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Introduccion

El problema de control jerdrquico en ecuaciones diferenciales parciales, inicia con el estudio
de J.L Lions en Hierachical Control [Lio68] del problema de control jerarquico para la ecuacién de
ondas lineal con potencial nulo. En ese trabajo Lions define el rol de dos funciones llamadas lider
y seguidor donde se establece una jerarquia de roles, es decir el control seguidor depende de la
eleccién que se tome del lider. EI control seguidor f estd definido en una porcién de la frontera
del abierto €2 y debe resolver un problema de optimizacién mientras que el control lider v debe de
controlar exactamente la solucién y en un tiempo 7' > T;, donde 7j es un tiempo minimo impuesto
por la condicién geométrica de la ecuacion de onda.

La estrategia de Stackelberg es una idea presentada en la publicacién de 1934 "Market structure
and equilibrium” [VS10] donde Heinrich Von Stackelberg propone el concepto de juego no cooper-
ativo: introduce un rol jerarquico a los participantes donde el jugador lider impone una estrategia
sobre el jugador seguidor que tiene que optimizar la respuesta a dicha estrategia. El problema
de control jerarquico se adapta convenientemente a la idea desarrollada por Stackelberg donde las
funciones control tomaran el papel de participantes y se le asignard un rol a cada uno de ellos.

Uno de los primeros trabajos donde se implementa la estrategia de Stackelberg es en el articulo
"Remarks on hierarchic control." [LCM09] donde se establece la estrategia de Nash- Stackelberg para
un problema de control jerdrquico en regiones con fronteras méviles. En [AFCdS20] se plantea el
problema de control jerdrquico donde el control seguidor cumple la tarea de satisfacer el equilibrio
de Nash para un funcional dado y el control lider debe llevar la solucién y a cero en un tiempo
T >0.

El propésito de este trabajo es presentar algunos resultados de control jerarquico de ecuaciones
parabodlicas e hiperbdlicas. El problema de control jerarquico aborda problemas donde se acttia con
dos controles y estos tienen una jerarquia en sus objetivos. En este trabajo abordamos un cambio
en los objetivos de los controles en relacién a como se habian trabajado en la literatura. Buscamos
que el control lider tenga un objetivo de optimizacién y el seguidor un objetivo de control exacto.
La investigacion esta separada en tres capitulos, cada uno reservado para resolver un problema de
control con distintas ecuaciones o con variantes sobre la regiéon donde acttian los controles.

En el capitulo I de esta tesis se presentard una investigacién realizada con Bianca Calsavara,
Enrique Fernandez-Cara, Luz de Teresa y donde se plantea un problema de control jerdrquico parala
ecuacién de calor pero invirtiendo el papel de los controles respecto a lo desarrollado en [AFCdS20].

Consideremos un abierto 2 C R" suficientemente regular. Para 7' > 0 fijo, definimos el cilindro
Q = Q2 x (0,T) y la frontera lateral del cilindro X = 92 x (0,T"). Introducimos funciones p, po, p1, p2
definidas convenientemente en (). Para condiciones iniciales yo € L?(2) y dos conjuntos abiertos
w, O C () consideremos el problema semilineal

v —Ay+F(y) = flotvl, en @,
y=20 sobre X,
y(0) = yo en Q.

En esta ecuacion F' es una funcién globalmente Lipchitz y 1,,, 1o son la funcién caracteristica de
wy de O respectivamente. Consideraremos un problema de control jerarquico donde v, f, llamados
control lider y control seguidor respectivamente, son funciones a determinar.

1. Latarea del control seguidor f[v] es controlar a cero la solucién y es decir, obtener que y(7") = 0.



2. El control lider v perteneciente a un espacio de Hilbert adecuado, debe minimizar el funcional

1 1
P(v; f) := —/ p2|y|? dzdt + —/ P2 v dadt,
2 Q 2 wx(0,T)

)

donde p y py son pesos adecuados que estdn relacionados con la desigualdad de Carleman. Defi-
namos el operador de calor L, = J; — A + a. Veremos que en el caso lineal, F(y) := ay, controlar a
cero es equivalente a resolver el sistema de cuarto orden

Lo(p2Lip) + py *ploxor) = vlexor) en Q,
p=0, p2Lip=0 sobre ¥,
p2Lp 0 en Q.

*

o= Yo, p 2Ly

=T

que caracteriza al control seguidor f[v] mediante la funcién p y ademads la existencia y unicidad de
dicha solucién esta garantizada por la desigualdad de Carleman

/Q 022 + 120P) + o2Vl + p2lpP] < Co /Q (72l + Ap?) + Lopa* )

para funciones p suficientemente regulares y pesos p; y p especificos. Dicha desigualdad permite
encontrar cotas uniformes || f[v]|| 7 + |y|ly < C (|v]lu + |lvollr2()) tanto para f[v] como para la solu-
cién y que permite utilizar el Teorema del punto fijo de Schauder para asi poder obtener la existencia
del control seguidor para el caso semi-lineal. Junto con el teorema del punto fijo y sucesiones mini-
mizantes es posible verificar que controlar a cero para el caso semilineal es equivalente a minimizar

1 1
—/ g2|y|2d:cdt+—/ ot f|? dzdt  en F,
2 /g 2 Joxom)

donde F es un espacio adecuado.

Asegurado esto se utiliza el teorema de Dubobistki-Milyoutin para conos convexos para obtener
formas explicitas de los controles.

Otro problema que es natural plantear es el de controlar en la frontera. Consideremos v un
subconjunto abierto de 9. Dada la condicién inicial yo en L?*(Q) definimos el problema de valor
inicial

Ye — Ay—l—a(a:,t)y =vl, en Qa

y=f1, sobre X,
y(0) = %o en (),
donde f1, es una funcién en L?(X). El problema de control a cero induce un problema de cuarto
orden
La(p~L;(p)) = vlo en @
p~>Li(p) = —py ply sobre ¥,

p 2 La(p)(0) = yo; p Ly (p)(T) =0 en
que mediante la desigualdad de Carleman en la frontera garantiza la existencia de la solucién p
y la unicidad. La regularidad L?*(X) en la frontera induce regularidad del tipo ' en la solucion
y que no es suficiente para aplicar encajes compactos y aplicar un punto fijo de Schauder. El prob-
lema semilineal entonces requiere de un analisis mas profundo que permita elegir la regularidad



adecuada en la frontera y poder alcanzar el encaje compacto necesario para aplicar un teorema de
punto fijo Schauder.

En el capitulo Il nos encargamos de estudiar problemas de control jerarquico para el caso semi-
lineal en la frontera como una continuacién de lo hecho en el capitulo I. Sea v un subconjunto abierto
en la topologia relativa de 0€). Definimos

Yy — Ay + F(y) =vl, en  Q,
y = f1, sobre X, (0.0.1)
y(0) = yo en  Q

A partir de ahora y, € L?(Q) es una funcion llamada funcién objetivo. La estrategia de Stackelberg
se define como

1. Dado un control lider v buscamos un control seguidor f[v]1, que controle a cero la solucién
de la ecuacién (0.0.1) para un tiempo positivo 7" > 0.

2. Calcular un control lider de forma que minimice el funcional en un espacio adecuado V

1 1
wx (0,

Este funcional obliga a la solucién a no estar tan alejado de la funcién objetivo yg.

La teoria clasica de ecuaciones parabdlicas de valores en la frontera estudiada por Lions y Ma-
genes [LM12] y en [Cos90] sugiere buscar el control seguidor en el espacio de Sobolev H*(d€2) con
s un nimero real. Esto dificulta plantear la controlabilidad a cero como un problema de cuarto
orden debido a la pérdida de coercividad del funcional f,yX 0.7) 0% f| d% cuando f1, estd restringido
al espacio H*(012) a diferencia de lo hecho para el control seguidor en el capitulo I.

Para evitar esta dificultad proponemos una forma equivalente a controlar a cero que consiste en
introducir directamente el sistema de cuarto orden

Lo(¢™?Ly(p)) =vlo en @

02L:(p) = —o,°ply sobre I,

02 L% (p)(0) = yo n  Q,
0 2L:(p)(T) =0 en Q,

]

que tiene una tinica solucién p gracias a la desigualdad de Carleman en la frontera que es calculada
en el capitulo I. Usando ideas parecidas a las desarrolladas en el capitulo I es posible darnos cuenta
que el problema del control seguidor f[v], de controlar a cero cuando F'(y) es globalmente Lipschitz,
es equivalente a minimizar el funcional

1 1
5 | Pdedes s [ gisas
Q % (0,T)

en un espacio F y permite caracterizar el control f.

Existe otro camino (ver Apéndice 2.6 Capitulo I, p.47) para acercarnos a la existencia del control
seguidor y estd basada en los resultados de [FC97]]. El autor resuelve el problema de control a cero



para el caso superlineal mediante la extensiéon del dominio 2 x (0,7") en una porcién de la frontera
7y restringiendo la solucién extendida con funciones de corte y operadores de traza es posible
encontrar el control f[v]. De forma natural, la extensién da lugar a una solucién en L*(0,T; H*(2))
por lo que es posible obtener una cota de la forma

|yl 20 m20)) + 10l r2@) < C (1 4+ |lallz2@)) 1ol z2(0)-

Esta forma de verificar la existencia del control seguidor f[v] no permite calcular su forma explicita
pero se expone pues el autor los considera interesante.

El segundo problema a tratar en este capitulo es cuando ambos controles acttian en la ecuacién
desde la frontera. Dado w un subconjunto de la frontera de 2 definimos el problema

Yy —Ay+F(y)=0 en  Q,
y= f1l, +vl, sobre X,
y(0) = yo en Q,

En este problema pedimos que el control lider minimice el funcional

P =2 P 2 dt
(v, f) = 2 Jo v — yal” + 5 l0v 77172
u 0

Los pasos para calcular el control seguidor son similares a los seguidos en la primer parte de este
capitulo. La dificultad en este caso es calcular explicitamente el minimo del funcional P. Para esto,
nos basamos en la descomposicién espectral del lider v en H'/2(T") planteada en [MP49] y [LM12]
para poder encontrar la forma de v en series de potencias de los valores propios A; del laplaciano.

Sin olvidar que parte de la motivacién de la teoria de control viene de aplicaciones podemos

preguntarnos que interpretacion se puede dar al término fo I Qov||fq1 /2(w) dt en términos fisicos.

En el capitulo 3 se resuelve el problema de control jerdrquico para la ecuacién de ondas con
control seguidor en una porcién de la frontera

Yo — Ay + F(y) =vl, en @,
y=f1, sobre X
y(0) = 4o, 4:(0) =y en Q.

En [AFCdS18]| los autores resuelven un problema similar donde el control lider controla por
trayectorias y el control seguidor minimiza un funcional cuando la semi-linealidad es globalmente
Lipschitz. Es bien sabido por el trabajo de [BLR92] que la condicion geométrica debe de satisfacerse
para tener control exacto. Para z, en R" se construye el conjunto I'; := {z € I" : (x — z¢) > 0}. Si
para algin zo, I'y C v entonces es posible establecer para 7' > sup,.q, |z — x¢| la desigualdad de
Carleman en la frontera

s/ e*? (|z)* + |Vz[) dxdt—|—33/ e?*?|2|? dwdt

Q Q

gC/ 628‘Plztt—Az|2d:cdt—|—Cs/e2s‘p|8nz|2d2.
Q pY

donde ¢ es una funcién adecuada. Podemos probar que la desigualdad de Carleman anterior induce
una solucién a un problema de cuarto orden que es equivalente a la existencia de control exacto, es



decir, y(T) = 4o, y:(T) = 7, para cualquier par de objetivos (¥, 71) en Hg (2) x L?(€2). Las condiciones
iniciales (yo, y1) en Hg () x L*(Q2) inducen en la solucién y la regularidad suficiente para tener encajes
compactos en el espacio L*(Q)) y poder aplicar el Teorema del punto fijo de Schauder para probar
la existencia de un control exacto para el problema semilineal.

Se puede plantear una variante del problema anterior en el caso lineal cuando tanto el control
seguidor como el lider actian en el interior de la region 2. Planteamos el problema

Y — Ay +ay = flo +vl, en Q
y=0 sobre Y
y(O) = Yo, yt(o) =l en Q

El Método de Unicidad de Hilbert es empleado para encontrar explicitamente el control seguidor
f formulando un problema de variaciones mediante el operador A : L*(Q) x H Q) — H(Q) x
L2(9)

Alpo, p1) = (=n:(0),7(0))

donde 7 es la solucién al sistema adjunto
2’tt—Aé’+a2:h1w en Q

z2=0 sobre X
2(T)=0,2(T)=0 en Q

e — AN+ af) = pl,, en Q
n=20 sobre X
H(T) =0,7(T) = 0,7(0) = 2(0),7:(0) = —2,(0) en Q

p—Ap+ap=0 in Q
p=20 on X
p(0) = po,p(0) =p1 in €.
La existencia de las funciones py, p; se garantizan mediante la coercitividad del funcional A que
equivale a probar la desigualdad de observabilidad definida por

ol 2@y + 1p1ll-1(2) < Cops / pPdrdt
Ox(0,T)

Es bien sabido que la desigualdad anterior es cierta cuando la regién de control cumple las
condiciones geométricas adecuadas. La desigualdad de observabilidad es consecuencia de la de-
sigualdad de Carleman en el interior dada por

)\/ e |ul? daedt < C (HeWPuHH_l(Q)jLA?/
Q w

para ciertos escalares \ > )\ y para cualquier funcién u € C(0,7; L*(Q2)) con Lo(u) € H1(Q).
donde dado n € H;(Q) con Lo(n) € L*(Q) se cumple que (u, Lo(n))12q) = (Lo(w),n)n-1(q),m1(@)
Para satisfacer las condiciones geométricas debemos adecuar la regiéon O de forma que la condicién
geométrica se cumpla y més aun, podemos tomar O =I'; 5 N 2 donde I'; ;5 es la coleccién de todo
los elementos = de I';. tal que |x — x| < ¢ para cierta constante § > 0. Entonces es posible encontrar
una caracterizacion del control f. El control lider debe de minimizar el funcional definido por

2y |? dxdt)

x0,T")
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1
g/ |Z/—yd’2d:cdt—|——/ |v|? dadt,
2 Jg 2 Jox(o1)

y donde el control v esta dado explicitamente por soluciones a un sistema adjunto.



Chapter 1

Hierarchical distributed control of the
semi-linear heat equation

1.1 Introduction

Let Q@ C R" be a bounded connected open set with regular boundary. Let 7' > 0 be given and let us
consider the cylinder ) := Q x (0,7'), with lateral boundary ¥ := 9 x (0, 7). In the sequel, we will
denote by C' a generic positive constant. Sometimes, we will indicate the data on which it depends by
writing C(2), C(Q, T), etc. The usual norm and scalar product in L*(Q2) will be respectively denoted
by || - || and (-, -). Along this chapter, we will refer to solutions in the weak sense of distributions.

Our main interest is, in few words, to solve some optimal control problems where, additionally,
the state is driven to rest. For simplicity, we will assume for the moment that only two controls are
applied (one leader and one follower) but, as shown below, similar considerations hold for systems
with a higher number of controls.

We will consider systems of the form

yt_Ay+a(x7t)y:f10+vlwinc27 (111)

y=0onX, y(-,0)=yyin , h
and

y=0onX, y(-,0)=yin 2, o

where f and v are the controls, y is the state, a € L>(Q), F is a C* globally Lipschitz-continuous
function with F(0) = 0 and y, € L*(Q) is prescribed. In and (L.1.2), the set w C Q is the
main control domain and O C (2 is the secondary control domain (both are supposed to be small);
in order to have avoid the effect of the control v on f, we will assume that O and w are disjoint; 1o
and 1,, are the characteristic functions of O and w, respectively; f is the follower and v is the leader.

Let us describe the considered hierarchic problem in the case of (1.1.1).

Let Oy C 2 be a non-empty open set, representing an observation domain for the leader. We
will consider the secondary functional

1 1
S(v; f) == / P lyl*+ = / P2 1112, (1.1.3)
2 Q 2 Ox(0,T)

11
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where p and p, are appropriate weights in C*(()) that blow up as ¢t — 7~ and the main functional

o 1
P(v; f) = 5/ ly — yal” + 5/ polvf?, (1.1.4)
0% (0,T) wx(0,T)

where o and (1 are positive constants with a + ¢ = 1 and y; = y4(z, t) is a given function (a desired
observation).
The following spaces of functions with domain ) will be used:

U: ={v:pwe L*(wx(0,T))},

Vi ={y:pyel*Q)}, (1.1.5)
F: :{f:pofGLQ(OX (0,7)) }.

Is important to note that the characteristic function 1,4 involved in (1.1.2) allows to ignore the
behaviour of the functions outside the integrability set. The natural norms in ¢/ and F will be
respectively denoted by || - |, and | - || and are defined by

lolly = [ lew oo = [ ool = [ s
Q wx(0,T) 0x(0,T)

Observe that because the weight function p blows up when ¢ — 7T—, then in order to hold

/ P2 ly|Pdzdt < oo
Q

it is necessary that y(7") = 0. This assertion will be the key point to define the null controlability
problem in the hierarchical control process. The control process can be described as follows:

1. We associate to each leader v € U the unique solution f[v] to the following extreme problem:

Minimize S(v; f), Subject to f € F. (1.1.6)

Note that, in view of the behaviour of p near ¢t = T, that is the blow up to infinity, the state y
associated to v and f[v] must necessarily satisfy the null controllability property

y(-.T)=0 in Q. (1.1.7)

2. Then, we look for admissible controls © € U satisfying

P(6; £[#]) = minP(v; f[v]) (1.1.8)

(2

Observe that, if the function v — P(v; f[v]) is Gateaux differentiable in the space U of admissible
leader controls, then (1.1.8) implies

d

%P(U; f[v])‘vzﬁ =0.

This property will be crucial for the characterization of the optimal control © and the associated f[7].
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Note also that, after a very simple change of variable, we can also consider a hierarchic problem
in which, instead of (I.1.7), we require y(-,7) =3(-,7) in €, where ¥ is an uncontrolled solution
to (1.1.1I). Consequently, it is also meaningful to look for optimal leaders and associated followers
that drive the solution to exactly to a prescribed trajectory.

In the case of the semilinear system (1.1.2), we can consider hierarchic control problems of the
same kind. However, their formulation is more complicated and will be delayed to the following
section. Indeed, in that case, possesses in general not one but probably several solutions
and needs a reformulation.

Several motivations can be found for these control problems:

o If y = y(x,t) is viewed as a temperature distribution in a body, we can interpret that our
intention is to drive y to a desired ¥y at time 7" by heating and cooling (acting only on the small
subdomains O and w), trying at the same time to keep reasonable temperatures in O, during
the whole time interval (0, 7).

e The same control strategy makes sense in the context of fluid mechanics. Thus, we can replace
by similar Stokes or Navier-Stokes systems and take into consideration similar hierar-
chic problems. We can interpret that we act on the system through mechanical forces applied
on O and w and the goal is to reach 7 at time 7" keeping the velocity field not too far from y,
in Od X (O, T)

o In the framework of mathematical finance, this can also be interesting. For instance, it is well
known that the price of an European call option is governed by a backwards in time PDE close
to (1.1.2). Now, the independent variable = must be interpreted as the stock price and ¢ is in
fact the reverse of time (we fix a situation at ¢ = 7" and we want to know what to do in order
to arrive at this situation from a well chosen state). In this regard, it is natural and can be
interesting to control the solution to the system with the composed action of several agents,
each of them corresponding to a different range of values of z. For further information on the
modeling and control of these phenomena, see for instance [WHH"95]. [Ros11]

1.2 Preliminaries

Before stating our main results, let us specify once for all the weight functions p and py. We will see
later that their definitions are motivated by well known controllability results for (1.1.1) in suitable
spaces.

Let 79 = no(x) be a function satisfying

no € C*(Q),m0 >0in Q,my =00n 9, |Vno| >0in Q\ w.

With our assumptions on €2, such a function 7, always exists (see Lemma 1.1, p. 4 in [FI96]). Then,
let us introduce the weight functions

AN lloe _ A2 oot (a)) ACHP oo t1°(2))
, E(x,t) = ,
0] 0] (1.2.1)
pi=e, poi=(s&) N 2p, pyi=(sE) VAN, py = (362,

o(x,t):=
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where ¢ € C>([0,T1]) satisfies ¢(t) > T/2 in [0,7/2] and ¢(t) = t(T —t) in [T/2,T] and A, s > 0
are large enough. In fact, the required values of A and s will be fixed below in different ways in the
linear and semilinear cases.

In the case of (1.1.1), the following result holds:
Theorem 1.2.1. Let us consider the linear system (I.1.1)), where a € L>=(Q) and yo € L*(2).
1. For every v € U, there exists exactly one solution f[v] to (1.1.6).

2. Let us set J(v) := P(v; f[v]). Then there exists exactly one minimizer 0 of J in U and, consequently,
one associated follower f[0] such that (1.1.7) holds.

We will see below that the minimizer v satisfies, together with the corresponding f[?], the asso-
ciated state y and some additional (adjoint) variables, an appropriate optimality system.

In the semilinear case, with F' being a Lipschitz-continuous function, we can consider similar
controllability questions. However, it is important to note that, now, we lose the convexity of the
functionals S and P and this introduces several nontrivial difficulties.

Thus, for each v € U, we can consider the extremal problem (I.1.6), where S is again given
by but, now, y is the unique solution to (1.1.2). We will denote by ®[v] the family of solutions
to (L.1.6). In this case, we will look for a leader % and an associated follower f such that, instead

of (1.1.8), one has:

P(5; f) = minP(v; f), (122)
where we minimize in the set of pairs (v, f) withv € i/ and f € ®[v].

The following holds:

Theorem 1.2.2. Let us consider the semi-linear system (1.1.2), where F : R — R is C' and globally
Lipschitz-continuous and F(0) = 0 and yy € L*(Q).

1. Forevery v € U, the set ®[v] is non-empty, that is, there exists at least one solution to (1.1.6).

2. On the other hand, the extreme problem (1.2.2), where the minimum is extended to all couples (v, f)
withv € U and f € ®[v], possesses at least one solution (v, f).

In this paper, we also analyse if a result like Theorem holds true when the leader is con-
strained to belong to an appropriate convex set U,y C L*(w x (0,T)). Thus, let I be a non-empty
closed interval with 0 € I, let us take

Ug={vel:v(xt)el ae.}

and let us suppose that the minimisation in (1.1.8) is subject to the restriction v € U,q4. The control
result is then the following:

Theorem 1.2.3. Let us consider the linear system ([[.1.T)), where a € L>(Q) and yo € L*(2). There ex-
ists exactly one minimizer 0 of J in U,q and an associated follower f[0] such that the corresponding state

satisfies (1.1.7).
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As mentioned above, the main novelty of this paper is that the choice of the follower (resp. the
leader) is determined by a controllability (resp. an optimal control) requirement. The analysis and
results also hold, after appropriate modifications, when several main cost functionals (and several
leader controls) appear and, instead of an extremal problem, we look for related equilibria. All this
will be explained below.

This chapter is organised as follows.

In Section we prove Theorem which concerns the linear case. This result will be
strongly used in the remaining sections. We will also establish a characterization result for the
optimal leader-follower-state triplet (see Theorem [I.3.3). In Section we prove Theorems [1.2.2]
and we also deduce an optimality system that must be satisfied by any solution to (1.2.2).

1.3 The linear case

In this section we prove Theorem Thus, let us consider the linear system (1.1.1)), let us intro-
duce the notation

Ly =y —Ay+ay, Lyp:=—p —Ap+ap

where the derivates are understood i the distributional sense. Let the space P, be given by Py :=
{pe C*Q):p=0 on X }. We will need the following symmetric bilinear forms on P, associated
to the coefficients a € L*>(Q):

m(a;p,p) := / p2Lip Lip' + lopy2pp dadt.
Q
More precisely, we have the following Carleman inequality:

Theorem 1.3.1. There exist positive constants X\, so and Cy, only depending on 2, O and T, such that, if
we take A = \o and s = so in (1.2.1)), any p € Py satisfies

/Q 2" (Il + 1APF) + o1 *[VpI* + g *[pI*] < Com(0:p, p). (1.3.1)

Furthermore, Ao and s, can be found arbitrarily large.

The proof of this result is given in [FI96]; see also [ECGO06] for more details on the constants. In the
remainder of this section, it will be assumed that A = \g and s = sy. From the unique continuation
property satisfied by the solutions to homogeneous heat equations, we know that all these bilinear
forms are in fact a scalar products (actually, it will be seen below that they are equivalent). In the
sequel, we will denote by P the completion of P, associated to m(0; -, -).

Theorem 1.3.2. There exist positive constants Ay, so and Cy, only depending on 2, O and T, such that, if
we take A = \g and s = sy in (L.2.1), any p € P satisfies

[ [l + 189) + 198 + 05 ?] < Com(0ip.p).
Q

Furthermore, Ao and s, can be found arbitrarily large.
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By Carleman inequality the functions in P, their first and second spatial weak derivatives and
their first time derivatives are locally square integrable in 2 x (0,7 —0) for all small § > 0. Moreover
by Carleman inequality is possible to see that locally plr—s € H"*(Q).

Lemma 1.3.1. Let p € L*(Q) with p|s = 0. If m(0; p,p) < oo then p € P.

Proof. Observe first that givena > 0 and the bound of gy and ¢in Q then ||pl(o7—s)[lp < sUp(; 4)eq | Max(o1, 02)|
Because the hypothesis is possible to see that for any 6 > 0 then plr—5 € H"*(Q). The set of
distribution D(Q) is dense in H*(Q) then it exists a sequence ps,, € D(Q) such that ||plr_s —
Ponllm12(Q) — 0asn — oo. By other side ||p — plr—s|p — 0asé — 0. Take 6(n) — 0 when

n — oo, then

1P = Psynlle < llp = plor—smpllP + [IPL0.0-5(n)) — Psmymllp — 0, 7 — o0,

then ps(»),» € C3(Q) that approximate p in the norm || - || and then p € P.
]

Corollary 1. There exist positive constants K and K, only depending on Q, O, T and ||a|| - (q), such that
the following holds:
Kom(0;p,p) < m(a;p,p) < Kim(0;p,p) Vpe€P. (1.3.2)

Proof. Let p € P. To prove the right and left inequality is necessary to invoke the Young inequality
ab < 3(a® + b?) for positive a,b and equation (1.3.1). Because ) is took sufficient large enough
p~ 2 < py?and p~2 < p,? then

m(a,p,p) < / p~ 2 |—pi — Ap + ap|? dxdt + / 0o |p? dadt
Q

Ox(0,1)
< / p~2 (Ipe + Aq|* + |ap] s + Aq| + |ap|?) + / Py 2 |p? dadt
Q Ox(0,T)

< w2 ol oy + 1) | [ 57 (il + 8o o) |+ [ i s

x(0,T")

<K U pa” (Ipe| + | Ap[) +p52|p|2dxdt} +/ po pl* dadt
Q

Ox(0,T)
< & [ I+ 180 + P + 5l
< CiKm(0; p, p).
To proof the left inequality proceed as above. O

In the following result, we recall that, for any admissible v, the associated follower is well defined:

Proposition 1.3.1. Let v € U. Then, there exists exactly one solution f[v] € F to the optimisation prob-

lem (1.1.6)), where S is given by (1.1.3)) and y satisfies
Yo — Ay +ay = flo+vl, in Q,
{ y=00n%, y(-,0)=yoin (1.3.3)
and moreover one has
flo] = =pa®plowory Y =r"Lop. (1.3.4)
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where p € P is the unique solution to the linear problem
m(a;p,p') = L(v;p), VP eP (1.3.5)

and we have used the notation

{(v;p) ::/ vp’+/yo(x)p’(x,0) dx.
wx(0,T) Q

Proof. We use here the nowadays well known Fursilkov-Imanuvilov approach to null controllability,
see [FI96]. By definition the functional f +— S(v; f) fulfils that S(f;v) > || f]|+ so it is coercive.
lower semi-continuous, convex and proper in F. Consequently, there exists exactly one solution
flv] to and, in view of the results in [F196], f[v] and the associated state must satisfy (1.3.4),
where p solves (1.3.5). Given a direction h € F and ¢ > 0

1 R . 1 A
{5 [otirer—an-3 [ i+ ehFdz]
Q OX(O,T)

R R N CaETe
Q

Ox(0,T)

=80+ ehiv) - (750 =

€

A= | =

where the functions z and y solves

z—Az+az=h in Q
z=0 on X
2(0)=0 on ()

and
U — Ay + ay = vl, inQ

=0 on
7(0) = yo onf)

Taking the limit ¢ — 0 the derivative of the functional is given by

e—0 €

1 A A R
lim — S(f—i—eh;v)—S(f;v))] :/p2yzdxdt+/ po fhdxdt = 0
0 Q Ox(0,T)
Define the function p to

—p—Ap+ap=p°j in Q
p=0 on X
p(T)=0 on )

Replace § = o 2L:(p) in (2.5.5) integrate by parts and use boundary conditions to get

/ L:(p)z dadt + / pifhdzdt = / hpd dxdt + / P2 fhdadt
Q Ox(0,T) Ox(0,T) Ox(0,T)

then
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/ (p2f + p)h dadt = 0.
Ox(0,T)

Then is possible to get the characterisation

flo] = —pa°plo;§ = p~>Li(p).
Replace the above equations in (1.3.3)) to get

Lo(p2LEip) + py *ploxor) = vlexor) in Q,
= 01in €.

p=0, pLip=0onY%, p°Lip

—2 7%
1—0= Yo, P LaP|,_1

The above equations makes sense in the distribution sense because y € ). Multiply this equation
by p’ € P and integrate by parts to get or in explicit form

/ p 2 Lip Lip' + lopy *pp dodt = /
Q

wx(0,T)

vp' + / yo(z) p'(z,0) dz.
Q

The Lax-Milgram’s Theorem can be applied to (1.3.5).Indeed, m(a; -, -) is continuous and coer-
cive in P by Carleman inequality (1.3.1). On the other hand, in view of (1.3.1), the fact that p;,
i =0, 1,2 are bounded in [0, 7/2], then the functions p € P satisfy that Ap € L*(Q) and Vp € L*(Q).
Then

Plrys € L2(0,T/2; HX(Y)),  plprsa € L0, T/2; L*(Q2))

and then by [Sim86] is true that
Pz € C([0,T/2]; Hy () (1.3.6)

Therefore, the linear mapping p — p(-,0) is a well defined and continuous mapping P — Hy(2);
this shows that the right hand side in is a bounded linear form on P. Observe that the above
embedding can only be done in the interval [0, 7'/2] because the behaviour of the weights py, p1, p2
and p near 7'. This ensures unique solution and it ends the proof.

O]

The previous argument yields the estimates
[(v;p)] < C ([0l + llgoll) m(0; p,p)/ Vp e P

for some C only depending on €2, O, T'and ||a|| .= (). This leads to the following estimates of p, f|v]
and the associated state y:

m(0;p,p)'* + || F[0]ll= + lylly < C (ol + llmol))- (1.3.7)

Actually, can be viewed as a boundary problem for a PDE that is fourth-order in space
and second-order in time. In other words, p solves if and only if p € P and one has

Clearly, in order to prove the existence of a solution to (1.1.8), it is convenient to analyze the
behavior of the function v — P(v; f[v]) and, more precisely, its convexity and differentiability prop-
erties. This is the objective of the following result, whose proof is elementary:
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Proposition 1.3.2. The real-valued function v — P(v; f[v]) is well defined, C"*, strictly convex and coercive
onU.

Indeed, the properties of the mapping v — f[v] and the functional in (1.1.4) guarantee that there
exists exactly one control v € U satisfying (1.1.§).
To end this section, let us establish a characterisation result:

Theorem 1.3.3. The unique solution © to (L.1.8) satisfies, together with the associated 4, p, & and v, the
following optimally system:

g:00n27 Q(?O):yoln Q7 o

1] = =0 oory §=0Lib, PEP.

m(a;p,p’) = / vp'+/yo(:c)p’(a:,0) dx, Vp' €P,
wx(0,T) Q

{ é AG+a(z, 1)) = ali) — ya)lo, in Q,
—0onY, o(-T)=0in,
m(a;

/ pa%p’ vp' € P, zﬂ e P, (1.3.9)
Ox(0,T)

’@%w

(1.3.10)

wx(0,7)°

. L g~ s
U:—;POQ(Q/""(?)

Proof. Letv,w € U and e > 0 be given, let us set g := 1(f[v + ew] — f[v]) and let us introduce the
solutions z, ¢, ¢ and 7 to the following problems:

2z — Az +a(x,t)z = glo + wl, in Q,
z=0onX, z(-,0)=0inQ,

{ —¢r — Ad + a(z, )¢ = a(y — ya)lo, in @,
p=0on, ¢, T)=0in,

m(a;q,p’) = / wp'
wx(0,T)

Vp'eP, q€P

and

m(a;p, ) = —/ po o

Ox(0,T)

Vo' e P, ¢ eP.
By proposition[1.3.2]
d
—P(flv+ew];v+ ew) = / (y—yd)z+u/ pavw
de e=0 04x(0,T) wx(0,T)

/ Ligz+ / ppdou,
x(0,T) x(0,T)

[ eav [ (ormt)w
Ox(0,T) wx (0,T)
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Note that g = whence

_pEQQ‘Ox(o,T)'
[ oea=-[  mres=mean=[ ww
Ox(0,1) Ox(0,T) wx(0,T)
Consequently, the following identity holds for all v, w € U:

d
d—gP(f[v—i—sw};va&w)

:/ (¢ + ¢ + ppjv) w.
wx(0,7)

e=0

In particular, with v = 9, denoting by ¢, ¢ and 1 the associated state and adjoint states and taking
w arbitrary in U, we see that ¢ + ¢ + up3o = 0 a.e. inw x (0, T), whence the assertion follows. [

1.4 The semilinear case

This section is mainly devoted to prove Theorem We will use arguments similar to those above

that lead to existence results for (1.1.6) and (1.2.2).
We will also find a necessary condition for optimality, similar to (1.3.8)—(1.3.10), that has to be

satisfied by any solution to the control problem.
Obviously, there exist constants /; and K5, only depending on €2, O, T and R, such that (1.3.2)
holds for all @ € L*(Q) with ||a||1=g) < R.

1.4.1 Proof of Theorem [1.2.2

Let us first prove that any admissible leader v possesses at least one follower in F:

Proposition 1.4.1. Let v be given in U. Then, there exists at least one solution in F to the extreme prob-

lem (1.1.6), where S is given by (1.1.3)) and y is the solution to (1.1.2). Furthermore, any solution f to (1.1.6)
satisfies, together with the associated state y and an additional variable p € P, the semi-linear system (1.1.2)),

the identities
f==0Plowior ad y = p~*Liv,p (1.4.1)

and the estimates
m(0;p,p)"* < C (vl + llyoll) and [I£1|7 + llylly < C (vl + llgol) (1.4.2)
for some C' only depending on Q), O, T and R.

Proof. Let us first see that there exist controls f € F such that S(v; f) < +00. Indeed, let us denote
by Fy the function given by

Fy(€) = %@ if € £0, Fy(0) = F/(0).

Obviously, Fy(€) is uniformly bounded in R.
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For each z € L?*(Q), we will denote by A(z) the unique solution y, to the linear problem

yt_Ay+F0(Z)y:flO+U1winQa
y=0on%, y(-,0)=yyinQ,

where f is the unique solution to (1.1.6) with a = Fy(2). Let us denote this control by f..

The existence and uniqueness of f. is a consequence of the arguments in Section [I.3(see Propo-
siti. Furthermore, since the sup,;z2 ) [Fo(z)| < oo is uniformly bounded in L>(Q) and
by the controls { f.}.c12(q) are uniformly bounded in F by (1.3.7). From [CBH98] Proposition
4.1.9 the solution y, € L*(0,T; HY)(Q)) N H'(0,T; L*(2)) for each z € L*(Q) and by [Sim86] Collo-
rary 9, and the estimate (1.4.2),the set {y, : z € L*(Q)} is compactly embedded in L?(Q). Thus,
the non-linear mapping z — A(z) is well-defined, continuous and compact in L*(Q)) and maps the
whole space into a ball. In view of Schauder’s Theorem, A possesses at least one fixed-point . If we
set f := f;, then we obviously have S(v; f) < +oc.

Now, let {f"} be a minimising sequence for (1.1.6). Suppose that {f"} is non bounded, then
because the functional S is coercive lim,,_.., S(f,, v) diverges that contradicts the fact that {f,,} isa
minimising sequence. Then sup,,cy || f»|| 7 < oo (resp. ). Then, the sequence f, converges weakly
in F to some f and the corresponding states y" converge strongly in L*(Q) to the associated y. From
the weak lower semi-continuity of the functionals

g / Pyl and fro A2,
Q Ox(0,T)

then by the above assumption, deduce that f minimises (I.1.6). Hence, there exists at least one
solution to this extreme problem.

Let us prove that any solution to satisfies for some p € P.

Thus, let f € F be a solution to and let us denote by y the corresponding solution to (1.1.2).
Let us introduce the solution ¥ to the auxiliary problem

yt_Ay:01nQ7
y=0onX%, 7(-,0)=1yin,

the linear mapping Hy : L*(Q) — L*(Q) with w = Hyk if and only if

wy — Aw = kin Q),
w=0onY%, w(,0)=0inQ

Observe that by definition, Ly o Hy = Id and the HiLj = Id defined in L*(Q). Define the
nonlinear mapping M : Y x F — L*(Q), with

M(y, f) ==y — Ho(vluxom) + floxor — F(y)) — .

Then (1.1.6) can be rewritten in the form

1 1
Minimize —/ 0 \yl2 + —/ 05 ]f]Z, Subject to (y, f) € Y x F, M(y, f) = 0. (1.4.3)
2Jq 2 Joxom)
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It is easy to check that M is C' in Y x F and, in particular,

M'(y, f)(z,9) =z — Ho (9loxomr) — F'(y)z) V(z,9) €Y x F.
Take ¢ € L*(Q) so
(M'(y, f)(z,9),%) = (2= Ho (gloxor) — F'(y)2) ,¥)L 2(;2)

_ () + (glonor — Pl ()
= v+ P HS () + (g — ()| 00

and then

M(y, 1) = (@ + F @) Hytb,—(Hy )| o 0m) V0 € L(Q)

and, since H, and H; are compact by [Sim86], the rank R(M'(y, f)*) is closed.
At this point, it is possible to apply the following result, usually known as Dubovitski-Milyoutin
Formalism for extreme problems in Hilbert spaces (see [Alel7]):

Theorem 1.4.1. Let H and £ be two Hilbert spaces. Let us assume that I : H — Rand S : H — &£ are
well-defined and C' and let us consider the extreme problem

Minimize I(h), Subject to h € H, S(h) = 0. (1.4.4)

Let h be a solution to 4) and let us assume that R(S'(h)*) is closed. Then, there exist A € R, and
¢ e N(S'(h))L, not both zero, such that
—X'(h)+ ¢ =0. (1.4.5)
An explanation of (1.4.5) is the following: since h solves (T.4.4), there can be no descent direction
at h admissible with respect to the constraint S(2) = 0. In other words,

{de:(I'(h),d)y <0} and N(S'(h)) are disjoint.

Accordingly, by duality, the algebraic sum of the associated conjugate sets contains the origin and

this is precisely (1.4.5).
In what regards (1.4.3), in view of Theorem we deduce that there exist A € R, and (w, k) €

N(M'(y, f))* = R(M'(y, f)*) (not both zero) such that

NPy, pif) + (w, k) = 0.

In other words,
=MP*y, 3f) + (0 + F'(y) Hyo, = (Hg)| o o)) = 0

for some ¢ € L*(Q).
Necessarily, one has A # 0; otherwise, we would also have i) = 0 (from the unique continuation
property) and then (w, k) = (0,0). Hence, with ¢ = {1, we get:

—(0*y, 00f) + (& + F'(y) Hy ¢, —(H59) | o 0.1) = 05

that is,
f==H30) | owiory Y=p 20+ F(y)Hio).



23

Now, we take p := H{¢ so p|s, = 0 and because f € F and y € ) we see that m(0, p, p) is bounded
and then p € P and we find at once (1.4.1).
Observe that (1.1.6) and (1.4.1) together yield

Lo (p7*(Lgp + F'(y)p)) + F(y) + po *Ploxor) = vlwxor) in Q
and y(-,0) = yo. Since F(y) = Fy(y) and y = p~*(Lgp+F'(y)p) then F(y) = Fo(y)(p~*(Lop+F'(y)p)),
this can also be written in the form
Ly (072 (LnP) +00 *Ploxo,r) =vlwuxor) in Q
and (p™*Li(,p)(-,0) = yo. In other words, p satisfies
/Q (P72 Liviyyp Linyyp' +1opy “p0') = /

w

o'+ [ @) 2,0)de v P,
x(0,T) Q

In particular, taking p’ = p, the following is obtained:

/Q (P72 Ly Ly yp + Lopy Ip?) = /

wx(0,T)

Up%—/Qyo(x)p(x,O) dz. (1.4.6)

Let us finally check that (1.4.2) holds. Let us introduce S := supg po / ,0 and R := supg |F'(r)].In the
sequel, it will be assumed that the weights p and p, are given by( I) with A = X\g and s = sy,
where )\ and s, are furnished by Theorem [1.3.2]and satisfy

s > V2R sup £3/2, (1.4.7)

From (T47), we know that S < 1/(v/2R). Consequently, R25?/(1 — R?5?) < 1 and there exists f3
satlsfymg
1 R25? 1

Rl_Re P w

From (1.4.6), we see that
m(0; p, p) :/( “|Lopl* + 1opg *[pl?) = /
Q

wx (0,7

vp—l—/gyo(:c)p(x,O) dx

_/Qp—2 (F'(y)p Lip + Lip Fo(y)p + F'(y) Fo(y)Ip[*)

1/2
< Cllvlu (/ p52lpl2) + llyoll max [Ip(-, 2] +QR/ 2| Lipl Ip| +RQ/ p~>|p|?
Q [0.7/2] Q Q

R
0<||v||u+||yo||>m(O;p,ml/?wR/ o2 Lipl+ ( *E) /Q o~2lpl?

R
< C(wllutlsol) m0; ) + max(57, (B + ) %) m(0:p.p).
Taking into account that SR < 1 and (R* + R/f3)S? < 1, we deduce that

m(0;p,p)"* < C ([[vllu + HyoH)-

This proves the first part of (1.4.2). The second estimate in is an immediate consequence.
This ends the proof. L
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Proposition 1.4.2. Let us set

G:={(v,f):vel, fed]}

where, for each leader v € U, ®[v] denotes the set of the corresponding followers, i.e. the family of solutions
to (1.1.6). Then G is non-empty and weakly closed in U x F and the function (v, f) — P(v; f) is coercive
and sequentially weakly lower semicontinuous.

Proof. Let {(v"™, f™)} be a sequence in G, let y" be the associated states and let us assume that (v", /™)
converges weakly in &/ x F to some (v, f). Then, it can be assumed that the y" converge strongly
in L*(Q) to the state y corresponding to (v, f).

Let us check that f solves (I.1.6). This will prove that (v, f) € G and, accordingly, G is weakly
closed. Indeed, if f were not a solution to (T.1.6), there would exist f € F such that

(/MW+/‘ pWFg/MW+/ AP,
Q Ox(0,1) Q Ox(0,T)

A

where g is the state corresponding to (v, f). Consequently, for n large enough, we would also have

[oues [ i< [ s [ i
Q Ox(0,T) Q Ox(0,T)

[owes [ i< [ e [ e,
Q 0x(0,T) Q 0x(0,T)
where 3" is the state corresponding to (v", /). But this contradicts that (v", f") € G.

That (v, f) — P(v; f) is sequentially weakly lower semicontinuous is obvious. Let us finally
see that it is coercive. Thus, let us assume that (v", f*) € G for all n and || f"||r — +oo. In view
of Proposition[I.4.1} the couples (v", f") must satisfy the second estimates in (I.4.2), whence ||v" ||;; —
+o00 and, also, P(v"; f™) — +oc.

This ends the proof. O

and also

Let us proof Theorem [1.2.2] The argument is classical.

Let {(v", f™)} be a minimizing sequence for (I.2.2). Then, the (v", f) are obviously uniformly
bounded in U x F. Therefore, it can be assumed that the (v", f") converge weakly in this space to
some (7, f) € G and the corresponding states " converge strongly in L?(Q) to the associated 4.

Since (v, f) — P(v; f) is sequentially weakly lower semicontinuous,

A

P(v; f) < liminf P(v™; f*) = inf P(v; f).

n—+00 (v.f)
Consequently, (v; f) solves (1.2.2) and the proof is done.

Let us end this section with a characterisation result:
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Theorem 1.4.2. Let us assume that, in (1.1.2), F : R — R is C?, posseses bounded derivatives of order 1

and 2 and satisfies F(0) = 0 and yo € L*(Q). Let (0, f) be a solution to (T.2.2). Then, the couple (v, f) must
satisfy, together with the associated i, p, ¢ and 1), the following optimality system:

g — Aj+ F(j) = flo + 91, in Q, (148)
g=0o0n%, g(-,0)=yginQ, o

f = _paQﬁ 0Ox(0,T)’ g = piQL}/(g)ﬁ, ]5 eP

/ (P72 L ()P Liyy'+ 00 1opp') = / op' + / yo(z)p(2,0)dz Vp' € P, .
Q wx(0,T) Q

— o= Ap+F'(§)p=a(ii—ya)lo,— F' () —p *F"(9)pLyt) in Q,
p=00ny, ¢(,T)=0inQ,
with ¢ € P the unique solution to

/ (p’2L?/<g)p’ Lytb+py 2lop’tﬁ) = — / polop VP eP, beP, (1.4.9)
Q Ox(0,T)

~ 1 —2/7 n

U= _;pO (¢+¢)|wX(O,T)'

Proof. We will deduce (1.4.8)—(1.4.9) as a consequence of the Dubovitskii-Milyoutin formalism ap-
plied to (1.1.8).

In view of Proposition we can reformulate (1.2.2)) in the form

Minimize Fy(y, v, f,p), Subjectto (y,v, f,p) € X, K(y,v, f,p) = (0,0,0),

where we have used the following notation

X =YXUXFxXP,

a [
RBlpofn)=P@H =5 -l 5[ el
Ogx(0,T) wx(0,7)

K(y7 v, f?p) = (y_HO(U1w+flo_F<y)) _ya y_p_2L}"(y)p7 f+P62p|Ox(O,T))7
we have introduced the linear compact operator Hy : L*(Q) — L*(Q) with

B zi — Az =hin Q,
2= Hoh @{ z=0on %X, 2(-,0)=0in Q

and ¥ is the unique solution to the uncontrolled problem

gt_Ay:OIn Q?
y=0on X, 7(-,0) =yoin Q.
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In view of the properties satisfied by F, the mapping K : X — L*(Q) x Y x F is well defined
and C!, with

K/(y,U, f7p)(27w797Q) - (Z - H()(w]-w + 91(9 - F,(y)2)7g + pa2Q|O><(O,T)7Z - p_2<L}:"’(y)q + F,/(y)zp>)

for all (y,v, f,p), (z,w, g,q) € X. Accordingly, the adjoint K'(y, v, f, p)* is given by

K/(y7vv fvp)*(C7B>77) =
(C+ F'(y)HiC+ B — p?F"(y)pB, —(HiO)lwx 1), m — (HiOlox 1) P *nlo — Ly (p2B))

for any (y,v, f,p) € X and any (¢, 8,n) € L*(Q) x Y x F.

~

Let (0, f) be a solution to (1.1.8), let § the associated state and let p € P be such that

A~

P 2 N
f_ —Po pl(’)X(O,T)’ y=pn L /(gj)p

Then, (4, 0, f, p) solves ([.2.2).

It is not difficult to check that the ranks of K'(y,v, f,p) and K'(y,v, f,p)* are closed. Conse-
quently, we can apply Theorem to (1.2.2): the cone of descent directions and the space of tan-
gent directions at (y, v, f, p) are disjoint and there exist multipliers A € R, and (¢, 8,7) € L*(Q) x
Y x F, not both zero, such that

_A(a<g - yd)lod7ﬂp(2)@’ 07 0) + Kl(@? @f\7ﬁ)*(w7 T’? C) = (07 07 07 O)'

Necessarily, A > 0. Indeed, if this is not the case, we must have Hj¢ = 0 inw x (0,7") and then
¢ = 0 (as a consequence of unique continuation) and also = 0 and 5 = 0. Hence, we can assume
that A = 1 and this directly gives

~ * — ~ 1 — *
a(y - yd)lod =(+ F/(Q)HUC +B8-p QF”(y)pﬁ, v = —;PO2H0C‘W(0,T)>

n = HyCloxor), LF/(y)(p_QB) — ponle = 0.

Let us set ¢ := H;(( + ) and ¢ := —H; . Then, it is clear that Hi( = ¢ + ¢ and 0, ¢ and ¥
satisfy (1.4.9)—(2.6.15)). This ends the proof. O

Make some observations about the sketch the proof of Theorem related with leaders with
constraints. In fact, it is not very different from the proof of Theorem([I.2.1] It is again a consequence
of Propositions|1.3.1/and [1.3.2} Indeed, the properties of the mapping v — f[v] and the functional
in guarantee that .J possesses exactly one minimizer in ¢,4. We also have the following:

Theorem 1.4.3. The unique minimizer v of J in Uy,q and the associated p, y, ngﬁ and @E satisfy (1.3.8)-(1.3.9)
together with

1 ~
7= Puy (_ppozw + ¢)\OX(O7T)) : (1.4.10)

where P,y : U +— Uyq is the usual orthogonal projector.
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Again, the proof is similar to the proof of Theorem It suffices to notice that the unique
minimizer in (1.1.8) subject to the constraint v € U,; must satisfy

4 5+ e(v—9))

>0 Yvely,
de - v d

e=0

Taking into account the definitions of ¢ and v, we readily see that this is equivalent to (T.4.10).

This section is devoted to discuss some extensions and variants of the problems analysed above.
We will consider only states governed by linear PDEs. Of course, similar nonlinear problems are
interesting and deserve attention but their study unfortunately requires some technicalities that are
out the scope of this work.

1.5 Multi-objective hierarchical problems and Pareto equilibria
leaders

This section is devoted to discuss some extensions and variants of the problems analysed above.
We will consider only states governed by linear PDEs. Of course, similar nonlinear problems are
interesting and deserve attention but their study unfortunately requires some technicalities that are
out the scope of this work. Let w;, w, and O be three non-empty mutually disjoint open subsets of
(2 and let us consider the controlled system

v — Ay +a(z, )y = flo + v1ly, + v2ly, in Q, (1.5.1)
y=0onX, y(-,0)=yyin Q, e

where again a € L>*(Q) and yo € L*(Q2). We will use the spaces Y and F defined in (1.1.5) and also
the spaces
U= {v:pw e L*(w; x (0,T))}, i=1,2.

Let the sets O,4; C €2 be non-empty and open and let the functions y,; € L*(O4; x (0,T) be given.
We will consider the secondary functional

1 1
St =g [ Al [ e
x (0,

and the main functionals

a;

Hi
MWwﬁ:—/ |%%W+—/ dRluil? (152)
2 Jo,.x0) 2 Juix0.m)

where the «;, u; > 0and o; + pu; = 1 fori =1, 2.
The Pareto hierarchical control process for (1.5.1)—(1.5.2) is the following;:

1. We associate to each leader couple (v, v2) € Uy XU, the unique solution f[vy, vo] to the extremal
problem
Minimize S (v, vq; f), subjectto f € F. (1.5.3)

Observe that the corresponding state y must necessarily satisfy y(-,7") = 0. In the sequel, we
set G;(v1, v2) 1= F;(v1,va; fur, vo]) for all (v, va).
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2. Then, we look for a Pareto equilibrium (v, v2) in U; x U, for the functionals Gy and G,. By
definition, this means that the following Pareto conditions properties are satisfied:

{ (ur,ug) € Uy x Us, Gr(ug,us) < Gy(vy,va) = Go(uy,us) > Ga(vy, v2),
(ur,ug) € Uy X Us, Goluy,us) < Ga(vy,va) = Gi(ur,us) > Gy(vi, v2);

see [Par64].

Arguing as in the proof of Proposition[I.3.T} it is not difficult to check that

Proposition 1.5.1. For each (v1,v2) € Uy X Us, there exists exactly one solution f[vy,vs] to (1.5.3) further-
more satisfying

flor, v = =pa?ply, v =p""Li(p),

where p € P is the unique solution to the linear problem

WWEﬁ%i/wﬂm+wh9ﬂ+/ﬁﬂﬂﬂ@ﬁme€P-
Q Q

Proof. The functional P(v;-) is continuous, coercive and convex so there exist a minimum f[v;, vo]
that solves (1.5.3). By the same arguments given in the proof of Proposition the right hand of
the above equation is a continuous functional and the Lax -Milgram theorem can be used. O

The functionals G; : U; x Uy — R are well defined, strictly convex and C'. Consequently, it can be
deduced from Lagrange’s Multipliers Theorem that, if (v1,v;) is an associated Pareto equilibrium,
there exist A € [0, 1] such that

)\G'l(vl, UQ) + (1 — )\)GIQ(Ul, ’UQ) =0. (154)

Also, if (1.5.4) is satisfied for some A € [0, 1], then (vq,v;) is necessarily the unique minimizer of
AG; + (1 — X\)G2 and, consequently, (vq, v2) is a Pareto equilibrium for G; and Go.
Since for any A € (0, 1) the functional AG; + (1 — A\)G, is coercive, one has the following:

Theorem 1.5.1. There exists a family {(vix,v2\)}re(0,1) Of Pareto equilibria for Gy and G,. For each ),
(v1x, v2.0) i the unigue minimizer of \G1 + (1 — )Gy in Uy x Uy and, accordingly, the unique solution
to (1.5.4).

Arguing as in the proof of Theorem it is possible to deduce that, for each A, the couple
(v1.1, v2.) must solve, together with the associated state y* and some p*, ¢* and ¢, the following
optimality system:

yp — Ay + az, )yt = floin, vaallo +viale, +vaale, in Q,
yY*=00n%, y-,0)=1yoinQ,

flvia,van] = —po’pMlo, v =p’Lip*, p*eP,

mi@ o) = [

wuu+wﬂwﬂ+/%mwwmm v € P,
Q Q
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1 _ 1 _
Uy = —/\—MPOZ (N + 0M1wy) s van = —mPOQ (™ + 0M)1w)

—¢p — Ap* + alz, 1) = A (¥ — ya1)lo,, + (1 — Naz(y* — ya2)lo,, in Q,
P=00nY, ¢.,T)=0inQ,

m(a;p', ) =/ oM Vp eP, Y eP.

Ox(0,1)

Proof. Define constants j1; = a;A and ps = as(l — X). For a direction w in the space U define
g = L(flv1 + ew,vs] — f[v1,v2]) and ¢ as the solution of

m(a,g,p') = / wp
w1 X (0,7

for any p’ in P. Also introduce the systems

/

2 —Az+az=glp+wl, in Q,

2 =0 in %, (1.5.5)
2(0)=0 in Q,
and
—Giy — Ag; +ag; = (Y — Yai)lo,, in Q,
4 =0 in ¥, (1.5.6)

By Lax -Milgram there exist a function ¢; in B that is solution to the equation | Ox(0.T) 0o 2pq =

m(a, s, ¢) and then
_ —2
/ 4 9 —/ Po ¥4
Ox(0,T) O0x(0,T)

— m(a; v, ) (15.7)
= / Yyw
w1 X (O,T)
Now the first equation of Pareto condition used together with systems (1.5.5)), (1.5.6) and equation
(1.5.7) can be written like

d
= <)\P1(vl + ew, v9; flug + ew, vs]) + (1 — N) Po(v1 + ew, vg; flvg + ew, Uz])) =
e=0
= (Y — Ya1)z + / povIw + MQ/ (Y — Yaz2)z
041 %(0,T) w1 x(0,T) 0a,2%(0,T)
= / H1q19 + H2q2g + / (b1q1 + p2g2 + Apgv)w
Ox(0,T) w1 x(0,T)
= / (lh(ql + 1) + p2(g2 + ) + AP%“)“’
w1 X(O,T)
=0

And the result for v; is gotten. The steps done for the leader control v; are exactly the same for
Va. U]
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1.6 The linear case for boundary controls

In this section, we will deal with a hierarchical control problem where the follower acts on a part of
the boundary.

1.6.1 Boundary follower and inner leader control

Let w C 2 be a non-empty open set, let v be a relatively open subset of the boundary 0¢2 and let us
consider the state system

yt - Ay—i—a(:z:,t)y - Ulw in Qv (1 6 1)
y=fl,ony, y(-,0)=yinQ, o

where (again) a € L>(Q) and yo € L*(9).
Let the function 7y be such that
_ on
o € C*(Q), 7 >0 Vi # 0 in €, andﬁgo on 00\ 7,

let 5 and £ be the analogue of the functions o and ¢ in (T.2.1)) with 7 replaced by 7}, and let us introduce
the weights o = %7, gy = (5£)732A72p, 01 = (s) "2\ 19, 0o = (s6)"Y2 pand g3 = (s£)'/? p.
With this in mind, let us consider the secondary and main functionals

* 1 1
S*(v; f) == —/ %yl + —/ 03| f|? dU dt, (1.6.2)
2 Jq 2 Jyxom)

. o 1
P*(v; f) == = ly —val® + = alv)?
2 2
0ax(0,T) wx(0,T)

and the spaces for function in @) as
U* = {v: g e L*(w x (0,7))},
Voi={y:0y € L*(Q)} and F*:={f:0of € L*(v x (0,7))}.
As before, to each leader v € U* we associate the unique solution f[v] to the extreme problem
Minimize S*(v; f), subjectto f € F~. (1.6.3)
Then, we consider the functional v — P*(v; f[v]) and we try to find ¢ satisfying
P*(v, flo]) < P*(v, flv]) YvelU*, vel”. (1.6.4)

In this case, we must define in the space P, the bilinear form

2 v ov

In view of the unique continuation property, b(a;-,-) is a norm in P,. Let us denote by B the
completition space with the norm b(0;-,-). Then, we can use Carleman inequality involving the
values on the boundary of the normal derivatives. It is given in the following result:

Op Op'
ba;p,p') = / o 2LipLip + / 072 LOP ar .
Q x(0,7T)
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Theorem 1.6.1. There exist positive constants Ay, s; and C, only depending on 2, v and T', such that, if we
take A = \y and s = sy, any p € By satisfies

/Q [05%([pe)* + |Ap*) + 01| VD> + 05%[p] < C1b(0;p, p). (1.6.5)

Furthermore, Ay and s, can be found arbitrarily large.
Let p € B. Let ¢ € L*(0,T; H*()) and define the normal derivate 0,20,p € L*(Q) that holds the
equality
[ e 0upods = | 037 (890 + Vp- (6V0a + V9)) dast.
z Q

Because p = lim,, o, pn, where {p,, }nen C By is a Cauchy sequence the above equation makes sense. Observe
that oy® > oy and the weight function 0%0,* € L*(Q) and by Carleman inequality (1.6.1) then the integral

/92_28np(j§d2’ < o0
>

and then

lim [ 052(9ypn — O0,p)ddE = 0.
2

n—oo

Makes sense to define the bilinear form b(0; -, -) in the space B.

For completeness a proof of the this Carleman inequality will be given in the end of this chapter.
In the remainder of this section, we take A\ = A\, and s = s;. Then, as in Section we can find
positive constants /&, and K, only depending on €2, v, T and ||a|| ,(¢), such that

Kob(0;p,p) < b(a;p,p) < K1 b(0;p,p) Vp € B.

Proposition 1.6.1. As before, for each v € U*, there exists exactly one solution f[v] to (1.6.1). Furthermore,
the follower f|v] and the associated state y satisfy

o 9p .
[l =0 . y=0"Lyp,
Vlyx(0,1)
where p € B is the unique solution to the problem
b(a;p,p') = / vp’ + / yo(x)p'(z,0)dx  Vp' € B,. (1.6.6)
wx(0,T) Q

Proof. Is necessary to prove that the functional

l(p’):/ vp’+/yg(:£)p'(a:,0) dx
wx(0,T) Q

is continuous. By Holder inequality is possible to see that

1/2 1/2
< ([ ank) ([ wtr) Il Ol
wx(0,T) wx(0,T)
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1/2
For any p € B the inclusion (I.3.6) holds then ||p'(0)]| z2(q) < b(0;p/,p')/? and (wa(OT eid ) <
b(0;p', p')1/? by Carleman inequality (T.6.5). Then

L)< (Iolly + llyoll 2) b(0; 2, p') 2
and he operator [ is continuous. By Lax-Milgram theorem the equation (1.6.6) has a unique solution
p € B. O

To recall, the lemma above proves that the equation

_,0¢ op’
bamm’z/ 05> —— ——dudlt,
( ) o) OV v

has a solution p € B associated to 1 for any test function p’ in B. The complete solution to the control
problem is given in the next theorem. The proof is similar to the proof of Theorem

As in Section 1.3} it can be deduced that there exists a unique leader  satisfying (1.6.4). We also
have that v satisfies, together with the associated state § and some p, ¢ and v, the following;:

0 — Ay +a(z,t)y = 01, in Q
g = flo]lyon%, g(-,0) =1yoinQ,

, §=0"Lp,peB

= 02 ay .
tmmmﬁzf @ﬂ+/m®M@ﬂMxVﬂ€&
wx(0,T) Q

T(%t - AQB + a(?ﬂf)é = a(:& - yd)lod inQ7
d=0on¥, (-, T)=0inQ,

~

0= =020+ )],y ory ¥ EB

/0 8¢8p /
b(a;p' .4 :/ 0, == ——dl'dt, Yp €B,
( ) o) OV OV

Proof. For an arbitrary w in &{* define the function g = 1(f[v + ew] — f[v]) and ¢ in B the solution to
the problem

mwwmﬁz/ wp'

wx (0,7 (1.6.7)
vy € B.

Introduce the systems
— Az+az=wl, in €,

z=9 in 3, (1.6.8)
2(0)=0 in Q.
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and
—Ag+ag=a(y —yi)lo, in
q=20 in X, (1.6.9)
q(T)=0 in €,

By Lax-Milgram Theorem and (1.6.7)) exists ¢ in B such that

_,0q 0y

2

Py - =mla; Y, e
/’yX(O,T) 87/ 0V ( )

wx(0,T)

The optimal condition in P(-; f[-]) along the direction w together with systems (1.6.8), (1.6.9) and
equation (1.6.10)

(1.6.10)

P(v + ew, flv + ew]) =

aly —ya)z + / prow
Ogx(0 wx(0,T)
2040
v (0,T) * (91/ 81/

/ RE
wx(0,T)
=0.

And by the same arguments done before the proof is complete. [

Q.lgl

p*v—l—q w +

1.6.2 Follower and leader on the boundary.

Let v and ¢ disjoint open subsets of the boundary 02 and, again, let O; C 2 be a non-empty open
set where an objective function y, is defined. Let us consider the state system

Yy — Ay + a(z, t)y = 0in £,
y=fl,+vl,in%, y(-,0) =1y inQ,

where we find a boundary leader v and a boundary follower f, respectively acting on v x (0,7)
and o x (0, 7).

For the analysis of this problem, we need the weight functions defined in Section |1.6| together
with the following z-independent weight function: {(¢) := max,cq 02(t, ). This way, we can use the
secondary functional S* in (1.6.2), the main functional

~ (0]
Psf)=5 [ -kl [ cppara
OdX(O,T) 0'><(O,T)

U:={v:C¢veLl*ox(0,1))}

and the spaces 7* and J* and we can prove results similar to those above.

the space
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More precisely, to each leader v € U, we can associate the follower flv] € F*, the unique solution
to the secondary extremal problem (1.6.3). One has

_,0p
_ 2-F
f['l}] - QQ ay .

. y=0o"Lip,
where p € B is the solution to the problem

b(a;p,p’)z/ vg—p dth+/yo(:v)p’(:c,0) dz,Vp' € B.
ox(0,T) v Q

On the other hand, the functional v +— P(v; f[v]) possesses exactly one minimizer © in . Tt

satisfies, together with the associated state y and some p, ¢ and 1), the following optimality system:

e — Ag +a(z, 1)y = 01, in Q
§=fl0]L, + 0l on X, §(-,0) =yoin,

op
S =2 f— 0 2L 5. peB
flol= e ory UTe Tk PE
A / 8p / /
b(a;p,p') = v—=—dl'dt + [ yo(x)p'(x,0)dx Vp' € B, |, (1.6.11)
ox(0,T) v Q

{ —¢r — A¢+a($ t)é = a(i — ya)lo, in Q,
p=00onY, ¢(,T)=0inC,

=5 8V ov
ox(0,7)

; 000
bla;p', :/ 052 ardt, vp' € B,
{ ( ) x(0,T) 2 8V8

, Yveb

Proof. Fixed v € U the functional S*(v;-) is strictly convex, lower semicontinous so it has a unique
minimum f[v].

To apply Lax -Milgram it is necessary to prove that the left hand side of denoted by [l is a
continuous functional in B. By the Carleman inequality in the boundary[1.6.5given p in P the inclu-
sionp € L*([0,T/2]; H*(Q)) and p; € L*([0,T/2]; L*(2)) and then pis in the space C*([0, T//2]; L*(2)).
By continuity, p(0, -) in in L?(2) and therefore ||p(0, -)|| < C||p||5-

By Trace Theorem, Carleman estimate of Proposition and Holder inequality

dp _
/ U, <18l 2 @x 0 1B~ 0upll L2(ox 0.1))
ox(0,1) 9V

< 1Bvllz2@x ) lplls-
Then the left hand side of (1.6.11) is continuous.
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Proposition 1.6.2. The unique solution v in U to the control problem satisfies together with the follower
control flv] in F* and the associated state y to the following optimal system

Yy —Ay+ay=0 in
y= flv]l, +vl, on X,

y(0) = yo in Q,
_,0p _
27K — 271 %
f[U] =0 aV ) Yy 0 La(p)7
0l
/ 8 i /
o) = [ o5l [ el e,0)de
ox(0,T) OV Q
forallp € B
—q: —Ag+ag = aly —yi)lo, in Q,
q=0 on X,
q(T)=0 in Q,
B oy dq
= (5o,
with 1 the unique solution to
_,0q Opf
b a’awap/ :/ 0 2__7
( ) % (0,T) 2 aV 81/
forallp € B

The proofs of these results follow the same arguments given in Section[I.3]

Proof. Let w a function in /. Define g = L(flv + ew] — f[v]) and take ¢ in B as the solution to the
equation

m(a " —/ wa—p/
P oy o (1.6.12)
forallp’ € B.

Define z and ¢ respectively as solutions to the systems given by

21— Az+az=0 in €,
z=gl, +wl, on X,

2(0) =0 on X,

1.6.13
—q — Aq+aq = a(y —yi)lo, in €, ( )
q=20 on X,
q(T)=0 in Q,

Define ¢ in B the solution to the equation

n_ dq Op'
{ mla, v, p) = /xam EOr (1.6.14)

N
forallp’ € B.
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Derive P(-, f) in direction w, use the optimal condition, equations (1.6.13), integrate by parts
with equations (1.6.12) and (1.6.14) is possible to get

4| _Pv+ews flo+ew]) —a / (v — ya)z + / Bvw
Ogx(0,T) ox(0,T)

= / (—q — Aq+aq)z + / Bow
0ax(0,T) ox(0,T)

0
= [ (g1, +wly) 5 + 2+ / frow
b)) v ox(0,T)

2 2
/'yx(O,T) v v ox(0,T) v

. oy Jq 2
B /UX(O,T) (aV " v +h U) v
= 0.

By the last equality the result is straightforward. O

1.6.3 Global Carleman inequality for the heat equation.

In this subsection a proof of the Carleman inequality will be provide. Denote the normal derivate
Oy := (Vih, n) the usual normal derivate in C?(@)). Consider the operator Pz = z, — Az. Write
w = e*?z and because the properties of the function ¢ is direct that w(0) = w(T) = 0. Apply the
operator P to w and after some computations is possible to get

Pw=e€*g inQ
and

Pw = w; — Aw + 25 pdihdjw + sA2pw| V|2
— X252 p*w|Vw]? 4+ sApwd} 1 — spaw

Split the operator P = P; + P, where

Piw = —Aw — N2s2p? |V |?
Pow = wy + 28 p0;1p 0w

Observe that from (1.6.3) and the above definitions is possible to write
Prw + Pow = F inQ

where
F, = ge*? + spyw — s)\gpwazj¢ — s\2pw| V|2

Then by simple definition

1Ful2(@) = IP1wllZiaig) + IP2llLz(q) + 2(Piw, Paw)a(g)
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By integration by parts the inner product
(Piw, Pow)r2q) = /Q (—Aw — N$*@?*|V[?) (wy + 2sApd00;w) dadt
= [|[—Aw - )\3290|Vw|2HL2(Q) — /QQS)\gkoKVw - V) dxdt
—2)\353/ngalvwl2(Vw - Vw) dxdt

The next steps done are based in integration by parts, boundary conditions. Start estimating the
first integral in the right hand, second and third integral of the above equations.

|—Aw — As*o|Vuw)?|| L= / (—Aw — As*p|Vu|?) (—Aw — As*p|Vw|?) dzdt
L2(Q) Q
by 2
= / wiAw + Vw - Vw — iwtwgﬂvw - V| dxdt
i 1 A 22
= / wiAw — §|Vw|2 + Tsuﬂa,g (@*|V]?) dadt
Q

Next proceed with the second integral from (1.6.3)) integrating by parts so
—2>\353/ we VY *(Vw - Vw) dedt = —/ N3V - V(w?)|Vap|? dadt
Q Q
— / 3N S VY|P + w? PN s*0; (00| VY |?) dedt

Q
Finally compute the last term in (1.6.3) and taking in mind that w = 0 in ¥ then

/ 2s\pAw|(Vw - Vi) dzdt = / Aw (2s p(Vw - V) dzdt
Q

= fsanw 2V - Vw) dX + / (Aw (2sApVyVw)
Q Q
+25X\%p|Vw - Vw|? + 2sA*pd;w (Vi) - V)

+28/\g03i(3k¢ajw)xl> drdt
then is possible to get
/Q 25\ Aw|(Vew - V)| dadt = /Q Aw (25Mp(Vaw - Vb) + 25020| Vb - Vo
+25 ViV (|Vw|?) — /2 25\p|0pw|* 0,1 d¥
Then integrating by parts the above equality

/ 2s ApAw|(Vw - V)| dedt = / Aw (28 p(Vw - Vi) + 25X | V1) - V|
Q Q

+25Xp0; (O 0w) — sA 2| Vw|?| V|
—s oV - V(|Vw|?) — sApAy|Vwl|?

— / sAp|Oyw|*0,1 dS
s
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On account in the equality’s above is possible to get

(Prw, Paw)r2q) = / (352N P w? VY2 + AwPrw + 2\ 25| Vi Ve ?
Q
—s\ 20| VY2Vl — / sAp|Vw|?| 0,0 d + X,
b

where
Aw?

X, = /Q 5B+ 220 (P [TU) + w N 0,3,V )
—sApVY - V(IVw|?) — sApAv|Vwl|* + 2sApd; (0;1,) Oyw)
Is possible to estimate
| X1 < Cy /Q(s)\go + 1)|[Vw]® + ¢’ N s*w? dudt

where the constant C; is independent of \. Multiply equation Pyw+P,w = F; by the term A\ spw|Vw|?
in the space L*(Q) and integrating by parts in space variables is possible to get

/ Fos)N?wp|Vy|? dedt = / N sow| VP Pow — AN s3*w?| Vw|? + Ns0? | V|2 | Vw|? dadt
Q Q
+/ N sow| VPV - Vw + N s@*wV (|VY|?) - Vw dzdt
Q
—I—)\2sg0w/ 2V (0;4) - Vypo,w dxdt
Q

(1.6.15)
Thus

[ sl = [ sVl (9ol + Xy

Q Q

and write

X, = / yw (N spwd;(IVY[*) + 2V (0:0) - V) +X2s0| VY |* (Vi Vw)w+sA? | Vi Pw Ly— F N spa| Vi [*w dadt
Q

Recall that ¢ has not critical points in 2 and therefore |Vi(x)| > 0 for any point z. Recalling
equation (1.6.3) it is possible to get

S

)\4
Pl = [ (5t + Dasvp ) du
Q

1 2 1 2 L (1.6.16)
-3 / Nos V20, 45 [ Prwlegg, + 5 1PallEaco)

Calling the definition of F; and the functions ¢ and ¢ is possible to get

[ Fsllz2q) < C/ s2Pw? + o|Vw|* 4 g?e**? dadt
Q
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Then from (1.6.16)) and (1.6.15) it is possible to get

)\4
/ (—s3a2ﬁ2<p2w2 + f)\2a2ﬁ2|Vw\2) dxdt
o\ 8 1
1 1 1
—g/E)\903|Vw|26n@/)dE§||731w||iz(Q) + g”PQH%Q(Q)

< C’S/ G*e*? dxdt
Q

and by equations (1.6.3) and (1.6.16) is possible to get
1 .
/ (— (Jwe]* + [Aw|?) + sp|Vw|* + 83g03w2> < C’/ e”*?|w; + Aw + aw|?
Q \5%¥ Q
+C'/ Asps|O,w|® dX
s

and the proof is done.
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Chapter 2

The semi-linear heat equation: boundary
control

2.1 Introduction

This chapter focuses on solving a hierarchic control problem with an optimal and null controllability
objectives for the semi-linear heat equation when at least one of the controls acts on the boundary. In
the recent paper [CECdTV22] the global Lipschitz semi-linear internal control problem was treated
when a hierarchical strategy was applied inverting the roles of follower and leader: thatis, the leader
has an optimisation objective and the follower a null controllability objective.

The idea here is to extend the results of [CEFCdTV22] when the leader and the follower act on the
boundary. That s, for a given leader we chose a follower control that has the task to steer the state to
zero. By the other hand the leader control should minimize a cost functional. In the context of the
control of time dependent PDEs, the classical papers of Lions [Lio68] the author consider the linear
heat equation with the Stackelberg-Pareto and Stackelberg-Nash strategies, leading to the hierarchic
of controls with states that are approximate to some target states.

Heat equation is one of the fundamental equations in physics that was formulated by Joseph
Fourier in 1822. In the sense of engineer applications, modeling boundary value problems rises
naturally when a precise temperature is required in some region inside a material body where the
heat source is applied on some area of the body borders. Also, it is essential to optimize resources
in order to get this objective, for example minimise heat loss on an industrial process. For a unique
heat source it could not be possible to reach both objectives so it is reasonable to introduce two heat
sources that will be called controls. In the spirit of cooperative game theory (see [Par64]) this controls
take roles in order to get the desired results. See for example [Bad17] for optimization in thermal
process engineer.

One of the main tools to solve semi-linear problems is to apply the Schauder fixed point theorem
where compactness is essential. In the case solved here where the controls act on the boundary the
difficulty is increased since it is necessary to get the appropriate regularity for the solution of the
heat equation to apply the fixed point theorem.
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Since we are working with one or two controls exerted on the boundary, the semi-linear problem
carries some regularity difficulties that could be relaxed in the linear case studied in [CECdTV22].
In some situations the regularity H ' is enough to solve the problem but for a non linear problem
where fixed point techniques are required this does not give the necessary compact condition to
apply it. Improving the regularity in the boundary carries some technical difficulties that must be
treated more carefully.

2.2 Hierarchical control problem for the semi-linear case for the
heat equation with inner leader control and boundary follower.

Let 2 be an open set in the n-dimensional euclidean space, with boundary I'. Let w C 2 an open
proper subset called leader control subset and v C I' open in the relative topology named sec-
ondary control region. Denote by Q = Q x (0,7) and ¥ :=TI" x (0,7). Given an initial datum y, in
L*(Q2) and a real function F' define the initial value problem for the heat equation

v — Ay + Fy) =vl, in Q
y=f1, in ¥ (2.2.1)
y(0) = o in

Now for suitable functions o, gy, 01 with domain in ) consider the weighted spaces

Y={y:oycl?Q)} F={f:00f €L*vx(0,7))}
V={v:owe L*wx(0,T))}

where the domain of f, v,y is Q. Endow each space with the natural weight L?(Q) norm and define
the Banach spaces (), || - ||y), (F,| - ||#) and (V.| - ||v) given by

lolly = / QJv2dzdt; |[f]5 = / RSP
wx (0,T) ¥x(0,T)

lylly = / Plyl? dedt
Q

We consider the following hierarchical control process:

1. Given a leader control v in V find a follower control f[v] in F that solves the null controllability
problem, i.e for a given positive time 7' the solution y to verifies y(7T") = 0.

2. Then, we look for an admissible leader control v € V that minimises the functional given by

and

o 1
P(f;v) = 5/ ly — yq|? dadt + 5/ ( )Qé!vﬁdwdt (2.2.2)
d wx(0,T

where @ := Q; x (0,T), the set ; C Q is an open set on R™ and the function y; € L*(Qq).
There are several motivations for control problems are enumerate here.

1. The solution to the heat equation y(¢, ) can be seen as the temperature of a body at time ¢ and
position = € 2. A heating process consist to apply energy f in the boundary portion v x (0,7
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trying to keep a reasonable temperature on the region (), (for example, the core should be cool
enough during he process) during the heating process duration (0,7). The leader source of
energy v command the follower source of energy f but v should minimise costs i.e it should
minimise the functional P.

2. The same idea as above can be recited but now when both of the energy sources lies in the
boundary of the body.

3. Navier- Stokes equations are the equations that models the dynamics of a fluid in a medium.
The heat equation (2.2.1) can be replaced by Navier- Stokes equation and apply the same hier-
archical strategy to solve optimisation and controlability problem.

2.3 Basic results on regularity.

In this section we recall some basic results about regularity and compactness of Sobolev spaces.
Given X a Banach space, s € R, 1 < p < oo we define

T (T _
WeP(0,T; X) = 4 f € L’(0,T; X) and / / 17O = FOUX gy < o
0Jo |t — 7|t
We recall the following compactness result due to Simon [Sim86], (Corollary 9, p. 90).

Proposition 2.3.1. . Let X, B,Y Banach spaces and consider an inclusion chain X — B C Y. || For
s, s1 reals, 8 € (0,1) and 1 < ro, 1 < oo, define the numbers sy = (1 — 0)so + sy, % =24 1T;O and

T1

S = S — % Let F' be a bounded set in W7 (0,T; X) N W=t (0,T;Y). If s, < 0 then F is relatively
compact in L?(0,T; B) for p < —=+.
Given a measurable set A C R”, define the Sobolev space for r, s real numbers

H™((0,T) x A) = L*(0,T; H"(A)) N H*(0,T; L*(A)).

In order to study the hierarchical problem associated to (2.2.1)), we recall the following result that
can be found in [LM72] p. 80 for the linear heat equation with potential a € L*>(Q).

Proposition 2.3.2. Let a € L™(Q), h € L*(Q), g € L*(X) and yo € L*(Q) then it exists a unique solution
y € HY2Y4(Q) that solves the initial value problem

yy—Ay+ay=h in Q

Yy=g on X
y(0) = o in Q
Moreover, the following bound holds
[Yllzr1721120) < Clllyollzzi) + 1Al z2@) + [lgllz2(s)- (2:3.1)

1Possible case Y = B.
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2.4 Carleman Inequalities

To solve the first step in the hierarchical control process a fundamental tool called Carleman inequal-
ities will be studied. This inequalities involves weight functions with domain in @) that diverges
quadratic when t — T'. A basic proposition is introduced next to construct this weigh functions.

Proposition 2.4.1. Exist a function ng
— on
o € C*(Q), 7 >0 Vﬁo%OinQ,and%gO on 00\ .
14

This classical result that can be found in [Ema95]]. Recall the weights used in Chapter I. For this
problem the weights will be modified to enhance to the boundary value problem in I'. With our
assumptions on (2, such a function 7, always exists (see Lemma 1.1, p. 4 in [FI96]). Then, let us
introduce the weight functions

eAMT0lloe — AN Moo +°(x)) A2l oo+ ()
t) =

where ¢ € C*([0, T]) satisfies ((t) > T?/4 in [0,7/2] and {(t) = (T —t) in [T/2,T)and \,s > 0
are large enough. This constants A and s will be fixed in a convenient way. Let us introduce the
weights o = €7, gy = (s£) 732X\ 20, 01 = (s£)"2X\"1p, s = (s€)"/? o . With this definitions state the
next theorem.

Define the operator L, = 9, — A + a for functions in ) and the adjoint operator L; = =0, — A +a
in the sense of distributional derivates. Let P, = {q € C*(Q) : ¢q|s = 0} and give a bilinear form
B : Py x Py — R defined by

g(x,t) =

Bla,p,q) = / 0 2L (p) L) dudt + / 0520, p0yq dodt (2.4.1)
Q ¥

x(0,T)

where 0, is the normal derivate operator.

Theorem 2.4.1. There exist positive constants A, so and C, only depending on 2, v and T', such that, if we
take A\ = \o and s > sq, any p € P, satisfies

// [03%([pe)* + |AD|*) + 07| VD|* + 05°|p] < C1 B(0;p, p).
Q

Furthermore, Ay and s, can be found arbitrarily large.

Define the semi-norm ||¢||p, := B(0; ¢, ¢). By Carleman inequality from Theorem (2.4.1) if ||p||p, =
0 then ¢,%p| = 0 a.e. so || - ||p, is @ norm in P,. Define P the completion of P, with the norm
| - |l» = B(0, q,q) with ¢ € P. In the remainder of this section, we take A = \; and s = s;.

Remark 1. It is possible to extend B(0;-,-) to P with the formula (2.4.1). Take a function p € P. The
function oy Ap is square integrable by Carleman inequality and by Fubini theorem the slice oy ' Ap(t) is
integrable i.e

/ 02| Ap(t)Pdx < oo, vVt e (0,7)
Q
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Then p(t) € H?(Q2) and by Theorem 8.3 from [LM12]] the normal derivate exists and then 9,p(t) € HY/*(0%)

forall t € (0,T). Again by Carleman inequality p is locally integrable so given 6 > 0 then plr_s €

L2(0, T; H*(SY)) and then by Theorem 8.3 in [LM12]] the normal derivate exists and 0,pl o r—s) € L*(0,T, H'/?(05)).
The sequence oq>dyplo.r—-5 — 0y Oyp a.e and by Fatou lemma

/ 00 210,p|* dzdt < lim inf/ 00 2|0,p|? dadt
Q Qx(0,T—6)

6—T

and by the monotone convergence theorem the function oy*0,p € F.

Lemma 2.4.1. We can find positive constants K and K,, only depending on Q, v, T and ||a|| r(q), such
that
Ko B(0;p,p) < B(a;p,p) < K1 B(0;p,p) Vp€P. (24.2)

The next section solves the first step in the linear control process for a potential in L>(Q) is
solved.

2.5 The null controllability problem in the linear case.

In this section we describe the method to solve the null controllability problem associated to the
follower objective in the linear case i.e the first step in the hierarchical control process described in
section 2.2. Solving this linear problem will allow to establish the null controllability problem for
the semi-linear case as a optimisation problem via minimising sequences and a fixed point theorem.

Proposition 2.5.1. Fixed a positive time T, consider a potential a € L>°(()). For a leader control v € V and
Yo € L*(Q) it exists a follower control flv] € F such that y(T') = 0 where y is a solution to

Yy — Ay +ay=vl, in Q
y = flv]1, in X (2.5.1)
y(0) = o in Q
Moreover, it exists a function p € P such that the follower control and the solution to are characterised
in the form

flv] = 05%0ply,  y=0"2L5(p) (2.5.2)
where p solves the integral equation
/ 0 2L:(p)L:(q) dxdt + / 952877]9 Opq d¥ = / vq + (Yo, ¢(0)) L2 (2.5.3)
Q vx(0,T) wx (0,T)

for any function q € P.

Proof. For the long of the proof choose a fixed leader control v € V. The proof is divided is several
steps.

1. The key point in the construction of the follower control is the behaviour of the weigh functions
from p* and ¢} whent — T~ and formulate a new optimisation problem
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}rElJfT S(f;v), (2.5.4)

where

1 1
Sy =y | Pwldsir g [ disas

2 +x (0,T)
Observe that S(-;v) finite implies that y(7) = 0. Observe that the functional S(-,v) : ¥ — R

is a coercive, convex and lower semicontinous functional. Then it has a unique minimiser f € F.
Given a direction h € F and € > 0

1 P A 111 1 A .
st +ehso=stio] =1 |5 [ PUiet =ty —g [ ali+eh? 1]
1
€

1
— {—/ 0> (2legz| + |ez]*) +/ Qg(egjz + |eh|2)d2}
2 Jq ¥%(0,T)

where the functions z and y solves

z—Az4+az=0 in Q
z = hl, on X%
2(0)=0 on €

and
U — Ay +ay =vl, in Q
y=fl, on %
Q(O) = Yo in Q

Taking the limit e — 0 the derivative of the functional is given by

e—0 €

1 A n .
lim = [S(f + eh;v) — S(f;v))] = / 0>z dxdt —|—/ oefhd: =0 (2.5.5)
Q ¥%(0,T)
Define the function p the solution to
—pi—Ap+ap=¢°y in Q

p=0 on X
p(T) =0 on €

Replace § = 2L (p) in (2.5.5) integrate by parts and use the boundary conditions to get

t/qum&+/ dﬂ&]z/ﬁﬁﬁ@ﬁ+/%%@+/‘ o2 fhdx
Q Q ) ¥x(0,T)

vx(0,T)
:—/ wmm+/ o2 fhd
¥x(0,T) ¥x(0,T)

then
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/ (02 f — Dyp)hdX. = 0.
7% (0,T)

Then we get the characterisation

Flv] = 0520,p1,; 9 = 0 Ly (p).

2. The second step is to prove that equation (2.5.3) has a solution p in P . Assuming for a while
this as true, then is possible to define the follower control and the solution via (2.5.2) and replacing
this in (2.5.1). One gets the fourth order system

La(072L3(p)) = vl, in Q
072L:(p) = 0y °0ppl, in X (2.5.6)
(02L;()(0) =yo in Q.

Let ¢ € P, multiply equation (2.5.6), integrate by parts and remark that the solution must satisfy
y(T) = 0 get the equation

/QQ‘QLZ(p)L;(q)dde/

¥x(0,T)

0720, Dy 45 — / 0d + (90, 2(0)) 20, (25.7)

wx(0,T)

Then is possible to conclude that solving the above identity for all ¢ € P is equivalent to solve the
fourth order system that is equivalent to steer y(7') = 0 the solution of (2.5.1). Now proceed
to prove that has a solution in P. By Carleman inequality from Theorem is possible to
see that the left hand side of equation is coercive. Remains to see that the linear function
[ : P — R of the right hand side of is continuous. Estimate |I(q)| for ¢ € P to get

1/2 1/2
()] < ( / QW) ( / gazqu) T oozl () 22y (2.58)
wx(0,T) wx(0,T)

1/2
0.1) @62\19!2) " < B(0,p,p)"/?. Re-
mains to bound ||p(0)|| 12y with some expression of B(0, p, p)!/? from the above equation. Again by
Carleman inequality is possible to see that ply 1/ € L*(0,T; H*(Q))and the derivative p; 117/ €
L*(0,T/2; L*(£2)) so by interpolation of the spaces is possible to see that ply /o) € C°(0,T/2; H'(Q)).
With this deduction can take a continuous embedding P — H'(2), p — p(0) and then make the es-
timate ||p(0)| 22y < CB(0, p,p)"/*. Then becomes

By Carleman inequality from Theorem [2.4.1/holds that ( L

@) < C (Ivllv + lyoll 2@) llalle- (2.5.9)

Then by Lax-Milgram theorem equation has the desired solution p € P. With this conclu-
sions is possible to see that exists a follower control f[v] and that is characterised by equation (2.5.2)
and y(T") = 0.

3. Integral equation hold for any ¢ € P so is possible to take ¢ := p and get

/ 07| L2 (p)? dud + / 05210, dS = / vp + (90, P(0)) 120
Q vx(0,T)

wx(0,T)
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By inequality (2.5.9) and (2.4.2) the above integral equation is possible to get

B(0,p.p) < C (Iolly + ol r2) B(O,p,p) "/
Then using again inequality (2.4.2) exists a constant C' > 0 such that

B(a,p,p)'* < C ([vllv + ol z2e)

By Young inequality given positive numbers a, bholds that a+b < v/2 (a2 + b?)"/* taking a = || f[v]|| 7
and b = ||y||y then
1£1olll7 + llylly < € (lvlly + lollz2@)) - (2.5.10)

]

2.6 Solution to the hierarchical control problem in the semi-linear
case.

The linear case was solved in the last section with a potential a € L>(()) and is the fundamental
result to solve the semi-linear case. Let F be a C''(R) Lipschitz function. Define

F(s
FO(S):{% 570
F'(0)=0 s=0

Given a function z € L*(Q) is possible to see that F(z) € L>®(Q) define the the linearization of
is given by
vy — Ay + Fy(z)y =vl, in Q,
y=f1, on X, (2.6.1)
y(0) = yo in (L

The null controllability problem for the follower control describes in section 2.1 will be done for
the linearized system in the next proposition and is done is four steps. The first main part
is to proof the existence of the solution of via a fixed point theorem. The second main part
of the proof is t verify that the follower control that satisfies the null controllability problem in fact
solves the optimisation problem

1 1
inf [ S(f;v :—/QQdexdt—i-—/ szQdZ).
i (st =5 [ P g [l

The last main part of the proof rises in compute explicit solutions and compute suitable estimates
for it.

Theorem 2.6.1. Let a leader control v € V. and a positive time T' > 0. Then there exist a follower control
flv] € F that steers y(T') = 0. Where y € Y solves the initial value problem

ye— Ay + Fly) =vl, in Q,
y = flv]1, on X,
y(0) = yo in Q.
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Moreover is possible to get the explicit form
flvl = 0020wl y = 0" Ly, (p), (2.6.2)

where p is a solution to

/QZMWMMIWM®+/ @fmmmmz:/“ 1w+/yw®Mx
Q vx(0,T") wx(0,T) Q

for any q € P. Moreover it is possible to get the estimation

£ 1olll7 + llylly < € (Ivlly + lIollz2@)) -

Proof. Fix a follower control v € V. Let z in L*(Q) so Fy(z) € L>=(Q) so by Proposition exists
f[v]. such that y.(T') = 0 where y, solves the equation

Yzt — Ayz + FO(Z)yz = Ulw in Q
y = f.[v]1, on % (2.6.3)
yz(o) = Yo, yz(T) =0 in Q.
By the estimate from Proposition[2.5.1]is possible to see that f.[v] is uniformly bounded
1£:ll7 < C(Jlvlully + lwollz2()) independent of z. The solution y. € HY*Y4(Q) to 2.6.1) (see
[LM12] section 5.1 ) can be estimated by

ly:llmzan < C (lyollz + llvllzz) + [1£14z2@)) (2.6.4)

< C (llyoll 2y + llvllv + 1 £1, 1l 7) -

Then the set of solutions {y. }.c12(g) is bounded in H'/%/4(Q). Now invoke Proposition
The embedding H'/?(Q) — L*(12) is compact [LM72]. Take § = 1/2 sy = 1/2, s; = 1/4 and note
that sx = —1/4 then is possible to take p = 2 < 4. Then embedding H'/2Y/4(Q) — L*(Q) is compact.
Define the map A : L*(Q) — L?*(Q), z — y., where y, solves (2.6.3). By inequality the image
A(L*(Q)) is bounded in H'/?'/4(Q) so by the previous conclusions A(L?(Q)) C L*(Q) is a compact

set of L?(Q). Then exists a fixed point z = ¢ that solves

]
g = fylv]l, on X
9(0) = yo,5(T) = 0 in €.

But Fy(j)j = F(¢) and denote f[v] := f;[v] the follower control associated to the z := j. Then
solves

{ﬂtA17+F(Z?)vlw in @
9(0) =90,9(T) =0 in €.
The control f[v] € F and § € Y then

1 . 1
3 | Alitasars [ g
Q 7%(0,T)

2
dX < oo.

flvl
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2. Now it will be shown that the functional S has an infimum. Let f,, be a minimising sequencei.e
lim,, 00 S(fn,v) = inf S(f). By definition of minimising sequence f,, is bounded and then converges
weakly to a function f [ET99]. And y,, converges strongly to y in L*(Q) from [LM72]. Then because
S(-,v) is lower semi-continuous then f is a minimum of S(-,v).

Now, let { /"} be a minimising sequence for (2.5.4). By estimates given by Proposition it is
clear that the f™ (resp. y™) are uniformly bounded in F (resp. )). Consequently, it can be assumed
that there exists a sub-sequence { f,,, }that converge weakly in F to some f and the corresponding
states y" converge strongly in L*(Q) to the associated y. From the weak lower semi-continuity of the

functionals
21,12 21 £12
yH/g y> and fH/ 2112,
Q ¥x(0,T)

we easily deduce that f solves the optimisation problem

1 1
inf [ S(f;v :—/QQdeIdt—l——/ sz2d2).
i (st =3 [ AbPaaeg [l

where y solves

v — Ay +Fy) =vl, in @
y = flv]1, in ¥
y(0) = yo,y(T) =0 in Q.
3. This step consist in verify that the solution to the semi-linear problem are characterised by
(2.6.2) First define y as the solution to the system

y=20 on X%
y(0) = yo in Q

Define the map H, : L?(Q) — L*(Q) as Hy(q) = z where z is the solution to the problem

z—Az=q in Q
z2=0 on X (2.6.5)
2(0) =0 in Q

Also observe that A : L*(Q) — L*(Q) is given by H (1)) = ¢ where ¢ solves the equation

—pr—Ap=79 in Q
=0 on @ (2.6.6)
o(T)=0 in

The solution Hy(q) € L*(0,T; H}(2)) N HY(0, T; L*(Q)) for each ¢ in L?*(Q) then the map H is a
compact operator in L*((2). By results of [LM12] (pg33 Theorem 6.1) is possible define the boundary
operator G : L?(Q) — HY*Y4(Q) c L*(Q) given by G(3) = n where 7 is a solution to the boundary
problem .

nm—An=0 in Q
n=_, in ¥ (2.6.7)
n(0) =0 in Q



51

Again by Proposition the operator G is compact in L?(Q)). Define the map M : Y x F —
L*(Q) given by
M(y, ) =y + Ho(vle = F(y)) — G(f1,) —y
It is straightforward to verify that if the condition M(y, f) = 0 holds then the pair (y, f) in Y x F
solves the equation
—Ay+ F(y) =vl, in @
y=r1, on % (2.6.8)
y(0) = yo in Q
As mentioned above the null controllability problem can be written as an optimisation using the
operator M and the equation (2.6.8) in the form

| 1
mf§/ @Qly\2+§/ ol fI? ds
Q 4% (0,T)

M(y, f) =0
(y, f)e Y x F

Next is necessary to apply the Theory of Dubovistki- Milyoutin to the optimal problem (2.6.9). Using
the theory developed in [Lio68]and in order to apply the Dubovistki- Milyoutin theorem is necessary
to describe the descendent and tangent cones associated to the problem This pair of cones are
defined as

(2.6.9)

Ko = {(Zag) EYXF: M/(yvf)(zvg) = 0}
Ki ={=-XS'(f,v) : x>0}
The operators Hy and G are of class C* then the it is the operator M . Given any directions (z, g) in
Y x F and that operator Hy and G are linear the derivative of M is and operator M’ : Y x F — L*(Q)
given by
M'(y, )(2,9) = z+ Ho (F'(y)z) — G(g1,).
Optimisation problem has a solution if and only the descended and tangent cones satisfy
Ko N Ky = 0. The Dubovistki-Milyoutin condition implies that in order to have Ky N Ky = 0 is
sufficient that exists a f, € Kj and f; € Kj such that f; + fi = 0. By definition of dual cone
(see Appendix for definition of dual cone), (w, h) € K = kerM'(y, f)* but the operator M'(y, f) is
closed because H, and G are compact then KerM'(y, f)* = Rank M'(y, f)*. Then the Dubovitsky
Milyoutin condition states that exists \(0?y, ¢2f) € K} and (w, h) € K, such that

A%y, 03 f) + (w,h) =0 (2.6.10)
It is necessary to compute the dual operator M'(y, f)*: given ¢ € L*(Q)

(M'(y, [, (w, b)) = (w+ Ho(F'(y)w) — G(h1,),1)
= (w, ) + (F'(y)w, H5 () + (hl,, G*(Y)1,)
= (w,¥) + (w, F'(y) Hg (¢ )>+<h —G*(¥)1,)
= ((w,h), (¥ + F'(y )H*(w) G*(¥)1,))
then

M'(y, )" () = (¥ + F'(y) Hg (¢), =G"(¥)1,)
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Then it is possible to write equation [2.6.10|in the form

MNe®y, o3 f) + (b + F'(y) Hy (¢), —=G*(¢)1,) = 0 (2.6.11)
Because A # 0 equation (2.6.11)) can be normalised to A = 1 to get
y =o0? (¢ + F'(y)Hy (v)) (2.6.12)

f=—0 G )L,
Define p := H{(v) so by definition is possible to see that Lj(p) = ¢ and because equation

(2.6.6) then p|y, = 0. In equation (2.6.12) observe that G*(¢)) = G*(L{(p)) so is necessary to cal-
culate G*(L{(p)) in the boundary v C X to get an use full expression for the follower control. Let

q € L*(X) then

/Q Lo(Glq))p dwdt — /E 18, G(q) 5. — /E 9,pG(q) dS + /Q G(q) Li(p) dudt (2.6.13)

Now by definition of adjoint

/QG(q)L(’;(p) dzdt = / qG*(Ly(p)) dX (2.6.14)
s
Then equation (2.6.13)) together with (2.6.14) gets

o(G(Q))pdzdt = [ pd,G(g)dS — | d,pG G (L
/QL< @wdrdi= [ 30,60 s~ [ 06 s+ [ a6 (Lip) as

Since p|y, = 0 from definition (2.6.7) and from (2.6.5) then becomes

/E OpGlq) dS — / 4G (L (p)) d

Now G(q)|s = q|s from (2.6.5) and therefore for any ¢ in L*(3) the equality takes the form

/E 10, A% = / 4G (Li(p)) dS

and then G*(Ly(p)) = 0,p. By definition of p := H;(¢) one gets ¢ = Li(H;(v¥)) = L§(p) then it is
possible to write equation (2.6.12) in the form

y =0+ Fy)Hy ()
= 0*(Ls(p) + F'(y)p)
= QiQL}/(y) (p)
[ =-0 2anp1*y
4. This step is focused in find estimates for the follower control and the solution. It is possible
to see that p € P becausey € Y and f € F. Write F(y) = Fy(y)y. Because (y, f) fulfils with the
restrictions of the problem then is possible to write this problem in the form

LFo(y)<972L*F/(y) (p))2: vly, in Q,
0 2Ly (P) = =05 Oppl, on Y,
Q_QL*F’(y) (r)(0) = yo, Q_QL},(y) (P)(T)=0 in €,
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Multiply equation by p’ € P, using integration by parts and boundary conditions the inte-
gral form for this problem is

/Q Ly (0L (@) = /Q 0™ Lion(y)(P) Ly (V)

+ [ wlow0.2)

Op op
_/ Q(;?_p_pdg
% (0,T) on dn

then from this equations is possible to get that p solves the integral equation

| oL@+ [ atopondis= [ o+ [ w0.0) W e B
Q vx(0,T) wx (0,T)

Now it is necessary to make some estimates of the bilinear form. For this apply the Holder
and Young inequalities. First is important to note that the weight ¢ is bounded in the interval

[0, 7/2] and by the embedding given by P — H'(Q2) then ||p(0)|||12() < x[nz;%] lp(t) || L2(c2)- Denote

M = sup,cg |F'(y)|- From Theorem[2.4.T|take Ao = X and s = s and see that is possible to get the in-
equality s32 > M+/2A%sup,, £~*/? and then it is possible to get the bound S := sup,, @ <1/(M V?2)
and then is easy to see that f 0 o 2|plPdxdt < S [ 00 ?|p|? dzdt. Also there exist a positive number 3
such that + VT M2 52 < B < 5;- Then

B(0,p,p) Z/yo(:c)p(O,x)+/ vp
Q wx(0,T)

— /Q 0 2 (Fo(y) Lo(p)p + F'(y) Ly (p)p + F'(y) Fo(y)Ipl*) dxdt

1 1 1 1
< (/ Qﬁ!vl2) </ 002!p|2> + </ 92!yo|2> </ @2\p(0)|2)
wx (0,T") wx (0,T") Q Q

ié@%%@%@m+wmm@m+ﬁw%@mﬁth

< Il s, I+ Iolalpll + 0% | o™l

=

21 [ o L) dat
Q

Then, by Young inequality with a parameter 3 > 0, it is possible to bound

M
2M/aﬂ%@WﬁMﬁéMﬂ/@ﬂ%@?wﬁ+5/@”mWMt
Q Q Q

and also

/g_2|p|2 dxdt < 52/ 00 2|p| ddt.
Q Q
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Therefore
91T M _
B(0,p,p) < (|[v]lv + HyoHLz(n))B(O,p,p)erMﬁ/ 02| L5(p)|? dadt + <M2+F> 52/ 00 Ip?
Q Q

M
< C (J[ollv + loll2@) B(O,p,p)? + Max (ﬁM, (M? i E) 52) B(0,p.p).

Remember that 3M < 1. Also, from inequality 52, < 3, we get (M? + M/B)S? < 1 and

the term Max <BM , ( F) 52) B(0,p,p) can be absorbedﬂ in the left hand side of the above
inequality giving
(B(0,p,p))"* = 15 1,[l7 + lylly < C (llvoll2q) + I1vllv) -
O

Now we present how to solve the second step of the hierarchical control process. The next lemma
defines an appropriate set where the functional P for the leader will be minimised.

Lemma 2.6.1. Set v € V. Let ®[v| be the set of all followers f € F such that solve problem ( then the set
G=A{(v,f):v eV, fedv]}isconvex and weakly closed in V x F. Moreover the functional P : G — R,
(v, f) — P(v, f) is coercive and weakly lower semicontinous.

Proof. It is clear that G is convex. The proof for the closeness of G is given. Let (v,, f,) a sequence
in G that converges weakly to (v, f) and suppose that (v, f) is not in G so there exist a pair(v, f) and
the associated state ¢ such that

1 . 1 ~ 1 1
s [ty [ @i [ ey [ P
Q vx(0,T) Q x(0,T)

g — Ay + F(g) =vl, in @,

Y= fL, on X,

y(0) = yo in Q.
Observe that there exists 4 > 0 such that

1 . 1 ~ 1 1
s [dltes [ @ifres<y [ewrey [ e
Q x(0,T) Q x(0,T)

It exists a natural number N such that for any n > N

1 . 1 ~ 1 1
sty | aifteo<g [y [l
Q x(0,T) x(0,T)

Evaluating the functional S on the sequence (v,,, f ) and taking 7, its associated state it is possible

to see that
= Rl + 272 <2 [ Pyl + 2 2| ful?
2 Q Yn 2 Qo Q Un 2 QolJn
7% (0,T) % (0,T)

2Understand absorb as having the inequality A < CB + aA with 0 < a < 1 then 4 < C/(1 — a)B.

where 7 solves
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for n large enough. This contradicts the fact that (v,, f,) € G.

The next step is to prove that the functional P : § — R is a lower semi-continuous functional
and coercive. Let {(v,, f,)} C G be a sequence such that || f,,||  — oo . By inequality || f,.|| = + ||y||y <
C (lvollz2@) + llvnllv) givenin Propositionis straightforward to see that ||v, |y, — oo and then
the functional P(v, f) — oc.

Ultimately it is necessary to prove that P has an infimum in G. Let (v,, f,) € G be a minimising
sequence i.e P(v,, f,) — inf P(v, f). This sequence is bounded in V x F by definition and then

N

(Un, fn) has a sub sequence (v,,, f,,) is weakly convergent to some (v, f) in G because it is weakly
closed. The pair (v, f) is the candidate to be a minimum. Because P : G — R is L.s.c in the usual
topology then

P(b, f) < liminf P(v,, f,) < inf P(v, f)
n—00 (v,f)eg

so (0, f) is the desired solution. O
Theorem 2.6.2. It exists a pair (f[0],0) € G such that the follower control f[0] fulfils the null controllability
problem (the state y(1') = 0) and the leader © minimises the functional P. Moreover the pair ( f[0], V) is given
by

Je — Ay + F(y) = 01, in Q,
g = flo]l,on X,
Q(a()) = Yo in Qa

f[@] = _962877]5 5’ g = Q_QL}’(Q)]A)7

where p € P solves the equation

/QQL*F,(y)ﬁL*FO(Q)p’—l—/ 00 20,p0,p’ d :/ op' + / yo(x)p'(x,0)dx Vp' € P.
Q vx(0,T) wx(0,T) Q

Define 4 the solution to

4= DA F' ()4 =i —ya) Loy + F'(§)p+0 2 F" (§)pLie in Q,
¥ =0o0n,
ﬁ(7T> =0in Q)

with ¢ € P the unique solution to

/ Q_QLg(gzg)L},(y)(q) dxdt + / 0520,00,q d% = —/ 00 20,40,qdY Vg € P.
Q ) p)
Then, the leader control is characterised by

v==0"(7+ ) or) (2.6.15)

Proof. The idea is to formulate the optimisation problem as a problem of optimisation with con-
straints. Define the operator M : Y xU x F x P — L*(Q) x Y x F defined by the three component
vector

M(y7 f7U,p) = (y - HO(Ulw - F(:U)) - G(fl“/) —Y,y— Q_2L}’(y)(p)7 f + 952877})17)
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where the operators H, and G is are the same as in(2.6.5)). Define Py : M : Y xU x F x P — R

o 1
Py(y, f,v,p) == P(f,v) = —/ ly — yal* dodt + —/ oplv|? dedt
2 Jq, 2 Jux(o,m)

and redefine the optimisation problem (2.2.2) in the form

iIlf P()(y, f7 Uap)
subject to M (y, f,v,p) = (0,0,0) (2.6.16)

(y, fv.p) €Y XUXF xP
Define for (y, f,v,p) € Y X U x F x P the descent cone

Ko(y, f,v0,p) = {(w,9,h,q) € X : F(y, f,v,p)(w, £, q) <0}
and the tangent cone

Ki(y, f,v,p) = {(w,g,h,q) € X : M'(y, f,v,p)(w,g,h,q) = 0}

The operator M is lineal and then is of class C" in the space Y x U x F x P. Denote for simplicity
X =Y xU x F x P. The next task is to find an explicit for form the derivative M'(y, f, v, p) and its
dual. Consider an arbitrary direction (z, g, w, q) € X. From the linearity of the operators G and H,
and straightforward calculations it is possible to see that

M/(ya f7 UaP)('Z:ga w, Q> - <Z - HO(wlw - F/(y>z> - G(.g]-’)/) - g?
2= 07 Ly, (@) — 072 F"(y)2p,
g+ 07°0yal,))
In order to have a solution for the optimisation problem (2.6.16) it is necessary that the descent and
tangent cones fulfils K, N K; = (. Applying again the Dubovitsky- Milyoutin theorem, we obtain
A (a(y — ya)la,, 0, 03v,0) € K with A # 0 and ((2, g,w, q)) € K; such that
A (aly = ya)le,, 0, 05v,0) + (£,9,%,4) = 0

Now compute the adjoint operator M'(y, f,v, p)* that is given by an element in X'. First of all define
the operator ' : P — F, p — g,°9,p. Then by definition of the norm in P, ||o;0,p|l7 < C|lpll»
then, AV is a continuous operator and the adjoint N* : F — P exists. Given an element (¢, ¢, ¢) €
L*(Q) x Y x F then

<M/(y7 f: v,p)(z,g,w, Q)7 (¢¢, Qp)) - <Z - Hg(wlw - F/(y>Z - G(.gl’}’)?l/}>
+(z 4 072 Lpy)(q) — 072 F"(y)pz, ) + (9 + 05 "G (Li(q)) 1+, ©)

= (2,0 + o+ F'(y)po + F'(y) Hy(¥)) + {9, —G*(¥)1, + ¢)

+(w, Hy (V) 1o) + (a, = Lrrg) (07%0) = N*(pL,))

then the adjoint operator is characterised by

M'(y, f,v,p)* (¥, 0,0) = (@b + F'(y)Hi (V) + ¢ — 0 F" (y)pe,
Y — G*<77Z})1'y:
N*(p1) = Livy (0726))
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Then (2,g,w,q) € Ki = Rank M'(y, f,v,p)* and by the Dubovitski- Milyoutin theorem there
exist functions(v, ¢, p) € L*(Q) x Y x F such that each of the functions satisfies the set of equations

aly = ya)la, = ¥+ F'(Y) H () + ¢ — 072 F"(y)ep
0=0¢-G"(¥)1,

2.6.17
ogv = Hg(¢)1 ( )
0= _LF’(y)(Qi%b) + N*(pl,)

The define the associated functions ¢ = H(v)), ¢ = —Hi(¢) and ¢ = Li(Hz (4)) = Li(¢). Taking
y = 9) — ¢ and from the first equality from equation is possible to get

aly —ya)lo, =v+ F(yH;(W)+¢— o F'(y)ep
— L)+ P - Li(d) — 02 F () L)y
= Ly = 0) + F'(y) (3 + 6) + 0 2F"(y) Li (9)p
= Ly 3) + F'W)o + 0 2 F"(y) L3
= Ly (3) + F'(y)o + 02 F"(y) Li(o)p
Then is possible to get the equation
— = AF + F'(y)y = aly = ya)la, — F'(y)o — 0 F"(y)Lo(d)p
AT) =0
Then equation number 2 from can be written in the form

~

v = _Q(;Q(:Y + ¢)1w

Taking equation four in (2.6.17) and for ¢ € P

/Q (N*(oL,) = Liviy(0-20))q dardt

030,105 | 07 0Lin (o) dod
x(0,T) Q

05°0,0G (6) 4=+ [ 072 Li(0)Lin (o) dode
x(0,T) Q

/.
/.

_ / gy 0O () | L) L o) dat
J

Q

0520000, 45 + [ 072 Li(0)Livg (a) dode

x(0,T) Q

0L L) ot + [ 0770, (3) Dy == [ o p0,(0) 2
Y

Q

Then the theorem is proved. O
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2.7 Hierarchical control problem for the semi-linear heat equa-
tion: boundary leader and follower controls.

In the previous section the problem for an inner control leader and a boundary control follower was
solved. In this section we will study the problem with both controls acting on the boundary. Let (2
an open set in R” and o and ~ disjoint non empty open subsets in I' := 0f) with the relative topology:.
Define the initial value problem with boundary conditions

y—Ay+Fy)=0 in Q

y=fly,+vxs in ¥

y(0) = wo in Q
where v and f are control functions to be determined in suitable Hilbert spaces. The function F’
is C'(R) globally Lipschitz . Here ¥, is a C"! regularisation of the characteristic set of 0. Consider
the weight functions functions gy, 01, 02 defined in Theorem Define the weight function g, :
(0,T) — R by 0.(t) := sup,eq 0; with i = 0,1, 2 and define the weighted Hilbert spaces

Y={y: o’y L*Q)} F={f:0f¢€Lvx(0,1))}
V= {v:owx, € L*0,T; H/*(T))}

Each space endowed with the natural weight L? norm gives the Hilbert spaces (), || - [|y), (F, || - || )
and (V, || - |[y). The weight function appears in the spirit of the use of Carleman inequality to solve
the null controllability problem because the blow up behaviour when ¢ — oo . For some interval
(I' — 0,T) with § > 0 very small the weight functions diverges when ¢t — oo as does the function
t~te/tand then o2 = O(te~'/*) where O denotes the Big O notation of asymptotic behaviour. Given

a p € P|then

/ 02| Ap|* + 0% Vp|* + 0 %|p|? dadt < / 05| Ap)* + 07| Vp|* + 05 % |p|* dzdt < oo (2.7.1)
Q Q

Then is possible to see that A(o;'p), V(0,'p), 0 'p € L*(Q) and then o, 'p € L*(0,T; H*(2)).

The Hierarchical control process is defined

1. Given a leader control v € V find some follower control f[v] € F that solves the null control-
lability control problem i.e the solution y to problem (2.7) satisfies y(7') = 0 for any positive time
T.

2. We look for an admissible control v € V such that solves the optimisation problem

« 1 [T
.fP - - - 2 - 0-212 dt 2.7.2
g P =5 [ =+ 5 [ el 272)

where @ := Q; x (0,T), the set ; C Q is an open set of R" and the function y,; € L*(Qq).
The next section treats about some elementary theory of fractional Sobolev spaces and the Laplace
Beltrami operator on a surface in R”.

3Same as the last section with the norm given by
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2.8 Preliminary theory

The basic definition of fractional Sobolev space H*(I') with s > 0 depends in charts and partitions
of unit on the boundary I' (see [LM12] pg. 34). Although this is an intuitive definition based in the
Half space lacks of information for explicit calculation so an interpolation characterisation will be
used. Let 2 be an open set such that the boundary I' is a n — 1 smooth sub-manifold. For m € N
define the space H*™(I') = {u € L*(I') : Af'u € L*(I')} where Ar is the Laplace-Beltrami | operator.
Invoke the next proposition

Proposition 2.8.1 ([LM12]). Let I be the boundary of ). Then for 0 < 6 < 1 and s, > s, the interpolation
[H*\(T'), H*2(T"))g = H=951%%52(T) formula holds.

Definition 1 ([LM12]). Let s > 0 a real number. Let I' be the boundary of Q2 and consider the Laplace
operator A. Define the non integer Sobolev space H*(I') = Dom(—A}.) endowed with the norm ||u

Jull 72 + 1A 22
()

2
Ho(r) =

For further details see pg 33 in [LM12]. Let the spectrum o(Ar) = {); > 0;j € N} and w, the
orthonormal set of eigen-vectors in H'((2) that form a base in L*({2). Under this assumptions and
by the spectral decomposition the Laplacian Aru = X222, A\j(w;, u)w; and then the spectral decom-
position of Al/? is given by A[/*u = P )\jl-/ ?

H'Y2(T) in the form

u, w;)r2mw;. Then it is possible to write the norm in
3/ L2(T)W; P

el szqry = luallZay + D gl wg) 2y 2.
j=1

The next proposition about the continuity of the normal derivative is done in [LM72],page 9.

Proposition 2.8.1. Let u € H"*(Q) with r > 1/2 and s > 0. Define the indexes p,q in the such that
p=(r—1-1/2)and q = >(r —1—1/2) and if s = 0 then ¢ = 0. Then the normal derivatived, :
H™(Q) — HP4(X) is a continuous operator.

2.9 The null controllability problem for the linear case.

The same strategy done in the last section will be used here. In this section we describe the method
to solve the null controllability problem associated to the follower objective in the linear case i.e the
first step in the hierarchical control process described in section 2.3. Solving this linear problem will
allow to establish the null controllability problem for the semi-linear case as a optimisation problem
via minimising sequences and a fixed point theorem. Next a useful lemma to compare integrals in
different regions of the boundary is given

“Define Ay := dd + dd where § = — * od o * where x : Q(M) — Q(M) is the Hodge star operator defined on
the graded algebra of differential forms of a Riemannian manifold (M, g). See [Aubl13],[Bes07] for further study of the
Laplace-Beltrami operator.
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Lemma 2.9.1. Given the open set o C I'. Then for any p € P exist a constant C' > 0 such the next inequality
holds

/ 0=210,p[2 dS < Cllpllp.
ox(0,T)

Proof. Letp € P,since o, 'p € L*(0,T; H*(?)) and from Proposition|2.8.1} the operator 9, : L*(0,T; H*(2)) —
L*(0,T; H'?(T")) is continuous, then
[ 1ontepPas < [ o ?8pP + 0 Vs + 0.2l dode
by Q

and by inequality (2.7.1) and Carleman inequality then

/ 02210,p 4% < Cllpll».
>

Finally since o C I' the above inequality is written as

[ etowlas < [ oomlds < Clal
ox(0,T) 2

We proceed now with the solution to the null controllability problem for the linear case.

Proposition 2.9.1. Fixed a leader control v € V, a positive time T and a potential a € L>(Q), it exists a
follower control flv] € F such that the solution y € ) of the initial value problem

y—Ay+ay=0 in Q
y = flv]ly+vx, in ¥ (2.9.1)
y(0) = o in

satisfies y(T') = 0. Moreover, it exists a function p such that the follower control and the solution to (2.9.1)
are characterised in the form

flvl = =020yl y =0 °Li(p) (2.9.2)
where p € P is a solution to the integral equation

/Q 0 2LE(p)LE(q) dadt + /

¥x(0,T)

062 0yp Oyq d¥ = / Xo0Onq d% + (Yo, q(0)) L2(e)
by

with the estimate
1 lllF+ ylly < C (loxelly + ol r2@)) - (2.9.3)

Proof. 1. The key point in the construction of the follower control is the behaviour of the weight
functions ¢* and ¢j when ¢t — T and formulate a new optimisation problem

1 1
inf ((S(f:v) = -/ QQ\y|2dxdt+—/ ol fI? dx (2.9.4)
2 Jq 2 Jyx(om)

fer
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that will impose that y(7') = 0 because the blow up of the weight functions at 7". Observe that
S . F — R is a coercive, continuous, convex and lower semicontinous functional. Then it has a
unique minimiser ferF.

Given a direction h € F and ¢ > 0

11 . . 1 A A 1 ) )
Z1S(f + ehyv) — S(f;v))] = [—/ (1§ + ez — |9]?) — —/ Q2| f + eh|? — IfIQdE]
€ 2 Jq 2 Jyxo,1)

[ / P ledz] + e=P) +
Q

1
€
1
- oa(egz + leh\z)dE}
€ ¥x(0,T)

where the functions z and 3 solves

z—Az+az=0 in @

z = hl, on X
2(0)=0 on €

and
U — Ay +ay =0 inQ
U= fl,+vxs, onXx
7(0) = yo on{?

Taking the limit as ¢ — 0 the derivative of the functional is given by

Jim + S(f + eh;v) — S( f;v))] = / 0%z dadt + / 02 fhdx =0 (2.9.5)
-0 € Q ¥%(0,T)
Define the function p to

—pr—Ap+ap=0°§ in Q

p=20 on X

p(T)=0 on €

Replace § = o 2L:(p) in (2.9.5) integrate by parts and use boundary conditions to get

/LZ(p)zdmdt+/ o2 fhdx. :/L:(z)pdxdt—i-/zanpdﬁl—i-/ o2 fhdx
Q vx(0,T) Q b vx(0,T)
= / hd,pd% + / o2 fhd
% (0,T) % (0,T)

then

/ (02 f + yp)hdS = 0.
% (0,T)
Then it is possible to get the characterisation

o] = =05 0upl; 4 = 0Ly (p).

2. By the above results the characterisation (2.9.2) holds. Then it is possible to write the initial
condition problem (2.9.1) in the form
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La(0™*L;(p)) = 0 in Q
0 2L:(p) = —0p 20,pl, + VX in ¥ (2.9.6)
0Ly (p)(0) = yo; 0 Ly(p)(T) =0 in Q)
Let ¢ € P and multiply equation (2.9.6), integrate by parts. Then it is possible to get the equation
[ernwn@dsr [ g?0po0ds= | ondgdS s aO)ee  @97)
Q % (0,T) b
If this equation has a solution p € P is equivalent to proving the existence of a solution for the
fourth order system that is equivalent to define f[v] in the form and then the solution
fulfils y(T') = 0. By Carleman inequality from Theorem[2.4.1]is possible to see that the left hand side
of equation is coercive. It remains to verify that the linear functional / on the right hand side

of (2.9.7), given by,
l(q) = / VXoOnq A% + (Yo, q(0)) L2 ()
2
is continuous on P. We estimate |/(¢)| by means of Holder inequality and Lemma (2.9.1)) then

1/2 1/2
1(q)] s(/ Qf|v|2xa> (/ @;2|anq|2) T lyoll 2l 2
ox(0,T) ox(0,T)
< loxallulialie- + lvollzze 1200} 2o

Remains to bound ||¢(0)|| 12(o) from equation (2.9.9). Again by Carleman inequality is possible to
see that qlj 79 € L*(0,T; H*(Q?)) and the derivative ¢, 10 /) € L*(0,7/2; L*(2)) so by interpolation
of the spaces ¢lj,r/o) € C°([0,7/2]; H'(Q)). With this deduction we have a continuous embedding
P — H(Q),q — ¢(0) and then we make the estimate |¢(0)||;2() < B(0, ¢, ¢)"/*. We obtain

l(g)] < (||U||v + ||yo||L2(Q)) B(0,q, Q)I/Q- (2.9.8)

Then it is a continuous functional and by Lax-Milgram theorem equation (2.9.7) has a unique solu-
tionp € P.
3. This final step is to prove inequality (2.9.3). Equation (2.9.7)) has a solution p, we get

[ernmpasr [ gfopfas= [ odpdS 0o
Q vx(0,T) ox(0,T)

then

1/2 1/2
B(a,p,ms(/ @ilvxal2> (/ @*2|anp|2) ol lpO) e (299
o X (07T) oX (O,T)

Then inequality (2.9.9) combined with (2.9.8) implies
B(a,p,p) < ([vllv + Iollr2)) B0, p,p)"*.
From inequality (2.4.2), for p # 0, it exists a constant C' > 0 such that
Ba,p.p)""* < C (|lvllv + llyollr2()

and then by construction of f and j and Young inequality, we get

LA+ glly < € (lvlly + yollzz@) -



63

2.10 Solution to hierarchical control problem for the semi-linear
case: boundary leader and follower control.

The null controllability problem for the linear case F'(y) = ay with a € L>*(Q) solved in proposition
(2.9.1) will allow to solve the corresponding problem for the non linear case F'(y) by a fixed point
argument. To this end, we write the null controllability problem as an optimisation problem.

Define
F(s)
FO(S):{ S 570
F'(s)=0 s=0

Given a function 2 € L?*(Q) then Fy(z) € L>=(Q). Define the linearization of (2.7) as

y=f1l,+vlx, in X (2.10.1)

{ v — Ay + Fo(z)y=0 in @
y(0) = vo in Q

Since Fy(z) € L*(Q) it makes sense to apply the results of Proposition to system (2.10.1).
The next proposition solves the null controllability problem for the semi-linear case.

Theorem 2.10.1. Let a leader control v € V and a positive time T' > 0 be given. Then, it exists a follower
control f[v] € F that steers y(T') = 0 where y € Y solves the initial value problem

y—Ay+F(y)=0 in Q
y = flv]ly +vx, in X
y(0) = wo in €

Moreover is possible to get the explicit form
flv] = —05? 9yl ; y =0 Ly, (p)

where the function p solves the equation

Q(}QGWp@nq Y = /

ox(0,T)

/ 0 2Ly () L () + / 08,qdE + / yo(@)q(0)dz, qeP
Q Q

vx(0,T)
Also it is possible to get the estimate

£z + lylly < C (llvlly + llyollz2)) -

Proof. 1. Let z in L?(Q) be given. Consider the functions f. = f[v]. and y. given by Proposition2.9.1]
for equation (2.10.1). Then, the follower control can be bounded as

17017 < C (lloxally + 9ol z2))
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independently of 2. Moreover, Proposition[2.3.2]implies that, for every z € L*(Q)), the corresponding
solution y, to the problem
Yzt — Ayz + FO(Z)yz =0 in Q
Y. = f[v]l, + vx, in X (2.10.2)
y=(0) = 40;9:(T) =0 in Q

belongs to H'/*Y/4(Q). Then, from the fact that ||v||,2(s) < ||v]|y and inequality 2.3.T)
Y[l er17280) < C (190l 220y + [lvllv + 1 14]17) -

Since the embedding H'/?(2) — L?(f2) is compact we can apply Proposition with § =1/2,
so = 1/2,s; = 1/4 and sx = —1/4. Then embedding HY*'/4(Q) — L?*(Q) is compact.

Define the map A : L*(Q) — L*(Q), z — y. where y. solves so by the previous conclu-
sions A(L?*(Q)) C HY*Y/4(Q) is bounded and then is a compact set of L?(Q)). Then by Schauder’s
fixed point Theorem it exists a z := ¢ that solves (2.10.2) and since Fy(9)y = F(y) then

—Ay+F(y) =0 in Q
g = flv]ly +ux, in X
5(0) = yo;9(T) =0 in Q

Denote by f[v] = f;[v]. By construction § € ) and f[v] € F then it is possible to see that

S(io) = [ Pl dede+ s [ P ds <o
Q 7x(0,T)
Then the set of f € F where the function S(f;v) < co and y solves the semi-linear problem is non
empty.

2. Now we will see that in fact the follower f minimises the functional S. Let {f,} C F a
minimising sequence for S. Then the sequence is uniformly bounded in F. Then the associated
states y,, converges strongly to y in L?(Q) and f, converges weakly to some f in F.From the lower
semi-continuity of the functionals

yH/QZW and f alf1”,
Q 7x(0,T)
then exist a solution to problem (2.9.4).

3. This step consists of characterising the solutions to the optimisation problem for S(v; f). First
define gy in L*(0,T; H*(2)) N H'(0,T; L*(2)) as the solution to the system

y=0 in X
7(0) = o in Q

Invoke the operators H, and G given by (2.6.5) from the proof of proposition (2.6.1). Define the map
M :Y x F — L*Q) given by

My, f) =y — Ho(=F(y)) — G(vl, + f1,) — ¢
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It is straightforward to verify that if the condition M (y, f) = 0 then the pair (y, f) in J x F solves
the equation
—Ay+ F(y)=0 in @
y=fl,+vx, on ¥
y(0) = wo in
Then the optimisation problem can be written as an optimisation problem with constrains using
the operator M in the form

1 1
wty [Py [ dlee
@ 7x(0.T) (2.10.3)

My, f)=0
(v, [) €Y xF

Since the linear operators Hy and G are of class C' then the operator M is of class C'. Given any

directions (z, g) in Y x F the derivative of M is the operator M’ : Y x F — L*(Q) given by

M'(y, )(z,9) = =+ Ho (F'(y)z) — G(g1,)
The optimisation problem (2.10.3) has a solution if the tangent and descending cones given by

={(w,h) € Yy x F: M'(y, f)(w, h) = 0}
= {=AS"(f;v) : A= 0}

are disjoint. By Dubovitsky- Milyoutin Theorem this cones are disjoint if exists f, € Kjand f; € K7
such that fy + f; = 0. Take f; := X\(0®y, 03.f) and fo := (w, h) then

Ay, o3f) + (w, h) =

It is necessary to characterise K ;. Observe that K, = ker(M'(y, f)) and because M is closed then
K} = Rank M'(y, f)*. Then it exists A\(0%*y, 03f) € K; . Compute the adjoint operator M'(y, f)*
L*(Q) — Y x Fforany ¢ € L*(Q) to get

+ Ho (F'(y)2) — G(g1,), ¢)
©) +( o) + (=G(g1,), )
= (z,0) + (2, F'(y) H5(¢)) + (2, —=G*(p)1,),

then is easy to see that
M'(y, )" (p) = (¥ + F'(y) Hi(p), =G (9)15) -

Because (z,g) € Rank M'(y, f)* then for some ¢ € L*(Q) is possible to write equation [2.6.10|in
the form

Moy, oo f) + (¥ + F'(y) Hy(v), =G* () 1,) = 0
Observe that this equation can be normalised to A = 1. Is possible to deduce that

y =02+ F'(y)H;(1))
fo==0’G ()1, : (2104
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Define p := Hj(v) so by definition p = L{(H;(p)). In equation (2.10.4) is possible to write
f = —05°G*(Li(p)) is necessary to compute explicitly the G*(L(p)). By the same argument given
in the proof of Theorem is possible to get the explicit form

G"(Lo(p)) = —Oyp
Then taking ¢ = L{(H; (1)) it is possible to write

y =0 (v + F'(y)Hi(¥))
= 2( o(p) + F'(y)p)
= Q_QLF’(y)< )

Because (y, f) fulfils with the restrictions of the proble then is possible to write this prob-
lem in the form

Lpo(y)(QﬁL}/(y) (p)=0 in Q

g_QL};,(y) (p) = fly+vx, in X

Q_2wa(y) ()(0) = %o in ©
Take p' € P and multiply by it in problem Using integration by parts and boundary conditions,
the integral form for this problem is

/Q Livy (6 2Ly (0) ¥ = /Q 0 Ly (D) Li(0)
+ / yo(2)p' (0, 2)
— /q 952(37719) (@np) dx
vx(0,T)

then from this equations it is possible to get the integral equation taking p’ = p

/ 0 Ly (0) Ly (P) + / 00 |0yp|* dX = / VX (Oyp) dX + / yo(z)p(0)dz
Q % (0,T) ox(0,T) Q

Now it is necessary to make some estimates of the bilinear form. For this, apply Holder and Young
inequalities. First it is important to note that the weight o is bounded in the interval [0,7"/2] and

by the embedding given by P — H'(Q) then [|p(0)]||r2q) < r{xgz;;/cm |p(t)||2(). Denote M =

sup,eg |[F'(y)|. From Theorem fixing A > A and s > sy the following inequality holds true:
$*% > MV2X\"?supg €%/%. Then, define S := supy 2 < 1/(MV/?2) . It is not difficult to see that

Jo o lplPdzdt < S [, 0o |p|? dzdt. Also there exist a positive number j3 such that - 1SMJ‘§ZQ <B<
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Then

BO.pp) = [ wol@)p(0.2) + / UXo Oy A5

ox(0,T)

0 2Fo(y) Ly (p)p + F'(y) Ly (p)p + F'(y) Foly) |pl® dadt

1 1 1
/ @z\vxgﬁdz) ( / gﬁwnpﬁdz) +( / @2|y0\2) ( / @2119(0)\2)
ox(0,T) ox(0,T) Q Q

- /Q 2R (y) Ly(p)p + F'(y) Ly(0)p + F'(y) Foly) pl? davdt

< Il g, [0+ [olalipl + M2 [ o2l dac

21 [ oLy de
Q

S—5—

NI

IA
I/~

Then by Young inequality with parameter /3 it is possible to bound

M
oM / oL () Ipl? dedt < M / oL () dat + / o~ |pf? dud
Q Q Q

also it is possible to see that

/@‘2lp\2dxdt§52/ 00 |p| dzdt
Q Q

In conclusion,
1/2 -2 * 2 2 M 2 —2 2
1B(0,p,p)| < C(vllv + lwollzz) B0, p,p)""? +MB [ o7?|Li(p)| dedt + | M +F S| o05°Ipl
Q Q
M
< C (Jolly + ol @) B(O,p.p)*" +maX{6M, (M? n 5) 52} B(0,p,p)

Remember that fA < 1, and from inequality ﬁ% < fwe get (M?+ M/3)S? < 1 and the

term max {BM, <M2 + %) 52} B(0,p,p) can be absorbed to the left hand side to get

£ lll7 + lylly < C (lvollz2@) + llvllv) -
O

Proposition 2.10.1. Let be ®[v| the set of all followers f € F such that solve problem then the set
G={(v,f):vel,f e ®v|}is convex and weakly closed. Moreover the functional P(v, f) given by
is lower semicontinous.

Proof. First we proof the weakly closeness of G. Let (v, f,,) a sequence in G that converges to (v, f).

Suppose that (v, f) is not in G so it exists a pair (v, f) such that

1 o 1 1
5/ @2!y\2+§/ lf)? < 5/ o’ly|* + 5/ oI fI?
Q % (0,T) Q % (0.T)
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where 7 solves
gy — Ay + F(g) =vl, in Q
Y= fl7 on X%
9(0) = yo in (L

Observe that it exist 4 > 0 such that

1 1 ~ 1 1
5/92\y|2+§/ Q2!f!2+5<§/£)2!y\2+§/ oI fI?
Q % (0,T) Q % (0.T)

Since (v, f,) converges to (v, f) for some natural number N and n > N

1 o 1
5/ 92|y|2+§/ 1P < /Q lyn|* + 2/ oI ful?
Q x(0,7T) % (0,T)

Taking the value of S along the sequence (v, f) then it is possible to see that

1 ) 1 1
5/ @2!yn!2+§/ Pf)? < /@ \yn|2+§/ o’ fl?
Q vx(0,T) 7% (0,T)

that contradicts the fact that (v,, f,,) € G.

The next step is to prove that the functional P : G — R is a lower semi-continuous functional and
coercive. Let {(v,,, fn)} C G be a sequence such that || f,,|| s — oco. Then by inequality || .||+ ||ylly <
C (llvollz2(@) + llvallv) givenin Propositionis straightforward to see that ||v,||, — oo and then

the functional P(v, f) — oo.
Finally we prove that P has an infimum in G. Let (v,, f,) € G be a minimising sequences i.e.
P(vy, f,) — inf P(v, f). By definition, the sequence (v, f,,) is uniformly bounded in V x F and

then the sequence is weakly convergent to some (4, f) in G and this is the candidate to be a mini-
mum. Because P is l.s.c in the usual topology then it is w-1.s.c. By definition

P(b, f) < liminf P(v,, f,) < inf P(v, f)
(v,f)€g

n—oo

so (9, f) is the solution to (2.7.2)
0

An explicit form for the leader control is necessary to complete the analysis using the Dubovitsky-
Milyoutin theorem again.

Theorem 2.10.2. Let yo € L*(Q) then it exists a pair (0, f[0]) that is a solution to (2.7.2) and the associated
state y solves the initial value problem
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where the function p € P solves the integral equation

/ 02 L) (D) Loy (@) + / 020,90, 4 / vq dS + / yo(@)g(0)dz, q€P.
Q ~x(0,T) ox(0,T) Q

The leader control is given by

D M e (G (ST

J_
where function C is given by the initial value problem

(=0 on Y, (2.10.5)
¢(,T)=0 in 0,

where the function ¢ € P fulfils the equation

{@AGF'@)éa(@ymadF'@)M%’/@)ﬂsé in Q.

{ / 00°0,90,(C + ¢) dX + / 072 Li(®) Lipy (q) dadt = 0
¥x(0,T) Q
Vq € P.

Proof. 1.The idea is to formulate the optimisation problem as a problem of optimisation with con-
straints.Define the operator M : X — (v, ¢, ) € L*(Q) x Y x F is given by

M(y,v, f.p) = (y = Ho(—=F(y)) = G(f1, + vXo),y — 0 "Ling)(p), f + 05 0yp1,)
where the operators H, and G are given by (2.6.5)). Define the operator
T
o fo =5 |yl [ ol
Define the optimisation problem given by

Minimize Py(y, f,v, p)
Subject to (y, v, f,p) € X,
M(ya v, fap) = (07 O’ O)’

The operator M is linear and of class C" in the space Y x F x V x P . Then given an arbitrary
direction (z, g, h, q) € X then the derivative is given by

M'(y, f,v,p)(2,9,h,q) = <Z+H(F’(y)2) —G(gly+h1,),z— 0 * Ly (q) — F"(y)zp, g+ 952(&761)17)

Define the descent cone

Ko(y, f,v,p) = {\P'(y, f,v,p) : A > 0}
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and the tangent cone

Ki(y, f,v,p) = {(w,g,h,q) € X : M'(y, f,v,p)(w,g,h,q) = 0}

Optimisation problem has a solution if the tangent and descent cones are disjoint. disjoint. By
Dubovitsky-Milyoutin theorem K; N K, = () if and only if exist non null f;, € K and f; € K7 such
that fo + fi = 0. First is necessary to calculate the derivativeof P. It will be convenient to compute
this using the spectral decomposition of the Laplacian. Let (z, g, h,¢) a direction in X. Then the
derivativeof the functional P(y, f, v, p) defined in is given by

T 00
P'(y. f,v.p)(2,9,h. q) :/Q a(y — ya)z dl‘dt+/ (ng + Z)‘j@gvawj)LQ(o)wj) hdxdt
d 0

J=1

Then the condition fy + f; = 0 can be written in the form

A <Q2(y - yd) ]‘Qd’ 07 Q(Q]U + Z Aj(QiUXO'a wj)LQ(O')wjy O) + (27 g? }Alvﬁ) =0 (2106)

=1

where (2, g, ﬁ,ﬁ) € K. Observe that K; = ker M'(y, f,v,p) and then because M is a closed op-
erator then M'(y, f,v,p) is closed then K} = Rank(M'(y, f,v,p)*) then to characterise (2, g, h, p) is
necessary to compute M'(y, f,v,p)*. Given (¢, ¢, ¢) € L*(Q) x Y x F

(M'(y, f,0,p)(2,9,h,q), (¥, ¢, 0)) =
- <(z+H (F(y)2) = Glgl, + 1 > — 07 L) = F'(9)2p, 9 + 020,01, ) (,6,0))
(2.0 + F'(y )H*(w)> (¢, =L, (0 79) >+<z ¢ — 0 F"(y)z¢)
g0+ (@ N (L) + (o G*w) )+ (b =G (o)
(2.9:h: ), (¥ + 6+ F' () Hi (¥) = 0" (y)po,

(v + 0+ Fy)H (W) - 0 2F"(y)po, ¢ — G ()1, N* ()1, — Ly (0726)) )

Then the four vector (2, ¢, h, §) € Kt = RankM'(y, f,v,p)* then exist (¢, ¢, p) € L2(Q) x YV X F
such that

+||

=+ ¢+ F'(y)H () — 0 2F"(y)po

z

§ =p- G,

h =-G"(V)xs

q = /\/’*(4,017) - LF’(y)(Qi%b)

Replace this in equation (2.10.6) and the is possible to normalise A = 1 and then
(Y —ya)lg, =¥ + ¢+ F'(y) H*(¢) — 072 F" (y)pd
0=¢—G ()1,
sz + Z Aj(Qi“XU) wj)LQ(o)wj =-G" (w)Xa

J=1

0=N*(pl,) = Ly(o20)

(2.10.7)
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By the third equation from (2.10.7) consider that v € V then is possible to say that v =
> 721 (03v, wi)w;. Then for w; € L*(T)
(020, Wi L2(0) + Mi{@eVXos Wi L2(0) = (=G (¥)Xo, Wi 12(0)

Because x,|, = 1 then

(1+ X){0iv, wi) 20y = (=G ()Xo, Wi 12(0)
multiply each side for w; with ¢ € N and take the infinite series over i and

e} (e o] 1

Z<szawi>LQ(a)wi = Z 11 >\i<_G*(w)mei>L2(U)wi

i=1 i=1

Taking in mind the orthogonal decomposition of o?v is possible to get

- Z‘” L
UXo = —04 2 <G (@D)XU, wj)L?(a)wj-
TSN
The root criterion states that if lim inf,, .. (775 v )1/" < 1 then the power series above converges.

Take the first equation in equation (2 . Define w — Hi(¢) and ¢ = —H;(¢) with the property
that Lé(d)) —¢ and Li(¥) = ¢ and defme (=¢—¢

a(y — ya)lo, —w+¢+F’() Hi(¢) — 07 F" (y)pd A
= Li(¢) — Ly(d) + F'(y)¢ + 0 2F" (y)pL(9)
= Li( — &) + F'(y)(C+ ¢) + 0 2F"(y)pL(9)
= Ly, () + F'(y)d + 0 F"(y)pL5(9)
= Ly ( )+ F'(y)d + 072 F" (y)pLy()

Then is possible to write the above equation
Lig,) (C) = 0*(y — ya)lg, — F'(y)6 — 0 > F"(y)pLy(9)

with A( T) = 0. Takes the desired form (2.10.5). Recall equation (2.10) and use the fact that
¢ = Li(C + ¢) and the equality G*(Li(C + ¢)) = 8,(C + ¢) the

=1

2 * . .

v o= —op, E Y (G (V)Xo wj)w;
1

== 3 (O o),

From the fourth equation of (2.10.7) and for ¢ € P then
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(N*(@lv) - LF’(y)(Q_Q(b))C] dxdt
= [ om0 0000 dE — [ 0720 L, (q) dudt + [ 07
_ / 0320,4G* (1) dX + / 072 L5(6) Ly () dvdt
1% (0,T) Q

— [ w0Gn L) as + [ 0 L) L (o) dud
7x(0,7) Q

= 00 20y a0yth A% + / 0 2L§($) Ly (q) dudt
vx(0,T) Q

But i) = ¢ + ¢ then

/ 0520,40,(C + &) dE + / 072 L($) Ly (q) dexdt = 0
vx(0,T) Q

Then the proof is done. O

211 Appendix. Bump extension and existence of the follower.

In this section we will consider different Carleman inequalities in a extended domain. The argument
follows from the ideas developed in [FC97]. With the extension methods it is possible to construct
a follower control that fulfils his role of controlling to zero but will not be possible to characterise it
as done in Proposition [2.10.2]because is depends of the extension chosen.

Lemma 2.11.1. Let G an open set. There exists functions gy 01 and oo in C? in the set G x (0,T) and a
constant s, such that for any s > s, and a constant C' such that the following inequality holds

57 / 00> (|al* + |Aq[*) + s072|Vg|* + 5205 %|q|? dzdt <
Gx(0,T)

C 00 % |q: + Aq — aq|* dwdt
Gx(0,T)

Lemma 2.11.2. Given a control vl,, in L*(Q). Then there exist a follower control h[v|1, in L*(0,T, H**((2))
and a solution y in L*(0, T; H*(S2)) such that the null controllability problem

—Au+au=vl, in Q
u = hlv]1, in %
u(0) =u(T) =0 in Q

and the estimates holds

lyllz20.rim@) + lwll2@) < € (L+ llall =) ol z2wx o)
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Proof. The idea of the proof is to make null controllability in an enlarged open set of 2 x (0,7).
Extending to a bigger set, allows to include the boundary control 7 in in bigger set and apply a
inner controllability method. Then by trace theorems restrict the extended solution to the desired
boundary.

Let G an open set such that I'/y C 0G. Take a open neighbourhood By for I'/~ in the relative
topology and define By = 0G/B,. There is a "bump" in the boundary v as shown in

Figure 2.1: v C I' is the red arc GI and B, is the green arc GK|

Under the above hypothesis the next lemma holds.

Lemma 2.11.3. There exist a positive function py in C*(G) such that the gradient NV p, # 0 in all G and
negative directional derivatived, p, on B.

Define the set P = {q € C*(G x (0,T) : qlocx0,1) = 0,044| Box(0,r) = 0}.
and define the bilinear form

Bara= [  LeL
Gx(0,T)

and
G@= [ (ot
Gx(0,T)
The bilinear form B induces a semi-norm in P, defined by ||p||p, := B(p, p)2 . Furthermore by
Carleman inequality from Theorem (2.11.1) that ||p||p, = 0 implies p = 0 then the semi-norm || - ||,
induces a norm || - ||, . Is possible to define (P; || - ||») the closure of P, under this norm. Now is

possible to verify the continuity of /; making the estimate

1 1

~ 2 2

sl < ([ o) ([ i)
Gx(0,T) Gx(0,T)

< (T, Bo)llpll?

By Lax-Milgram theorem exist a p in P that for any p’ in P

| rnenw=[ G @111)
Gx(0,1) Gx(0,T)
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Define the extended solution w = p~?(p,+ Ap+ap). From Carleman inequality is possible to deduce
that w is in L?(G x (0,7)) and is possible to get the estimate

10| 22 (@ x 0.1)) < Ok + vl r2Q)

1. First comes the the prove that @, — Aw + aw = k . Take a distribution ¢ in D(G x (0,T)). Then
having in mind that @ = p~2(p; + Ap + ap) and the boundary conditions with integration by parts

/ (i — A+ ) = L (p) L)
Gx(0,T)

Gx(0,T)
but because p solves (2.11.1)) for any ¢ in particular for ¢ = ) then

/ (B — A + ad)yp = ko
Gx(0,T) Gx(0,T)
and the desired equality @; — A +aw = k is valid. By hypothesis in & and definition of @ is possible
to deduce that w € L*(G x (0,T)) and w, € L*(0,T; H *(Q2)) then by interpolation is possible to get
Col0,T; H(92).

2. Take a function 1) = 1), where ¥, € D(G) and +; in C%(0,T). Using the fact that @, — Aw +
aw = k the

/ (k +vl,) dedt = / (W — AW + aib)ap
Gx(0,T) Gx(0,1)

_ /G gy TV = B0+ @) dads + i (T)AT) = D(0)40)

Also
/ (k 4+ v1,)y dedt = / WYy — A+ ar).
Gx(0,T) Gx(0,1)

Choosing an arbitrary ¢ in C?(0,7T) is possible to conclude that w(0) = w(T) = 0 in H }(G).
This result is natural to expect because the behaviour of the weight p~2 near T and the fact that is a
L*(G x (0,7)).

3. The solutionw € L(0,T; L*(G)) and Aw = k+v1,,—daw— and because @, € H~1(0,T; L*(G)N
L*(0,T; H2(2)) then the Laplacian Aw € H~'(0,T; L*(G)). The trace operator v, exist and 7 (w)
in L? (0, T;H?> (6G)>. This conclusion will be useful to make integration by parts. Take a function

¢ = $1¢o with ¢, in C?(G) and ¢, in D(0, T). Then

/ (k+vl,)p = / (W — AW + @)
Gx(0,T) Gx(0,7)
- (e — Ad + ag) + (0, 9,0)

Gx(0,T)

The arbitrary election of ¢ allows to conclude that v = 0. From the three steps done above it
is possible to conclude that existence of a function w in Cy(0,T; H*(G)) N L*(G x (0,T)) such the
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initial boundary value problem

Wy — A+ aw =k +ol, in Gx(0,T)
w =0 in By x (0,7T)
w(0) = w(T) =0 in G

is solved.

4. The next step is to get information in ~ control boundary. Take a cut-off function 3, in C*(G)
such that the support sup 5y C G U Bj and 5y = 1 in a neighbourhood of 2 with 0 < 3, < 1. Then
define 1w, = fyw. Moreover it fulfils the equation

Ay — Aty + ag = fo in G x (0,7)

o =0 in By x (0,7)
where fy = o(k+v1,,) — 2V 5y Vi +wAByb. Now by the last results one gets w € Co(0,T; H~'(Q)) N
L*(G x (0,7)) and the Laplacian Aw € L*(G x (0,T)) and the gradient Vw € L*(0,T; H '(G) then
foisin L*(0,T; H-(G)). By the regularity of f, the solution w, € L*(0,T; H}(G)) N C(0, T; L*(G)).
And then is possible to restrict w, in Q to get w € L*(0,T; H(Q)) N C*(0,T; L*(Q2)). By the last
statements the trace operator exist and then makes sense to define h1, := w1, such that together
with continuity in the interval [0, 7] one gets w(T") = 0 and fulfils the equation (2.11.2).

5. The next step is to compute estimates for the solution. Take now a second cut off function 3,

that 3; = 1 in a neighbourhood of €2 and has support in the set where 3, = 1. Make the same steps
as before, define 1w, = 1w . Then this solves the system

Oy — Aty +ady = f in G x (0,7T)

W =0 in B, x (0,7)

@1 (0) = @y (T) =0 in G
where the function fl = 51(12 + vl,) — 2V Vg + woAB;. By definition of the cut off function
B is possible to see that @, = (1, By regularity of @, then fl € L*(G x (0,7)) and then w, €
L2(0,T; H*(Q)) N C(0,T; HA(Q)) and because dyiy = fi + AWy — ay then dyiy € L*(G x (0,T)).
Then the trace operator tr ace operator H2(Q2) — H3/%((2) exists and by energy estimates

[ || 20,7220y + 110 | 20,713 0y + 110k | 2(@x 07y < CllEI 226 01))

The restriction of w; to Q induces that w € L*(0,T; H*(Q)) N C(0,T; Hy($2)) and then is possible to
get the inequalities

[ || 2 0,7:22(0) + 101 |20 75m3 0 + 1001 L2 0y) < ClIEN L2001 -

Moreover the ||h1, || gs/2(sy < Cllwl|r2(0.1:m2(9)-
Consider the solution y to the system (2.2.1). Define w in L*(0,7; H'(f2)) the solution to the
system
wy — Aw+au =0 in @
w=0in3;u(0) =y in Q

Then by results of Theorem 2.11.2|and the fact that y, € L?(0,T; H(Q)) is possible to deduce that
y = w+uin L*0,T; HQ)) N C(0,T; L*(2)) where u is a solution to equation (2.11.2). Moreover,
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w is bounded by ||w|| 20,711 () < Celllz=@ then is possible to infer that by estimates (2.11.2)) the
solution y is uniformly bounded in L?(0,T; HiQ)) N C(0,T; L*()). O

The result shown in[2.11.2|give the existence of at least one follower null control in the boundary
that depends in the election of the extension G for the set 2 x (0, 7"). An explicit form of the follower
control is required and it will be computed via a minimisation problem.

2.12 Proof of lemma2.11.1

The proof of the non local Carleman inequality is given here.
Consider the weight functions given by

o(t,x) =

where the function / is defined as ¢(T" — t) in ([7'/2,0] and ¢(t) = T'/2 in [0, T'/2].
Let ¢ in the set P and take ¢ = p~2¢ where the scalar s is sufficient large. Split the

P+ Porp = 0 *(q + Aq — aq — (sAyp) — a)r

Nos compute the L*(G x (0,7)) norm of the of the operator Py + Pat). Is necessary to estimate

1P1l26r) 5 P10l 22(Gr) @and (Py, P2)r2()-
1. Estimate for (P11, Pyy)) 12(q). By definition of the operator P; and P,

(Prp, Po)) ) = / (e + 2sVeVY) (AY + $*| VoY + sp)) dadt

Gr
_ / DA + 82 / b |V o] dudt + / beprth dadt + 2s / AGY oV ddt
G

Gx(0,T)

125° / Vo>V V dedt + 25 / eV eV dxdt
Gx(0,T)

Now is necessary to estimate each of the integrals in the above equation. The basic idea to follow
is that the function ¢ is a well know function, so all the derivates as is possible should pass from v
to the remain function ¢. Following this spirit

/ DA dwdt = / 0,V |2 dwdt
G Gr

Integrating by parts

1
/ %\Vdewdt:/ <—3i8j90+§(A90>5i~) +/ OOy dx
Gx(0,T) Gx(0,T) o

1
[oilVeP iz =3 [ jupaveP
Gx(0,T)

and
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1
/ Yoy dxdt = —5/ Ou||? dzdt
Gx(0,T)

Gx(0,T)
and
/ (Vo - V) dadt = / (0 Dp + Vipr - Vi) [ ]2 dudt
Gx(0,T) Gx(0,T)

The next step is to estimate the therm 0; ;(0;90;¢). Is easy to calculate the the minimum of the
function /(¢) has a minimum in 7°/2. Then having this in mind is possible to get

A3e—3M2lm0]loc) +10)

I e e CRURR DI [CURIEED

T®
— a/\36—%(2”770Hoo)+no) (|V<,0|3 + /\|Vg0|3)

Denote by C(T, \) = L \3e=3\Cllml+m) Then is possible to estimate
|ul + 1010:0i0] + |01 D] + | A%0] < [Vep|?

Then estimate the terms that contain each of the expression above so

s / pul|*dedt +25% [ o p) (2Ver - Voo + @1 V) [Y]* dadt
Gx(0,T)
<C [ (lpul + 2Vor Vot Vil [ dod
Gx(0,T)
< 032/ Vol || dudt

Gx(0,T)

Then from estimate (2.12) is possible to get

||P1¢||%2(G) +”P277Z)||%2(G) S ASSA/

Gx(0,T)

< llo*wlZag + 4 / (91y0) 000y dudt

Gx(0,T)
2 [ (BTGP - S DAV dod)
Gx(0,T)

|Vg0|3|1/z|2dxdt+As3/ Vol* ]2 ddt
Gx(0,T)

The last integral in the above inequality can be computed by integration by parts as

2 / (sA VY2 — SAG V) dadt = s / (Put — o~*w + (s(Ap) — A))PAg
Gx(0,T) G

x(0,T)

S
S weaters [ e
Gx(0,T) Gx(0,T)
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Now using inequality (2.12) and Young inequality for the terms P;v the right hand side of (2.12)
denoted by I is bounded by

I< / s |P1p — ws| A dxdt
Gx(0,T)

S -
SN0 4 SPoAply? + s ((sAp — @) |[v]*Ayp)

1G><(O,T) 2 '
S ~
Pl S+ [ (38%+ e aplvl + s(sap - a)Ap) dud
1 1 Gx(0,T)
WP+ Sl [ (5|l 21Vipl + PGP + [af) [0 dadt
Gx(0,T)

Recall the inequality (2.12) so taking s > s3 + s4|a@|/*/*:

IPpl® + ([ Peyp|?
+As3)\/ |Vg0|3|w|2da:dt+Asg/ |V|? dodt
Gx(0,T) Gx(0,T)

<Cllu?+ 15 [ (000000, dud
Gx(0,T)

Then is possible to find some s5 such that for any s > s

A
VPl > 2 /
) S

Gx(0,T

1P| + As® /

Gx(0,T

Vil AP dadt
)
Invoking Young inequality and integration by parts is ossible to get

s/\1/2/ V|| Vep|? dedt = SAW/ V|V - V| dedts =
Gx(0,T) Gx(0,T)

1
:/\1/2/G ( )—\V90|_1¢A¢dxdt— 5SM/Q/ V(*)VIVe| drdt
x(0,T

Gx(0,T)
1
:/ (—3_1/2|V¢|_1/2Ag0) (83/2)\1/2|Vg0|3/2¢) dxdt — 53/\1/2/ V(@*)V|Ve| drdt
1G>< (0,7) 1 1 Gx(0,T)
<L Vel NAuPdd+ 588 [ VP4 gan [ ATl dade
2s Jaxo,m) 2 Gx(0,T) 2 Gx(0,T)

The is possible to deduce from above equation that

1 1
S/\1/2/ V||V dodt < — (V| AY|? dedt + —53)\/ Vol ?|¥)?
ax(0,T) 25 Jax(o,m) 2 Gx(0,T)

Combining equations (2.12) and (2.12) and taking s > s + s4/|a||*/® gets and A > )\, then

1
IPblf + 5 [

Gx(0,T

a2 [ Ve [ VPP
Gx(0,T) Gx(0,T)

< C|RJP +Cs / 0,y 0h i
Gx(0,T)

)|V¢|2|v¢12
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Theintegral C's [, 1 0ij0ip0ip canbe controlled by the integral s°A [, 1 [Vo[*|¢[* sichoos-
ing A large enough the above inequality takes the form

1
1Pot ag) + - / V2V P
S Jax(0,1)

a2 [ T Tupa [ VPP
Gx(0,T) Gx(0,T)
< C||F?
Recall that Py = ¢, — 25V - Vi and then
i fo(O,T) |v90|_1|90t|2 = % fo(o,T) ‘V@’_l (qu/} + 25V - VSD) dxdt
IPeblfa +Cs [ [Pl

Gx(0,T)
and 4
4 Vel oul? < [Pusf2 + 5 / Vol [ Vol dadt
S JGx(0,T) Gx(0,1)
Then
1
ORI < [Poblag + - / V|V
S Jax(,1)
LAl / Vol [V + 52 / Vol loP
Gx(0,T) Gx(0,7)
< / Vel (nf? + [AGP) + s / Vel [V + & / V]2 dudt
Gx(0,T) Gx(0,T) Gx(0,T)

for some s > s; + s4]/a||?/®. Then replacing ¢ = p~*q is possible to get the desired inequality.
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Chapter 3

Hierarchical control problem for the wave
equation

This paper has the main purpose to solve the exact controllability problem and the optimal control
problem in the same way for the non linear wave equation. Existence is not the only aim for this
study but also compute explicit expression for the solutions. From classical theory of control for
hyperbolic equations it is well know how to solve exact controllability problems for one control in
an open set of the definition region and also for boundary controls as is done in [LM12] and [Lio88].

Is possible see quite natural to set the case where more than one control is involved. A reasonable
point of view to give a meaning for the controls are for example sources of energy that will change
the physics of the wave i.e the energy, the frequency and amplitude. Each control function has a
role assigned so we consider multi-objective or hierarchical control problems.

The main idea to solve this problem i to work with the leader control and then with the fol-
lower(s) control(s). Given a leader control the corresponding follower(s) should solve an exact con-
trollability problem(that will be equivalent to optimise a functional). Although the interpretation
of the wave equation is entirely physical the role of the controls has a social background viewed as
players in a game that take particular objectives and should cooperate or not between them.

3.1 Statement of the Hierarchical control problem for the semi-
linear wave equation

Let Q2 be an open set in R” with boundary I', an open subset w C (2 and an open subset v C I"in the
relative topology. Define the cylinder @ = Q x (0,7") and its boundary > =I" x (0, T’). Consider the
initial value problem with initial conditions (yo, y1) € L*(Q2) x H~*(Q) given by

Yy — Ay + F(y) =vl, in Q
y=1r1L, in ¥ (3.1.1)
y(0) =yo,w(0) =91 in Q

where the functions v and f are defined in appropriate Banach spaces.
For suitable functions gy, ¢ defined in () define the weighted spaces

Y=A{y:oyeL*(Q)}; V={v:gweLl*(wx(0,7))}

81
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Given two states (9o, 1) € L*(Q2) x H'(2) and v € V we say that f solves the exact controllability
problem if

W(T), y(T)) = (%0, ) (3.1.2)

F(T,v,90,91) ={f : 00of € L*(v x (0,T))| y solves 3.1.2)}.

and define the set of admissible controls given by

If there is no confusion the set F (7', v, yo, y1) will be denoted by F.

Define the natural weighted L? norms in each set and set the Hilbert spaces (F, || -||#), (D, |- |3),
Vol - lbv)-

The hierarchical control problem is described here:

1. Given a leader control v € V give conditions on v and 7" > 0 such that it exists an associated
follower control f [ ] in F called follower control such that for a pair (3o, 1) € L*(Q) x H 1(Q) the
solution y to (3.1.1)) satisfies (y(T'), v:(T)) = (¥o, §1)-

2. Find a leader control © in V such that it solves the optimisation problem

where y, is a real function defined on Q4 = Q4 X (O, T) with Q; C Q an open set and y, € L*(Qq).
What conditions should follow the control time 7°?. The control time 7" and the control region
should be chosen properly in order to satisfy geometric optics condition (GOC) for hyperbolic oper-
ators established by Bardos, Lebeau and Rauch in [BLR92] that asserts that all rays of the geometric
optics in 2 must enter the sub-domain v at the control time 7" > 0.
There are several motivations to formulate hierarchical control problems for wave equations.

1. In electrodynamics the natural equation that describe the electromagnetic field is given by
I[Maxwell equations. this set of equations take the form

1 0°E 1 9°B

=5 —AE=0;5—5 - AB=0.

c? ot? "2 O
Naturally arise boundary conditions of the form 7 - (D; — Ds) = ps where p; is the surface
density. The control region y can be seen as an electric potential source in the boundary. The

exact controlability problem (3 can be interpreted as a for to get a desirable magnetic state.

2. In theoretical physics Klein-Gordon equation (97 — A + m)iy = 0 is the relativistic version of
Schodringer equation and has the structure of the wave equation. Certain problems in the-
oretical physics require boundary data for this equation. The function ¢ gives the quantum
states of a particle. The exact controllability problem for the quantum state 1) could be inter-
preted as trying to reach this solution to a particular state of the particle. By the other case
the optimal control could be see as trying to minimize the momentum tensor momentum ten-
sor fo(O,T) Tdx where T = %w — L is the momentum tensor and L is the Lagrangian of the
system.
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3. Earthquackes are modeled basically with the ellastic equations which is a wave equation. Un-
dertsan this equation is simportant to make acurate computations about impact of earthquakes
around the world.

Among the sets (and times) that verify the (GOC) there are a class of sets where Carleman esti-
mates can be performed. All along this chapter we will work on them. To this end, we consider v
the outside normal vector to the boundary 2. Given a point z, in the euclidean space with zy ¢ Q
we define

[(zg) :=={z el :(x—x) -v>0}

Our geometrical condition (GC) is the following: We assume that it exists z, such that I'(z() C 7.
Under the (GC) we define R = sup,.g |z — zo|. Assume that 7" > R. We consider the function

2
Ut x) = |z — 20| — % (t— Z)

2
LAN
T T

For a positive scalar A define the function

where ¢ > 0 is a constant such that

o(t,z) = o), (3.1.4)

Define the weight function ¢ € C*®(Q) by o(t,r) = €75, gy := s~ /%p and g, = s73/29 where ¢ is
given in (3.1.4). The next result can be found in [BDBE13].

Theorem 3.1.1. Suppose that the geometric condition holds (GC) and that T > R. Letuw € L*(0,T; H}(S2)),
uy — Au € L*(Q) and d,u € L*(X). Then there exist positive constants so and Ao such that for any X > Ao
and s > s the following Carleman inequality holds

/91_2 (Jue]* + [Vul?) dxdt+/ 052 |ul? dadt
@ Q

< C’/ 0 % |uy — Aul* dzdt + C/ 01 %0,ul* dX.
Q gl

x(0,T")

(3.1.5)

Remark 2. Note this important observation. Carleman inequality implies that if p € P then p;, Vp and p
are integrable in [0, T'| because the weight functions o, o1, 0 are bounded and of class C*°(Q)) with the norm
depending on \ and s. Moreover, the min inf ; {00, 01,0} > 8 > 0 with = B(\, s, T, x¢). In this section
we maintain this weights to see the similarities with the work done in the previous sections. In the next lines
denote X = L*(Q) x HY(Q) and X* = Hg(Q) x L*(Q) its dual space, and < -, - > x x~ its duality pairing.

Given a € L*>((Q)) denote by L, = J;; — A + a the wave operator with potential. Define the space
Po={p e C*Q):p=00nX}and the bilinear form on P, given by

m(a;p,q) = / 0 2Lo(p)La(q) dzdt + / 07%0,p9,qdx
Q v

x(0,T)
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and the linear form

ty(p) r—/o (OT)vpdfvdH<(yo,y1)7(p(0)7pt(0))>xXx* — (@0, 51), (P(T), pe(T))) x xx+

Due to the Carleman inequality the bilinear form m(a, -, -) induces a norm in P, as ||p||p, =
m(0,p, p)'/2. Moreover it is possible to take the closure of P, under || - ||, to define the Banach space
(P, - |l»)- Exists constants K, K; such that

Kom(0,p,p) < m(a,p,p) < Kim(0,p,p) (3.1.6)

As a remark he normal derivate in the space P exist following the same ideas done in Chapter 2. So
the proof is not going to be done again.

3.2 Proof of Carleman inequality

The proof of Carleman inequality (3.1.5) for 7" > R is based on a Carleman inequality for arbitrary
time 7. We give here the proof for 7' > R to stand out the importance of the geometric condition
(GC) and of the minimum control time. We are going to give a series of lemmas (see [BDBE13])).

Lemma 3.2.1 (Carleman inequality for arbitrary time 7). Let u € L*(0,T; Hy(Q)) with uyy — Au €
L*(Q) and O,u € L*(X). Assume that u, and u vanish in both sides of (0,T). Assume that the geometric
condition holds. Let o and 1 be the weight functions defined in (3.1). Given a positive constant ¢ € (0, 1) it
exist positive \g and s, such that for any s > so and X\ > X,

s/\/ 0e®? (|lw|* + |Vul?) dzdt + 33)\3/ ©*

Q Q

< C’/ e*?|uy — Aul* dedt + Cs/ e**%|0,u|? dxdt.
Q pY

P |u|? dedt + / | Lo(e*¢u)|? dadt
Q

Lemma 3.2.2 (Weighted Poincaré inequalities). Let o € C?(Q) and assume that inf,cq |Vo| > §. Then
there exist so > 0 and M > 0 such that for any s > so and for any v in HJ(Q) it is true that

32/eQSQ]u\2dx§M/6259|Vu]2dx
Q Q

Proof. First observe that
\Y (ezSQVg) = A p + 25e*2|Vp|?

Considering that © = 0 in the boundary possible to write

s/ e*ul?|Vol*dv = ul® (V(e***Vp) — e**°Ap) dx
Q (3.2.1)
1
7 e*u(Vu - Vo) dr — —/ e**|ul?Ap dx
Q 2 Ja

By hypotheses |Vp| > 0 in €2, then the above inequality implies

1
— / e**u(Vu - Vo) dr — = / e**|u|*Apdr > 0
Q 2 Ja
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On the other hand, since inf,cq |Vp| > 0 it exists N € N such that
Ns/ e*|ul?|Vol* > —s/ e**|ul? Ao dx
Q Q
Then from equation (3.2.1) and the above inequality it is possible to bound

32/625Q|u|2|VQ]2 dr < —8/62SQU(VU-VQ) d:L‘—f—NS/62SQ|U|2|VQ|2
0 0 0

Taking s sufficientlarge (s > N) the second term in the right hand side from can be absorbed
[to the right hand side, then

sQ/eQSQ\UIQ\Vgde < —s/eQSQu(Vu-Vg) dx
0 0

: :
< (32/6289|u|2|VQ|2dx) (/ 6289|Vu|2) :
Q Q

and the lemma is proved with M = 4. O

Proof of Theorem . Letthe cutoff function { in C*(0,T') that{ = 1in theinterval (T'/2—€T,T/2+
€T') and ¢ = 0 outside the interval (0, 7). Define the cut function w = {u which w(0) = w(T) =0 i.e
that fulfils the hypothesis to apply the Carleman inequality (3.2.1). Then

S/ e (Jwe]* + |Vw|?) dxdt+s3/ e*?|w|? dadt

Q Q

< C/ e*?|lwy — Awl? dacdt+Cs/ e**?|0,w]* d¥
Q by

It is necessary to write the above integral in terms of the function v . By simple computations
wy — Aw = E(uy — Au) + 2&u; + uéy . By definition of ¢ the function & and &;; has compact support
in the interval (0,7'/2 — €I') U (T'/2 + €T, T)) and using Poincaré inequality, we get

/ ¥ lwy, — Aw|? dedt < / e?|€)? (uy — Au)? dxdt
Q

—er+Z ¢ T
+C / /623” (Jue]* + |Vul?) dxdt—i—/ /623‘9 (Jue]* + [Vul?) | .
0 Q L4eT JQ

Replacing the above equality in (3.2)

T/2+€eT T/2+€eT
3/ / e (Jw]” + |Vul?) dadt + 33/ / e**?|u|? dxdt
Q Q
<

—eT+T/2 —eT+T/2

C/ e**?|uy — Aul? dxdt—i—C’s/ |0, ul® dX

=, g
L—er T
+C (/ / e (Ju|* + |Vul?) —|—/ / e (Juy|” + |Vu|2))
0 Q T+eT JQ

!Understand absorb if for o, 3 > 0 in an inequality A < B + fAif 3 < a then (a — f)A < B.
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The last two terms of the left hand side of the above inequality should be absorbed in the right
hand side, to this end define the weighted energy £ € C''(0,T) (depending on s) in the form

1

Bl =5 [ @0 (o) + [9u()F) dr

Observe that the last two therms from has the form of the energy F,(t).

E(t) = /Qscptezs“” (Jwe]* + |Vul?) dzdt + /Q e (upuy + Vu - Vuy) dadt

integrating by part the last term, one gets

/ 2Py (uy — Au) dedt = E(t) — s/ eie”? (Jwe]* + |Vul?) dzdt
0 0

(32.2)
+28/ e*?u, (Vi - Vu) dodt
Q

1. The objective of this step is to estimate the integrals in the interval (£ + ¢7', T'). Thanks to Young
inequality it is possible to get the estimate

/ 2P, (uy — Au) de > E(t) — s/ e (o + Vo)) (lwe]* + |[Vul?) dadt
Q Q

Because the second term on the right hand side is negative it is necessary to estimate the term
— (¢t + |Vy|) from below. Observe that by the geometric condition (1 —€)|¢;| > sup,cq | V| for any
t€ (0, T/2—€eT)U(T/2+ €T, T) and some € € (0,1/2). In the interval (7'/2 + €T',T') one can see

2 2
inf —(p; + |Ve|) > inf —edyp > Z€Te™ > ZeT > 0.
z€Q z€Q C c

Define ¢, = 2¢T. and the above inferior bound in (3.2.2) directly one gets

/ 2P, (uy — Au) dx > F,(t) + sc, / e (Ju|* + |Vul?) dzx
0 0

Now apply the Young inequality 2ab < (%¢)a* + g for s > 0 and estimate the right hand side

2
of to get

(] 2
/ X Puy(uy — Au) dr < —/ e |uy|* dor + — / ¥ luy — Aul? dx
Q 2 Jo CS Ja

*

then inequality takes the form of an ordinary differential equation (inequality) in the energy
function like

B,(0) + se.B(1) < / el da + -
Q

*

/ e |uy — Aul? do
SJa

and the second term in the right hand of the high up inequality can be absorbed to the energy E
then change to

. 2
E,(t) 4+ sc.Ey(t) < +C .

/ e*?|uy — Aul* dx
Q
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Denote 71 = T'/2 4 €T'.Call to the well know Gronwall inequality to solve the equation 3.2| and it
shows that for ¢t € (T/2 + €1, T)

sc*(Tl t) ! 2€_SC*(T_t) 2sp(T) 2
E,(t) < E,(Th)+ | ——— luy — Au|* dxdr

//25“’7)|u —Au|2dmd7
SC* T

Remember that the objective is to absorb the third term in the right hand side of inequality (3.2).

The first integral in the right hand side is integrable and denote M := fOT e T1=8) dt. then making
upper bounds for the energy Integrate the energy inequality in the interval (77, T) to get

T T —sc* eT+
/ E,(t) <E (Tl)/ eser(Ti= dt+ / / % |uy — Aul* dadt
T1

Ty Tl
e 5Cx eT+ T2
<E (Tl)/ sCu(T1—t) dt+—/ / e**?|uy — Aul® dadt
Ty Ty
M
< —E,(T)) +—//255"\u — Aul? dt
S

Invoke again the equality (3.2.2)

—scx(t— Tl)E

/ e*Puy(uy — Au) dedt = E(t) — / sgie®? (Jwe]* + |Vul?) dadt
Q Q

+2s/ e***u (Ve - Vu) dzdt
Q

Now integrate equation (3.2) in the interval (7'/2 — €T, 7/2 + €T') , having in mind that ¢, and
V¢ are integrable functions and using the Young inequality is straightforward that to get

Ty T
E(Th) — E(r) :/ /62 Puy (g — Au) dl’dt—i—/ /ggpte%@ (|u |2 + |Vul ) drdt
Q
T
—23/ / e**?u, (Vi - V) dodt

Integrate above inequality in the interval (7/2 + €T', T') is possible to see that

Ty

T
E(Th) < Ms/ E(t)dt +/ % uy — Au|2dxdt
0

T>

Then is possible to get

T

T M T
/ / e (Ju” + |Vul?) dedt < M e (Jue]® + |[Vul?) + —/ / e**?|uyy — Aul® dadt
T Ja § Jo Ja

T

Then by weighted Poincare inequality
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T T T
3/ / e (Jug|* + |Vul? + s*|ul?) dedt < Ms/ E(t)dt + M/ / e*?|uy — Aul* dedt  (3.2.3)
T JQ T 0 Q
2. The steps to follow will be almost the same as done before. Make out that under a change of
variable ¢ — T — t is possible to translate the interval (7'/2 4 ¢7',T) to the interval (0,7/2 — €T') .
Denote T, = T'/2 — €T and under change of variables

2 [T
— / e**?|uy — Aul? dodt
« Jo

E(t) < E(Ty)e 27D 4
SC

integrating in (0,7/2 — €T") one gets

T> M M T
/ Et)dt < —E(Ty) + —/ e**?|uyy — Aul® dadt
0 § S Jo Ja
where R is a positive constants from integration. Recall equality (3.2.2) integrate and use Cauchy-
Schwartz inequality to get and

Ty R T
E(Ty) < Rs/ Eq(t)dt + —/ / e luy — Aul? drdt
0o Jao

T S

Combining equations and is possible to get the inequality

Ty

T M T
/ / &% (Ju? + |Vuf?) dedt < M [ % (|u + [VuP) + —/ / 2% uy — Auf? ddt
0 Q s Jo Ja

calling for the weighted Poincare inequalities (3.2.2) and multiply by s both sides of inequality
is possible to get

Ty

Ty Ty T
s/ / e (Ju]” + |Vul?> + *|ul?) dedt < Ms/ E(t)dt + M/ / e*P|uy — Aul* drdt (3.2.4)
o Ja o Jo

T

3. The last step is to compare terms from all above inequalities. Using the inequality (|3.2.4) one
deduce

T1 Tl
s/ / e luy|* + |Vul? dedt + 33/ / e |u|? drdt < C/ e*?|uy — Aul? dwdt
T2 Q T2 Q Q
T T
+C (s/ e**?10,ul* d¥ +/ e**? (|ue|® + ul?) +/ e (Jug|” + |u|2))
b 0 T

Recall inequalities (3.2.4) and (3.2.3) and the proof is done.
O

For sake of clarity and to avoid repeating notation the initial conditions (yo,y1) € L?(2) x H~(Q2)
unless it is mention in another way.



89

3.2.1 Solution to the hierarchical control process for the linear case.

In this section it is described the method to solve the exact controlability problem associated to the
follower objective in the linear case i.e the first step f the hierarchical control process described in the
first section. Solving this linear problem will allow to establish the exact controlability problem for
the semi-linear case as an optimisation problem and a fixed point theorem. Denote by L, = d,—A+a
and its adjoint operator by L := L, for a potential a € L>(Q).

Proposition 3.2.1. Fix a leader v € V and given a positive time T > R. Then it exist a follower control
flv] € F and a solution y € Y such that solves the exact controlability problem (3.1.2) and solves the the
equation

Yy — Ay +ay =vl, in Q
y = [[v]1, in ¥ (3.2.5)
y(0) = o, 4:(0) =31 in Q

Moreover is possible to see that the follower control and the solution are characterised by

flvl = 07001y y =0 *La(p) (3.2.6)
where p € P solves the equation
m(a;p,q) = lu(q), Vq€P. (3.2.7)
Also one gets
1 llF =+ ylly < C (ol + (Yo, vi) lz2@yx -1 + 1o 90| 2@ x -1 ) - (3.2.8)

Moreover the follower control f[v] fulfills the problem

1 1
S(flv];v :inf—/QQde:Edt—F—/ o2 fI? d.
bk = ot 5 [ Pzt [ il

Proof. The key id to assume that characterisation (3.2.6) is true for some p € P and arrive to equation
(3.2.7).

1. Assume that the characterisation given in Proposition(3.2.6) holds. Then replacing this in
equation (3.2.5) is possible to get the fourth order system

Lo(02La(p)) = vl in Q
0"*La(p) = —ey0upl, in X
0*(Lap)(0) = %o, (072 La(p))e(0) =31 in Q
Take any function ¢ in P an multiply equation Integrating by parts it is possible to get the
integral equation

/ 0 °La(p)La(q) + / 01 20,q1,0,pd% = (,(q)
Q

¥x(0,T)
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Then if the next equation holds for any ¢ € P

/ 0 2La(q)La(p) + / 01°0,q0,p d% = £,(q) (3.2.9)
Q % (0,T)

it is possible to conclude that the equality ((y(T") — %o, y:(T) — 91), (¢(T), ¢:(T")) = 0 holds and then
y(T) = 4o, y:(T') = 1. Then is sufficient to prove that system has a unique solution p € P. The
bilinear form m(a, -, ) is coercive by Carleman inequality so remains to proof that the linear
operator [ : P — R defined by the right hand side of is continuous. By Holder inequality
one gets

llp)| < / o) vp + (Yo, v1), (P(0), p:(0))) xxx+ — {(Fo, 71), (0(T), pe(T'))) x x x+

1/2 1/2 3.2.10
< ( / g02|v\2dxdt) ( / gzwpr“‘dxdt) (3:2.10)
wx(0,T) wx(0,T)

+ {0, 11), (P(0), pe(0))) x5+ | + (@0, 1), (p(T), pe(T))) x x|

/2 Moreover

1/2
By Carleman inequality is possible to see that < L 0.1 Q0 2 |p|2dxdt> < m(0,p,p)
again by Carleman inequality is possible to see that p € L*([0,T]; H*(2)) and p; € L*([0, T); L*(Q2))
then p € Cy([0,T]; H3(2)). Then is possible to get the embedding P — Hj(Q) x L*(Q), p —
(p(a),pi(a)) for any a € [0,7] that implies that ||(p(0), p:(0))|lxxx+ < m(0,p,p)*/? and also the
inequality || (p(T), p:(T))||xxx+ < m(0,p, p)*/2. Then inequality (3.2.10) becomes
D) < (Iolly + (o, y) |2 (@) -1y + @, 5|2 (@) xr-12) m(0, p, p) /2

And then the continuity of the functional / is proved. By Lax- Milgram theorem equation (3.2.9)
has a unique solution p € P ant then (3.2.7) is satisfied.
2. Equation (3.2.9) holds for any ¢ € P then taking ¢ := p one gets

/ 0| La(p)|? dadt + / 0r210,p|? dE = £,(p)
Q vx(0,T)

the the tight hand side can be estimated by (3.2.10) and by inequality (3.1.6) then the equation above
becomes

m(a,%p)m <C (HUHV + 1o, y1) | L2y x—1(0) + H(ﬂo,?l)HLQ(Q)xH—l(Q))

then is possible to get inequality (3.2.8).
3. The key point for this step is to invoke Theorem 3 pg. from [ET99] in order to verify that the
characterisation (3.2.6) solves the optimisation problem

1 1
S(flv],v) = inf—/g2y2dxdt+—/ | fI? dX. (3.2.11)
)= oty [ Fbtanar s [ gl

Let be
Yy — Ay +ay =vl, in Q
y = flv]L, on ¥
y(0) = yo,y(0) =y in
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and define

Ywit — DAYy + ayy = vl, in @

Yw = wl, on ¥

Yw(0) = Y0, Yw:(0) =y, in
Let p € P and by (3.2.6) is possible to see that

pu—Aptap=¢’y in Q
p=0 on X
With this definitions is necessary to verify that the control f|v] fulfils the equation

/ Py (Y — ) + / & flol(w — flv]) > 0, (3.2.12)
Q

vx(0,T)

that is equivalent to minimise (3.2.11). Replace characterisations (3.2.6)) in equation (3.2.12) to
get by integration by parts

2 — Yu f)(w— flv) = | L, — Y ) dxd 2 flo)(w — fv]) dX
/ng@ y>+/wmgf[ J(w — flo]) /Q D)y — v) t+/mmgfu< F1o)
- / Ly — yu)p— / (w— fl])Opds + / & flol(w — flo]) d=

Q = ¥x(0,T)

- / (w— fl])OpdS + / & flol(w — flo]) d=

% (0,T)
_ /E(w — fl))oupds —/ (w — F[o])dpds

% (0,T)
=0

So for any direction w € F inequality (3.2.12) holds. Then f[v] solves he optimisation problem

1 1
va;v:inf—/QQdexdt—l——/ 02| f|?dx
(k) = e 5 [ Pz g [ ol

and the proof is complete. L

The next proposition solves the second step of the Hierarchical control process established for
the leader control.

Proposition 3.2.2. Consider the initial conditions (yo,y1) € L*(2) x H'(Q) and a given a positive time
T > R. It exists a leader control v € V which solves the optimisation problem. Moreover it holds the next
coupled system

U — Ay +ay =01, in Q

y = flo]1, in %

§(0) = yo,5:(0) =1 in Q
where f[0] = ~o™0,p1, and § = 0" La(p) such that p € P soloes

m(a;p,q) = l,(q), Yq€P
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and
G — Ad +ap = 04@ - yd)lw in @
»=0 in X
o(T) = )=0 in Q

(T
b =—05(¢+ )L

where the function § € P is a solution to
m(a;§,q) / 9,0, p dX qeP.
% (0,T)

Proof. The functional P is coercive, lower semicontinous so it attains a minimum point and more-

over given a direction h in V and given € > 0

¢ [P(0 + €hs f[0 + eh]) — P(0, f[0])]

6 1la 2|5 2 S 2 1/ 2 A ~12 21 ~12
== — — g — + = + e0|* — o7|0|* dxdt

L5 [ e =P 10w+ [ el =l 6215
= | o — ya)yn + elyn|* dudt + / 0%0h + e|h?| dxdt

Qa wx (0,T)

where the function y;, and y fulfills the equations

U — Ay +ay =0l, in Q
§ = 119] in ¥
J . .

and
Ynit — Ayp +ay, = hl, in Q
Yp = —0 20,1 1y in ¥
yn(0) =y (0) =0 in €
and the function ¢ € P solves the equation
m(a, ), q) = / hqgdxdt. Yq € P (3.2.14)
wx(0,T)
Taking the limit € — 0 then (3.2.13) then
(3.2.15)

1 .
lim — | P(0 + €h; fv + €h]) — p(0, f[f)])] = / oy — ya)yn dxdt + / osdh dxdt =0
d wX(O,T)

e—0 €

Introduce ¢ in L*(0,T; H}(2)) N C(0,T; L*(£2)) defined by the initial value problem

¢tt_A¢+a¢:a(g_yd)1w in @
=0 in ¥

&(T) = ¢(T) =0 in Q
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Replace ¢y — Ap+ap = a(y—1yq) in (3.2.15) integrate by parts and consider boundary conditions

/a(y—yd)w+/ ngh—/ (¢+@3v)h+/
Q wx (0,T) wx(0,T)

010,$0,1 d¥.
% (0,T)
Define the linear operator 7, : P — R given by

To(¢) =

/ 070,60, A
¥x(0,T)
Then

1/2 1/2
o) < ( / g;2|ay¢>|2dz) ( / g;2|ay¢|2dz)
vx(0,7T) % (0,T)

< Cllyll»

The operator 7, is continuous. Then it exists a function ¢ € P such that the equation m(a, &, ¢) =
fw(o ) 07 20,00,4 d¥ is fulfilled and by definition of v that satisfies (3.2.14) and taking ¢ := £ is

possible to get the equality fw(o ) 0,20,00,1) = wa(O 7y h€ . Using equation (3.1.1) and the above
conclusions is straightforward to get

/Q&(?/—yd)w+/

ovh = / (¢ + ohv)h + / 0 20,¢0,1 d¥
wx (0,71 wx(0,T) % (0,T)

(¢ + ohv)h + ¢h
wx (0,T) wx(0,T)

(¢ + &+ ogv)h

wx(0,T)

Then the equality holds for any h € V so v = —g3(¢ + &) 1.

O
3.3 Solution to Hierarchical control problem for the semi-linear
case.

The linear problem F'(y) = ay was solved with a € L*((2) in the last section given the existence of a

leader and follower controls that solves the hierarchical control problem. Consider the function F
which is of class C"! globally Lipschitz. Define the linearization as

F(s)— F(0) .
- { P

s (3.3.1)
F'(0) in s=0
By hypothesis on F' is possible to find a positive constant M (Lipschitz constant) such that

|Fo(s)] < M and by definition sup,g |F"(y)| = M . Under this assumptions is possible to linearize
equation (3.1.T), i.e given a function z in L?(Q)) define the initial boundary condition problem

G — A+ Fo(2)§ = vl, + F(0) in Q
y=fl, in X
9(0) = yo,3:(0) = 1

in Q.
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System [3.3/has not the desired form because the extra term F(0). To avoid this difficulty a change
of variable is necessary. Then, define a new function w that

wy — Aw + Fy(z)w = F(0) in Q
w=0 in X
w(0) = 0,uw(0) =0 in Q.

and define y := y — w that solves the system

yu — Ay + Fo(2)y =vl, in Q

y = f1, in ¥ (3.3.2)

y(0) = yo,4:(0) =y in Q.
The null controllability problem for the follower control describes in section 3.1 will be done for the
linearized system(3.3.2) in the next proposition and is done is four steps. The first main part is to
prove the existence of the solution of(3.3.2) via a fixed point theorem. The second main part of the
proof is verify that the follower control that satisfies the null controllability problem in fact solves
the optimisation problem

1 1
S(llo) = int 5 [ PluPdedes s [ giisas
Q

fer % (0,T)

3.3.1 Some results in regularity and compactness.

Next a set of Propositions that will work as lemmas is invoked. The first is about compact results in
time dependent Sobolev spaces. The other propositions trade regularity results and the the ideas
are based in [Zua91] and [Lio88].

Proposition 3.3.1. [[Sim86] Corollary 9, pg. 90]. Let X, B,Y Banach spaces and consider an inclusion
chain X — B C Y. E] Let s, sy reals and 1 < 1,71 < oo. Define the numbers sy = (1 — 0)sg + 0s,
=2+ land s, = sy — - Let F a bounded set in W*°(0,T; X) N W*"1(0,T;Y). Then if s. <0

then F is relative compact in LP(0,T; B) for p < —i.
Next the transposition methods is studied.

Proposition 3.3.2. Given g € L*(X) and initial conditions (wo,w;) in L*(Q) x H~1(Q) then there exist a
unique solution w € L>(0,T; L*(Q)) N W>(0,T; H~(2)) that solves

wy — Aw 4+ aw =0 in @
w=gq in % (3.3.3)
w(0) = wo, we(0) =w; in .

such that for some positive C

|wl| oo o,7522(0)) + [wel| oo o7 m-1002)) < C (llwoll 2y + llwillm-1@) + 9]l 2cs))

2Possible case Y = B.
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Proof. See [Lio88] Pg. 42. Take an arbitrary function f € L*(0,7; L*(f2)) and consider the function
6 € C(0,T; H}(Q)) N CY(0,T; L*(2)) a solution to

Op —A+ab = f in Q
=0 in X
9(0) = 90, Qt(O) = 61 in €.
for any (6p,61) € H}(Q2) x L*(2). Multiply equation by 0 integrate by parts and by the
hidden regularity theorem([Lio88], corollary 4.1, p.g 44) the normal derivate exists and 9,0 € L?*(%)
and makes sense the equation

/fwdxdt— <<IU0,1U1),(80,01)>X><X* +/wan0d2
Q by

By well know classical energy methods the solution # can be estimated

VOl L2 + [10:ll 22 @) < CllflLro7:L2(0))-

Because the duality of L?(Q) respect L*(Q) is possible to get from (3.3.1)) the estimate

lwllz2@) < C (Jlwoll 2y + lwillr-1(0))

Consider a sequence (wy ,,, w; ,,) in the space H*(2) x L*(€2) and h,, a sequencein H2(0, T; HY/?(T"))
such that (wg ,, w1 ,) — (we,w;) in L*(Q) x H*(Q) and h,, — hin L*(X). If w, € L>(0,T; L*(Q))
is the associated state to initial data (wg ,, w1,,) then w, — win L>=(0,T; L*(2)) . With this in mind
is sufficient to prove that w, € C(0,T;L*(2)). Consider a sequence h,, in H*(0,T; H*(Q)) with

h,, |z = hy, and define the function u,, := w,, — h,, and is easy to see that u,, solves the initial condition
problem

(tn)et — Aty + atty, = (hy)yy — Ahy, + ahy, in @

U, =0 in X

Un(0) = wn 0 — hn(0), (un)e(0) = wp 1 — (hy):(0) in Q.
In is clear that u,(0) € H}(Q) and (u,):(0) € L*(Q2), then by classical energy estimates for the non
homogeneous problem (see [Lio88] Lemma 3.6, pg 39) the solution to equation (3.3.1) satisfies u,, €
C(0,T; HY(Q)) N CH0,T; L*(Q)) an then w,, = u, + h, € C0,T; H}(Q)) N C*(0,T; L*(R)). Then is
possible to verify that w € C(0,T; L*(Q2)) and is fulfils equality w, — Aw = 0 and straight away
wy = Aw € C(0,T; H%(Q)). Also

||wtt || L2 (0,T;H—2(Q) < C||w||L°°(0,T;L2(Q))

Remains to prove that the velocity w, € L>(0,T; H*({2)). Because the map (wg, w;,h) — w, is a
continuous functions then w, € C(0,T; H*(Q2)) and by continuity

[well oo o1 () + Wl oo oriz2i0)) < C (Jlwoll 2y + lwilla-1@) + l9ll2)) -
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Make this important observation. With the above bounds it may be possible to have a fixed
point theorem but in the space L*(0,T; H~'(2)). This regularity is not enough to have a minimising
sequence for the functional S that is defined in L?.

To improve this it is necessary to study in a deep way the regularity of the initial value problem
(.3.3). The ideas are borrowed from [Zua91] [Theorem 3.1, pg. 375].

Corollary 2. Given g € L*(X) and initial conditions (wo,w,) in L*(Q) x H () then there exist a unique
solution w € H='(0,T; H/?(Q)) N L*(0,T; L*(RY)) that solves (3.3.3).

Proof. Decompose w = w; + W, where w0, is a solution to
wl,tt — A'lI)l =0 in Q
’lI)l =g in X
@1(0) = 0,01,(0) =0 in Q.
By hypotheses the function g € L?(3) and by extension is possible to constructa G € L*(0,T; H'/?((2))
such that G|y = g. then by proposition the solution w, € L*(0,T; L*(Q)) NW1>(0,T; H~1(2))
and by equation (3.3.3) Aw;, = w1y € W1°(0,7; H1(2)). Define ¢ = w; — G and then is pos-

sible to get the chain inclusionA¢ = Aw; — AG € W=12(0,T; H-Y(Q)) + L*(0,T; H=3/2(Q)) C
H=Y0,T; H-3/%(Q2)) and immedjiately

¢ € H'(0,T; H/?(Q))

Then the trace operator allows to conclude that w, = ¢ + G € H~1(0,T; H/*(Q2)). Now consider
the system

III]Q,tt — A’U~}2 + CLTI)Q = —aw, in Q
’U~J2 =0 in X
’(I)Q(O) = Wy, (’lI)Q)t<O) = W1 in Q.

then again by proposition the solution wy, € L>®(0,T; L*(Q)) N W*(0,T; H*(2)). Then
because w = 1w, + 1w, is possible to get the bound

w10, m172(0)) + Wl L20,7:L2(0)) < C (Hw0||L2(Q) + lwi || -1 + ||9||L2(2))
O

The above inequality is the appropriate estimate to have bounds in the chain of spaces H'/2(Q) —
L*(Q) Fland apply results about relative compact sets from [Sim86] to get relative compact sets in
L*(Q) as will be seen in the next paragraphs.

3.4 Main results semi-linear hierarchical control problem.

In this section gives the two basic propositions that solves the hierarchical control problem for the
semi-linear wave equation.

3Where X — B denotes compact embedding of Banach spaces.
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Theorem 3.4.1. Let v € V a leader control and a positive time T > R . It exists a follower control f[v] € F
such that the exact controlability problem (3.1.2) holds, where y is the solution to

yw — Ay + Fy) =vl, in Q

Y= f[v]l'y m %

y(0) =vo,y(0) =11 in Q.
with

flv] = _91_28711717 Y= 9_2LF’(y) (p)

where p € P solves the equation

/ 0 L) (p) L) (9) + / 020,p0,q A% = L,(q), Vg€ P
Q

¥x(0,T)

Also hold the estimates given by

1f]ll =+ llylly <C (HUHV + 1o, y1) | L2y xm-1(0) + ||(g07g1)||L2(Q)><H*1(Q)) .

Proof. Let z in L*(Q) so Fy(z) € L*(Q) and then by proposition exist the follower control
f-[v] € F and y, that solves

Yzt — Ayz + FO(z)yz = Ulw in Q
y = f.[v]L, in X (34.1)
Y2(0) = 40, ¥:4(0) = y1,¥-(T) = Ho,y-4(T) = 1 in Q.

By inequality (3.2.8) is possible to see that | f,[v]|| 7 is uniformly bounded for all z € L*(Q). By
Corollary 2| the solution y, € H~1(0, T; H/%(Q)) N L*(Q) and then is possible to bound

Hyz||H71(0,T;H1/2(Q)) + ||yz||L2(Q) <C (||yo||L2(Q) + HylHH*l(Q) + Hfz[U]HL2(2)> (3.4.2)
< C (lwoll 2y + lnllm-1@) + I f:[v]ll )

Then the set of solutions {y. : z € L?(Q)} is uniformly bounded in H=1(0,T; H/2(Q)) N L*(Q).
Now invoke the next Proposition [3.3.1] The embeddingH"/2(Q2) — L?(f) is compact .Take 6 = 1/2
the parameters sy = —1/2, r¢ = 2 and s, = —1/2 —1/2 = —1/4. Then in Proposition [3.3.1] can
take p < 4 and in particular p = 2 and then the embedding H~1(0,T; HY/?(Q)) N L*(Q) — L*(Q) is
compact.

Define the map A : L*(Q) — L*(Q), z — y. where y, solves (3.4.1).By inequality the set
A(L*(Q)) is bounded in H~1(0,T; HY2(Q)) N L*(Q) — L*(Q) and by the previous conclusions A is
a compact operator. By Schauder fixed point theorem it has a fixed point z := ¢ i.e a function such
that A(y) = g or in other words it solves

U — Ay + Fo(9)y = vl in @
g = fzlv]1, in X
9(0) = 0, 5:(0) = y1, 9(T) = 9o, y(T) =41 in Q.

where f;[v] is the associated follower function to z := g. Taking in mind that Fy(9)y = F'(y) then
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Ui — Ay + F(7) = vl, in Q
y= f[]l7 in %

By construction § € V and f;[v] € F thenis p0551b1e to see that

. 1 / 21 ~12 1 / 2 2
inf — [ o°|y|*dxdt + = o1l fz[v]|7d¥E < o0
feF 2 0 | | 9 % (0.T) 1‘ y[ ”
Then the set of followers such that S(f;v) < co and y solves the semi-linear problem is non empty.
The next step proves that in fact the follower control solves an optimisation problem for the func-
tional S.

2. This step consist in proof that in fact f;[v] satisfies

. _ 1 21,,12 1 2 2
SUslel ) = inf 5 /Q Pyl dt + / o G (3.43)

Let f, € F be a minimising sequence i.e lim,,_.o, S(f,,v) = inf S(f,v). Then the sequence f,,
is uniformly bounded in F. By estimates given by proposition it is clear that the f, (resp y,) are
uniformly bounded in F(resp. )). Consequently it can be assumed that there exist a sub-sequence
{fn.} that converges weakly in F to some f and the corresponding state y,, converges strongly in
L*(Q)to the associated state y. From the weakly lower semi-continuity of the functional S is easy to
see that is satisfied.

3. This step has the objective to proof the characterisation (3.2.6). Now define Hj : L*(Q) —
L*(Q), H(w) = n where the function 7 is a solution to the non-homogeneous problem ff

—An=w in @
n=20 in X
n(0) =m(0) =0 in €.
and define the linear operator G : L*(X) — L*(Q), G() = ( is a solution of the boundary value
problem

Get — AC—O in Q

= in X

{0 =) =0 in 0
and define the map M : Y x F — L*(Q) as

M(z, f) = z+ Ho (vl, — F(y)) = G(f1,) — ¥

where
U — Ay =0 in Q
y=0 in ¥
9(0) = yo,9:(0) = y; in Q.

4Remark that Hy(n) € C(0,T; H3(Q)) N CL(0,T : L%(12)).
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First consider some y such that M (y, f) = 0 implies that y is a solution of equation (3.1.1) . Then the
optimisation problem (3.4.3) can be formulated as an optimisation problem with constrains using
the operator M in the form

infl/ g2|y|2dwdt+1/ o%| f|*dx dt
2 Jq 2 Joxm)
M(y, f) =0

(y, f) € Y x F.

Is necessary to apply the Dubvitsky-Milyoutin to the optimal problem (3.4.4). Define the descend
and tangent cones

(3.4.4)

Ko:={\S"(y, ) : A<0}; Ki:={(z,9) € YxF: My, f)(z,9) =0}

By explicit calculations is possible to verify that the operator M is of class C" in the space with
derivate in some direction (h, g) in L*(Q) x L*(%)

M(y, f)'(h,g) = h — Ho(F'(y)h) — G'(g1,)

Optimisation problem has a solution if and only if the tangent and decent cone satisfies
KoN Ky = 0. By Dubovitsky- Milyoutin theorem asserts that the condition Ky N XC; = () holds if and
only if exists non zero functionals f; € Kj and f, € K} such that f; + f; = 0. By definition of Kj the
functional fy = A(¢%y, 03 f) and f; = (w, h) then

Aoy, &3 f) + (w, h) = 0. (3.4.5)

It is necessary to characterise K} to have explicit forms of (w, h). Observe that Ky = ker M’(y, f)
then K; = ker M’(y, f)*and thenbecause M is a closed operator K} = ker M'(y, f)* = RankM'(y, f)*.
Following compute M'(y, f)* : L*(Q) — Y x F explicit. Now given a function ¢ in L*(Q) the dual
operator M'(y, f)* can be computed following the ideas from and then

My, [ = (F'(y) Hop + o, =G (¥)1,) (3.4.6)

where G* : L*(Q) — L*(X). Then by equation (3.4.6) exists some ¢» € L?(Q) such that (3.4.5) takes
the form

My, ol f) + (F'(y)Hyp + 1, —G*(¢)1,) = 0. (34.7)

By condition that f, and f; can not be zero simultaneously then A # 0 and then (3.4.7) can be
normalised with A = 1 and takes the form

(¢*y, oif) + (F'(y) Hov + ¥, G"(¥)1,) = 0.

Taking the equality on each coordinate, we get

y=0(F'(y)H +); f=01"G(¥)1,.
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Define p := H{v and by the boundary condition in definition of the operator H, the function
p € P. In addition the function p fulfils Lo(p) = 1. Following this statements and the fact that
M(y, f) = 0 then

Lo(0 2 (F'(y)p + Lo(p)) + F(y) = vl..

From the solution y = 02(Ly(p) + F'(y)p) then by definition of F; (see (3.3.1)) we obtain F(y) =
Fo(y)o2(Lo(p)+F'(y)p). Given ¢ in P multiply equation[3.4Jand proceed integrating by parts as have
been done in the linear case to achieve

/ 0 °Lpi(y)(p) Lryw)(q) + / 0 *G*(Lo(p))8,qdT
Q

¥x(0,T)

_ / vg + {0, 10), (4(0), 6(0))) — {(Gio» 70), (a(T), qu(T)))

wx(0,T)

Now is necessary to calculate G*(Ly(p)) in the boundary 3. Using the continuous embedding P —
Co(0,T; H} (Q2))and straightforward calculations it is possible to get for any function f in L*(Y)

/Q Lo(Gp)adadt = [ a0,Glp)as — [ D00 as + /Q G(p)Lolg) dudi

Now by definition of adjoint

| cwiLita) s = [ 67 (Lafa) a2
Q =

Then because ¢ = 0 in the boundary cylinder ¥ and with [3.4] the equation [3.4] can be write in the
form

o(G(p))gdzdt = | ¢0,G — [ 94G G*(Lo
/QL<<p>>qd it = [ 40,0002~ [ 0,4G) =+ [ pGr(Lala)

By definition of the operator G, the equality Ly(G(p)) = 0 holds and because ¢ = 0 in the bound-
ary cylinder then [, ¢0,G(p) d¥ = 0 and from equation becomes

[ oucwas = [ 16 (Lo as

Now G(p)|s = p|s because by definition of the operator G the function G(p) is the solution to the
equation given by

(Gp))u —AG(p) =0 in Q
G(p)=p in X
G(p) = (G(p))(0)=0 in Q

and therefore for any p in L?(X) the equality takes the form

/E POy S = / PG (Lo(q)) 45

and then G*(Lo(q)) = 9,¢. Taking in particular ¢ = p so equation[3.4|can be written in the form
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/ 0 2Ly (p) Liy) (p) + / 0 %0,p> dS
Q 7% (0,T)

= Lo ™ + (o, 1), (P(0), (0 x5 xx+ — (T T1), (P(T), pe(T))) xxc x-

The next step is to compute suitable estimates for the control f[v] and y. Denoteby M := sup,cr|F"(y)|-
By definition gy = s7%2p then S := supx € Qgy/0 < 1/(v/2M) because the Constant s in Carleman
inequality can be chosen s3/2 > \/_ M Moreover M?*S? < 1/2 and then = M2 52 < 1so0is possible to

choose a 3 € (0,1) such that &~ M2 52 < B < 3;- Now proceed with

Im(0,p,p)| < ‘/QQQF’(y)Lo(p)er Fo(y)Lo(p)p + F'(y) Fo(y)|p|?

Lo
wx(0,T)

1
2
< vlly ( / . Q_2|P\2) (1 0s 92l z2tcamerr e + 1o, 7)) 0, p, D)2
wx (0,

+2M/Q2|L0(p)]|p]dxdt+M2/Q2]p]2d:cd:vt
Q Q

+ + (|(yo, y1)5 (P(0), p£(0))) x5 x| + [{(Fo, 1), (P(T), pe(T'))) x5 x+|

By Young inequality with parameter /3 is possible to bound

2M/ 0 %|Lo(p)| || dxdt<M6/ 02| Lo(p) |2dxdt+—/ ~2|p|? dadt

and
/9‘2|p|2d:cdt§ 82/ 0y °|p|* dzdt
Q Q
then
im0, p.p)| < (vl + 1o, y) | + 1|, 1) 1) m(0, p, p) 2 +M5/Q@2|Lo(p)|2d:vdt
M
+ ( + Mz) 52/ 07 2|p|? dvdxt
E : 1
< C(|lolv + ||(?Joayl)|]|\5[2(9)xH*1(Q) + 1|50, 1)) m(0,p, p)2
+ max (Mﬁ, <M2 -+ E) 52) m(0,p,p)
Remember that M < 1. Also, from inequality &M < 8, we get (M? + M/B)S? < 1
and the term Max (ﬂM , < ?) 82) B(0, p, p) can be absorbed in the left hand side of the above

inequality giving

|m<07p7p)‘ S C (”UHV + ||(y07y1)||L2(Q)><H_1(Q) + ”(g(bgl)”) m(07p7p)§

and then
|m(07p7p>|1/2 <C (||U||v + 1o, y1) | L2y xm-1(0) + ||(g07g1)||L2(Q)><H*1(Q))
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and the the proof is complete. O

Until now the first step of the Hierarchical control problem have been solved. The exact con-
trolability problem for the wave equation has been expressed as a minimisation problem for the
functional S(-, f). To solve the second step of the Hierarchical control problem will need the the
next lemma.

Proposition 3.4.1. For some v in V define the set ®[v] C F is the set of followers controls flv] € F related
to v and take the set G = {(v, f[v]) : v € V}. The set G is convex, weakly closed subset in V x F. Moreover
the functional P : G — R is coercive and lower weakly lower semicontinous.

Proof. 1. Itis clear that G is convex. The proof for the closeness of G is given. Let (v,, f,) a sequence
in G that converges to (v, f) and suppose that (v, f) is not in G so there exist a pair(v, f) and the
associated state y such that

1 . 1 1
s LAty [ ey [ty [ ditas
Q ¥x(0,T) % (0,T)

Yu — Ay + F(y)=vl, in Q

= f1, on %

7:(0) = yo; 7:(0) =y in Q.
Observe that it exists 6 > 0 such that

1 N 1 ~ 1 1
s [ty [ @iras<g [ kg [ dipas
Q x(0,T) Q x(0,T)

Since (vy,, fn) — (v, f) it exists a natural number N such that for any n > N

1 . 1 ~ 1 1
sty [ o<y [ emley [ dinl
Q % (0,T) % (0,T)

Evaluating the functional S on the sequence (v,,, f) and taking 7, its associated state it is possible

to see that
L g+ 2712 < 2 [ Pl + & 2 1,
2 Q yn 2 QO Q yn 2 Ql n
’yX(O,T) X(OvT)

for n large enough. This contradicts the fact that (v,,, fn) €g.

where 7 solves

The next step is to prove that the functional P : ¢ — R is a lower semi-continuous func-
tional and coercive. Take a {(v,, f,)} C G be a sequence such that || f,||r — oo . By inequal-
ity || full7 + llvlly < C ([lyollr2@) + llvallv) given in Proposition is straightforward to see that
|vn|ly — oo and then the functional P(v, f) — oo.

Remains to prove that P has an infimum in G. Let (v,, f,) € G be a minimising sequence i.e
P(vy, fn,) — inf P(v, f). This sequence is bounded in V x F by definition and then (v,, f,) is weakly



103

convergent to some (7, f) in G because it is weakly closed. The pair (9, f) is the candidate to be a
minimum. Because P : § — R s L.s.c in the usual topology then

P(d, f) < liminf P(v,, f,) < inf P(v, f)

n—00 (v,f)€EG

so (9, f) is the desired solution. O

Theorem 3.4.2. Let T' > R. Exists a leader control © € V such that the pair (f[0], 0) solves the minimisation
problem (3.1.3). Moreover the next coupled system is fulfilled.

U — Ay + F(9) =01, in Q
y = flo]1, in 2
9(0) = 40,9:(0) =y in Q
where
flo] = _Q72(877p)1“/ Y= Q72LF/(y) (p)

where p solves the

/ 0Ly () Ly (q) + / 0 20,p0,qd¥ = {,(q)
Q 7% (0,T)

The follower control v is characterised by

Ly (%) = aly — ya)lo, — F'(y)d — 0 2F"(y)pLo(¢) in Q
=0 on X

and
/ 02 Lo() Ly (q) dvelt + / 0720, (¢) 0,(q) dS = — / 0720, (7) 0,(q) dX Vg € P.
Q by by

Proof. 1.The idea will be the same used for the follower control about the convex dual cones. Define
the functional Py : Y x F x V x P — R as

o 1
Poly, f,v,p) = 5/ Iy—ydIdedt+§/ og|v|? dzdt
Q wx(0,T)

Invoking the definition of the operator H, and G defined (2.3.1) and take the map M :
VXFXVxP— L*Q)xYxPas

M(y, f,v,p) = (y — Ho(vly — F(y)) = G(f1,),y — 0 Ly (p), f + 01 °0,(p)1,)

Now the minimising problem is defined as
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M(y, f,v,p) =0 (3.4.8)

ianO(ya f,U,p)
(y, f,v,p) EY X FxVXTP

This maps is of class C'in Y x F x V x P and given a set of directions (z,h,g,q) € Y X F xV X P
the derivative M'(y, f,v,p) : ¥ x F x V x P — L*(Q) x Y x P is given by

M'(y, f,v,p)(2,h,9,q) = (2 — Ho(g9lw — F'(y)z) — G(h1,),
z— 0 Lpiy)(q) — 0 *F"(y)pz,
h + Q1_28V(CI)17)

Optimisation problem has a solution if the associated descent and tangent cones K, and K,
are disjoint. By Dubovitsky-Milyutin theorem exists f; € K, i = 0,1 non zero such that f, + f; = 0.
By definition of tangent cone K; = ker M'(y, f,v, p) then K; = ker M'(y, f,v,p)*" and because H,
and G are compact operators, M is closed and K; = ker M'(y, f,v,p)t = RankM'(y, f,v,p)*. So
exists (¢, ¢, 9) € L*(Q) x Y x P and Aa(y — ya),0, 0*v,0) € K such that (under normalisation
A=1)

(a(y = ¥a),0,¢™,0) + M'(y, f.v.p)" (¥, 6, ) = 0. (34.9)
Compute explicitly the adjoint operator M'(y, f, v, p)* can be computed as

<M,<y7 f7 U,p)(Z, hv g, Q)a (1/)7 ¢7 @)) -
= (2= Holglw = F'(y)2) = G(h13), 2 = 0 L) = F'(y)2p. b+ 02(00)15 ) (4,6,9))
= (z — Ho(glw — F'(y)z) — G(h1,), ) + (z — 0 *Lp(q) — F"(y)2p, &)

+(h + 05 (0y0) 1, )

= (2,0 + F'(y)H* (V) + ¢ — 0 F"(y)po) + (¢, =Ly (07%9))

+ <9a 90> + <QaN*<9017>> + (g, _G*(@Z))lv) + <hv _G*w})la)

and then
M(y, f,0.0)" (6, 6.0) = 0+ + F(y) H(6) — 0 2F"(y)po,
_Hg (¢) ]'w 7
Ly (07%¢) + N*(ply),
o= G'(W)1,)

2. Under the above computations equation (3.4.9)) takes the form

oy —ya)la, =o+v+ F(y)H;(W) — 0 *F"(y)po

2 .
Qlf :SO+HO(¢)1UJ
3.4.10
0 = Lry(0770) + N¥ (1) G410
0 = -G (¥)1,
3. Define the function ¢ := —H(¢), 1 := Hi(¢) and define 4 = H (¢ + ¢). From the first

equation in (3.4.10) is possible to get
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aly —ya)le, =v+ o+ F(y)Hi(W)— o *F"(y)pe )
= Ly(¥) — Li() + F'(y)¢ + 0 > F"(y)pLi ()
= Li(¥ — ¢) + F'(y)(C+ 0) + 02 F"(y)pL(9)
= Ly () + F'(y)é + 07 F"(y)pLi(9)
= Ly (3) + F'(y)o + 02 F"(y)pLg(9)

Moreover replace ¢ = Ly(¢) and ¢ = G*(3)1, in equation Lpi(072¢) + N*(¢l,) = 0, multiply
by ¢ € P to get the equation and then

(N*(p1,) = Lrny(07°0))q dudt
= [ oo 90 09a0 A% — [ 0720 Li, (q) dudt

= / 0620,qG* (1) dX + / 2L*(¢3)L;, (q) dedt
4% (0,T) Q

— [ 0aG (L) [ L)L o) dod
'YX(OvT) Q

— [ woaohds+ [ L) L o) dod
¥x(0,T) Q

S~

But@/sz&%—gz@then

/ 050,00, (3 + 6) dS + / 072L(8) Ly (q) derdt = 0
vx(0,T) Q

Then the proof is done.
O]

3.5 Hierarchical control problem for the wave equation with dis-
tributed leader and follower controls. The linear case.
The aim of this section is to solve the hierarchical control problem when the leader and follower

controls lies in open sets in the domain region. Let {2 be an open set w, O open sets. Let the initial
value problem

ytt_Ay+F(y):flO+U1w in Q
y=0 in X (3.5.1)
y(0) = vo, yt(o) = in

Given functions (o, 1) in L*(Q) x H~'(Q) and a suitable positive time T the exact controllability
problem consist in finding a follower control f such that the solution y fulfils

W(T),y:(T)) = (41, 92)

Define the functional
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1
P(v; f) :E/ |y—yd|2d9€dt+—/ 0?|v|? dxdt
2 Jq 2 Jux(o)
The hierarchical control problem is defined as follows:

1. Let v the leader control in L*(w x (0,7)). Calculate a follower control f[v] such that given a
positive time 7" the problem (3.5) is satisfied.

2. Compute the leader control ¢ such that the pair (f[v],v) minimise the functional (3.5.2) i.e
solves the problem

1
P(v, f[0]) = inf g/ ly — yal|® dxdt + —/ 0*|v|? dxdt. (3.5.2)
2 Jq 2 Juxom)

veEL?(wx(0,T))

To reach the objectives defined above is necessary to introduce some preliminary theory to make
more clear the computing done in this chapter.

3.6 Energy estimates and regularity

For sake of clarity the function w will be used in this section.To this end let us consider the following
adjoint system
wy — Aw +aw =0 in Q
w=0 in ¥ (3.6.1)
w(0) = wp, w(0) =wy, in

Two concepts that are important to study the wave equation and rises in a natural form is the
concept of energy for the wave equation. Define the energy for a function w in C(0,7; L*(Q2)) N
cH0,T; H1(Q))

1
Eu(t) = 5 (lwe@)lla-10) + 0@l 20) -
If there is not possibility of confusion the energy can be simply denoted by E(t).

Lemma 3.6.1. Let a positive time T > 0. Let w in C(0,T;L*(2)) N C*(0,T; H~'(Q2)) the solution to
equation with initial conditions (wg,wy) in L*(2) x H~Y(Q). Then the energy inequality holds

Ey(t) < CEy(s)e N lzorne) Vs t [0,
Proof. The proof is based in a technique called transposition method developed by Lions. It consist in

defining a dual system with source term f € L'(0,7; L*(2)) where energy estimates can be com-
puted in a classical way. Thenlet§ € C(0,T; Hy(Q))NC'(0,T; L*(2)) be the solution for the problem

Qtt A, + af = f
-0 (3.6.2)
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Multiply equation (3.6.1) by ¢ and integrate by parts to get

/ fwdzdt = /(9(0)101 — 0,(0)wy) dz.
Q Q
Define the energy
~ 1
awz—owwmm+mwmmo

By classical energy estimates for the system it is possible to get that E4(0) < C|| f|| 11 0.1:122)
then by definition of the norm || 2| 1o (0,1, 12(q)) IS p0551b1e to get that for any (zo, 21) in L*(Q) x H ()

lwll oo 0,220 < C (Jlwol| 20y + lwillr-1()) -

The next step is to show how the above estimate for ||w|| . (0,1, 12(02)) gives the regularity C'(0, T L*(Q2))
for w. ]

Lemma 3.6.2. Let a positive time T > 0. Let w in C(0,T;L*(2)) N C*(0,T; H~'(QQ)) the solution to
equation (3.7). Let 0 < Ty < Ty, < T3 < Ty < T. Then the next inequality holds

/4E(t)dt§(](1+r)/ ()2t

T1 T2

Proof. Define the function ¢ in L?(0,T; H*(Q2)) the solution to —A¢ = w. with boundary condition
1) = 0. Defines the truncation function ¢(t) = (t—7%)(t—73) and highlighting that ¢(73) = ¢(73) = 0

/ /Cb wy — Aw)y :/ /ﬁbwttw pAwy
_ /T 2 T/ W) + wedbyddt — / : / oy Aw
— /3/wt¢t¢ /wt¢¢tdxdt+/ /€b|w|2
- T/j i ¢tdxdt—%T3T2 9,04 | Vw|? +/T2 /czﬁlwl2
—/T2 \wtﬁ{—l(n)@dl‘dt—% - G| Vw|? +/TQ /qu|w|2'

Now tanking in consideration that Lo(w) = aw and moving the first integral from right side to

left side
Ts T3
—/IW#WWWMZ/Q/MM% /(/%wm+/‘/mw2
T Ts Q

It is necessary to estimate the first integral of the above equation. Then
/ awyy dx dt < ||a)|| L2 ||w]| L2(q)-
Q

Now [[att|| 2y = [la%?]|; 1, and because a € L"/*(Q2) and ¢ € L7 (1)) then
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la*¥ @) < Nlall @ 1] se

Consider the Sobolev embedding W*?(Q) — L1(Q) for n > kp withp < ¢ < - (see [AF03]).
Because 55 < 21 with k = 2,p = 2 then ||¢|| < [Y g2y < |lw| 2 Q)ﬂ Then is possible

2(n—2)
to get the inequality

L 2(n 2)

T3 T3

mmMHQMﬁscu+m/|m@mmwa

T2 T2
Because (73, 15) C (11,1y) is straightforward that

T Ty

@wmﬁ@mmsou+m/|mwﬁmw

T2 Tl

Then the assertion is true. O]

Theorem 3.6.1. Let uin Cy(0,T; L*(2)) such that uyy — Au € H=1(Q) and

(w, PY) ) a1 = (Pu, V) g-vxmi) L) € L*(Q)

)\/ eMu < O (||6>\¢,Pu||H1(Q) + )\2/ 62’\‘¢’u>
Q wx0,T)

Proposition 3.6.1. Consider a potential function a € L>(Q)) an define the minimum time T\, = max,eq ||z —
xo||. For initial value functions (wo,w;) in L*(Q) x H~Y(Q) and for the solution w to (3.6.1) there exist a
constant C' such that the observability inequality holds

then

|wo 2 + lwillm-1) < Cobs/ lw|*dxdt (3.6.3)
Ox(0,T)

Theorem 3.6.2. Let vin L*(w x (0,T)) and a positive time T > R. Then there exist a follower control f[v]in
L*(O % (0,T)) such that the exact controllability problem|3.5|is satisfied and solves the initial value problem

Yu — Ay +ay = vl, + f]lo in Q
y=20 in %
y(T) = 5o, (T) = 1 in Q
Moreover exists (po, p1) € L*(2) x H~(S2) such the follower control is characterised by

flv] = plo
where p solves the equation
P —Ap+ap=0 in Q
p=20 in %
p(0) = po, pe(0) = p1 in Q.

> The above analysis is done for n > 4. For the case n = 1,2, 3 apply the corresponding Sobolev embedding results.
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Proof. Define z in C'(0,T; H3 () N C*(0,T; L*(2) a solution to the problem

zw — Az +az=wvl, in Q
z=20 in X
Z(T) = go, Zt(T> = gl in Q

Now given initial conditions (py, p1) define the function p in the solution

pu—Ap+ap=0 in Q
p=0 in % (3.6.4)
p(0) = po,pt(0) =p; in Q

And finally define the function 7 the solution to

e —An+an=plp in Q
n=0 in % (3.6.5)
n(T)=0,n(T)=0 in Q

Taking the solution 7 to equation (3.6.5) define the bounded linear operator A : L?(Q) x H~}(Q) —
Hy () x L*(Q)

A(po, p1) = (=m(0),7(0))

The exact controlability problem can be formulated as to find initial conditions (pg, p) in L*(Q) x
H=(Q) such that A(pg, p1) = (—y1 + 2:(0), yo — 2(0)). Next is necessary to prove that this equation
has a solution. take equation (3.6.5) and multiply by p apply integration by parts and the condition
n(0) = n,(0) = 0 is possible to get

/ (e — A+ an)p dadt = / 2(0)pu(0) — 1 (0)p(0) dx
Q Q

Because [, (1« — An + an)pdzdt = [, 1 IP|* dzdt the above equation can be written in the form

(A(po; 1), (Po, P1)) e xerr = / p|? dxdt
Ox(0,T)

Calling the observably inequality (3.6.3) from the above equation is possible to get the coercivity
of the real bilinear form (A(-,-), (-,")) ui(@)xr2(),12(@) < 1-1 () defined in L*(Q) x H~(Q) using the
inequality

1
C’obs
Then by the Lax-Milgram theorem exists (po, p1) € L*(Q2) x H~(Q) with associates state p that solves

(3.6.4)and such that the exact controlability problem is fulfils. Moreover the solution y = 7 + 2z then
the follower control f[v] = ple. O

(A(po.p1), (Po.p1)) = (IIpollz2) + [Pl r-10))

Theorem 3.6.3. Exist a leader control v in L*(w x (0,T)) such that given a time T > 2R, the optimisation
problem (3.5.2). Moreover the next system is satisfied
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U — Ay + ay = vl, + flv]le in Q
y=0 in ¥
?3(0) = yOagt(O) = Y1, ?J(T) = ?Joaﬂt(T) =y in Q

Moreover exists (po, p1) € L*(Q) x H () such the follower control is characterised by

where p solves the equation

(@]
S
D MO

The leader control ¥ is characterised by

=00+ vV)lo

where ¢ solves
b —Ap+ ¢ =aly —yi)lg, in Q

¢=0 in %
(T) = u(T) =0 in Q
and 1 solves
Lo(¢) +ap =0 in Q
¥(0) =0 in ¥
Y(0) = o, e (0) = by in L.
Proof. Let a direction h in L*(w x (0,7')) and take the derivate of the functional S defined in (3.5.2)
to get
1
— (S(f[v+ e, v+ sh) = S(f[v],v)) = / aly —ya)j + / vh (3.6.6)
Qd wx (0,T)

€
where the function ¢ in C*(0, T'; L*(Q2) is a solution to the to the problem

w — Ay +ay = hl, +plp in Q

Y
=20 in X
9(0) =4,(0) =0 in Q

and p is the solution to the initial value problem (3.6.4) with initial conditions (py, p1) defined by the
equation A(po, p1) = (—2:(0), 2(0)) where the pair (—2(0), 2(0)) in Hg(Q2) x L*(Q) are the states for

the solution 2 for the initial value problem

ﬁtt—A£’+a2:hlw in Q
51— in (3.6.7)
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e — A+ an) = pl, in @
n=0 in X
A(T) = 0,7(T) =0 in 0
7(0) = 2(0), 7 (0) = —2(0)
P — Ap+ap = in Q
p=0 in X (3.6.8)
p(0) = po,p(0) =p1 in
Define ¢ in as the solution to the problem
G — AP+ ¢ =aly —ya)lg, in Q
$=0 in X (3.6.9)

O(T) = ¢(T") =0 in Q

Using the definition of § , p and integration by parts and initial conditions the equation (3.6.6) is

/ oy — ya)i + / oh o(hl + flo) + / oh
d wx(0,T) Qq wx(0,T)

- / (¢ + v)hdx dt + P du dt (3.6.10)
wx (0,77 Ox(0,T)
It is necessary to change the integral expression / p¢ dz dt by an integral in the open set
Ox(0,T)

w x (0,T). To do this will be necessary to make some assumptions. Consider the function ¢ defined
by equation (3.6.9). Take a pair (g, ¢1) then there exist an associated function ¢ in C'(0,7; H'(2)) N
C*(0,T; L*(2)) which is a solution to the homogeneous problem

Lo(p) +ap =0 in Q
p(0) =0 in ¥
(10(0> = 9007301&(0) = Yo in Q
This map (o, p1) — ¢ is continuous. Define the linear functional ¢, : L*(Q2) x H~!(Q2) — R given
by
Lo(po, 1) = / wpdxdt
Q

By Holder inequality and classical energy estimates it is possible to verify that ¢, is continuous
and has bound |[{4|| = ||¢[/12(wy). The bilinear form (A(-,-), (-, -)) z+,u is coercive by observable in-
equality so recalling the Lax-Milgram theorem exist a pair (¢, ¢1) in L*(Q) x H~'(Q2) such that for
(Po, p1) in L*(2) x H™(w) from the next equality holds

Ls(Po,D1) = (%o, 1), A(Po, 1)) o+ 1 (3.6.11)
Now recall that A(po, p1) = (—2:(0), 2(0)) so equation (3.6.11) takes the form

Co(Po, 1) = (Yo, ¥1), (—2:(0), 2(0))) = - (3.6.12)
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Set the function v as the solution to the initial value problem

Lo(¢) +ayp =0 in Q
»(0) =0 in ¥
P(0) = ¢o, ¥:(0) = 1o in Q
recalling the fact that 2 is a solution to the initial value problem (3.6.7) using the definition of the
dual product one gets

lo(Do,p1) = (Yo, 1), (=2:(0), 2(0))) s

Then from equation (3.6.10) and the calculation done in (3.6.12) is possible to get

/ h(¢ + ¢ +v)dxdt =0
wx (0,7

thenv = —(¢ +¢)1,. O

3.7 Proof of the observably inequality
Proof. Define the auxiliary problem

vy —Av=quv in Q
v=20 in X

The hypothesis of the function that fulfils equation to guarantee that v(7") = v(0) = 0 so is
necessary to use an appropriate cut off function in adequate interval in order to attain the conditions
to apply the inequality given by theorem

Define the weight function ¢(t,z) = |z — x| — ¢ (¢t — %)2 Invoke that the condition that the
constant

In the extremes of the interval (0,7)

T2
¢(T,$):¢<O,x)§R1—C1§O, z €

Then there exist positive numbers ¢;, and €] such that for any ¢ in (77, 77) where 71 = T//2 — ¢,T and
T, = T/2 + €T the inequality

o(t,z) <0 x€Q
1.Define a cut off function ¢ in C§°(0,T') such that £ = 1 in the interval (77, 77). Define the function

w = &v. This new v is in C(0,T; H}(Q)) N C(0,T; L*(2)) and makes w(0) = w(T) = 0. Hence
theorem can be applied. There exist a positive Ay such that for any A > A,



113

)\/ M < C (||€/\¢Pw||H1(Q) + )\2/ 62’\¢w>
Q wx0,T)
=C <H€/\¢Q£w +wéy + 2§tthH—1(Q) + A2 / 62/\¢w>
wx(0,T)

Now by definition of the norm in H ()

lafw 4+ w&y + 26wy || g1y = SlHlp (a&w 4+ wéy + 2&wy, f)
[l flI=1

= sup (aw) + sup (W& + 25wy, f)
lFl1=1 =1

< tt 2tt
< o [ agwrs ow [ e+ 2601

Nos by the Sobolev embedding theorem H'(Q2) — L?(2) together with Holder inequality permit to
make the inequality

||?||1p1/ agwf < Cllall =iz @y lle**wl L)
=1JQ

For the second integral in (3.7) is necessary to integrate by parts to avoid the time derivate in w
and now express the interval (0,7") = (0,73) U (71,17) U (17,T) taking in consideration that in the
extreme intervals the function ¢ < R;/2 — ¢T?/8 then

sup /(wftt—l-%twt)f = sup /e/\(ﬁw()“btftft""fttf—i_&f)
Ifll=1/Q if=1’e
< Ce™2 TN (w| 2o,y xe) + 1wl L2y =)

2. Now is possible to express
/(§w>262>\¢ — fQ w2€2)\¢ _ fQ(]' . §)w2€2)‘¢
Q

_ / w2 _ / (1- 52)w2€2)\¢ . / (1- 52)10262,\(;5
Q Qx(0,11) Qx(Ty,T)

< w2e — C’e(R%*CTQ/‘l))‘ (
Q
With the above inequality is possible to estimate the left side of (3.7) so putting together equations

and is possible to get

/\/ ew? <C (HGH%N(O,T;LH(Q))/ w2€2)\¢+)\2/ w2€2>\¢+
Q Q wx(0,T)

2_ T2
-+ Ce(Rl T /4))\<1 + )‘2)HwHL2((O,T1)><Q) + HwHL2((T1/7T)XQ)>

[l 22010y %) + 1wl 2y 1)<

The objective is to eliminate the first integral in the right hand side from to remain only the
integral in the domain w x (0,7). Because R} — ¢T?/4 < 0 then is possible to choose a positive
A > )\ such that the product eFi=<7*/9(1 4 \?) is sufficiently small i.e less than one. Moreover is
possible to choose A > 2C(\; +1?) then the expression ||a[|7« (g 7.1 () Jo w*e**? can be absorbed to
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the left hand side of then

)\/ Muw? < ()\2/ w?e*? + ||wl| r2(0.1)x Q) + HwHLZ((T{,T)xQ))
Q wx(0,T)

The two left hand side terms in the right hand side of should be bounded above by an integral
in all (). To achieve this consider that ¢(7°/2, ) > R,/2 and then must exist an open (7, Tf)) around

T/2 then
/ e w2 > / w?.
Q (To, T %82

3. In addition , consider some Sy in (0,7'/2) and Sy in (7'/2,T) so by lemma is straightforward

to get
53 S4
/ E(t)dtSC(lJrr)/ w2
S

2 S1
By the inequality in lemma [3.6.2]

1wl 20,1 )x) + 0|21y )x0) < CE(0)e’”

Then the proof is done. O
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3.8 Appendix

3.8.1 Optimisation

This chapter is devoted to the formalism used to study control problems with constrains. The idea
us to use the formalism of Dubovitsky-Milyutin

The purpose of this section is to use the cone theory to write an optimisation problem with
constrains in a more computable form to calculate the minimal values. Let a functional f : B — R

and consider a family ; C B, i = 1,...,n. A constrained problem is a minimisation problem
defined by

min f (),

zeB

n
YIS ﬂQz
i=1

Convex cones theory.

Let be a linear normed space B. A subset C is called a cone centered in 0 if forany € Cand A > 0
is true that Az € C or in a equivalent way A\C = C. A cone C,, is said to have vertex in z, if there exist
a cone C with vertex in 0 such that C,, = C + zy. A cone with vertex at zero will be called simply a
cone. A cone that is convex is called a convex cone. The simplest example of a con convex cone is
the union of the first quadrant and third quadrant of the euclidean plane.

The dual cone C* of a cone C is defined by C* = {f € B*: f(x) > 0,z € C}. Itis easy to see that
the dual cone is in fact a cone with vertex at zero. Next a list of properties of cones and its dual is
given:

1. For any cone K the dual K* is a cone with vertex in 0.
2. Let two cones K C K, then K; C K7.

3. Let K be a vector space and f € K*. If x # 0 by definition f(z) > 0 then f(—z) > 0 that
implies that K* = {f € B*: f|x = 0}.

4. Is important to note that if K is a convex open cone then for any f € K* and x € K the
inequality f(z) > 0is true, otherwise K = f~([0, 00)) that contradicts the fact that K is open.

Some examples of cones are:
1. In the Cartesian plane, the union of the XY quadrant with he X~Y~ is a non convex cone.

2. Let (X, u) a finite measure space and define the convex cone C' = {f € L*(X,pu) : f > 0} so
this cone in convex int(C) = (. For f € L? take theset A, = {x € X : f(z) > €} so u(A,) < oo
and moreover /(X /A.) = oo . Take a cover X = J,. U; with ;(U;) < oo and write

nw(X/A) = MOEU?L Uin (X/A)
<> u (U U; N (X/Ae)>

=1 =1
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so because 11(X/A.) = oo the for at least one U of the cover {U;}?_, the positive measure p(U N
(X/A.) > 0. Define the function g = f outside U N (X/A.) and f(x) — e otherwise. Then

1 = glles =/' = f +ePdu
UN(X/Ac)

< S
UN(X/A)

The function g us negative in the set U N (X/A,) an inside the ball B.(f) so there is no ball
contained in the cone C.

3. Define the cone C of non negative functions of C([a,b]). Then C* is the set of all increasing

positive functions on [a, v]. Letl € C(]a, b])* then there exist a bounded variation function x in
la, b] such that

b
105) = [ 1winto)
In particular given [ € C* for any f € C then I(f) > 0. Suppose that there is a non decreasing

function p such that for d > ¢, u(d) < p(c) and define the function f(z) = 1 in [¢,d] and
f(z) = 0 otherwise. The function f € C but by definition

I(f) = / f(@)dp() <0

Then the repentant p of [ is of bounded variation. The converse is straightforward.
4. The Lorenz cone is defined as L™ (R) = {(z,t) € R""! : ||z|| < t} is a self dual cone.

Is straightforward to note that if K is a subspace of B then the dual cone K* = {f € B*: flx =

0}.

Lemma 3.8.1. Given a banach space B and f € B*
1. If Ky ={x € B: f(x) =0} then K* = {\f: A € R}.
2 IfKy={x € B: f(x) >0} then K* = {\f : A\ >0}

Proof. Because Kj is a subspace then for any g € K7 there exist a real number A and f € K7 such
that g = A\f. Now, because K, C K; then K C K, and the result is complete. l

Lemma 3.8.2. Given a family Kc for an arbitrary set the equality (U,c; Ki)" = Nie; K holds.

Proof. Take f € (U;c; K:i)™ so by definition f(z) > 0 for any = € |J,; K; and in particular for any
r € K; then f € [,.; K;. On the other hand if f € ,.; K; then f(z) > 0 for any € K; so

fe (Uiel KZ)* u
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Let FF : B — R where B a a locally convex normed space. For a pint + € B define the sub
differential of /' at z as 0F (x) = {f € B* : F(y) — F(x) > f(y — z), Vy € B}. Its straightforward
to note that for any function F its sub differential is a convex set. Let A € [0,1] and f,g € 0F(z)
so convexity is a consequence of the inequality F(y) — F(z) > AF(z) — (1 — A\)F(y). The proof
of the Moreau-Rockafellar theorem can be found in [Alel”] and its an essential tool for the proof of
Dubovitskiy-Milyutin theorem.

Let K a subset in B. Define the Lagrange first variation function like

e - {3 5K

If K is a cone in B then take 0(0K)(0). If f € 0(6K)(0) then for any y € B, 6K (y) > f(y) but in
particular for any y € K the inequality —f(y) > 0 then f € —K*. The converse result inclusion in

straightforward so is true that
0(0K)(0) = —0K™ (3.8.1)

Theorem 3.8.1 (Moreau-Rockafellar). Let fi, ..., f, a family of convex proper functions in B. Theny . | 0f; C
9 (>°1, [i)- Moreover ifat the point x € B all the functions except maybe one are continuous then 0 (>, fi) =

2 =1 O
Lemma 3.8.3. Let K1, .., K,, a family non disjoint convex open cones. Then (N, K;)" =, K}.

Proof. Due the fact that (,_, K is a convex and the propriety (3.8.1) is possible to get
(ﬂ Ki) = —05 (ﬂ Ki) =—0) IK;
i=1 i=1 i=1
= Z _‘9(5—’{1‘) = ZK:
=1 i=1

Optimization cones, characterization and the Dubovitskiy- Milyutin theorem.

Let B a normed space, a function f : B — Rand a point zy € B. A vector h € B is called a descent
direction at the point z if there exist ¢y > 0, a & < 0 and a open neighborhood U of h such that for
any € € (0,¢) and v € U the inequality f(z¢ + ev) — f(zo) < ae. The set of all descent directions at
x¢ is denoted by DC'(zy, f) and is called the descended direction cone

Proposition 3.8.1. Given z € B the set DC(x, F') is a open cone.

Proof. Let h € DC(xy, f). Because there exist an open set U such that for any v € U the inequality
f(xo + ev) — f(xo) < ae suffices then taking the same U a neighborhood of v is verified that U C
DC(xy, f). Then the descended cone is an open set. O

Proposition 3.8.2. Let f be a real Frechet differentiable function in B. Then the descendent cone is charac-
terized by DC(xg, f) ={h € B : f'(x¢,h) < 0}.

Proof. Let O
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Proposition 3.8.3. If f is a convex functional then DC(xy, f) is a convex cone.

Proof. Let A € [0,1] and h,v € DC(xy, f) and define n = Ah + (1 — Av) then

f(xo+en) — f(xo) :)\f(150+6h)_f<xo)+

+(1_)\)f<$o+ev)_f<1’0)

€

and then f'(xo,n) < 0so DC(xy, f) is convex. O

Let B anormed spaceand D C B. A vector h € B is an admissible direction at the point zy € B
if there exist an open interval (0, ;) and a open set U C B such that for any direction v € U the
parametric vector zy + ev € D for any € € (0, ¢). The set of all admissible directions seated in x is
denoted by AC(xz¢, D) and is called the admissible cone at z,. The next proposition give some of
the basic properties of the admissible cone.

Proposition 3.8.4. admcone Let D C B and arbitrary set and xo € B. Then the set AC(zo, D) is a open
cone.

Proof. The proof follows the same ideas of the proof of proposition[3.8.1] O
Proposition 3.8.5. For any convex set D the equality AC(xy, D) = {\(z —x0) : A > 0,2 € int(D)} holds.

Proof. Let h € AC(zo, D) so there exist a ¢ > 0 and a open neighborhood U of the direction h such
that zg+€h E D forany h € U. The set V = z(+ €U is a neighborhood of z + €h s0 ¢ + €h € int(D).
Define h = %(z — x,) then AC(zo, D) C {A(z — x0) : A > 0,z € int(D)}. The converse inclusion is
shown as follows. Let h = AMzg —x) with A > 0and z € int(Q) then there exist a neighborhood V'
of . Define the set U = {\(v — zp) : A > 0,v € U} and ¢, =  then

o+ €eh =z + e((A(v—x0))
=Xev + (1 — Xe)zp € Q

Then because @ is convex . Then h € AC(ay, D). O

Proposition 3.8.6. Let f : B — R be a differentiable function at xo and Q = {x € B : f(z) < f(x0)}T
then AC(x¢, Q) = DC(xo, f).

Proof. Let h € C'D(xy, f) then f(zo + €h) > f(x¢) + eaforh € U, a < 0and € € (0,¢) then h € Q.
By the other side, the cone AC(zy, Q) is open so there exist a neighborhood U C AC(xy, ?) around
h. Lety > 0 and define h, = h + y(h — h) or equivalent h = 1 —7hy + 517h and because f'(zo, h) is
convex in h then

[@oh) = f (w0, 550 +mh>

1 o
< ﬁf( 05 7)+ﬁf (w0, h)

v
< ﬁf (20, h)

Then h € DC(zy, Q). O
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Now the last direction cone is defined. Let () C B. A vector h € B is called a tangent direction
to @ at a point zy € B if there exist a function r : (0,¢y) — B with |r(e)| = O(e) such that for any
neighborhood U of h the vector 17(¢) € U and the parametrization g + ¢h + r(€) € Q. The set of all
tangent directions to () at x( is denoted by T'C'(z, ) and is called the tangent cone at z,. A vector
h is a unilateral tangent direction if fulfils all the hypothesis above but the ¢ — 0. The set of all
unilateral directions is denoted by T'C* (zy, Q).

Proposition 3.8.7. Let Q C B. The set TC(x, Q) is cone with vertex at 0.
Proof. The proof follows as has done before. O

Proposition 3.8.8. Implicit function theorem Let B a topological space and Y, Z Banach spaces. Given
(xo,yo € X x Y and a neighborhood W of (o, yo) consider a function ¢ : W — Z and ¢ (zo,v0) = 2o
with zy € Z. If

1. The application x — (z,yo) is continuous in x.

2. Exist an application A : Y — Z such that for any € > 0 and 6 > 0 exists a neighborhood U at
xo with the property that for x € U the inequalities ||y’ — yo|| < 6 and ||y" — yol| < € implies that

U, y') =, y") = Ay =)l <elly ="

3. AY) =Z.

Then there exists a number K and a neighborhood V- C X x Z of (x, zy) such that the application ¢ : U — Y
satisfies Y (x, p(z,y)) = 0and ||p(z,y) — yol| < Kl|v(x,yo) — z||.

Theorem 3.8.2. Lyusternik Let P : E/y — E, and differentiable operator in a neighborhood of x, € E; with
P'(x¢) a continuous operator in a neighborhood of xo with P'(x) subjective. Then TC(Q, xo) = ker P'(xy).

Proof. Let r the function of the definition of unilateral tangent cone. Given h € T'C(x¢, Q)) ans the
trajectory x(e) = x¢ + eh + r(e) € @ then

F(x(e)) = F(xo) + eF'(xo)h + O(e)
= eF'(x9)h + O(e)
=0
Because O(e) < |e] then F'(xg)h = 0 then TC"(xy,Q) C ker F'(xy). No the converse contention is

proved and the implicit function theorem is used. Define the function G(z,y) = F(z + y) , because
F is a differentialble function then G(z,0) is differentiable and

1G(z,y + h) = G(a,y) — F'(xo)h| < €||h]|.

with ||z — z¢]| < d and ||y, ||y + || < 6. This enable the implicit function theorem then there exist a
openset U C E x E, a positive constant /i and a function ¢ : U — Y such that G(z, ¢(,z,y)) =0
for any (z,y) € U and

lo(z,y) —vo)ll < K||G(,90) — ol
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Then G(z, p(z)) = 0 or in a equivalent form F'(z + ¢(x)) = 0 and also ||¢(z)|| < K||G(c,0)|. Then is
possible to take r(e¢) = ¢(z + €h) and along r the equality F'(zo + eh + r(e) = 0. Also an estimate
for r is given by
(el = Nl (o + en)|]

< K| F(zo + eh)|

= K[[F(zo + €) = F(xo)]|

= K||eF'(zg)h + O(eh)]||

< Kl|eF'(zo)h + O(e)|

If h € ker F'(xo) then [|r(e)|| = 0 and implies that ker F'(z) C TC™(z0, Q).
[

The central part of this chapter is to find a suitable method to solve extreme problems under
constrains as the problem is set.

Theorem 3.8.3 (Dubovitskiy-Milyutin). Let B be a normed space and consider the a family of open convex
cones Ky, Ky, ..., Ky, K,11. Then the the cones are disjoint if and only if there exist a family of functional
fi € K withi=0,1,...,n,n+ 1 such that """ f; = 0.

Proof. The first implication will be proved by induction. Suppose that (), K; # () and K,,,, # 0. By
separation theorem there exists a functional f € B* such that f(z) > 0 for z € (_, K; and f(z) <
for 2 € K,41. By definition, f € (N_, K;)” and by Theorem [3.8.3|the equality (_, K; = 37 K is
true which mans that there exists f; € K/, i = 0, ..n such that

f=fo+fi+.. .+ fa

Define f,+1 = —fso fo+ fi +...fo + fur1 =0and f,11 € K 4. If N, K; = 0 the above process is
done for ﬂ;:ol K, and K,,.

Now, suppose that there exists functional f; € K such that 7! f; = 0 and existsa z € (7} K.
Then fo(z) = —(f1 + ... + fas1)(x) but fo(z) > 0and fi(z) > 0fori = 1,..n+ 1 and this is a
contradiction. N

Theorem 3.8.4. Let U be a neighborhood of x( in a normed space B, for i = 1,...,,n + 1 a M, a family of
subsets if B and f a real function in U. Write K, := DC(xo, f), K; := AC(x¢,M;) for j = 1,..n and
K1 :=TC(xg, My11). If 2 is a solution for the optimization problem then then ﬂ?jol K, = 0.

Proof. Leth € ﬂ?jol K. Because h € K, exists an pen neighborhood U of h, a ¢, > 0 and a < 0 such
that for any v € Uy and € € (0, ¢y) the inequality

f(zo + ev) — f(zg) < e (3.8.2)

By other side h € (;_, K; then exists open sets U; around h, and ¢; > 0 such that 2o + ev; € K;

for any v; € U;. Define U = ﬂ?jol U; which contains h and € = min;—,_,, ¢; then for any v € U and

€ € (0,€) zo+ev € ; and (3.8.2) holds. Likewise h € K, then for any neighborhood V' of h such
that zo + ev + r(e) € Qny1. In particular is possible to take V' = U. O
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