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RESUMEN

En este trabajo estudiamos modelos más allá de ΛCDM que se caracterizan por tener una
densidad de energía extra del sector oscuro, ρex, que se diluye rápidamente dejando un bulto
en el espectro de potencia cuando se compara con ΛCDM. Los modelos considerados cuen-
tan con una densidad de energía extra que se diluye rápidamente, más rápido que la radiación,
en tres diferentes etapas de la evolución cósmica: época dominada por radiación, por materia
y por la energía oscura. La transición ocurre en un factor de escala ac con un modo corre-
spondiente kc = acH(ac) que cruzan el horizonte en ese tiempo. Al igual que las partículas
fundamentales como los quarks se unen con los gluones para formar protones y neutrones, el
modelo Bound Dark Energy (BDE) está basada en este tipo de transiciones de fase. La ráp-
ida dilución ρex deja rastros en el Universo no solo en la expansión cósmica con un impacto
en la escala acústica rs(ac) y en la distancia angular DA(a), sino también en el espectro de
potencia de materia y temperatura. La rápida dilución de la densidad de energía (RDED por
sus siglas en inglés) genera huellas considerables que pueden ser observadas con los datos
cosmológicos actuales y futuros. En particular, encontramos un bulto en el espectro de ma-
teria comparado con el modelo estándar ΛCDM. Sugerimos que las características del bulto,
amplitud, ancho y la escala del bulto, es consecuencia de las propiedades físicas de la transi-
ción. Estudiamos estos efectos con teoría lineal y técnicas perturbativas, así como el impacto
sobre las distancias cosmológicas.

Además, estudiamos la evolución no lineal de los efectos de tener dicha transición en el
espectro de materia en el espacio real y en el espacio del corrimiento al rojo utilizando simula-
ciones de N-cuerpos, teoría perturbaciones no lineal y el modelo de halo. Nos concentramos
en modelar la función respuesta, calculado como la razón de las estadísticas entre el mod-
elo que contiene el bulto y otro sin él. En lugar de trabajar con un modelo teórico específico,
incluimos una familia paramétrica de funciones gaussianas en un espectro de ΛCDM. Encon-
tramos que cuando el bulto primordial es localizado en escalas lineales, las no linealidades
tienden a producir un segundo bulto en escalas pequeñas. Este efecto puede ser entendido
dentro del esquema de halos debido a la formación eficiente de halos. Por otra parte, estas
huellas son borradas parcialmente debido al amortiguamiento a lo largo de la línea de visión
producido por el movimiento no aleatorio de las galaxias en escalas pequeñas. En el espacio
de configuraciones, el bulto modula la función de correlación reflejándose como oscilaciones
en la respuesta como queda claro en la teoría lineal. Sin embargo, las oscilaciones son amor-
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tiguadas porque los flujos de grande escala tienden a ocupar regiones más empobrecidas de
partículas. Este mecanismo es explicado dentro de la teoría de perturbación lagrangiano y es
bien capturado por las simulaciones.



ABSTRACT

We study the cosmological signatures of having extra energy density, ρex, beyond the ΛCDM
model that dilutes rapidly, faster than radiation, at a scale factor ac with a corresponding
mode kc = acH(ac) crossing the horizon at that time. These types of models are motivated
by phase transitions of the underlying elementary particles, for example the creation of pro-
tons and neutrons from almost massless quarks or the recently proposed Bound Dark Energy
model. The rapidly dilution of ρex leaves distinctive imprints in the Universe not only in the
expansion history with a clear impact on the acoustic scale, rs(ac), and angular distances,
DA(a), but also in the matter and CMB power spectra. The rapidly diluted energy density
ρex, (RDED) generates characteristic signatures that can be observed with current and future
precision cosmological data. In particular, we find a bump in the matter power spectrum
compared to the standard ΛCDM. We identify the amplitude, width, and time scale of the
bump to the physical properties of the transition. We study these effects with linear theory,
standard perturbation theory, and the correlated impact on cosmological distances, allowing
for independent measurements of these extensions of the standard ΛCDM model. To gen-
erate the bumps we use different models that work at early times well inside the radiation
domination epoch, during matter domination or at late times when dark energy is the main
component.

Some beyond ΛCDM cosmological models have dark-sector energy densities that suffer
phase transitions. Fluctuations entering the horizon during such a transition can receive en-
hancements that ultimately show up as a distinctive bump in the power spectrum relative to
a model with no phase transition. In this work, we study the non-linear evolution of such
signatures in the matter power spectrum and correlation function using N-body simulations,
perturbation theory and HMCODE- a halo-model based method. We focus on modelling the
response, computed as the ratio of statistics between a model containing a bump and one
without it, rather than in the statistics themselves. Instead of working with a specific theoret-
ical model, we inject a parametric family of Gaussian bumps into otherwise standard ΛCDM
spectra. We find that even when the primordial bump is located at linear scales, non-linearities
tend to produce a second bump at smaller scales. This effect is understood within the halo
model due to a more efficient halo formation. In redshift space these nonlinear signatures are
partially erased because of the damping along the line-of-sight direction produced by non-
coherent motions of particles at small scales. In configuration space, the bump modulates
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the correlation function reflecting as oscillations in the response, as it is clear in linear Eu-
lerian theory; however, they become damped because large scale coherent flows have some
tendency to occupy regions more depleted of particles. This mechanism is explained within
Lagrangian Perturbation Theory and well captured by our simulations.
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Chapter1

OVERVIEW AND BACKGROUND

In 1998 a new epoch in the history of study of Cosmos started: the observation of redsfhift-
distance relations of Supernovae type Ia showed that the Universe is currently accelerating
(Riess et al., 1998; Perlmutter et al., 1999). A phenomenon that somebody did not suspect,
since according to the Big Bang model at some point the objects in the sky will be approach-
ing each other, i.e. they would be holding back due to gravitational attraction. However,
studies indicate that galaxies are moving away faster and faster and the responsible, accord-
ing to experts, is a new type of energy present in the vast space called dark energy. Several
cosmological observations confirm that the geometry of the Observable Universe is closely
flat, and that about 95% of the Universe is composed of dark energy (DE) and cold dark
matter (CDM) (Planck Collaboration, 2018a).

What are the observations to infer the cosmological information given by scientists? The
large-scale structure of the Universe, the Cosmic Microwave Background (CMB), Super-
novae (Sn), Big-Bang Nucleosynthesis (BBN), reionization, Gravitational Waves signal, Galaxy
surveys, among others, are powerful independents probes to extract cosmological informa-
tion and to increase our understanding about the Universe. Our primary aim is to focus on the
cosmological analysis of the Large Scale Structure (LSS) of the Universe on the high and low
density regions. For this reason, in this chapter we describe briefly the equations of motion
in an expanding Universe and the probes of the LSS in order to understand the accelerated
expansion of the Universe, modified gravity and others cosmological paradigms.

One of the key issues in cosmology is to understand the cosmic large-scale structure. In
this scenario, galaxies and galaxy clusters are merely atoms in the large Universe. To estab-
lish the dynamics of these small-scale structures, in the context of the cosmological picture,
we need General Relativity and the Standard Model of particle physics. Based on these the-
ories and the hypothesis that the measurements of the Cosmos don’t depend of the point and
direction where the observer is located, we can describe the history and evolution of the Uni-
verse. That is, the current standard cosmological model, which describes from primordial
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16 CHAPTER 1. OVERVIEW AND BACKGROUND

big bang nucleosynthesis to today spanning a range between 10−3s to 13.7 Gyrs, rely mostly
on a theory of gravity, a physical theory that describes the matter contained in the Universe
and their non-gravitational interactions and on symmetries hypotheses on large scales, that
is, the Cosmological Principle, that stays that the Universe is homogeneous and isotropic.
The mathematical representation of our Universe is known as ΛCDM model, also called the
standard model of Cosmology.

1.1 The Large-Scale Distribution of Galaxies: The Cosmic
Web

Large cosmological surveys have shown that galaxies and clusters of galaxies are not dis-
tributed randomly. Instead, they are coherently distributed, forming structures on large scales
surrounded by elongated filaments, sheetlike walls and enormous underdense regions well-
known as voids. This set of structures make up the LSS of the Universe, known as the cosmic
web (Bond et al., 1996).

According to the inflation paradigm, the large scale structures were originated gravitation-
ally from primordial fluctuations in the matter density. Due to gravitational instabilities the
structures collapse and generate peculiar velocities, δv, which distort the uniform Hubble
expansion. In galaxy surveys it is measured the redshift, which combines Hubble’s law with
the radial component of these peculiar velocities cz ≈ H0r+ δv · r̂. Later we will see these
peculiar velocities leave a characteristic form in the galaxy distribution.

The structure formation has a hierarchical character: small fluctuations grow first to gener-
ate galaxies and cluster of galaxies form later via mergers or accretion. In other words, small
galaxies progressively merge to form larger galaxies with time (Einasto et al., 2011).

Cosmological observables: BAO and RSD
Studying the Large-Scale Structure (LSS) is fundamental in observational cosmology since
it opens the possibility of understanding the primordial fluctuations, the expansion history,
the growth rate of the perturbations as well as to test the theory of General Relativity at large
scales: one way to reveal them is by measuring the Universe’s size at different epochs.

In order to infer statistical properties of the LSS of the Universe we can use the data pro-
vided by galaxy surveys, such as DESI (Collaboration, 2016), Euclid (Collaboration, 2013),
LSST (Zhan and Tyson, 2018) and WFIRST (Spergel et al., 2015), by measuring the Baryon
Acoustic Oscillations (BAO) and Redshift Space Distortions (RSD). The former is the char-
acteristic pattern in the galaxy distribution due to coupling between baryons and photons
at early times before recombination. Meanwhile, RSD is imprinted on the observed spatial
distribution due to peculiar velocities of galaxies with respect to the Hubble flow. These
two observables can be tested to extract cosmological information about our universe, and
especially about the nature of the dark energy.
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Previous studies of galaxy surveys have observed the BAO feature, which shows up as
a bump in the correlation function at ∼ 100h−1Mpc separation (Eisenstein et al., 2005).
Since 2005 measurements of the acoustic peak, in the matter distribution, provide a standard
ruler to constrain the cosmological parameters (the angular diameter distance and the Hubble
parameter) (Bassett and Hlozek, 2009), though hints had been seen in (Percival et al., 2001).
The beauty of BAO is that they provide estimations for both dA(z) and H(z) using linear
physics phenomena, which means we can ignore nonlinear effects to a good approximation.
If we take into account nonlinear effects then the Baryon Acoustic Peak in the correlation
function is shifted and broaden (Bassett and Hlozek, 2009). However, in order to visualize
the acoustic features in the matter correlation function, we need large survey volumes because
of the BAO signal is weak and shows up on large scales, so its signal to noise is dominated
by sample variance in small surveys.

The redshift-space distortions measured in galaxy redshift surveys is an attractive method
in order to provide information on how structures formed in the Universe, and how gravity
behaves on large scales (Percival and White, 2009; Raccanelli et al., 2013). The reason
for that these distortions are a promising way to study the pattern and the evolution of the
large-scale structure is due to the motion of the galaxies are induced by the structure growth.
Thereby, the rate at which structures grow from the primordial fluctuations allows testing
theories of gravity. In that context, the observations of the peculiar velocities of galaxies in
the surveys are sensitive to the growth rate of structures, which depends on the matter density
of the Universe, and its measurements allow to test General Relativity (see Peacock et al.,
2001; Acquaviva et al., 2008; Gil-Marín et al., 2017).

Next-generation of galaxy surveys
We are now into the age of mapping the cosmic history and gravity with modern galaxy
surveys, which will measure millions of spectra and billions of photos of them extending to
z ∼ 10. Future LSS surveys, such that the Javalambre-Physics of the Accelerated Universe
Astrophysical Survey (J-PAS) (Collaboration, 2014), the Dark Energy Spectroscopic Survey
(DESI) (Collaboration, 2016), the Vera Rubin Observatory (LSST) (Zhan and Tyson, 2018),
Euclid (Collaboration, 2013), RST (WFIRST) (Spergel et al., 2015) and the SKA observatory
(Weltman et al., 2020).

LSS surveys are important because they will be able to map the distribution of galaxy by
probing its evolution from initial density field and the pattern of light distortion from weak
lensing. These two probes are complemented by additional cosmological probes, such as
the cross correlation between the cosmic microwave background and large-scale structures,
distance luminosity via supernova, analysis of galaxy clusters and strong lensing.

For instance, the next generation ground-based CMB experiments, like CMB S-4 (Abaza-
jian et al., 2019) and the Simons Observatory (SO) (Ade et al., 2019), will improve the mea-
surements of microwave polarization light across most of the sky (70%) by a factor of 5, with
an order of magnitude more detectors than the precursor observations, allowing us to detect
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the primordial gravitational waves. CMB S-4 will include maps in nine wavelengths, mean-
while the SO in six frequencies band. Both surveys will provide a powerful complement to
the LSS surveys, which will be available in other colours.

Experiments mapping the CMB will be not competitive themselves with LSS surveys.
However, the combination of both surveys will be useful to break degeneracies between cos-
mological and modified gravity parameters (see (Martinelli and Casas, 2021)).

1.2 Perturbative and numerical methods in LSS
In order to predict properties of the Large-Scale Structure (LSS) of the Universe we need
to develop analytical theories and numerical tools according to the scales that we wish to
analyse. The LSS can be roughly divided in three regions: (Dodelson et al., 2016)

• Very large scales refer to linear scales (above λ ∼ 130h−1Mpc) → linear approxima-
tion in the density field δ (1)(x, t).

• Intermediate scales are quasi-linear scales or regions where the non-linear is weak
(between 20−130h−1Mpc) → extending perturbation theory beyond linear order.

• Small scales are scales where non-linearity emerges (below λ ∼ 10h−1Mpc) → de-
scribed by numerical simulations or effective field theories.

In this work, the aim is to consider a perturbative theory in order to predict the properties
of cosmological fluids, at late times the relevant cosmological fluid is the matter fluid, and
to compare these predictions with the numerical simulations for a variety of models. These
models can be of modified gravity, dark energy, as well as alternatives to dark matter.

The way to find perturbative solutions is through Standard Perturbation Theory (SPT) (Pee-
bles, 1980) and Lagrangian Perturbation Theory (LPT) (Zel’Dovich, 1970). SPT consists of
studying the evolution of the density and velocity field over a fixed space and expanding these
quantities to find perturbative solutions (Bernardeau et al., 2002a). While LPT investigates
the evolution of a fluid element through time, that is, the displacement vector of this fluid
element is expanded (Sugiyama, 2014; Vlah et al., 2015a; Matsubara, 2015). At the weakly
nonlinear scales the perturbation theory improves over linear theory. For example, LPT has
been applied to the shift and broad of the peak acoustic (Tassev and Zaldarriaga, 2012), to
examine higher order statistics (Tassev, 2014b), (Mohammed and Seljak, 2014) and as the
base for a new version of the halo model (Seljak and Vlah, 2015). Also, in previous works
have found a generalization to modify gravity models for the Lagrangian displacement field
up to third order in perturbation theory (Aviles and Cervantes-Cota, 2017). However, when
the nonlinear effects are important the perturbation series do not converge; the higher-order
terms become larger than lower-order coefficients. Instead of expanding the perturbative
terms to higher-order to avoid this inconsistency, is needed resume the series. In LPT there
are several schemes to resumme the displacement vector expansion, among them Convolution
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Lagrangian Perturbation Theory (CLPT) (Carlson et al., 2012a) and Lagrangian Resumma-
tion Theory (LRT) (Matsubara, 2008b,a).

As non-linear effects appear, density perturbations require numerical calculations to fol-
low the evolution during the cosmic time. Cosmologists and astrophysicists have developed
different numerical techniques to simulate the evolution of the large scale structures in the
Universe. The main goal of the N-body numerical simulations is following the evolution of
particles under gravity. However, to reproduce precisely the cosmic structures and dynam-
ics of the observed galaxies in the Cosmos is essential that the N-body simulation contains
billions of particles and their volumes to be colossal (Springel et al., 2005).

Finally, other approaches to follow the evolution of dark matter density perturbations be-
yond the linear regime are the spherical collapse (Gunn and Gott, 1972) and ellipsoidal col-
lapse (Sheth et al., 2001), which incorporate simplified assumptions for the growth, turnaround,
collapse and virialization of isolated perturbations. The evolution of dark matter density per-
turbations starts with the growth due to gravitational attraction. After that the perturbations
decouple from the expansion of the Universe; this stage is called as the turnaround. As the
perturbations grow and merge, the gravitational collapse of the dark matter overdense regions
is inexorable. Finally, the formation of a gravitational self-bounded structure is established.
This structure is known as the dark matter halo and the final equilibrium configuration is
called virialization.

In summary, our work is focused on studying statistical properties and making predictions,
using analytical theories and numerical simulations tools, of the large-scale structure of the
Universe:

Large-Scale Structure =


the halo model,
analytical theories as SPT and LPT,
n-body simulations.

1.3 The expanding universe

General relativity has become the foundation for today’s understanding of the cosmos. In this
framework, where the gravity is a mere geometric effect based on the Equivalence Principle
(EP), is possible to explain the late-time acceleration expansion of the Universe through the
cosmological constant.

In General Relativity the curvature provide information about the dynamic of the energy
distribution. The equations that set up the equivalence between matter and curvature is given
by

Rµν −
1
2

gµνR = 8πGTµν , (1.1)

where Rµν is the curvature tensor, gµν is the metric tensor, R is the scalar curvature, Tµν is
the tensor of momentum-energy and G is the gravitational constant. Moreover, to describe
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Figure 1.1: General relativity is an adequate description of gravity as long as, roughly
speaking, the mass M of the system is approximately equal to the size, R ∼ 1.
Adapted image from the Millennium Simulation (obtained from https://wwwmpa.mpa-
garching.mpg.de/galform/millennium/).

the content of matter-energy in the Universe, we can identify the tensor of momentum-energy
as a fluid perfect

Tµν = (ρ +P)uµuν +Pgµν , (1.2)

with ρ , P and uµ is the energy density, pressure and four-vector of fluid, respectively. In
Comoving coordinates uµ = (−1,0,0,0).

The test of GR have been performed within and without the Solar System (Will, 2014;
Ishak, 2018; Psaltis, 2019). The former have been reached high precision and tested during
the last century. The latter have been tested recently and represent a probe fundamental
for a underlying theory of gravity. For instance, the measurements at large scales such as the
strongest gravitational fields of neutron stars and stellar-mass black holes (Psaltis, 2008; Berti
et al., 2015), the weakest gravitational fields probed by cosmological phenomena (Koyama,
2016) and gravitational waves (Mukherjee et al., 2021) represent promise probes to yield
constraints on modified gravity parameters at cosmological scales.

We can also use Newtonian Theory of gravity to study the large-scale structure of the
Universe as we will see later. So when can we use General Relativity? When can we use the
Newtonian theory? To inquire it we consider a spherically-symmetric distribution of matter
which represent the cosmological volume. We calculate the ratio between the energy due
to Gravitational potential energy derived from Newtonian theory of gravity and the famous
relationship for energy

E = mc2. (1.3)

The particle of mass m, or a galaxy from cosmological picture, at radius r only feels gravita-
tional attraction from an object of mass M. The forced exerted means there is a gravitational
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potential energy (see Figure (1.1))

V =−GMm
r

, (1.4)

where r is the distance between the objects and G is the gravitational constant. From the
viewpoint of General Relativity, the energy associated with the particle of mass m can be
obtained from Eq. (1.3). Hence, the ratio of energies is written as

R =
|V |
E

=
GM
rc2 . (1.5)

If V << E (or R << 1), so Newtonian theory is an adequate description of gravity. In other
words, if the mass M of a system is small compared to the size R, from view point of ge-
ometrized units (Schutz, 2009), we can use the Newtonian scheme. In geometrized units
G = c = 1 and for this reason we can compare the mass M of the system with the size r.
When V ≈ E (or R ≈ 1) we must replace Newtonian theory with General Relativity. We
examine some systems to explore when we can use GR. Each galaxy contain some 1011

stars in a radius of about 15kpc. In this case M ≈ 2× 1041kg and R ≈ 45× 1019m. For this
system, R ∼ 10−6, similar to that for the Sun itself. We use G = 6.67× 10−11m3s−2kg−1,
1pc = 3×1016m. To study the cosmological volume, the observable Universe, we consider
the density of mass-energy is given by ρ ∼ 10−26kgm−3 and R ∼ 10Gpc. The mass can be
obtained by M = 4πρR3/3, where ρ is the density. In this case, we obtain R ∼ 1. For this rea-
son, we study the dynamics of the Universe via General Relativity. On large scales, General
Relativity is a essential framework to understand the Universe.

1.4 The standard model of cosmology
Our Universe possesses two important properties, homogeneity and isotropic on large scales.
It is the called cosmological principle. These assumptions suggest that the law of physics
have the same form in all points and all directions that we observe. Finally, with the term
large scale we refer on scales about 100h−1Mpc (1Mpc = 106 pc, 1pc=3×1016m), which is
the distance at which the cosmological principle is a good approximation (Hunt and Sarkar,
2009). Just to give you a sense scale, the distance to the next closest galaxy, Andromeda, is
about 765kpc.

Under the cosmological principle we write the metric for a space-time that describes ho-
mogeneity and isotropic

ds2 =−dt2 +a(t)2
[

dr2

1−Kr2 + r2dΩ
2
]
, (1.6)

where K is the curvature, which for a homogeneity and isotropic Universe can be take values
(+1,−1,0), dΩ2 = dθ 2 + sen2θdφ 2 and a(t) is the scale factor. The variable t represent the
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proper cosmological time and it defines the time measure by an observer that see the expand-
ing Universe to be homogeneous and isotropic. (r,θ ,φ) are called comoving coordinates,
while the scale factor a(t) measures the expansion or contraction of spatial dimensions.

The metric of Eq. (1.6) is called the Friedmann–Lemaitre-Robertson-Walker metric (FLRW).
The combination of ideas therefore about expanding universes along with the geometry of
homogeneous and isotropic spacetime produce the so-called FLRW models, which describe
the background cosmological evolution. Our Universe can have three geometries of space,
spherical (K = 1), flat (K = 0) and hyperbolic (K =−1).

To obtain the motion equations we shall consider the energy-momentum tensor to be per-
fect fluid and introduce the FLRW metric into the Einstein Field equations. The dynamic
equations one obtains are given by(

ȧ
a

)2

=
8πG

3
ρ − K

a2 , (1.7)

ρ̇ +3
ȧ
a
(ρ + p) = 0, (1.8)

ä
a
=−4πG

3
(ρ +3p). (1.9)

The Eqs. (1.7-1.9) describe the dynamic of a homogeneous, isotropic Universe With this,
we can obtain the age of the Universe and the luminosity distance of distant objects in an
expanding Universe. The Eq. (1.7) indicate the evolution of scale factor in terms of the total
energy density for different geometries. It is called the Friedmann’s equation. The Eq. (1.8)
suggest the evolution of energy density and is well-known as continuity equation. Finally,
the Eq. (1.9) show if the Universe undergo an accelerated expansion. These set of equations
really represent two independent equations with three variables a, ρ and p.

We then need an addition equation which relate the density energy and pressure. This
expression is called state equation and is given by

P = ω(ρ)ρ. (1.10)

ω is a constant for different components in the Universe. For instance, the values for different
components of the Universe are shown the following

• ω = 1
3 Photons or other relativistic particles.

• ω = 0 Massive non-relativistic particles.

• 0 < ω < 1
3 Mildly relativistic matter.

• ω =−1 Cosmological constant.

• ω <−1
3 Dark energy.
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There is also others models of dark energy whose state equation is varying as a function of
time, called dynamical dark energy. The density for the dynamical dark energy with ωde is
given by

ρde = ρ0,de exp
(
−3
∫ a

1
(1+ωde(a′))d lna′

)
. (1.11)

In these models, ωde can be allowed to vary in redshift (or scale factor), for example, it take
the form ω(a) = ω0 +ωq(1− a) known as CPL parametrization ((Chevallier and Polarski,
2001; Linder, 2003). There is a vast set of parametrizations for ω introduced in order to fit
other dark energy or modified gravity models.

If we define H = ȧ/a as the Hubble parameter, we can written the Eq. (1.7) as

H(t)2 =
8πG

3
ρ(t)− K

a(t)2 . (1.12)

This allows us to define a cosmological parameter, the Hubble constant as H0 = H(t0) where
t0 is the present time. The cosmological redshift is related to the scale factor by 1+ z = a0/a,
where a0 is the scale factor in the present time.

For a flat Universe (K = 0), the Friedmann equation takes the form

H(t)2 =
8πG

3
ρ(t). (1.13)

Therefore, there is a critical value for the energy density expressed ad

ρc(t) =
3

8πG
H(t)2. (1.14)

The critical density of the Universe evaluated today ρc,0 is useful to describe the energy in
the Cosmos as measured from observations. This quantity will serve as a reference density.
The value numerical is:

ρc,0 =
3H2

0
8πG

= 1.9×10−29h2grams cm−3 = 2.8×1011h2M⊙Mpc−3, (1.15)

where the last line is given in solar masses, M⊙, per megaparsec cubed (Ishak, 2018).
If we take account the Eq. (1.14), the Friedmann’s equation reads

K
a(t)2H(t)2 =

ρ(t)
ρc(t)

−1. (1.16)

The Eq. (1.16) describes three possible geometries. We can have flat (K = 0), open (K =−1)
and closed (K = 1) Universes. These geometries depend if the critical density is more, less
or equal to today density of the Universe:

• If ρ(t)> ρc(t) Positively curved Universe.
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• If ρ(t)< ρc(t) Negatively curved Universe.

• If ρ(t) = ρc(t) Flat Universe.

The critical density is defined because it establish the limit between having a universe that ex-
pands forever and a universe that expand to value certain and after it contract. Other quantity
that we can define is the well-known density parameter Ω

Ω(t) =
ρ(t)
ρc(t)

. (1.17)

We can write the Eq. (1.16) in terms of density parameter

1−Ω(t) =− K
a(t)2H(t)2 . (1.18)

In terms of today values, a(t = t0) = 1, H(t = t0) = H0, Ω(t = t0) = Ω0, where t0 is the
present time. Hence, nowadays the curvature can be expressed as

K = H2
0 (Ω0 −1). (1.19)

Studies have showed that the curvature density Ω
(0)
K is approximately zero, with −0.005 <

Ω
(0)
K < 0.005 (Planck Collaboration et al., 2016) and combined with BAO ΩK = 0.0007±

0.0019 (Planck Collaboration, 2018a). However, other geometries are not disfavored by ob-
servational data: CMB data alone favours a non-zero value ΩK =−0.044+0.019

−0.014 (Planck Col-
laboration, 2018a). A Planck research team found that data from the recent Planck Legacy
2018 point instead to a spherical universe with 99.985% probability, although others scien-
tists have showed that this result is most likely a statistical fluctuation (Di Valentino et al.,
2019).

We have seen that GR provide a framework to the current standard model of cosmology
predicting exact solutions with expanding or contracting universes and allowing the back-
ground cosmological evolution. The combination of FLRW models along with a cosmologi-
cal perturbation theory is fundamental in order to study the cosmic structure evolution from
the very early times (≪ 10−6s) to the late stages of the Cosmos, some 13.8Gyr later. In
sections 2.2 2.3 we will see two perturbation schemes.

1.4.1 Dark Sector
According to the standard model of cosmology, often called ΛCDM, the most quantity of
the Universe’s energy density is unknown. This non-luminous mass is known as dark sector
of the Universe, which is composed of dark energy (Λ, 70%) and cold dark matter (CDM,
25%). Under the label "dark energy" and "dark matter" we include a variety of hypothesis.
Although there have been discarded models, the nature of the dark sector is still a mystery
(Arun et al., 2017). In this section we describe briefly both components.
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Dark Energy

One of the more intriguing questions in modern cosmology is the origin of the acceleration of
the Universe, which started when z≈ 0.6, i.e. approximately when the Universe was half of its
present size. Scientists have proposed a new type of fluid to explain the cosmic acceleration
and there is a vast set of candidates for dark energy as a fluid (see Huterer and Shafer (2017)).
Today dark energy is the dominant energy component. However, the energy density fraction
of dark energy decreases as it increases z. For instance, the dark energy density fraction at
z = 2.5 was (> 5%) of the total energy density (which is about the baryon energy density
today). Cosmological constant’s energy density fraction at the epoch of cosmic microwave
background last scattering, at z ≈ 1090, is expected to constitute 10−9 of the total energy
density. In other dark energy models the contribution could be 10−3−six orders of magnitude
difference (Brax, 2017; Linder, 2021; Frusciante and Perenon, 2020).

Between the observational evidences of dark energy are: type Ia supernovae (SNe Ia),
the baryon acoustic oscillations (BAO), the cosmic microwave background (CMB), weak
lensing, and galaxy clusters. There are others probes of dark energy like RSD, Cosmic Voids,
Standard sirens, etc. (see Table 1 of Huterer and Shafer (2017)).

The measurements of growth rate studying RSD is an important cosmological probe of
dark energy since the growth rate reflects a competition between the the gravitational attrac-
tive force and the cosmic expansion (Linder, 2019)

Otherwise, dark energy sensitivity of the cosmological data comes from three factors (Yu
et al., 2021):

• geometry - distance as a function of redshift,

• growth of structures - the amplitude of the power spectrum as a function of redshift,
and

• shape - the power spectrum as a function of wavenumber.

Separately measuring the three primary relationships is an excellent way, not only to measure
the dark energy parameters, but also to distinguish dark energy models.

Dark energy has come to dominate the energy budget of the Universe recently (z ≤ 0.5).
The data allows a ∼ 1% contribution by dark energy at early times (The Atacama Cosmology
Telescope Collaboration, 2021). For this reason, scientists have proposed early dark energy
models where a new field is introduced that acts to briefly accelerate cosmic expansion prior
to recombination. In this thesis we work with a EDE-like called Bound Dark Energy model.

Dark Matter

Dark matter, on the other hand, is responsible of clustering of galaxies. In the current model
of galaxy formation, we expect every galaxy embedded in a cold dark matter (CDM) halo.
According to mathematical model, about 25% of the energy budget of the Universe is dark
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matter. There are evidences for existence and nature of this substance at different scales. For
instance, the most mature probes of dark matter come from galaxies (galaxy cluster velocity
dispersion) (Persic et al., 1996), galaxy clusters (X-ray measurements from galaxy clusters),
large-scale structure distributions, anisotropies in the cosmic microwave background, and
gravitational lensing studies.

The nature of dark matter is vast and we can to distinguish as the warm vs cold classifi-
cation. For instance, warm dark matter (WDM) can potentially explain small-scale observa-
tions, whereas cold dark matter is a successful model that explains the observed structures
well above ∼ 1Mpc. By comparing the small-scale observations thus provides a powerful
way to distinguish between WDM and CDM models (Dekker et al., 2021).

However, there is population of galaxies, such that ultra-diffuse galaxies (UDGs), that can
be explained almost entirely by the contribution of the baryons alone, with little room for
dark matter (Piña et al., 2021).

In the next chapter we shall describe the matter density fields via numerical and technical
tools. Otherwise, we are going to see in chapter 3 a new scalar field to describe the nature of
dark energy.



Chapter2

MODELLING THE LARGE SCALES
STRUCTURES OF THE UNIVERSE

The Large-Scale Structure (LSS) is often described by matter density and velocity fields, or
by their statistical properties through the matter power spectrum or the two-point correlation
function. For this reason, in this chapter, we describe these concepts and techniques used for
the study of the large scales. Also, we develop two analytic techniques: the Standard and
Lagrangian perturbative schemes. These theories are based on expanding scalar or vector
fields as the matter density field, the divergence of the velocity field and the Displacement
vector field. Both SPT and LPT are good approximations in the weakly non-linear range
because the fluctuations are treated small (δ ≪ 1, θ ≪ 1 or Ψ ≪ 1). However, in the strongly
nonlinear regime these analytic methods become inadequate.

2.1 Statistical physics for Cosmic Structures
We need statistical methods to describe the galaxies distribution on a wide range of scales,
for example the correlation function and power spectrum. Therefore, in this section, we
examine some basic statistical concepts and their properties with the major aim of studying
the clustering of galaxies.

For this reason we firstly represent the mass distribution through of a homogeneous back-
ground ρ̄(t) plus a perturbative term δ (x, t) which represent the fluctuations

ρ(x, t) = ρ̄(t)(1+δ (x, t)). (2.1)

That is, the fluctuation density field is given by

δ (x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
. (2.2)

27
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Equation (2.2) indicates the difference of the matter density at point x with respect to the av-
erage density of the Universe ρ̄(t), and so δ (x, t) is also known as contrast density. Consider-
ing the density contrast, we can define others quantities: the correlation functions and power
spectrum. Note that mass field ρ(x, t) is a non-negative quantity; therefore δ (x, t) ≥ −1 at
any x. For example, the voids are underdense regions, i.e. ρ(x, t) < ρ̄(t). In this case the
density contrast is δ (x, t) < 0. To structures as galaxies and cluster of galaxies δ (x, t) is
larger than 1. While, the linear structures, as supercluster of galaxies, are characterized by
δ (x, t)≪ 1.

2.1.1 The two-point correlation function

One important question in cosmology is the distribution of galaxies in the Universe. To study
this, cosmologists use the correlation function to explain the scale characteristic of found
another galaxy given a random galaxy in a point. In other words, the correlation function is a
measure of the degree of clustering of galaxies expressing the excess of probability of finding
two galaxies separated by a distance r relative to a uniform random distribution. While the
power spectrum answers the question "How much of the fluctuations of density field is at a
wavenumber k?"

We know that the formation of large scale structure in the universe were originated by
small fluctuations in matter density and velocity fields in the primordial universe. The fluctu-
ations of fields were amplified by gravity (Guth et al., 2014). The amplitude of fluctuations
on different length scales or equivalently on different mass scales is described by the power
spectrum (Baugh, 2000). In view of these considerations, we describe the two point correla-
tion function, the power spectrum and higher-order correlations.

The two-point correlation function is defined in configuration space as the joint ensemble
average of density at two different locations,

ξ (r) = ⟨δ (r)δ (x+ r)⟩, (2.3)

which depends only on the norm of r due to statistical homogeneity and isotropic.
To calculate the power spectrum of the fluctuations we write the density contrast δ (x) in

terms of its Fourier components,

δ (x) =
∫ d3k

(2π)3 eik·x
δ (k). (2.4)

When one considers a Gaussian field, the power spectrum becomes fruitful. Any ensemble
average of product of variables can then obtained by product of ensemble averages of pairs
(Bernardeau et al., 2002a) (Baugh, 2000). We write this property as follow

⟨δ (k1)...δ (k2p+1)⟩= 0, (2.5)
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⟨δ (k1)...δ (k2p)⟩= ∑
all pair associations

∏
p pairs (i,j)

⟨δ (ki)δ (k j)⟩. (2.6)

The Eqs. (2.5-2.6) are known as the Wick’s or Isserlis’s theorem (Weinberg, 2008). As
first approximation, the initial density field can be considered as a Gaussian random field.
However, the simplest inflation model predicts some small deviation from Gaussianity (Guth,
1981; Falk et al., 1993; Maldacena, 2003).

Otherwise, the non-Gaussian aspects of random fields, which are present everywhere in
cosmology, can be characterized by higher order spatial statistics as the three-point correla-
tion function or its counterpart in Fourier space, the bispectrum. These ideas can be applied
to all cosmological random fields as Lyman-α forests, the large-scale structure, or the Cosmic
Microwave Background (CMB).

The concept of the two-point correlation function may be extended to higher-order corre-
lations, for example to third-order. So in place of Eq. (2.3) one writes

ζ (r12,r23,r31) = ⟨δ (r1)δ (r2)δ (r3)⟩, (2.7)

which depends only on the norms of r12 = |r1 − r2|, r23 = |r2 − r3| and r31 = |r3 − r1| due
to homogeneity and isotropy. The Eq. (2.7) represents the three-point correlation function
(3PCF). The physical interpretation of the 3PCF is that it measures the probability of finding
three objects in a particular triangle configuration compared to a random sample.

On the other hand, the bispectrum B, the Fourier transform of the 3PCF, is given by

⟨δ (k1)δ (k2)δ (k3)⟩= (2π)3
δD(k1 +k2 +k3)B(k1,k2,k3). (2.8)

As the power spectrum, the real space bispectrum does not depend on the direction of the
k-vectors. The k-vector configurations form closed triangles because of homogeneity. For
Gaussian initial conditions the bispectrum is zero since the n-point correlation function of a
Gaussian field is always zero when n is an odd number. Also, as long as the k-modes evolve
independently, i.e. in linear theory, the bispectrum is zero in the absence of primordial non-
gaussianities, as can be seen from Wick’s theorem. However, when the k-modes are coupled,
i.e. non-linearities start to play an important role, the bispectrum becomes important and is
non-zero. Hence, one can extract information about how non-linear processes influence the
evolution of dark matter distribution by measuring the bispectrum. To obtain this informa-
tion is complicated because the effects of gravity can not be isolated, i.e. the cosmological
parameters are degenerate.

The forthcoming galaxy surveys will increase the signal-to-noise of the data and the uncer-
tainties around the ΛCDM model will be reduced. That is, higher precision data will allow
to use not only the two-point correlation function, but also higher-order statistics, in order to
constrain and improve our theories and models. For this, we need better analytical models to
describe the bispectrum and the 3-PCF at non-linear scales.
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2.1.2 The power spectrum via N-BODYKIT package
In this section we describe how to compute the power spectrum, from a data set either simu-
lated or real, via N-BODYKIT package 1of (Hand et al., 2018). Physically, the power spectrum
is estimated as follows: First, generate data on a mesh. Second, Fast Fourier Transform (FFT)
the mesh to Fourier space. Third, generate the 3D power spectrum on the mesh. Finally, per-
form the binning in the given basis. We now briefly describe these four steps.

The simulation box is discretized on to a mesh to compute the power spectrum. To gener-
ate data on a mesh we use the to_mesh() function in N-BODYKIT. This function transforms
a discrete catalog of particles on to a mesh. The desired number of cells per mesh side is
specified by the Nmesh parameter. The discrete particles on to a regular mesh is interpo-
lated choosing a interpolation kernel, also known as W (k) Window kernel, which determines
which cells an object will contribute to on the mesh. In other words, one should first choose
a mass assignment function, which assign a shape to each particle defined by a function
S(x). In the simplest procedure, known as the Nearest Grid Point (NGP) assignment scheme,
a particle only contributes to the one cell that is closest to its position. We use two more
general schemes to calculate the mesh, known as Cloud in Cell (CIC) and Triangular Shape
Cloud (TSC) schemes, representing the two and third order piecewise polynomial function,
respectively. For these methods, we have

W (k) =

sin
(

πk1
2kN

)
sin
(

πk2
2kN

)
sin
(

πk3
2kN

)
(

πk1
2kN

)(
πk2
2kN

)(
πk3
2kN

)
p

, (2.9)

with ki the i-th component of k, and p indicates the mass assignment function: the NGP
(p = 1), CIC (p = 2) and TSC (p = 3) function.

The second step is the Fourier transform of the density field δ (xv) to obtain the complex
modes of the overdensity, δ (kv). The 3D power spectrum is then computed on the mesh,
using (Sefusatti et al., 2016; Jing, 2005)

P(k)≡ ⟨|δ (k)|2⟩, (2.10)

where δ (k) is the FT of δ (r), which is defined as

δ (k) =
1
V

∫
V

δ (r)eik·rdr. (2.11)

For a sample of discrete objects, the density field is given by

δ (k) =
1
N ∑

g
n f (rg)eirg·k. (2.12)

1https://nbodykit.readthedocs.io

https://nbodykit.readthedocs.io
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Finally, the power spectrum defined on the mesh is binned. N-BODYKIT has three options
to do this: 1) 1D binning as a function of wavenumber k; 2) 2D binning as a function of
wavenumber k and cosine of the angle to the line-of-sight µ; and 3) multipole binning as a
function of k and multipole number l.

We compute the 1D power spectrum, P(k). We specify the mode argument as "1D" to com-
pute the P(k). The number of wavenumber bins is specified via the dk and kmin keywords. By
default, the wavenumber maximum is the Nyquist frecuency, given by kNyq = πNmesh/Lbox,
and dk is the fundamental mode, given by dk = 2π/Lbox.

We also compute the multipoles of P(k,µ). Multipole binning as a function of k and
multipole number l is given by

Pl(k) =
2l +1

2

∫ 1

−1
dµP(k,µ)Ll(µ), (2.13)

where Ll is the Legendre polynomial of order l. We compute the two first order multipoles,
monopole and quadrupole, by passing poles keyword, poles = [0,2], to the FFTpower func-
tion.

2.1.3 The correlation function via CUTE BOX

The two-point correlation function from data inside a cubical box with periodic boundary
conditions is computed as follows: First, take a pair of objects in the data. Second, com-
pute the distance between both objects. Third, bin the pair in a histogram according to the
calculated distance. This step is repeated for all pairs in the catalog to obtain the histogram
DD(r).

The correlation function is calculated using the "natural" estimator DD/RR−1, where DD
and RR are histograms containing the counts of pairs of objects separated by a given distance
in the data and random catalog, respectively. Both N-BODYKIT and CUTE BOX consider the
random distribution as the catalog has no boundaries. This assumption is valid in the case
of N-body simulations due to boundary conditions. A region that lies partly outside the box
can be wrapped around in the random catalog. In this particular case, the RR histogram can
easily be computed as

RR(r) =
N2

V
v(r), (2.14)

where v(r) = 4π((r+dr/2)3− (r−dr/2)3)/3 ≈ 4πr2dr is the volume of a spherical shell of
radius r and thickness dr, V = L3, L is the box size and N is the total number particles.

Finally, the correlation function is calculated as:

ξ =
V

v(r)
DD(r)

N2 . (2.15)

No random catalogs are need since we have simple periodic boundary conditions Alonso
(2013).
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2.2 Standard Perturbation Theory (SPT)
The principal aim in this section is to determine the equations of motion governing the CDM
particles which are non-relativistic and collisionless. These particles can be considered as
fluid because the number of particles is high N ≫ 1. Our considered system is a set of
CDM particles of a mass m that interact only gravitationally in an expanding universe. The
Lagrangian of a particle at position r = a(τ)x under the gravitational potential φN is given by

L =
1
2

mṙ2 −mφN =
1
2

m(ȧx+aẋ)2 −mφN , (2.16)

where x is the comoving coordinate and a(t) is the scale factor and a dot denotes derivative
with respect to cosmic time t, which is related to conformal time τ , dt = a(τ)dτ . We rewrite
the Lagrangian as

L =
1
2

ma2ẋ2 −mΦ, (2.17)

where
Φ = φN +

1
2

aäx2. (2.18)

In Eq. 2.17 we have added a total derivative dg/dt to the Lagrangian, with g =−maȧx2/2.
The conjugate momentum to x is then

p =
∂L

∂ ẋ
= ma2ẋ = mau, (2.19)

where u= aẋ= dx/dτ is the peculiar velocity. Hence the velocity of a particle can be written
as ṙ = H x+u(x,τ), where H ≡ da/dτ . The equation of motion is hence

dp
dτ

=−ma∇Φ (2.20)

We can represent therefore the particle number density of CDM particles by a distribution
of representative points in phase space denoted by f (x,p,τ) where f (x,p,τ)d3xd3p indicates
the number of CDM particles that at time τ are contained in a differential element volume
d3xd3p. Phase-space conservation implies the Boltzmann Equation

d f
dτ

=
∂ f
∂τ

+
∂x
∂τ

·∇ f +
∂p
∂τ

· ∂ f
∂p

=

(
∂ f
∂τ

)
coll

, (2.21)

where the right side is zero since we consider collisionless particles. Therefore, we need find
the collisionless Boltzmann equation for our system considered, set of CDM particles of a
mass m that interact only gravitationally in an expanding universe, from which all subsequent
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calculations of gravitational instability are derived. The collisionless Boltzmann equation is
often called the Vlasov equation.

Using equations (2.19-2.20) we can obtain the Vlasov equation

d f
dτ

=
∂ f
∂τ

+
p

ma
·∇ f −am∇Φ · ∂ f

∂p
= 0. (2.22)

Since we are interested in the evolution of the spatial distribution we can take momentum mo-
ments of the distribution function. The zeroth order moment relates the space space density
to the density field,

m
a3

∫
d3p f (x,p,τ)≡ ρ(x,τ). (2.23)

The next order moments,

1
a4

∫
d3pp f (x,p,τ)≡ ρ(x,τ)⟨u(x,τ)⟩p ≡ ρ(x,τ)v(x,τ), (2.24)

ρ⟨uiu j⟩p =
1

ma5

∫
d3ppi p j f (x,p,τ)≡ ρ(x,τ)vi(x,τ)v j(x,τ)+σ

i j(x,τ), (2.25)

define the mean velocity of particles v(x,τ) and the velocity dispersion tensor σ i j(x,τ). In
Ecs. (2.24-2.25) we considered the momentum average ⟨(· · ·)⟩ over the ensemble of matter
particles which are given by

⟨A⟩p =

∫
d3 pA f∫
d3 p f

, such that ρ⟨A⟩p =
m
a3

∫
d3 pA f . (2.26)

The velocity dispersion tensor is defined as the square of the difference between the peculiar
velocities and the mean velocity of the particles averaged over the ensemble, that is

σ
i j ≡ ⟨(vi −ui)(v j −u j)⟩p. (2.27)

In principle we can obtain an infinite set of equation for the Boltzmann hierarchy. To
avoid this we can ignore some terms. For example, for CDM particles we can neglect the
velocity dispersion tensor and higher rank tensors since each mean momenta is suppressed
by a factor p/m and we are assuming the particles are non-relativistic. In this context, the
hydrodynamical equations are obtained by taking moments of the Boltzmann equation (2.22)
and using the moments (2.23-2.25)

∂τρ +3H +∂i(ρvi) = 0, (2.28)

∂τvi +H vi + v j
∂ jvi +∂

i
Φ =− 1

ρ
∂ j(ρσ

i j) (2.29)
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∂τσ
i j +2H σ

i j + vk
∂kσ

i j +σ
ik

∂kv j +σ
jk

∂kvi =
1
ρ

∂k(ρσ
i jk). (2.30)

Equation (2.28) describes the conservation of mass; Eq.(2.29) specifies the source of the
velocity flows in our cosmic fluid. We take into account the gravitational force and the force
due to the pressure in the medium. While the Eq.(2.30) quantifies the deviation of the motion
of particles from a coherent flow.

These equations are supplemented by the Poisson equation. Using the fact that the potential
φ(r) induced by the mass density ρ(r) satisfies the Poisson equation ∇2φ(r) = 4πGρ(r), we
can derive the perturbed cosmological gravitational potential Φ(x,τ)

φ(r,τ)≡−1
2

∂H

∂τ
x2 +Φ(x,τ), (2.31)

which is sourced only by density fluctuations, as expected. Indeed the Poisson equation reads,

∇
2
Φ(x,τ) =

3
2

Ωm(τ)H
2(τ)δ (x,τ). (2.32)

We write now the above equations in terms of the overdensities. The background density
field satisfies

∂τ ρ̄(τ)+3H (τ)ρ̄(τ) = 0, (2.33)

and defining the overdensity δ (x,τ) through

ρ(x,τ) = ρ̄(τ)(1+δ (x,τ)). (2.34)

we get the useful form

∂τδ (x,τ)+∂i[1+δ (x,τ)vi(x,τ)] = 0, (2.35)

∂τvi(x,τ) + H (τ)vi(x,τ)+ v j(x,τ)∂ jvi(x,τ)

+ ∂
i
Φ(x,τ) =− 1

1+δ (x,τ)
∂ j[(1+δ (x,τ))σ i j(x,τ)] (2.36)

∂τσ
i j(x,τ) + 2H (τ)σ i j(x,τ)+ vk(x,τ)∂kσ

i j(x,τ)+σ
ik(x,τ)∂kv j(x,τ)

+ σ
jk(x,τ)∂kvi(x,τ) =

1
1+δ (x,τ)

∂k((1+δ (x,τ))σ i jk(x,τ)). (2.37)

We note that Eqs. (2.28- 2.30) are coupled, the Eq. (2.28) couples the zeroth (ρ) to the
first moment (vi), the Eq. (2.29) couples the first moment vi to the second moment (σi j), and
so on. To close the hierarchy we can neglect the VDT, σi j = 0 since the effect of virialization
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are not important for Cold Dark Matter (CDM); its contribution should be small. Hence the
hydrodynamical equations become that of a perfect fluid

∂tδ (x, t)+
1
a

∂i[1+δ (x, t)vi(x, t)] = 0, (2.38)

∂tvi(x, t)+H (τ)vi(x, t)+
1
a

v j
∂ jvi +

1
a

∂
i
Φ(x, t) = 0 (2.39)

Instead of setting σi j = 0, an alternative to close the system of equation is postulating an
ansatz for the stress tensor σi j. For example, standard fluid dynamics (Landau, 1959) gives
σi j = −pδi j +η

(
∇iv j +∇ jvi − 2

3δi j∇ivi
)
+ ζ δi j∇ivi, with p, η and ζ denotes an effective

pressure, shear and bulk viscosity, respectively.

The equation of Motion in the Fourier Representation
The hydrodynamical equations, (2.38) and (2.39), in Fourier space are written as

δ̇ (k,τ)+θ(k,τ) =−
∫ d3k1

(2π)3
d3k2

(2π)3 (2π)3
δD(k−k12)α(k1,k2)θ(k1,τ)θ(k2,τ), (2.40)

θ̇(k,τ) + H (τ)θ(k,τ)+
3
2

ΩmH 2(τ)δ (k,τ)

= −
∫ d3k1

(2π)3
d3k2

(2π)3 (2π)3
δD(k−k12)β (k1,k2)θ(k1,τ)θ(k2,τ), (2.41)

with θ = ∇ ·v, k12 = k1 +k2 and

α =
k12 ·k1

k2
1

, β =
k2

12(k1 ·k2)

2k2
1k2

2
. (2.42)

The left-hand sides of Eq. (2.40) and Eq. (2.41) represent the linear part of density and veloc-
ity field, while the right-hand sides constitute the coupling-mode of number of wavelength
k. Due to the mode coupling of the nonlinear terms shown in the right hand side of Eqs.
(2.40-2.41) one needs to make a perturbative expansion in δ (k,τ) and θ(k,τ). For example,
for an EdS universe we can expand the δ (k,τ) and θ(k,τ) as follow

δ (k,τ) =
∞

∑
n

an(τ)δn(k), θ(k,τ) =−H (τ)
∞

∑
n

an(τ)θn(k). (2.43)

The solution to first-order is completely determined by the linear fluctuations since δ1(k) =
−θ1(k). Solving for δ2 and θ2 we obtain the following result

δ2(k) =
∫

d3k1d3k2δD(k−k1 −k2)F2(k1,k2)δ1(k1)δ1(k2), (2.44)
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θ2 =
∫

d3k1d3k2δD(k−k1 −k2)G2(k1,k2)θ1(k1)θ1(k2), (2.45)

where

F2 =
5
7
+

1
2

k1 ·k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7
(k1 ·k2)

2

k2
1k2

2
. (2.46)

G2 =
3
7
+

1
2

k1 ·k2

k1k2

(
k1

k2
+

k2

k1

)
+

4
7
(k1 ·k2)

2

k2
1k2

2
. (2.47)

Iteratively we can obtain the kernels Fn, Gn. For example, to calculate the bispectrum is need
calculate the kernels F2 y G2 since the bispectrum is written in terms of these kernels.

2.2.1 The redshift-space power spectrum
The redshift-space power spectrum can be written as (Vlah and White, 2019)

(2π)3
δD(k)+Ps(k) =

∫
d3xe−ik·x[1+M(J = k,x)], (2.48)

with M(J) the generating function given by

1+M(J,x) = ⟨(1+δ (x1))(1+δ (x2))e−iJ·∆u⟩, (2.49)

with x = x2 −x1 and ∆u = u(x2)−u1(x1). There are different approaches to RSD modeling
depending of the expansion procedure of the generating function. One of this expansion
method is the momentum expansion approach, in which the power spectrum is given by

Ps(k) =
∞

∑
m=0

(−i)m

m!
ki1...kimΞ̂

m
i1...1m

(k), (2.50)

with the Ξ̂m
i1...1m

(k) are the Fourier moments of the generating function

Ξ̂
m
i1...1m

(k) =
∫

d3xe−ik·x
Ξ

m
i1...1m

(x) (2.51)

=
∫

d3xe−ik·x(1+δ (x1))(1+δ (x2))∆ui1...∆uim . (2.52)

The m-th density weighted velocity field moment of the generation function is an m-rank
tensor defined as

Ξ
m
i1...1m

(x)≡ im
∂ m

∂Ji1 · · ·∂Jim
[1+M(J,x)] |J=0

= ⟨(1+δ (x1))(1+δ (x2))∆ui1...∆uim⟩. (2.53)



2.2. STANDARD PERTURBATION THEORY (SPT) 37

The sum should be cutted-off at some finite m, depending on the order of the theory. We
consider the three first terms to calculate Kaiser non-linear power spectrum. The power
spectrum, to linear order, is given by

Ps(k,µ) = Ξ̃
m=0(k)− ikiΞ̃

m=1,ud(k)− 1
2

kik jΞ̃
m=2,dd(k). (2.54)

Summing up the three contributions, we arrive to

Ps
K,NL(k,µ) =

[
Pδδ (k)+2 f µ

2Pδθ (k)+ f 2
µ

4Pθθ (k)
]
, (2.55)

where Pδδ , Pθθ and Pδθ are respectively the non-linear matter density, velocity divergence,
and density-velocity divergence power-spectra. This power spectrum is known as Non-linear
Kaiser power spectrum. The sum is cutted-off at m = 4 to calculate the redshift-space power
spectrum at one-loop in the moment expansion approach, which is given by

PSPT
s (k,µ) = PK,NL

s (k,µ)+A(k,µ)+B(k,µ)+C(k,µ)− (kµ f σv)
2PK

s (k,µ). (2.56)

We consider a exponential oscillatory factor to describe virialized, non-coherent random mo-
tions of dark-matter particles along the line-of-sight direction. This physically well motivated
phenomenological model is given by

Ps(k,µ) = exp
[
− k2

µ
2 f 2

σ
2
v
][

PK,NL
s (k,µ)+A(k,µ)+B(k,µ)+C(k,µ)

]
. (2.57)

We consider two variations of perturbation theory, the first, ‘standard’ perturbation theory
is constructed in Eulerian space, where we consider the evolution of the density field at fixed
positions. We consider the phenomenological, but physically well motivated, redshift-space
models of Scoccimarro (2004) and Taruya et al. (2010) to describe the redshift-space power
spectrum, which improve the description of redshift-space distortion (RSD) effects on the
power spectrum compared to Kaiser linear theory (Kaiser, 1987). In the following we shall
refer to these models as Sc04 and TNS, respectively.

The anisotropic redshift-space clustering originates from the peculiar velocities v of mat-
ter, or more generally any tracer of it, such that an object located at a real space position
r is observed to be located at an apparent redshift-space position s. The relation between
coordinates system is inferred via the Doppler effect to be s = r+ n̂v∥(aH)−1, where n̂ is a
the line-of-sight direction of the point-process sample, and v∥ = v · n̂. That is, we are using
the plane-parallel approximation on which the observer is located at a distant position of the
sample of objects over which we perform the statistics. The redshift-space power spectrum,
⟨|δ s(k)|2⟩ is given by

Ps(k) =
∫

d3r eik·r
〈

eikµ∆v∥/(aH)

(
δ (x)− 1

aH
∇∥v∥(x)

)
×
(

δ (x′)− 1
aH

∇∥v∥(x′)
)〉

(2.58)
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where r = x−x′ and ∆v∥ = v∥(x)−v∥(x′) and µ = n̂ · k̂ is the angle between the wave vector
and the line-of-sight direction. The RSD correction at linear order, known as the Kaiser
formula, is given by δ s

L(k) = (1+ f µ2)δL(k), where f = d logD+(a)/d loga(t) and D+(t)
the linear growth function. The redshift-space power spectrum at linear order becomes

Ps
K(k,µ) = (1+ f µ

2)2PL(k). (2.59)

The exponential oscillatory factor inside the correlator in equation (2.58) is due to virial-
ized, non-coherent random motions of dark-matter particles along the line-of-sight direction,
hence it is in essence non-perturbative. In (Scoccimarro, 2004) this factor is replaced by a
phenomenological damping function that accounts for the velocity dispersion σ2

v = ⟨θ 2⟩. By
rotational symmetry around the line-of-sight direction one obtains a simple prescription

Ps
Sc04(k,µ) = exp

[
− k2

µ
2 f 2

σ
2
v
]

×
[
Pδδ (k)+2 f µ

2Pδθ (k)+ f 2
µ

4Pθθ (k)
]
, (2.60)

where Pδδ , Pθθ and Pδθ are respectively the non-linear matter density, velocity divergence,
and density-velocity divergence power-spectra. In linear theory equation (2.60) reduces to
the Kaiser power spectrum (equation 2.59) times the damping factor. Several other functional
forms for this damping factor have been used in the literature. In this work, we opt for the
most common – Gaussian damping. The velocity dispersion is physically motivated to be
given by PT as

σ
2
v =

1
6π2

∫
d pPθθ (p), (2.61)

but due to its non-perturbative origin it is commonly replaced by a free parameter σ2
FoG,

especially for parameter estimation. However in this work, we regard σ2
v as the linear velocity

dispersion, which is obtained from the above equation by replacing Pθθ by its linear value
PL. This prescription has shown to give good results when comparing theory to simulations
(e.g., Taruya et al., 2010). The TNS formalism, on the other hand, expands in cumulants
the correlator in equation (2.58), and then replaces a residual exponential factor of the form
exp
[
⟨eikµ∆v∥/(aH)⟩c

]
, by a position independent, phenomenological damping factor that can

be brought out of the integral. The standard formula for TNS is

Ps
TNS(k,µ) =exp(−k2

µ
2 f 2

σ
2
v )
[
Pδδ (k)+2 f µ

2Pδθ (k)

+ f 2
µ

4Pθθ (k)+A(k,µ)+B(k,µ)], (2.62)

where the new correction terms, A(k,µ) and B(k,µ), are given by

A(k,µ) = 2kµ f
∫ d3 p

(2π)3
p · n̂
p2 Bσ (p,k−p,−k), (2.63)

B(k,µ) = (kµ f )2
∫ d3 p

(2π)3 F(p)F(k−p), (2.64)
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with the bispectrum

(2π)3
δD(k1 +k2 +k3)Bσ (k1,k2,k3) =

〈
θ(k1)

×

[
δ (k2)+ f

(k2 · ˆ̂n)2

k2
2

θ(k2)

][
δ (k3)+ f

(k3 · n̂)2

k2
3

θ(k3)

]〉
, (2.65)

and

F(p) =
p · n̂
p2

(
Pδθ (p)+ f

(p · n̂)2

p2 Pθθ (p)
)
. (2.66)

Hence, the TNS model partially accounts for the interaction between the Kaiser effect and
the non-linear random motion of particles, reflected in the two extra functions A and B. On
the other hand, the Sc04 model factorizes the linear and Finger-of-God effects, so each can
be treated separately. The real-space matter power spectrum is given by Pδδ (k) = ⟨|δ (k)|2⟩,
which can be obtained from both of the above redshift-space formalism by considering only
the perpendicular to line-of-sight components (i.e., µ = 0). After that, one can simply use
rotational symmetry to obtain the 1-loop SPT power spectrum

PSPT
1-loop(k, t) = PL(k)+P22(k)+P13(k), (2.67)

where P22 and P13 are the usual 1-loop corrections (e.g., Bernardeau et al., 2002b). The
linear power spectrum is the dominant term at large scales. However, at smaller scales, the
loop corrections contribute with similar magnitude to the linear power, therefore significantly
contributing to the total power spectrum.

We notice that the Q-functions have a IR divergence. For instance, q̂3(k,p), the integrand
of Q3, has a divergence when the internal momentum is equal to the external momentum
p = k. In order to consider this problem, we split the region of integration in two pieces
separated by the p = k divergence and using the symmetry q̂3(k,p) = q̂3(q,k−p), we arrive
at

Q3(k) = 2
∫

p<|k−p|

d3 p
(2π)3 q̂3(k,p). (2.68)

From the region p < |k−p| we obtain x < k/(2p), with x = k̂ · p̂.
For a scalar rotational invariant function f (k,p) = f (k, p,x)∫
p<|k−p|

d3 p
(2π)3 f (k,p) =

∫
p<|k−p|

d3 p
(2π)3 f (k, p,x) =

∫
∞

0

d p
4π2 p2

∫ Min[1,k/(2p)]

−1
f (k, p,x)dx.

(2.69)

The numerical integration of the Q-functions consider the IR-divergence. The Eq. 2.68
becomes

Q3 = 2
k3

4π2

∫
∞

0
drPL(kr)

∫ Min[1,1/2r]

−1
dx

x2(1− rx)2

(1+ r2 −2rx)2 PL

(
k
√

1+ r2 −2xr
)
, (2.70)

with r = p/k. The other Q-functions have a similar expression.
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2.3 Lagrangian Perturbation Theory (LPT)
In the previous sections, we considered the density and velocity fields on fixed space with the
aim of setting up the Standard (Eulerian) Perturbation Theory (SPT). Now we wish to follow
the trajectory of a particle (or an individual fluid element) instead of the density contrast, by
using the mapping

x(q, t) = q+Ψ(q, t)+Γ(q, t), (2.71)

where x(q, t) is the (Eulerian) position at a later time t, q is the (Lagrangian) position at
some early time tini, i.e. x(q, tini) = q, with tini an early time where the evolution of all scales
of interest remains linear and the overdensities are quite small, δ (x, tini) = δ (q) ≪ 1. Ψ is
the longitudinal Lagrangian displacement vector (curl-free component or irrotational vector
field, ∇×Ψ = 0) and Γ is the transverse piece of the Lagrangian displacement (divergence-
free component or incompressible vector field, ∇ · Γ = 0). The Lagrangian displacement
vector can be written as the sum of two vector fields: s = Ψ+Γ. We note that the peculiar
velocity of each particle is

u(x, t) =
dx
dt

=
ds(q, t)

dt
. (2.72)

Also, the velocity dispersion is given by

σ
i j(q, t) = ⟨Γ̇i(q, t)Γ̇ j(q, t)⟩p. (2.73)

If we assume that the cold dark matter particles can be considered as an irrotational perfect
fluid and we want to describe the matter density 2-point and 1-loop statistics, as in this work,
therefore the transverse Lagrangian displacement vector is negligible, i.e. Γ = 0. On the
other hand, if we want to describe the dispersion of the particles and the generation of vor-
ticity, hence the transverse piece has contributions at all orders (Aviles, 2016). Since that we
consider an irrotational perfect fluid in our studies, the longitudinal Lagrangian displacement
vector is different to zero and the transverse component is equal to zero.

Hence, the equations of motion in LPT scheme are given by

∂
2
t Ψ

i(q, t)+H ∂tΨ(q, t)+∂
i
φ(q+Ψ) =− 1

1+δ
∂ j((1+δ )σ i j), (2.74)

∂tσ
i j(q, t)+2H σ

i j +σ
ik

∂k∂tΨ
j +σ

jk
∂k∂tΨ

i = 0, (2.75)

where the symbol ∂i indicates the derivatives with respect to Lagrangian coordinates q. We
can define the Jacobian of the transformation from x to qd3q

d3x

≡ 1
J(q, t)

=
1

det
(

δi j +
∂Ψi

∂q j

) . (2.76)
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The particle density in the Lagrangian coordinate ρ(q, tini) is the same as the average den-
sity of the Universe ρ̄(t). Since the particle density is the same in both coordinate systems,
therefore we have

ρ̄(t)(1+δ (q))d3q = ρ(x, t)d3x = ρ̄(t) [1+δ (x, t)]d3x. (2.77)

From Eq. (2.77), we can find the relation between Lagrangian displacements and overdensi-
ties

δ (x, t) =
1+δ (q)− J(q, t)

J(q, t)
⋍

1− J(q, t)
J(q, t)

. (2.78)

Since the particle density in the Lagrangian formalism consider the initial time tini, we may
take tini early enough so that the initial matter fluctuations δ (q, tini) are arbitrarily small,
i.e. δ (q) ≈ 0. Another expression that relates the density field in terms of the Lagrangian
displacement field

1+δ (x, t) =
∫

d3qδ
(3)
D [x−q−Ψ(q, t)] , (2.79)

where δ
(3)
D is the Three-dimensional Dirac Delta function. The aim of LPT is to find a pertur-

bative solution for the displacement field. As in the Standard scheme, perturbative solutions
for the displacement field are obtained by means of an iterative procedure,

Ψ(q, t) = Ψ
(1)(q, t)+Ψ

(2)(q, t)+Ψ
(3)(q, t)+ · · · . (2.80)

The first-order solution is the well-know Zel’dovich approximation (Zeldovich, 1970). The
solution at fourth-order was obtained in (Rampf and Buchert, 2012). The Fourier transform
of Eq. (2.79) is

δ (k) =
∫

d3qe−ik·q(e−ik·Ψ −1). (2.81)

Therefore, we can express the power spectrum by the integral equation (Taylor and Hamilton,
1996)

PLPT (k) =
∫

d3qe−ik·q
(
⟨e−ik·∆⟩−1

)
, (2.82)

where ∆i = Ψi(q2)−Ψi(q1) are the Lagrangian displacement differences, and q = q2 −q1
the Lagrangian coordinate difference.

A similar expression to the two-point correlation function can be deduced in the La-
grangian approach using Eq. (2.79), the LPT correlation function becomes

1+ξLPT (r) =
∫ d3k

(2π)3

∫
d3qeik·(r−q)⟨e−ik·∆⟩, (2.83)

where ∆i = Ψi(q2)−Ψi(q1) are the Lagrangian displacement differences at two positions q1
and q2 separated by a distance q = |q2 −q1|.
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2.3.1 Modelling biased tracers
The underlying matter distribution is not observed by the cosmological surveys, but tracers
of the nonlinear density field such as halos and galaxies does.

The positions of tracers are assummed to be drawn according to a distribution depending on
local initial conditions such that their overdensities in their initial (Lagrangian) coordinates
are given by (Matsubara, 2008a; McDonald and Roy, 2009)

F [δ0,s0,i j, ...,∇δ0(q)] =1+δ (q,τ0) (2.84)

=1+b1δ0(q)+
1
2

b2(δ
2
0 (q−⟨δ 2

0 ⟩))

+bs(s2
0(q−⟨s2

0⟩))+b3O3(q)+ ...+b∇∇
2
δ0(q), (2.85)

where δ0 is the linear density field, s0 is the initial shear field, and O3(q) is the representative
third order operator. The initial density field can be mapped to the evolved density field of
biased tracers via number conservation. Thus we can write

1+δX(x) =
∫

d3qF [δ (q),∇2
δ (q),s2(q)]δD[x−q−Ψ(q)],

(2π)3
δD(k)+δX(k) =

∫
d3qeik·(q+Ψ(q))F [δ (q),∇2

δ (q),s2(q)]. (2.86)

In the Eulerian scheme, the galaxy density field is expressed in terms of a bias expansion
based on present-day operators such as the nonlinear density δ (x). The biasing scheme up to
third order is given by (McDonald and Roy, 2009)

δX = c1δ +
c2

2
δ

2 + css2 +
c3

6
δ

3 + c1sδ s2 + cstst + cs3s3 + cψψ, (2.87)

with s2 = si jsi j, s3 = si js jlsli, and st = si jti j, and the shear operators are defined as

ψ = η − 2
7

s2 +
4

21
δ

2, si j =

(
∂i∂ j

∂ 2 − 1
3

δi j

)
δ , ti j =

(
∂i∂ j

∂ 2 − 1
3

δi j

)
η , η = θ −δ .

(2.88)

2.3.2 Convolution Lagrangian Perturbation Theory
In Convolution-LPT (CLPT) we expand in a Taylor series the non-linear pieces out of the ex-
ponential allowing to perform analytically the k-integral using standard Gaussian integration
techniques (see Carlson et al. (2012b)), by which we arrive at

1+ξCLPT(r) =
∫ d3q

(2π)3det[AL
i j]

1/2 e
1
2 AL

i j(ri−qi)(r j−q j)

×
[

1− 1
2

Gi jA
loop
i j +

1
6

Γi jkW
loop
i jk + · · ·

]
, (2.89)
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with cumulants Ai j = ⟨∆i∆ j⟩c and Wi jk = ⟨∆i∆ j∆k⟩c, and tensors Gi j = A−1
Li j − gig j, Γi jk =

A−1
Li jgk+A−1

L jkgi+A−1
Lkig j −gig jgk, and gi j = A−1

Li j(r j −q j). The label ‘L’ in the A function de-

notes the linear piece and ‘loop’ the pure 1-loop piece, such that Ai j = AL
i j+Aloop

i j . Notice that
the ‘1’ in the squared brackets of the above equation corresponds to the Zeldovich correlation
function and the other two terms yield the next-to-leading order, 1-loop contributions.

Otherwise, the real space correlation function for tracers which are locally biased in La-
grangian space is given by (Matsubara, 2008a; Carlson et al., 2012b; Vlah et al., 2016)

1+ξ
X
CLPT(r) =

∫ d3q
(2π)3det[AL
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×
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i j Gi j

−bs2(Gi jϒi j +2giV 10
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s2ζ −2b1bs2giV 12
i +b2bs2 χ

12 · · ·

]
, (2.90)

where the first two lines within the eq. (2.90) are the predictions of standard LPT, meanwhile
the third line are from the shear-dependence of the bias bs2 . The functions V,ζ ,ϒ, χ are fourth
order terms of the density contrast, i.e. up to O(δ 4) we have V 11

i = ⟨s2∆i⟩c, V 12
i = ⟨s2

1δ2∆i⟩c,
Vi j = ⟨s2∆i∆ j⟩c, ζ = ⟨s2

1s2
2⟩c, and χ12 = ⟨s2

1δ 2
2 ⟩c.

We use the code MGPT (Aviles et al., 2018),2 in order to solve numerically the CLPT cor-
relation function of equation (2.89), which accounts for the the exact kernels for a ΛCDM
background cosmology, instead of the most commonly used Einstein-de Sitter (Ωm = 1) ker-
nels. The difference between both kernels is small, but noticeable, as much as 0.8 per cent at
quasi-linear scales at z = 0 in the power spectrum.

2.4 Halo model
In this section we discuss about a useful phenomenological description method of the clus-
tering of matter, called "Halo model", whose inceptions go back decades ago (e.g., Seljak,
2000; Peacock and Smith, 2000; Cooray and Sheth, 2002). The main idea is based on the
simple assumption that all matter in the Cosmos lies within spherically symmetric halos of
some size, where the clustering issue is decomposed into the clustering that arises between
haloes and within individual haloes. In other words, this model is based on the premise that
on small scales haloes are randomly distributed (one-halo term), while on large scales haloes
are not, and displacements of haloes with respect to one another require us to add a two-halo
term to the power.

2https://github.com/cosmoinin/MGPT

https://github.com/cosmoinin/MGPT
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The standard halo-model calculation for the matter power spectrum includes the two halo
terms described above. The one-halo term is given by

∆
2
1H(k) = 4π

k
(2π)3

1
ρ

2

∫
∞

0
M2W 2(k,M)F(M)dM, (2.91)

where ∆ indicates the dimensionless matter power spectrum ∆ = (k3/2π2)P(k), M is the halo
mass, F(M) is the halo mass function (comoving halo number density in dM), W (k,M) is the
normalized transform of the halo density profile:

W (k,M) =
1
M

∫ rv

0

sin(kr)
kr

4πr2
ρ(r,M)dr, (2.92)

where rv is the halo virial radius. The Eq. (2.91) is computed as an integral over all halo
mass. Mass function and internal density structure are known as functions of cosmology
from high-resolution simulations. The halo mass is related to the virial radius, rv via

M =
4
3

πr3
v∆v(z)ρ, (2.93)

where ∆v(z) is the virial halo overdensity. Usually, a value of ∆v = 200 is taken, which is
based on the spherical-collapse model in an EdS cosmology.

On large scales, the dimensionless power spectrum associated to spherically symmetric
haloes can be approximately the linear-theory power spectrum:

∆
2
2H = ∆

2
lin(k). (2.94)

This approximation is valid for the matter distribution. The full halo-model power spectrum
is then given by a simple sum of the terms

∆
2(k) = ∆

2
1H +∆

2
2H . (2.95)

2.4.1 HMCODE

The HMCODE (Mead et al., 2015) model is a variant of the standard model with parameters
fitted to the power spectrum data from high-resolution simulations. This method provides
a powerful tool to compute the non-linear matter power spectrum at the few percent level
for k < 10hMpc−1 for a variety of dark energy models such as ω(a) dark energy, massive
neutrinos and modified gravity models with chameleon and Vainshtein screening mechanisms
(Mead et al., 2016). This also improves the accuracy of the calculation from ∼ 30 per cent to
∼ 5 per cent for a wide range of cosmologies and redshifts.

Mead et al. (2016) found that the one-halo term can be augmented in the following way:

∆
2
1H = [1− e−(k/k∗)2

]4π(
k

2π
)3 1

ρ

×
∫

∞

0
M(ν)W 2(νηk,M) f (ν)dν , (2.96)
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where ν is the peak threshold ν = δc(z)/σ(M,z), δc is the critical density contrast, f (ν) is the
halo mass function, W (k,M) is the normalized Fourier transform of the halo-density profile
defined in Eq.(2.92), η is a fitted parameter given by η = 0.603−0.3σ8(z) to constrict haloes
as a functions of their mass at fixed virial radius. Notice that the one-halo term is calculated
as an integral over all halo mass.

Mead et al. (2016) use the fitting formula of Nakamura and Suto (1997) to augmented the
linear collapse threshold, given by

δc = [1.59+0.0314lnσ8(z)]× [1+0.0123log10 Ωm(z)], (2.97)

which is obtained using spherical-collapse model for ΛCDM. Usually δc is computed using
spherical-collapse model predictions for EdS universe (Ωm = 1) getting δc = 1.686. Mead
et al. (2016) also consider a damping term in the one-halo term to prevent divergences on
very large scales, which is governed by the fitted parameter k∗ = 0.584σ

−1
d (z). For the virial

halo overdensity they use ∆v = 418Ω−0.352
m (z), and for the mass function they use the fitted

relation:

f (ν) = A[1+
1

(aν2)p ]e
−aν2/2, (2.98)

where the parameters of the model are a = 0.707, p = 0.3 and the normalization A is con-
strained by the condition that F(ν)dν must integrate to unity, which gives A ≈ 0.2162. They
use halo profiles of Navarro et al. (1997)

ρ(r) =
ρN

(r/rs)(1+ r/rs)2 , (2.99)

with rs scale radius that separates the core of the halo from the outer portion and ρN is a
normalization. This split of the halo is expressed usually via the concentration c = rv/rs.
There is a widely set of c(M) relations in the literature because haloes form at different
times in dark energy models. (Mead et al., 2016) use the the concentration–mass relations of
Bullock et al. (2001)

c(M) = A
1+ z f (M)

1+ z

[
g(z → ∞)

gΛ(z → ∞)

]
, (2.100)

where g(z) represents the linear growth function such that g(z = 0) = 1. The 1.5 exponent
gives more accurate power spectrum for the more DE models. At small scales the nonlin-
ear power spectrum will be different in DE models because halo concentrations affects on
small-scale power. z f represents the halo formation redshift, which depends on the formation
history of the halo.

On the other hand, the two-halo term is given by

∆
2
2H(k) = [1− f tanh2(kσd/

√
f )]∆2

lin(k), (2.101)
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where f is a free parameter in the fit, σ2
v is the 1D linear-theory displacement variance given

by

σ
2
v =

1
3

∫
∞

0

∆2
lin

k3 dk. (2.102)

Notice that in the kσv >> 1 limit, equation (2.101) reduces to ∆2
2H = (1− f )∆2

lin. Eq. (2.101)
is motivated by perturbation theory results (e.g., Crocce and Scoccimarro, 2006), which sug-
gest that on quasilinear scales the matter power spectrum can be approximated by a damping
term e−k2σ2

v getting

∆
2
lin → e−k2σ2

v ∆
2
lin. (2.103)

We use this augmented version of the halo-model calculation to look at predictions for the
non-linear matter power spectrum for the bump cosmology in Chapter 5. We will see that
the bump will affect the halo mass function and we expect that it will boost the predicted
numbers of haloes in certain mass ranges.

2.4.2 Halo mass function
The number density of dark matter halos of a given mass in a given cosmology is called
the halo mass function (HMF). The mass functions can be based on the spherical collapse
model and the hypothesis that the mass in collapsed objects is related to the volume with
density above a certain threshold. The Press-Schechter (PS) mass functions is based on these
assumptions Press and Schechter (1974). However, the PS scheme has deviations at the low
mass and the high mass ends. Many mass functions have been proposed, which are based on
the more realistic ellipsoidal collapse model. For instance, the Sheth-Tormen HMF, which
fits numerical results better, is based on three fitting parameters Sheth et al. (2001).

The functional form for halo mass function

dn
dM

= f (σ)
ρ̄m

M
d lnσ−1

dM
, (2.104)

where ρ̄m is the average matter density at redshift z, and the mass function f (σ) is defined as
the fraction of mass in collapsed halos per unit interval in lnσ−1, i.e. if all matter is in halos
of some mass then ∫

∞

∞

f d lnσ
−1 = 1. (2.105)

A number of mass function have been proposed based on fits to simulation data as the
Sheth-Tormen mass function, which is given by

fST (σ) = A

√
2a
π

[
1+
(

σ2

aδ 2
c

)p]
δc

σ
exp
(
−aδ 2

c
2σ2

)
, (2.106)
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with A = 0.322, a = 0.707, and p = 0.3. The quantity δc = 1.686 can be interpreted as the
linearly extrapolated overdensity of a top-hat spherical density fluctuation at the moment of
maximum compression for an matter-dominated universe (Ωm = 1). The most commonly
used analytical halo mass function, the Press-Scheter HMF, can be obtained by choosing
A = 0.5, a = 1.0 and p = 0.0. We notice that the dependence on cosmology and power
spectrum is absorbed in σ . The rms density fluctuation σ is given by

σ
2(M,z) =

D2(z)
2π2

∫
∞

0
k2P(k)W 2(k,M)dk. (2.107)

In Eq. (2.107), P(k) is the linear power spectrum, D(z) is the growth factor of linear density
perturbations and W (k,M) is the Fourier-space representation of a real-space top-hat filter of
radius R in Mpc/h, which on average encloses a mass M = 4πR3ρ̄m(z)/3, given by

W (k,R) =
3

(kR)3 [sin(kR)− kRcos(kR)] . (2.108)

A commonly used cosmological parameter is σ8, the filtered variance in spheres of radius
RT = 8Mpc/h, which roughly corresponding to the scale of massive galaxy clusters.

2.5 N-body simulations
N-body simulations are a powerful probes to make detailed and reliable predictions for the
dark matter based on their general characteristics (Kuhlen et al., 2012). Dark matter simula-
tions consider all matter as collisionless DM neglecting any dissipational baryonic physics.
The dark matter particles hence is described by the collisionless Boltzmann equation coupled
to Poisson’s equation in a comoving coordinate system (see Eqs in section 2.2). The density
field is sampled by an ensemble of N phase-space points ri, ṙi, i = 1, ...,N with masses mi to
solve this set of equations. This discrete systems does introduce a characteristic scale since
the fluctuations in their forces shrink with distance as 1/r. In other words, at small distances
the fluctuations are large and irregular while at large scales are small and smooth.

Therefore, the main challenge of N-body simulations is to compute the gravitational force
that governs the motion of the dark matter particles. There are many different numerical
techniques have been developed over the past decades to calculate force of gravity. In this
section we describe two methods: one is to evaluate short range forces and the second is
using to compute long range interactions.

Tree code is one of the numerical techniques used to evaluate the forces at small distances
(Barnes and Hut, 1986). This method is based on a hierarchical tree structure in which the
volume is divided into cubic cells and only interactions between particles in distant cells are
approximated as a single large particle centered at the distant cell’s center of mass. For this
reason, the gravitational potential can be treated in terms of a multipole expansion of the mass
distribution. The higher order terms in a multipole expansion can be considered depending
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of the accuracy requirements. This technique has a O(N logN) complexity, while the force
brute method scale as O(N2), here N refers to the number of particles.

Otherwise, the adaptive particle-mesh (PM) approach is used to compute the large-scale
forces, in which the particles are within an regular mesh to produce density field. Particles
are assumed to be divided between the nearby vertices of this discretised space. In denser
regions of the simulation the mesh cell are much smaller increasing force accuracy. This
method reduces the computational cost from O(N2) to M logM, where M is the number of
mesh cells and is typically taken to be 23 times the number of particles.

The hybrid Tree-PM code GADGET combine the tree method, for short range forces,
with adaptive particle-mesh (PM), for long range interactions. This software is one of the
most widely used cosmological simulation codes and is free. GADGET and other modern
simulation codes implement these hybrid solvers to achieve high efficiency.

The gravitational potential is split in Fourier space into a long-range part and a short-range
part as follows

φk = φ
long
k +φ

short
k . (2.109)

This breaking requires a spatial scale of the force split labeled as rs.
Classical equations of motion, in comoving coordinates, are given by

d
dt
(a2ẋ) =−1

a
∇iφ(xi), (2.110)

∇
2
φ(x) = 4πG∑

i
mi ×

[
− 1

L3 +∑
n

δ (x−xi −nL)
]
. (2.111)

The sum over i means the N particles, n is a integer vector, and φ = ∑i miϕ(x− xi) is the
peculiar gravitational potential. The −1/L3 term is there to make sure that the mean density
in Poisson’s equation is different of zero.

In order to evolve a particle system is need initial conditions. There is a variety of initial
condition codes like GalIC (Yurin and Springel, 2014), N-GenIC (Grossi and Springel, 2009),
MusIC (Hahn and Abel, 2011) and 2LPTIC (Crocce et al., 2006). In this thesis, the N-body
simulation was carried out starting from z = 99 to z = 0 in a standard ΛCDM model (see
subsection 5.2.2). The following table includes a list of parameters in order to generate initial
conditions using N-GenIC:

• Simulation including only dark matter or dark matter with baryonic particles.

• The number of particles N.

• The initial time of the simulation.

• Dark matter density.
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• Dark energy density

• Baryonic matter density.

• Hubble parameter.

• Box size of the simulation.

• power spectrum normalization.

We now explain how to generate the initial conditions of a N-body simulation by using the
Lagrangian scheme. The cubic box is divided into N3 regular grid points at redshift z. These
points are the Lagrangian coordinate q. We generate now the Gaussian initial density field
since Lagrangian displacements are determined by the overdensity field. The density contrast
in the Fourier space is given by

δ (k)≡ δr(k)+δi(k), (2.112)

which obeys the Gaussian statistics with mean and variance given by

⟨δr(k)⟩= 0, ⟨δ 2
r (k)⟩=

√
V P(k)

2
,⟨δi(k)⟩= 0, ⟨δ 2

i (k)⟩=
√

V P(k)
2

. (2.113)

In order to generate the random variable, we impose the Hermitian condition of density
field

δ (−k) = δ ∗ (k). (2.114)

The real density field is given by

δ (q) =
1
V ∑δ (k)eik·q =

1
V

δ
FFTW(q). (2.115)

Otherwise, the linear Lagrangian displacement field in Fourier space becomes

Ψ
(1)(k,z) =−ikφ

(1)(k, t) = ik
δ1(k,z)

k2 (2.116)

where we have used −k2φ (1)(k,z) = δ1(k,z). Move particles at each point grid q by the
displacement field at that point

x = q+Ψ
(1)(q,z), (2.117)

where the linear displacement is given by

Ψ
(1)(q,z) =

1
V ∑ ik

δ1(k,z)
k2 eik·q. (2.118)
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Chapter3

DARK ENERGY MODELS

This chapter is adapted from its corresponding publication, "Cosmological signatures of a
rapid diluted energy density. Axel de la Macorra, Dante V. Gomez-Navarro, Jorge Mastache,
Alejandro Aviles, Mariana Jaber, and Erick Almaraz. Phys. Rev. D 104, 023529 – Published
28 July 2021".

3.1 Rapidly Diluted Energy Density (RDED)

In this section, we analytically study the cosmological imprints and consequences of having
an extra energy density ρex(a) beyond the standard ΛCDM that dilutes rapidly at a scale
factor ac. Such a dilution may be generated by a phase transition of the underlying particle
model or due to the dynamical properties of the equation of state of the fluid, for example for
quintessence dark energy models. In the latter case, the RDED component can be described
in terms of a scalar field φ , with evolution depending on the choice of a potential V (φ) and
kinetic energy (de la Macorra and Piccinelli, 2000; Steinhardt et al., 1999; Copeland et al.,
2006). Here, we will focus on the implications of this energy component over the background
expansion history and on cosmological distances.

The BDE is a scalar field φ with well defined potential V and kinetic energy Ek (de la
Macorra and Almaraz, 2018; Almaraz and de la Macorra, 2019). Its EoS w = p/ρ = (Ek −
V )/(Ek +V ) behaves as radiation w = 1/3 at early times for a ≤ ac when all the elementary
particles are relativistic but after the phase transition taking place at ac, these elementary
particle form bounds states (e.g. as baryon and meson in QCD) and the potential energy V
dominates (Ek/V ≪ 1), the EoS jumps to w = 1 and the energy density dilutes as ρ ∼ 1/a6.
At a much later time the EoS goes from w = −1 and remains at this value for a long period
of time. Finally the w grows from w =−1 to wo =−0.93 at a transition redshift zc < 2.

The RDED transition has been suggested in the BDE model, by means of a phase transition

51



52 CHAPTER 3. DARK ENERGY MODELS

occurring at early times, well inside the radiation dominated epoch ac ∼ 10−6, affecting
modes k ∼ 1hMpc−1 that are entering the horizon at those times. At a much later time, close
to present day, a second rapid dilution takes place in BDE (de la Macorra and Almaraz, 2018),
where the EoS goes from wi = −1 for z ≫ 1 to w0(z = 0) = −0.93 at present time, with an
intermediate value w(zc) =−0.965 at a redshift zc = 0.625, due to the dynamics of the dark
energy scalar field. We see that BDE contains two epochs encountering a RDED component
one at early times and the second close to the present time.

Alternatively, the late time behaviour of DE has also been investigated in a model inde-
pendent analysis by introducing a phenomenological EoS w(a), modeling a phase transition
with an abrupt change at ac. In this SEOS models (Jaber and de la Macorra, 2018; Jaber-
Bravo et al., 2020) we found a late time transition at zc = 0.28 with w(z ≫ 1) = −1 and
w0 = −0.93, with a lower value of χ2

BAO+H0
compared to ΛCDM, and consistent with the

BDE model. Both BDE and SEOS adjust very well to observations; yet, some Bayesian cri-
teria suggest a better fitting to the data than ΛCDM (de la Macorra and Almaraz, 2018; Jaber
and de la Macorra, 2018).

It is worth to emphasize that we do not consider perturbations of SEOS parametrization
model. The reason is that SEOS is motivated by the late time dynamics of BDE and we found
that the perturbations for the BDE scalar field are subdominant [17]. SEOS generalizes the
late time dynamics of BDE, allowing for late time transitions. The EoS of SEOS contains as
a limiting case (q = 1, zc = 1) the widely used EoS w = w0 +(1−a)wa.

Here we propose as our working hypothesis, and motivated by BDE, to extract generic
properties of having a RDED component in a model independent way. We will add an extra
energy density ρex(a) present for a ≤ ac. The main ingredient in RDED is that the EoS w
increases after transition at scale factor ac wex(a ≤ ac) < wex(a > ac). The value wex must
be larger than the EoS of the leading energy density in the standard model so that ρex/ρsm
dilutes. We will present models with at transition scale factor given by ac at early times
ac ∼ 10−5 and we referred to this case as BDE-like models and at late times just before Dark
Energy starts to dominate defined as SEOS-like models. We assume that after the transition
wex = 1 and ρex dilutes as ρex ∝ 1/a6 in the BDE-like examples and we take a transition from
wex = −1 to a larger value wex ∼ −0.93 in SEOS-like models with a transition at a scale
factor ac = 0.8. These two examples examples are motivated by BDE and SEOS previous
work. Of course other values of wex and transitions scale ac can be taken however the main
conclusion on the effect of RDED remains the same.

We will show that a bump is generated in the power spectrum P(Model)/P(ΛCDM) for
modes k < kc, with kc = acH(ac). We determine the amplitude and width of these bumps at
linear order and first corrections in SPT and compare them to our analytic solutions showing
that the bump is indeed produced and that the amplitude is correlated with the amount of the
diluted ρex however the effect on the Power spectrum differs in early times and late times
RDED.

In the rest of this section and in Sect. III, we present a model independent framework
for RDED, valid when the extra energy density ρex tracks the dominant energy component
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closely before the transition takes place at ac. This allows to study analytically the implica-
tions of having ρex over cosmological distances and the linear matter densities fluctuations
and matter power spectrum. We compare the bumps in section 3.2 and we find good agree-
ments between our simplified analytical developments and those obtained numerically by
introducing them into CAMB.

3.1.1 Analytic Model Independent Analysis
We present a model independent framework of RDED. We consider the standard model of
cosmology and add an extra energy density ρex, that is present only at times before the tran-
sition, a ≤ ac.

The Hubble parameter H ≡ ȧ/a is determined by the Friedman equation

H2
sm(a) =

8πG
3 ρsm, (3.1)

with
ρsm ≡ ρmoa−3 +ρroa−4 +ρΛ (3.2)

the standard model total energy density. The matter density ρm contains CDM and baryons,
ρr are the relativistic particles, i.e. photons and neutrinos which we consider massless, while
ρΛ corresponds to dark energy. The subindex o denotes present time quantities. For scale
factors a ≤ ac, the extra energy density ρex(a) contributes to the total energy density, and
Friedmann equation becomes

H2
smx(a) =

8πG
3 ρsmx =

8πG
3 (ρsm +ρex) . (3.3)

with
ρsmx ≡ ρmoa−3 +ρroa−4 +ρΛ +ρex. (3.4)

Notice that we have used the subscript “sm” to refer to the standard model components, while
the subscript “smx” corresponds to further adding ρex. The amount of extra energy density is
given by

Ωex ≡
ρex

ρsm +ρex
= 1− H2

sm(a)
H2

smx(a)
, (3.5)

which in the radiation dominated epoch can be approximated by

Ωex ≃
Nex β

1+(Nν +Nex)β
, (3.6)

with ρex = βNexT 4
ν , Tν the neutrinos temperature, Nν = 3.046 for three massless neutrinos

and β ≡ (7/8)(4/11)4/3.
A RDED takes place if the EoS of ρex suffers a transition from wc ≡ wex(a ≤ ac) to w f ≡

w(a f > ac)> wc. To have a RDED the value of ∆w ≡ w f −wc > 0 must be positive, while the



54 CHAPTER 3. DARK ENERGY MODELS

width ∆a≡ (a f −ac)/ac sets the steepness of the transition and how fast ρex dilutes compared
to ρsm for a > ac. We define the ratio of energy density for a > ac as

Ω̃ex ≡
ρex

ρsm
=

ρc
ex

ρc
sm

(
a
ac

)3(wc−w f )

(3.7)

Notice that a particle with mass m goes from being relativistic, at early times with T/m ≫ 1,
and hence wc = 1/3, to non-relativistic at late times, such that w f = 0 with ∆w = w f −wc =
−1/3 being negative.
The interesting cases in RDED happen when ∆w is positive, and hence this transition is
beyond the standard model. Such phase transitions can be realized in dynamical scalar fields
(de la Macorra and Piccinelli, 2000; Steinhardt et al., 1999; Copeland et al., 2006), where
one finds examples where the EoS evolves from wc = 1/3 to w f = 1.
Here we consider in BDE-like models, where the transition take place in radiation domination
epoch (ρsm ∝ a−4) and relativistic fluid ρex with wc = 1/3 for a ≤ ac with a transition to o
w f = 1 at ac, i.e. we have for a > ac

Ω̃
r
ex =

ρc
ex

ρc
sm

(
a
ac

)−2

(3.8)

. On the other hand in SEOS-like models, where the transition takes place during dark energy
domination with wc ≃ −1 to w = −0.93 close to the present time we have for a > ac and
3(wc −w f ) =−0.21 <.

In section 4.2, we use a modified version of CAMB to follow the exact evolution of ρex and
we determine the matter and CMB power spectrum and we compare ΛCDM and BDE-like
and SEOS-like models.

A transition due to a RDED taking place at ac modifies Hsm, and henceforth the comoving
angular distance DA, the angular diameter DM = c/H, the acoustic scale at recombination
rs and the diffusion damping scale rd . All these distances are well constrained by CMB
(Planck Collaboration, 2018b), BAO (Anderson et al., 2014; Alam et al., 2016, 2020) and
SNIa (Scolnic et al., 2018) observations allowing us to constrain the cosmological models.
Besides the changes in cosmological distances, the evolution of perturbations will be affected
and we determine the matter and CMB power spectra in section 4.2. In Appendix A we show
examples of scalar fields yielding indeed this type of transition in the EoS.

3.1.2 Impact on Cosmological Distances
Let us now study how an extra energy density ρex, for a ≤ ac and diluting at ac, affects cos-
mological distances. The precise value of the distances requires to be numerically calculated,
however approximated analytic expressions of the cosmological distances give us an simple
understanding on how this ρex modifies them, mainly due to a change in the Hubble parameter
H.
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The sound horizon and damping scale at recombination a⋆ are given by

rs(a⋆) =
∫ a⋆

0

cs da
a2H(a)

, (3.9)

with cs to the sound speed of the photon-baryon plasma,

cs(a) =
1√

3(1+R)
, (3.10)

with R = (3/4)(ρb/ργ) carrying the speed of sound time dependence. An approximate ex-
pression for the damping scale is given by <

r2
d(a⋆) = (2π)2

∫ a⋆

0

da
a3σT neH

[
R2 + 16

15(1+R)
6(1+R2)

]
, (3.11)

with ne the number density of free electrons, σT the Thomson scattering cross-section, and
the factor in between square brackets is due to the directional and polarization dependence of
the electron-photon scattering.

A non-vanishing ρex in the region a ≤ a⋆ will affect the value of the Hubble parameter H,
modifying rs(a⋆) and rd(a⋆), and impacting the CMB and BAO observations, with the caveat
that for BAO measurements one has to consider the drag scale factor adrag ≃ 9.4× 10−4

instead of the recombination scale a⋆ ≃ 1/1090 as the upper integration limit. Cosmological
distances such as the angular diameter distance at recombination

DA(a⋆) =
∫ ao

a⋆

da
a2H(a)

, (3.12)

will not be affected if ac < a⋆. On the other hand, if the transition occurs after recombination
(ac > a⋆), then the acoustic scale, the damping scale and in general cosmological distances,
such as

dL(a) =
1
a

∫ ao

a

da′

a′2H(a′)
, DM(a) =

c
H(a)

, (3.13)

relevant for SNIa and BAO measurements are modified by a non-vanishing ρex in H(a) in
eqs.(3.12) and (3.13).

3.1.3 Ωex constant
Let us present the analytic solution assuming Ωex constant for a ≤ ac, valid if ρex tracks the
leading contribution on H, and Ωex = 0 for a > ac. In this limit we can express

Hsm

Hsmx
=
√

1−Ωex (3.14)
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which is constant. Since all the cosmological distances considered in the previous subsection
the integrand is proportional to 1/H we can then simply obtain the ratio of rs(a) for a ≤ ac
in the two models as

rsmx
s (ac) ≡

∫ ac

0

cs da
a2Hsmx

=
∫ ac

0

(
Hsm

Hsmx

)
cs da

a2Hsm

=
√

1−Ωex

∫ ac

0

cs da
a2Hsm

, (3.15)

and express it in terms of rsm
s (ac) to obtain

rsmx
s (ac)

rsm
s (ac)

=
√

1−Ωex, (3.16)

such that the acoustic scale at the transition scale is suppressed by the presence of the extra
density component. Similar equations hold generally for cosmological distances,

Dsmx(ac) =
√

1−Ωex Dsm(ac). (3.17)

Of course, these results are valid as long as Ωex remains constant which requires ρex to track
(i.e. to have the same equation of state) as the leading energy density in Hsmx, which is a
reasonable working hypothesis. If ρex dilutes faster than the background it will have little or
no effect, meanwhile if ρex dominates H it will be ruled out by observations.

Region with ac < a⋆

Here we will study the model when ac < a⋆. In this case we can distinguish two scenarios
having ac < aeq or aeq < ac < a⋆. In the first case let us consider for simplicity and pre-
sentation purposes that the Universe is dominated by radiation and we consider cs constant.
The quantity ∆rs(a⋆) ≡ rsmx

s (a⋆)− rsm
s (a⋆) can be divided in two integrals from ai to ac and

from ac to a⋆. The second integration will cancel since both terms in ∆rs(a⋆) have the same
integrand for ac ≤ a ≤ a⋆ and we than have

∆rs(a⋆) = ∆rs(ac) (3.18)

where the r.h.s of Eq. (3.18) is evaluated from ai ≤ a≤ ac, with ∆rs(ac) = rsmx
s (ac)−rsmx

s (ac).
Using Eq. (3.16) we simply get

∆rs(a⋆)
rsm

s (a⋆)
=

∆rs(ac)

rsm
s (a⋆)

=
(√

1−Ωex −1
)( rsm

s (ac)

rsm
s (a⋆)

)
. (3.19)

We see that ∆rs(a⋆) ̸= 0 due to the contribution of Ωex. On the other hand for ac < a⋆ the
angular diameter distance DA(a⋆) is not affected by Ωex and we have

∆DA(a⋆) = Dsmx
A (a⋆)−Dsm

A (a⋆) = 0. (3.20)
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Region with a⋆ < ac

We consider now a transition for ac > a⋆ with Ωex constant. The ratio of acoustic scale rs is

rsmx
s (a⋆)
rsm

s (a⋆)
=
√

1−Ωex, (3.21)

while for the angular distance we get

Dsmx
A (a⋆) =

∫ ac

a⋆

da
a2Hsmx

+
∫ ao

ac

da
a2Hsm

(3.22)

=
√

1−Ωex

∫ ac

a⋆

da
a2Hsm

+
∫ ao

ac

da
a2Hsm

.

We compare Dsmx
A (a⋆) with Dsm

A (a⋆) by taking their difference, ∆DA(a⋆)≡Dsmx
A (a⋆)−Dsm

A (a⋆),
yielding

∆DA(a⋆) =
(√

1−Ωex −1
)∫ ac

a⋆

da
a2Hsm

=
(√

1−Ωex −1
)

DA(ac) (3.23)

which is negative for Ωex ̸= 0; and therefore, we see that Ωex reduces Dsmx
A (a⋆) compared to

Dsm
A (a⋆).

3.2 Signatures of a RDED on Matter Density Perturbations

We will now study the impact of a RDED model on structure growth and the signals it leaves
in the matter power spectrum. We will show that modes entering the horizon before the
RDED transition takes place at ac will grow faster for a non-vanishing ρex. This growth
generates a bump in the linear matter power spectrum, easily noticeable by taking the quotient
of the spectra of models with and without the RDED component. We emphasize that we
assume, as in the previous section, that ρex tracks the dominant energy component at the time
it dilutes.

The bump is located for wave-vectors with k ≥ kc, corresponding to modes entering the
horizon at a scale factor a ≤ ac with an associated mode

kc ≡ acH(ac). (3.24)

Let us now consider the linear evolution of matter densities δm in our two models; that we
will refer for notational simplicity, as X for the smx model, and Λ for the standard model
sm. The effect of having extra particles ρex impacts the amplitude of the energy density
perturbation δm(ah) = δρm(ah)/ρm(ah), the scale factor at horizon crossing (ah) for the same
mode k (i.e. k = aX

h H(aX
h ) = aΛ

h H(aΛ
h )) and the subsequent evolution.



58 CHAPTER 3. DARK ENERGY MODELS

3.2.1 Linear density evolution: Outside Horizon
Outside the horizon the amplitude of the density modes k remain constant, but once they enter
the horizon they start to grow. The ratio at horizon crossing is Ma and Bertschinger (1995)

δ X
m (aX

h )

δ Λ
m (aΛ

h )
=

1+ 4
15 f Λ

ν

1+ 4
15 f X

ν

, (3.25)

where

f Λ
ν =

ρΛ
eff

ργ +ρΛ
eff
, ρ

Λ
eff = ρν , (3.26)

f X
ν =

ρX
eff

ργ +ρX
eff
, ρ

X
eff = ρν +ρex. (3.27)

account for the relativistic particles contribution. Since f Λ
ν / f X

ν ≤ 1 one has a lower amplitude
for smx model δ X

m (aX
h )≤ δ Λ

m (aΛ
h ).

A fixed mode k that crosses the horizon in the Λ model at the scale factor aΛ
h , given by

k = aΛ
h HΛ(aΛ

h ), would otherwise enter the horizon in the X model at a scale factor aX
h , given

by k = aX
h HX(aX

h ). Therefore, we get

aX
h

aΛ
h
=

HΛ(aΛ
h )

HX(aX
h )

=

√
1− f Λ

ν

1− f X
ν

=
1√

1−Ωex
. (3.28)

Notice that the presence of an extra ρex component provokes a mode k to enter the horizon
at a later time aX

h > aΛ
h with HΛ(aΛ

h ) > HX(aX
h ). At horizon crossing modes with k > kc in

X and Λ models have a relative scale factor at horizon crossing given by eq.(3.28) aX
h /aΛ

h =
1/

√
1−Ωex > 1. Modes in the X model cross the horizon a later time and have therefore

less time to grow and it is reflected as an early suppression in ∆δm. However, after the
initial suppression at horizon crossing the matter perturbations in the X model have a higher
growing rate than in the ΛCDM model that not only compensates but also reverses the initial
suppression.

3.2.2 Linear Matter density evolution: transition at early times in radi-
ation domination

To gain physical intuition on how the rapid diluted dark energy component affects matter
density fluctuations well inside the radiation dominated epoch we analyze a simplified version
of the equations (ultimately all these quantities will be computed using the code CAMB). To
this end, let us solve δ ′′

m+H δ ′
m = 0 where a prime means derivative with respect to conformal

time τ and H = aH is the conformal Hubble rate. The solution is

δ
′
m(τ) =

τi

τ
=

aH
aiHi

(3.29)
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with initial condition 1/τi = Hi = aiHi at some pivotal scale ai, which can be taken as ac.
We can see that for a < ac we have an increase rate for δm for ρex > 0 and it ceases for modes
entering the horizon for a > ac. Therefore the increase takes place only for modes k ≥ kc,
while modes with smaller k enter the horizon after the RDED dilution has taken place and
both models have the same expansion rate and evolution of matter perturbations.

Alternatively, we find convenient to present the evolution in terms of the scale factor, the
solution for δm is simply a logarithmic function —the Mezsaros effect— δm(a) = δmi +
(δ ′

mi/k) ln(a/ah) with initial conditions δ
′
mi/ki = 2δmi, giving

δ
X
m (a) = δ

X
mi
(
ln(a/aX

h )+1/2
)
, (3.30)

δ
Λ
m (a) = δ

Λ
mi

(
ln(a/aΛ

h )+1/2
)
. (3.31)

This enhancement can be semi analytically estimated in terms of the dilution of the extra
component ρex after ac. For simplicity we assume that the dilution takes place at ac and
therefore H contains the extra relativistic particles (we name it HX

+) for a ≤ ac while HX
− for

a > ac does no longer have them. This change is reflected in the value of initial condition
δ ′

m = τi/τ where we can take the initial condition at ai = ac with τi− = 1/H X
− = 1/(acHX

−),
τi+ = 1/H X

+ = 1/(acHX
+) and a ratio τi−/τi+ = HX

+/HX
− . We obtain then

δ
X
m (a) = δ

X
mi
[
ln(ac/aX

h )+(HX
+/HX

−)ln(a/ac)+1/2
]

(3.32)

for a > ac with
HX
+

HX
−
=

1√
1−Ωex

. (3.33)

To easily compare Eq. (3.32) to Eq. (3.31) we write ac/aX
h = (ac/aΛ

h )(a
Λ
h /aX

h )

δ
X
m (a) = δ

X
mi

[(
HX
+

HX
−

)
ln
(

a
ac

)
+ ln

(
ac

aΛ
h

aΛ
h

aX
h

)
+

1
2

]
(3.34)

and leads to a ratio ∆δm = δ X
m /δ Λ

m

∆δm =
δ X

mi

δ Λ
mi

[(
HX
+

HX
−

)
ln
(

a
ac

)
+ ln

(
aΛ

h
aX

h

)
+ ln

(
ac
aΛ

h

)
+ 1

2

]
ln
(

a
ac

)
+ ln

(
ac
aΛ

h

)
+ 1

2

, (3.35)

with ac/aΛ
h = k/kc (k = aΛ

h HΛ(aΛ
h )) and aΛ

h /aX
h , HX

+/HX
− given in Eqs. (3.28) and (3.33),

respectively. Equation (3.35) is valid for a > ac and k > kc. From Eq. (3.35) we see an
increase of ∆δm which tends to δ X

mi/δ Λ
mi for k ≫ kc, while the enhancement is

δ X
m

δ Λ
m

=
δ X

mi

δ Λ
mi

HX
+

HX
−

(3.36)
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for a ≫ ac. Since HX
+/HX

− > 1 we see that the linear matter perturbation δm in radiation
domination grows faster for ρex > 0. The bump is generated because the linear growth δm(k)
has a higher increase rate in radiation domination for larger H, as seen from δ ′

m = τi/τ =
H /Hi ∝ aH. This increase is only valid for modes k ≥ kc while for mode k < kc both
models have the same H and the evolution of δm(k) is the same in both cases. This explains
why a RDED model shows a bump compared to ΛCDM. The amplitude of the bump is related
to the amount of ρex while the width and steepness of the bump are determined by how fast
the RDED transition takes place and can be parametrized phenomenological by the quantities
∆a = (a f − ac)/ac and ∆w = w f −wc. The modes k < kc that enter the horizon after ac are
not affected by the extra energy density ρex dilution, for these modes we have HX

+ = HX
− and

aX
h = aΛ

h . The final shape of the matter power spectrum is a combination of the present value
of δm determined by the dynamical processes described in this section and the fitting values
of ns and As which define the primordial spectrum Ps. Here we consider the same Ps in sm
and smx models.

Matter Power Spectrum: Transition at early times in radiation domination

Let us now estimate the amplitude and width of the bump generated by the RDED in radiation
domination and we will compare with the numerical simulations obtained from CAMB and
shown in table 4.1.

We take Ω̃ex defined in eq.(3.7) and with an EoS wex(ac) = 1/3 for a ≤ ac and wex = 1 for
a > ac. In the region a ≥ ac we have then

Ω̃ex(a)≡
ρex

ρsm
≃ ρex

ρr
= Ω̃

c
ex

(
a
ac

)−2

(3.37)

and we find convenient to express HX as

HX(a) = HΛ(a)
√

1+ Ω̃ex(a). (3.38)

since ρsmx/ρsm = 1+ρex/ρsm. Hence, since the primordial power spectra of the two models
is assumed to be the same, we have

RT
L ≡ PX(k,a)

PΛ(k,a)
=

(
δ X

m

δ Λ
m

)2

=

(
δ X

mi

δ Λ
mi

)2(HX

HΛ

)2

(3.39)

=

(
δ X

mi

δ Λ
mi

)2(
1+ Ω̃ex(a)

)
. (3.40)

we see that the ratio of power spectra PX/PΛ are proportional to Ω̃ex(ac) and the largest
ratio is for the mode k ∼ kc. Since for a ≫ ac the amount of Ω̃ex dilutes rapidly we expect
the ratio of power spectra to diminish. For simplicity we take the same initial condition
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at horizon crossing δ X
mi = δ Λ

mi. We will define the value of kmin and amin at an arbitrary
minimum ratio RT

L = PX(k,a)/PΛ(k,a) which we take as RT
L = 1.01 or equivalently a value

of Ω̃ex = 0.01, corresponding to a 1% difference between in the power spectra amplitude of
these two models. Of course other values of Ω̃ex and RT

L may be used as references.
Let is now take the ratio of the two modes kc = acH(ac) and kmin = aminH(amin). The ratio

kc/kmin sets the width of the bump with ∆k = kc − kmin = kc(1− kmin/kc) with kc the largest
value. We find

kmin

kc
=

amin

ac

HX
min

HX
c

=
amin

ac

HΛ
min

HΛ
c

√
1+ Ω̃ex(amin)

1+ Ω̃ex(ac)

=

√
Ω̃ex(amin)

Ω̃ex(amin)

√
1+ Ω̃ex(ac)

1+ Ω̃ex(ac)
(3.41)

where we have used eqs.(3.38) and that in radiation domination a2
minHΛ

min = a2
cHΛ

c giving

(
ac

amin

)1/2

=
amin

ac

HΛ
min

HΛ
c

=

(
Ω̃ex(amin)

Ω̃ex(ac)

)1/2

. (3.42)

The results and values for different modes kc and amplitudes are shown in table 4.1. We
compare our theoretical estimation with a full CMB implementation of our models and we
find a very good agreement.

3.2.3 Linear Matter density evolution: Transition in Dark Matter dom-
ination

Let as now consider the case when a RDED transition takes place during matter domination
and we add an extra energy density ρex that evolves as matter. The RDED takes place at ac
and ρex evolves from ρex ∝ a−3 for a < ac to ρex ∝ a−6 for a > ac diluting rapidly.
We assume the same amount of matter ρm in both models sm and smx but since in this case
ρex evolves also as matter the total amount of matter becomes

ρ
X
m = ρm +ρex, ρ

Λ
m = ρm (3.43)

and with a energy density ratio

Ω
X
m ≡ ρm +ρex

ρsmx
, Ω

Λ
m =

ρm

ρsm
, (3.44)

with ρsm and ρsmx defined in eqs.(3.2) and (3.4) respectively, and

Ω̃ex(a)≡
ρex(a)
ρsm(a)

=
ρex(a)

ρm(a)+ρr(a)+ρΛ(a)
. (3.45)
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The quotient of Ωm is

ΩΛ
m

ΩX
m
=

(
ρm

ρm +ρex

)(
HX

HΛ

)2

=
1+ Ω̃ex

1+ρex/ρm
(3.46)

with a the ratio of H given by

(HX)2

(HΛ)2 =
ρm +ρr +ρΛ +ρex

ρm +ρr +ρΛ

= 1+ Ω̃ex. (3.47)

In matter domination the evolution of the linear matter density perturbations is proportional
to the scale factor a and in the sm model we have

δ
Λ
m (a) = δ

Λ
mi

(
a

aΛ
h

)
. (3.48)

In the smx model the linear evolution of δ X
m is impacted by the transition of ρex at ac. Here,

for presentation purposes we assume as in section 3.2.2 a step transition of Ω̃ex at ac with
Ω̃ex(a ≥ ac) vanishing. Of course the numerical implementation of the evolution in CAMB

has a smooth transition Ω̃ex at ac. This transition can be estimated at ac by the RDED of ρex
with (a−c /a+c ) = (HX

+(ac)/HX
−(ac))

2/3 = (1+Ωex(ac))
1/3 and Ωex(a > ac) = 0. The evolu-

tion of the linear matter density perturbation is than given by

δ
X
m (a) = δ

X
mi

(
a

aX
h

)
= δ

X
mi

(
a+c
aX

h

)(
a−c
a+c

)(
a

a−c

)
= δ

X
mi

(
HX
+(ac)

HX
−(ac)

)2/3( a
aX

h

)
(3.49)

= δ
X
mi

(
1+ Ω̃ex(ac)

)1/3
(

a
aX

h

)
. (3.50)

Of course the value of the scale factor at ac does not vary, it is just the scale where HX(ac) is
impacted by the RDED of ρex.

Matter Power Spectrum: transition in matter domination

We will now determine the matter power spectrum and determine the observational conse-
quences of a late time transition. For that purposes we compare δm = δρ/ρ for the same
mode k, with k = aX

h HX
c (a

X
h ) = aΛ

h HΛ
c (a

Λ
h ), obtaining

aX
h

aΛ
h
=

HΛ(aΛ
h )

HX(aX
h )

= 1+ Ω̃ex(aX
h ), (3.51)
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which shows that modes in the smx model enter the horizon at a later time than in the sm
model. For modes entering the horizon well before the matter-radiation equality Ω̃ex(aX

h )≪
1, since in radiation ρr dominates ρsmx with ρex ≪ ρr, while modes k < kc entering the horizon
after the transition ac have Ω̃ex(aX

h ) = 0 due to the RDED of ρex(a), i.e. ρex(a) = 0 for a > ac.
Let us now estimate now the matter power spectrum, assuming the same primordial power
spectrum Ps in both sm and smx models. The ratio of power spectra PX(k,a)/PΛ(k,a) =
(δ X

m (k,a)/δ Λ
m (k,a))2 is

PX(k,a)
PΛ(k,a)

=

(
δ X

mi

δ Λ
mi

)2
(

aΛ
h

aX
h

)2(
1+ Ω̃ex(ac)

)2/3

=

(
δ X

mi

δ Λ
mi

)2
(

1+ Ω̃ex(ac)
)2/3(

1+ Ω̃ex(aX
h )
) (3.52)

where we have used eqs.(3.48), (3.50) and (3.51). The term coming from eq.(3.51) is an over-
all suppression due to extra particles at horizon crossing while the term eq.(3.50) corresponds
to an enhancement of the matter power spectrum due to the RDED of ρex at ac.
The relative amplitude in the power spectra in eq.(3.52) is determined by the extra energy
density Ω̃ex(ac) at the transition ac and at the time of horizon crossing Ω̃ex(aX

h ) for the differ-
ent modes k. The evolution of Ω̃ex(a) given in eq.(3.62) and plotted in figure 4.3 shows that
Ω̃ex(a) peaks at a= ac, while for a≪ ac and for a> ac the amount of Ω̃ex is subdominant and
tends to vanish. In a steep RDED transition we can approximate Ωex(a) = 0 for a > ac. Large
modes k < kc enter the horizon at late times with a > ac, Ω̃ex(a > ac) = 0 and Ω̃ex(aX

h ) = 0.
Therefore there is no enhancement in the power spectrum, PX(k,ao)/PΛ(k,ao) = 1 for k < kc,
which is verified by the numerical implementation shown in Fig. 4.6. On the other hand
small modes k > kc, enter the horizon before at ac (i.e. aX

h < ac) and we have a reduction in
the ratio power spectra in eq.(3.52) due to the suppression from horizon crossing determined
by Ω̃ex(aX

h )> 0 and a boost due to the RDED of Ω̃ex(ac) at ac. To conclude we find the ratio
of power spectra PX(k,ao)/PΛ(k,ao) shows an increase for modes k > kc due to the extra
amount of matter ρex(a > ac) but there is no increase for modes k < kc.

We define the width of the bump from the transition mode kc to the maximum of the bump
in PX(kb,a0)/PΛ(kb,a0) defined by the mode kb. Following the same steps as in section 3.2.2
we determine the width of the bump δk = kc − kb by taking the ratio kc/kb is in this case

kb

kc
=

ab

ac

HX
b

HX
c
=

ab

ac

HΛ
b

HΛ
c

√
1+ Ω̃ex(ab)

1+ Ω̃ex(ac)

≃

(
Ω̃ex(ab)

Ω̃ex(ac)

)1/6√
1+ Ω̃ex(ab)

1+ Ω̃ex(ac)
(3.53)
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where we have approximated ab/ac in eq.(3.53) by

(
ac

ab

)1/2

=
ab

ac

HΛ
b

HΛ
c
=

(
Ω̃ex(ab)

Ω̃ex(ac)

)1/6

. (3.54)

valid in matter domination.

3.2.4 Linear Matter density evolution:
transition at late times in dark energy domination

Let us now consider the case where the RDED takes place at late times. The evolution of the
linear matter density perturbations are well described by the ansatz

f ≡ d logδm

d loga
= Ω

γ
m(a) (3.55)

where γ ≃ 0.55 in a ΛCDM model. In the regime where Ωm constant the solution to Eq. (3.55)
is just

δ
X
m (a) = δ

X
mi

(
a

aX
h

)(ΩX
m)

γ

(3.56)

δ
Λ
m (a) = δ

Λ
mi

(
a

aΛ
h

)(ΩΛ
m)

γ

. (3.57)

However we do not expect Ωm to be constant. Still equations (3.57) are a good approximation
as we will see by comparing our results with the numerical implementation. The amount of
extra energy density is given by

Ω̃ex(a)≡
ρex(a)
ρsm(a)

≃ ρex(a)
ρm(a)+ρΛ(a)

. (3.58)

The transition takes place at late times during dark energy domination and is not due to
an additional fluid but corresponds to the distinctive evolution of a cosmological constant
with wΛ ≡ −1 and a dynamical dark energy with w(a), as for example in BDE model (Al-
maraz and de la Macorra, 2019; de la Macorra and Almaraz, 2018) or quintessence models
(Zlatev et al., 1999; Steinhardt et al., 1999; de la Macorra and Piccinelli, 2000), (de la Ma-
corra and Stephan-Otto, 2002; de la Macorra, 2005; De la Macorra, 2003) and the review
work(Copeland et al., 2006). The evolution of ρde(a) is a time dependent quantity given by

ρde(a) = ρΛ e
∫ a

ao da3(1+w(a)) (3.59)
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with ρde(ao) = ρΛ and ρΛ =Λ4 the cosmological constant. We define ρex(a) as the difference
between DE and the cosmological constant,

ρex(a) = ρde(a)−ρΛ = ρΛ

(
e
∫ a

ao da3(1+w(a))−1
)

(3.60)

giving ρex(ao) = 0. In this case we have

Ω
X
m =

ρm

ρm +ρex +ρΛ

, Ω
Λ
m ≡ ρm

ρm +ρΛ

(3.61)

with
ΩΛ

m
ΩX

m
=

(HX)2

(HΛ)2 =
ρm +ρΛ +ρex

ρm +ρΛ

= 1+ Ω̃ex. (3.62)

Matter Power Spectrum:
transition at late times in dark energy domination

We will now determine the matter power spectrum and determine the observational conse-
quences of a late time transition. For that purposes we will compare δm = δρ/ρ for the same
mode k, with k = aX

h HX
c (a

X
h ) = aΛ

h HΛ
c (a

Λ
h ) and assuming for simplicity and presentation pur-

poses that modes enter in matter domination with HΛ
c (a

Λ
h ) = HΛ

c (a
X
h )(a

X
h /aΛ

h )
3/2 we obtain

aX
h

aΛ
h
= 1+ Ω̃ex(aX

h ) (3.63)

showing that modes in SEOS-like model enter later than in ΛCDM. We estimate the matter
power spectrum, assuming the same Ps in both models using eqs.(3.56) and (3.57) we get
PX(k,a)/PΛ(k,a) = (δ X

m (k,a)/δ Λ
m (k,a))2 with

PX(k,a)
PΛ(k,a)

=

(
δ X

mi

δ Λ
mi

)2
(

aΛ
h

aX
h

)2(ΩX
m)

γ (
a

aΛ
h

)2((ΩX
m)

γ−(ΩΛ
m)

γ )

(3.64)

with

(ΩX
m)

γ − (ΩΛ
m)

γ = (ΩX
m)

γ

(
1−
(

ΩΛ
m

ΩX
m

)γ
)

(3.65)

with ΩΛ
m/ΩX

m given in eq.(3.46) for a ρex model with a transitions in matter domination and
as in eq.(3.62) for a transition in dark energy domination.

For Ω̃ex ≪ 1 we have (1 + Ω̃ex)
γ = 1 + γ Ω̃ex + O(Ω̃2

ex). Notice that Ω̃ex(a0) = 0 and
ΩX

m(a0) = ΩΛ
m(a0) = Ωm(a0) and therefore we have an overall suppression in of the power
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spectra for all modes with

PX(k,a0)

PΛ(k,a0)
=

(
δ X

mi

δ Λ
mi

)2
(

aΛ
h

aX
h

)2(Ωmo)
γ

(3.66)

=

(
δ X

mi

δ Λ
mi

)2(
1+ Ω̃ex(aX

h )
)−2(Ωmo)

γ

. (3.67)

This overall suppression is due to dynamical dark energy compared to a cosmological con-
stant and here we studied this effect by means of an effective energy density ρex defined in
eq.(3.60) which takes into account the difference between DE and the cosmological constant.

Let us now study the effect of RDED of ρex. In this case we will simplify the analysis
and we will consider that ρex vanishes at a given scale defined here by the transition scale
factor aT with ρT

ex ≡ ρex(aT ) and ρex(a) = 0 for a > aT . The transition scale aT may coincide
with ac but in SEOS model this is not necessarily the case. Let is take the evolution of the
perturbations as

δ̃
X
m (a) = δ

X
mi

(
aT

aX
h

)(ΩX
m)

γ (
a

aT

)(Ω̃X
m)

γ

(3.68)

δ
X
m (a) = δ

X
mi

(
aT

aX
h

)(ΩX
m)

γ (
a

aT

)(ΩX
m)

γ

. (3.69)

and the power spectrum becomes

RT X
L (a)≡ P̃X(k,a)

PX(k,a)
=

(
a

aT

)2[(Ω̃X
m)

γ−(ΩX
m)

γ ]

(3.70)

where Ω̃X
m has ρex = 0 (i.e. Ω̃X

m = ΩΛ) and

χ ≡ (Ω̃X
m)

γ − (ΩX
m)

γ = (ΩX
m)

γ

([
1+ Ω̃ex(aT )

]γ

−1
)
. (3.71)

is evaluated at aT with Ω̃ex(aT ) = ρex(aT )/(ρm(aT )+ρΛ). From eq.(3.70) we clearly see that
χ > 1 and a bump, an increase in the power spectrum, is indeed generated due to the RDED.
We determined the hight of the bump in terms of the extra energy density Ω̃ex and let us know
determine the width of the bump. For definiteness will defined the width of the bump from
the transition mode kc to a kmax > kc corresponding to an arbitrary mode where the increase
in the power spectrum is only 1% i.e. P̃X(k,a0)/PX(k,a0) = 1.01.

Following the same steps as in section 3.2.2 we determine the width of the bump δk =
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kc − kmax by taking the ratio kc/kmax is in this case

kmax

kc
=

amax

ac

HX
max

HX
c

=
amax

ac

HΛ
max

HΛ
c

√
1+ Ω̃ex(amax)

1+ Ω̃ex(ac)

≃

(
Ω̃ex(amax)

Ω̃ex(ac)

)1/6√
1+ Ω̃ex(amax)

1+ Ω̃ex(ac)
(3.72)

where we have approximated amax/ac in eq.(3.72)

(
ac

amax

)1/2

=
amax

ac

HΛ
max

HΛ
c

=

(
Ω̃ex(amax)

Ω̃ex(ac)

)1/6

. (3.73)

valid in matter domination. Of course if the transition takes place when Dark Energy is no
longer subdominant a numerical estimation of ac/amax should no be used.



68 CHAPTER 3. DARK ENERGY MODELS



Chapter4

RAPIDLY DILUTED ENERGY DENSITY
(RDED) AND ITS IMPACT COSMO-
LOGICAL IN THEMATTER AND TEM-
PERATURE POWER SPECTRUM

Abstract

Models beyond of the ΛCDM model that involve a rapid dilution at early times predict ob-
servational imprints, such as bump-like features in the power spectrum. These models with a
extra energy density ρex, motivated by phase transitions of the underlying elementary parti-
cles, dilutes at a scale factor ac with a corresponding mode kc = acH(ac) crossing the horizon
at that time. The effect of such a phase transition leaves characteristic signatures in the Uni-
verse both in the expansion history, with a clear impact on the cosmological distances, as
matter and CMB power spectra, which can be observed with current and future precision
cosmological data. We find a bump in the matter power spectrum compared to the standard
ΛCDM. We identify the amplitude, width, and time scale of the bump to the physical proper-
ties of the rapidly diluted density energy (RDED). We study these effects with linear theory,
standard perturbation theory, and the correlated impact on cosmological distances, allowing
for independent measurements of these extensions of the standard ΛCDM model. To gener-
ate the distinctive imprint, we use different models that work at early times well inside the
radiation domination epoch, during matter domination or at late times when dark energy is
the main component.

This chapter is adapted from its corresponding publication, "Cosmological signatures of a
rapid diluted energy density. Axel de la Macorra, Dante V. Gomez-Navarro, Jorge Mastache,

69
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Alejandro Aviles, Mariana Jaber, and Erick Almaraz. Phys. Rev. D 104, 023529 – Published
28 July 2021".

4.1 Introduction

Models beyond ΛCDM have been proposed for plausible explanations of the dark sector,
both dark matter and dark energy, since the standard model of cosmology suffers theoretical
and observational issues. For instance, models that introduces extra particles that modify the
background evolution, cosmological distances, and density perturbations with a clear impact
on structure formation. In this work, we consider phase transition in the dark sector generat-
ing characteristic signatures, from now on "bumps", in the matter power spectrum for modes
entering the horizon around the phase transition time. We study the cosmological features of
having an extra component in the Universe, ρex(a) that rapidly dilutes, faster than radiation
components, at a scale factor ac. We refer to such component as Rapid Diluted Energy Den-
sity (RDED). Different cosmological models are characterized by a RDED, like the Bound
Dark Energy model (BDE) (Almaraz and de la Macorra, 2019; de la Macorra and Almaraz,
2018), where the original elementary particles (e.g quarks) form neutral massive bound states
and the lightest scalar field corresponds to dark energy. We can also study the dynamics of
the dark energy with a steep equation of state (SEOS) (Jaber and de la Macorra, 2018). The
functional form of SEOS is motivated by the late time evolution of the BDE scalar field. In
this work, we use the SEOS model as a parameterization for dark energy evolution. At the
background level, the SEOS is characterized by an EoS that is always close to −1, we further
assume that its perturbations are adiabatic and do not have anisotropic stresses, so we can
safely neglect its perturbations inside the horizon, as it is shown in (de la Macorra and Al-
maraz, 2018; Almaraz and de la Macorra, 2019).. We consider also the situation when the di-
lution takes place in matter-dominated era, where we introduce extra cold dark matter ρex(a)
for a ≤ ac and we implement a RDED transition at ac rendering ρex(a) ∝ 1/a6 for a > ac.
To generate these distinctive imprints, we use three different transition epochs (zc = 10,100
and 1000) and with two distinct amount of matter, given by ρex(ac) = 0.10ρcdm(ac) and
ρex(ac) = 0.05ρcdm(ac) as a fraction of the CDM density. The expansion rate of the Universe
is affected by the RDED transition due to the change in the total energy density, consequently
modifying the cosmological distances and the evolution of perturbations generating charac-
teristic features in the matter and temperature spectra (Calabrese et al., 2011; Pogosian et al.,
2005; Almaraz et al., 2020; Jaber-Bravo et al., 2020). The RDED transition affects the linear
density perturbations for modes crossing the horizon just before the dilution takes place. The
matter perturbations are enhanced for k ≥ kc ≡ acH(ac), due to the expansion of rate in the
RDED-like models is greater than ΛCDM, and consequently is reflected in a higher growth
rate of matter perturbations in the radiation-dominated epoch generating a bump in the mat-
ter power spectra, when we take the ratio PRDED(k)/PΛCDM(k). We identify the amplitude,
width, and timescale of the bump to the physical properties of the transition: the amplitude
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becomes related to the amount of extra energy density ρex that dilutes, while its width, to the
duration of this transition (i.e., how many modes are affected). Timescale becomes related
to when the RDED transition takes place in a radiation- matter-, or dark energy-dominated
universe. We note that modes with k < kc do not share this increase since the amount of
energy density and background evolution are the same as in ΛCDM. We consider the extra
energy density to evolve as the dominant energy density component just before the RDED
transition. To study the cosmological signatures, we will consider the effect of RDED at
three different epochs: radiation, matter or dark energy domination. We implement these
models with the Boltzmann code CAMB1 (Lewis et al., 2000), varying the abundance of the
RDED and duration of the transition to generating bumps with different shapes. We also refer
the early times models as BDE-like when the transition takes place in radiation domination
epoch, DMx-like when the dilution takes place at matter-dominated era, and as SEOS-like
models when they take place at late times. In all the three cases we consider that the extra
component redshifts as the leading energy density component at the time of the transition. A
similar bump is generated in the three cases. We derive an approximated analytic solution of
the RDED bumps in the matter power spectrum and we compare the amplitude and width to
the numerical implementation in CAMB. We then follow up on these features through 1-loop
Standard perturbation theory (SPT) computations. The bumps in the BDE-like models are
located at nonlinear scales, extending at linear scales, hence a treatment within SPT is reli-
able over a small interval of its full range, and we observe an boost of their amplitude and
shift of their peaks toward smaller scales. Otherwise, the transition for the model SEOS-like
occurs at very late times and henceforth the signatures are located at very large scales and are
not affected by non-linearities. The RDED in matter domination has two different effects in
the matter power spectrum. First, the growth rate of matter density increases due to the extra
matter component at times before the transition, and, second, we have an increase due to the
RDED after the transition. These two features coincide with BAO oscillations but neverthe-
less we distinguish the growth from all these sources. This chapter is organized as follows:
in Sec. 3.1 we present the features to the expansion rate and the cosmological distances due
to the extra energy density. In Sec. 3.2 we show how the evolution of energy density pertur-
bations change due to the RDED and how it is reflected in the matter power spectrum P(k).
We present our results and details for the different models of study in Sec. 4.2. Finally, the
conclusions are in Sec. 4.4.

4.2 Cosmological signatures: Numerical Results
In the previous chapter, we studied analytically cosmological models with a transition. Let
us now examine numerically the RDED in radiation domination (BDE-like models), matter
domination (DMx models) or dark energy domination (SEOS-like models) epochs as exam-
ples to generate bumps at different times and scales. We use a modified version of the code

1http://camb.info/

http://camb.info/
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Figure 4.1: Evolution of densities and their corresponding amount of extra energy den-
sity. Evolution of densities of different components for BDE (solid curves) and the standard
ΛCDM model (dashed curves). The left panel shows the dynamical dark energy density (red
curve) of BDE-I model with a dilution at ac = 2.37× 10−5 when it contributes ≈ 11% to
the total density. Its contribution quickly decreases after that. The right panel shows the
amount of extra energy density for BDE models described in Table 4.1. Solid blue are for
BDE-I; dashed red are for BDE-II; dash-dotted green are for BDE-III; dotted magenta are for
BDE-IV; solid cyan are for BDE-V; and dashed yellow are for BDE-VI. The vertical lines
represent the transition redshift for each model. We note that in the BDE models we have
different transitions for each model (see Table 4.1).

CAMB to produce the linear matter spectra and the different multipoles of the matter power
spectrum and CMB power spectrum for transition at early times (radiation domination), mat-
ter domination and late time (dark energy domination). For all the runs, we have used a
flat Universe with Ωbh2 = 0.0223, Ωch2 = 0.1188, h = 0.6775, τ = 0.066, ns = 0.9667, and
ln(10As) = 3.0643, this corresponds to best parameter fit for BDE model using Planck data
<. In SEOS-like models we keep the same amount of matter Ωmh2 = 0.1411 for all models
but we vary h = 0.80,0.68,0.60 giving the different amounts of Ωm(ac) and ΩΛ(ac). How-
ever, for models in matter domination we use Ωmh2 = 0.1434, h = 0.6727 from Planck 2018
(TT,TE,EE+low E).
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Figure 4.2: Linear matter power spectrum transition in radiation domination. The ratio
PBDE/PΛCDM for different BDE models at z = 0. Solid blue are for BDE-I; dashed red are for
BDE-II; dash-dotted green are for BDE-III; dotted magenta are for BDE-IV; solid cyan are
for BDE-V; and dashed yellow are for BDE-VI.

4.2.1 Early times Modes: transition in radiation domination

In this section we focus on phase transitions occurring at early times, which are inspired
by BDE and EDE models. In this case, the modes affected have wave-vectors k > keq. In
table 4.1 we show the models we analyse by specifying them by a choice of kc ≡ acH(ac),
Ωc

ex ≡ Ωex(ac). The evolution of energy densities of the different components as a function of
the scale factor is plotted in the left panel of Figure 4.1. The contribution of extra relativistic
energy density ρex(a) is indicated by red. We clearly note the transition at ac = 2.37×10−5

and the rapid dilution of Ωex for a > ac. The right panel shows the six different BDE models
given in Table 4.1). We took two different modes kc with three different abundances Ωex
in each case. The value of kc and the amount of Ωex and kc determines the value of ac. We
notice that Ωex is constant for a < ac, and after ac a steep phase transition takes place with ρex
scaling as ρ ∝ a−6 and disappears, e.g. by factor of Ωex ∝ (a/ac)

−2 ∼ 1/100 at a/ac = 10
in all the models. The six BDE models, shown in the right panel, differ from each other
by the dilution epoch (ac) and the amount of extra components at the transition (Ωc

ex). For
instance, BDE-I and BDE-IV have the same amount of extra relativistic particles, but dilution
occurs at different epoch 2.37×10−5 and 1.17×10−5, respectively. Similarly for the BDE-II
and BDE V models (both with Ωc

ex = 0.05) but different transition time, ac = 2.92× 10−5

and ac = 1.13×10−5, respectively; and for the BDE-III and BDE-VI models with the same
amount of extra relativistic particles, Ωc

ex = 0.020, and different ac = 2.25×10−5 and 1.11×
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Model kc ac[10−5] Ωex(ac) RN
L (kc) kmin kb k1-loop

b R1-loop(kb) RT
L(kc) kT

min

BDE-I 0.148 2.373 0.112 1.160 0.049 0.474 0.917 1.272 1.13 0.042

BDE-II 0.148 2.292 0.050 1.066 0.082 0.474 0.917 1.110 1.05 0.065

BDE-III 0.148 2.255 0.020 1.025 0.147 0.474 0.917 1.041 1.02 0.104

BDE-IV 0.295 1.168 0.112 1.195 0.088 1.061 1.908 1.339 1.13 0.084

BDE-V 0.295 1.129 0.050 1.081 0.136 1.061 1.773 1.134 1.05 0.129

BDE-VI 0.295 1.111 0.020 1.061 1.031 0.264 1.773 1.051 1.02 0.208

Table 4.1: Small Scales - BDE-like cosmologies. We show kc = acH(ac) (in hMpc−1) and
ac, the mode and scale factor at the transition, Ωc

ex ≡ Ωex(ac) the energy density ratio of ρex.
We show RT

L(kc), kT
min(kc) the ratio of power spectra eq.(4.2.1) and eq.(3.41), respectively

while RN
L (kc), kT

min(kc) correspond to the numerical estimation of the same quantities. While
k1-loop

b is the mode at the maximum of the bump at a linear and one-loop level respectively,
with RN

L (kb) and R1-loop correspond to the ratio of the power spectra. We consider h = 0.677,
Ωm = 0.307 for all bumps and a late time ΛCDM cosmology.

10−5, respectively. At late time, the amount of extra relativistic particles is negligible, which
reproduces a cosmological constant behaviour. In section 4.3 we present the effects of the
extra relativistic particles on the CMB and matter power spectra.

Matter Power Spectrum: transition in radiation domination

In Fig. 4.2, we plot the ratio of the matter power spectra PBDE/PΛCDM, where we clearly see
a bump corresponding to a wave-number of the order of kc. We show the six BDE models in
Table 4.1 with solid blue for BDE-I; dashed red for BDE-II; dash-dotted green for BDE-III;
dotted magenta for BDE-IV; solid cyan for BDE-V; and dashed yellow for BDE-VI.

We see that or small scales, k > kc, the deviation in the matter power spectrum between
ΛCDM and BDE is significant, peaking at mode kb which is of the order of kc. Although,
well after the transition takes place, corresponding to modes k ≪ kc, both models (ΛCDM
and BDE) have the same H and the ratio PBDE/PΛCDM ∼ 1.

The dynamics of BDE produces the deviations at scales k ≥ kc, and we can see the imprint
left by the RDED for modes entering the horizon before ac. The initial suppression of the
linear evolution is even reversed by the RDED and a bump is generated at a linear level. The
BDE models in Table 4.1 peak at kbL = 0.474hMpc−1 for models BDE I, II and III with
a kc = 0.148hMpc−1, while kbL = 1.061hMpc−1 for models BDE IV,V and VI, with and
kc = 0.295hMpc−1.

The amount of the diluted component Ωex is correlated to the magnitude of the enhance-
ment. For instance, the case of BDE-I with Ωc

ex = 0.112 has a bump increased at its peak
by 16%, while BDE-II (BDE-III) have an enhancement of 6.68% (2.5%), respectively. A
similar pattern results for the BDE IV, V, and VI models. Otherwise, the position of the
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peak of the bump given by kbL is shifted to smaller scales, from kc = 0.148hMpc−1 to
kbL = 0.917hMpc−1 and from kc = 0.295hMpc−1 to kbL = 1.061hMpc−1.

Table 4.1 shows the numerical and analytical results of the ratio of power spectra RN
L at the

maximum of the bump and the width of the bump estimated by ∆k = kc − kmin. We note that
there is an agreement between the analytic solutions to the bump amplitude given in eq.() and
the width determined by δk = kmax − kc from eq.(3.41), they differ within a few tens of %.
We suggest that the simple analytic scheme encodes the physics of the dilation showing that
the bump is a consequence of RDED.

However, the modes are no longer in the linear regime at present time due to these cross
the horizon at early times. For this reason, in section 4.2.4 we use non-linear Standard Per-
turbation Theory (SPT) (see, e.g. (Bernardeau et al., 2002b)) to analyse how much of this
discrepancy is expected to be seen when we take into account the quasi-linear effects. Fig.
4.2 shows this last effect in the matter power spectrum.
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Figure 4.3: Background evolution of different fluids. Transition in the matter dominated
epoch. The left panel: Plot of the evolution of densities of different components as function
of the scale factor, a/a0, for a model with an extra fluid that dilutes at the mater-dominated
epoch (solid lines) and the standard ΛCDM model (dashed lines). The left panel shows the
evolution of the Ωex parameter for the extra fluid for different transitions, zc = 10,100,1000
for green, red, and blue lines, respectively. Continuous (dashed) lines corresponds to the case
where Ωx(ac) = 0.1Ωc(ac) (Ωx(ac) = 0.05Ωc(ac)).
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Figure 4.4: Evolution of matter density perturbation with transition in matter domina-
tion. We show the squared of the ratio of matter perturbations (δ X

m /δ Λ
m )2 for different modes

k (in hMpc−1) with Ωx(ac) = 0.1Ωcdm(ac). Left, middle and right panels corresponds to dif-
ferent transition values zc = 10,100,1000, respectively. The ranges of modes are chosen to
map a complete baryon acoustic oscillation between the third peak and third trough. We can
see two interesting effects. First we see an increase in power due to the extra matter Ωex(a)
for a < ac and we also notice the effect of RDED for a > ac with a steep increase in power
in the evolution of δ X

m /δ Λ
m due to the rapid dilution of ρex.

4.2.2 Transition in matter domination. Evolution and Matter power
spectrum

Here we consider the extra energy density ρex as cold dark matter (ρex ∝ a−3 for z > zc)
while it dilutes as ρex ∝ a−6 after the transition takes place at ac = 1/(1+ zc), see Fig.4.3.
We consider three different transitions epochs zc = 10,100,1000, and in each transition
we take two amounts of extra energy density ∆Ωc

ex = 0.1 and ∆Ωc
ex = 0.05, with ∆Ωc

ex ≡
Ωex(zc)/Ωcdm(zc) = ρex(zc)/ρm(zc). We plot in Fig.4.3 the evolution of Ωex(a), and for large
z (i.e. model with zc = 1000) radiation is no longer subdominant and must be taken into
account in determining Ωex(ac).
The ratio of matter perturbations δ X

m /δ Λ
m for different modes are shown in Figs. 4.4 and 4.5

for different modes k with Ωex(ac)= 0.1Ωcdm(ac) and Ωex(ac)= 0.05Ωcdm(ac), respectively.
Left, middle and right panels corresponds to different transition values zc = 10,100,1000, re-
spectively.
The ranges of modes are chosen to map a half baryon acoustic oscillation between the third
peak and third damp in the power spectrum shown in Fig. 4.6.
Notice that for the cases with zc = 10,100 in Figs. 4.4 and 4.5 we find a dispersion of the
amplitude of the different modes in PX/PΛ at ac. This dispersion is a related to the BAO
oscillations and takes place in the range 1000 > z > 100. In the case zc = 1000 there is no
dispersion in PX/PΛ at ac.
We can clearly see two interesting effects in the evolution of δ X

m /δ Λ
m . First we notice an
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Figure 4.5: Evolution of matter density perturbation with a RDED transition in matter
domination. Plot of the ratio of the squared of matter perturbations δ X

m /δ Λ
m for different

modes k (in hMpc−1 units) with Ωx(ac) = 0.05Ωcdm(ac). Left, middle and right panels
corresponds to different transition values zc = 10,100,1000, respectively. The ranges of
modes are chosen to map a half baryon acoustic oscillation. The ranges of modes are chosen
to map a complete baryon acoustic oscillation between the third peak and third trough. We
can see two interesting effects. First we see an increase in power due to the extra matter
Ωex(a) for a < ac and second we notice the effect of RDED for a > ac with a steep increase
in power in the evolution of δ

/
mδ Λ

m due to the rapid dilution of ρex.

increase in power due to the extra matter Ωex(a) for a < ac and secondly we have a steep
increase in power starting at ac due to the RDED of ρex for a ≥ ac. These graphs clearly
distinguish the contribution from the extra matter ρex(a) for a < ac and the increase due to
RDED for a > ac.
The overall change in the matter power spectrum is shown in Fig. 4.6. Notice that defining a
peak of the bump is in this case not trivial due to the presence of the BAO wiggles. We there-
fore define the bump peak, kb, as the middle point between the third peak of the oscillation
and the third damp. The values kb are shown in Table 4.2 and corresponds to modes of the
order of kb ∼ 0.173×10−3 hMpc−1.
Notice that modes k > kc enter before ac enter the horizon with ρex > 0 have an increase
in power compared to ΛCDM due to the extra ρex and they also undergo the RDED at ac.
Therefore the amplitude of each mode k > kc in the matter power spectrum is combination
of these two effects. The overall effect in the matter power spectrum is an increase in power
of 15%, and 8%, for models having a transition at zc = 10, and Ωex(ac)/Ωm(ac) = 0.1 or
0.05, respectively. For modes k > kc the increases due to the rapid dilution is up to 9% (4%)
for the case Ωex/Ωm = 0.1 (0.05), the remaining 7% difference corresponds to the existence
of the extra matter ρex for a < ac. On the other hand modes k < kc enter the horizon after
the transition have no change in the matter power spectrum at those scales and we obtain
PX/PΛ = 1 in Fig. 4.6. We show in Table 4.2 the cosmological parameters including the
value of kc ≡ acH(ac), kb and the ratio of PX/PΛ at different relevant epochs, including the
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Figure 4.6: Matter Power Spectrum for DMx. Transition in matter domination. The
matter power spectrum ratio Px/PΛCDM. The transition takes at 0.4 < kc × 103 h−1Mpc < 4
with a maximum at kb ≃ 1.15kc (c.f. eq.(3.53)).

increase of PX/PΛ between ac and ao, which is due to the RDED of the extra matter ρex, for
the different cases.

4.2.3 Late Time Models
Here we present the case where the transition takes place at late times and the dark energy
is modelled as a barotropic fluid, where its dynamics is parameterized in terms of an Steep
Equation of State (“SEOS") (Jaber and de la Macorra, 2018)), w(z):

w(z) = w0 +(wi −w0)

(
(z/zc)

q

1+(z/zc)q

)
, (4.1)

where wi, w0, zc and q are free parameters, with zc > 0 and a finite value of q. In this case
we have a RDED transition occurring at late times given by the redshift zc and are due to the
evolution of the dynamical the dark energy model. The evolution of Dark Energy evolves
from wi for z ≫ zc and has a transition from wi to w0 = w(z = 0) at a redshift zc with an EoS
w(zc) = (wi−w0)/2. A best fit value w0 =−0.93 and was obtained in SEOS (Jaber and de la
Macorra, 2018) motivated by BDE (de la Macorra and Almaraz, 2018) model.

A cosmological constant w ≡ −1 can be recovered using Eq. (4.1) setting w0 = wi = −1
for all z and independent of the values of zt , and q. Left panel in Fig. 4.7 shows the evolution
of the energy densities of different components, including the corresponding amount of dark
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Model zc ∆Ωc
ex Ω̃h

ex Ω̃c
ex kc ×103 RT

b (a0)/RT
b (ac) RN

b (a0)/RN
b (ac) kN

b RN
b (a0) k1−loop

b R1−loop
b

DMx-I 10 0.10 0.0069 0.0915 0.649 1.07 1.086 0.173 1.154 1.673 1.307

DMx-II 100 0.10 0.0094 0.0817 1.980 1.06 1.079 0.173 1.142 1.673 1.280

DMx-III 1000 0.10 0.0093 0.0647 6.924 1.05 1.073 0.172 1.117 1.673 1.232

DMx-IV 10 0.05 0.0051 0.0461 0.636 1.04 1.044 0.173 1.076 1.673 1.145

DMx-V 100 0.05 0.0046 0.0408 1.942 1.03 1.040 0.172 1.069 1.673 1.131

DMx-VI 1000 0.05 0.0047 0.0324 6.818 1.02 1.038 0.169 1.059 1.673 1.108

Table 4.2: Table with the cosmological parameters of the DMx model. The columns from left
to right are: (1) zc, the redshift when the transition occurs. (2) The amount of extra matter at
the moment of the transition ∆Ωc

ex ≡ Ωex(ac)/Ωm(ac), (3) and (4) the amount of extra matter
Ω̃ex(a) (c.f. eq.(3.7)) Ω̃c

ex = Ω̃ex(ac) and Ω̃h
ex = Ω̃ex(ah), respectively. (5) kc ≡ acH(ac), the

mode at the transition. (6) The theoretical estimation of RT
b (a0)/RT

b (ac) corresponding to the
ratio of the density matter perturbation R(a) = PX(a)/PΛ(a) at ac and at present time a0 (c.f.
eq.(3.52)), (7) The numerical estimation of (6). (8) kb the maximum of the bump, defined as
the middle point between the third peak and third damp in R(a0). (9) The ratio of the linear
density matter perturbation at present time. (10) and (11) Same as (8) and (9) considering
one-loop contribution, respectively.

energy at different redshifts for the SEOS model. The evolution of Ωi = ρi/ρtot for SEOS-I
model with q = 2, Ωde(a0) = 0.78, h = 0.80 and for ΛCDM, are shown in the left panel.

The EoS in Eq. (4.1) allows for a steep transition from wi to w0 taking place at a central
redshift value zc with a steepness determined by the parameter q. The effect of the dynamical
dark energy in SEOS model is seen in the right panel of Fig. 4.7 where the parameter q
modulates the steepness of the transition, a larger q has a steeper transition. We show in table
4.3 and in Fig. 4.7 different SEOS models where we take as examples the values of q = 2
and q = 10 and we allow for different amount of Ωde(a0) at present time. A larger value of q
has a steeper transition, originating a narrower bump for q = 10 in models SEOS-II, SEOS-
IV, and SEOS-VI models, while broader bump is generated for q = 2 in SEOS-I, SEOS-III
and SEOS-V models. Comparing models with the same amount of Ωde(a0) we notice that
SEOS-II increases the enhancement of the bump compared to SEOS-I in table 4.3. The same
happens when we compare model SEOS-IV with SEOS-III and model SEOS-VI with SEOS-
V. To conclude, a steeper bump (larger q) shifts the peak to later times and increases the
amount of extra energy density Ωex(ac).

Matter Power Spectrum: transition at late times in Dark Energy domination

We see that SEOS impacts the evolution of matter perturbations mainly at late times when the
DE density is non-negligible. We take SEOS as a model-independent smooth DE component,
meaning that δρex = 0, since we are interested in parameterizing the dynamics of DE. We
take SEOS as a model for a smooth DE component, meaning that the extra energy density
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Figure 4.7: Evolution of densities and their corresponding amount of extra energy den-
sity ρex. Left panel: Evolution of densities of different components for SEOS-I model (solid
curves) and the standard ΛCDM model (dashed curves) with a dilution at ac = 0.8 (zc = 0.25).
Blue curves are for radiation density; green curves are for matter density; and red curves are
for dark energy density. The right panel shows the amount of extra energy density for SEOS
models described in Table 4.3. Solid blue are for SEOS-I; dashed red are for SEOS-II; dash-
dotted green are for SEOS-III; dotted magenta are for SEOS-IV; solid cyan are for SEOS-V;
and dashed yellow are for SEOS-VI. The vertical lines represent the transition scale factor
ac = 1/(1+ zc) = 0.8.

fluctuations are negligible for modes well inside the horizon, which finds justification if one
assumes adiabatic perturbations and no anisotropic stresses, since the EoS parameter always
lie in the interval w ∈ [−1,−0.9]. In chapter 3 we present scalar field models which render
the SEOS DE dynamics and the perturbations do not cluster. We show in Fig. 4.8 the effects
of SEOS in the matter power spectra, where we display the ratio with respect to ΛCDM for
the SEOS models presented in table 4.3. We work in all six models with the same amount of
matter Ωmh2 = 0.14.

In the left panel we show the ratio PSEOS(k)/PΛCDM(k) for different redshift values (z =
0, 0.1, 0.2, 0.25,and,5) for SEOS-IV model. Blue curves are for z = 0; red curves are for
z = 0.1; green curves are for z = 0.2; magenta curves are for z = 0.25; and cyan curves
are for z = 5.0. In the right panel we show the same ratio for different models varying the
quantity of matter and rate of expansion (see Table 4.3 IV A 1). Blue curves are for SEOS-I;
red curves are for SEOS-II; green curves are for SEOS-III; magenta curves are for SEOSIV;
cyan curves are for SEOS-V; and yellow curves are for SEOS-VI.
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Figure 4.8: Linear matter power spectrum transition at late times. The left panel: the
ratio PSEOS/PΛCDMfor model SEOS-IV. Blue curves are for z = 0.0; red curves are for z =
0.1; green curves are for z = 0.2; magenta curves are for z = 0.25; and cyan curves are for
z = 5.0. The right panel: The ratio PSEOS/PΛCDM for different models at z = 0. Blue curves
are for SEOS-I; red curves are for SEOS-II; green curves are for SEOS-III; magenta curves
are for SEOS-IV; cyan curves are for SEOS-V; and yellow curves are for SEOS-VI (see
Table4.3).

At redshift z = 5, during the Einstein-de Sitter phase, matter perturbations have almost the
same amplitude as in ΛCDM at all scales, the overall normalization is due to slight different
rate of expansions.

This overall suppression is due to faster expansion rate in ΛCDM than in SEOS since
the EoS is always larger than for cosmological constant , i.e wSEOS > −1. We also notice
that the overall suppression increases with time when DE starts to dominate. However, once
the RDED in SEOS takes place at ac = 0.8 (zc = 0.25) with a corresponding mode kc =
acH(ac)≃ 3×10−4 hMpc−1 it generates bump in the ratio of power spectra with a maximum
at sligthly smaller scales at kb ≃ 5.5×10−4 hMpc−1.

In the left panel of fig.(4.8) we see snapshots of the quotient of the matter power spectrum
at different values of z. Clearly the bump is generated after the transition takes place at
zc = 0.25, i.e for z ≤ zc. The evolution of the bump increases as z → 0. While in the right
panel of fig.(4.8) we see that the impact of the rapid dilution energy density appears for
modes k ≥ kc entering the horizon slightly before the transition occurs at ac = 0.8. with
kc = acH(ac) = 3.27×10−4 hMpc−1 = 2.22×10−4 Mpc−1 for SEOS-IV model.

Notice that the amount of matter ρm(a0) is the same in all models in table 4.3 and it is
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Model w0 wi zc q Ωc
ex kc ×104 h Ω0

m kb ×104 RN
L (kc) kN

max ×103 RT
L(kc) kT

max ×104

SEOS-I −0.9 −1 0.25 2 0.035 3.19 0.80 022 4.95 1.0059 2.76 1.0048 6.761

SEOS-II −0.9 −1 0.25 10 0.041 3.21 0.80 0.22 5.15 1.0047 2.71 1.0057 6.250

SEOS-III −0.9 −1 0.25 2 0.029 3.25 0.68 0.31 5.58 1.0049 2.94 1.0046 6.299

SEOS-IV −0.9 −1 0.25 10 0.034 3.27 0.68 0.31 6.05 1.0040 2.71 1.0055 5.820

SEOS-V −0.9 −1 0.25 2 0.024 3.32 0.60 0.39 6.05 1.0041 2.82 1.0042 5.927

SEOS-VI −0.9 −1 0.25 10 0.028 3.33 0.60 0.39 6.05 1.0034 2.61 1.0050 5.474

Table 4.3: Large Scales - SEOS cosmology. We present the values of the EoS parame-
ters w0, wi zc, q, with Ωc

ex ≡ Ωex(ac) for a transition mode kc ≡ acH(ac) in hMpc−1 at
a scale factor ac = 0.8 with kb in [hMpc−1] is the mode at the maximum of the bump,
RN

L (kc) = PSEOS(kc)/PSEOS(base), kN
max corresponds to the numerical estimation RN

L (kc) and
the theoretical estimation RT

L (kc) (c.f. eq.(3.70)) of the amplitude at the mode kc, while kN
max

kT
max correspond with an of 1% amplitude of the mode kc, allowing us to have a model in-

dependent measurement of the width of the bump. In all models we considered the same
amount of matter Ωmh2 = 0.141.

the dynamics of the DE component what decreases the amplitude by the same amount for all
modes, as compared to a ΛCDM model.

However, the impact on the evolution of the matter perturbations due to the RDED gen-
erates the bump seen at k ∼ 5hMpc−1. In fact, we can isolate the effects of the background
expansion and growth of fluctuations by looking at the spectra at late times, when DE is dom-
inant. For instance, at z = 0.25 the spectrum in SEOS is suppressed by 1.6% on all scales
due to the late-time dynamics of DE, but this suppression is overwhelmed on large scales by
the enhancement effect due to SEOS rapid dilution at zc = 0.25, which lead to a small excess
of power at kb = 6.049×10−4 hMpc−1. At smaller redshifts, the spectra continue to decline
overall, but increasing at the bump location.

We see in table (4.3) the analytic solutions to the bump amplitude given in eq.(3.70) has
an excellent agreement with the numerical calculations (below 1%) while the estimation of
the width determined by δk = kmax−kc and determined by eq.(3.72) agrees with the order of
magnitude.

Finally it is worth remarking that SEOS and ΛCDM share the same set of cosmological
parameters h,Ωmh2 at present time, however the evolution differs due to the EoS in eq.(4.1).
Higher values of q enhanced slightly the amplitude of bump and increases the value of kb,L.
Finally we remark that kb,L is of the same order as kc but slightly shifted to smaller scales, as
described in the analytic presentation in section 3.2.

The cosmic microwave background spectra for BDE cosmologies, with transition in radi-
ation domination. The ratio Cl,BDET T /Cl,ΛCDM.
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Model kc ac[10−5] Ωc
ex z⋆ rs(z⋆) DA(z⋆) 100×θ(z⋆)

BDE-I 0.148 2.373 0.112 1089.68 144.16 13.928 1.03499

BDE-II 0.148 2.292 0.050 1089.68 144.54 13.928 1.03776

BDE-III 0.148 2.255 0.020 1089.68 144.71 13.928 1.03898

BDE-IV 0.295 1.168 0.112 1089.69 144.48 13.928 1.03730

BDE-V 0.295 1.129 0.050 1089.69 144.68 13.928 1.03873

BDE-VI 0.295 1.111 0.020 1089.68 144.77 13.928 1.03936

Table 4.4: We show the values of the acoustic scale r(z⋆), angular diameter distance DA(z⋆)
(in hMpc−1) and angle θ(z⋆) for the different BDE-like models. Since in these cases Ωex = 0
for z < z⋆ the angular diameter distance is the same while we have a small deviations in θ(z⋆)
and rs(z⋆).

Model zc Ωex(ac) kc ×103 z⋆ rs(z⋆) DA(z⋆) 100×θ(z⋆)

DMx-I 10 0.061 0.441 1090.02 140.59 12.495 1.03128

DMx-II 100 0.076 1.348 1089.94 140.90 12.680 1.01853

DMx-III 1000 0.084 4.718 1089.83 140.95 12.733 1.01479

DMx-IV 10 0.031 0.432 1090.02 142.49 12.616 1.03574

DMx-V 100 0.039 1.323 1089.94 142.67 12.713 1.02916

DMx-VI 1000 0.044 4.645 1089.83 142.70 12.740 1.02722

Table 4.5: We show the values of the acoustic scale r(z⋆), angular diameter distance DA(z⋆)
(in hMpc−1) and angle θ(z⋆) for the different DMx with a transition in matter domination.
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Figure 4.9: The 1-loop and linear power spectrum for BDE cosmologies with a transition
at early times. We show the ratio R(k) = P(k)BDE/P(k)ΛCDM at z = 0 at a linear (dashed)
and one-loop level (solid). Top left: the BDE-III model; top middle: the BDE-II model; top
right: the BDE-I model; bottom left: the BDE-VI model; bottom middle: the BDE-V model;
bottom right: the BDE-IV model. Full curves are for 1-loop power spectrum; and dashed
curves are for linear theory.

Solid blue curves are for BDE-I; dashed red curves are for BDE-II; dashed-dotted green
curves are for BDE-III; dotted magenta curves are for BDE-IV; solid cyan are for BDE V;
and dashed yellow are for BDE-VI.

4.2.4 Nonlinear evolution in SPT
In this section we compute the non-linearities in the power spectrum for BDE and DMx
models using 1-loop SPT. For this we use the publicly available code MGPT2 (Aviles and
Cervantes-Cota, 2017; Aviles et al., 2018) that accounts for a background evolution different
than ΛCDM.

We work out only the BDE and DM-x models since these have the bumps located at quasi-
linear and non-linear scales. In turn, the SEOS the transition modes enter at very late times
and henceforth the signatures are located at very large scales and are not affected by non-

2https://github.com/cosmoinin/MGPT

https://github.com/cosmoinin/MGPT
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Figure 4.10: The 1-loop and linear power spectrum for DMx cosmologies with a tran-
sition at intermediate times. We show the ratio R(k) = P(k)BDE/P(k)ΛCDM at z = 0 at a
linear (dashed) and one-loop level (solid). Top left: the DMx-I model; top middle: the DMx-
II model; top right: the DMx-III model; bottom left: the DMx-IV model; bottom middle: the
DMx-V model; bottom right: the DMx-VI model. Full curves are for 1-loop power spectrum;
and dashed curves are for linear theory.

linearities. In Fig. 4.9 and Fig. 4.10 we show the ratios R(k) = P(k)BDE/P(k)ΛCDM for the
different models. Solid curves are for 1-loop power spectrum and dashed curves are for linear
theory. We show that the perturbative 1-loop affects the intermediate scales and small scales.

The 1-loop power spectrum of BDE-I, BDE-II, and BDE-III has a bump contributing
27.2%, 11.0%, and 4.10% to the power spectrum at k = 1.67hMpc−1, respectively. A sim-
ilar pattern of results was obtained for the BDE-IV, BDE-V, and BDE VI models whose
contribute 33.9%, 13.4%, and 5.10% to the power at 1.908hMpc−1, 1.773hMpc−1, and
1.773hMpc−1, respectively. On the other hand, the 1-loop power spectrum of DMx-I, DMx-
II, DMx-III, DMx-IV, DMx-V, and DMx-VI has a bump contributing 30.7%, 28.0%, 23.2%,
14.5%, 13.06%, and 10.8% to the power spectrum at k = 1.673hMpc−1, respectively.

The behavior of the nonlinear features are not directly related to the physics of the BDE-
like models, but to the linear power spectra themselves. To explore it, we choose to use the
BDE-I model since as shown in Fig. 4.2, this is the model that has the bump at more yet linear
scales, showing differences with the ΛCDM even at very large scales. In Fig. 4.11 we plot
the linear and non-linear spectra of both BDE-I and ΛCDM. We notice that loop corrections
continue to enhance the SPT power spectrum beyond the scale kb ≃ 0.474hMpc−1, which is
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Figure 4.11: Linear and non-linear power spectra for models BDE-I and ΛCDM. Vertical
dashed lines denote the location of the maximum amplitude of the bumps in linear (kb =
0.474hMpc−1) and non-linear (kb = 0.917hMpc−1) spectra, as reported in Table 4.1. The
net effect of non-linearities is a larger enhancement of the 1-loop power spectrum of the BDE
model compared to ΛCDM and a shift of the maximum of the bump.

the maximum of the bump in the linear power spectra ratio as reported in Table 4.1, because
the power of BDE-I is always greater than in ΛCDM and nonlinar corrections goes as O(P2

L ).
This cannot continue indefinitely since eventually, at sufficiently small scales, the power on
the two models are small enough and have no influence in loop integrals, which happens
at the turnaround of the non-linear bump. As a result, we notice that nonlinearities tend to
shift the peak of the bumps to smaller scales and enhance their amplitudes with respect to the
linear theory.

4.3 CMB Power Spectrum

We present the impact of RDED in the CMB power spectrum with a RDED transition in
radiation domination (BDE-like), matter domination and dark energy domination (SEOS-
like) epochs.
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Figure 4.12: The cosmic microwave background spectra for BDE cosmologies. Transi-
tion in radiation domination. The ratio C T T

l,BDE/Cl,ΛCDM. Solid blue curves are for BDE-I;
dashed red curves are for BDE-II; dashed-dotted green curves are for BDE-III; dotted ma-
genta curves are for BDE-IV; solid cyan are for BDE V; and dashed yellow are for BDE-VI.

4.3.1 CMB Power Spectrum

We show the temperature power spectrum of the CMB for different BDE cosmologies in Fig.
4.12, where we plot the ratio CT T

ℓ,BDE/CT T
ΛCDM. An increase in the amount of radiation at early

times, before recombination, can be seen to affect the CMB: an angular shift to higher ℓs, an
enhancement in the amplitude, and a change in the damping scale.

Having an extra radiation term in this model shifts the CMB peaks. It is well known (Hu
et al., 1995) that the angular position of the oscillations peaks are located at the extrema of
the oscillations given by krs(a∗), where rs(a⋆) is the sound horizon at last scattering, given in
Eq. (3.9), which depends on the expansion rate H. Because we increase the radiation content
before the last scattering, for a < ac < a∗, the expansion rate is increased (see Eq. (3.28))
making the scattering surface thinner in BDE cosmologies than in ΛCDM. Thus, slightly
shifting the peaks of the oscillation to higher ℓs.

The amplitude of the CMB peaks depends on the matter-radiation ratio, therefore it relies
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Figure 4.13: The cosmic microwave background spectra for DMx. Transition in mat-
ter domination..The ratio CT T

l,DMx/CT T
l,ΛCDM, at small ℓs a larger deviation can be noticed

as expected for models with extra matter. Difference in the amplitudes of the oscilla-
tion and subtle deviation because a change in damping scale are observed. In both panels
zc = {10,100,1000} corresponds green, blue, and red colors, respectively; straight (dash)
lines corresponds to the case Ωx(ac) = 0.1Ωc(ac) (Ωx(ac) = 0.05Ωc(ac)).

on the scale parameter ac, and Ωex. A change in the diffusion damping scale, given by

r2
d = (2π)2

∫ a⋆

0

da
a3HneσT

(
R2 + 16

15(1+R)
6(1+R2)

)
(4.2)

with R = (3ρb)/(4ργ), ne the number density of free electron and σT the Thompson cross-
section, is also noticeable, where all oscillation modes are larger than in ΛCDM. The damp-
ing factor at last scattering depends on two things, first the visibility function that remains
independent of cosmological parameters before the transition ac, and second, the behavior
of the damping scale kD through last scattering. The last one depends on the acoustic scale
and, on a smaller degree, on the Hubble rate (Hu et al., 1995). Since the extra radiation term
ρex changes both of these parameters, it is expected to have a smaller damping factor than in
ΛCDM.

The overall change can be noticed in Fig. 4.12. In particular, for the mode at k =
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Model w0 wi q kc ×104 Ωc
ex z⋆ rs(z⋆) 100×θ X

s (z⋆) DΛ
A/DX

A(z⋆)

SEOS-I −0.9 −1 2 3.19 0.035 1089.9 144.93 1.04155 1.00028

SEOS-II −0.9 −1 10 3.21 0.041 1089.9 144.93 1.04152 1.00025

SEOS-III −0.9 −1 2 3.25 0.029 1089.9 144.93 1.04147 1.00021

SEOS-IV −0.9 −1 10 3.27 0.034 1089.9 144.93 1.04145 1.00019

SEOS-V −0.9 −1 2 3.32 0.024 1089.9 144.93 1.04143 1.00017

SEOS-VI −0.9 −1 10 3.33 0.028 1089.9 144.93 1.04142 1.00015

Table 4.6: Large Scales - SEOS cosmology. We present the SEOS parameters w0, wi zc,
q, with Ωc

ex ≡ Ωex(ac). We show the values of the acoustic scale r(z⋆), angular diameter
distance DA(z⋆) (in hMpc−1) and angle θ(z⋆) for the different SEOS-like models. In these
cases Ωex = 0 for z < z⋆ the angular diameter distance and the angle θ(z⋆) have a small
deviations while rs(z⋆) remains the same. In these examples we took the same amount of
matter Ωmh2 = 0.141 in all models with 100θ Λ = 1.04126 in ΛCDM model.

0.148hMpc−1 we obtain an increment in power compared to ΛCDM. The increment in power
becomes larger with increasing ℓ. For example, taking the multipole ℓ∼ 2000 we find on av-
erage an enhancement close to 20%, 14% and 10% for models BDE-I, BDE-II, and BDE-III,
respectively, compared to ΛCDM. In turn, the increase for the mode k = 0.295hMpc−1 is
slightly smaller with 17%, 13%, and 10% for BDE-IV, BDE-V, and BDE-VI models, respec-
tively.

For the BDE models, the value of the angular scale of sound at reoinization (z∗), θs ≈
rs(z∗)/DA(z∗) change due to the change in radiation, where rs is the sound horizon and
DA is the distance to the surface of last scattering, z∗. For instance, for BDE comparing
models with the same kc = 0.295 we obtain θs = 1.0373,1.038432,1.039061 for BDE-IV,
V, and VI, respectively. We notice that for larger Ωc

ex the smaller is θs and bigger is the
amplitude of the bump. The same can be say for kc = 0.15hMpc−1, where we obtain
θs = 1.03499,1.037459,1.038683 for BDE-I, II, and III, see table below. Notice that we
have used the same z∗ = 1089.68, therefore the same DA(z∗) = 13.9284 is obtained, it is the
sound horizon rs(z∗) = rz(z∗;Ωb,Ωr) that change because the dependence on the amount of
radiation before the transition of the BDE model, rs ≈

∫ t∗
0 csdt with cs ≈ [1+3Ωb/Ωr]

−1/2.
In the case of a transition in matter domination, we show the temperature power spectrum

of the CMB for different cases from Table 4.2 and we plot the ratio CT T
ℓ,X/CT T

Λ
in Fig. 4.13

and the values of the acoustic scale rs(z∗) and angular distance DA(z∗) in Table 4.5. Both
rs(z∗) and DA(z∗) are slightly increased for larger ρex or zc. For example taking as reference
the multipole ℓ ∼ 2000 we find on average an enhancement close to 35%, 27% and 10%
for models DMx-I, DMx-II, and DMx-III, respectively, compared to ΛCDM for the case
Ωex/Ωm = 0.1. The difference diminishes for Ωex/Ωm = 0.05 in which case we have a 11%,
9%, and 5% increase for DMx-IV, DMx-V and DMx-VI, respectively.
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Figure 4.14: The cosmic microwave background spectra for SEOS cosmolo-
gies.Transition at late times. The ratio C T T

l,SEOS/Cl,ΛCDM. Solid blue curves are for SEOS-I;
dashed red curves are for SEOS-II; dashed-dotted green curves are for SEOS-III; dotted ma-
genta curves are for SEOS-IV.

Here, we show how the dark energy parametrization, SEOS, affects the CMB TT anisotropies.
In Fig. 4.14 we show C T T

l,SEOS/C
T T
l,ΛCDM for different combinations of parameters in the SEOS

model, varying the quantity of matter and rate of expansion. We see that SEOS impacts the
temperature field not only by changing the amount of matter, but there is also a distinctive
imprint left by the steepness parameter q. Similar as in the BDE model, see sub-section 4.3,
the SEOS model introduces the same three characteristics in the CMB due to ρex. First, the
shift to larger ℓs of the wiggles due to the change of the expansion rate caused by the increase
of radiation content before the last scattering, and therefore, changing the extrema position
of each oscillation as seen in Fig. 4.14. Larger values of the steepness q of the dark energy
parametrization decreases the amplitude of the oscillations as we can see in the solid blue
and dashed red curves, while smaller amount of DE also reduces the amplitude. In the SEOS
model, in contrast with BDE model, the value of rs(z∗) is not affected by the transition at
late times see Table 4.4. It is the value of DA(z∗) in Eq.(3.22) that changes in SEOS with the
late-time transition and is consistent with previous results (Hou et al., 2013; Menegoni et al.,
2012). It is worth keeping in mind that all six SEOS models have the same amount of matter
and radiation.
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4.4 Remarks and Conclusions

In this work, we studied cosmological implications of introducing an extra energy density ρex
to a ΛCDM model that dilutes rapidly at given scale factor ac and corresponding wave-vector
amplitude kc = acH(ac). This RDED transition affects the background evolution, and hence
the cosmological distances, such as the comoving angular distance DA, the angular diameter
DM, the acoustic scale at recombination rs and the diffusion damping scale rd . Furthermore,
the rapid dilution of ρex also impacts the evolution of the matter perturbations and CMB
power spectrum. This RDED leaves distinctive features in the matter power spectrum. In
particular, it generates a bump in the matter power spectrum, more visible once we compare
to ΛCDM. The bump is generated because the linear growth of δm(k) has a higher increase
rate for larger H in radiation domination (c.f. Eq. (3.29)). This increase takes place only for
modes k ≥ kc when ρex > 0 while for mode k < kc both models have the same expansion rate
and the evolution of δm(k) is the same for both cases. The amplitude of the bump is related
to the amount of the diluted energy density ρex, while the mode is located about k ∼ kc. We
study these bumps in the linear regime and also apply one-loop corrections using SPT.

We concentrated here in two different models, one located at large scales and the others
at small scales. Both cases are inspired by the BDE model (Almaraz and de la Macorra,
2019; de la Macorra and Almaraz, 2018), where an RDED phase transition takes place in
the radiation dominated epoch with ac ∼ 10−6, affecting modes entering the horizon at early
times. The corresponding mode is kc ∼ 1hMpc−1 and a bump is generated for modes k ≥ kc.
Interestingly the BDE model also shows a RDED with a steep transition centered at a redshift
zc ≈ 0.625 resulting in second bump located at large scales.

We also studied models (DMx) with extra matter, diluting in matter dominated epoch. In
this case the growth of structure has two effects. The first one is due to having extra matter ρex
for a < ac, affecting all modes (k > kc) entering the horizon before ac, while the second effect
is due to the RDED at ac. We study and distinguish the increase of amplitude in the linear
evolution of the matter density perturbation of these two different sources. We obtain an
increment around 8% in the power spectrum PX/PΛ due to the rapid dilution at the maximum
of the bump at kb. On the other hand we find a plateau for modes k > kc due to the extra
matter. For modes entering the horizon after the transition a < ac we obtain no increase in
the evolution of the matter density perturbations and we get PX/PΛ = 1 for modes k < kc.

To study the imprints of dark energy, we considered a model-independent analysis and we
parameterized the dynamics of dark energy using asteep equation of state (SEOS) (Jaber and
de la Macorra, 2018). In the SEOS model the EoS w has a transition at zc = 0.28. Here we
studied two extreme cases, with soft and steep transitions, to observe different impacts on the
CMB and matter power spectra.

We computed the position and amplitude of the peaks of the bumps in the matter power
spectrum through the one-loop correction analysis using the code MGPT, taking into account
the background evolutions with and without ρex. We conclude that the non-linear effects shift
the peak of the bumps to smaller modes and enhance their amplitudes in comparison to linear
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computations.
We took different values of cosmological parameters for our two models shown in Table

4.1 for small scales, and 4.3 for large scales. In the linear regime, we see the bump im-
print left by the rapid dilution of BDE on modes k > kc, entering the horizon before ac, as a
peaked bump centered at k = 0.47hMpc−1 for BDE-I,BDE-II,BDE-III (k = 1.06hMpc−1 for
BDE-IV,BDE-V, BDE-VI), where the enhancement of power in BDE is about 16% (19.58%),
respectively. We see deviations at larger scales e.g. k ≥ 0.05hMpc−1 and k ≥ 0.5hMpc−1

respectively, due to the width of the bump in each case. The scale of the bump is mainly
located at non-linear scales, although covering also quasi-linear scales, and once we deter-
mine the one-loop power spectra we find that BDE-III (BDE-VI) provides an enhancement
of 4% (5%) at k = 0.9hMpc−1 (1.8hMpc−1), respectively. Nevertheless, these results should
be taken as indicative since the high-k tails of the bumps are out of the reach of perturbation
theory.

The late time dark energy transitions impacts the evolution of matter perturbations mainly
at late times during the Einstein-de Sitter phase, matter perturbations have the same amplitude
as in ΛCDM at all scales, the overall normalization is due to a slightly different rate of expan-
sion in ΛCDM and SEOS models. Here we studied the same mode k = 8.37×10−5 hMpc−1

but different amounts of matter and steepness of the transition.
As time increases, the effect of the dynamical dark energy of the SEOS model is altered

decreasing the amplitude for all Fourier modes and originating a bump at k ≈ 5×10−3; that
is, the power spectrum of ΛCDM is always larger than the power spectrum of SEOS model
originating a bump at lower redshift.

Summarizing, this distinctive signature, named as bump, has been studied at a linear and
one-loop level in perturbation theory. We have theoretically study the evolution of linear mat-
ter perturbations and showed that a bump is indeed generated in the matter power spectrum
and we estimated the amplitude and width of the bumps in early and late times by means
of BDE-like and SEOS-like models. We compared our results with a full implementation
in the numerical Boltzmann code CAMB and found that our theoretical results are within a
few percentage difference of the numerical results. This demonstrates that the origin of the
bump, observed in matter power spectrum using the numerical simulations, is indeed due to
a RDED.

To conclude, a small amount of extra energy density that dilutes rapidly is consistent with
present-day cosmological measurements and may solve tensions in cosmology leaving dis-
tinctive detectable signatures.



Chapter5

STUDYING PARAMETRIC FAMILY OF
GAUSSIAN
BUMPS BEYOND THE LINEAR REGIME

Abstract

Some beyond ΛCDM cosmological models have dark-sector energy densities that suffer
phase transitions. Fluctuations entering the horizon during such a transition can receive en-
hancements that ultimately show up as a distinctive bump in the power spectrum relative to
a model with no phase transition. In this work, we study the non-linear evolution of such
signatures in the matter power spectrum and correlation function using N-body simulations,
perturbation theory and HMCODE- a halo-model based method. We focus on modelling the
response, computed as the ratio of statistics between a model containing a bump and one
without it, rather than in the statistics themselves. Instead of working with a specific theoret-
ical model, we inject a parametric family of Gaussian bumps into otherwise standard ΛCDM
spectra. We find that even when the primordial bump is located at linear scales, non-linearities
tend to produce a second bump at smaller scales. This effect is understood within the halo
model due to a more efficient halo formation. In redshift space these nonlinear signatures are
partially erased because of the damping along the line-of-sight direction produced by non-
coherent motions of particles at small scales. In configuration space, the bump modulates
the correlation function reflecting as oscillations in the response, as it is clear in linear Eu-
lerian theory; however, they become damped because large scale coherent flows have some
tendency to occupy regions more depleted of particles. This mechanism is explained within
Lagrangian Perturbation Theory and well captured by our simulations.

This chapter is adapted from its corresponding publication, D V Gomez-Navarro, A J
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Mead, A Aviles, A de la Macorra, Impact of cosmological signatures in two-point statistics
beyond the linear regime, Monthly Notices of the Royal Astronomical Society, Volume 504,
Issue 3, July 2021, Pages 3284–3297, https://doi.org/10.1093/mnras/staa3393.

5.1 Introduction

In recent years the standard cosmological model know as ΛCDM has come under careful ex-
amination due to there exist some observational problems within the model. For instance, the
H0 and σ8 (or equivalently S8 = σ8(Ωm/0.3)0.5) tensions. The first one is based on a discrep-
ancy of the estimated value of the rate expansion of the Universe between early- and late-time
observations (e.g., Verde et al., 2019), while latter one refers to a disagreement of the am-
plitude of the variance of the matter density field between weak gravitational lensing studies
(e.g., Abbott et al., 2018; Hikage et al., 2019; Heymans et al., 2020) and CMB observations
(Planck Collaboration, 2018b). Both tensions may indicate the need to extend the ΛCDM
model. However, there are high-precision measurements, such as those of the CMB from
Planck (Planck Collaboration, 2018b) and large-scale structure in SDSS-IV (collaboration,
2020), including Baryon Acoustic Oscillations (BAO) and Lyman-Alpha forest observations,
can individually be well understood within ΛCDM.

Some of the models beyond of ΛCDM are based on extensions of the standard model
of particle physics (Zyla et al., 2020), which can describe dark-sector of the Universe. For
instance, the Bound Dark Energy (BDE) cosmology (de la Macorra and Almaraz, 2018; Al-
maraz and de la Macorra, 2019) introduces massless particles, which they decay like radiation
at early times. However, some time latter the elementary particles form massive bound states
due to a phase transition taking place at a scale factor ac and the energy density of BDE
dilutes as ρ ∼ a−6 at the phase transition scale factor ac. The lightest scalar field φ corre-
sponds to dark energy and remains subdominant for a long period of time. At present time
BDE behaves dynamically accelerating the expansion of the Cosmos. This behaviour leaves
imprints in two point statistics (Almaraz et al., 2020) – for a model independent analysis see
(Jaber-Bravo et al., 2020) – generating a bump in the matter power spectrum at a scale kT
entering the horizon about the phase-transition time. We call models that generate features
through phase transitions Rapid Diluted Energy Density (RDED) (de la Macorra et al., 2021),
and BDE is one such example. Studying the impact of cosmological signatures in the two
point statistics may help in explaining the nature of dark-sector components beyond ΛCDM.

In this work we are motivated by RDED effects in the linear matter power spectrum. How-
ever, we will work in a model-independent way by introducing a parametrized bump to the
linear matter power spectrum that will vary in position and width. We study the signatures
imprinted in the linear matter power spectrum and we follow them beyond the linear regime
using different, but complementary, tools.

There are different perturbative schemes, know as Higher-order Perturbation theory (e.g.,
Bernardeau et al., 2002b) (PT), to describe the intermediate, quasi-linear scales of the matter
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clustering having different advantages. For example, Lagrangian Perturbation Theory (LPT)
is very accurate in modelling the two-point correlation function, particularly the smearing and
shift of the Baryon Acoustic Oscillation (BAO) peak located at a large scale (∼ 100 h−1Mpc).
Otherwise, Standard (Eulerian) Perturbation Theory (SPT) is more successful in describing
the broadband power spectrum, but poorly models the BAO (e.g., Tassev, 2014a; Baldauf
et al., 2015). As soon as fluctuations become large, perturbative approaches break down and
PT become meaningless. At this scenario, the dark matter particles can be described accu-
rately by N-body simulations, although these have the disadvantage of being computationally
expensive. However, the large scale structure statistics can be elucidated by halo models (e.g.,
Seljak, 2000; Peacock and Smith, 2000; Cooray and Sheth, 2002).

The two-point statistics has been studied in detail for standard ΛCDM cosmologies. For in-
stance, PT provides high accuracy at large scales or high redshifts (Bernardeau et al., 2002b),
while at non-linear scales one can either use fitting functions (e.g., Smith et al., 2003; Taka-
hashi et al., 2012), halo-model based methods (e.g., HMCODE: Mead et al., 2015, 2016; Mead
et al., 2020) or emulators (e.g., Lawrence et al., 2010, 2017), all of which have been tuned to
reproduce the power spectra measured in high-resolution N-body simulations. Recent stud-
ies has been focused on modelling the power spectrum ’response’, which is the ratio of two
power spectra, with the numerator typically the cosmology of interest and the denominator
typically a cosmology whose power spectrum is well known. The response function has the
virtue of being both easier to simulate, requiring only moderate resolution simulations, and
easier to model and it has been successfully studied for dark-energy cosmologies (Casarini
et al., 2016; Mead, 2017), modified gravity (Cataneo et al., 2019), massive neutrinos (Cataneo
et al., 2020) and for the effects of baryonic feedback (Mead et al., 2020).

In this work we study the non-linear impact of cosmological signatures in two-point statis-
tics that can be approximated by a bump in the linear power spectrum, with our bump cos-
mology parametrized as in equation (5.1). We compare the bump cosmology with standard
ΛCDM cosmology with no bump via the response function, which is constructed by taking
the ratio of non-linear statistic of cosmology with bump to a standard ΛCDM cosmology
with no bump. We use complementary approaches to model non-linearities, for the real
space power spectrum, we use 1-loop SPT, the HMCODE model1, and low-resolution N-body
simulations. We further consider the effect of redshift space distortions in the power spec-
trum using the TNS model (Taruya et al., 2010) and the model of (Scoccimarro, 2004). The
non-linear correlation function is obtained through the Convolution-LPT (CLPT) of (Carlson
et al., 2012b; Vlah et al., 2015b).

This chapter is organized as follows. In Section 5.2 we introduce the parametric bump
cosmology to be used in the rest of the work and we present specifications of our N-body
simulations suite employed to test the analytical methods. We also review different analyt-
ical models to describe the redshift and real space matter power spectrum, as well as the
correlation function. In Section 5.3, we present the numerical and analytical results for the

1https://github.com/alexander-mead/HMcode

https://github.com/alexander-mead/HMcode
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response functions. Finally we conclude in Section 5.4.

5.2 Modelling the matter power spectrum

Let us study the RDED effect choosing a parametrization that we refer throughout as the
‘bump cosmology’, where the linear power spectrum is given by a modification to that of a
standard ΛCDM cosmology:

Pbump(k,z) =
[
1+F(k)

]
PΛCDM(k,z) , (5.1)

with

F(k) = Aexp
(
− [ln(k/kT)]

2

σ2

)
. (5.2)

A, kT and σ are the amplitude, scale, and width of the bump, respectively. We considered
other choices for the function F(k), such as a Gaussian in k-space, and found qualitatively
similar results.

We consider nine different bump cosmologies, in each case we fix the amplitude A = 0.15.
This amplitude is motivated by BDE-like models, where the dark energy density ΩBDE(ac) =
0.11 suffers a phase transition taking place at ac = 2.48×10−6 with ΩBDE ≪ 1 at scales a >
ac. Otherwise, we choose three different widths of the bump σ = 1.0, 0.3, and 0.1, and place
the bump at three different scales: kT = 0.05, 0.1, and 1hMpc−1 (see Table 5.1). The width
of the bump corresponds to how fast the rapid diluted energy density takes place, whereas kT
represents mode entering the horizon about the phase transition time. We investigate structure
formation in these bump cosmologies at the redshifts z = 0, 0.5, 1, 2, 3, and 4. To generate
the ΛCDM power spectrum we use the cosmological parameters reporting in Section 5.2.2,
which are the same in both the bump and standard cosmologies, so that the only difference
between the models is the presence of the bump.

Let us study the response of the real-space matter power spectra and correlation func-
tions together with the redshift-space multipole power spectra. The response is constructed
by computing the ratio of the measurement or prediction between a bump and ΛCDM cos-
mology. To study the two-point statistics at non-linear scales we take into account different
schemes: moderate-resolution N-body simulations, and HMCODE. In addition, for the real-
space power spectra we also consider one-loop SPT, for the redshift-space multipole power
spectra we use the TNS and Scoccimarro models and finally, for the real-space correlation
function we use CLPT.

5.2.1 HMCODE

We will use the HMCODE (Mead et al., 2015) model in order to compute the non-linear matter
power spectrum, which takes as input the linear power spectrum of the cosmology in question,
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and then uses some information about the background cosmological parameters and power-
spectrum shape and amplitude in order to make its predictions. We expected that HMCODE

will make reasonable predictions on the bump cosmologies investigated in this work due
to HMCODE has been tested for a variety dark energy models. We will see that the bump
cosmologies will affect the HMCODE predictions in two ways. One of them is trivial since
that the HMCODE prediction at large scales is essentially linear theory and because linear
theory contains the bump then so will HMCODE. The second, is that within HMCODE the
one-halo power is determined by the halo mass function, which itself depends on the linear
power spectrum via the variance in the power spectrum as a function of scale. The bump will
therefore affect the halo mass function and we expect that it will boost the predicted numbers
of haloes in certain mass ranges.

Before running HMCODE, we can make the prediction that it should generally boost power
in the one-halo term for a bump cosmology compared to a cosmological model that lacks a
bump. The traditional halo model calculation has a problem in the transition region between
the two- and one-halo terms (k ∼ 0.05hMpc−1 at z = 0), and generically underestimates the
true non-linear power spectrum in this region; this probably arises due to an improper treat-
ment of non-linear halo bias (Smith et al., 2007). The solution to this problem in HMCODE

is a smoothing of the transition region. Based on this discussion, we could predict that the
HMCODE predictions for the bump cosmologies may be better in the deeply one-halo regime
(k > 1hMpc−1), and that they may be less impressive in the transition region. In the linear
region they should be perfect, given that the HMCODE prediction is identical to linear theory
at large scales. In the quasi-linear regime (k ∼ 0.1hMpc−1 at z = 0) we would expect pertur-
bation theory to perform better than HMCODE since the latter lacks any formal grounding in
analytical perturbation theory.

5.2.2 N-body simulations

We ran 12 N-body simulations using the cosmological simulation code GADGET-2 (Springel,
2005), one each for the cosmologies detailed in Table 5.1. We choose a background ΛCDM
cosmology with total matter density Ωm = 0.3, baryon density Ωb = 0.05, dark energy den-
sity ΩΛ = 0.7, amplitude of the matter power spectrum σ8 = 0.8, spectral index ns = 0.96,
and dimensionless Hubble constant h = 0.7. We use the Zeldovich approximation, based on
the idea to displace particles from an initially Cartesian mesh and assign them velocities, to
generate initial conditions at z = 99 using NGENIC,2. We considered to run simulations with
different box sizes for the different kT values, to ensure that there was always a good sampling
of modes around kT . The box sizes of the simulations are Lbox = 256, 512 and 1024h−1Mpc,
for kT = 0.05, 0.1 and 1hMpc−1 respectively. Each simulation uses 5123 particles to ap-
proximate the density field. The low particle number of the N-body simulations can bias
measurements. To check this systematic effect we study the convergence of our modest-

2https://www.h-its.org/2014/11/05/ngenic-code/

https://www.h-its.org/2014/11/05/ngenic-code/
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Name A σ kT [hMpc−1] Lbox [h−1Mpc]

FATBUMP-K1 0.15 1.0 1.0 256

MEDBUMP-K1 0.15 0.3 1.0 256

THINBUMP-K1 0.15 0.1 1.0 256

ΛCDM-K1 − − − 256

FATBUMP-K0P1 0.15 1.0 0.1 512

MEDBUMP-K0P1 0.15 0.3 0.1 512

THINBUMP-K0P1 0.15 0.1 0.1 512

ΛCDM-K0P1 − − − 512

FATBUMP-K0P05 0.15 1.0 0.05 1024

MEDBUMP-K0P05 0.15 0.3 0.05 1024

THINBUMP-K0P05 0.15 0.1 0.05 1024

ΛCDM-K0P05 − − − 1024

Table 5.1: Specifications of our N-body simulation suite. The background cosmological
parameters are the same for all the simulations: Ωm = 0.3, Ωb = 0.05, ΩΛ = 0.7, Ων = 0,
h = 0.7, ns = 0.96, σ8 = 0.8. Each simulation uses 5123 particles distributed over Ngrid =
5123 cells. We consider the redshifts z = 0,0.5,1,2,3,4.
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resolution 5123 particles simulations with respect to low-resolution 2563 particle simulations
and found that our results for the power spectrum response were only significantly affected
(> 1 per cent) on scales smaller than half of the particle Nyquist frequency, although there
were some noticeable, sub per-cent differences for scales as large as one tenth of the particle
Nyquist frequency. However, the bias that arises when using a low mass resolution cancels
when constructing a response; so the same (or a similar) bias must occur in the cosmologies
of both the numerator and denominator that make up the response.

5.3 Results and analysis
The evolution, dilution and shift of the bump is studied via the different approaches, such
as N-body simulations, HMCODE and PT methods, as complementary tools. The response
functions are given by

R(k) =
Pbump(k)

PΛCDM(k)
. (5.3)

The results are contrasted with the linear theory, for which the response in the power spectrum
is simply RL(k) = 1+F(k) at all z because linear growth is scale independent.

5.3.1 Real-space matter power spectrum
We use cloud-in-cell mass-assignment scheme to extract the power spectra data. The grid
is divided into Ngrid = 5123 cells. The power spectra are binned in 100 evenly log-spaced
k-points over a range [kmin,kNy], where kNy = Ngridπ/L is the Nyquist frequency, and kmin =
2π/L. L is the size of the box, which is given in Table 5.1 for the different simulations.
Usually power spectra in CIC approach are considered to be accurate up to half of the Nyquist
frequency. In our plots we consider all measured scales, up to kNy, and the reader should keep
this in mind.

Figs. 5.1, 5.2, and 5.3 show the responses using the bump cosmology from equation (5.1)
located at the scales kT = 0.05, 0.1, and, 1hMpc−1, respectively. The matter power spec-
tra are computed using our different approaches and then divided by their counterparts in
ΛCDM to create the response function. This analysis compares how the bump cosmologies
are modified by non-linearities within the different schemes.

At higher redshifts non-linear effects are smaller and the responses of all approaches are
very similar. In Fig. 5.1, corresponding to σ = 1, as z decreases we observe two things in the
simulated measurements:

1.- At the small-scale edge of the bump we see the power grow above the bump, an effect
that is captured extremely well by SPT and less well by HMCODE.

2.- We see the generation of a second bump at much smaller scales, with a peak k ∼
1hMpc−1.



100 CHAPTER 5. STUDYING PARAMETRIC FAMILY OF GAUSSIAN

10 2 10 1 100

k [h Mpc 1]
0.8
0.9
1.0
1.1
1.2
1.0
1.1
1.2
1.0
1.1
1.2
1.0
1.1
1.2
1.0
1.1
1.2
1.0
1.1
1.2

P/
P

CD
M

kT = 0.05, = 1.0z=4.0

z=3.0

z=2.0

z=1.0

z=0.5

z=0.0

10 2 10 1 100

k [h Mpc 1]

kT = 0.05, = 0.3 Linear
1-loop
HM code
N-body sims

10 2 10 1 100

k [h Mpc 1]

kT = 0.05, = 0.1

Figure 5.1: Response functions for the bump cosmologies at kT = 0.05hMpc−1. From top to
bottom, yellow curves are for redshift z = 4; magenta for z = 3; cyan for z = 2; red for z = 1;
green for z = 0.5; and blue for z = 0. The left panel shows the bump cosmology for σ = 1;
middle panel for σ = 0.3; and right panel for σ = 0.1. Dash-dotted (black) curves are for the
linear theory; dashed (color) are for 1-loop SPT; solid for HMCODE model; and crosses are
for the measurement from N-body simulations.
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Figure 5.2: Same as Fig. 5.1 but for the bump cosmologies with kT = 0.1hMpc−1.
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Figure 5.3: Same as Fig. 5.1 but for the bump cosmologies with kT = 1hMpc−1.
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As expected, this second bump is not captured at all by SPT (which even predicts a decrease in
the response at higher z) due to it being far out of the reach of its regime of validity. However,
this second non-linear bump is well modelled by HMCODE, which peaks at k ≈ 1hMpc−1 and
reaches a maximum at z = 0, peaking in amplitude at ∼ 10, 2, and 1 per cent for the σ = 1,
0.3, and 0.1 cases respectively. In the kT = 0.1 case, shown in Fig. 5.2, this second non-
linear bump is even clearer, peaking at k ≈ 1hMpc−1 for z ≃ 0, but at smaller scales for
higher redshifts. For some of our cosmologies, this second non-linear bump is even larger
than the primordial bump. For instance, it is larger for σ = 1 at both redshifts z = 0.0 and
z = 0.5, contributing ≈ 18 and 16 per cent to the whole response respectively. Notice that as
the width of primordial bump decreases, the second, non-linear bump amplitude decreases.
Also, the location and amplitude of the non-linear bump as seen in the simulated data is in
agreement with the predictions from HMCODE in all cases. In Figs. 5.1 and 5.2, corresponding
to kT = 0.05 and 0.1hMpc−1 respectively, HMCODE and the simulation response provide
similar results at lower redshifts and in the non-linear regime. Conversely, 1-loop SPT gives
results closer to those obtained from simulated data at higher redshifts and in the mildly
non-linear regime (k ≲ 0.2hMpc−1).

Why do these non-linear bumps appear in the response functions? The non-linear bumps
emerge due to interaction between the primordial bump and the one-halo term, being highly
enhanced for the wider bumps simply because these provide a greater enhancement of linear
power. This can be understood via two ways: First, within the halo model (and therefore
within HMCODE), where the one-halo term is given by the integral of the halo mass function
multiplied by the squared Fourier-space halo profile. The halo mass function itself is related
to the standard-deviation in the density field when smoothed over the Lagrangian radius of
the halo, σR. The bump cosmology increases the power over a certain range of scales, such
that σR will also increase, and therefore so will the mass function. Hence, halo formation for
the bump cosmology will be larger than cosmology with no bump. The second way to think
about this is via the increased amplitude of some modes, given here by our bump cosmology,
is helping more small scale fluctuations to cross over the critical threshold to collapse. This
(Press and Schechter, 1974) type argument occurs even when the bump is at very linear
scales as long as the width is sufficiently large, because those long wavelength modes exist
underneath small scale fluctuations enhancing the collapse to form the actual haloes. We note
that this is a highly non-linear effect, such that the second bump is not well described by PT,
where the main effect is the spreading and enhancement of the primordial bump.

In the kT = 1hMpc−1 bump cosmologies, shown in Fig. 5.3, the simulation response
demonstrate that the primordial bump become erased due to the non-linear evolution. Such
effect is well modelled by the HMCODE but not captured by PT since these scales are far be-
yond its reach, although at the highest redshifts it works moderately well. The non presence
of the second bump is surprising, given that the primordial bump and the 1-halo term are
located about the same scale.

Perturbation theory provides an accurate model for the power spectrum response at large
scales, with the accuracy extending to smaller scales at higher redshift as is demonstrated



5.3. RESULTS AND ANALYSIS 103

10 2 10 1 100

k [h Mpc 1]

1.0
1.04
1.08
1.12
1.16

1.0
1.04
1.08
1.12
1.16

1.2
P 0

/P
0,

CD
M
 

kT = 0.05
= 1.0

z = 1.0

z = 0.0

Kaiser
TNS
Sc04
N-body sims

10 2 10 1 100

k [h Mpc 1]

kT = 0.05
= 0.3

z = 1.0

z = 0.0

10 2 10 1 100

k [h Mpc 1]

kT = 0.05
= 0.1

z = 1.0

z = 0.0

10 2 10 1 100

k [h Mpc 1]

1.0
1.04
1.08
1.12
1.16

1.0
1.04
1.08
1.12
1.16

1.2

P 0
/P

0,
CD

M
 

kT = 0.1
= 1.0

z = 1.0

z = 0.0

10 2 10 1 100

k [h Mpc 1]

kT = 0.1
= 0.3

z = 1.0

z = 0.0

Kaiser
TNS
Sc04
N-body sims

10 2 10 1 100

k [h Mpc 1]

kT = 0.1
= 0.1

z = 1.0

z = 0.0

Figure 5.4: Responses of the monopole power spectrum at z = 0 and 1 for the bump cos-
mologies at kT = 0.05 (top panel) and 0.1hMpc−1 (bottom panel), with different widths
σ = 1,0.3,0.1 (from left to right). Dashed black shows the Kaiser linear theory; dashed
green is for the TNS model; solid red for Sc04 model; and the blue crosses show the simu-
lated data.

in Figs 5.1, 5.2 and 5.3. Otherwise, HMCODE provides a reasonable (though less perfect)
model for the response at the smaller scales, those usually associated with halo formation.
The combination of these two methods could provide an accurate model for the response
that would be valid across a wider range of scales. This novel scheme has been studied in
the literature previously (e.g., Mohammed and Seljak, 2014; Seljak and Vlah, 2015; Philcox
et al., 2020), but has never been applied to the bump cosmology specifically.

5.3.2 Redshift-space matter power spectrum multipoles

In this Section, let us explore the responses of the redshift-space monopole and quadrupole
power spectra using the non-linear models Sc04 and TNS. For comparison we also use
Kaiser linear theory. For the multipole power spectra we use a triangular-shaped-cloud mass-
assignment function, on a grid with Ngrid = 5123 cells, computing via the N-BODYKIT pack-
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Figure 5.5: As Fig. 5.4 but for the quadrupole response.
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age3of (Hand et al., 2018).
The response functions in the monopole P0 at redshifts z = 0 and z = 1 for the bump cos-

mologies with kT = 0.05hMpc−1 are shown in the top panel of Fig. 5.4. Theoretical models
perform closer to the simulation response than the linear theory in the quasi-linear regime is
not surprising, in the sense that the responses are closer to those from N-body simulations.
However, for k > 0.2hMpc−1 both non-linear models make deviations from the simulated
data. The response functions for the bump cosmologies located at kT = 0.1hMpc−1 are
shown in the bottom panel of Fig. 5.4. As in the case of kT = 0.05hMpc−1, the response is
well captured by the PT approaches in the quasi-linear regime, although the non-linear signa-
tures of the bump are less well captured when comparing to the simulations since the scale of
the bump is located at the edge of the perturbative regime of validity. On the other hand, the
linear theory provides a better match to the simulation responses for some non-linear scales,
obviously the good performance of linear theory here is only a lucky coincidence. The be-
haviour of the second non-linear bump at ≈ 1hMpc−1 is similar to the case in real space, but
is not present in the kT = 0.05hMpc−1 case, even though in real space this non-linear bump
was visible in both cases. (Gomez-Navarro et al., 2020) suggest that this effect is because
the damping along the line-of-sight direction of the redshift-space power spectrum, which
ultimately comes from the highly oscillatory behavior of the correlator inside the integral of
equation (2.58) at large k. This redshift-space behaviour damps the multipoles in all bump
cosmologies, but since the second (real space) bump is larger for the case of kT = 0.1hMpc−1,
it can overcome the damping and it still appears in the redshift-space responses.

In Fig. 5.5, we show the quadrupole redshift-space power spectra for kT = 0.05hMpc−1

and kT = 0.1hMpc−1. Although the simulated quadrupole measurements are noisier than for
the monopole, we obtain a similar result to that predicted by the PT methods, most obviously
for the case of kT = 0.05hMpc−1 at z = 1. We also see that the non-linear, second bumps
do not show up in the quadrupole. (Gomez-Navarro et al., 2020) suggest that this is due to
the multipole gives maximum weight to the line-of-sight direction where the damping effect
occurs, while the monopole gives equal weight to all directions.

5.3.3 Real-space matter correlation function

We study the measured real-space correlation function responses, defined as ξbump(r)/ξΛCDM(r),
from both the simulated data and the analytical correlation function calculated according to
the CLPT method. All simulated correlation functions have been measured by employing
the N-BODYKIT code, using 60 linearly spaced bins in the range 1–121h−1Mpc for the bump
cosmologies at kT = 0.05hMpc−1, 30 bins in the range 1–61h−1Mpc for models at kT = 0.01,
and 15 bins in the range 1–31h−1Mpc for models at kT = 1.0hMpc−1.

In Fig. 5.6, we show the response functions for the bump at kT = 0.05hMpc−1 for four
different redshifts z = 2, 1, 0.5, and 0 and the bump cosmologies with widths σ = 1, 0.3,

3https://nbodykit.readthedocs.io

https://nbodykit.readthedocs.io
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Figure 5.6: The real-space correlation function response: We plot ξ/ξΛCDM for bump cos-
mologies at kT = 0.05 in units hMpc−1 for different redshifts (z = 0.0,0.5,1.0,2.0). From
top to bottom, cyan curves are for z = 2; red for z = 1; green for z = 0.5; and blue for z = 0.
Right: Bumps with σ = 1.0. Middle: Bumps with σ = 0.3. Left: Bumps with σ = 0.1. The
CLPT correlations are represented by the solid lines. The plus markers denote the N-body
simulations. The black dash-dotted lines denote the linear correlation function.
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Figure 5.7: As Fig. 5.6 but for the bump cosmologies with kT = 0.1hMpc−1.
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Figure 5.8: As Fig. 5.1 but for the bump cosmologies with kT = 1hMpc−1.
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and 0.1. We find a dip in the response around 85h−1Mpc. We suggest that this is because
a long wavelength modulation of the whole correlation function because of the localized
bump feature in the corresponding power spectrum. By considering equation (5.1), the linear
correlation function response is given by

RL(r) = 1+
1

ξ ΛCDM
L (r)

∫
∞

0
d3r′ξ ΛCDM

L (r′)F̃(|r− r′|), (5.4)

with

F̃(r) =
∫

∞

0

dk
2π2 k2F(k) j0(kr), (5.5)

where j0 is the zero-order spherical Bessel function. Physically, the dip can be understood as
follows: for scales r ≫ k−1

T we have that F̃(r)→ 0 because of large cancellations provided
by j0(kr); while as r → 0, F̃(r)→ (2π2)−1 ∫ dkk2F(k), a constant that when computed turns
out to be much smaller than the correlation function at those small scales; such that the linear
response goes to unity at both large scales and small scales limits. On the other hand, k2F(k)
reaches its maximum at scales kmax > kT , the larger the width σ , the bigger are kmax and
the maximum values k2

maxF(kmax); however for larger widths, the function k2F(k) overlaps
with more oscillations and F̃(r) is suppressed. The inverse transformed bump feature, F̃(r),
turns out to be a sinc-like function in real space with amplitude proportional to the σ and
first trough around rT ≲ (3/2)π/kT . Moreover, the aforementioned effects compete and this
becomes more pronounced for the width σ = 0.3 case. Coincidentally, for the case kT = 0.05,
this trough is located at about the same scale as the dip, at about 87h−1Mpc, in the correlation
function, and both reinforce each other to produce the large dip observed in Fig. 5.6.

More generally, for the different choices of kT the changes in the correlation-function
response will follow a similar pattern, but the wave-length modulations will be related to the
characteristic scales: For larger kT and smaller σ , the oscillations in the correlation function
have higher frequency and are damped at smaller scales. This can be seen in Figs. 5.7 and 5.8,
for the cases kT = 0.1 and 1hMpc−1, respectively. The main qualitative difference compared
to the kT = 0.05hMpc−1 case is that the reinforcement with the BAO characteristic dip is not
present in these cases.

The peaks and troughs are more pronounced in the linear theory since the correlation func-
tion scales simply with the scale-independent linear growth function. On the other hand for
CLPT, even in the Zeldovich approximation, overdense regions are partially depleted, while
underdense regions populated, due to the free-streaming of coherent matter flows over a scale
settled by the Lagrangian displacements 1-dimensional variance σ2

Ψ
=
∫

∞

0 dkPL(k)/(6π2).4

This effect is captured very well by our numerical results, and the damping in the responses
become very similar for simulated data and CLPT. More remarkably for the cases of kT =
1hMpc−1 with σ = 0.3 and 0.1, corresponding to middle and right panels of fig. 5.8, where

4This effect has the same origin as the smearing of the BAO peak observed in LPT and simulations (see, e.g.
Tassev 2014a).
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the oscillations in the power spectrum are practically erased. The reason for this is, of course,
that the peaks and troughs are more closer to each other and the free-streaming of particles
can cover such distances. Indeed, particles travel, on average, a distance settled by the stan-
dard deviation of the displacement field σΨ(z) ∼ 6×D+(z)h−1Mpc with D+(z) the linear
growth function, so the process of particles moving out from more dense regions becomes
very efficient.

5.4 Remarks and conclusions

Phase transitions in the dark sector are common in theories of cosmology beyond ΛCDM,
and these leave fingerprints that are potentially detectable by current and future surveys. One
of these signatures is the creation of enhanced features in the power spectrum at scales where
otherwise the power would be smooth. The generation of these can be understood since
all k-modes entering the horizon during the time elapsed by the phase transition suffer an
enhancement on their amplitude since adding an extra ρex increase the growth rate of the
linear matter perturbations impacting modes k ≥ kc entering the horizon for a < ac. In this
work we have focused on bumps generated in the power spectrum, motivated by the recently
proposed BDE model of (de la Macorra and Almaraz, 2018) and SEOS (Jaber-Bravo et al.,
2020).

We have studied non-linear evolution of parametric bump cosmologies. We have chosen to
be as model independent as possible, instead of considering bumps generated by any specific
BDE model, since we are interested in a wider range of theoretical models. We have also
fixed the background cosmology to be ΛCDM to allow us to investigate the phenomenology
of bumps in isolation. In order to do so, we have run modest-resolution N-body simulations,
which are complemented by perturbation theory models and non-linear halo-model calcula-
tions from the HMCODE model of (Mead et al., 2015). We expect the different methods used
to work over different ranges of scales, and this complementarity is important, since although
bumps can be localized at a given scale, these are naturally spread by non-linear evolution,
typically covering scales that may be outside the range of validity of some particular method.
Bearing in mind that non-linear ΛCDM is well studied, we have put attention to the power
spectrum response, constructed as the ratio of the power in a bump cosmology to a cosmol-
ogy with no bump, instead than on the power spectrum itself. Once an accurate model for
the response is at hand, this can be converted into an accurate model for the power spectrum
by multiplying by an accurate model for the ΛCDM non-linear power spectrum. We have
studied the non-linearities in both real and redshift space for the power spectrum and how
these fingerprints are translated to configuration space in the correlation function.

Much of the non-linear physics is understood within the HMCODE method in the real space
power spectrum. Of particular importance is the appearance of a second bump feature in the
response generated at smaller scales than the first, primordial bump. The reason for this is
a non-linear coupling of the bump and one-halo term in the following simple mechanism:
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long wave-length density fluctuations are enhanced to form the bump, but at the same time,
small-scale fluctuations in regions located inside these overdensities, corresponding to 1-halo
regions in halo models, are further amplified and can cross-over the threshold density for
collapse more easily, leading to a more efficient halo formation than in a model without a
bump. PT, on the other hand successfully follow the data at quasilinear scales, though it fails
to model the second, non-linear bump, which is out of its reach. In redshift space this second,
non-linear bump is partially erased because of the damping along the line-of-sight direction
that is provided by the random motion of virialized regions that generate the "Fingers-of-
God". Such effect is more clear in the quadrupole, for which the second bump is almost
completely erased, since this multipole gives more weight to the line-of-sight direction. The
monopole, on the other hand, still shows the second bump since it gives equal weight to all
directions. This redshift-space effect, being highly non-linear, is not captured by perturbation
theory, however at quasi-linear scales the simulated data and theory predicted by using the
two popular methods of (Taruya et al., 2010) and (Scoccimarro, 2004) behave similarly.

A localized bump in the power spectrum corresponds to oscillations in the correlation
function with amplitude proportional to its width and a frequency governed by its position.
The effect is to modulate the response about unity: higher wavenumbers at which the bump is
located translate to higher oscillation frequencies; and wider bumps enhance the modulation,
but are also more rapidly damped. This basic picture is explained well within linear Eulerian
theory. By moving to Lagrangian space, we find that the signatures in the correlation function
become even more damped since coherent flows have a finite probability to leave overdense
regions and populate underdense regions. This effect has the same origin as the smearing of
the BAO peak, that is well captured in LPT; and in the bump cosmology is much more evident
for large-k located bumps with small widths, since in these cases linear theory shows up rapid
oscillations, and the displacement fields sizes, typically given by their standard deviations, are
large enough, such that particles find the time to deplete the overpopulated regions.

In the future it would be interesting to investigate the phenomenology of the bump cosmol-
ogy for different bump amplitudes, which is fixed at 0.15 in this paper, somewhat arbitrarily.
One could also investigate more physical examples of ‘bump’ cosmology, such as that gen-
erated by the physical BDE model, where the background expansion is also changed relative
to ΛCDM and where the bump shape will not necessarily be Gaussian. Since this was our
first investigation, in this paper we focused on modelling statistics of the matter field, which
unfortunately are not direct observables. In future, it would be fruitful to consider how the
statistics of biased tracers of the density, such as haloes or galaxies, were affected by bump
cosmologies. Specifically, we suspect that there may be interesting signatures generated in
the halo bias and that these could be understood using (Press and Schechter, 1974) arguments
in a similar way to how we could explain the generation of the ‘second bump’ feature in the
matter power spectrum. Of course, one could also investigate higher-order statistics, or statis-
tics of transformed versions of the density fields (e.g., Simpson et al., 2011; White, 2016).
On the theory side, it may be interesting to see if Effective Field Theory (EFT) (Baumann
et al., 2012) could be used to extend the reach of perturbation theory. Compared to SPT, EFT



5.4. REMARKS AND CONCLUSIONS 111

simply adds a term −c2
s k2PL(k) to the power spectrum, with fitted effective speed of sound c2

s ,
and this extra freedom may allow for a joint EFT-halo model approach to accurately model
the response across all scales.

Summarizing, in this work we have used non-linear methods to study the fingerprints that
may be left by cosmological models on which the dark energy suffers phase transitions, and
have the potential to be detectable by current and future galaxy surveys.
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Chapter6

SUMMARY AND OUTLOOKS

In this thesis we have studied models beyond ΛCDM, which are characterised by a rapidly
diluted energy density (RDED) that dilutes at given scale factor ac and corresponding wave-
vector amplitude kc = acH(ac). This signature is motivated by the recently proposed BDE
model of (de la Macorra and Almaraz, 2018) and SEOS (Jaber-Bravo et al., 2020). The
background evolution and therefore the cosmological distances such as the comoving angular
distance DA, the angular diameter DM, the acoustic scale at recombination rs and the diffusion
damping scale rd are affected by the RDED transition. Also, this RDED leaves distinctive
features in the matter and CMB power spectrum. In particular, it generates a bump in the
matter power spectrum, more visible once we compare to ΛCDM, due to the linear growth of
density field δm(k) has a higher increase rate for larger H in radiation-dominated epoch (c.f.
Eq. (3.29)). The increase takes place only for modes k ≥ kc when ρex > 0 while for mode
k < kc both models have the same expansion rate and the evolution of δm(k) is the same for
both cases. The amplitude of the bump is related to the amount of the diluted energy density
ρex, while the mode is located about k ∼ kc. We study these bumps in the linear regime and
also apply one-loop corrections using SPT.

We consider here two different models, one located at large scales, the other at small scales.
Both methodologies are inspired by the EDE-like model <. In this EDE-like model, also
called BDE model, an RDED phase transition takes place in the radiation dominated epoch
with ac ∼ 10−6, affecting modes entering the horizon at early times, where the corresponding
mode is kc ∼ 1hMpc−1 and a bump is generated for modes k ≥ kc. The BDE model also
shows a RDED with a steep transition centered at a redshift zc ≈ 0.625 resulting in second
bump located at large scales.

We also studied models (DMx) with extra matter, diluting in matter dominated epoch,
where the growth of structure has two effects. The first one is due to having extra matter ρex
for a < ac, affecting all modes (k > kc) entering the horizon before ac, while the second effect
is due to the RDED at ac. We study the increase of amplitude in the linear evolution of the
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matter density perturbation of these two different sources, obtaining an increment around 8%
in the power spectrum PX/PΛ due to the rapid dilution at the maximum of the bump at kb.
Otherwise, we find a plateau for modes k > kc due to the extra matter, meanwhile for modes
entering the horizon after the transition a < ac we obtain no increase in the evolution of the
matter density perturbations and we get PX/PΛ = 1 for modes k < kc.

We concentrated also in a model-independent analysis and we parameterized the dynamics
of dark energy using a steep equation of state (SEOS) (Jaber and de la Macorra, 2018) in
order to study the imprints of dark energy at late times. In the SEOS model the EoS w has a
transition at zc = 0.28. Here we studied two extreme cases, with soft and steep transitions, to
observe different impacts on the CMB and matter power spectra.

We used the one-loop correction analysis using the code MGPT (Aviles et al., 2018) in
order to compute the position and amplitude of the peaks of the bumps in the matter power
spectrum, taking into account the background evolutions with and without ρex. We find
that the non-linear effects shift the peak of the bumps to smaller modes and enhance their
amplitudes in comparison to linear computations.

In Table 4.1 and 4.3 are shown different values of cosmological parameters for our two
models: for small scales and for large scales, respectively. In the linear regime, we see
the bump imprint left by the rapid dilution of BDE on modes k > kc, entering the horizon
before ac, as a peaked bump centered at k = 0.47hMpc−1 for BDE-I,BDE-II,BDE-III (k =
1.06hMpc−1 for BDE-IV,BDE-V, BDE-VI), where the enhancement of power in BDE is
about 16% (19.58%), respectively. We notice deviations at larger scales e.g. k ≥ 0.05hMpc−1

and k ≥ 0.5hMpc−1 respectively, due to the width of the bump in each case. The scale of the
bump is mainly located at non-linear scales, although covering also quasi-linear scales, and
once we determine the one-loop power spectra we find that BDE-III (BDE-VI) provides an
enhancement of 4% (5%) at k = 0.9hMpc−1 (1.8hMpc−1), respectively. Nevertheless, these
results should be taken as indicative since the high-k tails of the bumps are out of the reach
of perturbation theory.

For late times, the RDED affects the evolution of matter fluctuations mainly at late times
during the Einstein-de Sitter phase, matter perturbations have the same amplitude as in
ΛCDM at all scales, the overall normalization is due to a slightly different rate of expan-
sion in ΛCDM and SEOS models. Here we studied the same mode k = 8.37×10−5 hMpc−1

but different amounts of matter and steepness of the transition.
As time increases, the effect of the dynamical dark energy of the SEOS model is altered

decreasing the amplitude for all Fourier modes and originating a bump at k ≈ 5×10−3; that
is, the power spectrum of ΛCDM is always larger than the power spectrum of SEOS model
originating a bump at lower redshift.

Summarizing, this distinctive signature, named as bump, has been studied at a linear and
one-loop level in perturbation theory. We have theoretically study the evolution of linear mat-
ter perturbations and showed that a bump is indeed generated in the matter power spectrum
and we estimated the amplitude and width of the bumps in early and late times by means
of BDE-like and SEOS-like models. We compared our results with a full implementation
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in the numerical Boltzmann code CAMB and found that our theoretical results are within a
few percentage difference of the numerical results. This demonstrates that the origin of the
bump, observed in matter power spectrum using the numerical simulations, is indeed due to
a RDED.

We have also studied non-linear evolution of parametric bump cosmologies. In this the-
sis we have chosen to be as model independent as possible, instead of considering bumps
generated by any specific BDE model, since we are interested in a wider range of theoret-
ical models. We fixed the background cosmology to be ΛCDM to allow us to investigate
the phenomenology of bumps in isolation. In order to do so, we have run modest-resolution
N-body simulations, which are complemented by perturbation theory models and non-linear
halo-model calculations from the HMCODE model of (Mead et al., 2015). In order to cover
over different ranges of scales we work with different methods. This complementary is es-
sential, since although bumps can be localized at a given scale, these are naturally spread by
non-linear evolution, typically covering scales that may be outside the range of validity of
some particular method.

We expect the different methods used to work over different ranges of scales, and this
complementarity is important, since although bumps can be localized at a given scale, these
are naturally spread by non-linear evolution, typically covering scales that may be outside
the range of validity of some particular method. Bearing in mind that non-linear ΛCDM is
well studied, we have put attention to the power spectrum response, constructed as the ratio
of the power in a bump cosmology to a cosmology with no bump, instead than on the power
spectrum itself. Once an accurate model for the response is at hand, this can be converted into
an accurate model for the power spectrum by multiplying by an accurate model for the ΛCDM
non-linear power spectrum. We have studied the non-linearities in both real and redshift space
for the power spectrum and how these fingerprints are translated to configuration space in the
correlation function.

The non-linear physics is well understood within the HMCODE scheme, particularly in the
second bump in the response generated at smaller scales than the first, primordial bump. This
second bump feature is due to non-linear coupling of the bump and one-halo term in the
following mechanism: long wave-length density fluctuations are enhanced to form the bump,
but at the same time, small-scale fluctuations in regions located inside these overdensities,
corresponding to 1-halo regions in halo models, are further amplified and can cross-over the
threshold density for collapse more easily, leading to a more efficient halo formation than
in a model without a bump. On the other hand, perturbative scheme successfully follow the
data at quasilinear scales, though it fails to model the second, non-linear bump, which is out
of its reach. In redshift space this second, non-linear bump is partially erased because of the
damping along the line-of-sight direction that is provided by the random motion of virialized
regions that generate the "Fingers-of-God". Such effect is more clear in the quadrupole, for
which the second bump is almost completely erased, since this multipole gives more weight
to the line-of-sight direction. Otherwise, the monopole still shows the second bump since it
gives equal weight to all directions. The redshift-space effect, being highly non-linear, is not
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captured by perturbation theory, however at quasi-linear scales the simulated data and theory
predicted by using the two popular methods of (Taruya et al., 2010) and (Scoccimarro, 2004)
behave similarly.

A localized bump in the power spectrum corresponds to oscillations in the correlation
function with amplitude proportional to its width and a frequency governed by its position.
The effect is to modulate the response about unity: higher wavenumbers at which the bump is
located translate to higher oscillation frequencies; and wider bumps enhance the modulation,
but are also more rapidly damped. This basic picture is explained well within linear Eulerian
theory. By moving to Lagrangian space, we find that the signatures in the correlation function
become even more damped since coherent flows have a finite probability to leave overdense
regions and populate underdense regions. This effect has the same origin as the smearing of
the BAO peak, that is well captured in LPT; and in the bump cosmology is much more evident
for large-k located bumps with small widths, since in these cases linear theory shows up rapid
oscillations, and the displacement fields sizes, typically given by their standard deviations, are
large enough, such that particles find the time to deplete the overpopulated regions.

In the future it would be interesting to investigate the phenomenology of the bump cosmol-
ogy for different bump amplitudes, which is fixed at 0.15 in this paper, somewhat arbitrarily.
One could also investigate more physical examples of ‘bump’ cosmology, such as that gen-
erated by the physical BDE model, where the background expansion is also changed relative
to ΛCDM and where the bump shape will not necessarily be Gaussian. Since this was our
first investigation, in this paper we focused on modelling statistics of the matter field, which
unfortunately are not direct observables. In future, it would be fruitful to consider how the
statistics of biased tracers of the density, such as haloes or galaxies, were affected by bump
cosmologies. Specifically, we suspect that there may be interesting signatures generated in
the halo bias and that these could be understood using (Press and Schechter, 1974) arguments
in a similar way to how we could explain the generation of the ‘second bump’ feature in the
matter power spectrum. Of course, one could also investigate higher-order statistics, or statis-
tics of transformed versions of the density fields (e.g., Simpson et al., 2011; White, 2016).
On the theory side, it may be interesting to see if Effective Field Theory (EFT) (Baumann
et al., 2012) could be used to extend the reach of perturbation theory. Compared to SPT, EFT
simply adds a term −c2

s k2PL(k) to the power spectrum, with fitted effective speed of sound c2
s ,

and this extra freedom may allow for a joint EFT-halo model approach to accurately model
the response across all scales.

Summarizing, in this work we have used non-linear methods to study the fingerprints that
may be left by cosmological models on which the dark energy suffers phase transitions, and
have the potential to be detectable by current and future galaxy surveys.
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