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Abstract 

 In this work, the Landauer conductance of various random networks is 

computed via the implementation of a Divide-and-Conquer algorithm based on the 

Recursive Scattering Matrix Method (RSMM). Firstly, a brief introduction to the 

handled terminology, the Landauer conductance, the Scattering matrix theory, and 

the tight-binding approximation is provided. Then, the principle of the RSMM is 

presented along with its building blocks. Next, the Divide-and-Conquer algorithm is 

explained, and its computational complexity is analyzed. Obtaining that it makes the 

computational scaling of the RSMM smaller than the one of other state-of-the-art 

recursive methods. Finally, the conductance of the Erdös-Rényi, the Small World, 

and the Scale Free networks is presented for two cases: the links in the network are 

simply atomic bonds, and the links consist of one-dimensional periodic chains. 

Obtaining different characteristic behaviors for each case and network. 
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1. Landauer conductance 

 Electronic transport in the mesoscopic scale was first studied under the scope 

of scattering theory by Rolf Landauer [1,2]. This approach relates the conduction 

properties of a junction and the probability that an electron can be transmitted 

through it [3,4], and is valid when particle interactions are negligible and the transport 

is coherent. However, it is also applicable to incoherent transport if the vertical flow 

of electrons, i.e., the flow from one energy channel to another, can be neglected. 

 The simplicity of this approach facilitated the study of the conductance in 

nanojunctions and led to further developments in this area [5–11]; and given its 

generality, it is considered to be the base of our understanding of electronic 

transport. A full review on this topic is given in Ref. [12]. 

 In the following, the terminology that is used throughout this work is stablished; 

then, a heuristic derivation of the Landauer formula based on Refs. [3,4,13] is 

provided; later, the scattering and transfer matrices and their relation to the Landauer 

conductance is introduced; and lastly, the tight-binding approximation is briefly 

explained, since it is the physical model of this work. 

1.1 Terminology and concepts 

 The approach in this work is for quasi-one-dimensional systems at zero 

temperature. These systems are quantum junctions that we can divide in three parts 

as shown in Fig. 1.1: Electrodes, leads, and scattering region (or scatterer).  

 

 
Figure 1.1.- Scheme of a quasi-one-dimensional junction. The leads connect the 
scattering region to the electrodes. 
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 The electrodes are the regions where the electrons are incoherent and in 

equilibrium, therefore, any electron that enters them is thermalized and loses any 

phase information it had. Additionally, we assume them to be reflectionless, which 

means that every electron that strikes the electrode will enter it.  

 The central region is made up of the leads and the scattering region. Here, the 

transport is coherent, and the particles do not interact with each other. The leads are 

the regions that connect the electrodes to the scatterer and consist of ballistic 

conductors that have a well-defined mode structure, which are ( )
n   and ( )

m
  for the 

left and right lead respectively, where the plus sign denotes the modes traveling 

towards the scattering region, and the minus sign corresponds to the modes 

traveling away from it. On the other hand, the scattering region is any given 

mesoscopic system under study, it has the property of being able to reflect the 

particles back to the lead from where they are arriving, or to transmit them into the 

other lead. In other words, each electron has a probability , ( )n mT E  of being 

transmitted from the n -th mode of one lead, through the scatterer, into the m -th 

mode of the other lead, where E  is the particle’s energy. 

 Now, it is assumed that the leads provide an adiabatic connection between the 

electrodes and the scattering region, this means that the infinite number of modes in 

the electrodes decreases adiabatically until reaching the scatterer. This implies that 

if an electron with energy E  strikes the lead, then the leads’ propagation modes can 

either fully transmit it, open channels, or fully reflect it, closed channels.  

1.2 A derivation of the Landauer formula 

 Let us start by analyzing an energy diagram, shown in Fig. 1.2, of the junction 

presented in Fig. 1.1. The electrode to the left (right) of the scatterer, electrode L      

( R ), has chemical potential L  ( R ); where it is considered that L R eV    with e  

the elemental charge, and V  a small external voltage. And s
 , with ,s L R  and 

,    , represents a particle originated in electrode s  traveling towards the 

scattering region,    , or away from it,    .  
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Figure 1.2.- Energy diagram of particles moving in a quantum junction. 
 

 

 Now, the total current can be expressed in terms of the net flow of electrons in 

the system, which has to account for all the transmissions between channels, as 

  ,
,

( ) ( , ) ( , )n m L R
n m

e
I T E f E f E dE

h
 





   ,  (1.1) 

where the spin degeneracy is being ignored. Notice that the particles generated in 

electrode s  follow its energy distribution ( , )sf E  , which in general is the Fermi 

distribution; however, we are in the zero-temperature scenario, so the energy 

distribution corresponds instead to the Heaviside’s step function, i.e., 

 
1,

( , ) ( )
0,

s
s s

s

E
f E E

E


 


      .  (1.2) 

 After substituting Eq. (1.2) into Eq. (1.1), one gets 
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


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 
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 (1.3) 

where ,
,

( ) ( )n m
n m

T E T E  is the transmission function, and to solve the integral, the 

external voltage is considered to be small enough so that ( ) ( )FT E T E , with FE  the 
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Fermi energy, in the energy interval [ , ]R L  . Lastly, given that the conductance, ,G  

satisfies I GV , Eq. (1.3) leads to what is known as Landauer’s second formula: 

 
2e

G T
h

 .  (1.4) 

 It is also worth mentioning the existence of Landauer’s first formula, 

 
2

1

e T
G

h T



 . (1.5) 

These two formulas are equally valid, but they refer to the conductance between 

different sets of point inside the same system. Following the scheme in Fig. 1.3, Eq. 

(1.4) refers to the conductance between L and R. That is why even for a perfect wire, 

1T  , there exists a finite conductance 2 /e h ; this is due to the contact resistance 

between the electrode and the lead since there is a jump from an effectively infinite 

number of modes in the electrode to a finite number of them in the lead. 

 

 
Figure 1.3.- Sets of points of voltage measurements. A and B inside the leads, and L 
and R inside the electrodes. 

 

 On the other hand, Eq. (1.5) corresponds to the conductance between A and 

B. Notice that, in this case, the conductance of a perfect wire does go to infinity, as 

expected due to the lack of resistances in the system. A more thorough explanation 

of the difference between both Landauer’s formulas can be found in Ref. [14]. 

1.3 Scattering and transfer matrices 

 Let us now consider that the left (right) lead has ( ){ }n   ( ( ){ }m
 ) modes with 

( ){ }nA   ( ( ){ }mB  ) related amplitudes; where the   represents that the particle travels 
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towards,  , or away from,  , the scattering region. These amplitudes of incoming 

and outgoing waves are related by the scattering matrix (S-matrix) of the system, S

, as 

 

( ) ( )
1 1

( ) ( )

( ) ( )
1 1

( ) ( )

N N

M M

A A

A A

B B

B B

 

 

 

 

                                  

S

r t

t r

� �
�����

� �

, (1.6) 

where the matrices r  ( N N ) and t  ( M N ) describe the reflection and 

transmission of waves incoming from the left lead, and the matrices r  ( M M ) and 

t  ( N M ) do the same for waves incoming from the right one.  

 On the other hand, in case that N M , it is possible to solve the problem using 

the transfer matrix of the system, M , which relates the left amplitudes with the right 

amplitudes as 

 

( ) ( )
1 1

( ) ( )
11 12

( ) ( )
21 221 1

( ) ( )

N N

N N

A B

A B

A B

A B

 

 

 

 

                                  

M
M M

M M

� �
�������

� �

. (1.7) 

If we think of the system as made up by J  different consecutive subsystems or 

layers, where subsystem i  has an associated transfer matrix, iM� , that stablishes 

how the waves’ amplitudes change after traversing the i -th layer of the system, then 

the transfer matrix of the whole system is given by 

 1 2 JM M M M� � �� ,  (1.8) 

where the layers are enumerated from left to right and their associated transfer 

matrices are square matrices of the same dimension [3]. 

 Now, since the interest is to determine the transmission of the system from left 

to right, the amplitudes ( ){ }mB   can be set to zero, obtaining  
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( ) ( )
1 1

12

( ) ( )
N M

A B

A B

 

 

               
M� � . (1.9) 

This consideration can be applied to Eq. (1.6), resulting in 

 

( ) ( )
1 1

( ) ( )
M N

B A

B A

 

 

               
t� � , (1.10) 

which leads to the relation 

 1
12


t M . (1.11) 

 The t  matrix is called transmission matrix, and its entries satisfy the relation 

2| |mn mnT  t . Therefore, considering the fact that 

 † † †

1 1 1 1 1

( ) Tr( )
N M N M N

mn mn nm nn
n m n m n

T
    

    t t tt tt ,  (1.12) 

the transmission function is given by †( ) Tr( )T E  tt , and the second Landauer’s 

formula is generalized to 

 
2

†Tr( )
e

G
h

 tt .  (1.13) 

A more thorough analysis of this case is performed in Ref. [15]. 

1.4 Tight-binding approximation 

 This approach consists in taking a system made up of atoms and supposing 

that their electrons are strongly attached to them; that is, each molecular orbital is 

effectively localized giving place to short range interactions. Therefore, when an 

electron enters the system, it will only be able to move from one atom to another if 

there is an interaction between their orbitals. 
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Figure 1.4.- Scheme of a tight binding system of 10N   atoms (red circles) where 
each has up to three orbitals (dotted circles). The interaction between two atoms 
is represented by a green line. 

 

 To make things clearer, let us consider a system of N  atoms (also called sites)  

where atom n  has nP  orbitals, like the one shown in Fig. 1.4, where the interaction 

between two atoms is represented by a solid green line regardless of the number of 

orbitals that are interacting to illustrate the short range assumption. Using Dirac’s 

notation, we can define the p -th orbital of the n -th atom as ,n p , where the order 

of numeration is arbitrary. These are the localized functions for atomic orbitals; 

however, they are not necessarily orthogonal to each other. Therefore, it is 

preferable to utilize the Wannier functions, who are orthonormal and will be denoted 

as ,n p . 

 Now, the Hamiltonian of this system can be written as 

*
, , , , , , ,

1 1 1 1 1 1

ˆ , , , , , ,
n n mP P PN N M

n p n p m q n p m q
n p n p m q

m n

H n p n p t n p m q t m q n p
     



      ,  (1.14) 

where ,n p  is called the on-site energy since it is the energy that a particle would 

have if it were only in state ,n p , and , , ,n p m qt  is called the hopping parameter since 

its module is proportional to the probability of an electron jumping from state ,m q  

into state ,n p  with m n . The hopping parameters are complex numbers in 

general, but they are real numbers in the time-reversal case. 
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 This model allows us to calculate the particle’s wave functions in the system. 

So, one can compute the system’s S-matrix under this model as explained in the 

next chapter. 

 As final remarks, in this work the time-reversal case for quasi-one-dimensional 

junctions at zero temperature under the tight binding approximation with only one 

orbital per site is considered. Also, since the scattering region must be far away from 

the electrodes, so they do not interact with the scatterer, the common assumption of 

the leads being semi-infinite periodic structures is also considered and the 

electrodes are disregarded.  
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2. Recursive Scattering Matrix Method (RSMM) 

 When computing the conductance of a physical system, we come to the 

realization that there is a small number of systems that can be analytically solved. 

Therefore, we turn to numerical simulations and computational algorithms to be able 

to solve more complex systems.  

 The most usual methods to do this are the Green function method [16,17] and 

the transfer matrix method [3,4]. However, in the most recent years, there have been 

advancements in methods that utilize the S-matrix of the system, like the Kwant 

software, which operates by utilizing sparse matrix diagonalization techniques [18], 

and the RSMM [19]. The latter presents a number of operations and a memory usage 

comparable to those of Recursive Green Function (RGF) methods. It also shows a 

fast calculation of transport properties, total density of states, and other physical 

quantities. Additionally, the S-matrix approach does not require to consider a finite 

imaginary part of the energy, which improves accuracy compared to RGF methods. 

 In this chapter, I explain the basics and the operation of the RSMM to lay the 

foundations for the detailed implementation in the next chapter. 

2.1 Constructing a system 

 The RSMM’s principle is that if one has the S-matrices of two systems, A and 

B, that are attached to periodic 1D-chains of null site energy and hopping parameter 

Ct , then one can glue these systems together and obtain the S-matrix of the resulting 

system C. 

 Now, let us consider an arbitrary tight-binding system, for example, one of the 

shown in Fig. 2.1, where the red circles represent the sites with their respective on-

site energies, the dark purple solid lines represent the interactions with their 

respective hopping parameters, and the dot-dashed purple lines represent 1D semi-

infinite periodic chains of parameter Ct . These 1D chains are also called auxiliary 

chains since they strictly are not part of the scattering region. 

 These auxiliary chains can be considered as the leads of the system, since 

they are semi-infinite and periodic, but they can also serve another purpose. As 
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explained in the previous chapter, the S-matrix relates the amplitudes of incoming 

waves into a system with those of the outgoing waves from it, therefore, these waves 

need a way to reach and leave the system, and the auxiliary chains provide it, which 

leads to the fact that the dimension of the S-matrix of the system is equal to the total 

number of chains attached to it. 1D-chains are an optimal choice since they only 

have one channel, and they allow us to glue two systems together. 

 

 
Figure 2.1.- Gluing process operation diagram. The wave amplitudes of the first four auxiliary 
chains of structures A and B are equated to obtain structure C. On-site energies and hopping 
parameters that overlap are added. The remaining chains are renumbered. 

 

 Using the scheme shown in Fig. 2.1 as reference, if one wants to glue together 

systems A and B to obtain C, then one must equate the incoming (outgoing) wave’s 

amplitude of system A, ( )A   ( ( )A  ), to the outgoing (incoming) wave’s amplitude of 

system B, ( )B   ( ( )B  ), but only for the chains attached to the sites that are being 

fused together. Following the example, to obtain system C one must equate 

 ( ) ( ) for 1,2,3,4 ,i iA B i
 

∓   (2.1) 

where the subindex refers to the number of auxiliary chains of the system, so the 

site of A that is attached to auxiliary chain i  is being fused to the site of B that is 

attached to auxiliary chain i . Notice that this gluing process adds together the on-

site energies and hopping parameters that overlap, it also makes disappear the 

auxiliary chains that are attached to the sites being fused. Consequently, an 

important consideration when gluing two systems together is that the resulting 

structure must have at least one remaining 1D-chain so that its S-matrix exists. 
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 In a general case, consider that system A is attached to AM  auxiliary chains 

and system B is attached to BM  auxiliary chains, and N  chains of each are glued 

together to form system C. Since the enumeration of the chains is arbitrary, we can 

assume that the first N  chains of each system are the ones attached to the sites 

being fused, as in the previous example. This allows us to write the S-matrices of A 

and B as 

 
/ /

/ 11 12
/ /

21 22

A B A B
A B

A B A B

    
S S

S
S S

,  (2.2) 

where 11
AS  ( 11

BS ) is an N N  matrix that corresponds to the scattering of incoming 

waves through the first N  chains into the same chains for system A (B);  12
AS  ( 12

BS ) 

is a [ ]AN M N   ( [ ]BN M N  ) matrix that relates the amplitudes of incoming 

waves through the last AM N  ( BM N ) chains to the ones outgoing from the first 

N  chains of system A (B); 21
AS  ( 21

BS ) is a [ ]AM N N   ([ ]BM N N  ) matrix that 

relates the amplitudes of incoming waves through the first N  chains to the ones 

outgoing from the last AM N  ( BM N ) chains of system A (B); and, 22
AS  ( 22

BS ) is an 

[ ] [ ]A AM N M N    ([ ] [ ]B BM N M N   ) matrix that corresponds to the scattering 

of the incoming waves through the last AM N  ( BM N ) chains into themselves for 

system A (B). 

 Equation (2.2) lets us write the S-matrix of the resulting system C, CS , as [19] 

 
   

   
1 1

22 21 11 11 11 12 21 11 11 12

1 1

21 11 11 12 22 21 11 11 11 12

A A B A B A A B A B

C

B A B A B B A B A B

 

 

          

S S I S S S S S I S S S
S

S I S S S S S I S S S S
.  (2.3) 

Obtaining a recipe to compute the S-matrix of any tight-binding system if we know 

the S-matrices of two of its subsystems that can generate it by being glued together. 

Notice that these two subsystems are not unique, and their choice can greatly impact 

the computational scaling of this algorithm’s implementation. This remark is analyzed 

in more depth in the next chapter. 
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2.2 Building blocks 

 Now that the gluing process has been stablished, it is important to highlight the 

essential systems for this method, which are called building blocks since one can 

build any given structure with only these systems just by iteratively gluing them. 

 These building blocks are shown in Fig. 2.2 and consist of (a) a single site of 

energy   attached to p  auxiliary chains (represented by purple dot-dashed lines), 

and (b) two sites of null energy attached by a bond of hopping parameter t  

(represented by a dark purple solid line) and each site is connected to one auxiliary 

chain.  

 

 
Figure 2.2.- Building blocks of the RSMM. 
(a) Site of energy   attached to p  auxiliary 
chains. (b) Bond of hopping parameter t  
between two sites of null energies. 

 

 The corresponding S-matrices of these site and bond structures are [19] 

  

 

site

bond

2 sin
,

if

( ) if ,

C
nminm

C

i iCnm

it

E t e p

r n m

t
e re n m

t



 

 




      
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 (2.4) 

where siteS  is a p p  matrix, bondS is a 2 2  matrix, E  is the energy of the particle 

that enters the system,  
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  1cos 0, ,
2 C

E

t
 

    
  (2.5) 

and 

 
2 2

2 2 2
C

i
C

t t
r

t t e 


 


. (2.6) 

The wave number   is dimensionless since the distance between sites in the 

auxiliary chains is taken to be unity. 

2.3 The leads 

 So far, one can compute the S-matrix of any given system; however, it has the 

restriction of being attached to 1D-chain leads, since it is the only semi-infinite 

periodic structure handled so far. To generalize the leads, one needs a way to 

compute the S-matrix of semi-infinite periodic structures. 

 

 
Figure 2.3.- Example of a semi-infinite periodic lead, infinite to the left and finite to the 
right, and its unitary cell. 

 

 Consider a semi-infinite periodic structure, which extends to infinity on the left 

side, and its unit cell, for example, the ones shown in Fig. 2.3. The S-matrix of the 

unit cell, US , can be written so that it satisfies that 

 
( ) ( )

11 12

( ) ( )
21 22

U

 

 

               

S

S SA A

S SB B

�����

, (2.7) 
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where the system has 2Q  auxiliary chains attached to it ( Q  on the left and Q  on the 

right), and ( )A  ( ( )B ) is a column vector of Q  rows whose entries correspond to the 

wave amplitudes in the chains on the right (left) of the unit cell. 

 Now, by using Bloch’s theorem, one can obtain a generalized eigenvalue 

equation 

 
( ) ( )

11 12

( ) ( )
21 22


 

 

                      
S I 0 SA A

S 0 I SA A
,  (2.8) 

whose eigenvalues | | 1   can be split into three categories, | | 1  , | | 1  , and 

| | 1  , which correspond to left- or right-propagating waves, left-evanescent states, 

and right-evanescent states [20]. Since ( )A  have dimension Q , there are a total of  

2Q  eigenvalues   that can be grouped in Q  pairs that satisfy 1  , which implies 

that only Q  of them are independent, so each left-propagating wave (left-evanescent 

state) has an associated right-propagating wave (right-evanescent state). 

Additionally, right-evanescent states are discarded due to not being physically 

possible in this system. So, considering the Q�  Bloch-eigenvalues associated to right-

propagating waves as part of the independent subset of eigenvalues, we can write 

such subset as 

 
if 1,2, ,

if 1, ,

j

j

i a

j a

e j Q

e j Q Q






      
�

�
, (2.9) 

with corresponding eigenvectors 

 
( )

( )

j

j





    
V

V
, (2.10) 

where ( )
j
V  are column vectors of Q  rows. 

 Using these eigenvectors, one can compute the matrix [20] 

 

1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 1 2 2 1

1 1( ) ( ) ( )
2 2 1

      

   

                  

M M M M M M
P

M M M

� � � � �

� �

 , (2.11) 

where 
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The S-matrix of the lead, LS , corresponds to the first Q Q �  rows of matrix ,P  and 

satisfies 

 
( ) ( )

11 12

( ) ( )
21 22

L

L L

L L

 

 

               

S

D DS S

S SL L

�����

, (2.13) 

where ( )D  ( ( )L ) is a column vector of Q  ( Q� ) rows corresponding to the amplitudes 

of waves on the finite (infinite) side of the lead. Notice that the block 11
LS  corresponds 

to the scattering of waves from the Q  auxiliary chains attached to the lead into 

themselves. 

 Finally, to obtain a system that consists of a scattering region attached to 

general semi-infinite leads, one computes the S-matrices of the left and right leads, 

which have LQ  and RQ  auxiliary chains attached to their finite side respectively, and 

the S-matrix of the scatterer, who must have a total of L RQ Q  auxiliary chains 

attached to it. Then, one glues LQ  ( RQ ) of the scatterer’s auxiliary chains to the left 

(right) lead, resulting in the desired system.  

 Consequently, we have a method that allows us to compute the S-matrix of any 

tight-binding system attached to arbitrary semi-infinite periodic leads. It is worth 

mentioning that this method can be extended to compute the S-matrices as order-N 

Taylor series, which leads to an exact order-N Taylor series for the conductance 

[21]. 
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3. Algorithm optimization 

 When performing numerical calculations, their computational efficiency is of 

great interest. The more efficient an algorithm is, the less time it takes to compute 

complex systems compared to others. Therefore, these algorithms can be 

categorized in function of how their computational time scales with the size of the 

system. 

 For example, consider a usual square lattice of L L  sites. Solving this system 

with direct diagonalization has a scaling of 6( )O L  since one must invert an 2 2L L  

matrix. Solving it using the transfer matrix method, a circular slicing algorithm [17] or 

an adaptive slicing algorithm [22] has a scaling of 4( )O L . And solving it using 

methods suitable for sparse matrices [18], since in tight-binding systems most of the 

entries of the Hamiltonian matrix are zero, has a scaling of 3( )O L  if 310L ∼ . 

 In the following, I propose an algorithm to implement the RSMM and determine 

its computational complexity as a function of the size of the system. It is worth 

mentioning that the results of this chapter were also published in Ref. [23]. 

3.1 Divide-and-Conquer algorithm 

 As stated in the previous chapter, the RSMM allows us to compute the S-matrix 

of any tight-binding system by gluing together the subsystems that conform it. Just 

like a puzzle, where one chooses the total number of pieces, their shape, their size, 

and their order of placement. 

 Now, as it can be seen in Eq. (2.3), when gluing two systems together, one 

must compute the inverse of an N N  matrix, where N  is the number of sites of 

each system that are being fused together. This operation has a computational 

complexity of 3( )O N . Therefore, an optimal implementation of the RSMM has to glue 

together systems that have the smallest N  possible and do so in the least number 

of steps. 

 To achieve this, in the general case, consider the algorithm shown in Fig. 3.1. 

One starts with an arbitrary scattering region and proceeds to split it in two 

subsystems, preferably in half. Then, one takes each of these two subsystems and 
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split each in another two subsystems. One repeats this process iteratively, keeping 

track of the divisions that are made, until the subsystems consist of only a single 

site. Finally, one computes the S-matrices of this single site structures and starts 

gluing them together following the reverse order. 

 

 
Figure 3.1.- Diagram of the operation of the Divide-and-Conquer algorithm. The system is divided 
recursively in halves until reaching one-site systems, then, the S-matrices are computed by gluing 
them together in the inverse order. 

 

 Notice that dividing a system in two is quite arbitrary, and the optimal way to 

do so strongly depends on the geometry of the system and the coordination number 

of its sites. This is because we seek to divide the system as evenly as possible to 

distribute the computational load of generating each subsystem as much as we can, 

and the higher the coordination number of the sites, the more connections we must 

make.  

 However, if we restrict our systems to crystal systems and slightly disordered 

periodic systems, for example, systems arranged in a Bravais lattice with bonds only 

between nearest neighbors, a Honeycomb lattice, a Bravais lattice with small 

dislocation and sheer impurities, etc. Then we can do the divisions by taking the sites 

physical coordinates and splitting the system in half along its widest dimension. The 

system’s periodic structure guarantees that such division will produce two somewhat 

even subsystems and that the number of auxiliary chains to be fused together in 

each gluing step depends only on the number of frontier sites. 

 It is worth mentioning that this criteria for the division of a system can also be 

applied to systems that have their sites randomly distributed within a finite region of 

space as long as they are uniformly distributed. In this case, one also has to bear in 

mind that the computational time required to compute these systems is dependent 

on the length of the bonds. This is because a bond between two sites that are far 
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from each other translates into one extra dimension for the S-matrices of the 

subsystems that will take several gluing steps to disappear since, with this algorithm, 

the further two sites are, the more steps are required to glue them into the same 

subsystem. 

 Now, in order to obtain an estimation of the computational complexity of this 

algorithm consider a scatterer that consists of 2L  sites distributed in a square lattice 

of L L  sites with connections only between nearest neighbors, where the on-site 

energies and the hopping parameters are completely arbitrary. Since the division 

process will end up with subsystems that consist of a single site, let us define the 

time required to compute the S-matrix of a single site as 0 . This implies that this 

system requires a time 2
0L   to compute the S-matrices of the individual sites. 

 

 
Figure 3.2.- Example of how the division and gluing process is performed. When splitting a system 
in two, the bonds that were attaching them together become an independent third system that is 
responsible for gluing them back together. Only the first N  auxiliary chains of B and C are shown, 
but they can have more of them. The odd-numbered chains of D are glued to the auxiliary chains 
on B, whereas the even-numbered chains of D are glued to the auxiliary chains of C. 

 

 To consider the time required by all the gluing steps, first we need to take a 

closer look at exactly how the division and gluing are performed. As it can be seen 

in Fig. 3.2, when splitting a system, A, into subsystems B and C, one identifies the 

N  bonds that are attaching B and C together, then one separates B and C by 

replacing those bonds with auxiliary chains, and considers the removed bonds as a 
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new system, D. System D becomes an auxiliary system that is essential to glue 

systems B and C together since it contains the information of the hopping 

parameters between these two.  

 The S-matrix of system D, DS , can be easily computed following the expression 

for the S-matrix of a bond structure shown in Eq. (2.4). Therefore, if iS  is the S-

matrix of bond i , then DS  is given by 

 

1

2D

N

       

S 0 0

0 S
S

0

0 0 S

�

� �

� � �

�

,  (3.1) 

where 0  is the 2 2  null matrix. Additionally, this same logic leads us to consider 

systems B and C together as a system B� , whose S-matrix is given by 

 
B

B

C

     
S 0

S
0 S

� ,  (3.2) 

notice that the off-diagonal matrices are null since systems B and C are decoupled. 

Consequently, to glue B and C together, one applies the RSMM, i.e., Eq. (2.3), to 

DS  and BS
�

. Notice that the rows and columns of DS  and BS
�

 must be permuted so 

that they satisfy the decomposition defined in Eq. (2.2) 

 Returning to the computational time estimation, we have that when gluing two 

systems with N  bonds, the time required to generate DS  is 1N , where 1  is the time 

required to compute the S-matrix of a single bond, and the time to glue systems D 

and B�  together is 3aN , because this time is dominated by the inversion of a 2 2N N  

matrix whose computational complexity is 3(8 )O N  and the factor a  absorbs the 

effect of the factor 8. 

 Now, for approximation purposes and since the interest of the scaling is for 

large values of L , consider that there exists an integer q  such that 1 2qL � . 

Therefore, the total computational time is 



24 
 

 

   
   

31
2 2 2

0 1
0

3
2 1 2 1

1
1

2
time( ) 2 2

2 2

2
2 2 ,

2 2

q
j j

j j
j

q
j j

j j
j

L L
L L a

L L
a

 







 



               
              




 (3.3) 

where the first (second) sum accounts for the time of computing the bonds matrices 

and the gluing processes for the vertical (horizontal) divisions, assuming the first 

division was done vertically. After solving the sums, we get 
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 (3.4) 

So, the total time required to compute the S-matrix of a square lattice of L L  sites 

using the Divide-and-Conquer algorithm is approximately given by 

 2 3
1 2time( ) ,L b L b L    (3.5) 

where 1b  and 2b  are fixed scalars. 

 Now, it is preferable that Eq. (3.5) has the form 2
1time( ) cL c L  so that the 

computational complexity of the algorithm would simply be 2( )cO L . To determine 2c  

one can take the derivative of  log time( )L  with respect to  log L , on the one hand 

one gets 

            1 2 2

d d
log time( ) log log

d log d log
L c c L c

L L
   ,  (3.6) 

and on the other hand, 
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2 3d d
log time( ) log
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b L b L
L b L b L

L L b L b L
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where I used that 

     
1d 1

d d log log
d 

L
L L

L L
L


  

    (3.8) 

for 0  . After simplifying Eq. (3.7) and equating it to Eq. (3.6), one gets 

 2
1

2

1
2

1
1

c
b

b L

 


.  (3.9) 

 Equation (3.9) is a local scaling approximation and implies that for small values 

of L , the computational complexity of the Divide-and-Conquer algorithm is 2( )O L , 

whereas for large L  it is 3( )O L , and the scaling undergoes a soft transition between 

these two limit behaviors.  

 In the following section, I analyze the computational performance of this 

algorithm for various scattering regions attached to semi-infinite periodic chains as 

leads.  

3.2 Computational performance 

 Figure 3.3 shows with red squares the computational time required to 

determine the S-matrix, using the Divide-and-Conquer algorithm, of a square lattice 

of L L  sites as a function of L . These values fit the curve 2 3
1 2b L b L  (red line) with 

5
1 8.122 10b    and 8

2 3.034 10b   , which, after substituting in Eq. (3.9), tell us that 

 for 310L ∼  the scaling goes as 2.27L , representing an improvement in the 

performance of transport calculations. Even more, if 2676L   one gets 2 2.5;c   

which means that for approximately seven million total sites, this algorithm maintains 

a scaling under the 3L  mark of other state-of-the-art methods. 

 For comparison, Fig. 3.3 also shows with blue circles the computational time 

needed to compute the transfer matrix of the same square lattices. The formula used 

to determine such matrices and its deduction is presented in Appendix A. Points for 
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large L  are fitted by 3.971L   (blue line), with 91.517 10   . Given the small value of 

 , the transfer matrix method is faster than the Divide-and-Conquer algorithm for 

250L  ; however, the difference in times for the same system in this region is less 

than an order of magnitude. Moreover, for large systems, the Divide-and-Conquer 

algorithm presents times smaller than the ones of the transfer matrix by an order of 

magnitude and without needing to realize cumbersome calculations as the ones 

shown in Appendix A. 

 

 
Figure 3.3.- Computational time to determine the S-matrix of square (red squares), 
triangular (green triangles) and honeycomb (orange hexagons) lattices using the divide-
and-conquer algorithm, and to determine the transfer matrix, T-matrix, of a square lattice 
(blue circles). The number of sites in each system is 2N L  and they are within a square 
area. Lines correspond to fittings as detailed in the text. (Inset) Relative error on the S-
matrix for each lattice using the divide-and-conquer method. 

 

 To analyze the behavior of the Divide-and-Conquer algorithm in other lattices, 

Fig. 3.3 further shows the computational times to compute the S-matrices, using this 

algorithm, of squared areas of triangular (green triangles) and honeycomb (orange 

hexagons) lattices. In these systems, L N , where N  is the total number of sites. 
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For the triangular lattice, the computational times fit the curve 2 3
1 2b L b L  (green line) 

with 4
1 2.054 10b    and 7

2 1.830 10b   ; whereas for the honeycomb lattice they fit 

the same curve (orange line) but with 5
1 5.412 10b    and 8

2 1.415 10b   . The fact 

that the coefficients 1b  and 2b  are smaller for the honeycomb lattice than for the 

triangular lattice is a consequence of the aforementioned dependance of the 

algorithm on the coordination number of the lattice’s sites. 

 

 
Figure 3.4.- Computational time to determine the S-matrix of a square lattice of fixed 
width, 20W   sites, and varying L  (red squares), and one of fixed length, 20L   sites, 
and varying W  (blue circles) using the divide-and-conquer algorithm. In both cases 

lead 20W   chains. 

 

 Additionally, given that the probability flux conservation, 1T R  , must be 

satisfied for every wave that enters the scattering region, the inset in Fig. 3.3 shows 

the average of 1T R   as an estimation of the relative error in the numerical 

calculation of the S-matrix. This leads to the conclusion that the Divide-and-Conquer 
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algorithm is numerically stable, with precision better than the ninth significative figure 

even for 310 .L ∼  

 Finally, consider the cases of scattering regions with high aspect ratios. If the 

system consists of a square lattice of L W  sites, as shown in the inset of Fig. 3.4, 

where W L� , the Divide-and-Conquer algorithm leads to the computation of /L W

S-matrices of blocks of W W  sites. Then, the scaling of the computational times 

goes as 2
1 2b LW b LW . Consequently, for fixed W , the Divide-and-Conquer 

algorithm is linear in L , which is on par with other recursive methods [17,22,24]. On 

the other hand, if L W�  then the computational time goes as 2
1 2b LW b L W , which 

is linear in W . Figure 3.4 presents the computational time for these two types of 

square lattices, red squares for W L�  and blue circles for L W� . Notice that the 

scaling behavior is indeed linear on the largest dimension regardless of the 

orientation of the scattering region. 

 In summary, the implementation of the RSMM following the Divide-and-

Conquer algorithm can be done on any system but has its peak performance on 

crystal systems and slightly disordered periodic systems, which stays under the 3L  

scaling mark of other state-of-the-art recursive methods. Additionally, in systems 

with high aspect ratios, its scaling is linear in the largest dimension, which is on par 

with other methods. 
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4. Conductance in random networks 

 The Landauer conductance is usually computed for crystal systems or slightly 

deformed versions of them. Even when the effects of disorder are analyzed, they are 

only introduced as randomized values of the on-site energies and/or the hopping 

parameters. Therefore, in this chapter, the effect of randomizing the presence of a 

connection between sites on the conductance of a system is explored. In other 

words, the Landauer conductance is analyzed in three of the most common random 

networks: the Erdös-Rényi network, the Small World network, and the Scale Free 

network. The Small World network has been previously studied under a continuous-

time quantum walk approach [25] and also via the Green Function method for a 

construction rule different to the one handled in this work [26]. The Scale Free 

network has also been studied but from Kirchhoff’s classical viewpoint [27]. 

 The conductance of all three networks is computed using the Divide-and-

Conquer algorithm considering their sites to have null on-site energy, for them to be 

located within an area of 100 100nm nm , and two cases for the types of connections 

between sites. The first is to consider that any pair of sites that are connected have 

a fixed hopping parameter t ; however, this case, although interesting, is not very 

consistent with the tight-binding approximation, since two sites that are close to each 

other can be unlinked and, at the same time, be linked to sites that are far away from 

them. On the other hand, the second case is to take the connections to be chains of 

1N   sites, counting the two sites that are being connected, of null on-site energy 

and hopping parameter 1t  , where   max int / 0.2 ,1N d  and d  is the distance 

between the pair of sites. This implies that the connections between sites are 

performed manually by introducing 1D-chains into the system whose sites are 0.2nm  

apart, which is more physically viable than the first case. 

 This second case could be utilized to broaden the understanding of the 

behavior of randomly connected single wall carbon nanotubes, whose analysis and 

elaboration are of interest due to their performance as thin film transistors [28,29].  

 It is worth mentioning that to improve computational performance when the 

connections consist of 1D-chains, instead of constructing the chains site by site 
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using the RSMM, the S-matrix of such chains is computed using the formula 

obtained in Appendix B. 

4.1 Erdös-Rényi 

 
Figure 4.1.- Example of an Erdös-Rényi network. 

100N   nodes where each pair has a probability 
0.07P   of being connected. The green numbers 

signal the nodes between which the Landauer 
conductance was computed. 

 

 This network consists of having a fixed number of nodes, N , and then 

connecting each possible pair of nodes with probability P . An example of this type 

of network is shown in Fig. 4.1. Notice that if 1P� , then it is very unlikely to have 

connected nodes and the network is essentially disconnected, i.e., there is no path 

that connects any two given nodes. On the other hand, if 1P  , then almost every 

pair of nodes is connected and there exists a minimum number of steps (jumps 

between connected nodes) to go from one node to any other. The transition between 

these two behaviors occurs at the transition probability of log( ) /P N N  [30]. 

 Now, the conductance is computed between two randomly selected sites of an 

Erdös-Rényi network of 100N   total sites, where their positions were chosen 

randomly with a uniform probability distribution. Following the example shown in Fig. 

4.1, the transmission of a particle arriving at the site marked with the number one 
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and leaving the one marked with a two is analyzed, where each of these sites is 

attached to an auxiliary chain of null on-site energy and hopping parameter 1Ct  . 

Therefore, the conductance of the system is calculated using the second formula of 

Landauer, Eq. (1.4), which is proportional to the transmission function, ( )T E . 

 

 
Figure 4.2.- Average transmission function as a function of the 
reconnection probability, P , of the Erdös-Rényi network for 

100N  , and various energies, E , when the links consist of 
bonds of hopping parameter 1t  .  

 

 Figure 4.2 shows the average transmission function of the network for a particle 

with energy E  as a function of the probability of connecting two sites, and for the 

case when the links in the network are bonds of hopping parameter 1t  . Notice that 

since the value of t  sets the scale of the energy, i.e., we have the dimensionless 

parameter /E t , then changing the value of E  keeping t  fixed is equivalent to 

keeping E  fixed and varying t  as long as 0E  . Each data point corresponds to the 

average of 1000 iterations for fixed P .  

 Now, to understand these results we consider the energy spectra shown in Fig. 

4.3. Figure 4.3(a) shows the colormap of the normalized density of states as a 

function of the energy and the probability P  for the Erdös-Rényi network, whereas 

Fig. 4.3(b) also shows the colormap of the density of states but for a periodic chain 
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with connections to the q  nearest neighbors and periodic boundary conditions as a 

function of the energy and q . 

 

Figure 4.3.- Colormap of the normalized density of states for (a) the Erdös-Rényi network with 
connections consisting of bonds of hopping parameter 1t   as a function of the particle’s energy, 
E , and the probability of connection, P ; and (b) a periodic chain with connections to the q  nearest 

neighbors and periodic boundary conditions as a function of E  and q .  

 

 Notice that both energy spectra are quite similar to each other; moreover, they 

perfectly agree on the straight line that reaches 100E  , which for fixed P   q

corresponds to the energy of the base state of the system since we are considering 

1t  . We can infer that the missing curves on Fig. 4.3(a), that are present on Fig. 

4.3(b), actually collapsed into the oval due to random effects. Even more, it is well 

known that the average degree of an Erdös-Rényi network is NP , so we can 

conclude that this network with this type of connection behaves similarly to a periodic 

chain connected to the / 2q NP  nearest neighbors with periodic boundary 

conditions.  

 Furthermore, the energies marked in Fig. 4.3(a) correspond to the ones chosen 

in Fig. 4.2. Observe that the presence and number of eigenstates of the system for 

fixed energy and probability is strongly correlated to its transmission function; this 

explains the abrupt change in the transmission spectrum as E  increases. Once the 

energy is large enough, greater than 10 in this case, we have that the only state that 

can contribute to the conductance of the system is the base state, that is why the 

conductance spectrum as a function of the probability suddenly changes into a single 

peak whose width is related to the randomness of the system. 
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Figure 4.4.- Average transmission function as a function of the 
reconnection probability, P , of the Erdös-Rényi network for 

100N  , and 1E  , when the links consist of 1D chains (red 
circles). The transition probability, log( ) /N N , is marked with 

a vertical dashed line. 

 

 On the other hand, when the connections consist of 1D-chains, the average 

transmission function is sharply peaked close to the transition probability of 

log( ) /N N , as shown in Fig. 4.4. To try to explain this, we can think of the state of 

the network as P  increases. First, it is very unlikely for any two sites to be attached 

so the conductance starts from zero. Then, it starts to become more viable for there 

to exist a path between a pair of nodes, but there is not a path between any pair of 

nodes, so the conductance starts increasing without reaching a maximum value. 

Next, P  approaches the transition probability, where there are still few connections 

in the network, but there exists a path between every pair of chosen sites; this would 

imply that no two sites would be isolated from each other, and the transmission 

function should reach a maximum value. However, with more connections there is 

also more interference in each site, which would start to reduce the conductance of 

the system; hence, the maximum value is reached a little below the transition 

probability. Finally, the system starts to be so connected that the destructive 

interference present in the system increases to the point that after 0.15P  , the 

system is an insulator. 
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4.2 Small World 

 
Figure 4.5.- Example of a Small World network of 

100N   nodes. Each node is connected to its 2 
neighbors clockwise and each link has a probability 

0.075P   of being randomly reconnected. The green 
numbers signal the nodes between which the 
Landauer conductance was computed. 

 

 This network consists of a fixed number of sites, N , uniformly distributed along 

the perimeter of a circle. They start by being connected to their first q  neighbors 

clockwise, notice that every site starts with a total of 2q  links. Then, for each site, 

each of the clockwise links is randomly reconnected to another site with probability 

P . To be in the Small World regime, the parameters of the system have to satisfy 

1 log( ) 2N q N� � �  and have a probability of reconnection of 0.01 0.1P  , like the 

example shown in Fig. 4.5. This allows just enough links to be rewired so that the 

number of steps, i.e., the number of jumps between connected sites, needed to go 

from one site to any other is greatly reduced compared to the starting condition while 

keeping the majority of the connections between close sites [31]. 

 Now, the conductance is computed between two diametrically opposite sites, 

as shown in Fig. 4.5, using the second formula of Landauer for the case of 100N   

and 2q  . As before, the conductance corresponds to the transmission of a particle 
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arriving through a semi-infinite periodic chain of null on-site energies and hopping 

parameter 1Ct   attached to site one and leaving through a similar chain attached 

to site two. 

 

 
Figure 4.6.- Average transmission function as a function of 
the reconnection probability, P , of the Small World network 
for 100N  , and various values of E , when the links consist 
of bonds of hopping parameter 1t  . 

 

 Figure 4.6 shows the average transmission function of the system as a function 

of the probability of rewiring a connection when the links consist of bonds of hopping 

parameter 1t  , each data point corresponds to the average of one thousand 

iterations. As in the Erdös-Rényi network, these results are easier to explain 

considering the energy spectrum of such Small World network shown in Fig. 4.7. 

One can notice that for small P  the eigen energies of the system are well discretized, 

then, as the probability of reconnection increases, these energies start to spread out. 

This spreading can be seen to start as soon as the system is close to entering the 

Small World regime, and, when P  is large enough to leave this regime, it is so strong 

that there is no sign of the initial energy levels. 

 Now, the horizontal dashed lines in Fig. 4.7 correspond to the energies chosen 

in Fig. 4.6, the energy 20E   is not considered since it is so far away from the eigen 

energies that it will trivially have a zero transmission. Note that for small probabilities 

the transmission of the system is greater if the energy for which it is being evaluated 
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is closer to an eigen energy and it quickly decreases if the energy is far from them. 

Also, inside the Small World regime, one can see a considerable change in the 

conductance of the system as if it started to forget the energy levels; this is due to 

the eigen energies starting to spread out. Finally, when leaving the Small World 

regime, the eigen energies are so spread out that the transmission function is 

essentially the same for all the energies that are inside the bandwidth. Additionally, 

the fact that the maximum allowed energy, which once again corresponds to the 

base state of the system since 1t  , increases after leaving the Small World regime 

explains why the system’s conductance is no longer zero for 5E  . 

 

 
Figure 4.7.- Energy spectrum (gray dots) of a Small World 
network with 100N  sites as a function of the reconnection 
probability, P , when the links consist of bonds of hopping 
parameter 1t  . 

 

 These results suggest that the conductance of the system is very susceptible 

to reconnections while in the Small World regime, but it becomes independent of 

them when leaving it. It also becomes independent of the particle’s energy as long 

as it is inside the eigen energy bandwidth. Also, for P  closer to 1 the network 

converges to an Erdös-Rényi network, which in this case can be corroborated by 

noticing that the conductance of this system for these probabilities is consistent with 

the transmission of the Erdös-Rényi network for 0.04P  , since it is when both 

networks have an average degree of 4. 
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 On the other hand, the average transmission function for a particle with energy 

1E   as a function of the probability of rewiring a link, P , when the links consist of 

1D-chains is shown in Fig. 4.8, each data point corresponds to one thousand 

iterations. Notice that the spectra is almost identical to the one corresponding to the 

case where the links were bonds of hopping parameter 1t  . The main difference is 

after leaving the Small World regime, i.e., for 0.1P  ; here we have that instead of 

converging to the Erdös-Rényi spectrum, the transmission collapses to zero due to 

destructive interference effects that the 1D-chains introduce to the system. 

 Therefore, we can conclude that the system’s conductance is independent of 

the type of links up until leaving the Small World regime, where it will either remain 

fairly constant or it will become zero depending on the type of link. 

 

 
Figure 4.8.- Average transmission function as a function of 
the reconnection probability, P , of the Small World network 
for 100N   when the links consist of 1D chains. 

4.3 Scale Free 

 The simplest way to construct this network is to start with 0n  fixed sites that are 

arbitrarily connected between them, i.e., site i  is connected to ik  sites, where 

01,2, , 1ik n   , and ik  is known as the degree of site i . Then, one adds another 

site to the system and connects it to m  sites, where m  is a fixed value that satisfies 
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that 01 m n  , and the probability of connecting this new site to the pre-existing site 

i  is given by  

 i
i

j
j

k
p

k
 ,  (4.1) 

with the sum in the denominator running over all the pre-existing sites. The 

expression in Eq. (4.1) is known as a preferential attachment condition, since a new 

site is more likely to attach to a site that already has many connections. One 

continues to add sites to the system following this procedure until the desired total 

number of sites, N , is reached. This results in the probability distribution of the 

degree of the nodes taking the form  
 3( ) ,i iP k k 

∼   (4.2) 

which is a power law distribution, hence the name of Scale Free [32]. An example of 

this network is shown in Fig. 4.9, where the size of the sites is proportional to their 

degree, so it is easier to see the sites with high degree, also known as hubs. 

 

 
Figure 4.9.- Example of a Scale Free network of 

100N   nodes with degree distribution 3( ) .i iP k k 

∼  

The size of the sites is just to help visualize the hubs. 
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 Now, in contrast to the previous networks, the conductance is computed 

between two randomly selected nodes from the initial 0n  ones for the case with 0 3n   

and 2.m   Since it is the conductance between two nodes inside the system, the 

appropriate formula is Landauer’s first formula, Eq. (1.5). This change of focus is 

also driven by the fact that the conductance of a Scale Free network was analyzed 

in Ref. [27] from a classical viewpoint, which is more compatible with Landauer’s first 

formula. 

 Figure 4.10 shows with dashed lines the cumulative distribution function (CDF) 

of this conductance, where 2
0 /G e h  was defined, for various combinations of the 

particle’s energy, E , the total number of sites, N , and the type of connections, 

bonds or 1D-chains. It also shows with a solid line the fit of the power law 0.975x   to 

each of these CDFs. The independence of such fit with respect to N  was to be 

expected due to the scale free property of this network. 

 

 
Figure 4.10.- Cumulative distribution function for the 
conductance, G , of a Scale Free network for various energies, 
number of nodes, and both types of connections (dashed 
lines). All solid lines are the same power law fit for each 
distribution. 

 

 Notice that this result implies that the conductance of the system for fixed E , 

N , and type of connection is not well characterized by its average over a large 

number of iterations, unlike the past networks. Additionally, the power law seen in 
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Fig. 4.10 is predicted to have an exponent of 4  from the classical point of view [27], 

which greatly differs from the exponent of 0.975  obtained with quantum 

considerations. This implies that, regardless of the size of the system or the type of 

connection in it, quantum effects make the CDF of the conductance have a thicker 

tail.  
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Conclusions 

 In this work, an improvement in the computational performance of recursive 

methods for the calculation of the Landauer conductance of quantum nanojunctions 

under the tight-binding approximation is proposed. Such enhancement is based on 

the implementation of the Recursive Scattering Matrix Method following a Divide-

and-Conquer algorithm, which consists of iteratively dividing the desired system into 

halves and computing its S-matrix by gluing it back in reverse order. This new 

algorithm leads to 

1) A computational complexity with a scaling that stays under the 3L  mark of 

other state-of-the-art recursive methods for systems of size L L . 

2) A computational complexity with a linear scaling on the largest dimension of 

systems with high aspect ratios, which is on par with other recursive methods. 

3) An order of magnitude improvement in computational time compared to the 

transfer matrix method for systems of approximate size 3 310 10  sites. 

4) A more visual handling of the system under study due to the use of the 

physical coordinates of the sites. 

 This method was implemented for the study of the conductance in randomly 

connected nanostructures. Essentially, the systems studied followed the 

construction rules of three of the most common random networks, and two types of 

links were studied. The main characteristics found in each of them were 

1) Erdös-Rényi network: If the links consist of bonds, then the average 

conductance as a function of the link probability is quite uniform for small 

energies, and it shows a sharp peak for large energies where only the base 

state of the system can contribute to the transmission. If the links consist of 

1D-chains, then the conductance spectrum consists of only one sharp peak 

close to the transition probability between disconnected and connected 

network. 

2) Small World Network: If the links are bonds, then, for small probabilities, the 

conductance strongly depends on how close the particle’s energy to the eigen 

energies of the system is; and, as the probability of reconnection increases, 

the system forgets these energy levels and converges to an Erdös-Rényi 
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network, where the strongest change in the conductance happens inside the 

Small World regime. If the links are 1D-chains, then the system’s conductance 

only differs from the previous case when the probability of reconnecting a link 

is greater than 0.1. This is due to interference effects that end up collapsing 

the conductance to zero. 

3) Scale Free Network: The cumulative distribution function of the conductance 

of this system follows a power law of 0.975x , which is independent of the 

energy of the particle, the number of sites, and the type of links. Classically, 

this exponent is expected to be 4 , so quantum effects thicken the tail of the 

distribution. 

 In summary, the Divide-and-Conquer algorithm presents a better performance 

for real sized systems compared to other state-of-the-art recursive methods, so it 

would be quite useful to calculate physical properties of such systems under the 

tight-binding approximation. Also, future works could translate this algorithm to the 

Recursive Green Function methods, since some of them have a modular 

implementation. Additionally, the performance of this algorithm could be increased 

via a parallel implementation since the computation of the subsystems can be split 

into different processors. The algorithm could also be optimized for general systems 

if their division into subsystems is made with a more general criteria than the one 

handled in this work; for example, using a cluster finding algorithm to find the most 

even division of the system. Finally, the analysis presented for the conductance in 

random networks could be useful to describe the behavior of systems that consist of 

many randomly connected nanowires, which can be used to make wearable 

triboelectric nanogenerators [33], or maybe even amorphous systems. It could also 

serve to study lattices with non-local network couplings [34], although more analysis 

of random networks, presented or not in this work, is still required to obtain a more 

detailed understanding of the behavior of physical quantities in random systems. 
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Appendix A: Transfer matrix of a square lattice 

 Consider the following system: A square lattice of parameter   and 

dimensions N M  sites, with arbitrary on-site energies and fixed hopping parameter 

t , that is attached to M  semi-infinite periodic chains of parameter  , with null on-

site energies and hopping parameter t , to the left, and M  to the right; as seen in 

Fig. A.1. Since the lattice’s parameter and the chains’ parameter are equal, i.e., the 

distance between any two first neighbors sites is  , we can set it to one, or 

equivalently, any distance is measured in units of  . 

 

 
Figure A.11.- Square lattice of size N M  attached to semi-infinite periodic chains to the left and to the 
right. Since it is the time-reversal case, the hopping parameters are real numbers. Also, , 0n m   if 0n   or 

1n N  . 
 

 Now, to obtain the transfer matrix of the square lattice, first notice that we can 

number the sites such that each one has an associated Wannier function denoted 

by ,n m , where ( , )n    denotes the site’s column and [1, ]m M   denotes the 

site’s row. With this numeration the system is split into three parts: left chains, square 

lattice, and right chains. The left (right) chains consist of the sites with ( ,0]n   

 [ 1, )n N    and any value of m , where the sites with the same m  form part of the 

same chain. 

 It is well known that the eigenfunctions of a semi-infinite chain can be written 

in terms of left-and right-moving waves, so, we have 

 ( ) ( )
, ,m n m

n

a n m  
 � ,  (A.1) 



47 
 

where the superscript denotes if the wave is left-moving, ( ) , or right-moving, ( ) , 

and whose coefficients satisfy that 

 ( ) ( ) ( )
, ,

i p n
p m n ma e a   

� � , (A.2) 

where, given that the particle has energy E , 

 2 cos( )E t  . (A.3) 

Therefore, to consider both propagation directions of the waves, we can write the 

eigenfunctions of the left chains as 

  0 0
( ) ( ) ( ) ( )

0, 0, ,, ,ikn ikn
m m m m m n m

n n

L e a e a n m a n m     

 

     � � ,  (A.4) 

whereas for the right chains, 

 ( ) ( ) ( 1) ( ) ( 1) ( )
1, 1, ,

1 1

, ,ik n N ik n N
m m m N m N m n m

n N n N

R e a e a n m a n m 
 

        
 

   

     � � . (A.5) 

 To couple these chains to the square lattice, we notice that the wave 

amplitudes of the sites with 1n   ( n N ) propagate to those with 0n   ( 1n N  ) 

via a bond of hopping parameter t . Consequently, the amplitudes in these sites differ 

by the same phase factor as the one inside the chains. This implies that if sites 1,m  

and ,N m  have wave amplitudes ( ) ( )
m mA A   and ( ) ( )

m mB B � �  respectively, then we 

can write 

 
( ) ( )

0,

( ) ( )
1,

i i
m m m

i i
N m m m

a e A e A

a e B e B

 

 

  

  


 

 � �
. (A.6) 

 Now, we define ( ) ( )
m mB B


∓�  so that the superscript states whether the waves are 

propagating towards the scatterer, ( ) , or away from it, ( ) . This is to be consistent 

with the interpretation handled in this work. Considering this change and defining 

 

( ) ( )
,1 1 1

( ) ( )
,2 ( ) ( )2 2

( ) ( )
,

,  ,  ,
   

n

n
n

n M M M

a A B

a A B

a A B

 

 
 

 

                                   

a A B
� � �

  (A.7) 

we obtain the matrix equations 
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( )

1

( )
0

,i ie e 



 

              
a I I A

a I I A
  (A.8) 

and 

 
( )

1

( )
,

i i
N

N

e e  




              
a BI I
a I I B

  (A.9) 

where I  is the M M  identity. Notice that we can rewrite Eq. (A.9) as 

 
( )

1

( ) 2sin( )

i
N

i
N

ei

e










              
aB I I
aI IB

.  (A.10) 

 Hence, we only need to solve the propagation of waves in the square lattice 

region. To do so, consider the Hamiltonian of the subsystem containing the sites with 

[0, 1]n N   and any m , 

 

1

,
0 1 0 1

1

1 1

ˆ , , 1, , , 1,

, 1 , , , 1 ,

N M N M

n m
n m n m

N M

n m

H n m n m t n m n m n m n m

t n m n m n m n m




   



 

       
      

 


  (A.11) 

and its eigenfunction  

 
1

,
0 1

,
N M

n m
n m

a n m


 

 ,  (A.12) 

which has an associated eigenvalue E . 

 If we project the eigenvalue equation for  on ,1p , with [1, ]p N , we get 

 ,1 ,1 ,1 1,1 1,1 ,2p p p p p pEa a ta ta ta      .  (A.13) 

If we do so on ,p q , with [1, ]p N  and [2, 1]q M  , we get 

 , , , 1, 1, , 1 , 1p q p q p q p q p q p q p qEa a ta ta ta ta         , (A.14) 

and on ,p M , with [1, ]p N , we get 

 , , , 1, 1, , 1p M p M p M p M p M p MEa a ta ta ta       .  (A.15) 

Therefore, defining .
,

n m
n m

E

t


ε , and using the first definition made in Eq. (A.7), we 

have the matrix equations 
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1,1

1 2

1,

1 0

1 1

0 1

p

p p p

p M



 



        
a a a�

ε

ε

,  (A.16) 

for [2, 1]p N  . Which we can rewrite as 

 
11

1 2

p pp

p p



 

               
a aD I

a I 0 a
, (A.17) 

where I  and 0  are the M M  identity and null matrix respectively, and 

 
,1

,

1 0

1 1

0 1

j

j

j M

       
D �

ε

ε

. (A.18) 

 Finally, we can iterate Eq. (A.17) to obtain 

 1 11 1

0

N N N

N

                       
a aD I D I D I

aa I 0 I 0 I 0
� , (A.19) 

which allows us to relate Eqs. (A.8) and (A.10), resulting in 

 
( ) ( )

1

( ) ( )2sin( )

i
N

i ii

ei

e ee



 

 

 

                              
B D I D I I I AI I

I 0 I 0 I II IB A
� . (A.20) 

Hence, the transfer matrix of a N M  square lattice, with arbitrary on-site energies 

and fixed hopping parameter, is given by 

 1 .
2sin( )

i
N

i ii

ei

e ee



  

                   
D I D I I II I

M
I 0 I 0 I II I

�   (A.21) 
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Appendix B: S-matrix of an N+1 sites chain 

 Consider a chain of 1N   sites with null on-site energies and fixed hopping 

parameter t  that is attached to semi-infinite periodic chains of null on-site energies 

and hopping parameter Ct , where the distance between any two consecutive sites 

is a . The Hamiltonian of such system is 

 

1

1

0

ˆ 1 1 1 1

1 1 ,

C
n n N

N

n

H t n n n n n n n n

t n n n n

 

 





                 
      

 


  (B.1) 

where n  is the Wannier function of site n . 

 Let na  be the wave amplitudes at the n -th site. Then, we can write the 

amplitudes of the first site, 0n  , and last site, n N , of the chain as 

 ( ) ( )
0 ,a A A     (B.2) 

and 

 ( ) ( ) ,Na B B     (B.3) 

where the superscript ( )  indicates the component of the amplitude corresponding 

to a wave traveling towards the chain, and the superscript ( )  does the same but for 

the wave traveling away from the chain. 

 Inside the chain, we can write the amplitude of each site in terms of right- and 

left-moving waves, where the amplitudes in two neighboring sites only differs by a 

phase factor of ikae , with the exponent’s sign depending on the direction the wave 

is traveling and 2 cos( )E t ka . Therefore, if in 0  we have an amplitude  

 0 ,a C D    (B.4) 

where C  ( D ) represents the wave amplitude corresponding to the right-moving (left-

moving) wave, then the amplitude in N  is given by 

 ikaN ikaN
Na Ce De  .  (B.5) 

Equations (B.2) through (B.5) leave us with 
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( ) ( )

( ) ( )

,

.ikaN ikaN

C D A A

Ce De B B

 

  

  

  
  (B.6) 

 Now, consider the eigenfunction n
n

a n   associated to the energy E . 

Projecting its corresponding eigenvalue equation on 0  and N  leads to 

 0 1 1
ˆ0 ,CEa H t a ta


     (B.7) 

and 

 1 1
ˆ .N C N NEa N H t a ta       (B.8) 

Where, on the one hand, as mentioned before, we have the relations 

 1 ,ika ikaa Ce De    (B.9) 

and 

 ( 1) ( 1)
1 .ika N ika N

Na Ce De  


    (B.10) 

And on the other hand, we can apply the same result to sites 0  ( N ) and 1  

 1N   with the slight difference that since the hopping between these pairs of sites 

is Ct , the phase factors are i ae   where 2 cos( )CE t a . This leads to 

 ( ) ( )
1 ,i a i aa A e A e   

     (B.11) 

and 

 ( ) ( )
1 .i a i a

Na B e B e   
     (B.12) 

 Hence, by using Eqs. (B.2), (B.3), and (B.9) through (B.12), we have that Eqs. 

(B.7) and (B.8) are rewritten as 

 
     
     

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( 1) ( 1)

,

.

i a i a ika ika
C

i a i a ika N ika N
C

E A A t A e A e t Ce De

E B B t B e B e t Ce De

 

 

     

       

    

    
  (B.13) 

Notice that  

   ,i a i a i a i a i a
C C C CE t e t e e t e t e             (B.14) 

and 

  * .i a i a i a
C C CE t e E t e t e            (B.15) 

Consequently, Eqs. (B.6) and (B.13) can be written together in a matrix equation as 
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( )

( )( )

( )

( 1) ( 1)

1 0 1 1 01

0 1 10

0 0

0 0

ikaN ikaN

i a ika ika i a
C C

i a ika N ika N i a
C C

A

e e AB
t e te te t eC B

t e te te t eD

 

 



 

  

   

                                

M
�����������������

.  (B.16) 

 To obtain the S-matrix of our system, we now need to invert the matrix M , to 

do so, we compute the determinant of M ,  det M , and multiply de adjugate of M , 

 adj M , by  1/ det M . The determinant is given by 

   
   

2 ( 2) ( 2)

( 1) 2 2 ( 1) 2 2

det

,

ika N ika N ikaN i a ika ikaN i a ika
C C

i a ika N ikaN i a i a ika N ikaN i a
C C C C

t e e e tt e e e tt e e

tt e e e t e tt e e e t e

 

   

      

       

               
           

M
  (B.17) 

which reduces to 

       2 2 2det 2 sin 2 4 sin 1 2 sini a i a
C Cit ka N itt e ka N it e kaN             M . (B.18) 

And the entries of  adj M  are given by 

      2

11
adj( ) 2 sin 2 2 sin 1 ,i a

Cit ka N itt e ka N         M   (B.19) 

    12
adj( ) 2 sin ,i a

Citt e ka

 M   (B.20) 

      
13

adj( ) 2 sin 2 sin 1 ,i a
Cit e kaN it ka N    M   (B.21) 

    14
adj( ) 2 sin ,it kaM   (B.22) 

    21
adj( ) 2 sin ,i a

Citt e ka

 M   (B.23) 

      2

22
adj( ) 2 sin 2 2 sin 1 ,i a

Cit ka N itt e ka N         M   (B.24) 

    23
adj( ) 2 sin ,it kaM   (B.25) 

      
24

adj( ) 2 sin 2 sin 1 ,i a
Cit e kaN it ka N    M   (B.26) 

where we do not really need to compute any more entries because we have 

  

( )

( )( )

( )

01

101
adj( ) ,

0det

0

i a
C

i a
C

A

AB

t eC B
t eD











                        

M
M

  (B.27) 

from where we conclude 
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( ) ( )

11 12

( ) ( )
21 22

,
S SA A

S SB B

 

 

               
  (B.28) 

with 

 

      

      

      

      

11 11 13

12 12 14

21 21 23

22 22 24

1
adj( ) adj( ) ,

det

1
adj( ) adj( ) ,

det

1
adj( ) adj( ) ,

det

1
adj( ) adj( ) .

det

i a
C

i a
C

i a
C

i a
C

S t e

S t e

S t e

S t e









 

 

 

 

M M
M

M M
M

M M
M

M M
M

  (B.29) 

So, after substituting Eqs. (B.18) through (B.26) in Eq. (B.29), we get that the entries 

of the S-matrix of a chain of parameter a  and 1N   sites with null on-site energies 

and fixed hopping parameter t  are given by 

       
     

   
     

2 2

11 22 2 2 2

12 21 2 2 2

sin 2 sin 2 cos sin 1
,

sin 2 2 sin 1 sin

2 sin sin
.

sin 2 2 sin 1 sin

C C

i a i a
C C

C

i a i a
C C

t ka N t kaN tt a ka N
S S

t ka N tt e ka N t e kaN

itt a ka
S S

t ka N tt e ka N t e kaN

 

 





 

 

                     
            

 (B.30) 


