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Introduction

The notion of computation is one of the most relevant ideas for science nowa-
days. The formalization of this concept dates back to 1936 when Church
[Ber36] proposed the λ-calculus as a theory capable of representing the idea
of computable function. One consequence of the proof of the equivalence be-
tween the Turing machines and the λ-calculus [Kle36] is that there are terms
within the calculus which yield run-time errors, such as wrong function calls
or non-coherent functions.

Here, mathematics help to understand and analyse the weaknesses or er-
rors, within the basis and foundations of the theories. A solution provided
by mathematics is the construction of collaborations between logic, and com-
putation, to obtain better behaviours from terms. The idea is to restrict the
language and build appropriate type systems.

On the other hand, computational requirements are different nowadays.
These new tasks require new models of computation. So, in 1982 Milner
[Mil82] proposed the calculus of the communicating systems (CCS). CCS
was an answer to the need for a theory for the study of mobile systems.
Later, CCS evolved into the π-Calculus [MPW92].

Using the π-calculus it is possible to study new paradigms, such as concur-
rent or message-passing computing. One advantage and challenge of math-
ematical foundations is that it is possible to abstract the critical parts of a
theory. For concurrent computing: endless waiting and deadlock.

Honda [Hon93] worked on the difficulties of concurrent programming and
proposed a type system as a solution. The types intend to be aware of chan-
nels’ communication evolution, produced by the interaction between pro-
cesses. Nevertheless, in the system proposed by Honda, the logical founda-
tion was not clear. Hence, Pfenning, Caires [CPT12], and Wadler [Wad12a]
proposed a type system for the π-calculus using linear logic. Girard [Gir87]
proposed linear logic in 1987 as a resource-based logic.

For Wadler, a system of types has a good design if there is a Curry-Howard
correspondence. Hence, a similar correspondence between the π-calculus
processes and linear logic is highly desirable. Additionally, it should be
possible to prove the Subject Reduction (types preserving) and Progress (of
the reduction relation) properties in a well-designed correspondence; because
they solve the endless waiting and deadlock problems.

Then, type systems motivate the study of logic systems and their prop-
erties, they also represent the complex interaction between computation and
mathematics. Additionally, thanks to this interaction it is possible to con-
struct assistants for correct software development and formal verification of
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theories, as Coq1. This kind of software helps in the formalization and ver-
ification of mathematical knowledge. Also, they improve the understanding
and prevent failures within the theory.

Verifying a theory reveals hidden details, hypotheses, and ideas. It is
usual that the community accepts these details and does not talk about
them. Nevertheless, they hide relevant information for the development and
comprehension of the theory. Making them explicit is a challenge in formal
verification and requires a deep and conscious examination of the particular
case being studying.

This work presents the formal verification of the Subject Reduction The-
orem for a custom version of the πULL typing system proposed by Heuvel
and Perez [vdHP20]. This version fills out some ideas and definitions, in
contrast with the original one. These precisions are necessary to complete
the verification.

The document is divided into four chapters.

The first chapter, we introduce the ideas and origin of linear logic and
give a pragmatic motivation for the system. Also, we discuss some key results
and examples. Additionally, we present dual systems as a framework to work
uniformly with several logics. Then, we introduce π-calculus, its motivation,
and relevant ideas. Within this part, we study each definition in detail. Also,
we propose a visual representation of the processes, the study of the machine
representation is easier with this visual representation. The chapter ends
with two key examples within the calculus: endless waiting and deadlock.

In the second chapter, we present the type system. we start by showing
the correspondence between the πULL-calculus and the ULL logic system.
Next, we proceed by presenting the πULL-calculus and its rules. Then, we
discuss the notions of principal cuts given by Caires, Pfenning [CPT12], and
Wadler [Wad12a], which support the building of the correspondence. The
construction exhibits the relation between cut eliminations and computa-
tions; this helps to define the operational semantics based on cut elimination.
Next, we work on the proof of necessary lemmas and the Subject Reduction
Theorem.

Also, we discuss the most common machine representations their advan-
tages and disadvantages. In particular, this part reviews the locally nameless
(LN) representation and the reasons to choose it. Also, it presents its opera-
tions, functions, predicates, and it contains a proof of the equivalence between
the locally closed (lc) and locally closed at (lca) predicates. This proof is
relevant due to the different problems and solutions needed to complete it
successfully.

1https://coq.inria.fr/
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In the third chapter, we discuss the challenges and differences between
paper and pencil proofs and mechanized proofs. The goal is to analyze and
make explicit the difficulties that arose during the work and the proposed
solutions. Examples guide this discussion. Finally, in the fourt chapter we
do the final remarks of the present work.

The project source code can be found at: https://github.com/ cigar-
cial/Tmcod

https://github.com/cigarcial/Tmcod
https://github.com/cigarcial/Tmcod
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Introducción

La noción de cómputo ha sido una de las ideas más relevantes en la ciencia
durante las últimas décadas. La búsqueda de una formalización para este
concepto encuentra sus oŕıgenes en 1936 cuando Church [Ber36] propone el
cálculo λ como una teoŕıa capaz de representar la noción de función. Pos-
teriormente, como consecuencia de la equivalencia entre el cálculo λ y las
máquinas de Turing [Kle36], se logra establecer que dentro del mismo hay
expresiones que caen en errores de ejecución, tales como usos incorrectos de
funciones o resultados que carecen de sentido.

Aqúı juega un rol fundamental la matemática, sentando bases y funda-
mentos para el estudio, comprensión y abordaje de estas falencias o errores.
Un ejemplo concreto del tipo de soluciones que se ofrece, es la construcción
un puente entre la lógica y la computación para mejorar el comportamiento
de las expresiones de tal manera que no se obtengan errores de ejecución.
Lo anterior, se traduce en combinar restricciones sintácticas y un sistema de
tipos adecuado para el lenguaje.

Por otro lado, en la actualidad las necesidades computacionales han cam-
biado y es imprescindible pensar en nuevos marcos de trabajo matemáticos
sobre los cuales sea posible formalizar y estudiar dichos requerimientos. Aśı
por ejemplo, Milner [Mil82] en 1982 propone el cálculo de sistemas que se
comunican (CCS) como respuesta a la necesidad de estudiar la computación
entre sistemas móviles que se comunican; posteriormente, esta teoŕıa se re-
fina y nace el cálculo π [MPW92] como marco de trabajo estándar para este
tipo de sistemas.

El cálculo π abrió el camino para el estudio formal de nuevos paradigmas
de computación, como el paso de mensajes o la concurrencia. Una ventaja
y reto, de la abstracción matemática, es que permite establecer de manera
precisa las partes cŕıticas de una teoŕıa; en el caso de la concurrencia, los
problemas de la espera mutua (Endless waiting) o interbloqueo (Deadlock).

Honda [Hon93] trabajó en las dificultades de la programación concurrente
y presentó como solución un sistema de tipos, la intención es conocer cómo
evoluciona un canal a medida que los procesos interactúan y se comunican
entre ellos. Sin embargo, en el sistema de Honda no era expĺıcito el funda-
mento lógico que subyaćıa, lo que motivó a que Pfenning, Caires [CPT12]
y Wadler [Wad12a], propusieran un sistema de tipos para el cálculo π uti-
lizando la lógica lineal; un sistema lógico propuesto por Girard [Gir87] en
1987 basado en la conciencia de los recursos y con diversas aplicaciones en
los últimos años.

Siguiendo las ideas de Wadler, un sistema de tipos es transparente en
su diseño en la medida que se obtiene una correspondencia o isomorfismo al
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estilo Curry-Howard, por lo que para la programación concurrente se bus-
cará establecer un isomorfismo análogo entre los procesos del cálculo π y
las propiedades de la lógica lineal. A su vez, a la luz de una buena cor-
respondencia debe ser posible obtener los teoremas de Reducción del Sujeto
(preservación de tipos) y Progreso (de las reglas de reducción), pues al garan-
tizar estos resultados se resuelven la espera mutua y el interbloqueo.

Se puede pensar entonces que los sistemas de tipos motivan el estudio
de las lógicas y de sus propiedades, además constituyen un ejemplo de la
compleja interacción que se da entre la computación y las matemáticas. Pero
no solo se limitan a esto, gracias a ellos es posible construir asistentes para el
desarrollo de software confiable y la verificación formal de teoŕıas, tal como es
el caso de Coq2. Esta clase de software permite formalizar y verificar teoŕıas
matemáticas, mejorando la comprensión y previniendo fallos dentro de las
mismas.

Al verificar una teoŕıa, es posible observar que comúnmente se esconden
detalles, argumentos, hipótesis e ideas que para los autores pueden resultar
sencillos o que por consenso general son aceptados. No obstante, dichos
detalles omiten información relevante para el desarrollo y comprensión de
la misma. Hacerlos expĺıcitos representa uno de los retos actuales en el
campo de la verificación formal, puesto que es necesario realizar un estudio
consciente y profundo, para culminar en un diseño completo y exitoso.

En este trabajo se buscará verificar formalmente el teorema de Reducción
del Sujeto para una versión propia del sistema de tipos πULL (United Lin-
ear Logic) propuesto por Heuvel y Perez [vdHP20]. Esta nueva versión hace
precisas algunas ideas y definiciones respecto a la formulación original, refi-
namiento que es necesario durante el proceso de verificación.

El documento se divide en cuatro caṕıtulos detalladas a continuación.

En el primer caṕıtulo, se introducen las ideas de la lógica lineal, sus
oŕıgenes y se buscará dar una motivación pragmática del sistema. Aśı mismo,
son presentados ejemplos y resultados relevantes. También se introducen y
discuten los sistemas duales, los cuales fueron propuestos como un mecanismo
para conciliar los distintos marcos de trabajo lógicos. El sistema lógico que
se trabajará es el ULL, quien constituye la base del sistema de tipos. En la
segunda parte del primer capitulo, se introduce el cálculo π su motivación
e ideas relevantes, se hace un estudio de las definiciones claves, buscando
introducir y exponer cada elemento con detalle. Por otro lado, se propone
una representación visual para los procesos, dicha representación permite
estudiar las distintas representaciones en máquina de manera más sencilla. Se
finaliza esta sección presentando dos ejemplos relevantes dentro del cálculo,

2https://coq.inria.fr/
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uno de espera mutua e interbloqueo.
En el segundo caṕıtulo, se estudiará el sistema de tipos, la idea es motivar

una correspondencia entre el cálculo πULL y la lógica ULL. Se toma como
punto de partida el cálculo πULL y las reglas que lo rigen, para luego hacer
expĺıcita la construcción del sistema de tipos siguiendo las nociones de cortes
principales que introducen Caires, Pfenning [CPT12] y Wadler [Wad12a];
dicha construcción es relevante en el presente trabajo dado que establece la
relación entre la eliminación de cortes y los cómputos dentro del sistema, lo
que se traduce en una semántica operacional basada en la eliminación de las
reglas de corte. Posteriormente, se introducen algunos lemas necesarios para
culminar con la prueba del Teorema de Reducción del Sujeto.

Posteriormente, se discuten e introducen las distintas representaciones en
máquina para términos con variables ligadas, exponiendo ventajas y desven-
tajas de las tres representaciones más comunes. En particular, se discute la
representación local libre de nombres (LN) y los motivos por los cuales es
la técnica que sigue el trabajo. Adicionalmente, se discuten las operaciones,
predicados y equivalencia de los predicados lc (cerradura local) y lca (cer-
radura local a un nivel dado) para la representación LN. Esta última prueba
es de interés ya que su verificación es un ejemplo puntual de los retos que
surgen al intentar formalizar los resultados usando un asistente.

En el tercer caṕıtulo, se amplia la discusión sobre los retos y diferencias
que surgieron durante el ejercicio de verificar la prueba de Reducción del Su-
jeto utilizando el asistente Coq. El objetivo es, mediante ejemplos concretos,
analizar y exponer las dificultades que emergieron a lo largo del trabajo. Aśı
mismo, discutir las soluciones propuestas.

Para finalizar, en el cuarto caṕıtulo presentamos las observaciones finales
y las conclusiones del presente trabajo.

El código fuente del trabajo puede ser consultado en: https://github.com/
cigarcial/Tmcod

https://github.com/cigarcial/Tmcod
https://github.com/cigarcial/Tmcod
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Preliminaries

In this chapter, we will introduce the concepts and theories that supports the
work. Our primary goal is to introduce the ideas filling up all the conceptual
gaps; this effort would help us in the Coq implementation.

1.1 Classical Linear logic

Mathematics builds its theories using deductive systems. The classical logic
[vP13] system supports many of the mathematics today studied. Roughly
speaking, deductive systems have two elements: connectives and rules. The
connectives tell us how to build propositions and the rules how to derive co-
herent arguments by the interaction of connectives. In particular, in classical
logic, the implication is a connective, and the Modus Ponens is an inference
rule.

A→ B A
(mp)

B

Classical logic has one non-trivial assumption: the propositions “provide
infinite resources”, hence we use them any time and anywhere. For example,
given a natural number n, then n/2 can be evaluated. In particular, if we
take the 8, then 4 is half of the number, but what happened to 8 after the
evaluation? We answer immediately, it keeps existing as an abstract entity.

Girard [GL86] looked at this and proposed linear logic, a logic where
resources matter. The idea behind this system is that we needs and uses only
the necessary resources to obtain a derivation. Girard states that in classical
logic two rules can be problematic: contraction and weakening. Informally,
the contraction rule state that it is possible to delete duplicate resources,
and the weakening rule states that it is possible to introduce new duplicate
resources. Within linear logic these rules are no longer valid.

The restriction of the contraction and weakening rules reduce expressive
power in linear logic. Girard introduces the WhyNot (?) and OfCourse (!)
operators to recover expressiveness.

17



18 1.1. CLASSICAL LINEAR LOGIC

It is necessary to point out that here we discuss only syntactic elements
of linear logic. The notions concerning semantics are out of the scope of the
present work, but can be found at [Gir87, GL86].

The presentation used here for the sequents follows the double side style
like Troelstra [Tro91], even though the notation is the proposed by Girard
originally. First, let us agree that there exists an infinite number of propo-
sitional letters p, q, r, .... The following grammar generates the formulas for
linear logic:

A,B := p | 1 |⊥| > | 0 | A⊗B | A&B | A

&

B | A⊕B | A( B |!A |?A

An informal description for the linear logic connectives are:

• 1,⊥: are the multiplicative neutral elements.

• 0,>: are the additive neutral elements.

• A⊗B: there are both resources of type A and B.

• A&B: there are resources of type A and B. But we can use only one
of them.

• A

&

B: there is a resource of type A or type B.

• A( B: given a resource of type A, we can produce a resource of type
B.

• A⊕B: there is one resource of type A or B, but it is not known which.

• !A: there is an unlimited supply of resources of type A.

• ?A: there is a consumption of a resource of type A.

Greek upper letters Γ,∆,Ω will denote multisets of formulas. In linear
logic, the sequents will be written as Γ ᵀ ∆, using the symbol ᵀ to reinforce
the idea that the sequent is linear. If Γ = {A1, ..., An} and ∆ = {B1, ..., Bn},
the meaning of the sequent Γ ᵀ ∆ is that A1⊗ ...⊗An ᵀ B1

&

...

&

Bn. A ≡ B
will mean that A ᵀ B and B ᵀ A. Additionally, if Γ = {A1, ..., An}, then
!Γ = {!A1, ..., !An}.

In linear logic, the upper script ⊥ marks the negation, and their definition
is in terms of the syntaxis [Gir95]. It is common to call the negation the dual
of a proposition.
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Definition 1.1. [Gir87] The negation of a proposition is defined as follows.
For each propositional letter, there is always the negation of the letter denoted
by p⊥. For the other cases is defined as:

1⊥ =⊥ ⊥⊥ = 1

>⊥ = 0 0⊥ = >
(p)⊥ = p⊥ (p⊥)⊥ = p

(A⊗B)⊥ = A⊥

&

B⊥ (A

&

B)⊥ = A⊥ ⊗B⊥

(A&B)⊥ = A⊥ ⊕B⊥ (A⊕B)⊥ = A⊥&B⊥

(!A)⊥ =?A⊥ (?A)⊥ =!A⊥

Observe that the negation is involutive, in other words (A⊥)⊥ = A. The
proof follows directly from the definition of negation by induction over the
formula structure. Furthermore, there is no dual for the linear implication
due to its definition in terms of the multiplicative disjunction, A ( B =
A⊥

&

B.
The rules of inference, in sequent style, for the linear logic are the follow-

ing [Gir87].

• Identity:

(Id)
A ᵀ A

• Duals:

Γ ᵀ A,∆
(LD)

Γ, A⊥ ᵀ ∆

Γ, A ᵀ ∆
(RD)

Γ ᵀ A⊥,∆

• Multiplicative neutrals:

(1)
Γ, 1 ᵀ ∆

(⊥)
⊥ ᵀ

• Additive neutrals:

(0)
Γ, 0 ᵀ ∆

(>)
Γ ᵀ >,∆

• Implication:
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Γ ᵀ A,∆ Γ′, B ᵀ Θ
(L()

Γ,Γ′, A( B ᵀ ∆,Θ

Γ, A ᵀ B,∆
(R ()

Γ ᵀ A( B,∆

• Multiplicative disjunction:

Γ, A ᵀ ∆ Γ′, B ᵀ ∆′
(L

&

)
Γ,Γ′, A

&

B ᵀ ∆,∆′
Γ ᵀ A,B,∆

(R

&

)
Γ ᵀ A

&

B,∆

• Multiplicative conjunction:

Γ, A,B ᵀ ∆
(L⊗)

Γ, A⊗B ᵀ ∆
Γ ᵀ A,∆ Γ′ ᵀ B,Θ

(R⊗)
Γ,Γ′ ᵀ A⊗B,∆,Θ

• Additive disjunction:

Γ, A ᵀ ∆ Γ, B ᵀ ∆
(L⊕)

Γ, A⊕B ᵀ ∆

Γ ᵀ A,∆
(R⊕1)

Γ ᵀ A⊕B,∆
Γ ᵀ B,∆

(R⊕2)
Γ ᵀ A⊕B,∆

• Additive conjunction:

Γ ᵀ A,∆ Γ ᵀ B,∆
(R&)

Γ ᵀ A&B,∆

Γ, A ᵀ ∆
(L&1)

Γ, A&B ᵀ ∆

Γ, B ᵀ ∆
(L&2)

Γ, A&B ᵀ ∆

• OfCourse:

Γ, A ᵀ ∆
(L!)

Γ, !A ᵀ ∆

!Γ ᵀ A, ?∆
(R!)

!Γ ᵀ !A, ?∆

Γ ᵀ ∆
(deb!)

Γ, !A ᵀ ∆

Γ, !A, !A ᵀ ∆
(cnt!)

Γ, !A ᵀ ∆

• WhyNot:
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!Γ, A ᵀ ?∆
(L?)

!Γ, ?A ᵀ ?∆

Γ ᵀ A,∆
(R?)

Γ ᵀ ?A,∆

Γ ᵀ ∆
(deb?)

Γ ᵀ ?A,∆

Γ ᵀ ?A, ?A,∆
(cnt?)

Γ ᵀ ?A,∆

• Structural rules:

Γ ᵀ A,∆ Γ′, A ᵀ ∆′
(cut)

Γ,Γ′ ᵀ ∆,∆′

Γ ᵀ ∆
(Γ′,∆′ are permutations of Γ,∆)

Γ′ ᵀ ∆′

By now, it is possible to remark that linear logic has two parts: multi-
plicative and additive. Informally, the reason for this division comes from
the rules and contexts [Gir87]. The multiplicative part needs different con-
texts to infer. For example, the R⊗ rule needs Γ to derive A,∆; and other
resources Γ′ to derive B,Θ.

In contrast, the additive part works on the same context. As in the L⊕
rule which needs the same context Γ and one resource (A or B), to derive
∆. The following proposition shows two admissible rules for the system.
Remember that, informally, a rule is admissible if we do not need it as a
primitive rule.

Proposition 1.1. The following rules are admissible in linear logic.

Γ ᵀ ⊥,∆ ᵀ 1

Proof. Using the rules of duals and neutral elements.

The following inferences are valid in linear logic.

1. A⊕B ᵀ B ⊕ A:

A ᵀ A
(R⊕)

A ᵀ B ⊕ A
B ᵀ B

(R⊕)
B ᵀ B ⊕ A

(L⊕)
A⊕B ᵀ B ⊕ A

2. A⊗ (B ⊕ C) ᵀ (A⊗B)⊕ (A⊗ C):
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A ᵀ A B ᵀ B
(R⊗)

A,B ᵀ A⊗B
(R⊕)

A,B ᵀ (A⊗B)⊕ (A⊗ C)

A ᵀ A C ᵀ C
(R⊗)

A,C ᵀ A⊗ C
(R⊕)

A,C ᵀ (A⊗B)⊕ (A⊗ C)
(L⊕)

A,B ⊕ C ᵀ (A⊗B)⊕ (A⊗ C)
(L⊗)

A⊗ (B ⊕ C) ᵀ (A⊗B)⊕ (A⊗ C)

3. ᵀ A( ((A( 0) ( 0):

A ᵀ A 0 ᵀ 0
(L()

A,A( 0 ᵀ 0
(R ()

A ᵀ (A( 0) ( 0
(R ()

ᵀ A( ((A( 0) ( 0)

4. A( B,B ( C ᵀ A( C:

A ᵀ A B ᵀ B
(L()

A( B,A ᵀ B C ᵀ C
(L()

A( B,B ( C,A ᵀ C
(R ()

A( B,B ( C ᵀ A( C

5. !(!A( B) ᵀ !A(!B:

!A ᵀ !A B ᵀ B
(L()

!A( B, !A ᵀ B
(L!)

!(!A( B), !A ᵀ B
(R!)

!(!A( B), !A ᵀ !B
(R()

!(!A( B) ᵀ !A(!B

6. !(A&B) ≡!A⊗!B. This derivation has two parts:

A ᵀ A
(L&)

A&B ᵀ A
(L!)

!(A&B) ᵀ A
(R!)

!(A&B) ᵀ !A

B ᵀ B
(L&)

A&B ᵀ B
(L!)

!(A&B) ᵀ B
(R!)

!(A&B) ᵀ !B
(R⊗)

!(A&B), !(A&B) ᵀ !A⊗!B
(cnt!)

!(A&B) ᵀ !A⊗!B
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A ᵀ A
(L!)

!A ᵀ A
(deb!)

!A, !B ᵀ A

B ᵀ B
(L!)

!B ᵀ B
(deb!)

!A, !B ᵀ B
(R&)

!A, !B ᵀ A&B
(R!)

!A, !B ᵀ !(A&B)
(L⊗)

!A⊗!B ᵀ !(A&B)

The Cut Elimination Theorem holds in linear logic. It implies the sub-
formula property and decidability of the logic.

Theorem 1.1. For a given proof in linear logic, there is cut-free proof. In
other words, there is a derivation that does not use the cut rule.

Proof. See [GL86, Tro91].

In particular, Girard states that a consequence of Theorem 1.1 is the
impossibility to derive the sequent A,B ᵀ A in linear logic [GL86]: suppose
that there is a derivation for the sequent, we can take one that has no cut
rules and are of minimum height. Then, the last rule applied must be a
permutation or identity rule, because cannot be a rule that introduces a
connector. But, both of them produce a contradiction; the sequent is not
initial and was of minimum height. The result agrees with the read of the
sequents and connectives, resource B cannot just disappear.

The following is an important lemma for linear logic. It is known as the
inversion lemma.

Proposition 1.2. The following holds in linear logic:

• If Γ, A⊗B ᵀ ∆ then Γ, A,B ᵀ ∆.

• If Γ, A⊕B ᵀ ∆ then Γ, A ᵀ ∆ and Γ, B ᵀ ∆.

• If Γ ᵀ A&B,∆ then Γ ᵀ A,∆ and Γ ᵀ B,∆.

• If Γ ᵀ A( B,∆ then Γ, A ᵀ B,∆.

• If Γ ᵀ A

&

B,∆ then Γ ᵀ A,B,∆.

• If Γ, A⊥ ᵀ ∆ then Γ ᵀ A,∆.

• If Γ ᵀ A⊥,∆ then Γ, A ᵀ ∆.

Proof. For all cases, apply the cut rule. For example, for the linear implica-
tion:
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A ᵀ A B ᵀ B
(L()

A,A( B ᵀ B Γ ᵀ A( B,∆
(cut)

Γ, A ᵀ B,∆

We have intuitionistic logic as a linear logic subsystem. Before discussing
the immersion, it is necessary to fix a sequent system for intuitionistic logic.
Here we use the system exposed by Von Plato in [vP13]. First, let’s fix a
translation between the two systems, known as Girard translation [Pai90]:

p◦ = p

⊥◦ = 0

(A ∧B)◦ = A◦&B◦

(A ∨B)◦ =!(A◦)⊕!(B◦)

(A→ B)◦ =!(A◦) ( (B◦)

(¬A)◦ =!(A◦) ( 0

Remember that if Γ = {A1, ..., An} then !Γ = {!A1, ..., !An}.

Theorem 1.2. If Γ ` A, then !Γ◦ ᵀ A◦.

Proof. By induction on the height of the derivation, and is similar to the
proof done by De Paiva in [Pai90]. The base cases are when the derivation
Γ ` A has height one, hence the sequence is initial:

• If Γ ` A, then it is true that A ∈ Γ, therefore !A◦ ∈!Γ◦ and:

!Γ◦, A◦ ᵀ A◦
(L!)

!Γ◦, !A◦ ᵀ A◦
(cnt!)

!Γ◦ ᵀ A◦

• If ⊥∈ Γ, then 0 ∈!Γ◦ and using the rule for zero !Γ◦ ᵀ A◦.

Now suppose that for all the proofs of height n or less the result is valid,
and that there is a derivation of height n+ 1 whose last rule is:

• R∧. The desire result is !Γ◦ ᵀ A◦&B◦, and the intuitionistic proof has
the structure:

Γ ` A Γ ` B
(R∧)

Γ ` A ∧B
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By induction hypothesis !Γ◦ ᵀ A◦, and !Γ◦ ᵀ B, hence:

!Γ◦ ᵀ A◦ !Γ◦ ᵀ B◦
(R&)

!Γ◦ ᵀ A◦&B◦

• L∧. The goal is !Γ◦, !(A◦&B◦) ᵀ C, and the intuitionistic proof has the
structure:

Γ, A,B ` C
(L∧)

Γ, A ∧B ` C

By induction hypothesis !Γ◦, !A◦, !B◦ ᵀ C◦, therefore:

!Γ◦, !A◦, !B◦ ᵀ C◦
(L⊗)

!Γ◦, !A◦⊗!B◦ ᵀ C◦ !(A◦&B◦) ᵀ !A◦⊗!B◦
(cut)

!Γ◦, !(A◦&B◦) ᵀ C◦

The right upper sequent was derived earlier.

• R∨. The conclusion should be !Γ◦ ᵀ !A◦⊕!B◦, and the intuitionistic
proof structure is:

Γ ᵀ A
(R∨)

Γ ᵀ A ∨B

By induction hypothesis !Γ◦ ᵀ A◦, and as conclusion:

!Γ◦ ᵀ A◦
(R!)

!Γ◦ ᵀ !A◦
(R⊕)

!Γ◦ ᵀ !A◦⊕!B◦

• L∨. Now the desired conclusion is !Γ◦, !(!A◦⊕!B◦) ᵀ C◦, and the intu-
itionistic proof structure is:

Γ, A ` C Γ, B ` C
(L∨)

Γ, A ∨B ` C

By induction hypothesis !Γ◦, !A◦ ᵀ C◦, !Γ◦, !B◦ ᵀ C◦, therefore:

!Γ◦, !A◦ ᵀ C◦ !Γ◦, !B◦ ᵀ C◦
(L⊗)

!Γ◦, !A◦⊕!B◦ ᵀ C◦
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• R →. The goal is to prove that !Γ ᵀ !A◦ ( B◦ and the intuitionistic
proof structure is:

Γ, A ` B
(R→)

Γ ` A→ B

By induction hypothesis !Γ◦, !A◦ ᵀ B◦, hence:

!Γ◦!A◦ ᵀ B◦
(R ()

!Γ◦ ᵀ !A◦ ( B

• L →. It is required that !Γ◦, !(!A◦ ( B◦) ᵀ C◦, and the intuitionistic
proof structure is:

Γ, A→ B ` A Γ, B ` C
(L→)

Γ, A→ B ` C

By induction hypothesis !Γ◦, !(!A◦ ( B◦) ᵀ A◦, !Γ◦, !B◦ ᵀ C◦ and:

!Γ◦, !(!A◦ ( B◦) ᵀ A◦
(R!)

!Γ◦, !(!A◦ ( B◦) ᵀ !A◦ !Γ◦, !B◦ ᵀ C◦
(L()

!Γ◦, !Γ◦, !(!A◦ ( B◦), !A◦ (!B◦ ᵀ C◦ !(!A◦ ( B◦) ᵀ !A◦ (!B◦
(cut)

!Γ◦, !Γ◦, !(!A◦ ( B◦), !(!A◦ ( B◦) ᵀ C◦
(cnt!)

!Γ◦, !(!A◦ ( B◦) ᵀ C◦

The sequent without a tag was derived earlier.

In all the cases, the required conclusion follows. Hence, by the principle
of induction, the result is valid.

1.2 Dual Context System

The development of linear logic became a cornerstone to formalize compu-
tational ideas using a logical framework [GL86]. Many of the concepts de-
veloped within linear logic have applications in programming languages and
computational systems design [GM94, GL86].

Nevertheless, it is common to combine different frameworks and works.
Hence, the community needs a theory that unifies the logical systems. Girard
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[Gir93] proposed the Unity of Logic as a sequent theory in which it is possible
to work with two logical systems.

In Girard formulation, the sequents are of the form Γ; Γ′ ` ∆′; ∆. The
contexts Γ,∆ work linearly and Γ′,∆′ work classically. The meaning of the
sequent is that there is a linear derivation of Γ, !Γ′ ᵀ ?∆′,∆. Within this
theory, the semicolon (;) separates the linear and classical parts.

With different behaviours for the propositions. It is common to propose
different versions of the rules. For example, depending on the position of
A there are different cut rules. Girard [Gir93] the following pure linear and
linear-classic rules:

Γ; Γ′ ` ∆′; ∆, A A,Λ; Γ′ ` ∆′; Π
(Cut1)

Γ,Λ; Γ′ ` ∆′; ∆,Π

Γ; Γ′ ` ∆′, A; ∆ A; Γ′ ` ∆′;
(Cut2)

Γ; Γ′ ` ∆′; ∆

A relevant in the calculus given by Girard is the proposition ability to
move from one side of the turnstile to the other. Girard’s rules rely in the
notion of polarities of a given formula [Gir93]. There are three polarities:
positive, negative, and neutral. For example, consider a formula P with
positive polarity, informally, this means that P ≡!P in linear logic. Girard
introduces the following rule using positive polarities:

Γ;P,Γ′ ` ∆′; ∆
(Polar)

Γ, P ; Γ′ ` ∆′; ∆

Although, the notion of polarities is quite complex and requires concepts
from linear logic semantics to understand them. As was discussed, this new
calculus is complex and requires many rules. Girard comments about his
system:

[Gir93, p. 204] The system presented here is rather big, for the
reason that we used a two-sided version to accommodate intu-
itionistic features more directly, and because there are classical,
intuitioistic and linear connectives; last, but not least rules can
split into several cases depending on polarities; the rules for dis-
junction, for instance, fill a whole page! But this complication is
rather superficial...

The reunification of logic proposed by Girard, lead to a new research
area [Bar96]. Many of the proposed dual context systems based on Girard’s
ideas use a subsystem of the logic, the idea is to produce systems easier to
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work with. For instance, Barber [Bar96] worked with sequents of the form
Γ; ∆ ` A, in which Γ works intuitionistic and ∆ linearly. Barber also restricts
the system to the linear connectives (,⊗, !, and 11 rules. The interaction
between the intuitionistic and linear part happens in the OfCourse connector
rules.

Γ;` A
(!I)

Γ;`!A

Γ; ∆1 `!A Γ, A; ∆2 ` B
(!E)

Γ; ∆1,∆2 ` B

These rules are easier to understand using the ideas of linear logic. For
example in the first rule, if the linear context is empty, then it is possible
to obtain an unlimited number of resources. One advantage, of the system
given by Barber, is that it does not require complex ideas and many details
of the system can be extracted of its syntax.

The systems proposed by Girard [Gir93] and Barber [Bar96] are impor-
tant to understand dual context systems. The first motivates its discussion
and is a guide to propose a new one; the second is closer to the system used
here.

Now, we introduce a dual system that supports the type system proposed
by Heuvel and Perez[vdHP20]. Heuvel and Perez called their system United
Linear Logic (ULL), which is a dual context system for the linear logic. Now,
we present the ULL grammar.

Definition 1.2. The next grammar generates propositions for the ULL sys-
tem:

A,B := 1 |⊥| A⊗B | A

&

B |!A |?A

In ULL the sequents are of the form Γ; ∆ ` Λ in which the formulas in ∆,
Λ can be used linearly (exactly once) and the propositions in Γ an indefinite
number of times (included zero). The dual is defined in the same way as
Definition 1.1. The rules for the system are the following.

• Identity:

(IdL)

Γ;A,A⊥ ` ·
(IdR)

Γ;A ` A

• Neutral elements:

Γ; ∆ ` Λ
(1L)

Γ; ∆, 1 ` Λ

(1R)
Γ; · ` 1
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(⊥L)
Γ;⊥` · Γ; ∆ ` Λ

(⊥R)
Γ; ∆ ` Λ,⊥

• Multiplicative conjunction:

Γ; ∆, A,B ` Λ
(⊗L)

Γ; ∆, A⊗B ` Λ

Γ; ∆ ` Λ, A Γ; ∆′ ` Λ′, B
(⊗R)

Γ; ∆,∆′ ` Λ,Λ′, A⊗B

• Multiplicative disjunction:

Γ; ∆, A ` Λ Γ; ∆′, B ` Λ′
(

&

L)
Γ; ∆,∆′, A

&

B ` Λ,Λ′

Γ; ∆ ` Λ, A,B
(

&

R)
Γ; ∆ ` Λ, A

&

B

• OfCourse:

Γ, A; ∆ ` Λ
(!L)

Γ; ∆, !A ` Λ

Γ; · ` A
(!R)

Γ; · `!A

• WhyNot:

Γ;A ` ·
(?L)

Γ; ?A ` ·
Γ, A; ∆ ` Λ

(?R)

Γ; ∆ ` Λ, ?A⊥

• Copy rules:

Γ, A; ∆, A ` Λ
(CopyL)

Γ, A; ∆ ` Λ
Γ, A; ∆ ` Λ, A⊥

(CopyR)
Γ, A; ∆ ` Λ

• Structural rules:

Γ; ∆, A ` Λ Γ; ∆′, A⊥ ` Λ′
(CutL)

Γ; ∆,∆′ ` Λ,Λ′

Γ; ∆ ` Λ, A Γ; ∆′, A ` Λ′
(CutR)

Γ; ∆,∆′ ` Λ,Λ′
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Γ; · ` A Γ, A; ∆ ` Λ
(Cut!)

Γ; ∆ ` Λ

Γ;A⊥ ` · Γ, A; ∆ ` Λ
(Cut?)

Γ; ∆ ` Λ

Here the linear implication is not considered as a primitive connector.
Instead, it is defined using the multiplicative disjunction. To understand
better the dual context system, some derivations are presented.

Proposition 1.3. The following rules are admissible in the dual system.

Γ; ∆ ` ∆, A

Γ; ∆, A⊥ ` ∆

Γ; ∆, A ` ∆

Γ; ∆ ` ∆, A⊥

A; · ` A A;A⊥ ` ·

Proof. For the first, the proof is a combination of a cut rule and one identity
rule:

Γ; ∆ ` ∆, A
(IdL)

Γ;A,A⊥ ` ·
(CutR)

Γ; ∆, A⊥ ` ∆

For the last, the proof is an application of the copy rule:

(IdL)

A;A,A⊥ ` ·
(CopyL)

A;A⊥ ` ·

The other two derivations are similar.

Some linear logic results extend naturally.

Proposition 1.4. The following holds in the dual system:

• If Γ; ∆, A⊗B ` Λ then Γ; ∆, A,B ᵀ Λ.

• If Γ; ∆ ᵀ A

&

B,Λ then Γ; ∆ ᵀ A,B,Λ.

Proof. For the multiplicative conjunction, we can obtain it as follows:

Γ;A ` A Γ;B ` B
(⊗R)

Γ;A,B ` A⊗B Γ; ∆, A⊗B ` Λ
(CutR)

Γ; ∆, A,B ` Λ
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The

&

case is similar to the previous one.

As expected, cut rules can be eliminated. Unfortunately, the proof is
complex and requires simultaneous induction on each cut rule. Pfenning
proves this result for a similar system [Pfe95].

Theorem 1.3. In ULL can be eliminated cut rules.

Proof. See [Pfe95].

1.3 Pi Calculus

In the early years of computer science, there was a necessity of formalizing the
vague ideas of “algorithm”. As an answer to this question three independent
models arose, which explain the mathematical behavior and computational
content of this idea: Turing and the Turing machines, Gödel and the recur-
sive functions, and Church with the lambda calculus. Many mathematical
functions and algorithms have a representation using these three models.

In later years, computer machines evolved rapidly, and their complex-
ity grew exponentially. In particular, with the initiation of communication
between computers and the creation of networks, a new way to build and
interact with the machines appeared, but the new world was no longer rep-
resentable using classical models. Robin Milner comments the following.

[Mil99, p. 3] But nowadays most computations involves interac-
tion - and therefore involve systems with components which are
concurrently active. Computer science must therefore rise to the
challenge of defining an underlying model, with a small number
of basic concepts, in terms of which interactions behavior can be
rigorously described.

The need for a theory that helped with this work was evident. Robert
Milner devised a new formalization for this, the π-calculus, or the calculus
of mobility. This section intends to introduce a fragment of the π-calculus.
The key ideas for this presentation follow the textbooks Milner [Mil99] and
Sangiorgi [SW03].

Assume that there is an infinite set of names x, y, z, .... Names repre-
sent communication channels. The action of the calculus, denoted by π, are
constructed using names as follows.

π = x(y) | x〈y〉
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With the actions, it is possible to construct the processes as follows.

P,Q = θ | π.P | P |Q |!P | νx.P

Concerning the processes, it is worthy to point out some observations.
The non deterministic operator (+) is not part of this presentation. The
second is that we use the symbol θ instead of 0 to denote the process zero,
avoiding confusion with the natural number zero. The third is that x(y)
works similar to the λ in Lambda calculus, it binds the occurences of y
within a process, but the difference is that additionally represents an action
in π-calculus. The actions and processes interpretations are:

• x(y), receive y along the name x.

• x〈y〉, send y along the name x.

• P | Q, parallel run of processes P and Q. They proceed independently
but can interact via shared names.

• !P , replication of the process P .

• νz.P , restriction of the name z to the process P .

The following are some examples of processes in π-calculus and their
informal meaning.

• x(y).P | x〈z〉.Q. The process P needs a resource y over the channel x.
Independently Q offers a resource z over the same channel x.

• !x(y).P . A replicate process P that is always accepting a petition over
x.

We could say that the grammar of the π-calculus is limited, but it is
worthwhile to mention that this calculus intends to study the communica-
tion between the processes and not any process itself. Then the internal
representation and operations that a process executes are abstracted in this
calculus.

Now, it is convenient to have a visual representation for the terms of the
π-calculus, this helps to understand the machine representation. We propose
this visual representation, it finds inspiration in the De Bruijn [de 72] for
λ-calculus. Given a process, it will be drawn as a rooted tree constructed
reading the term from left to right using the following inductive definition.
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θ !P P | Q

θ !

P
| P

Q

νy.P x(y).P x〈y〉.P
νy

P
x(y)

x

P
x〈y〉

xy

P

In our representation there are two types of nodes: connector nodes, we
represent it with a bullet labelled with the connector, and them represent
the grammar terms; and name nodes. For the actions νy and x(y), y is not
represented; because it denotes a binding and not a name. Furthermore,
we represent channel x in actions x(y).P and x〈y〉.P with a circle; and the
channel y in output processes as a diamond. Consider the following examples
and their representations:

• (x〈y〉.!θ) | (x(y).νz.x(z).θ):

|

x〈y〉

xy

! θ

x(y)

x

νz x(z)

x

θ

• νx.(x(y).P | x〈z〉.Q):
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νx |

x〈z〉

xz

Q

x(y)

x

P

In νz.P , x(y).Q, z, y are bind in P and Q respectively. If a name is
not bound it is said to be free. The following recursive definition, fn(P ),
computes the set of free names for a process P [SW03].

fn(θ) = {}
fn(P | Q) = fn(P ) ∪ fn(Q)

fn(!P ) = fn(P )

fn(x〈y〉.P ) = {x, y} ∪ fn(P )

fn(x(y).P ) = ({x} ∪ fn(P )) \ {y}
fn(νx.P ) = fn(P ) \ {x}

It is convenient to say that x is fresh in a process P if x 6∈ fn(P ). Now, the
names in the π calculus intend to receive and send other names. For this, we
need a precise notion of name substitution. Any substitution must be made
with some restrictions in mind, just as in the λ-calculus, it is mandatory that
the capture of names by binders does not occur.

Definition 1.3. [SW03] A substitution is a function from names to names
that is the identity except on a finite set. Then if {x1, ..., xn} is the set with
images {y1, ..., yn} (respectively), the function can be denoted as {y1, ..., yn/x1,
..., xn}.

If the names y1, ..., yn do not occur in the process P , P{y1, ..., yn/x1, ..., xn}
means that each free occurrence of xi in P is replaced with yi.

We make the substitution with precaution when it changes a bound chan-
nel. The idea is to choose an α-equivalent (Informally, we can change bound
names without changing a term’s meaning. We will define this relation be-
low.) process to exchange the bound channel, and then make the substitu-
tion. We can make this because any bound name work within a local scope,
i.e., only inside the process. Hence, if the name is changed, the behaviour of
the process must not change.
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Definition 1.4. A change of a bound name in a process P occurs when a
subterm x(z).Q in P is substituted by the subterm x(w).Q{w/z} or a subterm
νz.Q for νw.(Q{w/z}).

Two processes: P , Q are α-equivalent (P =α Q) if Q can be obtained
from P by a finite number of bound names changes.

The next pairs of the process are α-equivalent.

• νz.P and νx.(P{x/z}).

• νx.νy.(x〈y〉.θ | x(z).θ) and νz.νy.(z〈y〉.θ | z(w).θ).

The definition of a congruence relation over processes requires a concept
that allows to focus on a subterm in which a replacement can be done.

Definition 1.5. [SW03] A context is obtained when the hole, denoted by [·],
replaces one occurrence of θ in the process.

Here should be pointed out that a context has one hole, no more. Some
examples of contexts are:

• [·], the trivial context.

• νx.θ | [·].

• z(y).(y〈w〉.θ |!νy.[·]).

As in the λ-calculus, the task of filling the hole in a context C[·] with a
process P , is denoted with C[P ].

For example, filling the third example with νx.x(y).θ yields z(y).(y〈w〉.θ |
!νy.νx.x(y).θ). As we said, the contexts motivate congruences over processes.

Definition 1.6. An equivalence relation (∼=) on processes is a congruence if
P ∼= Q implies C[P ] ∼= C[Q] for every context C.

Now is time to talk about how to compute using π-calculus. Computation
is done using two mechanisms: congruence on terms and terms reduction.
Congruence associates processes that behave in the same way but are syn-
tactically different. Reduction is about the interaction between processes.

To illustrate, consider the process P | θ, its informal description is two
processes that are acting independently but with the particularity that the
second does nothing. Then the behavior of this process is the same as P ,
and it should not be a difference if P is preferred rather than P | θ. The
following definition captures the essence of these ideas.
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Definition 1.7. [SW03] Given two processes P , Q it will be said that are
structural congruent if we can transform one into the other using the following
equations (in either direction):

P ≡ P | θ P | (Q | R) ≡ (P | Q) | R
P | Q ≡ Q | P P |!P ≡!P

νx.θ ≡ θ P ≡ Q, if P =α Q

νx.νy.P ≡ νy.νx.P P | νx.Q ≡ νx.(P | Q), if x 6∈ fn(P )

The structural congruence (≡) relation is the smallest congruence on pro-
cesses that satisfies these transformations.

The following proposition is an easy observation from the definition.

Proposition 1.5. Given a process P and a name x such that x 6∈ fn(P ),
then νx.P ≡ P .

Proof. As x 6∈ fn(P ) then, P ≡ P | θ ≡ P | νx.θ ≡ νx.(P | θ) ≡ νx.P .
Observe that the notion of congruence is present in the second and fourth
equations.

As we observed, processes term reduction captures the interaction be-
tween processes, in a similar way to β-reductions in λ calculus. With this
notion, processes are capable of exchange information and communicating
between themselves.

Definition 1.8. Reduction of terms (−→) is defined by the following rules:

(react)
x〈y〉.P | x(z).Q −→ P | Q{y/z}

P1 ≡ P2 Q1 ≡ Q2 P1 −→ Q1
(struct)

P2 −→ Q2

P −→ P ′
(par)

P | Q −→ P ′ | Q
P −→ Q

(res)
νx.P −→ νx.Q

The next result follows easily from the definitions.

Proposition 1.6. The following reduction rule is admissible for the reduction
of terms:

(rep)
x〈y〉.P |!x(z).Q −→ P | Q{y/z} |!x(z).Q
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Proof. It follows from the rule of structural congruence and the struct reduc-
tion rule.

Finally, we present two key examples from π-calculus, which are instances
of runtime errors. They illustrate that within the π-calculus some terms have
bad behavior; i.e., cannot be reduced or their reduction stucks. As Dal Lago
et. al. [DLdVMY19] explain, many type systems finds their motivation in
this kind of errors.

Example 1.1. This error arises when process A expects an input/output
over a channel, although no process can execute the request and answer. A
π-calculus term of this sort is:

x(y).P | w〈z〉.Q

Here P will wait for input over x, but Q cannot fulfill this requirement
as it uses the channel w. As a consequence, P will be waiting forever.

Example 1.2. The second kind error that is frequent when dealing with
message passing systems is the deadlock. This behavior arises when process
A expects some response from B to continue its execution, whereas B expects
a response from A. As a consequence neither A nor B continue executing,
due to a cycle dependency. A term of this kind in the π calculus is:

x(y).w〈z〉.P | w(y).x〈z〉.Q

Here P ask Q for a resource on x, Q knows the answer for the request
but before giving it, needs another resource over w that P has. Inevitably,
neither P nor Q can advance; they are stuck.

In this chapter, we introduced the ideas of linear logic. We discussed
some foundational aspects of the logic, their origin and motivation. As it was
stated, linear logic plays an important role in computational systems design;
hence, it is relevant to know and study the logic from a mathematical point
of view and its relation with other logical systems. Also, this chapter has
the fundamental ideas behind the dual context systems. The ULL system is
necessary for the study of the typing system, it is the logic system behind
the types.

As part of the presentation, we stated the inversion lemmas and the theo-
rems of cut elimination. These are significant results, due to their complexity
and richness from the mathematical point of view. Lastly, we presented the
π-calculus ideas, motivation and origin. All these notions will help us to
define our version of the typed calculus. Also, we will review these results
from the typing point of view where their have a special meaning.
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Towards a formal verification

In this chapter we present our version of the type system. We will use the
notion of principal cuts to verify that the system’s rules are correct. Then,
we will discuss the chosen terms representation.

2.1 Session Types

Previously, we presented π-calculus. This theory describes the communi-
cation between processes. Besides, we discussed some examples within the
system. In particular, Examples 1.1, 1.2 are of interest, both refer to the two
most common errors when talking about communication in computation.

Searching error-free systems, Honda develops the first type system for
the concurrent programming. The idea is to seek a system in which, as a
consequence, there is a deadlock-free behavior [Hon93].

The best way to introduce session types is by discussing first, the parallel
that Wadler makes between them and the λ-calculus [Wad12a, Wad12b]. It is
known that within untyped λ-calculus one can codify a term whose reduction
never stops, for example, (λx.(xx))(λx.(xx)); these kind of terms are called
non-halting. The non-halting functions are a problem for λ-calculus since
they refer to an infinite computational process.

To overcome this problem, type systems were proposed for the λ-calculus.
These systems filter out those problematic terms, and focus on terms that
have good behavior [SU06].

Later, Curry, and Howard [SU06] encountered a result that relates the
logic and the computation. They found that there is a correspondence be-
tween intuitionistic logic and typed λ-calculus:

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs

This result is known as the Curry-Howard isomorphism and provides a
variety of consequences. As it is common in mathematics, the ideas of Curry

38
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and Howard inspire some other authors, and today it is common to study
the typed systems searching for similar correspondences.

Nowadays, some works follow these ideas for the theory of session types
[Wad12a, CPT12, vdHP20, Wad12b]. In particular, Wadler states that the
correspondence in session types theories is the following.

propositions as session types
proofs as processes

cut elimination as communication

Yet, there is a radical difference between the Curry-Howard correspon-
dence and the theory for session types. In Curry-Howard correspondence,
types are for functions and data; in session types, types tell us how the
communication evolves within the communication channels.

Session types theories aim for communication systems that are free of
runtime and deadlock errors. Henceforth, the goal is to verify that the typing
system satisfies the Subject Reduction [Ton15]. Heuvel and Perez discussed
a type system with these properties in [vdHP20], and we will use their system
as a guide.

Here, we are going to present our proper type system. We intend to
construct the best possible design that makes the verification easy. The
idea is to reconstruct the type system from scratch, explaining the meaning
of each part and its relation with the other components. The presentation
given here finds its inspiration in the work of Caires et. al., [CPT12].

One keystone goal of the present work is to complete the verification of
the Subject Reduction Theorem on Coq. In this direction, we want to present
all the system details, which will make the verification straightforward.

We will use the following π-calculus grammar variation.

Definition 2.1. The following grammar generates the processes for the type
system:

P,Q = θ | [x↔ y] | P |Q | νx.P | x〈y〉.P | x(y).P | x().P |!x(y).P | x〈〉.θ

Here x, y represent channel names (strings).

We will abuse of notation and call πULL the above calculus and the type
system presented below.

The processes constructed using π-calculus grammar keep their original
aim. For example, !x(y).P means the replicated input for P . For the new
ones, their meaning is:

• [x↔ y]. Forward the communication of channel x in y; it behaves like
an identity channel.
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• x().P . Suspension of the process P .

• x〈〉.θ. Termination in communication.

It is important to point out that the processes considered by the πULL
system are not the same as those in the π-calculus. For example, the replica-
tion is restricted only to the input. Despite this, the essence of the message
passing is present in these new processes.

As a consequence of this new kind of processes, the π-calculus definitions
and results may be changed or extended to fit the new concepts. The first
notion that changes is the graphical representation for the processes. We
consider three new rules.

[x↔ y] x().P x〈〉.θ

[↔]
x

y

x()

x

P
x〈〉

x

θ

For the πULL-calculus, the set of free names for a process is:

fn(θ) = {}
fn([x↔ y]) = {x, y}
fn(P | Q) = fn(P ) ∪ fn(Q)

fn(νx.P ) = fn(P ) \ {x}
fn(x〈y〉.P ) = {x, y} ∪ fn(P )

fn(x(y).P ) = ({x} ∪ fn(P )) \ {y}
fn(x().P ) = {x} ∪ fn(P )

fn(!x(y).P ) = ({x} ∪ fn(P )) \ {y}
fn(x〈〉.θ) = {x}

The notions of fresh name, substitution, and change of bound names,
extend to the new grammar naturally. Hence, the definition of α-equivalent
processes does not change significantly. For example, we define the substitu-
tion as follows.
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x{z/w} =

{
z x = w

x otherwise

θ{z/w} = θ

([x↔ y]){z/w} = [x{z/w} ↔ y{z/w}]
(P | Q){z/w} = (P{z/w} | Q{z/w})
(νx.P ){z/w} = νx.(P{z/w})

(x〈y〉.P ){z/w} = x{z/w}〈y{z/w}〉.(P{z/w})
(x(y).P ){z/w} = x{z/w}(y).(P{z/w})
(x().P ){z/w} = x{z/w}().(P{z/w})

(!x(y).P ){z/w} =!(x{z/w})(y).(P{z/w})
(x〈〉.θ){z/w} = x{z/w}〈〉.θ

In this definition, we require some side conditions in the substitutions, for
example x 6= w and x 6= z in (νx.P ){z/w}. These are the no bound variable
capture from π-calculus.

In the case of the structural congruence and processes reduction, the
equations/rules change, because congruences and reductions are obtained
from the principal cuts [Wad12a, CPT12].

Definition 2.2. Given two processes P , Q, we will say that they are struc-
tural congruent in πULL-calculus, if we can transform one into the other
using the following equations (in either direction):

P | Q ≡ Q | P
P | νx.Q ≡ νx.(P | Q), if x 6∈ fn(P )

Next, we define the reduction of terms (−→):

(fuse)
νx.(P | [x↔ y]) −→ P{y/x}

(fuse)
νx.(P | [y ↔ x]) −→ P{y/x}

(fuse)
νx.([x↔ y] | P ) −→ P{y/x}

(fuse)
νx.([y ↔ x] | P ) −→ P{y/x}

(1)
νx.(x〈〉.θ | x().P ) −→ P

(1)
νx(x().P | x〈〉.θ) −→ P

(copy)
νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P | νy.(Q | P{y/x}))
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(copy)
νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P | νy.(P{y/x} | Q))

(M. Disjunction)
νx.(x(z).P | νy.x〈y〉.(Q | R)) −→ νy.(νx.(P{y/z} | R) | Q)

(M. Conjunction)
νx.(νy.x〈y〉(P | Q) | x(z).R) −→ νx.(Q | νy.(P | R{y/z}))

Despite the rule rep was admissible in the π-calculus (Proposition 1.6) in
the πULL-calculus, this rule is no longer admissible due to the lack of the
equation for replication.

The next step in the construction is to explain the components of the
system.

Definition 2.3. πULL is a typing inference system that annotates sequents
with terms and channel names to form typing judgments of the form:

Γ; ∆ ` P :: Λ

Here Γ (resp. ∆, Λ) is the unrestricted (resp. linear) context of P . The
contexts Γ, ∆ and Λ consist of assignments of the form x : A where x is a
channel and A is a proposition/type. The dot · denotes the empty context.

A sequent can be read as follows: the process P offers the resources in Λ
using the resources in Γ, ∆.

Additionally, we assume that the names for the unrestricted context are
taken differently from the names in the linear context, in other words, there
are two sets of names, one ordinary and other linear which are disjoint.

Now, we start the discussion about the system rules. We start presenting
the cut rules. There are four different cut rules in the ULL system. The
motivation for these rules is: there is a process that needs a resource of type
A, and there is a process that consumes it. Then for the right cut rule, the
premises should look like:

Γ; ∆ ` P :: Λ, x : A Γ; ∆′, x : A ` Q :: Λ′

Here the process P is capable of offering A along x, and Q requires A
along x. Hence, the processes can be composed, but the communication must
be private between them; and this implies that channel x should be private
(restricted) for the composition. As a result, we obtain the following rule.

Γ; ∆ ` P :: Λ, x : A Γ; ∆′, x : A ` Q :: Λ′
(cutR)

Γ; ∆,∆′ ` νx.(P | Q) :: Λ,Λ′
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The left-cut rule is derived likewise. It is important to notice that, in the
left-cut rule the cut proposition is the dual formula; this is consistent with
the idea that the duality ensures input on one side and output on the other.
We will not show the details for this case (and some others) here, but all the
typing and cut reduction rules can be found in Appendix A.1.

The next cut rule corresponds with the WhyNot cut. Now the premises
are:

Γ;x : A⊥ ` P :: · Γ, u : A; ∆ ` Q :: Λ

This rule has a particular detail: the resource A that is being cut works
in an unrestricted fashion for Q; hence it is necessary to provide the resource
an indeterminate number of times. Fortunately, P can do this, due to its
requirement of a process that works dual to A and its empty linear context.
In πULL, this means a replicate input process. The rule obtained is:

Γ;x : A⊥ ` P :: · Γ, u : A; ∆ ` Q :: Λ
(cut?)

Γ; ∆ ` νu.(!u(x).P | Q) :: Λ

Note that !u(x).P replicates an input process, but this may be contrary
to the intuition that P provides a service. The meaning is: process Q needs
to provide its own name channel x over which the resource of type A is sent.
This fulfills the requirement of a process of type A for Q while P can keep
listening to new requests. A similar argument works to obtain the OfCourse
cut rule.

Next, we present the identity rule. The idea behind this rule is: there is
a need for a resource of type A in channel x whereas it is available a resource
of the same type by channel y; then the resource can be forwarded by the
channel y. This idea gives rise to the left and right identity rules.

(IdR)
Γ;x : A ` [x↔ y] :: y : A

Heuvel and Perez state the following about the validity of their rules:

[vdHP20, p. 4] Caires, Pfenning, and Toninho showed that the
validity of session type interpretations of linear logic propositions
can be demonstrated by checking that cut reductions in typing
inferences do correspond to reductions of processes, as well as by
showing that the identity axiom of any type can be expanded to
a larger process term with forwarding of a smaller type.
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The aim of the present work is to exhibit the details for the mecha-
nization/formal verification of the πULL system, following Caires et. al.’s
[CPT12] presentation. We describe the rules to understand their nature and
ideas, this would help us to understand better the rules and know how to
implement it in Coq.

Also, we explain the principal cuts [CPT12]. The principal cuts show us
that our reduction rules are well chosen. The idea is to study the cut rules,
and study their behaviour with respect to other rules. We present in detail
some cases, also we expect that this can guide anyone who wants to work on
all cases.

We are going to start with the principal cut for the right identity rule.
If we use the right-cut there are two possibilities: offering or consuming
the channel being cut. In both cases, we obtain that the identity rule does
correspond with the fuse reduction rule.

(IdR)
Γ;x : A ` [x↔ y] :: y : A Γ; ∆, y : A ` Q :: Λ

(cutR)
Γ;x : A,∆ ` νy.([x↔ y] | Q) :: Λ

This cut is eliminated as follows:

Γ; ∆, x : A ` Q{x/y} :: Λ

Similar results are reached when combining the identity with the right or
left cut rule. Now, we discuss the rules for type 1. As Caires et. al. [CPT12]
expose, from the linear logic rules for 1 there is nothing new expected or pro-
duced; then it is not necessary to output something or input anything when
using these types. The only available action is to close the communication.
This yields the following rules:

Γ; ∆ ` P :: Λ
(1L)

Γ; ∆, x : 1 ` x().P :: Λ

(1R)
Γ; · ` x〈〉.θ :: x : 1

The associated cut reduction is the following:

(1R)
Γ; · ` x〈〉.θ :: x : 1

Γ; ∆ ` P :: Λ
(1L)

Γ; ∆, x : 1 ` x().P `:: Λ
(CutR)

Γ; ∆ ` νx.(x〈〉.θ | x().P ) :: Λ

Which reduces to:

Γ; ∆ ` P :: Λ
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Here is important to point out that there are no more interactions between
the cut rules and the typing rules for 1; all other cases lead to situations in
which both premises of the cut are equal. For the bottom process, we can
use similar ideas to obtain the corresponding rules and reductions.

The next group is the OfCourse rules. The right uses a similar idea to
the one employed in the WhyNot cut, offering a replicate input process. For
the left, we promote a channel from unrestricted to linear; thus, we require a
change of names. The same arguments apply in the derivation of the WhyNot
rules.

Γ, u : A; ∆ ` P :: Λ
(!L)

Γ; ∆, x :!A ` P{x/u} :: Λ

Γ; · ` P :: y : A
(!R)

Γ; · `!x(y).P :: x :!A

The cut reduction is:

Γ; · ` P :: y : A
(!R)

Γ; · `!x(y).P :: x :!A

Γ, u : A; ∆ ` Q :: Λ
(!L)

Γ; ∆, x :!A ` Q{x/u} :: Λ
(CutL)

Γ; ∆ ` νx.(!x(y).P | Q{x/u}) :: Λ

Eliminating the cut yields:

Γ; · ` P :: y : A Γ, u : A; ∆ ` Q :: Λ
(Cut!)

Γ; ∆ ` νu.(!u(y).P | Q)

This does not correspond to a reduction, but it makes sense because the
channels in processes P and Q are not interacting. Applying the same idea
we can derive the WhyNot rules. Although, there is no cut for WhyNot rules
due to the dual type in the right rule, which does not match with the left
case.

In the case of the Copy rules, the intuition is this: P offers a resource of
type A along channel x, and at the same time in an unrestricted way along
channel u. Hence, it is possible to request a type A, we need to create a new
channel each time.

Γ, u : A; ∆ ` P :: Λ, x : A⊥
(CopyR)

Γ, u : A; ∆ ` νx.u〈x〉.P :: Λ

The cut instance for this rule is the following.

Γ; y : A⊥ ` P :: ·
Γ, u : A; ∆, x : A ` Q :: Λ

(CopyL)
Γ, u : A; ∆ ` νx.(u〈x〉.Q) :: Λ

(Cut?)
Γ; ∆ ` νu.(!u(y).P | νx.u〈x〉.Q)) :: Λ
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Whose associate cut-elimination is:

Γ; y : A⊥ ` P :: ·
Γ;x : A⊥ ` P{x/y} :: · Γ, u : A; ∆, x : A ` Q :: Λ

(CutL)
Γ, u : A; ∆ ` νx.(Q | P{x/y}) :: Λ

(Cut?)
Γ; ∆ ` νu.(!u(y).P | νx.(Q | P{x/y}) :: Λ

Remember that A

&

B = A⊥ ( B. Now, for multiplicative disjunction
right rule, the situation is as follows: P needs a resource of type A⊥ to
produce a resource of type B; this translates into an input of type A⊥ over
a channel, and then to offer a B over the same channel. Note, that an input
of type A⊥ is an output of type A.

Γ; ∆ ` P :: Λ, x : B, y : A
(

&

R)
Γ; ∆ ` x(y).P :: Λ, x : A

&

B

In the case of the left rule, a process P needs a resource of type A (which
is an output of type A⊥. On the other hand, a process Q needs a proposition
of type B. As a result, it is necessary to expect a resource of type A first;
then, we output it over a new channel, lets call it y. Finally, y needs to wait
for a resource of type B.

Γ; ∆, y : A ` P :: Λ Γ; ∆′, x : B ` Q :: Λ′
(

&

L)
Γ; ∆,∆′, x : A

&

B ` νy.x〈y〉.(P | Q) :: Λ,Λ′

Here the channel restriction (ν) in the left rule fulfills the commitment
that the channel is fresh. The cut elimination follows:

Γ; ∆1 ` P :: Λ1, x : B, z : A
(

&

R)
Γ; ∆1 ` x(z).P :: Λ1, x : A

&

B

Γ; ∆2, y : A ` Q :: Λ2 Γ; ∆3, x : B ` R :: Λ3
(

&

L)
Γ; ∆2,∆3, x : A

&

B ` νy.x〈y〉.(Q | R) :: Λ2,Λ3
(CutR)

Γ; ∆1,∆2,∆3 ` νx.(x(z).P | νy.x〈y〉.(Q | R)) :: Λ1,Λ2,Λ3

Whose reduction is:

Γ; ∆1 ` P{y/z} :: Λ1, x : B, y : A Γ; ∆3, x : B ` R :: Λ3
(CutR)

Γ; ∆1,∆3 ` νx.(P{y/z} | R) :: Λ1,Λ3, y : A Γ; ∆2, y : A ` Q :: Λ2
(CutR)

Γ; ∆1,∆2,∆3 ` νy.(νx.(P{y/z} | R) | Q) :: Λ1,Λ2,Λ3

Finally, to close the discussion, we present the rules for the multiplicative
conjunction. The right rule has two processes P , Q; P provides a resource
A over the channel y, and Q provides a resource B on channel x. Hence, to
provide a resource of type A⊗ B it is sufficient to output a resource A over
a new channel y, then output a resource B on x.
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Γ; ∆ ` P :: Λ, y : A Γ; ∆′ ` Q :: Λ′, x : B
(⊗R)

Γ; ∆,∆′ ` νy.x〈y〉.(P | Q) :: Λ,Λ′, x : A⊗B

For the left rule, the process P expects two resources: one of type A over
a channel y and one of type B over channel x. Hence, it is possible to accept
both resources over the same channel by first expecting the A resource, then
waiting resource B.

Γ; ∆, y : A, x : B ` P :: Λ
(⊗L)

Γ; ∆, x : A⊗B ` x(y).P :: Λ

The cut is the following.

Γ; ∆1 ` P :: Λ1, y : A Γ; ∆2 ` Q :: Λ2, x : B
(⊗R)

Γ; ∆1,∆2 ` νy.x〈y〉.(P | Q) :: Λ1,Λ2, x : A⊗B
Γ; ∆3, z : A, x : B ` R :: Λ3

(⊗L)
Γ; ∆3, x : A⊗B ` x(z).R :: Λ3

(CutR)
Γ; ∆1,∆2,∆3 ` νx.(νy.x〈y〉.(P | Q) | x(z).R) :: Λ1,Λ2,Λ3

And the reduction is:

Γ; ∆2 ` Q :: Λ2, x : B

Γ; ∆1 ` P :: Λ1, y : A Γ; ∆3, y : A, x : B ` R{y/z} :: Λ3
(CutR)

Γ; ∆1,∆3, x : B ` νy.(P | R{y/z}) :: Λ1,Λ3
(CutR)

Γ; ∆1,∆2,∆3 ` νx.(Q | νy.(P | R{y/z})) :: Λ1,Λ2,Λ3

Remember that a summary of all the typing and cut reduction rules can
be found in Appendix A.1.

2.2 Subject Reduction

We have reached one of the most important parts of this work: the proof
of the Subject Reduction Theorem. We discussed the importance of this
property: it means a system does not have deadlock or infinite wait errors.

Our Subject Reduction Theorem proof will be by induction on the typing
derivation. To complete the proof, we will require some technical results
to solve some cases. For example, most of the cases will not reduce. For
other cases, we need to study the interaction between the πULL rules and
the reduction rules. And, we will study the properties of the sequents to
complete the proof.

Now, we will focus on these technical results. Most of them come from
the work on Coq. We design them to make the verification straightforward.

Lemma 2.1. The following processes do not reduce.

• [x↔ y].

• νx.u〈x〉.P .
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• x().P .

• x〈〉.θ.

• x(y).P .

• νy.x〈y〉.(P | Q).

• !x(y).P .

Proof. In all cases, there is no matching rule.

The following lemmas tell how behave the substitution and the reduction.
Their proofs require several applications of the α-equivalence, a common
notion whose implementation in Coq is non trivial.

Lemma 2.2. If w 6∈ fn(S) and S −→ T . Then for all names b, S{w/b} −→
T{w/b}.

Proof. The proof is by induction on the reduction rule:

• In the case of the rule νx.(P | [x ↔ y]) −→ P{y/x} by the α-
equivalence it is true that w 6= x, b 6= x, and as w 6∈ fn(S) then
w 6= y. Therefore, there are two possible cases:

? b = y. It is the case that νx.(P | [x↔ y]){w/y} = νx.(P{w/y} |
[x ↔ w]), on the other hand P{y/x}{w/y} = P{w/x}, as y 6∈
fn(P ); and P{w/y} = P ; henceforth we can conclude this case.

? b 6= y. In this case νx.(P | [x ↔ y]){w/b} = νx.(P{w/b} |
[x ↔ y]), additionally P{y/x}{w/b} = P{w/b}{y/x} given the
conditions over x, y, w, and b.

All the other fusion rules are similar to the previous one.

• νx(x〈〉.θ | x().P ) −→ P . Using the α-equivalence it is the case that
w 6= x and b 6= x, therefore νx.(x〈〉.θ | x().P ){w/b} = νx.(x〈〉.θ |
x().P{w/b}) whose reduction is P{w/b}. The other 1 rule is similar.

• In the case of ν.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P | νy.(Q |
P{y/x})), using the α-equivalence it is the case that w 6= w, w 6= y,
w 6= x, b 6= x, b 6= u, and, b 6= y. Then it holds that νu.(!u(x).P |
νy.u〈y〉.Q){w/z} = νu.(!u(x).P{w/z} | νy.u〈y〉.Q{w/z}), whose re-
duction is νu.(!u(x).P{w/z} | νy.(Q{w/z} | P{w/z}{y/x})).
On the other side,
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νu.(!u(x).P | νy.(Q | P{y/x})){w/z} = νu.(!u(x).P{w/z} | νy.(Q{w/z} |
P{y/x}{w/z})).
Hence, using the conditions over the names it is true that P{y/x}{w/z} =
P{w/z}{y/x}, and the conclusion follows.

• For multiplicative disjunction and conjunction we use the same idea of
the previous case, analysing the conditions on the names that arise as
consequence of the α-equivalence.

Lemma 2.3. If w 6∈ fn(P ) and P −→ Q, then w 6∈ fn(Q).

Proof. Similar to the proof of Lemma 2.2.

We require the following lemmas to obtain the sequents in the cut cases.
The first result is a case of identity cuts.

Lemma 2.4. (left substitution) If Γ; ∆ ` P :: Λ, z : B ∈ ∆, and w 6∈
fn(Γ,∆,Λ, P ) then, Γ; ∆′ ` P{w/z} :: Λ, here ∆′ is the context in which
z : B is replaced by w : B.

Proof. The proof is by induction on P ’s typing derivation.

• IdR. Then it holds z = x, therefore the conclusion is:

Γ;w : B ` [x↔ y]{w/x} :: y : B

And, as y 6= x, we conclude:

Γ;w : B ` [w ↔ y] :: y : B

Which is an initial sequent.

• IdL. There are two cases: z = x, and z = y, which can be solved using
the idea of the previous case.

• !R. The hypothesis does not match with this rule.

• !L. First, recall that u 6= w since the linear names are disjoint from the
ordinary ones. In this case, the typing has the form:

Γ, u : A; ∆ ` P :: Λ
(!L)

Γ; ∆, x :!A ` P{x/u} :: Λ
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And there are two cases to consider: x = z and z : B ∈ ∆. In the first,
we need the substitution P{x/u}{w/x} which is equal to P{w/u}, and
the typing required is:

Γ; ∆0, w :!A ` P{w/u} :: Λ

This sequent can be obtained by applying the !L rule. For the second
case, if ∆ = z : B,∆0; by the induction hypothesis we obtain the
sequent:

Γ, u : A; ∆0, w : B ` P{w/z} :: Λ

because x 6= w by hypothesis and x 6= z, by the !L rule we get:

Γ; ∆0, w : B, x :!A ` P{w/z}{x/u} :: Λ

Using the conditions on the names, P{w/z}{x/u} = P{x/u}{w/z}
can be derived and then, the result follows.

• ?R. In this case ∆ = ∆0, z : B and applying the induction hypothesis
to:

Γ, u : A; ∆0, z : B ` P :: Λ

We obtain

Γ, u : A; ∆0, w : B ` P{w/z} :: Λ

Taking into account that x 6= u, x 6= w, and x 6= z, then P{x/u}{w/z} =
P{w/z}{x/u}. This last equation implies:

Γ; ∆0, w : B ` P{x/u}{w/z} :: Λ, x :?A

• ?L. In this case, it follows that x = z and as x 6∈ fn(P ), hence
P{w/x} = P and we obtain:

Γ;w :?A `!w(y).P :: ·

as required.

•

&

L. The hypothesis, in this case, looks like this:
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Γ; ∆1, y : A ` P :: Λ1 Γ; ∆2, x : B ` Q :: Λ2
(

&

L)
Γ; ∆1,∆2, x : A

&

B ` νy.x〈y〉.(P | Q) :: Λ1,Λ2

Then, there are three cases for z. The first case is when z = x, in which
using the induction hypothesis in the right sequent we get:

Γ; ∆2, w : B ` Q{w/x} :: Λ2

As contexts in the sequents are disjoint it holds that P{w/x} = P .
Thus, by α-equivalence w 6= y and:

Γ; ∆1,∆2, w : A

&

B ` νy.w〈y〉.(P | Q{w/x}) :: Λ1,Λ2

The second case is when ∆2 = ∆̄2, z : B̄, then applying the induction
hypothesis we get:

Γ; ∆̄2, w : B̄, x : B ` Q{w/z} :: Λ2

Note the following, by α-equivalence y 6= w, and given that the contexts
(in the sequents) are disjoint z 6∈ fn(P ), P{w/z} = P , and x 6= z.
Therefore, we can get the following sequent:

Γ; ∆1, ∆̄2, w : B̄, x : A

&

B ` νy.x〈y〉.(P | Q{w/z}) :: Λ1,Λ2

The third case is when ∆1 = ∆̄1, z : B̄, and is similar to the previous
one.

•

&

R. In this case, ∆ = ∆̄, z : B̄ and by the induction hypothesis:

Γ; ∆̄, w : B̄ ` P{w/z} :: Λ, x : B, y : A

By α-equivalence w 6= y and by the hypothesis w 6= x, hence:

Γ; ∆̄, w : B̄ ` x(y).(P{w/z}) :: Λ, x : A

&

B

• ⊗L, and ⊗R. They are similar to the two previous cases.

• ⊥ R or 1L. In this case ∆ = ∆̄, z : B and by the induction hypothesis:

Γ; ∆̄, w : B ` P{w/z} :: Λ

Which leads to:

Γ; ∆̄, w : B ` x().(P{w/z}) :: Λ, x :⊥

Applying the rule ⊥ R or 1L.
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• ⊥ L. In this case z = x and it follows by the same rule.

• 1R. The rules do not match.

• CopyL or CopyR. It is necessary that ∆ = ∆̄, z : B and using the
α-equivalence, x 6= w. So by the induction hypothesis:

Γ, u : A; ∆̄, w : B ` P{w/z} :: Λ, x : A⊥

And the result can be derived using the case rule.

• Cut? or Cut!. It follows that ∆ = ∆̄, z : B and by the α-equivalence
w 6= x and w 6= u. Thus:

Γ, u : A; ∆̄, w : B ` Q{w/z} :: Λ

So by an application of the same rule, it follows the required sequent.

• CutR or CutL. There are two cases in each rule. The first case is when
∆1 = ∆̄1, z : B in which by the induction hypothesis we derive:

Γ; ∆̄1, w : B, x : A ` P{w/z} :: Λ

By α-equivalence, w 6= x; since the contexts are disjoint Q{w/z} = Q,
and we finish applying the same cut rule under consideration. The
second case is when ∆2 = ∆̄2, z : B and it is similar.

In all cases the result is obtained. Using induction on the typing rules, it
follows the lemma.

The following lemma and its proof is similar to the previous one.

Lemma 2.5. (right substitution) If Γ; ∆ ` P :: Λ, z : B ∈ Λ, and w 6∈
fn(Γ,∆,Λ, P ) then, Γ; ∆ ` P{w/z} :: Λ′, here Λ′ is the context in which
z : B is replaced by w : B.

Proof. Similar to the proof of Lemma 2.4.

The following lemmas provide transference principals, which allow us to
move one assignment from one to the other side of the turnstile

Lemma 2.6. (right to left transference) If Γ; ∆ ` P :: Λ and w : B ∈ Λ
then, Γ; ∆, w : B⊥ ` P :: Λ′ being Λ′ = Λ \ {w : B}.

Proof. By induction on the typing derivation.
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• The derivation cannot be obtained by applying the rules IdL, ?L or
⊥L.

• If the last rule is CopyL it follows that w : B ∈ Λ, then using the
induction hypothesis we get Γ, u : A; ∆, w : B⊥ ` P :: Λ′, and the
required conclusion follows using the same rule (CopyL).

• In the case of CopyR, Cut!, Cut?, 1L, ⊗L, or !L the proof is similar to
the previous one.

• For the rules CutR, CutL, or

&

L, we apply the induction hypothesis
depending on which context lies the assignment w : B.

• If the last rule is IdR, we require to derive Γ;x : A,w : A⊥ ` [x↔ w] ::
·, but this can be obtained using IdL.

• If the last rule is 1R then w : B = x : 1 and we require Γ;x :⊥` x〈〉.θ ::
·; this follows using the ⊥L rule.

• In the case of rule ⊥R, there are two cases: in the first x : B ∈ Λ, and
the conclusion is obtained by the induction hypothesis. In the second,
x : B = x :⊥ and the required sequent is Γ; ∆, x : 1 ` x().P :: Λ, which
can be typed using the 1L rule.

• For the ?R and

&

R rules, the proof is similar to the previous one.

• If the last applied rule is ⊗R, there are three cases. If w : B ∈ Λ or
w : B ∈ Λ′, use the induction hypothesis. To prove in the case when
w : B = x : A⊗B, we use the

&

L rule and induction.

• Finally, in the case of !R rule the desired conclusion is that Γ;x :?A⊥ `
!x(y).P :: ·, additionally by the induction hypothesis Γ; y : A⊥ ` P :: ·,
hence the conclusion is obtained applying the ?L rule.

Lemma 2.7. (left to right) If Γ; ∆ ` P :: Λ and w : C ∈ ∆ then, Γ; ∆′ `
P :: Λ, w : C⊥ being ∆′ = ∆ \ {w : C}.

Proof. Similar to Lemma 2.6.

The next result helps to identify invalid sequents involving forward pro-
cesses.

Lemma 2.8. The following holds:

• For all contexts Γ, ∆, and Λ, free names x, y, and proposition A there
is no derivation for x : A,Γ; ∆ ` [x↔ y] :: Λ.
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• For all contexts Γ, ∆, and Λ, free names x, y, and proposition A there
is no derivation for x : A,Γ; ∆ ` [y ↔ x] :: Λ.

• If S = [x ↔ y]{u/w}, u ∈ fn(S), and u : A ∈ Γ then there is no
derivation for Γ; ∆ ` S :: Λ.

• If S = [y ↔ x]{u/w}, u ∈ fn(S), and u : A ∈ Γ then there is no
derivation for Γ; ∆ ` S :: Λ.

Proof. For the first two, the proof is by induction on the typing derivation.
We can have derivations using IdR or IdL rules, but in these cases channel
x would have an ordinary and linear behavior, which is contradictory. The
!L and ?R rules match the induction step, but they produce a contradiction
on the premises sequents. So there is no possible derivation by induction.

For the third and fourth statements as u ∈ fn(S), there are two pos-
sibilities: x = w or y = w .Both cases can be solved using the first two
results.

The next result is similar to the previous one but for the termination
process.

Lemma 2.9. The following are true:

• For all contexts Γ, ∆, and Λ, free name x, and proposition A there is
no derivation for x : A,Γ; ∆ ` x〈〉.θ :: Λ.

• If S = x〈〉.θ{u/w}, u ∈ fn(S), and u : A ∈ Γ then there is no
derivation for Γ; ∆ ` S :: Λ.

Proof. Similar to the previous lemma.

One feature of the ordinary context is that it has the weakening property.

Lemma 2.10. (Ordinary Weakening) Suppose that Γ; ∆ ` P :: Λ and w is
an ordinary name that does not appear in all the derivation of the sequent
then, Γ, w : B; ∆ ` P :: Λ.

Proof. Induction on the height of the typing of Γ; ∆ ` P :: Λ:

• Rules IdR and IdL: the sequent has the form Γ; x : A ` [x↔ y] :: y : A,
and by the hypothesis over w, w 6= x and w 6= y. Thus, the sequent
Γ, w : B;x : A ` [x↔ y] :: y : A is initial.

• Rules !L and ?R: as w does not appear in all the derivation of the
sequent, it is true that w 6= u and then by induction hypothesis Γ, w :
B, u : A; ∆ ` P :: Λ (!L), then the conclusion follows applying the same
rule.
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• In the other cases, apply the induction hypothesis and the fact that w
is ordinary.

Now, we show some processes that cannot be typed in the system.

Lemma 2.11. For all contexts Γ, ∆, Λ, and processes P , Q; there is no
derivation for Γ; ∆ ` P | Q :: Λ.

Proof. Induction on the derivation.

Lemma 2.12. For all contexts Γ, ∆, Λ, ordinary name u and proposition
A, there is no derivation for Γ, u : A; ∆ ` u(y).P :: Λ.

Proof. Induction on the derivation of the sequent.

Lemma 2.13. If Γ, u : A; ∆ ` νy.u〈y〉.P :: Λ is neither derived using the !L
nor ?R rules, then it is derived using the CopyR or CopyL rule.

Proof. The proof is by induction on the typing derivation:

• CopyR or CopyL rules: it is the conclusion.

• !L or ?R rules: it is not possible by hypothesis.

•

&

L or ⊗R rules: then u should have an ordinary and a linear behavior,
which is a contradiction.

Now, we can show that the πULL typing system preserves the typing
under structural congruence.

Theorem 2.1. If Γ; ∆ ` P :: Λ and P ≡ Q, then Γ; ∆ ` Q :: Λ.

Proof. The proof uses induction on the hypothesis P ≡ Q. But, in all cases
there is no typing for P .

Finally, we are able to present the Subject Reduction Theorem.

Theorem 2.2. If Γ; ∆ ` P :: Λ and P −→ Q, then Γ; ∆ ` Q :: Λ.

Proof. The proof is by induction on the typing derivation:

• Using Lemma 2.1, the typing rule cannot be IdL, IdR, CopyL, CopyR,
1L, 1R, ⊥ L, ⊥ R, ⊗L, ⊗R,

&

L,

&

R, !R, or ?L.
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• For the rules ?R and !L, the next argument solves these cases. Here we
consider the !L rule. First, by the definition of the rule, it holds that
x 6∈ fn(P ).

By hypothesis, P{x/u} −→ Q and it is clear that u 6∈ fn(P ); hence
using Lemma 2.2, it follows P{x/u}{u/x} −→ Q{u/x} and P =
P{x/u}{u/x}. Using the induction hypothesis, Γ, u : A; ∆ ` Q{u/x} ::
Λ and applying the rule !L, it follows that Γ; ∆, x :!A ` Q{u/x}{x/u} ::
Λ.

As Q = Q{u/x}{x/u}, we conclude the result.

• For the Cut! rule the hypothesis is νu.(!u(x).P | R) −→ Q and there
are multiple cases:

? R = [u ↔ y]. It will be the case that Γ, u : A; ∆ ` [u ↔ y] :: Λ,
by Lemma 2.8 this cannot happen.

? R = [y ↔ u]. It is equal to the previous case.

? R = νy.u〈y〉.S and the reduction is νu.(!u(x).P | νy.(S | P{y/x})).
By hypothesis, it is true that Γ, u : A; ∆ ` νy.u〈y〉.S :: Λ, and we
can obtain the last sequent using:

∗ An application of the rules !L or ?R. Suppose that we applied
the rule !L, there is a process S ′ such that S ′{x/u0} = S, and
channels u0, x such that:

1. Are different from y by α-equivalence.

2. Are different from u, because if u = x then there would
be a channel with double behavior. And, if u = u0, then
the application of the !L rule yields Γ; ∆ ` νy.u〈y〉.S :: Λ
which is not the expected sequent.

We obtain the typing:

Γ, u : A, u0 : B; ∆0 ` (νy.u〈y〉.S ′) :: Λ
(!L)

Γ, u : A; ∆0, x :!B ` (νy.u〈y〉.S ′){x/u0} :: Λ

Then there are two possibilities for the upper sequent:

· We derive it applying the rules !L or ?R. It is possible to
apply the same argument to invert the sequent and obtain
a similar one. If there are more than two consecutive
applications of these rules, iterate the argument, as ∆
and Λ are finite the process must stop and fall in the next
case.

· It is not obtained from the application of the rules !L nor
?R. Then this case is reduced to the others cases of rules.
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From now, we will call this strategy for solving cases, as the
cyclic argument.

∗ An application of the rules

&

L, or ⊗R. There is a contradic-
tion on the behavior (linear and ordinary) of channel u, which
is the channel of the current rule. For example in the

&

L:

Γ, u : A

&

B; ∆, u : A

&

B ` νy.u〈y〉.S :: Λ

The channel u behaves linear and ordinary, which is not pos-
sible.

∗ An application of the CopyR rule. It follows that Γ, u : A; ∆ `
S :: Λ, y : A⊥. Using Lemmas 2.10, 2.6, and 2.4 it holds
Γ, u : A; y : A⊥ ` P{y/x} :: ·, hence:

Γ; · ` P :: x : A

Γ, u : A; ∆ ` S :: Λ, y : A⊥ Γ, u : A; y : A⊥ ` P{y/x} :: ·
(CutR)

Γ, u : A; ∆ ` νy.(S | P{y/x}) :: Λ
(Cut!)

Γ; ∆ ` νu.(!u(x).P | νy.(S | P{y/x})) :: Λ

∗ An application of the CopyL rule. Then Γ, u : A; ∆, y : A `
S :: Λ. By Lemmas 2.10, 2.6, and 2.4 we have Γ, u : A; y :
A⊥ ` P{y/x} :: ·, hence:

Γ; · ` P :: x : A

Γ, u : A; ∆, y : A ` S :: Λ Γ, u : A; y : A⊥ ` P{y/x} :: ·
(CutL)

Γ, u : A; ∆ ` νy.(S | P{y/x}) :: Λ
(Cut!)

Γ; ∆ ` νu.(!u(x).P | νy.(S | P{y/x})) :: Λ

? R = νy.u〈y〉.S and the reduction is νu.(!u(x).P | νy.(P{y/x} |
S)). By hypothesis we have Γ, u : A; ∆ ` νy.u〈y〉.S :: Λ, and we
can derive this sequent by:

∗ An application of the rules !L or ?R. We use the cyclic argu-
ment.

∗ An application of the rules

&

L, or ⊗R. There is a contradic-
tion on the behavior (linear and ordinary) of channel u, which
is the channel of the current rule. For example in the

&

L:

Γ, u : A

&

B; ∆, u : A

&

B ` νy.u〈y〉.S :: Λ

The channel u behaves linear and ordinary, which is not pos-
sible.

∗ An application of the CopyR rule. It follows that Γ, u : A; ∆ `
S :: Λ, y : A⊥. Using Lemmas 2.10, 2.6, and 2.4 it holds
Γ, u : A; ∆, y : A ` S :: Λ and Γ, u : A; · ` P{y/x} :: y : A,
hence:
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Γ; · ` P :: x : A

Γ, u : A; · ` P{y/x} :: y : A Γ, u : A; ∆, y : A ` S :: Λ
(CutR)

Γ, u : A; ∆ ` νy.(P{y/x} | S) :: Λ
(Cut!)

Γ; ∆ ` νu.(!u(x).P | νy.(P{y/x} | S)) :: Λ

∗ An application of the CopyL rule. Then Γ, u : A; ∆, y : A `
S :: Λ. By Lemmas 2.5 and 2.10 it is true that Γ, u : A; · `
P{y/x} :: y : A, hence:

Γ; · ` P :: x : A

Γ, u : A; · ` P{y/x} :: y : A Γ, u : A; ∆, y : A ` S :: Λ
(CutR)

Γ, u : A; ∆ ` νy.(P{y/x} | S) :: Λ
(Cut!)

Γ; ∆ ` νu.(!u(x).P | νy.(P{y/x} | S)) :: Λ

• Now, for the CutR rule the hypothesis is νx.(P | R) −→ Q and there
are several cases depending on the reduction case:

? The rule is νx.(P | [x↔ y]) −→ P{y/x}. So, Γ; ∆ ` P :: Λ, x : A
and Γ; ∆′, x : A ` [x ↔ y] :: Λ′ and there are cases depending on
the typing of the last sequent:

∗ IdR rule. The desire conclusion is Γ; ∆ ` P{y/x} :: Λ, y : A.
But this is consequence of Lemma 2.5.

∗ IdL rule. The objective is to type Γ; ∆, y : A⊥ ` P{y/x} :: Λ.
But we can derive it applying Lemmas 2.4 and 2.6.

∗ By the rule !L or ?R. It is the case that:

Γ, u : A; ∆′0 ` [x↔ y]{u/w} :: Λ′0
(!L)

Γ; ∆′, x : A ` [x↔ y] :: Λ′

with u ∈ fn([x ↔ y]{u/w}). Therefore, Lemma 2.8 states
that there is a contradiction.

? The rule is νx.(P | [y ↔ x]) −→ P{y/x}. So, Γ; ∆ ` P :: Λ, x : A
and Γ; ∆′, x : A ` [y ↔ x] :: Λ′ and there are cases depending on
the typing of the last sequent:

∗ IdR rule. This would imply that x = y, but this is a contra-
diction.

∗ IdL rule. This implies that ∆′ = {y : A⊥} and Λ′ = ∅, the
goal is to derive Γ; ∆, y : A⊥ ` P{y/x} :: Λ which we can
derive using Lemmas 2.4 and 2.6.

∗ By the rule !L or ?R. As previous this case satisfies the con-
ditions to apply Lemma 2.8.

? The rule is νx.([y ↔ x] | Q) −→ Q{y/x}. Hence, Γ; ∆ ` [y ↔
x] :: Λ, x : A and Γ; ∆′, x : A ` Q :: Λ′; there are cases depending
on the typing of the last sequent:
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∗ IdR rule. This implies that ∆ = {y : A} and Λ = ∅, the goal
is to derive Γ; ∆′, y : A ` Q{y/x} :: Λ′ which we derive using
Lemma 2.4.

∗ IdL rule. It is impossible since the right side is not empty.

∗ By the rule !L or ?R. As in the previous cases it satisfies the
conditions to apply Lemma 2.8.

? The rule is νx.([x↔ y] | Q) −→ Q{y/x}. Thus, Γ; ∆ ` [x↔ y] ::
Λ, x : A and Γ; ∆′, x : A ` Q :: Λ′; there are cases depending on
the typing of the last sequent:

∗ IdR rule. It does not match the typing.

∗ IdL rule. It does not match the typing, the right side is not
empty.

∗ Rules !L or ?R. As previous this case satisfies the conditions
to apply Lemma 2.8.

? The rule is νx.(x〈〉.θ | x().Q) −→ Q. In this case is true that
Γ; ∆ ` x〈〉.θ :: Λ, x : A and Γ; ∆′, x : A ` x().Q :: Λ′; there are
cases depending on the typing of the first sequent:

∗ Rules !L or ?R. This case satisfies the conditions to apply
Lemma 2.9.

∗ Rule ⊥ L. There is a contradiction, the right side is not
empty.

∗ Rule 1R. Then ∆ = ∅, and Λ = ∅. The goal is Γ; ∆′ ` Q :: Λ′,
and it is necessary to consider the typing for Γ; ∆′, x : A `
x().Q :: Λ′:

· Rule 1L. The goal is the premise in the rule.

· Rule ⊥ R. In this case the sequent has the form Γ; ∆′, x :
A ` x().Q :: Λ′, x :⊥, but the linear contexts are not
disjoint, so it is contradictory.

· Rules !L or ?R. We use the cyclic argument.

? The rule is νx.(x().P | x〈〉.θ) −→ P . The proof is similar to the
previous case.

? The rule is νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P | νy.(Q |
P{y/x})). It is similar to the proof of the Cut! rule.

? The rule is νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P | νy.(P{y/x} |
Q)). It is similar to the proof of the Cut? rule.

? The rule is νx.(x(z).P | νy.x〈y〉.(Q | R)) −→ νy.(νx.(P{y/z} |
R) | Q) in this case it is true that Γ; ∆ ` x(z).P :: Λ, x : A and



60 2.2. SUBJECT REDUCTION

Γ; ∆′, x : A ` νy.x〈y〉.(Q | R) :: ∆′, and there are cases depending
on the second sequent:

∗ Rules CopyR or CopyL. It holds Γ; ∆′, x : A, y : B ` Q | R ::
∆′ for some assignment y : B, but this contradicts Lemma
2.11.

∗ Rule ?R. We use the cyclic argument.

∗ Rule !L. As in the cyclic argument suppose that this is the first
application of the rules !L or ?R. Then there are two cases.
The first is that, x is the same name used by the rule, so it
should be the case that Γ, u : A; ∆′ ` νy.u〈y〉(Q0 | R0) :: ∆′

which by Lemma 2.13 can only be concluded using the CopyL
or CopyR rules, but this contradicts Lemma 2.11. Thus, the
case reduces to the cyclic argument.

∗ Rule ⊗R. It is the case that A = C ⊗D and x : C ⊗D ∈ ∆′,
this is contradictory due to the behavior of x.

∗ Rule

&

L. In this case we obtain A = C

&

D, Γ; ∆0, y : C `
Q :: Λ0 and Γ; ∆1, x : D ` R :: Λ1 with ∆′ = ∆0,∆1 and
Λ′ = Λ0,Λ1. Then, it is necessary to know how the sequent
Γ; ∆ ` x(z).P :: Λ, x : A were derived:

· Rule !L. We use the cyclic argument.

· Rule ?R. There are two possibilities. In the first x is the
same name of the rule, but this implies that for some P0,
Γ, u : A′; ∆ ` u(z).P0 :: Λ which contradicts Lemma 2.12.
Hence, the case reduces to the cyclic argument.

· Rule ⊗L This would imply that Γ; ∆2, x : A′ ⊗ B′ `
x(z).P :: Λ, x : C

&

D which is contradictory due to the
double behavior in x.

· Rule

&

R. Then Γ; ∆ ` P :: Λ, x : D, z : C using Lemmas
2.4 and 2.6 we can get Γ; ∆, y : C⊥ ` P{y/z} :: Λ, x : D
and the conclusion is derived as follows:

Γ; ∆0, y : C ` Q :: Λ0 Γ; ∆, y : C⊥ ` P{y/z} :: Λ, x : D
(CutL)

Γ; ∆,∆0 ` νy.(Q | P{y/z}) :: Λ,Λ0, x : D Γ; ∆1, x : D ` R :: Λ1
(CutR)

Γ; ∆,∆0,∆1 ` νx.(νy.(Q | P{y/z}) | R) :: Λ,Λ0,Λ1

? The rule is νx.(νy.x〈y〉(P | Q) | x(z).R) −→ νx.(Q | νy.(P |
R{y/z})) then it holds Γ; ∆ ` νy.x〈y〉(P | Q) :: Λ, x : A and
Γ; ∆′, x : A ` x(z).R :: Λ′. Hence, there are cases depending on
the first sequent:

∗ Rules CopyR, CopyL, !L or ?R. It is similar to the previous
rule.
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∗ Rule

&

L. Then it should be the case that x : C

&

D ∈ ∆ for
some propositions C,D, then x has a double behavior which
is a contradiction.

∗ Rule (L. It is similar to the

&

L case.

∗ Rule ⊗R. In this case A = C ⊗ D for some propositions C,
and D; Γ; ∆1 ` P :: Λ1, y : C, Γ; ∆2 ` Q :: Λ2, x : D with
∆ = ∆1 ∪ ∆2 and Λ = Λ1 ∪ Λ2. Now we need to know how
Γ; ∆′, x : A ` x(z).R :: Λ′ were derived:

· Rules !L or ?R. We use the cyclic argument.

· Rule

&

R. It is the case that Γ; ∆′, x : A ` x(z).R :: Λ′0, x :
B, which is contradictory due to the double behavior of
x.

· Rule (R. It is similar to the previous item.

· Rule ⊗L. It is true that Γ; ∆′0, x : C, z : D ` R :: Λ′, using
Lemma 2.4 we derive Γ; ∆′0, x : C, y : D ` R{y/z} :: Λ′,
and the conclusion follows using two times the rule CutR.

• The CutL rule is similar to the previous case.

In this section, we presented our version of the πULL calculus, and using
the notion of principal cuts, we validated that the chosen reduction rules are
coherent and make sense within the calculus. Furthermore, we completed
the proof of the Subject Reduction Theorem, including the technical results
required in the proof. The proof and its design are one of the major contri-
butions of the present work.

Our next step will be the introduction of ideas for terms representation
within computer machines. We need a representation to implement the ver-
ification of the Subject Reduction Theorem in Coq.

2.3 Bounded names and its mechanization

As we discussed in the Introduction, a good representation of definitions and
concepts is fundamental when writing machine-checked proofs.

In systems like λ or π calculus, one keystone detail of the implementation
is the representation of names (variables). This problem has been studied
extensively, and there are different approaches [Cha12, de 72]. Following the
discussion given by de Bruijn [de 72, p. 1], we consider the following three
criteria for a good notation:

• easy to write and easy to read for the human reader;
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• easy to handle in metalingual discussion;

• easy for the computer and the computer programmer.

There are three canonical ways to represent names within a computer
machine: strings, De Bruijn notation, and Locally Nameless Representation
(LN). Now, we give a brief discussion of them regarding their advantages
and disadvantages. Also we present the LN representation in detail, which is
the notation preferred in this work. As de Bruijn highlights [de 72, p. 383],
presenting the examples using planar trees facilitates the discussion.

The naive representation for names uses strings of characters, as usual.
We are used to this representation which is faithful to the mathematical
definitions. The major drawback with this representation comes with the
bounded names. To obtain a good representation of the terms, it is necessary
to consider the α-equivalence as an equivalence relation over them.

This equivalence relation produces a technical difficulty: each function
or relation, defined for the terms, must be proved well defined, i.e., we have
to show that a definition is not affected by a change in the representative
(remember that the α-equivalence is an equivalence relation).

For example, consider the substitution of names. We said that it is
mandatory to prevent the capture of bound names; however, how can we
formalise this idea? It means that the term should be explored, and if the
substituted name appears to be bounded, the subterm must be changed by
another that is α-equivalent to the original. This change is a complex oper-
ation for the machine and contravenes the criteria given by de Bruijn. As a
consequence, using this type of representation results in complex arguments,
and it is common to require many obscure results.

The second representation was proposed by de Bruijn in 1972 [de 72] and
is known as de Bruijn indices. In this approximation, names are replaced by
natural numbers, which reference the binder of the name. Here, we follow
the convention used by Charguéraud and start counting the indices in 0.
Consider the following term in the π-calculus:

νx.(x〈w〉.θ|νz.νt.νs.x(y).([s↔ y]|θ)) (2.1)
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νx. |
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At first, it is necessary to fix a context from which the free names are
taken, according to De Bruijn. De Bruijn used an ordered list as a context
but also in the general case an infinite sequence of names (say n1, n2, ...,)
works. The context for this example will be (f, w, g). Hence to obtain the
de Bruijn representation, we apply the following steps:

1. At the left of the tree, draw binders for each name in the context in
order.

2. For each name, compute the following:

(a) The number of crossed binders in the way to the binder of the
name (level).

(b) The number of crossed binders in the way to the root of the tree
(depth).

3. Erase the bounded names from all the binders (x(y) and νy) in the
tree.

4. Reconstruct the term with the aid of the tree, using the level number
instead of the original name.

ν |
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From this tree we get the translated term using de Bruijn notation:

ν.(0〈2〉.θ|ν.ν.ν.3( ).([1↔ 0]|θ))

From the latter expression and de Bruijn notation, some observations
follow:

• each name has two numbers associated: the first is the level, which
refers to the number of binders that the name must traverse to en-
counter its binder. The second is the depth, which is the number of
binders that the name encounters on its way to the root of the tree.
Thus a name is free in the term, if and only if its level is greater than
its depth.

• de Bruijn puts the binder of free names to the left of the term tree.
It should be noted that these binders are sensitive to the order of the
context.

• In de Bruijn notation, the binder x(y) is written 3( ). Due to a possible
collision with terms like ‘x().’ which has another meaning in πULL.

De Bruijn notation solves a drawback from the naive strings notation,
α-equivalence is no longer required, as a consequence of the first observation.
Since the level is greater than the depth, any substitution of free names
will never collide with a bound name, and the substitutions become safe.
Unfortunately, there is a price to pay for this, requiring two new functions.

For example, Term 2.1 reduces to νx.(θ|νz.νt.νs.([s ↔ w]|θ)) which in
de Bruijn notation (with context (f, w, g)) is ν.(θ|ν.ν.ν.([0 ↔ 5]|θ)). Note
that the level of the name w must change, due to the new binders that are
needed to traverse in order to reach the binder of w. Hence, the substitution
when using de Bruijn indices needs a new definition. Suppose that the free
names are indexed; in other words, fix a context (x1, x2, ...); if n, m are the
indices from the changing names, then:

i{m/n} =

{
m n = i

i otherwise

θ{m/n} = θ

(P |Q){m/n} = (P{m/n})|(Q{m/n})
(!P ){m/n} =!(P{m/n})

(i〈j〉.P ){m/n} = [i{m/n}]〈j{m/n}〉.[P{m/n}]
(i( ).P ){m/n} = [i{m/n}]( ).[P{m+ 1/n+ 1}]

(ν.P ){m/n} = ν.(P{m+ 1/n+ 1})
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It is necessary to introduce the shift functions for de Bruijn indices. Here,
the shift function is fused with the substitution function, in other words the
above function is the substitution function and, at the same time, the shift
function. The reason is that the substitution in π-calculus is different from
the substitution in λ-calculus. In the last, it is possible to inject an expression
inside another using β-rule ((λx.A)B →β A[x := B]). In π-calculus, as a
result of the formal definition of substitution, this behaviour is not needed.
In π-calculus, names substitute other names and not terms.

De Bruijn indices suffer from two drawbacks [BU07, Kam01]: first is the
complexity of implementing the shift functions; poor interpretations of these
functions would lead to bad results or wrong reasoning. The second is related
to the free names: How to choose the contexts? In general, this question has
no answer and could lead to intense argumentation.

2.4 Locally Nameless Representation

Charguéraud [Cha12] proposed an alternative notation that is in the middle
of the two previously discussed, the Locally Nameless Representation (LN);
in this approach, the variables are tagged depending on their class (free or
bound). Hence, the grammar is modified to include these tags.

Definition 2.4. The following grammar generates the LN terms for the
πULL processes:

N = FName(x) | BName(i)
P,Q = θ | [N ↔ N ] | P |Q | ν.P | N〈N〉.P | N( ).P | N().P |!N( ).P | N〈〉.θ

where x represents a string, and i is a natural number. From now on, we
write x, y, z, .. for a free name, or i, j, k, ... for a bounded a name.

For instance, the LN representation for Process 2.1 is:

ν.(0〈w〉.θ|ν.ν.ν.3( ).([0↔ 1]|θ))

As we said, this representation is a reasonable compromise. With LN
representation, there is no need for α-equivalence, and in particular, there
is no risk of variable capture when doing a substitution. Furthermore, free
names substitution is as usual, and there is no need to work with a particular
context.

As usual, there is a price to pay for using this notation, and it is the def-
inition of the open ({k → x}P ), and close ({k ← x}P ) functions. Consider
the following example: the term P = x〈y〉.θ has x as a free name, and we
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need to bound it. If we just put a binder ν in front of P , x remains free
in the result. Thus, we need a function that closes or changes a name for a
pointer (reference).

On the other hand, suppose that there is a term of the form ν.P , if we
want to remove the binder, then we need an open function. Charguéraud
[Cha12] comments about these functions:

[Cha12, p. 5] Variable open turns some bound variables into free
variables. It is used to investigate the body of an abstraction.
Variable close turns some free variables into bound variables it is
used to build an abstraction given a representation of its body.

Definition 2.5. The open function takes a natural number (k), a string (x),
a process (P ) and replace each occurrence of a bound name with index k for
the name x is defined as follows:

{k → x}(i) =

{
x i = k

i otherwise

{k → x}(y) = y

{k → x}(θ) = θ

{k → x}([N ↔M ]) = [{k → x}N ↔ {k → x}M ]

{k → x}(P |Q) = ({k → x}P )|({k → x}Q)

{k → x}(ν.P ) = ν.({k + 1→ x}P )

{k → x}(N〈M〉.P ) = ({k → x}N)〈{k → x}M〉.({k → x}P )

{k → x}(N( ).P ) = ({k → x}N)( ).({k + 1→ x}P )

{k → x}(N().P ) = ({k → x}N)().({k → x}P )

{k → x}(!N( ).P ) = !({k → x}N)( ).({k + 1→ x}P )

{k → x}(N〈〉.θ) = ({k → x}N)〈〉.θ

Similarly, there is a close function. The close function takes a free name
x and replaces its occurrences with index references.



CHAPTER 2. TOWARDS A FORMAL VERIFICATION 67

{k ← x}(i) = i

{k ← x}(y) =

{
k y = x

y otherwise

{k ← x}(θ) = θ

{k ← x}([N ↔M ]) = [{k ← x}N ↔ {k ← x}M ]

{k ← x}(P |Q) = ({k ← x}P )|({k ← x}Q)

{k ← x}(ν.P ) = ν.({k + 1← x}P )

{k ← x}(N〈M〉.P ) = ({k ← x}N)〈{k ← x}M〉.({k ← x}P )

{k ← x}(N( ).P ) = ({k ← x}N)( ).({k + 1← x}P )

{k ← x}(N().P ) = ({k ← x}N)().({k ← x}P )

{k ← x}(!N( ).P ) = !({k ← x}N)( ).({k + 1← x}P )

{k ← x}(N〈〉.θ) = ({k ← x}N)〈〉.θ

When k = 0 it is convenient to use the following notation.

{0→ x}P := P x {0← x}P := xP

One may argue that these functions are troublesome, and it is better to
use de Bruijn notation. Nevertheless, their implementation is easy, and any
error is simple to find and fix; additionally, the argumentation with these
functions is usually easier than with the shift functions.

Next, we present some technical results for the LN representation.

Lemma 2.14. For all names N , natural number k, and free name x if x 6=
N , then {k ← x}({k → x}N) = N .

Proof. Using structural induction over N , there are two cases to consider:

• N = y. Using the hypothesis that x 6= N , hence {k ← x}({k → x}y) =
{k ← x}y = y.

• N = i. If i = k then {i ← x}({i → x}i) = {i ← x}x = i as required.
In the case that i 6= k, the name is not changed by the open function,
thereby neither the close.

Proposition 2.1. Given a process P , a natural number k, and a fresh name
(i.e., a name not free in the process) x for P , then {k ← x}({k → x}P ) = P .

Proof. This proof uses structural induction over the process P .
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• P = θ. It follows using the definition of open/close functions.

• P = [N ↔M ]. As x is fresh in P , we can apply the previous lemma.

• P = Q|S. The structural induction hypothesis state that {k ← x}({k →
x}Q) = Q for processes Q, S, and natural number k. The result follows
from the definition of the open/close functions.

• P = N〈M〉.Q. The definitions of the open/close functions tell that is
enough to verify the result for N , M , and Q to obtain the result for P .
But, this follows from the previous lemma and the induction hypothesis
over Q. The same idea applies for P = N().P and P = N〈〉.θ.

• P = ν.Q. The application of the open/close functions yields {k ←
x}({k → x}(ν.Q)) = ν.({k + 1 ← x}({k + 1 → x}Q)), then the result
follows using the induction hypothesis applied to Q.

• P = N( ).Q or P =!N( ).Q. It follows combining the two previous
arguments.

Then the result follows from structural induction over the process P .

Corollary 2.1. Given a process P and a fresh name x for P , then x(P x) =
P .

Proof. Using that x(P x) = {0← x}({0→ x}P )), it follows from the previous
proposition.

In the previous results, we needed a fresh names for a given process, but
we can get a new name easily. If s is the concatenation of all free names in
the process, then x = ss is a fresh name.

The disadvantage of the LN representation is that the modified grammar
introduces some terms that are nonsense. For example, ν.[0 ↔ 3], here 3
points to a non-existent binder. Hence we need a way to ensure that the
terms are well-formed. Charguéraud proposed the local closure predicate
(lc) to characterize the terms constructed correctly [Cha12].

Definition 2.6. The local closure predicate characterizes the well-formed
terms, and the following rules define it:

lc(θ) lc(x) lc([x↔ y]) lc(x〈〉.θ)
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lc(P ) lc(Q)

lc(P |Q)

lc(P )

lc(x〈y〉.P )

lc(P )

lc(x().P )

∀y, lc(P y)

lc(x( ).P )

∀y, lc(P y)

lc(ν.P )

∀y, lc(P y)

lc(!x( ).P )

Here x, y represent free names.

Using the lc predicate, we can verify that the term ν.[0↔ 3] is not well-
formed. If it were well-formed, then for each free name x it should be the
case that {x → 0}[0 ↔ 3] = [x ↔ 3] is well-formed, but this is false since 3
is never locally closed. In conclusion, ν.[0 ↔ 3] is not a well-formed term.
This type of bound name that points to nowhere will be called an orphan.

Definition 2.7. A process term P in LNR such that for any free name x
satisfies that lc(P x) is called a body.

For body terms, here is proposed an alternative view to Charguéraud
[Cha12] original idea; he defines a body as a term process P for which it
exists a finite list of names L, such that for every name not in L when we
open the term with that name the result is locally closed. Yet, here we state
that a body must obey the rule for all free names. In practice, it is better to
open the process with a name that is not free in it, but there is no reason for
a body to not be locally closed when it is open with all of its free names.

The locally closed predicate enables induction over its defining rules,
which is useful when we want to propagate a property over the well-formed
terms rather than over all the LN terms. This is another example of struc-
tural induction and it applies to different results.

Suppose that P is a locally closed term. If it does not begin with a binder,
then it must be the case that we do not find any orphan when we read P .
But, what happens when P starts with a binder? For example, P = ν.Q,
the definition says that if we read Q and we do not cross any binder, then
all bound names must be zero. Suppose that we cross a binder reading Q,
then all bound names must be at most one; and so on.

Following this idea, Charguéraud gives another characterisation of being
locally closed called the locally closed at predicate [Cha12].
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Definition 2.8. The locally closed at predicate is defined inductively as:

lca(i, k) = i < k

lca(x, k) = true

lca(θ, k) = true

lca([N ↔M ], k) = lca(N, k) and lca(M,k)

lca(P |Q, k) = lca(P, k) and lca(Q, k)

lca(N〈〉.θ, k) = lca(N, k)

lca(N〈M〉.P, k) = lca(N, k) and lca(M,k) and lca(P, k)

lca(N().P, k) = lca(N, k) and lca(P, k)

lca(ν.P, k) = lca(P, k + 1)

lca(N( ).P, k) = lca(N, k) and lca(P, k + 1)

lca(!N( ).P, k) = lca(N, k) and lca(P, k + 1)

Now we present some properties of the lca predicate.

Lemma 2.15. For any name N and natural number k, if lca(N, k+ 1) then
{k → xk}...{0→ x0}N is a free name.

Proof. Since the name is locally closed at k+1 then there are two possibilities:
the first is that N is a free name and therefore {k → xk}...{0→ x0}N = N
which is a free name; in the second, N is a bound name 0 ≤ i ≤ k, then the
i-th operation replaced it by xi and {k → xk}...{0 → x0}N = xi. In both
cases, the result is a free name.

Proposition 2.2. Given a process P , a natural number k and free names
x0, ..., xk, if lca(P, k + 1) then lc({k → xk}...{0→ x0}P ).

Proof. The proof uses induction on P:

• P = θ. For any natural number p and free name x, it is true that
{p → x}θ = θ, then {k → xk}...{0 → x0}θ = θ and it is locally
closed.

• P = [N ↔ M ] or P = N〈〉.θ. Lemma 2.15 asserts that {k →
xk}...{0→ x0}N ({k → xk}...{0→ x0}M) is a free name, and then P
is locally closed.

• P = Q | S. From hypothesis, it follows that lca(Q, k+1) and lca(S, k+
1), then using the induction hypothesis over Q and S, we obtain that
lc(Q), lc(S), and these both imply that lc(P ).
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• P = N〈M〉.Q or P = N().Q. Using the previous lemma we get that
{k → xk}...{0→ x0}N is a free name (M resp.), the induction hypoth-
esis guarantees that lc({k → xk}...{0→ x0}P ) and the result follows.

• P = ν.Q. In this case the induction hypothesis is: for all l ≥ 0 and free
names xl, ..., x0, if lca(Q, l + 1) then lc({l→ xl}...{0→ x0}Q).

On the other hand, as lca(ν.Q, k + 1) = lca(Q, k + 2) and {k →
xk}...{0 → x0}ν.Q = ν.({k + 1 → xk}....{1 → x0}Q); then it is suffi-
cient to show that for any free name y, lc({0→ y}{k+ 1→ xk}...{1→
x0}Q) but using Lemma A.1 we can derive that lc({k+1→ xk}....{1→
x0}{0 → y}Q) and the induction hypothesis with l = k + 1 and free
names y, x0, ..., xk yields what we need.

• P =!N( ).Q or P = N( ).Q. We use Lemma 2.15 and the same idea of
the previous case.

Lemma 2.16. For a name N and a natural number K. If lca({k → x}N, k)
for any free name x, then lca(N, k + 1).

Proof. There are two cases. If N = y for a free name y, then it is locally
closed at k + 1. If N = i for a bound variable it is not the case that k < i
because {k → x}N = i and it needs to be lca at k. Thus, it is the case that
i ≤ k, which implies lca(N, k + 1).

Proposition 2.3. For any process P and natural number k, if lca({k →
x}P, k) for any free name x, then lca(P, k + 1).

Proof. By induction over the structure of P :

• P = θ. It is true that lca(P, k) for any natural number k.

• P = [N ↔ M ] or P = N〈〉.θ. Use Lemma 2.16 to obtain that
lca(N, k + 1) and lca(M,k + 1).

• P = Q | S. Using the induction hypothesis, obtain lca(Q, k + 1) and
lca(S, k + 1).

• P = N().Q or P = N〈N〉.Q. From the hypothesis it is true that
lca(N, k) and lca(Q, k), thus from Lemma 2.16 and induction hypoth-
esis is true lca(N, k + 1) and lc(Q, k + 1).

• P = ν.Q. The hypothesis states that for any free name x it is the case
that lca({k → x}ν.Q, k) which is the same as lca(ν.{k+1→ x}Q, k) =
lca({k + 1→ x}Q, k + 1).
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On the other hand, the induction hypothesis is: for any natural num-
ber k′, if it is true that lca({k′ → x}Q, k′) for any free name x then
lca(Q, k′ + 1).

Use the hypothesis and the induction hypothesis to obtain the result.

• N( ).P or !N( ).P . Use the previous arguments.

So far, we introduced the necessary lemmas to prove the equivalence
between lc and lca. Now, we present an important equivalence which is only
stated by Charguéraud [Cha12].

Theorem 2.3. For any LNR term P , lc(P ) if and only if lca(P, 0).

Proof. First, there is the proof that if the term is locally closed, then it
is locally closed at 0. For this, we use induction over the locally closed
predicates.

• lc(θ). θ is locally closed at any k.

• lc([x ↔ y]) or lc(x〈〉.θ) .As the free names are always locally closed,
the result follows.

• lc(Q|S). From the definition of locally closed, lc(Q), and lc(S). Then
applying the induction hypothesis, it is true that lca(Q, 0), lca(S, 0),
and the result follows.

• lc(x〈y〉.P ) or lc(x().P ). The free names are locally closed at 0, and the
induction hypothesis states that lca(P, 0). Thus in both scenarios, the
claim follows.

• lc(ν.Q). To prove that lca(ν.Q, 0) is sufficient to show lca(Q, 1). From
the fact that for any free name x, lc(Qx), then lca(Qx, 0), and applying
Proposition 2.3 it follows that lca(Q, 1).

• lc(x( ).P ) or lc(!x( ).P ). Combine the previous cases.

Before proving the reverse direction, observe that for any name N if
lca(N, 0), it must be the case that N is a free; see Lemma A.3. Now the
proof proceeds using induction over P :

• P = θ. The zero process is locally closed.

• P = [N ↔M ] or P = N〈〉.θ. By the initial observation, N and M are
free names, therefore P is locally closed.
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• P = Q | S. Using the induction hypothesis and the fact that lca(Q, 0)
(lca(S, 0) resp.) then lc(Q) (lc(S) resp.), as a consequence lc(P ).

• P = N().Q or P = N〈M〉.Q. From the hypothesis, lca(N, 0) and
lca(Q, 0), thus from the initial observation N is a free name, and using
the induction hypothesis it is true that lc(Q) and lc(P ). The same idea
works for the other case.

• P = ν.Q. From the hypothesis, lca(Q, 1). Lemma 2.2 finishes the
proof.

• N( ).P or !N( ).P . The proof combines the previous argumentation
and the initial observation.

With the notion of a locally closed process, some definitions and results of
π-calculus processes need modifications to capture the new ideas. Consider
the reduction rules; how they should be when using LNR? The Open/Close
operations play a fundamental role in the representation. Additionally, for
most of the rules, the components require new conditions.

Now, definitions of congruence and reduction of terms can be defined
using LN representation.

Definition 2.9. Given two processes, P and Q, they are structural congruent
if it is possible to transform one into the other using the following equations
(in either direction):

P |Q ≡ Q|P P |ν.Q ≡ ν.(P |Q), if lc(P )

Definition 2.10. Reduction of terms (−→) is defined by:

x ∈ fn(P ), lc(P )
(fuse)

ν.{0← x}(P | [x↔ y]) −→ P{y/x}

x ∈ fn(P ), lc(P )
(fuse)

ν.{0← x}(P | [y ↔ x]) −→ P{y/x}

x ∈ fn(P ), lc(P )
(fuse)

ν.{0← x}([x↔ y] | P ) −→ P{y/x}

x ∈ fn(P ), lc(P )
(fuse)

ν.{0← x}([y ↔ x] | P ) −→ P{y/x}
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x 6∈ fn(P ), lc(P )
(1)

ν.{0← x}(x〈〉.θ | x().P ) −→ P

x 6∈ fn(P ), lc(P )
(1)

ν.{0← x}(x().P | x〈〉.θ) −→ P

u, y 6∈ fn(P ), Body(P ), lc(Q)
(Copy)

ν.{0← u}(!u( ).P | ν.{0← y}(u〈y〉.Q)) −→ ν.{0← u}(!u( ).P | ν.{0← y}(Q | {0→ y}P ))

u, y 6∈ fn(P ), Body(P ), lc(Q)
(Copy)

ν.{0← u}(!u( ).P | ν.{0← y}(u〈y〉.Q)) −→ ν.{0← u}(!u( ).P | ν.{0← y}({0→ y}P | Q))

y 6∈ fn(P ), y 6∈ fn(R), Body(P ), lc(Q), lc(R)
(M. Disjuction)

ν.{0← x}(x( ).P | ν.{0← y}(x〈y〉.(Q | R))) −→ ν.{0← x}(ν.{0← y}(Q | {0→ y}P ) | R)

y 6∈ fn(P ), y 6∈ fn(R), Body(P ), lc(Q), lc(R)
(M. Conjunction)

ν.{0← x}(ν.{0← y}(x〈y〉.(Q | R)) | x( ).P ) −→ ν.{0← x}(R | ν.{0← y}(Q | {0→ y}P ))

In previous definitions, the processes required new conditions, conditions
that are crucial when one tries to formalize the system using Coq. Finally,
relative to the locally closed relation, good behavior is expected for the re-
duction and congruence relations. In other words, we require that definitions
preserve the locally closed property.

Theorem 2.4. Given a locally closed process P , if P −→ Q or P ≡ Q, then
Q is locally closed.

Proof. By induction on the reduction/congruence rule, using the following
properties, which are presented on the appendix, and Theorem 2.3.

• If P is locally closed, then {k → x}P = P for every natural k and free
name x.

• If P is locally closed, then P{y/x} is locally closed for every pair of
free names x, y.

• If P is a body, then {0 → x}P is locally closed for every free name
x.

In the first part of this chapter, we presented our version of πULL calcu-
lus. Furthermore, we show how to construct the system from scratch using
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principal cuts. The construction given here helped us to implement to give
a proof of the Subject Reduction Theorem without any hidden detail.

In the second part of this chapter, we show how to represent the πULL sys-
tem using LN representation. We extended the ideas given by Charguéraud
for our calculus, and we proved useful results of the representation. In par-
ticular, we gave a proof for the lc and lca equivalence.



3

Design and Coq
implementation

Informal ideas are usual in mathematical works and within proofs. For ex-
ample, phrases like: analogous to the previous case, induction over P , etc.
Furthermore, it is common to encounter ideas that are easy to understand
for humans but not for machines and viceversa, consider Lemma 2.15. Us-
ing proof assistants, like Coq, it is possible to us to exhibit these kinds of
situations.

Studying these behaviours, challenges, questions, and problems is impor-
tant for all the community leading to new conceptions about how theories
are developed and making them more understandable.

In this final chapter, we discuss this phenomena in the context of the
present work. We show some examples of challenging results, and tell how
we solved the difficulties in the implementation. We intent to show that in
some cases the solutions are nontrivial, and require thinking outside the box.

From now, we use the notation from Table A.2.5 in the appendix.

3.1 Interactions between operations

The locally nameless representation introduces new operations, the most im-
portant of them are the open and close operations. On the other hand,
there are operations from the theory of π-calculus such as the substitution.
We need to know how these operations interact. in order to complete the
verification.

We previously established that it holds for locally closed terms:

• It is always true that, {0→ x}{0← x}P = P .

• If x 6∈ fn(P ), then {0← x}{0→ x}P = P .

Note that we used some side conditions to have good behaviour when
composing two operations. Nevertheless, some interactions will require more

76
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than a restriction in the process. For example, the substitution-close inter-
actions or the injectivity of the close operator.

Consider the following process νx.P , so if one writes (νx.P ){u/v} there
are some assumptions that have to be made: the first is that there will
be no variable capture, in other words, u 6= x; and the second is that the
substitution does not change the bound variable, v 6= x.

Now, consider the term ν.{0← x}P in LNR, and we want to perform the
substitution (ν.{0← x}P ){u/v}. In this case, we expect the same properties
of this substitution as in the π-calculus.

The implementation and verification of these properties in Coq is not triv-
ial and does not follow from the definitions, so it requires management at the
implementation level. The following inductive definition helps to formalize
the idea.

1Inductive IsClosing : Process → nat → Prop :=
2| IsClosing_Base : forall ( P : Process)(x: nat),
3(forall (u v : nat)(Q : Process), Q = ({u \ v} Close x P) → u 6=x ∧ x 6=v

) → (IsClosing P x).
4#[global]
5Hint Constructors IsClosing : Piull.

This definition aims at concluding that within a close-substitution com-
position it is possible to assume that the names are different. Despite this,
note that this definition is, in some sense an axiom, as it is possible to es-
tablish the equality in the antecedent part and get the consequent. But, it
differs from an axiom in the sense that the user (mathematician) writing the
proof is responsible for using or not using the definition, so it is not possible
to use it accidentally.

The following problem arises when we use equality of terms under α-
equivalence. Consider that νx.P =α νy.Q, then it is possible to make finite
changes in bounded names of νy.Q and find P ′ such that νx.P = νx.P ′. So
it is always possible to extract the equality P = P ′.

In the case of the LNR operations, a similar situation arises. Consider
the following equation {0→ x}P = {0→ y}Q; there are two possibilities:

• If x = y, then it should be the case that P = Q.

• If x 6= y, then it cannot be said anything. For example, consider
{0→ x}[x↔ z] = {0→ y}[y ↔ z].

Hence, it is desirable in some situations to have the ability to use the
α-equivalence argument. The following definition enables it.

1Inductive IsClosingInj : Process → nat → Prop :=
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2| IsClosingInj_Base : forall ( P : Process)(x: nat),
3(forall (u : nat)(Q : Process), Q = (Close x P) → u = x ) → (

IsClosingInj P x).
4#[global]
5Hint Constructors IsClosingInj : Piull.

Note that as in the previous case using the definition is the responsi-
bility of the user who writes the proof. So there is no possibility to use it
accidentally.

3.2 Locally Closed and Locally Closed At

The LN representation has two predicates lc and lca. The predicates verify
when a term is correct from construction within the representation. Nev-
ertheless, the idea that supports each one is different; the natural numbers
and bounds guide the lca predicate, and the idea of being well-open is im-
plemented by the lc predicate.

For most lemmas and theorems in LNR, the proof has two parts: one
lemma for the names and one for the processes. In most cases, the results
can be derived using structural induction over the process, and sometimes
over the well-formed property. To illustrate this, consider the following:

Property 3.1. Given a process P , natural number k, and free name y if
lc(P ), then lc({k → y}P ).

The property states that opening a bound name in a well-formed term
does not modify the well-formed property. To prove this result, we use the
following property on names:

Property 3.2. For all free names x, y, and natural number k. If lc(x), then
{k → y}x = x.

The proof of Property 3.1 is by induction on the lc property on P and a
sketch of the argument is:

• If P = θ, the result follows by definition.

• If lc(P ) is [x ↔ y] or x〈〉.θ or Q | S; the result follows follows by
induction and (or) applying the property for the names.

• If ν.P , the induction hypothesis solves the case.

• For the other cases, we combine the previous ones.
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This same proof structure applies to many of the results. Now, consider:

Property 3.3. Given a process P and free names y, x; if lc(P ), then
lc({y/x}P ).

If we try to use induction over the lc property in the ν.P case, to apply
the induction hypothesis we need P to be locally closed, but this is always
false (P is a body). As a consequence, the proof is stuck.

On the other hand, if we first apply Theorem 2.3 to obtain that P is
locally closed at zero, then the proof can be done using induction over P .

As illustrated, the equivalence between the lc and lca is relevant to the
representation; it proves many results in the present work. So consider the
following informal reasoning:

Theorem 3.1. For any LNR term P , lc(P ) if and only if lca(P, 0).

Proof. In one direction, as the term is lc then it is the case that every bound
name is associated with a binder, so there is no possibility to have any bound
name greater than zero, in other words, it is lca at zero. The other direction
follows from the idea that if the process is lca at level k then one could open
the process with k names, and the result is a process with all the bound
names pointing to some binder, i.e. a lc term; as the process is lca at level
zero, the result follows.

To formalise the proof, we need to implement the idea of multiple opens,
i.e. {ik → xk}...{0→ x0}P .

1Fixpoint MOpen_Rec (k : nat)(L : list nat)( T : Process ) : Process :=
2match L , k with

3| nil , _ ⇒ T

4| x :: L0, 0 ⇒ { 0 → x } (MOpen_Rec 0 L0 T)
5| x :: L0, S t ⇒ { t → x } (MOpen_Rec t L0 T)
6end.
7#[global]
8Hint Resolve MOpen_Rec : Piull.

The main advantage of this definition is that many results involving in-
duction on the structure of the process are translated into induction on the
length of the list; and induction on lists is easier and does not require addi-
tional results. The following theorem shows the convenience of the multiple
opens to prove the equivalence.

1Theorem Lca_Lc_Process_MOpen :
2forall (P : Process)(k : nat)(L : list nat),
3(length L) = k →
4lca k P → lc (MOpen_Rec k L P).
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With this property, the proof of the equivalence is similar to the one
presented in Theorem 2.3.

3.3 Multiple Open

Our motivation for multiple opens is to make easier the proof of relevant
results. For example, consider the following property.

Property 3.4. Given a process x · P that is lca at level k, then {ik →
xk}...{0→ x0}(x ·P ) = y · {ik + 1→ xk}...{1→ x0}P for some free name y.

This property has in Coq the following signature:

1Lemma MOpen_Chan_zero_NoMOpenName :
2forall (k : nat)(L : list nat)(x : Name),
3(length L) = k → lca k ( x · P) →
4exists (y : nat), MOpen_Rec k L ( x · P) = (FName y) · (MOpen_Rec+1 k L P).

To prove this, a difficult induction is required, and the recursive structure
of the process is wasted. Furthermore, the predicate MOpen Rec+1 imple-
menting the shifted openings and needed when a binder is crossed, was not
implemented due to complications in the design. So, we took another path,
this path is easier and helps to structure a cleaner and more understandable
proof. The idea is to take advantage of the recursive structure; we divide the
implementation of the multiple openings into three parts:

• Keep the definition MOpen Rec as the definition for {ik → xk}...{0→
x0}P .

• Implement a definition for multiple openings in the case of names, x.

• Implement a definition of multiple openings M2Open Rec, {ik + 1 →
xk}...{1→ x0}P , which takes care of the shifting.

With this new approach, the recursive structure is exploited, and the
focus is on proving the following:

1Lemma MOpen_Name_Result :
2forall (k : nat)(L : list nat)(x : Name),
3(length L) = k → lca_name k x →
4exists (x0 : nat), ( MOpen_Name_Rec k L x) = FName x0.

Hence, the previous theorem can be stated as follows:
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1Lemma MOpen_Chan_input :
2forall (k : nat)(L : list nat)(x : Name)(P : Process),
3(length L) = k →
4MOpen_Rec k L (x · P) = (MOpen_Name_Rec k L x) · (M2Open_Rec k L P).

This is easier to prove than the first version.
The new implementation helps to exploit the recursive structure to gen-

erate relations between the multiple openings. For example,

1Lemma M2Open_MOpen :
2forall (k x : nat)(L : list nat)(P : Process),
3(length L) = k →
4({0 → x} M2Open_Rec k L P) = MOpen_Rec (S k) (L + + (x :: nil)) P.

One open question we left for future work is: How to implement in a more
general way the notion of multiple openings in Coq? Note that if one requires
to work with openings shifting 4 places, it requires an implementation like:

1Fixpoint M4Open_Rec (k : nat)(L : list nat)( T : Process ) : Process :=
2match L , k with

3| nil , _ ⇒ T

4| x :: L0, 0 ⇒ { 0 → x } (M4Open_Rec 0 L0 T)
5| x :: L0, (S 0) ⇒ { (S 0) → x } (M4Open_Rec 0 L0 T)
6| x :: L0, (S (S 0)) ⇒ { (S (S 0)) → x } (M4Open_Rec 0 L0 T)
7| x :: L0, S t ⇒ { S t → x } (M4Open_Rec t L0 T)
8end.
9#[global]
10Hint Resolve M4Open_Rec : Piull.

But dealing with the relations between the different shiftings would re-
quire many results. Another disadvantage of the current implementation is
that its correct use is in the user’s hands and is prone to errors. For example,
calling the M4Open Rec with just two elements in the list. So, it is necessary
to search for one that works for an arbitrary number of shiftings.

3.4 Lists or Sets

Another key structure within the project is the notion of Context. The
difficulty comes in choosing the correct structure to represent them. The
two most known are List or Ensembles, each having their advantages or
disadvantages; the idea here is to discuss the reason why the Ensembles
structure was the chosen one.

The first drawback found working with lists is the position of the assign-
ments that are being modified by the rules, for example, the CutR:
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Γ; ∆ ` P :: Λ, x : A Γ; ∆′, x : A ` Q :: Λ′
(CutR)

Γ; ∆,∆′ ` νx.(P |Q) :: Λ,Λ′

In this rule, the assignment x : A is at the tail of both lists; look at
the upper sequents of the rule. But, what about the other possibilities?
Cannot the assignment be at the head of the lists? This discussion leads to
considering different locations for the assignments in the different rules, and
there are many possibilities to make a decision.

Suppose that one agrees to have all the different positions for the rules.
Consider as a second example the transference property in the case of the Λ
context. If the implementation of the context uses lists then it is necessary to
have four transference properties, depending on the location and destination
of the assignment:

O/ D Head Tail
Head T.1 T.2
Tail T.2 T.3

Other branches of the project include the exploration of other implemen-
tations, such as Snoc Lists, but this suffers from the same disadvantages of
Lists. In the project’s branches:

• master.

• snoc.

• set-reglas.

we explore different context structures.

3.5 Unspoken words

One key difference between the written work and the source code is the detail
level that the second has. The first step in the implementation of the Coq
verification is to settle all the notions and ideas that are never written but are
implicitly used in some works. For example, consider a sequent Γ; ∆ ` P :: Λ.
Many questions arise around them:

• Can an assignment be in Γ ∩∆, Γ ∩ Λ, or ∆ ∩ Λ?

• Does it make sense that x : A ∈ ∆ and x : B ∈ ∆ being A 6= B?

• If we write x : A,∆, can we consider that x : A 6∈ ∆?
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These questions are common during the process of verification and have
impact in the implementation time. The answer to these questions are con-
ditions over the contexts implementation. For example, within the typing
rule it is necessary to have the following predicate:

1Inductive Good_Contexts : Context → Context → Context → Process →
Prop := is_well_collected :

2forall (D F G : Context)(P : Process),
3( forall (x : nat), ( (x ∈ FVars P) → ( exists (A : Proposition), (FName x

:A) ∈ (D ∪ F ∪ G) ) )) ∧
4( (Disjoint_Sets D F) ∧ (Disjoint_Sets D G) ∧ (Disjoint_Sets F G) ∧ (

Injective D) ∧ (Injective F) ∧ (Injective G))
5→ (Good_Contexts D F G P).

The predicate controls the behavior of the context, so there are not noisy
cases in the verification. In the case of the 1L typing rule:

1onel : forall ( D F G : Context )( x : nat )( P : Process ),
2Collect D → Collect F → Collect G → lc P →
3Good_Contexts D F G P →
4Good_Contexts D ( (Bld x 1 ) ∪ F ) G (FName x ()· P ) →
5( D ;;; F ` P ::: G ) →
6( D ;;; ( (Bld x 1 ) ∪ F ) ` (FName x ()· P ) ::: G )

It is not the case that x is in D or G, and by the Good Context predicate,
it is neither the case that is in F . So, good behavior of the sequent is required
before and after typing.

The second example comes from the process implementation. Previously,
we defined the following LN representation rule:

u, y 6∈ fn(P ), Body(P ), lc(Q)
(fuse)

ν.{0← u}(!u( ).P | ν.{0← y}(u〈y〉.Q)) −→ ν.{0← u}(!u( ).P | ν.{0← y}(Q | {0→ y}P ))

Its Coq implementation requires to make more details explicit. For ex-
ample u 6= y, the predicates IsClosing, and IsClosingInj for dealing with
substitutions, and the explicit mention that u and y are free names. Note
that this differs from the pure paper rule given in Section 2.1.

1| Red_parallel_replicate_rg : forall (y u : nat) (P Q : Process),
2Body P → lc Q → ¬ u ∈ FVars P → ¬ y ∈ FVars P → u 6=y → IsClosing P

u →
3IsClosing P y → IsClosingInj P u → IsClosingInj P y →
4( ν Close u ( ((FName u) !. P) | ν Close y ( ((FName u) 〈 FName y〉 . Q))

)
5−→ ν Close u ( ((FName u) !. P) | ν Close y ( Q | ({0 → y} P) )) )
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This example illustrates the difference when the LN representation comes
into scene. The LN representation requires more conditions, as it is the case
of the IsClosing predicates. This kind of conditions are not part of the original
formulation of the rule but necessary to complete the verification.
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Final remarks

In this work we pursued two objectives:

• We sought after a presentation in detail of the Subject Reduction The-
orem for πULL system.

• We sought after a formal verification of the Subject Reduction Theorem
in Coq.

To complete the first goal, we start reviewing existing works on session
types, since we wanted to understand all the notions around them. In partic-
ular, we focused on Heuvel and Perez [vdHP20] and Caires et. al. [CPT12]
works. Heuvel’s work helped us to design our proper version of the πULL
type system, and Caires’ work provided us with the tools and ideas to validate
the system and its rules.

In Chapter 1, we presented all the previous notions and ideas required
to understand the session types system. We made a detailed exposition,
covering details that are omitted by other authors. We filled up found gaps
that would be problematic for our second goal.

In Chapter 2, we completed the proof of the Subject Reduction Theo-
rem. We developed a traditional paper and pencil proof including particular
details and covering all the auxiliary lemmas that we found during the Coq
implementation phase. Further, we intended to make the implementation
straightforward, and clear as possible.

We found many challenges during the formal verification process in Coq.
For example, in Section 2.2 we discussed the reasons and motivation that
lead us to choose Charguéraud’s [Cha12] locally nameless representation.
Furthermore, the study of the LN representation faced us with another other
challenges; the most important is the equivalence of the predicates lc and
lca, for which we gave a comprehensive proof.

Finally, in the last chapter, we explore some relevant questions that arose
during the development of the work. Most of these questions remain open,
and we are sure that they questions required a non-trivial independent work.
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The nature of these questions is different and intersect different disciplines.
For us, the most important questions are:

• The advantages and drawbacks of each context representation. Can we
define a better representation for them?

• How can we reconcile the calculus operations and the LN representation
operations?

In conclusion, we approached our objectives with a holistic point of view,
these helped us to understand the πULL system, and to solve our goals.
We found many challenges, however, we faced them and solved them with
original ideas. We expect this work would help the community to improve
its understanding of session type systems, as well awake the curiosity for the
formal verification ideas and developments.
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The Appendix

A.1 πULL type system rules.

The typing rules for the system are:

(IdL)

Γ;x : A, y : A⊥ ` [x↔ y] ::
(IdR)

Γ;x : A ` [x↔ y] :: y : A

Γ; ∆ ` P :: Λ, x : A Γ; ∆′, x : A ` Q :: Λ′
(CutR)

Γ; ∆,∆′ ` νx.(P |Q) :: Λ,Λ′

Γ; ∆, x : A ` P :: Λ Γ; ∆′, x : A⊥ ` Q :: Λ′
(CutL)

Γ; ∆,∆′ ` νx.(P |Q) :: Λ,Λ′

Γ;x : A⊥ ` P :: · Γ, u : A; ∆ ` Q :: Λ
(CutR?)

Γ; ∆ ` νu.(!u(x).P |Q) :: Λ

Γ; · ` P :: x : A Γ, u : A; ∆ ` Q :: Λ
(Cut!)

Γ; ∆ ` νu.(!u(x).P |Q) :: Λ

Γ, u : A; ∆, x : A ` P :: Λ
(CopyL)

Γ, u : A; ∆ ` νx.u〈x〉.P :: Λ

Γ, u : A; ∆ ` P :: Λ, x : A⊥
(CopyR)

Γ, u : A; ∆ ` νx.u〈x〉.P :: Λ

Γ; ∆ ` P :: Λ
(1L)

Γ; ∆, x : 1 ` x().P :: Λ

(1R)
Γ; · ` x〈〉.θ :: x : 1
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(⊥ L)
Γ;x :⊥` x〈〉.θ :: · Γ; ∆ ` P :: Λ

(⊥ P )
Γ; ∆ ` x().P :: Λ, x :⊥

Γ; ∆, y : A, x : B ` P :: Λ
(⊗L)

Γ; ∆, x : A⊗B ` x(y).P :: Λ

Γ; ∆ ` P :: Λ, y : A Γ; ∆′ ` Q :: Λ′, x : B
(⊗R)

Γ; ∆,∆′ ` νy.x〈y〉.(P |Q) :: Λ,Λ′, x : A⊗B

Γ; ∆, y : A ` P :: Λ Γ; ∆′, x : B ` Q :: Λ′
(

&

L)
Γ; ∆,∆′, x : A

&

B ` νy.x〈y〉.(P |Q) :: Λ,Λ′

Γ; ∆ ` P :: Λ, x : B, y : A
(

&

R)
Γ; ∆ ` x(y).P :: Λ, x : A

&

B

Γ, u : A; ∆ ` P :: Λ
(!L)

Γ; ∆, x :!A ` P{x/u} :: Λ

Γ; · ` P :: y : A
(!R)

Γ; · `!x(y).P :: x :!A

Γ; y : A ` P :: ·
(?L)

Γ;x :?A `!x(y).P :: ·
Γ, u : A; ∆ ` P :: Λ

(?R)
Γ; ∆ ` P{x/u} :: Λ, x :?A
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The following are the principal cut cases. The first is the identity rule.

Γ; ∆ ` P :: Λ, x : A
(IdR)

Γ;x : A ` [x↔ y] :: y : A

Γ; ∆ ` νx.(P | [x↔ y]) :: Λ, y : A

whose reduction rule is: νx.(P | [x↔ y]) −→ P{y/x}.

(IdR)
Γ;x : A ` [x↔ y] :: y : A Γ; ∆′, y : A ` Q :: Λ′

Γ; ∆′, x : A ` νy.([x↔ y] | Q) :: Λ′

whose reduction rule is: νy.([x↔ y] | Q) −→ Q{x/y}.

(IdL)

Γ;x : A, y : A⊥ ` [x↔ y] :: · Γ; ∆′, x : A⊥ ` Q :: Λ′

Γ; y : A⊥,∆′ ` νx.([x↔ y]|Q) :: Λ′

whose reduction rule is: νx.([x↔ y]|Q) −→ Q{y/x}.

Γ; ∆, y : A ` P :: Λ
(IdL)

Γ;x : A, y : A⊥ ` [x↔ y] :: ·
Γ;x : A,∆ ` νy.(P | [x↔ y]) :: Λ

whose reduction rule is: νy.(P | [x↔ y]) −→ P{x/y}.
There are some cases for the identity rules that are not considered, for

example composing the left identity and the left cut gives a rule in which a
resource changes side. In other cases, we cannot make sense of it, for example,
cuts involving identity and replicate or WhyNot cuts. Next, consider the
Copy rules.

Γ;x : A⊥ ` P :: ·
Γ, u : A; ∆ ` Q :: Λ, y : A⊥

(CopyR)
Γ, u : A; ∆ ` νy.u〈y〉.Q :: Λ

(Cut?)
Γ; ∆ ` νu.(!u(x).P | νy.u〈y〉.Q) :: Λ

whose reduction rules is: νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P |
νy.(Q | P{y/x})).

Γ;x : A⊥ ` P :: ·
Γ, u : A; ∆, y : A ` Q :: Λ

(CopyR)
Γ, u : A; ∆ ` νy.u〈y〉.Q :: Λ

(Cut?)
Γ; ∆ ` νu.(!u(x).P | νy.u〈y〉.Q) :: Λ
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whose reduction rules is: νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P |
νy.(Q | P{y/x})).

Γ; · ` P :: x : A

Γ, u : A; ∆, y : A ` Q :: Λ
(CopyR)

Γ, u : A; ∆ ` νy.u〈y〉.Q :: Λ
(Cut?)

Γ; ∆ ` νu.(!u(x).P | νy.u〈y〉.Q) :: Λ

whose reduction rules is: νu.(!u(x).P | νy.u〈y〉.Q) −→ νu.(!u(x).P |
νy.(P{y/x} | Q)). The next are the rules for one and bottom.

Γ; · ` x〈〉.θ :: x : 1

Γ; ∆ ` P :: Λ

Γ; ∆, x : 1 ` x().P :: Λ
(CutR)

Γ; ∆ ` νx(x〈〉.θ | x().P ) :: Λ

whose reduction rules is: νx.(x〈〉.θ | x().P ) −→ P .

Γ; ∆ ` P :: Λ

Γ; ∆, x : 1 ` x().P :: Λ Γ;x :⊥` x〈〉.θ :: ·
(CutR)

Γ; ∆ ` νx(x().P | x〈〉.θ) :: Λ

whose reduction rules is: νx(x().P | x〈〉.θ) −→ P .

Γ; ∆ ` P :: Λ

Γ; ∆ ` x().P :: Λ, x :⊥ Γ;x :⊥` x〈〉.θ :: ·
(CutR)

Γ; ∆ ` νx(x().P | x〈〉.θ) :: Λ

whose reduction rules is: νx(x().P | x〈〉.θ) −→ P .

Γ;x :⊥` x〈〉.θ :: ·
Γ; ∆ ` P :: Λ

Γ; ∆, x : 1 ` x().P :: Λ
(CutR)

Γ; ∆ ` νx(x〈〉.θ | x().P ) :: Λ

whose reduction rules is: νx.(x〈〉.θ | x().P ) −→ P . The next reduction
is for the multiplicative conjunction.

Γ; ∆1 ` P :: Λ1, y : A Γ; ∆2 ` Q :: Λ2, x : B
(⊗R)

Γ; ∆1,∆2 ` νy.x〈y〉.(P | Q) :: Λ1,Λ2, x : A⊗B
Γ; ∆, z : A, x : B ` R :: Λ

(⊗L)
Γ; ∆, x : A⊗B ` x(z).R :: Λ

(CutR)
Γ; ∆,∆1,∆2 ` νx.(νy.x〈y〉.(P | Q) | x(z).R) :: Λ,Λ1,Λ2
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whose reduction rules is: νx.(νy.x〈y〉(P | Q) | x(z).R) −→ νx.(Q |
νy.(P | R{y/z})). For the case of the multiplicative disjunction the reduction
is:

Γ; ∆ ` P :: Λ, x : B, z : A
(

&

R)
Γ; ∆ ` x(z).P :: Λ, x : A

&

B

Γ; ∆1, y : A ` Q :: Λ1 Γ; ∆2, x : B ` R :: Λ2
(

&

L)
Γ; ∆1,∆2, x : A

&

B ` νy.x〈y〉.(Q | R) :: Λ1,Λ2
(CutR)

Γ; ∆,∆1,∆2 ` νx.(x(z).P | νy.x〈y〉.(Q | R)) :: Λ,Λ1,Λ2

whose reduction rules is: νx.(x(z).P | νy.x〈y〉.(Q | R)) −→ νy.(νx.(P{y/z} |
R) | Q). Finally, the replicate and WhyNot rules do not associate with any
reduction rule. It is just a renaming.

Γ; · ` P :: y : A
(!R)

Γ; · `!x(y).P :: x :!A

Γ, u : A; ∆ ` Q :: Λ
(!L)

Γ; ∆, x :!A ` Q{x/u} :: Λ
(CutR)

νx.(!x(y).P | Q{x/u})

whose reduction rules is: νx.(!x(y).P | Q{x/u}) −→ νu.(!u(y).P | Q).
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A.2 Coq Implementation

This Appendix presents some results within Coq. As we discussed in the In-
troduction, the mechanization may involve implementation details and tech-
nical lemmas that need an explanation. Nevertheless, including these details
within the work can be troublesome due to its extension. Thus, this Ap-
pendix presents and gives a brief discussion of them.

From now on, the signature in Coq introduces the propositions, and its
proof will be a sketch. The following is an example of what the reader should
expect for definitions or functions:

1(**

2Definition for the closed functions.

3*)

4Definition Close_Name ( k z: nat )( N : Name ) : Name :=
5match N with

6| FName n0 ⇒ if ( n0 =? z ) then (BName k) else N

7| BName i ⇒ N

8end.
9#[global]
10Hint Resolve Close_Name : Piull.
11

12Fixpoint Close_Rec (k z : nat)( T : Process ) {struct T} : Process

And for lemmas, propositions, or theorems:

Lemma A.1. Exchange Open

1Lemma Exchange_Open : forall (P : Prepro)(i j x y : nat),
2i 6=j → ({i → x}({j → y} P) = {j → y}({i → x}P)).

Proof. Induction over P .

The idea is that the reader who wants to work out all the details can
accomplish this task by reading the Coq code and following the sketch. The
first implementation detail is the structure of the implementation. The fol-
lowing are the files in the repository and their contents:

• Defs *. Them have definitions for the suffix structure. For example,
Defs Propositions has the definitions for the propositions.

• Facts *. Them have basic or routinary results for the suffix structure.
For example, Facts FVars has facts relating to free names.
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• Props *. Them have advance and important results for the structure
in the suffix. For example, Props FVars has key results relating to free
names.

The source code can be found at: https://github.com/cigarcial/Tmcod

A.2.1 Database and Tactics

A custom database helps to take advantage of Coq’s automatic proof search.
We implement it using the Coq’s documentation and recommendations. The
name of the database for the project is Piull; in this database, using the
following lines, we add any of the constructors or results.

1Create HintDb Piull.
2...
3#[global]
4Hint Constructors lc_name : Piull.
5...
6#[global]
7Hint Resolve lc_name : Piull.

To append results into the database the global keyword is preferred. As
part of the automatic proof search, one can define custom tactics. The first
solve goals that are disjunctions, searching within all the possibilities

1(**

2Searching a proof where the goal contains multiple or operators.

3Keep in mind that this tactics is exponential.

4*)

5Ltac OrSearch :=
6(progress auto with ∗) +
7(left; OrSearch) +
8(right; OrSearch).

The next tactic solves easy inductions over a given structure.

1(**

2This resolves easy structural inductions over a given term (T).

3*)

4Ltac StructuralInduction T :=
5intros;
6induction T;
7simpl;
8repeat match goal with

9| IHT : _ |− _ ⇒ rewrite IHT

10end;

https://github.com/cigarcial/Tmcod
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11auto with Piull.

Lastly, we implemented a tactic that solves the goal using structural
induction over the processes and a given lemma for the names.

1(**

2*)

3Ltac InductionProcess P Name_Lemma :=
4induction P;
5intros; simpl;
6repeat rewrite Name_Lemma;
7repeat match goal with

8| IHP : _ |− _ ⇒ rewrite IHP; auto
9| IHP1 : _ |− _ ⇒ try rewrite IHP1; auto
10end.

There are some other tactics in Defs Tactics that are not here since are
variations of those already shown.

A.2.2 Propositions in Coq

The propositions of linear logic work with an Inductive definition, except for
the linear implication. We implement the linear implication using the dual.

1Inductive Proposition : Type :=
2| ONE : Proposition

3| ABS : Proposition

4| TEN (A : Proposition) (B : Proposition) : Proposition
5| PAR (A : Proposition) (B : Proposition) : Proposition
6| EXP (A : Proposition) : Proposition
7| MOD (A : Proposition) : Proposition.
8...
9Definition ULLT_IMP (A : Proposition) (B : Proposition) : Proposition := (

A⊥

&

B).

The definition of duals uses a Fixpoint operator.

1Fixpoint Dual_Prop ( T : Proposition ) : Proposition :=
2match T with

3...

All the results for the propositions follow using induction over the struc-
ture of the term or the πULL database. For example,

Lemma A.2. Dual is idempotent

1Proposition Doble_Duality_ULLT :
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2forall A : Proposition ,

3(A⊥)⊥ = A.

Proof. Induction over A.

A.2.3 Names

In the case of the names, there is a detail about the implementation:

1(**

2*)

3Inductive Name : Type :=
4| FName ( x : nat) : Name

5| BName ( i : nat) : Name.

Observe that the bound names use the datatype nat, but we used Strings
in the presentation. This implementation detail does not conflict with the
previous work. Here we prefer the nat datatype due to the libraries already
implemented in Coq. Any data type that supports boolean and syntax com-
parations will work.

Previously, most of the Process results follow by induction on the struc-
ture and a particular lemma for the names. The following are crucial lemmas
of this kind.

Lemma A.3. Lemmas for Names

1(**

2*)

3Lemma Eq_Open_Name :
4forall ( i y k x p : nat),
5i 6=k →
6Open_Name i y (Open_Name k x (BName p)) = Open_Name k x (Open_Name i y (

BName p)).
7...
8(**

9*)

10Lemma Subst_Name_Open_Name_Ex :
11forall ( x : Name )( x0 y0 z w k: nat ),
12FName w = Subst_Name x0 y0 (FName z) →
13Subst_Name x0 y0 (Open_Name k z x) = Open_Name k w (Subst_Name x0 y0 x).
14...
15(**

16*)

17Lemma Lca_Zero_Lc_Name :
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18forall ( x : Name ),
19lca_name 0 x ↔ lc_name x.
20...
21(**

22*)

23Lemma Subst_Name_Gen_Output :
24forall (u x0 : nat)(x : Name),
25u 6=x0 →
26u ∈ FVars_Name (Subst_Name u x0 x) → False.

Proof. We analyse the structure of the name (bound, free) and the cases for
the variable within the term (equal, non-equal).

Some of the lemmas preserve the same proof structure, therefore we use
special tactics to help solving these cases.

1(**

2*)

3Ltac DecidSimple x y :=
4destruct (bool_dec (x =? y) true);
5match goal with

6| e : (x =? y ) = true |− _ ⇒
7(rewrite e; apply beq_nat_true in e; rewrite e; progress auto with

Piull) +
8(apply beq_nat_true in e; lia; progress auto with Piull) +
9(try rewrite e)
10| n : (x =? y ) 6=true |− _ ⇒
11(apply not_true_iff_false in n; try rewrite n; progress auto with

Piull) +
12(apply not_true_iff_false in n; try apply beq_nat_false in n; try

contradiction; progress auto with Piull) +
13(apply not_true_iff_false in n)
14end;
15auto with Piull.
16...
17(**

18*)

19Ltac DecidEq :=
20match goal with

21| Gt : ?num0 = ?num1 |− _ ⇒ apply beq_nat_true_inv in Gt; rewrite Gt

22end;
23auto with Piull.
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A.2.4 Free Names in Coq

To implement the set of free names in Coq, we used the Coq Ensamble
implementation and its libraries.

1(**

2*)

3Definition FVarsE := Ensemble nat.

Then, the implementation of the free name set is as expected:

1(**

2Free names for a given term.

3*)

4Definition FVars_Name ( N : Name ) : FVarsE :=
5match N with

6| FName x ⇒ Singleton nat x

7| BName i ⇒ Empty_set nat

8end.
9

10Fixpoint FVars ( T : Process ) {struct T} : FVarsE :=
11match T with

12| Pzero ⇒ Empty_set nat

13| Fuse x y ⇒ (FVars_Name x) ∪(FVars_Name y)
14...
15| Chan_output x y P ⇒ (FVars_Name x) ∪(FVars_Name y) ∪(FVars P)
16...

Given the distinct operations on processes, it is relevant to know how to
change the free names set when one of these operations is applied.

Lemma A.4. Operations and Free Names

1(**

2*)

3Lemma FVars_Open_Beq :
4forall ( P : Process)(u x i: nat),
5u 6=x → ( u ∈ FVars P ↔ u ∈ FVars ({i → x}P)).
6...
7(**

8*)

9Lemma FVars_Open :
10forall (Q : Process)( y x i : nat),
11x ∈ FVars ( {i → y} Q ) → x = y ∨ x ∈ FVars ( Q ).
12...
13(**

14*)
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15Lemma FVars_Beq_Close :
16forall ( Q : Process)(x x0 i : nat),
17x 6=x0 → x ∈ FVars (Close_Rec i x0 Q) →
18x ∈ FVars (Q).
19...
20(**

21*)

22Lemma FVars_Close_NotIn :
23forall ( P : Process )( x x0 i: nat),
24x 6=x0 → ¬ x ∈ FVars (Close_Rec i x0 P) → ¬ x ∈ FVars (P).
25...
26(**

27*)

28Lemma FVars_Subst :
29forall ( P : Process )( x y x0 : nat ),
30x ∈ FVars ({y \ x0} P) → x = y ∨ x ∈ FVars (P).

Proof. Induction over the process, unfolding, and analyzing the output of
the operation.

A.2.5 Processes in Coq

The processes implementation uses an inductive definition.

1Inductive Process : Type :=
2| Pzero : Process
3| Fuse (x y : Name) : Process

4| Parallel (P Q : Process ) : Process
5| Chan_output ( x y : Name ) (P : Process) : Process
6| Chan_zero (x : Name ) : Process

7| Chan_close ( x : Name ) ( P : Process ) : Process
8(* Processes with bounded names *)

9| Chan_res (P : Process ) : Process
10| Chan_input ( x : Name ) (P : Process) : Process
11| Chan_replicate ( x : Name)(P : Process ) : Process.
12#[global]
13Hint Constructors Process : Piull.

One of the relevant differences in the implementation is that the notations
are different. Table A.2.5 shows the translation between Definition 2.4 and
the Coq notation.

In the Facts file, there are relevant results concerning processes. The
design of the results is in such a way that it requires the minimum amount
of hypotheses.
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LNR → Coq
θ θ

[N ↔ N ] [N ↔ N ]
P | Q P ↓ Q
ν.P νP

N〈N〉.P N〈N〉P
N( ).P N · P
N().P N() · P

!N( ).P N ! · P
N〈〉.θ N · θ

1(**

2*)

3Lemma Lca_Process_Rd :
4forall ( P : Process )( k x: nat ),
5lca (S k) P → lca k ({k → x} P).
6

7(**

8*)

9Lemma Lca_Open_Close_Subst :
10forall ( P : Process )( x y k : nat ),
11lca k P → { k → y } Close_Rec k x P = { y \ x } P.

The proof of the results, in most of the cases, follows by induction on the
structure of the process or the lc and lca predicates. Two important results
concerning the process are:

1(**

2*)

3Theorem Congruence_WD :
4forall P Q : Process,
5(P \cong Q) → lc(P) → lc(Q).
6

7(**

8*)

9Theorem ProcessReduction_WD :
10forall P Q : Process,
11(P −→ Q) → lc(P) → lc(Q).

A.2.6 LN Representation in Coq.

The definitions and results for the LN representation are in the files of the
processes. The proofs using the lca and lc predicates have two parts, the
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part for names, and the part that relies on the process’ structure.

1(** lc

2*)

3Inductive lc_name : Name → Prop :=
4| lc_fname : forall (x : nat), lc_name (FName x).
5#[global]
6Hint Constructors lc_name : Piull.
7

8Inductive lc : Process → Prop :=
9...
10| lc_chan_close : forall (x : Name)(P : Process),
11lc_name x → lc P → lc ( x ()· P )
12

13| lc_chan_res : forall (P : Process),
14( forall (x : nat), lc ({ 0 → x }P) ) → lc (ν P)
15...
16

17(** lca

18*)

19Inductive lca_name : nat → Name → Prop :=
20| lca_Fname : forall ( k x : nat), lca_name k (FName x)
21| lca_Bname : forall ( k i : nat), ( i < k ) → lca_name k (BName i).
22#[global]
23Hint Constructors lca_name : Piull.
24

25Inductive lca : nat → Process → Prop :=
26...
27| lca_parallel : forall ( k : nat )( P Q : Process ),
28lca k P → lca k Q → lca k (P | Q)
29

30| lca_chan_output : forall ( k : nat )( x y : Name )( P : Process ),
31lca_name k x → lca_name k y → lca k P → lca k ( x \langle y \rangle ·

P)
32...

The multiple open operations are considered a part of the representation,
hence they are in the same file of definitions. But, there is a different file for
the results concerning these operations: Facts MOpen.

1(**

2*)

3Lemma MOpen_Name_BName_Gt :
4forall (k i : nat)(L : list nat),
5(length L) = k → k <= i →
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6MOpen_Name_Rec k L (BName i) = (BName i).
7

8(**

9*)

10Theorem Lca_Lc_Process_MOpen :
11forall (P : Process)(k : nat)(L : list nat),
12(length L) = k →
13lca k P → lc (MOpen_Rec k L P).

Most of the results follow by induction on the list.

1(**

2*)

3Lemma Subst_Lc_Lc :
4forall (P : Process)(x y : nat),
5lc P → lc ({y \ x} P).
6

7(**

8*)

9Lemma Body_Lc_One :
10forall ( P : Process ),
11Body P → lca 1 P.
12

13(**

14*)

15Lemma Subst_Lca_Process :
16forall ( P : Process )( k : nat ),
17lca k P → forall (x y : nat ), lca k ({y \ x} P).

A.2.7 Types

The implementation of the types is split into several files. The first includes
the definitions for the contexts.

1

2Inductive Assignment : Type := assig ( x : Name )( A : Proposition ) :
Assignment.

3Notation " x : A " := (assig x A )(at level 60).
4#[global]
5Hint Constructors Assignment : Piull.
6

7Definition Context := Ensemble Assignment.

The manipulation of contexts requires auxiliary definitions like Collect,
Bld, SMA, Replace, etc; for which there are technical results.
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1

2Lemma SMA_Collect :
3forall (G : Context)(x : nat)(A : Proposition),
4Collect G → Collect (SMA G x A).
5

6Lemma SMA_Union_Bld :
7forall ( G : Context )( x : nat )( A : Proposition),
8SMA (Bld x A ∪ G) x A = G .

Note that some of the discussed details in Section 3.5 are relevant in this
part of the implementation. The second part is the definition of the typing
rules. To do a correct implementation, we require appropriate conditions.

1(**

2*)

3Inductive Good_Contexts : Context → Context → Context → Process →
Prop := is_well_collected :

4forall (D F G : Context)(P : Process),
5( forall (x : nat), ( (x ∈ FVars P) → ( exists (A : Proposition), (FName x

:A) ∈ (D ∪ F ∪ G) ) )) ∧
6( (Disjoint_Sets D F) ∧ (Disjoint_Sets D G) ∧ (Disjoint_Sets F G) ∧ (

Injective D) ∧ (Injective F) ∧ (Injective G))
7→ (Good_Contexts D F G P).
8#[global]
9Hint Constructors Good_Contexts : Piull.
10

11(**

12*)

13Reserved Notation "D ’;;;’ F ’!-’ P ’:::’ G" (at level 60).
14Inductive Inference : Process → Context → Context → Context → Prop :=
15...
16| otiml : forall ( D F G: Context )( x y : nat )( y : nat )( A B :

Proposition )( P : Process ),
17Collect D → Collect F → Collect G → lc P → x 6=y →
18Good_Contexts D ( (Bld x B) ∪ (Bld y A) ∪ F ) G P →
19Good_Contexts D ( (Bld x (A ◦ times B)) ∪ F ) G (FName x · Close y P) →
20( D ;;; ( (Bld x B) ∪ (Bld y A) ∪ F ) !− P ::: G ) →
21( D ;;; ( (Bld x (A ◦ times B)) ∪ F ) !− (FName x · Close y P) ::: G )
22...

The results concerning interactions between the typing rules and the LN
representation are in the Facts files.

1Lemma FVars_Reduction :
2forall ( P Q : Process )( x : nat),
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3x ∈ FVars P → P −→ Q → x ∈ FVars Q.
4

5(**

6*)

7Lemma No_Typing_Fuse_One_Lf :
8forall ( A : Proposition )( x y : nat )( D F G : Context ),
9( (FName x : A) ∈ D ) → \not ( D ;;; F !− ([ FName x \leftrightarrow FName y

]) ::: G ).
10

11(**

12*)

13Lemma TS_GContext_Type_Subst_Lf :
14forall ( x y : nat )( A : Proposition )( D F G : Context )( P : Process ),
15Fresh y (D ∪ F ∪ G) → x 6=y → lc P →
16Good_Contexts D ((Bld x A) ∪ F) G P →
17Good_Contexts D ((Bld y A) ∪ F) G (Close x P ⊥y).

The implementation finishes with substitution lemmas, transference lem-
mas, and the Subject Reduction Theorem. They are in the Props file.

1(**

2*)

3Lemma Transference_Rg_Lf :
4forall ( P : Process)(D F G : Context),
5D;;; F !− P ::: G →
6forall (x : nat)(A : Proposition), ( (FName x : A) ∈ G ) →
7D;;; (F ∪ Bld x (A ⊥\perp )) !− P ::: (SMA G x A).
8

9(**

10*)

11Theorem Soundness :
12forall (P : Process)(D F G : Context),
13( D ;;; F !− P ::: G ) → forall (Q : Process), (P −→ Q) → ( D ;;; F !− Q :::

G ).



Bibliography

[Bar96] Andrew G. Barber. Dual intuitionistic linear logic. Technical
report, 1996.

[Ber36] Paul Bernays. Alonzo church. an unsolvable problem of ele-
mentary number theory. american journal of mathematics, vol.
58 (1936), pp. 345–363. Journal of Symbolic Logic, 1(2):73–74,
1936.

[BU07] Stefan Berghofer and Christian Urban. A head-to-head com-
parison of de bruijn indices and names. Electronic Notes in
Theoretical Computer Science, 174(5):53–67, 2007. Proceed-
ings of the First International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP
2006).
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