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sus aulas. A mi asesor y amigo Ramón Plaza por su constante apoyo y paciencia.
A mi hermano Wilmer por siempre estar ah́ı para apoyarme y a toda mi familia.





Contents

List of Figures v

List of Tables vii

Resumen ix

1 Introduction 1
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical framework 7
2.1 The one dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Energy method and well-posedness . . . . . . . . . . . . . . . . . . . . . 13
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Resumen

En esta tesis se abordan dos problemas en el marco de la teoŕıa general de la elasticidad.
Por un lado, consideramos la ecuación de la elasticidad lineal isotrópica definida en un
semiespacio bidimensional junto con una clase de condiciones de frontera que generaliza
las estudiadas por Malischewsky [93] en su estudio de propagación de ondas śısmicas
a lo largo de discontinuidades. Nuestro propósito principal es aplicar la teoŕıa de buen
planteamiento de ecuaciones diferenciales parciales (EDP) hiperbólicas al problema de
existencia de ondas superficiales en presencia de condiciones de frontera no usuales.
En la segunda parte de la tesis, nos adentramos en el marco de la elasticidad no lin-
eal y estudiamos la estabilidad de ondas de choque planas que pueden ocurrir en un
medio hiperelástico compresible de varias dimensiones espaciales (en ausencia de efec-
tos térmicos). Concretamente, nos interesa la estabilidad no lineal de dichos choques
bajo pequeñas perturbaciones. Los resultados de este último trabajo fueron publicados
en la revista Archive for Rational Mechanics and Analysis [110]. Pese a que los dos
problemas aqúı tratados se enmarcan dentro de la teoŕıa de la elasticidad, parecen es-
tar en orillas opuestas, sin embargo comparten la misma estructura matemática, esto
es, las condiciones de buen planteamiento de Kreiss Lopatinskĭı para sistemas lineales
hiperbólicos de EDPs definidas en el semiespacio.

Las EDPs hiperbólicas son ampliamente conocidas por admitir soluciones en forma
de ondas que se propagan con velocidad finita. Dentro de esta clase general de EDP,
son de gran interes los sistemas hiperbólicos de primer orden definidos en un semies-
pacio con condiciones iniciales y de frontera (Initial boundary value problem-IBVP);
un ejemplo clásico son las ecuaciones de la elastodinámica (lineal y no lineal) definidas
en el semiespacio, puesto que pueden escribirse como un sistema de primer orden que
resulta ser hiperbólico. Uno de los objetivos principales en la teoŕıa matemática de
EDP’s es establecer la existencia de una única solución que depende continuamente
de los datos (término de la función fuente, datos iniciales y condiciones de frontera);
este es el llamado problema de buen planteamiento. Las condiciones de Lopatinskĭı,
introducidas por Kreiss [77] en 1970, determinan si la condición de frontera prescrita
para determinado IBVP de primer orden lineal, hiperbólico y definido en un semies-
pacio, es adecuada para tener un problema bien planteado. Concretamente, dichas
condiciones corresponden a la condición necesaria y suficiente de buen planteamiento
y se conocen como la condicion débil y uniforme de Lopatinskĭı, respectivamente. Un
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hecho destacable es que las condiciones de Lopatinskĭı pueden ser reformuladas en
términos de una función holomorfa conocida como determinante de Lopatinskĭı (cf.
[15, 77]). De este modo, el buen planteamiento del problema asociado depende fun-
damentalmente de la localización de los ceros de dicha función. Es decir, el problema
de buen planteamiento se reduce a un problema algebraico, desafortunadamente dicha
función no siempre puede calcularse expĺıcitamente (véase, [14, 70, 111]). A pesar de
su complejidad técnica, la teoŕıa es aplicable a una amplia gama de problemas que
incluyen: implementación de condiciones de frontera absorbentes tipo PML (perfectly
matched layer) para EDPs elásticas y electromagnéticas [40], linealización de proble-
mas no lineales [64] y la estabilidad no lineal de ondas de choque (véase, por ejemplo,
[88, 89, 96, 99, 102]. Una recopilación detallada de la teoŕıa puede encontrarse en la
monograf́ıa de Benzoni-Gavage y Serre [14].

Debido a su naturaleza fundamental, algunos conceptos esenciales de la teoŕıa de
Kreiss aparecen de forma independiente en el estudio de varios problemas. Por ejem-
plo, la estabilidad de diferencias finitas para la solución numérica de IBVP (véase, por
ejemplo, [56, 57]) o la propagación de ondas superficiales en elasticidad lineal. Sorpren-
dentemente, la ecuación secular para ondas de Rayleigh que se propagan a lo largo de
una superficie libre de un semiespacio elástico isotrópico, resulta ser la restricción al
eje imaginario de la función determinante de Lopatinskĭı asociada al problema (véase
[123], [15]).Las ondas superficiales han sido un tema central en una amplia gama de
campos cient́ıficos, especialmente en sismoloǵıa, debido a su potencial para explicar la
mayor parte de los destrozos causados durante un terremoto. Las ondas superficiales
más usadas en geof́ısica son las ondas de Rayleigh, las cuales se propagan a lo largo de
la superficie de un semiespacio homogéneo infinito en cuya frontera se ha prescrito la
clásica condición de frontera libre de esfuerzos (frontera libre). La onda de Rayleigh
más simple que aparece cuando se considera un semiespacio isotrópico fue descrita por
primera vez por Lord Rayleigh en 1885 [114]. El buen planteamiento de este problema
canónico puede argumentarse mediante consideraciones f́ısicas (véase Aki & Richards
[5]), mientras que el problema de existencia de ondas de Rayleigh es más dif́ıcil de tratar,
debido en gran parte al hecho de que la existencia de una onda superficial está sujeta a
la existencia de una única ráız real de la ecuación secular para ondas de Rayleigh. Esta
última, es una ecuación algebraica no lineal que resulta casi imposible de resolver de
manera exacta, incluso en la configuración más sencilla (sólido isótropo + condición de
frontera libre). Más allá de su interés teórico, la ecuación secular tiene importantes im-
plicaciones prácticas en lo que respecta a la velocidad de las ondas Rayleigh en términos
de los parámetros del sistema y al problema inverso: estimar los parámetros del medio
a partir del valor medido de la velocidad.

En escenarios más generales, cuando se considera la anisotroṕıa o condiciones de
frontera no estándar, tanto el problema de buen planteamiento como el de existencia
de ondas Rayleigh pueden ser bastante complicados. Por ejemplo, debido a la amplia
gama de aplicaciones, existe una gran cantidad de literatura sobre ondas de Rayleigh
que se propagan en un semiespacio elástico anisotrópico sujeto a la clásica condición
de frontera libre. A pesar de la complejidad de este problema, la existencia y unici-



dad de la onda de Rayleigh se puede demostrar (al menos desde un punto de vista
formal) v́ıa varios métodos tales como el método del vector de polarización, la matriz
de impedancia y el llamado formalismo de Stroh. Un resumen conciso acerca de los
métodos mencionados se puede encontrar en [10, 86, 92, 134] y en las referencias que
alĺı se citan. Sin embargo, cuando se consideran condiciones de frontera no estándar, el
problema resultante puede estar mal planteado y la existencia de una onda de Rayeligh
no siempre va a estar garantizada (véase, por ejemplo, [14, 52, 93]). Esto podŕıa explicar
la carencia de literatura sobre el tema. Una alternativa relevante a la clásica condición
de frontera libre, son las llamadas condiciones de frontera impedantes, que en términos
muy generales consisten en prescribir relaciones lineales entre la función desconocida
y sus derivadas. Aunque son de uso común en electromagnetismo, Tirsten [133] las
implementó con éxito para simular capas delgadas encima de un semiespacio elástico
(ver [133] para más detalles). En [93], Malischewsky utilizó condiciones de frontera de
este tipo para modelar propagación de ondas śısmicas a lo largo de discontinuidades y
obtuvo la ecuación secular expĺıcita para las ondas Rayleigh en dicha configuración. Sin
embargo, dada la complejidad de la expresión final, la existencia de una onda Rayleigh
fue probada para una configuración particular, en un trabajo posterior por Godoy et
al. [52]. En un trabajo mas reciente, Pham & Nguyen [138] encontraron una fórmula
exacta para la velocidad de fase de las de ondas Rayleigh descritas por Godoy.

En el marco de la teoŕıa de buen planteamiento de EDP hiperbólicas, vale la pena
destacar el trabajo de Benzoni-Gavage et al. [14]. Alĺı los autores estudian las ecua-
ciones de la elasticidad lineal isotrópica definidas en un semiespacio de dimensión d ≥ 2
y sujetas a una condición de frontera impedante en donde el vector de tensión se fija
proporcional al vector velocidad, con un factor de proporcionalidad real. Para valores
negativos de la constante de proporcionalidad, el problema resulta estar bien planteado
en L2, pero extrañamente no es posible ninguna onda superficial. En contraste, el
problema está mal planteado para valores positivos de la constante. En consecuencia,
la única onda superficial en dicha configuración ocurre cuando la constante de pro-
porcionalidad se hace cero (es decir, frontera libre) y corresponde a la clásica onda de
Rayleigh. En este trabajo estudiamos una clase mas general de condiciónes de fron-
tera impedantes que incluyen, como casos particulares, a las condiciones de frontera
estudiadas por Malischewsky [93, 94] y Godoy [52]. Eventualmente dicha relación nos
permitira estudiar el problema de existencia de ondas de Rayeligh para esta clase de
condiciones de frontera impedantes que aparecen en el contexto de propagación de
ondas śısmicas, usando herramientas teóricas propias de la teoŕıa de Kreiss.

En la segunda parte de este trabajo, nos adentramos en el campo de la elasticidad no
lineal para investigar ondas de choque planas que pueden ocurrir en un medio compresi-
ble hiperelástico (en ausencia de efectos térmicos) en varias dimensiones espaciales. Las
ondas de choque resultan ser de gran importancia en muchos áreas del conocimiento,
como dinámica de gases, la acústica, las ciencias de materiales, la geof́ısica e incluso la
medicina y ciencias de la salud. Este tipo de ondas aparecen como perturbaciones ide-
alizadas y abruptas (discontinuas, en ausencia de efectos disipativos) que transportan
enerǵıa y se propagan más rápido que la velocidad caracteŕıstica del medio que las



precede. Una propiedad fundamental, tanto desde el punto de vista matemático como
f́ısico, es su ”estabilidad” bajo pequeñas perturbaciones. La teoŕıa de estabilidad de
ondas de choques tiene sus oŕıgenes en la f́ısica, más concretamente, en el contexto de la
dinámica de gases, donde las ondas de choque para las ecuaciones de Euler constituyen
el principal paradigma. El análisis de estabilidad de ondas de choque en dinámica de
gases (al menos desde un punto de vista formal) se remonta a mediados de la década
de 1940 (cf. [16, 117]) y, a partir de entonces, el interes por estos temas ha aumentado
notablemente en las décadas siguientes (para una lista abreviada de referencias, véase
[38, 42, 49]). La teoŕıa de estabilidad no lineal y existencia de ondas de choque planas
para sistemas de leyes de conservación comenzó con el trabajo pionero de Majda [88, 89]
(véase también el análisis no lineal de Blokhin [19] para las ecuaciones de la dinámica
de gases) y posteriormente fue ampliada por Métivier [96, 97, 99]. Como resultado de
su trabajo pionero, ahora se sabe que la estabilidad no lineal de ondas de choque planas
depende de las condiciones de Lopatinskĭı para IBVP lineales e hiperbólicos.

En cuanto a las ecuaciones de la hiperelasticidad, la literatura acerca de estabili-
dad de ondas de choque (multidimensionales) es escasa. Corli [27] demostró que las
ecuaciones de la elastodinámica para materiales hiperelásticos satisfacen la estructura
de bloques de Majda [89] y examinó la estabilidad de ondas de choque de amplitud
pequeña para materiales de St. Venant-Kirchhoff, verificando para este modelo particu-
lar, el resultado general de Métivier [97], que asegura que todos los choques extremos de
amplitud suficientemente pequeña son estables. Otros estudios sobre ondas de choque
elásticas de amplitud pequeña y débilmente anisótropos pueden encontrarse en [79]. En
un trabajo posterior, Freistühler y Plaza [45] estudiaron la condición de Lopatinskĭı y
la estabilidad de transiciones de fases hiperelásticas, que pueden identificarse como on-
das de choque no clásicas de tipo subcompresivo (cf. Freistühler [44]). Las condiciones
de estabilidad descubiertas en [45] han sido verificadas numéricamente para pares de
martensita en dos [46] y tres dimensiones espaciales [111], bajo perturbaciones de la
regla cinética de igual área. Existe un resultado reciente sobre la estabilidad de choques
elásticos cuasi-transversales sometidos a efectos disipativos (viscosidad) [23], que hace
uso de técnicas de funciones de Evans. Hasta donde sabemos, no hay otros resultados
(ni numéricos ni anaĺıticos) sobre la estabilidad de choques hiperelásticos en la liter-
atura. En este trabajo, estudiamos por primera vez las condiciones de estabilidad para
ondas de choque clásicas de amplitud arbitraria que ocurren en medios hiperelásticos
pertenecientes a la clase general de materiales compresibles tipo Hadamard. La in-
terpretación más natural de un material elástico compresible de tipo Hadamard es
entenderlo como una extensión compresible de un sólido incompresible neo-Hookeano
del tipo descrito por Pence y Gou [108]. Nuestro objetivo principal es determinar las
condiciones de estabilidad para ondas de choque en materiales Hadamard no térmicos
y compresibles en términos de los parámetros de la onda de choque y los módulos
elásticos del medio, tal y como se hizo para el caso de la dinámica de gases isentrópicos
[15, 42, 90]. En d ≥ 2 dimensiones espaciales, el número de ecuaciones (n = d2 + d) de
la hiperelasticidad superan al número de ecuaciones de Euler para fluidos isentrópicos
(n = d + 1) y los cálculos son por lo tanto mucho más complicados. Sin embargo,



en este trabajo calculamos expĺıcitamente el determinante de Lopatinskĭı asociado a
dichas configuraciones.





Chapter 1

Introduction

In this thesis, two problems in the framework of the elasticity theory are discussed.
On the one hand, we consider the linear isotropic elastic equation defined in a two-
dimensional half-space together with a class of boundary conditions that generalizes
those studied by Malischewsky [93] to model seismic wave propagation in the presence
of discontinuities. Our primary purpose is to apply the well-posed theory of hyper-
bolic partial differential equation (PDE) to the practical problem, from the elasticity
theory, about the existence of surface waves in the presence of non-standard boundary
conditions. On the other hand, we move to the framework of non-linear elasticity to
study planar shock fronts occurring in an ideal, non-thermal, compressible hyperelastic
medium in several space dimensions. We are interested in the non-linear stability of
these shocks under small perturbation. The results from this last work were published
in the journal Archive for Rational Mechanics and Analysis [110]. Although the two
subjects above may seem different, possibly even independent, they share the same
mathematical structure, that is the Lopatinskĭı conditions for linear hyperbolic system
of PDE defined on the half-space.

Hyperbolic PDEs are widely known for supporting solutions in form of waves with
finite speed of propagation. Within this field, the equations of elastodynamics (linear
and non-linear) with prescribed initial data and boundary conditions defined on the
half-space can be written as a first order PDE system that ranges into the class of
linear hyperbolic Initial Boundary Value Problems (IBVP). One of the main objects in
this framework is finding conditions for the existence of a unique solution that depends
continuously on the data (source function term, initial data, and boundary conditions);
this is the so-called well-posed problem. Lopatinskĭı conditions, introduced by Kreiss
[77] in 1970, answer the fundamental question about whether a prescribed boundary
condition for a given first-order linear hyperbolic equation defined on a half space, leads
to a well-posed problem. They are known as weak and uniform Lopatinskĭı conditions
and correspond to necessary and sufficient condition for well-posedness, respectively.
A remarkable fact is that Lopatinskĭı conditions can be recast in terms of a complex
analytic function in the frequency domain known as the Lopatinskĭı determinant (cf.
[15, 77]). In this fashion, the well posedness of the associated problem relies heavily on
the locations of the zeros of such function, however explicit formulas for it are not always
available (see e.g. [14, 70, 111]). The theory is extremely complicated but applicable
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1. INTRODUCTION

to a very wide range of problems including stability of PML (perfectly matched layer)
implementation for both elastic and electromagnetic equations [40], linear version of
nonlinear problems [64] and non-linear stability of shock waves (see, e.g.,[88, 89, 96, 99].
A comprehensive review of the theory can be found in the monograph by Benzoni-
Gavage and Serre [14]. For recent, important results, see [102].

Due its fundamental nature, some essential elements of Kreiss’ theory appear inde-
pendently in the literature and address quite different issues. For instance, the stability
of finite difference approximations to IBVP in numerical analysis (see e.g., [56, 57]) or
surface wave propagation in linear elasticity. Interestingly, the secular equation for
Rayleigh waves propagating along a free surface of an isotropic elastic half-space, turns
out to be the restriction of the associated Lopatinskĭı function to the imaginary axis
(see [123], [15]). We exploit such relation to employ theoretical tools from Kreiss theory
to the study of surface waves propagation under non standard boundary conditions,
for instance those of impedance type.

Surface waves and their application have been a central topic in a wide range of
scientific fields, notably in seismology, due to their potential to explain most of the
damage and destruction during an earthquake. The most exploited surface waves in
geophysics are the Rayleigh waves, which propagates along the surface of an infinite
homogeneous half-space endowed with the well-known stress-free boundary condition.
The simplest Rayleigh wave, that occurs when an isotropic half-space is considered,
was first described by Lord Rayleigh in his seminal work [114] from 1885. The well-
posedness for this problem can be argued by physical consideration (see Aki & Richards
[5]), whereas the Rayleigh wave analysis (existence of a Rayleigh wave) is trickier to
deal with, largely due to the fact that the existence of the surface wave is guaranteed
by the existence of a unique real zero of the well-known secular equation for Rayleigh
waves. This is a non-linear algebraic equation that results impractical to solve ana-
lytically, even for the simplest configuration (isotropic solid plus stress-free boundary
condition). Beyond its theoretical interest, the secular equation has important practi-
cal implications on what concerns the Rayleigh wave-velocity and the inverse problem:
estimating the medium parameters from the measured value of the velocity.

In more general scenarios when anisotropy or non-standard boundary conditions
are considered, both the well-posedness problem and the Rayleigh wave analysis may
be quite challenging. For instance, due to the wide range of applications, there is a
huge of literature on Rayleigh waves occurring in a general anisotropy elastic half-space
subjected to the standard stress-free boundary condition. Despite the complexity of
this problem, the existence and uniqueness of a Rayleigh wave can be proved (at least
from a formal point of view) by means of several methods such as the polarization vector
method, matrix impedance and the so-called Stroh formalism. A concise summarize
about methods and results on such problem can be found in [10, 86, 92, 134] and in the
references therein. However, when non-standard boundary condition are considered, the
well posedness may fail to hold and the existence of a Rayleigh wave is not immediately
apparent (see, e.g., [14, 52, 93]). That might explain the lack of literature on the
subject. A relevant alternative to the standard stress-free boundary condition is the
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so-called impedance boundary condition, which is when one prescribes linear relations
between the unknown function and its derivatives. Although they are of common use
in electromagnetism, Tirsten [133] successfully implemented them to model a problem
involving thin layers over a elastic half space (see [133] for details). In [93] Malischewsky
used a class of these boundary conditions to model seismic wave propagation along
discontinuities and obtained the explicit secular equation for Rayleigh waves in such
configuration. However, given the intricacy of the final expression, the existence of a
Rayleigh wave was provided, for a particular configuration, in a further work by Godoy
et al. [52]. In a later contribution, Pham and Nguyen [138] found an exact analytical
formula for the phase velocity of these Rayleigh waves described by Godoy et al.

In the frame of well posedness theory of hyperbolic PDE, it is worth mentioning
the work of Benzoni-Gavage et al. [14]. There, authors study the system of isotropic
elasticity defined on a d ≥ 2 dimensional half-space subjected to a particular impedance
boundary condition that fix the stress vector to be proportional to the particle velocity,
with a real proportionality factor. The problem results L2 well-posed for negative values
of the factor and ill-posed (not well-posed) for positive values. Surprisingly, the only
possible surface wave in such scheme is the simplest Rayleigh wave that arises when the
factor vanishes and the boundary condition becomes the stress-free one. In this work
we go deep into this class of problems by considering a slightly more general impedance
boundary condition, involving proportional relations between the components of both
the stress and the velocity. Surprisingly, the problem studied by Malischewsky [93,
94] and Godoy [52] in the framework of seismic wave propagation turns out to be a
particular case of this boundary condition, which in turn will enable us to deal with
the Rayleigh wave analysis by means of theoretical tools from Kreiss’s theory.

In the second part of this work, we move to the context of non-linear elasticity
and consider planar shock fronts occurring in an ideal, non-thermal, compressible hy-
perelastic medium in several space dimensions. Shock waves are important in many
applications such as gas dynamics, acoustics, material sciences, geophysics and even in
medicine and health sciences. They appear as idealized, abrupt disturbances (discon-
tinuous, in the absence of dissipation effects) which carry energy and propagate faster
than the characteristic speed of the medium in front of them. A fundamental property
from both the mathematical and physical perspectives is their stability under small
perturbations. The shock stability theory has its origins in the physics literature and,
more concretely, in the context of gas dynamics, where shock waves for the (inviscid)
Euler equations constitute the main paradigm. The inviscid shock stability analysis
for gas dynamics (at least from a formal viewpoint) dates back to the mid-1940s (cf.
[16, 117]) and was thereafter pursued by many physicists and engineers in the following
decades (for an abridged list of references, see [38, 42, 49]). The nonlinear theory of
stability and existence of shock fronts for general systems of conservation laws started
with the seminal work of Majda [88, 89] (see also the nonlinear analysis of Blokhin [19]
for the equations of gas dynamics) and was later extended and revisited by Métivier
[96, 97, 99]. As a result from their pioneering work, it is now known that the nonlinear
stability of shock fronts depends upon the Lopatinskĭı conditions for linear hyperbolic
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1. INTRODUCTION

IBVP [77, 85].
In the case of the equations of hyperelasticity, the literature on (multidimensional)

shock stability is scarce. Corli [27] proved that the elastodynamics equations for hyper-
elastic materials satisfy the block structure of Majda [89] and examined the stability of
small-amplitude shocks for St. Venant-Kirchhoff materials, verifying for this particular
model the general result of Métivier [97], which assures that all sufficiently weak ex-
treme shocks are stable. Other studies on small-amplitude, weakly anisotropic elastic
shocks can be found in [79]. In a later contribution, Freistühler and Plaza [45] studied
the Lopatinskĭı condition and stability of hyperelastic phase boundaries, which can be
identified as non-classical shocks of undercompressive type (cf. Freistühler [44]). The
stability conditions found in [45] have been numerically verified for martensite twins
in two [46] and three space dimensions [111], under perturbations of the kinetic equal
area rule. There is a recent result on the stability of quasi-transverse elastic shocks
subjected to dissipation (viscosity) effects [23], which makes use of Evans functions
techniques. Up to our knowledge, there are no other results (either numerical or ana-
lytical) on stability of hyperelastic shocks in the literature. In this work, we study for
the first time the stability conditions for classical shocks fronts of arbitrary amplitude
within hyperelastic media belonging to the large class of compressible Hadamard mate-
rials. The most natural interpretation of a compressible elastic material of Hadamard
type is as a compressible extension of a neo-Hookean incompressible solid as described
by Pence and Gou [108]. Our main goal is to determine the stability conditions for
shock fronts in compressible non-thermal Hadamard materials in terms of the shock
parameters and the elastic moduli of the medium, just as in the case for isentropic gas
dynamics [15, 42, 90]. In d ≥ 2 space dimensions, the n = d2 + d dynamical equations
of hyperelasticity outnumber the Euler equations for isentropic fluid flow (n = d + 1)
and the calculations are thereby much more involved. Nevertheless, in this work we
explicitly compute the Lopatinskĭı determinant associated to such configurations.

1.1 Structure of the thesis

The thesis is divided into two parts, the first of which consist of two chapters presenting
a briefly description of Kreiss’ theory for fisrt-order linear hyperbolic systems with
constant coefficients defined on the half-space, as well as a direct application to the
Rayleigh wave problem for the classical linear isotropic elasticity equation in dimension
d = 2 endowed with an impedance boundary condition. The second part consists of
three chapters describing the Majda’s method to deal from a Kreiss’ prespective with
the non-linear stability problem of shock fronts occurring in hyperelastic materials of
Hadamard type.

Chapter 2 contains a brief insight into the Kreiss’ theory background and the main
theoretical information required for clear understanding further along the thesis. We
focus on the Lopatinskĭı conditions of well-posedness. In Chapter 3 we consider the
linear equations that govern the dynamic of a two dimensional isotropic elastic half
space subjected to a boundary condition of impedance type. We provide explicit for-
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1.1 Structure of the thesis

mulas for both the secular equation for Rayleigh waves and Lopatinskĭı determinant.
Finally, we state the precise relation between both expressions in order to use basic
tools from Kreiss’ theory to derive partial results about both well-posedness and exis-
tence of surface waves. In Chapter 4 we give a brief account of the mutidimensional
stability problem of planar shock fronts for an hyperbolic system of consevation laws.
Then we present a concise summary of Majda’s method to treat the stability problem
from Kreiss’ prespective. Finally, we verify all assumptions for the theory to be applied
to the case of hyperelastic materials of Hadmard type. In Chapter 5 we provide a com-
plete characterization of the stability problem for hyperelastic compressible Hadamard
materials proposed in Chapter 4, by means of the explicit calculation of the associated
Lopatinskĭı determinant.
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Chapter 2

Theoretical framework

In this chapter we consider first-order linear hyperbolic equations with constant coef-
ficients subjected to both initial and boundary conditions. Linear equation of higher
order can be written as a first order system by standard methods. Our primary purpose
is to give a simple review of the theory developed by Kreiss and others that stablishes
whether a given boundary condition is suitable for the considered problem to be well-
posed in the sense of Hadamard. The theory is based on the well known energy method
and consists in derive conditions that ensures the existence of such energy estimate;
they are known as the Lopatinskĭı conditions. First we give a short view of the one
spatial dimensional case, by far the simplest one. Then we define the problem in sev-
eral dimension and describe the so-called normal modes analysis to derive the necessary
conditions of well-posedness, namely the weak Lopatinskĭı condition. Finally we state
the uniform Kreiss-Lopatinskĭı condition that Kreiss [77] proves to be sufficent to have
a well-posed problem.

2.1 The one dimensional case

One of the simplest hyperbolic equation with both boundary and initial data is:
ut +Dux = f(x, t), x > 0, t > 0

u(x, 0) = u0(x), x > 0,

Bu(0, t) = g(t), t > 0.

(2.1)

where u = u(x, t) ∈ Rn is a vector-valued function defined on x > 0, t > 0,

D := Diag(a1, · · · , ap, · · · , an)

a diagonal matrix whose first p diagonal entries are assumed to be positive and the
remaining ones negative. We also assume u0 ∈ L2(R+), g ∈ L2(0, T ) and f ∈ L2

(
R+×

(0, T )
)
. On the other hand, B = Bq×n is choosen with full range q, which means we have

q boundary conditions. One could think the simplest case arises when B = In (q = n)
but as we will see later, it can generate incompatibilites that prevent a consisting
solution to exist, so not all boundary conditions are allowed. Note that the partial

7



2. THEORETICAL FRAMEWORK

(a) Incoming characteristic (b) Outgoing characteristic

Figure 2.1: Illustration of the characteristics curves for a positive characteristic velocity
aj > 0 (panel (a)) and negative characteristic velocity aj < 0 (panel (b)).

differential equation at (2.1) is actually an uncoupled system of n linear equations that
have the form

∂tuj + aj∂xuj = fj(x, t) j = 1, · · · , n,

whose solution uj is obtained by integrating along the so-called characteristics curves
defined as

dx

dt
= aj .

Taking f = 0, the components of u can be regarded as traveling waves that move at
the characteristic velocity aj .

As we see in Figure 2.1, components uj of u asociated to aj > 0 transport the
information from both the boundary and initial data up to inside the spatial-temporal
domain. They are known as the incoming components of the solution u. In turn,
components uj associated to aj < 0 do the same but only from the prescribed initial
data towards at most the temporal axis (x = 0). Therefore, it is not allowed to prescribe
boundary data at x = 0 for these later components, as it could contradict the efects
of initial data; these solution are called the outgoing components. To sum up, not
all boundary data are allowed in order to have a consistent solution. In view of the
above, we partition the whole solution u into uI = (u1, · · · , up)> (incoming ones) and
uII = (up+1, · · · , un)> (outgoing ones). Notice that the simplest suitable boundary
condition has the form:

uI(0, t) = g(t),

that correspond to taking B = (Ip|0)p×n in (2.1). For more general problems, the
boundary condition can take the general form (see, [32]):

uI(0, t) = SuII(0, t) + g(t), S ∈ Rp×(n−p)

which coincides with B = (Ip| − S) in (2.1). Note that in the last cases, the rank q of
matrix B is precisely the number of positive eigenvalues of D; this is not a coincidence
but a consequence of well-posedness of (2.1).
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2.2 Hyperbolicity

Proposition 2.1.1. If there exists a unique solution for the IBVP (2.1), the rank of
B must be p, namely q = p (the number of incoming characteristics).

Proof. The existence of a solution implies p ≥ q; the uniqueness yields p ≤ q. Thus,
p = q. For details see [15] or [32].

For further references and a full study of the well-possed problem for the general
one dimensional case, see [32].

2.2 Hyperbolicity

As we just saw in the last section, the characteristics play a main role in the deter-
mination of a suitable boundary conditions for the one dimensional case. In higher
dimension, the situation is considerably more complicated because there are no general
explicit expression for the characteristics, so a further appropriate method needs to be
devised, that is the normal modes analysis. For simplification purposes, we define the
multidimensional hyperbolic problem on the half-space; if the system of PDE is defined
on a more general spatial region but still has a smooth boundary, it can be performed
a partition of the unity and then map each boundary portion into the boundary of the
half-space, so in the new variables the problem will have the form described below. For
details see [43]. Let us consider the half-space

Ω = {(y, xd) ∈ Rd : y ∈ Rd−1, xd > 0}, (2.2)

where y = (x1, · · · , xd−1) are called the tangential variables. We consider a linear
system of PDE of the form:

ut +
d∑
j=1

Ajuxj + Cu = f, x ∈ Ω, t > 0 (2.3)

where x ∈ Rd and t ≥ 0 are space and time variables, respectively, and u =
u(x, t) ∈ U ⊂ Rn are the unknows (U denotes an open connected set). C,Aj ∈ Rn×n
are constant matrices, while the source term f : Ω× (0,+∞)→ Rn is assumed to be a
smooth function of x. We prescribed an initial condition:

u(x, 0) = u0(x), x ∈ Ω, (2.4)

where f is a given function, together with a boundary conditions of the form:

Bu = g, x ∈ ∂Ω, t > 0, (2.5)

where g is a given function and B ∈ Rq×n is a constant matrix with full rank q; it
means we have rankB = q scalar boundary conditions. This problem is known as a
general first-order linear hyperbolic initial boundary value problem (IBVP) and we
are interested on the well-posedness property: the existence of a unique solution u

9



2. THEORETICAL FRAMEWORK

depending continuously on the given initial condition u0 and the prescribed boundary
data g.

Based on the form of both the differential operator (2.3) and the boundary condition
(2.5), one could say there were two main types of problems studied in the earlier liter-
ature on linear hyperbolic IBVP. The first one class includes symmetric systems with
strictly dissipative boundary conditions studied by Friedrichs [48] (see also [81]) and
others in precedent works. The second one, eventually the most technical, corresponds
to hyperbolic systems with boundary conditions satisfying the Lopatinskĭı conditions.

Definition 2.2.1. The first order system (2.3) is symmetric if every matrix Aj is
symmetric. The system is Friedrichs symmetrizable if there exists a symmetric positive
definite matrix P0 such that every P0A

j is symmetric. P0 is called the symmetrizer of
the system.

Recall that ~v ∗ denotes the conjugate transpose of ~v ∈ Cn.

Definition 2.2.2. Suppose the system (2.3) is symmetric. The boundary condition
(2.5) is said to be strictly dissipative if the following properties hold

i) kerB is a non positive linear space of matrix Ad, namely the quadratic form
Q : Cn ×Cn → R defined by Q(~v) := ~v ∗Ad~v is non positive for all ~v ∈ kerB and
vanishes only when ~v ∈ kerAd.

ii) kerB is maximal respect to the last property (“maximal non positive subspace”).
This means kerB is not a proper set of a larger linear subspace that satisfy the
first property.

iii) ~v → B~v is a surjective map.

The well-posedness of symmetric or Friedrichs symmetrizable problems like (2.3)-
(2.4) with prescribed strictly dissipative boundary conditions (2.5) can be proved by
employing straightforward integration by parts (for details we refer to [120], [15]).
Although several physical problems yield a Friedrichs symmetrizable operator, most of
them are prescribed with boundary condition that are not of dissipative type; there
are even systems that fails to be symmetrizable. Therefore a more general theory is
required. In this sense, we state a more weaker definition than Definition 2.2.1:

Definition 2.2.3 (Hyperbolicity). The system of equations (2.3) is hyperbolic if the
following matrix:

A(ξ) :=
d∑
j=1

ξjA
j , (2.6)

is uniformly diagonalizable, that is, A(ξ) is diagonalizable with real eigenvalues for all
ξ ∈ Rd and also there exists a constant C such that:

sup
|ξ|=1
|P (ξ)−1||P (ξ)| < C,

where P (ξ) is a change of basis matrix that diagonalize the matrix A(ξ).
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2.2 Hyperbolicity

This definition arise from the study of the Cauchy problem (defined in the whole
space), which is well-possed as long as the hyperbolicity condition holds (see, e.g, [15]).

Remark 2.2.4. The hyperbolicity is clearly a weaker condition than Friedrichs sym-
metrizability, since in the last case the symbol A(ξ) reduces to a linear combination of
symmetric matrices and it can be proved that the diagonalization is uniform (see, [15]
for details). So, all Friedrichs symmetrizable system is hyperbolic, however the converse
is false in general.

A crucial requirement in the primary development of the theory was the multiplic-
ity of the eigenvalues of the symbol (2.6). In earlier works (see [2, 63]) and [77], the
well-posedness analysis was performed under the strict hyperbolicity assumption, that
is when matrix A(ξ) has eigenvalues of multiplicity one (simple eigenvalues). Con-
versely, if some multiplicities are greater than one but still remain independent of the
frequencies ξ, the system is called constantly hyperbolic. It was not until the 2000’s
that Métivier [98] extended the results by Kreiss on strictly hyperbolic problems to
constantly hyperbolic problems.

Another common assumption that makes the analysis easier to be performed is the
so-called non-characteristic boundary assumption which essentially allows each compo-
nent of the solution to be determined from the boundary data. For the sake of clarity,
let us come back to the one-dimensional problem (2.1) and suppose that there is a
zero-diagonal entry in matrix D. In this case, the corresponding characteristic is a line
parallel to the boundary {x = 0}, which makes impossible for the prescribed data on
the boundary to get inside the domain through such characteristic line, and in that way,
determine the corresponding component of the solution. Roughly speaking, the char-
acteristics must cross the boundary {x = 0} in order the data can flow through them,
from the boundary to inside the spatial-time domain (see, figure 2.1). In such a situa-
tion we say the boundary is characteristic. In this work we assume non-characteristic
boundaries. The natural extension to higher dimension of characteristic boundaries in
general bounded domains reads as

Definition 2.2.5 (characteristic boundary). Let be Ω ∈ Rn a domain with smooth
boundary ∂Ω and ν(x) the normal unit vector to ∂Ω at point x. The boundary is said
to be characteristic for the system (2.3) at point x ∈ ∂Ω if the matrix (2.6) evaluated
at ν, A(ν), is singular.

It is clear for the one dimensional problem that setting all diagonal entries non zero
in matrix D is enough for the boundary at (2.1) to avoid the potential complication
described before. This means a non-characteristic boundary according to Definition
2.2.5. For the multidimensional hyperbolic problem (2.3)-(2.5), the boundary of the
spatial domain is the hyperplane given by:

∂Ω = {(y, 0) ∈ Rd : y ∈ Rd−1}.

Since the unit normal vector is ν = −êd, the non-characteristic boundary condition
reduce to the non singularity of matrix A(−êd) = −Ad , or equivalently detAd 6= 0.
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2. THEORETICAL FRAMEWORK

In this work we consider non-characteristic problems. Majda-Osher [91] studied the
well-posedness for the characteristic case in several dimensions. They adopt a weaker
assumption called the constant rank condition, that is when matrix A(ν) has a constant
rank strictly less than n.

Under both, the hyperbolicity and the non-characteristic boundary assumptions we
have a natural extension of Proposition 2.1.1 to the multidimensional model (2.3)

Lemma 2.2.6. Suppose that the IBVP (2.3), (2.4), (2.5) is hyperbolic with a non-
characteristic boundary (detAd 6= 0). If there exists a unique solution for such IBVP,
then the number of scalar boundary conditions rankB agree with the number p of pos-
itive eigenvalues of matrix Ad.

Proof. Since this is a neccesary condition, we assume that the source term f and both
the initial and boundary data u0, g do not depend on the tangential variables y, that
is:

f = f(xd, t), u0 = u(xd), g = g(t).

By uniqueness property, the solution is also independent of the tangential variables y,
thus u = u(xd, t), which reduce the IBVP to:

ut +Aduxd = f(xd, t), xd > 0, t > 0

u(xd, 0) = u0, xd > 0,

Bu(0, t) = g(t), t > 0.

(2.7)

In view of the hyperbolicity of the system (2.3), matrix Ad = A(1) is diagonalizable with
real eigenvalues, which are non-zero due to the non-characteristic boundary assumption,
namely detAd 6= 0. Thus, there exist non-singular matrices Q and D, with D diagonal
such that Ad = QDQ−1. Making the change of uknown w = Q−1u in (2.7) we obtain
a system of the form (2.1) and the result follows from Proposition 2.1.1.

Remark 2.2.7. When higher-order systems like elastodynamics equations or the Maxwell’s
system in electromagnetism are recast as a first order system, differential constraints
of the form

d∑
k=1

Ck∂xku = 0, (2.8)

where Ck ∈ Rp×n are constant matrices, need to be incorporated in order to rule out
some spurious solutions that solve the associated first order system but does not the
original one. In the frequency space (this amounts to applying Fourier transform to
(2.8) in all spacial variables xd), (2.8) becomes

C(ξ)û = 0, where, C(ξ) :=

d∑
k=1

ξkC
k,

where û denotes the Fourier transform of u. As mentioned in [15], the initial data must
be given satisfying the constraint (2.8), and the “evolution ” given for the first order
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2.3 Energy method and well-posedness

PDE must preserve it. A sufficient condition for that property to hold is that the kernel
of the constraint in the frequency space, namely

N(ξ) := {û : C(ξ)û = 0},

be invariant under matrix A(ξ) for all ξ 6= 0 (see Dafermos [35] for details). The
hyperbolicity analysis therefore must be focused on the restriction map

A(ξ)
∣∣∣
N(ξ)

: N(ξ)→ N(ξ)

2.3 Energy method and well-posedness

Despite the characterization of well-posedness by Hadamard being satisfactory in a
general sense, more accurate definitions need to be formulated to handle the challenges
placed by each class of PDEs. For instance, the well posedness of a hyperbolic IBVP
is often attached to the existence of a priori energy estimate of the solution in terms of
the data (f , u0, g). The form of such energy estimate has been modified throughout
the development of the theory in order to avoid potential problems such as loss of
derivatives, or the failure of a given estimate to control the solution near the boundary
(see the very recent article [102] for extensive discussions and further references). We
focus on the well-posedness characterization introduced by Kreiss in [77]. Let us define
for all η > 0 the weighted norm

‖u‖η,℘ := ‖e−ηtu(x, t)‖L2(℘),

where ℘ is a space-time domain which could be either ℘ = Ω × (0,+∞) or ℘ = ∂Ω ×
(0,+∞). The well-posedness definition is stated as follows:

Definition 2.3.1. Consider the IBVP (2.3), (2.4), (2.5) defined on the half-space,
with u0 = 0 and C = 0. The problem is called well-posed in the Kreiss sense if for all
compatible data f ∈ C∞0 (Ω × (0,∞)) and g ∈ C∞0 (∂Ω × (0,∞)) there exists a unique
solution u satisfying the estimate:

η‖u‖2η,Ω×(0,∞) + ‖u‖2η,∂Ω×(0,∞) ≤ α0

(
1

η
‖f‖2η,Ω×(0,∞) + ‖g‖2η,∂Ω×(0,∞)

)
, (2.9)

for some large enough η > 0 and a uniform constant α0 > 0.

Although the assumption u0 = 0 may seems restrictive, Rauch [113] proves that
the effects of non zero initial data could be incorporated into to the source term f .
Moreover, it facilitates applying normal modes analysis on (2.3). One main advantage
of the well-posedness in the Kreiss sense is its invariance under perturbation of zero-
order terms (see [3]), this means the original problem (with C 6= 0) is well-posed as
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2. THEORETICAL FRAMEWORK

long as the simpler one with C = 0, is so. Hence, it is enough to consider the problem:
ut +

d∑
j=1

Ajuxj = f, xd > 0, t > 0

u(x, 0) = 0, xd > 0,

Bu(0, t) = g(t), t > 0.

(2.10)

Remark 2.3.2. It is to be noted that the well-posedness in the Kreiss sense imply the
Hadamard one. Indeed, once an estimate of energy like (2.9) is derived, the uniqueness
and continuous dependence of the solution follows directly from it. Meanwhile, the
existence is proved by functional analysis techniques. (See, e.g., [15, 91]). The converse
is not true, i.e., there are problems for which an estimate like (2.9) does not hold, but
still remains Hadamard-well-posed by means a more general energy estimate than (2.9)
(e.g. strictly hyperbolic problems admiting glancing modes; see [102]).

2.4 Weak Lopatinskĭı condition

The main idea behind this condition (the necessary one) is the fact that IBVPs of the
form (2.3)-(2.4)-(2.5) might have solutions that violate any potential estimate like (2.9)
(i.e. solutions whose energy cannot be estimated in terms of the energy of the data);
whence the need of a condition to prevent those solutions to exist, this is known as the
weak Lopatinskĭı condition.

2.4.1 Normal modes analysis

The normal modes analysis consists of taking the Laplace transform in time and the
Fourier transform in the tangential variables y = (x1, . . . , xd−1) on (2.10) (see [15] for
details). This method amounts essentially to considering solutions to (2.10) of the form:

u(y, xd, t) :=eτt+iy.ξ̃
ψ(xd), (2.11)

where ξ̃ ∈ Rd−1, τ ∈ C, and since the problem(2.10) is defined on the half-space xd ≥ 0,
ψ is a column-vector giving the depth dependence of the solution. Note that when τ
is purely imaginary, (2.11) is a harmonic wave that propagates tangent to the surface
{xd = 0}, however we restrict ourselves to τ ’s with positive real part because, as the
author mentions in [120], the ill-posedness of (2.10) comes from such solutions when
Re τ > 0 and ψ(xd)→ 0 as xd → +∞. Henceforth (τ, ξ̃) is assumed such that Re τ > 0
and ξ ∈ Rd−1. Since we are just looking for a neccesary condition, we also assume
f = g = 0 in (2.10) and discard the initial condition. Substituting the normal mode
(2.11) into the equation and the boundary condition in (2.10), we obtain the following
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2.4 Weak Lopatinskĭı condition

ODE for the unknown depth-function ψ:
∂ψ

∂xd
= A(τ, ξ̃)ψ, xd > 0

Bψ(0) = 0,

ψ(∞) = 0

(2.12)

where
A(τ, ξ̃) := −(Ad)−1

(
τI + i

∑
j 6=d

ξjA
j
)
, (2.13)

that is well defined because of the non-characteristic boundary assumption: detAd 6= 0.
In summary, for fixed Re τ > 0 and ξ̃ ∈ Rd−1, the mode (2.11) satisfies the equation and
the boundary condition of our IBVP (2.10) if and only if ψ solves (2.12). So hereinafter
we will focus on it.

Remark 2.4.1. Second condition at (2.12) is needed to avoid solutions of “infinite
energy”, for which an estimate like (2.9) is no valid. For “infinite energy” we mean
functions growing exponentially as xd → ∞ and then with unbounded L2 norm. In
the literature of ODEs, problems like (2.12) are known as two-point boundary value
problems.

From the general theory of ODEs, it is known that the solution to (2.12) is given
in terms of the exponential matrix of A and the initial data ψ(0) as follows:

ψ(xd) =eA(τ,ξ̃)xd
ψ(0), xd ≥ 0. (2.14)

This expression gives rise to linear combinations of single basic solutions taking the
general form

ψk(xd) =e kxd
P (xd), xd ≥ 0, (2.15)

where k = k(τ, ξ̃) is an eigenvalue of matrix A, and P might be a single eigenvector
asociated to k or a polynomial in the xd variable with vector coefficients which may
be either eigenvectors or generalized eigenvectors associated to Jordan blocks in case
they appear. In the complex region of our concern, Re τ > 0, the spectrum of A is well
known thanks to Hersh [63]. Indeed, there are no purely imaginary eigenvalues and the
number of eigenvalues with negative (positive) real part remains invariant as ξ̃ vary on
the region {(τ, ξ̃) : ξ̃ ∈ Rd−1, Re τ > 0}. Therefore, to determine such numbers it is
enough to count the number of eigenvalues with negative (positive) real part of matrix
A(1, 0) = −(Ad)−1 that is p, the number of positive eigenvalues that we had assumed
for Ad.

Theorem 2.4.2 (Hersh’ lemma [63]). For fixed Re τ > 0 and ξ̃ ∈ Rd−1, the matrix A

has p eigenvalues with negative real part and n− p eigenvalues with positive real part.

Proof. See [63] (see also [15, 70, 120])
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Remarkably, the incoming and outgoing parts of the solution u for the multidi-
mensional IBVP (2.10) is determined by the number of eigenvalues with positive and
negative real part for matrix A even though explicit formulas for them, in higher di-
mension, are in general impossible to be derived. A complete analysis is provided by
Higdon in [64].

2.4.2 Stable and unstable subspaces

Despite all expression of the form (2.14) satisfy the differential equation in (2.12), not
all of them solve the complete two-point boundary problem. A descomposition of the
general solution (2.14) needs to be done in order to recognize the suitable solutions.
To that end, notice that Theorem 2.4.2 imples matrix A(τ, ξ̃) is hyperbolic in the sense
of dynamical system theory and thus, for fixed Re τ > 0 and ξ̃ ∈ Rd−1, there are two
mutually complementary vector-subspaces of Cn, that are invariant under A; they are
referred as the stable and unstable space, associated to eigenvalues with negative and
positive real part, respectively.

Definition 2.4.3. For fixed Re τ > 0 and ξ̃ ∈ Rd−1 we define the following complex
vector subspaces associated to matrix A(τ, ξ̃):

• Stable subspace: Denoted by Es(τ, ξ̃), it is the subspace spanned by all general-
ized eigenvectors asociated to eigenvalues with negative real part. We also define
the stable bundle denoted by Rs(τ, ξ̃) as the matrix whose columns form a basis
for Es(τ, ξ̃).

• Unstable space: Denoted by Eu(τ, ξ̃), it is the subspace spanned by all gener-
alized eigenvectors asociated to eigenvalues with positive real part. Ru(τ, ξ̃) will
denote the instable bundle and is likewise defined as in the stable case.

The spaces Es(τ, ξ̃) and Eu(τ, ξ̃) depend analytically on (τ, ξ̃) for Re τ > 0 (see,
[73]) and it straightforwardly follows that

Cn = Es(τ, ξ̃)⊕ Eu(τ, ξ̃). (2.16)

In view of Theorem 2.4.2 we also have:

dimEs(τ, ξ̃) = p, dimEu(τ, ξ̃) = n− p.

This duality implies that all solutions ψ of the form (2.14) can be descomposed into a
sum of a stable and unstable components. Indeed, (2.16) implies that vector ψ(0) ∈ Cn
can be written in a unique way as

ψ(0) = ψs0 + ψu0 , (2.17)

where ψs0 ∈ Es(τ, ξ̃) and ψu0 ∈ Eu(τ, ξ̃). Substituting back into (2.14) yields

ψ(xd) =eA(τ,ξ̃)xd
ψs0 +eA(τ,ξ̃)xd

ψu0 . (2.18)
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2.4 Weak Lopatinskĭı condition

The first term is referred to as the stable part of the solution because it is linearly
spanned by decaying modes of the form (2.15) with Re k < 0. This stable component
not only goes to zero as xd →∞ but also belongs to L2(0,+∞), the space of quadrati-
cally integrable complex-valued n-dimensional vector functions. Conversely, the second
term is built from modes (2.15) with Re k > 0, so it grows exponentially, revealing it
as the unstable part of the solution.

2.4.3 Stable solutions and necessary condition of well-posedness

Given the unbounded exponential growth of the unstable part as xd → ∞, modes of
the form (2.18) with non trivial unstable part, do not solve the problem (2.12) (the
second boundary-point condition at ∞ fails to hold). Therefore, the solutions of our
concern are the stable ones, which accordingly to (2.17) and (2.18) arise by selecting
ψ(0) = ψs0 ∈ Es(τ, ξ̃) and simultaneously satisfying Bψs0 = 0 to guarantee the fulfillment
of the first boundary condition in (2.12). Based on those ψ pure stable modes, Agmon
[2] built solutions to our IBVP (2.10) of the form (2.11) that violates the energy estimate
(2.9).

Theorem 2.4.4. Suppose that for some τ with Re τ > 0 and ξ̃ ∈ Rd−1, there is a
non-trivial stable solution ψ to (2.12) such that the following function:

u(y, xd, t) :=eτt+iy.ξ̃
ψ(xd),

satisfy both, the equation and the boundary condition in (2.10). Then the IBVP (2.10)
must then be ill-posed (not well-posed). Specifically, the existence or uniqueness property
does not hold.

Proof. See [64] or [2]

It is clear from the theorem above that such solutions are not desirable, so steps
must be taken to prevent them from appearing. Since those stable modes emerge from
fixing a non trivial ψ(0) ∈ Es(τ, ξ̃) such that Bψ(0) = 0, it will be sufficient to demand

KerB ∩ Es(τ, ξ̃) = {0}, Re τ > 0, ξ̃ ∈ Rd−1, (2.19)

which is well known as the weak Lopatinskĭı condition. For practical purposes, we
derive an algebraic form for this condition via the stable bundle Rs(τ, ξ̃) and the linear
operator B. Let be esi , i = 1, · · · , p the columns of Rs, since they form a basis for

Es(τ, ξ̃) we have all vector v in Es(τ, ξ̃) has a unique representation in the form:

v = c1e
s
1 + · · ·+ cpe

s
p = Rs(τ, ξ̃)

c1

...
cp

 (2.20)

Now, since rankB = p (see, Lemma 2.2.6), matrix B is actually a linear map that sends
Cn into Cp. Using the representation (2.20), the image of all vector v ∈ Es(τ, ξ̃) under
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B takes the form

Bv = BRs(τ, ξ̃)

c1

...
cp

 .

In this fashion, Lopatinskli condition (2.19) amounts to saying that the zero vector is
the only one within Es(τ, ξ̃) which vanishes under the matrix B, it means the linear
map B|Es(τ,ξ̃)

: Cp → Cp with associated matrix BRs(τ, ξ̃) is an isomorphism for each

(τ, ξ̃) ∈ C × Rd−1 with Re τ > 0, thus its determinant never turns zero. This is the
algebraic condition we were looking for.

Definition 2.4.5 (Kreiss - Lopatinskĭı condition). The boundary condition (2.5)
satisfies the Kreiss- Lopatinskĭı condition if

∆(τ, ξ̃) := det
(
BRs(τ, ξ̃)

)
6= 0, (2.21)

for all (τ, ξ̃) ∈ C× Rd−1 with Re τ > 0.

Remark 2.4.6. The ∆ function does not depend on the election of the basis of the space
Es(τ, ξ̃) (columns of Rs) and in turn it may be chosen analytically for each ξ̃ ∈ Rd−1

(see [15]). Therefore, the Lopatinskĭı determinant is a complex analytic function on the
complex region {Re τ > 0} for all ξ̃ ∈ Rd−1. Furthermore, it is a homogeneous function
of degree 1 in the (τ, ξ̃) variable due to the same property of the map (τ, ξ̃)→ A(τ, ξ̃).

The stability function ∆ determines the solvability of our first order hyperbolic
IBVP (2.10) by wave solutions that violate an L2 well-posedness estimate like (2.9).
Whenever a zero of ∆ occurs then there exist spatially decaying solutions with time
growth rate exp(tRe τ). Thus, the necessary condition (Theorem 2.4.4) for the problem
(2.10) to be well posed, amounts to asking ∆ does not vanish for Re τ > 0. We can
state the following version of theorem 2.4.4.

Theorem 1. Suppose that the equation (2.3) is constantly hyperbolic with a non-
characteristic boundary (2.5) (detAd 6= 0). If the IBVP (2.3), (2.4), (2.5) is well-posed
in the sense of Definition 2.3.1 then the weak Lopatinskĭı condition holds.

2.5 The sufficient condition of well-posedness

The Lopatinskĭı condition by itself does not ensure the well posedness of our IBVP,
that is, the existence of a energy estimate like (2.9). Yet, surprisingly, the sufficient
condition is obtained by just extending the Lopatinskĭı condition to the imaginary axis
(Re τ = 0); this is known as the uniform Kreiss-Lopatinskĭı condition (UKL).

Definition 2.5.1 (Uniform-Kreiss Lopatinskĭı condition). The IBVP (2.3), (2.4),
(2.5) satisfies the uniform Kreiss-Lopatinskĭı condition if:

∆(τ, ξ̃) 6= 0, (2.22)

for all (τ, ξ̃) ∈ C× Rd−1 with Re τ ≥ 0.
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Although the passing from Kreiss Lopatinskĭı condition to the uniform one looks
trivial, we must note the most difficult part of the analysis arises when Re τ = 0. That is
because matrix A(ρi, ξ̃) with ρ ∈ R fails to be hyperbolic due to the emergence of purely
imaginary eigenvalues which number vary with the position of (ρi, ξ̃), ρ ∈ R. Despite
the loss of hyperbolicity, matrix A(ρi, ξ̃) still holds a complete set of real eigenvectors
at points (ρ, ξ̃) inside the so called characteristic variety or cone (see [15, 64]). Instead,
for points (ρ, ξ̃) outside or at the edge of such that region, matrix A may becomes
defective due to the coalescence of its eigenvalues, which could indicate not only the
loss of analiticity but also the fact that the Lopatinskĭı determinant would not be well
defined for those points. However, in view of the degree-1 homogeneity of ∆(τ, ξ̃) we
introduce the normalization:

Γ+ :=
{

(τ, ξ̃) ∈ C× Rd−1 : Re τ > 0, |τ |2 + |ξ̃|2 = 1
}
, (2.23)

Kreiss showed that the Lopatinskĭı determinant is a continuous function on Γ+

for Re τ ≥ 0 (see [77]). Furthermore, the map (τ, ξ̃) → Es(τ, ξ̃) (already defined for
Re τ > 0) admits a unique limit at every boundary point (ρi, ξ̃) (with ρ ∈ R) (see, [15])
which indicate ∆(λ, ξ̃) is well defined not only on Γ+, but also on each point (τ, ξ̃) with
Re τ = 0.

The UKL condition was discovered by Kreiss [77] and results to be sufficient for
the L2 well-posedness of the problem (2.10) in the sense of Definition 2.3.1. The proof
is very technical and based on the construction of a symbol called Kreiss symmetrizer
whose existence is guaranteed by the UKL. The main result can be stated as follows

Theorem 2. Suppose that the equation (2.3) is constantly hyperbolic with a non char-
acteristic boundary (2.5) (detAd 6= 0). The IBVP (2.3), (2.4), (2.5) is well-posed in
the sense of Definition 2.3.1 if and only if the uniform Kreiss-Lopatinskĭı condition
holds.

A detailed proof can be found in the monograph [15]. The last theorem is not true
in general for symmetric or Friedrichs symmetrizable systems (2.3) with constant coef-
ficients, mainly because the multiplicity of the eigenvalues could vary with ξ. However,
when the boundary condition is assumed to be strictly dissipative, the symmetric IBVP
becomes L2 well-posed even if the non characteristic assumption is dropped (see [15]).
A remarkable fact we shall use in Chapter 2 is that this kind of problems satisfies the
uniform Kreiss Lopatinskĭı condition UKL. Specifically, we have the following.

Theorem 2.5.2. Suppose that the system of PDEs in (2.10) is Friedrichs symmetriz-
able. If the boundary condition (2.5) is strictly dissipative, then the IBVP (2.10) is L2

well posed for every data f ∈ L2
(
(0, T ) × Ω

)
, g ∈ L2

(
(0, T ) × ∂Ω

)
and even non zero

initial data u0 ∈ L2
(
Ω
)
. Moreover, the uniform Kreiss-Lopatinskĭı condition (UKL) is

satisfied.

Proof. See [120] for the non characteristic case and [15] for the general case.

At this point, we distinguish three general categories among linear hyperbolic
IBVP’s of the form (2.3), (2.4), (2.5):
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Definition 2.5.3. Let be ∆ the Lopatinskĭı determinant of a linear hyperbolic IBVP.
The latter is:

1. Strongly unstable if it does not satisfy the weak Lopatinskĭı condition. That is,
there exists at least one zero of ∆ of the form (τ, ξ̃) with Re τ > 0.

2. Weakly stable if it does satisfy the weak Lopatinskĭı condition, but fails to ac-
complish the uniform one. That is, there is at least one root for ∆ of the form
(ρi, ξ̃) with ρ ∈ R.

3. Strongly stable if it does satisfy the uniform Kreiss-Lopatinskĭı condition.

Remark 2.5.4. As we just saw in the last section, the existence of a zero of the Lopatin-
skĭı determinant in the region {Re τ > 0} leads to solutions with L2 norm impossible to
control, so an estimate of energy in terms of the data is not possible for strongly unstable
problems; Hersh [63] shows that the existence or uniqueness must fail to hold for such
a problems. Conversely, strongly stable problems are fully characterized by Theorem 2,
i.e., they are well posed in the sense of Kreiss. The weakly stable category instead sup-
ports a wide variety of problems, most notably weakly stable problems of real type (WR)
for which an estimate like (2.9) is possible, but with loss of one derivative (see [107],
[29] and [122]). Far worse is the situation for weakly stable problems exhibiting surface
or glancing wave phenomena, given that estimates of the form (2.9) might be achieved
only in the interior of the domain and not near to the boundary. This former class of
problems were recently studied by Motamed [102] and sharp well posedness results were
succefully obtained under the striclty hyperbolic assumption and a more general well
posedness notion than the one given by Kreiss (see Definition 2.3.1).

A complete study of hyperbolic problems of weakly stable type can be found in [14]
and [15].

2.5.1 Surface waves and weakly stable problems

Surface waves are widely known as solutions that propagate along the surface of the
spatial domain, with both harmonic dependence on time of the form eiωt and exponen-
tial decaying energy far away from the boundary. In the frame of Kreiss’s theory for
hyperbolic IBVPs, they emerge as typical solutions of some weakly stable problems.
This is when ∆(τ, ξ̃) vanishes at some boundary point (ωi, ξ̃0) with ω ∈ R such that
matrix A(ωi, ξ̃0) has at least one eigenvalue β = β(ω, ξ̃0) with negative real part. The
associated normal modes to such a boundary points have the form

u(y, xd, t) : =e(ωt+y.ξ̃0)i
ψ(xd),

=e(ωt+y.ξ̃0)ieβxd
ψ0,

(2.24)

which clearly propagates tangent to the surface {xd = 0} and decays exponentially fast
as xd → ∞ due to Reβ < 0; i.e., its modulus (and hence its energy density) is larger
near to the boundary and independent of the time.
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Remark 2.5.5. It is worth mentioning that the merely existence of a pure imaginary
zero of the Lopatinskĭı determinant does not imply the existence of a surface wave.
Indeed, given a zero (ωi, ξ̃0) of the Lopatinskĭı determinant, surface waves of finite
energy emerge as long as the stable space of matrix A(ωi, ξ̃0) equals the stable limit
space

lim
τ→ωi

Es(τ, ξ̃).

A sufficient condition for that condition to hold is that ω lies on the so called elliptic
region, which is an open interval over the imaginary axis and centered around the
origin (see [15], [123] for details). Its counterpart in the classical theory of elasticity
is the so called subsonic range: an interval of the form (0, c) where c is the smallest
bulk wave speed (see [131]). The Rayleigh wave speed is the unique zero of the secular
equation on that interval. As mentioned in [15], this kind of boundary points would
not be responsible of Hadamard inestabilities because it can be shown (under certain
conditions) that the associated hyperbolic problem results L2-well posed in the sense of
Definition 2.3.1. Motamed [102] refines the result by introducing a more general well
posed notion and assuming the strict hyperbolicity assumption.

Linear isotropic elasticity equations (also know as the Navier’s equation e.g., [22])
defined on the half space {x3 > 0} and subjected to the stress free boundary condition is
maybe one of the most basic weakly stable problems supporting a surface wave (widely
known as a Rayleigh wave). The well posedness of such problem can be argued by
physical considerations (see Aki & Richards [5]). However, a main relation between the
emergence of Rayleigh waves and the Lopatinskĭı determinant will be useful (in some
particular cases) for the Rayleigh wave analysis in more intricate problems. Indeed, the
associated Lopatinskĭı function for such basic problem only vanishes at pure imaginary
points of the form τ = ±cR|ξ̃|i which are associated to the well known Rayleigh wave
speed cR (see [120] and [131]). Such value cR is the only one zero of the secular equation
on the interval (0, cs) (subsonic range). This is not a coincidence but a consequence of
the fact that the Lopatinskĭı determinant, when restricted to the imaginary axis, is a
version of the associated secular equation for Rayleigh waves. In the next chapter it will
be shown that such relation hold true for the isotropic elasticity equations subjected
to a boundary condition of impedance type, and it will be exploited to provide partial
results about the existence of Rayleigh waves.
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Chapter 3

Surface wave analysis from the point of
view of Kreiss’ theory

In this chapter we consider the classical problem of existence of Rayleigh waves for the
two-dimensional isotropic elasticity equations subjected to a class of impedance bound-
ary conditions which generalizes the one studied in [14] for isotropic elasticity. Under
certain assumptions, the class of boundaries considered in this work also encompasses
those studied by Godoy [52], Malischewsky [94] and Pham Chi Vinh and Nguyen Quynh
Xuan in[138]. Based on the so called Stroh formalism or the surface impedance matrix
method [10, 86, 92, 131, 134], the existence and uniqueness of a Rayleigh wave has been
settled for anisotropic elastic solids occupying a half space subjected to the stress free
boundary condition. However, those methods cannot be directly extended to the the
case of impedance boundary condition we investigated here; so we will follow the clas-
sical approach employed in [1, 52] in which the existence of a Rayleigh wave depends
upon the occurrence of real zeros (phase speed) of the algebraic secular equation. Due
to the cumbersome associated secular equation, the calculations are pretty technical
and the analysis even more difficult to handle, hence the main goal of this chapter is to
express the problem in terms of the Lopatinskĭı determinant (in the same way done by
authors in [14]), in order to apply strictly dissipative boundaries from Kreiss’ theory
to derive some simple partial results about existence of Rayleigh waves in terms of the
impedance parameters.

The main motivation behind this analysis is to provide theorical tools from Kreiss’
theory that seem to be useful (in some particular configurations) to deal with the sec-
ular equation for Rayleigh waves in the presence of non-standard boundary conditions.
Secondly, despite the fact that the stress-free boundary condition has been success-
fully used in most of problems within linear elasticity, those of impedance type has
proven to be useful in some particular situations such as propagation in layered media
[20, 133], seismic wave propagation in the presence of discontinuities [93, 94], and some
transmission conditions at the interface between two elastic solids [103].

The chapter is organized as follows: in Section 3.1 we describe the object of our
study, namely the secular equation of Rayleigh waves associated to the second order
linear equations of motion of a two dimensional compressible isotropic half-space (Also
known as Navier’s equation) subjected to a class of impedance boundary conditions.
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We justify the model by highlighting some particular cases that arise in the literature.
In Section 3.2 we put the second order Navier’s equation into an equivalent first order
constrained linear system to verify all assumptions required for the Kreiss’ theory to
be applied; mainly, hyperbolicity and the non-characteristic property. For the sake
of generality, we make all calculations assuming the Navier’s equation in d ≥ 2 space
dimension defined on half-space {xd > 0}. Section 3.3 is devoted to the explicit calcula-
tion of the Lopatinskĭı function in dimension d = 2. We also show that the Lopatinskĭı
determinant is an extended version of the secular equation (defined on the real axis) to
the complex plane. In Section 3.4 we take advantage of such relation and the particular
behavior of the Lopatinskĭı function (secular equation) for real impedance parameters
to derive partial results for both well-posedness and existence of surface waves, being
the most remarkable the case when the impedance parameters are both negative or
both purely imaginary.

3.1 Problem formulation and secular equation

Let us consider the two dimensional equations of isotropic linear elasticity (also known
as Navier’s equation) defined on the half-space {x2 > 0}, which in the lagrangian
description reads (see [1, 5])

µ∇2u+ (µ+ λ)∇x
(
∇ · u

)
= ρutt, (3.1)

in which t ∈ R+, u = u(x1, x2, t) ∈ R2 is the displacement vector, ∇2 is the Laplace
operator, ∇x := ( ∂

∂x1
, ∂
∂x2

)>, ∇ · u denote the divergence, ρ the mass density constant
and µ, λ are the standard Lamé’s constants satisfying

µ > 0, λ+ µ > 0. (3.2)

We supply the equation with a zero initial data u(x1, x2, 0) = 0, ut(x1, x2, 0) = 0 and
a boundary condition at the surface given as

σ12 + γ1
∂u1

∂t
= 0

σ22 + γ2
∂u2

∂t
= 0

, x2 = 0, (3.3)

or in vectorial form as

−σê2 =

(
γ1 0
0 γ2

)
ut, x2 = 0, (3.4)

where γ1, γ2 are constants, ut the vector velocity and σ the stress tensor determined
by the constitutive isotropic equations

σ11 = (λ+ 2µ)
∂u1

∂x1
+ λ

∂u2

∂x2
,

σ22 = (λ+ 2µ)
∂u2

∂x2
+ λ

∂u1

∂x1
,

σ12 = σ21 = µ
(∂u1

∂x2
+
∂u2

∂x1

)
.

(3.5)
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3.1 Problem formulation and secular equation

Remark 3.1.1. We drop the source term in (3.1) because as we saw in the first chap-
ter, the well-posedness and the existence of Rayleigh waves are properties that strongly
depend on both the differential operator and boundary conditions. In practice, the
existence property of Rayleigh waves implies the capability of the problem to support
Rayleigh wave propagation under certain suitable source terms. For instance, if we
consider the stress-free case, γ1 = γ2 = 0 and a point source term that generates SH
waves (shear waves with particle displacement normal to x1-x2 plane), then the re-
flected wave field at the free surface remains of SH type, and hence there is no Rayleigh
waves (see Aki & Richards [5]). Conversely, if we consider a point source emananting
P waves such as in the Garvin’s problem [50], “the curvature of the wavefront, when
the wave is reflected at the free surface, produces diffraction effects of which the most
important is the Rayleigh wave”, as mentioned in Sánchez-Sesma & Iturrarán-Viveros
[118].

Since the impedance in the elasticity frame is defined as the ratio of stress to a
particle velocity (see Aki & Richards [5]), hereinafter we refer to γ1, γ2 as the impedance
parameters. Note that when γ1, γ2 vanish, we retrieve the standard stress free boundary
condition which leads to a well-posed problem supporting a unique Rayleigh wave (see
[123] for details). A main question to ask at this point is: Does the problem (3.1)-(3.4)
support Rayleigh waves for any choice of the impedance parameters? Neverthless, the
primary question to determine would be whether the problem is well-posed.

A Rayleigh wave that propagates in the x1-direction with phase velocity c > 0 and
wave number k = ω/c fits the general form:

u = e−ax2eik(x1−ct)
(
A
B

)
, (3.6)

where a, c, A and B remain to be determined, with a > 0 to ensure the exponential
decay with distance away from the surface {x2 = 0}. The secular equation is an
algebraic solvability condition for the Rayleigh wave (3.6) to solve the problem (3.1)-
(3.4). The details of its obtention can be found in Appendix A. For now, (3.1)-(3.4)
admits a surface wave of phase speed c as long as such value satisfies the non linear
algebraic equation:

(
c2

c2
s

− 2

)2

− 4

√
1− c2

c2
s

√
1− c2

c2
p

− c3i

µc2
s

γ1

√
1− c2

c2
s

+ γ2

√
1− c2

c2
p


+ c2γ1γ2

µ2

1−

√
1− c2

c2
s

√
1− c2

c2
p

 = 0,

(3.7)

where

cs :=

√
µ

ρ
, cp :=

√
λ+ 2µ

ρ
(3.8)
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are the S-wave and P -wave speed, respectively. The square roots in (3.7) are well
defined as c ∈ (−cs, cs) and the choice of Lamé constants (3.2) ensures cs < cp. We
refer (3.7) as “the secular equation for Rayleigh waves of impedance type”. In the stress-
free case γ1 = γ2 = 0, this equation becomes the standard secular equation for Rayleigh
waves [5, 62, 114], given by(

c2

c2
s

− 2

)2

− 4

√
1− c2

c2
s

√
1− c2

c2
p

= 0, (3.9)

which has real ceros c = ±cR, where cR is the unique zero in the interval (0, cs)
(subsonic range). Under assumption (3.2) (or equivalently, cs < cp), Achenbach [1], via
the argument principle from complex analysis, verified that (3.9) does not have complex
zeros (outside the real axis). This is not a minor fact, given that there are some values
λ, µ satisfying λ+µ < 0 for which cs, cp are well defined and the secular equation (3.9)
has both real and complex zeros (outside the real axis) [62, 123]. Hayes and Rivlin [62]
show that the associated displacement to those complex zeros are inadmissible, making
the Rayleigh wave analysis to be redundant. In the Kreiss’ framework, those complex
zeros lead to zeros with positive real part of the Lopatinskĭı determinant, so the trouble
is worse than that described in [62] since, according to Theorem 2.4.4, those zeros
cause Hadamard inestabilities for the hyperbolic problem (3.1)-(3.4), namely existence
or uniqueness fail to hold (see [123]).

For general no vanishing impedance parameters γ1, γ2, a direct localization of zeros
of the secular equation for Rayleigh waves of impedance type (3.7) results unthinkable,
given the intricacy of the final expression. Even the localization of complex zeros by
means of the argument principle is completely inviable. In Section 3.3 we express the
problem in Kreiss’ theory terms and use the strictly dissipative notion to give partial
results of both well posedness and Rayleigh wave existence when γ1 and γ2 are reals
(see e.g. [14]) or pure imaginary.

The IBVP (3.1)-(3.4) considered in this work has already been treated in the lit-
erature of both hyperbolic IBVP and seismic wave propagation. For instance, when
γ1 = γ2 = γ ∈ R, the boundary condition (3.4) takes the form

−σê2 = γut. (3.10)

This particular case was studied in detail by Benzoni-Gavage et al. [14] to ilustrate
a classification of weakly stable hyperbolic IBVPs presented there. Authors prove
that the problem is ill-posed for positive values of γ and satisfies the UKL without any
surface wave when γ < 0. Consequently, the unique surface wave in such a configuration
corresponds to the classical Rayleigh wave (when γ = 0). The boundary condition (3.4)
is clearly a natural generalization of (3.10). The L2 well posedness for the PDE (3.1)
with general boundary conditions is studied in detail in [101].

On the other hand, when we allow the impedance parameters γ1, γ2 to be pure imag-
inary, (3.7) equals the secular equation associated to the boundary problem investigated
in [52, 93, 94, 109, 138]. This problem has the potential of modeling seismic Rayleigh
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3.1 Problem formulation and secular equation

wave propagation along discontinuities, as Malischewsky showed in [93, 94]. Due to the
cumbersome secular equation, restrictions on the impedance parameters have been nec-
essary to simplify the problem and, in that way, to know whether the problem supports
Rayleigh waves. For instance, by assuming zero normal stress (γ2 = 0) and setting
γ1 = iZ, Z ∈ R, Godoy et al.[52] show the existence of a Rayleigh wave for all Z ∈ R.
Pham and Vinh [109] studied the opposite case γ2 = iZ with Z ∈ R, γ1 = 0 and showed
that the existence of a Rayleigh wave is not guaranteed for all values of Z. The case
when both impedance parameters are non zero remains unsolved. In Section 3.4.3 we
deal with this problem.

At first glance, complex impedance parameters might not make sense, however the
resulting boundary condition gains physical meaning when turning the problem into
the frequency domain. Indeed, let us set γ1 = Z1i, γ2 = Z2i, where Z1, Z2 ∈ R are
called the impedance parameters expressed in dimension of stress/velocity. Now we
procced as in [52] by assuming that the displacement vector depends harmonically on
time through e−iωt where ω is the angular frequency (this equals taking the Fourier
transform in time), namely

u(x1, x2, t) =e−iωt
û(x1, x2)

then

ut(x1, x2, t) = −iωe−iωt
û(x1, x2)

= −iωû(x1, x2).

By substituting at (3.4) and setting û = (û1, û2)>, we have{
σ̂12 + ωZ1û1 = 0
σ̂22 + ωZ2û2 = 0

, x2 = 0, (3.11)

where σ̂ denotes the dependence on û(x1, x2). The boundary condition (3.11) matches
with the one considered by Malischewsky [93, 94] with impedance parameters ε1 = ωZ1

and ε2 = ωZ2. To obtain the secular equation associated to the boundary condition
(3.11), substitute γ1 = Z1i, γ2 = Z2i in (3.7) to yield

(
c2

c2
s

− 2

)2

− 4

√
1− c2

c2
s

√
1− c2

c2
p

+
c3

µc2
s

Z1

√
1− c2

c2
s

+ Z2

√
1− c2

c2
p


− Z1Z2

µ2
c2

1−

√
1− c2

c2
s

√
1− c2

c2
p

 = 0,

(3.12)

Since c ∈ (0, cs), we can factor c4 from the first quadratic term and the factor c2

from the expression inside of each square root, which allow us to factor c4 from the
whole expression. We can write the resulting equation in terms of the slowness, namely

27



3. SURFACE WAVE ANALYSIS FROM THE POINT OF VIEW OF KREISS’
THEORY

s = 1/c, sp = 1/cp and st = 1/cs. After dropping the factor c4 6= 0 we obtain

(2s2 − s2
t )

2 − 4s2
√
s2 − s2

p

√
s2 − s2

t +
s2
t

µ

(
Z1

√
s2 − s2

t + Z2

√
s2 − s2

p

)
− Z1Z2

µ2

(
s2 −

√
s2 − s2

p

√
s2 − s2

t

)
= 0.

(3.13)

This coincides with the secular equation (with ε1 = Z1i, ε2 = Z2i) that Malischewsky
manage to derive in its work on seismic wave propagation under discontinuities [93] as
well as the secular equation derived by Godoy et al [52].

3.2 First order formulation and hyperbolicity

A preliminary step in order to apply the Kreiss’ theory is to express the second order
problem (3.1) as a first order linear system and then verify both hyperbolicity and the
non characteristic boundary assumptions. For the sake of generalizing, we consider the
d dimensional version of the elasticity equation (3.1) but eventually we will come back
to the two dimensional case when finding the Lopatinskĭı determinant.

Linear isotropic elastic equation in d space dimension can be written in vectorial
form as: {

ρutt = div(σ), x ∈ Ω,

σ(u) = µ(∇xu+∇>x u) + λ(divu)Id ∈ Rd×d,
(3.14)

where Ω is the d dimensional half-space {xd = 0}, ∇xu denotes the Jacobian matrix in
(x1, x2, . . . , xd) variables, div denotes the row-wise divergence of the d× d stress tensor
σ and u ∈ Rd, σ, µ, λ, ρ as in (3.1). The impedance boundary condition (3.4) in d
dimension takes the form

−σêd = Dγut, x2 = 0, (3.15)

where Dγ ∈ Rd×d is a diagonal matrix with impedance parameters γk, k = 1 · · · d.
To write (3.14)-(3.15) as a first order system, we procceed as in [14] by considering

the local velocity
v = −ut ∈ Rd, (3.16)

and the deformation gradient:

w = ∇xu ∈ Rd×d. (3.17)

Our goal is to yield a system like (2.3) with unknow u = (v, w) ∈ Rd × Rd×d. Indeed,
the isotropic stress tensor σ can be written in terms of w as:

σ = µ(w + w>) + λtr (w)Id. (3.18)

Given that div(w>)−∇(trw)> = 0, the divergence of stress tensor reduces to:

divσ = µ
(
divw + div(w>)

)
+ λId∇(trw)>

= µ divw + µ
(
div(w>)−∇(trw)>

)
+ (λ+ µ)∇(trw)>

= µ divw + (λ+ µ)∇(trw)>
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3.2 First order formulation and hyperbolicity

Thus, the equation of motion (3.14) can be recast into the following first order system
in the variables (v, w):

vt + µ′ divw + (λ′ + µ′)∇(trw)> = 0

wt +∇x v = 0,
(3.19)

where µ′ = µ/ρ and λ′ = λ/ρ. By a slight abuse of notation, let us write the unknows
(v, w)> as the column vector (v>, w>1 , · · ·w>d )> ∈ Rd+d2 where, wi is the i-th column
of matrix w; doing so, equations (3.19) can be written in the standard form (2.3) as
follows:

∂t

(
v
w

)
+

d∑
j=1

Aj∂xj

(
v
w

)
= 0, x ∈ Ω, t > 0 (3.20)

where matrices Aj are given as:

Aj =



0d×d M j1 · · · M jp · · · M jd

...
Id
...

0d×d

0d2×d2

 (3.21)

and M jp is a d× d matrix defined as

M jp := µ′δjpId + (λ′ + µ′)êj ⊗ êp

with p, j ∈ {1, . . . , d} and matrix Id on the first column appearing in the (j + 1)-th
d×d block from top to bottom. On the other hand in the new variables, the impedance
boundary condition (3.15) becomes:

Bγ

(
v
w

)
:=
(
µ(w + w>) + λ (trw)I2

)
êd −Dγv = 0, xd = 0, (3.22)

where matrix Bγ ∈ Rd×(d2+d) has been written by its action over the vector (v, w). It is
important mentioning that the change u→ (v, w) = (−ut,∇xu) is not onto due to the
appearing of solutions (v, w) to (3.19) that do not solve the original second-order system
(3.14). In order to avoid those spurious solutions, second-order spatial derivatives of u
need to be incorporated in the form of constraint equations:

∂wij
∂xk

=
∂wik
∂xj

, 1 ≤ i, j, k ≤ d. (3.23)

For convenience we henceforth write this constraint in terms of the columns of matrix
w. Since wk denotes the k column of w, the constraint takes the general form

∂xkwj = ∂xjwk, 1 ≤ j, k ≤ d. (3.24)
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We refer to it as the “curl-free” constraint and denote briefly as curlxw = 0, provided
that in dimension d = 3, if we view each row of w as a vector field in R3, then (3.24)
equals setting to zero the curl of each row of w.

To summarize, the second order boundary problem (3.14)-(3.15) has been written
as the first order IBVP (3.20)-(3.22) subjected to the additional constraint on the d2

second components of (u,w) given by

curlxw = 0. (3.25)

3.2.1 Hyperbolicity and non characteristic boundary

Given a frequency vector ξ ∈ Rd and the single expressions 3.21 for each matrix Aj , we
define the symbol:

Ã(ξ) :=
d∑
j=1

ξjA
j =



0d×d M1(ξ) · · · Mp(ξ) · · · Md(ξ)
ξ1Id
...

ξpId
...

ξdId

0d2×d2 ,


where Mp(ξ) =

∑
j ξjM

jp = µ′ξpId + (λ′ + µ′)ξ ⊗ êp. The tilded Ã denotes we have
not considered the curl-free constraint (3.24) yet. In view of remark 2.2.7, the way to
incorporate the constraint into the hyperbolicity analysis is to consider matrix Ã(ξ) as
a map restricted to the linear subspace N(ξ), namely

Ã(ξ)
∣∣∣
N(ξ)

,

whereN(ξ) is the kernel asociated to the curl-free constraint (3.24), but in the frequency
space. Indeed, we can directly access to such kernel by applying Fourier transform in
the spacial variables. This yields,

N(ξ) = {(ṽ, w̃) ∈ Cd × Cd×d : ξkw̃j = ξjw̃k, 1 ≤ j, k ≤ d},

where w̃k denotes the k- column of w. In order to make evident the statement to come,
let us express N(ξ) in a suitable form. Note that once the last column of w̃ is provided,
we can retrieve recursively from ξkw̃j = ξjw̃k the remaining w̃ columns. Hence by
making w̃d = ξdY , where Y ∈ Cd, we obtain w̃ij = ξj Yi, which in vectorial form reads:
w̃ = Y ⊗ ξ ∈ Cd×d. So N(ξ) becomes

N(ξ) =
{

(X,Y ⊗ ξ) : X,Y ∈ Cd
}
⊆∈ Cd × Cd×d.

The later enables us to verify the invariance of N(ξ) under Ã(ξ) as well as to find the
matrix associated to the restriction Ã(ξ) : N(ξ)→ N(ξ).
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3.2 First order formulation and hyperbolicity

Lemma 3.2.1. For every ξ ∈ Rd, the 2d-dimensional linear space N(ξ) is invariant
for Ã(ξ). The matrix A(ξ) : C2d → C2d that expresses the action:

Ã(ξ)(X,Y ⊗ ξ)> = (X̃, Ỹ ⊗ ξ)>

of Ã(ξ) on N(ξ) as

A(ξ)

(
X
Y

)
=

(
X̃

Ỹ

)
is given by

A(ξ) =

(
0d×d Q(ξ)

Id 0d×d

)
where Q is the symmetric d× d-block:

Q(ξ) := µ′|ξ|2Id + (µ′ + λ′) ξ ⊗ ξ

Proof. For ξ ∈ Rd, let us consider the vector (X,Y ⊗ ξ) ∈ N(ξ̃) with X,Y vectors
in Cd. Similarly as in the obtention of (3.20), we consider matrix Y ⊗ ξ as a column
vector. We find by inspection that:

Ã(ξ)(X,Y ⊗ ξ) =


(ξ1M

1 + . . .+ ξdM
d)Y

ξ1X
...

ξdX

 . (3.26)

Going back to the last d2 component of vector above into its matrix form, we haveξ1X
...

ξdX

→ (
ξ1X, . . . , ξdX

)
= Xξ> = X ⊗ ξ.

Hence denoting X̃ = (ξ1M
1 + . . .+ ξdM

d)Y and Ỹ = X, (3.26) takes the form

Ã(ξ)(X,Y ⊗ ξ) = (X̃, Ỹ ⊗ ξ) ∈ N(ξ), for all ξ ∈ Rd.

It follows N(ξ) is an invariant subspace. On the other hand, a direct computation
shows

X̃ = (ξ1M
1 + . . .+ ξdM

d)Y

=
(
µ′|ξ|2Id + (λ′ + µ′)ξ ⊗ ξ

)
Y

= Q(ξ)Y.

Therefore (
X̃

Ỹ

)
=

(
Q(ξ)Y
X

)
=

(
0d×d Q(ξ)

Id 0d×d

)(
X
Y

)
.

This completes the proof.
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By means of Remark 2.2.7 and the lemma above, we claim that once a given initial
condition satisfies the curl-free constraint, the evolution governed by our first order
elastic system (3.20) will preserve it. Furthermore, from the resulting matrix of last
lemma we can easily verify the hyperbolicity.

Lemma 3.2.2. The constrained first order linear system (3.20) is constantly hyperbolic.
When d = 2, the system becomes strictly hyperbolic.

Proof. According to Definition 2.2.3, we must show matrix A(ξ) from Lemma 3.2.1 is
uniformly diagonalizable. It follows from the fact that for all ξ 6= 0, the d×d symmetric
block Q(ξ) is definite positive. Indeed, by using the Sylvester’s determinant identity
(see [6]), the characteristic polynomial factorizes as

det
(
κId −Q(ξ)

)
= det

(
κId −

(
µ′|ξ|2Id + (µ′ + λ′) ξ ⊗ ξ

))
=
(
κ− µ′|ξ|2

)d−1(
κ− (λ′ + 2µ′)|ξ|2

)
=
(
κ− c2

s|ξ|2
)d−1(

κ− c2
p|ξ|2

)
.

where cs =
√
µ′ and cp =

√
λ′ + 2µ′ are the bulk wave speeds. Thus the eigenvalues

are κ1 = c2
s|ξ|2, κ2 = c2

p|ξ|2, both positive and with algebraic multiplicity d − 1 and
1 respectively. So the multiplicities are independent of the frequencies ξ. Moreover,
the symmetric matrix Q(ξ) is clearly definite-positive and admits a unique square root
symmetric positive definite matrix, say Q1/2(ξ). Since the symmetric property, there
are H(ξ) othogonal and D(ξ) diagonal such that

Q1/2(ξ) = H>(ξ)D(ξ)H(ξ),

where the diagonal components of D are given by
√
κ1 = cs|ξ| (d − 1 times) and√

κ2 = cp|ξ| (just once). From the later we have HQ = D2H>, therefore direct block-
by-block computation gives(

H DH
H −DH

)(
0d×d Q(ξ)

Id 0d×d

)
=

(
DH HQ
−DH HQ

)
=

(
DH D2H
−DH D2H

)
=

(
D 0d×d

0d×d −D

)(
H DH
H −DH

)
.

So, matrix

P (ξ) =

(
H DH
H −DH

)
diagonalizes A(ξ). We only have to check P is invertible. Indeed, since block matrices
in the first block column trivially conmutes, a 2 × 2 determinant-wise computation
applies [126], so we have

detP = det

(
H DH
H −DH

)
= det

(
− 2HDH

)
= (−2)d(detH)2 detD 6= 0
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3.3 Calculation of Lopatinskĭı determinant

The uniform diagonalization follows from the fact that

P (ξ) =

(
Id D
Id −D

)(
H 0
0 H

)
.

Since the diagonal components of D has the form c|ξ|, it does not depend on ξ once
|ξ| = 1. Let be C0 the norm of the first matrix factor. The second matrix factor in
turn is unitary (yet orthogonal) by means of the orthogonality of matrix H; thus we
have ‖P (ξ)‖ ≤ C0, provided of course that |ξ| = 1. On the other hand, From the Schur
complement and block wise calculation, matrix P−1(ξ) is given by

P−1(ξ) =
1

2

(
H> 0
0 H>

)(
Id Id
D−1 −D−1

)
.

Using the same argument for P , we conclude ‖P−1(ξ)‖ ≤ C ′0 for all ξ with |ξ| = 1.
Since C0, C

′
0 are independent of ξ, this completes the proof. Note that when d = 2, the

eigenvalues of the matrix Q(ξ) have multiplicity 1 (simple eigenvalues) then so do the
eigenvalues of the matrix A(ξ). Hence, the system is strictly hyperbolic.

In view of last lemma, we have immediately the non-characteristic property.

Corollary 3.2.3. The boundary {xd = 0} is non-characteristic for the constrained
linear hyperbolic system (3.20)-(3.22).

Proof. According to Definition (2.2.5) we just have to check detA(êd) 6= 0. In view of
Lemma 3.2.2, the eigenvalues of A(ξ) have the form ±c|ξ|, with c = cs, cp 6= 0. Then
the determinant, which is the product of all its eigenvalues, never vanishes whenever
ξ 6= 0. In particular, the property holds for ξ = êd, so detA(êd) 6= 0 .

3.3 Calculation of Lopatinskĭı determinant

In this section, we calculate explicitly the Lopatinskĭı determinant associated to the
hyperbolic constrained problem (3.20)-(3.22)-(3.25) and stablish the precise relation
with the secular equation for Rayleigh of impedance type (3.7).

The general formula (2.21) tells us that the columns of the Lopatinskĭı determinant
have the form B~V , with B the matrix that defines the boundary condition and ~V a
column of the stable bundle Rs(τ, ξ̃), or equivalently an element of any suitable basis of
Es(τ, ξ̃). In the particular case of the Navier’s equation (3.1), explicit characterization
of the associated stable space Es(τ, ξ̃) for the in dimension d ≥ 2, is given in [14] (see
Appendix B for a detailed calculation). Therefore, the Lopatinskĭı function can be
directly assembled from matrix Bγ (see (3.22)) that defines the boundary condition in

the first order formulae, and vectors from a suitable basis of Es(τ, ξ̃)
Since our case of interest is the two dimensional isotropic elasticity, we carry out

the remaining calculation in dimension d = 2. Hence, ξ̃ reduces to a scalar frequency
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ξ̃ = ξ1. The stable space Es(τ, ξ1) associated to the first order elastic system (3.20) can
be written in form of a direct sum, which is shown in Appendix B. The result is:

Es(τ, ξ1) = Essh(τ, ξ1)⊕ Esp(τ, ξ1), (3.27)

where each vector space term in the sum of subspaces above has dimension 1 whenever
d = 2. They take the form

Essh(τ, ξ1) =

{(
τv
w

)
∈ C2 × C2×2; v>

( ξ1
ωs

)
= 0, w = −iv ⊗

( ξ1
ωs

)}
,

Esp(τ, ξ1) =

{(
τv
w

)
∈ C2 × C2×2; v = k

( ξ1
ωp

)
, w = −ik

( ξ1
ωp

)
⊗
( ξ1
ωp

)
, k ∈ C

}
,

(3.28)

associated to eigenvalues ωpi, ωsi respectively; here

ωp := i

√
τ2

c2
p

+ |ξ̃|2, ωs := i

√
τ2

c2
s

+ |ξ̃|2, (3.29)

and
√
. is the branch with positive real part, or better yet, the principal branch. This

ensures both the stability of eigenvalues (Re (ωpi) < 0, Re (ωsi) < 0), as well as their
analyticity as τ varies over the right complex half plane Re τ > 0. Consequently, all
basis for Es(τ, ξ1) (or the stable bundleRs(τ, ξ1)) has the form{(

τv1

w1

)
,

(
τv2

w2

)}
(3.30)

where the first vector lies in Essh(τ, ξ1) and the second one in Esp(τ, ξ1). For the first

vector, any v1 ∈ C2 such that v>1
( ξ1
ωs

)
= 0 will work, so we choose

v1 =
( ωs

−ξ1

)
, w1 = −i

( ωs

−ξ1

)
⊗
( ξ1
ωs

)
. (3.31)

We select the second vector by setting k = 1 in Esp(τ, ξ1). This gives

v2 =
( ξ1
ωp

)
, w2 = −i

( ξ1
ωp

)
⊗
( ξ1
ωp

)
. (3.32)

According to (2.21), the columns of the Lopatinskĭı determinant in this case have the
form Bγ

( τvk
wk

)
with k = 1, 2, where the matrix Bγ (see equation (3.22)) in dimension

d = 2 fits the form

Bγ

(
v
w

)
:=
(
µ(w + w>) + λtrw

)
ê2 −

(
γ1 0
0 γ2

)
v.

Putting (3.32) and (3.31) into the equation above and introducing the resulting vectors
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3.3 Calculation of Lopatinskĭı determinant

as columns of the determinant in the formula (2.21) yields

∆(τ, ξ1) =
∣∣Bγ( τv1w1

)
Bγ
( τv2
w2

)∣∣
=

∣∣∣∣∣ −2µωpξ1i− τγ1ξ1 −µω2
s i− τγ1ωs + µξ2

1 i

−(λ+ 2µ)ω2
pi− τγ2ωp − λξ2

1 i 2µωsξ1i + τγ2ξ1

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
−2µωpξ1i− τγ1ξ1 µi

(τ2

c2
s

+ 2ξ2
1

)
− γ1ωsτ

µi
(τ2

c2
s

+ 2ξ2
1

)
− γ2ωpτ 2µωsξ1i + τγ2ξ1

∣∣∣∣∣∣∣∣∣ ,
(3.33)

inasmuch as (λ+2µ)/c2
p = ρ = µ/c2

s and (3.29). A direct calculation of the determinant,
the substitution of (3.29) into the complete formula (3.33) and a final simplification
gives the desired expression for the Lopatinskĭı determinant associated to the two di-
mensional Navier’s equation (3.1) (or its linear version (3.20)) subjected to impedance
boundary conditions of the form (3.4) (or (3.22) in its linear version). That is

∆(τ, ξ1) = µ2

[(τ2

c2
s

+ 2ξ2
1

)2
− 4ξ2

1

√
ξ2

1 +
τ2

c2
p

√
ξ2

1 +
τ2

c2
s

− τ3

µc2
s

γ1

√
ξ2

1 +
τ2

c2
s

+ γ2

√
ξ2

1 +
τ2

c2
p


+
γ1γ2

µ2
τ2

−ξ2
1 +

√
ξ2

1 +
τ2

c2
s

√
ξ2

1 +
τ2

c2
p

].
(3.34)

According to Theorem 2 and Definition 2.5.3, the scalar complex field (3.34) encodes all
the information regarding the well posedness of the associated constrained hyperbolic
IBVP (3.20)-(3.22)-(3.25). Without loss of generality we may assume ξ1 = 1 by the ho-
mogenety of ∆ and, thus, we define the following “normalized Lopatinskĭı determinant”

∆̂(τ) :=
1

µ2
∆(τ, 1) =

(τ2

c2
s

+ 2
)2
− 4

√
1 +

τ2

c2
p

√
1 +

τ2

c2
s

− τ3

µc2
s

γ1

√
1 +

τ2

c2
s

+ γ2

√
1 +

τ2

c2
p


+
γ1γ2

µ2
τ2

−1 +

√
1 +

τ2

c2
s

√
1 +

τ2

c2
p


(3.35)
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This is the main expression for the Lopatinskĭı determinant we shall be working with,
concretely we shall focus in determining the existence of zeros of ∆̂ on the closed right
complex half plane Re τ ≥ 0 (see Remark 2.5.4).

Remark 3.3.1. Consider the stress free case, namely γ1 = γ2 = 0. Under the choice
of the Lamé constants (3.2), it is well known that the Lopatinskĭı function (3.35) has
only two pure imaginary zeros τ = ±cRi (see, e.g., [15, 123]), so the IBVP (3.1)-(3.3)
satisfies the weak Lopatinskĭı condition but does the uniform one. Therefore, according
to Theorem 2, it is not well posed in the Kreiss’ sense (see Definition (2.3.1)). As
already noted in Remark 2.3.2, that does not necessarily imply the ill-posedness (in
Hadamard sense) of the hyperbolic IBVP. Actually, via the stored energy associated
to the hyperbolic equation (3.1), it can be proved that when γ1 = γ2 = 0, the IBVP
(3.1)-(3.3) is well-posed (see, e.g,[123]).

The version (3.35) of the Lopatinskĭı determinant is undoubtedly a version of the
secular equation for Rayleigh waves of impedance type (3.7). More precisely, substitut-
ing τ = −ci c ∈ R in (3.35) yields the secular equation for Rayleigh waves of impedance
type (3.7). The minus sign in the choice of τ arises from the minus sign of the velocity
in the change of variables (3.16) used in the obtention of the first order formulation of
the second order equation (3.14). We have the following lemma

Lemma 3.3.2. The secular equation of Rayleigh waves of impedance type (3.7) is the
restriction of the Lopatinskĭı determinant (3.34) to the imaginary axis {τ = −ci : c ∈
R}. More precisely, c ∈ R is a zero of the secular equation (3.7) if and only if

∆̂(−ci) = 0. (3.36)

Remark 3.3.3. Since the Lopatinskĭı function, τ → ∆(τ) is known to be analytic on
Re τ > 0 and continuous on Re τ ≥ 0, Proposition 3.3.2 implies that the function which
defines the secular equation (3.7) (the left hand side) extends into the continuous func-
tion c → ∆(−ci) from c ∈ (−cs, cs) ⊂ R to the complex closed region {Re (−ci) ≥ 0},
that is {Im c ≥ 0}; moreover, the extension is analytic on {Im c > 0}. Therefore,
Lopatinskĭı conditions (weak and uniform) can be written in terms of the secular equa-
tion as follows: The weak Lopatinskĭı condition (the necessary condition for well
posedness) amounts to the absence of zeros c in {c ∈ C : Im c > 0} of the secular equa-
tion. Conversely, the uniform Kreiss-Lopatinskĭı condition is tantamount to the
absence of zeros in {Im c ≥ 0} rather than just on {Im c > 0}. Since the existence of
a Rayleigh wave is determined by a zero of the secular equation in (−cs, cs), the fulfill-
ment of the uniform Kreiss-Lopatinskĭı condition implies the non existence of Rayleigh
waves.

Clearly, in view of Remark 3.3.3 and Lemma 3.3.2, looking for a surface wave
implies not only proving the existence of a real root c ∈ (0, cs) for the associated
secular equation, but also verifying the non existence of complex zeros in the upper
complex half plane {Im c > 0}; Otherwise, the weak Lopatinskĭı condition is violated
and the associated hyperbolic IBVP results in an ill-posed problem. This crucial fact
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3.3 Calculation of Lopatinskĭı determinant

is not well known in the frame of Rayeligh wave propagation, even though the work
by Hayes and Rivlin [62] (in the elasticity framework) where it is showed that complex
zeros (outside the real axis) for the stress free secular equation (3.9) are possible when
µ < 0, µ+λ < 0 and also that the corresponding displacement fields (to those zeros) are
physically inadmissible. The long stablished criterion for the Rayleigh wave analysis to
be done just focuses on the real zeros of the secular equation. This criterion is stated
in [138] and reads as follows

If a Rayleigh wave exist, then the secular equation has a solution in the subsonic
range (0, cS). Conversely, if the secular equation has a solution lying in the interval

(0, cS), then a Rayleigh wave is possible.

The contribution of Kreiss’ theory to the existence problem of Rayeligh waves under
impedance boundary condition relies on the fact that the existence of complex zeros of
the secular equation in {Im c > 0} implies that either the existence or uniqueness of a
solution for the boundary problem fail to hold and then a Rayeligh wave is not possible
regardless of real roots of the secular equation. So we give an improved version of the
criterion above.

Lemma 3.3.4. If the secular equation has a solution lying in the interval (0, cS) and
does not have complex roots in the complex upper half-plane {Im c > 0}, then a Rayleigh
wave is possible.

We are not saying that the usual criterion is wrong, but just that looking for zeros
of the secular equation are meaningless, if we first realize the existence of at least one
zero of the secular equation in the region {Im c > 0}. This is worth considering, given
the tremendous technical challenges associated to the analysis of a secular equation on
the real axis.

On the other hand, the well posedness of hyperbolic problems having an associated
Lopatinskĭı determinant (secular equation) with pure imaginary zeros (real zeros) is,
in general, an open problem. In a very recent paper, [102] the well posedness of this
kind of problems is adressed but under the strict hyperbolicity assumption, however,
as we showed in lemma 3.2.2, the problem in consideration satisfies the assumption
only in dimension d = 2. Even in this case, such theory might not apply since the
first order system we obtained (3.20) is subjected to the curl-free constraint and the
mentioned work does not consider constrained problems. As we will see, the original
second order Navier’s equation can also be written as a symmetric first order system
free of constraints, unfortunately the non-characteristic boundary conditions is lost in
this formulae.

Remark 3.3.5. It worth mentioning that the stress free secular equation (3.9) depends
on c through c2, so its zeros necessarily correspond to symmetric pairs respect to the
origin in the complex plane, whence the equivalence between the absence (existence) of
roots in {Im c > 0} and the absence (existence) outside the real axis. That will be the
case for the secular equation (3.7) when the impedance parameters are pure imaginary,
provided the following algebraic property:
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∆̂(−τ ; γ1, γ2) = ∆̂(τ ;−γ1,−γ2)

3.4 Results about existence of Rayleigh waves and well
posedness

In this section we derive some conditions in terms of the impedance parameters γ1,
γ2, under which the hyperbolic IBVP (3.1)-(3.4) is well posed and determine whether
it supports Rayleigh waves. We shall take advantage of cases where the boundary
condition is strictly dissipative inasmuch as the uniform Lopatinskĭı condition holds
trivially in this case. That is, the secular equation does not vanish on {Im c ≥ 0}.

3.4.1 Case γ1, γ2 > 0

The case γ1 = γ2 = γ ∈ R was investigated in detail by Benzoni-Gavage et al. (see [14],
Proposition 5.1). It was proved there that the Lopatinskĭı determinant (3.35) has at
least one zero with positive real part, for all γ > 0; so the weak Lopatinskĭı condition
is violated and the problem is ill-posed (or strongly unstable according to Definition
2.5.3). However, the arguments used for that case cannot be extended directly to the
case of general positive values γ1, γ2; so, here we restrict ourselves to the infinite bands
(0, ρcs)× (ρcp,+∞) and (csρ,+∞)× (0, cpρ) whithin the first quadrant of the γ1 − γ2

plane (recall ρ is the density). That is,

(γ1, γ2) ∈ (0, csρ)× (cpρ,+∞)∪ (csρ,+∞)× (0, cpρ). (3.37)

In this case, the weak Lopatinskĭı condition fails to hold due to the existence of a
positive real zero of ∆̂. Hence, the associated hyperbolic IBVP (3.20)-(3.22)-(3.25) is
ill-posed according to Theorem 2.4.4.

Lemma 3.4.1. If (γ1, γ2) are choosen as in (3.37), then there is at least one real zero
of the Lopatinskĭı determinant in the domain {τ ∈ C : Re τ > 0}.

Proof. Letting τ = x ∈ R, we see that ∆̂ is a real valued function defined on R, provided
that γ1, γ2, τ, cs, cp, µ are reals.

∆̂(x) =
(x2

c2
s

+ 2
)2
− 4

√
1 +

x2

c2
p

√
1 +

x2

c2
s

− x3

µc2
s
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√
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x2

c2
s
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p
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+
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c2
p

 .

(3.38)
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We claim that ∆̂ has at least one zero on (0,∞). Indeed, a straighforward calculation
yields

∆̂(0) = 0, ∆̂′(0) = 0, ∆̂′′(0) = 4
( 1

c2
s

− 1

c2
p

)
> 0.

Since ∆̂ is non constant differentiable function, there is a local minimum at the critical
point x = 0. Therefore, there must be 0 < ε � 1 such that ∆̂(ε) > 0. On the other
hand, notice that function ∆̂ for large x behaves like

∆̂(x) ≈ ρ2x2

cscp

(
cs −

γ1

ρ

)(
cp −

γ2

ρ

)
.

The choice of the impedance parameters (3.37) ensures that ∆̂ takes negative values as
x→ +∞ and therefore, by the Intermediate Value Theorem, ∆̂ vanish in at least some
x0 > 0.

Due to the ill-posed character of the associated hyperbolic problem, a subsequent
Rayleigh wave analysis turns out to be meaningless in this case. In other words, the
secular equation has a complex root in the upper complex half-plane and then Rayeligh
wave is not possible, according to Lemma 3.3.4

3.4.2 Case γ1, γ2 < 0

In this case both the well-posedness and Rayleigh wave analysis is done straighforwardly
thanks to the fact that the boundary condition (3.22) becomes strictly dissipative,
and hence the uniform Kreiss-Lopatinskĭı condition holds, as stated in Theorem 2.5.2.
However, the notion of strictly dissipative boundary conditions 2.2.2 is defined only
for first order symmetric systems and clearly the system (3.20) is not. However, in
dimension d = 2, it can be transformed into a symmetric system by means the change
of variables

y =


y1

y2

y3

y4

y5

 :=


2cs
√
λ′ + µ′w11

cpcs(w12 + w21)
λ′w11 + c2

pw22

cpv1

cpv2,

 ,

which transforms the constrained first order system (3.19)-(3.25) with d = 2 into the
symmetric system (see e.g [15, 101])

yt + S1yx1 + S2yx2 = 0, (3.39)

where S1 and S2 are symmetric matrices given by

S1 =

(
03×3 S>1
S1 02×2

)
∈ R5×5, S1 :=

(
2cs
√
λ′+µ′

cp
0 λ′

cp

0 cs 0

)
∈ R2×3

S2 =

(
03×3 S>2
S2 02×2

)
∈ R5×5, S2 :=

(
0 cs 0
0 0 cp

)
∈ R2×3.
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It is worth mentioning that the curl-free constraint is strongly used to yield (3.39),
so the new system does not have any constraint. Notice that, although the boundary
{x2 = 0} is now characteristic (detS2 = 0), Theorem 2.5.2 still applies, hence the
uniform Lopatinskĭı condition holds.

We now turn the boundary condition (3.22) to the new y variable. First, since
λ′ = λ/ρ and µ′ = µ/ρ, the components of the strain w in terms of the “y” variable is
given by

w11 =
y1

2cs
√
λ′ + µ′

w12 + w21 =
y2

cpcs

w22 =
−λ′y1

2c2
pcs
√
λ′ + µ′

+
y3

c2
p

.

(3.40)

Therefore, the boundary condition (3.22) takes the form:

B̂γy =

(
0 µ 0 −γ1cs 0
0 0 λ+ 2µ 0 −γ2cp

)
y1

y2

y3

y4

y5

 =

(
0
0

)
(3.41)

Remark 3.4.2. The Lopatinskĭı determinant associated to the symmetric first order
version of the Navier’s equation (3.39)-(3.41) equals (3.34), up to a constant factor.

Based on the first order symmetric formulation for the second order equations of
isotropic elasticity, equation (3.39) above, we are ready to prove that the boundary
condition (3.41) is strictly dissipative (see Definition 2.2.2). We will prove this property
letting γ1, γ2 to be complex constants with negative real part.

Lemma 3.4.3. Suppose that γ1, γ2 are complex constants with negative real part. The
boundary condition (3.41) is strictly dissipative for the 5× 5 symmetric system (3.39).

Proof. Since columns 2 and 3 of matrix B̂γ are linearly independent, the map ~v → B~v
is clearly a surjective map. Hence, according to Definition 2.2.2, it remains to show
that ker B̂γ is a maximal non positive subspace of the matrix S2 from (3.39). A simple
calculation in (3.41) reveals that ker B̂γ is the set of all solution to the linear system{

µy2 − γ1csy4 = 0

(λ+ 2µ)y3 − γ2cpy5 = 0
,

therefore

ker B̂γ =

{(
s0,

γ1

ρcs
s1,

γ2

ρcp
s2, s1, s2

)>
: s0, s1, s2 ∈ C

}
(3.42)

inasmuch as (3.8). Let us first verify that ker B̂γ is a non positive subspace, namely
the quadratic form Q(y) := y ∗S2y ≤ 0 for all y ∈ ker B̂γ . From (3.42) we choose any
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vector y ∈ ker B̂γ by taking s0, s1, s2 ∈ C3. A straightforward calculation gives

Q(y) =
2

ρ

(
|s1|2Re γ1 + |s2|2Re γ2

)
, (3.43)

which is clearly non positive, provided that Re γ1 < 0 and Re γ2 < 0. We must also
check that Q vanishes only on kerS2 ⊂ ker B̂γ . Indeed, it follows from (3.43) that Q
vanishes (on ker B̂γ) if and only if s1 = s2 = 0, so all vectors that make Q zero have
the form (s0, 0, 0, 0, 0), s0 ∈ C. The latter is precisely the kernel of matrix S2.
To prove ker B̂γ is a maximal non positive subspace, it is enough to verify that its
dimension is the largest possible for a non positive susbspace W of the hermitian (yet
symmetric) S2. We claim this largest dimension is given by the number of both zero
and negative eigenvalues of S2 (counting with multiplicities). Indeed, if we denote S−

the spectral subspace of S2 associated to both negative and zero eigenvalues and S+

the positive spectral subspace, then we have

C5 = S− ⊕ S+.

Since vectors in S+ are associated to positive eigenvalues, it follows that

Q(y) = y ∗S2y > 0 for all y 6= 0 in S+,

which means S+ is a positive subspace. Hence, S+ ∩ W = {0} for all non positive
subspace W . If we consider the orthogonal projection Π− on S− defined on C5, then
the above analysis implies ker Π− = S+, and hence the restriction Π− : W → S− is an
injective map for any given non positive subspace W , therefore

dimW = dim
(
Π−(W )

)
≤ dim S−. (3.44)

It is not hard to see that the eigenvalues of the hermitian S2 are 0,±cs,±cp all simple,
so dim S− = 3. In view of (3.44), the dimension of any given non positive subspace W
of S2 is at best 3, which is precisely the dimension of the non positive subspace ker B̂γ ,
so it is maximal.

Remark 3.4.4. The assumption that both impedance constants γ1, γ2 have negative
real part plays an essential role here. For instance, if only one of them has zero real
part, observe that the quadratic form Q is still non positive, however it vanishes in a
larger subspace than kerS2 and then the boundary condition (3.41) is no longer strictly
dissipative. In particular, when γ1, γ2 are pure imaginary, the boundary condition (3.41)
fails to be striclty dissipative.

At first glance, one may think that allowing complex values for both impedance
parameters γ1, γ2 is incompatible with the primary assumption that matrix B̂γ has
real entries. However, the “Lopatinskĭı determinant” is the determinant of the matrix
associated to the linear map ~v → B̂γ~v restricted to the stable space Es(τ, ξ̃) ⊆ C5. In
this fashion, matrix B̂γ is allowed to have complex entries as it is a linear map between
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complex linear spaces. In this case, the fulfillment of the uniform Kreiss-Lopatinskĭı
condition follows from Theorem 2.5.2 and merely means that the equation ∆̂(τ) = 0
does not have solutions for Re τ ≥ 0. Denoting by ∆̂(τ ; γ1, γ2) the Lopatinskĭı function
∆̂ to emphasize its dependence on γ1, γ2, we have the following corollary that shall be
fundamental to deal with the pure imaginary case

Corollary 3.4.5. Let γ1, γ2 be complex constants such that Re γ1 < 0, Re γ2 < 0 and
the domain Ω := {τ ∈ C : Re τ > 0}. The Lopatinskĭı function

∆̂( · ; γ1, γ2) : Ω→ C

has no zeros on Ω = {τ ∈ C : Re τ ≥ 0}.

For the case of our concern when γ1, γ2 are both real negative, Lemma 3.4.3 trivially
applies and the boundary condition (3.41) is strictly dissipative. Therefore, Theorem
2.5.2 implies the L2 well posedness of the IBVP (3.39)-(3.41), as well as the fulfillment
of the uniform Kreiss-Lopatinskĭı condition (∆̂ does not vanish in {Re τ ≥ 0}). In
view of lemmas 3.3.2, 3.3.4 and Remark 3.3.3 the secular equation (3.7) does not have
zeros, neither in {Im c > 0}, nor along the real zeros; that is, the problem does not
support Rayleigh waves. Strangely enough, it is possible (theoretically) to avoid the
emergence of surface Rayleigh waves, which are responsible for most of damage during
an earthquake. We recast the latter into the following corollary.

Corollary 3.4.6. Consider the second order hyperbolic IBVP (3.1) with impedance
boundary condition (3.4). If both impedance parameters γ1, γ2 are negative (simultane-
ously), then the problem is L2 well posed but does not support surface Rayleigh waves.

Recall that each square root in ∆̂(τ ; γ1, γ2) (see (3.35)) are assumed to be the prin-
cipal branch of the square root. Therefore, function ∆̂ is analytic on Ω and continuous
on Ω for all γ1, γ2 ∈ C.

3.4.3 Case γ1, γ2 pure imaginary

This case has been studied in the literarure because its potential to model seismic wave
propagation through discontinuities [52, 93, 94, 109, 138]. Due to the intricate secular
equation of Rayleigh waves of impedance type (3.13), the existence and uniqueness
problem of Rayleigh waves has been obtained for particular cases by setting one of the
impedance parameters to zero [52, 109, 138]. The case when both impedance param-
eters does not vanish remains unsolved. Though not solved completely, we consider
here the unsolved problem and manage to prove that the secular equation (3.13) has
no complex zeros outside the real axis. According Remark 3.3.3, this is a fundamental
property to be checked, since the existence of such zeros are associated to inadmissible
desplacements fields that cause Hadamard instabilities. The idea of the proof is to ex-
tend the result of Corollary 3.4.5 to the present case via the classical Hurwitz’s theorem
from complex analysis. In view of Remark 3.3.3, this is tantamount to verify the Weak
Lopatinskĭı condition, namely ∆̂ has no zeros on {Re τ > 0}. The method we shall use
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3.4 Results about existence of Rayleigh waves and well posedness

may be regarded as a new approach to deal with the secular equation (3.13), provided
that the complex argument principle used by Achenbach [1] to locate the zeros of the
stress free secular equation (3.9) results impractical to apply in this case.

Theorem 3.4.7 (Hurwitz’s theorem [4]). Let Ω ∈ C an open connected set and suppose
the sequence of analytic functions fn : Ω → C, n ∈ Z+ converges to f uniformly on
every compact subset of Ω. If each fn never vanishes on Ω, then either f is identically
zero or f never vanishes on Ω.

As we do in Section 3.1, we set γ1 = Z1i, γ2 = Z2i, where Z1, Z2 are real constants.
The Lopatinskĭı function (3.35) reduces to

∆̂(τ ;Z1i, Z2i) =
(τ2

c2
s

+ 2
)2
− 4

√
1 +

τ2

c2
p

√
1 +

τ2

c2
s

− τ3i

µc2
s

Z1

√
1 +

τ2

c2
s

+ Z2

√
1 +

τ2

c2
p


− Z1Z2

µ2
τ2

−1 +

√
1 +

τ2

c2
s

√
1 +

τ2

c2
p


(3.45)

Recall that replacing τ = −ci in the equation above yields the secular equation (3.12).
When the impedance parameters are purely imaginary, the boundary condition (3.41)
is no longer strictly dissipative as stated in Remark 3.4.4. However, Corollary 3.4.5
can be extended to the present case for the interior region Re τ > 0, via the Hurwitz’s
theorem (3.4.7).

Theorem 3.4.8. Let Z1, Z2 ∈ R be constants. The Lopatinskĭı function ∆̂
(
τ ;Z1i, Z2i

)
does not have zeros on Ω = {τ ∈ C : Re τ > 0}. That is, the weak Lopatinskĭı condition
holds for pure imaginary values of the impedance parameters γ1 = Z1i, γ2 = Z2i.

Proof. In order to apply Corollary 3.4.5, we set, for all n ∈ Z+

γ1n := − 1

n
+ Z1i, γ2n := − 1

n
+ Z2i

and define the sequence of complex function

fn(τ) := ∆̂(τ, γ1n, γ2n), τ ∈ Ω.

Each fn is analytic on the open connected set Ω, and since Re γ1n < 0, Re γ2n < 0,
Corollary 3.4.5 implies each fn has no zeros on Ω, in particular on the open connected
set Ω. Therefore, {fn} is a sequence of non vanishing analytic functions defined on Ω
that in turn converges pointwise to the function ∆̂

(
τ ;Z1i, Z2i

)
inasmuch as

γ1n → Z1i
γ2n → Z2i

as n→∞.
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We claim the convergence becomes uniform on any compact set of Ω. Therefore, Hur-
witz’s theorem 3.4.7 applies and hence the limit function ∆̂

(
τ ;Z1i, Z2i

)
has no zeros on

Ω. To prove the uniform convergence observe that the complex functions

f1(τ) := − τ
3i

µc2
s

√
1 +

τ2

c2
s

, f2(τ) := − τ
3i

µc2
s

√
1 +

τ2

c2
p

f3(τ) :=
τ2

µ2

−1 +

√
1 +

τ2

c2
s

√
1 +

τ2

c2
p


are continuous on Ω and hence their norm attain maximum on any fixed compact set
K ⊂ Ω, say m1,m2,m3. Then we have∣∣∣fn(τ)− ∆̂

(
τ ;Z1i, Z2i

)∣∣∣ ≤ ∣∣∣(γ1n − Z1)f1(τ) + (γ2n − Z2)f2(τ) + (−γ1nγ2n − Z1Z2)f3(τ)
∣∣∣

≤
∣∣γ1n − Z1

∣∣m1 +
∣∣γ2n − Z2

∣∣m2 +
∣∣− γ1nγ2n − Z1Z2

∣∣m3

for all τ ∈ K. Since the right-hand side of the above inequality is a sequence indepen-
dent of τ that tends to zero as n goes to infinity, the convergence fn → ∆̂

(
τ ;Z1i, Z2i

)
is uniform on K ⊂ Ω.

Recall that the square roots in (3.45) correspond to the principal branch, so the
Lopatinskĭı function in this case is not just well defined for Re τ 6= 0 but also analytic
there. Therefore, we can easily check the following identity

∆̂(−τ ;Z1i, Z2i) = ∆̂(τ ;−Z1i,−Z2i). (3.46)

We finally can state the main result of this subsection

Theorem 3.4.9. Let λ, µ be as in (3.2) and st =
√
ρ/µ, sp =

√
ρ/(λ+ 2µ). For all

Z1, Z2 ∈ R, the secular equation

(2s2 − s2
t )

2 − 4s2
√
s2 − s2

p

√
s2 − s2

t +
s2
t

µ

(
Z1

√
s2 − s2

t + Z2

√
s2 − s2

p

)
− Z1Z2

µ2

(
s2 −

√
s2 − s2

p

√
s2 − s2

t

)
= 0.

(3.47)

has no complex zeros (outside the real axis) when extended to the whole complex plane.

Proof. In view of the algebraic property (3.46), the conclusion of theorem 3.4.8 extends
to the set {Re τ 6= 0}; that is, ∆̂(τ ;Z1i, Z2i) does not vanish on Re τ 6= 0 for all
Z1, Z2 ∈ R. Since the secular equation for Rayleigh waves of impedance type (3.7) can
be written as (see lemma 3.3.2)

∆̂(−ci;Z1i, Z2i) = 0, c ∈ R, (3.48)

we conclude the secular equation does not have zeros outside the real axis. Recall that
in terms of the slowness (reciprocal of the velocity), the secular equation(3.48) becomes
into the equation (3.47) (see Section 3.1); this completes the proof.
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3.5 Conclusions

In this first part of the work, we have dealt with Navier’s equation defined on the half
space {x2 > 0} and subjected to an impedance boundary condition that prescribes
the components of the stress to be proportional to the components of the velocity.
We managed to explicitly derive the associated secular equation (3.7), whose roots
determine the existence of a Rayleigh wave. However, due to the cumbersome final
expression, the explicit computation of its zeros or the usage of the argument principle
to locate them turn out to be impossible or at least hardly realizable in practice.
Kreiss’ theory could be considered as a new approach to handle particular cases of the
problem, with the advantage of not having to deal directly with the secular equation.
Indeed, we put the second order IBVP (3.1)-(3.3) into the equivalent, constrained, first
order hyperbolic IBVP (3.20)-(3.24)-(2.5). In this fashion, we computed explicitely the
associated Lopatinskĭı function (which controls the well posedness of the problem) and
verified that when restricted to the imaginary axis, it becomes the secular equation for
Rayleigh waves of impedance type (3.7) that we computed in Appendix A. In other
words, the Lopatinskĭı function is the analytic extension of the secular equation from
the real axis to the complex plane (see Remark 3.3.3). This relation enables us to apply
the well known fact from Kreiss’ theory which states that the Lopatinskĭı determinant
associated to any strictly dissipative boundary conditions does not vanish on the closed
region {Re τ ≥ 0}, for all ξ ∈ Rd−1 (this is the uniform Kreiss-Lopatinskĭı condition).
This is the case when the impedance parameters are both negative, so we deduce not
just the well posedness of the problem, but also the non existence of Rayleigh waves.
On the other hand, for the set of positive impedance parameters given by (3.37), it was
proved the existence of at least one zero of the Lopatinskĭı determinant in the region
{Re τ > 0}. This means that the weak Lopatinskĭı condition is violated and hence the
problem is ill-posed. Looking for Rayleigh waves is meaningless in this case.

We also considered the case when both impedance parameters take pure imaginary
values, unfortunately the boundary condition is no longer strictly dissipative. Anyway,
this case has great interest because the resulting secular equation appears in the study
of seismic Rayleigh wave propagation along discontinuities [93, 94]. Given the complex-
ity of the problem, partial cases have been treated in the literature [52, 109, 138]. In this
work, we studied for the first time the general problem with both non zero impedance
parameters. To deal with this problem, we allow the impedance parameters γ1, γ2 to
take complex values and show that when they have negative real part, the strictly dis-
sipative property for the boundary condition remains valid (see Lemma 3.4.3). Hence,
the uniform Kreiss-Lopatinskĭı condition holds, and therefore the Lopatinskĭı function
does not vanish on {Re τ ≥ 0}. By upon Hurwitz’s theorem and algebraic properties
of the Lopatinskĭı determinant, we used the latter fact to prove that the Lopatinskĭı
function with γ1, γ2 chosen to be pure imaginary, does not vanish outside the imaginary
axis (that is, the weak Lopatinskĭı condition holds). In the framework of Rayleigh wave
propagation, this fact is equivalent to state that the secular equation of the problem
about seismic Rayleigh wave propagation mentioned above, cannot have complex zeros
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outside the real axis. Given the intricate secular equation, this is a considerable simpli-
fication of the problem of looking for zeros of the secular equation, because the analysis
is now concentrated on the real axis. It is worth mentioning that this is an essential
property for the consistency of the boundary value problem, provided that complex
zeros (outside the real axis) could give rise to displacement fields without physical
meaning, such as Hayes and Rivlin showed for the stres free case [62]. The counterpart
of this property in the Kreiss’ framework is the so called weak Lopatinskĭı condition, a
necessary condition of well posedness whose failure cause Hadamard instabilities.
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Chapter 4

Multidimensional stability of planar
shock: the case of compressible

Hadamard materials

In this chapter we moved beyond from linear elasticity to consider a classical problem
laying in the framework of continuum nonlinear elastodynamics. We now study the
nonlinear multidimensional stability problem of classical shock waves propagating in
an ideal non-thermal, hyperelastic media belonging to the large class of compressible
Hadamard materials. In the mathematical theory of hyperbolic systems, shock waves
are represented by weak solutions to nonlinear systems of conservation laws which
satisfy classical jump conditions of Rankine-Hugoniot type plus admissibility/entropy
conditions of physical origin (see, e.g., [15, 36, 119] and the references therein). Given
a simple shock wave (two constant states separated by a smooth interface) that solves
such a non-linear system, the stability problem consists in determining if a small per-
turbation impinging on the shock interface leads to a local solution with the same
discontinuous pattern. By a suitable change of coordinates, the nonlinear stability
problem can be reduced to an initial boundary value problem in a half space resulting
into the uniform and weak Lopatinskĭı conditions for L2 well-posedness of the linearized
problem. Majda [89] named the latter the uniform and weak Lopatinskĭı conditions for
shock stability. Hence, the nonlinear stability problem reduces to verifying the linear
stability conditions, which can be recast in terms of the Lopatinskĭı determinant (or
stability function). The uniform Lopatinskĭı condition plays an important role in the
stability of viscous shock profiles as well (in which the Lopatinskĭı determinant arises as
a limit of associated Evans functions for the viscous linearized problem), as shown by
Zumbrun and Serre [142] (see also [140, 141] and the references therein). The original
works by Majda [88, 89] pertain to classical (or Lax) shocks. It is to be noted, however,
that the analysis and methods have been extended to other situations and the theory
now encompasses non-classical (undercompressive and over-compressive) shocks, vortex
sheets, phase boundaries and detonation fronts (cf. [11, 12, 13, 28, 30, 31, 44, 45]). A
detailed account of the methodology and their numerous implications can be found in
the monograph by Benzoni-Gavage and Serre [15].

The chapter is organized as follows. In Section 4.1 we gather basic information
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about hyperbolic systems of conservation laws and weak solutions satisfying both clas-
sical Rankine-Hugoniot jump relations and Lax entropy conditions; they are known
as shock fronts. Then we state the general stability problem for such solutions and
describe Majda’s stability analysis which reduces the problem to verifying the Lopatin-
skĭı conditions for a linear hyperbolic system of constant coefficients. In Section 4.2 we
start by describing the dynamical equations of hyperelasticity and perform a change of
variables to write them as a first order system of conservations laws. Then we state
the Legendre-Hadamard condition on the stored energy density, which guarantees the
hyperbolicity of the system of conservation laws. In Subsection 4.2.3 we present the
stored energy density function that characterizes compressible Hadamard materials in
any space dimension d ≥ 2, verify the Legendre Hadamard condition and prove that
the constant multiplicity condition of Métivier [99] is also fulfilled. Subsection 4.2.5 is
devoted to describe classical shocks ocurring in this class of materials. We introduce
a scalar parameter α ∈ R, α 6= 0, which completely determines the shock and its am-
plitude once a base elastic state is selected. We call it the intensity of the shock. It is
shown that only extreme classical shocks are possible and that they satisfy the strict
Lax entropy conditions.

4.1 Hyperbolic system and Lax shock waves

Consider a hyperbolic system of n conservation laws in d ≥ 2 space dimensions of the
form,

ut +

d∑
j=1

f j(u)xj = 0, (4.1)

where x ∈ Rd and t ≥ 0 are space and time variables, respectively, and u ∈ U ⊂ Rn
denotes the vector of n conserved quantities (here U denotes an open connected set).
The flux functions f j ∈ C2(U;Rn), j = 1, . . . , d, are supposed to be twice continuously
differentiable and to determine the flux of the conserved quantities along the boundary
of arbitrary volume elements.

Definition 4.1.1. System (4.1) is hyperbolic in U if for any u ∈ U and all ξ ∈ Rd,
ξ 6= 0, the matrix

A(ξ, u) :=
d∑
j=1

ξjA
j(u), (4.2)

where Aj(u) := Df j(u) ∈ Rn×n for each j, is diagonalizable over R with eigenvalues

a1(ξ, u) ≤ . . . ≤ an(ξ, u), (4.3)

of class at least C1(U×Rd;R), called the characteristic speeds. Each eigenvalue aj(ξ, u)
is semi-simple (algebraic and geometric multiplicities coincide), with constant multiplic-
ity for all (u, ξ) ∈ U× Rd\{0}.
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The matrix A(ξ, u) has a complete set of right (column) eigenvectors

r1(ξ, u), . . . , rn(ξ, u) ∈ C1(Rd × U;Rn×1),

satisfying A(ξ, u)rj(ξ, u) = aj(ξ, u)rj(ξ, u) for each j, as well as a complete set of left
(row) eigenvectors l1(ξ, u), . . . , ln(ξ, u) ∈ C1(Rd ×U;R1×n), satisfying lj(ξ, u)A(ξ, u) =
aj(ξ, u)lj(ξ, u).

4.1.1 Shock fronts

An important class of weak solutions to (4.1) are known as shock fronts, which are
configurations of the form

u(x, t) =

{
u+, x · ν̂ > st,

u−, x · ν̂ < st,
(4.4)

where u± ∈ U are constant states, u+ 6= u−, and ν̂ = (ν1, . . . , νd) ∈ Rd, |ν̂| = 1 is a
fixed direction of propagation. The shock speed s ∈ R is not arbitrary but determined
by the classical Rankine-Hugoniot jump conditions [36, 80],

Definition 4.1.2. We say shock front (4.4) satisfies the Rankine-Hugoniot jump con-
dition if:

−sJuK +
d∑
j=1

Jf j(u)Kνj = 0, (4.5)

where the bracket J·K denotes the jump across the interface or, more precisely,

Jg(u)K := g(u+)− g(u−),

for any (vector or matrix valued) function g = g(u).

Jump conditions (4.5) are necessary conditions for the configuration (4.4) to be
a weak solution to (4.1) and express conservation of the state variables u across the
interface, Σ = {x · ν̂ − st = 0}.

To circumvent the problem of non-uniqueness of weak solutions of the form (4.4)
one further imposes an entropy condition of Lax type (cf. [36, 80]).

Definition 4.1.3. The shock front (4.4) is called an admissible (or classical) p-shock
if it satisfies Lax entropy condition: there exists an index 1 ≤ p ≤ n such that

ap−1(ν̂, u−) < s < ap(ν̂, u
−),

ap(ν̂, u
+) < s < ap+1(ν̂, u+),

(4.6)

where, by convention, if p = 1 then ap−1(ν̂, u−) := −∞, and if p = n then ap+1(ν̂, u+) :=
+∞. In the case where p = 1 or p = n the shock is called extreme.
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The eigenvalue ap(ν̂, u) is called the principal characteristic speed and rp(ν̂, u) is
the principal characteristic field.

Definition 4.1.4. It is said that the eigenvalue ap(ν̂, u) from Definition 4.1.3 is gen-
uinely nonlinear in the direction ν̂ if

Duap(ν̂, u)>rp(ν̂, u) 6= 0,

(or equivalently, lp(ν̂, u)Duap(ν̂, u) 6= 0) for all u ∈ U (cf. Majda [90]).

The genuinely nonlinearity is an extension to higher dimension of the convexity of
unique flux funcion at (4.1) in the one dimensional case (n = 1, d = 1). The convexity
in the former case play a main role in the study of the shock waves (see [83]).

It is clear from the definitions above that not all arbitrary fixed vectors are admis-
sible states; hence given a base state u+ ∈ U, the Hugoniot locus is defined as the set of
all states in U that can be connected to u+ with a speed satisfying the jump conditions
(4.5). The intersection of the Hugoniot locus with those states for which one can find a
shock speed satisfying Lax entropy condition (4.6) for some 1 ≤ p ≤ n is referred to as
the p-shock curve. If, in addition, u+ ∈ U is a point of genuine nonlinearity of the p-th
characteristic family in direction of ν̂, for which ap(ν̂, u

+) is a simple eigenvalue and

Duap(ν̂, u
+)>rp(ν̂, u

+) > 0, (respectively, < 0), (4.7)

then the p-shock curve locally behaves like

u− = u+ + ε rp(ν̂, u
+) +O(ε2),

s = ap(ν̂, u
+) + 1

2εDuap(ν̂, u
+)>rp(ν̂, u

+) +O(ε2),
(4.8)

and satisfies Lax entropy condition (4.6) if and only if ε < 0 (respectively, ε > 0). The
parameter ε measures the strength of the shock, |u+ − u−| = O(|ε|).

4.1.2 The stability problem

Now we can state the general stability problem. Consider the Cauchy problem:
ut +

d∑
j=1

f j(u)xj = 0,

u(x, 0) =

{
u+ , x · ν̂ > 0

u− , x · ν̂ < 0

(4.9)

where the system of PDE is hyperbolic. It is clear that shock wave (4.4) satisfying both
Rankine Hugoniot and Lax entropy conditions is a solution for (4.9). The problem of
uniqueness is beyond the scope of this work. Here we are interested in the stability for
the shock (4.4), which can be stated as follows:
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Consider a smooth initial perturbation of the shock (4.4), this means
perturbations of the shock front Σ = {x · ν̂ − st = 0} and the states u± on
either side. Does it lead to a smooth solution (local in time) of (4.9) with
the same discontinuous structure?

This is an extremly difficult problem that nevertheless was successfully handled by
Majda ([89], [88]). The success of his method lies in reducing the problem to the analysis
of a linear hyperbolic IBVP defined on the half-space with constant coefficients, just
like the problems originally treated by Kreiss ([77]). Based on the uniform Lopatinskĭı
condition of the resulting linear problem, Majda [88] proved the local-in-time existence
and uniqueness of shock waves for general nonlinear systems (satisfying some block
structure condition). He makes use of a fixed-point argument and a suitable iteration
scheme.

4.1.3 Stability analysis and linearized problem

In this section we quickly reproduce Majda’s stability analysis for the particular case
of Rankine-Hugoniot condition of the form (4.5). We start assuming a perturbance of
the shock front to lead a system of PDE’s with the aim of showing the existence of
such a perturbance. To that end, we perform a shock localization method permitted by
the finite speed of propagation and originally conceived by Erpenbeck [42]. The latter
changes the problem into an IBVP in the halfspace and a linearization of the former
IBVP about the shock yields a linear hyperbolic IBVP with constant coefficients.

Without loss of generality we assume the shock propagates in the normal direction
of the half-plane, ν̂ = ê1. Suppose we perturb the initial data at (4.9),

u(x, 0) =

{
u− + εv−0 , x1 < 0,
u+ + εv+

0 , x1 > 0,
(4.10)

with ε > 0 small. We assume there exist a perturbed solution uε exhibiting the same
structure of (4.4): this is two smooth solutions satisfying the partial differential equa-
tion and separated by a surface discontinuity of the form

S =
{

(x, t) ∈ Rd × [0,+∞) : ψε(x, t) = 0
}
,

where ψε is a scalar function. Therefore the perturbed solution looks like

uε(x, t) =

{
uε+(x, t), ψε > 0,

uε−(x, t), ψε < 0,
(4.11)

where

(uε+)t +
d∑
j=1

(
f j(uε+)

)
xj

= 0, for ψε > 0

(uε−)t +
d∑
j=1

(
f j(uε−)

)
xj

= 0, for ψε < 0,

(4.12)
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with Rankine-Hugoniot conditions:

ψεtJu
εK +

d∑
j=1

ψεxj Jfj(u
ε)K = 0, at ψε(x, t) = 0. (4.13)

Since we are perturbing a planar front in direction ê1 we can take ψε almost flat

ψε = x1 − φε(x̃, t), with x̃ := (x2, . . . , xd).

By considering the linear Taylor expansion around ε = 0, our unknows can be written
as:

φε(x̃, t) = st+ εφ(x̃, t) +O(ε2)

uε−(x, t) = u− + εv−(x, t) +O(ε2),

uε+(x, t) = u+ + εv+(x, t) +O(ε2).

(4.14)

We proceed with front location by making

z := x1 − φε(x̃, t),

and defining the new variables,

U ε±(z, x̃, t) : = uε±
(
z + φε(x̃, t), x̃, t

)
= u± + εV ± +O(ε2),

where (4.14) V ±(z, x̃, t) := v±
(
z + φε(x̃, t), x̃, t

)
. In these new variables equations

(4.12)-(4.13) yields a free- boundary transmission problem at z = 0,

(U ε+)t − (U ε+)zφ
ε
t + f1(U ε+)z +

∑
j 6=1

(
f j(U ε+)xj − φεxjf

j(U ε+)z

)
= 0, z > 0,

(U ε−)t − (U ε−)zφ
ε
t + f1(U ε−)z +

∑
j 6=1

(
f j(U ε−)xj − φεxjf

j(U ε−)z

)
= 0, z < 0,

(4.15)

with transmission equation given by the Rankine Hugoniot condition

(−s− εφt)JU εK + Jf1(U ε)K− ε
∑
j 6=1

φxj Jf
j(U ε)K = 0, at z = 0. (4.16)

Linearizing (4.15)-(4.16) (that is taking d
dε at ε = 0) we obtain the linearized transmis-

sion problem:

V +
t +

(
Df1(u+)− sIn

)
V +
z +

∑
j 6=1

Df j(u+)V +
xj = 0, z > 0,

V −t +
(
Df1(u−)− sIn

)
V −z +

∑
j 6=1

Df j(u−)V −xj = 0, z < 0,
(4.17)
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together with the linearized Rankine-Hugoniot condition:

φtJuK−
(
Df1(u+)− sIn

)
V + +

(
Df1(u−)− sIn

)
V − +

∑
j 6=1

φxj Jf
j(u)K = 0, z = 0.

In order to obtain a linear IBVP defined on the half-space {z > 0} (as in Kreiss’
analysis), we make Ṽ − := V −(−z, x̃, t) and in view of Definition 4.1.1 we also call
Aj± := Df j(u±). So we get:

V +
t +

(
A1

+ − sIn
)
V +
z +

∑
j 6=1

Aj+V
+
xj = 0, z > 0,

Ṽ −t +
(
A1
− − sIn

)
Ṽ −z +

∑
j 6=1

Aj−Ṽ
−
xj = 0, z > 0,

(4.18)

with boundary condition:

φtJuK−
(
A1

+ − sIn
)
V + +

(
A1
− − sIn

)
V − +

∑
j 6=1

φxj Jf
j(u)K = 0, z = 0.

Finally, denoting by W := (V +, Ṽ −, φ) ∈ R2n+1 the unknows of interest, equations
above can be recast as a linear hyperbolic IBVP with constant coefficents, kind of like
(2.3):

G0Wt +G1Wz +
∑
j 6=1

GjWxj = 0, for z > 0, x̃ ∈ Rd−1, t ≥ 0,

g(W ) = 0, at z = 0.

(4.19)

4.1.4 Normal mode analysis and Lopatinskĭı determinant

The resulting IBVP (4.19) is non-standard in the sense that the conditions at the
boundary are of differential type by owing to the appearing of first order derivatives
of φ, expressing the Rankine-Hugoniot jump conditions across the shock. Moreover,
the unknown function φ does not depend on x1 and only appears in the boundary
condition. Still, the linearized problem can be treated by a normal modes analysis.
After considering single normal modes of the form u ∼ eτteiξ·x̃ with spatio-temporal
frequencies lying on the set

Γ+ =
{

(τ, ξ̃) ∈ C× Rd−1 : Re τ > 0, |τ |2 + |ξ̃|2 = 1
}
, (4.20)

we arrive at the following problem in the frequency domain

V̂ +
z = −

(
A1

+ − sIn
)−1(

τIn + i
∑
j 6=1

ξjA
j
+

)
V̂ +,

ˆ̃V −z =
(
A1
− − sIn

)−1(
τIn + i

∑
j 6=1

ξjA
j
−

)
ˆ̃V −,

(4.21)
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for z > 0 and modified boundary conditions

BŴ = 0, at z = 0,

where for fixed (τ, ξ̃) ∈ Γ+, B is a constant matrix given as:

B :=
(
−A1

+ + sIn
A1
− − sIn

τJuK +
∑
j 6=1

iξjJf j(u)K
)
,

with block structure
(
n×n

∣∣n×n∣∣n×1
)
. Notice that, in view of Lax entropy conditions,

the shock is not characteristic with s 6= a±p and hence matrices A+
±−sIn are not singular.

Finally, as we see in the first chapter, the Kreiss-Lopatinskĭı condition results from
circumventing the existence of non trivial stable solutions that satisfy the boundary
condition. Stable solutions for the non-standard problem (4.21) correspond to initial

data Ŵ (0) = (V̂ +(0), ˆ̃V −(0), φ̂)> such that V̂ +(0) ∈ Eu+(τ, ξ̃), the unstable eigenspace
of:

A+(τ, ξ̃) :=
(
A1

+ − sIn
)−1(

τIn + i
∑
j 6=1

ξjA
j
+

)
,

and ˆ̃V −(0) ∈ Es−(τ, ξ̃), the stable eigenspace of:

A−(τ, ξ̃) :=
(
A1
− − sIn

)−1(
τIn + i

∑
j 6=1

ξjA
j
−

)
.

The associated space of φ̂ is just µ ∈ C. From hyperbolicity of A± and Hersh’ lemma
2.4.2, it follows that the stable subspace of A−(τ, ξ) and the unstable subspace of
A+(τ, ξ) have exactly dimensions p − 1 and n − p , respectively. Therefore the right
unstable and stable bundle of A+ and A− have sizes R̃u+ ∈ Cn×(p−1), R̃s− ∈ Cn×(n−p),
respectively. The above implies the Lopatinskĭı determinant (see Definition 2.4.5) takes
the block form:

∆(τ, ξ̃) := det

−(A1
+ − sIn

)
R̃u+

(A1
− − sIn

)
R̃s−

τJuK + i
∑
j 6=1

ξjJf j(u)K

 (4.22)

Written as such, the formula above is cumbersome and, therefore, any algebraic reduc-
tion will be extremely helpful. With this purpose in mind consider both matrices A±
but with each product in the reverse order; so we let

A±(τ, ξ̃) :=
(
τIn + i

∑
j 6=1

ξjA
j
±

)(
A1
± − sIn

)−1
, (τ, ξ) ∈ Γ+.

It is easy to see that matrix A+ (A−) has the same eigenvalues of A+ (A−), respectively.

Also, ~x is right eigenvector of A± if and only if
(
A1
±− sIn

)−1
~x is a right eigenvector of

A±. In view of the above argument we can write:(
A1

+ − sIn
)
R̃u+ = (R+

p+1, . . . ,R
+
n )
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and (
A1
− − sIn

)
R̃s− = (R+

p+1, . . . ,R
+
n ),

where R−1 (τ, ξ̃), . . . ,R−p−1(τ, ξ̃) ∈ Cn×1 denotes a basis of the stable subspace of A−(τ, ξ̃),

and R+
p+1(τ, ξ̃), . . . ,R+

n (τ, ξ̃) ∈ Cn×1 denotes a basis of the unstable subspace of A+(τ, ξ̃).
Since changing the sign of first n − p columns and swaping columns do not affect the
stability condition (∆ 6= 0), we retrieve the well-known formula (cf. [15, 70, 120, 142])

∆(τ, ξ̃) = det
(
R−1 , . . . ,R

−
p−1, τJuK + i

d∑
j=1

ξjJf j(u)K,R+
p+1, . . . ,R

+
n

)
, (4.23)

for (τ, ξ̃) ∈ Γ+. Based on both weak (Definition 2.4.5) and uniform (Definition 2.5.1)
Lopatinskĭı conditions, Majda define their analogous for the stability analysis.

Definition 4.1.5. Consider a planar shock wave of the form (4.4) and its corresponding
Lopatinskĭı determinant defined in (4.23).

i If ∆ has no zeroes (τ, ξ̃) in Γ the shock is called uniformly stable (uniform Lopatin-
skĭı condition).

ii If ∆ has a zero (τ, ξ̃) in Γ+ (with Re τ > 0) the shock is referred to as strongly
unstable.

iii In the intermediate case where ∆ has some zero (τ, ξ̃) with Re τ = 0 but no zero in
Γ+ the shock is said to be weakly stable (weak Lopatinskĭı condition).

Remark 4.1.6. An additional algebraic reduction takes place when a shock is extreme
with p = 1. In this case there is no stable subspace of A−(τ, ξ̃) for (τ, ξ̃) ∈ Γ+ and the
unstable subspace of A+(τ, ξ̃) has dimension n− 1. Therefore, the left stable subspace
of A+(τ, ξ̃) is generated by a single (row) vector ls+(τ, ξ̃) associated to a unique stable

eigenvalue β(τ, ξ̃) with Reβ < 0. In such a case the expression for the Lopatinskĭı
determinant simplifies to

∆(τ, ξ̃) = ls+(τ, ξ̃)
(
τJuK + i

d∑
j=1

ξjJf j(u)K
)
, (τ, ξ̃) ∈ Γ+, (4.24)

in the sense that ∆ = 0 in Γ+ if and only if ∆ = 0 in Γ+ (see [15, 70, 120]).

When a shock is strongly unstable, the instability is of Hadamard type [58, 120]
and it is so violent that we practically never observe the shock evolve in time. In
contrast, any small initial perturbation around a strongly stable shock (that is, a small
wave impinging on the interface), compatible with the conservation laws and the jump
conditions, produces a (local-in-time) solution to the nonlinear system with the same
wave structure, that is, made of smooth regions separated by a (modified or curved)
shock front. As shown by Majda [89], the strong stability condition ensures the well-
posedness of a non-standard constant coefficient initial boundary value problem. The
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intermediate case of a weakly stable shock for which there exist zeroes of the Lopatinskĭı
determinant on the imaginary axis (∆(iτ, ξ̃) = 0, for frequencies (iτ, ξ̃) ∈ ∂Γ+, τ ∈ R)
refers to the existence of surface wave solutions localized near the shock, having the

form Φ(|x1|)ei(τt+x·ξ̃) and with amplitude Φ decaying exponentially as we move away
from the interface, |x1| → ∞.

4.2 Application to compressible hyperelastic materials of
Hadamard type.

Compressible Hadamard materials (see Section 4.2.3 for the definition) are an special
case of general hyperelastic materials. The term Hadamard material was coined by
John [72] (based on an early description by Hadamard [59]) to account for a large class
of elastic media where purely longitudinal waves may propagate in every direction,
in contrast with other elastic, compressible, isotropic materials which, subjected to
large homogeneous static deformations, underlie purely longitudinal waves only in the
directions of the principal axes of strain (cf. Truesdell [136]). Knowles [75] proved, for
instance, that this class of materials admits non-trivial states of finite anti-plane shear.
The most natural interpretation of a compressible elastic material of Hadamard type is,
however, as a compressible extension of a neo-Hookean incompressible solid as described
by Pence and Gou [108]. For convenience of the reader, we have included in Appendix C
a comprehensive and self-contained introduction to compressible Hadamard materials
from the viewpoint of the theory of infinitesimal strain, in which we extend to arbitrary
space dimensions the nearly incompressible versions of the neo-Hookean models which
are compatible with the small-strain regime. It is to be observed, though, that the
class of Hadamard materials considered in this work also includes materials which may
undergo large volume changes. Section C.2 contains a list of energy densities which can
be found in the materials science literature and belong to the compressible Hadamard
class.

4.2.1 Equations of hyperelasticity

The elastic body under consideration is identified at rest by its reference configuration,
which is an open, connected set Ω ⊆ Rd, d ≥ 1. Here d ∈ N denotes the dimension
of the physical space and, typically, d = 1, 2 or 3. Since we are interested in the
multidimensional stability of shock fronts we assume that d ≥ 2 for the rest of the
chapter. The motion of the elastic body is described by the Lagrangian mapping
coordinate, (x, t) 7→ y(x, t), y : Ω × [0,∞) → Rd, that is, y = y(x, t) denotes the
position at time t > 0 of the material particle that was located at x ∈ Ω when t = 0. It
determines the deformed position of the material point x ∈ Ω. It is assumed that the
Lagrangian mapping is smooth enough, say, at least of class C2(Ω × (0,∞);Rd) and
one-to-one with a locally Lipschitz inverse. The local velocity at the material point is
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defined as v(x, t) := yt(x, t), v : Ω× [0,∞)→ Rd, or component-wise, as

vi(x, t) =
∂yi(x, t)

∂t
, i = 1, . . . , d.

The local deformation gradient, U(x, t) := ∇xy(x, t), U : Ω × [0,∞) → Rd×d, is a real
d× d matrix whose (i, j)-component is given by

Uij(x, t) =
∂yi
∂xj

(x, t), 1 ≤ i, j ≤ d.

Following the notation in [45], Uj ∈ Rd will denote the j-th column of U , that is,

Uj =

U1j

...
Udj

 ∈ Rd, j = 1, . . . , d.

By physical considerations (namely, that the material does not change orientation and
that it is locally invertible [24]) one usually requires that

J = J(U) := detU > 0. (4.25)

Thus, it is assumed that U(x, t) ∈Md
+ for all (x, t) ∈ Ω× (0,∞).

Supposing that no thermal effects are taken into consideration and in the absence
of external forces, the principles of continuum mechanics (cf. [24, 36, 125, 137]) yield
the basic equations of elastodynamics,

ytt − divxσ = 0, (4.26)

for (x, t) ∈ Ω × [0,∞) where σ is the (first) Piola-Kirchhoff stress tensor and whose
(i, j)-component is denoted as σij , 1 ≤ i, j ≤ d. System (4.26) is a short-cut for the
system of d equations,

∂2yi
∂t2
−

d∑
j=1

∂σij
∂xj

= 0, i = 1, . . . , d, (4.27)

expressing conservation of momentum.
An elastic material is called hyperelastic if there exists a single stored energy density

function W : Md
+ → R, defined per unit volume in the reference configuration, from

which all stress fields can be derived. In particular, the first Piola-Kirchhoff stress
tensor (cf. [24, 137]), σ = σ(U), derives from W as

σ(U) =
∂W

∂U
, U ∈Md

+,

or component-wise as

σij(U) =
∂W

∂Uij
, 1 ≤ i, j ≤ d. (4.28)
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We adopt the notation in [45], under which σj = σ(U)j ∈ Rd denotes the j-th column
of σ(U); more precisely,

σ(U)j =

WU1j

...
WUdj

 , j = 1, . . . , d.

Basic restrictions on the function W include, for instance, the principle of frame
indifference (cf. [24, 36, 106]),

W (U) = W (OU), for all O ∈ SOd(R), U ∈Md
+,

where SOd(R) denotes the set of all orthogonal real d×d matrices (rotations); normal-
ization, requiring W (U) ≥ 0 for all U ∈ Md

+ (cf. [24, 106]); and material symmetry or
isotropy (see [106, 137]),

W (U) = W (UO), for all O ∈ SOd(R), U ∈Md
+.

It is assumed that W is objective, so that it depends on the deformation gradient U
only through the right Cauchy-Green tensor, C = U>U (see, for example, Ogden [106]),
which is symmetric positive definite by definition and measures the length of an elemen-
tary vector after deformation in terms of its definition in the reference configuration.
Furthermore, it is well-known that the energy density function, W = W (U) = W̃ (C),
of any frame-indifferent, isotropic material, is a function of the principal invariants
of the symmetric Cauchy-Green tensor C, W = W (I(1), . . . , I(d)). This is called the
Rivlin-Ericksen representation theorem [116] (see Ciarlet [24], section 3.6 for the state-
ment and proof in dimension d = 3, and Truesdell and Noll [137], section B-10, p. 28,
in arbitrary dimensions.)

4.2.2 First order formulation and hyperbolicity

The equations of elastodynamics (4.26) can be recast a first-order system of conservation
laws of the form (4.1) when they are written in terms of the local velocity v and of the
deformation gradient U (see [27, 45, 46, 111]). Indeed, upon substitution we arrive at

Ut −∇xv = 0,
vt − divx σ(U) = 0,

(4.29)

where t ∈ [0,∞), x ∈ Ω ⊆ Rd, which is subject to the additional physical constraint

curlx U = 0. (4.30)

58



4.2 Application to compressible hyperelastic materials of Hadamard type.

Therefore, if we denote

u =


U1

...
Ud
v

 ∈ Rd
2+d, f j(u) = −



0
...
v
...
0

σ(U)j


∈ Rd

2+d, j = 1, . . . , d,

where the vector v appears in the j-th position in the expression for f j(u), system
(4.29) can be written as a system of n = d2 + d conservations laws of the form (4.1),
with conserved quantities u ∈ Rn and fluxes f j(u) ∈ C2(U;Rn), 1 ≤ j ≤ d.

ut +
d∑
j=1

Df j(u)uxj = 0, (4.31)

subject to the constraints

∂xkUj = ∂xjUk, j, k = 1, . . . , d. (4.32)

Here the open, connected set of admissible states is

U = {(U, v) ∈ Rd×d × Rd : detU > 0}.

It is clear the jacobians Df j(U) involves the second derivatives of W , because of (4.28);
to express it in a suitable form, we define the following d× d matrices

Bj
i (U) :=

∂σj
∂Ui

=

WU1jU1i · · · WU1jUdi

...
...

WUdjU1i · · · WUdjUdi

 ∈ Rd×d, (4.33)

for each pair 1 ≤ i, j ≤ d. That is, the (l, k)-component of the matrix Bj
i is WUljUki

=
∂2W/∂Ulj∂Uki, for each fixed 1 ≤ i, j ≤ d. Via (4.33), the Jacobians Aj(u) := Df j(u) ∈
Rn×n can be written in a simple block form

Aj(u) = −



0
...

0 Id
...
0

Bj
1(U) · · · Bj

d(U) 0


∈ R(d2+d)×(d2+d),

for all j = 1, . . . , d (see [45] for details).
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Notice that the Jacobians depend on u = (U, v)> only through the deformation
gradient. Thus, with a slight abuse of notation we write, from this point on,

Aj = Aj(U), U ∈Md
+, j = 1, . . . , d.

The symbol (4.2) is then defined as

A(ξ, U) =

d∑
j=1

ξjA
j(U), ξ ∈ Rd, U ∈Md

+.

In order to verify the hyperbolicity for the first order conservation laws (4.31), we
are looking for the eigenvalues of the matrix above. From the block form of the symbol
A(ξ, U), it follows that a = 0 is an eigenvalue with algebraic multiplicity bigger than
1; for non-zero eigenvalues, let us consider the eigenvalue problem

A(ξ, U)

(
Ũ
V

)
= a

(
Ũ

Ṽ

)
,

where Ũ = (Ũ1, . . . , Ũd)
> ∈ Rd2 and Ṽ ∈ Rd. Block-multiplication yields:

ξiṼ + aŨi = 0

d∑
i,j=1

ξjξiB
j
i Ũi + aṼ = 0.

Substituting each Ũi from first equation into the second one yields( d∑
i,j=1

ξiξjB
j
i (U)

)
Ṽ = a2Ṽ .

We inmediately note that real eigenvalues a for the symbol A(ξ, U) (the hyperbol-
icity for system (4.31)) is guaranteed by a full set of positive eigenvalues of matrix∑
ξiξjB

j
i (U) for all ξ 6= 0 . The latter is the well-known Legendre-Hadamard condition

(cf. [24, 137]) on the stored energy density function W (actually on its second order
derivatives via matrices Bj

i ). Indeed, by defining the d× d acoustic tensor

Q(ξ, U) :=

d∑
i,j=1

ξiξjB
j
i (U) ∈ Rd×d, (4.34)

for all ξ ∈ Rd, U ∈Md
+, the Legendre Hadamard condition reads:

Definition 4.2.1. The energy density function W = W (U) satisfies the Legendre-
Hadamard condition at U ∈Md

+ if

η>Q(ξ, U)η > 0, for all ξ, η ∈ Rd\{0}. (4.35)

In other words, the acoustic tensor is positive definite for all frequencies ξ 6= 0, η 6= 0,
and its eigenvalues are positive.
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Notice that the matrices Bi
i(U) are symmetric, Bi

i(U)> = Bi
i(U) for all U and all i,

and that Bj
i (U) = Bi

j(U)> for all U and all i, j by definition. Thus the acoustic tensor
is symmetric, and the Legendre-Hadamard condition is well defined.

As discussed in [45], due to technical reasons that pertain to the applicability of the
stability theory of shocks, we also require the following constant multiplicity property.

Definition 4.2.2 (constant multiplicity assumption). The energy density function
W = W (U) satisfies the constant multiplicity property at U , if for all frequencies
ξ ∈ Rd, ξ 6= 0, the eigenvalues of the acoustic tensor Q = Q(ξ, U) are all semi-simple
(their geometric and algebraic multiplicities coincide) and their multiplicity is indepen-
dent of ξ and U .

Now we summarize our finding. Assume that for each (ξ, U) ∈ Rd\{0} ×Md
+, the

associated acoustic tensor Q = Q(ξ, U) has k distinct semi-simple positive eigenvalues,
0 < κ1(ξ, U) < . . . < κk(ξ, U), 1 ≤ k ≤ d, with constant multiplicities m̃l, 1 ≤ l ≤ k,
such that

∑k
l=1 m̃l = d. We have an immediate

Lemma 4.2.3. If W = W (U) satisfies the Legendre-Hadamard condition (4.35) and
the constant multiplicity assumption for each U ∈ Md

+, then system (4.29) is hyper-
bolic in the connected open domain U of state variables. Moreover, the characteristic
velocities can be relabeled as

a1(ξ, U) := −
√
κk(ξ, U),

...

ak(ξ, U) := −
√
κ1(ξ, U),

ak+1(ξ, U) := 0,

ak+2(ξ, U) :=
√
κ1(ξ, U),

...

a2k+1(ξ, U) :=
√
κk(ξ, U),

so that

a1(ξ, U) < . . . < ak(ξ, U) < ak+1(ξ, U) = 0 < ak+2(ξ, U) < . . . < a2k+1(ξ, U),

for each (ξ, U) ∈ Rd\{0} ×Md
+, denoting the 2k + 1 distinct eigenvalues of A(ξ, U),

with constant algebraic (and geometric) multiplicities m̃l for 1 ≤ l ≤ k, m̃k+1 = d2 − d
and m̃k+1+l := m̃l for 1 ≤ l ≤ k with

∑k
l=1 m̃l = d.

Proof. See Lemma 2 and Corollary 2 in [45].

The Legendre-Hadamard condition is tantamount to the convexity of W along any
direction ξ ⊗ η with rank one. It is also said that W is a rank-one convex function of
the deformation gradient U . For an hyperelastic medium, this condition is equivalent
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to the strong ellipticity of the operator y 7→ divx(σ(∇xy)) (cf. Dafermos [35]) and,
consequently, in the context of elastostatics the rank-one convexity condition is also
called strong ellipticity (see, e.g., [9, 34, 124]). Even though it is well-known that rank-
one convexity of the energy function is equivalent to the hyperbolicity of the equations of
elastodynamics for an hyperelastic material (see [36, 45, 125]), this property is difficult
to verify in practice, even in the case of isotropic materials (cf. [34, 37, 39, 51, 68]).
Necessary and sufficient conditions of strong ellipticity for two-dimensional isotropic
materials have been discussed in [8, 34, 37, 76], and for three-dimensional media in
[34, 130, 139]. It is to be noted, however, that compressible Hadamard elastic media
considered in this work constitute a wide class of materials for which the rank-one
convexity assumption is remarkably easy to verify even in higher space dimensions (see
Section 4.2.4 below).

4.2.3 Compressible Hadamard materials

An hyperelastic material of Hadamard type (cf. [61, 72]) is defined as an elastic material
whose stored energy density function W : Md

+ → R has the general form:

W (U) =
µ

2
tr (U>U) + h(detU), (4.36)

where h : (0,∞) → R is a function of class C3 and the constant µ > 0 is the clas-
sical shear modulus in the reference configuration, describing an object’s tendency to
deform its shape at constant volume when acted upon opposing forces. The energy
density (4.36) consists of two contributions: the first term is the isochoric part of the
energy, quantifying energy changes at constant volume and depending only on tr (U>U),
whereas the second one, the volumetric function h = h(J), quantifies energy changes
due to changes in volume, and depends only on J = detU ∈ (0,∞). In this work, we
assume the following about the function h:

h ∈ C3((0,∞); R), (H1)

h′′(J) > 0, for all J > 0. (H2)

h′′′(J) < 0, for all J > 0. (H3)

Hypothesis (H1) is a minimal regularity requirement. The convexity of the volumetric
energy density function (H2) is a sufficient condition for the material to be strongly
elliptic. In the materials science literature, those energies that satisfy conditions (H1)
and (H2) are known as compressible Hadamard materials. Hypothesis (H3) can be
interpreted as a further material convexity property , which is needed for the shock
stability analysis. According to custom let us denote

I(1) = tr (U>U), I(d) = det(U>U), J =
√
I(d) = detU.
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I(1) and I(d) are well-known principal invariants of the right Cauchy-Green tensor,
C = U>U , for any given deformation gradient U ∈ Md

+. Hence, energy densities for
compressible Hadamard materials have the (Rivlin-Ericksen) form

W (U) = W (I(1), J) =
µ

2
I(1) + h(J). (4.37)

Remark 4.2.4. Hayes [61] calls restricted Hadamard materials to those which, in
addition to (H1) and (H2), satisfy

h′(J) ≤ 0, for all J > 0, (4.38)

a condition which guarantees that the elastic medium fulfills the ordered forces inequal-
ity of Coleman and Noll [26]. Even though some of the examples of elastic materials
presented in this work satisfy inequality (4.38), the latter plays no role in the shock
stability analysis.

From (4.37), it is then evident that any energy density (4.36) for this class of
elastic materials satisfies the principles of frame indifference, material symmetry and
objectivity.

We now derive the first Piola-Kirchhoff and Cauchy stress tensors from any energy
density function of the form (4.36). We have an immediate

Lemma 4.2.5. For compressible hyperelastic materials of Hadamard type, the first
Piola-Kirchhoff stress tensor is given by

σ(U) = µU + h′(J) Cof U, U ∈Md
+. (4.39)

Furthermore, the Cauchy stress tensor is

T (U) =
µ

J
UU> + h′(J)Id, , U ∈Md

+. (4.40)

Proof. Follows from elementary computations: for any U ∈ Md
+ with J = detU > 0

there holds:
∂J

∂Uij
= (Cof U)ij , 1 ≤ i, j ≤ d. (4.41)

On the other hand, since I(1) =
∑d

h,k=1 U
2
hk then clearly ∂UijI

(1) = 2Uij , 1 ≤ i, j ≤ d,
so from (4.28) we have

σij =
∂W

∂Uij
= 2

∂W

∂I(1)
Uij +

∂W

∂J
(Cof U)ij

= µUij + h′(J)(Cof U)ij , 1 ≤ i, j ≤ d.

This shows (4.39). Now, since the Cauchy stress tensor T is related to σ by σ =
JTU−> (cf. [9, 24]), apply (Cof A)>A = A(Cof A)> = (detA)Id to obtain (4.40), as
claimed.
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Given any deformation gradient U ∈ Md
+, the principal stretches ϑj > 0, j =

1, . . . , d, are the square roots of the eigenvalues of the symmetric right Cauchy-Green
tensor. Therefore,

I(1) = tr (U>U) =
d∑
j=1

ϑ2
j , J = detU =

d∏
j=1

ϑj .

The following observation is a generalization of the result established by Currie [33] in
dimension d = 3.

Proposition 4.2.6. For any d ≥ 2 the possible range for I(1) is given by

D = {(I(1), J) ∈ R× (0,∞) : I(1) ≥ dJ2/d}.

Proof. It is a straightforward application of the inequality of arithmetic and geometric
means on the principal stretches,

I(1) = tr (U>U) = ϑ2
1 + . . .+ ϑ2

d ≥ d
(
ϑ2

1 · · ·ϑ2
d

)1/d
= d (detU)2/d = dJ2/d.

The boundary of the domain ∂D = {(I(1), J) : I(1) = dJ2/d} is associated to
pure pressure deformations, and the value (I(1), J) = (d, 1) ∈ ∂D corresponds to no
deformations, U = Id, with a reference configuration in which ϑj = 1 for all 1 ≤ j ≤ d.

It is to be observed that the class of Hadamard materials considered in this work
also includes materials which may undergo large volume changes. In Section §C.2, we
present a list of energy densities found in the literature that satisfy the hypotheses of
the present stability analysis.

4.2.4 Hyperbolicity for Compressible Hadamard Materials

From Lemma 4.2.3 in Section 4.2.2, the hyperbolicity of the first order form for gen-
eral hyperelastic equation (4.26) reduce to verifying the Legendre-Hadamard condition
4.2.1. Let us then compute the acoustic tensor for the class of compressible Hadamard
materials and verify the Legendre-Hadamard condition in any space dimension. It is
already known that, for Hadamard materials with energy density of the form (4.36),
condition (H2) is equivalent to Legendre-Hadamard condition for all deformations (see,
e.g., [7, 21, 71]). In this work, we also provide a proof of this fact in view that the calcu-
lation of the acoustic tensor and of its eigenvalues is mandatory for the shock stability
analysis (see Corollary 4.2.12 below). The contributions are, (i) that our proof holds
for any space dimension d ≥ 2, and, (ii) that we also verify the constant multiplicity
assumption (see Definition 4.2.2). We start by proving an auxiliary result.

Lemma 4.2.7. For any U ∈Md
+ with J = detU > 0 there holds

∂

∂Uqi
(Cof U)pj =

1

J
((Cof U)qi(Cof U)pj − (Cof U)pi(Cof U)qj) , (4.42)

for all 1 ≤ i, j, p, q ≤ d.
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Proof. Differentiating the relation
(
Cof U

)
U> = JId with respect to Uqi and multiply-

ing from the right by Cof U we obtain

∂

∂Uqi

(
Cof U

)
U>Cof U + Cof U

( ∂

∂Uqi
U>
)

Cof U =
( ∂J

∂Uqi

)
Cof U,

that is, in view of (4.41),

J
( ∂

∂Uqi
(Cof U)

)
+ Cof U

(
êi ⊗ êq

)
Cof U = (Cof U)qiCof U.

Solving for ∂
∂Uqi

(Cof U) yields

∂

∂Uqi
(Cof U) =

1

J

(
(Cof U)qiCof U − Cof U

(
êi ⊗ êq

)
Cof U

)
,

for any 1 ≤ q, i ≤ d. Therefore, for all 1 ≤ p, j ≤ d,

∂

∂Uqi
(Cof U)pj = ê>p

∂

∂Uqi
(Cof U)êj

=
1

J

(
(Cof U)qi ê

>
p (Cof U)êj − ê>p (Cof U)

(
êi ⊗ êq

)
(Cof U)êj

)
=

1

J

(
(Cof U)qi(Cof U)pj − ê>p ((Cof U)êi)(ê

>
q (Cof U))êj

)
=

1

J
((Cof U)qi(Cof U)pj − (Cof U)pi(Cof U)qj) .

Lemma 4.2.8. For a compressible Hadamard material in dimension d ≥ 2 the matrices
(4.33) are given by

Bj
i (U) = µ δji Id + h′′(J)

(
(Cof U)j ⊗ (Cof U)i

)
+

+
h′(J)

J

(
(Cof U)j ⊗ (Cof U)i − (Cof U)i ⊗ (Cof U)j

)
,

(4.43)

where J = detU > 0, (Cof U)k denotes the k-th column of the cofactor matrix Cof U

and δji is the Kronecker symbol, δji =

{
1, i = j,

0, i 6= j.

Proof. By definition of the matrices (4.33), and by lemmas 4.2.5 and 4.2.7, for each
1 ≤ p, q ≤ d there holds

Bj
i (U)pq =

∂σpj
∂Uqi

= µ
∂Upj
∂Uqi

+
∂

∂Uqi

(
h′(J)(Cof U)pj

)
= µδji δ

q
p + h′′(J)

∂J

∂Uqi
(Cof U)pj + h′(J)

∂

∂Uqi
(Cof U)pj

= µδji δ
q
p + h′′(J)(Cof U)qi(Cof U)pj+

+
h′(J)

J
((Cof U)qi(Cof U)pj − (Cof U)pi(Cof U)qj) .

(4.44)
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Now, since (
Cof U

)
pi

(
Cof U

)
qj

=
(

(Cof U)i ⊗ (Cof U)j

)
pq
,

for all 1 ≤ i, j, p, q ≤ d, substituting into (4.44) we arrive at

Bj
i (U)pq = µδji δ

q
p + h′′(J)

(
(Cof U)j ⊗ (Cof U)i

)
pq

+

+
h′(J)

J

((
(Cof U)j ⊗ (Cof U)i

)
pq
−
(

(Cof U)i ⊗ (Cof U)j

)
pq

)
,

yielding the result.

Corollary 4.2.9. (a) In dimension d = 2 and for each U ∈M+
2 we have

Bi
i(U) = µI2 + h′′(J)

(
(Cof U)i ⊗ (Cof U)i

)
, i = 1, 2

B2
1(U) = h′′(J)

(
(Cof U)2 ⊗ (Cof U)1

)
+ h′(J)(ê2 ⊗ ê1 − ê1 ⊗ ê2)

B1
2(U) = B2

1(U)>.

(b) In dimension d = 3 and for each U ∈M+
3 we have

Bi
i(U) = µI3 + h′′(J)

(
(Cof U)i ⊗ (Cof U)i

)
, i = 1, 2, 3

B2
1(U) = h′′(J)

(
(Cof U)2 ⊗ (Cof U)1

)
+ h′(J)[U3]×

B3
1(U) = h′′(J)

(
(Cof U)3 ⊗ (Cof U)1

)
− h′(J)[U2]×

B2
3(U) = h′′(J)

(
(Cof U)2 ⊗ (Cof U)3

)
+ h′(J)[U1]×

B1
2(U) = B2

1(U)>, B1
3(U) = B3

1(U)>, B3
2(U) = B2

3(U)>,

where, for any vector b = (b1, b2, b3)> ∈ R3, [b]× is the skew-symmetric matrix that

represents the vector cross product, that is, [a]× =

(
0 −b3 b2
b3 0 −b1
−b2 b1 0

)
.

Lemma 4.2.10 (acoustic tensor for Hadamard materials). For any Hadamard material
in dimension d ≥ 2 its acoustic tensor is given by

Q(ξ, U) = µ|ξ|2Id + h′′(J)
((

(Cof U)ξ
)
⊗
(
(Cof U)ξ

))
, (4.45)

for ξ ∈ Rd, ξ 6= 0, U ∈Md
+.

Proof. First we notice that

Bi
i(U) = µId + h′′(J)

(
(Cof U)(êi ⊗ êi)(Cof U)>

)
Bj
i (U) +Bi

j(U) = h′′(J)
(

(Cof U)(êi ⊗ êj + êj ⊗ êi)(Cof U)>
)
, i 6= j.

66



4.2 Application to compressible hyperelastic materials of Hadamard type.

Upon substitution of these formulae into the definition of the acoustic tensor (4.34),

Q(ξ, U) =
d∑

i,j=1

ξiξjB
j
i (U) =

d∑
i=1

ξ2
iB

i
i(U) +

∑
i 6=j

ξiξj

(
Bj
i (U) +Bi

j(U)
)

= µ
( d∑
i=1

ξ2
i

)
Id + h′′(J)(Cof U)

( d∑
i=1

ξ2
i (êi ⊗ êi)

)
(Cof U)>+

+ h′′(J)(Cof U)
(∑
i 6=j

ξiξj(êi ⊗ êj + êj ⊗ êi)
)

(Cof U)>

= µ|ξ|2Id + h′′(J)(Cof U)
( d∑
i,j=1

ξiξj(êi ⊗ êj)
)

(Cof U)>

= µ|ξ|2Id + h′′(J)(Cof U)(ξ ⊗ ξ)(Cof U)>

= µ|ξ|2Id + h′′(J)
(
(Cof U)ξ

)
⊗
(
(Cof U)ξ

)
,

for all ξ ∈ Rd, ξ 6= 0, U ∈Md
+, as claimed.

Lemma 4.2.11. For each U ∈ Md
+, ξ ∈ Rd, ξ 6= 0, the eigenvalues of the acoustic

tensor of a Hadamard material are κ1(ξ, U) = µ|ξ|2, with algebraic multiplicity equal

to d − 1, and κ2(ξ, U) = µ|ξ|2 + h′′(J)
∣∣(Cof U)ξ

∣∣2, with algebraic multiplicity equal to
one.

Proof. By inspection of expression (4.45) for the acoustic tensor, which is of the form
aId + b(w ⊗ w) with a, b ∈ R and w ∈ Rd, one applies Sylvester’s determinant identity
[6] to obtain

det
(
Q(ξ, U)− κId

)
= det

(
(µ|ξ|2 − κ)Id + h′′(J)

(
(Cof U)ξ

)
⊗
(
(Cof U)ξ

))
= (µ|ξ|2 − κ)d−1

(
µ|ξ|2 − κ+ h′′(J)

∣∣(Cof U)ξ
∣∣2),

yielding the result.

Corollary 4.2.12. If the energy density function of an hyperelastic Hadamard material
satisfies assumptions (H1) and (H2) then it satisfies the Legendre-Hadamard condition
(4.35) and the constant multiplicity assumption.

Proof. Since for all ξ 6= 0 the eigenvalues of the acoustic tensor are strictly positive,
it clearly satisfies the Legendre-Hadamard condition (4.35). Regarding the constant
multiplicity assumption, notice that κ2(ξ, U) has algebraic and geometric multiplicities
equal to one for each U ∈ Md

+, ξ 6= 0. Also notice that (Cof U)ξ 6= 0 and hence
(Cof U)ξ⊗(Cof U)ξ has rank equal to one. This implies that the geometric multiplicity
of κ1(ξ, U) is d − 1 for each U ∈ Md

+, ξ 6= 0. This shows that κ1 is a semi-simple
eigenvalue with constant multiplicity.
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Remark 4.2.13. The significance of Corollary 4.2.12 is precisely that, for this large
class of compressible hyperelastic materials and in any space dimension d ≥ 2, the
equations of elastodynamics are hyperbolic with constant multiplicity in the whole open
set of admissible states, U = {(U, v) ∈ Rd×d×Rd : detU > 0}, allowing us to consider
elastic shocks of arbitrary amplitude.

As a by-product of Lemma 4.2.11 and Corollary 4.2.12 we have the following

Lemma 4.2.14. For each U ∈ Md
+, ξ ∈ Rd, ξ 6= 0, the eigenvector of the acoustic

tensor of a Hadamard material associated to the simple eigenvalue κ2(ξ, U) = µ|ξ|2 +

h′′(J)
∣∣(Cof U)ξ

∣∣2 is given by w(ξ, U) := (Cof U)ξ ∈ Rd×1.

Proof. Follows by direct computation:

Q(ξ, U)w =
[
µ|ξ|2Id + h′′(J)

((
(Cof U)ξ

)
⊗
(
(Cof U)ξ

))]
w

= µ|ξ|2w + h′′(J)(w ⊗ w)w

= (µ|ξ|2 + h′′(J)|w|2)w

= κ2(ξ, U)w.

4.2.5 Classical shock fronts for compressible Hadamard materials

In this section we describe classical (or Lax) non-characteristic shock fronts for com-
pressible Hadamard materials. Elastic shock front solutions of the general form (4.4)
(see Section 4.1) can be recast in terms of the deformation gradient and the local
velocity as (cf. [27, 45, 111]),

(U, v)(x, t) =

{
(U−, v−), x · ν̂ < st,

(U+, v+), x · ν̂ > st,
(4.46)

where ν̂ ∈ Rd, |ν̂| = 1, is a fixed direction of propagation, s ∈ R is a finite shock
propagation speed and (U±, v±) ∈ Md

+ × Rd are constant values for the deformation
gradient and local velocity satisfying (U+, v+) 6= (U−, v−). The dynamics of such fronts
are determined by the classical Rankine-Hugoniot jump conditions (4.5). Since

JuK =


JU1K
...

JUdK
JvK

 , Jf j(u)K = −



0
...

JvK
...
0

Jσ(U)jK


, for all 1 ≤ j ≤ d, (4.47)
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then it is easy to verify that the Rankine-Hugoniot conditions (4.5) take the form (see
[45, 111])

−sJUK− JvK⊗ ν̂ = 0,
−sJvK− Jσ(U)Kν̂ = 0,

(4.48)

expressing conservation across the interface, together with the additional jump condi-
tions

JUK× ν̂ = 0, (4.49)

expressing the constraint (4.30). The jump conditions (4.48) determine the shock speed
s ∈ R uniquely.

In addition, thanks to Lemma 4.2.3, (strict) Lax entropy conditions (4.6) hold if
there exists an index p such that

ap−1(ν̂, U−) < s < ap(ν̂, U
−),

ap(ν̂, U
+) < s < ap+1(ν̂, U+),

where 1 ≤ p ≤ 2k+1 and al(ν̂, U), 1 ≤ l ≤ 2k+1 denote the 2k+1 distinct eigenvalues
of A(ν̂, U) as relabeled in Corollary 4.2.3. In other words, to have strict inequalities
in (4.6) we require the shock speed to be non-sonic and to lie in between distinct
characteristic velocities.

The nonlinear stability behavior of the configuration solution (4.46) is controlled by
the Lopatinskĭı conditions discussed in Subsection 4.1.4 and it is based on the normal
modes analysis of solutions to the linearized problem around the shock front. Such
conditions determine whether small perturbations impinging on the shock interface
produce solutions to the nonlinear elastodynamics equations (4.29) which remain close
and are qualitatively similar to the shock front solution (well-posedness of the associ-
ated Cauchy problem with piecewise smooth initial data). Thanks to finite speed of
propagation and since we are interested in the local-in-space, local-in-time evolution
near the shock interface, from this point on we assume that the reference configuration
is the whole Euclidean space, Ω = Rd, without loss of generality.

Following [45], we make some simplifying assumptions. For concreteness and with-
out loss of generality we assume that the shock front propagates in the normal direction
of the half plane {x1 = 0} and, hence, ν̂ = ê1. Thus, the shock front solution (4.46)
has now the form

(U, v)(x, t) =

{
(U−, v−), x1 < st,

(U+, v+), x1 > st,
(4.50)

where (U+, v+) 6= (U−, v−) and it satisfies Rankine-Hugoniot jump conditions (4.48)
together with the curl-free jump conditions (4.49). In this case with ν̂ = ê1, these
conditions now read

−sJU1K− JvK = 0,

−sJvK− Jσ(U)1K = 0,

JUjK = 0, for all j 6= 1.

(4.51)
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In view of Lemma 4.2.11, let us define (with a slight abuse of notation)

κ1(U) := κ1(ê1, U) = µ,

κ2(U) := κ2(ê1, U) = µ+ h′′(J)
∣∣(Cof U)1

∣∣2, U ∈Md
+, (4.52)

denoting the two distinct semi-simple eigenvalues of the acoustic tensor Q(ê1, U) with
constant multiplicities m̃1 = d− 1 and m̃2 = 1, respectively. Henceforth, the (distinct)
characteristic velocities defined in Lemma 4.2.3 are described in Table 4.1 below.

Table 4.1: Distinct semi-simple eigenvalues aj(U) defined in Lemma 4.2.3 with their
corresponding constant multiplicities mj .

Eigenvalue aj Algebraic multiplicity mj

a1(U) = −
√
µ+ h′′(J)

∣∣(Cof U)1

∣∣2 m1 = 1

a2(U) = −√µ m2 = d− 1
a3(U) = 0 m3 = d2 − d
a4(U) =

√
µ m4 = d− 1

a5(U) =
√
µ+ h′′(J)

∣∣(Cof U)1

∣∣2 m5 = 1

An important consequence of the structure of the characteristic fields is the following

Lemma 4.2.15. For compressible Hadamard materials, all Lax shock fronts are nec-
essarily extreme.

Proof. From the expressions for the characteristic velocities computed above, it is clear
that Dua2 = Dua3 = Dua4 = 0 for all U ∈ Md

+. Therefore, the j-characteristic fields
with j = 2, 3, 4 are linearly degenerate. In such cases weak solutions of form (4.46)
correspond to contact discontinuities for which aj(U

+) = s = aj(U
−). Hence, any

classical, non-characteristic shock that satisfies strict Lax entropy conditions (4.6) is
necessarily associated to an extreme characteristic field with j = 1 or j = 5.

For convenience, let us denote the characteristic fields evaluated at the constant
states at each side of the shock as

κ±i := κi(U
±), i = 1, 2,

a±j := aj(U
±), j = 1, . . . , 5

so that

a±1 = −
√
κ±2 , a±2 = −√µ, a±3 = 0, a±4 =

√
µ, a±5 =

√
κ±2 .

In view of Lemma 4.2.15 a strict classical shock is necessarily associated to an
extreme principal characteristic field with index either p = 1 or p = 5. For concreteness
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and without loss of generality, we assume from this point on that the shock front (4.50)
is an extreme Lax shock associated to the first characteristic field, p = 1, or, in short,
a 1-shock (see also [47]). In such a case, Lax entropy conditions (4.6) read

s < a−1 ,

a+
1 < s < a+

2 ,
(4.53)

or equivalently,

s < −
√
µ+ h′′(J−)

∣∣(Cof U−)1

∣∣2,
−
√
µ+ h′′(J+)

∣∣(Cof U+)1

∣∣2 < s < −√µ.
(4.54)

Notice, in particular, that these conditions imply that s < 0 and s2 6= µ.

Lemma 4.2.16. Consider an elastic 1-shock, (U±, v±, s), for a compressible Hadamard
material, with (U+, v+) 6= (U−, v−), J± = detU± > 0, s2 6= µ, satisfying Rankine-
Hugoniot conditions (4.51) and Lax entropy conditions (4.54). Then there exists a
parameter value, α ∈ R, α 6= 0, such that

JUK = α
(
(Cof U+)1 ⊗ ê1

)
,

JJK = α
∣∣(Cof U+

)
1

∣∣2. (4.55)

Moreover, the shock speed satisfies

s2 = µ+
1

α
Jh′(J)K. (4.56)

Proof. From expression (4.39), the jump of the Piola-Kirchhoff stress tensor across the
shock is given by

Jσ(U)K = µJUK + h′(J+)Cof U+ − h′(J−)Cof U−.

Therefore, the jump of its first column across the shock is

Jσ(U)1K = µJU1K + h′(J+)(Cof U+)1 − h′(J−)(Cof U−)1.

From jump conditions (4.51) we know that U+
j = U−j for all j 6= 1. This implies that

(Cof U+)1 = (Cof U−)1. (4.57)

Making use of jump relations (4.51) we arrive at

(s2 − µ)JU1K− Jh′(J)K(Cof U+)1 = 0. (4.58)

By hypothesis s2 6= µ (it is a Lax shock) and hence Jh′(J)K 6= 0 (otherwise one
would have JU1K = 0 and JvK = 0, a contradiction with (U+, v+) 6= (U−, v−)). This
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shows that the vectors JU1K and (Cof U+)1 are linearly dependent. Therefore there
exists α 6= 0 such that

JU1K = α(Cof U+)1.

The jump condition JUjK = 0 for j 6= 1 implies that

U+ = U− + α
(
(Cof U+)1 ⊗ ê1

)
,

yielding the first relation in (4.55). Substitute JU1K = α(Cof U+)1 6= 0 in (4.58) to
obtain (4.56). Finally, from (Cof A)>A = A(Cof A)> = (detA)Id we clearly have the
relation J = ê>1 (JId)ê1 = ê>1 U

>(Cof U)ê1 = U>1 (Cof U)1 and, therefore,

J− = (U−1 )>(Cof U−)1 = (U−1 )>(Cof U+)1

= (U+
1 − α(Cof U+)1)>(Cof U+)1

= (U+
1 )>(Cof U+)1 − α

∣∣(Cof U+)1

∣∣2
= J+ − α

∣∣(Cof U+)1

∣∣2,
yielding the second formula in (4.55). This shows the lemma.

Remark 4.2.17. Suppose that one selects (U+, v+) ∈Md
+×Rd as a base state. Lemma

4.2.16 then implies that the shock is completely determined by the parameter value of
α 6= 0, which measures the strength of the shock, that is, JUK, JvK = O(|α|). Indeed,
given (U+, v+) ∈ Md

+ × Rd and α 6= 0, we apply Rankine-Hugoniot and Lax entropy
conditions to define

U− := U+ − α
(
(Cof U+)1 ⊗ ê1

)
,

J± := detU±,

s := −
√
µ+

1

α
Jh′(J)K,

v− := v+ + sα(Cof U+)1.

Then, on one hand, it is clear that |JUK| = |JU1K| = |α|
∣∣(Cof U+)1

∣∣ = O(|α|). On the

other hand, J− = J+ − α
∣∣(Cof U+)1

∣∣2 yields

s2 = µ+
1

α
Jh′(J)K = µ+ h′′(J+)

∣∣(Cof U+)1

∣∣2 +O(|α|).

Upon substitution we obtain JvK2 = s2α2
∣∣(Cof U+)1

∣∣2 = O(α2). This proves the claim.
It is to be noticed, as well, that once the base state (U+, v+) ∈ Md

+ × Rd is selected,
then the value of α ranges within the set

α ∈ (−∞, 0) ∪ (0, α+
max),

where

α+
max :=

J+∣∣(Cof U+)1

∣∣2 , (4.59)

due to the physical requirement that detU− = J− > 0. Observe in particular that,
necessarily, J+ 6= J− as α 6= 0.
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Remark 4.2.18. Thanks to the convexity condition (H2) we have that

1

α
Jh′(J)K =

1

α

(
h′(J+)− h′(J+ − α

∣∣(Cof U+)1

∣∣2)
)
> 0

independently of the sign of α, because h′(J) is strictly increasing. Therefore, if Lax
entropy conditions (4.54) hold then

0 < h′′(J−) <
s2 − µ∣∣(Cof U+)1

∣∣2 < h′′(J+), (4.60)

where we have used the fact that (Cof U+)1 = (Cof U−)1. Let us denote the open
interval

I(J+, J−) :=

{
(J−, J+), if J+ > J−,

(J+, J−), if J+ < J−.

Then it is clear that a necessary condition to have a strict Lax shock is that h′′′(J) 6≡ 0
in J ∈ I(J+, J−).

From the observations above, we conclude that the following statements hold:

(a) If h′′′(J) > 0 for all J ∈ I(J+, J−) (h′′ increasing) then Lax entropy conditions
hold if 0 < α < α+

max.

(b) If h′′′(J) < 0 for all J ∈ I(J+, J−) (h′′ decreasing) then Lax entropy conditions
hold if α < 0.

Next lemma verifies that the requirement for h′′′ to have a definite sign on I(J+, J−)
is also a necessary condition to have a genuinely nonlinear characteristic field and, thus,
for strict Lax entropy inequalities to hold.

Lemma 4.2.19. For any U ∈ Md
+, let r ∈ Rn be the right eigenvector of A(ê1, U)

associated to the simple eigenvalue a1(U) = a1(ê1, U) < 0 in the case of a compressible
Hadamard material. Then,

(Dua1)>r =
1

2a2
1

|(Cof U)1|4h′′′(J).

Proof. First, let us denote r = (z1, . . . , zd, w)> ∈ Rn×1, n = d2 + d, with zj , w ∈ Rd,
1 ≤ j ≤ d, the right eigenvector such that A(ê1, U)r = A1(U)r = a1(U)r, with a1(U) =
−
√
κ2(ê1, U) < 0. Upon inspection of the expression for A1(U) we observe that

A1(U)r = −


w
0
...
0∑d

j=1B
1
j (U)zj

 = a1(U)


z1

...
zd
w

 ,
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or, equivalently, we obtain the system

w + a1z1 = 0,

a1zj = 0, j 6= 1,

a1w +
d∑
j=1

B1
j zj = 0.

(4.61)

From this system of equations we obtain Q(ê1, U)w = a1(U)2w = κ2(ê1, U)w, and
zj ≡ 0 for all j 6= 1. Therefore, from Lemma 4.2.14 we arrive at the following expression
for the right eigenvector,

r =


−(a1)−1(Cof U)1

0
...
0

(Cof U)1

 .

Now, let us write a1(U) = −
√
ψ(U), where ψ(U) := µ + h′′(J)

∣∣(Cof U)1

∣∣2. Since,
clearly, ∂ψ/∂v = 0, we then have

Dua1 =
1

2a1


ψU1

...
ψUd

0

 ,

where ψUj ∈ Rd is the vector whose i-component is ∂ψ/∂Uij for each pair i, j. Let us
compute such derivatives. Use relations (4.41) and (4.42) to obtain

∂ψ

∂Uij
= h′′′(J)

∂J

∂Uij

∣∣(Cof U)1

∣∣2 + h′′(J)
∂

∂Uij

(∣∣(Cof U)1

∣∣2)
= h′′′(J)

∣∣(Cof U)1

∣∣2(Cof U)ij + 2h′′(J)

d∑
k=1

(Cof U)k1
∂

∂Uij

(
(Cof U)k1

)
= h′′′(J)

∣∣(Cof U)1

∣∣2(Cof U)ij+

+ 2
h′′(J)

J

d∑
k=1

(Cof U)k1

(
(Cof U)k1(Cof U)ij − (Cof U)kj(Cof U)i1

)
=
(
h′′′(J) +

2

J
h′′(J)

)∣∣(Cof U)1

∣∣2(Cof U)ij − 2
h′′(J)

J
(Cof U)i1

d∑
k=1

(Cof U)kj(Cof U)k1,

for each 1 ≤ i, j ≤ d. Therefore, Dua1 = ς1 + ς2 with

ς1 :=
1

2a1

(
h′′′(J) +

2

J
h′′(J)

)∣∣(Cof U)1

∣∣2


(Cof U)1

...
(Cof U)d

0

 ,
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ς2 := − 1

a1

h′′(J)

J



[∑d
k=1(Cof U)2

k1

]
(Cof U)1[∑d

k=1(Cof U)k2(Cof U)k1

]
(Cof U)1

...[∑d
k=1(Cof U)kd(Cof U)k1

]
(Cof U)1

0

 .

Computing the products with r yields

ς>1 r = − 1

2a2
1

∣∣(Cof U)1

∣∣4(h′′′(J) +
2

J
h′′(J)

)
,

ς>2 r =
1

a2
1

h′′(J)

J

d∑
k=1

(Cof U)2
k1

∣∣(Cof U)1

∣∣2 =
1

a2
1

h′′(J)

J

∣∣(Cof U)1

∣∣4.
Hence, we arrive at

(Dua1)>r = − 1

2a2
1

|(Cof U)1|4h′′′(J),

as claimed.

Corollary 4.2.20. The 1-characteristic field is genuinely nonlinear in the ê1-direction
for all state variables (U, v) ∈ U if and only if h′′′(J) 6= 0 for all J ∈ (0,∞).

Remark 4.2.21. As expected, being the choice of ê1 as direction of propagation com-
pletely arbitrary, it is possible to extrapolate this observation and to state that the j = 1
and the j = 5 characteristic fields are genuinely nonlinear in any direction of propaga-
tion ν̂ ∈ Rd, |ν̂| = 1, for all state variables (U, v) ∈ U if and only if h′′′(J) 6= 0 for all
J ∈ (0,∞). In fact, a similar calculation yields

(Duaj)
>r = − 1

2a2
j

|(Cof U)ν̂|4 h′′′(J),

for j = 1, 5 as the dedicated reader may verify.

Consequently, we have the following characterization of the 1-shock fronts in terms
of the parameter α 6= 0.

Proposition 4.2.22. For a Hadamard material satisfying (H1) and (H2) and for any
given (U+, v+) ∈ Md

+ × Rd as base state, let us define, for any given α ∈ (−∞, 0) ∪
(0, α+

max),
U− = U+ − α((Cof U+)1 ⊗ ê1),

v− = v+ + sα(Cof U+)1,

s = −
√
µ+

1

α
(h′(J+)− h′(J−)),

(4.62)

for which, necessarily, J− = detU− = J+ − α|(Cof U+)1|2. Therefore we have:
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4. MULTIDIMENSIONAL STABILITY OF PLANAR SHOCK: THE CASE OF
COMPRESSIBLE HADAMARD MATERIALS

(a) In the case where 0 < α < α+
max: if h′′′(J) > 0 for all J ∈ [J−, J+] then

(U±, v±, s) is a Lax 1-shock.

(b) In the case where α < 0: if h′′′(J) < 0 for all J ∈ [J+, J−] then (U±, v±, s) is a
Lax 1-shock.

Proof. Suppose 0 < α < α+
max. If h′′′(J) > 0 for all J ∈ [J−, J+] then from (H2) and

Jh′(J)K/α > 0 we deduce that s < −√µ. Also, from strict convexity of h′ and J+ > J−

we clearly have

h′′(J+) >
Jh′(J)K

α|(Cof U+)1|2
,

from which we deduce −
√
µ+ h′′(J+)|(Cof U+)1|2 < s. A similar argument shows that

s < −
√
µ+ h′′(J−)|(Cof U−)1|2. Hence, the front is a Lax 1-shock. This proves (a).

The proof of (b) is analogous.

Remark 4.2.23. Observe that (4.62) determines the 1-shock curve (see (4.8) in sub-
section 4.1.1) for all admissible values of α and not only for weak shocks. Hence, we
are able to consider shocks of arbitrary amplitude, as there is no other restriction on
|α| apart from the physical constraint 0 < α < α+

max on the positive side. For compress-
ible Hadamard materials satisfying (H3) (h′′′ < 0 for all J), it is posible to construct
arbitrarily large amplitude shocks for negative parameter values, α < 0, with |α| � 1.
It is to be observed that condition (H3) can be interpreted as the convexity of the hy-
drostatic pressure (see Remark C.1.1 below) and, hence, the case in which h′′′ > 0 for
all J turns out to be somewhat unphysical: most examples of energy densities in the
literature (see, for example, section §C.2) satisfy (H3) or, at most, they present changes
in sign for h′′′(J). For simplicity, the latter concave/convex case is not considered in
the stability analysis.
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Chapter 5

Calculation of the Lopatinski
determinant and stability results

In this chapter we perform the normal modes analysis prior to the establishment of the
stability results. In particular, we compute all the necessary ingredients to assemble the
Lopatinskĭı determinant associated to a classical shock front (as described in Section
4.1.4) for hyperelastic Hadamard materials. Since we are dealing with a 1-shock, the
expression for the lopatinski determinant reduce to (4.24), which is essentially the dot
product of two vectors

∆(τ, ξ̃) = ls+(τ, ξ̃)K(τ, ξ̃), (τ, ξ̃) ∈ Γ+,

In Section 5.1 we compute both the left stable eigenvector ls+ and vector K that we
refer as the “jump” vector. In Section 5.2 we use the previous findings to give explicit
formulas for the lopatinski determinant. The main idea is to assemble different (yet
equivalent) expressions, so that we can draw stability condition from them. We also
introduce a real parameter ρ(α) ∈ R depending on the intensity α 6= 0, which plays
a main rolle in the final statements of stability results. We call it the the material
stability parameter of the shock. Finally, further applications to specific compressible
Hadamard materials are discussed in Section 5.3.

5.1 Normal Modes Analysis for elastic shocks

Let (U±, v±, s) ∈ Md
+ × Rd × R, with (U+, v) 6= (U−, v−) be an extreme Lax 1-shock

propagating in the direction of ν̂ = ê1 and satisfying Rankine-Hugoniot conditions
(4.51) and Lax entropy conditions (4.54). Therefore, the analysis of normal mode
solutions to the linearized problem around the shock of the form eτteix·ξ is restricted
to the open set of spatio-temporal frequencies,

Γ+ :=
{

(τ, ξ̃) ∈ C× Rd−1 : Re τ > 0, |τ |2 + |ξ̃|2 = 1
}
, (5.1)
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(see (4.20)), where we have adopted the (now customary in the literature [15, 70])
notation for the Fourier frequencies,

ξ =

(
0

ξ̃

)
∈ Rd, ξ̃ =

ξ2

...
ξd

 ∈ Rd−1,

with ξ · ê1 = ξ>ê1 = 0. By a continuity of eigenprojections argument (cf. [77, 89, 97])
the definition of the Lopatinskĭı determinant on Γ+ can be extended to its closure,

Γ :=
{

(τ, ξ̃) ∈ C× Rd−1 : Re τ ≥ 0, |τ |2 + |ξ̃|2 = 1
}
. (5.2)

We are interested in normal modes of the matrix field

A(τ, ξ̃, U) =
(
τIn + i

∑
j 6=1

ξjA
j(U)

)(
A1(U)− sIn

)−1
, (τ, ξ̃, U) ∈ Γ+ ×Md

+, (5.3)

under the assumption that s ∈ R is not characteristic with respect to (ê1, U), that is, s
is not an eigenvalue of A1(U). This is particularly true in the case of the shock speed
s of a classical 1-shock with U = U±.

5.1.1 Calculation of the stable left bundle

Following [45, 46, 111] and for convenience in the calculations to come, let us extend
the definition of the acoustic tensor to allow complex frequencies. For each (ω, ω̃) ∈
C× Cd−1, ω1 = ω, ω̃ = (ω2, . . . , ωd)

>, we denote

Q(ω, ω̃, U) :=
d∑

i,j=1

ωiωjB
i
j(U)

= ω2B1
1(U) + ω

∑
j 6=1

ωj
(
Bj

1(U) +B1
j (U)

)
+

d∑
i,j 6=1

ωiωjB
i
j(U) ∈ Cd×d.

Notice that, in view that the real acoustic tensor Q is symmetric, then Q is endowed
with the property Q∗(ω, ω̃, U) = Q(ω∗, ω̃∗, U). Yet, Q is clearly invariant under simple
transposition

Q(ω, ω̃, U)> = Q(ω, ω̃, U),

for all (ω, ω̃, U) ∈ C × Cd−1 ×Md
+, even though it is not Hermitian. Adopting this

notation and from expression (4.45) for a compressible Hadamard material, we readily
obtain the following useful formula,

Q(iβ, ξ̃, U) = µ
(
− β2 + |ξ̃|2

)
Id + h′′(J)

(Cof U
)

iβ
ξ2

...
ξd

⊗ (Cof U
)

iβ
ξ2

...
ξd


 , (5.4)
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for any β ∈ C, ξ̃ ∈ Rd−1, U ∈Md
+.

Next result characterizes the eigenvalues of the matrix field (5.3).

Lemma 5.1.1. For any given U ∈ Md
+, (τ, ξ̃) ∈ Γ, the eigenvalues β = β(τ, ξ̃) ∈ C of

matrix (5.3) are either:

(a) β = −τ
s

, with algebraic multiplicity d2 − d; or

(b) β is a root of
det
(
(τ + βs)2Id + Q(iβ, ξ̃, U)

)
= 0. (5.5)

Proof. Given (τ, ξ̃, U) ∈ Md
+ × Γ+, we look for a left (row) eigenvector l = l(τ, ξ̃, U) ∈

C1×n, associated to an eigenvalue β satisfying

l
(

(τ + βs)In − βA1(U) + i
∑
j 6=1

ξjA
j(U)

)
= 0. (5.6)

Since l 6= 0 we arrive at the following characteristic equation,

φ(τ, ξ̃, β, U) := det
(

(τ + βs)In − βA1(U) + i
∑
j 6=1

ξjA
j(U)

)
= 0.

The matrix appearing in last equation can be written in block form as

(τ + βs)In − βA1(U) + i
∑
j 6=1

ξjA
j(U) =


βId

(τ + βs)Id2 −iξ2Id
...

−iξdId
−G1 · · · −Gd (τ + βs)Id


=:

(
S1 S2

S3 S4

)
,

(5.7)

with blocks S1 ∈ Cd2×d2 , S2 ∈ Cd2×d, S3 ∈ Cd×d2 , S4 ∈ Cd×d, and where the matrix
fields (β, ξ̃, U) 7→ Gk are defined as

Gk = Gk(β, ξ̃, U) := −βB1
k(U) + i

∑
j 6=1

ξjB
j
k(U) ∈ Cd×d. (5.8)

Suppose for the moment that τ + βs 6= 0. Then we may use the block formula

det

(
S1 S2

S3 S4

)
= det S1 det(S4 − S3(S1)−1S2),
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to reduce the determinant of (5.7). A direct computation shows that

S3(S1)−1S2 = (τ + βs)−1 (G1, · · · ,Gd)


−βId
iξ2Id
...

iξdId

 = − (τ + βs)−1Q(iβ, ξ̃, U),

yielding
φ(τ, ξ̃, β, U) = (τ + βs)d

2−d det
(
(τ + βs)2Id + Q(iβ, ξ̃, U)

)
.

From this expression we conclude that β = −τ/s is an eigenvalue of (5.3) with algebraic
multiplicity d2 − d. Otherwise, if τ + βs 6= 0 then β is a root of equation (5.5). The
lemma is proved.

The following lemma provides an expression for the left (row) eigenvector associated
to any eigenvalue β of the matrix field (5.3).

Lemma 5.1.2. For given U ∈Md
+, (τ, ξ̃) ∈ Γ, let β ∈ C be an eigenvalue of the matrix

(5.3) such that τ + βs 6= 0. Then the associated left eigenvector l has the form

l =
(
q>G1, . . . , q

>Gd, (τ + βs)q>
)
∈ C1×(d2+d), (5.9)

where Gk = Gk(β, ξ̃, U), 1 ≤ k ≤ d, are defined in (5.8) and q ∈ Cd×1 is a column
vector such that

Q(iβ, ξ̃, U)q = −(τ + βs)2q, (5.10)

that is, q is an eigenvector of Q(iβ, ξ̃, U) with eigenvalue −(τ + βs)2.

Proof. Take U ∈ Md
+, (τ, ξ̃) ∈ Γ and let β ∈ C be an eigenvalue of A with associated

left eigenvector l ∈ C1×(d2+d). Consider the matrix fields

T = T(τ, ξ̃, U, β) := βA1(U)− i
∑
j 6=1

ξjA
j(U) ∈ Cn×n,

with n = d2 + d. Since Cn = ker(T>) ⊕ range (T>) then either l> ∈ ker(T>) or
l> ∈ range (T>). However, from lA = βl we clearly have that expression (5.6) holds,
yielding T>l> = −(τ +βs)l>. In view that l 6= 0 and τ +βs 6= 0 we then conclude that
l> /∈ ker(T>) and necessarily that l> ∈ range (T>). Let us now write

l =
(
l1, . . . , ld, ld+1

)
,

where lk ∈ C1×d for each 1 ≤ k ≤ d+ 1. Whence,

lT =
(
l1, . . . , ld, ld+1

)


−βId
0 iξ2Id

...
iξdId

G1 · · · Gd 0

 =
(
ld+1G1, . . . , ld+1Gd, −βl1 + i

∑
j 6=1

ξjlj

)

=:
(
ld+1G1, . . . , ld+1Gd, q

>
)
. (5.11)
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Use expression in (5.7) and lT = −(τ + βs)l to arrive at(
− q> + (τ + βs)ld+1

)
Gk = 0, 1 ≤ k ≤ d,

ld+1

(
βG1 − i

∑
j 6=1

ξjGj

)
+ (τ + βs)q> = 0. (5.12)

The first d equations in (5.12) yield

0 =
(
− q> + (τ + βs)ld+1

)(
G1, . . . ,Gd

)


βId
−iξ2Id
...

−iξdId

 =
(
− q> + (τ + βs)ld+1

)
Q(iβ, ξ̃, U).

The last equation in (5.12) implies that

ld+1

(
βG1 − i

∑
j 6=1

ξjGj

)
= ld+1Q(iβ, ξ̃, U) = −(τ + βs)q>.

Therefore we obtain
q>
(
(τ + βs)2Id + Q(iβ, ξ̃, U)

)
= 0,

that is, q> is a left eigenvector of Q(iβ, ξ̃, U) with eigenvalue −(τ + βs)2. Since Q is
invariant under simple transposition, Q> = Q, this is equivalent to (5.10). To find ld+1

we notice that τ + βs 6= 0 and the first d equations in (5.12) imply that ld+1Gk =
(τ + βs)−1q>Gk, for all 1 ≤ k ≤ d. Substitute back into (5.11) to obtain

lT =
(

(τ + βs)−1q>G1, . . . , (τ + βs)−1q>Gd, q
>
)
,

and the general form of the left eigenvector is

l =
(
q>G1, . . . , q

>Gd, (τ + βs)q>
)
,

where q is such that (5.10) holds. This proves the lemma.

Let us now focus on the 1-shock determined by (U±, v±, s) ∈Md
+×Rd×R satisfying

(4.51) and (4.54). If we select (U+, v+) as a base state then the shock is completely
characterized by the parameter value α 6= 0 described in Proposition 4.2.22. Let us
define

A±(τ, ξ̃) := A(τ, ξ̃, U±), (τ, ξ̃) ∈ Γ+.

From Hersh’ lemma (see Subsection 4.1.4, (4.24)), the stable eigenspace of A+(τ, ξ̃) has
dimension equal to one for each (τ, ξ̃) ∈ Γ+. Our goal is to compute the left (row)
stable eigenvector l+s (τ, ξ̃) ∈ C1×n of A+ associated to the only stable eigenvalue β
with Reβ < 0. Thanks to Lemma 5.1.2, this is equivalent to computing the column
eigenvector q+ of Q+(iβ, ξ̃) := Q(iβ, ξ̃, U+).
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5. CALCULATION OF THE LOPATINSKI DETERMINANT AND STABILITY
RESULTS

In order to simplify the notation, let us write the cofactor matrix of U+ as V + :=
Cof U+ ∈Md

+, so that its j-th column is

V +
j = (Cof U+)j ∈ Rd×1, (5.13)

for each 1 ≤ j ≤ d, and

(a+
1 )2 = κ+

2 = µ+ h′′(J+)|V +
1 |

2. (5.14)

Moreover, for any frequency vector ξ̃ = (ξ2, . . . , ξd)
> ∈ Rd−1 we define the scalar (real)

quantities,

η+(ξ̃) :=
∑
j 6=1

(V +
1 )>V +

j ξj ,

ω+(ξ̃) := µ|ξ̃|2 + h′′(J+)

∣∣∣∣V +

(
0

ξ̃

)∣∣∣∣2 = µ|ξ̃|2 + h′′(J+)
∑
i,j 6=1

(V +
i )>V +

j ξiξj ,

(5.15)

which depend only on the Fourier frequencies and on the elastic parameters of the
material evaluated at the base state.

Lemma 5.1.3. Let β ∈ C be the only stable eigenvalue with Reβ < 0 of the matrix
field A+(τ, ξ̃), on (τ, ξ̃) ∈ Γ+. Then the (column) eigenvector q+ ∈ Cd×1 of Q+(iβ, ξ̃)
with associated eigenvalue −(τ + βs)2, as described in Lemma 5.1.2, can be uniquely
selected (modulo scalings) as

q+ = q+(τ, ξ̃) := (Cof U+)


iβ
ξ2

...
ξd

 . (5.16)

Moreover, β = β(τ, ξ̃) is a root of(
κ+

2 − s
2
)
β2 − 2

(
τs+ ih′′(J+)η+(ξ̃)

)
β −

(
τ2 + ω+(ξ̃)

)
= 0. (5.17)

Proof. In view that s < 0 and Re τ > 0 then Re (−τ/s) > 0 and consequently τ+βs 6= 0.
Hence, from Lemma 5.1.1 we know that β is a root of

det
(
(τ + βs)2Id + Q+(iβ, ξ̃)

)
= 0.

Use expression (5.4) and apply Sylvester’s determinant formula (cf. [6]) to obtain

0 = det
(
(τ + βs)2Id + Q+(iβ, ξ̃)

)
= det

([
(τ + βs)2 + µ(−β2 + |ξ̃|2)

]
Id + h′′(J+)q+ ⊗ q+

)
=
(

(τ + βs)2 + µ(−β2 + |ξ̃|2)
)d−1(

(τ + βs)2 + µ(−β2 + |ξ̃|2) + h′′(J+)(q+)>q+
)
,
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where q+ is defined in (5.16). Now suppose that (τ + βs)2 + µ(−β2 + |ξ̃|2) = 0. Since
Reβ < 0 for all frequencies in a connected set, (τ, ξ̃) ∈ Γ+, by continuity it suffices to
evaluate sgn (Reβ) at ξ̃ = 0 and Re τ > 0 with |τ | = 1. Substituting we obtain

(
√
µβ − τ − βs)(√µβ + τ + βs) = 0,

yielding the roots

β =
τ

√
µ− s

, β = − τ
√
µ+ s

.

But both roots have Reβ > 0 because s < −√µ < 0, a contradiction with Reβ < 0.
Therefore, we conclude that β must be a root of

ϕ(τ, ξ̃, s, β) := (τ + βs)2 + µ(−β2 + |ξ̃|2) + h′′(J+)(q+)>q+ = 0.

To double-check the form of q+, from expression (5.4) we immediately observe that(
(τ + βs)2Id + Q+(iβ, ξ̃)

)
q+ = (τ + βs)2q+ + µ(−β2 + |ξ̃|2)q+ + h′′(J+)(q+ ⊗ q+)q+

=
[
(τ + βs)2 + µ(−β2 + |ξ̃|2) + h′′(J+)(q+)>q+

]
q+

= ϕ(τ, ξ̃, s, β)q+

= 0.

Henceforth, we conclude that Q+(iβ, ξ̃) has an eigenvector of the form (5.16) where β
is a solution to ϕ(τ, ξ̃, s, β) = 0. Since β is the only stable eigenvalue of A+(τ, ξ̃) for
any (τ, ξ̃) ∈ Γ+ then the eigenvector q+ can be uniquely determined (modulo scalings)
by expression (5.16). To simplify the characteristic polynomial, notice that

|q+|2 = (q+)>q+ =
(
iβ, ξ2, · · · , ξd

)
(Cof U+)>(Cof U+)


iβ
ξ2

...
ξd


= −β2|V +

1 |
2 + 2iβ

∑
j 6=1

(V +
1 )>V +

j ξj +
∑
i,j 6=1

(V +
i )>V +

j ξiξj ,

(5.18)

yielding

−ϕ(τ, ξ̃, s, β) = (µ+ h′′(J+)|V +
1 |

2 − s2)β2 − 2β
(
τs+ ih′′(J+)

∑
j 6=1

ξj(V
+

1 )>V +
j

)
+

−
(
τ2 + µ|ξ̃|2 + h′′(J+)

∑
i,j 6=1

ξiξj(V
+
i )>V +

j

)
=
(
κ+

2 − s
2
)
β2 − 2

(
τs+ ih′′(J+)η+(ξ̃)

)
β −

(
τ2 + ω+(ξ̃)

)
= 0,

as claimed.

Remark 5.1.4. Notice that, from natural considerations, τ + βs 6= 0 for the stable
eigenvalue β with Reβ < 0. Another way to interpret this fact is that the eigenvalue
β = −τ/s is incompatible with the curl-free conditions (4.30) (see the discussion in
[45]) and, therefore, it should be excluded from the normal modes analysis.
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5.1.2 Calculation of the “jump” vector

In the present case of a shock propagating in the ν̂ = ê1 direction, the calculation
of the Lopatinskĭı determinant (see expression (4.23)) involves the computation of the
following “jump” vector,

K = K(τ, ξ̃) := τJuK + i
∑
j 6=1

ξjJf j(u)K, (5.19)

which is a complex vector field in the frequency space, (τ, ξ̃) 7→ K(τ, ξ̃), K ∈ C∞(Γ+;Cn×1),
associated to the Rankine-Hugoniot jump conditions (4.51) across the shock. Use (4.51)
and (4.47) to obtain,

K(τ, ξ̃) =


τJU1K

isξ2JU1K
...

isξdJU1K
−τsJU1K− i

∑
j 6=1 ξjJσ(U)jK

 =


τId 0

isξ2Id 0
...

...
isξdId 0

0 Id


(

JU1K
−τsJU1K− i

∑
j 6=1 ξjJσ(U)jK

)
.

From expression (5.9) for the general form of a left eigenvector, l ∈ C1×n, of A, we have

l


τId 0

isξ2Id 0
...

...
isξdId 0

0 Id

 = q>
(
G1, . . . ,Gd, (τ + βs)Id

)



−sβId 0
isξ2Id 0
...

...
isξdId 0

0 0

+


(τ + βs)Id 0

0 0
...

...
0 0
0 Id




=
(
q>
(
− sβG1 + is

∑
j 6=1

ξjGj
)
, 0
)

+
(

(τ + βs)q>G1, (τ + βs)q>
)

=
(
− sq>Q(iβ, ξ̃, U) + (τ + βs)q>G1, (τ + βs)q>

)
= (τ + βs)q>

(
s(τ + βs)Id + G1, Id),

inasmuch as (5.10) holds and Q is invariant under simple trasposition. Therefore,

lK = (τ + βs)q>
(
s(τ + βs)JU1K + G1JU1K− τsJU1K− i

∑
j 6=1

ξjJσ(U)jK
)

= (τ + βs)q>
(

(βs2Id + G1)JU1K− i
∑
j 6=1

ξjJσ(U)jK
)
.

Hence, we have proved the following result, which will be useful later on.

Proposition 5.1.5. If β ∈ C is an eigenvalue of A(τ, ξ̃, U) with associated eigenvector
l, then

lK = (τ + βs)q>
(

(βs2Id + G1)JU1K− i
∑
j 6=1

ξjJσ(U)jK
)
, (5.20)

84



5.1 Normal Modes Analysis for elastic shocks

where K is the “jump” vector in (5.19), G1 is defined in (5.8) and q ∈ Cd×1 is such
that (5.10) holds.

Let us now compute the elements involved in the definition of the jump vector field
K. For simplicity, we introduce the notations

Bi
j
+

:= Bi
j(U

+) ∈ Rd×d, G+
k := Gk(U

+) ∈ Cd×d, 1 ≤ i, j, k ≤ d.

For later use we also compute (using formulae (4.43), (5.14) and (5.13)),

(B1
1

+ − s2Id)V +
1 =

[
µId + h′′(J+)V +

1 (V +
1 )> − s2Id

]
V +

1

= (µ− s2)V +
1 + h′′(J+)|V +

1 |
2V +

1

= (κ+
2 − s

2)V +
1 ,

(5.21)

as well as,

Bj
1

+
V +

1 =

[
h′′(J+)(V +

j ⊗ V
+

1 ) +
h′(J+)

J+

(
V +
j ⊗ V

+
1 − V

+
1 ⊗ V

+
j

)]
V +

1

=

(
h′′(J+) +

h′(J+)

J+

)
|V +

1 |
2V +

j −
h′(J+)

J+

(
(V +
j )>V +

1

)
V +

1 ,

=

[
κ+

2 − µ+
h′(J+)

J+
|V +

1 |
2

]
V +
j −

h′(J+)

J+
(V +
j · V

+
1 )V +

1 , for all j 6= 1.

(5.22)
Now, from Rankine-Hugoniot conditions (4.51), relation (4.57) and Proposition

4.2.22, it is clear that
JU1K = αV +

1 ,

JUjK = 0, j 6= 1,

V +
1 = (Cof U+)1 = (Cof U−)1.

(5.23)

Let us first compute the jump of the Piola-Kirchhoff stress tensor across the shock.
From (4.39) we have

Jσ(U)jK = µJUjK + Jh′(J)(Cof U)jK = α(s2 − µ)V +
j + h′(J−)J(Cof U)jK, for j 6= 1,

after having substituted relation (4.56). Now, notice that from (4.55) there holds

U− = U+ − α(V +
1 ⊗ ê1) = U+ − α

(
V +

1 , 0, · · · , 0
)
,

that is, U+ and U− differ by a matrix with all columns equal to zero except for the
first one (that is why, for instance, (Cof U+)1 = (Cof U−)1 = V +

1 ). We shall use this
information to find a suitable expression for the jump in the cofactor matrix column
JVjK = J(Cof U)jK, j 6= 1. For any 1 ≤ i, j ≤ d, with j 6= 1, and by elementary
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properties of the determinant, the (i, j)-entry of Cof U− is given by

(Cof U−)ij = (−1)i+j det
[(
U+ − α(V +

1 ⊗ ê1)
)′

(i,j)

]
= (−1)i+j det

[(
U+

1 − αV
+

1 , U+
2 , · · · , U

+
d

)′
(i,j)

]
= (−1)i+j det

[(
U+

1 , U
+
2 , · · · , U

+
d

)′
(i,j)

]
− α(−1)i+j det

[(
V +

1 , U+
2 , · · · , U

+
d

)′
(i,j)

]
= (Cof U+)ij − αM+

ij ,

where M+ ∈ Rd×d is the real d × d matrix whose first column is zero, M+
1 := 0, and

whose (i, j)-entry for any 1 ≤ i, j ≤ d, with j 6= 1, is defined as

M+
ij := (−1)i+j det

[(
V +

1 , U+
2 , · · · , U

+
d

)′
(i,j)

]
=
(

Cof
(
V +

1 , U+
2 , · · · , U

+
d

))
ij
, j 6= 1.

(5.24)
Henceforth we obtain,

J(Cof U)1K = JV1K = 0, J(Cof U)jK = JVjK = αM+
j , j 6= 1.

Upon substitution, we obtain the expressions for the jump of the stress tensor across
the shock,

Jσ(U)jK = α
(

(s2 − µ)V +
j + h′(J−)M+

j

)
, for j 6= 1, (5.25)

and,
Jσ(U)1K = αs2V +

1 .

Remark 5.1.6. The first column of M+ is zero because (Cof U+)1 = (Cof U−)1. Notice
that M+ is a smooth function of the entries of U+, M+ ∈ C∞(Md

+;Rd×d). For example,
in two spatial dimensions (d = 2) and after a straightforward computation one verifies
that Cof U− = Cof U+ − αM+ where

M+ =

(
0 U+

12

0 U+
22

)
= U+

2 ⊗ ê2 ∈ R2×2. (5.26)

Likewise, when d = 3 one finds that

M+ =
(

0, U+
3 × V

+
1 , −U+

2 × V
+

1

)
∈ R3×3. (5.27)

5.1.3 Further simplifications

In order to simplify the lengthy calculations to come, let us introduce the following
notations. First, we write the scalar products of the columns of the cofactor matrix
V + as

θ+
ij := (V +

i )>V +
j ∈ R, (5.28)
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for each 1 ≤ i, j ≤ d. In this fashion, it is clear that θ+
jj = |V +

j |2 > 0, θ+
ij = θ+

ji for all

i, j, and that θ+
ij is the (i, j)-entry of the real symmetric matrix (V +)>V +. Moreover,

we define

Θ+
ij := det

(
θ+

11 θ+
1j

θ+
i1 θ+

ij

)
, 1 ≤ i, j ≤ d. (5.29)

From its definition and Cauchy-Schwarz inequality it is clear that the matrix Θ+ ∈ Rd×d
satisfies 

Θ+
11 = Θ+

j1 = Θ+
1j = 0, 1 ≤ j ≤ d,

Θ+
jj > 0, j 6= 1,

Θ+
ij = Θ+

ji, 1 ≤ i, j ≤ d.
(5.30)

Next, we prove a result which significantly reduces the calculation of the large
determinants involved in the products (V +

i )>Mj appearing in the assembly of the
Lopatinskĭı determinant.

Lemma 5.1.7. For all 1 ≤ i, j ≤ d, d ≥ 2, there holds

(V +
i )>M+

j =
Θ+
ij

J+
. (5.31)

(In particular, we recover (V +
i )>M+

1 ≡ 0, for all i.)

Proof. Let us first verify formula (5.31) in the case of two space dimensions, d = 2. If
j 6= 1 then j = 2 and from (5.26) we have

M+
2 =

(
U+

12

U+
22

)
, V +

1 =

(
U+

22

−U+
12

)
, V +

2 =

(
−U+

21

U+
11

)
.

Thus, clearly, (V +
1 )>M+

2 = 0 and (V +
2 )>M+

2 = J+ > 0. But from (5.30) and Θ+
22 =

θ+
11θ

+
22 − (θ+

12)2 = (J+)2, we conclude that (5.31) holds.
Let us now suppose that d ≥ 3. First, observe that since V + = Cof U+ then

(U+)>V + = J+Id and, thus, (U+)>V +
1 = J+ê1. Now, take any j 6= 1 and any

1 ≤ i ≤ d. From the definition of M+ (see (5.24)) and the basic properties, (Cof A>) =
(Cof A)> and (Cof A)>Cof B = Cof (A>B) for any A,B ∈ Rd×d, we compute

(V +
i )>M+

j =

d∑
k=1

[
(Cof U+)>

]
ik

[
Cof

(
V +

1 , U+
2 , · · · , U

+
d

)]
kj

=
[
(Cof U+)>Cof

(
V +

1 , U+
2 . · · · , U

+
d

)]
ij

=
[
Cof

(
(U+)>V +

1 , (U+)>U+
2 , · · · , (U+)>U+

d

)]
ij

= (−1)i+j det

((
J+ê1, (U+)>U+

2 , · · · , (U+)>U+
d

)′
(i,j)

)
=: (−1)i+j detE′(i,j).
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To compute, for j 6= 1, this last determinant we expand along the first column to obtain

detE′(i,j) = det
((
J+ê1, (U+)>U+

2 , · · · , (U+)>U+
d

)′
(i,j)

)
= J+ det

[(
(U+)>U+

)′
(1i,1j)

]
,

where for any matrix A ∈ Rd×d, with d ≥ 3, A′(1i,1j) denotes the (d − 2) × (d − 2)
submatrix formed by eliminating rows 1 and i, and columns 1 and j from the original
matrix A. Likewise, for any matrix A, A(1i,1j) ∈ R2×2 denotes the submatrix

A(1i,1j) =

(
A11 A1j

Ai1 Aij

)
,

for all 1 ≤ i, j ≤ d. The computation of the (d − 2) × (d − 2) determinant of A′(1i,ij)
is considerably reduced by the use of Jacobi’s formula (see Theorem 2.5.2 in Prasolov
[112], or Gradshteyn and Ryzhik [55], p. 1076):

(−1)i+j detAdetA′(1i,1j) = det
[
(Cof A)(1i,1j)

]
.

A direct application of last equation to the Cauchy-Green tensor A = (U+)>U+ yields,

(V +
i )>M+

j = (−1)i+j detE′(i,j)

= (−1)i+jJ+ det
[(

(U+)>U+
)′

(1i,1j)

]
= (−1)i+jJ+(−1)−i−j(det(U+)>U+)−1 det

[(
Cof ((U+)>U+)

)
(1i,1j)

]
=

1

J+
det

(
θ+

11 θ+
1j

θ+
1i θ+

ij

)
=

Θ+
ij

J+
,

for the case j 6= 1 and d ≥ 3. Moreover, notice that formula (5.31) is also valid for
j = 1 because of (5.30) and M+

1 = 0. The lemma is proved.

5.1.4 Summary

To sum up, and for the convenience of the reader, we apply our simplified notation and
gather in one place all the ingredients we have computed so far and which will be used
to assemble the Lopatinskĭı determinant in the next section. Indeed, use the short-cuts
(5.15), (5.13), (5.14), (5.24), (5.28) and (5.29) to recast formulae (5.16), (5.8) with
k = 1, the first equation in (5.23), (5.25), (5.22), (5.21), the first equation in (5.15),
the second in (5.15) and (4.56) as,

q+(τ, ξ̃)> =
(
iβ, ξ2, · · · , ξd

)
(V +)> = iβ(V +

1 )> +
∑
i 6=1

ξi(V
+
i )> ∈ C1×d, (5.32)

G+
1 = G1(β, ξ̃, U+) = −βB1

1
+

+ i
∑
j 6=1

ξjB
j
1

+ ∈ Cd×d, (5.33)
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JU1K = αV +
1 ∈ Rd×1, (5.34)

Jσ(U)jK = α
(

(s2 − µ)V +
j + h′(J−)M+

j

)
∈ Rd×1, j 6= 1, (5.35)

Bj
1

+
V +

1 = (κ+
2 − µ)V +

j +
h′(J+)

J+

(
θ+

11V
+
j − θ

+
1jV

+
1

)
,∈ Rd×1, j 6= 1, (5.36)

(B1
1

+ − s2Id)V +
1 = (κ+

2 − s
2)V +

1 ∈ Rd×1, (5.37)

η+(ξ̃) =
∑
j 6=1

ξjθ
+
1j , (5.38)

ω+(ξ̃) = µ|ξ̃|2 + h′′(J+)
∑
i,j 6=1

ξiξjθ
+
ij , (5.39)

and,
1

α
Jh′(J)K = s2 − µ > 0, (5.40)

respectively. Finally, use formulae (5.21), (5.35), (5.31) and (5.36) to further obtain:

(V +
i )>

(
B1

1
+ − s2Id

)
V +

1 = (κ+
2 − s

2)θ+
i1, 1 ≤ i ≤ d, (5.41)

(V +
i )>

(
Bj

1

+
V +

1 −
1

α
Jσ(U)jK

)
= (V +

i )>
[(

(κ+
2 − µ) +

h′(J+)

J+
θ+

11

)
V +
j −

h′(J+

J+
θ+
j1V

+
1

−
(
(s2 − µ)V +

j + h′(J−)M+
j

)]
= (κ+

2 − s
2)θ+

ij +
h′(J+)

J+

(
θ+

11θ
+
ij − θ

+
j1θi1

)
− h′(J−)

J+
Θ+
ij

= (κ+
2 − s

2)θ+
ij + α(s2 − µ)

Θ+
ij

J+
, (5.42)

for all 1 ≤ i, j ≤ d, j 6= 1. In particular, since Θ+
1j = 0 we have, from last formula with

i = 1,

(V +
1 )>

(
Bj

1

+
V +

1 −
1

α
Jσ(U)jK

)
= (κ+

2 − s
2)θ+

1j , j 6= 1. (5.43)

5.2 Stability results

5.2.1 The Lopatinskĭı determinant

In this section, we calculate the Lopatinskĭı determinant (or stability function) asso-
ciated to a Lax 1-shock for compressible Hadamard materials. The main idea is to
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assemble different (yet equivalent) expressions, so that we can draw stability conclu-
sions from them. In the present case of an extreme 1-shock, the stable subspace of
A+(τ, ξ̃) has dimension equal to one for all (τ, ξ̃) ∈ Γ+ (see 4.1.4). Therefore, the
Lopatinskĭı determinant reduces to the expression (4.24),

∆(τ, ξ̃) = ls+(τ, ξ̃)K(τ, ξ̃),

where ls+(τ, ξ̃) is the left stable (row) eigenvector of A+(τ, ξ̃) associated to the only stable

eigenvalue β with Reβ < 0 and K(τ, ξ̃) is the jump vector (5.19). From Proposition
5.1.5 we obtain

∆(τ, ξ̃) = (τ + βs)∆̂(τ, ξ̃),

where

∆̂(τ, ξ̃) := q+(τ, ξ̃)>
(

(βs2Id + G1)JU1K− i
∑
j 6=1

ξjJσ(U)jK
)
, (τ, ξ̃) ∈ Γ+, (5.44)

and q+ is given by (5.32). In view that τ+βs 6= 0 for all (τ, ξ̃) ∈ Γ+, the scalar complex
field (5.44) encodes all the information regarding the stability of the shock front and,
thus, we shall focus on determining the zeroes of ∆̂ on Γ (including, by continuity, the
boundary ∂Γ ⊂ {Re τ = 0}). We remind the reader that the frequency τ = −βs is
incompatible with the physical curl-free conditions (4.30) and, therefore, we rule out
the limit limβ = − lim τ/s = −Im τ/s as Re τ → 0+ when considering zeroes of ∆
along the imaginary axis; see Remark 5.1.4.

Substitute (5.32), (5.37), (5.38), (5.33), (5.42), (5.43) and (5.34) into (5.44) to
obtain

i

α
∆̂(τ, ξ̃) =

[
iβ(V +

1 )> +
∑
i 6=1

ξi(V
+
i )>

][
− iβ

(
B1

1
+ − s2Id

)
V +

1 +

−
∑
j 6=1

ξj
(
Bj

1

+
V +

1 −
1

α
Jσ(U)jK

)]
= β2(κ+

2 − s
2)θ+

11 − 2iβ(κ+
2 − s

2)
∑
j 6=1

ξjθ
+
1j + (5.45)

−
∑
i,j 6=1

ξiξj

(
(κ+

2 − s
2)θ+

ij + α(s2 − µ)
Θ+
ij

J+

)
.

This is the main expression for the Lopatinskĭı determinant we shall be working
with. At this point we introduce the following material parameter which, in fact,
determines the stability of the shock (see Theorems 5.2.4 and 5.2.13 below).

Definition 5.2.1 (material stability parameter). For any 1-shock in the ê1-direction
for a compressible Hadamard material, we define

ρ(α) := (s2 − µ)

(
1

θ+
11

− α

J+

)
− h′′(J+) ∈ R. (5.46)
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It is to be noticed that ρ(α) depends only on the shock parameters (the base state
and of the shock strength) and on the elastic moduli of the material. It is, of course,
independent of the Fourier frequencies ξ̃ ∈ Rd−1. We also define for notational conve-
nience,

N+(ξ̃)2 :=

∣∣∣∣V +

(
0

ξ̃

)∣∣∣∣2 =
∑
i,j 6=1

ξiξjθ
+
ij , (5.47)

for all ξ̃ ∈ Rd−1

Lemma 5.2.2 (Lopatinskĭı determinant, version 1). The Lopatinskĭı determinant (??)
can be recast as

i

α
∆̂(τ, ξ̃) = (κ+

2 − s
2)θ+

11

(
β − i

η+(ξ̃)

θ+
11

)2
+ ρ(α)

(
θ+

11N
+(ξ̃)2 − η+(ξ̃)2

)
. (5.48)

Proof. Follows by direct computation and by noticing that the last term inside the sum
in (??) is

(κ+
2 − s

2)θ+
ij + α(s2 − µ)

Θ+
ij

J+
= −ρ(α)θ+

11θ
+
ij +

(
ρ(α) + h′′(J+)− s2 − µ

θ+
11

)
θ+

1jθ
+
i1,

after having substituted (5.46) and (5.14). Using (5.47) and (5.38), the Lopatinskĭı
determinant (??) can be written as

i

α
∆̂(τ, ξ̃) = β2(κ+

2 − s
2)θ+

11 − 2iβ(κ+
2 − s

2)
∑
j 6=1

ξjθ
+
1j + ρ(α)θ+

11N
+(ξ̃)2+

−
(
ρ(α) + h′′(J+)− s2 − µ

θ+
11

)
η+(ξ̃)2

= (κ+
2 − s

2)θ+
11

(
β − i

η+(ξ̃)

θ+
11

)2
+ ρ(α)

(
θ+

11N
+(ξ̃)2 − η+(ξ̃)2

)
,

as claimed. Notice that this formula is simply the completion of the square in the
variable β.

5.2.2 Sufficient condition for weak stability

Based on the first version of the Lopatinskĭı determinant, formula (5.48) above, we are
ready to establish our first stability theorem. First, we need to prove the following
elementary

Lemma 5.2.3. For all ξ̃ ∈ Rd−1, there holds

P+(ξ̃) := θ+
11N

+(ξ̃)2 − η+(ξ̃)2 ≥ 0. (5.49)

Moreover, equality holds only when ξ̃ = 0.
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Proof. Since N+(0)2 = η+(0)2 = 0 for ξ̃ = 0, it suffices to prove that θ+
11N

+(ξ̃)2 −
η+(ξ̃)2 > 0 for all ξ̃ ∈ Rd−1, ξ̃ 6= 0. First, we write the above expression as a quadratic
form

P+(ξ̃) = |V +
1 |

2

∣∣∣∣V +

(
0

ξ̃

)∣∣∣∣2 − (V +

(
0

ξ̃

))> (
V +

1 ⊗ V
+

1

)
V +

(
0

ξ̃

)
=

(
V +

(
0

ξ̃

))> (
|V +

1 |
2Id − V +

1 ⊗ V
+

1

)
V +

(
0

ξ̃

)
.

Notice that the eigenvalues of the matrix |V +
1 |2Id−V

+
1 ⊗V

+
1 are ν̃ = 0 and ν̃ = |V +

1 |2 =
θ+

11 > 0. Indeed, for ν̃ 6= θ+
11, use Sylvester’s determinant formula to obtain

det
(

(θ+
11 − ν̃)Id − V +

1 (V +
1 )>

)
= −ν̃

(
θ+

11 − ν̃
)d−1

.

This implies that ν̃ = 0 is a simple eigenvalue associated to the eigenvector V +
1 , inas-

much as (|V +
1 |2Id − V

+
1 ⊗ V

+
1 )V +

1 = 0. Hence, we conclude that |V +
1 |2Id − V

+
1 ⊗ V

+
1

is positive semi-definite and P+(ξ̃) ≥ 0 for all ξ̃ ∈ Rd−1. Now suppose that P+(ξ̃) = 0
for some ξ̃ 6= 0. Since ν̃ = 0 is a simple eigenvalue, this implies that V +

( 0
ξ̃

)
= kV +

1

for some scalar k or, in other words, that the columns of V + are linearly dependent, a
contradiction. This proves the lemma.

Theorem 5.2.4 (sufficient condition for weak stability). For a compressible hypere-
lastic Hadamard material satisfying assumptions (H1) - (H3), consider a classical Lax
1-shock with intensity α 6= 0. Suppose that

ρ(α) ≥ 0. (5.50)

Then the shock is, at least, weakly stable (more precisely, there are no roots of the
Lopatinskĭı determinant in Γ+).

Proof. According to Proposition 4.2.22, given the base state (U+, v+) ∈Md
+ × Rd, the

shock is completely characterized by the parameter α ∈ (−∞, 0) ∪ (0, α+
max). Suppose

that for a fixed value of α 6= 0 (independently of its sign) condition (5.50) holds 1. Let
us normalize the Lopatinskĭı determinant as,

∆̌(τ, ξ̃) :=
i

α

∆̂(τ, ξ̃)

(κ+
2 − s2)θ+

11

, (τ, ξ̃) ∈ Γ+.

From Lemma 5.2.3 and Lax conditions, we have P+(ξ̃) ≥ 0, θ+
11 > 0 and κ+

2 − s2 > 0.
Thus, using (5.50) we may define

δ :=

√
ρ(α)P+(ξ̃)

(κ+
2 − s2)θ+

11

≥ 0,

1notice that under (H3) necessarily α < 0, in view of Proposition 4.2.22; the result holds, however,
independently of the sign of α.
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for all (τ, ξ̃) ∈ Γ+, and write

∆̌(τ, ξ̃) =
(
β − i

η+(ξ̃)

θ+
11

)2
+ δ2 =

(
β − i

η+(ξ̃)

θ+
11

− iδ
)(
β − i

η+(ξ̃)

θ+
11

+ iδ
)
.

In view that the real part of each factor in last formula is negative (Reβ < 0 in Γ+),
we conclude that ∆̌ never vanishes in Γ+.

5.2.3 Locating zeroes along the imaginary axis

In order to locate zeroes of the Lopatinskĭı determinant along the imaginary axis, we
need to find a new expression for it. For that purpose, we examine in more detail the
unique stable eigenvalue β = β(τ, ξ̃) with Reβ < 0 of A+, (τ, ξ̃) ∈ Γ+, and define an
appropriate mapping in the spatio-temporal frequency space.

Recall that β ∈ C is a root of the second order characteristic polynomial (5.17) (see
Lemma 5.1.3), whose discriminant is,

4Ξ(τ, ξ̃) := 4(τs+ ih′′(J+)η+(ξ̃))2 + 4(κ+
2 − s

2)(τ2 + ω+(ξ̃)), (τ, ξ̃) ∈ Γ+.

This is a second order polynomial in τ . Completing the square in τ yields,

Ξ(τ, ξ̃) =

√κ+
2 τ + i

sh′′(J+)η+(ξ̃)√
κ+

2

2

+ (κ+
2 − s

2)ζ+(ξ̃)

 ,
where

ζ+(ξ̃) := ω+(ξ̃)− h′′(J+)2

κ+
2

η+(ξ̃)2 ∈ R. (5.51)

Therefore, the two β-roots of (5.17) are given by

β = (κ+
2 − s

2)−1
(
τs+ ih′′(J+)η+(ξ̃)± Ξ(τ, ξ̃)1/2

)
.

To select the branch of the square root, we recall that the stable eigenvalue β = β(τ, ξ̃)
is continuous and Reβ < 0 in Γ+. If ξ̃ = 0 then ω+(0) = η+(0) = ζ+(0) = 0 and
Ξ(τ, 0)1/2 = (κ+

2 τ
2)1/2 is continuous in Re τ > 0. Hence, we may select Ξ(τ, 0)1/2 =√

κ+
2 τ as the principal branch. Since κ+

2 > s2 (Lax conditions) and Re τ > 0, the stable

root at (τ, 0) is

β(τ, 0) = − τ√
κ+

2 + s
.

Consequently, the branch we select for the stable root is

β(τ, ξ̃) = (κ+
2 − s

2)−1
(
τs+ ih′′(J+)η+(ξ̃)− Ξ(τ, ξ̃)1/2

)
. (5.52)
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We introduce here the following mapping in the frequency space,

Ψ(τ, ξ̃) := (γ(τ, ξ̃), ξ̃),

Ψ : Γ+ 7→ C× Rd−1,

γ(τ, ξ̃) :=
1√

κ+
2 − s2

τ√κ+
2 + i

sh′′(J+)η+(ξ̃)√
κ+

2

 .

(5.53)

The goal is to express the Lopatinskĭı determinant (5.48) as well as the stable eigenvalue
(5.52) in terms of the new frequency variables (γ, ξ̃).

Lemma 5.2.5. The frequency mapping Ψ : (τ, ξ̃) 7→ (γ, ξ̃) is injective and maps Γ+

onto the set

Γ̃+ :=

{
(γ, ξ̃) ∈ C× Rd−1 : Re γ > 0,

∣∣∣∣√(κ+
2 )−1(κ+

2 − s2) γ − i(κ+
2 )−1sh′′(J+)η+(ξ̃)

∣∣∣∣2 + |ξ̃|2 = 1

}
.

(5.54)

Proof. Seen as a mapping from (Re τ, Im τ, ξ̃>) ∈ Rd+1 to Rd+1, Ψ is of class C∞ and
its Jacobian has the following structure

D
(τ,ξ̃)

Ψ =

 √
κ+2√

κ+2 −s2
I2 ∗

0 Id−1

 ,

which is clearly invertible. Notice that

Re γ =
√
κ+

2 (κ+
2 − s2)−1 Re τ,

and, therefore, Re τ > 0 if and only if Re γ > 0. Hence, we conclude that Ψ(Γ+) =
Γ̃+.

Let us substitute (5.53) into (5.52). After straightforward algebra, the result is the
stable eigenvalue β as a function of the new frequency variables:

β(γ, ξ̃) =
s√

κ+
2 (κ+

2 − s2)

γ + i

√
κ+

2 − s2

s
√
κ+

2

h′′(J+)η+(ξ̃)−

√
κ+

2

s

(
γ2 + ζ+(ξ̃)

)1/2

 .
Use κ+

2 = µ+ h′′(J+)θ+
11 to obtain

β − i
η+(ξ̃)

θ+
11

=
s√

κ+
2 (κ+

2 − s2)

[
γ −

√
κ+

2

s

(
γ2 + ζ+(ξ̃)

)1/2
+

− i
µη+(ξ̃)

θ+
11

√
κ+

2 − s2

s
√
κ+

2

]
.

(5.55)
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Substitution of last expression into the first version of the Lopatinskĭı determinant,
equation (5.48), yields

i

α
̂̂
∆(γ, ξ̃) :=

i

α
∆̂(τ(γ, ξ̃), ξ̃) =

s2θ+
11

κ+
2

γ −
√
κ+

2

s

(
γ2 + ζ+(ξ̃)

)1/2
− i

µη+(ξ̃)

θ+
11

√
κ+

2 − s2

s
√
κ+

2

2

+

+ ρ(α)
(
θ+

11N
+(ξ̃)2 − η+(ξ̃)2

)
=
s2θ+

11

κ+
2

[γ −
√
κ+

2

s

(
γ2 + ζ+(ξ̃)

)1/2
+ i%+η+(ξ̃)

2

+

+
κ+

2

s2θ+
11

ρ(α)P+(ξ̃)

]
,

where

%+ := −
µ
√
κ+

2 − s2

s
√
κ+

2 θ
+
11

> 0. (5.56)

Notice that %+ is a positive constant (recall that s < 0) depending only on the param-
eters of the shock. P+(ξ̃) is defined in (5.49). Therefore, we have proved the following
lemma.

Lemma 5.2.6 (Lopatinskĭı determinant, version 2). The Lopatinskĭı determinant (5.48)
can be rewritten and normalized as

∆̃(γ, ξ̃) :=
κ+

2

s2θ+
11

i

α
̂̂
∆(γ, ξ̃) =

γ −
√
κ+

2

s

(
γ2 + ζ+(ξ̃)

)1/2
+ i%+η+(ξ̃)

2

+

+
ρ(α)κ+

2

s2θ+
11

P+(ξ̃),

(5.57)

for (γ, ξ̃) ∈ Γ̃+. It encodes the same stability information in the sense that ∆̃ = 0 in
Γ̃+ if and only if ∆̂ = 0 in Γ+. Moreover, by continuity and thanks to the properties of
the mapping (τ, ξ̃) 7→ (γ, ξ̃) (see Lemma 5.2.5), ∆̃ has a zero with γ ∈ iR if and only if
∆̂ has a zero with τ ∈ iR.

As a first consequence of the expression for the Lopatinskĭı determinant (5.57) we
have the following

Corollary 5.2.7 (one-dimensional stability). For every Hadamard energy function of
the form (4.36) satisfying (H1) - (H3), all classical shock fronts are uniformly stable with
respect to one-dimensional perturbations. In particular, the Lopatinskĭı determinant
(5.44) behaves for ξ̃ = 0 as

i

α
∆̂(τ, 0) = θ+

11

√
κ+

2 − s√
κ+

2 + s
τ2 6= 0,
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for any (τ, 0) ∈ Γ+.

Proof. Set ξ̃ = 0 and (γ, 0) ∈ Γ̃+. Then Re γ > 0 and |γ|2 = κ+
2 /(κ

+
2 −s2). This implies

that

γ =

√
κ+

2√
κ+

2 − s2
eiυ, υ ∈ [0, 2π).

Since ζ+(0) = η+(0) = P+(0) = 0 we have, upon substitution into (5.57),

∆̃(γ, 0) =
κ+

2

s2

√
κ+

2 − s√
κ+

2 + s
ei2υ.

In view of the frequency transformation (5.53) and the relation

(i/α)∆̂(τ, 0) = s2θ+
11∆̃(γ(τ, 0), 0)/κ+

2 ,

we obtain the result for all (τ, 0) = (eiυ, 0) ∈ Γ+.

Remark 5.2.8. Note that the behavior of the Lopatinskĭı determinant in (5.57) strongly
depends on the sign of ζ+(ξ̃) because it determines the branches of the square root.
Hence, it is worth observing that ζ+(ξ̃) > 0 for all ξ̃ 6= 0 and ζ+(0) = 0 if and only if
ξ̃ = 0. Indeed, use (5.15), (5.47) and (5.51) to recast ζ+(ξ̃) as

ζ+(ξ̃) = ω+(ξ̃)− h′′(J+)2

κ+
2

η+(ξ̃)2

= µ|ξ̃|2 + h′′(J+)N+(ξ̃)2 − h′′(J+)2

κ+
2

η+(ξ̃)2

= µ|ξ̃|2 +
h′′(J+)

θ+
11

P+(ξ̃) +
(

1− θ+
11h
′′(J+)

κ+
2

)h′′(J+)

θ+
11

η+(ξ̃)2

= µ|ξ̃|2 +
h′′(J+)

θ+
11

P+(ξ̃) +
µh′′(J+)

κ+
2 θ

+
11

η+(ξ̃)2.

Since P+(ξ̃) ≥ 0, Lemma 5.2.3, µ > 0 and h′′ > 0 (condition (H2)) we arrive at the
conclusion.

Notably, ζ+(ξ̃) remains positive if we substract a suitable frequency expression
depending on %+. This is a useful property to locate the zeroes of the Lopatinskĭı
determinant along the imaginary axis.

Lemma 5.2.9. For every ξ̃ ∈ Rd−1 there holds,

ζ+(ξ̃)−
(
%+η+(ξ̃)

)2
= µ|ξ̃|2 +

h′′(J+)

θ+
11

P+(ξ̃) +
µ(s2 − µ)

s2(θ+
11)2

η+(ξ̃)2 ≥ 0.

Moreover, equality holds if and only if ξ̃ = 0.

96



5.2 Stability results

Proof. Follows from Remark 5.2.8, the definition of %+ and straightforward algebra:

ζ+(ξ̃)−
(
%+η+(ξ̃)

)2
= µ|ξ̃|2 +

h′′(J+)

θ+
11

P+(ξ̃) +
(µh′′(J+)

κ+
2 θ

+
11

− µ2(κ+
2 − s2)

s2κ+
2 (θ+

11)2

)
η+(ξ̃)2

= µ|ξ̃|2 +
h′′(J+)

θ+
11

P+(ξ̃) +
µ(s2 − µ)

s2(θ+
11)2

η+(ξ̃)2.

The conclusion now follows.

We proceed with the investigation of the possible zeroes of the Lopatinskĭı determi-
nant along the imaginary axis, which are associated to the existence of surface waves.
Let us consider a zero of ∆̃ of the form (it, ξ̃), with t ∈ R. Let us define Y (t, ξ̃) := ∆̃(it, ξ̃)
for t ∈ R, and now we find conditions under which Y has real zeros for a fixed frequency
ξ̃ ∈ Rd−1 \ {0}. By Lemma 5.2.9, ζ+(ξ̃) is positive for all ξ̃ ∈ Rd−1 \ {0}, so let us first
consider

t ∈
(
−
√
ζ+(ξ̃),

√
ζ+(ξ̃)

)
.

In this case we can write

Y (t, ξ̃) =
(
−

√
κ+

2

s

√
ζ+(ξ̃)− t2 + i

(
t+ %+η+

))2
+
ρ(α)κ+

2

s2θ+
11

P+(ξ̃).

Supposing that Y (t, ξ̃) = 0, its imaginary part vanishes, yielding

−2

√
κ+

2

s

(
t+ %+η+(ξ̃)

)√
ζ+(ξ̃)− t2 = 0.

By hypothesis,

√
ζ+(ξ̃)− t2 6= 0. Hence the imaginary part vanishes only if t =

−%+η+(ξ̃). Notice that t = −%+η+(ξ̃) ∈ (−
√
ζ+,

√
ζ+) in view of Lemma 5.2.9. How-

ever,

Y (−%+η+(ξ̃), ξ̃) =

−
√
κ+

2

s

√
ζ+(ξ̃)− (%+η+(ξ̃))2

2

+
ρ(α)κ+

2

s2θ+
11

P+(ξ̃)

=
κ+

2

s2

(
ζ+(ξ̃)− (%+η+(ξ̃))2 +

ρ(α)

θ+
11

P+(ξ̃)
)

=
κ+

2

s2

(
µ|ξ̃|2 +

(
h′′(J+) + ρ(α)

)P+(ξ̃)

θ+
11

+
µ(s2 − µ)

s2(θ+
11)2

η+(ξ̃)2

)

=
κ+

2

s2

(
µ|ξ̃|2 + (s2 − µ)

( 1

θ+
11

− α

J+

)P+(ξ̃)

θ+
11

+
µ(s2 − µ)

s2(θ+
11)2

η+(ξ̃)2

)
,
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which is strictly positive for all ξ̃ ∈ Rd−1 \ {0} because µ > 0, s2 > µ, P+(ξ̃) > 0 and

1

θ+
11

− α

J+
=

J−

θ+
11J

+
> 0.

Therefore, we conclude that Y does not vanish on the interval (−
√
ζ+,

√
ζ+). Let us

now consider

|t| ≥
√
ζ+(ξ̃).

In this case we have √
−t2 + ζ+(ξ̃) = i sgn (t)

√
t2 − ζ+(ξ̃),

and hence

Y (t, ξ̃) = −
(
t−

√
κ+

2

s
sgn (t)

√
t2 − ζ+(ξ̃) + %+η+(ξ̃)

)2
+
ρ(α)κ+

2

θ+
11s

2
P+(ξ̃).

Observe that η+(−ξ̃) = −η+(ξ̃), P (−ξ̃) = P (ξ̃) and ζ+(−ξ̃) = ζ+(ξ̃). Thus, the
following property holds, Y (−t, ξ̃) = Y (t,−ξ̃), and we can assume without loss of
generality that t ≥

√
ζ+ > 0 for ξ̃ 6= 0. In this case, Y takes the form

Y (t, ξ̃) = −
(
t−

√
κ+

2

s

√
t2 − ζ+(ξ̃) + %+η+(ξ̃)

)2
+
ρ(α)κ+

2

θ+
11s

2
P+(ξ̃), ξ̃ ∈ Rd−1 \ {0}.

A straightforward computation then yields

∂Y (t, ξ̃)

∂t
= −2

(
t−

√
κ+

2

s

√
t2 − ζ+(ξ̃) + %+η+(ξ̃)

)(
1−

√
κ+

2

s

t√
t2 − ζ+

)
.

We readily observe that since s < 0 then the last factor is positive. In view of Lemma
5.2.9 it follows that |%+η+| <

√
ζ+ ≤ t and, hence, the first factor is also positive. This

shows that Y is strictly decreasing as a function of t >
√
ζ+ for all ξ̃ ∈ Rd−1 \ {0}.

Moreover, Y behaves as

Y ≈ −t2
1−

√
κ+

2

s

2

< 0,

as t→ +∞ and for fixed ξ̃ 6= 0.
Consequently, Y has a unique zero of the form (t, ξ̃) with t ≥

√
ζ+ if and only if

there exists at least one frequency ξ̃0 6= 0 such that

Y

(√
ζ+(ξ̃0), ξ̃0

)
≥ 0,
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yielding the condition(√
ζ+(ξ̃0) + %+η+(ξ̃0)

)2
− ρ(α)κ+

2

s2θ+
11

P+(ξ̃0) ≤ 0.

Otherwise there are no purely imaginary zeroes. Note that if ρ(α) ≤ 0 then the left
hand side of last expression is strictly positive for all ξ̃0 6= 0 in view of Lemma 5.2.3.
On account of the homogenity of ∆̃ in ξ̃ we may assume |ξ̃| = 1. We summarize the
observations of this section into the following

Lemma 5.2.10 (existence of purely imaginary zeroes). If ρ(α) ≤ 0 then ∆̃ has no
zeroes of the form (it, ξ̃) with t ∈ R. Conversely, if ρ(α) > 0 then ∆̃ has at least one
zero of the form (it, ξ̃) if and only if there exist at least one frequency ξ̃0 6= 0 such that(√

ζ+(ξ̃0) + %+η+(ξ̃0)
)2
− ρ(α)κ+

2

s2θ+
11

P+(ξ̃0) ≤ 0. (5.58)

Remark 5.2.11. From Theorem 5.2.4 we know that if ρ(α) ≥ 0 then the shock is
either weakly or strongly stable. Lemma 5.2.10 allows us to distinguish between the
two cases. For instance, if the shock (U±, v±, s) is such that ρ(α) = 0 then relation
(5.58) is never satisfied for any frequency ξ̃ ∈ Rd−1 \{0} and the shock is strongly stable
(recall that ζ+ > 0 for ξ̃ 6= 0 and, in view of Lemma 5.2.9,

√
ζ+ ≥ |%+η+| > 0). When

ρ(α) > 0 the stability is determined by the expression (5.58), which can be considered
as the condition for the transition from strong to weak stability.

5.2.4 The case ρ(α) < 0

From Lemma 5.2.10 and Remark 5.2.11, we already know that ∆̃ has not purely imagi-
nary roots when ρ(α) < 0. At the same time, Theorem 5.2.4 guarantees that if ρ(α) ≥ 0
then the shock is at least weakly stable and the transition from weak to strong stability
is determined by condition (5.58). Therefore, the only remaining task is to determine
whether there exist zeroes of the form (γ, ξ̃) with Re γ > 0 when ρ(α) < 0. Following
the proof of Theorem 5.2.4, we exploit the fact that Reβ < 0 in order to reduce the
analysis to only one factor (a third version of the Lopatinskĭı determinant) instead of
the whole function ∆̃. Let us recall that

∆̃(γ, ξ̃) =
κ+

2

s2θ+
11

i

α
̂̂
∆(γ, ξ̃) =

κ+
2

s2θ+
11

i

α
∆̂(τ(γ, ξ̃), ξ̃),
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so we come back to the expression of i
α∆̂ defined in Lemma 5.2.2, which can be written

as:

i

α
∆̂(τ(γ, ξ̃), ξ̃) = (κ+

2 − s
2)θ+

11

((
β(τ(γ, ξ̃), ξ̃)− iη+(ξ̃)

θ+
11

)2
+

ρ(α)P+(ξ̃)

(κ+
2 − s2)θ+

11

)

= (κ+
2 − s

2)θ+
11

((
β − iη+(ξ̃)

θ+
11

)2
− δ2

)

= (κ+
2 − s

2)θ+
11

(
β − δ − iη+(ξ̃)

θ+
11

)(
β + δ − iη+(ξ̃)

θ+
11

)
,

where now, with a slight abuse of notation,

δ =

√
−ρ(α)P+(ξ̃)

θ+
11(κ+

2 − s2)
> 0,

in view that ρ(α) < 0. Except for the constant (κ+
2 − s2)θ+

11, note that the real part of

first factor in the expression of i
α∆̂ is negative (Reβ < 0 in Γ+ and, because of Lemma

5.2.5, Reβ < 0 in Γ̃+ as well). Hence, this factor never vanishes in Γ̃+. Necessarily, all
possible zeroes γ in Γ̃+ come from the last factor. Profiting from (5.55), we recast the
latter as follows.

Definition 5.2.12 (Lopatinskĭı determinant, version 3). In the case when ρ(α) < 0,
we define

∆1(γ, ξ̃) : =

√
κ+

2 (κ+
2 − s2)

s

(
β + δ − iη+(ξ̃)

θ+
11

)

= γ −

√
κ+

2

s

√
γ2 + ζ+(ξ̃) + i%+η+(ξ̃) +

√
κ+

2

s

√
−ρ(α)P+(ξ̃)

θ+
11

(5.59)

for each (γ, ξ̃) ∈ Γ̃+.

From the preceding discussion, it suffices to study the zeroes of ∆1 on Γ̃+ to draw
stability conclusions about the shock in the case ρ(α) < 0. To that end, we apply the
argument principle to count the number of roots of ∆1 in the right complex γ-half-
plane. We proceed as in [70], introducing polar coordinates (R,φ) and defining, for any
fixed ξ̃ 6= 0, the function

H(R,φ) = H(w) := ∆1(w, ξ̃), w = Reiφ.

Consider H(w) as w varies counterclock-wise along the closed contour C consisting
of a semicircle together with a vertical segment joining the ends; see Figure 5.1. From
Lemma 5.2.10 it is known that if ρ(α) < 0 then there are no roots of ∆̃ of the form
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(a) Contour C (b) H(C)

Figure 5.1: Illustration of the contour C in the w-complex plane (in blue; panel (a)) and
of its image under the mapping H (panel (b)).

(it, ξ̃) (and, consequently, of ∆1 as well). Therefore, the function H does not have
purely imaginary roots for any fixed ξ̃ 6= 0, and we only have to avoid the branch cuts
of the square root when we map this portion of the imaginary axis. We are interested
in the behavior of the image of C under H as R → ∞. From expression (5.59), notice
that the image of the circular portion for large R behaves like

H(R,φ) ≈

1− s√
κ+

2

Reiφ,

as R → ∞. Hence, the image is almost a circular portion too. Now we examine
the mapping of the portion of C on the imaginary axis, that is, when φ = ±π/2.
Substitution into (5.59) yields

H(R,±π
2 ) = ±iR+ i%+η+(ξ̃) +

√
κ+

2

s

√
−ρ(α)P+(ξ̃)

θ+
11

+

−

√
κ+

2

s
·

±i

√
R2 − ζ+(ξ̃), R2 > ζ+(ξ̃),√

ζ+(ξ̃)−R2, R2 ≤ ζ+(ξ̃).

Hence, H maps the segment (−i
√
ζ+, i
√
ζ+) into the half right part of the following
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ellipse in the XY -plane,− s√
κ+

2

X +

√
−ρ(α)P+(ξ̃)

θ+
11

2

+
(
Y − %+η+(ξ̃)

)2
= ζ+(ξ̃), (5.60)

whereX = ReH(w), Y = ImH(w). At the same time, H maps the segment (−iR,−i
√
ζ+)∪

(i
√
ζ+, iR) into the lines joining the upper an lower vertices of the ellipse with points

H(R, π2 ) and H(R,−π
2 ) respectively; see Figure 5.1(b).

Note that the total change in the argument of H on the contour C depends on
whether or not the point (X,Y ) = (0, 0) is inside the ellipse. Since H has no purely
imaginary zeros for all ξ̃ 6= 0, (X,Y ) = (0, 0) does not lie on the ellipse in the XY -
plane. It remains to check whether (X,Y ) = (0, 0) is inside or outside the ellipse. For
that purpose, we apply Lemma 5.2.9 in order to write

(
%+η+(ξ̃)

)2
= ζ+(ξ̃)−

(
µ|ξ̃|2 +

h′′(J+)

θ+
11

P+(ξ̃) +
µ(s2 − µ)

s2(θ+
11)2

(η+)2

)
.

Now if we substitute X = 0, Y = 0 into the right hand side of (5.60) then we find that

−ρ(α)P+(ξ̃)

θ+
11

+
(
%+η+(ξ̃)

)2
= ζ+(ξ̃)−

(
µ|ξ̃|2 + (s2 − µ)

( 1

θ+
11

− α

J+

)P+(ξ̃)

θ+
11

+

+
µ(s2 − µ)

s2(θ+
11)2

(η+)2

)
< ζ+(ξ̃),

for each ξ̃ 6= 0. Hence, we conclude that the point (X,Y ) = (0, 0) is inside the ellipse
(or equivalently, it lies outside of the image of the contour under H, as illustrated in
Figure 5.1(b)). This implies that there is no change in the argument of H(w) as w varies
counterclockwise along the closed contour C and that there are no roots with positive
real part of H for all ξ̃ 6= 0. The argument can be applied to any arbitrarily large
radius R > 0. Therefore, as long as ρ(α) < 0, ∆̃(γ, ξ̃) does not vanish for Re γ > 0. In
view of Remark 5.2.11, we conclude that ρ(α) ≤ 0 is a sufficient condition for uniform
(or strong) stability.

We summarize the last discussion and the precedent theorems into the following
main result.

Theorem 5.2.13 (stability criteria). For a compressible hyperelastic Hadamard mate-
rial satisfying assumptions (H1) - (H3), consider a classical (Lax) 1-shock with intensity
α 6= 0.

(a) If ρ(α) ≤ 0 then the shock is uniformly stable.
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(b) In the case where ρ(α) > 0, the shock is uniformly stable if and only if(√
ζ+(ξ̃) + %+η+(ξ̃)

)2
− ρ(α)κ+

2

s2θ+
11

P+(ξ̃) > 0, for all ξ̃ 6= 0. (5.61)

Otherwise the shock is weakly stable.

Remark 5.2.14. Being the left hand side of (5.61) of order O(|ξ̃|2), in most cases it
constitutes a quadratic form in ξ̃ and there exists a real matrix L+ ∈ Rd×d depending
only on the shock and material parameters (that is, independent of the frequencies
ξ̃ ∈ Rd−1) such that, in those cases, the transition from weak to strong stability condition
can be recast as follows: when ρ(α) > 0 the shock is uniformly stable if and only if the
matrix L+ restricted to the d − 1 dimensional space, {(0, ξ̃) : ξ̃ ∈ Rd−1} ⊂ Rd, is

positive definite, that is, if (0, ξ̃)>L+
(

0
ξ̃

)
> 0 for all ξ̃ 6= 0. In other words, one

can state the transition condition (5.61) in terms of the shock and material parameters
alone, as in the case of gas dynamics (cf. [15, 89]). However, the general form of the
matrix L+ is convoluted and, in practice, it is more convenient to verify (5.61) directly
(see, for instance, the example in section §5.3.1 below).

5.3 Applications

In order to illustrate the former theoretical results, in this section we examine a couple
of specific energy density functions describing compressible Hadamard materials and
determine the conditions for shock stability.

5.3.1 Two-dimensional Ciarlet-Geymonat model

We begin by considering, in two space dimensions d = 2, the following volumetric energy
density proposed by Ciarlet and Geymonat [25] (see Appendix C, §C.2, equation (C.6)
below),

h(J) = −µ− µ log J +
(κ− µ

2

)
(J − 1)2, (5.62)

where µ and κ are the (constant) shear and bulk moduli, respectively, satisfying κ >
µ > 0. Energies of the form (C.6) model nearly incompressible materials (that is, they
are proposed for small deformations) and they satisfy the free stress condition (C.2) and
the hydrostatic pressure condition (C.4) of Pence and Gou [108]. In other words, these
models are compressible extensions of neo-Hookean materials. This two-dimensional
version of the Ciarlet-Geymonat energy, (5.62), has been proposed by Trabelsi [135] to
describe nonlinear thin plate materials modeling flexural shells.

Given a base state (U+, v+) ∈ R2×2×R2, a Lax shock is completely determined by
the parameter α ∈ R (see Lemma 4.2.16). It can be shown (see section §C.2 below)
that

h′′(J) =
µ

J2
+ κ− µ > 0, h′′′(J) = −2µ

J3
< 0,
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for all J ∈ (0,∞). Thus, this energy density satisfies (H1) – (H3). In view of Proposition
4.2.22, in order to have a classical shock front we need α < 0. Notice that |α| can be
arbitrarily large, meaning that the shock can be of arbitrary amplitude. According to
our notation

V +
1 = (Cof U+)1 =

(
U+

22

−U+
12

)
∈ R2.

A straightforward calculation (which we leave to the dedicated reader) yields

ρ(α) = −(κ− µ)
|V +

1 |2

J+
α > 0.

Therefore, from Theorem 5.2.4 we know that all classical shocks with intensity α < 0
are, at least, weakly stable. In order to examine condition (5.58) and the emergence of
surface waves, we set, for simplicity, U+ = I2 (undeformed base state). Thus,

V +
1 = (Cof U+)1 = ê1 ∈ R2, θ+

11 = |V +
1 |

2 = 1,

U− = U+ − α(V +
1 ⊗ ê1) = I2 − α(ê1 ⊗ ê1) =

(
1− α 0

0 1

)
,

J+ = 1, J− = 1− α > 1.

This yields ρ(α) = −(κ − µ)α. Since the physical dimension is d = 2, the Fourier
frequency is ξ̃ = ξ2 ∈ R and (τ, ξ2) ∈ Γ+ = {Re τ > 0, |τ |2 + ξ2

2 = 1}. After straight-
forward computations the reader may verify that

κ+
2 = µ+ κ,

s2 = κ+
µ

1− α
, with s < 0,

η+(ξ2) = 0, P+(ξ2) = ξ2
2 ,

ζ+(ξ2) = ω+(ξ2) = (µ+ κ)ξ2
2 .

Upon substitution into the left hand side of (5.58), we obtain

(µ+ κ)ξ2
2

(
1 +

α(1− α)(κ− µ)

µ+ (1− α)κ

)
.

Thus, the sign is determined by the function

L(α) = 1 +
α(1− α)(κ− µ)

µ+ (1− α)κ
, α < 0.

Clearly, L(α) > 0 for α ≈ 0−. Therefore, when ξ2 6= 0 condition (5.61) holds for α < 0
and |α| small and the shock is uniformly stable. It is easily verified that L(α∗) = 0
with α∗ < 0 only when

α∗ = −

(
µ+

√
µ2 + 4(κ2 − µ2)

2(κ− µ)

)
< 0. (5.63)

Thanks to Theorem 5.2.13 we obtain the following
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Proposition 5.3.1. For the two-dimensional Ciarlet-Geymonat model (5.62), classical
shocks with base sate U+ = I2 and intensity α < 0 are uniformly stable if α ∈ (α∗, 0)
and weakly stable if α ∈ (−∞, α∗], where the critical value α∗ is given by (5.63).

To illustrate this behavior we compute the Lopatinskĭı determinant, version 2 (see
Lemma 5.2.6) as a function of the transformed frequencies (γ, ξ2) ∈ Γ̃+. Substituting
the above parameters into (5.57) we obtain

∆̃(γ, ξ2) =

[
γ − (µ+ κ)1/2

(
κ+

µ

1− α

)−1/2(
γ2 + (µ+ κ)ξ2

2

)1/2
]2

+

− α(κ2 − µ2)ξ2
2

κ+ µ
1−α

.

(5.64)

Set the shear and bulk moduli as κ = 2 > µ = 1. Hence the threshold α-value
for weak/uniform stability is α∗ = −2.3028. Since the condition for uniform to weak
stability does not depend on ξ2 we may assume that |ξ2| = 1. Figure 5.2 shows the 3D
and contour plots of the Lopatinskĭı determinant (5.64) for the Ciarlet-Geymonat model
(5.62) in dimension d = 2 as function of γ ∈ C with ξ2

2 = 1, for the shock parameter
value α = −0.3 ∈ (α∗, 0) in Figure 5.2(a), and for α∗ = −8 ∈ (−∞, α∗) in Figure 5.2(b).
Notice that the Lopatinskĭı function does not vanish in Re γ ≥ 0 in case (a), whereas
in case (b) two zeroes along the imaginary axis emerge (this is particularly noticeable
in the 3D plot on the left). These figures illustrate the transition from uniform to weak
stability stated in Proposition 5.3.1.

5.3.2 Blatz model in dimension d = 3

Let us now consider the model proposed by Blatz [18] (see section §C.2) in dimension
d = 3,

h(J) = −3

2
µ+

(
κ− 2

3
µ
)
(J − 1)−

(
κ+

µ

3

)
log J, (5.65)

where κ > 2
3µ > 0 are constant. This energy function, which models compressible

elastomers, was studied in [104] from a numerical perspective. From (5.65) we clearly
have

h′′(J) = (κ+ 1
3µ)

1

J2
> 0, h′′′(J) = −2(κ+ 1

3µ)
1

J3
< 0,

for all J ∈ (0,∞) and conditions (H1) – (H3) are satisfied. Thus, Proposition 4.2.22
implies that for Lax shocks we require α < 0. Use (4.55) and J− = J+ − α|V +

1 |2 =
J+ − αθ+

11 to write

s2 − µ = (κ+ 1
3µ)

θ+
11

J+J−
,

yielding, in turn,

ρ(α) = h′′(J+)− (s2 − µ)

θ+
11

J−

J+
≡ 0.

In view of Theorem 5.2.13 we obtain the following
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Proposition 5.3.2. For the three-dimensional Blatz model (5.65) all classical elastic
shocks are uniformly stable.

As before, for the sake of simplicity we consider an undeformed base state, U+ = I3,
and α < 0 to define the shock. In this fashion, J+ = 1, V +

1 = ê1 ∈ R3 and

U− = I3 − α(ê1 ⊗ ê1) =

1− α 0 0
0 1 0
0 0 1

 , J− = 1− α > 1.

Here, the transversal frequencies vector is ξ̃ = (ξ2, ξ3)> ∈ R2 and V +
j = êj ∈ R3,

for j = 2, 3. This yields, η+(ξ̃) =
∑

j 6=1(V +
1 )>V +

j ξj =
∑

j 6=1 ê
>
1 êjξj = 0. Direct

calculations lead to

κ+
2 = κ+ 4

3µ > 0, s2 = µ+
κ+ 1

3µ

1− α
, ζ+(ξ̃) = (κ+ 4

3µ)|ξ̃|2,

with s < 0. Let us define

C1(κ, µ, α) := −

√
κ+

2

s
=

√
(1− α)(3κ+ 4µ)

(4− 3α)µ+ κ
> 0.

Since ρ(α) = 0 and η+(ξ̃) = 0, the second version of the Lopatinskĭı determinant (5.57)
then reduces to

∆̃(γ, ξ̃) =

(
γ + C1(κ, µ, α)

(
γ2 + ζ+(ξ̃)

)1/2
)2

,

for (γ, ξ̃) ∈ Γ̃+. Since η+(ξ̃) = 0 the set of remapped frequencies (γ, ξ̃) ∈ Γ̃+ is given
by

Re γ > 0,
−α(κ+ 1

3µ)

(1− α)(κ+ 4
3µ)
|γ|2 + |ξ̃|2 = 1.

Solving for |ξ̃|2 and substituting into the Lopatinskĭı determinant we obtain the follow-
ing expression as a function of γ ∈ C alone,

˜̃
∆(γ) : = ∆̃(γ, ξ̃)|(γ,ξ̃)∈Γ̃+

=

γ + C1(κ, µ, α)

(
γ2 + (κ+ 4

3µ) +
α(κ+ 1

3µ)

1− α
|γ|2
)1/2

2

.
(5.66)

Figure 5.3 shows both the 3D and contour plots of the Lopatinskĭı determinant
(5.66) as a function of γ ∈ C, for elastic parameter values κ = 1, µ = 1 and for the
shock parameter value α = −5. Notice that the function never vanishes for Re γ ≥ 0,
confirming the uniform stability of the shock stated in Proposition 5.3.2.
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5.4 Conclusions

In the second part of the thesis (Chapters 4, 5), we have explicitly computed and studied
the Lopatinskĭı determinant (or stability function) associated to classical planar shock
fronts for compressible, non thermal, hyperelastic materials of Hadamard type in any
space dimension. The stored energy density functions characterizing such materials
have the form (4.36) and satisfy hypotheses (H1) and (H2). Once a base state is
selected, all elastic classical shocks can be described in terms of a shock parameter
α ∈ R\{0} which determines the shock speed, the end state and the shock amplitude.
For simplicity, we assume that the material further satisfies the material convexity
condition (H3). It is shown that for materials satisfying (H1) – (H3) all classical shocks
are, at least, weakly stable. This is tantamount to the fact that Hadamard-type ill-
posed examples cannot be constructed for the linearized problem. In several space
dimensions, it is known that the transition from a weakly stable to a strongly unstable
shock is signaled by the instability with respect to one dimensional perturbations (see
Serre [121]). Hence, Corollary 5.2.7 (which establishes the one-dimensional stability of
all shocks) is consistent with the absence of violent multidimensional instabilities.

Moreover, the explicit calculation of the Lopatinskĭı determinant as a function of
the space-time frequencies allows to perform a complete (spectral) study of the con-
stant coefficients problem analytically. We introduce a scalar stability parameter, ρ(α),
depending solely on the shock parameters and on the elastic moduli of the material,
which determines the transition from uniform to weak stability according to the condi-
tion (5.61). In the cases where the shock is weakly stable, we introduced a mapping in
the frequency space which allows to locate two zeroes along the imaginary axis. In the
case where the uniform stability condition holds, one may directly conclude the nonlin-
ear stability of the shock as well as the persistence of the front structure (local-in-time
existence and uniqueness of the shock wave for the nonlinear system of equations), in
view that the analysis of Majda [88, 89] and Métivier [99] apply. For that purpose,
it is to be observed that the system of elasytodynamics satisfies the block structure
assumption of Majda (see [27]) and the constant multiplicity of Métivier (see Corollary
4.2.12), allowing the construction of Kreiss symmetrizers and the establishment of en-
ergy estimates for the linearized coefficients problem (see [15, 88, 89]). The nonlinear
conclusion is, thus, at hand. The local-in-time existence of weakly stable shocks for
hyperelastic materials remains an open problem.

The explicit computation of the Lopatinskĭı determinant presented here could be
useful in the study of elastic phase boundaries for Hadamard materials, which are
structures associated to the case where the volumetric energy density h has the shape
of a double-well potential (for a recent contribution in this direction, see [54]). Such
investigation must follow the theoretical setup developed in [45] and (perhaps) the
numerical approach of [111], in order to deal with kinetic relations which are dissipative
perturbations of the Maxwell equal area rule. This is a problem that warrants future
investigations.
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(a) α ∈ (α∗, 0)
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(b) α ∈ (−∞, α∗)

Figure 5.2: Complex plot (in 3D, left, and contour, right) of the Lopatinskĭı determinant
(5.64) for the Ciarlet-Geymonat model (5.62) in dimension d = 2 as function of γ ∈ C,
with ξ22 = 1, for elastic parameter values κ = 2, µ = 1 and for the shock parameter value
α = −0.3 ∈ (α∗, 0) (panel (a)) and α = −8 ∈ (−∞, α∗) (panel (b)). The color mapping
legend shows the modulus |∆| ∈ (0,∞) from dark to light tones of color and the phase
from light blue (arg(γ) = −π) to green (arg(γ) = π).
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Figure 5.3: Complex plot (in 3D, left, and contour, right) of the Lopatinskĭı determinant
(5.66) for the Blatz model (5.65) in dimension d = 3 as function of γ ∈ C for elastic
parameter values κ = 1, µ = 1 and for the shock parameter value α = −5. The color
mapping legend shows the modulus |∆| ∈ (0,∞) from dark to light tones of color and the
phase from light blue (arg(γ) = −π) to green (arg(γ) = π).
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Appendix A

Secular equation for Rayleigh waves of
impedance type

In the following we derive the secular equation of Rayleigh waves propagating in a
isotropic half-space subjected to impedance boundary conditions of the form (3.4). As
we mention in Section 3.1 Chapter 3, the displacement components of a Rayleigh wave
fits the general form (see, (3.6))

u1 = Ae−ax2eki(x1−ct),

u2 = Be−ax2eki(x1−ct),
(A.1)

where k = ω/c is an unknown wave number and the unknowns A,B, a > 0 and the
phase speed c have to be chosen such that (A.1) satisfy both the differential equation
(3.1) and the boundary condition (3.4). First we introduce (A.1) into (3.5) to compute
the stress components, σ12, σ22, associated to the displacement (A.1), which gives

σ12 = µ(−aA+ kiB)e−ax2eki(x1−ct)

σ22 =
(
λkiA− (λ+ 2µ)aB

)e−ax2eki(x1−ct).
(A.2)

Substituting (A.1) into the differential equation (3.1) and symplifying lead to the fol-
lowing linear homogeneous system in the variables (A,B):(

(c2 − c2
p)k

2 + a2c2
s

)
A− aki(c2

p − c2
s)B = 0,

−aki(c2
p − c2

s)A+
(
(c2 − c2

s)k
2 + a2c2

p

)
B = 0,

(A.3)

inasmuch as (λ+µ)/ρ = λ′+µ′ = c2
p−c2

s. Non trivial solutions of the system above are
necessary to have non zero solutions of the form (A.1). Therefore, the determinant of
the matrix of the system (A.2) is set to zero, which after algebraic manipulation yields(

a2c2
p − (c2

p − c2)k2
)(
a2c2

s − (c2
s − c2)k2

)
= 0 (A.4)

Solving for a produces two solutions, namely a1 = kã1, a2 = kã2, where

ã1 =

√
1− c2

c2
p

, ã2 =

√
1− c2

c2
s

. (A.5)
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The positive square roots were selected in order to satisfy the exponential decaying
condition (namely, a > 0 in (A.1)). Solving the system (A.3) for each value a = a1,
a = a2 (separately) shows that the infinite solutions, for each value, are respectively
spanned by the vectors(

A
B

)
=

(
1
−a1
ki

) (
A
B

)
=

(
1
ki
a2

)
.

Replacing in (A.1), we obtain two linear independent Rayleigh solutions given by

u
(1)
1 = e−a1x2eki(x1−ct)

u
(1)
2 =

−a1

ki
e−a1x2eki(x1−ct)

u
(2)
1 = e−a2x2eki(x1−ct)

u
(2)
2 =

ki

a2
e−ax2eki(x1−ct)

(A.6)

If we consider just one of these solutions, then there are values of the impedance
parameters γ1, γ2 for which the boundary condition does not hold. Indeed, if we take,
for instance, any scalar multiple of u(1) in (A.6) and susbtitute into the boundary
condition (3.4) (x2 = 0) (Using (A.2) to get the stress components σ12, σ22), we obtain
the following algebraic system of equations{

2µa1 + γ1kci = 0
−λk2 + (λ+ 2µ)a2

1 + γ2a1kci = 0.
(A.7)

Making γ1 = 0, we find that the first equation holds only when a1 = 0 (that is, c = ±cp)
and hence, upon substitution of a1 = 0, the second equation reduces to λ = 0, inasmuch
as k 6= 0. Consequently, once the Lamé constants are fixed so that λ 6= 0, the first
mode u(1) in (A.6) does not satisfy the boundary condition when γ1 = 0 and γ2 ∈ C.
Similarly, there are values of the impedance parameters for which the second mode
u(2) in (A.6) does not satisfy the boundary condition. This conclusion can be obtained
independently, for the stress free case γ1 = γ2 = 0 in the context of Kreiss theory for
hyperbolic systems (see e.g. [120]). Hence, for the sake of generality, we assume that a
general Rayleigh wave solution of the system (3.1) is a linear combination of u(1) and
u(2) in (A.6), that is

u1 =
(
A1e−a1x2 +A2e−a2x2

)eki(x1−ct),

u2 =
(
− a1

ki
A1e−a1x2 +

ki

a2
A2e−a2x2

)
eki(x1−ct),

(A.8)

which, by virtue of linearity, also satisfies the differential equation (3.1) (see, [1]). Now,
we have to find A1, A2 and c such that (A.8) satisfies the boundary condition. As
before, we use (A.2) to compute the associated normal stress components σ12, σ22,
evaluate them at x2 = 0 and substitute in the boundary condition (3.4) to obtain the
homogeneous linear system in the amplitudes A1, A2(

− 2µa1 − kcγ1i
)
A1 −

( µ
a2

(a2
2 + k2) + kcγ1i

)
A2 = 0,( 1

ki
((λ+ 2µ)a2

1 − λk2) + a1cγ2

)
A1 +

(
− 2µki +

ck2γ2

a2

)
A2 = 0.

(A.9)
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In particualr, if A2 = 0, we retrieve the system of equations (A.7). For convenience,
we multiply the first equation by i/k, the second one by −i/k and substitute a1 = kã1,
a2 = kã2. The resulting linear system can be written in matricial form as follows(

−2µã1i + cγ1 µ(1 + ã2
2) + cγ1ã2i

ã2
1(λ+ 2µ)− λ+ ã1cγ2i 2µã2i− cγ2

)(
A1

−A2i/ã2

)
=

(
0
0

)
. (A.10)

Again, we need the system above to support more solutions than the trivial one A1 =
A2 = 0, so the determinant of the system must vanish. Therefore, non trivial solutions
to the problem (3.1)-(3.4) in form of Rayleigh waves (A.1) with phase velocity c exist
as long as the determinant of the linear system (A.10) vanish for some c ∈ (−cs, cs).
The determinant is given by∣∣∣∣∣ −2µã1i + cγ1 µ(1 + ã2

2) + cγ1ã2i

µ(1 + ã2
2) + cγ2ã1i 2µã2i− cγ2

∣∣∣∣∣ , (A.11)

inasmuch as ã2
1(λ+ 2µ)− µã2

2 = λ+ µ. Simplifying and rearranging terms we arrive at
the desaired secular equation in the variable c

(
c2

c2
s

− 2

)2

− 4

√
1− c2

c2
s

√
1− c2

c2
p

− c3i

µc2
s

γ1

√
1− c2

c2
s

+ γ2

√
1− c2

c2
p


+ c2γ1γ2

µ2

1−

√
1− c2

c2
s

√
1− c2

c2
p

 = 0.

(A.12)
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Appendix B

Stable space for Linear isotropic
elasticity equations in dimension d ≥ 2

This section presents the explicit calculation given in [14] of the stable space Es(τ, ξ̃)
for the first order version (3.20) of the d dimensional elasticity equations (3.14). Due
to matrix Ad at (3.21) is singular (detAd = 0), we cannot directly apply formula (2.13)
to find A(τ, ξ̃), so we procced as in [14] and consider normal modes in the form (2.11)
given as (

v
w

)
=e τt+iξ.ye iωxd

(
v̂
ŵ

)
, (B.1)

where (ṽ, w̃) ∈ Cd × Cd×d is an eigenvalue associated to the eigenvalue iω such that
Re (iω) < 0 (stable eigenvalue). Substituting (B.1) into (3.19) givesτ v̂ + iµ′ŵ

(
ξ̃
ω

)
+ i(λ′ + µ′)(tr ŵ)

(
ξ̃
ω

)
= 0,

τ ŵ + iv̂ ⊗
(
ξ̃
ω

)
= 0

(B.2)

From second equation in (B.2) we get τŵ = −iv̂ ⊗
(
ξ̃
ω

)
; substituting back into the

first equation and multiply by τ we find(
τ2 + µ′(|ξ̃|2 + ω2)

)
v̂ + (λ′ + µ′)

(
v̂>
(
ξ̃
ω

)
)( ξ̃

ω

)
= 0. (B.3)

This is a linear combination of vectors v̂ and ( ξ̃
ω

). We thus further consider separately
the case when vectors are dependent or independent. For the linear dependent case,
there is a scalar k ∈ C such that v̂ = k

(
ξ̃
ω

) (longitudinal propagation). Substituting
back into (B.3) yields

τ2 + (λ′ + 2µ′)(|ξ̃|2 + ω2) = 0

solving for ω, we obtain

ω = ωp := i

√
τ2

c2
p

+ |ξ̃|2,

where the square root is assumed to be the principal branch in order to fullfiled the
condition Re (iωp) < 0. Therefore, v̂ = v̂p = k

(
ξ̃
ωp

) and using the second equation in
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DIMENSION D ≥ 2

(B.2) we obtain τŵp = −iv̂p⊗
(
ξ̃
ωp

)
. That is, any eigenvector associated to ωpi has the

form (v̂p, ŵp). Since τ is supposed to be a constant, one may replace k by τk in ŵp to

write the corresponding eigenspace Esp(τ, ξ̃) associated to ωpi as follows:

Esp(τ, ξ̃) =

{(
τv
w

)
∈ Cd × Cd×d; v = k

(
ξ̃
ωp

)
, w = −ik

(
ξ̃
ωp

)
⊗
(
ξ̃
ωp

)
, k ∈ C

}
. (B.4)

Notice that this eigenspace has dimension 1. In the linearly independent case, both
coefficients at (B.3) must vanish. Therefore, from the coefficient of v̂ we have

τ2 + µ′(|ξ̃|2 + ω2) = 0;

solving for ω we obtain

ω = ωs := i

√
τ2

c2
s

+ |ξ̃|2.

From the remaining coefficient at (B.3) we get v̂>
(
ξ̃
ω

) = 0, which means that all

eigenvector (v̂s, ŵs) associated to the eigenvalue iωs must satisfy v̂>s
(
ξ̃
ωs

) = 0 (shear
propagation) and therefore the eigenspace can be written as

Essh(τ, ξ̃) =

{(
τ v
w

)
∈ Cd × Cd×d; v>

(
ξ̃
ωs

)
= 0, w = −iv ⊗

(
ξ̃
ωs

)}
. (B.5)

where w = ŵs is got just like in the ωp case. Since all vectors satisfying v>
(
ξ̃
ωs

)
= 0

form a d− 1 dimensional linear space, it follows that dimEssh(τ, ξ̃) = d− 1.
Finally, since µ > 0 and λ+ 2µ > 0 we have cs 6= cp, which implies

Essh(τ, ξ̃) ∩ Esp(τ, ξ̃) = {0}.

hence, any vector in Es(τ, ξ̃) can be written uniquely as sums of one eigenvector of
Esp(τ, ξ̃) and one eigenvector of Essh(τ, ξ̃), this is

Es(τ, ξ̃) = Essh(τ, ξ̃)⊕ Esp(τ, ξ̃).
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Appendix C

Compressible neo-Hookean materials

The simplest interpretation of an elastic Hadamard material is as a compressible exten-
sion of a neo-Hookean incompressible solid. Incompressible hyperelasticity is restricted
to isochoric (volume preserving) deformations with J = detU = 1, which is a kinematic
constraint. The best known incompressible hyperelastic model is the neo-Hookean ma-
terial [78, 115, 137], whose energy function (in arbitrary space dimensions) is given by

WnH(U) = W nH(I(1)) =
µ

2
(I(1) − d). (C.1)

This strain-energy function provides a reliable and mathematically simple constitu-
tive model for the nonlinear deformation behavior of isotropic hyperelastic materials,
such as vulcanized rubber, similar to Hooke’s law. It predicts typical effects known
from nonlinear elasticity within the small strain domain (in contrast to linear elas-
tic materials the stress-strain curve for a neo-Hookean material is not linear). It was
first proposed by Rivlin in 1948 [115]. Notably, the energy function (C.1) may also
be derived from statistical theory, in which rubber is regarded as a three-dimensional
network of long-chain molecules that are connected at a few points (cf. [17, 67]).

The incompressibility hypothesis works well for vulcanized rubber (under very high
hydrostatic pressure the material undergoes very small volume changes). There are
other materials, however, which are either slightly compressible, or which may undergo
considerable volume changes (like foamed rubber). Therefore, compressible models are
needed in order to describe these elastic responses. Furthermore, it is known that
incompressibility can cause numerical difficulties in the analysis of finite elements, and
in such cases nearly incompressible models are often used [69, 82]. As a result, either
motivated by numerical or by physical considerations, compressibility is often accounted
by the addition of a strain energy describing the purely volumetric elastic response. In
the case of the neo-Hookean model, compressible extensions have the form

W (U) = W (I(1), J) = WnH(I(1)) +Wvol(J).

This decoupled representation of the energy as the sum of isochoric and volumetric
energies is very common for isothermal deformations. A compressible extension should
satisfy W (I(1), 1) = WnH(I(1)), that is, Wvol(1) = 0. In the case of energies of the form
(4.36) we clearly have an isochoric contribution given by neo-Hookean energy density
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(C.1) and a volumetric response given by Wvol(J) = h(J) + 1
2µd. Pence and Gou

[108] discuss nearly incompressible versions of the neo-Hookean model, as well as the
requirements on the material moduli for the models to be compatible with the small-
strain regime. In the next section we review such requirements and extrapolate them
to arbitrary space dimensions.

C.1 Compressible theory of infinitesimal strain

Since undeformed configurations are stress free, one requires that σ = 0 whenever U =
Id. In the case of a Hadamard material, this requirement leads, upon substitution into
formula (4.39), to the following relation between the shear modulus and the function
h,

h′(1) = −µ. (C.2)

This relation can be interpreted as a free stress condition for no deformations in the
incompressible boundary, precisely at (I(1), J) = (d, 1) ∈ ∂D.

The mean pressure field is defined as (see, e.g., [? ], p. 545),

p := −1

d
tr (T (U)) = −1

d
tr
( 2

J

∂W

∂I(1)
UU> +

∂W

∂J
Id
)

= −h′(J)− µ

d

I(1)

J
.

For symmetric deformation states, U = J1/dId (or equivalently, (I(1), J) ∈ ∂D), Pence
and Gou [108] define

− p̂(J) := −p(dJ2/d, J) = h′(J) + µJ
2
d
−1 = −phyd(J) + µJ

2
d
−1,

where

phyd(J) = −∂Wvol

∂J
= −h′(J), (C.3)

is the hydrostatic pressure (cf. [67, 137]), or the pressure the material experiences when
the shear strain is zero.

The appropriate definition of the bulk modulus of infinitesimal strain theory is there-
fore

κ := − dp̂

dJ

∣∣∣∣
J=1

= p̂′(1),

describing volumetric elasticity or how resistant to compression the elastic medium is.
Consequently, for a Hadamard material with strain energy of the form (4.36) we have
∂W/∂I(1) = µ

2 and ∂W/∂J = h′(J), yielding

−p̂′(J) = µ
(2

d
− 1
)
J

2
d
−2 + h′′(J),

and the following relation between the bulk and shear moduli

κ = − dp̂

dJ

∣∣∣∣
J=1

= µ
(2

d
− 1
)

+ h′′(1), (C.4)

118



C.2 Examples

which can be seen as the correct hydrostatic pressure condition in the small-deformation
limit.

Since the strain energy must be positive for small strains (linear physical theory
for small deformations), on restriction to infinitesimal deformations the shear and bulk
moduli must be positive to ensure compatibility with the linear response (cf. [21]). The
Poisson ratio can then be defined in arbitrary dimensions as

ν :=
dκ− 2µ

2µ+ d(d− 1)κ
,

measuring the ratio of strain in the direction of load over the strain in orthogonal
directions. This definition extends the well known formulae for the Poisson ratio in
dimension d = 2, ν = κ−µ

κ+µ , and in dimension d = 3, ν = 3κ−2µ
2(3κ+2µ) (see [95, 132]).

Although the admissible thermodynamic range for the Poisson ratio is −1 ≤ ν ≤ 1/2
in dimension d = 3 [108], and −1 ≤ ν ≤ 1 in dimension d = 2 [95], the standard range
for consideration is ν > 0 (ν is usually positive for most materials1 because interatomic
bonds realign with deformation). To sum up, in this work it is assumed that

µ > 0, κ >
2

d
µ > 0. (C.5)

The classical Lamé moduli of an elastic material are the shear modulus µ > 0 (second
Lamé parameter) and Λ (first Lamé parameter)2; the former can be related to the bulk
and shear moduli by

Λ = κ− 2µ

d
;

see [24, 137]. Notice that, under assumption (C.5), Λ > 0 .

Remark C.1.1. In view of (C.3), condition (H3) implies that p′′hyd(J) = −h′′′(J) > 0
for all J ∈ (0,∞). Hence, hypothesis (H3) can be interpreted as a material convexity
condition for zero shear strain.

C.2 Examples

The following models belong to the class of compressible hyperelastic materials of
Hadamard type, whose energy density functions have the form (4.36) and satisfy as-
sumptions (H1) and (H2). They have been proposed in the materials science literature
to describe different elastic responses. It is worth mentioning that there exist com-
pressible models with energies of the form (4.36) but which do not satisfy the convexity
assumption (H2) for all deformations J ∈ (0,∞), such as the original Simo-Pister model
[128] (see also [60]), or the Ogden β-log model [105] (see eq. (6.137), p. 244 in [67]).

1with the exception, of course, of auxetic materials for which the Poisson ratio can be negative.
2the first Lamé constant is usually denoted in the literature with the Greek letter λ; however, in

order to avoid confusion with the frequency λ ∈ C in the shock stability analysis, we use a different
symbol for it.
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C. COMPRESSIBLE NEO-HOOKEAN MATERIALS

(a) Ciarlet-Geymonat model

As a first example consider the following volumetric strain energy function

hCG(J) = −d
2
µ− µ log J +

(κ
2
− µ

d

)
(J − 1)2, (C.6)

where µ and κ are the shear and bulk moduli, respectively, satisfying (C.5). Notice
that hCG(1) = −dµ/2 and therefore the energy density WCG = µ

2 I
(1) + hCG(J) is

normalized as WCG(d, 1) = 0. It also satisfies (C.2) and (C.4) as the reader may easily
verify. Finally, in view of (C.5) there holds the convexity condition (H2) as

h′′CG(J) =
µ

J2
+
(
κ− 2µ

d

)
> 0, J ∈ (0,∞).

In addition, there holds

h′′′CG(J) = −2µ

J3
< 0,

for all J ∈ (0,∞). This model is an extension to arbitrary spatial dimensions of the
strain energy

W =
µ

2
(I(1) − 3) +

(κ
2
− µ

3

)
(J − 1)2 − µ log J,

proposed by Ciarlet and Geymonat [25] (see also [106]) in dimension d = 3. It is a
special form of the family of compressible Mooney-Rivlin materials (see Ciarlet [24],
section 4.10, p. 189, formula (iii) in the limit b→ 0). hCG is defined for all deformations
J ∈ (0,∞) and satisfies hCG →∞ as J →∞ and as J → 0+.

(b) Blatz model

The energy function

hB(J) = −d
2
µ+

(
κ− 2

d
µ
)(
J − 1

)
−
(
κ+

(d− 2

d

)
µ
)

log J, (C.7)

where, once again, µ and κ are the shear and bulk moduli, respectively, generalizes to
arbitrary dimensions d ≥ 2 the modified compressible neo-Hookean form of the energy
proposed by Blatz [18] (see eq. (48), p. 36), in dimension d = 3:

W =
µ

2
(I(1) − 3) +

(
κ− 2

3
µ
)(
J − 1

)
−
(
κ+

µ

3

)
log J.

This function fulfills normalization, hB(1) = −dµ/2, as well as conditions (C.2) and
(C.4), as it is easily verified. Moreover,

h′′B(J) =
1

J2

(
κ+

(d− 2)µ

d

)
> 0, h′′′B (J) = − 2

J3

(
κ+

(d− 2)µ

d

)
< 0,

for all J ∈ (0,∞). Notice that hB → ∞ as J → ∞ or as J → 0+. This energy
was selected by Blatz as a candidate strain energy density to describe thermostatic
properties of homogeneous isotropic continuous elastomers (elastic polymers).
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(c) Neo-Hookean Ogden compressible foam material

The energy function

hO(J) = −d
2
µ+

µ

2c1

(
J−2c1 − 1

)
, (C.8)

where

c1 =
ν

1− (d− 1)ν
=
dκ− 2µ

2dµ
> 0,

was proposed by Ogden [105] to model highly compressible rubber-like materials for
which significantly volume changes can occur with relatively little stress (such as foams).
It belongs to what is known in the literature as the family of Ogden compressible rubber
foam materials (see [87], p. 161):

W =
N∑
p=1

µp
αp

( d∑
j=1

ϑ
αp

j − d
)

+
N∑
p=1

µp
αpcp

(J−αpcp − 1),

specialized here to N = 1 (neo-Hookean), µ1 = µ > 0, α1 = 2 and c1 given above.
This neo-Hookean element of the family has been used as a basis for residually stressed
extensions for energies that account for elastic responses of blood arteries in medical
applications (cf. [53]). Notice that hO(1) = −dµ/2 (normalization) and relations (C.2)
and (C.4) hold. Moreover, the convexity condition holds as

h′′O(J) =
µ(2c1 + 1)

J2(c1+1)
> 0, h′′′O(J) = −2µ(c1 + 1)(2c1 + 1)

J2c1+3
< 0,

for all J ∈ (0,∞). Notably hO →∞ as J → 0+ but limJ→∞ hO(J) exists.

(d) Levinson-Burgess model

Consider the following volumetric function

hLB(J) = −d
2
µ+

µ

2

(
c(J2 − 1) + 2(c+ 1)(1− J)

)
, (C.9)

where

c =
κ

µ
− 2

d
+ 1 > 0.

This is a generalization to any space dimension d ≥ 2 of the three dimensional material
considered by Kirkinis et al. [74],

W =
µ

2

(
I(1) − 3 +

(
κ

µ
+

1

3

)
(J2 − 1)− 2

(
κ

µ
+

1

3
+ 1

)
(J − 1)

)
,

which is, in turn, a special case of a compressible polynomial material introduced by
Levinson and Burgess [84] to account for weakly compressible elastic media with Poisson
ratio close to 1

2 (in dimension d = 3). Notice that hLB(1) = −dµ/2 (normalization), it
satisfies (C.2) and (C.4), and

h′′LB(J) = µc > 0, h′′′LB(J) ≡ 0,

for all J ∈ (0,∞).
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C. COMPRESSIBLE NEO-HOOKEAN MATERIALS

(e) Simo-Taylor material

The Simo-Taylor model [129] (see also [60]),

hST(J) = −d
2
µ− µ log J +

Λ

2

(J2

2
− log J − 1

2

)
, (C.10)

where µ is the shear modulus and Λ = κ−2µ/d > 0 is the first Lamé parameter, clearly
satisfies hST(1) = −dµ/2 (normalization) and conditions (C.2) and (C.4). Furthermore,
the convexity condition (H2) holds, as

h′′ST(J) =
Λ

2
+
(
µ+

Λ

2

) 1

J2
> 0,

for all J ∈ (0,∞). Observe also that

h′′′ST(J) = −(2µ+ Λ)
1

J3
< 0, J ∈ (0,+∞).

When J → 0+ or J → ∞, hST grows unboundedly. This energy form can be derived
from (Gaussian) statistical mechanics of long-chain molecules with entropic sources of
compressibility modeled thorough the logarithmic terms (cf. Bischoff et al. [17]).

(f) Special compressible Ogden-Hill material

The volumetric response function

hOH(J) = −d
2
µ+

1

b

(
J − 1)2, (C.11)

where µ > 0 is the shear modulus and b > 0 is an empirical coefficient, yields an energy
density WOH = µ

2 I
(1)+hOH(J) that also belongs to the class of compressible Hadamard

materials. Notice that WOH(d, 1) = 0 (normalization) but h′OH(1) = 0 and, thus, it
does not satisfy the free stress condition (C.2). It does satisfy the convexity condition
as

h′′OH(J) =
2

b
> 0, h′′′OH(J) ≡ 0,

for all J ∈ (0,∞). Also, hOH → ∞ as J → ∞, whereas hOH(0+) is well-defined.
This model is a particular case of the well-known family of compressible Ogden-Hill
materials [65, 66, 105]

W =
N∑
p=1

µp
αp

( d∑
j=1

ϑ
αp

j − d
)

+
N∑
p=1

1

b2p
(J − 1)2N ,

specialized to N = 1, µ1 = µ > 0, α1 = 2 and b1 = b > 0. The family was proposed to
model highly compressible materials such as low density polymer foams (cf. [41, 100]).
The parameter b > 0 is adjusted from experimental data. It is a modulus that measures
compressibility: if b is small then the material is highly compressible, whereas if b is
large then the material can be considered as nearly incompressible. It is used in the
analysis of elastomers, as well as in the design of O-rings, seals and other industrial
products [87].
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(g) Simo-Miehe model

The following energy function proposed by Simo and Miehe [127] (see also [67]),

hSM(J) = −d
2
µ+

κ

4

(
J2 − 1− 2 log J

)
, (C.12)

was introduced in the context of finite-strain viscoplasticity. Note that this volumetric
energy attains a minimum at J = 1, with h′SM(1) = 0, and therefore it does not satisfy
the free stress condition (C.2). It does, however, satisfy the convexity condition as

h′′SM(J) =
κ

2

(
1 +

1

J2

)
> 0,

for all deformations. Moreover,

h′′′SM(J) = − κ

J3
< 0, J ∈ (0,∞).

Also, hSM increases unboundedly as J → 0+ and as J →∞.

(h) Bischoff, Arruda and Grosh model

Bischoff et al. [17] proposed the following volumetric response function

hBAG(J) = −d
2
µ+

c

b2
(

cosh(b(J − 1))− 1
)
, (C.13)

where the constants c, b are positive empirical constants which should be calibrated
from experimental data. Notice that h′BAG(1) = 0 and J = 1 is a minimum; thus, it
does not satisfy (C.2). The convexity condition holds as,

h′′BAG(J) = c cosh(b(J − 1)) > 0,

for all J ∈ (0,∞). However,

h′′′BAG(J) = cb sinh(b(J − 1)),

yielding h′′′BAG(1) = 0, as well as h′′′BAG(J) > 0 if J > 1 and h′′′BAG(J) < 0 if J < 1.
Note also that hBAG → ∞ as J → ∞ but hBAG(0+) is well defined. This model
was proposed to account for the contributions of entropy and initial energy to volume
change. Its derivation follows non-Gaussian statistics of long chain molecules, which is
necessary for large deformations. It can be interpreted as a non-Gaussian, higher order
representation of the Ogden-Hill model (C.11) in the small volume changes regime,
inasmuch as the series expansion around J = 1 yields

hBAG(J) = −d
2
µ+

c

2
(J − 1)2 +O((J − 1)4).
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Remark C.2.1. The energy densities presented above are divided into two categories.
Models (a) thru (e) can be interpreted as compressible versions of the neo-Hookean
material in the sense described by Pence and Gou [108]: they satisfy the free stress
condition (C.2) and the hydrostatic pressure condition (C.4), both at the incompressible
limit with no deformation, and represent materials which are nearly incompressible. In
contrast, models (f) thru (h) are designed to fit experimental data involving phenomeno-
logical observations such as, for example, when foam polymers undergo large changes
in volume [69]. In these models, h′(1) = 0, so that the volumetric function h provides
a direct penalization of volume departing from J = 1. All models (a) thru (h) provide
neo-Hookean behavior in the incompressible limit, namely, W (I(1), 1) = WnH(I(1)), and
reduce to the standard linearly elastic material response when deformations are small
(that is, when |12(U>U − Id)| � 1).

Remark C.2.2. All the model examples presented here are physically motivated en-
ergy functions that satisfy assumptions (H1) and (H3) for all possible deformations
and, therefore, they belong to the general class of compressible hyperelastic Hadamard
materials considered in this work. (It is to be observed that the family does not include
other hyperelastic models found in the literature, such as the compressible versions of
the Blatz-Ko, Murnaghan or Varga models, just to mention a few; see [67, 106] and
the references therein.) Notably, the convexity of the energy (property (H2)) implies
that all energy functions are rank-one convex in the whole domain of U with detU > 0,
making the elastodynamics equations hyperbolic in the whole domain of their state vari-
ables. The stability results of this work apply to materials which, in addition, satisfy
the material convexity condition (H3).
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[52] Godoy, E., Durán, M., and Nédélec, J.-C. (2012). On the existence of surface
waves in an elastic half-space with impedance boundary conditions. Wave Motion,
49(6):585–594. xi, 2, 3, 23, 26, 27, 28, 42, 45

[53] Gorb, Y. and Walton, J. R. (2010). Dependence of the frequency spectrum of small
amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical
elastic body on residual stress. Int. J. Eng. Sci., 48(11):1289–1312. 121

[54] Grabovsky, Y. and Truskinovsky, L. (2019). Explicit relaxation of a two-well
Hadamard energy. J. Elast., 135(1-2):351–373. 107

[55] Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products.
Elsevier/Academic Press, Amsterdam, seventh edition. Translated from the Russian.
Translation edited and with a preface by A. Jeffrey and D. Zwillinger. 88

[56] Gustafsson, B. and Kreiss, H.-O. (1983). Difference approximations of hyperbolic
problems with different time scales. i: The reduced problem. SIAM Journal on
Numerical Analysis, 20(1):46–58. x, 2

[57] Gustafsson, B., Kreiss, H.-O., and Sundström, A. (1972). Stability theory of
difference approximations for mixed initial boundary value problems. ii. Mathematics
of Computation, 26(119):649–686. x, 2
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[79] Kulikovskĭı, A. G. and Chugăınova, A. P. (2000). On the stability of quasi-
transverse shock waves in anisotropic elastic media. Prikl. Mat. Mekh., 64(6):1020–
1026. xii, 4

130



BIBLIOGRAPHY

[80] Lax, P. D. (1957). Hyperbolic systems of conservation laws II. Comm. Pure Appl.
Math., 10:537–566. 49

[81] Lax, P. D. and Phillips, R. S. (1960). Local boundary conditions for dissipative
symmetric linear differential operators. Communications on Pure and Applied Math-
ematics, 13(3):427–455. 10

[82] Le Tallec, P. (1994). Numerical methods for nonlinear three-dimensional elasticity.
In Ciarlet, P. G. and Lions, J. L., editors, Handbook of Numerical Analysis, Numerical
Methods for Solids (Part 1), volume 3 of Handbook of Numerical Analysis, pages 465–
622. Elsevier Science B.V., Amsterdam. 117
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