive model formulation is important to establish the sim-
plifying hypotheses on which it is based. Some of the most relevant hypotheses that Oller
(2001) stated for this plastic-damage constitutive model are the folllowing:

• The permanent deformations of the cohesive-frictional material, i.e. plastic defor-
mations, can be interpreted as micro-cracks.

• The material can present a volume change behaviour, which can be identified as the
dilatancy phenomenon, during the inelastic stage.

• The strength of the material evolves with the evolutionary process of loading, i.e.
tension-tension, tension-compression and compression-compression.

• During the entire process of loading there is a continuous and increasing degradation
of sti↵ness.

The formulation of the constitutive model is based on a extension of the basic principles
of the theory of plasticity, reinterpreting its fundamental variables. For example, from the
classic hardening variable the plastic-damage variable is formulated as an internal variable
(Oller, 2001).

3.3.1.1 Internal variables ("p, p y c)

This plastic-damage constitutive model uses in its definition three internal variables that
are grouped in a vector q defined in eq. 3.1.

q =

⇢
"p

q↵

�
=

8
<

:

"p


p

c

9
=

; (3.1)
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3.3 Plastic-damage constitutive model

Here, "p, the fundamental internal variable, is the plastic deformation, p is the plastic-
damage variable and c is the cohesion of the material. The plastic-damage variable is
treated as a dimensionless variable that varies from 0 to 1, 0  

p  1. As expected, when

p = 0 there is no plastic damage and p = 1 represents total damage for certain point of

the solid which can be interpreted as total loss of strength and, from a physical point of
view, as a dismemberment of the mass, i.e., physical discontinuity (Oller, 2001).

The cohesion is also treated as a magnitude that evolves with the plastic-damage variable.
At the start of the analysis, when p = 0, an initial cohesion is defined as an input param-
eter for the material. Accordingly, a final cohesion is defined for p = 1 corresponding to
a totally damaged material, c = 0 (Oller, 2001). Each of these variables evolves according
to certain law (eq. 3.2).

q̇ =

8
<

:

"̇p

̇
p

ċ

9
=

; ⌘ �̇ ·H = �̇ ·

8
>>>>><

>>>>>:

@G

@�

h :
@G

@�

hc · h :
@G

@�

9
>>>>>=

>>>>>;

⌘

8
<

:

"̇p

h : "̇p

hc · h : "̇p

9
=

; (3.2)

In this equation, G is the plastic potential criterion and the terms hk and hc are a second
order tensor and a scalar function respectively, which depend on the current state of the
elastic deformations and the rest of the internal variables (Oller, 2001). From the above,
it can be observed that the fundamental internal variable is the plastic deformation, "p,
since the remaining variables depende on it (kp and c). Also, � is the plastic consistency
parameter which is computed and verified through the radial return algorithm described
in the work of Oller (1991) (see fig. 3.5).

3.3.1.2 Plastic yield criterion (F)

The plastic yield criterion of this plastic-damage constitutive model can be mathematically
expressed as the following equation:

F(�, c) = f(�)� c = 0 (3.3)

where f(�) is the plastic yield function that depends of the components of stress tensor,
�, and c is the cohesion defined above as a internal variable. In this research, the Mohr-
Coulomb yield function, modified by López et al. (1998), is used (eq. 3.4).

f(�) =
I1

3
K3 +

p
J2


K1 cos ✓ �K2

sin ✓ sin�p
3

�
(3.4)

Here, I1 y J2 are the invariants of the volumetric and deviatoric part of the stress tensor;
✓ is the Lode’s angle; � is the angle of internal friction (for masonry: 30�  �  35�); and
the constants K1, K2 and K3 that are computed using eq. 3.5.
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K1 =


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2
� 1� ↵R

2
sin�

�
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
1 + ↵R

2
� 1� ↵R

2

1

sin�

�

K3 = K2 sin�

(3.5)

Constants K1, K2 y K3 work as a setting parameter so that the value of the ratio of tensile
and compressive strengths is the desired one for the masonry, while maintaining the angle
of internal friction in the common domain of the masonry.

3.3.1.3 Angle of internal friction (�)

According to Oller (2001), in fragile materials with high initial cohesion, such as masonry,
it is possible to use a constant and maximum internal angle of friction during the whole
plastic process without this leading to unsatisfactory results in the approach of multidi-
mensional problems. Nevertheless, in this plastic-damage constitutive model the angle of
friction can be also defined as an internal variable through a evolution law that depends
on the elastic-plastic process.

3.3.1.4 Angle of dilatancy ( )

Commonly, the so called angle of dilatancy is an appropriate parameter to asses the phe-
nomenon of dilatancy, i.e. the apparent change in inelastic volume due to plastic distortion
e↵ect, that is present in frictional materials, such as masonry. This angle represents the
relationship between the increase in plastic volume and plastic distortion. In this plastic-
damage constitutive model, the dilatancy is controlled using a non-associated plasticity,
which means that the plastic yield function is di↵erent from the plastic potential function,
F(�,q) 6= G(�) (Oller, 2001).

3.3.1.5 Hardening plastic parameter (A)

According to the theory of plasticity, there are two types of hardening: isotropic and kine-
matic. The isotropic hardening corresponds to a homothetic transformation of the yield
surface either expansion or contraction, i.e, istropic elastic-plastic process with harden-
ing or softening, respectively (fig. 3.3a). On the other hand, the kinematic hardening is
represented through a translation movement of the yield surface (fig. 3.3b) (Olivella and
de Saracibar, 2002).This plastic-damage constitutive model is formulated to consider both
isotropic and kinematic hardening through the plastic hardening parameter, A (eq. 3.6).

A = �ck
@F

@⌘
:
@G

@�| {z }
Kinematic

+h h :
@G

@�| {z }
Isotropic

(3.6)
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Figure 3.3. Yield surface transformation considering: (a) isotropic hardening and (b)
kinematic hardening (Oller, 2001)

Regarding the kinematic hardening, ⌘ is the variable of kinematic plastic hardening, which
is included in the modified Mohr-Coulomb yield function: f(��⌘) (eq. 3.4). The isotropic
hardening is considered through the plastic hardening function K(p) which depends on
the plastic-damage variable, p. Therefore, in the most general case, the yield criterion
can be written as in the following equation (eq. 3.7) (Oller, 2001).

F(�,q) = f(� � ⌘)�K(p) = 0 (3.7)

3.4 Numerical implementation

In order to apply the formulation of the plastic-damage constitutive model briefly de-
scribed along the chapter, it is required to perform a numerical implementation. According
to this dissertation objectives, the implementation was carried out through the proposed
SRI scheme for the FEM. Therefore, the computational environment selected for the nu-
merical implementation is the non-linear analysis program FEAP (Taylor, 2017), since
the SRI scheme was also implemented in this program. This software allows the edition
of user routines to include certain constitutive model.

In general terms, the implemented user routine follows the steps summarized in the fig.
3.4. Particularly, for the integration of the constitutive equation which corresponds to the
step number 3 in the diagram of fig. 3.4, an iterative process is required to calculate the
increment of the plastic consistency parameter, ��, which projects, to the yield surface,
the stress prediction that is initially outside of it, i.e., plastic step. This radial return
algorithm for the implicit integration process is summarized in the fig. 3.5.

Additionally, a flow diagram of the plastic-damage constitutive model implementation in
the program FEAP (Taylor, 2017) is included in fig. 3.6. The flow diagram starts when
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3. NON-LINEAR BEHAVIOUR OF MASONRY

an increment of displacement, �d, is imposed to the structure, i.e., step of the non-linear
analysis. A trial stresses are computed assuming that the material remains elastic and,
then, this assumption is reviewed by the evaluation of the yield condition. This evaluation
allows the classification of the step as either elastic or plastic.

1. Computation of the stress prediction for the current time, t + �t. Here, the
equilibrium iteration is represented by i, and the convergence counter starts at
k = 1

i
k�1

[�]t+�t = C :
�
[✏]t+�t � i�1[✏p]t+�t

�

i
k�1

[q]t+�t = i�1[q]t+�t
(3.8)

2. Evaluation of the plastic yield condition

a. If F(ik�1
[�]t+�t

,
i
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�
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(3.9)

3. Integration of the constitutive equation
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4. Update of the internal variables and the constitutive tangent tensor with the new
stress state
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5. k = k + 1 and returns to step 2

Figure 3.4. Plastic-damage constitutive model algorithm (Oller, 2001)
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1. Computation of the plastic consistency parameter, ��, for the internal integra-
tion algorithm iteration j

��j =
F(ik�1

[�]t+�t
,
i
k�1

[q]t+�t)
i
k�1

At+�t + i
k�1

T t+�t
(3.12)

2. Calculation of the plastic deformation sub-increments, �"pj

�"pj = ��j ·
@G

@�j
(3.13)

3. Computation of the stress sub-increments due to plastic deformations calulcated
in the previous step (corrections), ��j

��j = C : �"pj (3.14)

4. Update of the total increase of plastic deformation, �"p, the total increase of
stress, ��, and the corrected stresses, i

k[�]
t+�t

�"p = �"p + �"pj

�� = �� � ��j

i
k[�]

t+�t = i
k�1

[�]t+�t +��

(3.15)

5. If F(ik�1
[�]t+�t

,
i
k�1

[q]t+�t) ⇡ 0 the algorithm ends, else j = j + 1 and returns
to step 1

Figure 3.5. Radial return algorithm for the implicit integration of the constitutive equation

3.5 Debugging tests

One of the most time-consuming stages required for programming an algorithm is the
debugging process, especially in large or complex algorithms as the that of the plastic-
damage constitutive model described above. In this phase, several test must be carried
out in order to detect code errors and, consequentially, to solve them. Also, these tests
are useful to make comparison between the obtained results with the expected ones. The
following tests, among others, were carried out to debug the numerical implementation of
the plastic-damage constitutive model.

3.5.1 Behaviour tests

First, the algorithms described in the section 3.4 were implemented in the program MAT-
LAB (MathWorks, 2019) to obtain the stress-strain characteristic curve of this constitu-
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Figure 3.6. Flow diagram of plastic-damage constitutive model implementation in FEAP
(Taylor, 2017)
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3.5 Debugging tests

tive model. For this purpose, incremental one-dimensional deformations were imposed at
compression and tension and the corresponding stresses were computed. The resulting
stress-strain curves are shown in fig. 3.7 for both tension and compression.
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Figure 3.7. Plastic-damage constitutive model behaviour test: (a) to compression y (b) to
tension

In addition to these curves, the evolutions of the internal variables of plastic damage, p,
and cohesion, c, were obtained. These evolutions are shown in fig. 3.8. Here, it can be seen
how the plastic damage variable grows from 0 to 1, as the plastic deformation increases,
and the cohesion of the material degrades from its initial value to 0, as expected.
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Figure 3.8. Evolution of the internal variables: (a) plastic-damage variable, p, and (b)
cohesion, c

These tests were useful to state that the behaviour of the implemented algorithm is the
expected one, so the mathematical expressions, derived from the ones stated in the for-
mulation of the plastic-damage constitutive model, can be assumed as correct (see fig.
3.11).
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3.5.2 Behaviour tests with SRI scheme

As a second step, the plastic-damage constitutive model was implemented in FEAP (Tay-
lor, 2017) following the flow diagram of fig. 3.6. This implementation was coded to be
applied through the SRI scheme, proposal of this thesis. Accordingly, special care was
taken in order to guarantee the compatibility with the element user routine implemented
for the SRI scheme.

3.5.2.1 Unidimensional test

The debugging process of the implemented user routine started with the analysis of an
unidimensional problem. For this purpose, a mesh, composed by a single 4-node quadri-
lateral finite element, was built with the restraints shown in fig. 3.9. Displacements, �,
were imposed on this element in horizontal direction, as indicated in fig. 3.9, in such a
way that tension and compression behaviour were generated. The analysis was carried out
with a null value of Poisson’s ratio, ⌫ = 0 , with mechanical properties that are usual for
masonry and employing the SRI scheme. One of the curves obtained, corresponding to a
tension behaviour, is shown in fig. 3.10. In this figure it can be seen that the approxi-
mated behaviour is the expected one for a tension displacement imposition, i.e., the shape
of the curve correspond to the one established in the formulation of the plastic-damage
constitutive model (fig. 3.11).

�

�

Figure 3.9. 4-node quadrilateral finite element porposed for the unidimensional test
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Figure 3.10. Unidimensional tension test
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Figure 3.11. Transformation of the uniaxial strength measured in laboratory to the
uniaxial strength employed in the plastic-damage constitutive model (Oller, 2001): (a)

uniaxial strength in function of plastic deformation, (b) uniaxial strength in function of the
plastic damage variable and (c) the cohesion depending of the plastic damage variable

3.5.2.2 Bidimensional test

Additionally, a mesh composed of 4 quadrilateral finite elements of linear approxima-
tion was built (fig. 3.12). The SRI scheme, proposed in this research, was also used
in these tests. The material behaviour was approximated employing the plastic-damage
constitutive model considering the mechanical paramters of table 3.1 and, also a tensile-
compressive strength ratio �c/�t = 8 and an ultimate compressive strain "c = 1.25.

Figure 3.12. Proposed mesh for the behaviour tests with the SRI scheme

The modified Newton-Raphson method was used for the numerical approximation of the
non-linear problem. To analyze the proposed problem positive vertical, negative vertical
and lateral positive displacements were imposed on all the upper nodes of the mesh shown
in fig. 3.12, so that the generated behaviour corresponded to tension, compression and
shear, respectively.
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Table 3.1. Mechanical parameters considered for the bidimensional test

Elasticity modulus Poisson’s ratio Angle of friction Compressive strength

E = 2000 MPa ⌫ = 0.20 � = 0.60 �c = 50 MPa

The reaction-displacement diagrams obtained for tension and compression are shown in
figs. 3.13a and 3.13b. In these diagrams, it can be seen that the numerically approximated
behaviours are consistent with the expected ones (see fig. 3.11). It is worth mentioning
that no convergence problems were presented due to the simplicity of the analyzed prob-
lems. Furthermore, fig. 3.13c contains the reaction-displacement diagram for the positive
lateral displacement imposition. According to the uniaxial curves of 3.11, it can be stated
that the shear behaviour is mostly governed by tension.
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Figure 3.13. Displacement-reaction diagram of the 4-element mesh for (a) tension, (b)
compression and (c) shear displacements impositions

Additionally, in the figs. 3.14a and 3.14b are included the states of the plastic-damage
variable and cohesion corresponding to the last step of the incremental shear displacements
imposition, respectively. In these figures the influence of the plastic-damage variable on
the degradation of the cohesion of the material can be observed. This is consistent with the
degradation of the material reflected in the downward branch of the reaction-displacement
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curve of fig. 3.13c.
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Figure 3.14. State of the internal variables at the end of the analysis (shear displacement
imposition): (a) plastic-damage variable and and (b) cohesion

3.5.2.3 Internal variables evolution

In this section, an additional example to show the influence of the plastic-damage variable
on the degradation of the cohesion of the masonry, is included. For this example, a mesh
with 420 4-node quadrilateral finite elements was built and analyzed using the SRI scheme
studied in this dissertation. Lateral displacements were imposed on the upper nodes of
the mesh to simulate the behaviour of a wall under lateral loads. The fig. 3.15 includes
the numerically computed reaction-displacement diagram.
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Figure 3.15. Displacement-reaction diagram

Additionally, fig. 3.16 includes the states of the plastic-damage variable and the cohesion
of the material corresponding to the last step of the incremental analysis, respectively.
Again, in these figures it is possible to observe the direct influence that the plastic-damage
variable has on the degradation of the cohesion of the material.
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Figure 3.16. State of the internal variables at the end of the analysis: (a) plastic-damage
variable and and (b) cohesion

3.6 Validation (macro-models)

In this research, the use of macro-models is of special interest because the main objec-
tive is to reduce the computational cost of the non-linear analysis of massive masonry
structures. According to Lourenço (1996), the field of application of macro-models is nec-
essarily in large structures, subjected to boundary conditions and loads in such a way that
the global behaviour of the structure is not governed by the local behaviour of the masonry.

Due to the di�culty and high economical cost of testing large specimens, most experiments
available in the literature are small in size (Lourenço, 1996). For this type of experiments,
a macro-modelling strategy is not suitable and the constituent materials of the masonry
must be discretized independently, i.e., micro-modeled.

For this reason, an experiment was selected from a series of tests conducted at the Fed-
eral Institute of Technology in Zurich (ETH Zurich), reported in the works of Lurati and
Thürlimann (1990) and Lurati et al. (1990) (fig. 3.17). Because of their size, these real-
scale experiments are suitable for the validation of macro-models. Additionally, there are
enough reported parameters for the application of the plastic-damage constitutive model.
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The geometry of the specimen is shown in fig. 3.18. This specimen consists of a masonry
wall of 3600 ⇥ 2000 ⇥ 150mm3 and two columns of 150 ⇥ 2000 ⇥ 600mm3. Also, there
is a concrete slab at the top and another one at the bottom of the wall. As usual, the
specimen was initially subjected to vertical loads and then to lateral ones.

Figure 3.17. Experiment of masonry wall conducted at Federal Institute of Technology in
Zurich (ETH Zurich) (Lourenço, 1996)
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Figure 3.18. Geometry of the specimen (dimensions in mm) (Lourenço, 1996)

The first set of experiments were conducted by Ganz and Thürlimann (1984). The selected
wall, calledW1 in the published report, was previously subjected to a vertical load P = 415
kN and then to lateral loads. This W1 wall shows a very ductile behaviour. The reported
mechanical properties of the experiment are included in the table 3.2. Adittionaly, a shear
modulus of Gyx = 1130 MPa were considered.
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Table 3.2. Mechanical parameters reported for the masonry wall

Elasticity modulus Poisson’s ratio Compressive strength Tensile strength

Ex = 2460 MPa ⌫xy = 0.20 �cx = 1.87 Mpa �tx = 0.28 MPa

Ey = 5460 MPa ⌫xy = 0.20 �cy = 7.61 Mpa �ty = 0.005 MPa

In this section, no homogenization technique was employed, so all mechanical properties
used in the analysis were averaged without any specific criteria. In the section 3.8.2.1 this
wall is analyzed employing a homogenization technique. A mesh with 420 4-node quadri-
lateral finite elements was built and analyzed through the SRI scheme. To simulate the
conditions of the experiment, all the upper nodes are vertically restrained. In a first step,
vertical displacements equivalent to the initial vertical load P were imposed. In a second
step, lateral displacements were imposed. The reaction-displacement diagram resulting
from the analysis is shown in fig. 3.19.
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Figure 3.19. Displacement-reaction diagram of the W1 wall

It can be observed that the numerically approximated behaviour is similar to the one
reported for the experiment. However, it can be noticed that the ascending elastic branch
is not well reproduced, which suggests the need to consider a homogenization criterion of
elastic parameters. Also, it can be noted that the gradual yielding is no to well reproduced
in the numerical approximation. Although this experiment does not have a behaviour that
allows the evaluation of the most attractive characteristics of the implemented model,
such as the degradation of the cohesion, it worked for the debugging process of the coded
algorithms. Additionally, the distribution of the so-called Von Mises principal stress at
the end of the analysis is included in fig. 3.20, which is comparable to that reported in
the experiments (fig. 3.21).
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Figure 3.20. Distribution of Von Mises stress at the end of the analysis

Figure 3.21. Damage patterns at the end of the experiment (Lourenço, 1996)

3.7 Homogenization

In this section, the homogenization strategy that was selected, from the academic liter-
ature, to be implemented within the FEAP program (Taylor, 2017) is briefly described.
This implementation was performed in this program so that it can be applied through
the plastic-damage constitutive model and the SRI scheme proposed in this work. Thus,
the complete strategy allows the use of macro-models to economize computationally the
non-linear analysis of massive masonry structures.

In order to have a controlled debugging process, this implementation was performed in
two stages. In the first one, the homogenization of elastic parameters of the masonry
was implemented, completely ignoring the directions of plastic flow of the masonry as a
homogenized material. In a second stage, the complete strategy was implemented, which
includes a homogenized plastic flow.
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3. NON-LINEAR BEHAVIOUR OF MASONRY

3.7.1 Elastic parameters

López et al. (1999) proposed a homogenized model such that its properties intrinsically
contain both geometrical and mechanical properties of the masonry structure from the
basic definition of the constituent materials, i.e., units and mortar.

This model is based on a detailed analysis of the deformation modes of a basic cell which
represents a portion of the usual organized masonry arrangement. López et al. (1999)
highlights two hypotheses that are taken as valid: (i) the height and width dimensions
are large in relation to the thickness of the structural element, ensuring the validity of
the hypothesis of the plane stress of the structure; (ii) the hypothesis of orthotropy of the
masonry is taken as valid. The basic masonry cell used by López et al. (1999) is shown in
fig. 3.22.
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Figure 3.22. Basic masonry cell used for homogenization (López et al., 1998)

In this figure, and hereinafter, the indexes L, M1, M2 and G are associated to the brick,
mortar in the vertical direction, mortar in the horizontal direction and to the global
measures of the basic cell already homogenized, respectively. In addition, l is related to
horizontal lengths, h to vertical lengths and t to thickness.

Four deformation modes are proposed for the geometrical arrangement of the basic unit:

• Mode 1. Tension-compression on the x axis

• Mode 2. Tension-compression on the y axis

• Mode 3. Shear stress on the xy plane

• Mode 4. Deformation field out of the xy plane

Given the acceptance of the plane-stress hypothesis, the out-of-plane xy deformations are
exclusively owing to deformations produced by the Poisson’s e↵ect (López et al., 1999). In
the following lines, the some of the expressions for computing the homogenized mechanical
parameters derived by López et al. (1999) are included as reference.
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3.7 Homogenization

3.7.1.1 Elasticity modulus

The expressions to compute the eleasticity modulus in x, y and z directions are included
in eqs. 3.16, 3.19 and 3.21, respectively.

xEG =
1

xBL
xD

(3.16)

where:
x
D =

lL

xEL lG
+

lM1

xEM1 lG

x
BL =

x
AL lM2 hG

xEM2 hM2

(3.17)

x
AL = xEL xEM1 xEM2 hM1

xEM1 xEM2 hM2 lL +x EL xEM2 hM2 lM1 +x EL xEM1 hL lM2

(3.18)

yEG =
1

y
BL hL

yEL hG
+

hM2

yEM2 hG

(3.19)

where:
y
BL =

y
AL lG hM1

yEM1 hM1

y
AL =

yEL yEM1 lM1

xEM1 lM1 hL +x EL LL hM1

(3.20)

zEG =
1

zBL
zD

(3.21)

where:
z
D =

tL

zEL tG
+

lM1

zEM1 lG

z
BL =

z
AL tM2 hG

zEM2 hM2

(3.22)

z
AL = xEL xEM1 xEM2 hM1

xEM1 xEM2 hM2 tL +x EL xEM2 hM2 tM3 +x EL xEM1 hL tM2

(3.23)

3.7.1.2 Shear modulus

The shear modulus are described by the planes xy, yx, xz, zx, zy and yz in the eqs. 3.24,
3.26, 3.28, 3.30, 3.32 and 3.34, respectively.

xyGG =
1

xy
AL hL

xyGL hG
+

hM2

xyGM2 hG

(3.24)

where:
xy
AL =

xyGL lG

xyGL lL +xy GM1 lM1

(3.25)

yxGG =
1

yx
AL lL

yxGL lG
+

lM2

yxGM2 lG

(3.26)
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where:
yx
AL =

xyGL hG

xyGL hL +xy GM1 hM2

(3.27)

xzGG =
1

xz
AL tL

xzGL tG
+

tM3

xzGM3 tG

(3.28)

where:
xz
AL = xzGL lG

xzGL lL +xz GM1 lM1

(3.29)

zxGG =
1

zx
AL lL

zxGL lG
+

lM1

zxGM1 lG

(3.30)

where:
zx
AL = zxGL tG

zxGL tL +zx GM3 tM3

(3.31)

zyGG =
1

zy
AL hL

zyGL hG
+

hM2

zyGM2 hG

(3.32)

where:
zy
AL =

zyGL tG

zyGL tL +zy GM3 tM3

(3.33)

yzGG =
1

yz
AL tL

yzGL tG
+

tM3

yzGM3 tG

(3.34)

where:
yz
AL =

yzGL hG

yzGL hL +yz GM3 tM2

(3.35)

3.7.1.3 Poisson’s ratio

The poisson’s ratio in the corresponding directions can be summarized in the following
expression:

ij⌫G =
2 ijGGp
iEG jEG

� 1 (3.36)

where i and j are the directions on the x, y and z axes. Thus, substituting the following
equations are obtained:

xy⌫G =
2 xyGGp
xEG yEG

� 1 yx⌫G =
2 yxGGp
yEG xEG

� 1 (3.37)
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xz⌫G =
2 xzGGp
xEG zEG

� 1 zx⌫G =
2 zxGGp
zEG xEG

� 1 (3.38)

yz⌫G =
2 yzGGp
yEG zEG

� 1 zy⌫G =
2 zyGGp
zEG yEG

� 1 (3.39)

3.7.2 Numerical implementation

This strategy was implemented in the FEAP program (Taylor, 2017), within the same
routine of the plastic-damage constitutive model. Special attention was taken in the
compatibility of this implementation with the algorithms already programmed, i.e., the
algorithms for the plastic-damage constitutive mode and the SRI scheme. For this pur-
pose, a new subroutine was added which function is to create the homogenized elastic
constitutive matrix, using the expressions derived by López et al. (1999).

Options were attached within the coded algorithm for the selection of schemes according to
the number of known mechanical parameters of the constituent materials of the masonry,
e.g., mechanical parameters already homogenized or parameters independent for each
constituent material (fig. 3.23).

Algorithm for the SRI scheme

Algorithm for homogenization

of elastic parameters

Homogenized elastic parameters Non-homogenized elastic parameters

Algorithm for the plastic-damage

constitutive model

Figure 3.23. Flow diagram of the algorithms implemented in FEAP (Taylor, 2017)

3.7.2.1 Debugging test

The same set of experiments used in section 3.6 that were carried out at the Federal
Institute of Technology in Zurich (ETH Zurich), see Lurati and Thürlimann (1990) and
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3. NON-LINEAR BEHAVIOUR OF MASONRY

Lurati et al. (1990) (fig. 3.17), were selected for testing the coded algorithm. Also, the
same mesh, employed in the section 3.6, composed of 420 4-node quadrilateral finite ele-
ments was used. In this analysis, the variation of the mechanical elastic parameters of the
masonry according to the x and y directions, is considered by means of the implemented
homogenization criterion. The mechanical parameters are included in table 3.2.

As mentioned above, at this stage, only the elastic parameters were homogenized. There-
fore, in this example, a large enough values of tensile and compressive strengths were
assigned to prevent the masonry from entering in its non-linear range, since the the main
interest is to evaluate the quality in the approximation of the upward elastic branch.
The reaction-displacement diagram obtained by the mentioned analysis is shown in fig.
3.24. Here, it can be seen that the upward elastic branch of the experimental results is
adequately approached.
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Figure 3.24. Displacement-reaction diagram of the W1 wall

3.8 Homogenized plastic flow

For studying the orthotropic behaviour of masonry, once the elastic limit, defined by a
yield function developed for isotropic materials, is exceeded, López et al. (1999) proposed
a strategy based on the Theory of the Mapped Spaces. With this theory, the existence of
an orthotropic space (real) and an isotropic space (fictitious), in which the evolution of
the yield surface is carried out during the analysis, is assumed. This strategy allows the
posibility for employing yield functions originally developed for isotropic materials in the
study of orthotropic ones by applying linear transformations (fig. 3.25).
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Figure 3.25. Schematic representation of the linear transformation for the isotropic an
orthotropic spaces

3.8.1 Transformation spaces

As reference, some of the expressions to transform the di↵erent components of plastic
deformation from isotropic space to the orthotropic one are included (López et al., 1999).
Equations 3.40, 3.42 and 3.44 are derived for the x, y and z directions, respectively. Also,
the eq. 3.45 allows the xy�plane transformation.
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where:
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A
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� = GM1

lM1
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GL lL +GM1 lM1
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GL hG
(3.46)

3.8.2 Numerical implementation

As in the previous stage, this strategy was implemented in the FEAP program (Taylor,
2017), within the same routine of the plastic-damage constitutive model. As in the case
of homogenization of elastic parameters, special care was taken in the compatibility of
this implementation with the algorithm already programmed for the constitutive model.
For this purpose, the previously created subroutine was extended so that, in addition to
building the homogenized elastic constitutive matrix, the transformation of the fictitious
isotropic space to the real orthotropic space was carried out (fig. 3.26).

Algorithm for the SRI scheme

Algorithm for homogenization of

elastic parameters

Homogenized elastic parameters
Non-homogenized elastic

parameters

Algorithm for the plastic-damage

constitutive model

Algorithm for homogenized

plastic flow

Figure 3.26. Flow diagram of the algorithms implemented in FEAP (Taylor, 2017)

3.8.2.1 Debugging tests

The set of experiments carried out at the Federal Institute of Technology in Zurich (ETH
Zurich) by Lurati and Thürlimann (1990) and Lurati et al. (1990) (fig. 3.17), were used
again in this section. The mechanical properties are summarized in table 3.2. In fig. 3.27,
the numerically approximated reaction-displacement diagram is shown and compared to
the experimental results. From this figure, some important observations can be made.
First, similar behaviour is observed between the two curves. Second, there is still a weak
approximation in the gradual yield that occurs in the experiment in comparison to the
numerically approximated yield. Third, it can be concluded that the experiment is not the
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3.8 Homogenized plastic flow

most accurate to highlight the main attractiveness of the model, such as the degradation
of mechanical parameters. Additionally, in the fig. 3.28, the distribution of the principal
strains is included. These results are comparable to those ones of the experiment (see fig.
3.21).
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Figure 3.27. Displacement-reaction diagram of the W1 wall
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Figure 3.28. Distribution of principal strains at the end of the analysis
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Chapter 4

Application through a

plastic-damage constitutive model

4.1 Introduction

In this chapter, two validation examples of the complete proposal of this thesis are in-
cluded. Two types of walls were selected from the set of experiments carried out at the
Eindhoven University of Technology (TU Eindhoven).

In these examples, the numerical implementations performed in the program FEAP (Tay-
lor, 2017) and described in the chapters 2 and 3, i.e. the SRI scheme, the plastic-damage
constitutive model (Oller, 2001) and the homogenization technique (López et al., 1999),
were used.

In each of the following sections, a description of the experiment and the construction
of the numerical model, in order to approximate the obtained experimental results, is
included. Additionally, the results are widely discussed.

4.2 Shear walls (TU Eindhoven)

A series of tests on shear walls carried out by Raijmakers and Vermeltfoort (1992) and
Vermeltfoort and Raijmakers (1993), at the Eindhoven University of Technology (TU
Eindhoven), were selected. In their experiments, shear walls with and without openings
were considered. In this dissertation, both types of walls were analyzed. This experiment
was selected because of its relevance, since these experimental results are widely used
in the literature for validation and calibration of numerical models, e.g., the works of
Lourenço (1996), Pelà et al. (2013), Quinteros et al. (2014), Milani and Bertolesi (2017)
and Zucchini and Lourenço (2009). Also, in the work of Pari et al. (2021) these series
of tests were employed to illustrate the application of a proposal of a interface model for
sequentially linear analysis.
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4.2.1 Shear walls without openings

Initially, the case of shear walls without openings (named J4D, J5D, J6D and J7D) was
studied. These walls were 990 mm wide and 1000 mm high. They were built with 16
active brick courses and two additional courses clamped in steel beams 70 mm high, as
depicted in fig. 4.1. The bricks were made of solid clay with dimensions of 210⇥ 52⇥ 100
mm and joined with 10 mm mortar layers. These specimens were tested for di↵erent
pre-compression loads before starting the application of lateral displacements, �, in a
monotonic increasing manner. The corresponding pre-compression loads were p = 30 kN
for J4D and J5D walls, p = 120 kN for J6D wall and p = 210 kN for J7D wall (Lourenço,
1996; Quinteros et al., 2014). In fig. 4.1 both the geometry of the walls and the steps of
the test are shown.

1000 mm

70 mm

70 mm

990 mm

Steel beam

Clay bricks

Mortar

Steel beam

Pre-compresion load, p

(a)

�

(b)

Figure 4.1. Analysis steps of the shear wall without openings (JD) of TU Eindhoven: (a)
pre-compression loads and (b) lateral displacement

The mechanical properties of the materials used in the construction of these walls are
described in detail in the works of Raijmakers and Vermeltfoort (1992) and Vermeltfoort
and Raijmakers (1993) an summarized by Lourenço (1996). The mechanical parameters
are included in table 4.1 for the bricks and in table 4.2 for the mortar joints. Additionally
to these parameters, an initial cohesion of c = 1.4�t, an angle of internal friction � = 36.9�

and an angle of dilatancy  = 0� were considered for the analysis.

Table 4.1. Mechanical parameters for the bricks considered in the analysis

Elasticity modulus Poisson’s ratio Tensile strength Fracture energy

E = 16700 MPa ⌫ = 0.15 �t = 2.0 MPa GI
f = 0.08Nmm/mm

2

For the numerical model, in order to select the appropriate mesh density, a convergence
analysis was performed. The resulting mesh was composed of 676 4-node quadrilateral
elements arranged in a structured manner. The SRI scheme within the homogenized
plastic-damage constitutive model, described in the previous chapter, was used. As in the
experiment, the analysis of the numerical model consisted of two steps. In the first step,
a pre-compression load of p = 210 kN (corresponding to the J7D wall) was applied, and
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Table 4.2. Mechanical parameters for the mortar joints considered in the analysis

Elasticity Poisson’s Tensile Fracture Compressive Fracture

modulus, E ratio ⌫ strength, �t energy, GI
f strength, �c energy, GII

f

(MPa) (MPa) (N mm/mm
2
) (MPa) (N mm/mm

2
)

0.80
0.15

0.25 0.018 0.16
2.81.00 0.16 0.012 0.16

0.80 0.16 0.012 0.16

in the second step the increasing monotonic displacements, �, were applied (fig. 4.1).

Figure 4.2 includes the comparison of the reaction-displacement curve obtained in the
numerical analysis described in the previous paragraphs against the experimental results
of the J7D wall. From this comparison, it may be observed that the general behaviour
of both curves is similar. A di↵erence is appreciated in a part of the elastic branch
that has been found in other numerical approximations such as that of Lourenço (1996).
Also, it is observed that the magnitude of the highest base reaction is quite similar,
however, it is identified that there is a small di↵erence in the displacement in which it
occurs. Additionally, in the numerically approximated curve of fig. 4.2 are indicated
six intermediate states of the analysis which were selected to show the evolution of the
plastic-damage variable during the analysis (figs. 4.3a to 4.3f).
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Figure 4.2. Reaction-displacement experimental and numerical curves of the J7D wall

Finally, fig. 4.4 contains both the state of the plastic-damage variable and the state
of the cohesion at the end of the numerical analysis. As it may be seen, the analysis
approximates reasonably well the state of the J7D wall at the end of the experiment
reported in Raijmakers and Vermeltfoort (1992) and Vermeltfoort and Raijmakers (1993)
(fig. 4.5).
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Figure 4.3. Six intermediate analysis states of the plastic-damage variable at (a) 0.9 mm,
(b) 1.35 mm, (c) 1.41 mm, (d) 1.50 mm,(e) 1.59 mm and (f) 1.80 mm
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Figure 4.4. Final state of the constitutive model internal variables: (a) plastic-damage and
(b) cohesion
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Figure 4.5. Cracks observed at the end of the experiment on the wall J7D (Lourenço, 1996)

4.2.2 Shear walls with opening

Subsequently, the experimental results of the test of the shear wall with an opening (named
J2G and J3G) were used. These walls were subjected to a pre-compression load of p = 30
kN. The geometry and location of the opening is shown in fig. 4.6. In this figure, it can
be seen that the opening is located from the seventh to the thirteenth row of bricks. The
mechanical properties of the constituent materials were the same as the shear wall without
openings (Raijmakers and Vermeltfoort, 1992; Vermeltfoort and Raijmakers, 1993) (tables
4.1 and 4.2).

Figure 4.6. Geometry of the shear wall with openings of the TU Eindhoven

For the numerical model, as in the previous example, in order to select an appropriate
mesh density, a convergence analysis was performed. The resulting mesh was composed
of 800 4-node quadrilateral elements arranged in a structured manner. To simulate the
non-linear behaviour of the masonry, the same homogenized plastic-damage model was
used. As in the previous case, the analysis was performed in two steps. In the first one,
the pre-compression load was applied (p = 30 kN) and in the second one the lateral dis-
placements were imposed.

Figure 4.7 includes the comparison of the reaction-displacement curves obtained from the
numerical analysis, as described in the previous paragraphs, against the experimentally
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4. APPLICATION THROUGH A PLASTIC-DAMAGE CONSTITUTIVE MODEL

obtained curves for the J2G and J3G walls. Furthermore, the numerical approximation of
this curve obtained by Pelà et al. (2013) was added for comparison purposes. Furthermore,
six intermediate states of the analysis were selected to show the evolution of the plastic-
damage variable (figs. 4.8a to 4.8f).
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Figure 4.7. Reaction-displacement experimental and numerical curves of the J2G and J3G
walls

From this figure, several observations can be made. First, it may be seen that, although
both walls (J2G and J3G) were tested under the same conditions, their results are not
entirely consistent, especially regarding the highest and ultimate reactions. Second, in
the sources consulted in which the results of these experiments are numerically simulated
(Lourenço, 1996; Milani and Bertolesi, 2017; Pelà et al., 2013; Quinteros et al., 2014), it
was found that all these numerical approximations, including the one corresponding to
the present work, were similar to the behaviour of the J2G specimen. Third, the approx-
imated curve in this work coincides quite well with the one approximated by Pelà et al.
(2013). Fourth, an important di↵erence can be seen in the post-yielding zone, since in the
experiment a change in the slope may be appreciated, while this is not the case in the
numerical approximation.

Finally, in fig. 4.9 are included both the state of the plastic-damage variable and the
state of the cohesion at the end of the numerical analysis. It can be seen that the analysis
approximates the state of the J2G and J3G walls at the end of the experiment (Raijmakers
and Vermeltfoort, 1992; Vermeltfoort and Raijmakers, 1993) (fig 4.10).
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Figure 4.8. Six intermediate analysis states of the plastic-damage variable at (a) 0.25 mm,
(b) 0.50 mm, (c) 0.75 mm, (d) 1.00 mm,(e) 1.25 mm and (f) 7.00 mm
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Figure 4.9. Final state of the constitutive model internal variables: (a) plastic-damage and
(b) cohesion

73



4. APPLICATION THROUGH A PLASTIC-DAMAGE CONSTITUTIVE MODEL

(a) (b)

Figure 4.10. Cracks observed at the end of the experiment on the walls (a) J2G and (b)
J3G (Lourenço, 1996)
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Chapter 5

Application through sequentially

linear analysis

5.1 Introduction

As an alternative for applying the SRI scheme proposed in this dissertation, this chapter
describes a method based on sequentially linear analysis (SLA) with saw-tooth softening,
proposed by Rots (2001b and 2004), and aplied to the study of masonry constructions.
This method consists on the execution of multiple linear analysis of the same structure
with sequentially degraded mechanical properties. This strategy was implemented through
the SRI scheme. Additionally, validation and application examples were included in this
chapter. The results obtained with these examples are widely discussed.

5.2 Procedure for proportional loading

According to Rots (2001a), the main focus of the SLA procedure is the study of the fracture
phenomenon in quasi-fragile materials, such as masonry. This procedure approximates the
softening in the corresponding stress-strain curve by a saw-tooth pattern, i.e., saw-tooth
softening law (fig. 5.1). As its name indicates, the ALS procedure consists of performing
a series of analyses in which the behaviour of the material is always linear elastic. For
this purpose, after a linear analysis, the critical element is located and, then, the sti↵ness
of that element is degraded. This procedure is repeated until the elements where it is as-
sumed that cracks will appear are totally degraded. With this sequentially linear model,
the snap-back behaviour, associated with the brittle fracture of masonry, are numerically
reproduced with lower computational e↵ort in comparison to a non-linear analysis.

This procedure starts with the discretization of the structure using solid finite elements.
These elements must be 4-node quadrilaterals, to apply RI thorugh a 1⇥ 1 quadrature in
the elements where damage is assumed to occur. The material behavior is assumed to be
linear elastic in each of the analyses. As initial parameters of the material, to each element

75



5. APPLICATION THROUGH SEQUENTIALLY LINEAR ANALYSIS

a Young’s modulus, E, a Poisson’s ratio, ⌫, and a tensile strength, ft, are assigned. Then,
the following procedure is carried out sequentially (Rots and Invernizzi, 2004):

1. Assign the external load as a reference unit load.

2. Perform a linear-elastic analysis conventionally.

3. From the results, identify the critical element i.e., the element for which the prin-
cipal tensile stress, �t, is closest to its current strength, ft. According to Rots and
Invernizzi (2004), this principal stress-strain criterion is widely accepted in the Mode
I fracture mechanics of quasi-fragile materials.

4. Calculate the scale factor, �, as the current strength divided by the principal tensile
stress of the critical element (eq. 5.1).

� =
ft

�t
(5.1)

5. Calculate the critical global load as the product of the scale factor by the unit load
and, also, its corresponding global displacement, so that a load-displacement curve
can be constructed for the structure.

6. Reduce the Young’s modulus, E, and the tensile strength, ft, of the critical element,
according to a saw-tooth tensile softening stress-train curve as described below (fig.
5.1).

7. Repeat the steps 2 to 6 for the structure for which E and ft of the critical element
were reduced.

8. With all the load-displacement configurations found in the step 5, build the overall
load-displacement curve.

Finally, the deformed mesh must be plotted. According to Rots and Invernizzi (2004),
these graphs reveal the location of the fracture because the series of critical weakened
elements will show the largest strains, representing the width of the crack.

The success of this method depends on the way in which the sti↵ness and strength of the
critical element is progressively reduced. This is the essence of the procedure. In a very
simplified manner, E could be reduced to zero immediately after one element is selected as
a critical element for the first time. However, according to Rots (2001a) this simplification
benefits the mesh dependence of the results.

5.3 Saw-tooth softening law

In this method, the tensile softening stress-strain diagram is defined by the Young’s modu-
lus E, the tensile strength ft, the shape of the diagram and the fracture energy Gf divided
by the crack width h, represented by the area under the diagram (Rots and Invernizzi,
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5.4 Combined procedure of SLA with SRI

2004). Accordingly, for a linear softening diagram, the ultimate strain "u is expressed as
in eq. 5.2.

"u =
2Gf

ft h
(5.2)

In the procedure described in the last section, the softening diagram is reproduced by
consecutive reductions of the Young’s modulus E with eq. 5.3 (Rots, 2001a).

Ei =
Ei�1

a
8i 2 {1, 2, . . . , n} (5.3)

Here, i represents the current tooth in the saw-tooth diagram and a the factor for which
the Young’s modulus of the critical element is reduced. Furthermore, n is the amount
of reductions that are applicable in total to one element until is considered as totally
damaged, i.e., number of teeth in the saw-tooth diagram. To avoid numerical issues, it
is advisable to keep a very low residual value of Young’s modulus, e.g. 10�6 times the
initial Young’s modulus. The reduced tensile strength, fti , corresponding to Ei, is taken
according to the envelope of the softening diagram (eq. 5.4) (Rots, 2001b).

fti = "uEi

✓
D

Ei +D

◆
(5.4)

where:

Ei =
E

ai
D =

ft

"u �
✓
ft

E

◆ (5.5)

Here, D is the tangent to the stress-strain softening diagram. An example of this type
of curve is included in the fig. 5.1 for the mechanical parameters included in table 5.1
considering 10 teeth and a = 2.

Table 5.1. Mechanical parameters considered for the stress-strain diagram of fig. 5.1

Elasticity modulus Poisson’s ratio Tensile strength Fracture energy Crack width

E = 38000 MPa ⌫ = 0.20 ft = 3.0 MPa Gf = 0.06 N/mm h = 5.0 mm

In fig. 1 the formation of teeth in the approximation due to the reduction of the Young’s
modulus is showed. Similarly, the reduction of the tensile strength from its initial value
of 3 MPa to a residual value very close to zero is observed. It should be noted that there
is a clear underestimation by the approximation. This suggests that the result of the
procedure is susceptible, among other factors, to the number of teeth selected.

5.4 Combined procedure of SLA with SRI

In this dissertation, a proposal to combine the SLA procedure with the application of the
SRI scheme, described and validated in chapter 2, is presented. This SLA-SRI procedure
is very attractive to be implemented for the following reasons:
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Figure 5.1. Softening in stress-strain curve (Rots, 2001b)

• As established by Rots (2001b), this SLA strategy obtains good-enough approxima-
tions with coarse meshes. This characteristic is shared with the SRI scheme, for
which enrichment of results for coarse meshes were tested in chapter 2.

• In the original procedure of the SLA, reduced integration, without any stabilization,
was used in the elements where cracking is expected to occur. This means that if
the maximum tensile principal stress is identified at the only one integration point
of certain element in the potential crack path, the sti↵ness and strength of that
critical element is degraded. This characteristic is attractive for the SRI scheme, in
which it is possible to evaluate stresses at a single integration point with numerical
stability. Moreover, all the elements composing the mesh can be integrated through
SRI without numerical issues.

• The study of massive masonry structures, including historic buildings, is form inter-
est in this research. Therefore, the implementation of this SLA strategy, optimized
for the structural analysis of ancient masonry, in conjunction with the SRI scheme
is attractive.

• Both strategies, SLA and SRI, have the focus of being computationally economical
and e�cient. Therefore, by combining them, it is expected to have a strategy that
is practical and e�cient to apply, which o↵ers support for fast decision making to
help preserve historic buildings.

5.4.1 Numerical implementation

For numerical implementation purposes, the programming language Python (Van Rossum
and Drake, 2009) was selected, especially because of its high compatibility with di↵er-
ent operating systems. Furthermore, this language allows analytical integration for the
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5.4 Combined procedure of SLA with SRI

conditions imposed by a particular problem which is attractive for the SRI scheme imple-
mentation. The objective is to have an independent computational tool that allows the
study of problems with this SLA-SRI strategy and that, in addition, can continue to be
developed to expand its applications with new developments such as those mentioned in
the introduction of this dissertation.

A flow diagram that summarizes the coded algorithm is shown in fig. 5.2. In the pre-
processing stage, the GiD program (Rib̊aó et al., 2019) is used. This program is widely
used by both academic and professional community dedicated to perform FEM analysis.
Thus, the required algorithms were developed so that the output file of the GiD program
(Rib̊aó et al., 2019) works directly as an input file for the computational tool developed
in this research. Once all the mechanical parameters of the material are captured, the
corresponding saw-tooth softening curve is computed and the processing stage begins by
executing the SLA procedure. Finally, in the post-processing stage, both the reaction-
displacement diagrams and the deformed mesh configuration at the end of the analysis
are plotted and showed to the user (fig. 5.3).

Create the model for applying ALS-IRE from GiD (Rib̊aó et al., 2019) file

Compute the softening stress-strain curve

Perform a linear-elastic analysis

Identify of the critical element

Compute the load and its corresponding global displacement

Reduce the sti↵ness the critical element

Plot the reaction-displacement curve and the deformed configuration

Next analysis

Figure 5.2. Flow diagram of the implemented algorithm

Figure 5.3. Screen capture of the developed software
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The steps that were performed for this numerical implementation are as follows:

• Development of the required algorithms for the numerical evaluation of the sti↵ness
matrix of a 4-node quadrilateral finite element employing FI, RI and SRI.

• Creation of an script for reading output files of the program GiD (Rib̊aó et al., 2019)
for the construction of the numerical model of a complete mesh.

• Development of a programming routine that allows the imposition of boundary con-
ditions for the solution of a particular problem.

• Elaboration of an algorithm that performs an assembly of a global sti↵ness matrix.

• Elaboration of routines for plotting deformed configurations, stress fields and load-
displacement diagrams.

• Creation of scripts to generate an output file and to write on screen useful information
and partial results to review the status of the analysis.

• Development of the necessary algorithms for the identification of the critical element
after a linear analysis and its subsequent degradation in sti↵ness and strength. In
addition to the calculation of the scale factor to find the overall critical load and
displacement.

• Development of the necessary procedure for the execution of the multiple sequential
analysis required to approach a given problem.

5.4.2 Validation examples

As a validation example, a notched beam studied by Rots (2001a) is analyzed. The ge-
ometry and dimensions of the symmetric notched beam are shown in fig. 5.4.

Initially, the mesh of fig. 5.5 was built. The 4-node quadrilateral finite elements in this
mesh are arranged in such a way that they benefit the beginning of the crack in the notch.
For the SLA strategy, all the elements in the mesh were integrated using a FI scheme,
except for the elements over the depth of the beam which were integrated using RI and,
for SLA-SRI strategy, all elements were integrated using the SRI scheme but only the
elements over the depth of the beam can be selected as critical elements.

175 mm 175 mm150 mm

100 mm 100 mm

50 mm

20⇥10 mm

450 mm

Figure 5.4. Geometry of the notched beam
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Figure 5.5. Mesh employed in the analysis of the notched beam

The mechanical properties were selected according to Rots (2001a) and summarized in
table 5.2. The stress-strain curve and its saw-tooth approximation for these material
properties are included in fig. 5.1 Three di↵erent analysis were performed considering 5,
10 and 20 teeth. Therefore the a factor was taken as 4, 2 and

p
2, for each number of

teeth, respectively. The results, for both SLA and SLA-RI, are shown in figs. 5.6, 5.7
and 5.8. In these figures, as a comparison, a reference curve was added. This curve was
obtained by Rots (1993) from a non-linear softening analysis for a discrete line crack with
the same parameters.

Table 5.2. Mechanical parameters considered in the analysis of the notched beam

Elasticity modulus Poisson’s ratio Tensile strength Fracture energy Crack width

E = 38000 MPa ⌫ = 0.20 ft = 3.0 MPa Gf = 0.06 N/mm h = 5.0 mm
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Figure 5.6. Reaction-displacement diagram for the notched beam (5 teeth)

In these figures, it can be seen that the larger number of teeth, the smother the envelope
of both SLA and SLA-SRI. Also, it can be noted that all the numerical approximations
underestimate the reaction-displacement numerically obtained by Rots (1993), but the
ones approximated by SLA-SRI are slightly closer to it. Finally, all the results were
consistent with the ones computed by Rots (2001a). Additionally, in fig. 5.9 the deformed
configuration of the notched beam is shown.
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Figure 5.7. Reaction-displacement diagram for the notched beam (10 teeth)
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Figure 5.8. Reaction-displacement diagram for the notched beam (20 teeth)

Figure 5.9. Deformed configuration of the notched beam after the SLA-SRI procedure
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5.5 Mesh regularization procedure

5.5 Mesh regularization procedure

From the results obtained in the previous section, it is clear that a mesh regularization
procedure is required to overcome the e↵ect of the mesh sensitivity in the analysis. For this
reason, Rots and Invernizzi (2004) proposed a procedure based on an adjustment factor,
k, that seeks to compensate the underestimation in the area in the saw-tooth softening
diagram (fig. 5.10). According to Rots and Invernizzi (2004), there are three options to
compensate this underestimation through the k factor. In the first one, only the tensile
strength is updated through the k factor (eq. 5.6). As an alternative, instead of updating
the tensile strength, only the ultimate strain is updated (eq. 5.7).

f
⇤
t = k ft (5.6)

"
⇤
u = k "u (5.7)

ft

fti

"i

Ai

"u

n

n� 1

2

1

0

�

"

Figure 5.10. Underestimated area in the softening diagram through the saw-tooth
approximation (Rots and Invernizzi, 2004)

Finally, the third option is to update both parameters, i.e. tensile strength and ultimate
strain, employing both eqs. 5.6 and 5.7. This regularization scheme is shown in fig. 5.11
and the k factor can be obtained with eq. 5.8 (Rots and Invernizzi, 2004). In this equation,
n is the number of teeth considered in the diagram.

k =

s
Gf/hPn�1

i=0

1

2
(f2

ti/Ei) bi
(5.8)

where:

bi =

8
<

:

✓
1� 1

a

◆
, if 0  i < n� 1

1, if i = n� 1
(5.9)
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Figure 5.11. Procedure for compensating the underestimated area in the softening diagram
through the saw-tooth approximation (Rots and Invernizzi, 2004)

5.5.1 Validation examples

The notched beam analyzed in the previous section was selected to be studied with this
regularization procedure (table 5.2). Once again, models with 5, 10 and 20 teeth were
considered, the k factors are equal to 1.35, 1.17 and 1.08, respectively (table 5.3). The
results are shown in figs. 5.12, 5.13 and 5.14 for both SLA and SLA-SRI.

Table 5.3. Adjustment factors, k, for each model

Model Adjustment factor Tensile strength updated Ultimate strain updated

5 teeth k = 1.35 f⇤
t = 4.05 MPa "⇤u = 10.8⇥ 10

�3

10 teeth k = 1.17 f⇤
t = 3.51 MPa "⇤u = 9.36⇥ 10

�3

20 teeth k = 1.08 f⇤
t = 3.24 MPa "⇤u = 8.64⇥ 10

�3
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Figure 5.12. Reaction-displacement diagram for the notched beam (regularized, 5 teeth)
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Figure 5.13. Reaction-displacement diagram for the notched beam (regularized, 10 teeth)
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Figure 5.14. Reaction-displacement diagram for the notched beam (regularized, 20 teeth)

In these figures, it can be noted that the approximations are closer to the numerical
approximation of Rots (1993) than the ones obtained in the previous section with no
mesh regularization procedure, especially in the area under the curve. Nevertheless, there
is an overestimation in the yield reaction and an underestimation in the last part of the
curve. Finally, it can be concluded than the more the number of teeth the closer the
approximation.
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5.6 Application

To apply the SLA-SRI procedure, two application examples were selected. Both examples
were studied by Juárez and Ayala (2010) and are ideal to be modeled with this strategy
since they present a mode I failure. The first one consists of a beam for which its cross-
section is variable and, in addition, have two notches. In the second example, a constant
cross-section beam with a single notch is studied.

5.6.1 Variable cross-section notched beam

The first example consists on a variable cross-section beam with a double notch of 25 mm
length each one, as shown in fig. 5.15. This beam is totally restrained in its left end
and free in the right one in which the displacements are imposed. In the work of Juárez
and Ayala (2010), this beam was analyzed through a non-linear mixed finite element
formulation with an isotropic continuum damage model for the material. The mesh was
built employing only 4-node quadrilateral finite elements so that the SRI scheme can be
applied (fig. 5.16). All the elements in the mesh were integrated using this SRI scheme,
but only the mechanical properties of the elements between the notches can be reduced.

100 mm

25 mm

100 mm 100 mm

200 mm
P , u

Figure 5.15. Geometry of the variable cross-section notched beam (Juárez and Ayala, 2010)

Figure 5.16. Mesh employed in the analysis of the variable cross-section notched beam
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The mechanical properties of the material are the ones of table 5.4 and were selected
according to Juárez and Ayala (2010). For the SLA application, 10 teeth were considered
with a factor a = 2.

Table 5.4. Mechanical parameters considered in the analysis of the variable cross-section
notched beam

Elasticity modulus Poisson’s ratio Tensile strength Fracture energy Crack width

E = 16900 MPa ⌫ = 0.20 ft = 2.4 MPa Gf = 0.3 N/mm h = 5.0 mm

In fig 5.17 the reaction-displacement curves, with no mesh regularization procedure, for
both SLA and SLA-SRI, are shown. Additionally, the curve obtained by Juárez and Ayala
(2010) is also included for comparison purposes. Here, it can be noted a clear similarity
between SLA and SLA-SRI. As expected, both curves underestimate the behaviour numer-
ically approximated by Juárez and Ayala (2010) since no mesh regularization is considered.
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Numerical (Juárez and Ayala, 2010)

Figure 5.17. Reaction-displacement diagram for the variable cross-section notched beam

Additionally, an analysis including the mesh regularization procedure is performed. The
computed k factor is equal to 1.28 and, consequentially, the regularized tensile strength is
3.08 MPa and the regularized ultimate strain is 0.064 (table 5.5).

Table 5.5. Adjustment factor, k

Model Adjustment factor Tensile strength updated Ultimate strain updated

10 teeth k = 1.28 f⇤
t = 3.08 MPa "⇤u = 64⇥ 10

�3

In fig. 5.18 it can be noted that both schemes, SLA and SLA-SRI are closer than the
numerical approximation. The di↵erence in the shape of the curves can be explained by
the fact that the yield of the variable cross-section notched beam is mainly governed by a
pure tensile behaviour, so the shape of the curve approximated through the SLA procedure
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tends to resemble straight line. This suggests the need to employ a non-linear saw-tooth
softening.
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Figure 5.18. Reaction-displacement diagram for the variable cross-section notched beam
(regularized)

Finally, in fig. 5.19 the deformed configuration after the SLA-SRI analysis of the beam is
shown. This is similar to reported in the work of Juárez and Ayala (2010).

Figure 5.19. Deformed configuration of the variable cross-section notched beam

5.6.2 Notched beam

The second application example consists on a notched beam, shown in fig. 5.20, that was
tested by Kormeling and Reinhardt (1983) and numerically analyzed by Juárez and Ayala
(2010). The experimental tests were carried out in the Delft University of Technology and
were aimed to determine the fracture energy of concrete and epoxy modified concrete. For
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this purpose, several specimens, such as the shown in fig. 5.20, were tested (Kormeling
and Reinhardt, 1983).

P

450 mm

100 mm

5 mm

50 mm

Figure 5.20. Geometry of the notched beam (Juárez and Ayala, 2010)

For the analysis through SLA and SLA-SRI, the mesh of fig. 5.21 was built. The mesh is
composed only by 4-node quadrilateral finite elements. The mechanical properties for the
material of table 5.6 were considered. These properties were selected according to Juárez
and Ayala (2010) and Kormeling and Reinhardt (1983). For the SLA application, 20 teeth
were considered with a factor a =

p
2.

Figure 5.21. Mesh employed in the analysis of the notched beam

Table 5.6. Mechanical parameters considered in the analysis of the notched beam

Elasticity modulus Poisson’s ratio Tensile strength Fracture energy Crack width

E = 20000 MPa ⌫ = 0.20 ft = 2.4 MPa Gf = 0.113 N/mm h = 5.0 mm

The reaction-displacement curves, with no mesh regularization procedure, for both SLA
and SLA-SRI, are shown in fig 5.22. For comparison purposes, the curve obtained by
Juárez and Ayala (2010) and the corresponding ones of the experimental tests were in-
cludes. From the results, it can be noted a clear similarity between SLA and SLA-SRI and
with the experimental results. Similarly to the previous example, both curves underesti-
mate the behaviour numerically approximated by Juárez and Ayala (2010) since no mesh
regularization is considered.

In fig. 5.23 the results for a mesh regularization procedure are included. Accordingly,
the k factor is equal to 1.11 and the regularized tension strength is 2.65 MPa and the
regularized ultimate strain is 0.02 (table 5.7).

Table 5.7. Adjustment factor, k

Model Adjustment factor Tensile strength updated Ultimate strain updated

20 teeth k = 1.11 f⇤
t = 2.65 MPa "⇤u = 20⇥ 10

�3
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Figure 5.22. Reaction-displacement diagram for the notched beam
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Figure 5.23. Reaction-displacement diagram for the notched beam (regularized)

From the fig. 5.23, it can be noted that both schemes, SLA and SLA-SRI, are closer than
the numerical approximation also in the non-linear softening of the beam. Nevertheless,
it also can be noted that the SLA approach with no mesh regularization procedure gives a
better fit to the experimental tests. Finally, in fig. 5.24 the deformed configuration after
the SLA-SRI analysis of the beam is shown. This is similar to reported in the work of
Juárez and Ayala (2010)
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Figure 5.24. Deformed configuration of the notched beam
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Chapter 6

Conclusions

In this dissertation, a computationally e�cient integration scheme for the non-linear anal-
ysis of structures was presented. The SRI scheme proposed herein, and applied to the
4-node quadrilateral finite element, successfully controls the hourglass e↵ect by the addi-
tion of an analytically obtained stabilizer sti↵ness matrix to the sub-integrated one. This
scheme allows a one-point constitutive model evaluation that considerably reduces the
computational cost of analysis in comparison to the cost required in a conventional four-
point evaluation. This SRI scheme was validated and applied through a plastic-damage
constitutive model and SLA procedure.

In a first step, the strategy was reviewed at a single element, focusing in the mathematical
issues generated at applying RI, generally leading to a rank-deficient sti↵ness matrix for
the element. The proposed formulation correctly augments the rank of the one-point sti↵-
ness matrix, controls the zero-energy modes, and leads to a better representation of the
linear-strain modes. Furthermore, its application is computationally economic, since no
complex procedures are involved. Even though the numerical implementation of this for-
mulation was only coded in the FEAP program (Taylor, 2017), it may also be successfully
implemented in other software environments as the involved routines and subroutines cre-
ated herein were computationally optimized and adapted to take advantage of the method.

Validation examples were included throughout the document. In these examples, inter-
esting advantages were highlighted and discussed. For example, the considerable com-
putational cost reduction was achieved in comparison with that of the FI conventional
procedure. In fig. 6.1 are summarized the computing time comparison of seven of the
examples studied in this paper. All the times showed in fig. 6.1 correspond to the same
mesh density. It can be noticed an average computing-time reduction of 35.60% in this
comparison. Therefore, it can be concluded that the analysis performed through SRI are
around 1.55 times faster than the ones analyzed using FI for the same mesh. According
to the results showed in chapter 2, this reduction of the computing time does not involve
a loss of quality in the results (figs. 2.12, 2.16, 2.22 2.27 and 2.31). Also in fig. 6.1 is
observed that the reduction is slightly higher when coarser meshes are used.
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Figure 6.1. Computing-time reduction of the presented examples (comparison for same
mesh density)

One of the most attractive advantage, discussed in this paper, for using the SRI scheme,
is the possibility of using relative high coarse meshes in finite element non-linear analysis,
which means an even higher reduction of the computational cost. One reason of this
phenomenon is the improvement in the representation and the strain-energy contribution
of the linear-strain deformation modes. In fig. 6.2 the computing-time reduction of four
examples are included. In this figure, di↵erent mesh density are compared, i.e. coarser
meshes for the SRI scheme and finer meshes for the FI scheme. Here, It can be noticed
an average computing-time reduction of 85.75% in this comparison which means that the
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SRI scheme is around 7 times faster than the FI scheme. Additionally, form figs. 2.12,
2.16, 2.22 and 2.39, it can be stated that this reduction of the computing time does not
involve a loss of quality in the results. As a matter of fact, the results of the SRI scheme
with coarser meshes are slightly better than the ones of FI with finer meshes.
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Figure 6.2. Computing-time reduction of the presented examples (comparison for di↵erent
mesh density)

This reduction in computing-time opens up the possibility of analyzing complex 3D struc-
tures with this SRI scheme as the formulation here presented for 2D structures can be
easily extended to 3D situations where the computational savings are more evident be-
cause the number of required integration points per element are evidently reduced. Also,
taking advantage of the computational-cost reduction, this SRI scheme is attractive to be
applied in dynamic analysis in which the computational demands are high.

In order to apply this SRI scheme to the analysis of masonry structures, a plastic-damage
constitutive model with homogenization was implemented. This numerical implementa-
tion was also performed in the FEAP program (Taylor, 2017) and was optimized for being
applied through the SRI scheme. In chapter 4, two application examples corresponding
to shear walls were analyzed and compared to experimental results. In this examples,
good-enough approximation were achieved regarding the overall behaviour of the shear
walls.

As an alternative, the SRI scheme was also applied through SLA in chapter 5, SLA-SRI.
This alternative was validated and compared to the original procedure of SLA, proving to
be computationally e�cient. The obtained results are comparable to the ones computed
through a robust formulations based on the theory of damage. The program developed
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for the application of this procedure represent a product of this dissertation that can be
used for performing plane-stress analysis of masonry constructions.

One of the most attractive features of this SLA-SRI is the possibility of using the SRI
scheme in all the elements of the mesh and not only in those where damage is assumed
to occur. This may be attractive because of the reduction of computational time and the
possibility of future developments in which di↵erent crack paths can be considered.

Additionally, this SLA-SRI is attractive to be improved with the inclusion of an algorithm
for non-proportional loads and, in addition, with the inclusion of other softening laws, for
example, non-linear behaviour and di↵erent behaviours for tension and compression. This
can expand the field of application of the SLA-SRI strategy and, at the same time, can
improve the quality of the approximation.
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UNAM.

Cook, R. D. (1974). Improved two-dimensional finite element. Journal of the Structural
Division, 100(9):1851–1863.

Cook, R. D., Malkus, D. S., and Plesha, M. E. (1989). Concepts and applications of finite
element method. John Wiley Sons, Ltd.

Correia, J. R., Branco, F. A., and de Brito, J. (2007). Analysis of São Vicente de Fora
church, Portugal. Proceedings of the Institution of Civil Engineers-Structures and Build-
ings, 160(4):187–196.

DeJong, M., Hendriks, M., and Rots, J. (2008). Sequentially linear analysis of fracture
under non-proportional loading. Engineering Fracture Mechanics, 75(18):5042–5056.
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