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Introducción

El problema de control jerárquico en ecuaciones diferenciales parciales, inicia con el estudio
de J.L Lions en Hierachical Control [Lio68] del problema de control jerárquico para la ecuación de
ondas lineal con potencial nulo. En ese trabajo Lions define el rol de dos funciones llamadas líder
y seguidor donde se establece una jerarquía de roles, es decir el control seguidor depende de la
elección que se tome del líder. El control seguidor f está definido en una porción de la frontera
del abierto Ω y debe resolver un problema de optimización mientras que el control líder v debe de
controlar exactamente la solución y en un tiempo T > T0 donde T0 es un tiempo mínimo impuesto
por la condición geométrica de la ecuación de onda.

La estrategia de Stackelberg es una idea presentada en la publicación de 1934 "Market structure
and equilibrium” [VS10] donde Heinrich Von Stackelberg propone el concepto de juego no cooper-
ativo: introduce un rol jerárquico a los participantes donde el jugador líder impone una estrategia
sobre el jugador seguidor que tiene que optimizar la respuesta a dicha estrategia. El problema
de control jerárquico se adapta convenientemente a la idea desarrollada por Stackelberg donde las
funciones control tomarán el papel de participantes y se le asignará un rol a cada uno de ellos.

Uno de los primeros trabajos donde se implementa la estrategia de Stackelberg es en el artículo
"Remarks on hierarchic control." [LCM09] donde se establece la estrategia deNash- Stackelberg para
un problema de control jerárquico en regiones con fronteras móviles. En [AFCdS20] se plantea el
problema de control jerárquico donde el control seguidor cumple la tarea de satisfacer el equilibrio
de Nash para un funcional dado y el control líder debe llevar la solución y a cero en un tiempo
T > 0.

El propósito de este trabajo es presentar algunos resultados de control jerárquico de ecuaciones
parabólicas e hiperbólicas. El problema de control jerárquico aborda problemas donde se actúa con
dos controles y estos tienen una jerarquía en sus objetivos. En este trabajo abordamos un cambio
en los objetivos de los controles en relación a como se habían trabajado en la literatura. Buscamos
que el control líder tenga un objetivo de optimización y el seguidor un objetivo de control exacto.
La investigación está separada en tres capítulos, cada uno reservado para resolver un problema de
control con distintas ecuaciones o con variantes sobre la región donde actúan los controles.

En el capítulo I de esta tesis se presentará una investigación realizada con Bianca Calsavara,
Enrique Fernández-Cara, LuzdeTeresa ydonde se plantea unproblemade control jerárquico para la
ecuación de calor pero invirtiendo el papel de los controles respecto a lo desarrollado en [AFCdS20].

Consideremos un abierto Ω ⊂ Rn suficientemente regular. Para T > 0 fijo, definimos el cilindro
Q = Ω× (0, T ) y la frontera lateral del cilindro Σ = ∂Ω× (0, T ). Introducimos funciones ρ, ρ0, ρ1, ρ2

definidas convenientemente en Q. Para condiciones iniciales y0 ∈ L2(Ω) y dos conjuntos abiertos
ω,O ⊂ Ω consideremos el problema semilineal

yt −∆y + F (y) = f1O + v1ω en Q,
y = 0 sobre Σ,
y(0) = y0 en Ω.

En esta ecuación F es una función globalmente Lipchitz y 1ω, 1O son la función característica de
ω y deO respectivamente. Consideraremos un problema de control jerárquico donde v, f , llamados
control líder y control seguidor respectivamente, son funciones a determinar.

1. La tarea del control seguidor f [v] es controlar a cero la solución y es decir, obtener que y(T ) = 0.
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2. El control líder v perteneciente a un espacio de Hilbert adecuado, debeminimizar el funcional

P (v; f) :=
1

2

∫
Q

ρ2|y|2 dxdt+
1

2

∫
ω×(0,T )

ρ2
0 |v|

2 dxdt,

donde ρ y ρ0 son pesos adecuados que están relacionados con la desigualdad de Carleman. Defi-
namos el operador de calor La = ∂t −∆ + a. Veremos que en el caso lineal, F (y) := ay, controlar a
cero es equivalente a resolver el sistema de cuarto orden

La(ρ
−2L∗ap) + ρ−2

0 p1O×(0,T ) = v1ω×(0,T ) en Q,
p = 0, ρ−2L∗ap = 0 sobre Σ,

ρ−2L∗ap
∣∣
t=0

= y0, ρ
−2L∗ap

∣∣
t=T

= 0 en Ω.

que caracteriza al control seguidor f [v] mediante la función p y además la existencia y unicidad de
dicha solución está garantizada por la desigualdad de Carleman∫

Q

[
ρ−2

2 (|pt|2 + |∆p|2) + ρ−2
1 |∇p|2 + ρ−2

0 |p|2
]
≤ C0

∫
Q

(
ρ−2(|pt + ∆p|2) + 1Oρ

−2
0 |p|2

)
.

para funciones p suficientemente regulares y pesos ρi y ρ específicos. Dicha desigualdad permite
encontrar cotas uniformes ‖f [v]‖F + ‖y‖Y ≤ C (‖v‖U + ‖y0‖L2(Ω)) tanto para f [v] como para la solu-
ción y que permite utilizar el Teorema del punto fijo de Schauder para así poder obtener la existencia
del control seguidor para el caso semi-lineal. Junto con el teorema del punto fijo y sucesiones mini-
mizantes es posible verificar que controlar a cero para el caso semilineal es equivalente a minimizar

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
O×(0,T )

%2
0|f |2 dxdt enF ,

donde F es un espacio adecuado.
Asegurado esto se utiliza el teorema de Dubobistki-Milyoutin para conos convexos para obtener

formas explícitas de los controles.
Otro problema que es natural plantear es el de controlar en la frontera. Consideremos γ un

subconjunto abierto de ∂Ω. Dada la condición inicial y0 en L2(Q) definimos el problema de valor
inicial 

yt −∆y + a(x, t)y = v1ω en Q,
y = f1γ sobre Σ,
y(0) = y0 en Ω,

donde f1γ es una función en L2(Σ). El problema de control a cero induce un problema de cuarto
orden 

La(ρ
−2L∗a(p)) = v1O en Q,

ρ−2L∗a(p) = −ρ−2
0 p1γ sobre Σ,

ρ−2L∗a(p)(0) = y0; ρ−2L∗a(p)(T ) = 0 en Ω,

que mediante la desigualdad de Carleman en la frontera garantiza la existencia de la solución p
y la unicidad. La regularidad L2(Σ) en la frontera induce regularidad del tipo H−1 en la solución
y que no es suficiente para aplicar encajes compactos y aplicar un punto fijo de Schauder. El prob-
lema semilineal entonces requiere de un análisis más profundo que permita elegir la regularidad
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adecuada en la frontera y poder alcanzar el encaje compacto necesario para aplicar un teorema de
punto fijo Schauder.

En el capítulo II nos encargamos de estudiar problemas de control jerárquico para el caso semi-
lineal en la frontera como una continuación de lo hecho en el capítulo I. Sea γ un subconjunto abierto
en la topología relativa de ∂Ω. Definimos

yt −∆y + F (y) = v1ω en Q,
y = f1γ sobre Σ,
y(0) = y0 en Ω,

(0.0.1)

A partir de ahora yd ∈ L2(Q) es una función llamada función objetivo. La estrategia de Stackelberg
se define como

1. Dado un control líder v buscamos un control seguidor f [v]1γ que controle a cero la solución
de la ecuación (0.0.1) para un tiempo positivo T > 0.

2. Calcular un control líder de forma que minimice el funcional en un espacio adecuado V

P (f [v]; v) =
1

2

∫
Q

|y − yd|2 dxdt+
1

2

∫
ω×(0,T )

%2
0|v| dxdt

Este funcional obliga a la solución a no estar tan alejado de la función objetivo yd.

La teoría clásica de ecuaciones parabólicas de valores en la frontera estudiada por Lions y Ma-
genes [LM12] y en [Cos90] sugiere buscar el control seguidor en el espacio de Sobolev Hs(∂Ω) con
s un número real. Esto dificulta plantear la controlabilidad a cero como un problema de cuarto
orden debido a la pérdida de coercividad del funcional

∫
γ×(0,T )

%2
0|f | dΣ cuando f1γ está restringido

al espacio Hs(∂Ω) a diferencia de lo hecho para el control seguidor en el capítulo I.
Para evitar esta dificultad proponemos una forma equivalente a controlar a cero que consiste en

introducir directamente el sistema de cuarto orden
La(%

−2L∗a(p)) = v1O en Q,
%−2L∗a(p) = −%−2

0 p1γ sobre Σ,
%−2L∗a(p)(0) = y0 en Ω,
%−2L∗a(p)(T ) = 0 en Ω,

que tiene una única solución p gracias a la desigualdad de Carleman en la frontera que es calculada
en el capítulo I. Usando ideas parecidas a las desarrolladas en el capítulo I es posible darnos cuenta
que el problema del control seguidor f [v], de controlar a cero cuando F (y) es globalmente Lipschitz,
es equivalente a minimizar el funcional

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
γ×(0,T )

%2
0|f |2 dΣ

en un espacio F y permite caracterizar el control f .

Existe otro camino (ver Apéndice 2.6 Capítulo II, p.47) para acercarnos a la existencia del control
seguidor y está basada en los resultados de [FC97]. El autor resuelve el problema de control a cero
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para el caso superlineal mediante la extensión del dominio Ω× (0, T ) en una porción de la frontera
γ y restringiendo la solución extendida con funciones de corte y operadores de traza es posible
encontrar el control f [v]. De forma natural, la extensión da lugar a una solución en L2(0, T ;H2(Ω))
por lo que es posible obtener una cota de la forma

‖y‖L2(0,T ;H2(Ω)) + ‖yt‖L2(Q) ≤ C
(
1 + ‖a‖L2(Q)

)
‖v1ω‖L2(Q).

Esta forma de verificar la existencia del control seguidor f [v] no permite calcular su forma explícita
pero se expone pues el autor los considera interesante.

El segundo problema a tratar en este capítulo es cuando ambos controles actúan en la ecuación
desde la frontera. Dado ω un subconjunto de la frontera de Ω definimos el problema

yt −∆y + F (y) = 0 en Q,
y = f1γ + v1ω sobre Σ,
y(0) = y0 en Ω,

En este problema pedimos que el control líder minimice el funcional

P (v, f) =
α

2

∫
Qd

|y − yd|2 +
1

2

∫ T

0

‖%0v‖2
H1/2(ω) dt

Los pasos para calcular el control seguidor son similares a los seguidos en la primer parte de este
capítulo. La dificultad en este caso es calcular explícitamente el mínimo del funcional P . Para esto,
nos basamos en la descomposición espectral del líder v en H1/2(Γ) planteada en [MP49] y [LM12]
para poder encontrar la forma de v en series de potencias de los valores propios λi del laplaciano.

Sin olvidar que parte de la motivación de la teoría de control viene de aplicaciones podemos
preguntarnos que interpretación se puede dar al término

∫ T
0
‖%0v‖2

H1/2(ω)
dt en términos físicos.

En el capítulo 3 se resuelve el problema de control jerárquico para la ecuación de ondas con
control seguidor en una porción de la frontera

ytt −∆y + F (y) = v1ω en Q,
y = f1γ sobre Σ,
y(0) = y0, yt(0) = y1 en Ω.

En [AFCdS18] los autores resuelven un problema similar donde el control líder controla por
trayectorias y el control seguidor minimiza un funcional cuando la semi-linealidad es globalmente
Lipschitz. Es bien sabido por el trabajo de [BLR92] que la condición geométrica debe de satisfacerse
para tener control exacto. Para x0 en Rn se construye el conjunto Γ+ := {x ∈ Γ : (x − x0) ≥ 0}. Si
para algún x0, Γ+ ⊂ γ entonces es posible establecer para T > supx∈Ω |x − x0| la desigualdad de
Carleman en la frontera

s

∫
Q

e2sϕ
(
|zt|2 + |∇z|2

)
dxdt+ s3

∫
Q

e2sϕ|z|2 dxdt

≤ C

∫
Q

e2sϕ|ztt −∆z|2 dxdt+ Cs

∫
Σ

e2sϕ|∂ηz|2 dΣ.

dondeϕ es una función adecuada. Podemos probar que la desigualdaddeCarleman anterior induce
una solución a un problema de cuarto orden que es equivalente a la existencia de control exacto, es
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decir, y(T ) = ȳ0, yt(T ) = ȳ1 para cualquier par de objetivos (ȳ0, ȳ1) enH1
0 (Ω)×L2(Ω). Las condiciones

iniciales (y0, y1) enH1
0 (Ω)×L2(Ω) inducen en la solución y la regularidad suficiente para tener encajes

compactos en el espacio L2(Q) y poder aplicar el Teorema del punto fijo de Schauder para probar
la existencia de un control exacto para el problema semilineal.

Se puede plantear una variante del problema anterior en el caso lineal cuando tanto el control
seguidor como el líder actúan en el interior de la región Ω. Planteamos el problema

ytt −∆y + ay = f1O + v1ω en Q
y = 0 sobre Σ
y(0) = y0, yt(0) = y1 en Ω

El Método de Unicidad de Hilbert es empleado para encontrar explícitamente el control seguidor
f formulando un problema de variaciones mediante el operador Λ : L2(Ω) ×H−1(Ω) −! H1

0 (Ω) ×
L2(Ω)

Λ(p0, p1) = (−ηt(0), η(0))

donde η es la solución al sistema adjunto

ẑtt −∆ẑ + aẑ = h1ω en Q
ẑ = 0 sobre Σ
ẑ(T ) = 0, ẑ(T ) = 0 en Ω

η̂tt −∆η̂ + aη̂ = p̂1ω en Q
η̂ = 0 sobre Σ
η̂(T ) = 0, η̂(T ) = 0, η̂(0) = ẑ(0), η̂t(0) = −ẑt(0) en Ω

p̂tt −∆p̂+ ap̂ = 0 in Q
p̂ = 0 on Σ
p̂(0) = p̂0, p̂(0) = p̂1 in Ω .

La existencia de las funciones p0, p1 se garantizan mediante la coercitividad del funcional Λ que
equivale a probar la desigualdad de observabilidad definida por

||p0||L2(Ω) + ||p1||H−1(Ω) ≤ Cobs

∫
O×(0,T )

|p|2dxdt

Es bien sabido que la desigualdad anterior es cierta cuando la región de control cumple las
condiciones geométricas adecuadas. La desigualdad de observabilidad es consecuencia de la de-
sigualdad de Carleman en el interior dada por

λ

∫
Q

eλφ|u|2 dxdt ≤ C

(
‖eλφPu‖H−1(Ω) + λ2

∫
ω×0,T )

e2λφ|u|2 dxdt
)

para ciertos escalares λ ≥ λ0 y para cualquier función u ∈ C(0, T ;L2(Ω)) con L0(u) ∈ H−1(Q).
donde dado η ∈ H1

0 (Q) con L0(η) ∈ L2(Q) se cumple que 〈u, L0(η)〉L2(Q) = 〈L0(u), η〉H−1(Q),H1
0 (Q)

Para satisfacer las condiciones geométricas debemos adecuar la regiónO de forma que la condición
geométrica se cumpla y más aun, podemos tomar O = Γ+,δ ∩ Ω donde Γ+,δ es la colección de todo
los elementos x de Γ+ tal que |x− x0| ≤ δ para cierta constante δ > 0. Entonces es posible encontrar
una caracterización del control f . El control líder debe de minimizar el funcional definido por
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α

2

∫
Q

|y − yd|2 dxdt+
1

2

∫
O×(0,T )

|v|2 dxdt,

y donde el control v está dado explícitamente por soluciones a un sistema adjunto.



Chapter 1

Hierarchical distributed control of the
semi-linear heat equation

1.1 Introduction
Let Ω ⊂ Rn be a bounded connected open set with regular boundary. Let T > 0 be given and let us
consider the cylinderQ := Ω× (0, T ), with lateral boundary Σ := ∂Ω× (0, T ). In the sequel, we will
denote byC a generic positive constant. Sometimes, wewill indicate the data onwhich it depends by
writingC(Ω), C(Ω, T ), etc. The usual norm and scalar product in L2(Ω) will be respectively denoted
by ‖ · ‖ and (· , ·). Along this chapter, we will refer to solutions in the weak sense of distributions.

Our main interest is, in few words, to solve some optimal control problems where, additionally,
the state is driven to rest. For simplicity, we will assume for the moment that only two controls are
applied (one leader and one follower) but, as shown below, similar considerations hold for systems
with a higher number of controls.

We will consider systems of the form{
yt −∆y + a(x, t)y = f1O + v1ω in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

(1.1.1)

and {
yt −∆y + F (y) = f1O + v1ω in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

(1.1.2)

where f and v are the controls, y is the state, a ∈ L∞(Q), F is a C1 globally Lipschitz-continuous
function with F (0) = 0 and y0 ∈ L2(Ω) is prescribed. In (1.1.1) and (1.1.2), the set ω ⊂ Ω is the
main control domain and O ⊂ Ω is the secondary control domain (both are supposed to be small);
in order to have avoid the effect of the control v on f , we will assume that O and ω are disjoint; 1O
and 1ω are the characteristic functions of O and ω, respectively; f is the follower and v is the leader.

Let us describe the considered hierarchic problem in the case of (1.1.1).
Let Od ⊂ Ω be a non-empty open set, representing an observation domain for the leader. We

will consider the secondary functional

S(v; f) :=
1

2

∫
Q

ρ2 |y|2 +
1

2

∫
O×(0,T )

ρ2
0 |f |

2 , (1.1.3)

11
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where ρ and ρ0 are appropriate weights in C∞(Q) that blow up as t! T− and the main functional

P (v; f) :=
α

2

∫
Od×(0,T )

|y − yd|2 +
µ

2

∫
ω×(0,T )

ρ2
0|v|2, (1.1.4)

where α and µ are positive constants with α + µ = 1 and yd = yd(x, t) is a given function (a desired
observation).

The following spaces of functions with domain Qwill be used:

U : = { v : ρ0v ∈ L2(ω × (0, T )) },
Y : = { y : ρy ∈ L2(Q) },
F : = { f : ρ0f ∈ L2(O × (0, T )) }.

(1.1.5)

Is important to note that the characteristic function 1A involved in (1.1.2) allows to ignore the
behaviour of the functions outside the integrability set. The natural norms in U and F will be
respectively denoted by ‖ · ‖U and ‖ · ‖F and are defined by

‖y‖Y =

∫
Q

|ρy|2; ‖v‖V =

∫
ω×(0,T )

|ρ0v|2; ‖f‖F =

∫
O×(0,T )

|ρ0f |2

Observe that because the weight function ρ blows up when t 7! T−, then in order to hold∫
Q

ρ2|y|2dxdt <∞

it is necessary that y(T ) = 0. This assertion will be the key point to define the null controlability
problem in the hierarchical control process. The control process can be described as follows:

1. We associate to each leader v ∈ U the unique solution f [v] to the following extreme problem:

Minimize S(v; f), Subject to f ∈ F . (1.1.6)

Note that, in view of the behaviour of ρ near t = T , that is the blow up to infinity, the state y
associated to v and f [v] must necessarily satisfy the null controllability property

y(· , T ) = 0 in Ω. (1.1.7)

2. Then, we look for admissible controls v̂ ∈ U satisfying

P (v̂; f [v̂]) = min
v
P (v; f [v]) (1.1.8)

Observe that, if the function v 7! P (v; f [v]) is Gateaux differentiable in the space U of admissible
leader controls, then (1.1.8) implies

d

dv
P (v; f [v])

∣∣
v=v̂

= 0.

This property will be crucial for the characterization of the optimal control v̂ and the associated f [v̂].
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Note also that, after a very simple change of variable, we can also consider a hierarchic problem
in which, instead of (1.1.7), we require y(· , T ) = y(· , T ) in Ω,where y is an uncontrolled solution
to (1.1.1). Consequently, it is also meaningful to look for optimal leaders and associated followers
that drive the solution to (1.1.1) exactly to a prescribed trajectory.

In the case of the semilinear system (1.1.2), we can consider hierarchic control problems of the
same kind. However, their formulation is more complicated and will be delayed to the following
section. Indeed, in that case, (1.1.6) possesses in general not one but probably several solutions
and (1.1.8) needs a reformulation.

Several motivations can be found for these control problems:

• If y = y(x, t) is viewed as a temperature distribution in a body, we can interpret that our
intention is to drive y to a desired y at time T by heating and cooling (acting only on the small
subdomains O and ω), trying at the same time to keep reasonable temperatures in Od during
the whole time interval (0, T ).

• The same control strategymakes sense in the context of fluidmechanics. Thus, we can replace
(1.1.1) by similar Stokes or Navier-Stokes systems and take into consideration similar hierar-
chic problems. We can interpret that we act on the system through mechanical forces applied
on O and ω and the goal is to reach y at time T keeping the velocity field not too far from yd
in Od × (0, T ).

• In the framework of mathematical finance, this can also be interesting. For instance, it is well
known that the price of an European call option is governed by a backwards in time PDE close
to (1.1.2). Now, the independent variable x must be interpreted as the stock price and t is in
fact the reverse of time (we fix a situation at t = T and we want to know what to do in order
to arrive at this situation from a well chosen state). In this regard, it is natural and can be
interesting to control the solution to the system with the composed action of several agents,
each of them corresponding to a different range of values of x. For further information on the
modeling and control of these phenomena, see for instance [WHH+95]. [Ros11]

1.2 Preliminaries
Before stating our main results, let us specify once for all the weight functions ρ and ρ0. We will see
later that their definitions are motivated by well known controllability results for (1.1.1) in suitable
spaces.

Let η0 = η0(x) be a function satisfying

η0 ∈ C2(Ω), η0 > 0 in Ω, η0 = 0 on ∂Ω, |∇η0| > 0 in Ω \ ω.

With our assumptions on Ω, such a function η0 always exists (see Lemma 1.1, p. 4 in [FI96]). Then,
let us introduce the weight functions

σ(x, t) :=
e4λ‖η0‖∞ − eλ(2‖η0‖∞+η0(x))

`(t)
, ξ(x, t) :=

eλ(2‖η0‖∞+η0(x))

`(t)
,

ρ := esσ, ρ0 := (sξ)−3/2λ−2ρ, ρ1 := (sξ)−1/2λ−1ρ, ρ2 := (sξ)1/2 ρ,

(1.2.1)
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where ` ∈ C∞([0, T ]) satisfies `(t) ≥ T/2 in [0, T/2] and `(t) = t(T − t) in [T/2, T ] and λ, s > 0
are large enough. In fact, the required values of λ and swill be fixed below in different ways in the
linear and semilinear cases.

In the case of (1.1.1), the following result holds:

Theorem 1.2.1. Let us consider the linear system (1.1.1), where a ∈ L∞(Q) and y0 ∈ L2(Ω).

1. For every v ∈ U , there exists exactly one solution f [v] to (1.1.6).

2. Let us set J(v) := P (v; f [v]). Then there exists exactly one minimizer v̂ of J in U and, consequently,
one associated follower f [v̂] such that (1.1.7) holds.

We will see below that the minimizer v̂ satisfies, together with the corresponding f [v̂], the asso-
ciated state ŷ and some additional (adjoint) variables, an appropriate optimality system.

In the semilinear case, with F being a Lipschitz-continuous function, we can consider similar
controllability questions. However, it is important to note that, now, we lose the convexity of the
functionals S and P and this introduces several nontrivial difficulties.

Thus, for each v ∈ U , we can consider the extremal problem (1.1.6), where S is again given
by (1.1.3) but, now, y is the unique solution to (1.1.2). We will denote by Φ[v] the family of solutions
to (1.1.6). In this case, we will look for a leader v̂ and an associated follower f̂ such that, instead
of (1.1.8), one has:

P (v̂; f̂) = min
v,f

P (v; f), (1.2.2)

where we minimize in the set of pairs (v, f) with v ∈ U and f ∈ Φ[v].
The following holds:

Theorem 1.2.2. Let us consider the semi-linear system (1.1.2), where F : R 7! R is C1 and globally
Lipschitz-continuous and F (0) = 0 and y0 ∈ L2(Ω).

1. For every v ∈ U , the set Φ[v] is non-empty, that is, there exists at least one solution to (1.1.6).

2. On the other hand, the extreme problem (1.2.2), where the minimum is extended to all couples (v, f)

with v ∈ U and f ∈ Φ[v], possesses at least one solution (v̂, f̂).

In this paper, we also analyse if a result like Theorem 1.2.1 holds true when the leader is con-
strained to belong to an appropriate convex set Uad ⊂ L2(ω × (0, T )). Thus, let I be a non-empty
closed interval with 0 ∈ I , let us take

Uad = { v ∈ U : v(x, t) ∈ I a.e. }

and let us suppose that the minimisation in (1.1.8) is subject to the restriction v ∈ Uad. The control
result is then the following:

Theorem 1.2.3. Let us consider the linear system (1.1.1), where a ∈ L∞(Q) and y0 ∈ L2(Ω). There ex-
ists exactly one minimizer v̂ of J in Uad and an associated follower f [v̂] such that the corresponding state
satisfies (1.1.7).
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As mentioned above, the main novelty of this paper is that the choice of the follower (resp. the
leader) is determined by a controllability (resp. an optimal control) requirement. The analysis and
results also hold, after appropriate modifications, when several main cost functionals (and several
leader controls) appear and, instead of an extremal problem, we look for related equilibria. All this
will be explained below.

This chapter is organised as follows.
In Section 1.3, we prove Theorem 1.2.1, which concerns the linear case. This result will be

strongly used in the remaining sections. We will also establish a characterization result for the
optimal leader-follower-state triplet (see Theorem 1.3.3). In Section 1.4, we prove Theorems 1.2.2
and 1.2.3; we also deduce an optimality system that must be satisfied by any solution to (1.2.2).

1.3 The linear case
In this section we prove Theorem 1.2.1. Thus, let us consider the linear system (1.1.1), let us intro-
duce the notation

Lay := yt −∆y + ay, L∗ap := −pt −∆p+ ap

where the derivates are understood i the distributional sense. Let the space P0 be given by P0 :=
{ p ∈ C2(Q) : p = 0 on Σ }.We will need the following symmetric bilinear forms on P0 associated
to the coefficients a ∈ L∞(Q):

m(a; p, p′) :=

∫
Q

ρ−2L∗apL
∗
ap
′ + 1Oρ

−2
0 p p′ dxdt.

More precisely, we have the following Carleman inequality:

Theorem 1.3.1. There exist positive constants λ0, s0 and C0, only depending on Ω, O and T , such that, if
we take λ = λ0 and s = s0 in (1.2.1), any p ∈ P0 satisfies∫

Q

[
ρ−2

2 (|pt|2 + |∆p|2) + ρ−2
1 |∇p|2 + ρ−2

0 |p|2
]
≤ C0m(0; p, p). (1.3.1)

Furthermore, λ0 and s0 can be found arbitrarily large.

Theproof of this result is given in [FI96]; see also [FCG06] formore details on the constants. In the
remainder of this section, it will be assumed that λ = λ0 and s = s0. From the unique continuation
property satisfied by the solutions to homogeneous heat equations, we know that all these bilinear
forms are in fact a scalar products (actually, it will be seen below that they are equivalent). In the
sequel, we will denote by P the completion of P0 associated tom(0; · , ·).

Theorem 1.3.2. There exist positive constants λ0, s0 and C0, only depending on Ω, O and T , such that, if
we take λ = λ0 and s = s0 in (1.2.1), any p ∈ P satisfies∫

Q

[
ρ−2

2 (|pt|2 + |∆p|2) + ρ−2
1 |∇p|2 + ρ−2

0 |p|2
]
≤ C0m(0; p, p).

Furthermore, λ0 and s0 can be found arbitrarily large.
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By Carleman inequality the functions in P , their first and second spatial weak derivatives and
their first time derivatives are locally square integrable in Ω×(0, T −δ) for all small δ > 0. Moreover
by Carleman inequality is possible to see that locally p1(0,T−δ) ∈ H1,2(Q).

Lemma 1.3.1. Let p ∈ L2(Q) with p|Σ = 0. Ifm(0; p, p) <∞ then p ∈ P .

Proof. Observe first that given a δ > 0 and the boundof %0 and % inQ then ‖p1(0,T−δ)‖P ≤ sup(t,x)∈Q |max(%1, %2)|‖p1(0,T−δ)‖H1,2(Q).
Because the hypothesis is possible to see that for any δ > 0 then p1(0,T−δ) ∈ H1,2(Q). The set of
distribution D(Q) is dense in H1,2(Q) then it exists a sequence pδ,n ∈ D(Q) such that ‖p1(0,T−δ) −
pδ,n‖H1,2(Q) ! 0 as n ! ∞. By other side ‖p − p1(0,T−δ)‖P −! 0 as δ ! 0. Take δ(n) ! 0 when
n!∞, then

‖p− pδ(n),n‖P ≤ ‖p− p1(0,T−δ(n))‖P + ‖p1(0,T−δ(n)) − pδ(n),n‖P −! 0, n!∞,

then pδ(n),n ∈ C2
0(Q) that approximate p in the norm ‖ · ‖P and then p ∈ P .

Corollary 1. There exist positive constantsK0 andK1, only depending on Ω,O, T and ‖a‖L∞(Q), such that
the following holds:

K0m(0; p, p) ≤ m(a; p, p) ≤ K1m(0; p, p) ∀p ∈ P . (1.3.2)

Proof. Let p ∈ P . To prove the right and left inequality is necessary to invoke the Young inequality
ab ≤ 1

2
(a2 + b2) for positive a, b and equation (1.3.1). Because λ is took sufficient large enough

ρ−2 ≤ ρ−2
0 and ρ−2 ≤ ρ−2

2 then

m(a, p, p) ≤
∫
Q

ρ−2 |−pt −∆p+ ap|2 dxdt+

∫
O×(0,T )

ρ−2
0 |p|2 dxdt

≤
∫
Q

ρ−2
(
|pt + ∆q|2 + |ap| |pt + ∆q|+ |ap|2

)
+

∫
O×(0,T )

ρ−2
0 |p|2 dxdt

≤ max(2, ‖a‖2
L∞(Q) + 1)

[∫
Q

ρ−2
(
|pt|+ |∆p|2 + |p|2

)
dxdt

]
+

∫
O×(0,T )

ρ−2
0 |p|2 dxdt

≤ K

[∫
Q

ρ−2
2

(
|pt|+ |∆p|2

)
+ ρ−2

0 |p|2 dxdt
]

+

∫
O×(0,T )

ρ−2
0 |p|2 dxdt

≤ K

∫
Q

[
ρ−2

2 (|pt|2 + |∆p|2) + ρ−2
1 |∇p|2 + ρ−2

0 |p|2
]

≤ C1Km(0; p, p).

To proof the left inequality proceed as above.

In the following result, we recall that, for any admissible v, the associated follower iswell defined:

Proposition 1.3.1. Let v ∈ U . Then, there exists exactly one solution f [v] ∈ F to the optimisation prob-
lem (1.1.6), where S is given by (1.1.3) and y satisfies{

yt −∆y + ay = f1O + v1ω in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω

(1.3.3)

and moreover one has
f [v] = −ρ−2

0 p
∣∣
O×(0,T )

, y = ρ−2L∗ap, (1.3.4)
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where p ∈ P is the unique solution to the linear problem

m(a; p, p′) = `(v; p′), ∀p′ ∈ P (1.3.5)

and we have used the notation

`(v; p) :=

∫
ω×(0,T )

v p′ +

∫
Ω

y0(x) p′(x, 0) dx.

Proof. Weuse here the nowadayswell known Fursilkov-Imanuvilov approach to null controllability,
see [FI96]. By definition the functional f 7! S(v; f) fulfils that S(f ; v) ≥ ‖f‖F so it is coercive.
lower semi-continuous, convex and proper in F . Consequently, there exists exactly one solution
f [v] to (1.1.6) and, in view of the results in [FI96], f [v] and the associated state must satisfy (1.3.4),
where p solves (1.3.5). Given a direction h ∈ F and ε > 0

1

ε

[
S(f̂ + εh; v)− S(f̂ ; v))

]
=

1

ε

[
1

2

∫
Q

ρ2(|ŷ + εz|2 − |ŷ|)− 1

2

∫
O×(0,T )

ρ2
0|f̂ + εh|2dΣ

]
=

1

ε

[∫
Q

ρ2(|εŷz|+ |εz|2) +

∫
O×(0,T )

ρ2
0(εŷz + |εh|2)dx dt

]
where the functions z and y solves

zt −∆z + az = h in Q
z = 0 on Σ
z(0) = 0 on Ω

and

ŷt −∆ŷ + aŷ = v1ω inQ
ŷ = 0 onΣ
ŷ(0) = y0 onΩ

Taking the limit ε! 0 the derivative of the functional is given by

lim
ε!0

1

ε

[
S(f̂ + εh; v)− S(f̂ ; v))

]
=

∫
Q

ρ2ŷz dxdt+

∫
O×(0,T )

ρ2
0f̂hdxdt = 0

Define the function p to

−pt −∆p+ ap = ρ2ŷ in Q
p = 0 on Σ
p(T ) = 0 on Ω

Replace ŷ = %−2L∗a(p) in (2.5.5) integrate by parts and use boundary conditions to get∫
Q

L∗a(p)z dxdt+

∫
O×(0,T )

ρ2
0f̂hdxdt =

∫
O×(0,T )

hpd dxdt+

∫
O×(0,T )

ρ2
0f̂h dxdt

then
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∫
O×(0,T )

(ρ2
0f̂ + p)h dxdt = 0.

Then is possible to get the characterisation

f̂ [v] = −ρ−2
0 p1O; ŷ = ρ−2L∗a(p).

Replace the above equations in (1.3.3) to get{
La(ρ

−2L∗ap) + ρ−2
0 p1O×(0,T ) = v1ω×(0,T ) in Q,

p = 0, ρ−2L∗ap = 0 on Σ, ρ−2L∗ap
∣∣
t=0

= y0, ρ
−2L∗ap

∣∣
t=T

= 0 in Ω.

The above equations makes sense in the distribution sense because y ∈ Y . Multiply this equation
by p′ ∈ P and integrate by parts to get 1.3.5 or in explicit form∫

Q

ρ−2L∗apL
∗
ap
′ + 1Oρ

−2
0 p p′ dxdt =

∫
ω×(0,T )

v p′ +

∫
Ω

y0(x) p′(x, 0) dx.

The Lax-Milgram’s Theorem can be applied to (1.3.5).Indeed, m(a; · , ·) is continuous and coer-
cive in P by Carleman inequality (1.3.1). On the other hand, in view of (1.3.1), the fact that ρi,
i = 0, 1, 2 are bounded in [0, T/2], then the functions p ∈ P satisfy that ∆p ∈ L2(Q) and∇p ∈ L2(Q).
Then

p1[0,T/2] ∈ L2(0, T/2;H2(Ω)), pt1[0,T/2] ∈ L2(0, T/2;L2(Ω))

and then by [Sim86] is true that

p1[0,T/2] ∈ C0([0, T/2];H1
0 (Ω)) (1.3.6)

Therefore, the linear mapping p 7! p(· , 0) is a well defined and continuous mapping P ↪! H1
0 (Ω);

this shows that the right hand side in (1.3.5) is a bounded linear form on P . Observe that the above
embedding can only be done in the interval [0, T/2] because the behaviour of the weights ρ0, ρ1, ρ2

and ρ near T . This ensures unique solution and it ends the proof.

The previous argument yields the estimates

|`(v; p)| ≤ C (‖v‖U + ‖y0‖)m(0; p, p)1/2 ∀p ∈ P

for some C only depending on Ω,O, T and ‖a‖L∞(Q). This leads to the following estimates of p, f [v]
and the associated state y:

m(0; p, p)1/2 + ‖f [v]‖F + ‖y‖Y ≤ C (‖v‖U + ‖y0‖). (1.3.7)

Actually, (1.3.5) can be viewed as a boundary problem for a PDE that is fourth-order in space
and second-order in time. In other words, p solves (1.3.5) if and only if p ∈ P and one has

Clearly, in order to prove the existence of a solution to (1.1.8), it is convenient to analyze the
behavior of the function v 7! P (v; f [v]) and, more precisely, its convexity and differentiability prop-
erties. This is the objective of the following result, whose proof is elementary:
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Proposition 1.3.2. The real-valued function v 7! P (v; f [v]) is well defined, C1, strictly convex and coercive
on U .

Indeed, the properties of the mapping v 7! f [v] and the functional in (1.1.4) guarantee that there
exists exactly one control v ∈ U satisfying (1.1.8).

To end this section, let us establish a characterisation result:

Theorem 1.3.3. The unique solution v̂ to (1.1.8) satisfies, together with the associated ŷ, p̂, φ̂ and ψ̂, the
following optimally system: {

ŷt −∆ŷ + a(x, t)ŷ = f [v̂]1O + v̂1ω in Q,
ŷ = 0 on Σ, ŷ(·, 0) = y0 in Ω,

(1.3.8)

f [v̂] = −ρ−2
0 p̂
∣∣
O×(0,T )

, ŷ = ρ−2L∗ap̂, p̂ ∈ P ,

m(a; p̂, p′) =

∫
ω×(0,T )

v̂ p′ +

∫
Ω

y0(x) p′(x, 0) dx, ∀p′ ∈ P ,{
−φ̂t −∆φ̂+ a(x, t)φ̂ = α(ŷ − yd)1Od in Q,
φ̂ = 0 on Σ, φ̂(·, T ) = 0 in Ω,

m(a; p′, ψ̂) = −
∫
O×(0,T )

ρ−2
0 φ̂ p′ ∀p′ ∈ P , ψ̂ ∈ P , (1.3.9)

v̂ = − 1

µ
ρ−2

0 (ψ̂ + φ̂)
∣∣
ω×(0,T )

. (1.3.10)

Proof. Let v, w ∈ U and ε > 0 be given, let us set g := 1
ε
(f [v + εw] − f [v]) and let us introduce the

solutions z, φ, q and η to the following problems:{
zt −∆z + a(x, t)z = g1O + w1ω in Q,
z = 0 on Σ, z(·, 0) = 0 in Ω,{
−φt −∆φ+ a(x, t)φ = α(y − yd)1Od in Q,
φ = 0 on Σ, φ(·, T ) = 0 in Ω, m(a; q, p′) =

∫
ω×(0,T )

w p′

∀p′ ∈ P , q ∈ P
and  m(a; p′, ψ) = −

∫
O×(0,T )

ρ−2
0 φ p′

∀p′ ∈ P , ψ ∈ P .
By proposition 1.3.2

d

dε
P (f [v + εw]; v + εw)

∣∣∣
ε=0

= α

∫
Od×(0,T )

(y − yd) z + µ

∫
ω×(0,T )

ρ2
0 v w

=

∫
O×(0,T )

L∗aφ z +

∫
ω×(0,T )

µρ2
0vw,

=

∫
O×(0,T )

φ g +

∫
ω×(0,T )

(
φ+ µρ2

0v
)
w,
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Note that g = −ρ−2
0 q
∣∣
O×(0,T )

, whence∫
O×(0,T )

φ g = −
∫
O×(0,T )

ρ−2
0 φ q = m(a; q, ψ) =

∫
ω×(0,T )

ψ w.

Consequently, the following identity holds for all v, w ∈ U :

d

dε
P (f [v + εw]; v + εw)

∣∣∣
ε=0

=

∫
ω×(0,T )

(
φ+ ψ + µρ2

0v
)
w.

In particular, with v = v̂, denoting by ŷ, φ̂ and ψ̂ the associated state and adjoint states and taking
w arbitrary in U , we see that φ̂+ ψ̂ + µρ2

0v̂ = 0 a.e. in ω × (0, T ), whence the assertion follows.

1.4 The semilinear case
This section ismainly devoted to prove Theorem 1.2.2. Wewill use arguments similar to those above
that lead to existence results for (1.1.6) and (1.2.2).

We will also find a necessary condition for optimality, similar to (1.3.8)–(1.3.10), that has to be
satisfied by any solution to the control problem.

Obviously, there exist constants K1 and K2, only depending on Ω, O, T and R, such that (1.3.2)
holds for all a ∈ L∞(Q) with ‖a‖L∞(Q) ≤ R.

1.4.1 Proof of Theorem 1.2.2
Let us first prove that any admissible leader v possesses at least one follower in F :

Proposition 1.4.1. Let v be given in U . Then, there exists at least one solution in F to the extreme prob-
lem (1.1.6), where S is given by (1.1.3) and y is the solution to (1.1.2). Furthermore, any solution f to (1.1.6)
satisfies, together with the associated state y and an additional variable p ∈ P , the semi-linear system (1.1.2),
the identities

f = −ρ−2
0 p
∣∣
O×(0,T )

and y = ρ−2L∗F ′(y)p (1.4.1)

and the estimates

m(0; p, p)1/2 ≤ C (‖v‖U + ‖y0‖) and ‖f‖F + ‖y‖Y ≤ C (‖v‖U + ‖y0‖) (1.4.2)

for some C only depending on Ω, O, T and R.

Proof. Let us first see that there exist controls f ∈ F such that S(v; f) < +∞. Indeed, let us denote
by F0 the function given by

F0(ξ) =
F (ξ)

ξ
if ξ 6= 0, F0(0) = F ′(0).

Obviously, F0(ξ) is uniformly bounded in R.
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For each z ∈ L2(Q), we will denote by Λ(z) the unique solution yz to the linear problem{
yt −∆y + F0(z)y = f1O + v1ω in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

where f is the unique solution to (1.1.6) with a = F0(z). Let us denote this control by fz.
The existence and uniqueness of fz is a consequence of the arguments in Section 1.3(see Propo-

sition 1.3.1). Furthermore, since the supz∈L2(Q) |F0(z)| < ∞ is uniformly bounded in L∞(Q) and
by 1.3.7 the controls {fz}z∈L2(Q) are uniformly bounded in F by (1.3.7). From [CBH98] Proposition
4.1.9 the solution yz ∈ L2(0, T ;H0

1 (Ω)) ∩ H1(0, T ;L2(Ω)) for each z ∈ L2(Q) and by [Sim86] Collo-
rary 9, and the estimate (1.4.2),the set {yz : z ∈ L2(Q)} is compactly embedded in L2(Q). Thus,
the non-linear mapping z 7! Λ(z) is well-defined, continuous and compact in L2(Q) and maps the
whole space into a ball. In view of Schauder’s Theorem, Λ possesses at least one fixed-point ỹ. If we
set f̃ := fỹ, then we obviously have S(v; f̃) < +∞.

Now, let {fn} be a minimising sequence for (1.1.6). Suppose that {fn} is non bounded, then
because the functional S is coercive limn!∞ S(fn, v) diverges that contradicts the fact that {fn} is a
minimising sequence. Then supn∈N ‖fn‖F < ∞ (resp. Y). Then, the sequence fn converges weakly
inF to some f and the corresponding states yn converge strongly in L2(Q) to the associated y. From
the weak lower semi-continuity of the functionals

y 7!

∫
Q

ρ2 |y|2 and f 7!

∫
O×(0,T )

ρ2
0 |f |

2 ,

then by the above assumption, deduce that f minimises (1.1.6). Hence, there exists at least one
solution to this extreme problem.

Let us prove that any solution to (1.1.6) satisfies (1.4.1) for some p ∈ P .
Thus, let f ∈ F be a solution to (1.1.6) and let us denote by y the corresponding solution to (1.1.2).

Let us introduce the solution y to the auxiliary problem{
yt −∆y = 0 in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

the linear mapping H0 : L2(Q) 7! L2(Q) with w = H0k if and only if{
wt −∆w = k in Q,
w = 0 on Σ, w(·, 0) = 0 in Ω

Observe that by definition, L0 ◦ H0 = Id and the H∗0L∗0 = Id defined in L2(Q). Define the
nonlinear mappingM : Y × F 7! L2(Q), with

M(y, f) := y −H0(v1ω×(0,T ) + f1O×(0,T ) − F (y))− y.

Then (1.1.6) can be rewritten in the form

Minimize 1

2

∫
Q

ρ2 |y|2 +
1

2

∫
O×(0,T )

ρ2
0 |f |

2 , Subject to (y, f) ∈ Y × F , M(y, f) = 0. (1.4.3)
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It is easy to check thatM is C1 in Y × F and, in particular,

M ′(y, f)(z, g) = z −H0

(
g1O×(0,T ) − F ′(y)z

)
∀(z, g) ∈ Y × F .

Take ψ ∈ L2(Q) so

〈M ′(y, f)(z, g), ψ〉 = 〈z −H0

(
g1O×(0,T ) − F ′(y)z

)
, ψ〉L2(Q)

= 〈z, ψ〉+ 〈g1O×(0,T ) − F ′(y)z,H∗0 (ψ)〉
= 〈z, ψ + F ′(y)H∗0 (ψ)〉+ 〈g,−(H∗0ψ)

∣∣
O×(0,T )

〉

and then

M ′(y, f)∗ψ = (ψ + F ′(y)H∗0ψ,−(H∗0ψ)
∣∣
O×(0,T )

) ∀ψ ∈ L2(Q)

and, since H0 and H∗0 are compact by [Sim86], the rank R(M ′(y, f)∗) is closed.
At this point, it is possible to apply the following result, usually known as Dubovitski-Milyoutin

Formalism for extreme problems in Hilbert spaces (see [Ale17]):

Theorem 1.4.1. Let H and E be two Hilbert spaces. Let us assume that I : H 7! R and S : H 7! E are
well-defined and C1 and let us consider the extreme problem

Minimize I(h), Subject to h ∈ H, S(h) = 0. (1.4.4)

Let ĥ be a solution to (1.4.4) and let us assume that R(S ′(ĥ)∗) is closed. Then, there exist λ ∈ R+ and
ζ ∈ N(S ′(ĥ))⊥, not both zero, such that

−λI ′(ĥ) + ζ = 0. (1.4.5)
An explanation of (1.4.5) is the following: since ĥ solves (1.4.4), there can be no descent direction

at ĥ admissible with respect to the constraint S(h) = 0. In other words,

{d ∈ H : (I ′(ĥ), d)H < 0} and N(S ′(ĥ)) are disjoint.

Accordingly, by duality, the algebraic sum of the associated conjugate sets contains the origin and
this is precisely (1.4.5).

In what regards (1.4.3), in view of Theorem 1.4.1, we deduce that there exist λ ∈ R+ and (w, k) ∈
N(M ′(y, f))⊥ = R(M ′(y, f)∗) (not both zero) such that

−λ(ρ2y, ρ2
0f) + (w, k) = 0.

In other words,
−λ(ρ2y, ρ2

0f) + (ψ + F ′(y)H∗0ψ,−(H∗0ψ)
∣∣
O×(0,T )

) = 0

for some ψ ∈ L2(Q).
Necessarily, one has λ 6= 0; otherwise, we would also have ψ ≡ 0 (from the unique continuation

property) and then (w, k) = (0, 0). Hence, with φ = 1
λ
ψ, we get:

−(ρ2y, ρ2
0f) + (φ+ F ′(y)H∗0φ,−(H∗0φ)

∣∣
O×(0,T )

) = 0,

that is,
f = −ρ−2

0 (H∗0φ)
∣∣
O×(0,T )

, y = ρ−2(φ+ F ′(y)H∗0φ).
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Now, we take p := H∗0φ so p|Σ = 0 and because f ∈ F and y ∈ Y we see that m(0, p, p) is bounded
and then p ∈ P and we find at once (1.4.1).

Observe that (1.1.6) and (1.4.1) together yield

L0

(
ρ−2(L∗0p+ F ′(y)p)

)
+ F (y) + ρ−2

0 p1O×(0,T ) = v1ω×(0,T ) in Q

and y(· , 0) = y0. Since F (y) = F0(y) and y = ρ−2(L∗0p+F ′(y)p) then F (y) = F0(y)(ρ−2(L∗0p+F ′(y)p)),
this can also be written in the form

LF0(y)

(
ρ−2(L∗F ′(y)p

)
+ρ−2

0 p1O×(0,T ) =v1ω×(0,T ) in Q

and (ρ−2L∗F ′(y)p)(· , 0) = y0. In other words, p satisfies∫
Q

(
ρ−2L∗F ′(y)pL

∗
F0(y)p

′+1Oρ
−2
0 p p′

)
=

∫
ω×(0,T )

v p′+

∫
Ω

y0(x)p′(x, 0) dx ∀p′∈P .

In particular, taking p′ = p, the following is obtained:∫
Q

(
ρ−2L∗F ′(y)pL

∗
F0(y)p+ 1Oρ

−2
0 |p|2

)
=

∫
ω×(0,T )

v p+

∫
Ω

y0(x)p(x, 0) dx. (1.4.6)

Let us finally check that (1.4.2) holds. Let us introduce S := supQ ρ0/ρ and R := supR |F ′(r)|.In the
sequel, it will be assumed that the weights ρ and ρ0 are given by( 1.2.1) with λ = λ0 and s = s0,
where λ0 and s0 are furnished by Theorem 1.3.2 and satisfy

s
3/2
0 >

√
2Rλ−2

0 sup
Q
ξ−3/2. (1.4.7)

From (1.4.7), we know that S < 1/(
√

2R). Consequently, R2S2/(1 − R2S2) < 1 and there exists β
satisfying

1

R

R2S2

1−R2S2
< β <

1

R
.

From (1.4.6), we see that

m(0; p, p) =

∫
Q

(
ρ−2|L∗0p|2 + 1Oρ

−2
0 |p|2

)
=

∫
ω×(0,T )

v p+

∫
Ω

y0(x)p(x, 0) dx

−
∫
Q

ρ−2
(
F ′(y)pL∗0p+ L∗0pF0(y)p+ F ′(y)F0(y)|p|2

)
≤ C‖v‖U

(∫
Q

ρ−2
0 |p|2

)1/2

+ ‖y0‖ max
[0,T/2]

‖p(· , t)‖+ 2R

∫
Q

ρ−2|L∗0p| |p|+R2

∫
Q

ρ−2|p|2

≤ C (‖v‖U+‖y0‖)m(0; p, p)1/2+βR

∫
Q

ρ−2|L∗0p|2+

(
R2+

R

β

)∫
Q

ρ−2|p|2

≤ C (‖v‖U+‖y0‖)m(0; p, p)1/2 + max
(
βR,

(
R2 +

R

β

)
S2
)
m(0; p, p).

Taking into account that βR < 1 and (R2 +R/β)S2 < 1, we deduce that

m(0; p, p)1/2 ≤ C (‖v‖U + ‖y0‖) .

This proves the first part of (1.4.2). The second estimate in (1.4.2) is an immediate consequence.
This ends the proof.
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Proposition 1.4.2. Let us set
G := { (v, f) : v ∈ U , f ∈ Φ[v] },

where, for each leader v ∈ U , Φ[v] denotes the set of the corresponding followers, i.e. the family of solutions
to (1.1.6). Then G is non-empty and weakly closed in U × F and the function (v, f) 7! P (v; f) is coercive
and sequentially weakly lower semicontinuous.

Proof. Let {(vn, fn)} be a sequence in G, let yn be the associated states and let us assume that (vn, fn)
converges weakly in U × F to some (v, f). Then, it can be assumed that the yn converge strongly
in L2(Q) to the state y corresponding to (v, f).

Let us check that f solves (1.1.6). This will prove that (v, f) ∈ G and, accordingly, G is weakly
closed. Indeed, if f were not a solution to (1.1.6), there would exist f̂ ∈ F such that∫

Q

ρ2|ŷ|2 +

∫
O×(0,T )

ρ2
0|f̂ |2 <

∫
Q

ρ2|y|2 +

∫
O×(0,T )

ρ2
0|f |2,

where ŷ is the state corresponding to (v, f̂). Consequently, for n large enough, we would also have∫
Q

ρ2|ŷ|2 +

∫
O×(0,T )

ρ2
0|f̂ |2 <

∫
Q

ρ2|yn|2 +

∫
O×(0,T )

ρ2
0|fn|2

and also ∫
Q

ρ2|ŷn|2 +

∫
O×(0,T )

ρ2
0|f̂ |2 <

∫
Q

ρ2|yn|2 +

∫
O×(0,T )

ρ2
0|fn|2,

where ŷn is the state corresponding to (vn, f̂). But this contradicts that (vn, fn) ∈ G.
That (v, f) 7! P (v; f) is sequentially weakly lower semicontinuous is obvious. Let us finally

see that it is coercive. Thus, let us assume that (vn, fn) ∈ G for all n and ‖fn‖F ! +∞. In view
of Proposition 1.4.1, the couples (vn, fn)must satisfy the second estimates in (1.4.2), whence ‖vn‖U !
+∞ and, also, P (vn; fn)! +∞.

This ends the proof.

Let us proof Theorem 1.2.2.The argument is classical.
Let {(vn, fn)} be a minimizing sequence for (1.2.2). Then, the (vn, fn) are obviously uniformly

bounded in U × F . Therefore, it can be assumed that the (vn, fn) converge weakly in this space to
some (v̂, f̂) ∈ G and the corresponding states yn converge strongly in L2(Q) to the associated ŷ.

Since (v, f) 7! P (v; f) is sequentially weakly lower semicontinuous,

P (v̂; f̂) ≤ lim inf
n!+∞

P (vn; fn) = inf
(v,f)

P (v; f).

Consequently, (v̂; f̂) solves (1.2.2) and the proof is done.

Let us end this section with a characterisation result:
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Theorem 1.4.2. Let us assume that, in (1.1.2), F : R 7! R is C2, posseses bounded derivatives of order 1

and 2 and satisfies F (0) = 0 and y0 ∈ L2(Ω). Let (v̂, f̂) be a solution to (1.2.2). Then, the couple (v̂, f̂) must
satisfy, together with the associated ŷ, p̂, φ̂ and ψ̂, the following optimality system:{

ŷt −∆ŷ + F (ŷ) = f̂1O + v̂1ω in Q,
ŷ = 0 on Σ, ŷ(·, 0) = y0 in Ω,

(1.4.8)

f̂ = −ρ−2
0 p̂
∣∣
O×(0,T )

, ŷ = ρ−2L∗F ′(ŷ)p̂, p̂ ∈ P∫
Q

(
ρ−2L∗F ′(ŷ)p̂ L

∗
F0(ŷ)p

′+ρ−2
0 1Op̂p

′) =

∫
ω×(0,T )

v̂ p′ +

∫
Ω

y0(x)p′(x, 0) dx ∀p′ ∈ P , .{
−φ̂t−∆φ̂+F ′(ŷ)φ̂=α(ŷ−yd)1Od−F ′(ŷ)ψ̂−ρ−2F ′′(ŷ)p̂L∗0ψ̂ in Q,
φ̂ = 0 on Σ, φ̂(·, T ) = 0 in Ω,

with ψ̂ ∈ P the unique solution to∫
Q

(
ρ−2L∗F ′(ŷ)p

′ L∗0ψ̂+ρ−2
0 1Op

′ψ̂
)

= −
∫
O×(0,T )

ρ−2
0 φ̂ p′ ∀p′ ∈ P , ψ̂ ∈ P , (1.4.9)

v̂ = − 1

µ
ρ−2

0 (φ̂+ ψ̂)
∣∣
ω×(0,T )

.

Proof. We will deduce (1.4.8)–(1.4.9) as a consequence of the Dubovitskii-Milyoutin formalism ap-
plied to (1.1.8).

In view of Proposition 1.4.1, we can reformulate (1.2.2) in the form

Minimize P0(y, v, f, p), Subject to (y, v, f, p) ∈ X , K(y, v, f, p) = (0, 0, 0),

where we have used the following notation

X := Y × U × F × P ,

P0(y, v, f, p) := P (v; f) =
α

2

∫
Od×(0,T )

|y − yd|2 +
µ

2

∫
ω×(0,T )

ρ2
0|v|2,

K(y, v, f, p) := (y−H0(v1ω+f1O−F (y))−y, y−ρ−2L∗F ′(y)p, f+ρ−2
0 p|O×(0,T )),

we have introduced the linear compact operator H0 : L2(Q) 7! L2(Q) with

z = H0h ⇔
{
zt −∆z = h in Q,
z = 0 on Σ, z(· , 0) = 0 in Ω

and y is the unique solution to the uncontrolled problem{
yt −∆y = 0 in Q,
y = 0 on Σ, y(· , 0) = y0 in Ω.
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In view of the properties satisfied by F , the mapping K : X 7! L2(Q) × Y × F is well defined
and C1, with

K ′(y, v, f, p)(z, w, g, q) = (z −H0(w1ω + g1O − F ′(y)z), g + ρ−2
0 q|O×(0,T ), z − ρ−2(L∗F ′(y)q + F ′′(y)zp))

for all (y, v, f, p), (z, w, g, q) ∈ X . Accordingly, the adjoint K ′(y, v, f, p)∗ is given by

K ′(y, v, f, p)∗(ζ, β, η) =
(ζ + F ′(y)H∗0ζ + β − ρ−2F ′′(y)pβ,−(H∗0ζ)|ω×(0,T ), η − (H∗0ζ)|O×(0,T ), ρ

−2
0 η1O − LF ′(y)(ρ

−2β))

for any (y, v, f, p) ∈ X and any (ζ, β, η) ∈ L2(Q)× Y × F .
Let (v̂, f̂) be a solution to (1.1.8), let ŷ the associated state and let p̂ ∈ P be such that

f̂ = −ρ−2
0 p̂
∣∣
O×(0,T )

, ŷ = ρ−2L∗F ′(ŷ)p̂.

Then, (ŷ, v̂, f̂ , p̂) solves (1.2.2).
It is not difficult to check that the ranks of K ′(y, v, f, p) and K ′(y, v, f, p)∗ are closed. Conse-

quently, we can apply Theorem 1.4.1 to (1.2.2): the cone of descent directions and the space of tan-
gent directions at (y, v, f, p) are disjoint and there exist multipliers λ ∈ R+ and (ζ, β, η) ∈ L2(Q) ×
Y × F , not both zero, such that

−λ(α(ŷ − yd)1Od , µρ2
0v̂, 0, 0) +K ′(ŷ, v̂f̂ , p̂)∗(ψ, η, ζ) = (0, 0, 0, 0).

Necessarily, λ > 0. Indeed, if this is not the case, we must have H∗0ζ = 0 in ω × (0, T ) and then
ζ ≡ 0 (as a consequence of unique continuation) and also η = 0 and β = 0. Hence, we can assume
that λ = 1 and this directly gives

α(ŷ − yd)1Od = ζ + F ′(y)H∗0ζ + β − ρ−2F ′′(y)pβ, v̂ = − 1

µ
ρ−2

0 H∗0ζ|ω×(0,T ),

η = H∗0ζ|O×(0,T ), LF ′(y)(ρ
−2β)− ρ−2

0 η1O = 0.

Let us set φ̂ := H∗0 (ζ + β) and ψ̂ := −H∗0β. Then, it is clear that H∗0ζ = φ̂ + ψ̂ and v̂, φ̂ and ψ̂
satisfy (1.4.9)–(2.6.15). This ends the proof.

Make some observations about the sketch the proof of Theorem 1.2.3 related with leaders with
constraints. In fact, it is not very different from the proof of Theorem 1.2.1. It is again a consequence
of Propositions 1.3.1 and 1.3.2. Indeed, the properties of the mapping v 7! f [v] and the functional
in (1.1.4) guarantee that J possesses exactly one minimizer in Uad. We also have the following:

Theorem 1.4.3. The unique minimizer v̂ of J in Uad and the associated p̂, ŷ, φ̂ and ψ̂ satisfy (1.3.8)–(1.3.9)
together with

ṽ = Pad

(
− 1

µ
ρ−2

0 (ψ̃ + φ̃)
∣∣
O×(0,T )

)
, (1.4.10)

where Pad : U 7! Uad is the usual orthogonal projector.
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Again, the proof is similar to the proof of Theorem 1.3.3. It suffices to notice that the unique
minimizer in (1.1.8) subject to the constraint v ∈ Uad must satisfy

d

dε
J(ṽ + ε(v − ṽ))

∣∣∣
ε=0
≥ 0 ∀v ∈ Uad.

Taking into account the definitions of φ̂ and ψ̂, we readily see that this is equivalent to (1.4.10).
This section is devoted to discuss some extensions and variants of the problems analysed above.

We will consider only states governed by linear PDEs. Of course, similar nonlinear problems are
interesting and deserve attention but their study unfortunately requires some technicalities that are
out the scope of this work.

1.5 Multi-objective hierarchical problems and Pareto equilibria
leaders

This section is devoted to discuss some extensions and variants of the problems analysed above.
We will consider only states governed by linear PDEs. Of course, similar nonlinear problems are
interesting and deserve attention but their study unfortunately requires some technicalities that are
out the scope of this work. Let ω1, ω2 and O be three non-empty mutually disjoint open subsets of
Ω and let us consider the controlled system{

yt −∆y + a(x, t)y = f1O + v11ω1 + v21ω2 in Q,
y = 0 on Σ, y(· , 0) = y0 in Ω,

(1.5.1)

where again a ∈ L∞(Q) and y0 ∈ L2(Ω). We will use the spaces Y and F defined in (1.1.5) and also
the spaces

Ui := { v : ρ0v ∈ L2(ωi × (0, T )) }, i = 1, 2.

Let the sets Od,i ⊂ Ω be non-empty and open and let the functions yd,i ∈ L2(Od,i × (0, T ) be given.
We will consider the secondary functional

S(v1, v2; f) :=
1

2

∫
Q

ρ2|y|2 +
1

2

∫
O×(0,T )

ρ2
0|f |2

and the main functionals

Pi(v1, v2; f) :=
αi
2

∫
Od,i×(0,T )

|y − yd,i|2 +
µi
2

∫
ωi×(0,T )

ρ2
0|vi|2, (1.5.2)

where the αi, µi > 0 and αi + µi = 1 for i = 1, 2.
The Pareto hierarchical control process for (1.5.1)–(1.5.2) is the following:

1. We associate to each leader couple (v1, v2) ∈ U1×U2 the unique solution f [v1, v2] to the extremal
problem

MinimizeS(v1, v2; f), subject to f ∈ F . (1.5.3)

Observe that the corresponding state y must necessarily satisfy y(· , T ) = 0. In the sequel, we
set Gi(v1, v2) := Pi(v1, v2; f [v1, v2]) for all (v1, v2).
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2. Then, we look for a Pareto equilibrium (v1, v2) in U1 × U2 for the functionals G1 and G2. By
definition, this means that the following Pareto conditions properties are satisfied:{

(u1, u2) ∈ U1 × U2, G1(u1, u2) < G1(v1, v2) ⇒ G2(u1, u2) > G2(v1, v2),
(u1, u2) ∈ U1 × U2, G2(u1, u2) < G2(v1, v2) ⇒ G1(u1, u2) > G1(v1, v2);

see [Par64].

Arguing as in the proof of Proposition 1.3.1, it is not difficult to check that

Proposition 1.5.1. For each (v1, v2) ∈ U1 × U2, there exists exactly one solution f [v1, v2] to (1.5.3) further-
more satisfying

f [v1, v2] = −ρ−2
0 p
∣∣
O, y = ρ−2L∗a(p),

where p ∈ P is the unique solution to the linear problem

m(a; p, p′) =

∫
Q

(v11ω1 + v21ω2) p′ +

∫
Ω

y0(x) p′(x, 0) dx∀p′ ∈ P .

Proof. The functional P (v; ·) is continuous, coercive and convex so there exist a minimum f [v1, v2]
that solves (1.5.3). By the same arguments given in the proof of Proposition 1.3.1 the right hand of
the above equation is a continuous functional and the Lax -Milgram theorem can be used.

The functionalsGi : U1×U2 7! R are well defined, strictly convex andC1. Consequently, it can be
deduced from Lagrange’s Multipliers Theorem that, if (v1, v2) is an associated Pareto equilibrium,
there exist λ ∈ [0, 1] such that

λG′1(v1, v2) + (1− λ)G′2(v1, v2) = 0. (1.5.4)

Also, if (1.5.4) is satisfied for some λ ∈ [0, 1], then (v1, v2) is necessarily the unique minimizer of
λG1 + (1− λ)G2 and, consequently, (v1, v2) is a Pareto equilibrium for G1 and G2.

Since for any λ ∈ (0, 1) the functional λG1 + (1− λ)G2 is coercive, one has the following:

Theorem 1.5.1. There exists a family {(v1,λ, v2,λ)}λ∈(0,1) of Pareto equilibria for G1 and G2. For each λ,
(v1,λ, v2,λ) is the unique minimizer of λG1 + (1 − λ)G2 in U1 × U2 and, accordingly, the unique solution
to (1.5.4).

Arguing as in the proof of Theorem 1.3.3, it is possible to deduce that, for each λ, the couple
(v1,λ, v2,λ) must solve, together with the associated state yλ and some pλ, φλ and ψλ, the following
optimality system:{

yλt −∆yλ + a(x, t)yλ = f [v1,λ, v2,λ]1O + v1,λ1ω1 + v2,λ1ω2 in Q,
yλ = 0 on Σ, yλ(· , 0) = y0 in Ω,

f [v1,λ, v2,λ] = −ρ−2
0 pλ1O, yλ = ρ2L∗ap

λ, pλ ∈ P ,

m(a; pλ, p′) =

∫
Q

(v1,λ1ω1 + v2,λ1ω2) p′ +

∫
Ω

y0(x)p′(x, 0) dx ∀p′ ∈ P ,
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v1,λ = − 1

λµ1

ρ−2
0

(
(ψλ + φλ)1ω1

)
, v2,λ = − 1

(1− λ)µ2

ρ−2
0

(
(ψλ + φλ)1ω2

)
,{

−φλt −∆φλ + a(x, t)φλ = λα1(yλ − yd,1)1Od,1 + (1− λ)α2(yλ − yd,2)1Od,2 in Q,
φλ = 0 on Σ, φλ(· , T ) = 0 in Ω,

m(a; p′, ψλ) =

∫
O×(0,T )

φλp′ ∀p′ ∈ P , ψλ ∈ P .

Proof. Define constants µ1 = α1λ and µ2 = α2(1 − λ). For a direction w in the space U define
g = 1

ε
(f [v1 + εw, v2]− f [v1, v2]) and ϕ as the solution of

m(a, g, p′) =

∫
ω1×(0,T )

wp′

for any p′ in P . Also introduce the systems
zt −∆z + az = g1O + w1ω1 in Ω,
z = 0 in Σ,
z(0) = 0 in Ω,

(1.5.5)

and 
−qi,t −∆qi + aqi = (y − yd,i)1Od,i in Ω,
qi = 0 in Σ,
qi(T ) = 0 in Ω,

(1.5.6)

By Lax -Milgram there exist a function ψi in B that is solution to the equation
∫
O×(0,T )

ρ−2
0 ϕqi =

m(a, ψi, ϕ) and then ∫
O×(0,T )

qi g =

∫
O×(0,T )

ρ−2
0 ϕqi

= m(a;ψi, ϕ)

=

∫
ω1×(0,T )

ψiw

(1.5.7)

Now the first equation of Pareto condition used together with systems (1.5.5), (1.5.6) and equation
(1.5.7) can be written like

d

dε

∣∣∣∣
ε=0

(
λP1(v1 + εw, v2; f [v1 + εw, v2]) + (1− λ)P2(v1 + εw, v2; f [v1 + εw, v2])

)
=

= µ1

∫
Od,1×(0,T )

(y − yd,1)z +

∫
ω1×(0,T )

ρ2
0v1w + µ2

∫
Od,2×(0,T )

(y − yd,2)z

=

∫
O×(0,T )

µ1q1g + µ2q2g +

∫
ω1×(0,T )

(µ1q1 + µ2q2 + λρ2
0v)w

=

∫
ω1×(0,T )

(
µ1(q1 + ψ1) + µ2(q2 + ψ2) + λρ2

0v1

)
w

= 0

And the result for v1 is gotten. The steps done for the leader control v1 are exactly the same for
v2.
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1.6 The linear case for boundary controls
In this section, we will deal with a hierarchical control problem where the follower acts on a part of
the boundary.

1.6.1 Boundary follower and inner leader control
Let ω ⊂ Ω be a non-empty open set, let γ be a relatively open subset of the boundary ∂Ω and let us
consider the state system {

yt −∆y + a(x, t)y = v1ω in Q,
y = f1γ on Σ, y(· , 0) = y0 in Ω,

(1.6.1)

where (again) a ∈ L∞(Q) and y0 ∈ L2(Ω).
Let the function η̃0 be such that

η̃0 ∈ C2(Ω), η̃0 ≥ 0 ∇η̃0 6= 0 in Ω, and ∂η̃0

∂ν
≤ 0 on ∂Ω \ γ,

let σ̃ and ξ̃ be the analogue of the functions σ and ξ in (1.2.1)with η replaced by η̃0 and let us introduce
the weights % = esσ̃, %0 = (sξ̃)−3/2λ−2%, %1 = (sξ̃)−1/2λ−1%, %2 = (sξ̃)−1/2 % and %3 = (sξ̃)1/2 %.

With this in mind, let us consider the secondary and main functionals

S∗(v; f) :=
1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
2|f |2 dΓ dt, (1.6.2)

P ∗(v; f) :=
α

2

∫
Od×(0,T )

|y − yd|2 +
µ

2

∫
ω×(0,T )

%2
0|v|2

and the spaces for function in Q as

U∗ := {v : %0v ∈ L2(ω × (0, T ))},
Y∗ := {y : %y ∈ L2(Q)} and F∗ := {f : %2f ∈ L2(γ × (0, T ))}.

As before, to each leader v ∈ U∗ we associate the unique solution f [v] to the extreme problem

MinimizeS∗(v; f), subject to f ∈ F∗. (1.6.3)

Then, we consider the functional v 7! P ∗(v; f [v]) and we try to find v̂ satisfying

P ∗(v̂, f [v̂]) ≤ P ∗(v, f [v]) ∀v ∈ U∗, v̂ ∈ U∗. (1.6.4)

In this case, we must define in the space P0 the bilinear form

b(a; p, p′) =

∫
Q

%−2L∗apL
∗
ap
′ +

∫
γ×(0,T )

%−2
2

∂p

∂ν

∂p′

∂ν
dΓ dt.

In view of the unique continuation property, b(a; · , ·) is a norm in P0. Let us denote by B the
completition space with the norm b(0; ·, ·). Then, we can use Carleman inequality involving the
values on the boundary of the normal derivatives. It is given in the following result:
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Theorem 1.6.1. There exist positive constants λ1, s1 and C1, only depending on Ω, γ and T , such that, if we
take λ = λ1 and s = s1, any p ∈ B0 satisfies∫

Q

[
%−2

3 (|pt|2 + |∆p|2) + %−2
1 |∇p|2 + %−2

0 |p|2
]
≤ C1 b(0; p, p). (1.6.5)

Furthermore, λ1 and s1 can be found arbitrarily large.
Let p ∈ B. Let φ ∈ L2(0, T ;H1(Ω)) and define the normal derivate %−2

2 ∂ηp ∈ L2(Q) that holds the
equality ∫

Σ

%−2
2 ∂ηpφdΣ =

∫
Q

%−2
2 (∆pφ+∇p · (φ∇%2 +∇φ)) dxdt.

Because p = limn!∞ pn where {pn}n∈N ⊂ B0 is a Cauchy sequence the above equation makes sense. Observe
that %−2

0 > %−2
2 and the weight function %2

3%
−2
0 ∈ L2(Q) and by Carleman inequality (1.6.1) then the integral∣∣∣∣∫

Σ

%−2
2 ∂ηpφdΣ

∣∣∣∣ <∞
and then

lim
n!∞

∫
Σ

%−2
0 (∂ηpn − ∂ηp)φdΣ = 0.

Makes sense to define the bilinear form b(0; ·, ·) in the space B.

For completeness a proof of the this Carleman inequality will be given in the end of this chapter.
In the remainder of this section, we take λ = λ1 and s = s1. Then, as in Section 1.3, we can find
positive constants K0 and K1, only depending on Ω, γ, T and ‖a‖L∞(Q), such that

K0 b(0; p, p) ≤ b(a; p, p) ≤ K1 b(0; p, p) ∀p ∈ B.

Proposition 1.6.1. As before, for each v ∈ U∗, there exists exactly one solution f [v] to (1.6.1). Furthermore,
the follower f [v] and the associated state y satisfy

f [v] = %−2
2

∂p

∂ν

∣∣∣∣
γ×(0,T )

, y = %−2L∗ap,

where p ∈ B is the unique solution to the problem

b(a; p, p′) =

∫
ω×(0,T )

vp′ +

∫
Ω

y0(x)p′(x, 0) dx ∀p′ ∈ B, . (1.6.6)

Proof. Is necessary to prove that the functional

l(p′) =

∫
ω×(0,T )

vp′ +

∫
Ω

y0(x)p′(x, 0) dx

is continuous. By Holder inequality is possible to see that

|l(p′)| ≤
(∫

ω×(0,T )

%2
0|v|2

)1/2(∫
ω×(0,T )

%−2
0 |p′|2

)1/2

+ ‖y0‖L2(Ω)‖p′(0)‖L2(Ω)



32

For any p ∈ B the inclusion (1.3.6) holds then ‖p′(0)‖L2(Ω) ≤ b(0; p′, p′)1/2 and
(∫

ω×(0,T )
%−2

0 |p′|2
)1/2

≤
b(0; p′, p′)1/2 by Carleman inequality (1.6.5). Then

|l(p′)| ≤
(
‖v‖V + ‖y0‖L2(Ω)

)
b(0; p′, p′)1/2

and he operator l is continuous. By Lax-Milgram theorem the equation (1.6.6) has a unique solution
p ∈ B.

To recall, the lemma above proves that the equation

b(a, p, p′) =

∫
γ×(0,T )

%−2
2

∂ψ

∂ν

∂p′

∂ν
dxdt,

has a solution p ∈ B associated to ψ for any test function p′ in B. The complete solution to the control
problem (1.6.1) is given in the next theorem. The proof is similar to the proof of Theorem 1.3.3.

As in Section 1.3, it can be deduced that there exists a unique leader v̂ satisfying (1.6.4). We also
have that v̂ satisfies, together with the associated state ŷ and some p̂, φ̂ and ψ̂, the following:{

ŷt −∆ŷ + a(x, t)ŷ = v̂1ω in Ω
ŷ = f [v̂]1γ on Σ, ŷ(· , 0) = y0 in Ω,

f [v̂] = %−2
2

∂p̂

∂ν

∣∣∣
γ
, ŷ = %−2L∗ap̂, p̂ ∈ B

b(a; p̂, p′) =

∫
ω×(0,T )

v̂p′ +

∫
Ω

y0(x)p′(x, 0) dx ∀p′ ∈ B,

{
−φ̂t −∆φ̂+ a(x, t)φ̂ = α(ŷ − yd)1Od inΩ,

φ̂ = 0 on Σ, φ̂(· , T ) = 0 in Ω,

v̂ = −%−2
0 (φ̂+ ψ̂)

∣∣
ω×(0,T )

, ψ̂ ∈ B

b(a; p′.ψ̂) =

∫
γ×(0,T )

%−2
2

∂φ̂

∂ν

∂p′

∂ν
dΓ dt, ∀p′ ∈ B, .

Proof. For an arbitrary w in U∗ define the function g = 1
ε
(f [v+ εw]− f [v]) and ϕ in B the solution to

the problem  m(a, ϕ, p′) =

∫
ω×(0,T )

wp′

∀p′ ∈ B.
(1.6.7)

Introduce the systems 
zt −∆z + az = w1ω in Ω,
z = g in Σ,
z(0) = 0 in Ω.

(1.6.8)
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and 
−qt −∆q + aq = α(y − yd)1Od in Ω,
q = 0 in Σ,
q(T ) = 0 in Ω,

(1.6.9)

By Lax-Milgram Theorem and (1.6.7) exists ψ in B such that∫
γ×(0,T )

ρ−2
∗
∂q

∂ν

∂ϕ

∂ν
= m(a;ψ, ϕ)

=

∫
ω×(0,T )

ψw
(1.6.10)

The optimal condition in P (·; f [·]) along the direction w together with systems (1.6.8), (1.6.9) and
equation (1.6.10)

d

dε

∣∣∣∣
ε=0

P (v + εw, f [v + εw]) =

=

∫
Od×(0,T )

α(y − yd)z +

∫
ω×(0,T )

ρ2
∗vw

=

∫
ω×(0,T )

(ρ2
∗v + q)w +

∫
γ×(0,T )

ρ−2
∗
∂q

∂ν

∂ϕ

∂ν

=

∫
ω×(0,T )

(ρ2
0v + q + ψ)w

= 0.

And by the same arguments done before the proof is complete.

1.6.2 Follower and leader on the boundary.
Let γ and σ disjoint open subsets of the boundary ∂Ω and, again, let Od ⊂ Ω be a non-empty open
set where an objective function yd is defined. Let us consider the state system{

yt −∆y + a(x, t)y = 0 in Ω,
y = f1γ + v1σ in Σ, y(· , 0) = y0 in Ω,

where we find a boundary leader v and a boundary follower f , respectively acting on γ × (0, T )
and σ × (0, T ).

For the analysis of this problem, we need the weight functions defined in Section 1.6 together
with the following x-independent weight function: ζ(t) := maxx∈Ω̄ %2(t, x). This way, we can use the
secondary functional S∗ in (1.6.2), the main functional

P̃ (v; f) :=
α

2

∫
Od×(0,T )

|y − yd|2 +
µ

2

∫
σ×(0,T )

ζ2|v|2 dΓ dt,

the space
Ũ := {v : ζv ∈ L2(σ × (0, T ))}

and the spaces F∗ and Y∗ and we can prove results similar to those above.
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More precisely, to each leader v ∈ Ũ , we can associate the follower f [v] ∈ F∗, the unique solution
to the secondary extremal problem (1.6.3). One has

f [v] = %−2
2

∂p

∂ν

∣∣∣
γ
, y = %−2L∗ap,

where p ∈ B is the solution to the problem

b(a; p, p′) =

∫
σ×(0,T )

v
∂p′

∂ν
dΓ dt+

∫
Q

y0(x)p′(x, 0) dx,∀p′ ∈ B.

On the other hand, the functional v 7! P̃ (v; f [v]) possesses exactly one minimizer v̂ in Ũ . It
satisfies, together with the associated state ŷ and some p̂, φ̂ and ψ̂, the following optimality system:{

ŷt −∆ŷ + a(x, t)ŷ = v̂1ω in Ω
ŷ = f [v̂]1γ + v̂1σ on Σ, ŷ(· , 0) = y0 in Ω,

f [v̂] = %−2
2

∂p̂

∂ν

∣∣∣
γ×(0,T )

, ŷ = %−2L∗ap̂, p̂ ∈ B

{
b(a; p̂, p′) =

∫
σ×(0,T )

v̂
∂p′

∂ν
dΓ dt+

∫
Ω

y0(x)p′(x, 0) dx ∀p′ ∈ B, , (1.6.11)

{
−φ̂t −∆φ̂+ a(x, t)φ̂ = α(ŷ − yd)1Od in Ω,

φ̂ = 0 on Σ, φ̂(· , T ) = 0 in Ω,

v̂ = −β−2

(
∂φ̂

∂ν
+
∂ψ̂

∂ν

)∣∣∣∣∣
σ×(0,T )

, ψ̂ ∈ B

{
b(a; p′, ψ̂) =

∫
γ×(0,T )

%−2
2

∂φ̂

∂ν

∂p′

∂ν
dΓ dt, ∀p′ ∈ B,

Proof. Fixed v ∈ U the functional S∗(v; ·) is strictly convex, lower semicontinous so it has a unique
minimum f [v].

To apply Lax -Milgram it is necessary to prove that the left hand side of (1.6.11) denoted by l is a
continuous functional in B. By the Carleman inequality in the boundary 1.6.5 given p inP the inclu-
sion p ∈ L2([0, T/2];H2(Ω)) and pt ∈ L2([0, T/2];L2(Ω)) and then p is in the spaceC2([0, T/2];L2(Ω)).
By continuity, p(0, ·) in in L2(Ω) and therefore ‖p(0, ·)‖ ≤ C‖p‖B.

By Trace Theorem, Carleman estimate of Proposition 1.6.1 and Holder inequality∫
σ×(0,T )

v
∂p

∂ν
≤ ‖βv‖L2(σ×(0,T ))‖β−1∂νp‖L2(σ×(0,T ))

≤ ‖βv‖L2(ω×(0,T )‖p‖B.

Then the left hand side of (1.6.11) is continuous.
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Proposition 1.6.2. The unique solution v in Ũ to the control problem satisfies together with the follower
control f [v] in F∗ and the associated state y to the following optimal system

yt −∆y + ay = 0 in Ω,
y = f [v]1γ + v1σ on Σ,
y(0) = y0 in Ω,

f [v] = %−2 ∂p

∂ν

∣∣∣∣
γ

, y = %−2L∗a(p), b(a, p, p′) =

∫
σ×(0,T )

v
∂p′

∂ν
+

∫
Ω

y0(x)p′(x, 0) dx,

for all p ∈ B
−qt −∆q + aq = α(y − yd)1Od in Ω,
q = 0 on Σ,
q(T ) = 0 in Ω,

v = −
(
∂ψ

∂ν
+
∂q

∂ν

)∣∣∣∣
σ

with ψ the unique solution to  b(a, ψ, p′) =

∫
γ×(0,T )

%−2
2

∂q

∂ν

∂p′

∂ν
,

for all p′ ∈ B

The proofs of these results follow the same arguments given in Section 1.3.

Proof. Let w a function in Ũ . Define g = 1
ε
(f [v + εw] − f [v]) and take ϕ in B as the solution to the

equation  m(a, ϕ, p′) =

∫
σ×(0,T )

w
∂p′

∂ν
,

for all p′ ∈ B.
(1.6.12)

Define z and q respectively as solutions to the systems given by
zt −∆z + az = 0 in Ω,
z = g1γ + w1σ on Σ,
z(0) = 0 on Σ,

−qt −∆q + aq = α(y − yd)1Od in Ω,
q = 0 on Σ,
q(T ) = 0 in Ω,

(1.6.13)

Define ψ in B the solution to the equation m(a, ψ, p′) =

∫
γ×(0,T )

∂q

∂ν

∂p′

∂ν
,

for all p′ ∈ B.
(1.6.14)
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Derive P (·, f) in direction w, use the optimal condition, equations (1.6.13), integrate by parts
with equations (1.6.12) and (1.6.14) is possible to get

d
dε
|ε=0P (v + εw; f [v + εw]) = α

∫
Od×(0,T )

(y − yd)z +

∫
σ×(0,T )

β2vw

=

∫
Od×(0,T )

(−qt −∆q + aq)z +

∫
σ×(0,T )

β2vw

=

∫
Σ

(g1γ + w1σ)
∂q

∂ν
+ z +

∫
σ×(0,T )

β2vw

=

∫
γ×(0,T )

ρ−2
∗
∂ϕ

∂ν

∂q

∂ν
+

∫
σ×(0,T )

(
∂q

∂ν
+ β2v

)
w

=

∫
σ×(0,T )

(
∂ψ

∂ν
+
∂q

∂ν
+ β2v

)
w

= 0.

By the last equality the result is straightforward.

1.6.3 Global Carleman inequality for the heat equation.

In this subsection a proof of the Carleman inequality will be provide. Denote the normal derivate
∂ηψ := 〈∇ψ, η〉 the usual normal derivate in C2(Q̄). Consider the operator Pz = zt − ∆z. Write
w = esϕz and because the properties of the function ϕ is direct that w(0) = w(T ) = 0. Apply the
operator P to w and after some computations is possible to get

Pw = esϕg̃ inQ

and
Pw = wt −∆w + 2sλϕ∂iψ∂jw + sλ2ϕw|∇ψ|2

−λ2s2ϕ2w|∇w|2 + sλϕw∂2
i,jψ − sϕtw

Split the operator P = P1 + P2 where

P1w = −∆w − λ2s2ϕ2|∇ψ|2
P2w = wt + 2sλϕ∂iψ∂iw

Observe that from (1.6.3) and the above definitions is possible to write

P1w + P2w = Fs inQ

where
Fs = g̃esϕ + sϕtw − sλϕw∂2

i,jψ − sλ2ϕw|∇ψ|2.

Then by simple definition

‖Fs‖L2(Q) = ‖P1w‖2
L2(Q) + ‖P2‖2

L2(Q) + 2〈P1w,P2w〉L2(Q)
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By integration by parts the inner product

〈P1w,P2w〉L2(Q) =

∫
Q

(
−∆w − λ2s2ϕ2|∇ψ|2

)
(wt + 2sλϕ∂iψ∂iw) dxdt

=
∥∥−∆w − λs2ϕ|∇w|2

∥∥
L2(Q)

−
∫
Q

2sλϕ∆w|(∇w · ∇ψ) dxdt

−2λ3s3

∫
Q

wϕ|∇ψ|2(∇w · ∇w) dxdt

The next steps done are based in integration by parts, boundary conditions. Start estimating the
first integral in the right hand, second and third integral of the above equations.∥∥−∆w − λs2ϕ|∇w|2

∥∥
L2(Q)

=

∫
Q

(
−∆w − λs2ϕ|∇w|2

) (
−∆w − λs2ϕ|∇w|2

)
dxdt

=

∫
Q

wt∆w +∇w · ∇wt −
λs2

2
wtwϕ

2|∇ψ · ∇ψ| dxdt

=

∫
Q

wt∆w −
1

2
|∇w|2 +

λs2

2
w2∂t

(
ϕ2|∇ψ|2

)
dxdt

Next proceed with the second integral from (1.6.3) integrating by parts so

−2λ3s3

∫
Q

wϕ|∇ψ|2(∇w · ∇w) dxdt = −
∫
Q

λ3s3∇ψ · ∇(w2)|∇ψ|2 dxdt

=

∫
Q

3λ4s3w2ϕ3|∇ψ|2 + w2ϕ3λ3s3∂i
(
∂iψ|∇ψ|2

)
dxdt

Finally compute the last term in (1.6.3) and taking in mind that w = 0 in Σ then

∫
Q

2sλϕ∆w|(∇w · ∇ψ) dxdt =

∫
Q

∆w (2sλϕ(∇w · ∇ψ) dxdt

=

∫
Q

s∂ηw (2λϕ∇ψ · ∇w) dΣ +

∫
Q

(
∆w (2sλϕ∇ψ∇w)

+2sλ2ϕ|∇w · ∇w|2 + 2sλ2ϕ∂iw(∇ψ · ∇w)

+2sλϕ∂i(∂kψ∂jw)xl

)
dxdt

then is possible to get∫
Q

2sλϕ∆w|(∇w · ∇ψ)| dxdt =

∫
Q

∆w (2sλϕ(∇w · ∇ψ) + 2sλ2ϕ|∇ψ · ∇w|2

+2sλϕ∇ψ∇̇(|∇w|2)−
∫

Σ

2sλϕ|∂ηw|2∂ηψ dΣ

Then integrating by parts the above equality∫
Q

2sλϕ∆w|(∇w · ∇ψ)| dxdt =

∫
Q

∆w (2sλϕ(∇w · ∇ψ) + 2sλ2ϕ|∇ψ · ∇w|2

+2sλϕ∂i(∂jk∂lw)− sλ2ϕ|∇w|2|∇ψ|2
−sλϕ∇ψ · ∇(|∇w|2)− sλϕ∆ψ|∇w|2

−
∫

Σ

sλϕ|∂ηw|2∂ηψ dΣ
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On account in the equality’s above is possible to get

〈P1w,P2w〉L2(Q) =

∫
Q

(3s2λ4ϕ3w2|∇ψ|2 + ∆wP1w + 2λ2sϕ|∇ψ∇w|2

−sλ2ϕ|∇ψ|2|∇w|2 −
∫

Σ

sλϕ|∇w|2|∂ηψ dΣ +X1

where

X1 =

∫
Q

−1

2
∂t∆w +

λw2

2
w2∂t(ϕ

2|∇ψ|2) + w2ϕ3λ3s3∂i(∂j|∇ψ|2)

−sλϕ∇ψ · ∇(|∇w|2)− sλϕ∆ψ|∇w|2 + 2sλϕ∂j(∂jk)∂lw)

Is possible to estimate

|X1| ≤ C2

∫
Q

(sλϕ+ 1)|∇w|2 + ϕ3λ3s3w2 dxdt

where the constantC2 is independent ofλ. Multiply equationP1w+P2w = Fs by the termλ2sϕw|∇w|2
in the space L2(Q) and integrating by parts in space variables is possible to get∫

Q

Fssλ
2wϕ|∇ψ|2 dxdt =

∫
Q

λ2sϕw|∇ψ|2P2w − λ4s3ϕ3w2|∇w|2 + λ2sϕ2|∇ψ|2|∇w|2 dxdt

+

∫
Q

λ3sϕw|∇ψ|2∇ψ · ∇w + λ2sϕ2w∇(|∇ψ|2) · ∇w dxdt

+λ2sϕw

∫
Q

2∇(∂jψ) · ∇ψ∂jw dxdt

(1.6.15)
Thus ∫

Q

λ4s3ϕ3w2|∇ψ|2 =

∫
Q

λ2sϕ|∇w|2|∇ψ|2 +X2

and write

X2 =

∫
Q

∂iw
(
λ2sϕw∂i(|∇ψ|2) + 2∇(∂iψ) · ∇ψ

)
+λ3sϕ|∇ψ|2(∇ψ∇w)w+sλ2ϕ|∇ψ|2wL2−Fsλ2sϕa|∇ψ|2w dxdt

Recall that ψ has not critical points in Ω̄ and therefore |∇ψ(x)| > 0 for any point x. Recalling
equation (1.6.3) it is possible to get

‖Fs‖L2(Q) =

∫
Q

(
λ4

8
s3α2β2ϕ2w2 +

s

4
λ2α2β2|∇|2

)
dxdt

−1

3

∫
Σ

λϕs|∇w|2∂ηψ dΣ
1

2
‖P1w‖2

L2(Q) +
1

3
‖P2‖2

L2(Q)

(1.6.16)

Calling the definition of Fs and the functions ϕ and ϕ̃ is possible to get

‖Fs‖L2(Q) ≤ C

∫
Q

s2ϕ3w2 + ϕ|∇w|2 + g2e2sϕ̃ dxdt
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Then from (1.6.16) and (1.6.15) it is possible to get∫
Q

(
λ4

8
s3α2β2ϕ2w2 +

s

4
λ2α2β2|∇w|2

)
dxdt

−1

3

∫
Σ

λϕs|∇w|2∂ηψ dΣ
1

2
‖P1w‖2

L2(Q) +
1

3
‖P2‖2

L2(Q)

≤ Cs

∫
Q

g2e2sϕ̃ dxdt

and by equations (1.6.3) and (1.6.16) is possible to get∫
Q

(
1

sϕ

(
|wt|2 + |∆w|2

)
+ sϕ|∇w|2 + s3ϕ3w2

)
≤ C

∫
Q

e2sϕ̃|wt + ∆w + aw|2

+C

∫
Σ

λsϕs|∂ηw|2 dΣ

and the proof is done.
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Chapter 2

The semi-linear heat equation: boundary
control

2.1 Introduction

This chapter focuses on solving a hierarchic control problemwith an optimal and null controllability
objectives for the semi-linear heat equationwhen at least one of the controls acts on the boundary. In
the recent paper [CFCdTV22] the global Lipschitz semi-linear internal control problem was treated
when a hierarchical strategywas applied inverting the roles of follower and leader: that is, the leader
has an optimisation objective and the follower a null controllability objective.

The idea here is to extend the results of [CFCdTV22] when the leader and the follower act on the
boundary. That is, for a given leader we chose a follower control that has the task to steer the state to
zero. By the other hand the leader control should minimize a cost functional. In the context of the
control of time dependent PDEs, the classical papers of Lions [Lio68] the author consider the linear
heat equationwith the Stackelberg-Pareto and Stackelberg-Nash strategies, leading to the hierarchic
of controls with states that are approximate to some target states.

Heat equation is one of the fundamental equations in physics that was formulated by Joseph
Fourier in 1822. In the sense of engineer applications, modeling boundary value problems rises
naturally when a precise temperature is required in some region inside a material body where the
heat source is applied on some area of the body borders. Also, it is essential to optimize resources
in order to get this objective, for example minimise heat loss on an industrial process. For a unique
heat source it could not be possible to reach both objectives so it is reasonable to introduce two heat
sources that will be called controls. In the spirit of cooperative game theory (see [Par64]) this controls
take roles in order to get the desired results. See for example [Bad17] for optimization in thermal
process engineer.

One of the main tools to solve semi-linear problems is to apply the Schauder fixed point theorem
where compactness is essential. In the case solved here where the controls act on the boundary the
difficulty is increased since it is necessary to get the appropriate regularity for the solution of the
heat equation to apply the fixed point theorem.
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Since we are workingwith one or two controls exerted on the boundary, the semi-linear problem
carries some regularity difficulties that could be relaxed in the linear case studied in [CFCdTV22].
In some situations the regularity H−1 is enough to solve the problem but for a non linear problem
where fixed point techniques are required this does not give the necessary compact condition to
apply it. Improving the regularity in the boundary carries some technical difficulties that must be
treated more carefully.

2.2 Hierarchical control problem for the semi-linear case for the
heat equationwith inner leader control andboundary follower.

Let Ω be an open set in the n-dimensional euclidean space, with boundary Γ. Let ω ⊂ Ω an open
proper subset called leader control subset and γ ⊂ Γ open in the relative topology named sec-
ondary control region. Denote by Q = Ω× (0, T ) and Σ := Γ× (0, T ). Given an initial datum y0 in
L2(Ω) and a real function F define the initial value problem for the heat equation

yt −∆y + F (y) = v1ω in Q
y = f1γ in Σ
y(0) = y0 in Ω

(2.2.1)

Now for suitable functions %, %0, %1 with domain in Q consider the weighted spaces

Y = {y : %y ∈ L2(Q)} F = {f : %0f ∈ L2(γ × (0, T ))}
V = {v : %0v ∈ L2(ω × (0, T ))}

where the domain of f, v, y isQ. Endow each space with the natural weight L2(Q) norm and define
the Banach spaces (Y , ‖ · ‖Y), (F , ‖ · ‖F) and (V , ‖ · ‖V) given by

‖v‖V =

∫
ω×(0,T )

%2
0|v|2dxdt; ‖f‖F =

∫
γ×(0,T )

%2
0|f |2.

and
‖y‖Y =

∫
Q

%2|y|2 dxdt

We consider the following hierarchical control process:
1. Given a leader control v in V find a follower control f [v] inF that solves the null controllability

problem, i.e for a given positive time T the solution y to (2.2.1) verifies y(T ) = 0.
2. Then, we look for an admissible leader control v ∈ V that minimises the functional given by

P (f ; v) =
α

2

∫
Qd

|y − yd|2 dxdt+
1

2

∫
ω×(0,T )

%2
0|v|2 dxdt (2.2.2)

where Qd := Ωd × (0, T ), the set Ωd ⊂ Ω is an open set on Rn and the function yd ∈ L2(Qd).
There are several motivations for control problems are enumerate here.

1. The solution to the heat equation y(t, x) can be seen as the temperature of a body at time t and
position x ∈ Ω. A heating process consist to apply energy f in the boundary portion γ× (0, T )
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trying to keep a reasonable temperature on the regionQd (for example, the core should be cool
enough during he process) during the heating process duration (0, T ). The leader source of
energy v command the follower source of energy f but v should minimise costs i.e it should
minimise the functional P .

2. The same idea as above can be recited but now when both of the energy sources lies in the
boundary of the body.

3. Navier- Stokes equations are the equations that models the dynamics of a fluid in a medium.
The heat equation (2.2.1) can be replaced by Navier- Stokes equation and apply the same hier-
archical strategy to solve optimisation and controlability problem.

2.3 Basic results on regularity.
In this section we recall some basic results about regularity and compactness of Sobolev spaces.

Given X a Banach space, s ∈ R, 1 ≤ p <∞we define

W s,p(0, T ;X) =

{
f ∈ Lp(0, T ;X) and

∫ T

0

∫ T

0

‖f(t)− f(τ)‖X
|t− τ |sp+1

dtdτ <∞
}

We recall the following compactness result due to Simon [Sim86], (Corollary 9, p. 90).

Proposition 2.3.1. . Let X,B, Y Banach spaces and consider an inclusion chain X ↪! B ⊂ Y . 1 For
s0, s1 reals, θ ∈ (0, 1) and 1 ≤ r0, r1 ≤ ∞, define the numbers sθ = (1 − θ)s0 + θs1, 1

rθ
= θ

r1
+ 1−θ

r0
and

s∗ = sθ − 1
rθ
. Let F be a bounded set in W s0,r0(0, T ;X) ∩W s1,r1(0, T ;Y ). If s∗ ≤ 0 then F is relatively

compact in Lp(0, T ;B) for p < − 1
s∗
.

Given a measurable set A ⊂ Rn, define the Sobolev space for r, s real numbers

Hr,s((0, T )× A) = L2(0, T ;Hr(A)) ∩Hs(0, T ;L2(A)).

In order to study the hierarchical problem associated to (2.2.1), we recall the following result that
can be found in [LM72] p. 80 for the linear heat equation with potential a ∈ L∞(Q).

Proposition 2.3.2. Let a ∈ L∞(Q), h ∈ L2(Q), g ∈ L2(Σ) and y0 ∈ L2(Ω) then it exists a unique solution
y ∈ H1/2,1/4(Q) that solves the initial value problem

yy −∆y + ay = h in Q
y = g on Σ
y(0) = y0 in Ω

Moreover, the following bound holds

‖y‖H1/2,1/4(Q) ≤ C(‖y0‖L2(Ω) + ‖h‖L2(Q) + ‖g‖L2(Σ)). (2.3.1)
1Possible case Y = B.
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2.4 Carleman Inequalities
To solve the first step in the hierarchical control process a fundamental tool called Carleman inequal-
ities will be studied. This inequalities involves weight functions with domain in Q that diverges
quadratic when t! T . A basic proposition is introduced next to construct this weigh functions.

Proposition 2.4.1. Exist a function η0

η̃0 ∈ C2(Ω), η̃0 ≥ 0 ∇η̃0 6= 0 in Ω, and ∂η̃0

∂ν
≤ 0 on ∂Ω \ γ.

This classical result that can be found in [Ema95]. Recall the weights used in Chapter I. For this
problem the weights will be modified to enhance to the boundary value problem in Γ. With our
assumptions on Ω, such a function η0 always exists (see Lemma 1.1, p. 4 in [FI96]). Then, let us
introduce the weight functions

σ̃(x, t) :=
e4λ‖η̃0‖∞ − eλ(2‖η̃0‖∞+η̃0(x))

`(t)
, ξ̃(x, t) :=

eλ(2‖η̃0‖∞+η̃0(x))

`(t)
,

where ` ∈ C2([0, T ]) satisfies `(t) ≥ T 2/4 in [0, T/2] and `(t) = t(T − t) in [T/2, T ] and λ, s > 0
are large enough. This constants λ and s will be fixed in a convenient way. Let us introduce the
weights % = esσ̃, %0 = (sξ̃)−3/2λ−2%, %1 = (sξ̃)−1/2λ−1%, %2 = (sξ̃)1/2 % . With this definitions state the
next theorem.

Define the operator La = ∂t−∆ +a for functions inQ and the adjoint operator L∗q = −∂t−∆ +a
in the sense of distributional derivates. Let P0 = {q ∈ C2(Q̄) : q|Σ = 0} and give a bilinear form
B : P0 × P0 −! R defined by

B(a, p, q) =

∫
Q

%−2L∗a(p)L
∗
a(q) dxdt+

∫
γ×(0,T )

%−2
0 ∂ηp∂ηq dσdt (2.4.1)

where ∂η is the normal derivate operator.

Theorem 2.4.1. There exist positive constants λ0, s0 and C1, only depending on Ω, γ and T , such that, if we
take λ = λ0 and s ≥ s0, any p ∈ P0 satisfies∫∫

Q

[
%−2

2 (|pt|2 + |∆p|2) + %−2
1 |∇p|2 + %−2

0 |p|2
]
≤ C1B(0; p, p).

Furthermore, λ1 and s1 can be found arbitrarily large.

Define the semi-norm ‖q‖P0 := B(0; q, q). ByCarleman inequality fromTheorem (2.4.1) if ‖p‖P0 =
0 then %−2

0 |p| = 0 a.e. so ‖ · ‖P0 is a norm in P0. Define P the completion of P0 with the norm
‖ · ‖P = B(0, q, q) with q ∈ P . In the remainder of this section, we take λ = λ1 and s = s1.

Remark 1. It is possible to extend B(0; ·, ·) to P with the formula (2.4.1). Take a function p ∈ P . The
function %−1

2 ∆p is square integrable by Carleman inequality and by Fubini theorem the slice %−1
0 ∆p(t) is

integrable i.e ∫
Ω

%−2
0 |∆p(t)|2dx <∞, ∀t ∈ (0, T )
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Then p(t) ∈ H2(Ω) and by Theorem 8.3 from [LM12] the normal derivate exists and then ∂ηp(t) ∈ H1/2(∂Ω)
for all t ∈ (0, T ). Again by Carleman inequality p is locally integrable so given δ > 0 then p1(0,T−δ) ∈
L2(0, T ;H2(Ω)) and then by Theorem 8.3 in [LM12] the normal derivate exists and ∂ηp1(0,T−δ) ∈ L2(0, T,H1/2(∂Ω)).
The sequence %−2

0 ∂ηp1(0,T−δ) ! %−2
0 ∂ηp a.e and by Fatou lemma∫

Q

%−2
0 |∂ηp|2 dxdt ≤ lim inf

δ!T

∫
Ω×(0,T−δ)

%−2
0 |∂ηp|2 dxdt

and by the monotone convergence theorem the function %−2
0 ∂ηp ∈ F .

Lemma 2.4.1. We can find positive constants K0 and K1, only depending on Ω, γ, T and ‖a‖L∞(Q), such
that

K0B(0; p, p) ≤ B(a; p, p) ≤ K1B(0; p, p) ∀p ∈ P . (2.4.2)

The next section solves the first step in the linear control process for a potential in L∞(Q) is
solved.

2.5 The null controllability problem in the linear case.
In this section we describe the method to solve the null controllability problem associated to the
follower objective in the linear case i.e the first step in the hierarchical control process described in
section 2.2. Solving this linear problem will allow to establish the null controllability problem for
the semi-linear case as a optimisation problem viaminimising sequences and a fixed point theorem.

Proposition 2.5.1. Fixed a positive time T , consider a potential a ∈ L∞(Q). For a leader control v ∈ V and
y0 ∈ L2(Ω) it exists a follower control f [v] ∈ F such that y(T ) = 0 where y is a solution to

yt −∆y + ay = v1ω in Q
y = f [v]1γ in Σ
y(0) = y0 in Ω

(2.5.1)

Moreover, it exists a function p ∈ P such that the follower control and the solution to (2.5.1) are characterised
in the form

f [v] = %−2
0 ∂ηp1γ, y = %−2L∗a(p) (2.5.2)

where p solves the integral equation∫
Q

%−2L∗a(p)L
∗
a(q) dxdt+

∫
γ×(0,T )

%−2
0 ∂ηp ∂ηq dΣ =

∫
ω×(0,T )

vq + 〈y0, q(0)〉L2(Ω) (2.5.3)

for any function q ∈ P .

Proof. For the long of the proof choose a fixed leader control v ∈ V . The proof is divided is several
steps.

1. The key point in the construction of the follower control is the behaviour of theweigh functions
from %2 and %2

0 when t! T− and formulate a new optimisation problem
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inf
f∈F

S(f ; v), (2.5.4)

where
S(f ; v) =

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
γ×(0,T )

%2
0|f |2 dΣ.

Observe that S(·; v) finite implies that y(T ) = 0. Observe that the functional S(·, v) : F −! R
is a coercive, convex and lower semicontinous functional. Then it has a unique minimiser f̂ ∈ F .
Given a direction h ∈ F and ε > 0

1

ε

[
S(f̂ + εh; v)− S(f̂ ; v))

]
=

1

ε

[
1

2

∫
Q

%2(|ŷ + εz|2 − |ŷ|2)− 1

2

∫
γ×(0,T )

%2
0(|f̂ + εh|2 − |f̂ |)dΣ

]
=

1

ε

[
1

2

∫
Q

%2(2|εŷz|+ |εz|2) +

∫
γ×(0,T )

%2
0(εŷz + |εh|2)dΣ

]
where the functions z and y solves

zt −∆z + az = 0 in Q
z = h1γ on Σ
z(0) = 0 on Ω

and

ŷt −∆ŷ + aŷ = v1ω in Q

ŷ = f̂1γ on Σ
ŷ(0) = y0 in Ω

Taking the limit ε! 0 the derivative of the functional is given by

lim
ε!0

1

ε

[
S(f̂ + εh; v)− S(f̂ ; v))

]
=

∫
Q

%2ŷz dxdt+

∫
γ×(0,T )

%2
0f̂hdΣ = 0 (2.5.5)

Define the function p the solution to

−pt −∆p+ ap = %2ŷ in Q
p = 0 on Σ
p(T ) = 0 on Ω

Replace ŷ = %−2L∗a(p) in (2.5.5) integrate by parts and use the boundary conditions to get

∫
Q

L∗a(p)z dxdt+

∫
γ×(0,T )

%2
0f̂hdΣ =

∫
Q

L∗a(z)p dxdt+

∫
Σ

z∂ηpdΣ +

∫
γ×(0,T )

%2
0f̂hdΣ

= −
∫
γ×(0,T )

h∂ηpdΣ +

∫
γ×(0,T )

%2
0f̂hdΣ

then
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∫
γ×(0,T )

(%2
0f̂ − ∂ηp)hdΣ = 0.

Then we get the characterisation

f̂ [v] = %−2
0 ∂ηp1γ; ŷ = %−2L∗a(p).

2. The second step is to prove that equation (2.5.3) has a solution p in P . Assuming for a while
this as true, then is possible to define the follower control and the solution via (2.5.2) and replacing
this in (2.5.1). One gets the fourth order system

La(%
−2L∗a(p)) = v1ω in Q

%−2L∗a(p) = %−2
0 ∂ηp1γ in Σ

(%−2L∗a(p))(0) = y0 in Ω.
(2.5.6)

Let q ∈ P , multiply equation (2.5.6), integrate by parts and remark that the solution must satisfy
y(T ) = 0 get the equation∫

Q

%−2L∗a(p)L
∗
a(q) dxdt+

∫
γ×(0,T )

%−2
0 ∂ηp ∂ηq dΣ =

∫
ω×(0,T )

vq + 〈y0, q(0)〉L2(Ω), (2.5.7)

Then is possible to conclude that solving the above identity for all q ∈ P is equivalent to solve the
fourth order system (2.5.6) that is equivalent to steer y(T ) = 0 the solution of (2.5.1). Now proceed
to prove that (2.5.7) has a solution in P . By Carleman inequality from Theorem 2.4.1 is possible to
see that the left hand side of equation (2.5.7) is coercive. Remains to see that the linear function
l : P −! R of the right hand side of (2.5.7) is continuous. Estimate |l(q)| for q ∈ P to get

|l(q)| ≤
(∫

ω×(0,T )

%2
0|v|2

)1/2(∫
ω×(0,T )

%−2
0 |q|2

)1/2

+ ‖y0‖L2(Ω)‖q(0)‖L2(Ω) (2.5.8)

By Carleman inequality from Theorem 2.4.1 holds that
(∫

ω×(0,T )
%−2

0 |p|2
)1/2

≤ B(0, p, p)1/2. Re-
mains to bound ‖p(0)‖L2(Ω) with some expression ofB(0, p, p)1/2 from the above equation. Again by
Carleman inequality is possible to see that p1[0,T/2] ∈ L2(0, T ;H2(Ω))and the derivative pt1[0,T/2] ∈
L2(0, T/2;L2(Ω)) so by interpolation of the spaces is possible to see that p1[0,T/2] ∈ C0(0, T/2;H1(Ω)).
With this deduction can take a continuous embedding P ! H1(Ω), p 7! p(0) and then make the es-
timate ‖p(0)‖L2(Ω) ≤ CB(0, p, p)1/2. Then (2.5.8) becomes

|l(q)| ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
‖q‖P . (2.5.9)

Then by Lax-Milgram theorem equation (2.5.7) has the desired solution p ∈ P . With this conclu-
sions is possible to see that exists a follower control f [v] and that is characterised by equation (2.5.2)
and y(T ) = 0.

3. Integral equation (2.5.7) hold for any q ∈ P so is possible to take q := p and get∫
Q

%−2|L∗a(p)|2 dxdt+

∫
γ×(0,T )

%−2
0 |∂ηp|2 dΣ =

∫
ω×(0,T )

vp+ 〈y0, p(0)〉L2(Ω)
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By inequality (2.5.9) and (2.4.2) the above integral equation is possible to get

B(0, p, p) ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, p, p)1/2.

Then using again inequality (2.4.2) exists a constant C > 0 such that

B(a, p, p)1/2 ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
By Young inequality given positive numbers a, b holds that a+b ≤

√
2 (a2 + b2)

1/2 taking a = ‖f [v]‖F
and b = ‖y‖Y then

‖f [v]‖F + ‖y‖Y ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
. (2.5.10)

.

2.6 Solution to the hierarchical control problem in the semi-linear
case.

The linear case was solved in the last section with a potential a ∈ L∞(Q) and is the fundamental
result to solve the semi-linear case. Let F be a C1(R) Lipschitz function. Define

F0(s) =

{
F (s)

s
s 6= 0

F ′(0) = 0 s = 0

Given a function z ∈ L2(Q) is possible to see that F0(z) ∈ L∞(Q) define the the linearization of
(2.2.1) is given by 

yt −∆y + F0(z)y = v1ω in Q,
y = f1γ on Σ,
y(0) = y0 in Ω.

(2.6.1)

The null controllability problem for the follower control describes in section 2.1 will be done for
the linearized system (2.6.1) in the next proposition and is done is four steps. The first main part
is to proof the existence of the solution of (2.2.1) via a fixed point theorem. The second main part
of the proof is t verify that the follower control that satisfies the null controllability problem in fact
solves the optimisation problem

inf
f∈F

(
S(f ; v) =

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
γ×(0,T )

%2
0|f |2 dΣ

)
.

The lastmain part of the proof rises in compute explicit solutions and compute suitable estimates
for it.

Theorem 2.6.1. Let a leader control v ∈ V . and a positive time T > 0. Then there exist a follower control
f [v] ∈ F that steers y(T ) = 0. Where y ∈ Y solves the initial value problem

yt −∆y + F (y) = v1ω in Q,
y = f [v]1γ on Σ,
y(0) = y0 in Ω.
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Moreover is possible to get the explicit form

f [v] = %−2
0 ∂ηp|γ; y = %−2L∗F ′(y)(p), (2.6.2)

where p is a solution to∫
Q

%−2L∗F ′(y)(p)L
∗
F0(y)(q) +

∫
γ×(0,T )

%−2
0 ∂ηp∂ηq dΣ =

∫
ω×(0,T )

vq +

∫
Ω

y0q(0) dx

for any q ∈ P . Moreover it is possible to get the estimation

‖f [v]‖F + ‖y‖Y ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
.

Proof. Fix a follower control v ∈ V . Let z in L2(Q) so F0(z) ∈ L∞(Q) so by Proposition 2.5.1 exists
f [v]z such that yz(T ) = 0 where yz solves the equation

yz,t −∆yz + F0(z)yz = v1ω in Q
y = fz[v]1γ on Σ
yz(0) = y0, yz(T ) = 0 in Ω.

(2.6.3)

By the estimate (2.5.10) from Proposition 2.5.1 is possible to see that fz[v] is uniformly bounded
‖fz‖F ≤ C

(
‖v1ω‖V + ‖y0‖L2(Ω)

)
independent of z. The solution yz ∈ H1/2,1/4(Q) to (2.6.1) (see

[LM12] section 5.1 ) can be estimated by

‖yz‖H1/2,1/4 ≤ C
(
‖y0‖L2(Ω) + ‖v‖L2(Q) + ‖f1γ‖L2(Q)

)
≤ C

(
‖y0‖L2(Ω) + ‖v‖V + ‖f1γ‖F

) (2.6.4)

Then the set of solutions {yz}z∈L2(Q) is bounded in H1/2,1/4(Q). Now invoke Proposition 2.3.1
The embedding H1/2(Ω) ↪! L2(Ω) is compact [LM72]. Take θ = 1/2 s0 = 1/2, s1 = 1/4 and note

that s∗ = −1/4 then is possible to take p = 2 < 4. Then embeddingH1/2,1/4(Q)! L2(Q) is compact.
Define the map Λ : L2(Q) −! L2(Q), z 7! yz, where yz solves (2.6.3). By inequality (2.6.4) the image
Λ(L2(Q)) is bounded in H1/2,1/4(Q) so by the previous conclusions Λ(L2(Q)) ⊂ L2(Q) is a compact
set of L2(Q). Then exists a fixed point z = ỹ that solves

ỹt −∆ỹ + F0(ỹ)ỹ = v1ω in Q
ỹ = fỹ[v]1γ on Σ
ỹ(0) = y0, ỹ(T ) = 0 in Ω.

But F0(ỹ)ỹ = F (ỹ) and denote f̃ [v] := fỹ[v] the follower control associated to the z := ỹ. Then ỹ
solves 

ỹt −∆ỹ + F (ỹ) = v1ω in Q

ỹ = f̃ [v]1γ on Σ
ỹ(0) = y0, ỹ(T ) = 0 in Ω.

The control f̃ [v] ∈ F and ỹ ∈ Y then

1

2

∫
Q

%2|ỹ|2 dxdt+
1

2

∫
γ×(0,T )

%2
0

∣∣∣f̃ [v]
∣∣∣2 dΣ <∞.



50

2. Now itwill be shown that the functionalS has an infimum. Let fn be aminimising sequence i.e
limn!∞ S(fn, v) = inf S(f). By definition of minimising sequence fn is bounded and then converges
weakly to a function f [ET99]. And yn converges strongly to y in L2(Q) from [LM72]. Then because
S(·, v) is lower semi-continuous then f is a minimum of S(·, v).

Now, let {fn} be a minimising sequence for (2.5.4). By estimates given by Proposition 2.5.1 it is
clear that the fn (resp. yn) are uniformly bounded in F (resp. Y). Consequently, it can be assumed
that there exists a sub-sequence {fnk}that converge weakly in F to some f and the corresponding
states yn converge strongly in L2(Q) to the associated y. From the weak lower semi-continuity of the
functionals

y 7!

∫
Q

%2 |y|2 and f 7!

∫
γ×(0,T )

%2
0 |f |

2 ,

we easily deduce that f solves the optimisation problem

inf
f∈F

(
S(f ; v) =

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
γ×(0,T )

%2
0|f |2 dΣ

)
.

where y solves

yt −∆y + F (y) = v1ω in Q
y = f [v]1γ in Σ
y(0) = y0, y(T ) = 0 in Ω.

3. This step consist in verify that the solution to the semi-linear problem are characterised by
(2.6.2) First define ȳ as the solution to the system

ȳt −∆ȳ = 0 in Q
ȳ = 0 on Σ
ȳ(0) = y0 in Ω

Define the map H0 : L2(Q) −! L2(Q) as H0(q) = z where z is the solution to the problem

zt −∆z = q in Q
z = 0 on Σ
z(0) = 0 in Ω

(2.6.5)

Also observe that H∗0 : L2(Q) −! L2(Q) is given by H∗0 (ψ) = ϕwhere ϕ solves the equation

−ϕt −∆ϕ = ψ in Q
ϕ = 0 on Q
ϕ(T ) = 0 in Ω

(2.6.6)

The solution H0(q) ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;L2(Ω)) for each q in L2(Q) then the map H is a

compact operator in L2(Ω). By results of [LM12] (pg33 Theorem 6.1) is possible define the boundary
operator G : L2(Q)! H1/2,1/4(Q) ⊂ L2(Q) given by G(β) = η where η is a solution to the boundary
problem .

ηt −∆η = 0 in Q
η = β in Σ
η(0) = 0 in Ω

(2.6.7)
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Again by Proposition (2.3.1) the operator G is compact in L2(Q). Define the mapM : Y ×F −!
L2(Q) given by

M(y, f) = y +H0(v1ω − F (y))−G(f1γ)− ȳ
It is straightforward to verify that if the condition M(y, f) = 0 holds then the pair (y, f) in Y × F
solves the equation

yt −∆y + F (y) = v1ω in Q
y = f1γ on Σ
y(0) = y0 in Ω

(2.6.8)

As mentioned above the null controllability problem can be written as an optimisation using the
operatorM and the equation (2.6.8) in the form

inf
1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
0|f |2 dΣ

M(y, f) = 0
(y, f) ∈ Y × F

(2.6.9)

Next is necessary to apply the Theory ofDubovistki-Milyoutin to the optimal problem (2.6.9). Using
the theory developed in [Lio68]and in order to apply theDubovistki-Milyoutin theorem is necessary
to describe the descendent and tangent cones associated to the problem 2.6.9. This pair of cones are
defined as

K0 = {(z, g) ∈ Y × F : M ′(y, f)(z, g) = 0}
K1 = {−λS ′(f, v) : λ ≥ 0}

The operatorsH0 andG are of classC1 then the it is the operatorM . Given any directions (z, g) in
Y×F and that operatorH0 andG are linear the derivative ofM is and operatorM ′ : Y×F −! L2(Q)
given by

M ′(y, f)(z, g) = z +H0 (F ′(y)z)−G(g1γ).

Optimisation problem (2.6.9) has a solution if and only the descended and tangent cones satisfy
K0 ∩ K1 = 0. The Dubovistki-Milyoutin condition implies that in order to have K0 ∩ K1 = ∅ is
sufficient that exists a f0 ∈ K∗0 and f1 ∈ K∗1 such that f0 + f1 = 0. By definition of dual cone
(see Appendix for definition of dual cone), (w, h) ∈ K∗0 = kerM ′(y, f)⊥ but the operatorM ′(y, f) is
closed because H0 and G are compact then KerM ′(y, f)⊥ = RankM ′(y, f)∗. Then the Dubovitsky
Milyoutin condition states that exists λ(%2y, %2

0f) ∈ K∗1 and (w, h) ∈ K′∗ such that

λ(%2y, %2
0f) + (w, h) = 0 (2.6.10)

It is necessary to compute the dual operatorM ′(y, f)∗: given ψ ∈ L2(Q)

〈M ′(y, f)∗ψ, (w, h)〉 = 〈w +H0(F ′(y)w)−G(h1γ), ψ〉
= 〈w,ψ〉+ 〈F ′(y)w,H∗0 (ψ)〉+ 〈h1γ, G

∗(ψ)1γ〉
= 〈w,ψ〉+ 〈w,F ′(y)H∗0 (ψ)〉+ 〈h,−G∗(ψ)1γ〉
= 〈(w, h), (ψ + F ′(y)H∗0 (ψ),−G∗(ψ)1γ)〉

then

M ′(y, f)∗(ψ) = (ψ + F ′(y)H∗0 (ψ),−G∗(ψ)1γ)
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Then it is possible to write equation 2.6.10 in the form

λ(%2y, %2
0f) + (ψ + F ′(y)H∗0 (ψ),−G∗(ψ)1γ) = 0 (2.6.11)

Because λ 6= 0 equation (2.6.11) can be normalised to λ = 1 to get

y = %−2 (ψ + F ′(y)H∗0 (ψ))
f = −%−2

0 G∗(ψ)1γ
(2.6.12)

Define p := H∗0 (ψ) so by definition is possible to see that L∗0(p) = ψ and because equation
(2.6.6) then p|Σ = 0. In equation (2.6.12) observe that G∗(ψ) = G∗(L∗0(p)) so is necessary to cal-
culate G∗(L∗0(p)) in the boundary γ ⊂ Σ to get an use full expression for the follower control. Let
q ∈ L2(Σ) then∫

Q

L0(G(q))p dxdt =

∫
Σ

p∂ηG(q) dΣ−
∫

Σ

∂ηpG(q) dΣ +

∫
Q

G(q)L∗0(p) dxdt (2.6.13)

Now by definition of adjoint∫
Q

G(q)L∗0(p) dxdt =

∫
Σ

qG∗(L∗0(p)) dΣ (2.6.14)

Then equation (2.6.13) together with (2.6.14) gets∫
Q

L0(G(q))p dx dt =

∫
Σ

p∂ηG(q) dΣ−
∫

Σ

∂ηpG(q) dΣ +

∫
Σ

qG∗(L∗0(p)) dΣ

Since p|Σ = 0 from definition (2.6.7) and from (2.6.5) then (2.6) becomes∫
Σ

∂ηpG(q) dΣ =

∫
Σ

qG∗(L∗0(p)) dΣ

Now G(q)|Σ = q|Σ from (2.6.5) and therefore for any q in L2(Σ) the equality (2.6) takes the form∫
Σ

q∂ηp dΣ =

∫
Σ

qG∗(L∗0(p)) dΣ

and then G∗(L0(p)) = ∂ηp. By definition of p := H∗0 (ψ) one gets ψ = L∗0(H∗0 (ψ)) = L∗0(p) then it is
possible to write equation (2.6.12) in the form

y = %−2(ψ + F ′(y)H∗0 (ψ))
= %−2(L∗0(p) + F ′(y)p)
= %−2L∗F ′(y)(p)

f = −%−2
0 ∂ηp1γ

4. This step is focused in find estimates for the follower control and the solution. It is possible
to see that p ∈ P because y ∈ Y and f ∈ F . Write F (y) = F0(y)y. Because (y, f) fulfils with the
restrictions of the problem (2.2.1) then is possible to write this problem in the form

LF0(y)(%
−2L∗F ′(y)(p)) = v1ω in Q,

%−2L∗F ′(y)(p) = −%−2
0 ∂ηp1γ on Σ,

%−2L∗F ′(y)(p)(0) = y0, %
−2L∗F ′(y)(p)(T ) = 0 in Ω,
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Multiply equation (2.6) by p′ ∈ P , using integration by parts and boundary conditions the inte-
gral form for this problem is∫

Q

LF0(y)

(
%−2L∗F ′(y)(p)

)
p′ =

∫
Q

%−2L∗F ′(y)(p)L
∗
F0(y)(p

′)

+

∫
Ω

y0(x)p′(0, x)

−
∫
γ×(0,T )

%−2
0

∂p

∂η

∂p′

∂η
dΣ

then from this equations is possible to get that p solves the integral equation

∫
Q

%−2L∗F ′(y)(p)L
∗
F0(y)(p

′) +

∫
γ×(0,T )

%−2
0 ∂ηp∂ηp

′ dΣ =

∫
ω×(0,T )

vp′ +

∫
Ω

y0(x)p′(0, x) ∀p′ ∈ B.

Now it is necessary to make some estimates of the bilinear form. For this apply the Holder
and Young inequalities. First is important to note that the weight % is bounded in the interval
[0, T/2] and by the embedding given by P −! H1(Ω) then ‖p(0)‖|L2(Ω) ≤ max

t∈[0,T/2]
‖p(t)‖L2(Ω). Denote

M = supy∈R |F ′(y)|. From Theorem 2.4.1 take λ0 = λ and s = s0 and see that is possible to get the in-
equality s3/2 > M

√
2λ−2 supQ ξ

−3/2 and then it is possible to get the bound S := supQ
%0

%
< 1/(M

√
2)

and then is easy to see that
∫
Q
%−2|p|2dxdt ≤ S

∫
Q
%−2

0 |p|2 dxdt. Also there exist a positive number β
such that 1

M
S2M2

1−M2S2 < β < 1
M
. Then

B(0, p, p) =

∫
Q

y0(x)p(0, x) +

∫
ω×(0,T )

vp

−
∫
Q

%−2
(
F0(y)L∗0(p)p+ F ′(y)L∗0(p)p+ F ′(y)F0(y)|p|2

)
dxdt

≤
(∫

ω×(0,T )

%2
0|v|2

) 1
2
(∫

ω×(0,T )

%−2
0 |p|2

) 1
2

+

(∫
Ω

%2|y0|2
) 1

2
(∫

Ω

%−2|p(0)|2
) 1

2

−
∫
Q

%−2
(
F0(y)L∗0(p)p+ F ′(y)L∗0(p)p+ F ′(y)F0(y)|p|2

)
dxdt

≤ ‖y0‖Y max
t∈[0,T/2]

‖p(t)‖L2(Ω) + ‖v‖U‖p‖P +M2

∫
Q

%−2|p|2 dxdt

+2M

∫
Q

%−2|L∗0(p)||p|2 dxdt

Then, by Young inequality with a parameter β > 0, it is possible to bound

2M

∫
Q

%−2|L∗0(p)||p|2 dxdt ≤Mβ

∫
Q

%−2|L∗0(p)|2 dxdt+
M

β

∫
Q

%−2|p|2 dxdt

and also ∫
Q

%−2|p|2 dxdt ≤ S2

∫
Q

%−2
0 |p| dxdt.
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Therefore

B(0, p, p) ≤
(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, p, p)1/2 +Mβ

∫
Q

%−2|L∗0(p)|2 dxdt+

(
M2 +

M

β

)
S2

∫
Q

%−2
0 |p|2

≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, p, p)1/2 + Max

(
βM,

(
M2 +

M

β

)
S2

)
B(0, p, p).

Remember that βM < 1. Also, from inequality 1
M

S2M2

1−M2S2 < β, we get (M2 + M/β)S2 < 1 and
the term Max

(
βM,

(
M2 + M

β

)
S2
)
B(0, p, p) can be absorbed2 in the left hand side of the above

inequality giving

(B(0, p, p))1/2 = ‖f1γ‖F + ‖y‖Y ≤ C
(
‖y0‖L2(Q) + ‖v‖V

)
.

Nowwepresent how to solve the second step of the hierarchical control process. The next lemma
defines an appropriate set where the functional P for the leader will be minimised.

Lemma 2.6.1. Set v ∈ V . Let Φ[v] be the set of all followers f ∈ F such that solve problem ( 2.6) then the set
G = {(v, f) : v ∈ V , f ∈ Φ[v]} is convex and weakly closed in V ×F . Moreover the functional P : G −! R,
(v, f) 7! P (v, f) is coercive and weakly lower semicontinous.

Proof. It is clear that G is convex. The proof for the closeness of G is given. Let (vn, fn) a sequence
in G that converges weakly to (v, f) and suppose that (v, f) is not in G so there exist a pair(v, f̃) and
the associated state ỹ such that

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 <

1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
0|f |2

where ỹ solves

ỹt −∆ỹ + F (ỹ) = v1ω in Q,

ỹ = f̃1γ on Σ,
ỹ(0) = y0 in Ω.

Observe that there exists δ > 0 such that
1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 + δ <

1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
0|f |2.

It exists a natural number N such that for any n ≥ N

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 + δ <

1

2

∫
Q

%2|yn|2 +
1

2

∫
γ×(0,T )

%2
0|fn|2.

Evaluating the functional S on the sequence (vn, f̃) and taking ỹn its associated state it is possible
to see that

1

2

∫
Q

%2|ỹn|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 <

1

2

∫
Q

%2|yn|2 +
1

2

∫
γ×(0,T )

%2
0|fn|2

2Understand absorb as having the inequality A < CB + αAwith 0 < α < 1 then A < C/(1− α)B.



55

for n large enough. This contradicts the fact that (vn, fn) ∈ G.

The next step is to prove that the functional P : G −! R is a lower semi-continuous functional
and coercive. Let {(vn, fn)} ⊂ G be a sequence such that ‖fn‖F !∞ . By inequality ‖fn‖F + ‖y‖Y ≤
C
(
‖y0‖L2(Q) + ‖vn‖V

)
given in Proposition 2.6.1 is straightforward to see that ‖vn‖V −!∞ and then

the functional P (v, f)!∞.

Ultimately it is necessary to prove that P has an infimum in G. Let (vn, fn) ∈ G be a minimising
sequence i.e P (vn, fn) ! inf P (v, f). This sequence is bounded in V × F by definition and then
(vn, fn) has a sub sequence (vnk , fnk) is weakly convergent to some (v̂, f̂) in G because it is weakly
closed. The pair (v̂, f̂) is the candidate to be a minimum. Because P : G −! R is l.s.c in the usual
topology then

P (v̂, f̂) ≤ lim inf
n!∞

P (vn, fn) ≤ inf
(v,f)∈G

P (v, f)

so (v̂, f̂) is the desired solution.
Theorem 2.6.2. It exists a pair (f̂ [v̂], v̂) ∈ G such that the follower control f̂ [v̂] fulfils the null controllability
problem (the state ŷ(T ) = 0) and the leader v̂ minimises the functional P . Moreover the pair (f̂ [v̂], v̂) is given
by 

ŷt −∆ŷ + F (ŷ) = v̂1ω in Q,
ŷ = f̂ [v̂]1γ on Σ,
ŷ(·, 0) = y0 in Ω,

f̂ [v̂] = −%−2
0 ∂ηp̂

∣∣
γ
, ŷ = %−2L∗F ′(ŷ)p̂,

where p̂ ∈ P solves the equation∫
Q

%−2L∗F ′(ŷ)p̂ L
∗
F0(ŷ)p

′+

∫
γ×(0,T )

%−2
0 ∂ηp̂∂ηp

′ dΣ =

∫
ω×(0,T )

v̂p′ +

∫
Ω

y0(x)p′(x, 0) dx ∀p′ ∈ P .

Define γ̂ the solution to −γ̂t−∆γ̂+F ′(ŷ)γ̂=α(ŷ−yd)1Ωd+F ′(ŷ)φ̂+%−2F ′′(ŷ)p̂L∗0φ̂ in Q,
γ̂ = 0 on Σ,
γ̂(·, T ) = 0 in Ω,

with φ̂ ∈ P the unique solution to∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt+

∫
Σ

%−2
0 ∂ηφ̂∂ηq dΣ = −

∫
Σ

%−2
0 ∂ηγ̂∂ηq dΣ ∀q ∈ P .

Then, the leader control is characterised by

v = −%−2
0 (γ̂ + φ̂)

∣∣
ω×(0,T )

. (2.6.15)

Proof. The idea is to formulate the optimisation problem as a problem of optimisation with con-
straints. Define the operatorM : Y ×U ×F ×P −! L2(Q)×Y ×F defined by the three component
vector

M(y, f, v, p) =
(
y −H0(v1ω − F (y))−G(f1γ)− ȳ, y − %−2L∗F ′(y)(p), f + %−2

0 ∂ηp1γ
)
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where the operators H0 and G is are the same as in(2.6.5). Define P0 : M : Y × U × F × P −! R

P0(y, f, v, p) := P (f, v) =
α

2

∫
Qd

|y − yd|2 dxdt+
1

2

∫
ω×(0,T )

%2
0|v|2 dxdt

and redefine the optimisation problem (2.2.2) in the form

inf P0(y, f, v, p)
subject toM(y, f, v, p) = (0, 0, 0)
(y, f, v, p) ∈ Y × U × F × P

(2.6.16)

Define for (y, f, v, p) ∈ Y × U × F × P the descent cone

K0(y, f, v, p) = {(w, g, h, q) ∈ X : P ′0(y, f, v, p)(w, f, h, q) ≤ 0}
and the tangent cone

K1(y, f, v, p) = {(w, g, h, q) ∈ X : M ′(y, f, v, p)(w, g, h, q) = 0}

The operatorM is lineal and then is of class C1 in the space Y×U ×F ×P . Denote for simplicity
X := Y ×U ×F ×P . The next task is to find an explicit for form the derivativeM ′(y, f, v, p) and its
dual. Consider an arbitrary direction (z, g, w, q) ∈ X . From the linearity of the operators G and H0

and straightforward calculations it is possible to see that

M ′(y, f, v, p)(z, g, w, q) =
(
z −H0(w1ω − F ′(y)z)−G(g1γ)− ȳ,

z − %−2L∗F ′(y)(q)− %−2F ′′(y)zp,

g + %−2
0 ∂ηq1γ)

)
In order to have a solution for the optimisation problem (2.6.16) it is necessary that the descent and
tangent cones fulfils K0 ∩ K1 = ∅. Applying again the Dubovitsky- Milyoutin theorem, we obtain
λ (α(y − yd)1Ωd , 0, %

2
0v, 0) ∈ K∗0 with λ 6= 0 and ((ẑ, ĝ, ŵ, q̂)) ∈ K∗1 such that

λ
(
α(y − yd)1Ωd , 0, %

2
0v, 0

)
+ (ẑ, ĝ, ŵ, q̂) = 0

Now compute the adjoint operatorM ′(y, f, v, p)∗ that is given by an element in X . First of all define
the operator N : P −! F , p 7! %−2

0 ∂ηp. Then by definition of the norm in P , ‖%−2
0 ∂ηp‖F ≤ C‖p‖P

then, N is a continuous operator and the adjoint N ∗ : F −! P exists. Given an element (ψ, φ, ϕ) ∈
L2(Q)× Y × F then

〈M ′(y, f, v, p)(z, g, w, q), (ψ.φ, ϕ)〉 = 〈z −H∗0 (w1ω − F ′(y)z −G(g1γ), ψ〉
+〈z + %−2LF ′(y)(q)− %−2F ′′(y)pz, φ〉+ 〈g + %−2

0 G∗(L∗0(q))1γ, ϕ〉
= 〈z, ψ + φ+ F ′′(y)pφ+ F ′(y)H∗0 (ψ)〉+ 〈g,−G∗(ψ)1γ + ϕ〉
+〈w,H∗0 (ψ)1ω〉+ 〈q,−LF ′(y)(%

−2ϕ)−N ∗(ϕ1γ)〉
then the adjoint operator is characterised by

M ′(y, f, v, p)∗(ψ, φ, ϕ) =
(
ψ + F ′(y)H∗0 (ψ) + ϕ− %−2F ′′(y)pϕ,

H∗0 (ψ)1ω,
ϕ−G∗(ψ)1γ,

N ∗(ϕ1γ)− LF ′(y)(%
−2φ)

)
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Then (ẑ, ĝ, ŵ, q̂) ∈ K∗1 = RankM ′(y, f, v, p)∗ and by the Dubovitski- Milyoutin theorem there
exist functions(ψ, φ, ϕ) ∈ L2(Q)×Y ×F such that each of the functions satisfies the set of equations

α(y − yd)1Ωd = ψ + F ′(y)H∗0 (ψ) + ϕ− %−2F ′′(y)ϕp
0 = ϕ−G∗(ψ)1γ
%2

0v = H∗0 (ψ)1ω
0 = −LF ′(y)(%

−2φ) +N ∗(ϕ1γ)

(2.6.17)

The define the associated functions ψ̂ = H∗0 (ψ), φ̂ = −H∗0 (φ) and φ = L∗0(H∗0 (φ)) = L∗0(φ̂). Taking
γ̂ = ψ̂ − φ̂ and from the first equality from equation 2.6.17 is possible to get

α(y − yd)1Ωd = ψ + F ′(y)H∗0 (ψ) + φ− %−2F ′′(y)φp

= L∗0(ψ̂) + F ′(y)ψ̂ − L∗0(φ̂)− %−2F ′′(y)L∗0(φ̂)p

= L∗0(ψ̂ − φ̂) + F ′(y)(γ̂ + φ̂) + %−2F ′′(y)L∗0(φ̂)p

= L∗F ′(y)(γ̂) + F ′(y)φ̂+ %−2F ′′(y)L∗0(γ̂)p

= L∗F ′(y)(γ̂) + F ′(y)φ̂+ %−2F ′′(y)L∗0(φ̂)p

Then is possible to get the equation

−γ̂t −∆γ̂ + F ′(y)γ̂ = α(y − yd)1Ωd − F ′(y)φ̂− %−2F ′′(y)L0(φ̂)p
γ̂(T ) = 0

Then equation number 2 from 2.6.17 can be written in the form

v = −%−2
0 (γ̂ + φ̂)1ω

Taking equation four in (2.6.17) and for q ∈ P∫
Q

(N ∗(ϕ1γ)− LF ′(y)(%
−2φ))q dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηqϕ dΣ−

∫
Q

%−2φL∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηqG

∗(ψ) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηqG

∗(L∗0(ψ̂)) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηq∂ηψ̂ dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

= 0

Taking ψ̂ = φ̂+ γ̂∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt+

∫
Σ

%−2
0 ∂η

(
φ̂
)
∂ηq dΣ = −

∫
Σ

%−2
0 ∂ηγ̂∂η(q) dΣ

Then the theorem is proved.
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2.7 Hierarchical control problem for the semi-linear heat equa-
tion: boundary leader and follower controls.

In the previous section the problem for an inner control leader and a boundary control follower was
solved. In this section we will study the problem with both controls acting on the boundary. Let Ω
an open set inRn and σ and γ disjoint non empty open subsets in Γ := ∂Ω with the relative topology.
Define the initial value problem with boundary conditions

yt −∆y + F (y) = 0 in Q
y = f1γ + vχσ in Σ
y(0) = y0 in Ω

where v and f are control functions to be determined in suitable Hilbert spaces. The function F
is C1(R) globally Lipschitz . Here χσ is a C1 regularisation of the characteristic set of σ. Consider
the weight functions functions %0, %1, %2 defined in Theorem 2.4.1. Define the weight function %∗ :
(0, T ) −! R by %∗(t) := supx∈Ω̄ %i with i = 0, 1, 2 and define the weighted Hilbert spaces

Y = {y : %2y ∈ L2(Q)} F = {f : %0f ∈ L2(γ × (0, T ))}
V = {v : %∗vχσ ∈ L2(0, T ;H1/2(Γ))}

Each space endowed with the natural weight L2 norm gives the Hilbert spaces (Y , ‖ · ‖Y), (F , ‖ · ‖F)
and (V , ‖ · ‖V). The weight function appears in the spirit of the use of Carleman inequality to solve
the null controllability problem because the blow up behaviour when t ! ∞ . For some interval
(T − δ, T ) with δ > 0 very small the weight functions diverges when t ! ∞ as does the function
t−1e1/t and then %−2

∗ = O(te−1/t)whereO denotes theBig O notation of asymptotic behaviour. Given
a p ∈ P3 then

∫
Q

%−2
∗ |∆p|2 + %−2

∗ |∇p|2 + %−2
∗ |p|2 dxdt ≤

∫
Q

%−2
2 |∆p|2 + %−2

1 |∇p|2 + %−2
0 |p|2 dxdt <∞ (2.7.1)

Then is possible to see that ∆(%−1
∗ p),∇(%−1

∗ p), %
−1
∗ p ∈ L2(Q) and then %−1

∗ p ∈ L2(0, T ;H2(Ω)).
The Hierarchical control process is defined
1. Given a leader control v ∈ V find some follower control f [v] ∈ F that solves the null control-

lability control problem i.e the solution y to problem (2.7) satisfies y(T ) = 0 for any positive time
T .

2. We look for an admissible control v ∈ V such that solves the optimisation problem

inf
v∈V

P (v, y) =
α

2

∫
Qd

|y − yd|2 +
1

2

∫ T

0

‖%0vχσ‖2
H1/2(Γ) dt (2.7.2)

where Qd := Ωd × (0, T ), the set Ωd ⊂ Ω is an open set of Rn and the function yd ∈ L2(Qd).
The next section treats about some elementary theory of fractional Sobolev spaces and the Laplace

Beltrami operator on a surface in Rn.

3Same as the last section with the norm given by 2.4.1.
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2.8 Preliminary theory
The basic definition of fractional Sobolev space Hs(Γ) with s > 0 depends in charts and partitions
of unit on the boundary Γ (see [LM12] pg. 34). Although this is an intuitive definition based in the
Half space lacks of information for explicit calculation so an interpolation characterisation will be
used. Let Ω be an open set such that the boundary Γ is a n − 1 smooth sub-manifold. For m ∈ N
define the spaceH2m(Γ) = {u ∈ L2(Γ) : ∆m

Γ u ∈ L2(Γ)}where ∆Γ is the Laplace-Beltrami 4 operator.
Invoke the next proposition

Proposition 2.8.1 ([LM12]). Let Γ be the boundary of Ω. Then for 0 < θ < 1 and s1 > s2 the interpolation
[Hs1(Γ), Hs2(Γ)]θ = H(1−θ)s1+θs2(Γ) formula holds.

Definition 1 ([LM12]). Let s > 0 a real number. Let Γ be the boundary of Ω and consider the Laplace
operator ∆. Define the non integer Sobolev space Hs(Γ) = Dom(−∆s

Γ) endowed with the norm ‖u‖2
Hs(Γ) =

‖u‖2
L2(Γ) + ‖∆s

Γu‖L2(Γ).

For further details see pg 33 in [LM12]. Let the spectrum σ(∆Γ) = {λj > 0; j ∈ N} and wj the
orthonormal set of eigen-vectors in H1(Ω) that form a base in L2(Ω). Under this assumptions and
by the spectral decomposition the Laplacian ∆Γu = Σ∞j=1λi〈wj, u〉wj and then the spectral decom-
position of ∆

1/2
Γ is given by ∆

1/2
Γ u =

∑∞
j=1 λ

1/2
j 〈u,wj〉L2(Γ)wj . Then it is possible to write the norm in

H1/2(Γ) in the form

‖u‖2
H1/2(Γ) = ‖u‖2

L2(Γ) +
∞∑
j=1

λj|〈u,wj〉L2(Γ)|2.

The next proposition about the continuity of the normal derivative is done in [LM72],page 9.

Proposition 2.8.1. Let u ∈ Hr,s(Q) with r > 1/2 and s ≥ 0. Define the indexes p, q in the such that
p = (r − 1 − 1/2) and q = s

r
(r − 1 − 1/2) and if s = 0 then q = 0. Then the normal derivative∂η :

Hr,s(Q) −! Hp,q(Σ) is a continuous operator.

2.9 The null controllability problem for the linear case.
The same strategy done in the last section will be used here. In this section we describe the method
to solve the null controllability problem associated to the follower objective in the linear case i.e the
first step in the hierarchical control process described in section 2.3. Solving this linear problem will
allow to establish the null controllability problem for the semi-linear case as a optimisation problem
via minimising sequences and a fixed point theorem. Next a useful lemma to compare integrals in
different regions of the boundary is given

4Define ∆M := δd + dδ where δ = − ∗ ◦d ◦ ∗ where ∗ : Ω(M) −! Ω(M) is the Hodge star operator defined on
the graded algebra of differential forms of a Riemannian manifold (M, g). See [Aub13],[Bes07] for further study of the
Laplace-Beltrami operator.
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Lemma 2.9.1. Given the open set σ ⊂ Γ. Then for any p ∈ P exist a constantC > 0 such the next inequality
holds ∫

σ×(0,T )

%−2
∗ |∂ηp|2 dΣ ≤ C‖p‖P .

Proof. Let p ∈ P , since %−1
∗ p ∈ L2(0, T ;H2(Ω)) and fromProposition 2.8.1, the operator ∂η : L2(0, T ;H2(Ω)) −!

L2(0, T ;H1/2(Γ)) is continuous, then∫
Σ

|∂η(%−1
∗ p)|2 dΣ ≤ C̃

∫
Q

%−2
∗ |∆p|2 + %−2

∗ |∇p|2 + %−2
∗ |p|2 dxdt

and by inequality (2.7.1) and Carleman inequality then∫
Σ

%−2
∗ |∂ηp| dΣ ≤ C‖p‖P .

Finally since σ ⊂ Γ the above inequality is written as∫
σ×(0,T )

%−2
∗ |∂ηp| dΣ ≤

∫
Σ

%−2
∗ |∂ηp| dΣ ≤ C‖p‖P .

We proceed now with the solution to the null controllability problem for the linear case.

Proposition 2.9.1. Fixed a leader control v ∈ V , a positive time T and a potential a ∈ L∞(Q), it exists a
follower control f [v] ∈ F such that the solution y ∈ Y of the initial value problem

yt −∆y + ay = 0 in Q
y = f [v]1γ + vχσ in Σ
y(0) = y0 in Ω

(2.9.1)

satisfies y(T ) = 0. Moreover, it exists a function p such that the follower control and the solution to (2.9.1)
are characterised in the form

f [v] = −%−2
0 ∂ηp1γ; y = %−2L∗a(p) (2.9.2)

where p ∈ P is a solution to the integral equation∫
Q

%−2L∗a(p)L
∗
a(q) dxdt+

∫
γ×(0,T )

%−2
0 ∂ηp ∂ηq dΣ =

∫
Σ

χσv∂ηq dΣ + 〈y0, q(0)〉L2(Ω)

with the estimate
‖f [v]‖F + ‖y‖Y ≤ C

(
‖vχσ‖V + ‖y0‖L2(Ω)

)
. (2.9.3)

Proof. 1. The key point in the construction of the follower control is the behaviour of the weight
functions %2 and %2

0 when t! T and formulate a new optimisation problem

inf
f∈F

(
S(f ; v) :=

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
γ×(0,T )

%2
0|f |2 dΣ

)
(2.9.4)
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that will impose that y(T ) = 0 because the blow up of the weight functions at T . Observe that
S : F −! R is a coercive, continuous, convex and lower semicontinous functional. Then it has a
unique minimiser f̂ ∈ F .

Given a direction h ∈ F and ε > 0

1

ε

[
S(f̂ + εh; v)− S(f̂ ; v))

]
=

1

ε

[
1

2

∫
Q

%2(|ŷ + εz|2 − |ŷ|2)− 1

2

∫
γ×(0,T )

%2
0|f̂ + εh|2 − |f̂ |2dΣ

]
=

1

ε

[∫
Q

%2(|εŷz|+ |εz|2) +

∫
γ×(0,T )

%2
0(εŷz + |εh|2)dΣ

]
where the functions z and ŷ solves

zt −∆z + az = 0 in Q
z = h1γ on Σ
z(0) = 0 on Ω

and
ŷt −∆ŷ + aŷ = 0 inQ
ŷ = f̂1γ + vχσ onΣ
ŷ(0) = y0 onΩ

Taking the limit as ε! 0 the derivative of the functional is given by

lim
ε!0

1

ε

[
S(f̂ + εh; v)− S(f̂ ; v))

]
=

∫
Q

%2ŷz dxdt+

∫
γ×(0,T )

%2
0f̂hdΣ = 0 (2.9.5)

Define the function p to
−pt −∆p+ ap = %2ŷ in Q
p = 0 on Σ
p(T ) = 0 on Ω

Replace ŷ = %−2L∗a(p) in (2.9.5) integrate by parts and use boundary conditions to get

∫
Q

L∗a(p)z dxdt+

∫
γ×(0,T )

%2
0f̂hdΣ =

∫
Q

L∗a(z)p dxdt+

∫
Σ

z∂ηpdΣ +

∫
γ×(0,T )

%2
0f̂hdΣ

=

∫
γ×(0,T )

h∂ηpdΣ +

∫
γ×(0,T )

%2
0f̂hdΣ

then ∫
γ×(0,T )

(%2
0f̂ + ∂ηp)hdΣ = 0.

Then it is possible to get the characterisation

f̂ [v] = −%−2
0 ∂ηp1γ; ŷ = %−2L∗a(p).

2. By the above results the characterisation (2.9.2) holds. Then it is possible to write the initial
condition problem (2.9.1) in the form
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La(%
−2L∗a(p)) = 0 in Q

%−2L∗a(p) = −%−2
0 ∂ηp1γ + vχσ in Σ

%−2L∗a(p)(0) = y0; %−2L∗a(p)(T ) = 0 in Ω
(2.9.6)

Let q ∈ P andmultiply equation (2.9.6), integrate by parts. Then it is possible to get the equation∫
Q

%−2L∗a(p)L
∗
a(q) dxdt+

∫
γ×(0,T )

%−2
0 ∂ηp ∂ηq dΣ =

∫
Σ

vχσ∂ηq dΣ + 〈y0, q(0)〉L2(Ω) (2.9.7)

If this equation has a solution p ∈ P is equivalent to proving the existence of a solution for the
fourth order system (2.9.6) that is equivalent to define f [v] in the form (2.9.2) and then the solution
fulfils y(T ) = 0. By Carleman inequality from Theorem 2.4.1 is possible to see that the left hand side
of equation (2.9.7) is coercive. It remains to verify that the linear functional l on the right hand side
of (2.9.7), given by,

l(q) =

∫
Σ

vχσ∂ηq dΣ + 〈y0, q(0)〉L2(Ω)

is continuous on P . We estimate |l(q)| by means of Hölder inequality and Lemma (2.9.1) then

|l(q)| ≤
(∫

σ×(0,T )

%2
∗|v|2χσ

)1/2(∫
σ×(0,T )

%−2
∗ |∂ηq|2

)1/2

+ ‖y0‖L2(Ω)‖q(0)‖L2(Ω)

≤ ‖vχσ‖V‖q‖P .+ ‖y0‖L2(Ω)‖q(0)‖L2(Ω)

Remains to bound ‖q(0)‖L2(Ω) from equation (2.9.9). Again by Carleman inequality is possible to
see that q1[0,T/2] ∈ L2(0, T ;H2(Ω)) and the derivative qt1[0,T/2] ∈ L2(0, T/2;L2(Ω)) so by interpolation
of the spaces q1[0,T/2] ∈ C0([0, T/2];H1(Ω)). With this deduction we have a continuous embedding
P ! H1

0 (Ω), q 7! q(0) and then we make the estimate ‖q(0)‖L2(Ω) ≤ B(0, q, q)1/2. We obtain

|l(q)| ≤
(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, q, q)1/2. (2.9.8)

Then it is a continuous functional and by Lax-Milgram theorem equation (2.9.7) has a unique solu-
tion p ∈ P .

3. This final step is to prove inequality (2.9.3). Equation (2.9.7) has a solution p, we get∫
Q

%−2|L∗a(p)|2 dxdt+

∫
γ×(0,T )

%−2
0 |∂ηp|2 dΣ =

∫
σ×(0,T )

vχσ∂ηp dΣ + 〈y0, p(0)〉L2(Ω).

then

B(a, p, p) ≤
(∫

σ×(0,T )

%2
∗|vχσ|2

)1/2(∫
σ×(0,T )

%−2
∗ |∂ηp|2

)1/2

+ ‖y0‖L2(Ω)‖p(0)‖L2(Ω) (2.9.9)

Then inequality (2.9.9) combined with (2.9.8) implies
B(a, p, p) ≤

(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, p, p)1/2.

From inequality (2.4.2), for p 6= 0, it exists a constant C > 0 such that
B(a, p, p)1/2 ≤ C

(
‖v‖V + ‖y0‖L2(Ω)

)
and then by construction of f̂ and ŷ and Young inequality, we get

‖f̂ [v]‖F + ‖ŷ‖Y ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
.
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2.10 Solution to hierarchical control problem for the semi-linear
case: boundary leader and follower control.

The null controllability problem for the linear case F (y) = ay with a ∈ L∞(Q) solved in proposition
(2.9.1) will allow to solve the corresponding problem for the non linear case F (y) by a fixed point
argument. To this end, we write the null controllability problem as an optimisation problem.

Define

F0(s) =

{
F (s)

s
s 6= 0

F ′(s) = 0 s = 0

Given a function z ∈ L2(Q) then F0(z) ∈ L∞(Q). Define the linearization of (2.7) as
yt −∆y + F0(z)y = 0 in Q
y = f1γ + v1χσ in Σ
y(0) = y0 in Ω

(2.10.1)

Since F0(z) ∈ L∞(Q) it makes sense to apply the results of Proposition 2.9.1 to system (2.10.1).
The next proposition solves the null controllability problem for the semi-linear case.

Theorem 2.10.1. Let a leader control v ∈ V and a positive time T > 0 be given. Then, it exists a follower
control f [v] ∈ F that steers y(T ) = 0 where y ∈ Y solves the initial value problem

yt −∆y + F (y) = 0 in Q
y = f [v]1γ + vχσ in Σ
y(0) = y0 in Ω.

Moreover is possible to get the explicit form

f [v] = −%−2
0 ∂ηp|γ ; y = %−2L∗F ′(y)(p)

where the function p solves the equation

∫
Q

%−2L∗F ′(y)(p)L
∗
F0(y)(q) +

∫
γ×(0,T )

%−2
0 ∂ηp∂ηq dΣ =

∫
σ×(0,T )

v∂ηq dΣ +

∫
Ω

y0(x)q(0)dx, q ∈ P

Also it is possible to get the estimate

‖f [v]‖F + ‖y‖Y ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
.

Proof. 1. Let z in L2(Q) be given. Consider the functions fz = f [v]z and yz given by Proposition 2.9.1
for equation (2.10.1). Then, the follower control can be bounded as

‖fz‖F ≤ C
(
‖vχσ‖V + ‖y0‖L2(Ω)

)
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independently of z. Moreover, Proposition 2.3.2 implies that, for every z ∈ L2(Q), the corresponding
solution yz to the problem

yz,t −∆yz + F0(z)yz = 0 in Q
yz = fz[v]1γ + vχσ in Σ
yz(0) = y0; yz(T ) = 0 in Ω

(2.10.2)

belongs to H1/2,1/4(Q). Then, from the fact that ‖v‖L2(Σ) ≤ ‖v‖V and inequality (2.3.1)

‖y‖H1/2,1/4(Q) ≤ C
(
‖y0‖L2(Ω) + ‖v‖V + ‖f1γ‖F

)
.

Since the embedding H1/2(Ω) ↪! L2(Ω) is compact we can apply Proposition 2.3.1 with θ = 1/2,
s0 = 1/2, s1 = 1/4 and s∗ = −1/4. Then embedding H1/2,1/4(Q)! L2(Q) is compact.

Define the map Λ : L2(Q) −! L2(Q), z 7! yz where yz solves (2.10.2) so by the previous conclu-
sions Λ(L2(Q)) ⊂ H1/2,1/4(Q) is bounded and then is a compact set of L2(Q). Then by Schauder’s
fixed point Theorem it exists a z := ỹ that solves (2.10.2) and since F0(ỹ)ỹ = F (ỹ) then

ỹt −∆ỹ + F (ỹ) = 0 in Q
ỹ = fỹ[v]1γ + vχσ in Σ
ỹ(0) = y0; ỹ(T ) = 0 in Ω

Denote by f̃ [v] = fỹ[v]. By construction ỹ ∈ Y and f̃ [v] ∈ F then it is possible to see that

S(f̃ ; v) =
1

2

∫
Q

%2|ỹ|2 dxdt+
1

2

∫
γ×(0,T )

%2
0|f̃ |2 dΣ <∞

Then the set of f ∈ F where the function S(f ; v) < ∞ and y solves the semi-linear problem is non
empty.

2. Now we will see that in fact the follower f̃ minimises the functional S. Let {fn} ⊂ F a
minimising sequence for S. Then the sequence is uniformly bounded in F . Then the associated
states yn converges strongly to y in L2(Q) and fn converges weakly to some f̂ in F .From the lower
semi-continuity of the functionals

y 7!

∫
Q

%2 |y|2 and f 7!

∫
γ×(0,T )

%2
0 |f |

2 ,

then exist a solution to problem (2.9.4).
3. This step consists of characterising the solutions to the optimisation problem for S(v; f). First

define ȳ in L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) as the solution to the system

ȳt −∆ȳ = 0 in Q
ȳ = 0 in Σ
ȳ(0) = y0 in Ω

Invoke the operatorsH0 andG given by (2.6.5) from the proof of proposition (2.6.1). Define the map
M : Y × F −! L2(Q) given by

M(y, f) = y −H0(−F (y))−G(v1ω + f1γ)− ȳ
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It is straightforward to verify that if the conditionM(y, f) = 0 then the pair (y, f) in Y×F solves
the equation

yt −∆y + F (y) = 0 in Q
y = f1γ + vχσ on Σ
y(0) = y0 in Ω

Then the optimisation problem can be written as an optimisation problem with constrains using
the operatorM in the form 

inf
1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
0|f |2

M(y, f) = 0
(y, f) ∈ Y × F

(2.10.3)

Since the linear operators H0 and G are of class C1 then the operator M is of class C1. Given any
directions (z, g) in Y × F the derivative ofM is the operatorM ′ : Y × F −! L2(Q) given by

M ′(y, f)(z, g) = z +H0 (F ′(y)z)−G(g1γ)

The optimisation problem (2.10.3) has a solution if the tangent and descending cones given by

K0 = {(w, h) ∈ Y × F : M ′(y, f)(w, h) = 0}
K1 = {−λS ′(f ; v) : λ ≥ 0}

are disjoint. By Dubovitsky- Milyoutin Theorem this cones are disjoint if exists f0 ∈ K∗0 and f1 ∈ K∗1
such that f0 + f1 = 0. Take f1 := λ(%2y, %2

0f) and f0 := (w, h) then

λ(%2y, %2
0f) + (w, h) = 0.

It is necessary to characteriseK∗0 . Observe thatK0 = ker(M ′(y, f)) and becauseM is closed then
K∗0 = RankM ′(y, f)∗. Then it exists λ(%2y, %2

0f) ∈ K∗1 . Compute the adjoint operator M ′(y, f)∗ :
L2(Q) −! Y × F for any ϕ ∈ L2(Q) to get

〈M ′(y, f)(z, g), ϕ〉 = 〈z +H0 (F ′(y)z)−G(g1γ), ϕ〉
= 〈z, ϕ〉+ 〈H0(F ′(y)z), ϕ〉+ 〈−G(g1γ), ϕ〉
= 〈z, ϕ〉+ 〈z, F ′(y)H∗0 (ϕ)〉+ 〈z,−G∗(ϕ)1γ〉,

then is easy to see that
M ′(y, f)∗(ϕ) = (ψ + F ′(y)H∗0 (ϕ),−G∗(ϕ)1γ) .

Because (z, g) ∈ RankM ′(y, f)∗ then for some ψ ∈ L2(Q) is possible to write equation 2.6.10 in
the form

λ(%2y, %2
0f) + (ψ + F ′(y)H∗0 (ψ),−G∗(ψ)1γ) = 0

Observe that this equation can be normalised to λ = 1. Is possible to deduce that

y = %−2 (ψ + F ′(y)H∗0 (ψ))
f = −%−2

0 G∗(ψ)1γ
(2.10.4)
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Define p := H∗0 (ψ) so by definition p = L∗0(H∗0 (p)). In equation (2.10.4) is possible to write
f = −%−2

0 G∗(L∗0(p)) is necessary to compute explicitly the G∗(L∗0(p)). By the same argument given
in the proof of Theorem 2.6.1 is possible to get the explicit form

G∗(L∗0(p)) = −∂ηp

Then taking ψ = L∗0(H∗0 (ψ)) it is possible to write

y = %−2(ψ + F ′(y)H∗0 (ψ))
= %−2(L0(p) + F ′(y)p)
= %−2L∗F ′(y)(p)

Because (y, f) fulfils with the restrictions of the problem2.6.9 then is possible to write this prob-
lem in the form

LF0(y)(%
−2L∗F ′(y)(p)) = 0 in Q

%−2L∗F ′(y)(p) = f1γ + vχσ in Σ

%−2L∗F ′(y)(p)(0) = y0 in Ω

Take p′ ∈ P and multiply by it in problem 2.6. Using integration by parts and boundary conditions,
the integral form for this problem is

∫
Q

LF0(y)

(
%−2L∗F ′(y)(p)

)
p′ =

∫
Q

%−2L∗F ′(y)(p)L
∗
0(p′)

+

∫
Ω

y0(x)p′(0, x)

−
∫
γ×(0,T )

%−2
0 (∂ηp)(∂ηp) dΣ

then from this equations it is possible to get the integral equation taking p′ = p

∫
Q

%−2L∗F ′(y)(p)L
∗
F0(y)(p) +

∫
γ×(0,T )

%−2
0 |∂ηp|2 dΣ =

∫
σ×(0,T )

vχσ(∂ηp) dΣ +

∫
Ω

y0(x)p(0)dx

Now it is necessary to make some estimates of the bilinear form. For this, apply Hölder and Young
inequalities. First it is important to note that the weight % is bounded in the interval [0, T/2] and
by the embedding given by P −! H1(Ω) then ‖p(0)‖|L2(Ω) ≤ max

t∈[0,T/2]
‖p(t)‖L2(Ω). Denote M =

supy∈R |F ′(y)|. From Theorem 2.4.1 fixing λ > λ0 and s > s0 the following inequality holds true:
s3/2 > M

√
2λ−2 supQ ξ

−3/2. Then, define S := supQ
%0

%
< 1/(M

√
2) . It is not difficult to see that∫

Q
%−2|p|2dxdt ≤ S

∫
Q
%−2

0 |p|2 dxdt. Also there exist a positive number β such that 1
M

S2M2

1−M2S2 < β < 1
M
.
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Then

B(0, p, p) =

∫
Ω

y0(x)p(0, x) +

∫
σ×(0,T )

vχσ∂ηp dΣ

−
∫
Q

%−2F0(y)L∗0(p)p+ F ′(y)L∗0(p)p+ F ′(y)F0(y)|p|2 dxdt

≤
(∫

σ×(0,T )

%2
∗|vχσ|2 dΣ

) 1
2
(∫

σ×(0,T )

%−2
∗ |∂ηp|2 dΣ

) 1
2

+

(∫
Ω

%2|y0|2
) 1

2
(∫

Ω

%−2|p(0)|2
) 1

2

−
∫
Q

%−2F0(y)L∗0(p)p+ F ′(y)L∗0(p)p+ F ′(y)F0(y)|p|2 dxdt

≤ ‖y0‖L2(Ω) max
t∈[0,T/2]

‖p(t)‖L2(Ω) + ‖v‖U‖p‖P +M2

∫
Q

%−2|p|2 dxdt

+2M

∫
Q

%−2|L∗0(p)||p|2 dxdt

Then by Young inequality with parameter β it is possible to bound

2M

∫
Q

%−2|L∗0(p)||p|2 dxdt ≤Mβ

∫
Q

%−2|L∗0(p)| dxdt+
M

β

∫
Q

%−2|p|2 dxdt

also it is possible to see that ∫
Q

%−2|p|2 dxdt ≤ S2

∫
Q

%−2
0 |p| dxdt

In conclusion,

|B(0, p, p)| ≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, p, p)1/2 +Mβ

∫
Q

%−2|L∗0(p)|2 dxdt+

(
M2 +

M

β

)
S2

∫
Q

%−2
0 |p|2

≤ C
(
‖v‖V + ‖y0‖L2(Ω)

)
B(0, p, p)1/2 + max

{
βM,

(
M2 +

M

β

)
S2

}
B(0, p, p)

Remember that βM < 1, and from inequality 1
M

S2M2

1−M2S2 < β we get (M2 + M/β)S2 < 1 and the
term max

{
βM,

(
M2 + M

β

)
S2
}
B(0, p, p) can be absorbed to the left hand side to get

‖f [v]‖F + ‖y‖Y < C
(
‖y0‖L2(Q) + ‖v‖V

)
.

Proposition 2.10.1. Let be Φ[v] the set of all followers f ∈ F such that solve problem 2.6.9 then the set
G = {(v, f) : v ∈ U , f ∈ Φ[v]} is convex and weakly closed. Moreover the functional P (v, f) given by 2.2.2
is lower semicontinous.

Proof. First we proof the weakly closeness of G. Let (vn, fn) a sequence in G that converges to (v, f).
Suppose that (v, f) is not in G so it exists a pair (v, f̃) such that

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2|f̃ |2 < 1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2|f |2
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where ỹ solves
ỹy −∆ỹ + F (ỹ) = v1ω in Q

ỹ = f̃1γ on Σ
ỹ(0) = y0 in Ω.

Observe that it exist δ > 0 such that
1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2|f̃ |2 + δ <
1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2|f |2

Since (vn, fn) converges to (v, f) for some natural number N and n ≥ N

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2|f̃ |2 < 1

2

∫
Q

%2|yn|2 +
1

2

∫
γ×(0,T )

%2|fn|2

Taking the value of S along the sequence (vn, f̃) then it is possible to see that

1

2

∫
Q

%2|ỹn|2 +
1

2

∫
γ×(0,T )

%2|f̃ |2 ≤ 1

2

∫
Q

%2|yn|2 +
1

2

∫
γ×(0,T )

%2|fn|2

that contradicts the fact that (vn, fn) ∈ G.
The next step is to prove that the functional P : G −! R is a lower semi-continuous functional and
coercive. Let {(vn, fn)} ⊂ G be a sequence such that ‖fn‖F !∞. Then by inequality ‖fn‖F+‖y‖Y <
C
(
‖y0‖L2(Q) + ‖vn‖V

)
given in Proposition 2.9.1 is straightforward to see that ‖vn‖V −!∞ and then

the functional P (v, f)!∞.
Finally we prove that P has an infimum in G. Let (vn, fn) ∈ G be a minimising sequences i.e.
P (vn, fn) ! inf P (v, f). By definition, the sequence (vn, fn) is uniformly bounded in V × F and
then the sequence is weakly convergent to some (v̂, f̂) in G and this is the candidate to be a mini-
mum. Because P is l.s.c in the usual topology then it is w-l.s.c. By definition

P (v̂, f̂) ≤ lim inf
n!∞

P (vn, fn) ≤ inf
(v,f)∈G

P (v, f)

so (v̂, f̂) is the solution to (2.7.2)

An explicit form for the leader control is necessary to complete the analysis using theDubovitsky-
Milyoutin theorem again.

Theorem 2.10.2. Let y0 ∈ L2(Ω) then it exists a pair (v̂, f̂ [v̂]) that is a solution to (2.7.2) and the associated
state ŷ solves the initial value problem

ŷt −∆ŷ + F (ŷ) = 0 in Q,

ŷ = f̂ [v]1γ + v̂χσ on Σ,
ŷ(·, 0) = y0 in Ω,

Moreover it is possible to characterise

f̂ [v̂] = −%−2
0

∂p̂

∂ν

∣∣
γ×(0,T )

, ŷ = %−2L∗F ′(ŷ)p̂,
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where the function p̂ ∈ P solves the integral equation

∫
Q

%−2L∗F ′(ŷ)(p̂)L
∗
F0(ŷ)(q) +

∫
γ×(0,T )

%−2
0 ∂ηp̂∂ηq dΣ =

∫
σ×(0,T )

vq dΣ +

∫
Ω

y0(x)q(0)dx, q ∈ P .

The leader control is given by

v̂ = −%−2
∗

∞∑
j=1

1

1 + λj

〈
(∂η(ζ̂ + φ̂)1σ, wj

〉
wj

where function ζ̂ is given by the initial value problem
−ζ̂t−∆ζ̂+F ′(ŷ)ζ̂=α(ŷ−yd)1Ωd−F ′(ŷ)φ̂−%−2F ′′(ŷ)p̂L∗0φ̂ in Q,

ζ̂ = 0 on Σ,

ζ̂(·, T ) = 0 in Ω,

(2.10.5)

where the function φ̂ ∈ P fulfils the equation
∫
γ×(0,T )

%−2
0 ∂ηq∂η(ζ̂ + φ̂) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt = 0

∀q ∈ P .

Proof. 1.The idea is to formulate the optimisation problem as a problem of optimisation with con-
straints.Define the operatorM : X −! (ψ, φ, ϕ) ∈ L2(Q)× Y × F is given by

M(y, v, f, p) =
(
y −H0(−F (y))−G(f1γ + vχσ), y − %−2L∗F ′(y)(p), f + %−2

0 ∂ηp1γ
)

where the operators H0 and G are given by (2.6.5). Define the operator

P0(y, f, v, p) =
α

2

∫
Qd

|y − yd|2 +
1

2

∫ T

0

‖%∗vχσ‖H1/2(Γ)dt

Define the optimisation problem given by
Minimize P0(y, f, v, p)

Subject to (y, v, f, p) ∈ X ,
M(y, v, f, p) = (0, 0, 0),

The operatorM is linear and of class C1 in the space Y × F × V × P . Then given an arbitrary
direction (z, g, h, q) ∈ X then the derivative is given by

M ′(y, f, v, p)(z, g, h, q) =
(
z+H(F ′(y)z)−G(g1γ +h1γ), z−%−2LF ′(y)(q)−F ′′(y)zp, g+%−2

0 (∂ηq)1γ

)
Define the descent cone

K0(y, f, v, p) = {λP ′(y, f, v, p) : λ > 0}
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and the tangent cone

K1(y, f, v, p) = {(w, g, h, q) ∈ X : M ′(y, f, v, p)(w, g, h, q) = 0}

Optimisation problem has a solution if the tangent and descent cones are disjoint. disjoint. By
Dubovitsky-Milyoutin theorem K1 ∩K0 = ∅ if and only if exist non null f0 ∈ K∗0 and f1 ∈ K∗1 such
that f0 + f1 = 0. First is necessary to calculate the derivativeof P . It will be convenient to compute
this using the spectral decomposition of the Laplacian. Let (z, g, h, q) a direction in X . Then the
derivativeof the functional P (y, f, v, p) defined in is given by

P ′(y, f, v, p)(z, g, h, q) =

∫
Qd

α(y − yd)z dxdt+

∫ T

0

(
%2

0v +
∞∑
j=1

λj〈%2
0vχσ, wj〉L2(σ)wj

)
h dxdt

Then the condition f0 + f1 = 0 can be written in the form

λ

(
%2(y − yd)1Qd , 0, %2

0v +
∞∑
j=1

λj〈%2
∗vχσ, wj〉L2(σ)wj, 0

)
+ (ẑ, ĝ, ĥ, p̂) = 0 (2.10.6)

where (ẑ, ĝ, ĥ, p̂) ∈ K∗1 . Observe that K1 = kerM ′(y, f, v, p) and then because M is a closed op-
erator then M ′(y, f, v, p) is closed then K∗1 = Rank(M ′(y, f, v, p)∗) then to characterise (ẑ, ĝ, ĥ, p̂) is
necessary to computeM ′(y, f, v, p)∗. Given (ψ, φ, ϕ) ∈ L2(Q)× Y × F

〈M ′(y, f, v, p)(z, g, h, q), (ψ, φ, ϕ)〉 =

=
〈(
z +H(F ′(y)z)−G(g1γ + h1γ), z − %−2L∗F ′(y)(q)− F ′′(y)zp, g + %−2

0 (∂ηq)1γ

)
, (ψ, φ, ϕ)

〉
= 〈z, ψ + F ′(y)H∗0 (ψ)〉+

〈
q,−L∗F ′(y)(%

−2φ)
〉

+
〈
z, φ− %−2F ′′(y)zφ

〉
+ 〈g, ϕ〉+ 〈q,N ∗(p)1γ〉+ 〈g,−G∗(ψ)1γ〉+ 〈h,−G∗(ψ)χσ〉
=
〈

(z, g, h, q),
(
ψ + φ+ F ′(y)H∗0 (ψ)− %−2F ′′(y)pφ,

=
〈(
ψ + φ+ F ′(y)H∗0 (ψ)− %−2F ′′(y)pφ, ϕ−G∗(ψ)1γ,N ∗(p)1γ − LF ′(y)(%

−2φ)
)〉

Then the four vector (ẑ, ĝ, ĥ, q̂) ∈ K∗1 = RankM ′(y, f, v, p)∗ then exist (ψ, φ, ϕ) ∈ L2(Q) × Y × F
such that

ẑ = ψ + φ+ F ′(y)H∗(ψ)− %−2F ′′(y)pφ̂
ĝ = ϕ−G∗(ψ)1γ
ĥ = −G∗(ψ)χσ
q̂ = N ∗(ϕ1γ)− LF ′(y)(%

−2φ)

Replace this in equation (2.10.6) and the is possible to normalise λ = 1 and then

%2(y − yd)1Qd = ψ + φ+ F ′(y)H∗(ψ)− %−2F ′′(y)pφ
0 = ϕ−G∗(ψ)1γ

%2
∗v +

∞∑
j=1

λj〈%2
∗vχσ, wj〉L2(σ)wj = −G∗(ψ)χσ

0 = N ∗(ϕ1γ)− LF ′(y)(%
−2φ)

(2.10.7)
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By the third equation from (2.10.7) consider that v ∈ V then is possible to say that %2
∗v =∑∞

j=1〈%2
∗v, wj〉wj . Then for wi ∈ L2(Γ)

〈%2
∗v, wi〉L2(σ) + λi〈%2

∗vχσ, wi〉L2(σ) = 〈−G∗(ψ)χσ, wi〉L2(σ)

Because χσ|σ = 1 then

(1 + λi)〈%2
∗v, wi〉L2(σ) = 〈−G∗(ψ)χσ, wi〉L2(σ)

multiply each side for wi with i ∈ N and take the infinite series over i and

∞∑
i=1

〈%2
∗v, wi〉L2(σ)wi =

∞∑
i=1

1

1 + λi
〈−G∗(ψ)χσ, wi〉L2(σ)wi

Taking in mind the orthogonal decomposition of %2
∗v is possible to get

vχσ = −%−2
∗

∞∑
j=1

1

1 + λj
〈G∗(ψ)χσ, wj〉L2(σ)wj.

The root criterion states that if lim infn!∞( 1
1+λn

)1/n < 1 then the power series above converges.
Take the first equation in equation (2.10.7). Define ψ̂ = H∗0 (ψ) and φ̂ = −H∗0 (φ) with the property
that L∗0(φ̂) = −φ and L∗0(γ̂) = ψ and define ζ̂ = ψ̂ − φ̂

α(y − yd)1Qd = ψ + φ+ F ′(y)H∗0 (ψ)− %−2F ′′(y)pφ

= L∗0(ψ̂)− L∗0(φ̂) + F ′(y)ψ̂ + %−2F ′′(y)pL∗0(φ̂)

= L∗0(ψ̂ − φ̂) + F ′(y)(ζ̂ + φ̂) + %−2F ′′(y)pL∗0(φ̂)

= L∗F ′(y)(ζ̂) + F ′(y)φ̂+ %−2F ′′(y)pL∗0(φ̂)

= L∗F ′(y)(ζ̂) + F ′(y)φ̂+ %−2F ′′(y)pL∗0(φ̂)

Then is possible to write the above equation

L∗F ′(y)

(
ζ̂
)

= %2(y − yd)1Qd − F ′(y)φ̂− %−2F ′′(y)pL∗0(φ̂)

with ζ̂(T ) = 0. Takes the desired form (2.10.5). Recall equation (2.10) and use the fact that
ψ = L∗0(ζ̂ + φ̂) and the equality G∗(L∗0(ζ̂ + φ̂)) = ∂η(ζ̂ + φ̂) the

v = −%−2
∗

∞∑
j=1

1

1 + λj
〈G∗(ψ)χσ, wj〉wj

= −%−2
∗

∞∑
j=1

1

1 + λj

〈
(∂η(ζ̂ + φ̂)χσ, wj

〉
L2(σ)

wj

From the fourth equation of (2.10.7) and for q ∈ P then
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∫
Q

(N ∗(ϕ1γ)− LF ′(y)(%
−2φ))q dxdt

=
∫
γ×(0,T )

%−2
0 ∂ηqϕ dΣ−

∫
Q
%−2φL∗F ′(y)(q) dxdt+

∫
Σ
%−2

=

∫
γ×(0,T )

%−2
0 ∂ηqG

∗(ψ) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηqG

∗(L∗0(ψ̂)) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηq∂ηψ̂ dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

= 0

But ψ̂ = ζ̂ + φ̂ then∫
γ×(0,T )

%−2
0 ∂ηq∂η(ζ̂ + φ̂) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt = 0

Then the proof is done.

2.11 Appendix. Bump extension and existence of the follower.
In this section we will consider different Carleman inequalities in a extended domain. The argument
follows from the ideas developed in [FC97]. With the extension methods it is possible to construct
a follower control that fulfils his role of controlling to zero but will not be possible to characterise it
as done in Proposition 2.10.2 because is depends of the extension chosen.

Lemma 2.11.1. Let G an open set. There exists functions %0 %1 and %2 in C2 in the set G × (0, T ) and a
constant s0 such that for any s ≥ s0 and a constant C such that the following inequality holds

s−1

∫
G×(0,T )

%−2
0

(
|qt|2 + |∆q|2

)
+ s%−2|∇q|2 + s3%−2s

2 |q|2 dxdt ≤

C

∫
G×(0,T )

%−2s
0 |qt + ∆q − ãq|2 dxdt

Lemma 2.11.2. Given a control v1ω inL2(Q). Then there exist a follower control h[v]1γ inL2(0, T,H3/2(Ω))
and a solution y in L2(0, T ;H2(Ω)) such that the null controllability problem

ut −∆u+ au = v1ω in Q
u = h[v]1γ in Σ
u(0) = u(T ) = 0 in Ω

and the estimates holds

‖y‖L2(0,T ;H2(Ω)) + ‖yt‖L2(Q) ≤ C
(
1 + ‖a‖L∞(Q)

)
‖v‖L2(ω×(0,T )
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Proof. The idea of the proof is to make null controllability in an enlarged open set of Ω × (0, T ).
Extending to a bigger set, allows to include the boundary control γ in in bigger set and apply a
inner controllability method. Then by trace theorems restrict the extended solution to the desired
boundary.

Let G an open set such that Γ/γ ⊂ ∂G. Take a open neighbourhood B0 for Γ/γ in the relative
topology and define B1 = ∂G/B0. There is a "bump" in the boundary γ as shown in 2.1.

Figure 2.1: γ ⊂ Γ is the red arc GI and B0 is the green arc GKI

Under the above hypothesis the next lemma holds.

Lemma 2.11.3. There exist a positive function ρ0 in C2(Ḡ) such that the gradient ∇ρ0 6= 0 in all Ḡ and
negative directional derivative∂ηρ0 on B0.

Define the set P = {q ∈ C2(G× (0, T ) : q|∂G×(0,T ) = 0, ∂ηq|B0×(0,T ) = 0}.
and define the bilinear form

B(ã, p, q) =

∫
G×(0,T )

ρ−2L∗ã(p)L
∗
ã(q)

and
`k̃(q) =

∫
G×(0,T )

(k̃ + v1ω)q

The bilinear form B induces a semi-norm in P0 defined by ||p||P0 := B(p, p)
1
2 . Furthermore by

Carleman inequality from Theorem (2.11.1) that ‖p‖P0 = 0 implies p = 0 then the semi-norm ‖ · ‖P′
induces a norm ‖ · ‖P0 . Is possible to define (P ; ‖ · ‖P) the closure of P0 under this norm. Now is
possible to verify the continuity of `k̃ making the estimate

|`k̃(q)| ≤
(∫

G×(0,T )

ρ2|k̃ + v1ω|2
) 1

2
(∫

G×(0,T )

ρ−2|q|2
) 1

2

≤ C(T,B0)‖p‖
1
2
P

By Lax-Milgram theorem exist a p in P that for any p′ in P∫
G×(0,T )

ρ−2L∗ã(p)L
∗
ã(q) =

∫
G×(0,T )

(k̃ + v1ω)q (2.11.1)
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Define the extended solution w̃ = ρ−2(pt+∆p+ ãp). FromCarleman inequality is possible to deduce
that w̃ is in L2(G× (0, T )) and is possible to get the estimate

‖w̃‖L2(G×(0,T )) ≤ C‖k̃ + v1ω‖L2(Q)

1. First comes the the prove that w̃t −∆w̃ + ãw̃ = k̃ . Take a distribution ψ in D(G × (0, T )). Then
having in mind that w̃ = ρ−2(pt + ∆p+ ãp) and the boundary conditions with integration by parts∫

G×(0,T )

(w̃t −∆w̃ + ãw̃)ψ =

∫
G×(0,T )

ρ−2L∗ã(p)L
∗
ã(ψ)

but because p solves (2.11.1) for any q in particular for q = ψ then∫
G×(0,T )

(w̃t −∆w̃ + ãw̃)ψ =

∫
G×(0,T )

k̃ψ

and the desired equality w̃t−∆w̃+ ãw̃ = k̃ is valid. By hypothesis in k̃ and definition of w̃ is possible
to deduce that w̃ ∈ L2(G× (0, T )) and w̃t ∈ L2(0, T ;H−2(Ω)) then by interpolation is possible to get
C0(0, T ;H−1(Ω)).

2. Take a function ψ = ψ1ψ2 where ψ1 ∈ D(Ḡ) and ψ1 in C2(0, T ). Using the fact that w̃t −∆w̃ +

ãw̃ = k̃ the∫
G×(0,T )

(k̃ + v1ω) dxdt =

∫
G×(0,T )

(w̃t −∆w̃ + ãw̃)ψ

=

∫
G×(0,T )

w̃(−ψt −∆ψ + ãψ)dxdt+ w̃(T )ψ(T )− w̃(0)ψ(0).

Also ∫
G×(0,T )

(k̃ + v1ω)ψ dxdt =

∫
G×(0,T )

w̃(ψt −∆ψ + ãψ).

Choosing an arbitrary ψ in C2(0, T ) is possible to conclude that w̃(0) = w̃(T ) = 0 in H−1(G).
This result is natural to expect because the behaviour of the weight ρ−2 near T and the fact that is a
L2(G× (0, T )).

3. The solution w̃ ∈ L2(0, T ;L2(G)) and∆w̃ = k̃+v1ω−ãw̃−w̃t andbecause w̃t ∈ H−1(0, T ;L2(G)∩
L2(0, T ;H−2(Ω)) then the Laplacian ∆w̃ ∈ H−1(0, T ;L2(G)). The trace operator γ0 exist and γ0(w̃)

in L2
(

0, T ;H
1
2 (∂G)

)
. This conclusion will be useful to make integration by parts. Take a function

φ = φ1φ2 with φ1 in C2(Ḡ) and φ2 in D(0, T ). Then∫
G×(0,T )

(k̃ + v1ω)φ =

∫
G×(0,T )

(w̃t −∆w̃ + ãw̃)φ

=

∫
G×(0,T )

w̃(φt −∆φ+ ãφ) + 〈w̃, ∂ηφ〉

The arbitrary election of φ allows to conclude that γw̃ = 0. From the three steps done above it
is possible to conclude that existence of a function w̃ in C0(0, T ;H−1(G)) ∩ L2(G × (0, T )) such the
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initial boundary value problem

w̃t −∆w̃ + ãw̃ = k̃ + v1ω in G× (0, T )
w̃ = 0 in B0 × (0, T )
w̃(0) = w̃(T ) = 0 in G

is solved.
4. The next step is to get information in γ control boundary. Take a cut-off function β0 in C∞(Ḡ)

such that the support sup β0 ⊂ G ∪ B0 and β0 = 1 in a neighbourhood of Ω with 0 ≤ β0 ≤ 1. Then
define w̃0 = β0w̃. Moreover it fulfils the equation

∂tw̃0 −∆w̃0 + ãw̃0 = f̃0 in G× (0, T )
w̃0 = 0 in B0 × (0, T )
w̃0(0) = w̃0(T ) = 0 in G

where f̃0 = β0(k̃+v1ω)−2∇β0∇w̃+ w̃∆β0w̃. Now by the last results one gets w̃ ∈ C0(0, T ;H−1(Ω))∩
L2(G× (0, T )) and the Laplacian ∆w̃ ∈ L2(G× (0, T )) and the gradient∇w̃ ∈ L2(0, T ;H−1(G) then
f̃0 is in L2(0, T ;H−1(G)). By the regularity of f̃0 the solution w̃0 ∈ L2(0, T ;H1

0 (G))∩C1(0, T ;L2(G)).
And then is possible to restrict w̃0 in Ω to get w ∈ L2(0, T ;H1(Ω)) ∩ C1(0, T ;L2(Ω)). By the last
statements the trace operator exist and then makes sense to define h1γ := w̃1γ such that together
with continuity in the interval [0, T ] one gets w(T ) = 0 and fulfils the equation (2.11.2).

5. The next step is to compute estimates for the solution. Take now a second cut off function β1

that β1 = 1 in a neighbourhood of Ω and has support in the set where β0 = 1. Make the same steps
as before, define w̃1 = β1w̃ . Then this solves the system

∂tw̃1 −∆w̃1 + ãw̃1 = f̃1 in G× (0, T )
w̃1 = 0 in B1 × (0, T )
w̃1(0) = w̃1(T ) = 0 in G

where the function f̃1 = β1(k̃ + v1ω) − 2∇β1∇w̃0 + w̃0∆β1. By definition of the cut off function
β1 is possible to see that w̃1 = β1w̃0 By regularity of w̃0 then f̃1 ∈ L2(G × (0, T )) and then w̃1 ∈
L2(0, T ;H2(Ω)) ∩ C(0, T ;H1

0 (Ω)) and because ∂tw̃1 = f̃1 + ∆w̃1 − ãw̃1 then ∂tw̃1 ∈ L2(G × (0, T )).
Then the trace operator tr ace operator H2(Ω) −! H3/2(Ω) exists and by energy estimates

‖w̃1‖L2(0,T ;H2(Ω)) + ‖w̃1‖L2(0,T ;H1
0 (Ω) + ‖∂tw̃1‖L2(G×(0,T )) ≤ C‖k̃‖L2(G×(0,T ))

The restriction of w̃1 to Ω induces that w ∈ L2(0, T ;H2(Ω)) ∩ C(0, T ;H1
0 (Ω)) and then is possible to

get the inequalities

‖w̃1‖L2(0,T ;H2(Ω)) + ‖w̃1‖L2(0,T ;H1
0 (Ω) + ‖∂tw̃1‖L2(G×(0,T )) ≤ C‖k̃‖L2(Ω×(0,T )).

Moreover the ‖h1γ‖H3/2(Σ) ≤ C‖w‖L2(0,T ;H2(Ω).
Consider the solution y to the system (2.2.1). Define w in L2(0, T ;H1(Ω)) the solution to the

system
wt −∆w + au = 0 in Q
w = 0 inΣ;u(0) = y0 in Ω

Then by results of Theorem 2.11.2 and the fact that yt ∈ L2(0, T ;H−1(Ω)) is possible to deduce that
y = w + u in L2(0, T ;H1

0 Ω)) ∩ C(0, T ;L2(Ω)) where u is a solution to equation (2.11.2). Moreover,
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w is bounded by ‖w‖L2(0,T ;H1(Ω) ≤ Ce‖a‖L∞(Q) then is possible to infer that by estimates (2.11.2) the
solution y is uniformly bounded in L2(0, T ;H1

0 Ω)) ∩ C(0, T ;L2(Ω)).

The result shown in 2.11.2 give the existence of at least one follower null control in the boundary
that depends in the election of the extensionG for the set Ω× (0, T ). An explicit form of the follower
control is required and it will be computed via a minimisation problem.

2.12 Proof of lemma 2.11.1.
The proof of the non local Carleman inequality is given here.

Consider the weight functions given by

σ(t, x) =
α(t, x)

`(t)

where the function ` is defined as t(T − t) in ([T/2, 0] and `(t) = T/2 in [0, T/2].
Let q in the set P and take ψ = %−2q where the scalar s is sufficient large. Split the

P1ψ + P2ψ = %−s(qt + ∆q − ãq − (s∆ϕ)− ã)ψ

Nos compute the L2(G× (0, T )) norm of the of the operator P1ψ+P2ψ. Is necessary to estimate
‖P1ψ‖L2(GT ) , ‖P1ψ‖L2(GT ) and 〈Pψ,P2〉L2(Ω).

1. Estimate for 〈P1ψ,P2ψ〉L2(Ω). By definition of the operator P1 andP2

〈P1ψ,P2ψ〉L2(Ω) =

∫
GT

(ψt + 2s∇ϕ∇ψ)
(
∆ψ + s2|∇ϕ|2ψ + sϕtψ

)
dxdt

=

∫
G

ψt∆ψ + s2

∫
ψtψ|∇ϕ|2 dxdt+

∫
G×(0,T )

ψtϕtψ dxdt+ 2s

∫
∆ψ∇ϕ∇ψ dxdt

+2s3

∫
|∇ϕ|2∇ϕ∇ψ dxdt+ 2s2

∫
G×(0,T )

ϕtψ∇ϕ∇ψ dxdt

Now is necessary to estimate each of the integrals in the above equation. The basic idea to follow
is that the function ϕ is a well know function, so all the derivates as is possible should pass from ψ
to the remain function ϕ. Following this spirit∫

G

ψt∆ψ dxdt =

∫
GT

∂t|∇ψ|2 dxdt

Integrating by parts∫
G×(0,T )

ψt|∇ϕ|2 dxdt =

∫
G×(0,T )

(
−∂i∂jϕ+

1

2
(∆ϕ)δij

)
+

∫
Σ0

∂ηϕ|∂ηψ|2 dΣ

Now ∫
ψtψ|∇ϕ|2 dxdt = −1

2

∫
G×(0,T )

|ψ|2∂t|∇ϕ|2

and
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∫
G×(0,T )

ψtϕtψ dxdt = −1

2

∫
G×(0,T )

ϕtt|ψ|2 dxdt

and ∫
G×(0,T )

ϕtψ(∇ϕ · ∇ψ) dxdt =

∫
G×(0,T )

(ϕt∆ϕ+∇ϕt · ∇ϕ) |ψ|2 dxdt

The next step is to estimate the therm ∂i,jϕ(∂iϕ∂jϕ). Is easy to calculate the the minimum of the
function `(t) has a minimum in T/2. Then having this in mind is possible to get

∂i,jϕ(∂iϕ∂jϕ) =
λ3e−3λ(2‖η0‖∞)+η0)

t3(T − t)3

(
∂i,jη0 + λ(∂iη0)(∂jη0)

)
(∂iη0)(∂jη0)

=
T 6

64
λ3e−3λ(2‖η0‖∞)+η0)

(
|∇ϕ|3 + λ|∇ϕ|3

)
Denote by C(T, λ) = T 6

64
λ3e−3λ(2‖η0‖∞)+η0). Then is possible to estimate

|ϕtt|+ |∂iϕt∂iϕ|+ |ϕt∆ϕ|+ |∆2ϕ| ≤ |∇ϕ|3

Then estimate the terms that contain each of the expression above so

s

∫
G×(0,T )

ϕtt|ψ|2 dxdt +2s2
∫
G×(0,T )

(2∇ϕt · ∇ϕ+ ϕt∇ϕ) |ψ|2 dxdt

≤ Cs2

∫
G×(0,T )

(|ϕtt|+ |2∇ϕt · ∇ϕ+ ϕt∇ϕ|) |ψ|2 dxdt

≤ Cs2

∫
G×(0,T )

|∇ϕ|3|ψ|2 dxdt

Then from estimate (2.12) is possible to get

‖P1ψ‖2
L2(G) +‖P2ψ‖2

L2(G) ≤ As3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2 dxdt+ As3

∫
G×(0,T )

|∇ϕ|3|ψ|2 dxdt

≤ ‖%−sw‖2
L2(G) + 4s

∫
G×(0,T )

(∂ijϕ)∂iψ∂jψ dxdt

−2

∫
G×(0,T )

(
s∆ϕ|∇ψ|2 − s3∆ϕ|∇ϕ|2|ψ|2 dxdt

)
The last integral in the above inequality can be computed by integration by parts as

2

∫
G×(0,T )

(
s∆ϕ|∇ψ|2 − s3∆ϕ|∇ϕ|2|ψ|2

)
dxdt = s

∫
G×(0,T )

(P1ψ − %−sw + (s(∆ϕ)− ã)ψ)ψ∆ϕ

+
s

2

∫
G×(0,T )

|ψ|2∆2ϕ+ s3

∫
G×(0,T )

ϕt∆ϕ|ψ|2
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Now using inequality (2.12) and Young inequality for the terms P1ψ the right hand side of (2.12)
denoted by I is bounded by

I ≤
∫
G×(0,T )

s |P1ψ − ws|ψ∆ϕdxdt∫
G×(0,T )

s

2
∆2ϕ|ψ|2 + s2ϕt∆ϕ|ψ|2 + s

(
(s∆ϕ− ã)|ψ|2∆ϕ

)
1

2
‖P1ψ‖2 +

1

2
‖ws‖2 +

∫
G×(0,T )

(s
2

∆2ϕ+ s2ϕt∆ϕ|ψ|2 + s(s∆ϕ− ã)∆ϕ
)
dxdt

1

2
‖P1ψ‖2 +

1

2
‖ws‖2 +

∫
G×(0,T )

(
s|∆2ϕ|+ s2|∇ϕ|+ s2|∆ϕ|2 + |ã|2

)
|ψ|2 dxdt

Recall the inequality (2.12) so taking s ≥ s3 + s4‖ã‖2/3:

‖P1ψ‖2 + ‖P2ψ‖2

+As3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2 dxdt+ As3

∫
G×(0,T )

|∇ϕ|2 dxdt

≤ C‖ws‖2 + 4s

∫
G×(0,T )

(∂ijϕ)∂iψ∂jψ dxdt

Then is possible to find some s5 such that for any s ≥ s5

‖P2ψ‖2 + As3

∫
G×(0,T )

|∇ϕ|3|ψ|2 ≥ A

s

∫
G×(0,T )

|∇ϕ|−1|∆ψ|2 dxdt

Invoking Young inequality and integration by parts is ossible to get

sλ1/2

∫
G×(0,T )

|∇ϕ||∇ψ|2 dxdt = sλ1/2

∫
G×(0,T )

|∇ϕ|∇ψ · ∇ψ| dxdts =

= λ1/2

∫
G×(0,T )

−|∇ϕ|−1ψ∆ψ dxdt− 1

2
sλ1/2

∫
G×(0,T )

∇(ψ2)∇|∇ϕ| dxdt

=

∫
G×(0,T )

(
−s−1/2|∇ϕ|−1/2∆ϕ

) (
s3/2λ1/2|∇ϕ|3/2ψ

)
dxdt− 1

2
sλ1/2

∫
G×(0,T )

∇(ψ2)∇|∇ϕ| dxdt

≤ 1

2s

∫
G×(0,T )

|∇ϕ|−1|∆ψ|2 dxdt+
1

2
s3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2 +
1

2
sλ1/2

∫
G×(0,T )

∆(∇ϕ||ψ|2 dxdt

The is possible to deduce from above equation that

sλ1/2

∫
G×(0,T )

|∇ϕ||∇ψ|2 dxdt ≤ 1

2s

∫
G×(0,T )

|∇ϕ|−1|∆ψ|2 dxdt+
1

2
s3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2

Combining equations (2.12) and (2.12) and taking s ≥ s6 + s4‖a‖2/3 gets and λ ≥ λ1 then

‖P2ψ‖2
L2(Q) +

1

s

∫
G×(0,T )

|∇ϕ|2|∇ψ|2

+sλ1/2

∫
G×(0,T )

|∇ϕ||∇ψ|2 + s3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2

≤ C‖Fs‖2 + Cs

∫
G×(0,T )

∂ijϕ∂iϕ∂iϕ
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The integralCs
∫
G×(0,T )

∂ijϕ∂iϕ∂iϕ can be controlled by the integral s3λ
∫
G×(0,T )

|∇ϕ|3|ψ|2 si choos-
ing λ large enough the above inequality takes the form

‖P2ψ‖2
L2(Q) +

1

s

∫
G×(0,T )

|∇ϕ|2|∇ψ|2

+sλ1/2

∫
G×(0,T )

|∇ϕ||∇ψ|2 + s3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2

≤ C‖Fs‖2

Recall that P1ψ = ψy − 2s∇ψ · ∇ϕ and then

1
s

∫
G×(0,T )

|∇ϕ|−1|ϕt|2 = 1
s

∫
G×(0,T )

|∇ϕ|−1 (P1ψ + 2s∇ψ · ∇ϕ) dxdt

‖P1ψ‖2
L2(Q) + Cs

∫
G×(0,T )

|∇ϕ|3|ψ|2

and
A

s

∫
G×(0,T )

|∇ϕ|−1|ϕt|2 ≤ ‖P1ψ‖2 + s

∫
G×(0,T )

|∇ϕ||∇ψ|2 dxdt

Then

C‖Fs‖2 ≤ ‖P2ψ‖2
L2(Q) +

1

s

∫
G×(0,T )

|∇ϕ|2|∇ψ|2

+sλ1/2

∫
G×(0,T )

|∇ϕ||∇ψ|2 + s3λ

∫
G×(0,T )

|∇ϕ|3|ψ|2

≤
∫
G×(0,T )

|∇ϕ|−1
(
|ψt|2 + |∆ψ|2

)
+ s

∫
G×(0,T )

|∇ϕ||∇ψ|2 + s3

∫
G×(0,T )

|∇ϕ|3|ψ|2 dxdt

for some s ≥ s7 + s4‖a‖2/3. Then replacing ψ = ρ−sq is possible to get the desired inequality.



80



Chapter 3

Hierarchical control problem for the wave
equation

This paper has the main purpose to solve the exact controllability problem and the optimal control
problem in the same way for the non linear wave equation. Existence is not the only aim for this
study but also compute explicit expression for the solutions. From classical theory of control for
hyperbolic equations it is well know how to solve exact controllability problems for one control in
an open set of the definition region and also for boundary controls as is done in [LM12] and [Lio88].

Is possible see quite natural to set the casewheremore than one control is involved. A reasonable
point of view to give a meaning for the controls are for example sources of energy that will change
the physics of the wave i.e the energy, the frequency and amplitude. Each control function has a
role assigned so we consider multi-objective or hierarchical control problems.

The main idea to solve this problem i to work with the leader control and then with the fol-
lower(s) control(s). Given a leader control the corresponding follower(s) should solve an exact con-
trollability problem(that will be equivalent to optimise a functional). Although the interpretation
of the wave equation is entirely physical the role of the controls has a social background viewed as
players in a game that take particular objectives and should cooperate or not between them.

3.1 Statement of the Hierarchical control problem for the semi-
linear wave equation

Let Ω be an open set in Rn with boundary Γ, an open subset ω ⊂ Ω and an open subset γ ⊂ Γ in the
relative topology. Define the cylinderQ = Ω× (0, T ) and its boundary Σ = Γ× (0, T ). Consider the
initial value problem with initial conditions (y0, y1) ∈ L2(Ω)×H−1(Ω) given by

ytt −∆y + F (y) = v1ω in Q
y = f1γ in Σ
y(0) = y0, yt(0) = y1 in Ω

(3.1.1)

where the functions v and f are defined in appropriate Banach spaces.
For suitable functions %0, % defined in Q define the weighted spaces

Y = {y : %y ∈ L2(Q)}; V = {v : %0v ∈ L2(ω × (0, T ))}
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Given two states (ȳ0, ȳ1) ∈ L2(Ω) ×H−1(Ω) and v ∈ V we say that f solves the exact controllability
problem if

(y(T ), yt(T )) = (ȳ0, ȳ1) (3.1.2)

F(T, v, y0, y1) = {f : %0f ∈ L2(γ × (0, T ))| y solves (3.1.2)}.

and define the set of admissible controls given by
If there is no confusion the set F(T, v, y0, y1) will be denoted by F .
Define the natural weighted L2 norms in each set and set the Hilbert spaces (F , ‖ ·‖F), (Y , ‖ ·‖Y),

(V , ‖ · ‖V).
The hierarchical control problem is described here:
1. Given a leader control v ∈ V give conditions on γ and T > 0 such that it exists an associated

follower control f [v] in F called follower control such that for a pair (ȳ0, ȳ1) ∈ L2(Ω)×H−1(Ω) the
solution y to (3.1.1) satisfies (y(T ), yt(T )) = (ȳ0, ȳ1).

2. Find a leader control v̂ in V such that it solves the optimisation problem

P (v̂; f̂ [v]) = inf
(v,f)∈V×F

(
α

2

∫
Q

|y − yd|2 +
1

2

∫
ω×(0,T )

%2
0|v|2

)
(3.1.3)

where yd is a real function defined on Qd = Ωd × (0, T ) with Ωd ⊂ Ω an open set and yd ∈ L2(Qd).
What conditions should follow the control time T ?. The control time T and the control region γ

should be chosen properly in order to satisfy geometric optics condition (GOC) for hyperbolic oper-
ators established by Bardos, Lebeau and Rauch in [BLR92] that asserts that all rays of the geometric
optics in Ω must enter the sub-domain γ at the control time T > 0.

There are several motivations to formulate hierarchical control problems for wave equations.

1. In electrodynamics the natural equation that describe the electromagnetic field is given by
]Maxwell equations. this set of equations take the form

1

c2

∂2E

∂t2
−∆E = 0;

1

c2

∂2B

∂t2
−∆B = 0.

Naturally arise boundary conditions of the form η · (D1 − D2) = ρs where ρs is the surface
density. The control region γ can be seen as an electric potential source in the boundary. The
exact controlability problem (3.1.2) can be interpreted as a for to get a desirable magnetic state.

2. In theoretical physics Klein-Gordon equation (∂2
t −∆ + m)ψ = 0 is the relativistic version of

Schödringer equation and has the structure of the wave equation. Certain problems in the-
oretical physics require boundary data for this equation. The function ψ gives the quantum
states of a particle. The exact controllability problem for the quantum state ψ could be inter-
preted as trying to reach this solution to a particular state of the particle. By the other case
the optimal control could be see as trying to minimize the momentum tensor momentum ten-
sor

∫
Ω×(0,T )

T dx where T = ∂L
∂ψ
ψ − L is the momentum tensor and L is the Lagrangian of the

system.
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3. Earthquackes are modeled basically with the ellastic equations which is a wave equation. Un-
dertsan this equation is simportant tomake acurate computations about impact of earthquakes
around the world.

Among the sets (and times) that verify the (GOC) there are a class of sets where Carleman esti-
mates can be performed. All along this chapter we will work on them. To this end, we consider ν
the outside normal vector to the boundary Ω. Given a point x0 in the euclidean space with x0 /∈ Ω
we define

Γ(x0) := {x ∈ Γ : (x− x0) · ν > 0}.

Our geometrical condition (GC) is the following: We assume that it exists x0 such that Γ(x0) ⊂ γ.
Under the (GC) we define R = supx∈Ω̄ |x− x0|. Assume that T > R. We consider the function

ψ(t, x) = |x− x0|2 −
1

c

(
t− T

2

)2

where c > 0 is a constant such that (
R

T

)2

< c <
R

T

For a positive scalar λ define the function

ϕ(t, x) = eλψ(t,x). (3.1.4)

Define the weight function % ∈ C∞(Q) by %(t, x) = e−sϕ, %0 := s−1/2% and %1 = s−3/2% where ϕ is
given in (3.1.4). The next result can be found in [BDBE13].

Theorem 3.1.1. Suppose that the geometric condition holds (GC) and that T > R . Let u ∈ L2(0, T ;H1
0 (Ω)),

utt −∆u ∈ L2(Q) and ∂ηu ∈ L2(Σ). Then there exist positive constants s0 and λ0 such that for any λ ≥ λ0

and s ≥ s0 the following Carleman inequality holds∫
Q

%−2
1

(
|ut|2 + |∇u|2

)
dxdt+

∫
Q

%−2
0 |u|2 dxdt

≤ C

∫
Q

%−2|utt −∆u|2 dxdt+ C

∫
γ×(0,T )

%−2
1 |∂ηu|2 dΣ.

(3.1.5)

Remark 2. Note this important observation. Carleman inequality implies that if p ∈ P then pt, ∇p and p
are integrable in [0, T ] because the weight functions %0, %1, % are bounded and of class C∞(Q) with the norm
depending on λ and s. Moreover, the min inf t,x{%0, %1, %} ≥ β > 0 with β = β(λ, s, T, x0). In this section
we maintain this weights to see the similarities with the work done in the previous sections. In the next lines
denoteX = L2(Ω)×H−1(Ω) andX∗ = H1

0 (Ω)×L2(Ω) its dual space, and< ·, · >X×X∗ its duality pairing.

Given a ∈ L∞(Q) denote by La = ∂tt−∆ + a the wave operator with potential. Define the space
P0 = {p ∈ C2(Q) : p = 0 onΣ} and the bilinear form on P0 given by

m(a; p, q) :=

∫
Q

%−2La(p)La(q) dxdt+

∫
γ×(0,T )

%−2
1 ∂νp ∂νq dΣ
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and the linear form

`v(p) :=

∫
O×(0,T )

vp dxdt+ 〈(y0, y1), (p(0), pt(0))〉X×X∗ − 〈(ȳ0, ȳ1), (p(T ), pt(T ))〉X×X∗

Due to the Carleman inequality 3.1.5 the bilinear formm(a, ·, ·) induces a norm in P0 as ‖p‖P0 =
m(0, p, p)1/2. Moreover it is possible to take the closure of P0 under ‖ ·‖P0 to define the Banach space
(P , ‖ · ‖P). Exists constants K0, K1 such that

K0m(0, p, p) ≤ m(a, p, p) ≤ K1m(0, p, p) (3.1.6)
As a remark he normal derivate in the space P exist following the same ideas done in Chapter 2. So
the proof is not going to be done again.

3.2 Proof of Carleman inequality
The proof of Carleman inequality (3.1.5) for T > R is based on a Carleman inequality for arbitrary
time T . We give here the proof for T > R to stand out the importance of the geometric condition
(GC) and of the minimum control time. We are going to give a series of lemmas (see [BDBE13]).

Lemma 3.2.1 (Carleman inequality for arbitrary time T ). Let u ∈ L2(0, T ;H1
0 (Ω)) with utt − ∆u ∈

L2(Q) and ∂ηu ∈ L2(Σ). Assume that ut and u vanish in both sides of (0, T ). Assume that the geometric
condition holds. Let ϕ and ψ be the weight functions defined in (3.1). Given a positive constant c ∈ (0, 1) it
exist positive λ0 and s0 such that for any s ≥ s0 and λ ≥ λ0,

sλ

∫
Q

ϕe2sϕ
(
|ut|2 + |∇u|2

)
dxdt+ s3λ3

∫
Q

ϕ3e2sϕ|u|2 dxdt+

∫
Q

|L0(e2sϕu)|2 dxdt

≤ C

∫
Q

e2sϕ|utt −∆u|2 dxdt+ Cs

∫
Σ

e2sϕ|∂ηu|2 dxdt.

Lemma 3.2.2 (Weighted Poincaré inequalities). Let % ∈ C2(Ω̄) and assume that infx∈Ω |∇%| > δ. Then
there exist s0 > 0 andM > 0 such that for any s ≥ s0 and for any u in H1

0 (Ω) it is true that

s2

∫
Ω

e2s%|u|2 dx ≤M

∫
Ω

e2s%|∇u|2 dx

Proof. First observe that
∇
(
e2s%∇%

)
= e2s%∆%+ 2se2s%|∇%|2

Considering that u = 0 in the boundary possible to write

s

∫
Ω

e2s%|u|2|∇%|2 dx =
1

2

∫
Ω

|u|2
(
∇(e2s%∇%)− e2s%∆%

)
dx

= −
∫

Ω

e2s%u(∇u · ∇%) dx− 1

2

∫
Ω

e2s%|u|2∆% dx
(3.2.1)

By hypotheses |∇%| > 0 in Ω, then the above inequality implies

−
∫

Ω

e2s%u(∇u · ∇%) dx− 1

2

∫
Ω

e2s%|u|2∆% dx > 0
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On the other hand, since infx∈Ω |∇ρ| > δ it exists N ∈ N such that

Ns

∫
Ω

e2s%|u|2|∇%|2 ≥ −s
∫

Ω

e2s%|u|2∆% dx

Then from equation (3.2.1) and the above inequality it is possible to bound

s2

∫
Ω

e2s%|u|2|∇%|2 dx ≤ −s
∫

Ω

e2s%u(∇u · ∇%) dx+Ns

∫
Ω

e2s%|u|2|∇%|2

Taking s sufficient large (s > N ) the second term in the right hand side from (3.2) can be absorbed
1 to the right hand side, then

s2

∫
Ω

e2s%|u|2|∇%|2 dx ≤ −s
∫

Ω

e2s%u(∇u · ∇%) dx

≤
(
s2

∫
Ω

e2s%|u|2|∇%|2 dx
) 1

2
(∫

Ω

e2s%|∇u|2
) 1

2

.

and the lemma is proved withM = 1
δ2 .

Proof of Theorem 3.1.1 . Let the cut off function ξ inC∞(0, T ) that ξ = 1 in the interval (T/2−εT, T/2+
εT ) and ξ = 0 outside the interval (0, T ). Define the cut function w = ξu which w(0) = w(T ) = 0 i.e
that fulfils the hypothesis to apply the Carleman inequality (3.2.1). Then

s

∫
Q

e2sϕ
(
|wt|2 + |∇w|2

)
dxdt+ s3

∫
Q

e2sϕ|w|2 dxdt

≤ C

∫
Q

e2sϕ|wtt −∆w|2 dxdt+ Cs

∫
Σ

e2sϕ|∂ηw|2 dΣ

It is necessary to write the above integral in terms of the function u . By simple computations
wtt−∆w = ξ(utt−∆u) + 2ξtut + uξtt . By definition of ξ the function ξt and ξtt has compact support
in the interval (0, T/2− εT ) ∪ (T/2 + εT, T )) and using Poincaré inequality, we get∫

Q

e2sϕ|wtt −∆w|2 dxdt ≤
∫
Q

e2sϕ|ξ|2 (utt −∆u)2 dxdt

+C

(∫ −εT+T
2

0

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

)
dxdt+

∫ T

T
2

+εT

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

))
.

Replacing the above equality in (3.2)

s

∫ T/2+εT

−εT+T/2

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

)
dxdt+ s3

∫ T/2+εT

−εT+T/2

∫
Ω

e2sϕ|u|2 dxdt

≤ C

∫
Q

e2sϕ|utt −∆u|2 dxdt+ Cs

∫
Σ

e2sϕ|∂ηu|2 dΣ

+C

(∫ T
2
−εT

0

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

)
+

∫ T

T
2

+εT

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

))
1Understand absorb if for α, β > 0 in an inequality αA ≤ B + βA if β < α then (α− β)A ≤ B .
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The last two terms of the left hand side of the above inequality should be absorbed in the right
hand side, to this end define the weighted energy E ∈ C1(0, T ) (depending on s) in the form

Eϕ(t) =
1

2

∫
Q

e2sϕ(t)
(
|ut(t)|2 + |∇u(t)|2

)
dx

Observe that the last two therms from (3.2) has the form of the energy Eϕ(t).

Ėϕ(t) =

∫
Ω

sϕte
2sϕ
(
|ut|2 + |∇u|2

)
dxdt+

∫
Ω

e2sϕ (ututt +∇u · ∇ut) dxdt

integrating by part the last term, one gets∫
Ω

e2sϕut(utt −∆u) dxdt = Ėϕ(t)− s
∫

Ω

ϕte
2sϕ
(
|ut|2 + |∇u|2

)
dxdt

+2s

∫
Ω

e2sϕut(∇ϕ · ∇u) dxdt
(3.2.2)

1. The objective of this step is to estimate the integrals in the interval (T
2

+ εT, T ). Thanks to Young
inequality it is possible to get the estimate∫

Ω

e2sϕut(utt −∆u) dx ≥ Ėϕ(t)− s
∫

Ω

e2sϕ (ϕt + |∇ϕ|)
(
|ut|2 + |∇u|2

)
dxdt

Because the second term on the right hand side is negative it is necessary to estimate the term
− (ϕt + |∇ϕ|) from below. Observe that by the geometric condition (1− ε)|ϕt| ≥ supx∈Ω |∇ϕ| for any
t ∈ (0, T/2− εT ) ∪ (T/2 + εT, T ) and some ε ∈ (0, 1/2). In the interval (T/2 + εT, T ) one can see

inf
x∈Ω
−(ϕt + |∇ϕ|) ≥ inf

x∈Ω
−ε∂tϕ ≥

2

c
εTeλψ ≥ 2

c
εT > 0.

Define c∗ = 2
c
εT . and the above inferior bound in (3.2.2) directly one gets∫

Ω

e2sϕut(utt −∆u) dx ≥ Ėϕ(t) + sc∗

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

)
dx

Now apply the Young inequality 2ab ≤ ( sc∗
2

)a2 + 2b2

sc∗
for s > 0 and estimate the right hand side

of (3.2) to get ∫
Ω

e2sϕut(utt −∆u) dx ≤ c∗s

2

∫
Ω

e2sϕ|ut|2 dx+
2

c∗s

∫
Ω

e2sϕ|utt −∆u|2 dx

then inequality (3.2) takes the form of an ordinary differential equation (inequality) in the energy
function like

Ėϕ(t) + sc∗Eϕ(t) ≤ c∗s

2

∫
Ω

e2sϕ|ut|2 dx+
2

c∗s

∫
Ω

e2sϕ|utt −∆u|2 dx

and the second term in the right hand of the high up inequality can be absorbed to the energy E
then (3.2) change to

Ėϕ(t) + sc∗Eϕ(t) ≤ +
2

c∗s

∫
Ω

e2sϕ|utt −∆u|2 dx
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Denote T1 = T/2 + εT .Call to the well know Gronwall inequality to solve the equation 3.2 and it
shows that for t ∈ (T/2 + εT, T )

Eϕ(t) ≤ esc∗(T1−t)Eϕ(T1) +

∫ t

T1

2e−sc∗(τ−t)

sc∗

∫
Ω

e2sϕ(τ)|utt −∆u|2 dxdτ

= e−sc∗(t−T1)Eϕ(T1) +
2

sc∗

∫ T

T1

∫
Ω

e2sϕ(τ)|utt −∆u|2 dxdτ

Remember that the objective is to absorb the third term in the right hand side of inequality (3.2).
The first integral in the right hand side is integrable and denoteM :=

∫ T
0
esC∗(T1−t) dt. then making

upper bounds for the energy Integrate the energy inequality (3.2) in the interval (T ′1, T ) to get∫ T

T1

Eϕ(t) ≤ Eϕ(T1)

∫ T

T1

esc∗(T1−t) dt+
2e−sc∗(εT+T

2
)2

sc∗

∫ T

T1

∫
Ω

e2sϕ|utt −∆u|2 dxdt

≤ Eϕ(T1)

∫ T

T1

esC∗(T1−t) dt+
2e−sc∗(εT+T

2
)2

sc∗

∫ T

T1

∫
Ω

e2sϕ|utt −∆u|2 dxdt

≤ M

s
Eϕ(T1) +

M

s

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dt

Invoke again the equality (3.2.2)∫
Q

e2sϕut(utt −∆u) dxdt = Ė(t)−
∫
Q

sϕte
2sϕ
(
|ut|2 + |∇u|2

)
dxdt

+2s

∫
Q

e2sϕut(∇ϕ · ∇u) dxdt

Now integrate equation (3.2) in the interval (T/2 − εT, T/2 + εT ) , having in mind that ϕt and
∇ϕ are integrable functions and using the Young inequality is straightforward that to get

E(T1)− E(r) =

∫ T1

r

∫
Ω

e2sϕut(utt −∆u) dxdt+

∫ T1

r

∫
Ω

sϕte
2sϕ
(
|ut|2 + |∇u|2

)
dxdt

−2s

∫ T1

r

∫
Ω

e2sϕut(∇ϕ · ∇u) dxdt

Integrate above inequality in the interval (T/2 + εT, T ) is possible to see that

E(T1) ≤Ms

∫ T1

T2

E(t)dt+

∫ T

0

e2sϕ|utt −∆u|2dxdt

Then is possible to get

∫ T

T1

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

)
dxdt ≤M

∫ T1

T2

e2sϕ
(
|ut|2 + |∇u|2

)
+
M

s

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dxdt

Then by weighted Poincare inequality



88

s

∫ T

T1

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2 + s2|u|2

)
dxdt ≤Ms

∫ T2

T1

E(t)dt+M

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dxdt (3.2.3)

2. The steps to follow will be almost the same as done before. Make out that under a change of
variable t ! T − t is possible to translate the interval (T/2 + εT, T ) to the interval (0, T/2 − εT ) .
Denote T2 = T/2− εT and under change of variables

E(t) ≤ E(T2)e−sc∗(T2−t) +
2

sc∗

∫ T2

0

e2sϕ|utt −∆u|2 dxdt

integrating in (0, T/2− εT ) one gets∫ T2

0

E(t)dt ≤ M

s
E(T2) +

M

s

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dxdt

where R is a positive constants from integration. Recall equality (3.2.2) integrate and use Cauchy-
Schwartz inequality to get and

E(T2) ≤ Rs

∫ T1

T2

Es(t)dt+
R

s

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dxdt

Combining equations (3.2) and (3.2) is possible to get the inequality

∫ T2

0

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2

)
dxdt ≤M

∫ T1

T2

e2sϕ
(
|ut|2 + |∇u|2

)
+
M

s

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dxdt

calling for the weighted Poincare inequalities (3.2.2) and multiply by s both sides of inequality
is possible to get

s

∫ T2

0

∫
Ω

e2sϕ
(
|ut|2 + |∇u|2 + s2|u|2

)
dxdt ≤Ms

∫ T1

T2

E(t)dt+M

∫ T

0

∫
Ω

e2sϕ|utt −∆u|2 dxdt (3.2.4)

3. The last step is to compare terms from all above inequalities. Using the inequality ( 3.2.4) one
deduce

s

∫ T1

T2

∫
Ω

e2sϕ|ut|2 + |∇u|2 dxdt+ s3

∫ T1

T2

∫
Ω

e2sϕ|u|2 dxdt ≤ C

∫
Q

e2sϕ|utt −∆u|2 dxdt

+C

(
s

∫
Σ

e2sϕ|∂ηu|2 dΣ +

∫ T2

0

e2sϕ
(
|ut|2 + |u|2

)
+

∫ T

T1

e2sϕ
(
|ut|2 + |u|2

))
Recall inequalities (3.2.4) and (3.2.3) and the proof is done.

For sake of clarity and to avoid repeating notation the initial conditions (y0, y1) ∈ L2(Ω)×H−1(Ω)
unless it is mention in another way.
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3.2.1 Solution to the hierarchical control process for the linear case.
In this section it is described the method to solve the exact controlability problem associated to the
follower objective in the linear case i.e the first step f the hierarchical control process described in the
first section. Solving this linear problem will allow to establish the exact controlability problem for
the semi-linear case as an optimisation problemand afixedpoint theorem. Denote byLa = ∂tt−∆+a
and its adjoint operator by L∗a := La for a potential a ∈ L∞(Q).

Proposition 3.2.1. Fix a leader v ∈ V and given a positive time T > R. Then it exist a follower control
f [v] ∈ F and a solution y ∈ Y such that solves the exact controlability problem (3.1.2) and solves the the
equation

ytt −∆y + ay = v1ω in Q
y = f [v]1γ in Σ
y(0) = y0, yt(0) = y1 in Ω

(3.2.5)

Moreover is possible to see that the follower control and the solution are characterised by

f [v] = −%−2
1 ∂vp1γ; y = %−2La(p) (3.2.6)

where p ∈ P solves the equation

m(a; p, q) = `v(q), ∀q ∈ P . (3.2.7)

Also one gets

‖f [v]‖F + ‖y‖Y ≤ C
(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖L2(Ω)×H−1(Ω)

)
. (3.2.8)

Moreover the follower control f [v] fulfills the problem

S(f [v]; v) = inf
f∈F

1

2

∫
Q

%2|y|2 dxdt+
1

2

∫
γ×(0,T )

%2
1|f |2 dΣ.

Proof. The key id to assume that characterisation (3.2.6) is true for some p ∈ P and arrive to equation
(3.2.7).

1. Assume that the characterisation given in Proposition(3.2.6) holds. Then replacing this in
equation (3.2.5) is possible to get the fourth order system

La(%
−2La(p)) = v1ω in Q

%−2La(p) = −%−2
1 ∂νp1γ in Σ

%−2(Lap)(0) = y0, (%
−2La(p))t(0) = y1 in Ω

Take any function q in P an multiply equation 3.2.1. Integrating by parts it is possible to get the
integral equation ∫

Q

%−2La(p)La(q) +

∫
γ×(0,T )

%−2
1 ∂νq1γ∂νp dΣ = `v(q)
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Then if the next equation holds for any q ∈ P∫
Q

%−2La(q)La(p) +

∫
γ×(0,T )

%−2
1 ∂νq∂νp dΣ = `v(q) (3.2.9)

it is possible to conclude that the equality 〈(y(T ) − ȳ0, yt(T ) − ȳ1), (q(T ), qt(T )〉 = 0 holds and then
y(T ) = ȳ0, yt(T ) = ȳ1. Then is sufficient to prove that system 3.2.9 has a unique solution p ∈ P . The
bilinear form m(a, ·, ·) is coercive by Carleman inequality (3.1.5) so remains to proof that the linear
operator l : P −! R defined by the right hand side of (3.2.9) is continuous. By Holder inequality
one gets

|l(p)| ≤
∣∣∣∣∫
ω×(0,T )

vp+ 〈(y0, y1), (p(0), pt(0))〉X×X∗ − 〈(ȳ0, ȳ1), (p(T ), pt(T ))〉X×X∗
∣∣∣∣

≤
(∫

ω×(0,T )

%−2
0 |v|2dxdt

)1/2(∫
ω×(0,T )

%2
0|p|2dxdt

)1/2

+ |〈(y0, y1), (p(0), pt(0))〉X×X∗|+ |〈(ȳ0, ȳ1), (p(T ), pt(T ))〉X×X∗|

(3.2.10)

By Carleman inequality is possible to see that
(∫

ω×(0,T )
%−2

0 |p|2dxdt
)1/2

≤ m(0, p, p)1/2. Moreover
again by Carleman inequality is possible to see that p ∈ L2([0, T ];H2(Ω)) and pt ∈ L2([0, T ];L2(Ω))
then p ∈ C0([0, T ];H1

0 (Ω)). Then is possible to get the embedding P −! H1
0 (Ω) × L2(Ω), p !

(p(a), pt(a)) for any a ∈ [0, T ] that implies that ‖(p(0), pt(0))‖X×X∗ ≤ m(0, p, p)1/2 and also the
inequality‖(p(T ), pt(T ))‖X×X∗ ≤ m(0, p, p)1/2. Then inequality (3.2.10) becomes

|l(p)| ≤
(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖L2(Ω)×H−1(Ω)

)
m(0, p, p)1/2

And then the continuity of the functional l is proved. By Lax- Milgram theorem equation (3.2.9)
has a unique solution p ∈ P ant then (3.2.7) is satisfied.

2. Equation (3.2.9) holds for any q ∈ P then taking q := p one gets∫
Q

%−2|La(p)|2 dxdt +

∫
γ×(0,T )

%−2
1 |∂νp|2 dΣ = `v(p)

the the tight hand side can be estimated by (3.2.10) and by inequality (3.1.6) then the equation above
becomes

m(a, p, p)1/2 ≤ C
(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖L2(Ω)×H−1(Ω)

)
then is possible to get inequality (3.2.8).
3. The key point for this step is to invoke Theorem 3 pg. from [ET99] in order to verify that the

characterisation (3.2.6) solves the optimisation problem

S(f [v], v) = inf
f∈F

1

2

∫
Q

%2|y|2dx dt+
1

2

∫
γ×(0,T )

%2
1|f |2 dΣ. (3.2.11)

Let be
ytt −∆y + ay = v1ω in Q
y = f [v]1γ on Σ
y(0) = y0, yt(0) = y1 in Ω
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and define

yw,tt −∆yw + ayw = v1ω in Q
yw = w1γ on Σ
yw(0) = y0, yw,t(0) = y1 in Ω

Let p ∈ P and by (3.2.6) is possible to see that

ptt −∆p+ ap = %2y in Q
p = 0 on Σ

With this definitions is necessary to verify that the control f [v] fulfils the equation∫
Q

%2y (y − yw) +

∫
γ×(0,T )

%2
1f [v](w − f [v]) ≥ 0, (3.2.12)

that is equivalent to minimise (3.2.11). Replace characterisations (3.2.6) in equation (3.2.12) to
get by integration by parts∫

Q

%2y (y − yw) +

∫
γ×(0,T )

%2
1f [v](w − f [v]) =

∫
Q

Lq(p)(y − yw) dxdt+

∫
γ×(0,T )

%2
1f [v](w − f [v]) dΣ

=

∫
Q

L(y − yw)p−
∫

Σ

(w − f [v])∂νp dΣ +

∫
γ×(0,T )

%2
1f [v](w − f [v]) dΣ

=

∫
Σ

(w − f [v])∂νp dΣ +

∫
γ×(0,T )

%2
1f [v](w − f [v]) dΣ

=

∫
Σ

(w − f [v])∂νp dΣ−
∫
γ×(0,T )

(w − f [v])∂νp dΣ

= 0

So for any direction w ∈ F inequality (3.2.12) holds. Then f [v] solves he optimisation problem

S(f [v]; v) = inf
f∈F

1

2

∫
Q

%2|y|2dx dt+
1

2

∫
γ×(0,T )

%2|f |2 dΣ

and the proof is complete.

The next proposition solves the second step of the Hierarchical control process established for
the leader control.

Proposition 3.2.2. Consider the initial conditions (y0, y1) ∈ L2(Ω) × H−1(Ω) and a given a positive time
T > R. It exists a leader control v̂ ∈ V which solves the optimisation problem. Moreover it holds the next
coupled system

ŷtt −∆ŷ + aŷ = v̂1ω in Q
ŷ = f [v̂]1γ in Σ
ŷ(0) = y0, ŷt(0) = y1 in Ω

where f [v̂] = −%−2∂vp1γ and ŷ = %−2La(p) such that p ∈ P solves

m(a; p, q) = `v(q), ∀q ∈ P
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and

φtt −∆φ+ aφ = α(ŷ − yd)1ω in Q
φ = 0 in Σ
φ(T ) = φt(T ) = 0 in Ω

v̂ = −%2
0(φ+ ξ)1ω

where the function ξ ∈ P is a solution to

m(a; ξ, q) =

∫
γ×(0,T )

∂νφ∂νp dΣ q ∈ P .

Proof. The functional P is coercive, lower semicontinous so it attains a minimum point and more-
over given a direction h in V and given ε > 0

1
ε

[P (v̂ + εh; f [v̂ + εh])− P (v̂, f [v̂])]

=
1

ε

[
α

2

∫
Qd

%2|ŷ + εyh − yd|2 − |ŷ − yd|2 +
1

2

∫
ω×(0,T )

%2
1|v̂ + εv̂|2 − %2

1|v̂|2 dxdt
]

=

∫
Qd

α(ŷ − yd)yh + ε|yh|2 dxdt+

∫
ω×(0,T )

%2
0v̂h+ ε|h2| dxdt

(3.2.13)

where the function yh and ŷ fulfills the equations

ŷtt −∆ŷ + aŷ = v̂1ω in Q
ŷ = f [v̂] in Σ
ŷ(0) = y0, ŷt(0) = y1 in Ω

and
yh,tt −∆yh + ayh = h1ω in Q
yh = −%−2∂νψ 1γ in Σ
yh(0) = yh,t(0) = 0 in Ω

and the function ψ ∈ P solves the equation

m(a, ψ, q) =

∫
ω×(0,T )

hq dxdt. ∀q ∈ P (3.2.14)

Taking the limit ε! 0 then (3.2.13) then

lim
ε!0

1

ε

[
P (v̂ + εh; f [ ˆv + εh])− p(v̂, f [v̂])

]
=

∫
Qd

α(ŷ − yd)yh dxdt+

∫
ω×(0,T )

%2
0v̂h dxdt = 0 (3.2.15)

Introduce φ in L2(0, T ;H1
0 (Ω)) ∩ C(0, T ;L2(Ω)) defined by the initial value problem

φtt −∆φ+ aφ = α(ŷ − yd)1ω in Q
φ = 0 in Σ
φ(T ) = φt(T ) = 0 in Ω
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Replace φtt−∆φ+aφ = α(ŷ−yd) in (3.2.15) integrate by parts and consider boundary conditions∫
Q

α(y − yd)w +

∫
ω×(0,T )

%2
0vh =

∫
ω×(0,T )

(φ+ %2
0v)h+

∫
γ×(0,T )

%−2
1 ∂νφ∂νψ dΣ

Define the linear operator Tφ : P −! R given by

Tφ(ψ) =

∫
γ×(0,T )

%−2
1 ∂νφ∂νψ dΣ

Then

|Tφ(ψ)| ≤
(∫

γ×(0,T )

%−2
1 |∂νφ|2 dΣ

)1/2(∫
γ×(0,T )

%−2
1 |∂νψ|2 dΣ

)1/2

≤ C‖ψ‖P
The operator Tφ is continuous. Then it exists a function ξ ∈ P such that the equationm(a, ξ, ψ) =∫

γ×(0,T )
%−2

1 ∂νφ∂νψ dΣ is fulfilled and by definition of ψ that satisfies (3.2.14) and taking q := ξ is
possible to get the equality

∫
γ×(0,T )

%−2
1 ∂νφ∂νψ =

∫
ω×(0,T )

hξ . Using equation (3.1.1) and the above
conclusions is straightforward to get∫

Q

α(y − yd)w +

∫
ω×(0,T )

%2
0vh =

∫
ω×(0,T )

(φ+ %2
0v)h+

∫
γ×(0,T )

%−2∂νφ∂νψ dΣ

=

∫
ω×(0,T )

(φ+ %2
0v)h+

∫
ω×(0,T )

ξh

=

∫
ω×(0,T )

(φ+ ξ + %2
0v)h

.

Then the equality holds for any h ∈ V so v = −%2
0(φ+ ξ)1ω.

3.3 Solution to Hierarchical control problem for the semi-linear
case.

The linear problem F (y) = ay was solved with a ∈ L∞(Ω) in the last section given the existence of a
leader and follower controls that solves the hierarchical control problem. Consider the function F
which is of class C1 globally Lipschitz. Define the linearization as

F0(s) :=

{
F (s)− F (0)

s
in s 6= 0

F ′(0) in s = 0
(3.3.1)

By hypothesis on F is possible to find a positive constant M (Lipschitz constant) such that
|F0(s)| ≤ M and by definition supy∈R |F ′(y)| = M . Under this assumptions is possible to linearize
equation (3.1.1), i.e given a function z in L2(Q) define the initial boundary condition problem

ŷtt −∆ŷ + F0(z)ŷ = v1ω + F (0) in Q
ŷ = f1γ in Σ
ŷ(0) = y0, ŷt(0) = y1 in Ω.
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System 3.3 has not the desired form because the extra term F (0). To avoid this difficulty a change
of variable is necessary. Then, define a new function w that

wtt −∆w + F0(z)w = F (0) in Q
w = 0 in Σ
w(0) = 0, wt(0) = 0 in Ω.

and define y := ŷ − w that solves the system

ytt −∆y + F0(z)y = v1ω in Q
y = f1γ in Σ
y(0) = y0, yt(0) = y1 in Ω.

(3.3.2)

The null controllability problem for the follower control describes in section 3.1 will be done for the
linearized system(3.3.2) in the next proposition and is done is four steps. The first main part is to
prove the existence of the solution of(3.3.2) via a fixed point theorem. The second main part of the
proof is verify that the follower control that satisfies the null controllability problem in fact solves
the optimisation problem

S(f [v], v) = inf
f∈F

1

2

∫
Q

%2|y|2dx dt+
1

2

∫
γ×(0,T )

%2
1|f |2 dΣ.

3.3.1 Some results in regularity and compactness.
Next a set of Propositions that will work as lemmas is invoked. The first is about compact results in
time dependent Sobolev spaces. The other propositions trade regularity results and the the ideas
are based in [Zua91] and [Lio88].

Proposition 3.3.1. [[Sim86] Corollary 9, pg. 90]. Let X,B, Y Banach spaces and consider an inclusion
chain X ↪! B ⊂ Y . 2 Let s0, s1 reals and 1 ≤ r0, r1 ≤ ∞. Define the numbers sθ = (1 − θ)s0 + θs1,
1
rθ

= θ
r1

+ 1−θ
r0

and s∗ = sθ − 1
rθ

Let F a bounded set inW s0,r0(0, T ;X) ∩W s1,r1(0, T ;Y ). Then if s∗ ≤ 0

then F is relative compact in Lp(0, T ;B) for p < − 1
s∗
.

Next the transposition methods is studied.

Proposition 3.3.2. Given g ∈ L2(Σ) and initial conditions (w0, w1) in L2(Ω) ×H−1(Ω) then there exist a
unique solution w ∈ L∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H−1(Ω)) that solves

wtt −∆w + aw = 0 in Q
w = g in Σ
w(0) = w0, wt(0) = w1 in Ω.

(3.3.3)

such that for some positive C

‖w‖L∞(0,T ;L2(Ω)) + ‖wt‖L∞(0,T ;H−1(Ω)) ≤ C
(
‖w0‖L2(Ω) + ‖w1‖H−1(Ω) + ‖g‖L2(Σ)

)
2Possible case Y = B.
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Proof. See [Lio88] Pg. 42. Take an arbitrary function f ∈ L2(0, T ;L2(Ω)) and consider the function
θ ∈ C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)) a solution to

θtt −∆ + aθ = f in Q
θ = 0 in Σ
θ(0) = θ0, θt(0) = θ1 in Ω.

for any (θ0, θ1) ∈ H1
0 (Ω) × L2(Ω). Multiply equation (3.3.3) by θ integrate by parts and by the

hidden regularity theorem([Lio88], corollary 4.1, p.g 44) the normal derivate exists and ∂ηθ ∈ L2(Σ)
and makes sense the equation∫

Q

fwdx dt = 〈(w0, w1), (θ0, θ1)〉X×X∗ +

∫
Σ

w∂ηθdΣ.

By well know classical energy methods the solution θ can be estimated

‖∇θ‖L2(Q) + ‖θt‖L2(Q) ≤ C‖f‖L1(0,T :L2(Ω)).

Because the duality of L2(Q) respect L2(Q) is possible to get from (3.3.1) the estimate

‖w‖L2(Q) ≤ C
(
‖w0‖L2(Ω) + ‖w1‖H−1(Ω)

)
Consider a sequence (w0,n, w1,n) in the spaceH1(Ω)×L2(Ω) and hn a sequence inH2(0, T ;H1/2(Γ))

such that (w0,n, w1,n) ! (w0, w1) in L2(Ω) × H−1(Ω) and hn ! h in L2(Σ). If wn ∈ L∞(0, T ;L2(Ω))
is the associated state to initial data (w0,n, w1,n) then wn ! w in L∞(0, T ;L2(Ω)) . With this in mind
is sufficient to prove that wn ∈ C(0, T ;L2(Ω)). Consider a sequence ĥn in H2(0, T ;H2(Ω)) with
ĥn|Σ = hn and define the function un := wn− ĥn and is easy to see that un solves the initial condition
problem

(un)tt −∆un + aun = (ĥn)tt −∆ĥn + aĥn in Q
un = 0 in Σ

un(0) = wn,0 − ĥn(0), (un)t(0) = wn,1 − (ĥn)t(0) in Ω.

In is clear that un(0) ∈ H1
0 (Ω) and (un)t(0) ∈ L2(Ω), then by classical energy estimates for the non

homogeneous problem (see [Lio88] Lemma 3.6, pg 39) the solution to equation (3.3.1) satisfies un ∈
C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)) an then wn = un + ĥn ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)). Then is

possible to verify that w ∈ C(0, T ;L2(Ω)) and is fulfils equality wtt − ∆w = 0 and straight away
wtt = ∆w ∈ C(0, T ;H−2(Ω)). Also

‖wtt‖L∞(0,T ;H−2(Ω) ≤ C‖w‖L∞(0,T ;L2(Ω))

Remains to prove that the velocity wt ∈ L∞(0, T ;H−1(Ω)). Because the map (w0, w1, h) ! wt is a
continuous functions then wt ∈ C(0, T ;H−1(Ω)) and by continuity

‖wt‖L∞(0,T ;H−1(Ω)) + ‖w‖L∞(0,T ;L2(Ω)) ≤ C
(
‖w0‖L2(Ω) + ‖w1‖H−1(Ω) + ‖g‖L2(Σ)

)
.
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Make this important observation. With the above bounds it may be possible to have a fixed
point theorem but in the space L2(0, T ;H−1(Ω)). This regularity is not enough to have a minimising
sequence for the functional S that is defined in L2.

To improve this it is necessary to study in a deep way the regularity of the initial value problem
(3.3.3). The ideas are borrowed from [Zua91] [Theorem 3.1, pg. 375].

Corollary 2. Given g ∈ L2(Σ) and initial conditions (w0, w1) in L2(Ω)×H−1(Ω) then there exist a unique
solution w ∈ H−1(0, T ;H1/2(Ω)) ∩ L2(0, T ;L2(Ω)) that solves (3.3.3).

Proof. Decompose w = w̃1 + w̃2 where w̃1 is a solution to

w̃1,tt −∆w̃1 = 0 in Q
w̃1 = g in Σ
w̃1(0) = 0, w̃1,t(0) = 0 in Ω.

Byhypotheses the function g ∈ L2(Σ) andby extension is possible to construct aG ∈ L2(0, T ;H1/2(Ω))
such thatG|Σ = g. then by proposition 3.3.2 the solution w̃1 ∈ L∞(0, T ;L2(Ω))∩W 1,∞(0, T ;H−1(Ω))
and by equation (3.3.3) ∆w̃1 = w̃1,tt ∈ W−1,∞(0, T ;H−1(Ω)). Define ζ = w̃1 − G and then is pos-
sible to get the chain inclusion∆ζ = ∆w̃1 − ∆G ∈ W−1,∞(0, T ;H−1(Ω)) + L2(0, T ;H−3/2(Ω)) ⊂
H−1(0, T ;H−3/2(Ω)) and immediately

ζ ∈ H−1(0, T ;H1/2(Ω))

Then the trace operator allows to conclude that w̃1 = ζ +G ∈ H−1(0, T ;H1/2(Ω)). Now consider
the system

w̃2,tt −∆w̃2 + aw̃2 = −aw1 in Q
w̃2 = 0 in Σ
w̃2(0) = w0, (w̃2)t(0) = w1 in Ω.

then again by proposition 3.3.2 the solution w̃2 ∈ L∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H−1(Ω)). Then
because w = w̃1 + w̃2 is possible to get the bound

‖w‖H−1(0,T ;H1/2(Ω)) + ‖w‖L2(0,T ;L2(Ω)) ≤ C
(
‖w0‖L2(Ω) + ‖w1‖H−1(Ω) + ‖g‖L2(Σ)

)

The above inequality is the appropriate estimate to have bounds in the chain of spacesH1/2(Ω) ↪!
L2(Ω) 3and apply results about relative compact sets from [Sim86] to get relative compact sets in
L2(Q) as will be seen in the next paragraphs.

3.4 Main results semi-linear hierarchical control problem.
In this section gives the two basic propositions that solves the hierarchical control problem for the
semi-linear wave equation.

3Where X ↪! B denotes compact embedding of Banach spaces.
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Theorem 3.4.1. Let v ∈ V a leader control and a positive time T > R . It exists a follower control f [v] ∈ F
such that the exact controlability problem (3.1.2) holds, where y is the solution to

ytt −∆y + F (y) = v1ω in Q
y = f [v]1γ in Σ
y(0) = y0, yt(0) = y1 in Ω.

with

f [v] = −%−2
1 ∂ηp1γ y = %−2LF ′(y)(p)

where p ∈ P solves the equation∫
Q

%−2LF ′(y)(p)LF0(y)(q) +

∫
γ×(0,T )

%−2∂ηp∂νq dΣ = `v(q), ∀q ∈ P

Also hold the estimates given by

‖f [v]‖F + ‖y‖Y ≤ C
(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖L2(Ω)×H−1(Ω)

)
.

Proof. Let z in L2(Q) so F0(z) ∈ L∞(Q) and then by proposition 3.2.1 exist the follower control
fz[v] ∈ F and yz that solves

yz,tt −∆yz + F0(z)yz = v1ω in Q
y = fz[v]1γ in Σ
yz(0) = y0, yz,t(0) = y1, yz(T ) = ȳ0, yz,t(T ) = ȳ1 in Ω.

(3.4.1)

By inequality (3.2.8) is possible to see that ‖fz[v]‖F is uniformly bounded for all z ∈ L2(Q). By
Corollary 2 the solution yz ∈ H−1(0, T ;H1/2(Ω)) ∩ L2(Q) and then is possible to bound

‖yz‖H−1(0,T ;H1/2(Ω)) + ‖yz‖L2(Q) ≤ C
(
‖y0‖L2(Ω) + ‖y1‖H−1(Ω) + ‖fz[v]‖L2(Σ)

)
≤ C

(
‖y0‖L2(Ω) + ‖y1‖H−1(Ω) + ‖fz[v]‖F)

) (3.4.2)

Then the set of solutions {yz : z ∈ L2(Q)} is uniformly bounded in H−1(0, T ;H1/2(Ω)) ∩ L2(Q).
Now invoke the next Proposition 3.3.1. The embeddingH1/2(Ω) ↪! L2(Ω) is compact .Take θ = 1/2
the parameters sθ = −1/2, rθ = 2 and s∗ = −1/2 − 1/2 = −1/4. Then in Proposition 3.3.1 can
take p < 4 and in particular p = 2 and then the embedding H−1(0, T ;H1/2(Ω)) ∩ L2(Q) ! L2(Q) is
compact.

Define the map Λ : L2(Q) −! L2(Q), z 7! yz where yz solves (3.4.1).By inequality (3.4.2) the set
Λ(L2(Q)) is bounded in H−1(0, T ;H1/2(Ω)) ∩ L2(Q) ! L2(Q) and by the previous conclusions Λ is
a compact operator. By Schauder fixed point theorem it has a fixed point z := ỹ i.e a function such
that Λ(ỹ) = ỹ or in other words it solves

ỹtt −∆ỹ + F0(ỹ)ỹ = v1ω in Q
ỹ = fỹ[v]1γ in Σ
ỹ(0) = y0, ỹt(0) = y1, ỹ(T ) = ȳ0, ỹ(T ) = ȳ1 in Ω.

where fỹ[v] is the associated follower function to z := ỹ. Taking in mind that F0(ỹ)ỹ = F (ỹ) then
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ỹtt −∆ỹ + F (ỹ) = v1ω in Q
ỹ = fỹ[v]1γ in Σ
ỹ(0) = y0, ỹt(0) = y1, ỹ(T ) = ȳ0, ỹ(T ) = ȳ1 in Ω.

By construction ỹ ∈ V and fỹ[v] ∈ F then is possible to see that

inf
f∈F

1

2

∫
Q

%2|ỹ|2dx dt+
1

2

∫
γ×(0,T )

%2
1|fỹ[v]|2dΣ <∞

Then the set of followers such that S(f ; v) <∞ and y solves the semi-linear problem is non empty.
The next step proves that in fact the follower control solves an optimisation problem for the func-
tional S.

2. This step consist in proof that in fact fỹ[v] satisfies

S(fỹ[v]; v) = inf
f∈F

1

2

∫
Q

%2|y|2dx dt+
1

2

∫
γ×(0,T )

%2
1|f |2dΣ (3.4.3)

Let fn ∈ F be a minimising sequence i.e limn!∞ S(fn, v) = inf S(f, v). Then the sequence fn
is uniformly bounded in F . By estimates given by proposition it is clear that the fn (resp yn) are
uniformly bounded in F(resp. Y). Consequently it can be assumed that there exist a sub-sequence
{fnk} that converges weakly in F to some f and the corresponding state yn converges strongly in
L2(Q)to the associated state y. From the weakly lower semi-continuity of the functional S is easy to
see that (3.4.3) is satisfied.

3. This step has the objective to proof the characterisation (3.2.6). Now define H0 : L2(Q) −!
L2(Q) , H(w) = η where the function η is a solution to the non-homogeneous problem 4

ηtt −∆η = w in Q
η = 0 in Σ
η(0) = ηt(0) = 0 in Ω.

and define the linear operator G : L2(Σ) −! L2(Q), G(θ) = ζ is a solution of the boundary value
problem

ζtt −∆ζ = 0 in Q
ζ = θ in Σ
ζ(0) = ζt(0) = 0 in Ω.

and define the mapM : Y × F −! L2(Q) as

M(z, f) = z +H0 (v1ω − F (y))−G(f1γ)− ȳ

where
ȳtt −∆ȳ = 0 in Q
ȳ = 0 in Σ
ȳ(0) = y0, ȳt(0) = y1 in Ω.

4Remark that H0(η) ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T : L2(Ω)).
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First consider some y such thatM(y, f) = 0 implies that y is a solution of equation (3.1.1) . Then the
optimisation problem (3.4.3) can be formulated as an optimisation problem with constrains using
the operatorM in the form

inf
1

2

∫
Q

%2|y|2dx dt+
1

2

∫
γ×(0,T )

%2|f |2dx dt

M(y, f) = 0
(y, f) ∈ Y × F .

(3.4.4)

Is necessary to apply theDubvitsky-Milyoutin to the optimal problem (3.4.4). Define the descend
and tangent cones

K0 := {λS ′(y, f) : λ ≤ 0} ; K1 := {(z, g) ∈ Y × F : M ′(y, f)(z, g) = 0}

By explicit calculations is possible to verify that the operatorM is of class C1 in the space with
derivate in some direction (h, g) in L2(Q)× L2(Σ)

M(y, f)′(h, g) = h−H0(F ′(y)h)−G′(g1γ)

Optimisation problem (3.4.4) has a solution if and only if the tangent and decent cone satisfies
K0 ∩K1 = ∅ . By Dubovitsky- Milyoutin theorem asserts that the conditionK0 ∩K1 = ∅ holds if and
only if exists non zero functionals f0 ∈ K∗0 and f1 ∈ K∗1 such that f0 + f1 = 0. By definition of K∗0 the
functional f0 = λ(%2y, %2

1f) and f1 = (w, h) then

λ(%2y, %2
1f) + (w, h) = 0. (3.4.5)

It is necessary to characterise K∗1 to have explicit forms of (w, h). Observe that K1 = kerM ′(y, f)
thenK∗1 = kerM ′(y, f)⊥and then becauseM is a closed operatorK∗1 = kerM ′(y, f)⊥ = RankM ′(y, f)∗.
Following computeM ′(y, f)∗ : L2(Q) −! Y ×F explicit. Now given a function ψ in L2(Q) the dual
operatorM ′(y, f)∗ can be computed following the ideas from (2.6.10) and then

M ′(y, f)∗ψ = (F ′(y)H∗0ψ + ψ,−G∗(ψ)1γ) (3.4.6)

where G∗ : L2(Q) −! L2(Σ). Then by equation (3.4.6) exists some ψ ∈ L2(Q) such that (3.4.5) takes
the form

λ(%2y, %2
1f) + (F ′(y)H∗0ψ + ψ,−G∗(ψ)1γ) = 0. (3.4.7)

By condition that f0 and f1 can not be zero simultaneously then λ 6= 0 and then (3.4.7) can be
normalised with λ = 1 and takes the form

(%2y, %2
1f) + (F ′(y)H∗0ψ + ψ,G∗(ψ)1γ) = 0.

Taking the equality on each coordinate, we get

y = %−2(F ′(y)H∗0ψ + ψ); f = %−2
1 G∗(ψ)1γ.
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Define p := H∗0ψ and by the boundary condition in definition of the operator H0 the function
p ∈ P . In addition the function p fulfils L0(p) = ψ. Following this statements and the fact that
M(y, f) = 0 then

L0(%−2(F ′(y)p+ L0(p)) + F (y) = v1ω.

From (3.4) the solution y = %−2(L0(p)+F ′(y)p) then by definition of F0 (see (3.3.1)) we obtain F (y) =
F0(y)%−2(L0(p)+F ′(y)p).Given q inPmultiply equation 3.4 and proceed integrating by parts as have
been done in the linear case to achieve∫

Q

%−2LF ′(y)(p)LF0(y)(q) +

∫
γ×(0,T )

%−2G∗(L0(p))∂νq dΣ

=

∫
ω×(0,T )

vq + 〈(y0, y1), (q(0), qt(0))〉 − 〈(ȳ0, ȳ1), (q(T ), qt(T ))〉

Now is necessary to calculateG∗(L0(p)) in the boundary Σ. Using the continuous embeddingP ↪−!
C0(0, T ;H1

0 (Ω))and straightforward calculations it is possible to get for any function f in L2(Σ)∫
Q

L0(G(p))q dxdt =

∫
Σ

q∂ηG(p) dΣ−
∫

Σ

∂ηqG(p) dΣ +

∫
Q

G(p)L0(q) dxdt

Now by definition of adjoint∫
Q

G(p)L∗0(q) dxdt =

∫
Σ

pG∗(L0(q)) dΣ

Then because q = 0 in the boundary cylinder Σ and with 3.4 the equation 3.4 can be write in the
form ∫

Q

L0(G(p))q dx dt =

∫
Σ

q∂ηG(p) dΣ−
∫

Σ

∂ηqG(p) dΣ +

∫
Σ

pG∗(L0(q)) dΣ

By definition of the operatorG, the equality L0(G(p)) = 0 holds and because q = 0 in the bound-
ary cylinder then

∫
Σ
q∂ηG(p) dΣ = 0 and from equation (3.4) becomes∫

Σ

∂ηqG(p) dΣ =

∫
Σ

pG∗(L0(q)) dΣ

Now G(p)|Σ = p|Σ because by definition of the operator G the function G(p) is the solution to the
equation given by

(G(p))tt −∆G(p) = 0 in Q
G(p) = p in Σ
G(p) = (G(p))t(0) = 0 in Ω

and therefore for any p in L2(Σ) the equality (3.4) takes the form∫
Σ

p∂ηq dΣ =

∫
Σ

pG∗(L0(q)) dΣ

and then G∗(L0(q)) = ∂ηq. Taking in particular q = p so equation 3.4 can be written in the form
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∫
Q

%−2LF ′(y)(p)LF0(y)(p) +

∫
γ×(0,T )

%−2|∂νp|2 dΣ

=

∫
ω×(0,T )

vp+ 〈(y0, y1), (p(0), pt(0))〉X×X∗ − 〈(ȳ0, ȳ1), (p(T ), pt(T ))〉X×X∗

Thenext step is to compute suitable estimates for the control f [v] and y. Denote byM := supy∈R|F ′(y)|.
By definition %0 = s−3/2% then S := sup x ∈ Ω̄%0/% < 1/(

√
2M) because the constant s0 in Carleman

inequality can be chosen s3/2 ≥
√

2M . MoreoverM2S2 < 1/2 and then M2S2

1−M2S2 < 1 so is possible to
choose a β ∈ (0, 1) such that 1

M
M2S2

1−M2S2 < β < 1
M
. Now proceed with

|m(0, p, p)| ≤
∣∣∣∣∫
Q

%−2F ′(y)L0(p)p+ F0(y)L0(p)p+ F ′(y)F0(y)|p|2
∣∣∣∣

+

∣∣∣∣∫
ω×(0,T )

v p

∣∣∣∣+ 〈|(y0, y1), (p(0), pt(0))〉X×X∗ |+ |〈(ȳ0, ȳ1), (p(T ), pt(T ))〉X×X∗ |

≤ ‖v‖V
(∫

ω×(0,T )

%−2|p|2
) 1

2

+ (‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖)m(0, p, p)1/2

+2M

∫
Q

%−2|L0(p)||p| dxdt+M2

∫
Q

%−2|p|2 dxdxt

By Young inequality with parameter β is possible to bound

2M

∫
Q

%−2|L0(p)||p| dxdt ≤Mβ

∫
Q

%−2|L0(p)|2 dxdt+
M

β

∫
Q

%−2|p|2 dxdt

and ∫
Q

%−2|p|2 dxdt ≤ S2

∫
Q

%−2
0 |p|2 dxdt

then

|m(0, p, p)| ≤ (‖v‖V + ‖(y0, y1)‖+ ‖(ȳ0, ȳ1)‖)m(0, p, p)
1
2 +Mβ

∫
Q

%−2|L0(p)|2 dxdt

+

(
M

β
+M2

)
S2

∫
Q

%−2
1 |p|2 dxdxt

≤ C
(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖

)
m(0, p, p)

1
2

+ max

(
Mβ,

(
M2 +

M

β

)
S2

)
m(0, p, p)

Remember that βM < 1. Also, from inequality 1
M

S2M2

1−M2S2 < β, we get (M2 + M/β)S2 < 1

and the term Max
(
βM,

(
M2 + M

β

)
S2
)
B(0, p, p) can be absorbed in the left hand side of the above

inequality giving

|m(0, p, p)| ≤ C
(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖

)
m(0, p, p)

1
2

and then
|m(0, p, p)|1/2 ≤ C

(
‖v‖V + ‖(y0, y1)‖L2(Ω)×H−1(Ω) + ‖(ȳ0, ȳ1)‖L2(Ω)×H−1(Ω)

)



102

and the the proof is complete.

Until now the first step of the Hierarchical control problem have been solved. The exact con-
trolability problem for the wave equation has been expressed as a minimisation problem for the
functional S(·, f). To solve the second step of the Hierarchical control problem will need the the
next lemma.

Proposition 3.4.1. For some v in V define the set Φ[v] ⊂ F is the set of followers controls f [v] ∈ F related
to v and take the set G = {(v, f [v]) : v ∈ V}. The set G is convex, weakly closed subset in V × F . Moreover
the functional P : G −! R is coercive and lower weakly lower semicontinous.

Proof. 1. It is clear that G is convex. The proof for the closeness of G is given. Let (vn, fn) a sequence
in G that converges to (v, f) and suppose that (v, f) is not in G so there exist a pair(v, f̃) and the
associated state ỹ such that

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 <

1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
1|f |2 dΣ

where ỹ solves

ỹtt −∆ỹ + F (ỹ) = v1ω in Q

ỹ = f̃1γ on Σ
ỹt(0) = y0; ỹt(0) = y1 in Ω.

Observe that it exists δ > 0 such that

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 + δ <

1

2

∫
Q

%2|y|2 +
1

2

∫
γ×(0,T )

%2
1|f |2 dΣ.

Since (vn, fn)! (v, f) it exists a natural number N such that for any n ≥ N

1

2

∫
Q

%2|ỹ|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 + δ <

1

2

∫
Q

%2|yn|2 +
1

2

∫
γ×(0,T )

%2
1|fn|2.

Evaluating the functional S on the sequence (vn, f̃) and taking ỹn its associated state it is possible
to see that

1

2

∫
Q

%2|ỹn|2 +
1

2

∫
γ×(0,T )

%2
0|f̃ |2 <

1

2

∫
Q

%2|yn|2 +
1

2

∫
γ×(0,T )

%2
1|fn|2

for n large enough. This contradicts the fact that (vn, fn) ∈ G.

The next step is to prove that the functional P : G −! R is a lower semi-continuous func-
tional and coercive. Take a {(vn, fn)} ⊂ G be a sequence such that ‖fn‖F ! ∞ . By inequal-
ity ‖fn‖F + ‖y‖Y ≤ C

(
‖y0‖L2(Q) + ‖vn‖V

)
given in Proposition 2.6.1 is straightforward to see that

‖vn‖V −!∞ and then the functional P (v, f)!∞.

Remains to prove that P has an infimum in G. Let (vn, fn) ∈ G be a minimising sequence i.e
P (vn, fn)! inf P (v, f). This sequence is bounded in V ×F by definition and then (vn, fn) is weakly
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convergent to some (v̂, f̂) in G because it is weakly closed. The pair (v̂, f̂) is the candidate to be a
minimum. Because P : G −! R is l.s.c in the usual topology then

P (v̂, f̂) ≤ lim inf
n!∞

P (vn, fn) ≤ inf
(v,f)∈G

P (v, f)

so (v̂, f̂) is the desired solution.

Theorem 3.4.2. Let T > R. Exists a leader control v̂ ∈ V such that the pair (f [v̂], v̂) solves the minimisation
problem (3.1.3). Moreover the next coupled system is fulfilled.

ŷtt −∆ŷ + F (ŷ) = v̂1ω in Q
ŷ = f [v̂]1γ in Σ
ŷ(0) = y0, ŷt(0) = y1 in Ω

where
f [v̂] = −%−2(∂ηp)1γ ŷ = %−2LF ′(y)(p)

where p solves the ∫
Q

%−2LF ′(y)(p)LF0(y)(q) +

∫
γ×(0,T )

%−2∂ηp ∂νq dΣ = `v(q)

The follower control v̂ is characterised by

v̂1ω = −%−2
(
γ̂ + φ̂

)
1ω

where γ̂ and φ̂ solves the coupled system

LF ′(y)(γ̂) = α(y − yd)1Ωd − F ′(y)φ̂− %−2F ′′(y)pL0(φ̂) in Q
γ̂ = 0 on Σ
γ̂(T ) = 0, γ̂t(T ) = 0 in Ω

and ∫
Q

%−2L0(φ̂)LF ′(y)(q) dxdt+

∫
Σ

%−2∂η

(
φ̂
)
∂η(q) dΣ = −

∫
Σ

%−2∂η (γ̂) ∂η(q) dΣ ∀q ∈ P .

Proof. 1.The idea will be the same used for the follower control about the convex dual cones. Define
the functional P0 : Y × F × V × P −! R as

P0(y, f, v, p) =
α

2

∫
Q

|y − yd|2 dxdt+
1

2

∫
ω×(0,T )

%2
0|v|2 dxdt

Invoking the definition of the operator H0 and G defined (2.3.1) and (3.4) take the map M :
Y × F × V × P −! L2(Q)× Y × P as

M(y, f, v, p) = (y −H0(v1ω − F (y))−G(f1γ), y − %−2LF ′(y)(p), f + %−2
1 ∂ν(p)1γ)

Now the minimising problem is defined as
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
inf P0(y, f, v, p)
M(y, f, v, p) = 0
(y, f, v, p) ∈ Y × F × V × P

(3.4.8)

This maps is of class C1 in Y×F ×V×P and given a set of directions (z, h, g, q) ∈ Y×F ×V×P
the derivativeM ′(y, f, v, p) : Y × F × V × P −! L2(Q)× Y × P is given by

M ′(y, f, v, p)(z, h, g, q) = (z −H0(g1ω − F ′(y)z)−G(h1γ),
z − %−2LF ′(y)(q)− %−2F ′′(y)pz,
h+ %−2

1 ∂ν(q)1γ)

Optimisation problem (3.4.8) has a solution if the associated descent and tangent cones K0 and K1

are disjoint. By Dubovitsky-Milyutin theorem exists fi ∈ K∗i , i = 0, 1 non zero such that f0 + f1 = 0.
By definition of tangent cone K1 = kerM ′(y, f, v, p) then K∗0 = kerM ′(y, f, v, p)⊥ and because H0

and G are compact operators, M is closed and K∗0 = kerM ′(y, f, v, p)⊥ = RankM ′(y, f, v, p)∗. So
exists (ψ, φ, ϕ) ∈ L2(Q) × Y × P and λ(α(y − yd), 0, %

2v, 0) ∈ K∗0 such that (under normalisation
λ = 1)

(α(y − yd), 0, %2v, 0) +M ′(y, f, v, p)∗(ψ, φ, ϕ) = 0. (3.4.9)

Compute explicitly the adjoint operatorM ′(y, f, v, p)∗ can be computed as

〈M ′(y, f, v, p)(z, h, g, q), (ψ, φ, ϕ)〉 =

=
〈(
z −H0(g1ω − F ′(y)z)−G(h1γ), z − %−2LF ′(y)(q)− F ′′(y)zp, h+ %−2

0 (∂ηq)1γ

)
, (ψ, φ, ϕ)

〉
= 〈z −H0(g1ω − F ′(y)z)−G(h1γ), ψ〉+ 〈z − %−2LF ′(y)(q)− F ′′(y)zp, φ〉
+〈h+ %−2

0 (∂ηq)1γ, ϕ〉
=
〈
z, ψ + F ′(y)H∗(ψ) + φ− %−2F ′′(y)pφ

〉
+
〈
q,−L∗F ′(y)(%

−2φ)
〉

+ 〈g, ϕ〉+ 〈q,N ∗(ϕ1γ)〉+ 〈g,−G∗(ψ)1γ〉+ 〈h,−G∗(ψ)1σ〉

and then

M ′(y, f, v, p)∗(ψ, φ, ϕ) =
(
φ+ ψ + F ′(y)H∗0 (ψ)− %−2F ′′(y)pφ,

−H∗0 (ψ)1ω ,
LF ′(y)(%

−2φ) +N ∗(ϕ1γ),

ϕ−G∗(ψ)1γ

)
2. Under the above computations equation (3.4.9) takes the form

α(y − yd)1Ωd = φ+ ψ + F ′(y)H∗0 (ψ)− %−2F ′′(y)pφ
%2

1f = ϕ+H∗0 (ψ)1ω
0 = LF ′(y)(%

−2φ) +N ∗(ϕ1γ)
0 = ϕ−G∗(ψ)1γ

(3.4.10)

3. Define the function φ̂ := −H∗0 (φ), ψ̂ := H∗0 (ψ) and define γ̂ = H∗0 (ψ + φ). From the first
equation in (3.4.10) is possible to get
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α(y − yd)1Qd = ψ + φ+ F ′(y)H∗0 (ψ)− %−2F ′′(y)pφ

= L∗0(ψ̂)− L∗0(φ̂) + F ′(y)ψ̂ + %−2F ′′(y)pL∗0(φ̂)

= L∗0(ψ̂ − φ̂) + F ′(y)(ζ̂ + φ̂) + %−2F ′′(y)pL∗0(φ̂)

= L∗F ′(y)(γ̂) + F ′(y)φ̂+ %−2F ′′(y)pL∗0(φ̂)

= L∗F ′(y)(γ̂) + F ′(y)φ̂+ %−2F ′′(y)pL∗0(φ̂)

Moreover replace φ = L0(φ̂) and ϕ = G∗(ψ)1γ in equation LF ′(y)(%
−2φ) +N ∗(ϕ1γ) = 0 , multiply

by q ∈ P to get the equation and then∫
Q

(N ∗(ϕ1γ)− LF ′(y)(%
−2φ))q dxdt

=
∫
γ×(0,T )

%−2
0 ∂ηqϕ dΣ−

∫
Q
%−2φL∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηqG

∗(ψ) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηqG

∗(L∗0(ψ̂)) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

=

∫
γ×(0,T )

%−2
0 ∂ηq∂ηψ̂ dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt

= 0

But ψ̂ = γ̂ + φ̂ then∫
γ×(0,T )

%−2
0 ∂ηq∂η(γ̂ + φ̂) dΣ +

∫
Q

%−2L∗0(φ̂)L∗F ′(y)(q) dxdt = 0

Then the proof is done.

3.5 Hierarchical control problem for the wave equation with dis-
tributed leader and follower controls. The linear case.

The aim of this section is to solve the hierarchical control problem when the leader and follower
controls lies in open sets in the domain region. Let Ω be an open set ω, O open sets. Let the initial
value problem

ytt −∆y + F (y) = f1O + v1ω in Q
y = 0 in Σ
y(0) = y0, yt(0) = y1 in Ω

(3.5.1)

Given functions (ȳ0, ȳ1) in L2(Ω) ×H−1(Ω) and a suitable positive time T the exact controllability
problem consist in finding a follower control f such that the solution y fulfils

(y(T ), yt(T )) = (ȳ1, ȳ2)

Define the functional
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P (v; f) =
α

2

∫
Q

|y − yd|2 dxdt+
1

2

∫
ω×(0,T )

%2|v|2 dxdt

The hierarchical control problem is defined as follows:

1. Let v the leader control in L2(ω × (0, T )). Calculate a follower control f [v] such that given a
positive time T the problem (3.5) is satisfied.

2. Compute the leader control v̂ such that the pair (f [v], v) minimise the functional (3.5.2) i.e
solves the problem

3.
P (v̂, f [v̂]) = inf

v∈L2(ω×(0,T ))

(
α

2

∫
Q

|y − yd|2 dxdt+
1

2

∫
ω×(0,T )

%2|v|2 dxdt.
)

(3.5.2)

To reach the objectives defined above is necessary to introduce some preliminary theory tomake
more clear the computing done in this chapter.

3.6 Energy estimates and regularity
For sake of clarity the functionwwill be used in this section.To this end let us consider the following
adjoint system

wtt −∆w + aw = 0 in Q
w = 0 in Σ
w(0) = w0, wt(0) = w1 in Ω

(3.6.1)

Two concepts that are important to study the wave equation and rises in a natural form is the
concept of energy for the wave equation. Define the energy for a function w in C(0, T ;L2(Ω)) ∩
C1(0, T ;H−1(Ω))

Ew(t) =
1

2

(
‖wt(t)‖H−1(Ω) + ‖w(t)‖L2(Ω)

)
.

If there is not possibility of confusion the energy can be simply denoted by E(t).

Lemma 3.6.1. Let a positive time T > 0. Let w in C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) the solution to
equation (3.6.1) with initial conditions (w0, w1) in L2(Ω)×H−1(Ω). Then the energy inequality holds

Ew(t) ≤ CEw(s)eC‖a‖L2(0,T ;Ln(Ω)) , ∀s, t ∈ [0, T ]

Proof. The proof is based in a technique called transposition method developed by Lions. It consist in
defining a dual system with source term f ∈ L1(0, T ;L2(Ω)) where energy estimates can be com-
puted in a classical way. Then let θ ∈ C(0, T ;H1

0 (Ω))∩C1(0, T ;L2(Ω)) be the solution for the problem

θtt −∆θ + aθ = f
θ = 0
θ(T ) = θt(T ) = 0.

(3.6.2)
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Multiply equation (3.6.1) by θ and integrate by parts to get∫
Q

fwdxdt =

∫
Ω

(θ(0)w1 − θt(0)w0) dx.

Define the energy
Ẽθ(t) =

1

2

(
‖θ(t)‖H1

0 (Ω) + ‖θt(t)‖L2(Ω)

)
By classical energy estimates for the system (3.6.2) it is possible to get that Ẽθ(0) ≤ C‖f‖L1(0,T ;L2(Ω))

then by definition of the norm ‖z‖L∞(0,T ;L2(Ω)) is possible to get that for any (z0, z1) in L2(Ω)×H−1(Ω)

‖w‖L∞(0,T ;L2(Ω)) ≤ C
(
‖w0‖L2(Ω) + ‖w1‖H−1(Ω)

)
.

Thenext step is to showhow the above estimate for ‖w‖L∞(0,T ;L2(Ω)) gives the regularityC(0, T ;L2(Ω))
for w.

Lemma 3.6.2. Let a positive time T > 0. Let w in C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) the solution to
equation (3.7). Let 0 ≤ T1 ≤ T2 ≤ T3 ≤ T4 ≤ T . Then the next inequality holds∫ T4

T1

E(t)dt ≤ C(1 + r)

∫ T3

T2

‖w(t)‖2
L2(Ω)dt

Proof. Define the function ψ in L2(0, T ;H2(Ω)) the solution to −∆ψ = w. with boundary condition
ψ = 0. Defines the truncation function φ(t) = (t−T2)(t−T3) and highlighting that φ(T2) = φ(T3) = 0∫ T3

T2

∫
Ω

φ(wtt −∆w)ψ =

∫ T3

T2

∫
Ω

φwttψ − φ∆wψ

=

∫ T3

T2

∫
Ω

wtφtψ + wtφψtdxdt−
∫ T3

T2

∫
Ω

φψ∆w

= −
∫ T3

T2

∫
Ω

wtφtψ −
∫ T3

T2

∫
Ω

wtφψt dxdt+

∫ T3

T2

∫
Ω

φ|w|2

= −
∫ T3

T2

|wt|2H−1(Ω)φtdxdt−
1

2

∫ T3

T2

φt∂t|∇w|2 +

∫ T3

T2

∫
Ω

φ|w|2

−
∫ T3

T2

|wt|2H−1(Ω)φtdxdt−
1

2

∫ T3

T2

φtt|∇w|2 +

∫ T3

T2

∫
Ω

φ|w|2.

Now tanking in consideration that L0(w) = aw and moving the first integral from right side to
left side

−
∫ T3

T2

|wt|2H−1(Ω)φtdxdt =

∫ T3

T2

∫
Ω

φawψ +
1

2

∫ T3

T2

∫
Ω

φtt|∇w|2 +

∫ T3

T2

∫
Ω

φ|w|2

It is necessary to estimate the first integral of the above equation. Then∫
Ω

awψ dx dt ≤ ‖aψ‖L2(Ω)‖w‖L2(Ω).

Now ‖aψ‖L2(Ω) = ‖a2ψ2‖1/2

L1(Ω) and because a ∈ Ln/2(Ω) and ψ ∈ L
n

2(n−2) (Ω) then
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‖a2ψ2‖L1(Ω) ≤ ‖a‖Ln/2(Ω)‖ψ‖L n
2(n−2) (Ω)

.

Consider the Sobolev embedding W k,p(Ω) −! Lq(Ω) for n > kp with p ≤ q ≤ np
n−kp (see [AF03]).

Because n
2(n−2)

< 2n
n−4

with k = 2, p = 2 then ‖ψ‖
L

n
2(n−2) (Ω)

≤ ‖ψ‖H2(Ω) ≤ ‖w‖L2(Ω)
5. Then is possible

to get the inequality ∫ T3

T2

φt‖wt‖2
H−1(Ω)dxdt ≤ C(1 + r)

∫ T3

T2

‖w(t)‖2
L2(Ω)dt.

Because (T2, T3) ⊂ (T1, T4) is straightforward that∫ T3

T2

φt‖wt‖2
H−1(Ω)dxdt ≤ C(1 + r)

∫ T4

T1

‖w(t)‖2
L2(Ω)dt

Then the assertion is true.

Theorem 3.6.1. Let u in C0(0, T ;L2(Ω)) such that utt −∆u ∈ H−1(Ω) and

〈u,Pψ〉H−1(Ω),H1
0 (Ω) = 〈Pu, ψ〉H−1(Ω)×H1

0 (Ω) L0(ψ) ∈ L2(Q)

then
λ

∫
Q

eλφu ≤ C

(
‖eλφPu‖H−1(Ω) + λ2

∫
ω×0,T )

e2λφu

)
Proposition 3.6.1. Consider a potential function a ∈ L∞(Q) an define theminimum timeT∗ = maxx∈Ω ‖x−
x0‖. For initial value functions (w0, w1) in L2(Ω) × H−1(Ω) and for the solution w to (3.6.1) there exist a
constant C such that the observability inequality holds

‖w0‖L2(Ω) + ‖w1‖H−1(Ω) ≤ Cobs

∫
O×(0,T )

|w|2dxdt (3.6.3)

Theorem 3.6.2. Let v in L2(ω×(0, T )) and a positive time T > R. Then there exist a follower control f [v] in
L2(O× (0, T )) such that the exact controllability problem 3.5 is satisfied and solves the initial value problem

ytt −∆y + ay = v1ω + f [v]1O in Q
y = 0 in Σ
y(T ) = ȳ0, yt(T ) = ȳ1 in Ω

Moreover exists (p0, p1) ∈ L2(Ω)×H−1(Ω) such the follower control is characterised by

f [v] = p1O

where p solves the equation

ptt −∆p+ ap = 0 in Q
p = 0 in Σ
p(0) = p0, pt(0) = p1 in Ω.

5 The above analysis is done for n > 4. For the case n = 1, 2, 3 apply the corresponding Sobolev embedding results.
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Proof. Define z in C(0, T ;H1
0 (Ω) ∩ C1(0, T ;L2(Ω) a solution to the problem

ztt −∆z + az = v1ω in Q
z = 0 in Σ
z(T ) = ȳ0, zt(T ) = ȳ1 in Ω

Now given initial conditions (p0, p1) define the function p in the solution

ptt −∆p+ ap = 0 in Q
p = 0 in Σ
p(0) = p0, pt(0) = p1 in Ω

(3.6.4)

And finally define the function η the solution to

ηtt −∆η + aη = p1O in Q
η = 0 in Σ
η(T ) = 0, ηt(T ) = 0 in Ω

(3.6.5)

Taking the solution η to equation (3.6.5) define the bounded linear operator Λ : L2(Ω)×H−1(Ω) −!
H1

0 (Ω)× L2(Ω)

Λ(p0, p1) = (−ηt(0), η(0))

The exact controlability problem can be formulated as to find initial conditions (p0, p1) inL2(Ω)×
H−1(Ω) such that Λ(p0, p1) = (−y1 + zt(0), y0 − z(0)). Next is necessary to prove that this equation
has a solution. take equation (3.6.5) and multiply by p apply integration by parts and the condition
η(0) = ηt(0) = 0 is possible to get∫

Q

(ηtt −∆η + aη)p dxdt =

∫
Ω

η(0)pt(0)− ηt(0)p(0) dx

Because
∫
Q

(ηtt −∆η + aη)p dxdt =
∫
O×(0,T )

|p|2 dxdt the above equation can be written in the form

〈Λ(p0, p1), (p0, p1)〉H∗×H =

∫
O×(0,T )

|p|2 dxdt

Calling the observably inequality (3.6.3) from the above equation is possible to get the coercivity
of the real bilinear form 〈Λ(·, ·), (·, ·)〉H1

0 (Ω)×L2(Ω),L2(Ω)×H−1(Ω) defined in L2(Ω) × H−1(Ω) using the
inequality

〈Λ(p0, p1), (p0, p1)〉 ≥ 1

Cobs

(
‖p0‖L2(Ω) + ‖p1‖H−1(Ω)

)
Then by the Lax-Milgram theorem exists (p0, p1) ∈ L2(Ω)×H−1(Ω) with associates state p that solves
(3.6.4)and such that the exact controlability problem is fulfils. Moreover the solution y = η+ z then
the follower control f [v] = p1O.

Theorem 3.6.3. Exist a leader control v̂ in L2(ω × (0, T )) such that given a time T > 2R1 the optimisation
problem (3.5.2). Moreover the next system is satisfied
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ŷtt −∆ŷ + aŷ = v1ω + f [v]1O in Q
ŷ = 0 in Σ
ŷ(0) = y0, ŷt(0) = y1; ŷ(T ) = ȳ0, ŷt(T ) = ȳ1 in Ω

Moreover exists (p̂0, p̂1) ∈ L2(Ω)×H−1(Ω) such the follower control is characterised by

f [v̂] = p̂1O

where p solves the equation

p̂tt −∆p̂+ ap̂ = 0 in Q
p̂ = 0 in Σ
p̂(0) = p̂0, p̂t(0) = p̂1 in Ω.

The leader control v̂ is characterised by

v̂ = %−2(φ+ ψ)1O

where φ solves

φtt −∆φ+ φ = α(y − yd)1Qd in Q
φ = 0 in Σ
φ(T ) = φt(T ) = 0 in Ω

and ψ solves

L0(ψ) + aψ = 0 in Q
ψ(0) = 0 in Σ
ψ(0) = ψ0, ψt(0) = ψ0 in Ω.

Proof. Let a direction h in L2(ω × (0, T )) and take the derivate of the functional S defined in (3.5.2)
to get

1

ε
(S(f [v + εh], v + sh)− S(f [v], v)) =

∫
Qd

α(y − yd)ŷ +

∫
ω×(0,T )

vh (3.6.6)

where the function ŷ in C1(0, T ;L2(Ω) is a solution to the to the problem

ŷtt −∆ŷ + aŷ = h1ω + p̂1O in Q
ŷ = 0 in Σ
ŷ(0) = ŷt(0) = 0 in Ω

and p̂ is the solution to the initial value problem (3.6.4) with initial conditions (p̂0, p̂1) defined by the
equation Λ(p̂0, p̂1) = (−ẑt(0), ẑ(0)) where the pair (−ẑt(0), ẑ(0)) in H1

0 (Ω) × L2(Ω) are the states for
the solution ẑ for the initial value problem

ẑtt −∆ẑ + aẑ = h1ω in Q
ẑ = 0 in Σ
ẑ(T ) = 0, ẑ(T ) = 0 in Ω

(3.6.7)



111

η̂tt −∆η̂ + aη̂ = p̂1ω in Q
η̂ = 0 in Σ
η̂(T ) = 0, η̂(T ) = 0 in Ω
η̂(0) = ẑ(0), η̂t(0) = −ẑt(0)

p̂tt −∆p̂+ ap̂ = 0 in Q
p̂ = 0 in Σ
p̂(0) = p̂0, p̂(0) = p̂1 in Ω

(3.6.8)

Define φ in as the solution to the problem

φtt −∆φ+ φ = α(y − yd)1Qd in Q
φ = 0 in Σ
φ(T ) = φt(T ) = 0 in Ω

(3.6.9)

Using the definition of ŷ , p̂ and integration by parts and initial conditions the equation (3.6.6) is∫
Qd

α(y − yd)ŷ +

∫
ω×(0,T )

vh =

∫
Qd

φ(h1ω + p̂1O) +

∫
ω×(0,T )

vh

=

∫
ω×(0,T )

(φ+ v)hdx dt+

∫
O×(0,T )

p̂φ dx dt

= 0

(3.6.10)

It is necessary to change the integral expression
∫
O×(0,T )

p̂φ dx dt by an integral in the open set

ω× (0, T ). To do this will be necessary to make some assumptions. Consider the function φ defined
by equation (3.6.9). Take a pair (ϕ0, ϕ1) then there exist an associated function ϕ in C(0, T ;H1(Ω))∩
C1(0, T ;L2(Ω)) which is a solution to the homogeneous problem

L0(ϕ) + aϕ = 0 in Q
ϕ(0) = 0 in Σ
ϕ(0) = ϕ0, ϕt(0) = ϕ0 in Ω

This map (ϕ0, ϕ1)! ϕ is continuous. Define the linear functional `φ : L2(Ω)×H−1(Ω) −! R given
by

`φ(ϕ0, ϕ1) =

∫
Q

ϕφdxdt

By Hölder inequality and classical energy estimates it is possible to verify that `φ is continuous
and has bound ‖`φ‖ = ‖φ‖L2(ωT ). The bilinear form 〈Λ(·, ·), (·, ·)〉H∗,H is coercive by observable in-
equality so recalling the Lax-Milgram theorem exist a pair (ψ0, ψ1) in L2(Ω)×H−1(Ω) such that for
(p̂0, p̂1) in L2(Ω)×H−1(ω) from (3.6.8) the next equality holds

`φ(p̂0, p̂1) = 〈(ψ0, ψ1),Λ(p̂0, p̂1)〉H∗,H (3.6.11)

Now recall that Λ(p̂0, p̂1) = (−ẑt(0), ẑ(0)) so equation (3.6.11) takes the form

`φ(p̂0, p̂1) = 〈(ψ0, ψ1), (−ẑt(0), ẑ(0))〉H∗,H . (3.6.12)
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Set the function ψ as the solution to the initial value problem

L0(ψ) + aψ = 0 in Q
ψ(0) = 0 in Σ
ψ(0) = ψ0, ψt(0) = ψ0 in Ω

recalling the fact that ẑ is a solution to the initial value problem (3.6.7) using the definition of the
dual product one gets

`φ(p̂0, p̂1) = 〈(ψ0, ψ1), (−ẑt(0), ẑ(0))〉H∗×H
=

∫
Ω

ẑ(0)ψ1 − ẑt(0)ψ0dx

=

∫
Q

(ẑtt −∆ẑ + aẑ)ψ

=

∫
ω×(0,T )

hψ

Then from equation (3.6.10) and the calculation done in (3.6.12) is possible to get∫
ω×(0,T )

h(φ+ ψ + v)dxdt = 0

then v = −(φ+ ψ)1ω.

3.7 Proof of the observably inequality
Proof. Define the auxiliary problem

vtt −∆v = qv in Q
v = 0 in Σ

The hypothesis of the function that fulfils equation (3.5.1) to guarantee that v(T ) = v(0) = 0 so is
necessary to use an appropriate cut off function in adequate interval in order to attain the conditions
to apply the inequality given by theorem 3.6.1.

Define the weight function φ(t, x) = ‖x − x0‖ − c
(
t− T

2

)2. Invoke that the condition that the
constant

In the extremes of the interval (0, T )

φ(T, x) = φ(0, x) ≤ R1 − c
T 2

4
≤ 0, x ∈ Ω

Then there exist positive numbers ε1, and ε′1 such that for any t in (T1, T
′
1) where T1 = T/2− ε1T and

T2 = T/2 + ε′1T the inequality
φ(t, x) ≤ 0 x ∈ Ω

1.Define a cut off function ξ in C∞0 (0, T ) such that ξ = 1 in the interval (T1, T
′
1). Define the function

w = ξv. This new v is in C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)) and makes w(0) = w(T ) = 0. Hence

theorem 3.6.1 can be applied. There exist a positive λ0 such that for any λ ≥ λ0
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λ

∫
Q

eλφw ≤ C

(
‖eλφPw‖H−1(Ω) + λ2

∫
ω×0,T )

e2λφw

)
= C

(
‖eλφqξw + wξtt + 2ξtwt‖H−1(Ω) + λ2

∫
ω×(0,T )

e2λφw

)
Now by definition of the norm in H−1(Ω)

‖aξw + wξtt + 2ξtwt‖H−1(Ω) = sup
‖f‖=1

〈aξw + wξtt + 2ξtwt, f〉

= sup
‖f‖=1

〈aξw〉+ sup
‖f‖=1

〈wξtt + 2ξtwt, f〉

≤ sup
‖f‖=1

∫
Q

aξwf + sup
‖f‖=1

∫
Q

(wξtt + 2ξtwt)f

Nos by the Sobolev embedding theoremH1(Ω)! L2(Ω) together with Holder inequality permit to
make the inequality

sup
‖f‖=1

∫
Q

aξwf ≤ C‖a‖L∞(0,T ;Ln(Ω))‖eλφw‖L(Q)

For the second integral in (3.7) is necessary to integrate by parts to avoid the time derivate in w
and now express the interval (0, T ) = (0, T1) ∪ (T1, T

′
1) ∪ (T ′1, T ) taking in consideration that in the

extreme intervals the function φ ≤ R1/2− cT 2/8 then

sup
‖f‖=1

∫
Q

(wξtt + 2ξtwt)f = sup
‖f‖=1

∫
Q

eλφw(λφtξtft + ξttf + ξtf)

≤ Ce(R1/2−cT 2/8)λ
(
‖w‖L2((0,T1)×Ω) + ‖w‖L2((T ′1,T )×Ω)

)
2. Now is possible to express∫

Q

(ξw)2e2λφ =
∫
Q
w2e2λφ −

∫
Q

(1− ξ)w2e2λφ

=

∫
Q

w2e2λφ −
∫

Ω×(0,T1)

(1− ξ2)w2e2λφ −
∫

Ω×(T ′1,T )

(1− ξ2)w2e2λφ

≤
∫
Q

w2e2λφ − Ce(R2
1−cT 2/4)λ

(
‖w‖L2((0,T1)×Ω) + ‖w‖L2((T ′1,T )×Ω)

)
With the above inequality is possible to estimate the left side of (3.7) so putting together equations
(3.7) and (3.7) is possible to get

λ

∫
Q

eλφw2 ≤ C

(
‖a‖2

L∞(0,T ;Ln(Ω))

∫
Q

w2e2λφ + λ2

∫
ω×(0,T )

w2e2λφ+

+ Ce(R2
1−cT 2/4)λ(1 + λ2)‖w‖L2((0,T1)×Ω) + ‖w‖L2((T ′1,T )×Ω)

)
The objective is to eliminate the first integral in the right hand side from (3.7) to remain only the
integral in the domain ω × (0, T ). Because R2

1 − cT 2/4 < 0 then is possible to choose a positive
λ ≥ λ0 such that the product e(R2

1−cT 2/4)λ(1 + λ2) is sufficiently small i.e less than one. Moreover is
possible to choose λ ≥ 2C(λ1 + r2) then the expression ‖a‖2

L∞(0,T ;Ln(Ω))

∫
Q
w2e2λφ can be absorbed to
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the left hand side of (3.7) then

λ

∫
Q

eλφw2 ≤
(
λ2

∫
ω×(0,T )

w2e2λφ + ‖w‖L2((0,T1)×Ω) + ‖w‖L2((T ′1,T )×Ω)

)
The two left hand side terms in the right hand side of (3.7) should be bounded above by an integral
in all Q. To achieve this consider that φ(T/2, x) ≥ R0/2 and then must exist an open (T0, T

′
0) around

T/2 then ∫
Q

e2λφw2 ≥
∫

(T0,T ′0)×Ω

w2.

3. In addition , consider some S0 in (0, T/2) and S4 in (T/2, T ) so by lemma 3.6.2 is straightforward
to get ∫ S3

S2

E(t)dt ≤ C(1 + r)

∫ S4

S1

|w|2

By the inequality in lemma 3.6.2

‖w‖L2((0,T1)×Ω) + ‖w‖L2((T ′1,T )×Ω) ≤ CE(0)eCr

Then the proof is done.



115

3.8 Appendix

3.8.1 Optimisation
This chapter is devoted to the formalism used to study control problems with constrains. The idea
us to use the formalism of Dubovitsky-Milyutin

The purpose of this section is to use the cone theory to write an optimisation problem with
constrains in a more computable form to calculate the minimal values. Let a functional f : B −! R
and consider a family Qi ⊂ B , i = 1, ..., n. A constrained problem is a minimisation problem
defined by 

min
x∈B

f(x),

x ∈
n⋂
i=1

Qi

Convex cones theory.

Let be a linear normed space B. A subset C is called a cone centered in 0 if for any x ∈ C and λ ≥ 0
is true that λx ∈ C or in a equivalent way λC = C. A cone Cx0 is said to have vertex in x0 if there exist
a cone C with vertex in 0 such that Cx0 = C + x0. A cone with vertex at zero will be called simply a
cone. A cone that is convex is called a convex cone. The simplest example of a con convex cone is
the union of the first quadrant and third quadrant of the euclidean plane.

The dual cone C∗ of a cone C is defined by C∗ = {f ∈ B∗ : f(x) ≥ 0, x ∈ C}. It is easy to see that
the dual cone is in fact a cone with vertex at zero. Next a list of properties of cones and its dual is
given:

1. For any coneK the dual K∗ is a cone with vertex in 0.

2. Let two conesK1 ⊂ K2 then K∗2 ⊂ K∗1 .

3. Let K be a vector space and f ∈ K∗. If x 6= 0 by definition f(x) ≥ 0 then f(−x) ≥ 0 that
implies that K∗ = {f ∈ B∗ : f |K = 0}.

4. Is important to note that if K is a convex open cone then for any f ∈ K∗ and x ∈ K the
inequality f(x) > 0 is true, otherwiseK = f−1([0,∞)) that contradicts the fact thatK is open.

Some examples of cones are:

1. In the Cartesian plane, the union of the XY quadrant with he X−Y − is a non convex cone.

2. Let (X,µ) a finite measure space and define the convex cone C = {f ∈ L2(X,µ) : f ≥ 0} so
this cone in convex int(C) = ∅. For f ∈ L2 take the set Aε = {x ∈ X : f(x) ≥ ε} so µ(Aε) <∞
and moreover µ(X/Aε) =∞ . Take a cover X =

⋃
i∈N Ui with µ(Ui) <∞ and write

µ(X/Aε) = µ (
⋃∞
i=1 Ui ∩ (X/Aε))

≤
∞∑
i=1

µ

(
∞⋃
i=1

Ui ∩ (X/Aε)

)
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so because µ(X/Aε) =∞ the for at least one U of the cover {Ui}ni=1 the positive measure µ(U ∩
(X/Aε) > 0. Define the function g = f outside U ∩ (X/Aε) and f(x)− ε otherwise. Then

‖f − g‖L2 =

∫
U∩(X/Aε)

|f − f + ε|2dµ

≤
∫
U∩(X/Aε)

ε2

The function g us negative in the set U ∩ (X/Aε) an inside the ball Bε(f) so there is no ball
contained in the cone C.

3. Define the cone C of non negative functions of C([a, b]). Then C∗ is the set of all increasing
positive functions on [a, v]. Let l ∈ C([a, b])∗ then there exist a bounded variation function µ in
[a, b] such that

l(f) =

∫ b

a

f(x)dµ(x)

In particular given l ∈ C∗ for any f ∈ C then l(f) ≥ 0. Suppose that there is a non decreasing
function µ such that for d > c, µ(d) < µ(c) and define the function f(x) = 1 in [c, d] and
f(x) = 0 otherwise. The function f ∈ C but by definition

l(f) =

∫ b

a

f(x)dµ(x) < 0

Then the repentant µ of l is of bounded variation. The converse is straightforward.

4. The Lorenz cone is defined as Ln+1(R) = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t} is a self dual cone.

Is straightforward to note that if K is a subspace of B then the dual cone K∗ = {f ∈ B∗ : f1K =
0}.

Lemma 3.8.1. Given a banach space B and f ∈ B∗

1. IfK1 = {x ∈ B : f(x) = 0} then K∗ = {λf : λ ∈ R}.

2. IfK2 = {x ∈ B : f(x) ≥ 0} then K∗ = {λf : λ ≥ 0}

Proof. Because K1 is a subspace then for any g ∈ K∗1 there exist a real number λ and f ∈ K∗1 such
that g = λf . Now, because K2 ⊂ K1 then K∗1 ⊂ K2 and the result is complete.

Lemma 3.8.2. Given a family Ki∈I for an arbitrary set the equality
(⋃

i∈I Ki

)∗
=
⋂
i∈I K

∗
i holds.

Proof. Take f ∈
(⋃

i∈I Ki

)∗ so by definition f(x) ≥ 0 for any x ∈
⋃
i∈I Ki and in particular for any

x ∈ Ki then f ∈
⋂
i∈I K

∗
i . On the other hand if f ∈

⋂
i∈I K

∗
i then f(x) ≥ 0 for any x ∈ Ki so

f ∈
(⋃

i∈I Ki

)∗.
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Let F : B −! R where B a a locally convex normed space. For a pint x ∈ B define the sub
differential of F at x as ∂F (x) = {f ∈ B∗ : F (y) − F (x) ≥ f(y − x), ∀y ∈ B}. Its straightforward
to note that for any function F its sub differential is a convex set. Let λ ∈ [0, 1] and f, g ∈ ∂F (x)
so convexity is a consequence of the inequality F (y) − F (x) ≥ λF (x) − (1 − λ)F (y). The proof
of the Moreau-Rockafellar theorem can be found in [Ale17] and its an essential tool for the proof of
Dubovitskiy-Milyutin theorem.

Let K a subset in B. Define the Lagrange first variation function like

δK(x) =

{
∞ x /∈ K
0 ∈ K

If K is a cone in B then take ∂(δK)(0). If f ∈ ∂(δK)(0) then for any y ∈ B, δK(y) ≥ f(y) but in
particular for any y ∈ K the inequality −f(y) ≥ 0 then f ∈ −K∗. The converse result inclusion in
straightforward so is true that

∂(δK)(0) = −δK∗ (3.8.1)

Theorem3.8.1 (Moreau-Rockafellar). Let f1, ..., fn a family of convex proper functions inB. Then
∑n

i=1 ∂fi ⊂
∂ (
∑n

i=1 fi). Moreover if at the point x ∈ B all the functions exceptmaybe one are continuous then ∂ (
∑n

i=1 fi) =∑n
i=1 ∂fi.

Lemma 3.8.3. Let K1, .., Kn a family non disjoint convex open cones. Then (
⋂n
i=1Ki)

∗
=
∑n

i=1K
∗
i .

Proof. Due the fact that
⋂n
i=1 Ki is a convex and the propriety (3.8.1) is possible to get(

n⋂
i=1

Ki

)∗
= −∂δ

(
n⋂
i=1

Ki

)
= −∂

n∑
i=1

δKi

=
n∑
i=1

−∂(δKi) =
n∑
i=1

K∗i

Optimization cones, characterization and the Dubovitskiy- Milyutin theorem.

LetB a normed space, a function f : B −! R and a point x0 ∈ B. A vector h ∈ B is called a descent
direction at the point x0 if there exist ε0 > 0, a α < 0 and a open neighborhood U of h such that for
any ε ∈ (0, ε0) and v ∈ U the inequality f(x0 + εv)− f(x0) ≤ αε. The set of all descent directions at
x0 is denoted by DC(x0, f) and is called the descended direction cone

Proposition 3.8.1. Given x0 ∈ B the set DC(x0, F ) is a open cone.

Proof. Let h ∈ DC(x0, f). Because there exist an open set U such that for any v ∈ U the inequality
f(x0 + εv) − f(x0) ≤ αε suffices then taking the same U a neighborhood of v is verified that U ⊂
DC(x0, f). Then the descended cone is an open set.

Proposition 3.8.2. Let f be a real Frechet differentiable function in B. Then the descendent cone is charac-
terized by DC(x0, f) = {h ∈ B : f ′(x0, h) < 0}.

Proof. Let
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Proposition 3.8.3. If f is a convex functional then DC(x0, f) is a convex cone.

Proof. Let λ ∈ [0, 1] and h, v ∈ DC(x0, f) and define η = λh+ (1− λv) then

f(x0 + εη)− f(x0)

ε
= λ

f(x0 + εh)− f(x0)

ε
+

+ (1− λ)
f(x0 + εv)− f(x0)

ε

and then f ′(x0, η) < 0 so DC(x0, f) is convex.

LetB a normed space andD ⊂ B. A vector h ∈ B is an admissible direction at the point x0 ∈ B
if there exist an open interval (0, ε0) and a open set U ⊂ B such that for any direction v ∈ U the
parametric vector x0 + εv ∈ D for any ε ∈ (0, ε0). The set of all admissible directions seated in x0 is
denoted by AC(x0, D) and is called the admissible cone at x0. The next proposition give some of
the basic properties of the admissible cone.

Proposition 3.8.4. admcone Let D ⊂ B and arbitrary set and x0 ∈ B. Then the set AC(x0, D) is a open
cone.

Proof. The proof follows the same ideas of the proof of proposition 3.8.1.

Proposition 3.8.5. For any convex setD the equality AC(x0, D) = {λ(x−x0) : λ > 0, x ∈ int(D)} holds.

Proof. Let h ∈ AC(x0, D) so there exist a ε0 > 0 and a open neighborhood U of the direction h such
that x0 + εh̄ ∈ D for any h̄ ∈ U . The set V = x0 + εU is a neighborhood of x0 + εh so x0 + εh ∈ int(D).
Define h = 1

ε
(x − x0) then AC(x0, D) ⊂ {λ(x − x0) : λ > 0, x ∈ int(D)}. The converse inclusion is

shown as follows. Let h = λ(x0 − x) with λ > 0 and x ∈ int(Q) then there exist a neighborhood V
of x. Define the set U = {λ(v − x0) : λ > 0, v ∈ U} and ε0 = 1

λ
then

x0 + εh = x0 + ε((λ(v − x0))
= λεv + (1− λε)x0 ∈ Q

Then because Q is convex . Then h ∈ AC(a0, D).

Proposition 3.8.6. Let f : B −! R be a differentiable function at x0 and Q = {x ∈ B : f(x) ≤ f(x0)}T
then AC(x0, Q) = DC(x0, f).

Proof. Let h ∈ CD(x0, f) then f(x0 + εh̄) ≥ f(x0) + εα for h̄ ∈ U , α < 0 and ε ∈ (0, ε0) then h ∈ Q.
By the other side, the cone AC(x0, Q) is open so there exist a neighborhood U ⊂ AC(x0, Q) around
h. Let γ > 0 and define hγ = h + γ(h − h̄) or equivalent h = 1

γ+1
hγ + γ

γ+1
h̄ and because f ′(x0, h) is

convex in h then
f ′(x0, h) = f ′

(
x0,

1
γ+1

hγ + γ
γ+1

h̄
)

≤ 1

γ + 1
f ′(x0, hγ) +

γ

γ + 1
f ′(x0, h̄)

≤ γ

γ + 1
f ′(x0, h̄)

Then h ∈ DC(x0, Q).
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Now the last direction cone is defined. Let Q ⊂ B. A vector h ∈ B is called a tangent direction
to Q at a point x0 ∈ B if there exist a function r : (0, ε0) −! B with |r(ε)| = O(ε) such that for any
neighborhood U of h the vector 1

ε
r(ε) ∈ U and the parametrization x0 + εh+ r(ε) ∈ Q. The set of all

tangent directions to Q at x0 is denoted by TC(x0, Q) and is called the tangent cone at x0. A vector
h is a unilateral tangent direction if fulfils all the hypothesis above but the ε ! 0+. The set of all
unilateral directions is denoted by TC+(x0, Q).

Proposition 3.8.7. Let Q ⊂ B. The set TC(x0, Q) is cone with vertex at 0.

Proof. The proof follows as has done before.

Proposition 3.8.8. Implicit function theorem Let B a topological space and Y, Z Banach spaces. Given
(x0, y0 ∈ X × Y and a neighborhood W of (x0, y0) consider a function ψ : W −! Z and ψ(x0, y0) = z0

with z0 ∈ Z. If

1. The application x 7! ψ(x, y0) is continuous in x0.

2. Exist an application Λ : Y −! Z such that for any ε > 0 and δ > 0 exists a neighborhood U at
x0 with the property that for x ∈ U the inequalities ‖y′ − y0‖ < δ and ‖y′′ − y0‖ < ε implies that
ψ(x, y′)− ψ(x, y′′)− Λ(y′ − y′′)‖ < ε‖y′ − y′′‖.

3. Λ(Y ) = Z.

Then there exists a numberK and a neighborhood V ⊂ X×Z of (x0, z0) such that the applicationϕ : U −! Y
satisfies ψ(x, ϕ(x, y)) = 0 and ‖ϕ(x, y)− y0‖ < K‖ψ(x, y0)− z‖.

Theorem 3.8.2. Lyusternik Let P : E1 −! E2 and differentiable operator in a neighborhood of x0 ∈ E1 with
P ′(x0) a continuous operator in a neighborhood of x0 with P ′(x0) subjective. Then TC(Q, x0) = kerP ′(x0).

Proof. Let r the function of the definition of unilateral tangent cone. Given h ∈ TC(x0, Q) ans the
trajectory x(ε) = x0 + εh+ r(ε) ∈ Q then

F (x(ε)) = F (x0) + εF ′(x0)h+O(ε)
= εF ′(x0)h+O(ε)
= 0

Because O(ε) < |ε| then F ′(x0)h = 0 then TC+(x0, Q) ⊂ kerF ′(x0). No the converse contention is
proved and the implicit function theorem is used. Define the function G(x, y) = F (x+ y) , because
F is a differentialble function then G(x, 0) is differentiable and

‖G(x, y + h)−G(x, y)− F ′(x0)h‖ ≤ ε‖h‖.

with ‖x− x0‖ < δ and ‖y‖, ‖y+ h‖ < δ. This enable the implicit function theorem then there exist a
open set U ⊂ E × E, a positive constant K and a function ϕ : U −! Y such that G(x, ϕ(, x, y)) = 0
for any (x, y) ∈ U and

‖ϕ(x, y)− y0)‖ ≤ K‖G(x, y0)− y0‖
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Then G(x, ϕ(x)) = 0 or in a equivalent form F (x+ ϕ(x)) = 0 and also ‖ϕ(x)‖ < K‖G(c, 0)‖. Then is
possible to take r(ε) = ϕ(x0 + εh) and along r the equality F (x0 + εh + r(ε) = 0 . Also an estimate
for r is given by

‖r(ε)‖ = ‖ϕ(x0 + εh)‖
≤ K‖F (x0 + εh)‖
= K‖F (x0 + ε)− F (x0)‖
= K‖εF ′(x0)h+O(εh)‖
≤ K‖εF ′(x0)h+O(ε)‖

If h ∈ kerF ′(x0) then ‖r(ε)‖ = 0 and implies that kerF ′(x0) ⊂ TC+(x0, Q).

The central part of this chapter is to find a suitable method to solve extreme problems under
constrains as the problem 3.8.1 is set.

Theorem 3.8.3 (Dubovitskiy-Milyutin). Let B be a normed space and consider the a family of open convex
cones K0, K1, ..., Kn, Kn+1. Then the the cones are disjoint if and only if there exist a family of functional
fi ∈ K∗i with i = 0, 1, ..., n, n+ 1 such that

∑n+1
i=0 fi = 0.

Proof. The first implicationwill be proved by induction. Suppose that
⋂n
i=0 Ki 6= ∅ andKn+1 6= ∅. By

separation theorem there exists a functional f ∈ B∗ such that f(x) ≥ 0 for x ∈
⋂n
i=0Ki and f(x) ≤

for x ∈ Kn+1. By definition, f ∈ (
⋂n
i=0Ki)

∗ and by Theorem 3.8.3 the equality
⋂n
i=0 Ki =

∑n
i=0K

∗
i is

true which mans that there exists fi ∈ K∗i , i = 0, ..n such that

f = f0 + f1 + ...+ fn.

Define fn+1 = −f so f0 + f1 + ...fn + fn+1 = 0 and fn+1 ∈ K∗n+1. If
⋂n
i=0Ki = ∅ the above process is

done for
⋂n−1
i=0 Ki and Kn.

Now, suppose that there exists functional fi ∈ K∗i such that
∑n+1

i=0 fi = 0 and exists a x ∈
⋂n+1
i=1 Ki.

Then f0(x) = −(f1 + ... + fn+1)(x) but f0(x) > 0 and fi(x) > 0 for i = 1, ...n+ 1 and this is a
contradiction.

Theorem 3.8.4. Let U be a neighborhood of x0 in a normed space B, for i = 1, ..., , n + 1 a Mi a family of
subsets if B and f a real function in U . Write K0 := DC(x0, f), Kj := AC(x0,Mj) for j = 1, ..n and
Kn+1 := TC(x0,Mn+1). If x0 is a solution for the optimization problem 3.8.1 then then

⋂n+1
i=0 Ki = ∅.

Proof. Let h ∈
⋂n+1
i=0 Ki. Because h ∈ K0 exists an pen neighborhood U of h, a ε0 > 0 and α < 0 such

that for any v ∈ U0 and ε ∈ (0, ε0) the inequality

f(x0 + εv)− f(x0) < εα (3.8.2)

By other side h ∈
⋂n
j=1Ki then exists open sets Uj around h, and εj > 0 such that x0 + εvj ∈ Kj

for any vj ∈ Uj . Define U =
⋂n+1
i=0 Ui which contains h and ε̃ = mini=0,..n εi then for any v ∈ U and

ε ∈ (0, ε̃) x0 + εv ∈ Qi and (3.8.2) holds. Likewise h ∈ Kn+1 then for any neighborhood V of h such
that x0 + εv + r(ε) ∈ Qn+1. In particular is possible to take V = U .
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