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Abstract/Resumen

In this thesis, we implement a Fabry-Perot type optical cavity with spherical mirrors
of 5 cm radius of curvature in a near concentric configuration. This prototype has the
objective of helping the future development of a resonator that serves to enhance light-
matter coupling in a cold Rydberg atoms experiment. The near concentric configuration is
close to being an unstable resonator so a study of the requirements to build such a cavity
is done. We include a description of how to match the cavity mode and a method for
alignment. For characterization, we undertake measurements of cavity length by means of
the free spectral range, cavity waist using the Gouy phase, and we also determine linewidth
and finesse. Lastly, we explain the Pound-Drever Hall method to lock cavity length. As a
conclusion, an analysis is done of the most important aspects that will be needed in the
future for the implementation of the cavity, which will be inside the vacuum system where
the Rydberg cold atoms experiments are conducted.

En la presente tesis se realiza un prototipo de cavidad óptica tipo Fabry-Perot
con espejos esféricos de 5 cm de radio de curvatura en configuración casi concéntrica.
Este prototipo tiene como objetivo ayudar a desarrollar un resonador que sirva para
mejorar el acoplamiento luz-materia en un experimento de átomos fríos de Rydberg. En
la configuración casi concéntrica la cavidad está cerca de ser inestable por lo que se
estudia qué necesidades hay que cumplir para poder construir un resonador de este tipo.
Se describe cómo se ajusta el modo en la cavidad y un método para alinearla. Para
caracterización se realizan mediciones de la longitud de la cavidad por medio del rango
espectral libre, medición de la cintura a partir de la fase de Gouy, y la determinación del
ancho de línea y fineza. Por último se desarrolla y aplica el método de Pound Drever
Hall para anclar la longitud de la cavidad. Como conclusión se analizan los aspectos más
importantes que se necesitarán a futuro para la realización de la cavidad que irá dentro
del sistema de vacío donde se conducen los experimentos con átomos fríos de Rydberg.
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Introduction

Cold atoms experiments provide a very precise way to study the quantum mechanical
properties of matter and have a large variety of applications including quantum simulation
[1, 2], quantum metrology [3] and quantum computation [4]. Laser cooling was first
proposed in 1975 [5, 6] eventually a lot of progress was made possible in this area thanks to
the development of laser systems which allowed the first optical molasses, this confinement
was first demonstrated experimentally in 1985 [7] and was awarded the Nobel Prize in
Physics in 1997. This experimental techniques rely on the confinement of an atomic gas
by means of a light beam array which in combination with a controlled magnetic field
apply a frictional-style force by means of radiation pressure to the atoms, slowing them
towards the center of the array. A very interesting field which can be explored with this
systems is the study of light matter interaction, which can be amplified by confining the
atoms within an optical cavity. When doing this the coupling between light and matter
may become very strong and the whole system acts as a coupled oscillator [8].

This phenomena can be divided in two domains, first the “low-Q cavity” regime in
which the photons emitted by the atoms are very rapidly and irreversibly dissipated in the
cavity walls and the “high-Q cavity regime”, the photons are stored within the cavity walls
enough time so that they interact coherently with the atom [9]. In this work we study a
prototype for a cavity of the first kind, this type of system has a fast response compared
to the atomic dynamics so measuring the cavity transmission serves as a real time monitor
of the atomic system excitations and also the presence of a resonator enhances coupling of
light with atoms allowing interaction at lower laser power inputs.

The atomic system for which the cavity is planned is a Rydberg atoms experiment.
Rydberg atoms provide a great medium to explore and mediate the interaction between
light and matter, they are defined as atoms in states of high principal quantum number,
n, this condition provides exaggerated properties which scale with n as shown in Table
1. Because of this, many applications have been found [10, 11], which exploit their long
lifetimes and great polarizability.

Of particular interest in quantum optics, quantum information and as a motivation
for this work is a phenomena called Rydberg atom dipole blockade or better explained
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Property n-scaling 87Rb(100s1/2)

Orbital radius n2 0.96 μm
Radiative lifetime n3 1.24ms

Polarizability n7 6.25GHz(V/cm)−2

van der Waals C6 n11 56.4THz/μm6

Table 1: Scaling properties of Rydberg atoms [12]

as the inhibition of multiple Rydberg excitations. It arises from a van der Waals-like
potential corresponding to a second order dipole-dipole interaction between two atoms.
This interaction becomes relevant when dealing with highly excited atoms because of their
huge dipole matrix elements. For a pair of atoms the dipole-dipole interaction operator
takes the usual form [13]:

Vdd(R) =
d̂1 · d̂2 − 3(n̂ · d̂1)(n̂ · d̂2)

R3 , (1)

where R is the inter-atomic distance, n̂ = R/R is the normal vector pointing from one
atom to the other and d̂i is the dipole operator er̂i for each atom.

When R is large so that the individual atomic wave functions do not overlap,
the interaction term of equation (1) might be treated as a perturbation. To first order
perturbation theory the contribution is zero since the dipole operator does not couple same
parity states so second order perturbation theory is considered. The energy correction is
calculated to be [13]:

∆E =
∑

i,k

|⟨i; k|Vdd(R)|1; 2⟩|2
E1,2 − Ei,k

, (2)

where i and k run over states dipole-coupled to |1⟩ and |2⟩. The factor 1/R3 can go out
from the sum and the above equation is then written as

∆E =
C6(θ)

R6
, (3)

where θ is the angle between the inter-atomic axis and the quantization axis and arises
when considering the angular momentum quantum numbers [14]. Equation (3) is a Van
der Waals like interaction for large distances between atoms. To excite an atom to a
Rydberg level, it is necessary to irradiate it with light whose frequency corresponds to
that of the atomic transition. To excite two atoms, usually the same frequency would
excite them. However, when exciting to a Rydberg level, the Van der Waals interaction

2
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shifts the frequency needed to produce a second excitation when atoms are close enough
to each other. This phenomena is called the Rydberg blockade. It means there is a volume
defined by an inter-atomic distance called the blockade radius Rb where the energy shift
(equation (3)) is such that the simultaneous excitation of more than one atom is forbidden.
A diagram of this situation is depicted on Figure 1. When an entire atomic cloud fits
within the blockade volume this collective behaves as a single two-level system because
only one excitation is allowed within the sample. This increases the effective cross section
of the atoms improving atom-light coupling.

a) b)

Figure 1: a) The system composed of a pair of two level atoms can be excited using a single laser frequency (depicted
in red) to level |rr⟩ when their interatomic distance R is greater then Rb. However when R < Rb this becomes
impossible due to a Van der Waals like interaction which shifts the energy level. Level |g⟩ is considered to be a ground
state and level |r⟩ is a Rydberg state. b) Atoms within a blockade radius from a Rydberg excited atom can not be
simultaneously excited to a Rydberg level. The system within the blockade volume acts as an effective two level atom
with enhanced coupling to the light field and is called the Rydberg superatom.

Secondly the resonator and atom system is described by the Jaynes-Cummings
model [15], which is a quantum description of both a single two level atom interacting with
a quantized single mode field. This model considers the interaction in the electric dipole
approximation, the dipole operator for the atom can be written as d̂ = deg(σ̂eg+ σ̂ge) where
deg is the dipole matrix element −q ⟨e| r̂ |g⟩, σ̂eg = |e⟩ ⟨g| and σ̂eg = σ̂†

ge. The quantized
single electric field mode is Ê = f

√
ℏωc/ϵ0V (â† + â) where f is the mode envelope, V the

mode volume and ωc the cavity resonant frequency. Then the interaction hamiltonian is
written as:

Ĥint = −d̂ · Ê = ℏg0(â† + â)(σ̂eg + σ̂ge), (4)

The constant g0 characterizes the interaction strength and thus is called the coupling
constant, it is proportional to the dipole matrix element deg projected over the mode
envelope f and inversely proportional to the square root of the effective mode volume V :

g0 =

√
ωc

2ϵ0V ℏ
deg · f, (5)

3
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A generalization for an atom-cavity system with N atoms is the open Tavis-
Cummings model [16] which in the limit of small number of excitations shows the atomic
ensemble has a collective behavior as a harmonic oscillator and the coupling between two
level atoms and light is as two coupled harmonic oscillators. In this situation light matter
interaction is amplified by the number of atoms with coupling constant gcoll = g0

√
N , then

an enhanced coupling to the light is obtained.

The three topics mentioned above serve as the motivation for the present work. It
is about the design and construction of a Fabry Perot type cavity, which helps for the
future implementation of a cavity inside a Rydberg atoms experiment. The future purpose
for the cavity will be to enhance light-matter interactions and to support a highly focused
beam so that it creates a single Rydberg blockade volume within an atomic cloud. The
main issues which are covered are, the practical limitations of a near-concentric cavity, the
minimum waist obtainable, how to measure it, and how to lock the cavity length using
the Pound Drever Hall method.

Outline of the thesis

Chapter 1 is a theoretical introduction to the Fabry-Perot type cavities. In particular to
the symmetric and near concentric ones.

Chapter 2 presents the experimental aspects of how the resonator components where
selected and how the optical arrangement was constructed in order to ensure proper
alignment and coupling to the resonant modes of the cavity.

Chapter 3 is about measurements done to characterize the cavity. It has the methods
used and the results obtained from the cavity length, waist, and finesse measurements.

Chapter 4 is an overview of the Pound Drever Hall method and how it was implemented
to generate an error signal to lock the cavity length.

Chapter 5 describes the conclusions of this thesis, including the important aspects to
take into account for a future design of the cavity.

4



Chapter 1

Resonant Optical Cavities

An optical resonator is an optical circuit in which light is confined [17]. There is a large
variety of them, the simplest of these is the Fabry-Perot which consists of two plane parallel
mirrors facing each other so that light is reflected multiple times between them experiencing
little loss and interfering with itself forming standing waves. The next simplest variation
of the Fabry-Perot resonator is adding a radii of curvature R1 and R2 to the mirrors, this
parameters together with the spacing between them L are enough to create a wide variety
of resonators which will be studied in this chapter. However there exist an even larger
set of ways of storing light in optical resonators such as ring configurations of mirrors,
rectangular cavities, fiber rings, microdisks, microtoroids, spheres and so on. In this thesis
we focus on spherical mirror resonators.

1.1 The Basics of Spherical Mirror Resonators

The simplest approach for solving the problem of light confinement between two spherical
mirrors facing each other is based on ray optics. The resonator is constructed using two
spherical mirrors of radii R1 and R2 with separation distance L (Figure 1.1), and is then
analyzed as a periodical optical system, since it repeats itself after two reflections, using
ABCD matrices [18]. The result gives a stability criteria which tells the parameters for
light to get trapped in the resonator.

A method that provides the same result for spherical mirror resonators is to use

5



1.1 The Basics of Spherical Mirror Resonators

Figure 1.1: Resonator configuration. R1 and R2 are the radii of curvature of the mirrors and L is the resonator
length, i.e. the distance between mirrors.

beam optics. In particular given the resonator geometry we need a beam that retraces
itself after reflecting from the mirrors, for this it is necessary to discuss the Gaussian
beams.

1.1.1 Gaussian Beams

We start by making an approximation to the Helmholtz equation which is [18]:

∇2U + k2U = 0, (1.1)

where k is the wavenumber and U is the complex amplitude of the wave. A light beam
has the porperties of being spatially confined and travel in space without diverging, so it
is imposed to the solution that [18]:

U(r) = A(r)e−ikz. (1.2)

This is like a plane wave but it has an envelope A(r) that varies slowly, within the scale of
a wavelength, with position z. Then it is guaranteed the beam travels in space without
diverging and is known as the paraxial condition, which turns out can be expressed as [18]:

∂2A

∂z2
≪ k2A. (1.3)

Substituting (1.2) into (1.1) and neglecting ∂2A
∂z2

we obtain the paraxial Helmholtz equation:

∇2
TA− i2k

∂A

∂z
= 0, (1.4)

where ∇2
T = ∂2

∂x2 +
∂2

∂y2
.

6



1.1 The Basics of Spherical Mirror Resonators

By solving equation (1.4) different beam-like solutions can be obtained depending
on the chosen coordinate system. In particular we focus on two sets of solutions, each
of them forming a complete basis. They will become relevant in section 2.4 when the
resonator alignement is considered. First in cartesian coordinates, using the Hermite-Gauss
functions of order l [18]:

Gl(u) = Hl(u) exp

{−u2

2

}
, l = 0, 1, 2, (1.5)

with Hl(u) the Hermite polynomials, the set of solutions for the beam complex
amplitude are [18]:

Ul,m(x, y, z) = Al,m

[
ω0

ω(z)

]
Gl

[√
2x

ω(z)

]
Gm

[√
2y

ω(z)

]
exp

{
−ikz − ik

x2 + y2

2R(z)
+ i(l +m+ 1)ζ(z)

}
,

(1.6)

where Al,m is a constant and the following beam parameters are defined as:

Gaussian beam parameters

ω(z) = ω0

√
1 +

(
z

z0

)2

, (Beam waist) (1.7a)

R(z) = z

[
1 +

(z0
z

)2]
, (Beam radius) (1.7b)

ζ (z) = tan−1 z

z0
, (Gouy phase) (1.7c)

ω0 =

√
λz0
π

. (waist and Rayleigh range relation) (1.7d)

The second complete set of solutions is obtained solving the paraxial Helmholtz
equation in cylindrical coordinates (ρ, ϕ, z). In this case the complex amplitude is in terms
of the generalized Laguerre polynomial function Ll

m and is called the Laguerre-Gauss
beam. Its formula is expressed as:

Ul,m(x, y, z) = Al,m

[
ω0

ω(z)

](
ρ

ω(z)

)l

Ll
m

[
2ρ2

ω2(z)

]
exp

{
− ρ2

ω2(z)

}

× exp

{
−ikz − ik

ρ2

2R(z)
− ilϕ+ j(l + 2m+ 1)ζ(z)

}
,

(1.8)

7



1.1 The Basics of Spherical Mirror Resonators

where ω(z), R(z), ζ(z) and W0 are the beam parameters defined in equations (1.7).
Figure 1.2 shows the intensity distributions I = |U |2 for the Hermite-Gauss and Laguerre-
Gauss beams at z = 0 and different orders (l,m). In both cases the (0, 0) order is the
same and it is known as the gaussian beam.

a)
(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

b)
(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Figure 1.2: a) Laguerre-Gaussian (l,m) and b) Hermite-Gaussian (l,m) transverse intensity profiles for z = 0.

The optical intensity is I(r) = |U(r)|2 and its integration over any transverse plane
yields the total power. For the gaussian beam turns out to be half the peak intensity
I0 = |A0,0|2 multiplied by the beam area πω2

0. When comparing this total power with the
power obtained from the integration of intensity within a circle with radius equal to the
beam waist ω(z) it turns out 86% of the beam power is carried within this circle. The
function for the beam waist asumes its minimum value at z = 0 and increases for positive
and negative z as indicated by equation (1.7a). The parameter z0 is called the Rayleigh
range and 2z0 is the region around the origin where the beam diverges maximum

√
2ω0,

for this reason is known as the depth of focus or the confocal parameter. The phase of a
gaussian beam is

ϕ(r, z) = ikz + iζ(z)− ik
ρ2

2R(z)
, (1.9)

where

ζ(z) = arctan

(
z

zR

)
. (1.10)

The first term of equation (1.9) corresponds to a plane wave, then it has an
additional term known as the Gouy phase ζ(z) which adds an extra ±π/2 phase around
the beam waist. The third term is parabolic in the radius and decribes how the wavefronts

8



1.1 The Basics of Spherical Mirror Resonators

bend around its focus. The wavefronts are the surfaces of constant phase which turn out
to be paraboloidal surfaces with radius R(z) under the assumption that the radius of
curvature R(z) and the Gouy phase ζ(z) are slowly varying functions of z. A schematic of
the Gaussian beam showing its waist, wavefronts and Gouy phase is depicted in Figure
1.3.

Figure 1.3: Above is a transverse cut of a gaussian beam, its characteristics and resonator mirrors matching the
paraboloidal wavefronts. Below is depicted the Gouy phase shift.

1.1.2 Modes in a Spherical Resonator

Now lets think on fitting a gaussian beam so that the waist lies somewhere inside the
resonator and its paraboloidal wavefronts match the radii of curvature of the spherical
mirrors. If this happens the gaussian beam would be trapped as a standing wave under
the assumption that the mirrors are large enough compared to the beam size so that the
paraxial approximation remains valid and the losses by diffraction are negligible.

Following this reasoning it is assumed that the mirrrors are located at unknown
distances z1 and z2 from the beam waist ω0, but restricted to match the cavity length L,
and that the wavefront curvature R(z) is fixed by the mirror’s radii of curvature R1 and
R2, this conditions are written as

R(z1) = z1 + z2R/z1 = −R1, (1.11a)

R(z2) = z2 + z2R/z2 = +R2, (1.11b)

L = z2 − z1. (1.11c)

Equations (1.11) turn out to be enough for determining all gaussian beam parameters
from equations (1.7). Defining g1 and g2 called the resonator g parameters as:

9



1.1 The Basics of Spherical Mirror Resonators

g1 = 1− L

R1

, (1.12a) g2 = 1− L

R2

, (1.12b)

the gaussian beam is characterized as follows [19]:

Gaussian beam properties that match a given cavity configuration

z2R =
g1g2(1− g1g2)

g1 + g2 − 2g1g2
L2, (Rayleigh range) (1.13a)

z1 =
g2(1− g1)

g1 + g2 − 2g1g2
L, (Mirror R1 location) (1.13b)

z2 =
g1(1− g2)

g1 + g2 − 2g1g2
L, (Mirror R2 location) (1.13c)

ω2
0 =

Lλ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
, (Beam waist) (1.13d)

ω2
1 =

Lλ

π

√
g2

g1(1− g1g2)
, (Beam waist at mirror R1) (1.13e)

ω2
2 =

Lλ

π

√
g1

g2(1− g1g2)
. (Beam waist at mirror R2) (1.13f)

There are some g1 and g2 parameters that make equations (1.13a-1.13f) imaginary
or infinite, this means there is no gaussian beam solution whose wavefronts match the
radius of curvature of the mirrors given the resonator length. When this happens, we
say the optical cavity is not stable, the condition for stability guarantees the mentioned
equations are real and finite, it is given by:

0 ≤ g1g2 ≤ 1. (1.14)

This inequality is also found in ray optics when using a matrix periodic system
analysis, meaning that given this conditions there exist rays that will be trapped within
cavity mirrors. Expression (1.14) can be better understood looking at Figure 1.4 which
depicts the stability region and positions of different resonator configurations. The most
stable configuration is located at the origin because moving the parameters along the
identity line keeps the cavity stable, this turns out to be when g1 and g2 equal zero which
means mirrors with same radii of curvature are placed with distance L between them such
that their focuses match in the center of the resonator and therefore is called a confocal
cavity.

10



1.2 The Near Concentric Resonator

Figure 1.4: Spherical resonator stability diagram. The dashed line corresponds to the parameter space of symmetric
resonators.

1.2 The Near Concentric Resonator

The stability diagram (Figure 1.4) shows different configurations which have different
applications. However, the main interest in this work is achieving the minimum waist
posible so that only one Rydberg blockade volume can be excited within the cold atomic
cloud. This configuration corresponds to the concentric one, in which equal mirrors are
appart from each other by two times their radii of curvature.

1.2.1 Symmetric Resonators

In this case the resonator g parameters are equal, this means both mirrors have the same
radius of curvature R and the minimum waist is achieved at the center of the cavity. Then
equation (1.14) reduces to g2 ≤ 1 with g = g1 = g2 = 1− L/R and equations (1.7a-1.13f)
simplify to

w2
0 =

Lλ

π

√
1 + g

4(1− g)
, (1.15a) w2

1 = w2
2 =

Lλ

π

√
1

1− g2
. (1.15b)

Using equations (1.15) we can now examine the effect of varying the mirrors radius
R for a fixed distance between mirrors L. Which is the same as moving the g parameter in
the stability diagram along the identity line from (1, 1) to (−1,−1), this is shown in Figure
1.5. When g = 1 the radii of the mirrors must be infinite, this is the planar case and the
beam width at the waist, w0, and at the mirrrors, w1 = w2, also diverges. When g = 0 or
L/R = 1 is the confocal configuration located at the center of the stability diagram, in
this case the waist at the mirrors attains its minimum size compared to the focus waist
and it turns out to be

√
2w0. It means the depth of focus 2z0 is equal to the length of the
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1.2 The Near Concentric Resonator
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Figure 1.5: Plot of equations 1.15. Vertical axis is selected in such a way to represent adimensional waist variation.
The horizontal axis is better understood as the variation of R when L is fixed to an arbitrary constant. The plot shows
the behaviour of beam waist at the center of the resonator, ω0, and at the mirrors, ω1 = ω2, when moving from the
planar to the concentric situtation.

resonator L. Lastly g = −1 or L/R = 2 is the concentric configuration, while the waist w0

goes to zero the waist at the mirrors becomes infinite. This limit is physically impossible
and that is why we are interested on getting as close as possible to the concentric regime
without reaching it. Because the waist ω0 can be arbitrarily small we will focus in the
case of near-concentric resonators.

1.2.1.1 Near Concentric Resonators

Figure 1.6: Near concentric resonator

As it has been discussed previously this cavity houses a very focused gaussian mode, where
the cavity waist can be on the order of μm, as caculated later in the text (Chapter 2).
This would not be very useful in the case of laser power extraction where the cavity mode
interacts with a large lasing medium [19]. However, the purpose of this cavity is for the
light within to interact with a cold atom cloud also in the order of μm, so the fact of the
cavity field being concentrated in a size comparable to the cross section of the atomic
medium will offer a strong interaction.

A reasonable way to characterize this type of resonator is by how far it is to
concentric, then we introduce the parameter ∆L which will be the small ammount needed
for the distance between mirrors to be exactly two times the radius of curvature. Now the
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1.3 Cavity Spectra, Losses and Spectral Width

cavity length is L = 2R−∆L, in consequence the resonator g parameter is g = −1+∆L/R.
Substituting this, R = (L+∆L)/2 and using the approximation ∆L ≪ L into equations
(1.15) then:

w2
0 =

Lλ

π

√
∆L

4L
, (1.16a) w2

1 = w2
2 ≈

Lλ

π

√
L

4∆L
. (1.16b)
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Figure 1.7: Near concentric resonator. Plot of equations 1.16. Vertical axis is selected in such a way to represent
adimensional waist variation. When moving appart from the near concentric situation the plot shows how the beam
waist at the center of the resonator, ω0, is near zero and presents a small change compared to the waist at the mirrors,
ω1 = ω2 which diminishes rapidly.

1.3 Cavity Spectra, Losses and Spectral Width

This section describes the condition for light frequency to be resonant with the cavity
mode, and the connection between cavity losses and the spectral width.

1.3.1 Cavity Spectra

A gaussian beam was considered to be a resonant mode of an spherical cavity under the
assumption that its wavefronts match the radius of curvature of the mirrors, this means
the wavefront normals will reflect back onto themselves following the same path and also
the phase would retrace itself. Since we know the phase of the gaussian beam, The phase
of an Hermite-Gauss beam of order (l,m) at points on the optical axis (ρ = 0) can be
retrieved from equation (1.6) as:

ϕ(0, z) = kz − (l +m+ 1)ζ(z). (1.17)
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1.3 Cavity Spectra, Losses and Spectral Width

This will help to establish the resonant light frequencies in the cavity. Then the acquired
phase when the beam travels from one mirror to the other is:

ϕ(0, z2)− ϕ(0, z1) = k(z2 − z1)− (l +m+ 1)[ζ(z2)− ζ(z1)]

= kL− (l +m+ 1)∆ζ.
(1.18)

The condition for the beam to fully retrace itself, means that after a round trip the phase
change must be equal to zero or a multiple of ±2π then

2kL− 2(l +m+ 1)∆ζ = 2πq, (1.19)

where q = 0,±1,±2, ....

Substituting νF = c/2L and k = 2πν/c the resonance frequencies for Hermite-Gauss beams
are given by:

νl,m,q = qνF + (l +m+ 1)
∆ζ

π
νF . (1.20)

In an analog way the resonance frequencies for different Laguerre-Gauss modes (l,m) are:

νl,m,q = qνF + (l + 2m+ 1)
∆ζ

π
νF . (1.21)

The frequency spacing between two different transverse Hermitte-Gauss (l,m) and
(l′,m′) modes which correspond to the same longitudinal mode q is in consequence

νl,m,q − νl′,m′,q = [(l +m)− (l′ +m′)]
∆ζ

π
νF , (1.22)

and between the same transverse (l,m), but different longitudinal adjacent νl,m,q and
νl,m,q+1 modes is:

νF =
c

2L
, (1.23)

which is known as the free spectral range.

The term ∆ζ is the acquired Gouy phase from one mirror to another mirror this
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1.3 Cavity Spectra, Losses and Spectral Width

means:

∆ζ = arctan (
z2
zR

)− arctan (
z1
zR

), (1.24)

however it can be written after some algebra [19] in terms of the g parameters as:

∆ζ = arccos±√
g1g2, (1.25)

where the + sign is for g1, g2 > 0 and the − sign when g1, g2 < 0 (see Figure 1.4). From this
we inmediatly know the value of ∆ζ/π for the different symmetric resonator configurations,
i.e. along the identity line in the stability diagram. This is shown in the following table:

Cavity configuration g1,g2 ∆ζ/π

near-planar ∼ 1 ∼ 0
near-confocal ∼ 0 ∼ 1/2

near-concentric ∼ −1 ∼ 1

Table 1.1: Gouy phase shift for the near-planar, near-confocal and near-concentric cavity configurations.

Results from Table 1.1 have as a consequence that the near-planar situation has the
different transverse modes (l,m) associated to the same longitudinal q mode clustered on
the high frequency side with respect to the fundamental Gaussian mode (l,m) = (0, 0).
The near-confocal situation has two cases, for transversal (l,m) modes with q fixed it
depends on whether the sum l+m is even or odd. In the even case the mode (2, 0) or (0, 2)
is degenerate in frequency with the fundamental mode (0, 0) but with q + 1, the modes
which sum l +m is 4 appear in the same frequency as the fundamental mode but with
longitudinal order q + 2 and so on, the same happens for the odd case however now the
modes are located halfway between the q longitudinal modes. Lastly for the near-concentric
resonator the modes are clustered to the low frequency side of the fundamental mode, this
because transverse modes (l,m) get displaced near the longitudinal fundamental mode
q′ = q + l +m. The above is illustrated in Figure 1.8.

1.3.2 Losses

In the above case only one frequency for each mode is resonant, this is an ideal case of
a perfect cavity without losses. However there are different sources for optical losses:
diffraction losses from the finite size of the mirrors, scattering losses in the mirror coatings,
and transmission and absortion by the mirrors. Introducing them will broaden the spectral
lines, meaning the lossy resonator can sustain waves within a vicinity of frequencies and
not only a single frequency per mode.
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1.3 Cavity Spectra, Losses and Spectral Width

Figure 1.8: Resonant frequencies of transversal modes for different symmetric cavity configurations

To analyze how is the field inside the resonator we will assume the field changes
by an attenuation factor |ra| multiplied by an acquired phase e−jϕ after each round
trip. If the initial field is U0, then after bouncing from the two mirrors it is U1 = hU0

where h = |ra|e−jϕ. In the end the field inside the cavity is the superposition of all this
subsequently attenuated fields

U = U0 + hU0 + h2U0 + ... =
U0

1− h
. (1.26)

Using the trigonometric identity cos 2θ = 1− 2 sin2 θ the intensity is in consequence

I = |U |2 = |U0|2
|1− |ra|e−jϕ|2 =

Imax

1 + (2F/π)2 sin2 ϕ/2
(1.27)

where Imax = I0
(1−|ra|)2 and

F =
π
√
|ra|

1− |ra|
(1.28)

will be the finesse of the resonator. It is an important quantity to describe an optical
resonator and is independent of its geometrical properties. Other definitions can be
found in literature as described in [20] however for high mirror reflectivity all of them are
coincident.
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1.3 Cavity Spectra, Losses and Spectral Width

With respect to the attenuation factor |ra| two kinds of losses can be included as
pointed by [18]. "Lumped losses" which occurr only at descrete locations, and "distributed
losses" that take place within the medium of the cavity. The first ones corresponding to an
intensity attenuation proportional to each mirror reflectance R1 = |r1|2 and R2 = |r2|2, and
the second ones due to absortion and scattering within the medium between the mirrors.
Its round trip attenuation factor is written as e−2αsL, where αs is the loss coefficient of the
medium. Thus the total round-trip intensity attenuation factor is:

|ra|2 = R1R2e
−2αsL. (1.29)

Equation (1.27) can be worked out substituting ϕ by the round trip acquired phase
shift from equation (1.19), writing k in terms of frequency ν and using the definition of
free spectral range to get the intensity as a function of frequency as:

I = |U |2 = |U0|2
|1− |ra|e−jϕ|2 =

Imax

1 + (2F/π)2 sin2 [πν/νF + (l +m+ 1)∆ζ]
. (1.30)

This Airy distribution describing the intensity inside the cavity is plotted in Figure
1.9 for the fundamental Gaussian mode (l = 0,m = 0). The frequency spacing as it
has been already seen corresponds to the free spectral range and the full width at half
maximum when F >> 1 turns out to be:

δν ≈ νF
F
. (1.31)

The above equation shows that diminishig the finesse of the resonator broadens the
transmision peak width and vice versa. From equations (1.28) and (1.29) it can be seen
that the finesse diminishes when increasing the loss coefficient of the medium inside the
cavity. For example, if we introduce a transparent medium with absortion and scattering
like the windows of the vacuum chamber which houses the Rydberg atoms experiment
mentioned in chapter 1, an additional loss should be multiplied in the total round-trip
intensity attenuation factor in cosequence diminishing the finesse. The best option to
increase finesse is by improving the mirrors reflectivity.

Reflection and Transmission

It is of interest to obtain a formula for the reflected and transmitted intensity
spectra from the cavity, since this quantities can be directly measured and will have
applications when it comes to lock the cavity length.

We examine how the electric field is affected by the cavity mirrors, first assume
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1.3 Cavity Spectra, Losses and Spectral Width

Figure 1.9: Spectra of a cavity with losses for the fundamental Gaussian mode at different mirror reflectivities.

Figure 1.10: Schematic for the derivation of the cavity reflected field.

both mirrors have the same field transmission and reflection coefficients t and r. For
convinience we will call U+

0 to the total field inside the resonator which is already known
from equation (1.26), assuming the incident field on the cavity is Ui then U0 = tUi since
U0 was defined as the initial field inside the resonator, thus:

U+
0 =

tUi

1− h
. (1.32)

and now h = |ra|e−jϕ = r2e−jϕ where ϕ was the round-trip acquired phase and r2 comes
from the reflection at the two mirrors. To obtain the total reflected field Ur from the
cavity it is necessary to reflect U+

0 from the second mirror, add the acquired phase e−jϕ

and then transmit from the first mirror. Also the reflected incident field rUi needs to be
added. Figure 4.1 shows a schematic of this, then
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1.3 Cavity Spectra, Losses and Spectral Width

Ur = −rUi +
t2re−iϕUi

1− r2e−iϕ
. (1.33)

Simplifying this equation and noting that the acquired round trip phase is ϕ = 2kL =
2πν/νFSR the reflection coefficient of the cavity is found to be

R(ν) =
Ur

Ui

=
r
(
e2πν/νFSR − 1

)

1− r2e2πν/νFSR
. (1.34)

In a similar fashion the transmission coefficient can be derived and written as:

T(ν) =
Ut

Ui

=
(1− r2) e2πν/νFSR

1− r2e2πν/νFSR
. (1.35)

The above equations for reflection and transmission coefficients can easily be
transformed into functions of cavity length noting that ν/νFSR = 2L/λ this means the
cavity modes are appart integer multiples of the free spectral range or half of the wavelength.

This Airy distributions are the most common approach to model the spectrum of
a symmetric resonator with losses, however as pointed in [21] each resonant peak has a
Lorentzian line shape of the form:

T(ν) =
T0

4(ν − νq)2/δν2
q + 1

, (1.36)

where T0 is a transmission coefficient, νq is a resonant frequency and δνq is the linewidth
of the cavity mode. This expression can be obtained when expanding the sine function
of equation (1.30) to second order around a resonant frequency νq. Thus the above
Airy distributions come from summing up individual mode profiles with Lorentzian
distributions.
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Chapter 2

Near Concentric Cavity Prototype

In this work we focus on building a prototype for the cavity. Our main interest is to
explore how near the concentric regime can we get. For this reason we plan a resonator
considering how small can we get the waist and a method to tune the resonator length.

2.1 Mirrors

The cavity waist should be small enough to allow only one Rydberg blockade sphere within
the atomic cloud, this means for Rydberg states with principal quantum number between
80 and 100 we would desire the waist to be of about 5 µm. This is a very small waist, if
we were to build a confocal cavity, which is the most stable one, the distance between
mirrors should be of about 0.2mm and the mirrors would also have a very small radius of
curvature. For this reason it is necessary to plan a near-concentric cavity which allows a
small waist with greater radius of curvature for the mirrors and cavity length.

The first parameters we fix are the radius of curvature for the mirrors. The available
space inside the vacuum chamber for the cavity limits the cavity length to a maximum
of 15 cm, so we impose it to be of 10 cm thinking on the space the mirror mounts and
cavity structure will need inside the vacuum chamber. Using the desired length, waist
and considering light of 780 nm we calculate the appropiate radius for the mirrors using
equation (1.13d) yielding approximately 5 cm.

20



2.1 Mirrors

Decreasing the radius of curvature implies a reduction to the cavity length since
in the near-concentric regime L ≈ 2R and as a consequence the mode volume decreases
improving the atom-cavity coupling strength and the minimum achievable waist. The
problem of getting the mirrors to close is losing optical access for the magneto-optical
trap (MOT) beams, contamination of cavity mirrors by the atomic sample, the need for
mirrors with small radius of curvature and the fact that deposited charges in the mirrors
would affect the atoms transition frequencies because Rydberg atoms are quite sensitive
to electric fields. Considering this, we use a pair of dielectric-coated concave mirrors with
a radius of curvature of 5 cm and 12.7mm of diameter from Thorlabs with part number
CM127P-025-E03. This mirrors are constructed to have a mirror reflectance greater than
99% and an absorption lower than 1% from 750 nm to 1100 nm. Meaning the finesse of
the cavity will be of at least 312 according to equation (1.28).

Now using the condition of equation (1.19) for the acquired phase to be a multiple
of 2π. We derive an equation dependent of the cavity length L and the longitudinal index
q which is

kL− 2 arctan

(√
L

2R− L

)
− πq = 0. (2.1)

This equation is solved numerically to get a list of the last possible length resonant values
considering their discrete character given by their longitudinal q index. For convinience we
express the length in terms of the distance from the concentric regime as ∆L = Lconcentric−L
and we call this the critical distance. Using the already chosen parameter for the radius
of curvature of the mirrors we calculate the waist and plot the possible resonant modes
before the concentric regime in Figure 2.1. This plot confirms the possibility of achieving
waists near 5 µm.
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Figure 2.1: Waist versus mirror distance near the concentric regime. Calculated for a cavity with R = 5 cm and
780 nm as wavelength.
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2.2 Displacement

However it is necessary to take into account how much does the waist scales at the
mirrors when the cavity approaches the concentric regime because theoretically in this
limit the waist becomes infinite at the mirrors. Figure 2.2 shows how the beam achieves
waists from 5mm to less than 1mm when the length moves away from the concentric
regime. This is an important detail to consider since the mirrors diameter must be at
least 4 times the beam waist to reflect the 99.97% of the beam power and in consequence
minimize diffraction losses and allow the injection of the complete matched mode to the
cavity without exciting higher order modes. In our case considering an effective aperture
of 12mm for our mirrors we could expect to have a beam with a maximimum waist at the
mirrors of 3mm.
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Figure 2.2: Waist at the mirrors when approaching the concentric regime. Calculated for a cavity with R = 5 cm and
780 nm as wavelength.

2.2 Displacement

As Figure 2.1 shows and was explained in the theory, longitudinal modes are separated by a
distance equal to half a wavelength. In order to mantain the cavity alignement it is needed
a fine tuning of its length with a precision within hundreds of nanometers. Mechanical
vibrations and thermal expansion can easily move appart the mirrors considerably in this
scales. For this reason it is necessary to control precisely the distance between mirrors, as
a solution a piezo electric is mounted to move one of the mirrors longitudinally. The piezo
is from Thorlabs with part number TA0505D024W, was selected because it can displace
2.8 μm ± 15% and this is enough distance to cover more than a free spectral range and
compensate for thermal drifts.
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2.3 The Design

2.3 The Design

The plan is to know from our prototype what aspects we need to take into account when
designing a mount for the cavity which can be placed inside vacuum. The important
aspects are what do we need to achieve the mode matching, how important is it to tune
each mirror tilt and how can we effectively achieve the longitudinal displacement for one
of the cavity mirrors.

To find a solution for this queries we propose to build a simple prototype mounting
the mirrors on kinematic mirror mounts with height fixed but with angular adjustment
available. One of the mirror mounts is placed above a Thorlabs translational linear stage
with a side mounted micrometer (XR50P). The piezo is placed between the micrometer
tip and the translational stage allowing the longitudinal displacement. This configuration
is depicted in Figure 2.3.

Figure 2.3: Photo of the cavity prototype. Both mirrors are placed on rotational kinematic mounts with fixed height.
A translational stage with an incorporated piezo allows cavity length scanning and tuning.

The optical array which allows mode matching, cavity alignement and monitoring of
reflection and transmission is as shown in Figure 2.4. Light is obtained from a polarization-
maintaining single-mode fiber, polarization axis of light is defined by a λ/2 plate and a
polarization beam splitter (PBS), then light goes through a mode-matching lens system
and finally to the cavity. The reflection is separated by a λ/4 plate and the PBS and
examined through a Thorlabs (DET36A2) photodiode. Transmission is monitored with a
CCD camera which can also be replaced by a photodiode.
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2.4 Alignment Process

Figure 2.4: Optical array for the resonator. This array allows to scan the resonator length and monitor the cavity
reflection and transmission.

Lens focal length Manufacturer Part number

−25mm Thorlabs LD2297−B
40mm Thorlabs LA1422−B
75mm Thorlabs LA1608−B

Table 2.1: Mode-matching lens system components.

2.4 Alignment Process

Alignment is a delicate matter as mentioned by Anderson [22] a bad coupling of the light
to the cavity excites higher order spatial eigenmodes rather than the fundamental gaussian
mode.

Mode Matching

Before aligning the mode matching lenses should be selected so the correct sized gaussian
mode is injected into the cavity. The beam comes from an optical fiber and is then
collimated by an f = 11mm lens, a measurement of the beam waist yields (0.87±0.03)mm.
As it can be seen from Figure 2.2 the mode in the near concentric regime acquires a large
waist at the mirrors, so we first expand and collimate the beam with a Galilean telescope.
After that convergent lens focuses the beam to the cavity center. Mode matching optics
were selected so the beam could be completely contained within our lenses of one inch
diameter. For the Galilean telescope the lenses where f = −25mm and f = 40mm, and
the focusing lens has a focal distance f = 75mm. This system would theoretically yield a
25 μm waist at the center of the cavity.

Alignment

We start by defining the optical axis with a lot of care by pointing the laser beam at
75mm of height parallel to the optical table. After that the mode matching lenses are
introduced taking care of not moving the optical axis. Then the furthest cavity mirror
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2.5 Misalignment Losses

(second mirror) is introduced and its reflection is carefully aligned to point in the same
path as the incident beam. Finally the first cavity mirror is introduced and aligned with
help of the CCD camera while the laser is scanning its frequency. This camera shows the
transmission from the cavity and the mirror is fixed when low order transmitted modes
start to appear. In the above process it is important to take care the beam points at the
center of the mirrors to minimize diffraction losses and obtain a better coupling.

Mode coupling is then refined by movements of the mirror tilt starting with the
first mirror and compensating with the second mirror. The objective here is to minimize
the order (size) of the coupled modes to arrive to the fundamental gaussian mode. When
this is done, the reflected Airy characteristic spectra is monitored with a photodiode and
alignment is further refined by adjusting the two mirrors that couple light to the cavity. It
is easier first to align the cavity when it is some distance apart from concentric and after
that move gradually the second mirror with a translation stage until a near concentric
regime is obtained.
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Figure 2.5: a) Before improving alignment higher order modes are coupled to the cavity. b) After alignment higher
order modes coupling is considerably reduced.

2.5 Misalignment Losses

The ideal cavity is that in which mirror tilt and optical axis are perfectly aligned. Mis-
alignments can be classified in terms of a bad mode matching when the cavity theoretical
waist is not in accordance with the injected mode waist size or longitudinal position, this
situation excites Laguerre-Gaussian modes in the cavity. Or in terms of a bad optical
axis matching, the beam might be parallel off-axis or it might be tilted with respect to
the optical axis causing excitation of higher order Hermite-Gaussian modes[22]. Correct
alignment means the fundamental mode is perfectly coupled to the cavity maximizing the
ratio of power coupled to the fundamental mode to power injected.

To better analize diffraction loss due to mirror tilt, remember the mode was planned
to have a maximum waist at the mirrors of 3mm which corresponds to one fourth of the
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2.5 Misalignment Losses

mirrors effective aperture and a reflection of 99.97% of the beam power. As a matter of
fact this is not enough to avoid diffraction ripples since an effective aperture of 4.6w0 still
causes 1% of intensity variation with respect to total intensity[19], so the mode will have
this distortion due to this finite aperture effect.

Another important aspect is how much a mirror tilt α causes an inclination of
the optical axis. A general formula for this can be consulted in [23], however for our
purposes we consider a simplification for symmetric cavities. As illustrated in Figure 2.6,
consider one mirror is tilted by an angle α with respect to its perfect aligned position.
In consequence the optical axis (OA) changes its position acquiring an inclination θ.
Assuming α is small (sinα ≈ α) geometrically it follows that:

tan θ =
Rα

2R− L
=

α

1 + g
. (2.2)

Figure 2.6: In the near concentric regime a small mirror tilt α causes a great change in the optical axis (OA).

The last equation for a near concentric configuration (g → −1) shows how a small
tilt of one mirror is enough to rotate almost 90◦ the optical axis, it means alignment
becomes harder since the optical axis easily moves away from the finite mirrors surface.
This situation is different for the confocal or near planar configurations as shown in Figure
2.7.
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Figure 2.7: In the near-concentric limit the optical axis tilts considerably more than in the confocal or near-planar
configurations with respect to a mirror tilt. a) Plot of equation (2.2), for the near concentric situation with parameters
R = 5 cm and length L = 99.97 mm, the confocal situation R = L = 5 cm and near planar situation R = 5 cm and
L = 10 mm. b) Detail for the near-concentric configuration for small mirror tilts.
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Chapter 3

Cavity Characterization

This chapter describes the parameters of the cavity which can be measured to characterize
it.

3.1 Hermite and Laguerre-Gauss Modes

After alignment of the cavity the transmission signal is recorded as shown in Figure
3.1. Coupling to higher order modes is still observed, this can be corrected by means of
adjusting the mode matching lenses and adjusting the coupling mirrors. As mentioned by
Anderson [22], Hermite-Gauss modes get coupled because of a translation or tilt of the
incident beam with respect to the optical axis defined by the mirrors and Laguerre-Gauss
modes can be observed when the mode is mismatched by an incorrect waist beam size or
position.

3.2 Length Measurement

Measuring the distance between mirrors is achieved by means of the cavity free spectral
range (equation (1.23)). We use two narrow linewidth lasers of 780 nm, the first locked to
an ultra stable high finesse cavity using the Pound Drever Hall technique (PDH) (section
4.1.1) and the second locked with respect to the first one by a frequency beat. This
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3.2 Length Measurement

Figure 3.1: Transmission spectra of the cavity while scanning with the piezo. Optical axis or mode-matching
misalignment causes excitation of higher order modes apart from the fundamental.

technique allows us to know precisely the relative frequency between both lasers. We
send them through the cavity while its length is being varied by the piezo and record the
transmission using a photodiode. As it is shown in Figure 3.2 the transmission shows a
peak when the fundamental mode is coupled for each laser, after that we move the relative
frequency between them. This makes the peaks to overlap, which means the lasers are
apart a frequency equal to an integer multiple of the free-spectral range.

Figure 3.2: Left plot shows transmission of the fundamental mode by two lasers with different frequency while varying
cavity length. One laser depicted in blue and the other in red. Right plot represents when the frequency between both
lasers equals a free spectral range or an integer multiple of it, the two peaks overlap.

To make a quantitative measurement of the frequency where both lasers fundamental
mode peaks overlap, we record the position of both peaks as a function of detuning between
the lasers. We take care that the range of detunings used ensures that the peak that moves
completely crosses over the other one from side to side. As shown in Figure 3.3 from a)
to d) a Lorentzian function is fitted to both peaks and from that the distance between
centers is calculated as the relative frequency between lasers is changed. After that an
interpolation is made by fitting a line to calculate the frequency for which the lorentzian
peaks will be perfectly overlapped as shown in Figure 3.3 e). This interpolation is needed
to improve precision because the width of each peak makes unclear the exact frequency
for which both peaks overlap. The error we report from this interpolation method comes
from the standard deviation associated to the intercept constant of the linear fit.
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3.2 Length Measurement
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Figure 3.3: a) to d) show how the fundamental mode transmission peaks of two lasers with different frequency
approach as the relative frequency between them approaches the free spectral range as recorded directly from the
oscilloscope. The minor peak comes from the transmission of a frequency fixed laser and the other peak moves when
varying the frequency of its respective laser. Horizontal axis is proportional to the voltage ramp applied to the piezo
which in turn is proportional to the mirror position. Vertical axis is proportional to the voltage as recorded by the
photodiode. e) corresponds to the distance between both peak centers as the relative frequency between lasers is varied.
In this particular measurement the intercept frequency which is the free spectral range resulted 1505.9 ± 0.2 MHz
corresponding to 99.54± 0.01 mm of distance between mirrors.
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3.3 Gouy Phase

3.3 Gouy Phase

Measuring the Gouy phase will be useful to determine the beam waist as mentioned in
[24]. Beam waist at the center of the cavity might be obtained using only the free spectral
range by means of equation (1.13d) however the formula is dependent on the radii of
curvature of the mirrors which adds uncertainty, also requires approximating the cavity to
be cylindrically symmetric and one must trust in the manufacturer precision. Alternatively,
we can measure the free spectral range and the separation between transverse modes
to measure the beam waist via the Gouy phase without making assumptions about the
mirrors’ radii of curvature.

As pointed in [25] the best approach to gain access to the Gouy phase is by means
of the higher order transverse modes of the cavity. This is because equation (1.22) implies
that

∆ζ =
π(νl,m,q − νl′,m′,q)

[(l +m)− (l′ +m′)]νF
. (3.1)

From the latter, the resonator g-parameters can be obtained by equation (1.25) and in
consequence a substitution on equation (1.13d) provides a value for the cavity beam waist.
It is only needed to identify the free spectral range and the distance between higher order
modes.

Figure 3.4: When cavity is slightly misaligned the first order Hermite-Gaussian (HG) mode appears besides the
fundamental Gaussian mode. Left plot shows transmission of the fundamental mode and first order HG mode by two
lasers with different frequency while varying cavity length. One laser depicted in blue and the other in red. Right plot
represents when the frequency difference between both lasers equals the distance from the fundamental to the first
order HG mode or an integer multiple of it, the fundamental peak of one laser overlaps the first order HG mode of the
other laser.

The measurement of the distance between higher order modes is carried out by the
same procedure mentioned before in the case of the free-spectral range determined by the
detuning between two frequency-stabilized lasers.

We started measuring the free spectral range and distance between the fundamental
and first order Hermite-Gaussian mode of the cavity in an arbitrary position near concentric.
From this data cavity length and waist can be calculated as it has already been explained.
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3.4 Finesse

The initial distance turned out to be (97.440 ± 0.008)mm from this point we moved
the micrometric stage by steps, realigned and measured until the furthest possible near
concentric mode was achieved. This point corresponded to a distance between mirrors of
(99.944± 0.008)mm and a waist of (19.3± 0.4) μm). At this position the cavity mirrors
where highly sensitive and adjustment required more precise kinematic mirror mounts,
making almost impossible further alignment into a more near concentric regime, also cavity
transmission was quite unstable due to any ambient noise and mode coupling started to
reduce causing error to rise when approaching concentric configuration. This results can
be seen in Figure 3.5. From each distance and Gouy phase measurement, the mirrors’
radius of curvature can be calculated, averaging the results obtained from each step we
moved the cavity length gives an experimental measurement of 5.002± 0.005 cm, which is
in agreement with the manufacturer specifications of 5 cm.
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Figure 3.5: Waists measured from the spectral separation of Hermite-Gaussian modes and free spectral range versus
distances obtained directly from the free spectral range measurements when varying cavity length.

3.4 Finesse

As it has been already pointed out mirrors specifications establish a lower bound of 312
for the finesse. To measure it we capture the transmission of the fundamental mode by
the cavity when scanning the piezo, fit a lorentzian function and determine its width. To
calibrate the frequency scale we generate sidebands by means of an electro-optic modulator
(EOM) at 12.5MHz to use as a reference. This can be seen in Figure 3.6.
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3.4 Finesse
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Figure 3.6: Transmission spectra of the cavity while scanning with the piezo. Optical axis or mode-matching
misalignment causes excitation of higher order modes apart from the fundamental.

The measured width corresponds to 1.96± 0.02MHz which combined with the free
spectral range of (1499.8± 0.1)MHz measured in the previous section for the furthest near
concentric resonant mode achieved gives a finesse of 765± 8, when using the formula 1.31.
It means the mirror’s reflectivity must be higher than 99%, at least they have a lower
bound of 99.6%. This is because mirror reflectivity might be higher but there might be
other losses which also diminish the finesse as explained in section 1.3.

32



Chapter 4

Cavity Stabilization

Stabilization is crucial for maintaining the cavity at resonance. Considering that a length
variation in the order of half a wavelength is enough to change the fundamental longitudinal
mode to its adjacent fundamental mode a very precise way to move the cavity mirrors
must be used. Moreover, from the previous chapter we know the resonance peak width
is approximately 2MHz, the free spectral range 1500MHz and the wavelength 780 nm,
using the relation ν/νFSR = 2L/λ from section 1.3, we can estimate the cavity is resonant
within 0.5 nm of mirror displacement. For this reason, cavities are usually stabilized in
temperature to avoid thermal drift using materials with low expansion coefficients such
as Invar, carbon fiber, rods of quartz or steel alloys with very low or zero expansion
coefficients. Another option is to actively stabilize the length moving the mirrors to
compensate thermal drift.

Active stabilization also protects the cavity against mechanical vibrations and acous-
tic noise which affects its length altering its spectrum. The solution to actively stabilize
the length is moving the mirrors fast enough to compensate all possible perturbations.

4.1 Cavity Lock

Locking the system refers fixing the cavity length in a resonance peak of its spectra relative
to a frequency stabilized laser. For this we use the Pound Drever Hall (PDH) technique.
This technique is a very powerful and popular method for stabilizing laser systems using a
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4.1 Cavity Lock

high-finesse Fabry Perot cavity as a frequency reference [26–28]. It is commonly used in the
field of gravitational wave detectors and atomic physics when a great frequency precision
and low spectral width is required. In this work we use the Pound Drever Hall method
in a different way, the laser is already stabilized in frequency and we aim to stabilize the
cavity length.

To lock the cavity length we need a control system. In this case we use a proportional-
integral-derivative controller (PID), this is an electronic feedback mechanism which com-
pares a continuously measured variable, for example temperature, speed, intensity, etc.,
with a desired setpoint and applies a correction based on the difference that exists between
the measured variable and its desired value. This difference is called the error, and the
correction used to minimize the error is based on proportional, integral and derivative
terms obtained from this error. Thus a PID is capable of keeping a variable at a desired
setpoint, in other words it keeps the error near zero. For the cavity we would like to keep it
at resonance with the incoming light thus we need a method to calculate the error using as
setpoint the resonance peak maximum. However there is a problem because of the peak’s
symmetry, if the cavity length moves around this resonance the resulting error is the same
to the right and to the left of the transmission peak, thus the controller can not notice
the difference between diminishing or increasing cavity length. The Pound Drever-Hall
technique provides a method to generate an asymmetrical signal around the transmission
peak’s maximum to make possible for the controller to apply a correction.

4.1.1 Pound-Drever-Hall (PDH) Technique

The problem that this method solves is how to actively keep constant the frequency of a
laser, or in our case the length of the cavity, with respect to a stable reference usually an
ultra-stable cavity, or in our case an stabilized laser. PDH technique generates an error
signal to tell a control system how to keep a system stable [26]. The following analysis of
how to produce PDH error signal is the same in the case of moving the laser frequency or
the cavity length since the spectra of the resonator is the same in both cases.

Lets start by considering the reflected signal while varying the length of the resonator
given by equation (1.34) and illustrated in Figure 4.1, this turns out to be better than the
transmission since the peaks depth is less sensitive to the light intensity variation. If we
were to tell a PID to fix the length in the tip of a reflection peak there would be a problem
since moving the length around the peak gives no information of whether the length should
be increased or decreased. An effective way to overcome this issue is to feed the derivative
of the reflected signal to the control system. To the left from the tip of the peak the
derivative is an increasing negative function and to the right it is increasing positive, with
this information the control system will be capable of increasing or decreasing the cavity
length depending on the sign of the derivative in order to stay at the zero value of the
derivative which means it will stay at the tip of the peak.
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4.1 Cavity Lock
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Figure 4.1: a) Resonator reflection when varying cavity length. b) Resonator reflection derivative when varying cavity
length.

Conveniently this derivative is not hard to get, varying sinusoidally the frequency
of the laser will create a variation in the reflection, to the right of the peak this variation
causes the reflected intensity to vary proportional, i.e. in phase, with the laser frequency
modulation. Conversely to the left of the tip this variation goes inversely proportional, i.e.
out of phase by 180◦, as shown in Figure 4.2. Then we need to make a phase sensitive
measurement, to get the relative phase of the reflected intensity with respect to the
modulation signal that drives the laser frequency.

Figure 4.2: Reflected intensity while varying cavity length. To the right of the peak a length increment causes an
intensity gain and to the left this increment causes intensity loss.

To understand how this measurement is done, we need to make a quantitative
analysis. We start by writing the field d of the phase modulated laser beam incident on
the cavity as

Ei = E0e
i(ωt+β sinΩt), (4.1)

where ω is the original beam angular frequency, Ω is the phase modulation frequency, and
β is known as the modulation depth. This expression can be expanded in terms of Bessel
functions using the Jacobi-Anger expansion, to
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4.1 Cavity Lock

Ei ≈ [J0(β) + 2iJ1(β) sinΩt] e
iωt

= E0

[
J0(β)e

iωt + J1(β)e
i(ω+Ω)t − J1(β)e

i(ω−Ω)t
]
.

(4.2)

This means the field now has the original angular frequency ω plus two sidebands
centered at ω±Ω. Then using equation (1.34) and summing individually for each frequency
component we calculate the reflection from the cavity using this incident field to be

Er = E0

[
R(ω)J0(β)e

iωt + R(ω + Ω)J1(β)e
i(ω+Ω)t − R(ω − Ω)J1(β)e

i(ω−Ω)t
]
. (4.3)

In consequence the power of the reflected beam Pr = |Er|2A, which is measured by
the photodetector of area A, is

P = |Er|2 = Pc|R(ω)|2 + Ps

{
|R(ω + Ω)|2 + |R(ω − Ω)|2

}

+ 2
√

PcPsRe [R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω)] cosΩt

+ 2
√

PcPsIm [R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω)] sinΩt

+ (2Ω terms). (4.4)

This equation has the corresponding power of the three individual frequencies,
terms who oscillate with Ω that correspond to the interference between the carrier and
the sidebands and 2Ω terms which correspond to the interference between the sidebands.
We are interested in the sine or the cosine term, because as will be shown they sample the
phase of the reflected carrier.

Error Signal

There are two regimes to analyze the reflected signal. When Ω ≪ ∆νFSRF (slow
modulation) it turns out R(ω)R∗(ω+Ω)−R∗(ω)R(ω−Ω) is purely real and in the opposite
situation Ω ≫ ∆νFSRF (fast modulation) it results the term is purely imaginary. The
second case gives a better error signal and is the standard used in PDH. In this situation
the modulation frequency is high enough that the sidebands can not be resonant in the
cavity at the same time as the carrier frequency. So the sidebands are totally reflected
when the carrier frequency is resonant, this means R (ω ± Ω) ≈ −1 in consequence

R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω) ≈ −2iIm {R(ω)} . (4.5)

Because of this in equation (4.4) the cosΩt term cancels out. And the remaining term
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4.1 Cavity Lock

which oscillates as sinΩt will be

ϵ = −2
√

PcPsIm {R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω)} , (4.6)

which is plotted in Figure 4.3. This is a very convenient error signal since its asymmetrical
with respect to the resonance length and is quite width around the resonance peak, so the
control system can easily tune the length to lock it.

Considering the above discussion, equation (4.4) can be approximately written as:

Pref ≈ 2Ps − 4
√

PcPs Im{R(ω)} sinΩt+ (2Ω terms). (4.7)

The remaining problem is to isolate the central term of this equation, this is achieved
using a frequency mixer and a low pass filter. When both inputs in a mixer are sinusoidal
signals the resulting signal is their product which yields

A sin (Ωt)A′ sin (Ω′t) =
AA′

2
{cos [(Ω− Ω′) t]− cos [(Ω + Ω′) t]} , (4.8)

this equation shows that using Ω′ = Ω will make the cos (Ω− Ω′)t a constant signal which
can be isolated with a low pass filter and it is multiplied by the term (4.6) which is the
error signal we need to feed the control system.
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Figure 4.3: Theoretical Pound Drever Hall error signal for fast modulation.

Thus multiplying the reflected power using the frequency mixer with a sinusoidal
function and passing the result through a low pass filter (to cut frequencies above Ω′)
isolates the error signal. The remaining issue is to equal the phase between the sinusoidal
function with Ω and the one with Ω′ so equation (4.8) remains valid, this is achieved using
a phase shifter to adjust the phase of the Ω′ oscillating term. A diagram for the PDH used
arrangement is shown in Figure 4.4. Also measurements from the reflected signal with
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4.1 Cavity Lock

modulation and PDH obtained error are shown in Figure 4.5.

Figure 4.4: Setup for PDH method. The local oscillator is a function generator RIGOL DG1022Z of two channels,
both are set to the same frequency and their relative phase is varied. A frequency of 12.5 MHz is fed to an EOM from
Photonics Technologies (01-12.5-V-0159) and to the mixer ZP-1LH-S+ from Minicircuits, the low pass filter is from
Minicircuits with part number SLP-5+. The photodiode to monitor cavity reflectance is DET36A2 from Thorlabs.
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Figure 4.5: a) The fundamental gaussian mode peak with sidebands generated at 12.5 MHz. b)Pound Drever Hall
error signal obtained from the reflected spectra with sidebands.

To lock the cavity length a homebuilt PID was used to feedback the cavity piezo
given the error signal of Figure 4.5. It is possible to effectively lock the system oscillating
around the fundamental peak, however in our current setup it is still necessary to improve
the cavity design to get a faster response from the piezo since the control signal is dephased
from the error signal. This slow response from the cavity makes the control system notice
the change in the cavity length too late after a variation in the control signal is made.
Causing the system to oscillate around the locking point as shown in Figure 4.6.
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Figure 4.6: Blue signal corresponds to the error signal that is fed to the control system. Red signal is sent by the
control system to the piezo driver to correct the piezo length and minimize error signal. Ideally error signal should
be kept almost in zero however this is not the case. This plot shows how both signals are in phase, in our system
when control signal is a growing function error is a decreasing function and vice versa. The fact that they seem to be
proportional means the cavity piezo response is too slow for the control system to notice this change on time. This
makes the system to oscillate around the locking point retracing the error signal back and forth.
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Chapter 5

Conclusions and Future Work

This thesis has established the basis for the issues that must be resolved when designing
the cavity that will be used inside the vacuum chamber of the Laboratorio de Óptica
Cuántica de Rydberg. One of the main questions is how important is alignment for a
near concentric resonator like this one, it was addressed theoretically in section 2.5 where
an explanation was given of how a minor tilt on the mirrors causes a major change in
the orientation of the optical axis making the fundamental mode coupling more difficult
because the beam center at the mirrors moves away rapidly from the mirror center. Also,
in section 2.1 it was shown that when approaching the concentric regime, the beam waist
at the mirrors rapidly grows as a function of cavity length making diffraction losses to
increase deteriorating coupling. Experimentally it was found that when getting near the
concentric regime the cavity became highly sensitive to any kind of mirror displacement,
even touching lightly the mirror mount screws would dramatically change coupling and
alignment. In the present work effective mode matching for a smaller waist was not possible
because of different aspects, first mode matching optics available had not enough effective
aperture to focus the beam without truncating it significatively. Secondly more precise
kinematic mirror mounts would help alignment in a nearest to concentric regime. However,
this situation should also improve when we get a lenses mode matching system planned to
focus a smaller waist. Despite this, the constructed system serves very precisely to achieve
a waist very near to the desired of about 5 μm.

The cavity micrometric translational stage was very useful to tune cavity length
and the piezo proved to be very effective for cavity length scanning, as shown in Figure
3.5. Also linearity of the length scanning around transmission peaks is seen in Figure 3.6
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where sideband peaks appear both at the same distance.

Generation of sidebands for cavity locking was very robust when implementing the
EOM, over previous not reported attempts of sideband generation by means of a double
pass AOM configuration which provided error signals not as similar to the theory as the
one obtained in this thesis in Figure 4.5. This error signal is ideal to lock the cavity length,
however a faster response of the mechanical system is still needed as concluded in section
4.1.
As a general conclusion this work provided an insight into the difficulties that represent
building a near concentric cavity, the important aspects to take into account and effective
techniques for alignment and characterization for this type of resonators.

Future Work
For the reasons given above a future design should consider the following aspects:

1. A system to precisely adjust mirror tilt, once it is adjusted mirrors position can
be fixed and coupling adjusted moving the cavity alignment mirrors or the mode
matching lenses.

2. It is necessary to consider the size the waist acquires at the mirrors near the concentric
limit to ensure that at least four times the waist fits within the mirrors surface. This
will improve fundamental mode coupling avoiding diffraction ripples. By the same
reasoning mode matching lenses should have an effective aperture which does not
truncate the beam into a circular shape conserving its gaussian shape. It would
be recommended but not necessary to have a precision translation mechanism for
the focusing lens to improve waist position matching into the cavity easily without
losing alignment and thus minimizing higher Laguerre-Gauss modes coupling.

3. A faster response of the system might be achieved by using piezo electrics with
higher bandwidth and getting the piezo nearer to the cavity mirror. Also, the cavity
length locking can be improved by a design which is more isolated from mechanical
vibrations. Additionally, when placed inside the vacuum system, air currents will
no longer affect the system and it will need less feedback from the control system
improving cavity length locking. Moreover, in the future we would like to build a
design compatible with vacuum that can be housed inside our science chamber where
the atoms are cooled and trapped. One of the biggest drawbacks is ultra-high vacuum
compatible designs should avoid complex mechanisms which cannot be effectively
depressurized. Based on the aspects learned, the new design is considering the use of
ring piezo stacks almost directly in contact with the mirrors to maximize simplicity
and get a faster response from the system. It is also planned to implement a method
to adjust delicately mirror position, then fix it and remove alignment pieces before
introducing the cavity inside vacuum. To lock the cavity length, it is planned to use
a laser with a 1020 nm wavelength that does not couple the Rubidium transitions
used in the experiment. As it has been shown, when measuring cavity length in
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section 3.2, two lasers with different frequency can be simultaneously resonant when
they satisfy the condition that their difference in wavelengths is an integer multiple
of the free spectral range which in this cavity is around 1500MHz. Cavity length
can then be locked with a non-resonant to the atomic sample frequency while using
a laser resonant with the desired atomic transition simultaneously. We can adjust
this resonant frequency in the order of MHz by varying cavity length within the
piezo range. This is important since the magnitude of the usual detunings from
atomic transitions used at the Laboratorio de Óptica Cuántica de Rydberg (Rydberg
Quantum Optics Laboratory) is in the order of MHz.
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